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Preface 

A tantalizing problem that cuts across the fields of computational chemistry, biology, 
medicine, engineering and applied mathematics is how proteins fold. Global and local 
optimization provide a systematic framework of conformational searches for the prediction 
of three dimensional protein structures that represent the global minimum free energy, as 
well as low energy biomolecular conformations. 

This book contains refereed invited papers submitted at the conference on Optimization 
in Computational Chemistry and Molecular Biology: Local and Global Approaches held at 
Princeton University, May 7-9, 1999. The conference brought together the most active re­
searchers in computational chemistry, molecular biology, local and global optimization and 
allowed for the exchange of ideas across discipline boundaries of applied mathematics, com­
puter science, engineering, computational chemistry and biology. The conference themes 
included advances in local and global optimization approaches for molecular dynamics and 
modeling, distance geometry, protein folding, molecular structure refinement, protein and 
drug design, and molecular and peptide docking. 

We feel that this book will be a valuable scientific source of information to faculty, stu­
dents, and researchers in optimization, computational chemistry and biology, engineering, 
computer science and applied mathematics. 

We would like to take the opportunity to thank the authors of the papers, the anonymous 
referees, and the Department of Chemical Engineering and the School of Engineering and 
Applied Sciences of Princeton University for supporting this effort. Special thanks and 
appreciation go to John L. Klepeis for assisting us in the the preparation of the camera 
ready Latex form of this book. Finally, we would like to thank the Kluwer Academic 
Publishers for their assistance. 

Christodoulos A. Floudas 
Princeton University 

September 1999. 

Panos M. Pardalos 
University of Florida 
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Abstract 

We present a global optimization algorithm and demonstrate its effectiveness in solving 
the protein structure prediction problem for a 70 amino-acid helical protein, the A-chain 
of uteroglobin. This is a larger protein than solved previously by our global optimiza­
tion method or most other optimization-based protein structure prediction methods. 
Our approach combines techniques that "smooth" the potential energy surface being 
minimized with methods that do a global search in selected subspaces of the problem in 
addition to locally minimizing in the full parameter space. Neural network predictions 
of secondary structure are used in the formation of initial structures. 

Keywords: Protein Structure prediction, global optimization, smoothing. 
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1 Introduction 

The problem of predicting the three-dimensional structure of a protein given its primary 
sequence of amino acids continues to challenge the biochemistry community. Assuming 
the native structure exists at the global minimum of the free energy surface, the solution 
can be found if one is given a potential energy function that is able to model the free 
energy, and a global optimization algorithm capable of finding the global minimum of this 
function. This work attempts to solve the latter problem, while also using a perturbation 
of the potential energy function known as "smoothing". The problem of finding this global 
minimum among an enormous number of local minima within a very large parameter space 
is a daunting challenge. 

The global optimization method presented is related to the work of [18], which incorpo­
rates sampling and local minimizations in an iterative fashion, providing some theoretical 
guarantees of success. In practice, the amount of work required to reach the theoreti­
cal guarantee is prohibitive, but our method combines sampling and local optimization in 
small-dimensional, appropriately chosen subspaces, with additional techniques in the full­
dimensional problem space to provide a reasonable alternative. The method uses a two 
phased approach which creates initial minimizers in Phase 1 and improves upon them in 
Phase 2. It has proven to be successful in predicting structures of homopolymers [3], small 
proteins, and molecular clusters [4]. This paper will discuss recent advances in predicting 
the structure of the 70 amino acid A-chain of uteroglobin. 

The idea behind smoothing the potential energy function is to soften the function by 
reducing abrupt function value changes while retaining the large-scale structure of the orig­
inal function. As a result of dampening high gradient values and fine grain fluctuations in 
the original function, nearby minimizers merge as smoothing removes the barriers between 
them, and the total number of local minima is reduced [20]. We have observed that the 
smoothed function also produces greater variation in the structure and energy values of 
resulting minima when used within the global optimization algorithm. 

In the first phase of the global optimization, initial structures are created and then passed 
to a second phase for improvement. We make use of neural network predictions of secondary 
structures such as alpha-helices and beta-sheets [10] to create the initial structures. Initial 
structures with the predicted secondary structure already formed are better candidates 
for improvement in the second phase of our algorithm than those without this secondary 
structure. 

The next two sections discuss the energy functions used in this research, and the 
smoothed variant of the energy function. Section 4 describes the global optimization algo­
rithm, and computational results are presented in section 5. The final section includes a 
summary, and directions for future research. 

2 The Energy Function 

The potential energy function used in this research is the AMBER molecular mechanical 
force field [8], and is defined as 
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EAMBER = 

bonds angles dihedrals 

+ '" (c .. [('!ii) 12 -2 ('!ii)6] +C2i'1i) L..J ZJ Tij Tij Tij' 
i<j 

(2) 

where (1) represents the bonded interactions and (2) represents the pairwise nonbonded 
interactions. 

In order to account for hydrophobic effects, an empirical solvation term has been added 
to EAMBER during certain portions of the global optimization algorithm, which will be 
referred to as ESOLV. This potential was formulated from simulations of methane molecule 
pairs in water [9], using the semiempirical Pratt-Chandler theories [16, 17]. The ESOLV 

potential consists of a small number of terms of the form 

'" (-hj -p)2) ~ Ksexp , 
i,jEA v 

where the sum is taken over all aliphatic carbon pairs of the protein. The advantages of 
using this potential are that it provides a well-defined model of the hydrophobic effect of 
small hydrophobic groups in water, and is computationally tractable and differentiable. 
Future work will fine-tune this potential for better performance in determining the relative 
energies of a variety of protein folds. 

We use predictions of secondary structure based on using a neural network trained on 
a large data bank of known proteins [12, 11, 22]. Given the primary sequence, this system 
predicts, on a per amino-acid basis, whether the secondary structure of each residue should 
be alpha helix, beta sheet, or coil, and provides an additional indicator of the strength 
of each prediction. These predictions are utilized within two biasing functions, which are 
added to EAMBER during the local minimizations in phase one for creation of initial struc­
tures to be used in the global optimization algorithm. The technique of applying predicted 
structural information during energy minimization is known as the "anthon method" of 
Head-Gordon and Stillinger [10], whose purpose is to deform the hypersurface of the objec­
tive function such that the basin surrounding the structures with appropriately predicted 
secondary structure is widened and dominates. The first biasing function is 

E¢.p = L k¢[1 - cos(<p - <Po)] + k.p[1 - cos('if; - 'if;0)] (3) 
dihedrals 

which biases the backbone torsional angles of a residue, where <Po and 'if;o are the dihedral 
angles of a perfect a-helix or ,B-sheet, and k¢ and k.p are force constants related to the 
strength of the prediction from the neural network. The values of <Po and 'if;o used for 
a-helices are -620 and -410 respectively. The second function encourages the predicted 
helical hydrogen bonds to form between the oxygen of residue i and the hydrogen of residue 
i + 4, for residues i and i + 4 which are predicted to be helical, and has the form 

(4) 
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In this function, Wi,i+4 is the weight output by the neural network, and provides a strong 
incentive for an intramolecular hydrogen bond to form when residue i is strongly predicted to 
be helical. Future work will include the development of a function similar to (4) for ,B-sheets, 
possibly using a matching algorithm to determine potential hydrogen bond participants. 
These neural net predictions are also used to determine how to focus the computational 
effort on different parts of the protein in Phase I of our algorithm. 

An additional perturbation to the energy function, which has proven to be a tremendous 
aid in solving global optimization problems involving protein structure, is our analytical 
"smoothing" function which is described in the next section. 

3 Smoothing 

The idea of smoothing is to reduce abrupt function value changes without destroying the 
basic structure of the original function. The smoothed function value at a point is commonly 
formulated by taking a weighted average of the energy function in a neighborhood of the 
point using a distribution function centered at the point. Smoothing reduces the total 
number of local minima of a problem by reducing and ultimately removing the barriers 
between nearby minimizers, thus causing them to merge. This technique, called spatial 
averaging, has been studied in various ways [5] [6] [7] [13] [19] [21]. Using a Gaussian 
distribution function, the smoothing transformation is 

(5) 

where ..\ and 8 are the smoothing parameters. The parameter ..\ determines the scale of the 
Gaussian distribution, while the parameter 8 is used with the function H to transform the 
original function f(x) into a function with no poles. The transformation H(j, 8) is necessary 
to make the function integrable, and also further dampens the function. In the work of [13] 
this transformation consists of approximating f(x) by a sum of Gaussian functions, while 
in the work of [21] the transformation consists of truncating f(x) at some fixed maximum 
value. 

We utilize a new family of smoothing functions, which is not integration based, but 
instead uses an algebraic method of smoothing applied to the nonbonded portion (2) of the 
potential energy function. The bonded interactions (1) are not considered for smoothing 
since the relative contribution to potential energy is small and since they are relatively 
nicely behaved from an optimization viewpoint. The new smoothing functions have the 
form 

- () ~ [( 1 + ')' )p (1 + ')' )P/2] % 
EsMoOTH<,)"P> = 1 + L.t eij -y-+ - 2 -y-+ + c-.. 

~ ~ ')' ~ ')' . ~ 
(6) 

where i and j are any two atoms and rij = dij / CYij, dij being the Euclidean distance, and ')' 
and P are two smoothing parameters. The smoothing parameter ')' > 0 is used to remove 
the pole at d = 0; as ')' increases the value of the smoothed potential at d = 0 decreases. 
The other smoothing parameter P is used to widen the valley of the minimizer. Note that 
(6) reverts to the equations for EAMBER (1) + (2) if we set')' = 0, P = 6; in other words, 
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smoothing is turned off. On the other hand, with any 'Y > 0, the poles at Tij = 0 disappear 
for both the Lennard-Jones and electrostatic components of the function. This smoothing 
function is easy to utilize computationally while still possessing the desirable properties 
of a smoothing function for this problem class. For more information on our smoothing 
technique, including its comparison with other smoothing approaches and its application to 
global optimization problems, see [20, 1, 2]. 

4 The Global Optimization Algorithm 

Our global optimization method incorporates the basic features, sampling and local mini­
mizations, of existing stochastic methods, but it is only able to solve large-scale problems 
because it also incorporates phases that focus on small dimensional subproblems. These 
phases constitute a significant departure from previous stochastic methods and account for 
a major portion of the computational effort of the method. 

The basic algorithm that we have utilized previously consists of two phases. The first 
phase generates initial three dimensional structures for the given sequence of amino acids 
describing the protein. A buildup procedure is used that samples on the set of dihedral 
angles for each amino acid some fixed number of times, and selects the angle values that 
produce the best partial energy for the part of the chain built so far, before proceeding to 
the next amino acid. A subset of the best structures generated by this buildup procedure 
are then selected as start points for full dimensional local minimizations, and some number 
of the best minimizers generated are passed to the second phase of the algorithm. A 
variation of this procedure, using neural net secondary structure prediction information, 
will be described later in this section. 

The second phase accounts for most of the computational effort and success of the 
method. The basic idea of this phase is to select a configuration from the list of local mini­
mizers, and then select a small subset of its variables for improvement. The subset consists 
of a small number of dihedral or torsional angles of the protein. An interesting new tech­
nique for making that choice will be described below. Once the subset has been determined, 
a stochastic global optimization procedure similar to the one in [18] is executed to find the 
best new positions for the chosen dihedral angles, while holding the remaining dihedral an­
gles fixed. The global optimization procedure samples over the entire -180° -+ 180° angular 
range of each of the chosen dihedral angles, and performs small-scale local minimizations 
over the subspace of selected dihedral angles from those sample point configurations with 
the lowest energy of all sample points within their "critical radius", as described in [18]. 
Instead of using a probabilistic stopping criteria, iterations of sampling plus small-scale 
local minimizations are performed a fixed number of times because the goal of the small­
scale global optimization is not to locate all minima of the small-dimensional problem, but 
only some number of the best ones. Some of the best resulting configurations are then 
"polished" by applying a full dimensional local minimization using all the variables. The 
new full-dimensional local minimizers are then merged with those found previously and the 
entire phase is iterated a fixed number of times. The incorporation of smoothing functions 
into this phase will be discussed below. 

The framework for the basic global optimization algorithm is outlined below in Algo­
rithm 4.1. 
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Algorithm 4.1 - Framework of the Basic Global Optimization Algorithm for Protein 
Problems 

1. Phase 1: Generation of Initial Configurations 

(a) Protein Sample Point Buildup: Build up sample configurations from one end of 
the protein to the other by sequentially generating the dihedral angles for each 
amino acid: randomly sample the angles for current amino acid a fixed number of 
times and select the angle values that give the lowest energy function value for the 
partial protein generated so far. 

(b) Start Point Selection: Select a subset of the best sample configurations from step 
1a to be start points for local minimizations. 

(c) Full-Dimensional Local Minimizations: Perform a local minimization from each 
start point selected in step lb. Collect some number of the best of these minimizers 
for improvement in Phase 2. 

2. Phase 2: Improvement of Local Minimizers: For some number of iterations: 

(a) Choose the configuration to improve and the small-scale problem parameters: From 
the list of full-dimensional local minimizers, select a local minimizer to improve and 
a small subset of dihedral angles from that minimizer to be optimized. 

(b) Global Optimization on a small subset of variables : Apply a fairly exhaustive small­
scale global optimization algorithm to the energy of the selected configuration using 
the selected small subset of the dihedral angles as variables. 

(c) Full-Dimensional Local Minimization: Apply a local minimization procedure, with 
all dihedral angles as variables, to the lowest configurations that resulted from the 
global optimization of step 2b. 

(d) Merge the New Local Minimizers: Merge the new lowest configurations into the 
existing list of local minimizers. 

While Algorithm 4.1 was successful in finding the global minimum for small proteins 
(poly(ala) with 5,10,20,30 and 40 residues, and met-enkephalin with 5 residues), in order to 
find the global minimizer for poly(ala) with 58 residues, the algorithm was modified to use 
the smoothed potential energy function (5) in both Phase 1 and Phase 2. Essentially, the 2 
phases were executed in the saine fashion as in Algorithm 4.1, with the exception that the 
smoothed potential was used in all the sampling and local minimizations. Additionally, 2 
steps were required to transform the solution back to the original potential energy landscape: 

• At the completion of Phase 1, a local minimization was performed on each of the 
initial minimizers created in the smoothed space to desmooth the minima, that is, to 
find minimizers of the original potential surface using the smoothed minima as start 
points. The minima were then ranked according to the function values of the original 
function, and the lowest were chosen for improvement to begin the balancing portion 
of Phase 2. (From this point on, step 2(a) uses smoothed function values in making 
its selections of configurations.) 

• At the completion of Phase 2, a local minimization was performed using each of the 
reSUlting smoothed minima as start points, to again desmooth the minima. 
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This modified algorithm using a smoothed objective was able to find lower local mini­
mizers for large proteins in less time than Algorithm 4.1 (see [2] for results on poly(ala)-58). 

When we applied Algorithm 4.1 with smoothing to uteroglobin, a 70 amino acid helical 
protein, Phase 1 was found to be inadequate in building up sample configurations with any 
secondary structure at all. (This was not our experience for any of the poly(ala) test cases, 
where Phase one formed the desired helical structures, and met-enkephalin has essentially no 
secondary structure. But the structure of uteroglobin is far more challenging.) To deal with 
these difficulties, the new approach uses a preprocessing step referred to as Phase 0, to insert 
secondary structure into an initial configuration using the neural network predictions of 
alpha and beta, described above. Starting from a completely extended conformer containing 
no secondary or tertiary structure, a local minimization is first performed using the biasing 
functions (3) and (4) in addition to EAMBER (1 and 2). From the resulting "biased" 
minimizer another local minimization is performed without the biasing functions. The local 
minimization using the biasing function encourages the formation of a-helices in regions 
where the neural network predictions for a are strong. Because the network predictions 
may not be completely correct, the biasing terms may either force helical formations in 
regions where they do not belong, or discourage them from forming in regions where they 
should be located. The local minimization without the biasing functions allows for some 
correction in areas where the predictions may be wrong. The output from Phase 0 is a 
single configuration which contains at least partially correct secondary structure, but does 
not contain correct tertiary structure. Given the ability of the biochemistry community to 
predict secondary structure fairly well, and the great difficulty and complexity of the full 
protein structure prediction problem, it seems very reasonable to try to utilize secondary 
structure predictions in our methods. 

The effect of Phase 0 is to set the angles for residues predicted to be alpha or beta 
at appropriate values. Phase 1 (step 1a) is modified so that these values are left fixed 
and only those dihedral angles which have not been predicted to be alpha or beta by 
the neural network are sampled, using as input the configuration generated in Phase O. 
In addition, during the local minimizations of step l(c), the same two-step minimization 
strategy as described for Phase 0 is used. That is, local minimizations on the sample 
points are performed using the biasing functions, followed by local minimizations from 
the "biased" minimizers without the biasing functions. In this manner, a diverse set of 
initial configurations is created, each containing secondary structure that was predicted by 
the neural network. Algorithm 4.2 gives the framework for the new global optimization 
method, which includes the creation of initial configurations using neural net secondary 
structure prediction and smoothing in the minimizer improvement phase. 

An important part of Algorithm 4.2 is the heuristic used to determine which configura­
tion is selected at each iteration of the second phase. We consider an initial configuration 
and any configurations generated from it (via global optimization of a small sub-space of 
dihedral angles followed by a full-dimensional local minimization) to be related, such that 
the latter is a "descendent" of the former. For some fixed number of iterations, the work 
in Phase 2 is balanced over each of the k sets of configurations consisting of the k initial 
minimizers and all of those minimizer's descendants. First, each of the k initial minimizers 
is chosen for improvement. Then, at each iteration for the remainder of the balancing phase, 
the set of configurations with the least amount of work performed on its members so far 



8 A. AZMI ET AL. 

is selected, and the best configuration in this set that hasn't already been used is chosen. 
Configurations are rated in terms of their smoothed energy function value, and best refers to 
the lowest in energy value. After the fixed number of iterations of the balancing phase have 
been performed, the remaining iterations of the local minimizer improvement phase select 
the best configuration that has not already been selected, regardless of where it descended 
from. We have found that the combination of the breadth of search of the configuration 
space that the balancing phase provides with the depth of search that the non-balancing 
phase allows is useful to the success of our method. 

In this study, we restrict our choice of dihedral angles (used to define the small-scale 
subproblem in step 1 of Phase II) to those angles not labelled as alpha-helical (or beta) by a 
call to the DSSP [12] program which identifies the secondary structures of a given protein. 
To choose from among the available angles we use an angle-choice heuristic that we have 
developed recently. The new heuristic involves dividing the protein into some number (in 
this case 10) contiguous regions, and determining which region is doing worst. To make this 
determination, for each region 'R. we compute a partial energy consisting of the sum of the 
non-bonded interaction energies between atoms in 'R. and atoms not in 'R., plus the dihedral 
energy of the torsion angles in 'R.. To appraise the goodness of these partial energies, we 
construct a comparison pool consisting of about 50 of the best conformations chosen so that 
no two have the same general structure. The DSSP program mentioned above is used to 
identify structure similarities. For each region in the selected conformation we compare 
its partial energy to the partial energies of the corresponding region of each conformation 
in the comparison pool, and determining its rank in this set. The region with the worst 
ranking is then selected as being the worst region. To select angles likely to improve this 
region, we compute the partial derivatives of the worst region with respect to every dihedral 
angle that we are allowing to change. The 6 or so angles with partial derivatives greatest 
in absolute value are then chosen to define the subspace for the small-scale problem. 
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Algorithm 4.2- Framework of the New Global Optimization Algorithm 

I Phase 0: Generation of Initial Configuration containing predicted Secondary Structure 

1. Local minimization on an extended conformer using the biased energy function. 

2. Local minimization on the output of step 1.1, using the unbiased potential energy 
function 

II Phase 1: Generation of Initial Configurations 

1. Protein Sample Point Buildup: Build up sample configurations from one end of the 
protein to the other by sequentially generating the dihedral angles for each amino 
acid that was not predicted to be Q or (3 by the neural network: for the current 
amino acid, randomly sample the set of dihedral angles a fixed number of times 
and select the dihedral angle that gives the lowest energy function value for the 
partial protein generated so far. 

2. Start Point Selection: Select a subset of the best sample points from step 11.1 to 
be start points for local minimizations. 

3. Full-Dimensional Local Minimizations : 

(a) Perform a local minimization using the biasing functions, from each start point 
selected in step 11.2. 

(b) Perform a local minimization using the unbiased potential energy function 
from each of the minimizers from step II.3.a. 

Colle~t some number of the best of these minimizers for improvement in Phase 2. 

III Phase 2: Improvement of Local Minimizers: For some number of iterations: 

1. Choose the configuration to improve and the small-scale problem parameters: From 
the list of full-dimensional local minimizers, select a local minimizer to improve and 
a small subset of dihedral angles from that minimizer to be optimized. 

2. Global Optimization on a small subset of variables : Apply a fairly exhaustive 
small-scale global optimization algorithm to the energy of the selected configuration 
using the selected small subset of the dihedral angles as variables, and the smoothed 
potential energy function for sampling and local searches. 

3. Full-Dimensional Local Minimization: Apply a local minimization procedure, with 
all dihedral angles as variables, to the lowest configurations that resulted from the 
global optimization of the step 111.2, using the smoothed potential energy function. 

4. Merge the New Local Minimizers: Merge the new lowest configurations into the 
existing list of local minimizers. 

IV Postprocessing phase: Desmooth the minimizers from Phase 2 by performing local min­
imizations using the original potential energy function 
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5 Computational Results 

We have tested Algorithm 4.2 on a 70 amino-acid helical protein, the A-chain of uteroglobin. 
Figure 1 shows the crystal structure for this protein, obtained from the protein data bank 
entry 2UTG. 

Figure 1: Crystal structure for the A-chain of Uteroglobin 

Phase 0 of our new algorithm attempts to formulate a single configuration containing 
secondary structure consistent with the neural net predictions for this protein. This phase 
starts with a structure of the target protein that is the minimum closest to the fully extended 
form with all backbone pairs assuming the values ¢ = 180 degrees and 'IjJ = -180 degrees. 
A local minimization is performed using BAMBER (1 and 2) plus the biasing functions (3 
and 4) with both the strength for the force constants as well as the prediction of which 
residues are a obtained from the neural network predictions. This minimization is followed 
by a local minimization using only BAMBER. Each of the 2 minimizations cost roughly 
6000 function evaluations. The first result of Phase 0 is shown in Figure 2. 

Figure 2: Resulting minimizer from Phase 0 

The protein structure in Figure 2 has reasonably well formed helices in three of the four 
helices found in the crystal structure, and extended formations in the regions predicted to 
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be coil. One of the four helices found in the crystal is much more disordered in our result, 
however, as a consequence of weak predictions in that region of the sequence. 

In order to assess the ability of Phase 0 if it were given a more accurate secondary 
structure prediction, another Phase 0 was executed with a modified prediction file which 
uses the secondary structure of the crystal to predict helix rather than coil in the region 
of the disordered helix. This run obtained a better formed helix in that region. This new 
structure is shown in Figure 3. 

Figure 3: Second minimizer from Phase 0 with improved secondary structure 

We decided to use the structure of Figure 3 as the starting configuration for Phase 1, as 
well as the modified prediction file, because we anticipate that future improvements in the 
network prediction algorithm will largely correct weak predictions for a-helical proteins. 

In Phase 1, 60 sample configurations were generated in Step ILl, and the six configu­
rations with the lowest energy values were selected for local minimization. The dihedral 
angles in each of the 70 amino acids were sampled 100 times, and the energy of the protein 
so far was evaluated each time. The cost for sampling each of the 60 configurations in 
terms of function evaluations is 100 samples times N, where N is the number of amino 
acids, which is 70 in the case of uteroglobin. Since these function evaluations only evaluate 
the portions of the energy that change with each buildup step, the total cost of this build-up 
was much less than the cost of 7000 evaluations. Each of the 6 local minimizations cost 
roughly 6000 function evaluations, using a limited-memory BFGS code [14] varying all 3375 
Cartesian coordinates (1125 atoms) of the protein, on the energy surface of (EAMBER + 
E¢1jJ + EHB)' In step II.3.b, the local minimizations performed to "unbias" the structures 
on (EAMBER + EsOLV) used a BFGS method with an internal coordinate representation 
which fixes the bond angles and bond lengths of the protein while allowing only the dihedral 
angles to vary. There are approximately 400 dihedral angle internal coordinate parameters 
in Uteroglobin, and each internal coordinate minimization cost, on average, 3000 function 
evaluations. Function evaluations on the Aspen Avalanche machines used in these compu­
tations take approximately 2 seconds each to execute. 

Table 5.1 gives the energy(EAMBER + EsoLv) and root mean squared (r.m.s.) deviation 
from the crystal structure, computed by measuring distances between corresponding carbon­
alpha atoms, for the minimizers found in Phase 1. These minimizers are also shown in 
Figures 4-6. Only one of these structures (-2760, the third best in energy value) has a 



12 A. AZMI ET AL. 

Table 5 1 Minimizers found in Phase 1 : 
Energy RMSD 

(EAMBER + ESOLV) from Crystal structure 
in Kcal/Mol in Angstroms 

-2780 13.17 
-2773 12.16 
-2760 9.34 
-2673 12.78 
-2601 20.61 
-2552 13.99 

structure that even vaguely resembles that of the crystal structure, and the r.m.s. values 
reflect this, having values that are considered very high in the remaining cases. Also, it is 
evident from this data that there is not a direct correlation between energy values and the 
deviation in distances from the crystal structure. Further discussion on this topic follows 
the Phase 2 results. From Figures 4 through 6 of these configurations, it is possible to see 
a relationship between compactness and lower energy values of the structures. 

The list of initial input configurations for Phase 2 consisted of the six minimizers from 
Phase 1. Eighteen iterations of phase 2 were executed, 6 balancing iterations and 12 non­
balancing, as described in the previous section. Six dihedral angles were optimized in the 
small-scale global optimization of step II1.2. Each small-scale global optimization performed 
an average of 5000 function evaluations for sampling and 2000 total function evaluations 
for the small dimensional local searches. In this experiment, each balancing iteration per­
formed 8 full-dimensional local minimizations (step III.3), and each non-balancing iteration 
performed 12. The full-dimensional local mininizations over the internal coordinate param­
eters cost on average 2400 function evaluations each. Thus, all the minimizations in Phase 2 
required almost 500,000 function evaluations, and constituted the principal computational 
cost of the algorithm. 

The smoothing parameters used were P = 5, and 'I = .05. Based on the results of ex­
periments performed in [1], we conducted some additional testing on smoothing parameters 
for uteroglobin, and modified the parameters slightly from those found to be most effective 
for several smaller proteins. For a detailed discussion of the choice of smoothing parameters 
for these other proteins, see [1). 

Table 5.2 contains results from this run of Phase 2 of Algorithm 4.2. The 15 lowest energy 
minimizers are presented, as well as their r.m.s. deviations from the crystal structure, and 
the iteration of Phase 2 in which they were (first) found. The lowest energy value found 
from all the resulting minimizers of Phase 2 (using internal coordinate minimization) is -
2944 with an r.m.s. of 7.95 Angstroms, but the minimizer with the smallest r.m.s. deviation 
from the crystal structure, again measured on the carbon-alpha atoms, has an energy value 
of -2877, and is marked by an "*". The r.m.s. for that minimizer is 7.24 Angstroms, and 
furthermore, the structure has the correct folds, but the larger outer bend is more compact, 
and the 2 central bends are further apart from each other than in the crystal structure. All 
of the configurations with r.m.s. of 8 Angstroms or less can be considered moderately good 
fits of the crystal structure and all have similar structures. 
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Figure 4: Phase 1 minimizers with corresponding energy values (EAMBER + EsoLv) of 
-2780 and -2773. 

Figure 5: Phase 1 minimizers with corresponding energy values (EAMBER + EsoLv) of 
-2760 and -2673. 

J 

Figure 6: Phase 1 minimizers with corresponding energy values (EAMBER + E SOLV ) of 
-2601 and -2552. 
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Table 5 2· Best 15 minimizers found in Phase 2 .. 
Energy RMSD Iteration 

(EAMBER + ESOLV) from Crystal structure of Phase 2 
in Kcal/Mol in Angstroms where found 

-2944 7.95 15 
-2929 8.02 18 
-2911 7.92 11 
-2904 10.81 4 
-2898 7.88 18 
-2894 7.78 1 
-2890 7.93 18 
-2889 7.86 10 
-2887 7.70 15 
-2882 10.30 5 

-2877.8 10.32 5 
-2877.7 7.87 15 

-2877.4* 7.24 10 
-2873 8.60 15 
-2871 8.46 10 

Figure 7 shows a tube diagram of the crystal structure, in order to be able to compare 
it to the 2 minimizers discussed above, with energy values -2877 and -2944. Figures 8 and 
9 show these 2 configurations. 

These results show that in the case of uteroglobin, Algorithm 4.2 is able to find config­
urations with tertiary structures close to that of the crystal structure. However, the fact 
that the lowest energy minimizers in Table 5.2 do not necessarily have the smallest r.m.s. 
deviations indicates that the potential energy function may not model the molecular behav­
ior sufficiently accurately. To investigate this further we evaluated the energy of the crystal 
structure using (EAMBER + ESOLV). In order to do this, it was necessary to put hydrogen 
atoms in their appropriate locations, and do a local minimization on this new structure 
using Cartesian coordinates. The local minimization was done with the parameterization 
over all the Cartesian coordinates, in order to allow the bond lengths and bond angles to 
be optimized in accordance with EAMBER optimal values. The r.m.s. of the new structure 
compared to the crystal structure is 2.40 Angstroms, which is a good fit. The energy is 
-3090.74, in Cartesian coordinates. The values reported in Table 5.2 are internal minimizer 
values, which have fewer degrees of freedom than Cartesian minimizers and thus higher 
energy values. When a few key minimizers from Table 5.2 are minimized in the Cartesian 
coordinate parameterization over EAMBER + EsoLV, the resultant energy values (shown as 
internal --+ Cartesian) are: -2944 --+ -3182, -2929 --+ -3160, and -2877.4 --+ -3107. 

These results indicate that the energy values of minimizers found in Phase 2 are al­
ready considerably lower than the energy value of a structure that is very close to the 
crystal structure. This lack of correspondence is even more pronounced when minimizing 
on EAMBER without ESOLV. So while it is unknown whether Algorithm 4.2 has found the 
global minimizer of EAMBER + ESOLV, this global optimization process has shown that the 
immediate need at this stage is for an improved energy function that more closely resembles 
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Figure 7: Tube diagram of the crystal structure for the A chain of Uterglobin 

Figure 8: Tube diagram of Phase 2 minimizer with the lowest r.m.s. deviation from the 
crystal structure, with energy value (EAMBER + ESOLV) of -2877. 

Figure 9: Tube diagram of Phase 2 minimizer with the lowest energy value over all mini­
mizers found, with energy value (EAMBER + EsoLv) of -2944. 
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the actual energy for low energy configurations. Future work on the solvent term ESOLV 

will hopefully alleviate this problems. 
We also examined the role of smoothing in the success of our algorithm. A 6 iteration 

run with no smoothing (i.e. P = 6, and'Y = 0) resulted in the lowest minimizer energy value 
of -2863. In comparison, the run described above with smoothing parameters P = 5 and 
'Y = 0.05 found a lowest minimizer energy value of -2904 for the same computational effort. 
Fewer total iterations were performed for this comparison than in our final calculation, but 
the indication is that without smoothing the performance of the algorithm is limited. This 
is similar to the results observed when using the algorithm with and without smoothing on 
other protein problems [2J, and supports the assessment that smoothing is an important 
and useful component of our global optimization approach for protein structure prediction. 

6 Summary and Future Research 

We have presented a new global optimization strategy that combines smoothing the po­
tential energy function by an algebraic technique, with a sophisticated global optimization 
strategy. Initial configurations are built up with "biasing" functions that are formed from 
neural network predictions of secondary structure. Results for the helical protein uteroglobin 
show that the method has successfully predicted the correct tertiary structure folds for this 
protein. Uteroglobin, with 70 amino acids and 1125 atoms is a substantial sized target, but 
it is necessary to continue testing the method on other targets, including those with more 
complicated structures than those found in helical proteins. 

Preliminary work has begun on a new method for building up initial configurations in 
Phase 1 that uses no neural network information. Using partial energy evaluations centered 
around one amino acid at a time, and sampling from a selection consisting of an equal 
percentage of alpha, beta and coil backbone dihedral angles, the method has successfully 
generated a-helices for Uteroglobin that are at least as well formed as those in Figure 2 
of section 5 without any apriori knowledge or prediction. Future work to generalize the 
method to beta sheets is currently being pursued. 

In order to utilize neural network predictions of beta-sheets, a new biasing function is 
being developed that will enable the the predicted information for beta to be incorporated 
into secondary structure formulations. Matching algorithms [15J may be used to assist in 
the construction of beta-sheets from pairs of beta-strands. 

Our results point out that the development of accurate empirical potential energy func­
tions remains crucial to the success of protein structure prediction via optimization. An 
improved treatment of solvation effects is a key component in creating improved empirical 
energy functions. The large set of configurations generated by Algorithm 4.2 for uteroglobin 
will be useful for providing examples of various folds that can be used to assess the ordering 
of energy values produced by candidate functions. It may be possible to improve the pa­
rameterization of the equations in the current solvent term, EsoLV , using this information, 
or a new solvent term may be needed. 

The extreme challenge of designing algorithms for solving the protein folding problem 
involves a tradeoff between using chemical knowledge where possible, yet developing some­
what general purpose optimization techniques. Our collaboration of optimizers and chemists 
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is attempting to determine the balance of the two areas that will best aid in solving this 
difficult problem. 
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Abstract 

The ability to characterize the energy surface and reaction pathways of peptides is an 
important step in understanding the protein folding process. However, this problem 
may be intractable for realistically modeled systems, such as those represented by all 
atom force-fields. In this work, a method for mapping the connectivity of relatively low 
energy regions through the identification of first order transition states is introduced. 
The methodology relies on the use of a deterministic global optimization approach for 
identifying low free energy ensembles of conformers [20). The technique is applied to 
both unsolvated and solvated forms of the oligopeptide met-enkephalin. 

Keywords: Protein folding, transition states, global optimization, enkephalin. 

1 Introd uction 

A fundamental problem in the area of computational chemistry and molecular biology is 
how a protein folds to its correct conformation in a reasonable time scale. The complexity of 
this problem is due to a lack of information regarding the folding pathways on the protein's 
intricate energy surface. 
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To better understand protein folding it is necessary to examine a protein's energy hy­
persurface. Such examination often begins with the identification of the most stable energy 
structure - the global minimum energy conformation. The prediction of a protein's ter­
tiary structure from only sequence information, is a hallmark of computational chemistry. 
A number of reviews on methods for solving this multiple-minima problem are available 
[15,31]. 

The characterization of the energy surface must also include the identification of other 
stable and metastable configurations. Mathematically, these structures correspond to sta­
tionary points of the energy function. In particular, local minima represent stable confor­
mations, while (first order or higher order) saddle points constitute transition states that 
connect two stable structures. A folding pathway defines the connection between two stable 
conformations (local minima) through a series of transition states (saddle points). 

Since the folding pathway may include a number of intermediates, a rigorous description 
of the energy surface would require the identification of all local minima and saddle points 
of the energy function. This precept has been used to study a flexible, helical forming 
tetrapeptide [12, 37, 38]. For large molecular systems, such an approach faces computa­
tional challenges. In this work, a new methodology is outlined which maps out low lying 
energy regions by first locating low (free) energy minima through a deterministic global 
optimization technique [20]. These minima are then used to initiate searches for first-order 
transition states. Connectivity between two minima is established by retracing the paths 
back down from each transition state. 

Folding pathways between any two minima can be identified through the combination of 
minimum-transition-minimum triples. Once the connectivity of the energy surface has been 
established, transition rates between minima can also be calculated using Rice-Ramsperger­
Kassel-Marcus (RRKM) theory [22, 23]. Finally, following the ideas given in [37], a "rate 
connectivity graph" can be constructed. This graphical representation of the energy surface 
is based on the transition rates between minima. Such a graph is similar in nature to the 
connectivity tree and energy disconnectivity graph concept, which uses finite energy (or 
temperature) partitioning to define basins of attraction [9, 13]. 

In this work, the approach for finding low (free) energy minima, as proposed in [20], is 
outlined in Section 3. A detailed description of the methodology for determining transition 
states and energy surface connectivity is given in Section 4. Finally, in Section 5, the results 
for the oligopeptide system of met-enkephalin are given. Both unsolvated and solvated forms 
of the molecule are studied. 

2 Modeling 

2.1 Potential energy 

To provide a detailed description of the protein system, a semi-empirical all atom force­
field is employed. There exist many parameterizations for molecular potential functions, 
including AMBER [35, 36], CHARMM [10], ECEPP [27, 28, 29], and MM3 [5]. In this work, 
the ECEPP /3 (Empirical Conformational Energy Program for Peptides) model, which is 
the latest installment of the ECEPP force-field, is utilized [30]. For this force field covalent 
bond lengths and bond angles are fixed at their equilibrium values, which implies that all 
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residues of the same type have essentially the same geometry in various proteins. Based on 
these approximations, the conformation is only a function of the dihedral angles. That is, 
ECEPP /3 accounts for energy interaction terms which can be expressed solely in terms of 
the independent torsional angles. 

The total conformational energy is calculated as the sum of the electrostatic, nonbonded, 
hydrogen bonded, and torsional contributions, as shown in the following equation : 

EECEPP/3 
'""' qiqj + '""' F- . Aij _ Cij 
L.J r.. L.J ZJ r12 r6 

(i,j)EES ZJ (i,j)ENB ij ij 

(1) 

'""' A~j _ Bij '""' Ek () ) + L.J 12 10 + L.J - (1 + Ck cos nk(h 
(i,j)EHB r ij r ij kETOR 2 

Here rij is the distance between atoms i and j. The sets ES, N B, and H B correspond to 
those pairs of atoms (i,j) which contribute electrostatic, nonbonded and hydrogen bonded 
energies, respectively. For the electrostatic term, the dielectric constant and conversion 
factor have been incorporated into the parameters qi and qj. Aij, C ij , A:j and Bij are 
parameters that define the well depth and width for a given nonbonded or hydrogen-bonded 
interaction. Pij is equal to 0.5 for 1-4 interactions and 1.0 for higher order interactions. A 
torsional term is also included for those dihedral angles in the set TOR. (h represents any 
dihedral angle, while Ck takes a value from [-1,1]' and nk reflects the symmetry type for 
the particular dihedral angle. Additional contributions are calculated for special structural 
features, such as proline rings and disulfide bridges. The main energy contributions are 
computed as the sum of terms for each atom pair whose interatomic distance is a function 
of at least one dihedral angle. 

2.2 Solvation energy 

Solvation energy can be modeled either explicitly or implicitly. To make the computa­
tions tractable, a continuum model based on empirical correlations with solvent accessible 
volumes is employed [8], which is represented by tl;te following equation: 

(2) 

Here VHSi corresponds to the volume of the hydration shell, while Oi is the free energy 
density parameter for the atom or functional group. The main assumption of this model, 
and any geometrically parameterized solvation model, is that hydration free energies can 
be calculated from an average free energy of interaction of each atom (or functional group) 
with a layer of solvent known as the hydration shell. The total free energy of solvation is 
taken to be the sum of the free energies for each of the atoms (or functional groups) in the 
peptide. 

In general, the analytical form for calculating the volume of a hydration shell (VHS i ) is 
not suitable for force field models using pairwise intramolecular potential, such as ECEPP /3. 
Furthermore, direct truncation at the pairwise double-overlap term would lead to large 
errors. In this work, the RRIGS (Reduced Radius Independent Gaussian Sphere) approx­
imation is used to efficiently calculate the exposed volume of the hydration shell [8]. This 
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method uses a truncated form (double overlap) for VHSi, while also artificially reducing 
the van der Waals radii of all atoms other than atom i when calculating VHSi. These 
reductions effectively decrease the contribution of the double overlap terms, leading to a 
cancellation of the error that results from neglecting the triple and higher overlap terms. 
In addition, the characteristic density of being inside the overlap volume of two intersecting 
spheres is not represented as a step function, but as a Gaussian function; this provides con­
tinuous derivatives of the hydration potential. Therefore, the solvation energy contributions 
can easily be added at every step of local minimizations since the RRIGS approximation 
has the same set of interactions as the ECEPP /3 potential. The 6i are RRIGS specific, and 
were determined by a least square fitting of experimental free energy of solvation data for 
140 small organic molecules [8). 

2.3 Free energy 

A strict interpretation of Anfinsen's thermodynamic hypothesis requires the global mini­
mization of the conformational free energy to predict the native structure of a protein. In 
practice, however, most protein models include only potential and solvation effects. One 
reason for this neglect for including entropic effects is that a rigorous free energy model 
requires infinite sampling to associate accurate statistical weights with each microstate. 

Other approximate calculations exist for estimating these statistical weights (and thus 
entropic effects). The most simplistic model would rely on only the Boltzmann weight asso­
ciated with each microstate. A more sophisticated approximation, known as the harmonic 
approximation, utilizes second derivative information to characterize the basin of attraction. 
More complex schemes try to mimic the anharmonic trajectory along the energy surface. 
These quasi-harmonic approximations generally require the use of MC/MD simulations. 

In this work, entropic effects are included via the harmonic approximation [14, 17, 
18]. The development of this model can be understood physically by first considering the 
partition function for the system : 

(E-TS) 

Z = exp-~ 
E S 

exp - kBT expkB (3) 

In Equation (3) the partition function is the product of the Boltzmann factor (exp[ -E/kBT]) 
and the number of states available to the system (exp[S/kB ]). At a given stationary point, 
the harmonic approximation is equivalent to : 

E(O) 
1 

= E(O,) + 2" (0 - 0,) H(O,) (0 - 0,) (4) 

Here'Y identifies the stationary point, and the stationarity condition ('\7 E(O,) = 0) is used 
to eliminate the gradient term. In this way, each basin of attraction is characterized by 
properties of its corresponding minima, which include the local minimum energy value, 
E(O,), and the convexity (Hessian) information around the local minimum, H(O,). An 
analogous representation of this system is No independent harmonic oscillators, each with 
its own characteristic vibrational frequency. The minimum can then be characterized by 
the occupation of each normal mode. 
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To develop an expression for the entropic effect, Equation (4) can be substituted into 
Equation (3). By summing over all energy states, the partition function becomes: 

E(Sl) Ns 1 
Zhar = exp - kBT f(T) II -

7 A' i ~ 

(5) 

In Equation (5), f(T) is a function dependent only on temperature, while Ai represent the 
eigenvalues of H((J7)' Comparison of Equations (5) and (3) implies that: 

s Ns 1 
expkB ()( II-

i Ai 
(6) 

Equation (6) can be rewritten in terms of the harmonic entropic contribution, S~ar : 

(7) 

A more rigorous derivation of the harmonic approximation leads to the following ex­
pression for the harmonic entropy [14, 17, 18] : 

S~ar = _ k; In [Det (H((J7))] (8) 

This can be used to calculate relative free energies via the following equation: 

F~ar = E((J7) + k~T In [Det (H((J7))] (9) 

Finally, each microstate can be assigned a statistical weight (p~ar) by considering the ratio 

of the partition function for that microstate (Z~ar) to the total partition function: 

[ 
1 ] 1/2 E(61 ) 

[Det(H(6-y))] exp( - kBT ) 

N-y [ 1 ] 1/2 'E(6;) 
i~1 [Det(H(6;))j exp( - kBT ) 

(10) 

To develop a meaningful comparison of relative free energies, the total partition function 
(denominator of Equation (10)) must include an adequate ensemble of low-energy local 
minima, as well as the global minimum energy conformation. Therefore, an efficient method 
for identifying low energy ensembles must be employed. It should also be noted that the 
harmonic approximation does not require the explicit inclusion of a contribution based on 
the density of states because each local minimizer is accounted for only once (in contrast 
to counting methods). 

3 Locating Low (Free) Energy Minima 

3.1 Traditional formulation 

In its static form, the protein folding problem in dihedral angle space is posed as an un­
constrained nonconvex global minimization problem with periodic variable bounds. This 
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problem is represented by the following formulation : 

min 
IJ 

subject to 

E(O) (11) 

Here 0 represents the vector of independent torsion angles. The global minimization of E, 
which may include both potential and solvation energies, requires efficient global optimiza­
tion methods due to the extremely rugged nature of the energy hypersurface. Along these 
lines, the aBB deterministic global optimization approach has been found to be particu­
larly efficient in locating the global minimum energy conformations of isolated and solvated 
peptides [7, 19, 21]. This branch and bound method addresses a broad class of problems 
and provides theoretical guarantees of convergence to the global minimum of nonlinear 
optimization problems with twice-differentiable functions [1, 2, 3, 4, 6]. 

The aBB algorithm can be summarized in the following manner : 

1 The global minimum is bracketed by developing converging sequences of lower and 
upper bounds. 

2 The lower and upper bounds are refined by iteratively partitioning the initial domain. 

3 Upper bounds on the global minimum are obtain by local minimizations of the original 
energy function, E. 

4 Lower bounds belong to the set of solutions of the convex lower bounding functions, 
L, which are constructed (in each subdomain) by augmenting E with the addition of 
separable quadratic terms. 

The development of the convex lower bounding functions, L, ensures the deterministic 
nature of the algorithm and guarantees convergence to the global minimum. These functions 
have the following generic form : 

No 

L = E + L ai (Of - Oi) (of - Oi) (12) 
i 

In Equation (12), ef and of refer to the current lower and upper bounds on the variable 
Oi. For each separable quadratic term, the ai correspond to non-negative parameters which 
must be greater or equal to the negative one-half of the minimum eigenvalue of the Hessian 
of E over the current domain, as defined by [eL , ou]. The properties and proofs that endow 
the aBB approach with deterministic guarantees are detailed elsewhere [25]. 

3.2 Ensembles of low energy conformers 

To effectively include entropic contributions via the harmonic approximation, the general 
protein folding formulation, as given by Equation (11), must be modified. Specifically, in 
addition to locating the global minimum energy conformer, an ensemble of low energy local 
minima must be generated. Once this ensemble has been compiled, a free energy ranking 
can be performed (at a particular temperature) to locate the the relative free energy global 
minimum. 
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The nature of the aBB algorithm allows for the rigorous treatment of enumerating all 
local minima. These approaches are discussed in detail elsewhere [20]. In particular, one 
rigorous formulation involves the solution of a system of nonlinear equations that correspond 
to the stationarity condition, 'V E(8) = O. Through a reformulation, this problem becomes 
one of identifying all multiple global solutions. This method has been implemented using the 
aBB technique to locate all stationary points (local minima and saddle points) of triatomic 
molecules and small peptides [37, 38]. 

Given the astronomical number of local minima for even relatively small oligopeptides, 
this work addresses the problem of identifying low energy, rather than all, local minima. 
In particular, the generation of low energy ensembles of conformers is accomplished by 
algorithmic modifications of the general aBB procedure, rather than reformulation of the 
original problem. Rigorous implementation of the global optimization algorithm requires 
the minimization of a convex lower bounding function, L, in each domain. Each unique 
solution can then be used as starting points for the minimization of the original energy 
function in the current sub domain. By storing these minima a list of low energy conformers 
can be constructed. 

A simplistic method for enhancing the distribution of local minima produced in each 
sub domain would involve the use of multiple random starting points when minimizing E. 
This method is better than just using random starting points (over the entire domain), 
since the sub domains become localized in regions of low energy as the separation between 
the lower and upper bounding sequences decreases. 

However, this approach does not capitalize on all the available information provided 
by the lower bounding functions. In a strict implementation, each lower bounding func­
tion exhibits a single minimum in each subdomain. Since the values of a directly define 
the convexity of the lower bounding functions, these parameters can be modified to pro­
vide nonconvex underestimators. The modified lower bounding function, L, will possess 
more than one minimum and can be minimized several times in each sub domain. Because 
the lower bounding functions smooth the upper bounding function, the locations of these 
minima also provide important information on the locations of low energy minima on the 
original energy surface. Therefore, the location of the minima of L are used as starting 
points for local minimizations of E, which results in an improved set of low energy con­
formers. In addition, these conformations are also localized in regions with low energy as 
the size of the sub domains decrease. This approach, which will be referred to as the EDA 
(Energy Directed Approach), is illustrated in Figure l. 

A second approach enhances the search for free energy local minima by accounting 
for entropic contributions during the course of the branch and bound algorithm. This is 
accomplished by calculating and including the relative entropic values at each minima of 
the upper and lower bounding functions, as shown in the following equation : 

har kBT 
F = U(8min) + -2-ln [Det (H(8min))] (13) 

The expression is similar to Equation (9) except that U(8min) now represents either the 
local minima of E or L. The thermodynamic temperature used in Equation (13) must 
also be specified as an additional input parameter. A similar modification for Monte Carlo 
minimization has also been attempted [26]. 
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Figure 1: Using multiple minima of the lower bounding function (L) to find low energy 
conformers of the upper bounding function (E). 

This approach, which will be referred to as the FEDA (Free Energy Directed Approach) , 
can be used to deterministically identify the global minimum free energy conformer at a 
given temperature. However, since the goal is to identify an ensemble of low (free) energy 
conformations, the FEDA is implemented using the modified lower bounding functions, t. 

3.3 Algorithmic Description 

The aBB methodology for locating ensembles of low energy conformers requires interfaces 
between aBB and several programs. These include the potential and solvation energy 
modules, ECEPP /3 [30] and RRIGS [8], respectively; a local nonlinear optimization solver, 
NPSOL [16], which is used to locally solve both the upper and lower bounding problems; 
and UBC, an upper bound check module that is used to verify the quality of the upper 
bound solutions. 

The algorithmic steps are summarized in the following: 

1 Initialize the best upper bound to +00. 

2 Initialize a values for all global variables (variables that will be partitioned). All other 
variables are treated locally within the periodic interval. 
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3 If FEDA is used, specify a thermodynamic temperature. 

4 Partition the domain along one of the global variables. 

5 Construct a lower bounding function (L) in each sub domain. Perform three local 
minimizations according to the following procedure : 

A Generate 50 random points and perform function evaluations of 1,. 

B Use the point with the minimum value as a starting point for local minimization 
of 1,. 

C If FEDA is used, calculate and add _TShar. 

D Store unique solutions. 

If the minimum valued solution (of L in this subdomain) is greater than the current 
best upper bound, the region is fathomed (discarded from list of lower bounds). 

6 The unique local minima of L are used as starting points for the minimization of 
the upper bounding function, E, in each subdomain. Perform two additional local 
minimizations according to the following procedure: 

A Generate 50 random points and perform function evaluations of E. 

B Use the point with the minimum value as a starting point for local minimization 
of E. 

C Check gradient and Hessian conditions (to verify point is a local minimum). 

D If FEDA is used, calculate and add _TShar. 

Update the current best upper bound as the minimum of all upper bounds, including 
those generated in the current subdomain. 

7 Select the sub domain with the lowest lower bound value for further partitioning. 

8 Update a values. 

9 If the best upper and lower bounds are within the specified tolerance the program will 
terminate; otherwise it will return to step 4. 

4 Identifying Folding Pathways 

4.1 Illustrative example 

To rigorously characterize the energy surface, and thus the folding pathways, of a given 
protein, the full set of minima and transition states must be identified. A methodology that 
builds on the concepts outlined in the previous section has been developed. 

In particular, the ability for the EDA and FEDA to identify ensembles of low energy min­
ima provides a propitious starting point for further examination of the energy hypersurface. 
These low energy and free energy minima are used to initiate local searches for first-order 
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transition states. These transition states can then be used to identify minimum-transit ion­
minimum triplets. At the very least, this procedure will provide a robust mapping of low 
energy regions, which can be enhanced by increasing the number of low energy minima used 
to initiate transition state searches. 

The usefulness of this approach is illustrated by a small test case. In Figure 2 a two­
dimensional contour plot for unsolvated alanine (NH2-CH-CH3-C=O-OH) is given. Both 
the X and w dihedral angles are fixed at optimal values. The energy surface exhibits 7 
local minima and 12 transition states. When starting a transition state search (and triplet 
search) with the 3 lowest energy minima, all 7 local minima and 9 of the 12 transition 
states are identified. The number of found transition states can be increased to 11 (of 12) 
by initiating the search with 4 low energy minima. 

Figure 2: Energy contour plot for unsolvated alanine. The black circles denote local minima, 
while the grey circles denote transition states. 
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4.2 Eigenmode following 

To implement the transition state search, an efficient method for locating saddle points is 
essential. In particular, eigenmode techniques have been shown to be powerful methods for 
locating both minima and saddle points [11, 32, 33, 34]. 

The eigenmode class of local solvers utilize second derivative information and are ba­
sically modified implementations of the Newton-Raphson method for locating stationary 
points. This is best illustrated by first examining the Newton-Raphson step: 

(14) 

Here 9 and H are the gradient vector and Hessian matrix at a point on the energy surface. 
Equation (14) can also be written in terms of eigenvectors and eigenvalues: 

NO 
flO = - L giei 

i Ai 
(15) 

Here gi is the gradient vector along the ei eigenmode, and Ai is the corresponding eigenvalue. 
In actuality, the Newton-Raphson method is only guaranteed to converge to a local minimum 
when the point is already in the vicinity of a local minimum; that is, all eigenmodes have 
positive eigenvalues. This is because eigenmodes with positive eigenvalues lead to lower 
energy, while those with negative eigenvalues will tend toward higher energy. For this reason, 
the Newton-Raphson search can not be directed towards a particular type of stationary 
point. 

In contrast, the eigenmode methods attempt to influence the step by shifting the eigen­
value. A simple eigenmode implementation which guarantees convergence to a minimum 
is to use the absolute value of the eigenvalues in Equation (15). The general form for an 
eigenmode step is given by the following: 

No 

flO = -L~ 
i Ai - Li 

(16) 

The eigenvalues, Ai, are now shifted by the parameters L i . By controlling the signs of the 
Ai - Li expressions, the eigenmode algorithm can be made to converge to stationary points 
that match the sign of Ai - Li. For example, if one Ai - Li is enforced to be negative, 
the algorithm will converge to a first order saddle point. In contrast to Newton-Raphson, 
eigenmode methods can be used to locate specific classes of stationary points, regardless of 
the eigenvalues at the starting point. In this particular implementation, these methods can 
be used to step away from local minima and converge to first order transition states. 

A number of formulations have been proposed to determine the shift parameters. In this 
work, the method proposed in [34] is adopted. The rules for choosing the shift parameters 
depend on the role of the particular eigenmode. If the eigenmode is selected for minimization 
(decrease in energy), the following rules apply : 

Li = { 0 if Ai 
2Ai if Ai 

> 0 
< 0 

(17) 
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These conditions enforce Ai - L/ > 0, as required for minimization. In contrast, when 
the eigenmode is selected for maximization the following rules are used : 

{ ~(Ai + JAr + 4g[) if Ai 
o if Ai 

> 0 

< 0 
(18) 

When Ai > 0, the direction of movement is reversed using an empirical shift parameter. 
In this work, the eigenmode method is used to perform 2No first order transition states 

searches from each local minimum. These searches correspond to an initial step away from 
the minimum in both the positive and negative directions for each eigenmode of the system 
(low and high). Once the initial step is taken, the particular eigenmode (for maximization) 
is chosen by checking the largest overlap with the previously followed eigenmode. This 
procedure is called the eigenmode following method. Another approach (not used here) 
would be to select the eigenmode for maximization based on the lowest eigenvalue (least 
eigenvalue method). Each first order transition state can be linked to the two local minima 
it connects by perturbing the system away from the saddle point along the eigenmode 
corresponding to the negative eigenvalue (positive and negative step). This provides the 
minimum-transit ion-minimum triples that define the connectivity of the energy surface. 

4.3 Transition rates 

Once the triples are identified, rates of transitions can be calculated using Rice-Ramsperger­
Kassel-Marcus (RRKM) theory. If the system is initially at minimum A, the probability 
that a transition to minimum B will occur (through transition state TS) is proportional to 
the ratio of the partition functions at TS and A. The rate for this transition is equal to : 

(19) 

kl is a temperature dependent factor that sets the average rate for transitions (at a given 
temperature). The ratio of partition functions ZTS and Z A represents the probability 
that the transition state can be attained. This implies that once the transition state is 
encountered via thermal fluctuations from minimum A, the transition to minimum B is 
essentially complete. If the harmonic approximation is again employed (as in Equation 
(5) ), Equation (19) becomes : 

(20) 

Here ETS and E A are the energies of the system at the transition state and minimum 
A, respectively. The Ii represent the vibrational frequencies of the protein, which can be 
obtained through the solution of the following problem: 

(21) 



ELUCIDATING THE FOLDING DYNAMICS OF PEP TIDES 31 

As before, H is the second derivative matrix of the energy function. I now represents the 
true inertia tensor of the molecular system. 

It is important to note that the product of frequencies for the transition state (in the 
denominator of Equation (20)) involves one less mode than for a local minimum. In partic­
ular, this mode is the eigenmode corresponding to the negative eigenvalue and represents 
the reaction coordinate for the system. For this reason, the factors kl (one from Equation 
(19) and one from the extra vibrational frequency for minimum A) negate each other. 

A similar relationship can be written for the reverse transition. That is, the rate of 
going from minimum B through transition state TS to minimum A is equal to the following 

(22) 

In addition, the transition rate between any two minima can be calculated by summing the 
rates for all transitions along the pathway(s) connecting these two minima. 

4.4 Rate connectivity 

To better analyze the connectivity of the minima a "rate disconnectivity graph" , as proposed 
in [37J, can also be constructed. This graphical description of the energy surface stems 
from the concepts originally given in [12], which introduce the ideas of an energy tree 
as derived from energy barriers between minima. The ideas were later refined to include 
a generalization for graphically representing the clustering of minima for finite energy or 
temperature scales [9J. This "disconnectivity graph" shows how disconnected minima merge 
as energy or temperature increases. 

In [37J this concept was taken a step further by defining a "rate disconnectivity graph"; 
a graphical representation based on transition rates instead of energy barriers. Here the 
vertical axis represents the transition rate, which begins at the transition rate cutoff. If all 
minima are connected, there will be a frequency low enough so that all minima are grouped 
under a single node. That is, transitions must exist which connect all minima in the graph. 
The transitions with the lowest frequency are branched near the top of the graph. As the 
cutoff frequency is increased, certain transitions are eliminated and the graph begins to 
bifurcate. 

Once bifurcation occurs, the graph can be used to check the connectivity between two 
minima. Minima within the same group are connected by a transition pathway, while min­
ima from different groups are not connected. The maximum point (vertically) along the 
pathway between two minima identifies the slowest transition. As the rate cutoff continues 
to increase, fewer transitions remain connected and a finer partitioning will appear. Even­
tually, at a frequency above the highest transition rate, all minima will define their own 
group. 
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5 Computational Studies: Met-Enkephalin 

Met-enkephalin (H-Tyr-Gly-Gly-Phe-Met-OH) is an endogenous opioid molecule found in 
the human brain, pituitary, and peripheral tissues and is involved in a variety of physiological 
processes. The peptide consists of 24 independent torsional angles and a total of 75 atoms, 
and has played the role of a benchmark molecular conformation problem. All 24 dihedral 
angles are considered variable, with the 10 dihedral angles of the backbone residues acting as 
global variables (variables on which branching occurs). Both approaches (EDA and FEDA) 
for finding low energy conformers were applied to the isolated form of met-enkephalin using 
the ECEPP 13 force-field. The EDA was also applied to the RRlGS + ECEPP 13 solvated 
form of this pentapeptide. 

A detailed presentation of the results, including the derivation of thermodynamic quan­
tities and identification of a folding transition, can be found in [20]. In this work the 
unsolvated FEDA results (with 10 independent runs and initial temperature values varying 
from 50 to 500 K in 50 K increments) and the solvated EDA results are utilized. The 
ensemble of local minima generated by these runs are used to identify a set of distinct con­
formers by checking for repeated and symmetric conformations. An additional criterion, 
which requires that at least one dihedral angle varies by more the 50° when comparing each 
pair of structures, is imposed. The unique conformations are then used to generate ranked 
distributions according to energy and free energy values. The density of unique conformers 
is determined by separating the energy ranking into discrete 0.5 kcallmol energy bins rel­
ative to the global minimum energy structure. After performing this analysis, the density 
of states was found to follow a Boltzmann-like distribution. 

In the case of isolated met-enkephalin, the 10 FEDA runs generated a total of 87974 
distinct local minima. The potential energy ground state conformation for met-enkephalin 
consists of a type II' ,B-bend along the N-C' peptidic bond of Gly3 and Phe4 , with a total 
energy of -11.707 kcallmol. The 10 solvated EDA runs produced 72784 distinct minima. In 
this case, the ground state exhibits a more extended backbone than the unsolvated form, 
although the aromatic rings are still proximate. When considering the harmonic free energy, 
the prediction of the free energy global minimum (FEGM) can be calculated over a range 
of temperatures. Table 1 compares the FEGM structures at 300 K to the ground state 
structures for both the unsolvated and solvated systems. 

The unsolvated results indicate that the FEGM structure possesses a potential energy 
contribution 1.808 kcallmol higher than the ground state structure. The change in dihedral 
angle values, especially those for the ¢ and 'if; angles, also point to an important structural 
variation between these conformations. In fact, the FEGM conformation exhibits central 
residues within the a helical region of the Ramachandran plot; which is a significant change 
from the type II' ,B turn of the ground state structure. For the solvated form, the relative 
energy difference between the FEGM and ground state structures is even larger than for the 
unsolvated case. In addition, the central residues for the FEGM conformation are essentially 
fully extended - even more so than the ground state structure. These results emphasize the 
importance that entropic effects can have in defining the free energy of the system. 

The qualitative effect of adding entropic contributions can be determined by comparing 
the distribution of distinct minima for the original energy and the free energy (300 K) of 
the system. Table 2 provides the number of distinct minima in 0.5 kcallmol (free) energy 
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Table 1: Dihedral angle values for the ground state and free energy global minimum (FEGM 
at 300 K) structures of met-enkephalin. Columns 3 and 4 present the results for the un­
solvated form, while columns 5 and 6 are for solvated met-enkephalin. The last two rows 
indicate the energy and harmonic free energy values (kcaljmol). 

Unsolvated Solvated 
Residue DA Ground I FEGM (300 K) Ground I FEGM (300 K) 

Tyr1 ¢ -83.4 179.8 -168.2 -168.4 
'If; 155.8 -18.2 -30.9 -34.3 
w -177.1 -178.1 178.6 -178.9 

Xl -173.2 178.2 -173.5 178.7 

X2 79.3 81.3 -100.9 -100.8 

X3 -166.3 177.3 19.3 179.0 
Gly2 ¢ -154.3 -59.8 78.5 177.8 

'If; 85.8 -37.6 -86.5 -179.9 
w 168.5 -178.8 -177.3 180.0 

Gly3 ¢ 83.0 -67.0 162.4 -180.0 
'If; -75.0 -40.1 92.2 179.9 
w -170.0 179.7 172.6 179.7 

Phe4 ¢ -136.9 -70.9 -150.3 -155.3 
'If; 19.1 -39.5 159.8 147.2 
w -174.1 -179.8 -178.1 -176.8 

Xl 58.9 173.9 65.8 -179.5 

X2 94.5 -102.6 -87.4 -111.7 
Met5 ¢ -163.5 -161.0 -75.0 -78.7 

'If; 160.9 122.1 113.9 -51.1 
w -179.8 -178.0 -178.4 179.7 

Xl 52.9 -174.7 -172.3 -67.2 

X2 175.3 174.0 176.1 -178.8 

X3 -179.9 179.0 -180.0 -179.9 

X4 -178.6 -60.1 60.0 -180.0 

Fhar -11.707 14.175 -50.060 -28.604 
E -11. 707 -9.899 -50.060 -46.030 
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Table 2: Number of distinct minima in ranked (free) energy bins. Each bin represents a 0.5 
kcal/mol range above the previous bin. The 0 K results do not include entropic effects. 

Unsolvated Solvated 
Bin OK 1300 K OK 1300 K 

1 2 5 10 19 
2 3 16 14 98 
3 12 42 34 378 
4 46 97 117 885 
5 47 208 326 1730 
6 87 403 717 2812 
7 161 846 1440 4451 
8 297 1524 2611 5390 
9 543 2597 3891 6301 
10 828 4032 5567 6736 
11 1066 5726 6677 6675 
12 1527 7499 7624 6295 
13 2244 9315 7650 5756 
14 2818 10862 7047 5113 
15 3657 12004 6375 4361 
16 4472 12167 5534 3437 

bins within 8.0 kcal/mol of the FEGM. As previously mentioned, the distributions are 
Boltzmann-like, with the distributions becoming more dense at 300 K. For the solvated case 
this increased density is especially dramatic. These results indicate that, as temperature 
increases, the relative stability of entropic contributions offsets substantial differences in 
energy. At large bin number the number of minima begins to decrease, especially for the 
solvated case. This is most likely due to inadequate sampling of high energy minima, which 
would most likely fill these free energy bins. 

It is also useful to calculate relative free energies for clusters of low energy conformers 
because it is impossible to determine the population of a given structure class based on 
a pointwise approximation of entropic effects for individual structures. By clustering con­
formers into classes, the error associated with the harmonic approximation should also be 
reduced. In this work, structures are grouped according to the Zimmerman codes for the 
central residues ofthe peptide [39]. In particular, two conformers belong to the same cluster 
if the central three residues possess the same Zimmerman code. The relative free energy of 
a cluster is defined as : 

(23) 

Here, the individual ppar are calculated via Equation (10), and the set C defines confor­
mations with the same structural classification. A reference free energy is also used to 
normalize the probabilities. The results for unsolvated and solvated met-enkephalin at 300 
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Table 3: Clustered relative free energies for met-enkephalin. The information provided in 
this table includes: Zimmerman code*, number of individual conformers in cluster, total 

probability (LPrar ) and free energy of cluster (Fcluster)' 

Unsolvated Solvated 

Code Number Lpfar Fcluster Code Number Lpfar Fdll~tcr 
CD*A 2128 0.263 0.796 E*EE 148 0.0474 1.818 
C*DE 1360 0.125 1.239 EE*E 152 0.0445 1.856 
AAA 327 0.111 1.309 D*E*E 149 0.0273 2.147 

* S. S. Zimmerman, M. S. Pottle, G. Nemethy, and H. A. Scheraga, Macromolec1tles, 10, 
1-9 (1977). 

K are shown in Table 3. 
In general, the structural characteristics of the cluster with the lowest free energy are 

not necessarily the same as that of the FEGM. The results for unsolvated met-enkephalin 
indicate that the CD* A class of structures is dominant at 300 K, in part due to the large 
number of low energy structures within this class. This group of structures is similar to 
the ground state conformation, except that the type II' ,B-bend has shifted from the Gly3-
Phe4 to the Gly2-Gly3 backbone region. Figure 3 compares the ground state structure to 
the lowest free energy structure within the CD* A cluster. For the case of solvated met­
enkephalin, the FEGM structure actually belongs to the dominant cluster type (E*EE). 
Figure 4 illustrates the differences between the extended FEGM structure class and the 
ground state conformer. 

To meaningfully characterize the energy surface, an obvious choice is to focus the analysis 
on connectivity to the ground state conformation. In addition, transitions between the 
ground state structure and representative structures of the dominant free energy cluster at 
300 K were selected for folding pathway determination. For these reasons, the set of low 
energy conformers used to initialize the transition state searches are based on the union of 
the 1000 lowest energy minima and the 1000 lowest free energy minima at 300 K. In this 
way, the connectivity between low free energy structures and the ground state structure 
could be explored, while maintaining a tractable number of starting structures. 

For each unique local minima the transition state search entailed 48 eigenmode following 
runs; that is, 2 initial step directions for all 24 unique eigenmodes. These searches were 
implemented in parallel using MPI on NPACl's HP Exemplar. Following these runs, the set 
of unique first order transition states was identified and ranked. For each transition state, 
the next step involved the determination of the minimum-transition-minimum connectivity, 
which required 2 additional eigenmode searches corresponding to the positive and negative 
step along the reaction coordinate. For unsolvated met-enkephalin, this procedure resulted 
in the identification of 51272 total stationary points, with 22775 local minima and 28497 
first order transition states. The corresponding results for solvated met-enkephalin were 
76828 total stationary points, 34722 minima and 42106 first order transition states. 

To quantify the connectivity to the ground state, the transition rates were calculated 
for each minimum-transition-minimum triple. This information can be used to compile the 
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(A) (8) 

Figure 3: Ground state structure for unsolvated met-enkephalin (A). Lowest energy un­
solvated structure for dominant free energy cluster at 300 K (8). Only heavy atoms are 
represented. 

(A) (8) 

Figure 4: Ground state structure for solvated met-enkephalin (A). Lowest energy solvated 
structure for dominant free energy cluster at 300 K (8). Only heavy atoms are represented. 
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Table 4: Number oflocal minima connected to the ground state conformation for transition 
rate cutoffs of 107 , 109 and 1011 Hz. 

Transition Unsolvated Solvated 
Rate # Connected # Connected 

Cutoff (Hz) Minima Minima 
WI 15753 25148 
109 1685 20660 
1011 131 1040 

rate disconnectivity graph, and thus identify the number of connected minima for various 
transition rate cutoffs. Table 4 shows the number of minima connected to the ground 
state conformation for various transition rate cutoffs. Initially, at a 107 Hz rate cutoff, a 
large fraction of the minima (R:: 70 %) are still connected to the unsolvated ground state 
conformation. However, as higher rate cutoffs are applied, the node containing the ground 
state becomes quite small, with only 131 minima at a 1011 Hz cutoff. In contrast, the 
solvated ground state is connected to a larger fraction of minima at all cutoff frequencies. 
This is particularly evident for the 109 Hz rate cutoff. These observations imply that for 
the solvated system there exist faster transitions which link the ground state conformation 
to larger regions of the energy surface. 

These results can be visualized by plotting the rate disconnectivity graphs for the various 
rate cutoffs. The corresponding graphs are depicted in Figures 5 and 6. For unsolvated met­
enkephalin these graphs reveal that the branch connecting the ground state conformation to 
the majority of other minima involves relatively slow transitions; that is, between 107 and 
108 Hz. For this reason, the ground state cluster for 109 Hz cutoff comprises only a small 
portion of the complete graph. In contrast, Figure 6 shows that the solvated ground state 
conformer is part of the main graph because several connected branches exhibit transitions 
higher than 1010 Hz. Even for the 1011 Hz cutoff the node containing the ground state 
conformation is quite dense when compared to the corresponding unsolvated disconnectivity 
graph. These graphs illustrate the liquid-like behavior of the solvated system. 

