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Preface

A tantalizing problem that cuts across the fields of computational chemistry, biology,
medicine, engineering and applied mathematics is how proteins fold. Global and local
optimization provide a systematic framework of conformational searches for the prediction
of three dimensional protein structures that represent the global minimum free energy, as
well as low energy biomolecular conformations.

This book contains refereed invited papers submitted at the conference on Optimization
in Computational Chemistry and Molecular Biology : Local and Global Approaches held at
Princeton University, May 7-9, 1999. The conference brought together the most active re-
searchers in computational chemistry, molecular biology, local and global optimization and
allowed for the exchange of ideas across discipline boundaries of applied mathematics, com-
puter science, engineering, computational chemistry and biology. The conference themes
included advances in local and global optimization approaches for molecular dynamics and
modeling, distance geometry, protein folding, molecular structure refinement, protein and
drug design, and molecular and peptide docking.

We feel that this book will be a valuable scientific source of information to faculty, stu-
dents, and researchers in optimization, computational chemistry and biology, engineering,
computer science and applied mathematics.

‘We would like to take the opportunity to thank the authors of the papers, the anonymous
referees, and the Department of Chemical Engineering and the School of Engineering and
Applied Sciences of Princeton University for supporting this effort. Special thanks and
appreciation go to John L. Klepeis for assisting us in the the preparation of the camera
ready Latex form of this book. Finally, we would like to thank the Kluwer Academic
Publishers for their assistance.

Christodoulos A. Floudas Panos M. Pardalos
Princeton University University of Florida

September 1999.
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Abstract

We present a global optimization algorithm and demonstrate its effectiveness in solving
the protein structure prediction problem for a 70 amino-acid helical protein, the A-chain
of uteroglobin. This is a larger protein than solved previously by our global optimiza-
tion method or most other optimization-based protein structure prediction methods.
Our approach combines techniques that “smooth” the potential energy surface being
minimized with methods that do a global search in selected subspaces of the problem in
addition to locally minimizing in the full parameter space. Neural network predictions
of secondary structure are used in the formation of initial structures.

Keywords: Protein Structure prediction, global optimization, smoothing.
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1 Introduction

The problem of predicting the three-dimensional structure of a protein given its primary
sequence of amino acids continues to challenge the biochemistry community. Assuming
the native structure exists at the global minimum of the free energy surface, the solution
can be found if one is given a potential energy function that is able to model the free
energy, and a global optimization algorithm capable of finding the global minimum of this
function. This work attempts to solve the latter problem, while also using a perturbation
of the potential energy function known as “smoothing”. The problem of finding this global
minimum among an enormous number of local minima within a very large parameter space
is a daunting challenge.

The global optimization method presented is related to the work of [18], which incorpo-
rates sampling and local minimizations in an iterative fashion, providing some theoretical
guarantees of success. In practice, the amount of work required to reach the theoreti-
cal guarantee is prohibitive, but our method combines sampling and local optimization in
small-dimensional, appropriately chosen subspaces, with additional techniques in the full-
dimensional problem space to provide a reasonable alternative. The method uses a two
phased approach which creates initial minimizers in Phase 1 and improves upon them in
Phase 2. It has proven to be successful in predicting structures of homopolymers [3], small
proteins, and molecular clusters [4]. This paper will discuss recent advances in predicting
the structure of the 70 amino acid A-chain of uteroglobin.

The idea behind smoothing the potential energy function is to soften the function by
reducing abrupt function value changes while retaining the large-scale structure of the orig-
inal function. As a result of dampening high gradient values and fine grain fluctuations in
the original function, nearby minimizers merge as smoothing removes the barriers between
them, and the total number of local minima is reduced [20]. We have observed that the
smoothed function also produces greater variation in the structure and energy values of
resulting minima when used within the global optimization algorithm.

In the first phase of the global optimization, initial structures are created and then passed
to a second phase for improvement. We make use of neural network predictions of secondary
structures such as alpha-helices and beta-sheets [10] to create the initial structures. Initial
structures with the predicted secondary structure already formed are better candidates
for improvement in the second phase of our algorithm than those without this secondary
structure.

The next two sections discuss the energy functions used in this research, and the
smoothed variant of the energy function. Section 4 describes the global optimization algo-
rithm, and computational results are presented in section 5. The final section includes a
summary, and directions for future research.

2 The Energy Function

The potential energy function used in this research is the AMBER molecular mechanical
force field [8], and is defined as
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EAMBER =
ZK (r = Teq) +ZK90 0eq)? + Z “2[1 + cos(ng — 7)] (1)
bonds angles dihedrals
o\ 12
R ) 0

1<J

where (1) represents the bonded interactions and (2) represents the pairwise nonbonded
interactions.

