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Preface

Survey sampling is fundamentally an applied field. Even though there have
been many theoretical advances in sampling in the last 40 or so years, the the-
ory would be pointless in isolation. The reason to develop the theory was to
solve real-world problems. Although the mathematics behind the procedures
may seem, to many, to be impenetrable, you do not have to be a professional
mathematician to successfully use the techniques that have been developed.
Our goal in this book is to put an array of tools at the fingertips of practi-
tioners by explaining approaches long used by survey statisticians, illustrating
how existing software can be used to solve survey problems and developing
some specialized software where needed. We hope this book serves at least
three audiences:

(1) Students seeking a more in-depth understanding of applied sampling
either through a second semester-long course or by way of a supplemen-
tary reference

(2) Survey statisticians searching for practical guidance on how to apply
concepts learned in theoretical or applied sampling courses

(3) Social scientists and other survey practitioners who desire insight into the
statistical thinking and steps taken to design, select, and weight random
survey samples

Some basic knowledge of random sampling methods (e.g., single- and
multistage random sampling, the difference between with- and without-
replacement sampling, base weights calculated as the inverse of the sample
inclusion probabilities, concepts behind sampling error, and hypothesis test-
ing) is required. The more familiar these terms and techniques are, the easier
it will be for the reader to follow. We first address the student perspective.

A familiar complaint that students have after finishing a class in applied
sampling or in sampling theory is: “I still don’t really understand how to
design a sample.” Students learn a lot of isolated tools or techniques but do
not have the ability to put them all together to design a sample from start to
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finish. One of the main goals of this book is to give students (and practition-
ers) a taste of what is involved in designing single- and multistage samples
in the real world. This includes devising a sampling plan from sometimes
incomplete information, deciding on a sample size given a specified budget
and estimated response rates, creating strata from a choice of variables, allo-
cating the sample to the strata given a set of constraints and requirements
for detectable differences, and determining sample sizes to use at different
stages in a multistage sample. When appropriate, general rules of thumb will
be given to assist in completing the task.

Students will find that a course taught from this book will be a combina-
tion of hands-on applications and general review of the theory and methods
behind different approaches to sampling and weighting. Detailed examples
will enable the completion of exercises at the end of the chapters. Several
small, but realistic projects are included in several chapters. We recommend
that students complete these by working together in teams to give a taste of
how projects are carried out in survey organizations.

For survey statisticians, the book is meant to give some practical experi-
ence in applying the theoretical ideas learned in previous courses in balance
with the experience already gained by working in the field. Consequently, the
emphasis here is on learning how to employ the methods rather than on learn-
ing all the details of the theory behind them. Nonetheless, we do not view
this as just a high-level cookbook. Enough of the theoretical assumptions are
reviewed so that a reader can apply the methods intelligently. Additional ref-
erences are provided for those wishing more detail or those needing a refresher.
Several survey data sets are used to illustrate how to design samples, to make
estimates from complex surveys for use in optimizing the sample allocation,
and to calculate weights. These data sets are available through a host web
site discussed below and in the R package PracTools so that the reader
may replicate the examples or perform further analyses.

This book will also serve as a useful reference for other professionals
engaged in the conduct of sample surveys. The book is organized into four
parts. The first three parts—Designing Single-Stage Sample Surveys, Multi-
stage Designs, and Survey Weights and Analyses—begin with a description
of a realistic survey project. General tools and some specific examples in the
intermediate chapters of the part help to address the interim tasks required
to complete the project. With these chapters, it will become apparent that
the process toward a solution to a sample design, a weighting methodology,
or an analysis plan takes time and input from all members of the project
team. Each part of the book concludes with a chapter containing a solution
to the project. Note that we say “a solution” instead of “the solution” since
survey sampling can be approached in many artful but correct ways.

The book contains a discussion of many standard themes covered in other
sources but from a slightly different perspective as noted above. We also cover
several interesting topics that either are not included or are dealt with in a
limited way in other texts. These areas include:
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• Sample size computations for multistage designs
• Power calculations as related to surveys
• Mathematical programming for sample allocation in a multi-criteria opti-

mization setting
• Nuts and bolts of area probability sampling
• Multiphase designs
• Quality control of survey operations
• Statistical software for survey sampling and estimation

Multiphase designs and quality control procedures comprise the final part of
the book—Other Topics. Unlike the other areas listed above, aspects related
to statistical software are used throughout the chapters to demonstrate vari-
ous techniques.

Experience with a variety of statistical software packages is essential these
days to being a good statistician. The systems that we emphasize are:

• R R© (R Core Team 2012; Crawley 2007)
• SAS R©1

• Microsoft Excel R©2 and its add-on Solver R©3

• Stata R©4

• SUDAAN R©5

There are many other options currently available, but we must limit our scope.
Other software is likely to be developed in the near term, so we encourage
survey practitioners to keep their eyes open.

R, a free implementation of the S language, receives by far the most atten-
tion in this book. We assume some knowledge of R and have included basic
information plus references in Appendix C for those less familiar. The book
and the associated R package, PracTools, contain a number of special-
ized functions for sample size and other calculations and provide a nice
complement to the base package downloaded from the main R web site,
www.r-project.org. The package PracTools also includes data sets used
in the book. In addition to PracTools, the data sets and the R functions
developed for the book are available individually through the book’s web
site hosted by the Joint Program in Survey Methodology (JPSM) located at
www.jpsm.org, from the Faculty page. Unless otherwise specified, any R func-
tion referred to in the text is located in the PracTools package.

Despite the length of this book, we have not covered everything that a
practitioner should know. An obvious omission is what to do about missing
data. There are whole books on that subject that some readers may find

1 www.sas.com.
2 office.microsoft.com.
3 www.solver.com.
4 stata.com.
5 www.rti.org/sudaan.

www.r-project.org
www.jpsm.org
www.sas.com
office.microsoft.com
www.solver.com
stata.com
www.rti.org/sudaan
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useful. Another topic is dual or multiple frame sampling. Dual frames can be
especially useful when sampling rare populations if a list of units likely to be
in the rare group can be found. The list can supplement a frame that gives
more nearly complete coverage of the group but requires extensive screening
to reach member of the rare group.

At this writing, we have collectively been in survey research for more years
than we care to count (or divulge). This field has provided interesting puzzles
to solve, new perspectives on the substantive research within various stud-
ies, and an ever growing network of enthusiastic collaborators of all flavors.
Regardless from which of the three perspectives you approach this book, we
hope that you find the material presented here to be enlightening or even
empowering as your career advances. Now let the fun begin . . .

Ann Arbor, MI Richard Valliant
Washington, DC Jill A. Dever
College Park, MD Frauke Kreuter

October 2012
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Chapter 1

An Overview of Sample Design
and Weighting

This is a practical book. Many techniques used by survey practitioners are not
covered by standard textbooks but are necessary to do a professional job when
designing samples and preparing data for analyses. In this book, we present
a collection of methods that we have found most useful in our own practical
work. Since computer software is essential in applying the techniques, example
code is given throughout.

We assume that most readers will be familiar with the various factors that
affect basic survey design decisions. For those we recommend skipping the
next section and reading through the chapter guide (Sect. 1.2) instead. For
all others, Sect. 1.1 will provide a very brief background on where sample
design and weighting fits into the large task of designing a survey. Some
terminology and associated notation is defined here that will come in handy
throughout the book. The glossary in Appendix A is a more complete list of
the notation used throughout the book. Some topics, like multistage sampling,
require fairly elaborate (and difficult to remember) notation. The Notation
Glossary will be a useful reference for most readers.

1.1 Background and Terminology

Choosing a sample design for a survey requires consideration of a number of
factors. Among them are (1) specifying the objective(s) of the study; (2) trans-
lating a subject-matter problem into a survey problem; (3) specifying the
target population, units of analysis, key study variables, auxiliary variables
(i.e., covariates related to study variables and for which population statistics
may be available), and population parameters to be estimated; (4) determin-
ing what sampling frame(s) are available for selecting units; and (5) select-
ing an appropriate method of data collection. Based on these considerations,

R. Valliant et al., Practical Tools for Designing and Weighting
Survey Samples, Statistics for Social and Behavioral Sciences 51,
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2 1 An Overview of Sample Design and Weighting

(6) a sample can be designed and selected. Across all these steps trade-off
decisions are to be made as a function of budget and time constraints for
completing the work.

Introductory books such as Survey Methodology (Groves et al. 2004) or
Introduction to Survey Quality (Biemer and Lyberg 2003) cover these issues
nicely and are strongly recommended as supplements to the material pre-
sented in this book. A primary focus here is the sixth step and thus we will
only briefly comment on the other five to the extent that they are necessary
to understand our discussion of sample design, selection, and weighting.

(1) The study objectives may be stated very generally, in which case it is
the responsibility of the survey researcher to help the sponsor (i.e., client) to
specify some measurable goals. Although it seems obvious that no one would
undertake data collection without some well-planned intentions, this is often
not the case. Part of the craft of survey design is to translate a subject-matter
problem into a survey problem. This may entail turning vague ideas like the
following into specific measurements: “measure the attitudes of the employ-
ees of a company”; “determine how healthy a particular demographic group
is, such as persons with a household income below the poverty line”; “decide
how well a local school system is serving its students.” Some objectives are
very broad and very difficult to operationalize. For example, measuring price
changes in all sectors of a nation’s economy is a goal of most Western gov-
ernments. Consumer, producer, and import/export price indices are usually
the vehicles for doing this. Economic theory for a cost of living index (COLI)
is formulated at the level of a single consumer. On the other hand, a price
index is meant to apply to a large group of consumers. The translation of
the subject-matter problem into a survey problem requires deciding which
of some alternative price indices best approximates the COLI. The study
objective will affect all other aspects of the survey design.

(2) No matter if one faces a simple or complex objective, to determine
what type of sample and associated sample size are adequate to achieve the
objective, the theoretical concepts under study must be translated into con-
structs that can be measured through a survey, and the goals themselves
must be quantified in some way.

An example of an economic objective is to estimate the unemployment
rate. This is often done via a household survey like the Current Population
Survey (CPS)1 in the US or the Labour Force Survey (LFS)2 in Canada.
Measuring the unemployment rate requires defining constructs such as what
it means to be in the labor force, i.e., have a job or want a job, and what
it means to be employed, to be looking for a job if you do not already have
one, and whether doing unpaid work in a family business constitutes having a

1 http://www.census.gov/cps/.
2 http://www.statcan.gc.ca/.

http://www.census.gov/cps/
http://www.statcan.gc.ca/


1.1 Background and Terminology 3

job. Often compromises need to be made between concepts and specific items
that can be collected. For example, the following question is taken from the
US National Health Interview Survey (NHIS)3 survey instrument:

Have you EVER been told by a doctor or other health professional that you
had coronary heart disease?

Since a respondent’s understanding of his/her own health problems can be
faulty, the more valid method might be to ask a doctor directly whether
the respondent has heart disease. But, asking the respondent seems to be a
compromise intended to reduce costs.

Once the key measurements have been identified, statistical goals can be
set. The goals are usually stated in terms of measures of precision. Precision
estimates include standard errors (SEs) or relative standard errors, defined
as the SE of an estimator divided by the population parameter that is being
estimated. A relative standard error of an estimator is also called a coefficient
of variation (CV ). We use the term CV throughout the book. A precision tar-
get might be to estimate the proportion of adults with coronary heart disease
with a CV of 0.05, i.e., the standard error of the estimated proportion is 5%
of the proportion itself. These targets may be set for many different variables.

(3) Specifying a target population also requires some thought. A target
population is the set of units for which measurements can be obtained and
may differ from the (inferential) population for which scientific inferences are
actually desired. For instance, in doing a survey to measure the relationship
between smoking and health problems, health researchers are interested in
relationships that exist generally and not just in the particular year of data
collection. The analytic units (or units of observation) are the members of the
target population that are subjected to the survey measurements. Addition-
ally, the study may specify the analysis of units that have particular character-
istics, known as the eligibility criteria. For example, a survey of prenatal care
methods may include only females of age 18 to 50, and a study to estimate
rates of sickle-cell anemia in the US may only include African Americans.

(4) Rarely is there a one-to-one match between target populations and
sampling frames available to researchers. If a frame exists with contact infor-
mation such as home or email addresses, then it may be relatively quick and
cheap to select a sample and distribute hard-copy or electronic surveys. Such
frames usually exist for members of a professional association, employees of
a company, military personnel, and inhabitants of those Scandinavian coun-
tries with total population registries. Depending on the survey sponsor, these
frames may or may not be available for sampling. In the absence of readily
available sampling frames, area probability samples are often used. Those
take some time to design and select (unless an existing sample or address list
frame can be used).

3 http://www.cdc.gov/nchs/nhis.htm.

http://www.cdc.gov/nchs/nhis.htm
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At this writing, a fairly new sampling frame exists in the USA that is based
on the US Postal Service (USPS) Delivery Sequence File (DSF) (Iannacchione
et al. 2003; Iannacchione 2011; Link et al. 2008). The DSF is a computerized
file that contains nearly all delivery point addresses serviced by the USPS.
Some researchers use the DSF as a replacement for random digit dialed (RDD)
telephone surveys or as an adjunct to field listings collected in area samples
(see below). Commercial vendors of survey samples sell “enhanced” versions of
the DSF that, for many addresses, may include a landline telephone number,
a name associated with the address, Spanish surname indicator, estimated
age of the head of household, as well as some geocoded (i.e., latitude and
longitude) and census tract information. If accurate, these items can improve
the efficiency of a sample by allowing the targeting of different groups.

(5) One of the critical decisions that must be made and has a direct bear-
ing on sample design is the method of data collection. The method of data
collection is chosen by weighing factors such as budget, time schedule, type of
data collected, frame availability, feasibility of using the method with mem-
bers of the target population, and expected outcome rates (e.g., contact and
response rates) for different methods. Collection of blood specimens in addi-
tion to questionnaire responses might suggest an in-person interview with a
field interviewer accompanied by or also trained as a phlebotomist. A study
of high school students may, for example, include data collection through
the Web in a classroom setting. Collecting data through a self-administered
(hard-copy) questionnaire, however, would not be practical for an illiterate
population. Today many surveys consider the use of multiple modes to find
the right balance between cost, timeliness, and data quality.

If personal interviews are required or when no nationwide sampling frames
are available, clustered area sampling may be necessary. Clustering allows
interviewers to be recruited for a limited number of areas and helps control the
amount of travel required to do address listing or interviewing. Clustering of
a sample, as in multistage sampling, typically will lead to larger variances for
a given sample size compared to an unclustered sample. Two measures that
are simple, but extremely useful to express the effect of clustering on survey
estimates, are the design effect and the effective sample size introduced by
Kish (1965). We define them here and will use them repeatedly in the coming
chapters:

• Design effect (deff)—the ratio of the variance of an estimator under a
complex design to the variance that would have been obtained from a
simple random sample (srs) of the same number of units. Symbolically,

deff
(
θ̂
)
=

V(θ̂)
Vsrs(θ̂)

where θ̂ is an estimator of some parameter, V denotes

variance under whatever sample design is used (stratified simple random
sample, two-stage cluster sample, etc.), and Vsrs is the srs variance of
the srs estimator of the same parameter. Generally an srs selected with
replacement (srswr) is used for the denominator calculation. The sample
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size for Vsrs is the same as the sample size of units used in the numerator
estimate.

• Effective sample size (neff)—the number of units in the sample divided by
the deff. This is the sample size for an srswr that yields the same variance
for an estimate as the variance obtained from the sample design used to
collect the data.

As apparent from the definition, the deff is specific to a particular esti-
mator, like a mean, total, quantile, or something else. People often have
averages in mind when they use deff′s, but the idea can be applied more
generally. Usually, the variance in the denominator of a deff is for simple ran-
dom sampling with replacement, although without replacement could be used.
Which to use is mostly a matter of personal preference. However, since the
values of the with- and without-replacement variances can be quite different
when the sampling fraction is large, it is important to know which is used
in the denominator of any deff that you are supplied. The deff and neff are
especially handy when computing total sample sizes for clustered samples.
However, often good estimates of deff and neff can be hard to come by and
are likely to vary by survey item.

(6) With a method of data collection in mind and knowledge of the avail-
able sampling frames, the survey researcher next determines the appropriate
type of random sampling (mechanism) design. The general designs that we
consider in our text can be categorized as one of these three:

• Stratified single-stage designs—units of observation are selected directly
from a sampling frame, sometimes referred to as a list frame, containing
data such as contact or location information and stratification variables.

• Stratified multistage designs—units are selected from lists constructed
“on-site” for aggregate units from a previous design stage (e.g., actively
enrolled students within schools).

• Stratified multiphase designs—a primary sample of units is selected from
the designated frame (phase one), and samples of phase-one units are
selected in subsequent phases using information obtained on the units in
phase one (e.g., a study where a subsample of nonrespondents is recon-
tacted using a different mode of data collection, or a study of individuals
who are classified as having some condition based on tests administered in
a previous phase of the design).

Each of the three general designs above usually involves probability sam-
pling. Särndal et al. (1992, Sect. 1.3) give a formal definition of a probability
sample, which we paraphrase here. A probability sample from a particular
finite population is one that satisfies four requirements:

(i) A set of samples can be defined that are possible to obtain with the
sampling procedure.

(ii) Each possible sample s has a known probability of selection, p (s).
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(iii) Every element in the target population has a nonzero probability of
selection.

(iv) One set of sample elements is selected with the probability associated
with the set. Weights for sample elements can be computed that are
intended to project the sample to the target population.

However, a survey designer often loses control over which set of elements
actually provide data because of nonresponse and other sample losses. There
are also samples that are not probability samples, even initially. For example,
persons who volunteer to be part of an Internet survey panel do not constitute
a sample selected with known probabilities. Inferences from such samples may
be possible if the non-probability sample can be linked to the nonsample part
of the population via a model.

The decision on whether to use a single or multistage design is in part
a function of the available sampling frame. Two general types of sampling
frames are available for unit selection—direct and indirect. Sampling frames
containing a list of the units of observation are referred to as a direct list
frame. Single-stage designs are facilitated by these frames. Indirect frames,
however, allow initial access only to groups of units. With a multistage design,
units are selected from within the groups, often referred to as clusters. For
example, in a survey of households, a common practice is to first select a
sample of geographic areas, called primary sampling units (PSUs). Within the
sample PSUs, households may be selected from (i) lists compiled by research
personnel (called listers) who canvass the area (in a process known as counting
and listing) or (ii) lists maintained by organizations such as the USPS.

If no list of eligible units is available for a target population, some type of
screening process is necessary. Screening for households with children under
the age of three could be done by calling a sample of landline telephone num-
bers and administering screening questions to determine if the household is
eligible (i.e., contains at least one child less than three years of age). This
method is often used but suffers from several problems. One is the fact not
all eligible households have landline telephones and would thus be missed
through the screening process. Until recently, cell phones were usually not
included in most US telephone surveys. Another problem is associated with
the large number of phone numbers required to screen for a rare subpopu-
lation. An example of how onerous the screening process can be is provided
by the National Immunization Survey (NIS).4 The goal of the NIS is to esti-
mate the proportions of children 19–35 months old in the USA who have had
the recommended vaccinations for childhood diseases like diphtheria, pertus-
sis, poliovirus, measles, and hepatitis. In 2002, 2.06 million telephone numbers
were called. Of those, 1.02 million were successfully screened to determine
whether they had an age-eligible child. About 34,000 households were iden-
tified as having one or more in-scope children—an eligibility rate of 3.4%
among those households successfully screened (Smith et al. 2005).

4 http://www.cdc.gov/nis/.

http://www.cdc.gov/nis/
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Ideally, the sample frame covers the entire target population. A telephone
sample that only covers landlines clearly falls short of that goal, but there
are other more subtle reasons for coverage errors too. In principle, an area
sample that uses all of the land area in-scope of the survey should have 100%
coverage. However, this does not pan out in practice. Kostanich and Dippo
(2002, Chap.16) give some estimates of proportions of different demographic
groups that are covered by the CPS. In the 2002 CPS, young Black and
Hispanic males had coverage rates of 70–80%, using demographic projections
from the 2000 Decennial Census as reference points (U.S. Census Bureau
2002). The reasons for this undercoverage are speculative but may include the
possibility that some of these young people do not have permanent addresses
or that other household members do not want to divulge who lives at the
sample address (Tourangeau et al. 2012). In urban areas, it may also be
difficult to identify all the households due to peculiar apartment building
configurations, inability to gain entry to buildings with security protection,
or other reasons.

In the case of a commercial buildings survey, there is some ambiguity about
what constitutes a business, especially in small family-owned businesses, lead-
ing to uncertainty about whether a building is “commercial” or not. As a
result, listers may skip some buildings that should be in-scope based on the
survey definitions (Eckman and Kreuter 2011).

As is evident from the preceding discussion, many frames and the samples
selected from them will imperfectly cover their target populations. A frame
may contain ineligible units, and eligible units may not be reliably covered
by the frame or the sample. In some applications, the best sample design
practices will not correct these problems, but there are weighting techniques
that will reduce them. All of these issues are covered in later chapters, as
described in the next section.

1.2 Chapter Guide

The book is divided into four parts: I: Designing Single-Stage Sample Sur-
veys (Chaps. 2–7), II: Multistage Designs (Chaps. 8–11), III: Survey Weights
and Analyses (Chaps. 12–16), IV: Other Topics. Parts I–III begin with
descriptions of example projects similar to ones encountered in practice. After
introducing each project, we present the tools in the succeeding chapters for
accomplishing the work. The last chapter in Parts I–III (Chaps. 7, 11, and 16)
provides one way of meeting the goals of the example project. Something
that any reader should appreciate after working through these projects is
that solutions are not unique. There are likely to be many ways of designing
a sample and creating weights that will, at least approximately, achieve the
stated goals. This lack of uniqueness is one of many things that separate
the lifeless homework problems in a math book from real-world applications.
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Practitioners need to be comfortable with the solutions they propose. They
need to be able to defend decisions made along the way and to understand
the consequences that alternative design decisions would have. This book will
prepare you for such tasks.

Part I addresses techniques that are valuable in designing single-stage sam-
ples. Chapter 2 presents a straightforward project to design a personnel sur-
vey. The subsequent chapters concentrate on methods for determining the
sample size and allocating it among different groups in the population. Chap-
ter 3 presents a variety of ways of calculating a sample size to meet stated
precision goals for estimates for the full population. Chapter 4 covers vari-
ous methods of computing sample sizes based on power requirements. Using
power as a criterion for sample size calculation is more common in epidemi-
ological applications. Here the goal is to find a sample size that will detect
with high probability some prespecified difference in means, proportions, etc.,
between some subgroups or between groups at two different time periods.

Chapters 3 and 4 focus on sample size decisions made based on optimizing
precision or power for one single variable at a time. For surveys with a very
specific purpose, considering a single variable is realistic. However, many sur-
veys are multipurpose. Not one, but several key variables are collected across
a variety of subgroups in the population. For example, in health surveys,
questions are asked on a variety of diseases and differences between racial
or socioeconomic groups are of substantive interest. In such surveys analysts
may use data in ways that were not anticipated by the survey designers. In
fact, many large government-sponsored surveys amass an array of variables to
give analysts the freedom to explore relationships and build models. To meet
multiple goals and respect cost constraints, the methods in Chaps. 3 and 4
could be applied by trial and error in the hopes of finding an acceptable solu-
tion. A better approach is to use mathematical programming techniques that
allow optimization across multiple variables.

Chapter 5 therefore presents somemulticriteria programming methods that
can be used to solve these more complicated problems. Operations researchers
and management scientists have long used these algorithms, but they appear
to be less well known among survey designers. These algorithms allow more
realistic treatment of complicated allocation problems involving multiple
response variables and constraints on costs, precision, and sample sizes for
subgroups. Without these methods, sample allocation is a hit-or-miss propo-
sition that may be suboptimal in a number of ways. In decades past, special-
ized, expensive software had to be purchased to solve optimization problems.
However, software is now readily available to solve quite complicated alloca-
tion problems. Even under the best circumstance not every person, business,
or other unit sampled in a survey will respond in the end. As discussed in
Chap. 6, adjustments need to be made to the initial sample size to account
for these losses.

Some samples need to be clustered in order to efficiently collect data
and therefore require sample design decisions in multiple stages. This is the
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concern of Part II, which begins with a moderately complex project in Chap. 8
to design an area sample and allocate units to geographic clusters in such a
way that the size of the samples of persons is controlled for some important
demographic groups. Chapters 9 and 10 cover the design of samples of those
geographic clusters. The US National Health and Nutrition Examination Sur-
vey (NHANES; Center for Disease Control and Prevention 2009) is a good
example of a survey that could not be afforded unless the interviews were clus-
tered. Elaborate medical examinations are conducted on participants from
whom a series of measurements are taken: body measurements like height
and weight; bone density measured via body scans; dental health lung func-
tion using spirometric tests to name just a few. The equipment for performing
the tests is housed in trailers called Mobile Examination Centers, which are
trucked from one sample area to another. Moving the trailers around the
country and situating them with proper utility hookups in each location is
expensive. Consequently, a limited number of PSUs have to be sampled first.
Other surveys require sampling in multiple stages for a different reason, for
example, if target sample sizes are required for certain subgroups. These sub-
groups often have to be sampled at rates other than their proportion in the
population as a whole.

Part III discusses the computation of survey weights and their use in some
analyses. We begin with a project in Chap. 12 on calculating weights for a
personnel survey, like the one designed in Project 1 (see Chap. 2). Chapters 13
and 14 describe the steps for calculating base weights, making adjustments for
ineligible units, nonresponse, and other sample losses, and for using auxiliary
data to adjust for deficient frame coverage and to reduce variances. Some of
the important techniques for using auxiliary data are the general regression
estimator and calibration estimation. Since software is now available to do
the computations, these are within the reach of any practitioner.

Intelligent use of these weight calculation tools requires at least a gen-
eral understanding of when and why they work based on what they assume.
Chapter 13 sketches the rationale behind the nonresponse weight adjust-
ment methods. In particular, we cover the motivation behind cell adjustments
and response propensity adjustments. Adjustment cells can be formed based
on estimated propensities or regression trees. Understanding the methods
requires thinking about models for response. The chapter also describes how
use of auxiliary data can correct for frames that omit some units and how
structural models should be considered when deciding how to use auxiliary
data. We cover applications of calibration estimation, including poststratifica-
tion, raking, and general regression estimation in Chap. 14. Methods of weight
trimming using quadratic programming and other more ad hoc methods are
also dealt with in that chapter.

Chapter 15 covers the major approaches to variance estimation in
surveys—exact methods, linearization, and replication. Thinking about
variance estimation in advance is important to be sure that data files are
prepared in a way that permits variances to be legitimately estimated. To use
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linearization or exact estimators, for example, fields that identify strata and
PSUs must be included in the data file. The weighting procedures used in
many surveys are fairly elaborate and generate complex estimators. Under-
standing whether a given method reflects the complexity of weight creation
and what it omits, if anything, is important for analysts. There are a number
of software packages available that will estimate variances and standard
errors of survey estimates. We cover a few of these in Chap. 15.

Part IV covers two specialized topics—multiphase sampling and quality
control. If subgroups are to be sampled at different rates to yield target sam-
ple sizes and a reliable list of the units in these subgroups is not available
in advance of sampling, the technique of multiphase sampling can be used as
described in Chap. 17. A large initial sample is selected and group identity
determined for each unit through a screening process. Subsamples are then
selected from the groups at rates designed to yield the desired sample sizes.
Multiphase sampling can be combined with multistage sampling as a way
of controlling costs while achieving target sample sizes. Another commonly
used multiphase survey design involves the subsampling of phase-one nonre-
spondents for a phase-two contact, typically with a different mode of data
collection than used initially.

An essential part of good survey practice is controlling the quality of every-
thing that is done. Mistakes are inevitable, but procedures need to be devel-
oped to try and avoid them. Chapter 18 discusses some general quality control
measures that can be used at the planning and data processing stages of a sur-
vey. These things are done by every professional survey organization but are
seldom addressed in books on sampling. Quality control (QC) of statistical
operations goes beyond merely checking work to make sure it is done correctly.
It includes advance planning to ensure that all tasks needed to complete a
project are identified, that the order of tasks is listed and respected, and that
a proposed time schedule is feasible. Tracking the progress of data collection
over time is another important step. Chapter 18 summarizes various rates
that can be used, including contact, response, and balance on auxiliaries.

Documenting all tasks is important to record exactly what was done and
to be able to backtrack and redo some tasks if necessary. In small projects
the documentation may be brief, but in larger projects, detailed written spec-
ifications are needed to describe the steps in sampling, weighting, and other
statistical tasks. Having standard software routines to use for sampling and
weighting has huge QC advantages. The software may be written by the orga-
nization doing the surveys or it may be commercial off-the-shelf software. In
either case, the goal is to use debugged routines that include standard quality
checks.

Most of the code examples are written in the R language (R Core Team
2012), which is available for free. Additional materials are provided in the
Appendices. Appendix C contains a primer on the R programming language
and functions developed for chapter examples. Note that unless otherwise
specified any R function referred to in the text is located in the PracTools
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package. Data sets used in many of the examples are described in Appendix B;
small data sets are provided within these pages while larger files are available
through the book’s Web address. Appendix A is the glossary of the notation
used throughout the book. We recommend that you keep the glossary in mind
as you read individual chapters since the notation needed for some topics is
elaborate.

With that brief overview, you are ready to see what a real sample design
project looks like. The next chapter describes the requirements of a business
organization for a survey of its employees.



Part I

Designing Single-Stage Sample
Surveys



Chapter 2

Project 1: Design a Single-Stage
Personnel Survey

Our primary goal is to equip survey researchers with the tools needed to
design and weight survey samples. This chapter gives the first of several
projects that mirror some of the complexities found in applied work. The
three goals of this project are:

• Determine the allocation of a single-stage sample to strata in a multipur-
pose survey, accounting for specified precision targets for different esti-
mates and differing eligibility and response rates for subgroups.

• Examine how sensitive the precision of estimates is to incorrect assump-
tions about response rates.

• Write a technical report describing the sample design.

As you proceed through the following chapters in Part I of the book, we
suggest that you return to this chapter periodically, refresh your memory
about the aims of Project 1, and think about how the methods in Chaps. 3–6
can be used in the development of the sampling design. In this chapter we
outline the task that you should be able to solve after reading Part I.

2.1 Specifications for the Study

The Verkeer NetUltraValid (VNUV) International Corporation is preparing
to conduct Cycle 5 of its yearly work climate survey of employees in their
Survey Division. The climate survey assesses employee satisfaction in various
areas such as day-to-day work life, performance evaluations, and benefits. In
the first three cycles of the survey, the VNUV Senior Council attempted to
do a census of all employees, but many employees considered the survey to be
burdensome and a nuisance (despite their being in the survey business them-
selves). The response rates progressively declined over the first three cycles. In
the fourth cycle, the Senior Council decided to administer an intranet survey
only to a random sample of employees within the Survey Division. The aim

R. Valliant et al., Practical Tools for Designing and Weighting
Survey Samples, Statistics for Social and Behavioral Sciences 51,
DOI 10.1007/978-1-4614-6449-5 2, © Springer Science+Business Media New York 2013
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was to control the sampling so that continuing employees would not be asked
to respond to every survey. In Cycle 5, a more efficient sample is desired that
will improve estimates for certain groups of employees. The Senior Council
requires a report from your design team that specifies the total number of
employees to be selected, as well as their distribution by a set of character-
istics noted below. They wish the quality and precision of the estimates to
be better than the Cycle 4 survey. Note that this is the first survey in which
the Senior Council has sought direction from sampling statisticians on the
allocation of the sample.

Three business units are contained in the Survey Division: (i) the Survey
Research Unit (SR) houses both survey statisticians and survey methodol-
ogists; (ii) the Computing Research Unit (CR) contains programmers who
support analytic and data collection tasks; and (iii) Field Operations (FO)
is populated by data collection specialists. The Senior Council would like to
assess the climate within and across the units, as well as estimates by the
three major salary grades (A1–A3, R1–R5, and M1–M3) and by tenure (i.e.,
number of months employed) within the units. However, the climate survey
will only be administered to full- and part-time employees within these units.
Temporary employees and contractors are excluded from the survey.

The Senior Council has identified three questions from the survey instru-
ment that are most important to assessing the employee climate at VNUV.
They are interested in the percentages of employees answering either
“strongly agree” or “agree” to the following questions:

Q5.
Overall, I am satisfied with VNUV as an employer at the present time.

Q12.
There is a clear link between my job performance and my pay at VNUV.

Q15.
Overall, I think I am paid fairly compared with people in other organiza-
tions who hold jobs similar to mine.

Note that the response options will remain the same as in previous years,
namely, a five-level Likert scale: strongly agree, agree, neutral, disagree, and
strongly disagree. A sixth response option, don’t know/not applicable, is also
available.

Additionally, the Senior Council would like estimates of the average num-
ber of training classes attended by the employees in the past 12 months.
Relevant classes include lunchtime presentations, formal instructional classes
taught at VNUV, and semester-long courses taught at the local universities.

2.2 Questions Posed by the Design Team

After receiving the study specifications document from the Senior Council, a
design team is convened to discuss the steps required to complete the assigned
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task. At this initial meeting, the following information was determined from
the specifications:

• Data will be collected from employees through a self-administered intranet
(i.e., web site internal to the corporation) questionnaire.

• All full- and part-time employees in the three business units within the
Survey Division are eligible for the survey. Employees in other units within
VNUV, as well as temporary employees and contractors, are ineligible and
will be excluded from the sampling frame.

• The sample of participants will be randomly selected from a personnel list
of all study-eligible employees provided by the head of VNUV’s Human
Resources (HR) Department.

• A single-stage stratified sampling design is proposed for the survey because
(i) study participants can be selected directly from the complete HR
(list) sampling frame and (ii) estimates are required for certain groups
of employees within VNUV.

• The stratifying variables will include business unit (SR, CR, and FO),
salary grade (A1–A3, R1–R5, and M1–M3), and potentially a categorized
version of tenure.

• The analysis variables used to determine the allocation include three pro-
portions, corresponding to each of the identified survey questions, and
one quantitative variable. Estimates from the previous climate survey will
be calculated by the design team from the analysis data file maintained
by HR.

As is often the case when reviewing a sponsor’s specifications for a project,
there were a number of issues that needed clarification. Based on the initial
discussion, the design team submitted the following clarifying questions to
the Senior Council and received the responses noted below each:

1. Currently, HR defines tenure as the number of months of employment
at VNUV. Is there a grouping of tenure years that would be informative
to the analysis? For example, analysis of the previous climate survey
suggests that responses differ among employees with less than 5 years
of employment at VNUV in comparison to those with a longer tenure.
Response: Yes. Dichotomize tenure by less than 5 years and 5 years or
greater.

2. What is the budget for the climate survey and should we consider the
budget when deciding on the total sample size? Response: The budget
permits two staff members to be assigned part-time to process and ana-
lyze the data over a three-month period. This does not affect the sample
size. However, the council has decided that individual employees should
not be surveyed every cycle to reduce burden and attempt to get better
cooperation. Selecting a sample large enough to obtain 600 respondents
will permit the annual samples to be rotated among employees.
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3. We are interested in classifying a difference between two estimates as
being substantively meaningful to VNUV. Could you provide us with a
meaningful difference? Response: At least a five percentage point differ-
ence between any two sets of employee climate estimates is a meaningful
difference. A difference of 2 to 3 in the average number of training classes
is also of interest.

4. Should the proportion answering “strongly agree” or “agree” to the three
questions include or exclude the “don’t know/not applicable” response
category? Response: Exclude.

5. How precise should individual estimates be for this round of the sur-
vey? The quality of the data from prior versions of the climate survey
has been measured in terms of estimated coefficients of variation (CV ).
Response: The target CVs of overall estimates by business unit, by tenure
within business unit, and by salary grade within business unit are listed
in Table 2.1 below.

6. Are there additional requirements for the design, such as estimates by
gender and by number of dependents in addition to estimates by busi-
ness unit, business unit by salary grade, and business unit by tenure?
Response: No.

7. The VNUV Climate Survey Cycle 4 report does not detail the previ-
ous sampling design. The design team assumes that the Cycle 4 sample
was randomly drawn from an updated list of employees within certain
employee subgroups (i.e., a stratified simple random sample design). Is
this correct? If so, where might we locate the stratifying information?
Response: No strata were used in the last design. The previous employee
file was sorted by a random number and an equal probability, systematic
sample was selected.

8. Are the eligibility and response rates expected to be the same in Cycle 5
as they were in Cycle 4? Response: The eligibility rates should be about
the same, but we are not sure about the response rates. We would like to
understand how sensitive the CVs will be if the response rates turn out
to be lower than the ones in Cycle 4.

2.3 Preliminary Analyses

HR provided the team with two data files. The first file contained informa-
tion on all current VNUV employees such as employee ID, division, business
unit, tenure in months, part-time/full-time status, and temporary/permanent
employee status. The team eliminated all records for employees currently
known to be ineligible for the survey, created a dichotomized version of tenure,
and calculated population counts for the 18 design strata (Table 2.2).

The second file contained one record for each employee selected for the
previous climate survey. In addition to the survey status codes (ineligible,
eligible respondent, and eligible nonrespondent) and the survey responses,
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Table 2.1: Target coefficient of variation by reporting domain: VNUV climate survey
cycle 5, survey division.

Reporting domain Target CV a

Business unit 0.06

Unit × Salary grade 0.10

Unit × Tenure 0.10

a Coefficient of variation

Table 2.2: Current distribution of eligible employees by business unit, salary grade,
and tenure: VNUV climate survey cycle 5, survey division.

Business unit

Salary grade Tenure SR CR FO Total

A1–A3 Less than 5 years 30 118 230 378

5+ years 44 89 115 248

R1–R5 Less than 5 years 106 86 322 514

5+ years 253 73 136 462

M1–M3 Less than 5 years 77 12 48 137

5+ years 44 40 46 130

A1–A3 Total 74 207 345 626

R1–R5 Total 359 159 458 976

M1–M3 Total 121 52 94 267

Total Less than 5 years 213 216 600 1,029

5+ years 341 202 297 840

Total Total 554 418 897 1,869

this file included the characteristics that should be used to define sampling
strata in the new survey. This file, however, did not contain employee names
or other identifying information to maintain the confidentiality promised to
all survey participants. Sample members were classified as ineligible if, for
example, they had transferred to another business unit within VNUV or
retired after the sample was selected but before the survey was administered.
The team isolated the eligible Survey Division records, created the sampling
strata defined for the current climate survey design, and created the binary
analysis variables for Q5, Q12, and Q15 from the original five-category
questions (Table 2.3).

The information in Tables 2.4–2.6 was tabulated from the Survey Division
responses to the Cycle 4 survey. No survey weights were used because the
Cycle 4 sample employees were selected with equal probability and no weight
adjustments, e.g., for nonresponse, were made.
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Table 2.3: Documentation for recode of question responses to binary analysis vari-
able: VNUV climate survey cycle 4, survey division.

Question responses Binary analysis variable

1 = Strongly agree 1 = Strongly agrees or agrees

2 = Agree 1 = Strongly agrees or agrees

3 = Neutral 0 = Does not (strongly) agree

4 = Disagree 0 = Does not (strongly) agree

5 = Strongly disagree 0 = Does not (strongly) agree

6 = Don’t know/not applicable < missing category >

Table 2.4: Distribution of response status by business unit, salary grade, and tenure:
VNUV climate survey cycle 4, survey division.

Total Eligible

Business Salary sample Ineligiblea Total Resp. Nonresp.

unit grade Tenure n n pctb n n pctc n pct

SR A1–A3 Less than 5 years 10 0 0.0 10 9 88.9 1 11.1

5+ years 11 0 0.0 11 9 84.6 2 15.4

R1–R5 Less than 5 years 34 3 9.7 31 16 51.6 15 48.4

5+ years 71 1 1.3 70 55 78.7 15 21.3

M1–M3 Less than 5 years 23 0 0.0 23 21 91.3 2 8.7

5+ years 13 2 15.4 11 9 84.6 2 15.4

CR A1–A3 Less than 5 years 41 3 7.1 38 22 58.6 16 41.4

5+ years 20 0 0.0 20 10 50.0 10 50.0

R1–R5 Less than 5 years 28 0 0.0 28 14 50.0 14 50.0

5+ years 19 0 0.0 19 10 53.8 9 46.2

M1–M3 Less than 5 years 6 0 0.0 6 6 100.0 0 0.0

5+ years 9 1 11.1 8 7 88.9 1 11.1

FO A1–A3 Less than 5 years 85 26 30.3 59 23 39.4 36 60.6

5+ years 16 0 0.0 16 6 39.4 10 60.6

R1–R5 Less than 5 years 101 2 2.2 99 65 65.2 34 34.8

5+ years 34 1 2.6 33 24 71.8 9 28.2

M1–M3 Less than 5 years 14 0 0.0 14 14 100.0 0 0.0

5+ years 14 2 15.4 12 10 84.6 2 15.4

Total 549 41 7.5 508 330 65.0 178 35.0

a Ineligible sample members were those employees selected for the cycle 4 survey
who retired or left the company prior to data collection

b Unweighted percent of total sample within each design stratum (row)
c Unweighted percent of total eligible sample within each design stratum (row)



2.4 Documentation 21

Table 2.5: Estimates for four key questions by business unit, salary grade,
and tenure: VNUV climate survey cycle 4, survey division.

Proportion Avg number of

Business Salary (Strongly) agree training classes

unit grade Tenure Q5 Q12 Q15 Mean SEa

SR A1–A3 Less than 5 years 0.93 0.88 0.77 8.2 0.82

5+ years 0.75 0.71 0.62 12.4 1.24

R1–R5 Less than 5 years 0.84 0.80 0.69 22.3 2.23

5+ years 0.80 0.76 0.66 24.0 1.92

M1–M3 Less than 5 years 0.91 0.86 0.75 8.3 0.83

5+ years 0.95 0.90 0.79 3.6 0.36

CR A1–A3 Less than 5 years 0.99 0.94 0.92 7.2 0.87

5+ years 0.80 0.76 0.74 10.9 1.09

R1–R5 Less than 5 years 0.82 0.78 0.76 19.6 3.92

5+ years 0.90 0.86 0.84 21.1 2.11

M1–M3 Less than 5 years 0.97 0.92 0.90 7.3 0.73

5+ years 0.97 0.92 0.90 3.2 0.32

FO A1–A3 Less than 5 years 0.50 0.48 0.45 4.6 0.69

5+ years 0.52 0.49 0.47 6.9 1.04

R1–R5 Less than 5 years 0.75 0.71 0.68 12.5 1.87

5+ years 0.70 0.67 0.63 13.4 2.02

M1–M3 Less than 5 years 0.93 0.88 0.84 4.6 0.70

5+ years 0.94 0.89 0.85 2.0 0.30

a Standard error

2.4 Documentation

With the preliminary analysis complete, the design team began to draft the
sampling report to the Senior Council using the annotated outline below.
This outline will be used to write a formal report when the project is com-
pleted:

Title = VNUV Climate Survey Cycle 5 Sample Design Report

1. Executive summary

• Provide a brief overview of the survey including information related
to general study goals and year when annual survey was first imple-
mented.

• Describe the purpose of this Cycle 5 document.
• Provide a table of the sample size to be selected per business unit (i.e.,

respondent sample size inflated for ineligibility and nonresponse).
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Table 2.6: Estimates by business unit, salary grade, and tenure: VNUV
climate survey cycle 4, survey division.

Proportion Avg number of

Business Salary (Strongly) agree training classes

unit grade Tenure Q5 Q12 Q15 Mean SE

SR 0.84 0.80 0.69 18.1 0.98

CR 0.90 0.85 0.83 12.6 0.90

FO 0.67 0.63 0.60 8.9 0.60

SR A1–A3 0.82 0.78 0.68 10.7 0.65

R1–R5 0.81 0.77 0.67 23.5 2.26

M1–M3 0.92 0.88 0.76 6.6 0.30

CR A1–A3 0.91 0.86 0.85 8.8 0.46

R1–R5 0.86 0.81 0.80 20.3 5.45

M1–M3 0.97 0.92 0.90 4.1 0.09

FO A1–A3 0.51 0.48 0.46 5.4 0.33

R1–R5 0.74 0.70 0.66 12.8 2.09

M1–M3 0.93 0.89 0.84 3.4 0.15

SR Less than 5 years 0.88 0.83 0.73 15.3 1.33

5+ years 0.81 0.77 0.67 19.9 2.06

CR Less than 5 years 0.92 0.88 0.86 12.2 2.67

5+ years 0.87 0.83 0.81 13.1 0.82

FO Less than 5 years 0.67 0.64 0.60 8.8 1.08

5+ years 0.67 0.63 0.60 9.2 1.02

• Discuss the contents of the remaining section of the report.

2. Sample design

• Describe the target population for Cycle 5.
• Describe the sampling frame including the date and source database.
• Describe the type of sample and method of sample selection to be used.

3. Sample size and allocation

• Optimization requirements
– Optimization details including constraints and budget.
– Detail the minimum domain sizes and mechanics used to determine

the sizes.
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• Optimization results
– Results: minimum respondent sample size per stratum
– Marginal sample sizes for key reporting domains
– Estimated precision achieved by optimization results

• Inflation adjustments to allocation solution
– Nonresponse adjustments
– Adjustments for ineligible sample members

• Final sample allocation
– Marginal sample sizes for key reporting domains

• Sensitivity analysis
– Results from comparing deviations to allocation after introducing

changes to the optimization system

4. Appendix

• Sample size per strata (table), full sample and expected number of
respondents

• Other relevant detailed tables including preliminary analysis

2.5 Next Steps

The optimization problem and a proposed solution to the sampling design
task discussed in this chapter will be revealed in Chap. 7. The methods dis-
cussed in the interim chapters will provide you with the tools to solve the
allocation problem yourself. We will periodically revisit the VNUV design
team discussions prior to Chap. 7 to provide insight into the design team’s
decisions and procedures.



Chapter 3

Sample Design and Sample Size
for Single-Stage Surveys

Chapter 3 covers the problem of determining a sample size for single-stage
surveys with imposed constraints such as a desired level of precision. To deter-
mine a sample size, a particular type of statistic must be considered. Means,
totals, and proportions are emphasized in this chapter. We concentrate on
simple random samples selected without replacement in Sect. 3.1. Precision
targets can be set in terms of coefficients of variation or margins of error for
unstratified designs as discussed in Sect. 3.1.1. We cover stratified simple ran-
dom sampling in Sect. 3.1.2. Determining a sample size when sampling with
varying probabilities is somewhat more complicated because the without-
replacement variance formula is complex. A useful device for determining
a sample size when sampling with probability proportional to size (pps) is
to employ the design-based variance formula for with-replacement sampling,
as covered in Sect. 3.2.1. Although we mainly cover calculations based on
design-based variances, models are also especially useful when analyzing pps
sampling as discussed in Sect. 3.2.2.

The remainder of this chapter covers some more specialized topics, includ-
ing systematic, Poisson, and some other sampling methods in Sect. 3.3. Popu-
lation parameters are needed in sample size formulas; methods for estimating
them are covered in Sect. 3.4. Other important special cases are rare charac-
teristics and domain (subpopulation and subgroup) estimates discussed in
Sect. 3.5. The chapter concludes with some discussion of design effects and
software for sample selection in Sects. 3.6 and 3.7.

The methods discussed here are limited to analyses for estimates based on
a single y variable. Granted, this is extremely restrictive because most surveys
measure a number of variables and make many estimates for domains such as
the design strata. The more applicable problem of determining sample sizes
and allocations for a multipurpose survey will be studied in Chap. 5.

R. Valliant et al., Practical Tools for Designing and Weighting
Survey Samples, Statistics for Social and Behavioral Sciences 51,
DOI 10.1007/978-1-4614-6449-5 3, © Springer Science+Business Media New York 2013
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3.1 Determining a Sample Size for a Single-Stage Design

One of the most basic questions that a survey designer must face is, how
many? This is not easy to answer in a survey with multiple goals and esti-
mates. A sample size that is adequate to estimate the proportion of persons
who visited a doctor at least once last year may be much different from the
sample size needed to estimate the proportion of persons with some extremely
rare disorder like Addison’s disease. Neither of these sample sizes is likely to
be the same as that required to estimate the average salary per person.

This section discusses methods for estimating sample sizes for single-stage
designs with one goal specified on the level of precision for a key analysis vari-
able. Within the text, we consider several commonly used probability sam-
pling plans. Methods applied with this simple survey design are the basis for
understanding their application in more complex settings such as the project
included in Chap. 2. Later in Chap. 5 we cover mathematical programming,
which is the best tool for sample size calculation for complicated multi-goal
surveys. Sample size determination for area samples requires a sample size
calculation for each stage of the design and is discussed in Chap. 9.

Before getting into the details of the sample size calculations, a word about
terminology is needed:

• Mathematicians like to distinguish between an estimator, which is a ran-
dom quantity, and an estimate, its value in a particular sample. This dis-
tinction is of no importance for our purposes and we will use the terms
interchangeably.

• We will use the phrase population standard deviation to mean the square
root of a finite population variance. For example, the standard deviation of
an analysis variable Y is S =

√
S2 where the population variance, or unit

variance, is S2 =
∑N

i=1 (yi − ȳU )
2
/(N − 1) where ȳU =

∑N
i=1 yi /N is the

finite population mean and N is the number of elements in the population.
U denotes the universe (i.e., the population) of N units.

• The population (or unit) coefficient of variation of Y is CVU = S /ȳU. The
square of the population CV, CV 2

U = S2
/
ȳ2U , is called the population (or

unit) relvariance.
• The term standard error of an estimate, abbreviated as SE, means the

square root of the variance of the estimate. If θ̂ is an estimate of some

population value, θ, then its standard error is SE
(
θ̂
)
=

√
V
(
θ̂
)
, where

V is the variance computed with respect to a particular sample design.
Common usage is to say standard error as shorthand for standard error
of an estimate, although the former can be ambiguous unless everyone is

clear about which estimate is being discussed. The standard error,

√
V
(
θ̂
)
,

is a theoretical quantity that must be estimated from a sample. If we

estimate V
(
θ̂
)
by v

(
θ̂
)
, then the estimated standard error of the estimate



3.1 Determining a Sample Size for a Single-Stage Design 27

θ̂ is se
(
θ̂
)
=

√
v
(
θ̂
)
. Shorthand for this is to call

√
v
(
θ̂
)
the estimated

standard error.
• The coefficient of variation (CV) of an estimate θ̂ is defined as CV

(
θ̂
)
=√

V
(
θ̂
)
/θ , where θ = E

(
θ̂
)
, the design-based expected value of the

estimate θ̂, assuming that θ̂ is unbiased. This, too, must be estimated from

a sample by cv
(
θ̂
)

=

√
v
(
θ̂
)/

θ̂ , which is referred to as the estimated

coefficient of variation of the estimate θ̂ or sometimes as the estimated
relative standard error. Note that practitioners will often say “standard
error” when they mean “estimated standard error” and CV when they
mean “estimated CV.”

The CV is usually expressed as a percentage, i.e., 100× CV
(
θ̂
)
and is a

quantity that has a more intuitive interpretation than either the variance or
SE. The CV has no unit of measure. For example, if we estimate the number
of employees, both the SE and ȳU are in units of employees, which cancel
out in the CV. Because the CV is unitless, it can be used to compare the
relative precision of estimates for entirely different kinds of quantities, e.g.,
dollars of revenue and proportion of businesses having health plans that pay
for eyeglasses.

• An auxiliary variable is a covariate that is related to one or more of the
variables to be collected in the study. An auxiliary variable may be avail-
able for every unit in a sampling frame, in which case, it can be used
in designing an efficient sample. If the population total of an auxiliary is
available from some source outside the survey, the auxiliary variable can
be used in estimation. For estimation, having the value of one or more aux-
iliaries only for the sample cases is usually sufficient as long as population
totals are available.

Other terms will be defined in later chapters as needed.
Regardless of the naming convention, in this book, theoretical quantities

that are a function of population parameters are capitalized, e.g.,

√
V
(
θ̂
)
,

and the corresponding sample estimators are represented in lowercase, e.g.,√
v
(
θ̂
)
. A sample estimate of a population parameter θ is denoted with

“hat,” i.e., θ̂.
As long as all participants on a project understand the shorthand phrases

in the same way, there will be no confusion. But, you may find it useful
to occasionally verify that your understanding is the same as that of your
colleagues. In the remainder of this section, we will calculate sample sizes

using theoretical quantities like CV
(
θ̂
)
. However, bear in mind that precise
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sample estimates of various ingredients (like S and CVU ) typically will be
needed to evaluate the sample size formulas.

Criteria for Determining Sample Sizes

To determine a sample size, some criterion must be adopted for deciding how
big is big enough. This is a question of how precise you want an estimate to
be. We discuss several precision criteria that may be used in the sections that
follow:

• Standard error of an estimate—Setting a target SE requires a judgment
to be made about an acceptable level of SE. This can be difficult because
an SE has the same units as the analysis variable (e.g., persons, dollars,
milligrams of mercury).

• Coefficient of variation—CV s are more useful than SE’s because they have
no units of measure. Target values can be set without regard to the scale
of an analysis variable.

• Margin of error (MOE)—This is related to the width of a confidence inter-
val. MOE’s are useful because survey sponsors or analysts are often com-
fortable making statements like “I want to be able to say that the popula-
tion value is within 3% of the sample estimate.” For later use, we denote
the MOE as e.

Deciding which of these is the best criterion for a given survey is, to some
extent, arbitrary. A practitioner should develop the knack of explaining the
options to survey sponsors and guiding the sponsors toward choices that they
both understand and accept. As we will emphasize, a key consideration is the
budget. The sample size must be affordable; otherwise the survey cannot be
done.

3.1.1 Simple Random Sampling

First, take the simple case of a single variable y and a simple random sample
of units selected without replacement (srswor). Suppose we would like to
estimate the (population) mean of y using the estimated (sample) mean based
on a simple random sample of n units:

ȳs =
1

n

n∑
i=1

yi.

The theoretical population variance of the sample mean from an srswor
(design) is
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V (ȳs) =
(
1− n

N

) S2

n
(3.1)

=

(
1

n
− 1

N

)
S2

where N is the number of units in the target population on the sampling
frame and S2 =

∑N
i=1 (yi − ȳU )

2 /(N − 1) is the population unit variance,

with ȳU =
∑N

i=1 yi /N the mean of all units in the target population. The
term 1 − n /N is called the finite population correction (fpc) factor. The
variance in expression (3.1) is called a design variance or repeated sampling
variance, meaning that it measures the variability in ȳs calculated from differ-
ent possible samples of size n selected from the frame. In advance of sampling,
the design variance is generally considered to be the one to use in computing
a sample size. After a particular sample has been selected and data collected,
the variance computed under a reasonable model may be more appropriate
for inference from that particular sample (e.g., see Valliant et al. 2000). Since
we are concerned about the design at the planning stage, we will usually con-
sider design variances—in this case, ones calculated with respect to repeated
simple random sampling.

Sometimes it will be handy to write a sum over the set of sample units
as
∑

i∈s with s denoting the set of sample units and a sum over the whole
population as

∑
i∈U where U denotes the population, or universe, of all units.

To estimate the total of y from an srswor, use

t̂ = Nȳs , (3.2)

whose (design) variance is

V
(
t̂
)
= N2

(
1− n

N

) S2

n

= N

(
N

n
− 1

)
S2 .

To determine a sample size for an srswor, it does not matter whether we
think about estimating a mean or a total—the result will be the same. There
are situations, like domain estimation, to be covered later in this chapter
where the estimated total is not just the estimated mean times a constant.
In those cases, the variances of the two estimators are not as closely related
and computed sample sizes may be different.

The square of the coefficient of variation for ȳs and T̂ is

CV2 (ȳs) =

(
1

n
− 1

N

)
S2

ȳ2U
. (3.3)

We can set the squared CV or relvariance in Eq. (3.3) to some desired value,
say CV 2

0 (like 0.05), and solve for the required sample n:
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n =

S2

ȳ2
U

CV 2
0 + S2

Nȳ2
U

. (3.4)

The sample size is a function of the (population) unit relvariance. When
the population is large enough that the second term in the denominator is
negligible compared to the first, the sample size formula is approximately

n
.
=

S2
/
ȳ2U

CV 2
0

. (3.5)

The more variable y is, the larger the sample size must be to achieve a
specified CV target. Naturally, if the calculated n is more than the budget
can bear, the survey will have to be scaled back or abandoned if the results
would be unacceptably imprecise. Another way of writing Eq. (3.4) is

n =
n0

1 + n0

N

, (3.6)

where n0 =
S2/ȳ2

U

CV 2
0

, as in expression (3.5). The term n0 is also the required

sample size if a simple random sampling with-replacement (srswr) design was
used. Thus, n0 /N in Eq. (3.6) accounts for the proportion of the popula-
tion that is sampled. In two populations of different size but with the same
variance S2, Eq. (3.6) reflects the fact that the smaller size population will
require a smaller sample to achieve a given CV.

Notice that setting the CV to CV0 is equivalent to setting the desired
variance to V0 = CV 2

0 × ȳ2U . Multiplying the numerator and denominator of
expression (3.3) by ȳ2U gives the equivalent sample size formula,

n =
S2

V0 +
S2

N

.
=

S2

V0
. (3.7)

As noted earlier, expression (3.4) is likely to be the easier formula to use than
expression (3.7) because CV ’s are easier to understand than variances.

The R function, nCont, will compute a sample size using either CV0 or
V0 as input (see Appendix C for an R code introduction). The parameters
used by the function are shown below:

nCont(CV0=NULL, V0=NULL, S2=NULL, ybarU=NULL, N=Inf,
CVpop=NULL)

If CV0 is the desired target, then the unit CV, S /ȳU , or the population
mean and variance, ȳU and S2, must also be provided. If V0 is the constrained
value, then S2 must also be included in the function call. The default value
of N is infinity, but a user-specified value can also be used. This and all
subsequent functions discussed in the book are listed in Appendix C. The
functions can be used after loading the PracTools package.
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Example 3.1 (Sample size for a target CV). Suppose that we estimate from a
previous survey that the population CV of some variable is 2.0. If the popu-
lation is extremely large and CV0 (the target CV ) is set to 0.05, then the call
to the R function is nCont(CV0=0.05, CVpop=2). The resulting sample
size is 1,600. If the population size is N = 500, then nCont(CV0=0.05,
CVpop=2, N=500) results in a (rounded) sample size of 381. The fpc factor
has a substantial effect in the latter case. �

Setting CV0

To put the method described above into practice, a value for the target coef-
ficient of variation, CV0, must be set. To some extent, the value is arbitrary
although rules of thumb have been developed over the years. A CV of an esti-
mate of 50% would imply that a normal-approximation confidence interval
formed by adding and subtracting two standard errors of an estimate would
cover zero. Such an estimate obviously is highly imprecise. The US National
Center for Health Statistics flags any estimate it publishes that has a CV of
30% or more and labels it as “unreliable.”1 Often, an estimate with a CV of
10% or less is considered “reliable,” but the purposes to which the estimate
will be put must be considered.

Another way of setting precision would be to meet or beat the CV achieved
in a previous round of a survey, assuming that level of precision was satis-
factory. In that case, the same sample design and allocation could be used
again. Some values of CV s from government-sponsored surveys in the USA
are listed in Table 3.1. These obviously have quite a large range. CV s for
published estimates from a given survey will also vary considerably because
survey sponsors are usually anxious to publish estimates for many different
domains whose sample sizes can vary. Some of the estimates will be very
precise while others will not be.

In some instances, a precision target may be set by an administrative group.
For example, the Council of the European Union (1998) specifies that certain
types of labor force estimates have a CV of 8% or less. The EU also recom-
mends that member nations achieve certain effective sample sizes (Council
of the European Union 2003) for income and living conditions estimates. An
effective sample size, neff , was defined in Chap. 1 and is equal to the number
of analytic sample units divided by the design effect, deff, for an estimator.
The use of a deff or neff is a handy way of approximating required sample
sizes in multistage surveys, as we will see in Chaps. 9 and 10.

Example 3.2 (Finding a sample size for tax returns). The US Internal Rev-
enue Service (IRS) allows businesses, in some circumstances, to use sample
estimates on their tax returns instead of dollar values from a 100% enumer-
ation of all accounts. For example, a business may estimate the total value

1 www.cdc.gov/nchs/data/statnt/statnt24.pdf.

www.cdc.gov/nchs/data/statnt/statnt24.pdf
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Table 3.1: Coefficients of variation or standard errors of some published estimates
in US government-sponsored surveys.

Survey Estimate CV or standard
error (SE)

Current Population
Surveya

National unemployment rate of
6%

1.9% CV

Consumer Price Indexb National 1-month percentage
price change

0.04 SE in per-
centage points

National Health & Nutri-
tion Examination Survey
III (1988–1994)c

Estimated median blood lead
concentration (μg/dL) in US
women, 17–45 years of age

1.24% CV

2000 Survey of Reserve
Component Personneld

Percentage of Marine personnel
saying that serving the country
had a very great influence on
their decision to participate in
the National Guard/Reserve

3.22% CV

National Hospital Dis-
charge Survey 2005e

Total days of hospital care for
heart disease

21.3% CV

a Bureau of Labor Statistics (2006)
b Bureau of Labor Statistics (2009)
c Thayer and Diamond (2002)
d Deak et al. (2002, Table 28a.1)
e Center for Disease Control and Prevention (2005, Tables I, II)

of all capital assets that can be depreciated on a five-year schedule. The
estimate may come from a sample of stores, buildings, or other appropriate
units. In order to be allowed to use the point estimate from such a sample,
the taxpayer must demonstrate that the increment used to compute a one-
sided 95% confidence interval is no more than 10% of the point estimate.
That is, if a total is estimated and a normal-approximation confidence inter-

val is used, the requirement is that the MOE be e = 1.645×CV
(
T̂
)
≤ 0.10.

If this condition is met, T̂ can be used on the tax return; if not, either

T̂ − 1.645× SE
(
T̂
)
or T̂ + 1.645× SE

(
T̂
)
must be used, whichever is the

most disadvantageous to the taxpayer (Internal Revenue Service 2004, 2007).

Since CV (ȳs) = CV
(
T̂
)
under simple random sampling, the IRS bound is

equivalent to CV
(
T̂
)

≤ 0.10 /1.645. If the population CV is 1, the sam-

ple size that would meet the IRS requirement is 271, which is obtained via
nCont(CV0=0.10/1.645, CVpop=1). �

Example 3.3 (VNUV sample sizes). Revisiting the data gathered for the
VNUV Climate Survey (Project 1 in Chap. 2), the design team uses the
previous survey data to estimate the population CV ’s for the average num-
ber of classes per year taken by a VNUV employee in the Survey Research
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(SR) business unit. Since CV2 (ȳs) =
(
n−1 −N−1

)
CV 2

U where CV2 (ȳs)
is from the previous survey, the population (unit) CV within each stra-
tum can be computed as CV 2

U = CV2 (ȳs)
/(

n−1 −N−1
)
. Information for

the SR business unit, key to calculating the sample sizes, includes the
following:

Business Salary Eligible Previous Estimated average

unit grade employees sample size number of classes

Meana SEb CV

SR all 554 149 18.1 0.98 0.054

A1–A3 74 20 10.7 0.65 0.061

R1–R5 359 96 23.5 2.26 0.096

M1–M3 121 33 6.6 0.30 0.045

a Counts of employees shown in Table 2.2
b Estimated means and standard errors were obtained from a prior
survey and are shown in Table 2.6

The unit CV ’s estimated from the formula above for the three salary
grades are 0.319, 1.099, and 0.303 and is 0.771 for all grades combined. To
improve on the precision obtained from the prior round of the survey, the
design team evaluates the target CV for each of the four estimates above at
CV0 = 0.05. The code to determine the new sample sizes is shown below. R
comments (code that is not executed) are given after the pound sign (#) to
help in understanding each section of the program:

Nh <- c(74, 359, 121)
Npop <- sum(Nh)
nh.old <- c(20, 96, 33)
n.old <- sum(nh.old)
cv.old <- c(0.061, 0.096, 0.045)
cv.SR <- 0.054

# estimate unit CV from last survey
CVpoph <- cv.old/sqrt((1/nh.old - 1/Nh))
CVpop_ <- cv.SR/sqrt(1/n.old - 1/Npop)

# salary grade samples
nCont(CV0=0.05, CVpop = CVpoph, N=Nh)

# SR business unit sample
nCont(CV0=0.05, CVpop = CVpop_, N=Npop)

The results follow. Note that the decision to constrain the estimates within
salary grade, in addition to across all the salary grades within this business
unit, has cost implications. A total sample of 167 will meet the 0.05 CV
target for the full business unit. However, the sum of the required sample
sizes across the salary grades is approximately 261, indicating that over half
of the maximum (respondent) sample size set (n=500) would need to be
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allocated to these three strata (a likely problem toward finding a feasible
solution):

Business
unit

Salary
grade

Sample
size

SR all 166.3

A1–A3 26.3

R1–R5 205.9

M1–M3 28.2

Sum 260.4

�

Estimating Proportions

Many surveys estimate the proportion of units that have some characteristic.
Coding yi to one if unit i has the characteristic and zero if not (i.e., zero-one
indicator variable), the estimated proportion is also the sample mean,

ps =
∑
i∈s

yi /n .

In Project 1 (Chap. 2), the design team defined indicators for “agree” or
“disagree” responses to three survey questions. The unit relvariance is then
defined as

S2

ȳ2U
=

N

N − 1

qU
pU

.
=

qU
pU

,

where pU =
∑

i∈U yi /N and qU = 1− pU . The relvariance of ps is

CV2 (ps) =

(
1

n
− 1

N

)
N

N − 1

qU
pU

,

which is a special case of Eq. (3.3). The sample size that will achieve a target
CV of CV0 comes from specializing the expression in Eq. (3.4):

n =

N
N−1

qU
pU

CV 2
0 + 1

N−1
qU
pU

.
=

qU
pU

CV 2
0

(3.8)

The last approximation comes from again assuming that N, the size of the
target population, is large.

Based on Eq. (3.8), the sample size will be larger for rare characteristics
than for more prevalent ones. This coincides with the unit relvariance, qU /pU ,
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being larger for rare characteristics. Note that this, at first, seems to contra-
dict the counsel that, when computing a sample size for estimating a pro-
portion, you should assume that pU = 0.5 because this will lead to the most
conservative, i.e., largest, sample size (Cochran 1977, Sect. 4.4). However, that
advice is based on the assumption that a target value of V (ps) is set. In that
case, we can use the fact that V (ps) =

(
1
n − 1

N

)
N

N−1pUqU to find that the
sample size that will achieve a specified variance of V0 is

n =
N

N−1pUqU

V0 +
pUqU
N−1

(3.9)

.
=

pUqU
V0

.

Since pUqU is maximized at pU = 0.5, the largest sample size occurs when
pU = 0.5. You will explore the difference in setting a sample size based on a
CV and based on a standard error target in Exercises 3.1 and 3.2.

Whether the sample size should be computed via the formula given in
Eqs. (3.8) or (3.9) depends on the context. The same expression is not always
desirable. A CV target of, say, 0.05 is far harder to hit for a rare charac-
teristic than for a more prevalent one because the unit relvariance, qU /pU ,
depends inversely on the mean, pU—the smaller the value of pU , the bigger
the relvariance. Figure 3.1 graphs the approximate sample sizes from Eq. (3.8)
needed for CV s of 0.05 and 0.10 for pU ranging from 0.10 to 0.90. If pU = 0.10
and we want a CV of 0.05, the required sample size is 3,600. In contrast, if
pU = 0.50, the sample size is 400.

The R function, nProp, will compute the sample size using Eq. (3.8),
assuming that a target CV0 is set, or using Eq. (3.9), assuming a target vari-
ance, V0. In either case, a value of pU must be supplied. The parameters used
by the function are nProp(CV0=NULL, V0=NULL, pU=NULL, N=Inf).

Example 3.4 (Sample size for rare characteristic). Consider the case of a rare
characteristic in the population with pU = 0.01. If we require a CV of 0.05,
this means that the standard error of the proportion would be 0.0005. The
sample size needed for this level of precision is 39,600, which is far larger
than the budgets for many surveys could support (and larger than some
populations!). The call to the R function to calculate this sample size is
either nProp(V0=0.0005ˆ2, N=Inf, pU=0.01) or nProp(CV0=0.05,
N=Inf, pU=0.01).

On the other hand, it may be substantively interesting if we were able
to estimate the proportion plus or minus 1/2 of 1%. This would, at least,
confirm any suspicion that the proportion is quite small. If 1/2 of the 1% goal
is translated to mean that a 95% confidence interval should have a half-width
of 0.005, this means that
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Fig. 3.1: Approximate sample sizes from Eq. (3.8) required to achieve CV s of 0.05
and 0.10 for population proportions ranging from 0.10 to 0.90. The population size
is assumed to be large so that the finite population correction is one.

1.96

√
pU (1− pU )

n
= 0.005 ,

i.e., the standard error is about 0.0026. This, in turn, implies that the sam-
ple size needed to meet this goal is n = 1, 522—far less than 39,600. The
call to nProp to compute this is nProp(V0=(0.005/1.96)ˆ2, N=Inf,
pU=0.01).

The function nProp will also take a vector pU as input. For example, if
we want the sample sizes for pU in (0.01, 0.05, 0.10), the command is
nProp(CV0=0.05, N=Inf, pU=c(0.01, 0.05, 0.10)) with results,
n = 39,600, 7,600, and 3,600. �

Example 3.5 (Effect of the fpc). Returning again to Project 1 in Chap. 2, the
following estimated “strongly agree” proportions were calculated from the
previous climate survey for question 5 (Q5. Overall, I am satisfied with VNUV
as an employer at the present time) for employees in the Survey Research
unit:

The design team decides to initially constrain all the estimated propor-
tions with CV0 = 0.06. However, one member of the team recommends
the use of N=Inf with the nProp function citing from statistics class that
any population size greater than 30 is large. Others on the team disagree
but concede to run the sample size calculations both ways for compari-
son, e.g., nProp(CV0=0.06, N=Inf, pU=0.82) for salary grades A1–A3,
which gives n = 61, compared with nProp(CV0=0.06, N=68, pU=0.82),
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Business
unit

Salary
grade

Eligible
employeesa Q5b

Sample size

N = Inf N = Nh

SR A1–A3 74 0.82 61.0 33.7

R1–R5 359 0.81 65.2 55.3

M1–M3 121 0.92 24.2 20.3

Total 554 150.4 109.3

a Counts of employees shown in Table 2.2
b Estimated proportion of employees who strongly agree with
the statement in question 5

which yields n = 33. The results shown above highlight the need for specify-
ing the population size (if known) when calculating sample sizes unless the
population is extremely large. �

Setting a Margin of Error

The method just described is also equivalent to setting a tolerance for how
close an investigator would like the estimate to be to the population value.
In fact, many investigators prefer to think of setting tolerances rather than
CV s. If the tolerance (sometimes called the MOE ) is e and the goal is to be
within e of the population mean with probability 1− α, this translates to

Pr (|ȳs − ȳU | ≤ e) = 1− α . (3.10)

This is equivalent to setting the half-width of a 100 (1− α)% two-sided confi-
dence interval (CI) to e = z1−α/2

√
V (ȳs), assuming that ȳs can be treated as

being normally distributed. The term z1−α/2 is the 100 (1− α /2) percentile
of the standard normal distribution, i.e., the point with 1− α /2 of the area
to its left. If we require

Pr

(∣∣∣∣
ȳs − ȳU

ȳU

∣∣∣∣ ≤ e

)
= 1− α , (3.11)

this corresponds to setting e = z1−α/2CV (ȳs). (See Exercise 3.4.) If we set
the MOE to e0, then Eq. (3.10) can be manipulated to give the required
sample size as
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n =
z21−α/2S

2

e20 + z21−α/2S
2 /N

. (3.12)

Similarly, if the MOE in Eq. (3.11) is set to e0, we obtain

n =
z21−α/2S

2
/
ȳ2U

e20 + z21−α/2S
2 /(Nȳ2U )

. (3.13)

In the particular case of estimating a proportion, we set S2 = NpUqU /(N − 1)
in Eq. (3.12). Solving for n gives

n =

N
N−1z

2
1−α/2 pUqU

e2 + z21−α/2
pUqU
N−1

(3.14)

.
= z21−α/2

pUqU
e2

,

which is the same as Eq. (3.9) once we note that V0 = e2
/
z21−α/2 . Either

Eqs. (3.9) or (3.14) may be convenient, depending on how one phrases the
goal for estimation.

If we require that the half-width of a CI be a specified proportion of pU ,
then set S2

/
ȳ2U = NqU /[(N − 1) pU ] in Eq. (3.13). The solution for the

sample size is then

n =

N
N−1z

2
1−α/2

qU
pU

e2 + z21−α/2
qU

pU (N−1)

(3.15)

.
=

z21−α/2

e2
qU
pU

.

Because CV 2
0 = e2

/
z21−α/2 , expression (3.15) is the same as Eq. (3.8).

The R function, nPropMoe, will calculate sample sizes using Eqs. (3.14)
or (3.15), corresponding to whether we set the MOE in terms of Eqs. (3.10)
or (3.11). The type of MOE is selected by the parameter moe.sw where
moe.sw=1 invokes Eq. (3.14), i.e., e = z1−α/2

√
V (ps), and moe.sw=2

invokes Eq. (3.15), i.e., e = z1−α/2

√
V (ps) /pU . The full set of parameters is

shown in the function call below:
nPropMoe(moe.sw, e, alpha=0.05, pU, N=Inf)

Example 3.6 (Sample size based on MOE). Suppose that we want to estimate
a proportion for a characteristic where pU = 0.5 with a MOE of e when
α = 0.05. In other words, the sample should be large enough that a normal-
approximation 95% confidence interval should be 0.50 ± e. For example, if
e = 0.03 and ps were actually 0.5, we want the confidence interval to be
0.50± 0.03 = [0.47, 0.53]. The sample size is highly dependent on the width
of the confidence interval as seen in the following table. Sample sizes were
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evaluated using the formula given in Eq. (3.14) with pU = 0.5 and z0.975 =
1.96. The command to generate the sample sizes listed in the table below is

nPropMoe(moe.sw=1, e=seq(0.01,0.08,0.01), alpha=0.05,
pU=0.5)

e n e n

0.01 9,604 0.05 384
0.02 2,401 0.06 267
0.03 1,067 0.07 196
0.04 600 0.08 150

Notice that the terminology in this example may seem a little loose. When
a sample is selected and the proportion is estimated, ps will almost certainly
not equal pU . The computed CI will be ps ± e, not pU ± e. Consequently, it
is best to think of pU in Example 3.6, and in the subsequent discussion, as a
value, hypothesized in advance of sampling. �

Wilson Method for Proportions

A problem with normal-approximation confidence intervals (CIs) for propor-
tions, computed as ps ± z1−α/2

√
V (ps), is that the interval may not be con-

fined to [0, 1] when the proportion is extreme (i.e., extremely rare or highly
prevalent). One method that will produce endpoints in the allowable range
is due to Wilson (1927). Brown et al. (2001) and Newcombe (1998) showed
that the Wilson method has better coverage properties than several alterna-
tive methods, including the standard normal-theory intervals. The general

idea is to treat t = (ps − pU )
/√

pUqU /n as having a standard normal dis-

tribution. Then, rearranging the inequality |t| ≤ z1−α/2 gives a quadratic in
pU . The roots of the quadratic are the endpoints of the Wilson confidence
interval: (

2psn+ z2
)± z

√
z2 + 4psqsn

2 (z2 + n)
.

This interval is not symmetric, but to parallel the earlier methods, we will
consider half the width of the interval as the MOE. The half-width of this
confidence interval is

1

2

z
√
z2 + 4psqsn

z2 + n
,

where z ≡ z1−α/2 . If we set the half-width to some desired value e, substitute
an advance estimate of pU for ps, and solve for n, this leads to another
quadratic in n whose largest root is

n =
1

2

(z
e

)2 [(
pUqU − 2e2

)
+
√
e2 − pUqU (4e2 − pUqU )

]
. (3.16)
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If a complex sample were selected, then similar steps apply after treating

t = (p̂− pU )
/√

pUqU /neff as being standard normal.

The R function nWilson will calculate a sample size using inputs for
pU and e. As in nPropMoe, the desired MOE can be specified as the CI
half-width on the proportion (moe.sw=1) or as the CI half-width on a
proportion of the population value pU (moe.sw=2). The function does not
include an fpc although the reader could modify the code to include one if
the associated sampling rate (n /N ) is sizeable. The full set of parameters is
nWilson(moe.sw,alpha=0.05,pU,e).

The function returns a list containing the sample size, the anticipated
endpoints of the CI, and the length of the CI. The last value, ‘length of
CI‘, simply verifies that the anticipated length of the CI equals twice the
input value e when moe.sw=1 and equals 2e pU when moe.sw=2.

Example 3.7 (Wilson sample size). Suppose that pU = 0.04 and the desired
half-width of the CI is 0.01. The function call and output are

nWilson(moe.sw =1, pU=0.04, e=0.01)

$n.sam
[1] 1492.151
$‘CI lower limit‘
[1] 0.0311812
$‘CI upper limit‘
[1] 0.0511812
$‘length of CI‘
[1] 0.02

Thus, a sample of about 1,492 is needed. Notice that the anticipated CI is not
symmetric around pU = 0.04. The corresponding MOE computation using
nPropMoe is

nPropMoe(moe.sw=1, e=0.01, alpha=0.05, pU=0.04, N=Inf)

[1] 1475.120

where the value after the “[1]” is the output from the R function. In other
words, the estimated sample size is about the same with either function. The
usefulness of the Wilson method in practice is more in the actual computation
of the confidence interval itself rather than in estimating a sample size. �

Log-Odds Method for Proportions

Another method of CI construction for proportions is to transform the pro-
portion to the log-odds scale, put a confidence interval on the log-odds, and
then back-transform the endpoints of the CI to the proportion scale. Like
the Wilson method, this approach produces a CI on the proportion that is
confined to [0, 1]. Based on the empirical results in Brown et al. (2001), the
Wilson method performs somewhat better in small to moderate size samples.
However, the use of the log-odds is better known among practitioners, and the



3.1 Determining a Sample Size for a Single-Stage Design 41

sample sizes calculated with the two methods will be similar. The log-odds of
the sample estimate is log (ps /qs ) with qs = 1− ps. A linear approximation
to the log-odds is

log (ps /qs )
.
= log (pU /qU ) + (ps − pU ) /(pUqU ) .

The approximate variance of log (ps /qs ) is then

v [log (ps /qs )] =
1

pUqU

(
1

n
− 1

N

)
N

N − 1
.

A normal-approximation CI on log (pU /qU ) is log (ps /qs ) ±
z1−α/2

√
v [log (ps /qs )]. Defining (L,U) as the endpoints of this confidence

interval, the back-transformed endpoints of a CI on pU is
[
(1 + exp (−L))

−1
,

(1 + exp (−U))−1
]
. Computing the half-width of this CI and setting this to

a MOE e give

e =
1

2

exp (−L)− exp (−U)

[1 + exp (−L)] [1 + exp (−U)]
.

With some algebra this equation leads to a quadratic equation in

exp

[
z√
pUqU

√(
1

n
− 1

N

)
N

N − 1

]
,

which can be solved to give

n =

{
N

N − 1

[√
pUqU

z1−α/2
log (x)

]2
+

1

N

}−1

, (3.17)

where

x =
1

k (1− 2e)

[
e
(
k2 + 1

)
+

√
e2 (k2 + 1)2 − k2 (1− 2e) (1 + 2e)

]

and k = qU /pU . The R function, nLogOdds, will evaluate the sample size
in Eq. (3.17). The function accepts the same five parameters as nPropMoe.
The desired MOE can be specified as the CI half-width on the proportion
(moe.sw=1) or as the CI half-width on a proportion of the population pro-
portion pU (moe.sw=2). The full set of parameters accepted by the function
is shown in the call below:

nLogOdds(moe.sw, e, alpha=0.05, pU, N=Inf)

Another transformation that is sometimes used when calculating a CI for
a proportion is the arcsin

(√
ps
)
. This transformation is not included here

because it does not appear amenable to sample size calculation when setting
a MOE.
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Example 3.8 (Comparison of three methods). As in Example 3.7, suppose that
pU = 0.04, the desired half-width of the CI is 0.01, and the population is large.
The function call and output listed after the “[1]” from our three functions
for computing samples sizes are

nLogOdds(moe.sw=1, e=0.01, alpha=0.05, pU=0.04, N=Inf)
[1] 1500.460
nWilson(moe.sw=1, pU=0.04, e=0.01)\$n.sam
[1] 1492.151
nPropMoe(moe.sw=1, e=0.01, alpha=0.05, pU=0.04, N=Inf)
[1] 1475.120

The sample sizes are within about 2% of each other although the Wilson
and log-odds methods do suggest a larger sample size than the standard
approach. �

Obtaining Population Values

As a last word before we leave simple random sampling, note that all of the
sample size formulas above are written in terms of population quantities that
are likely unknown during the sample design phase of the study. For example,
S2, ȳU , and pU are all population values. If the same survey has been done
before on an earlier rendition of the population, then the sample data can
be used to estimate the parameters. If no previous data are available on the
target population, it may be possible to get data on a similar population. In
some cases, published summary estimates may be accessible. This is especially
true of proportions. For example, the US Bureau of Labor Statistics2 pub-
lishes estimated percentages of workers that receive different benefits from
their employers, the National Center for Health Statistics3 produces statistics
on the nation’s health, the National Center for Education Statistics (NCES)
tabulates statistics on public and private education at all levels, and the
Census Bureau4 provides statistics on the population and many other top-
ics. Other countries have similar statistical agencies that publish economic,
epidemiological, and other statistics.

In some cases, a secondary data source for the entire population or micro-
data sets for earlier samples will be available. For instance, the Common Core
of Data (CCD)5 from NCES contains population data files of elementary and
secondary schools that can be used to tabulate means, variances, proportions
or other statistics. If the microdata are provided for individual records for
a sample of units from the target population, you can estimate population
parameters. We will discuss how to estimate some population parameters
from samples in Sect. 3.4. Note that the design team for Project 1 in Chap. 2

2 http://stats.bls.gov/.
3 http://www.cdc.gov/nchs/.
4 http://www.census.gov/.
5 http://nces.ed.gov/ccd/.

http://stats.bls.gov/
http://www.cdc.gov/nchs/
http://www.census.gov/
http://nces.ed.gov/ccd/
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had direct access to the relevant data sources and could therefore produce
the estimates provided in Tables 2.2–2.6.

3.1.2 Stratified Simple Random Sampling

Simple random samples are rare in practice for several reasons. Most surveys
have multiple variables and domains for which estimates are desired. Selecting
a simple random sample runs the risk that one or more important domains
will be poorly represented or omitted entirely. In addition, variances of survey
estimates can often be reduced by using a design that is not srswor.

A design that remedies the problems noted for an srswor is referred to
as stratified simple random sampling (without replacement) or stsrswor. As
the name indicates, an srswor design is administered within each design stra-
tum. Strata are defined with one or more variables known for all units and
partition the entire population into mutually exclusive groups of units. We
might, for example, divide a population of business establishments into retail
trade, wholesale trade, services, manufacturing, and other sectors. A house-
hold population could be divided into geographic regions—north, south, east,
and west. For an stsrswor, we define the following terms:

• Nh = the known number of units in the population in stratum h (h =
1, 2, . . . , H)

• nh = the size of the srswor selected in stratum h
• yhi = the value of the y variable for unit i in stratum h
• S2

h =
∑Nh

i=1 (yhi − ȳUh
)
2
/(Nh − 1) , the population variance in stratum h

• Uh = set of all units in the population from stratum h
• sh = set of nh sample units from stratum h

Note that the total sample size is calculated as n =
∑H

h=1 nh. The popu-
lation mean of y is

ȳU =

H∑
h=1

WhȳUh
,

whereWh = Nh /N and ȳUh
is the population mean in stratum h. The sample

estimator of ȳU based on an stsrswor is

ȳst =

H∑
h=1

Whȳsh , (3.18)

where ȳsh =
∑

i∈sh
yhi /nh . When estimating a population proportion, the

estimator is similar:

pst =

H∑
h=1

Whpsh (3.19)
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with psh defined in the same way as ȳsh using a zero-one (indicator) y variable.
The population sampling variance of the stratified estimator is

V (ȳst) =
H∑

h=1

W 2
h

1− fh
nh

S2
h, (3.20)

where fh = nh /Nh .
Strata are especially useful if they correspond to domains for which sepa-

rate estimates are needed. In that case, the sample assigned to each stratum
can be determined using the formulas in Sect. 3.1.1 and is guaranteed to result
in selecting sample cases for each domain (i.e., stratum). However, the over-

all sample size, n =
∑H

h=1 nh, may become excessively large. To remedy this
problem, the overall sample size can be allocated to the strata using various
techniques as discussed in the next section. An efficient allocation can lead
to the variance of an overall estimator, ȳst or pst, being smaller than with an
(unstratified) srswor.

Choosing Stratification Variables

Stratifiers can be selected on at least five grounds (see, e.g., Lohr 1999,
Chap. 4):

1. To avoid selecting a sample that is poorly distributed across the popula-
tion, as could occur with srswor

2. As a way of guaranteeing certain sample sizes in groups that will be
studied separately (i.e., domains)

3. As an administrative convenience (e.g., a mail survey might be used for
units in some strata but personal interviews for the remaining strata)

4. To manage cost (e.g., data collection in some strata might be more expen-
sive than in other strata)

5. As a way of improving sample efficiency for full population estimates by
grouping units together that have similar mean and variance properties

An example of the second use would be a business survey in which estab-
lishments are grouped by type of business (manufacturing, retail, service,
etc.). The sample could be allocated in such a way that each sector receives
a large enough sample size to meet precision targets for some important esti-
mates. In a survey of schools, strata might be defined based on the level and
ownership of a school (e.g., elementary, middle, and high school crossed with
public or private ownership). Typically, an allocation to these strata designed
to meet a CV target for each stratum would not be the best allocation for
making an efficient estimate for the full population. However, in such cases,
the domain estimates are usually more important than full population esti-
mates. In addition, when the domain estimates have acceptable precision,
then the full population estimates will also.
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Stratification by size with an efficient allocation is an example of 5 above.
This method uses a size variable that is correlated with whatever is to be
measured in the survey. In an establishment survey, the number of employees
at a previous time period should be a predictor of current employment and
possibly of other variables, like revenue. To determine a good measure of size
(MOS), regression modeling should be done assuming that some relevant data
are available. This method of stratification is closely related to pps sampling
described in Sect. 3.2.1 (also, see Valliant et al. 2000, Chap. 6).

Types of Allocations

There are several types of allocation methods that can be considered for
a stratified sample. The first three allocations below assume that the total
sample size n is fixed and corresponds to a fixed study budget (assuming the
cost of collecting and processing data for each unit is the same). In the last
two, the total sample size is determined to be consistent with either cost or
variance constraints:

1. Proportional allocation in which nh = nWh

This allocation is efficient for estimating the mean of y if the stratum
standard deviations, Sh, are all equal or, at least, are very close to each
other. This method may allocate very few units to some small strata and,
thus, can be poor when separate stratum estimates are desired.

2. Equal allocation with nh = n /H ≡ n̄

Equal allocation is useful if an estimate is needed for each stratum indi-
vidually and if the stratum standard deviations are about the same.

3. Neyman allocation where nh = n WhSh∑
H
h=1 WhSh

Neyman allocation minimizes the variance, V (ȳst), of the estimator of
the population mean. Neyman may give high variance estimates for some
individual strata. Plus, it ignores any differential costs of data collection
and processing among strata (as do proportional and equal allocations).

4. Cost-constrained optimal allocation

This allocation minimizes V (ȳst) subject to a fixed total budget and is
discussed in detail below.

5. Precision-constrained optimal allocation

This allocation minimizes total cost subject to a fixed constraint onV (ȳst)
or CV (ȳst) and is also discussed more below.

We sketch the results for allocations 4 and 5 below. In both, the proportion of
the sample allocated to a stratum is the same and is given in Eq. (3.23). The
two methods lead to different total sample sizes as shown in Eqs. (3.22) and
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(3.25). You can read more of the mathematical details in a text like Särndal
et al. (1992).

The cost-constrained optimal allocation 4 uses this simple linear cost func-
tion, C = c0 +

∑H
h=1 nhch, where C is total cost, c0 is the sum of cost values

that do not vary with the number of sample cases, and ch is the cost per
sample case in stratum h. The term c0 is usually called “fixed cost” and
can include components such as salaries for a project manager, programmers,
and editing supervisors. The term ch is the cost of data collection, e.g., inter-
viewing and mailing, and other unit costs that increase as the sample size
increases. Minimizing V (ȳst) in expression (3.20) subject to a specified total
budget leads to

nh = (C − c0)
WhSh

/√
ch∑H

h=1

(
WhSh

√
ch
) . (3.21)

The total sample size is the sum of the nh across the sampling strata:

n = (C − c0)

∑H
h=1 WhSh

/√
ch∑H

h=1

(
WhSh

√
ch
) . (3.22)

The proportion of the sample allocated to stratum h is

nh

n
=

WhSh

/√
ch∑H

h=1

(
WhSh

/√
ch
) . (3.23)

As is apparent from the expression given in Eq. (3.23), strata that account for
a larger share of the population, as measured by Wh or have larger standard
deviations, Sh, get a larger portion of the overall sample size. Strata where
the unit cost, ch, is larger get less.

If the variance, V (ȳst), is fixed at V0 and we minimize the total cost, as
with the precision-constrained optimal allocation 5, the allocation to stratum
h is

nh = (WhSh /
√
ch )

∑H
h=1 WhSh

√
ch

V0 +N−1
∑H

h=1 WhS2
h

. (3.24)

If the CV of ȳst is fixed at CV0, this implies that V0 in Eq. (3.24) should be
set to V0 = CV 2

0 × ȳ2U . In this case, the proportion of the sample allocated
to stratum h is also given by Eq. (3.23), but the total sample size is

n =

H∑
h=1

(WhSh /
√
ch )

∑H
h=1WhSh

√
ch

V0 +N−1
∑H

h=1WhS2
h

. (3.25)

When computing a cost-constrained or precision-constrained allocation,
sample sizes are usually rounded up to the next integers. This is not usually
something to be overly concerned about since the constraints will still be
met approximately. In addition, if there is any chance of nonresponse or
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other sample losses, the survey designer inevitably loses some control over
the allocation. In any case, useful quality control checks after making the
calculations in Eqs. (3.21) and (3.24) are:

(i) Verify that
∑

h nhch approximately respects the cost constraint.
(ii) Check that V (ȳst) is about equal to V0.

These are simple ways of detecting computational mistakes.
Of the two allocations 4 and 5, the cost-constrained method in Eq. (3.21) is

probably the one used more often. The usual situation is that an investigator
has a predetermined amount of money to spend. Any sample that is selected
must fit within that budget. Another standard occurrence is that partway
through a study the budget is changed—usually cut—or that the unit costs ch
are higher than expected. Consequently, midcourse adjustments to the sample
size are necessary. If the total budget is cut, the optimal allocation of the
reduced sample can be computed by reducing the sample sizes in Eq. (3.21)
by the same percentage in each stratum. Alternatively, some judgment can
be made about whether retaining precision in some strata is more important
than in others.

Regardless of the allocation chosen, formula (3.20) can be used to compute
the variance of ȳst. Even though Eq. (3.20) could be specialized using the
formulas for allocations 1–5, this is unnecessary and, in fact, undesirable
for computer programming. When evaluating Eq. (3.20) from a sample, the
population variance, S2

h, can be estimated as described in Sect. 3.4.
The R function, strAlloc, will compute the proportional, Neyman, cost-

constrained, and variance-constrained allocations defined above. The param-
eters accepted by the function are:

n.tot fixed total sample size

Nh vector of pop stratum sizes (Nh) or pop stratum proportions (Wh),
required

Sh stratum unit standard deviations (Sh), required unless alloc =
"prop"

cost total variable cost (C − c0)

ch vector of cost per unit in stratum h (ch)

V0 fixed variance target for estimated mean

CV0 fixed CV target for estimated mean

ybarU pop mean of y (ȳU )

alloc type of allocation, must be one of "prop", "neyman", "totcost",
"totvar"

The parameters can only be used in certain combinations, which are
checked at the beginning of the function. Basically, given an allocation, only
the parameters required for the allocation are allowed and no more. For exam-
ple, the Neyman allocation requires Nh, Sh, and n.tot. The function returns
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a list with three components—the allocation type, the vector of sample sizes
(nh), and the vector of sample proportions allocated to each stratum (nh /n).

Example 3.9 (Cost allocation). Table 3.2 gives stratum population counts and
standard deviations of total expenditures based on the 1998 Survey of Men-
tal Health Organizations (SMHO).6 The survey data set is treated as the
population (smho98) for this example. (See B for details of this and other
data sets.) The y variable is the total expenditures during a calendar year
for an individual organization. With a small number of strata, as is the
case in this example, a spreadsheet is a good tool for computing different
allocations.

To illustrate the difference that cost can make in the allocation to strata,
Table 3.3 shows the proportions of the total sample that would be allocated
with the Neyman allocation and with an allocation that uses the unit costs in
the ch column. Neyman allocates about 73% (0.346 + 0.386) of the sample
to the psychiatric and multiservice or substance abuse hospitals. After con-
sidering cost, these two strata account for only 60% of the sample (a 13%
point reduction) because the cost per organization is higher than for other
strata.

Table 3.2: Statistics on total expenditures for a population of mental health organi-
zations.

Stratum
h

Organization type Nh Mean ȳUh

Standard
deviation
Sh

Population
coefficient
of variation
Sh /ȳUh

1 Psychiatric hospital 215 21,240,408 26,787,207 1.261

2 Residential 65 10,024,876 10,645,109 1.062

3 General hospital 252 4,913,008 6,909,676 1.406

4 Military veterans 50 11,927,573 11,085,034 0.929

5
Partial care or out-
patient

149 6,118,415 9,817,762 1.605

6
Multiservice or sub-
stance abuse

144 15,567,731 44,553,355 2.862

Total 875 11,664,181

We can also compute the total sample sizes that would be implied by
different budgets or precision targets. For maximum variable-cost budgets,
C − c0, of $100,000 and $200,000, the total sample sizes are 119 and 238, as
shown below. If the target CV (ȳst) is set to a value CV0, then V0 in Eq. (3.25)

is (CV0 × ȳU )
2
. Using this to evaluate Eq. (3.25) gives sample sizes of 406 and

198 for CV targets of 0.05 and 0.10.

6 Substance Abuse and Mental Health Services Administration, http://www.samhsa.
gov/.

http://www.samhsa.gov/
http://www.samhsa.gov/


3.1 Determining a Sample Size for a Single-Stage Design 49

Table 3.3: Neyman and cost-constrained allocations for the mental health organiza-
tions for estimating the mean of total expenditure.

Stratum
h

Organization type
Cost
ch

Neyman
nh

n
= WhSh∑H

h=1
WhSh

Cost- or precision-
constrained
nh

n
=

WhSh/
√

ch
∑

H
h=1(WhSh/

√
ch )

1 Psychiatric hospital 1,400 0.346 0.257

2 Residential 200 0.042 0.082

3 General hospital 300 0.105 0.168

4 Military veterans 600 0.033 0.038

5
Partial care or Out-
patient

450 0.088 0.115

6
Multiservice or sub-
stance abuse

1,000 0.386 0.339

Total 1.000 1.000

Budget (C − c0) Sample size CV target Sample size

from Eq. (3.22) from Eq. (3.25)

$100,000 119 0.05 406

$200,000 238 0.10 198

The R code for the Neyman allocation (using an arbitrary total sample
size of 100) is

Nh <- c(215, 65, 252, 50, 149, 144)
Sh <- c(26787207, 10645109, 6909676, 11085034, 9817762, 44553355)
strAlloc(n.tot = 100, Nh = Nh, Sh = Sh, alloc = "neyman")

The cost-constrained allocations with variable costs of $100,000 and $200,000
are computed with

ch <- c(1400, 200, 300, 600, 450, 1000)
strAlloc(Nh = Nh, Sh = Sh, cost = 100000, ch = ch,

alloc = "totcost")
strAlloc(Nh = Nh, Sh = Sh, cost = 200000, ch = ch,

alloc = "totcost")

The allocations with CV targets of 0.05 and 0.10 are returned by

strAlloc(Nh = Nh, Sh = Sh, CV0 = 0.05, ch = ch,
ybarU = 11664181, alloc = "totvar")

strAlloc(Nh = Nh, Sh = Sh, CV0 = 0.10, ch = ch,
ybarU = 11664181, alloc = "totvar")

As for all R functions, the output can be assigned to an object for further
manipulation. For instance, the components of
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alloc1 <- strAlloc(Nh = Nh, Sh = Sh, CV0 = 0.05,
ch = ch, ybarU = 11664181, alloc = "totvar")

as shown by names(alloc1), are alloc$allocation, alloc$nh, and
alloc$’nh/n’. �

Allocations for Comparing Stratum Means

The allocations described above were designed to be good for overall pop-
ulation estimates. However, individual stratum estimates or the difference
in stratum estimates may be just as important. Cochran (1977, Sect. 5A.13)
suggests two criteria that could be used in such cases. One is to minimize the
average variance of the difference between all H (H − 1) /2 pairs of strata.
Assuming that stratum per-unit costs are equal, the optimal stratum sample
sizes are

nh = n
Sh∑H
h=1 Sh

. (3.26)

This is similar to Neyman allocation in being proportional to the stra-
tum standard deviations but, unlike Neyman, is unaffected by the stratum
sizes Wh.

A second criterion would be to require that the variance of the estimator
of the difference in any two stratum means be the same. In this case, the
optimal allocation to stratum h is

nh = n
S2
h∑H

h=1 S
2
h

, (3.27)

which assigns a larger fraction of the sample to the high variance strata than
does Eq. (3.26).

Example 3.10 (Allocations for stratum estimates). Continuing with the previ-
ous example, the results of calculating the allocations for the mental health
organizations based on the criteria in Eqs. (3.26) and (3.27) are shown in
Table 3.4. These allocations are both more extreme than those in Table 3.3
in assigning more sample to stratum 6. Stratum 3 also gets only 0.015 of the
total when allocating in proportion to S2

h due to its relatively small stratum
variance. Based on other considerations, like the desire to analyze general
hospitals separately, this allocation may be unsatisfactory to many analysts.
�

Bear in mind that the examples above were developed to estimate the mean
of one variable—total expenditures. Other variables may be just as important
to analysts, and efficient allocations for them may be quite different from
the ones we just calculated for expenditures. Chapter 5 will cover sample
allocation tasks using more than one analysis variable.
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Table 3.4: Allocations for the mental health organizations to optimize comparisons
of stratum means of total expenditures.

nh /n

Stratum
h

Organization type Allocation propor-
tional to Sh

Allocation propor-
tional to S2

h

1 Psychiatric hospital 0.244 0.233

2 Residential 0.097 0.037

3 General hospital 0.063 0.015

4 Military veterans 0.101 0.040

5 Partial care or out-
patient

0.089 0.031

6 Multiservice or sub-
stance abuse

0.406 0.644

Total 1.000 1.000

3.2 Finding Sample Sizes When Sampling with Varying
Probabilities

When samples are selected with varying probabilities, different methods are
needed for sample size calculations. A useful device is to make sample size
calculations based on the with-replacement variance formula as shown in
Sect. 3.2.1. This formula is simpler than the without-replacement formulas,
which involve joint selection probabilities. Thinking about model structure
is another good way to determine sample sizes in some populations, as dis-
cussed in Sect. 3.2.2. If there are auxiliary variables on a frame that are
good predictors of the variables to be collected in a survey, models for
these relationships can be used in determining sample sizes. This section
discusses the connection of pps sampling to models and the use of regres-
sion estimators of means and totals. Chapter 14 describes more extensively
how to use models in estimation via calibration weighting. An interested
reader can find in-depth coverage of the use of models in survey estimation in
Valliant et al. (2000).

3.2.1 Probability Proportional to Size Sampling

Sampling units in proportion to some MOS can be extremely efficient in
single-stage sampling for estimating totals if the MOS used for sampling is
closely related to the analysis variable y. Texts usually distinguish between
pps with-replacement sampling, denoted by pps, and without-replacement



52 3 Sample Design and Sample Size for Single-Stage Surveys

sampling, denoted by πps. We will generally refer to either of these as pps
but will be careful to distinguish between with-replacement and without-
replacement variance formulas. Suppose that the relative size of unit i is pi.
For example, if the MOS in a hospital population is the number of beds, xi,
the relative size of hospital i is pi = xi /

∑
U xi . If a fixed size sample of n units

is selected without replacement, the selection probability is πi = npi. We will
also refer to this method of sampling when the MOS is x as pp(x ) sampling
or, more generally, as pp(MOS). The π-estimator of the mean, assuming that
N is known, is defined in general as ˆ̄yπ = N−1

∑
s yi /πi . In the special case

of πi = npi, the π-estimator is

ˆ̄yπ = N−1
∑
s

yi
npi

. (3.28)

If each yi were exactly proportional to x, say yi = βxi, then the π-estimator
reduces to ˆ̄yπ = βx̄U in every sample. But, with yi = βxi, the population
mean of y is βx̄U ; so, ˆ̄yπ would be perfect in every sample. Less restrictively,
if yi follows the model,

EM (yi) = βxi , (3.29)

VM (yi) = vi,

where the yi’s are independent and the vi’s are positive values, then ˆ̄yπ is
model unbiased in the sense that EM

(
ˆ̄yπ − ȳU

)
= 0. In Eq. (3.29), EM (yi)

and VM (yi) are the theoretical expectation (or average) and variance of yi
evaluated with respect to the specified model. A good practice when con-
structing estimators is to do some modeling to determine whether there
are any covariates that can be used as measures of size and to create esti-
mators with lower variance than the simple π-estimator as discussed in
Sect. 3.2.2.

The variance of ˆ̄yπ is complicated because it involves joint selection prob-
abilities of pairs of units:

V
(
ˆ̄yπ
)
= N−2

∑
i∈U

∑
j∈U

(πij − πiπj)
yi
πi

yj
πj

(3.30)

(e.g., see Särndal et al. 1992). The term πij is the probability that units i and
j are simultaneously in the sample. Details on variance estimation techniques
in different situations are covered in Chap. 18.

Several methods are available for selecting samples with varying probabili-
ties; not all of these allow the joint selection probabilities, πij , to be computed.
Cochran (1977) reviews several methods for selecting samples of size nh = 2.
Two methods for samples of size larger than two are Sampford’s and sequen-
tial pps (Chromy 1979). Section 3.7 covers some of the software packages
available for selecting samples with varying probabilities.
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Determining a Measure of Size

In single-stage sampling the MOS is associated directly with the units to
be sampled—beds in a hospital survey, employees in a business survey, etc.
In Chaps. 9 and 10, we will discuss assigning sizes to aggregated units, like
counties, in multistage sampling. In this section, some of the thinking needed
to assign an MOS in the single-stage case is covered. The key finding is due
to Godambe and Joshi (1965). Their result says that under model (3.29) the
most efficient MOS for pps sampling is proportional to

√
vi. This assumes

that a population total is estimated and an estimator is used that is unbiased
when averaging over a model and a probability sampling design. Isaki and
Fuller (1982) extended this to a linear model where EM (yi) = xT

i β and
VM (yi) = vi with xi defined as a vector of x ’s (auxiliary variables), β defined
as a vector of regression slopes of the same dimension as xi, and xT

i is the
transpose of the xi vector. In that case,

√
vi is still the best MOS for pps

sampling, assuming that a regression estimator of the population total is used.
We describe regression estimators in more detail in Sect. 3.2.2 and later in
Chap. 14.

A model that may fit some establishment or institutional populations rea-
sonably well has a variance with the form, VM (yi) = σ2xγ

i , where xi is an
MOS and γ is a power. Typical values of γ are in the interval [0,2]. With a
specification of the regression mean, EM (yi), γ can be estimated iteratively.
First, the model is fit by ordinary least squares (OLS) and the residuals
calculated. The squared residual, e2i , is an approximate estimate of VM (yi),
regardless of its form. When VM (yi) = σ2xγ

i , the slope in a regression of
log
(
e2i
)
on log (xi), where log is the natural logarithm, is an approximate

estimate of γ. Henry and Valliant (2009) give more detail along with applica-
tions. Two R functions that will iteratively estimate γ are gammaFit along
with gamEst given in Appendix C. Note that gamEst is set up for a regres-
sion without an intercept. If an intercept is desired, the matrix X, which
is an input to gammaFit, must be defined to include a column of 1’s. The
parameters used by gammaFit are:

X matrix of predictors

x vector of x’s in V(Y)

Y vector of response variables

maxiter maximum no. of iterations allowed

show.iter show values of gamma at each iteration, TRUE or FALSE

tol relative change in gamma used to judge convergence

Example 3.11 (Estimating the power γ). Figure 3.2 is a scatterplot of an
srswor of units 7, 17, 30, 33, 62, 111, 139, 247, 370, and 393 from the
hospital population. A model for y that fits fairly well for the hospital
population is EM (yi) = β1

√
xi + β2xi, VM (yi) = σ2xγ

i . First, assign x and
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Fig. 3.2: Scatterplot of a sample of n = 10 sample units from the hospital population.

y to be the vectors of the ten values for these units. The matrix X contains
columns for

√
x and x. To estimate γ, the call to gammaFit and its output are

X <- cbind(sqrt(x), x)
gammaFit(X = X, x = x, y = y, maxiter=100, tol=0.001)

Convergence attained in 9 steps.
g.hat = 1.882531

In practice, the power might be rounded to 1.75 or 2 with the choice of
1.75 being selected since it would cause the MOSs to be less extreme than
2. Assuming that 1.75 is used, the MOS for pps would be

√
x1.75
i . Another

caution when using gammaFit is that in small samples, the algorithm may
not converge. Setting the show.iter parameter to TRUE will print γ̂ at each
iteration, which may help in recognizing any problems. �

Calculations for With-Replacement Sampling

Expression (3.30) is obviously not too handy for computing a sample size.
One practical approach is to use a variance formula appropriate for pps with
replacement (ppswr) sampling. The simplest estimator of the mean that is
usually studied with ppswr sampling is called “p-expanded with replacement”
(Särndal et al., 1992, Chap. 2) and is defined as

ˆ̄ypwr =
1

Nn

∑
s

yi
pi

. (3.31)
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A unit is included in the sum as many times as it is sampled. Although
Eq. (3.31) looks just like ˆ̄yπ above, the selection probability of unit i is not
npi in with-replacement sampling; it is actually 1− (1− pi)

n
. The variance

of ˆ̄ypwr in ppswr sampling is

V
(
ˆ̄ypwr

)
=

1

N2n

∑
U

pi

(
yi
pi

− T

)2

≡ V1

N2n
(3.32)

where T is the population total of y. The obvious advantage of Eq. (3.32)
when computing a sample size is that n is clearly separated from the other
terms, unlike in expression (3.30).

If the desired coefficient of variation is CV0, Eq. (3.32) can be solved to
give the sample size as

n =
V1

N2

1

ȳ2UCV 2
0

. (3.33)

The difficulty with this formula is the estimation of V1. As described in
Sect. 3.4, V1 can be estimated from a sample that was selected with the same
relative measures of size, pi, as to be used in the planned sample. Or, it can
also be estimated from a pps sample that was selected with some other MOS.

Example 3.12 (Accounting for large units). Figure 3.3 plots total expendi-
tures by the number of beds for the 671 organizations in the SMHO (smho98)
population that have nonzero beds. The 204 units that reported zero beds
provide only outpatient care. There is a fairly strong relationship between
number of beds and expenditures with the correlation being 0.78. The gray
line is a nonparametric smoother that is resistant to influence by unusual
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Fig. 3.3: Plot of total expenditures versus number of beds for the SMHO population.
The gray line is a nonparametric smoother (lowess).
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points. One point (marked by the arrow) with 2,405 beds is obviously much
different than the others. Good practice is to select that organization for the
sample with probability one. Such cases are variously called “take-alls,” “cer-
tainties,” or “self-representing,” depending on the country of origin for the
statistician. The general thinking is that a take-all is so unlike the others
in the population that it should not be weighted-up to represent anything
except itself. One useful rule of thumb that is often used is to compute the
targeted selection probabilities for all units in the population and determine
which units have values greater than or equal to one. In a pps sample with
MOS xi, this will occur if

xi ≥ Nx̄U

n
.

Sometimes this is relaxed to include all units with selection probabilities
greater than some cutoff like 0.8. In that case, the take-alls would be units
with xi ≥ 0.8Nx̄U /n . Notice that these take-all cutoffs depend on how big
the sample is; the larger the sample, the more units may be designated as
take-alls.

If we set aside the big unit and select a pps sample from the remainder,
the π-estimator of the mean will be

ˆ̄yπ = N−1
[
(N − 1) ˆ̄yπ,nt + y2405

]
,

where ˆ̄yπ,nt is the π-estimator of the mean for the N − 1 non-take-all
units and y2405 is the total expenditures for the unit with 2,405 beds.
More generally, if we had nt take-alls, the estimator of the mean would be
ˆ̄yπ = N−1

[
(N − nt) ˆ̄yπ,nt + Tyt

]
where Tyt is the total of the Y ’s for the

take-alls. The variance of ˆ̄y is
(
N−nt

N

)2
V
(
ˆ̄yπ,nt

)
with nt = 1 in this example

since the big unit does not contribute to any sample-to-sample variability.
But the CV of ˆ̄y is still computed by dividing by ȳU :

CV
(
ˆ̄y
)
=

N − nt

N

√
V
(
ˆ̄yπ,nt

)
/ȳU .

To calculate a sample size, we approximate V
(
ˆ̄yπ,nt

)
by the pwr variance in

Eq. (3.32), i.e.,

V
(
ˆ̄yπ,nt

) .
=

V1

(N − nt)
2
n
,

where the V1 in Eq. (3.32) refers only to the subuniverse of N − nt non-take-
alls. The result is V1 = 9.53703e+19. The sample size formula (3.33) is then

n =
9.53703e+19

6712 × 13, 667, 7062CV 2
0

(3.34)

with ȳU = 13, 667, 706. For CV0 = 0.15, Eq. (3.34) evaluates to n = 51 for
the non-take-alls. �
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Because the calculation in Example 3.12 is based on with-replacement sam-
pling, the sample sizes may be conservatively large if a without-replacement
sample with a sizeable fpc is actually selected. Kott (1988) gives an approxi-
mate method of inserting an fpc in the pps sampling formula that would help
reduce this problem. Also, when certainties are identified as in Example 3.12
and probabilities are recomputed for the non-certainties, there may be addi-
tional units that have selection probabilities greater than 1. These should
also be selected with certainty and the calculation in Eq. (3.34) recomputed
for the remaining units. A few iterations may be needed to identify all of the
take-alls. Alternatively, a cutoff like xi ≥ 0.8Nx̄U /n could be used after the
first iteration, which may eliminate some later rounds of iteration.

A final point on pps sampling is that it may be inefficient in single-stage
sampling for estimating the proportion of units that have some character-
istic. As noted earlier, pp(x ) sampling combined with the π-estimator or a
regression estimator is efficient if y follows a linear model and the MOS is
proportional to the model standard deviation. An appropriate model for a
binary characteristic is typically nonlinear, e.g., logistic or complementary
log–log, and not a straight-line like EM (yi) = βxi. If the probability of
having the characteristic does increase as the MOS increases, then pp(MOS)
sampling may not be too bad. However, if a better model is that all units
have a common probability or that different groups of units have differ-
ent probabilities, pp(MOS) sampling will produce estimators with higher
variances than srswor or stsrswor.

This is one of many illustrations that a given sampling plan cannot be ideal
for all quantities that may be estimated in a survey. Finding compromises
that are reasonably efficient for many different estimates is part of the art
of good sample design. As we have said more than once, the mathematical
programming tools in Chap. 5 will be extremely helpful in transforming the
art into more of a science.

Relationship of pps Sampling to Stratification

Although pps sampling can be very efficient in some circumstances, it can
have some practical disadvantages when some units do not respond. In estab-
lishment surveys, like those of businesses, schools, or hospitals, a target sam-
ple size of responders may be desired. Almost every survey faces some degree
of nonresponse. Chapter 13 describes some of the mathematical ways of
adjusting survey weights to attempt to correct the problem. Another method
of dealing with nonresponse is to substitute another unit for any one that
does not respond. This is especially common in surveys of schools. When
pps sampling is used to select the initial units, a substitute may not have
the same MOS as the original selection. This can lead to some ambiguity in
assigning survey weights. Should the substitute receive the weight associated
with the original selection? Or, should its weight be the one it would receive
had it been an original selection itself? Another question is how to select the
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substitutes themselves? Some of this uncertainty can be avoided by using
stratified sampling in a way that approximates pps sampling.

Strata can be formed based on size as follows. Sort the frame from low
to high based on the MOS. Determine the total sample size using Eqs. (3.33)
or (3.37) to be described below. Divide the frame into H = n /2 strata such
that the total of the MOS is about the same in each stratum. Then, select
an srswor of size 2 in each stratum. If zhi is the MOS for unit i in stratum h
and the MOSs do not vary much within a stratum, the selection probability
in stratum h will be

πhi =
2

Nh

.
=

2zhi
Nhz̄h

,

where z̄h is the average MOS in stratum h, and we assume that zhi
.
= z̄h.

That is, the stsrswor selection probabilities are approximately the same as
those in pps sampling. Using nh = 2 is not essential but the more strata are
created, the less the values of zhi will vary within a stratum and the more
likely it is that zhi

.
= z̄h.

Since the sample is stsrswor, the sampling weight, π−1
hi , is the same for

each unit in stratum h. This means that substitutes can be selected by simple
random sampling from the units that were not among the original sample and
assigned the same weight as the originals. Of course, substitution is a form
of imputation that affects variances in ways that may be difficult to reflect
when making inferences. Consequently, devising a straightforward method of
substitution does not solve all problems.

In addition, there are practical limits to the closeness of the stsrs selection
probabilities to those from pps. If the population is fairly small, say, less than
500, and the measures of size used for pps sampling have a large range, the
range of pps selection probabilities may itself be large in some strata. In such
cases, the common srs selection probability of units within a stratum may
differ considerably from the pps probabilities for some units.