The examination of folding pathways was accomplished by characterizing the transition 
between the ground state and the lowest free energy minimum of the dominant cluster. 
In the case of unsolvated met-enkephalin, this transition characterizes the shifting of the 
type II' ,a-bend from the Gly2-Gly3 to the Gly3-Phe4 backbone region. The representative 
structure for the dominant free energy cluster (denoted as CD*Al) at 300 K exhibits an 
energy of -9.402 kcal/mol, which is 2.305 kcal/mol higher in energy than the ground state 
structure. For solvated met-enkephalin, the fully extended to ground state pathway was 
explored. In this case, the dominant free energy cluster (E*EE) is represented by the FEGM 
at 300 K. This structure (denoted as E*EEl) has an energy of -46.030 kcal/mol, which is 
about 4 kcal/mol higher in energy than the ground state conformer. In addition, the second 
lowest free energy minimum of the E*EE cluster (denoted as E*EE2 ) was included in the 
pathway analysis. This minimum exhibits a slightly higher energy of -45.712 kcal/mol. 

One way to characterize the folding transition is to examine the pathways connecting two 
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Figure 5: Rate disconnectivity graphs of unsolvated met-enkephalin for transition rate 
cutoffs of 107 (a), 109 (b) and 1011 (c) Hz. Only the node containing the ground state 
conformation is shown (at the top of the graph). The ground state conformer always 
corresponds to the rightmost branch. 
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Figure 6: Rate disconnectivity graphs of solvated met-enkephalin for transition rate cutoffs 
of 107 (a), 109 (b) and 1011 (c) Hz. Only the node containing the ground state conformation 
is shown (at the top of the graph). The ground state conformer always corresponds to the 
rightmost branch. 
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Table 5: Number of unique pathways between two minima. The first column denotes the 
length of the pathway in terms of the number of transitions. For unsolvated met-enkephalin, 
the overall transition is between the ground state conformer and the lowest free energy 
conformer for the dominant free energy cluster (CD* Al). For solvated met-enkephalin two 
transitions with the ground state conformer are considered: the first (E*EE1) and second 
(E*EE2) lowest free energy conformers for the dominant free energy cluster (E*EE). 

# of Unsolvated Solvated 
Transitions CD* Al ++ Ground E*EE1 ++ Ground I E*EE2 ++ Ground 

5 - - 2 
6 - - -

7 4 13 17 
8 18 108 16 
9 148 1082 135 
10 1228 8583 436 
11 10024 62867 2595 
12 78936 102124 14154 

minima. Through graph theory techniques an exhaustive search can be used to enumerate 
the full set of pathways that connect these two minima. However, such a search will quickly 
become impractical when the total number of connected minima is large. To avoid this 
problem, the enumeration was conducted for pathways comprising less than 12 transitions 
states. The number of unique pathways for different numbers of transition states (for the 
minima defined in the preceding paragraph) are given in Table 5. These results indicate a 
stronger connectivity among the solvated minima, which corroborate the results from the 
dis connectivity graphs. In particular, when considering the transition between the ground 
state and the representative structure from the dominant free energy cluster, the solvated 
case exhibits an order of magnitude increase in the number of pathways with an equal 
number of transitions. In addition, when considering the second solvated transition, a 
number of relatively short pathways can be identified. 

Since the length of the pathway is not necessarily proportional to the overall transition 
rate between the two minima, a more detailed analysis of these folding pathways must be 
considered. A visual method for accomplishing this goal is to trace a pathway between the 
two minima on the rate disconnectivity graph. The overall transition time is related to 
the location of the highest branch (slowest transition) in the connectivity tree. Figure 7 
illustrates the tracing of folding pathways for unsolvated and solvated met-enkephalin. For 
unsolvated met-enkephalin the traced pathway includes 7 transition states. To display the 
entire pathway, the disconnectivity graph with a 107 transition rate cutoff was constructed. 
This implies that the lowest transition rate occurs in the range of 107 to 108 Hz. In the case 
of solvated met-enkephalin, the shortest pathway connecting E*EE2 to the ground state 
includes only 5 transition states. In addition, the transition rates between these minima 
are relatively fast, and a high cutoff of 1011 Hz is sufficient for displaying the entire traced 
pathway. 
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Figure 7: Tracing pathways on rate disconnectivity graphs. (a) shows a 7 transition state 
pathway (for unsolvated met-enkephalin) connecting CD* Al to the ground state on a dis­
connectivity graph with a 107 rate cutoff. (b) shows a 5 transition state pathway (for 
solvated met-enkephalin) connecting E*EE2 to the ground state on a disconnectivity graph 
with a 1011 rate cutoff. The traced pathways are indicated by thick grey lines which extend 
to the root node. The highest branch constitutes the slowest transition. The ground state 
always corresponds to the rightmost branch. 
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Another method for visualizing the folding pathways is given in Figure 8. In this figure, 
¢ - 'IjJ conformational plots are used to illustrate the structural changes which occur along 
the pathway. The same unsolvated and solvated pathways shown in Figure 7 are graphed. 
In each plot, five lines are drawn, with each line corresponding to one of five residues for met­
enkephalin. Black dots pinpoint the ¢-'IjJ values for the transition states along the pathway, 
while minima are represented by grey dots. The plots imply that along the unsolvated 
pathway, large structural variations correspond to changes in ¢ values. In contrast, many 
residues in the solvated pathway undergo only small changes, while two residues display 
significant variation in both ¢ and 'IjJ variables. Similar plots can be constructed for all 
dihedral angles, and used to identify important variables along the folding pathway. 

6 Conclusions 

An important step in better understanding the protein folding process is the characteriza­
tion of energy surfaces. Rigorously, this characterization requires the identification of all 
stationary points of the energy function. Along these lines, deterministic methods have 
been applied to small peptide systems [37). However, the jump to larger peptide systems 
(with astronomically large numbers of minima) is currently intractable. 

In this work, a new methodology for analyzing energy surfaces of peptides was intro­
duced. The approach is based on the identification oflow (free) energy local minima using a 
modification of the aBB deterministic global optimization technique [20). Once these min­
ima have been identified, the low energy regions are explored by transition state searches 
and the determination of minimum-transit ion-minimum triples. 

The methodology was applied to both unsolvated and solvated forms of met-enkephalin. 
On the order of 80000 local minima were identified for both forms. In addition to typical 
force-field components, entropic contributions were accounted for through a harmonic ap­
proximation. The results were used to determine the free energy global minima at 300 K, 
as well as the dominant free energy cluster at this temperature. 

In order to map out the low energy regions, the union of 1000 lowest energy and 1000 
lowest free energy minima was compiled and used to initiate transition state searches. 
First order transition states, as well as minimum-transition-minimum triples, were identi­
fied through a parallel implementation of eigenmode following methods. The final set of 
stationary points included 22775 minima and 28497 first order transition states for unsol­
vated met-enkephalin, and 34722 minima and 42106 first order transition states for solvated 
met-enkephalin. 

Transition rates and connectivities were then calculated for these structures. To explore 
the connectivity to the ground state conformations, rate disconnectivity graphs were con­
structed for different rate cutoffs. This analysis indicated higher transition rate connectivity 
for the solvated form of met-enkephalin. 

In addition, the transitions between specific minima were examined. These transitions 
were first characterized by the number of pathways (for a given number of transition states). 
Visual interpretation of these results included pathway tracing on the dis connectivity graph 
and conformational plots of ¢ - 'IjJ variable transformations along the pathway. 

In conclusion, the combination of a deterministic global optimization based search for 
low (free) energy ensembles and eigenmode searches for transition states and minimum-
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Figure 8: Tracing pathways on ¢ - 'lj; conformational plots. Each line corresponds to one of 
five residues for met-enkephalin. The black dots represent transition states, while grey dots 
are minima. The same pathways given in Figure 7 are plotted. (a) shows a 7 transition 
state pathway (for unsolvated met-enkephalin) connecting CD* Al to the ground state. (b) 
shows a 5 transition state pathway (for solvated met-enkephalin) connecting E*EE2 to the 
ground state. 
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transition-minimum triples can be used to effectively characterize energy surfaces. The 
techniques were applied to the unsolvated and solvated forms of met-enkephalin and used 
to perform a comparative analysis of these systems. A number of visualization techniques 
were also shown to be useful for further elucidating the folding process for this peptide. 
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Abstract 

Key problems in computational biology, including protein and RNA folding and drug 
docking, involve conformational searching over multidimensional potential surfaces with 
very large numbers of local minima. This paper shows how statistics provided by the 
CGU global optimization algorithm can be used to characterize and interpret these 
topographies using a 2-dimensionallandscape projection. 

Keywords: Energy landscapes, protein folding. 

1 Introduction 

The CGU (Convex Global Underestimator) global optimization algorithm [1], is very dif­
ferent than Molecular Dynamics (MD), Monte Carlo (MC), Simulated Annealing (SA), or 
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Genetic Algorithms (GA). The CGU method does not search the tops of energy landscapes, 
does not get caught in kinetic traps, and its speed does not depend on the shapes of energy 
landscapes (amino acid sequences), but only on the sizes of such landscapes. And in addi­
tion to the global minimum, the CGU method also computes a large number of low energy 
local minima. This is most useful for learning the shapes of energy landscapes and the 
nature of energy gaps, which is helpful in computational studies of folding kinetics. In fact, 
we have even devised a novel way to display this n-dimensional landscape, where n is the 
number of degrees of freedom, in a simple 2-dimensional graph that shows the distribution 
of all the local minima. 

To obtain such an energy landscape, the CGU method searches for the globally optimal 
lowest energy conformation <Pc by constructing a convex function which underestimates all 
known local minima and does so by the least possible amount. Based on the premise that 
protein folding energy landscapes are funnels with bumps ([2, 3, 4, 5]), there is information 
about where to find the native structure distributed everywhere throughout the landscape. 
To find the bottom of a funnel, even a bumpy one, you need to head generally downhill. 
In general, we know that most well-understood proteins must have such landscapes. The 
idea of a funnel is nothing more than the statement that proteins fold much faster than the 
"Levinthal time", the exhaustive search time, and always to the same unique state. 

The CGU simply makes use of the overall funnel-like shape to guide and localize the 
search to regions that are estimated to be near the native structure. Since the lateral area 
of an energy landscape at a given depth represents the number of conformations having 
the same internal free energy, the funnel idea is simply that as folding progresses toward 
lower energies, the chain's conformational options become increasingly narrowed, ultimately 
resulting in the one native structure. This is fundamentally a consequence of the fact that 
proteins are heteropolymers. 

Given a primary sequence of amino acids with n degrees of freedom <P E Rn, and 
a potential energy function F(<P), the CGU strategy for searching for the global energy 
minimum F(<Pc) of F(<P) involves an iterative process ofthree phases during each iteration: 
(I) sampling the landscape, (II) forming the convex global underestimator surface U (<p), a 
parabolic surface under the lowest minima found so far, and (III) finding the minimum on 
this underestimator surface which is then used in the next iteration to localize the search 
region further. Figure 1 provides an n = 2 dimensional example of a potential function 
characterized by a rugged energy landscape with numerous kinetic traps, energy barriers, 
and narrow pathways to the native state. 

In fact, this potential function, while artifical, shares many of the characteristics believed 
to be present in actual protein folding energy landscapes [2, 3, 6, 7, 8]. By way of comparison, 
Figure 2 shows the corresponding CG U underestimating surface U (<p) for this same potential 
function. Landscapes such as Figure 1 are ideal for the CGU method since the convex 
underestimator closely approximates the funnel, and ignores the bumps, as the algorithm 
narrows its search region. 

While the full details of the CGU method are described in [1, 9], a brief description 
is presented here. In phase I, k ?: 2n + 1 local energy minimum conformations <p Cj) are 
generated in the search region of interest (a minimum of 2n + 1 conformations are required 
for construction of the convex underestimator in n dimensions and 8n + 4 are used in 
the actual implementation). These conformations are sampled from a uniform random 
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Figure 1: An example potential function F(<I» with n = 2 

distribution (over the desired search region) and then relaxed to a local energy minimum 
state by a Sequential Quadratic Programming (SQP) continuous minimization technique. 

In phase II, the CGU function U(<I» is then constructed as a more global surface to "fit" 
these k local minima (and any other known local minima in the desired search region) by 
underestimating all of them in the least possible amount (i.e. the Ll norm) by solving the 
optimization problem: 

k 

minL8j 
j=l 

(1) 

where 8j = F(<I>(j)) - U(<I>(j)) ~ 0 is required for all conformations j = 1, . . . , k. For U(<I» 
we use a separable quadratic function of the form 

n 1 
U(<I» = Co + L(c,;<lIi + 2di<ll;). 

i=l 

(2) 

This choice is not essential but has many important benefits. First, convexity of U (<lI) is 
easily guaranteed by simply requiring di ~ 0 in Eq 2. Second, since Ci and di appear only 
linearly in the constraints of Eq 2, the solution to Eq 1 can be computed by a simple linear 
programming technique, the complete details of which are given in [1]. Third, the minimum 
energy conformation of U( <I», denoted <lip is very easily computed by (<lIp) i = -c,;/ di . This 
conformation then serves as a prediction for <lIa. In this way the CGU searches under the 
landscape of F(<I» and provides a prediction <lip which can then be used in phase III. 

Given the predicted structure <I>p and the best known local minimum structure computed 
so far, denoted <lI L, in phase III the search region is localized around <lip while also including 
<I>L· Phases I-III are repeated over the new search regions until <lip = <lIL , That is, when 
the CGU predicts <I>p = <I>L , then the method terminates, and <lIL is declared the global 
minimum energy conformation. 
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Figure 2: The CGU underestimating function U(iI» for F(iI» 

We have conducted extensive computational testing of the CGU algorithm on a variety 
of molecular models [1, 9, 10, 11, 12]. These include n-chain homopolymers [1] and the Sun 
simplified heteropolymer model [13], with up to 36 residues (70 degrees of freedom). The 
computation time is determined essentially by the number and speed of local minimizations. 
For an n-dimensional problem, at least 2n+ 1 local minima are required in order to determine 
the convex quadratic underestimator, but we typically use 8n + 4. The time dependence on 
n of the local minimizer is therefore crucial to the computational efficiency. In the original 
version of the CGU implementation, the local minimizer required approximately O(n3 ) time 
per minimization, so that the total time was approximately O(n4 ). We are now using a 
local minimizer based on sequential quadratic programming, which is approximately O(n2 ), 

because far fewer function calls are needed. Therefore the total time needed to find the 
global minimum now appears to increase as only O(n3 ). 

The success of the CGU algorithm in finding the global minimum depends on the energy 
landscape being funnel-shaped. This shape enables the convex underestimator to correctly 
localize the search to the region containing the global minimum. The molecular models 
tested in our previously described work [1, 9, 10, 11, 12] all appear to have this funnel 
property. As a result, the rate of success in finding the global minimum was high. Except 
for very small molecules, the global minimum of the energy function is not known, so success 
must be measured in terms of the consistency of the results obtained. 

In order to determine the performance and robustness of the CGU algorithm, we have 
recently carried out extensive computational tests using the simplified heteropolymer model 
[13]. These tests included models with the number of degrees of freedom n ranging from 
n = 4 to n = 70. Since for this model there are 2 backbone angles (¢I1/;) per residue, 
n = 2r - 2 where r is the number of residues. The largest model included in these tests 
therefore consisted of 36 residues. A total of 20 different values of n were tested, as shown 
in Table 1. For each value of n, the CGU algorithm was applied 20 times, where each time a 
different set of 8n+4 randomly chosen initial points (in the n-dimensional space) were used. 
Thus there were 20 independent solutions computed for each value of n. The lowest value of 
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F( q.) obtained was taken to be the global minimum Fc < 0, for the corresponding value of n. 
The second column in Table 1 gives the CGU success rate in finding Fc. The success rate is 
defined as the percent of the 20 tests (with a fixed n) for which 0.99 ::; F(j) / Fc ::; 1.0, where 
F(j) < 0, j = 1, ... ,20, is the minimum value obtained by the CGU on the jth test. The 
3rd and 4th columns of Table 1 give the average and maximum values of (F(j) - Fc)/jFcj. 
Obviously, if the success rate is 100%, then the corresponding relative error = O. The 
average and maximum number of CGU iterations needed are given in columns 5 and 6. 
Based on these results, and many similar tests, the success rate of the CGU algorithm is 
seen to depend primarily on how well the landscape approximates a funnel, and is essentially 
independent of the number of degrees of freedom. 

Table 1 
CGU Performance Summary 

relative error # iterations 
n % success average maximum average maximum 
4 100 0 0 4.7 6 
6 100 0 0 3 3 
8 75 .037 .226 6.9 9 
10 100 0 0 3 3 
12 100 0 0 3 3 
14 100 0 0 3 3 
16 45 .041 .152 3.8 7 
18 25 .281 .693 4.4 7 
20 100 0 0 3 3 
22 20 .081 .122 3 3 
24 5 .093 .111 3 3 
26 100 0 0 3 3 
28 100 0 0 3 3 
30 20 .065 .084 3 3 
32 30 .356 .509 3 3 
34 100 0 0 3 3 
36 100 0 0 3 3 
38 100 0 0 3 3 
50 100 0 0 3 3 
70 100 0 0 3 3 

averages 76% .049 3.4 

2 CGU Energy Landscape Information 

The success of the CGU method described above and in [9] is based, in large part, on the 
choice of the underestimating function U(q.) as a separable quadratic. While many choices 
for the convex underestimating function are possible, our approach is to use Eq 2 with the 
added restriction that the sum, over all local minimum conformations q.(j) found so far, of 
F(q.(j)) - U(q.(j)) ~ 0 be a minimum (see Eq 1). This choice provides important insight 
into the form and features of the energy landscape. This property appears to be unique to 
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our approach. 
For each degree of freedom <Pi, the CGU associates the coefficient di > O. We have 

shown in [10] that, based on the Boltzmann distribution law and the form of the CGU 
given in Eq 2, we can interpret (<Pa)i as the mean value of <Pi and kBT/di as the variance 
a;' Hence, large di indicate a small variance in <Pi from its global minimum/mean value 
(<pak 

Also, since the true energy landscape of F(<P) can be thought of as a surface above 
an n-dimensional horizontal hyperplane, with each point in the hyperplane representing a 
conformation <P, the distribution of local minima, provided by repeated iterations of the 
CGU method, in effect represents the energy surface F(<P), and we have a simple way to 
visualize this high dimension landscape. Upon completion of the CGU method, we have 
available a large set of local minimum conformations <p(j), j = 1, ... ,k (isomers having been 
removed during each iteration), among which <Pa is energetically best. We also have a 
"landscape" CGU which underestimates, in the same minimum sense as before, this entire 
set of local conformations in such a way that <Pa remains the global minimum. 

As shown in [9], this landscape CGU depends only on <Pa and on the set of "landscape 
coefficients" di . By defining 

n 

~<p = Ldi(<Pi - (<Pa)i)2, (3) 
i=1 

then this root mean square weighted deviation (RMSWD) ~<p provides a simple and conve­
nient means for plotting the energy difference U(<p) - Fa for any conformation <P. Figure 3 
shows this two dimensional visualization of the energy landscape for the case of an n = 20 
dimensional counterpart to the example potential energy function shown in Figure 1. This 
figure plots the normalized energy gap (F(<P(j») - Fe)/(Fmax - Fe) for each of the local 
minima <p(j) , j = 1, ... , k, and it shows their relationship to the landscape CGU energy 
surface. Here we denote Fmax = max F(<P(j») for j = 1, ... , k (but only those minima with 
~<p ~ 85 are shown). 

It should be noted that Fe = -20 and that the next lowest energy local minimum <P', 
shown in Figure 3 with ~<p ~ 15, has the value F(<PI) ~ 117. Using the Boltzmann distri­
bution probability, we see that the probability of observing this next lower local minimum 
conformation is [10] 

exp-(F(<J!')-FC)/kBT 

p(<pI) = 2:7=1 exp-(F(<J!(i)-Fc)/kBT < 10-4
. (4) 

Of course, <P' is the next lowest energy local minimum that we know about, and since the 
CGU method is not guaranteed, nor even intended, to find all the local minima, Eq 4 is not 
a reliable predictor of the status of any other local minima. 

The CGU method, and the corresponding energy landscape prediction, have been ap­
plied to a number of small protein models using the simplified Sun energy functions [13]. 
This potential explicitly treats backbone atoms, but represents sidechains as either hy­
drophobic or hydrophilic spheres whose radius is a function of the amino acid. Simple 
hydrophobic and hydrogen bonding terms are present, along with a penalty for ¢/'lj; pairs 
that lie outside permitted regions of the Ramachandran plot. This potential appears to be 
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funnel-like [10], although with a large number of local minima. The virtue of this potential 
function is that it is very simple and protein-like. The disadvantages are that it is not 
an accurate folding potential (none is known yet), and its global optima are not known 
with certainty. The examples tested here include a 9-residue oxytocin, a 30-residue zinc­
finger, and a 36-residue avian pancreatic polypeptide (PPT). The global minimum energy 
conformation obtained by the CGU method for PPT is compared with its known native 
conformation in Figure 4. Many local minima were obtained during this global minimization 
computation. Those closest to the global minimum <1>c are shown by the energy landscape 
projection in Figure 5. This also shows the CGU surface obtained and how it interpolates 
the set of local minima which define it. It is also seen that the lowest energy local minimum 
(after the global minimum) has an energy difference F(j) - Fe ~ 700, so the probability of 
observing any non-global minimum energy conformation is very low. 

These examples show clearly the value of the CGU method and the energy landscape 
projection in helping to understand the relationship between the global minimum energy 
and the native state conformation. Many other global optimization strategies are available 
for searching for low energy conformations, and many can provide some form of landscape 
statistics as well ([14, 15, 16]). But none of these other conformational search strategies 
provide the CGU's level of energy landscape information for realistic 3D models. 
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Figure 4: Native ipN (left) vs Model Native ipc (right) Structures for PPT 
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Abstract 

Two global optimization algorithms, one using the branch and bound (BB) framework, 
and another using Monte Carlo plus minimization (MCM) are compared in terms of 
energy minimization, diversity of the resulting low-energy structures, and energetic 
rank of native-like structures. Four proteins (PDB codes IGB1, lCC5, IMBD and 
IGDM) are studied using each program, with the same target function, allowing a 
rigorous comparison of performance. ill terms of the criteria used in this study, the 
MCM algorithm performs better than BB. The possible sources of these differences in 
performance are briefly discussed. 

Keywords: protein folding, reduced model, global optimization, simulated annealing, 
Metropolis criterion, branch and bound. 
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1 Introduction 

Global optimization algorithms are central to many protein structure prediction methods. 
In the idealized case where the free energy as a function of the spatial coordinates is known, 
and the native structure corresponds to the free energy global minimum (the thermodynamic 
hypothesis), the tertiary structure prediction problem is purely one of global minimization. 
In our experience, tertiary structure prediction is more complicated than pure global min­
imization for several reasons. First and foremost, is the fact that the actual free energy is 
not known. For this reason, structure predictions must be based on approximate potential 
energy functions, experimental database statistics, experimentally-derived constraints or 
combinations thereof. Unless these target functions can be designed so that the native is a 
guaranteed global minimum (which appears to be possible only in cases where a significant 
number of experimentally-derived constraints is used [10, 11]), the relevance of a global 
minimum structure is not clear. Moreover, due to the complexity of even small proteins, 
and the corresponding complexity of the resulting target functions, there is no objective 
means of determining whether a global minimum has, in fact, been reached. As a result, 
we must assume some uncertainty in the accuracy of the target function as well as in our 
ability to minimize this function. 

For the above reasons, criteria used to judge the performance of a global optimization 
algorithm in the context of protein tertiary structure prediction may differ from criteria used 
in other contexts. Clearly, the ability to reach the approximate global minimum in energy 
is desirable, but it may not be sufficient if the uncertainties in the target function are on the 
order ofthe energy differences between competitive regions of phase space. Moreover, from 
the standpoint of low-resolution structure prediction, it is more important to sample as 
many low-energy regions as possible than it is to refine anyone region. For these reasons, 
the following criteria form the basis for comparing the two algorithms considered in the 
present work: 

• Energy of the lowest-energy structure; 

• Diversity of low-energy structures; 

• Energetic rank of native-like structures relative to the lowest energy structure. 

In this paper we directly compare two global minimization algorithms that, given the above 
criteria, have performed well in earlier studies. The first is a branch and bound (BB) 
algorithm [6, 11] that is based on the aBB algorithm developed by Floudas and coworkers 
[5, 2]. The second is a Monte Carlo plus minimization (MCM) algorithm that follows the 
general framework ofLi and Scheraga [8]. Both algorithms have been used extensively in our 
group and have been modified as needed for tertiary structure prediction using a reduced 
protein model with fixed secondary structure. Conclusions drawn from the present work 
only reHect our implementation and adaptation of these algorithms and not the original 
algorithms. 
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2 Methods 

As the focus of this paper is on the results of the global minimization methods, we will only 
briefly outline the model, potential function, and minimization algorithms. More detailed 
descriptions of all aspects of the calculations can be found in our earlier publications [6, 7]. 

2.1 Protein Model and Target Function 

The protein model represents all of the backbone atoms explicitly (using ideal geometries), 
but models the side chain as a single center, located at the {3-carbon position. The bond 
lengths and bond angles of the model are constrained at ideal values, so the variables in the 
simulation are the backbone torsional angles. Backbone torsions in the (fixed) secondary 
structure elements are constrained at values fitted to reproduce the actual native secondary 
structure. Nand C-terminalloops or random coil regions are omitted. 

The potential function is composed of a sum of terms: 

E = Ehyd + E vdw + E ov1p + Ebackground (1) 

All four of these terms are expressed in the form of residue-residue pair interactions. 
Ehyd is based on the statistical potential of SippI and coworkers [4] and is a linear function 
of the Cf3 - Cf3 distance. Evdw is a sum of four individual pair terms, involving both the 
a and (3 carbons on the two interacting residues. The term is parameterized by evaluating 
molecular mechanics van der Waals energies based on protein structures in the PDB [1, 3]. 
E ov1p models excluded volume constraints, as determined by a database survey of minimum 
Co. - Coo Co. - Cf3, and Cf3 - Cf3 distances. Ebackground is an attractive function proposed as 
part of the SippI model, which is necessary to model the observed compactness of globular 
proteins. 

2.2 Global Minimization 

2.2.1 Overview 

The two algorithms considered in this study employ very different search strategies. In 
the case of BB, the target function is augmented such that local minima are reduced (or 
removed, in the case of aBB), allowing the global minimum to be located. In our implemen­
tation, we are not guaranteed to find the global minimum, as we have chosen parameters 
such that complex problems remain tractable. In the interest of increasing diversity, the 
converged minima are "filled in" so higher-energy minima can be located. MCM, on the 
other hand, samples local minima of the original target function, so diversity is achieved by 
a stochastic sampling scheme. 

2.2.2 The Branch and Bound Algorithm 

The BB algorithm [6, 11 ],proceeds by bisecting regions of conformational space in the order 
prescribed by a lower bounding function L associated with each sub-region. The lower 
bound is determined by locally minimizing L. L is represented by a linear combination of 
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the original target function T and a quadratic function S: 

L =T+S, (2) 

where 

N 

S = L(¥i(Ai - xil(Bi - Xi), (3) 
i=l 

In the above equation, Xi represents a spatial coordinate, Ai and Bi are the upper and 
lower bounds, respectively, on Xi, within a given sub-region, and (¥i is the weight of S with 
respect to T. As long as the (¥i are large enough, L is guaranteed to be convex in the sub­
region; the associated minima of L thus constitute a lower bound to T within the sub-region. 
An upper bound U on T is similarly given by a local minimum of T in the sub-region. As 
the bounds are subdivided, the size of S becomes smaller, and L approaches the original 
function T. Based on this property, the lower bound can be shown to converge on the 
upper bound at the global minimum [2J. In the present work, the bounds are subdivided 
symmetrically, and the initial bound on each loop dihedral angle is [-n,nJ. 

Convergence is achieved when the difference between Land U is less than a cutoff value 
(10 = 25 energy units, in all cases). The bounds containing the converged structure are 
discarded at this point, and the search for a new converged structure continues, as before, 
within the remaining bounds. In our implementation, we have added a diversification 
function Ediv, which penalizes structures similar to structures that have already converged. 
This function is simply a Gaussian-shaped penalty function. For a given structure j, Ediv 

is given by 
. N conv 2 

EJ - H '" -WRi div - L... e J (4) 
i=l 

Where Hand Ware the height and width of the Gaussian (in the results show here 
H=400 and w=0.5A-2); Nconv is the number of converged solutions, Ri is the RMSD 
(Root Mean Square Deviation) between all CCt - CCt distances in the structures i and j. 

(5) 

where 

(6) 

and N res is the number of residues in the protein. 
We have relaxed the requirement that L be convex. In practice, this requirement would 

involve making the parameter (¥i so large that many subspaces would be selected for subdi­
vision and local minimization purely on the basis of size. If this were to occur, the algorithm 
would not converge in a reasonable time due to the size of the initial conformational space 
and the subsequent need for numerous local minimizations. 

The BB algorithm, as described above, would continue to search for new structures as 
long as some subset of the original domain space remained. In practice we terminated the 
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search when no new structures with low energies were produced since the BB algorithm 
tends to locate low energy structures first. 

2.2.3 The Monte Carlo Plus Minimization Algorithm 

The MCM algorithm represents a modified version of that proposed by Li and Scheraga [8] 
over a decade ago. The original implementation can be described as a method that attempts 
to sample the space of all discrete minima available to the system. This is accomplished by 
following an MC move with local minimization. Our method, on the other hand, relies on an 
estimation of the minimum energies of conformations by a progressive minimization scheme 
[7]. In this scheme the number of local minimization steps is slowly annealed in with the 
temperature. Partial minimization increases the possibility of making an intelligent, and 
hence accepted, MCM move. This is because even incomplete local minimizations sample 
a continuum of geometries rather than a single point in phase space as in traditional MC. 
Moreover, the time spent on MCM moves early in the simulation is much less than in 
later moves, thereby allowing a vast amount of phase space to be searched in a reasonable 
amount of time. To maintain structural diversity, in our opinion a crucial requirement of 
any tertiary structure prediction algorithm, a reasonably sized ensemble of structures is 
refined simultaneously. 

The actual steps in the MCM algorithm are as follows: 
1. Initialization: Read in the control parameters for the simulation. Specifically, the 

maximum number of iterations, the initial temperature (final temperatures are always zero) 
and minimum and maximum number of steps taken in the conjugate gradient based mini­
mization are used to calculate increments and decrements for the two main control param­
eters, temperature and number of minimization steps. In addition, ensemble size, diversity 
parameters and communication-related parameters are initialized. All simulations start 
from extended structures in which the backbone dihedral angles of loops are set to zero. 

2. From the current ensemble, pick a structure at random .. In the parallel implementa­
tion every node maintains its own ensemble of structures but communicates with the other 
nodes on a regular basis. 

3. Pick a loop angle ofthe current structure at random and change it to a random value 
from the interval [-11", 11"]. 

4. Locally minimize the new structure by conjugate gradient based minimization with 
the backbone dihedral angles of loop residues as optimization variables. We do not attempt 
to locate a real minimum in this step (at least not in the initial stages of the simulation) 
and therefore limit the number of minimization steps depending on the current iteration 
number. 

5. Compute the energy difference of the structures before the random change in the 
selected dihedral angles and after the minimization. Structures with lower final energies 
are always accepted, whereas structures with higher final energies are accepted or rejected 
based on the outcome of a standard Boltzmann transition probability test. Energies and 
dihedral angles of accepted structures are recorded and the current ensemble is updated. 

6. After a given number of MCM cycles a processing node communicates with all other 
nodes. The current ensemble is sorted by energy and the top m structures are sent to 
all other nodes in a non-blocking fashion. The receiving nodes accept structures if both 
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Table 1: Protein Test Set 

Residues degrees of freedom a-helices ,B-strands 
CC5 76 70 4 0 
GB1 54 38 1 4 
GDM 149 36 8 0 
MBD 147 52 8 0 

their energies are lower than the highest energy in the current local ensemble and their 
RMS deviation from all other structures is larger than a predetermined cutoff (the diversity 
parameter). The highest-energy structures in the ensemble are replaced by the accepted 
structures. 

7. Increment the maximum number of minimization steps and decrement the artificial 
simulation 'temperature' using the values calculated in step 1. 

8. Return to step 2 unless the maximum number of iterations has been reached in which 
case termination is initiated 

2.3 Clustering 

In order to assess the diversity of the simulations, the resulting structures were clustered 
by structural similarity [9]. The definition of a cluster is a group of structures for which 
the average backbone RMSD between all members, is below a cutoff value. In all cases, a 
cutoff value of 5A was used. 

3 Results 

In this comparative study we focus on only four systems, the proteins GBl, CC5, MBD 
and GDM (Table I). While both algorithms have been tested on larger and more diverse 
data sets, the proteins under study here should present an overview of the results to be 
expected from both approaches. All calculations make use of exactly the same potential 
energy function parameters and key software components (i.e. the same local minimization 
code), which allows us to rigorously compare the performance of the two approaches. 

Figures 1-4 show plots of backbone Cartesian coordinate RMSD from the crystal struc­
ture versus energy for the low energy clusters obtained from BB and MCM calculations 
for the four systems (Clusters are represented by their lowest-energy member). The energy 
scales are identical and can be compared directly. Branch and Bound results represent a 
concatenation of several serial runs with different a-parameters and subdivision schemes. 
All MCM calculations were carried out on 4 to 16 workstation nodes and used identical 
Monte Carlo control parameters. 

Tables II-IV summarize the performance of the two algorithms. Table II lists the lowest 
energy found by each method for each of the four proteins. Table III shows the energy below 
which 50 clusters were found. Finally, a summary of the ranks of native like structures 
relative to the lowest energy cluster is presented in Table IV. Ranks are given both for 
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Figure 1: Low-energy CC5 clusters resulting from BB (red) and MCM (black) are repre­
sented by their energy and RMSD from the native. 
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Figure 2: Low-energy GBI clusters resulting from BB (red) and MCM (black) are repre­
sented by their energy and RMSD from the native. 
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Figure 3: Low-energy GDM clusters resulting from BB (red) and MCM (black) are repre­
sented by their energy and RMSD from the native. 
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Figure 4: Low-energy MBD clusters resulting from BB (red) and MOM (black) are repre­
sented by their energy and RMSD from the native. 
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Table 2: Lowest Energy Found 

CC5 
GB1 
GDM 
MBD 

BB MCM 
-1374 -1445 
-1452 -1527 
-85 -271 

-3222 -3545 

67 

Table 3: Diversity of Low-Energy Clusters: Diversity is measured by the energy below 
which 50 clusters (defined by a 5 Acutoff in RMSD) were found 

BB MCM 
CC5 -1087 -1288 
GB1 -1298 -1412 
GDM 304 -1 
MBD -2750 -3204 

clusters with an RMSD below 6A and for clusters with an RMSD below 7 A. 
While the actual CPU time required for each run is not the focus of this paper, it 

might be important to note that in general all BB runs were run until no more low energy 
structures were produced-no arbitrary CPU time limit was employed. The duration of the 
MCM runs on the other hand is predetermined by the MC control parameters. In this case 
10,000 MC steps per node were used - a number that appears to provide reliable results 
across a wide range of systems. In general, the BB algorithm used 2-5 times more CPU 
time than the MCM algorithm. The CPU times correlate with the number of function and 
gradient evaluations. We have monitered the number of function and gradient evaluations 
for calculations carried out on the protein GBl. BB requires approximately 3.7 x 107 

function and 3.6 x 107 gradient evaluations to produce a structure at -1452 energy units, 

Table 4: Rank of Native-Like Clusters: Energetic Ranks (relative to the lowest-energy 
structure found) are shown for clusters with an RMSD from the native of less than 6 Aand 
less than 7 A, respectively. RMSD values refer to to the lowest energy structure of each 
cluster. If no cluster was found within the indicated RMSD, a double dash is shown. 

BB MCM 
<6A <7A <6A <7A 

CC5 78 78 
GB1 23 9 2 2 
GDM 1 5 5 
MBD 123 756 92 
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whereas MCM locates a structure at -1527 energy units after 1. 7 x 107 function and 1.6 x 107 

gradient evaluations. 

4 Discussion 

The proteins studied here range from 54 to 149 residues and possess 36 to 70 degrees of 
freedom. Previous studies have shown that the potential energy function can more or less 
accurately describe the energetics in these systems [7]. GDM and MBD belong to the 
same structural class but seem to present a qualitatively different challenge despite their 
similarity. We deliberately excluded larger all-beta proteins due to the fact that we are still 
working on additional potential energy terms that will hopefully render this structural class 
tractable. 

Both algorithms demonstrate their ability to generate low energy structures for the four 
systems studied here (in fact several hundred energy units below the locally minimized 
native structure). These absolute lowest energies produced in the simulation represent an 
unambiguous criterion for performance comparison of the two approaches. In all cases 
MCM locates structures with energies well below the BB results. Due to the fact that we 
use the same local minimization code no artifacts stemming from numerical instabilities 
have to be considered. Converged structures from BB runs are locally minimized without 
the diversification function to totally relax the structure whereas MCM structures are taken 
directly from the simulations. 

As mentioned above, our experience with the current target function indicates that a 
single-minded search for the absolute lowest energy structure for a given system is bound 
to fail. Deficiencies of the potential energy function require us to search the low energy 
regions as thoroughly as possible. In the cases of GB1 and GDM, for example, native 
like clusters are comparable in energy to non-native clusters. CC5 and MBD exhibit a 
radically different energy profile. Even though low-energy, native-like clusters exist, they 
are not competitive in energy. In those cases strategies that emphasize structural diversity 
during the simulation might stand a better chance of reliably locating even the energetically 
unfavorable but native-like regions. 

Taking the energy cutoff below which 50 distinct clusters were found, MCM seems to 
outperform BB in this respect too. While it is not straightforward to define a criterion that 
measures the diversity of a search, the number of clusters located appears to be a reasonable 
measure, especially when one considers the further use of the results obtained from the 
simulations. In our approach low-energy clusters are further refined by addition of sidechains 
followed by atomic-level simulations with high accuracy potential energy functions. While 
this work is in too early a stage to be considered a workable and reliable approach, we 
assume that the number of non-redundant, structurally distinct alternatives presented to 
the atomic level simulations can only improve the possibility of locating the most native-like 
structure, albeit at an increased computational cost. 

Since the energy functions were the same in each case, it is clear that BB either discarded 
bounds containing some of the structures located by MCM, or failed to identify these bounds 
as likely targets, and thus didn't explore them. We do not know the degree to which these 
two factors contribute to the lack of diversity. We do know, however, That the reduced 
number of clusters is not due to the clustering algorithm. Most of the converged structures 
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in BB are dissimilar, due to the diversity term; it is just that a large number of these 
structures are not competitive in energy. 

The ranks of the native like clusters are the most important descriptors of the simulation 
results. They determine the minimum number of structures required for further atomic-level 
detail calculations and therefore computational cost of this approach. With the exception 
of GDM Monte Carlo plus Minimization performs best in this respect. Improved structural 
diversity can obviously work against a method, if the number of non-native like clusters 
increases due to enhanced sampling of low energy, non-native regions. 

The protein CC5, due to its 17-residue loop, presents a case where the low energy region 
might possibly be very ill-defined. BB seems to be unable to adequately sample the native­
like region around -1250 energy units, whereas MCM locates this region despite the fact that 
the lowest-energy structure is about another 200 units lower. The case of MBD is similar but 
not quite as dramatic. BB locates more or less native-like structures with reasonable ranks 
although the final results cannot quite compete with the MCM results. GB1 and GDM 
are handled well by both methods, and ignoring the absolute energy difference between the 
results would most likely yield similar results in atomic-level simulation. 

The results in this study are consistent with differences in the BB and MCM algorithms. 
While BB focuses on finding the global minimum, and must be in a sense tricked into search­
ing higher-energy regions of phase space through the use of the diversification function, the 
MCM trajectories naturally pass through many high-energy minima. From this point of 
view, we might expect that if Ediv were removed in BB, the algorithm would be able to 
locate lower energies, but at the expense of finding fewer low-energy clusters. However, 
when Ediv was removed in the cases of CC5 and GDM, the minimum energies were not 
significantly different than those shown in Table II. The diversity of low-energy clusters 
was, as expected, significantly compromised. This suggests that other modifications to the 
original aBB algorithm, such as reducing the size of the ai parameters, is responsible for 
the higher energy minima. Presently, however, reducing the C\!i is the most straight-forward 
way of reducing the CPU time for convergence. 

5 Conclusion 

We have presented, for the first time, a side-by-side comparison of our implementation of 
BB and MCM, two algorithms that have proven useful in our earlier studies of tertiary 
structure prediction. Although we have not explored every possible elaboration within the 
BB or MCM framework, we have attempted to optimize each program for the task at hand. 
For example, we have also implemented BB in distance space [6, 11] while this version 
appears to work well in cases where distance restraints are included in the target .function, 
it did not out-perform BB in angle space with the target function considered here (i.e., 
without distance restraints). The overall conclusion is that our implementation of MCM is 
superior to that of BB in terms of locating diverse, low-energy structures (including ones 
that are native-like). As expected, when the diversification term Ediv is removed in the 
BB target function, the sampling is much narrower. However, we can not attribute the 
higher minimum energies in the case of BB to E div since removing Ediv, did not result in 
significantly different minimum energies. 

We have also attempted to implement some of ideas inherent in MCM within the BB 
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framework. For example, the use of multiple partial local minimizations rather than a single 
minimization was used in order to estimate the lower bound within each subspace. Following 
in the spirit of MCM, the number of minimization steps was increased as the bounds were 
subdivided. Although these modification improved the sampling in the initial stages of the 
simulation, they also slowed the time to convergence. In our implementation, we did not 
observe improvement in the resulting converged structures with respect to the lowest energy 
found, diversity of low-energy structures, or the rank of the native-like structure. 

The magnitude of a needed to render L convex (and thus to guarantee a global mini­
mum) is orders of magnitude larger than what we were able to use in simulations, due to 
CPU time limitations. It is perhaps surprising that we did not observe systematic improve­
ment in the minimum BB energies by increasing the a parameters within acceptable ranges 
(as deemed by the CPU time). The question of whether other modifications in BB, such as 
using a different lower bound function, will improve performance has yet to be answered. 
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Abstract 

We have performed Monte Carlo simulations based on simulated annealing and mul­
ticanonical algorithm to predict the three-dimensional structures of two oligopeptides, 
C-peptide of ribonuclease A and the fragment BPTI(16-36) of bovine pancreatic trypsin 
inhibitor. The lowest-energy conformations obtained have a-helix structure and fJ-sheet 
structure for C-peptide and BPTI(16-36), respectively, in accord with experimental im­
plications. 

Keywords: Simulated annealing, multicanonical algorithm, generalized-ensemble al­
gorithm, a-helix, fJ-sheet. 

1 Introduction 

Proteins are the most complicated molecules that exist in nature. There exist astronomically 
large number of states of energy local minima in the protein systems [1]. Protein folding 
problem is thus one of the most challenging optimization problems in theoretical molecular 
science. Many efforts have been devoted to it without complete success since Anfinsen's 
experiments, which showed that the three-dimensional structure (tertiary structure) of a 
protein is determined solely by its amino-acid sequence information [2]. Simulations by 
conventional methods such as Monte Carlo or molecular dynamics algorithms in canonical 
ensemble will necessarily get trapped in one of many local-minimum states in the energy 
function. 



74 Y. OKAMOTO 

Main chains of proteins have two major structural elements (secondary structure), a­

helix and ,a-sheet. On the average about 35 %, 15 %, 25 %, and 25 % of the residues 
are in a-helix, ,a-sheet, reverse turn, and coil state, respectively. Since a-helix and ,a-sheet 
among the above four have solid, stable structures, it is of great importance to predict which 
residues are in these structures. Protein database from X-ray and NMR experiments have 
often been used to predict the secondary structures of proteins [3], but the probability of 
success in prediction is about 70 %. 

In this article we discuss the results of our secondary and tertiary structure predictions 
of oligopeptide systems based on Monte Carlo simulated annealing [4] and multicanonical 
algorithm [5]. C-peptide of ribonuclease A and the peptide fragment of bovine pancreatic 
trypsin inhibitor, BPTI(16-36), are studied. By experiments, the former is known to form a­

helix structure and the latter ,a-sheet structure, which are the two basic building elements of 
protein structures. Starting simulations from randomly-generated initial conformations, we 
show that a-helix and ,a-sheet structures (two of the basic structural elements of proteins) 
can be obtained as the global-minimum states for C-peptide and BPTI(16-36), respectively, 
in agreement with experiments. 

The outline of the article is as follows. In section 2 we summarize the energy functions 
of protein systems that we used in our simulations. In section 3 we briefly review our 
simulation methods. In section 4 we present the results of our protein folding simulations. 
Section 5 is devoted to conclusions. 

2 Energy Functions of Protein Systems 

The energy function for the protein systems is given by the sum of two terms: the confor­
mational energy Ep for the protein molecule itself and the solvation free energy Es for the 
interaction of protein with the surrounding solvent. The conformational energy function Ep 
(in kcal/mol) for the protein molecule that we used is one of the standard ones. Namely, 
it is given by the sum of the electrostatic term Ee, 12-6 Lennard-Jones term ELJ, and 
hydrogen-bond term EHB for all pairs of atoms in the molecule together with the torsion 
term Etor for all torsion angles: 

Ep 

Ee 

Etor = 

(1) 

Here, Tij is the distance (in A) between atoms i and j, E is the dielectric constant, and 
Xi is the torsion angle for the chemical bond i. Each atom is expressed by a point at its 
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center of mass, and the partial charge qi (in units of electronic charges) is assumed to be 
concentrated at that point. The factor 332 in Eo is a constant to express energy in units 
of kcal/mol. These parameters in the energy function as well as the molecular geometry 
were adopted from ECEPP /2 [6]. The computer code KONF90 [7] was used for all the 
Monte Carlo simulations. For gas phase simulations, we set the dielectric constant E equal 
to 2. The peptide-bond dihedral angles w were fixed at their usual experimental value 1800 

for simplicity. So, the remaining dihedral angles ¢ and 'ljJ in the main chain and X in the 
side chains constitute the variables to be updated in the simulations. One Monte Carlo 
(MC) sweep consists of updating all these angles once with Metropolis evaluation [8] for 
each update. 

One of the simplest ways to represent solvent effects is by the sigmoidal, distance­
dependent dielectric function [9]. The explicit form of the function we used is given by 
[10] 

D - 2 [ ] E(r) = D - -2- (sr)2 + 2sr + 2 e-sr , (2) 

which is a slight modification ofthe one used in Ref. [11]. Here, we use s = 0.3 and D = 78. 
It approaches 2 (the value inside a protein) in the limit the distance r going to zero and 
78 (the value for bulk water) in the limit r going to infinity. The distance-dependent 
dielectric function is simple and also computationally only slightly more demanding than 
the gas-phase case. 

Another commonly used term that represents solvent contributions more accurately than 
the distance-dependent dielectric function is the term proportional to the solvent-accessible 
surface area of protein molecule. The solvation free energy Es in this approximation is 
given by 

(3) 

where Ai is the solvent-accessible surface area of i-th functional group, and ai is the pro­
portionality constant. There are several versions of the set of the proportionality constants 
and functional groups. Five parameter sets were compared for the systems of peptides and 
a small protein, and we found that the parameter sets of Refs. [12, 13] are valid ones [14]. 

3 Simulation Methods 

Once the appropriate energy function of the protein system is given, we have to employ a 
simulation method that does not get trapped in states of energy local minima. We have been 
advocating the uses of Monte Carlo simulated annealing [4] and multicanonical algorithm 
[5] (for reviews, see Refs. [15, 16]). 

3.1 Simulated annealing 

In the regular canonical ensemble with a given inverse temperature (3 = l/kBT, the proba­
bility weight of each state with energy E is given by the Boltzmann factor: 

WB(E) = exp(-(3E) . (4) 
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The probability distribution in energy is then given by 

PB(T,E) ex n(E)WB(E) , (5) 

where n(E) is the number of states with energy E. Since the number of states n(E) is a 
rapidly increasing function of E and the Boltzmann factor WB(E) decreases exponentially 
with E, the probability distribution PB(T, E) has a bell-like shape in general. When the 
temperature is high, fJ is small, and WB(E) decreases slowly with E. So, PB(T, E) has a 
wide bell-shape. On the other hand, at low temperature fJ is large, and WB(E) decreases 
rapidly with E. So, PB (T, E) has a narrow bell-shape (and in the limit T ---+ 0 K, PB (T, E) ex 
8(E-Ecs), where Ecs is the global-minimum energy). ~IO\yever, it is very difficult to obtain 
canonical distributions at low temperatures with conventional simulation methods. This is 
because the thermal fluctuations at low temperatures are small and the simulation will 
certainly get trapped in states of energy local minima. 

Simulated annealing [4] is based on the process of crystal making. Namely, by start­
ing a simulation at a sufficiently high temperature (much above the melting temperatue), 
one lowers the temperature gradually during the simulation until it reaches the global­
minimum-energy state (crystal). If the rate of temperature decrease is sufficiently slow so 
that thermal equilibrium may be maintained throughout the simulation, only the state with 
the global energy minimum is obtained (when the final temperature is 0 K). However, if 
the temperature decrease is rapid (quenching), the simulation will get trapped in a state of 
energy local minimum in the vicinity of the initial state. 

Simulated annealing was first successfully used to predict the global-minimum-energy 
conformations of polypeptides and proteins [17]-[19] and to refine protein structures from x­
ray and NMR data [20, 21] almost a decade ago. Since then this method has been extensively 
used in the protein folding and structure refinement problems (for reviews, see Ref. [22, 15]). 
Our group has been testing the effectiveness of the method mainly in oligopeptide systems. 
The procedure of our approach is as follows. While the initial conformations in the protein 
simulations are usually taken from the structures inferred by the experiments, our initial 
conformations are randomly generated. Each Monte Carlo sweep updates every dihedral 
angle (in both the main chain and side chains) once. Our annealing schedule is as follows: 
The temperature is lowered exponentially from TI = 1000 K to TF = 250 K [7]. The 
temperature for the n-th MC sweep is given by [7] 

(6) 

where'Y is a constant which is determined by TI, TF, and the total number of MC sweeps 
of the run. For the results presented below, each run consisted of 105 MC sweeps, and we 
made 20 runs from randomly-generated initial conformations. 

3.2 Multicanonical algorithm 

While a regular Monte Carlo method generates states according to the canonical distribu­
tion, generalized-ensemble algorithms [23] generate states so that a one-dimensional random 
walk in a pre-chosen physical quantity (for instance, the energy) is realized. Hence, any 
energy barrier can be overcome, and one can avoid getting trapped in states of energy local 
minima. 
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Multicanonical algorithm [5] is one of the most well-known such methods. In the "mul­
ticanonical ensemble" the probability distribution of energy is defined as follows: 

Pmu(E) ex n(E)Wmu(E) == constant. (7) 

The multicanonical weight factor then satisfies 

(8) 

Since this weight factor is not a priori known, one has to determine it for each system by 
a few iterations of trial Monte Carlo simulations. See Refs. [24] and [25] for details of the 
method to determine the multicanonical weight factor Wmu(E). Once this weight factor is 
obtained, one performs a long production simulation run. The advantage of multicanonical 
algorithms lies in the fact that from this single productin run, one can obtain not only 
the global-minimum-energy state but also the canonical distribution PB(T, E) = n(E)e-(3E 
for wide range of temperatures T = 1/kB f3. The latter is accomplished by the use of the 
reweighting techniques [26]. Namely, PB(T, E) can be expressed in terms of the predeter­
mined weight Wmu(E) and the obtained distribution Pmu(E) as follows: 

PB(T,E) = Pmu(E) W':;;:~(E) C(3E . J dE' Pmu(E') W':;;:~(E') e-(3E' 
(9) 

The expectation value of a physical quantity A at temperature T is then given by 

< A >T = J dE A(E)PB(T,E) . (10) 

The application of multicanonical algorithm and its variants to the prediction of protein 
tertiary structures was proposed several years ago. [27, 28] Since then there have been various 
applications of the method in the protein folding problem (for reviews, see Ref. [15, 16]). 
A formulation of multicanonical algorithm for the molecular dynamics method was also 
developed [29]-[31]. 

For the results of multicanonical simulations presented below, we first determined the 
multicanonical weight factors by iterations of short preliminary runs. We then made one 
long production run of 1,000,000 MC sweeps from a random initial conformation for each 
system. 

4 Results 

We now present the results of our simulations based on Monte Carlo simulated annealing 
and multicanonical algorithm. All the simulations were started from randomly-generated 
conformations. For the results presented below, CPU time spent for one MC sweep was 
roughly 0.6 sec for C-peptide with the distance-dependent dielectric function and 15 sec for 
BPTI(16-36) with the solvent-accessible surface area term on SGI Origin 200. 

The first example is the C-peptide, residues 1-13 of ribonuclease A. It is known from the 
X-ray diffraction data ofthe whole enzyme that the segment from Ala-4 to Gln-ll exhibits a 
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nearly 3-turn a-helix [32). It was also found by CD [33) and NMR [34) experiments that the 
isolated C-peptide also has significant a-helix formation in aqueous solution at temperatures 
near 0 cC. Furthermore, the CD experiments of the isolated C-peptide suggested that the 
side-chain charges of residues Glu-2- and His-12+ play an important role in the stability of 
the a-helix, while the removal of the side-chain charge of Glu-9- enhances helix formation 
[33). 

The NMR experiment [34) of the isolated C-peptide further observed the formation of 
the characteristic salt bridge between Glu-2- and Arg-lO+ that exists in the native structure 
determined by the X-ray experiments of the whole protein [32). 

In order to test whether our simulations can reproduce these experimental results, we 
first made 20 Monte Carlo simulated annealing runs of 10,000 MC sweeps with five C­
peptide analogues [7). The amino-acid sequences of four of the analogues are listed in Table 
1. The simulations were performed in gas phase (E = 2). The temperature was decreased 
exponentially from 1000 K to 250 K for each run. 

Table 1: Amino-acid sequences ofthe C-peptide analogues studieda . 

Peptide I II III IV 
Sequence 
1 Lys+ 
2 GIu- Glu 
3 Thr 
4 Ala 
5 Ala 
6 Ala 
7 Lys+ 
8 Phe 
9 GIu- GIu Leu 
10 Arg+ 
11 GIn 
12 His+ His 
13 Met 

a Entries for Peptides II-IV indicate that the corresponding residues in Peptide I are sub­
stituted by those with neutral side chain (and empty entries imply that no change from 
Peptide I is made for the corresponding residue). 

In Table 2 we summarize the helix formation of all the runs [7). Here, the numbers of 
conformations with segments of helix length i ~ 3 are given. l.From this table one sees 
that a-helix was hardly formed for Peptide IV where GIu-2 and His-12 are neutral, while 
many helical conformations were obtained for the other peptides. This is in accord with the 
experimental results that the charges of Glu-2- and His-12+ are necessary for the a-helix 
stability [33). Peptides II and III had conformations with the longest a-helix (£ = 7). These 
conformations turned out to have the lowest energy in 20 simulation runs for each peptide. 
They both exhibit an a-helix from Ala-5 to GIn-l1, while the structure from the X-ray data 
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has an a-helix from Ala-4 to Gln-l1 [7]. 

Table 2: a-Helix formation in C-peptide analogues from 20 Monte Carlo simulated annealing 
runs. 

Peptide I II III IV 
£ 
3 4 2 3 1 
4 3 2 3 0 
5 1 1 0 0 
6 0 1 0 0 
7 0 1 1 0 

Total 8/20 7/20 7/20 1/20 

The agreement of the backbone structures is conspicuous, but the side-chain structures 
are not quite similar. In particular, while the X-ray [32] and NMR [34] experiments imply 
the formation of the salt bridge between the side chains of Glu-2- and Arg-lO+, the lowest­
energy conformations of Peptides II and III obtained from the simulations do not have this 
salt bridge. 

The disagreement is presumably caused by the lack of solvent in our simulations. We 
have therefore made multicanonical simulations of 1,000,000 MC sweeps for Peptide II with 
the inclusion of solvent effects by the distance-dependent dielectric function (see Eq. (2)) 
[35,36]. 

As emphasized above, the results from a single simulation run in multicanonical ensem­
ble can be used to calculate various thermodynamic quantities as functions of temperature 
for a wide range of temperatures (see Eqs. (9) and (10)). In Figure 1 we plot the aver­
age total potential energy and each component (in Eq. (1)) as a function of temperature. 
Among the component terms both electrostatic and Lennard-Jones terms vary most with 
the temperature. This is contrasted with our previous works on peptides with only electri­
cally neutral side chains (Met-enkephalin [25] and homo-oligomers [37]), where the changes 
of the Lennard-Jones term dominate that of the total potential energy. Hence, we under­
stand that when some of the side chains are charged in the peptide, the contributions from 
the electrostatic interactions become a key factor in studying the peptide conformations 
(together with the Lennard-Jones term that is common in any peptide). 

We now examine how much a-helix formation was observed in the simulations. In 
Figure 2 we display the average helicity < n >T /N (N = 13) (where n is the total number 
of helical residues in the conformation) as a function of temperature for the three peptides. 
We observe the formation of a-helices at low temperatures and the helix-coil transitions 
around T = 500 - 600 K. 

The lowest-energy conformation obtained has an a-helix from Ala-4 to Gln-ll and does 
have the characteristic salt bridge between Glu-2- and Arg-10+. This conformation and the 
corresponding X-ray structure are compared in Figure 3 (the lowest-energy conformation 
obtained in gas phase is also shown for completeness). The figures were created with 
Molscript [38] and Raster3D [39]. The positions of the a-helix are identical among the 
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Figure 1: Average potential energies < E >T (kcal/mol) of C-peptide (Peptide II) as a 
function of temperature T (K). The results were obtained from a single multicanonical 
simulation of 1,000,000 MC sweeps. 
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Figure 2: Average helicity < n >T / N of C-peptide (Peptite II) as a function of temperature 
T (K). The results were obtained from a single multicanonical simulation of 1,000,000 MC 
sweeps. 
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three structures but side-chain structures vary. The similarity between the X-ray structure 
and the lowest-energy conformation in aqueous solution is particularly remarkable. The 
root-mean-square deviations between the two are 1.4 A and 2.7 A for non-hydrogen atoms 
in the backbone and in the whole molecule, respectively. 

We have also studied ,B-sheet formations by Monte Carlo simulated annealing [40]-[42]. 
The peptide that we studied is the fragment corresponding to residues 16-36 of bovine pan­
creatic trypsin inhibitor (BPTI) and has the amino-acid sequence: Ala 16 -Arg+ -Ile-Ile-Arg+­
Tyr-Phe-Tyr-Asn-Ala-Lys+ -Ala-Gly-Leu-Cys-Gln-Thr-Phe-Val-Tyr-Gly36. An antiparallel 
,B-sheet structure in residues 18-35 is observed in X-ray crystallographic data of the whole 
protein [43]. 

We first performed 20 Monte Carlo simulated annealing runs of 10,000 MC sweeps in 
gas phase (10 = 2) with the same protocol as in the previous simulations [40]. Namely, the 
temperature was decreased exponentially from 1000 K to 250 K for each run. The most 
notable feature of the obtained results is that a-helices, which were the dominant motif in 
the previous simulations of C-peptide, are absent in the present simulations. Most of the 
conformations obtained consist of stretched strands and a 'turn' which connects them. The 
lowest-energy structure indeed exhibts an antiparallel ,B-sheet [40]. 

We next made 10 Monte Carlo simulated annealing runs of 100,000 MC sweeps for 
BPTI(16-36) with two dielectric functions: 10 = 2 and the sigmoidal, distance-dependent 
dielectric function of Eq. (2) [41]. The results with 10 = 2 reproduced our previous results: 
Most of the obtained conformations have ,B-strand structures and no extended a-helix is ob­
served. Those with the sigmoidal dielectric function, on the other hand, indicated formation 
of a-helices. One of the low-energy conformations, for instance, exhibited about a four-turn 
a-helix from Ala-16 to Gly-28 [41]. This presents an example in which a peptide with the 
same amino-acid sequence can form both a-helix and ,B-sheet structures, depending on its 
electrostatic environment. 

NMR expriments suggest that this peptide actually forms a ,B-sheet structure [44]. The 
representation of solvent by the sigmoidal dielectric function, which gave a-helices instead, 
is therefore not sufficient. Hence, the same peptide fragment, BPTI(16-36), was further 
studied in aqueous solution that is represented by solvent-accessible surface area of Eq. (3) 
by Monte Carlo simulated annealing [42]. The parameters of Ref. [12] were used for the 
solvent-accessible surface area term. Twenty simulation runs of 100,000 MC sweeps were 
made. 

As shown in Figure 4, the lowest-energy conformation obtained in solvent (structure S) 
involves a small but distinctive ,B-hairpin structure with a ,B-turn and three intrachain hy­
drogen bonds connecting two short ,B-strands, whereas that obtained in gas phase (structure 
V) has a less conspicuous ,B-sheet structure with only one intrachain hydrogen bond and 
a turn (but not a ,B-turn). The characteristic intrachain hydrogen bonds for these ,B-sheet 
structures together with those for the native ,B-sheet structure are summarized in Table 3. 
In view of the number of intrachain hydrogen bonds, the solvation seems to stabilize the 
,B-sheet structure (structure S versus structure V). More detailed analysis on this point is 
given below when we examine the side-chain structures of these structures. 

While the existence of ,B-turn in structure S is seen in Figure 4, the type of the ,B-turn can 
be determined by the values of the dihedral angles at the turn. The dihedral angles (cp,'l/J) of 
Gly-28 and Leu-29 in structure S are (+76.6°,-126.1°) and (-95.1°,-4.3°), respectively. 
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(a) (b) 

(c) 

Figure 3: X-ray structure (32) of C-peptide (a) and the lowest-energy conformations of 
C-peptide (Peptide II) obtained from a multicanonical Monte Carlo run of 1,000,000 MC 
sweeps in gas phase (€ = 2) (b) and in aqueous solution represented by the distance­
dependent dielectric function (c). The figures were created with Molscript [38] and Raster3D 
(39). 
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(a) (b) 

(c) 

Figure 4: The X-ray structure (structure X) [43] of BPTI(16-36) (a) and the lowest-energy 
conformations of BPTI(16-36) obtained from Monte Carlo simulated annealing runs of 
100,000 MC sweeps in gas phase with f = 2 (structure V) (b) and in aqueous solution 
represented by the term proportional to the solvent-accessible surface area (structure S) 
(c). The figures were created with Molscript [38]. 
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Table 3: Intrachain hydrogen bonds of BPTI(16-36} found in structures X, V, and S. 

Structure Amino-acid Residues 
Proton Donor (NH) Proton Acceptor (CO) 

X He-18 Tyr-35 
Tyr-35 He-18 
Arg-20 Phe-33 
Phe-33 Arg-20 
Phe-22 Gln-3I 
Asn-24 Leu-29 
Gly-28 Asn-24 
Ala-27 Asn-24 

V Phe-22 Tyr-35 
S Phe-33 Phe-22 

Ala-27 Cys-30 
Cys-30 Ala-27 

The reverse turn is thus classified as a typical type II' f3-turn. 
As is apparent from Figure 4 and Table 3, the lowest-energy structure of BPTI(16-36} 

in solvent (structure S) obtained by the present simulations is rather different from the one 
deduced from the X-ray diffraction experiments of the entire BPTI (structure X). However, 
this does not mean that our simulations are in failure. There is no reason to believe that 
the isolated peptide fragment should have the same structure as the corresponding segment 
in the whole protein molecule (if so, it should constitute a rather independent structural 
domain from the rest of the protein molecule, which is not the case here). In fact, recent 
NMR measurements of this peptide fragment have detected noticeable long-range NOE cross 
peaks. These include unambiguous correlations between CfJ-H of Ala-27 and NG:H of Cys-30 
and between NG:H of Tyr-23 and CfJ-H (and C'Y-H) of Gln-3I, supporting the existence of 
a reverse turn and the proximity of Phe-22 and Phe-33, respectively, in agreement with 
structure S. The hydrogen pairs that gave the NOE cross peaks and their corresponding 
distances in structures V, S, and X are listed in Table 4. Among the three structures, the 
remarkable agreement of structure S with the NMR experiment is obvious. The details of 
this NMR experiment will be presented elsewhere [44). 

Finally, we study the role of solvent in the f3-sheet formation. As shown in Figure 4, the 
lowest-energy conformation obtained from the simulations in gas phase (structure V) does 
not exhibit a conspicuous f3-sheet structure compared to that obtained in solvent (structure 
S). These structures together with the structure deduced from the X-ray crystallographic 
experiments (structure X) are again compared in Figure 5, but this time only the main 
chain and the charged side chains (Arg-17, Arg-20, and Lys-26) are shown. The figures 
were created with RasMol (45). One important difference between structures S (and X) 
and structure V is that the positively charged side chains are exposed to solvent in the 
former (namely, they point away from the main chain), while they are attracted to carbonyl 
oxygens (with negative partial charges) of the main chain in the latter. In particular, it is 
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Table 4: Long-range NOE correlations between pairs of residues of BPTI(16-36) detected 
by the NMR experiment [44] and the corresponding IH_IH distances calculated from the 
atomic coordinates of structures V, S, and X. 

NOE correlations detected Distance (A-B; A)a 
Residue [proton A] Residue [proton B] V S X 
Ile-19 [C'YH3] Tyr-21 (NaH] 5.0 3.3 5.9 
Ile-19 [COH3] Tyr-21 [NaH] 8.4 4.5 8.2 
Ile-19 [C'YH3] Tyr-21 (N°H] 6.9 4.6 5.9 
Ile-19 [COH3] Tyr-21 [N°H] 9.3 4.8 8.2 
Arg-20 [caH] Phe-22 [NaH] 6.2 5.0 5.7 
Tyr-21 [C°H] Tyr-23 [NaH] 7.9 4.8 7.3 
Phe-22 [NaH] Asn-24 [caH] 6.7 6.5 7.2 
Tyr-23 [NaH] GIn-31 [C'YH2] 8.3 6.2 7.2 
Tyr-23 [caH] Ala-25 [C,8H3] 8.5 5.3 6.4 
Asn-24 [NaH] Ala-25 [C,8H3] 5.8 4.5 5.4 
Ala-27 [caH] Cys-30 [NaH] 7.9 5.2 8.1 
Ala-27 [C,8H3] Cys-30 [NaH] 8.5 4.6 7.2 
Thr-32 [C,8H] Val-34 [NaH] 6.3 4.0 6.1 
Val-34 [caH] GIy-36 [NaH] 5.6 3.6 5.5 

a Note that the IH_IH distance which allows NOE cross peaks to be detectable is less than 
about 6 A at the present conditions of measurement and that only the distances in structure 
S are almost within this limit. 

clearly observed that in structure V the positively charged guanidino group of Arg-20 is at­
tracted to as many as five carbonyl oxygens of the main chain, which hinders the formation 
of the characteristic intrachain hydrogen bonds that connect a pair of ,B-strands in a ,B-sheet 
structure. Therefore, an important role of solvent on the ,B-sheet folding of BPTI(16-36) 
can be associated with its ability to extract the charged side chains from the interior of 
the molecule into solvent so that the formation of the intrachain hydrogen bonds between 
,B-strands is enhanced, thus stabilizing the ,B-sheet structure. 

5 Conclusions 

In this article, we have presented the results of simulated annealing and multicanonical 
Monte Carlo simulations applied to study the a-helix formation in C-peptide of ribonucle­
ase A and the ,B-sheet formation in the peptide fragment BPTI(16-36). The results were 
in good agreement with various implications of CD, NMR, and X-ray experiments. We 
demonstrated that the side-chain charges and solvent effects play important roles in the 
stabilities of both a-helix and ,B-sheet structures. It should be emphasized that the simula­
tions were performed from completely random initial conformations and that no structural 
information from experiments was used as input. 
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(a) 

Figure 5: Structures X, V, and S of BPTI(16-36) redrawn from Figure 4 (seen from slightly 
different angles). Only the main chain and charged side chains (Arg-17, Arg-20, and Lys-26) 
are shown. The figures were created with RasMol [45]. 
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Abstract 

For many years the emphasis in protein-folding simulations has been laid as to how to 
predict the three dimensional structure of proteins. Only recently has there be a shift in 
interest towards the the thermodynamics of folding. We show that generalized-ensemble 
techniques are well suited to study these questions for realistic protein models. 

Keywords: Generalized Ensembles, Monte Carlo Simulations, Thermodynamics of 
Protein Folding. 

1 Introduction 

A long standing goal of computational biochemistry is to understand folding of proteins 
solely from the amino-acid sequence information by means of computer simulations. For 
many years the emphasis in protein studies was on the structure prediction of proteins. 
Assuming that the native structure is thermodynamically stable, it is reasonable to identify 
the global-minimum conformation in the free energy at T ~ 300 K with the lowest potential 
energy conformation and to search for this conformation with powerful optimization tech­
niques. Both deterministic methods (for instance, the aBB algorithm [1]) and stochastic 
algorithms (like simulated annealing [2]) are employed. However, with the recognition of 
energy landscape theory and funnel concept there has been an increased interest in the 
thermodynamics of folding. This "new view" asserts that a full understanding of the fold­
ing process requires a global knowledge of the free energy landscape of the protein system 
[3, 4, 5]. To probe these new ideas by computer simulations requires to go beyond global 
optimization techniques: one has to measure thermodynamic quantities, i.e. to sample a 
set of configurations from a canonical ensemble and take an average of the chosen quantity 
over this ensemble. 
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Unfortunately, such sampling has been proven to be notoriously difficult for realistic pro­
tein models. Simulations based on canonical Monte Carlo or molecular dynamics techniques 
will at low temperatures get trapped in one of the multitude of local minima separated by 
high energy barriers. Hence, only small parts of configuration space are sampled and phys­
ical quantities cannot be calculated accurately. One successful approach to overcome this 
problem and to enhance sampling in protein folding simulations is to perform simulations 
in so-called generalized ensembles which are defined in such a way that the probability to 
cross an energy barrier does not decrease exponentially with barrier heights. The first ap­
plication of this approach to the protein folding problem can be found in Ref. [6], where a 
Monte Carlo technique was used. A formulation for the molecular dynamics method was 
also developed later [7, 8]. An overview on recent applications can be found in Ref. [9]. In 
the following we will present first a short review of the generalized-ensemble approach and 
demonstrate afterwards for two examples that the new approach allows indeed to study the 
thermodynamics of folding. 