In order to account for hydrophobic effects, an empirical solvation term has been added
to EavBer during certain portions of the global optimization algorithm, which will be
referred to as Egopy. This potential was formulated from simulations of methane molecule
pairs in water [9], using the semiempirical Pratt-Chandler theories [16, 17]. The Esopny
potential consists of a small number of terms of the form

Z Kexp< (rs 'P)2>’

i,jeA

where the sum is taken over all aliphatic carbon pairs of the protein. The advantages of
using this potential are that it provides a well-defined model of the hydrophobic effect of
small hydrophobic groups in water, and is computationally tractable and differentiable.
Future work will fine-tune this potential for better performance in determining the relative
energies of a variety of protein folds.

We use predictions of secondary structure based on using a neural network trained on
a large data bank of known proteins [12, 11, 22]. Given the primary sequence, this system
predicts, on a per amino-acid basis, whether the secondary structure of each residue should
be alpha helix, beta sheet, or coil, and provides an additional indicator of the strength
of each prediction. These predictions are utilized within two biasing functions, which are
added to Eanper during the local minimizations in phase one for creation of initial struc-
tures to be used in the global optimization algorithm. The technique of applying predicted
structural information during energy minimization is known as the “antlion method” of
Head-Gordon and Stillinger [10], whose purpose is to deform the hypersurface of the objec-
tive function such that the basin surrounding the structures with appropriately predicted
secondary structure is widened and dominates. The first biasing function is

Epp= Y ksl —cos(¢~ do)] + k[l — cos(sp —1bo)] (3)
dihedrals

which biases the backbone torsional angles of a residue, where ¢y and 1y are the dihedral
angles of a perfect a-helix or S-sheet, and ks and ky are force constants related to the
strength of the prediction from the neural network. The values of ¢¢ and )y used for
a-helices are —62° and —41° respectively. The second function encourages the predicted
helical hydrogen bonds to form between the oxygen of residue ¢ and the hydrogen of residue
i + 4, for residues 7 and i + 4 which are predicted to be helical, and has the form

Enp = —wWiita/Tiita. (4)
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In this function, w; ;4 is the weight output by the neural network, and provides a strong
incentive for an intramolecular hydrogen bond to form when residue i is strongly predicted to
be helical. Future work will include the development of a function similar to (4) for 3-sheets,
possibly using a matching algorithm to determine potential hydrogen bond participants.
These neural net predictions are also used to determine how to focus the computational
effort on different parts of the protein in Phase I of our algorithm.

An additional perturbation to the energy function, which has proven to be a tremendous
aid in solving global optimization problems involving protein structure, is our analytical
“smoothing” function which is described in the next section.

3 Smoothing

The idea of smoothing is to reduce abrupt function value changes without destroying the
basic structure of the original function. The smoothed function value at a point is commonly
formulated by taking a weighted average of the energy function in a neighborhood of the
point using a distribution function centered at the point. Smoothing reduces the total
number of local minima of a problem by reducing and ultimately removing the barriers
between nearby minimizers, thus causing them to merge. This technique, called spatial
averaging, has been studied in various ways [5] [6] [7] [13] [19] [21]. Using a Gaussian
distribution function, the smoothing transformation is

for(o) = [ H(F(@),9) - o a5 o

where A and s are the smoothing parameters. The parameter A determines the scale of the
Gaussian distribution, while the parameter s is used with the function H to transform the
original function f(z) into a function with no poles. The transformation H(f, s) is necessary
to make the function integrable, and also further dampens the function. In the work of [13]
this transformation consists of approximating f(z) by a sum of Gaussian functions, while
in the work of [21] the transformation consists of truncating f(z) at some fixed maximum
value.

We utilize a new family of smoothing functions, which is not integration based, but
instead uses an algebraic method of smoothing applied to the nonbonded portion (2) of the
potential energy function. The bonded interactions (1) are not considered for smoothing
since the relative contribution to potential energy is small and since they are relatively
nicely behaved from an optimization viewpoint. The new smoothing functions have the
form

n
Esmootr<r,p> = (1) + 3 €35 [(
ZlJ[Tle+fy rZ 4y oij [ 15+

i#j

where i and j are any two atoms and r;; = d;j /045, d;; being the Euclidean distance, and +y
and P are two smoothing parameters. The smoothing parameter v > 0 is used to remove
the pole at d = 0; as « increases the value of the smoothed potential at d = 0 decreases.
The other smoothing parameter P is used to widen the valley of the minimizer. Note that
(6) reverts to the equations for Eamprr (1) + (2) if we set v = 0, P = 6; in other words,
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smoothing is turned off. On the other hand, with any « > 0, the poles at r;; = 0 disappear
for both the Lennard-Jones and electrostatic components of the function. This smoothing
function is easy to utilize computationally while still possessing the desirable properties
of a smoothing function for this problem class. For more information on our smoothing
technique, including its comparison with other smoothing approaches and its application to
global optimization problems, see [20, 1, 2].