Example 3.13 (Creating strata with equal total MOS). In Example 3.11 the
power γ in the model EM (yi) = β1

√
xi+β2xi, VM (yi) = σ2xγ

i was estimated
to be 1.88 for the hospitals population. We round this down to 1.75 for this
example. The code below will createH = 10 strata in the hospitals population

by cumulating the sorted list of
√
x1.75 and forming strata that have about the

same total value of
√
x1.75. Two units are to be selected from each stratum:

x <- hospital$x
g <- 1.75
H <- 10; nh <- 2
hosp.pop <- hospital[order(x), ]

xg <- sqrt(xˆg)
N <- nrow(hosp.pop)

# create H strata using cume sqrt(xˆg) rule
cumxg <- cumsum(xg)
size <- cumxg[N]/H
brks <- (0:H)*size
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strata <- cut(cumxg, breaks = brks, labels = 1:H)
Nh <- table(strata)

str.selprobs <- rep(nh,H) / Nh

# selection probabilities for pp(sqrt(xˆg))
pps.selprobs <- H*nh*xg / sum(xg)
round(cbind(Nh = Nh, stsrs = str.selprobs, pps.means =

by(pps.selprobs,strata,mean)),4)

Nh stsrs pps.means

1 129 0.0155 0.0155
2 57 0.0351 0.0345
3 42 0.0476 0.0483
4 35 0.0571 0.0574
5 30 0.0667 0.0668
6 25 0.0800 0.0771
7 23 0.0870 0.0889
8 20 0.1000 0.0979
9 18 0.1111 0.1134
10 14 0.1429 0.1451

The last statement above lists the numbers of hospitals in each stratum,
the selection probabilities when 2 units are selected via srs in each stratum,
and the average stratum values of the probabilities if the sample were selected

using pp
(√

x1.75
)
. The average pps selection probabilities are very close to

the srs probabilities in each stratum. Some efficiency will be lost with this
stsrs plan compared to the optimal probabilities, but the loss may be small.
Plus, an stsrs plan is attractive because of its simplicity. �

3.2.2 Regression Estimates of Totals

Models can also be used to construct estimates of means and totals that are
more efficient than π-estimators. Thinking about a model that may describe
the dependence of y on an x can also be a useful way of computing a sample
size. Details of this approach, given in Särndal et al. (1992, Chap. 12) and
Valliant et al. (2000, Sect. 4.4), are sketched here. There is also a particu-
larly useful connection between the model calculations that follow and pps
sampling, as we will see. Suppose that the following linear regression model
holds:

EM (yi) =

p∑
j=1

βjxji , (3.35)

VM (yi) = σ2vi,
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where the subscript M means that the calculation is made with respect to a
model, the βj ’s are slope parameters, xji is the jth auxiliary variable asso-
ciated with unit i, and vi is a positive value. A design-based estimator of
the population mean of y that is unbiased under this model is the general
regression estimator (GREG), defined by

ˆ̄yr = ˆ̄yπ +

p∑
j=1

bj
(
x̄Uj − ˆ̄xπj

)
,

where bj is the estimate of βj using survey-weighted least squares, x̄Uj is the
population mean of xj , and ˆ̄xπj is the π-estimator of the mean of xj . (We will
cover calculation of survey, or design, weights in Part III. For this discussion,
you can think of bj as simply a type of weighted least-squares estimator.) The
“anticipated variance” (see Isaki and Fuller, 1982) is a variance computed over
both the sample design and model. In the case of the GREG with pps without-
replacement (ppswor) sampling and under model (3.35), the optimal selection
probabilities, i.e., the ones that minimize the anticipated variance, are

πi =
nv

1/2
i

Nv̄
1/2
U

with v̄
1/2
U =

∑
U

√
vi /N . With these optimal probabilities, the approximate

anticipated variance itself is

AV
(
ˆ̄yr
) .
=

[
1

n

(
Nv̄

(1/2 )
U

)2
−Nv̄U

]
σ2, (3.36)

where v̄U =
∑

U vi /N . Dividing by [EM (ȳU )]
2, we get a kind of relvariance.

Setting the result equal to CV 2
0 and solving for n leads to

n =

[
v̄
(1/2 )
U

]2

CV 2
0

[EM (ȳU )]2

σ2 + v̄U
N

. (3.37)

Exactly the same sample size formula can be derived using purely model-
based arguments. In model (3.35), vi and

√
vi must both be linear combina-

tions of some or all of the x ’s to get the result. First, we look at a simple
example to illustrate the model structure that is needed. If the model is

EM (yi) = β1
√
xi + β2xi , (3.38)

VM (yi) = σ2xi ,

this fits the required structure since vi ∝ xi,
√
vi ∝ √

xi, and both xi and
√
xi

are part of EM (yi). This model allows a curved relationship between y and
a single x with the amount of curvature depending on the slope coefficients.
Models like this one often fit relationships in establishment populations well.
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Under model (3.35), the best model-based estimator of the mean has the

form ˆ̄yM = N−1
(∑

i∈s yi +
∑

i/∈s ŷi
)
with ŷi =

∑p
j=1 β̂jxji and β̂j being a

weighted least-squares estimator of βj . The ideal weights are inversely propor-
tional to vi = xi, unlike the survey-weighted least-squares estimator which
is a function of the design weights. The estimator of the mean uses the sum
of y for the sample units (i ∈ s), which is observed, and predicts the y’s for
the nonsample units (i /∈ s). The best sample for this estimator is one that
is “balanced” on vi and

√
vi in a certain way (Valliant et al., 2000, Theo-

rem 4.2.1). In particular, the sample means of vi and
√
vi should be the same

as the ones obtained on average in pp
(√

vi
)
sampling. With the particular

form of the model variance where vi and
√
vi are linear combinations of the

x ’s and with a balanced sample, the sample size needed to achieve a coeffi-
cient of variation of CV0 is given by Eq. (3.37). The next example illustrates
the calculation with the smho98 population.

Example 3.14 (Sample size calculation using a model). As an illustration, we
regress total expenditures (EXPTOTAL) from the smho98 population on num-
ber of beds (BEDS) and the square root of number of beds with the variance
specification in Eq. (3.38). The one large organization and all organizations
with 0 beds are removed, leaving 670. The R code for doing this is listed
below:

# Isolate certainty selections (i.e., size > 2000)
cert <- smho98[,"BEDS"] > 2000

# Remove certainties and size=0
tmp <- smho98[!cert, ]
tmp <- tmp[tmp[, "BEDS"] > 0, ]

# Create model variables
x <- tmp[ , "BEDS"]
y <- tmp[ , "EXPTOTAL"]

# Object containing model results
m <- glm(y ˜ 0 + sqrt(x) + x, weights = 1/x)

# Model results
summary(m)

Part of the output is

Call:
glm(formula = y ˜ 0 + sqrt(x) + x, weights = 1/x)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

sqrt(x) 1044992 98955 10.560 < 2e-16 ***
x 34677 9612 3.607 0.000332 ***
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
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(Dispersion parameter for gaussian family taken to be
1.723118e+12)

Null deviance: 2.3973e+15 on 670 degrees of freedom
Residual deviance: 1.1510e+15 on 668 degrees of freedom

The coefficients for both
√
xi and xi are highly significant. The estimate

of σ2 in Eq. (3.38) is the residual deviance divided by its degrees of freedom
or (1.1510e+15)/668 = 1.723054e+12. Using the same set of 670 units, the
means of x,

√
x, and y are 105.97, 8.84, and 12,912,191. If we want a CV of

0.15 as in Example 3.11, then

n =
8.842

0.152 12,912,1912

1.723118×1012 + 105.97
670

.
= 34 .

An alternative to using ȳU , the mean of y, would be the average of the model
predictions. However, in model (3.35), the special variance structure means
that the two alternatives are equal. Continuing with the program above, the
simple R code to compute the sample size is

N <- nrow(tmp)
mean(x)
mean(sqrt(x))

# Estimate of sigma squared
sig2 <- m$deviance/m$df.residual

# Sample size n for CV = 0.15
n <- mean(sqrt(x))ˆ2 / (0.15ˆ2 * mean(y)ˆ2 / sig2 + mean(x)/N)

The sample size of 34 is less than the n = 51 found in Example 3.11. The
reason for this is that the GREG and the prediction estimator are more
efficient than the π-estimator since both take more advantage of the ability
to predict y based on the value of x. �

One of the simplest estimators that flows out of a model is the ratio esti-
mator. The ratio estimator of a mean in an srswor is

ȳR = ȳsx̄U /x̄s .

This estimator is a special case of the GREGwhen the model is EM (yi) = βxi,
VM (yi) = σ2xi. Its approximate relvariance in srswor is

[CV (ȳR)]
2 = N2

(
1

n
− 1

N

)
S2
R

ȳ2U
,

where S2
R = (N − 1)

−1∑
U r2i with ri = yi − xi (ȳU /x̄U ). Setting the CV to

a target value, CV0, and solving for n yields

n =

[
CV0

ȳ2U
S2
R

+
1

N

]−1

, (3.39)

which is the same as Eq. (3.4) with S2 replaced with S2
R. Thus, the function

nCont can be used.
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Example 3.15 (Sample size for a ratio model). As in Example 3.14, suppose
the mean of total expenditures (y) in the smho98 population is to be esti-
mated using the number of beds (x ) and assume the model is a straight-line
through the origin with variance proportional to x. As in the previous exam-
ple, we remove the one large organization and all organizations with 0 beds.
The R code for computing the sample size is:

m <- glm(y ˜ 0 + x, weights = 1/x)
ybarU <- mean(y)
S2R <- sum(m$residualsˆ2/(length(x)-1))
nCont(CV0=0.15, S2=S2R, ybarU=ybarU, N=670)
[1] 51.16394

A sample of n = 51 is larger than n = 34 calculated in Example 3.13 because
the ratio estimator is less efficient than the regression estimator used in that
example. �

3.3 Other Methods of Sampling

Systematic sampling is often used in practice because it is fairly easy to
implement and it can be used to control the distribution of a sample across a
combination of auxiliary variables. For example, a field data collector might
have to select a systematic sample from a list of addresses compiled by walking
around a neighborhood. Selecting systematically in the field could speed the
process of both sampling and data collection. Carrying it out in the field may
also be less error-prone than more complicated selection methods. In other
cases, it is used even though other methods could easily be implemented
whose statistical properties are more well defined.

The method requires a list of units sorted in some order. Systematic sam-
pling can be used to select equal probability samples or pps samples. The
sampler starts somewhere on the list and skips down the list picking every
kth(k = 10 or 12 or 20, etc.) unit depending on the method. Various ways of
selecting samples systematically are given in many books. As Cochran (1977,
Chap. 8) notes, systematic sampling can have the characteristics of simple
random sampling, stratified sampling, or cluster sampling depending on how
the list is sorted. One of the most common uses of systematic sampling is
to sort by some set of covariates in order to implicitly stratify units by the
sorting variables. The sorting variables are implicit stratification variables
in contrast to the design strata that have sample sizes explicitly defined by
the sample design. For example, a frame of schools might be explicitly strati-
fied by grade level (elementary, middle, high school). Within grade level, the
schools might be sorted by urbanicity (urban/suburban/rural location), and
by number of students within urbanicity. If an equal probability of selection
method is used, the resulting systematic sample will contain an approximate
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proportional representation of the units within the domains formed by the
cross of the implicit stratification variables. Thus, the sample is controlled for
more than the design strata without forming a large number of small strata
that can inflate the variation in the weights (see discussions in Chap. 14).

The mathematical problem with systematic sampling is that no design-
unbiased variance estimator can be constructed (see Särndal et al., 1992,
Chap. 3). The general reason for this is that πij = 0 for some pairs of units.
If the sorting is used to create implicit strata, the intuitive reason that an
unbiased variance estimator does not exist is that only one unit is selected
from a systematic selection interval. Regardless of the reasons for its use,
statisticians usually collapse the selection intervals into one or more analytic
strata and pretend the method of selection was something else, like stsrswor,
stsrswor, or ppswr, in order to estimate a variance and to calculate a sam-
ple size. Thus, special sample size formulas are not needed for systematic
sampling.

Poisson sampling is another technique in which units can be assigned
different selection probabilities. Suppose that πi is the probability assigned
to unit i ∈ U . Each unit in the population is given an independent chance of
selection. The sample size is random, which is one drawback of the method.
However, it is especially useful in selecting a sample from a population where
the frame must be compiled over an extended period of time. For example,
in 2004, the US IRS received over 130 million tax returns for individuals and
selected a sample of about 200,000 returns using Poisson sampling (Henry
et al. 2008). Because people file returns for a particular tax year over an entire
calendar year (and often beyond), the Poisson method allows the sampling
to be done on a flow basis throughout the year rather than waiting until all
returns are filed.

A typical implementation of Poisson sampling is to divide the population
into groups. All units in a group are assigned the same selection probability. In
this case, the sampling method in each group is called Bernoulli sampling. As
shown in Särndal et al. (1992), conditional on the sample size in each group,
the sample can be treated as if it were selected using stsrswor. Consequently,
the sample size analyses for stratified simple random sampling can be used.
The sample size found for each stratum would be set equal to the expected
size under Bernoulli sampling. This would, in turn, determine the probability
to be used for each unit in a group because E (nh) = Nhπh where Nh is the
frame count in stratum h and πh is the common selection probability for
units in the stratum.

3.4 Estimating Population Parameters from a Sample

The sample size formulae in Sects. 3.1 and 3.2 all involve population param-
eters. These must be estimated from a previous sample or from a secondary
data set. If the previous sample was selected in the same way as the planned



3.4 Estimating Population Parameters from a Sample 65

sample, estimation is straightforward. If a different type of sample is planned
from the earlier one, things are more complicated.

First, suppose that the earlier sample, s0, was an srswor of size n0. The
unbiased estimators of ȳU =

∑N
i=1 yi /N and S2 =

∑N
i=1 (yi − ȳU )

2 /(N − 1)
are then defined as

ȳs0 =
∑
i∈s0

yi /n0 and

Ŝ2 =
∑
s0

(yi − ȳs0)
2
/(n0 − 1) .

In the special case of a binary variable, ȳs0 reduces to the sample proportion
p0 and Ŝ2 = n0p0 (1− p0) /(n0 − 1) . If the planned sample is to be stratified,
stratum variances must be estimated. Since s0 is an srswor, the set of sample
units in any domain (e.g., a stratum) is an equal probability sample from the
domain. The number of sample cases in the domain is random, but there is an
inferential argument that allows us to condition on the number units actually
observed in each domain. As long as the achieved sample size is greater than
1, we estimate the mean and variance in a stratum h as

ȳs0h =
∑
i∈s0h

yi /n0h and

Ŝ2
h =

∑
i∈s0h

(yi − ȳs0h)
2
/(n0h − 1) ,

where s0h is the set of n0h sample units in stratum h from the earlier study.
If y is binary, we have similar reductions to those above: ȳs0h = ps0h and
s2h = n0hp0h (1− p0h) /(n0h − 1).

In some cases, we will have no microdata but an estimate of variance,
v (ȳs0), (or its square root) may be published. Assuming again that s0 was
an srswor of size n0, the unit variance can be estimated as

Ŝ2 =
n0v (ȳs0)

1− f0
,

where f0 = n0 /N . If the previous sample was more complex than srswor but
we have a design effect for the estimated mean, ˆ̄y, then

Ŝ2 =
n0v
(
ˆ̄y
)

1− f0

1

deff
(
ˆ̄y
) , (3.40)

where deff
(
ˆ̄y
)
is the design effect for ˆ̄y. This assumes that the deff refers to

without-replacement sampling. To approximate f0 = n0 /N , we may have
to either estimate N with N̂ =

∑
i∈s0

wi or get the information from some
published, secondary source. If the sampling fraction in the earlier survey is
negligible or the published deff uses an srswr variance in its denominator,
then just set f0 = 0.
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Now, consider the case where a pps sample of size n was selected using
MOS’s {pi}Ni=1. Even though s0 was probably selected without replacement,
the standard work-around is to treat the design as if it was ppswr. The esti-
mate of the parameter V1 in Eq. (3.32) is

V̂1 =
1

n− 1

∑
s0

(
yi
pi

− 1

n

∑
s0

yi
pi

)2

(3.41)

=
n2

n− 1

∑
s0

(
wiyi − 1

n

∑
s0

wiyi

)2

,

where wi = (npi)
−1

. If the plan is to select the new sample with another

set of probabilities {qi}Ni=1, then the new V1 can still be estimated. The new
V1 is

V1 =
∑
U

qi

(
yi
qi

− tU

)2

=
∑
U

y2i
qi

− t2U . (3.42)

The term
∑

U y2i /qi is a population total and can be estimated by
n−1

∑
s0
y2i /(qipi) . An unbiased estimator of Eq. (3.42) is

V̂1 =
1

n

∑
s0

y2i
qipi

−
(
1

n

∑
s0

yi
pi

)2

+ v
(
t̂π
)

(3.43)

where v
(
t̂π
)
is the estimated variance of t̂π = n−1

∑
s0
yi /pi . The third

term on the right-hand side of Eq. (3.43) is a bias-correction term that will
often be negligible compared to the other terms. The theory behind these
estimators can be found in Särndal et al. (1992, Result 2.9.1). One problem
with Eq. (3.43) is that it can be negative, which is, of course, impossible for
a population variance. This predicament is more likely to happen in small
samples than in large ones.

If s0 is selected with varying probabilities (not necessarily pps) and the
inverse selection probabilities are {wi}i∈s0

, the unit variance parameter can
also be estimated approximately as

Ŝ2 =
n

n− 1

∑
s0
wi (yi − ȳw)

2

∑
s0
wi − 1

, (3.44)

where ȳw =
∑

s0
wiyi

/∑
s0
wi . This expression also applies to estimating the

stratum population variance, S2
h, based on the sample s0h. The estimator Ŝ2

does have a negative bias, although the problem will be an issue only in small
samples.
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Example 3.16 (Estimating unit variance for ppswr sampling). A sample of 20
from the hospital population was selected with probability proportional to
the number of hospital beds (xi), pp (x), in order to estimate the average
number of discharges (yi). The data are listed in Table 3.5. We compute
V̂
(
ˆ̄ypwr

) ≡ V̂1

/(
N2n

)
for the pp(x ) sample of size n = 20 from a total of

N = 393 hospitals. The probabilities of inclusion, πi = npi, are calculated
with pi = xi /

∑
U xi where

∑
U xi = 107, 956. The weights are calculated as

the inverse of the πi’s, i.e., wi = (npi)
−1

.
The estimate ˆ̄ypwr is calculated as 813.1. To estimate the sample variance of

the pwr -estimator, we first calculate V̂1 in Eq. (3.41) as V̂1 = 11, 001, 669, 955.
Substituting this value into the V̂

(
ˆ̄ypwr

)
formula (3.32), we have

v
(
ˆ̄ypwr

) ≡ 11, 001, 669, 955

3932 × 20
= 3561.587

and a CV estimate of 0.073.
Now, suppose that we plan to select a future sample with probabilities

proportional to the square root of beds. Estimator (3.43) applies with qi =√
xi

/∑
U

√
xi and pi = xi /

∑
U xi :

V̂1 =
1

n

(∑
U

√
xi

)∑
s0

y2i√
xipi

−
(
1

n

∑
s0

yi
pi

)2

+ v
(
ˆ̄ypwr

)

=
5992.3

20
410, 727, 850− 319, 5452 + 3, 561.62

= 20, 950, 895, 199,

which, in a sample of n = 20, would lead to an anticipated CV for either the
total or the mean of

√
20, 950, 895, 199 /20 /319, 545 = 0.101.

Table 3.5: Sample data for 20 hospitals selected with probabilities proportional to
the number of hospital beds.

Population Discharges Beds Population Discharges Beds

ID yi xi ID yi xi

76 244 70 320 1,239 472

155 402 160 321 1,258 474

192 732 227 329 1,657 498

200 925 235 354 2,116 562

228 632 275 360 1,326 584

243 557 300 369 1,606 635

253 1,226 310 373 1,707 670

289 896 378 376 2,089 712

297 2,190 400 378 1,283 760

315 1,948 461 381 1,239 816

�
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Example 3.17 (Estimating unit variance for srswor sampling). Continuing
the previous example, suppose that we consider selecting an srswor from
the hospital population and using the sample mean for discharges as the esti-
mator. The sample size required to hit a specified CV is in expression (3.4).
Thus, we need to estimate the unit variance S2 using Eq. (3.44). Evaluat-
ing this with the data for the ten sample hospitals in Table 3.5, we obtain
Ŝ2 = 20

19134, 350, 622 /341.478 = 414, 145.8. The anticipated CV for mean

discharges in a sample of 20 is then
√
(1− 20 /393) 414, 145.8 /20 /813.1 =

0.172. �
In these examples, either pp (x) or pp (

√
x) sampling together with the

π-estimator is more efficient than srswor because of the strong relationship
between discharges and beds. Using a regression estimator as in Sect. 3.2.2, in
conjunction with pp (x), is likely to be even more efficient. A word of caution
is in order, though. The estimates of the unit variances, V1 and S2, are
themselves variable. Another sample s0 of n = 20 may yield estimates that
are different, and possibly quite different, from the ones above. Exercise 3.13
asks that you select several samples from the hospital population to get a feel
for this.

3.5 Special Topics

Some specialized but nonetheless practical topics are sampling rare popula-
tions and making estimates for domains.

3.5.1 Rare Characteristics

Some analysts will be especially interested in estimating the occurrence of
rare characteristics, like the prevalence of certain types of diseases or other
unusual health conditions. Examples are the proportion of persons who have
had a myocardial infarction in a given year or in their lifetimes, the proportion
of the population that is blind, and the proportion of children with deficient
blood iron levels. The rarer a characteristic is, the more difficult it will be
to select a sample that will give reliable estimates. In fact, there may be a
sizeable chance that a sample has no cases at all with the rare characteristic.

If pU is the proportion that have a trait and selections are independent,
the probability of obtaining no cases, i.e., ones that have the trait, in a sample
of size n is (1− pU )

n. This calculation is appropriate for a simple random
sample selected with replacement (srswr). If we want this probability to be
no more than α, then the inequality

(1− pU )
n ≤ α
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can be solved for the sample size to give

n ≥ log (α)

log (1− pU )
. (3.45)

(The inequality reverses since log (1− pU ) is negative.) Table 3.6 below shows
that sample sizes and expected numbers of cases in the sample for α = 0.05
and 0.01 for a range of values of the population prevalence. For extremely
rare characteristics, like pU = 1 /100, 000 which is about the prevalence of
Addison’s disease, a sample of nearly 300,000 would be needed to have only
a probability of 0.05 of not observing a case. Even with that size of sample,
the expected number of sample cases is only 3, which is not enough to be
worth analyzing.

Table 3.6: Sample sizes and expected numbers of cases with a rare characteristic.

α pU n npU

0.05 0.10 28 2.8

0.05 58 2.9

0.03 98 3.0

0.01 298 3.0

0.005 598 3.0

0.0001 29,956 3.0

0.00001 299,572 3.0

0.01 0.10 44 4.4

0.05 90 4.5

0.03 151 4.5

0.01 458 4.6

0.005 919 4.6

0.0001 46,049 4.6

0.00001 460,515 4.6

A related problem is how to put a confidence bound on a proportion when
very few sample cases are observed to have the characteristic. Cochran (1977,
Sect. 3.6, Example 3) examines this problem using a hypergeometric distribu-
tion. In a population with N units, of which A have some rare characteristic,
e.g., an error in an audit of accounts, the probability that no units with the
characteristic are found in a sample of size n is

(
N−A

n

)
(
N
n

) =
(N −A) (N −A− 1) · · · (N −A− n+ 1)

(N − 1) (N − 2) · · · (N − n+ 1)

.
=

(
N −A− u

N − u

)n

,

where u = (n− 1) /2. For N = 1, 000, n = 200, and A = 10, this
approximation gives 0.107. That is, if the error rate is A /N = 0.01, the
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probability of observing no errors in a sample of 200 is 0.107. Thus, we
take A = 10 as the upper 90% confidence limit on the number of actual
errors. Jovanovic and Levy (1997) cover an interesting method known as the
“rule of three” which derives from the formula (1− pU )

n ≤ α that led to
Eq. (3.45). Setting this expression equal to α gives a kind of upper bound
on how large pU can be. Solving for pU gives pU = 1 − α1/n . A Taylor
series expansion (see Sect. 15.3 for details on this type of expansion) gives

α1/n = 1 + ln (α) /n − [ln (α)]
2 /(

2n2
)
+ · · · . Retaining the first two terms

gives the upper bound on pU as

pU
.
= − ln (α) /n .

When α = 0.05, − ln (α)
.
= 3, which implies that a 95% upper confidence

bound on pU is about 3 /n . This is a handy rule of thumb for getting a quick
bound on the proportion. Korn and Graubard (1998) and Kott and Liu (2009)
deal with several, additional alternative methods.

For extremely rare traits, unrestricted random sampling is seldom a good
idea. Large sample sizes may be needed to get acceptable precision for full
population estimates. The problem is compounded if estimates for subgroups,
like ones defined by age, gender, and region, are desired. Kalton (1993) gives
a thorough review of the options that might be used for sampling. He distin-
guishes among rare characteristics, rare populations, mobile populations, pop-
ulation flows, and elusive populations. Stratification, use of multiple frames,
multiplicity sampling, and two-phase sampling are some of the techniques
available. We will touch on two-phase sampling in Chap. 17.

3.5.2 Domain Estimates

Most multipurpose surveys make separate estimates for domains or subpop-
ulations. Kish (1987a) offered the following taxonomy of domains:

1. Design domains: subpopulations that are restricted to specific strata (e.g.,
Ontario in a survey in Canada where provinces are strata)

2. Cross-classes: groups that are broadly distributed across the strata and
primary sampling units (PSUs) (e.g., African-Americans over the age of
50 in the USA)

3. Mixed classes: groups that are disproportionately distributed across the
complex sample design (e.g., Hispanics in a sample that includes Los
Angeles, an area with a large Hispanic population, as a geographical
stratum)

A goal of some surveys is to sample a few domains at higher rates than they
occur in the population. This is known as oversampling. If, for example, we
want equal size samples of Whites and African-Americans in a household sur-
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vey in the USA, we will have to sample the latter at a much higher rate than
the former because Whites are a much larger proportion of the population.

A legitimate question is, If domains are going to be important for analysts,
why not make each domain a design stratum so that the sample size in each
can be controlled? There are a few reasons why this cannot always be done.
First, the frame may not give domain membership for all units in advance of
sampling (e.g., adults looking for work). Second, using the domains for strata
may be impractical. The domains may not be disjoint. For example, we may
want to analyze persons in domains defined by gender and race/ethnicity.
Strata that account for both factors would have to be defined by the cross-
classification of gender × race/ethnicity. When many domains are of analytic
interest, the complete cross of all of them could be too cumbersome to use
as individual strata.

In cases where the domain identifiers are available on the frame but explicit
strata using all domains are not formed, practitioners often try to ensure rep-
resentation of each by using systematic sampling. In our simple example, the
frame might be sorted by gender and then by race/ethnicity within gender.
A systematic, equal probability sample would be distributed by gender and
race/ethnicity much like the population. This method would usually elimi-
nate samples that are poorly distributed among the domains but would not
oversample any domain.

Any time an analyst does a cross-tabulation, the cells in the table hold
domain estimates. Thus, making domain estimates is a standard step in ana-
lyzing survey data. In a military personnel survey, for example, design strata
might be branch of the service crossed with pay grade, while a domain could
be the set of personnel who were stationed overseas at any time during the
last 5 years. In a telephone survey of households, domains might be the groups
of persons who report that they have a college degree or have had their homes
burglarized in the last year. There can also be unintended reasons for an esti-
mate to be treated as one for a domain. If a frame contains ineligible units,
e.g., a business frame that has out-of-business listings, then the eligible units
are a domain.

A key feature of the domain estimation problem is that domain member-
ship for cross-classes and mixed classes is often not determined until data
are collected. In such cases, the number of sample units in a domain is ran-
dom and the total number of domain members in the population is typically
unknown. This results in estimated domain means being constructed as the
ratio of an estimated total divided by an estimate of the number of domain
units in the population. Such ratio estimators require approximate methods
for variance estimation described below.

In designing a sample to adequately cover the domains that are to be
analyzed, there are two options. One is to calculate the expected numbers of
units that will occur in the sample in each domain for a particular total sample
size. The total sample size is then made large enough so that, in expectation,
the key domains of interest will be adequately represented. For example,
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according to the 2006 NHIS, about 14.8% of persons did not have any type of
health insurance at the time of the interview.7 If an equal probability sample
of persons were selected and 1,000 persons were desired in the uninsured
domain, we would need a sample of about 6,760 (= 1,000/0.148) to get 1,000
in expectation. There will, of course, be some sample variation in the number
actually obtained. So, it would be prudent to select more than 6,760 to be safe.

The second option would be to select a two-phase sample, which we cover in
Chap. 17. In the first phase, screening questions are administered to determine
domain membership. At the second phase, units are subsampled at rates
designed to obtain specified domain sample sizes. The subsampling rates will
vary among the domains. Ideally, using a second phase allows the counts from
the first phase to be tabulated before setting the second-phase rates. Having
this flexibility allows much better control over the achieved sample sizes than
does single-phase selection. In some surveys with tight time schedules, this
advantage is diluted a bit because second-phase rates have to be set based
on partial data from the first phase. Even in this case, two-phase sampling
can be effective in controlling sample sizes for domains.

Suppose that a simple random sample is selected without replacement and
that domain membership is unknown before sampling is done. The estimate
of a domain total for a variable y is t̂d = (N /n )

∑
s ydi where ydi is the value

of the variable for a unit if it is in domain d and is 0 if the unit is not in the
domain. This can also be written as ydi = yiδi with δi = 1 if unit i is in the
domain and 0 if not. The variance of t̂d is

V
(
t̂d
)
=

N2

n

(
1− n

N

)
S2,

where the unit variance is calculated including the zeros for non-domain units.
The unit variance can be rewritten as S2 .

= Pd

(
S2
d +Qdȳ

2
Ud

)
where S2

d is the
variance among units that are in the domain, ȳUd is the population mean for
those units, Pd = Nd /N is the proportion of units in the population that are
in the domain, and Qd = 1−Pd (see Hansen et al. 1953a, Sect. 4.10; Cochran
1977, Sect. 2.11). Using this version of S2, the relvariance of t̂d is

CV2
(
t̂d
) .
=

1

n

(
1− n

N

) CV 2
d +Qd

Pd
, (3.46)

where CV 2
d = S2

d

/
ȳ2Ud is the unit relvariance among the domain units. Setting

Eq. (3.46) equal to a target value CV 2
0 and solving for n gives

n =
CV 2

d +Qd

PdCV 2
0 +

CV 2
d +Qd

N

.
=

CV 2
d +Qd

PdCV 2
0

. (3.47)

7 http://www.cdc.gov/nchs/data/nhis/earlyrelease/200706 01.pdf.

http://www.cdc.gov/nchs/data/nhis/earlyrelease/200706_01.pdf
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The approximation comes from assuming that the population size N is large.
Notice that Eq. (3.47) reduces to the earlier formula (3.4) for a full population
estimate when Pd = 1.

If the mean per domain unit is estimated, the required sample size is
similar, but an approximate variance is needed. Suppose that the mean is

estimated by ˆ̄yd = t̂d

/
N̂d where N̂d = Nnd /n . Linearly approximating ˆ̄yd

leads to

ˆ̄yd − ȳUd
.
=

1

Nd
Nēs,

where ēs =
∑

s ei/n with ei = δi (yi − ȳUd). The approximate variance is
then

V
(
ˆ̄yd
) .
=

1

N2
d

N2

n

(
1− n

N

)
S2
e

with S2
e = (N − 1)−1∑

U e2i . Since ei = yi − ȳUd for units in the domain

ei = 0 for non-domain units, S2
e = (N − 1)

−1∑
Ud

(yi − ȳUd)
2 .
= PdS

2
d . The

relvariance of ˆ̄yd is then

CV2
(
ˆ̄yd
) .
=

1

nPd

(
1− n

N

)
CV 2

d .

Setting this equal to CV 2
0 and solving for n gives

n =
CV 2

d

PdCV 2
0 +

CV 2
d

N

.
=

CV 2
d

PdCV 2
0

. (3.48)

This sample size for estimating a mean can be substantially smaller than the
one in Eq. (3.47) for estimating the domain total as illustrated in Table 3.7.
For a small domain with unit relvariance of 1 (CV 2

d = 1) an srs of 15,600 is
required to obtain a CV for the estimated total of 0.05. However, a sample
of 8,000 is needed to estimate the mean with a CV of 0.05. As the domain
becomes more prevalent, i.e., Pd becomes larger, the sample sizes for totals
and means become closer together.

Table 3.7: Sizes of simple random samples required
to achieve a CV of 0.05 for estimated domain totals
and means for different sizes of domains.

Pd n for total n for mean

0.05 15,600 8,000

0.25 2,800 1,600

0.50 1,200 800

0.75 667 533

1.00 400 400

The population size is assumed to be large;
domain relvariance is CV 2

d = 1.
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Next, consider an stsrswor sample. The estimated mean for a domain
is again defined as the estimated total for the domain (t̂d) divided by an
estimate of the number of units in the domain (N̂d), i.e.,

ˆ̄yd =

∑
h

∑
i∈sdh

whiyhi∑
h

∑
i∈sdh

whi
≡ T̂d

N̂d

,

where whi is the sampling weight for unit hi and sdh is the set of sample units
in stratum h that are also members of domain d. In stsrswor the weight for
a unit in stratum h is whi = Nh /nh . Consequently, the domain mean can be
specialized to

ˆ̄yd =

∑
hWhpdhȳd,sh∑

h Whpdh
,

where pdh = ndh /nh and ȳd,sh =
∑

sdh
yhi /ndh with ndh reflecting the

number in the set sdh of sample units in domain d within stratum h. The
approximate variance of ˆ̄yd (see Cochran, 1977, Sect. 5A.14) is

AV
(
ˆ̄yd
)
=

1

P 2
d

∑
h

W 2
h

nh

(
1− nh

Nh

)[
Ndh − 1

Nh − 1
S2
dh (3.49)

+
Ndh

Nh − 1

(
1− Ndh

Nh

)
(ȳUdh

− ȳUd
)2
]
,

where Pd = Nd /N is the proportion of units in the domain in the whole
population, Pdh = Ndh /Nh is the proportion in stratum h, Qdh = 1 − Pdh,
ȳUdh

=
∑

i∈Udh
yhi /Ndh , Udh is the population of domain units in stratum

h, ȳUd
=
∑

h,Udh
yhi /Nd , and S2

dh =
∑

i∈Udh
(yhi − ȳUdh

)
2
/(Ndh − 1) is the

variance among units in stratum h that are in the domain.
If the sample proportion of units in the domain, ndh /nh , is about the

same as the population proportion, Pdh, then the approximate variance can
be written more suggestively as

AV
(
ˆ̄yd
) .
=
∑
h

(
Pdh

Pd

)2
W 2

h

ndh

(
1− nh

Nh

)[
S2
dh +Qdh (ȳUdh

− ȳUd
)
2
]
. (3.50)

When the domain is spread evenly over the strata so that Pdh
.
= Pd (i.e.,

a uniformly distributed cross-class), this formula can be roughly interpreted
as the sum of (i) the variance that would be obtained if we knew domain
membership in advance and sampled a fixed number of domain units directly
and (ii) a contribution due to the difference in the domain means among
the strata. For the purpose of determining sample size, Eq. (3.50) is difficult
to use. If ndh

.
= nhPdh, this can be substituted in Eq. (3.50) to obtain an

expression that depends only on the nh’s. The methods of allocating sam-
ples to strata covered in Sect. 3.1.2 can then be used by replacing S2

h with

S∗2
h = Pdh

P 2
d

[
S2
dh +Qdh (ȳUdh

− ȳUd
)2
]
. To use this substitution, quite a bit
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of information is needed—the proportion of units in each stratum that is in
the domain, the stratum variance among the domain units, and the mean
per domain unit in each stratum. Thus, estimates of many population values
are needed in advance of sampling. Alternatively, two-phase methods are a
sound way of approximately controlling the sample sizes in domains. These
methods do require special variance estimation methods to be covered later.

The formulas above do simplify if a domain consists of one or more design
strata in their entirety, i.e., a design domain listed at the beginning of this
section. In that case, pdh = Pdh = 1 for strata in the domain and 0 otherwise.
The domain mean in stsrswor specializes to

ˆ̄yd =

∑
h∈Sd

Whȳh∑
h∈Sd

Wh
,

where Sd is the set of strata that are in the domain and Nd =
∑

h∈Sd
Nh.

Since Pdh = 1, the variance in Eq. (3.50) becomes

V
(
ˆ̄yd
)
=

1

N2
d

∑
h∈Sd

N2
h

nh

(
1− nh

Nh

)
S2
h . (3.51)

In other words, the variance depends only on the contributions from the
strata that are in the domain. In this case, a sample estimate of the variance
in Eq. (3.51) is easily constructed by substituting s2h for S2

h as long as Nd is
known. The allocation to individual strata can be directly controlled so that
desired levels of precision can be achieved in different strata.

3.6 More Discussion of Design Effects

Design effects can be used to adjust a sample size computed for a single-
stage sample to, at least, approximate the size needed in a more complicated
sample. The deff for some estimator θ̂ is defined as

deff
(
θ̂
)
=

V
(
θ̂
)

Vsrs

(
θ̂
) ,

where V denotes variance under whatever sample design is used (stratified,
clustered, etc.) and Vsrs is the srs variance of the srs estimator of the same
population parameter. This notation is a bit imprecise because the estimate
θ̂ is probably not computed in the same way in a simple random sample and
in a more complex sample. If n is calculated using a simple random sampling
formula, then n× deff is the sample size needed in the more complex design
to achieve the same variance as the simple random sample.
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In some designs this is a fairly crude calculation. For example, in a two-
stage design in which clusters and elements within clusters are sampled, n×
deff tells you nothing about how many clusters and elements per cluster
should be sampled for an efficient allocation. In fact, the deff will not apply
unless the new sample has the same numbers of clusters and elements per
cluster as the one used to compute the deff.

If a deff is obtained from a software package, it is important to under-
stand how the deff is computed. For example, SUDAAN (RTI International
2012) provides four different design effects that account for some or all of
the effects of stratification, clustering, unequal weighting, and oversampling
of subgroups. These may be informative after a sample has been selected to
gauge the contribution to variance of the different factors. One of the most
basic things to understand is whether the srs variance in the denominator
of the deff is computed using a with-replacement or without-replacement
formula. When the sampling fraction is large, these can be quite different.
Often the sample that can be afforded is a small part of the population, so
that srswr is the appropriate choice for the denominator.

However, deff ’s from a previous survey may not be that useful when plan-
ning a new survey. You may not be repeating the same type of design for
which the software computed deff ’s. The strata and cluster definitions may
be different. The desired sample sizes for subgroups may be different. The
method of weighting (e.g., nonresponse adjustments and use of auxiliary data)
that you will use may be different. If a new design will depart substantially
from an old, the sample size methods in the following chapters that explicitly
consider the effects of strata, precision goals for subgroups, variance com-
ponents for multistage designs, and other design features should give more
useful answers than simple deff adjustments.

3.7 Software for Sample Selection

In the past, a survey organization had to rely on computer programs devel-
oped by its own staff to draw the random samples. Thankfully, software is
now available for this purpose, thus allowing statisticians more time for the
design phase of the study. We review several functions for two of the software
packages in the subsequent sections—R and SAS.

3.7.1 R Packages

The following is a list of some of the currently available R sampling functions
grouped by package:
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Package Function Description

base sample Select srswr or srswor samples

pps ppss Systematic ppswor sampling

ppssstrat Stratified ppswor systematic sampling

ppswr pps sampling with replacement

stratsrs stsrswor

sampling cluster Single-stage cluster sampling

srswor Select srswor samples

srswr Select srswr samples

strata Select stsrswor, stsrswr, Poisson, and sys-
tematic samples

UPrandomsystematic Systematic ppswor sampling after ran-
domizing the order of the list

UPsampford Sampford’s method of ppswor

For example, the function srswor(n,N) returns a sequence of zeros and
ones where a one indicates the n units randomly selected without replacement
from an ordered list of N units. pps (Gambino 2005), sampling (Tillé
and Matei 2012), and samplingbook (Manitz 2012) packages offer other
functions, not shown above, for selecting unequal probability samples.

Updates to the software, including new functions and new features for
current functions, are made available through the R web site. User-defined
functions are easily created as discussed in this and other chapters—see
Appendix C for a complete list of author-defined R functions used in this
text.

Example 3.18. [Select a stratified sample (stsrswor)]. We wish to select ten
hospitals from each of the six strata in the smho98 data file using the R
function strata from the sampling package. The following code illustrates
how to import a SAS transport file (smho.xpt), create a new variable called
stratum6 in the population object, and select an stsrswor using strata.

When reading data and doing specialized calculations, like creating the
stratum6 variable, it is always wise to check your work by looking at the
contents and size of the data file and tabulating summaries of derived vari-
ables. We show some of these steps in Examples 3.18 and 3.19 but will omit
them from most other examples in this book. However, the reader should
bear in mind that thorough checking is critical to doing high-quality work:

# Load R libraries
require(foreign)
require(sampling)

# Random seed for sample selection
set.seed(82841)

# Load SAS transport file and examine
smho98 <- read.xport("smho98.xpt")
dim(smho98)

[1] 875 378
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smho98[1:5,1:5]
STRATUM BEDS EXPTOTAL SEENCNT EOYCNT

1 1 81 9066430 1791 184
2 1 80 9853392 1870 244
3 1 26 3906074 1273 0
4 1 90 9853392 1781 154
5 1 71 9853392 1839 206

# Create 6-level stratum variable and verify
smho98$stratum6 <- 0
smho98[( 1<=smho98$STRATUM & smho98$STRATUM<=2), "stratum6"] <- 1
smho98[( 3<=smho98$STRATUM & smho98$STRATUM<=4), "stratum6"] <- 2
smho98[( 5<=smho98$STRATUM & smho98$STRATUM<=8), "stratum6"] <- 3
smho98[( 9<=smho98$STRATUM & smho98$STRATUM<=10),"stratum6"] <- 4
smho98[(11<=smho98$STRATUM & smho98$STRATUM<=13),"stratum6"] <- 5
smho98[(14<=smho98$STRATUM & smho98$STRATUM<=16),"stratum6"] <- 6

table(smho98$stratum6,smho98$STRATUM)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 151 64 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 43 22 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 150 23 65 14 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 38 12 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0 13 77 59 0 0 0
6 0 0 0 0 0 0 0 0 0 0 0 0 0 86 39 19

table(smho98$stratum6)
1 2 3 4 5 6

215 65 252 50 149 144

# Select 10 units by srswor per stratum
smp.IDs <- strata(data = smho98,

stratanames = "stratum6",
size = rep(10,6),
method = "srswor")

# Pull sampled records and verify sample counts
sample1 <- getdata(smho98,smp.IDs)
table(sample1$stratum6)

1 2 3 4 5 6
10 10 10 10 10 10

�

Warning. A potentially confusing “feature” of R is that different pack-
ages may use the same names for functions that do different things. In
Example 3.18, we used the function, strata, from the sampling pack-
age to select an stsrswor. The survival package (Therneau 2012) also has
a strata function which does something different. Note, survival may
be loaded without you realizing it because it is used by other packages like
doBy (Højsgaard and Halekoh 2012), which we use in later chapters. If the
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survival package is loaded before the sampling package and you try to
select a stratified sample, an error is likely to occur because R will use the
wrong strata. If so, check the order in which R searches files and pack-
ages with search(). If necessary, detach survival with the command
detach("package:survival").

Example 3.19 (Select a stratified pps sample). A sample of 50 hospitals is
required for a study of institutions listed on the smho98 data file. Instead of
selecting an stsrswor as in Example 3.17, we will instead select a pps sample
within five design strata with a size measure defined as the square root of
the bed size, i.e., pp (

√
x) discussed in Sect. 3.5.2. We will use the R function

ppssstrat from the pps package to draw a (approximate) proportional
sample within strata. The round function is used to eliminate the fractional
sample sizes for convenience, hence the use of “approximate” in our discussion.
Because outpatient facilities are not included in the target population, all
hospitals with zero beds are excluded from the list frame prior to drawing
the sample as shown in the code below:

# Load R libraries
require(foreign)
require(pps)

# Random seed for sample selection
set.seed(4297005)

# Load SAS transport file
smho98 <- read.xport("smho98.xpt")
dim(smho98)
[1] 875 378

# Eliminate outpatient facilities
smho98 <- smho98[smho98$BEDS > 0,]
dim(smho98)
[1] 671 378

# Create 5-level stratum variable and verify
smho98$stratum5 <- 0
smho98[( 1<=smho98$STRATUM & smho98$STRATUM<=2), "stratum5"] <- 1
smho98[( 3<=smho98$STRATUM & smho98$STRATUM<=4), "stratum5"] <- 2
smho98[( 5<=smho98$STRATUM & smho98$STRATUM<=8), "stratum5"] <- 3
smho98[( 9<=smho98$STRATUM & smho98$STRATUM<=13),"stratum5"] <- 4
smho98[(14<=smho98$STRATUM & smho98$STRATUM<=16),"stratum5"] <- 5
table(smho98$stratum5)

1 2 3 4 5
215 64 216 44 132

# Create size measure
smho98$sqrt.Beds <- sqrt(smho98$BEDS)

# Approx. proportional sample sizes
smp.size <- 50
(strat.cts <- as.numeric(table(smho98$stratum5)))
[1] 215 64 216 44 132
(strat.ps <- strat.cts / sum(strat.cts))
[1] 0.32041729 0.09538003 0.32190760 0.06557377 0.19672131
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# Verify stratum proportions sum to one
sum(strat.ps)
[1] 1

# Stratum sample sizes
smp.size.h <- round(strat.ps * smp.size,0)
[1] 16 5 16 3 10
sum(smp.size.h)
[1] 50

# Sort data file by sampling strata and select samples
smho98 <- smho98[order(smho98$stratum5),]
smp.IDs <- ppssstrat(sizes = smho98$sqrt.Beds,

strat = smho98$stratum5,
n = smp.size.h)

# Verify no duplicates in sample
length(smp.IDs)
[1] 50
length(unique(smp.IDs))
[1] 50

# Subset to sampled records
smp.data <- smho98[smp.IDs,]
table(smp.data$stratum5)
1 2 3 4 5

16 5 16 3 10

Two points to note are that ppssstrat selects a systematic sample from
the stratum frame without doing any ordering within strata. If you want to
randomize the order within strata, use the function permuteinstrata in
the pps package. Also, exactly the same sample can be selected with strata
from the sampling package with the code:

require(sampling)
# Random seed for sample selection

set.seed(4297005)
sam <- strata(data = smho98,

stratanames = "stratum5",
size = smp.size.h,
method = "systematic",
pik = smho98$sqrt.Beds)

�
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3.7.2 SAS PROC SURVEYSELECT

The statistical software SAS includes a procedure called SURVEYSELECT8

that selects random samples given a specified method. The general syntax
for the procedure is

PROC SURVEYSELECT DATA=<input data file> METHOD=<method> ...;
STRATA <variables> / ... > ;
CONTROL <variables>;
SIZE <variables>;
ID <variables>;

For example, METHOD=SRS will produce an srswor sample from the input
data file. Including a STRATA variable will result in srswor samples within
explicit strata, i.e., an stsrswor sample. Implicit strata (i.e., sorting vari-
ables) are identified with the CONTROL statement. Single-stage systematic
samples can be selected with METHOD=SYS. pps samples is selected with
replacement using METHOD=PPS. Some specialized pps sampling procedures
(Brewer, Murthy, Sampford, and Chromy) are also included, but we will not
cover them in this book. An interested reader can consult Cochran (1977)
and Chromy (1979) for details of these methods.

Note that SURVEYSELECT selects samples only within a particular stage
of a design. The code must be adapted and run for each stage of a multistage
design as discussed later in Chaps. 9 and 10.

Example 3.20 (Select stsrswor with SAS). In this example, we reproduce the
results for Example 3.18 using SAS PROC SURVEYSELECT. As with the R
program in Example 3.18, the first step is to read in the SAS transport file.
Here, we additionally assign a unique identification number to each hospital
record:

*Load SAS Transport Data File;
LIBNAME inxp xport "... \smho98.xpt";
DATA SMHO98(KEEP=STRATUM HospID BEDS);

SET inxp.SMHO98;
HospID = _n_;

RUN;

After creating the stratum variable with values 1–6, the stsrswor is
selected using

PROC SURVEYSELECT DATA=SMHO98 OUT=SampData
METHOD=SRS SAMPSIZE = (10 10 10 10 10 10) SEED=82841;

STRATA stratum6;
RUN;

The output data file, SampData, contains one record for each of the 60
randomly sampled hospitals, all variables included on the smho98 input data
file and two additional variables:

8 http://support.sas.com/documentation/.

http://support.sas.com/documentation/
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1. SelectionProb—the probability of selection into the sample
2. SamplingWeight—the sampling weight calculated as the inverse selec-

tion probability

The sampling weight is also referred to as the design weight or the base weight.
Note that the R function strata discussed in Example 3.18 does not produce
a sampling weight. Details on calculating the weights for a variety of sample
designs can be found in Chaps. 13 and 14. �

Example 3.21 (Select a stratified pps sample with SAS). A pp (
√
x) sample

of 50 inpatient facilities was selected in Example 3.18 using the R function
ppssstrat after determining an approximate proportional allocation to five
design strata. The proportional allocation can be calculated with an initial
call to PROC SURVEYSELECT as shown in the SAS code below:

DATA SMHO98inp DROPCASE;
SET SMHO98;

* Eliminate outpatient facilities;
IF BEDS<1 THEN OUTPUT DROPCASE;
ELSE DO;

* Create 5-level stratum variable;
IF 1<=STRATUM<=2 THEN stratum5=1;
ELSE IF 3<=STRATUM<=4 THEN stratum5=2;
ELSE IF 5<=STRATUM<=8 THEN stratum5=3;
ELSE IF 9<=STRATUM<=13 THEN stratum5=4;
ELSE IF 14<=STRATUM<=16 THEN stratum5=5;

* Size measure;
sqrtBEDS = sqrt(BEDS);
OUTPUT SMHO98inp;

END;
RUN;

*Approx. proportional allocation;
PROC SURVEYSELECT DATA=SMHO98inp OUT=StratSiz N=50;

STRATA stratum5 / ALLOC=PROP NOSAMPLE;
RUN;

The output data file, StratSiz, contains the allocation for each of the five
design strata. Note that the values match those calculated “by hand” with
R in Example 3.18:

Stratum Sample

Size

1 16

2 5

3 16

4 3

5 10

50
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Because the nosample option was used, this procedure call only calculates
the stratum-specific sample sizes. The following code selects the sample of 50
inpatient hospitals:

PROC SURVEYSELECT DATA=SMHO98inp OUT=SampDat2
METHOD=PPS_SYS SAMPSIZE=StratSiz SEED=4297005;
STRATA stratum5;
SIZE sqrtBEDS;
ID HospID;

RUN;

�
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Exercises

3.1. According to the US Bureau of Labor Statistics, 71% of all workers in
private industry had access to employer-sponsored medical care plans, 52%
of all workers participated in medical care plans in March 2006, and 7%
of part-time workers participated in a vision care program (http://www.bls.
gov/ncs/ebs/sp/ebsm0004.pdf, Tables 1 and 2). Calculate the size of a simple
random sample of employees that would be needed to estimate each of these
proportions using the estimation targets in (a), (b), and (c).

(a) Coefficient of variation of 10%.
(b) Standard error of 3% points.
(c) MOE of 3% points.
(d) For each of the sample sizes you computed in (a), (b), and (c), what are

the anticipated half-widths of 95% confidence intervals? Use the normal
approximation with a multiplier of 1.96.

(e) Comment on the differences in sample sizes that result from the three
precision targets in (a), (b), and (c).

3.2. Explore the difference in setting a sample size based on a target for
a coefficient of variation of an estimated proportion and setting it based
on a target standard error. Assume that a simple random sample without
replacement is selected but that the population size is large so that the fpc
is negligible.

(a) Calculate CV (ps) and
√
V (ps) for a sample size of n = 100 for pU in

(0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.99).
(b) Graph the values of CV (ps) versus pU and

√
V (ps) versus pU .

(c) Discuss the differences in the relationships.

3.3. Suppose that the population is composed of 1,000 business establish-
ments. The mean number of full-time employees per establishment is 50. The
population variance of the number of full-time employees is 150.

(a) Compute the size of a simple random sample selected without replacement
that would be necessary to produce a CV of the sample mean of 5%.

(b) What if you anticipated that only 40% of the sample establishments
would respond to a request for data? How would that affect your sample
size calculation in (a)?

(c) Suppose that you conduct the survey and actually get a response rate of
35%. Would you expect the mean for the 35% that did respond to be a
good estimate of the population mean? Why or why not?

3.4. (a) Suppose that an investigator sets a desired tolerance e such that
Pr (|ȳs − ȳU | ≤ e) = 1− α. Assuming that ȳs can be treated as normally
distributed, show that this is equivalent to setting the half-width of a
100 (1− α)% two-sided confidence interval equal to e = z1−α/2

√
V (ȳs).

http://www.bls.gov/ncs/ebs/sp/ebsm0004.pdf
http://www.bls.gov/ncs/ebs/sp/ebsm0004.pdf


3.7 Software for Sample Selection 85

(b) If we require Pr
(∣∣∣ ȳs−ȳU

ȳU

∣∣∣ ≤ e
)

= 1 − α, show that this corresponds to

setting the half-width of a 100 (1− α)% two-sided confidence interval
equal to e = z1−α/2CV (ȳs).

3.5. Verify formula (3.12) for the sample size needed when a MOE e is set
for estimating a proportion.

3.6. Verify formula (3.17) for the required sample size derived from the MOE
calculation using the normal approximation for the log-odds of a proportion.

3.7. An investigator wants to estimate the prevalence of a characteristic that
is speculated to be rare. The investigator’s best guess is that the prevalence
is 2%. She would like to estimate the prevalence with a MOE of 0.005.

(a) What sample size is required?
(b) Since the investigator seems very uncertain about the actual prevalence,

what alternative calculations could you do to illustrate the effects of dif-
ferent sample sizes?

(c) Compare the results in (b) for the standard normal, the Wilson, and the
log-odds methods of computing sample sizes.

3.8. Compute the unit relvariances of:

(a) The variables beds and discharges in the hospital population
(b) The variables total expenditures (EXPTOTAL), number of inpatient beds

(BEDS), number of patients seen during 1998 (SEENCNT), the number of
clients on the roles at the end of 1998 (EOYCNT), and number of in patient
visits (Y IP) in the smho98 population

3.9. This problem uses the summary values for the population (smho98) of
mental health organizations in Table 3.2. Assume that an srswor will be
selected in each stratum. In all parts, round your computed sample sizes to
the nearest integer.

(a) Find the Neyman allocation of a sample size n = 115. Round the sample
sizes to the nearest integer. Calculate the total variable cost of this allo-
cation assuming variable costs per sample unit of 1,000, 400, 200, 1,000,
200, and 1,000 in the strata.

(b) Find the allocation that minimizes the variance of the estimated popula-
tion mean of total expenditures, assuming the variable costs in part (a)
and a total budget for variable costs of $80,000.

(c) Compute the coefficient of variation of ȳst for the allocations you found
in (a) and (b). Compare the results. Use rounded sample sizes for these
calculations.

(d) Suppose that your target for CV (ȳst) is 0.15 and that the cost structure
is the same as in part (a). Calculate the optimal allocation and the total
cost, C − c0, for that allocation.
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(e) What are the CV ’s for the individual estimated stratum means for your
allocations in parts (a), (b), and (d)? Comment on the results.

(f) Suppose that your government client would like to publish individual stra-
tum estimates but that the agency has an ironclad rule that an estimate
must have a CV of 0.30 or less to be publishable. Do any of your allo-
cations in (a), (b), and (d) satisfy this criterion? Find an allocation that
does meet the 0.30 CV criterion for all strata; compute its cost and the
CV it gives for the estimated population mean across all strata. How
would you discuss the trade-offs between this new allocation and those of
(a), (b), and (d) with the client?

(g) What are the design effects for ȳst for the allocations in parts (a), (b),
and (f)?

3.10. The number of inpatient visits (IPV’s) during a calendar year is the
variable Y IP on the smho98 file.

(a) Use the organizations with a positive number of IPV’s as the population
and determine the number of sample units needed to estimate the mean
IPV’s per organization with a CV of 0.10. Assume that the sample will
be selected with probability proportional to number of inpatient beds
(BEDS) and that ˆ̄yπ will be used. Determine which units should be take-
alls and the breakdown of the sample size by take-alls and non-take-alls.
Designate any unit with a selection probability of 0.8 or larger as a take-
all.

(b) Repeat part (a) with a CV target of 0.15.
(c) Now, suppose that you decide to use a regression estimator of the mean

number of discharges. Use a model with no intercept and with the square
root of beds and beds itself as predictors. If this model is correct, what
is the optimum MOS to use in a pps sample? What sample would be
required to obtain an anticipated CV of 0.10 with this regression estima-
tor and a sample selected with the optimal MOS?

(d) Explain any differences in the results for parts (a) and (c).

3.11. Show that Eq. (3.41) reduces to V̂1 = N2

n−1

∑
s0
(yi − ȳs0)

2
if the s0

sample is srswr of size n and the planned sample is to be an srswr. Hence,
V̂1

/
N2n = [n (n− 1)]

−1∑
s0
(yi − ȳs0)

2
.

3.12. Researchers at a health organization are interested in estimating the
number of discharges within the last 12months from hospitals specializing
in a new medical procedure (N = 393). The project budget was sufficient
to allow data collection at (n =) 50 hospitals. Based on prior research, the
project statistician selected a pps sample of size 50 using the number of
hospital beds as the MOS. The total number of beds tabulated from the list
sampling frame was 107,956. Data from all 50 sample hospitals is located in
the text file hosp50.csv. Data for number of beds for all 393 hospitals in
the frame are in the file hospital.txt or hospital.RData.
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(a) Calculate the design weights for the 50 sample hospitals. How might you
verify that the weights were calculated correctly? Show the verification.

(b) Estimate the average number of discharges based on the sample using the
π-estimator of the mean. Assume that the population count, N=393, is
known.

(c) Estimate the sample variance for your estimate in (b) using the formula
for with-replacement sampling.

(d) Estimate the 95% confidence interval for your estimate in (b). What
assumptions are you making when computing this confidence interval?

(e) Suppose you want to select a new sample with probabilities proportional
to the square root of beds. Estimate the appropriate V1 for this design.
How many sample hospitals would be needed to meet the target CV

(
ˆ̄yπ
)

= 0.15 with this design?

3.13. Select ten samples of size 20 from the hospital population using prob-
ability proportional to the number of beds as in Example 3.16. Calculate
the estimate V̂1 in Eq. (3.43) for the alternate MOS

√
xi from each sample.

Suppose that you set a target of CV0 = 0.10 for a new sample. What is the
range of anticipated sample sizes required to achieve this target? Suggest a
way of attempting to reflect the variability of the estimator of the variance
component V1 when determining the size of a new sample.

3.14. In preparation for an upcoming study, you have been asked to perform
sample size calculations using two separate analysis variables, y1 and y2. The
population, from which the sample will be selected, contains 1,000 units. Data
collected during a previous study using a srswor design are contained in the
file Domainy1y2.txt.

(a) Determine the sample size needed to meet a target CV = 0.05 for the
estimated mean of the two analysis variables, y1 and y2. Are the estimated
sample sizes different? Is so, why?

(b) If the target precision level is increased to a CV = 0.03, how do your
calculations in (a) change?

(c) Repeat your calculations in parts (a) and (b) for the proportion of units
whose values for y1 are less than or equal to 50 (y1 ≤ 50).

(d) Repeat your calculations in parts (a) and (b) for the proportion of units
whose values for y1 are less than or equal to 22 (y1 ≤ 22). Compare your
results from parts (c) and (d).

3.15. Some populations can be divided into elements that have a zero value
for a variable and others that have a nonzero value. For example, the US
tax law allows businesses to claim a tax credit for the salaries and wages of
employees engaged in research as defined in “Coordinated Issue All Indus-
tries Credit for increasing Research Activities—Qualified Research Expenses”
(June 18, 2004).9 Some employees are engaged in qualified research for some

9 Available at http://www.irs.gov/businesses/article/0,,id=182094,00.html.

http://www.irs.gov/businesses/article/0,,id=182094,00.html
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percentage of their time (the nonzeros); others do not do research at all (the
zeros).

(a) Show that the unit variance, S2 =
∑N

i=1 (yi − ȳU )
2
/(N − 1), can be writ-

ten as

S2 =
1

N − 1

[
(N1 − 1)S2

1 +Nȳ2U1P (1− P )
]

.
= P

(
S2
1 +Qȳ2U1

)
,

where N1 is the number of elements with nonzero values, P = N1 /N is
the proportion of elements with nonzero values,Q = 1−P , ȳU1 is the mean
for elements with nonzero values, and S2

1 =
∑N1

i=1 (yi − ȳU1)
2
/(N1 − 1)

is the variance among elements with nonzero values. In the example, N1

would be the number of employees who performed qualified research out
of a total of N in a company.

(b) Suppose that an srswor is to be selected and N1 and N are both large.

Show that the number of sample elements required to achieve CV
(
T̂
)
=

CV0 can be written as

n
.
=

1

P ∗ CV 2
0

(
S2
1

ȳ2U1

+Q

)

(c) Graph the sample size in (b) versus P for values of the unit relvariance
among nonzero elements equal to 1, 2, and 4.

3.16. Consider two different sample designs for the smho.N874 population.
One is a sample of 50 units selected with probability proportional to the
square root of beds, i.e.,

√
x where x = number of inpatient beds. The other

is a stratified design where 25 strata are formed by sorting the frame from low
to high based on

√
x. The strata are then formed to each have approximately

the same sum of
√
x. A sample of 2 units is then selected by srswor from

each stratum.

(a) Compare the selection probabilities for these two sample designs. For
example, compute the mean pps selection probability within each stratum
and compare it to the stsrswor selection probabilities.

(b) Graph the stsrswor probabilities versus the pps selection probabilities.

Hint: The R functions cumsum and cut will be useful.

3.17. Use the smho.N874 population to estimate the power γ in the model
EM (y) = β1

√
x + β2x, VM (y) = σ2xγ . The Y variable is the total expendi-

tures, which is the variable EXPTOTAL on the smho.N874 file. The x variable
is number of beds (BEDS). Use the organizations with a positive number of
beds as the population. Based on your estimate γ̂, what type of pps sampling
method would be efficient? What type of general regression estimator would
you recommend?
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3.18. Suppose that the sample of size n is to be selected with ppswr using
a MOS x and that the pwr -estimator will be used to estimate the mean.
There are nt take-alls identified using some rule of thumb, say, xk ≥ Nx̄U /n .
Write down the pwr -estimator for this situation. Show that the size of the
non-take-all sample required to achieve a coefficient of variation of CV0 is

nnt =
V1

(NȳUCV0)
2

where V1 =
∑

Unt
pk (yk /pk − Tnt)

2
with Unt being the universe of non-take-

alls, the pk’s being the 1-draw selection probabilities from the non-take-alls,
and Tnt =

∑
Unt

yk. Show that the CV of ˆ̄yπ is

CV
(
ˆ̄yπ
)
=

V1

NȳU
√
nnt

.

3.19. You plan to select a simple random sample without replacement from
the population of Detroit, Michigan. The number of visits to a doctor per
person is to be estimated separately for African-American and all other per-
sons. Census data show that African-Americans are 83% of the population.
You have these estimates from an earlier survey:

Group Population Mean number of

Group variance visits per year

African-American 4.2 1.4

All others 3.3 2.2

(a) Determine what size of simple random sample would be needed to obtain
CV s for the estimated mean number of visits person of 0.01, 0.05, 0.10,
and 0.20. Assume that the population is so large that N can be treated
as infinite.

(b) Assuming that a single sample will be selected, which group will determine
the total sample size needed to hit the CV targets?

3.20. An srswor of size n is selected from a population of size N. The estimate

of the mean per unit in domain d is ˆ̄yd = t̂d

/
N̂d where N̂d = Nnd /n .

(a) Show that the linear approximation to ˆ̄yd is ˆ̄yd − ȳUd
.
= 1

Nd
Nēs where

ēs = n−1
∑

s ei with ei = δi (yi − ȳUd).
(b) Using this, show that the approximate variance of ˆ̄yd is V

(
ˆ̄yd
) .

=
1
N2

d

N2

n

(
1− n

N

)
S2
e with S2

e = (N − 1)−1∑
U e2i .

(c) Show that the relvariance of ˆ̄yd is CV 2
(
ˆ̄yd
) .
= 1

nPd

(
1− n

N

)
CV 2

d .



Chapter 4

Power Calculations and Sample Size
Determination

In Chap. 3 we calculated sample sizes based on targets for coefficients of
variation (CV s), margins of error, and cost constraints. Another method is to
determine the sample size needed to detect a particular alternative value when
testing a hypothesis. For example, when comparing the means for two groups,
one way of determining sample size is through a power calculation. Roughly
speaking, power is a measure of how likely you are to recognize a certain size
of difference in the means. A sample size is determined that will allow that
difference to be detected with high probability (i.e., a detectable difference).
Power can also be determined in a one-sample case where a simple hypothesis
is being tested versus a simple alternative. Using power to determine sample
sizes is especially useful when some important analytic comparisons can be
identified in advance of selecting the sample. Although not covered in most
books on sample design, most practitioners will inevitably have applications
where power calculations are needed.

Suppose that a survey designer or an experimenter decides that a differ-
ence of δ (|δ| > 0) between two or more true (population) means is important
to recognize. If the true difference is δ, then we would like the sample size to
be large enough so that there is a specified probability of showing a statisti-
cally significant difference between the domain or treatment means. Setting
the detection probability (i.e., power) at 0.80 or 0.90 is common practice.
Power is also often stated in percentages rather than probabilities, e.g., 0.80
is the same as 80% power. This method of sample size determination is par-
ticularly common in medical studies. Useful references that cover sample size
calculation in various types of medical studies include Armitage and Berry
(1987), Lemeshow et al. (1990), Schlesselman (1982), and Woodward (1992).

The size of the budget is critical. If the power calculation leads to an
unaffordable sample size, the experiment or survey will have to be scaled back.
In some cases, the study may have to be abandoned entirely if meaningful
differences cannot be detected with the size of sample that can be afforded.

This chapter reviews the terminology used in hypothesis testing and power
analysis and describes the mechanics of power calculations for one- and

R. Valliant et al., Practical Tools for Designing and Weighting
Survey Samples, Statistics for Social and Behavioral Sciences 51,
DOI 10.1007/978-1-4614-6449-5 4, © Springer Science+Business Media New York 2013
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two-sample tests. The assumptions and inputs to power computations need to
be understood in order to make the right sample size computations. To that
end, we provide some algebraic details. We concentrate on tests for means
and proportions and give some examples of how to implement the sample
size calculations in R, SAS, Excel, and Stata.

4.1 Terminology and One-Sample Tests

This section discusses the ideas of Type I and II errors when performing
hypothesis tests, power of a test, and 1-sided and 2-sided tests, along with
one-sample and two-sample tests. We concentrate on tests of means, but
the terms apply more generally to other population parameters. Table 4.1
summarizes the terminology used when testing hypotheses together with the
decisions that can be made and errors that can occur. H0, shown in the
table, is traditionally called the null hypothesis; an alternative hypothesis is
denoted by HA.

Table 4.1: Terminology: size and power of a test.

Decision

Do not reject H0 Reject H0

S
ta
te

o
f
n
a
tu

re H0 is true
Correct decision with prob-
ability 1 − α

Type I error—incorrect de-
cision with probability α
(level or size of test)

H0 is false
(HA is true)

Type II error—incorrect de-
cision with probability β (at
a specific alternative value)

Correct decision with proba-
bility 1−β (power of test at
a specific alternative value)

Analysts usually avoid saying that a null hypothesis is accepted on the
grounds that a hypothesis like H0 : μ = 3 is never likely to be exactly
true. If the real mean (to 3 decimal places) were 3.001, then H0 would be
false. Many people like to use the more noncommittal statement “H0 is not
rejected” rather than “H0 is accepted” which implies that the hypothesis has
been proved to be true.

Characterizing Hypotheses and Tests

Hypotheses can be simple or composite. Tests can be characterized as one-
sided or two-sided. When a hypothesis contains only one value, it is called
simple (e.g., H0 : μ = 3 is simple). A hypothesis that contains more than one
value is composite (e.g., H0 : μ ≤ 3 is composite). Whether a test is one- or
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two-sided depends on the alternative. If the null hypothesis is H0 : μ = 3, a
one-sided alternative is HA : μ > 3 because the alternative values of interest
are only in one direction from the null value. A two-sided alternative would
be HA : μ 	= 3 since the alternatives can be either greater or less than
H0 : μ = 3. The alternative, HA : μ 	= 3, is also composite because it involves
many values.

One-Sample Test

By one-sample, we mean a case where a single mean is being tested against
some hypothesized value(s). For a one-sample, simple null hypothesis versus
a simple alternative, we are testing:

H0 : μ = μ0 versus HA : μ = μ0 + δ

at level α for some δ that can be positive or negative. Usually, we think of
testing the simple null hypothesis versus the composite alternative:

HA : μ 	= μ0.

The standard test statistic is

t =
ˆ̄y − μ0√
v
(
ˆ̄y
) , (4.1)

where ˆ̄y is an estimate of the mean of the variable y and v
(
ˆ̄y
)
is an estimate of

the variance of ˆ̄y. In survey sampling the finite population mean is estimated
as

ˆ̄y =

∑
i∈s wiyi∑
i∈s wi

, (4.2)

where wi is the survey weight for unit i and s denotes the set of sample units.
The sample can be selected in a complex way (e.g., stratified, multistage with
varying probabilities). As long as the variance is consistently1 estimated by
v
(
ˆ̄y
)
, t in (4.1) is treated as having a (central) t-distribution under the null

hypothesis. The t-approximation may be poor when the sample size is small
and the y-variable has a very skewed distribution. But, the t is a useful
starting place for the power and sample size calculations in this chapter. The

1 Roughly speaking, an estimator is said to be consistent if it gets closer and closer
to the value it is supposed to be estimating as the sample size increases. A variance

estimator v
(
ˆ̄y
)
is a consistent estimator of the true variance V

(
ˆ̄y
)
if v

(
ˆ̄y
) /

V
(
ˆ̄y
) p−→ 1

as n → ∞. In survey samples, n is the number of sample units in a single-stage sample
or the number of primary sampling units (PSUs) in a multistage sample. A ratio is
used in this definition because both the estimator and its target approach 0 as the
sample size increases.
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degrees of freedom for the t are usually based on some rules of thumb. One
that is often used is

df = number of PSUs− number of strata. (4.3)

For example, in a design with H strata and nh primary sampling units
(PSUs) selected from stratum h, the rule of thumb gives

∑H
h=1 (nh − 1) =

(n+ −H) df with n+ =
∑

h nh. For a household design with 50 strata and 2
sample PSUs per stratum, the rule of thumb would be df = 50, even though
the number of sample households could be in the hundreds or thousands.
These rules are not necessarily accurate, and some better approximations to
df can be computed [see, e.g., (Rust 1984, 1985; Valliant and Rust 2010)].

When the sample of PSUs is large, the t -distribution will be about the same
as a normal distribution. As always, it is hard to give a good answer to the
question: “what is large?” Critical points of the t and normal distributions are
very close to each other for df ≥ 60. The table below shows the 97.5 percentiles
of t for various df, i.e., the points t0.975,df such that Pr (t ≤ t0.975 (df)) = 0.975.
For df = 60, t0.975,60 = 2—about the same as 1.96 for a standard normal
distribution2.

df t0.975,df

1 12.71
5 2.57

10 2.23
30 2.04
60 2.00

100 1.98
∞ 1.96

Some rules of thumb are thrown around, like “(number of PSUs)—(number
of strata) must be 30 or more” in order to use the normal approximation.
However, the approximate df for a variance estimator is affected by how
skewed the input data are in addition to the number of PSUs and number of
strata. Family incomes, for example, are highly skewed while education test
scores, like the Scholastic Aptitude Test (SAT), are usually constructed to
have nearly normal distributions across the test takers. Skewed input data
will require more sample PSUs for the t -statistic to be approximately normal
than will symmetric, nearly normal input data. Extremely rare or prevalent
characteristics will also have the same effect. On the other hand, getting a
good fix on the approximate df is not simple, and practitioners usually are
content with computing the value in (4.3) and adopting a cutoff, like 60, for
using the normal approximation.

2 A standard normal distribution is a normal distribution with mean = 0 and
standard deviation = 1, i.e., N(0, 1).
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Use of Finite Population Corrections in Variances

Testing the simple hypothesis that the mean is a particular value,H0 : μ = μ0,
or, as covered later in Sect. 4.3, that the means of two groups are equal,
H0 : μX = μY , raises an issue that may seem to be niggling but is worth
a comment. Two finite population means are not likely to be exactly equal.
Using the example from earlier in this section, if one mean is 3 and another
3.001, these are different. Consequently, when testing hypotheses, like H0 :
μX = μY , that compare groups, analysts usually consider these to be tests on
underlying parameters of a model that describes the population reasonably
well. Thus, even if the entire finite population were enumerated, the calculated
means would still have variances because they would still be estimates of
the underlying, unknown model parameters. Consistent with that philosophy,
variance estimates should not include finite population correction factors (like
1− n/N in srswor).

Ignoring the fpc in a variance estimator has real, practical implications
for the sample size calculations in later sections. If the sampling fraction is
greater than about 0.05, the sample sizes computed to achieve a certain level
of power can be noticeably different, depending whether an fpc is included
or not. Incorporating a non-negligible fpc reduces the value of a variance
estimate and, consequently, reduces the computed sample size to achieve that
power. Thus, it may appear that some money can be saved simply by injecting
an fpc into the calculations. However, the superpopulation thinking above
would say this is specious reasoning. In some applications, like household
surveys, sampling fractions are usually so low that fretting about an fpc is
unnecessary. Nevertheless, you may confront the issue in other situations, like
school surveys, where the population is smaller.

If your goal is really to measure how large the difference is between two
finite population means, then a power calculation is probably not what you
want. The appropriate sample size calculation should be done using the meth-
ods in Chap. 3 where we accounted for the fpc. An interesting discussion of
whether an fpc should be used in different situations can be found at http://
web.cos.gmu.edu/∼wss/wss070328paper.pdf.

Before explaining how to calculate power, we give some definitions of terms
that are used in hypothesis testing.

Definition 4.1 (Type I Error). A Type I error is rejecting a null hypoth-
esis when it is actually true. The probability that H0 is rejected in such a
case is called the level or size of the test and, for a 2-sided test, is

Pr
(|t| > t1−α/2 (df) |H0 is true

)
= α,

where tγ (df) is the γ-quantile of the central t-distribution with df degrees of
freedom, i.e., Pr (t < tγ (df)) = γ. Said another way, the level of the test is
the chance that the test statistic is in the rejection region of the distribution
when the null hypothesis is actually true. For a 1-sided test of H0 : μ = μ0

http://web.cos.gmu.edu/~wss/wss070328paper.pdf
http://web.cos.gmu.edu/~wss/wss070328paper.pdf
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versus HA : μ > μ0 the Type I error rate is

Pr (t > t1−α (df) |H0 is true) = α.

Definition 4.2 (Type II Error). A Type II error is accepting that a
null hypothesis is true when it is actually false. The probability that H0

is accepted in such a case for a 2-sided test is

Pr
(|t| ≤ t1−α/2 (df) |HA is true

)
= β.

For a 1-sided test of H0 : μ = μ0 versus HA : μ > μ0 the Type II error rate is

Pr (t ≤ t1−α (df) |HA is true) = β.

To actually compute β, we must think of a specific value within the possibil-
ities spanned by HA.

Definition 4.3 (Power). Power is 1 minus the Type II error rate, i.e., the
probability of rejecting H0 when it actually is false. The power and Type II
error rate vary depending on the particular value of the alternative. For a
2-sided test, the power is the chance that the test statistic is in the rejection
region when μ = μ0 + δ and is equal to

Pr
(|t| > t1−α/2 (df) |μ = μ0 + δ

)
= 1− β.

The power in a 1-sided test of H0 : μ = μ0 versus HA : μ > μ0 is

Pr (t > t1−α (df) |μ = μ0 + δ ) = 1− β.

Notice that we could use the more elaborate notation βδ since the power
depends on the specific value of the alternative. (Examples 4.1 and 4.2 illus-
trate power calculations for specific values of alternatives.)

Definition 4.4 (p-value). A p-value is the smallest level of significance at
which a null hypothesis would be rejected based on the observed value of the
test statistic being used. Suppose that the calculated value of (4.1) is tobs.
Then, the p-value for a 2-sided test is

Pr (|t| > tobs |H0 is true) .

No particular alternative hypothesis is entertained here—no decision is made
to choose between H0 and some HA. When the analysis consists of computing
a test statistic and its associated p-value, this is called significance testing
and is probably the procedure most commonly used, especially in the social
sciences.

The p-value is usually taken to be a measure of the strength of evidence for
or against the null hypothesis. A small p-value is interpreted as evidence that
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H0 is false, i.e., a test statistic of size tobs or more extreme is very unlikely
to occur if H0 were true. The smaller the p-value, the stronger the evidence
against H0. This interpretation is dubious since the p-value associated with
a given size of effect depends on the sample size. Quoting Royall (1986):

. . . a difference between treatments that is just statistically significant at the
0.05 level may be so small that it is of no clinical significance if the study groups
are enormous, whereas a difference between smaller groups yielding the same
p-value corresponds to a much larger estimated treatment effect.

Because of these issues, p-values are not useful for determining sample sizes.

4.2 Power in a One-Sample Test

The power for a given sample size depends on how far away the alternative
value, μ0 + δ, is from the null value, μ0. Alternatives that are far from the
null are naturally easier to detect than the ones that are close. Three things
are needed for a sample size calculation based on power:

1. Value of δ
2. Desired probability 1 − β (i.e., the power) of obtaining a significant test

result when the true difference is δ
3. Significance level α of the test, which can be either 1-sided or 2-sided

1-Sided Tests

First, consider a 1-sided test of H0 : μ = μ0 versus HA : μ > μ0. The null
hypothesis will be rejected if t > t1−α (df). For example, with an α = 0.05
level test and a large number of df, H0 will be rejected if t > t0.95 (∞) =
z0.95 = 1.645. When the sample of PSUs is large, t in (4.1) can be treated as
having a N(0, 1) distribution under H0. If, on the other hand, the true mean
is μ = μ0 + δ for some δ > 0, then the mean of t is

δ√
V
(
ˆ̄y
) ,

where V
(
ˆ̄y
)
is the theoretical variance of ˆ̄y. Assuming that v

(
ˆ̄y
) .
= V

(
ˆ̄y
)
, the

probability that t is in the rejection region when μ = μ0 + δ is
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Pr (t > t1−α (df) |μ = μ0 + δ ) (4.4)

.
=Pr

⎛
⎝ ˆ̄y − μ0√

V
(
ˆ̄y
) −

δ√
V
(
ˆ̄y
) > z1−α − δ√

V
(
ˆ̄y
)

∣∣∣∣∣∣
μ = μ0 + δ

⎞
⎠

=Pr

⎛
⎝Z > z1−α − δ√

V
(
ˆ̄y
)

⎞
⎠ ,

where Z is a standard normal random variable, i.e., one with mean 0 and
variance 1. Expression (4.4) is the power of the test against the alternative
μ = μ0 + δ.

Figure 4.1 illustrates the situation. If H0 is true and t has mean 0, the test
statistic will have a standard normal distribution (on the left in the figure)
given that the df is large. The rejection region is marked in light gray and
has area α, 0.05 in this case. If the mean is μ0 + δ > 0, then the mean of t is

δ
/√

V
(
ˆ̄y
)
and the distribution of t is shifted to the right. The probability

of being in the rejection region for the shifted distribution is the area to the
right of z1−α = 1.645 (light gray plus darker gray).

Example 4.1 (Power for a previous survey). Suppose that you plan to select
a sample of households from a particular Canadian province and measure the
mean household income for married-couple households (ˆ̄y). Based on earlier
surveys of the same design and size, you anticipate that the mean is about
$55,000 Canadian dollars and will be estimated with a 6% CV. You would
like to test the hypothesis H0 : μ = $55, 000 versus HA : μ > $55, 000 at the
α = 0.05 level. Thus, the anticipated standard error of ˆ̄y is 0.06× 55, 000 =
3, 300. You would also like to know how much power you have to detect
that the mean is really $60,000. Substituting in (4.4) and using the normal
approximation, the anticipated power is

Pr

⎛
⎝Z > z1−α − δ√

V
(
ˆ̄y
)

⎞
⎠ = Pr

(
Z > 1.645− 60, 000− 55, 000

3, 300

)

= 0.448.

When the survey is actually conducted, the sample estimate of the mean
turns out to be $59,000 with a 7.5% CV. The t -statistic for testing H0 : μ =
$55, 000 is, thus,

tobs =
59, 000− 55, 000

0.075× 59, 000
= 0.9040.

The p-value associated with this statistic is Pr (t > 0.9040 |μ = 55, 000)
.
=

0.183. Consequently, whether the mean is larger than $55,000 seems doubt-
ful. A check on this conclusion is to calculate a confidence interval for the
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population mean. In this case, a one-sided 95% interval is 59, 000− 1.645×
0.075× 59, 000 = 51, 721, which is less than the hypothesized $55,000. �

6420−2
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μ=μ0+δ

Fig. 4.1: Normal densities of test statistics under H0 and HA. δ
/√

V
(
ˆ̄y
)
is set equal

to 3 in this illustration so that E {t |HA is true} = 3. A 1-sided test is conducted at
the 0.05 level.

The power calculation can also be done using a t -distribution if the degrees
of freedom for the variance estimator are not large, say less than 60. The

statistic
(
ˆ̄y − μ0

)/√
v
(
ˆ̄y
)
will have a noncentral t -distribution with noncen-

trality parameter δ
/√

V
(
ˆ̄y
)
when the mean is μ = μ0 + δ. The power of

the t -test is then the probability that a noncentral t random variable with
df degrees of freedom is greater than t1−α (df). This is the method used by
the R function power.t.test in the stats package (R Core Team and
contributors worldwide 2012c) described in Sect. 4.4.

Suppose we want the power, i.e., the probability of being to the right of
z1−α to be 1 − β (e.g., 0.80). Let zβ be the point on the standard normal
distribution with area β to its left and 1− β to its right. Now, suppose that
V
(
ˆ̄y
)
= σ2

y/n where n is the sample size of analytic units and σ2
y is the

population unit variance of Y. Working from (4.4), we set z1−α − δ√
σ2
y/n

equal to zβ (= −z1−β) and solve for the sample size n to obtain

n =

[
σy

(z1−α − zβ)

δ

]2
=

[
σy

(z1−α + z1−β)

δ

]2
. (4.5)
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For designs other than srswor, V
(
ˆ̄y
)
= σ2

y/n does not hold. A common
work-around is to set the solution to (4.5) equal to the effective sample size,
defined as neff = n/deff where deff = V

(
ˆ̄y
)
/VSRS

(
ˆ̄y
)
, the ratio of the vari-

ance under the complex design to the variance under srswor. Of course, this
does not fully solve the problem since a value for the deff is required for the
particular design and analysis variable in question. Its value will depend on
whether the design is stratified single-stage, clustered, or something else and
on how the sample is allocated to strata and clusters.

Example 4.2 (Finding a sample size for specified power). In Example 4.1, sup-
pose that microdata has been used to estimate the population standard devi-
ation via one of the methods discussed in Sect. 3.4 obtaining σ̂y = 74, 000.
If the population mean is $55,000, this implies that the unit relvariance is
742/552 = 1.8. (Unit relvariances in the range 1 to 5 are typical for contin-
uous variables.) A one-sided α = 0.05 level test is to be conducted and a
simple random sample of households can be selected. Suppose, in particular,
that H0 : μ = $55, 000 and HA : μ > $55, 000. If we want power of 0.80
(z1−β = z0.80

.
= 0.84) to detect that the mean is $60,000, then the sample

size from (4.5) is

n =

[
74, 000

(1.645 + 0.84)

5, 000

]2
.
= 1, 355 households.

If a clustered design is used and we estimate deff to be 1.6, then the required
sample size is n = 1, 355 (1.6)

.
= 2, 170. On the other hand, if we want the

same power against an alternative of $57,500, then the deff adjusted sample
size is

n = 1.6

[
74, 000

(1.645 + 0.84)

2, 500

]2
.
= 8, 670.

Clearly, the goals of the analysis have a big impact on sample size. Careful
thought needs to be given to the size of the alternative that is substantively
important to detect. �

In applications like Example 4.2, σy must be estimated from a previous
sample or guessed based on experience. The sample size of 8,670 is itself an
estimate of the size actually needed for power of 0.80. Because this is done
in advance, it would be better to call this the anticipated power. When data
are collected in the new survey, we can estimate the achieved power based on
that data. Random variation being what it is, the anticipated and achieved
power are rarely the same. As a safeguard, a sample of more than 8,670 might
be selected in case the σ̂y is too small.
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2-Sided Tests

Calculation of power for a 2-sided test is similar but a bit more involved.
The null hypothesis is rejected if |t| > t1−α/2 (df). If the goal is to detect
a departure from the null hypothesis value of δ in either direction, then
alternatives of the form μ0± δ are of interest. We will examine these one at a
time—first μ = μ0+ δ and then μ = μ0− δ. Again, assuming that the normal
approximation is good enough and noting that zα/2 = −z1−α/2, the Type
II error probability that the test statistic is in the acceptance region, when
μ = μ0 + δ, is

Pr
(|t| ≤ t1−α/2 (df) |μ = μ0 + δ

)

.
=Pr

⎛

⎝−z1−α/2 ≤ ˆ̄y − μ0√
V
(
ˆ̄y
) < z1−α/2

∣
∣
∣∣
∣
∣
μ = μ0 + δ

⎞

⎠

=Pr

⎛

⎝−z1−α/2 − δ
√

V
(
ˆ̄y
) ≤ ˆ̄y − μ0√

V
(
ˆ̄y
) − δ

√
V
(
ˆ̄y
) < z1−α/2 − δ

√
V
(
ˆ̄y
)

∣∣
∣
∣
∣
∣
μ = μ0 + δ

⎞

⎠

=Pr

⎛

⎝−z1−α/2 − δ
√

V
(
ˆ̄y
) ≤ Z < z1−α/2 − δ

√
V
(
ˆ̄y
)

⎞

⎠

=Pr

⎛

⎝Z ≤ z1−α/2 − δ
√

V
(
ˆ̄y
)

⎞

⎠− Pr

⎛

⎝Z ≤ −z1−α/2 − δ
√

V
(
ˆ̄y
)

⎞

⎠ .

The power of the test against the alternative is then

Pr
(|t| > t1−α/2 (df) |μ = μ0 + δ

)
(4.6)

.
=1− Pr

⎛
⎝Z ≤ z1−α/2 − δ√

V
(
ˆ̄y
)

⎞
⎠+ Pr

⎛
⎝Z ≤ −z1−α/2 − δ√

V
(
ˆ̄y
)

⎞
⎠ .

The last term on the right-hand side of (4.6) will be near 0 in many cases.
By a similar computation, the power of the test against the alternative

HA : μ = μ0 − δ is

Pr
(|t| > t1−α/2 (df) |μ = μ0 − δ

)
(4.7)

.
=1− Pr

⎛
⎝Z ≤ z1−α/2 +

δ√
V
(
ˆ̄y
)

⎞
⎠+ Pr

⎛
⎝Z ≤ −z1−α/2 +

δ√
V
(
ˆ̄y
)

⎞
⎠ .

In this case, the second term on the right-hand side of (4.7) will often be near 1

and expression (4.7) will be approximately Pr
(
Z ≤ −z1−α/2 + δ

/√
V
(
ˆ̄y
))

.
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Suppose we want the power against either μ0+ δ or μ0− δ to be 1−β. We
can set (4.6) or (4.7) to 1− β and then solve for n. Using either (4.6) or (4.7)
leads to the same sample size as we now show. First, approximate (4.7) by

1− Pr

⎛
⎝Z ≤ z1−α/2 − δ√

V
(
ˆ̄y
)

⎞
⎠ = Pr

⎛
⎝Z > z1−α/2 − δ√

V
(
ˆ̄y
)

⎞
⎠

and set this equal to 1 − β. This implies that z1−α/2 − δ√
V( ˆ̄y)

= zβ . Using

V
(
ˆ̄y
)
= σ2

y/n and solving gives

n =

[
σy

(
z1−α/2 − zβ

)
δ

]2
. (4.8)

Approximating (4.7) by Pr
(
Z ≤ −z1−α/2 + δ

/√
V
(
ˆ̄y
))

, setting −z1−α/2 +
δ√
V( ˆ̄y)

= z1−β , and solving for the sample size give

n =

[
σy

(
z1−α/2 + z1−β

)
δ

]2
=

[
σy

(
z1−α/2 − zβ

)
δ

]2
. (4.9)

Note that to compute the sample size for a 2-sided test in (4.9), we just
change α in (4.5) for the 1-sided test to α/2. Comparing (4.9) with (4.5),
we see that to obtain the same power to detect the alternatives μ0 ± δ the
required sample size will be larger than for detecting μ0 + δ alone because
z1−α/2 > z1−α. For example, z0.975 = 1.96 and z0.95 = 1.645. Some intuition
for this is that a larger sample is needed to detect an alternative that can be
on either side of the null value.

As in the 1-sided case, the R function power.t.test does a more refined
version of the sample size calculation.

Example 4.3 (Sample size for a two-sided test). Continuing with Examples 4.1
and 4.2, suppose that power of 0.80 (i.e., 80% power) is desired against either
of the alternatives HA : μ = $50, 000 or HA : μ = $60, 000. As before,
H0 : μ = $55, 000. Substituting in (4.8) gives

n =

[
74, 000

(1.96 + 0.84)

5, 000

]2
.
= 1, 720.

Adjusting this for a design effect of 1.6, the sample size is about 2, 750. If
we want power of 0.80 against HA : μ = $52, 500 or HA : μ = $57, 500,
then 5, 000 is replaced by 2, 500 in the above equation to give n = 6, 880 or
n = 11, 000 adjusted for deff = 1.6. �
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Section 4.4 illustrates how these computations can be done in R. They are
also easily programmed in Excel. Figures 4.2 and 4.3 show screenshots of a
spreadsheet that will compute the sample sizes in Examples 4.2 and 4.3. Fig-
ure 4.3 shows the formulas while Fig. 4.2 gives numerical results that match
those in the examples. The spreadsheet is also available on the book’s web
site. Another excellent reference that combines R and Excel is Heiberger and
Neuwirth (2009).

Fig. 4.2: An excel spreadsheet for the computations in Examples 4.2 and 4.3.

4.3 Two-Sample Tests

Comparing the means of two different groups of units is a standard analytic
goal. The term “two-sample” test stems from the aim of comparing param-
eters for two separate groups or populations with a sample being selected
from each. This section describes the methods used for comparing means or
proportions for two such groups.

4.3.1 Differences in Means

For a two-sample case, we may want to test that

H0 : μX ≤ μY versus HA : μX > μY
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at level α where X is the random variable associated with the first sample or
group and Y is the random variable associated with the second. The sample
test statistic is

td =
ˆ̄d√

v
(
ˆ̄d
)

with ˆ̄d = ˆ̄x − ˆ̄y, v
(
ˆ̄d
)

= v
(
ˆ̄x
)
+ v
(
ˆ̄y
) − 2cov

(
ˆ̄x, ˆ̄y
)
where v

(
ˆ̄x
)
and v

(
ˆ̄y
)

are design-based estimates of the variances of the means and cov
(
ˆ̄x, ˆ̄y
)
is

a design-based estimate of their covariance. In a cross-sectional survey, we
will usually be comparing the means for two nonoverlapping domains. If each
domain is specific to different strata, then cov

(
ˆ̄x, ˆ̄y
)
= 0 by definition. But,

if the design involves clustering, even nonoverlapping domains like male and
female may have correlated estimates due to presence of domain members
within the same PSUs.

The null hypothesis that the mean of Y is larger than or equal to the
mean of X (H0 : μX ≤ μY ) will be rejected in large samples if td > z1−α. If

the true mean difference is some |δ| > 0, then the mean of td is δ

/√
V
(
ˆ̄d
)

instead of 0. Letting μD = μX −μY , the probability that td is in the rejection
region is then

Pr {td > z1−α |μD = δ } = Pr

⎛
⎜⎜⎝td − δ√

V
(
ˆ̄d
) > z1−α − δ√

V
(
ˆ̄d
)

∣∣∣∣∣∣∣∣
μD = δ

⎞
⎟⎟⎠

.
= Pr

⎛
⎜⎜⎝Z > z1−α − δ√

V
(
ˆ̄d
)

⎞
⎟⎟⎠ . (4.10)

This is the power of the test against the alternative μD = μX − μY = δ and
is similar to (4.4) for the one-sample case.

Suppose that the sample size in each domain is the same and that the

variance of the difference can be written as V
(
ˆ̄d
)
= σ2

d/n where σ2
d is some

population unit variance. For example, this will hold if the domain estimates
are independent and their variances can be written as

V
(
ˆ̄d
)
=

σ2
x

n
+

σ2
y

n
=

1

n

[
σ2
x + σ2

y

]

as would be the case for srswor. If the domain estimates are correlated, then
σ2
d = σ2

y + σ2
x−2σxy with σxy being the population covariance of X and Y.
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If σ2
y = σ2

x ≡ σ2
0 , then the unit-level correlation between y and x is ρ = σxy/σ

2
0

and σ2
d = 2σ2

0 (1− ρ), which is a convenient form. To find the required sample
size, we set zβ equal to z1−α− δ√

σ2
d/n

and solve for the sample size n to obtain

n =

[
σd (z1−α − zβ)

δ

]2
. (4.11)

Note that this is the sample size in each domain. If σ2
x = σ2

y ≡ σ2
0 and ρ = 0,

then σ2
d = 2σ2

0 .
The calculation of power in a two-sided test leads to formulas analogous to

(4.6) and (4.7). Figure 4.4 graphs the power in a two-sided test of H0 : μD = 0
versus HA : |μD| = δ for a test done at the 5% level (i.e., α = 0.05) assuming
that σd = 3. Four different, group sample sizes are shown: 10, 25, 50, and 100.
If |δ| = 2, the power for n = 10 in each group is about 0.30. But, if n = 50,
the power is over 0.90. For a given sample size, the power becomes larger as
|δ| increases. The R function power.t.test, described later, was used for
the power computations displayed in Fig. 4.4.
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Fig. 4.4: Power for sample sizes of n = 10, 25, 50, 100 in a two-sided test of H0 :
μD = 0 versus HA : |μD| = δ (α = 0.05, σd = 3).

Partially Overlapping Samples

The case of partially overlapping samples can also be handled (e.g., see Wood-
ward 1992). For example, persons may be surveyed at some baseline date and
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then followed up at a later time. An estimate of the difference in population
means may be desired, but the samples do not overlap completely because
of dropouts, planned sample rotation, or nonresponse. Suppose that s1 and
s2 are the sets of sample units with data collected only at times 1 and 2 and
that s12 denotes the overlap. Thus, the full samples at times 1 and 2 are
s1 ∪ s12 and s2 ∪ s12. Also, suppose that the samples at the two time periods
are simple random samples. Assume that the samples at times 1 and 2 are
not necessarily the same size, so that n1 = rn2 for some positive number r.
The samples might be different sizes because of other survey goals or because
the budget for data collection is different for the two times. A case that is
covered by the analysis below is one where an initial sample of n1 is selected,
a portion of these respond at time 2, and additional units are selected to
obtain a total sample of n2 for time 2. Taking the case of simple random
sampling, the difference in means can be written as

ˆ̄d = ˆ̄x− ˆ̄y =
1

n1

∑
s1

xi − 1

n2

∑
s2

yi +
∑
s12

(
xi

n1
− yi

n2

)
.

The variance can be expressed as

V
(
ˆ̄d
)
=

σ2
x

n1
+

σ2
y

n2
− 2σxy

n12

n1n2
, (4.12)

where n12 is the number of units in s12. Writing n12 = γn1 and r = n1/n2,

the variance becomes V
(
ˆ̄d
)
= 1

n1

[
σ2
x + rσ2

y − 2γrσxy

]
. For a 1-sided test of

H0 : μD = 0 versus HA : μD = δ, we set zβ equal to z1−α − δ

/√
V
(
ˆ̄d
)

and

solve for the sample size n1 to give

n1 =
1

δ2
[
σ2
x + rσ2

y − 2γrρσxσy

]
(z1−α − zβ)

2
. (4.13)

Using the simplification that σ2
y = σ2

x ≡ σ2
0 , the variance can be rewritten as

V
(
ˆ̄d
)
=

σ2
0

n1
[1 + r (1− 2γρ)]. The sample size n1 becomes

n1 =
σ2
0

δ2
[1 + r (1− 2γρ)] (z1−α − zβ)

2
. (4.14)

If the samples are independent, then γ = 0 and the formula reduces to

n1 =
σ2
0

δ2
(1 + r) (z1−α − zβ)

2
. (4.15)

Note that if n1 = n2, then r = 1 and (4.15) equal (4.11) because σ2
d in (4.11)

equals 2σ2
0 . Given values of r, γ, and ρ, the sample size at time 1 can be found
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via (4.14) and, in turn, n2 solved for as n2 = n1/r. For the more general case,
if estimates of the unit variances and covariance, or, equivalently, the unit
correlation, are available, then (4.13) can be used. The R function nDep2sam
in Sect. 4.4 will compute the sample sizes n1 and n2 based on (4.13).

4.3.2 Differences in Proportions

The test on the difference in two proportions is similar to that for the dif-
ference in the means for two quantitative variables. However, since the vari-
ance in a Bernoulli distribution is a function of the mean, the test statistic
is specialized to account for this. Suppose we want to test the hypothesis
H0 : P1 = P2 where Pk is the population proportion in domain k. Assume
that independent srs ’s are selected from each domain, the estimated propor-
tions are p1 and p2, and that the sample sizes in the two domains are n1 and
n2. If the null hypothesis is true so that each population proportion is equal
to the same value P̄ , then the variance of the difference is

V (p1 − p2) = P̄
(
1− P̄

)( 1

n1
+

1

n2

)
.

The test statistic is then

tΔp =
p1 − p2√
v (p1 − p2)

, (4.16)

where v (p1 − p2) = p̄ (1− p̄)
(

1
n1

+ 1
n2

)
with p̄ = n1p1+n2p2

n1+n2
being the

“pooled” estimate of P̄ . In large samples (4.16) is approximately normally
distributed, which allows us to approximate the power at different alterna-
tives and to compute sample sizes.

Because the variance of the estimated proportions depends on their means,
the arithmetic needed to get a power formula is a little different from that
used to arrive at (4.10). To simplify matters, we cover only the case of the
same sample size n in each group. If the null hypothesis of equal propor-
tions is true, then v (p1 − p2) = 2p̄ (1− p̄) /n. But, if HA : P2 = P1 + δ is
correct, the estimated variance of p1 − p2 does not depend on a pooled p̄
but instead is (p1q1 + p2q2) /n. This is an estimate of the theoretical vari-
ance (P1Q1 + P2Q2) /n. The power of this test for a 1-sided alternative
HA : P2 = P1 + δ is then
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Pr (tΔp > z1−α |P2 − P1 = δ )

=Pr
(
p1 − p2 > z1−α

√
2p̄ (1− p̄) /n

∣∣∣P2 − P1 = δ
)

.
=Pr

(
p1 − p2√

(P1Q1 + P2Q2) /n
− δ√

(P1Q1 + P2Q2) /n
>

z1−α

√
2P̄
(
1− P̄

)
/n− δ

√
(P1Q1 + P2Q2) /n

∣∣∣∣∣∣
P2 − P1 = δ

⎞
⎠

=Pr

⎛
⎝Z >

z1−α

√
2P̄
(
1− P̄

)
/n− δ

√
(P1Q1 + P2Q2) /n

⎞
⎠ . (4.17)

Power for a two-sided test is computed in a way similar to (4.6) and
(4.7) beginning with Pr (|tΔp| > z1−α |P2 − P1 = δ ) and following the steps
in (4.17). The distribution of tΔp cannot be approximated as a t -distribution
which requires normally distributed input data. Thus, only the normal
approximation is used to assess power.

The sample size in each group needed to detect a difference of δ is found
by setting the right-hand side of the inequality in the last line of (4.17) equal
to zβ and solving for n to give

n =

[
z1−αΔ1 − zβΔ2

δ

]2
, (4.18)

where Δ1 =
√
2P̄
(
1− P̄

)
and Δ2 =

√
P1Q1 + P2Q2. Advance esti-

mates of P1, P2, and P̄ are needed to evaluate (4.18). The R function
power.prop.test in the stats package, described in Sect. 4.4, uses a
search algorithm to solve for n which will give a similar answer to (4.18).

When samples overlap, computations similar to those for the difference
in means in Sect. 4.3.1 can be made. Suppose that the variables X and Y
are equal to 1 with probabilities Px and Py and that XY is equal to 1 with
probability Pxy. The event, XY = 1, might correspond to a unit having some
characteristic at both times 1 and 2. The conditional distribution of Y given
X is Py|x = Pxy/Py; Px|y is defined similarly. The event that Y = 1 given
that X = 0 could mean that a unit had a characteristic at time 2 given that it
did not at time 1. With these definitions, σ2

x = Px (1− Px), σ
2
y = Py (1− Py),

σxy = Pxy − PxPy, and

ρ = (Pxy − PxPy)
/
[Px (1− Px)Py (1− Py)]

1/2 .

When the sample sizes in the two groups are n1 and n2, n1 is found using
(4.13). In this case, estimates (or educated guesses) are required for the
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proportions at the two time periods, Px and Py, and the proportion, Pxy,
that retains the characteristic from the first time to the second.

An R function, nProp2sam, that will compute the sample sizes is given
in Sect. 4.4. There are two constraints on Pxy that are implemented in
the function. First, since Pxy = Py|xPx ≤ Px and Pxy = Px|yPy ≤ Py,
it must be true that Pxy ≤ min (Px, Py). Second, since the correlation
must be in [−1, 1], we must have PxPy − Δ ≤ Pxy ≤ PxPy + Δ where

Δ = [Px (1− Px)Py (1− Py)]
1/2

.

Arcsine Square Root Transformation

When a characteristic is extremely rare or highly prevalent, the normal
approximation for (4.16) can be poor. One rule of thumb is that np and
n (1− p) should both be at least 5 to use the normal approximation. There
are various fix-ups that can be used for small samples and rare (or highly
prevalent) characteristics. Exact calculations using the binomial distribution
are possible (Korn 1986), but even they have some peculiar anomalies (Brown
et al. 2001). The Wilson method, which was one of the fix-ups used in Chap. 3
for computing sample sizes for proportions, does not appear to be amenable
to two-sample power and sample size calculations.

Another method is to use a variance stabilizing transform to remove the
dependence of the variance of an estimated proportion on the proportion
itself. For p the transformation is the arcsine square root defined as

φ = arcsin
√
p

where arcsine is the inverse sine function. The variance of φ is approximately
1/4n radians. A radian is a unit of angle, e.g., a circle contains 2π radians
and a right angle has π/2. Using this transform, a test of H0 : P1 = P2 for
independent samples is based on

tφ =
φ1 − φ2√
V (φ1 − φ2)

=
√
2n (φ1 − φ2) . (4.19)

This uses the approximation V (φ1 − φ2)
.
= 1/4n + 1/4n = 1/2n for inde-

pendent samples. If HA : P2 = P1 + δ is correct, define δφ = arcsin
√
P1 −

arcsin
√
P1 + δ. The power of a one-sided test is then

Pr (tφ > z1−α |P1 − P2 = δ ) (4.20)

=Pr

(
tφ − δφ√

V (φ1 − φ2)
> z1−α − δφ√

V (φ1 − φ2)

∣∣∣∣∣P1 − P2 = δ

)

.
=Pr

(
Z > z1−α − δφ

√
2n
)
.



4.3 Two-Sample Tests 111

(Note that V (φ1 − φ2) is the same under H0 and HA since arcsine square root
is the variance stabilizing transformation in both cases.) Setting z1−α−δφ

√
2n

equal to zβ leads to the sample size formula

n =

(
z1−α − zβ√

2δφ

)2

. (4.21)

As with expression (4.11), this is the sample size required for each domain.
For a two-sided test of H0 : P1 = P2 versus HA : P2 = P1 ± δ, calculations

like those in (4.8) and (4.9) give a sample size in each group of

n =

(
z1−α/2 − zβ√

2δφ

)2

. (4.22)

As when comparing means, a larger sample is needed for the two-sided test
to have the same power to detect HA : P2 = P1 ± δ than the one-sided test
needs to detect HA : P2 = P1 + δ.

Log-Odds Transformation

The log-odds transformation is another option that may be useful for a rare
or highly prevalent characteristic. In this case, define

φ = log

(
p

1− p

)
.

The approximate variance of φ under H0 : P1 = P2 is
(
nP̄ Q̄

)−1
where P̄ is

the common value under H0 and Q̄ = 1− P̄ . The variances of the differences
in the log-odds transforms for two independent samples are

V (φ1 − φ2) =
2

n

1

P̄ Q̄
under H0 and

V (φ1 − φ2) =
1

n

(
1

P1Q1
+

1

P2Q2

)
under HA,

assuming that the sample sizes are the same in both groups. The t -
statistic has the same form as for the arcsine transformation, tφ =

(φ1 − φ2)
/√

V (φ1 − φ2) . Using the same steps that led to (4.17), the

power against the alternative HA : P2 = P1 + δ is



112 4 Power Calculations and Sample Size Determination

Pr (tφ > z1−α |P2 − P1 = δ )
.
= Pr

⎛
⎜⎜⎝Z >

z1−α

√
2
[
nP̄
(
1− P̄

)]−1 − δφ√
n−1

[
(P1Q1)

−1
+ (P2Q2)

−1
]

⎞
⎟⎟⎠ ,

where δφ = log (P1/Q1) − log (P2/Q2). Setting the term on the right-hand
side of the inequality to zβ and solving for n give

n =

(
z1−α

√
2V0 − zβ

√
VA

δφ

)2

, (4.23)

where V0 =
[
P̄
(
1− P̄

)]−1
and VA = (P1Q1)

−1
+ (P2Q2)

−1
. For a two-sided

test of H0 : P1 = P2 versus HA : P2 = P1 ± δ, calculations like those in (4.8)
and (4.9) give a sample size in each group of

n =

(
z1−α/2

√
2V0 − zβ

√
VA

δφ

)2

. (4.24)

A numerical example using the arcsine and log-odds transformation is given
in Sect. 4.4.

4.3.3 Special Case: Relative Risk

Epidemiologists and public health analysts often prefer the relative risk, R =
P1/P2, for comparing two groups rather than the difference in proportions.
A value of R much larger than 1.0 might mean that one group has a higher
prevalence of some disease. The difference in proportions can be written in
terms of the relative risk as

P1 − P2 = P2 (R− 1) .

Consequently, if a sample size is desired to detect a relative risk of R∗, this
corresponds to detecting a difference of δ = P2 (R

∗ − 1). With this value of
δ, (4.18) can be used to compute the sample size for each group.

Notice that the method above is different from starting with a test statistic
based on R̂ = p1/p2 to test the hypothesis H0 : R = 1. In that case, an
approximate variance would be needed in the denominator of the test statistic

t =
(
R̂− 1

)/√
v
(
R̂
)
. Because of the direct linkage between the difference

in proportions and the relative risk, a sample size can be computed from
(4.18) that will be adequate regardless of which method of comparison you
prefer.
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4.3.4 Special Case: Effect Sizes

An effect size is usually defined as a measure of the standardized difference
between two population values. When the difference is between means, one
definition of the population effect size is δE = (μx − μy) /σ where the μ’s
are the means in two groups and σ is the common, unit standard deviation.
This is a customary measure in meta-analysis and is also used in education
research. An estimate of δE when simple random samples are selected from
each group is

δ̂E =
x̄1 − x̄2

s
. (4.25)

In (4.25), x̄1 and x̄2 are the sample means from each of the two groups and
s is the pooled standard deviation

s =

√
(n1 − 1) s21 + (n2 − 1) s22

n1 + n2 − 2

where s21 and s22 are the group-specific sample variances. The form in (4.25)
is known as Hedge’s g (Hedges and Olkin 1985). The general idea of effect
size is due to Cohen (1988). If the same size sample were used in each group
and the groups are independent, then the methods from Sect. 4.3.1 can be
used. In particular, if we want to detect an effect size of δ∗E , this corresponds
to a difference in means of δ = δ∗Eσ. Expression (4.11) applies for computing
the sample size in each group with σ2

d = 2σ2. The unit standard deviation
σ could be estimated by the pooled estimate above if previous samples are
available or by the square root of the sample variance if data from a single
sample are in hand.

4.4 R Power Functions

The function power.t.test, included in the stats library, will calculate
power or sample size for a given set of inputs. The form of the function call
is

power.t.test(n = NULL, delta = NULL, sd = 1, sig.level = 0.05,
power = NULL,
type = c("two.sample", "one.sample", "paired"),
alternative = c("two.sided", "one.sided"),
strict = FALSE)

From the R help file:

Exactly one of the parameters n, delta, power, sd, and sig.level must be
passed as NULL, and that parameter is determined from the others. Notice that
sd and sig.level have non-NULL defaults so NULL must be explicitly passed
if you want to compute them.
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The arguments are:
n Number of observations (per group)
delta True difference in means (i.e., desired detectable

difference)
sd Standard deviation

σy for a one-sample test
σx (or σy assuming the two are equal) for a two-

sample test (more generally,
√
σ2
d/2)

σx−y, i.e., sd of differences within pairs for a
paired test

sig.level Significance level (Type I error probability)
power Power of test (1 minus Type II error probability)
type Type of t -test (two-sample, one-sample, paired)

default is two-sample
alternative One- or two-sided test
strict Use strict interpretation in two-sided case. If

strict = TRUE is used, the power will include
the probability of rejection in the opposite direc-
tion of the true effect, in the two-sided case. With-
out this the power will be half the significance level
if the true difference is zero

Calculations in power.t.test are based on a noncentral t -distribution
rather than the normal approximation.

The function power.prop.test (stats library) will calculate power
or sample size in a test of the difference of proportions for a given set of
inputs. Calculations are based on the normal approximation; no t -distribution
calculations are appropriate for this case. The form of the function call is

power.prop.test(n = NULL, p1 = NULL, p2 = NULL,
sig.level = 0.05, power = NULL,
alternative = c("two.sided", "one.sided"),
strict = FALSE)

From the R help file:

Exactly one of the parameters n, p1, p2, power, and sig.level must be
passed as NULL and that parameter is determined from the others. Notice that
sig.level has a non-NULL default so NULL must be explicitly passed if you
want it computed.

The arguments are:
n Number of observations (per group)
p1, p2 Probability in groups 1 and 2, respec-

tively
sig.level Significance level (Type I error probabil-

ity)
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power Power of test (1 minus Type II error
probability)

alternative One- or two-sided test
strict Use strict interpretation in two-sided

case
Many other software packages will perform power calculations of different

kinds. SAS, for example, has the procedures POWER and GLMPOWER. Stata
has sampsi and various user-written functions for glm’s and other special-
ized applications. There are also quite a few standalone packages that do
nothing but power calculations (e.g., nQuery Advisor R©, PASS R©, Power and
Precision R©).

Example 4.4 (Continuation of Example 4.1). In that example, we were testing
the hypothesis H0 : μ = $55, 000 and wanted the power of detecting that
the mean was really $60,000 for a one-sided 0.05-level test. The CV of the
estimated mean was specified to be 0.06 so that the standard error was 3,300.
The R code to do this and its output are

power.t.test(
n = 1000,
power = NULL,
delta = 5000,
sd = 3300*sqrt(1000), # results in sd/sqrt(n) = 3300
type = "one.sample",
alt = "one.sided",
sig.level = 0.05
)

The output from this function call is

One-sample t test power calculation

n = 1000
delta = 5000

sd = 104355.2
sig.level = 0.05

power = 0.4479952
alternative = one.sided

This reproduces the power of 0.448 in Example 4.1. This function call uses
a small trick to get power.t.test to calculate what we want. When the
function computes sd/sqrt(n), the result is 3,300*sqrt(1,000)/sqrt(1,000)
= 3,300, which is the standard error of the estimated mean. Using 1,000 is
not critical—some other, large artificial sample size would have returned the
same power. (Notice that 3, 300

√
1, 000 = 104, 355.2 is not the unit standard

deviation in the population.) �

Example 4.5 (Continuation of Example 4.2). In that example, we wanted
80% power for a one-sided test to detect a difference of $5,000 when σ̂ =
74, 000. The R code and output to compute the sample size (excluding a
design effect adjustment) is
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power.t.test(n = NULL,
power = 0.8,
delta = 5000,
sd = 74000,
type = "one.sample",
alt = "one.sided",
sig.level = 0.05

)

The output from this function call is

One-sample t test power calculation

n = 1355.581
delta = 5000

sd = 74000
sig.level = 0.05

power = 0.8
alternative = one.sided

The resulting sample size is about the same as found earlier. There is a small
difference due to the use of the noncentral t in power.t.test. �

Example 4.6 (Two-sample test on means). Suppose that we have two domains
(males and females) and want to have equal size samples of men and women
that are large enough to detect a difference in mean weights of 5 kg (i.e.,
μM = μF + 5) with power 0.80. We estimate that σ2

M = σ2
F = 200 and

σ2
d = 400. Thus, sd in the input to power.t.test is

√
σ2
d/2 =

√
400/2 =√

200. If a 1-sided 0.05-level test is done, z0.95 = 1.645. For power of 0.80,
we use z0.20 = −z0.80 = −0.84. The required sample size from (4.11) is then
(treating 400 as if it were the true variance σ2

d)

n =
400 (1.645 + 0.84)

2

52
.
= 99.

On the other hand, if we wanted power of 0.90, then z0.90 = 1.282 and the
sample would be 137. The same calculations can be made in R as follows:

power.t.test(power = 0.8,
delta = 5,
sd = sqrt(200),
type = "two.sample",
alt = "one.sided",
sig.level = 0.05
)

The output from this function call is

Two-sample t test power calculation

n = 99.60428
delta = 5

sd = 14.14214
sig.level = 0.05



4.4 R Power Functions 117

power = 0.8
alternative = one.sided

NOTE: n is number in *each* group

For a power of 0.90 the function call and output are

power.t.test(power = 0.9,
delta = 5,
sd = sqrt(200),
type = "two.sample",
alt = "one.sided",
sig.level = 0.05
)

and

Two-sample t test power calculation

n = 137.7033
delta = 5

sd = 14.14214
sig.level = 0.05

power = 0.9
alternative = one.sided

NOTE: n is number in *each* group

�

R does not have a built-in function to evaluate sample sizes in the two-
sample case with partially overlapping samples. But, the function nDep2sam
that was developed for the book and shown in Appendix C handles this case.
The parameter names are S2x, S2y, g, r, rho, alt, del, sig.level,
and pow and are designed to match those needed to evaluate (4.13). The
parameters, sig.level, and pow, have default values of 0.05 and 0.80.