2 Generalized-ensemble techniques 

A generalized-ensemble simulation is characterized by the condition that a Monte Carlo or 
molecular dynamics simulation shall lead to a uniform distribution of a pre-chosen physical 
quantity. Probably the earliest realization of this idea is umbrella sampling [10]. This 
idea was lately revived and a variety of new algorithms were developed whose usefulness 
for simulations of biological molecules has been increasingly recognized. Three prominent 
examples of these newer generalized-ensemble techniques are the multicanonical algorithm 
[11], 11k-sampling [12] and simulated tempering [13]. 

The underlying idea of all generalized-ensemble algorithms can be seen clearly for the 
example of the multicanonical algorithm [11]. Here, the weights w(E) are chosen such the 
distribution of energies 

P(E) ex: n(E)w(E) = const, (1) 

where n(E) is the spectral density. A free random walk in the energy space is performed 
which allows the simulation to escape from any local minimum, and even regions with small 
n(E) can be explored in detail. Similar, 11k-sampling [12] yields a uniform distribution 
in (micro canonical) entropy and simulated tempering [13] to an uniform distribution in 
temperature. We remark that there is no restriction of the approach to ensembles which 
lead to flat distributions in one variable. Extensions to higher number of variables are 
straight forward [14, 15]. In any case, from such a generalized-ensemble simulation one can 
calculate the thermodynamic average of any physical quantity A for a wide temperature 
range by the re-weighting technique [16]: 

<A>T 
! dx A(x) w-1(x) e-E(x)/kBT 

! dx w-1(x) e-E(x)/kBT 
(2) 

Here x stands for configurations, w(x) is the generalized-ensemble weight of configuration 
x and kB the Boltzmann constant. 
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However, unlike in the canonical ensemble, the weights are not a priori known for 
simulations in these ensembles. For instance, in the multicanonical algorithm wmu(E) ex 
n-1(E), and knowledge ofthe exact weights is equivalent to obtaining the density of states 
n(E), i.e., solving the system. Hence, one needs their estimators for a numerical simulation. 
The determination of the weight wmu(E) is usually based on an iterative procedure described 
in detail in Ref. [17]. In Figure 1 we display for the small peptide Met-enkephalin (see the 
following chapter) the micro canonical entropy 

S(E) = lnn(E) = -lnwmu(E) (3) 

as obtained by the aboved described iterative procedure. Alternative methods rely on 
preliminary simulated annealing runs [18] or exploit a mean field approximation of the 
protein model [19]. 
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Figure 1: Microcanonical entropy S(E) as a function of potential energy E. 

It is obvious that the performance of the algorithm depends on how good the estimates 
for the weight factors are. For instance, the optimal performance for the multicanonical 
algorithm will be so that the autocorrelation time increases with the square of the energy 
range to be covered in the simulation ( since a free random walk in energy is performed) 
while in a canonical simulation the autocorrelation time increases exponentially with sys­
tem size. Since one has to use estimates for the weights in a multicanonical simulation, 
the autocorrelation time will scale like:::::: EX with x > 2 instead of:::::: E2. However, the 



94 U. H. E. HANSMANN 

deviation is in general rather small. This is discussed in detail in Ref. [11] and was re­
cently demonstrated for homopolymers in Ref. [20]. A detailed comparison of the various 
generalized-ensemble methods and their performance can be found in Ref. [21]. 

Some attempts were made to construct generalized ensembles where the determination 
ofthe estimators is simple and straightforward or where the weights are even a priori known. 
One possibility is parallel tempering [22] which was first introduced to the protein folding 
problem in Ref. [23). More experience was gathered with the ensemble which was proposed 
in Ref. [24) and which is based on the following weight: 

(4) 

Here Eo is an estimator for the ground-state energy and nF is the number of degrees of 
freedom of the system. Obviously, the new wei~ht reduces in the low-energy region to 
the canonical Boltzmann weight exp( -f3E) for f3 ~-;,Eo) «1. On the other hand, high­
energy regions are no longer exponentially suppressed but only according to a power law, 
which enhances excursions to high-energy regions and therefore increases the probability 
to escape local minima. Note that this weight can be understood as a special case of the 
weights used in Tsallis generalized mechanics formalism [25] (the Tsallis parameter q is 
chosen as q = 1 + l/np). In contrast to other generalized-ensembles the weights of the new 
ensemble are explicitly given by Eq. 4. One only needs to find an estimator for the ground­
state energy Eo which was found to be much easier than the determination of weights for 
other generalized ensembles. 

3 Energy Landscape of Small peptides 

To demonstrate that the generalized-ensemble approach is indeed well-suited for investi­
gations of thermodynamics of folding, we first present results from a recent study on the 
energy landscape of a small peptide [26]. 

Our work was motivated by the "new view" of the protein folding which became in­
creasingly popular over the last few years. Its framework is provided by energy landscape 
theory and the funnel concept, which assert that a full understanding of the folding process 
requires a global overview of the landscape. The folding landscape of a protein is assumed 
to resemble a partially rough funnel riddled with traps where the protein can transiently 
reside. There is no unique pathway but a multiplicity of convergent folding routes towards 
the native state [3,4, 27]. 

However, these new ideas were derived from simulations of minimal protein models 
which capture only few, but probably dominant, interactions in real proteins. Because 
of the inherent limitations of minimal protein models it is desirable to check the above 
picture by comparison with more realistic energy functions. For reasons described in the 
introduction this became only possible with the recent development of new techniques such 
as the generalized-ensemble approach. Hence, the work in Ref. [26] is a first attempt to use 
the power of the new technique to check the above stated ideas for realistic protein models. 

Our system of choice was the linear peptide Met-enkephalin which has the amino-acid 
sequence Tyr-Gly-Gly-Phe-Met. The generalized-ensemble algorithm used in this study is 
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the one described in Ref. [24] and relies on the weight in Eq. 4. To actually observe the 
proposed folding funnel of the peptide, one has to study a projection of the energy landscape 
onto a set of suitable and appropriate order parameters. Using the ECEPP /2 force field [28] 
and excluding solvation effects, it was shown in a recent article [29] that Met-enkephalin 
undergoes a transition between extended and compact structures at a temperature Te = 

295 ± 20 K. Above that temperature, the frequency of compact structures rapidly decreases 
while it increases below Te. Hence, our first order parameter is the volume V allowing 
us to distinguish between compact and extended conformations. In Ref. [29] it was also 
shown that by further lowering the temperature the peptide encounters a second transition. 
Below Tf = 230 ± 30 K, the occupation of the ground-state conformations increases rapidly 
while it decreases for values of T above Tf. Hence, we chose as a second order parameters 
the overlap with the ground state, OA, which allows us to distinguish between the various 
compact low-energy conformations. 

Our simulation was started from a completely random initial conformation (Hot Start) 
and one Monte Carlo sweep updates every torsion angle of the peptide once. We fixed the 
peptide bond angles w to their common value 1800 , which left us with 19 torsion angles 
(4), 'Ij;, and X) as independent degrees offreedom (Le., nF = 19). In our simulations we did 
not explicitly include the interaction of the peptide with the solvent and set the dielectric 
constant E equal to 2. However, we do expect some implicit solvent effect, since the various 
parameters for the energy function were determined by minimization of the potential ener­
gies of the crystal lattices of single amino acids, Le., not in a vacuum. All thermodynamic 
quantities were then calculated from a single production run of 1,000,000 MC sweeps which 
followed 10,000 sweeps for thermalization. At the end of every fourth sweep we stored the 
energies of the conformation and our two "order parameters" (the corresponding volume 
and the overlap 0 A ofthe conformation with the (known) ground state). Since large parts 
of the configuration space are sampled by our method, it is justified to calculate from this 
time series the thermodynamic quantities over a wide range of temperatures by Eq. (2). 

Having defined the two order parameters, we tried to depict the folding funnel of Met­
enkephalin by plotting the free energy G(V, 0 A) as a function of volume V and overlap 0 A 

with the known ground state. Since the energy landscape for a folding protein depends 
strongly on temperature we have concentrated our analyses on four temperatures. The first 
one, T = 1000 K was chosen to probe the high-temperature regime where the peptide is 
fully unfolded and mostly in an extended form. In some early work [29], T = 300 K was 
identified as the collapse temperature To and T = 230 K as the folding temperature Tf . 
The last temperature, T = 150 K, was chosen to study the low temperature behavior of the 
peptide where the glassy behavior is observed. 

In Figure 2 we show the free energy landscape as a function of volume and overlap with 
the known ground state at the high-temperature region (T = 1000 K). Here, (as in the other 
free energy plots) we normalized the free energy in such a way that its observed minimum 
is set to zero. In the contour plots, the contour lines mark multiples of kBT. We see that 
the free energy has its minimum at large volumes (~ 1470 A3) and values of the overlap 
o A ~ 0.3. Small volumes and larger values of the overlap are suppressed by many orders 
of kBT. Hence, extended random coil structures are favored at this temperature. The 
picture changes dramatically once we reach the collapse temperature To, shown in Figure 2. 
At this temperature a large part of the V-OA space can be sampled in a simulation. The 
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contour plot shows that regions with both small and large volumes and almost all values 
of 0 A lie within the 2 kBT contour. This indicates that at this temperature the cross over 
between extended and compact structures happens with a small thermodynamic barrier 
between them. By lowering the temperature to Tf = 230K (determined in ref. [29]), we 
now observe strong evidence for a funnel-like landscape (Figure 2). At this temperature 
the drive towards the native configuration is dominant and no long-lived traps exist. There 
is clearly a gradient towards the ground-state structure (0 A ~ 1), but other structures 
with similar volume (characterized by values of 0 A ~ 0.5) are only separated by free 
energy barriers of order 1 kBT. Below this temperature we expect that the ground state 
is clearly favored thermodynamically and separated from other low energy states by free 
energy barriers of many orders of kBT. This can be seen in Figure 2 where at T = 150K 
where other low energy states have free energies of 3 kBT higher than the ground state and 
are separated by an additional barrier of 2 kBT. This kind of behavior has been predicted 
from simulations of minimalist models and now has been confirmed by our study [26] for 
simulations of real peptides. 

4 The Helix-Coil Transition In Poly-Alanine 

As mentioned above folding of proteins involves transitions between different thermody­
namic states. The nature of these transitions is still not clearly understood. Is it possible 
to regard them as phase transitions or are they merely a crossover between the two states? 
Since such questions can be more easily investigated for homopolymers of amino-acids than 
for proteins (which are heteropolymers) we decided to look into more detail into the sharp 
transition between disordered coil conformers and an ordered helical phase observed by us 
for poly-alanine in earlier work [30]. To determine the nature of this helix-coil transition 
we studied in Ref. [20] the finite size scaling of this transition and extrapolated the re­
sults to the limit of an infinitely long polymer. The multi canonical algorithm was used to 
calculate various thermodynamic quantities as a function of temperature for poly-alanine 
of four different chain lengths. We concentrate on such quantities (like average number of 
helical residues or specific heat) where we expect to see the strongest signal for the helix-coil 
transition. The finite-size scaling of these quantities was studied and estimates for critical 
exponents were calculated. Again, use of a generalized-ensemble technique was crucial to 
avoid ergodicity problems in the low temperature phase (see the discussion in Ref. [30]). 

Since one can avoid the complications of electrostatic and hydrogen-bond interactions of 
side chains with the solvent for alanine (a nonpolar amino acid), explicit solvent molecules 
were neglected for simplicity and the dielectric constant E was set equal to 2. Again, the 
peptide-bond dihedral angles w were fixed at the value 1800 for simplicity, which leaves 
¢i, 7j;i, and Xi (i = 1"", N) as independent degrees Since alanine has only one X angle 
in the side chain, the numbers of independent degrees of freedom are 3N where N is the 
number of residues. The multicanonical weight factors were determined by the iterative 
procedure described in Refs. [30, 17]. We needed between 40,000 sweeps (for N = 10) and 
500,000 sweeps (for N = 30) for their calculation. All thermodynamic quantities were then 
calculated from one production run of N sw Monte Carlo sweeps following additional 10 
000 sweeps for equilibrization. We chose N sw = 200,000 for N = 10, N sw = 250,000 for 
N = 15, N sw = 500,000 for N = 20, and N sw = 1,000,000 for N = 30. In all cases, each 
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Figure 2: Free energy G(V, 0 A) (in kcal/mol) as a function of both peptide volume V (in 
A3) and overlap OA for a) T = 1000 K, b) T = 300 K, c) T = 230 K, and d) T = 150 
K. Both the free energy surface and the contour plot are shown. The contour lines are 
multiples of kBT. G(V,OA) was normalized such that min(G(V, OA)) = O. 
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simulation started from a completely random initial conformation. 
The steep helix-coil transition for poly-alanine can be seen in Figure 3 where the order 

parameter 

(5) 

is plotted as a function of temperature. Here nH is the number of helical residues in a 
conformation, however, without counting the first and last residues. We chose this definition 
in order to have q = 1 for a completely helical conformation. Since the residues at the 
end of the polymer chain can move freely, they will not be part of a helical segment and 
therefore should not be counted. In Figure 4, where we display the average number of helical 
segments as a function of temperature and chain length, we find evidence that this transition 
indicates indeed a phase transition. It is clear from this plot that for each chain length the 
low-temperature region is dominated by a single helix. This indicates the the existence of 
long-range order, since we find no indications that helical segments become unstable once 
they reach a critical length. On the other hand, around the critical temperature Te the 
number of helical segments is maximal and its average number increases with the size of the 
chain. This is consistent with a second-order phase transition where one would also expect 
fluctuations on all length scales at Te. 
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Figure 3: Order parameter < q >T as a function of temperature T for poly-alanine molecules 
of chain length N = 10, 15,20, and 30. 
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To further characterize this phase transition we tried to determine the critical exponents. 
Conventional arguments for finite-size scaling for a second-order transition are based on the 
assumption that the singular part of the free energy depends only on the system size Nand 
the correlation length e. The critical exponents can be extracted from the finite-size scaling 
of the heights and width of the peaks in specific heat 

C (T) == 1 d « Etat >T) = (32 < Erat >T -< Etat >T2 
N N~ ~ N (6) 

and susceptibility 
1 2 2 

XN(T) = N _ 2 « q >T -< q >T ) . (7) 

which are plotted as a function of temperature in Figure 5, and Figure 6, respectively. For 
details, see Ref. [20]. Here, we only remark that we do not find in Figure 5 any indications 
for another peak in the specific heat at lower temperature T < Te , which, if existed, could 
be interpreted as a transition between two helix states. Such a solid-solid transition was 
observed in a recent study on wormlike polymer chains.[31] Similarly, we do not see a 
shoulder in the specific heat for T > Te. Hence, we conjecture that no other transitions but 
helix-coil one exist for poly-alanine. 
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Figure 5: Specific heat C(T) as a function of temperature T for poly-alanine molecules of 
chain length N = 10,15,20, and 30. 
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With the critical temperature Tc(N) as the position where the peak in the specific heat 
has its maximum, and Tl(N) and T2(N) (with Tl(N) < Tc(N) < T2(N)) chosen such that 
C(T1) = 1/2C(Tc) = C(T2), we have 

and 

1 

fc(N) = T2(N) - Tl(N) ex: N v, 

a 

CN(Tc)ex:Nv. 

Similarly we find from the heights of the peak in the susceptibility 

(8) 

(9) 

(10) 

and from the temperatures where X(T) = 1/2X(Tc) we get a second, independent estimate 
for the critical exponent v by 

1 

f x(N) = T2(N) - Tl(N) ex: N v. (11) 

Using the above equations the following estimates for the critical exponents were obtained 
in Ref. [20]: Eq. (8) yields an estimate for l/v = 0.54(5) which is comparable with l/v = 

0.51(6), the value we obtained from the fitting of Eq. (11). Combining both values, we 
have as our final estimate for the correlation length exponent for the helix-coil transition in 
poly-alanine: 

v = 1.9(2) . (12) 

With a value of a/v = 0.79(9), obtained by fitting Eq. (9), we find the following specific 
heat exponent: 

a = 1.5(2) . (13) 

Similarly, from Eq. (10) we obtain a value ,",(/v = 0.88(7), from which we get our estimate 
for the susceptibility exponent: 

'"'(=1.7(1). (14) 

The non-trivial values we obtained for these critical exponents give further evidence for the 
second-order phase transition. However, note that the above critical exponents do not obey 
the hyperscaling relation: 

v=2-a. (15) 

We are currently investigating the reasons for the violation of hyperscaling [32]. 

5 Conclusions 

To summarize, we reported results from two different generalized-ensemble simulations of 
peptides where the interactions among all atoms were taken into account. Our results 
support pictures for the kinetics of protein folding which were developed from the study 
of simplified protein models. We could determine the nature of the helix-coil transition 



THERMODYNAMICS OF PROTEIN FOLDING 103 

for poly-alanine and presented estimates for the critical exponents which characterizes this 
transition. These two examples demonstrate that the generalized-ensemble algorithms are 
well-suited for investigations of thermodynamics of proteins. Hence, it can be expected that 
the new approach will lead to an increased understanding of the protein folding problem 
not only in minimal models but also in realistic protein systems. 
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Abstract 

Statistical optimization of proteins is interpreted from the standpoint of optimal mem­
ory storage in neural networks. This approach results in the concept of an intrinsic 
learning rule which occurs in place of the usual learning rule in neural networks and 
incorporates geometric, topological and statistical constraints which make one folded 
shape kinetically more accessible than another. As a first step to extract this learning 
rule from the behavior of model chains, we approximate the free energy of proteinlike 
heteropolymers by an expansion about the free energy of an "equivalent homopolymer" , 
the coefficients of which determine a potential for heteropolymer sequences. Expansion 
coefficients are computed for a simple bead chain homopolymer model and the results 
are compared to a hydrophobic and polar (HP) model of proteins for which the optimal 
folds are already known. 

Keywords: protein evolution, topology, gauge invariance. 
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1 Folding and Hard Problems 

The size of the sequence search space for even biologically short proteins (N ~ 100) is 
astronomically large (20N ), however, there is growing evidence to suggest that a complete set 
of 20 residue types is not essential to accomplish protein folding on physiological times cales 
(~ msec) under typical biochemical conditions [2, 1, 3, 4, 7, 5, 6]. Sequences that do fold 
posess a specific type of energy landscape [8, 9, 11, 10, 12] qualitatively similar to the 
landscape of a single stored memory in a neural network [15,16,17,18,19,20,21] textured 
by an ensemble of local energy minima [13, 14]. In the ideal case, this funnel shaped 
landscape kinetically attracts a protein to its folded structure from any initial configuration 
of the chain [8]. 

The energy landscape of a non-folding (frustrated) sequence is, on the other hand, sim­
ilar to that of a neural network with strongly overlapping memories [15, 16, 17, 18, 19, 20]. 
For frustrated sequences different starting configurations of the chain tend to become 
trapped within structurally dissimilar basins of attraction because the configurational en­
ergy landscape of such a sequence is textured by many deep local minima. 

This rough analogy between spin glass and neural network optimization problems [20, 
21, 22, 23] is the core approach in many theoretical attempts to model protein folding and 
to predict protein structure In such approaches [24, 25, 26, 27, 28, 29] one associates the 
configurational variables of a protein with neuron connections (synapses) and the sequence 
variables (residue types) with states of the neurons. Crudely speaking, folding can then 
be pictured as annealing the connections for a fixed state of the neurons [20, 21], while 
sequence evolution can be viewed as annealing the neurons [24] for a fixed set of connections 
(determined by a set of optimal structures), although in reality both sequence and structure 
evolve simultaneously [24, 25, 26]. 

In proteins, a randomly chosen sequence generally does not fold, in other words, protein 
sequences are "special instances" [30] of the folding problem which posess funnel like con­
figurational landscapes [8]. Accordingly, to each foldable structure corresponds a family of 
sequences - each family being associated with a sequence funnel, or attractor in sequence 
space [24]. Consequently, the emergence of a configurational funnel upon sequence design 
or through evolutionary selection [31] signals a transition [8, 32, 33] between two completely 
different types of behavior - (i) frustrated [32, 33] and (ii) minimally frustrated [34, 35, 36]. 

The occurrence of a particular pattern of attractors in sequence space [24, 25] for a 
given model of proteins may depend strongly on the internal constraints of the chain (chain 
connectivity, excluded volume, and non-crossing). These constraints result in a type of 
potential for the sequences - somewhat analogous to the Hebb learning rule in the Hopfield 
model - which acts to connect sequences to kinetically accessible folded structures. In this 
paper we consider the possibility that the landscape of a sequence averaged (and therefore 
homopolymeric) chain, in which only these (uniform) constraints operate, may already 
contain some number of deep valleys [37], and that these valleys correspond to the most 
designable shapes of the heteropolymer model. 

To investigate this possibility, we propose using a perturbation expansion for the het­
eropolymer free energy about the free energy of an equivalent homopolymer. We apply this 
description to a simple bead chain heteropolymer model for which we have already deter­
mined the most designable shapes for sequences with hydrophobic and polar residue types 
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and a fixed proteinlike hydrophobicity. By measuring the parameters of the heteropolymer 
expansion, we observe a rough signature of the dominant folding motifs determined for the 
hydrophobic-polar (HP) model. We later speculate as to how this free energy expansion 
may be used as a type of potential to determine sequence families that select one of the 
statistically dominant collapsed shapes of an equivalent homopolymer. 

The paper is organized as follows. First we look more closely at the relationship between 
associative memory neural networks and protein evolution under a foldability constraint. 
This helps to illustrate that frustration results from a conflict between the attractive inter­
actions which, because of the constraints on dynamical variables (i.e. chain connectivity, 
excluded volume, and non-crossing restrictions), can never be completely satisfied. The 
fact that these interactions are maximally satisfied [34] (i.e. frustration is minimized) for 
some set of highly accessible [8, 38, 39, 40] collapsed homopolymer shapes [24] leads to the 
concept of an intrinsic learning rule, or potential, "contained" in the homopolymer free 
energy. In remaining sections we discuss the free energy expansion and apply our meth­
ods to the simple bead -chain model. The the sequence free energy is discussed in a short 
Appendix. 

2 Proteins as Evolutionarily Stored Memories 

As is well known, there is a limit to the number of memories that can be stored in a 
neural network [18]. This limit depends not just on the size of the system (the number of 
neurons) but also on the types of patterns stored [18, 17]. If the patterns are dissimilar 
(uncorrelated) the storage capacity of the network is maximized - or alternatively, the 
noisy overlaps between stored patterns (which texture the energy landscape) are minimized 
[15, 16, 18, 17]. 

In an optimally trained network [15, 16], the energy landscape of the neurons contains a 
set of deep valleys (attractors), each corresponding to one of the stored memories. Below a 
certain "pattern temperature" [18] an incomplete or damaged input pattern of the neurons 
is kinetically attracted to the most similar pattern stored in memory. However, when the 
memory capacity of the network is exceeded, the overlaps reach a critical value, which 
can not be reduced by pushing the patterns apart energetically [18]. Consequently, the 
attractors blend together and the network loses its functionality. 

As we noted above, this situation closely resembles the storage of foldable protein struc­
ture memories by sequence, and suggests why a limiting number of foldable families should 
occur for a given chain length [24]. In earlier work we established a precise connection 
between pattern attractors in a neural network and sequence attractors on the sequence 
landscape of proteinlike heteropolymers [24]. Using a simple off-lattice model (Figs. 1-3) 
we showed that sequences which fold to the most accessible structures of a homopolymeric 
chain exibit a feature called pseudo-orthogonality [15] enforced by the synapse constraints 
(learning rule) in the Hopfield network. This rule pushes apart the attractors so that input 
neuron patterns which are energetically favored in one attractor are disfavored in all the 
others. 

To be more precise one makes the analogy between a sequence and a frozen (fixed, or 
specific) state of the neurons. Then the valleys which appear on the sequence landscape [24] 
are analogous to pattern attractors in a neural network. In addition, because the sequence 
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Figure 1: Snapshots of 6 representative sequences illustrating the two optimal hydrophobic 
core geometries in the HP-model chains (hydrophobic residues are dark beads). The top 4 
structures have the highest symmetry, pentagonal bipyrimid core structure. The lower two 
structures have a core geometry with two planes of symmetry. Each structure represents 1 
of 15 local gauge invariance classes - i.e. each) structure typifies a large number of sequences 
with the same ground state configuration of hydrophobic monomers shown in the figure. 
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Figure 2: Snapshots of the remaining 9 alllilwed core structures. Again, each structure 
represents an invariance class of sequences folding to the same core monomer configuration, 
however, these sequences are much more frustrated, and less symmetrical than those in Fig. 
1. 
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Figure 3: Illustration of a cut through the foldability landscape showing two dominant 
valleys (attractors) in sequence space correponding to structure types Vo (left valley) and 
VI (right valley) in Fig. 1. Specifically, the figure shows minus the maximum folding ability, 
--X(x) for sequences with domain parameter x. In contrast to the remaining figures, the 
domain parameter measures the period of domain alternation between Hand P residues 
along the sequences. 
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landscape is determined by a set of dominant folding motifs [20J, one can compare the 
residue pair contacts made for this whole collection of motifs to the neuron connections 
(synapses) determined by an optimally stored set of memories in the Hopfield model (in 
other words, the dominant folding motifs play the role of memories stored in the synapses 
of Hopfield's model [20, 21]). Crudely speaking, when a sequence evolves it is like fixing the 
memories 1 and allowing the neurons to evolve toward the base of an attractor 2. However, 
since there is no artificially imposed learning rule in proteins, we expect a similar rule to 
emerge from factors that define the kinetic accessibility of collapsed chain topologies. 

This was strongly indicated by the results of our small (N = 16) 2-letter heteropolymer 
model [5, 24J. Briefly, for hydrophobic and polar interactions, two preferred core geometries 
emerge (vo, Vl in Fig. 1) having symmetric arrangements of hydrophobic (core) monomers 
(dark beads). The seqences connected with core types vo, Vl are the fastest folding, and 
thermally most stable. The highest symmetry structure Va is the most robust to sequence 
mutations [5, 24J. These two structures define two minimally frustrated sequence families, 
each of which is embedded in a sea of frustrated sequences folding to the core structure 
types shown in Fig. 2. As a result, two deep valleys (attractors) emerge in the sequence 
landscape (Fig. 3) separated by a barrier connected with frustrated (non folding) sequences 
having ground state core structures like a, (3, 'Y in Fig. 2. As noted above, the sequence 
space valleys are the pattern attractors of the heteropolymer model. In the following we 
show that a collapsed homopolymer with the same internal architecture can collapse easiest 
into two types of core structure similar to the dominant heteropolymer modes Va, Vl. The 
emergence of attractors in the heteropolymer model is therefore a consequence of an intrinsic 
potential defined by the homopolymer statistics. 

The folding and memory problems now appear very similar, except for this one crucial 
difference which characterizes the storage features of each system - in the neural network, 
the energetic dissimilarization of memories must be enforced by an artificial learning rule 
[18], while in proteins the learing rule is inherent in the mechanism for folding [38J. Con­
sequently, the dominant folds of proteinlike heteropolymers may, in a coarse grained sense, 
reflect some universal (shared) features characteristic of polymers [44, 45J. 

3 Hierarchy of Geometry and Topology 

To investigate these issues more concretely, we can construct various explicit heteropolymer 
models for computer simulation [5, 10, 7, 46, 47, 48, 6J such as the one above. In simple 
models the "residues" posess spherical symmetry, and the present model grew out of con­
sidering the rules (magic numbers) for assembly [49, 50, 51J of such monomers into clusters 

1 As we have mentioned, both sequence and structure evolve during protein evolution. In this example 
we have in mind a steady state (neutral evolution [43]) situation for structure memories. 

2 Although we shall not approach the problem exactly this way, one can consider an ensemble of indepen­
dent, identical heteropolymers (replicas) in which both structure 6 and sequence p temporally evolve accord­
ing to the same energy function H(e, p) but at separate temperatures T and T' (respectively) [25, 21, 27]. At 
low temperatures the replicas can all condense, resulting in the allowed folded motifs and sequence families 
of the polymer model (this signifies the memory retrieval phase in neural networks [17, 18]). After replica 
condensation, both sequence and structure continue to fluctuate, but in such a way that the emergent motifs 
are preserved. However, in the usual spin glass approach [25, 27, 21] the replicas are averaged together in 
the n ---+ 0 limit of the replica trick [19] producing the characteristic free energy of a proteinlike polymer. 



114 E. D. NELSON, P. G. WOLYNES AND J. N. ONUCHIC 

- the chain bonded interactions acting as a perturbation. 
The model considered here is a continuum realization of the hydrophobic-polar (HP) 

model [7]. The hydrophobic residues are strongly attractive while all other pairs of residues 
(HP and PP) interact as hard beads. The residues are joined together by immaterial string, 
and each string bond has a fixed maximum and minimum extension length. As a result, 
the core interactions are just as they would be in a homopolymeric chain. Figures 1 and 
2 show all the allowed core geometries of this model for sequences with length N = 16 
and 7 hydrophobic beads (proteinlike hydrophibicity). As one can clearly see, the chain 
perturbations cause various natural subunits of chain structure to emerge (i.e. larger units 
than a single monomer) within the core structures. Although, the smaller subunits are 
usually incorporated into a pentagonal bipyrimid structure (similar to that for disconnected 
monomers, va), occasionally the native core is an assembly of "oblong" subunits, (such as in 
VI Fig. 1), which illustrates the perturbative effect ofthe chain bonds on the core structure 
for identical disconnected monomers. As noted above, the core geometries Va and VI are 
the most optimal - sequences yielding alternative core geometries (Fig. 2) are strongly 
frustrated, folding approximately 10 - 100 times slower than those in Fig. 1. The two 
optimal sequence families, folding to Va and VI, together comprise the main fraction of the 
sequence distribution. 

In the above model, the most symmetric core structure permits the highest number of 
threaded topologies [52, 53] 3. For example, a chain with single monomer subunits folding 
to structure class Va sterically allows about 100 separate chain threadings (determined by 
the core monomer contact matix) with the same core energy. Kinetically only about 20 
percent of these threadings are occupied at the folding temperature [5], however, even in 
less symmetric structures HP interactions are not sufficient to restrict the chain to a unique 
threading. For example, the core geometry VI, even with its oblong subunits, still has two 
distinguishable threadings. 

In simple bead chain models, topological degeneracy is related to local gauge invariance 
[32, 56] of the energy function - specifically, to the fact that the Hamiltonian is invariant 
under specific simultanous local changes in sequence and structure (which leave the pair 
separations between monomers unchanged [5]). To illustrate this, suppose we index the 
15 "local invariance classes" (typified by the representative structures in Fig. 1 and 2) 
as n = 1, ... ,15. To each class corresponds a set of sequences (p(n) , q(n), ... ), and each 
sequence folds to one of the structures (x(n) , y(n) ... ) all typified by one of the representative 
structures in Fig. 1-2 (in other words, each of the structures (x(n), y(n) ... ) has the same 
configuration of core monomers [5, 24]). Therefore, any mutation from a sequence p(n) to 
another sequence q(n) in the same class must fold to the same geometry, in other words, 
the geometry is "conserved". In our model, the largest invariance class Va also has the 
greatest topological degeneracy, while the smallest invariance class VI is nearly unique. 
Consequently, the sizes of valleys on the homopolymer landscape indicate the degree of 
mutational invariance (robustness to mutations [5]). 

From these results, the following picture emerges. The configurational energy land­
scape of a uniformly attractive chain already contains some number of deep valleys which 

3Throughout our discussion, we understand a chain topology to mean a distinguishable bending, or 
threading of the chain (with fixed sequence) through a connected graph of core vertices, such that the 
"colors" of the vertices match the colors of the residues. 
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correspond to the dominant geometries, probably of some repeated natural unit of chain 
structure [57, 58, 59], for folding a heteropolymer. Within each valley are sub-valleys [60] 
assigned to the set of topologies that correspond to a threading of the chain of subunits [59] 
through the subunit geometry. If we increase the heterogeneity of the residue dictionary 
in the right way (without changing the homogeneous component of the interactions), it 
should become possible to "select" a dominant geometry, and further, to reduce topological 
degeneracy to the point of favoring just one threading of the chain through the selected 
geometry. 

4 Projection method 

In this section we describe an approach to design sequences that select one of the domi­
nant sub-ensembles on the configurational energy landscape of a collapsed homopolymer. 
To accomplish this, we approximate the free energy of a proteinlike heteropolymer as a 
collapsed homopolymer with heterogeneous sequence perturbations. The idea being that 
in proteins, folding involves the cooperative attraction of many residues so the heteroge­
neous perturbations do not need to be very strong to select one of the maximally accessible 
structures. 

To separate off the heterogeneous interaction component of an arbitrary heteropolymer, 
we decompose its energy in terms of a complete basis of copolymer sequences. This results in 
a decomposition of the energy in terms of projection matrices (sequence product matrices) 
that connect the basis sequences to the families of chain structure they stabilize. The 
perturbation expansion, and all quantitative estimates in this section are computed using 
only homopolymer statistics. 

We first adopt a coarse grained approximation to the Hamiltonian by assuming short 
ranged interactions 4. The topologies of any such chain model are partitioned according to 
contact matrices 

Gij = B(b - Xij) (1) 

where Xij is the distance between monomers i and j non-adjacent in sequence, b is the 
range of the potential, and B(x) is the step function 

B(x) = 1 x ;::: 1 , (2) 

B(x) = 0 otherwise. To this level of accuracy, the total energy H(G) of a structure Gij is 

(3) 

where Eij defines the energy of a contact between two residues (monomers). The contact 
matrix is of course time dependent, Gij(t) == Gij (where t is the time) and incorporates 
all the chain constraints (excluded volume, non-crossing etc.). It is helpful to recall that 
these constraints put hard limits on the number and type of residue contacts (for example, 
there are no self or nearest neighbor contacts, Gjj = Gjj±l = 0.). 

4For comparison with proteins see, for example, references [61, 62] 
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The most general form of the contact energy is a symmetric matrix of real numbers. 
Such a matrix can always be expressed as the superposition of a complete set of matrices 
composed of products between orthgonal (basis) sequences p", i.e. 

Eij({EJ'''}) = - LEI''' P'/pj . (4) 
1''' 

where EJ''' is the amplitude (in units of energy) ofthe matrix component piPj, and the (as 
yet unspecified) basis sequences p", 1/ = 0, ... , N -1 are members of a group of N orthogonal 
vectors, i.e. such that ~f=lP'jPj = N !:l.(f.L - 1/) where !:l.(f.L - 1/) is the Kronecker delta 
function. The free energy F(Eij) = F(EJ''') determined by (4) is now interpreted in terms 
of the amplitudes EJ''' which result from expanding Eij using a particular set of basis 
vectors. 

In equation (4) we are completely free to choose any basis we want. However, to be 
effective in the free energy perturbation approximation, we want to choose a basis that is as 
unbiased as possible with respect to missing information [63], which in this case corresponds 
to the most accessible collapsed structures. Assuming these structures to be unknown at the 
begginning, there is no a priori reason to have a particular polarity of the basis residues p'j 
(for example, more positive than negative). For simplicity we choose a discrete (copolymer, 
or Ising) model p'j = ± 1. Moreover, since there is no a priori reason to choose a particular 
composition or patterning of residues in the basis sequences, we choose sequences with an 
equal composition of p'j = 1 and p'j = -1 residues and an unbiased patterning of the 
domains overall. A basis whose heterogeneous sequences satisfy all these constraints is 
defined by the mnemonic device in Fig. 4 [64]. 

For proteinlike (minimally frustrated) heteropolymers the diagonal elements f.L = 1/ 
of equation (4) play an important role, and in the following derivation we will take the 
approximation of considering only these terms 

N 

Eij({E"}) = - L E"piPj (5) 
,,=1 

for which the pair interactions are cooperative [32, 28] like those of a copolymer sequence. 
The sequences are alternating (rougly periodic [65, 66]) arrangements of +1 and -1 domains. 
Consequently, the alignment matrices piP} resemble chessboard patterns of +1 and -1 
blocks seen at N different magnifications. The strongest magnification corresponding to 
the all ones (homopolymer) matrix (1/ == 0), the weakest, a chessboard of unit sized +1 and 
-1 blocks (1/ = N -1). 

At the most basic level, this reduced model (with E" > 0) describes a mixture of the 
energetics for N sequences with proteinlike (cross-chain ferromagnetic) symmetry interac­
tions (like residues attract, opposites repel). In the opposite case, E" < 0, the cross chain 
interactions would be caused to have an anti-ferromagnetic (opposites attract) symmetry. 

To approximate the free energy of any proteinlike heteropolymer we therefore start 
from the folowing assumptions - (i) individual pair interactions between residues are rela­
tively weak and (ii) optimal proteins are minimally frustrated. Accordingly, we can expand 
F ( { E"}) to second order in E" about the collapsed homopolymer free energy using the 
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r-----~====~r----------~ 

I (+ 1, + 1) I III I 
I I (+) III I 
1(+1,-1)1 III I 

L _____ I (+) I r----lr----ll I 
II II II I I 
II ( + ) II ( - ) II I I 
II II II I I 
Il_-=--=--=- I L -~~..:-_-~ L __________ J 
r----------- r-----------
I I I I 
I I I I 
I I I I 
I I I I 

I (+) II (-) I 
I I I I 
I I I I 
I I I I 
I II I L __________ ~L __________ ~ 

Figure 4: Mnemonic device used to construct the basis sequences. The elemental basis for 
N = 2 is written in the upper left corner. To generate the basis for N = 4, this basis is 
first replicated and placed exactly as shown into the small dashed boxes directly below and 
to the right of it - the negative of this basis is replicated and placed in the small dashed 
box below and along the diagonal. The sign of the replication is indicated by the symbols 
(+) and (-). Next, these length 2 vectors are polymerized along a vertical line extending 
below the number 22 which indicates the vector length after the polymerization process. 
This process results in 4 mutually perpendicular vectors (+1, +1, +1, +1), (+1, +1, -1, -1), 
(+1, -1, +1, -1), and (+1, -1, -1, +1) oflengthN = 4. The procedure can be iterated once 
more to obtain the basis for N = 8, using the 4, length 4 vectors now contained in the large 
dashed box in the upper left corner of the figure. The next (N = 8) polymerization line 
extends vertically below the number 23 • Bases of length 2n are generated by n -1 iterations. 
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model (5). We obtain the following coefficients in a Taylor series 

(6) 

and 

(7) 

where F == F( {EV}, T) is the configurational free energy of any proteinlike heteropolymer 
with energy described according to (5), i.e. 

F(E,T) = -T log [~ eXP-H(E,C)/T] (8) 

and {EV} == E. The parameters (6) and (7) are evaluated at "zero field" (i.e. at EV ¥ 0 = 0), 
specifically, for a homopolymer chain near the collapse temperature. In this case, one obtains 

and 

where 

~ [(A'"'" AVV)o - (A'"'")o (AVV)o] 

1 
A,"V(t) = 22:: Cij(t) ptpj 

'J 

(9) 

(10) 

(11) 

T is the temperature, t is the time, and the subscript 0 signifies the homopolymer thermal 
average. In a Monte Carlo simulation, Cij(t) is a time dependent quantity, and the true 
thermal average is an infinite time average at thermal equilibrium [67]. 

Besides the parameters QV and Q'"v it is necessary to measure off-diagonal projections 
in equation (11) to check the validity of the approximation (5) to the Hamiltonian. All 
quantities of interest in this paper can be obtained by recording histograms of the two 
quantities A'"v and A'"'" Avv during a Monte Carlo simulation. 

To describe these two quantities it is helpful to notice that equations (9) and (10) are 
analogous to the zero field polarization and susceptibility tensor of a magnet [67, 68] 5. At 
the most basic level, the parameter A'"V(t) measures the projection of an instantaneous chain 
configuration Cij(t) against the pattern matrix ptPj - its average < A'"v >0 measures the 
"zero field" polarization of the chain along the "direction" ptpj. The average projections 
< A'"'" AVV >0 measure the simultaneous projection of the chain against two patterns. 

The two expansion parameters QV and Q'"v are coefficients in the approximation for 
the heteropolymer free energy under the assumption of minimally frustrated energetics (see 
Appendix). In the following section we show how these parameters indicate the connection 
between basis sequences and compact structures in the homopolymer ensemble. 

The parameters QV and Q'"v are somewhat reminiscent of the usual Edwards-Anderson 
and Parisi order parameters in spin glass theory [41, 19]. We can define a simultaneous 
projection function q'"v = /(A'"'"AVV)/ in terms of the Avv which substitutes more closely 
for the Parisi overlaps. Like the Parisi overlaps, we find (following the approach of Bhatt 
and Young [70]) that q'"v also exibits a strong ultrametric signature just as obtained for 
finite sized spin glasses [70, 19,71]. 

5This is reminiscent of the random phase approximation in quantum statistical mechanics [69]. 
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5 Results 

To gather histograms for A!'v and A!'!' A Vv , we simulate a homopolymer in the neighborhood 
of its theta and collapse temperatures according to standard Monte Carlo dynamics [72]. All 
the results are presented in Fig.s 5-8. To interpret these figures it is important to remember 
that the basis sequences are indexed according to increasing frequency of sequence domain 
alternation. 

In Fig. 5 we plot the diagonal elements of the projection function < Avv >0 for a 
short chain (N = 16) at the theta temperature T{) = .6 and a temperature T{)-o = .4 
just above the collapse temperature Tc = .35, where Tc(N) is defined according to the 
specific heat peaks obtained in [73]. The figure exibits two regimes (high and low frequency 
sequence domain alternation) for which the chain can fold itself in order to produce a strong 
projection. The tails of the histograms for high and low frequency also extend to the largest 
positive projections, which signifies the two types of mechanisms observed in the HP model. 
To illustrate this, we have retrieved the coordinates of the structures that produce maximal 
projections, max Av=lv=l and max Av=N-lv=N-l, for high (1/ = N -1) and low (1/ = 1) 
frequency sequence domain alternation (the simulation was conducted at T = .5). As 
illustrated in Fig. 6, these two structures utilize folding mechanisms very similar to those 
in Fig. 1. Finally, as shown in Fig. 7, the off-diagonal projections < A!'v >0 associated 
with partially frustrated interactions are statistically unimportant. 

For long chains, each basis sequence is increasingly compatable with a greater variety 
of monomer geometries. Consequently, the connection between a basis sequence and a 
particular geometry of sub-structures is becoming less defined. In this case it is necessary 
to examine the corellations and anti-corellations between pairs, triples, etc. of projections 
against alignment matrices to focus the energetics on a particular geometry, and it may even 
be necessary to include off-diagonal projections in the free energy perturbation expansion 
given in the Appendix. 

To understand whether a free energy perturbation expansion can be reduced to some­
thing less complex, such as (9)-(12), it is important to calculate all elements of the pro­
jection function < A!'v > for longer chains. 6. The results for N = 32, 64 are shown in 
Fig. 8. Again we observe a predominance of the diagonal projections over the off-diagonal 
projections, and the same characteristic shape of the curve appears for QV = < Avv > 7. 

Although, a greater number of statistically significant off-diagonal terms emerge (i.e. with 
I < A!'v > I > 0-), the overall number of such terms still scales with N. 

6 Discussion 

To complete this approach we would like to provide a general scheme for assigning mixtures 
of the amplitudes E V to the most accessible topologies of homopolymer. The sketch of 
a possible approach for accomplishing this is presented in a short Appendix directly be­
low. In this Appendix we interpret the configurational free energy F( {EV}) defined by the 
perturbation expansion as a potential (energy) function in the sequence free energy. The 

6In the figures we actually compute a symmetrized version of the projections, al'v = ~ < A!'v + A V !' >, 
since it is easier to interpret symmetric matrices. 

7It is important to point out that similar results are obtained for the standard Gaussian chain model 
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Figure 5: Diagonal elements of the projection function QV = < Avv > for an N = 16 
homopolymeric chain computed at the theta temperature T{) ~ .6 (triangles) and a lower 
temperature TIJ-Ii = .4 near Tc '::: .35 (circles). The projection function is plotted against 
the number of domain boundaries v - 1. The dashed lines indicate the standard deviation 
of histograms for Avv. Inclusion of the homopolymeric term (v - 1 = 0) is an artifact 
of our perterbation method. Both plots exhibit peaks for high and low frequency domain 
alternation. The energetically favorable contacts for such sequences, defined by Ktj 
~pipj + ~ are characteristic of the structures in Fig. 1, as discussed in the next figure. 
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(a) 

(b) 

Figure 6: Enlargement of the two folded structures from Fig. 1 which have the highest and 
lowest frequency of sequence domain boundaries between Hand P monomers 
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(a) 

(b) 

Figure 7: Snapshot of two structures, recorded during a homopolymer simulation at T = .5, 
which produce the maximum projections Avv for high (v - 1 = 15, top) and low (v - 1 = 1, 
bottom) frequency domain alternation. The beads have been colored to reflect the sign 
of residues in the corresponding basis pattern piPj (dark beads; pj = +1, light beads; 
pj = -1). The top structure has a core shape similar the pentagonal bipyrimid, while the 
lower structure contains two domains similar to the single H core in Fig. 6 (recall that only 
H monomers are attractive in Fig. 6). 
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Figure 8: Threshold plots of the projection function < A/W > at Tf} and Tf}-ii. The 
data points indicate when the mean value < AILv > exceeds the mean standard devia­
tion (J = < AILv AILv > - < AILv >< AILv > of the off-diagonal terms. The lower figures 
are threshold plots for exceeding half the fluctuation, (J /2. The plots illustrate that the 
dominant signal comes primarily from the diagonal terms < AILv > corresponding to no 
energetic frustration. Similar results are obtained for N = 32,64 as shown in the next 
figure, and for an unweighted ensemble of dissimilar protein domains. 
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Figure 9: Graphs analogous to Fig.s 3 and 5 for N = 32,64 homopolymers at T{) with 
interaction parameters defined as in Milchev, Paul, and Binder. Again the diagonal terms 
contribute the dominant projections, and the curves < AIIV > have a shape similar to Fig. 
3. However, here, more of the off-diagonal terms exceed the fluctuation threshold (J. For 
these longer chains, mixtures of the patterns become necessary to specify a particular folded 
geometry, so the peak at high (or low) frequency domain alternation can not be associated 
with a single folding mechanism or folded geometry. 
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above results, and particularly the ultrametric signature of the overlaps qlW indicate that 
this sequence free energy may contain minima corresponding to mixtures of the E V that 
select the accessible motifs. Preliminary results of this approach are also mentioned in the 
Appendix. 

In closing, we should remark that local gauge invariance is connected with the conserved 
properties of particle-like objects in other systems (for example, defects in ordered media 
[32,42], and the properties of elementary particles [75]). In the future it may be worthwhile 
to look for specific connections between these extremely different regimes of matter. 

7 Appendix 

Throught this paper, we view the the sequence-structure assignment problem in terms of 
an approximation to the free energy of a homopolymeric chain Fo. In equations (9) and 
(10) we define expansion coefficients in a second order perturbation series of the free energy. 
Specifically, F (E) - Fo = 

- L QV E V - ~ L Q"v E" EV 

v "V 
(12) 

where again E == {EV} is shorthand for a particular configuration of the amplitudes in 
equation (4). In the following, we write this perturbation as t:,.F(E) = F(E) - Fo. 

The free energy ilF(E) can be interpreted as a sequence potential that determines which 
different sets E = {EV} select which of the many dominant collapsed configurations of the 
homopolymer. Thus, we interpret ilF(E) as a potential for the E degrees of freedom in the 
sequence free energy, similar to the neural network model of Dotsenko, Franz, and Mezard 
[17]. This results a partition function for the amplitudes, 

resulting in a free energy 

Z' = LP(E)exp-ilF(E)/T' 
E 

F' = -T'logZ' 

(13) 

(14) 

and T' is the sequence pseudo-temperature [63, 57]. In equation (14) the whole problem 
has been renormalized, because the structure free energy ilF(E) in (12) is just the energy 
function for a neural network. Consequently, the intrinsic learning rule of a sequence aver­
aged (homopolymeric) chain is now absorbed into the free energy of a neural network with 
continuous neurons. 

The distribution function P(E) in (13) takes into account any compositional constraints 
on the sequence amplitude EV. For example, if the interactions Eij are constrained to have 
IEijl = 1 as, for example, in a Go model, a short calculation shows that lEvi = l/VN. In 
this case, we could constrain the amplitudes according to a spherical model Lv(EV)2 
canst. [76]), however, in practice we find it more appropriate to use 

logP(E) = -(LEV - 1)2/il (15) 
v 
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where .6. determines the flexibility (half width) of the constraint. It is known that under 
certain conditions (uncorrelated, weakly ferromagnetic QIW) the spherical model leads to 
a phase with multiple free energy minima 8 [76]. Thus, we have reason to expect multiple 
minima in the sequence free energy F' corresponding to different mixtures of amplitudes 
which fold the chain into its dominant configurations. It is important to see whether such 
a drastic approximation as this can lead to the sequence free energy minima noted above. 
We intend to explore different approximations [77] to the free energy functions F and F' 
in a future article. Results of the present model are in agreement with the homopolymer 
collapse model of de Gennes [38]. 
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Abstract 

An examination of 51 mRNA sequences in GENBANK has revealed that calculated 
mRNA folding free energies are more negative than expected. Free energy minimiza­
tion calculations of native mRNA sequences are more negative than randomized mRNA 
sequences with the same base composition and length. Randomization only of the cod­
ing region of genes also yields folding free energies of less negative magnitude than the 
original native mRNA sequence. Examination of the predicted basepairing within the 
coding sequence finds an unequal distribution between the three possible frames. The 
wobble-to-1 frame, which is "in-frame", is preferred significantly compared to random­
ized sets of mRNA sequences. This suggests that evolution may bias or adjust the local 
selection of co dons to favor the global formation of more mRNA structures. This would 
result in greater negative folding free energies as seen in the 51 mRNAs examined. 

Keywords: mRNA, folding free energy, coding sequence, global optimization, codon­
choice optimization. 

1 Introduction 

Control of gene expression is known to occur at any of the events from promotion of tran­
scription to stabilization of the mature polypeptide product. The role of RNA structure in 
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gene expression is not well understood. Conserved RNA secondary structures in families 
of viruses are known to be important to the viral life cycle [3]. It is thought that the 3' 
UTRs of certain developmental genes in Drosophila are similarly important for localization 
[10]. RNA secondary structure is thought to be important in the coding regions of certain 
RNA viruses. Motifs such as pseudoknots have been shown to be responsible for frame­
shifting. It is not clear if RNA structure has any importance for non-viral protein coding 
mRNAs. Several studies have demonstrated that mRNA stability may be an important 
factor in gene expression for certain non-viral genes [1][4][9]. Structural RNA features are 
suspected to be involved in the regulation of mRNA degradation in those cases. Several 
authors have suggested that the choice of codons in eukaryotic genes may be constrained 
by effects other than the frequency of codons in the whole gene [6][8]. Major influences on 
codon usage have been shown to result from amino acid residue preferences and di-residue 
associations in proteins. Such biases could be related to replication and repair processes, 
and/or to DNA structural requirements. For a message coding 100 amino acids, there are 
approximately 3100 or 1048 different combinations of bases using synonymous codons coding 
for the same polypeptide. Evolution then has great freedom to tinker with mRNAs subject 
to the constraint of the amino acid sequence. This work tested the hypothesis that codon 
choice is biased to generate mRNAs with greater negative folding free energies, and results 
in base-pair frame patterns within the coding sequence. 

2 Methods 

mRNA sequences were selected from GENBANK using programs in the Wisconsin Group 
GCG software package [2]. mRNA sequence files were randomly selected from GENBANK 
with short Locus descriptors (limited to 8 or 9 characters) and which possessed sufficient 
information in the Features annotation to reconstruct the sequence of the mRNA. Fifty-one 
mRNA sequences were selected possessing the following properties identified in the Features 
annotation: 1) mRNA +1 start site identified, 2) MET start codon identified, 3) termination 
codon identified, 4) poly-A site or signal identified, and 5) the mRNA sequence must be 
less than 1200 bases long (due to computational constraints). A variety of sequence files 
were examined from diverse species including prokaryotes, plants, invertebrates and higher 
animals (Table 1 in [12]). These mRNA sequences were in silica folded using Zuker's 
MFOLD program from GCG using a VAXStation 4000 or SUN Ultra computer [14]. 

Each in silica folded native mRNA was compared with folded mRNA sequences ran­
domized by one of five different procedures. In the first procedure, each native mRNA 
sequence was randomized at least ten times using the SHUFFLE program in GCG. SHUF­
FLE randomizes the order of bases in a sequence keeping the composition constant. These 
randomized sequences (termed "whole-random" sequences) were folded and the free ener­
gies averaged. In the second randomization procedure, the native sequences were random­
ized only within the coding region, yielding "CDS-random" sequences. These sequences 
contained unmodified 5' and 3' UTRs. In the third randomization procedure, codons were 
shuffled within the coding sequence only, yielding" codon-shuffled" sequences. These contain 
unmodified UTR sequences of the respective native mRNA, and code for a polypeptide with 
identical amino acid composition yet different amino acid sequence. A program (RNAshuf­
fle) was written in FORTRAN using the GCG software library that randomized only the 
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codon choice to produce" codon-random" sequences for the fourth randomization proce­
dure. Codon-random sequences have the same nucleotide base composition and translated 
polypeptide product as the respective native mRNA. The last randomization procedure 
was a modification of the previous codon-random algorithm without constraining the base 
composition. All codons for each amino acid were allowed to be equally likely. The re­
sulting sequences also coded for the same polypeptide as the native mRNA, but the base 
composition was generally more G+C rich. These sequences were labeled as "codon-flat". 

A C program was written to analyze the GCG PlotFold output files of the most stable 
secondary structure found in MFOLD. The program FrameCount counted the number of 
predicted CDS base pairings for each of the three possible frames. 

Statistical significance was tested for the biases observed in calculated folding free energy 
between native and randomized sequences, and for the frame counts. The statistical signifi­
cance of the differences in free energy was measured in standard deviation units, termed the 
segment score from [7]. Large sets ofrandomized mRNA folding free energies were found to 
be normally distributed. Standard hypothesis tests were employed using statistical analysis 
software in Excel 97 (Microsoft). All thermodynamic energies are free energies expressed as 
kcal/mol. A greater negative free energy indicates that a more stable folding configuration 
is possible. 

3 Results 

Fifty-one mRNA sequences were selected from a variety of plant, animal and bacteria se­
quences in GENBANK [12]. These sequences were in silica folded using Zuker's MFOLD 
program. The single most stable configuration was examined for the basepairing occurring 
within the coding sequence of the native mRNAs. Counts of the predicted base-pairing 
occurring within the CDS were totaled according to the three possible frames. A wobble­
to-one (W-1) frame is "in-frame", such that a codon would be exactly matched up with one 
reverse-complement codon. The other two possible frames, wobble-to-wobble (W-W) and 
wobble-to-two (W-2) are frame shifted to the left or the right by one nucleotide compared 
to the W-1 frame. In these later two frames, a codon in a RNA stem structure would be 
opposite to two codons, rather than the perfectly aligned one codon of the W -1 frame. One 
would predict that the distribution of base-pair framing relationships should be equally 
likely for the three frames. Surprisingly in Table 1 for the native mRNA set, there are 
7.4% more bases paired in the W-1 frame compared to the W-W frame, and 21% more 
compared to the W-2 frame (2737 vs 2549 and 2262). The two frames, W-W and W-l are 
about 12% different from each other in terms· of native frame counts. This suggests the 
local arrangement or selection of codons is optimized for in-frame basepairing within the 
CDS of mRNAs. The significance of this framing bias can be assessed by examining control 
sets of randomized sequences. The controls here are whole, CDS, and codon randomized 
sets of mRNAs. 

Counts of the base-pairing occurring within ten randomized sequences were averaged. 
The position where the CDS would have been located is used for counting in the randomized 
sets shown in Table 1. From the ten different randomized sets examined for each random-
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Table 1 
mRNA Set W-W W-1 W-2 

Frame SD FS Frame SD FS Frame SD FS 
Native 2549 2737 2262 
Whole-Random 2370 65.4 2.7 2409 56.4 5.8 2400 96.6 -1.4 
CDS-Random 2442 75.1 7.0 2457 113.6 9.6 2487 153.9 -5.9 
Codon-Shuffle 2497 90.9 2.3 2672 111.3 1.9 2210 103.6 2.2 
Codon-Random 2653 101.8 -4.1 2579 131.2 5.2 2140 95.3 5.6 
Codon-Flat 2515 119.0 1.0 2400 133.1 9.8 2357 127.7 -2.9 

Counts of the predicted base pairs for the most stable secondary structure for each of the three frames are 

shown. The native set is the sum of the base pair counts for all of the 51 mRNAs in Table 1 of Seffens&Digby 

(1999). The randomized sets are reported as the mean of 10 sets, each the same size as the native set. The 

standard deviation (SD) is also shown for each randomized set. The Frame Score (FS) is calculated as 

[(native count)-(randomized count)l!SD , and represents the significance of the difference in frame counts of 

the native set from a randomized set. 

ization scheme, each the same size as the native set, a standard deviation is reported for 
the framing mean values. The difference between the native counts and the mean of the 
randomized set is divided by the standard deviation, to report as a "frame score" (FS). 
This method of assessing the significance of mRNA framing counts is similar to the seg­
ment score of Le and Maizel for differences in folding free energies of mRNAs[7]. Using this 
terminology, the frame score ofthe W-1 frame is 5.8 based on whole-randomized mRNA se­
quences. This indicates that the count of native W-1 frame bases is 5.8 standard deviations 
greater than the count in the whole-randomized set. The native W-W frame is also larger 
than the whole-randomized set with a frame score of 2.7, while the native W-2 frame is not 
as significantly different (frame score is -1.4). The significance level of the enrichment of 
the W-1 frame suggests that frame W-1 possesses unique properties. The significance to a 
graph theory representation or underlying structure of the genetic code will be considered 
later below. 

In addition to summing the frame-count information from the MFOLDed native se­
quences, the free energy of folding for each mRNA structure was also collected. Only the 
free energy of folding for the most stable configuration was examined. These native free 
energies can be compared to the mean of the free energies of ten randomized sequences 
from each native sequence. From each group of 10 randomized sequences a standard devia­
tion (SD) is also computed. The significance of the difference of the mean from the native 
free energy is then reported as the segment-score according to Le and Maizel [7]. For the 
different randomization schemes, native mRNA sequences are generally more stable than 
the corresponding randomized sequences as seen from segment scores. From Table 2 the 
average segment score for the whole-randomized set is -1.23 with a 95% confidence interval 
of 0.45, indicating there is a significant bias in folding free energy. 

To determine if this observed bias toward greater negative folding free energies of mRN As 
resides in the coding region or the flanking untranslated regions of the mRNAs, native se-
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Table 2 
mRNA Set Segment Score CI(95%) % Difference CI(95%) 
Whole-Random -1.23 0.45 4.9 2.1 
CDS-Random -0.87 0.48 2.9 1.9 
Codon-Shuffle -0.63 0.47 1.5 1.6 
Codon-Random 0.97 NA 2.2 1.8 
Codon-flat -1.81 NA 6.6 3.4 

Segment score as calculated by Le and Maizel from the average foldmg free energies of 51 mRNAs. CI is 

the confidence interval (P=O.05) of the segment score or percent difference columns. Entries with NA are 

sets with extremely small standard deviations, alld result alit large segment scores. The percent difference is 

a better measure in those cases. 

quences were randomized only within the coding region, yielding "CDS-random" sequences. 
These sequences contain identical 5' and 3' untranslated regions of the respective native 
mRNA. Again the native mRNA sequences when folded are usually more negative than 
the corresponding CDS-random sequences (Table 2). The average segment score is -0.87 
with a 95% confidence interval of 0.48. This suggests there is a significant difference in 
folding free energies between native and partially randomized mRNA sequences. Of the 51 
mRNAs examined, 37 or 73% are more negative than the CDS-randomized sequences [12]. 
The 51 mRNAs possessed a total 5'UTR length of 3014 nucleotides (nt), a total coding 
length of 27306 nt, and a total 3' UTR length of 8533 nt. Therefore the coding regions 
comprise 70% of the total mRNA nucleotides, yet randomization of the coding region does 
not substantially alter the number of mRNAs observed with a bias toward more negative 
folding free energies. The significance level of this bias is also only slightly reduced by 
CDS-randomization compared to whole-sequence randomization. The frame scores under 
CDS-randomization are only slightly reduced compared to the whole randomization scores 
(Table 1). The trend remain unchanged, a strong enrichment of the W-l frame, a smaller 
bias for the W-W frame, and an avoidance of the W-2 frame. 

The above randomization procedure was further modified to shuffle the co dons while 
preserving the native amino acid composition and UTR sequences. These" codon-shuffled" 
mRN As again are generally less stable than the respective native mRN A sequence (Table 
2). Thirty-two of the 51 mRNAs (63%) have negative segment scores, with 13 (or 25%) 
being greater than -1 [12]. The mean of the segment scores is not as great as the other two 
randomization procedures, yet the 95% confidence interval (0.47) still does not include zero 
(Table 2). Under this randomization procedure, the frame scores are considerably reduced 
(Table 1). This indicates that the codon-shuffle set of mRNAs has retained characteristics 
that give rise to the frame bias observed in the native set, yet absent from the whole- or 
CDS-random set. The only codon-shuffle characteristic that satisfies these constraints is 
codon composition. This implies that the sequence of co dons has less influence on frame 
scores than codon choice. 

To determine if the observed bias in frame scores resides in the choice of co dons within 
the coding sequence, a fourth randomization procedure was performed. Native sequences 
were randomized only by codon choice within the coding region, yielding" codon-random" 
sequences with unmodified base composition. These sequences contained identical 5' and 3' 
untranslated regions of the respective native mRNA and coded for the same polypeptide. 



136 w. SEFFENS AND D. DIGBY 

Again the native mRNA sequences tend to fold more negative in free energy than the 
corresponding codon-random sequences (Table 2). Since only a relatively small number 
of bases will change under this randomization procedure, the resulting sequences in the 
randomized set will be similar. As a consequence the folding free energies are very close in 
each set of randomized sequences, resulting in a very low standard deviation. This results 
in a very large segment score for several mRNAs, so instead the percent difference from 
the native free energy becomes a more appropriate measure of randomization effects. The 
mean of the percent difference of native from codon-random free energies is -2.2 percent, 
with a 95% confidence interval from -4.0 percent to -0.4 percent. The confidence interval 
does not include zero, demonstrating a significant difference in folding free energies between 
native and codon-randomized mRNA sequences. Ofthe 51 mRNAs examined, 35 or 69% are 
more negative than their codon-randomized mRNAs [12]. The frame scores under codon­
randomization again show a significant difference from the native sequences. This indicates 
that the codon-randomization procedure has destroyed some characteristic in the native 
sequences that is giving rise to the larger-than-expected W-1 base pair counts in the native 
set. Since only the degenerate bases can change under this randomization, codon-choice 
appears to be a major cause of the enhancement of the W-1 frame counts in the native set. 

To further investigate the effect of the choice of co dons within the coding sequence, a 
fifth randomization procedure was performed. Native sequences were randomized by an 
equal selection of codons within the coding region, yielding" codon-fiat" sequences. These 
sequences contained identical 5' and 3' untranslated regions of the respective native mRNA 
and coded for the same polypeptide as with the codon-random sets. Since the choice of 
co dons was unbiased, the resulting base composition was usually different from the native 
sequences. Again the native mRNA sequences tend to fold more negative in free energy 
than the corresponding codon-fiat sequences (Table 2). The mean of the percent difference 
of native from codon-fiat free energies is -6.6 percent, with a 95% confidence interval from 
-10.0 percent to -3.2 percent. The confidence interval does not include zero, demonstrating a 
significant difference in folding free energies between native and codon-fiat mRNA sequences. 
Of the 51 mRNAs examined, 37 or 73% are more negative than their codon-fiat mRNAs 
[12]. 

The frame scores from codon-fiat randomization are most similar to the whole- and 
CDS-random set due to the large W-1 frame scores. The frame scores are quite different 
when comparing codon-random with codon-fiat, yet the number of bases actually changed 
between the two sets should be small. Approximately one-third of CDS bases are degenerate, 
and each has a probability from ~ to ~ of being cha~ged. Therefore this data is consistent 
with the hypothesis that local codon choice is optimized to result in a global preference 
for W-1 base pairing. The relationship to the biased negative free energies in Table 3 is 
probably related to the total number of predicted base pairing. The sum of the three frame 
counts for the native sequences is larger than the sum of any of the randomized sequences, 
but is closest to the sum for the codon-shufHe case. 

To analyze frame W-1 a graph-drawing exercise can be performed by listing the co dons of 
each amino acid in the genetic code, then drawing a line to link codon: reverse-complement 
co dons together. The codons then are grouped into a vertex for each amino acid. The lines 
then represent in-frame (or W-1) base pairing that could occur within the CDS of mRNAs. 
Surprisingly this exercise results in three independent graph components or families, each 
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Cll1 

Ala 11e 

Figure 1: Graph theory representation of the standard genetic code. Multi-lines are shown 
with numbers indicating their valency. 

comprising a subset of the twenty amino acids (Figure 1). 

The three amino acid families can be identified by the member with the greatest degeneracy 
or graph vertex degree [13J. The largest amino acid family, Serine, contains a C or G at 
the second codon position, while the Valine and Leucine families contain A or T at this 
second codon position. This decomposition of the twenty amino acids into three families 
is a structural feature of the genetic code. Since the second codon position is constant 
(except for Serine) among all synonymous codons, the twenty amino acids must group 
into at least two families based on the pairing of reverse complement codons. One family 
contains C and G at the second codon position, and the other family contains A and T. It is 
interesting that the A/T family has decomposed further into two smaller graphs as shown 
in Figure (1).The alternate genetic codes follow a similar pattern of possessing either three 
or two graph components or families [13J. Others have also reported the graph property of 
the genetic code from different viewpoints. Zull and Smith [15J observed this graph while 
considering the properties of "anti-proteins" to explain receptor/ligand biochemistry. This 
graph theory representation may be related to the frame counts since the W-W and W-2 
frames are symmetrically related (shift left or right), while the W-l frame is not shifted. 
Hence the shifted-frames form a related group different from the W-l group. 
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4 Discussion 

The biases in calculated mRNA folding free energies observed in Table 2 are small yet 
significant. For a 400 nt mRNA that is 50% basepaired and 50% G+C, a 5% increase 
in folding free energy could be caused by changes in only 7-20 basepairs. Since the CDS 
comprises about 70% of the mRNA examined, more of the bias is due to amino acid sequence 
and codon choice than due to the UTR sequences alone. If the global amino acid sequence is 
constrained by considerations of protein function, then the bias is most likely due to subtle 
local arrangements in codon choice. The effect observed here may be due to a selective 
advantage for mRNAs to be more basepaired, perhaps to resist degradation or modification. 
If indeed RNA was the original genetic material as suggested by the research of Joyce [5], 
then the genetic code may be arranged in such a manner as to encourage intermolecular 
bonding for single-stranded RNA. This certainly would have been of advantage for any 
protoorganism with genetic information stored in RNA. 

The fact that these biases are observed from an empirical molecular calculation also 
suggests that local secondary structures are the causative agents. Most algorithms for 
predicting RNA secondary structure from base sequence are based on a nearest neighbor 
model of interaction [16]. Experimental evidence indicates short-ranged stacking and hy­
drogen bonding are important determinants of RNA stability while hydrophobic bonding 
is of lesser importance [11]. Numerous algorithms have been developed to predict RNA 
secondary structure by minimizing the configurational free energy. The quality of these 
predictions depends upon 1) the accuracy of the thermodynamic data which describe the 
free energies of various secondary structural features, 2) the folding rules that an algorithm 
uses to find the lowest free energy structure, and 3) the degree to which environmental 
conditions stabilize alternate structures of equivalent or higher energy. 

Free energy minimizing algorithms such as Zuker's MFOLD program output a family 
of structures that have the same or nearly the same free energy. This study has compared 
the optimal free energy of folding with a reference set of optimal free energies obtained by 
sequence randomization. Thus what are being compared are the locations of the minima 
in the configurational energy profiles for folding. Different regions of mRN A sequence were 
randomized, including codon choice, resulting in destabilization of the folding free energy. 
This suggests that local secondary structure interactions are causing the observed bias in 
folding free energies and frame counts. 

5 Conclusion 

A survey of 51 mRNA sequences reveals a bias in the coding and untranslated regions 
that allows for greater negative folding free energies than predicted by sequence length or 
nucleotide base content. A free energy reference state is taken to be a large enough set of 
randomized mRNA sequences. Randomization can be implemented over the whole sequence 
or over sections such as the CDS, UTR, or codon choice. Randomization of most regions of 
the mRNA sequences display lower folding stability as measured by calculated free energy 
values. Randomization of codon choice while still preserving original base composition also 
results in less stable mRNAs. This suggests that a bias in the selection of co dons favors 
mRNA structures which contribute to folding stability. More predicted base-pairs are in 
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the W-1 frame than the other two possible frames. Codon composition appears to be the 
major determinant for this behavior 
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Abstract 

A comparative study of two different molecular dynamics/simulated annealing (lVlD jSA) 
protocols for the structure determination of protein dimers using NlVlR-derived distance 
(NOE) and dihedral angle restraints has been performed. The solution structure de­
termination of the dimeric regulatory subunit of the type lIa (RlIa) protein kinase A 
(PKA) has been used as a test case. An asymmetrically isotopically labeled sample 
and an X-filtered NOE experiment were important for the crucial assignment of inter­
monomer NOEs. The first protocol is an ab initio lVlD/SA calculation using starting 
structures with random ¢- and ~-dihedral angles (Nilges, M., 1993, Proteins: Structure, 
Function, and Genetics, Vol. 11,297-309). The second protocol is an MD/SA calcula­
tion using starting structures "reasonably well-defined" monomers (O'Donoghue, S.L, 
King, G.F. and Nilges, M., 1996, Journal of Biomolecular NMR, Vol. 8, 193-206), in 
which monomer structures were first calculated from a subset of the available NOEs. 
Two calculations with variable number of intra-monomer long range NOEs were made 
to determine what a "reasonably well-defined" monomer is. RlIa consists of two helix­
loop-helix patterns that form an X-type four helix bundle structural motif. A strong 
hydrophobic core is observed which contributes to the structural stability of the protein. 
In addition, RlIa possesses a solvent accessible hydrophobic surface which is involved 
in protein-protein interactions that mediate signal transduction pathways. 

Keywords: Protein kinase A, PKA, RlIa, NlVlR, NOE, molecular dynamics, simulated 
annealing, MD /SA, distance geometry. 
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1 Introduction 

Protein kinases catalyze the addition of phosphate groups from ATP to specific sites on 
target proteins. This simple change directs 'subsequent protein-protein interactions and 
modulates diverse cellular processes including cell differentiation and death (apoptosis). The 
correct intracellular targeting of protein kinases and phosphatases confers specificity to the 
enzymes, in part, by placing them in close proximity to their preferred substrates. Targeting 
of these enzymes occurs via association with specific proteins which are found in different 
locations in the cell. Perhaps the best characterized of the mammalian proteins which serve 
a similar function is the family of A-Kinase Anchoring Proteins (AKAPs) identified by Scott 
and coworkers. [1 , 2, 3] AKAPs maintain the cyclic AMP (cAMP) dependent protein kinase 
(PKA) in specific subcellular compartments, thereby ensuring accessibility of the kinase to 
a limited number of substrates in a particular location. 