4 The Global Optimization Algorithm

Our global optimization method incorporates the basic features, sampling and local mini-
mizations, of existing stochastic methods, but it is only able to solve large-scale problems
because it also incorporates phases that focus on small dimensional subproblems. These
phases constitute a significant departure from previous stochastic methods and account for
a major portion of the computational effort of the method.

The basic algorithm that we have utilized previously consists of two phases. The first
phase generates initial three dimensional structures for the given sequence of amino acids
describing the protein. A buildup procedure is used that samples on the set of dihedral
angles for each amino acid some fixed number of times, and selects the angle values that
produce the best partial energy for the part of the chain built so far, before proceeding to

“the next amino acid. A subset of the best structures generated by this buildup procedure

are then selected as start points for full dimensional local minimizations, and some number
of the best minimizers generated are passed to the second phase of the algorithm. A
variation of this procedure, using neural net secondary structure prediction information,
will be described later in this section.

The second phase accounts for most of the computational effort and success of the
method. The basic idea of this phase is to select a configuration from the list of local mini-
mizers, and then select a small subset of its variables for improvement. The subset consists
of a small number of dihedral or torsional angles of the protein. An interesting new tech-
nique for making that choice will be described below. Once the subset has been determined,
a stochastic global optimization procedure similar to the one in [18] is executed to find the
best new positions for the chosen dihedral angles, while holding the remaining dihedral an-
gles fixed. The global optimization procedure samples over the entire —180° — 180° angular
range of each of the chosen dihedral angles, and performs small-scale local minimizations
over the subspace of selected dihedral angles from those sample point configurations with
the lowest energy of all sample points within their “critical radius”, as described in [18].
Instead of using a probabilistic stopping criteria, iterations of sampling plus small-scale
local minimizations are performed a fixed number of times because the goal of the small-
scale global optimization is not to locate all minima of the small-dimensional problem, but
only some number of the best ones. Some of the best resulting configurations are then
“polished” by applying a full dimensional local minimization using all the variables. The
new full-dimensional local minimizers are then merged with those found previously and the
entire phase is iterated a fixed number of times. The incorporation of smoothing functions
into this phase will be discussed below.

The framework for the basic global optimization algorithm is outlined below in Algo-
rithm 4.1.
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Algorithm 4.1 — Framework of the Basic Global Optimization Algorithm for Protein
Problems

1. Phase 1: Generation of Initial Configurations

(a) Protein Sample Point Buildup: Build up sample configurations from one end of
the protein to the other by sequentially generating the dihedral angles for each
amino acid: randomly sample the angles for current amino acid a fixed number of
times and select the angle values that give the lowest energy function value for the
partial protein generated so far.

(b) Start Point Selection : Select a subset of the best sample configurations from step
la to be start points for local minimizations.

(c) Full-Dimensional Local Minimizations : Perform a local minimization from each
start point selected in step 1b. Collect some number of the best of these minimizers
for improvement in Phase 2.

2. Phase 2: Improvement of Local Minimizers: For some number of iterations:

(a) Choose the configuration to improve and the small-scale problem parameters: From
the list of full-dimensional local minimizers, select a local minimizer to improve and
a small subset of dihedral angles from that minimizer to be optimized.

(b) Global Optimization on a small subset of variables : Apply a fairly exhaustive small-
scale global optimization algorithm to the energy of the selected configuration using
the selected small subset of the dihedral angles as variables.

(c) Full-Dimensional Local Minimization : Apply a local minimization procedure, with
all dihedral angles as variables, to the lowest configurations that resulted from the
global optimization of step 2b.

(d) Merge the New Local Minimizers : Merge the new lowest configurations into the
existing list of local minimizers.

While Algorithm 4.1 was successful in finding the global minimum for small proteins
(poly(ala) with 5,10,20,30 and 40 residues, and met-enkephalin with 5 residues), in order to
find the global minimizer for poly(ala) with 58 residues, the algorithm was modified to use
the smoothed potential energy function (5) in both Phase 1 and Phase 2. Essentially, the 2
phases were executed in the same fashion as in Algorithm 4.1, with the exception that the
smoothed potential was used in all the sampling and local minimizations. Additionally, 2
steps were required to transform the solution back to the original potential energy landscape:

e At the completion of Phase 1, a local minimization was performed on each of the
initial minimizers created in the smoothed space to desmooth the minima, that is, to
find minimizers of the original potential surface using the smoothed minima as start
points. The minima were then ranked according to the function values of the original
function, and the lowest were chosen for improvement to begin the balancing portion
of Phase 2. (From this point on, step 2(a) uses smoothed function values in making
its selections of configurations.)

o At the completion of Phase 2, a local minimization was performed using each of the
resulting smoothed minima as start points, to again desmooth the minima.
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This modified algorithm using a smoothed objective was able to find lower local mini-
mizers for large proteins in less time than Algorithm 4.1 (see [2] for results on poly(ala)-58).