Example 4.7 (Two-sample test on means with overlapping samples). You
would like to select a sample of women who are employees of a large company
who also participate in a weekly yoga program. At the beginning and the end
of the year the women will be weighed. Determine a sample that will allow
a 5 kg difference in average weight to be detected with 80% power. Assume
that 25% of the people in the initial sample will drop out of the program by
the end of the year and that their weights cannot be measured. Also, suppose
that additional women would be sampled at the end of the year to make up
for the ones who dropped out but that the beginning of the year weights of
these women are not available. These additional women may or may not have
participated in the yoga classes all year. Thus, n1 = n2, r = 1, and γ = 0.75
in (4.13). As in Example 4.6, assume that σ2

F = 200 at both time periods.
Let us also suppose that the correlation between weights at the beginning
and end of the year is 0.9. The call to nDep2sam and its output are
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nDep2sam(S2x=200, S2y=200,
g=0.75, r=1, rho=0.9,
alt="one.sided", del=5,
sig.level=0.05, pow=0.80)

Two-sample comparison of means
Sample size calculation for overlapping samples

n1 = 33
n2 = 33

S2x.S2y = 200, 200
delta = 5
gamma = 0.75

r = 1
rho = 0.9
alt = one.sided

sig.level = 0.05
power = 0.8

That is, a sample of 33 should be selected at the beginning of the year. On
the other hand, if we wanted to detect a 5 kg difference in weight in either
direction (loss or gain), then we compute

nDep2sam(S2x=200, S2y=200, g=0.75, r=1, rho= 0.9,
alt="two.sided", del=5, sig.level=0.05,
pow=0.80)

resulting in the output

Two-sample comparison of means
Sample size calculation for overlapping samples

n1 = 41
n2 = 41

S2x.S2y = 200, 200
delta = 5
gamma = 0.75

r = 1
rho = 0.9
alt = two.sided

sig.level = 0.05
power = 0.8

Note that we implicitly estimated the difference in the means using all persons
available at each time period. An alternative would be to use only the women
who stayed in the program. This would be the correct approach if the goal
were to estimate the effect on weight of participating in the weekly yoga
classes for a year. In that case, nDep2sam could be used to compute a sample
size assuming complete overlap. The call for a 1-sided test would be

nDep2sam(S2x=200, S2y=200, g=1, r=1, rho= 0.9, alt="one.sided",
del=5, sig.level=0.05, pow=0.80)

which yields n1 = 10. Adjusting this for the 25% dropout rate gives
about 14. Although this is much smaller than the 33 computed above, the
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result is perfectly reasonable when we examine the variance of the differ-
ence in means in the two scenarios. As noted in the development leading
to (4.13), the general formula for the variance of the difference in means is

V
(
ˆ̄d
)
= 1

n1

[
σ2
x + rσ2

y − 2γrσxy

]
. When only the overlapping cases are used,

the variance is V
(
ˆ̄d
)
= 2σ2

x [1− ρ] /n1 which evaluates to 40/n1 in Exam-

ple 4.7. Using all cases available at each time period, the variance of the
difference is 130/n1, which is 3.25 times as large as 40/n1. This is, in turn,
about equal to the ratio of the sample sizes, 33/10, we just computed.

Of course, there is also the important conceptual difference in what is being
estimated when we use only matching cases compared to all cases. For the
former, the argument can be made that the difference in means of matching
cases estimates the effect of the exercise program on weight. In the latter, the
difference in means is affected by the possibility that some women did not
participate all year. �

Example 4.8 (Two-sample test on proportions with independent samples).
One of the standard questions on the Defense Manpower Data Center’s sur-
veys of military personnel is:

Taking all things into consideration, how satisfied are you, in general, with each
of the following aspects of being in the (branch of service here, e.g., National
Guard/Reserve)?

A list follows in the questionnaire, which includes compensation, opportu-
nities for promotion, type of work, and other features of military life. One
of the choices is “Your total compensation (i.e., base pay, allowances, and
bonuses).” Suppose we would like to compare the proportions of Army and
Marine personnel who say that they are “very dissatisfied” or “dissatisfied”
with total compensation. If the percentages are 15% of Army personnel and
18% of Marines, we would like to be able to detect this with 80% power. For
a one-sided test, the R statements and output are:

power.prop.test(power = 0.8,
p1 = 0.15,
p2 = 0.18,
alt = "one.sided",
sig.level = 0.05
)

and

Two-sample comparison of proportions power calculation

n = 1891.846
p1 = 0.15
p2 = 0.18

sig.level = 0.05
power = 0.8
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alternative = one.sided

NOTE: n is number in *each* group

Thus, a sample of about n = 1, 900 would be needed in each of the two services
under study. If samples of 1,000 from each service have already been selected
and the observed percentages are 15 and 18, then the power of detecting a 3
percentage point difference is only 0.56 as shown here:

power.prop.test(n = 1000,
p1 = 0.15,
p2 = 0.18,
alt = "one.sided",
sig.level = 0.05
)

Two-sample comparison of proportions power calculation

n = 1000
p1 = 0.15
p2 = 0.18

sig.level = 0.05
power = 0.56456

alternative = one.sided

NOTE: n is number in *each* group

�

Example 4.9 (Effect of size of proportions). Note that the power is affected
by the size of the proportions themselves because the pooled estimate of
variance depends on the pooled p as shown in (4.16). If the percentages in
Example 4.8 are 50 for Army and 53 for Marines, the power to detect an
actual 3 percentage point difference is 0.38 rather than 0.56 above.

power.prop.test(n = 1000,
p1 = 0.50,
p2 = 0.53,
alt = "one.sided",
sig.level = 0.05
)

Two-sample comparison of proportions power calculation

n = 1000
p1 = 0.5
p2 = 0.53

sig.level = 0.05
power = 0.3810421

alternative = one.sided

NOTE: n is number in *each* group

�
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There is not a built-in R function to compute the sample size for a
test in the difference in proportions when samples overlap. The function,
nProp2sam, in Appendix C will evaluate (4.13) for proportions. The calling
parameters are:

px Probability in one group
py Probability in other group
pxy Probability that a unit in the overlap has the charac-

teristic in both samples
g γ in the relationship n12 = γn1

r Ratio of group sample sizes, r = n1/n2

alt Alternative hypothesis: “one.sided” or “two.sided”
sig.level Significance level (Type I error probability)
pow Power of test (1 minus Type II error probability)

The function returns a vector with n1 and n2 in the first two positions and
other calling parameter information. As noted in Sect. 4.3.2, the function
checks restrictions that must be satisfied on the probability Pxy of having
the characteristic at both time periods.

Example 4.10 (Difference in proportions with overlapping samples). To take
a concrete example, suppose that a baseline measurement is to be made of
the proportion of registered voters who plan to vote for the incumbent in the
next election which is six months away. A follow-up sample of voters is asked
three months later for whom they plan to vote. Suppose that the advance
estimates of the proportions of voters who will vote for the incumbent are
px = 0.5 and py = 0.55. The proportion who say at both times that they will
vote for the incumbent is estimated as pxy = 0.45. You anticipate selecting
the same size sample at each time period but that only half of the baseline
sample will respond to the second survey. For a two-sided, 0.05-level test that
will detect the difference of δ = 0.05 with power of 0.80, the function call and
output are

nProp2sam(px=0.5, py=0.55, pxy=0.45, g=0.5,
r=1, alt="two.sided")

and

Two-sample comparison of proportions
Sample size calculation for overlapping samples

n1 = 1013
n2 = 1013

px.py.pxy = 0.50, 0.55, 0.45
gamma = 0.5

r = 1
alt = two.sided

sig.level = 0.05
power = 0.8

A total of 1,013 persons will be needed in each sample. �
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Example 4.11 (Two-sample test on proportions with the arcsine and log-odds
transformations). We will repeat Example 4.8 where the percentages are 15%
for Army personnel and 18% for Marines, and we would like to be able to
detect this with 80% power. There is no built-in R function to do this, but
the following code will evaluate (4.21) for a one-sided test.

p1 <- 0.15
p2 <- 0.18
alpha <- 0.05
power <- 0.80

phi1 <- asin(sqrt(p1))
phi2 <- asin(sqrt(p2))
d.phi <- phi1 - phi2
n <- ((qnorm(1-alpha) - qnorm(1-power)) / sqrt(2) / d.phi)ˆ2
n

Program output:

[1] 1889.337

The following code uses the log-odds transformation to compute the sample
size:

p1 <- 0.15
p2 <- 0.18
alpha <- 0.05
power <- 0.80

phi1 <- log(p1/(1-p1))
phi2 <- log(p2/(1-p2))
d.phi <- phi1 - phi2
p.bar <- mean(c(p1,p2))
V0 <- 1/p.bar/(1-p.bar)
VA <- 1/p1/(1-p1) + 1/p2/(1-p2)

n <- ( (qnorm(1-alpha)*sqrt(2*V0) - qnorm(1-power)*sqrt(VA)) /
d.phi)ˆ2

n

Program output:

[1] 1888.571

Both the arcsine and log-odds transformations give virtually the same answer.
Both are very close to the value of about 1,892 as calculated in Example 4.8.
�

4.5 Power and Sample Size Calculations in SAS

SAS has the procedure, power, which will do one- and two-sample calcula-
tions. We repeat some of the earlier examples to provide comparisons with
the R functions.
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Example 4.12 (Continuation of Example 4.5). The SAS code to do this one-
sample calculation is

proc power;
onesamplemeans

mean = 60000
ntotal = .
stddev = 74000
sides = 1
nullmean = 55000
power = 0.80;

run;

The parameters should be self-explanatory after referring to the earlier exam-
ple. By specifying ntotal = ., we ask SAS to calculate a sample size needed
for 0.80 power. Results are shown below; the total sample size of 1,356 is about
the same as before.

The POWER Procedure
One-sample t Test for Mean

Fixed Scenario Elements

Distribution Normal
Method Exact
Number of Sides 1
Null Mean 55000
Mean 60000
Standard Deviation 74000
Nominal Power 0.8
Alpha 0.05

Computed N Total

Actual N
Power Total

0.800 1356

�

Example 4.13 (Continuation of Example 4.8). Two-sample test on propor-
tions: in this example, we want to find the sample size needed to obtain 80%
power to detect a 0.03 difference between two proportions. The SAS code to
do this two-sample calculation is shown below. The option test = pchi
results in the normal approximation being used, as described in Sect. 4.3.2.
Unlike R power.prop.test, we do not specify each of the proportions,
0.15 and 0.18. SAS requires the two options refproportion = 0.15 and
proportiondiff = 0.03 be used to do the same thing.
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proc power;
twosamplefreq

test = pchi
refproportion = 0.15
proportiondiff = 0.03
sides = 1
power = 0.80
npergroup = .

;
run;

The result for the sample size per group is n = 1, 892 as in Example 4.8.

The POWER Procedure
Pearson Chi-square Test for Two Proportions

Fixed Scenario Elements

Distribution Asymptotic normal
Method Normal approximation
Number of Sides 1
Reference (Group 1) Proportion 0.15
Proportion Difference 0.03
Nominal Power 0.8
Null Proportion Difference 0
Alpha 0.05

Computed N Per Group
Actual N Per
Power Group

800 1892

�
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Exercises

4.1. The average disposable employment income per worker in Mexico in 2002
was approximately $6,100 US dollars (USD).3 Suppose that a new survey is
to be conducted in 2010 and you would like to determine the size of simple
random sample that would permit you to detect that the average has risen to
$7,000. Assume that the unit relvariance of income in 2002 was 2.5 and that
it will be about the same in 2010. Calculate a sample size for a 0.05-level test
when the desired power is 0.80; treat the 2002 mean as a constant for this
problem.

4.2. Consider Example 4.6 where one-sided tests were used to determine
sample sizes with 80% and 90% power to detect differences in estimates for
males and females.

(a) How does the sample size change if σ2
d = 200?

(b) How does a σ2
d = 800 affect your previous calculation?

(c) Compare your results.

4.3. Continuing with Exercise 4.2:

(a) What sample design is assumed under the calculations?
(b) How does your calculation change in 4.2(a) if the survey design results in

an overall design effect of 1.0? A design effect of 3.2?
(c) How would you adjust your initial sample sizes in 4.2(b) to address differ-

ential response rates by gender, say a 75% response rate for females and
a 60% response rate for males?

4.4. Your organization has been awarded a contract to conduct a study of
obesity in children ages 6 to 14. Data on eating habits and levels of exercise are
collected through a parent questionnaire; physical measurements are collected
by trained nurse practitioners. Your task is to determine sample sizes under
the following scenarios with 80% power at a significance level of 0.05.

(a) The client is interested in determining if the average BMI for children
in the first grade (ages 6–7) has increased by 1.5% from a previously
estimated average of 17.5. What is the sample size needed to detect this
difference given that the population standard deviation is 0.70?

(b) How does the sample size change if the client is willing to accept being
able to detect a 3.0% increase?

(c) How does the sample size change if the client wants to detect a 0.5%
increase?

(d) Comment on the difference in your sample size calculations.

4.5. Rework the sample size calculations from the previous exercise assuming
the client wants to detect either an increase or decrease in the average BMI.

3 http://www.worldsalaries.org/employment-income.shtml

http://www.worldsalaries.org/employment-income.shtml
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4.6. The average amount of taxable income reported by taxpayers to a coun-
try’s revenue administration in 2008 was 44,000 in the local currency based
on a tabulation of all tax returns. Due to an economic recession, it is specu-
lated the average may have dropped by 10% in 2010. Suppose that the unit
relvariance of taxable income in the population is 3. What simple random
sample size would be needed to detect a 10% decline with a power of 0.90?
How would your answer change if the unit relvariance were 6?

4.7. The relative risk of a person’s having had malaria in the last five years
is to be estimated for two villages in Liberia. You plan to select a simple
random sample of the same size from each village. Because of their different
proximities to bodies of water, village B is known to have a larger incidence
rate than village A.

(a) You anticipate that village A will have an incidence of 20% and village
B will have an incidence of 30%. You would like to be able to detect
a relative risk of 1.5 with power of 0.90 using a 1-sided test. What size
sample is needed in each village? Assume that the level of the test is 0.05.

(b) Suppose the desired power for part (a) is 0.8. What sample size is
required?

(c) Last year samples of 50 were selected in each village and the 5-year inci-
dence rates were 22% in village A and 37% in village B. What is the
power for detecting a difference of 15 percentage points using a 1-sided
0.10-level test?

(d) Compute a 90% 2-sided confidence interval on the difference in propor-
tions for part (c).

4.8. A sample is to be selected from the population in a county that is age
18 or older. The proportion of persons that are unemployed will be measured.
Three months later the proportion unemployed will again be recorded on
a follow-up sample. It is anticipated that 75% of the time 1 sample will
cooperate at time 2. The same size sample will be maintained at time 2 by
selecting additional persons.

(a) If the time 1 unemployment rate is anticipated to be 8% and you want
to be able to detect a decline of 1.5 percentage points with power 0.8 in
a 1-sided, 0.05-level test, how large should the sample be at each time
period? You will have to make some assumption about the proportion of
persons unemployed at both times. Describe your reasoning for the value
you assume.

(b) If you can only afford to sample 500 persons, what will be the power to
detect a 1.5 percentage point change?

4.9. Students at public and private high schools are compared on a standard-
ized achievement test. In previous years the average score has been about 600
(out of 800). Suppose you want to sample about twice as many public school
students as private school students since there are some extra analyses you
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plan for the public schools. The population relvariance of scores is known to
be 0.6.

(a) What sample size of students for public and private is needed to detect
an effect size of 0.10 with power 0.80? Assume that differences in either
direction should be detected at a significance level of 0.05.

(b) What difference in means does this correspond to?

4.10. The Council of Governments (COG) is an organization in the Wash-
ington DC area that is funded by local governments from the District of
Columbia and surrounding counties. The COG would like to fund a survey
to compare crime rates in the central city to that of one of the suburban
counties. It would like to select a sample of households from the two juris-
dictions and conduct in-person interviews to determine whether central city
residents are more likely to be victims of any type of crime than are the sub-
urbanites. The overall metropolitan area rate of violent plus property crimes
is 1,105 per 100,000 households. Analysts at COG think that the suburban
crime rate is about 75% of that of the overall rate. If the central city rate is
twice the suburban rate, COG policymakers would like to be very sure that
their sample will recognize that large difference. On the other hand, some
COG analysts would like to know whether the central city rate is 1.5 times
the suburban rate. To complicate matters, the amount of money available
to do the survey is unclear because the local municipalities have not passed
their budgets for the current fiscal year. Given that uncertainty, compute a
range of sample sizes that you can discuss with COG. How will you describe
the pros and cons of your alternatives to COG?

4.11. An organization surveys its employees in January and July to measure
proficiency with the suite of data analytic software that the company supplies.
Employees perform various tasks and receive an overall score between 0 and
100. Suppose that, based on past data, the average score is 72 and that
the unit standard deviation of scores is 55 which is stable over time. The
information technology department would like to know if the average score
has changed 10% or more from January to June. A simple random sample
is selected of the employees in January. The same employees will be tested
in July, if possible, but because of turnover, absenteeism, and scheduling
conflicts, you expect that only 60% of the initial sample will be retested in
July. For cross-sectional analyses, the same size sample is desired at each
time period. Assume that the correlation between individual scores at the
two times is 0.76.

(a) Compute the sample size required in January (which will equal the size
in July) that will be needed to detect a change of 10% with power 0.80.
Assume that all cases at each time period will be used to compute the
difference and that the level of the test is 0.05.

(b) Repeat part (a) but assume that only the overlapping cases between Jan-
uary and July will be used.
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(c) Calculate the variance of the estimated mean difference from parts (a)
and (b) and discuss how this relates to the sample sizes you computed in
parts (a) and (b).

(d) What assumption are you implicitly making to say that the difference in
means estimated in (a) and (b) are the same? Are there any reasons to
believe that this assumption is wrong? Explain your answer.

4.12. In the case of partially overlapping samples described in Sect. 4.3.1,

show that the variance of the difference in means, ˆ̄d = ˆ̄x − ˆ̄y, is V
(
ˆ̄d
)

=

σ2
x

n1
+

σ2
y

n2
−2σxy

n12

n1n2
as shown in (4.12). When n12 = γn1 and r = n1/n2, show

that this reduces to V
(
ˆ̄d
)
= n−1

1

[
σ2
x + rσ2

y − 2γrσxy

]
. When σ2

x = σ2
y = σ2

0 ,

show that V
(
ˆ̄d
)
= σ2

0n
−1
1 [1 + r (1− 2γρ)].



Chapter 5

Mathematical Programming

Earlier chapters examined sample size determination and allocation to strata
for a single variable. In reality, almost every survey of any size is multipur-
pose. Data on a number of different variables are collected on each sample
unit. Estimates are made of population values for the full population and for
various domains or subpopulations. In addition, a variety of types of estimates
may be made, including means, totals, quantiles, and model parameters.

There is also a potentially long list of constraints that must be satisfied.
Minimum sample sizes may be set for the domains based on, for example, a
power calculation associated with a detectable difference. Targets for coeffi-
cients of variation (CV ) may be set. A time schedule must be met, which
dictates logistical decisions like mode of data collection and number of data
collectors to hire. Above all, there is usually a limited amount of money avail-
able. Cost overruns are common, but the organization conducting the survey
cannot count on getting a budget increase to cover them.

Multiple goals and constraints mean that the allocation problem is consid-
erably more complicated than was presented earlier. In principle, these goals
and constraints can be accommodated using the techniques of mathematical
programming that are illustrated in this chapter. Mathematical programming
is a general term that refers to choosing the best solution to some optimiza-
tion problem from among the available alternatives. The term programming
does not refer to computer programming although sophisticated computer
algorithms have been developed for these problems. Instead, program refers
to its use by the US military to refer to proposed training and logistics sched-
ules (Freund 1994; Dantzig 1963). The term was coined by George Dantzig,
who invented the area of linear programming.

As in the rest of this book, we concentrate on learning the methods of
multicriteria optimization for single-stage design in this chapter and not the
theory. Optimization for more complex designs is discussed in later chapters.
The advantage of these methods is that they provide a formal way of solving
what can be extremely complex allocation problems. The alternative is to rely
on a crude diet of intuition and sense of smell. Although in the right hands

R. Valliant et al., Practical Tools for Designing and Weighting
Survey Samples, Statistics for Social and Behavioral Sciences 51,
DOI 10.1007/978-1-4614-6449-5 5, © Springer Science+Business Media New York 2013
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trial and error methods may eventually lead to efficient solutions, all sample
designers are not equally good at this. Having a good, mathematical solution
helps eliminate the guesswork. In addition, having sophisticated optimization
software encourages us to carefully list all of the goals and constraints and,
we can hope, produce better solutions.

5.1 Multicriteria Optimization

The general formulation of the problem is to minimize (or maximize) some
(objective) function subject to constraints on cost, minimum sample size per
stratum, minimum sample sizes in analytic domains, and CV s of stratum or
other domain estimates. In general, an optimization problem has four parts:

1. Objective function—a function of one or several variables to be optimized
2. Decision variables—the quantities that are adjusted in order to find a

solution, e.g., sample sizes
3. Parameters—fixed inputs that are treated as constants, e.g., stratum pop-

ulation counts, and variances
4. Constraints—restrictions on the decision variables or combinations of the

decision variables, e.g., domain sizes and cost

A solution to these problems requires special algorithms and software. Some
of the software options are Excel Solver, SAS proc nlp, SAS proc
optmodel, and the R package alabama (Varadhan 2010), all of which
are described in this chapter for single-stage designs.

When there are multiple variables and estimates, some judgment needs
to be made about the relative significance of each to the goals of the survey.
One option is to use a weighted combination of the relvariances for different
estimators as the objective function. The weights could be selected based
on the “importance” of each estimate to the survey goals. If, for example,
the objective is a linear combination of the relvariance for the estimated
proportion of employees who prefer flexible work hours and the estimated
average number of sick days taken per employee, then the importance weights
could each be 0.5, assuming that these two estimates are equally important.
What the relative weights should be is a matter of opinion and assigning them
will require conferring with the survey sponsor and, probably, some debate
among the staff conducting the survey. In the end, some arbitrary assignments
will probably be necessary. Sensitivity analyses can be done using different
sets of importance weights.

Relvariances are convenient for forming the objective function since a
relvariance is unitless, as noted in Sect. 3.1. The relvariance of the estimated
mean number of employees, for example, has units (employees2)/(employees2).
If variances were used, a variable like number of employees would overshadow
the effect of a 0–1 variable, like whether an establishment had laid off any
workers in the last quarter.



5.1 Multicriteria Optimization 131

Example 5.1 (Formal statement of an optimization problem). Suppose
that a stratified single-stage sample is selected using stsrswor. Let
ˆ̄yj =

∑H
h=1 Whȳj,sh be the stratified mean for variable j (j = 1, 2, . . . , J).

The stratum sample mean is ȳj,sh =
∑

i∈sh
yjhi /nh with yjhi being the value

of variable j for sample unit hi. As in Sect. 3.1.2, the estimated domain mean
for variable j is defined as

ˆ̄ydj =

∑
h Whpdhȳdj,sh∑

h Whpdh
,

where ȳdj,sh =
∑

i∈sdh
yjhi /ndh is the sample mean of variable j in domain

d within stratum h and pdh = ndh /nh , the proportion of units in stratum h
that are in domain d.

A formal statement of one mathematical programming problem might
be the following. The terms CV0jh and CV0dj below are targets for the
CV s of the estimated means for variable j for stratum h (a design domain
as described in Chap. 3) and cross-strata domains (called a cross-class in
Chap. 3).

• Find the set of sample sizes {nh}Hh=1 to minimize the weighted sum of
relvariances (i.e., the objective function),

Φ =

J∑
j=1

ωjrelvar
(
ˆ̄yj
)
,

where {ωj}Jj=1 are the importance weights assigned to estimates j =

1, . . . , J and relvar
(
ˆ̄yj
)
= V

(
ˆ̄yj
) /

ȳ2Uj .
• Subject to the constraints:

(i) nh ≤ Nh for all h
(ii) nh ≥ nmin, a minimum sample size in every stratum (nmin ≥ 2 in

general)

(iii) [CV (ȳj,sh)]
2 ≤ (CV0jh)

2
for certain strata and variables

(iv)
[
CV
(
ˆ̄ydj
)]2 ≤ (CV0dj)

2
for certain domains and variables

(v) C = C0 +
∑H

h=1 chnh

The decision variables to be adjusted in order to find a solution are {nh}Hh=1

in this case. �

Note that
∑J

j=1 ωj need not equal 1 although normalizing them is sensible

so that the relative sizes of the weights are easy to see. The vector {ωj}Jj=1
may also contain some zero values to indicate a “relaxed” objective. This
is especially useful when experimenting with inclusion or exclusion of some
variables from the objective function.

The problem above is nonlinear in the decision variables because the nh’s
are in the denominators of both the objective function, through relvar

(
ˆ̄yj
)
,
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and the constraints, through [CV (ȳj,sh)]
2
and

[
CV
(
ˆ̄ydj
)]2

. In almost all non-
linear problems, there are no closed-form, exact solutions like the ones we
noted for stratified sampling in Sect. 3.1.2. Iterative, approximate solutions
are needed but several software options are available, as described in the
following sections.

Exactly how a problem is set up is important both (i) to get a solution
that really addresses the goals of a survey and (ii) to formulate the prob-
lem in a way that is least burdensome for the solution algorithm. Some of
the techniques for solving nonlinear optimization problems involve numer-
ical approximations to partial derivatives of the objective function and to
nonlinear constraints. How you phrase a problem can make finding a solu-
tion unnecessarily difficult for an algorithm. In Example 5.1, we could have
defined the objective as the weighted sum of CV s instead of relvariances.
Constraints (iii) and (iv) could also have been stated in terms of CV s. But,
simpler is better. Stating the objective function and nonlinear constraints
in terms of CV s makes both “more” nonlinear in the nh’s than does using
relvariances because of the square root function required for CV s.

Setting up a problem that has no solution is certainly a possibility. Using
constraints that are incompatible with each other is one mistake that can be
made. For example, nh ≤ Nh and nh ≥ 100 are incompatible for any strata
with Nh < 100. More subtle errors are naturally possible. Tight constraints
on relvariances may lead to a violation of a cost constraint, for example.
Often the easiest way to discover these is to run the optimization and see
what happens.

Good software will produce reports that inform whether or not a problem
could be solved and whether any constraints were violated. The final value of
the objective function should be reported along with a list of the constraining
functions and their final values. A constraint that is satisfied exactly at the
boundary or within some small tolerance of the boundary of the allowable
value is labeled as binding; changing the constraint would have a direct effect
on the objective function. Constraints that are easily met (and could be
tightened in a subsequent optimization problem) are called nonbinding.

Many different algorithms have been developed to solve nonlinear opti-
mization problems like the one in Example 5.1. The mathematics behind
some of these is described in, for example, Winston and Venkataramanan
(2003). Besides choosing an algorithm, software packages typically have a
variety of tuning parameters that can be set to control the methods used
for a solution. A user may be able to set the number of iterations before the
algorithm terminates, the length of clock time the algorithm runs before stop-
ping, the relative change between iterations in the objective function used to
decide whether an optimum has been reached, and a tolerance used to deter-
mine whether a constraint is violated or not. We discuss four approaches for
conducting an optimization for single-stage designs in the next sections.
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5.2 Microsoft Excel Solver

Solver, a tool bundled with Microsoft Excel, is quite easy to use and can find
solutions to problems as long as there are not too many decision variables
or constraints. The standard Solver allows up to 200 decision variables (e.g.,
stratum sizes) and constraints on up to 100 cells in the spreadsheet. There
are several upgraded versions that can be purchased separately from Front-
line Systems, Inc.1 The upgrades can handle much larger and more complex
problems than addressed by the standard Solver and also work within Excel.
A readable introductory text on the use of Solver and many other features
of Excel is Powell and Baker (2003). Chapter 10 of their book, in particular,
covers nonlinear optimization problems and the use of different versions of
Solver.

This section describes how to set up a problem in Excel and find a solution
using Solver. The example below is small but illustrates features that are
common to sample allocation problems.

Example 5.2 (Optimizing a sample of business establishments). Table 5.1
gives stratum means, standard deviations, and proportions for an artificial
population of business establishments. The US tax law in 2000 allowed a
tax credit to be taken for certain expenses associated with doing scientific
research. The column labeled “Claimed research credit” gives the proportion
of establishments within business sector (classification area) that claimed the
credit in a particular year. Suppose we want to find an allocation of an stsr-
swor to strata that will minimize the relvariance of estimated total revenue,
T̂rev =

∑
h Nhȳsh, subject to these constraints:

(i) Budget on variable costs = $300,000 US.
(ii) CV ≤ 0.05 on estimated total number of employees.
(iii) At least 100 establishments are sampled in each sector, nh ≥ 100.
(iv) The number sampled in each stratum is less than the population

count, nh ≤ Nh.
(v) CV ≤ 0.03 on estimated total number of establishments claiming

the research tax credit.
(vi) CV ≤ 0.03 on estimated total number of establishments with off-

shore affiliates

Offshore affiliates are companies or legal entities that are established to act as
holding areas for investments. This may be a way to reduce tax liability and
shield assets against future claims such as divorce proceedings, bankruptcy,
creditors, and other litigation.

In this example, the population sizes in each stratum and overall are known
so that optimizing for estimated totals and means will be the same (as dis-
cussed in Sect. 3.1). Recall that the relvariance of an estimated total in an
stsrswor is

1 http://www.solver.com/excel-solver.htm.

http://www.solver.com/excel-solver.htm
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relvar
(
T̂
)
= T−2

∑
h

Nh

(
Nh

nh
− 1

)
S2
h

with T being the population total. This is a small-scale problem that is easy
to unravel using Solver. The spreadsheet used in this example can be found
in Example 5.2.Solver.xls on this book’s web site. A screenshot of the
spreadsheet showing row and column labels is in Fig. 5.1. The steps in using
Solver are listed below.

1. Add columns to the spreadsheet that are used to calculate the statistics
for the optimization. In this example, columns L, M, N, and O were

added and contain the formula Nh

(
Nh

nh
− 1
)
S2
h for revenues, employees,

the research credit, and offshore affiliates.
2. Add a column to hold the decision variables, {nh}Hh=1, (cells K3–K7).
3. Create a cell that contains a formula that computes the objective function.

Here, the objective is CV2
(
T̂
)
= T−2

∑H
h=1Nh

(
Nh

nh
− 1
)
S2
h with the

variable being total revenue (cell L11).
4. Add cells, if necessary, to hold formulas that compute the values that

enter into the constraints. Here, the total budget is cell D12 and the
computed cost for the particular sample allocation is D13. The CV s for
employees, the research credit, and offshore affiliates are in M12, N12,
and O12.

5. Open Solver by choosing Tools/Solver from the Data tab in Excel 2007 or
2010. If Solver is not listed, select Tools/Add-Ins and check Solver Add-in
to activate the tool. In Excel 2010 select File/Options/Add-Ins/Manage
Excel Add-ins.

6. Fill in the following boxes in the Solver Parameters screen: Set Target
Cell, Equal to, By Changing Cells, and Subject to the Constraints. The
contents of the cells for this example are (see Fig. 5.2):

Set Objective: L11
To: Min
By Changing Variable Cells: K3–K7,

Subject to the Constraints:
$D$13 <= $D$12 (cost constraint)
$K$3:K7 <= $C$3: $C$7 (nh ≤ Nh)
$K$3: $K$7 >= 100 (nh ≥ 100)
$M$11 <= 0.052 (relvariance of estimated total employees)
$N$11 <= 0.032 (relvariance of estimated total number of establish-
ments claiming the research tax credit)
$O$11 <= 0.032 (relvariance on estimated number of establish-
ments with offshore affiliates)
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Note that Solver allows array notation so that, for example, K3 through
K7 are constrained to be greater than 100 (i.e., K3:K7 >= 100) instead of
constraining each cell separately. Figure 5.3 shows the Change Constraint
screen in which the D13 <= D12 constraint is set. The other constraints are
set in a similar way.

Tuning parameters that control how long the algorithm runs, when it
stops, and methods used are set in the Solver Options screen (Fig. 5.4) which
appears after clicking Options in the Solver Parameters screen. Max Time
and Iterations are self-explanatory. Some of the other options relevant to
sample allocation are:

Constraint Precision. This number in the All Methods tab determines how
close the left-hand side value of a constraint should be to the right-hand
bound in order to be satisfied. The default setting is 10−6. Setting this
value to an extremely small number can result in (a) Solver reporting that
a constraint has been violated when for all practical matters it is simply
binding without being violated or (b) Solver reporting that a solution can-
not be found. Setting the Precision to too large a value can also result
in “premature” convergence, i.e., a solution is found that satisfies all con-
straints but does not give the best value of the objective function. You can
test this yourself by experimenting with different Precision values in the
example in this section.

Convergence. This is in the GRG Nonlinear tab and represents the abso-
lute value of the change in the objective function that is used to declare
convergence. If the change between iterations is less than or equal to this
number, then Solver stops.

Use Automatic Scaling. When this box is checked in the All Methods tab,
Solver attempts to scale the values of the objective and constraint func-
tions internally in order to minimize the effects of having values of the
objective, constraints, or intermediate results that differ by several orders
of magnitude.

Derivatives. This option in the GRG Nonlinear tab controls performance
of the solution method. The default value of Forward can be used for
most problems. At each iteration, values of derivatives of the objective
and the constraints with respect to the decision variables are used. These
derivatives are approximated by a technique known as differencing, the
technique that is selected under the Derivatives choice. Central differencing
requires more time per iteration than Forward differencing but may lead
to a better search direction and fewer iterations.

The solution to this optimization problem is shown in Table 5.2. Three
reports are available when a solution is found—the Answer Report, the Sen-
sitivity Report, and the Limits Report. We will discuss the first two; the third
appears to have little use in the problems we address.

The Answer Report summarizes the original and final values of the deci-
sion variables and constraints, with additional information about which con-
straints are binding. Figure 5.5 shows the Answer Report for this example.
First, the original and final values of the objective function are listed. Initial



136 5 Mathematical Programming

Table 5.1: Stratum population means, standard deviations, and proportions for an
artificial population of business establishments

Population Population standard Population

means deviation proportion

Estab- Claimed Had

Business lishments Revenue Revenue research offshore

h sector Nh ch (millions) Employees (millions) Employees credit affilates

1 Manufacturing 6,221 120 85 511 170.0 255.50 0.8 0.06

2 Retail 11,738 80 11 21 8.8 5.25 0.2 0.03

3 Wholesale 4,333 80 23 70 23.0 35.00 0.5 0.03

4 Service 22,809 90 17 32 25.5 32.00 0.3 0.21

5 Finance 5,467 150 126 157 315.0 471.00 0.9 0.77

Pop Total 50,568 1,834,157 5,316,946 21,254 9,855

Fig. 5.1: Excel spreadsheet set-up for use with Solver

Table 5.2: Solution to the optimization problem in Example 5.2

Stratum Sector nh

1 Manufacturing 413

2 Retail 317

3 Wholesale 119

4 Service 1,399

5 Finance 598

Total 2,846

values for the nh’s are needed to get the algorithm started; nh = 500 was used
for all strata in this case. An alternative would be to use our specified mini-
mum value, nh = 100. In this example, both starting values lead to almost the
same solution. Next, the original and final values for the “adjustable cells,”
i.e., the decision variables, are listed.

The third section in Fig. 5.5 shows the constraints with their final cell val-
ues; a Formula column showing the spreadsheet formula entered by the user;
a Status column showing whether the constraint was binding or nonbinding
at the solution; and the slack value. The Name column is the combination of
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Fig. 5.2: Screenshot of the Excel Solver dialogue screen

Fig. 5.3: Screenshot of the Change Constraint dialogue screen

the row and column label for the constraint, e.g., relvariance of t.hat
Offshore Nh*(Nh/nh - 1) * Shˆ2. The slack is the difference between
the final value and the lower or upper bound imposed by that constraint.
A binding constraint, which is satisfied with equality or with a negligible
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Fig. 5.4: Solver Options window where tuning parameters can be set and models
saved

difference, will always have a slack of zero. Total sample cost and the relvari-
ance of the proportion with offshore affiliates are both binding. Thus, the
final allocation uses all of the available funds.

The Sensitivity Report in Fig. 5.6 provides information about how the
solution would change for small changes in the constraints or the objective
function. The two sections of the report are labeled Adjustable Cells and
Constraints. The figures under the columns, Reduced Gradient and Lagrange
Multiplier, are called dual values. For this example, the only interesting values
are those under Constraints. The dual value for a constraint is nonzero only
when the constraint is binding. Moving the value of the left-hand side of
the constraint away from the bound will make the objective function’s value
worse; relaxing the bound will improve the objective. The dual value measures
the increase in the value of the objective function per-unit increase in the
constraint’s bound.
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In manufacturing applications where some number of products is built,
interpretation of the dual value of a constraint can be fairly simple. For exam-
ple, building one more of some electronic component might lead to a decrease
in profits of $100 if the Lagrange multiplier is negative. Interpretation in this
example is less straightforward. The cost is constrained to be $300,000. By
relaxing this bound by 1 unit (i.e., increase the budget by $1), the objective
should change by −1.644E− 08 (i.e., the relvariance of estimated total rev-
enue will reduce slightly). Since this is a minuscule change, a more meaningful
approach would be to ask what would be the effect of increasing the budget by
a substantial amount. For example, if the budget were increased by $50,000,
the relvariance would change by 50, 000× (−1.644E− 08) = −0.00082. That
is, the relvariance would change to 0.002167−0.00082 = 0.001345. This corre-
sponds to a change in CV from

√
0.002167 = 0.0466 to

√
0.001345 = 0.0367.

The scale of the constraint is important when interpreting a Lagrange
multiplier. For example, suppose the constraint on the relvariance of offshore
affiliates was binding and its Lagrange multiplier was −4. A change of 1 unit
to the relvariance constraint that leads to a change of −4 in the objective
function would make the relvariance of total revenues negative, which is not
possible. In such a case, the standard interpretation of the dual value can
be made only for very small changes in the constraint. For example, suppose
that the CV bound on the offshore estimate increases from 0.030 to 0.032.
This implies that the change in the relvariance on that estimate is 0.001024−
0.0009 = 0.000124 (or, a 14% increase in the offshore relvariance). This, in
turn, means that the objective value should change by −4 × 0.000124 =
−0.00049636. Thus, the objective, which is the relvariance of total revenue,
should change to 0.002167− 0.000496 = 0.00167; or, the CV of total revenue
should change to

√
0.00167 = 0.0409.

Rather than going through this sort of calculation, the simplest thing to
do in an easy problem is to change the constraint and rerun the problem. The
reader can verify by rerunning the optimization that changing the constraint
on the budget to $350,000 leads to a CV on estimated total revenues of 0.0387
rather than 0.0367 as predicted from the Lagrange multiplier analysis. �

When running variations on a problem by changing constraint values,
importance weights in the objective, or something else, good practice is to
save some or all of the variations so that they can be revisited if necessary.
There are two ways of doing this. One is to save each variation as a new
spreadsheet or a new tab within one spreadsheet. The other is to save more
than one model in one tab of the spreadsheet. To save a model, click the
Load/Save button in the Solver Parameters window in Fig. 5.2. Upon click-
ing the Load/Save Model button, a dialogue box appears where the range
of cells can be specified where you want to save the model. The dialogue
tells you to select an empty range of cells long enough to hold the informa-
tion that Solver needs to store. In the example in this section, ten cells are
needed. Putting a header cell over this range with a meaningful name is good
documentation. To save another model, modify the Solver Parameter setup
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as desired, then save the model in a different range of cells. To load one of
the models, open the Solver Parameters window, click Load/Save, and select
the range of cells that contains the model you want.

Section 5.6 gives some general remarks on how to track variations of opti-
mization problems that may be tried. As in all applications, good bookkeeping
is a critical part of good organization.

Fig. 5.5: Solver’s Answer Report for the business establishment example

Starting Values. Finally, we note that the solution may be sensitive to
the starting values of the decision variables. In the business establishment
example, we started with nh = 100 in each stratum, but other possibilities
would be proportional allocation, Neyman allocation for revenues, or one
of the other univariate allocations from Chap. 3. It is advisable to find solu-
tions using several different sets of starting values, which are substantially
different from each other. If the same, or a very similar solution is obtained
from each set, this provides some assurance that a global optimum has been
found. This is usually called a sensitivity analysis because you are evalu-
ating the sensitivity of the solution to, in this case, the starting values.
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Fig. 5.6: Solver’s Sensitivity Report for the business establishment example

You can also have Solver use multiple starting values automatically. In the
Solver Parameters window, select Options. Then, in the Options window,
choose the GRG Nonlinear tab and check the Use Multistart box. If this
box is selected when you click Solve, the GRG Nonlinear method will run
repeatedly, starting from different (automatically chosen) starting values
for the decision variables. This process may find a better solution, but it
will take more computing time than a single run of the GRG Nonlinear
method.2

Limitations on Number of Decision Variables. The standard Solver
has a limit of 200 decision variables for both linear and nonlinear problems.
By “linear” we mean that both the objective function and constraints
are linear combinations of the decision variables. However, an upgraded
version of Solver has limits of 2,000 decision variables for linear problems
and 500 for nonlinear problems.

Limitations on Number of Constraints. The standard Solver has a
limit of 100 cells that can be constrained; the decision variables are not
included in this list. Although this seems generous, exceeding this limit is
not hard to do. If a population has 110 strata and the constraint is set
that nh ≤ Nh separately in each stratum, the limit is exceeded. A work-
around is to set one cell equal to maxh(nh/Nh) and to constrain this cell
to be less than or equal to 1. Thus, 110 constraint cells are converted to
1 constraint without changing the goals of the problem. Similarly, if a CV
of 0.05 is desired for several different estimates, then a single cell can be
defined that holds max

(
CV2

)
over the set of estimates.

2 More detailed help is available for this and all other options at www.solver.com/
excel2010/solverhelp.htm.

www.solver.com/excel2010/solverhelp.htm
www.solver.com/excel2010/solverhelp.htm
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Solver can also handle linear programming problems as illustrated in the
next example of selecting a subsample from an existing sample. Example 5.3
is a particular instance of two-phase sampling which we cover in more detail in
Chap. 17. The general idea in two-phase sampling is to select a second-phase
sample from an initial (first-phase) sample based on information gained in
the first phase.

Example 5.3 (Determining subsample sizes). Suppose that a sample of house-
holds is selected with the goal of obtaining specified numbers of children in
the age groups 5–11years, 12–14years, and 15–17years old. An initial sample
of 27,400 households is selected and the numbers of children in each age group
in each household is recorded based on a screening interview. The numbers
of children in the initial sample and the target sample sizes for the subsample
in each subgroup are:

Age group Number of
children in
initial sample

Target sample size of
children in subsample

1 5–11 years 6,229 1,000
2 12–14 year 3,009 2,000
3 15–17 years 3,159 2,000

Total 12,397 5,000

A household may contain no children in any of these groups or children in any
combination of the three groups. We could simply list the children in each
age group and sample each list separately to obtain 1,000, 2,000, and 2,000
in each group. However, this would not exercise any control over how many
HHs were selected; nor would it control the number of children sampled per
HH. We would like to sample only one child per household to limit reporting
burden. Only households (HHs) that have children in one or more of the
three age groups above will be eligible for the second-phase survey. Strata of
households are indexed by the age groups of the children contained in the
HHs: 1, 2, 3, 12, 23, 13, and 123. For example, stratum 13 is composed of
HHs that have children in the age groups (1) 5–11 and (3) 15–17. To specify
the problem clearly, we need some notation:

ah = sampling rate of HHs in stratum h (to be determined using mathe-
matical programming)

Chi(k) = number of children in HH i, stratum h in age group k (k=1, 2, 3)
Chi(+) = number of children in HH i, stratum h across all age groups
nh = number of first-phase sample HHs that are in stratum h
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If one child is selected at random without regard to age group in a HH,
the selection probability within the HH is 1

/
Chi(+). The expected number of

children sampled from age group k in HH hi is also the proportion of children
in that age group in the HH:

phi(k) =
Chi(k)

Chi(+)
.

The expected number of children selected from age group k across all HHs is

ek =
∑
h

ah
∑
i∈sh

phi(k)

=
∑
h

ahnhp̄h(k), (5.1)

where sh is the set of first-phase HHs in stratum h, and p̄h(k) =
1
nh

∑
i∈sh

phi(k) is the average proportion of children per HH in stratum
h that are in age group k. The total number of children subsampled is
e+ =

∑3
k=1 ek. The expected total number of HHs subsampled is

EHH =
∑
h

ahnh.

Since we only have seven HH strata and three age groups of children, the
various parameters can be displayed in a short table.

Stratum Sampling
rate
for HHs

No. of HHs Average proportion of children p̄h(k) per
HH that are in age group k

h ah nh k = 1 2 3

1 a1 n1 1 0 0
2 a2 n2 0 1 0
3 a3 n3 0 0 1
12 a12 n12 p̄12(1) p̄12(2) 0
13 a13 n13 p̄13(1) 0 p̄13(3)
23 a23 n23 0 p̄23(2) p̄23(3)
123 a123 n123 p̄123(1) p̄123(2) p̄123(3)

Setting subsampling rates for HHs in each of the 7 strata can be formulated
as a linear programming problem:

• Find the set of rates ah that minimize the expected number of HHs, EHH ,
selected.
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• Subject to these constraints:

(i) e1 = 1, 000, e2 = e3 = 2, 000
(ii) mina < ah ≤ 1 for all strata with mina being the minimum sampling

rate allowed for any stratum

Whether this problem can be solved or not depends, in part, in the value for
mina. If it is set too high, it may not be possible to find a feasible solution,
i.e., one that satisfies all constraints.

The Excel sheet, Example 5.3 Subsampling age strata.xlsx,
which is on the web site for this book, has this problem set up in the Solver
data analysis tool for the set of values for nh and p̄h(k) shown in Fig. 5.7.
The solution is also given in Fig. 5.7. In this example, mina = 0.1. The values
of p̄h(k) are denoted by ph(k) in the spreadsheet. The decision variables ah
are in cells B11:B17 in the spreadsheet. In this case, the solution gives 5,000
total children subsampled and 5,003 HHs—a slight mismatch in the one child
per HH requirement due to rounding. Strata 12, 13, and 23 are subsampled
at the minimum allowed rate of 0.1. Strata 1, 2, 3, and 123 are subsampled
at rates of about 0.161, 0.947, 0.793, and 1.00. �

Fig. 5.7: Excel spreadsheet for finding subsampling rates via linear programming

Example 5.3 is a good illustration of the usefulness of mathematical program-
ming in a problem different from the ones where minimizing variances is the
goal. Be mindful that math programming can apply in many different situa-
tions and can provide better solutions to problems than crude trial-and-error
approaches.
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5.3 SAS PROC NLP

Multicriteria optimization in SAS can be conducted using the procedures
proc nlp (nonlinear programming) or the newer proc optmodel. We
present details associated with the latter procedure in the next section. SAS
proc nlp has fewer restrictions on factors such as the number of constraints
than noted with the standard Solver. Proc nlp will solve problems of the
form

min
x∈Rn

f (x) , x = (x1, . . . , xp)

subject to
ci (x) = 0 i = 1, . . . ,m1,
ci (x) ≥ 0 i = m1, . . . ,m1 +m2,
�j ≤ xj ≤ uj j = 1, . . . , p.

The vector x contains the decision variables; the ci (x) are equality or inequal-
ity constraints. The decision variables have lower and upper bounds as speci-
fied by �j ≤ xj ≤ uj . Note that a maximization problem, i.e., maxx∈Rn f (x)
can be set up by using −f (x) as the objective function; however, the user
can specify whether an objective is to be minimized or maximized without
worrying about the sign of f (x). This general formulation fits for sample
allocation problems with x being the sample sizes. Some of the advantages
of proc nlp are:

• There are no specific limits on numbers of decision variables and con-
straints other than those imposed by computer memory and hard drive
size.

• Detailed documentation is produced in a SAS log file for bookkeeping or
for the project archive.

• Other features of SAS are available for data manipulation and analysis.

The set up for proc nlp differs from Solver though the formulation
behind the optimization is the same. As an example, we revisit Example 5.2
with a simple SAS program. Detailed information on more advanced tech-
niques in proc nlp (and other procedures) may be obtained from the SAS
OnlineDoc web site.3 Once at the SAS OnlineDoc web site, choose the set of
online documents (HTML or pdf format) associated with your version of SAS.
NLP is part of the operations research package SAS/OR. The pdf version of
the documentation is best used for printing. The section on proc nlp gives
descriptions of the various algorithms SAS offers along with some advice on
what to consider when selecting an algorithm.

In any computer language in which program code is written to perform a
task, it is good practice to document the program. This can be done through
(i) comments within the program, (ii) a separate documentation “help” file,
and/or (iii) in the case of more complicated general purpose programs, a

3 http://support.sas.com/documentation/.

http://support.sas.com/documentation/
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user’s guide. For your own special purpose programs, choice (i) should be
sufficient. The comments should include a header giving:

• Name of file that contains the program
• Purpose of the program
• Name of programmer
• Date written
• Date(s) revised and changes made in each revision

Choices (ii) and (iii) above are used by R, SAS, Stata, and other multipurpose
packages. We discuss program documentation in more detail in Chap. 18.

Example 5.4 (Solve the business establishment allocation with SAS nlp). The
SAS 9.2 proc nlp code, program log, and output file used in this example
are located in the Example 5.4 (NLP) files (.sas, .log, and .lst files, respec-
tively) on the book’s web site. The code is also shown in Code 5.1.

Assign Initial Values. Initial values for the decision variables, {nh}5h=1,
are entered in a data set called start500 that is then loaded by proc
nlp via the INEST option. Each stratum sample size was initialized to
500 as in the Solver example. (The SAS code also creates a file called
start100 that can be used for comparison. Both starting points produce
similar solutions, although initial values of 100 will lead to a misleading
message that the algorithm did converge.) If initial values are not assigned
the procedure will assign its own randomly selected values for nh which
are near zero. In this example, assigning all stratum sample sizes to be
initially 500 does not lead to a better solution.

Load Optimization Parameters. The first step within proc nlp is to
load the optimization parameter values by design stratum (business sec-
tor), as used in Solver, into a set of SAS variables. These include the pop-
ulation counts (Nh[5], i.e., an array of length 5), cost values (cost[5]),
population means and proportions (p[4,5]), and the population standard
deviations (sd[4,5]) for the four analysis variables shown in Table 5.1.
The order of the variables in the means and standard deviation arrays (i.e.,
matrices) is revenue, employees, research credit, and offshore affiliates so
that, for example, the first rows (i.e., p[1,] and sd[1,]) correspond
to the values for revenue. Note that the standard deviations for research
credit and offshore affiliates are calculated using DO loops instead of “hard-
coded” because estimates for the binary variables can be computed directly
within the program.

Declare the Decision Variables. Our ultimate goal is to calculate the
sample size to be selected within each business sector for the survey. The
stratum sample sizes are loaded into an array of length five, i.e., n[5], for
use in the objective function and defined as the decision variables in the
DECVAR statement. Note that the variables in the start500 data set are
named n1–n5 to match the array in DECVAR.
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Define the Constraints. The first set of constraints is defined specifically
for the decision variables. Based on the specifications of the problem, each
stratum size must be bounded below by 100 (n1-n5 >= 100) and above
by the corresponding frame count (e.g., n4 <= 22809). Additionally, the
cost for the study must be linearly constrained (LINCON) to be less than
or equal to the maximum budget of $300,000 where cost is defined as∑4

i=1 cost[i]× n[i].
Additional nonlinear constraints (NLINCON) are imposed on the relvari-

ance for the totals of three analysis variables—see constraints (ii), (v),
and (vi) in Example 5.2. The relvariances (squares of the CV s) are cal-
culated again using arrays in the later portion of the program and are
constrained to be less than or equal to the values specified (e.g., relvar2
<= 0.0025 = 0.052). To facilitate the relvariance calculation, the five
stratum means or proportions for each variable are converted to their cor-
responding estimate of the total (m1-m20) by multiplying the original
values by the population size within each sector. As advised in Sect. 5.1,
we constrain the relvariances not the CV s in order to make the form of
the constraints simpler.

Specify the Objective Function. The final step is to program the
objective function Φ—the importance-weighted sum of the relvariances
of estimated total of revenue, employees, total establishments claim-
ing the research credit, and total establishments with offshore affiliates.
This is accomplished in proc nlp by assigning the importance weight
(impwts[j]) times the relvariance (relvar[j]) for each variable to the
array elements, f1-f4. The statement MIN f1-f4 tells the procedure
to minimize the sum of f1 through f4. Since impwt[1]=1 and the
other importance weights are zero, the relvariance of only the estimated
total revenues is minimized. The SAS code is written in general terms to
illustrate how a problem would be set up for a multicomponent objective
function.

The Optimization Procedure. The final step prior to submitting the
proc nlp code is to specify the optimization technique from among a
list of 12 options (see the SAS OnlineDoc web site for more details). We
chose the Nelder-Mead simplex technique (TECH=nmsimp) because of the
problem has nonlinear constraints (see, e.g., constraint (iii) in Sect. 5.1).
The other algorithm option that allows nonlinear constraints is the quasi-
Newton method (TECH=quanew). After some experimentation, we found
that Nelder-Mead was preferable for the examples in this chapter.

A Quick Note on the Program Log. As with any program, viewing
the program log is critical to determine if the code ran correctly. SAS
notes include both compilation and execution messages. If there were syn-
tax errors, illegal combinations of solving technique and options, or other
violations, then such information would be displayed in the program log.
The log also shows when the program was run and what the input and
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output files were, if any. Retaining the log file as part of project records is
an essential part of good documentation.

The Optimization Results. The output file (Example 5.4(NLP).lst)
contains a lot of information, but we will focus only on certain sections.
First, it is important to check the specifications for the optimization prob-
lem such as the summary statistics presented in Table 5.3).

The results for our optimization are located in the section entitled,
Optimization Results. Table 5.4 summarizes the Solver and nlp results
along with those from proc optmodel, which we cover in the next section.
Summary results in the SAS lst file are listed on number of iterations, max-
imum constraint violations, and final value of the objective function, among
other things. In this example, only 11 iterations were needed to find a solu-
tion. The sector-specific sample sizes (n1-n5) in Table 5.4 from proc nlp
are almost the same as derived from the Solver optimization (see Estimate
column in the lst file) and sum to an overall sample size of 2,848 after
rounding up each value. This sample allocation satisfies the study budget
constraint of $300,000 and the constraints on the CV s of estimated total
number of employees and number of establishments claiming the research
credit. There is a minor violation in the CV for the fourth variable, offshore
affiliates (relvar4 L 0.000900 -325E-21 Active NLIC), but this is
of no practical importance. We also note that the estimated relvariance for
the total amount of revenue is given by the objective function (Value of
Objective Function = 0.0021705237). Taking the square root gives
the CV of total revenues of about 4.7%, which is larger than that of the
other estimates.

Table 5.3: Summary statistics from PROC NLP output

Summary statistics Interpretation

Parameter estimates 5 Sample size per five sectors

Functions (observations) 4 Relvariances for four variables

Lower bounds 5 Sample sizes (5) greater than 100

Upper bounds 5 Sample sizes (5) less than pop sizes

Linear constraints 1 Cost model

Nonlinear constraints 3 Constraints on three CV s

Code 5.1: SAS 9.2 proc nlp code for the optimization problem in Example 5.2

/***************************************************************/
/* FILE: Example 5.4 (NLP).sas */
/* PROJECT: Practical Tools for Designing and Weighting Survey */
/* Samples */
/* PURPOSE: Compare results from Solver for course example. */
/* DATE: 10/17/2010 */
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/* AUTHOR: J.Dever, R.Valliant */
/***************************************************************/
options nocenter;

* Initialize stratum sample sizes;
data start100 (type = est);

input _type_ $ n1 n2 n3 n4 n5;
datalines;

parms 100 100 100 100 100
;

run;

data start500 (type = est);
input _type_ $ n1 n2 n3 n4 n5;
datalines;

parms 500 500 500 500 500
;

run;

****************************************************************;

** Optimization - Nelder-Mead Method. **;

****************************************************************;
PROC NLP INEST=start500 TECH=nmsimp

OUT=aa;

*_____ LOAD PARAMETERS _____*;

** Population counts **;
ARRAY Nh[5] 6221 11738 4333 22809 5467;

** Stratum cost values **;
ARRAY cost[5] 120 80 80 90 150;

** Means and proportions **;
ARRAY p[4,5] 85 11 23 17 126

511 21 70 32 157
0.8 0.2 0.5 0.3 0.9
0.06 0.03 0.03 0.21 0.77;

** Population Standard deviations **;
ARRAY sd[4,5] 170 8.8 23 25.5 315

255.5 5.25 35 32 471;

** Calculate for proportions **;
DO J=3 TO 4;

DO I=1 TO 5;
sd[j,i] = sqrt(p[j,i] * (1 - p[j,i]) * Nh[i] / (Nh[i] - 1));

END;
END;

*_____ DECISION VARIABLES _____*;

** Optimized Values = Stratum-specific Sample Sizes **;
ARRAY n[5] n1-n5;
DECVAR n1-n5;

*_____ CONSTRAINTS _____*;

** Bounds on Stratum-specific Sample Sizes **;
BOUNDS n1-n5 >= 100,
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n1 <= 6221, n2 <= 11738, n3 <= 4333, n4 <= 22809, n5 <= 5467;

** Linear Constraint = Overall Cost Constraint **;
LINCON 120*n1 + 80*n2 + 80*n3 + 90*n4 + 150*n5

<= 300000;

** Calculate Stratum Components, Overall total **;
ARRAY m[4,5] m1-m20;
DO J=1 TO 4;

DO I=1 TO 5;
m[j,i] = p[j,i] * Nh[i];

END;
END;

** Variable-specific relvariances **;
ARRAY v[4,5] v1 - v20;
ARRAY var[4] var1 - var4;
ARRAY tot[4] tot1 - tot4;
ARRAY relvar[4] relvar1 - relvar4;

DO J=1 TO 4;
DO I=1 TO 5;

v[j,i] = ((Nh[i]**2/n[i]) - Nh[i]) * (sd[j,i]**2);
END;

var[j] = v[j,1] + v[j,2] + v[j,3] + v[j,4] + v[j,5];
tot[j] = m[j,1] + m[j,2] + m[j,3] + m[j,4] + m[j,5];
relvar[j] = var[j] / tot[j]**2;

END;

** Non-Linear Constraints = Max Value for CV **;
NLINCON relvar2 <= 0.0025, relvar3 <= 0.0009, relvar4 <= 0.0009;

*_____ OBJECTIVE FUNCTION _____*;
ARRAY impwts[4] 1 0 0 0; ** Importance weights **;
ARRAY f[4] f1-f4; ** Function to be Minimized **;
MIN f1-f4;

DO J=1 TO 4;
f[j] = impwts[j] * relvar[j];

END;
RUN;

/***************************************************************/

�

5.4 SAS PROC OPTMODEL

SAS contains a number of options for multicriteria optimization. In addition
to proc nlp, proc optmodel is very useful for allocating sample cases to
design strata through a nonlinear optimization. The optmodel procedure
has many of the same advantages noted for proc nlp. This newer SAS
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Table 5.4: Summary of results for Solver, proc nlp, proc optmodel, and
constrOptim.nl optimization solutions

h Excel SAS NLPa SAS constrOptim.nl

solver (init=500) OPTMODELa (init=1,100)

(init=500) with SQP

(init=100)

Sector nh nh Diff c nh Diff nh Diff

1 Manufacturing 413 413 0 363 −50 430 17

2 Retail 317 318 1 372 55 233 −84

3 Wholesale 119 124 5 103 −16 114 −5

4 Service 1,399 1,397 −2 1,384 −15 1,535 136

5 Finance 598 596 −2 626 28 550 −48

2,846 2,848 2 2,848 0 2,862 16

CV CV % RelDiff CV % RelDiff CV % RelDiff

1 Revenue (millions)b 4.65% 4.66% −0.01% 4.71% 0.99% 4.75% 1.93%

2 Employees 2.39% 2.39% 0.07% 2.42% 1.17% 2.44% 2.09%

3 Research credit 2.09% 2.08% −0.11% 2.08% −0.38% 2.19% 4.78%

4 Offshore affiliates 3.00% 3.00% —% 3.00% —% 3.00% —%

Objective function 0.217% 0.217% —% 0.221% 2.07% 0.226% 4.15%

a The procedures were implemented in SAS 9.2
b Minimized in the optimization
c Diff = difference from Solver solution

procedure uses “optmodel language” which is advertised as enabling a quick
translation of an optimization “word problem” into executable program code.
However, the nonlinear optimization techniques currently listed for this pro-
cedure are fewer than those specified for proc nlp.

Example 5.5 (Optimization with SAS optmodel). We recast the proc nlp
code presented in Example 5.4 as SAS 9.2 proc optmodel code for com-
parison. The proc optmodel code, program log, and output file used in
this example are located in the corresponding Example 5.5 (OptModel)
files on the book’s web site. The code is also shown in Code 5.2.

The program code follows the outline developed for the previous proc
nlp example with a few exceptions. For example, the optimization param-
eters in this example are loaded from the Example 55 data file through a
READ DATA statement. The optmodel PRINT statements throughout the
code print the initial values to the output (.lst) file for verification purposes.
Both linear and nonlinear constraints are specified with the CON statement.
Additionally, we forgo the importance weights in this example and instead
minimize only the relvariance for the revenue variable. In this case, initializ-
ing the stratum sample sizes to 100 rather than 500 produces a lower value
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of the objective function. The initialization is done with the statement that
specifies the decision variables:

VAR NSamp{i in 1..5} init 100;

The “SOLUTION” section of the program contains statements that invoke
the optimization routine. The first SOLVE statement calculates an optimal
allocation with a default method that is appropriate for the specified opti-
mization problem. In this case, the default technique is the SQP, a general
nonlinear programming method. The subsequent PRINT statements display
the stratum sizes, the overall sample size, and the resulting relvariance for
the four analysis variables. The value of the objective function (relvariance
of revenue) is slightly higher (0.002214 vs. 0.002171) than the Nelder-Mead
method applied with proc nlp. Similar results were obtained using the
quasi-Newton method (tech=quanew) in the second SOLVE statement. The
overall sample size is similar between the optmodel and nlp procedures,
but there are differences for the stratum-specific sample sizes. This further
emphasizes that multiple solutions are possible to one optimization problem;
comparing the solutions under different optimization techniques (i.e., sensi-
tivity analysis) is always a useful practice.

The last section of the code, prior to the QUIT statement, outputs the
stratum ID (Stratum) and the optimization solution (Resp Alloc) to a
text file called OptModel.strata.out. With this text file, a subsequent
SAS program can be constructed to inflate the number of respondents by
specified ineligibility and nonresponse rates to produce the final sample size
(see Chap. 6) and then to randomly select the cases from the sampling frame.
Without this text file, statisticians must, for example, cut-and-paste the opti-
mization results into the sampling program—a problem when the optimiza-
tion must be rerun multiple times with changes to the constraints and/or
when the number of strata is much larger than the example presented here.

Code 5.2: SAS proc optmodel code for the optimization problem in Example 5.2

/***************************************************************/
/* Program: Example 5.5 (OptModel).sas */
/* Date: 10/17/10 */
/* Author: J.Dever */
/* Purpose: Solve example optimization problem. */
/***************************************************************/
options nocenter orientation=portrait

TITLE1 "Example 5.5";

****************************************************************;
Title2 "Load Information";

****************************************************************;
DATA Example_55;

LENGTH Stratum 3 Nh UnitCost Revenue Emplyees Revnu_SD Emply_SD
RCredit OffShore 8;

LABEL Stratum = "Stratum ID"



5.4 SAS PROC OPTMODEL 153

Nh = "Sampling Frame Counts per Stratum"
UnitCost = "Unit-specific Data CollectionCost"
Revenue = "Pop. Mean Revenue (Millions)"
Emplyees = "Pop. Mean Employees"
Revnu_SD = "Pop. Standard Deviation Revenue (Millions)"
Emply_SD = "Pop. Standard Deviation Employees"
RCredit = "Pop. Proportion Claimed Research Credits"
OffShore = "Pop. Proportion Had Offshore Affiliates";

INPUT Stratum Nh UnitCost Revenue Emplyees Revnu_SD Emply_SD
RCredit OffShore;

CARDS;
1 6221 120 85 511 170.0 255.50 0.8 0.06
2 11738 80 11 21 8.8 5.25 0.2 0.03
3 4333 80 23 70 23.0 35.00 0.5 0.03
4 22809 90 17 32 25.5 32.00 0.3 0.21
5 5467 150 126 157 315.0 471.00 0.9 0.77
;

RUN;

*Standard deviations for proportions;
DATA Example_55;

SET Example_55;
ARRAY p_s RCredit OffShore;
ARRAY sd_s RCrdt_SD OffSh_SD;

DO OVER p_s;
sd_s = SQRT(p_s * (1 - p_s) * Nh / (Nh - 1));

END;
RUN;

PROC PRINT DATA=Example_55 UNIFORM NOOBS; RUN;

****************************************************************;
Title2 "Sample Allocation - Initial Solution";

****************************************************************;
PROC OPTMODEL;

*_____ LOAD PARAMETERS _____*;

*Stratum frame counts;
NUMBER Nh{1..5};
READ DATA Example_55 INTO [_n_] Nh;
PRINT Nh;

*Per Unit Cost;
NUMBER UnitCost{1..5};
READ DATA Example_55 INTO [_n_] UnitCost;
PRINT UnitCost;

*Population means & standard deviations;
NUMBER Revenue{1..5}, Emplyees{1..5}, RCredit{1..5},

OffShore{1..5}, Revnu_SD{1..5}, Emply_SD{1..5},
RCrdt_SD{1..5}, OffSh_SD{1..5};

READ DATA Example_55 INTO [_n_]
Revenue Emplyees RCredit OffShore
Revnu_SD Emply_SD RCrdt_SD OffSh_SD;

PRINT Revenue Revnu_SD;
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*_____ DECISION VARIABLES _____*;

*Stratum sample sizes with initial value assignments;
VAR NSamp{i in 1..5} init 100;
PRINT NSamp;

*_____ CONSTRAINTS _____*;

*Stratum sizes >= 100, <= Frame Sizes;
CON SampSize{i in 1..5}: 100 <= NSamp[i] <= Nh[i];

*Survey Budget;
CON Budget: (SUM{i in 1..5} UnitCost[i] * NSamp[i]) <= 300000;

*Relvariance for Mean Number of Employees;
CON RelVar1:

(SUM{i in 1..5} Nh[i]*(Nh[i]/NSamp[i]-1)*Emply_SD[i]ˆ2)
/ ((SUM{i in 1..5} Nh[i] * Emplyees[i])ˆ2)
<= (0.05ˆ2);

PRINT ((SUM{i in 1..5} Nh[i]*(Nh[i]/NSamp[i]-1)*Emply_SD[i]ˆ2)
/ ((SUM{i in 1..5} Nh[i] * Emplyees[i])ˆ2));

*Relvariance for Proportion of Claimed Research
Credits;

CON RelVar2:
(SUM{i in 1..5} Nh[i]*(Nh[i]/NSamp[i]-1)*RCrdt_SD[i]ˆ2)
/ ((SUM{i in 1..5} Nh[i] * RCredit[i])ˆ2)
<= (0.03ˆ2);

*Relvariance for Proportion Having Offshore Affiliates;
CON RelVar3:

(SUM{i in 1..5} Nh[i]*(Nh[i]/NSamp[i]-1)*OffSh_SD[i]ˆ2)
/ ((SUM{i in 1..5} Nh[i] * OffShore[i])ˆ2)
<= (0.03ˆ2);

*_____ OBJECTIVE FUNCTION _____*;

MIN f = (SUM{i in 1..5} Nh[i] * (Nh[i]/NSamp[i] - 1) *
Revnu_SD[i]ˆ2) /

((SUM{i in 1..5} Nh[i] * Revenue[i])ˆ2);

*_____ SOLUTION _____*;

SOLVE;
PRINT NSamp;
PRINT (SUM{i in 1..5} NSamp[i]);
PRINT (SQRT((SUM{i in 1..5} Nh[i] * (Nh[i]/NSamp[i] - 1) *

Revnu_SD[i]ˆ2) /
((SUM{i in 1..5} Nh[i] * Revenue[i])ˆ2)));

PRINT (SQRT((SUM{i in 1..5} Nh[i] * (Nh[i]/NSamp[i] - 1) *
Emply_SD[i]ˆ2) /
((SUM{i in 1..5} Nh[i] * Emplyees[i])ˆ2)));

PRINT (SQRT((SUM{i in 1..5} Nh[i] * (Nh[i]/NSamp[i] - 1) *
RCrdt_SD[i]ˆ2) /
((SUM{i in 1..5} Nh[i] * RCredit[i])ˆ2)));

PRINT (SQRT((SUM{i in 1..5} Nh[i] * (Nh[i]/NSamp[i] - 1) *
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OffSh_SD[i]ˆ2) /
((SUM{i in 1..5} Nh[i] * OffShore[i])ˆ2)));

SOLVE with NLPC;
PRINT NSamp;
PRINT (SUM{i in 1..5} NSamp[i]);
PRINT (SQRT((SUM{i in 1..5} Nh[i] * (Nh[i]/NSamp[i] - 1) *

Revnu_SD[i]ˆ2) /
((SUM{i in 1..5} Nh[i] * Revenue[i])ˆ2)));

PRINT (SQRT((SUM{i in 1..5} Nh[i] * (Nh[i]/NSamp[i] - 1) *
Emply_SD[i]ˆ2) /
((SUM{i in 1..5} Nh[i] * Emplyees[i])ˆ2)));

PRINT (SQRT((SUM{i in 1..5} Nh[i] * (Nh[i]/NSamp[i] - 1) *
RCrdt_SD[i]ˆ2) /
((SUM{i in 1..5} Nh[i] * RCredit[i])ˆ2)));

PRINT (SQRT((SUM{i in 1..5} Nh[i] * (Nh[i]/NSamp[i] - 1) *
OffSh_SD[i]ˆ2) /
((SUM{i in 1..5} Nh[i] * OffShore[i])ˆ2)));

*_____ OUTPUT SOLUTION _____*;

NUMBER i;
FILE "OptModel.strata.out";

PUT @1 "Stratum"
@10 "Resp_Alloc";

DO i=1 TO 5;
PUT @1 i

@10 NSamp[i];
END;

CLOSEFILE "OptModel.strata.out";

QUIT;
RUN;

�

5.5 R alabama Package

The R software has a number of different optimization routines. To date,
most functions like solve.QP, nlminb, and constrOptim only allow
constraints that are linear in the decision variables. The alabama pack-
age (Varadhan 2010) contains a modification of constrOptim, called
constrOptim.nl, that will handle nonlinear constraints. It uses what is
known as an augmented Lagrangian algorithm (Lange 2004; Madsen et al.
2004). This algorithm is different from the ones in Excel Solver and SAS.
Code 5.3 shows R code that will repeat the optimization in Example 5.2.
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The vector of decision variables, nh, the stratum population counts, Nh,
the stratum unit costs, ch, the budget, and the stratum means of the four
variables (revenues, employees, establishments claiming the research credit,
and establishments with offshore affiliates) are assigned at the beginning of
the program. As in the SAS nlp code, the stratum standard deviations are
assigned for revenues and employees but computed for research credit and off-
shore affiliates. The functions, relvar.rev, relvar.emp, relvar.rsch,
and relvar.offsh, compute the relvariances of estimated totals for each
variable. Although each relvariance uses the same general formula, one of the
restrictions of constrOptim.nl is that the objective function and func-
tions that define nonlinear constraints can take only one parameter—nh in
this case. Thus, separate functions were written for our example.

The function constrOptim.nl can take many input parameters, but
only a few are needed for Example 5.2. The ones used here and their expla-
nations from the help file are:

par Vector of initial values of decision variables

fn Objective function

hin A vector function specifying inequality constraints
such that hin[j]>0 for all j

heq A vector function specifying equality constraints
such that heq[j]=0 for all j

control.outer

eps Tolerance for convergence of outer iterations of the
barrier and/or augmented Lagrangian algorithm

mu0 Parameter for barrier penalty

method Algorithm in optim() to be used; default is
"BFGS" variable metric method

Code 5.3: R constrOptim.nl code for the optimization problem in Example 5.2

#****************************************************************
# FILE: constrOptim.example.R
# PURPOSE: Use constrOptim.nl to solve allocation business
# establishment allocation problem
# DATE: 9/14/09
# AUTHOR: R. Valliant
#****************************************************************

require(alabama)
require(numDeriv) # alabama requires "numDeriv" package

# Decision vars
nh <- vector("numeric", length = 5)

# Stratum pop sizes
Nh <- c(6221, 11738, 4333, 22809, 5467)
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# Stratum costs
ch <- c(120, 80, 80, 90, 150)

# Stratum means and SDs
# Revenues

mh.rev <- c(85, 11, 23, 17, 126)
Sh.rev <- c(170.0, 8.8, 23.0, 25.5, 315.0)

# Employees
mh.emp <- c(511, 21, 70, 32, 157)
Sh.emp <- c(255.50, 5.25, 35.00, 32.00, 471.00)

# Proportion of estabs claiming research credit

ph.rsch <- c(0.8, 0.2, 0.5, 0.3, 0.9)
# Proportion of estabs with offshore affiliates

ph.offsh <- c(0.06, 0.03, 0.03, 0.21, 0.77)
budget = 300000
n.min <- 100

# Relvar function used in objective
relvar.rev <- function(nh){

rv <- sum(Nh * (Nh/nh - 1)*Sh.revˆ2)
tot <- sum(Nh * mh.rev)
rv/totˆ2

}

# Relvar functions used in nonlinear constraints
# The nonlin constraints can take only 1 argument: in this case
# the vector of decision vars

relvar.emp <- function(nh){
rv <- sum(Nh * (Nh/nh - 1)*Sh.empˆ2)
tot <- sum(Nh * mh.emp)
rv/totˆ2

}

relvar.rsch <- function(nh){
rv <- sum( Nh * (Nh/nh - 1)*ph.rsch*(1-ph.rsch)*Nh/(Nh-1) )
tot <- sum(Nh * ph.rsch)
rv/totˆ2

}
relvar.offsh <- function(nh){

rv <- sum( Nh * (Nh/nh - 1)*ph.offsh*(1-ph.offsh)*Nh/(Nh-1) )
tot <- sum(Nh * ph.offsh)
rv/totˆ2

}
constraints <- function(nh){

h <- rep(NA, 13)
# stratum sample sizes <= stratum pop sizes

h[1:length(nh)] <- (Nh + 0.01) - nh
# stratum sample sizes >= a minimum

h[(length(nh)+1) : (2*length(nh)) ] <- (nh + 0.01) - n.min
h[2*length(nh) + 1] <- 0.05ˆ2 - relvar.emp(nh)
h[2*length(nh) + 2] <- 0.03ˆ2 - relvar.rsch(nh)
h[2*length(nh) + 3] <- 0.03ˆ2 - relvar.offsh(nh)
h

}
heq <- function(nh){



158 5 Mathematical Programming

heq <- 1 - sum(nh*ch/budget)
heq

}
ans <- constrOptim.nl( # parameter and objective function

par = rep(1100,5), # using par = rep(100,5) gives error:
# "initial value violates inequality
# constraints"

fn = relvar.rev,
# parameter bounds

hin = constraints,
heq = heq,
control.outer = list(eps = 1.e-10,

mu0 = 1e-05,
NMinit = TRUE,
method = "BFGS"
)

)
ans

In this example, we wrote a function called constraints that returns a
vector of length 13 containing the values of the inequality constraints. Since
the inequality constraints must have the form hin[j]>0, the restrictions
that each stratum sample size be less than the population size and greater
than or equal to 100 and were written as

h[1:length(nh)] <- (Nh + 0.01) - nh
h[(length(nh)+1) : (2*length(nh)) ] <- (nh + 0.01) - n.min

By adding 0.01 to Nh and nh, we set up constraints where the inequality
is strictly greater than 0 rather than greater than or equal to 0. The equality
constraint heq sets the budget equal to $300,000. A serious limitation of
constrOptim.nl is that the initial value of par must be a feasible solution,
i.e., one that does not violate any of the inequality constraints. If the value
of par used to call the function is not feasible, the function will generate
an error and terminate; it has no features for automatically correcting initial
values that violate any of the inequality constraints. Some experimenting
may be necessary to arrive at a trial allocation that is feasible. None of the
previously discussed optimization software options had this requirement for
the starting value of nh, which makes them simpler to use.

The function constrOptim.nl is also sensitive to the relative sizes of
the values in the equality and inequality constraints. The relvariances in
the example are small numbers, e.g., 0.032, while the budget of $300,000 is
large. If the equality constraint is set directly to be sum(nh*ch)-budget,
the algorithm pays more attention to meeting the budget constraint than to
minimizing the objective function, which is the relvariance of total revenue.
By defining the equality constraint as 1-sum(nh*ch/budget), we had a
quantity that was 0 when the budget was fully expended and whose range
was in relative deviations from the budget and not in dollars. This scaling of
the heq constraint helps achieve a smaller value of the objective function.
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Results can be dumped to the screen or assigned to an object as in Code 5.3.
The solution for the stratum sample sizes in this example is in ans$par; the
value of the objective function is in ans$value. The output for the example
above is

$par
[1] 429.7308 233.4132 113.5080 1534.6032 550.4323
$value
[1] 0.002260288

This solution is not quite as good as the one obtained earlier, although the
difference is small. The objective value of 0.002260288 is about 4.3% higher
than the 0.00216695 obtained with Solver and proc nlp.

5.6 Accounting for Problem Variations

We conclude this chapter with a note on accounting. In the preceding sections,
we stressed that multicriteria optimization in general is an iterative process.
For example, constraints are set and then relaxed (or tightened) based on the
initial allocation solution. Trying a series of options for costs and precision of
estimates is an especially useful way to explore a problem. This is also often a
good way of illustrating trade-offs to clients. We recommend that researchers
establish and maintain an accounting system to document:

• Initial values set for the optimization problem
• Optimization results such as attained constraints and decision-variable

values
• Reasons for changing the optimization components
• New values set for the optimization problem

Having a well-documented system will minimize the likelihood of repeating
optimization problems implemented previously but discarded and will facili-
tate writing sampling documentation for the study at hand.



160 5 Mathematical Programming

Exercises

5.1. A researcher would like to survey the mathematics teachers in the
elementary and secondary schools in Montgomery, Howard, and Prince
George’s counties in the state of Maryland. The goals of the survey are to
estimate the proportion of teachers who use computers in instruction and,
among the teachers who do use computers, what proportion teach the use
of spreadsheets. The estimates are desired for (i) each county separately, (ii)
for domains defined by elementary and secondary combined across the three
counties, and (iii) for elementary and secondary domains within each county.
The researcher would also like to be able to recognize differences at the county
level that are greater than 10% points. The budget for the data collection
part of the survey is $100,000 and it is anticipated that surveying each teacher
will cost about $150.

How would you formulate the sample allocation problem as an optimiza-
tion problem? List the population parameters that you would need in order
to do the optimization problem. What would you do about parameter values
if no previous, similar survey had been done?

5.2. Using the data in Example 5.2 calculate (a) the proportional alloca-
tion, (b) the Neyman allocation for estimating total revenue, and (c) the
cost-constrained allocation for revenue, assuming a budget of $300,000. Note
that the proportional and Neyman allocations do not have a constraint on
revenues; each should be found for the total sample size of n = 2, 848 as in
Example 5.2. For each of these allocations compute the CV s for estimated
total revenue, total employees, total number of establishments claiming the
research credit, and total number of establishments having offshore affiliates.
Do allocations (a), (b), and (c) respect the constraints used in Example 5.2.

5.3. Resolve Example 5.2 with the following constraints:

(i) Budget on variable costs = $300,000.
(ii) CV ≤ 0.05 on estimated total number of employees.
(iii) At least 100 establishments are sampled in each sector.
(iv) The number sampled in each stratum is less than the population

count, nh ≤ Nh.
(v) CV ≤ 0.03 on estimated total number of establishments claiming

the research tax credit.
(vi) CV ≤ 0.05 on estimated total number of establishments with off-

shore affiliates.

In other words, change the constraint on the offshore affiliate CV to 0.05
and recalculate the allocation. Comment on the differences in the resulting
allocation compared to that in Example 5.2.

5.4. Resolve Example 5.2 with the same CV constraints as in Exercise 5.3
(0.05 on employees, 0.03 on total establishments claiming the research credit,
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0.05 on total establishments with offshore affiliates), but revise the objective
to be minimizing the total cost. Retain the constraints that the sample in
each stratum must be less than the population count and that at least 100
units be sampled in each stratum.

Discuss why there are differences in the solutions found in Exercises 5.3
and 5.4.

5.5. Determine the allocation to strata in Example 5.2 based on the following

set-up. Minimize Φ = 0.75×relvar
(
T̂rev

)
+0.25×relvar

(
T̂emp

)
, where T̂rev is

the estimated total of revenues and T̂emp is the estimated total of employees.
The constraints in the problem are:

• Sample at least 200 establishments in each stratum.
• The number sampled from a stratum should be less than 20% of the

stratum population.
• The CV s on the estimated total numbers of establishments claiming the

research credit and having offshore affiliates should be at most 0.02.
• The budget is $600,000.



Chapter 6

Outcome Rates and Effect on Sample Size

Outcome rates, such as the percent of sample units refusing to participate in
a survey, generally have three uses. The first is to measure study performance
and outcome rates are often also referred to as performance rates or process
indicators. For example, a client might wish to know what proportion of the
sample resulted in a completed interview. The second use is to inflate a calcu-
lated sample size for loss of sample units. For example, a survey statistician
determines the number of sample units needed to detect a three percentage
point difference in the estimates for males and females for a specified size
and power of the test, as discussed in Chap. 4. Finally, study rates can also
be incorporated into the design weights as adjustment factors to create final
analysis weights.

There is much debate over study outcome rates, and it is important to
note that those rates should not be seen as measures for data quality (Groves
2006). However, outcome rates guide field decisions, and the logic behind
them helps in the planning stages of a survey. Thus, we will spend time in
this chapter to explicate these first two uses. The incorporation of outcome
rates into design weights will be discussed in Part III.

We begin our discussion by focusing on a common set of disposition codes
that are needed to define the outcome rates. Much of the material summa-
rized in this document follows the standard definitions given by the American
Association for Public Opinion Research (AAPOR) in their document enti-
tled “Standard Definitions: Final Dispositions of Case Codes and Outcome
Rates for Surveys” (AAPOR 2011). In some surveys, there may be differences
in opinion across members of the project team about how rates should be com-
puted. Using the AAPOR standards is a good way to avoid time-consuming
debate about what should be done.

R. Valliant et al., Practical Tools for Designing and Weighting
Survey Samples, Statistics for Social and Behavioral Sciences 51,
DOI 10.1007/978-1-4614-6449-5 6, © Springer Science+Business Media New York 2013
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6.1 Disposition Codes

Numeric codes that describe the current or final data collection status of each
sample unit are known as disposition codes. AAPOR provides a list of rec-
ommended disposition codes; however, these disposition codes are generally
specific to each data collection agency. Thus, sometimes it might be neces-
sary to negotiate with the data collection agency to expand their set of codes.
For example, the sample disposition codes recorded for the May 2004 Status
of Forces Survey of Reserve Component Members (SOFReserves), a survey
conducted by Defense Manpower Data Center (2004) of Military Reservists,
are provided in Table 6.1. If these disposition codes are also used to tailor
fieldwork recruitment during the data collection, it would be advisable to
differentiate between refusals and deployed personnel. Both of these codes
are currently summed into category 8.

Table 6.1: Terminology: sample dispositions for the may 2004 SOF Reserves study.

Disposition
code Description

1 Ineligible—based on check of updated personnel
records

2 Ineligible—Self-/Proxy report, deceased, ill, incarcerated,
separated

3 Ineligible–Survey self-report

4 Complete eligible response

5 Incomplete eligible response

8 Refused—refusal, deployed, other refusal

9 Blank (returned questionnaire)

10 Postal nondelivery (PND)

11 Other nonrespondent

Depending on the survey and the mode of data collection, the number of
disposition codes can be rather large. It is useful to specify ahead of time
how disposition codes can be grouped to later compute study performance
rates. AAPOR provides a map of the disposition codes to seven mutually
exclusive categories used in the outcome rate calculations discussed in the
next section. The general categories are described below (Table 6.2) along
with the notation relevant to the rate calculations. We borrow some notation
provided in the AAPOR document for consistency.

Sample units are assigned to category I (complete interview) if they pro-
vide responses to all appropriate questions in the questionnaire. If partici-
pants complete only a portion of the interview but the data are sufficient to
address the analysis objectives, then the records are classified in the P group
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(partially complete interview). Records with insufficient data (break-offs)
or associated with those who refuse to participate (refusals) are collectively
called category R if the participants are verified to be eligible for the study.

Table 6.2: Disposition code categories used in performance rate calculation.

Symbol in
study rates category Study eligibility

I Complete interview Eligible

P Partially complete interview Eligible

R Refusal/break-off Eligible

NC Noncontact Eligible

U Unknown study eligibility Unknown

NE Not eligible Ineligible

O Other Eligible

CategoryNC (noncontact) contains those sample members who were never
contacted for the interview but were known to be eligible for the study, e.g.,
a “ring/no answer” in a telephone survey after an interview appointment was
scheduled with another household member. Study participants classified as
ineligible (category NE ) are usually listed separately from those for whom
the eligibility was never established (category U ). In a telephone survey, for
example, there may be many numbers that are classified as a ring/no answer
whose study eligibility status is unknown. They might be residences or unas-
signed telephone numbers. How the unknowns (U ) are handled can make a
noticeable difference in the response rates, as discussed subsequently. All eligi-
ble cases that are not assigned to any of the previously mentioned categories
are assigned to a “catch-all” other (O) category.

When used in a formula, the symbols in Table 6.2 represent the number
of sample units that fall within each category; the sum of the categories
(I + P +R+NC + U +NE +O) equals the overall sample size (n).

The primary task in calculating outcome rates is to map the disposition
codes adopted for a particular survey into the AAPOR categories. One exam-
ple of mapping is demonstrated in a paper by Abraham et al. (2006). An
excerpt is provided below (Table 6.3) from their Table A-1 of American Time
Use Survey disposition codes and corresponding AAPOR category designa-
tion.

A couple of issues are important to note regarding the mapping task. First,
assignments may differ as a function of target populations. That is, for some
studies, the finalized AAPOR category may differ from the ATUS assign-
ment shown, because the target population excludes institutionalized persons.
This would result in a change for code 19 (other: designated person institu-
tionalized) from “other non-interview” to “not eligible.” Second, researchers
may express different preferences on how assignments should be executed.
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Table 6.3: Concordance between AAPOR and internal disposition codes for the 2004
American Time Use survey.

Disposition
code

Description AAPOR
cate-
gory

1 Completed interview I
2 Sufficient partial I
14 Not eligible: designated person underage NE
15 Not eligible: designated person not household

member
NE

18 Other: designated person absent, ill, or hospitalized O
19 Other: designated person institutionalized O
21 Other: language barrier O
23 Unknown eligibility: incorrect phone number U
24 Not eligible: designated person in Armed Forces NE
27 Unknown eligibility: privacy detector U
29 Other: non-interview O
100 Not eligible: miscellaneous NE
104 Other: invalid input O
108 Not eligible: case deleted as sample reduction NE
109 Refusal: hostile break-off, interview progress

achieved
R

112 Refusal: by parent/guardian/gatekeeper R
113 Unknown eligibility: unproductive call counter U
118 Noncontact: incomplete callbacks NC
119 Noncontact: temporarily unavailable NC
121 Other: unresolved language barrier O
124 Noncontact: never contacted, confirmed number NC
125 Unknown eligibility: never contacted, unconfirmed

number
U

126 Other: instrument error O
127 Unknown eligibility: never tried, no telephone

number
U

130 Refusal: diary contains less than 5 activities R
133 Refusal: other data quality issues R

Note: Abbreviated Table A-1 from Abraham et al. (2006)

Abraham et al. (2006), for example, chose to not use partial interviews as
a category in their assignments. For a survey statistician it is important to
address these issues ahead of time.

6.2 Definitions of Outcome Rates

This section describes five general study rates which apply to most surveys—
location, contact, eligibility, cooperation, and response. Variations of these
rates that are specific to the mode of data collection are provided as examples.
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All five rates we discuss here have upper and lower bounds depending on the
treatment of ineligible cases and cases with unknown eligibility. Often an
estimate of the proportion of eligibles among the unknowns is used to create
more reasonable rates than the extreme bounds.

Location Rate

The location rate specifies the proportion of units for which contact informa-
tion was obtained. The formula is expressed in words as follows along with a
formulation of the rate:

LOC =
number of sample units located

total number of sample units

=
n− U

n
=

I + P +R+NC +NE +O

I + P +R +NC + U +NE +O

For example, a sample of female respondents to the 1993 National Health
Interview Survey (NHIS) was selected for the National Survey of Family
Growth (NSFG), Cycle 5 (Potter et al. 1998). Contact information collected
during the NHIS was no longer valid for some sample members when the
NSFG was fielded. Tracing procedures were used to locate many; however,
the location rate was less than 100%. Non-contacts (NC) may sound as if
these are cases that were not located. But, in a household survey, a non-
contact could be a case where a gatekeeper prevents an interviewer from
entering a secure building. In that instance, the case has been located, but a
direct contact was impossible.

An address match rate is an example of a location rate specific to telephone
surveys. Typically, random telephone numbers selected under a detailed sam-
pling plan are sent to a vendor for processing known as reverse matching to
address lists. Some of the US companies that sell this service are Telematch1,
the GENESYS system within Marketing Systems Group (MSG)2, and Survey
Sampling International3. Sending an advance (or lead) letter through the mail
to those with an address has been shown to improve telephone response rates
(e.g., Traugott and Goldstein 1993). This is in comparison to those units with-
out address information who are contacted without prior notification (“cold
calls”).

1 http://www.relevategroup.com/.
2 http://www.m-s-g.com/.
3 http://www.surveysampling.com/.

http://www.relevategroup.com/
http://www.m-s-g.com/
http://www.surveysampling.com/
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Contact Rate

The contact rate is slightly different from the location rate and is the propor-
tion of units with a successful initial contact. AAPOR provides three formulas
for contact rates depending on the method used to deal with units without
a known eligibility status. The first formula, CON1, is calculated after elim-
inating the known ineligibles and is considered a minimum value among the
three contact rate formulas:

CON1 =
number of sample units contacted

number of sample units

∣∣∣∣ excluding
inelgibles

=
n− (NC + U +NE)

n−NE
=

I + P +R+O

I + P +R+NC + U +O

Note that the AAPOR rate CON3, which excludes those with unknown
eligibility (U ), is the maximum value because the denominator is smaller
than in the formula for CON1:

CON3 =
n− (NC + U +NE)

n− (U +NE)
=

I + P +R+O

I + P +R +NC +O

A successful contact is defined here to be a contact in which the location
information was verified to be correct. In a telephone survey, sample units
where no person in the household was ever reached may be considered as an
“unsuccessful” contact as long as there is evidence that the telephone number
actually belongs to a household. For example, a residential voicemail message
is typically counted as sufficient evidence that a household has been reached.
A third suggested contact rate (CON2 ) is not shown here but can be found
in the AAPOR documentation (AAPOR (2011)). CON2 is similar to CON1
but includes in the base only the estimated eligible cases among the cases
with unknown eligibility.

The definition of contact varies across survey research. For example, con-
tact in a random digit dialing (RDD) survey may mean that the interviewer
verified that the selected telephone number was linked with a residence regard-
less of the eligibility of the persons within the household. As with other
project documents, project-specific definitions need to be detailed during the
planning stages.

Eligibility Rate

The criteria to classify a sample unit as either eligible or ineligible (category
NE) for the study are defined early in the planning process. The set of all
eligibles defines the target population for which estimates will be produced.
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The eligibility rate, referred to in the AAPOR document as “e”, is calculated
as

e =
number of study− eligible sample units

number of sample units with an eligibility status

=
n− (U +NE)

n− U
=

I + P +R+NC +O

I + P +R +NC +NE +O

Eligibility is determined through a set of preliminary questions—
sometimes called a screener (questionnaire) for in-person and telephone
surveys. Because the screener questions are themselves subject to nonre-
sponse, the rate is calculated among those whose eligibility status is deter-
mined (i.e., eligible or ineligible for the study). The proportion of sample
units who complete the screener is known as the screening rate.

Eligibility can be defined at more than one stage of sampling. For exam-
ple, in a list-assisted RDD survey, the unit sampled from the list frame is
a telephone number. However, not all telephone numbers are assigned to a
household; some are unassigned and others are allocated to businesses or
for business use. Therefore, the sampling frame contains two types of ineligi-
bles for an RDD survey—nonworking numbers and nonresidential numbers.
The working-number rate and the residential (eligibility) rate are defined as
follows:

working− number rate =
number of working telephone numbers

total number of telephone numbers

residential rate =
number of eligible telephone numbers

total number of sample numbers

In addition to reverse matching, vendors such as MSG provide a service to
prescreen telephone numbers to eliminate (i) all nonworking numbers iden-
tified by a computer through an electronic tritone and (ii) for residential
surveys, all nonresidential numbers (e.g., businesses).

Cooperation Rate

The proportion of study-eligible sample units providing answers to a sufficient
portion of the interview is called a cooperation rate. This rate has also been
labeled as a response rate among eligibles prior to the standardized definitions.
Four cooperation rates are provided in the AAPOR document depending
on methods to deal with partially completed interviews and sample units
with unresolved status codes (see Sect. 6.1 for further discussion). A general
formula is expressed as
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COOP2 =
number of completed/partial interviews

number of contacted, eligible units

=
n− (R+NC + U +NE +O)

n− (NC + U +NE)
=

I + P

I + P +R+O

Examining the formula in the AAPOR Standard Definitions documents
shows that the upper and lower bound of the estimated cooperation rate
could be derived by using COOP1 and COOP3, respectively, based on how
the cases in the “other” category (O) are classified. The lower and upper
bounds on the cooperation are calculated as follows:

COOP1 =
n− (P +R+NC + U +NE +O)

n− (NC + U +NE)
=

I

I + P +R+O

COOP3 =
n− (P +R +NC + U +NE +O)

n− (NC + U +NE +O)
=

I

I + P +R

Sample members with a partially completed interview typically are classified
as respondents if key information has been collected to address the primary
analytic objectives for the study. Exactly which items in a survey instrument
are considered key must be decided by the project staff and the sponsor of
the study. In some cases, a few questions may be considered key; in others a
long series may have to be answered before the case is considered a partial
complete.

Response Rate

The response rate is likely the most familiar rate of those discussed. It is an
extension of the cooperation rate to all sample cases that are (potentially)
eligible. AAPOR standard definitions include six variants of the response
formula. One that is often reported is

RR2 =
number of complete/partial interviews

all sample members − known ineligibles

=
n− (R+NC + U +NE +O)

n−NE
=

I + P

I + P +R+NC + U +O

Three other formulas warrant special attention in our discussion—RR1, RR6,
and RR4. The rates RR1 and RR6 bound the response rate below and above,
respectively, due to the way in which the partial completes (P) are treated.
This is seen by comparing the two formulas below:

RR1 =
n− (P +R+NC + U +NE +O)

n− (U +NE)
=

I

I + P +R+NC +O
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RR6 =
n− (R+NC + U +NE +O)

n− (U +NE)
=

I + P

I + P +R +NC +O

One primary directive given to interviewers is to collect information in
order to establish study eligibility. However, for many studies, eligibility is
never verified for a proportion of the sample units. In 1982, the Council of
American Survey Research Organizations (CASRO) recommended that an
(estimated) eligibility rate (e) be applied to the number of sample units with
unknown eligibility (U ). An estimate of the number of ineligibles among the
unknowns, (1−e)U , plus the number of known ineligibles (NE ) is subtracted
from the total number of sample cases leaving only the (estimated) total
number of eligibles in the denominator. Hence, the CASRO response rate
formula, such as RR4, was born:

RR4 =
I + P

I + P +R+NC +O + (e× U)

Note that the response rate as well as the other rates can be calculated
for domains. For example, some clients are interested in the proportion of
contacted, eligible participants who successfully complete the study interview.
Some researchers call this a completion rate; it is calculated in the same
manner as either RR5 in AAPOR (2011) or RR6 above.

6.3 Sample Units with Unknown AAPOR Classification

As shown in the definitions of the outcome rates in the previous section, the
unknown status cases (U) can be handled in different ways. This section gives
some examples that illustrate how the calculated rates can be affected by how
the U ’s are treated. Because the decisions directly affect the numeric value of
the study rate, they should be justified in the project documentation. Below,
we provide two examples to illustrate this point.

Example 6.1. Table 6.4 contains the count of sample units by disposition code
for a fictitious mail survey. How should the U sample units be treated, and
how does this decision affect the location rate?

• Scenario 1—All “No Response” Units Classified as Located

Say, for example, that your client declares that the address list is updated
on a regular basis so that the “no response” cases are actually refusals. The
resulting location rate is calculated as

(3, 000− (120 + 75))

3, 000
= 93.5%

• Scenario 2—No “No Response” Units Classified as Located
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Table 6.4: Summary of sample-unit counts from a mail survey by disposition code.

Disposition AAPOR
category

Count

Completes I 1,807

Refusals R 642

Ineligible NE 51

Unlocatable NC 120

Postal nondelivery NC 75

No response U 305

Total 3,000

With this mail survey, you may suspect that the questionnaires were delivered
to the wrong address for the “no response” units and that the household
resident simply threw away the materials. The scenario-two location rate is
much lower than the scenario-one rate:

(3, 000− (120 + 75 + 305))

3, 000
= 83.3%

• Scenario 3—A Portion of the “No Response” Units Classified as Located

Similar to the eligibility rate “e” adjustment, you may wish to estimate the
number of “no response” units that were located by using only those cases
with a known location status (i.e., conditional on being known). The scenario-
three location rate is closer in value to the scenario-one rate because of the
high-conditional location rate:

3, 000− (120 + 75 + {(1− �)× 305})
3, 000

= 92.8%,

where � = (1, 807 + 642 + 51) / (3, 000− 305) = 92.8% is the location rate.

Example 6.2. Table 6.5 contains the count of sample units by disposition code
for a fictitious RDD survey. The rates for RR2 and RR6 differ by less than
4% points and are calculated as follows:

RR2 =
I + P

I + P +R+NC +O + U
= 37.3%

RR6 =
I + P

I + P + R+NC +O
= 41.0%

Note that there are no cases coded as noncontact or other; thus NC=O=0 in
RR2 and RR6. Cases where the telephone was always busy are coded as NE.
This is a matter of judgment and would not necessarily be done the same
way in every survey.
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Table 6.5: Summary of sample-unit counts from an RDD survey by disposition code.

Disposition AAPOR
category

Count

Complete interview I 3,264

Partial complete interview P 550

Voicemail R 350

Language barrier NE 75

Refusal R 5,134

Ring—no answer U 914

Always busy NE 10

Not eligible NE 3,181

Fax machine NE 22

Total 13,500

The final response rate calculation is the CASRO response rate (AAPOR
RR4) which includes the e adjustment factor discussed in the previous section.
As with the above calculations, we assume that the nonrespondents (R cases)
have been verified to be eligible. The e factor and the corresponding RR4
rate are calculated as follows:

e =
I + P + R

n− U
=

13, 500− (75 + 914 + 10 + 3, 181 + 22)

13, 500− 914
= 0.7388

RR4 =
I + P

I + P +R+NC + (e× U)
= 38.2%.

Note that the RR4 value is located between the RR2 and RR6 values because
(a) RR2 counts all of the U=914 unknowns as eligible while (b) RR6 counts
none of them as eligible. Note that there are no cases coded as other; thus O
= 0 in RR4.

6.4 Weighted Versus Unweighted Rates

One major question that arises is: should I calculate weighted or unweighted
performance rates? The typical though potentially aggravating answer is:
it depends. Note that weighted and unweighted rates are equivalent if the
design contains equal weights—an equal probability sampling and estimation
(EPSEM) design using the well-known acronym from Kish (1965). If mem-
bers of the project team (including the client) wish to evaluate the particular
sample in the current study, then you should calculate unweighted rates. For
example, in developing the sample design, you estimate that 89% of your
sample units will be successfully located. An unweighted location rate either
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well above or below the estimated rate might suggest the additional number
of replicates to be released for data collection, as described in Sect. 6.5.

Conversely, a rate can also be viewed as an estimate of a population param-
eter. In this case, design weights (inverse inclusion probabilities) can be used
to calculate the weighted rate. A weighted rate is viewed as an estimate of
the rate that would be obtained if the entire target population was included
in the study (i.e., a census). Another way to think about weighted rates is
as follows. The unweighted rate is a function of the particular sample design
which might include over- or undersampling of certain domains. The weighted
rate is effectively adjusted back to the underlying distribution of the target
population. One additional thing to note is that a confidence interval around
the weighted rates can facilitate an analysis of how sensitive sample size cal-
culations are to different assumed rates.

Given the contrast between the weighted and unweighted rates, however,
it is our experience that the two values are typically close. Widely varying
sampling and performance rates among subgroups of units can exacerbate
the difference. This suggests that both the (design-)weighted and unweighted
rates be calculated as a check on the weights (see Chap. 18 for a detailed
discussion of weight checks).

6.5 Accounting for Sample Losses in Determining Initial
Sample Size

If sample cases will be lost because they cannot be contacted, will not respond,
or are lost for some other reason, a larger initial sample can be selected.
This is especially important if the survey has a target number of responders.
The adjustment to the initial sample size can use some of the outcome rates
covered in Sect. 6.3, but those are generally more elaborate than are necessary
(or useful). An example is given in Sect. 6.5.1. Another option, covered in
Sect. 6.5.2, is to select subsamples (or replicates) that can be released for data
collection one at a time until the target number of responders is reached.

6.5.1 Sample Size Inflation Rates at Work

Surveys often start with insufficient knowledge about the number of sample
units that are eligible for the study, the number of units that can be contacted
during the study period, or those that are willing to answer, to give just a few
examples. Estimates of outcome rates (often based on other similar studies)
can help in deciding how many cases should be sampled to achieve sufficient
records to meet the targeted number of interviews. Exceeding the targeted
number of interviews may unnecessarily reduce the study budget remaining
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for, say, analysis and report writing. An insufficient number of interviews
decreases the power of statistical tests or prevents certain analytic questions
from being answered. Therefore, it is important to use rates that are as
accurate as possible to inflate the number of target interviews. A good rule
of thumb is to conduct a sensitivity analysis of the rates by using some upper
and lower values (bounds) regardless of the source of your inflation factors.

Consider an in-person survey of households selected from a geographical
area under a two-stage design. Residents of the sample household will be
screened to determine if at least one of them is a study-eligible adult. One
eligible adult is then selected from among the list of eligibles identified within
the sample household. Your power calculations have determined that 200 com-
pleted (target) interviews will meet your analytic objectives. The following
information on estimated study performance rates was gathered during the
first week of the project. Note that project team communications have been
added in italics:

• Approximately 3% of the housing units (HUs) are vacant due to new
construction and part-year residency. As a conservative measure, the team
decides to set a lower and an upper bound of 95% and 97% for the rate
of eligible HUs.

• Among those occupied HUs, between 92 and 95% are expected to answer
the door when the interviewers arrive.

• However, team members are unsure of the percent that will complete the
5m screener. One project team member speculates that this rate could be
between 70 and 87%. The team collectively decides to set the screening
rate in the range of 70 to 82%.

• Census projections estimate that approximately 85% of the households
will contain at least one eligible person. To ensure a sufficient number of
eligible cases, you decide to compare eligibility rates in the range of 80 to
85%.

• Finally, the client stresses that all will want to participate in this survey
and proposes a cooperation rate as high as 98%. Based on prior experience,
the optimistic cooperation rate was lowered to the range of 70 to 75% . You
communicate to the client that you will release an initial random subsample
from the full sample based on the 98% assumption with the remaining cases
released in replicates as needed. This procedure will ensure that the analytic
objectives are met under the current project budget.

Question. How many household addresses (also referred to as sample lines)
should be selected to obtain in expectation the required number of in-person
interviews?

Answer. Between 415 and 584 sample lines should be selected for the study.
Table 6.6 inflates the 200 target interviews for the rates discussed above. The
easiest way to do this is to work from the “bottom” up as shown in the
table. Begin with the target number of interviews (i.e., the minimum number
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required for the analytic objectives or the desired analytic sample size) and
successively apply the inflation factors in the reverse of the temporal order
in which they occur in the survey. The “Occupied HU Rate” has a different
name, but it can be classified as an eligibility rate among housing units. Note
that although no individual rate seems excessively low, in combination, they
more than double the 200 target interviews. Only 318 to 417 sample lines are
needed if the cooperation rate meets the high expectations of the client (i.e.,
98% is used in Table 6.6 for the cooperation rate). Therefore, the project
team may consider randomly creating a replicate of 300 sample addresses for
initial release followed by additional replicates of approximate size 100. We
describe this technique more generally in the next section.

Table 6.6: Example of inflating target interviews for sample loss.

Target interviews 200

Cooperation rate 0.7–0.75

Number of eligibles 267–286

Eligibility rate 0.8–0.85

Number screened 314–357

Screening rate 0.7–0.82

Number contacted 383–510

Contact rate 0.92–0.95

Occupied HUs 403–555

Occupied HU rate 0.95–0.97

Sample addresses 415–584

6.5.2 Replicates

One technique that is also used in practice is to randomly select a large
number of sample cases under a “worst-case scenario,” randomly subdivide
the full sample into data collection subsamples (sometimes called replicates),
and release only the number of replicates necessary to meet the analytic
objectives. As an uncomplicated example, suppose that a simple random
sample of 500 members of a professional association is selected with the goal
being to obtain 100 completed questionnaires (completes). The 500 might
be divided randomly into 10 replicates of size 50. Initially, the first three
replicates might be released. If necessary, additional replicates are released
to obtain the desired 100 completes. Note that the replicates do not need to
contain the same number of sample cases. This is done for convenience and
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ease of accounting (i.e., to eliminate the need to keep track of differential
sizes when deciding to release more sample).

Replicates are usually formed in a different way in a multistage sample.
In an area sample, as described in Chap. 10, the replicates may be composed
of geographic areas. The standard procedure in an area sample is to select
primary sampling units (PSUs) which are counties or groups of counties, at
the first stage, and smaller geographic areas as a second stage. The second
stage units may be groups of city blocks and are often called segments. A
large sample of segments can be selected initially and divided into replicates.

Because the replicates are randomly constructed, deciding to withhold
any replicate does not negate the randomness of the sample; weights for the
fielded cases are adjusted appropriately to reflect only those replicates that
were released. The replicates identified for release are considered to be a
simple random sample from the original sample for purposes of calculating
the subsampling adjustment. However, once a replicate has been released for
data collection, all cases in that replicate must be worked and be given a
disposition code.4 Otherwise, the full collection of released cases will not be
a probability sample. The ultimate goal again is to ensure that you have a
sufficient number of cases to meet the analytic objectives, keeping in mind any
ramifications on the budget, time, and, if appropriate, the effects of unequal
weighting (see Chap. 14 for further discussion of unequal weighting effects).

Creating the replicates in advance by subsetting a large sample is typically
much easier than selecting an initial sample and then attempting to add to
it later, depending on the sample design. Adding to a simple random sample
by selecting another srs from the initial nonsample units is legitimate. But,
if the initial sample is selected with probabilities proportional to size (pps),
as might be the case in a school sample, selecting a supplemental sample in
such a way that the overall sample is pps is not straightforward. (See the
exercises.)

4 Alternatively, the units could be worked in a random order, in which case, data
collection could be stopped partway through a replicate. Working cases in a random
order is typically impractical, however.
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Exercises

6.1. Calculate the following study performance rates, unweighted and
weighted, using data provided in the table below: location, contact (CON1
and CON3), eligibility, cooperation (COOP1 and COOP2), and response
(RR2 and RR4).

Eligible Complete? Disp. Disp. description Sample Sum of
code size weights

Yes Yes 1 Returned survey—complete 18,658 432,359
Yes No 1 Returned survey—

incomplete
754 18,046

No No 2 Returned survey—deceased 52 1,281
No No 3 Returned survey—

incarcerated
18 300

Yes Yes 8 Returned survey—complete 1,302 27,683
Yes No 8 Returned survey—partial

complete
102 2,507

Yes No 14 Survey returned blank—
active refusal

73 2,300

Yes No 17 Survey returned blank—no
reason

42 1,251

Yes No 26 No return—no reason 2,500 25,000
Unknown No 26 No return—no reason 143 3,072
Unknown No 27 Postal nondelivery 1,313 35,576
Unknown No 29 Original non-locatable 23 359
No No 30 Inelig prior to contact—

deceased
18 116

No No 31 Inelig prior to contact—
incarcerated

2 150

Total 25,000 550,000

6.2. The following table on the next page contains an excerpt from a complete
list of disposition codes developed for an RDD survey. Classify the following
codes into the seven disposition code categories shown in Table 6.2. If you are
unable to assign the disposition code to a single category with the description
provided below, what additional information would need to be specified for
you to choose among the categories?

6.3. Suppose that the number of units in a population is N and that an
initial sample of n1 is selected by srswor. A supplemental sample of n2 is
then selected from the N − n1 remaining units, drawn with simple random
sampling without replacement:

(a) Prove that the selection probability of each unit in the combined sample
is (n1 + n2) /N .
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Code Description

1 Completed interview
2 Partially completed interview
3 Callback scheduled
4 Dataphone/fax number
5 Hospitalized
6 Language barrier
7 Refusal
8 Not available during data collection
9 Soft refusal—callback to be assigned
10 Ring/no answer
11 Deployed member of US military
12 No eligible respondent in HH
13 Hard/hostile refusal
14 Callback—eligible respondent not available, no inter-

view
15 Other

(b) Show that if each initial sample unit has a response probability of r1 and
each supplemental sample unit has a response rate of r2, then the inclusion
probability of each unit, i.e., the probability accounting for sampling and
response, is (r1n1 + r2n2) /N .

(c) How would you use the result in part (b) to select an initial sample large
enough to produce a responding sample of some desired size, n∗?

6.4. The following is a population of 4 schools with their enrollments. A
probability proportional to size sample of n = 2 schools is selected.

School Students Sample

1 110 x
2 58
3 223 x
4 133

Total 524

(a) Compute the selection probabilities of all 4 schools in a sample of size 2.
(b) Suppose that school 3 refuses to cooperate. One replacement school is

selected from schools 2 and 4 with probability proportional to their rela-
tive sizes. That is, select one school with pps with the relative size com-
puted with respect to the remaining population size after schools 1 and
3 are removed. Show that the selection probabilities of schools 2 and 4
conditional on the initial sample of schools 1 and 3 are not equal to the
selection probabilities computed in (a).
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Calculate π∗
2 = π2,draw1 + (1− π2,draw1)π

∗
2,draw2 for school 2 with

π2,draw1 = selection probability of school 2 in the first sample of size 2
π∗
2,draw2 = conditional selection probability of school 2, given that schools

1 and 3 were selected in the first sample.
(c) Make the same calculation as in (b) assuming that schools 1 and 4 were

selected initially and that one replacement school is selected from schools
2 and 3. Repeat the calculation of π∗

2 = π2,draw1 +(1− π2,draw1)π
∗
2,draw2

for school 2 given that schools 1 and 4 were initially selected. Is your
answer the same or different from that in part (b)?

(d) Explain why the value of π∗
2 varies depending on which schools were

selected in the initial sample. What is the implication of this for selecting
substitutes in pps sampling?

6.5. You are to conduct a survey of retail business establishments in a large
metropolitan area to gauge their plans for hiring or laying-off employments
in the second half of the current calendar year. The frame will be purchased
from a commercial vendor, but any list the vendor provides is known to
have some problems. The list is updated once per calendar quarter to add
new businesses. The vendor does only a limited amount of work to purge its
database of establishments that have gone out of business. Contact informa-
tion (telephone numbers, mailing addresses, and physical location addresses)
are out-of-date for some establishments.

(a) List the types of sample losses that you may experience and that should
be accounted for when determining an initial sample size.

(b) Discuss how you would attempt to assign percentages to these losses.

6.6. The proposal team has determined that data from 500 completed inter-
views will satisfy the analytic requirements for the list-assisted random digit
dialing (Brick et al. 1995) study detailed below. Your assignment is to com-
pute the size of the RDD sample to be selected in order to guarantee (in
expectation) 500 interviews. Specifically, you will accomplish the following
tasks:

(a) Identify the relevant study rates (e.g., response and eligibility rates) and
values that need to be considered in order to arrive at the desired 500
completed interviews.

(b) Estimate the number of telephone numbers to be selected for the study,
and the corresponding number of interviewers required to complete the
study on time.

(c) Determine the impact of your task two estimates on the study budget.
(d) Briefly summarize and justify your results.

The client has provided some assumptions in the study description section
that may be useful to your task. You should consider the ramifications of any
“overly optimistic” assumptions.
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Client Study Description. The 2008 District of Columbia Social Interaction
Study (DC-SIS) is sponsored by the D.C. Council of the Friendly Handshake
(DCFH) to better understand the social dynamics of males in the District and
how these dynamics change in the presence of alcohol. All noninstitutionalized
males aged 20–34 who have lived in any of the eight D.C. wards5 for at least
six months are eligible for the DC-SIS. Population count estimates from the
2005 American Community Survey are given at the end of the problem in
Table 6.7. The study is a two-phase sampling design with:

• Phase 1—a 5minute CATI screening interview to identify eligible persons
and to make an appointment for a face-to-face interview (no participant
incentive)

• Phase 2—a 45minute in-person interview conducted as soon as possible
after the screener interview, with a $50 incentive payment ($25 more for
refusal conversion)

The interviews will be conducted in either English or Spanish. An insignificant
percent of the residents in D.C. speak a language other than English or
Spanish.

Study cases will be selected from the 1+ 100-number blocks of landline
telephone numbers supplied by a vendor of your choosing. A 100-block is
a consecutive block of 100 telephone numbers. For example, 202-123-1200
through 202-123-1299 is a 100-block. A 1+ 100-block is a 100-block that
contains at least 1 residential number. Assume that you will also choose a
vendor to screen out nonworking telephone numbers (approximately 65% of
the sample) prior to phase-1 data collection and to reverse match the numbers
to addresses. In other words, you will purchase an initial list of telephone
numbers, and the vendor will determine which of these numbers are working
residential numbers. For each working residential number, the vendor will
supply a street address if one is available. The percentage of numbers for
which an address can be supplied is typically about 65%.

We anticipate at least a 50% cooperation rate for the short screener inter-
view among those with an available home address. An advance letter will
be mailed to each household for which you have an address. Among num-
bers with no address, experience has shown that cooperation is poorer. For
this exercise, assume that the cooperation rate is 25% among the no-address
numbers. Additionally assume that the rate of eligible persons is the same
for address and no-address records. Among the eligible participants who com-
plete the 5m screener, we anticipate an 80% overall response rate to the in-
person interview. Approximately 10% of the respondents will require refusal
conversion.

The project should be completed within a six-month window—one month
for sample design, sample selection, and pretesting; four months of data col-
lection; and one month for post-survey processing and final reports.

5 http://planning.dc.gov/planning/frames.asp?doc=/planning/lib/planning/maps/
docs/census tract.pdf.

http://planning.dc.gov/planning/frames.asp?doc=/planning/lib/planning/maps/docs/census_tract.pdf
http://planning.dc.gov/planning/frames.asp?doc=/planning/lib/planning/maps/docs/census_tract.pdf
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Additional In-house Assumptions. Telephone and field interviewers are
paid $10.00 and $13.50 per hour, respectively, and work approximately 24h
per week. On average, approximately 4.5 phone calls will be required to com-
plete a screening interview and 1.5 in-person visits to complete the 45m
interview. Nonproductive calls and contacts are expected to take 1.5m and
30m, respectively. We estimate that the telephone interviewers spend approx-
imately 70% of their weekly hours on tasks that are unrelated to interviewing
such as address location, administrative duties, and documentation. The per-
cent of time spent on scheduling interviews, administrative duties, uploading
data, and other such tasks is higher at 85%.