The enzyme is an inactive tetramer composed of a regulatory dimer (R2) and two cat­
alytic (2C) subunits (CR2C) which make up the inactive PKA holoenzyme complex. Bind­
ing of the second messenger, cAMP, dissociates the CR2C tetramer to expose a catalytically 
active monomeric C-subunit that phosphorylates protein substrates on serine or threonine 
residues according to the scheme: 

c + 
+ 4cAMP 

target -+ C 
-+ 
+ 

R2 · cAMP4 + 2C 
ADP + phosphorylated target 

Localization of PKA occurs through the N-terminal dimerization domain of the regula­
tory subunit. N-terminal constructs spanning the first 44 residues of the enzyme demon­
strate that this small region is necessary and sufficient for both stable dimer formation and 
for high affinity AKAP interaction.[4, 5] 

We have determined the solution structure of the N-terminal dimerization domain 
(residues 1-44) of the type na regulatory subunit (Rna) of PKA [5, 6] using two molecu­
lar dynamics-based simulated annealing (MD/SA) methodologies and experimental NMR 
restraints. [7, 8] The input restraints were NOE-derived distance restraints, J-coupling constant­
derived ¢-dihedral angle restraints and J-coupling constant/NOE-derived Xl-dihedral an­
gle restraints. In addition, NMR-deduced hydrogen bond restraints were incorporated as 
distance restraints. I H, 15N and 13C chemical shift assignments, backbone sequential as­
signments and spin system identification were made using standard multi-dimensional and 
multi-nuclear NMR spectra.[9] 

There is an inherent simplification in assigning the NMR spectra of symmetric dimers; 
the equivalent chemical environment of equivalent protons within the two monomers pro­
duces resonances with identical chemical shifts (symmetry degeneracy). [7, 8, 10] In this 
sense, only one monomer needs to be assigned. However, the symmetry degeneracy pro­
duces a significant difficulty in extracting the necessary inter-monomer NOE assignments 
that define the relative topology (and symmetry) ofthe two monomers during the structure 
calculation.[7, 8, 10] Conventional2D and 3D NOESY spectra do not discriminate between 
intra-monomer, inter-monomer and mixed NOEs. In order to reduce the symmetry degen­
eracy of symmetric dimers, an asymmetrically labeled protein sample should be available 
to perform an X-filtered NOE experiment (Fig. 1). In our case the asymmetrically labeled 
sample is prepared by mixing equivalent and equimolar quantities of a 15N j13 C-Iabeled 
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with an unlabeled sample, by unfolding them in the presence of a denaturant and then by 
slowly refolding them using a dilution method followed by sample concentration (Fig. 1a). 
The final sample contains a statistical mix of labeled-labeled, labeled-unlabeled, unlabeled­
unlabeled protein dimers (Fig. 1a) of which only the labeled-unlabeled portion will be 
detectable by the X-filtered NOE experiment (Fig. 1a). Thus, the X-filtered NOESY 
spectrum allows identification of inter-monomer NOEs (Fig. 1b). Conventional NOESY 
spectra provide all possible combinations of intra-, inter-monomer and mixed NOEs (Fig. 
1b). Comparison of conventional NOESY spectra and X-filtered NOESY spectra, usually 
allows the classification of a sufficient number of NOEs as intra-monomer, inter-monomer, 
mixed and ambiguous. The ambiguity arises from the inherent low sensitivity and the pos­
sibility of artifacts in the X-filtered NOE experiments which may hinder the identification 
of certain inter-monomer NOEs. 

a Reduction of symmetry degeneracy 

"C·l.IN_ 

~~ i1 unlabeled 
labeled ('C-"N·) 
sample sample 

$ Uo"'''o, 

+ Refolding 

~~ ~~ ~~ ~~ NMA 
semple 

X-flltered 
NOESY Fi~ered '-.".--' Fi~ered 

experfment Selected 

b NOE assignments 

11J1 J!X~ 
11~Z1 fA ;.-J 

Conventional 
NOESY 

X·fi~ered 
NOESY 

Figure 1: (a) Schematic of the steps involved in the preparation of the asymmetrically 
isotopically labeled sample used to collect the X-filtered NOE experiment. This sample 
preparation involves mixing, unfolding and refolding of a labeled and an unlabeled sample. 
Only the labeled-unlabeled portion of the final sample is detected in the X-filtered NOE 
experiment. (b) Example of NOE assignments in a symmetric protein dimer. Possible 
NOEs among protons A, B of one monomer and their equivalent protons A', B' of the other 
monomer are shown in the case of conventional and X-filtered NOE spectra. 
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In order to succeed in the solution structure determination of RIIa, we prepared an 
asymmetrically 15N/13C-Iabeled sample using standard protein expression and folding 
techniques.[5] This sample was used to perform an X-filtered NOE experiment [11, 12] [3D 
13C-edited (W2)_12 C-filtered (wl)j13C-filtered (W3) NOESY], which allowed the assignment 
of purely inter-monomer NOEs. In addition, conventional NOE experiments [13, 12] were 
performed using unlabeled, 15N-Iabelled or 15Nj13C-doubly labeled samples (2D NOESY, 
3D 15N-edited NOESY-HSQC, 3D 13C-edited NOESY-HMQC, respectively), which were 
used to assign intra-monomer, inter-monomer and mixed NOEs.[5, 6] 

2 Methodology 

2.1 General strategy 

For this study we used an RIIa expression construct encompassing residues 1-44. Two 
additional residues were also added to the N-terminus in the construction of the expression 
system. [9, 5, 6] These two residues do not affect dimerization or AKAP interactions. Thus 
the residue numbering that is used herein is 1-46, with 3-46 corresponding to residues 1-44 
of the native protein. The sample preparation of RIIa, the experimental conditions, the 
types of experiments used and the derivation of restraints from NMR data are described 
elsewhere.[9, 5, 6] Since there are multiple approaches to the calculation of dimer structures 
with NMR and it is not clear which is the best strategy we undertook a comparative study. 
We focus on different methodologies used for the structure calculation of RIIa.[5, 6] All 
calculations were performed using the program X-PLOR 3.851 [14, 15] with the topology and 
parameter files TOPALLHDG.PRO and PARALLHDG.PRO, respectively. [14, 15] Three 
different dimer structure calculations are presented: 

(1) An iterative ab initio MD/SA calculation using initial structures with random ¢­
and 'if>-angle dihedral angles.[7] Structure calculation iterations were performed to resolve 
NOE assignment ambiguities, to assign new NOEs based on structural arguments and to 
aid in the classification of intra-, inter-monomer, mixed and ambiguous NOEs. [5] 

(2) An iterative MD/SA calculation with starting structures "reasonably well-defined" 
monomers.[8] The "reasonably well-defined" monomer structures were calculated using a 
hybrid distance geometry-simulated annealing protocol [16, 14] and a subset of the NOEs 
used for the dimer calculation. Structure calculation iterations were performed using differ­
ent numbers of intra-monomer long range NOEs, which are responsible for the packing of 
the monomer elements of secondary structure during the calculation. The number of intra­
monomer long range NOEs is important in determining what is a "reasonably well-defined" 
monomer structure that can be used for a subsequent successful dimer calculation. A min­
imal number of intra-monomer long range NOEs was used for the monomer calculations. 
These NOEs were unambiguously assigned mainly from the NMR spectra and to a lesser 
extent from structural arguments.[6] In the past this approach was used only for dimers 
where homologous structures were available. 

(3) An MD /SA calculation with starting structures "reasonably well-defined" monomers 
similar to (2).[8] However, the "reasonably well-defined" monomer structures were calcu­
lated with a larger number of intra-monomer long range NOEs. The additional NOEs were 
assigned from structural arguments, based on the results of calculations (1) and (2).[6] 
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2.2 NOE restraint classification 

NOEs were classified as strong (1.8 :::; Tij :::; 2.7 A), medium (1.8 :::; Tij :::; 3.3A), weak 
(1.8 :::; Tij :::; 5.0A) and very weak (1.8 :::; Tij :::; 6.0A), where Tij is the inter-proton distance 
and 1.8 A is the van der Waals contact distance for hydrogen atoms. A correction of 
0.5 A was added to the upper bound of the distances involving methyl groups to account 
for the averaging of the three methyl protons. Also a correction of 0.2 A was added to 
the upper bound of distances involving amide groups to account for the higher apparent 
intensity of these types of NOEs. During dimer structure calculations, mixed NOEs and 
NOEs that could not be unambiguously assigned as intra- or inter-monomer were treated 
as ambiguous NOEs with the dynamic NOE assignment method,[7, 14J similar to the one 
used for non-stereospecifically assigned methyl or methylene protons. In this method the 
sum of the intra- and inter-monomer distances is used to enter an "effective distance" into 
the calculation, according to (l:T-6)-lj6. NOEs were classified as intra-residue (Ii - jl = 

0) NOEs, sequential intra-monomer (1 :::; Ii - jl :::; 4)NOEs, long range intra-monomer 
(Ii - jl > 4) NOEs, inter-monomer NOEs and ambiguous NOEs. During monomer structure 
calculations [(2) and (3)] only intra-monomer (intra-residue, sequential and long range) 
NOEs were used. During dimer structure calculations [(1), (2) and (3)] all five classes of 
intra-monomer (intra-residue, sequential and long range), inter-monomer and ambiguous 
NOEs were used. In all three dimer structure calculations, the number and type of intra­
monomer (intra-residue, sequential and long range), inter-monomer and ambiguous NOEs 
was kept the same. In the monomer structure calculations [(2) and (3)], the number and 
type of intra-residue and sequential NOEs was kept the same but the number of long range 
NOEs was varied (vide infra). In all three calculations (monomer or dimer) 30 dihedral 
angle restraints and 19 intra-monomer hydrogen bond restraints were used. The dihedral 
angle restraints consisted of 25 ¢- and 5 Xl-dihedral angles. Hydrogen bond restraints were 
incorporated in the calculations as distance restraints, two restraints per hydrogen bond. 
For the O-N distance we used 3.3 A (lower bound of 2.5 A and upper bound of 3.5 A) and 
for the O-HN distance we used 2.3 A (lower bound of 1.5 A and upper bound of 2.5 A). 

2.3 Calculation (1) 

The structure of RHa was determined [5] using an ab initio MD /SA protocol (REFINE 
for dimers [17]) proposed by Dr. Nilges. [7] A template random structure with correct local 
geometries and no non-bonded contacts was used to generate initial structures with random 
¢- and ¢-dihedral angles. These structures were used as input in the calculation to generate 
an ensemble of structures of RHa. A total of 505 NOE restraints were utilized of which 
185 were intra-residue NOEs, 231 were sequential intra-monomer NOEs, 25 were long range 
intra-monomer NOEs, 38 were inter-monomer NOEs and 26 were ambiguous NOEs. A total 
of 100 dimer structures were calculated and 30 of them with no NOE violation> 0.3 A, 
no dihedral angle violation> 5°, no bond length violation> 0.05 A and no bond angle or 
improper angle violation > 5° were accepted for the final ensemble of structures. All 30 
accepted structures converged to the same structural motif. 
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2.4 Calculation (2) 

The structure of RlIa was determined in two stages. First, an ensemble of monomer 
structures were calculated using a subset of the observed NOEs which were unambiguously 
characterized as intra-monomer NOEs. Then, the dimer structures were calculated using 
as initial input structures the previously determined monomer structures. The monomer 
structures were calculated using a standard X-PLOR hybrid distance geometry-simulated 
annealing protocol (DG_SUB..EMBED, DGSA, REFINE [15]).[16, 14] The dimer structures 
were determined using an MD/SA protocol (MDSA-SO-WDMR-LO [17]) also proposed by 
Dr. Nilges group.[8] 

A total of 441 NOE restraints were used. The NOE restraints consisted of 185 intra­
residue NOEs, 231 sequential NOEs and 25 long range NOEs. A total of 100 monomer 
structures were calculated of which 24 showed no NOE violation> 0.5 A, no dihedral angle 
violation > 5°, no bond length violation > 0.05 A and no bond angle or improper angle 
violation> 5°. These 24 monomer structures were used as input for the subsequent dimer 
calculation. 

The dimer structure calculation used a total of 505 NOE restraints of which 185 were 
intra-residue NOEs, 231 were sequential intra-monomer NOEs, 25 were long range intra­
monomer NOEs, 38 were inter-monomer NOEs and 26 were ambiguous NOEs. A total of 
24 dimer structures were generated and 10 of them with no NOE violation> 0.3 A, no 
dihedral angle violation > 5°, no bond length violation > 0.05 A and no bond angle or 
improper angle violation> 5° were accepted for the final ensemble of structures. All 10 
accepted structures converged to the same structural motif. 

2.5 Calculation (3) 

The structure of RlIa was also determined using the same protocol as in calculation 
(2),[8, 10] except that a larger number of long range intra-monomer NOE restraints were 
used for the monomer structure calculations.[6] During monomer structure calculations a 
total of 457 experimental NOE restraints were used of which 185 were intra-residue NOE 
restraints, 231 were sequential intra-monomer NOE restraints and 41 were long range intra­
monomer NOE restraints [as opposed to 25 in calculation (2)]. The additional 16 NOE 
restraints were classified as long range intra-monomer NOE restraints based on structural 
arguments, following calculations (1) and (2). However these 16 restraints were treated as 
ambiguous NOE restraints during the dimer calculation because a mixed character could 
not be excluded, based again on structural arguments. A total of 100 monomer structures 
were generated and 49 of them with no NOE violation> 0.5 A, no dihedral angle violation 
> 5°, no bond length violation> 0.05 A and no bond angle or improper angle violation> 
5° were used as input for the dimer calculation. 

During dimer structure calculations a total of 505 experimental NOE restraints were 
used, of which 185 were intra-residue NOEs, 231 were sequential intra-monomer NOEs, 25 
were long range NOEs, 38 were inter-monomer NOEs and 26 were ambiguous NOEs. A 
total of 49 dimer structures were generated and 30 of them with no NOE violation> 0.3 
A, no dihedral angle violation> 5°, no bond length violation> 0.05 A and no bond angle 
or improper angle violation> 5° were accepted for the final ensemble of structures. All 30 
accepted structures converged to the same structural motif. 



STRUCTURE CALCULATIONS OF SYMMETRIC DIMERS 147 

2.6 X-PLOR target function 

The X-PLOR target function for Calculation (1) consisted of quadratic harmonic energy 
terms for covalent geometry (bond lengths, bond angles, planes, chirality), a quartic van 
der Waals repulsion term for non-bonded contacts, soft-square energy terms for all classes 
of experimental distance (NOE) restraints (intra-monomer, inter-monomer and ambiguous) 
and a quadratic square well energy term for experimental dihedral angle restraints. Also, 
to enforce symmetry, a quadratic harmonic energy term for non-crystallographic symme­
try (NCS) restraints and a symmetry soft-square energy term for global symmetry NOE 
restraints were used. The NCS restraints produce two nearly superimposamble monomers 
by minimizing the atomic RMSD between the two monomers, without taking into account 
their relative orientation. The global symmetry NOE restraints arrange the monomers in 
a symmetric way without imposing a symmetry axis, by restraining a set of equivalent 
inter-monomer distances to be equal.[7, 14] 

The X-PLOR target function for monomer calculations (2) and (3) consisted of quadratic 
harmonic energy terms for covalent geometry, a quartic van der Waals repulsion term for 
non-bonded contacts and quadratic square well energy terms for experimental NOE and 
dihedral angle restraints.[14] 

The X-PLOR target function used for dimer calculations (2) and (3) consisted of the 
same energy terms as in monomer calculations for covalent geometry, van der Waals re­
pulsion, experimental intra-monomer NOE restraints and experimental dihedral angle re­
straints. Additional soft-square energy terms were used for experimental inter-monomer 
and ambiguous NOE restraints, a quadratic harmonic energy term was used for non­
crystallographic symmetry (NCS) restraints and a symmetry soft-square energy term was 
used for global symmetry NOE restraints. Also, a quadratic harmonic energy term was 
used for packing to prevent the monomers from drifting apart. The packing term restrains 
all atoms to the reference coordinates.[8, 10, 14] 

No explicit hydrogen bonding, 6-12 Lennard-Jones or electrostatic energy terms were 
used. 

The input force constants during minimization were 1000 kcal mol- 1 1-2 for bond 
lengths, 500 kcal mol-1 rad-2 for bond angles and improper angles, 4 kcal mol-1 1-4 for 
van der Waals repulsion in Calculation (1), 1 kcal mol-1 1-4 for van der Waals repulsion in 
Calculations (2) and (3), 50 kcal mol-1 1-2 for experimental NOE restraints, 200 kcal mol-1 

rad-2 for experimental dihedral angle restraints, 10 kcal mol-1 1-2 for NCS restraints in 
Calculation (1), 2 kcal mol-1 1-2 for NCS restraints in Calculations (2) and (3), 1 kcal 
mol-1 1-2 for symmetry NOE restraints in Calculation (1), 2 kcal mol- 1 1-2 for symmetry 
NOE restraints in Calculations (2) and (3), and 0.3Xl0-6 kcal mol-1 1-2 for packing 
restraints. The input force constants were varied during simulated annealing according to 
the standard X-PLOR protocols.[7, 8, 14,17,15] 

2.7 Computational requirements 

A total of 1526 atoms (763 per monomer) where used in the dimer calculations corre­
sponding to 92 residues (46 per monomer). An Indigo 2 SGI workstation was used for all 
calculations with a 200 MHz R4400 processor. The CPU time required for the calculation 
of 100 structures was 64 hours for Calculation (1), 67 hours for climer Calculations (2) 
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and (3) and 9.4 hours for monomer Calculations (2) and (3). 

3 Results and Discussion 

3.1 Analysis of calculated structures 

Figure 2a shows a backbone representation of the final ensemble of the 30 dimer structures 
of Rlla determined with Calculation (1). Figure 2b shows the ensemble of the 10 monomer 
structures that were used as initial structures for the accepted dimer structures determined 
in Calculation (2). Figure 2c shows the final ensemble of the 10 accepted dimer structures 
of Rlla. Figure 2d shows the ensemble of the 30 monomer structures that were used as 
initial structures for the accepted dimer structure determined in Calculation (3). Figure 
2e shows the final ensemble of the 30 accepted dimer structures of RIb. The ensembles 
of the dimer structures are in excellent agreement with each other as it is indicated by 
visual inspection (Figs. 2a,c,e). Rlla is a four helix bundle which consists of two helix­
loop-helix monomers. Furthermore, the structure of RIIa is classified as an X-type four 
helix bundle structural motif, with alternating nearly anti-parallel and orthogonal packing 
of a-helices.[5, 6] Each monomer of RIb possesses a disordered amino terminal region, 
an a-helix (I, 1'), a small loop, a second a-helix (II, II') and a small disordered carboxy 
terminal region. All three accepted dimer ensembles of RIIa have the same relative topology 
of the four helices. More specifically, helices I, II are on top of helices 1', II'. This has been 
called a "top-top" configuration. [6] A smaller ensemble consisting of rejected structures 
with high total energy terms and with large numbers of NOE and dihedral angle violations 
was also observed during the structure calculations. This alternative configuration (called 
"top-bottom") consisted of a packing arrangement in which helices I, II and 1', II' were 
interwoven. [6] 

Table 1 presents a comparison of the agreement criteria of the structures determined 
using Calculations (1), (2) and (3) and the convergence criteria within each structural 
ensemble. These criteria are secondary, tertiary and quaternary structure formation and 
the precision of each structural ensemble. In all three dimer ensembles and the two monomer 
ensembles helices I, I' start at residue 11 and end at residue 24, and helices II, II' start at 
residue 30 and end at residues 43-44 (Table 1). The tertiary and quaternary packing of the 
four helices in the dimer structures is indicated by their inter-helical angles which are in 
excellent agreement within the standard deviations (Table 1) and by the relative topology 
of the four helices (they all conform with the "top-top" configuration). The precision of 
each individual ensemble is indicated by the root mean square deviation (RMSD) from the 
mean structure (Table 1). 
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Figure 2: (a) The ensemble of 30 dimer structures of RHa generated with Calculation (1). 
(b) The ensemble of 10 (out of 24) accepted monomer structures used as input for the 
accepted ensemble of 10 dimer structures of RHa generated with Calculation (2). (c) The 
ensemble of 10 accepted dimer structures of RHa generated with Calculation (2). (d) The 
ensemble of 30 (out of 49) accepted monomer structures used as input for the accepted 
ensemble of 30 dimer structures of RHa generated with Calculation (3). (c) The ensemble 
of 30 accepted dimer structures of RlIa generated with Calculation (3). In each individual 
ensemble structures are superimposed by fitting the coordinates of the backbone heavy 
atoms (N, Ca, C) in the ordered region [residues 11-24 for monomer Calculations (2) and 
(3), 11-44 for dimer Calculation (1) and 11-43 for dimer Calculations (2) and (3); Table 1]. 
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Table 1. Structural comparison of Calculations (1), (2) and (3). 
Calculation (1) (2) (2) (3) (3) 

Dimer Monomer Dimer Monomer Dimer 
Number of structures 30 10 10 30 30 
Secondary structure 
Helix I 11-24 11-24 11-24 11-24 11-24 
Helix II 30-44 30-43 30-43 30-43 30-43 
Inter-helical anglesa (0) 
I, II 125±2 53±22 126±6 140±9 130±6 
I, l' 160±2 164±9 165±7 
II, II' 150±3 145±4 145±4 
RMSDb (11) 
Backbone heavy atoms 0.44 2.65 0.95 0.96 0.85 
All heavy atoms 0.93 3.54 1.42 1.68 1.41 

a Inter-helical angles were calculated with the program MoIMoL[18J Parallel and anti­
parallel arrangement of the NH-CO vectors of two helices correspond to 0° and 180°, re­
spectively. b Residues 11-44, 11-43, 11-43 were used to fit the backbone heavy atoms and to 
calculate the RMSDs of the ensembles resulted from calculations (1), (2) and (3), respec­
tively, in agreement with the secondary structure of each calculation. RMSDs are calculated 
from the mean structure of each individual ensemble. 

Figure 2b-e also addresses the issue of what is a "reasonably well-defined" monomer 
structure, a term that has been loosely used in the past. Figure 2b,d and Table 1 demon­
strate that the secondary structure of the monomer is identical to that of the dimer. 
This is expected because the secondary structure is primarily defined by the sequential 
(1 :S Ii - jl :S 4) NOEs.[13] We have used the same number and type of sequential NOEs 
for both monomer and dimer calculations. However, the monomer structures of Calcu­
lations (2) and (3) show significant differences in the angle between helices I and II and 
in the standard deviation (Fig. 2b,d; Table 1). Monomer Calculation (3) has produced 
better defined inter-helical angle with smaller standard deviation and with value closer to 
the dimer inter-helical angle than Calculation (2) (Table 1). This is attributed to the fact 
that a larger number of long range (Ii - jl > 4) intra-monomer NOE restraints have been 
used in Calculation (3) compared to Calculation (2). These NOEs are responsible for the 
tertiary packing of elements of secondary structure.[13] Despite their significant packing 
differences, monomer structures from both Calculations (2) and (3) yielded secondary and 
tertiary structure for the dimers in excellent agreement with each other and with Calcula­
tion (1) (Fig. 2; Table 1). Based on these observations, the term "reasonably well-defined" 
monomer structures refers mainly to the correct definition of the two elements of secondary 
structure (helices I, II) rather than the correct formation of super-secondary or tertiary 
structure which is defined by the inter-helical angle. 

Calculation (3) has resulted in significantly smaller RMSD for the backbone heavy atoms 
(N, Ca, C) and all heavy atoms than Calculation (2) at the monomer structure level (Fig. 
2b,d; Table 1). The large RMSD variation of the monomer structures of Calculation (2) 
is again attributed to the small number of intra-monomer long range NOEs used. At the 
dimer level, Calculation (3) shows smaller RMSD than Calculation (2) which reflects the 
tighter packing of the input monomer structures (Fig. 2c,e; Table 1). Finally, the ab 
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initio Calculation (1) shows significantly smaller RMSD than Calculations (2) and (3) (Fig. 
2a,c,e; Table 1). Use of a van der Waals repulsion force constant of 4 kcal mol-1 .Ii-4 

for Calculation (3) has resulted in a smaller RMSD (0.71 .Ii) and a reduced number of 
structures (23) in the accepted ensemble, compared to Calculation (3) with a van der Waals 
repulsion force constant of 1 kcal mol-1 .Ii-4 (everything else being kept the same). This is 
still significantly higher than the RMSD of the accepted structures in Calculation (1). The 
higher RMSD of Calculations (2) and (3) may be attributed to biasing the dimer structure 
calculation towards the initial monomer structures. 

Figure 3 shows a comparison of the lowest energy structures of the final ensembles of 
30, 10 and 30 structures determined using calculations (1), (2) and (3), respectively. The 
three structures are found to be in excellent agreement with each other. The RMSD for the 
backbone heavy atoms of residues in the ordered region 11-43 is 0.45 .Ii. 

1 

Figure 3: The lowest energy structures of RlIa determined in Calculations (1), (2) and (3). 
The structures have been superimposed by fitting the coordinates of the backbone heavy 
atoms (N, Ca, C) in the ordered region 11-43. 

MD/SA dimer structure calculations using NMR restraints and protocols similar to 
the ones described in Calculations (2) and (3) have been presented in the past in cases 
where previous knowledge of homologous monomer or dimer structures was available. In 
these cases assessment of the symmetry axis or dimer interface is simplified and inter­
monomer NOE assignments can be facilitated with this a priori structural knowledge. Here, 



152 D. MORIKIS, M. G. NEWLON AND P. A. JENNINGS 

we demonstrate that even in the absence of a previously known homologous structure, a 
subset of the available NOEs can be used to calculate "reasonably well-defined" monomer 
structures which result in the determination of well-defined dimers. 

In comparing Calculations (2) and (3) in view of future work, an initial conservative ap­
proach in selecting the input NOEs is preferred in the early rounds of structure calculations 
[like in Calculation(2)]. The resulted structures can be used to back-calculated all expected 
NOEs which can then be compared to the actual experimental NOE data to make addi­
tional assignments. This can be a manual or semi-automated process. Inclusion of these 
additional NOEs in later rounds of Calculations should produce better defined structures 
[like in Calculation(3)]. In comparing Calculations (1) and (3), it appears that Calculation 
(1) produces better defined structures as judged by the RMSD of the accepted ensemble. 
While this is true for our simple structural motif (symmetric packing of two helix-loop-helix 
patterns), it is not obvious that this will be the case for more complicated structural motifs 
or in cases of symmetric oligomers with higher order of symmetry. 

3.2 Modeling of RIIa-AKAP interactions 

Figure 4a shows the final ensemble of 30 structures [Calculation (3)] of RIb. Only a 
backbone and hydrophobic side chain representation is shown, while all other side chains 
have been deleted for clarity. RIla possesses a central hydrophobic core which is responsible 
for the packing of the two monomers in an X-type four helix bundle structural motif and 
for maintaining the intra-monomer, inter-helical packing in a helix-loop-helix structural 
motif. [5, 6] The interaction between RIIa and a model of the amphipathic helical peptide 
segment of the human thyroid anchoring protein (Ht31, residues 493-515) is also illustrated 
(Fig. 4a). Ht31 is a member of large family of AKAPs found in diverse cell types and 
locations. [3] The peptide is positioned above a solvent accessible hydrophobic surface of 
RIla in an orientation that permits maximal protein-peptide hydrophobic interactions. 
There is no significant charged character along the interface between RIIa and Ht31 peptide; 
however, there is significant charge distribution in RIIa and Ht31, at their solvent exposed 
faces opposite to the protein-peptide interface. [5, 6] Figure 4b shows a ribbon representation 
of the RIIa-Ht31 complex in the same orientation as in Fig. 4a. Only the lower energy 
structure of RIIa is shown for clarity. Figure 4c shows the AKAP binding surface of the 
lowest energy structure of RIIa. A characteristic knob and hole pattern [19] is observed 
that allows optimal packing of hydrophobic residues between RIIa and AKAPs. 

The RIIa-Ht31 interaction model based on structural arguments alone is further sup­
ported by chemical shift analysis of NMR experiments.[5] A sample of 15N-Iabeled RlIa 
complexed with an unlabeled Ht31 peptide was prepared and 1 H_15N heteronuclear single 
quantum coherence (HSQC) NMR spectra were collected.[5] The HSQC spectra of the com­
plex when compared to the HSQC spectrum of free RIIa, showed chemical shift doubling 
only in residues of RIla that participate in the protein-peptide interface.[5] This was at­
tributed to asymmetries in the local chemical and magnetic environments of residues in the 
RIIa-Ht31 interface, induced by the asymmetric nature of the peptide. Small structural 
changes in the same region of RIIa, induced by the peptide binding cannot be excluded.[5] 
A full structural analysis of the complex in underway. 



STRUCTURE CALCULATIONS OF SYMMETRIC DIMERS 153 

a 

c 

Figure 4: (a) A backbone and hydrophobic side chain representation of the ordered region 
(residue 11-43) of the ensemble of 30 structures of RlIa and the amphipathic AKAP pep­
tide Ht31 derived from the human thyroid anchoring protein. The backbone is drawn in 
black and the hydrophobic side chains are drawn in gray. All other side chains are deleted 
for clarity. The relative orientation of RIla and Ht31 is chosen to demonstrate optimal 
hydrophobic interactions in the bound state. (b) A ribbon model of Ht31 and the lowest 
energy structure of RIla in the same orientation as in (a) . (c) A representation of the 
AKAP binding surface of the lowest energy structure of RIla. This view is a 90° rotation of 
the RIla view in (a) or (b). The RIla structures shown in this Figure are from Calculation 
(3). Individual panels of this Figure have been generated with the program MolMol.[18] 
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4 Conclusions 

We have shown that structure determination of symmetric protein dimers is possible using 
the MD /SA protocol of Nilges [8] in which the initial structures are "reasonably well­
defined" monomers even in the absence of previously known homologous protein structures 
or the dimer symmetry axis or dimer interface. A single asymmetrically isotopically la­
beled sample was used to perform a crucial X-filtered NOE experiment that was helpful in 
distinguishing inter-monomer from intra-monomer NOEs. The monomer structures were 
calculated utilizing a subset of the NMR restraints used for the dimer structure calculation. 
We have also demonstrated that in the case of Rna, the term "reasonably well-defined" 
monomers means (1) correct secondary structure, (2) not necessarily correct relative topol­
ogy of elements of secondary structure, (3) possibly large deviation of inter-helical angles 
from those of the final dimer structure and (4) sometimes significantly larger RMSDs from 
those of the final dimer structure. 

We have also used Rna to compare two MD/SA protocols proposed by Dr. Nilges, an ab 
initio calculation from templates with random ¢-, 1jJ-dihedral angles [7] and the calculation 
from initial structures of "reasonably well-defined" monomers.[8] The outputs of the two 
calculations were in excellent agreement; however, the ab initio calculation generated an 
ensemble of structures with higher precision. 

Rna forms an X type four helix bundle structural motif.[5, 6] The central core of the 
protein is formed by strong hydrophobic packing of side chains. In addition, a solvent ac­
cessible hydrophobic patch is observed.[5, 6] We have used structural modeling to identify 
the binding site of Rna with an AKAP peptide, using the calculated structures and a pep­
tide model. Hydrophobic interactions between the solvent accessible hydrophobic surface of 
Rna and the hydrophobic face of the amphipathic helix of the AKAP peptide are essential 
for binding. This observation is in agreement with earlier NMR and NMR-based modeling 
data.[5, 6] 
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Abstract 

Class II histocompatibility molecules are cell surface molecules that form complexes 
with self and non-self peptides and present them to T-cells that activate the immune 
response. A number of class II histocompatibility molecules have been analyzed by 
crystallography and include the molecules HLA-DRI [59], HLA-DR3 [22], and I-Ek 
[21]. 

A novel theoretical predictive approach is presented that can determine three dimen­
sional structures of the binding sites of the HLA-II molecules based on the crystallo­
graphic data of previously characterized HLA class II molecules. The proposed approach 
uses the ECEPP /3 detailed potential energy model for describing the energetics of the 
atomic interactions in the space of substituted residues dihedral angles and employs 
a rigorous deterministic global optimization algorithm aBB [1, 6, 2, 3, 4] to obtain 
the global minimum energy conformation of the binding site. The binding sites of the 
HLA-DR3 and I-Ek molecules are predicted based on the crystallographic data of HLA­
DRI [59]. The predicted structures of the binding sites of these molecules exhibit small 
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root mean square differences that range between l.09-2.03A (based on all atoms) in 
comparison to the reported crystallographic data [21, 22]. The energetic driving forces 
for binding of the predicted structures are also studied using the decomposition-based 
approach of Androulakis et al. [28] and found to provide very good agreement with the 
results of the crystallographically obtained binding sites. 

Keywords: Structure prediction, Global optimization, MHC class II molecules, Bind­
ing sites, Peptide docking 

1 Introduction 

Class II histocompatibility molecules are polymorphic cell surface glycoproteins that form 
complexes with self and non-self peptides. These complexes are recognized by the T cell 
antigen receptor of the CD4 positive T cells. This interaction initiates the activation of the 
antigen specific immune response. Crystallographic analysis of the class II molecules has 
been reported for the human alleles HLA-DR1 [59J, HLA-DR3 [22J, and the mouse I-Ek 
[21 J. Detailed knowledge ofthe structural characteristics of these molecules is very essential 
for the understanding of molecular mechanisms in normal and pathogenic processes that 
involve HLA-peptide interactions. 

These pioneering crystallographic studies provide the basis for theoretical investigations 
concerning both structure prediction and binding affinity of different MHC molecules for 
various peptide antigens. Among the theoretical and computational contributions are the 
works of Lee and Richard [35J, Connolly [15J, Bacon and Moult [8J, Jiang and Kim [29J, 
Kuntz et al. [27J that follow shape-based methods and the works of Goodsell and Olson [23], 
Hart and Read [24] and Calfisch [11 J following energy-based methods. Recently, Androulakis 
et al. [28J presented a decomposition based approach that allows the independent study 
of the different binding sites (i.e., pockets) of the HLA-DR1 molecule using deterministic 
global minimization of intra and inter energetic interactions modeled via the ECEPP /3 
[51, 57J force field. Based on the crystallographic data of HLA-DR1 [59], that allows the 
description of the different pockets, their theoretical approach predicts a rank ordered list 
of the amino-acids with regard to their binding to pocket 1 of HLA-DRl. These theoretical 
results are in excellent agreement with the results of competitive binding assays [50J. 

On the other hand, the determination of high quality models of protein structure for 
which no experimentally determined coordinates exist has received considerable attention 
in the literature. A commonly used approach is based on the homology modeling in which a 
model for a target protein is generated using the known structure of a homologous protein. 
A backbone model is constructed typically for the structurally conserved regions, and loops 
and side chain are then added [9, 60J. For the prediction of side-chain conformation there 
exist many approaches based on homology modeling that differ from each other regarding 
(a) the rotamer library used, (b) the energy function and (c) the search strategy. When 
composing the sampling of conformational space through rotamer libraries, many different 
approaches have been used, including backbone independent rotamer libraries [12], or ro­
tamer sets that incorporates the backbone-sidechain interactions [18J. Extended libraries 
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derived form the cluster analysis of the experimentally determined database [56] and aug­
mented sets using discrete values around observed X angles values ±10° [63] are also used. 
Regarding the energy function used, simplistic local interactions are typically limited to 
van der Waals or hard-sphere energies [13, 34]. Finally, the employed search strategies are 
mainly heuristic methods involving Monte Carlo techniques [25] Genetic Algorithms [61], 
Neural Networks [26], Mean-Field optimization [34], and combinatorial search [18]. 

A recent review of global optimization approaches for protein folding and peptide dock­
ing can be found in Floudas et al. [20]. The main disadvantages of these approaches are: 

(a) a very limited conformational space is only considered since usually less than 10 
rotamers are used for each residue, 

(b) the simplicity of the energy functions used are not able to capture realistic description 
of the molecular system, and 

(c) no systematic search methodology exists to guarantee the determination ofthe global 
optimal solution even by utilizing simplified energy functions. 

The objective of this paper is to propose a systematic and rigorous approach for the 
determination of the three-dimensional structure of the polymorphic surface of an HLA 
type II molecule based on the crystallographic data of HLA-DRI molecule [59], with the 
correct conformation of the binding sites residues and same binding affinities as the crys­
tallographicaly obtained structures. The HLA-DR3 and I_Ek molecules have been selected 
as the benchmark studies in this work since their crystals have been determined recently 
[22, 21], and hence provide the basis for evaluating the predictive approach. The proposed 
theoretical approach is based on detailed atomistic-level modeling and deterministic global 
optimization of the energetic interactions. The results are verified by the superposition 
of the crystallographic data with the predicted binding sites. Further justification of the 
proposed approach is provided by reversing the problem and predicting the structure of 
binding sites of HLA-DRI molecule based on the crystallographic data of HLA-DR3 and 
furthermore by being able to evaluate the affinity of the predicted pockets. Finally, the 
binding studies of the predicted pockets are in very good agreement with the binding stud­
ies of the crystallographic pockets for all the examined systems for HLA-DRl, HLA-DR3 
and I-Ek. 

2 Problem Definition 

The recent crystallographic studies of class II HLA molecules [59, 22, 21], suggest an over­
all similarity in their structures. The conformation of HLA-DR3 in the HLA-DR3-CLIP 
complex is only slightly different from that of HLA-DRI in HLA-DRI-HA [22], and a com­
parison of two I-Ek structures with HLA-DRI identifies that only a few differences in f3 
chain amino acids exist between I_Ek and both the HLA-DRI and HLA-DR3 sequences. 
However, these few variable residues are sufficient to explain antigenic differences without 
recourse to allosteric transitions or novel conformations. 

Consequently, specific information about the structure of the histocompatibility molecules 
is needed in order to be able to analyze their specificity. Because crystal structures of class 
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II molecules are not available except for the human crystals of HLA-DRI-HA and HLA­
DR3-CLIP and the murine crystals I-Ek-HB, I-Ek-Hsp, we propose a novel approach based 
on decomposition and deterministic global optimization that enables the prediction of the 
three dimensional structure of the binding sites of class II molecules and can be efficiently 
used for the qualitative assessment of their binding affinities. 

The question that is addressed in this paper is stated as follows: 

"Given the (x,y,z) coordinates of the atoms in pockets 1,4,6,7 and 9 of the HLA­
DR1 [59], can we predict the three dimensional structures of the corresponding 
pockets of HLA-DR3 and I-Ek that exhibit the same binding characteristics ?" 

In the next section the basic steps of the proposed approach are presented. The presen­
tation focuses on the structure prediction of the HLA-DR3 and I-Ek binding site utilizing 
the crystallographic data of the HLA-DRI molecule [59]. It should be noted that the pro­
posed methodology is generalizable and can be used for the prediction of unknown HLA 
structures. 

3 Proposed Approach 

3.1 System Definition 

The geometric shape of a protein under the assumption of rigid bond lengths and bond 
angles is uniquely determined by its dihedral angles. If more than one polypeptide is 
involved then the relative orientations, and locations of these different chains must be 
defined. This can most easily be accomplished by defining a translation vector and a 
rotation matrix. The translation is achieved through the cartesian coordinates of the initial 
nitrogen atom of each independent chain. The Euler angles specify the rotations necessary 
to orient a particular polypeptide and are defined as the angles between the coordinate axes 
defined by the initial hydrogen, nitrogen, and alpha carbon of each residue. 

The system under study involves all the residues of the binding site. The substituted 
amino acids constitute the problem variables, whereas the residues that remain the same 
are treated as fixed based on the crystallographic data. Since there may be multiple amino 
acid substitutions, the problem variables are the amino coordinates their euler angles and 
their dihedral angles of all substituted residues. 

It should be highlighted here that in contrast to the existing approaches the euler angles 
and the dihedral angles are considered to span the whole feasible range [-180°, + 180°] and 
not restricted to specified discrete values. 

3.2 Potential Energy Function 

The most accurate representation of the potential energy of a molecule is the ab initio quan­
tum mechanical approach. Using the Born-Oppenheimer approximation, one can determine 
the energy for fixed atomic nuclei from the smallest eigenvalue of the Hamiltonian of the 
electron system. However, due to their computational complexity, such calculations are 
limited to extremely small molecules. 

As a result, tractable potential energy models have been derived which adequately cap­
ture the energy contributions resulting from various types of atom interactions. Molecular 
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potential functions include ECEPP [47, 48, 49], AMBER [66, 67], CHARMM [10], DIS­
COVER [16], GROMOS [62], MM3 [5], EN CAD [36], ECEPP/2 [52] and ECEPP/3 [51]. 

In this work, the ECEPP /3 (Empirical Conformational Energy Program for Peptides) 
potential model is utilized. In this force field, it is assumed that the covalent bond lengths 
and bond angles are fixed at their equilibrium values. It has been observed that varia­
tions in bond lengths and bond angles depend mostly on short range interactions; that is, 
those between the side chain and backbone of the same residue. Under this assumption, 
all residues of the same type have essentially the same geometry in various proteins [49]. 
Therefore, a chain of any sequence can be generated using the fixed geometry specific to 
each type of amino acid residue in the sequence. 

Based on these approximations, the conformation is only a function of the dihedral an­
gles. That is, ECEPP /3 accounts for energy interaction terms which can be expressed solely 
in terms of the dihedral angles. The total conformational energy is calculated as the sum 
of the electrostatic, nonbonded, hydrogen bonded, and tortional contributions. Loop clos­
ing contributions, if the polypeptide contains two or more sulfur-containing residues, are a 
fixed internal conformational energy of the pyrolidine ring for each prolyl and hydroxyprolyl 
residue contained in the peptide chain, are also represented. The main energy contributions 
(electrostatic, nonbonded, hydrogen bonded) are computed as the sum of terms for each 
atom pair (i,j) whose interatomic distance is a function of at least one dihedral angle. 

Let M denote the total number of substitutions, then based on the description of our 
system, the set of variables include the N;' j N;', N;:' j m. = 1 j '" j _M vector of all N coordi­
nates for which bounds can be obtained ±8 from the coordinates of HLA-DRI molecule, 
the euler angles, and the dihedral angles ¢m, 'lj;m, wm and xl:' which vary between [-7r, +7r]. 
The constraints on the translation vector of each substituted residue are required to assure 
that the residue remains within the vicinity of the binding site. The contributing terms to 
the total potential energy of ECEPP /3 are: 

E L 332.0 qiqj (Electrostatic) 
(i,j)EeS DTij 

+ 
A C L FYi - 6" (Nonbonded) 

(i,j)ENB Tij Tij 

A' B L F- - - (Hydrogen bonding) 
Th12x Th10x (hx)E1iX 

+ 

"'" Eo ~ (2') (1 ± cos nkBk) (Torsional) 
kETon 

+ 

il=3 

+ L BL L (Til - TiJ2 (Cystine Loop-Closing) 
lE.t:.OOP il=l 

+ L AL(T41 - T4o )2 (Cystine Torsional) 
lE.t:.OOP 

(1) 

Note that in the above energy function all the interactions of the atoms belonging 
to a single substituted residue (intra-interactions), as well as the interactions between 
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the atoms of the different substituted residues (inter-interactions) are simultaneously 
considered in an explicit systematic way. In the next section the complete description of 
the total energy of the polypeptide system under consideration along with the interactions 
with the solvent is presented. 

3.3 Solvation Model 

The explicit incorporation of solvation effects involves calculating solvent-peptide and solvent­
solvent interactions using potentials similar to those previously described. Although these 
methods are conceptually simple, explicit inclusion of solvent molecules greatly increases 
the computational time needed to simulate the polypeptide system. Therefore, most sim­
ulations of this type are limited to restricted conformational searches. In addition, the 
interactions between the protein molecule and the surrounding water molecules are not 
fixed for a given peptide configuration. In reality, a large number of solvent configurations 
must be considered, and the free energy of hydration can then be calculated by averaging 
over these configurations. Average values for peptide-solvent interaction energies can also 
be calculated using a mean-field approximation for the free energy of solvation. In this case 
the interactions are expressed as an average over all positions of solvent molecules for a 
given protein configuration. Limitations in these methods have led to the development of 
simpler implicit solvation models [64] . 

There are a number of empirical hydration models which can be used to implicitly 
predict hydration effects. The main assumption of these models is that, for each functional 
group of the peptide, a hydration free energy can be calculated from an averaged free energy 
of interaction of the group with a layer of solvent known as the hydration shell. In addition, 
the total free energy of hydration is expressed as a sum of the free energies of hydration for 
each of the functional groups of the peptide, that is, an additive relationship is assumed. 

In this paper, a solvent accessible surface area method [14], which is based on the 
assumption that the free energy of hydration is proportional to the solvent-accessible surface 
area of the peptide is used: 

N 

EHYD = L(Ai)(O"i) (2) 
i=1 

In Equation (2), an additive relationship for N individual functional groups is assumed. 
(Ai) represents the solvent-accessible surface area for the functional group, and (O"i) are 
empirically derived free energy density parameters. 

The development of the peptide surface is made in the following way. First the peptide 
surface is represented by a union of spheres, with the radii of the spheres set by the van der 
Waals radii of the constituent atoms. A spherical test probe is then rolled over these spheres, 
thereby tracing out a surface. The molecular surface is set by direct contact between the 
probe sphere and the peptide spheres. In areas where the probe cannot make direct contact, 
the closest part of the probe is used. The solvent-accessible surface is defined by the surface 
traced by the center of the probe as the probe rolls over the peptide spheres. 

Once the solvent-accessible surface areas have been calculated, these values must be 
multiplied by the appropriate (O"i) parameters as shown in Equation (2). 

There are a number of models available, including JRF, OONS, SRFOPT, which provide 
estimates for these parameters based on interactions between water and the functional 



STRUCTURE PREDICTION OF BINDING SITES 163 

groups of peptides. Detailed studies of solvation models in connection with deterministic 
global optimization approaches for oligopeptide folding have been conducted [32, 33J. The 
JRF parameter set is used in this paper [65J. Since this parameter set was developed from 
minimum energy conformations of peptides, the surface-accessible solvation energies are 
only included at local minimum conformations. 

Consequently, the total energy function is defined as: 

ETOT = Eff//1oL + EsoL (3) 

3.4 Mathematical Formulation 

Based on the above description the mathematical formulation can be posed in the following 
way:, 

min E (</>m,pm m m Nm Nm Nm m m m) Total , ,W, Xk, x, Y' z, £1 ,£2 ,£3 ( 4) 

S.t. -7r ::; ¢m, 1/Jm ,Wm, Xk ,er,e~,e'f ::; 7r (5) 

(N;:")L ::; N m 
x ::; (N;:")U (6) 

(N;;,)L ::; N m 
y ::; (N;;'t (7) 

(N;:")L ::; N m z ::; (N;:")U (8) 

(e~m)L ::; e'm (</>m,pm m m Nm Nm Nm m m m) 
X' "W, Xk, x, Y' z, el ,£2 ,c3 ::; (e~m)u (9) 

(e~m)L ::; e'm (</>m,pm m m Nm Nm Nm m m m) Y "W, Xk, x, Y' z, c1 ,62 ,e3 ::; (e~m)U (10) 

(e~m)L ::; e'm (</>m,pm m m Nm Nm Nm m m m) z " W ,Xk, x, Y' z, £1 ,£2 ,C3 ::; (e~m)U (11) 

where m=1, ... ,M corresponds to total number of substitutions. 
Note that the additional constraints (6-11) are considered to represent the bounds on 

the Nand G' coordinates expressing the binding of the specific residue with the rest of 
pocket [28], since the substituted residue is part of a longer polypeptide and consequently 
is not allowed to rotate freely. Since the G' coordinates can be evaluated as functions of the 
independent variables the restrictions on C' position is implemented by the incorporation 
of a penalty function, P, in the objective function. 

P =,6{ (G~ - C~) + (C~ - G~U) + 
(G~ - G~) + (C~ - G~U) + 
(G~l - G~) + (C~ - C~U) } 

The 0 function is defined as follows: (A) equals A if A is greater than zero, otherwise (A) 
equals zero. Thus, any coordinate value beyond the specified bounds would be multiplied by 
the penalty parameter ,6 and added to the potential energy. Consequently, the minimization 
of the objective function eliminates solutions in which the G' position falls outside the 
specified bounds. 
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4 Global Optimization Approach aBB 

As formulated in the previous section, the minimization of the energy function ETotai cor­
responds to a nonconvex nonlinear optimization problem. Even after reducing this opti­
mization problem to a function of internal variables (dihedral angles), the multidimensional 
surface that describes the energy function has a very large number of local minima. This 
has become known as the multiple-minima problem. Because the objective function has 
many local minima, local optimization techniques exhibit a dependence on initial points 
selection. Therefore, global optimization algorithms are needed to effectively locate the 
global minimum corresponding to the native state of the protein. 

The global optimization approach aBB [1, 6, 2, 3, 4], has been extended in this work 
to identifying the structure of the unknown binding sites. The aBB is a branch-and-bound 
based deterministic global optimization framework. The algorithm is shown to guaran­
tee convergence to the global minimum of nonlinear optimization problems with twice­
differentiable functions [19]. The application of this algorithm to the minimization of po­
tential energy functions was first introduced for microclusters [39, 40], and small acyclic 
molecules [41, 42]. The aBB approach has also been extended to constrained optimization 
problems [1, 6, 2, 3, 4]. In more recent works, the algorithm has been shown to be success­
ful for isolated peptide systems using the realistic ECEPP /3 potential energy model [38, 6] 
and for the quantitative determination of the binding specificity of a class II HLA molecule, 
HLA-DRBl *0101 allele, interacting with different peptides. 

The aBB global optimization algorithm effectively brackets the global minimum solution 
by developing converging lower and upper bounds. These bounds are refined by partitioning 
the original search domain into sub-domains, and the upper bounding and lower bounding 
sequences can be shown to converge within E to the global solution in a finite number of steps 
[44]. Upper bounds are obtained by minimizing ETotal using either function evaluations or 
local optimization methods. Lower bounds are generated by constructing valid convex 
relaxations of ETotal' These are defined as the original potential energy ETotai plus the 
summation of separable quadratic terms, in the form of a(xL - x)(xU - x), for all the 
independent dihedral angles, translation variables and euler angles that ETotai depends 
upon, as follows: 

M 

L = ETotai+ Q { L (q,mL - r) (q,mu _ q,m) + (ljrL -,;r) (,pmU _,pm) + 
m=l 

K 

(wmL _ wm) (wmu _ wm) + L (xk"L - xk") (xk"u - xk") + (N:;'L - N:;') (N:;'U - N:;') + 
k=l 

(N;'L _ N;') (N;'U - N;') + (N:;,L - N;') (N;'U - N;') + (efL - ef) (efU - c:f) + 
(e~L _ c:~) (c:~U - e~) + (er;'L - c:r;') (er;'U - en } 

where a is a nonnegative parameter which must be greater or equal to the negative one half 
of the minimum eigenvalue of the Hessian of ETotal in the considered domain defined by the 
lower and upper bounds (i.e., xL = -7r, xU = 7r) ofthe dihedral angles, translation variables 
and euler angles. This parameter can be rigorously calculated based on the techniques 
introduces by Adjiman and Floudas [1], and Adjiman et al. [3, 4]. The overall effect of 
these terms is to overpower the nonconvexities of the original nonconvex terms by adding 
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the value of 2a to the eigenvalues of the Hessian of E. The convex lower bounding functions, 
L, possesses a number of important properties which guarantee global convergence [42J: 

(i) L is a valid underestimator of E; 

(ii) L matches E at all corner points of the box constraints; 

(iii) L is convex in the current box constraints; 

(iv) the maximum separation between Land E is bounded and proportional to a and to 
square of the diagonal of the current box constraints. This property ensures that an 
10 f feasibility and Ec convergence tolerances can be reached for a finite size partition 
element; 

(v) the underestimators L constructed over supersets of the current set are always less 
tight than the underestimator constructed over the current box constraints for every 
point within the current box constraints. 

Once solutions for the upper and lower bounding problems have been established, the 
next step is to modify these problems for the next iteration. This is accomplished by suc­
cessively partitioning the initial domain into smaller subdomains. The default partitioning 
strategy used in the algorithm involves successive subdivision of the original rectangle into 
two sub-rectangles by halving on the midpoint of the longest side (bisection). In order to 
ensure non-decreasing lower bounds, the sub-rectangle to be bisected is chosen by selecting 
the region which contains the infimum of the minima of lower bounds. A non-increasing 
sequence for the upper bound is found by solving the nonconvex problem, E, locally and 
selecting it to be the minimum over all the previously recorded upper bounds. Obviously, 
if the single minimum of L for any sub-rectangle is greater than the current upper bound, 
this sub-rectangle can be discarded because the global minimum cannot be within this 
sub domain (fathoming step). 

The computational requirement of the aBB algorithm is proportional to the number 
of variables (global) on which branching occurs. Therefore, these global variables need 
to be chosen carefully. Obviously, in a qualitative sense, the branching variables should 
correspond to those variables which substantially influence the nonconvexity of the surface 
and the location of the global minimum. With this in mind [2, 3, 4J have developed principles 
to help identify the important variables. 

For the problem of determining the binding sites of the unknown HLA molecules, the 
global variable set includes the ¢, 'if; and Xl variables. However, it should be highlighted 
that all the dihedral angles of the substituted residues, as well as the translation vector and 
the euler angles are continuous variables in the problem, and are treated as local variables. 

5 Outline of the Proposed Approach 

A systematic approach is presented for the structure prediction of a foreign antigen binding 
site based on the crystallographic data of HLA-DR1 molecule [59J. The proposed approach 
examines each of the binding sites separately and involves the following steps: 
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(1) The binding sites ofHLA-DRl molecule are evaluated. All amino acids within a radius 
of R=5.0A of the atoms of the binding amino acid in the crystallographic studies [59] 
are identified as shown in Table 1. A Program for Pocket Definition, as described in 
[28], constructs these pockets through the selection of all residues that are within a 
radius R of the atoms of the crystallographic binder. 

(2) The amino acid substitutions between HLA-DR1 and the HLA-II molecule (e.g., HLA­
DR3, I_Ek) are identified and are shown in Table 2. Note that pocket 1 of HLA-DR1 
requires only one substitution Gly-+ Val in position fJ86 so as to result in pocket 1 
of HLA-DR3. Pockets 4, 6 and 7 involve three substitutions while pocket 9 features 
only one substitution in the representation of the corresponding pockets of HLA-DR3. 
Note also that all pockets of HLA-DR1 require three or four substitutions so as to 
represent the corresponding pockets of I_Ek. 

(3) For each one of the substituted residues, the intra and inter-molecular energy interac­
tions are modeled. Specifically, the electrostatic, nonbonded, torsional, and hydrogen 
bonding contributions [51], are considered for the substituted residue, as well as the 
interactions of the substituted residues with the rest of amino acids that constitute 
the examined binding site. The solvation energy is also considered through solvent 
accessible areas [53, 65] as explained in section 3.3. The dihedral angles that define 
the three-dimensional structure of the substituted residues are considered explicitly 
as variables. Note also that the relative position of each amino acid has to be deter­
mined. This is done through the determination of the translation vector and the euler 
angles. For the substituted amino acids lower and upper bounds are considered for 
their Nand C' coordinates, based on the available crystallographic data [59, 22, 21]. 

(4) Having the mathematical model that includes the intra and inter energetic interac­
tions, and the solvation energy and which has as variables the dihedral angles of the 
substituted amino-acids, the translation vector and the euler angles, we minimize 
the total potential energy by employing the aBB deterministic global optimization 
approach [1, 6, 2, 3, 4] as described in section 4. 

(5) The resulting global minimum energy conformer provides information on the predicted 
(x,y,z) coordinates of the atoms of the substituted residues. Structure verification is 
made by superposition of all atoms of the predicted structure and the ones derived 
from crystallographic data. The superposition is based on the global minimi7:ation of 
the root mean square differences of the distances between all the atoms involved in 
the pocket as described in section 5.2. 

In the sequel, the algorithmic details of the proposed approach are given. 

5.1 Algorithmic Framework 

The implementation of the proposed approach involves the connection of the conformation 
energy program PACK [58], that allows the evaluation of all energy interactions when more 
than one protein chain are involved in the system, with the deterministic global optimization 
framework, aBB. PACK evaluates all energy components through repeated calls to the 
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Pocket 
1 4 6 7 9 

phea24 glna09 glua11 vala65 asna69 
ilea31 glua11 asna62 asna69 leua70 
phea32 asna62 vala65 glu,628 ilea72 
trpa43 phe,613 aspa66 tyr,647 meta73 
alaa52 leu,626 leu,611 trp,661 arga76 
sera53 gln,670 phe,613 leu,667 trp,609 
phea54 arg,671 arg,671 arg,671 asp,657 
glua55 ala,674 tyr,660 
asn,682 tyr,678 trp,661 
val,685 
gly,686 
phe,689 
thr,690 

Table 1: HLA-DR1 Pocket Compositions for n = 5.0 A 

Pocket Substitutions for HLA-DR3 Substitutions for I-E" 
,685: Val -+ Ile 

1 ,686: Gly -+ Val ,686: Gly -+ Phe 
,690: Thr -+ Leu 

,613: Phe -+ Ser ,613: Phe -+ Ser 
4 ,626: Leu -+ Tyr ,674: Ala -+ Glu 

,674: Ala -+ Arg ,678: Tyr -+ Val 
,6:71 Arg -+ Lys 

,611: Leu -+ Ser ,611: Leu -+ Ser 
6 ,613: Phe -+ Ser ,613: Phe -+ Cys 

,671: Arg -+ Lys ,671: Arg -+ Lys 
,628: GIu -+ Asp ,628: Glu -+ Val 

7 ,647: Tyr -+ Phe ,647: Tyr -+ Phe 
,671: Arg -+ Lys ,667: Leu -+ Phe 

,671: Arg -+ Lys 
a72: Ile -+ Val 

9 ,69: Trp -+ Glu ,69: Trp -+ Glu 
,660: Tyr -+ Asn 

Table 2: Substitutions for HLA-DR3 and I-Ek binding sites 
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ECEPP/3 potential function program. A local optimization solver NPSOL is used for the 
minimization of the overall potential energy provided by PACK and for the minimization 
of the convexified potential function (L) provided by aBB. MSEED [53], the program for 
the determination of solvation energy is also connected to allow the consideration of the 
solvation energy at the local minima. The algorithmic procedure is represented graphically 
in Figure l. 

In particular, as Figure 2 illustrates the implementation of the proposed approach in­
volves the following steps: 

(1) The program for Pocket Definition, (PPD), uses the input files residue.pdb 
and pocket.pdb to generate the file with the coordinates of the residues 
involved in the considered pocket. 

(2) The program ARAS is used to determine the translation vectors, euler an­
gles and dihedral angles of the residues in the pocket given their (x, y, z) 
coordinates. This information together with initial values for the transla­
tion vector, euler angles and dihedral angles of the substituted residues are 
incorporated within the input file name. input. 

(3) The program prePA CK utilizes the residue. dat file involving a set of initial 
atomic coordinates that are based on fixed bond lengths, fixed bond angles 
and each variable dihedral angle initially set to 1800 , the mol. in file for 
each one of the amino acids involved in the pocket and the pre.name.abb 
file which specifies the fixed and substituted residues. It then creates a 
standard input for the potential function program, PACK, name. date. 

(4) The global optimization program aBB requires the name.abb file that de­
fines. the optimization problem, including the variable bounds. aBB also 
uses the name. input file, and the name. bounds file that involves the C' 
bounds used to evaluate the coordinates of C' as a function of the inde­
pendent variables. 

(5) The program PACK requires the name. date file and is connected with 
ECEPP /3 in order to evaluate the potential function, which is minimized 
by the local optimization solver NPSOL. 

(6) The MSEED solvation energy program uses the JRF.dat file which de­
fines the solvation parameters ai and evaluates the solvation energy at the 
current local minimum structure. 

5.2 Comparison with Crystallographic Data 

To accurately compare the predicted structure of the pockets with the crystallographic 
data, the best rotation and translation to relate the two different sets of atomic position 
must be obtained. Assuming two pieces of proteins A and B with N atom atoms, the best 
superposition is the one that minimizes the sum of squared distances between each B atom 
and the corresponding A atom. Existing approaches to this problem are based on: 

(i) iterative minimization using rotation angles [55, 54]; 
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(ii) the use of decomposition approach, where the transformation matrix L is determined 
by calculating the best unrestricted linear transformation which converts A into B 
using least square matrix method [17]; or form a generalised inverse of the molecular 
structure [37], and then decompose L=RS where R is a rotation matrix and S is a 
symmetric distortion matrix; 

(iii) the construction of a matrix U which yields an orthogonal rotation directly [30, 31, 
45,46]. 

As pointed out by McLachlan [46], the rotation angles method is very slow, where the 
rotation matrix methods depend on whether A is fitted to B or vice versa and does not 
minimize the r.m.s distance. McLachlan [46], proposed an approach to improve the speed 
and accuracy of determining the matrix U and moreover to cover all special cases which 
arise when U is degenerate or singular. 

In this paper, the problem of obtaining the best fit of two protein structures is formulated 
. and solved as a global optimization problem. The determination of the best rotation and 
translation matrix that minimize the "fitting distance" for the two protein structures are 
guaranteed to be found in all special cases without having to perform any additional tests 
and calculations. 

Consider the two protein structures: A obtained from the crystallographic data and 
B determined from our proposed methodology. Both structures involve Natom atoms with 
cartesian coordinates (xc(i), yc(i), zc(i)), for the crystal and (xp(i), Yp(i), zp(i)) for the pre­
dicted structure. The mathematical formulation of the best fitting problem can then be 
posed as follows: 

Natom 

min RMS = (l/Natom ) L (xc(i) - X'(i))2 + (Yc(i) - y'(i))2 + (zc(i) - z'(i))2 

s.t. 

[
Tn 

R = T22 
T31 

RRT =1 

i=l 

(12) 

where R, T are the required rotation and translation vectors in order to translate the 
predicted binding sites which correspond to (xp(i), Yp(i), zp(i)) coordinates, to the cartesian 
system of the crystal (xc(i),Yc(i),zc(i)). The coordinates (x'(i),y'(i),z'(i)) correspond to 
the transformed system following the rotation and translation. 

Problem (12) constitutes a special case of global optimization problems since it involves 
the minimization of a convex function subject to a set of linear equality and nonconvex 
equality constraints RRT = I. The deterministic global optimization algorithm aBB [1, 6, 
2, 3, 4], presented briefly in section 4, is used for the solution of this global optimization 
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problem. The results obtained for the superposition of the predicted HLA-DR3 and I­
Ek binding sites with the crystallographic data are presented in the following sections. 
Four tests are performed in order to evaluate the prediction accuracy of the proposed 
methodology. 

(i) for each predicted binding site the root-mean-square-deviations of Cartesian coordi­
nates of all the atoms (cRMSD) and the CCi atoms are evaluated, 

(ii) for each one of the substituted residues, the cRMSD is evaluated considering all the 
atoms, 

(iii) for each one of the substituted residues, a relative-cRMSD is evaluated based on the 
following formula: 

1 
R-cRMSD=--

Natom 

to measure the relative predictive error of the proposed procedure, 

(iv) computational binding studies are performed to compare the energetic-based rank 
ordering of the amino acids in the predicted binding site versus the rank ordering of 
the amino acids in the binding site based on the crystallographic data. 

6 Prediction of HLA-DR3 Binding Sites 

The proposed approach was applied for the prediction of the three dimensional structure of 
HLA-DR3 binding sites. 

As presented in Table 2, by substituting Gly to Val in position (386 in pocket 1 of HLA­
DR1, the pocket 1 of HLA-DR3 is formulated. The predicted pocket of HLA-DR3 is shown 
in Figure 3 with the crystallographically obtained pocket superposition. The (cRMSD) 
difference between those two pockets is found to be 1.09A based on the differences of the 
coordinates of all the atoms involved in the pocket. The relative cRMSD for the whole 
binding site is 0.0425 which corresponds to 4.25% difference of the predicted cartesian 
coordinates of the binding site and the crystallographic data. The (cRMSD) difference 
based on the a carbons is 0.55A. The (cRMSD) for the substituted residue (Val) is 1.584 
A and the relative-cRMSD is 0.04601 which indicates a 4.6% difference of the predicted Val 
versus the Val determined based on the crystallographic data of HLA-DR3 molecule [22]. 

To generate pockets 4 of HLA-DR3, three substitutions are made on the composition 
of the pockets of HLA-DR1 at the positions (313: Phe --+ Ser, (326: Leu --+ Tyr, and f374: 
Ala --+ Arg. The predicted pocket is shown in Figure 4 together with the corresponding 
crystallographic data of HLA-DR3. The (cRMSD) difference for all the residues in the 
pocket is 1.11A and the overall relative difference of the predicted pocket compared to the 
crystallographic data is 2.08%. The (cRMSD) difference based on the a carbons is 0.49 A. 
The (cRMSD) for each one ofthe substituted residues are 1.67A for Ser, 0.83A for Tyr and 
1.46 A for Arg and correspond to relative differences of 3.2%, 1.2% and 2.3%, respectively. 

For pocket 6 of HLA-DR3, the substitutions are at positions (311: Leu to Ser, (313: Phe 
to Ser, and (371: Arg to Lys. The predicted pocket is shown in Figure 5 together with the 
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Figure 3: Superposition of the predicted Pocket 1 of HLA-DR3 versus crystallo­
graphic data 

Figure 4: Superposition of the predicted Pocket 4 of HLA-DR3 versus crystallo­
graphic data 
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crystallographic data of pocket 6 of HLA-DR3. The (cRMSD) difference for this pocket 
is 1.22A based on all atom deviations, which corresponds to a relative-cRMSD of 4.9%. 
The (cRMSD) difference based on the O! carbons is 0.61 A. The individual (cRMSD) for 
Ser,611 is 1.26 A, for Ser,613 is 1.62 A, and for Lys ,671 1.82A which correspond to relative 
predictive errors of 7.4%, 3.7% and 3.2%, respectively. 

Figure 5: Superposition of the predicted Pocket 6 of HLA-DR3 versus crystallo­
graphic data 

For pocket 7 of HLA-DR3 three substitutions are made at the positions ,628: Glu to 
Asp, ,647: Tyr to Phe, and ,671: Arg to Lys. The (cRMSD) difference for this pocket is 
1.94A based on all atom deviations, which corresponds to a 4.69% deviation (see Figure 6). 
The (cRMSD) difference based on the O! carbons is 0.71 A. The (cRMSD) for each one of 
the substituted residues are 1.08A for Phe, 3.08A for Asp and 3.4 A for Arg and correspond 
to relative differences of 1.4%, 5.1% and 4.7%, respectively. 

Finally, for pocket 9 only one substitution is needed, namely Trp to Glu in position 
,69 to obtain pocket 9 of HLA-DR3 from pocket 9 of HLA-DR1. The resulting pocket is 
shown together with the one determined from the crystallographic data in Figure 7, and 
is found to have an (cRMSD) difference of 1.03 A based on all atoms and 0.56A based on 
the C" atoms. The relative-cRMSD based on all atom deviations is 37.2%. Considering 
only the substituted residue, the (cRMSD) is 1.67 A The large predictive deviation in this 
pocket is due to the large inherent deviation between the HLA-DR1 and the HLA-DR3 
crystallographic data. As shown in Table 3, the (cRMSD) difference for pocket 9 is 1.05A 
that corresponds to an inherent relative (cRMSD) of 20.7%. 

The results of the proposed approach for all the pockets are summarized in Table 4. 
Note that the percentage predictive error is less than 5%, except for pocket 9 where the 
large inherent deviation between the two crystals prohibits a more accurate prediction. 

As mentioned in section 3, the coordinates of Nand G' are variables in the proposed 
formulation with bounded ranges for their values around the corresponding atoms in HLA­
DR1. Based on the differences observed in the Nand G' (x,y,z) coordinates of the HLA-
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Figure 6: Superposition of the predicted Pocket 7 of HLA-DR3 versus crystallo­
graphic data 

Figure 7: Superposition of the predicted Pocket 9 of HLA-DR3 versus crystallo­
graphic data 
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Pocket HLA-DR1 vs HLA-DR3 HLA-DR1 vs I-Ek-HB 
Crystals - All atoms Crystals - All atoms 

(cRMSD) (J1) (cRMSD) (J1) 
1 1.03 1.24 
4 0.84 1.23 
6 0.84 0.84 
7 0.996 0.997 
9 1.05 1.092 

Table 3: (cRMSD) differences between HLA-DR1, HLA-DR3 and I-Ek crystals 

Pocket Pocket Substituted 
Residues 

(cRMSD) (A) (Relative-cRMSD) (%) (cRMSD) (A) 

All atoms Cn All atoms 
1 1.09 0.55 4.6 Val: 1.58 

Ser: 1.67 
4 1.11 0.49 2.1 Tyr: 0.83 

Arg: 1.46 
Ser: 1.26 

6 1.22 0.61 4.9 Ser: 1.62 
Lys: 1.82 
Asp: 3.08 

7 1.94 0.71 4.7 Phe: 1.08 
Lys: 3.40 

9 1.32 0.56 37.2 Glu: 1.67 

Table 4: Results for HLA-DR3 prediction 
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DR1, HLA-DR3 and I_Ek crystals [59,22,21] after superposition, tight bounds in the range 
of [0.3-1.0] suffice. To study further the effect of the bounds we considered bound variations 
of (±0.5), (±0.7) and (±1.0). The predicted structures of pocket 1 exhibit small (cRMSD) 
differences of 1.18, 1.11 and 1.09 A, respectively, calculated based on all atoms. 

The proposed approach considers the simultaneous substitution of all amino acids re­
sponsible for the differences of MHC class II molecules. The required substitutions are 
usually 2, 3 or 4 residues and give rise to a global optimization problem that include the 
dihedral angles of every residue and the translation vector and the euler angles defining the 
relative position of the residue. In order to reduce the size of the resulting global optimiza­
tion problem, the following two simplifying alternative procedures were also explored: The 
first approach is sequential in nature. Instead of considering all amino acids substitutions 
simultaneously they are considered sequentially. In particular, the conformation of the first 
considered changed amino acid is determined by minimizing the intra and inter molecular 
interactions between the specific amino acid and the rest of the residues constituting HLA­
DR1 binding site. Then, this residue is considered as part of the pocket and the structure of 
the second substituted residue is determined. In the second alternative approach each of the 
substituted amino acids are considered independently and their conformation is determined 
based on the minimum energy interactions with the rest of amino acids involved in the 
pocket of HLA-DR1 molecule. The results obtained for the case of pocket 1 of HLA-DR3 
are better than that of the sequential approach having an (cRMSD) of 2.17 A compared 
to 2.51 A of the sequential procedure but worse than that of the simultaneous approach 
((cRMSD)=1.09A). The reason is that in the sequential approach the error from the first 
determined amino acid conformation is accumulated as its conformation affects greatly the 
conformation of the other sequentially considered amino acids. 