When we applied Algorithm 4.1 with smoothing to uteroglobin, a 70 amino acid helical
protein, Phase 1 was found to be inadequate in building up sample configurations with any
secondary structure at all. (This was not our experience for any of the poly(ala) test cases,
where Phase one formed the desired helical structures, and met-enkephalin has essentially no
secondary structure. But the structure of uteroglobin is far more challenging.) To deal with
these difficulties, the new approach uses a preprocessing step referred to as Phase 0, to insert
secondary structure into an initial configuration using the neural network predictions of
alpha and beta, described above. Starting from a completely extended conformer containing
no secondary or tertiary structure, a local minimization is first performed using the biasing
functions (3) and (4) in addition to Esymprer (1 and 2). From the resulting “biased”
minimizer another local minimization is performed without the biasing functions. The local
minimization using the biasing function encourages the formation of a-helices in regions
where the neural network predictions for « are strong. Because the network predictions
may not be completely correct, the biasing terms may either force helical formations in
regions where they do not belong, or discourage them from forming in regions where they
should be located. The local minimization without the biasing functions allows for some
correction in areas where the predictions may be wrong. The output from Phase 0 is a
single configuration which contains at least partially correct secondary structure, but does
not contain correct tertiary structure. Given the ability of the biochemistry community to
predict secondary structure fairly well, and the great difficulty and complexity of the full
protein structure prediction problem, it seems very reasonable to try to utilize secondary
structure predictions in our methods.

The effect of Phase 0 is to set the angles for residues predicted to be alpha or beta
at appropriate values. Phase 1 (step la) is modified so that these values are left fixed
and only those dihedral angles which have not been predicted to be alpha or beta by
the neural network are sampled, using as input the configuration generated in Phase 0.
In addition, during the local minimizations of step 1(c), the same two-step minimization
strategy as described for Phase 0 is used. That is, local minimizations on the sample
points are performed using the biasing functions, followed by local minimizations from
the “biased” minimizers without the biasing functions. In this manner, a diverse set of
initial configurations is created, each containing secondary structure that was predicted by
the neural network. Algorithm 4.2 gives the framework for the new global optimization
method, which includes the creation of initial configurations using neural net secondary
structure prediction and smoothing in the minimizer improvement phase.

An important part of Algorithm 4.2 is the heuristic used to determine which configura-
tion is selected at each iteration of the second phase. We consider an initial configuration
and any configurations generated from it (via global optimization of a small sub-space of
dihedral angles followed by a full-dimensional local minimization) to be related, such that
the latter is a “descendent” of the former. For some fixed number of iterations, the work
in Phase 2 is balanced over each of the k sets of configurations consisting of the & initial
minimizers and all of those minimizer’s descendants. First, each of the k initial minimizers
is chosen for improvement. Then, at each iteration for the remainder of the balancing phase,
the set of configurations with the least amount of work performed on its members so far
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is selected, and the best configuration in this set that hasn’t already been used is chosen.
Configurations are rated in terms of their smoothed energy function value, and best refers to
the lowest in energy value. After the fixed number of iterations of the balancing phase have
been performed, the remaining iterations of the local minimizer improvement phase select
the best configuration that has not already been selected, regardless of where it descended
from. We have found that the combination of the breadth of search of the configuration
space that the balancing phase provides with the depth of search that the non-balancing
phase allows is useful to the success of our method.

In this study, we restrict our choice of dihedral angles (used to define the small-scale
subproblem in step 1 of Phase II) to those angles not labelled as alpha-helical (or beta) by a
call to the DSSP [12] program which identifies the secondary structures of a given protein.
To choose from among the available angles we use an angle-choice heuristic that we have
developed recently. The new heuristic involves dividing the protein into some number (in
this case 10) contiguous regions, and determining which region is doing worst. To make this
determination, for each region R we compute a partial energy consisting of the sum of the
non-bonded interaction energies between atoms in R and atoms not in R, plus the dihedral
energy of the torsion angles in R. To appraise the goodness of these partial energies, we
construct a comparison pool consisting of about 50 of the best conformations chosen so that
no two have the same general structure. The DSSP program mentioned above is used to
identify structure similarities. For each region in the selected conformation we compare
its partial energy to the partial energies of the corresponding region of each conformation
in the comparison pool, and determining its rank in this set. The region with the worst
ranking is then selected as being the worst region. To select angles likely to improve this
region, we compute the partial derivatives of the worst region with respect to every dihedral
angle that we are allowing to change. The 6 or so angles with partial derivatives greatest
in absolute value are then chosen to define the subspace for the small-scale problem.
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Algorithm 4.2— Framework of the New Global Optimization Algorithm