Chapter 7

The Personnel Survey Design Project:
One Solution

An optimization problem was presented in Chap. 2 for a single-stage stratified
sample design. In the following sections, we present a solution to the multi-
purpose design question borrowing from material presented in Chaps. 3–6.
A series of solutions was generated for the sample allocation to test the sen-
sitivity of the assumptions. Additionally, different software may produce dif-
ferent yet comparable results. Ultimately, a single solution must be chosen
from this set for implementation as discussed below.

7.1 Overview of the Project

The Senior Council within the Verkeer NetUltraValid (VNUV) Corporation
has tasked your design team with developing an optimal allocation for their
annual employee climate survey—the VNUV Climate Survey, Cycle 5. The
survey sample members will be randomly selected through a single-stage
stratified design as employed in previous VNUV climate surveys. The analysis
variables of interest for the survey include:

1. (Q5) Overall, I am satisfied with VNUV as an employer at the present
time.

2. (Q12) There is a clear link between my job performance and my pay at
VNUV.

3. (Q15) Overall, I think I am paid fairly compared with people in other
organizations who hold jobs similar to mine.

4. The number of training classes attended by the employees in the past 12
months.

The design team met over a three-week period to develop the sample
design. During this period, they:

(1) Finalized the assumptions used for the optimization
(2) Formulated the optimization problem

R. Valliant et al., Practical Tools for Designing and Weighting
Survey Samples, Statistics for Social and Behavioral Sciences 51,
DOI 10.1007/978-1-4614-6449-5 7, © Springer Science+Business Media New York 2013
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(3) Constructed and implemented computer programs to obtain multiple
solution

(4) Developed a presentation to highlight the results to the Senior Council
(not shown)

(5) Summarized the work in a final report (not shown)

7.2 Formulate the Optimization Problem

The first task for mathematical modeling as discussed in Chap. 5 is to trans-
late the client’s needs and constraints for a survey into a set of equations
that can be solved. This is similar to the task of translating word problems
into equations in our first algebra class, although often substantially more
complicated. Following the components discussed in Sect. 5.1, we extract the
necessary information from Chap. 2 to construct the multicriteria optimiza-
tion problem.

7.2.1 Objective Function

The objective function is the equation that is minimized or maximized to
develop a solution. Skimming back through Chap. 2, you will not locate an
explicit definition for this function. Welcome to one of the many areas where
creativity plays a role in the lives of survey statisticians. Through experience
you may develop a preference for a particular type of objective function. Oth-
erwise, the use of more than one objective function (and set of assumptions)
can suggest the robustness of your final chosen solution.

Based on previous experience, the objective chosen by the design team was
similar to the equation used for Example 5.2. Namely, the allocation should be
constructed to minimize the sum of the relvariance of the estimated total (T̂j)
for the four analysis variables (Sect. 2.1; repeated in Sect. 7.1 for convenience).
In other words, the explicit formula for the first candidate objective function
is

Φ =

4∑
j=1

ωjrelvar
(
T̂j

)
, (7.1)

where ωj is the importance weights for variable j (j = 1, . . . , 4), relvar
(
T̂j

)

is the corresponding relvariance such that

relvar
(
T̂j

)
= T−2

j

∑
h

Nh

(
Nh

nh
− 1

)
S2
jh
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and S2
jh is the unit variance calculated within design stratum h (h =

1, . . . , 18). The design team had several discussions about the importance
weights used in the objective function. After conferring with the Senior
Council, the decision was reached that all of the analysis variables were of
equal importance. Consequently, ωj ≡ 1 for all four variables so that expres-
sion (7.1) is rewritten as

Φ =
4∑

j=1

relvar
(
T̂j

)
. (7.2)

Several objective functions could have been tested. However, because of the
time commitments for the design time (a common constraint for researchers),
the objective function discussed in Chap. 5 was borrowed for this project.

7.2.2 Decision Variables

The decision variables correspond to the solutions produced from the opti-
mization problem, i.e., sample size and associated allocation to strata. For the
VNUV Climate Survey, the allocation solution is required for the 18 design
strata—business unit (3 levels) by salary grade (3 levels) by employment
tenure (2 levels)—that were shown in Table 2.2. Note that the solution is
derived to meet certain analytic objectives specified for the survey. Once the
solution has been obtained, the values must be inflated to address sample
loss associated with study ineligibility and nonresponse (Chap. 6).

7.2.3 Optimization Parameters

Three sets of parameters were defined for the optimization problem. First,
HR provided counts of eligible employees by the sampling strata. These frame
counts are shown in Table 2.2 of Chap. 2. Second, the design team incorpo-
rated the performance rates calculated from the Cycle 4 study (Table 2.4)
to ensure that the analytic objectives could be met with the total number
of respondents as well as their distribution across the sampling strata. The
last set of parameters includes the population estimates, means/proportions,
and standard errors, shown in Table 2.5. Prior to implementation, the design
team constructed population standard deviations from the estimated stan-
dard errors using expression (3.40):

Ŝ2 =
n0v
(
ˆ̄y
)

1− f0

1

deff
(
ˆ̄y
) . (7.3)
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Note that deff
(
ˆ̄y
)
= 1 for the Cycle 5 calculations because the sample for

the previous climate survey was selected by an srs design. We visit the design
effect again for the Cycle 5 design in Sect. 7.3.

7.2.4 Specified Survey Constraints

Questions were posed to the VNUV Senior Council to finalize the optimiza-
tion constraints on the sample size and on the precision for a set of estimates
(Sect. 2.2). The first constraint was dictated by the survey budget—there are
sufficient funds for the Cycle 5 climate survey to process responses from 600
sample members. In addition to constraining the sum of the respondent sizes
generated from the allocation, the design team also required that the number
in each stratum exceeds a specified minimum value in order to calculate a
variance component. Because the actual number selected for the study was
calculated as the respondent size inflated for sample loss (e.g., nonresponse)
determined from the Cycle 4 survey, the inflated size was constrained to be
less than the frame count within the stratum. In summary, the following set
of equations was used to constrain the sample allocation:

H∑
h=1

nh ≤ 600

2 ≤ nh

(nh/rh) ≤ Nh

where nh is the number of respondents within stratum h (h = 1, . . . , 18)
derived from the optimum allocation, Nh is the total number of employees
in stratum h calculated from the updated employee list provided by HR (see
Table 2.2), and rh is the sample-loss inflation rate from Cycle 4 calculated as
the eligibility rate (= 1 – ineligibility rate) multiplied by the response rate
(see Table 2.4).

A second set of constraints was placed on the coefficient of variation (CV )
for four estimates (Q5, Q12, Q15, and the average number of training classes)
within domains defined by business unit, salary grade within business unit,
and categorized tenure within business unit (Table 2.1).

A third set of constraints was imposed by the design team prior to finalizing
optimization. These constraints were derived from a power analysis discussed
in the next section.
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7.3 One Solution

7.3.1 Power Analyses

Having specified the known constraints for the optimization task, the design
team next conducted a power analysis to establish a minimum sample size
for the business unit domains to meet the desired detectable differences:

• A 5 percentage point difference (or larger) for the employee climate esti-
mates

• A difference of two to three training classes for the average on-the-job
education estimates

The design team, however, eventually determined from the power analysis
that the desired difference levels were not attainable given the study budget,
i.e., the funds used to edit and analyze data from 600 respondents.

The multivariable power analysis focused on four estimates. Beginning
with the proportion of staff who (strongly) agrees with the three climate
questions restated in Sect. 7.1, Table 2.6 in Chap. 2 showed that the fair
compensation question (Q15) consistently had the lowest rate of agreement
across the business units. The design team noted that the Q15 estimate had
the strongest influence on the power calculations because it has the largest
standard deviation. Thus Q5 and Q12 were set aside and not used in the min-
imum sample size analysis. The influence of Q15 in comparison of the average
number of training classes was less clear, so two separate power calculations
were made and subsequently combined.

The R function power.prop.test produced the results shown in
Table 7.1. For example, the R code used to calculate the sample size for
the Survey Research (SR) business unit with a detectable difference of 0.05
(or delta=5 percentage points) is

power.prop.test(p1=0.69, p2=0.74, sig.level = 0.05,
power = 0.8, alternative = "two.sided").

Similar code was used to calculate the minimum analytic sample size for
the CR and FO business units. Note that each value in Table 7.1 from the
power analysis with delta=5 percentage points violates the constraint of 600
respondents. The team reran the analysis using several detectable differences;
power results for 10, 13, and 15% are included in the table for comparison.
The values for 0.13 looked most promising because the total sample size was
well below the maximum value and would hopefully allow the optimization
algorithm some flexibility in allocating sample across the strata. Next, the
team turned to a similar calculation for the average number of training classes.

The team accessed R again to calculate the minimum sample size per busi-
ness unit for the average number of training classes with the power.t.test
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Table 7.1: Minimum sample size by business unit and detectable difference produced
by the R function power.prop.test for the fair salary question (Q15). Calculations
were done for 80% power and 0.05 level of significance for a two-sided test.

Business Q15 Cycle 4 Detectable difference (%)

unit estimate 5 10 13 15

SR 0.69 1,278 300 171 124

CR 0.83 777 165 86 59

FO 0.60 1,470 356 206 152

Overall 3,526.1 821 463 335

Table 7.2: Minimum sample size by business unit and detectable difference produced
by the R function power.t.test for the question on number of training classes.
Calculations were done for 80% power and 0.05 level of significance for a two-sided
test.

Business Cycle 4 estimates Detectable difference

unit Mean se std 1.0 1.5 2.0 2.5

SR 18.10 0.98 12.02 1,037 462 261 168

CR 12.60 0.90 8.21 491 219 124 80

FO 8.94 0.60 7.74 432 193 109 71

Overall 1,959 874 494 318

Table 7.3: Minimum sample size by business unit for design optimization of the
Verkeer NetUltraValid (VNUV) Climate Survey, Cycle 5. Design effect of 1.05 used
to account for variation introduced through weighting.

Business Minimum no. deff adjusted no.

unit of respondents of respondents

SR 171 179

CR 86 90

FO 206 216

Overall 462 486

function. Table 7.2 contains the results from the second power analysis for
a range of number of classes included as the desired detectable difference.
The standard deviations (std) were calculated with expression (7.3) with
deff
(
ˆ̄y
)
= 1. Detectable differences between 2 and 3 classes were classified

by the Senior Council as meaningful. Differences less than these numbers
were examined to evaluate the sample size requirements for higher levels of
precision.

Having examined the results, the team decided to take the “best of both
worlds.” The maximum sample size required by business unit for a 13 per-
centage point difference in the climate estimates and a 2.5 difference in the
average number of training classes combines the information, resulting in the
values given in the “Minimum no. of respondents” column of Table 7.3.

Because the Cycle 5 post-data collection analysis will include the use of
weights, unlike Cycle 4, a senior statistician was consulted on an appropriate
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design effect. A conservative deff of 1.05 was used to inflate the analytic
sample size to account for factors such as differential weights introduced from
a nonresponse adjustment. These inflated values located in the last column
of the table were used in the optimization routines discussed next.

7.3.2 Optimization Results

The sample allocation was optimized using both Excel Solver and SAS
proc optmodel for comparison. The output files from the optimizations
are located on the book’s web site as discussed below.

Solver

The file containing the Solver output is named Project 1.Solver.xlsx.
The workbook contains 14 worksheets, some corresponding to tabular infor-
mation provided in Chap. 2:

• 1 Frame counts (Table 2.2)
• 2 Recode (Table 2.3)
• 3 Study rates (Table 2.4)
• 4 5 Estimates (Tables 2.5 and 2.6)
• 6 CV s (Table 2.1)

and some containing input or output from the optimizations:

• SAS data (input data for SAS proc optmodel)
• Power (summary tables from R power functions)
• Solver (Excel Solver optimization)
• Answer Report 1, Sensitivity Report 1, Limits Report 1 (output from

Solver)
• Answer Report 2 (output from Solver with multistart option)
• Compare (comparison between Solver and proc optmodel solutions)
• Sensitivity (sensitivity of Solver solution to changes in the assumed

response rates)

Details from the Solver optimization are summarized below:

1. The default settings for Solver were used including GRG nonlinear solv-
ing method, 0.0001 precision constraint, and 1,000 iterations. The opti-
mization was computed both with and without the “multistart” option
resulting in no difference.

2. As shown in Fig. 7.1, the objective function, Eq. (7.2), is tabulated in
cell S36 within the Solver worksheet (or ‘Solver’!$S$36 using Excel
notation). The goal of the optimization is to minimize the sum of the four
relvariances, one for each estimate. The change cells, or the respondent
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sample size per strata, are located in column M, rows 10 through 27.
The series of constraints that have been loaded into the third input box
included the maximum sample size ($K$36 >= $M$36), the minimum
sample size per business unit determined from the power calculations
($K$38 <= $M$38 through $K$40 <= $M$40), and an additional check
to ensure that the allocation inflated for sample loss would not exceed
the frame counts per strata ($N$10:$N$27 <= $E$10:$E$27).

3. A proportional allocation was used for the starting values—see
’Solver’!L9.

4. The original optimization was implemented using a maximum respondent
sample size of 600. Because the constraints were easily met, the team
evaluated a reduced respondent sample size in an attempt to save project
time and funds. The final recommended sample size was 575 respondents.

SAS Proc Optmodel

The SAS programs, logs, and lst (output) files are identified by the label
Project 1 OptModel n=* where the asterisk (*) indicates the maximum
respondent sample size set for the optimization routine. The SAS programmer
included the sample size constraints overall and by business unit along with
the CV constraints as macro variables at the beginning of the program. Each
section of the program either inputs tables specified in Chap. 2 or calculates
components for the optimization. The SQP (default) procedure was used in
the optimization as shown in the log files.

The design team initially produced an optimization for a 600 respon-
dents to mirror the work completed with Solver (see the files Project 1
OptModel n=600.*). Two additional SAS programs were created corre-
sponding to n=575 and n=550 respondents. As shown in the file Project 1
OptModel n=500.log, a feasible solution with a maximum of 550 respon-
dents was not found.

Comparison of Solver and SAS Proc Optmodel

A comparison of the allocation results from Excel Solver and SAS proc opt-
model is shown in Table 7.4. The solution to both algorithms satisfied the
revised respondent sample size of 575. However, after inflating the allocation
for sample loss (adjusted solution) and randomly rounding1 the adjusted val-
ues (random round), the Solver solution required the selection of 36 (=1,025–
1,061) fewer sample cases. Additionally, the Solver objective function was

1 Random numbers from the uniform distribution are generated for each value requir-
ing rounding. If the random number is less than or equal to 0.5, then the integer
portion of the value is used as the rounded value. Otherwise, the integer portion plus
one is used as the rounded value.
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Fig. 7.1: Excel Solver optimization parameter input box.

slightly lower, indicating a somewhat better solution. Therefore, the design
team chose the Solver solution as the sample allocation included in the report.

7.4 Additional Sensitivity Analysis

The design team completed one last analysis prior to finalizing the report
to the VNUV Senior Council to address the concerns about the estimated
response rates (see the response to question #8 in Sect. 2.2). Without detailed
information on the likely differential rates by the stratifying characteristics,
the team evaluated the impact of an overall reduction in the response rates
to identify subgroup estimates that would be most affected. In summary,
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Table 7.4: Comparison of optimization results from Excel Solver and SAS proc
optmodel for the VNUV Climate Survey, Cycle 5

Strata Business Salary Tenure (Years) Solver OptModel (SQP)

unit grade

Solutiona Adjusted Random Solution Adjusted Random

solutionb roundc solutiona round

1 SR A1-A3 <5 12.7 14.3 15 10.9 12.3 12

2 5+ 20.1 23.8 23 17.8 21.0 21

3 R1-R5 <5 34.1 73.2 74 33.5 71.9 71

4 5+ 65.1 83.8 83 81.4 104.8 104

5 M1-M3 <5 27.1 29.7 30 23.1 25.3 26

6 5+ 20.1 28.1 28 12.5 17.5 17

7 CR A1-A3 <5 12.8 23.5 23 54.6 100.3 100

8 5+ 20.3 40.7 41 42.8 85.7 86

9 R1-R5 <5 26.9 53.8 53 43.0 86.0 85

10 5+ 24.9 46.2 46 34.7 64.4 64

11 M1-M3 <5 11.9 11.9 12 10.5 10.5 10

12 5+ 17.9 22.6 22 30.3 38.4 38

13 FO A1-A3 <5 59.2 215.6 215 60.9 222.1 222

14 5+ 34.3 87.2 87 28.0 71.1 72

15 R1-R5 <5 103.8 162.8 162 53.3 83.6 84

16 5+ 45.7 65.3 65 21.8 31.2 31

17 M1-M3 <5 19.3 19.3 20 8.1 8.1 8

18 5+ 18.9 26.4 26 7.5 10.5 10

Total 575.0 1,028.0 1,025 575.0 1,064.9 1,061

Objective function (RelVar) 0.0023 0.0024

Objective function (Pct CV ) 4.82 4.87

a Optimized solution from the package
b Solution adjusted for sample loss, i.e., optimized solution divided by the
eligibility rate times the response rate

c Adjusted solution randomly rounded to whole numbers

that group is the SR division. The following three points are the take-away
messages:

(1) If the Cycle 5 response rates are less than 5 percentage points lower than
the Cycle 4 values used in the optimization, then there will be a negligible
difference in the results.

(2) If the difference in the actual and estimated Cycle 5 response rates is
approximately 5 percentage points, then the precision of the estimates
within the business units will likely fall below the desired CV = 0.10.

(3) If the actual response rates are more than 5 percentage points lower than
the estimated values, then the precision of the business unit estimates
will approach a CV of 70%. This is especially true of the SR division
estimates because the binding constraint on the sample size as shown in
worksheet=“Answer Report 2.”
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7.5 Conclusion

The design team then proceeded to develop a design report around the recom-
mended allocation produced by Excel Solver (Table 7.4). This report included
a discussion of the optimization constraints including the need to increase the
values for the meaningful detectable differences given the constraint of no
more than 600 respondents (i.e., budget). The design team also justified the
lowering of the respondent sample size from 600 to 575 by (1) demonstrat-
ing the convergence of the optimization system under the reduced sample
size and (2) suggesting that the cost savings could be used on methods to
increase participation such as a small incentive.
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Chapter 8

Project 2: Designing an Area Sample

In this project you will design a sample of census tracts, block groups, and
persons from Anne Arundel County in the state of Maryland in the USA.
Considering the analytic subgroups, the desired precision of estimates, and
the available budget, it has been determined that these sample sizes are to
be selected:

Age group (years) Sample sizes

18–24 200
25–44 200
45–54 200
55–64 200
65+ 200

Total 1,000

Sample tracts 25
Sample block groups 1

per tract

The sample design will use tracts as PSUs, block groups as SSUs, and per-
sons as elements. The goals of the sample design are to select a sample of
the sizes above while (1) achieving a self-weighting sample in each of the age
groups above and (2) obtaining an equal workload in each sample PSU. You
should pay particular attention to geographic areas that have small popula-
tion counts and decide how they should be handled in the frame. The tools
you need to complete this project are covered in Chaps. 9 and 10.

Use Sampford’s method to select the PSUs and SSUs. This is one of sev-
eral options for selecting probability proportional to size samples. Sampford
works for samples of any size and permits joint selection probabilities to

R. Valliant et al., Practical Tools for Designing and Weighting
Survey Samples, Statistics for Social and Behavioral Sciences 51,
DOI 10.1007/978-1-4614-6449-5 8, © Springer Science+Business Media New York 2013
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be computed, a requirement for some of the variance estimators described in
Chap. 15. This method of selection is available in R pps and sampling pack-
ages and in SAS proc surveyselect. In order to reproduce the solution
given later in Chap. 11, include the statement

set.seed(-741881304)

at the beginning of your program if you use R. If you use SAS surveyselect,
use the procedure option

seed = 1953.

The deliverables for the project will be:

• A sampling report
• SAS or text files giving the units used for the area frame and relevant

census counts and measures of size
• SAS or text file for the selected sample along with relevant census counts,

measures of size, selection probabilities, and weights.

Contents of the Sampling Report

Below is a list of topic areas that should be included in your report. The
order of the sections in your report does not have to be the same as that
given below. You should construct your report in a way that presents topics
in an order that seems logical to your team.

The report should be written to a client whose staff includes managers
and technical personnel. Managers will be more interested in understanding
the broad outline of the steps used in weighting. Technical personnel will
be interested in understanding the details of sample selection and weight
computation, including appropriate formulas. You should consider how to
structure your report to serve these audiences.

• Topic areas for the sampling report
• Title page (project title, date of submission, and name of project contact

person)
• Introduction (overview of the document)
• Sample design

Goals of the sample design
Area sampling frame
Units, data available, source of the data
Assigning measures of size to units

• Sample selection

Method of selection
Selected units and characteristics of each
Selection probabilities of units at each stage of selection
Description of how persons should be selected from area listings
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• Maps

Anne Arundel County
Selected tracts and block groups

• Appendix

PROC CONTENTS or codebook of frame and sample files
Listing of the sample PSUs and sample SSUs with their selection prob-
abilities and census data. On each sample SSU, list the sampling rate
you will use to select persons in each domain.

Data Files and Other Information

• AnneArundel.MD.xls—Census 2000 tract and block group data for Anne
Arundel County

• Census.glossry2.pdf —Defines geographic terms used by Census Bureau
• Census tract and block maps for Maryland from the Census Bureau;

American Factfinder at Census Bureau: factfinder.census.gov
www.census.gov/geo/www/maps/CP MapProducts.htm

• Maps of the county are also in

Anne Arundel.blkgrps(streets).pdf
Anne Arundel.tracts(streets).pdf
Anne Arundel.tracts(no streets).pdf

factfinder.census.gov
www.census.gov/geo/www/maps/CP_MapProducts.htm


Chapter 9

Designing Multistage Samples

Previous chapters have covered the design of samples selected in a single
stage. However, sampling is often done using more than one stage. There are
a number of reasons why cluster or multistage sampling may be used. Using
multistage samples can often be a practical and cost-efficient solution in situ-
ations where a list of elementary (or analytic) units is not available for direct
sampling. In those cases, a list of elementary units can be compiled within
just the sample clusters rather than for the whole frame. This is especially
useful in household samples if a list of every household in a country, state,
county, etc., is not available. In other cases, permission to do a survey may
have to be obtained at the cluster level. For example, if the goal is to admin-
ister a standardized test to a sample of students, administrators in the school
district or in the school may have to grant permission to do the survey.

The mode of data collection will also affect the decision on whether to
use cluster sampling. If data are to be collected by personal interview, then
clustering the sample cases can be a way to save travel costs. This is true
regardless of whether a complete list of population members is available. If
interviewing will be done by telephone, then clustering sample cases may be
unnecessary and statistically inefficient.

Some comments on terminology are in order. Cluster sampling means that
a group of units is selected at the first stage of sampling. The clusters can
be geographic areas, establishments, schools, or some other type of aggregate
unit. We will also use the terms primary sampling unit (PSU) or first-stage
unit to be synonymous with cluster. Within a sample cluster, elementary
units are sampled. Some texts reserve the term “cluster sample” for a single-
stage sample in which all elementary units within a cluster are included in the
sample. In this book, a cluster sample will include both the cases of complete
enumeration of a cluster and of subsampling in a cluster. If subsampling is
used within a cluster, we will also call this multistage sampling. There can
be two or more stages of selection, depending on the application. The term
ultimate cluster denotes the aggregate of the elementary units across the
stages of selection within a sample PSU.

R. Valliant et al., Practical Tools for Designing and Weighting
Survey Samples, Statistics for Social and Behavioral Sciences 51,
DOI 10.1007/978-1-4614-6449-5 9, © Springer Science+Business Media New York 2013
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In designing samples of PSUs and subsamples within PSUs, there are two
situations to consider. The first is designing a PSU sample from scratch. In
that case the issues are how to form the PSUs; how they should be stratified,
the number of sample PSUs; how the sample is allocated to strata, the method
of sampling the PSUs; and finally how the sampling is to be done within the
selected PSUs.

The second case is using an existing PSU sample. The focus then is on
how to efficiently design a sample of secondary sampling units (SSUs) and,
for a three stage design, elements within SSUs. Decisions must be made on
the sample size and method of sampling SSUs and the number of elements to
sample within each PSU and SSU. The sample allocation must be determined
conditional on the sample of PSUs. Theory for much of the material here can
be found in Hansen et al. (1953a, vol. I, Chaps. 6–9), Hansen et al. (1953b,
vol. II, Chap. 6), and in Särndal et al. (1992, Chap. 4). Hereafter we will
refer to Hansen, Hurwitz, and Madow books as HHM. Despite being almost
60 years old at this point, HHM still has a wealth of valuable information
about many of the practical problems encountered in sample design.

Section 9.1 describes some of the units that can be used as PSUs.
Section 9.2 presents some of the basic variance formulas for two- and three-
stage sampling. These are used in the third section to determine optimal
allocations in which cost is a consideration. The fourth section of the chapter
discusses estimation of the variance components that are required for sample
allocation. Sections 9.5 and 9.6, respectively, briefly cover stratification of
PSUs and criteria for identifying PSUs that are selected with certainty, i.e.,
with probability one.

9.1 Types of PSUs

The types of units that constitute a PSU depend on the survey. In an area
probability sample, the units are usually geographic areas like counties, sub-
county areas, or other local administrative units. A survey designer may
have some freedom in how areas are combined to form PSUs. We discuss
these options in depth in Chap. 10. In other cases, the PSUs are naturally
occurring units that are forced on the designer. Changing them would be
either infeasible or inefficient. When surveying schools, the hierarchy of school
districts, schools, classrooms, and students is common in the USA. Trying to
use another type of aggregation as a cluster would require defining units that
are unnatural to school administrators and would probably be in conflict with
the way school records are kept. Other types of natural hierarchies are:

• Business establishments—Employees or accounts might be the elements to
be sampled.

• Hospitals—Departments like emergency room, intensive care, and long-
term care might be an SSU. Patient records may be considered as nested
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within the department where the patient was last treated or might be
sampled directly within a hospital.

• Military personnel—In the American model, some of the levels of hierarchy
in descending order of size are corps, division, brigade, regiment, company,
platoon, and squad. Any of these might be used as SSUs. On the other
hand, these may not be convenient for sampling since all personnel in a
given level (brigade, say) may not be stationed in the same place. In that
case, military bases, which are specific geographic locations, may be more
useful as PSUs.

9.2 Basic Variance Results

To allocate a sample among different stages of sampling, the contributions of
the different stages to the variance of an estimator must be considered. These
components of variance generally depend on the analysis variable and also on
the form of the estimator. In Sects. 9.2.1–9.2.3, we cover some basic results for
linear and nonlinear estimators in two-stage sampling. Section 9.2.4 presents
similar results for three-stage samples.

9.2.1 Two-Stage Sampling

Consider a two-stage sample design in which the first-stage units are selected
using πps sampling, i.e., with varying probabilities and without replacement.
Elements are selected at the second stage via srswor. Quite a bit of notation
is needed, even in this fairly simple case:

U = universe of PSUs
M = number of PSUs in universe
Ui = universe of elements in PSU i
Ni = number of elements in the population for PSU i
N =

∑
i∈U Ni is the total number of elements in the population

πi = selection probability of PSU i
πij = joint selection probability of PSUs i and j
m = number of sample PSUs
ni = number of sample elements in PSU i
s = set of sample PSUs
si = set of sample elements in PSU i
yik = analysis variable for element k in PSU i
ȳU = mean per element in the population
ȳUi = mean per element in the population in PSU i
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The π-estimator of the population total, tU =
∑

i∈U

∑
k∈Ui

yk, of an anal-
ysis variable Y is

t̂π =
∑
i∈s

t̂i
πi

where t̂i = (Ni/ni)
∑

k∈si
yk, which is the estimate of the total for PSU i

with a simple random sample. The design variance of the estimated total can
be written as the sum of two components:

V
(
t̂π
)
=
∑
i∈U

∑
j∈U

(πij − πiπj)
ti
πi

tj
πj

+
∑
i∈U

N2
i

πini

(
1− ni

Ni

)
S2
U2i (9.1)

where

S2
U2i =

∑
k∈Ui

(yk − ȳUi)
2

/
(Ni − 1)

is the unit variance of Y among the elements in PSU i.
Formula (9.1) is difficult or impossible to use for sample size computations

because the number of PSUs in the sample is not exposed. One fallback is to
assume with-replacement selection of PSUs, as we did in Chap. 3. Another is
to analyze srs sampling of PSUs and SSUs as in Example 9.1 below. Deter-
mining sample sizes this way does not mean that you are necessarily locked
into selecting PSUs and elements within PSUs via srswr. Basing sample sizes
on a design that is less complicated than the one that will actually be used
is a common approach, although, as we will illustrate, it can be deceptive for
some analysis variables.

Example 9.1 (Special case: srswor at first and second stages). Suppose the
first stage is an srswor of m of M PSUs and the second stage is a sample of
ni elements selected by srswor from the population of Ni. The π-estimator
is

t̂π =
M

m

∑
i∈s

Ni

ni

∑
k∈si

yik.

Its variance is equal to

V
(
t̂π
)
=

M2

m

M −m

M
S2
U1 +

M

m

∑
i∈U

N2
i

ni

Ni − ni

Ni
S2
U2i

where S2
U1 =

∑
i∈U (ti−t̄U )2

M−1 with ti being the population total of Y in PSU

i and t̄U =
∑

i∈U ti
/
M is the mean total per PSU. The relvariance of t̂π,

V
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) /
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U2i (9.2)
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where B2 = S2
U1/t̄

2
U = M2S2

U1/t
2
U is the unit relvariance among PSU totals.

�

If n̄ elements are selected in each PSU and the sampling fractions of PSUs
and elements within PSUs are all small, then the relvariance can be written
as

V (t̂π)

t2U
=

B2

m
+

W 2

mn̄
(9.3)

with W 2 = M
∑

i∈U N2
i S

2
U2i/t

2
U . Expression (9.3) is the form used in the

R function, BW2stageSRS, presented later in this section. Textbooks often
list a specialized form of Eq. (9.2) that requires that all PSUs have the same
size, N̄ , and that n̄ elements are selected in each. In that case, the second-
stage sampling fraction is n̄/N̄ . This implies that the sample is self-weighting:
πiπk|i = mn̄/MN̄ . The relvariance in Eq. (9.2) simplifies to

V
(
t̂π
) /

t2U =
1

m

M −m

M
B2 +

1

mn̄

N̄ − n̄

N̄
W 2 (9.4)

where W 2 = 1
Mȳ2

U

∑
i∈U S2

U2i.

Assuming that n̄ elements are selected in each sample PSU, and m/M and
n̄/Ni are both small, the more general form of the relvariance, V

(
t̂π
) /

t2U
in Eq. (9.2), can also be written in terms of a measure of homogeneity δ as
follows:

V
(
t̂π
)

t2U

.
=

Ṽ

mn̄
k [1 + δ (n̄− 1)] (9.5)

where Ṽ = S2
U/ȳ

2
U , k = (B2 +W 2)/Ṽ , and

δ =
B2

B2 +W 2
. (9.6)

With some algebra (see Exercise 9.10), it can be shown that when Ni = N̄
and both M and N̄ are large,

S2
U

ȳ2U
=

1

ȳ2U

∑
i∈U

∑
k∈Ui

(yik − ȳU )
2

(N − 1)

.
= B2 +W 2 (9.7)

i.e., the population relvariance can be written as the sum of between and
within relvariances. If k = 1, Eq. (9.5) equals the expression found in many
textbooks. However, when the population count of elements per cluster varies,
k may be far from 1, as will be illustrated in Example 9.2. In those cases,
Eq. (9.5) with an estimate of the actual k should be used for determining
sample sizes and computing advance estimates of coefficients of variation.

With single-stage srs sampling of clusters, δ is an intraclass correlation
[see (Cochran, 1977, Chap. 8)] but not with two-stage sampling. Nonethe-
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less, practitioners do habitually refer to δ as an intraclass correlation. An ad
hoc fpc, 1 −mn̄

/
MN̄ , is sometimes inserted in Eq. (9.5) although this does

not follow directly from rewriting Eq. (9.2). See Exercise 9.11 for the details
needed to obtain Eq. (9.5). Hansen et al. (1953a, Sect. 6.6) and Hansen et al.
(1953b, Sect. 6.5) use a more elaborate form of δ, but Eq. (9.6) is more than
adequate in practice.

Expression (9.5) is useful for sample size calculation since the number of
sample PSUs and sample units per PSU are explicitly in the formula. We
will apply the formula in some examples in Sect. 9.4. Equation (9.5) also
connects the variance of the estimated total to the variance that would be
obtained from a simple random sample since Ṽ /mn̄ is the relvariance of the
estimated total in an srswor of size mn̄ when the sampling fraction is small.
The product k[1 + δ(n̄− 1)] is a type of design effect. When k = 1, the term
1 + δ (n̄− 1) is the approximate design effect found in many textbooks.

Expression (9.5) with k = 1 seems often to be treated as if it applies
regardless of how the samples of PSUs and elements within PSUs are selected
and without regard to the kind of estimator that is used. If, for example,
a pps sample of PSUs is selected and a poststratified estimator of a total
is used, Eq. (9.5) reflects neither of those features. A practitioner needs to
realize that it is a specialized formula that does not apply well when methods
of sampling other than srs are used at different stages. Section 9.2.3 covers
a more general two-stage design in which PSUs are selected with varying
probabilities and gives relvariance formulas that apply to that case.

Table 9.1 lists some values of 1+δ (n̄− 1) for a range of δ’s and within clus-
ter sample sizes. Even when the measure of homogeneity is small, the effect
on the variance of an estimated total can be substantial if many elements are
sampled per cluster. For instance, if δ = 0.05, the variance can be 20% larger
than the srs variance when n̄ = 5 but will be almost six times as large when
n̄ = 100. The intuition for this is simply that increasing the sample within
each cluster is adding correlated (i.e., more of the same) information which
is less effective than adding uncorrelated (new) information from different
clusters.

The size of δ is affected by the size of a cluster. Although this is not always
true, the elements in a cluster may be more alike when the cluster size is small.
This is especially true when clusters are based on geographic areas. Hansen
et al. (1953a, Chap. 6, Table 6) give some examples of variables that have
different sizes of δ. For clusters of 3 nearby households, the value of δ for
number of persons in the household was 0.430 in their example. For clusters
of 9, 27, and 62 households, the values of δ were 0.439, 0.243, and 0.112,
respectively. These are high compared to many variables. For the indicator
variable, unemployed male, the δ’s for clusters of 3, 9, 27, and 62 households
were 0.060, 0.070, 0.045, and 0.034. For agricultural variables, like whether
a farm reports raising a specific crop (e.g., barley, potatoes, or wheat), δ’s
of 0.4 or larger may be common as long as cluster sizes are 4 or 5 nearby
farms. These data are old (1940 US Census), but the fact that δ decreases as
geographic cluster size increases is a standard phenomenon.
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Table 9.1: Approximate design effects for different sizes of homogeneity measure δ
and number of sample elements per cluster.

1 + δ (n̄− 1)
n̄ δ = 0.01 δ = 0.05 δ = 0.20
5 1.04 1.20 1.80
10 1.09 1.45 2.80
25 1.24 2.20 5.80
50 1.49 3.45 10.80
100 1.99 5.95 20.80

Considering two extreme examples may help in understanding when δ is
large or small. First, think of an indicator for whether a person has a college
degree or not. Suppose that PSUs are city blocks.

High intraclass correlation. Assume that most or all persons on any
given block (PSU) either have a college degree or not. In that case, the
within-PSU variance component is near 0. The between-PSU variance
component is approximately equal to the total variance, which implies
that δ

.
= B2

/ (
B2 +W 2

)
is close to 1. A large sample of blocks will

be needed to get a precise estimate of the proportion of people with a
college degree. Sampling more than 1 person per block would be inefficient
because the people on a block all tend to have the same education level.

Zero intraclass correlation. Suppose blocks are the same size and the
proportion with college degrees is the same, p̄, in every block in the pop-
ulation. The total of persons with degrees in each PSU is ti = N̄ p̄, which
is some constant. The between variance is 0, implying that δ = 0. Only 1
block needs to be sampled to estimate the proportion with a college degree
because every block is the same. (Notice that if the Ni’s varied, δ would
not be zero, even if p̄ was the same in every block.)

The Maryland Area Population

The next example uses the MDarea.pop data set which contains three con-
tinuous and two binary variables. This data set is based on the US Census
counts from the year 2000 for Anne Arundel County in the state of Mary-
land. The geographic divisions used in this data set are called tracts and
block groups; these will be explained in more detail in Chap. 10. Tracts are
constructed to have a desired population size of 4,000 people. Block groups
(BGs) are smaller with a target size of 1,500 people. Counts of persons in
the data set are the same for most tracts and block groups as in the 2000
Census; five BGs were augmented to have at least 50 persons each. Obtain-
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ing microdata for persons within small areas like block groups is generally
difficult because of confidentiality restrictions. Thus, we have used models
to generate values for persons. The analysis variables in MDarea.pop are
denoted by y1, y2, y3, ins.cov and hosp.stay and are generated from
models. The first three variables are continuous and positively skewed. The
binary variables, ins.cov, and hosp.stay, are based on the rates of insur-
ance coverage and hospital stay in a 12-month period, as reported in the
US National Health Interview Survey (NHIS). We created these variables by
fitting models for several variables in the US National Health and Nutrition
Examination Survey (NHANES) and NHIS data sets to get regression means
that depended on whether a person was Hispanic and on the person’s gen-
der and age. Person-level values were created using random effects models
that had error terms for tracts, block groups, and persons. These variables
are intended to illustrate a range of potential measures of homogeneity while
being somewhat realistic.

Because the tracts and block groups in the Maryland population are
extremely variable in size, we created two other variables called PSU and
SSU and appended them to the data set. Each PSU has approximately the
same number of persons; likewise the SSUs were created to have about the
same number of persons. The PSUs and SSUs were formed after sorting the
file by tract and block group within tract, thus, retaining geographic proxim-
ity of persons grouped together. Each PSU has about 5,000 persons while an
SSU has about 1,000. Recall that the assumption to obtain expression (9.5)
for the variance of an estimator in two-stage sampling is that all PSUs do
have the same number of elements, N̄ . Similar assumptions will be made to
simplify the variance in three-stage sampling. Although the assumption of
equal PSU size, and later equal SSU size, may seem innocuous, it is far from
that as we will illustrate in the next example.

Example 9.2 (Between and within variance components in srs/srs design).
The R function BW2stageSRS will calculate the unit relvariance of a pop-
ulation, B2 + W 2 for comparison, the ratio k = (B2 + W 2)/(S2

U/y
2
U ), and

the full version of δ in Eq. (9.6). The function assumes that the entire frame
is an input. The R code for this example is in Example 9.2.R; the code for
BW2stageSRS is in a separate file. We first compute the results using the
PSU and SSU variables as clusters. For the variable y1 in the Maryland
population, the code is

BW2stageSRS(MDarea.pop$y1, psuID=MDarea.pop$PSU,
pop=MDarea.pop)

BW2stageSRS(MDarea.pop$y1, psuID=MDarea.pop$SSU,
pop=MDarea.pop)
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B2 W 2 S2
U

/
ȳ2U B2 +W 2 k δ

PSUs as clusters
y1 0.0079 1.4553 1.4627 1.4631 1.0003 0.0054
y2 0.0069 1.0097 1.0163 1.0166 1.0003 0.0068
y3 0.0090 0.1048 0.1136 0.1137 1.0012 0.0787
ins.cov 0.0012 0.2599 0.2611 0.2611 1.0003 0.0046
hosp.stay 0.0175 12.8831 12.8979 12.9006 1.0002 0.0014

SSUs as clusters

y1 0.0365 1.4277 1.4627 1.4642 1.0010 0.0249
y2 0.0169 1.0004 1.0163 1.0173 1.0010 0.0166
y3 0.0184 0.0954 0.1136 0.1137 1.0012 0.1615
ins.cov 0.0032 0.2581 0.2611 0.2613 1.0010 0.0124
hosp.stay 0.0558 12.8549 12.8979 12.9107 1.0010 0.0043

Values of δ range from 0.0014 to 0.0787 when PSUs are clusters. Deltas are
somewhat larger when SSUs are clusters, reflecting the common phenomenon
that smaller geographic areas are somewhat more homogeneous than large
ones in household populations. The fourth through the sixth columns show
that the approximation that S2

U

/
ȳ2U

.
= B2 + W 2 in Eq. (9.7) works well in

this case.
Next, to illustrate the dramatic effect that varying sizes of clusters can

have, we compute the same statistics as above using tracts and block groups
within tracts as clusters. A variable called trtBG is computed since the values
of the variable, BLKGROUP, are nested within each tract:

trtBG <- 10*MDarea.pop$TRACT + MDarea.pop$BLKGROUP

B2 W 2 S2
U

/
ȳ2U B2 +W 2 k δ

Tracts as clusters
y1 0.2605 1.8390 1.4627 2.0995 1.4353 0.1241
y2 0.2687 1.2662 1.0163 1.5349 1.5103 0.1750
y3 0.2707 0.1253 0.1136 0.3960 3.4856 0.6836
ins.cov 0.2624 0.3260 0.2611 0.5884 2.2538 0.4460
hosp.stay 0.3078 16.3171 12.8979 16.6249 1.2890 0.0185

Tract/block groups as clus-
ters

y1 0.3489 1.9499 1.4627 2.2987 1.5715 0.1518
y2 0.3485 1.3338 1.0163 1.6823 1.6553 0.2072
y3 0.3492 0.1220 0.1136 0.4712 4.1478 0.7411
ins.cov 0.3408 0.3426 0.2611 0.6834 2.6180 0.4987
hosp.stay 0.4246 17.2695 12.8979 17.6941 1.3719 0.0240
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Values of δ range from 0.0185 to 0.6836 when tracts are clusters. When block
groups are clusters, δ’s range from 0.0240 to 0.7411. The measures of homo-
geneity increase substantially when tracts or block groups are clusters. For
example, when PSUs were clusters, δ = 0.0054 for y1 but is 0.1241 when
tracts are clusters. This is entirely due to the increase in B2 when units with
highly variable sizes are used. For example, B2 = 0.0079 for y1 when PSU
is a cluster but is 0.2605 when tract is a cluster. The fourth through the
sixth columns above show that the approximation S2

U

/
ȳ2U

.
= B2 +W 2 does

not work well when either tracts or block groups are clusters. For y3 and
ins.cov, B2 +W 2 is much larger than S2

U/y
2
U , implying that setting k = 1

in Eq. (9.5) may not be very accurate for some variables if clusters vary in
size. �

Create Clusters with Equal Sizes If Possible

The variation of the tract sizes in the Maryland population is considerably
more than practitioners would prefer when defining PSUs. The range of the
number of persons per tract is 86–13,579. Having such large variation in PSU
sizes, leads to large differences in the cluster sizes (Ni’s) and totals (ti’s). This
causes the between variance component B2 to be large, which in turn leads to
the high measures of homogeneity seen above and inefficiencies if a clustered
sample is selected. This is also the reason that the approximation S2

U

/
ȳ2U

.
=

B2+W 2 is poor in Example 9.2. Standard practice would be to combine the
small tracts or block groups so that all PSUs have some prescribed minimum
number of persons. Although variation in cluster sizes has a dramatic effect
on the factors, like δ, needed to design a sample, this seems to be rarely
emphasized in sampling texts. If the designer has some flexibility in forming
the clusters, as would usually be the case in a household survey, clusters
with nearly equal numbers of elements should definitely be created. In some
surveys, the clusters are naturally occurring units, like schools, classrooms,
or establishments. In those cases, you may have to live with the pre-defined
units, but considering the variation in cluster size will be important when
determining sample sizes.

9.2.2 Nonlinear Estimators in Two-Stage Sampling

The between and within variance components can be written down for more
complicated designs and estimators. With some simplifying assumptions, the
formulas for a two-stage design are analogous to those in the preceding
section.

If a nonlinear estimator, like the ratio of two estimated totals or means
is used, a general approach to getting variance components is to construct
a linear approximation to the nonlinear estimator and then write down the
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variance of the approximation. We will cover this technique in more depth in
Chap. 15 when variance estimation is discussed. One of the options described
there is the linear substitute method, which we sketch here. The reader should
consult Sect. 15.2 for more details.

Consider an estimator like the ratio of two estimated means, θ̂ = ˆ̄y1
/
ˆ̄y2,

where ˆ̄yj = t̂jπ

/
N̂π (j=1,2) with t̂jπ =

∑
i∈s

∑
k∈si

dkyjk, dk is the inverse

of the selection probability of element k, and N̂π =
∑

i∈s

∑
k∈si

dk. Because

of the cancellation of N̂π, θ̂ is a function of two estimated totals, t̂1π and t̂2π.
With some manipulation, the linear approximation to θ̂ can be written as

θ̂ − θ
.
=
∑
i∈s

∑
k∈si

dkzk + constants

where θ is the population ratio to be estimated, zk =
∑2

j=1

∂f(t̂)
∂t̂jπ

yjk (k ∈ si),

t̂ =
(
t̂1π, t̂2π

)
, and ∂f

(
t̂
) /

∂t̂j is the partial derivative of t̂ with respect to
the j th estimated total. The term zk is referred to as a linear substitute. The
“constants” above do not enter into the variance calculation. The variance of
θ̂ can be approximated by computing the variance of

∑
i∈s

∑
k∈si

dkzk.
In the case of simple random sampling at both stages, as in Sect. 9.2.1,

dk = M
m

Ni

ni
and zk = y1k − θy2k. The ratio can be approximated as

θ̂
.
=

M

m

∑
i∈s

t̂zi

where t̂zi = Ni/ni

∑
k∈si

zk. Thus, the approximate ratio θ̂ can be written
in the same way as the estimated total in Example 9.1. Consequently, the
relvariance of θ̂ can be expressed in exactly the same way as in Eq. (9.5),
assuming that ni = n̄:

V
(
θ̂
)

θ2
.
=

Ṽ

mn̄
k[1 + δ(n̄− 1)]

where Ṽ is the unit relvariance of the zk’s, k = (B2 + W 2)/Ṽ and δ =
B2/(B2 +W 2). The between and within relvariance components are written
in terms of the zk rather than yk. Specifically,

B2 = S2
U1

/
t̄2U with S2

U1 =
∑

i∈U (tzi−t̄Uz)
2

N−1 ,

tzi =
∑

k∈Ui
zk, and t̄Uz =

∑
i∈U tzi

/
M ;

W 2 = M
θ2

∑
i∈U N2

i S
2
U2i with S2

U2i =
∑

k∈Ui
(zk−z̄Ui)

2

Ni−1 and

z̄Ui =
∑

k∈Ui
zk
/
Ni;

Ṽ
.
= B2 +W 2.

Other nonlinear estimators can be handled by this same method. For exam-

ple, an estimated mean like ˆ̄y = t̂π

/
N̂π or odds ratio in a 2 × 2 table can
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both be linearized and written, approximately, as an estimated total of linear
substitutes.

Example 9.3 (Ratio of two totals). Suppose that the proportion of Hispanics
with insurance coverage is to be estimated. Define y2k to be 1 if a person
is Hispanic and 0 if not; α1k = 1 if a person has insurance coverage. Then,
y1k = α1ky2k is 1 if person k has insurance and is Hispanic and is zero
otherwise. The linear substitute is zk = y1k − θy2k where θ is the proportion
of Hispanics with insurance coverage. In this case, zk can take only three
values: −θ, 0, and 1 − θ. If a simple random sample of clusters and persons
within clusters is selected, BW2stageSRS can be used to compute B2, W 2,
and δ using the linear substitutes as inputs. Assuming that the full population
is available, the R code is the following. We do the calculation for clusters
defined as either tracts or BGs:

# recode Hispanic to be 1=Hispanic, 0 if not
y2 <- abs(MDarea.pop$Hispanic - 2)
y1 <- y2 * MDarea.pop$ins.cov

# proportion of Hispanics with insurance
p <- sum(y1) / sum(y2)

# linear sub
z <- y1 - p*y2
trtBG <- 10*MDarea.pop$TRACT + MDarea.pop$BLKGROUP
BW2stageSRS(z, psuID=MDarea.pop$TRACT)
BW2stageSRS(z, psuID=trtBG)

The results are δ = 0.00088 for tracts and δ = 0.00276 for BGs. Thus, the
effect of clustering on this estimated proportion is inconsequential—a two-
stage sample will estimate the proportion almost as precisely as an srs would.
In contrast, if the estimate is the total number of Hispanics with insurance,
then we call BW2stageSRS this way:

BW2stageSRS(y1, psuID=MDarea.pop$TRACT)
BW2stageSRS(y1, psuID=trtBG)

which return δ = 0.02251 for tracts and δ = 0.04026 for BGs. These are still
far less than the δ’s in Example 9.2 which also uses tracts and BGs as clusters.
Thus, the effect of clustering can be quite different depending on the variable.
�

In Sect. 9.3, we give formulas for the optimal allocation of a sample to
clusters and elements within clusters. The allocations depend, in part, on the
value of δ. Examples 9.2 and 9.3 show that sample design decisions on the
number of sample clusters and persons per cluster could be quite different
depending on which type of estimate we consider. This will be especially
true for calibration estimators, which are covered in Chap. 14. Calibration
estimators use auxiliary variables to reduce variances. Similar to what we
just saw in Example 9.3, the effect of clustering on calibration estimators can
be much less than for π-estimators.
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9.2.3 More General Two-Stage Designs

Variances of estimators in designs more complicated than simple random
sampling at each stage can also be written as a sum of components. However,
these have limited usefulness in determining sample sizes. Expression (9.1) is
an example of the component variance formula for a design in which PSUs
are selected with varying probabilities and without replacement. The first
term in Eq. (9.1) has the problem that the number of PSUs is not explicit in
the formula.

A more useful formulation is the case where PSUs are selected with
varying probabilities but with replacement, and the sample within each
PSU is selected by srswor. As noted in Chap. 3, with-replacement designs
may not often be used in practice but have simple variance formulae. The
pwr -estimator of a total is

t̂pwr =
1

m

∑
i∈s

t̂i
pi

where t̂i = Ni

ni

∑
k∈si

yik is the estimated total for PSU i from a simple
random sample and pi is the one-draw selection probability of PSU i. The
variance of t̂pwr from Cochran (1977, pp. 308–310) is

V
(
t̂pwr

)
=

1

m

∑
i∈U

pi

(
ti
pi

− tU

)2

+
∑
i∈U

N2
i

mpini

(
1− ni

Ni

)
S2
U2i. (9.8)

Making the same assumption as in Sect. 9.2.1 that n̄ elements are selected
in each PSU, the variance reduces to

V
(
t̂pwr

)
=

S2
U1(pwr)

m
+

1

mn̄

∑
i∈U

(
1− n̄

Ni

)
N2

i S
2
U2i

pi

where, in this case, S2
U1(pwr) =

∑
i∈U pi

(
ti
pi

− tU

)2
. Dividing this by t2U

and assuming that the within-PSU sampling fraction, n̄/Ni, is negligible,
we obtain the relvariance of t̂pwr as, approximately,

V
(
t̂pwr

)
t2U

.
=

B2

m
+

W 2

mn̄
=

Ṽ

mn̄
k [1 + δ (n̄− 1)] (9.9)

with Ṽ = S2
U/ȳ

2
U , k = (B2 +W 2)/Ṽ ,

B2 =
S2
U1(pwr)

t2U
, (9.10)
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W 2 =
1

t2U

∑
i∈U

N2
i

S2
U2i

pi
, (9.11)

δ = B2
/ (

B2 +W 2
)
. (9.12)

For later use in variance component estimation, we can also write Eq. (9.8)
as

V
(
t̂pwr

)
= VPSU + VSSU . (9.13)

Expression (9.9) has the same form as Eq. (9.5) but with different defini-
tions of B2 andW 2. Expression (9.9) also has the interpretation of an srs vari-
ance or an unclustered variance, Ṽ /mn̄, times a design effect, k[1+ δ(n̄− 1)],
in the same way that Eq. (9.5) did.

Example 9.4 (ppswr at first stage, srs at second). This example repeats the
calculations in Example 9.2 for the variables in the Maryland area population.
Assume that clusters will be selected proportional to the count of persons in
each cluster. The function BW2stagePPS computes the population values of
B2, W 2, and δ shown in Eqs. (9.10)–(9.12), which are appropriate for ppswr
sampling of clusters. The code for y1 using PSUs or SSUs as clusters is shown
below. The variables, pp.PSU and pp.SSU, hold the one-draw probabilities
pi that appear in Eq. (9.8):

pp.PSU <- table(MDarea.pop$PSU) / nrow(MDarea.pop)
pp.SSU <- table(MDarea.pop$SSU) / nrow(MDarea.pop)
BW2stagePPS(MDarea.pop$y1, pp=pp.PSU,

psuID=MDarea.pop$PSU)
BW2stagePPS(MDarea.pop$y1, pp=pp.SSU,

psuID=MDarea.pop$SSU)

The code using tracts or BGs as clusters is similar and is in the file Example
9.4.R. The results are:
With this design, the between term is much smaller than the within, com-
pared to the results in Example 9.2. This is true whether PSU and SSU
are used as clusters or tracts and BGs are used. When clusters are selected
by srs, S2

U1 is the variance of the cluster totals around the average clus-
ter total. In contrast, with pps sampling of clusters, S2

U1(pwr) is the vari-

ance of the estimated population totals, ti/pi, around the population total,
tU . When clusters are selected with probability proportional to Ni, then
ti/pi = NiȳUi/ (Ni/N) = NȳUi. If these one-cluster estimates of the popula-
tion total are fairly accurate, as they are here, the B2 term can be quite small.
This leads to much smaller values of δ in pps sampling of clusters, implying
that the effect of clustering is less important in this population for a design
that selects clusters with probabilities proportional to their population counts.
�
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B2 W 2 B2 +W 2 k δ
PSUs as clusters
y1 0.0078 1.4553 1.4630 1.0002 0.0053
y2 0.0068 1.0097 1.0165 1.0002 0.0067
y3 0.0088 0.1048 0.1136 1.0002 0.0778
ins.cov 0.0012 0.2599 0.2611 1.0002 0.0046
hosp.stay 0.0173 12.8831 12.9004 1.0002 0.0013

SSUs as clusters
y1 0.0364 1.4277 1.4642 1.0010 0.0249
y2 0.0169 1.0004 1.0173 1.0010 0.0166
y3 0.0183 0.0954 0.1137 1.0008 0.1611
ins.cov 0.0032 0.2581 0.2613 1.0010 0.0124
hosp.stay 0.0557 12.8549 12.9106 1.0010 0.0043

B2 W 2 B2 +W 2 k δ
Tracts as clusters
y1 0.0092 1.4539 1.4631 1.0002 0.0063
y2 0.0107 1.0058 1.0165 1.0002 0.0106
y3 0.0136 0.1001 0.1136 1.0002 0.1194
ins.cov 0.0018 0.2593 0.2611 1.0002 0.0069
hosp.stay 0.0223 12.8786 12.9009 1.0002 0.0017

Tract/block groups as clusters
y1 0.0160 1.4478 1.4638 1.0007 0.0109
y2 0.0176 0.9994 1.0171 1.0007 0.0173
y3 0.0211 0.0926 0.1137 1.0006 0.1857
ins.cov 0.0039 0.2574 0.2612 1.0007 0.0148
hosp.stay 0.0509 12.8567 12.9076 1.0008 0.0039

Practitioners habitually gravitate toward pps sampling of clusters rather
than srs. This example makes it clear why this choice is often a good one. Of
course, accurate values of the cluster sizes are needed for pps to be effective,
and these are not always available.
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9.2.4 Three-Stage Sampling

A common design in household surveys is to select PSUs, SSUs within PSUs,
and households within SSUs. In the USA, SSUs are typically subcounty geo-
graphic areas like census tracts or block groups. These are described in detail
in Chap. 10. In such a three-stage design, there, naturally, are three variance
components. We first present the variance formula for an estimated total
when simple random sampling is used at all three stages.

Simple Random Sampling at All Three Stages

There is, regrettably, even more notation in three-stage sampling to specify
the situation. Suppose that Ni is the population number of SSUs in PSU
i and that ni is the number selected by srswor ; N =

∑
i∈U Ni is the total

number of SSUs in the population; Qij is the population number of elements
in SSU j within PSU i ; and qij is the number of elements selected by srswor
from PSU/SSU ij. The total number of elements in PSU i is Qi and in the
population is Q. The population of SSUs in PSU i is Ui; the population of
elements in PSU/SSU ij is Uij .

If an srswor is selected at each stage, the selection probabilities of PSUs,
SSUs, and elements are m/M , ni/Ni, and qij/Qij . The π-estimator of the
total is

t̂π =
M

m

∑
i∈s

Ni

ni

∑
j∈si

Qij

qij

∑
k∈sij

yk,

where si is the set of sample SSUs in PSU i and sij is the set of sample
elements in PSU/SSU ij. The relvariance of the π-estimator is (Hansen et al.
1953b, Sect. 7.4)

V
(
t̂π
)

t2U
=

1

t2U

{
M2

m

M −m

M
S2
U1 +

M

m

∑
i∈U

N2
i

ni

Ni − ni

Ni
S2
U2i (9.14)

+
M

m

∑
i∈U

Ni

ni

∑
j∈Ui

Q2
ij

qij

Qij − qij
Qij

S2
U3ij

}
,

where

S2
U1 =

∑
i∈U (ti−t̄U )2

M−1 as in Example 9.1

S2
U2i =

1
Ni−1

∑
j∈Ui

(tij − t̄Ui)
2
is the unit variance of SSU totals in PSU

i with tij =
∑

k∈Uij
yk being the population total for PSU/SSU ij,

t̄Ui =
∑

j∈Ui
tij

/
Ni is the average total per SSU in PSU i

S2
U3ij =

1
Qij−1

∑
k∈Uij

(yk − ȳUij)
2
is the unit variance among elements in

PSU/SSU ij with ȳUij =
∑

k∈Uij
yk

/
Qij
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To write Eq. (9.14) in a form more useful for sample size calculation, assume
that the same number of SSUs, n̄, is selected from each PSU and the same
number of elements, ¯̄q, is selected from each SSU. Further suppose that the
number of SSUs in each PSU is the same, Ni = N̄ , and that the number of
elements in each SSU is the same, Qij = ¯̄Q. In that special case, Eq. (9.14)
can be rewritten as

V
(
t̂π
)

t2U
=

1
¯̄̄y2U

{
1

m

M −m

M
S2
1 +

1

mn̄

N̄ − n̄

N̄
S2
2 +

1

mn̄ ¯̄q

¯̄Q − ¯̄q
¯̄Q

S2
3

}
, (9.15)

where

¯̄̄yU =
∑

i∈U

∑
j∈Ui

∑
k∈Uij

yk

/
MN̄ ¯̄Q

S2
1 = (M − 1)

−1∑
U

(
¯̄yUi − ¯̄̄yU

)2
¯̄yUi = ti

/
N̄ ¯̄Q is the mean per element in PSU i

S2
2 =

∑
i∈U

∑
j∈Ui

(ȳUij − ¯̄yUi)
2
/
M
(
N̄ − 1

)

ȳUij =
∑

k∈Uij
yk

/
¯̄Q is the mean per element in SSU ij

S2
3 =

∑
k∈Uij

(yk − ȳUij)
2
/
MN̄

(
¯̄Q− 1

)

Expression (9.15) is also found in Cochran (1977, Eq. (10.26)). Although
Eq. (9.15) is relatively simple, the assumptions that each PSU has the same
population number of SSUs and that each SSU has the same population
number of elements are limitations. Assuming that the sampling fractions of
PSUs, SSUs within PSUs, and elements within SSUs are all small, a more
general relvariance formula that does allow for varying population sizes and
still requires that n̄ SSUs and ¯̄q elements be selected is

V
(
t̂π
)

t2U

.
=

B2

m
+

W 2
2

mn̄
+

W 2
3

mn̄¯̄q
, (9.16)

where B2 = M2S2
U1/t

2
U , W

2
2 = M

∑
i∈UN

2
i S

2
U2i/t

2
U , and

W 2
3 = M

∑
i∈UNi

∑
j∈Ui

Q2
ijS

2
U3ij/t

2
U .

Varying Probabilities at First Stage, Simple Random Sampling
at Later Stages

In the case of with-replacement sampling of PSUs with varying probabilities
and srswor at the second and third stages, the relvariance can be written
(with a few assumptions) in a form useful for sample size calculations. Treat-
ing the case where SSUs are selected via srs (either with or without replace-
ment) is not too unrealistic since SSUs (like block groups) are often created
to have about the same population sizes.
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The relvariance of the pwr -estimator of a total is derived in Hansen et al.
(1953b, Chap. 9, p. 211) and Särndal et al. (1992, p. 149):
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t̂pwr

)
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1
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qij

Qij − qij
Qij

S2
U3ij

⎫
⎬
⎭

≡ 1

t2U
{VPSU + VSSU + VTSU},

(9.17)

where VPSU , VSSU , and VTSU are defined by the last equality. (“TSU”
stands for third-stage unit.) In Eq. (9.17) S2

U1(pwr) is the same as defined

below expression (9.8) and

S2
U2i =

1
Ni−1

∑
j∈Ui

(tij − t̄Ui)
2
is the unit variance of SSU totals in PSU

i with tij =
∑

k∈Uij
yk being the population total for PSU/SSU ij

t̄Ui =
∑

j∈Ui
tij

/
Ni is the average total per SSU in PSU i

S2
U3ij =

1
Qij−1

∑
k∈Uij

(yk − ȳUij)
2
is the unit variance among elements in

PSU/SSU ij with ȳUij =
∑

k∈Uij
yk

/
Qij

Expression (9.17) also applies if the inputs are linear substitutes, as defined
earlier in Sect. 9.2.2.

HHM present a more complex version of Eq. (9.17) in which PSUs are
stratified and SSUs are substratified, but we have not added that complication
here. Another complication that is omitted here is the selection of domain
elements at different rates. For example, a goal may be to equalize the sample
sizes from different race/ethnicity groups.

Expression (9.17) is complex enough that it is not useful for sample size
planning. To obtain a simpler formula, suppose that n̄ SSUs are sampled
in each sample PSU, the sampling fractions of SSUs in each PSU, n̄/Ni,
are small, and ¯̄q elements are selected in each sample SSU. By specializ-
ing Eq. (9.17), the relvariance of the pwr -estimator is then

V
(
t̂pwr

)
t2U

=
B2

m
+

W 2
2

mn̄
+

W 2
3

mn̄ ¯̄q
, (9.18)

where B2 = S2
U1(pwr)

/
t2U is given by Eq. (9.10),

W 2
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1

t2U

∑
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i S

2
U2i

/
pi; (9.19)

W 2
3 =

1

t2U

∑
i∈U

Ni

pi

∑
j∈Ui

Q2
ijS

2
U3ij . (9.20)
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Expression (9.18) has the same form as Eq. (9.16) for an srs/srs/srs design
but with different definitions for B2, W 2

2 , and W 2
3 . In some applications, an

ad hoc second-stage fpc,
(
N̄ − n̄

) /
N̄ where N̄ is the average number of SSUs

in each PSU, and an ad hoc third-stage fpc, ( ¯̄Q− ¯̄q)/ ¯̄Q where ¯̄Q is the average
number of elements in each TSU, may be used in Eq. (9.18) to get a better
approximation.

The relvariance in Eq. (9.18) can also be written in terms of two measures
of homogeneity:

V
(
t̂pwr

)
t2U

=
Ṽ

mn̄¯̄q
{k1δ1n̄¯̄q + k2 [1 + δ2 (¯̄q − 1)]} (9.21)

where
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3 )/Ṽ
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and ȳUi =
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/
Qi, i.e., S

2
U3i is the element-level variance

among all elements in PSU i

δ2 = W 2
2 /(W

2
2 +W 2

3 )

Hansen et al. (1953b, Chap. 9) give more elaborate versions of δ1 and δ2, but
the simpler ones above are adequate for sample size planning.

Note that the termW 2 in δ1 does not enter the variance in Eq. (9.18) but is
defined by analogy to the term in two-stage sampling in Eq. (9.10). If elements
were selected directly from the sample PSUs (instead of first sampling SSUs),
then W 2 above would be the appropriate within-PSU component.

The term δ1 is a measure of the homogeneity among the PSU totals. If the
estimate of the population total from each PSU total, ti/pi, was exactly equal
to the population total, tU , then B2 = 0 and δ1 = 0. That is, if the variation
within PSUs is much larger than the variation among PSU totals, then δ1 will
be small; this is the typical situation in household surveys if PSUs all have
about the same number of elements. As we saw in Example 9.2, the condition
of equal-sized PSUs can be critically important to insure that B2 is small.

If the SSUs all have about the same totals, tij , then W 2
2 will be small and

δ2
.
= 0. Although attempts may be made to create SSUs that have about the

same number of elements Qij , the totals tij , of other variables tend to vary,
leading to values of δ2 that are larger than those of δ1, as discussed below.

HHM note that in some applications k1 and k2 will be near 1 so that this
simpler version of the relvariance can be used for planning:

V
(
t̂pwr

)
t2U

.
=

Ṽ

mn̄ ¯̄q
{δ1n̄ ¯̄q + [1 + δ2 (¯̄q − 1)]} . (9.22)
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The term in braces is the increase in relvariance over simple random sampling
due to using three-stage sampling. If both δ1 and δ2 are 0, then three-stage
sampling will be as efficient as srs. Usually, δ1 and δ2 will be positive so that
there will be some increase in relvariance compared to srs.

In the USA, household survey PSUs are typically counties or groups of
counties. These vary in population size but can contain hundreds of thousands
or even millions of persons. SSUs may be census tracts which are smaller
areas with 1,500–8,000 persons. An alternative for an SSU is a block group,
which generally has 600–3,000 people. Household survey PSUs are often large,
fairly heterogeneous areas implying that δ1 tends to be very small for many
variables, say, 0.01 or less. SSUs are smaller areas where persons tend to be
more alike, leading to δ2 being a larger number like 0.10. In school surveys, δ2
may also be larger than δ1 if PSUs are districts, SSUs are schools, elements
are students, and the analysis variables are different kinds of achievement
tests. As we have noted several times before, whether the PSUs and SSUs
have the same numbers of elements or not can have a major impact on the
measures of homogeneity. As always, the sizes of parameters like δ1 and δ2
depend on the population and the analysis variables. Having relevant data is
important in order to make realistic advance estimates for sample design.

The R function, BW3stagePPS, will calculate B2, W 2, W 2
2 , W

2
3 , δ1, and

δ2 defined above for ppswr/srs/srs and srs/srs/srs sampling. The function is
appropriate if an entire frame is available and takes the following parameters:

X data vector
pp vector of one-draw probabilities for PSUs; length is

number of PSUs in the population
psuID vector of IDs for PSUs; length is number of units in the

population
ssuID vector of IDs for SSUs; length is number of units in

the population. The parameter ssuID should have the
form psuID||(ssuID within PSU)

If the parameter pp is set equal to 1/M for all PSUs, then the B2 is computed

as M−1
∑

U (ti − t̄U )
2
/
t̄2U , which is approximately equal to the srswr value

of B2.

Example 9.5 (Three stages srs/srs/srs). In the Maryland population suppose
that the PSU and SSU variables define the first- and second-stage units and
that persons are elements in a three-stage design. PSUs, SSUs, and persons
are selected by simple random sampling. The call to BW3stagePPS for the
variable y1 and the results for y1, y2, y3, ins.cov, and hosp.stay are
listed below:

M <- length(unique(MDarea.pop$PSU))
pp.PSU <- rep(1/M,M)

BW3stagePPS(X=MDarea.pop$y1, pp=pp.PSU,
psuID=MDarea.pop$PSU, ssuID=MDarea.pop$SSU)
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PSUs and SSUs are first- and second-stage units

B2 W 2 W 2
2 W 2

3 k1 k2 δ1 δ2
y1 0.0078 1.4553 0.0358 1.4277 1.0002 1.0006 0.0053 0.0245
y2 0.0068 1.0097 0.0125 1.0004 1.0002 0.9967 0.0067 0.0124
y3 0.0088 0.1048 0.0119 0.0954 1.0002 0.9439 0.0778 0.1105
ins.cov 0.0012 0.2599 0.0025 0.2581 1.0002 0.9983 0.0046 0.0098
hosp.stay 0.0173 12.8831 0.0480 12.8549 1.0002 1.0004 0.0013 0.0037

The values of δ1 are almost the same as in Example 9.2 where PSUs were also
selected using srs. The values of δ2 range from 0.0037 to 0.1105, which are
fairly small. The values of k1 and k2 are near 1, meaning that B2 +W 2 and
W 2

2 +W 2
3 are close to the unit relvariance in the population. Next, suppose

that tracts and BGs within tracts are the first- and second-stage units and
that all three stages are again selected by srs. The code for the y1 variable
is

M <- length(unique(MDarea.pop$TRACT))
trtBG <- 10*MDarea.pop$TRACT + MDarea.pop$BLKGROUP
pp.trt <- rep(1/M,M)
BW3stagePPS(X=MDarea.pop$y1, pp=pp.trt,

psuID=MDarea.pop$TRACT, ssuID=trtBG)

As in Example 9.2, the variable trtBG holds a unique identifier for block
groups. The results are listed below. Notice that the values of δ1 and δ2 are
much larger when tracts and BGs are used for sampling units than when
the PSU and SSU variables were used. As in Example 9.2, this is due to the
highly variable sizes of tracts and BGs.

Tracts and BGs are first- and second-stage units
B2 W 2 W 2

2 W 2
3 k1 k2 δ1 δ2

y1 0.2577 1.8390 0.2699 2.1084 1.4334 1.6259 0.1229 0.1135
y2 0.2658 1.2662 0.2613 1.4442 1.5075 1.6781 0.1735 0.1532
y3 0.2678 0.1253 0.2609 0.1323 3.4605 3.4615 0.6813 0.6635
ins.cov 0.2597 0.3260 0.2584 0.3730 2.2432 2.4185 0.4434 0.4092
hosp.stay 0.3046 16.3171 0.3155 18.6391 1.2887 1.4696 0.0183 0.0166

The values of δ1 are about the same as in Example 9.2 where tracts were also
selected in the first stage using srs. The values of k1 and k2 are much larger
than 1, implying that B2 + W 2 and W 2

2 + W 2
3 are different from the unit

relvariance in the population. This is due to the varying sizes of tracts and
BGs. �
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Example 9.6 (Three stages ppswr/srs/srs). We repeat the calculation in
Example 9.5 but assuming ppswr sampling of PSUs. The calculation for y1
using PSU and SSU as the first- and second-stage sampling units is done via
this call:

pp.PSU <- table(MDarea.pop$PSU) / nrow(MDarea.pop)
BW3stagePPS(X=MDarea.pop$y1, pp=pp.PSU,

psuID=MDarea.pop$PSU, ssuID=MDarea.pop$SSU)

The values of δ1 and δ2 are at most 0.0236 with the exception of y3 which
has δ1 = 0.0776 and δ2 = 0.1097.

PSUs and SSUs are first- and second-stage units
B2 W 2 W 2

2 W 2
3 k1 k2 δ1 δ2

y1 0.0078 1.4553 0.0358 1.4277 1.0002 1.0006 0.0051 0.0236
y2 0.0068 1.0097 0.0125 1.0004 1.0002 0.9967 0.0065 0.0114
y3 0.0088 0.1048 0.0119 0.0954 1.0002 0.9439 0.0776 0.1097
ins.cov 0.0012 0.2599 0.0025 0.2581 1.0002 0.9983 0.0044 0.0088
hosp.stay 0.0173 12.8831 0.0480 12.8549 1.0002 1.0004 0.0011 0.0027

The situation changes substantially when tracts and BGs are used for
stages one and two. The call for y1 is

trtBG <- 10*MDarea.pop$TRACT + MDarea.pop$BLKGROUP
pp.trt <- table(MDarea.pop$TRACT) / nrow(MDarea.pop)
BW3stagePPS(X=MDarea.pop$y1, pp=pp.trt,

psuID=MDarea.pop$TRACT, ssuID=trtBG)

Tracts and BGs are first- and second-stage units
B2 W 2 W 2

2 W 2
3 k1 k2 δ1 δ2

y1 0.0092 1.4539 0.2499 1.6873 1.0002 1.3243 0.0060 0.1284
y2 0.0107 1.0058 0.2379 1.1619 1.0002 1.3774 0.0103 0.1694
y3 0.0136 0.1001 0.2376 0.1073 1.0002 3.0356 0.1192 0.6889
ins.cov 0.0018 0.2593 0.2321 0.3011 1.0002 2.0424 0.0067 0.4351
hosp.stay 0.0223 12.8786 0.2728 14.8946 1.0002 1.1760 0.0015 0.0173

The results are shown above. The values of k1 are essentially 1, but k2 is
larger than 1 for all variables. The values of δ2 are much larger than when
PSU was used as the first-stage unit, ranging from 0.0173 to 0.6889. Once
again, this illustrates the huge effect that varying unit size can have on the
measures of homogeneity. �

In the next section, we discuss how to determine optimum allocations of
the numbers of sample PSUs, SSUs, and elements in both two- and three-
stage samples.
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9.3 Cost Functions and Optimal Allocations
for Multistage Sampling

In determining the allocation of a multistage sample, there are two common
situations. One is designing a PSU sample from scratch in which both the
number of sample PSUs and the number of elements per PSU are to be
determined. The second case is one in which an existing PSU sample will be
used and the task is to determine how many elements to sample per PSU. In
both cases, the cost of having a PSU in the sample and the cost of collecting
and processing data from each element should be considered.

9.3.1 Two-Stage Sampling When Numbers of Sample
PSUs and Elements per PSU Are Adjustable

A simple cost function for two-stage sampling assumes that there is a cost
per sample PSU and a cost per sample element. As in the case of stratified
sampling in Chap. 3, this cost structure is probably an oversimplification, but
a simple model can be of some practical use as long as the relative sizes of the
unit costs are reasonable. Take the case of an equal number n̄ of elementary
units sampled from each PSU. We model the total cost as

C = C0 + C1m+ C2mn̄,

where

C0 = costs that do not depend on the number of sample PSUs and elements
C1 = cost per sample PSU
C2 = cost per element

Groves (1989) is a good source for the many facets of surveys that contribute
to costs. Per-PSU costs in a household survey can include recruiting and train-
ing interviewers, paying field supervisors, and field listing costs. Per-element
costs could include personnel time for conducting an interview, printing costs
if paper questionnaires are used, and clerical staff time to review special prob-
lems with completed or partially completed questionnaires. The C0 compo-
nent can include personnel time for central office staff, e.g., a project manager,
computer scientists to program the instrument if computer-assisted personal
interviewing is used, programmers to edit the data, and statisticians to design
the sample, devise nonresponse follow-up procedures, and develop weighting
schemes. As we have pointed out elsewhere, tracking these costs is difficult
and often does not mesh well with survey accounting practices. As a result,
you may have to be satisfied with fairly rough unit cost estimates.
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As shown in Eqs. (9.5) and (9.9), the form of the relvariance of the esti-
mated total is the same when the design is srs/srs or ppswr/srs and n̄ ele-
ments are selected in each sample PSU:

V
(
t̂π
)

t2U

.
=

Ṽ

mn̄
k [1 + δ (n̄− 1)] . (9.23)

Thus, the formulas below apply to both srs/srs and ppswr/srs as long as B2

and W 2 are appropriately defined. The optimal number of units to select per
PSU, i.e., the number that minimizes the approximate relvariance, is

n̄opt =

√
C1

C2

1− δ

δ
. (9.24)

Note that only the ratio of the unit costs needs to be known in order to
compute n̄opt. The more a PSU costs, the more elements should be selected
within each PSU. On the other hand, the larger δ is, the fewer elements
should be selected per PSU.

To find the optimal m for a fixed total cost, we substitute n̄opt into the
cost function to obtain

mopt =
C − C0

C1 + C2n̄opt
. (9.25)

Alternatively, to find the optimal m for a fixed relvariance, CV 2
0 , we substi-

tute n̄opt into the relvariance formula to obtain

mopt =
Ṽ k

n̄optCV 2
0

[1 + δ (n̄opt − 1)] . (9.26)

In either the case of finding sample sizes for a fixed total cost or for a target
CV, the total sample size is simply moptn̄opt where the number of sample
PSUs and elements per PSU are computed using Eqs. (9.24) and either (9.25)
or (9.26). If k = 1, Eq. (9.26) reduces to the formula found in most texts.

Figure 9.1 graphs the coefficient of variation based on Eq. (9.23), assuming
that k = 1 of an estimated total versus a range of values of n̄ for δ = 0.01,
0.05, 0.10, and 0.20. A dot is placed on each curve at the point where the
CV is a minimum. In some situations, the conventional wisdom is that “the
optimum is flat” in the sense that a range of sample sizes will give a CV that
is near the minimum value. That is often the case in stratified sampling where
the allocation to the strata can depart from the optimal allocation and still
be reasonably efficient. In contrast, Fig. 9.1 illustrates that the “flatness” of
the optimum clearly depends on the size of δ. If δ = 0.01, sampling anywhere
from about 7 to 30 elements per PSU is fairly efficient. For larger δ’s, the
optimum is more sharply defined. For example, when δ = 0.20, n̄ of 2, 3, or
4 gives a CV near the optimum, but allocating more than that to each PSU
quickly becomes inefficient.
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Fig. 9.1: Coefficients of variation for an estimated mean for different numbers of
sample elements per PSU. The three curves in each panel correspond to cost ratios
of C1/C2 = 3, 2, 1 (top to bottom). The unit relvariance Ṽ is assumed to be 1. The
total budget is C −C0 = $100, 000 with C1 = 750, 500, and 250 and C2 = 250. Each
dot is at the optimum.

Example 9.7 (An R function for optimal sample sizes). The R function
clusOpt2 will compute mopt and n̄opt for a two-stage sample which uses
simple random sampling at each stage or ppswr at the first stage and srs at
the second. The arguments to the function are

C1 unit cost per PSU
C2 unit cost per element
delta homogeneity measure δ
unit.rv unit relvariance
k ratio of B2 +W 2 to unit relvariance
CV0 target CV
tot.cost total budget for variable costs, C − C0

Only one of CV0 and tot.cost can be
entered in one call to the function.

cal.sw 1, find optimal mopt for fixed total budget
2, find optimal mopt for target CV0
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The code below will compute the optimal number of PSUs and elements per
PSU assuming that C1 = 750, C2 = 100, δ = 0.05, the unit relvariance and k
are 1, and the total budget for variable costs is $100,000:

clusOpt2(C1=750, C2=100, delta=0.05, unit.rv=1, k=1,
tot.cost=100000, cal.sw=1)

C1 = 750
C2 = 100

delta = 0.05
unit relvar = 1

k = 1
budget = 1e+05
m.opt = 51.4
n.opt = 11.9

CV = 0.0502

In clusOpt2, and in all the functions in this chapter, we have not rounded
sample sizes to integers. You can either do the rounding yourself or use a
method of sample selection where the expected size can be specified as a non-
integer. The function will also accept vector input for one of the parameters
at a time. For example, we can see the effect of a range of δ’s with

clusOpt2(C1=750, C2=100,
delta=c(0.01, 0.05, 0.10, 0.20),
unit.rv=1, k=1,
tot.cost=100000, cal.sw=1)

C1 = 750
C2 = 100

delta = 0.01, 0.05, 0.10, 0.20
unit relvar = 1

k = 1
budget = 1e+05
m.opt = 28.8, 51.4, 63.6, 77.1
n.opt = 27.2, 11.9, 8.2, 5.5

CV = 0.0401, 0.0502, 0.0574, 0.0670

Sending the function vectors for more than one parameter (e.g., C2=c(100,
120) and delta=c(0.01, 0.05) will generate an error. �
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9.3.2 Three-Stage Sampling When Sample Sizes Are
Adjustable

A cost function for three-stage sampling, analogous to the one for two-stage
sampling in Sect. 9.3.1, is

C = C0 + C1m+ C2mn̄+ C3mn̄ ¯̄q. (9.27)

The term C0 is again costs that do not depend on the sample sizes at different
stages; C1 is the cost per PSU; C2 is the cost per SSU; and C3 is the cost
per element. The function in Eq. (9.27) is, by no means, unique. The cost
function for three-stage sampling can potentially be more complicated than
for two-stage sampling because more types of costs may have to be considered.
For example, in a household survey, travel between SSUs within a PSU may
be a consideration, especially if only one or two interviewers cover an entire
PSU. Hansen et al. (1953a, Chap. 9, Sect. 18) consider this cost function for
three-stage samples:

C = C0

√
m+ C1m+ C2mn̄+ C3m

√
n̄+ C4mn̄ ¯̄q, (9.28)

where C0
√
m represents the cost of traveling between PSUs, C1 is the cost

per PSU, C2 is the cost per SSU, C3m
√
n̄ is the total cost of traveling among

SSUs, and C4 is the cost per element. This formulation was found to be useful
in Census Bureau work several decades ago, but may not be applicable to
surveys with a more modern cost structure. Here we present the results for
optima with the simpler cost function (9.27) as illustration.

Minimizing the ppswr/srs/srs relvariance in Eq. (9.21) subject to a fixed
total cost gives the following optima (Hansen et al., 1953b, p. 225):

¯̄qopt =

√
1− δ2
δ2

C2

C3
, (9.29)

n̄opt =
1
¯̄q

√
1− δ2
δ1

C1

C3

k2
k1

, (9.30)

mopt =
C − C0

C1 + C2n̄+ C3n̄ ¯̄q
. (9.31)

If a target relvariance is set at CV 2
0 , then the equations for finding the optima

for ¯̄qopt and n̄opt are the same as above, but the optimum number of elements
to sample from each SSU is

mopt =
Ṽ

CV 2
0 n̄opt ¯̄qopt

{k1δ1n̄opt ¯̄qopt + k2 [1 + δ2 (¯̄qopt − 1)]}. (9.32)

In either the case of finding sample sizes for a fixed total cost or for a target
CV, the total sample size is moptn̄opt ¯̄qopt, where the number of sample PSUs,
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SSUs, and elements per SSU are computed using Eq. (9.31) or (9.32). The R
function clusOpt3 provides a solution for both the problems of minimizing
the approximate variance for a fixed total cost and minimizing total cost for
a target CV.

The function clusOpt3 also can be used for srs sampling at all three
stages. The values of δ1 and δ2 that are defined for Eq. (9.21) must be com-
puted with formulas appropriate to simple random sampling. In particular,
pi, the one-draw PSU probability, would be set equal to 1/M .

If the more complicated cost function in Eq. (9.28) is appropriate, explicit
solutions for mopt, n̄opt, and ¯̄qopt cannot be obtained. HHM give an iterative
procedure for arriving at approximate values of mopt, n̄opt, and ¯̄qopt.

Example 9.8 (Optimal sample sizes in a three-stage sample). The R function
clusOpt3 accepts the following parameters:

C1 unit cost per PSU
C2 unit cost per element
C3 cost per element
delta1 homogeneity measure within PSUs, δ1
delta2 homogeneity measure within SSUs, δ2
unit.rv unit relvariance
k1 ratio of B2 +W 2 to the unit relvariance
k2 ratio of W 2

2 +W 2
3 to the unit relvariance

CV0 target CV
tot.cost total budget for variable costs, C − C0

Only one of CV0 and tot.cost can be entered
in one call to the function.

cal.sw 1, find optima for a fixed total budget
2, find optima for a target CV0

The function computes the optima based on Eqs. (9.29), (9.30) and
either (9.31) or (9.32). Suppose that C1 = 500, C2 = 100, C3 = 120,
δ1 = 0.01, δ1 = 0.10, the unit relvariance is 1, as are k1 and k2, and the total
budget for variable costs is $100,000. The call to clusOpt3 is

clusOpt3(unit.cost=c(500, 100, 120), delta1=0.01,
delta2=0.10, unit.rv=1, k1=1, k2=1,
tot.cost=100000, cal.sw=1)

C1 = 500
C2 = 100
C3 = 120

delta1 = 0.01
delta2 = 0.1

unit relvar = 1
k1 = 1
k2 = 1

budget = 1e+05
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cost check = 1e+05
m.opt = 28.3
n.opt = 7.1
q.opt = 2.7

CV = 0.0499

The function echoes back the input parameter values, returns the optima,
and computes the CV that will be achieved with the optimal allocation. In
the output, budget is the value of tot.cost while cost check is the value of
variable costs found by substituting the optima into Eq. (9.27).

The function will also accept a vector input for one non-cost parameter at
a time. For example, we can see the effect of a range of δ1’s with

clusOpt3(unit.cost=c(500, 100, 120),
delta1=c(0.01,0.05,0.10), delta2=0.10,
unit.rv=2, k1=1,k2=1,tot.cost=100000,cal.sw=1)

C1 = 500
C2 = 100
C3 = 120

delta1 = 0.01, 0.05, 0.10
delta2 = 0.1

unit relvar = 2
k1 = 1
k2 = 1

budget = 1e+05
cost check = 1e+05, 1e+05, 1e+05

m.opt = 28.3, 53.9, 68.6
n.opt = 7.1, 3.2, 2.2
q.opt = 2.7

CV = 0.0706, 0.0830, 0.0922

�

9.3.3 Two- and Three-Stage Sampling with a Fixed Set
of PSUs

In some applications, a fixed set of PSUs is used for multiple surveys and the
main flexibility in the design is deciding how many elements to select from
those PSUs. This is often the case for household samples where an organiza-
tion may have a “master” sample of PSUs that it uses for different household
surveys. Reusing a given sample of PSUs saves the cost of recreating a frame
of PSUs, designing the sample, and making the selections. Having a master
sample of PSUs may also allow the same set of trained and trusted field
personnel to be employed for data collection.



232 9 Designing Multistage Samples

If the total cost, C = C0 + C1m + C2mn̄, is fixed along with the set of
sample PSUs, the number of elements per PSU is determined by the cost
constraint only:

n̄ =
C − C0 − C1m

C2m
. (9.33)

If this sample size is not large enough to achieve the desired CV targets,
then two choices are (1) to be satisfied with lower precision than desired or
(2) to increase the number of sample PSUs. The latter may be difficult to do
in a way that it has a design-based justification, depending on how the initial
sample of PSUs was selected. The general idea would be to add PSUs but
decrease the number of sample elements per PSU in a way that stays within
the allotted budget. This may or may not be possible. A final option, which
may not be feasible, is to increase the budget and the total sample size.

If a targetCV is set and we minimize the cost, then the number of elements
to sample per PSU is found by solving for n̄ in the approximate relvariance
formula, V

(
t̂π
) /

t2U = 1
mn̄ Ṽ k [1 + δ (n̄− 1)], which gives

n̄ =
1− δ

CV 2
0 m
/
Ṽ k − δ

. (9.34)

The R function, clusOpt2fixedPSU, will compute n̄ using either
Eq. (9.33) or (9.34). The function takes as input the fixed number of PSUs
m in addition to the same parameters as clusOpt2 shown in Example 9.7.

Example 9.9 (Elements per PSU for a fixed set of PSUs and fixed total cost).
The following code determines the number of sample elements per PSU for
unit costs of C1 = 500 and C2 = 100 when the number of PSUs is fixed at
m = 100. Budgets of $100,000, $500,000, and 1 million dollars are used:

clusOpt2fixedPSU(C1=500, C2=100, m=100, delta=0.05,
unit.rv=2, k=1, CV0=NULL,
tot.cost=c(100000, 500000, 10ˆ6), cal.sw=1)

C1 = 500
C2 = 100
m = 100

delta = 0.05
unit relvar = 2

k = 1
budget = 1e+05, 5e+05, 1e+06

n = 5, 45, 95
CV = 0.0693, 0.0377, 0.0346

�
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If the sample is three stage, there is some flexibility in how many SSUs
and elements per SSU to sample. When the PSU sample is fixed, the term
B2
/
m in Eq. (9.18) is fixed. The values of n̄ and ¯̄q can be adjusted to achieve

either a budget constraint or a CV target. In either case, the optimal value
of ¯̄q is

¯̄qopt =

√
1− δ2
δ2

C2

C3
.

If the PSU sample is fixed and the budget is given by Eq. (9.27), then the
implied number of SSUs per PSU is

n̄ =
C′

C2 + C3 ¯̄q
with C′ = m−1 (C − C0)− C1 = C2n̄+ C3n̄ ¯̄q. (9.35)

If a target coefficient of variation, CV0, is set, then the number of SSUs is

n̄ =
k2
¯̄q
[1 + δ2 (¯̄q − 1)]

(
m

Ṽ
CV 2

0 − k1δ1

)−1

. (9.36)

Notice that Eq. (9.36) involves a subtraction in the denominator. Thus,
there is no guarantee that the computed n̄ is positive. If Eq. (9.36) produces
a negative number, this is an obvious signal that the target CV cannot be
achieved with the fixed PSU sample. The R function clusOpt3fixedPSU
will compute the optimum numbers of sample SSUs and elements in a three-
stage sample when the PSU sample is fixed. The function takes as input the
fixed number of PSUs m as well as the parameters defined for clusOpt3 in
Example 9.8.

Example 9.10 (Number of SSUs and elements per SSU for a fixed set of PSUs
and fixed total cost). Suppose that an existing area sample contains 100
PSUs and that the cost per PSU is $500. The survey has a total budget
for variable costs of C − C0 = $500, 000. The unit costs of having SSUs and
persons in the sample are C2 = 100 and C3 = 120. This implies that we
have $500,000 – $500*100 = $450,000 to cover the cost of sampling within
PSUs. The optimal number of SSUs and persons are found with the function
clusOpt3fixedPSU, assuming that the unit relvariance is 1 and that the
measures of homogeneity are δ1 = 0.01 and δ2 = 0.05:

clusOpt3fixedPSU(unit.cost=c(500, 100, 120), m=100,
delta1=0.01, delta2=0.05, unit.rv=1,
k1=1, k2=1, tot.cost=500000, cal.sw=1)

C1 = 500
C2 = 100
C3 = 120
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m = 100
delta1 = 0.01
delta2 = 0.05

unit relvar = 1
k1 = 1
k2 = 1

variable budget = 450000
total cost = 5e+05

n = 7.8
q = 4

CV = 0.0217

Thus, the numbers of SSUs per PSU and persons per SSU are 7.8 and 4. Now,
suppose that a target CV of 0.05 is set. Other parameters are the same, but
the unit relvariance is 4. In this case, we call the function with cal.sw=2. The
number of SSUs per PSU is 5.5 and the number of sample persons per SSU
is 4:

clusOpt3fixedPSU(unit.cost=c(500, 100, 120), m=100,
delta1=0.01, delta2=0.05, unit.rv=4, k1=1, k2=1,
CV0=0.05, cal.sw=2)

C1 = 500
C2 = 100
C3 = 120
m = 100

delta1 = 0.01
delta2 = 0.05

unit relvar = 4
k1 = 1
k2 = 1

variable budget = 317617.8
total cost = 367618

n = 5.5
q = 4

CV = 0.05
CV check = 0.05

In this case the CV target can be achieved for a total cost of about $368
thousand. (In the output, CV check is a calculation of the CV from the
relvariance formula using the optimal sample sizes. This is done to verify
that the computed optima yield the target CV.) �

Finally, before moving to estimation of the ingredients for the sample
size formulas, we note that anticipated sample losses should be accounted
for just as they were in Chap. 6. For example, if the response rate for ele-
ments is expected to be 60%, then the number of sample elements computed
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from functions like clusOpt3 and fixedPSUclusOpt3fixedPSU should
be inflated by 1/0.60. Depending on the application, the number of sample
PSUs or SSUs may also have to be inflated if those units can be lost to
ineligibility, nonresponse, or some other reason.

9.4 Estimating Measures of Homogeneity and Variance
Components

The parameters in the preceding variance formulas are never known exactly.
Either a survey designer must guess their values based on experience or must
estimate them from prior, similar surveys. In this section, we cover several
ways of estimating the variance components needed for sample allocation.

9.4.1 Two-Stage Sampling

Expressions (9.5) and (9.9) suggest a quick way of estimating the measure
of homogeneity δ in a two-stage sample. Suppose that v

(
t̂π
)
is an estimate

of the variance of the π-estimator appropriate for the sample design that
was used. (In the case of ppswr sampling at the first stage, we use v

(
t̂pwr

)
.)

There are several alternative ways of doing this, which we cover in Chap. 15.
Dividing v

(
t̂π
)
by an estimate of the variance of a π-estimator from a simple

random sample of the same size gives the design effect, deff(t̂π) = v(t̂π)/vsrs.
Setting deff(t̂π) equal to 1 + δ (n̄− 1) and solving for δ gives

δ̂ =
1

n̄− 1

[
1

k

v
(
t̂π
)

vSRS
− 1

]

=
k−1deff

(
t̂π
)− 1

n̄− 1
.

(9.37)

In most cluster samples, the design effect will be greater than 1. In that
circumstance, δ̂ > 0 is expected, for elements within a cluster are somewhat
alike. In Eq. (9.37) it is important to use a variance estimate appropriate for
the design that was used to select the sample. Since expressions (9.5) and (9.9)
have the same general form, Eq. (9.37) offers a rough estimate of the measure
of homogeneity whether PSUs are selected with equal probability or varying
probabilities.

The estimates of δ are sensitive to the values of n̄ as illustrated in Table
9.2, which uses k = 1. For example, if the design effect is 1.6, k = 1, and
n̄ = 20, then δ̂ = 0.032. But, if n̄ = 5, δ̂ is much higher at 0.15.

Direct estimates of the components can also be made in some special cases.
Särndal et al. (1992, Result 4.3.1, p. 137) give general formulas for estimates
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Table 9.2: Indirect estimates of δ based on design effects and average number of
sample elements per cluster.

n̄ = 20 n̄ = 5

deff δ̂ deff δ̂

1.1 0.005 1.1 0.025

1.2 0.011 1.2 0.050

1.3 0.016 1.3 0.075

1.4 0.021 1.4 0.100

1.5 0.026 1.5 0.125

1.6 0.032 1.6 0.150

1.7 0.037 1.7 0.175

1.8 0.042 1.8 0.200

1.9 0.047 1.9 0.225

2.0 0.053 2.0 0.250

of variance components in two-stage designs. We can specialize these to the
case of ppswr sampling of PSUs and simple random sampling of elements
within PSUs in which case V

(
t̂pwr

)
= VPSU + VSSU as shown in Eq. (9.13).

The estimators of VPSU and VSSU are

vSSU =
∑
i∈s

V̂i

(π∗
i )

2

vPSU =
1

m (m− 1)

∑
i∈s

(
t̂iπ
pi

− t̂pwr

)2

−
∑
i∈s

1− π∗
i

(π∗
i )

2 V̂i

with V̂i =
N2

i

ni
(1− fi) Ŝ

2
2i

where π∗
i = mpi, Ŝ

2
2i = (ni − 1)

∑
k∈si

(yk − ȳsi)
2
, and ȳsi =

∑
k∈si

yk
/
ni.

(Notice that π∗
i is not the selection probability of PSU i in with-replacement

sampling, but will be close to it if pi is small.) The first term in vPSU is an
estimator of the variance of t̂pwr and is called the ultimate cluster variance
estimator. We cover this estimator in more detail in Chap. 15. If wk is the full
sample weight for element k, the first component of vPSU can also be written
as

1

m (m− 1)

∑
i∈s

(
t̂iπ
pi

− t̂pwr

)2

=
m

m−1

∑
i∈s

(∑
k∈si

wkyk−m−1
∑
i∈s

∑
k∈si

wkyk

)2

.

Software packages often use the ultimate cluster estimator since it requires
only the full sample weights. In the case where the same number of elements,
ni = n̄, is sampled in each PSU, we can factor out n̄ in vSSU . The corre-
sponding estimators of B2 and W 2 in Eqs. (9.10) and (9.11) are then
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B̂2 =
1

t̂2pwr

{
1

(m− 1)

∑
i∈s

(
t̂iπ
pi

− t̂pwr

)2

−
∑
i∈s

1− π∗
i

mp2i
V̂i

}
, (9.38)

W 2 =
1

t̂2pwr

∑
i∈s

N2
i Ŝ2i

mp2i
. (9.39)

For the estimator ofW 2 we assume that the second-stage sampling fraction,
n̄/Ni, is small in every PSU. The implied estimator of δ is then

δ̂ = B̂2
/(

B̂2 + Ŵ 2
)
.

A practical difficulty with the estimator forB2 is that it involves a subtraction.
There is no guarantee that B̂2 will be positive. This is similar to the well-
known problem with analysis of variance (ANOVA) estimators of variance
components. If B̂2 is negative, this is probably evidence that component is
small. An option that may be less prone to this defect is to compute the
anticipated variance of the estimated total, as described later in Sect. 9.4.3.

Example 9.11 (Variance component estimates in two-stage samples). The
function, BW2stagePPSe, will estimate variance components using
Eqs. (9.38) and (9.39) for a design in which PSUs are selected with ppswr
and SSUs with srswor. The code below selects a two-stage sample from the
Maryland population and then does the calculation for the variable y1. The
sampling package is used to systematically select a cluster sample of 20
tracts with probabilities proportional to the count of persons in each tract
(Ni below). Notice that this selection of PSUs is without replacement, but we
use the standard practice of applying a with-replacement variance estimator.
The function, cluster, returns all units in the sample clusters with the
cluster selection probability stored in the field Prob. The function, rename,
from the reshape package (Wickham 2011) renames Prob to be pi1. Then,
the sample tracts are treated as strata, and an srswor of n̄ = 50 persons
is selected from each tract. The conditional selection probability of persons
within tracts is renamed from Prob to pi2:

require(sampling)
require(reshape) # has function that allows

# renaming variables
Ni <- table(MDarea.pop$TRACT)
m <- 20
probi <- m*Ni / sum(Ni)

# select sample of clusters
set.seed(-780087528)
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sam <- cluster(data=MDarea.pop, clustername="TRACT",
size=m, method="systematic",
pik=probi, description=TRUE)

# extract data for the sample clusters
samclus <- getdata(MDarea.pop, sam)
samclus <- rename(samclus, c(Prob = "pi1"))

# treat sample clusters as strata and select
# srswor from each

s <- strata(data = as.data.frame(samclus),
stratanames = "TRACT",
size = rep(50,m), method="srswor")

# extracts the observed data
samdat <- getdata(samclus,s)
samdat <- rename(samdat, c(Prob = "pi2"))

# extract pop counts for PSUs in sample
pick <- names(Ni) %in% sort(unique(samdat$TRACT))
Ni.sam <- Ni[pick]
d1 <- Ni.sam / sum(Ni)
wt <- 1/samdat$pi1/samdat$pi2

BW2stagePPSe(Ni = Ni.sam, ni = rep(50,20), X=samdat$y1,
psuID = samdat$TRACT, w = wt,
m = 20, pp = pp)

The function BW2stagePPSe accepts seven parameters:

Ni number of elements in pop in PSU i
ni number of elements in sample in PSU i
X data vector
psuID vector PSU IDs (length is same as length of X)
w full sample weight
m number of sample PSUs
pp vector of one-draw PSU selection probabilities (length is

same as that of X)

The results for the variables in the Maryland data set are shown below. Tracts
are treated as clusters.
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Tracts as clusters
B2 W 2 δ

y1 0.0418 1.3934 0.0291
y2 0.0208 1.0416 0.0196
y3 0.0101 0.1028 0.0894
ins.cov 0.0007 0.3051 0.0023
hosp.stay 0.1056 13.9161 0.0075

These estimates compare to the population calculations in Example 9.4 where
tracts were used as clusters. The estimates of the between and within variance
components above differ noticeably from the population values. This leads to
sample estimates of δ that are different in this sample from the population
δ’s. Variance component estimates are themselves inherently unstable, and it
is no surprise that the estimation error is relatively large here. �

If variance component estimates are used for planning, they should be
scrutinized to decide whether their sizes seem reasonable. Sensitivity analyses
of computed sample sizes should be performed to see what the sizes would
be for a range of δ’s and other design parameters.

9.4.2 Three-Stage Sampling

Direct estimates of the components of Eq. (9.17) can also be made from a
sample. The estimates presented below are based on the ones in Hansen et al.
(1953b, Chap. 9, Sect. 10) for the case of ppswr sampling of m PSUs and
simple random sampling of ni SSUs in PSU i and qij elements in SSU ij.
First, define

ȳsij =
∑

k∈sij
yk

/
qij , the sample mean of elements in SSU ij

t̂ij = Qij ȳsij , the estimated total for SSU ij

t̂iπ = Ni

ni

∑
j∈si

t̂ij , the estimated total for PSU i

Ŝ2
2ai = (ni − 1)

−1∑
j∈si

(
t̂ij − ¯̂ti

)2
, the sample variance among estimated

SSU totals, where ¯̂ti =
∑

j∈si
t̂ij

/
ni

Ŝ2
3ij = (qij − 1)

−1∑
k∈sij

(yk − ȳsij)
2
, the sample variance among elements

in SSU ij

V̂3ij =
Q2

ij

qij

Qij−qij
Qij

Ŝ2
3ij , the estimated variance of the estimated total t̂ij for

SSU ij

Ŝ2
2bi =

1
ni

∑
j∈si

V̂3ij

Ŝ2
2i = Ŝ2

2ai − Ŝ2
2bi
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Ŝ2
1a = 1

m−1

∑
i∈s

(
t̂iπ
pi

− t̂π

)2

Ŝ2
1b =

1
m

∑
i∈s

N2
i

pini

[
(1− f2i) Ŝ

2
2ai + f2iS

2
2bi

]
where f2i = ni/Ni

Ŝ2
1 = Ŝ2

1a − Ŝ2
1b

As shown in Hansen et al. (1953b), Ŝ2
1 estimates the finite population param-

eter S2
U1(pwr) in Eq. (9.8) or (9.17), Ŝ2

2i estimates S2
2Ui, and Ŝ2

3ij estimates

S2
U3ij . The estimators of VTSU , VSSU , and VPSU are

vTSU =
∑
i∈s

1

(mpi)
2

N2
i

n2
i

∑
j∈si

V̂3ij

vSSU =
∑
i∈s

1

(mpi)
2

N2
i

ni
(1− f2i) Ŝ

2
2i

vPSU = Ŝ2
1

/
m

The relvariance of the ppswr -estimator is then estimated by

v
(
t̂pwr

)

t̂2pwr

=
1

t̂2pwr

(vPSU + vSSU + vTSU ) .

When the same number of sample SSUs, n̄, is selected in each PSU, the
same number of sample elements, ¯̄q, is selected in each SSU, and the sampling
fractions of PSUs, SSUs, and elements are all small, the estimated relvariance
can be written as

v
(
t̂pwr

)

t̂2pwr

=
B̂2

m
+

Ŵ 2
2

mn̄
+

Ŵ 2
3

mn̄ ¯̄q
,

where

B̂2 =
Ŝ2
1

t̂2pwr

,

Ŵ 2
2 =

1

t̂2pwr

∑
i∈s

N2
i

mp2i
Ŝ2i,

and

Ŵ 2
3 =

1

t̂2pwr

⎧
⎨
⎩
∑
i∈s

1

mp2i

N2
i

ni

∑
j∈si

Q2
ijŜ

2
3ij

⎫
⎬
⎭ .

Each of these estimates the components in Eqs. (9.10), (9.19), and (9.20).
Similar to the case for two-stage sampling, B̂2 and Ŵ 2

2 can be negative since
both involve a subtraction. Computing the anticipated variance of the esti-
mated total and using model-based estimators of variance components may
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remedy this problem, as described in Sect. 9.4.3. Plug-in estimators of the
measures of homogeneity are

δ1 = B̂2/(B̂2 + Ŵ 2) and Ŵ 2 = 1
t̂2pwr

∑
i∈s

Q2
ij S̃

2
i

mp2
i
,

where S̃2
i =

(∑
j∈si

∑
k∈sij

wk

)−1∑
j∈si

∑
k∈sij

wk

(
yk − ˆ̄yi

)2
,

ˆ̄yi =
∑

j∈si

∑
k∈sij

wkyk

/∑
j∈si

∑
k∈sij

wk, and

δ̂2 = Ŵ 2
2 /(Ŵ

2
2 + Ŵ 2

3 ).

Example 9.12 (Variance components in a three-stage sample). The function,
BW3stagePPSe, will estimate variance components for a ppswr/srs/srs
design. The Maryland population is used in this example with PSUs being
tracts; SSUs block groups; and elements persons. The full sets of code, which
are lengthy, are in the files Example 9.12a.R and Example 9.12b.R
and are not shown here. The sampling package is used to systematically
select a cluster sample of 30 tracts with probabilities proportional to the
count of persons in each tract. As in Example 9.9, PSUs are selected without
replacement, but a with-replacement variance estimator is used. The selected
PSUs are treated as strata and a sample of 2 SSUs is selected from each PSU.
The selected SSUs are, in turn, treated as strata and an srswor of 50 persons
selected from each sample SSU. The function BW3stagePPSe accepts six
parameters:

dat Data frame for sample elements with PSU and SSU
identifiers, weights, and analysis variable(s). The data
frame should be sorted in hierarchical order: by PSU
and SSU within PSU
Required names for columns:
psuID = PSU identifier
ssuID = SSU identifier. These must be unique, i.e.,
numbering should not restart within each PSU
w1i = vector of weights for PSUs
w2ij = vector of weights for SSUs (PSU weight*SSU
weight within PSU)
w = full sample weight

v Name or number of column in dat with variable to be
analyzed

Ni m-vector of number of SSUs in the population in the
sample PSUs

Qi m-vector of number of elements in the population in
the sample PSUs

Qij Vector of numbers of elements in the population in the
sample SSUs

m Number of sample PSUs



242 9 Designing Multistage Samples

The three-stage sample must be selected outside the function. Given the input
values above, BW3stagePPSe returns the values of vPSU , vSSU , vTSU , B̂

2,
Ŵ 2, Ŵ 2

2 , Ŵ
2
3 , δ̂1, and δ̂2. The function call for the variable y1 is

BW3stagePPSe(dat=samdat, v="y1", Ni=Ni.sam, Qi=Qi.sam,
Qij=Qij.sam, m=30)

Consult the file with the code for this example to see how the input values are
constructed. Using the field PSU as the first-stage unit, SSU as the second-
stage, and persons as the TSUs, part of the output of BW3stagePPSe is:

PSU as first-stage unit, SSU as second-stage unit

B̂2 Ŵ 2 Ŵ 2
2 Ŵ 2

3 δ̂1 δ̂2
y1 0.0375 1.3660 0.0016 0.0544 0.0265 0.0282
y2 0.0153 0.9481 0.0005 0.0381 0.0157 0.0111
y3 0.0084 0.0961 0.0004 0.0037 0.0804 0.1081
ins.cov 0.0041 0.2709 0.0000 0.0109 0.0147 0.0018
hosp.stay 0.1633 14.5448 0.0026 0.5867 0.0109 0.0034

These estimates compare to the population figures in Example 9.6. The esti-
mated measures of homogeneity are similar to the population values. However,
the estimates of VSSU (not shown here) are negative.

The estimates using tract as the first-stage unit and block group (BG) as
the second-stage unit are shown below:

Tract as first-stage unit, BG as second-stage unit

B̂2 Ŵ 2 Ŵ 2
2 Ŵ 2

3 δ̂1 δ̂2
y1 0.0150 1.4613 0.1835 1.7326 0.0099 0.0952
y2 0.0085 0.9680 0.1914 1.1528 0.0085 0.1418
y3 0.0096 0.0935 0.1891 0.1051 0.0930 0.6426
ins.cov 0.0119 0.2742 0.1659 0.3014 0.0414 0.3547
hosp.stay 0.0855 14.7706 0.1321 16.6331 0.0055 0.0071

These also compare to the population values in Example 9.6. For exam-
ple, the population values for the measures of homogeneity for y1 were
δ1 = 0.0060 and δ2 = 0.1284 and the estimates are 0.0099 and 0.0952, respec-
tively. Although the relative sizes of the population values and the sample
estimates are similar, their absolute sizes are noticeably different. This illus-
trates a point that we have made before—the estimates of variance compo-
nents are variable and may be distant from the underlying population values
in a particular sample. If the estimates of δ1 and δ2 are used to determine
sample sizes, do a sensitivity analysis. Compute sample sizes for a range of
values around δ̂1 and δ̂2. �

Discussion of variance component estimation in a three-stage sample can
also be found in Särndal et al. (1992, p. 149). They derive the design vari-
ance of the π-estimator in three-stage sampling for a general, probability
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sample design. Where convenient, we will refer to the Särndal, Swensson,
and Wretman book as SSW. The SSW formulas are quite general but require
knowledge of joint selection probabilities at each stage. Exercise 9.12 asks
you to specialize their results for the theoretical design variance to the case
of srswor at each stage. There is some potential for confusion when compar-
ing the HHM and SSW results. HHM assume that the PSUs are selected
with probabilities proportional to size and with replacement. They then use
a ppswr variance estimator for the PSU variance component. On the other
hand, SSW present variance component estimators for the π-estimator of a
total (not a pwr -estimator). Consequently, the HHM estimators discussed
here are not the same as those in SSW. We feel that the HHM formulation
is closer to standard practice in the way the PSU sample is handled and will
often be more computationally feasible.

9.4.3 Using Anticipated Variances

The formulas in the previous sections for estimation of variance components
are specialized and somewhat complex. Being able to use the many software
routines that are available for variance component estimation would be a
real advantage. Design-based variance component estimators found in, e.g.,
Särndal et al. (1992) can be negative, depending on the configuration of the
data. Using anticipated variances permits the variance of the pwr -estimator
to be written in terms of model variance components. The model components
can be estimated using algorithms that can avoid the numerical problems that
the basic design-based, analysis of variance formulas have. Searle et al. (1992)
review the methods that are available, including minimum variance quadratic
unbiased estimation (MIVQUE0), maximum likelihood, and restricted max-
imum likelihood (REML). The use of anticipated variances will also clarify
the key role that PSU and SSU sizes have in determining measures of homo-
geneity. However, integrating model variance components needs to be done
with care as we show in this section.

To incorporate a variance component model, we use an anticipated vari-
ance (Isaki and Fuller 1982) defined as

AV
(
t̂
)
= EM

{
Eπ

[(
t̂− tU

)2]}− [EM

{
Eπ

(
t̂− tU

)}]2
.

If the estimator is design unbiased or approximately so, i.e., Eπ(t̂)
.
= tU , then

the AV is AV
(
t̂
)
= EM

[
varπ

(
t̂− tU

)]
. Thus, the model expectation of a

formula like Eq. (9.8) can be computed, giving model variance components
that can be estimated using standard software.

In a clustered population, the simplest model to consider is one with com-
mon mean, μ, and random effects for clusters, αi, and elements, εij :
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yk = μ+ αi + εik, k ∈ Ui, (9.40)

with αi ∼ (
0, σ2

α

)
, εik ∼ (

0, σ2
ε

)
, and the errors being independent. The

model expectation of the design variance can be computed under this model,
but for sample size calculation, only the approximate expectations of B2

and W 2 for two-stage sampling are needed. In this section, we only consider
the variance components in srs/srs sampling for a two-stage design. Similar
calculations can be done for a ppswr/srs design. After some algebra, the
model expectations of S2

U1 and S2
U2i from Eq. (9.2) are (see Exercise 9.16)

EM

(
S2
U1

)
=
(
σ2
α + μ2

)
S2
N + N̄2σ2

α + σ2
ε ,

EM

(
S2
U2i

)
= σ2

ε ,

where N̄ =
∑

i∈U Ni

/
M is the average number of elements per cluster, S2

N =∑
i∈U

(
Ni − N̄

)2/
(M − 1), and M is assumed to be large. The anticipated

measure of homogeneity is then

EM (δ)
.
=

(σ2
α + μ2)ν2N + σ2

α + σ2
ε/N̄

2

(σ2
α + μ2)ν2N + σ2

α + σ2
ε

[
1 + (ν2N + N̄−2)

] , (9.41)

where ν2N = S2
N/N̄2 is the relvariance of the PSU sizes. If Ni = N̄ , i.e., all

the clusters are the same size, then ν2N = 0. In that case, if N̄ is large,

EM (δ)
.
=

σ2
α + σ2

ε

/
N̄

σ2
α + σ2

ε

(
1 + 1

/
N̄

2
) .
=

σ2
α

σ2
α + σ2

ε

. (9.42)

Expression (9.42) is the correlation under model (9.40) of any two elements
in the same cluster. If the model holds for the population and a sample is
selected from it, non-survey software can be used to estimate the variance
components, as shown in the next example.

Example 9.13 (Anticipated variance components from a model in two-stage
sampling). The R package lme4 (Bates et al. 2012) will estimate the variance
components for model (9.40) and for models that are more elaborate. Using
the full Maryland population as in Example 9.4, the code to fit the model
using the PSU and SSU variables as clusters is

require(lme4)
m.y1a <- lmer(y1 ˜ (1 | PSU), data = MDarea.pop)
m.y1b <- lmer(y1 ˜ (1 | SSU), data = MDarea.pop)
tt <- summary(m.y1a)
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Part of the summary for m.y1a is

Random effects:
Groups Name Variance Std.Dev.
PSU (Intercept) 36.801 6.0664
Residual 7072.180 84.0963

Number of obs: 403997, groups: PSU, 80

The variance component estimates are in the object tt@REmat. The function
lmer returns what are known as S4 class objects. The @ syntax is used to
access components. You can see the names of all components of tt using
slotNames(tt). The estimate of the model correlation in Eq. (9.42) can
be computed as

vmat <- data.frame(tt@REmat)
vc <- as.numeric(as.character(vmat[,3]))
delta <- vc[1] / sum(vc)

The results for all variables using PSUs, SSUs, tracts, and block groups as
clusters are shown below. The estimates for δ when PSUs and SSUs are
clusters are almost the same as in Example 9.2 where srs is used at each
stage. But, when tracts and BGs are clusters, the δ’s here are much different
from those in Example 9.2. As seen in Eq. (9.42), the design-based formula for
B2
/ (

B2 +W 2
)
will estimate the same thing as the model-based calculation

if the clusters have the same size but not otherwise. Thus, the big differences
we see between Example 9.2 and this example for tracts and BGs are due
to the highly varying sizes of those units in the Maryland population. Using
the formula for the anticipated δ in Eq. (9.41) in the lower bank of the table
below yields values much closer to those in Example 9.2.

Values of model correlation
Variable PSUs as

clusters
SSUs as
clusters

Tracts as
clusters

Tract/block
groups as
clusters

y1 0.0052 0.0240 0.0082 0.0117
y2 0.0066 0.0157 0.0129 0.0172
y3 0.0786 0.1608 0.1476 0.1906

ins.cov 0.0044 0.0114 0.0076 0.0144
hosp.stay 0.0012 0.0033 0.0016 0.0032

Values of δ from expression (9.41)
y1 0.0082 0.0117 0.1306 0.1561
y2 0.0139 0.0172 0.1790 0.2115
y3 0.1476 0.1906 0.6908 0.7464

ins.cov 0.0076 0.0144 0.4454 0.4970
hosp.stay 0.0016 0.0032 0.0173 0.0222

�
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In a population where three-stage sampling is appropriate, the simplest
model to consider is one with common mean (μ) and random effects for
PSUs (αi), SSUs (βij), and elements (εijk):

yk = μ+ αi + βij + εijk, k ∈ Uij , (9.43)

with αi ∼
(
0, σ2

α

)
, βij ∼

(
0, σ2

β

)
, εijk ∼ (0, σ2

ε

)
, and the errors being indepen-

dent. Below, we consider only the srs/srs/srs design. Similar calculations can
be done for the ppswr/srs/srs design. In expression (9.16) and the following,
the model expectations of B2, W 2, W 2

2 , and W 2
3 can be found as follows (see

Exercise 9.17):
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(9.44)
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, (9.45)
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(9.46)
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2
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)
= Mσ2

ε

∑

i∈U
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i Q̄

2
i

(
ν2
Qi + 1

)
, (9.47)

where ν2Q = S2
Q/Q̄

2 is the relvariance of PSU sizesQi, S
2
Q =

∑
i∈U

(
Qi − Q̄

)2
/

(M − 1), Q̄ = Q/M ; ν2Qi = S2
Qi/Q̄

2
i is the relvariance of the SSU sizes Qij ,

S2
Qi =

∑
j∈Ui

(
Qij − Q̄i

)2
/(Ni − 1), and Q̄i = Qi/Ni.