7 Prediction of I-Ek Binding Sites 

Pocket 1 of I-Ek, requires three substitutions, that is, (385: Val --7 He, (386: Gly --7 Phe, 
and (390: Thr --7 Leu. The predicted pocket is illustrated in Figure 8 together with the 
crystallographic data of I-Ek [22]. The (cRMSD) difference based on all atoms deviations 
is 1.67 and corresponds to 9.2% relative predictive error. The (cRMSD) differences for the 
individual substituted residues are 2.45, 3.36, and 1. 76 A, for He, Phe and Leu, respectively. 

For pocket 4 of I-Ek there are four substitutions needed as shown in Table 2 ((313: Phe 
to Ser, (374: Ala to Glu, (378: Tyr to Val, and (3:71 Arg to Lys). The predicted pocket 
is illustrated in Figure 9 superpositioned with the crystallographic data of pocket 4 of 1-
Ek. The (cRMSD) difference is 1.58A, which corresponds to 3.49% predictive error. For 
the individual substituted residues the (cRMSD) differences are 0.78, 1.35, 2.88, and 1.61 
A, for Ser, Glu, Val, and Lys, respectively, and correspond to relative predictive errors of 
1.59%, 2.16%, 4.48%, and 2.03%. 

For pocket 6 of I_Ek three substitutions are required at the positions (311: Leu --7 Ser, 
(313: Phe --7 Cys, and (371: Arg --7 Lys. The pocket predicted by the proposed methodology, 
together with the crystallographic data for pocket 6 of I_Ek, is shown in Figure 10. The 
(cRMSD) difference is 1.28 A based on all atoms, which corresponds to 5.19% relative 
predictive error. For the individual substituted residues, the (cRMSD) differences are 1.89, 
2.67, and 1.64 for Ser, Cys, and Lys, respectively. These differences correspond to 4.41%, 
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Figure 8: Superposition of the predicted Pocket 1 of I-Ek versus crystallographic 
data 

Figure 9: Superposition of the predicted Pocket 4 of I_Ek versus crystallographic 
data 
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14.06% and 2.82% relative predictive error. 

Figure 10: Superposition of the predicted Pocket 6 ofI-Ek versus crystallographic 
data 

Pocket 7 of I_Ek requires four substitutions as shown in Table 2 (/328: Glu to Val, /347: 
Tyr to Phe, /367: Leu to Phe, and /371: Arg to Lys). Figure 11 shows the predicted pocket 
7, along with the crystallographic data for this pocket. The (cRMSD) difference is 2.03 
A and corresponds to 4.33% relative predictive deviation. For the individual residues the 
(cRMSD) differences are 2.89, 2.15, 2.20 and 3.23 A for Val, Phe/347, Phe/367, and Lys, 
respectively, and correspond to 3.95%,3.1%,5.28% and 4.41% relative predictive deviation. 

Finally, pocket 9 of I_Ek feature three substitutions at positions 0:72: Ile to Val, /39: Trp 
to Glu, and /360: Tyr to Asn. The resulting pocket 9 together with the crystallographic data 
ofI-Ek is shown in Figure 12. The (cRMSD) difference is 1.35 A that corresponds to 23.3% 
relative predictive deviation. For the individual residues the (cRMSD) differences are 1.56, 
2.46, and 1.56 A for Val, Glu, and Asn, respectively. Note, that the larger relative predictive 
deviation for this pocket is mainly due to the large relative error for Val at position 0:72, and 
the large deviation between the crystals HLA-DR1 and HLA-DR3 which gives a cRMSD 
of 1.09A and a 21.4% relative deviation. The results for all the pockets are summarized in 
Table 5. 

In order to study the effect of considering different bounds on Nand Cf coordinates, 
the proposed approach was applied to all the pockets for ±0.5 and ±0.3 A bounds around 
the coordinates of the corresponding atoms of HLA-DR1 molecule. The results are shown 
in Table 6. 

Note that, as was found from the crystallographic data of the I-Ek molecule binding with 
different peptides (i.e., a peptide derived from murine hemoglobin Hb(64-76) , or a peptide 
from murine heat shock protein 70 Hsp(236-248)), there is some inherent variability in the 
range of 0.01-0.4 A (for Nand Cf coordinates). These differences correspond to pocket 
flexibility to accommodate different peptides. 
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Figure 11: Superposition of the predicted Pocket 7 ofI-Ek versus crystallographic 
data 

Figure 12: Superposition of the predicted Pocket 9 ofI-Ek versus crystallographic 
data 
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Pocket Pocket Substituted 
Residues 

(cRMSD) (A) (Relative-cRMSD) (%) (cRMSD) (A) 

All atoms ca All atoms 
He: 2.45 

1 1.67 0.47 9.2 Phe: 3.36 
Leu: 1.76 
Ser: 0.78 

4 1.58 0.83 3.5 Glu: 1.35 
Val: 2.88 
Lys: 1.61 
Ser: 1.89 

6 1.28 0.65 5.2 Cys: 2.67 
Lys: 1.64 
Val: 2.89 

7 2.03 0.93 4.3 Phe: 2.15 
Phe: 2.20 
Lys: 3.23 
Val: 1.56 

9 1.35 0.63 23.3 Glu: 2.46 
Asn: 1.56 

Table 5: Results for I-Ek prediction 

Pocket Bounds (cRMSD) (A) 
1 ± 0.5 2.26 

± 0.3 1.67 
4 ± 0.5 1.81 

± 0.3 1.58 
6 ± 0.5 1.28 

± 0.3 1.44 
7 ± 0.5 3.17 

± 0.3 2.41 
9 ± 0.5 1.84 

± 0.3 1.77 

Table 6: Effect of different bounds on Nand C' coordinates (I_Ek) 
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The obtained (cRMSD) for all predicted pockets illustrate the good agreement with the 
crystallographic data considering that there is an inherent difference between the crystals, 
as shown in Table 3. The (cRMSD) differences shown in Table 3 represent the differences 
in the common atoms of the pockets of HLA-DR1 and HLA-DR3 crystals, as well as the 
differences between HLA-DR1 and I-Ek crystals. These (cRMSD) differences serve as a 
reference point in the evaluation of the predicted pockets. For instance, for pocket 1 of 
HLA-DR3, the predicted structure via the proposed approach has an (cRMSD) difference 
of 1.09 A while the crystallographic data of pocket 1 for HLA-DR1 and pocket 1 of HLA­
DR3 exhibit an (cRMSD) of 1.03 A among their common atoms. Comparing the results 
shown in Tables 3 and 4, 5, it is evident that the predicted structures are close to their 
reference points, even for pocket 9. 

8 Implications for Binding Studies 

8.1 Binding affinity evaluation 

The structure prediction of the binding sites of MHC class II molecules has significant 
implications for the evaluation of peptide binding to the HLA type II molecules. The 
methodology proposed by Androulakis et al. [28J for the evaluation of the binding affinity 
of pocket 1 of HLA-DRB1 molecule is applied to the predicted pockets and compared to 
the results for the pockets obtained from the crystallographic data. 

The basic idea of the method proposed by Androulakis et al. [28J is the determination 
of the conformation of the binding complex that corresponds to the global minimum of 
the interaction energy. An energetic-based criterion was introduced for the evaluation of 
the energy interaction between a given pocket and each naturally occurring amino acid. 
This measure, which is denoted as b..E, corresponds to the difference between (i) the global 
minimum total potential energy that considers all the energetic atom-to-atom interactions, 
classified as inter-interactions between the atoms of the residues that define the pocket of 
HLA-DR1 protein and the atoms of the considered naturally occurring amino acid, and 
intra-interactions between the atoms of the considered naturally occurring amino acid, and 
(ii) the global minimum potential energy of the considered naturally occurring amino acid 
when it is far away from the pocket: 

b..E = ETotal - E Res (13) 

where E~otal is the global minimum of the potential energy of the complex of the pocket 
and the binding peptide, and ERes is the global minimum of the potential energy of the 
peptide away from the pocket. Note that b..E does not represent a difference in the free 
energies of the complex and isolated aminoacids. Instead, it denotes the difference between 
potential energy plus solvation for the complex and the isolated aminoacids. 

8.2 Binding studies for the HLA-DR3 molecule 

This methodology was applied to the predicted pocket 1 of HLA-DR3 and to the pocket 
obtained from the crystallographic data [59J for the amino acids Phe, He, and Met. Based 
on the energy differences it is found that Phe is a better binder than Met by 1.1 kcal/mol 
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which is better than Ile by 3.9 kcal/mol for the predicted pocket. For the pocket 1 based on 
the crystallographic data, the binding studies [28] determine the same sequence (i.e., Phe 
followed by Met and by He) with corresponding differences of 2.37 kcal/mol for Phe to Met 
and 2.06 for Met to Ile. 

Application of the predictive binding approach [28] to the predicted, as well as to the 
crystallographicaly obtained, pocket 4 of HLA-DR3 for the amino-acids Asp, Glu, Ile and 
Phe shows that the negatively charged Asp and Glu are very strong binders. In contrast, 
Ile and Phe are weaker binders than Asp and Glu. 

8.3 Binding studies for the I-Ek molecule 

The aforementioned predictive binding approach was also applied to the predicted pocket 1 
ofI-Ek for the amino acids He, Val, and Phe. The results show that Phe is a better binder 
than Ile with an energy difference of 6.1 Kcal/mol, and He binds better than Val, with an 
energy difference of 2.8 kcal/mol. Similar results are obtained from the crystallographic 
data, and indicate that Phe is a better binder than Ile, and Ile is a a better binder than Val 
with energy differences of 4.4 and 0.7 kcal/mol, respectively. 

8.4 Binding studies for the HLA-DRl molecule 

In this section, in order to further verify the correct prediction of the binding sites of HLA 
type II molecules, the crystal of HLA-DR3 molecule is used [22] for the prediction of the 
pocket 1 of HLA-DRI molecule. The results obtained utilizing the predicted pocket were 
then compared to those found from the crystallographicaly obtained pocket [59]. As shown 
in Table 7, the binding studies using the predicted pocket illustrate the same trends as the 
binding studies of the crystallographic pocket. 

The results for both the predicted and crystallographic pocket 1 with R=5.0 A illustrate 
that Tyr, Phe and Trp are ranked at the top tier. At lower positions there are the Leu, Ile 
and Val, whereas at the bottom ofthe list finally are the negative charged residues Glu- and 
Asp-. Note that the differences in the energy interactions are very small ranging between 
[0,1.58]. 

Therefore, the proposed approach in this paper not only predicts the structure of the 
binding sites of HLA-II molecules, but also provides consistent results between the binding 
studies of individual amino acids and binding studies with sites based on the crystallographic 
data. 

9 Conclusions 

A novel and powerful theoretical approach is proposed for the structure prediction of the 
binding sites of MHC class II molecules based on the crystallographic data of HLA-DRI 
[59]. This approach couples the modeling of energetic interactions and deterministic global 
optimization approaches and can predict the pockets of HLA-DR3 and I_Ek with small 
(rms) differences. Furthermore, application of our recently proposed predictive approach 
for binding studies [28] to pocket 1 of HLA-DR3, pocket 1 of I-Ek, and pocket 4 of HLA­
DR3 demonstrates that the predicted rank ordered list of binders, for both the predicted 
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Residue aE .6.E Difference Difference 
Crystal (kcal/mol) Prediction (kcal/mol) (kcal/mol) % 

Tyr -20.000 -18.850 -1.15 5.75 
Phe -19.625 -18.040 -1.58 2.95 
Trp -16.950 -17.754 0.80 4.72 
GIn -15.396 -15.916 0.52 3.37 
Met -13.943 -13.928 -0.02 0.14 
Asn -13.784 -14.644 0.86 6.24 
Thr -13.297 -13.297 0.00 0.00 
Leu -12.481 -12.399 -0.08 0.64 
He -12.465 -12.486 0.02 0.16 
Ser -11.557 -11.187 -0.37 3.20 
Cys -11.280 -11.087 -0.19 1.68 
Val -11.209 -11.324 0.12 1.07 
Ala -10.355 -10.338 -0.02 0.19 
Gly -10.091 -9.996 -0.09 0.89 
Glu- -7.744 -6.891 -0.85 10.97 
Asp- -2.431 -2.594 0.16 6.58 

Table 7: Comparison of Predicted vs Crystallographic Binding Studies in Pocket 1 of HLA­
DR1 molecule (R = 5.0 A ) 
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binding sites, using the approach proposed in this work, and the binding sites based on 
crystallographic data are in very good agreement. 
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Abstract 

The past decade has brought major advances in the quality and variety of methods 
for computerized drug design and molecular docking, making the area ripe for the 
implementation of hybrid algorithms. Hybrid methods create improved algorithms from 
existing ones by mixing techniques in a way that maximizes advantages and minimizes 
disadvantages. Here, we outline a hybrid method for molecular docking which couples 
the rapid-scanning algorithm DOT with the global optimization algorithm CGU. 

Keywords: Molecular docking, hybrid algorithm, global optimization, local optimiza­
tion, fast Fourier transforms. 

1 Introduction 

Computer technology has revolutionized the way drugs are designed and analyzed. Not 
only do reliable methods for docking prediction exist, but there are a multitude of good 
techniques available (cf: [1,6, 7, 8, 11, 13, 14, 17, 19, 20, 22, 26, 29, 35, 37, 38].) The 
CASP2 docking assessment compared a number of distinct techniques for studying protein 
interactions [4]. The quality of submitted structures was quite good on the whole, and no 
method stood out as being exceptional in comparison with the others. 

Accuracy and speed are both important measures of quality in computer algorithms. 
Each can usually be given an objective formulation, but determining the "best" method is 
largely subjective. One often finds speed and accuracy to be a tradeoff in algorithms, and 
while some will wait years for the best answer possible, others are happier with a less optimal 
solution obtained quickly. Those methods expected to be fastest or most accurate can also 
vary greatly according to the docking problem, and no well-established set of benchmarks 
exists for making general comparisons. 

The ideal computerized docking program would incorporate all the strengths of existing 
algorithms and avoid their weaknesses. While it might seem a fantasy, in fact this goal is 
quite realistic. Moreover, it can be attained quickly and easily from suitable combinations 
of existing techniques. When different methods are used cooperatively, the result can be 
an improvement over any used individually. The following gives an outline for a hybrid 
technique which couples the rapid scanning algorithm DOT with the global optimization 
method CGU. A general description of the method and its application to the docking of 
acetylcholine into the acetylcholinesterase-fasciculin complex may be found in [23]. Here, 
we have attempted to give a more thorough account of the underlying methodology. 

2 Hybridization Techniques 

A hybrid algorithm attempts to combine existing approaches into a new technique. By 
balancing the advantages and disadvantages of individual methods, a hybridization can re­
assemble them in a way that is more optimal. It is not surprising that this cross-fertilization 
of code has been put to good used in genetic and evolutionary algorithms [15, 18]. The 
basic underlying principle is, of course, much older than the computer and has a variety of 
creative uses. The following table illustrates several strengths and weaknesses for the two 
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classes of algorithm used in our scanning and optimization hybrid. A review of the two 
columns suggests a strong complementarity. That is, the weaknesses of each approach are 
approximately balanced by strengths in the other. 

II Rapid Scanning Global Optimization 
Strengths Fast energy evaluation Able to test any configuration 

Can use grid-based potentials Energy to arbitrary precision 
Detailed energy profile Answer is precise 

Weaknesses Grid-based restrictions Expensive energy evaluation 
Energy is approximate Requires a smooth potential 
Many results to analyze Frugal landscape analysis 

Rapid scanning algorithms are notable for their ability to quickly produce a comprehen­
sive sketch of the energy landscape. They are also able to model electrostatic interactions 
using numerically-generated potentials, such as solutions to the Poisson-Boltzmann equa­
tion. However, their fast computational methods have the effect of introducing small errors 
in energy computations as well as grid-based restrictions on docked complexes. As a result, 
these methods are able to return an excellent sketch of low-energy basins, but are less able 
to identify an optimal docking configuration. Global optimization is, in contrast, designed 
to produce a single, optimal result. Global optimizers are able to compute energy terms 
and configurations to whatever precision is allowed by the interaction model. However, this 
precision typically requires smooth, explicit formulas for potential functions and a detailed 
computation of energy terms. Many optimization techniques are able to return some in­
formation on the global energy profile in addition to an optimal solution. To be efficient, 
though, optimization methods must be adept at hunting for the optimum without producing 
a detailed analysis of the energy landscape in the process. 

In balancing the relative strengths of rapid scanning and global optimization, we have 
developed a hybrid or "coupled" optimization technique for molecular docking. Coupled is 
synonymous with united and joined, which seemed a most apt description of this particular 
method. Our approach combines the rapid scanning algorithm DOT [21, 35, 36] with the 
global optimization technique CGU [3, 27, 30, 28]. The two algorithms have not been 
blended, but rather linked in a cooperative scheme that is mutually beneficial. Moreover, 
because CGU and DOT share the advantage of being fully parallelizable, this unification 
will prove increasingly advantageous in the age of teraflops computing. 

3 Rapid Scanning by Convolution 

The most basic model for molecular docking poses the problem in terms of six variables. 
If Molecule A is assumed to be stationary, the position and orientation of Molecule Bare 
determined by three space variables and three angular variables. If V(x) is the scalar 
electrostatic field generated by Molecule A and p is a sum of Dirac delta functions centered 
at atoms in Molecule B and weighted according to their charges, the electrostatic potential 
energy is given by 

E = r V(x)· p(x)dx iR3 (1) 
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The distribution p(x - v) represents a shift of Molecule B, which in the six-dimensional 
configuration space corresponds to varying the spatial degrees of freedom. To specify an 
arbitrary configuration, we use the notation Pa(x - v) where a is Euler angle triple. If a is 
held fixed and v allowed to vary, we see that the electrostatic potential energy Ea (v) can 
be expressed as the integral 

(2) 

This is a type of convolution, called a correlation, and the Convolution Theorem for Fourier 
transforms allows one to rewrite the equality as 

(3) 

where Ea, fr, Pa denote the Fourier transforms of Ea, V, Pa, and P~ is the complex conjugate 
of Pa. By fixing a rotation of Molecule B, the energy values over all space coordinates are 
determined by this formula. When V and Pa are discretized to lie on a grid, the result will 
also hold when using fast Fourier transforms. 

Convolution docking algorithms are designed to conduct an exhaustive search of the 
six-dimensional configuration space described above. Computational efficiency is achieved 
with the use of fast Fourier transforms and the formula (3). By combining this grid-based 
formulation for the space coordinates with a good rotation sample, it is possible to construct 
a uniform sample of the entire six-dimensional configuration space. Fast transform methods 
to perform geometric fitting and potential energy computations were originally proposed in 
[13, 19]. Currently available programs for convolution docking include DOT [21, 35, 36] as 
well as GRAMM [38, 39] and FTDOCK [8]. DOT has been developed by author Ten Eyck 
and collaborators at the Computational Center for Macromolecular Structures (CCMS). 
Rapid scanning algorithms have been shown to perform well at identifying docked com­
plexes which are closely matched to experiment. At the CASP2 docking assessment, Vakser 
produced the lowest RMSD docking configuration for the hemagglutinin-antibody complex 
using GRAMM [39]. This is a large protein-protein docking problem with conformational 
change, which makes it very expensive to analyze using most docking methods. 

Fast transform methods for molecular docking employ similar computational techniques 
but vary in the energy or "scoring" functions used. The scoring function used by DOT 
incorporates both geometric fit and electrostatic energy terms. While any electrostatic 
field can be used with DOT, the program has been designed to work best with a Poisson­
Boltzmann model. The methods have been tested with solutions generated by UHBD [2] 
and DelPhi [16], and both lead to better docked complexes than those obtained using a 
Coulombic potential [21]. In addition to scanning for configurations having low potential 
energies, DOT is able to accurately pinpoint regions of space in which the free energy is 
low. Such information is essential to solving the ultimate docking problem, which is that 
of determining the pathways and mechanisms by which two molecules come together. 

One well-acknowledged disadvantage of convolution algorithms is that correctly docked 
complexes are returned in a list which includes many "false positive" results. Since these 
incorrectly docked structures may score higher than the correct ones, determining an optimal 
configuration often requires considerable analysis based on biochemical information. This 
phenomenon stems in part from the fact that atoms in one of the two molecules must be 
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Figure 1: This figure shows the x, y and z coordinates of DOT's favorable configurations 
plotted against their energy values. The angular variables of the six-dimensional configura­
tion space have not been profiled, but minima shown have distinct angular components. 

rounded onto grid points in order to utilize fast transform methods. This has the effect of 
introducing small distortions in the shape fit and electrostatic energy computations. Figure 
1 illustrates this by plotting the three spatial coordinates of configurations returned by 
DOT against their computed energies. The top-ranked solution returned by DOT has been 
circled, and a more biologically accurate answer is highlighted with an "x." The landscape 
returned by DOT resembles a bowl centered about the more biologically-precise solution, 
while the top-ranked answer appears inconsistent with the global energy profile. 

Because "soft docking" programs such as DOT can allow close contact between two 
molecules, correctly approximating the electrostatic interactions can be tricky. One major 
improvement to DOT's scoring function has come very recently based on the observations 
of Victoria Roberts, one of the program's developers. She determined that the lower rank­
ing of correctly docked structures was largely attributable to atoms being placed between 
the molecular boundary and solvent-accessible surface layer. Since the electrostatic field 
undergoes large changes in this region, computed energy values did not accurately model 
an induced fit between the molecules. Clamping the potential field to values found at the 
solvent-accessible surface layer appears to have largely eliminated this problem. A more 
thorough account of improvements in the quality of the rankings and free-energy computa­
tions can be found in [21]. 

Convolution docking is most efficient at lower resolution. Using a 643 grid and 1,800 
rotations, the program can complete its work in 30-45 minutes on a high-end workstation. 
A 1283 grid and 1,800 rotations consumes about 4-6 hours of computing time, and a large 
run with a 1283 grid and 54,000 rotations requires supercomputing machinery and over 100 
processor hours. At higher resolution, the computations become too costly and produce far 
more information than is truly needed. High-resolution structures can be obtained more 
efficiently by refinement with a local optimization routine. This will be discussed in the 
next section, and this local refinement will later be used in conjunction with the CGU global 
optimization technique. 
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4 Fine-tuning Grid-based Results with Local Optimization 

To relax grid-based approximations, a continuous refinement technique has been developed 
in which favorable configurations returned by DOT are used as starting points for local 
optimization. Refinement of rapidly-scanned results with local optimization has previously 
been shown to give more biologically-accurate results [12]. However, DOT uses a numerical 
approximation to the electrostatic potential of the stationary molecule, while a continuous 
model is needed for local optimization. Explicit formulas for solutions to the Poisson­
Boltzmann equation are generally not known. Yukawa potentials have the form 

e-)..r 

V(r) =Q.-
r 

(4) 

and solve a linearized Poisson-Boltzmann equation with constant dielectric. These poten­
tial functions are sensitive to ionic concentration and temperature but do not incorporate 
dielectric effects. In the region of solvent accessibility they are well-matched to potential 
function values obtained from UHBD and DelPhi, and for rigid docking of small ligands 
they appear to give highly comparable results. 

Potential energy values were computed as the sum of pairwise interactions between 
atoms in the stationary and moving molecules. For a pair of atoms separated by a distance 
Tij and having charges qi and Qj, the contribution to the electrostatic potential energy was 
defined to be 

e-)..rij 

Vij = 330· ( qi' Qj' -- ) 
Tij 

(5) 

The constant 330 is a conversion factor for rewriting all atom potentials in units ofkcal/mole, 
which are units often used when solving Poisson-Boltzmann equation. The value of A varies 
according the temperature and ionic concentration, but A ~ 1 is typical. This electrostatic 
potential was combined with a Lennard-Jones potential 

Lij = ~ . ( (!:Qy2 _ 2. (~) 6 

10 Tij Tij 
(6) 

to model steric repulsion and van der Waals interactions. A uniform value of TO 3.8 
was used regardless of atom types, but future implementations will likely use a more so­
phisticated interaction model. The constant fo determines the relative weighting of the 
electrostatic and Lennard-Jones terms. This value is based on the typical depth of the van 
der Waals attractive well. Numerous examples suggest this weighting gives optimal soft 
docking results with DOT. 

Local optimization was performed using NPSOL [9], which we have found to be compu­
tationally efficient and robust against poles in the potential energy. Because soft docking 
simulates induced fit by allowing close contacts between atoms, the switch to continuum 
methods requires a bit of care. Sequential Quadratic Programming algorithms, such as 
NPSOL, are efficient because they can take larger, hence fewer, steps than gradient descent 
techniques. However, large gradients at starting points can make it difficult to ensure that 
local minima are close to the initial configurations. Bounding the size of initial minimiza­
tion steps taken by NPSOL appears to solve this problem in the majority of cases without 
sacrificing computational efficiency. The time required to refine solutions is, however, also 
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Figure 2: This illustrates the result of refining DOT's rapid energy profile with local op­
timization. DOT has returned a softened landscape more likely to have a concentration 
of low-energy points near the optimal solution. Continuous refinement with "hard core" 
potentials eliminates false positive solutions and highlights the docking region. 

dependent on the energy model and the size of the molecules. Using the present all-atom 
model, one can refine about 100 solutions per hour for a small ligand (10-15 atoms) docked 
to a larger protein (500-600 residues). 

Figure 2 illustrates the continuous refinement of favorable configurations returned by 
DOT. This refinement has the effect of relaxing grid-based restrictions and reranking solu­
tions according to energy values at nearby local minima. While the fine-tuning of solutions 
does not radically change the docked complexes, its impact on the energy profile is much 
more dramatic. Landscape features which have been smoothed by soft docking appear more 
distinguished. The landscape now resembles a funnel rather than a bowl, and the docking 
site is highlighted by a cluster of low-energy minima. In cases where induced fit is expected 
between the molecules, the potentials can be softened using analytic techniques such as those 
implemented in [24, 34, 40J. Local refinement will continue to provide a precise fine-tuning 
of results, but it will impact the overall shape of the energy landscape less significantly. For 
rigid and soft docking problems, it is anticipated that refinement of DOT's rapidly-scanned 
results will often generate the global minimum of the potential energy function. Once the 
continuous model is revised to allow flexibility in the molecules, finding the global minimum 
ought to be less likely, although identifying a handful of low-lying local minima seems nearly 
ensured. 

In many cases, the refined results will accurately pinpoint the location of the optimal 
configuration. However, in cases where a clear "winner" cannot be determined, this refin~ 
ment can give the first step in global optimization using the CGU method. The next section 
provides a brief outline of CGU's underestimation technique, and this will be followed with 
a description of how mutual benefits are achieved by coupling the final stages of a DOT 
rapid scan and the initial stages of global optimization with CGU. By using DOT to con­
duct a fast global search and CGU to perform a detailed global optimization, the result 
is an enhancement compared to either algorithm alone. Moreover, the methods have been 
combined in a straightforward fashion that produces no wasted effort or unused results. 
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5 Convex Global Underestimation 

Global optimization is a universal topic that has seen contributions from a multitude of 
distinct scientific fields such as engineering, finance and biophysics. Everyone needs to 
minimize something: cost, waste, effort, error, energy, etc. The needs of the business world 
accelerated the development of linear programming techniques, and the needs of bioscience 
continue to push boundaries in non-convex optimization. Convex Global Underestimation 
(CGU) is an optimization technique which arose from collaboration between researchers in 
computer science and biochemistry [3, 27, 30, 28]. Authors Rosen and Phillips developed 
CGU along with Ken Dill, and the method has been successfully tested on a variety of 
protein folding models with up to 70 degrees of freedom [3, 27, 30]. In addition to protein 
folding and docking problems, the algorithm has also been used to optimize parameters in 
potential energy functions [28]. While CGU has performed well on many types of functions, 
it was primarily designed to minimize potential energies encountered in protein folding 
applications. Two properties commonly found in such functions are the presence of many 
local minima and a single, well-defined primary basin. 

The method employed by CGU attempts to trace out the underbelly of the potential 
energy landscape using local minima. It is an iterative procedure which at each stage 
generates a collection of local minima starting from random or user-specified seed points. 
For a problem with n degrees of freedom, the algorithm attempts to find at least 2n + 1 
distinct local minima. These minima are closely and rigorously underestimated by a convex 
quadratic function, and the search space is trimmed according to where this underestimating 
function lies below the smallest energy value known. In short, CGU uses local minima 
to trace out a bowl approximating the shape of the energy basin and then proceeds by 
redirecting its search near the bottom of this bowl. This trimming of the search space 
allows the algorithm to converge rapidly to the global minimum. The algorithm terminates 
when the global minimum of the underestimating function coincides with the position of 
the best local minimum it has found. This convergence typically occurs within 10 iterations 
of the underestimation technique. 

Constructing the convex underestimator is straightforward. A compact representation 
for a quadratic function of n variables is given by 

U(w)=wtAw+B·w+C (7) 

where A is an n x n matrix, Band ware a vectors of length nand C is a constant. When the 
matrix A has no negative eigenvalues, the function U is said to be convex. If WI, ... ,Wk are 
local minimizers of the potential energy function F(w), the function U(w) underestimates 
all local minima provided 

F(Wi) - U(Wi) ~ 0 (8) 

for i = 1, ... , k. To underestimate these minima as closely as possible, the parameters 
A, B, C are chosen in such a way that 

k 

L W(Wi) - U(wi)1 (9) 
i=1 
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is minimized. If w. is the lowest energy minimizer known, the new search space is defined 
to be the region in which 

U(w) ::; F(w.) (10) 

If two local minima have the same energy value, one is eliminated to ensure that mirror 
image conformations are not allowed for folding problems. Aside from this, no added checks 
on structural distinctness are needed by CGU. A formal outline of CGU methodology can 
be found in [27]. While this method is not guaranteed to find the global minimum, in 
practice it gives a rapid and accurate means of global optimization for many biomolecular 
applications. 

The effectiveness of the CGU algorithm has been tested on hundreds of small protein 
folding problems [28] using a simplified H-P model due to Sun, Thomas and Dill [33]. A 
recent test of 20 problems produced results which are well-matched to general averages. 
These problems ranged in size from from n = 4 to n = 70 free variables and used 2 torsion 
angles per residue. The number of local minima expected for this model varies exponentially 
in the number of residues. Each problem was repeated 20 times using 8n + 4 random seeds 
per iteration. For the above-mentioned model, experience indicates that this seeding rate 
(which is 4 times the minimum of 2n+ 1) is sufficient to ensure a high rate of accuracy while 
minimizing computational costs. Since per residue potentials are likely to be smoother than 
all atom potentials, some adjustments may be necessary for optimal results in the latter 
case. For 13 of the 20 problems, the global minimum was found in 100% of the 20 trials. 
These problems included the 5 largest (n = 34,36,38,50,70). The remaining 7 problems 
had success rates of 75% or less. CGU generally returns a low "confidence factor" in cases 
where the true global minimum has not been found, and it rarely finds non-optimal solutions 
with any consistency. In only one of the 20 cases examined did the method produce results 
which were deceptive. For this example, the method returned the same answer in 19 of 20 
trials. However, the remaining trial returned a lower energy value than the one found more 
frequently. 

The success of CGU seems to depend almost entirely on the funneling properties of the 
landscape. When CGU fails, it is because the landscape lacks the qualities that the method 
was designed to exploit. If a single funnel exists, CGU is able to find global minima with 
consistency and unparalleled efficiency. However, caution is required in situations where 
multiple low-lying basins are likely. If the two lowest-energy minima known to CGU are 
well-separated but have similar energy values, the algorithm will be directed toward points 
which lie somewhere between them. This is clearly a good idea when this leads to a low­
energy funnel and a bad idea anytime there is a high-energy barrier separating low-energy 
basins. To use CGU effectively, the domain would need to be separated into parts, each 
part containing just one distinguished basin. This would combine hierarchical strategies, 
such as those outlined in [10, 31, 32], with CGU's ability to tunnel to the bottom of bumpy, 
bowl-like landscapes. 

The original local optimization routine used by CGU was recently replaced with the 
NPSOL optimization package mentioned earlier. This brand of local optimizer requires 
fewer function evaluations to converge, which in this context is a considerable savings. For 
protein folding problems, run times for the original version of CGU scaled as about O(n4 ). 

The new version runs faster and with a scaling of about O(n3 ) [30]. The speed of CGU at 
finding global minima depends on several things. For a six-dimensional docking problem, 
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Figure 3: This figure shows the energy profile for a successful CGU run. The CGU algorithm 
finds the global energy minimum through an iterative technique able to tunnel to the bottom 
of rough energy landscapes. 

the key issues are the speed of energy evaluation and local optimization. In protein folding 
and flexible docking models, the number of free variables is an additional consideration. 
Using simplified H-P models for folding protein backbones, the program can minimize a 
function with 16 variables in approximately one minute. For rigid and soft docking, only 
six variables are needed to model the system. The cost of optimization is then effectively 
proportional to the cost of energy evaluation, which scales according to the size of the 
molecules. The all-atom energy model used here is considerably more expensive than the 
per-residue potentials used in folding protein backbones. Our timings for smaller systems 
thus range from a few minutes to a few hours. 

Since a randomly-seeded CGU run may terminate after 2 iterations in one run and 10 
iterations in another, individual run times also vary according to the choice of seed points. 
We will now see why a seeding scheme which incorporates the results of a DOT scan can 
serve to minimize the number of iterations required by OGU to locate the global optimum. 
In addition to speeding the global optimization process, this addition is also likely to give 
improvements to CGU's success rate at finding optimal docking configurations. 

6 Coupled Scanning and Global Optimization 

It is clear that the complexity of optimization for a protein folding problem varies according 
to the size of the protein, and the number of free variables used to model a problem is 
typically a linear function of the protein's chain length. It is commonly thought that the 
number of energy minima in a folding problem is roughly proportional to the exponential 
of the protein's chain length, which suggests a similar relationship with the number of free 
variables used in the folding model. As mentioned earlier, CGU has shown a consistently 
high success rate at producing optimally-folded structures in this context. For protein 
folding problems with n free variables, the use of 8n seed points per CGU iteration gives 
consistent, reliable results. Since the number of local minima which must be found by CGU 
increases only linearly in the number of free variables while the total number of minima 
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varies exponentially, the CGU algorithm gives an undeniably efficient means of folding 
proteins. 

Energy landscapes for protein folding and docking problems share many commonalities, 
but they differ in one key respect. The basic interaction between a pair of molecules can 
be modeled using only six degrees of freedom, but the expected number of local minima 
remains dependent on the molecules. It is too early to determine how this will affect the 
success of CGU, but it seems logical that using more seed points per CGU iteration will 
be required in some cases. In a handful of preliminary trials which used 50-100 random 
seeds per CGU iteration, the algorithm was able to accurately locate global minima. The 
consistency in finding optimal solutions was good but slightly lower on the average than 
for protein folding problems. The lowest rate seen was 40% for docking acetylcholine into 
the acetylcholinesterase-fasciculin complex [23]. This case, however, is an exceptionally 
difficult one in which the toxin fasciculin inhibits the interaction between acetylcholine and 
acetylcholinesterase. 

An alternative approach to using random seed points is to use directed seeding techniques 
able to produce local minima of the greatest value to CGU. Finding low-lying minima in 
the primary basin speeds the CGU optimization process, and these minima provide low 
energy landmarks which reduce the chance of eliminating the global optimum during CGU's 
successive trimming of the search space. Figures 3-4 illustrate the results of a successful 
and unsuccessful CGU run. The lowest-energy minima are concentrated in a very compact 
region of space, a situation which can occur when docking pathways are narrow. 

When no active site is known, the space coordinates must encompass the stationary 
molecule and leave room for the docking one. The example displayed has a domain which 
is 128 A on each side, while the region in which the lowest energy values are seen can be 
enclosed in a 10 A box. By picking a point at random, one finds this region with a mere 
.0005 probability. Since a good initial choice for the angular variables is also required to 
generate the lowest energy minima, the chance of finding a good clue with 100 random 
seeds is grim. CGU will direct its search toward the low-energy region, increasing its odds 
of finding good local minima as it progresses. However, if the random sample taken in the 
initial iteration is too sparse, the first underestimator may lead CGU away from the global 
minimum instead of toward it. Later underestimators take into account all known minima 
and thus give a more comprehensive picture. While better samples could be generated with 
added random seeds, more benefit may be had by incorporating techniques that increase 
the odds of finding local minima in the primary basin. 

The DOT results shown in Figure 1 are the top configurations taken from a scan of over 
3.7 billion. Of these, 1.8 million had space coordinates in the low-energy region described 
above, although the vast majority of these were eliminated due to incorrect values for the 
angular variables. As may be seen in Figure 2, refinement of top DOT solutions produced 
a collection of eight minima with very low energies, one of which was globally optimal. 
A comparison of Figures 2-3 shows that the energy profile generated by refinement of top 
solutions from DOT bears a strong resemblance to the profile generated in a successful CGU 
run. Even if the global minimum had not been produced by refinement, the remaining local 
minima would have been enough to prevent CGU from avoiding the narrow docking pathway 
during the run shown in Figure 4. Moreover, using a healthy sample of low-lying minima in 
the first iteration is also apt to reduce the number of CGU iterations needed for convergence. 
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Low-energy minima generated by an unsuccessful CGU run 
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Figure 4: This figure shows the profile of an unsuccessful CGU run. The program was able 
to sketch out the upper portion of the primary basin, but did not find the narrow region in 
which the lowest energy minima occur. 

The effects of directed seeding are clearly dependent on the seed points. If the collection 
of seeds produces a global minimum in the first iteration, the CGU algorithm will terminate 
at the second iteration with the correct answer. This would be the case when using the 
DOT-generated collection of seeds displayed in Figure 1. If the seed which gives the global 
minimum is removed, the algorithm consistently produces the global minimum in three it­
erations. For the given example, this behaviour appears to be typical provided at least four 
low-lying minima are present. With fewer low-lying minima, one sees continued improve­
ments in success rate, but speed increases are less dramatic. Future work will examine the 
effect of coarsening the grid used in DOT's rapid scan. A coarse DOT run terminates very 
quickly, and it is apt to produce low-lying minima but not the global optimum. In general, 
it is expected that the size of DOT's scan and the length of CGU's optimization run can be 
balanced in an optimal way. We anticipate that a most efficient coupling of DOT and CGU 
should depend somewhat on molecule sizes and the complexity of the interaction model. 

As noted in the section on local refinement, optimization times are highly-dependent 
on the expense of energy evaluation. Using an all-atom energy model, local optimization 
for docking small ligands to larger proteins can produce about 100 minima per hour. If 
50 seed points are used for each iteration of CGU, then the cost per iteration is about 30 
minutes. For the docking trials performed to date, the randomly-seeded CGU runs have 
required an average of six iterations, hence 3 hours of computing time. In contrast, runs 
coupled with DOT to perform smart seeding during the first iteration always converged in 
2-3 iterations of the CGU method and had a nearly perfect rate of success. The two-way 
benefits of coupling DOT with CGU should now be evident. We see that DOT offers CGU 
increased speed and success at determining global energy minimizers, while CGU provides 
DOT with an enhancement to the precision and optimality of its docking results. 
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7 Concluding Remarks 

The previous sections have served to illustrate the advantages of coupled optimization 
with CGU and DOT. Not only does this hybrid method offer advantages over either single 
method, but the technique has many extensions. Because CGU is not constrained to solving 
a six-dimensional problem, the optimization techniques have the ability to tackle flexible 
docking problems. Since the "softness" of DOT's docking model can be varied according to 
the problem, use of directed seeding should continue to give significant speed and accuracy 
improvements over random seeding schemes. 

One important addition to future versions of this coupled optimization technique will 
be a more efficient and unified energy model. At present, the continuum computations use 
an expensive all atom model. This is acceptable for docking small ligands, but would be 
extremely slow for studying protein-protein interactions. Lennard-Jones potentials can be 
smoothed [24, 34, 40] to model induced fit in the continuum computations, while fast mul­
tipole [5, 41] or spline approximations [25] can be used for computational efficiency. The 
modeling of electrostatic interactions will be done using a new PDE solver able to approx­
imate solutions to the non-linear Poisson-Boltzmann equation using local basis function 
expansions. 

Finally, additional docking methods can be incorporated into this coupling scheme. 
The collection of results produced by CGU and DOT will contain far more than a single 
docked complex. DOT is capable of tracing out low-energy basins and pathways, while local 
refinement and global optimization give a collection of local minima leading to the optimal 
solution. Such a body of information is extremely valuable to dynamics-based studies. This 
suggests that the problem solving capabilities of this coupled optimization technique can 
be readily extended through the use of existing molecular dynamics software. 
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Abstract 

In this paper we evaluate the design of the hybrid EAs that are currently used to 
perform flexible ligand binding in the AutoDock docking software. Hybrid evolutionary 
algorithms (EAs) incorporate specialized operators that exploit domain-specific features 
to accelerate an EA's search. We consider hybrid EAs that use an integrated local search 
operator to refine individuals within each iteration of the search. We evaluate several 
factors that impact the efficacy of a hybrid EA, and we propose new hybrid EAs that 
provide more robust convergence to low-energy docking configurations than the methods 
currently available in AutoDock. 

Keywords: drug docking, ligand binding, hybrid evolutionary algorithms, global opti­
mization, local optimization. 
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1 Introduction 

Computational methods for molecular docking are valuable tools for structure-based drug 
discovery. Methods for automated docking fall into two broad categories: matching meth­
ods and conformational search methods. Matching methods attempt to find a good docking 
based on the geometry of a rigid docking molecule and receptor site. The DOCK pro­
gram [13] was one of the first matching methods developed, and current versions of it are 
still used. Conformational search methods typically model the ligand in greater detail, and 
they often allow conformational flexibility in either the ligand or receptor site, or both. 
These methods employ a simulation or optimization method to search through the space of 
ligand-receptor configurations. 

AutoDock [7, 16] is an example of this approach to molecular docking. It uses a phys­
ically detailed model that allows for a fixed receptor site and flexible ligand. AutoDock 
employs a rapid grid-based method for energy evaluation and precalculates ligand-protein 
pairwise interaction energies so that they may be used as a look-up table during the confor­
mational search. AutoDock has been successfully applied to a variety of applications using 
a simulated annealing search method [6]. 

More recently, evolutionary algorithms (EAs) have been incorporated into A utoDock 
and applied to standard test problems [18, 15]. EAs have become a popular choice for 
heuristic search in docking applications [1, 26], and in our evaluation of EAs with AutoDock 
they consistently perform better than simulated annealing. The molecular docking problem 
solved by AutoDock is a challenging global optimization problem, and the EAs perform 
a better global search across the range of positional, orientational and conformational pa­
rameters for flexible ligands. Two forms of EAs can currently be used with AutoDock: a 
genetic algorithm [5] and a hybrid EA that uses local search. The hybrid EAs apply local 
search in each iteration to refine points. Rosin et al. [18] and Morris et al. [15] show that 
this local refinement can significantly improve the performance of the EA. 

In this paper we reconsider the design of these hybrid EAs. Specifically, we evaluate 
several factors that may impact the efficacy of these methods. First, we describe a new local 
search method that has more robust convergence properties than the method previously 
used with AutoDock. Next we consider the duration of local search, which impacts the 
balance between global sampling and local refinement in a hybrid EA. Finally, we consider 
the initial step length used by the local search method, which can be dynamically initialized 
using population statistics from the EA. We empirically evaluate the effects of these factors 
on the performance of hybrid EAs using standard test problems. Our results indicate that 
hybrid EAs using the more robust local search are usually better, and that running the 
local search method longer improved the search. Initializing the local search step length 
automatically did not appear to be an important factor, although using this approach can 
avoid certain worst-case scenarios where the fixed initial step length is poorly initialized. 

2 AutoDock 

AutoDock docks small flexible molecules to large rigid macromolecules like proteins [16]. 
A candidate docking gives specific positions and orientations for the protein and a small 
molecule. AutoDock uses an approximate physical model to compute the energy of a candi-
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date docking, and uses a heuristic search to minimize this energy. This method makes most 
sense when there is a single docked configuration that is at a much lower energy than other 
configurations, so that we expect this low-energy configuration to be the consistent result 
of physical interaction between the two molecules. If the prediction of this configuration is 
to be accurate, the energy function must have its global minimum at or near this physical 
configuration. 

Heuristic search operates on the configuration of the small molecule, assuming (without 
loss of generality) a fixed position for the protein. The small molecule can take any position 
around the protein, and can have any orientation. Global orientation is expressed as a 
quaternion, which can be thought of as a vector giving an axis of rotation, along with 
an angle of rotation about this axis. The small molecule may also have several internal 
rotatable bonds so that its shape is somewhat flexible. The representation of a candidate 
docking consists of 3 coordinates giving the position of the small molecule, followed by the 
4 components of the quaternion specifying the overall orientation of the small molecule, 
followed by one angle for each of the rotatable bonds. 

The docking potential used in AutoDock 3.0 is an empirical free energy potential. This 
energy potential is composed of five terms (see Morris et al. [15] for further details). The first 
three are pairwise interatomic potentials that account for short-range electrostatic repulsive 
forces and long-range weak van der Waals attractive forces. The standard Lennard-Jones 12-
6 potential is used for the van der Waals forces, and a 12-10 potential is used for hydrogen 
bonds. The next term measures the unfavorable entropy of a ligand binding due to the 
restriction of conformational degrees of freedom, using a measure that is proportional to 
the number of sp3 bonds in the ligand. The last term uses a desolvation measure adapted 
from Stouten et al. [22] which works well with the precalculated grid formulation used by 
AutoDock. 

To account for internal energy in a flexible small molecule with internal rotatable bonds, 
we calculate the same energy contributions summed over all pairs of atoms within the small 
molecule. This sum is added to the total energy evaluation. This penalizes conformations 
of the small molecule that are energetically unfavorable independent of their interaction 
with the macromolecule. 

To save time when computing energy of interaction with the macromolecule, 3-D poten­
tial grids are computed for each atom type before optimization begins. Interaction energy 
is computed as described above at each point in the grid. Then, when calculating total 
energy during optimization, the 'energy contribution of an atom is obtained via trilinear 
interpolation of its position within the grid specific to its atom type, based on the values 
at the nearest 8 points in the grid. Calculation of the energy due to pairwise interactions 
within the small molecule does not make use of these grids. 

Computation of the grids for energy evaluation requires knowledge of the (assumed 
fixed) 3-D positions of each atom in the protein; these positions are usually obtained by 
X-ray crystallography. We also require the structure of the small molecule, along with the 
locations of internal rotatable bonds. Small molecules tend to be chemically simple, so 
that we can determine their structure (at least up to the degrees of freedom represented by 
the rotatable bonds) from their chemical composition alone. Partial charges are required 
to calculate electrostatic interaction potentials, but these partial charges can be computed 
from the structure with molecular modelling software such as MOPAC. SO, it is possible to 
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use AutoDock to test many candidate small molecules against a single target protein, after 
obtaining the structure of this protein experimentally. This makes AutoDock an important 
computational tool in the initial stages of drug design. 

3 Optimization Methods 

Docking is a difficult global optimization problem, and a variety of different optimization 
strategies have been proposed to solve docking problems (e.g. see [1, 26]). Simulated 
annealing [12, 25] is the first optimization method that was used to perform docking with 
AutoDock [7, 16]. Simulated annealing borrows from the natural metaphor of cooling metal 
in an attempt to globally minimize functions. Simulated annealing operates much like a 
steepest descent algorithm, but where a steepest descent algorithm rejects all inferior points, 
simulated annealing may accept an inferior point with probability p. This probability p is 
based on the inferiority of the alternate point and a temperature parameter, T: 

where llE is the size of the energy gain, and k is the Boltzmann constant. A cooling 
schedule lowers temperature during the course of optimization. Simulated annealing does a 
more global search in early iterations, when high temperature allows transitions over energy 
barriers from one valley to another. In later iterations, the temperature becomes low, which 
places more focus on a local optimization within the current basin of attraction. 

Subsequently, genetic algorithms [2, 5] have been used by Hart [8, 10], Rosin et al. [18] 
and Morris et al. [15] to perform docking with AutoDock. Genetic algorithms are evolu­
tionary algorithms (EAs), which perform a multi-point search based on the mechanisms 
of natural evolution. Specifically, EAs utilize stochastic competition and multi-point re­
combination, which reflect the mechanisms of natural selection and sexual recombination. 
Figure 1 provides a basic overview of the main steps of an EA. In each iteration, an EA uses 
stochastic competition to select a subset of points from its current population of points. This 
subset is used to generate new points using evolutionary operators like recombination and 
mutation. Recombination generates a new point from two points, often forming a point that 
represents a convex combination of these two points. Mutation generates a point by varying 
a subset of the point's parameters. The set of new points generated by the evolutionary 
operators are typically used to form the population for the next iteration of EA. Although 
the stochastic competition tends to focus an EA's search, these methods often perform a 
robust global search because they sample across multiple points in a search domain. 

Hart [8], Rosin et al. [18] and Morris et al. [15] also consider hybrid EAs that use 
local search. These EAs apply local search to a subset of the points generated by the 
evolutionary operators in an EA in each iteration. The motivation for these hybrids is 
that these methods could decompose the search by allowing the EA to globally sample 
across the range of possible docking configurations while the local search method quickly 
minimizes points to find locally optimal configurations. Hart, Kammeyer and Belew [8, 11] 
argue that these types of hybrid EAs are better global optimizers than either EAs or local 
search separately, and Torn and Zilinskas [24] note that most successful global optimization 
methods also apply the same principle of distinguishing the mechanisms for global and local 
search. 
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Uniformly generate Po 
For t = 1,2, ... 

Stochastic competition generates Pt from Pt-l 

Apply recombination and mutation to points in Pt to generate PI 
Apply local search to points in PI to generate PI' 
Compose Pt from PI' and PI 

EndFor 

Figure 1: High-level description of the major steps in an EA. Local search is not 
used in a canonical EA, but it is used in a hybrid EA. 
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Global-local search hybrids may be especially effective for docking. We believe that 
there are multiple locations on the surface of the macromolecule where the small molecule 
could dock, and multiple orientations of the small molecule that are energetically plausible. 
Local search can reveal which of these locations and orientations is best by fitting the small 
molecule as closely as possible to the macromolecule within a small local neighborhood 
of a coarse location and orientation. But we do not expect smooth hills in energy from 
one location and orientation to a very different one, so that global search is required to 
choose among these. A global-local search hybrid can effectively sample distant locations 
and orientations with global search, and get accurate evaluations of each using local search. 

The particular hybrid EAs that we have applied to docking are Lamarckian hybrid EAs. 
In Lamarckian hybrid EAs, the points used to start a local search are replaced by the 
final point generated by the local search. This is in contrast to a Darwinian hybrid EA, 
which simply gives the starting point the value of the final point (which generally increases 
the probability of selecting the point in the subsequent stochastic competition). Although 
Darwinian hybrid EAs are more biologically plausible, our previous work [8, 11] leads us to 
use Lamarckian GA-LS hybrids here. 

The method previously used to perform local search in the hybrid EAs is Algorithm 1 
from Solis and Wets [20]. The Solis-Wets method is a direct search method that performs 
a randomized local minimization. Each step starts with a current point x. A deviate b is 
chosen from a normal distribution whose standard deviation is given by a parameter b.t . 

If either x + b or x - b is better, a move is made to the better point and a "success" is 
recorded. Otherwise a "failure" is recorded. After several successes in a row, b. t is increased 
to move more quickly. After several failures in a row, b.t is decreased to focus the search. 
Additionally, a bias term is included to give the search momentum in directions that yield 
success. This method is typically terminated if b.t falls below a given threshold b.lb. 

An important feature of this type of local search is that it doesn't rely on gradient 
information. This is particularly important for docking with AutoDock because the docking 
potential is not differentiable throughout the entire search domain. AutoDock's grid-based 
intermolecular energy has a gradient that is undefined whenever an atom is on a grid 
boundary, and has discontinuities as atoms move across grid boundaries. This would make 
gradient-based local search a poor choice for AutoDock. 
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4 Hybridization Issues 

Hybrid EAs using local search have been successfully applied to a range of applications. 
These techniques have been called memetic algorithms, genetic local search, hybrid genetic 
algorithms and genetic hillclimbing (for an extensive bibliography ofthese hybrid evolution­
ary algorithms see alife . ccp14. ac . uk/memeticrmoscato/memetic_home . html). Despite 
their success, basic principles have not been formulated to guide the development of effective 
hybrids, particularly for hybrid EAs applied to continuous search domains like the docking 
problem in AutoDock. In this section we discuss three hybridization issues that may affect 
the performance of the hybrid EAs used in our docking experiments. 

Local Search Robustness Since direct search methods do not explicitly employ deriva­
tive information, it is not possible for a direct search method to terminate with a guarantee 
that the final point is near a stationary point (where the gradient is zero). However, a 
basic expectation of a local search method for a hybrid EA is that it robustly converges to 
a stationary point. Solis and Wets [20] note that their algorithm will converge to a global 
minimizer if the step scale parameter is not adapted. However, in Algorithm A the step 
scale is adapted, and they argue that "a proof of convergence is unlikely." 

A class of direct search methods that do have robust convergence properties are pattern 
search methods. Pattern search methods have been analyzed by Torczon and Lewis [23, 14], 
and they provide a general framework for describing a wide variety of direct search methods. 
In a general sense, pattern search methods sample the objective function from a given 
pattern of points that represent offsets from the current best point. If there is a better 
point in this pattern, then it is accepted as the new iterate and the sampling is repeated 
about it. If not, then the scale of the pattern is reduced (e.g. by halving it), and the 
function is again sampled about the best point. Lewis and Torczon's analysis provides a 
set of conditions which, if satisfied, guarantee a weak stationary point convergence. For 
unconstrained pattern search methods, they show that 

liminfll \l f(Xt)11 = 0, 
t-+oo 

where \l f is the gradient of f. 
A formal description of the pattern search algorithm used in our experiments is given in 

Figure 2. The pattern used in this algorithm is a set of offsets that form a positive basis [14]. 
Specifically, this method uses offsets generated by the n + 1 directions from the centroid 
of a regular simplex to each corner of the simplex [21]. These offsets lie at the corners of 
a triangle in two dimensions, the corners of a tetrahedron in three dimensions, and so on. 
Our implementation of pattern search uses a shuffle method to randomly select the order 
in which these offsets are considered. 

Local Search Length On combinatorial domains, the local search in a hybrid EA is 
often run until a locally optimal point is found. Thus methods like genetic hillclimbing are 
searching through the space of local optima. On continuous domains, the local search in a 
hybrid EA is typically truncated before the termination criteria stop the local search (e.g. 
when the step length becomes too small). Consequently the hybrid EA is not searching 
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Given Xo and ~o 
Let {VI, ... , V n+ I} be the canonical minimal positive basis 
For i = 1, ... , n + 1 

ri = i 
For t = 1,2, ... 

shufRe(r) 
St = {o}n 
For i = 1, ... , n + 1 

S = vri 

If(f(xt + ~ts) < f(xt)) 
St = ~tS 
Break 

EndIf 
EndFor 
Xt+1 = Xt + St 
If (f(xd == f(xt + St)) 

~t+l = ~t!2 
Else 

~t+l = 2~t 
EndIf 
If (~t+1 < ~lb) 

Break 
EndFor 

Figure 2: Pseudo-code for the pattern search algorithm. 
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with local optima, and the maximum duration of local search is a parameter that can 
fundamentally impact the dynamics of the hybrid EA. A hybrid EA with long local searches 
will execute fewer iterations of the EA than an EA hybrid with short local searches (if both 
terminate after the same number of function evaluations). Consequently, the duration of 
local search affects the balance between the amount of global sampling and local refinement 
performed by the hybrid EA. 

In previous work, we have used both short and long local search durations for docking 
in AutoDock [18, 15]. We previously experimented with very short and very long local 
search durations in AutoDock, and found them to yield similar performance [18]. However 
subsequent experiments with the new energy potential in AutoDock suggest that this may 
be an important factor, particularly if the local search is only terminated when it exceeds 
the local search duration. 

Initial Search . Scale A fundamental feature of optimization problems on continuous 
domains is that the scale of changes in the objective function can vary dramatically in 
different regions of the domain. Consequently, a basic requirement of an optimization 
method is that it dynamically adapt the scale of its search in order to match the scale of 
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changes in the objective function. This implies that hybrid EAs using local search need to 
dynamically adapt the initial scale of the local search method. If the initial scale of the local 
search is not adapted, then the scale of the entire hybrid is limited by how quickly the local 
search method adapts its scale. This limits the utility of local search, and in cases where 
the local search is truncated it can even prevent the local search method from productively 
refining a point. 

Thus hybrid EAs that use direct search methods for local search need to adapt the 
initial local search scale to reflect the characteristics of the current search. To our knowledge, 
Miihlenbein, Schomisch and Born [17) are the only authors to have reported an initialization 
strategy for hybrid EAs using a direct search method. Their initialization strategy uses a 
statistic of the population spread to initialize all local searches with the same value. The 
spread of the population reflects the degree to which the EA's search has focused on a 
particular region of the search domain. If we assume that the local search should be as 
focused as the EA's search, then this represents a natural parameter for the initial local 
search step scale. Their method initializes ~o to 

~ _ !X1- Xm! 
0- ..fii ' 

where Xl is the point with the best fitness in the population and Xm is the point with the 
median fitness. 

5 Methods and Experiments 

5.1 Search Algorithms 

Our experiments compare the empirical performance of hybrid EAs on a set of standard 
docking problems. The hybrid EAs that we evaluate are the hybrid GA using SW that is 
provided in AutoDock [15) and hybrid GAs using the Solis-Wets method (SW) or pattern 
search method (PS) that are provided by the SGOPT optimization library [9), which was 
integrated into AutoDock 3.0 for this study. In all cases, the experimental parameters for the 
hybrid GAs were the same as those used by Morris et al. [15). The GAs used a population 
of 50 points, applied a two-point crossover with a probability of 80% and applied a Cauchy 
mutation operator with a probability of 2%. When the Cauchy mutation operator is applied 
to a dimension of a point, it adds a Cauchy random variable with parameters a = 0 and 
f3 = 1. The hybrid EAs provided by SGOPT scale the mutation steps to 0.01 times the range 
of the dimension. Stochastic competition was performed using proportional selection, where 
the baseline for computing the proportions was the worst point in the last 10 iterations [15]. 
Elitism was also used to keep the best point found so far. 

Local search was performed on randomly chosen points in each iteration with a proba­
bility of 6%. Using local search infrequently is motivated by our preliminary work with this 
application where we varied the probability of local search [8). The local search operator 
was either SW or PS. The SW method used in AutoDock implicitly scales the search in each 
dimension to a value that is approximately 0.01 times the range of the dimension. The lower 
bound on ~t is effectively zero for this method due to an incorrect implementation of SW 
in AutoDock; SGOPT correctly implements this lower bound. SW performs contraction 
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after four consecutive failures and it performs expansion after four consecutive successes. 
The SW and PS methods provided by SGOPT also scale the search in each dimension. The 
initial search scale is 0.1 times the range of each dimension, and the SW and PS methods 
were terminated when the search scale fell below 0.001. 

In each experiment, 20 trials were done with different random seeds. The hybrid EAs 
were terminated after 1.5 million function evaluations; this enables a comparison with pre­
vious work [18, 15]. Using a fixed number of function evaluations provides a reasonable 
basis of comparison for this problem because the calculation of the docking potential is the 
most expensive step in this optimization problem. 

For notational convenience, we refer to the different hybrid EAs using the notation [ea]­
[Is]. The values for ea are AD, the GA provided by AutoDock, GAO, the GA provided 
by SGOPT with fixed initial step length and GAl, the GA provided by SGOPT using 
the initialization of Miihlenbein et al. [17]. The value of Is is SW300, SW3000, PS300 or 
PS3000, which refer to the choice of local search method and the maximum duration of 
local search. 

5.2 Experiments 

A test suite of six cases was used in all of the experiments. Each test case consists of a 
macromolecule and a small substrate or inhibitor molecule. The salient features of the six 
test cases are summarized in Table 1. The different test cases were selected to test various 
aspects of the energy function [16]. 

Ligand/Protein PDB Number of Number of 
Complex Code Torsions Dimensions 

{3-Trypsin/Benzamidine 3ptb 0 7 
Cytochrome P-450cam/Camphor 2cpp 0 7 
McPC-603/Phosphocholine 2mcp 4 11 
Streptavidin/Biotin 1stp 5 12 
HIV-1 protease/XK263 Ihvr 10 17 
Influenza Hemagglutinin/sialic acid 4hmg 11 18 

Table 1: Summary of test cases. PDB codes taken from the Protein Data Bank. 

The number of torsion angles is an important feature of these test cases because it deter­
mines the dimensionality of the search space. The representation used in each experiment 
consisted of a triple of Cartesian coordinates, a four dimensional quaternion, and the tor­
sion angles. Thus, the dimensionality of the search space is 7+(number of torsion angles). 
The range of the coordinates defines a cube that is 23 angstroms long in each dimension. 
The quarternion parameters lie within [-1,1]3 x [-7l', 7l'], and each torsion angle lies within 
[-7l', 7l']; the points in the initial population have each parameter generated randomly in its 
range. 

For each method on each test case, we consider the minimum energy produced by the 
search. Because we have crystallographic structures of the true docked complex for each 
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test case, we also measure the absolute accuracy of the final docked configuration. This is 
done by taking the square root of the average squared deviation of the spatial separation of 
corresponding atoms in the predicted configuration from the crystallographic configuration. 

6 Results 

Figures 3, 4 and 5 show boxplots of the final docking energies for each of the optimization 
experiments for each test case. Boxplots are a convenient method of summarizing data 
that provide a visual indication of the spread and skewness of the data. The dark bar in 
a boxplot shows the range between the first and third quartile; one quarter of the data is 
below the first quartile, and three quarters of the data is below the third quartile. The 
white line inside the dark bar represents the median. The whiskers at the top and bottom 
of each boxplot indicate the spread of the data up to 1.5 times the range of the first and 
third quartile. 

We applied the nonparametric Kruskal-Wallis test [4] to identify significant differences 
between the hybrid EAs (at the 5% level). This test is appropriate because the data 
does not appear to be normally distributed, and because we are making multiple pairwise 
comparisons among more than 2 samples. These statistics are discussed in the following 
sections, which evaluate the effects of the hybridization issues that we discussed in Section 4. 

6.1 AutoDock vs SGOPT 

We can make a direct comparison between the hybrid EAs using SW provided by AutoDock 
and SGOPT. Figure 6 shows boxplots for the hybrid EAs using SW for all six test cases. 
For each test case, the trials for the hybrid EAs are ranked, and the boxplots show the 
distribution of ranks within each test case. This data has two distinct trends. First, the 
hybrid EAs from SGOPT find better solutions. Second, the hybrid EAs from AutoDock 
find better solutions when the local search is short, while the EAs from SGOPT find better 
solutions when the local search is long. Our statistical analysis shows that the AutoDock 
hybrid EAs are significantly different from almost all of the SGOPT hybrid EAs. 

We believe that these differences may be explained by two factors. First, the initial step 
scale used by the AutoDock hybrid EAs is smaller than the initial step scale of the SGOPT 
hybrid EAs. Although a smaller initial step scale focuses the local search about the starting 
point, in early iterations of the hybrid EA the local searches are not simply refining to a 
local minimum, but they are also helping guide the EAs search (through the Lamarckian 
return of the final point into the EA's population). 

A second factor concerns AutoDock's incorrect implementation of the lower bound on 
step scale. When the local search converges about a local minima, it will waste time refining 
the minima beyond the point where it is physically relevant. This effect will be particularly 
evident when the local search duration is long, which accounts for the worse performance 
for the AutoDock hybrid EAs with long local search. 
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Figure 3: Final docking energies for hybrid EAs: (a) Ihvr and (b) Istp. 
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Figure 4: Final docking energies for hybrid EAs: (a) 2cpp and (b) 2mcp. 



FLEXIBLE LIGAND DOCKING IN AUTODOCK 

~ ., 
c 
W 

AD 
SW 
300 

AD 
SW 
300 

AD 
SW 

3000 

I 
GAO GAO 
PS PS 
300 3000 

AD GAO GAO 
SW PS PS 

3000 300 3000 

GAO GAO 
SW SW 
300 3000 

(a) 

GAO GAO 
SW SW 
300 3000 

(b) 

GAl 
PS 
300 

GAl 
PS 
300 

GA1 
PS 

3000 

I 
GA1 
PS 

3000 

GA1 
SW 
300 

GA1 
SW 
300 

GAl 
SW 

3000 

GAl 
SW 

3000 
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Figure 6: Comparison of rankings for AutoDock hybrid EAs and SGOPT hybrid EAs using 
SW. 
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6.2 SW vs PS 

Our experiments generally support the use of the more robust PS method over SW for 
local search. Here, robustness takes into account both the ability to find the lowest energy 
conformations as well as the consistency at which the hybrid EA can find low energy con­
formations. The statistical analysis shows many significant differences between hybrid EAs 
using PS and SW local search, particularly when long local searches were used. 

Figure 7 summarizes the relative ranks of each hybrid EA with SW and PS local search 
(using a fixed initial step length), grouped by the test case. The trend is particularly strong 
for Ihvr, Istp and 3ptb. For 2cpp the EAs using PS are consistently better than the EAs 
using SW, but the EAs using SW can find better solutions often enough to balance the 
overall ranking. For 4hmg, the EAs using PS are better when long local searches are used, 
but worse when short local searches are used, which again balances the ranking. For 2mcp, 
the hybrid EAs using PS are generally worse than the EAs using SW. However, if the 
termination threshold for PS is reduced to 0.0001 then the hybrids using PS are generally 
better, which again provides evidence that longer local searches with PS are better. 
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Figure 7: Comparison of rankings for SGOPT hybrid EAs using SW and PS local search. 

6.3 Local Search Duration 

In the significance test, the hybrid EAs using SW do not consistently exhibit significant 
differences. However, the significance test shows a consistent significant difference between 
the hybrid EAs using short PS and long PS for test cases Istp, Ihvr and 4hmg. These are 
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the most difficult test problems, which suggests that hybrid EAs using long local searches 
will be most effective for nontrivial problems. 

6.4 Step Length Initialization 

The experimental results indicate that adaptive methods for initializing the step length 
of local search do not have a substantial impact on the performance of the hybrid EAs. 
In fact, there are many cases where initializing the local search duration leads to worse 
performance. The adaptive hybrids have better performance with SW local search in several 
of the test cases, but in others they have worse performance. The adaptive hybrids with PS 
are generally indistinguishable from the nonadaptive hybrids. We also tried an alternative 
initialization strategy for local search, but it had similar results. 

We investigated possible causes of this, and we discovered that the initialization methods 
often generate initial step lengths that are larger than the fixed value used by the GAO 
hybrids. Also, we noted that the initial step lengths do not seem to converge to zero as we 
had anticipated. Instead, the variations in the population remain large enough to keep the 
adaptively determined initial step lengths rather large. This suggests that the dynamics of 
the EA have a significant impact on the utility of these adaptive mechanisms. For example, 
the linear rank selection used by Miihlenbein et al. [17] may be an important feature of the 
GA for the success of the adaptive methods. 

Finally, it is possible that we selected a good default value for the initial step lengths. 
If the initial step length is too large then the local search effort will simply be spent on 
reducing it to a reasonable value. Similarly, if the initial step length is too small then the 
local search method will not make signficant progress until it can increase the step length 
to a reasonable value. In preliminary experiments, we confirmed that as the initial step 
lengths are raised the performance of the hybrid EAs using the fixed initial step length 
degrades. This was particularly true for hybrid EAs using short LS, which is expected since 
they have fewer iterations to adapt their search scale. 

6.5 Length of Optimization 

Although our experiments were run for 1.5 million function evaluations to enable direct 
comparisons with prior work, this number of function evaluations is relatively high for 
problems with a small number of dimensions. To evaluate how long optimization was 
productive, we examined the optimization trace and found the last iteration where an 
improvement of energies than 0.0001 was found in the energy. This gives a sense of whether 
the search has stalled. Figures 8 and 9 show the distribution of stall times for the different 
methods on the six test functions. In two problems (2cpp and 3ptb) the optimizers stall 
after as few as 100,000 function evaluations. In the remaining four problems, the optimizers 
typically require well over a million function evaluations. 

The salient difference between these two classes of problems is that 2cpp and 3ptb 
have no rotatable torsion angles while the remaining problems are flexible ligands. The 
introduction of rotatable torsion angles makes docking problems significantly more difficult. 
Problems with rotatable torsion angles probably also increases the number of local optima, 
thereby making incremental progress of the objective function possible in a long optimization 
process like the one that we have applied. 
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7 Conclusions 

Our experimental results demonstrate that the new hybrid EAs we have defined can perform 
significantly better than the methods currently available in AutoDock. In particular, the 
hybrids using the PS method with long local search were significantly better than other 
hybrids in most cases. The dynamic initialization of the local search step was not a signficant 
factor in our experiments. However, it is clear that this is an important algorithmic factor 
that needs to be developed to make hybrid EAs with direct search methods more robust. 

Table 2 summarizes the performance of the GAO-PS3000 methods for the six test cases. 
In five of the six test cases, the best value found by the hybrid EA is better than the best 
value found by all of the methods reported by Morris et al. [15]. Furthermore, the mean 
rmsd of the solutions found is lower for all test cases than the results in Morris et al. In all 
cases the hybrid EA found solutions below or about 1 angstrom, which is very reasonable. 
This confirms that these hybrid EAs not only perform a more effective search, but they are 
also finding better solutions to the docking problem. 

Energy RMSD 
Minimum Mean Minimum Mean 

1hvr -21.42 -21.40 0.65 0.70 
1stp -10.17 -10.15 0.49 0.51 
2cpp -7.36 -7.36 0.90 0.91 
2mcp -5.55 -5.52 0.89 0.98 
3ptb -8.19 -8.16 0.29 0.29 
4hmg -7.91 -7.85 0.97 1.03 

Table 2: Performance statistics for GAO-PS3000: final energy and rmsd from known crystal 
structure. 