I Phase 0: Generation of Initial Configuration containing predicted Secondary Structure

1. Local minimization on an extended conformer using the biased energy function.

2. Local minimization on the output of step I.1, using the unbiased potential energy
function

II Phase 1: Generation of Initial Configurations

1. Protein Sample Point Buildup: Build up sample configurations from one end of the
protein to the other by sequentially generating the dihedral angles for each amino
acid that was not predicted to be a or 3 by the neural network: for the current
amino acid, randomly sample the set of dihedral angles a fixed number of times
and select the dihedral angle that gives the lowest energy function value for the
partial protein generated so far.

2. Start Point Selection : Select a subset of the best sample points from step II.1 to
be start points for local minimizations.

3. Full-Dimensional Local Minimizations :

(a) Perform a local minimization using the biasing functions, from each start point
selected in step IL.2.

(b) Perform a local minimization using the unbiased potential energy function
from each of the minimizers from step II1.3.a.

Collect some number of the best of these minimizers for improvement in Phase 2.
IIT Phase 2: Improvement of Local Minimizers: For some number of iterations:

1. Choose the configuration to improve and the small-scale problem parameters: From
the list of full-dimensional local minimizers, select a local minimizer to improve and
a small subset of dihedral angles from that minimizer to be optimized.

2. Global Optimization on a small subset of variables : Apply a fairly exhaustive
small-scale global optimization algorithm to the energy of the selected configuration
using the selected small subset of the dihedral angles as variables, and the smoothed
potential energy function for sampling and local searches.

3. Full-Dimensional Local Minimization : Apply a local minimization procedure, with
all dihedral angles as variables, to the lowest configurations that resulted from the
global optimization of the step II1.2, using the smoothed potential energy function.

4. Merge the New Local Minimizers : Merge the new lowest configurations into the
existing list of local minimizers.

IV Postprocessing phase: Desmooth the minimizers from Phase 2 by performing local min-
imizations using the original potential energy function
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5 Computational Results

We have tested Algorithm 4.2 on a 70 amino-acid helical protein, the A-chain of uteroglobin.
Figure 1 shows the crystal structure for this protein, obtained from the protein data bank
entry 2UTG.

Figure 1: Crystal structure for the A-chain of Uteroglobin

Phase 0 of our new algorithm attempts to formulate a single configuration containing
secondary structure consistent with the neural net predictions for this protein. This phase
starts with a structure of the target protein that is the minimum closest to the fully extended
form with all backbone pairs assuming the values ¢ = 180 degrees and ¥ = —180 degrees.
A local minimization is performed using E4pprr (1 and 2) plus the biasing functions (3
and 4) with both the strength for the force constants as well as the prediction of which
residues are « obtained from the neural network predictions. This minimization is followed
by a local minimization using only Espprr. Each of the 2 minimizations cost roughly
6000 function evaluations. The first result of Phase 0 is shown in Figure 2.

Figure 2: Resulting minimizer from Phase 0

The protein structure in Figure 2 has reasonably well formed helices in three of the four
helices found in the crystal structure, and extended formations in the regions predicted to
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be coil. One of the four helices found in the crystal is much more disordered in our result,
however, as a consequence of weak predictions in that region of the sequence.

In order to assess the ability of Phase 0 if it were given a more accurate secondary
structure prediction, another Phase 0 was executed with a modified prediction file which
uses the secondary structure of the crystal to predict helix rather than coil in the region
of the disordered helix. This run obtained a better formed helix in that region. This new
structure is shown in Figure 3.

Figure 3: Second minimizer from Phase 0 with improved secondary structure

We decided to use the structure of Figure 3 as the starting configuration for Phase 1, as
well as the modified prediction file, because we anticipate that future improvements in the
network prediction algorithm will largely correct weak predictions for a-helical proteins.