Expressions (9.44) and (9.45) can be used to evaluate EM (δ1)
.
=

EM

(
B2
) / [

EM

(
B2
)
+ EM

(
W 2
)]
. Note that these expectations depend

on the variances of both Qi and Qij . Suppose that all SSUs have the same

number of elements, Qij = ¯̄Q, and that all PSUs contain the same number

of SSUs, Ni = N̄ . These restrictions imply that S2
Qi = S2

Q = 0 and Qi = N̄ ¯̄Q.
In that case, the approximate model expectation of δ1 is

EM (δ1)
.
=

σ2
α +

σ2
β

MN̄
+

σ2
ε

MN̄ ¯̄Q

σ2
α + σ2

β

(
1 + 1
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+ σ2

ε

(
1 + 1
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) .
=

σ2
α

σ2
α + σ2

β + σ2
ε

(9.48)

assuming that MN̄ and MN̄ ¯̄Q are large. This is the model correlation of two
elements that are in the same SSU, but the reduction in Eq. (9.48) occurs
only when the PSUs and SSUs all have the same sizes.
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Expressions (9.46) and (9.47) can be used to evaluate EM (δ2)
.
=

EM

(
W 2

2

)
/
[
EM (W 2

2 ) + EM (W 2
3 )
]
. In the special case of equal-sized PSUs

and SSUs (Qij =
¯̄Q and Ni = N̄), the approximate expectation of δ2 is

EM (δ2)
.
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σ2
ε

MN̄ ¯̄Q

σ2
β + σ2

ε

(
1 + 1

MN̄ ¯̄Q

) .
=

σ2
β

σ2
β + σ2

ε

. (9.49)

Note that Eq. (9.49) is not the model correlation of two elements in the

same SSU, which would be (σ2
α + σ2

β)/
(
σ2
α + σ2

β + σ2
ε

)
. However, the out-

put from standard variance component estimation software can be used to
evaluate Eqs. (9.48) and (9.49). These will be appropriate estimates of δ1 and
δ2, but only when all PSUs and all SSUs have the same sizes. Otherwise,
the variance components from standard routines can be ingredients to the
evaluation of Eqs. (9.44)–(9.47).

Example 9.14 (Anticipated variance components from a model in three-stage
sampling). Using the full Maryland population, we computed the anticipated
measures of homogeneity using PSU/SSU and tracts/BGs as the primary and
secondary units. This example gives the results of using expressions (9.48)
and (9.49), which are appropriate if each primary unit has the same popula-
tion number of secondary units and each secondary unit has the same number
of elements. We compare these to the results of using expressions (9.44)–
(9.47), which account for differing sizes. The R code is in the file Example
9.14.R. The results for the same variables as in Example 9.13 are listed
below.

Variable PSUs, SSUs Tracts, BGs
δ1 δ2 δ1 δ2

Computed from Eqs. (9.48) and (9.49)
y1 0.0005 0.0235 0.0040 0.0078
y2 0.0044 0.0114 0.0089 0.0092
y3 0.0579 0.1097 0.1116 0.1002
ins.cov 0.0027 0.0088 0.0017 0.0128
hosp.stay 0.0006 0.0027 0.0004 0.0028
Computed from Eqs. (9.44)–(9.47)
y1 0.0053 0.0245 0.1282 0.1130
y2 0.0067 0.0124 0.1769 0.1545
y3 0.0762 0.1105 0.6822 0.6650
ins.cov 0.0046 0.0098 0.4415 0.4044
hosp.stay 0.0013 0.0037 0.0171 0.0164

When the PSU and SSU variables are used as the first- and second-stage
units, the values of δ1 and δ2 are almost the same as in Example 9.5 where
an srs/srs/srs was assumed. This is true when either Eqs. (9.48) and (9.49)
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or Eqs. (9.44)–(9.47) are used to evaluate δ1 and δ2. When tracts and BGs are
used for first- and second-stage units, the correspondence to the Example 9.5
results is not close at all when Eqs. (9.48) and (9.49) are used. This is due to
the fact that the assumptions do not hold well that the number of SSUs, N̄ ,
in each tract and the number of elements, ¯̄Q, in each BG are constants. On
the other hand, when Eqs. (9.44)–(9.47), which account for varying sizes of
units, are used, the measures of homogeneity are very similar to the values
in Example 9.5. �

Examples in the literature of using model-based variance component esti-
mates in survey design seem limited, even though practitioners often use
the technique. A few examples are Chromy and Myers (2001), Hunter et al.
(2005), Judkins and Van de Kerckhove (2003), Valliant et al. (2003), and
Waksberg et al. (1993). How to arrive at component formulas using antici-
pated variances seems to rarely be explained in the literature.

The lme4 package in R is the successor to the earlier nlme (Pinheiro and
Bates 2000). We have encountered some examples where a variance compo-
nent is somewhat close to zero and lmer will not find the correct answer
directly. In any case where lmer returns a zero variance component, it is
advisable to call the algorithm with a number of random starting values and
select the solution with the largest AIC (Akaike information criterion) or log-
likelihood. Another option is to use the lme function in the nlme package,
which does not seem to be so susceptible to this problem.

Informative Sampling and Variance Component Estimation

Biases of variance component estimators are affected by whether sampling is
informative or non-informative. The idea of informativeness applies to esti-
mation of model parameters. For example, suppose that the random effects
model in Eq. (9.40) holds for the population. A sample is non-informative
when the same model holds for both the sample and the population. In
that case, the sample design can be ignored and unweighted variance compo-
nent estimators can be used. The R package lme4, the SAS procedure proc
mixed, and the xtmixed routine in Stata will provide the unweighted esti-
mates. The weighted estimators that we covered in this section will also
provide approximately model-unbiased estimators of the model parameters,
σ2
α and σ2

ε in two-stage sampling, and σ2
α, σ

2
β , and σ2

ε in three stage assuming
that the units used at different stages are all equally sized.

Pure probability samples are non-informative. By “pure” we mean a sam-
ple in which some probability mechanism that is completely under control
of the sample designer is used to select the sample. If that control is lost,
estimation is harder. A sample can be informative if selective nonresponse
or measurement error occurs that is out of control of the sample designer.
For example, if the probability of response depends on the y variable in the
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model and this cannot be corrected through some type of nonresponse adjust-
ment, the sample will be informative. (We cover some of the methods used
to attempt to correct for nonresponse in Chaps. 13 and 14.)

However, even in a pure probability sample, some features of a sample
design may need to be considered when fitting a variance component model
(or any other type of model). For example, in a stratified sample, different
models may be appropriate for the different strata. This could be described
either as “accounting for the design” or “using the appropriate model.”

Pfeffermann et al. (1998) and Korn and Graubard (2003) address the prob-
lem of estimating variance components from survey samples. The weighted
variance component estimates from earlier in this section can be biased when
the sample is informative. Korn and Graubard illustrate the biases with some
artificial examples and propose some alternative estimators. The alternatives
may not be feasible in many survey data sets because they require various con-
ditional weights that may not be available. However, they provide an example
from a real survey in which some practical work-arounds appear to be have
some advantages over the types of estimators we covered earlier. We will not
deal with these alternatives here, although they may be worth considering
for some applications.

9.5 Stratification of PSUs

In most designs, PSUs are stratified. The reasons for stratification are the
same as those covered in Chap. 3, Sect. 3.1.2, which we recapitulate briefly
here. Stratification is, in general, a good way to restrict the distribution of
the sample. By selecting a sample of PSUs from each stratum, some mal-
distributed samples are eliminated. Separate estimates may be needed for
some or all strata. For example, in a household survey, regions of the country
may be strata or regions crossed with population density (urban, suburban,
rural). In a school survey, the PSUs might be schools and the elements, stu-
dents within the schools. Strata may be based on grade levels of a school,
which are usually related to age of the children.

There may also be administrative reasons for stratifying PSUs. In a school
survey in one region within a state, it may be necessary to contact the super-
intendent of each district in order to get permission to survey schools and
students. Assuming that the number of districts is limited, the schools might
be stratified by district to control the number that must be contacted for
permission to collect data.

Other considerations are the number of strata and the allocation of PSUs
to strata. If estimates are needed for certain strata, that may determine the
number that is created. If strata are mainly created to restrict the distribution
of the sample PSUs, then the same techniques can be invoked as in Chap. 3.
If PSUs are to be selected with probabilities proportional to a measure of
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size (MOS), strata can be created to have approximately equal totals of the
MOS or of some power of the MOS as in Example 3.13.

In area samples, the number of sample PSUs is determined and enough
strata are usually created so that either 1 or 2 PSUs are selected in each
stratum. Selecting one PSU per stratum allows a large amount of control
over the achieved distribution of the sample, but does create some variance
estimation problems. We will address these in Chap. 15.

Another important consideration in some survey designs is having flexibil-
ity to expand or contract the PSU sample. If the survey is longitudinal, the
budget may not be the same for every round of the survey. If the budget is
cut, the easiest way to reduce costs may be to drop entire PSUs from the
sample. This may also be reasonably efficient statistically if the between PSU
component of variance is small. In a 2-PSU per stratum design, one PSU can
be randomly deleted from the sample in some strata to achieve the reduction.
In a one-PSU per stratum design, the strata should be paired in advance for
variance estimation, as discussed in Chap. 15. One PSU could be randomly
dropped from one or more pairs to reduce the sample.

Having a preset path for expansion of the PSU sample is also useful
when the sample must be accumulated over time to make estimates. In the
NHANES, extensive physical examinations are given to survey respondents.
Mobile examination centers (MECs) carrying diagnostic equipment are fer-
ried from one PSU to another. Moving the MECs is time consuming and
expensive and only a subset of the full national PSU sample can be done
each year. Two or more years of sample must be accumulated to make reli-
able national estimates.

9.6 Identifying Certainties

In probability proportional to size sampling, the sizes of some PSUs may be
so large that they would be selected with probability 1. These PSUs would be
designated as certainties. Sometimes the rule is relaxed so that any PSU that
would be selected with probability greater than, say, 0.80 is made a certainty.
In area samples, PSUs are often selected with probabilities proportional to
their population sizes. Extremely large metropolitan areas will usually be
certainties. However, there is some flexibility in how PSUs are defined. Dif-
ferent types of geographic areas (e.g., metropolitan statistical areas, counties,
tracts, or block groups) can be used as PSUs. We cover this issue further in
Chap. 10.
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Exercises

9.1. Using the Maryland population, plot the PSU totals (y-axis) versus PSU
population counts. Do this for PSUs defined as (a) tracts and (b) block groups.
Do the plots for the five variables in the Maryland data set: y1, y2, y3,
ins.cov, and hosp.stay. Discuss whether simple random sampling of
PSUs or pps sampling will be more efficient. Explain your reasoning.

9.2. Suppose that a sample of tracts, block groups, and persons is to be
selected from the Maryland population to estimate the proportion of persons
with some characteristic. Assume that the proportion of the population hav-
ing the characteristic is 0.32 and that the values of δ1 and δ2 in Eq. (9.22)
are the same as those for the insurance coverage variable. (b) Compute the
coefficient of variation that you would anticipate from a sample of 20 PSUs,
2 SSUs per PSU, and 10 persons per sample SSU.

9.3. Evaluate n̄opt and m̄opt from formulas (9.24) and (9.25) and the following
combinations of parameters: δ = (0.01, 0.10, 0.20, 0.40); C1 = 100, C2 = 200,
400, 600. Assume that the total budget for variable costs is $275,000. Discuss
the results.

9.4. Suppose that a two-stage sample is selected and the π-estimator of the
total is used for a series of analysis variables. The average number of sample
elements per cluster is 23. What are approximate estimates of the measure
of homogeneity for design effects equal to 1.1, 1.2, 1.3, . . . , 2.7, 2.8, 2.9, and
3.0? How do your answers change if n̄ = 13?

9.5. Explore the effects of different sizes of δ1 and δ2 on the allocation of
a three-stage sample with a total budget of $500,000 and cost components
(C1, C2, C3) = (1000, 200, 120). Assume that the π-estimator is used, that the
number of sample PSUs is m, the same number of SSUs, that n̄ is allocated to
each PSU, and that ¯̄q elements are selected from each SSU. Calculate the opti-
mum values of m, n̄, and ¯̄q for all combinations of δ1 = (0.001, 0.01, 0.05) and
δ2 = (0.05, 0.10, 0.25). Compute the anticipated CV s for each combination
assuming that the unit relvariance of the analysis variable is 2.

9.6. Repeat the calculations in Example 9.11 for two-stage sampling using
block groups as PSUs in the Maryland population. Use set.seed(-780087528)
in R. Select 20 BGs with probabilities proportional to number of persons per
tract and 50 persons per BG using srswor. Compare your results to those in
Example 9.9 where tracts were used as PSUs.

9.7. Use the full Maryland population and the function BW3stagePPS to
answer the following:

(a) Compute B2,W 2,W 2
2 , W

2
3 , δ1, and δ2 for the variables Hispanic, Gender,

and Age. Recode Hispanic and Gender so that they are (0,1) variables.
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Treat Age as continuous for this exercise (even though it is coded into
23-ordered categories). Do the calculations assuming that three-stage sam-
pling will be used with tracts as PSUs, block groups within tracts as SSUs,
and persons as elements. The sample at all three stages will be selected
using srswr.

(b) Repeat the calculations for a design in which PSUs are selected via ppswr
rather than srswr.

(c) Discuss the differences in results. In particular, comment on why the
values of δ1 are different in the two designs.

9.8. Use the Maryland population and the function BW3stagePPSe to
compute variance components from a sample of 30 PSUs (tracts), 2 SSUs
(block groups) per tract, and 50 persons per sample SSU. Assume that
tracts are selected with probabilities proportional to the number of per-
sons in the tract and that SSUs and persons are selected via srs. Use
set.seed(1696803792) in R.

(a) Do the computation for the variables y2, y3, ins.cov, and hosp.stay.
(b) How do your answers compare to the full population results in Exam-

ple 9.12?
(c) Use the estimated values of δ1 and δ2 to compute the optimum values of

m, n̄, and ¯̄q in a three-stage sample where C1 = 500, C2 = 100, C3 = 120,
and the total budget for variable costs is $100,000. How can you estimate
the unit relvariance for each variable?

(d) Discuss your results in (c). Is the same allocation optimal for each of the
five variables? Which allocation would you use in practice?

9.9. Use the Labor force population to compute between and within variance
components and the measure of homogeneity, δ in a two-stage sample for the
variables, HoursPerWk and WklyWage. The variable cluster defines the first-
stage units.

(a) Do the calculation using the function BW2stageSRS and BW2stagePPS.
How do the answers compare? What are the assumptions for the sample
designs in these functions?

(b) Repeat the calculations using lmer in the lme4 R package. Which results
do you expect the lmer results to be closest to—BW2stageSRS or
BW2stagePPS? (Several random starts should be used for lmer and the
best (minimum AIC) solution selected; the function will not give correct
estimates without searching.)

9.10. Consider a population that is divided into M clusters, each of which
has N̄ elements as in Example 9.1. Show that when both M and N̄ are large,
the unit relvariance of a variable y can be written as S2

U

/
ȳ2U

.
= B2 +W 2. All

terms are defined in Example 9.1. Use the form W 2 = 1
Mȳ2

U

∑
i∈U S2

U2i to

derive the result.
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9.11. Show that V
(
t̂π
) /

t2U = 1
m

M−m
M B2 + 1

mn̄
N̄−n̄
N̄

W 2 in Eq. (9.3) can be

rewritten as Ṽ k [1 + δ (n̄− 1)]
/
mn̄, i.e., equal to Eq. (9.5) with k = (B2 +

W 2)/Ṽ . You will need to make the substitution, (M −m) /M ≈ (M − 1) /M ,
to get the result.

9.12. Särndal et al. (1992, p. 149) derive the design variance of the π-
estimator in three-stage sampling for a general sample design. Suppose that
U is the population of PSUs; UIIi is the population of SSUs within PSU
i ; Uij is the population of elements within PSU/SSU ij ; πIi is the selection
probability of PSU i in the first stage; πIii′ is the joint selection probability
of PSUs i and i′; πIIj|i is the conditional selection probability of SSU j given
that PSU i is selected; πIIjj′|i is the joint conditional probability that SSUs j
and j′ are selected within PSU i ; πk|ij is the conditional selection probability
of element k within PSU/SSU ij ; and πkk′|ij is the joint selection probability
of elements k and k′ within PSU/SSU ij. The variance of the π-estimator is
then V

(
t̂π
)
= VPSU + VSSU + VTSU where

VPSU =
∑

i∈U

∑
i′∈U ΔIii′

ti
πIi

ti′
πIi′

with ti being the population total of the

analysis variable for PSU i and ΔIii′ = πIii′ − πIiπIi′

VSSU =
∑

i∈U VIIi/πIi with VIIi =
∑

j∈Ui

∑
j′∈Ui

ΔIIjj′|i
tij

πIIj|i
tij′

πIIj′ |i
,

ΔIIjj′ |i = πIIjj′ |i − πIIj|i πIIj′|i , and tij being the population total for
PSU/SUU ij

VTSU=
∑

i∈U
1

πIi

∑
UIIi

Vij

πIIj|i
with Vij=

∑
k∈Uij

∑
k′∈Uij

ΔIIkk′|ij
yk

πk|ij
yk′

πk′|ij
,

ΔIIkk′|ij = πkk′|ij − πk|ij πk′|ij

(a) Specialize this formula to the case of simple random sampling at each
stage. In particular, suppose that m PSUs are selected from M using
srswor. In PSU i suppose that ni SSUs are selected from Ni in PSU i
and that qij elements are selected from Qij in PSU/SSU ij. That is, show
that
VPSU = M−m

M
M2

m S2
U1 with S2

U1 =
∑

i∈U (ti − t̄U )
2
/
(M − 1) where

t̄U =
∑

i∈U ti
/
M

VSSU = M
m

∑
i∈U

N2
i

ni

Ni−ni

Ni
S2
U2i with S2

U2i = 1
Ni−1

∑
j∈Ui

(tij − t̄Ui)
2
is

the unit variance of SSU totals in PSU i with tij =
∑

k∈Uij
yk being

the population total for PSU/SSU ij, t̄Ui =
∑

j∈Ui
tij

/
Ni is the average

total per SSU in PSU i

VTSU = M
m

∑
i∈U

Ni

ni

∑
j∈Ui

Q2
ij

qij

Qij−qij
Qij

S2
U3ij

with S2
U3ij =

1
Qij−1

∑
k∈Uij

(yk − ȳUij)
2

(b) Show that, if ni = n̄ and qij = ¯̄q, i.e., the same number of sample SSUs is
selected from each sample PSU, the same number of sample elements is
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selected from each SSU, and the number of SSUs is N̄ in every PSU and
the number of elements in each SSU is ¯̄Q, then the relvariance of t̂π can
be written as
V (t̂π)
t2U

= M−m
M

B2

m + N̄−n̄
N̄

W 2
2

mn̄ +
¯̄Q− ¯̄q
¯̄Q

W 2
3

mn̄ ¯̄q with

B2 = M2S2
U1

/
t2U , W

2
2 = MN̄2

∑
i∈U S2

U2i

/
t2U , and

W 2
3 = MN̄ ¯̄Q2

∑
i∈U

∑
j∈Ui

S2
U3ij

/
t2U .

9.13. Suppose that a simple random sample of m PSUs and n̄ elements is
selected per sample PSU. Assume that the cost of the survey can be modeled
as C = C0 + C1m + C2mn̄ and that the relvariance of the π-estimator is
V (t̂π)
t2U

.
= B2

m + W 2

mn̄ = 1
mn̄ Ṽ [1 + δ (n̄− 1)].

(a) Show that the number of sample elements per PSU that minimizes the
relvariance is

n̄opt =

√
C1

C2

W 2

B2

.
=

√
C1

C2

1− δ

δ
.

(b) Use the total cost constraint to show that mopt =
C−C0

C1+C2n̄opt
. (Hint: Use a

Lagrange function defined as φ = V
(
t̂π
) /

t2U +λ (C − C0 − C1n− C2mn̄ )

9.14. Consider the situation in a two-stage sample where the PSU sample is
fixed.

(a) Show that, if the total cost, C = C0 + C1m + C2mn̄, is fixed, then the
number of elements to be sampled per PSU is n̄ = C−C0−C1m

C2m
.

(b) If a target CV is set, then the number of elements to sample per PSU is
n̄ = 1−δ

CV 2
0 m/Ṽ −δ

.

9.15. (a) In a three-stage sample where the set of PSUs is fixed show that if
either the budget is fixed or a target CV is set, the optimal number of

elements to sample is ¯̄q =
√

1−δ2
δ2

C2

C3
.

(b) If the budget is fixed, show that the optimal number of SSUs per

PSU is n̄ = C′
C2+C3 ¯̄q

with C′ = m−1 (C − C0) − C1 = C2n̄ + C3n̄ ¯̄q.

(c) If a target coefficient of CV0 is set, then the number of SSUs is

n̄ = 1
¯̄q [1 + δ2 (¯̄q − 1)]

(
m
Ṽ
CV 2

0 − δ1

)−1

.

9.16. In a clustered population, consider this model with common mean and
random effects for clusters and elements:

yk = μ+ αi + εik, k ∈ Ui,

with αi ∼ (0, σ2
α

)
, εik ∼ (0, σ2

ε

)
, and the errors being independent. Define

S2
U1 =

∑
i∈U (ti − t̄U )

2
/(M − 1) as for the case of srswr sampling of clusters
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and S2
U2i =

∑
k∈Ui

(yk−ȳUi)
2

Ni−1 as for simple random sampling of elements within
sample clusters. Other terms are defined in Sects. 9.2.1 and 9.2.2.

(a) Show that under the model above

EM

(
S2
U1

) .
=
(
σ2
α + μ2

)
S2
N + N̄2σ2

α + σ2
ε ,

EM

(
S2
U2

)
= σ2

ε ,

where N̄ =
∑

i∈U Ni

/
M is the average number of elements per cluster,

S2
N =

∑
i∈U

(
Ni − N̄

)2/
(M − 1), and M is assumed to be large.

(b) IfNi = N̄ , then EM

(
S2
U1

) .
= N̄2σ2

α+σ2
ε , EM

(
B2
) .
=
(
N̄2σ2

α+σ2
ε

)/
(Nμ)

2
,

EM

(
W 2
) .
= σ2

ε

/
μ2, and that

EM (δ)
.
=

σ2
α + σ2

ε

/
N̄

σ2
α + σ2

ε

(
1 + 1

/
N̄

2
) .
=

σ2
α

σ2
α + σ2

ε

.

9.17. In a population where three-stage sampling is appropriate, consider this
model with common mean and random effects for PSUs, SSUs, and elements:

yk = μ+ αi + βij + εijk, k ∈ Uij ,

with αi ∼
(
0, σ2

α

)
, βij ∼

(
0, σ2

β

)
, εijk ∼ (0, σ2

ε

)
, and the errors being indepen-

dent. Using the formulas for B2,W 2
2 ,W

2
3 below Eq. (9.16) and the formula for

W 2 defined below expression (9.21) with pi = 1/M , verify that their model
expectations are given by Eqs. (9.44)–(9.47). Use these to show that if the
number of SSUs in every PSU is N̄ and that the number of elements in each
SSU is ¯̄Q, then the approximate expectations of δ1 and δ2 are

EM (δ1)
.
=

σ2
α

σ2
α + σ2

β + σ2
ε

,

EM (δ2)
.
=

σ2
β

σ2
β + σ2

ε

.

l Show that EM (δ2) is not the model correlation of two elements in the same

SSU, which would be
(
σ2
α + σ2

β

)/(
σ2
α + σ2

β + σ2
ε

)
.



Chapter 10

Area Sampling

Area sampling is a catchall term for a set of procedures in which geographic
areas are selected as intermediate units on the way to sampling lower-level
units that are the targets of a survey. Area sampling is just an example
of multistage sampling, but because special data sources and methods are
used, we devote a separate chapter to it. Calculations for determining sample
allocations to the different stages are the same as those covered in Chap. 9.

There are several reasons that multistage sampling is used. One is that
clustering can reduce costs if field listing is needed or in-person interviews
are conducted. Having the sample units clustered in fairly small geographic
areas allows data collectors to be hired in a limited number of areas and
reduces travel costs. Another reason is that a complete list of the target
units in the survey may not be available. By sampling small areas, a list
can be compiled in the field and used for sampling. In some surveys, like
school samples, permission to collect data may have to be obtained from a
high-level administrative unit, like a school district. In that case, sampling
districts is a way of limiting the number of organizational units that have to
be negotiated with. A major application of area sampling is in household sur-
veys where data are collected by personal interview. In the USA a complete
list of persons and households is not maintained by either the government
or private organizations. Even if one were available, an unclustered sample
would be extremely inefficient for personal interviewing because the area of
the country is so large. Area sampling is certainly not limited to household
sampling. Other target populations where area sampling may be efficient are
business establishments, schools, bodies of water, and the like—any popula-
tion requiring that data be collected where the units are physically located.

The description of area sampling presented in this chapter is primarily US-
centric. We concentrate on the types of geographic areas that have been devel-
oped by the US Census Bureau, primarily for household surveys (Sect. 10.1).
However, the general techniques are applicable to other countries where vari-
ous levels of geographic areas have been defined for administrative and statis-
tical purposes. Therefore, we include a few non-US examples for comparison.

R. Valliant et al., Practical Tools for Designing and Weighting
Survey Samples, Statistics for Social and Behavioral Sciences 51,
DOI 10.1007/978-1-4614-6449-5 10, © Springer Science+Business Media New York 2013
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Population counts, demographic distributions, and detailed estimates are
summarized within the various geographic areas for use in constructing the
(multistage) area sample design in lieu of a population registry. These data
are obtained through various sources including the US Census (a census,
mandated through the US Constitution to be conducted every 10 years, of
the population residing in the 50 states, the District of Columbia, and Puerto
Rico) and a large household survey known as the American community survey
or just ACS (Sect. 10.2). Because the counts and other information used in
the various stages of sampling (Sect. 10.3) are time sensitive, we include a
discussion of procedures to address shifts in the population distribution after
the initial sample of units has been drawn (Sect. 10.6). In addition to the ACS,
design details of a few example surveys are discussed including the sampling
frame and stages of the design (Sect. 10.4).

Many multistage surveys, including one of our example studies, are
designed to meet sample size and other criteria for several domains simulta-
neously within the lowest stage of sampling. Unlike an stsrs where strata can
be designed to reflect the domains, multistage surveys sometimes rely on pps
sampling with composite size measures to accomplish the design goals while
keeping cost in check (Sect. 10.5).

Finally, area sampling has many benefits and some drawbacks. For exam-
ple, it is important to have timely and accurate population information prior
to selecting the multistage sample. However, migration and/or length of time
since the last census introduce differences between the frame data or esti-
mates and what can be found “in the field.” Techniques implemented to
address these population shifts are discussed in Sect. 10.6. Another less than
desirable trait for area samples is the amount of time and funds required to
develop and select units at lower sampling stages. A relatively new type of
sampling methodology, known as address-based sampling (ABS), is reviewed
as a remedy for surveys with limited resources (Sect. 10.7).

10.1 Census Geographic Units

The US Census Bureau uses several layers of geographic areas for its survey
operations. These are also in common use by private survey organizations.
The areas consist of existing administrative divisions and other units con-
structed for statistical use. Figure 10.1 shows the hierarchy of the areas.

From the largest to the smallest in terms of population size and geographic
area, the hierarchy of areas is state, metropolitan area, county, census tract,
block group, and block. In some parts of the US, terms other than county,
like parish or minor civil division, are used to denote local government juris-
dictions that are equivalent to counties, but we do not need to be concerned
with that here.
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NATION

REGIONS

DIVISIONS

STATES

Counties

Census Blocks

Block Groups

Census Tracts

Urban Areas

Core Based Statistical Areas

ZIP Code Tabulation Areas

School Districts

Congressional Districts

Places

Public Use Microdata Areas

State Legislative Districts

Urban Growth Areas

AIANNH Areas*
(American Indian, Alaska
Native, Native Hawaiian
Areas)

Voting Districts

Traffic Analysis Zones

County Subdivisions

Subminor Civil Divisions

Fig. 10.1: Geographic hierarchy of units defined by the US Census Bureau. See U.S.
Census Bureau (2011).

Metropolitan areas are defined by office of management and budget
(OMB), a US federal agency. Part of OMB’s job is to provide consistent
definitions for collecting, tabulating, and publishing federal statistics for a
set of geographic areas. Four of the larger areas defined by OMB are:
Metropolitan statistical area (MSA)—contains at least one urbanized

area of at least 50,000 people, plus any adjacent territory that has a high
degree of social and economic integration with the core as measured by
commuting ties. There were 374 MSAs in 2009 (366 in the US and 8 in
Puerto Rico), just prior to the 2010 US Census (OMB Bulletin No. 10-
02).1 Commuting is part of the definition because for work some people
may travel a considerable distance into a central city, thus, tying an
area together. Approximately 84% of the US population resides within
an MSA.

Metropolitan division—a county or group of counties within a MSA
that has a population core of at least 2.5 million.

1 http://www.census.gov/population/www/metroareas/metrodef.html.

http://www.census.gov/population/www/metroareas/metrodef.html
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Micropolitan statistical areas—an area containing one or more urban
clusters of at least 10,000 but less than 50,000 population, plus adjacent
territory.

Combined statistical area—adjacent metropolitan and micropolitan
statistical areas; combinations are based on commuting ties.

There are 3,141 counties in the US, a map of which for the entire US can be
found at

ftp2.census.gov/geo/maps/general_ref/us_base/
stco2003/stco2003.pdf.

Choropleth maps of the US with counties marked by percent of population
in poverty and median household income in 2008 are at

www.census.gov/did/www/saipe/data/statecounty/maps/2008.html.

Census tracts, blocks, and block groups are the units most often used in
sampling within primary sampling units (PSUs) for household surveys. Tracts
are small, statistical subdivisions of a county or equivalent entity. Tracts
generally have between 1,500 and 8,000 people, with a desired size of 4,000
people. Counties and equivalent entities with fewer than 1,500 people have a
single census tract. Tracts do not cross state boundaries. The first decennial
census for which the entire United States was covered by census tracts was
in 2000.

Census blocks are areas bounded on all sides by visible features, such
as streets, roads, streams, and railroad tracks, and by invisible boundaries,
such as city, town, township, and county limits, property lines, and short,
imaginary extensions of streets and roads. Blocks are usually small in area
but in sparsely settled areas may contain many square miles of territory. All
territory in the 50 United States, the District of Columbia, Puerto Rico, and
the Island Areas governed by the US has been assigned block numbers.

A block group (BG) is a cluster of census blocks. BGs generally contain
between 600 and 3,000 people, with a target size of 1,500 people. BGs on
American Indian reservations, off-reservation trust lands, and special places
must contain a minimum of 300 people. Special places include correctional
institutions, military installations, college campuses, worker’s dormitories,
hospitals, nursing homes, and group homes. Such special places are also called
group quarters. There are typically three BGs per tract. The counts of the
various areas for 2010 census were:

www.census.gov/did/www/saipe/data/statecounty/maps/2008.html
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Counties 3,141
Census tracts 74,002
Block groups 217,740
Blocks 11,078,297

Tallies by state of the number of tracts, block groups, and blocks used in
the 2000 Census can be found at www.census.gov/geo/www/2010census/.
The number of counties and other administrative divisions by state are at
www.census.gov/geo/www/tallies/ctytally.html. Boundary files for areas are
available at www.census.gov/geo/www/cob/index.html in what is known
as the TIGER (topologically integrated geographic encoding and referenc-
ing) database. These are a collection of cartographic database files that are
available to the public and are used in a variety of commercial geographic
information system (GIS) or mapping software products. The boundary files
define geographic areas using polygons with sides based on longitude and
latitude coordinates.

10.2 Census Data and American Community
Survey Data

In the US, extensive demographic information has traditionally been collected
on a large sample of persons as part of each decennial census. In the 2000
Census, approximately one-sixth of the population living in the US received
a “long form.” Since then, the long-form sample has been replaced by the
ACS, which collects this same information on a continuously updated sample
(www.census.gov/acs/www/). The 2010 Census collected the following:

• Address-level items:
Number of persons living at the address on April 1, 2010
Tenure: whether the residence was owned or rented

• Items collected for each person:
Age
Gender
Ethnicity (whether the person is Hispanic, Latino, or Spanish origin)
Race (14 choices are listed, plus a person can fill in an unlisted choice)

Counts of persons for every block in the US are available from the 2010 census.
In addition, block-level counts will be available for all of the characteristics
listed above.

In the ACS, detailed questions are asked about each person’s socioeco-
nomic status and housing unit characteristics, including:

www.census.gov/geo/www/2010census/
www.census.gov/geo/www/tallies/ctytally.html
www.census.gov/geo/www/cob/index.html
www.census.gov/acs/www/
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Age Income
Birthplace Language spoken at home
Citizenship Marital status
Highest level of education Number of rooms in the housing

unit
Employment status Presence of indoor plumbing
Ethnicity Race
Gender Time spent traveling to work
Housing value Year when the housing unit was

built

The Census Bureau tabulates sample estimates from the ACS at a variety
of geographic levels. The ACS publishes one-year, three-year, and five-year
moving averages since the sample in any single month is small. As of 2010, the
planned, total ACS sample size was about three million addresses in a year.
Estimates at all geographic levels in Fig. 10.1 down to BGs are published
for overlapping five-year estimates, e.g., 2006–2010 and 2007–2011. One-year
and overlapping three-year estimates are published only for higher levels of
geography. The importance of this for sample design is that statistics for the
small geographic areas that are often used as sampling units will not refer to
a particular point in time but instead will be average values over extended
periods of time. This may actually be advantageous for designing a sample
since the way in which the population is distributed is always in flux. Popula-
tion counts from the decennial census become progressively more out-of-date
as a decade wears on. Waksberg et al. (1997) analyze the effects of using such
out-of-date census information when doing geographic oversampling aimed
at improving estimates for small demographic domains. The further removed
from the census date a survey is, the less accurate the census counts for small
areas are. Consequently, the moving averages from the ACS will give a more
current picture of the population.

10.3 Units at Different Stages of Sampling

Multistage samples can use PSUs, secondary sampling units (SSUs), and, in
some cases, units at later stages. In area samples, the first two stages are
geographic areas with SSUs nested within PSUs. Units at the third or later
stages are typically households or persons.
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10.3.1 Primary Sampling Units

PSUs in area samples are geographic areas that collectively cover the entire
area in-scope of a survey. PSUs are used as the first stage of sampling in
an area probability sample. The PSUs are usually stratified by geography
to ensure representation of regions or other types of subareas. The number
of sample PSUs may be based on rough optimality calculations to account
for between PSU variances contributions to simple estimators (like the π-
estimator), as described in Chap. 9. Conversely, rules of thumb may be used;
100 PSUs is a common sample size, but some surveys like the current popu-
lation survey (CPS; the US labor force survey) use hundreds of sample PSUs.
The number is mainly affected by whether subnational estimates such as
regional or local areas are needed. The sample is usually allocated to strata
accounting for the desire to make regional estimates. PSU samples are often
used for long stretches of time, e.g., ten years between decennial censuses,
and for many different surveys.

Rules for Defining PSUs

There are some general rules that are useful when defining PSUs for the area
sampling frame. These are used in many household surveys, like CPS; other
types of surveys might use different rules:

1. PSUs are contained within state boundaries. This facilitates tabulations
by state.

2. Each PSU is a county or group of counties, except in the New England
states where other equivalent areas used.

3. MSAs are sometimes defined as separate PSUs. Exceptions may be made
to this rule because some MSAs are too big to be efficient for fieldwork
and/or could result in being selected multiple times with some sampling
methods.

4. The area of a PSU should not exceed some maximum area (e.g., 3,000
square miles or about 7,770 square kilometers in CPS). This helps limit
the distance interviewers must travel.

5. The PSU population must be greater than some minimum (e.g., 7,500 in
CPS) as long as rule 4 is not violated. The idea is to allow the sample
to be large enough to provide a reasonable workload for interviewers as
well as the calculation of efficient estimates within the PSU. For example,
a PSU with a small number of sample members might require all to be
selected for the survey, introducing unequal weights into the design as
well as potentially unstable estimates if 100% response is not achieved.
Another consideration may be to support a longitudinal survey where
persons are in the survey for a set number of waves and are then rotated
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out and replaced by other sample persons. A PSU that is too small might
not permit the desired number of rotations to be made.

6. Avoid extreme length. Like rule 4, this is designed to limit travel in surveys
done by personal interview. For example, PSUs designed to be roughly
square in distance (e.g., 50 square kilometers) are more cost-effective than
excessively rectangular clusters of the same size (e.g., 5 km by 500 km).

Rule 3 is applied when a metro area is used for tabulation and publication.
For the US consumer price index (CPI), separate indexes are published for
some metro areas.2 For example, the following MSAs have their own indexes:
Detroit-Ann Arbor-Flint, Michigan; New York-Northern New Jersey-Long
Island, covering parts of the states of New Jersey, New York, and Connecti-
cut; San Francisco-Oakland-San Jose, California; Washington DC-Baltimore,
covering the District of Columbia and parts of Maryland, Virginia, and West
Virginia.

Rule 3 is one that has become less beneficial over time in the US because
of the large geographic areas covered by some MSAs. The Washington-
Baltimore MSA is a case where the area is extremely large, being about
150 miles (240km) from the northwest to southeast corner. Figure 10.2 is a
map of this MSA. Covering the entire MSA by automobile would involve a
lot of driving by a field-worker doing personal interviews over areas that can
be extremely congested with traffic. If metro areas are of no interest to the
goals of the survey, they do not have to be used as PSUs. For example, in
the commercial building energy consumption survey (CBECS), conducted by
the US Department of Energy, counties are PSUs without regard to MSA
definitions.3 Climate zones are more important in defining PSUs and strata
in that survey.

10.3.2 Secondary Sampling Units

SSUs are units first selected within each sample PSU. These are also geo-
graphic areas but are much smaller than the typical PSU. SSUs may be
tracts, block groups, or ZIP code (postal delivery) areas. ZIP code areas are
not often used for household sampling in the US because statistics and maps
are readily available for tracts and BGs. However, ZIP codes can be useful
for establishment sampling if they are the smallest areas for which business
data are available. In that case, the ZIP code data can be used for assigning
measures of size to the areas.

Some large-scale area surveys include as many as five stages of sam-
pling. For example, the National Household Survey on Drug Use and Health
(NSDUH), discussed in more detail in Sect. 10.4.2, has a total of four sampling

2 http://www.bls.gov/cpi/.
3 http://www.eia.gov/emeu/cbecs/.

http://www.bls.gov/cpi/
http://www.eia.gov/emeu/cbecs/
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Fig. 10.2: A map of the Washington–Baltimore metropolitan statistical area and
smaller subdivisions. Source: Census Bureau: Metropolitan and Micropolitan Statis-
tical Areas, http://www.census.gov/population/www/metroareas/metroarea.html.

stages and the NSDUH mental health surveillance study (NSDUH-MHSS)
has five. Typically, the third and subsequent stages of sampling just prior to
the last stage do not have a special label and are identified only by the stage
number, i.e., fourth stage of sampling.

SSUs and stages prior to the ultimate sampling stage (Sect. 10.3.3) are
usually used when lists of the units eligible for the survey are not available
in advance and field listings have to be made. Most US organizations, for
example, do not have a complete list of households from which to sample,
and these frames historically have been constructed by field staff canvassing
a randomly selected area. This procedure is typically referred to as counting
and listing and the field staff as field (household) listers ; see, e.g., Eckman and
O’Muircheartaigh (2011) and Wright and Marsden (2010, chap. 2). With the
NSDUH, for example, area segments (SSUs) are constructed to have at least
either 150 urban dwelling units or 100 rural dwelling units. Trained listers are
sent into the field with maps and recording material (global positioning sys-
tem, GPS, recorders, or hard-copy rosters) to obtain identifying information
for all dwelling units contained within the established boundaries of the ran-
domly chosen area segments. Once compiled, this list is used as the household

http://www.census.gov/population/www/metroareas/metroarea.html
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sampling frame and again to isolate the chosen household for the survey. The
information collected includes physical location (e.g., street address; cross
street and a description of the house in lieu of a physical address; location on
the property of another address; GPS coordinates) and other paradata (e.g.,
identification of toys or equipment associated with young children; likelihood
that a house is currently occupied; graffiti and trash in the neighborhood as
a predictor of survey cooperation). Listers may be provided with a partial
list of addresses from a prior survey or from administrative records; all are
given a starting point on the segment map showing the area boundaries as
well as the direction the lister should travel in order to record the dwelling
units.

10.3.3 Ultimate Sampling Units

The last stage of sampling (regardless of its number) is of particular impor-
tance and is called an ultimate sampling unit (USU). Examples of USUs
are a small group of housing units (e.g., 4); individual households or per-
sons; business establishments, and buildings. Additional examples specific to
a particular survey are examined in the next section. Note that the last stage
of sampling may not be equivalent to the smallest unit of analysis. In the
case of a household survey such as the National Crime Victimization Survey
(NCVS), the household is labeled as the USU because all household members
12 years of age and older are asked to participate in the study (i.e., certainty
selections within household), but a person is the unit of analysis.4 The USU
for the NSDUH is a group of persons because zero, one, or two persons are
selected from the sample household.5

10.4 Examples of Area Probability Samples

To better understand how area samples are implemented in practice, we sum-
marize the designs of some major household surveys in the US and Germany.
These designs have similarities, but each has some unique goals and features.

4 The NCVS is conducted by the Bureau of Justice Statistics at the US Department
of Justice. http://bjs.ojp.usdoj.gov/index.cfm?ty=dcdetail&iid=245.
5 No persons may be sampled from households with common characteristics so that
study funds can be used to oversample households with more rare traits (e.g., house-
holds with children or of a certain minority race/ethnicity).

http://bjs.ojp.usdoj.gov/index.cfm?ty=dcdetail&iid=245
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10.4.1 Current Population Survey

The CPS is the US labor force survey and is the primary source of data to
estimate various unemployment rates and characteristics of the labor force.6

The details of the methodology for the survey are in U.S. Census Bureau
(2006). The survey is paid for by the Bureau of Labor Statistics with the
sample being selected and the data collected by the Census Bureau. The tar-
get population is the civilian, noninstitutionalized population aged 16 years
or older residing within the 50 states and the District of Columbia. The sur-
vey is designed to produce national and state estimates, and also substate
estimates in California (Los Angeles and the rest of state) and in New York
state (New York City and the rest of the state).

The Census Bureau maintains a master address file (MAF) that attempts
to cover all HUs in the USA. In practice, it is impossible to have a list that
is completely up-to-date, but the MAF is closer to current than any other
list, including the aforementioned DSF. The MAF is not available to any
private survey organization nor to other governmental agencies unless the
Census Bureau itself does the sampling and data collection. Having the MAF
gives the CPS and other surveys done by Census some options that are not
available to other survey organizations.

Using the MAF, efforts are made to coordinate CPS sampling with nine
other surveys done by Census; see U.S. Census Bureau (2006, pp. 3–7). The
aim is to avoid having households selected for multiple surveys, which would
increase burden and probably decrease response rates. The entire sample of
SSUs for a decade is selected at once. This makes sample selection more
specialized than for many area samples.

The precision targets for the survey are to achieve a 1.9% CV on the
national, monthly unemployment rate, assuming that the rate is 6%. Also,
a difference of 0.2% points in the national unemployment rate in two con-
secutive months should be significant at 0.10 level. The goal for each state
and substate area and the District of Columbia is to have an 8% CV on
the estimates of average annual unemployment rate, assuming that the rate
is 6%.

Stages of Sampling: PSUs and Groups of Households

The total national sample size is about 72,000 housing units (HUs), although
this number can fluctuate depending on the budget allocated for the survey.
Independent samples are selected for each state and substate area for which
separate estimates are made. At the first stage, 824 PSUs are selected, which
are MSAs or combinations of counties in non-MSA areas. The design has 446
certainty PSUs and 378 non-certainties. One PSU from each non-certainty

6 http://www.census.gov/cps/.

http://www.census.gov/cps/
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stratum is selected with probability proportional to the most recent census
population count.

At the second stage the SSU is a group of four adjacent HUs. (Groups of
HUs or groups of geographic blocks are sometimes referred to as a segment.)
Notice that a group of four HUs is much smaller than the block groups or
blocks mentioned earlier. Directly sampling such a small SSU relies on census
having the MAF. Since no further subsampling is done, the SSU can also be
considered the USU in most PSUs. There are a few exceptions to this. In cases
where addresses are “not recognizable on the ground,” then area sampling is
used to select USUs. Then, a third stage is sometimes used if an SSU is large
in area or number of households. This third stage is mainly used in rural
areas. Interviews are conducted with all members of the household who are
at least 15 years of age.

The CPS also uses a building permit sample within sample PSUs to cover
dwellings constructed after the address list was compiled. The method used
to compile the permit frame is similar to option 1 in Sect. 10.6.

Formation of PSUs

PSUs are formed using the rules in Sect. 10.3 with some adaptations spe-
cific to CPS. MSAs are used for PSUs, except that PSUs do not cross state
boundaries. When an MSA crosses state boundaries, which is common in
the eastern part of the US, the MSA is split into two or more PSUs. The
minimum population size of a PSU is 7,500 except where this would require
creating a PSU having an area of 3,000 square miles. After the 2000 census,
a total of 2,025 PSUs were created from the 3,141 counties.

Stratification and Selection of PSUs

PSUs are stratified within state. The key variables used for stratification
are number of males that are unemployed, number of females unemployed,
number of families with female head of household, and ratio of occupied
HUs with three or more people, of all ages, to total occupied housing units.
Strata are created to contain PSUs that are similar to each other on these
variables, using a clustering algorithm. Any PSU that is part of the 151
largest metropolitan areas is a certainty. This, in conjunction with the CV
requirement for state estimates, leads to nine entire states being certainty
PSUs. These are geographically small but densely populated: Connecticut,
Delaware, Hawaii, Massachusetts, New Hampshire, New Jersey, Rhode Island,
Vermont, and the District of Columbia.

Strata of non-self-representing PSUs are formed to have about the same
total population. One PSU is selected from each stratum with probability
proportional to the total population. Each PSU is constructed to supply a
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sample of 35–55 HUs, which is large enough to be a workload for one data
collector.

Selection of USUs

The frame for selecting USUs in each PSU has four pieces: (1) the housing
unit (HU) address list frame which is the MAF, (2) an area frame, which is
used where a census address cannot be used to locate an HU, (3) a group
quarters (GQ) frame, and (4) a building permit frame. For survey operations
HUs and group quarters are defined as:

• Housing units (HUs)—a group of rooms or a single room occupied
as a separate living quarter (or intended to be). About 98% of the US
population enumerated in a census resides in an HU; the rest are in group
quarters or are homeless.

• Group quarters (GQs)—residents share common facilities or receive
formally authorized care. Examples of group quarters are college dormito-
ries, nursing homes, retirement homes, and communes. Since CPS covers
only the non-institutionalized population, institutional group quarters like
prisons and military facilities are not in-scope.

Military and institutional GQs are left on frame in case they convert to an
in-scope unit before interviewing.

As a brief aside, note that some surveys the term dwelling unit (DU) is
also used to mean housing unit (HU). Many times a frame of USUs will have
on it units that turn out to be more than one DU or HU. For example, the
house at 104 Cherry Street may actually contain a family on the first floor
and a renter in a basement apartment. Most surveys would classify these are
two HUs, even though the sampling frame showed it as one. For this reason
some organizations will refer to the address listings on the frame as lines
rather than HUs or DUs because their status is not fully determined until
the time of interview. After the status of the line is determined, screening
and multiphase sampling is often used in order to target certain demographic
groups, types of establishments, or buildings as described in Chap. 17.

The sample of HUs is designed to have an overlap across time periods. Data
are collected monthly. An HU is in the sample for four months, is out of the
sample for the next eight months, and then is back in the sample for another
four months. HUs are rotated in such a way that 3/4 of the HUs overlap
between consecutive months; 1/2 of the HUs overlap between samples 12
months apart. The monthly overlap helps when estimating monthly change
while the overlap between samples 12 months apart reduces the variance
for an estimate of annual change. Many countries use some form of overlap
sampling in their labor force surveys. The 4-8-4 pattern in the CPS is just one
of many possibilities. Canada, for example, retains HUs for six months and
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then rotates them out. This leads to there being no overlap between samples
12 months apart.

Housing units and USUs are selected to be self-weighting within a state.
That is, each HU has the same selection probability. Thus, there is no dif-
ferential sampling within domains (e.g., gender) defined within each state.
Although estimates for domains are published, the sample design does not
directly control domain sample sizes.

10.4.2 National Survey on Drug Use and Health

Another large household survey that has some different features from the CPS
is the National Survey on Drug Use and Health (NSDUH) in the USA spon-
sored by the Substance Abuse and Mental Health Services Administration
and collected by RTI International.7 A detailed description of the 2006 sam-
ple design is in Morton et al. (2006). The sample is selected in four stages
and publishes estimates for a variety of demographic domains. The target
population is the civilian, noninstitutionalized population aged 12 years or
older residing within the 50 states and the District of Columbia. The sur-
vey also covers residents of noninstitutional group quarters (e.g., shelters for
the homeless, rooming houses, dormitories, and group homes) and civilians
residing on military bases.

The total targeted sample size of 67,500 persons is equally allocated across
three age groups: persons aged 12–17, 18–25, and 26 or older. The large sam-
ple size allows the survey to obtain enough cases in other major demographic
groups to make separate national estimates without oversampling them. Sep-
arate estimates are also made for each state.

In the first stage of the design, each state is handled separately and, thus,
can be considered a stratum. The PSUs in each state were census tracts.
The PSUs were themselves stratified within each state. State sampling (SS)
regions were formed. Based on a composite size measure, states were geo-
graphically partitioned into regions that had about the same total population.
The use of a composite measure of size (MOS) is an interesting technique that
we will cover in more depth in Sect. 10.5. The effect of using the composite
MOS was that regions could be formed so that each area yielded, in expecta-
tion, about the same number of interviews during each data collection period.
The smaller states were partitioned into 12 SS regions, while the eight largest
states were divided into 48 SS regions. A total of 900 SS regions were formed
across all states.

In some cases, small census tracts were combined to obtain a minimum
number of dwelling units (DUs). In urban areas the minimum was 150 DUs;
in rural areas, it was 100. Within each SS region, 48 PSUs were selected

7 http://oas.samhsa.gov/nsduh.htm.

http://oas.samhsa.gov/nsduh.htm
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with probability proportional to the composite MOS, giving a total of 43,200
PSUs. Thus, about two-thirds of the tracts in the USA are in the sample.
The 48 SSUs in each state were randomly assigned to six rotation groups of
four to be used as primary sample SSUs while the other 24 were a reserve
sample to be used if needed to compensate for nonresponse. The 24 primary
SSUs were assigned to years and calendar quarters using a simple rotation
plan shown in Fig. 10.3. Subsamples 1 and 2 were assigned to year 1 for data
collection. Subsample 1 was rotated out in year 2; subsample 2 was retained
and subsample 3 was rotated in for year 2; and so on. Other surveys like the
CPS use more elaborate rotation plans, but Fig. 10.3 conveys the main idea
behind rotation. Looking down a column for a given year, the combination
of subsamples across all states for that year must represent the nation. For
example, in year 4, estimates for each state can be made from subsamples 4
and 5, and the combination of subsamples 4 and 5 across all states can be
used to estimate national statistics.

The SSUs (or segments) in the design are block groups aggregated to meet
the same minimum sizes of DUs as for the PSUs, i.e., 150 DUs in urban areas
and 100 in rural. One SSU was selected with pps in each sample PSU. The
MOS for each SSU is a composite MOS based on 2000 census data adjusted
to more recent data from a commercial vendor.

The third stage consists of selecting an equal probability sample of DUs
within each sample SSU. In most SSUs, field personnel listed all DUs and a
sample was selected from the list. As noted in Sect. 10.1, a tract contains a
target of about 4,000 people but can have as many as 8,000. For large tracts
where it was uneconomical to list all DUs, a rough count was made of DUs on
the streets of a tract. Central office personnel then split the SSU into two or
more parts and one was selected for full listing. The fourth stage of selection
was of persons within a sample HU. The interviewer constructed a roster
of all eligible persons in the HU, and persons were selected with different
rates depending on their age (12–17, 18–25, and 26 or older). Sampling rates
were preset by age group and state. In a given household, 0, 1, or 2 persons
were selected using predefined sampling rates for five age groups within state
established during the design phase of the project. The roster information was
entered directly into an electronic screening instrument, which automatically
implemented the fourth stage of selection based on the state and age group
rates.

10.4.3 Panel Arbeitsmarkt und Soziale Sicherung

The Panel Arbeitsmarkt und soziale Sicherung (PASS) is a labor force survey
in Germany conducted by the Institute for Employment Research, a federal
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Fig. 10.3: Rotation plan for SSUs in the National Survey on Drug Use and Health.

agency.8 Its goals are to assess the effects of various unemployment and social
assistance programs. The data also allow the examination of questions like
(1) which factors help persons move from being unemployed to having a job,
(2) which pathways lead people into unemployment, and (3) how does the
personal situation (e.g., health, financial, integration in society) change for
people who receive such benefits.

PASS is a dual frame, longitudinal survey that provides a good example
of the use of administrative records that are available for sampling in some
European countries. PASS combines an area probability sample with a sample
of benefit recipients from an administrative database. A total of 300 postal
code areas (PSUs) are selected with probability proportional to population.
Within each sample PSU, two parallel samples are selected—one of recipi-
ents of assistance from an administrative record list and a second using an
address list that covers all persons. In each PSU a commercial database of
addresses provides the frame for the second sample. The commercial database
is comparable to the US Delivery Sequence File mentioned later in Sect. 10.7.
Various sources are used to construct indicators at the level of buildings for
recipiency status, residential mobility, predominant age groups, and type of
building. At least five households are aggregated to define a building. These
indicators are then appended to the frame of addresses.

From the list of recipients in each PSU, a sample is selected and informa-
tion collected for the entire household to which a recipient belongs. From the
address frame a sample is selected, the number of households at the address
determined, and one of the households is sampled. Information for the entire
household is then collected.

Being a dual-frame and longitudinal sample, PASS has some special weight-
ing issues that we will not pursue here. One issue is that the address list frame
includes the places where recipients live. Thus, a decision needs to be made
on whether a recipient should be allowed to enter the sample through both
sources or only through the recipient sample. In addition, PASS tracks per-
sons over time to determine how long they stay on assistance programs and
what may cause people to move into one of the programs. Tracking leads to

8 http://fdz.iab.de/de/FDZ Individual Data/PASS.aspx.

http://fdz.iab.de/de/FDZ_Individual_Data/PASS.aspx
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some difficult operational problems since 15% or more of persons may move
their residences in a typical year.

10.5 Composite MOS for Areas

As we noted in Sect. 10.4.2, the NSDUH uses a composite MOS for both
PSUs and SSUs. The purposes of the composite MOS are to get:

1. Self-weighting samples from each of several domains
2. Equal workload in each PSU, i.e., same total sample size in each PSU

(across all domains)

When all elements are to be sampled at the same rate, the calculation to
determine within-PSU sampling rates is simple. Suppose that the desired
overall rate is f and the selection probability of PSU i is πi. To obtain a self-
weighting sample, the within-PSU rate must be set so that πiπk|i = f where
k denotes any element in the PSU. This implies that πk|i = f/πi. Thus, the
within-PSU sampling rate is adjusted, depending on the selection probability
of the PSU, but the adjustment does not depend on domain membership.
The composite MOS technique refines this to allow self-weighting samples to
be selected within different domains while obtaining the same sample size
within each PSU across all domains.

10.5.1 Designing the Sample from Scratch

The presentation of the method here is somewhat simplified compared to
what is implemented in NSDUH and is based on Folsom et al. (1987). We
need the following notation:

Nd = Number of elementary units (i.e., the smallest unit of analysis) in a
unique domain d in population, e.g., the number of persons in an age
group

N =
∑D

d=1 Nd, the total number of elementary units in the population
nd = Desired sample size in domain d (values based on precision, power,

and budget considerations)

n =
∑D

d=1 nd, total sample size across all domains
fd = nd/Nd, desired sampling rate for units in domain d
Ni (d) = Number of elementary units in domain d in PSU i in the popula-

tion i ∈ U , the universe of PSUs
n̄ = Desired sample size in each PSU across all domains. This is the equal

workload requirement
m = Number of sample PSUs
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Note that the domains must partition the target population into mutually
exclusive groups. The age groups used in the 2005 NSDUH composite size
measures were 12–17, 18–25, 26–34, 35–49, and 50 years or older where the
people within the two youngest categories were oversampled. The composite
MOS for PSU i is defined to be

Si =

D∑
d=1

fdNi (d) . (10.1)

This is the expected sample size from domain d in the PSU if the desired
overall sampling rate for that domain were used. Suppose the PSUs are sam-
pled with probabilities proportional to Si so that Pr (i ∈ s) = πi = mSi/S+

where S+ =
∑

i∈U Si, the sum of the MOSs across all PSUs. The total MOS
can be written as

S+ =
∑

i∈U

∑D
d=1 fdNi (d) =

∑D
d=1 fd

∑
i∈U Ni (d).

That is, the sum of the MOSs equals the total desired sample size. Next, set
the desired sample size in PSU i and domain d to be

n∗
i (d) = n̄fd

Ni (d)

Si
. (10.2)

The within-PSU sampling rate for units in domain d is required to be

πk|i (d) =
n∗
i (d)

Ni(d)
= n̄

Si
fd. Thus, the within-PSU rate is a modification of

the overall rate. This is possible as long as fd ≤ Si/n̄ for all PSUs. Checking
whether any PSU violates this requirement is an important step in quality
control (see Chap. 18 for more details on quality checks).

Next, we can check the workload. Using the fact that Si =
∑

d fdNi (d),
the expected total number of sample units in PSU i is

∑
d n

∗
i (d) =

n̄
Si

∑
d fdNi (d).

That is, the within-PSU, domain sample sizes sum to the desired workload
in each PSU. The sample for a domain is also self-weighting in each domain.
Assuming that PSUs are picked pp (Si), the overall selection probability for
a unit k in domain d is

πiπk|i (d) = m
Si

S+

n∗
i (d)

Ni (d)
= m

Si

S+

n̄

Si
fd = fd,

where we use the fact that mn̄ = n = S+.

Example 10.1 (Composite measures of size). Suppose the sampling frame has
10 PSUs and that there are two domains. Table 10.1 lists the population
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counts of units by PSU and domain. We want to sample four PSUs and 45
units per sample PSU. The desired domain sampling rates and sample sizes
are given in Table 10.2.

Table 10.1: Population counts and composite MOSs for Example 10.1.

Ni (d) Total no.
of units in

Composite
MOS

PSU prob-
ability

Within-PSU prob-
ability, πk|i (d)

PSU Domain PSU Domain
d=1 d=2 Si πi d=1 d=2

1 50 50 100 17.5 0.389 0.643 0.257
2 50 30 80 15.5 0.344 0.726 0.290
3 50 90 120 21.5 0.478 0.523 0.209
4 50 40 90 16.5 0.367 0.682 0.273
5 50 25 75 15.0 0.333 0.750 0.300
6 70 40 110 21.5 0.478 0.523 0.209
7 50 80 130 20.5 0.456 0.549 0.220
8 50 65 115 19.0 0.422 0.592 0.237
9 50 30 80 15.5 0.344 0.726 0.290
10 50 50 100 17.5 0.389 0.643 0.257

Totals 520 500 1,000 180

Table 10.2: Desired sampling rates and sample sizes in Example 10.1.

Domain Sampling rate,
fd

Desired domain
sample size, nd

1 0.25 130
2 0.10 50
Total 180

In a small example like this, a spreadsheet is convenient for doing the calcula-
tions. For example, the expected total sample size in domain 1 is 0.25*520 =
130. From (10.1), the composite MOS for PSU 1 is 50*0.25 + 50*0.10 = 17.5;
for PSU 6 it is 70*0.25 + 40*0.10 = 21.5. The selection probability for PSU
1 is 4*17.5/180 = 0.389. The within-PSU sampling rate for units in PSU 1
and domain 1 is 45*0.25/17.5 = 0.643 using πk|i (d) = n̄fd/Si. The expected
sample size in PSU 1 is 50*0.643 + 50*0.257 = 32.1 + 12.9 = 45, which is
the desired workload. Although the PSU-level workload is an integer, notice
that the expected sample sizes in each domain are not. Thus, it is impor-
tant to sample the domain units at the specified rates—not by sampling a
fixed number of units based on rounded off sample sizes. We can also check
that the sample for each domain will be self-weighting. Taking PSU 8 as an
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illustration, the selection probability for units in domain 1 is 0.422*0.592 =
0.25; for domain 2, we have 0.422*0.237 = 0.10.

More Than Two Stages of Sampling

The calculations above are for a two-stage sample—PSUs followed by units
within domains. If we interpose other stages of sampling between PSUs and
elementary units, the selection probabilities still work out. The key require-
ment is that both PSUs and subareas must be selected with probabilities
proportional to the composite MOS. Suppose that the design uses PSUs,
SSUs, and elements as the stages of selection. Define:

Qij (d) = Number of elements in PSU i, SSU j that are in domain d
Qi+ (d) = Number of elements in PSU i that are in domain d
Sij =

∑
d fdQij (d) to be the composite MOS for SSU j in PSU i

Ui = Universe of SSUs within PSU i
m = Number of sample PSUs
n = Number of sample SSUs in each PSU
¯̄q = Average number of elements selected and interviewed per SSU (i.e.,

inflated for sample loss associated with ineligibility and nonresponse)

Assuming that both PSUs and SSUs are sampled pps using the compos-
ite MOS, the selection probability of SSU ij is πiπj|i = m Si+

S++
n

Sij

Si+
=

mn
Sij

S++
where Si+ =

∑
j∈Ui

Sij =
∑

d fdQi+ (d) and S++ =
∑

i∈U Si+ =∑
d fdQ++ (d). Note also that S++ = mn¯̄q, the total sample size. Next, set

the expected number to be sampled from domain d in PSU/SSU ij to be
q∗ij (d) = ¯̄qfdQij (d) /Sij and the sampling rate within PSU/SSU ij to be
πk|ij (d) = ¯̄qfd/Sij . The overall selection probability is then

πiπj|iπk|ij (d) = mn
Sij

S++

¯̄q

Sij
fd =

mn¯̄q

S++
fd = fd

so that the desired overall rate is obtained. The workloads per SSU and PSU
are ∑

d

q∗ij (d) = ¯̄q
1

Sij

∑
d

fdQij (d) = ¯̄q

and ∑
d

∑
j∈si

q∗ij (d) = ¯̄q
∑
j∈si

1

Sij

∑
d

fdQij (d) = n¯̄q.

That is, the workload is the same in each SSU and PSU. Note that the
population count of elements in SSU ij does not have to be nonzero in every
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domain for this to be true. The SSU MOS Sij may be based on only the
subset of domains that have elements in the SSU.

As in the case of two-stage sampling, quality control checks are important.
For example, determine whether:

1. q∗ij(d) ≤ Qij(d) for every SSU and domain. Since q∗ij(d) = ¯̄qfdQij(d)/Sij ,
this is equivalent to fd ≤ Sij/¯̄q. Note that if Qij(d) = 0, then n∗

ij(d) = 0
so that an attempt will not be made to sample something from nothing.
But, the algebra may well result in an attempt to sample more from a
domain in an SSU than the population can support.

2. ¯̄q ≤ Qij in every SSU.
3. n¯̄q ≤ Qi+ in every PSU.
4. πi, πj|i , and πk|ij are all less than or equal to 1.

If any of these conditions are violated, then small PSUs or SSUs can be
combined with others.

10.5.2 Using the Composite MOS with an Existing
PSU Sample

Some survey organizations select a general purpose PSU sample once a
decade using new census information and use that sample for ten years (or
more). This “every x -year selection approach” was commonplace in the past
because designing and selecting a national PSU sample was difficult and time-
consuming. Now, some organizations are set up to do this more efficiently.
When a PSU sample is used for a number of years, the PSUs will probably
not be selected with the composite MOS appropriate for a new survey. SSUs
can be selected with the composite MOS that reflects the desired domain
subsampling rates. In this situation, only one of these goals can still be met:

1. Select a self-weighting sample for units in each domain, but have different
sampling rates for the domains.

2. Obtain a constant workload in each PSU.

Suppose the sample design uses PSUs, SSUs, and elements with SSUs as the
stages of sampling. The notation here is the same as above. We will also use

Uij (d) = the universe of elements in domain d in SSU ij.
For the sample to be self-weighting we need πiπj|i πk|ij (d) = fd, which implies

that πk|ij (d) = fd
/ (

πiπj|i
)
. This conditional sampling rate can be used

regardless of how the SSUs are selected as long as fd ≤ πiπj|i for every PSU
and segment.

The expected sample size in PSU i, i.e., the workload, is

∑
d

∑
j∈Ui

πj|i
∑

k∈Uij(d)
πk|ij (d) =

∑
d

∑
j∈Ui

πj|i
∑

k∈Uij(d)
fd

πiπj|i
.
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For an equal workload in every PSU, we need this to equal mn̄. The
expected sample size Si+/πi depends on the PSU i and, in general, cannot
be made a constant. In Sect. 10.5.1, the math worked out to have the same
workload in each PSU when the PSUs were selected with pp (Si) because
πi = mSi/S+ and Si/πi = S+/m which is a constant. However, the PSU
selection probability does not have this special form in all samples.

The variation in workload will depend on how much Si+/πi varies. In
practice, it’s desirable to have integer multiples of some minimum workload
per PSU. The PSU sample sizes might be set to have enough workload for 1,
2, or 3 interviewers. Typically the workload is set to be large enough for at
least two interviewers. Having only one interviewer is chancy because if that
interviewer quits or cannot work for some other reason (sick, family reasons,
etc.), there is no backup. A new replacement person would have to be hired
and trained. Alternatively, an interviewer from another area might travel to
the PSU to collect data.

Two Ways to Implement the Design

Suppose that the MOS for SSU j in PSU i is computed as S′
ij =∑D

d=1 fdNij (d) /πi. This is the expected sample size if elements in domain
d, SSU i were sampled directly at rate fd/πi. The sum of these MOSs is

S′
i+ =

∑
j∈Ui

S′
ij .

This is the expected workload in PSU i when elements are sampled at rate
fd/πi. If the SSUs within PSU i are selected with probabilities proportional
to S′

ij , then πj|i = mS′
ij

/
S′
i+. Option 1 is to set the sampling rate in SSU

ij to be πk|ij (d) = fd
/ (

πiπj|i
)
. This is self-weighting since πiπj|iπk|ij (d) =

πiπj|i fd
/ (

πiπj|i
)
= fd. The workload is not constant because

∑
d

∑
j∈Ui

πj|i
∑

k∈Uij(d)

πk|ij (d) = Si+/πi

as shown above.
A second option is to set the sample size in SSU ij to be

n∗
ij (d) =

n̄fd
πiS′

ij

Nij (d) =
n̄fd
Sij

Nij (d) .

Assuming an equal probability sample is selected from the elements in SSU
ij in domain d, the selection probability is then

πk|ij (d) =
n∗
ij (d)

Nij (d)
=

n̄fd
πiS′

ij

=
n̄fd
Sij

.
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For this to be feasible, we must have fd ≤ Sij/n̄. The sample does not achieve
the desired overall sampling rate in each domain because

πiπj|i πk|ij (d) = πi

mS′
ij

S′
i+

n̄fd
πiS′

ij

=
mn̄

S′
i+

fd 	= fd. (10.3)

Note that the sampling rate for units in domain d is the same in every SSU
in PSU i since (10.3) does not depend on j. The problem is that S′

i+ =∑D
d=1 fdNi (d)

/
πi is not a constant in each PSU. However, the workload is

constant because

∑
d

∑
j∈Ui

πj|i
∑

k∈Uij(d)
πk|ij (d) =

∑
d

∑
j∈Ui

mS′
ij

S′
i+

∑
k∈Uij(d)

n̄fd
πiS′

ij
.

For a given PSU sample, making calculations using the two options will allow
you to weigh the alternatives.

Example 10.2 (Subsampling with an existing PSU sample: obtaining a self-
weighting sample). Table 10.3 shows the counts and composite measures of
size in two PSUs from a larger PSU sample. Two SSUs are to be selected from
each PSU. The first PSU contains four SSUs; the second has five SSUs. The
desired rates for domains 1 and 2 are 0.015 and 0.035. The SSU composite
MOS is calculated as S′

ij =
∑D

d=1 fdNij (d) /πi. For example, the MOS for
SSU 3 in PSU 1 is (5*0.015 + 90*0.035)/0.1117 = 28.9. Sampling SSUs with
pp
(
S′
ij

)
gives πj|i = 0.0.643 for PSU 1, SSU 3. The within-SSU sampling

rate for domain d is πk|ij (d) = fd
/ (

πiπj|i
)
. For PSU 1, SSU 3, this is

0.015/0.1117/0.643 = 0.209 for domain 1. This combination produces a self-
weighting sample in each domain. In PSU 1, SSU 3, the selection probability
for elements in domain 1 is πiπj|iπk|ij (1) = 0.1117*0.643*0.209 = 0.015. For
domain 2 in that SSU we have 0.1117*0.643*0.487 = 0.035. However, the
expected sample size is not the same in each PSU. In PSU 1, the expected
workload is 2*44.9=89.8 while it is 2*39.4=78.8 in PSU 2, which the reader
can verify. These are different from the expected workload per PSU based on
the overall domain rates: (0.15*4000 + 0.035*2000)/2 = 65.

Example 10.3 (Subsampling with an existing PSU sample: obtaining equal
workloads). Table 10.4 repeats the counts and composite measures of
size from Example 10.2. The SSU composite MOSs are the same as
in the preceding example. The desired rates for domains 1 and 2
are again 0.015 and 0.035. The desired sample size in each SSU is
n̄ = 65/2 = 32.5. Sampling two SSUs with pp

(
S′
ij

)
gives πj|i = 0.0.618

for PSU 1, SSU 3, as in Example 10.2. The within-SSU sampling rate
for domain d is πk|ij (d) = n̄fd

/ (
πiS

′
ij

)
. For PSU 1, SSU 3, this is

32.5*0.015/0.1117/28.9 = 0.151 for domain 1. For domain 2 in PSU 1,
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SSU3, the rate is 32.5*0.035/0.1117/28.9 = 0.353. This combination pro-
duces the same workload in each SSU. For instance, in PSU 1, SSU 3, the
expected sample size is 5*0.151 + 90*0.353 = 32.5. On the other hand, the
sample is not self-weighting. The selection probabilities for domains 1 and
2 are 0.011 and 0.025 in PSU 1 but are 0.012 and 0.029 in PSU 2. In this
example, the sample is not far from self-weighting, but this is not always
true.

10.6 Effects of Population Change: The New
Construction Issue

SSUs (BGs, tracts, etc.) for area samples and multistage designs in gen-
eral are almost always selected with probabilities proportional to some MOS.
Examples of MOSs are:

• Total population
• Total households
• A weighted combination of domain population counts (e.g., the composite

MOS discussed in the previous sections)

Generally speaking, the larger the relative MOS of an area, the larger its
selection probability will be in most designs. If these are based on decennial
census data, the farther the date of sample selection is from the census, the
more out-of-date these counts get. Table 10.5 shows the growth rates for pop-
ulation and housing units between censuses from 1960 to 2000. The country
increased in population by about one hundred million over this period. Notice
that the growth in housing units (HUs), which are usually sampled at some
stage of a household survey, does not equal the growth in population. The
1960s and 1980s saw a relatively large increase in HUs compared to popu-
lation. As Table 10.6 illustrates, there can be a lot of regional variation in
the growth rates. Nevada and Arizona are popular retirement destinations.
During the 1990–2000 period, this led to a boom in construction with many
new housing units being built. Between 2000 and 2010, the growth continued
in the same states. Other areas, like the District of Columbia, had low growth
or lost population from 1990 to 2000 but resumed growing between 2000 and
2010.

Small areas may be especially affected by population changes between
censuses. Some MOSs will be too big (due to demolitions, vacancies, and
natural disasters); some will be too small due to new construction. Either of
these can lead to some severe inefficiencies in a sample design. For example, in
2005, a hurricane destroyed large sections of New Orleans on the coast of the
Gulf of Mexico in the southern USA. Entire residential neighborhoods were
destroyed and not rebuilt for years. As of 2011, some neighborhoods were still
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Table 10.5: Change in US population between decennial censuses.

Population Housing units

Year Total Percent change Total Percent change

from last census from last census

1960 179,323,175 18.5 58,326,357 26.4

1970 203,302,031 13.4 68,704,315 17.8

1980 226,542,199 11.4 88,410,627 28.7

1990 248,709,873 9.8 102,263,678 15.7

2000 281,421,906 13.2 115,904,641 13.3

2010 308,745,538 9.7 131,704,730 13.6

Sources: U.S. Census Bureau (1991, 2001a,b) and Bell et al. (1999)

Table 10.6: Percentage change in population and housing units, 1990–2000, for
selected states.

State Percent change 1990–2000 Percent change 2000–2010

Population housing units Population housing units

Nevada 66.3 59.5 35.1 41.9

Arizona 40.0 31.9 24.6 29.9

Utah 29.6 28.4 23.8 27.5

New York 5.5 6.3 2.1 5.6

Connecticut 3.6 4.9 4.9 7.4

District of Columbia −5.7 −1.3 5.2 8.0

vacant. Using Census 2000 data on population counts would lead to tracts
and BGs being sampled that have virtually no people living in them. This
would reduce sample size and lead to expensive and unproductive fieldwork
if personnel are sent out to attempt interviews in vacated areas.

In other cases, construction of new housing will result in the census counts
being far too small. Consequently, an SSU may be selected with a smaller
probability based on out-of-date population counts than it deserves based on
its actual size. To illustrate the problem, suppose that the design calls for
HUs within a sample SSU to be selected at rate 1/4 and the census count of
HUs (the MOS) is 100. Field staff arrive at the SSU to count and list all HUs
contained within the area and discover that a new apartment complex has
been built so that the actual total of housing units is 500. With the rate of
1/4, the expected sample size is 25 (= 100×0.25). If we use the planned rate,
the actual sample size will be 125 (= 500× 0.25). The larger sample size is
probably statistically inefficient because the intraclass correlation, discussed
in Chap. 9, will be high for at least some variables. It is also likely that neither
the budget nor the time schedule can tolerate an extra 100 interviews.

There are several approaches to handling this problem. One is to use the ini-
tially planned sampling rate, which has the disadvantages just noted. Another
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is to reduce the sampling rate to follow the initial plan of selecting 25 sample
units. In that case, the weights for each unit within the SSU will be 20 instead
of 4. This may create an undesirable disparity with weights in other SSUs,
which in turn may increase variances (see Sect. 14.4.1). Other modifications
of the sample design can be used that may be preferable. The Census Bureau
does publish annual updated population estimates for all counties and for
incorporated places. 9 These may be of some use in partially updating popu-
lation counts for some subcounty areas. But, since places do not necessarily
coincide with census tracts or block groups, the population estimates cannot
be used to update the measures of size of the units normally used to construct
SSUs.

This issue is referred to as the new construction problem. The problem is
one of efficiency rather than bias. If nothing special is done, existing neigh-
borhoods with new construction will have some chance of selection in an area
sample and will probably not be missed entirely. Since all areas have some
chance of being selected, some new construction is likely to be selected by
chance. But, in the one sample you do select, major developments could be
missed. This causes face validity problems. As a result, methods have been
devised to avoid glaring omissions. The ones we cover here are based on Bell
et al. (1999) and Montaquila et al. (1999).

Option 1: Sample Building Permits

Local governments in the USA usually require that building permits be
obtained when new construction projects are undertaken. Permits are
required to insure that the planned construction does not violate zoning
ordinances. The general idea in this option is to get lists of permits issued by
local jurisdictions and sample from those lists. One source of information is
the Census Bureau’s building permit survey (BPS), which is a monthly sur-
vey of building permit offices. Aggregate statistics are published for counties
and places (e.g., cities, and incorporated places) on the number of permits
issued, HUs authorized, and valuations. From these statistics, a judgment
can be made about whether individual sample PSUs will require special, new
construction samples. Once a jurisdiction has been identified as needing a
new construction sample, local permit offices must be visited to obtain the
addresses for new construction projects. One could compile a complete list of
permits to use as a sample frame. If the number of permits is large, an option
is to form new construction “segments” defined by local permit issuing office
and time period. For example, suppose the desire is to select a sample of
permits for the period July 2003 through June 2006 in Montgomery County,

9 www.census.gov/popest/estimates.html.

www.census.gov/popest/estimates.html
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Maryland (MD). Segments, created to have permits for about the same
number of housing units, might be:

• All residential permits issued by Gaithersburg, MD, permit office the peri-
ods (1) July 2003–June 2004, (2) July 2004–June 2005, and (3) July 2005–
June 2006 (The Gaithersburg office is the main issuer of permits in the
county)

• All permits issued by (4) the other Montgomery County, MD, permit
offices between July 2003 and June 2006

A sample of two of these four segments might be selected with probability
proportional to number of permits. The selected local permit offices would be
visited and lists of the permits themselves obtained. The HUs corresponding
to the permits would be listed and a subsample selected. The new construc-
tion HUs might be selected only from the permit frame, not from the area
sample. Alternatively, overlap in the permit and area frame units may be
allowed; however, the associated selection probability for a unit in both lists
is somewhat more complicated to calculate. The implications of these two
scenarios for weighting are described below.

The advantages of the building permit option include (1) some new con-
struction is guaranteed to be sampled and (2) unplanned variation in the size
of area segments is controlled. Disadvantages of this option are:

1. About 5% of new HUs are built in areas that do not require permits.
2. Building permits are not required for placement of mobile homes. These

are usually in mobile home parks, which are common in some areas, but
nonexistent in others.

3. The fact that a permit is issued does not mean that an HU was ever built;
however, only about 1% are not built. Thus, the permit list may contain
a small number of ineligibles.

4. There may also be a delay between the time that a permit is issued and
an HU is actually built. In the example above, some HUs may be built in
the period July 2003–June 2006 may have had their permits issued before
July 2003. On the other hand, some construction projects associated with
permits issued in July 2003–June 2006 will not be built until later.

5. Some permit offices are uncooperative or have poor records. This can
make dealing with them expensive and unproductive because of the extra
personnel time needed to access and process the records.

6. Sample permit cases are not necessarily clustered. This may increase travel
costs for interviewing.

An operational problem is handling the HUs on both the area and the permit
sample properly for weighting. If the rule is used that an HU on the permit
frame can only be selected from that frame, then it must be determined
whether an HU in the area sample could have been picked through the permit
sample. If it could, then the unit would be removed from the area sample
frame. To decide whether an area sample HU was on the permit frame is
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easier said than done. Matching an address for an area sample HU is usually
error-prone because of variations of addresses that can be used.

An alternative is to have the field personnel guess whether an HU was built
in the period covered by the permit frame. This is easy for older housing but
not for newer ones. The respondents in the area sample can be asked when
their HU was built. Any area sample HUs would be excluded that are reported
to have been built in the period covered by the permit frame. Field personnel
are not equally accurate at estimating the age of a housing unit, and not
everyone knows the construction date of their HU. Thus, this method, too,
is error-prone.

Another possibility is to allow new construction to be selected in either
the area or permit samples. The selection probability could be computed as

Pr (HU selected in area sample) + Pr (HU selected in permit sample)
−Pr (HU selected in both).

This does not unambiguously solve the problem either since we must still
identify those units that had a chance of selection from both frames. With
this option, less than perfect control over both the outcome of the fieldwork
and the weighting is inevitable (although one can say this about almost every
survey).

Option 2: Two-Phase Sample of Segments

As should be clear from the considerations above, using a permit sample is
not straightforward. A somewhat simpler procedure is to use a variation on
two-phase sampling. We will cover the general topic of multiphase sampling
in Chap. 17, but the application to new construction is easy to understand.
The general idea is to select an extra large sample of area segments or SSUs
and update the MOS for each. Then, select a subsample of the first-phase
segment sample using the updated MOSs. More specific steps are:

1. Use the Census BPS data to update population counts in individual places
in a PSU.

2. Convert the HU counts from the BPS to counts of persons using a conver-
sion factor for persons per HU, e.g., 2.6 persons per HU might be used.

3. Apply the place-specific population adjustment to every SSU contained
in the place. This gives a new set of measures of size for the SSUs in the
PSU.

4. Select a large sample of SSUs. Montaquila et al. (1999) suggest that the
first-phase sample be 5–10 times larger than the number of SSUs ulti-
mately desired. This is a large multiple, and the cost of handling SSUs
will determine how large the first-phase sample of SSUs can be.

5. “Counters,” i.e., experienced field listers (Sect. 10.3.2), then travel to the
first-phase SSUs and count the HUs. Satellite pictures may help in this
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task. These do not have to be perfect but should identify areas where the
HU count has changed substantially since the date to which the frame
MOSs refer.

6. Update the measures of size for each SSU based on the field counts.
7. Select a second-phase sample of segments from all the first-phase units

using the new MOSs.

This method has several advantages. It does lead to the SSU sample being
selected with MOSs that are a better reflection of the current population
sizes in areas where there has been considerable change. This approach will
identify areas where there has been growth and also ones where demolitions
were common. This may be especially relevant where natural disasters have
hit. All SSUs become regular area SSUs. There is no need to deal with permit
offices, which can be a costly nuisance in some areas. Travel time is reduced
for interviewers since all sample HUs are clustered by area SSU. The screening
question about whether an HU was built in the last decade (or some other
specified time period) is eliminated.

There are, of course, disadvantages. The main one is that counting of first-
phase segments is an extra cost, exhibited both in calendar time and project
funds. This added field cost may even be more than for permit sampling.
Training materials have to be developed for counters, the training conducted,
and the field counting must be done. A data processing system is needed to
incorporate the updated information on SSUs.

Finally, we note that a combination of permit and two-phase sampling of
SSUs could be used—permit in high-growth areas and two phase (or neither)
in the low growth.

Option 3: Half-Open Interval Technique

The final option we discuss is one that has been in practice since the 1960s.
The “half-open interval” (HOI) procedure is attributed to Kish (1965) as a
method to ensure HU frame coverage in a geographic area already selected
for a survey. With the HOI procedure, field staff members are provided with
a frame listing for a particular area, sorted in some order. Their task is
to identify any HUs not on the frame (e.g., new construction) that exist
between the sampled HU and the next HU on the list. Any newly discovered
units are automatically included in the sample. The HOI procedure, as noted
by many researchers, is effective only when field interviewers are trained
extensively and the technique properly implemented (Eckman 2010; Eckman
and O’Muircheartaigh 2011).
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10.7 Special Address Lists

Area household sampling may be impractical for surveys with a limited bud-
get or a small data collection window. As noted previously, the development
of an HU frame through counting-and-listing procedures (either with or with-
out HOI) may take months. Iannacchione et al. (2003) turned to a residen-
tial mailing list frame as a cost-effective way to randomly select and survey
approximately 15,000 households in 2000 for the Dallas Heart Study (Victor
et al., 2004). A random subset of the respondent pool were asked to provide
blood and urine samples at the end of the interview, hence the need for in-
person data collection. This seminal project opened a new area of research
known widely now as address-based sampling or just ABS. The research to
date including coverage of this type of frame is synthesized in a paper by
Iannacchione (2011) and summarized below.

All ABS sampling frames in the USA generally derive from a single source—
the US postal service (USPS) address management system (AMS). Informa-
tion contained in this system include: street name and number, mailbox num-
ber (if appropriate), city, state, nine-digit ZIP code, the delivery-sequence
number (order that a USPS carrier delivers mail), and address vacancy indi-
cators. Only commercial vendors that apply and qualify for a license may
access the USPS-AMS data through an electronic file called the computer-
ized delivery sequence (CDS) file. Other mailing-address files, referred to as
data products, are available to the vendors. However, the CDS in combina-
tion with the CDS No-Stat file containing, among other things, the addresses
of HUs under construction has been shown to have nearly complete coverage
of the US household population (Iannacchione, 2011).

In addition to the USPS-AMS characteristics, commercial vendors of sur-
vey samples sell “enhanced” versions of the CDS. The enhancements can
include landline telephone numbers, a name associated with the address,
Spanish surname indicator, estimated age of the head of household, as well
as some geocoded (i.e., latitude and longitude) and census tract information.
The geocoding information is required to map ABS geography to census geog-
raphy (Sect. 10.1). The quality of this information depends on factors such
as the address-telephone number match rate, age of the household contact
information, geocoding errors attributed to the approximate mapping of the
mailing address to a physical location, and the number of HUs linked to a
particular mailing address.

At least four advantages of the CDS are noted in the literature. First,
data collection costs may be reduced either by using the list frame informa-
tion directly in combination with an HOI technique in lieu of counting-and-
listing procedures or by providing listing personnel with starting information.
Researchers have noted problems with this first advantage. For example, a
list of articles cited in Iannacchione (2011) point to varying levels of undercov-
erage in ABS frames for rural areas of the USA. Additionally Eckman (2010)
found that field staff tends to ratify that the starter list is correct rather than
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checking for omissions—an issue for ABS as well as when the HOI procedure
is implemented regardless of the sampling frame.

A second advantage is that unclustered samples can be selected within a
PSU, which will reduce the SE of many estimates. The cost implications can
be minimal only if the size of the PSUs, measured in terms of travel distance
for field staff, is not large. Third, if accurate, the household-level items, like
race/ethnicity and age, can improve the efficiency of a sample by enabling
the targeting of different groups. Fourth, again if the contact information is
correct, then several modes may be used to contact sample members with
the ultimate goal of increasing response rates.

Even though the moniker ABS may be specific to the USA, the use of
residential mailing lists as survey sampling frames is not unique. For exam-
ple, samples for the British Household Panel Survey (http://www.iser.essex.
ac.uk/bhps) have been drawn from the postcode address file (PAF),10 a file
containing approximately twenty-eight million UK residential and business
addresses. As part of the 2008 European Social Survey, researchers selected
random samples using “postal delivery points” supplied by the Croatian
Postal Service.11

10 www.postcodeaddressfile.co.uk.
11 ess.nsd.uib.no/ess/round4/surveydoc.html.

http://www.iser.essex.ac.uk/bhps
http://www.iser.essex.ac.uk/bhps
www.postcodeaddressfile.co.uk
ess.nsd.uib.no/ess/round4/surveydoc.html
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Exercises

10.1. A survey of the hamlet of Loon Lake will be conducted to determine
the health status of the local population. The town has four census tracts and
two will be sampled. The Census 2000 population counts and the number of
permits issued since the year 2000 are shown below. Suppose that two tracts
are to be sampled with probabilities proportional to the census counts. A
self-weighting sample of 300 persons will selected.

2000 Census Permits issued
Tract population since 2000
1 6,000 0
2 5,200 100
3 2,120 875
4 3,700 6
Total 17,020 981

(a) Determine the selection probabilities of the tracts using the census popula-
tion counts, the within-tract sampling rates of persons, and the expected
number of persons selected per tract.

(b) Next, use the number of permits issued to get an updated estimate of
the number of persons in each tract. Assume that there are 2.6 persons
associated with each housing unit and that a permit is associated with
one HU.

(c) Using the sampling rates computed in (a) and the updated population
counts from (b), how many persons do you expect to sample in each tract
if it is one of the two selected? Discuss the effects on workload of using
the out-of-date population counts.

(d) Using the updated population estimates, compute selection probabilities
for tracts, within-tract sampling rates of persons, and expected number
of sample persons in each tract. Discuss how these compare to those in
(a) and (c).

10.2. The following table shows a population of four PSUs with the counts of
persons in each of two domains in each PSU. Suppose that the desired overall
sampling rates for the domains are f1 = 0.05 and f2 = 0.10. You want to
select a sample of two PSUs with probabilities proportional to the composite
MOS described in Sect. 10.7.

PSU Ni (1) Ni (2) N
1 50 50 100
2 20 100 120
3 90 60 150
4 160 70 230

Totals 320 280 600
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Compute the following:

(a) Total expected sample sizes for the two domains.
(b) Composite MOS for each PSU and the total across PSUs. Verify that the

grand total equals the total expected sample size.
(c) Selection probability for each PSU.
(d) Expected domain sample size and domain sampling rate within each PSU.

Are the expected sample sizes integers? If not, what method can be used
for sampling within a PSU that will achieve the desired rate?

(e) Verify that the expected sample sizes for any two of the PSUs sum to the
total expected sample size you computed in (a).

10.3. A two-stage survey of persons is to be done in which 5% of persons age
35 and under and 15% of persons over 35 will be sampled. Four PSUs will
be selected using the composite MOS defined in Sect. 10.5. A self-weighting
sample is to be selected within each domain, and the workload should be the
same in each selected PSU. Compute the following:

PSU Domain Total count
Ni (d) Ni

≤ 35 , d=1 >35, d=2
1 80 20 100
2 60 20 80
3 50 90 140
4 80 10 90
5 50 25 75
6 90 20 110
7 50 80 130
8 50 65 115
9 55 25 80
10 50 50 100

Totals 615 405 1,020

(a) Total expected sample sizes for the two domains and the total sample size
across domains.

(b) Composite MOS for each PSU and the total across PSUs. Verify that the
grand total equals the total expected sample size.

(c) Selection probability for each PSU.
(d) Domain sampling rate and expected domain sample size within each PSU.

Are the expected sample sizes integers? If not, what method can be used
for sampling within a PSU that will achieve the desired rate?

(e) Verify that the expected sample sizes for any four of the PSUs sum to the
total expected sample size you computed in (a).
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10.4. The two PSUs below are an existing PSU sample selected some years
ago. A new survey is to be done in these PSUs. The selection probabilities
for PSU 1 and PSU 2 were 0.5 and 0.3. These are fixed and cannot be altered.
The goal is to select a sample from domains 1 and 2 at rates 0.030 and 0.125.
Within each domain, the sample is to be self-weighting. Two sample SSUs
will be selected in each PSU.

PSU probability Domain popula-
tion size
Nij (d)

Total
population

PSU πi SSU d=1 d=2 Nij

1 0.1263889 1 40 80 120
1 0.1263889 2 25 45 70
1 0.1263889 3 35 90 125
1 0.1263889 4 105 35 140

2 0.2805556 1 80 180 260
2 0.2805556 2 40 200 240
2 0.2805556 3 20 85 105
2 0.2805556 4 85 150 235
2 0.2805556 5 110 60 170

Pop totals 5,000 2,200 7,200
(includes all

PSUs in frame)

(a) Compute the expected sample sizes in each domain in each SSU and the
total sample size in each SSU across the domains. Assume that rates of
0.03 and 0.01 are used for domains 1 and 2. Note that the population
totals for the domains are 5,000 and 2,200 as shown in the table above.

(b) Compute the composite MOS for each SSU using the method in Sect. 10.5.
(c) Compute the SSU selection probabilities assuming that the SSU sample

will be selected with probabilities proportional to the composite MOS.
(d) Calculate the within-SSU probabilities required for the sample in each

domain to be self-weighting.
(e) Compute the expected workload in each SSU if it were to be sampled.

Are these equal? If not, explain why.
(f) Verify that the SSU and within-SSU probabilities computed in (c) and

(d) do yield a self-weighting sampling in each domain.
(g) Determine a sampling scheme for SSUs and units within SSUs that will

give an equal workload in each SSU. Carry out the calculations for SSU
and within-SSU selection probabilities, and verify that the total expected
sample size across the two domains is the same in every SSU.

(h) Does the scheme you designed in (g) lead to a self-weighting sample? Why
or why not? Support your answer with calculations.



Chapter 11

The Area Sample Design: One Solution

The project in Chap. 8 requested that you design a sample of twenty-five
census tracts (m = 25) and one block group per sample census tract (n=1).
The desired total sample size is 1,000 persons which was split equally among
five age groups. Thus, the requirement for an equal workload per block group
(BG) leads to ¯̄q = 1, 000/ (mn) = 40 persons in each BG. Table 11.1 shows
the population counts from the 2000 census for the five age domains. Each
domain was to receive a sample size of 200. The implied sampling rates range
from about 0.12% for ages 25–44 to 0.51% for ages 18–24.

Table 11.1: Population, sample size, and overall sampling rate for five age domains
in Anne Arundel County, Maryland.

Age domain Population Percent of Sample size Domain sampling

d population (%) rate fd (%)

18–24 39,448 10.76 200 0.5070

25–44 160,940 43.92 200 0.1243

45–54 71,657 19.55 200 0.2791

55–64 45,637 12.45 200 0.4382

65+ 48,765 13.31 200 0.4101

Total 366,447 100.00 1,000 0.2729

Since a self-weighting sample within each age group is desired along with
the same workload in each PSU, the composite measure of size (MOS)
method, described in Sect. 10.5, can be used. In particular, the composite
MOS for BG j in tract i is

Sij =
∑
d

fdQij (d) ,

R. Valliant et al., Practical Tools for Designing and Weighting
Survey Samples, Statistics for Social and Behavioral Sciences 51,
DOI 10.1007/978-1-4614-6449-5 11, © Springer Science+Business Media New York 2013
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where Qij (d) is the number of persons in age group d in tract i and BG j.
The MOS for tract i is then Si+ =

∑
j∈Ui

Sij =
∑

d fdQi (d) where Ui is the
set of all BGs in tract i. The total MOS across all tracts and BGs is S++.
The project assignment asks you to select tracts and BGs using Sampford’s
procedure, which is one method of probability proportional to size selection
in which joint selection probabilities can be computed. If we select a pp (Si+)
sample of tracts followed by a pp (Sij) sample of 1 BG in each tract, then the
selection probability of that BG is

πij = πj|i πiπj|i = 25
Si+

S++

Sij

Si+
= 25

Sij

S++
.

This is the same selection probability that would be obtained by selecting
a sample of 25 BGs directly from the frame of BGs. However, notice that
this sample design of selecting tracts first, followed by a single BG per tract,
is not the same as selecting BGs directly. If we selected BGs directly using
Sampford, all pairs of BGs would have non-zero joint selection probabilities.
Since we select tracts and then 1 BG per tract, the joint selection probability
of any two BGs in a given tract is zero.

The spreadsheet, AnneArundel.MD.solution.xls, shows the value of
the composite MOS for each tract and BG, along with population counts by
age group, and a variety of other calculations. Note that some ages are out of
scope for this survey (0–5 years, 6–11, 12–17). These are excluded from the
composite MOS.

A number of quality control checks must be made to determine if some
small BGs should be combined with others. Among the checks are whether
each BG will provide an adequate workload and whether some BGs will have
relatively small selection probabilities and, therefore, large weights relative
to other BGs. Combining of BGs terminates when each workload is adequate
and no weight will be extremely different from the ones. Creating PSUs that
are geographically large is undesirable because limiting interviewer travel may
also be a goal.

The first check is whether sampling at the desired rates is possible in all
BGs. As outlined in Sect. 10.7, the expected number of persons sampled in
each domain in each SSU (BG) should be less than the population count in
the SSU. Also, the sum of these expected counts in a BG across the domains
must be less than the population in the BG. There are six BGs that violate
the requirement that q∗ij (d) ≤ Qij (d) where q

∗
ij (d) is the expected number of

sample persons in BG ij from domain d. The six are shown in Table 11.2. Each
violates the sample size constraint in at least one age group. For example,
tract 701400, block group 3 has a population of 16 in the 25–44 group, but the
sampling algorithm requires an expected sample size of 16.4; the population
is 7 in the 65+ group, but the desired sample size is 23.6. A borderline case is
tract 741100 where the population of 18–24 is 10 and the sample is to be 10.1.
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Two other BGs are shown in Table 11.2 that have no population in any
of the in-scope age groups. These could be left in the frame in case some
eligible people have moved in since the 2000 census. Or, if we are confi-
dent that the entire BG is out of scope, it could be classified as ineligi-
ble and dropped from the frame. In fact, inspection of the map in Anne
Arundel.blkgrps(streets).pdf reveals that the tract.BGs 740602.1
and 740603.1 are on a military reservation or in a wildlife preserve in the
western part of the county. If the eligible universe covers only the noninsti-
tutional household population, it might be safe to drop these BGs. Instead,
we combined them with BG 2 in their respective tracts for this exercise. The
other deficient BGs were combined with other tracts.BGs as shown in the
table.

There is also one tract that has a relatively small selection probability
based on the initial calculations. Tract 741100 has a selection probability of
0.005; the next smallest is 0.022. This smallest tract contains a single BG,
which, as shown in Table 11.2, was combined with tract.BG 740603.2. Tract
741100 is, thus, combined with tract 740603.

Table 11.2: Block groups where the expected workload exceeds the population count.

Tract BG 18–24 25–44 45–54 55–64 65+ Action: combine

with tract.BG

701400 3 Population 0 16 0 0 7 701400.2

701400 3 Workload 0 16.4 0 0 23.6

740602 1 Population 0 0 0 0 0 740602.2

740602 1 Workload NA NA NA NA NA

740603 1 Population 0 0 0 0 0 740603.2

740603 1 Workload NA NA NA NA NA

740603 3 Population 5 101 0 0 0 740603.2

740603 3 Workload 6.7 33.3 0 0 0

741100 1 Population 10 42 16 12 0 740603.2

741100 1 Workload 10.1 10.4 8.9 10.5 0

750600 1 Population 0 0 45 0 7 750600.2

750600 1 Workload 0 0 32.6 0 7.4

750700 2 Population 0 4 0 0 0 750700.1

750700 2 Workload 0 40 0 0 0

750801 5 Population 0 21 30 8 0 750801.4

750801 5 Workload 0 7.2 23.1 9.7 0

NA not applicable

As this example shows, tracts that are geographically adjacent may not
have consecutive identification numbers. Figure 11.1 is a schematic map of
the tracts in the county. Consulting a map like this may be necessary to
make reasonable combinations. Alternatively, longitude-latitude centroids for
tracts are available from the Census Bureau. These can be used to calculate
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the distance between the centers of the tracts to determine which are geo-
graphically near each other. This approach will permit tracts to be combined
via a computer algorithm without manual intervention. This is particularly
useful when the frame of tracts is large.

Table 11.3: Summaries of tract and BG selection probabilities and weights after
combining small units.

Probability Min. First quartile Median Mean Third quartile Max.

or weight

πi 0.0225 0.1828 0.2673 0.2660 0.3329 0.5920

πij 0.0015 0.0489 0.0783 0.0828 0.1030 0.4385

1/πi 1.69 3.00 3.75 5.25 5.48 44.44

1/πij 2.28 9.71 12.78 22.08 20.45 684.90

After these combinations are made, the selection probabilities for tracts
and BGs are summarized in Table 11.3. The range of selection probabilities
for BGs is 0.0015–0.4385 while the range of weights for BGs is 2.28–684.90.
Although the range of BG probabilities is substantial, a self-weighting sample
of persons can still be selected from each domain since there are no deficient
BGs after combining. The Sampford method was used to select a sample of
25 tracts and then 1 BG per sample tract. The code for combining BGs and
tracts is in the file Anne Arundel.MD.analysis.R.

The selected sample tracts and BGs are listed in Table 11.4 and shaded
in Fig. 11.2. The expected workloads in each BG are also shown in the table.
The workloads are not integers. This means that when the samples of persons
within a sample BGs are selected, the sampling will be done using fixed rates
not fixed sample sizes. For example, tract.BG 701102.2 has a population
of 76 in age group 18–24 and the sample size is 6.3 in Table 11.4. Persons in
that age group and BG would be sampled at rate 6.3/76

.
= 0.08289.

Quality Control Checks

Checking the correctness of your work is always important. In this case, there
are some simple assessments that will help determine whether computations
and sample selections are correct. The weight for a sample BG is 1/πij . These
can be used to make population estimates which we can compare to frame
numbers. There are two conditions that should hold exactly for any sample
that has been selected. First, define

yij (d) = fdQij (d) .
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Table 11.4: Sample tracts and block groups within tracts with expected workloads
in each BG.

Workloads

Tract Block
group

18–24 25–44 45–54 55–64 65+ Total workload

701102 701102.2 6.3 6.1 7.5 7.8 12.3 40

701200 701200.3 5.6 9.3 6.5 8.3 10.3 40

701300 701300.2 5.8 6.1 10.2 8.6 9.3 40

702100 702100.4 7.7 7.8 12 7.2 5.2 40

702300 702300.4 4.3 4.8 8.1 15 7.8 40

702401 702401.2 1.3 0.6 2 5.4 30.6 40

702700 702700.3 5.7 10.2 6.9 9.2 8 40

706300 706300.2 2.8 6.6 7.6 8.5 14.4 40

706600 706600.5 19.3 7.8 6.2 4.6 2.2 40

708000 708000.1 7.2 7 6.6 10 9.2 40

730100 730100.3 6.8 10.3 5.2 8 9.7 40

730402 730402.2 7.4 6.8 6.2 8.5 11.1 40

730502 730502.2 11.9 7.7 7.3 6.3 6.8 40

730601 730601.4 6.4 5.8 12.3 10.3 5.2 40

730800 730800.2 2 3.9 9.4 12.2 12.5 40

731204 731204.1 8.2 7.8 6.4 7 10.5 40

740102 740102.1 8.3 5.3 8.7 9.7 8 40

740201 740201.4 8.8 12.6 9.1 5.5 4 40

740301 740301.2 10.1 15.4 8 4.7 1.8 40

740500 740500.1 9.1 14.6 8.6 5.4 2.3 40

740601 740601.3 17.9 21.4 0.7 0 0 40

740700 740700.2 9.3 15.6 6.4 4.2 4.4 40

750804 750804.1 8 10.4 4.8 6 10.8 40

751000 751000.1 6.9 5.9 6.7 8.2 12.3 40

751103 751103.2 5.6 5.9 4.7 16.5 7.3 40

The π-estimator of the total for this variable across the domains in a BG is

t̂1 =
∑

d yij (d) /πij

since S++ = mn¯̄q. In this case ¯̄q = 40. Thus, the estimator of the total of
yij (d) in any block group is the same constant, 40. The estimator of the
population total of yij (d) is

t̂2 =
∑

d

∑
i∈s

∑
j∈si

yij (d) /πij , (11.1)

which can be verified using the fact that πij = mnSij/Si+ and the definition
of Sij . Since S++ is the total sample size, this π-estimator must be 1,000.
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The population totals of the numbers of persons in each domain and across
all domains can also be computed as

t̂3 (d) =
∑
i∈s

∑
j∈si

Qij (d) /πij , d = 1, . . . , 5

t̂4 =
∑
d

∑
i∈s

∑
j∈si

Qij (d) /πij .

These do not necessarily equal the population counts but serve more as
a reasonableness check. If the estimates are far from the frame counts, then
further checking is warranted to decide whether errors have occurred. For this
sample, we have t̂1 = 40 for each domain, t̂2 = 1, 000, t̂3 (d) = (38,011.38,
173,593.95, 63,811.75, 45,011.18, 52,714.43), and t̂4 = 373, 142.7. The esti-
mates t̂3 and t̂4 are reasonably near the population counts in Table 11.1.
These checks can also be found in Arundel.MD.analysis.R.

Additional Considerations

We spent some time above worrying about the effects of tracts and block
groups with small composite MOS. One of the paradoxes of designing samples
is that a significant amount of time is spent considering events that may not
happen. We may not select one of the BGs with an extremely small MOS,
but if we do, its size may not support the desired sample sizes for domains.
In addition, its weight will be large and can unnecessarily increase variances.
This issue will be addressed again in Chap. 14.

The fact that only 1 BG is selected per tract might raise the question of
whether variances can be estimated with this design. We can still estimate
design variances because the number of first-stage units is 25, the number
of sample tracts. However, there are alternative designs that might be worth
considering. If the residents of different areas of the county were known to
have different characteristics, it would be advisable to stratify by subcounty
geography in some way. The BG numbers assigned by the Census Bureau can
be used to sort the BGs in a more or less geographic order and strata created
from the sorted list. A BG map should be consulted to be sure whether
numeric sorting will achieve your stratification goals. A BG map for Anne
Arundel County is in the file, Anne Arundel.blkgrps(streets).pdf,
on the web site for this book.
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Fig. 11.1: Tract map for Anne Arundel County, Maryland. Source: Maryland Depart-
ment of Planning, Planning Data Services Division, January 2001.
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Fig. 11.2: Selected tracts in Anne Arundel County.



Part III

Survey Weights and Analyses



Chapter 12

Project 3: Weighting a Personnel Survey

In this project you will develop survey weights and deliver an analysis file for
a survey of military personnel. Members of the military reserves were asked
a variety of questions about job satisfaction. Some examples of the questions
are:

• Suppose that you have to decide whether to continue to participate in the
National Guard/Reserve. Assuming you could stay, how likely is it that
you would choose to do so?

• Overall, how would you rate the current level of stress in your personal
life?

• Taking all things into consideration, how satisfied are you, in general, with
each of the following aspects of being in the National Guard/Reserve?
The type of work you do in your military job
Your total compensation (i.e., base pay, allowances, and bonuses)

The data file includes records for all persons who were in the initial sample—
respondents, nonrespondents, and ineligibles. There are also several demo-
graphic variables from administrative record files for each sample person.
The files to be used are listed at the end of this chapter.

The following tasks have yet to be completed and are assigned to your
team. Each task should be documented in the project final report; be sure to
justify the decisions your team has made.

(1) Develop the design weights (inverse of the selection probabilities) for
this single-stage stratified simple random sampling design and verify
your calculations. The field STRATUM defines the sample design strata.
Each record contains counts of the number of persons in the population
(NSTRAT) and the sample (NSAMP) in the design stratum to which the
record belongs. The field V STRAT identifies design strata that were col-
lapsed together for variance estimation. Note that, if a population count
is needed for a variance stratum, the values of NSTRAT will need to be
summed for the design strata that are combined into a V STRAT.

R. Valliant et al., Practical Tools for Designing and Weighting
Survey Samples, Statistics for Social and Behavioral Sciences 51,
DOI 10.1007/978-1-4614-6449-5 12, © Springer Science+Business Media New York 2013
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(2) Specify how you will classify the various response status codes
(RESPSTAT) into the general categories—eligible respondent, eligible
nonrespondent, ineligible, or unknown—described in Chap. 6. The vari-
able values and value labels for RESPSTAT are provided in the section
below, Data Files and Other Information.

(3) Apply weight adjustments to the design weights and verify your calcula-
tions. You should include the adjustment methods we have discussed in
class—unknown eligibility, nonresponse, and calibration. In the case of
either unknown eligibility or nonresponse adjustments, compare weight-
ing cell and propensity adjustments by actually carrying out your own
implementation of each method. You may encounter some cases, in either
the data file for respondents or the file for population counts, that have
missing data for fields that you would like to use in weighting. If so,
you need to explain how you handled those in the various steps used in
weighting.

(4) Prepare an analysis file (in SAS, Stata, or text format) containing the
variables from the original data file (SOFR.sas7bdat), the base weights,
the final analysis weights (you may choose only one set from task 3 above),
and any adjustments applied to the design weights to create the final
weights. Additionally, create any necessary indicators you would need to
analyze the questionnaire responses and eliminate any unnecessary data
records. All variables must have a descriptive label. For any newly created
categorical variable, provide a description of the variable values in the
report.

(5) Using your final analysis weights, tabulate the proportions of personnel
who are

(a) Dissatisfied or very dissatisfied with their total compensation
(RA006A)

(b) Very unlikely or unlikely to stay in the Reserves (RA008)

Make these tabulations separately for each service and for enlisted person-
nel and officers. Include the point estimates of proportions and standard
errors. Describe the method you use for standard error estimation and
any limitations that the method may have.

(6) Include a description for data users of which cases and weights should
be used for various types of data analyses. Provide some brief examples
of software code that would be used to estimate means or proportions
associated with a typical questionnaire item. Examples should be given
for at least two software packages. Your report should describe how the
software must be used in order to account for weights and design features
like strata.
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Contents of the Weighting Report

Below is a list of topic areas that should be included in your weighting report.
Questions and suggestions are included in each section to assist with the
development of the text. The order of the sections in your report does not
have to be the same as that given below. You should construct your report
in a way that presents topics in an order that seems logical to your team.

The report should be written to a client whose staff includes managers
and technical personnel. Managers will be more interested in understanding
the broad outline of the steps used in weighting. Technical personnel will
be interested in understanding the details of weight computation, including
appropriate formulas, and in being able to appropriately analyze the data.
You should consider how to structure your report to serve these audiences.

Topic Areas for Weighting Report:

• Title Page (project title, date of submission, and name of project contact
person)

• Introduction (overview of the document)
• Study Weights:

Brief discussion of sampling design
Methods to calculate design weights
Types of weight adjustments and why they were used. Comparison of

adjustments
Evaluation of weights and methods used to check or compare calcula-

tions
• Analysis File:

Summary of analysis file contents (include PROC CONTENTS or the
equivalent in an appendix)
Variables of interest

• References
• Appendix

PROC CONTENTS or codebook of data file

Data Files and Other Information

• SOFR codebook.pdf—code values for each variable in the SOFR.sas7bdat
data file.

• RCCPDS57 codebook.pdf —code values for each variable in the
RCCPDS57.sas7bdat data file.

• Annotated questionnaire.pdf—the survey questionnaire with annotations
showing variable names and code values for all questions. Note that the
data file for this project contains only a subset of the questions in the
survey. Also, some questions have been recoded to have different names
and fewer values in the data file than are on the questionnaire.
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• SOFR.sas7bdat—edited data file from the survey in SAS version 9 format.
The same data is in the SAS transport file, SOFR.xpt.

• RCCPDS57.sas7bdat—file of population counts. The same data are in the
SAS transport file, RCCPDS57.xpt.
This file is the result of matching the sampling frame to the most cur-

rent personnel file available as of the start of the data collection period.
The personnel file consists of all persons on the payroll as of the date the file
was constructed. Thus, these counts should cover only eligible cases. The
labels for the field names contain the name of the variable in sofr.sas7bdat
to which the counts correspond.

• formats.sas7bcat—format library for both SAS data files.
To access this library in a SAS program include the following type of

libname statement:
LIBNAME library ‘‘C:\PracTools’’;
To be sure that SAS searches that library for formats use
options fmtsearch=(library)
The folder name PracTools should be changed to the location where

you save the format file. This format library will give access to the variable
and value labels for the fields in sofr.sas7bdat.

Variable values and value labels for the RESPSTAT variable:

1 Questionnaire Returned—Completed
2 Questionnaire Returned—(Sufficient) Partial Complete
3 Questionnaire Returned—(Insufficient) Partial Complete
4 Questionnaire Returned—Ineligible
5 Questionnaire Returned—Blank
18 No Return—Deceased
19 No Return—Incarcerated
22 No Return—Separated/Retired
23 No Return—Active Refusal
25 No Return—Other
26 No Return—Eligible based on administrative records
27 Postal Nondelivery
29 Not Locatable
35 Ineligible—No Questionnaire Sent
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Basic Steps in Weighting

Survey weights are a key component to producing population estimates. For
example, an estimated total has the form t̂ =

∑
s wiyi where yi is a response

provided by the ith sample member and wi is the corresponding analysis
weight. Without their use, estimates may reflect only nuances of a particular
sample and may contain significant levels of bias. This is the first of two chap-
ters that address techniques for calculating analysis weights currently used in
survey research. Articles detailing new research on survey weighting surface
in the literature constantly. Therefore, we encourage survey researchers to
use these chapters as a basis of understanding and to rely on journal articles
for cutting-edge techniques.

There are a series of steps in weighting that are carried out in most, if not
all, surveys. These include computation of base weights (also known as design
weights), adjustments for unknown eligibility, nonresponse adjustments, and
use of auxiliary data to reduce variances and, in some cases, correct for frame
deficiencies. We cover the first three of these steps in this chapter. Chapter 14
will address the use of auxiliary data. Sections 13.1 and 13.2 give an overview
of weighting and describe general theoretical approaches that are used to
justify the use of weights in estimation.

In probability samples, the base weights are inverses of selection proba-
bilities. Examples of base weight calculation are presented in Sect. 13.3 for
various designs. These can be used for weighting a sample to the full finite
population if the frame is perfect and all sample units respond. In some
applications, a complete frame of units is available for sampling and frame
problems are not a concern. In others, the frame may contain some units that
are ineligible and may omit units that are. Having ineligible units in a frame
is a type of overcoverage. A way of adjusting for ineligible units is presented
in Sect. 13.4; the problem of frame undercoverage is dealt with in Chap. 14.

The failure of some units to respond is a worry in most surveys. Without
adjusting for nonresponse, estimators can have significant levels of bias. There
are different methods of adjustment, which we present in Sect. 13.5. Before
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covering specific tools used in weighting, some general comments are needed
about methods of inference and how they affect weight calculation.

13.1 Overview of Weighting

The general goal in weighting is to find a set of weights, wi, that can be used
in virtually all analyses to produce estimates for the target population under
study. For example, an estimated total has the form t̂ =

∑
s wiyi and a mean

can be computed as ˆ̄y =
∑

s wiyi/
∑

s wi for a set of units in sample s (i.e.,
i ∈ s). Other statistics that can be written as combinations of estimated totals
would use the same set of weights. Regression model analyses, for example,
often begin with a type of estimated total that is used to derive parameter
estimates. Estimates of medians and other quantiles depend on the same
weights used to estimate totals. Properly constructed, a set of weights can
provide approximately unbiased and consistent estimates1 of many different
population quantities. As a result, one set of weights can serve many purposes,
which is a major practical advantage.

Figure 13.1 shows the general set of steps that are used in weighting in
many surveys. The full sample (box A in the figure) can be split into the
units whose eligibility is determined (A1) and those for which the eligibil-
ity is unknown (A2). The unknowns have their weight distributed in step W1
among the known sample cases (A1a, A1b, and A1c). Note that if the eligibil-
ity is known for all sample cases (say, through administrative records), then
step W1 is not required. The next step, W2, is to make an adjustment for
nonresponse. There are different ways of doing both the unknown eligibility
and nonresponse adjustments as discussed in Sects. 13.4 and 13.5. One way
is to put respondents and nonrespondents into classes and make a common
adjustment to all respondents within each class. Classes can be formed based
on estimated response propensities or classification algorithms.