Our experiments in this paper have focused on the factors that affect the utility of local 
search in a hybrid EA. Consequently, we have used the same problem formulation and type 
of GA that we have applied in previous studies with AutoDock [18, 15]. However, there are 
several ways that these methods could probably be improved. For continuous domains, the 
scale of mutation is often adapted [19] and recombination operators can be applied that do 
not impose a coordinate bias to the search [3]. Finally, the boundary constraints and the 
equality constraint on the quaternion's direction of rotation should be handled explicitly. 
Explicitly considering these factors will likely improve the global search performed by the 
EA. 

Another factor that affects the global search concerns the total run time of the EA. Our 
experiments show that running the hybrid EAs for 1.5 million function evaluations often 
provide continued improvements in the solution. However, an alternative approach that 
needs to be considered is multiple executions of hybrid EAs that are shorter. This approach 
is closer to a multistart local search approach, but uses the EA to bias the selection of initial 
starting points. Although previous studies with this drug docking application suggest that 
multistart local search is less effective than hybrid EAs [8], this multistart hybrid EA may 
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be more effective than running a single hybrid EA for a long time. 
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Abstract 

Analytic and numerical methods now allow optimization of the electrostatic contribution 
to the free energy of association of two molecules in solution. Using a continuum 
electrostatic approximation based on the linearized Poisson-Boltzmann equation, the 
electrostatic free energy of rigid bimolecular association becomes a quadratic function of 
the reactant-charge distributions. By optimizing the charge distribution of one reactant, 
we find that the electrostatic free energy can be minimized, and made favorable in 
many cases. Furthermore, a rigorous method for visualizing the extent of electrostatic 
complementarity between two molecules has been developed. In this paper we review 
the framework and progress of charge optimization and discuss some of the implications 
emerging to date. 

Keywords: Electrostatics, global optimization, ligand design. 

1 Introduction 

The in vivo association of molecules is important for the regulation and performance of 
countless biological processes. Understanding the properties of these natural molecules 
that influence their binding as well as designing new molecules that bind to selected tar­
gets to produce desired pharmacological effects are active and growing areas of research 
in biophysical chemistry. In addition to properties such as non-toxicity, chemical stability, 
and bioavailability, any potential drug molecule must be engineered to bind tightly to the 
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desired target molecule. This usually involves a choice of molecular shape which is comple­
mentary of the target molecule's active site so as to produce attractive intermolecular van 
der Waals interactions. It also involves choosing appropriate chemical groups in the drug 
molecule to induce both binding specificity [1, 2, 3, 4] and binding affinity. 

The contribution of electrostatics to binding is non-intuitive. While placing a polar 
or charged chemical group in the prospective drug molecule (ligand) may create favorable 
interactions with the target molecule (receptor), it also creates favorable interactions with 
the solvent and ion atmosphere which must be sacrificed upon binding. It is this tradeoff 
between favorable interaction and unfavorable desolvation free energies that is the concern 
of charge optimization. Optimizing the ligand-charge distribution ensures that electrostatics 
contributes as favorably as possible to the binding process; optimization can have a dramatic 
effect on computed binding affinities. 

In this paper, we review the framework and progress of this electrostatic free energy 
optimization problem. Section 2 describes the conceptual framework leading to an expres­
sion for the objective function, the electrostatic contribution to the free energy of binding, 
in terms of the ligand-charge distribution. Section 3 discusses the process of optimization 
and properties of the optima, including the favorability of the resulting optimized electro­
static binding free energy contribution. Section 4 examines one particular implication of the 
optimization process, namely a method to visually and numerically examine the extent of 
electrostatic complementarity for a ligand-receptor pair without explicitly computing the 
actual optimum. Section 5 contains concluding remarks. 

2 The Electrostatic Free Energy of Binding 

2.1 The Continuum Electrostatic Model 

Fig. 1 depicts an example of a molecular association reaction in which two reactants, a ligand 
and receptor, associate rigidly to form a complex. The free energy change of the solution due 
to this binding can be separated into electrostatic and non-polar contributions [5, 6], where 
the non-polar contribution corresponds to the binding free energy of the reactants when 
their charge distributions are everywhere zero. The electrostatic component may often be 
accurately obtained through a continuum approximation [7, 8, 9, 10], wherein the solvent 
is treated as a dielectric continuum with free ions, the molecules as rigid dielectric cavities 
with embedded point charges, and the system obeys the Poisson-Boltzmann equation or 
its linearized form [6, 11]. The solute-solvent dielectric boundary is taken to be the solute 
molecular surface [12, 13], and an ion-excluding Stern layer [11, 14] is used to constrain the 
ion centers from inaccessible regions near the molecules. 

For the sake of discussion, we make the following definitions. A generic molecule labeled 
(i) has ni embedded point charges at positions Xi,j. The values of the partial charges at 
these ni positions are consolidated into a charge distribution vector Qi, such that the value 
of charge at position Xi,} is Qi,}. We may specify receptor, ligand, or complex molecules by 
replacing (i) by (r), (1), or (c), respectively. The molecular dielectric constant is taken to be 
Em (typically of a value between 1 and 4) and the solvent dielectric constant, Es (typically 
about 80 for water at room or body temperature). The molecular dielectric constant is 
often chosen to be larger than one in order to approximately account, in a mean-field sense, 
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Receptor Ligand Complex 

+ 

Figure 1: Illustration of a general rigid binding process wherein a receptor and ligand as­
sociate forming a complex. The small circles represent example locations of atomic centers 
shaded to indicate possible differences in charge. The solid line encloses the atomic vol­
ume of the molecules, which is essentially the union of the spherical volume occupied by 
the molecule's atoms. The shaded region outside the atomic volume represents the addi­
tional volume assigned to the molecule when the molecular surface is used to designate 
the molecule-solvent boundary. This excess volume arises because the polarizable solvent 
molecules cannot fit into all of the crevices left by the atomic volume. 

for polarizability and internal degrees of freedom. 
The electrostatic component, !::J.Ges , of the rigid binding free energy is the difference 

in the total electrostatic free energy of the complex and that of the reactants at infinite 
dilution in solution [15], 

(1) 

The total electrostatic free energy of any molecule consists of several components: the self­
energy of each point charge, the coulombic intramolecular interaction, the interaction of 
the charges with the polarized solvent and perturbed ion atmosphere, and the enthalpic 
and entropic cost of polarizing the solvent and perturbing the ion atmosphere (compared 
to their hypothetical distributions if the molecule were completely hydrophobic). 

The proper use of thermodynamic cycles allows these calculations to be carried out 
in cases where titration and conformational change accompany binding. Such cases are 
not discussed in the current overview; for the sake of clarity, the detailed methodology for 
treating these cases will not be presented here, but the reader is referred to [15]. 

The total electrostatic free energy of a rigid molecule in solution is given by [16, 17, 18] 

1 ni 

Ges = - '" Q- -<p-(x- -) t 2 ~ t,) t t,) 

j=l 

(2) 

for systems obeying the linearized Poisson-Boltzmann equation [6, 16] 

ni 

V7. (Ei(X)V7<pi(X)) - Esfl;;(X)<Pi(X) = -47r L Qi,j8(x - Xi,j)- (3) 
j=l 
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In this differential equation, <T>i(X) is the total electrostatic potential, Ei (x) is the dielectric 
constant of space (Em within the molecular volume and lOS in the solvent), i"£i(X) is the inverse 
Debye screening length of the solvent due to the ions, and J(X-Xi,j) is the three dimensional 
Dirac delta function. The linearized Poisson-Boltzmann equation is usually appropriate for 
protein-protein and protein-small molecule binding because the electrostatic potentials in 
the solvent are generally much smaller than kT / e and the energies and potentials produced 
by the linear and non-linear versions are very similar. The linearity is essential to the 
optimization as currently formulated. Note that Eq. (2) is really a free energy (including 
entropic terms for water and ion atmosphere rearrangement) and not just the total energy 
of the system [17,19]. 

2.2 Quadratic Nature of the Electrostatic Binding Free Energy 

Because the electrostatic potential in Eq. (3) is linearly related to the molecular charge 
distribution, Qi, the potential is a linear function of this charge distribution, i.e. 

<T>i(X) = Ai(X) . Qi, 

where Ai(X) is a position-dependent vector of proportionality constants (they are related to 
the Green's function for the linearized Poisson-Boltzmann equation [15]) with the coulombic 
singularities at Ai,j(xi,j) removed. Substituting this expression back into Eq. (2), we find 
that the total electrostatic energy of the molecule is given by 

(4) 

Rewritten as a matrix expression, Eq. (4) becomes 

(5) 

with the matrix elements Si,jk = Ai,k(xi,j)/2. 
Using Eq. (1) together with Eq. (5), the total electrostatic binding free energy takes the 

quadratic form 
(6) 

If the receptor- and ligand-charge distributions are unaltered upon binding, then the complex­
charge distribution vector is the union of the ligand- and receptor-charge vectors, Qc = 

(Qr, QJ), the ligand-ligand and receptor-receptor intramolecular coulombic energies cancel, 
and this equation can be re-written as 

(7) 

Here, inner products with the "desolvation matrices" Land R provide the change in sol­
vation free energy of the ligand- and receptor-charge distributions, respectively, due to 
binding. The inner product with the matrix C provides the bound-state ligand-receptor 
screened coulombic interaction. If receptor- and ligand-charge distributions or conforma­
tions are altered upon binding, other expressions are obtained that can be treated in a 
similar manner [15]. 



ELECTROSTATIC OPTIMIZATION IN LIGAND DESIGN 235 

3 Electrostatic Optimization 

3.1 Optimization of the Electrostatic Binding Free Energy 

Eq. (7) can be used to determine the electrostatic binding free energy of all potential ligands 
that have the same molecular shape but differ in their electrostatic charge distribution. 
Leaving aside initially the questions of chemical reasonableness and synthetic accessibility, 
examination of this physical space of charge distributions allows one to address questions 
about what physical properties are important for a good ligand. Moreover, optimization 
of the electrostatic binding free energy over all charge distributions can be performed, 
and the optima can be analyzed and used as templates in design studies. Because of the 
quadratic nature of Eq. (7), there will be extrema to the electrostatic binding free energy 
as a function of the ligand-charge distribution; because matrix L is non-negative definite 
when Es > Em (the electrostatic desolvation penalty is unfavorable) [15, 20], all extrema are 
minima [21]. Therefore, there are "optimized" sets of charges Qfpt that minimize /::,.C 8S , 

producing the best possible electrostatic contribution to the total binding free energy. An 
optimized ligand-charge distribution is obtained by setting the gradient of the electrostatic 
binding free energy with respect to the ligand-charge distribution to zero (and using the 
reciprocity relation L = Lt) 

Q~C +2QfL = 0 

and then solving for the optimized charges [15, 20] 

Qopt _ _ ~L-ICtQ 
1 - 2 r-

(8) 

(9) 

This optimization process is illustrated with a one-dimensional example in Fig. 2. As 
the ligand-charge distribution is varied, the receptor desolvation penalty remains constant, 
a, because the shape of the ligand is assumed constant (see below). The receptor-ligand 
interaction free energy varies linearly, (3q, because the receptor-charge distribution is fixed. 
The ligand desolvation penalty varies quadratically, ryq2, as can be inferred from Eq. (7), 
because the charges interact with the polarization and ionic screening potentials, whose 
magnitudes are proportional to the inducing charge. The combination of the favorable 
linear contribution of the interaction energy and the unfavorable quadratic contribution 
of the ligand-desolvation penalty make the net electrostatic binding free energy quadratic, 
a + (3q + ryq2, with a minimum at a non-zero value ofligand charge, qOpt = -(3/(2ry). Unless 
the receptor is entirely hydrophobic (all partial atomic charges are equal to zero), it is 
always better for the ligand to be charged or polar rather than hydrophobic. 

The actual value of the optimized electrostatic binding free energy necessarily depends 
upon the choice of ligand point-charge locations, also known as the basis set. Additional 
locations increase the number of degrees of freedom in the optimization and thus may 
lower the optimized electrostatic binding free energy. The limiting value of the electrostatic 
binding free energy obtained by optimizing on a "complete set" of charge locations (i.e., 
no set of additional point charge locations can improve the optimal binding free energy 
appreciably) is denoted the optimal electrostatic binding free energy and the respective 
charge distribution is termed optimal [15]. Other basis sets, such as point multipoles, can 
also be used with this method [15, 20, 22]. 
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Figure 2: This graph depicts the how the linear ligand-receptor interaction energy and the 
quadratic ligand desolvation penalty (as a function of ligand charge), along with the constant 
receptor desolvation penalty, combine to make a quadratic total electrostatic binding free 
energy which has a minimum at a non-zero value of ligand charge. In this case, the minimum 
value of the total electrostatic binding free energy is negative. 

3.2 Favorability of the Optimal Electrostatic Binding Free Energy 

Fig. 2 also illustrates the possibility that the minimum of the electrostatic binding free 
energy may actually be favorable (negative). If this is the case, then there are also a whole 
range of additional ligand-charge distributions in the neighborhood of the optimum with 
a favorable electrostatic binding contribution. This result is perhaps unexpected because 
corresponding computations for docking natural complexes (generally carried out with fixed 
conformation and titration state) routinely find that the electrostatic contribution is un­
favorable [9, 23, 24, 25, 26, 27]. However, calculation [15, 22, 28] and theory [29] have 
shown that the electrostatic contribution of optimal ligand-charge distributions to the total 
binding free energy can be favorable in many situations of physical interest. 

The favorability of the optimal electrostatic contribution has been proven [29] under the 
conditions of rigid binding, zero ionic strength (I\; = 0), high-dielectric solvent (Es > Em) , 



ELECTROSTATIC OPTIMIZATION IN LIGAND DESIGN 237 

conservation of the total receptor plus ligand molecular volume (defined as the interior of 
the solvent-solute dielectric boundary) upon complex formation, and the absence of buried 
regions of disordered solvent in at least one of the reactants [29]. However, in practice many 
of these constraints may be relaxed or removed with the optimal electrostatic binding free 
energy remaining favorable. 

3.3 Practical Considerations 

Due to simplifications in the theory, a number of questions arise when considering its ap­
plication to ligand design problems. The ligand-charge distribution obtained is optimal 
assuming a fixed ligand shape and ligand-complex geometry. It should be noted that the 
optimization is valid even in cases of receptor conformational change on binding because 
the receptor desolvation penalty is a constant that does not affect the optimization. What 
if, in practice, the ligand-complex alters conformation from that used in the design? Ther­
modynamics guarantees that conformational relaxation only serves to lower the free energy, 
so in this case the designed ligand would bind more tightly than predicted. In the design 
of tight-binding ligands, such an effect is not undesirable. If the conformational change is 
hypothesized (from theory) or known (from experiment), the optimization can be re-run in 
the changed conformation to seek further improvement. 

In general, what conformation of the receptor should be targeted through charge opti­
mization? This is a difficult question whose answer may depend on details of the system 
under study. If one has high-resolution structural data of the bound and unbound states, 
there are competing considerations. Often, details of the active site are better resolved in 
the bound state and the structural ligand can serve as the basis for further design efforts. If 
the unbound state is targeted, however, theory nearly guarantees that optimal electrostatics 
will favor binding in many cases of interest. The question really amounts to discovering 
whether the free energy cost of distorting away from the unbound state can be more than 
recovered in additional binding enhancements. Not enough work has been carried out to 
do more than frame the question at this point. 

3.4 Non-Uniqueness of the Optimized Ligand-Charge Distributions 

Optimized ligand-charge distributions may be non-unique for four reasons: (1) because 
the optimization condition, Eq. (8), is a statement about potentials rather than charges 
directly, two different charge distributions that produce the same potentials will be equally 
optimal [29]; (2) the numerical methods employed can lead to a non-empty null-space, 
which is a space of vectors that can be added to the ligand-charge distribution without 
significantly changing the binding free energy [21]; (3) the use of different basis sets, as a 
practical matter, may lead to different representations of charge distributions that produce 
essentially the same potentials; and (4) from a chemical standpoint, all molecules within a 
few tenths of a kcal/mol of the optimum binding energy may span a significant amount of 
chemical space while having very nearly optimal binding free energies. These forms of non­
uniqueness are likely to be helpful in finding molecules whose shape and charge distribution 
are similar to optima. In such cases, one may apply constraints to find ligands that bind 
well, but which may have other more desirable properties, such as specificity or chemical 
feasibility. In a model sense, a refinement process of this type was used in previous work on 
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an idealized problem to construct a spherical ligand for a barnase-like receptor consisting 
of only 11 point charges of physical separations and magnitudes, with a total charge of -1, 
and with favorable binding free energy [22]. This example illustrates how one may reassert 
the constraints of chemical feasibility on the charge distribution and satisfy them while still 
obtaining ligands with electrostatically favorable binding free energies. 

3.5 Analytic and Calculational Studies and Considerations 

The elements of some or all of the electrostatic binding matrices, R, C, and L, may be ana­
lytically determined in several simplified situations. If the ligand is treated as a sphere which 
binds to a receptor forming a larger spherical complex molecule, then the C and L matrices 
may be analytically obtained for point-charge or multipolar ligand-charge distributions [20], 
even in the presence of aqueous ions [30J. This spherical geometry has been extensively used 
in the past, in Tanford-Kirkwood theory [31, 32], to represent protein molecules. In the ab­
sence of aqueous ions, these two matrices may also be analytically obtained when the ligand 
and complex are ellipsoidal [30J. All three binding matrices can be analytically determined 
if the molecules are treated as "slabs," finite width in the z-direction and of infinite extent 
in the x- and y-directions, in an ion-free solution [15J. This particular geometry is amenable 
to the description of planar molecules or membranes [33, 34J. 

We have performed analytical optimization calculations in both spherical and slab ge­
ometries, and spherical geometries with aqueous ions [15, 20, 22, 30J. In some instances, 
we have found a strong correlation between the receptor desolvation penalty and the mag­
nitude of the optimized electrostatic binding free energy. This suggests that the optimized 
ligands mimic and improve upon the interactions of the displaced solvent molecules of the 
active site. We have also found computationally that all electrostatic binding free energies 
in these geometries were favorable, as required by theory [29], and some were very favorable 
- contributing better than -10 kcal/mol to the total binding energy. This is remarkable, es­
pecially considering the relatively small size of the receptors and ligands examined. For the 
association of much larger proteins, the optimal contributions may be exceedingly favorable, 
leaving much room for the application of physical design constraints. 

When the molecular geometry does not allow analytic calculation of the binding ma­
trices, the elements may still be obtained through a numerical solution of the linearized 
Poisson-Boltzmann equation using a computer program package such as DELPHI [10, 18, 35J. 
The computational expense of charge optimization is dominated by the calculation of the 
ligand desolvation matrix, which requires a pair of solutions to the Poisson-Boltzmann (one 
for the bound complex state and one for the unbound ligand state) for each column of the 
matrix. 

4 Electrostatic Complementarity 

In the process of obtaining an optimized ligand-charge distribution, one takes the gradient 
of Eq. (7) with respect to the ligand-charge distribution and sets it equal to zero to find 
the minimum. This process yields Eq. (8). Returning to the definitions of the matrices 
involved, we see that this implies that the bound-state solvent-screened coulombic potential 
of the receptor charges and the difference in the bound- and unbound-state solvent-screened 
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coulombic potentials of the ligand charges at each of the ligand's point-charge locations are 
equal in magnitude and opposite in sign. For an optimal ligand, this corresponds to a 
cancellation of these potentials everywhere within the ligand and on its surface [15]. If 
the ligand is non-optimal (remember, it may be optimized in some limited basis without 
being actually optimal), then the left-hand side ofEq. (8), denoted the "residual potential," 
will not be zero in all of these regions. Furthermore, due to the harmonic nature of this 
potential [15], the largest deviations from zero will be on the ligand surface. 

The residual potential has several practical applications. All arise from the necessary 
cancellation of the potentials 

(10) 

everywhere within and on the surface of an optimal ligand. Because of this, an optimal 
ligand and its receptor are called electrostatically complementary. Deviations from opti­
mal electrostatic complementarity appear as deviations from equality in Eq. (10). This 
implies the existence of one particularly useful graphical tool. Displaying the two con­
tributing potentials on the ligand surface in adjacent images, or simply displaying their 
sum, the residual potential, is a rapid way to visualize regions of particularly good or poor 
electrostatic complementarity. We find it useful to examine natural complexes this way. 
Scripts to carry out this analysis with the GRASP [36] software package are available at 
http://mit.edu/tidor/alongwith example images. This is a particularly effective method 
for locating buried but uncompensated groups at a binding interface. The new method 
should be contrasted with a standard method used by structural biophysicists for examin­
ing binding complementarity, which involves examining the surface electrostatic potential 
of the free ligand and free receptor. While such an approach can offer a qualitative pic­
ture of whether oppositely signed potentials are arranged across the binding interface, it 
does not produce a quantitative measure of complementarity. In particular, it neglects all 
consequences of desolvation that accompany binding and does not permit a comparison of 
the relative magnitudes of desolvation and interaction effects that are essential for optimal 
binding. In actual practice, we anticipate that this visualization technique can be used 
to identify sites of non-complementarity at molecular interfaces. Appropriate mutations 
(charged to polar or hydrophobic, for instance) might be introduced that improve the com­
puted complementarity. Synthesis and analysis of mutants experimentally could then be 
undertaken to test the modeling. 

The residual potential may also be used for basis set improvement. It is possible that 
with the addition of more ligand point-charge locations, the optimized binding free energy 
could improve - dramatically if the initial set of locations are poorly chosen. By comparing 
the receptor interaction potential (LHS of Eq. (10)) with the optimized ligand desolvation 
potential (RHS of Eq. (10)), the extent of complementarity can be judged. Regions of the 
ligand that are especially non-complementary can be enhanced with additional basis points 
and the optimization re-run [15]. While basis sets consisting of point charges at atomic 
centers are commonly used, we have found that basis sets based on the "inverse-image" 
positions of the receptor charges often produce very complementary ligands [15]. 
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5 Conclusions 

The problem of optimizing the electrostatic free energy of binding in the continuum model is 
solvable for many cases of interest. The resulting optimal charge distributions minimize the 
electrostatic contribution to the binding free energy. This contribution has been numerically 
and theoretically shown to favor binding in many situations of biophysical interest. The 
ability to obtain optimal charge distributions may provide useful templates for design and 
for searching molecular libraries. 

The theory is generalizable to other linear response models of molecular interaction. 
Current work extends these basics of charge optimization to the optimization of the 

balance between specificity and affinity. Research on molecular recognition problems and 
the problem of multiple receptor titration states is also in progress, as well as improvement 
of the numerical methodology for optimizing realistically-shaped molecules and converting 
these optima to physically realizable charge distributions. 
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Abstract 

The thermodynamics of solvation is studied by exploring the local minima of a function 
that describes the free energy of water around a protein. In particular, we determine 
if the ordered water positions in the crystal become preferred solvent binding sites 
in solution. The free energy is obtained by determining the electrostatic field of the 
solvated protein from a continuum model, and then calculating the interactions between 
this field and a single water molecule. The local minima in the neighborhood of selected 
points are explored by two different approaches. The first is a simple mapping of the 
free energy on a grid. The resulting maps show that the "free energy pockets" around 
crystallographic water sites are clusters of local minima. The second approach is based 
on the classical simplex algorithm which is used in two different implementations, one 
with a penalty function and the other modified for constrained minimization, called the 
complex method. Both the simplex and the complex methods are much faster than 
mapping the free energy surface. The calculations are applied to T4 lysozyme with 
data available on the conservation of solvent binding sites in 18 crystallographycally 
independent molecules. Results show that almost all conserved sites and the majority 
of non-conserved sites are within 1.3 A of local free energy minima. This is in sharp 
contrast to the behavior of randomly placed water molecules in the boundary layer 
which, on the average, must travel more than 3 A to the nearest free energy minimum. 
Potential solvation sites, not filled by a water in the x-ray structure, were studied by 
local free energy minimizations, started from random points in the first water layer. 

Keywords: Solvation free energy, local minimization, clusters of local minima, simplex 
method, complex method, test problem 

1 Introduction 

Proteins neither fold nor function without bound water molecules, and understanding sol­
vation is clearly a central problem in the biophysics of macromolecules. The experimental 
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techniques that provide most information on the solvent structure around proteins are x-ray 
crystallography and NMR spectroscopy [1, 2]. In x-ray crystallography regions of extra elec­
tron density are interpreted as ordered water sites, resulting in about 200 water molecules 
in a typical high resolution protein structure [3J. NMR data reveal that in solution the 
water molecules around the protein are in rapid motion, including those that appear to be 
fixed in the x-ray structure. The exchange times are less than 500 ps with the exception of 
a few buried waters that may have residence times of up to 0.01 s [4, 5J. 

Since the electron density map derived from X-ray diffraction is averaged over a time 
scale measured in hours, discrete water density found in a crystal structure clearly does not 
indicate an actual water molecule at that position. It implies, however, that the potential 
of mean force has a local minimum; that is, the free energy of water must be lower than at 
all closely neighboring regions. As pointed out by Levitt and Park [3J, if the free energy did 
not have a local minimum at that point, high electron density would not be found since, on 
average, water would be located relatively uniformly in that region. 

The main computational tools used to study water behavior around proteins have been 
molecular dynamics and Monte Carlo simulations [6, 7, 8J. Such calculations confirmed 
that water molecules near the protein surface remain very mobile, with a diffusion coeffi­
cient decreased two- to four-fold relative to that of bulk water [8]. However, MD studies 
substantially differed in their evaluation of the influence of apolar, polar, and charged sur­
face atoms on the mobility of the surrounding solvent [1, 7J. 

In this paper we search for preferred solvation sites by exploring local minima of a 
function that describes the free energy of water around the protein. The relationships 
between these preferred sites and the ordered water positions observed in the x-ray structure 
are also studied. We use a continuum model of electrostatics interactions [9, 10J in which 
the protein is represented by a low dielectric region containing discrete atomic charges 
at fixed positions, surrounded by a high dielectric medium representing the solvent, and 
calculate the electrostatic field of the solvated protein by solving the linearized Poisson­
Boltzmann equation [9, 10J. The free energy of water is then calculated by translating and 
rotating a "probe" water molecule in the precalculated field. This approach removes the 
need for estimating the free energy change by averaging over a large number of trajectories 
as required in molecular dynamics, and reduces the problem to exploring the local minima 
of the free energy surface. 

We focus on the following problems. 

Problem 1: In order to determine if water positions in the x-ray structure are retained 
as preferred solvation sites in solution, we will explore the neighborhood of crystallo­
graphic water positions for local free energy minima. 

Problem 2: In order to determine if there exist preferred solvation sites that are not in 
the vicinity of any crystallographic water site, we will start local minimization runs 
from a large number of points randomly placed in the first water layer. 

In both problems we need robust local minimization algorithms that can explore the 
local minima in the vicinity of a starting point without jumping to other regions of the 
search space. Two approaches will be used. In the first, robustness is assured simply by 
calculating the free energy on a grid in the plane of the two Euler angles describing the 
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position of the water molecule, thus mapping the free energy surface in a neighborhood of 
selected points [11 J. At each grid point minimization is still performed in the subspace of 
remaining variables. The resulting free energy maps show that the "free energy pockets" 
around crystallographic water sites are actually clusters of local minima, very close to each 
other and are separated by moderate free energy barriers. 

While the free energy maps are informative, the method is far from efficient for finding 
local minima. Therefore we performed further calculations using the simplex algorithm [12], 
one of the most robust approaches to local minimization. Two versions of the method were 
used. In the first we employed a penalty function to represent excluded volume constraints, 
thereby converting the problem into an unconstrained one. The second version, referred 
to as the complex method, works directly with the constrained problem without a penalty 
function [13, 14J Both the simplex and the complex methods are much faster than mapping 
the free energy surface. 

The calculations were applied to the x-ray structure of the T4 lysozyme that includes 
137 ordered water sites. This system is particularly interesting because x-ray structures 
are available for 18 crystallographycally independent T4 lysozyme molecules, including the 
wildtype 4lzm and nine mutants [15J. The comparison of these structures provides valuable 
information on the conservation of water sites across different crystal forms of the same 
protein. 

2 Methods 

2.1 Conformational space 

The free energy will be calculated for a "probe" water molecule translating and rotating 
around the protein. The position of each water molecule is given in a local coordinate system 
centered at some point Wo E R3. In the free energy mapping we use spherical coordinates, 
i.e., the location of the water molecule is given in terms of the Euler angles ¢ and 0, and the 
radius r. Further three Euler angles, ¢w,Ow, and'1f;w specify the orientation of the water. 
Thus, a point in this space is given by the vector 8 = (r,¢,O,¢w,Ow,'1f;w)T, and the search 
space is defined by S = {o :::; r,Oo :::; ¢ :::; 360°,0° :::; 0 :::; 180°,0° :::; ¢w,'1f;w :::; 360°,0° :::; 
Ow :::; 180°}. By contrast, the water position is given in Cartesian coordinates when the 
search is performed by the simplex or the complex method and a point is specified by the 
vector 8' = (.6.xw, .6.Yw, .6.zw, ¢w, Ow, '1f;w)T. In Problem 1, Wo is a crystallographic water 
position, whereas in Problem 2 Wo is a randomly selected point in the first water layer. 

2.2 Free energy function 

Let <I> denote the electrostatic field of a solvated protein. The free energy of a water molecule 
at position 8 E S is given by 

3 

.6.Gel(8) = 2: <I> (Xi)qi (1) 
i=l 

where Xl, X2 and X3 denote the positions ofthe atoms 0, HI, and H2 in the water molecule, 
and ql, q2, and q3 denote the corresponding atom-centered partial charges. We use the 
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TIP3 water model [16] which has rigid geometry, and hence for a given Wo the vector s E S 
determines the atomic positions Xl, X2 and X3. 

The electrostatic free energy is subject to steric constraints of the form 

Dj<dj, j=l, ... ,n (2) 

where dj is the distance between the center of the water and the jth protein atom. The 
lower bound Dj is the sum of van der Waals radii of the jth protein atom and that of the 
water molecule, i.e., Dj = rj + rw' 

To calculate the electrostatic field iI>, the linearized Poisson-Boltzmann equation is solved 
by a finite difference method as implemented in CONGEN [17]. The algorithm features 
adjustable rectangular grids, a uniform charging scheme that decreases the unfavorable grid 
energies, and smoothing algorithms that alleviate problems associated with discretization. 
The calculations were carried out using a 0.8 A grid, with uniform charging, anti-aliasing, 
and 15-point harmonic smoothing. A 8 A grid margin was maintained around the molecule. 
The dielectric constants of the protein and the solvent were set to 2 and 78, respectively, 
and the ionic strength was 0.05 M. Since the electrostatic field iI> is obtained only at the 
grid points, we employed a linear interpolation formula when calculating l:J.Gel by Equation 
1. Thus, with a precalculated field, free energy evaluation is extremely simple. 

Before the free energy calculation, the x-ray structure of the protein has been refined by 
200 steps of energy minimization, with the ordered water molecules included. We used ver­
sion 19 of the Charmm potential [18] with polar hydrogens, and 20 Kcal/mol/ A 2 harmonic 
constraints on the positions of non-hydrogen atoms. These calculations placed the polar 
hydrogens and created a plausible hydrogen-bonding network between protein and water. 
The RMS shift of the water molecules due to the minimization was 0.1 A. 

2.3 Free energy maps 

In order to understand the properties of the function defined by Equation 1 we first mapped 
the free energy surface in the vicinity of crystallographic solvent sites (Problem 1). Let 
Wo denote the position of an ordered site. In the spherical coordinate system placed at 
Wo we consider the lines defined by Euler angles (¢i,Oi), where ¢i = 0°,18°, .... 342°, and 
Oi = 0°,18°, ... , 180°. The free energy is minimized along each of these lines in terms of the 
remaining variables (r, ¢w, Ow, 'l/Jw) subject to the steric constraints given by Equation 2. 

The constrained minimization problem is solved using a penalty function approach, i.e., 
by the unconstrained minimization of the extended target function 

Q = l:J.Gel + CVexc 

where Vexc is an excluded volume penalty function defined by 

ifdj < Dj; 
otherwise, 

(3) 

(4) 

and C is a weighting coefficient. As we will show, using C = 105 the atomic overlaps after 
the convergence of the minimization are so small that the l:J.G el term is not significantly 
affected. Notice that using the extended potential any steric overlap will show up as a 
sudden increase on the free energy maps. 
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For each (¢i,Oi) our goal is to find the local free energy minimum closest to the original 
water position Wo along the line defined by (¢i,Oi), i.e., the smallest displacement r at 
which a local minimum occurs. Therefore we select r = a as the initial displacement. 
However, we also need to choose starting values for the variables (¢w,Ow,'l/Jw) that describe 
the orientation of the "probe" water molecule. As may be expected in a nonlinear problem 
and is confirmed by our calculations, for a given (¢i, Oi) and initial point r = a it is possible 
that, for some initial values of (¢w, Ow, 'l/Jw), the Powell method does not find the local 
minimum corresponding to the smallest displacement r. In some cases the search may 
terminate early, e.g., due to being restricted to a subspace of the four-dimensional search 
space; in others the procedure may jump to a more distant local minimum. These artifacts 
can be easily identified by repeating the minimization for each (¢i, Oi) 30 times with different 
random orientations of the probe as the starting state. Since early termination or jumping 
over a local minimum along the line defined by (¢i, Oi) are relatively rare, the majority of 
the 30 runs yields very similar displacement values, well distinguishable from the few runs 
that end up in substantially different points. For each (¢i, Oi) we consider only the highly 
populated cluster of final water displacements, and choose the lowest f:::"Gel value within 
this cluster as the free energy minimum along the line defined by the Euler angles (¢i, 0i). 

Restricting consideration to the above minima the free energy surface can be visualized 
using two maps. The first map shows the minimum free energy as a function of ¢i and Oi. 
The second map shows the displacement r at which the minimum occurs. The two maps 
together show if there is a free energy pocket in the vicinity of the crystallographic water 
site, and how far this pocket extends along each direction before the free energy starts to 
increase. We note that the analysis of the final maps provides an independent method to 
test if a local minimum found by the Powell method is the closest one to the origin along 
the line (¢i, Oi). In fact, an early termination or jump shows up as a discontinuity at the 
corresponding grid point on the displacement map, and most frequently also on the free 
energy map. As we will further discuss, selecting the dominant cluster from the 30 runs for 
each (¢i, Oi) assured the continuity of both maps for almost all water molecules. 

2.4 Minimization by the simplex method 

The classical simplex method is for unconstrained minimization, and will be used with the 
extended function defined by Equation 3. The algorithm proceeds as follows [12]. 

1. Select a starting simplex represented by k = n + 1 vertices x(l), x(2), ... ,x(k). The 
method actually starts with only one feasible point x(l), and the remaining k - 1 points are 
found one at a time by random selection in the neighborhood of x(l). 

2. Evaluate the target function Q at the k vertices and select the worst point xmax such 
that f(xi) ::; f(xmax ) for i = 1,2, ... , k, and the best point xmin such that f(x i) ~ f(xmin ) 
for i = 1,2, ... ,k, 

3. Calculate the the centroid of the simplex by 

k 
"If = [L xci) - xmaxJln 

i=l 

Notice that the centroid excludes the worst point xmax . 

(5) 
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4. Calculate (1) the reflection point x* with x* = (1 + a)x - axmax , where a > 0, (2) 
the expansion point x** with x** = ,x* + (1 - ,)x, where, > 1.0, and (3) the contraction 
point x*** with x*** = {3xmax + (1 - {3)x, where 0 :::; {3 :::; 1.0 

5. Evaluate the function Q at the reflection point. If the reflection point is better than 
the best point, evaluate Q at the expansion point x**. If the expansion point is better 
than the reflection point, replace the worst point in the simplex by the expansion point, 
otherwise replace it by the reflection point. 

6. If the reflection point is better than the worst point, replace the worst point by 
the reflection point in the simplex. Otherwise evaluate Q at the contraction point. If 
the contraction point is better than the worst point, then replace the worst point by the 
contraction point in the simplex; otherwise reduce the size of the simplex leaving only the 
best point in place [12]. 

7. Terminate the iteration if the norm in the correction of the centroid is smaller than 
a threshold E. 

The algorithm has great versatility in adopting the simplex to the local free energy 
landscape. It will elongate and take a larger step if it can do so, it will change direction 
on encountering free energy barriers at an angle, and it will contract in the neighborhood 
of a minimum. However, for our purposes the most important feature of the method is its 
robustness which can be further increased by defining an upper bound on any side of the 
simplex, which will assure that the method will explore nearby local minima and will not 
jump to a far point of the conformational space. Although we may need to evaluate the 
function at more points than for a method with a superlinear convergence rate, the steps 
made by the simplex generally provide useful information on the form of the surface. 

The simplex algorithm obviously provides only a local minimization tool. As we will fur­
ther discuss, in the present application we want to explore the local minima in the neighbor­
hood of a starting point. This will be accomplished by performing 30 minimization runs with 
randomly generated simplexes placed around the given starting state. The points represent­
ing the results of the 30 minimizations are clustered in the Cartesian space, i.e., differences 
in the rotational coordinates ¢w, ()w, and'ifJw are ignored. We selected a simple clustering al­
gorithm (see http://mvhs1.mbhs.edu/mvhsprojJprojects/clustering/algorithm2.html). The 
original method introduces an appropriate number of clusters such that the distances within 
each cluster are smaller than the half-distance between any two clusters, where the inter­
cluster distance is defined as the distance between the hubs of the corresponding clusters. 
This algorithm was modified by introducing a lower bound L on the inter-cluster distances, 
and thus any two clusters with a distance below L are concatenated into a single cluster. As 
we will discuss, this lower bound accounts for the fact that water positions in two different 
crystal forms of the same protein have been clustered into a single solvation site if they were 
closer than 1.2 A to each other [15, 20]. 

2.5 Minimization by the complex method 

The complex method is a straightforward extension of the simplex method ([14], p. 292) for 
solving constrained problems without introducing a penalty term. The method can handle 
only inequality constraints. The complex method is essentially a simplex method with the 
additional condition that any vertex must be a feasible point. Thus, every time a trial point 
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xU) is generated, we find whether it satisfies all the constraints. If it violates any of the 
constraints, the point is moved half way toward the centroid of the already accepted points. 
This reduction in step size is continued until a feasible point is found. We will ultimately 
be able to find a feasible point by this procedure provided the feasible region is convex. 

For comparison we tried to keep decision making in simplex and complex algorithms 
as similar as possible, but there are some essential differences. In the simplex method we 
use k = n + 1 vertices as suggested by NeIder and Mead [12]. A larger k leads to early 
convergence and generally causes the method to miss the extreme point being searched for. 
By contrast, for the complex method Box [13] recommended a value k ~ 2n, and we used 
k = 2n. In fact, if k is not sufficiently large, the complex tends to collapse and flatten 
along the first constraint boundary encountered. The other difference is in the selection of 
the starting simplex. In the case of the simplex method the only requirement is to "fill" 
the entire space, Le., to avoid the flattening of the simplex to a subspace. By contrast, 
the complex method requires points that are feasible. As we described, feasibility can be 
assured by reducing the simplex if the feasible region is convex and at least one feasible 
point is already available. The first feasible point is placed by a randomized trial-and-error 
procedure. As in the case of the simplex method, we perform 30 minimization runs with 
different initial simplexes placed in the vicinity of the given starting point, and cluster the 
solutions to obtain information on the nearby local minima. 

2.6 Application 

We use the 1.7 A resolution x-ray structure of the T4 lysozyme (PDB code 4lzm) that 
includes 139 water molecules. We placed the polar hydrogens and removed potential steric 
overlaps by 200 steps of energy minimization using version 19 of the Charmm potential [18] 
and 20 Kcal/mol/ A2 harmonic constraints on the positions of non-hydrogen atoms. The 
refinement of ..the crystal structure results in an RMS shift of 0.1 A. 

T4 lysozyme is studied because the x-ray structure is available for a number of mutants 
that differ from the wildtype only at one or two positions [15]. Although the mutations 
affect the structure in the immediate vicinity of the amino acid substitution, the rest of 
the protein remains essentially unchanged. In some cases some "hinge-bending" motion 
occurs, but it can be corrected by bringing the rigid body fragments into a reference frame. 
The overlap of 18 x-ray structures results in a total of 1675 water molecules. Zhang and 
Matthews [15] clustered these waters by taking each water in turn, and counting how many 
other water molecules occurred within 1.2 A, forming a total of 139 clusters. The analysis 
of these clusters provided information on the conservation of solvation sites. In particular, 
40 sites that were occupied in at least 7 of the 18 molecules have been defined as conserved 
water positions. 

3 Results and Discussion 

In this paper we focus on the simplex and complex methods. A summary of free energy 
mapping results is given, with details reported elsewhere [21]. As we will show, the maps 
help to understand the optimization problem and the behavior of the algorithms. 
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Figure 1: Contour lines of the minimum free energy surface in site 311 as a function of the 
Euler angles ¢ and B. The dashed line shows the trajectory in a simplex minimization. 

3.1 Free energy maps 

Free energy and displacement maps have been constructed for the neighborhoods of crys­
tallographic water sites in the x-ray structure 4lzm. 

As an example, Figures 1 and 2 show such maps for water site No. 311. Figure 1 shows 
the minimum free energy as a function of the Euler angles ¢ and 0, i.e., the lowest free 
energy values attained along the lines defined by (¢, 0) as we move outward from the center 
of the local coordinate system. Figure 2 shows the displacement r at which this minimum 
is attained. 

The free energy and displacement maps together provide substantial information on the 
-local behavior of the free energy function. Based on the free energy maps we conclude that 
the free energy pockets discussed by Levitt and Park [3] are actually clusters of local minima, 
generally separated from other clusters by relatively high free energy barriers. Due to these 
energy barriers most clusters are well defined, and hence for each cluster we can identify 
the local minimum with the lowest free energy and determine its displacement r from the 
crystallographic water position. However, since there may exist several local minima with 
similar energies, we frequently study all minima within the cluster rather than focusing on 
the lowest energy one. 
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Figure 2: Displacement r at the free energy minima shown in Figure 1, including the 
pathway of the centroid in the simplex minimization. 

Although the particular geometries differ, the site around water 311 is typical of most 
crystallographic water sites. Figure 1 shows only the region containing the two lowest 
energy minima, but the free energy pocket around this site includes two other minima that 
are beyond the boundaries of the plot. As the displacement map in Figure 2 shows, the 
cluster is well defined, outward moves from the crystallographic position may reduce the free 
energy for some distance, but after less then 1 A displacement the free energy invariably 
starts to increase. In many cases the border of the pocket is very sharp because even a 
very small move along the line defined by the corresponding <P and () pair steeply increases 
the free energy. Such steep increase is generally due to steric overlaps, indicating that the 
site is close to the protein surface. For water 311 the maximum displacement occurs at 
<P = 235° and () = 55°, and it is close to 1 A. The lowest free energy value, -9.3 kcal/mol, 
is at ¢ = 261° and () = 29° (Figure 1), and it is attained with slightly less than 0.8 A 
displacement (Figure 2). 

We attempted to construct free energy and displacement maps for all the 139 crystal­
lographic water sites in 4lzm. However, in seven cases the maps showed sudden changes in 
the free energy at some points of the (¢, ()) plane. This may signal an inherent discontinuity 
of the free energy function due to the instability of the water molecule at the particular 
sites when the protein is in solution rather than in a crystal. However, as we described in 
the method, it is also possible that our procedure of performing 30 local minimizations at 
(<Pi, (}i) and then selecting the most populated cluster is unable to identify the minimum 
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closest to the original crystallographic site. Therefore we increased the number of mini­
mization runs to 60, but were unable to remove the discontinuities. As we will discuss, the 
seven water sites were re-examined by the simplex method, and were shown to be inherent 
discontinuities. 

Of the 132 remaining sites, 100 are within 1.3 A of the closest local free energy mini­
mum. In terms of displacement statistics, there is a slight difference between conserved and 
non-conserved water positions. The closest minimum is within 1.3 A for the majority of 
conserved sites (31 out ofthe 36, or 86.1%). In the case of non-conserved sites, this fraction 
is 71.8%. However, in spite of the substantial shifts in the position of a few non-conserved 
waters, a comparison of displacement distributions for conserved and non-conserved sites 
does not show a significant difference. Similarly, there is no significant difference between 
the free energy distributions, although a few buried water molecules have very low free 
energies (~ -12 kcal/mol). 

The finding that most crystallographic sites are within 1.3 A of a local minimum is in 
sharp contrast to the behavior of water molecules randomly placed in the first water layer. 
Such molecules, on the average, must move 3.2 A to reach the nearest local minimum. 
Thus, we conclude that ordered water sites in the x-ray structure are at least partially due 
to favorable electrostatic interactions between the protein and the water, and the majority 
of such positions remain preferred solvation sites when the protein is in solution. 

3.2 Search by simplex and complex methods: crystallographic sites 

The free energy maps show the local minima in the neighborhood of 132 crystallographic 
water sites. To test the simplex and complex methods, we explored the same regions 
by performing 30 minimization runs with randomly selected initial simplexes around each 
site. As mentioned in Methods, the search is in the space defined by the vectors Sf = 

(b..xw, b..Yw, b..zw, ¢w, Ow, 'lj;w)T. In the translational subspace, the vertices of the initial 
simplex have been obtained by random displacements between -1 A and 1 A along each 
coordinate axis. The rotational coordinates ¢w and 'lj;w of the vertices have been randomly 
selected in the 0° to 360° interval and Ow from the 0° to 180° interval. 

Figures 1 and 2 also show the trajectory of the centroid in a minimization by the 
simplex method, superimposed on the free energy and displacement maps, respectively. 
The trajectory shown contains 350 simplex iterations. As described in the method, for each 
water site we perform 30 minimization runs from different initial points, and cluster the 
solutions. For water 311, 24 of the 30 solutions form a single cluster (are within 1.2 A to 
each other), and the remaining 6 points distribute among three other clusters, indicating 
three further local minima. Comparison with the free energy map shows that the most 
populated cluster is also the lowest free energy local minimum. 

Figures 3 and 4 show the trajectory of the centroid in a minimization by the complex 
method. Since the algorithm includes a search for a feasible initial simplex in the k = 2n = 

12-dimensional space, the initial position of the centroid generally differs from the one in 
the simplex method, even when the same seed is used in the random number generator. As 
shown by the relatively high energy, for the particular run in Figure 3 the initial simplex is 
in a region that is close to the protein but is still feasible (Le., the extended target function 
is below -7 kcal/mol, indicating the lack of any steric overlap). Without a penalty term, 
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Figure 3: The pathway of the centroid of the simplex in a minimization by the complex 
method in site 311. The contour lines represent the minimum free energy surface shown in 
Figure 1. 

the electrostatic component i::1Gel in this region changes slowly, and thus the simplex moves 
around before starting toward the minima in the free energy pocket. The trajectory of the 
centroid shown is actually the result of over 1,500 iterations. 

Table 1 lists the average number of function evaluations and the average CPU time for 
the three different methods, the latter for runs on a single SiliconGraphics RIOOOO processor. 
For the grid-based approach both numbers are shown for the 30 minimization runs by the 
Powell method at a given (Pi, 8i) in the space of the four variables (r, <Pw, Ow, 'l/Jw)' Notice 
that selecting the most populated cluster provides the free energy and displacement values 
at (<Pi, 8i) , i.e., a single grid point of the free energy and displacement maps. Since with 
the selected grid density each map consists of 220 grid points, the total average CPU time 
required for the construction of one map is 27,280 s, or about 7.6 hrs on a single R-IOOOO 
processor. 

For the simplex and complex methods Table 1 shows the (average) total number offunc­
tion evaluations and the (average) total CPU time in 30 minimization runs, starting with 
different initial simplexes. In contrast to the 30 minimizations in the grid-based approach 
that yield a single point of the free energy map, the 30 runs explore an entire cluster of local 
minima (see below). As shown in the Table, the general relationship between simplex and 
complex trajectories is well represented by Figures 1 and 3; i.e., the complex method, on 
the average, requires about five times as many iterations as the simplex method. In spite 
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of this large difference in the number of function evaluations, the CPU times differ only 
by about 16%. This apparent contradiction is due to the extreme simplicity of function 
evaluation in this particular case, which is essentially interpolating in a table. Therefore, 
the CPU times are determined by the computational overhead rather than by the number 
of function evaluation, and the former seems to be very similar for simplex and complex 
methods. Both are much more efficient than mapping the free energy surface. For example, 
exploring a water site with the simplex method, on the average, requires 807 s and thus 
about 13 minutes instead of the 7.6 hrs CPU time for constructing a free energy map. 

Table 1. Performance characteristics of the three methods 

Method 

Grid-based Simplex Complex 

Number of 
function evaluations 5153 ± 5112 6063 ± 360 28428 ± 2559 

CPU time, s 124 ± 16 807 ± 109 944 ± 134 

Why does the simplex method require much fewer function evaluations than the complex 
method? We recall that the simplex and complex methods work with k = n + 1 and k = 2n 
vertices, respectively. We have evidence that using fewer vertices in the simplex method 
has a favorable effect, because increasing the number of vertices without any other change 
in the simplex algorithm increases the number of function evaluations. However, the better 
performance of the simplex method is mainly due to the use of the penalty function given by 
Equation 2 that facilitates the elimination of steric overlaps. Since the effect of the penalty 
term on the position of the minima can be neglected, particularly at the limited resolution 
of the grid, in the application considered here the simplex method with a penalty function 
is superior to the complex method that accounts for the constraints in a binary fashion, 
without any concept of direction. 

For each water site, the results of the 30 runs are clustered as described in the Methods, 
using 1.3 A as the lower bound L on the cluster size. Each cluster essentially represents 
a set of points that are within the region of attraction of a local minimum, and is labeled 
by the name of the atom closest to the hub of the cluster. By comparing the lists of local 
minima to the free energy maps we concluded the 30 runs for each site were sufficient to find 
the lowest minimum in each free energy pocket as one of the clusters, but not necessarily 
the lowest energy ones: for the 139 crystallographic sites, the most populated cluster is also 
the lowest energy one in 92 cases (66%). Comparison to the free energy maps shows that it 
is more meaningful to characterize the position of the free energy "pocket" (i.e., the cluster 
of local minima separated from other clusters by free energy barriers) by the position of 
the most populated cluster rather than by the position of the lowest energy cluster. The 
explanation is that in spite of the simplicity of the simplex method, some trajectories may 
end up in a different cluster, particularly ifthe free energy of the particular "pocket" is much 



EXPLORING POTENTIAL SOLVATION SITES OF PROTEINS 255 

150 

Figure 4: Displacement r at the free energy minima shown in Figure 3, including the 
pathway of the centroid in the complex minimization. 

higher than the free energy of a neighboring pocket. However, the "jump" to a different 
cluster happens only in a small fraction of the trajectories, and hence the displacement of 
the most populated cluster is a more robust characterization of the distance between the 
original water position and the free energy pocket. Indeed, the most populated cluster is at 
the local minimum closest to the original site in 105 of the 139 crystallographic sites (75%). 
Furthermore, for the 36 conserved water sites that are generally better defined than the 
non-conserved sites, the most populated cluster is also the closest one in 29 cases (81%). In 
4 of the remaining 7 sites the most populated cluster contacts the side chain that interacts 
with crystallographic water in the x-ray structure. 

Using the simplex and complex methods we were able to explore the seven water sites 
for which no meaningful free energy maps have been obtained due to the sudden changes. 
It turns out that all corresponding free energy pockets are very shallow, resulting in five 
to eight clusters. In two cases (water sites 205 and 209) some trajectories end up close to 
the crystallographic water positions, but at very high energies (-1.95 kcal/mol and -2.07 
kcal/mol, respectively), although for water 209 other water positions (230 and 337) are also 
obtained. For the other five sites (220, 233, 234, 255 and 260) none of the trajectories 
remains close to the crystallographic positions. Since all the seven sites discussed here are 
non-conserved, the weak energetics do not contradict the experimental evidence. However, 
it remains an open question as to why these water molecules are ordered in the x-ray 
structure. 
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Figure 5: The two most populated local minima (large shaded spheres) in the simplex 
search from water position 311 (large dark sphere). Residues 125 through 128 of the T4 
lysozyme are also shown using shades as follows: carbons lightly shaded, oxygens darker, 
and nitrogens dark. 

For the 139 water sites the calculations yield 570 clusters (i.e., 4.1 clusters per site), 203 
of which (40%) correspond to water molecules For 130 of the 139 sites, the atom closest 
to one of the clusters is an atom of the original water in its crystallographic position, with 
hydrogens placed by Charmm [18J. The corresponding clusters are generally well populated. 
This result is in complete agreement with the results of the free energy mapping, and 
confirms that the majority of crystallographic positions become preferred solvation sites in 
solution. 

The 203 water clusters for the 139 sites means that for a number of water molecules some 
of the 30 trajectories end up in another water site, i.e., the crystallographic sites are not 
necessarily separated by high energy barriers. In addition, there are 367 non-water clusters. 
Most of these are close to side chains that interact with the particular water molecule in the 
x-ray structure. However, the additional minima are far enough from the crystallographic 
water sites to be regarded as separate clusters. In fact, high resolution protein structures 
reveal that a charged side chain, particularly Glu or Asp, can simultaneously contact up 
to five ordered water sites. The additional clusters correspond to such potential solvation 
sites that in the given x-ray structure are not filled with a well determined water. As we 
will see, most of these sites are on the "other side" of side chains that already contact at 
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least one ordered water. 
For example, Figure 5 shows the two most populated local minima (large gray spheres) 

when starting minimizations from water position 311 (large black sphere). Residues 125 
through 128 of the T4 lysozyme are also shown. Notice that the site is surrounded by the 
charged side chains of Asp-127 and Glu-128, as well as by Arg 125 that is a bit farther 
from the water position. Rather than shifting to any of these side chains, water 311 is seen 
in a free energy pocket that is cooperatively determined by the three, and by additional 
charges on nearby backbone atoms. Free energy minimizations robustly identify this region 
of the free energy, but they also show that the region contains several local minima and thus 
several potential water positions, two of which are shown in Figure 5. Since these minima 
are close to each other and are separated by moderate free energy barriers, water molecules 
can shift from one to another. 

As we have discussed, the most populated cluster is generally a useful characterization 
of the entire free energy pocket and hence we also collected statistics by restricting con­
sideration to these clusters. The corresponding free energy was negative for all sites. The 
closest atom to the cluster was that of a water molecule for 103 of the 139 sites, but in 
two cases the trajectory actually ended close to a different water molecule, not the one in 
the original site. In 18 cases the populated cluster was close to a side chain that contacts 
a water molecule in the x-ray structure. This means that the minimized water orientation 
relative to the side chain differs from the one observed in the crystal. In 13 cases a backbone 
atom is the one closest to the populated minimum. The free energy of such water molecules 
ranges from -6.1 to -3.8 kcaljmol. Although these interactions are relatively weak (the free 
energy of some water molecules can be as low as -13 kcal/mol), the mean free energy for 
backbone-contacting water molecules is not significantly higher than the mean free energy 
for all ordered sites. In fact, some of the crystallographic water sites interact with the 
backbone. 

There are 5 cases in which the minimized water contacts a side chain that has not been 
observed to contact an ordered water in the x-ray structure. Most frequently this situation 
occurs for charged or polar side chains that could interact favorably with water molecules, 
but are too ill-defined to be seen in the x-ray structure. In fact, Thanki et al. [22] observed 
that the highly mobile Lys side chains have no preferred orientation for water contacts. The 
same applies to most Tyr and Trp side chains. 

We note that the initial simplex size, particularly in the translational subspace, is an im­
portant parameter that controls how well the local minima in a neighborhood are explored. 
If the size is too small, all runs remain in the same local minimum, whereas a simplex that 
is too large may move over to a different site. With the current selection at least 90% of 
trajectories remained in the free energy pocket, and essentially all local minima, observable 
on the free energy maps, have been found. We also found additional clusters corresponding 
to local minima that were not seen on the maps, most likely due to their limited resolution. 

3.3 Search by simplex and complex methods: random positions 

Although the results just described already provide some information on the potential water 
positions (Le., free energy minima that do not correspond to crystallographic water sites), 
we randomly selected 100 water positions in the first solvation layer and explored the local 
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minima in their neighborhoods by the simplex method. The hundred runs results in 414 
clusters, i.e., the number of clusters per residue is 4.1, exactly the same as in the minimiza­
tions around crystallographic sites. Only 29 of these clusters are closest to a water site. 
This is 7% of the total, much less than around the ordered sites. 

Restricting consideration to the most populated clusters we drop 8 minimization runs 
in which the final free Briergy is positive. 14 clusters are closest to an ordered water site. 
Although in the remaining 78 trials the most populated clusters are closer to protein atoms 
than to a crystallographic water, 36 of these interact with side chains that also contact 
at least one ordered water. There are 26 trials in which the dominant cluster moves to a 
backbone atom. For some of these sites the water-protein interaction is relatively weak, but 
the mean does not significantly differ from the mean calculated for all sites. 

In the remaining 16 trials we find side chains that are not seen to contact an ordered 
water in the x-ray structure. These include four Lys residues, Lys-16, Lys-43 (twice), Lys-
60, and Lys-162. Based on the thermal factors, all these side chains are very mobile in the 
crystal, and water molecules associated with them would not be seen. There are two Asn 
side chains, Asn-2 and Asn-81, that interact weakly with water. According to our results, 
the side chains of Asp 72 and Asp 92 must also be preferred solvation sites, and we do not 
fully understand why no ordered water is seen around them in the x-ray structure. 

4 Conclusions 

The structural and functional importance of water associated with proteins is well known 
[1, 2]. While x-ray crystallography and NMR techniques provide a wealth of structural 
data, they leave open important questions concerning the origin of preferred water sites, 
and the relationship between water positions in crystal structures and in solution. On the 
basis of the experimental data and the somewhat incomplete theoretical studies, Levitt and 
Park [3] formulated a number of assumptions. To explain the origin of an ordered water 
they concluded that the potential of mean force at that point must have a local minimum, 
i.e., the free energy of a water at closely neighboring regions (within say 2-3 A) must be 
relatively high, forming a free energy "pocket". 

In this paper we studied the above free energy "pockets" by performing local minimiza­
tion runs in the neighborhoods of interest, and then clustering the obtained local minima. 
The free energy was calculated for an explicit water molecule ("probe" molecule), inter­
acting with the electrostatic field of the solvated protein. Using a precalculated field this 
approach results in a very simple free energy function. The computational problem is to find 
the local minima that are closest to a given point in space. However, accounting for both 
translation and rotation of the "probe" water, the search is in the space of six variables: the 
Euler angles ¢ and 0, the center-to-center distance r, and the Euler angles ¢w, Ow, and 1/Jw 
that specify the orientation of the water. The minimization is subject to steric constraints 
that prevent water-protein overlaps. 

We used two different approaches to find the local minima in the neighborhood of se­
lected points. The first employs a penalty functions and attempts the minimization by 
Powell's method. We have found that this method lacked the necessary robustness, i.e., 
depending on the initial values for the rotational variables ¢w,fJw, and 1/Jw, the algorithm 
frequently converged to distant local minima, ignoring others close to the initial point. We 
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improved the performance by reducing the dimensionality of the problem, i.e., by convert­
ing it into a grid-based search for the variables <p and 0, and performing repeated loeal 
minimizations in the space of the remaining variables r, <Pw, Ow, and '¢w' Thus, in terms of 
<p and 0, this is a mapping of the free energy on a grid. The resulting maps showed that 
the free energy "pockets" around crystallographic water sites are actually clusters of local 
minima, and the different clusters are generally but not always separated by relatively high 
free energy barriers. 

The second approach was based on the classical simplex algorithm which was used 
in two different implementations, one with a penalty function and the other modified for 
constrained minimization, called the complex method. Both the simplex and the complex 
methods were much faster than mapping the free energy surface. The methods have been 
used with multiple runs to explore the various local minima in the free energy "pockets". 
In particular, we have selected 30 random initial simplexes, performed the searches, and 
clustered the solutions. Each cluster essentially represented a set of points that were within 
the region of attraction of a local minimum. As we have shown, the positions of the most 
populated clusters provided the best key to describe the free energy pocket. 

The calculations were applied to T4 lysozyme with data available on the conservation of 
solvent binding sites in 18 crystallographycally independent molecules. Results show that 
the majority of crystallographic water sites are within 1.3 A of local free energy minima. 
This is in sharp contrast to the behavior of randomly placed water molecules in the boundary 
layer which, on the average, must travel more than 3 A to the nearest free energy minimum. 
Potential solvation sites, not filled by a water in the x-ray structure, were studied by local 
free energy minimizations, started from random points in the first water layer, and generally 
found good agreement with the crystallographic site. There were some false positives, i.e., 
local minima that were not seen in the crystal structure as ordered water sites. However, the 
dominant majority of these false positives were not very wrong, because they were simply 
on the "other side" of side chains that contacted one or more water molecules anyway, but 
not in the same orientation. 
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Abstract 

An exact analytical solution is given to a problem of relative arrangement of two 
molecules which minimizes the weighted sum of squared interatomic distances. 

Keywords: Minimization on a Lie group, critical point, singular value, singular de­
composition of a matrix. 

In molecular genetics studies and drug design a problem of a search for similar portions 
in the chains of two distinct biopolymer molecules arises. This similarity is sometimes 
understood as the proximity of 3-D atomic configurations of the molecules. To estimate 
this value they consider the following extremum problem on the group of R 3-isometries. 

Given the positions of two sets of atoms {Xi}~l; {Y"}~=l (Xi,Y" E R 3 ) and a set of 
nonnegative weights {Ai,,} that measure the semblance of atoms Xi and y" to obtain the 
minimum and the extremal arguments of the function 

N M 
J(n,b) := L L Ai"lxi - ny" - b1 2 , (1) 

i=l,,=l 

here n E 80(3) is a rotation matrix and b E R3 is a translation vector. 
This problem had in essence been solved in the series of papers [1, 2, 3], with the de­

scription of (all but one) degeneraces of this problem in the latter paper. Our approach to 
the solution differs from that of the quoted papers since we use the elementary differential 
geometry of Lie groups. This approach gives nothing new on the algorithm level, but it 
allows us to give a very detailed and complete classification of all degenerated cases for the 
above problem. The author is thankful to the reviewer for the references on the previous 
works in this field. 
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With the rotation matrix 0 being fixed minimum of J with respect to b is attained in 

the unique point b*(O) where ~~ (0, b*) = 0: 

b*(O) = A-I (t: Aia(Xi - OYa)) , (2) 

where A := I: Aia > O. We arrived at the problem of minimization on group 80(3) of a 
ia 

function 

J(O, b*(O)) = const( {Xi}, {Ya}, {Aia}) + 2tr(XO), (3) 

where the value of const(·,·,·) is independent of 0 and the matrix X is defined as: 

X := A-I L AiaAj,BYaX; - L AiaYaX ; (4) 
iaj,B ia 

The following two lemmas allow us to find and classify all critical points of 

Jx(O) := tr(XO), o E 0(3). (5) 

Lemma 1. The point 0 E 0(3) is the critical one for Jx if and only if the matrix 
H := XO is symmetric 

Lemma 2. Let 0 E 0(3) be a critical point of a function Jx,. AI, A2, A3 are eigenvalues 
of H := XO. Then the quadratic form d2Jx(0) defined on a tangent space TO(3) (0) have 
the same number of positive and negative squares as the form determined by the matrix 

-diag ((AI + A2), (A2 + A3), (A3 + AI)) . 

Let us sketch the proofs of the stated above lemmas. The tangent space at 0 E 0(3) 
we identify [4] with the tangent space at the neutral element of the group 0(3) that is with 
the algebra 80(3) of real skew-symmetric matrices K of dimension 3. 

0= (dJx,K) := dd tr(XO exp Kt)1 = tr(XOK). 
t k=o 

The last expression is equal to zero for all skew-symmetric matrices K if and only if the 
matrix XO is symmetric. 

= tr (diag(A1, A2, A3)(Ad Ut . K)2) =: tr(diag(A1, A2, A3)Kf), 

where U E 80(3) diagonalizes H, 80(3) '3 K1 := Ut KU. If 

o a b 
K1 = -a 0 c 

-b -c 0 
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then the last expression in the previous chain of equalities has the appearance 

-[(.A1 + .A2)a2 + (.A2 + .A3)C2 + (.A3 + .A1)b2]. 

To simplify the usage of the lemmas 1, 2, we reduce minimization of J X to minimization 
of JD(n) := tr(Dn) with diagonal matrix D := diag(1l1,1l2,1l3) where III 2:: 112 2:: 113 2:: 0 
are the singular values [5] of X. 

Lemma 3 There exist orthogonal matrices 3 1,32 composed of the right eigenvectors of 
respectively X X t and X t X for which holds the factorization 

Corollary 

min Jx = { 
80(3) 

min JD, 
80(3) 

min JD 
0(3)\80(3) , 

if 3132 E 80(3), 

if 3132 E 0(3) \ 80(3). 

Below are listed all the critical points of JD on the group 0(3) and their classification. 

Case 1. 1-'1 > 1-'2 > 1-'3 
SO(3) 0(3) \ SO(3) d" In(fl) indices point type 

diag(l, 1, 1) diag(l, 1, -1) (-,-,-) max 
fl diag(l, -1, -1) diag(l, -1, 1) (-,-,+) saddle 

diag( -1,1, -1) diag( -1,1,1) (-,+,+) saddle 
diag( -1, -1, 1) diag( -1, -1, -1) (+,+,+) min 

Case 2. 1-'1 = 1-'2 > 1-'3 
SO(3) 0(3) \ SO(3) d" In(fl) indices point type 

diag(l, 1, 1) diag(l, 1, -1) (-,-,-) max. 
fl fl-(e2) fl+(e2) (-,0,+) saddle 

-diag(l, 1, -1) -diag(l, 1, 1) (+,+,+) min. 

o 
, e2 E R2 - unit vector. 

o ±1 

Case 3. 1-'1 > 1-'2 = 1-'3 > 0 
SO(3) d<Jn(fl) 0(3) \ SO(3) d,2Jn(fl) point type 

indices indices 
diag(l, 1, 1) (-,-,-) fl (e2) (-, -,0) max. 

fl diag(l, -1, -1) (-,-,+) diag( -1,1,1) (-,+,+) saddle 
fl (e2) (+,+,0) -diag(l, 1, 1) (+,+,+) min. 

±1 

, e2 E R2 - unit vector. 

(6) 
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Case 4 J.ll > J.l2 - }La - 0 - -

I II 80(3) T 0(3) \ 80(3) d" JD(fJ) indices 

I 
If fJ. (e2) T fJ (e2) (-,-,0) 

fJ If fJ (e2)T fJ. (e2) (+,+,0) 
± ,+ 

Case 5 J.ll - }L2 - }La > 0 - -
80(3) d"JD(fJ) 0(3) \ 80(3) 

indices 
fJ diag(1, 1, 1) (-,-,-) -fJ(ea) 

fJ(ea) (+,0,0) -diag(1, 1, 1) 
fJ(e3) = 2ea . e~ -Is, ea E Ra - umt vector. 

Case 6. J.ll = J.l2 = J.la = O. 

JD = 0 identically. 

point type I 
max. I 
min. I 

d"JD(fJ) point type 
indices 
(-,0,0) max. 
(+,+,+) min. 

Summarizing cases 1-6 we arrive to the theorem 1: 

A. B. BOGATYREV 

Theorem 1. The minimum of J(O, b) is attained at the point (0*, b*) E 80(3) X R3 
where b* is from (2) and 

0* = -32diag(1, 1, ±1)3L (7) 

the sign "+" or "-" on the right-hand side is chosen so that 0* E 80(3), 31 and 32 satisfy 
(6) with X from (4). If two smaller singular values of X coincide then the point of minimum 
may be not unique. 
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Abstract 

We describe a rapid algorithm for visualizing large chemical databases in a low-dimensional 
space (2D or 3D) as a first step in chemical database analyses and drug design applica­
tions. The compounds in the database are described as vectors in the high-dimensional 
space of chemical descriptors. The algorithm is based on the singular value decompo­
sition (SVD) combined with a minimization procedure implemented with the efficient 
truncated-Newton program package (TNPACK). Numerical experiments show that the 
algorithm achieves an accuracy in 2D for scaled datasets of around 30 to 46%, reflecting 
the percentage of pairwise distance segments that lie within 10% of the original dis­
tance values. The low percentages can be made close to 100% with projections onto 
a ten-dimensional space. The 2D and 3D projections, in particular, can be efficiently 
generated and easily visualized and analyzed with respect to clustering patterns of the 
compounds. 

Keywords: chemical databases, clustering analysis, visualization, SVD, TNPACK, 
optimization, drug design. 

1 Introduction 

The field of combinatorial chemistry was recognized by Science as one of nine areas of 
study in 1997 that have great potential to benefit society [30]. The systematic assembly 
of chemical building blocks to form potential biologically-active compounds and their rapid 
testing for bioactivity has experienced a rapid growth in both experimental and theoretical 
approaches [4]. As experimental synthesis techniques are becoming cheaper and faster, huge 
chemical databases are becoming available for computer-aided design, and the development 
of reliable computational tools for their study is becoming more important than ever. 
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The specific computational problems involved in chemical libraries can be associated 
with certain mathematical disciplines. Library characterization involves the tools of 
multivariate statistical analysis and numerical linear algebra (see below for specific applica­
tions). The similarity problem in drug design involves finding from the database a drug 
that binds to a specific target or a drug that is similar to another drug with known bioac­
tive properties. This search can be performed using 3D structural and energetic searches 
or using the concept of molecular descriptors introduced below. In either case, multivariate 
nonlinear optimization and optionally configurational sampling is involved. The diversity 
problem in drug design involves defining the most diverse subset of compounds within the 
given library. This problem is a combinatorial optimization task, and is known to have a 
non-polynomial time complexity [8, 24]. 

Typically, these combinatorial optimization problems are" solved by stochastic and heuris­
tic approaches [26]. These include genetic algorithms, simulated annealing, and tabu-search 
variants. As in other applications, the efficiency of simulated annealing is strongly depen­
dent of the choice of cooling schedule and other parameters. In recent years, several poten­
tially valuable annealing algorithms such as deterministic annealing, multiscale annealing, 
and adaptive simulated annealing have been extensively studied. 

In special cases, combinatorial optimization problems can be formulated as integer pro­
gramming and mixed-integer programming problems [8, 24, 17]. In this approach, linear 
programming techniques such as interior methods, can be applied to the solution of com­
binatorial optimization problems, leading to branch and bound algorithms, cutting plane 
algorithms, and dynamic programming techniques. Parallel implementation of combina­
torial optimization algorithms is also important in practice to improve the performance 
[26]. 