In Phase 1, 60 sample configurations were generated in Step II.1, and the six configu-
rations with the lowest energy values were selected for local minimization. The dihedral
angles in each of the 70 amino acids were sampled 100 times, and the energy of the protein
so far was evaluated each time. The cost for sampling each of the 60 configurations in
terms of function evaluations is 100 samples times N, where N is the number of amino
acids, which is 70 in the case of uteroglobin. Since these function evaluations only evaluate
the portions of the energy that change with each buildup step, the total cost of this build-up
was much less than the cost of 7000 evaluations. Each of the 6 local minimizations cost
roughly 6000 function evaluations, using a limited-memory BFGS code [14] varying all 3375
Cartesian coordinates (1125 atoms) of the protein, on the energy surface of (Eanprr +
E4y + Egp). In step I11.3.b, the local minimizations performed to “unbias” the structures
on (Eamper + Esorv) used a BFGS method with an internal coordinate representation
which fixes the bond angles and bond lengths of the protein while allowing only the dihedral
angles to vary. There are approximately 400 dihedral angle internal coordinate parameters
in Uteroglobin, and each internal coordinate minimization cost, on average, 3000 function
evaluations. Function evaluations on the Aspen Avalanche machines used in these compu-
tations take approximately 2 seconds each to execute.

Table 5.1 gives the energy(Eaymprr + Esory) and root mean squared (r.m.s.) deviation
from the crystal structure, computed by measuring distances between corresponding carbon-
alpha atoms, for the minimizers found in Phase 1. These minimizers are also shown in
Figures 4-6. Only one of these structures (-2760, the third best in energy value) has a
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Table 5.1: Minimizers found in Phase 1

Energy RMSD
(EamBEeR + Esorv) | from Crystal structure
in Kcal/Mol in Angstroms
-2780 13.17
-2773 12.16
-2760 9.34
-2673 12.78
-2601 20.61
-2552 13.99

structure that even vaguely resembles that of the crystal structure, and the r.m.s. values
reflect this, having values that are considered very high in the remaining cases. Also, it is
evident from this data that there is not a direct correlation between energy values and the
deviation in distances from the crystal structure. Further discussion on this topic follows
the Phase 2 results. From Figures 4 through 6 of these configurations, it is possible to see
a relationship between compactness and lower energy values of the structures.

The list of initial input configurations for Phase 2 consisted of the six minimizers from
Phase 1. Eighteen iterations of phase 2 were executed, 6 balancing iterations and 12 non-
balancing, as described in the previous section. Six dihedral angles were optimized in the
small-scale global optimization of step III.2. Each small-scale global optimization performed
an average of 5000 function evaluations for sampling and 2000 total function evaluations
for the small dimensional local searches. In this experiment, each balancing iteration per-
formed 8 full-dimensional local minimizations (step I11.3), and each non-balancing iteration
performed 12. The full-dimensional local mininizations over the internal coordinate param-
eters cost on average 2400 function evaluations each. Thus, all the minimizations in Phase 2
required almost 500,000 function evaluations, and constituted the principal computational
cost of the algorithm.

The smoothing parameters used were P = 5, and v = .05. Based on the results of ex-
periments performed in [1], we conducted some additional testing on smoothing parameters
for uteroglobin, and modified the parameters slightly from those found to be most effective
for several smaller proteins. For a detailed discussion of the choice of smoothing parameters
for these other proteins, see [1].

Table 5.2 contains results from this run of Phase 2 of Algorithm 4.2. The 15 lowest energy
minimizers are presented, as well as their r.m.s. deviations from the crystal structure, and
the iteration of Phase 2 in which they were (first) found. The lowest energy value found
from all the resulting minimizers of Phase 2 (using internal coordinate minimization) is -
2944 with an r.m.s. of 7.95 Angstroms, but the minimizer with the smallest r.m.s. deviation
from the crystal structure, again measured on the carbon-alpha atoms, has an energy value
of -2877, and is marked by an “*”. The r.m.s. for that minimizer is 7.24 Angstroms, and
furthermore, the structure has the correct folds, but the larger outer bend is more compact,
and the 2 central bends are further apart from each other than in the crystal structure. All
of the configurations with r.m.s. of 8 Angstroms or less can be considered moderately good
fits of the crystal structure and all have similar structures.
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Figure 4: Phase 1 minimizers with corresponding energy values (Eapprr + Esorv) of
-2780 and -2773.

Figure 5: Phase 1 minimizers with corresponding energy values (Eapprr + Esorv) of
-2760 and -2673.

g :
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Figure 6: Phase 1 minimizers with corresponding energy values (Eayprr + Esoryv) of
-2601 and -2552.
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Table 5.2: Best 15 minimizers found in Phase 2

Energy RMSD Iteration
(EamBER + Esorv) | from Crystal structure | of Phase 2
in Kcal/Mol in Angstroms where found

-2944 7.95 15
-2929 8.02 18
-2911 7.92 11
-2904 10.81 4
-2898 7.88 18
-2894 7.78 1
-2890 7.93 18
-2889 7.86 10
-2887 7.70 15
-2882 10.30 5
-2877.8 10.32 5
-2877.7 7.87 15
-2877.4* 7.24 10
-2873 8.60 15
-2871 8.46 10

A. AZMI ET AL.

Figure 7 shows a tube diagram of the crystal structure, in order to be able to compare
it to the 2 minimizers discussed above, with energy values -2877 and -2944. Figures 8 and
9 show these 2 configurations.