In some surveys, no further steps are used and the final weights are the
nonresponse-adjusted weights. In other cases, calibration to population val-
ues (step W3) can be used to correct for frame deficiencies and to reduce the
variances of estimators, as described in Chap. 14. The auxiliary data used in
calibration may come from an updated frame or from an independent source
like a population census. Both the eligible respondents (A1a) and the known
ineligibles (A1c) may enter into this step, depending on the source of the aux-
iliary data. There are a variety of methods for using auxiliary data that all
fall under the heading of calibration. Among them are poststratification, gen-
eral regression estimation, and raking, all of which are discussed in Chap. 14.
Additionally, we discuss in Chap. 14 research associated with combining steps
W2 and W3 into a single weighting procedure.

1 See Sect. 4.1 for a discussion of unbiased and consistent estimates.
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Fig. 13.1: General steps used in weighting.

13.2 Theory of Weighting and Estimation

Weights are used in constructing estimators. The key goal in weight
construction should, thus, be to construct good estimators. To know whether
an estimator is good or not, we have to evaluate its properties, like bias and
variance, with respect to some statistical distribution. There are three meth-
ods of generating the distribution used for inference that we will emphasize
in this and later chapters:

1. Design- or randomization-based
2. Model-based
3. Model-assisted
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There are other approaches, most notably Bayesian [see Gelman et al. (1995)]
that have some merit, but we will not cover them in this book. It is important
to have at least an intuitive understanding of the thinking behind the three
approaches above in order to understand why certain estimators work well or
poorly in difference circumstances. In practice, the model-assisted method is
the one most often used, as we will explain below.

In the design-based approach to sampling, the properties of estimators like
bias and variance are evaluated with respect to repeated sampling. A proba-
bility sample must be selected to use this approach, i.e., a random mechanism
is used to select units and, in principle, every unit has a known probability
of selection, as described in Chap. 3. Nonetheless, it is not unusual for statis-
ticians to “stretch the envelope” by applying repeated sampling analysis to
samples that are not really selected with probability mechanisms. To compute,
say, the expectation of an estimator, one thinks of a conceptual experiment
where samples are repeatedly selected using the same plan. The estimate is
computed for each sample. If these values average out to the full finite pop-
ulation value of the quantity being estimated, then the estimator is design
unbiased. Other properties, like the design variance, are computed similarly.

There are a number of good reasons for using probability sampling. If a
random mechanism is used in selection, conscious and unconscious biases are
eliminated in selecting the sample. Random sampling is perceived as objec-
tive by the public and data users. It also provides a mathematical foundation
for computing properties of estimates. However, most samples that start out
as probability samples do not end up that way because of nonresponse (NR)
and other problems that result in the loss of some sample units. Thus, strictly
design-based inference is usually not feasible. Models for nonresponse, under-
coverage, and other nonsampling errors are needed to completely reflect the
processes that produce a sample. However, computation of base weights (i.e.,
inverses of selection probabilities) is usually the first step in weight computa-
tion in surveys that use probability samples.

Having good design-based properties is comforting. Surely, it is reasonable
for a practitioner to be able to say that, if he or she selects random sam-
ples over the course of a career, then the methods used will produce correct
answers on average. However, the design-based approach does not provide
us with a systematic way of constructing good estimators. The relationship
of response variables to predictors is not formally considered in design-based
inference. Thinking about models that describe the variables in a population
provides some structure that can be used as a guide.

By contrast, a strictly model-based approach ignores the sample design
and considers only the population structure (i.e., a model) in deciding on an
estimator and the corresponding weights. This approach can be applied to
either probability or non-probability samples. For example, courses in math-
ematical statistics use estimators with the assumption that units are drawn
from an infinite population. The resulting estimators are unbiased under the
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model used to construct the estimators but can be biased if the model is
misspecified or the model that fits the sample is different from the one that
describes the population as a whole. In some cases, model-based estimation
is the only choice. In an Internet survey of volunteer participants, there is no
probability sample design, and estimators must be constructed using models.
Whether the volunteers are so unlike the full population that estimation is
impossible becomes a serious concern.

However, models inevitably need to be considered when developing weights,
even in probability samples. Any sample with some degree of nonresponse
requires assumptions about the nature of the analysis variables for the non-
respondents and about the response mechanism. When computing weights
for a volunteer survey, assumptions may be made about the mechanism that
describes how likely a person is to participate. These assumptions, whether
explicit or implicit, are models.

There are good, though fairly technical, arguments for why the randomiza-
tion distribution itself should not be the basis for inference [e.g., see Valliant
et al. (2000)], even in the absence of nonresponse. The general line of rea-
soning is that averaging over a randomization distribution involves averaging
over samples that can be much different from the one actually selected. That
is, design-based inference requires us to consider events that did not actually
happen and are, therefore, irrelevant. These arguments do not necessarily
have to be considered to develop a set of weights that give reasonable estima-
tors. An interested reader can consult the references above along with Royall
(1976) and Smith (1976, 1984, 1994) for discussion of the fundamental issues.

A hybrid approach uses both model-based and design-based thinking and
is called model-assisted. A probability sample is selected, weights are cal-
culated, and a model(s) guides the choice of the estimator. Inferences are
made using the distribution generated by the probability sampling plan—not
a model. Research suggests that the weights provide some level of protection
against model misspecification. This is the approach that Särndal et al. (1992)
espouse.

13.3 Base Weights

Base weights (or design weights) are computed when the sample is a probabil-
ity sample drawn from a finite population. As defined in (Särndal et al. 1992
Chap. 1) and in Chap. 3 of this book, a probability sample is one realized
under four conditions:

1. The set of all samples S = {s1, s2, . . . , sM} that can be selected from a
finite population U can be defined given a specified sampling procedure.

2. A known probability of selection p (s) is associated with each possible
sample s in S.
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3. Every element in the target population has a nonzero probability of selec-
tion with the specified random sampling procedure.

4. One sample s∗ is selected by a random mechanism under which each s in
S receives the probability p (s).

The function p (s) defines a probability distribution on S, the set of all possi-
ble samples. The value for p (s) is associated with each sample s and differs
from the selection probability of an individual unit within the sample. To
compute base weights, it is not necessary that we be able to compute p (s).
We only need the selection probabilities of the individual elements:

πi = Selection (or inclusion) probability of element i.
The base weights, d0i = 1/πi, are the inverses of the selection probabilities.
The selection probabilities may be computed as the product of conditional
probabilities at different stages of selection, as illustrated in some of the exam-
ples below. Note that the size of the sample is not necessarily a fixed value
and is also associated with the sampling procedure (see, e.g., the discussion
on Poisson sampling in Chap. 3).

Base weights should be created as soon as the sample is selected if possible.
This facilitates preliminary analyses, like performance rate calculations, and
insures that the items required for computation of base weights do not get
lost. Quality control checks need to be done on the computed weights. We
cover these in detail in Chap. 18, but here are some things to note:

• Selection probabilities are all within the range (0,1].
• Base weights should sum to the total number of elements in the popula-

tion or to a reasonable estimate of the population size. Similar checks
on the sums of weights should be made for major subgroups (gender,
race/ethnicity, establishments in retail trade, etc.)

Base Weights: An Exception . Using the inverses of selection probabilities
as the base weights is usually the first step in weighting. An exception to this
is a sampling method where some units are allowed to be selected more than
once. These methods are sometimes used in the first stage of a multistage
sample. For example, consider a sample of schools where school districts
are selected at the first stage with probabilities proportional to number of
students in each district. Very large districts may be selected more than
once, in which case a larger subsample of schools within the district might
be selected. When some units are allowed to be selected more than once,
the expected number of selections or “hits” should be tracked; these can be
greater than 1. The base weight would then be the inverse of the expected
number of selections.

In the remainder of this section, we show the calculation of base weights
for some specific designs.

Example 13.1 (Simple random sampling without replacement (srswor)).
When n (fixed) units are selected from a population of size N, the selec-
tion probability of each unit is the same—πi = n/N . The base weight is
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d0i = π−1
i = N/n and is also the same for all units. An srswor is called self-

weighting or epsem (equal probability sampling and estimation method)—see
Kish (1965). �

Example 13.2 (Stratified simple random sampling without replacement (stsr-
swor)). The population is divided into h = 1, . . . , H mutually exclusive strata
that cover the whole population. An srswor of size nh is selected in each stra-
tum from a population of size Nh. The selection probability of unit i in
stratum h is πhi = nh/Nh and the base weight is d0hi = π−1

hi = Nh/nh. This
is the same for each sample unit in stratum h, but the sampling rates may
be different from one stratum to another. �

Example 13.3 (Two-stage sampling leading to epsem). Suppose that a sample
of students is selected in two stages—schools at the first stage and students
at the second stage. In this case the primary (or first-stage) sampling units
(PSUs) are schools. Assume that m PSUs are selected with probabilities
proportional to size (pps) of the student body and that an equal probability
sample of n̄ students is selected in each PSU. Schools are selected in such a
way that the inclusion probabilities are:

πi = mNi/N for school i
Ni = number of students in PSU i
N =

∑
i∈U Ni = total number of students in the population

If an equal probability sample of n̄ students is selected in each sample school,
then the probability of selecting a student within a school is πj|i = n̄/Ni for
student j within school i. The overall probability of selection is

πij = πiπj|i =
mNi

N

n̄

Ni
=

mn̄

N

and the base weight for student j in school i is d0ij = π−1
ij = N/mn̄. This

particular type of sample is self-weighting since each student has the same
base weight. �

When the frame contains little or no useful auxiliary information but target
sample sizes are desired for some domains, two-phase or multiphase sampling
can be used, as described in Chap. 17. The base weights can be computed as
the product of weights associated with each phase.

Example 13.4 (Two-stage sampling for domains). A sample of m PSUs is
selected and ni secondary sampling units (SSUs) are selected within PSU i
with probabilities proportional to the number of persons in each SSU. For
convenience, let PSUs be defined in terms of small geographic segments of
a country and SSUs as households within the segments for an area house-
hold survey. Each household can contain one or more persons. Suppose that
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persons in each sample SSU are listed and classified into G = 4 age groups:
less than 18, 18–25, 26–64, and 65 and above. Each person within a given
SSU and age group is selected at the same rate. Suppose that the selection
probability of PSU i is the same as in Example 13.3 and that SSU j in PSU
i is selected with probability niQij/Qi where Qij is the population size of
SSU ij. The selection probability of each person in SSU ij and group g is

πij (g) =
mniQij

Q
fij (g) ,

where Q is the total population count and fij (g) is the rate at which age
group g is sampled in SSU ij. The rates for the age domains will often be
set in such a way that a self-weighting sample is obtained in each age group.
The base weight for person k in age group g is then d0ij (g) = π−1

ij (g). �

13.4 Adjustments for Unknown Eligibility

Frames and samples may contain units whose eligibility cannot be deter-
mined. Among the eligible units, most surveys will have some that do not
respond. Chapter 6 discussed these problems in the context of determin-
ing initial sample sizes. Weight adjustments for unknown eligibility and
nonresponse are also usually made to allow the respondents to weight up
to the full eligible population. For use below, define these sets of sample units:

s = Initial set of all sample units
sIN = Set of units in s that are known to be ineligible
sER = Set of units that are eligible respondents
sENR = Set of units that are eligible nonrespondents
sKN = Set of units whose eligibility is known (sIN ∪ sER ∪ sENR, where

∪ denotes the union of one or more sets)
sUNK = Set whose eligibility is unknown

Some members of the sampling frame may be ineligible despite our best
efforts to clean the frame in advance. In a survey of current military members,
the frame may be the personnel file as of June of the current year, with a plan
to collect data in August. By the time the survey is fielded in August, some
people will have left the military. These “leavers” are ineligible, assuming
the target population is all members at the time of data collection. Another
example would be a telephone survey of households in which some telephone
numbers turn out to be for businesses. In a household survey of childhood
immunizations, households that do not have children are ineligible.



13.4 Adjustments for Unknown Eligibility 315

For a variety of reasons, it may not be possible to determine eligibility
for all sample units. Some cases whose eligibility for a household survey may
remain unknown after data collection is finished are:

• Ring/no answers in a telephone survey
• Undeliverable addresses in a mail survey
• Never at home in personal visit survey

As in Fig. 13.1, suppose that the final classification of sample units is:

• Known eligibility status:
Eligible respondents
Eligible nonrespondents
Ineligibles

• Unknown eligibility status

If there are units known to be ineligible in the sample, this is evidence that
there are other ineligibles in the unknown eligibility part of the sample and
also in the nonsample. However, different decisions may be made in different
surveys about how the unknowns are handled. For example, in an establish-
ment survey done by mail, the unknowns may all be undeliverable addresses,
in which case they all might be coded as out of business and, thus, ineligible.

The mechanics for adjusting for unknown eligibility are usually kept fairly
simple. One method of handling the unknowns is to distribute their total
sample weight among those whose eligibility status is known. Simple methods
are usually used to do this, partly because little may be known about the cases
with unknown eligibility and partly because nonresponse is considered to be
a more serious problem that should receive more attention. A class-based
approach, described below, can be used for unknown eligibility adjustment.
The same approach can be used for nonresponse adjustment. We cover ways
of forming classes in Sect. 13.5.1. The general idea is to make adjustments to
the weights of cases with known status:

1. Form b = 1, . . . , B classes based on frame information known for all cases.
Classes may cut across design strata. In practice, eligibility adjustment
and nonresponse adjustment classes may be the same.

2. Let sb be the set of sample units in class b, regardless of eligibility or
response status, and sb,KN = sb ∩ sKN be the set with known eligibility
in class b. The symbol ∩ identifies the set of units in sb and in sKN (i.e.,
the intersection).

3. The unknown eligibility adjustment for sample units in class b is a1b =∑
i∈sb

d0i
∑

i∈sb,KN
d0i

, where d0i is base weight.

4. The adjusted weight for unit i in sb,KN is d1i = a1bd0i. The factor 1/a1b
functions as an estimate of the probability of having known status. The
weights for the remaining units in class b, those with unknown eligibility,
are set to zero, i.e., a1b = 0 for sb,UNK = sb ∪ sUNK .
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Example 13.5 (Ineligibles in a telephone survey). A telephone survey of the
members of a campus student organization is conducted. The list is some-
what out-of-date so that some phone numbers are incorrect. Some persons
on the list may have dropped out of school and are, therefore, ineligible. A
portion of these ineligibles can be identified; 9.1% of the sample is never
contacted so that their eligibility is uncertain. A single adjustment class is
used. The sums of the weights for different categories of cases are shown
below. The sum of all sample weights is 110 and is 100 for the persons with
known eligibility.

Category
∑

i∈sb
d0i Percent Adjustment Adj. sum

dist. of weights

Eligible respondents (R) 50 45.5 1.1 55
Eligible nonrespondents (NR) 40 36.4 1.1 44
Ineligible (IN ) 10 9.1 1.1 11
Unknown eligibility (UNK ) 10 9.1
Total 110 110

The weight of the unknowns (UNKs) is assigned to R:NR:IN in ratios of 5:4:1.
Each individual base weight for the cases with known eligibility is increased
by the factor 110/100 = 1.1. Here B = 1 and a1 = 1.1. �

13.5 Adjustments for Nonresponse

Adjusting for nonresponse can be either simple or elaborate, depending on
how much is known about the nonrespondents. Sections 13.5.1–13.5.2 discuss
weighting class and propensity scoring methods, along with some approaches
to forming classes. First, we sketch some of the thinking needed to select
a nonresponse adjustment method. Response can be thought of as either
deterministic or stochastic (Kalton and Maligalig 1991):

1. Deterministic—Each eligible unit in the population will either respond
or not if asked to participate. The choice is not random so that units could
be sorted a priori into respondents and nonrespondents.

2. Stochastic—Each unit has some nonzero probability of responding.
When asked to participate, a unit makes a random choice to cooperate or
not.

The bias of a simple mean when there is deterministic response is

NR.Bias
(
ˆ̄yr
)
= M

(
Ȳr − Ȳm

) /
N, (13.1)

where ˆ̄yr is the estimated respondent mean, Ȳr is the true mean for the respon-
dent population, Ȳm is the true mean for the nonrespondents population, and
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M/N is the population nonresponse rate calculated as the ratio of the nonre-
spondent population size,M , over the population size,N . In the deterministic
situation, there is a bias if the population mean for the respondents is dif-
ferent from that of the nonrespondents. The idea behind the weighting class
adjustment method is to try and group units together in such a way that the
class means for respondents and nonrespondents are equal, i.e., Ȳr = Ȳm.

Conditioning on the response pattern exhibited in the sample, the nonre-
sponse bias in (13.1) can be estimated using base weights (or base weights
adjusted for unknown study eligibility), denoted below as di, as

nr.bias (ȳr) = m̄ (ȳr − ȳm) , (13.2)

where ȳr =
∑

i∈s ridiyi
/∑

i∈s ridi, the estimated mean of y for the respon-
dent population with ri = 1 if the ith sample member is a respondent (ri = 0
otherwise); ȳm =

∑
i∈s (1− ri) diyi

/∑
i∈s (1− ri) di, the estimated mean

within the nonrespondent population; and m̄ =
∑

i∈s (1− ri) di
/∑

i∈s di,
the weighted nonresponse rate. Note that the y-values are needed for both
respondents and nonrespondents to evaluate (13.2). This usually means that
frame variables available for all units must be used.

This kind of thinking carries over to stochastic response, but the algebra
is more involved. Despite the added complexity, the stochastic approach
underlies most of the nonresponse adjustment techniques used in practice.
Define two indicators for being in the sample and responding:

Ii =

{
1 if unit i selected for sample
0 if not

Ri =

{
1 if unit i responds given that it is in the sample
0 if unit i does not respond

The probability of being in the sample is Pr (Ii = 1) = πi while the proba-
bility of responding given that unit i is in the sample is Pr (Ri = 1| Ii = 1) =
φi. Rosenbaum and Rubin (1983) call φi the propensity score for unit i. If
φi = 0 for some units, i.e., some units are “hard-core” nonrespondents who
would never participate in a survey, this could cause bias. If all units have
some nonzero probability of responding, then it may be possible to produce
estimates that are, in some statistical sense, unbiased.

Suppose d0i = 1/πi is the base weight we assign to unit i and consider this
simple estimator of a mean: ˆ̄yπ =

∑
i∈sR

d0iyi
/∑

i∈sR
d0i. Under the “quasi-

randomization” setup, where sampling and responding are both considered
to be random, Kalton and Maligalig (1991) showed the bias of ˆ̄yπ is

B
(
ˆ̄yπ
) .
=

1

Nφ̄

∑(
yi − ȲU

) (
φi − φ̄

)
, (13.3)
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where φ̄ is the average population probability of responding. In words, the
bias depends on the covariance of the response variable and its response
propensity. If yi and φi are unrelated, there is no bias and nonresponse does
not need to be corrected, at least when estimating a mean.

Generally, though, we need to do something to reduce or eliminate
bias. One type of unbiasedness that we could strive for is design/response-
mechanism unbiasedness. Suppose w∗

i is the weight we assign to unit i after
nonresponse adjustment and consider this simple estimator of a total:

T̂ =
∑

i∈sR
w∗

i yi, sR = set of respondents.

The average of this estimator over sampling and response is

EREI

(
T̂
)
= EREI

(∑
i∈U RiIiw

∗
i yi
)

=
∑

i∈U w∗
i yiEREI (RiIi).

If we can make w∗
i = 1/EREI (IiRi), this reduces to the population total,∑

i∈U yi. Since EREI (IiRi) = EI [IiER (Ri| Ii)] = πiφi, the weight would be

w∗
i = (πiφi)

−1
. This, of course, requires that both πi and φi be nonzero.

Before discussing the techniques for adjusting for unknown eligibility and
nonresponse, we need to understand the ideas of missing completely at ran-
dom (MCAR), missing at random (MAR), and nonignorable nonresponse
(NINR). This terminology was introduced by Little and Rubin (2002). Lohr
(1999, Sect. 8.4) gives a clear discussion of these ideas; we give a simplified
sketch of them here. The definition of each term requires us to think of
yet a third distribution—one for an analysis variable Y (in other words, a
model for Y ). In fact, if K analysis variables are collected on each unit,
yi = (yi1, yi2, . . . , yiK) must be considered. Suppose, also, that there is a set
of auxiliary variables xi = (xi1, xi2, . . . , xip) available for each sample unit
whether it responds or not. These can be items like age, race, and sex in
a household survey or type of business and number of employees in a busi-
ness establishment survey. The x ’s can also include information used in the
sample design, like region of the country and type of area (urban, suburban,
or rural) or observations reported by interviewers about the condition of a
neighborhood. These observational data are referred to as paradata and are
discussed in Kreuter et al. (2010).

However, some caution is required when using some kinds of paradata
for nonresponse adjustment. Kreuter and Olson (2011) illustrate that if, say,
trash on the streets of a neighborhood or difficulty in finding someone at
home, are unrelated to the analysis variables collected in a survey, using those
paradata in nonresponse adjustment may do more harm than good. Using
irrelevant data may just inject pointless variability into estimates without
correcting any bias.
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Missing Completely at Random. If the probability of response φi does
not depend on yi or xi, then the missing data are MCAR. In our person-
nel survey in Project 1 (Chaps. 2 and 7), nonresponse would be MCAR if
whether a person responded or not did not depend on business unit, salary
grade, tenure, or any of the job satisfaction measures collected in the survey.
If everyone has the same probability of responding, φ, then any nonrespon-
dents are MCAR.

Missing at Random. If the probability of response does not depend on yi
but does depend on some or all of the auxiliaries xi, then the missing data
are MAR. In this case, a model for response can be formed that depends on
xi since we know the auxiliaries for both respondents and nonrespondents.
In the personnel survey, response could depend on salary grade—lower-paid
workers might want to sound off about their complaints and respond at
higher rates than others. This, as Lohr (1999) notes, is sometimes called
ignorable nonresponse, meaning that if the response mechanism is modeled
correctly and adjustments for nonresponse are made, then inferences to the
population are possible.

Nonignorable Nonresponse. If the chances of responding depend on one
or more analysis variables (i.e., the y’s), and this dependence cannot be elimi-
nated by modeling response based on x ’s that are known for both respondents
and nonrespondents, then we have NINR. Suppose, in the personnel survey,
we were able to model response as a function of business unit, pay grade, etc.
plus an analysis variable that rates whether employees thought there was a
clear link between performance rating and pay. If the coefficient on the rating
variable was significant, this would be evidence of NINR. The practical prob-
lem with fitting this kind of model is that the rating for the nonrespondents
will not be available. Consequently, NINR is difficult or impossible to detect
except through a nonresponse follow-up study.

13.5.1 Weighting Class Adjustments

If we can create groups or classes where either all units have about the same
probability of response or about the same y-values, then the nonresponse bias
in (13.1) will be approximately eliminated. Thus, the ideal set of classes will
be related to both the y’s and the response probabilities as recommended
in Kalton and Maligalig (1991) and Little and Vartivarian (2003, 2005). The
practical difficulty with this is that the values of the response variables are not
available for nonrespondents. Plus, a given set of classes will not be equally
effective for all y’s. Consequently, a set of classes is usually identified based
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on response probabilities. If the covariates used to form the classes are also
predictors of y variables, this is a bonus.

In this section, we cover the mechanics of using classes to make nonre-
sponse adjustments. There are different ways of forming classes, which we
describe in Sects. 13.5.2 and 13.5.3. We index the classes by c = 1, . . . , C. The
goal in forming classes is to put units together that have the same response
propensity. As noted above, it is also desirable to have an association between
the means of analysis variables and the way the classes are formed. If all units
in a class have the same covariate values, xc, and response propensity is a
function of xc, then φi = φ (xc) for all units in c. Denote the set of sample
cases in class c as sc, the set of eligible respondents as sER, and the set of
eligible nonrespondents by sENR, as in Sect. 13.4. The cases that are known
to be eligible in class c are sc,E = sc ∩ (sER ∪ sENR) and the set of eligible
respondents in class c is sc,ER = sc ∩ sER. The nonresponse adjustment for
units in class c is computed using the unknown-eligibility adjusted weights
discussed in Sect. 13.4:

a2c =

∑
i∈sc,E

d1i∑
i∈sc,ER

d1i
,

that is, the ratio of the sum of the input weights for all eligible cases in the
class to the sum of the input weights for the eligible respondents in that class.
The resulting adjustment a2c is applied only to the respondents in class c. The
adjustment is set to zero for the unknowns or known eligible nonrespondents,
sUNK ∪ sENR, and to one for the cases known to be ineligible, sIN . The
weight for unit i in the initial sample, after the adjustments for unknown
eligibility and nonresponse, is then

d2i =

⎧
⎨
⎩

d1ia2c i ∈ sc,ER,
d1i i ∈ sIN ,
0 i ∈ sUNK ∪ sENR,

=

⎧
⎨
⎩

d0ia1ba2c i ∈ sb,KN ∩ sc,ER,
d0ia1b i ∈ sb,KN ∩ sIN ,
0 i ∈ sUNK ∪ sENR.

Thus, eligible respondents get both the adjustment for unknown eligibility
and the nonresponse adjustment. Known ineligibles (sKN ∩sIN ) get only the
unknown eligibility adjustment. Unknowns (sUNK) and eligible nonrespon-
dents (sENR) drop out.

The a2c adjustment does not necessarily have to use the d1i weights. Little
and Vartivarian (2003) note that if all units in a nonresponse adjustment
class have the same response probability, then an unweighted adjustment,
a2c = nc,E/nc,ER, will be unbiased with respect to the response model and
can give more stable NR adjustments. This will be true even if the d1i’s vary
within each class.



13.5 Adjustments for Nonresponse 321

The nonresponse adjustment classes may be formed by simply tabulating
response rates among the known eligibles in different ways and trying to
create classes with different rates. More formal and effective ways of creating
classes are to use propensity models or classification algorithms, as described
in the next two sections.

13.5.2 Propensity Score Adjustments

As noted in the previous section, an estimator of a total that is unbiased
over the combined sampling/response process will result if the weight is
d2i = 1/πiφi. If φi = φ (xi), we can try to model the response probabili-
ties as long as we measure the covariates on all initial sample cases. There
are problems when units are not MAR or MCAR. For example, if φi = φ (yi),
we do not have y’s for nonrespondents (R = 0). If the nonrespondents fol-
low a different model from the respondents, we will not know it. Another
problem case would be φi = φ (Ui) where Ui contains the unmeasured covari-
ates or measured covariates incorrectly omitted from model. For example,
it might be the case that response depends on age, race/ethnicity, and sex,
but we omit race/ethnicity. A common situation would be that response
depends on a covariate that is not measured on either the respondents or the
nonrespondents.

We may fear that we are operating with inadequate information, but, in
practice, model parameters must be estimated based on what is known for
both respondents and nonrespondents. One approach is to fit a binary regres-
sion model for the response indicators Ri. The expected value of the indica-
tor is

ER (Ri| Ii = 1) = Pr (Ri = 1| Ii = 1) = φ (xi) .

This is the conditional probability of response given that a unit is selected
for the sample. This also has a bearing on whether to use base weights or not
in fitting the model, as discussed later in this chapter.

Response as a Latent Variable Process

An interesting feature of this problem is that responding to a survey can
be modeled as a realization of a latent variable process. This line of thought
provides some motivation for the binary regression models that are often used
to model response to a survey. The indicator Ri is the manifest variable (the
one we see). Suppose that there is a latent variable R∗

i that is continuous
but unobserved. If the value of R∗

i exceeds some threshold (say, bigger than
some θ), unit i responds; otherwise, it does not. The latent variable is a unit’s
“motivation” to participate.
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Other examples that can be modeled as latent variable processes are the
decision to reenlist in the military and the decision to vote for some candidate
for political office. In the former case, we see whether a person reenlists or
not. Why or why not may require consideration of job satisfaction, family
situation, potential future income after leaving the military, job skills, age,
time in service, etc. Voting for a candidate may depend on the voter’s per-
ception of the candidate’s honesty and the candidate’s promises to improve
schools or decrease crime. In the end what is observed is which candidate
gets a person’s vote.

To frame this mathematically, suppose that R∗
i is symmetrically dis-

tributed. Figure 13.2 illustrates the situation. If the unobservable R∗
i exceeds

a threshold, then the unit responds; otherwise, it is a nonrespondent.
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Fig. 13.2: Density of the latent variable for survey response.

Suppose the latent variable follows a linear model, R∗
i = xT

i β + ui, where ui

has distribution function F (not necessarily normal). Then, the probability
of response, given selection for the sample, is

φ (xi) = Pr (Ri = 1| Ii = 1)
= Pr (R∗

i > θ).

Location of the R∗
i distribution is arbitrary, so we can set θ = 0 or think

about R∗
i − θ, which has the same variance as R∗

i . The response probability
can then be written as

φ (xi) = Pr (R∗
i > 0) = Pr

(
xT
i β + ui > 0

)
= Pr

(
ui > −xT

i β
)

= 1− F
(−xT

i β
)
= F

(
xT
i β
)
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assuming a symmetric distribution F for ui. Using different F distributions,
leads to different binary regression models.

The link function is a transformation that will turn the probability into a
linear function of the covariates, xi. The link is determined by F−1 [φ (xi)] =
xT
i β. Thus, the link gives a quantity, F−1 [φ (xi)], that is modeled as a linear

combination of covariates, xT
i β. The equation

F−1 [φ (xi)] = F−1 [ER (Ri |Ii = 1)]
= xT

i β

is called a generalized linear model. Some examples are the logistic, probit,
and complementary log-log models.

Probit Model

In probit, the probability is modeled as being equal to the value of the
cumulative normal distribution function, φ (xi) = Φ

(
xT
i β
)
. Here, Φ = F

is standard normal distribution function, i.e., ui ∼ N (0, 1). The probit link
is Φ−1 [φ (xi)] = xT

i β, i.e., the inverse Gaussian cumulative distribution func-
tion or Gaussian quantile function. The link values have a range of (−∞,∞)
because they are quantiles of the standard normal distribution.

Logistic Regression

In a logistic regression model, φ (xi) =
exp(xT

i β)
1+exp(xT

i β)
and the F−1 link is the

logit, defined as

log

(
φ (xi)

1− φ (xi)

)
= xT

i β.

Logits have a range of (−∞,∞). The shape of the logistic distribution,
F (u) = exp (u) / [1 + exp (u)], is similar to normal distribution but with
heavier tails as u ranges over (−∞,∞). The logistic distribution has mean 0
and variance π2

/
3.

Complementary Log-Log (c-log-log)

The probability of response in a complementary log-log model is φ (xi) =
1 − exp

[− exp
(
xT
i β
)]
. This is also called a log-Weibull distribution. The

complementary log-log link is

log {− log [1− φ (xi)]} = xT
i β.
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Using this model is equivalent to assuming that the error term in the latent
variable model has what is called an “extreme value” distribution:

F (ui) = e−e−ui
.

The extreme value distribution has mean of about -0.577 (known as Euler’s
constant) and variance π2

/
6 (Weisstein 2010).

There are some differences in these distributions, but they are not extreme.
Figure 13.3 shows probabilities on the vertical axis graphed versus standard-
ized links on the horizontal axis. The standardized link for each distribution
is defined as [u− E (u)] /σu. Probit and logit are almost identical while c-log-
log has more probability at lower values of the link function.

Example 13.6 illustrates how to estimate response probabilities in R. A
choice must be made whether to use the survey base weights when estimating
the model parameters. Since probabilities conditional on being selected for the
sample are desired, this implies that unweighted regressions should be fit. If
the base weights were used, then the parameters estimated would be for the
census-fit model, i.e., those that would be estimated if the entire population
was in hand. If Pr (Ri = 1| Ii = 1) = Pr (Ri = 1), then the unweighted and
weighted estimators would aim at the same quantities. However, even in that
case, using variable base weights can give estimators with higher variances—
a point illustrated by Little and Vartivarian (2003) in the context of class
nonresponse adjustments.
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Fig. 13.3: Graph of probabilities versus standardized links for logit, probit, and
c-log-log models.

Example 13.6 (Unweighted models). The 2003 NHIS (nhis.RData) data
consists of 3,911 cases.We identified nonrespondents as persons who answered
the question on personal income as Refused, Not Ascertained, and Don’t
Know or who reported their income only as above or below $20K. The resp
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Fig. 13.4: Comparisons of predicted probabilities from logistic, probit, and comple-
mentary log-log models for response. A 45o line is drawn in the second row where the
probabilities would be equal.

variable has values of 0 for nonrespondents and 1 for respondents. About
31% are nonrespondents by this criterion. We fit logit, probit, and c-log-log
models using the following covariates:

age Age (continuous)
educ r Education recode (1 = High school, general education

development degree (GED), or less, 2 = Some college
3 = Bachelor’s or associate’s degree
4 = Master’s and higher)

hisp Hispanic ethnicity (1 = Hispanic, 2 = non-Hispanic)
parents r Parent(s) of sample person present in the family

(1 = Yes, 2 = No)
race Race (1 = White, 2 = Black, 3 = Other)

The code for fitting an (unweighted) logistic model in R follows. Some of the
output is in Table 13.1. The variables hisp, parents, and race are treated as R
factor variables (class variables in SAS). R automatically creates dummy vari-
ables and omits the first level of each (reference level) to compute parameter
solutions:
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# logistic regression
glm.logit <- glm(resp ˜ age +

as.factor(hisp) +
as.factor(race) +
as.factor(parents_r) +
as.factor(educ_r),
family=binomial(link = "logit"),
data = nhis)

summary(glm.logit)

# extract link values
L.hat <- glm.logit$linear.predictors

# transform link values to probability scale
pred.logit <- exp(L.hat) / (1 + exp(L.hat) )

To fit probit and c-log-log models, use

family=binomial(link = "probit")
family=binomial(link = "cloglog")

in the call to glm. Suppose the resulting models are stored in the objects
glm.probit and glm.cloglog. To link values to predicted probabilities:

L.hat <- glm.probit$linear.predictors
pred.probit <- pnorm(L.hat)

or

L.hat <- glm.cloglog$linear.predictors
pred.cloglog <- 1 - exp(-exp(L.hat) )

The AIC values for the three models are: logistic, 4777.2; probit, 4777.1; and
c-log-log, 4777.1—implying that all three fit equally well, at least by the AIC
measure. Figure 13.4 shows boxplots of the predicted probabilities from the
three models and scatterplots of the probit and c-log-log predictions versus
the ones from the logistic model. These plots also confirm that the three
models produce very similar results in this example.

The same unweighted models can also be fitted in SAS using proc
genmod, the procedure designed to analyze data through a generalized linear
model with a specified link function:

proc genmod data = nhis;
class hisp race parents_r educ_r;

model resp = age hisp race parents educ_r
/ dist = binomial link = logit

/* or probit or cloglog */ ; run;

�
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The same models can be run with the base weights using svyglm in the
R survey package (Lumley 2012). Because base weights are not available in
the NHIS public use file, we have used the final survey weights (svywt) for
illustration.

Example 13.7 (Weighted models). The R code for fitting the logistic model is
shown below. First, a survey design object is created with svydesign:

require(survey)
nhis.dsgn <- svydesign(ids = ˜psu, strata = ˜stratum,

data = nhis,
nest = TRUE,
weights = ˜svywt) # Note: base wt should

# be used if available

glm.logit <- svyglm(resp ˜ age + hisp + race +
parents_r + educ_r,

family = binomial(link = "l
design = nhis.dsgn)

The weighted parameter estimates are shown in Table 13.1 along with the
unweighted values from Example 13.6. The same parameters are significant
in both the weighted and unweighted, albeit at different levels. �

Figure 13.5 plots the predicted response probabilities from the weighted
models versus those from the unweighted models in each of the three mod-
els. The overall response rates for this data set are 69.0% (unweighted) and
70.4% (weighted). The survey-weighted predictions in Fig. 13.5 are mainly
somewhat higher than the unweighted predictions, consistent with higher
overall estimated response rate.

In SAS, proc surveylogistic can be used to compute weighted esti-
mates of probabilities. SAS does not have procedures for fitting probit and
c-log-log models with survey data, although this is probably no real limitation
since logistic is used most often. One could use proc genmod with weights

Table 13.1: Unweighted and weighted parameter estimates from logistic models.

Unweighted Survey weighted

Parameter Estimate z value Pr(>|z|) Estimate z value Pr(>|z|)
(Intercept) 0.583 4.63 0.000 *** 0.667 4.00 0.000 ***

Age −0.013 −5.74 0.000 *** −0.013 −5.74 0.000 ***

as.factor(hisp)2 0.306 3.36 0.001 *** 0.220 1.76 0.083 .

as.factor(race)2 −0.160 −1.61 0.109 −0.214 −1.61 0.111

as.factor(race)3 −0.374 −2.31 0.021 * −0.449 −2.23 0.028 *

as.factor(parents r)2 0.522 4.74 0.000 *** 0.547 4.84 0.000 ***

as.factor(educ r)2 0.249 2.54 0.011 * 0.341 3.07 0.003 **

as.factor(educ r)3 0.346 3.79 0.000 *** 0.383 3.99 0.000 ***

as.factor(educ r)4 0.276 1.94 0.052 . 0.310 2.15 0.035 *
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Fig. 13.5: Comparison of unweighted and weighted predicted probabilities from logis-
tic, probit, and complementary log-log models. A 45o line is drawn in each panel.

to get point estimates for probit and c-log-log; the standard errors (and thus
the test for significance) will not account for design features like clustering.

Use of Estimated Propensities for Nonresponse Adjustment

Response propensities can be used for nonresponse adjustments either indi-
vidually or by grouping units into classes. The options are:

1. Propensity weighting—Adjust the weight for an individual responding

unit by 1
/
φ̂i with φ̂i computed from a binary regression.

2. Propensity stratification—Use the φ̂i’s to create classes and make a com-
mon adjustment within each class to all respondents.

Propensity weighting was discussed in the previous sections. The use of
propensity stratification was introduced by Rosenbaum and Rubin (1983) for
observational studies. Propensity scores have found many uses, particularly
in causal inference (Stuart 2010). In an observational study there may be a
“treatment” and a “control” group, but no randomization to groups is used.
With this kind of “found data” there can be many differences between the
compositions of the groups that make inference difficult. For example, we may
collect data on smokers and nonsmokers and measure the outcome variable
lung cancer. Smokers and nonsmokers may differ on many covariates other
than just whether or not they smoke. An observed difference in the rates of
lung cancer in the two groups may be due to something other than smoking
unless the effect of covariates can be “adjusted out” some way.

One way of doing the adjustment is to create classes. The general goal in
class creation is to group units that have the same or very similar propensities
of being in the “treatment” group (e.g., smokers). Units in a class will have
the same configuration of covariates, or, at least, about the same φ (x), which
summarizes the effect of the covariates. In theory, the difference between the
estimated treatment and control means is unbiased for sets of units with
same propensity score. Within each class, units are treated as if they were
randomized to treatment or control since each has the same probability φ (x)
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of treatment. For example, we could group persons who have similar propen-
sities for smoking. Then, compute proportions of smokers and nonsmokers
with lung cancer in each class. The idea is that any differences in covariates
like age, race/ethnicity, and social class have been adjusted out within each
group because φ (xi) summarizes the effects of the covariates (at least the
ones in the model) and the φ (xi)’s are close to each other for all units in a
group.

In the response/nonresponse case, the respondents are equivalent to the
treated and the nonrespondents to the controls. The probability of treatment
is the probability of responding. We create classes so that each unit in a class
has same or similar probability of responding and make the same nonresponse
adjustment to each respondent in a given class. Little (1986) was the first to
suggest this for nonresponse adjustment; Czajka et al. (1992) give an example
using tax returns.

Propensity Stratification: Creating Classes

First, a binary regression model is fit using covariates available for both
respondents and nonrespondents. Ideally, these covariates are related to both
the propensity to respond and the y’s being measured. In practice, the set of
available x ’s can either be extensive or quite limited, depending on the type
of survey. In an employee satisfaction survey, like the one in Project 1, quite
a bit may be known about all units in the sample. Panel surveys may also
have data on nonrespondents in later waves if units responded in an early
wave and provided some data. In a telephone survey, almost nothing may be
known for the nonrespondents, other than, possibly, the geographic location
of the phone number. Even this is changing in the USA, where mobile phone
users can retain the same phone number wherever they move.

The general steps in class formation are:

1. Calculate φ̂ (xi) for each unit in the sample used for modeling.

2. Sort the file by φ̂ (xi)—low to high.
3. Form classes with about the same number of initial (respondents + non-

respondents) sample units in each.

Five classes are usually recommended based on some analyses in Cochran
(1968). With a large sample, there is no reason not to create more classes. This
can help make each more homogeneous on covariates and propensity scores.
More classes may decrease bias due to nonresponse but may increase variances
by creating bigger spread in the weights. We will address the question of
whether variation in weights increases variances of estimators in more detail
in Chap. 14.

If the range of φ̂ (xi) in each class is small, then using a single propensity
value for each class is reasonable. In some data sets, there may be clumping
of estimated probabilities, i.e., groups of units that have about the same
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φ̂ (xi). If there is separation among the groups, then creating classes with
the same number of units may be a bad idea since you would mix units with
different response propensities. There are several options for computing a
single adjustment in each class c:

1. φ̂c =
∑

i∈sc
φ̂ (xi)

/
nc, unweighted average estimated propensity where

nc is the unweighted number of cases in class c

2. φ̂c =
∑

i∈sc
diφ̂ (xi)

/∑
i∈sc

di, weighted average estimated propensity;

where di is the input weight to the NR step and
∑

i∈sc
di = N̂c, the

estimated number of population units in class c
3. φ̂c = ncR/nc, unweighted response rate where ncR is the unweighted num-

ber of respondents in class c
4. φ̂c =

∑
i∈scR

di
/∑

i∈sc
di, weighted estimate of response rate

5. φ̂c = median
[
φ̂ (xi)

]
i∈sc

, unweighted median estimated propensity

If every unit in a class has the same probability of responding, i.e., the group-
ing is very effective, then (3) φ̂c = ncR/nc is best [see Little and Varti-

varian (2003)]. If φ̂ (xi)’s vary within a class, (1) or (2) can be used. The

fourth choice, φ̂c =
∑

i∈scR
di
/∑

i∈sc
di, is an estimate of the population

response rate in class c assuming MAR. This estimate is approximately unbi-
ased with respect to the compound sampling/response mechanism or with
respect to a model with a common response probability within each class.
The fourth choice can be inefficient if weights vary much within class and
units have a common φi. Choice (5), the median, might be considered if the
response probabilities do vary quite a lot within a class or the distribution
of the estimated probabilities is skewed. We will compare these options in
an example below. In many applications, the options will give very similar
answers.

Checking Balance on Covariates

D’Agostino (1998) gives a simple method for checking covariate balance
within the classes formed in propensity stratification. After classes are formed,
the idea is to make a check on the extent of differences in the covariate means.
The covariate means should be different between the classes, but within a
class, the means of the covariates should be the same for respondents and non-
respondents. The latter condition is consistent with the response propensity
being the same for all units within a class. Suppose classes are formed based
on quintiles of φ̂ (xi) giving five classes. Define a variable p.class with five
values and treat it as a factor, i.e., p.class <- as.factor(seq(1:5)).
Also, define the indicator variable resp = 1 if a unit is a respondent and 0 if
an NR. Next, fit models for the mean of each covariate using p.class and
resp as predictors:
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• For quantitative x ’s, fit an analysis of variance (ANOVA) model, x =
p.class resp p.class*resp.

• For dichotomous x ’s, fit a logistic model, logit(x) = p.class resp
p.class*resp

The coefficients on resp and the interaction term p.class*resp should be
nonsignificant if covariate means do not differ for Rs and NRs within quintile
class. The coefficients on p.class should be nonzero and different from each
other since units with different values of the propensities, and, consequently,
the covariates, go into the different classes. Another simple, descriptive step is
to look at the covariate means in a p.class*resp table. Balance check-
ing is also relevant to other types of studies. For example, Harder et al. (2010)
discuss balancing in causal inference in psychological studies.

Example 13.8 (Form classes from propensities). Continuing with the NHIS
analyses given in Example 13.6, the object pred.logit holds predicted
response probabilities from the unweighted logistic model. The R code below
divides the persons into five classes and checks the count of persons per class:

# Determine quintiles of response propensities
quintiles <- quantile(pred.logit, probs = seq(0,1,0.2))

# Create a factor to hold the class IDs
# include.lowest=TRUE makes sure the smallest
# propensity is assigned to a class

p.class <- cut(round(pred.logit,3), breaks = quintiles,
include.lowest=TRUE)

table(p.class)
(0.453,0.631] (0.631,0.677] (0.677,0.714] (0.714,0.752]

778 773 788 786
(0.752,0.818]

786

Next, we compare the five ways of estimating the class response propensity:

# (1) Unweighted avg response propensity
by(data = pred.logit, p.class, mean)

# (2 )Weighted response propensity
by(data = data.frame(pred.logit,

wt = nhis[,"svywt"]),
p.class,
function(x) {weighted.mean(x$pred.logit, x$wt)})

# (3) Unweighted response rate
by(as.numeric(nhis[, "resp"]), p.class, mean)

# (4) Weighted response rate
by(data = data.frame(resp = as.numeric(nhis[,"resp"]),

wt = nhis[,"svywt"]), p.class,
function(x) {weighted.mean(x$resp, x$wt)})

# (5) Unweighted Median response propensity
by(pred.logit, p.class, median)
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Table 13.2 lists the propensity values that would be used for each class
based on the five methods above. In the NHIS data, all methods give similar
results. Although all five methods give monotonically increasing propensity
values across the classes, this does not have to be true. The unweighted and
weighted response rates, in particular, do not have to increase from class 1
to 5, even though the estimated model propensities do.

Table 13.2: Five methods of estimating response propensities within classes based
on fitting a logistic model to the NHIS data.

(1) (2) (3) (4) (5)

Class Boundaries Count Unweighted Weighted Unweighted Weighted Median

of avg. avg. RR RR

persons propensity propensity

1 [0.453,0.631] 778 0.588 0.591 0.589 0.591 0.595

2 (0.631,0.677] 773 0.655 0.655 0.662 0.679 0.657

3 (0.677,0.714] 788 0.696 0.696 0.694 0.702 0.696

4 (0.714,0.752] 786 0.732 0.732 0.707 0.717 0.733

5 (0.752,0.818] 786 0.777 0.778 0.796 0.804 0.775

[0.453,0.631] (0.631,0.677] (0.677,0.714] (0.714,0.752] (0.752,0.818]

0.
5

0.
6

0.
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8

Fig. 13.6: Boxplots of predicted probabilities based on logistic regression after sorting
into five propensity classes.

Figure 13.6 shows boxplots of the logistic regression probabilities within
each of the five propensity classes. The horizontal line in each box is the
unweighted mean of the propensities in the class. The class with the small-
est propensities has a larger range than the others, which is typical in
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these applications. The range of propensities in the last four classes is much
shorter. Using the mean or another single value to adjust for nonresponse will
eliminate the more extreme adjustments. For example, in the first class, the
smallest estimated propensity is 0.453 whose inverse is 2.21. The unweighted
mean in that class from Table 13.2 is 0.588 with an inverse of 1.70. Thus,
using the mean would reduce the adjustment by about 23%.

We illustrate a check on covariate balance by fitting an ANOVA model
to age, which is continuous. We do not use the survey weights below since
the interest is in whether balance has been achieved in the sample that was
selected. Checks could be made using the weights, in which case the check
would be on whether the census-fit model shows evidence of balance:

chk1 <- glm(age ˜ p.class + resp + p.class*resp,
data = nhis)

summary(chk1)
Coefficients:

Estimate t value Pr(>t)
(Intercept) 56.12 63.06 < 2e-16 ***
p.class(0.631,0.677] -7.84 -5.91 3.79E-09 ***
p.class(0.677,0.714] -11.36 -8.37 < 2e-16 ***
p.class(0.714,0.752] -12.98 -9.43 < 2e-16 ***
p.class(0.752,0.818] -23.12 -15.00 < 2e-16 ***
resp -0.06 -0.05 0.957
p.class(0.631,0.677]:resp -0.01 -0.01 0.994
p.class(0.677,0.714]:resp -1.24 -0.73 0.464
p.class(0.714,0.752]:resp 0.22 0.13 0.896
p.class(0.752,0.818]:resp 1.57 0.86 0.390
Signif. codes:

0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

In this case, the p.class factors all have coefficients that are significant
while the p.class*resp interactions are not—the desired outcomes if mean
age differs between classes but is the same for respondents and nonrespon-
dents within a class. Another check is to fit a second model that includes only
p.class and to test whether the models are equivalent:

chk2 <- glm(age ˜ p.class, data = nhis)
anova(chk2, chk1, test="F")

The F -statistic is 0.457 with 3,906 and 3,901 degrees of freedom and has a
p-value of 0.8084. Thus, the model without a factor for responding is judged
to be adequate.

Balance on Hispanic ethnicity can be checked with a logistic regression
after recoding hisp = 1, 2 to a new binary variable new.hisp=0,1:

new.hisp <- abs(nhis$hisp-2)
chk1 <- glm(new.hisp ˜ p.class + resp + p.class*resp,

family=binomial(link = "logit"),
data = nhis)

summary(chk1)
Coefficients:
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Estimate z Pr(>z)
(Intercept) -0.51 -4.4 9.69E-06 ***
p.class(0.631,0.677] -0.17 -0.9 0.344
p.class(0.677,0.714] -0.76 -3.9 9.64E-05 ***
p.class(0.714,0.752] -1.84 -7.1 1.75E-12 ***
p.class(0.752,0.818] -2.92 -6.2 4.51E-10 ***
resp 0.08 0.5 0.612
p.class(0.631,0.677]:resp -0.25 -1.1 0.253
p.class(0.677,0.714]:resp -0.05 -0.2 0.842
p.class(0.714,0.752]:resp -0.04 -0.1 0.901
p.class(0.752,0.818]:resp -0.99 -1.7 0.097

Three of the four coefficients for p.class are significant while the
p.class*resp interactions are not (at least at the 0.05 level). Outcomes
for race, parents r, and educ r are similar. Note that race and educ r
need to be recoded to binary variables to use logistic. We can also fit a second
model with only p.class to compare to the one above:

chk2 <- glm(new.hisp ˜ p.class,
family=binomial(link = "logit"),

data = nhis)
anova(chk2, chk1, test="Chisq")

The ANOVA statement tests whether the two models defined by chk1 and
chk2 are equivalent in the sense have having the same value of −2 log-
likelihood. The chi-square statistic is 3.7566 with five degrees of freedom and
has a p-value of 0.585. Consequently, balance was obtained on Hispanic also.

Numerical Note

The logistic model for checking covariate balance on parents has anomalous
results that seem to occur fairly often in practice and are worth a comment.
The model

new.par <- abs(nhis$parents_r-2)
chk <- glm(new.par ˜ p.class + resp + p.class*resp,

family = binomial(link = "logit"),
data = nhis) summary(chk)

leads to an extremely large standard error on p.class(0.752,0.818]
and the interaction term p.class(0.752,0.818]:resp. The output from
this model is

Coefficients:
Estimate SE z Pr(>z)

(Intercept) -0.54 0.12 -4.64 3.49E-06 ***
p.class(0.631,0.677] -1.11 0.20 -5.45 5.10E-08 ***
p.class(0.677,0.714] -1.81 0.26 -7.07 1.51E-12 ***
p.class(0.714,0.752] -3.27 0.47 -7.00 2.49E-12 ***
p.class(0.752,0.818] -19.03 850.18 -0.02 0.982
resp -0.22 0.15 -1.45 0.148
p.class(0.631,0.677]:resp 0.47 0.25 1.85 0.064
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p.class(0.677,0.714]:resp 0.38 0.31 1.23 0.220
p.class(0.714,0.752]:resp -1.19 0.75 -1.58 0.113
p.class(0.752,0.818]:resp 0.22 952.65 0.00 1.000

This is a symptom of “quasi-complete” separation in the data set, i.e., there
are one or more observations with a predicted probability equal to or near 1.
In this situation, a parameter estimate will diverge to infinity. In the NHIS
example, there are no cases in class 5 where the parents of the sample person
live in the home (parents r=1). This does not have any bad effects on the
formation of propensity classes themselves. Since the value of the parents r
covariate is the same for everyone assigned to that class, the goal of equalizing
the covariate values was accomplished. (Of course, if this problem cropped
up in logistic analysis where the goal is to find covariates related to the
occurrence of some characteristic, it would have to be addressed.)

The SAS code to create classes and check balance on the age and hisp
covariates is shown below. Here the logistic procedure is used, but proc
genmod is also an option as illustrated earlier in this chapter. The output
is not listed, although SAS users are encouraged to test the code using the
NHIS data:

proc import out= work.nhis
datafile= "C:\nhis.csv"
dbms=csv replace;

getnames=yes;
datarow=2;

run;

* Model probability of response ;
proc logistic data = nhis;

class hisp (ref = ’1’)
race (ref = ’1’)
parents_r (ref = ’1’)
educ_r (ref = ’1’) / param=ref;

model resp (event = ’1’) =
age hisp race parents_r educ_r;

output out = preds pred = pr;
run;

* Create quint1les based on the estimated propensity score;
proc rank groups = 5 out = r;

ranks rnks;
var pr;

run;

data a;
set r;
pclass = rnks + 1;

run;

* Show the breakdown of units by propensity class and response;
proc freq data = a;

tables pclass * RESP;
run;
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* Perform 2-way ANOVA and logistic regressions to determine ;

* whether difference in covariate means was removed ;

* by creating classes. ;
proc glm data = a;

class pclass;
model age = pclass resp pclass * resp;

run;

proc logistic data = a;
class pclass (ref = ’1’)

resp (ref = ’0’);
model hisp (event = ’2’) = pclass resp pclass * resp;

run;

Special Cases of Response Propensity Models

Seeing what a propensity model reduces to in some special cases is instruc-
tive. First, consider a model with main effects and interactions. For exam-
ple, suppose we have gender (male, female) and race/ethnicity (Hispanic,
non-Hispanic White, non-Hispanic Black, non-Hispanic other race/ethnicity).
This gives 2 × 4 = 8 levels or classes in the model. The latent variable model
defined without an intercept term for unit i in level j of gender and level k
of race/ethnicity is

R∗
i = αj + βk + (αβ)jk + ui,

where
αj is effect of jth level of gender (male or female)
βk is effect of kth level of ethnicity (Hispanic, non-Hispanic White, non-

Hispanic Black, non-Hispanic other)
(αβ)jk is an effect for the interaction of gender and ethnicity
ui is an error term assumed to have a standard normal distribution, i.e.,

ui ∼ N (0, 1)
(If ui has variance σ2 	= 1, then the model can be recast in terms of R∗

i /σ.
Since the latent variable is unobservable, this is not an assumption that can be
checked anyway.) This model would be fitted by (implicitly) creating dummy
variables for every level of the interaction of gender with race/ethnicity (gen-
der × race/ethnicity).

This is equivalent to a gender × race/ethnicity class adjustment model,
as we now show. Suppose logistic regression is used to predict the response
probability for a person with gender j and race/ethnicity k :

φ (xi) = exp
(
αj + βk + (αβ)jk

)/[
1 + exp

(
αj + βk + (αβ)jk

)]
.

This probability is same for every unit i in each jk combination. This leads

to the estimate of φ (xi) being nR
jk

/
njk in the unweighted case. That is,

the estimated probability for units jk is simply the proportion of the sam-
ple in the class that are respondents, i.e., the unweighted response rate.
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If survey weights are used, we get
∑

i∈sRjk
di

/∑
i∈sjk

di , the weighted

response rate, with sjk the set of sample units in level jk and sRjk the set
of responders. If the appropriate model includes only main effects, so that
φ (xi) = exp (αj + βk) / [1 + exp (αj + βk)], this does not reduce to the class
model, and the logistic predictions must still be used instead of a weighting
class adjustment.

If no x ’s are significant in the model and an intercept-only is the best
model, then this is evidence that the nonresponse is MCAR. If so, then one
overall NR adjustment is appropriate.

Pros and Cons: Class Adjustment Versus Propensity Modeling

An obvious question is which method is better: class adjustment with classes
defined by crosses of categorical variables or propensity modeling with adjust-
ments based on either individual response propensities or propensity classes.
Propensity modeling can be more flexible than class adjustment for several
reasons, including:

• Categorical variables do not have to be completely interacted.
• Continuous x ’s can be used either by themselves or in combination with

categorical variables.
• Explicit modeling can be done to decide what variables should be included.

The modeling may, of course, lead to choosing class adjustment if the model
includes only main effects for categorical variables and all interactions. If little
is known about nonrespondents, propensity modeling will not gain much over
class adjustment and may be equivalent. In household surveys, for example,
few person or household-specific items may be available. Neighborhood data
may be more common.

At the other extreme, if there are a number of variables available for respon-
dents and nonrespondents, propensity models may give a fairly wide range
of estimated probabilities. In that case, grouping propensities into classes, as
described above, will lead to less spread in the weight adjustments. On the
other hand, if the model fits well, weight adjustments that are inverses of the
individual propensities will eliminate bias while class adjustments may not.
Class adjustment will eliminate bias if all units in the class have the same
response probability, but if each unit has a separate response probability,
a class adjustment may be too coarse to eliminate bias. (The bias referred
to here is over the sampling and response distributions.) Since the models
are usually not trusted completely, using propensity stratification is more
common in practice.

A final computational point is this: a factor and its levels can be simple
or elaborate. For example, a simple factor is gender (male, female). The
equivalent to crossing two simple categorical variables would be to create a
single variable that could take all values in the cross. For example, gender ×
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race/ethnicity with levels (male, female) × (Hispanic, non-Hispanic White,
non-Hispanic Black, non-Hispanic other) could be coded as a single variable
with eight levels. This allows some flexibility in using a set of variables that
are partially interacted in a model. As an illustration, we might have gender ×
race/ethnicity and gender × education as two factors in a propensity model.

13.5.3 Classification Algorithms

Another method of forming classes for nonresponse adjustments is via a clas-
sification algorithm. The idea of mathematically classifying units based on
characteristics was introduced by Morgan and Sonquist (1963). Many algo-
rithms are now available including classification and regression trees (CART;
Breiman et al. (1993)), support vector machines (Vapnik 1995), and chi-
square automatic interaction detection [CHAID, (Kass 1980)]. We will cover
the CART algorithm which is available in the R package rpart (Therneau
et al. 2012). The goal will be to classify units as respondents or nonrespon-
dents based on covariates available for all sample cases. Thus, the input data
are the same as for propensity modeling. Some of the primary applications of
classification algorithms are in constructing decision trees. One of the more
well-known examples is whether the space shuttle pilot should use the autolan-
der or land manually (Michie 1989; Venables and Ripley 2002) based on wind
direction and speed, visibility, and other factors.

In the nonrespondent application, the decision tree will classify cases
using available covariates into classes that are related to their likelihood of
being respondents. Advantages of CART compared to propensity modeling
are that:

1. Interactions of covariates are handled automatically.
2. The way in which covariates enter the model does not have to be made

explicit.
3. Selection of which covariates and associated interactions should be

included is done automatically.
4. Variable values, whether categorical or continuous, are combined (grouped)

automatically.

Judkins et al. (2005) and Rizzo et al. (1996) are two papers that compare
propensity modeling and tree algorithms for nonresponse adjustment. As in
the previous section, we want to form classes so that we can claim that we
have MAR, i.e., given the x ’s that define classes, all units have the same
response probability.

The following R code uses the package rpart to identify a tree using the
NHIS data set based on the same variables as in the propensity model:



13.5 Adjustments for Nonresponse 339

require(rpart)
set.seed(15097)
nhis <- data.frame(nhis)
t1 <- rpart(resp ˜ age + hisp + race + parents_r + educ_r,

method = "class",
control = rpart.control(minbucket = 50, cp=0),
data = nhis)

print(t1, digits=2)
plot(t1, uniform=TRUE, compress=TRUE, margin = 0.1)
text(t1, use.n=TRUE, all=TRUE,

digits=4,
cex=1.2,
pretty=1.2,
fancy=TRUE,
xpd = TRUE,
font = 3)

There is some randomness in how the algorithm determines the tree. The
set.seed statement forces the internal random number generator to start
in a particular place, which permits results to be reproduced in different runs
of the same code.

The parameter minbucket = 50 in rpart.control requires that
there be at least 50 cases (respondents + nonrespondents) in each final group-
ing of variable values known as a terminal node of the tree. The parameter
cp=0 is a complexity parameter that prevents splits from being made unless
the measure of fit improves by at least cp units. Venables and Ripley (2002)
explain in some detail the criteria used by rpart to fit the tree. In our
application, at each step, a split is found, based on one covariate from the
available set of covariates that maximizes the log-likelihood of being a respon-
dent. Although the default value of cp=0.1 seems small, we have found that
rpart will often not construct a tree at all with the default. Setting cp=0,
i.e., no penalty for complexity, may be necessary to construct a useful set
of classes. The function print gives a fairly compact listing of the details of
the tree:

print(t1, digits=2)

node), split, n, loss, yval, (yprob)

* denotes terminal node
1) root 3911 1200 1 (0.31 0.69)
2) educ_r< 1.5 1964 690 1 (0.35 0.65)

4) age>=56 588 240 1 (0.41 0.59) *
5) age< 56 1376 450 1 (0.33 0.67)
10) parents_r< 1.5 277 110 1 (0.40 0.60)

20) age>=32 67 31 0 (0.54 0.46) *
21) age< 32 210 75 1 (0.36 0.64) *

11) parents_r>=1.5 1099 340 1 0.31 0.69) *
3) educ_r>=1.5 1947 520 1 (0.27 0.73) *

The NHIS tree has five terminal nodes (or leaves) marked by *. Each row
in the list shows the number of the node, the split, which is the combina-
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tion of variable values for cases in the node, the total number of cases in
the node (labeled n), the number of cases that are misclassified (labeled
loss), the category of the majority of the cases in the node (0=nonrespon-
dent, 1=respondent, labeled yval), and the proportion of cases that are 0s
and 1s (labeled yprob). For example, the node labeled 4 in the output from
the print statement above contains persons who have a high school edu-
cation or less (educ r<1.5) and who are aged 56 or more. There are 588
persons in that node, the majority of whom are respondents (yval=1). If all
persons in the node were classified as respondents, 240 would be misclassified
(loss=240). The proportion of cases that are respondents is 0.59.

|

educ_r< 1.5

age>=55.5

parents_r< 1.5

age>=32.5

educ_r>=1.5

age< 55.5

parents_r>=1.5
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1
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1
689/1275
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1
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1
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Fig. 13.7: Classification tree for nonresponse adjustment classes in the NHIS data.

Figure 13.7 is a picture of the tree, which may make clearer the combina-
tion of factors in each node. For example, the node labeled 11 in the output
from print is defined by cases with a high school education or less (educ r<
1.5), age < 56, and neither one of the sample person’s parents present in
the home (parents r>=1.5). Node 11 has a 69% response rate. Notice
that the definitions of the nodes imply that there is some interaction among
the variables that is being accounted for when modeling response. Hispanic
and race were not used in constructing the tree although these factors were
significant in the logistic model in Table 13.1. However, using more detailed
categories for the presence of parents and education will lead to Hispanic
being included, as illustrated in one of the exercises. Notice that the regres-
sion tree has identified a three-way interaction of education, age, and parents
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as being important. This interaction was not included in the earlier logistic
model, and probably could have been identified only by a lengthy trial-and-
error process if we limited ourselves to logistic modeling.

A practical consideration in forming nonresponse adjustment classes is to
assure that the sample size in each class is not too small. Deciding what is “too
small” is subjective—50 cases (respondents + nonrespondents) is sometimes
used. The sample size in a terminal node is controlled by setting minbucket.
Notice that this does not set a constraint on the variance of the estimated
response rate in a class because the variance would depend on the response
rate itself. In some cases, a node will not be split even though the number of
cases in a class is much larger than the value of minbucket. For example,
terminal node 3 in our example has 1,947 cases but is not split because no
improvement could be made in the log-likelihood that is being maximized.

There are a number of parameters that can be used in text to control the
printing of the tree (see the help file for text.rpart in the rpart package).
You may want to experiment with these to obtain a picture of the tree that
you prefer. For example, setting fancy=TRUE represented the intermediate
nodes by ellipses and the terminal nodes by rectangles. The edges connect-
ing the nodes are labeled by left and right splits. If the default value of
fancy=FALSE is used, the ellipses and rectangles are omitted and the edges
are not labeled. When a tree has many branches and nodes, fancy=FALSE
will produce a less cluttered looking picture.

In this example, the five terminal nodes are numbers 4, 20, 21, 11, and 3,
with proportions of respondents equal to 0.59, 0.46, 0.64, 0.69, and 0.73. The
range is 0.46–0.73. Recall that when five classes were created from propensity
scores, the range in response probabilities was 0.59–0.78 using the unweighted
average propensity in each class (see Table 13.2). Although we have five
classes in both the propensity class analysis and the CART model, the cases
assigned to each class are not necessarily the same. The assignment of each
case to a node is given in component t1$where, which is a vector of length
3,911. The count of cases in each terminal node is given by

table(t1$where)
3 6 7 8 9

588 67 210 1099 1947

The labels (3, 6, 7, 8, 9) are not the same as the labels shown by print(t1,
digits=2) above. The label 3, for example, means the third node produced
by print:

4) age>=56 588 240 1 (0.41 0.59} *

The nonresponse adjustment for units in terminal node c can be com-

puted as either the inverse of the unweighted response rate, 1
/
φ̂c = nc/ncR,

or the inverse of weighted response rate, 1
/
φ̂c =

∑
i∈sc

di
/∑

i∈scR
di. The

unweighted and weighted response rates are These rates can be computed



342 13 Basic Steps in Weighting

Adjustment Unweighted Weighted
class RR RR
3 0.5935 0.6089
6 0.4627 0.4527
7 0.6429 0.6446
8 0.6915 0.7026
9 0.7314 0.7466

and merged onto the nhis data file to make the nonresponse adjustments
using the following R code:

# compute NR adjustments based on classes formed
# by tree
# Unweighted response rate

unwt.rr <- by(as.numeric(nhis[, "resp"]), t1$where, mean)
# Weighted response rate

wt.rr <- by(data = data.frame(resp = as.numeric(nhis[,"resp"]),
wt = nhis[,"svywt"]),
t1$where,
function(x) {weighted.mean(x$resp, x$wt)} )

# merge NR class and response rates onto nhis file
nhis.NR <- cbind(nhis, NR.class=t1$where)
tmp1 <- cbind(NR.class=as.numeric(names(wt.rr)), unwt.rr, wt.rr)
nhis.NR <- merge(nhis.NR, data.frame(tmp1), by="NR.class")
nhis.NR <- nhis.NR[order(nhis.NR$ID),]

The merge uses the common field NR.class that is in both the nhis.NR
and tmp1 objects. Although we created a field that had the same name in
the two objects, the merge statement is flexible enough to permit merging
using fields that have different names.

13.6 Collapsing Predefined Classes

Designers of surveys often have a lengthy list of nonresponse adjustment
classes, of the type described in Sect. 13.5.1, in mind when they develop
weighting systems. However, using classes with a small number of sample
cases will lead to imprecise estimates of response propensities. If the sample
size in a class is small, the class may be collapsed with an adjacent one.
The conventional justification for collapsing is that the possibility of creating
extreme weights is reduced as are variances of estimates. However, a poor
choice of the method for collapsing may lead to estimates that are quite
biased.

Kalton and Maligalig (1991) and Kim et al. (2007) give some guidance
on how the collapsing should be done, which we summarize here. Collapsing
leads to bias when response rates and class means of the initial classes are
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correlated within a collapsed class. The bias can be either positive or negative,
depending on the correlation. Classes should be collapsed based on similarity
of response rates, population class means, or both in order to avoid bias.
This method of collapsing can be much different from procedures that only
collapse “adjacent” classes, e.g., by combining contiguous age groups. If the
adjacency coincides with classes that have similar response rates or means,
no bias results.

There are at least two practical issues with collapsing based on class means.
One is that, while the theory in the two papers above directs us to collapse
based on population means, in a particular sample, we will only have esti-
mates for the responding sample. If nonresponse is substantial, the means of
the responding and nonresponding parts of the sample may be considerably
different, even within the initial classes. This would be a case of NINR. In
that case, adjustment based only on the initial set of classes or combinations
of them cannot correct nonresponse bias. A second practical issue is that data
on many items are collected in most surveys. Collapsing based on the class
means for one variable may not work well for other variables. In that case,
the compromise, suggested by Little and Vartivarian (2005) for nonresponse
adjustment, of collapsing based on some weighted average of the means of an
important set of variables might be a good solution. However, we will only
have means for the respondents. Whether and how much the means of the
nonrespondents differ cannot be checked in most surveys.

Regression tree software, such as rpart in R, has automated collapsing
schemes that are informed by optimizing some criterion (like maximizing a
log-likelihood or minimizing an error sum of squares) associated with the
method chosen to partition the data. As shown in Fig. 13.7, the R function
combined the continuous age variable into groups 55.5 years of age and older,
and less than 55.5 years.

13.7 Weighting for Multistage Designs

The previous sections addressed weighting adjustments within a single stage
of the survey design. These same basic techniques can be used within each
stage of a multistage design and should sequentially reflect any appropriate
adjustments from the previous level. We provide a few descriptive examples
below.

Consider a stratified two-stage establishment survey where a stratified
sample of businesses is randomly selected from a list in the first stage, and
employees are randomly selected in second-stage strata from the sampled
businesses. In this example, an establishment is a PSU, and an employee is
an SSU. Establishments might be stratified by type of business (retail, man-
ufacturing, etc.). Employees within an establishment might be stratified by
occupational class (professional, clerical, etc.). The base weight for business
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i in first-stage stratum h (h = 1, . . . , H ≥ 2) is calculated as the inverse
probability of selection, d0hi = π−1

hi , as described in Sect. 13.3. The particu-
lar sampling mechanism is not important to the example and is left to the
imagination of the reader. The corresponding (unconditional) base weight for
employee k within stratum j is defined as defined as

dhijk = π−1
hi π

−1
jk|hi,

where π−1
jk|hi is the base weight for employee jk within business hi, i.e., given

that business hi was selected in the first stage of the design. If study eligi-
bility cannot be confirmed for the business, such as its operational status or
whether the company still manufactures a particular product, then the PSU
base weight should be adjusted for unknown eligibility, whi = dhia1hi. The
resulting business-level weight would be used to create the final employee
analysis weight such as

whijk = dhi a1hi a2hijk

with a2hijk signifying, for example, an SSU-level nonresponse adjustment.
A second example is a survey of teachers who instruct students between

the age of 14 and 16. Schools (SSU) are randomly chosen from sampled
geographic clusters (PSU) such as school districts or counties; teachers are
then selected from rosters provided by a school administrator. If the status of
school i in PSU h cannot be ascertained and the school administrator declines
to participate in the study for some schools, then at least one adjustment
should be applied to the SSU weight:

wij = π−1
i π−1

j|i a
(1)
2ij a

(2)
2ij ,

where π−1
i is the PSU base weight, π−1

j|i is the conditional SSU base weight,

a
(1)
2ij is the (unconditional) unknown eligibility adjustment for SSU hi that

was calculated with input weight dij = π−1
i π−1

j|i , and a
(2)
2ij is the correspond-

ing (unconditional) nonresponse adjustment calculated with input weight

w
(2)
2ij = π−1

i π−1
j|i a

(1)
2ij . Note that neither an unknown eligibility adjustment nor

a nonresponse adjustment would be required for stages of a survey design that
involve geographic clusters as the sampling unit since, presumably, we will
know whether each geographic unit is eligible and all will respond. However,
if permission from school-district officials to contact the sample schools was
required, then a PSU-level nonresponse adjustment would also be warranted.
The adjusted school-level weight, wij above, would then be used to construct
a nonresponse-adjusted analysis weight for teacher k, wijk = wij a3ijk.
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13.8 Next Steps in Weighting

The previous sections dealt with the development of base weights, the inverse
selection probabilities, as well as adjustments to address problems with
unknown study eligibility and nonresponse bias. The next chapter completes
the picture by focusing on the use of auxiliary data (or covariates) whose
totals are known for the target population. Use of auxiliary data can reduce
variances of estimators and can adjust for incomplete sampling frames, a prob-
lem also known as undercoverage. These many weight adjustments, especially
for multistage surveys, can unnecessarily inflate the variation in the analysis
weights which in turn decreases the precision in the study estimates. Tech-
niques used to manage this inflation are also discussed.
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Exercises

13.1. Consider stratified simple random sampling without replacement (stsr-
swor). An srswor of size nh is selected in each stratum from a population
of size Nh, h = 1, . . . , H . The selection probability of unit i in stratum h is
πhi = nh/Nh and the base weight is d0hi = π−1

hi = Nh/nh. Show that the
sum of the base weights across all units in the sample equals the population
size N and that the sum within each stratum equals the stratum population
size, Nh.

13.2. A two-stage sample of PSUs and persons within PSUs is needed for
a pilot study on public transportation. A sample of three geographic PSUs
has been selected with probabilities proportional to their total population
counts, Ni, based on administrative records. Sampling was done in such a
way that the probability of selecting PSU i is mNi/N , using the notation
from earlier in this chapter. Persons will be classified into two race/ethnicity
groups for sampling—non-Hispanic Whites and others. You would like to
select subsamples of non-Hispanic Whites and others so that the sample
from each of these two groups is self-weighting. The desired sampling rates
are 0.01 for non-Hispanic Whites and 0.04 for others.

PSU Ni Non-Hispanic Others
White NWi Nother,i

1 1,000 800 200
2 850 400 450
3 150 110 40

Pop. total N 10,000

Find the following:

(a) Selection probabilities for the three sample PSUs
(b) Within-PSU sampling rates needed to achieve the desired overall sampling

rates
(c) Base weights for each unit
(d) Expected number of sample persons in each PSU by race/ethnicity group

and in total

13.3. Repeat Exercise 13.2 assuming that the target sampling rates are 0.02
for non-Hispanic Whites and 0.06 for others. Do you see any problems with
this design? If so, what remedy would you suggest?

13.4. The following table gives sums of weights for samples of establishments
in three cities that were classified as being in retail trade based on yellow page
listings:
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City Eligible Eligible Known Unknown Total
resp. nonresp. ineligible eligibility

1 50 46 11 17 124
2 77 89 19 12 197
3 44 31 8 23 106

Total 171 166 38 52 427

(a) Adjust the weights separately in each city first for unknown eligibility
and then for nonresponse. Show your calculations in each step.

(b) What is the estimated total number of eligible units in each city and
across all cities?

(c) What is the estimated number of ineligible establishments on the sampling
frame?

(d) In what circumstance would it be reasonable to combine all three cities
together to make the adjustments for unknown eligibility and nonre-
sponse? Do those circumstances hold here?

13.5. A telephone survey of a sample of 500 members of a professional orga-
nization of podiatrists is conducted. The 500 are a simple random sample
from the list of 2000 current members. Four hundred sample persons are defi-
nitely determined to be eligible. Among those, 320 respond to the survey and
80 refuse. The list is somewhat out-of-date so that some phone numbers are
incorrect. Seventy sample people cannot be successfully contacted. Of the 70,
there are 45 whose answering machine picks up, but a person is never con-
tacted directly; 16 persons pick up the phone but immediately hang up when
they hear that a survey is being done; for nine of the phone numbers neither
a person nor an answering machine ever picks up. Some persons on the list
may have dropped out of the organization and are, therefore, ineligible. You
are able to identify 30 sample persons who have dropped their membership:

(a) Into what eligibility status would you classify the 70 people (45 answer-
ing machine, 16 hang-ups, 9 no answer): unknown, ineligible, or eligible
refusal? Why?

(b) Given your decision in (a), use a single adjustment class to adjust for
unknown eligibility. Which cases receive the adjustment? What is the
adjustment value for each?

(c) After the adjustment for unknown eligibility, what are the estimated num-
bers in the population of eligibles and ineligibles?

13.6. Fit unweighted logistic, probit, and c-log-log models to the resp vari-
able in the NHIS data set, nhis.RData:

(a) Use the covariates age, sex, hisp, and race.
(b) Which variables are significant predictors in each of the models?
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(c) Compare the predicted probabilities from the three models.

13.7. Continuing Exercise 13.6, use the predicted response probabilities from
the logistic regression that used all covariates and create two versions of
propensity classes:

(a) Five classes with an equal number of respondents plus nonrespondents in
each and

(b) Ten classes. Report the breaks used for the five and ten classes and the
number of cases assigned to each class. (Check to see that all cases were
assigned a non-missing class value. Use the parameter useNA=“always”
in table if you use R in order to see whether NAs were created.)

(c) Calculate the five alternative values of NR weight adjustment shown in
Example 13.8. For the weighted adjustments, use the svywt variable. Dis-
cuss how the five alternative values of adjustments compare within (a)
and (b) and how the adjustments using five and ten classes compare to
each other.

(d) How do the class adjustments compare to using the inverses of individual
propensity estimates as adjustments?

(e) Which set of adjustment values would you recommend and why?

13.8. Using the sets of five and ten propensity classes you created in Exer-
cise 13.7, make the checks suggested by D’Agostino (1998) to see whether
the propensity classification succeeded in balancing on the covariates. If bal-
ancing was not achieved, discuss what the implications of this might be for
using the classes for nonresponse adjustment.

13.9. Using the NHIS data set, fit a classification tree for the response (resp)
variable using the covariates age, sex, hisp, race, parents, and educ. Require
that a minimum of 50 cases be assigned to each node. Describe the compo-
sition of each node in words and draw a picture of the tree. Compute the
unweighted response rates in each of the nodes that are formed.

13.10. Calculate the unweighted and weighted values of NR weight adjust-
ment (alternatives 3 and 4) shown in Example 13.8 for the classes identified
in Exercise 13.9. For the weighted adjustments, use the svywt variable. How
do these sets of values compare? Which would you recommend and why?



Chapter 14

Calibration and Other Uses of Auxiliary
Data in Weighting

The previous chapter described the first few steps used in weight calculation:
base weights, adjustments of unknown eligibility, and nonresponse adjust-
ments. The last step, which is extremely important in many surveys, is to use
auxiliary data to correct coverage problems and to reduce standard errors. By
auxiliary data, we mean information that is available for the entire frame or
target population, either for each individual population unit or in aggregate
form. These may be obtainable because a frame of all units in the population
was used to select the sample and each listing on the frame contains some
data. Surveys of business establishments or institutions may have such frames.
Population totals for some variables may be available from a source separate
from the survey, like a census. In a business survey, the frame might have the
number of employees from an earlier time period for each establishment. In a
household survey, counts of persons in groups defined by age, race/ethnicity,
and gender may be published from a census or from population projections
that are treated as highly accurate.

Figure 14.1 shows two populations where a survey variable y is related
to an auxiliary variable x. Regardless of the type of sample design used,
exploiting the relationship between y and x can give more precise estimators
than ignoring it. Using x will reduce variances more for the structure in the
left-hand panel than in the right because of the (linear) association between
the two variables is stronger. In either case, estimators can be used that
take advantage of the relationship. We use a single auxiliary variable for
ease of demonstration. Statisticians generally use a set of p (p > 1) auxiliary

variables, denoted in transposed vector form as xi = (xi1, xi2, . . . , xip)
T

for
the ith sample unit, to adjust the weights.

Another use of auxiliary data is to correct for coverage errors in a frame.
For example, suppose that a household survey estimates that the number of
African-American males, aged 18–24, is only 75% of the latest census count
or population projection for that group even after nonresponse adjustment.
By creating weights that reproduce the census counts or population projec-
tions, we can “correct” for the undercoverage. To be effective, the responding

R. Valliant et al., Practical Tools for Designing and Weighting
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Fig. 14.1: Scatterplots of two hypothetical relationships between a survey variable
y and an auxiliary x.

sample cases do have to be a good representation of the full population. This
means that either (a) the adjustments to weights, covered in Chap. 13, cor-
rect any potential bias due to nonresponse, or (b) the analysis variables for
the respondents follow the same model as exhibited in the full population
and that model can be approximated by the calibration techniques in this
chapter.

This chapter will cover some of the tools that are available for employing
auxiliary data in estimation and the weights that are implied. Section 14.1
describes the general method of calibration estimation along with some exam-
ples. Two of the most common uses of auxiliary data are poststratification
and raking, covered in Sect. 14.2. General regression estimation (GREG) and
some examples of the broader class of calibration estimators are discussed in
Sect. 14.3.

The steps of computing base weights, nonresponse adjustments, and cali-
bration may result in weights whose sizes vary quite a bit. Practitioners usu-
ally are leery of having weights that have a large range since a few extremely
large weights can destabilize estimates by increasing the associated standard
errors (SEs). Having variable weights may or may not be something to worry
about. Subgroups that respond at greatly different rates will lead to differing
sizes of nonresponse adjustments. Weights that vary considerably may also
be statistically efficient, as in the case of optimal allocation to strata that we
studied in Chap. 3. However, if the weights vary for none of these reasons, this
can be inefficient. Section 14.4 describes quadratic programming and weight-
trimming methods that allow the weights themselves to be directly bounded.
We also discuss two types of design effects that are sometimes useful when
assessing weight variability.
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14.1 Weight Calibration

The term calibration estimator was introduced for survey estimation by
Deville and Särndal (1992). Kott (2009) gives a good review of the mathemat-
ics of the technique. The general idea is to use auxiliary variables to improve
the efficiency of estimators. The auxiliaries may come from the frame, admin-
istrative records, published statistics, or other sources. Among the potential
benefits of calibration are:

• Decrease in variances
• Bias correction for frame coverage and other survey errors
• Adjustment for nonresponse

Multiple auxiliaries can be used, but to illustrate the method, we begin with
one of the simplest cases of calibration—the ratio estimator.

Example 14.1 (Ratio estimator). The ratio estimator of a mean for a sim-
ple random sample (srswor), introduced at the end of Sect. 3.2.2, is ȳR =
ȳsx̄U/x̄s where ȳs =

∑
s yi/n and x̄s =

∑
s xi/n are unweighted means of

an analysis variable y and an auxiliary variable x and x̄U is the population
mean of x. The response variable might be the number of full-time employ-
ees in an establishment at the current time and x the corresponding number
from a year ago. To compute the ratio estimate from a sample, we need the
values of x for the individual sample units so that x̄s can be calculated, and
we need their population mean, x̄U . Notice that the individual values of x
for the nonsample units are not required to compute ȳR, although we might
have them from the frame. One property of the ratio estimator is that, if we
treat y as the auxiliary variable, then ȳs = x̄s and the ratio estimate reduces
to x̄U . Thus, the estimate is calibrated (or benchmarked) in the sense that
it reproduces the known population value when we substitute the auxiliary
variable for the analysis variable. �

The ratio estimator is a member of a more general class that covers many
of the estimators used in practice. Suppose that the weights used in the cali-
bration step are denoted by di for the i th unit in the sample, like a person or
a business establishment, for which data are collected. In Chap. 13 the prod-
uct of a base weight, an unknown eligibility adjustment, and a nonresponse
adjustment was called d2i. We drop the subscript 2 here to reduce the nota-
tion. The goal of calibration is to find a new set of weights, w = {wi}i∈s using
set notation, that are near the input weights, d = {di}i∈s, but when used to
estimate totals of the auxiliaries, reproduce the population totals exactly.
The thought in keeping the weights close in value is that the output weights
can “borrow” any good estimation properties inherent in the input weights.
For example, if the base weights are associated with a weighted mean that is
design unbiased, then the same estimate calculated with the output weights
should be (approximately) design unbiased as well. On the other hand, if the
input weights produce high variance estimates, creating new weights that are
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close to the old ones is no improvement. However, many efficient estimates
are in the calibration class, making the class worth studying.

Formally, the following problem is solved with weight calibration:
Find the set of weights {wi}i∈s that:

• Minimize a measure of the distance, L (w, d), between the incoming weights
and the calibrated weights.

• Subject to constraints: ∑
i∈s

wixi =
∑
k∈U

xk, (14.1)

where xi = (xi1, xi2, . . . , xip)
T

is the set of p auxiliary variables for unit
i and wi = digi, a function of the input weight and an adjustment (the
g-weight) that satisfies the constraints.

We will refer to the wi’s as the final weights. To determine the weights, we
need the x -values for the individual sample units and the population totals
for those x ’s. Typically, auxiliary information is not needed for the nonre-
spondents. Recall that the methods of nonresponse adjustment we studied in
Chap. 13, like propensity adjustments, did require individual covariate infor-
mation to be available for both respondents and nonrespondents. The auxil-
iaries can be either quantitative, such as the total number of students in a
school, or qualitative, such as an indicator for gender=male.

One choice of L is the least-squares distance function,

L (w, d) =
∑
s

(wi − di)
2
/
di. (14.2)

Minimizing this, subject to the constraint in Eq. (14.1), leads to the general
regression estimator or GREG. The GREGs include many of the estimators
used in practice and studied in standard sampling books. We cover these in
more detail in Sect. 14.3. Another distance function is

L (w, d) =
∑
s

[
wi log

(
wi

di

)
− wi + di

]
. (14.3)

This leads to a type of raking estimator, which we discuss in Sect. 14.2.
There is usually a model under which a particular calibration estimator

will be especially efficient in terms of the repeated sampling variance. We
discuss the estimator-associated models in the Sects. 14.2 and 14.3. If the
model correctly describes the dependence of an analysis variable on a set of
auxiliaries, then the calibration estimator will be model unbiased also. In
selecting a set of auxiliaries, good policy is to do some modeling using the
auxiliaries as covariates. This will help in deciding which auxiliaries to use and
whether any of the auxiliaries should be transformed by, say, taking the square
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or logarithm. A few model-checking techniques are examined in Sect. 14.3.2;
interested readers are referred to standard texts such as Cook and Weisberg
(1982) and Weisberg (2005) for additional information. Diagnostics that are
specialized to be appropriate for complex survey data can be found in Li and
Valliant (2009, 2011) and Liao and Valliant (2012a,b).

14.2 Poststratified and Raking Estimators

Poststratified and raking estimators are two of the most commonly used cali-
bration estimators. They are especially prevalent in household surveys of per-
sons where the auxiliary variables are indicators for demographic groups. For
example, persons may be classified by age group, gender, and race/ethnicity.
Poststratification is implemented within calibration weighting classes formed
by crossing all categories of the qualitative variables and constructing weights
that reproduce the class-specific population counts in the weighted estimates.
Poststratification can also be done using a single variable like age group.
Formally, the poststratified estimator of a total is defined as

T̂yPS =

G∑
γ=1

Nγ

(
t̂yγ

/
N̂γ

)
,

where t̂yγ =
∑

sγ
diyi is the estimated total of y in weighting class (or post-

stratum) γ based on the input weights, sγ is the set of sample units in post-

stratum γ, N̂γ =
∑

sγ
dk is the estimated population size of poststratum γ

based on the input weights, Nγ is the population count (also known as a
control or control total) for the poststratum γ, and G is the total number of
poststrata. The implied final weight for unit i in poststratum γ is

wi = di
Nγ

N̂γ

, (14.4)

where gi = Nγ

/
N̂γ is the poststratification adjustment (factor). This is the

g-weight in generic equation wi = digi. With that definition of the weight,
we can write the estimator as T̂yPS =

∑
i∈s wiyi, i.e., a weighted sum of the

data values.
The weighting classes are referred to as poststrata because they are applied

after the sample is selected and data are collected. They are not necessarily
used at the design stage to select the sample. In fact, poststratification is a
good way to use auxiliaries that you think are effective predictors of impor-
tant variables collected in the survey but cannot be easily used for sample
selection. For example, in a household survey, many countries do not have
a frame of persons that includes race/ethnicity and educational attainment.
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We can use those as poststrata as long as the population counts of persons
in the cross of those two variables are available from a census or some other
external source like projected population counts. In this example, poststrata
would be defined as a combination of race/ethnicity and categorized educa-
tion. Suppose that race/ethnicity is coded into three categories (1=White,
2=African-American, 3=other) while education, defined as the highest level
of school completed, is coded into four categories: 1=less than high school);
2=high school graduate; 3=college or some college; and 4=graduate degree
(master’s, doctorate, professional degree beyond bachelor). Then, the cross
of these variables leads to G=12 classes that could be used as poststrata.
One note of caution before we proceed: using many important auxiliary vari-
ables for poststratification can reduce bias but may result in empty weight-
ing classes or ones with a small number of respondent cases. This results in
unstable estimates N̂γ of the population controls and adds unnecessarily to
the variability of the final weights—both instances should be avoided.

The poststratified estimator is a special case of the GREG with the dis-
tance function in Eq. (14.2). The model that naturally accompanies T̂yPS is
one where units have a common mean and variance within a poststratum:

EM (yi) = βγ , V arM (yi) = σ2
γ . (14.5)

The x vector for a unit has G components, each containing a 0–1 indicator
for whether or not a unit is in a particular poststratum. The postStratify
function in the R survey package can be used to compute the estimate, as
shown below in Example 14.2.

Example 14.2 (Poststratified estimator). To illustrate poststratification, we
select a simple random sample of size 250 from the large NHIS population
supplied with this book. Poststrata are defined by age group crossed with
Hispanicity. First, we calculate the proportion of persons covered by Medi-
caid (a type of US governmental assistance for medical care provided to the
poor) in domains defined by age group and Hispanicity. The hisp variable
on the file is recoded to the 3-category variable and named hisp.r. The
categories of age group and Hispanicity are shown in Table 14.1 along with

Table 14.1: Percentages of persons in the large NHIS population who reported receiv-
ing Medicaid.

Age group (years)

Hispanicity under 18 18–24 25–44 45–64 65+

Hispanic 32.2 10.7 7.6 11.0 27.2

Non-Hispanic White 12.6 6.6 3.8 3.1 3.7

Non-Hispanic Black 31.3 12.7 8.8 6.4 16.5

and other
race/ethnicity
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the percentages of persons receiving Medicaid. Hispanics and non-Hispanic
Blacks under 18 have much higher percentages than other age groups; Hispan-
ics who are 65 years and older also have a high rate of Medicaid. Of course, we
could fit a model to predict whether people receive Medicaid, but the cross-
table is sufficient to show that there is an interaction between age group and
Hispanicity.
This is the code used to produce the percentages:

attach("nhis.large.RData", pos=2)
# collapse hisp = 3,4

hisp.r <- nhis.large$hisp
hisp.r[nhis.large$hisp == 4] <- 3
nhis.large1 <- data.frame(nhis.large, hisp.r)
t1 <- table(nhis.large1$medicaid, nhis.large1$age.grp,

nhis.large1$hisp.r)
100 * round(prop.table(t1[,,1],2),3)
100 * round(prop.table(t1[,,2],2),3)
100 * round(prop.table(t1[,,3],2),3)

Next, we select the sample and then create an srswor design object and a
poststratified design object:

# create single variable to identify age.grp x
# hisp.r poststrata

m <- max(nhis.large1$hisp.r)
nhis.large1$PS <- (nhis.large1$age.grp - 1)*m + nhis.large1
$hisp.r
N.PS <- table(PS = nhis.large1$PS)

# select srswor of size n
set.seed(-1570723087)
n <- 250
N <- nrow(nhis.large1)
sam <- sample(1:N, n)
samdat <- nhis.large1[sam, ]

# compute srs weights and sampling fraction
d <- rep(N/n, n)
f1 <- rep(n/N, n)

# srswor design object
nhis.dsgn <- svydesign(ids = ˜0, # no clusters

strata = NULL, # no strata
fpc = ˜f1,
data = data.frame(samdat),
weights = ˜d)

# poststratified design object
ps.dsgn <- postStratify(design = nhis.dsgn,

strata = ˜PS,
population = N.PS)

The postStratify function takes three main parameters: design (survey
design object), strata (formula or data frame of poststratifying variables),
and population (table or data frame with population frequencies).
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There are several steps above where particular syntax requirements must
be observed. A single variable was created to denote the poststrata. The
statements

m <- max(nhis.large1$hisp.r)
nhis.large1$PS <- (nhis.large1$age.grp - 1)*m +

nhis.large1$hisp.r

number the age group × Hispanicity poststrata from 1 to 15 (=5*3). The
poststratify function accepts a single variable (called PS in this case) to
define the poststrata.

The svydesign function creates an object, nhis.dsgn, that contains
the srswor design information. The weights are in d and are all equal to N/n.
In order to include a finite population correction (fpc) factor in variance
estimates, the fpc parameter must be specified when creating the design
object. The parameter must be a vector whose length is equal to the sample
size. Using a scalar will generate an error, even when the finite correction
is a single value. Rather than specifying 1 − n/N , which is the textbook
definition of an fpc, the survey package requires the fpc parameter to be
either the population total N or the sampling fraction, n/N . This may seem
idiosyncratic, but the same convention is used by both Stata and SAS.

The population control counts, Nγ , are contained in N.PS. The name PS
given to the table in the statement

N.PS <- table(PS = nhis.large1$PS)

must match the name of the variable in the data set that holds the post-
strata. Next, we can verify that the poststratified weights do sum to the
population counts using the svytotal function below. Only the first four
of 15 poststrata are shown. The estimated counts do match the population
counts (which the reader can verify). The SEs of the estimates are zero since
there is no variation from sample to sample in the estimates—they will always
equal the population counts. This issue is revisited in Chap. 18 where we cover
quality control tabulations in more detail:

# Check that weights are calibrated for x’s
svytotal(˜as.factor(PS), ps.dsgn)

total SE
as.factor(PS)1 1952 0
as.factor(PS)2 2870 0
as.factor(PS)3 1169 0
as.factor(PS)4 581 0

Note that the weights of the individual sample cases can be examined with
the command, weights(ps.dsgn). The estimated proportion of persons
receiving Medicaid, their SEs, and coefficients of variation (CV ) are pro-
duced by
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# PS standard errors and cv’s
svytotal(˜ as.factor(medicaid), ps.dsgn, na.rm=TRUE)
cv(svytotal(˜ as.factor(medicaid), ps.dsgn, na.rm=TRUE))

# srs standard error and cv’s
svytotal(˜ as.factor(medicaid), nhis.dsgn, na.rm=TRUE)
cv(svytotal(˜ as.factor(medicaid), nhis.dsgn, na.rm=TRUE))

The parameter, na.rm=TRUE, is used because some cases have missing val-
ues for Medicaid; without it, results will all be NA (i.e., missing). To force
Medicaid to be treated as a class (factor) variable, as.factor is used. The
poststratified and srswor estimates for the total number of persons receiving
Medicaid are

Total SE CV
Poststratified 1870.8 344.5 0.184
srswor 1899.7 385.3 0.203

In this sample, the srswor and poststratified estimated totals are similar and
the latter has slightly smaller SE and CV. �

Example 14.3 (Poststratified estimator as a way of correcting for undercov-
erage). Suppose that the sample frame only covers 75% of the population
subgroups of Hispanic and non-Hispanic Blacks and other race/ethnicities:

# create frame with undercoverage
# 75% coverage of Hispanics and non-Hispanic Black &
# Other. These correspond to poststrata
# 1,3,4,6,7,9,10,12,13, and 15.

PS.prob <- rep(c(0.75, 1, 0.75), 5)
cov.prob <- PS.prob[nhis.large1$PS]
N <- nrow(nhis.large1)
rn <- runif(N)
nhis.cov <- nhis.large1[rn <= cov.prob, ]

The code above generates a uniform random variable in the interval [0,1]
for each person in the population. This random number is compared to the
coverage rate (0.75 or 1) for the poststratum containing each person and a
“covered” population is created with the statement

nhis.cov <- nhis.large1[rn <= cov.prob, ]

This treats coverage as a random phenomenon—every person has some chance
of being in the frame. This may or may not be a realistic assumption but is
typical in the literature that analyzes the effects of undercoverage. Some
linkage is needed between the units in the frame, the sample selected from it,
and the rest of the universe in order to make inferences for the entire target
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population. Modeling coverage as a random occurrence is one way of doing
this. We then selected an srswor sample of n=500 from nhis.cov using the
seed, set.seed(610376119), and computed poststratified weights (code
not shown).

The estimated totals of Medicaid recipients, their SEs, and CV s are shown
in Table 14.2. The totals for Hispanics and non-Hispanics can be computed
with the statement

svyby(˜as.factor(medicaid), ˜hisp.r, ps.dsgn, svytotal,
na.rm=TRUE)

The proportions are found by substituting svymean for svytotal.
The estimates calculated with (unadjusted) base weights are labeled as

π-estimates in this example and in subsequent text to distinguish them from
estimates calculated with (adjusted) final weights. As shown in Table 14.2, the
π-estimated totals are too small due to the undercoverage, but the poststrat-
ified estimates are much closer to the population totals. The π-estimates do
have smaller SEs, but 95% confidence intervals would not contain the popula-
tion totals. (The method of variance estimation used here is called lineariza-
tion. We will cover methods of SE estimation in more detail in Chap. 15.)
Of course, this is just a single sample. In other samples, it is possible for
the poststratified estimates to be too large and the π-estimates closer to the
truth. However, poststratification will, on average, reduce bias due to under-
coverage in practical applications (e.g., see Kim et al. 2007), making it one
of the standard techniques for correcting undercoverage. �

Table 14.2 also shows the estimated proportions for both types of weights.
In this example, poststratification makes less difference in either the point
estimates or the SEs. This is also typical—estimates that are ratios are often
less affected by coverage problems than are estimated totals.

A popular alternative to poststratification is raking, which can also use
more than one auxiliary variable. In the example above with age group and
Hispanicity, all weighting classes formed by the cross-classification are used as
poststrata. A population control value is needed for each weighting class. In
addition, minimum sample size requirements are usually imposed; otherwise
N̂γ can be unstable. In raking only the marginal age group and Hispanicity
control counts are needed. This is especially relevant when only marginal
counts are available in published sources.

As with the poststratified estimator, the raked estimator is also associ-
ated with a linear model. For example, the model in a two-variable raking
problem is

EM (yi) = μ+ αj + βk, V arM (yi) = σ2 (14.6)

for i having level j of the first variable and level k of the second. The param-
eters α and β are fixed effects. The poststratified model for the mean that
naturally goes with the cross of two variables is EM (yi) = μ + αj + βk +
(αβ)jk where (αβ)jk is an interaction term. This model is equivalent to
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Table 14.2: Comparison of π-estimates and poststratified estimates in Example 14.3
of totals and proportions of persons receiving Medicaid when the frame has under-
coverage.

Statistic Estimate SE CV
Estimated totals
Full population
Actual population total 2,281
π-estimate 1,770 246 0.139
PS estimate 2,381 322 0.135
Hispanic
Actual population total 935
π-estimate 616 150 0.243
PS estimate 954 209 0.219

Estimated proportions
Full population
Actual population proportion 0.107
π-estimate 0.093 0.013 0.139
PS estimate 0.112 0.015 0.135
Hispanic
Actual population proportion 0.189
π-estimate 0.184 0.041 0.223
PS estimate 0.190 0.042 0.219

expression (14.5). Thus, the raking model has main effects only and fewer
parameters.

Even when the main effects only model seems inadequate, raking is often
a way to use more variables that may be important predictors of analysis
variables or of frame coverage rates. In poststratification, crossing several
variables may quickly create more classes than the sample can support.

Example 14.4 (Raking by age group and Hispanicity). To illustrate the pro-
cedure, we rework Example 14.3 by raking to the age group and Hispanicity
margins. The same srswor sample of 500 from the covered population is used,
and a survey design object called nhis.dsgn is created. The code below uses
the calibrate function to do the raking. An alternative is the function rake,
which will give the same answer (see Lumley 2010, Sect. 7.3):

# create marginal pop totals
N.age <- table(nhis.large1$age.grp)
N.hisp <- table(nhis.large1$hisp.r)
pop.totals <- c(’(Intercept)’ = N, N.age[-1], N.hisp[-1])

# create raked weights
rake.dsgn <- calibrate(design = nhis.dsgn,

formula = ˜as.factor(age.grp) + as.factor(hisp.r),
calfun = "raking",
population = pop.totals)
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The calibrate function accepts a number of parameters:

design survey design object
formula model formula for calibration model
population vectors of population column totals for the model

matrix in the calibration model or list of such vec-
tors for each cluster

calfun calibration function. Allowable values are
calfun=c("linear","raking","logit","rrz").
The function is flexible enough to accept a user-
defined distance function also.

Notice how the vector of population totals is defined. The first position is
for the population total of an intercept μ in Eq. (14.6), which is just the
number of units in the population. When categorical variables are in a model,
the R convention is to drop the first level so that the system of estimating
equations for the parameters can be solved. That is, the first category is
treated as the reference level. The first levels of age.grp and hisp.r are
omitted in forming the pop.totals vector by “subtracting” the first position
from the vector, e.g., N.age[-1]. For those versed in matrix algebra, this
ensures that the calibration equations can be solved by creating an auxiliary
matrix with full column rank. As in poststratification, we can check that
the calibration has succeeded by estimating the totals of the two auxiliary
variables:

# Check that weights are calibrated for x’s
svytotal(˜as.factor(age.grp), rake.dsgn)

total SE
as.factor(age.grp)1 5991 0
as.factor(age.grp)2 2014 0
as.factor(age.grp)3 6124 0
as.factor(age.grp)4 5011 0
as.factor(age.grp)5 2448 0

svytotal(˜as.factor(hisp.r), rake.dsgn)
total SE

as.factor(hisp.r)1 5031 0
as.factor(hisp.r)2 12637 0
as.factor(hisp.r)3 3920 0

The totals, proportions, and their SEs and CV s can be estimated using
svytotal, svymean, and cv as in Example 14.3. The results are in
Table 14.3. The estimates are very close to those for poststratification in
Table 14.2. Note, however, that only the marginal control totals are guar-
anteed to be satisfied with raking, not the control totals for the cross-
classification.
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Table 14.3: Raking estimates in Example 14.3 of totals and proportions of persons
receiving Medicaid when the frame has undercoverage.

Total SE CV

Estimated totals

Full population 2,360 316 0.134

Hispanic 943 210 0.223

Estimated proportions

Full population 0.111 0.015 0.134

Hispanic 0.187 0.042 0.223

14.3 GREG and Calibration Estimation

To define the GREG, we need some vector and matrix notation that is more
elaborate than used in other parts of this book. Särndal (2007) gives a good
general discussion of GREGs. Understanding the notation is not essential
to follow the examples later in this chapter, and some readers may wish to
skip to the illustrations of using software to compute GREGs. To discuss the
GREG, it is easier to begin with totals rather than means. Suppose there
are n sample units. The GREG estimator of the population total of y can be
written as

T̂yGREG = t̂y +
(
tx − t̂x

)T
B̂

=
∑

i∈s

[
1 +
(
tx − t̂x

)T (
XTDV−1X

)−1
xi/vi

]
diyi

where t̂y =
∑

s diyi is the estimator of the total based on the input
weights, the superscript T represents the transpose of the specified vector,
tx = (tx1, . . . , txp)

T
is the p × 1 vector of population (or control) totals of

the p auxiliaries using the number of rows by the number of columns matrix
notation, t̂x =

∑
s dixi is the estimate of totals of the x ’s based on the di

weights, xi is the p× 1 vector of auxiliary values for the ith sample unit,
D = diag (di) is the n× n diagonal matrix of input weights,

X =

⎛
⎜⎜⎜⎝

xT
1

xT
2
...
xT
n

⎞
⎟⎟⎟⎠ is the n× p matrix of auxiliaries for the n sample units,

B̂ =
(
XTDV−1X

)−1
XTDV−1y

with y = (y1, . . . , yn)
T being the vector of y’s for the sample units, and

V = diag (vi) is an n × n diagonal matrix of values associated with the
variance parameters in an underlying linear model. It is possible to formulate
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the GREG using a block-diagonal or some other non-diagonal covariance
matrix, but this is seldom done in practice.

The p×1 vector, B̂, is an estimator of the slope in the model yi = xT
i β+εi

where the εi have mean 0 and variance vi. Note that in the case of srswor

design and base weights, B̂ reduces to
(
XTX

)−1
XTy, familiar to many from

a regression modeling course. If the model errors were all 0, then B̂ = β and
the GREG reduces to tTx β, which is also the population sum of the y’s, Ty.
In that case, the y for each unit in the population can be predicted without
error as xT

i β, and the GREG would be exactly equal to Ty in every sample.
As a result, the better the predictor that x is of y, the smaller the variance
of the GREG.

An estimated total for a y is calculated as T̂yGREG =
∑

s wiyi, a function
of the weights resulting from the calibration procedure of the form:

wi = digi

The term in brackets is called the g-weight or a calibration adjustment
(factor) in this text and many other references on calibration such as, for
example, Särndal et al. (1992) and Stukel et al. (1996). Notice that the final
wi weights do not depend on any analysis variables (y’s). As a result, the
same set of weights can be used for any estimated total. As we pointed out at
the beginning of Chap. 13, estimates of many quantities, like means, model
parameters, and quantiles, depend on estimating totals. For example, a mean
would be estimated as ˆ̄yGREG =

∑
s wiyi/

∑
s wi.

A GREG is approximately unbiased in repeated sampling if the frame
provides full coverage of the target population, and t̂x is an unbiased (or,
at least consistent) estimator of the population total, tx. Roughly speaking,
the unbiasedness follows if the input weights, di, lead to t̂y =

∑
s diyi being

an unbiased estimator of the population total and the difference tx − t̂x
estimates 0. In the case of frame undercoverage, t̂y will be too small on
average but so will t̂x. Thus, tx− t̂x will be positive and provide a correction
for the undercoverage. Some of the other practical considerations in using
GREGs are:

(1) The population totals of the auxiliaries, tx, which are also called calibra-
tion controls, should ideally be true values and known without error. If
the population x totals are incorrect, then either tx− t̂x will not estimate
0 when it should, or tx− t̂x will not give the correct coverage adjustment.
In some surveys, however, it may be desirable to use estimates of the
tx controls from a larger or higher quality survey than the one you are
weighting (see, e.g., Dever and Valliant 2010). This may be true if there
are x ’s that are felt to be very predictive of analysis variables, but only
population estimates from another survey are available.

(2) The estimated auxiliary totals, t̂x =
∑

s dixi, should be measured in the
same way in the population as in the survey. For example, suppose one
of the x ’s is household annual income. If a census and the survey collect
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income using different question wordings, this noncomparability could
bias tx − t̂x.

(3) As alluded to earlier in this chapter, an association exists between out-
come and auxiliary variables and is “effectively” represented by a linear
model. Although a close association between x ’s and the analysis vari-
ables is not necessary for the GREG to be approximately unbiased, a
model that fits well will yield lower variances. Consequently, some formal
model fitting is an important step in weighting.

(4) The fact that the calibration adjustments {gi}ni=1 are sample-dependent
needs to be accounted for in variance estimation. We will cover methods
of doing this in Chap. 15.

14.3.1 Links Between Models, Sample Designs,
and Estimators—Special Cases

Although some practitioners prefer to think of GREGs as model-free, we feel
that this is obscurantist at best. The motivation for choosing a particular
form of GREG is much easier to understand when an underlying model is
considered. Many sample-design/estimator combinations used in practice are
special cases of GREG. Some examples of estimator/sample-design/model
combinations are given in Table 14.4. These estimators are described in vari-
ous texts like Cochran (1977) and Särndal et al. (1992).1

GREGs flow from various kinds of linear models, as noted above. Nonethe-
less, they are often used to estimate totals of binary 0–1 variables even though
this implies that a linear model describes the association with a dichotomous
variable. Although fitting a linear model to a binary variable would probably
be considered a gaffe by most data analysts, it is commonplace in survey
estimation. This is an offshoot of using estimators of the form T̂ =

∑
s wiyi.

In some cases, like the poststratification model (14.5) where every unit in a
weighting class has the same mean, a linear model is fine for a binary variable.
But, in others where quantitative auxiliaries are used, the implicit predictions
for 0–1 variables may be outside of the range [0,1] for some units. A limited
amount of work has been done on using traditional binary regression models
to estimate totals of 0–1 variables in surveys (e.g., Lehtonen and Veijanen
1998; Valliant 1985). However, these methods can result in g-weights that are
a function of the analysis variables and are not in common use in surveys.
We will not discuss these techniques further here.

1 The form of the combined regression estimator shown in Table 14.4 is from Särndal
et al. (1992) and differs from the one in Cochran (1977).
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14.3.2 More General Examples

To illustrate a GREG that uses both quantitative and qualitative auxil-
iaries, we use the Survey of Mental Health Organizations population. The
file, smho.N874, contains 874 hospitals and is a subset of the smho98 file
introduced in Chap. 3. The variables on the file are:

hosp.type hospital type (1=psychiatric, 2=residential/veterans,
3=general, 4=outpatient/partial case, and 5=multi-
service/substance abuse)

EXPTOTAL total expenditures in 1998
BEDS total inpatient beds
SEENCNT unduplicated client/patient count seen during year
FINDIRCT hospital receives money from the state mental health

agency (1=yes, 2=no)

The following code will load the data set into R:

smho.N874 <- read.csv("smho.N874.csv", row.names = 1)

Suppose the goal is to estimate the total of expenditures in some year after
1998, but we use the 1998 file to explore whether any of the covariates, BEDS,
SEENCNT, EOYCNT, and FINDIRCT, would be useful predictors. For this
illustration, we drop the cases with hospital type = 4. Many of these are
outpatient units that do not have inpatient beds; beds will obviously not be
related to expenditures for them. The 725 organizations other than type 4
can be retained with the following R code. Note that the exclamation point
instructs the software to keep only records in smho.N874 that are not in the
delete vector:

delete <- smho.N874$hosp.type == 4
smho <- smho.N874[!delete, ]

A useful first step is to make a scatterplot matrix of the quantitative vari-
ables in the problem, as shown in Fig. 14.2. The correlation of expenditures
(EXPTOTAL) with number of beds (BEDS) is reasonably high at 0.70 but is
less for patient count (SEENCNT) and end-of-year patient count (EOYCNT),
0.35 and 0.30, respectively. Nevertheless, the two count variables may be use-
ful predictors. To explore relationships further, we drew Fig. 14.3 which plots
expenditures versus beds separately for each hospital type. The gray line in
each panel is a nonparametric smoother designed to reflect the relationship
of two variables without specifying any particular model. There is some evi-
dence that the slope for beds depends on hospital type. The same may be
true for the slopes for SEENCNT and EOYCNT, but, for this example, we will
not pursue this possibility.

Next, we can do some more formal modeling. The R code below fits a
model with common slopes for SEENCNT and EOYCNT but a different
slope for BEDS in each hospital type:
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Fig. 14.2: Scatterplot matrix of variables in the smho.N874 data set.

# Separate slope on beds in each hosp type
m2 <- glm(EXPTOTAL ˜SEENCNT + EOYCNT +

as.factor(FINDIRCT) +
as.factor(hosp.type):BEDS,

data = smho)

summary(m2)
Coefficients:

Estimate Std. Error t value Pr(>t)
(Intercept) 1318589.1 912432.2 1.445 0.148856
SEENCNT 1033.9 310.6 3.329 0.000918 ***
EOYCNT 2036.2 603.6 3.373 0.000782 ***
as.factor(FINDIRCT)2 78026.1 965237.6 0.081 0.935595
as.factor(hosp.type)1:BEDS 98139.3 3318.8 29.570 < 2e-16 ***
as.factor(hosp.type)2:BEDS 39489.4 5644.5 6.996 6.05e-12 ***
as.factor(hosp.type)3:BEDS 77578.4 15082.2 5.144 3.48e-07 ***
as.factor(hosp.type)5:BEDS 36855.8 8650.5 4.261 2.31e-05 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

All parameters estimates are significantly different from 0 except for
FINDIRCT and the intercept. We show one final diagnostic plot in Fig. 14.4,
although there are many that could be done. This figure plots the studentized
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368 14 Calibration and Other Uses of Auxiliary Data in Weighting

residuals from the model versus beds. Hospital types are shown in different
shades. Most points fall within the bands drawn at ±3, but there are a num-
ber outside the bands. Part of this may be due to nonhomogeneous variance,
which is visible in Fig. 14.3. Using a weighted regression with weights propor-
tional to beds to some power might help, but some of the smaller hospitals
have large standardized residuals. Some of the most extreme are psychiatric
hospitals that have either a large number of beds or large value of expendi-
tures.

In the first panel of Fig. 14.3, we saw that the plot of expenditures versus
beds was extremely diffuse for psychiatric hospitals. If these large organiza-
tions could be recognized in advance of sampling, they might be selected
with certainty, as described in Chap. 3. After the sample is selected, it might
be prudent to exclude such units, whether they are certainties or not, from
the process of computing calibration weights. They can have a harmful effect
on weights and resulting estimates since the implied slope in a GREG esti-
mate can be affected by extreme points. Of course, residuals for variables
other than total expenditures may not be extreme. As a result, the decision
about whether to exclude particular units from computation of weights is not
clear-cut.

To illustrate calibration, we will select a sample from the subset of smho98
that excludes hospital type 4 and use the same model as above. The code
below uses the sampling package to select a sample with probability pro-
portional to the square root of (recoded) beds. The method of selection is to
randomize the order of the population and then select a systematic sample
(see Hartley and Rao 1962). First, the value of beds is recoded to have a
minimum of 5; otherwise, any hospital with 0 beds cannot be selected. The
base weights are in the d vector:

require(sampling)
x <- smho[,"BEDS"]

# recode small hospitals to have a minimum MOS
x[x <= 5] <- 5
x <- sqrt(x)
n <- 80
set.seed(428274453)
pk <- n*x/sum(x)
sam <- UPrandomsystematic(pk)
sam <- sam==1
sam.dat <- smho[sam, ]
d <- 1/pk[sam]

The counts of sample units by hospital type are 33, 15, 17, and 15 so that all
types are represented. Next, the survey package is used to create a design
object, smho.dsgn, that is then used in the calibrate function to compute
GREG weights. This function accepts a number of parameters as discussed
in Example 14.4:
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smho.dsgn <- svydesign(ids = ˜0, # no clusters
strata = NULL, # no strata
data = data.frame(sam.dat),
weights = ˜d)

# Compute pop totals of auxiliaries
# Note these are the original not the recoded x’s

x.beds <- by(smho$BEDS, smho$hosp.type, sum)
x.seen <- sum(smho$SEENCNT)
x.eoy <- sum(smho$EOYCNT)
N <- nrow(smho)

pop.tots <- c(‘(Intercept)‘ = N,
SEENCNT = x.seen,
EOYCNT = x.eoy,
x.beds = x.beds)

sam.lin <- calibrate(design = smho.dsgn,
formula = ˜SEENCNT + EOYCNT +

as.factor(hosp.type):BEDS,
population = pop.tots,
calfun="linear")

The parameter setting calfun=c("linear") results in GREG weights
being computed. As in poststratification and raking, we can check whether
the calibration constraints were satisfied:

svyby(˜BEDS, by=˜as.factor(hosp.type), design=sam.lin,
FUN=svytotal)

as.factor(hosp.type) BEDS se.BEDS
1 1 37978 1.826570e-12
2 2 13066 6.289865e-13
3 3 9573 6.799993e-13
5 5 10077 1.398118e-12

svytotal(˜SEENCNT, sam.lin)
total SE

SEENCNT 1349241 5.755e-11

svytotal(˜EOYCNT, sam.lin)
total SE

EOYCNT 505345 1.911e-11

Since the SEs are essentially 0, a set of weights has been obtained that satisfy∑
s wixi = tx. The calibrate function will also issue an error message if the

calibration fails for any reason. Examining summary statistics for the weights
is always wise. When this is done, we see that at least one GREG weight
(-0.3983) is negative even though the smallest base weight was 2.714:

summary(weights(smho.dsgn))
Min. 1st Qu. Median Mean 3rd Qu. Max.
2.714 5.693 8.150 8.763 10.090 33.680

summary(weights(sam.lin))
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Min. 1st Qu. Median Mean 3rd Qu. Max.
-0.3983 5.7470 8.8320 9.0630 10.9300 33.8300

There is nothing in the GREG algorithm that prevents negative weights,
although in a sample where all selection probabilities are small and the result-
ing input weights are large, this is unlikely to happen. In theory, even with
negative weights, the GREG will be approximately design unbiased and, if
the model is specified correctly, model unbiased for population totals. How-
ever, negative weights could have a serious effect on some domain estimates,
and users are generally uncomfortable with weights that are negative. In
fact, some software packages will not allow negative weights. To help remedy
this potential problem, the calibrate function has a bounds parameter which
gives the relative amount that the final weights can differ from the input
weights. To do the bounding, this restriction is added to the calibration prob-
lem described in Sect. 14.1:

L ≤ wi

di
≤ U for all i ∈ s.