One way to analyze a database of n potential biologically active compounds (drugs) is 
to characterize each compound in the database by a list of m chemical descriptors. These 
variables reflect atom connectivity, molecular topology, charge distribution, electrostatic 
properties, molecular volume, and so on. These descriptors can be generated from several 
commercial packages such as the popular Mo1connx program [1]. Assigning associated 
biological activity for each compound (e.g., with respect to various ailments or targets, which 
may include categories like headache, diabetes, protease inhibitors) requires synthesis and 
biological testing. Hence, analyses of chemical databases (such as clustering, similarity, or 
dissimilarity sampling) can be performed on the collection of m-dimensional real vectors in 
the space Rm. However, due to large size of the dataset, some database-analysis tasks (say 
the diversity problem) are extremely challenging in practice because exhaustive procedures 
are not realistic. Any systematic schemes to reduce this computing time can be valuable. 

In this paper we describe an algorithm that produces rapidly two-dimensional (2D) or 
3D views of the compounds in a chemical database for clustering analysis. This visuali~a­
tion problem is often formulated as a distance-geometry problem: find n points in 2D (or 
3D) so that their interpoint distances match the corresponding values from Rm as closely as 
possible. This approach was implemented by Sammon with the steepest descent (SD) min­
imization algorithm for clustering analysis in 1969 [28]. More recently, Sammon's method 
has been applied to the analysis and 2D projection mapping of molecular databases [3, 27]. 
The SD algorithm with a randomly chosen starting point generally suffers from slow conver­
gence and may generate a 2D mapping that poorly approximates the original distances. As 
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an alternative to the distance-geometry approach, a neural network procedure by Kohonen 
~ the self-organizing map method [18] ~ has also been applied to the visualization of chem­
ical databases [6, 11]. This method usually defines a mapping based on a 2D regular grid 
of nodes such that similar compounds are close to one other on the grid. Compared with a 
distance-geometry mapping method, however, it is unclear how the distance relationships 
of chemical database are preserved. 

Our visualization algorithm consists of two parts. The first part defines a 2D projec­
tion mapping by the singular value decomposition (SVD) [15], a technique used for data 
compression in many practical applications like image processing. This factorization, in 
contrast to optimization, only requires the input (high-dimensional) data vectors; it has a 
complexity of order O(n2m) floating point operation and O(nm) memory locations; no ini­
tial projection guess is needed. We find that the accuracy of the SVD mapping depends on 
the distribution of the singular-value magnitudes: if the first two singular values are much 
larger than the others, the 2D mapping has a high accuracy. This generalizes to mapping 
in higher dimensions as well; that is, if the first ten singular values can be largely separated 
from the rest, a lOD projection can be accurate. For scaled datasets as used in practice, 
however, two or three dominant singular values cannot generally be found. 

The second part refines the SVD projection based on the distance geometry approach 
when the accuracy of the SVD projection is not satisfactory. Here, the SVD projection 
is used as a starting point for the truncated-Newton minimization iterative method. De­
termining a good initial guess for a minimization algorithm is an important and difficult 
objective in the distance-geometry approach. Our new distance error objective function is 
minimized with our efficient truncated-Newton program package, TNPACK [29, 32]. We 
call our algorithm the SVD/TNPACK method. This method is also described in [33], along 
with other applications. The applications in this paper all involve a natural scaling of the 
datasets rather than range-scaling as used in [33]. The projection analysis done here also 
illustrates an application to diversity and similarity sampling and presents 3D in addition 
to 2D projections. 

We report numerical tests of the SVD/TNPACK procedure for two chemical datasets: 
an artificial dataset made of eight groups of compounds with different pharmacological 
activities (ARTF) and a dataset of mono amino oxidase inhibitors (MAO). ARTF and MAO 
contain 402 and 1623 compounds, respectively. All compounds in these datasets have been 
characterized with 312 topological descriptors. In addition, the MAO dataset has also been 
characterized by 153 binary descriptors (MA001 )' Since the various chemical descriptors 
vary drastically in their magnitudes as well as the variance within the dataset, scaling 
is important for proper assessment of distance relationship. Given no chemical/physical 
guidance, we consider a natural scaling procedure for ARTF and MAO, such that all scaled 
chemical descriptors have a mean of zero and a standard deviation of one. 

For these scaled databases, SVD alone produced poor 2D projections (e.g., only about 
0.004% of the distance segments are within 10% of the original distances for MAOot}, and 
the TNPACK minimizations that follow SVD become crucial (e.g., TNPACK increased this 
number 0.004% to 30% in less than one minute on an SGI RlOOOO processor). We also 
find that a larger number than three of the projection space is required to reach higher 
accuracy. Namely, the accuracy can be improved to 96% when the dimension number of 
the projection space is increased from two to ten for both scaled ARTF and MAO. 
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Numerical results also show that SVD is very fast: the computational time is one second 
for ARTF (402 compounds) and six seconds for MAO (1623 compounds) on an SGI RI0000 
processor; TNPACK is also very efficient (several minutes), and much more efficient than 
SD. 

In section 2, we describe a mathematical framework for analysis of chemical datasets. 
Sections 3 describes the SVD/TNPACK method. Section 4 presents the numerical results 
and chemical structure analyses for the scaled datasets. Conclusions are summarized in 
Section 5. 

2 Mathematical framework for analysis of chemical databases 

We consider a database S of n potential biologically active compounds (drugs), where each 
compound is described by a list of m chemical descriptors. Thus, we can express the 
database S as a collection of n vectors 

S = {X1 ,X2 , ... ,Xn }, 

where vector Xi = (Xil' Xi2, .. . ,ximl denotes the i-th compound in S, and the real numbers 
{Xik} are values of the associated chemical descriptors. 

The database S can also written as a rectangular matrix X by listing, in rows, the m 
descriptors of the n compounds: 

(1) 

Xnl Xn 2 Xnm 

This rectangular matrix typically has n » m for large databases, where n may be of order 
million. 

To measure the similarity or diversity for each pair of compounds Xi and X j , we define 
distance quantities 8i j on the m-dimensional vector space nm. The simplest one is the 
Euclidean distance: 

m 

8ij = IIXi - Xjll = ~)Xik - Xjk)2, (2) 
k=l 

where II . II denotes the Euclidean norm. There are n( n - 1) /2 distance segments {8ij } in S 
for pairs i < j. 

Scaling may be important for proper assessment of distance quantities because the vari­
ous chemical descriptors vary drastically in their magnitudes. Generally, scaled descriptors 
{Xik} can be defined by the following formula: For k = 1, 2, ... , m, 

1::::: i ::::: n, (3) 

where ak and bk are real numbers, and ak > O. They are called the scaling and displacement 
factors, respectively. 

In practice, however, it is very difficult to determine the appropriate scaling and displace­
ment factors for the specific application problem [34]. Given no chemical/physical guidance, 
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the following two scaling procedures are often used. The first modifies each column of X 
by setting 

bk = min Xik and ak = 1/( mil-x Xik - bk ) for k = 1,2, ... , m. (4) 
lS;iS;n lS;'S;n 

This makes each column in the range [0,1]. The second sets 

1 n 
bk = - L Xik and ak = 1/ 

n i==l 

for k = 1,2, ... ,m, (5) 

so that each scaled column of X has a mean of zero and a standard deviation of one. The 
scaling procedure with (4) is also referred to as a standardization of descriptors. Both 
scaling procedures (4) and (5) assume that no one descriptor dominates the overall distance 
measures. 

The distances {8ij} can be used in performing similarity searches among the database 
compounds and between these compounds and a particular target. This task can be for­
mulated as finding: 

min 8ij , 
l<i<n 
if) 

where 8ij = IIXi - Xj II, and Xj is a given target. Note that each distance segment 6ij 
requires O(m) floating-point operations (flops) to compute, an exhaustive calculation over 
all n candidates requires a total of O(nm) flops. An effective scheme is sought when nand 
m are large. 

More difficult and computationally-demanding is the diversity problem. Namely, we 
seek to reduce the database of the n compounds by selecting a "representative subset" of 
the compounds contained in S, that is one that is "the most diverse" in terms of potential 
chemical activity. This problem naturally arises since pharmaceutical companies must scan 
huge databases each time they search for a specific pharmacological activity. This molecular 
diversity problem can be formulated as determining: 

max '" 11K - X-II SoCS ~ , J' 
Xi,XjESO 

XifXj 

where each So contains no representative compounds (no « n, a fixed integer number). 
This is a combinatorial optimization problem, an example of a very difficult computational 
task (NP-complete). An exhaustive search of the most diverse subset So requires a total 
of O(C;:-°n5m) flops because there are C;:-o possible subsets of S of size no and each subset 
takes O(n5m) flops. Here C;:-o = n(n -1)(n - 2)··· (n - no + 1)/no. 

As a first step in solving such similarity and diversity problems, methods that produce 
a low-dimensional projection view of the compounds can be used for clustering analysis. 

Assume we have a mapping from nm to nlow that takes each point Xi E nm to Y; E 
n1ow, where low «m. Typically the integer low is 2 or 3 but we use low> 3 in some cases 
discussed below; the projection cannot be easily visualized for low> 3, but the compressed 
matrix from X (n x low instead of n x m) can be useful in reducing computer time for 
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database applications. The intercompound distances for the vectors Y; and lj is denoted 
as d(Y;, lj). We define it as 

low 

d(Y;, lj) = '2)Yik - Yjk)2. 
k=1 

An ideal projection mapping will generate points {Y;} such that their distance values match 
the original values, i.e., satisfy 

(6) 

for all {i,j} pairs. However, no such a mapping exists in general because the problem is 
typically over-determined - finding n x low unknowns {Yid satisfying n(n - 1)/2 equa­
tions of form (6). An optimal approximate mapping is thus sought based on the distance 
geometry approach [25J. Specifically, an objective error function E to describe the dis­
crepancy between {Oij} and {d(Y;, lj)} is constructed, and then we find a minimum point 
y* = (yt, Y2*'··· ,y~) with Y;* E R10w for i = 1,2, ... ,n such that 

(7) 

where each Y; = (Yil, Yi2, ... , YilowjT. The objective function E can be formulated in many 
different ways [3, 25, 27J. Here we use the following expression: 

1 n-1 n 2 

4L L Wij(d(y;,lj)2-0;j) , 
i=1 j=i+1 

(8) 

Wij = { I/Jt ~f O~ ;::: 7), 

1 If 0ij < 7), 

where {Wij} denote weights, and the parameter 7) is a small positive number such as 10-12 . 

The first and second derivatives of E are well defined, and an efficient second-derivative 
method like Newton-type algorithms [12J can be applied. 

Various error measures can be used to assess the agreement between the original and 
projected pairwise distances. Besides the value of the objective function E, we use the 
following percentage p to measure the quality of the approximation of d(Y;, lj) to Oij for all 
pairs i < j: 

Td 
P = n(n -1)/2 ·100. 

The variable Td is the total number of the distance segments d(Y;, lj) satisfying 

Id(Y;, lj) - oijl ~ EOij when Oij > dmin, 

or 

(9) 

(10) 

(11) 

where E, E, and dmin are given small positive numbers less than one. For example, we set 
E = 0.1 to specify a 10% accuracy (dmin = 10-12 and E = 10-8 ). The second case above 
(very small original distance) may occur when two compounds in the datasets are similar 
highly. The greater the p values, the better the mapping and the more information can be 
inferred from the projected views of the complex data. 
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3 The SVD /TNPACK method 

The SVD decomposition of the database rectangular matrix X (defined in (1)) as ur;vT 

can be written as the sum of rank-1 matrices [15]: 

r 

X = L IJ"kUkVr, (12) 
k=l 

where l' is the rank of matrix X (1' ~ m), Uk E Rn and Vk E n m , respectively, are left 
and right singular vectors, and IJ"k is the singular value. All singular values are arranged in 
decreasing order: 

Let Uk = (Ulk,U2k, ..• ,Unk)T. Using (12), we can express each vector Xi as a linear 
combination of orthonormal basis vectors {vdr=l of nm: 

m r 

Xi = L IJ"kUikVk = L IJ"kUikVk, i = 1,2, ... ,n 
k=l k=l 

since IJ"r+l = ... = IJ"m = O. Hence, the compound vector Xi is expressed in terms of new 
coordinates 

(13) 

Based on (13), we define the low dimensional vector Y; as the natural projection of Xi 
onto the subspace n 10w of Rm : 

(14) 

When the percentage p defined in (9) is not large enough, we improve the accuracy of 
the SVD projection (14) by our truncated Newton program package, TNPACK [29, 32] by 
minimizing the objective error function E defined in (8). 

The truncated Newton method [9] consists of both outer and inner loops. The outer 
loop defines a sequence of solution vectors {yk} expressed in the form 

yk+l = yk + Akpk , k = 0,1,2, ... , 

where yk and pk are vectors of R1ow.n, pk is a descent direction, Ak is the steplength, and 
yO is an initial guess. The inner loop defines pk by a "truncated" preconditioned conjugate 
gradient scheme. The steplength Ak is generated by using a line search scheme ([21], for 
example). 

TNPACK was first published in 1992 [29] and updated recently [32]. One of the features 
of TN PACK is an application-tailored preconditioner matrix (that approximates the Hessian 
of the objective function) used to accelerate convergence [31]. This novel pre conditioner 
makes TNP ACK an efficient tool for the minimization of molecular potential functions in 
comparison to other available minimizers [10, 31]. For th~ present applications, we used 
the new version of TNPACK [32] in combined with a simple preconditioner, namely, the 
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Table 1: Performance of the 2D SVD and SVD/TNPACK (TN) mappings. Here E is the 
minimization objective function defined in (8), and p the percentage defined in (9), which 
measures the quality of the approximation of the 2D mapping 

Datasets II E p TN CPU time 
II SVD TN SVD TN Itn. SVD (sec.) TN (min.) 

ARTF 7.06 x 103 2.77 X 103 25.91 45.95 31 1.18 0.45 
MAO 1.31 x 105 5.41 X 104 5.51 43.94 33 6.24 7.49 

MAOOl 2.4 x 105 9.79 X 104 0.004 29.10 11 3.65 0.77 

diagonal part of the Hessian, or terms 82 E(YI, Y2 , .•. , Yn )/8Y;k (for i = 1,2, ... , nand 
k=I,2, ... ,low). 

We use the SVD projection (14) as the starting point yO, and terminate TNPACK 
iteration at yk provided that it satisfies 

(15) 

where Eg is a small positive number (we used 10-5), and 9 is the gradient vector of E. Such 
an yk defines the SVD/TNPACK projection. 

4 Numerical examples 

Two datasets were used for testing our SVD/TNPACK scheme: MAO (n = 1623 and 
m = 312) and ARTF (n = 402 and m = 312). ARTF merges eight different groups of 
molecules with different types of pharmacological activities. Descriptors for ARTF and 
MAO were generated from the software package Molconn-X [1]. We scaled descriptors 
using scaling procedure (5), and deleted all zero columns of dataset matrix X. We thus 
obtained dense rectangular matrices with m = 202 for scaled ARTF and m = 204 for scaled 
MAO. We also considered MAO with binary descriptors, MAOOI (m = 153). The binary 
descriptors were generated from the software MACCS II [20]. 

We used the NAG library [2] to compute the SVD of each dataset. For simplicity, we 
used all default parameters of TNPACK [29,32] for the minimization that follows the SVD 
projection. The target accuracy E in (10) was set to 0.1. The termination rule for TNPACK 
is (15) with Eg = 10-5 • All computations were performed in double precision on a single 
RI0000/195 MHZ processor of an SGr Power Challenge L computer at New York University. 

Table 1 displays the performance of SVD and SVD /TNP ACK in defining 2D mappings 
for these datasets. The accuracy of 2D mapping is indicated by the percentage p defined in 
(9) (i.e., the portion of the distance segments that are within 10% of the original distance 
values). From Table 1 we see that both SVD and TNPACK are efficient: computer CPU 
time ranges from one second to seven minutes. SVD alone yields poor accuracies in terms 
of distance preservation (p ranges from 0.004 to 25%). TNPACK greatly improves the SVD 
projection in this regard (p ranges from 30 to 46%). 

To illustrate the reason why the 2D SVD mapping is poor for the scaled datasets, 
Figure 1 presents the distributions of the normalized singular values ai on seven intervals: 
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Figure 1: The distribution of the normalized singular values {6i} 
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(lO-k, lO-(k-l)] for k = 1 to 6 and [0,10-6]. Here the normalized singular values are defined 
by 

6i = ai/ max aJ' for i = 1,2, ... , r. 
l~j~r 

From Figure 1 we see that most normalized singular values are not small for the scaled 
datasets, implying that the first two singular values are not significantly larger than the 
others. Hence, the 2D mapping is poor for the scaled datasets. 

Figure 2 shows that the accuracy (i.e., the percentage p defined in (9)) of the SVD 
and SVD/TNPACK projections for the scaled datasets can be improved sharply when the 
number of dimensions (low) of the projection space is increased from two to ten. We also 
found it useful to use higher-order SVD mappings for the purpose of selecting initial points 
for minimization refinement. 

Table 2 compares the performance of TNPACK with that of the steepest descent (SD) 
method since SD has been used in similar applications [3, 27]. Here both TNPACK and SD 
used the same termination rule (15) and the same SVD starting point. Table 2 shows that 
TNPACK is more efficient (a factor of three) to find a minimum point. This efficiency will 
likely become more significant as the database size n increases. 

Table 3 compares the performance of TNPACK using the SVD projection as a starting 
point with that using a randomly selected starting point. It shows that the SVD starting 
point helps accelerate the minimization process significantly, and generate better 2D map· 
pings (smaller values of E). Again, the improvements are likely to be more more significant 
as n increases. 

Figure 3 displays the 2D mappings of the scaled ARTF, the scaled MAO, and the binary 
MA001 ' These figures also compare the plots of the 2D mappings generated by SVD alone 
and SVD/TNPACK (blue vs. red symbols) . The SVD plots have been significantly changed 
by TNPACK so as to improve the distance values in 2D with respect to the original values. 
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Table 2: Comparison of TNPACK versus SD for minimizing E 

Method II Final E I Final Ilgll I Iterations I CPU time (min.) 
ARTF 

SD II 2.77 x 1O~ I 2.77 x 10 -~ I 1375 I 1.17 
TNPACK II 2.77 x lOJ I 1.05 x 10 -4 I 31 I 0.45 

MAO 
SD II 5.42 x 104 I 5.42 x 10 -1 I 1768 I 26.35 

TNPACK II 5.41 x 104 12.21 x 10 -1 I 33 I 7.49 
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Table 3: Comparison of TN PACK minimization using the SVD mapping as a starting point 
(SVD) versus a randomly selected starting point (RAN) 

I Starting point XU II Final E I Final Ilgll I Iterations I CPU time (min.) I 
ARTF 

SVD If 2.77 x 10:'11.05 x 10-4 I 31 I 0.45 
RAN 112.87 x 10:'11.44 x 10-:2- I 61 I 0.91 

MAO 
SVD II 5.41 x 104 I 2.21 x 10 -1 I 33 I 7.49 
RAN II 5.55 x 104 I 3.14 X 10-1 I 133 I 25.83 

Figure 4a displays the distribution of eight chemical/pharmacological classes of com­
pounds in ARTF as a result of the 2D SVD /TNPACK mapping. The number of compounds 
in each class is indicated in the figure next the class name. One selected chemical structure 
for each class is marked by a black circle and shown in Figure 5. 

Noting that the 2D mapping has several small sub clusters and a few singletons, we 
selected six spatially distant points (marked as Al to A6) from different pharmacological 
classes on Figure 4b. See Figure 6 for their chemical structures. This is an application 
of the projection to the diversity sampling problem. Note that even within one family the 
chemical structures may differ. As an application to the similarity problem, we also selected 
three spatially close points (B1 to B3) from the same HI ligand class on Figure 4b. Their 
similar chemical structures are presented in Figure 6. 

Finally, we generated the 3D SVD/TNPACK mapping for the scaled ARTF. As ex­
pected, the accuracy of the 3D mapping is higher than the 2D mapping (p = 63.46% for 3D 
while p = 46 for 2D with 'TJ = 0.1). Four different views of the 3D mapping are displayed in 
Figure 7; a single point corresponding to Al in Figure 4b was removed for better resolution. 
From these figures we see that the 3D mapping is quite similar to the 2D mapping: the 
ecdysteroids (red spheres in 3D and red triangles in 2D) and the AChE inhibitors (green 
spheres in 3D and green squares in 2D) classes continue to appear separate from the rest 
and a strong overlap between D1 agonists, D1 antagonists, HI ligands, and 5HT ligands 
persists. 

5 Conclusions 

We have presented a mathematical framework for analysis of chemical databases. Our 
SVD/TNPACK method is easy to implement and efficient to use in visualizing large chem­
ical databases in a low-dimensional space (2D or 3D). 

The scaled databases make it difficult to calculate 2D /3D projections that approximate 
well the original distance distributions. This is because all scaled descriptors lie within the 
same range and there are in general no dominant singular values. However, we showed that 
higher-accuracy projections can be obtained for these scaled datasets when the projection 
dimension is increased from two to ten or so. Though these higher-dimensional projections 
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Figure 4: The 2D SVD/TNPACK mapping of the eight pharmacological classes of ARTF: 
(a) with eight chemical representatives marked by black circles, and (b) with a diversity 
sample (AI-A6) and a similarity sample (BI-B3). See Figures 5 and 6 for their chemical 
structures 
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I. Ecdysteroids (64. 6B-hydroxy-2) 2. Estrogens (222. PCB5) 

3. DI agonists (249. ag2) 4. D 1 antagonists (82. ant04) 

- ' 

5. HI ligands (372. dox23) 6. DHFR inhibitors (167 .dbpy-4-och2) 

7. AChE inhibitors (298. ach-17) 8. 5HT ligands (242. mdlt) 

Figure 5. Chemical structure representatives of the eight classes of ARTF 
(see Figure 4a) 
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Al (203. Estrogens. kepone) A2 (37. Ecdystroids. 20HE-2B-DgI) A3 (240. SHT. rsleaf) 

: ... : 

A4 (290. AChE. ach_ 4) AS (204. Estrogens. LINDANE) 

B I (343. HI ligands. PPrnorMeS) B2 (392. HI ligands. phenbtpat) B3 (377. HI ligands.keta8) 

Figure 6. Chemical structures for the diversity and similarity applications of 
the 2D SVDITNPACK projection for ARTF (see Figure 4b) 
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• Ecdysteroids, 
• HI ligands, 

• Estrogens, • Dl agonists, • Dl antgonists 
• DHFR • AChE • SHT 

Figure 7: Four different views of the 3D SVD/TNPACK mapping for ARTF 
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are not easily visualized, the compression of the dataset descriptors can be advantageous in 
further applications ofthe compound library (e.g., diversity sampling) as shown here. 

When the intercompound distances in 2D j3D approximate the original distance rela­
tionships well, the 2D j3D projection offers a simple visualization tool for analyzing the 
compounds in a large database. We emphasize that these analyses depend on the quality 
of the original descriptors, an area of research on its own [7]. These clustering analyses can 
serve as a first step in the study of related combinatorial chemistry questions dealing with 
large chemical databases, and we hope to examine these possibilities in future work. It will 
also be important to compare our SVDjTNPACK method to the neural network procedure 
of Kohonen, both in terms of resulting projection accuracy of clustering and computing 
performance. Figure 8 shows a mapping of 32 5D-vectors by our SVDjTNPACK vs. Ko­
honen map, where we used the same data set and Kohonen map figure as given in [18], 
page 114. For comparison, a reference tree, the so called minimal spanning tree (where the 
most similar pairs of points are linked) [18], is also displayed. The SVDjTNPACK and 
Kohonen maps have similar clusters with different patterns. However, the SVDjTNPACK 
map appears more similar to the reference tree. 

Further work is also needed on extending our SVDjTNPACK approach to large chem­
ical datasets. The huge database might be subdivided as dictated by computer memory, 
and the SVDjTNPACK procedure applied to each data subset. To properly assemble these 
sub-2D-mappings for the purpose of defining a global 2D-mapping, techniques to overlap 
the database segments will have to be devised. We intend to discuss this extension scheme 
in detail in our subsequent work. We invite interested readers to contact us about experi­
menting with our projection software SIEVER (SIngular Values and Error Refinement). 

Acknowledgments 

We are indebted to Dr. Alexander Tropsha at University of North Carolina for providing 
the original chemical datasets and for helpful discussions. Support by the National Science 
Foundation (ASC-9157582 and BIR 94-23827EQ) and the National Institutes of Health (ROI 
GM55164-OlA2) is gratefully acknowledged. T. Schlick is an investigator of the Howard 
Hughes Medical Institute. 

References 

[1] Hall Associates Consulting (1995), Molconn-X version 2.0, Quincy, Maryland. 

[2] NAG Inc. (1995), NAG Fortran Library, Mark 17, Opus Place, Suite 200, Downers 
Grove, Illinois. 

[3] Agrafiotis, D.K. (1997), "A new method for analyzing protein sequence relationships 
based on Sammon maps," Protein Science, Vol. 6, 287-293. 

[4] Boyd, D.B. (1995), "Rational drug design: Controlling the size of the haystack," Mod­
ern Drug Discovery, Vol. 1, No.2, 41-47. 



284 D. XIE AND T. SCHLICK 

A B CDEFGHJ: JKLMNO P Q R S TUVWXYZ 1 2 3 4 5 6 

1 2 3 4 5 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 
0 0 0 0 0 1 2 3 4 5 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 
0 0 0 0 0 0 0 0 0 0 1 2 3 4 5 6 7 8 3 3 3 3 6 6 6 6 6 6 6 6 6 6 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 3 4 1 2 3 4 2 2 2 2 2 2 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 3 4 5 6 

The dataset (32 5D-vectors) used by Kohonen 

® 
® 
® 

® 
® 

CD 
® ® ® 
® ® @ @® 

~ © ® © 
© ® CD ®® -2 

@ (Q) @ ® ® 
® ® 

-4 CD 
Q) 

-6 
0 4 7 8 10 11 

SVDITNPACK map of the above dataset (p=70% with 11=0.1) 

BCD E * Q R * Y Z 
A * * * * P * * x * 

* F * N 0 * W * * 1 
* G * M * * * * 2 * 

H K L * T U * 3 * * 
* J: * * * * * * 4 * 

* J * S * * v * 5 6 

Kohonenmap Minimal spanning tree 

Figure 8: Comparison of SVD /TNP ACK versus the Kohonen methods 



VISUALIZATION OF CHEMICAL DATABASES 285 

[5] Bakonyi, M. and Johnson, C.R (1995), "The Euclidean distance matrix completion 
problem," SIAM J. Matrix Anal. Appl., Vol. 16,646-654. 

[6] Bienfait, B. (1994), "Applications of high-resolution self-organizing maps to retrosyn­
thetic and QSAR analysis," J. Chem. Inf. Comput. Sci. Vol. 34, 890-898. 

[7] Brown, RD. and Martin, Y.C. (1997), "Information content of 2D and 3D structural 
descriptors relevant to ligand-receptor binding," J. Chem. Inf. Comput. Sci., Vol. 37, 
1-9. 

[8] Cook, W.J., Cunningham, W.H., Pulleyblank, W.R and Schrijver, A. (1998), Combi­
natorial Optimization, Wiley, New York. 

[9] Dembo, RS. and Steihaug, T. (1983), "Truncated-Newton algorithms for large-scale 
unconstrained optimization," Math. Programming, Vol. 26, 190-212. 

[10] Derreumaux, P., Zhang, G., Brooks, B. and Schlick, T. (1994), "A truncated-Newton 
method adapted for CHARMM and biomolecular applications," J. Compo Chem., Vol. 
15, 532-552. 

[11] Gasteiger, J.; Zupan, J. (1993), "Neural Networks in Chemistry," Angew. Chem. Int. 
Ed. Engl., Vol. 32, 503-527. 

[12] Gill, P.E., Murray, W. and Wright, M.H. (1983), Practical Optimization, Academic 
Press, London. 

[13] Crippen, G.M. and Havel, T.F. (1988), Distance Geometry and Molecular Conforma­
tion, Wiley, New York. 

[14] Glunt, W., Hayden, T.L., Hong, S. and Wells, J. (1990), "An alternating projection 
algorithm for computing the nearest Euclidean distance matrix", SIAM J. Matrix Anal. 
Appl., Vol. 11, 589-600. 

[15] Golub, G.H. and Van Loan, C.F. (1996), Matrix Computations, John Hopkins Univer­
sity Press, Baltimore, Maryland, third edition. 

[16] Gower, J.C. (1985), "Properties of Euclidean and non-Euclidean distance matrices," 
Linear Algebra Appl., Vol. 67, 81-97. 

[17] Nemhauser, G.L. and Wolsey, L.A. (1988), Integer and Combinatorial Optimization, 
John Wiley and Sons, New York. 

[18] Kohonen, T. (1997), Self-Organizing Maps, Springer Series in Information Sciences, 
Vol. 30, Springer, Berlin, Heidelberg, New York. 

[19] Korte, B., Lovasz, L. and Schrader, R (1991), Greedoids, Springer-Verlag, New York. 

[20] Molecular Design Ltd. Maces-II, 14600 Catalina St., San Leandro, California. 

[21] More, J.J. and Thuente, D.J. (1994), "Line search algorithms with guaranteed sufficient 
decrease," ACM Trans. Math. Softw., Vol. 20,286-307. 



286 D. XIE AND T. SCHLICK 

[22] More, J.J. and Wu, Z. (1997), "Distance geometry optimization for protein structures," 
Technical Report MCS-P628-1296, Argonne National Laboratory, Argonne, Illinois. 

[23] Oxley, J.G. (1992), Matroid Theory, Oxford University Press, New York. 

[24] Papadimtriou, C.H. and Steiglitz, K. (1982), Combinatorial Optimization: Algorithms 
and Complexity, Prentice-Hall, Englewood Cliffs, New Jersey. 

[25] Pinou, P., Schlick, T., Li, B. and Dowling, H.G. (1996), "Addition of Darwin's third 
dimension to phyletic trees," J. Theor. Biol., Vol. 182, 505-512. 

[26] Reeves, C. (1993), Modern Heuristic Techniques for Combinatorial Problems, Halsted 
Press, New York. 

[27] Robinson, D.D., Barlow, T.W. and Richard, W.G. (1997), Reduced dimensional rep­
resentations of molecular structure. J. Chem. Inf. Comput. Sci., Vol. 37, 939-942. 

[28] Sammon Jr, J. W. (1969), "A nonlinear mapping for data structure analysis," IEEE 
Trans. Camp. C-18, 401-409. 

[29] Schlick, T. and Fogelson, A. (1992), "TNPACK - A truncated Newton minimization 
package for large-scale problems: 1. Algorithm and usage," ACM Trans. Math. Softw., 
Vol. 14, 46-70. 

[30] Science and Business (1998), "New partnerships for biology and business," Science, 
Vol. 282, No. 18, 2160-2161. 

[31] Xie, D. and Schlick, T. (1999), "Efficient implementation of the truncated-Newton 
algorithm for large-scale chemistry applications," SIAM J. Optim., Vol. 9. 

[32] Xie, D. and Schlick, T. (1999), "Remark on Algorithm 702 - the updated truncated 
Newton minimization package," ACM Trans. Math. Sojtw., Vol. 25, No.1. 

[33] Xie, D., Tropsha, A. and Schlick, T. (1999), "An efficient projection protocol for chem­
ical databases: the singular value decomposition combined with truncated Newton 
minimization," preprint, submitted. 

[34] Willett, P. (1998), "Structural similarity measures for database searching." In von 
Rague Schleyer, P. (Editor-in Chief), Allinger, N.L., Clark, T., Gasteiger, J., Kollman, 
P.A. and Schaefer, III, H.F., editors, Encyclopedia of Computational Chemistry, Vol. 
4, John Wiley & Sons, West Sussex, UK, 2748-2756. 



Optimization in Computational Chemistry and Molecular Biology, pp. 287-300 
C. A. Floudas and P. M. Pardalos, Editors 
©2000 Kluwer Academic Publishers 

Optimization of Carbon and Silicon Cluster Geometry for 
Tersoff Potential using Differential Evolution 

M. M. Ali 
Centre for Control Theory and Optimization 
Department of Computational and Applied Mathematics 
Witwatersrand University, Private Bag-3, Wits-2050, Johannesburg 
mali@cam.wits.ac.za 

A. Torn 
Department of Computer Science, Abo Akademi University, 
SF-20520, Turku, Finland 
atorn@abo.fi 

Abstract 

In this paper we propose a new version of the Differential Evolution (DE) Algorithm 
for large scale optimization problems. The new algorithm, for exploration and local­
ization of search, periodically uses topographical information on the objective function, 
in particular the kg-nearest neighbour graph. The algorithm is tested on hard practi­
cal problems from computational chemistry. These are the problems of semi-empirical 
many-body potential energy functions considered for carbon-carbon and silicon-silicon 
atomic interactions. The minimum binding energies of both carbon and silicon .clusters 
consisting of upto 15 particles are reported. 

Keywords: Many-body, potential function, differential evolution, minimum energy 
configuration, topographs, graph minima. 

1 Introduction 

Because of the importance of silicon technology, semiconductor materials and structure­
based drug design, empirical many-body potentials are becoming an increasingly important 
means of various investigations, for instance it has been used to investigate the ion bom­
bardment [1], for dynamic simulation [2, 3] and also used as a sample global optimization 
problem in search of the stable struture of molecules [4, 5]. Over the last two decades 
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significant advances were made in developing various potentials including the potentials 
for modelling covalent materials such as carbon and silicon. Many different forms of these 
potentials can be found in [6, 7] and one of the most successful forms which has been used 
in a large number of dynamic simulations [3] is due to Tersoff [8, 9]. The determination of 
the global minimum energy configuration, or the ground state structures, for clusters of car­
bon and silicon particles, predicted by such potentials, is an important global optimization 
problem. For instance, the synthesis of highly symmetric spherical carbon molecules, known 
as fullerences, has stimulated much interests in the geometric structure of small clusters of 
carbon in their most stable state. Moreover, the increasing trend towards nanoscale devices 
within the semiconductor industry demands more research into the nature of silicon clus­
ters. The numerical approach to finding the global minimum of empirical potentials poses 
a very difficult problem as the number of local minima increases rapidly with the number of 
atoms. To date, several methods have been proposed for this type of optimization problem 
[5, 10]. These are the spatial smoothing techniques [11, 12] and variants of simulated an­
nealing [13] and the genetic algorithm (GA) [14]. Most of these algorithms, however, were 
implemented on the Lennard-Jones pair potential. Although, recent optimization involving 
more realistic many-body potentials is reported in [15, 16] where Tersoff's two different 
parameterizations for silicon (Si(B) and Si( C)) [9] were used, and in [17] where Brenner's,· 
Tersoff-like, Carbon-Hydrogen potential [18] was used, optimization of carbon clusters using 
Tersoff's carbon potential [19, 20, 21] was not carried out before. In [15] the implementa­
tion of eight different recent global optimization algorithms on cluster optimization for a 
slightly simplified Tersoff potential is reported, but only small problems for silicon clusters 
of size upto 6 particles were considered for testing different algorithms. The optimization of 
carbon clusters of upto 60 atoms using Brenner potential is reported in [17] the algorithm 
used was a binary coded GA driven multistart. The algorithm performs loeal searches from 
each child molecule produced by GA in each generation. However, it is not possible to judge 
their results as the number of function evaluations and cpu times were not given. 

The main thrust of this paper is to devise a global optimization algorithm which is 
robust and efficient in finding the global minimum of silicon (Si) and carbon (C) clusters as 
well as can handle clusters of large number of particles. In Section 2 and 3 we respectively 
briefly define the differential evolution and the topographical algorithm. In Section 4 the 
new algorithm is presented. Details of the potential is given in Section 5 and in Appendix 
A. The results are discussed and summarised in Section 6, and the conclusion is made in 
section 7. 

2 Differential Evolution (DE) 

Storn and Price [22] recently developed a natural evolution based direct search technique, 
the Differential Evolution (DE), for optimizing functions of continuous variables. The pop­
ulation based DE guides the N points in the set S = {Xl, X2,···, XN}, chosen randomly 
from the search region fl C IRn , to the vicinity of the global minimum through repeated 
cycles of mutation, crossover (recombination) and acceptance. In each cycle constituing a 
generation, N competitions are held to determine the members of S for the next genera­
tion. The i-th (i = 1,2, ... ,N) competition is held to replace Xi in S. Considering Xi as the 
target point a trial point Yi is found from two points (parents), the point Xi, i.e., the target 
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point and the point Xi determined by the mutation operation. In its mutation phase DE 
randomly selects three distinct points Xrl, Xr 2 and Xr 3 from the current set S. None of these 
points should coincide with the current target point Xi. The point Xi is then calculated by 

(1) 

A good value of the scaling factor, F::; 1, is given by 

F = { maX~lmin, 1-,e'l 
max lmin, 1 -I ffmm I 

max 

ifl~1 < 1 fmIn 

otherwise, 
(2) 

where lmin E [004,0.5] and fmax and fmin respectively are the high and low function values 
within S [23]. The trial point Yi is found from its parents Xi and Xi using the following 
crossover rule : 

yj = {x{ ifRj::; CRor j = Ii 
t xi ifRJ > CRandj f= Ii , 

(3) 

where Ii is a randomly chosen integer in the set I, i.e., Ii E I = {I, 2, ... ,n}; the superscript 
j represents the j-th component ofrespective vectors; Rj E (0,1), drawn randomly for each 
j. The entity CR is a constant (eg. 0.5). The acceptance mechanism follows the crossover. 
This process of targetting Xi and generating the corresponding Yi continues until all members 
of S have been considered. In the acceptance phase a one to one comparison is made in that 
the function value at each trial point, f(Yi), is compared to f(Xi), the value at the target 
point. If !(Yi) < !(Xi) then Yi replaces Xi in S, otherwise, S retains the original Xi. One of 
the important exploratory features of DE found in a recent study [23] is that it attempts to 
replace all points in S in each generation. Unlike GA, this replacement is not mandatory 
in DE. 

Although DE is very robust in locating the global minimum, drawbacks remain. Being 
a direct search method DE does not utilise any properties, for instance, the differentiability 
properties, of the function being optimized, even if such properties are available. Moreover, 
its stopping condition depends on the indication that the points in S have formed a dense 
cluster or that the points have fallen into the region of attraction of the global minimum (or a 
minimizer). One way to measure this is to see ifthe absolute difference between the !max and 
!min falls below some given tolerence. This leads DE to unnecessarily use a large number 
of function evaluations and its efficiency falls off as the number of dimension increases. 
Consequently we devise a new DE algorithm which can overcome the above mentioned 
drawbacks. In particular, we would like to propose a DE algorithm which utilises the 
complementary strengths of both the existing DE and the Topographical Algorithm (TA) 
of Torn and Viitanen [24]. How this is done will be described later but first we briefly 
describe the Topographical Algorithm . 

. 3 Topographical Algorithm (TA) 

The TA uses topographical information on the objective function in identifying basins of 
local minima. For each identified basin a local search is started from its best point (the graph 
minimum). It is a non-iterative algorithm and therefore enough cover, i.e., a large enough 
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sample size, is needed to identify the basins. A simplified description of the algorithm is 
the following: For each point in the sample of size N g the kg nearest neighbour points 
are determined (kg « N g). Those points for which all kg neighbours are inferior points, 
i.e., the function values are larger, are the graph minima. The number of graph minima is 
dependent on the sample size Ng and kg. 

TA intends finding out a suitable number of graph minima associated with the number 
of minima for a given function. However, for a general purpose optimization a fixed value 
of kg will be too restrictive to represent the appropriate number of local minima and this 
becomes even more difficult when the number of dimensions of the function increases. For 
a discussion on this and the full description of how graph minima are derived, see Torn 
and Viitanen [24]. Since both TA and DE is incapable of tackling large scale optimization 
problems we next integrate them in a suitable way, for large scale problems, ego the many­
body potential problems. 

4 Topographical Differential Evolution (TDE) 

In this section we describe our new algorithm. The new algorithm, TDE, does not simply 
combine DE and TA rather it combines the modified DE with the localilled TA. We first 
describe the modified DE. In order to use as much information as possible of the points 
in S we introduce an auxilary set Sa of N points alongside S in DE. Initially, two sets 
(one set in the original DE) each containing N points are generated in the following way; 
iteratively sample two points from n, the best point Xi going to S and the other xi to Sa. 
The process continues untill each set has N points. The search process then updates both S 
and Sa simultaniously with generations. The reason for this is to make use of potential trial 
points which are normally rejected in DE. At each generation, unlike DE which updates one 
set, S, by the acceptance rule, TDE updates both sets S and Sa. In its acceptance phase, 
if the trial point Yi, corresponding to the target Xi, does not satisfy the greedy criterion 
f(Yi) < f(Xi) then the point Yi is not abandoned altogether, rather it competes with its 
corresponding target xi in the set Sa. If f(Yi) < f(xi) then Yi replaces xi in the auxiliary 
set Sa. The potential points in Sa then can be used for further exploration and exploitation. 

Since the DE procedure gradually drives the N points in S towards the global minimizer 
two measures are introduced in TDE to lessen the chance of missing the global minimizer 
in the driving process. They are: (a) after each M generations, finding out of the graph 
minima using the N g best points from S and then performing a local search from each of 
the graph minima found, and (b) the replacement of the worst N g points in S with the best 
N g points in Sa immediate after the local searches have been performed. The benefits of 
(a) are that a local search only starts from a potential point with low function value and 
these potential points are seperated by higher regions. Since the points in S gradually shift 
their position these periodically scrutinized local searches will enhance the robustness of 
the algorithm in locating the global minimum. The benefits of (b) are seareh diversification 
and exploitation. We repeatedly find the graph minima locally using N g best points with 
kg nearest neighbours. The best minimum found in the local search phase is recorded and 
is further updated in the next phase of local search. If a consequitive number, say t, of local 
search phases does not produce any better minimum value than the previously found best 
minimum then the algorithm can be terminated. The step by step description of the new 
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algorithm is as follows. 

The TDE Algorithm 

Step 1 Determine the initial sets S = {Xl,X2, .. ·,XN} and Sa = {X~,x2'''''X~} with 
points sampled randomly in n. Initialize the generation counter k and the local phase 
counter t to zero. 

Step 2 Determine the points Xmax , Xmin and their function values fmax, fmin such that 

fmax = maxf(x) and fmin = minf(x). 
xES xES 

Calculate the scaling factor F of the mutation operator using (2). If the stopping 
condition, say t 2': 5, is satisfied then stop. 

Step 3 For each Xi E S, determine Yi by the following two operations: 

• Mutation: Randomly select three points from S except Xi, the running target 
and find the second parent Xi by the mutation rule (1). If a component x{ falls 
outside n then it is found randomly in-between the j-th lower and upper limits. 

• Crossover : Calculate the trial vector Yi corresponding to the target Xi from Xi 
and Xi using the crossover rule (3). 

Step 4 Update both the sets S and Sa for the next generation using the acceptance rule: 
replace each Xi E S with Yi if f(Yi) < f(Xi) otherwise replace x; E Sa with Yi if 
f(Yi) < f(xD. Set k := k + 1. If k == 0 (mod M) then go to Step 5, otherwise go to 
Step 2. 

Step 5 Find the graph minima of the function, f(x), using the best N g points in Sand 
perform a local search starting from each graph minimum. Keep a record of the very 
best minimum found so far, replace the worst Ng points in S with the best N g in 
Sa. If the current phase of local minimization produces a better minimum than the 
current best minimum then set t = 0 otherwise set t := t + 1. Return to Step 2. 

5 The Tersoff Potential 

The binding energy in the Tersoff formulation [9] is written as a sum over atomic sites in 
the form 

Ei = ~ L fc(rij) (VR(rij) - tJijVA(rij)) , Vi 
Hi 

(4) 

where rij is the distance between atoms i and j, VR is a repulsive term, VA is an attractive 
term, fc(rij) is a switching function and tJij is a many-body term that depends on the 
positions of atoms i and j and the neighbours of atom i. More details of each of these 
quantities can be found in [9, 18]. The term tJij is given by 

(5) 
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where nl and "( are known fitted parameters [9J. The term ~ij for atoms i and j (i.e., for 
bond ij) is given by 

where 

~ij = L !c(rik)g(()ijk)E(rij, rik) , 
k#i,j 

E(rij,rik) = exp (.>.~(rij - rik)3) 

and ()ijk is the bond angle between bonds ij and ik and 9 is given by 

(6) 

(7) 

(8) 

The quantities A3, c, d and h which appear in (7) and (8) are also known fitted parameters. 
The terms VR(rij) and VA(r;j) are given by 

VR(rij) 

VA (rij) 

Ae-AITij 

Be-A2Tij 

(9a) 

(9b) 

where A, B, Al and A2 are given fitted parameters. The switching function !c(rij) is given 
by 

{
I, rij::::: R - D 

!c(rij) = ~ - ~ sin[7r(rij - R)/(2D)J, R - D < rij < R + D. 
0, rij ~ R+ D 

(10) 

We consider four different optimization problems, the first two problems are due to two 
different parameterisations of Tersoff potential for silicon. The two sets of parameter values 
respectively for Si(B) and Si(G) are taken from [9J. Similarly, the 3rd and the 4th problems 
are due to two different parameterizations of Tersoff's potential for carbon. The parameter 
value for the 3rd problem, say G', is taken from [19, 20J. The 4th problem is the Tersoff's 
potential for carbon, say Gil, and the parameter values are taken from [21J. Therefore, each 
problem has its own set of parameter values that are given in Table 1. 

Table 1: Parameters for Si and G. 
Si(B) Si(G) G' Gil 

C 4.8381 1.0039E5 38049 19981 
d 2.0417 16.216 4.3484 7.0340 
h 0.0000 -0.59826 -0.57058 -0.33953 
nl 22.956 0.78734 7.275IE-l 0.99054 
"( 0.33675 1.0999E-6 1.5724E-7 4.1612E-6 
Al (fl -1) 3.2394 2.4799 3.4879 3.4653 
A2 (fl -1) 1.3258 1.7322 2.2114 2.3064 
A3 (fl -1) 1.3258 1.7322 0.0000 0.0000 
A (eV) 3.2647E3 1.8308E3 1.3936E3 1544.8 
B (eV) 9.5373El 4.7118E2 3.4674E2 389.63 
R (fl) 3.0 2.85 1.95 2.5 
D (fl) 0.2 0.15 0.15 0.15 
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5.1 Problem Formulation 

In order to calculate the minimum potential energy for, say m atoms we need to calculate 
the energy for each atom. Each atom, say atom i, has its own potential energy, Ei , given by 
(4). Therefore, to determine the potential energy of a single particle one has to calculate (4) 
which involves the calculation of (5) - (10) for each neighbour of that particle. Notice that 
the energy of a particle depends upon the distances and angles subtended with respect to 
the other particles and therefore different particles have different energies. To formulate the 
problem we consider the atomic positions in two and three dimensional space as variables. 
It is clear that the total energy, say f(x), is a function of atomic coordinates and it is given 
by 

(11) 

for which the global minimum f* has to be found. 
We first fix a particle at the origin and choose our second particle to lie on the positive 

x-axis. The third particle is chosen to lie in the upper half of the x-axis. Since the position 
of the first particle is always fixed and the second particle is restricted to the positive x­
axis, this gives a minimization problem involving three variables for three particles. For 
four particles, additionally three variables (the cartesian co-ordinates of the 4-th particle) 
are required to give a minimisation problem in six independent variables. For each further 
particle, three variables (cordinates of the position of the particle) are added to determine 
the energetics of clusters. The first and the third variables are taken to lie in [0,4] for Si and 
[0,3] and [0,3.5] respectively for C' and C". The second variable for Si, G' and G" are taken 
to lie in [-4,4], [-3,3] and [-3.5,3.5] respectively. The cordinates of the 4-th particle for Si 
taken to lie in [-Ii, Ui] with Ii = Ui = 4 and then for next extra two particles (5-th & 6-th) 6 
variables involved are taken to lie in [-I;' u~], where l~ (= uD = li( = Ui) + 0.5. Similarly the 
next two particles for Si variables are taken to lie in [-I:', un where I:' (= un = I: (ui) + 0.5 
and then for each extra two particles the same process continues. Therefore, as an example, 
for Si the six variables for the 5-th & 6-th particles lie in [-4.5,4.5] and for 15-th & 16-th 
the associated six variables lie in [-7,7]. In the case of G from the 4-th particle onwards a 
similar scheme is adopted but with Ii = Ui = 3 for C' and Ii ='Ui = 3.5 for G". 

5.2 The Gradient Calculation 

An important feature of the potential function is that it is differentiable. Therefore, the local 
search incorporated in the new algorithm can be made efficient and reliable by providing 
the analytical gradient. The gradient of f(x) defined by (11) is the sum of the gradients 
of the components Ei defined by (4). However, each term of the sum in (4) is the energy 
attributed to a particular bond and each term in (4) is the function of the same variables. 
Since the pattern of the gradient of each term in (11) is the same, it suffice to calculate 
the gradient of E i . Similarly, it is enough to derive some gradient components of the term 
associated with the bond ij in (4). For details on the gradient calculation, see Appendix 
A. Notice that in (4) if a bond length Tij, say for the bond ij, exceeds R + D then the 
calculation of the corresponding term of the sum (bond's contribution to energy Ei ) and 
hence its derivative can be skipped. 
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6 Numerical Optimization and Discussion 

In this section the numerical results obtained for all four problems are summarized. All 
computations were carried out on a SGI-Indy Irix-5.3. A limited memory BFGS algorithm 
(LBFGS) of Lui and Nocedal [25] was used as the local search algorithm. The LBFGS is 
designed for large scale local optimization problems. The population size in TDE is taken 
as N = IOn within the suggested range [22]. The number of particles np = 3,4, i.e, for 
n = 3 to n = 6 we have used Ng = 30 and kg = 3. For np = 5 and above N g is chosen 
as the nearest integer to O.4N, and kg is increased by one for every four particles, i.e., for 
np = 5,6,7,8 kg is set to 4 and for np = 9,10,11,12 kg is set to 5 and so on. As an example, 
for np = 10 the parameter values used by the TDE algorithm were N = 240, N g = 96, kg = 5 
and n = 24. With the increase of Ng and kg time required to calculate the graph minima 
increases rapidly. However, the overhead of the algorithm is less than the time required by 
a single local minimization even for np = 10 and even more so for larger np. However, if 
needed larger N can be avoided. Since the population size increases with the increase of 
the number of dimensions (or np), an alternative to using both larger Nand N g is to use 
fixed values for Nand Ng with a smaller kg and thereby allowing more local searches to be 
performed. As np grows to a upper limit kg can be gradually decreased to its lower limit. 
Indeed the faster and better results were obtained for np = 13 to 15 by using Nand N g for 
np = 12, i.e., N = 300 and N g = 120 but with kg = 5. 

During our numerical experiments using Si for 100 independent runs we noticed that 
Si(C) was difficult than Si(B), it took on average more function evaluations (FE) and 
cpu times (CPU) and it was difficult to locate the very best minimum for Si(C), for all 
particles considered. Similarly for the carbon problems we found that C' was more difficult 
than C". This is true for upto 13 particles for C and for more than 13 particles we found 
it difficult to judge these problem as to which one is easier and which one is most difficult 
with respect to FE, CPU and locating the best minimum value. However, our numerical 
experiments suggested that Si( C) was the most difficult of all four problems with C' being 
the second most difficult problem. We found that all four problems are very rich in local 
minima and that the number increases with np. Since the general trend in this respect for 
all four problems are the same, we present the detailed results of Si( C) for upto 10 particles. 
To give a clear picture we present the detailed results on Si(C) for 100 independent runs 
in Table 2. The results in Table 2 represent the average result of the runs for which the 
best minimum was successfully located. We use the following notation :fe is the number 
of function evaluations required by the algorithm, fl is the number of function evluations 
required by the local search algorithm, sf is the number of times the best minimum was 
located by the local search per successful run, If is the number of different local minima 
found per successful run, le is the number of local search performed per successful run, ts is 
the percentage of successful runs out of 100 runs. Notice that FE is the sum of f e and fl. 
The data under the columns le, If and sf are rounded to the nearest integer. Comparing the 
second and the third columns of Table 2, we find that the number of function evaluations 
required by the algorithm is far higher than that of the local minimizations. This gap can 
be reduced by choosing smaller kg and thereby allowing more local search to be performed. 
As was mentioned earlier, for higher number of particles this policy is recommended. The 
results of the columns under fl and le tell us that function evaluations per local optimization 
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Table 2: Summarised Results upto SilO(C) 
np fe fl ts lc If sf CPU 

3 1680 435 100 30 5 27 0.99 
4 7373 1023 88 47 33 12 5.27 
5 19113 2980 96 58 73 13 28.13 
6 42707 7388 59 109 98 7 54.72 
7 81300 14654 12 162 154 4 87.08 
8 111445 20264 7 184 178 4 192.12 
9 238563 44864 3 245 233 2 342.44 

10 403680 79776 1 482 461 2 1276.39 

is not very high. It is simply because a local search starting at a low-lying point of the 
region of attraction of a local minimizer is conducive to quicker convergence and hence 
needing less function evaluations. The result for t ~ 5 and M = 3n is presented in Table 2. 
We also studied the effect of M and t on Si( C) for np = 3 to 10. When we used M = 4n 
and t ~ 5 the average results of 100 runs showed that the overall FE increased by about 
9% although lc decreased by about 6% while ts remained more or less the same. To see 
the effect of t we took three values, t ~ 4, 5 and 6 by fixing M = 3n. On average, the best 
result was obtained for t ~ 5. For t ~ 6 FE increased by 17% with on average only 3% 
improvements on ts while for t ~ 4 FE decreased but for the expenses of decreasing ts. 
Further, it appeared that for t ~ 6 ts was increased only for higher number of particles, i.e., 
for np > 12. Therefore, for np ::; 12 we used M = 3n and t ~ 5 throughout our numerical 
work. With these values for M and t and the values for Ng and kg as described earlier we 
next study the effect of the introduction of Sa on the overall results. This time we consider 
the second most difficult problem, namely the optimization problem associated with ct. We 
study the effect of Sa for upto 10 particles again using 100 independent runs. For this we 
ran TDE with and without the consideration of Sa. We denote the TDE algorithm as TDEs 
when it only considers the set S. TDEs, therefore, is TDE but without any replacement 
of points in S. Total results show that although TDEs uses 6.7% less FE than TDE the 
percentage of success ts, in locating the best minimum, decreased by about 13%. Our 
numerical studies suggested that introduction of Sa increases the exploration of the search 
region as far as the topographical information is concerned. Therefore, we have used TDE 
for our optimization purpose. We now present the best minimum values obtained by TDE 
for all four problems for upto 15 particles. The best result of 100 independent runs are given 
in Table 3. Since no optimization was carried out of the Tersoff's carbon potential the best 
minima found for both carbon problems cannot be compared. However, the optimi>lation of 
Tersoff's silicon potentials using eight different global optimization algorithms and the best 
known minima for clusters of upto six particles is given in [15J. Among these algorithms, it 
was found that a Controlled Random Search Algorithm, the CRS4 Algorithm [26J, was the 
best performer in terms of FE,CPU and in locating the best minimum value. However, 
TDE has proved its superiority over CRS4 not only in terms of FE and CPU but also in 
locating the very best minimum value for Si clusters of upto six particles. Even for the most 
difficult problem, Si(C), TDE is superior to CRS4 by about 55% and 82% respectively for 
FE and CPU. Moreover, within the optimization problems of upto six particles we find 
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Table 3' The best minimum found 
np Si(B) Si(G) G' G" 
3 -7.87 -5.33 -10.33 -7.42 
4 -15.70 -8.63 -15.50 -11.12 
5 -20.40 -12.43 -21.52 -18.09 
6 -26.52 -15.80 -30.13 -22.19 
7 -30.39 -18.66 -36.16 -26.91 
8 -36.26 -22.27 -41.32 -32.87 
9 -40.67 -26.20 -46.61 -37.57 
10 -45.19 -29.26 -51.78 -43.81 
11 -49.25 -32.74 -58.27 -48.48 
12 -53.07 -36.04 -65.60 -54.29 
13 -57.77 -38.42 -70.18 -60.96 
14 -62.10 -42.04 -75.80 -65.37 
15 -66.02 -44.80 -81.23 -68.75 

that the new algorithm was able to produce even better minima for Si4(G) and Si5(G). A 
small number of optimized cluster geometries is shown in Figure 1. 

7 Conclusion 

We have developed a new global optimization algorithm for large scale problems and the 
algorithm is implemented on difficult optimization problems involving empirical potentials. 
The potential function is complex in that the interacting forces are many-body and angle­
dependent. The global optimization of carbon and silicon potentials for upto 15 particles 
consisting of upto 39 variables is carried out. The new algorithm was able to produce 
better minima for some problems than those previously found. A unique feature of the 
algorithm is that it carries out local search from potential points scrutinized with the help 
of topographical information. The robustness of the new algorithm rests with its multiple 
local search phase in a unique algorithmic framwork. The new algorithm can be applied to 
large scale optimization problems in other areas of application such as problems in biological 
chemistry and in plasma physics. Designing a better algorithm for even larger problems 
will form the basis of our future research. 

Acknowledgements : The first Author thanks Professor Roger Smith of Loughborough 
University of Technology, UK for his support and Professor Leslie Glasser of Witwatersrand 
University, Johannesburg for his help in plotting the graphs. 
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Figure 1: The Structure of Small Clusters of Sizes 5 and 10 for Si and C. 

Appendix A 

Let the variables involved be (Xi, Yi, Zi) for atom i, (Xj, Yj, Zj) for atom j for the bond ij 
and (Xk' Yk, Zk) for atom k where k represents the rest of the atoms involved in (6). Since 
the other partial derivatives are very similar, we only calculate the partial derivative of Ei 
with respect to one varible, say Xi out of the six variables associated with atoms i and j . 
This is given by 

oEi = ~ L [dfc(rij ) Orij (VR{r;j) - ,6ijVA(rij)) 
OXi 2 #i drij OXi 

+ fc(rij) (dVR(rij ) Orij -,6i' dVA(rij) Orij _ O,6ij VA(ri .)] 
drij OXi J drij OXi aXi J 

(12) 

The partial derivative of ,6ij is written as 

O,6ij = _! nl (1 + nltn.l)-2~1-1 t(nl-1)O~ij 
OXi 2' , '>'J '>'J OXi' (13) 

The derivative of ~ij is given by (14) the components of which in turn are calculated from 
(15) - (18). 
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(15) 

ag( ()) dg( ()) a cos () 
----- (16) 

aXi d cos () aXi 

a cos () a cos () arij a cos () arik 
--=---+---. 

aXi arij aXi arik aXi 
(17) 

The cos () between the bonds ij and ik is given by 

r2. + rfk - r\ 
cos () = ZJ Z J 

2rijrik 
(18) 

The derivative with respect to remaining 5 variables involved within the bond ij are easy 
to calculate but the slightly different partial derivative of Ei at Xk of (Xk' Yk, Zk) is given by 
(19) followed by the its relevent terms defined by (20) - (24). 

aEi(X) _ -! '" a(3ij V ( . . )f ( .. ) a - 2 LJ a A rZJ c rZJ • 
Xk j~i Xk 

(19) 

aE(rij, rik) _ aE(rij, rik) arik 

aXk - arik aXk 
(22) 

ag( ()) dg( ()) a cos () 
aXk d cos () aXk 

(23) 

a cos () a cos () arik a cos () arjk 
--=---+---. 

aXk arik aXk arjk aXk 
(24) 

The partial derivatives with respect to Yk and Zk can be calculated similarly. 
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Abstract 

In this paper we are concerned with a new d.c.(difference of convex functions) approach 
to the general distance geometry problem and the two phase solution algorithm DCA. 
We present a thorough study of this d.c. program in its elegant matrix formulation 
including substantial subdifferential calculus for related convex functions. It makes it 
possible to express DCA in its simplest form and to exploit sparsity. In Phase 1 we 
extrapolate all pairwise dissimilarities from given bound constraints and then apply 
DCA to the resulting Euclidean Multidimensional Scaling (EMDS) problem. In Phase 
2 we solve the original problem by applying DCA from the point obtained by Phase 
1. Requiring only matrix-vector products and one Cholesky factorization, DCA seems 
to be robust and efficient in the large scale setting as proved by numerical simulations 
which furthermore indicated that DCA always converges to global solutions. 

Keywords: d.c. programming, d.c. duality, d.c. algorithm (DCA), multidimensional 
scaling problem, distance geometry problems, molecular optimization, sub differential 
calculations. 

1 Introduction 

Distance geometry problems, which play a key role in the molecular optimization, have 
earned active researches in recent years ([2], [9]- [14], [16], [23]- [25], [36]). These problems 
for the determination of protein structures are specified by a subset S of all atoms pairs and 
by the Euclidean distances Oij between atoms i and j for (i,j) E S. They initially consist 
in finding a set of xl, ... ,xn in 1R 3 such that 

(1) 
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It is called the exact distance geometry problem and has the following simple formulations 
as global optimization problems([2], [9] - [14], [16], [23] - [25], [36]): 

(EDP) 0 = inf { L Pij(}ij(Xi - xj) : xl, ... , xn E IR3 } 

(i,j)ES 

(2) 

where Pij > 0 for i =1= j and the pairwise potential (}ij : IRn -+ IR is defined for problem (1) 
by either 

(3) 

or 
(4) 

The exact geometry problem is a special case of the Euclidean Multidimensional Scaling 
(EMDS) problem where the quantities Oij represent pairwise dissimilarities (which are not 
necessarily distances) between objects i and j ([2], [10], [36] and references therein). 

In practice, lower and upper bounds on the distances are specified instead of their exact 
values. We then are faced with the so called general distance geometry problem 

(5) 

The standard formulation of (5), due to Crippen and Havel [9], is in terms of globally 
solving the nonconvex program 

0= inf {f(x\ ... ,xn) = L Pij(}ij(Xi - xj) : xl, ... , xn E IR3 }, (6) 
(i,j)ES 

where the pairwise function (}ij : IRn t-+ IR is defined by 

(} .. ( ) _ . 2 { IIxll2 -l~j o} + 2 { IIxl12 - U~j o} 
~J X - mIll l?' max u?'· 

v v 

An important case of the general distance geometry problem is to obtain an s-optimal 
solution of (1), namely a configuration xl, ... ,xn in IR3 satisfying 

Illxi - xill- Oij I~ s, (i,j) E S, (7) 

for some s > O. An s-optimal solution is useful when the exact solution to the distance 
geometry problem (1) does not exist because of small errors in the data. Such a situation 
can happen, for example, when the triangle inequality 

is violated for atoms {i, j, k} because of possible inconsistencies of the experimental data. 
In this paper we are interested in the large-scale molecular conformation from the general 

distance geometry problem (5) within the d.c. optimization framework. It is based on the 
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new formulation of the general distance geometry problem as a d.c. program (i.e. a problem 
of minimizing a difference of convex functions): 

O=inf{ L pij(llxi-xjll-tij?: xl, ... ,xnEIR3,lij~tij~Uij, (i,j)ES}, (8) 
(i,j)ES 

where Pij = Pji > 0 for i =j:. j, (i,j) E S. It is a linearly constrained nonsmooth nonconvex 
optimization problem (see Section 2). Different formulations of (5) as d.c. programs are 
possible, for instance problem (6) is also a d.c. program. However the formulation (8) 
seems to be advantageous to d.c. algorithms (DCA) for solving the general distance ge­
ometry problem because DCA then requires only matrix-vector products and one Cholesky 
factorization. It is worth noting that the exact distance geometry problem (EDP) with 
(Jij defined by (3), (resp. (EDP) with (Jij defined by (4)), is a special case of the general 
distance geometry problem (6), (resp. (8)), with lij = Uij = Oij, for every (i,j) E S. 

When all pairwise distances are available and a solution exists, the exact distance geom­
etry problem (1) can be solved by a polynomial time algorithm (Blumenthal [7], Crippen 
and Havel [9]). However, in practice, one knows only a subset of the distances, and it is 
well known (Saxe [39]) that P- dimensional distance geometry problems are strongly NP­
complete with P = 1 and strongly NP-hard for all P > 1. The visible sources of difficulties 
of these problems are 

• the question of existence of a solution, 

• the nonuniqueness of solutions, 

• the presence of a large number of local minimizers, 

• the large dimension of problems that arise in practice. 

Several methods have been proposed for solving the distance geometry problems (1) 
and/or (7). De Leeuw ([10], [11]) proposed the well-known majorization method for solving 
the Euclidean MDS (EMDS) problem which includes (EDP) with (Jij given by (4). Cripen 
and Havel [9] used the formulation (6) for solving the general distance geometry problem 
(5) by the embed algorithm. Their method consists of solving a sequence of exact distance 
geometry problems where all pairwise distances are included. More precisely the embed 
algorithm breaks down into three distinct steps. The first step, called bound smoothing, 
determines unknown bounds lij and Uij from the given bounds by using the relationships 

which can be deduced from the triangle inequality. Given a full set of bounds, distances 
Oij E [lij,uij] are chosen, and an attempt (which is the second step called embedding) is 
made to compute coordinates xl, ... ,xn in IR3 such that 

(9) 

by solving the special complete distance geometry problem with, for example, the ma­
jorization algorithm applied to the problem defined by (2) and (4) as suggested in [13]. 
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This attempt usually fails because the bounds Oij tend to be inconsistent, but it can be 
used to generate an approximate solution. This approximation can be refined (in the third 
step called optimization) by minimizing a function of the form (2)-(3). The embed algorithm 
may require many trial choices of Oij in [lij,uij] before a solution to problem (9) is found. 
Current implementations of the embed algorithm use a local minimizer of the problem de­
fined by (2) and (3). Glunt, Hayden and Raydan [14] studied a special gradient method 
for determining a local minimizer of (EDP) with (}ij defined in (4). Using a graph-theoretic 
viewpoint Hendrickson [16] developed an algorithm to solve (EDP) where (}ij is given by 
(3). His method works well for his test problems where a protein contains at most 124 
amino acids (at most 777 atoms). In a smoothing technique and a continuation approach 
based on the Gaussian transform of the objective function and on the trust region method, 
More and Wu [23] proposed an algorithm for solving problem (EDP) with (}ij defined by (3). 
By Gaussian transform, the original function becomes a smoother function with fewer local 
minimizer. Computational experiments with up to 648 variables (n = 216) in [23] proved 
that the continuation method is more reliable and efficient than the multistart approach, 
a standard procedure for finding the global minimizer to this problem. Also by Gaussian 
transform, More and Wu [25] solved the general distance geometry problem using the formu­
lation (6). Their dgsol algorithm ([24], [25]) can be used to obtain solutions to the general 
distance geometry problem (6). In [24], the dgsol with multistarting points globally solved 
problem (6) with n = 100 and n = 200, and its reliabiltity varies between 40% and 100%. A 
stochastic/perturbation algorithm was proposed by Zou, Bird and Schnabel [45], using the 
standard formulations of (6) and (EDP) with (}ij defined by (3), for both general and exact 
distance geometry problems. This is a combination of a stochastic phase that identifies an 
initial set of local minimizers and a more deterministic phase that moves from low to even 
lower local minimizer. The numerical experiments presented there (with the same data as in 
More and Wu [23] and Hendrickson [16]) showed that this approach is promising. It is worth 
noting that the distance geometry problem is intimately related to the Euclidean distance 
matrix completion problem ([1], [22]). This problem has been formulated as a semidefinite 
programming problem and solved by . A.Y. Alfakih, A. Khandami and H. Wolkowicz with 
an adapted interior-point method. 

In convex analysis approach to nondifferentiable nonconvex programming, the d.c. op­
timization and its solution algorithms (DCA) developed by Pham and Le Thi ([2] - [6], 
[33] - [36] and references therein) constitute a natural and logical extension of Pham's ear­
lier works concerning convex maximization and its subgradient algorithms ([27] - [32] and 
references therein). The majorization algorithm ([10]) is a suitable adaptation of the just 
mentioned subgradient methods for maximizing a seminorm over the unit ball of another 
seminorm, given that the latter is shown by de Leew to be equivalent to the Euclidean 
MDS problem. But the passage is not straightforward because the stepsize is computed by 
taking into account the original problem. De Leeuw's algorithm is actually a special case 
of DCA applied to EMDS problem ([2], [35], [36] and references therein). Remark that the 
argument used by de Leew ([10]) is no longer valid in the general distance geometry problem 
(8). Our method in this work, based on the d.c. optimization approach, serves to solve the 
general distance geometry problem (5) via the new d.c. program (8). 

The aim of this paper is to demonstrate that the DCA can be used to develop efficient 
algorithms for solving large-scale general distance geometry problems via the new formula-
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tion (8). The DCA is a primal-dual subgradient method for solving a general d.c. program 
that consists in the minimization of difference of convex functions. It is at the present 
time one of a few algorithms in the local approach which has been successfully applied to 
many large-scale d.c. optimization problems and proved to be more robust and efficient than 
related standard methods. Using local optimality conditions and duality in d.c. program­
ming, it cannot guarantee the globality of computed solutions for general d.c. programs. 
However, we observe that with a suitable starting point it converges quite often to a global 
one (see e.g. [2] - [6], [34] - [36]). This property motivates us to investigate a technique for 
computing a "good" starting point for the DCA in the solution of (8). 

For initializing DCA applied to Problem (8) we used procedures C1 and C2 presented in 
Subsection 4.4. Procedure C1 (deducing dissimilarities) is a particular case of the triangle 
bound smoothing due to Crippen while Procedure C2 (imposing dissimilarities) is quite 
different because the quantities Iij do not necessarily represent lower bounds for unknown 
distances. In any case it does not cause trouble to DCA applied to the resulting EMDS 
problem ([36]) in which the dissimilarities are not necessarily distances. Algorithm 2 (of 
our two phase DCA for solving the general distance geometry problem (8)) then consists of 
applying DCA to the resulting EMDS problem with a full dissimilarity matrix. Algorithm 
1 is exactly DCA applied to the sparse general distance geometry problem (8) with initial 
point computed by Algorithm 2. 

The advantages of the present method are: 
Firstly, we need to work only once with both dense and sparse sets of constraints. In 

contrast, the existing methods for the general distance geometry problem work many times 
with full and sparse sets of constraints (see e.g. the embed algorithm) or a sparse set of 
constraints ([25], [45]). 

Secondly, we can exploit sparsity of the given bound matrices. This is important because 
only a small subset of constraints is known in practice. 

Our algorithms are quite simple and easy to implement. They only require matrix-vector 
products and one Cholesky factorization. We have tested our codes on the artificial general 
distance geometry problems (More & Wu [23], [24], [25]) with up to 10125 variables (the 
molecule contains 3375 atoms). 

Section 2 is devoted to the new formulation of the general distance geometry problem (5) 
in the suitable matrix working space. The main tools of our work are the d.c. optimization 
approach and the DCA. The background indispensable for understanding the d.c. program­
ming and DCA is described in Section 3 where we emphasize the crucial role played by 
d.c. decompositions and initial points for DCA in the global solution of a d.c. program. 
Section 4 is the core of the paper where is presented a thorough study of problem (8) in its 
elegant matrix formulation (including substantial subdifferential calculus for related convex 
functions) which allows to express the DCA (for solving the general distance geometry prob­
lem (8)) in explicit form and to exploit sparsity. Finally extensive numerical simulations 
and comments are reported in Section 5. 