These results show that in the case of uteroglobin, Algorithm 4.2 is able to find config-
urations with tertiary structures close to that of the crystal structure. However, the fact
that the lowest energy minimizers in Table 5.2 do not necessarily have the smallest r.m.s.
deviations indicates that the potential energy function may not model the molecular behav-
ior sufficiently accurately. To investigate this further we evaluated the energy of the crystal
structure using (EayBrr + Esorv). In order to do this, it was necessary to put hydrogen
atoms in their appropriate locations, and do a local minimization on this new structure
using Cartesian coordinates. The local minimization was done with the parameterization
over all the Cartesian coordinates, in order to allow the bond lengths and bond angles to
be optimized in accordance with Eppgg optimal values. The r.m.s. of the new structure
compared to the crystal structure is 2.40 Angstroms, which is a good fit. The energy is
-3090.74, in Cartesian coordinates. The values reported in Table 5.2 are internal minimizer
values, which have fewer degrees of freedom than Cartesian minimizers and thus higher
energy values. When a few key minimizers from Table 5.2 are minimized in the Cartesian
coordinate parameterization over E4pprr+ EsoLv, the resultant energy values (shown as
internal — Cartesian) are: —2944 — —3182, —2929 — —3160, and —2877.4 — —3107.

These results indicate that the energy values of minimizers found in Phase 2 are al-
ready considerably lower than the energy value of a structure that is very close to the
crystal structure. This lack of correspondence is even more pronounced when minimizing
on Espper without Egory. So while it is unknown whether Algorithm 4.2 has found the
global minimizer of E4prprr+ Esorv, this global optimization process has shown that the
immediate need at this stage is for an improved energy function that more closely resembles
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Figure 7: Tube diagram of the crystal structure for the A chain of Uterglobin

Figure 8: Tube diagram of Phase 2 minimizer with the lowest r.m.s. deviation from the
crystal structure, with energy value (Eayprr + Esorv) of -2877.

Figure 9: Tube diagram of Phase 2 minimizer with the lowest energy value over all mini-
mizers found, with energy value (Eapprr + EsorLv) of -2944.
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the actual energy for low energy configurations. Future work on the solvent term Esorv
will hopefully alleviate this problems.

We also examined the role of smoothing in the success of our algorithm. A 6 iteration
run with no smoothing (i.e. P = 6, and y = 0) resulted in the lowest minimizer energy value
of —2863. In comparison, the run described above with smoothing parameters P = 5 and
~ = 0.05 found a lowest minimizer energy value of —2904 for the same computational effort.
Fewer total iterations were performed for this comparison than in our final calculation, but
the indication is that without smoothing the performance of the algorithm is limited. This
is similar to the results observed when using the algorithm with and without smoothing on
other protein problems [2], and supports the assessment that smoothing is an important
and useful component of our global optimization approach for protein structure prediction.

6 Summary and Future Research

We have presented a new global optimization strategy that combines smoothing the po-
tential energy function by an algebraic technique, with a sophisticated global optimization
strategy. Initial configurations are built up with “biasing” functions that are formed from
neural network predictions of secondary structure. Results for the helical protein uteroglobin
show that the method has successfully predicted the correct tertiary structure folds for this
protein. Uteroglobin, with 70 amino acids and 1125 atoms is a substantial sized target, but
it is necessary to continue testing the method on other targets, including those with more
complicated structures than those found in helical proteins.

Preliminary work has begun on a new method for building up initial configurations in
Phase 1 that uses no neural network information. Using partial energy evaluations centered
around one amino acid at a time, and sampling from a selection consisting of an equal
percentage of alpha, beta and coil backbone dihedral angles, the method has successfully
generated o-helices for Uteroglobin that are at least as well formed as those in Figure 2
of section 5 without any apriori knowledge or prediction. Future work to generalize the
method to beta sheets is currently being pursued.

In order to utilize neural network predictions of beta-sheets, a new biasing function is
being developed that will enable the the predicted information for beta to be incorporated
into secondary structure formulations. Matching algorithms [15] may be used to assist in
the construction of beta-sheets from pairs of beta-strands.