In words, the calibrated weight for each sample case must be larger than a
lower bound L times the input weight and less than an upper bound U times
the input weight. (This is synonymous with bounding the g-weights because
wi = digi.) Thus, the bound is on the relative change in the initial weight—
not on the final weight itself. The bounds are arbitrary. For example, you
might want to require that a final weight be somewhere between 1/2 and 3
times the initial weight. If the input weights are positive (which they will be
if they are inverses of selection probabilities or nonresponse-adjusted, inverse
probabilities), then the bounded weights will be positive. It is easy to make
the bounds so tight that the calibration will fail, and some trial and error
may be needed to arrive at values that will work in a particular problem.

In Sect. 14.4 the issue of weight variability will be covered in more detail.
Here, we illustrate how to bound the weight changes using either the GREG
or raking distance functions. In this case, the final weights are required to be
within 0.4 and 3 times the input weights. When bounds are set, an iterative
procedure is used to arrive at a final set of weights. Three parameters that
may be useful are:

maxit Number of iterations allowed before the procedure
stops. Default value 50

epsilon Tolerance in matching population total. Default
value 10−7

force Return an answer even if the specified accuracy
was not achieved. Default value is FALSE

If convergence is not obtained with the default settings, increasing the number
of iterations allowed and loosening the tolerance may help. If force=TRUE,
the approximately calibrated design object will still be returned. Checking
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how closely the constraints are satisfied may help determine why the calibra-
tion failed. The bounds parameter can be used with either the least squares
or raking distance functions as shown below (the parameter, bounds, is not
available if calfun = "logit"):

# Linear calibration with bounds
sam.linBD <- calibrate(design = smho.dsgn,

formula = ˜SEENCNT + EOYCNT +
as.factor(hosp.type):BEDS,

population = pop.tots,
bounds = c(0.4, 3),
calfun = "linear")

# Check controls
svyby(˜BEDS, by=˜as.factor(hosp.type), design=sam.linBD,

FUN=svytotal)
svytotal(˜BEDS, sam.linBD)
svytotal(˜SEENCNT, sam.linBD)
svytotal(˜EOYCNT, sam.linBD)

# raking
sam.rake <- calibrate(design = smho.dsgn,

formula = ˜ SEENCNT + EOYCNT + as.factor(hosp.type):BEDS,
population = pop.tots,
bounds = c(0.4, 3),
calfun = "raking",
maxit = 100, epsilon = 1e-4)

In the raking code above, the settings maxit = 100, epsilon = 1e-4
were used in order to obtain convergence. With the default settings, calib-
rate will report that convergence was not achieved, although for practical
purposes it has been.

The results are generated with the svytotal and cv R functions (as in
Example 14.2) and are summarized in Table 14.5. The estimates are greater
than the population total, but in this case, a 95% normal-approximation
confidence interval will contain the actual population total of $8.774 billion
in all cases. For example, the confidence interval based on the GREG estimate
can be found with

Table 14.5: Estimated totals of expenditures, standard errors, and coefficients of
variation for the π-estimate, GREG, bounded GREG, and bounded raking esti-
mates in a pps sample from a subset of the Survey of Mental Health Organizations
population.

Estimator (design object) Estimated total (000s) SE (000s) CV (%)

Population 8,774,651

π-estimate (smho.dsgn)1 9,322,854 915,126 9.81

GREG (sam.lin) 9,563,683 748,596 7.82

Bounded GREG (sam.linBD) 9,612,035 744,746 7.75

Bounded raking (sam.rake) 9,529,511 732,273 7.68
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confint(svytotal(˜ EXPTOTAL, sam.lin))

As Table 14.5 shows, the GREG, bounded GREG, and bounded raking esti-
mates have smaller estimated SEs and CV s than the π-estimate in this sam-
ple. Each of the CV s for the calibrated estimates is about 79% of that of the
π-estimate. Thus, calibrating gives a substantial increase in precision.

Exploring how the weights for these different methods compare is worth-
while. Figure 14.5 shows a plot of the weights for the three calibration meth-
ods versus the base weights in the left-hand panel. A 45◦ line is drawn where
the weights would equal the base weights. Most weights are increased slightly
to hit the control totals, but a few are noticeably decreased. In the right-
hand panel, the ratios, wi/di, are plotted versus the base weights. The upper
bound of 3 clearly has no effect. The unit with the negative weight is marked
by an arrow. Using a lower bound of 0.4 causes several weights, including
the negative one, to move to the boundary. Comparing the points from the
unbounded linear GREG and the two bounded methods, it is apparent that
bounding would not affect most units much but would eliminate the objec-
tionable negative weight.
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Fig. 14.5: Plots of weights for the different methods of calibration in a pps sample.
A 45◦ line is drawn in the left-hand panel. Reference lines are drawn at the weight
bounds, 0.4 and 3, in the right-hand panel.

Selecting covariates to use in calibration is, in some ways, even more dif-
ficult than in a typical modeling problem because the weights can be used
for many response variables. To illustrate how much difference the choice
of covariates can make, we recompute GREG weights using a model that
has parameters for SEENCNT, EOYCNT, a common slope for BEDS, and
main effects for hospital type. This differs from the model above which had a
separate slope for each hospital type and did not include controls on the
number of hospitals. The code for computing unbounded GREG weights
follows:
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N.hosp <- table(smho$hosp.type)
x.beds <- sum(smho$BEDS)
pop.tots <- c(BEDS = x.beds,

SEENCNT = x.seen,
EOYCNT = x.eoy,
HOSP = N.hosp)

sam.lin2 <- calibrate(design = smho.dsgn,
formula = ˜0 + BEDS + SEENCNT + EOYCNT
+ as.factor(hosp.type),

population = pop.tots,
bounds=c(-Inf,Inf),
calfun="linear")

Next, we estimate the total of expenditures and the proportion of hospitals
receiving financing from state mental health agencies (FINDIRCT). Results
are in Table 14.6. The CV of total expenditures, the quantitative total, is
7.77% for the new model, labeled GREG 2 in the table. This is about the
same as for the model with a separate slope for beds in each hospital type and
no controls on hospital counts by type, labeled GREG 1. But, for FINDIRCT,
the GREG-2 estimate has a CV of 9.91% compared to 16.92% for GREG 1.
This gain is consistent with the fact that the population proportions in the
four hospital types are much different—0.67, 0.80, 0.94, and 0. That is, the
means differ by hospital type, implying that a hospital type factor should be
in a model predicting FINDIRCT.

Based on these two examples, a model with BEDS + SEENCNT +
EOYCNT + as.factor(hosp.type) might be preferred. However, there
may be other analysis variables for which another set of auxiliaries could
be more efficient. When computing weights in most surveys, using different
auxiliaries for different analysis variables is cumbersome and impractical.
The goal is to find a general-purpose set of weights that will be reasonably
efficient for most estimators. Considering a broad set of analysis variables
may be necessary to make a good decision about which ones to select.

In some respects, considering covariates seems to have made the estimation
problem much harder because of the uncertainty in which ones to use. Using
the π-estimator, in contrast, is simple since we just compute selection proba-
bilities and invert them and we have a set of weights. However, this simplicity
is misleading because a set of good covariates will reduce SEs appreciably as
illustrated in Tables 14.5 and 14.6.

The unfortunate thing that often happens in practice is that weights are
computed without examining any analysis variables at all. This may be
because the time schedule is so tight that weighting and editing of data
must occur in parallel, so that the analysis variables are unavailable to the
staff constructing the weights. Or, it may be that an organization has always
done the weighting without benefit of the analysis variables (whether they
are available or not). Divorcing weighting from analysis is common in one-
time surveys that will not be repeated. In that case, general rules of thumb
may be used to select covariates or a simple procedure like poststratification
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Table 14.6: Estimated totals of expenditures and proportion of hospitals with direct
state financing, standard errors, and coefficients of variation for the π-estimate and
two choices of GREG in a pps sample from a subset of the Survey of Mental Health
Organizations population.

Estimate or SE CV

population value (%)

Total expenditures (000s)

Population 8,774,651

π-estimate 9,322,854 915,126 9.82

GREG 1 9,563,683 748,596 7.83

GREG 2 9,161,491 711,633 7.77

Proportion with financing from state mental health agency

Population 0.336

π-estimate 0.323 0.059 18.16

GREG 1 0.303 0.051 16.92

GREG 2 0.340 0.034 9.91

may be used. In continuing surveys that are periodically repeated, there is
an opportunity to use prior data to guide weight creation. Regardless of the
circumstances, looking at how a proposed implementation of poststratifica-
tion, raking, GREG, etc., performs for some important estimates is always a
good practice.

14.4 Weight Variability

Having survey weights that vary is common. Reasons for variability include:

(1) Varying selection probabilities as would occur in pps sampling or strati-
fied sampling with different sampling rates in the strata

(2) Over or undersampling groups of units in two-phase sampling based on
domain membership

(3) Unequal response rates (and/or rates of unknown eligibility) in different
subgroups leading to unequal weight adjustments

(4) Calibration to auxiliaries to reduce variances or correct for frame coverage
errors

In some cases, varying weights may be designed into the sample, as in (1)
and (2) above. In other applications, varying weights are needed to correct
for potential nonresponse bias or differential undercoverage as in (3) and (4).
However, highly differential weights can increase the variances of estimates
even if they decrease bias.

Practitioners will often worry about having unequal weights, particularly
in household surveys. Whether this is a genuine concern depends on the
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situation. This section reviews some measures of weight variability, how they
are derived, and how they should be interpreted. We also show how to
use quadratic programming and more arbitrary weight-trimming methods
to bound weights.

14.4.1 Quantifying the Variability

Kish (1965, 1992) introduced a “design effect due to weighting” which is equal
to one plus the relvariance of the sample weights:

deffw = 1 + relvar (w)

= 1 + n−1
∑

s (wi − w̄)2
/
w̄2 ,

where w̄ = n−1
∑

s wi. The term deffw is also known as an unequal weighting
effect (e.g., Liu et al. 2002). This is a widely used, and possibly over-used,
measure that is interpreted as the increase in variance of an estimator due
to having weights that are not all the same. For example, Kish also writes
deffw as 1 + L with L being the inflation above the variance that would
be obtained with a self-weighting sample. Practitioners often compute deffw

while developing the final weights and use it to make a judgment about
whether any weights should be modified because they are “too variable.”
There appear to be no universally accepted rules of thumb to gauge when
deffw is “large.” For better or worse, deffw values of 1.5 or larger frequently
lead to some action being taken.

To understand whether this measure is applicable to a specific survey, we
need to understand how it is derived. Consider an stsrswor with nh sample
units allocated to stratum h. The number of units in the stratum population
is Nh, and the proportion of the population in stratum h is Wh = Nh/N .
As shown in Kish (1965), deffw is the ratio of the variance of the stratified

expansion estimator, ȳst =
∑H

h=1 Whȳsh, with unequal weighting to the vari-
ance of the same estimator with proportional allocation, assuming stratum
variances are equal :

deffw =
V (ȳst) with non− proportional allocation

V (ȳst) with proportional allocation
.

The key assumption is that a proportional allocation is optimal for the
study. This allocation, as discussed in Sect. 3.1.2, is used only when the
assumption that the stratum population standard deviations are all equal
(Sh = S) is reasonable. In this special case, deffw measures the change in
the variance associated with the deviation from the presumed optimal design.
However, variation in the weights is appropriate if the Sh = S assumption
is not reasonable or if any of the conditions discussed at the beginning of
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Sect. 14.4 exist. Although deffw is motivated by stratified sampling, it is
commonly applied to any type of sample where weights vary.

The measure deffw may be useful if equal weighting is appropriate, i.e.,
stratum variances are equal or, at least, not expected to be extremely different.
This may be true in household surveys. However, deffw is largely irrelevant
in many applications. Among them are:

• Establishment or institution surveys where variances are known to differ
among strata

• Household surveys where different subgroups are intentionally sampled at
different rates to obtain desired sample sizes

• Surveys where different groups respond at substantially different rates so
that nonresponse adjustments, which are needed to reduce bias, create
different size weights even though the initial sample may be self-weighting.

In these cases, as noted in Kish (1992), differential weights can be much more
efficient than equal weights.

The best use of deffw may be as a diagnostic after weights are calculated.
Large values may signal that the results of different steps should be checked
to see whether any errors have occurred or whether a particular step injects
a lot of unjustified variability in the weights. The nonresponse adjustment
step is usually one that can be quite sensitive to how weighting classes are
formed or propensities are estimated. If it is felt that extreme adjustments
are untrustworthy and are not really correcting bias, this is a good reason to
modify the procedure in some way.

To get a feel for the values that deffw can take, consider the case of two
strata and an stsrswor design. Suppose that the proportion of the sample
in stratum h is ph = nh/n and the weight of each unit in stratum h is wh

(h = 1, 2). When the sampling fractions are negligible in each stratum, the
value of Kish’s 1 + L can be shown to be (see the exercises):

deffw =
p1w

2
1 + p2w

2
2

(p1w1 + p2w2)
2 . (14.7)

This is evaluated for a few values of w1 and w2 for f1 = f2 = 0.5 in
Table 14.7. If the ratio of weights in strata 1 and 2 is 3:1, then SE (ȳst)
is inflated by only 12%. If the ratio is 50:1,

√
deffw = 1.39. Ratios of the

maximum to minimum weight can be much larger than 50:1 in some surveys.
For example, in the 1998 US Survey of Mental Health Organizations (SMHO)
that we are using as an example in this book, this ratio was about 160:1 (Li
and Valliant, 2009). The exercises give an example using smho.N874 where,
in a pps sample, deffw is almost 20. However, to intelligently interpret these
ratios, always be aware of the caveat that unequal weights may be needed
for efficient estimation. You need to consider the characteristics of particular
survey variables to decide whether weight variability is a problem.

Kish (1987b) also suggested a measure similar to deffw for cluster sam-
ples. A formal justification of the measure using a model was given by
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Table 14.7: Kish’s deffw measure for variance inflation due to unequal weighting for
a case of two strata with equal allocations (f1 = f2 = 0.5) to the strata.

w1 3 5 10 15 20 50

w2 1 1 1 1 1 1

deffw 1.25 1.44 1.67 1.77 1.82 1.92√
deffw 1.12 1.20 1.29 1.33 1.35 1.39

Gabler et al. (1999). Suppose that a cluster sample is selected and each
sample unit is assigned to one of γ = 1, . . . , G weighting classes. The number

of sample units in class γ is nγ

(
n =

∑
γ nγ

)
. Suppose the following simple

variance model holds for an analysis variable yij associated with unit j in
cluster i (i = 1, . . . , I):

CovM (yij , yi′j′ ) =

⎧
⎨
⎩

σ2 i = i′, j = j′,
ρσ2 i = i′, j 	= j′,
0 otherwise.

(14.8)

In words, units all have a common variance σ2, different units in the
same cluster have correlation ρ, and units in different clusters are uncor-
related. Gabler et al. (1999) considered the weighted sample mean, ȳw =∑

i∈s

∑
j∈si

wijyij

/∑
i∈s

∑
j∈si

wij . They showed that, in the case where all

units in a weighting class have the same weight (wi = wγ , i ∈ sγ), the ratio
of the model variance of ȳw under (14.8) to the variance of the unweighted
mean under a model where all y’s are uncorrelated is

deff2w = n

∑
γ nγw

2
γ(∑

γ nγwγ

)2 [1 + ρ (b∗ − 1)] ,

where b∗ =
∑

s

(∑
γ wγniγ

)2/∑
γ w

2
γnγ with niγ being the number of sam-

ple units in weighting class γ that are in cluster i. If the sample size in each
cluster is the same, b̄, then deff2w is bounded above:

deff2w ≤ n

∑
γ nγw

2
γ(∑

γ nγwγ

)2
[
1 + ρ

(
b̄− 1

)]
.

The value of the bound was the suggestion in Kish (1987b).
SUDAAN� (RTI International, 2012), software designed to analyze sur-

vey and other correlated data mentioned in Chap. 3, allows the calculation
of four different design effects. The various versions are calculated through
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different assumptions used for the denominator variance estimator. The for-
mulas estimate the amount of variance inflation associated with combina-
tions of the design features (i.e., clustering, stratification, differential sam-
pling rates, and unequal weights). Specific SUDAAN procedures, accessible
within a SAS program through its “SAS-callable” version, are discussed in
Chap. 15.

A measure that comes closer to accounting for the possibility that variable
weights may be efficient is one derived by Spencer (2000). Suppose that pi is
the 1-draw selection probability of unit i and that pi and an analysis variable
yi are correlated. For example, this would be reasonable in the hospitals
population if a probability proportional to number of beds (xi) sample were
selected and the analysis variable was number of patients discharged. In that
case, pi ∝ xi, and as we saw in Chap. 3, the number of discharges is related
to number of beds. Suppose this linear model holds for Y :

yi = α+ βpi + εi. (14.9)

The finite population ordinary least-squares estimates of α and β are
αU = ȳU − βU p̄U and

βU =
∑
U

(yi − ȳU ) (pi − p̄U )

/∑
U

(pi − p̄U )
2,

where ȳU and p̄U are finite population means. These equations can be rewrit-
ten using the fact that p̄U =

∑
U pi/N = 1/N . The finite population

variance of the errors, εi = yi − (αU + βU p̄U ), is σ2
ε =

(
1− ρ2yp

)
σ2
y with

σ2
y = N−1

∑
U (yi − ȳU )

2 and ρyp being the population correlation between
y and p. The weight for unit i is wi = 1/ (npi). If the sample is selected
with replacement, the pwr -estimator from Sect. 3.2.1 of the population total

is T̂pwr =
∑

s wiyi. Its design variance is V
(
T̂pwr

)
= n−1

∑
U (yi/pi − T )

2
.

Substituting values from model (14.9) in this variance formula and taking
the ratio of the result to the variance of the estimated total under srs with
replacement, Spencer obtained the following approximate expression for a
design effect due to unequal weighting:

deffSw =
(
1− ρ2yp

) n

N
w̄U +

(
αU

σy

)2 ( n

N
w̄U − 1

)
, (14.10)

where w̄U =
∑

i∈U wi

/
N is average weight in population. Spencer’s deffSw

can be estimated by

̂deffSw =
(
1− ρ̂2yp

)
[1 + relvar (w)] +

(
α̂

σ̂y

)2

relvar (w),

where ρ̂2yp and α̂ are the R-squared and estimated intercept values
calculated from fitting model (14.9) by survey-weighted least squares.



14.4 Weight Variability 379

The estimated population unit variance is σ̂2
y =

∑
s wi (yi − ȳw)

2
/∑

s wi

and [1 + relvar (w)] = n
∑

s w
2
k

/
(
∑

s wk)
2
as in Kish’s deffw. When σy is

large relative to α and ρyp = 0, Spencer’s and Kish’s measures are about the
same. Note that, in general, Spencer’s deffSw depends on y and will, thus,
be different depending on the analysis variable considered.

A deficiency of Spencer’s formula is that it applies only to a pwr -estimator.
In practice, in cases where auxiliary variables are used in sampling, they are
also used in estimation. Henry (2011) filled this gap by extending Spencer’s
result to GREG estimators.

The next example evaluates Kish’s and Spencer’s design effects for a sam-
ple from a population where there is a clear relationship between y and an
auxiliary variable used in sample selection. For illustration we use an artifi-
cial “HMT” population generated in the same way as the one in Hansen et al.
(1983), which is a famous paper published by three of the important, histori-
cal figures in applied sampling. The generating model was yi = α+ βxi + εi
where x and y both have gamma distributions and the errors have a variance
that increases in proportion to x3/2. The R function, HMT.fcn, on the book
web site was used to create a population of 5,000 units. Figure 14.6 is a plot
of a sample of 500 units from the population.

Example 14.5 (Comparison of Spencer’s and Kish’s deff’s). Using the R
sampling package, one sample of n = 80 was selected from the HMT popu-
lation with probabilities proportionate to x. Kish’s and Spencer’s deff ’s were
computed using the following code:

# load sampling package
require(sampling)

# Load function to generate HMT pop
source("HMT.fcn.R")

#Random seed for sample selection
set.seed(-500398777)

# Generate HMT population
pop.dat <- as.data.frame(HMT.fcn())

#Population size
N <- nrow(pop.dat)

# Calculate 1-draw selection probabilities - pps
#MOS = x

mos <- pop.dat$x
#Calculate 1-draw selection probabilities

pop.dat$prbs.1d <- mos / sum(mos)

# Select sample - pps
#Define size of sample

n <- 80
# probabilities for selecting a sample of n

pk <- n * pop.dat$prbs.1d
# PPS sample

sam <- UPrandomsystematic(pk)



380 14 Calibration and Other Uses of Auxiliary Data in Weighting

sam <- sam==1
sam.dat <- pop.dat[sam, ]

# Base weights
dsgn.wts <- 1/pk[sam]

# Spencer’s Deff
# Calculate WLS values

sam.wls <- lm(y ˜ prbs.1d, data = sam.dat, weights = dsgn.wts)
# DEFF component - var of y

sam.mean.y <- sum(sam.dat$y * dsgn.wts) / sum(dsgn.wts)
sam.var.y <- sum(dsgn.wts * (sam.dat$y - sam.mean.y)ˆ2) /

sum(dsgn.wts)
# DEFF component - alpha squared

sam.alpha2 <- sam.wls$coefficients[1] \ˆ{}2
# DEFF component - squared correlation

sam.rho2.yP <- summary(sam.wls)$r.squared
# DEFF component - Kish

kish.deff <- n*sum(dsgn.wtsˆ2) / (sum(dsgn.wts)ˆ2)
#Spencer’s DEFF

spencers.deff <- as.numeric((1 - sam.rho2.yP) * kish.deff +
(sam.alpha2 / sam.var.y) * (kish.deff - 1))

The resulting values of the two design effect formulas are

kish.deff
[1] 1.882999
spencers.deff
[1] 0.6468291

Kish’s deff claims that the variance of the π-estimator is 88% larger than
it would be with an equal probability sample. On the other hand, Spencer’s
deff of 0.65 says that pp(x) sampling and the resulting unequal weighting
will be more efficient than equal probability sampling. Based on the plot in
Fig. 14.6, pps sampling is obviously better in this population. �
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Fig. 14.6: Plot of a subsample of 500 points from the Hansen, Madow, and Tepping
(1983) population.
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Despite the incorrect impression conveyed by Kish’s deff in the above
example, having extremely variable weights is likely to be inefficient for at
least some variables collected in a survey. In the next section, we cover several
ways of limiting weight variation.

14.4.2 Methods to Limit Variability

Procedures are often used to trim extreme weights, especially large ones. The
methods used in practice are mainly ad hoc but may improve the efficiency
of estimators for some variables. We have explored some techniques earlier
that are geared toward limiting extreme weights. For example, in Sect. 13.5.1,
weighting classes were created for nonresponse adjustment based on response
propensities. Using classes rather than individual propensities can be a way
of eliminating a few large nonresponse adjustments. Constrained calibration,
discussed in Sect. 13.5.1, is another way of attempting to avoid excessive
weight adjustments. There are also off-the-cuff procedures that can be used
to limit the range of base weights. For example, the number of phone lines or
number of household residents can be top-coded when computing selection
probabilities within a household.

The first method we cover is quadratic programming (QP) with constraints.
Much like GREG with weight bounds, QP allows a final set of weights to be
found that is calibrated to population totals for some auxiliary variables. The
second method is less formal but is probably more common in practice. Large
weights are arbitrarily trimmed back to an upper bound. The total weight
trimmed away is then spread among the other sample units.

Quadratic Programming

One option for limiting the range of weights is quadratic programming as
described in Isaki et al. (2004). A QP problem with constraints has the
following general form:

Find the vector k to minimize Φ = 1
2k

TΣk− zTk
Subject to the constraints CTk ≥ c0

whereΣ is a symmetric matrix of constants and z is a vector of constants. The
task of finding constrained weights can be phrased as a QP problem. Suppose
that the input weights, which could be base weights or nonresponse-adjusted
weights, are dk (k ∈ s). The final weights to be computed are {wk}k∈s. If
we require the final weights to be calibrated to population totals of some
auxiliaries x, then one QP formulation is
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Find the set of weights {wk}k∈s that minimizes
∑

s (wk − dk)
2
/
dk

Subject to
∑

s wkxk = tx and L ≤ wk ≤ U .

To see that this fits into the general QP mold, first note that

∑
s (wk − dk)

2
/
dk = wTD−1w − 2dD−1w+ dD−1d

= wTD−1w − 21T
nw +

∑
s dk

with D = diag (dk), w = (w1, . . . , wn)
T
, and 1n representing an n× 1 vector

of ones. The formulation above then corresponds to the general problem with
k = w, z = 2 ∗ 1n, and Σ = D−1. The sum of input weights,

∑
s dk, is a

constant, given the sample. So, solving the weight calibration problem is
equivalent to minimizing

Φ = wTD−1w − 21T
nw.

The bounds on the weights fit the general form, CTk ≥ c0, with

C =

⎛
⎝

Xs

In
−In

⎞
⎠ and c0 =

⎛
⎝

tx
L1n

−U1n

⎞
⎠ ,

where Xs is the n×p matrix of auxiliaries for the sample units, In is an n×n
identity matrix, and k = w as before. Note that the bounds L ≤ wk ≤ U
are different from the bounds, L ≤ wk/dk ≤ U , used for the GREG weights
in Sect. 14.3.2. Using L ≤ wk ≤ U is in some ways preferable to the earlier
GREG constraint because it directly bounds the sizes of the final weights.
In contrast, the GREG constraint bounds only the relative change from the
initial weights, i.e., the size of the g-weights. If the initial weights are extreme,
then the final GREG weights are likely to be also.

The R package quadprog (Turlach andWeingessel 2011) can solve the QP
problem. To illustrate this, we work a variation of the example in Sect. 14.3.2
using the smho.N874 data set. Auxiliaries are BEDS, SEENCNT, EOYCNT,
and hosp.type.

Example 14.6 (Constrain weights using quadratic programming). This exam-
ple uses the same sample of 80 hospitals as in Sect. 14.3.2, which was selected
with seed 428274453, after recoding all units to have a minimum of 5 beds
and after eliminating type-4 hospitals. The range of base weights in the sam-
ple that was selected with probabilities proportional to the square root of
recoded beds was 2.71 to 33.68. Suppose that we want to constrain the
weights to be in the range [L,U ] = [2, 18]. The model is the same as the
one in the earlier section and includes the auxiliaries, SEENCNT, EOYCNT,
and as.factor(hosp.type):BEDS. The complete listing of code to select
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the sample and compute the QP weights is in the file Example 14.6
quadprog.wts.R on the web site; excerpts are shown below.

The quadprog package contains a function, solve.QP, that solves gen-
eral quadratic programming problems. As in the earlier section, the sample
data are in the object sam.dat and the base weights are in d. The object
names in the code below match the vectors and matrices above fairly closely.
One thing to note is the model.matrix function which creates the matrix
of auxiliary values for the sample units that is implied by a model having
a separate slope on beds for each hospital type (X.hosp). The transposed
version of this matrix is combined with the quantitative auxiliaries—BEDS,
SEENCNT, EOYCNT—to create a matrix called X. A requirement of solve.QP
is that any equality constraints be listed first in CTk. This is accomplished in
the statement that creates Cmat by placing the vector of ones for the overall
total number of hospitals (one) and X first. Then, in the call to solve.QP,
the parameter meq=7 tells the function that the first seven constraints in
the bvec vector are equalities. The resulting sample weights are calibrated
to the desired population totals. The fact that this succeeded is checked
in Example 14.6 quadprog.wts.R. The weights, w, are contained in
fs.wts$solution:

library(quadprog)
# Tabulate pop totals for constraints

x.beds <- by(smho$BEDS, smho$hosp.type, sum)
x.seen <- sum(smho[,"SEENCNT"])
x.eoy <- sum(smho[,"EOYCNT"])
N <- nrow(smho)
X.hosp <- model.matrix(˜ 0 + as.factor(hosp.type):BEDS,

data = sam.dat)

X <- rbind(sam.dat[, "SEENCNT"],
sam.dat[, "EOYCNT"],
t(X.hosp))

c0a <- c(N, x.seen, x.eoy, x.beds)

# Lower and upper weight bounds
L <- 2
U <- 18

# Compute full sample weights via QP
In <- diag(nrow = n)
one <- rep(1, n)
c0b <- c(L * one,

-U * one)
Cmat <- rbind(one, X, In, -In)
fs.wts <- solve.QP(Dmat = diag(1/d),

dvec = 2 * one,
Amat = t(Cmat),
bvec = c(c0a, c0b),
meq = 7
# first 7 constraints are equality

constraints
)

�
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One caveat in the use of solve.QP is that it can run out of memory when the
sample size is large. The function requires that Dmat be input as an n × n
matrix even though it is diagonal and more compact methods of storage
are available. Increasing the amount of memory available to R may help. In
Windows, do this with the command memory.limit(size=4095).

The extent to which the constraints affect the input weights depends on
which units are randomly sampled. This variation will not be reflected by
standard variance formulas, but one option is to use a replication variance
estimator. We will cover these in more detail in Chap. 15, but will take this
opportunity to illustrate one version of replication—the jackknife. The idea
behind the jackknife is to delete one unit from the sample, adjust the input
weights for the jackknife subsampling, compute weights in whatever way is
being used, and then use the resulting weights to compute an estimate. The
process is repeated until n replicate estimates have been computed. The
variation of the replicate estimates is then computed around the full sample
estimate. For many types of estimates, e.g., totals, means, and combinations
of them, a theory has been developed to justify the use of the jackknife.
However, it does not work for all types of estimates, and there is no theory
to say that a consistent or unbiased variance estimator is produced when the
weights are quadratically constrained. In this example, the jackknife does
produce reasonable answers, and we use it for illustration.

The code below loops through all units in the sample, deleting one at a
time and resolving the quadratic program to give a set of n=80 jackknife
weights. We then use the survey package to compute estimates and SEs.
The results are listed in the “Bounded QP” rows of Table 14.8. For com-
parison, we include estimates generated from the other calibration methods
with svytotal and cv in the previous examples (they are also computed in
Example 14.6 quadprog.wts.R.):

# Compute jackknife version of weights
# Matrix to hold jackknife weights

rep.wts <- matrix(0, nrow = n, ncol = n)

for (k in 1:n){
fill <- (1:n)[-k]
In <- diag(nrow = n-1)
one <- rep(1, n-1)
c0b <- c( L * one,

-U * one)
Cmat <- rbind(rep(1,n-1), X[,-k], In, -In)

wts <- solve.QP(Dmat = diag(1/d[-k]),
dvec = 2 * one,
Amat = t(Cmat),
bvec = c(c0a, c0b),
meq = 7)

rep.wts[k, fill] <- wts$solution
}
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# make jackknife design object
library(survey)
qp.dsgn <- svrepdesign(weights = fs.wts$solution,

repweights = t(rep.wts),
type = "JK1",
scale = (n-1)/n, #JK subsampling adjustment
data = data.frame(sam.dat),
combined = TRUE)

As Table 14.8 shows, the QP weights yield a CV for estimated total expen-
ditures that is somewhat smaller than for the π-estimate (9.3% vs. 8.4%).
The GREG and bounded GREG estimates have smaller CV s. But, the gain
from the QP weights is substantial for mean expenditures. For the mean, the
CV s for QP, GREG, and bounded GREG are the same as for the estimated
totals because the total number of hospitals is a constraint, implying that
the denominator of the mean is a constant, N. This is not the case for the
π-estimate. QP, GREG, and bounded GREG are only slightly more efficient
than the π-estimator for the proportion of hospitals receiving financing from
state mental health agencies. As noted earlier, a model that has hosp.type
as a factor would be more efficient for this statistic.

Table 14.8: Estimated total expenditures and proportions of hospitals receiving
direct financing, standard errors, and coefficients of variation for the π-estimate,
GREG estimates, and bounded quadratic program weights in a pps sample from
a subset of the Survey of Mental Health Organizations population.

Estimator (design object) Estimate or SE CV

population value (%)

Total expenditures (000s)

Population 8,774,651

π-estimate (smho.dsgn) 9,322,854 915,126 9.82

Unbounded GREG (sam.lin) 9,563,683 748,596 7.83

Bounded GREG (sam.linBD) 9,612,035 744,746 7.75

Bounded QP (qp.dsgn) 9,509,333 800,769 8.42

Mean expenditures (000s)

Population 12,103

π-estimate (smho.dsgn) 13,299 1,712 12.88

Unbounded GREG (sam.lin) 13,191 1,033 7.83

Bounded GREG (sam.linBD) 13,258 1,027 7.75

Bounded QP (qp.dsgn) 13,116 1,105 8.42

Proportion with financing from state mental health agency

Population 0.336

π-estimate (smho.dsgn) 0.323 0.059 18.16

Unbounded GREG (sam.lin) 0.303 0.051 16.92

Bounded GREG (sam.linBD) 0.302 0.051 16.87

Bounded QP (qp.dsgn) 0.306 0.053 17.39
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Simultaneous Adjustment for Nonresponse and Calibration

An obvious question is whether calibration to population totals alone will
be enough to correct for nonresponse and any coverage errors. Bounded cal-
ibration adjustments, as well as bounded nonresponse adjustments, can be
produced with the WTADJUST procedure beginning in SUDAAN v.10. This
SUDAAN procedure implements the methods discussed in Folsom and Singh
(2000) where either weight adjustment is calculated by way of a generalized
exponential model. Both adjustments are calculated sequentially from this
type of model by noting that both can be viewed as a calibration problem—
input weights can be calibrated either to the sum of the input weights (in
a nonresponse adjustment step) or to the population control totals (in a
calibration step). The different adjustments are generated by the following
specifications:

• Nonresponse adjustment. The model is specified with a dependent variable
equal to the response indicator (1=respondent, 0=nonrespondent). The
recommended lower bound on the weight adjustment is 1.0 to ensure that
every sample member at least represents itself in the target population
estimates.

• Calibration adjustment. The model is specified with a dependent vari-
able equal to a calibration indicator (1=units included in the calibra-
tion, 0=otherwise). The recommended lower bound on the weight adjust-
ment is 0 so that input weights may be reduced to meet the control
totals.

Example 14.7 (Constrain weights using WTADJUST). The SAS-callable SUD-
AAN syntax for PROC WTADJUST used to recompute Example 14.6 is
provided below. For comparison, an SAS transport file was first created
from the data frame containing the sample of 80 hospitals (sam.dat in
Sect. 14.3.2) and with appended design weights (called dwt) using the follow-
ing R code:

require(SASxport)
smho_80 <- cbind(sam.dat, dwt=d)
write.xport(smho_80, file="C:\\SMHO\\DATA\\Ex14_7.dat")

Note that SAS does not support “periods” either in the variable names or in
transport file names, hence the use of the underline in the augmented data
frame named smho 80.

The SAS transport file is loaded into the SAS program using PROC COPY,
verified (code not shown) and submitted to the SUDAAN procedure to pro-
duce calibrated weights with constrained weight adjustments. Currently, the
procedure only allows hard-coded control totals (POSTWGT) instead of sourc-
ing the information from a data file. The calibration adjustment and final
calibrated weights are called ADJFACTOR and WTFINAL in the SAS data file
CAL WTS. The output information has been renamed to have more descriptive
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variable titles. The interested reader can verify the weight sums by the calibra-
tion variables with the DESCRIPT procedure below. The resulting summary
statistics are provided below the program:

options nocenter;

LIBNAME in "C:\\SMHO\\DATA";
LIBNAME tmp "C:\\";

* Load SAS transport file and create unique IDs *;
LIBNAME smho_xpt XPORT "C:\SMHO\DATA\Ex15_7.dat";
PROC COPY in=smho_xpt OUT=tmp; RUN;
DATA SMHO_80;

LENGTH ID 3;
SET tmp.SMHO_80;
ID = _n_;

RUN;

* Constrained calibration *;
PROC WTADJUST DATA=CAL_WTS DESIGN=WR ADJUST=POST;

NEST _one_; * No stratification or clustering;
WEIGHT DWT;
LOWERBD 0.4;
UPPERBD 3.0;
CLASS HOSP_TYP;
MODEL _one_ = SEENCNT EOYCNT HOSP_TYP*BEDS;

* Corresponds to pop.tots in R program;
POSTWGT 725 1349241 505345 37978 13066 9573 10077;
IDVAR ID SEENCNT EOYCNT HOSP_TYP BEDS;
OUTPUT / PREDICTED=ALL FILENAME=BCAL_WTS REPLACE;

RUN;

* Rename Constrained calibration *;
DATA BCAL_WTS;

SET BCAL_WTS(DROP=_one_
RENAME=(WTFINAL=BCAL_WT ADJFACTOR=BCAL_ADJ));

LABEL BCAL_WT = "Calibrated weights w/bounded adjustments"
BCAL_ADJ = "Bounded calibration adjustments";

RUN;

PROC DESCRIPT DATA=BCAL_WTS DESIGN=WR;
NEST _one_;
WEIGHT BCAL_WT;
CLASS HOSP_TYP;
VAR _one_ SEENCNT EOYCNT BEDS;
TABLES HOSP_TYP;
PRINT TOTAL SETOTAL / STYLE=NCHS;

RUN;

PROC MEANS DATA=BCAL_WTS NOLABELS MIN P25 P50 MEAN P75 MAX;
VAR DWT BCAL_WT;

RUN;
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Weight Min 25th Median Mean 75th Max Sum
%-tile %-tile

Base 2.71 5.69 8.15 8.76 10.11 33.68 701.00
WTADJ with bounds 1.41 5.93 8.91 9.06 11.03 33.75 725.00
GREG −0.39 5.75 8.83 9.06 10.93 33.83 725.00
GREG with bounds 1.30 5.78 8.91 9.06 10.92 33.92 725.00

For comparison we also show the summaries for the unbounded GREG
weights and the bounded GREG weights from Sect. 14.3.2. The quantiles
of the weights from WTADJ and bounded GREG are very similar in this case.
�

Weight Trimming and Redistribution

Potter (1990, 1993) describes several other methods of weight trimming. Some
try to identify a method of trimming that will minimize mean square error;
others look only at the distribution of the weights when deciding how to
trim. These methods are ad hoc and largely theoretical. The form of weight
trimming that may be most common can be summarized as follows:

(1) Set upper and lower bounds on weights. Methods for setting the bounds
are generally arbitrary and a matter of agency preference or historical
precedence. For example, one method used in the National Assessment
of Educational Progress (National Center For Education Statistics 2008)
is to trim any weight greater than 3.5 times the median weight (3.5wmed,
say) back to 3.5wmed.

(2) Any weight greater than upper bound (less than lower bound) is reset to
the bound. That is,

wk,trim =

⎧
⎨
⎩

U wk ≥ U,
wk L < wk < U,
L wk ≤ L.

Define {wk,trim}k∈s to be the set of trimmed weights.
(3) Determine the sum K =

∑
k∈s |wk − wk,trim|, i.e., the net amount of

weight lost by trimming.
(4) Distribute K evenly among the units whose weights were not trimmed.
(5) Repeat steps (2)–(4) until no weights fail the bounds check.

If the input weights respect a set of control totals, the trimmed weights
typically will not. One could then recalibrate the weights after trimming and
iterate through the trimming and calibrating steps until a set of weights is
obtained that respect the weight bounds and the controls. Since the same
thing is achieved by the quadratic programming method, it is doubtful that
this would be worthwhile.
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The trimWeights function in the R survey package will trim weights
to a specified bound and redistribute the trimmed-off amount to the other
sample units. By using the parameter, strict = TRUE, the function calls
itself recursively until the bounds are satisfied.

Example 14.8 (Trim and redistribute weights). We repeat Example 14.6 in
which a pps sample of hospitals is selected from smho.N874 after drop-
ping type-4 facilities. The design object is smho.dsgn. We then calibrate
with the model SEENCNT + EOYCNT + as.factor(hosp.type):BEDS,
as in the example in Sect. 14.3.2, to create the object sam.lin. The full R
code for this example is in trim.wts.R shown in Appendix A and on the
book web site. The code to trim the weights to the range [2, 18] and to
summarize the results is:

sam.lin.tr1 <- trimWeights(design = sam.lin,
lower = 2,
upper = 18,
strict = TRUE)

summary(weights(sam.lin.tr1))
Min. 1st Qu. Median Mean 3rd Qu. Max.

2.002 5.957 9.043 9.062 11.140 18.000

As the summary shows, the range restriction on the weights is satisfied. How-
ever, the weights are no longer calibrated. For example, the population total
of SEENCNT is 1,349,241, but the estimate with the trimmed weights is

svytotal(˜SEENCNT, sam.lin.tr)
total SE

SEENCNT 1426878 240798

Note that the SE is nonzero using the variance formulas for a with-
replacement design.

Figure 14.7 is a plot of the trimmed weights versus the base weights and
the GREG weights. The GREG weights are shown in black. Nine points have
been trimmed to the [2, 18] boundaries. The changes from the GREG weights
to the trimmed weights are minimal for the other points. The base weights
(inverses of selection probabilities) are plotted in gray. There is a considerable
amount of change between the base weights and both the GREG weights and
trimmed GREG weights.

The SUDAAN WTADJUST procedure can also be used to trim weights.
Continuing with Example 14.6, bounds are placed on the input weights by
adding WTMIN and WTMAX statements as shown in the code below. Note that
the WTFINAL variable has been renamed to CAL WTinit in the CAL WTS
data set created in the previous calibration step:

PROC WTADJUST DATA=CAL_WTS DESIGN=WR ADJUST=POST;
NEST _one_; * No stratification or clustering;
WEIGHT CAL_WTinit;



390 14 Calibration and Other Uses of Auxiliary Data in Weighting

0 5 10 15 20 25 30 35

5
10

15

Design weights & Calibrated weights

T
rim

m
ed

 w
ei

gh
ts

Design wts
Calibrated wts

Fig. 14.7: Trimmed weights plotted versus base weights and GREG weights in a
sample from the smho.N874 population. The diagonal line is a 45◦ reference line.
Horizontal lines are drawn at 2 and 18.

CLASS HOSP_TYPE;
LOWERBD 0;
UPPERBD 18;
WTMIN 2;
WTMAX 18;
MODEL _one_ = N SEENCNT EOYCNT HOSP_TYPE*BEDS;

* Corresponds to pop.tots in R program;
POSTWGT 725 1349241 505345 37978 13066 9573 10077;
OUTPUT ADJFACTOR WTFINAL

/ FILENAME=CAL_WTS2 FILETYPE=SAS REPLACE;
RUN;

The POSTWGT statement above is used to force the trimmed and bounded
weights to also satisfy the control totals used in Example 14.6. Notice that
the control totals must be entered as constants in the POSTWGT statement;
they cannot be read from a file.

Exercises

14.1. Use the smho.N874 data set to complete this exercise on poststrati-
fication. Select a simple random sample of size n = 80 without replacement.
If you use R, set the random number seed to −530049348 with the set.seed
command.
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(a) What are the means of expenditures in the five hospital types in the
population? What should you look for in order for poststratification to
be worth considering?

(b) Compute the population counts of facilities by hospital type, treating the
smho98 data set as the full population. Compute the unweighted sample
counts by hospital type to verify that each type is represented in the
sample. If one of the hospital types was not represented in the sample,
what would be the practical and theoretical implications? Discuss this in
the context of design-based and model-based inference.

(c) Calculate the set of poststratified weights for the sample using hospital
type as the poststratification variable. What do the weights sum to before
and after poststratification? Is this what you expect?

(d) Verify that the calibration controls are met by the set of poststratified
weights.

(e) Estimate the population total of expenditures and its standard error for
the expansion estimator under the srswor design and for the poststratified
estimator. Be sure and incorporate a finite population correction factor
into the variance estimates. Discuss any similarities or differences in the
estimated totals and SEs.

14.2. Repeat the exercise above after selecting a probability proportional to
size sample.

(a) If you are using R, use the function UPrandomsystematic in the
sampling package to select a probability proportional to size sample.
Define the measure of size (mos) as a recoded version of the square root
of beds. After taking the square root of beds, recode any mos ≤ 5 to 5.
If you use R, set the random number seed to −530049348 and select a
sample of size n = 80.

(b) Compute the unweighted sample counts by hospital type to verify that
each type is represented in the sample.

(c) Calculate the set of poststratified weights for the sample using hospital
type as the poststratification variable. What do the weights sum to before
and after poststratification? Is this what you expect?

(d) Verify that the calibration controls are met by the set of poststratified
weights.

(e) Estimate the population total of expenditures and its standard error for
the π-estimator under the pps design and for the poststratified estimator.
Discuss any similarities or differences in the estimated totals and SEs.

14.3. Use the model BEDS + SEENCNT + EOYCNT + as.factor(hosp.
type) and the sample described in Sect. 14.3.2 to compute GREG weights.
That is, select a sample with probabilities proportional to recoded square
root of beds (using the random number seed 428274453 if you are using R).
Restrict the population to facilities other than type 4.
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(a) Verify that the weights are calibrated, i.e.,
∑

s wixi = tx, for the auxiliary
variables in the calibration model.

(b) What are the ranges of the base weights and the calibrated weights?
(c) Experiment with bounding the weight adjustments using lower and upper

bounds of [L, U] = [0.01, 3]. Use FORCE=TRUE in the calibrate function
if convergence is not obtained. Are these weights fully calibrated? Plot
the GREG weights with no bounds and the bounded-adjustment weights
versus the base weights. Use different symbols or colors to distinguish the
sets of weights. What do these results tell you about numerical problems
that may occur with bounded calibration?

14.4. Consider a stratified simple random sample in which nh units are
selected fromNh units in stratum h. The unit variance in stratum h is S2

h. The
proportional allocation to the strata has nh/n = Nh/N with n =

∑
h nh and

N =
∑

h Nh. The weight for each unit i in stratum h is whi ≡ kh = Nh/nh.
Define the relvariance of the weights as

relvar (w) = n−1
∑
h

nh∑
i=1

(whi − w̄)
2

/
w̄2

with w̄ = n−1
∑

h

∑nh

i=1 whi. Derive the three versions, (a), (b), and (c), below
of Kish’s 1 + L formula. That is, in the case with S2

h = S2 in each stratum,
show that

1 + L = V (ȳst|general allocation )
V (ȳst|proportional allocation)

= (
∑

h Whkh) (
∑

h Wh/kh) (a)
= 1 + relvar (w) (b)

=
n
∑

h

∑nh
i=1 w2

hi

(
∑

h

∑nh
i=1 whi)

2 (c)

.

14.5. Show that, in the case of H = 2 strata with an srswor selected in each
stratum, Kish’s 1 + L measure is

deffw =
p1w

2
1 + p2w

2
2

(p1w1 + p2w2)
2 .

where ph = nh/n and the weight of each unit in stratum h is wh (h = 1, 2).
Assume that sampling fractions are negligible in each stratum.
Use this formula to verify the calculations in Table 14.7.

14.6. Using the random seed value of 15097 in R, select a sample of n=50
hospitals from the data file Hospital pop.txt with probabilities propor-
tional to the square root of the number of BEDS, i.e., pps

(
x1/2

)
. The hospital

file has 393 records.

(a) Calculate the estimated design effects using Spencer’s formula and Kish’s
approximation.
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(b) Describe the estimators of the population total to which the Kish and
Spencer deff ’s refer. Why do the computed values differ? Which do you
think is the most relevant here? Why?

(c) Estimate the total of discharges (y) in the population using the π-
estimator along with its SE and CV. How does this compare to the
estimate of the variance of the total from a simple random sample of
n=50. Estimate the srswor variance from the sample of 50 selected for
this problem. (Hint: you need to use the methods in Chap. 3 to estimate
a population variance.)

14.7. Use the data set nhispart.xpt and the R survey calibrate
function to compute some sets of calibration weights. The weights will be
based on the categorical x variables, SEX, R AGE1, and RACRECI2, codes
for which are given below along with the population control counts for
each category. The function read.xport in the foreign package (R Core
Team and contributors worldwide 2012a) can be used to read the data into R.

SEX Code Pop
totals

R AGE1
Age range

Code Pop
totals

RACRECI2
Race

Code Pop
totals

Male 1 2,000 18–24 3 500 White 1 3,350
Female 2 2100 25–44 4 1,800 Black 2 650

45–64 5 1,000 All other 3 100
65–69 6 250
70–74 7 250
75+ 8 300

The counts on the file nhispart.xpt are below. You should use these to
verify that you have read the file correctly.

SEX Code File
totals

R AGE1
Age range

Code File
totals

RACRECI2
Race

Code Pop
totals

Male 1 1805 18–24 3 512 White 1 3,138
Female 2 2119 25–44 4 1,555 Black 2 601

45–64 5 1,255 All other 3 185
65–69 6 164
70–74 7 150
75+ 8 288

(a) Select a simple random sample without replacement of size n = 200,
setting the random seed to 15097. List the indexes of the sample you
selected sorted in order from low to high. (Hint: use the sample function.)

(b) Create a new variable equal to 1 if the family income is less than 1.5
times the poverty threshold and 2 otherwise. The ratio of family income
to poverty threshold is RAT CAT and has the values below. Keep the
unknowns as a separate category. Show a table with the sample counts
of your new variable. Also create versions of the variables R AGE1 and
RACRECI2 that have a minimum of 10 cases per category. Do this by
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collapsing R AGE1=6 and 7 together and RACRECI2=2 and 3 together.
Tabulate the numbers of sample cases in the recoded versions of RAT CAT,
R AGE1, and RACRECI2.

Code Ratio of family income to
poverty threshold

01 Under 0.50
02 0.50 to 0.74
03 0.75 to 0.99
04 1.00 to 1.24
05 1.25 to 1.49
06 1.50 to 1.74
07 1.75 to 1.99
08 2.00 to 2.49
09 2.50 to 2.99
10 3.00 to 3.49
11 3.50 to 3.99
12 4.00 to 4.49
13 4.50 to 4.99
14 5.00 and over
99 Unknown

(c) Create a set of calibrated weights using the linear distance function and no
bounds on the weight adjustments. Verify that your weights are calibrated.
Show the minimum, maximum, and the three quartiles of the weights.
(Hint: use the weights extractor and the summary function.)

(d) Create a set of weights using the linear distance function with lower and
upper bounds on the weight adjustments of 0.5 and 1.6. Verify that your
weights are calibrated. Show the minimum, maximum, and the three quar-
tiles of the weights.

(e) Create a set of weights with the raking distance function with no bounds
on the weight adjustments. Verify that your weights are calibrated. Show
the minimum, maximum, and the three quartiles of the weights.

(f) Using the three sets of weights (linear with no bounds, linear with bounds,
and raking with no bounds), compare the individual unit weights with a
pairs plot. Comment on the comparisons.

(g) Using the four sets of weights—srs, linear with no bounds, linear with
bounds, and raking with no bounds—estimate the proportions of the
population with family incomes less than 1.5 and greater than or equal
to 1.5 times the poverty income ratio and their estimated standard errors.
(Hint use svymean.) Comment on the estimates.

14.8. Using the data file smho.N874, answer the following:

(a) Calculate the probabilities for all population units in a sample of 50
selected with probabilities proportional to the following measure of size
(MOS): EXPTOTAL. Identify certainties, if any, i.e., units with selection
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probability greater than or equal to 1. If there are certainties, assign
them probability 1, and recalculate the selection probabilities for the non-
certainty part of the population, keeping the total sample at 50.

(b) Select a sample of size 50 using the probabilities computed in (a). If you
use R, set the random number seed to 429336912.

(c) Compute Kish’s 1 + L and Spencer’s deff for this sample. In the case of
Spencer’s deff, use the variable SEENCNT as y.

(d) Explain in words the meaning of the value you obtained in (c) for 1 + L.
What should be considered in determining whether the value is excessively
large or not? How do Kish’s and Spencer’s measures compare in this
problem?

(e) Repeat parts (a)–(d) using BEDS as the MOS. Set the MOS for any unit
with BEDS = 0 to the minimum value of BEDS for those with non-zero
BEDS. Use EXPTOTAL as the y for Spencer’s deff and 429336912 as the
random number seed. You may find it useful to examine the individual
weights when discussing the Kish and Spencer measures.

14.9. Show that when a probability proportional to x sample is selected, the
weights are calibrated to the total of x in the population. That is,

∑
s wi = tx

where wi is the inverse of the selection probability of unit i and tx is the total
of x across all units in the frame. Do you think that the π-estimator is the
most efficient estimator, i.e., smallest variance, in any population where pp(x)
sampling is reasonable? Why or why not?

14.10. Using the data file smho.N874, select a sample of n=50 units with
probabilities proportional to recoded BEDS as the measure of size. Set the
MOS for any unit with BEDS = 0 to the minimum value of BEDS for those
with nonzero BEDS. If you use R, set the random number seed to 429336912.

(a) Report the summary for the resulting weights, i.e., the min, max, quar-
tiles, and the mean. Do any units have weights that seem to be of concern?

(b) Use quadratic programming to bound the weights in the range [1, 50].
Plot the resulting weights versus the base weights. What was the effect
of the bounding? Is quadratic programming an effective way of bounding
the weights here?

(c) Re-do parts (a) and (b) but recode any unit with BEDS = 0 to BEDS=10.
Discuss your results. Are the weight adjustments as extreme as in (b)?



Chapter 15

Variance Estimation

In previous chapters we considered the variance of estimators in order to
determine the sample size and allocation to the design strata. After the sam-
ple data are collected, estimates are made and their variances and standard
errors (SEs) must be computed. An SE (square root of the estimated vari-
ance) is a basic measure of precision that can be used as a descriptive statis-
tic, e.g., as part of a coefficient of variation (CV ), or for making inferences
about population parameters via confidence intervals. Estimating SEs that
faithfully reflect all sources of (or a significant portion of the) variability in
a sample design and an estimator is our goal, but this can be complicated.
This is especially true when several (random) weight adjustments described in
Chaps. 13 and 14 are used. For example, when an adjustment for nonresponse
is applied and then weights are raked to population controls, both procedures
contribute to the variance of an estimator in addition to the randomness due
to selecting the initial sample itself.

Many analysts, however, often estimate SEs in ways that do not account
for all sources of variability. This may be due to inadequate information about
how the data were collected and estimates made, use of inappropriate soft-
ware, ignorance of proper procedures, or some combination of these. Also,
published analysis files may only contain the final set of analysis weights
instead of providing users with the individual weight adjustments. As dis-
cussed in this chapter, this problem is remedied in many public-use data files
through multiple (replicate) weights. The importance of capturing the vari-
ous random components is demonstrated in this chapter along with methods
used to fulfill this objective that are specific to the sample design and point
estimator.

There are several alternative methods of variance estimation that will
be covered in this chapter—exact formulas, linearization, and replication
variance estimators. We summarize the methods along with some of their
strengths and weaknesses, including how easily each can account for differ-
ent sources of variability. Exact methods are covered in Sect. 15.1 and apply
to a limited number of sample designs and estimators. However, one of the
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exact methods in multistage sampling, called the ultimate cluster estimator,
is the basis for some of the theory that supports linearization and replication
estimators. Strictly speaking, the ultimate cluster estimator is exact only
for sampling designs where the primary sampling units (PSUs) are selected
with replacement, but it is a useful approximation in other designs when the
sampling fraction of PSUs is small.

Exact methods do not apply when an estimator is nonlinear; Sect. 15.2
describes the circumstances that make an estimator nonlinear. In Sect. 15.3,
we cover linearization variance estimators, which apply to many estimators
for which exact formulas are not available. Section 15.4 contains a discussion
of three replicate variance estimation methods—jackknife, balanced repeated
replication, and bootstrap—that are applicable to most public-use analysis
files that have been treated to minimize identification of the survey partici-
pants. The linearization and replication variance estimation techniques, the
methods most applicable to design-based estimation, are built around doing
something with the PSUs or first-stage units. For example, one linearization
method computes a variance based on differences among the weighted PSU
totals. In the replication methods, subsamples called replicates are formed by
designating subsets of the PSUs. The entire sample of units within a PSU is
retained if a PSU is in a replicate.

The last two sections of this chapter discuss some specialized topics—
combining PSUs or strata for variance estimation and ways of handling cer-
tainty PSUs when estimating variances.

15.1 Exact Methods

In a few simple cases, theoretical variances and their estimators have exact
formulas. We first encountered these situations in Chap. 3 where the notation
that we use below was defined. There are three designs—simple random sam-
ples, stratified simple random samples, and varying probability sampling with
replacement—that we have dealt with most often that admit exact variance
formulas. For example, if a stratified simple random sample without replace-
ment (stsrswor ; discussed in Sect. 3.1.1) of size n =

∑H
h=1 nh is selected and

the population mean is estimated with ȳst =
∑H

h=1 Whȳsh, then its variance
is estimated with

v (ȳst) =

H∑
h=1

W 2
h

1− fh
nh

Ŝ2
h,

where Ŝ2
h = (nh − 1)

−1∑
i∈sh

(yhi − ȳsh)
2
and Wh = Nh/N .

Another common design is to select units with varying probabilities and
without replacement. If n units are selected and πi is the selection probability
of unit i, the π-estimator is ŷπ =

∑n
i=1 yi/πi. Defining πij as the probability
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that units i and j are both selected for a sample, one of the variance estima-
tors recommended for ŷπ is the Yates-Grundy estimator:

varY G (ŷ) = −1

2

n∑
i=1

n∑
j=1

(
πij − πiπj

πij

)(
yi
πi

− yj
πj

)2

. (15.1)

One difficulty with this estimator is that samples are sometimes selected
using systematic sampling so that some of the πij ’s are zero. In that case, no
design-unbiased estimator of the variance exists. Särndal et al. (1992, Chap. 3)
provide the technical details. Even if a design is used where the YG estimator
might be feasible, the πij ’s may not be available. This is especially true when
doing secondary data analysis using a file prepared by someone else, like a
government agency.

If a sample is selected with varying probabilities and with replacement
(ppswr) and the pwr -estimator, ˆ̄ypwr = 1

Nn

∑
s

yi

pi
, is used, its variance is

estimated with

v
(
ˆ̄ypwr

)
=

1

N2

1

n (n− 1)

∑
i∈s

(
yi
pi

− t̂pwr

)2

(15.2)

where s is the set of sample units, t̂pwr = N ˆ̄ypwr, and pi is the 1-draw selection
probability (i.e., the selection probability if only one unit were selected). This
has the obvious advantage of not requiring any πij ’s.

Another important case in which the pwr formula applies is a multistage
design in which the first-stage units are selected with replacement. In that
design, formula (15.2) can be used with yi defined as the estimated total for
the units in first-stage unit i. The technical requirement is that yi must be
an unbiased estimator of the PSU total of y. If the PSUs are stratified, then
the pwr -estimator of a mean is ˆ̄ypwr = N−1

∑
h n

−1
h

∑
i∈sh

y′hi/phi, where
phi is the 1-draw probability of selection of PSU i in stratum h and y′hi =∑

k∈shi
dk|hi yhik is the estimated total just for units in PSU hi. The set of

sample units in PSU hi is shi while dk|hi is the weight for unit k in PSU hi
that expands the PSU sample to only the population of that PSU. The full
weight for unit k in shi is dk = dk|hi

/
phi where dk|hi is sometimes referred to

as the conditional within-PSU weight for unit k (conditional on PSU hi being
selected) and dk as the unconditional weight. The pwr variance formula is
then

v
(
ˆ̄ypwr

)
=

1

N2

∑
h

1

nh (nh − 1)

∑
i∈sh

(
y′hi
phi

− t̂pwr,h

)2

, (15.3)

where t̂pwr,h = n−1
h

∑
sh

y′hi/phi. This formula is also often written as

v
(
ˆ̄ypwr

)
=

1

N2

∑
h

nh

(nh − 1)

∑
i∈sh

(
Ŷhi − ˆ̄Yh

)2
, (15.4)
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where Ŷhi =
∑

k∈shi
dkyk and ˆ̄Yh = n−1

h

∑
i∈sh

Ŷhi. The form in Eq. (15.4) is
convenient because it uses the full-sample weight, dk, rather than both the
1-draw weight, 1/phi, and the conditional within-PSU weight, dk|hi . An
analyst will typically not have 1/phi and dk|hi separately. The formula
in Eq. (15.3) or Eq. (15.4) is called the ultimate cluster variance estimator
(Hansen et al. 1953a).

The PSU terminology can potentially be confusing in area probability
samples. As discussed in Chaps. 9 and 10, the term PSU usually denotes
a geographic area that is one or more local government jurisdictions, like
a county. Some PSUs may be selected with probability 1 (the certainties)
while others have selection probabilities less than 1. The certainty PSUs are
not the first-stage units, although practitioners habitually call them PSUs.
A certainty PSU is really a stratum composed of lower-level units. In a cer-
tainty, the first-stage units are actually census tracts, block groups, or some
other subcounty units. For example, Washington DC might be a certainty
PSU in a US area sample, but 20 block groups might be sampled from it.
The 20 block groups are the PSUs for purposes of variance calculation. In
this chapter, when we refer to PSUs for variance estimation, we really mean
“first-stage units.” You need to be cognizant of this when setting up a data
file for variance estimation.

Many variance estimators shown in sampling textbooks assume with-
replacement sampling. However, most designs do not use without-replacement
sampling at the first stage. Consequently, Eq. (15.2) or Eq. (15.4) is not
strictly appropriate for most designs used in practice. The real utility of the
with-replacement formulae lies in the fact that they are good approximations
to the variance of estimators in many situations where without-replacement
sampling is used. Practitioners often make use of this kind of thinking. In
Chap. 3, the with-replacement variance formula was a handy vehicle for com-
puting sample sizes when a sample was selected with varying probabilities.
Similarly, when analyzing data that has already been collected, Eq. (15.2) or
Eq. (15.4) is easier to compute than most exact formulas that account for
without-replacement sampling. Because of its convenience, expression (15.4),
in particular, is the building block for many of the variance estimates that
software packages provide. We will cover this idea in more detail in Sect. 15.3.

15.2 Linear Versus Nonlinear Estimators

Being able to use an exact variance formula depends not only on the sample
design but also on using what is known as a linear estimator, which has a
particular meaning in the design-based world. Knowing what a linear estima-
tor is (and is not) will be important since the linearization and replication
variance estimators covered in later sections are designed to handle nonlinear
estimators.
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In model-based or mathematical statistics, a linear estimator is usually
defined to have the form θ̂ =

∑
i∈s αiyi where the α’s are constants in the

random sample s (i ∈ s) and the y variables are treated as random variables
under some model, e.g., yi = β0 + β1xi + εi. In design-based sampling, the
randomness comes from how the sample is selected. A random variable is
defined for whether a unit is in the sample or not:

δi =

{
1 if unit i is in the sample (i ∈ s)
0 if not (i /∈ s).

,

The probability that δi = 1 is the selection probability of unit i, i.e., πi using
the established notation. A detailed discussion on this conceptual difference is
found in, e.g., Valliant et al. (2000). There are several definitions of linear that
have been proposed for design-based sampling [see (Wolter 2007, chap. 1)]. We
will use a slightly simplified version that is precise enough for our purposes.
A linear estimator is one that can be written as θ̂ =

∑
i∈U δiαiyi where U is

the set of all units in the finite population, and the value of αi is the same
regardless of the set of sample units that are selected.

A nonlinear estimator is one where the δi’s are combined in a way that is
more complicated than just a weighted summation. For example, an esti-
mator defined as θ̂ =

∑
i∈U δiαiyi

/∑
i∈U δiαixi is nonlinear since it is

the ratio of two linear estimators. The poststratified estimator, T̂yPS =∑G
γ=1 Nγ

(
t̂yγ

/
N̂γ

)
from Sect. 14.2, is nonlinear. The weight for each sample

unit is wi = diNγ

/
N̂γ where di represents the base weight; Nγ the popula-

tion count in poststratum γ; and N̂γ =
∑

i∈Uγ
δidi =

∑
i∈sγ

di, the estimate
of Nγ defined for Uγ , the set of all population units, and for sγ , the set of sam-

ple units that are in poststratum γ. The fact that N̂γ is in the denominator

makes T̂yPS nonlinear.
When weighting class adjustments for nonresponse are used, as in

Sect. 13.5.1, a nonlinear estimator is created. The adjusted weights involve
terms like

a2c =

∑
i∈sc,E

d1i∑
i∈sc,ER

d1i
,

where c is a weighting class, d1i is a base weight adjusted for unknown eli-
gibility, sc,E is the set of eligible sample units in c, and sc,ER is the set of
responding eligible sample units in c. An estimated total using this type of
nonresponse-adjusted weight can be written as T̂ =

∑
c

∑
i∈sc,ER

a2cd1iyi.
Both the numerator and denominator of a2c are random with respect to the
sample design, making the nonresponse-adjusted estimator nonlinear.

Another example is a GREG estimator in Sect. 14.3, which involves the
inverse of a sample matrix, among other complications, that make it highly
nonlinear. If the GREG calibration is preceded by a nonresponse adjustment,
then even more nonlinearity is injected into the estimator.
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Estimating the variance of a nonlinear estimator is somewhat more difficult
than for a linear estimator. However, the linearization method, described in
the next section, is a solution to this problem (at least in principle).

15.3 Linearization Variance Estimation

This section sketches how linearization variance estimation works. We also
cover some more specialized matters that naturally accompany variance esti-
mation, including confidence interval construction, degrees of freedom for
variance estimators, accounting for sampling fractions, domain estimation,
and the effects of multiple steps in weighting on variances.

15.3.1 Estimation Method

Linearization is a method of approximating variances. The technique is also
known as the Taylor series or delta method. The general idea is to approx-
imate a complicated estimator like a ratio, an odds ratio, or a regression
coefficient by a linear function. The theoretical, designed-based variance is
calculated for the linear approximation and then the theoretical variance is
estimated based on whatever design was used to select the sample. Although
understanding the details of the method is not essential for the presentation
here, understanding the general approach is worthwhile. Suppose that an
estimator can be written as a function f of estimated totals:

θ̂ = f
(
t̂1, . . . , t̂p

)
.

Each estimated total must be a linear estimator of the form, t̂j =
∑

i∈s αiyji.

The standard choice for αi is the inverse of the selection probability so that t̂j
is a π-estimator. For example, in the case of a ratio, we might have θ̂ = t̂1

/
t̂2

where t̂1 =
∑

s diyi and t̂2 =
∑

s dixi. The first step is to form a linear

approximation to the nonlinear function θ̂:

θ̂ − θ
.
=

p∑
j=1

∂f
(
t̂
)

∂t̂j

(
t̂j − tj

)
(15.5)

where θ̂ is the estimate of the population parameter θ; t̂ =
(
t̂1, . . . , t̂p

)T
,

the vector of estimated totals; ∂f
(
t̂
) /

∂t̂j is the partial derivative of f with

respect to the j -th estimated total in t̂; and tj is the population total for
the j -th variable. The theory behind the approximation requires that the
partial derivatives can be derived and are evaluated at the population values
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(which, of course, we do not know). Sample estimates are substituted for the
population quantities in order to calculate an estimated variance as shown
below.

The apparently complicated problem of estimating the variance of the non-
linear θ̂ is, thus, reduced to the simpler problem of estimating the variance of
a weighted combination of the t̂j ’s. We then compute the variance of the right-
hand side of Eq. (15.5) by squaring both sides of the equation and evaluating
the expectation with respect to the sample design thereby obtaining

V
(
θ̂
)

.
=

p∑
j=1

[
∂f
(
t̂
)

∂t̂j

]2
V
(
t̂j
)
+

p∑
j=1

p∑
k �=j

∂f
(
t̂
)

∂t̂j

∂f
(
t̂
)

∂t̂k
cov
(
t̂j , t̂k

)
. (15.6)

The terms, θ and tj , in Eq. (15.5) do not have to be considered in the vari-
ance approximation since they are population values that are treated as
constants.

For many different sample designs, we know how to compute the variances
and covariances in Eq. (15.6). For instance, if the design is stsrs, V

(
t̂j
)
has the

form V
(
t̂j
)
=
∑H

h=1 N
2
h (1− fh)S

2
h

/
nh. The covariances, cov

(
t̂j , t̂k

)
, under

this design are similar with S2
h replaced by a population covariance of the jth

and kth variables. To compute the resulting sample variance estimator, here

denoted as vL

(
θ̂
)
, the derivatives, variances, and covariances in Eq. (15.6)

are evaluated using their corresponding sample estimates.

Example 15.1 (Linearization variance estimator for the ratio of two totals).

Consider a point estimator defined as the ratio of two estimated totals: θ̂ =
t̂1
/
t̂2 ≡ f

(
t̂1, t̂2

)
with t̂j =

∑
k∈s diyjk (j = 1, 2). Using the notation above,

we say that θ̂ = f
(
t̂1, t̂2

)
, a function of two unique estimators. This quantity

estimates the population parameter θ = t1/t2, where θ = f (t1, t2) and tj =∑
k∈U yjk (j=1,2). To compute the linearization variance estimator, we begin

with a Taylor expansion as shown in Eq. (15.5):

θ̂ − θ
.
=

∂f (t)

∂t1

(
t̂1 − t1

)
+

∂f (t)

∂t2

(
t̂2 − t2

)

so that

(
θ̂ − θ

)2 .
=

(
∂f (t)

∂t1

)2 (
t̂1 − t1

)2
+

(
∂f (t)

∂t2

)2 (
t̂2 − t2

)2

+2
∂f (t)

∂t1

∂f (t)

∂t2

(
t̂1 − t1

) (
t̂2 − t2

)
.

Taking the expectation of both sides of the equal sign with respect to the
particular sample design in use, we obtain
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V
(
θ̂
)
= Eπ

[(
θ̂ − θ

)2]

.
=
(

∂f(t)
∂t1

)2
V
(
t̂1
)
+
(

∂f(t)
∂t2

)2
V
(
t̂2
)
+ 2∂f(t)

∂t1

∂f(t)
∂t2

Cov
(
t̂1, t̂2

)

where ∂f(t)
∂t1

= 1
t2

and ∂f(t)
∂t2

= −t1

(
1
t2

)2
. Estimate values for V

(
t̂1
)
, V
(
t̂2
)
,

Cov
(
t̂1, t̂2

)
, and the derivatives are generated using the sample design and

data and plugged into this formula to obtain vL

(
θ̂
)
, the estimated sample

variance of θ̂. �

An alternative method that avoids computing the individual variances
and covariances in Eq. (15.6) is called the linear substitute method (Wolter,
2007, Sect. 6.5). The idea is to substitute the formula for t̂j into Eq. (15.5)
and reverse the summation over variables and units before calculating the
variance. Suppose that a multistage design is used and t̂j =

∑
i∈s

∑
k∈si

dkyjk
is the statistic of interest, where dk is the base weight for unit k in PSU i
and yjk is the value of the j -th analysis variable for unit k in PSU i. Then,
the reversal of Eq. (15.5) leads to

θ̂ − θ
.
=
∑
i∈s

∑
k∈si

dkzk + constants (15.7)

with zk =
∑p

j=1

∂f(t̂)
∂t̂j

yjk (k ∈ si). The “constants” in Eq. (15.7) depend on

the population totals and derivatives and neither contribute to the design
variance. The sum ẑ =

∑
i∈s

∑
k∈si

dkzk is the estimated total of the zk,
which are called the linear substitutes. The variance estimation problem is
then reduced to estimating the variance of a single estimated total. Often, the
ultimate cluster variance estimator in Eq. (15.4) is used. If the design was
a stratified cluster sample, then, using the linear substitutes, the ultimate
cluster formula would be

vL

(
θ̂
)
=
∑
h

nh

(nh − 1)

∑
i∈sh

(
ẑhi − ˆ̄zh

)2
,

where ẑhi =
∑

k∈shi
dkzk and ˆ̄zh = n−1

h

∑
i∈sh

ẑhi.

Example 15.2 (Continuation of Example 15.1, ratio of two totals). Take the

estimator of a ratio defined in Example 15.1, θ̂ = t̂1
/
t̂2 with t̂j =

∑
k∈s diyjk

(j=1,2). The linear substitute is zk = t−1
2 (y1k − θy2k). The approximate

variance is V (
∑

s dkzk). How this is estimated depends on the sample design.
If the design is srswor, then the estimated variance is

v
(
θ̂
)
=

N2

n

(
1− n

N

) ∑
s (zk − z̄s)

2

n− 1
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with z̄s being the unweighted sample mean of the zk’s. If the design is ppswr,
then

v
(
θ̂
)
=

1

n (n− 1)

∑
k∈s

(
zk
pk

− t̂pwr,z

)2

with t̂pwr,z = n−1
∑

s zk/pk. If a two-stage (or more) design was used, then
a variance formula appropriate for that design would be used. �

Example 15.3 (Log-odds in a 2 × 2 table). Suppose that the following table
gives the estimated counts of persons who have diabetes classified by gender.
Suppose that a multistage, stratified sample is used and that each estimated

Has diabetes Does not
have diabetes

Male t̂1 t̂2
Female t̂3 t̂4

total has the form t̂j =
∑

h

∑
i∈sh

∑
k∈shi

dkyjk. Notice that each cell in the
table is a domain so that yjk is 1 (k ∈ shi) if unit k is in cell j (j = 1, 2, 3,
4) and 0 if not. The log of the ratio of the odds of males having diabetes to
the odds ratio for females is

θ̂ = log

(
t̂1t̂4

t̂2t̂3

)
= log

(
t̂1
)− log

(
t̂2
)− log

(
t̂3
)
+ log

(
t̂4
)
.

The linear substitute is zk = y1k

t1
− y2k

t2
− y3k

t3
+ y4k

t4
, and the log-odds is

approximately θ̂
.
=
∑

h

∑
i∈sh

∑
k∈shi

dkzk. The ultimate cluster variance
estimator, in this case, is

v
(
θ̂
)
=
∑
h

nh

(nh − 1)

∑
i∈sh

(
ẑhi − ˆ̄zh

)2
,

where ẑhi =
∑

k∈shi
dkzk and ˆ̄zh = n−1

h

∑
sh

ẑhi. To evaluate v
(
θ̂
)
, we replace

each tj in the linear substitute zk with its sample estimate. �

Software packages have certain special cases of the linear substitute for-
mula programmed. The user specifies the sample design and the type of
estimator, and the software evaluates the appropriate formula. R, Stata,
SUDAAN, and SAS all use the linear substitute method as one of their
options. The user is limited to statistics for which the linear substitute has
been programmed. For customized statistics, the statistician may need to
construct his/her own specialized program.



406 15 Variance Estimation

15.3.2 Confidence Intervals and Degrees of Freedom

Confidence intervals are usually computed using either the normal or t -
approximation. A 100 (1− α)% confidence interval for θ is either

θ̂ ± z1−α/2

√
vL

(
θ̂
)
or θ̂ ± t1−α/2 (df)

√
vL

(
θ̂
)

where z1−α/2 is the point in a standard normal distribution with 1 − α/2
of the area to its left and t1−α/2 (df) is the corresponding point in a central
t -distribution with df degrees of freedom. Some of the rules of thumb used
for setting degrees of freedom are described below.

The degrees of freedom are a characteristic of a variance estimator as
well as the sample design. If the data, y1, . . . , yn, were each independently
generated by a normal distribution with mean μ and variance σ2, then∑n

i=1 (yi − ȳs)
2
/
σ2 has a chi-square distribution with n-1 degrees of free-

dom. In design-based theory, no assumptions are made about an underlying
model distribution. As a result, large sample theory is used to assign approx-
imate degrees of freedom to variance estimators (e.g., see Rust (1984, 1985)).
The standard rule of thumb is

df = (number of sample PSUs)-(number of design strata). (15.8)

If there are n =
∑H

h=1 nh sample PSUs and H strata, the rule says that
df = n − H . In other words, nh − 1 degrees of freedom are picked up from
each stratum.

How accurate this rule is depends on the variability and kurtosis of the
analysis variable, which in this section is the linear substitute zk. Kurtosis is
a measure of how “peaked” the distribution of yk or zk is in comparison to a
standard normal distribution. In many cases, the rule of thumb may be poor
as illustrated in Valliant and Rust (2010). Among the things that will taint
its accuracy are:

(i) Non-normality of the zk which can be caused by a small number of
sample PSUs.

(ii) The zk having heavier tails than a normal distribution.
(iii) The underlying variances of the analysis variables being different among

strata.
(iv) The statistic is the proportion of the population that has a rare charac-

teristic. This can result in a heavy-tailed distribution of the zk.
(v) PSUs and/or strata are collapsed together to reduce computational bur-

den. This is common when using the replication variance estimators
discussed in subsequent sections. Collapsing is described in Sect. 15.5.

Example 15.4 (Evaluating the partial derivatives: ratio estimator of a mean).
To construct a linearization variance estimator, alternatives are sometimes
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available for how to evaluate the partial derivatives in Eq. (15.5). The ratio
estimator of a mean under srswor, ȳR = ȳsx̄U/x̄s, which we covered in
Sect. 3.5.2, will illustrate the options. The linear approximation to ȳR is

ȳR − ȳU
.
=

∂ȳR
∂ȳs

(ȳs − ȳU ) +
∂ȳR
∂x̄s

(x̄s − x̄U ) .

The theorem that leads to the approximation says that the partials should be
evaluated at population values. Dropping the terms in ȳU and x̄U , the part
of the approximation that depends on the sample quantities is

∂ȳR
∂ȳs

ȳs +
∂ȳR
∂x̄s

x̄s = n−1
∑
s

(
∂ȳR
∂ȳs

yk +
∂ȳR
∂x̄s

xk

)
.

The partial derivative of ȳR with respect to ȳs is x̄U/x̄s. If evaluated at pop-
ulation quantities, then the partial derivative is equal to one. Otherwise, if
the partial derivative is evaluated at sample quantities, we have x̄U/x̄s. The
partial with respect to x̄s is −ȳsx̄U

/
x̄2
s. When evaluated at population and

sample quantities, this partial derivative is ȳU/x̄U and −ȳsx̄U

/
x̄2
s, respec-

tively. Thus, two choices for linear approximations are

ȳR− ȳU
.
= n−1

∑
s

(
yk − ȳU

x̄U
xk

)
derivatives evaluated at population values

ȳR − ȳU
.
= n−1 x̄U

x̄s

∑
s

(
yk − ȳU

x̄U
xk

)
derivatives evaluated at sample esti-

mates.
The first approximation leads to the srswor variance estimator

v0 =
N2

n

(
1− n

N

)∑
s

(
yk − ȳs

x̄s
xk

)2

.

We use ȳs/x̄s instead of ȳU/x̄U in the squared term because the population
mean of the y’s is unknown. The second approximation leads to

v2 =
N2

n

(
1− n

N

)( x̄U

x̄s

)2∑
s

(
yk − ȳs

x̄s
xk

)2

.

The estimator v2 has better conditional performance than does v0. By “con-
ditional,” we mean that v2 tracks the variance of ȳR better than v0 for sam-
ples where x̄s differs from x̄U . More formally, good conditional performance
means that an estimator is unbiased (or approximately so) under a model
that describes the dependence of y on x. In this case, the model that moti-
vates the ratio estimator is EM (yi) = βxi, VM (yi) = σ2xi. The estimator v2
is both model unbiased and approximately design unbiased under srswor giv-
ing it a kind of double robustness—a term used in the clinical trials literature
(Kang and Schafer 2007). �

To arrive at v2, a somewhat arbitrary choice is made to evaluate the par-
tials in a way different than dictated by Taylor’s theorem. An interesting
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feature of replication estimators, discussed in Sect. 15.4 is that they automat-
ically are approximately design unbiased and model unbiased. This is not
quite as good as it sounds because the design-unbiasedness is under with-
replacement sampling of PSUs, and the model-unbiasedness is under a model
for which the point estimator itself is unbiased. The actual design may not be
with-replacement, and the model under which the replication variance estima-
tor is unbiased may not be the best one for the analysis variable. Nonetheless,
replication conveys a kind of automatic, double robustness while this is not
always true of linearization variance estimators.

15.3.3 Accounting for Non-negligible Sampling
Fractions

The general, large sample theory for linearization is built around the assump-
tion that PSUs are selected with replacement. As noted earlier, this is not
much of a limitation if the size of the sample of first-stage units is small
compared to the population size of first-stage units. Accounting for large
sampling fractions of PSUs or selections of PSUs that cannot be treated as
approximately independent is difficult except in some simple designs.

If the selections of PSUs cannot be realistically treated as being indepen-
dent, then the basic question for an analyst is whether (a) the software you
are using has a variance formula that matches the design or (b) you can
program the correct formula yourself. If (b) is within your grasp, then an
elaborate formula can be programmed that fully accounts for the complex-
ity of the design and estimator. For most analysts, though, (a) is probably
more realistic. This is especially true if your analysis requires many differ-
ent domain estimates. Programming these correctly is not a trivial exercise.
SUDAAN accommodates more types of sample designs than the other pack-
ages we cover (see RTI International 2012, chap. 3). For example, it covers
designs in which (15.1) is the right formula, but the user must input the
values of πi and πij . The πij values, in particular, may not be available.

An option offered by R, SAS, Stata, and SUDAAN is to include an ad
hoc finite population correction (fpc) factor into formula (15.4) as applied to
ẑ rather than ˆ̄ypwr. This is theoretically correct if the PSUs are selected by
srswor or stsrswor where the fpc is either 1− n/N or 1− nh/Nh, and there
is no subsampling within each PSU. If the PSUs are selected with varying
probabilities without replacement, then this kind of fpc may be crude. In the
R survey package the option fpc is included in the svydesign statement;
in Stata the fpc is included in the svyset statement; in each SAS procedure
(like surveyfreq) the statement is rate. In R and Stata the value of the
sampling rate, n/N , is the value of the fpc variable—not 1− n/N , which is
the textbook definition of the fpc. In R the fpc must be a vector of the same
length as the number of records in the sample file; it could be a column in



15.3 Linearization Variance Estimation 409

the object that holds the sample data. We gave an example of the R syntax
in Sect. 15.2. In Stata and SAS, fpc or rate should be a field in the sample
data file.

Additionally, fpc’s for different stages of sampling can be included in R,
Stata, and SUDAAN. These are appropriate only when each stage is a sim-
ple random sample selected without replacement from the units at each stage.
Multistage designs with srswor at each stage are fairly unusual, but the option
to include several fpc’s is available. You should consult the manual for the
software package you are using to learn how the data file needs to be set up
to use this option.

Example 15.5 (Accounting for fpc’s). We illustrate the effect of using fpc’s by
selecting an stsrswor from the smho.N874 population. A sample of nh = 50
is selected in each of H = 5 strata defined by hospital type. The strata
function in the sampling package selects the sample. The stratum-specific
sampling fractions, nh/Nh (0.23, 0.43, 0.20, 0.34, and 0.35 for strata 1 through
5, respectively), are stored in sam$Prob, whose length is that of the full
sample, 250 (5*50) because this rate is the same for every sample unit in a
given stratum. The full set of R code for this example is in “Example 15.5
FPCs.R.”

require(survey)
require(sampling)

# Population stratum counts
Nh <- table(smho.N874[, "hosp.type"])

# Select a stratified simple random sample within
# hospital type strata

set.seed(428274453)
n <- 50
H <- length(Nh)
sam <- strata(data = smho.N874, stratanames = "hosp.type",

size = rep(n,H), method=c("srswor"),
description = TRUE)

sam.dat <- smho.N874[sam\$ID\_unit,]
d <- 1/sam$Prob
sam.rates <- sam$Prob

# Create a design object with fpc’s
smho.dsgn <- svydesign(ids = ˜0, # no clusters

strata = ˜hosp.type,
fpc = ˜sam.rates,
data = data.frame(sam.dat),
weights = ˜d)

cv(svyby(˜EXPTOTAL, by=˜as.factor(hosp.type), design=smho.dsgn,
FUN=svytotal))

cv(svytotal(˜EXPTOTAL, design=smho.dsgn))

# Create a design object without fpc’s
smho.nofpc.dsgn <- svydesign(ids = ˜0,

strata = ˜hosp.type,
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data = data.frame(sam.dat),
weights = ˜d)

cv(svyby(˜EXPTOTAL, by=˜as.factor(hosp.type),
design=smho.nofpc.dsgn, FUN=svytotal))

cv(svytotal(˜EXPTOTAL, design=smho.nofpc.dsgn))

Two design objects are created: smho.dsgn, which uses fpc’s, and smho.
nofpc.dsgn, which does not. The results for CVs of the estimated total of
expenditures by stratum and overall are given below. Omitting the fpc’s leads
to SEs and CVs being overestimated from 12 to 33%. The increased SE size

Stratum 1 2 3 4 5 Full
pop.

CV (%) with fpc 17.6 11.3 9.5 17.1 13.1 8.7
CV (%) without fpc 20.1 15.0 10.6 21.0 16.3 10.1
Ratio of CV s 1.14 1.33 1.12 1.23 1.24 1.16

could result in, for example, failing to reject the null hypothesis specified for
a statistical test when the hypothesis could have been rejected or suppression
of survey estimates if they exceed some specified relative standard error. �

15.3.4 Domain Estimation

Estimates for domains (i.e., subpopulations or domains) are important in
the analysis of data from most surveys. The estimates for cells in a crosstab
are examples of domain estimates. One way of characterizing domains (also
referred to as subpopulations or subgroups) is by whether the sample size
from the domain is fixed by the design or not. If the domain sample size
is fixed, then analysis of the domain can be done by creating a subfile that
contains only the units in the domain. For instance, if the employees of a
company are stratified by division in which they work (data processing, field
operations, statistical, human resources, etc.), then each division can be ana-
lyzed separately. If the sample sizes are not fixed, then the randomness of the
domain sample size should be incorporated in the variance estimates. In the
employee survey, we might be interested in the domain of persons who feel
that they are underemployed considering their education levels. Assuming
that we do not know who those people are prior to doing the survey, their
sample size will be random.

The technique used for estimating the design variance of a domain estimate
for which the sample size is random is to code a unit as having a value of 0
if they are not in the domain and as having its observed value if it is in the
domain:
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yk (d) =

{
yk if k is in domain d,
0 if not.

Some texts use an indicator variable, Δi (d) = 1 if unit i is in domain d and
0 if not. Then yk (d) = ykΔi (d). The recoded yk (d) is then used in whatever
variance formula is appropriate for the design. For a linearization variance esti-
mator, yk (d) is used in the linear substitute. As we will see in Sect. 15.4, this
zero-coding trick is unnecessary in replication variance estimation—another
advantage of the replication approach.

15.3.5 Assumptions and Limitations

Theory is available for linearization variance estimators to show when they
are approximately unbiased and consistent. Krewski and Rao (1981) provide
the fundamental theory, which is summarized also by Wolter (2007). The type
of sample design does have to be considered—in particular whether the PSUs
were sampled with or without replacement. In an easy case like stsrs the lin-
earization approach can be applied to without-replacement designs, as illus-
trated in Examples 15.1 and 15.2. In multistage samples, much of the theory
has been developed for designs in which PSUs can be selected with varying
probabilities but with replacement. In that case, the ultimate cluster variance
estimator can be applied to the linear substitutes. When the PSU sampling
is without replacement, a with-replacement variance estimator is usually con-
servative, but this is a compromise that most practitioners can accept.

There are also some mathematical assumptions needed to derive the theory
that applies to nonlinear estimators. Three of the key mathematical require-
ments are that (i) the number of sample PSUs is large, (ii) the variables being
analyzed (the y’s) cannot be highly variable or affected by any extreme out-

liers, and (iii) the nonlinear function, θ̂ = f
(
t̂1, . . . , t̂p

)
, must be differentiable

with respect to its t̂j ingredients. Different types of designs can satisfy require-
ment (i). In a stratified design with a limited number of strata, there must
be a large number of PSUs in each stratum. A stratified design with a small
number of units per stratum can satisfy (i) if the number of strata is large.

As noted earlier, linearization variance estimators are used to compute

confidence intervals (CIs) of the form θ̂ ± z1−α/2

√
vL

(
θ̂
)
. There are two

assumptions needed to say that this interval (or the version using a t multi-
plier) covers the desired population quantity in 100 (1− α)% of samples:

(i) The distribution of θ̂ is approximately normal when the sample is large.

(ii) vL

(
θ̂
)
is a consistent estimator of the theoretical variance, V

(
θ̂
)
, in

the sense that vL

(
θ̂
)/

V
(
θ̂
)

p−→ 1 as the sample becomes large.
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By “large sample” we mean that the number of sample PSUs is “large.” This,
of course, raises the question: how big does the PSU sample have to be to
be considered large? Naturally, this is a question without a clear-cut answer.
Highly skewed continuous variables will need a bigger sample size than more
symmetric ones. Rare or prevalent characteristics will require a larger sample
than the ones whose proportion is nearer.

Some practitioners will say that 30 PSUs are enough for CIs to perform as
advertised. We prefer a much larger number—60 or more. Even if 30 would
be sufficient to treat θ̂ as normal, a variance estimator based on 30 PSUs
can be quite unstable. This will seriously foul the performance of confidence
intervals. Having at least 60 PSUs offers a modicum of protection against
unstable variance estimation. We return to this point later in the chapter in
the discussion of replication variance estimators.

The method outlined above does not work for estimating the variance
of a quantile, like the median or the first and third quartiles. However, a
linearization-like method was developed for quantiles by Francisco and Fuller
(1991). Their method is available in the R survey package and in SUDAAN.
Example 15.8 illustrates its calculation along with another method due to
Woodruff (1952).

15.3.6 Special Cases: Poststratification and Quantiles

In Chap. 14, several examples showed standard errors estimated via lineariza-
tion. Examples 14.2, 14.3, and 14.4 covered poststratified and raked estima-
tors and their standard errors. The next example shows a simpler case of
linearization that would often be used for public-use data sets provided by
federal governments.

Example 15.6 (Linearization variance estimation). The nhis.large data
set can be treated as a stratified, cluster design with 2 PSUs selected per stra-
tum. Since this was extracted from a public-use data set published by the US
government, no design information was provided other than identifiers (IDs)
for the design strata and PSUs and a survey weight. The R code below uses
the RData version of this file to estimate the proportions of the population
in five age groups. The with-replacement variance estimator is used since we
have no information to do anything more elaborate. The svydesign func-
tion defines a design object that specifies the variable that holds the PSU IDs
(ids), the strata (strata), the survey weights (weights), and the data set
used to create the object. Notice that the ids, strata, and weights vari-
ables have to be entered as a formula with̃in the front. After the design object
is created, tabulations of different kinds can be done. In this case, svymean
is used to compute proportions, their linearization standard errors, and a
design effect for each cell estimate. The ftable function is used to format
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the table in a slightly nicer way than the default from svymean. The full set
of code is in the file Example 15.6 lin var.

attach("C:\\nhis.large.RData", pos=2)
require(sampling)

# create a design object
nhis.dsgn <- svydesign(ids = ˜psu,

strata = ˜stratum,
nest = TRUE,
data = nhis.large,
weights = ˜svywt)

a <- svymean(˜factor(age.grp), deff=TRUE, design=nhis.dsgn)
b <- ftable(a, rownames = list(age = c("< 18", "18-24", "25-44",

"45-64", "65+")))
round(b,3)

age
< 18 mean 0.253

SE 0.004
Deff 1.575

18-24 mean 0.101
SE 0.004
Deff 3.872

25-44 mean 0.285
SE 0.004
Deff 1.463

45-64 mean 0.240
SE 0.004
Deff 2.092

65+ mean 0.122
SE 0.004
Deff 3.268

The same tabulation can be done in Stata with this code after telling the
package to use the nhis.large data set:

svyset psu [pweight=svywt], strata(stratum)
svy: tab agegrp, percent se deff

After reading the data into a file called nhis large, the SAS code for the
table is:

proc surveyfreq data=nhis_large;
tables agegrp / deff;
strata stratum;
cluster psu;
weight svywt;
run;

(The variable agegrp is used above because SAS and Stata do not support
variable names containing certain characters such as a period, e.g., age.grp.)
�
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Ignoring calibration to population controls is usually a serious error in vari-
ance estimation. How serious the mistake is depends on how well the model
that underlies the type of calibration used fits the data. (We covered the
links between calibration and models in Sect. 14.3.1.) The better the fit, the
bigger the mistake. Not accounting for calibration in variance estimation is
an especially easy mistake to make when analyzing data from public-use data
sets. Sometimes no special guidance is provided for how to estimate variances
with different software packages. Stratum and PSU codes may be on the file,
and the documentation may say that weights were adjusted to hit certain
population controls, like age/sex/race-ethnicity counts in a household survey.
But, no population counts are provided to users, or the survey documentation
does not give explicit definitions of the control categories. In such a case, you
may be able to still do something that is roughly correct (or, at least, better
than ignoring the fact that controls were used).

Take the case of poststratification for illustration. The sum of the final
weights in each poststratum will satisfy

N̂γ

⎛
⎝=

∑
k∈sγ

wk

⎞
⎠ = Nγ ,

where sγ is the set of sample units in poststratum γ and Nγ is the population

control. The variance of the estimates poststratum count N̂γ is zero because
of the forced equality with the population controls above. Thus, if you have
a reasonable guess about what the poststrata definitions are, you can recover
the control totals. You may need to use those controls to create a new set of
poststratified weights, depending on the requirements of the software package
you are using. To illustrate the possibility that ignoring poststratification
would be an error, we return to Example 15.2.

Example 15.7 (Linearization with poststratification). The R code for this
example is in the file Example 15.7 poststrat.R. Recall that in Exam-
ple 15.2, an srswor of 250 cases was selected from the nhis.large population.
Fifteen age groups x Hispanicity poststrata were used. A design object called
nhis.dsgn was created and, in turn, used to create an object with poststrati-
fied weights, ps.dsgn.

# collapse hisp = 3,4
hisp.r <- nhis.large$hisp
hisp.r[nhis.large$hisp ==4] <- 3
nhis.large1 <- data.frame(nhis.large, hisp.r)

# create single variable to identify
# age.grp x hisp.r poststrata

m <- max(nhis.large1$hisp.r)
nhis.large1$PS <- (nhis.large1$age.grp - 1)*m + nhis.large1$hisp.r
N.PS <- table(PS = nhis.large1$PS)
ps.dsgn <- postStratify(design = nhis.dsgn,

strata = ˜PS,
population = N.PS)
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(In this example, in contrast to Example 15.2, we omit an fpc.) A critical
requirement is that the name associated with the population total vector,
N.PS, must be the same as the name of the variable used to identify post-
strata. The statement, table(PS=nhis.large1$PS), insures that the
name PS is used for the population totals. The poststratified estimated totals
of persons receiving Medicaid (medicaid=1) or not (medicaid=2) are esti-
mated with:

svytotal(˜ as.factor(medicaid), ps.dsgn, na.rm=TRUE)
total SE

as.factor(medicaid)1 1870.8 346.47
as.factor(medicaid)2 19467.6 372.59

On the other hand, we can use the poststratified weights to form a design
object assuming that the sample was selected with varying probabilities and
with replacement, and then estimate the same total.

wts <- weights(ps.dsgn)
# design object ignoring PS

noPS.dsgn <- svydesign(ids = ˜0,
strata = NULL,
data = data.frame(samdat),
weights = ˜wts)

svytotal(˜ as.factor(medicaid), noPS.dsgn, na.rm=TRUE)
total SE

as.factor(medicaid)1 1870.8 384.73
as.factor(medicaid)2 19467.6 470.38

The estimated totals are, of course, the same with these two alternatives. How-
ever, the SEs for the total number of persons receiving Medicaid are 346.47,
accounting for poststratification, and 384.73, ignoring it. Consequently, we
would overestimate the SE by about 11% (384.73 vs. 346.47). For the esti-
mated total not receiving Medicaid the SE would be overestimated by 26%
(470.38 vs. 372.59). The overestimation would also occur with the replication
methods, considered subsequently, if poststratification is ignored. �

Estimating the SE of an estimated quantile requires different methods from
those introduced earlier for linearization. The Francisco and Fuller (1991, FF)
and Woodruff (1952) methods are available in R. Both methods first compute
a confidence interval (CI) on a quantile. A standard error is then computed
by dividing the CI length by 2z1−α/2 where 100 (1− α)% is the level of
the confidence interval. FF uses what is called a test inversion method. For
the median, for example, the CI consists of all potential population values
that would be accepted in a hypothesis test that the value was equal to the
median. The Woodruff method is simpler and consists, roughly, of putting a
CI around the proportion associated with the quantile (like the median) and
then translating the CI endpoints back to the data scale.
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Example 15.8 (Quantiles). We use the smho.N874 population to illustrate
the computation of quantiles and the same sample described in Sect. 15.3.2.
Type 4 hospitals are deleted and the variable, beds, is recoded to have a
minimum value of 5. A sample of 80 hospitals is selected from the edited list
frame with probabilities proportional to the square root of the number of
(recoded) beds. The complete set of code is given in the file Example 15.8
FF quantile.R.

smho.dsgn <- svydesign(ids = ˜0,
strata = NULL,
data = data.frame(sam.dat),
weights = ˜d)

# population quantiles
popq <- quantile(smho$SEENCNT, c(0.25, 0.50, 0.75))

# Compute quantiles and CIs
# Francisco-Fuller method

FF <- svyquantile(˜SEENCNT, design=smho.dsgn,
quantiles = c(0.25, 0.50, 0.75),
ci=TRUE, interval.type="score",
se = TRUE)

# Woodruff method
wood <- svyquantile(˜SEENCNT, design=smho.dsgn,

quantiles = c(0.25, 0.50, 0.75),
ci=TRUE, interval.type="Wald",
se = TRUE)

round(cbind(t(FF$quantiles), t(FF$CIs[,,1])), 0)
SEENCNT (lower upper)

0.25 581 208 846
0.5 1458 846 1613
0.75 1932 1654 4182

round(cbind(t(wood$quantiles), t(wood$CIs[,,1])), 0)
SEENCNT (lower upper)

0.25 581 184 753
0.5 1458 829 1622
0.75 1932 1663 4759

# extract SEs
round(SE(FF),1)
0.25 0.5 0.75

162.8 195.7 644.9

round(SE(wood),1)
0.25 0.5 0.75

145.3 202.4 790.0

The object sam.dat holds the data for the 80 sample hospitals. The function
svyquantile computes the first and third quartiles and the median via the
parameter, quantiles = c(0.25,0.50,0.75). The FF and Woodruff
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methods are specified with interval.type="score" or "Wald", respec-
tively. The output is a list with components named quantiles and CIs.
For FF we examine these by binding the point estimates and CI limits
together with

round(cbind(t(FF$quantiles), t(FF$CIs[,,1])), 0).

A similar statement displays the results for Woodruff. The standard error
estimates are extracted with SE(FF) and SE(wood). �

Effect of Duplicate Values on a Quantile. A word of warning is
appropriate here for variables that have many duplicated values. In physical
measurements, for example, data for some items may be rounded to inte-
gers for inclusion in a data set even though, in principle, the underlying
measurement is continuous. For example, the NHANES data files provided
by the US National Center for Health Statistics have many ties in high-
density lipoprotein (HDL) cholesterol. HDL is measured in milligrams per
deciliter, which is an integer, but conceptually HDL could take on a contin-
uum of values. CIs and SEs of quantiles are sensitive to ties in data values.
Depending on how these are handled, point estimates will differ somewhat,
but CIs and SEs can differ a lot. The R svyquantile function has two
options: ties=‘‘discrete’’ and ties=‘‘rounded’’. With the former,
the data are treated as genuinely discrete so that the CDF is a step function.
With rounded, interpolation is used to construct the CDF. If the discreteness
of the data is an artifact of the measurement or reporting process, then using
ties=‘‘rounded’’ seems preferable.

15.3.7 Handling Multiple Weighting Steps with
Linearization

The implementations of linearization in software packages typically do not
account for the effects of multiple stages of weight adjustment. For example,
if nonresponse adjustments are used, followed by poststratification to popula-
tion control totals, the linearization formulas that are preprogrammed in R,
Stata, SAS, and SUDAAN will account only for poststratification if properly
specified (see Example 15.7).

The theory for the method can certainly be adapted to reflect both steps.
However, as noted earlier, users do not often have all of the information that
would be needed to properly compute a linearization variance. For exam-
ple, suppose that nonresponse adjustment cells were formed, as described in
Sect. 13.5.1, and the input weights adjusted by the ratio of sums of weights
for the full sample and for the respondents. If a total of some y is estimated,
the analyst would have to know which cell each respondent and nonrespon-
dent fell into, along with the sum of the input weights for the full sample
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and for the respondents in each cell. If a poststratified estimator is used on
top of this, the poststratum of each unit must be known. The poststrata
may be different from the nonresponse adjustment cells. Users may have the
poststratum codes but not the nonresponse adjustment information. In some
public-use data sets, users will have neither.

On the other hand, replication, discussed in the next section, makes it rel-
atively easy to account for such multiple weighting steps. As long as the repli-
cate weights are properly constructed, an analyst can use them to get correct
SE estimates even if the analyst has no knowledge of whether nonresponse
adjustments, poststratification, raking, GREG estimation, or something else
was used.

15.4 Replication

The other, general method for estimating the variance of nonlinear estimators
is replication. The idea is to create a series of subsamples, i.e., replicates, each
of which can be used to estimate the same parameter as the full sample. The
variance is then computed among the replicate estimates. There are three
alternatives that we will cover—the jackknife, balanced repeated replication
(BRR), and the bootstrap.

In each of the methods, subsamples of the PSUs are selected—not of the
units within PSUs. A subsample is referred to as a replicate. If a PSU is
selected for a replicate, every sample unit within the PSU is retained. The
base weights for the units in a replicate are adjusted in a way that depends
on the method of replication. Then, any additional weight adjustments such
as calibration (if they are used) are carried out separately for each replicate.
This leads to a set of weights for each replicate in addition to the full-sample
weights generated for linear variance estimation (Sect. 15.3). These weights
are appended to the record for each sample unit and are used to compute the
replicate estimates.

Three types of replicate variance estimators are reviewed in the subsequent
sections. For each, we provide an overview of the procedures to calculate the
corresponding weights, references for the theoretical details, and the advan-
tages and limitations.

15.4.1 Jackknife Replication

The basic jackknife method creates replicates by dropping one first-stage unit
and reweighting the remaining units to produce a full population estimate.
For example, if unit i out of n first-stage units is dropped, then the weight
for unit k is
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dk(i) =
n

n− 1
dk,

where (n− 1)/n is the subsampling fraction or probability of retaining the
n − 1 first-stage units in the i th replicate sample. The estimated total for a
variable y based on replicate i is

t̂(i) =
∑

k∈s(i)

dk(i)yk,

where s (i) denotes the set of sample units excluding unit i. The jackknife
variance estimator is calculated across the n replicate estimates using

vJ =
n− 1

n

n∑
i=1

(
t̂(i) − t̂

)2
, (15.9)

where t̂ =
∑

k∈s dkyk, the full-sample estimate of t =
∑

k∈U dkyk. There are
some other variations of the jackknife derived from centering the replicate
estimates around the mean of the t̂(i)’s and some other options (e.g., see
Krewski and Rao 1981). All of these are numerically about the same in large
samples.

As an example, consider the estimator of a total from a simple random
sample, t̂ = Nȳs. Expression (15.9) reduces to

N2

n (n− 1)

∑
s

(yk − ȳs)
2 ,

which is the standard formula for the variance of t̂ in srswr. Since this variance
estimator can be computed directly, the jackknife has no advantage for t̂ =
Nȳs nor for any other linear estimator.

The benefit of the jackknife is that it is approximately unbiased and con-
sistent for the variance of nonlinear estimators. If the nonlinear estimator,
θ̂ = f

(
t̂1, . . . , t̂p

)
, is being analyzed, the jackknife is constructed by deleting

unit i and computing θ̂(i) = f
(
t̂1(i), . . . , t̂p(i)

)
. Each replicate estimate θ̂(1),

θ̂(2), . . . , θ̂(n) is computed corresponding to dropping each of the n units in
the sample. Each replicate estimate has the same form as the full-sample esti-
mate. The results are then plugged into Eq. (15.9) to estimate the variance.

If a multistage sample is selected, “deleting a unit” means “delete a PSU.”
By deleting a PSU, we mean that all sample units in a PSU are dropped
when the PSU is dropped. Dropping one unit at a time from within a PSU
will give incorrect variance estimates. With a stratified multistage design, one
PSU is omitted at a time to create a replicate, and the weight adjustment
for a replicate applies only to the PSUs within the stratum where a PSU
was dropped. Suppose that PSU i in stratum h (h = 1, . . . , H) is removed to
form replicate (hi). Denote the adjusted base weight for unit k in replicate
(hi) by dk(hi). Then, the base weights dk are adjusted this way:
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dk(hi) =

⎧
⎨
⎩

0 if unit k is in PSU i in stratum h,
nh

nh−1dk if unit k is in stratum h but not in PSU i,

dk if unit k is not in stratum h.
(15.10)

In other words, all units in the deleted PSU hi have their weights set to 0. All
units in the other (nh − 1) PSUs within stratum h have their base weights
multiplied by nh/ (nh − 1), the inverse of the within-stratum subsampling
fraction. Units in the strata where no PSU was dropped retain their original
weight. Thus, the weights for the retained units in stratum h are adjusted to
represent the full stratum and the weights for units in other strata are left
alone.

The adjusted weights are then used in the same way as they would be in
a single-stage sample to compute a replicate estimate denoted by θ̂(hi). The
stratified jackknife variance estimator is then

vJ

(
θ̂
)
=
∑
h

nh − 1

nh

∑
i∈sh

(
θ̂(hi) − θ̂

)2
, (15.11)

where sh denotes the sample of PSUs in stratum h and θ̂ is the full-sample esti-
mate calculated with, for example, the linearization weight or as the weighted
average of the replicate estimates. Expression (15.11) is sometimes referred
to as the JKn formula. Since one PSU is dropped to form each replicate, the
total number of replicates in JKn equals the number of sample PSUs. As
in the unstratified case, there are some other options for how the variance
estimate can be centered. But, as long as the PSU sample is large, these will
be numerically similar.

Special Cases

There are two special cases of the jackknife that sometimes crop up in the
literature that are worth a brief discussion. One is the unstratified jackknife,
introduced at the beginning of this section, which is sometimes called JK1.
This is really just a special case of JKn with one stratum. Two sample PSUs
in each stratum lead to another special case. When nh = 2, the JKn formula
for an estimated total, t̂ =

∑
h

∑2
i=1

∑
k∈shi

dkyk, reduces to

vJ
(
t̂
)
=
∑

h

(
Ŷh1 − Ŷh2

)2
, (15.12)

where Ŷhi =
∑

k∈shi
dkyk as defined below (15.4). Expression (15.12) is known

as JK2 and is available only in WesVar. Since JK2 only requires deleting the
first PSU in each stratum, it is important to avoid numbering PSUs as 1 and
2 in some systematic way. For example, if PSU 1 is always the one with the
smaller population size and size is related to the analysis variables, then JK2
can be biased. As a result, randomly numbering the PSUs as 1 or 2 within
each stratum is a good idea.
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The JK2 variance estimator has no particular theoretical support for non-
linear estimators but does lead to fewer replicates being used than in JKn.
Within JKn, 2H replicates would be needed in a 2-per-stratum design where
H is the number of strata. In JK2 only H replicates are needed. This could
be quite a savings if the number of strata is large. However, the BRR method
to be covered in Sect. 15.4.2 applies in the 2-units-per-stratum case and has
been proven to work for nonlinear estimators and for quantiles like the median.
Neither JKn nor JK2 converges to the correct variance for quantiles. BRR
also requires only slightly more replicates than JK2. Thus, there seems to be
no good reason to use JK2 in any application.

Domain Estimation and Replication

The jackknife, BRR, and the bootstrap all correctly handle domain estimation
without doing the explicit zero-coding for non-domain members that was
needed for linearization. Using the recoded variable, yk (d) = 0 for units
outside the domain and yk for domain units, is still correct for replication.
But, this is equivalent to dropping the zero-coded units when computing θ̂(hi)
and θ̂ to use in Eq. (15.11). Dropping the non-domain units is the standard
way of computing the jackknife (or BRR or bootstrap) variance estimates.
Recall that deleting the non-domain units and computing a linearization
variance estimate from that subset of the file would generally be a mistake.

Assumptions, Advantages, and Limitations

The assumptions for the jackknife to be approximately unbiased and consis-
tent for the variance of a nonlinear estimator are the same as for lineariza-
tion: the PSU sample must be large, the analysis variable y has no extreme
outliers and is not highly variable, and it must be possible to take all first
derivatives of the nonlinear function. Krewski and Rao (1981) give the full
set of technical conditions. The theory for the jackknife basically says that
it is equivalent to the linearization estimator in very large samples. Thus,
anywhere linearization works, the jackknife should work.

The great advantage of the jackknife (and BRR and the bootstrap) is
that it can also implicitly reflect the effects on variances of nonresponse
and calibration adjustments. If a nonresponse adjustment procedure is used
for the full sample, the same procedure should be done separately for
each replicate weight. For example, if calibration, say via poststratifica-
tion or GREG, is used, then that should also be done separately for every
replicate. The reason that the jackknife reflects these adjustments is that
even with a series of nonlinear adjustments, many estimators can still be
written in the form θ̂ = f

(
t̂1, . . . , t̂p

)
. For example, the poststratified esti-

mator, T̂yPS =
∑G

γ=1 Nγ

(
t̂yγ

/
N̂γ

)
, is a function of 2G estimated totals—
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t̂y1, . . . , t̂yG, N̂1, . . . , N̂G. If, in addition, nonresponse adjustments within cells
are used, this simply adds some more estimated totals to the nonlinear f.

The available software that does linearization variance estimation does
not, typically, account for the effects of multiple stages of weight adjustment.
The reasons for this are twofold: (i) the appropriate linear substitute that
accounts for all stages of sampling is not programmed and (ii) users gen-
erally cannot provide all the information that would be necessary for the
software to compute the appropriate linear substitute. With a replicate vari-
ance estimate like the jackknife all that is necessary is to recompute every
adjustment separately for every replicate. The jackknife implicitly estimates
the variance for the linear approximation for a complicated nonlinear estima-
tor and, thus, implicitly accounts for all the adjustment steps. Consequently,
if the database constructor has computed the replicate weights in this way,
any analyst can use them and obtain correct variance estimates.

Software packages that will compute jackknife replicate base weights using
the complete sample file include R survey, WesVar, and the svr package,
which is an add-on to Stata (Winter 2002). These packages will also compute
BRR base weights, to be covered later in this chapter. Any additional weight
adjustments applied to the full-sample weights to address nonresponse or
calibration would need to be applied as a second step to each replicate base
weight. Other software packages require the finalized replicate weights as
inputs to the procedures.

Example 15.9 (JKn variance estimation). In this example, we show the
syntax needed in R to do the tabulation in Example 15.6 using JKn var-
iance estimation. As in the earlier example, we create a design object
called nhis.dsgn. Then JKn weights are calculated by calling the
as.svrepdesign function.

# create a design object
nhis.dsgn <- svydesign(ids = ˜psu,

strata = ˜stratum,
nest = TRUE,
data = nhis.large,
weights = ˜svywt)

# JKn
jkn.dsgn <- as.svrepdesign(design = nhis.dsgn, type = "JKn")

# 1-way table
a <- svymean(˜factor(age.grp), deff=TRUE, design=jkn.dsgn)
ftable(a, rownames = list(age = c("< 18", "18-24", "25-44",

"45-64", "65+")))

The results for this table are exactly the same to three decimal places as those
for linearization in Example 15.6 and are not shown. The weight adjustments
used for the JKn variance estimate can be examined with the extractor func-
tion

weights(jkn.dsgn)
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The nhis.large sample is a 2-PSU-per-stratum design. The function as.
svrepdesign makes a weight adjustment of 2 to the weight of each unit in
the PSU that is retained in a particular stratum for a replicate. The weight
of each unit in a deleted PSU is set to 0. The weight for PSUs in strata where
no PSU is deleted is unchanged. The dimension of weights(jkn.dsgn) is
21588 × 150, i.e., the number of persons in the file by twice the number of
strata. �

Example 15.10 (JKn with cell nonresponse adjustments). As discussed previ-
ously, nonresponse adjustments should be applied separately for replicates to
reflect their effects on variances. In this example, we use the this data set and
the nonresponse adjustment classes determined using rpart in Sect. 13.5.3.
Some snippets of the R code are shown below. The full program is in the file
Example 15.10 JKn NR.R. The code uses the packages rpart and doBy
in addition to survey.

# create a design object
nhis.dsgn <- svydesign(ids = ˜psu,

strata = ˜stratum,
nest = TRUE,
data = nhis,
weights = ˜svywt)

# JKn
jkn.dsgn <- as.svrepdesign(design = nhis.dsgn,

type = "JKn")
# Compute a tree using rpart; code not shown
# Store cells in t1$where
# append NR classes to nhis object

nhis.NR <- data.frame(nhis, NR.class=t1$where)
# wt adjustments for JKn (values are 0, 1, or 2)

JKwtadj <- weights(jkn.dsgn)
nreps <- ncol(JKwtadj)
fswts <- nhis$svywt
rep.adjwt <- matrix(0, nrow=nrow(JKwtadj), ncol=nreps)

# compute NR adjustments for full sample
wt.rr <- by(data = data.frame(resp = as.numeric(nhis$resp),

wt =fswts),
nhis.NR$NR.class,
function(x) {weighted.mean(x$resp, x$wt)})

tmp1 <- cbind(NR.class=as.numeric(names(wt.rr)), wt.rr)

sam.nr <- merge(nhis.NR, data.frame(tmp1), by = "NR.class")
sam.nr$fs.adjwt <- sam.nr$svywt / sam.nr$wt.rr
sam.nr <- data.frame(ID = sam.nr$ID, fs.adjwt = sam.nr$fs.adjwt,

wt.rr = sam.nr$wt.rr)
sam.nr <- orderBy(˜ID, data=sam.nr)
fs.adjwt <- sam.nr$fs.adjwt

# compute NR adjustments for each replicate
for (r in 1:nreps){
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adjwts <- fswts * JKwtadj[,r]
# wtd RR; adjwts=0 for units not in replicate

wt.rr <- by(data = data.frame(resp = as.numeric(nhis.NR$resp),
wt = adjwts),
nhis.NR$NR.class,
function(x) {weighted.mean(x$resp, x$wt)})

tmp1 <- cbind(NR.class=as.numeric(names(wt.rr)), wt.rr)

sam.nr <- merge(nhis.NR, data.frame(tmp1), by = "NR.class")
sam.nr <- data.frame(sam.nr, wt.rr = sam.nr$wt.rr)
sam.nr <- orderBy(˜ID, data=sam.nr)

# adjust rep wts for NR
rep.adjwt[,r] <- adjwts / sam.nr$wt.rr

}

# assign names to rep.adjwt columns and
# append NR-adjusted weights onto nhis data file

rname <- vector("character", length=nreps)
for (r in 1:nreps){

rname[r] <- paste("repwt",r,sep="")
}
dimnames(rep.adjwt)[[2]] <- rname

R <- nhis$resp == 1
nhis.NR <- cbind(nhis[R==1, ], fs.adjwt=fs.adjwt[R==1],

rep.adjwt[R==1,])
# extract wts for respondents only

rep.adjwt <- rep.adjwt[R==1,]

# JKn design object with NR-adjusted weights
jkn.NR.dsgn <- svrepdesign(data = nhis.NR[,1:16],

repweights = rep.adjwt,
type = "JKn",
weights = nhis.NR$fs.adjwt,
combined.weights = TRUE,
scale = 1,
rscales = rep(1/2,nreps))

svytotal(˜factor(age_r), design=jkn.NR.dsgn)
a <- svymean(˜factor(age_r), design=jkn.NR.dsgn)
b <- ftable(a, rownames = list(age_r = c("18-24 years",

"25-44 years","45-64 years","65-69 years",
"70-74 years","75 years and older")))

round(b,4)

18-24 years mean 0.1281
SE 0.0070

25-44 years mean 0.3984
SE 0.0097

45-64 years mean 0.3153
SE 0.0096

65-69 years mean 0.0434
SE 0.0038
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70-74 years mean 0.0417
SE 0.0044

75 years and older mean 0.0731
SE 0.0058

First, a survey design object, jkn.dsgn, is created with JKn replicate
weights. The nhis data set has 87 strata and 2 sample PSUs per stratum.
Consequently, there are 174 JKn replicates. The object JKwtadj holds the
weight adjustments for each replicate—not the adjusted weights themselves.
In a 2-PSU-per-stratum design the JKn adjustments are 0, 1, or 2, i.e., the
special case of Eq. (15.10) with nh = 2. In this example, the nonresponse
adjustment in each class is the inverse of the weighted response rate, com-
puted using the function, weighted.mean, for the full sample and for each
of the nreps=174 replicates. We use the by function to get the response
rate in each class.