2 D.C. Formulation 

In Euclidean distance geometry problems, we must take into consideration the symmetry 
of both the subset S (Le. (i,j) E S implies (j,i) E S) and the weight matrix P = (Pij). 
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For the sake of simplifying calculations in DCA, the general distance geometry problem (8) 
will be reformulated as: 

(GEDP) 0 = inf {~ 2: pij(lIxi - xiII - tij)2 : xl, .", xn E IR3, iij ~ tij ~ Uij, (i,j) E s} 
(i,j)ES,i<j 

In this section we first prove that problem (GEDP) is a d.c. program and point out simple 
convex functions (on the convex constraint set) whose difference is the objective function 
of this problem. Since 

the objective function of (GEDP) can be expressed as 

(10) 

Remark that by setting Pij = 0 for (i,j) rt S the constraint (i,j) E S can be omitted in 
(10). Since the functions 

~ 2: pijllxi - xj ll 2 + ~ 2: Pij ttj and ~ { 2: pij(llxi - xjll + tij )2} 
(i,j)ES,i<i (i,j)ES,i<i (i,i)ES,i<i 

are convex with respect to the variables (xl, ... , xn), T ) with xl, ... , xn E IR3 and T = (tii) 
on the convex constraint set, it is clear that this expression is difference of convex functions 
(d.c. function in short). The matrix spaces that we shall present below are useful for various 
calculations of sub gradients in DCA. 

Let Mn,p(IR) and Mn,n(IR) denote the spaces of real matrices of order n x P and n x n 
respectively. For X E Mn,p(IR), Xi (resp. Xi) is its ith row (resp. column), while XT 
is the transpose of X. By identifying a set of positions xl, ... ,xn with the matrix X (i.e. 
(XT)i = (Xj)T = xi for j = 1, ... , n), and let T = (tij) be a symmetric matrix in Mn,nCIR), 
we shall advantageously express the general distance geometry problem in the product of 
matrix spaces Mn,p(lR) x Mn,n(lR). First, note that we can identify a matrix X E Mn,p(IR) 
with a row-vector (resp. column-vector) in (IRP)n (resp. (IRn)p) by writing, respectively, 

(11) 

and 

X~X~ [J. X;Emn,x E (mnr· (12) 

The inner product in Mn,p(IR) is then defined as the inner product in (IRP)n or (IRn)p. 
That is 

n n 

(X, Y)Mn,p(IR) = (XT, yT)(JRP)n = 2: (X;, Y'f)IRP = 2: Xi¥iT 
i=l i=l 
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p p 

= (X, Y)(lRn)p = L (xj, yj)lRn = L (Xj)Tyj = Tr(XTy). 
k=l k=l 

Likewise, a matrix T E Mn,n(:IR) can be identified with a vector T E (1Rn)n, and the 
inner product in Mn,n(1R) is then defined as the inner product in (lRn)n. In the sequel, 
for simplicity, we shall suppress, if no possible ambiguity, the indices for the inner product 
and denote by 11.11 the corresponding Euclidean norm. Evidently we must choose either 
representation in a convient way. 

Let dij : Mn,p(IR) f----+ IR and 'Pij : Mn,n(lR) f----+ IR be the pairwise functions defined 
by dij(X) = IIxi - xjll, 'Pij(T) = tij. 

Problem (GEDP) can be now written in the matrix form 

with 

{ 0 = inf {F(X, T) := L(X, T) - H(X, Tn 
s.t. (X, T) E 0 := Mn,p(IR) x C, 

L(X, T) := 'T](X) + ((T), 

r,(X) := ~ 2: Pij dTj(X), ((T) := ~ 2: Pij 'PTj(T), 
,<] ,<] 

H(X,T) := ~ Lpij[dij(X) + 'Pij(T)F, 
i<j 

C := {T E Mn,n(IR) : lij S tij S Uij, (i,j) E S}. 

(13) 

(14) 

Clearly, the function L is finite and convex on Mn,p(IR) x Mn,n(IR). Since for every (i, j) E 

S, the function: (X, T) -+ dij(X) + 'Pij(T) is finite and convex on Mn,p(IR) x Mn,n(IR) 
and nonnegative on 0, the function H then is convex on 0 too . Let XO be the indicator 
function of 0 defined by Xo(X, T) = 0 if (X, T) EO, +00 otherwise, then problem (GEDP) 
can be expressed in the standard form of d.c. programs: 

{ 
0 = inf {F(X, T):= G(X, T) - H(X, Tn 
s.t. (X, T) E Mn,p(IR) x Mn,n(IR), 

(15) 

where G(X, T) := L(X, T) + Xo(X, T) is the separable function in its variables X and T. 
Before going further let us specify the obvious relation between problems (5) and (15). 

Proposition 1 (i) If a set of positions (xl, ... , xn) is a solution to problem (5), then the 
couple of matrices (X,T), with X = (xl, ... ,xn)y and tij = Ilxi - xjll for (i,j) E S, is a 
solution to (15). 

(ii) If a couple of matrices (X, T) is a solution to (15), then the set of positions (xl, ... , xn) = 
XT is a solution to (5) and tij = IIXr - xn for (i,j) E S. 
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Throughout this paper we assume that the weight matrix P = (Pij) is irreducible, which 
can be viewed as the associated graph G(N, S) with N = {I, ... , n} is connected. This 
assumption is not restrictive for problem (5) since it can be decomposed into a number of 
smaller problems otherwise. Then we work under the next assumptions: 

(a1) for i "I- j, lij > 0 when (i,j) E S (i.e., two different atoms are not in the same 
position), 

(a2) for i "I- j, Pij = 0 if and only if (i,j) f/:- S, 

(a3) the weight matrix P is irreducible. 

Under assumption (a2) and (a3), we can restrict the working space to an appropriate 
set which is, as will be seen in the next, favourable to our calculations. Indeed, let A denote 
the subspace composed of matrices in Mn,p(IR) whose rows are identical, i.e., 

A:= {X E Mn,p(IR) : Xl = ... = Xn} 

and let PA (resp. A-L) be the orthogonal projection on A (resp. the orthogonal complement 
of A ), we have: 

Lemma 1 (i) A = {evT : v E IRP} is a p-dimensional subspace of Mn,p(IR) and 
A-L = {Y E Mn,p(IR) : 2:i=l Y; = O}. 

(ii) A C 7]-1(0). 

(iii) PA = (l/n)eeT ; PA-L = I - (l/n)eeT (e is the vector of ones in IRn). 

(iv) If the weight matrix P is irreducible, then A = 7]-1 (0) . In this case Problem (15) is 
equivalent to 

{ 0 = inf {F(X, T):= G(X, T) - H(X, T)} 
s.t. (X, T) E A-L X Mn,n(IR), 

(16) 

in the sense that if (X*,T*) is an optimal solution to (16), then (X*+ X,T*) zs an 
optimal solution to (15) for all X E A. 

Proof. (i) and (ii) are straightforward from the definition of A. The proof of (iii) is 
easy. 
Let X E Mn,p(IR) such that 7](X) = 0 and (i,j) E {l, ... ,nF with i"l- j. Since the 
matrix P is irreducible, there is a finite sequence {i1' ... , iT} C {I, ... , n} verifying Pii, > 
O,Pikik+' > 0 for k = 1, ... , r -1, and PiTj > O. It follows that Xi = Xi, = ... = Xi, = Xj, 
and then 7]-1(0) = A. 
Finally, the rest of property (iv) follows from the fact that the kernel of the seminorms 7]~ 
and dij contain the subspace A. 0 
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3 D.C. Programming and DCA 

We present here the material needed for an easy understanding of d.c. programming and 
DCA which will be used to solve the general distance geometry problem (16). Our working 
space is E = lRn equipped with the canonical inner product (-,.) and the corresponding 
Euclidean norm 11·11, thus the dual space E* of E can be identified with E itself. We follow 
[37] for definitions of usual tools of modern convex analysis where functions could take 
infinite values ±oo. A function () : E -+ lR U {±oo} is said to be proper if it takes nowhere 
the value -00 and is not identically equal to +00. The effective domain of 0, denoted by 
dom (), is 

dom () = {x E E: O(x) < oo}. 

The set of all lower semicontinuous proper convex functions on E is denoted fo(E). For 
9 E fo(E), the conjugate function g* of g is a function belonging to fo(E) and defined by 

g*(y) = sup{(x,y) - g(x) : x E E}. 

and we have g** = g. 
Let 9 E fo(E) and let xo E dom 9 and E > 0, then o,g(XO) stands for the E- subdiffer­

ential of g at xO and is given by 

while og(xO) corresponding to E = 0, stands for the usual (or exact) sub differential of g at 
xo. Recall that 

One says that 9 is sub differentiable at xO if 8g(xO) is nonempty. It has been proved that 
[37] 

ri(dom g) C dom og C dom 9 

where ri(dom g) stands for the relative interior of dom 9 and dom og := {x E E : og(x) "I-
0}. 

Also, the indicator function Xc of a closed convex set is defined by xdx) = 0 if x E 

C, +00 otherwise. 
A function () E fo(E) is said to be polyheral convex if ([37]) 

(}(x) = max{(ai,x) - C¥i: i = 1, ... ,m} + xs(x), Vx E E, 

where ai E E*, C¥i E lR for i = 1, ... ,m and S is a nonempty polyhedral convex set in E. 
Let p ~ 0 and C be a convex subset of E. One says that a function 0 : C ---+ lR U { +00 } 

is p - convex if 

O[AX + (1 - A)X'] :::; A(}(X) + (1 - A)(}(X') - A(I; A) pi Ix - x'11 2 , VA E]O, 1[, Vx, x' E C. 
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It amounts to saying that B - (p/2)1I'1I2 is convex on C. The modulus of strong convexity 
of Bon C, denoted by p(B, C) or p(B) if C = E, is given by: 

p(B, C) = sup{p ~ 0: B - (p/2) II . 112 is convex on C}. (17) 

Clearly, B is convex on C if and only if p(B, C) = O. One says that () is strongly convex on 
C if p(B, C) > O. 

For hand 12 belonging to ro(E), the infimal convolution of hand 12, denoted h"Yh, 
is a convex function on E, defined by [18] 

In convex analysis, this functional operation aims, as the convolution in functional analysis, 
at regularizing convex functions [18]. The proximal regularization corresponding to B = 
~1I·1I2. 

For f E ro(E) and'>' > 0 the Moreau-Yosida regularization of f with parameter .>., 
denoted by f>., is the inf-convolution of f and A II . 112. The function f>. is continuously 
differentiable, underapproximates f without changing the set of minimizers and (f>.)p, = 
f>.+p, . More precisely, VI>.. = HI - (I + .>.8f)-1] is Lipschitzian with ratio t. The operator 
(I + '>'8f)-1 is called the proximal mapping associated with.>.f ([20], [21], [38]). 

A general d.c. program is of the following form with g, h E ro(E) 

{
a = inf f(x):= g(x) - h(x) 
s.t. x E E, 

where we adopt the convention +00 - (+00) = +00 to avoid ambiguity. One says that 9 - h 
is a d.c. decomposition (or d.c. representation) of f, and g, h are its convex d.c. components. 
If 9 and h are finite on E, then f = 9 - h is said to be finite d.c. function on E. The set of 
d.c. functions (resp. finite d.c. functions) on E is denoted by 'DC (E) (resp. 'DCf(E)). 

Note that the finiteness of a merely implies that 

dom 9 C dom hand dom h* C dom gO. (18) 

Such inclusions will be assumed throughout the paper. 
A point x* is said to be a local minimizer of 9 - h if g(x*) - h(x*) is finite (Le., 

x* E dom 9 n dom h) and there exists a neighbourhood U of x* such that 

g(x*) - h(x*) ::; g(x) - h(x), Vx E U. (19) 

Under the convention +00- (+00) = +00, the property (19) is equivalent to g(x*) -h(x*) ::; 
g(x) - h(x), Vx E un dom g. 

x* is said to be a critical point of 9 - h if 8g(x*) n 8h(x*) =f. 0. 

It is worth noting the richness of 'DC (E) and 'DC f(E) ([2], [35] and references therein): 
(i) 'DC f(E) is a subspace containing the class of lower-C2 functions (f is said to be 

lower-C2 if f is locally a supremum of a family of C2 functions ). In particular, 'DC f (E) 
contains the space C1,1(E) of functions whose gradient is locally Lipschitzian on E. 
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(ii) Under some caution we can say that 'DC(E) is the subspace generated by the convex 
cone ro(E) : 'DC(E) = ro(E) - ro(E). This relation marks the passage from convex 
optimization to nonconvex optimization and also indicates that 'DC (E) constitutes a minimal 
realistic extension of ro(E). 

(iii) 'DC j(E) is closed under all the operations usually considered in optimization. In 
particular, a linear combination of fi E 'DC j(E) belongs to 'DC j(E), a finite supremum of 
d.c. functions is d.c. This result has been extended to 'DC(E) under some restrictions. 

D.c. programming has been a natural extension of convex maximization in which the 
function g is the indicator function Xc of a nonempty closed convex set C, (i.e. xdx) = 0 
if x E C, +00 otherwise). In convex approach to nonsmooth nonconvex optimization (not 
to be confused with the global combinatorial approach due to Hoang Tuy[41], [42], [43]), 
convex maximization has been extensively studied since 1974 by Pham ([27]- [28]-[29] -
[32] and references therein) who has introduced subgradient algorithms for solving convex 
maximization problems. 

The d.c. duality, (due to Toland [40]' who generalized in a very elegant and natural way 
the early works, just mentioned above, of Pham on convex maximization programming), 
associates the d.c. program (Pdc) with the following one called its dual d.c. program 

{ a = inf h*(y) - g*(y) 
s.t. Y E E* 

with the help of the functional conjugate notion and states relationships between them. 
More precisely, as a sort of getting to the root of convex functions (namely a convex function 
B E ro(E) is characterized as the supremum of a collection of affine minorizations, m 

particular there holds the following expression 

B(x) = sup{(x,y) - (}*(y) : y E E*}, '<Ix E E (20) 

that will appear in the concept of our DCA again, the d.c. duality is built by replacing, in 
problem (Pdc), the function h with its corresponding expression of (20). 

Thanks to a symmetry in the d.c. duality (the bidual d.c. program) is exactly the 
primal one) and the d.c. duality transportation of global minimizers, solving a d.c. program 
implies solving the dual one and vice versa. The equality of the optimal value in the primal 
and dual programs can be easily translated (with the help of E-subdifferential of the d.c. 
components) in global optimality conditions. These nice conditions mark the passage from 
convex optimization to nonconvex optimization but are rather difficult to use for devising 
solution methods to d.c. programs. 

Local d.c. optimality conditions constitute (with the d.c. duality) the basis of the DCA. 
In general, it is not easy to state them as in global d.c. optimality and there have been 
found very few properties which are useful in practice. 

We will briefly present the main results on local and global optimality conditions in d.c. 
programming in the Appendix for the convenience of the reader. 

The DCA was introduced as an extension of the aforementioned subgradient algorithms 
(for convex maximization programming) to d.c. programming by Pham in 1986. But this 
field has been really developed from 1994 only with joint works by Le Thi and Pham ([2]- [6], 
[33] - [36] and references therein) in which d.c. programming approach has been successfully 
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applied to solving nonsmooth nonconvex optimization problems. To our knowledge, DCA 
is actually one of a few algorithms (in the convex analysis approach to d.c. programming) 
which allows to solve large-scale d.c. programs. 

3.1 Description of DCA for a general d.c. program 

Based on local optimality conditions and duality in d.c. programming, the DCA consists 
in the construction of two sequences {xk} and {yk} such that Xk+l (resp. yk) is a solution 
to the convex program (Pk) (resp. (Dk)) defined by 

{ 
inf {g(x) - [h(xk) + (x - xk, yk)]} 
s.t. x E E 

{
inf {h*(y) - [g*(yk-l) + (xk, y _ yk-l)]} 
s.t. YEE*. 

In view of the relation: (Pk) (resp. (Dk)) is obtained from (Pdc) (resp. (Ddc )) by replacing 
h (resp. gO) with its affine minorization defined by yk E 8h(xk) (resp. xk E 8g*(yk-l)), the 
DCA yields the next scheme: 

(21) 

It is proved in Pham and Le Thi [34], [35] that 

(i) The sequences {g(xk) - h(xk)} and {h*(yk) - g*(yk)} are decreasing and 

• g(Xk+l) _ h(xk+1) = g(xk) - h(xk) if and only if yk E 8g(xk) n 8h(xk), yk E 8g(xk+l) n 
8h(xk+l) and [p(g) + p(h)]llxk+l - xkll = O . 

• h*(yk+l) _ g*(yk+l) = h*(yk) _ g*(yk) if and only if Xk+l E 8g*(yk) n 8h*(yk), xk+l E 
8g*(yk+l) n 8h*(yk+l) and [p(g*) + p(h*)]llyk+l - ykll = O. 

In such a case DCA terminates at the kth iteration. 

(ii) If p(g) + p(h) > 0 (resp. p(g*) + p(h*) > 0), then the series {llxk+l - xk11 2 } (resp. 
{llyk+l - ykI12}) converges. 

(iii) If the optimal value a of problem (P dc) is finite and the sequences {xk} and {yk} are 
bounded then every limit point X OO (resp. yOO) ofthe sequence {xk} (resp. {yk}) is a 
critical point of 9 - h (resp. h* - gO). 

(iv) DCA has a linear convergence for general d.c. programs. 

To make the reading easier, we present in the Appendix the principal convergence theo­
rem of DCA for general d.c. program (for more details, see [34], [35] and references therein). 

Remark 1 The d.c. objective function (of a d.c. program) has infinitely many d.c. de­
compositions which may have an important influence on the qualities (robustness, stability, 
rate of convergence and globality of sought solutions). For example if g and h are convex 
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d.c. components of the d.c. function then so are the functions g + () and h + () with () being 
a finite convex function on E. In particular, if () is the kernel ~ 11.11 2 , (>.. > 0), we make the 
d. c. components (of the primal objective function f = g - h) strongly convex and the convex 
d.c. components (of the dual objective function) continuously differentiable. This operation 
amounts to applying the proximal regularization to the dual d.c. program (Ddc). 

So there are as many DCA as there are d.c. decompositions and it is of particular 
interest to study various equivalent d.c. forms for the primal and dual d.c. problems. It 
is worth mentioning, for instance, that by using conjointly suitable d.c. decompositions of 
convex functions and proximal regularization techniques we can obtain the proximal point 
algorithm and the Goldstein-Levitin-Polyak subgradient method (in convex programming) 
as special cases of DCA. 

The choice of the d.c. decomposition of the objective function and the initial point 
for DCA are open questions to be studied for the specific structure of the problem being 
considered. In practice, for solving a given d.c. program, we try to choose g and h such 
that sequences of iterates can be easily calculated, i.e. either they are in explicit form or 
their computations are inexpensive. 

A deeper insight into DCA. 
The above description of DCA does not really reveal the main features of this approach 

which could partly explain the qualities (robustness, stability, rate of convergence and 
globality of sought solutions) of DCA from the computational viewpoint. We will introduce 
below a deeper interpretation of DCA that has the merit of offering a valuable insight into 
DCA. 

Denote by hk (resp. hk) the following affine (resp. polyhedral convex) minorization of 
the convex function h defined by: 

hk(x) := SUp{hi(X) : i = 0, ... , k} = sup{ (x, Vi) - h*(yi) : i = 0, ... , k}, \/x E E, 

where the sequences {xk} and {yk} are generated as above, i.e. as solutions respectively of 
the relaxed convex program (Pk) (resp. (Dk)) which is obtained from the original program 
(Pdc) (resp. (Ddc) by replacing the convex function h (resp. g*) with hk (resp. the affine 
minorizationn of g* given by: y --+ g*(yk) + (xk+l, y _ yk) ). 

Since a proper lower semicontinuous convex function O(x) is characterized as the supre­
mum of a collection of its affine minorizations, in particular 

O(x) = sup{ (x, y) - (}*(y) : y E E*}, "Ix E E, 

it seems better, instead of the affine minorization hk' using the polyhedral convex function 
hk to under approximate the convex function h. In other words we are dealing with the 
following relaxed programs (which still are (nonconvex) d.c. programs as opposed to the 
relaxed convex programs (Pk )) 

inf{g(x) - hk(x) : x E E}. (22) 
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Problem (22), called polyhedral d.c. program, is a d.c. program in which at least one of 
convex d.c. components is polyhedral convex. The special class of polyhedral d.c. pro­
grams, which plays a key role in nonconvex optimization, possesses worthy properties, from 
both theoretical and computational viewpoints, as necessary and sufficient local optimality 
conditions, and finite convergence for DCA (see e.g. [2], [34], [35]). 

It naturally leads us to the following crucial questions: 

• how to solve the polyhedral d.c. program (22)? 

• what exactly is the relationship between the sequence {xk} and solutions to (22)? 

Answers to these questions are presented below. First, by writing problem(22) in the 
form 

inf{g(x)-sup{hi(x): i=O, ... ,k}: xEE}, 

i.e., 
inf{g(x) + inf{ -hi (x) : i = 0, ... , k} : x E E}, 

or equivalently 

inf . inf {g(x) - hi(x)}, 
xEE,=O, ... ,k 

and finally 
. inf inf {g(x) - hi(x)}, 
,=O, ... ,kxEE 

and since xi+l is a solution to (Pd, we easily deduce that xl, with I E arg min{g(xi+l) -
hi(Xi+l): i = O, ... ,k}, is a solution to problem (22). 

On the other hand, we have 

g(xi+l) - h(xi+l) ::; g(xi+l) - hi (xi +1), for i = 0, ... , k. 

So 
(23) 

since the sequence { g(xi) - h(xi)} is decreasing. 
It is clear that if equality holds in (23), then xk+l is a solution to the polyhedral 

d.c. program (22). 
We shall now find conditions ensuring such an equality. For this we will distinguish two 

cases: 

(A) There is some k such that hk(Xk+l) = h(xk+l). In this case the above equality holds 
since we have the double inequality 

g(xk+l)_h(xk+l) ::; inf{g(xi+l)-hi(xi+l): i=O, ... ,k} 
::; g(xk+l) _ h(xk+l) ::; g(xk+l) _ h(xkH). 

According to the main properties above mentioned of the sequences {xk} and {yk} 
generated by DCA, it is easy to prove that the equality g(xk+l) - h(Xk+l) = g(xk) -
h(xk ), (which occurs when DCA has a finite convergence, especially in polyhedral d.c. 
programming), implies that hk(Xk+l) = h(xkH ). 
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(B) hk (xk+l) < h(xk+1) for every k. In this case we can state the following asymptotic 
behaviour: Assume the optimal value of problem (P de) be finite and the sequences 
{xk} and {yk} generated by DCA be bounded. Then 

g(Xoo ) - h(xoo ) = inf{g(xi+l) - hi (xi+1 ) : i = 0, ... , oo} 

for every limit point xoo of the sequence {xk}, where hoo denotes the affine minoriza­
tion of h given by 

with yoo E 8h(xoo ). Consequently the point xoo is a solution to the following d.c. pro-
gram 

inf{g(x) - hoo(x) : x E E}, 

where the convex function hoo is defined by 

hoo(x) := sup{ (x, yi) - h* (yi) : i = 0, ... ,oo}, Vx E E. 

(24) 

Similarly, for the dual d.c. program (Dde), the related minorizations of g* are defined by 

and 

(g*h(y):= g*(yk) + (y - yk, xk+1) = (y,xk+1) - g(xk+1), Vy E E*, 

(g*)oo(y) := g* (yoo) + (y - yoo, Xoo ) = (y, X OO ) - g(Xoo), Vy E E*, 

(g*)oo(y) := sup{(g*My) : i = 0, ... , oo} = sup{ (y, xi+1) - g(Xi+l) : i = 0, ... ,oo}, Vy E E*. 

These affine functions satisfy, simultaneously with the functions hi, conditions similar to 
(A) and (B). To sum up, DCA generates two sequences {xk} and { yk}, (candidates to 
primal and dual solutions respectively), which are improved at each iteration (the sequences 
{g(xk) - h(xk)} and {h*(yk) - g*(yk)} are decreasing) and serve, in turn, to construct 
affine minorizations of h, (the affine functions hd, and affine minorizations of g* (the affine 
functions (g*)i) such that: 

Theorem 1 If the optimal value a of the d.c. program (Pde) is finite and the sequences 
{xk}, {yk} are bounded, then every limit point x oo (resp. yCO) of {xk} (resp. {yk}) is a 
solution to the approximated d. c. program 

inf{g(x) - hoo(x) : x E E} 

and 
inf{h*(y) - (g*)oo(y) : y E E*} 

respectively. Consequently, the nearer the function hOO (resp. (g*)oo) comes to the function 
h (resp. g*), the better x oo (resp. yoo) approximates a solution to the d.c. program (Pde) 
{resp. (Dde)). Furthermore if either of the following conditions holds 

(i) The functions hOO and h coincide at some solution to (Pde) , 
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(ii) The functions (g*)OO and g* coincide at some solution to (Dde), 

then X OO and yOO are also solutions to (Pde) and (Dde) respectively. 

Proof. It is a consequence of the results just mentioned above and Theorem 3 (Ap-
pendix). 0 

In practice, in order to globally solve (P de), it is particularly interesting to get the 
function hoo tight underapproximate the function h. To this aim, we have to find suitable 
d.c. decompositions and initial points for DCA according to the specific structure of the 
d.c. program being considered. 

4 Solution of the General Distance Geometry 
Problem (15) by the DCA 

Our interest in the DCA has increased recently motivated by its success to a great deal of 
various large-scale d.c. programs ([2]- [6], [34] - [36]). The positive aspects of the DCA that 
come out of numerical solutions of these problems are 

• It often converges to a global solution; 

• The number of concave variables do not affect the complexity for the algorithm; 

• It can be used for large-scale problems at little cost. 

• It is particularly suitable to nonsmoothness. 

As indicated in the introduction, the general distance geometry problem (5) can be 
formulated as a global optimization problem, for example, the unconstrained nonconvex 
optimization problem (6) (with piecewise twice differentiable objective function) due to 
Crippen and Havel [9], or the linearly constrained nondifferentiable nonconvex optimization 
problem (15) proposed by ourselves. Both are d.c. programs, however we have chosen to 
apply DCA to the latter because the construction of the sequences{xk } and {yk} then is 
quite simple. Indeed, as will be seen in the next, DCA requires only matrix-vector products 
and one Cholesky factorization and hence is suitable to the large-scale setting. 

On the other hand we have studied the problem of computing initial points for DCA 
applied to (15). Since DCA is very efficient in the solution of the Euclidean EMDS problem 
with a complete set of dissimilarities([2], [36]), we proposed a method (to compute intial 
points for DCA applied to (15)) based on DCA and a procedure of completing a given set 
of dissimilarities. We now use the general scheme (21) to solve Problem (15). Performing 
this scheme thus is reduced to calculating sub differentials of the functions Hand G*: 

(y(k), W(k)) E 8H(X(k) , T(k)), (X(k+1) , T(k+1)) E 8G*(y(k), W(k)). (25) 

According to Lemma 1 the sequence {X(k)} can be taken in the subspace Ai... Likewise, we 
shall show that (see Proposition 4, Appendix) the sequence {y(k)} is contained in Ai.. too. 

We shall first present the crucial results on the computation of 8H and 8G* which have 
given rise to our two phase DCA for solving the general distance geometry problem (15). 
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4.1 Computing 8H. 

We will see in the next that a subgradient of H, say (Y, W), can be determined in explicit 
form. Remark that Problem (13) only involves the restriction of H to n where this function 
is convex. Actually we shall compute the conditional sub differential of H with respect to the 
convex set n ([12)) that we again denote by 8H for simplicity, i.e., (yO, WO) is a conditional 
subgradient of H at (Xo, TO) E n with respect to n if 

By the very definition, it is easy to state the next inclusion for (X, T) E n 

1 
8H(X, T) ~ "2 L:: Pij [dij (X) + ipij(T)][8dij(X) x {O} + {O} x 8ipij(T)]. 

z<) 

It follows that 

Proposition 2 The subdifferential 8H(X, T) contains the couples (Y, W) such that W = 

(Wij) is defined by 

and 

Wij = {O~Pij(dij(X)+tij) if (i,j) E S, 
if (i,j) ~ S, 

1 
Y = "2(B + C(X,T))X, 

where B = (bij ) is the n x n matrix given by 

ifi # j 
if i = j, 

and C(X, T) = (Cij(X, T)) is the n x n matrix valued function given by 

with 

if i # j, 
if i = j, 

Sij(X) = { 01/(IIXr -XJII) if Xi # Xj and (i,j) E S, 
otherwise. 

Proof. See Subsection 6.5 (Appendix). 

(26) 

(27) 

(28) 

(29) 

Remark 2 According to (26) the sequence {y(kl} defined by (25) is contained in the sub­
space Ai.. if the ranges of Band C(X,T), for a given couple (X,T), are contained in Ai... 
This condition holds in virtue of Proposition 4 (Appendix). 
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4.2 Computing aG*. 

As aforementioned, the calculation of 8G* (Y, W) consists of solving the next problem of 
the form (Pk): 

min{ G(X, T) - ((Y, W), (X, T)) : (X, T) E Mn,p(IR) x Mn,n(IR) }. 

Since the functions G is separable in its variables, the last problem can be decomposed 
into the following two problems: 

min {,(X) - (Y,X) ,~ [~ ~P'j dij(X)]- (Y,X) ,X E M",,(IR)}, (30) 

min { ((T)-(W, T)'~ [ ~ ~p'jt1j]- (W, T) ,T EC }. (31) 

Proposition 3 The subdifferential of G* at (Y, W) is the set of couples (X, T) such that 
T = (tij) is the n x n matrix defined by 

and 

~(dij(X) + tij) 
lij 
Uij 

if 
if 
if 

lij :S ~(dij(X) + tij) :S Uij, (i,j) E S, 
~(dij(X) + tij) < lij, (i.'j! E S, 
2 (dij (X) + tij) > Uij, (z,J) E S, 

( B + ~eeT) X = Y, 

where B = (bij ) is the n x n matrix given by (27). 

Proof. See Subsection 6.6 (Appendix). 

(32) 

(33) 

According to Propositions 2 and 3 and (58) we can now provide the description of the 
DCA applied to (15) or more exactly, the DCA for solving (16). 

4.3 Description of the DCA for solving (16) 

Algorithm 1 (DCA applied to (16)). 
The primal sequence {(X(k) , T(k))} with X(k) E A~ is generated as follows: 
Let E > 0, and XeD) E A~ \ {O}, T(D) E C be given. 
For k = 0,1, ... until 

set T(k+l) = (tlJ+1)) as follows, according to (32) 

t(k+1) = { 
iJ 

~(dij(X(k)) + dJ)) 
lij 

if 

if 

if 

(34) 

(35) 
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t (k+l) - 0 fi (..) d S ij - or ~,J 'F (36) 

and solve the following nonsingular linear system to obtain X(k+1) 

(B + ~eeT)X = ~(B + C(X(k), T(k)))X(k) 
n 2 

(37) 

where B = (bij) is the n x n matrix defined by 

b .. - -Pij ., { 
ifi...J.J· 

~J - - E~=l,k,ei bik if i = j, 

and C(X, T) = (Cij(X, T)) is the n x n matrix valued function given by 

. '(X T) _ {-PijtijSij(X) if i =I j, 
CiJ ,- ",n 'f . . - L.Jk=l,k,ei Cik I ~ = J, 

with 
S. '(X) = { 1/(IIXT - XJII) if Xi =I. Xj and (i,j) E S, 

ZJ 0 otherWIse. 

Remark 3 (i) According to Proposition 1, if (34) occurs then F(X(k), T = (tij)) = 0, with 
tij = IIXi(k)T - X?)T II . 
(ii) To solve the linear system with positive definite constant matrix (37) one can use only 
one Cholesky factorization. So Algorithm 1 requires only matrix-vector products and one 
Cholesky factorizattion. 

As indicated above, one of interesting features of the DCA is the nice effect of a good 
starting point. This property motivates us to investigate a technique for computing a "good" 
starting point X(O) in Algorithm 1, taking into account the specific structure of the general 
distance geometry problem (16). 

4.4 Finding a good starting point for Algorithm 1. 

It has been pointed out, in the introduction, that we will use a method based on DCA and 
the standard procedure of completing the set of constraints due to Crippen ([9], [13]). 

First, with the help of the triangle inequality, we complete the set of dissimilarities by 
either deducing dissimilarities from the given bounds or imposing additional dissimilarities 
(see procedures C1 and C2 below). We then solve the Euclidean MDS problem (EMDS) 
given below where all pairwise dissimilarities Oij are known, and take its solution as X(O). 

(EMDS) min {a(X) := ~ (lixT - XJII- Oij)2: X E Mn,p(lR) } . 

The idea of this technique comes from two facts: 

• There exits an efficient algorithm in d.c. optimization approach [2], [36] for solving the 
EMDS problem when all pairwise disimilarities are known. This algorithm is very 
simple, it is explicit form which requires only matrix-vector products, and works very 
well in practice. 
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• In the general case where only a small subset of bound constraints are known one can 
approximate a solution to (GEDP) by considering the resulting EMDS problem in 
which all pairwise disimilarities are extrapolated from given constraints. 

The algorithm that we use for solving (EMDS) has been studied in [2], [36]. Many 
versions of DCA (with and without regularization techniques, and/or via the lagrangian 
duality in d.c. programming) to solve (EMDS) were presented in there. We give below the 
description of one of these algorithms. For all details about these methods, we refer the 
reader to [2], [36]. 

Algorithm 2: (DCA applied to (EMDS)). 
Let E > 0, and 0 f= X(O) E Al. \ {O} be given. 
For k = 0,1, ... until either IIX(k+l) - X(k)11 :::; E or 100(X(k)) - O"(X(k+l))1 :::; E take 

X(k+1) = .!.C(X(k))X(k), 
n 

where C(X) = (Cij(X)) is the n x n matrix given as 

with Sij(X) defined by 

ifif=j, 
if i = j, 

SiJo(X) = { 01/(IIXr - XIII) if Xi f= Xj and (i,j) E 5, 
otherwise. 

(38) 

This algorithm is not expensive because it requires only matrix-vector products. More­
over it provides often a global solution to (EMDS) ([2], [36]). 

To complete the matrix of dissimilarities (<lij) , as indicated in the introduction, we 
first consider that Uij = +00, lij = -00 for (i,j) rt. 5, and then use one of the following 
procedures: 

Procedure Cl (deducing dissimilarities) If (i,j) 1. 5, then 

Knowing two complete matrices (lij), (Uij), the dissimilarity matrix (<lij) is taken as 

~ lij + Uij c 11" {1 } Uij = 2 lor a 2, J E , ... ,n. 

Procedure C2 (imposing dissimilarities) If (i, j) 1. 5, then 

Uij= min {Uij,Uik+Ukj}, lij= max {lij,llik-lkjl}. 
k=l, ... ,n k=l, ... ,n 

Knowing two complete matrices (lij) , (Uij), the dissimilarity matrix (<lij) is taken as 

~ lij + Uij [. 11" { } 
Uij = 2 or a 2, J E 1, ... ,n. 

Finally, our two phase DCA for solving (16) can be summarized as follows: 
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4.5 The main algorithm GnCA for solving (16) 

Phase 1. Finding an initial point. 
Step 1. Determining the dissimilarity matrix (clij) by using either Procedure C1 or 

Procedure C2. 
Step 2. Solving Problem (EMDS) by Algorithm 2 to obtain the point denoted X. 

Phase 2. Solving the original problem (16) by Algorithm 1 from the point X(O) := X. 

5 Implementation and Computational Experiments 

We have implemented our algorithm in FORTRAN and run on a SGI Origin 2000 multi­
processor with IRIX system. We have tested our algorithm on the second model problems 
from More-Wu [23] where the molecule has n = s3 atoms located in the three-dimensional 
lattice 

{(il,i2,i3) : 0::; il < s,O::; i2 < s,O:::; i3 < s} 

for some integer s 2: 1. The set S is specified by (XT = (il,i2,i3)) 

S = {(i,j) : IIxT - xJ11 ::; JT} (39) 

with some integer r 2: 1. 
The aim of our computational experiments is to show that GDCA is an efficient approach 

to solve (16) with large dimension. We consider molecules containing up to 3375 atoms (then 
(16) has 10125 variables). 

We study the efficiency of GDCA on various bounds lij and Uij. For this reason, we used 
the same procedure from [25] to generate the given bounds: 

lij = (1 - IlxT - XJII)€, Uij = (1 + IlxT - XJII)€ (40) 

for some € E (0,1). We are then able to examine the behavior of the algorithm as € varies 
over (0,1). As in [25], we varied € over [0.04, 0.16]. 

On the other hand, the computational experiments allow studying the effect of the 
number of given bounds on the performance of our algorithm. We have tested the algorithm 
on different values of r that vary the cardinality of S. 

Finally, we are also interested in the influence of the starting point on the rate of 
convergence of Algorithm 1 (Experiment 2). 

We considered Pij = 1 for all i =1= j in (GEDP). 
For starting Algorithm 2, we first took a random point X in (0, s - 1) and then set 

X(O) = PA-L(X). We terminated this algorithm when 

In our computational results a matrix X* E M n ,3(IR) solves the general distance geometry 
problem (GEDP) if 

(41) 
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with some tolerance T. When n < 3375 we used the same tolerance considered in [25], that 
is T =0.01, and when n = 3375 we took T =0.02. Then the stopping criterion of Algorithm 
1 is 

(42) 

For solving the linear system (37) in Phase 2 we first decomposed the matrix 2(B + 
keeT) = RT R by the Cholesky factorization, and then at each iteration we solved two 
triangular linear systems RTU = (B + C(X(k), T(k)))X(k) and RX = U. 

In the tables presented below we indicate the following results: 

• to: CPU time for determining 8ij. 

• itl and timel: respectively, the number of iterations and CPU time, of Algorithm 2, 

• it2 and time2: respectively, the number of iterations and CPU time, of Phase 2 (Algo­
rithm 1) 

• ttotal: the total CPU time of the main algorithm GDCA, 

• data: the number of given distances, i.e. (1/2)ISI, where lSI is the cardinality of S. 

Note that in the complete bound matrices, i.e., S = N x N, we have data = n(n -1). 

All CPU times were computed in seconds. 

5.1 Experiment 1 

In the first experiment we study the influence of the number of given constraints (when r 
varies) and of the length of bounds (when E varies) on the performance of Algorithm GDCA. 
For completing the dissimilarity matrix in Phase 1, we used Procedure C1. 

Table 1 gives the computing results (in detail) of the two phase algorithm GDCA to 
solve 36 problems (8 varies from 3 to 15 while r = 1, r = 2, and r = 8). To generate the 
bound constraints we took E = 0.04 in (40). 

The curves in Figure 1 show the behavior of GDCA (the total time in seconds) when 
the length of bounds varies. We consider three cases where E = 0.04, E = 0.08, and E = 0.16. 
To generate S we took r = 1 in (39). 

In Figure 2 we present the behavior of GDCA (the total time in seconds) when the 
number of given constraints varies. We consider three cases where r = 1, r = 2, and r = 8. 

There the bound constraints are defined with E = 0.08 in (40). 
In these figures, the size n of the test problems varies on [216,3375] (8 varies from 6 to 

15). 

5.2 Experiment 2 

In this experiment we study the efficiency of Algorithm GDCA with two different procedures 
for completing the dissimilarity matrix in Phase 1. In other words, we study the effect of 
the starting point on the performance of Algorithm 1 applied to (16). For generating the 
bound constraints we took E = 0.16. 



D. C. PROGRAMMING FOR LARGE-SCALE MOLECULAR OPTIMIZATION 323 

n r data to iter1 time1 iter2 time2 ttotal 
27 1 54 0.000 54 0.025 5 0.001 0.026 

2 126 0.000 307 0.120 10 0.003 0.124 
s 347 0.000 75 0.029 0 0.000 0.030 

64 1 144 0.006 60 0.021 7 0.007 0.146 
2 360 0.006 125 0.274 10 0.012 0.293 
s 1880 0.001 89 0.197 97 0.250 0.448 

125 1 300 0.050 91 0.773 14 0.042 0.866 
2 780 0.496 123 1.045 7 0.029 1.123 
s 7192 0.007 102 0.865 170 1.707 2.580 

216 1 540 0.265 67 1.782 19 0.167 2.214 
2 1440 0.261 78 2.081 7 0.087 2.429 
s 21672 0.033 84 2.217 243 7.763 10.012 

343 1 882 1.364 98 7.060 19 0.590 9.014 
2 2394 1.369 83 5.965 9 0.343 7.677 
s 53799 0.254 108 7.727 406 37.127 45.108 

512 1 1344 6.288 77 14.560 18 1.696 22.545 
2 3696 6.321 77 14.542 11 1.213 22.076 
s 119692 1.062 92 17.112 550 133.238 151.413 

729 1 1944 21.568 77 34.721 23 6.180 62.469 
2 5400 21.520 88 40.089 13 4.020 65.628 
s 243858 3.182 97 43.506 777 462.851 509.539 

1000 1 2700 61.444 70 65.703 33 19.939 147.086 
2 7560 61.653 87 82.269 14 10.559 154.481 
s 456872 8.975 90 83.950 750 928.538 1021.464 

1331 1 3630 200.538 77 172.612 41 70.598 443.749 
2 10230 198.051 83 185.684 15 29.840 413.575 
s 809763 25.768 109 213.182 846 2227.612 2466.562 

1728 1 4752 445.023 73 279.023 51 149.920 873.966 
2 13464 446.334 81 308.554 17 59.954 814.843 
s 1359216 65.929 95 361.217 1157 5900.815 6327.962 

2197 1 6084 1135.899 79 559.327 62 363.544 2058.771 
2 17316 1106.973 100 707.987 17 122.642 1937.603 

2744 1 7644 2478.885 83 1071.762 74 890.792 4441.439 
2 21840 2430.332 99 1268.619 18 274.561 3973.511 

3375 1 9450 5305.042 68 1440.196 16 666.760 7412.002 
2 27090 5306.743 83 1759.097 22 674.270 7740.112 

Table 1: The performance of Algorithm GDCA with E = 0.04. 
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Figure 1: The behavior of GDCA with different lengths of bounds: E = 0.04 (solid), E = 0.08 
(dotted), E = 0.16 (dashed) 
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r = 2 (dotted), r = s (dashed) 
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Figure 3: CPU time of GDCA-Cl (solid) and GDCA-C2 (dashed) in case r = 1 

We denote by GDCA-C1 (resp. GDCA-C2) Algorithm GDCA that uses Procedure C1 
(resp. C2) in Phase 1. Table 2 gives the computing results of GDCA-C1 and GDCA-C2 to 
solve 38 problems (s varies from 3 to 15). 

Figure 3 and Figure 4 show, respectively, the total time of GDCA-C1 and GDCA-C2 in 
the cases where r = 1 and r = s (s varies from 6 to 15)). 

5.3 Comments 

The most important fact is that in all experiments Algorithm GDCA gives a global solu­
tion to (GEDP). Moreover, since the basic DCA is efficient, GDCA can solve large-scale 
problems in a reasonable time (the maximum running time of GDCA-C2 is about 2 hours 
for a problem with 10125 variables). 

About the influence of the length of bounds (when E varies), from Experiment 1 (com­
putational results are not all presented here) in which Procedure C1 is used for determining 
the dissimilarity matrix in Phase 1 we note that 

• In the cases r = 1 and/or r = 2, the more E increases (i.e., the more the length of 
bounds increases), the faster GDCA is (except for the cases where n = 1331, n = i728 
with r = 2 for which GDCA is the most expensive when E = 0.08) . 

• In the case r = s, GDCA is the most efficient when E = 0.16, and it is the most 
expensive when E = 0.08. The ratio of CPU time between these cases goes up to 2. 

The influence of the number of given bounds (when r varies) on the behavior of Algorithm 
GDCA depends upon the procedure for constructing the dissimilarity matrix in Phase 1. If 
we use Procedure C1 for determining, then 
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n r GDCA-Cl GDCA-C2 
iter1 iter2 to ttotal iterl iter2 to ttotal 

27 1 53 0 0.000 0.021 62 1 0.000 . 0.025 
2 133 2 0.000 0.053 116 1 0.000 0.046 
s 75 0 0.000 0.029 74 0 0.000 0.029 

64 1 59 1 0.007 0.138 72 0 0.006 0.164 
2 95 11 0.006 0.202 104 15 0.005 0.205 
s 94 0 0.001 0.207 86 0 0.001 0.193 

125 1 101 1 0.051 0.919 70 0 0.043 0.639 
2 100 5 0.050 0.907 86 17 0.042 0.836 
s 97 1 0.007 0.849 99 0 0.006 0.854 

216 1 68 1 0.265 2.122 64 1 0.221 1.978 
2 70 7 0.261 2.228 91 3 0.218 2.720 
s 88 1 0.033 2.426 84 1 0.026 2.356 

343 1 99 1 1.382 8.663 67 1 1.138 6.126 
2 80 10 1.376 7.621 80 15 1.148 7.438 
s 76 2 0.256 6.015 113 1 0.213 8.653 

512 1 76 1 6.252 21.061 69 1 5.329 18.985 
2 80 11 6.321 22.852 93 8 5.362 24.175 
s 87 229 1.060 72.868 81 1 0.862 17.094 

729 1 75 1 21.861 57.510 68 1 19.247 51.863 
2 85 13 22.005 65.592 87 11 19.290 62.848 
s 95 287 3.184 216.226 97 1 2.705 49.044 

1000 1 75 1 62.373 136.584 69 1 55.388 124.417 
2 86 14 62.121 153.497 87 16 55.652 150.106 
s 100 734 8.966 1007.941 96 1 7.990 103.298 

1331 1 79 7 201.153 394.176 79 8 185.121 378.658 
2 80 16 199.261 407.705 81 19 185.157 400.933 
s 106 1189 26.066 3349.828 107 2 25.744 278.941 

1728 1 75 9 450.351 772.104 72 12 418.289 738.542 
2 79 18 446.618 808.542 81 17 415.923 781.178 
s > 7000 90 2 60.292 424.232 

2197 1 84 6 1090.061 1750.941 87 4 1040.691 1702.609 
2 90 19 1099.075 1860.344 94 19 1038.127 1830.544 
s > 7000 108 3 147.398 961.255 

2744 1 81 21 2432.432 3777.915 86 16 2312.027 3667.723 
2 92 26 2472.011 4032.231 96 20 2384.731 3974.735 
s > 7000 109 134 330.175 4223.827 

3375 1 79 6 5319.071 7253.235 74 11 5056.181 6972.817 
2 81 11 5305.273 7362.221 84 13 5132.266 7298.032 

Table 2: Compare two procedures for completing the dissimilarity matrix, E = 0.16. 
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Figure 4: CPU time of GDCA-C1 (solid) and GDCA-C2 (dashed) in case 'I' = S 

• When E = 0.08 and/or E = 0.16 the more 'I' increases (Le., the more the number of 
given distances increases), the more expensive GDCA is (except for the cases where 
n = 27 and n = 343) . 

• When E = 0.04 (Table 1) the last property remains true in the case n:::; 1000 (except 
for the case n = 343). When n > 1000 and n = 343 GDCA is the most efficient with 
'I' = 2, and it is always the most expensive with 'I' = s. 

In contrast with the results in Experiment 1, if we use Procedure C2 for determining 
the dissimilarity matrix (Experiment 2), then GDCA is the most efficient when 'I' = s (it 
solves the problem of 1728 variables in 424 seconds), and it is the most expensive when 
'I' = 2 (except the case n = 343) . 

We also observe that the rate of convergence of the DCA in Phase 1 (Algorihm 2) does 
not seem to depend on data. Algorithm 2 converges after at most 125 iterations (except 
the case 'I' = 2, n = 27). In contrast, the DCA in Phase 2 (Algorithm 1) is quite sensitive 
to data. On the other hand, although the sequence {X(k)} in Algorithm 1 is not in explicit 
form, the cost of one iteration of this algorithm (that contains the cost of the computation of 
matrices C(X(k), T(k)), T(k+l) and th~ cost of the solution of two triangular linear systems) 
is not more expensive than the cost of one iteration of Algorithm 2. This shows that 
Algorithm 1 exploits well sparsity of S (in the determination of matrices C(X(k) , T(k ) ), 
T(k+1), and the product C(X(k),T(k))X(k)). 

Moreover, from Experiment 1, we observe that when the number of given bounds is 
small ('I' = 1 and 'I' = 2) Phase 1 is much more expensive than Phase 2 (the cost of Phase 1 
occupies up to 96.4% ofthe total cost when n ~ 1728). However this phase is indispensable 
for GDCA to obtain a global solution of (GEDP) in these cases. On the contrary, when the 
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number of given bounds is large (r = s), the cost of Phase 2 is the most important. But 
the last property is no more true in Experiment 2 where Phase 2 is inexpensive. 

Finally, from the second experiment we see that Algorithm 1 is very sensitive to the 
choice of the starting point, or in other words, it depends on the procedure for determining 
the dissimilarity matrix in Phase 1. In fact, when r = s, the ratio of CPU time of GDCA 
with two different procedures C1 and C2 goes up to 17. However, when r = 1 and r = 2 
the difference is much less significant: in general, GDCA with Procedure C2 is faster than 
GDCA with Procedure C1. 

5.4 Concluding Remarks 

We have proposed a two phase DCA (called GDCA) for solving the general distance geome­
try problem under a new formulation as a d.c. program. The first phase consists of applying 
DCA to a complete EMDS problem, the full dissimilarity matrix of which is generated by 
the triangle bound estimating technique. The second one is the application of DCA to the 
general distance geometry problem (under the new form of a d.c. program) with an initial 
point given by Phase 1. Our preliminary computational results suggest that our method is 
successful in locating the large configurations satisfying given bound-constraints. The DCA 
actually requires matrix-vector products and only one Cholesky factorization, and allows 
exploiting sparsity in the large-scale setting. Algorithm GDCA can then be used in the 
large-scale molecular optimization from the general distance geometry problem. 

We wish to find less expensive procedures for computing an acceptable initial point 
(Phase 1) to improve the efficiency of GDCA and to expand our testing to distance data 
generated from NMR experiments. We plan to address these issues in future work. 

Acknowledgments The authors are grateful to the referees for their helpful comments and 
suggestions which have improved the presentation of the revised paper. 

6 Appendix 

We summarize in the Appendix the main results on local and global optimality conditions 
in d.c. programming and convergence theorem of DCA for general d.c. programs. For 
more details, see [34], [35] and references therein). We also report herein proofs of results 
concerning subdifferential calculations of the functions Hand G*. 

6.1 Optimality conditions in d.c. programming 

Let P and V denote the solution sets of problems (P de) and (Dde), respectively, and let 
PI = {x* E E: oh(x*) C og(x*)}, VI = {yO E F : og*(y*) C oh*(y*)}. 
We state first the following fundamental result on d.c. programming which constitute 

the basis of DCA presented in Subsection 3.1. 

Theorem 2 ([2J, [34]) (i) U{oh(x): x E P} eVe domh*, 
The first inclusion becomes equality if g* is subdifJerentiable in V (in particular if V C 

ri(domg*) or if g* is subdifJerentiable in domh*). In this case V C (domog* n domoh*). 
(ii) If x* is a local minimum of g - h, then x* E Pl. 
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(iii) Let x* be a critical point of 9 - hand y* E 8g(x*) n 8h(x*). Let U be a neighbourhood 
of x* such that (U n dom g) c dom 8h. If for any x E Un dom 9 there is y E 8h(x) such 
that h*(y) - g*(y) ~ h*(y*) - g*(y*) then x* is a local minimum of 9 - h. More precisely, 

g(x) - hex) ~ g(x*) - h(x*), Vx E un dom g. 

(iv) Let x* E dom 8h be a local minimum of 9 - h and let y* E 8h(x*) (i.e., 8h(x*) is 
nonempty and x* admits a neighbourhood U such that g(x) - hex) ~ g(x*) - h(x*), Vx E 
un dom g.) If 

y* E int (dom g*): and 8g*(y*) C U, (43) 

then y* is a local minimum of h* - g* ((43) holds if g* is differentiable at y*). 

6.2 The complete DCA for general d.c. programs 

In the description of DCA given in Section 3, xk+l (resp. yk) is arbitrarily chosen in 
8g*(yk) (resp. 8h(xk). Since they are candidates to primal and dual solutions respectively, 
it is natural to impose the following choice 

Xk+l E argmin{g(x) - hex): x E 8g*(yk)} (44) 

and 
yk E argmin{h*(y) - g*(y) : y E 8h(xk)} (45) 

Problems (44) and (45) are equivalent to convex maximization problems (46) and (47) 
respectively 

Xk+l E arg min{(x, yk) - h(x) : x E 8g* (yk)} 

yk E argmin{(xk , y) - g*(y) : y E 8h(xk)} 

(46) 

(47) 

The resulting DCA is called complete DCA. It allows approximating a couple (x', yO). It 
can be viewed as a sort of decomposition approach of the primal and dual problems (P dc), 
(Ddc)' From a practical point of view, although problems (44) and (45) are simpler than 
(Pdc ), (Ddc) (we work in 8h(xkH ) and 8g*(yk) with convex maximization problems), they 
remain nonconvex programs and thus are still hard to solve. In practice, except the cases 
where the convex maximization problems (46) and (47) are easy to solve, one generally uses 
the former DCA (presented in Subsection 3.1), which is also called the simplified DCA. 

6.3 Convergence of the DCA for general d.c. programs 

Let Pi and pi, (i = 1,2) be real nonnegative numbers such that 0 ~ Pi < p(li) (resp. 
o ~ pi < pUt)) where Pi = 0 (resp. pi = 0) if p(fi) = 0 (resp. pun = 0) and Pi (resp. 
pi) may take the value p(li) (resp. pUt)) if it is attained in (17). We next set h = 9 and 
h=h. 
Also let dxk := xkH _ xk and dyk := yk+l _ yk. 

The basic convergence theorem of DCA for general d.c. programming will be stated 
below. Its proof is very technical and long ([2], [35]) and is omitted here. Main outlines of 
a like proof can be found in [35], and [34] which deals with the DCA for solving the trust 
region problem. 
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Theorem 3 Suppose that the sequences {xk} and {yk} are defined by the DCA. Then we 
have 

(i) (g - h)(xk+l) ~ (h* - g*)(yk) - max{p; Ildxkl1 2, P; Ildykl12} ~ (g - h)(xk ) 

_ max{PI ; P211dxk112, ~i Ildyk-1112 + P; Ildxkl12, ~i IIdyk-1112 + ~21IdykI12}. 

The equality (g-h)(xk+l) = (g-h)(xk) holds if and only ifxk E og*(yk), yk E oh(xk+l) and 
(PI + P2)dxk = pidyk-I = P2 dyk = O. In this case 
• (g - h) (xk+l) = (h* - g*)(yk) and xk,Xk+1 are the critical points of 9 - h satisfying 
yk E (og(xk) n oh(xk)) and yk E (og(xk+l) n oh(xk+l)), 
• yk is a critical point of h* - g* satisfying [xk, xk+l] C ((og* (yk) n oh* (yk)), 
• xk+1 = xk if p(g) + p(h) > 0, yk = yk-I if p(g*) > 0 and yk = yk+1 if p(h*) > o. 

(ii) Similarly, for the dual problem we have 

(h* - g*)(yk+l) ~ (g _ h)(xk+l) _ max{~llldxk+l112, ~i IIdykl12} ~ (h* _ g*)(yk) 

_max{~llldxk+1112 + ~ Ildxkl1 2, ~i IIdykl12 + ~21IdxkI12, pi; P21IdykI12}. 

The equality (h* - g*)(yk+l) = (h* - gO) (yk) holds if and only if xk+1 E og* (yk+l), yk E 

oh(xk+l ) and (pi + p2)dyk = P2dxk = PIdxk+l = O. In this case 
• (h * - g*) (yk+l) = (g - h) (xk+l) and yk, yk+ I are the critical points of h * - g* satisfying 
xk+1 E (og* (yk) n oh*(yk)) and xk+1 E (og* (yk+l) n oh* (yk+I)), 
• xk+1 is a critical point of 9 - h satisfying [yk, yk+l] C ((og(xk+l) n Oh(xk+1 )), 
• yk+1 = yk if p(g*) + p(h*) > 0, xk+1 = xk if p(h) > 0 and xk+1 = xk+2 if p(g) > O. 

(iii) If a is finite, then 

• the decreasing sequences {(g - h) (xk)} and {(h* - g*)(yk)} converge to the same limit 
13::::: a, i.e., 1imk--++oo(g - h)(xk) = limk_++oo(h* _ g*)(yk) = 13. 

• If p(g) + p(h) > 0 (resp. p(g*) + p(h*) > 0), then the series {llxi+1 - xi 11 2 } (resp. 
{llyi+1 - yi112}) converges. More precisely we have in this case 

(iv) If a is finite and the sequences {xk} and {yk} are bounded, then for every limit 
point x OO of {xk} (resp. yOO of {yk}) there exists a limit point yOO of {yk} (resp. x OO of 
{xk}) such that 

• (XOO,yOO) E [og*(yOO)nohOO(yOO)] x [og(x*)noh(x*)] and (g-h)(x OO ) = (h*_g*)(yOO) = (3, 

• limk_Hoo{g(xk) + g*(yk)} = limk_-++oo(xk,yk). 
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Comments on Theorem 3. 
(i) Properties (i) and (ii) prove that the DCA is a descent method for both primal 

and dual programs. DCA provides critical points for (P de) and (Ddc) after finitely many 
operations if there is no strict decrease of the primal (or dual) objective function. 

(ii) If C and D are convex sets such that {xk} C C and {yk} C D then Theorem 3 
remains valid if we replace p(h) by p(J;, C) and pUt) by pUt, D) for i = 1,2. By this way 
we may improve the results in the theorem. 

(iii) In (ii) of Theorem 3, the convergence ofthe whole sequence {xk} (resp. {yk}) can 
be ensured under the following conditions ( [26], [29]): 

• {xk} is bounded; 
• The set of limit points of {xk} is finite; 
• limk-HOO Ilxk+l - xkll = O. 
(iv) In general, the qualities (robustness, stability, rate of convergence and globality 

of sought solutions) of the DCA depend upon the d.c. decomposition of the function f. 
Theorem 3 shows how strong convexity of d.c. components in primal and dual problems 
can influence on the DCA. To make the d.c. components (of the primal objective function 
f = 9 - h) strongly convex we usually apply the following process 

In this case the d.c. components in the dual problem will be differentiable. 
In the same way, inf-convolution of 9 and h with ~II .11 2 will make the d.c. components (in 
dual problem) strongly convex and the d.c. components of the primal objective function 
differentiable. For a detailed study of regularization techniques in d.c. programming, see 
[2], [33], [35]. 

(v) The only difference between the simplified DCA and the complete DCA lies on the 
choice of yk in 8h(xk) and xk+l in 8g* (y(k)). The convergence result of the complete DCA is 
thus improved: in Theorem 3, the nonemptiness of a subdifferential intersection is replaced 
by a sub differential inclusion ([2], [33], [35]). In other words, the complete DCA permits 
to obtain a couple of elements (x*, yO) E PI X D I. In general, DCA converges to a local 
solution, however we observed from our numerous experiments that DCA converges quite 
often to a glogal one (see e.g. [2] - [6], [34] - [36]). 

(vi) It has been proved in [2], [3], [35] that the DCA is finite for polyhedral d.c. pro­
gramming which is a d.c. program where either f or 9 is a polyhedral convex function. 

6.4 Well-definiteness of the DCA Applied to General D.C. Programs. 

The DCA is well defined if one can construct two sequences {xk} and {yk} as above from 
an arbitrary initial point xO E dom g. We have Xk+l E 8g*(yk) and yk E 8h(xk ) : Vk :2: o. 
So {xk} C range 8g* = dom 8g and {yk} C range 8h = dom 8h*. Then it is clear that 

Lemma 2 Sequences {xk}, {yk} in the DCA are well defined if and only if 

dom8g C dom8h, domoh* C dom8g*. 
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Since for () E fo(E), we have ([37]) 

ri(dom g) C dom EJg C dom g 

we can say, under the essential assumption (18), that DCA is in general well defined. 

6.5 The proof of Proposition 2 

Since 
'Pij(T) = tij = (T,Eij)Mn,nCJR)' 

with Eij = eie'.f (ei E IRn is the unit vector with value one in the ith component and zero 
otherwise), 'Pij is differentiable on Mn,n(IR), and "V'Pij(T) = Eij . Hence EJH(X, T) contains 
the couples (Y, W) defined by 

(Y, W) = ~ L: PiAj (X) + 'Pij (T)) (Y (i, j), Eij), 
t<J 

with Y(i,j) E EJdij(X), i.e. 

Y = ~ L:PiAj(X)Y(i,j) + ~ L:Pij'Pij(T)Y(i,j) , 
t<J t<J 

and 

Hence W = (Wij) is defined by 

w oo _ {~Pij(dij(X)+tij) if (i,j) E S, 
tJ - 0 if (i,j) 1-S. 

For determining Y, we first compute Z := L,i<j Pijdij (X)Y (i, j). By using the row-representatic 
of Mn,p (IR), dij can be expressed as : 

dij = 11·11 0 ¢ij : (IRP)n ---+ IRP ---+ IR, X I---t ¢ij(X) = xT - XJ I---t IlxT - Xn, 

we have ([17], [37]) 

Hence 
Y(i,j) E EJdij(X) {9 Y(i,j) = ¢&y, y E EJ(II·II)(XT - Xf), 

which implies 

Y(i,j)[ = 0 if k 1- {i, j} and Y(i,j)f = -Y(i,j)'.f E EJ(II·II)(XT - Xf). (48) 

Then Y(i,j) can be chosen as 

(49) 
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And so 

Zk := LPijdij(X)Y(i,j)k = LPikdik(X)Y(i, k)k + LPkjdkj(X)Y(k,jh 
i<j i<k j>k 

= LPik(Xk - Xi) + LPjk(Xk - Xj) = [tPik] Xk - tPikXi' 
i<k j>k i=l i=l 

It follows that 
Z = LPijdij(X)Y(i,j) = BX, 

i<j 

where B = (bij) is the n x n matrix given by 

b .. - -Pij -r { 
ifi-'-J' 

I, - - I:~=l,k#i bik if i = j. 

By the same way, we get 

LPijipij(T)Y(i,j) = C(X, T)X, 
i<j 

where C(X, T) = (Cij(X, T)) is the n x n matrix valued function given by 

with 
s' '(X) = { l/(IIXr - XliI) if Xi =1= Xj and (i,j) E S, 

13 0 otherwise. 

Finally, we have 
1 

Y = '2(B + C(X, T))X. 0 

(50) 

(51) 

(52) 

We are now proving that the sequence {y(k)} defined by (25) is contained in the subspace 
A1-. According to (52) it suffices to prove that the ranges ofB and C(X,T) , for a given couple 
(X, T), are contained in A 1-• 

Proposition 4 (1) Let B be the matrix defined by (27). Then 

(i) B is positive semidefinite, V1](X) = BX and 1](X) = !(X,BX). 

(ii) Furthermore if the weight matrix P is irreducible, then 

A = 1]-1(0) = {X E Mn,p(IR) : BX = O}, (53) 

rank B = n - 1 and A1- = {Y = BX : X E Mn,p(IR)} = {Y = B+ X : X E 
Mn,p(IR)}. 
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(2) Let T = (tij) be a given matrix in the set C given by (14). Then the function ~T 
defined on Mn,p(lR) by 

~T(X) := LPijtijdij(X) 
i<j 

(54) 

is a seminorm such that C(X, T)X E a~T(X) whose kernel contains the subspace A and 

~T(X) = (X, C(X, T)X), VX E Mn,p(lR). (55) 

Furthermore, for every X E Mn,p(lR), the symmetric matrix C(X, T) is positive semidefinite 
and its range is contained in the subspace A.L. 

Proof. (i) The positive semidefiniteness of B comes from [44]. According to the preceding 
computation of Z and the relations (48), (49) and (50), the function 7] is differentiable, and 

\l7](X) = LPij dij(X)8dij(X) = BX. 
i<j 

Hence from Euler's relation follows 7](X) = ~ (X, BX). 
(ii) The first equality of (53) is immediate from Lemma 1. If BX = 0, then 7](X) = 

~(X,BX) = 0, so {X E Mn,p(lR) : BX = O} C 7]-1(0). Conversely, if 7](X) = 0, then 
(X, BX) = 0, i.e., BX = 0 because B is semidefinite positive matrix. Hence the second 
equality of (53) holds. 
Denote by E the symmetric matrix having P diagonal blocks and each block is B. Obviously, 
N(E).L = Im(E), and for X, Y E Mn,p(lR) one has, using the column-identification (12) 

EX = 0 {:} BXk = 0, k = 1, ... ,p {:} BX = 0, 

y = EX {:} y k = BXk, k = 1, ... ,p {:} Y = BX. 

It follows that 

{Y = BX: X E Mn,p(lR)} = {X E Mn,p(lR) : BX = O}.L. 

(56) 

(57) 

As for rank B, we have rank B :S n - 1 because Be = 0 with e E lRn being the vector of 
ones. On the other hand if rank B < n - 1, then there exists u tf. lRe such that Bu = o. 
Let X = uvT with v E lRP \{O} . Clearly BX = 0, i.e., X E A in virtue of (53). It implies 
u E lRe since the rows of X are all identical. This contradiction proves that rank B = n - l. 

(2) It is clear that the function ~T is a seminorm on Mn,p(lR) whose kernel contains the 
subspace A. Like the matrix B, the positive semidefiniteness of the matrix C(X, T), for every 
X E Mn,p(lR), comes from [44]. The preceding computations in Subsection 4.1 leading to 
formulations (51) and (28) show that, for a given matrix T = (tij) E C, C(X, T)X E a~T(X) 
for every X E Mn,p(lR). The extended Euler's relation (54) for positively homogeneous 
convex functions is then immediate. Finally since C(X, T)e = 0, according to Lemma 1, 
the range of C(X, T) is contained in the subspace A.L. 0 

Remark 4 Under the assumptions (a1),(a2) and (a3) of Section 2, one can prove, as in 
Lemma 1, that A.L is exactly the range of C(X, T). 
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6.6 The Proof of Proposition 3 

It is easy to see that the solutions of (31) can be explicitly determined. Indeed, by definition 
of W = (Wij) we have 

((T)-(W,T) 

The following result allows computing explicit solutions to (31). 

Lemma 3 Let M be a subset of {1, ... , m}. Let Ui, bi , di and.h be real numbers such that 
Ui :::; bi and d; > a for i E M. Then the solution set of the following convex program in lRm 

min{ ~ L diU; - L liUi : ai :::; ui :S bi, : i E M} 
iEM iEM 

is {u: ui = iii if diai:S 1i:S dibi, ai if 1i:S diai, and bi if Ii 2: dibi }. 

Proof. Since the objective function is separable in its variables Ui, i E M and the constraint 
set is a box, a vector v = (Vl' ... , vm ) is a solution to the preceding problem if and ony if, for 
each i E M, Vi is a solution to the following one-dimensional convex quadratic optimization 
problem 

i.e. 

Vi = ~ Ii if diai :S fi :S dibi , ai if 1i:S diai , and bi if fi 2: dibi. 
di 

The proof then is complete. D 

According to Lemma 3 the solution set of Problem (31) is determined by: 
T* = (tij) is a solution to this problem if and only if tij is arbitrary for (i, j) 1:- Sand 

if 
if 
if 

lij:S ~(dij(X) +tij):S Uij, (i,j) E 5, 
l(dij(X) +tij) < lij, (i.,j) E 5, 
2(dij(X) +tij) > Uij, (~,J) E 5. 

Only the components tlJ+l) with (i,j) E 5 actually intervene in Problem (15), so we set 

T(k+l) = (t~7+1)) as follows: 

t~7+1) = a for (i,j) 1:- 5 and t~7+1) = tij for (i,j) E 5. (58) 

It remains to solve (30). Clearly X* is a solution of (30) if and only if Y E OT/(X*). So, 
according to Proposition 4, 

Y=BX*. 

Hence, solving (30) amounts to computing the pseudo-inverse of B denoted B+. The 
next result permits to compute B+: 
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Lemma 4 Let A be an n x n symmetrix matrix and a E lRn, a f= 0 such that Aa = O. Then 
A + ~aaT is nonsingular if and only if rank A = n - 1. 
In this case for every y E lRn there exists x E 1m A satisfying Ax = PIm AY and 

1 T aT y _ . + _ 1 T -lIT 
(A+ IIal12aa )(x+ lIal12a) -y ~.e.,A - (A+ Ilal12aa) - ~aa . 

Proof. If (A + naJr-aaT ) is nonsingular, then lm( A + nalr'aaT ) = lRn. Thus 

ImA +lm CI:112aaT) = lRn = ImA +N(A). 

This implies N(A) = 1m (naJr-aaT ) = IRa. Thus rank A = n-l. 
Conversely, if rank A = n -1, then N(A) = IRa. Let Ix E lRn such that 

1 T. 1 T 
(A + lIal12 aa )x = 0, I.e., Ax = -llal12 aa x. 

This implies Ax = 0 and aT x = O. Hence x = 0 and we can deduce that N(A + nalr'aaT ) = 

{O}, i.e., A + nalr'aaT is nonsingular. In this case the projection on N(A) = lRa is given by 

PN(A) = (1/llaI1 2 )aaT and 
1 T 

Plm A = 1- IIal12 aa (59) 

Let y be an arbitrary vector in lRn. Since Prm A (y) belongs to 1m A, there exists x E lRn 

such that Ax = Prm A (y). The decomposition lRn = 1m A + N(A) insures the existence 
of x E 1m A, Xl E N(A) such that x = x + Xl and Ax = Ax = Prm A (y). Observing 
Aa = 0, aT x = 0 (since x E 1m A) we have from (59): 

1 T uT Y 1 T aT y aT y 
(A + IIal1 2aa )(x + Ilal1 2a) = Ax + lIal1 2aa IIall2a = Plm AY + IIul12a = y. (60) 

This implies 
1 T -1 aTy 

x = (A + IIal1 2 aa) y - IIall2 a. 

Therefore 
+ _ 1 T _lIT 

A - (A + IIal1 2 aa) - IIal12 aa. 0 (61) 

The matrix B satisfies the assumptions of Lemma 4, then using (61) we have, for Y E 

Mn,p(lR), 

That implies, for Y E A.i, 

( 1 )-1 
X=B+Y= B+-;;,eeT Y, (62) 

i.e., 
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