Our results point out that the development of accurate empirical potential energy func-
tions remains crucial to the success of protein structure prediction via optimization. An
improved treatment of solvation effects is a key component in creating improved empirical
energy functions. The large set of configurations generated by Algorithm 4.2 for uteroglobin
will be useful for providing examples of various folds that can be used to assess the ordering
of energy values produced by candidate functions. It may be possible to improve the pa-
rameterization of the equations in the current solvent term, Esory, using this information,
or a new solvent term may be needed.

The extreme challenge of designing algorithms for solving the protein folding problem
involves a tradeoff between using chemical knowledge where possible, yet developing some-
what general purpose optimization techniques. Our collaboration of optimizers and chemists
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is attempting to determine the balance of the two areas that will best aid in solving this
difficult problem.
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Abstract

The ability to characterize the energy surface and reaction pathways of peptides is an
important step in understanding the protein folding process. However, this problem
may be intractable for realistically modeled systems, such as those represented by all
atom force—fields. In this work, a method for mapping the connectivity of relatively low
energy regions through the identification of first order transition states is introduced.
The methodology relies on the use of a deterministic global optimization approach for
identifying low free energy ensembles of conformers [20]. The technique is applied to
both unsolvated and solvated forms of the oligopeptide met-enkephalin.

Keywords: Protein folding, transition states, global optimization, enkephalin.

1 Introduction

A fundamental problem in the area of computational chemistry and molecular biology is
how a protein folds to its correct conformation in a reasonable time scale. The complexity of

this problem is due to a lack of information regarding the folding pathways on the protein’s
intricate energy surface.
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To better understand protein folding it is necessary to examine a protein’s energy hy-
persurface. Such examination often begins with the identification of the most stable energy
structure — the global minimum energy conformation. The prediction of a protein’s ter-
tiary structure from only sequence information, is a hallmark of computational chemistry.
A number of reviews on methods for solving this multiple-minima problem are available
[15, 31].

The characterization of the energy surface must also include the identification of other
stable and metastable configurations. Mathematically, these structures correspond to sta-
tionary points of the energy function. In particular, local minima represent stable confor-
mations, while (first order or higher order) saddle points constitute transition states that
connect two stable structures. A folding pathway defines the connection between two stable
conformations (local minima) through a series of transition states (saddle points).

Since the folding pathway may include a number of intermediates, a rigorous description
of the energy surface would require the identification of all local minima and saddle points
of the energy function. This precept has been used to study a flexible, helical forming
tetrapeptide [12, 37, 38]. For large molecular systems, such an approach faces computa-
tional challenges. In this work, a new methodology is outlined which maps out low lying
energy regions by first locating low (free) energy minima through a deterministic global
optimization technique [20]. These minima are then used to initiate searches for first-order
transition states. Connectivity between two minima is established by retracing the paths
back down from each transition state.

Folding pathways between any two minima can be identified through the combination of
minimum-transition-minimum triples. Once the connectivity of the energy surface has been
established, transition rates between minima can also be calculated using Rice-Ramsperger-
Kassel-Marcus (RRKM) theory [22, 23]. Finally, following the ideas given in [37], a “rate
connectivity graph” can be constructed. This graphical representation of the energy surface
is based on the transition rates between minima. Such a graph is similar in nature to the
connectivity tree and energy disconnectivity graph concept, which uses finite energy (or
temperature) partitioning to define basins of attraction [9, 13].

In this work, the approach for finding low (free) energy minima, as proposed in [20], is
outlined in Section 3. A detailed description of the methodology for determining transition
states and energy surface connectivity is given in Section 4. Finally, in Section 5, the results
for the oligopeptide system of met-enkephalin are given. Both unsolvated and solvated forms
of the molecule are studied.

2 Modeling

2.1 Potential energy

To provide a detailed description of the protein system, a semi-empirical all atom force—
field is employed. There exist many parameterizations for molecular potential functions,
including AMBER (35, 36], CHARMM [10], ECEPP [27, 28, 29], and MM3 [5]. In this work,
the ECEPP/3 (Empirical Conformational Energy Program for Peptides) model, which is
the latest installment of the ECEPP force-field, is utilized [30]. For this force field covalent
bond lengths and bond angles are fixed at their equilibrium values, which implies that all
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residues of the same type have essentially the same geometry in various proteins. Based on
these approximations, the conformation is only a function of the dihedral angles. That is,
ECEPP/3 accounts for energy interaction terms which can be expressed solely in terms of
the independent torsional angles.

The total conformational energy is calculated as the sum of the electrostatic, nonbonded,
hydrogen bonded, and torsional contributions, as shown in the following equation :
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Here r;; is the distance between atoms ¢ and j. The sets ES, NB, and HB correspond to
those pairs of atoms (7,4) which contribute electrostatic, nonbonded and hydrogen bonded
energies, respectively. For the elec