Another design object is then created using svrepdesign. The param-
eter, combined.weights = TRUE, means that the replicate weights
include the full-sample weights and the adjustments used when forming
replicates. The parameters, scale and rscales, relate to the way that R
survey forms the replicate variance formula. As described in Lumley (2010,
Sect. 2.3.1), the formula used is

var
(
θ̂
)
= a•

M∑
α=1

aα
(
θ∗α − θ̄∗

)2
,

where α denotes a replicate, a• is the scale parameter, aα is the rscales
parameter, θ∗α is a replicate estimate, and θ̄∗ is the mean of the replicate
estimates. To make this correspond to Eq. (15.11), we set A = 1 and ar =
(nh − 1) /nh = 1/2. The replicate variance estimate is centered around the
mean of the replicate estimates, unlike the variance in Eq. (15.11) which is
centered around the full-sample estimate. The variance centered around the
mean will be somewhat smaller than the one centered around the full-sample
estimate. But, the difference will be slight when the PSU sample is large. In
this case, the JKn SEs that account for the nonresponse adjustment are very
little different from the linearization SEs that ignore it. You can verify this
with the code in Example 15.10 JKn NR.R. �

Example 15.11 (JKn with poststratification). The effect of calibration can
also be reflected with a jackknife variance estimator. The poststratification
adjustment must be redone separately for each replicate. We illustrate the
calculation in R with the same poststratification example as used in Exam-
ples 15.2 and 15.7. The full listing of the R code is in Example 15.11 JKn
poststrat.R. A design object called nhis.dsgn is created as in Exam-
ple 15.7; as.svrepdesign creates the unstratified, jackknife design, which
is specified by type="JK1". Poststratified jackknife weights are computed
with postStratify using poststratum totals stored in N.PS.
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jk1.dsgn <- as.svrepdesign(design = nhis.dsgn, type = "JK1")
# poststratified design object

jk1.ps.dsgn <- postStratify(design = jk1.dsgn,
strata = ˜PS,
population = N.PS)

# Check that weights are calibrated for x’s
svytotal(˜ as.factor(PS), jk1.ps.dsgn)

# PS standard errors and CVs
svytotal(˜ as.factor(medicaid), jk1.ps.dsgn, na.rm=TRUE)

total SE
as.factor(medicaid)1 1870.8 390.60
as.factor(medicaid)2 19467.6 416.89

The results for the line, svytotal( as.factor(PS), jk1.ps.dsgn),
which are not listed here, show that the SE of the estimated total number of
persons in each poststratum is 0, as it should be.

In this example, the jackknife SE for the total of persons receiving Med-
icaid is somewhat larger than the linearization estimate that ignores post-
stratification (390.60 above vs. 384.73 in Example 15.7). The jackknife SE
for persons not getting Medicaid is less than the linearization estimate that
ignores poststratification (416.89 vs. 470.38 in Example 15.7). This apparent
contradiction is a reflection of the fact that standard error estimates are just
that—estimates. Expected gains due to stratification are not necessarily man-
ifested in the SE for every estimate. Also, poststratification is not guaranteed
to reduce SEs for all estimates, only those for variables that are related to
the ones used to create poststrata. �

15.4.2 Balanced Repeated Replication

Balanced repeated replication (BRR) or balanced half-sampling is a method
devised by McCarthy (1969) for designs where two PSUs are selected in
each stratum. This type of design is common in area probability samples
where a goal is often to spread the PSUs geographically as much as possible.
The number of strata and the geographic dispersion can be maximized by
selecting only 1 PSU per stratum. However, a one-per-stratum design does
not permit a within-stratum variance component to be estimated while a
two-per-stratum design does. Generally when a 1-PSU-per-stratum sample is
selected, the strata each containing one PSU are then paired to form “analytic
strata” following the order in which the PSUs were selected. The design is
then treated as if it were 2 PSUs per stratum. In that case, BRR can be
applied to the combined strata.

When nh = 2, it would be possible to form a replication variance estimate
by randomly selecting one of the two PSUs from each stratum and doing this
many times. However, there would be 2H possible half-samples that could be
randomly selected. McCarthy devised an ingenious method that, for linear
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estimators, produces the same variance estimate as would be obtained by
selecting all 2H half-samples, yet takes far fewer replicates. The replicates are
designated in a prescribed way using something called a Hadamard matrix.
The number of replicates, A, needed is the smallest multiple of 4 that is
greater than or equal to the number of strata, i.e., H ≤ A ≤ H + 3. A set
of replicates that follows this prescription is called an orthogonal set. The
savings in the number of replicates compared to using all 2H half-samples are
substantial. The savings increase dramatically as H increases as evidenced
by this table:

H A 2H

5 8 32
10 12 1,024
20 24 1,048,576

Hadamard matrices are usually represented by +1’s and -1’s. A 4 × 4 exam-
ple is

H =

⎛
⎜⎜⎝

+1 +1 +1 +1
+1 −1 +1 −1
+1 +1 −1 −1
+1 −1 −1 +1

⎞
⎟⎟⎠ .

Rows are for strata; columns are for replicates. The first column having all
+1’s means that the first PSU from each stratum should be selected for repli-
cate 1. The second column of (+1, −1, +1, −1) means that the second repli-
cate contains PSU 1 from stratum 1, PSU 2 from stratum 2, PSU 1 from
stratum 3, and PSU 2 from stratum 4. If H = 4, the number of replicates
needed for an orthogonal set is 4.

There is also a concept called full orthogonal balance for which the num-
ber of half-samples must be divisible by 4 but must be strictly greater than
H. Full orthogonal balance results in the average of the replicate estimates
equaling the full-sample estimate for linear estimators (but not for nonlinear
estimators). The R survey and WesVar packages both calculate orthogonal
sets of BRR base weights and neither calculate the full-orthogonally balanced
sets. As with jackknife weights, the final set of analytic BRR weights are cal-
culated from the base weights after applying the adjustments used to generate
the full-sample weight. To date, other software packages rely on the analyst
to provide the final BRR weights.

Like the jackknife, deleting a PSU means that the entire sample within
the PSU is dropped. The base weights for the units in the PSUs that are
retained are multiplied by 2. Thus, the weights for units in replicate α are

dk(α) =

{
0 if unit k is in a PSU that is not in the half-sample,
2dk if unit k is in a PSU that is in the half-sample.

The adjusted weights are then used to compute a replicate estimate denoted
by θ̂α. If the full-sample estimate has the form θ̂ = f

(
t̂1, . . . , t̂p

)
, then a
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half-sample estimate is θ̂α = f
(
t̂1α, . . . , t̂pα

)
where t̂jα is the estimated total

for the j -th variable based on the units in half-sample α. The BRR variance
estimator is then

vBRR

(
θ̂
)
= A−1

A∑
α=1

(
θ̂α − θ̂

)2
. (15.13)

The variance estimator can be centered around quantities other than the full-
sample estimate, but these will all be similar when the number of strata is
large. In fact, the R survey package uses the mean of the replicate estimates
in Eq. (15.13) rather than θ̂. WesVar, on the other hand, uses the full-sample
estimate as in Eq. (15.13).

Fay BRR

One potential problem with the standard BRR is that one-half of the sample
is eliminated to form a replicate. This may lead to instability for domain
estimates. If a domain occurs in only a subset of the PSUs, all sample units
in the domain could be dropped in a particular replicate. Although this will
not bias the variance estimator, it will make the variance estimator itself
unstable, i.e., the variance of the variance estimator may be unnecessarily
high.

A modification of BRR due to Robert Fay (Fay 1984; Dippo et al. 1984;
Judkins 1990) addresses this problem. Rather than dropping a PSU entirely,
the Fay BRR simply down-weights it. Half-samples are identified using a
Hadamard matrix as above. The weights are then calculated as

dk(α) =

{
ρdk if unit k is in a PSU that is not in the half-sample,
(2− ρ) dk if unit k is in a PSU that is in the half-sample,

(15.14)
where 0 ≤ ρ < 1. If ρ = 0, this is the standard BRR. If, for example, ρ = 0.5,
the weights for PSUs in a half-sample are multiplied by 1.5; the weights of
units in the other PSUs are multiplied by 0.5. Another choice, which Judkins
(1990) found to perform well, is ρ = 0.3.

The Fay BRR solves the small domain problem because no PSU is com-
pletely dropped from the sample. Even if the domain has few sample cases,
it will always be in each replicate.

Assumptions, Advantages, and Limitations

The BRR variance estimator is approximately unbiased and consistent for
the variance of nonlinear estimates, as is the jackknife. The assumptions
are similar to those for the linearization and jackknife estimators. For large
sample theory the requirement is that the number of strata H be large since
each stratum must have nh = 2 PSUs.
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An important characteristic of BRR and the Fay BRR is that both provide
legitimate estimates of the variance of a quantile, unlike the jackknife. Rao
and Wu (1985) and Rao and Shao (1999) provide the theoretical support.
A key property that BRR does share with the jackknife is that it can be used
to reflect multiple stages of weight adjustment—like nonresponse adjustment
and calibration. As long as the database constructor redoes the weighting
steps separately for each replicate, BRR will give correct variance estimators.

Example 15.12 (BRR variance estimation). The nhis.large design is 2
PSUs per stratum. Thus, BRR is appropriate. In R, BRR and Fay-BRR
design objects can be created from the nhis.dsgn object used in the previ-
ous examples. The code below creates an object for standard BRR by calling
as.svrepdesignwith type="BRR" and another object for Fay BRR using
type="Fay". The ρ parameter for Fay BRR is defined by fay.rho = 0.3.

brr.dsgn <- as.svrepdesign(design = nhis.dsgn, type = "BRR")
faybrr.dsgn <- as.svrepdesign(design = nhis.dsgn,

type = "Fay", fay.rho = 0.3)

The weight adjustments can be examined with
weights(brr.dsgn) or weights(fay.brr.dsgn).

In this case the dimension of the weight adjustment matrix is 21588 × 80
with 80 being the size of the Hadamard matrix that was used. Although the
NHIS design has 75 strata and the smallest multiple of 4 greater than or
equal to 75 is 76, a Hadamard matrix of dimension 80 is the one that R has
available. �

Example 15.13 (Quantile variance with BRR). BRR and Fay BRR can be
used to estimate the SEs of quantiles. The code below uses smho.N874 and
stratifies the population by a measure of size based on BEDS. BEDS is recoded
to remove the zero values. Strata are then formed and an stsrswor selected.
The method of stratification is the one described in Sect. 3.2.1 where the
population is sorted by size and strata formed to each have about the same
total measure of size. The cut function is useful for this. Selecting an stsrswor
is then very similar to pps sampling. In this example, we formed 25 strata
and selected 2 sample hospitals per stratum for a total of 50.

x <- smho.N874$BEDS
x[x <= 10] <- 10
x <- sqrt(x)
smho.N874 <- smho.N874[order(x), ]
x <- sort(x)
N <- nrow(smho.N874)
n <- 50
H <- 25

cumx <- cumsum(x)
size <- cumx[N]/H
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brks <- (0:H)*size
strat <- cut(cumx, breaks = brks, labels = 1:H)
pop <- data.frame(smho.N874, strat = strat)
set.seed(428274453)
sam <- strata(data = pop,

stratanames = "strat",
size = rep(2,H), method=c("srswor"))

sam.dat <- pop[sam$ID\_unit,]
d <- 1/sam$Prob
smho.dsgn <- svydesign(ids = ˜0,

strata = ˜strat,
data = sam.dat,
fpc = sam$Prob,
weights = ˜d)

smho.BRR.dsgn <- as.svrepdesign(design = smho.dsgn,
type = "BRR")

smho.FayBRR.dsgn <- as.svrepdesign(design = smho.dsgn,
type = "Fay",
fay.rho = 0.3)

svyquantile(˜EXPTOTAL, design = smho.BRR.dsgn, quantile=0.5,
interval.type="quantile")

svyquantile(˜EXPTOTAL, design = smho.FayBRR.dsgn, quantile=0.5,
interval.type="quantile")

Two versions of BRR were used: standard BRR and Fay BRR with ρ = 0.3.
One thing to note is that replication objects in R will not use fpc’s. Although
stratum-level fpc’s are in the smho.dsgn object above, they are stripped away
when the BRR design objects are created. The survey package will warn
you that this is happening. The results of svyquantile are that the median
is 6,966,393 with estimated SEs of 1,015,020 with BRR and 1,009,630 with
Fay BRR. The estimated CV s with the two methods are 14.6% and 14.5%
—very close to each other. �

15.4.3 Bootstrap

The bootstrap, invented by Efron (1982), has become extremely popular in
non-survey statistics because it is easy to compute and seems to be good
for any and everything. The general idea is again to select subsamples from
the full sample, do this many times, and to summarize the properties of a
statistic across the subsamples. There are several variations that have been
proposed for the bootstrap for finite population estimation. One due to Rao
and Wu (1988) applies to a stratified, multistage design with n =

∑H
h=1 nh

sampled PSUs and uses the following steps. There are some variations on the
bootstrap for finite population estimation (e.g., Saigo et al. 2001; Shao and
Sitter 1996; Sitter 1992), but only the Rao-Wu version is currently available
in any software package.
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(1) In each stratum, draw an srswr of mh PSUs from the nh initial sample
PSUs. Let m∗

hi denote the number of times that PSU i is selected from
stratum h so that

∑nh

i=1 m
∗
hi = mh. Note that m∗

hi = 0 for PSUs not
selected for the bootstrap sample. Create a replicate weight for each
sample unit k within the initial sample PSUs (k ∈ shi) as

d∗k = dk

({
1−
√

mh

(nh−1)

}
+
√

mh

(nh−1)
nh

mh
m∗

hi

)

= dkBhi

,

where Bhi is defined by the last equality. This is computed for units in
all sample PSUs, not just those in the bootstrap sample. Provided that
mh ≤ (nh − 1), all such weights will be nonnegative, but not otherwise.

(2) Calculate θ̂, the desired estimate, using weights d∗k in place of dk.
(3) Repeat this process B > 1 time. Denote the corresponding bootstrap

sample estimates as θ̂(1), θ̂(2), . . . θ̂(B).

We will refer to the process in steps 1–3 as the Rao-Wu bootstrap. The
bootstrap variance estimator is

vboot

(
θ̂
)
=

1

B

B∑
b=1

(
θ̂(b) − θ̂

)2
.

We can choose mh to be any values greater than or equal to 1. The simplest
choice is mh = nh − 1, in which case

d∗k = dk
nh

(nh − 1)
m∗

hi.

Hence, units not included in a given bootstrap replicate get weight 0, those
included exactly once get weight

dk
nh

nh − 1
,

those in twice get

dk
2nh

(nh − 1)
,

and so on. If mh 	= nh − 1, then units not included in the bootstrap sample
get nonzero weights, as in the Fay BRR. If mh = nh, then a bootstrap weight
can even be negative since 1−√nh/ (nh − 1) < 0.

The two-PSUs-per-stratum case is worth examining since we saw above
that BRR gave us an especially efficient way of forming replicates. If mh =
nh−1 and nh = 2, then mh = 1. Thus, the bootstrap is like BRR in this case,
but without the control over the number of replicates. For just estimating the
variance of a statistic, BRR is a more economical choice in the 2-per-stratum
case. But, the bootstrap has advantages even in that case, particularly for
constructing confidence intervals, as we describe next.
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Assumptions, Advantages, and Limitations

The Rao-Wu bootstrap provides a consistent and approximately unbiased
estimator of the variance of nonlinear statistics and for the variance of a
quantile. The assumptions to derive theory for the bootstrap are the same as
for the jackknife and BRR. In particular, for multistage samples, the PSUs are
assumed to be selected with replacement. Rao and Wu (1988) do give some
specialized ways of constructing the bootstrap estimates that will account for
some types of designs using without-replacement sampling. However, these
are not available in the software that we cover.

A major selling point of the bootstrap is that it can be used to approxi-
mate the full distribution of a statistic, θ̂, not just its variance. By drawing
many bootstrap samples and computing an estimate from each, an empirical
distribution of θ̂ can be formed. A confidence interval for θ can be constructed
in one of two ways:

(i) Bootstrap percentile method. Order the bootstrap estimates from
lowest to highest. The lower 100 (α/2)% confidence limit for θ is the
100 (α/2)% point of the empirical distribution of the bootstrap esti-
mates. The upper 100 (1− α/2)% point of the empirical distribution is
the upper confidence limit.

(ii) Studentized bootstrap method. In each bootstrap sample compute

t(b) =
(
θ̂(b) − θ̂

)/√
v(b) where v(b) is an estimate of the variance of θ̂(b)

based on the b-th bootstrap sample only. The value for v(b) could be
generated from any consistent estimator appropriate for the design, e.g.,
linearization, jackknife, or BRR. After determining the 100 (α/2)% and
100 (1− α/2)% points, as well as t∗α/2 and t∗1−α/2, of the distribution of
t(b), the CI is then computed as

(
θ̂ − t∗1−α/2

√
vboot

(
θ̂
)
, θ̂ − t∗α/2

√
vboot

(
θ̂
))

.

If the distribution of θ̂(b) is fairly symmetric, then choice (a) performs
well in the sense of giving coverage probability near 100 (1− α)%. If the dis-
tribution is extremely asymmetric or the sample size is small, (a) may not
work as well. In non-survey statistics, choice (b) appears to be the best in
theory (Efron and Tibshirani 1998). Rao and Wu (1988) proved that the
second method does give correct coverage rates in large samples when using
the Rao-Wu bootstrap weights. Method (b) is more computationally demand-
ing, especially if a replication variance estimator like the jackknife is used in
each bootstrap sample. In addition, the studentized bootstrap method is not
available in R survey. Special programming will be needed.

Example 15.14 (Bootstrap). This example uses the same type of sample from
smho.N874 as in Example 15.13. The population is stratified by a mea-
sure of size based on beds and a 2-per-stratum sample of size 50 is selected
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(i.e., H=25 and nh=2). For comparison, we also select an unstratified simple
random sample of 50 (i.e., H=1 and nh=n=50). We estimate the total of
end-of-year count of patients (EOYCNT) and get 95% CIs using the boot-
strap percentile method and the t -approximation for comparison. Part of the
code is shown below; the file Example 15.14 bootstrap.R contains all
of the R code. After the sample is selected, the design object, smho.dsgn, is
created and, in turn, used to create an object, smho.boot.a, that holds Rao-
Wu bootstrap weights from the stratified sample. The bootstrap object for
the simple random sample is smho.boot.b. To create the bootstrap object,
as.svrepdesign is called with the parameter, type="subbootstrap". Five
hundred replicates are used. Although smho.dsgn contains an fpc, this is
not retained when the bootstrap design object is created. R survey will
warn you that this is happening.

# stsrswor from strata based on a measure of size
# create design with boostrap wts.
# Rao-Wu version used with mh = nh-1

smho.boot.a <- as.svrepdesign(design = smho.dsgn,
type = "subbootstrap",
replicates = 500)

# mean & CI for EOYCNT based on RW bootstrap
a1 <- svytotal(˜EOYCNT, design = smho.boot.a,

na.rm=TRUE,
return.replicates = TRUE)

# Compute CI based on bootstrap percentile method.
ta1 <- quantile(a1$replicates, c(0.025, 0.975))

# t approximation with v.boot
La <- a1$mean + qt(0.025,df=degf(smho.boot.a)*sd(a1$replicates)
Ua <- a1$mean + qt(0.975,df=degf(smho.boot.a)*sd(a1$replicates)
c(La[1], Ua[1])

# srswor of same size as above
sam <- sample(1:N, n)
sam.dat <- pop[sam,]
d <- rep(N/n,n)
smho.dsgn <- svydesign(ids = ˜0,

data = sam.dat,
weights = ˜d)

smho.boot.b <- as.svrepdesign(design = smho.dsgn,
type = "subbootstrap",
replicates = 500)

b1 <- svytotal(˜EOYCNT, design = smho.boot.b,
na.rm=TRUE,
return.replicates = TRUE)

# Compute CI based on bootstrap percentile method.
tb1 <- quantile(b1$replicates, c(0.025, 0.975))

# t approximation with v.boot
Lb <- b1$mean + qt(0.025,df=degf(smho.boot.b)*sd(b1$replicates)
Ub <- b1$mean + qt(0.975,df=degf(smho.boot.b)*sd(b1$replicates)
c(Lb[1], Ub[1])
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Calling svytotal above with return.replicates=TRUE saves the repli-
cate estimates. The code to summarize the results and plot histograms of the
replicates estimates follows.

# pop total
sum(pop$EOYCNT)

# totals \& SEs
rbind(c(a1$mean, SE=SE(a1)),

c(b1$mean, SE=SE(b1)))

# CIs
rbind("stsrswor boot" = ta1,

"stsrswor t CI" = c(La[1], Ua[1]),
"srswor boot" = tb1,
"srswor t CI" = c(Lb[1], Ub[1]))

par(mfrow = c(2,1),
mar = c(3,3,1,1))

r <- range(a1$replicates/10ˆ3, b1$replicates/10ˆ3)
truehist(a1$replicates/10ˆ3, nbins=25,

xlim = r, col = "gray85")
abline(v = a1$mean/10ˆ3, col="gray50")
title(paste("stsrswor, n =",n), cex.main = 1)
truehist(b1$replicates/10ˆ3, nbins=25,

xlim = r, col = "gray85")
title(paste("srswor, n =",n), cex.main = 1)
abline(v = b1$mean/10ˆ3, col="gray50")

The population total of EOYCNT is 727,723. The estimated totals and SEs
from the two samples are:

Estimated total SE
stsrswor 528,635 122,674
srswor 732,867 221,723

The stratified sample is clearly much more efficient, in the sense of having
a smaller SE, but its estimated total is farther from the truth. The 95%
confidence intervals (in thousands) are:

Lower Upper
Bound Bound

stsrswor bootstrap percentile CI 280 766
stsrswor t CI 276 781
srswor bootstrap percentile CI 388 1,227
srswor t CI 287 1,178

The t -intervals are computed with 25 df for the stratified sample (where
n −H equals 50–25) and 49 df for the simple random sample (for n − 1 is
50 – 1). All intervals do cover the population total in this sample, but the
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CIs are not the same for the bootstrap and the t -intervals. The bootstrap
percentile intervals are not symmetric around the point estimate of the total,
while, of course, the t -intervals are.

Looking at the histograms of the bootstrap replicate estimates in
Figure 15.1 makes it clearer why this is so. Neither of the histograms is
symmetric with the srswor bootstrap distribution being noticeably skewed.
In contrast, we could not get this information from other replication methods.
For example, in the stratified sample, BRR would give us only 28 replicate
estimates. In the simple random sample, the jackknife would give 50 replicate
estimates. Neither 28 nor 50 replicate estimates are enough to draw much of
a histogram. But, with 500 bootstrap estimates, we can get a good idea of
the underlying distribution of the estimator of the total. �

We did not compute studentized bootstrap CIs in the last example. This
can be done, but the user must do some programming. As an example, sup-
pose that the mean of EOYCNT in the smho.N874 population is to be esti-
mated. In the stratified design above, the bootstrap weights can be retrieved
with weights(smho.boot.a). For each set of replicate weights, form a
design object that will use the desired method of variance estimation (lin-
earization, jackknife, or BRR). Use the function svyttest to test that the
mean of EOYCNT is 0. The t -statistic is

t∗(b) = θ̂(b)

/√
v(b),

where θ̂(b) is the estimated mean from replicate b and v (b) is its estimated
variance. This t -statistic will be available in svyttest$statistic. Adjust

the t -statistic to obtain t(b) =
(
θ̂(b) − θ̂

)/√
v(b) by subtracting θ̂

/√
v(b)

where θ̂ is the full-sample estimated mean. A loop can then be used to
compute and collect these adjusted t -statistics from all replicates. A sim-
ilar approach was used in Example 15.10 where nonresponse adjustments
were computed for JKn replicates. From the collection of t -statistics, locate
the 100 (α/2)% and 100 (1− α/2)% points, t∗α/2 and t∗1−α/2, of the distribu-
tion of t(b). These would then be used to calculate the studentized bootstrap

interval,

(
θ̂ − t∗1−α/2

√
vboot

(
θ̂
)
, θ̂ − t∗α/2

√
vboot

(
θ̂
))

. The same algorithm

could be used for more elaborate tabulations, like a 2-way table of means,
proportions, or totals.

The bootstrap can also be used to estimate the SE of a quantile and to
get a standard error for a quantile, as shown in the next example.

Example 15.15 (Bootstrap quantiles). Continuing Example 15.13 with the
same sample, we create a bootstrap object with 500 replicates. The BRR
and Fay BRR design objects, smho.BRR and smho.FayBRR, are also used
to create 95% CIs for the median of expenditures, EXPTOTAL. The full code
is in Example 15.15 bootstrap quantile.R.
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Fig. 15.1: Histograms of bootstrap estimates of total end-of-year count of patients in
the SMHO population. Horizontal scales in thousands; a gray reference line is drawn
at the full-sample estimate.

smho.boot <- as.svrepdesign(design = smho.dsgn,
type = "subbootstrap",
replicates = 500)

a1 <- svyquantile(˜EXPTOTAL, design = smho.BRR, quantile=0.5,
interval.type="quantile")

a2 <- svyquantile(˜EXPTOTAL, design = smho.FayBRR, quantile=0.5,
interval.type="quantile")

a3 <- svyquantile(˜EXPTOTAL, design = smho.boot, quantile=0.5,
interval.type="quantile",
return.replicates = TRUE)

# t approximation with BRR
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La1 <- a1 + qt(0.025,df=degf(smho.BRR))*SE(a1)
Ua1 <- a1 + qt(0.975,df=degf(smho.BRR))*SE(a1)

# t approximation with Fay.BRR
La2 <- a2 + qt(0.025,df=degf(smho.FayBRR))*SE(a2)
Ua2 <- a2 + qt(0.975,df=degf(smho.FayBRR))*SE(a2)

# t approximation with v.boot
La3 <- a3 + qt(0.025,df=degf(smho.boot))*sd(a$replicates)
Ua3 <- a3 + qt(0.975,df=degf(smho.boot))*sd(a$replicates)
ta3 <- quantile(a3$replicates, c(0.025, 0.975))

rbind(c(La1[1], Ua1[1]), c(La2[1], Ua2[1]),
c(La2[1], Ua2[1]), ta3)

The results for CIs on the median (in thousands) are:

Lower Upper
BRR 4,876 9,057
Fay BRR 4,887 9,046
Bootstrap t 4,723 9,209
Bootstrap percentile 4,750 8,272

The population median is 6,240 (also in thousands). The t -intervals for BRR
and Fay BRR are almost identical while the bootstrap t -interval is wider.
The bootstrap percentile interval is noticeably different. One reason for this
is the irregular histogram of the bootstrap estimates shown in Fig. 15.2. A
simulation study would be needed to decide whether this provides a better
coverage rate than the symmetric intervals. �

15.5 Combining PSUs or Strata

There are two reasons to combine strata or PSUs: one is to reduce the number
of replicates required when using the jackknife or BRR methods, and the
other is to create pseudo- (or analytic) strata for variance estimation when
one PSU has been selected per stratum or when only one PSU in a stratum
participates. Both these cases are covered in this section.

15.5.1 Combining to Reduce the Number of Replicates

In some sample designs, the number of PSUs can be extremely large. This
is especially true in education and establishment surveys where there can
be thousands of first-stage units. Although replication variance estimators
are attractive because of their ability to reflect multiple stages of weight
adjustments, a strict application of, say, the jackknife can lead to far more
replicates and far larger databases than most practitioners think are feasible.
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Fig. 15.2: Histogram of bootstrap estimates of median expenditure total in the
SMHO population. Horizontal scales in thousands; a gray reference line is drawn at
the full-sample estimate.

In such cases, PSUs or strata or both may be grouped together. Replication
is then applied to the groups. Properly done, grouped replication estimators
can still be consistent and approximately unbiased.

Appendix D of the WesVar manual (Westat 2007) describes how the group-
ings can be legitimately done for several types of sample designs. Rust (1984,
1985) also discusses some options. We summarize a few of the considerations
here. Table 15.1 shows a simple case to illustrate the possibilities. There are
3 design strata and a total of 14 PSUs. If the JKn variance estimate were
used, 14 replicates would be required. The third and fourth columns show
the combinations of strata (labeled VarStrat) and of PSUs (labeled VarUnit)
that could also be used for JKn variance estimation. The terms VarStrat and
VarUnit are the ones used in WesVar and are apposite in conveying their use
as the combined strata and PSUs used for variance estimation.

The three design strata are combined to form two VarStrat—design strata
1 and 2 are combined as VarStrat 1, and design stratum 3 is left alone as
VarStrat 2. Design strata 1 and 2 both contain 4 PSUs. These are grouped
into 2 VarUnits in each design stratum. PSUs 1 and 2 from each of design
strata 1 and 2 are grouped into VarUnit 1. PSUs 3 and 4 from each of design
strata 1 and 2 are grouped into VarUnit 2. If a grouped version of JKn is used,
two replicates would be formed from VarStrat 1: one by dropping VarUnit 1
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Table 15.1: Example of grouping strata and PSUs for variance estimation.

Design PSU VarStrat VarUnits VarUnits
stratum for JKn for BRR
1 1 1 1 1

2 1 1
3 2 2
4 2 2

2 1 1 1 1
2 1 1
3 2 2
4 2 2

3 1 2 1 1
2 1 1
3 2 1
4 2 2
5 3 2
6 3 2

Total 14 5 4

(PSUs 1 and 2 from each of design strata 1 and 2) and another by dropping
VarUnit 2 (PSUs 3 and 4 from design strata 1 and 2). In VarStrat 2 (design
stratum 3), three VarUnits are formed. PSUs 1 and 2 are VarUnit 1; PSUs 3
and 4 are VarUnit 2; and PSUs 5 and 6 are VarUnit 3. A total of 5 VarUnits
is formed, which compares to the 14 original PSUs.

When creating VarUnits within a VarStrat, the size of the variance esti-
mate can be affected by the groupings. For example, in VarStrat 2, if we
sorted the six PSUs based on their size of weighted total of a y variable and
then assigned the three VarUnits as shown in Table 15.1, this would tend to
produce a large estimated variance of a total, at least for that particular y. If
we randomly ordered the PSUs and assigned the VarUnits as (1, 1, 2, 2, 3, 3),
as shown in the table, this would give a better reflection of the variance of
an estimated total. Random ordering within a design stratum prior to num-
bering is the recommended procedure. An exception to this would be a case
in which PSUs were implicitly substratified within a design stratum, say, by
sorting the frame and using systematic selection. In that case, a better pro-
cedure would be treat the substrata as explicit design strata and then decide
how to group strata or PSUs.

The grouped jackknife variance estimator is computed using a formula
that is parallel to Eq. (15.11):

vGJ

(
θ̂
)
=

H̃∑

h̃=1

Gh̃ − 1

Gh̃

Gh̃∑
g=1

[
θ̂(h̃g) − θ̂

]2
, (15.15)

where Gh̃ is the number of VarUnits in VarStrat h̃, H̃ is the total number

of VarStrat, and θ̂(h̃g) is the estimate computed after dropping VarUnit g
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in VarStrat h̃. To compute θ̂(h̃g), the weight for each unit retained in h̃g is

multiplied by Gh̃

/ (
Gh̃ − 1

)
, the inverse of the subsampling fraction. That is,

the weights are increased to reflect the fact that there is one less group being
used to make the replicate estimate when group h̃g is dropped. In the example
above H̃=2, G1=2, and G2=3. The total number of replicates created is

G =
∑H̃

h̃=1 Gh̃. In the example, we have G=5. Without the grouping of
strata and PSUs, G=14 replicates would be formed.

To declare the VarStrat and VarUnits for use with a software package,
you would simply say that the stratum variable was the field that holds the
VarStrat codes; the PSU variable would be the field for the VarUnit codes.
The value of

(
Gh̃ − 1

) /
Gh̃ is specified in the rscales parameter to R survey.

Other software packages will count the values of Gh̃.
There are many references that explore the properties of the grouped jack-

knife variance estimator (e.g., Kott 1999; Kott 2001; Lu et al. 2006 and
(Wolter 2007, chap. 4). Although there is no unique way to create the groups,
it is possible to create a biased variance estimator by doing the grouping
badly. As a general rule each replicate estimate θ̂(h̃g) must be a legitimate

estimate for the full population. In Table 15.1, if we had numbered all the
VarUnits from design stratum 1 as “1” and all the VarUnits from design stra-
tum 2 as “2,” dropping VarUnit 1 in VarStrat 1 would result in dropping the
entire sample from design stratum 1. Likewise, dropping VarUnit 2 would
drop all of design stratum 2. As a result, neither θ̂(11) nor θ̂(12) would be

estimates for the full population and vGJ

(
θ̂
)
would be biased.

Another type of problem is created if the number of PSUs in each group
within a VarStrat is not the same. In Table 15.1, for example, if in VarStrata
2, we put 4 PSUs in VarUnit 1 and 2 in VarUnit 2, the jackknife variance
estimator in Eq. (15.15) would again be biased. The reason is that the weight
adjustment, Gh̃

/ (
Gh̃ − 1

)
, is too crude for each of the replicate estimates to

be unbiased. If the number of PSUs per group varies, a more nearly unbiased
choice is

vGJ2

(
θ̂
)
=
∑

h̃

Gh̃∑
g=1

(
nh̃ − nh̃g

)

nh̃

[
θ̂(h̃g) − θ̂

]2
, (15.16)

where nh̃ is the total number of PSUs in VarStrat h̃ and nh̃g is the number

of PSUs in group h̃g. The weight adjustment applied to the retained cases

when VarUnit h̃g is deleted is nh̃

/(
nh̃ − nh̃g

)
. In other words, the weight

adjustment depends on how many original PSUs are dropped. As illustrated
in Valliant et al. (2008), even small differences in the numbers of PSUs per
group can produce large biases if the JKn formula in Eq. (15.15) is used
along with the Gh̃

/ (
Gh̃ − 1

)
weight adjustments. This is more likely to be

an issue in single-stage surveys where there are a large number of units in
some strata, and the number does not divide evenly into the desired number
of groups. Formula (15.16) is not available in standard software and must
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be programmed by the user. Because of that, creating VarUnits within a
VarStrat that all have the same number of original sample PSUs is the best,
practical solution.

Grouping can also be used for BRR, but two VarUnits must be created
in each VarStrat. The last column in Table 15.1 shows one way of doing this
in our little example. The only change from the grouping used for JKn is in
VarStrat 2 where PSUs 1–3 are grouped into VarUnit 1 and PSUs 4–6 into
VarUnit 2. The weights for each unit retained for a half-sample would be
multiplied by 2 for the standard BRR or by either ρ or 2− ρ for Fay BRR as
in Eq. (15.14). As for JKn, the variance estimator is biased if each VarUnit
does not contain the same number of PSUs, and a weight adjustment of 2 for
the standard BRR or 2 and 2−ρ for the Fay BRR are used. Before assigning
the PSUs in VarStrat 2 to VarUnits, they should be randomly ordered and
then coded as (1, 1, 1, 2, 2, 2). This will avoid biasing the variance estimator
by sorting on a characteristic that is related to the analysis variable.

15.5.2 How Many Groups and Which Strata
and PSUs to Combine

If grouping is legitimate, the natural questions are how many groups to form
and which strata and PSUs should we combine? The number of groups is
related to the degrees of freedom (df ) of the variance estimator. The more df
a variance estimator has, the more stable the variance estimator tends to be.
Consequently, the basic goal is to have a large number of df. Ideally, this would
be done for full population estimates and for domain estimates. Domains
that occur in all strata and PSUs will not need special consideration—they
behave about the same as the full population. In a household survey where
PSUs are geographically stratified, domains defined by gender (male, female)
will be spread across all strata. For domains that occur in only a subset of
the strata, achieving efficient creation of groups can be complicated. Regions
of a country would be examples of domains that occur in only some of the
strata. When region estimates are important, it may be possible to group
strata in such a way that the estimate for each region retains almost the
same number of df as for an ungrouped variance estimator, even though the
grouping does lose df for full population estimates. We will illustrate this
below with a simple example.

The rule of thumb that is often used for full population estimates is that
df equals the number of sample PSUs minus the number of strata. That is,
each stratum contributes the number of sample PSUs minus 1 to the overall
df. When grouping of strata and/or PSUs is used, then the rule of thumb is
applied to the number of VarStrat and VarUnits.
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Table 15.2: Approximate coefficients of variation of variance estimators and standard
error estimators based on different numbers of degrees of freedom.

df CV of variance CV of standard
estimator error estimator

(%) (%)
10 45 22
25 28 14
50 20 10
75 16 8

100 14 7
200 10 5
400 7 4

Suppose that v is a variance estimator and V is the theoretical variance of
some estimator. If we treat df ∗ v/V as having a chi-square distribution with
df degrees of freedom, then the CVs of v and of

√
v can be approximated

as shown in Table 15.2. In particular, CV (v) = 2
/√

df and CV (
√
v)

.
=

CV (v) /2. If we wanted CV (v) to be 10%, we need 200 df. If the criterion
is CV (

√
v) = 0.10, then we need df = 50. If we use grouping, the rule of

thumb is that df = G − H̃ . For a domain estimate, the rule of thumb is to
compute df = G− H̃ but only over the VarStrat in which the domain occurs.
If we use the BRR method, we should create at least 50 VarStrat to have
CV (

√
v) = 0.10. Considering that some domains may occur in only a subset

of design strata, having G− H̃ equal to at least 100 seems prudent.
To answer the question of which design strata to combine, the possibility of

making domain estimates should be considered. For example, suppose that
a design has H = 10 strata and 2 sample PSUs per stratum as shown in
Table 15.3. Strata 1–5 are in region 1 while strata 6–10 are in region 2. The
rule of thumb says that there are 10 df for the full design and 5 for each
region. The full BRR method requires 12 replicates—the smallest multiple of
4 greater than or equal to the number of strata. If we want to use 8 replicates
rather than 12, H̃ = 8 VarStrat can be created, each of which has 2 VarUnits.
Table 15.3 lists two ways of creating the 8 VarStrat. In set 1, design strata 1
and 2 are combined as design strata 6 and 7. The degrees of freedom based
on the rule of thumb are 8 for full-sample estimates and 4 for estimates for
both regions 1 and 2. In set 2, design strata 1 and 6 are combined while 2
and 7 are combined. The number of VarStrat assigned to each of regions 1
and 2 is 5. Thus, set 2 has the same df for each region as does the original
sample design. By judicious creation of groups, we reduce the full-sample df
from 12 to 8 but retain the same df for regions as in the full sample.

On the other hand, other domains may occur in all strata. Degrees of
freedom would be lost for their variance estimates. The reduction would be
from 12 to 8, as is the case for full population estimates.
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Table 15.3: Two options for combining design strata to reduce number of BRR
replicates.

Set 1 Set 2

Design
stratum

Region of
design
stratum

VarStrat
Design
strata

Region
in
VarStrat

Design
strata

Region
in
VarStrat

1 1 1 1, 2 1 1, 6 1,2
2 1 2 3 1 2, 7 1,2
3 1 3 4 1 3 1
4 1 4 5 1 4 1
5 1 5 6, 7 2 5 1
6 2 6 8 2 8 2
7 2 7 9 2 9 2
8 2 8 10 2 10 2
9 2
10 2

15.5.3 Combining Strata in One-PSU-per-Stratum
Designs

As discussed in Chap. 10, area probability samples often are stratified to
such a degree that only one PSU is selected from each non-self-representing
stratum. This deep stratification allows more control over the geographic
dispersion of PSUs than does selecting two per stratum or some larger number.
The trouble with this method is that neither a design-unbiased nor consistent
estimator of the variance is available, even for linear estimators. This is a long-
standing problem in survey sampling and is studied in Hansen et al. (1953a,
Sect. 9.15) and Wolter (2007, Sect. 2.5).

The usual procedure is to combine strata into pairs for variance estima-
tion. Alternative terminology, used by Wolter, is to “collapse” strata. After
pairing strata, BRR, Fay BRR, or the jackknife can be used. The resulting
variance estimator will generally be an overestimate. As HHM emphasize,
strata should be combined based on stratum-level characteristics—not those
of the selected PSUs. For example, if population size and degree of urbaniza-
tion were used to form strata, then two strata of urban and similar size PSUs
could be combined. For a systematic sample, the frame is generally sorted by
characteristics within a design stratum. These characteristics are sometimes
referred to as implicit stratification in comparions with the explicit design
strata. Thus, sample units are selected in a prespecified order defined by
the implicit strata. This order should be maintained when forming the PSU
pairs. A useful thought process is to consider which strata would have been
put together if the plan had been to select two PSUs per stratum.

Combining strata based on sample characteristics could lead to negatively
biased variance estimates, at least for some point estimates. To take an
extreme case, suppose we want to estimate the total expenditures in the
SMHO hospital population from a 1-hospital-per-stratum sample. Hospitals
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are stratified by number of beds and one selected at random from each stra-
tum. If we collect data and pair strata whose sample PSUs have expenditures
that are near each other, this procedure, applied repeatedly to different sam-
ples, would give variance estimates for total expenditures that are artificially
low. By peeking at the data to do the pairing, we depress the value of the esti-
mated within-group variance contribution. The strata that are paired could
vary from one sample to another based on what data are observed. On the
other hand, if we pair adjacent strata because of similarity of the number of
beds per hospital, these pairs would be set once and not vary depending on
how the samples came out.

In a simple case, Wolter (2007, Sect. 2.5) shows that bias of the collapsed-
stratum variance estimator (with collapsing set in advance of viewing the
results) is positive and depends on

H̃∑

h̃=1

(
μh̃1 − μh̃2

)2
,

where h̃ is a collapsed stratum and μh̃g is the population total of the analysis

variable for stratum g in collapsed stratum h̃. The pairing might still not give
us full credit for the gains from stratification, but the possibility for negative
bias would be removed.

One final note on collapsing strata and PSUs should be mentioned. The
sample design is one source for generating a single-PSU-per-stratum situation.
Another is linked to sample loss such as with nonresponse or ineligibility. For
example, consider a design stratum containing 5 sample schools (PSUs) where
students are selected from within the randomly sampled school. If two schools
close prior to data collection (ineligible) and administrators from two other
schools decline to participate because of funding and time restrictions, then
data from only one sample school is available for analyses within this stratum.
Variance strata and PSUs are then formed using the same criteria as discussed
above.

15.6 Handling Certainty PSUs

There are two cases to consider when PSUs are selected with certainty (i.e.,
selection probability equals 1.0): (1) certainties in a single-stage sample and
(2) certainty first-stage units in multistage surveys. In both cases, we need
to determine how the certainties should be handled when using linearization
variances or for creating replicates for replication variance estimates. As
noted in earlier chapters, certainties are also called self-representing (SR)
while other units are called non-self-representing (NSR). In a single-stage
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sample, a certainty does not contribute to the repeated sampling variance.
For linearization variance estimators, each certainty can be assigned its own
stratum code and has a base weight equal to 1.0. In replication variance
estimator, a certainty can be forced to be a member of every replicate.
In both the full sample and a replicate, each certainty gets a weight of 1.
Consequently, for linear estimators, the contribution from each certainty
will subtract out when taking the difference in a replicate estimate and the
full-sample estimate. For example, in JKn, for a linear estimator:

θ̂(hi) = (contribution from SRs) + (contribution from NSRs in the replicate),

θ̂ = (contribution from SRs) + (contribution from NSRs in the full sample).

The contribution from the SRs subtracts out when computing θ̂(hi) − θ̂.
In a multistage sample with SR PSUs, the SRs are really strata contain-

ing lower-level sample units. For example, suppose that an area probability
sample is selected in the US and that Cook County, Illinois, which contains
Chicago, is a certainty. In the Cook County stratum, the first-stage units
might be block groups (BGs), as discussed in Chap. 10. The BGs are the
PSUs in Cook County for the purposes of variance estimation.

A common approach in area samples is to use BRR for variances. The first-
stage units within the SRs are often divided into only two VarUnits. There
are two worries with this: (i) two VarUnits give 1 df in each SR which may
be much less than the maximum number of df available, and (ii) if there
are not an even number of first-stage units in an SR, the standard repli-
cate weight adjustments and variance formulas may be biased, as discussed
earlier for the jackknife. In the Chicago example, suppose that 20 BGs are
selected. BRR can be used if 2 VarUnits of 10 BGs are created, resulting
in 1 df. But, we can just as easily create 10 VarUnits of 2 BGs and get 10
df. Given the computational speed and storage capacity of modern comput-
ers, a miserly savings of a few replicates in the 2-VarUnit example is hardly
worth it.

For the second worry mentioned above, the most prudent procedure is
to select an even number of first-stage units within each SR. Sometimes
that cannot be done due to workload restrictions for field personnel or sup-
plementation of the sample to meet a target number of respondents (see
Sect. 6.5.2 on the use of data collection replicates). If the final number of first-
stage units (like BGs) in an SR is odd, a practical approach is to combine
two BGs. This is an example of a VarUnit formed by combining first-stage
units.

Example 15.16 (Handling certainties). Using the smho98 population, which
includes one extremely large hospital, as seen in Chap. 3, we select a single-
stage sample of 80 from the 875 hospitals in the population. The sample is pps
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with the measure of size based on number of beds. Any value of BEDS that
is less than 10 is recoded to be 10. With this plan, 9 units are certainties and
71 are non-certainty. The R code is in Example 15.16 certainties.R.
To notify the survey package that there are certainties, a variable called
stratum is created, having a value of 1 for non-certainties and 2 for cer-
tainties. The fpc=0 for all sample hospitals in stratum 1 and fpc=1 for
stratum 2.

pop <- smho98
# recoded BEDS as MOS

set.seed(428274453)
n <- 80
N <- nrow(pop)
x <- pop$BEDS
x[x<10] <- 10
pik <- n*x/sum(x)

# check for certainties & adjust selection probs of
# non-certainties

n.cert <- sum(pik >= 0.8)
certs <- (1:N)[pik >= 0.8]
x.nc <- x[-certs]
n.nc <- n - n.cert
pik <- n.nc*x.nc/sum(x.nc)
sam <- UPrandomsystematic(pik)
pop.nc <- pop[-certs,]

# extract rows for non-certainties, then append rows
# for certainties

sam.dat <- pop.nc[sam==1,]
sam.dat <- rbind(sam.dat, pop[certs,])

# append strata codes and fpc’s
# stratum = 1 for non-certs, 2 for certs
# fpc = 0 for non-certs, 1 for certs

stratum <- c(rep(1,n.nc), rep(2,n.cert))
fpc <- c(rep(0,n.nc), rep(1,n.cert))
sam.dat <- cbind(sam.dat, stratum, fpc)
probs <- c(pik[sam==1], rep(1,n.cert))
d <- 1/probs

# Create a design object with fpc’s
smho.dsgn <- svydesign(ids = ˜0,

strata = ˜stratum,
fpc = ˜fpc,
data = data.frame(sam.dat),
weights = ˜d)

svytotal(˜EXPTOTAL, design=smho.dsgn)
cv(svytotal(˜EXPTOTAL, design=smho.dsgn))
svytotal(˜SEENCNT, design=smho.dsgn)
cv(svytotal(˜SEENCNT, design=smho.dsgn))
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The design object, smho.dsgn, uses both the stratum and fpc vari-
ables. For comparison, a design object (not shown above but in the code
file) was also created that did not include the fpc’s. The estimated totals
of expenditures and patients seen, along with the SEs and CV s, are shown
below. If the certainties are accounted for, the CV s are 8.6% and 11.0%.
But, if the certainties are thrown in with the non-certainty selections for SE
calculation, the CV s are 9.9% and 16.5%. Thus, ignoring the fact that there
are certainties leads to a substantial overstatement of CV s and SEs.

Variable Estimated total With fpc No fpc
(millions) SE CV SE CV

EXPTOTAL 8711.50 748.78 8.6% 864.17 9.9%
SEENCNT 1.17 0.13 11.0% 0.19 16.5%

Accounting for the certainties can also be accomplished with the jackknife
using the code below. First, a separate stratum code is assigned to each of
the 9 certainties and stored in strat.rep. The statement

options(survey.lonely.psu="certainty")

results in single PSUs in a stratum being omitted from variance calculations
(but not from estimates of means, totals, etc.).

strat.rep <- c(rep(1,n.nc), 2:(2 + (n.cert-1)))
options(survey.lonely.psu="certainty")
rep.dsgn <- svydesign(ids = ˜0,

strata = ˜strat.rep,
data = data.frame(sam.dat),
weights = ˜d)

jkn.dsgn <- as.svrepdesign(design = rep.dsgn, type = "JKn")

The estimated totals and SEs of EXPTOTAL and SEENCNT are the same
as those above—a result that you can verify by running the code for this
example. �
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Exercises

15.1. Consider the situations described below. In each case, classify the
estimator as linear or nonlinear and explain your reasoning. Which of the
following methods of variance estimation would you use: exact formula, lin-
earization, or replication? Explain your choices. If more than one method
can be used, discuss the considerations that should be made when selecting
a particular variance estimator.

(a) Stratified simple random sample of business establishments selected with-
out replacement. The estimate is the ratio of the π-estimator of total
before-tax profits (across all establishments) to π-estimator of total rev-
enues (again across all establishments).

(b) Stratified simple random sample of business establishments selected with-
out replacement. Estimate is π-estimator of total expenditures on capital
improvements in 2001.

(c) Two-stage stratified sample design of households. At the first stage, a
sample of primary sampling units (PSUs) is selected with varying prob-
abilities without replacement. PSUs are geographic areas like counties
or groups of counties. The frame of PSUs is stratified by region of the
country. Four PSUs are selected from each stratum. At the second stage
an equal probability sample of households is selected within each PSU
selected in the first stage. The population quantity to be estimated is
the average household income for households whose head is classified as
Hispanic. The estimator is the π-estimator.

(d) A single-stage sample of schools is selected with probabilities proportional
to the square root of enrollment from a prior academic year. The frame is
sorted hierarchically based on the following variables: region of the coun-
try, location of the school (urban, suburban, rural), and the percentage
of students in the school who receive free or reduced price lunches. The
population quantity to be estimated is the proportion of students who
scored at or above a specified proficiency level on a standardized mathe-
matics test.

15.2. The following data were collected from a sample of two PSUs selected
from each of two strata.

h PSU Yhi

1 1 5
1 2 6
2 1 10
2 2 4

Total 25

Yhi is the weighted PSU total observed for PSU i in stratum h.

(a) Compute the balanced repeated replication (BRR) variance estimator for

the estimated total ŷ =
∑2

h=1

∑2
i=1 Yhi. Specify which form of the BRR
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estimator you are using. Use the following orthogonal matrix where rows
designate the strata and columns the replicates:

A =

⎡
⎢⎢⎣
+ + + +
+ − + −
+ + − −
+ − − +

⎤
⎥⎥⎦

(b) What is the variance formula for the estimated total ŷ if PSUs are
assumed to be selected with replacement? Evaluate this formula using
the data in the table above. How does it compare with your answer in
part (a)?

15.3. What are the “rules of thumb” values for the following combinations
of sample design and variance estimators?

(a) 2 sample PSUs selected per stratum with replacement and with varying
probabilities, balanced repeated replication (BRR) variance estimator.

(b) A design with H strata, nh sample PSUs selected in stratum h, and the
stratified delete-one jackknife estimator.

(c) 2 sample PSUs selected per stratum with replacement and with varying
probabilities, Fay-BRR variance estimator with ρ = 0.3.

(d) A design with 100 strata and two sample PSUs selected per stratum with
replacement. PSUs are randomly numbered 1 or 2 within each stratum.
Strata are then combined into 25 superstrata with 8 PSUs per superstra-
tum. The PSUs numbered 1 in a superstratum are treated as one group
while the PSUs numbered 2 are treated as a second group. A BRR vari-
ance estimator is used treating the superstrata as variance estimation
strata.

15.4. Suppose that ŷ is an unbiased estimate of a finite population total, Y.
You are interested in the estimator g (ŷ) =

√
ŷ.

(a) Write down the first-order Taylor series approximation to g (ŷ).
(b) Based on your answer to (a), what is the approximate design vari-

ance of g (ŷ)? Write your answer in general terms that apply to any
design.

(c) Specialize your answer in (b) to the following designs: simple random
sampling without replacement, stratified simple random sampling with-
out replacement, and a single-stage design where units are selected with
varying probabilities with replacement.

15.5. Use the nhis.large data set which is a stratified, cluster design
with 2 PSUs selected per stratum. Estimate the proportions of the popu-
lation in each age group (age.grp) that had an overnight hospital stay
(hosp.stay). Estimate the standard errors using linearization, BRR, Fay
BRR with ρ = 0.5, and the JKn jackknife. How do the estimated SEs
compare?
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15.6. Use the nhis.large file as a population and select a simple random
sample of size n = 500. If you are using R, use a random number seed of
428274453. Poststratify the sample to population counts for age.grp.

(a) Compute the estimated proportion of the population who reported a doc-
tor visit (doc.visit) in the two weeks prior to the interview.

(b) Calculate the SEs using the linearization method and JKn. What would
be the effect on estimated SEs of ignoring the poststratification?

(c) Estimate the proportions and SEs of the population who reported a doctor
visit in a table defined by Hispanic ethnicity (hisp). Combine categories
3 and 4 of hisp together. What would be the effect of ignoring the
poststratification for these estimates?

15.7. Use the sample from Example 15.8 from the smho.N874 population.
Estimate the quartiles (30th, 50th, and 75th) of the end-of-year count of
patients (EOYCNT). Find the 95% CIs and SEs estimated by the Woodruff
and Francisco-Fuller methods. What are the SEs implied by these two meth-
ods? If you try to estimate the first quartile and its SE using the Francisco-
Fuller method, an error will occur. What characteristics about the sample
data do you think causes the error?

15.8. Repeat Exercise 15.6 on poststratification using the bootstrap method
with 500 replicates. If you are using R, use a random number seed of -
711384152. How do your estimates of standard errors and CV s compare to
the linearization and jackknife estimates in exercise 15.6?

15.9. Repeat Example 15.8 using the Rao-Wu bootstrap method with 500
replicates. Delete type 4 hospitals and recode the variable, beds, to have
a minimum value of 5. Estimate the 25th, 50th, and 75th quantiles of
SEENCNT in smho.N874 and the 95% confidence intervals for each using the
t -approximation. If you are using R, use a random number seed of -711384152.
Draw histograms of the bootstrap replicate estimates for the 25th, 50th, and
75th quantiles of SEENCNT. How do the 95% CIs from the bootstrap per-
centile method compare to those from the Woodruff and Francisco-Fuller
methods?

15.10. Use the smho.N874 population and select a sample that is stratified
by hospital type.

(a) Determine the proportional allocation of 120 hospitals and the sampling
fraction in each stratum.

(b) Select a stratified simple random sample without replacement using the
sample sizes computed in (a). If you are using R, use a random number
seed of -69716384.

(c) Compute the estimated average number of beds per hospital overall and
for each hospital type. Use both the linearization and JKN methods of
variance estimation and account for finite population corrections.
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(d) How do the SEs in part (c) compare? Is there a reason to prefer one
method of variance estimation over the other for this sample? Explain
your answer.

15.11. Suppose that you know from the survey documentation that the
nhis.large file was poststratified by age group (age.grp) and race
(race).

(a) Describe how can you account for this when estimating standard errors?
(b) Using your method from (a), compute estimates of the proportions of

persons who delayed medical care in the last 12 months (delay.med)
for different income levels (inc.grp). Calculate their SEs using line-
arization.

(c) What are the SEs of the estimated totals and proportions of the popula-
tion that are in each of the age.grp × race domains?

15.12. Repeat Exercise 15.11 using BRR and Fay BRR with ρ = 0.5.

15.13. Use the nhis.large file and compute SEs via linearization, BRR,
and Fay BRR with ρ = 0.5 but ignore poststratification.

(a) Compute estimates of the proportions of persons who delayed medi-
cal care in the last 12months (delay.med) for different income levels
(inc.grp). Are the estimates of proportions the same or different from
those in Exercises 15.11 and 15.12?

(b) Compare the SEs ignoring poststratification with those that account for
it from Exercises 15.11 and 15.12. How serious an error would be made
by ignoring poststratification?

15.14. The following table lists the PSUs in a national sample in the US
Regions are numbered 1 to 4. The PSUs with county names (e.g., Kings
County NY, Maricopa County AZ) are certainties (or non-self-representing).
The non-certainty or non-self-representing PSUs are labeled as region.nsr.nn.
For example, NE.nsr.1 is the first NSR PSU in the northeast region. Each
of these PSUs is a sample of size 1 from a stratum of NSR PSUs. Strata
have been formed within each region so that adjacent strata are similar
in population size, i.e., consecutively numbered NSR PSUs within a region
are from similar strata. Suppose that each PSU has 10 sample clusters of
households.

(a) If you pair NSR PSUs within a region and randomly split each SR PSU
into two groups of 5 clusters, how many degrees of freedom would a vari-
ance estimator have for national estimates and for regional estimates?
Use the standard rule of thumb to count df.

(b) What is another method that you might use within each SR PSU to
pick up more df ? What would the resulting total df be with this
method?
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(c) Suppose that you begin with the pairs of NSR PSUs and splits of
SR PSUs as used in part (a). If you plan to use the BRR method
of variance estimation with only 20 replicates, how could you combine
strata to accomplish this in a way that preserves the same number
of degrees of freedom for the variance estimates for regional estimates
as in (a)?

RegionStratum RegionStratum RegionStratum RegionStratum

1 Kings
County,
NY

2 Cook
County
IL(1)

3 Miami-
Dade
County,
FL

4 Maricopa
County, AZ

1 Queens
County,
NY

2 Cook
County
IL(2)

3 Harris
County,
TX

4 Los Angeles
CA(1)

1 NE.nsr.1 2 MW.nsr.1 3 Dallas
County,
TX

4 Los Angeles
CA(2)

1 NE.nsr.2 2 MW.nsr.2 3 S.nsr.1 4 San Diego
County, CA

1 NE.nsr.3 2 MW.nsr.3 3 S.nsr.2 4 Orange
County, CA

1 NE.nsr.4 2 MW.nsr.4 3 S.nsr.3 4 W.nsr.1
1 NE.nsr.5 2 MW.nsr.5 3 S.nsr.4 4 W.nsr.2
1 NE.nsr.6 2 MW.nsr.6 3 S.nsr.5 4 W.nsr.3
1 NE.nsr.7 3 S.nsr.6 4 W.nsr.4
1 NE.nsr.8 3 S.nsr.7 4 W.nsr.5

3 S.nsr.8 4 W.nsr.6
3 S.nsr.9
3 S.nsr.10



Chapter 16

Weighting the Personnel Survey: One
Solution

The project assigned in Chap. 12 was to compute a set of weights for a
survey of members of the military reserves. A stratified simple random
sample of personnel was selected and queried about satisfaction with their
jobs. The project provides an opportunity to put into practice the tech-
niques covered in Chaps. 13–15. Completing the project requires calculation
of base weights, an adjustment to account for cases whose eligibility sta-
tus is unknown, an adjustment for nonresponse, and calibration to some
finite population totals. There are several practical problems to be solved,
including selecting a particular method of nonresponse adjustment, decid-
ing how to use the population counts that are available, and determining
how to handle missing values in both the sample cases and the population
counts.

Although this chapter is not written as a formal report to be delivered
to a client as was requested in the Chap. 12 assignment, we want to again
emphasize the importance of good documentation. Clear documentation of
all weighting steps is critical for several reasons. It may be necessary to repeat
some or all steps at a later time. For example, errors may be discovered in
some details of calculations, or problems may be found in one of the input
data sets. If a survey will be repeated at a later date, a well-written weighting
report can guide the work in the next survey. Very detailed specification
memos, like the ones described in Chap. 18, will remove any doubt about
what should be done and can lead to reduced costs if the survey is repeated
at a later date.

The R code for the solution to this project is in the files,

16.1 Solution bwt-unknown adj.R
16.2 Solution NR adj.R
16.3 Solution calibration adj.R
16.4 Example tabulations.R

all of which are on the book’s web site.

R. Valliant et al., Practical Tools for Designing and Weighting
Survey Samples, Statistics for Social and Behavioral Sciences 51,
DOI 10.1007/978-1-4614-6449-5 16, © Springer Science+Business Media New York 2013
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16.1 The Data Files

Two data files were provided for the project. One file (SOFR.sas7bdat
or SOFR.xpt) contained records for all 71,701 sample members who were
initially selected. The file includes the 19 variables shown in Table 16.1.
The fields include identification number, final respondent status code, stra-
tum identifier, stratum sample count and population count, frame variables

Table 16.1: Contents of data file SOFR.sas7bdat.

# Variable Label

1 REC ID Unique Record Identification Number

2 RESPSTAT Final respondent status code

3 SRMARST What is your marital status?

4 RA006A Taking all things into consideration, how satisfied are
you, in general, with each of the following aspects of
being in the National Guard/Reserve? Your total com-
pensation (i.e., base pay, allowances, and bonuses)

5 RA006B Taking all things into consideration, how satisfied are
you, in general, with each of the following aspects of
being in the National Guard/Reserve? The type of
work you do in your military job

6 RA008 Suppose that you have to decide whether to continue
to participate in the National Guard/Reserve. Assum-
ing you could stay, how likely is it that you would
choose to do so?

7 RA115 Overall, how well prepared are you to perform your
wartime job?

8 RA118 Overall, how would you rate the current level of stress
in your personal life?

9 SRED What is the highest degree or level of school that you
have completed? Mark the one answer that describes
the highest grade or degree that you have completed

10 RA112RA In past 12 months, how many days did you spend in
a compensated Reserve/Guard status?

11 XSRRCR Service

12 XACT2R Activated 30 days—3 level: In the last 24 months were
you ever activated longer than 30 consecutive days?

13 XRETH4R Imputed race/ethnicity—2 level

14 XSEXR Recoded: imputed gender

15 XCPAY1R Recoded: imputed pay grade group 1

16 NSAMP Stratum sample count

17 NSTRAT Stratum population count

18 V STRAT Variance estimation stratum

19 STRATUM Design stratum



16.2 Base Weights 455

Table 16.2: Contents of data file RCCPDS57.sas7bdat.

# Variable Label

1 SERVICE (XSRRCR) Branch of military service

2 GENDER (XSEXR) Gender

3 PG GROUP (XCPAY1R) Pay grade group

4 RACETH (XRETH4R) Race/ethnicity

5 EDUCCAT (SRED) Highest degree/level of school completed

6 MARIT (SRMARST) Current marital status

7 ACTIVATD (XACT2R) Activated more than 30 consecutive days or
less in last 24 months

8 COUNT Person count

(gender, pay grade, race, etc.), and respondents’ answers to key questions.
The variable RESPSTAT for final respondent status code has information
about the eligibility and the response status for each sample member.

The fields NSAMP and NSTRAT contain the number of cases in the sample
and in the frame for the stratum to which a person belongs. The values are
the same for all records for persons in a given stratum. Based on inspecting
the file of sample persons, there were 404 strata, defined by combinations of
branch of the service, race/ethnicity, gender, and pay grade.

As shown in Table 16.2, the other data file (RCCPDS57.sas7bdat or
RCCPDS57.xpt) has population counts for seven frame variables (branch of
the service, gender, pay grade, race/ethnicity, education, marital status, and
whether a person had been called to active service more than 30 consecutive
days in the last 24months.). These frame variables have different names than
in the sample data file, but the alternative names are indicated in the labels.
Population counts are provided in variable COUNT.

16.2 Base Weights

Base weights can be computed as soon as the sample is selected. We do
not need to know the dispositions of any of the sample cases because the
base weights in this survey depend only on the frame counts and the sample
sizes in each of the design strata. Since a stratified simple random sample
was selected, the selection probability of each person i in stratum h was
πhi = nh/Nh where

nh = number of persons sampled from stratum h,

Nh = number of persons on the frame in stratum h.
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The base weight for person hi is the inverse of the selection probability:
whi = Nh/nh. This is computed as NSTRAT/NSAMP. The sum of the base
weights is 870,373, which is exactly equal to the count of the persons on the
frame since the sample is stsrs.

16.3 Disposition Codes and Mapping into Weighting
Categories

Table 16.3 gives counts of persons by the disposition codes in the RESPSTAT
field. These codes are specific to the survey of Reserve personnel, as is
apparent from some of the categories. For example, code 22 (no return—
separated/retired) would probably not be used in surveys of most other pop-
ulations. Because there was a time lapse between the time the sample was
selected and the data were collected, the status of some persons changed.
This is the reason for having codes for retirees, deceased, incarcerated, etc.
Addresses for some personnel are out-of-date leading to the inability of the
postal service to deliver the survey (code 27). To compute weights, the dis-
position codes need to be mapped into the groups:

ER Eligible respondents
ENR Eligible nonrespondents
IN Known ineligibles
UNK Unknown eligibility

Table 16.3: Counts for each final respondent status code.

Respondent status (as stored in RESPSTAT variable) Count

1 = questionnaire returned—completed 25,539

2 = questionnaire returned—(sufficient) partial complete 20

3 = questionnaire returned—(insufficient) Partial Complete 524

4 = questionnaire returned—ineligible 503

5 = questionnaire returned—blank 97

18 = no Return—deceased 9

19 = no Return—incarcerated 2

22 = no Return—separated/retired 35

23 = no Return—active refusal 193

25 = no Return—other 8

26 = no Return—eligible based on administrative records 39,872

27 = postal nondelivery 1,339

29 = not locatable 6

35 = ineligible—no questionnaire sent 3,554

Total 71,701
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To compute the various AAPOR response rates described in Chap. 6, the
disposition codes are mapped to a slightly different set of categories:

I Complete interview
P Partially complete interview
R Refusal/break-off
NE Not eligible
U Unknown eligibility
O Other eligible noninterview
The mappings we used for both the weighting and AAPOR categories are

shown in Table 16.4. A number of decisions have to be made about how to
map the dispositions. Some choices are obvious, like mapping code 1 (ques-
tionnaire returned—Completed) to ER and I. Others are less so, like codes
5 (questionnaire returned—blank), 25 (no return—other), 27 postal nonde-
livery), and 29 (not locatable). Unless more is known about such cases, a
conservative approach would be to consider the eligibility of these persons
as unknown, which we did in Table 16.4. Since there is disposition code
26 (no return—eligible based on administrative records), it is apparent that
efforts were made to match the sample file against personnel records. Con-
sequently, the alternative argument could be made that persons in codes
5, 25, 27, and 29 are ineligible. Clearly, there is some subjectivity in the
mapping.

Table 16.5 shows the counts of cases in the weighting and AAPOR cate-
gories. Judging from the counts, unknown eligibility is a minor problem. On
the other hand, the response rate is well under 50%. Thus, concentrating
efforts on the nonresponse adjustment is prudent in this sample.

Chapter 6 reviewed various outcome rates that may be computed in a
survey. As illustrations, we compute RR1 and RR4 which are defined as

RR1=
100I

(I + P ) + (R +O) + U
,

RR4 =
100 (I + P )

I + P +R+O + e ∗ U ,

where

e =
I + P +R +O

I + P +R+O +NE

is the proportion of unknowns that are allocated to being eligible. In this
sample, e = 0.941, RR1 = 37.78%, and RR4 = 37.83%. Since the number of
unknowns is a small part of the full sample, the values of these two response
rates are virtually the same.
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Table 16.5: Counts for each weighting and AAPOR category.

Disposition Indicator Count Percent

Weighting category (disposition codes)

Eligible respondent (1,2) ER 25,559 35.6

Eligible nonrespondent (3,23,26) NR 40,589 56.6

Known ineligible (4,18,19,22,35) IN 4,103 5.7

Unknown eligibility (5,25,27,29) UNK 1,450 2.0

Total 71,701 100.0

AAPOR category (disposition codes)

Complete (1) I 25,539 35.6

Partial (2) P 20 0.03

Refusal/break-off (3,23) R 717 1.0

Other eligible noninterview (26) O 39,872 55.6

Not eligible (4, 18, 19, 22, 35) NE 4,103 5.7

Unknown eligibility (5, 25, 27, 29) U 1,450 2.0

Total 71,701 100.0

16.4 Adjustment for Unknown Eligibility

Using the base weights, we can estimate the numbers of persons on the frame
that are in the weighting categories, ER, ENR, IN, and UNK:

Weighting category E stimated count P ercentage (%)
Eligible respondent ER 320,677 36.8
Eligible nonrespondent NR 474,675 54.5
Known ineligible IN 55,770 6.4
Unknown eligibility UNK 19,251 2.2
Total 870,373 100.0

The estimated population counts are distributed in about the same way as the
unweighted counts in Table 16.5. Since only 2.2% of the frame is estimated to
be unknowns, we will make one overall adjustment, which, using the notation
from Sect. 13.4, is equal to

a1 =

∑
i∈s d0i∑

i∈sKN
d0i

=
320, 677 + 474, 675+ 55, 770

870, 373
= 1.0226.

The adjustment is made in the file “16.1Solutionbwt-unknownadj.R”.
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16.5 Variables Available for Nonresponse Adjustment

There are four variables that have non-missing data for both the sample
respondents and nonrespondents: branch of the service, race/ethnicity, gen-
der, and pay grade. These are the same variables that were used in defining
design strata. The other personal characteristics—education, marital status,
and whether a person spent more than 30 consecutive days on active duty in
the last 2months—are each missing for almost all nonrespondents. Table 16.6
shows sample counts of responding and nonresponding persons for each of
the variables that we can use for nonresponse adjustment; Table 16.7 shows

Table 16.6: Sample counts of respondents and nonrespondents and population counts
for the four variables with no missing data for sample persons.

(Code value) variable Nonrespondent Respondent Population controls
(before imputation)

n % n % Total N %

Service

(1) Army National Guard 10,060 65.0 5,424 35.0 15,484 322,053 40.2

(2) Army Reserve 8,398 61.9 5,179 38.1 13,577 190,235 23.7

(3) Naval Reserve 4,686 56.4 3,617 43.6 8,303 77,022 9.6

(4) Marine Corps Reserve 7,869 70.6 3,283 29.4 11,152 36,094 4.5

(5) Air National Guard 4,855 53.6 4,207 46.4 9,062 105,092 13.1

(6) Air Force Reserve 4,721 55.1 3,849 44.9 8,570 71,022 8.9

Missing – – – – – 291 0.04

Race/ethnicity

(1) Non-Hispanic White 20,625 55.1 16,833 44.9 37,458 540,473 67.4

(2) Total minority 19,964 69.6 8,726 30.4 28,690 260,734 32.5

Missing – – – – – 602 0.1

Gender

(1) Male 34,100 61.9 21,007 38.1 55,107 663,122 82.7

(2) Female 6,489 58.8 4,552 41.2 11,041 138,574 17.3

Missing – – – – – 113 0.01

Pay group

(1) E1–E3 7,026 82.5 1,494 17.5 8,520 112,244 14.0

(2) E4 12,936 75.8 4,125 24.2 17,061 198,048 24.7

(3) E5–E6 10,146 64.2 5,653 35.8 15,799 265,388 33.1

(4) E7–E9 2,810 47.1 3,162 52.9 5,972 110,397 13.8

(5) W1–W5 987 42.1 1,356 57.9 2,343 10,948 1.4

(6) O1–O3 3,185 45.7 3,783 54.3 6,968 41,176 5.1

(7) O4–O6 3,499 36.9 5,986 63.1 9,485 63,608 7.9

Missing – – – – – – –

Grand totals 40,589 61.4 25,559 38.6 66,148 801,809 100.0
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Table 16.7: Sample counts of respondents and nonrespondents and population counts
for education level, marital status, and activation.

Variable (Code value) Nonrespondent Respondent Population controls
(before imputation)

n % n % Total N %

Education

(1) 12 years or less of
school (no diploma)

0 0.0 146 100.0 146 10,819 1.3

(2) High school
graduate—high school
diploma or equivalent

0 0.0 2,059 100.0 2,059 116,933 14.6

(3) Some college credit
but less than 1 year

1 0.0 2,465 100.0 2,466 113,512 14.2

(4) One or more years
of college, no degree

2 0.0 4,967 100.0 4,969 223,581 27.9

(5) Associate’s degree 1 0.0 2,399 100.0 2,400 96,073 12.0

(6) Bachelor’s degree 8 0.1 7,750 99.9 7,758 147,450 18.4

(7) Master’s, doctoral,
or professional school
degree

1 0.0 4,912 100.0 4,913 66,614 8.3

Missing 40,576 97.9 861 2.1 41,437 26,827 3.3

Marital status

(1) Married 233 1.4 16,934 98.6 17,167 455,603 56.8

(2) Separated 6 1.5 397 98.5 403 11,748 1.5

(3) Divorced 40 1.6 2,538 98.4 2,578 75,025 9.4

(4) Widowed 0 0.0 75 100.0 75 3,324 0.4

(5) Never married 157 2.7 5,577 97.3 5,734 254,468 31.7

Missing 40,153 99.9 38 0.1 40,191 1,641 0.2

Activated more
than 30 days

(1) Activated ≤ 30 days 7 1.1 611 98.9 618 37,171 4.6

(2) Activated 30 days 148 1.1 12,912 98.9 13,060 250,808 31.3

(3) Not activated 24 0.2 11,814 99.8 11,838 508,083 63.4

Missing 40,410 99.5 222 0.5 40,632 5,747 0.7

Grand totals 40,589 61.4 25,559 38.6 66,148 801,809 100.0

similar counts for the other three demographic variables that are available
mainly for respondents. The two tables also show population counts from the
RCCPDS57.XPT file.

The file from which population counts were made had some missing data
for each variable, other than pay group. For example, branch of the service
in Table 16.6 was missing for 291 persons; race/ethnicity was missing for
602 persons. Later, in Sect. 16.7, when we calibrate to the population counts,
imputations will have to be made for those missing values.
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16.6 Nonresponse Adjustments

Two options for nonresponse adjustment that we covered in Chap. 13 are to
use estimated response propensities and cells formed with a regression tree.
Both alternatives are examined in this section.

Propensity Models

First, we will examine the option of creating classes based on estimated
response probabilities or propensities. A model with main effects and all
two-way interactions, using the four available variables, was fitted without
using survey weights. The R code is shown below and is in the file “16.2
Solution NR adj.R”. The variable resp is 1 for respondents and 0 for
nonrespondents:

glm.logit2 <- glm(resp ˜ as.factor(xsrrcr)*as.factor(xreth4r)
+ as.factor(xsrrcr)*as.factor(xsexr)
+ as.factor(xsrrcr)*as.factor(xcpay1r)
+ as.factor(xreth4r)*as.factor(xsexr)
+ as.factor(xreth4r)*as.factor(xcpay1r)
+ as.factor(xsexr)*as.factor(xcpay1r),
family=binomial(link = "logit"),
data = sofr.d1.elig)

anova(glm.logit2, test="Chisq")

The data set sofr.d1.elig is a subset of sofr.sas7bdat that contains
only the 66,148 eligible respondents and nonrespondents. Part of the output
from the anova command is shown below (all deviance degrees of freedom
are over 66,000):

Df Deviance P(> Chi)
as.factor(xsrrcr) 5 951.3 < 2.2e-16 ***
as.factor(xreth4r) 1 1376.9 < 2.2e-16 ***
as.factor(xsexr) 1 13.2 0.0002764 ***
as.factor(xcpay1r) 6 6081.2 < 2.2e-16 ***
as.factor(xsrrcr):as.factor(xreth4r) 5 71.0 6.379e-14 ***
as.factor(xsrrcr):as.factor(xsexr) 5 15.9 0.0070584 **
as.factor(xsrrcr):as.factor(xcpay1r) 30 209.9 < 2.2e-16 ***
as.factor(xreth4r):as.factor(xsexr) 1 31.2 2.291e-08 ***
as.factor(xreth4r):as.factor(xcpay1r) 6 7.2 0.3004589
as.factor(xsexr):as.factor(xcpay1r) 6 36.8 1.937e-06 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

All main effects and interactions are highly significant except for the
xreth4r*xcpay1r interaction. In a survey-weighted regression the same
factors and interactions were significant. With such a large sample size, we
could probably find some significant three-way interactions also. But, for this
project, we will not attempt to extend the model above.
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Given predicted response probabilities from this model, we can create
classes based on their quantiles. Table 16.8 shows the ranges of propensi-
ties and counts of persons in each class when 5 and 10 classes are created.
Notice that the counts of persons in each class are not equal. Since the model
uses only factors as predictors, there are many ties among the estimated
propensities, leading to uneven divisions among the classes. Using 10 classes
does seem to distinguish better among different rates than does 5 classes. The
estimated rates within classes in the last five columns of Table 16.8 are fairly
similar regardless of the method of calculation.

Figure 16.1 shows boxplots of the estimated propensities from the model
for the 5 and 10 class breakdowns. The ranges are fairly wide in each of
the 5 classes but noticeably less within each of the 10 classes. As a further
diagnostic, we can check whether balance was achieved for the covariates in
the 10-class breakdown. The following R code creates an indicator for whether
a person is in the Army National Guard and checks balance:

v1 <- rep(0,nrow(sofr.d1.elig))
v1 <- sofr.d1.elig$xsrrcr == 1 # Army National Guard
chk <- glm(v1 ˜as.factor(p.class.10) + as.factor(resp) +

as.factor(p.class.10)*as.factor(resp),
family=binomial(link = "logit"),

data = sofr.d1.elig)
anova(chk, test="Chisq")

Part of the output of the anova statement is

Df Deviance P(>Chi)
as.factor(p.class.10) 9 12764.8 < 2.2e-16 ***
as.factor(resp) 1 8.9 0.00288 **
as.factor(p.class.10):as.factor(resp) 9 24.5 0.00364 **

Similar checks (not shown here) reveal that the interaction term is significant
when predicting whether a person is in the Army Reserve, is in pay group
E1-E3, or is a non-Hispanic White. As a result, the model with two-way
interactions does not achieve statistical balance. In part, this is probably due
to the extremely large sample in which small effects test out as statistically
significant, and, in part, to misspecification of the model itself. In particular,
there may be higher order interactions. Using a regression tree may be one
way of finding these.

Regression Tree

Using the same four variables as above—service, pay group, gender, and
race/ethnicity—we fit a CART model with this code:

t1 <- rpart(resp ˜ xcpay1r + xreth4r + xsexr + xsrrcr,
method = "class",
control = rpart.control(minbucket = 250, cp=0),
data = sofr.d1.elig)
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Fig. 16.1: Boxplots of estimated response propensities grouped into 5 and 10 classes.
Propensity model estimated based on the four variables available for respondents and
nonrespondents using a model with main effects and all two-way interactions. A dot
marks the average propensity in each class.

The tree with 13 terminal nodes is shown in Fig. 16.2. As is apparent
from the figure, the structure has some complicated combinations. Table 16.9
gives the descriptions of the nodes. The CART classes are numbered differ-
ently by the print method than in the object t1$where. The highest ranking
officers have the highest response rates; this is reflected in class 25 contain-
ing pay groups O4-O6 which has a response rate of 0.631 (unweighted) and
0.672 (weighted). Enlisted personnel did not respond well—CART put all
E1-E6’s in class 2, which has unweighted and weighted rates of 0.272 and
0.321. Among higher paid personnel, Marines are some of the poorest respon-
ders. For example, class 21, containing E7-E9, non-Hispanic Whites in the
Marine Corps Reserve had an unweighted rate of 0.385 (0.410 weighted). The
numbers of persons in the CART classes range from 296 to 41,380, which are
obviously far from the more nearly equal-sized classes in the propensity anal-
ysis. Note that 41,380 of the 66,148 eligible (62.6%) are in the same class and
are assigned the same response rate.

Since the classes formed by the regression tree seem to capture the com-
plexity of the response process better than the logistic model, the classes
in Table 16.9 will be used for nonresponse adjustment. We used weighted
response rates to make the weight adjustment in each class. The weighted
values are shown in the last column of Table 16.9. As mentioned in Chap. 13,
not all practitioners will agree on whether the weighted or unweighted rates
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Fig. 16.2: Regression tree to predict response based on the four variables available
for respondents and nonrespondents.

should be used. Using the weighted rates is, in a sense, a compromise solution.
Conditional on the classes formed, the weighted rates are model unbiased
under a model in which every person in a class has a common probability of
responding. They are also approximately unbiased estimates of the popula-
tion response rates in repeated sampling given the particular set of classes
used.

16.7 Calibration to Population Counts

The final weighting step in this project will be calibration to some of the
available population counts. The statistical function that calibration serves
here is mainly to reduce standard errors. Since military administrative records
should be accurate, there should be no systematic over- or undercoverage to
be corrected. In addition, calibration has some cosmetic appeal here. Having
estimated counts exactly equal to ones from administrative personnel records
will give the survey results face validity—a feature that may be important
to many data users. There are two major operational questions that must be
addressed:
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• Which variables and/or combinations of variables should be used for cali-
bration?

• How should missing values for the calibrating variables be handled in the
sample file and the file of population counts?

The code for completing the analyses sketched below is in the file 16.3
Solution calibration adj.R on the web site.

Other questions that we will not address here, but would be important in
a real survey, are:

• For what time period should population counts be made when there is a
delay between sample selection and data collection?

• Which persons should be counted to get the controls?

Administrative record databases are typically updated periodically—once a
month, once a quarter, etc. There may also be a lag between the time period of
the database and the time at which it is available for tabulation. This means
that population counts may not be for the time period when data are collected.
In addition, data collection may extend across two or more updates of the
administrative data. For example, there might be a 2-month lag between
sample selection and data collection, the survey period may last 10weeks,
and the administrative records may be updated once a month. When such
a lag occurs, the persons who are surveyed will be the “survivors,” i.e., the
ones who were in the frame when the sample was selected and are still eligible
when data are collected. No new entrants to the population would be included
in the sample. If the population counts are made close to the time of data
collection and include all persons who are eligible based on the survey rules,
then the counts would include the new entrants who had no chance of being
sampled. If we calibrate to these counts, we are saying that the attitudes
of the new entrants can be predicted by those of the sample persons who
have been in the population longer. Another option would be to tabulate
the control counts using only persons who have been in the military for at
least two months, if that is the amount of lag between sampling and data
collection. In some surveys, like those of the US household population, such
selective tabulations may not be feasible.

In this project, we will use the population counts as given in the RCCPDS57.
sas7bdat file. As noted in Chap. 12, this file came from matching the sam-
pling frame to the most current personnel file available as of the start of the
data collection period. That is, the counts are those of the survivors. Thus,
these counts should cover only eligible cases.

Identifying Variables to Use

The file of population counts contains combinations of service, gender, pay
group, race/ethnicity, education, marital status, and length of activation. All



16.7 Calibration to Population Counts 469

of these are categorical and can be used singly or in any number of combi-
nations. We could, for example, use only the marginal counts of service, pay
group, and gender. Or, we could use service × pay group and service × gen-
der or service × pay group × gender. Some modeling is a useful approach
to guide the decision. The goal will be to determine one set of weights that
is reasonably efficient for the important variables measured in the survey.
We have six analysis variables listed in Table 16.10 (RA006a, RA006B,
RA008, RA115, RA118, and RA112RA) to aid in making the decision.

To do the modeling we created several binary variables. Satisfaction with
compensation (RA006A) and type of work (RA006B) were coded as satis-
fied/very satisfied = 1 and 0 otherwise. Likelihood of reenlisting (RA008)
was coded as likely/very likely = 1 and 0 otherwise. Preparation for job
(RA115) was coded as well prepared/very well prepared = 1 and 0 otherwise.
Level of stress (RA118)was coded as more than usual/much more than usual
= 1 and 0 otherwise. Finally, days in compensated status (RA112RA) was
used as a continuous variable.

Rather than fitting binary regressions where the form of the predictors is
specified in advance, we again used regression trees to allow the algorithm
to identify the more important variables and combinations of levels for pre-
diction. Since the intention to reenlist is a key variable in this survey, we
present those results here. Figure 16.3 shows the regression tree for predict-
ing whether a person is likely/very likely to reenlist. The code for computing
the tree and drawing the figure is

t1 <- rpart(ra008R ˜ xsrrcr + xsexr + xcpay1r + xreth4r +
sred + srmarst + xact2r,

method = "class",
control = rpart.control(minbucket = 250, cp=0),
data = datafile)

plot(t1, uniform=TRUE, compress=TRUE, margin = 0.1, branch=0)
text(t1, use.n=TRUE, all=TRUE,

digits=15,
cex=1.2,
pretty=1.2,
fancy=TRUE,
fwidth=0.7,
xpd = TRUE,
font = 3)

The descriptions of the variables, xsrrcr, xsexr, etc., were given in
Table 16.1. The parameter branch=0 in plot gives a tree with V-shaped
branches, which, in this case, makes the branch labels easier to read. Pay
group, branch of service, whether a person had been activated for 30 days or
more, and marital status are included in the tree; gender, race/ethnicity, and
education are not.

Table 16.10 summarizes which variables were included in the trees for
predicting the six analysis variables. Gender was selected only to predict
whether people felt prepared to do their jobs. Examination of the individual
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xcpay1r< 2.5

xsrrcr< 4.5

xsrrcr>=3.5

xsrrcr< 2.5

xact2r< 2.5

srmarst>=4

xcpay1r>=2.5

xsrrcr>=4.5

xsrrcr< 3.5

xsrrcr>=2.5

xact2r>=2.5

srmarst< 4

1
5605/19954

1
2257/3362

1
1719/2167

0
398/241

1
1321/1926

1
1036/1242

0
621/600

0
360/276

1
261/324

1
415/642

1
285/684

1
538/1195

1
3348/16592

Fig. 16.3: Regression tree for predicting likelihood of reenlisting.

trees shows that service× pay and service× activation interactions are always
present. Often there are more complicated interactions, as in Fig. 16.3, where
there is a combination of service, pay group, activation, and marital status.
However, including 3-way and 4-way interactions would lead to samples that
are very thin in some combinations of levels even though there are over 25,000
respondents. Based on these results, we decided to use a calibration model
with:

• Main effects for service, gender, pay group, race/ethnicity, education, mar-
ital status, and activation;

• Interactions for service × pay and service × activation.

Although gender only appears once in Table 16.10, we include it for the
cosmetic benefit of matching the administrative record count for males and
females.

Imputing for Missing Values

Tables 16.6 and 16.7 showed that the file from which population counts were
made had missing values for some persons for service, race/ethnicity, gender,
education, marital status, and activation. The percentage of persons with
missing values ranged from 0.04% for service to 3.3% for education. To impute
for the missing values, we need only impute a covariate value whenever it
was missing in the RCCPDS57.sas7bdat file. For example, there were 159
records of this type in the file that had a missing value for service:
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service gender pg group raceth educcat marit activatd
. 2 2 2 4 5 3

To impute the missing service, a random draw is made from the allowable
codes in proportion to the population code counts for the non-missing records.
The R code for doing the population count imputations is in the function,
impute, in the file “16.3 Solution calibration adj.R”.

The sample file also has some records with missing data on the covariates
that will be used for calibration. Table 16.7 shows that 2.1% of the 25,559
respondents are missing education, 0.1% are missing marital status, and 0.5%
are missing the activation field. Any missing value for a sample respondent
was imputed with a random draw from the allowable codes for a variable.
The draws were made in proportion to the distribution among the codes for
persons with non-missing data. The R code for doing the sample imputa-
tions is in the function, impute.sam, which is also in “16.3 Solution
calibration adj.R”.

These imputation methods are straightforward and could be criticized as
not accounting for any multivariate relationships among different variables.
Given the small amount of missing data for all variables, we elected to keep
the methods simple.

GREG Estimation

Using the files of sample respondents and population counts with all miss-
ing values imputed, we calibrated to the population totals using a GREG
estimator. When using the calibrate function in R survey, some care
is needed to be sure that the vector of population totals is in exactly
the same order as is being used internally by calibrate. The function
model.matrix will create the model matrix of covariates that calibrate
uses for a particular formula. In this application, we check the order with

# check how design matrix is formed in calibrate
mm <- model.matrix(˜ as.factor(xsrrcr) * as.factor(xcpay1r)

+ as.factor(xsrrcr) * as.factor(xact2r)
+ as.factor(sred)
+ as.factor(xsexr)
+ as.factor(xreth4r)
+ as.factor(srmarst),
data = sofr.cal)

dimnames(mm)[[2]]

The last statement lists the column names of the model matrix. The inter-
actions are in “row-major” order. For example, the first five values of the
service × pay grade interaction are

"as.factor(xsrrcr)2:as.factor(xcpay1r)2"
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"as.factor(xsrrcr)3:as.factor(xcpay1r)2"
"as.factor(xsrrcr)4:as.factor(xcpay1r)2"
"as.factor(xsrrcr)5:as.factor(xcpay1r)2"
"as.factor(xsrrcr)6:as.factor(xcpay1r)2"

That is, service is incremented before pay grade. The code for putting the
population controls in the correct order and for computing the GREG weights
follows. Prior to this code counts for service × pay grade and service ×
activation were made and stored in the objects svc.pay1 and svc.act1:

# reorder the pop totals for the interaction terms
# to match way that calibrate creates model matrix

svc.pay1 <- svc.pay[order(svc.pay[,2]),]
svc.act1 <- svc.act[order(svc.act[,2]),]
del1 <- svc.pay1[,1]==1 | svc.pay1[,2]==1
del2 <- svc.act1[,1]==1 | svc.act1[,2]==1

pop.tots <- c(N,
svc[-1,2],
pay[-1,2],
activated[-1,2],
educ[-1,2],
gender[-1,2],
raceth[-1,2],
marital[-1,2],
svc.pay1[!del1,3],
svc.act1[!del2,3])

sam.lin.ub <- calibrate(design = sofr.cal.dsgn,
formula = ˜as.factor(xsrrcr)*as.factor(xcpay1r)
+ as.factor(xsrrcr) * as.factor(xact2r)
+ as.factor(sred)
+ as.factor(xsexr)
+ as.factor(xreth4r)
+ as.factor(srmarst),
population = pop.tots,
bounds = c(-Inf,Inf),
calfun = c("linear") )

Table 16.11 gives some summary statistics on the weights after each step in
the process. The mean weight is about the same before and after the GREG
step, while the range is larger for the GREG weights than for the nonresponse-
adjusted weights. The sum of the weights is smallest after the GREG step
(801,809) accounting for the fact that some persons became ineligible between
sampling and data collection and that the control totals are for the survivors
only.

In this solution, weight trimming was not used, although some practition-
ers might consider it. Although the range of final weights is fairly large—1.199
to 613.4—the base weights began with a wide range owing to the highly dif-
ferential sampling rates that were used. The base weights were adjusted to
reflect substantially different response rates among some types of personnel.
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Table 16.11: Summary of weights and counts of persons after each step.

Weighting
step

Min. 1st Qu. Median Mean 3rd Qu. Max. Sum Persons

Base 1 2.201 5.049 12.14 14.27 178.3 870,373 71,701

Adjusted for
unknown
eligibility

1.023 2.251 5.05 12.3 14.59 182.3 813,342 66,148

Adjusted for
nonresponse

1.521 4.746 14.63 31.82 34.31 514.7 813,342 25,559

GREG 1.199 4.672 13.43 31.37 30.91 613.4 801,809 25,559

Consequently, the final weights have a wide range. This is necessary to cor-
rect nonresponse bias for some subgroups. However, the 99th quantile of the
final weights is about 385 while the maximum final weight is 613.4. Trimming
of the largest 1% of weights might reduce SE’s for full population estimates
without introducing too much bias, but estimates for the subgroups with
very low response rates might then be biased. As usual, we are faced with
conflicting goals with no unique way of achieving them.

16.8 Writing Output Files

The resulting file with the GREG weights can be written to comma delimited
(csv) text files for use in other statistical software. The code below appends
the GREG weight to the file, selects fields for output, and writes the text files.
The write.foreign function in the foreign package (R Core Team and
contributors worldwide, 2012a) will also write code to be used in importing
the csv files into a few other packages. We illustrate the process below for
SAS and Stata:

# append GREG weights to data file of 25,559 respondents
sofr.cal$d3 <- weights(sam.lin.ub)

# specify fields for the text, SAS, and Stata files
fields <- c("rec.id", "nr.class", "respstat", "stratum",

"nsamp", "nstrat", "v.strat",
"srmarst", "sred", "xsrrcr", "xact2r",
"xreth4r", "xsexr", "xcpay1r",
"ra006a", "ra006b", "ra008", "ra115",
"ra118", "ra112ra",
"pred.logit", "p.class.10", "unwt.rr", "wt.rr",
"d0", "d1", "a1",
"d2", "a2",
"d3")

write.foreign(df = sofr.cal[, fields],
datafile = paste(file_loc2, "sofr.cal.sas.csv", sep=""),
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codefile = paste(file_loc2, "sofr.sas", sep=""),
package = "SAS")

write.foreign(df = sofr.cal[, fields],
datafile = paste(file_loc2, "sofr.cal.stata.csv", sep=""),
codefile = paste(file_loc2, "sofr.ado", sep=""),
package = "Stata")

The variable, file loc2, is a text string specifying the folder where
the output files will be written. The reader can consult the programs,
16.1 Solution bwt-unknown adj.R, 16.2 Solution NR adj.R,
and 16.3 Solution calibration adj.R, to see how the different
variables were created.

Although the data can be imported into statistical packages other than
R, a worry is that the other packages do not have built-in procedures that
recognize that the weights were computed via the GREG procedure. This,
typically, means that linearization variance estimates will be computed using
the ultimate cluster method discussed in Chap. 15 that does not use the cor-
rect set of residuals. As a result, linearization SEs computed from the other
packages will not generally be correct. This problem can be avoided if repli-
cation is used. In that case, the set of replication weights can appropriately
reflect the different steps in weighting, particularly the type of calibration that
was used. The replicate weights are included with the data set, and a pack-
age like SAS or Stata needs only to be told which method of replication was
used—jackknife, BRR, or the bootstrap—in order to produce legitimate SE’s.

16.9 Example Tabulations

Finally, in this section, we present a few simple tabulations using the file
with the final weights. The associated R code is in the file 16.4 Example
tabulations.R. The proportions of persons responding in the categories
of the reenlistment question (ra008) can be estimated with

# proportions for re-enlistment item
reenlist <- svymean(˜ as.factor(ra008), design = sam.lin.ub,

na.rm = TRUE)

# format with row labels
print(ftable(reenlist,

rownames = list(c("Very unlikely",
"Unlikely",
"Neither likely nor unlikely",
"Likely",
"Very likely")

) ), digits = 3)
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The function ftable allows labels to be used for the printed output. The
results, even with the use of ftable which improves the appearance, are not
beautiful:

Very unlikely mean 0.06608
SE 0.00357

Unlikely mean 0.10924
SE 0.00428

Neither likely nor unlikely mean 0.09280
SE 0.00386

Likely mean 0.31757
SE 0.00611

Very likely mean 0.41431
SE 0.00619

If a table is needed for a report, one option is to import the output
into a spreadsheet where more attractive formatting can be applied. Sup-
pose that the result of print(ftable(reenlist, ...)) is saved to
an object called out. Code that will convert out to a data frame, put
the proportion and SE side by side, and write the result to a file called
table.csv is

out <- data.frame(out)
out <- cbind(out[1:5,], out[6:10,])
out <- out[, c(1,3,6)]
dimnames(out)[[2]] <- c("Response", "Proportion", "SE")
write.csv(out, file = "c:\\table.csv")



Part IV

Other Topics



Chapter 17

Multiphase Designs

Sample designs are developed and estimators are chosen to efficiently fulfill
specified analysis plans. Efficiency is generally defined to encompass three
primary areas—accurate estimates (bias) with high levels of precision (small
standard errors) calculated from data collected with procedures that make
economical use of the study funds without exceeding the specified budget
(cost). Sections 3.1 and 3.2 and Chap. 15 detail the gains achieved in pre-
cision if auxiliary information that is highly associated with the analysis
variables can be used. This includes, for example, auxiliary variables used (i)
in sampling as a stratification variable or to construct the measure of size
for a probability proportional to size (pps) design or (ii) in estimation with a
regression (or ratio) estimator. However, what if the only available sampling
frame does not have useful auxiliary information? Without the auxiliary infor-
mation, how might the statistician address concerns that the inflated sample
size required for the specified level of precision will exceed the study budget?

One solution for these issues used by statisticians in various fields is known
in general terms as a multiphase design. In the following sections, we provide a
definition (Sect. 17.1) to differentiate this type of sample design from others
discussed in this book, as well as real-life examples of multiphase designs
(Sect. 17.2). Having established a working definition of multiphase designs, we
examine the components needed to develop both base and analysis weights
(Sect. 17.3). The weights are then used in the presentation of a few point
estimates and variances (Sect. 17.4), borrowing formulas discussed in other
chapters of this text along with a few summarized from published research.
Methods to determine overall sample size and allocation to phases are given
in Sect. 17.5 along with the methods used to justify the need for a multiphase
study when these surveys sometimes require a lengthy data collection period.
We conclude this chapter with a brief discussion of software available for
sample selection and analysis (Sect. 17.6).

R. Valliant et al., Practical Tools for Designing and Weighting
Survey Samples, Statistics for Social and Behavioral Sciences 51,
DOI 10.1007/978-1-4614-6449-5 17, © Springer Science+Business Media New York 2013
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17.1 What is a Multiphase Design?

Most major sampling textbooks contain a discussion of two-phase designs.
These designs use at least two, sequential sampling frames:

(1) A population frame that covers the target population
(2) A frame containing auxiliary (population) information and survey

responses for a random sample selected from the population frame

Thinking of a generic survey may clarify the features that distinguish a mul-
tiphase design.

Consider a survey where data are collected through a relatively inexpensive
mode on a random sample of units drawn from a sampling frame that covers
the target population. Call this the phase 1 sample selected from a phase 1
sampling frame. Information collected in the first phase along with auxiliary
data from the phase 1 sampling frame form the second-phase sampling frame.
Data are then collected from a random subsample of phase 1 sample units,
referred to as a phase 2 sample. Data collection in the second phase typically
involves a more expensive methodology than used in the first phase.

The standard textbook discussion includes only two design phases and
units in both phases selected via single-stage sampling. Extending the design
to complex sampling within the first phase or to three or more phases compli-
cates the theoretical derivations and variance estimation (as well as record-
keeping procedures in actual surveys) but does serve a purpose as discussed
later in this chapter. Regardless of the number of phases, the type of analytic
unit is the same in all phases (e.g., persons).

The distinctive characteristic of multiphase designs is the selection of at
least one random subsample drawn from an initial sample as highlighted by
our generic two-phase survey above. The subsampling may occur once or
multiple times, much like a multistage design (Chaps. 9 and 10). In fact, mul-
tistage designs are a specialized type of multiphase design. Let us revisit our
generic two-phase survey from above; suppose that the second-phase units are
selected from clusters of units randomly sampled in the first phase. Särndal
et al. (1992, Sect. 4.3.1) classify this study as a two-stage design if and only
if two properties are satisfied—independence and invariance. The indepen-
dence property indicates that the phase 2 units are randomly selected from
each phase 1 cluster independent of the other sample clusters. The invari-
ance property is slightly more complicated and focuses on the theory of
repeated sampling. In (slightly theoretical) words this means that the phase
2 sampling mechanism (e.g., sampling scheme, selection probabilities) for the
units within a particular phase 1 cluster is not influenced by the presence or
absence of other phase 1 clusters in repeated implementations of the phase
1 sampling mechanism. This “no peeking rule” states that the phase 2 units
are selected regardless of the phase 1 results obtained for other clusters. As
noted in Särndal et al. (1992), the theoretical expectation and variance of
an estimator taken with respect to the sample designs implemented in each
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phase does not change with the particular phase 1 sample selected in a single
draw.

A simple way to think about the independent and invariance properties
is that if the sample design for the second stage is specified in advance and
does not change regardless of which set of first-stage units is selected (or the
results from the first-stage units), then the survey is conducted through a
two-stage design. Otherwise, the design is a two-phase design. Not only does
the violation of independence or invariance change the design label from
multistage to multiphase, it also can affect the variance formula used for the
point estimator of interest. We postpone the variance discussion until later
in this chapter. There the distinction between multistage and multiphase
designs is made more concrete through an example. The difference can be
subtle as we hope to illustrate.

Example 17.1 (US Education Surveys). The Education Longitudinal Study
of 2002 (ELS:2002)1 and the High School Longitudinal Study of 2009
(HSLS:09),2 both conducted under contract with the National Center for
Education Statistics (NCES) located in the US Department of Education’s
Institute of Education Sciences, focus on understanding students’ chosen
paths from early high school into the postsecondary education years (i.e.,
university) and their workforce careers. These surveys incorporate student
population counts by race/ethnicity group into sampling rates to first select
schools (sampling stage 1) and then to randomly select students indepen-
dently within each sampled school (sampling stage 2). The population
information is obtained from publicly available NCES files containing data
collected one to two years prior. With the dated frame information the per-
cent distribution by racial group found at a participating school can differ
from the NCES sampling frame percentages. However, the initial sampling
rates may remain unless certain rules are violated as noted below.

When the design is executed as planned, it is clearly two-stage. However,
some changes can be made at the second stage without turning the design
into two phases. If the student sample size using the pre-set stage-2 sampling
rate exceeds maximums set for the study,3 then statisticians will typically
adjust the sampling rates with a given school using the updated information.
Assume that these adjustments are made independently within each school
(independence property) and would have been introduced regardless of the
distribution of other schools in the sample (invariance property). Hence, the
claim of a two-stage design (i.e., specialized two-phase design) still holds. �

1 http://nces.ed.gov/surveys/els2002/
2 http://nces.ed.gov/surveys/hsls09/
3 Sampling rates are typically set to limit the variation in the base weights and to limit
the burden placed on the participating schools as measured by the student sample
size.

http://nces.ed.gov/surveys/els2002/
http://nces.ed.gov/surveys/hsls09/
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Example 17.2 (US Education Surveys, revisited). Keeping with the previous
school example, suppose that after collecting data in less than half of the sam-
ple schools the statistician projects that the study will obtain an insufficient
number of participating students in one race/ethnicity group to meet the
requirements specified in the analysis plan. If the researcher decides to collec-
tively adjust the pre-set sampling rates for the remaining schools to select a
larger sample for the underpowered group, then the independence and invari-
ance properties are violated. Consequently, the two-stage design label is no
longer valid. Said another way, the changes are introduced mid-data collec-
tion to address problems introduced by the unanticipated, random response
pattern exhibited in the sample. A thorny issue is how to estimate a variance
in this case. Strictly speaking a variance estimator specialized for two-phase
sampling should be used. In practice, however, the two-stage (rather than
two-phase) variance estimator may be used. The two-stage formula may be
adequate depending on the degree to which the independence and invariance
properties are relaxed. Section 17.4.2 discusses variance estimation issues in
more detail. �

In this section, we provided you with a general example to differentiate
multistage and multiphase studies. In the next section, we turn to examples
of real-world projects to distinguish three types of multiphase designs.

17.2 Examples of Different Multiphase Designs

Multiphase studies are known by different names depending on the purpose
of the design. The three types of the multiphase studies discussed in this
section, and in the remainder of the chapter, are double sampling for strati-
fication, nonrespondent subsampling, and responsive designs. An overview of
each design is discussed below, along with associated surveys found in the
literature. Details on weighting and variance estimation for these studies are
provided in the subsequent sections.

17.2.1 Double Sampling for Stratification

Lohr (1999) and others note that two-phase sampling, also known as double
sampling, was first introduced by Neyman (1938) as a method for obtaining
important auxiliary information from a large sample of units by way of a rel-
atively inexpensive method and then using this data to subsample the units
for a more intense and expensive data collection procedure. Double sampling
for stratification is a specific type of two-phase design where auxiliary infor-
mation obtained from the phase 1 data collection is used in combination with
the phase 1 frame information to form phase 2 design strata within which
independent samples are selected.
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Fig. 17.1: Transition of sample cases through the states of a survey under a double
sampling for stratification design.

These words are translated into a picture shown in Fig. 17.1 to demonstrate
the transition of cases from state to state within a survey. In words, a phase
1 sample of size n(1) is selected from an available sampling frame of size N.
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The particular sample is chosen through a random sampling scheme that

uses a set of auxiliary variables X = (x1,x2, . . .)
′
, where xg denotes a vector

of values for the gth variable of length N. Examples of auxiliary variables
are type of business used for stratification in an establishment survey or the
number of students by race/ethnicity in a school used for pps sampling in
an education survey. (Note that X is a vector of N ones when the phase 1
units are drawn via simple random sampling.) Additional auxiliary data Z =

(z1, z2, . . .)
′
, including process information known as paradata, are obtained

from the n(1)R respondents and included on the phase 2 sampling frame.
Examples of paradata include call or contact history records, with number of
contacts and results from prior contacts, and field observations, such as the
presence of toys in the yard to signify an occupied housing unit most likely
with children (Kreuter et al. 2010).

The phase 1 auxiliary information (z) and most likely the original frame
information (X) are used to develop the phase 2 design. For example, in
a household survey, the age and race/ethnicity (z) of each person in the
phase 1 households along with household income and renter status might be
determined in an initial interview. That information could then be used to
stratify the phase 2 sample. A total of n(2) units (≤ n(1)R) are randomly
selected for a second-phase data collection under a protocol that typically
differs from the first phase (e.g., different mode of data collection). The key

analysis variables y = (y1,y2, . . .)
′
are then collected from as many phase 2

sample members as possible.
Several two-phase (or double-sampling) designs are cited in the literature.

We list five here, but there are many more:

(1) Researchers working to develop a case definition for undiagnosed symp-
toms in US personnel serving in the 1991 Persian Gulf War surveyed a
stratified simple random sample of Gulf War-era veterans (Iannacchione
et al. 2011). Based on survey responses to the US military health survey
(USMHS) in the first phase, respondents were classified as likely having
or not having a certain type of illness. Blood specimens were requested
from randomly sampled phase 1 respondents within the illness strata
and analyzed using expensive tests. Thus, the critical analytic variable
for the USMHS two-phase study was linked to biological data collected
only from the phase 2 respondents.

(2) Another example comes from the European Pain in Cancer (EPIC) sur-
vey. For this telephone survey, a phase 2 sample was selected from phase
1 respondents screened for significant levels of cancer-linked pain so
researchers could better estimate the prevalence and severity of chronic
pain and the utility of various treatment regimes to improve quality of
life (Breivik et al. 2009).

(3) The quarterly retail commodity survey (QRCS) conducted by Statistics
Canada is used to obtain “detailed information on retail commodity sales”
on a subsample of companies selected for the monthly survey of retail
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trade (MRTS). Updated information collected through the (phase 1)
MRTS is used to re-stratify the sample prior to drawing the QRCS phase
2 sample (Hidiroglou 2001).

(4) The Encuesta de Actividades de Niños, Niñas y Adolescentes (EANNA)4

or Survey of Children and Adolescents is a two-phase sample designed to
measure gender equality and child labor in Chile. In phase 1 a national
sample of addresses is selected and the ages of persons in the households
are determined. In the second phase, children and adolescents are strati-
fied into the age groups 5–8, 9–11, 12–14, and 15–18 and a subsample is
selected from each stratum.

(5) A few studies have used a sampling frame formed from the respondents
to the National Health Interview Survey (NHIS).5 For example, Cycle
5 of the National Survey of Family Growth (NSFG-V) subsampled from
1993 NHIS respondents to produce national estimates of fertility practices
and sexual health of women in the US 15–44 years of age (Potter, et al
1998). The sample design for the subsequent cycles of NSFG to date is
a 4-stage area probability sample with a nonresponse follow-up phase
described in the next section. (Lepkowski et al. 2010). Another example
is the Medical Expenditure Panel Survey household component (MEPS-
HC) where national estimates of health insurance coverage and health
care expenditures are produced from a subsample of respondents to the
previous years’ NHIS (Ezzati-Rice et al. 2008).

(6) One final two-phase example presented in this introductory section is
for the birds. Researchers used an inexpensive and somewhat inaccurate
method to estimate the density of nesting birds in a large sample of
geographic areas in Alaska (Bart and Earnst 2002). Intensive methods
were conducted within a phase 2 sample to estimate a measurement error
adjustment. This adjustment was then applied to the complete phase
1 sample to estimate the population bird-nesting density. In all of the
examples, a phase 2 sampling frame did not exist prior to the first-phase
study.

17.2.2 Nonrespondent Subsampling

All students of survey research have been exposed to theory and methodology
that assumes 100% participation from the sample units. However, we know
that nonresponse is a very real fact of survey life and must be addressed
before, during, and after the conduct of a study. For example, pre-data col-
lection discussions may focus on the use of incentives only after a specified
number of attempts to either contact a sample member or convert them to

4 http://www.lanacion.cl/eanna-primera-radiografia-de-los-ninos-y-adolescentes-de-
chile/noticias/2012-02-15/133220.html
5 http://www.cdc.gov/nchs/nhis.htm

http://www.lanacion.cl/eanna-primera-radiografia-de-los-ninos-y-adolescentes-de-
chile/noticias/2012-02-15/133220.html
http://www.cdc.gov/nchs/nhis.htm
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a participant. During data collection, the project team will review records
to ensure that hard-to-reach cases are contacted at varying times of the day
and week to increase the contact rate. Finally, with edited survey responses in
hand, sampling weight adjustments have been shown to reduce nonresponse
errors (see, e.g., Chap. 15 of this text; Särndal et al. 1992; Kott 2006).

Procedures to adjust for potential nonresponse bias are unnecessary only
if the nonrespondents are no different than the respondents on the set of
important analytic variables for the study. This is referred to as ignorable
nonresponse or missing completely at random (MCAR discussed in Sect. 13.5)
in references such as Little and Rubin (2002). Few researchers are willing to
blindly make this assumption since many studies do not have data that can be
used to verify similarities between the respondents and nonrespondents (e.g.,
administrative records) other than frame information. To limit the depen-
dence on weight adjustments to correct any bias due to nonresponse, many
researchers make every attempt to maximize the response rate along with
the quality of the data.

Achieving response rates at or above those used in the sample size calcula-
tions is also important to meet the analytic objectives set for the study (see
Chap. 6). If fewer completed questionnaires are obtained than desired, then
statistical tests may be underpowered or estimates for certain subgroups may
be unstable. Problems with bias and low respondent sample sizes might sug-
gest the need to change the study protocol during data collection to include
the use of (larger) incentives, more call-backs, abbreviated questionnaires, dif-
fering contact or data collection methods, and the like (see, e.g., Dillman et al.
2009). Most of the changes introduced will add burden to the project budget
as well as the length of the data collection. What if the project budget is not
large enough to handle these more intensive modes of data collection for all
nonrespondents? Nonrespondent subsampling is a proposed method to quan-
tify differences between initial (phase 1) respondents and nonrespondents, to
lower nonresponse bias, and to increase the number of study participants.

Example 17.3 (Potential bias due to nonresponse). This simple example illus-
trates why a subsample of nonrespondents should be selected if it is feared
that they may be different from the set of initial respondents. Suppose the
population can be divided into two strata—one stratum contains cases that
respond to the initial phase of data collection and the other stratum includes
cases that do not. Denote the proportions of the population in the two strata
by W1 and W2 = 1−W1 and the population means by ȳU1 and ȳU2, respec-
tively. The population mean is ȳU = W1ȳU1 + W2ȳU2. A simple random
sample is selected and only cases in stratum 1 respond (by definition). If the
population mean is estimated by the sample mean, ȳ1, then the expected
value of ȳ1 is ȳU1, i.e., E (ȳ1) = ȳU1. Now, assume that ȳU2 = k ȳU1. The
relative bias (relbias) of ȳ1 as an estimator of ȳU is calculated as

relbias (ȳ1) =
E (ȳ1)− ȳU

ȳU
(17.1)
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Fig. 17.2: Relationship of the relbias of an estimated population mean to the means
of respondents and nonrespondents.

and for this example is easily found to be

relbias (ȳ1) =
W2 (1− k)

1−W2 (1− k)
.

Figure 17.2 graphs the relbias of the mean of the respondents versus the non-
response proportion for values of k ranging from 0.8 to 1.2. The relbias can
be either positive or negative depending on whether the mean of the nonre-
spondents is less (k < 1) or more (k > 1) than that of the respondents. The
absolute value of the relbias increases as the proportion of nonrespondents
increases and as the value of k becomes farther from 1. Since the mean of
the nonrespondents is unknown, the only symptom of potential bias in this
example is the proportion of nonrespondents in the sample. �

Although there is no bias in Example 17.3 if k = 1, as long as the response
rate is not zero, it is natural to be apprehensive that estimates are biased
any time that there is nonresponse. Selecting a subsample of nonrespondents
is one way to try and get representation of that group and to avoid nonre-
sponse bias. The example above is oversimplified because there is probably
some randomness to whether a given unit responds, implying that a popula-
tion cannot be cleanly classified into respondent and nonrespondent strata.
However, the example is realistic enough to show that nonresponse bias is
something to worry about.

A study that includes a nonrespondent subsampling, also known as
a nonresponse follow-up study (NRFU) or double sampling for nonre-
sponse (DSNR), involves the selection of a random subsample of phase 1
nonrespondents. Often the study team will use different, more expensive
data collection methods than used for the first phase with the goal of
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obtaining complete cooperation from the phase 2 subsample. Provided that
the number of phase 2 respondents is sizeable, in theory researchers are able
to test for differences in the phase 1 respondents and nonrespondents, as
well as reduce the nonresponse bias. The definition of “sizeable” is based on
the associated power calculations to determine this detectable difference (see
Chap. 4).

Figure 17.3 contains a pictorial representation of this type of two-phase
design. Comparing this figure with Fig. 17.1, we are able to see the differ-
ences between double sampling for stratification and double sampling for
nonresponse. As before, a phase 1 sample of size n(1) is selected from a sam-
pling frame using a set of auxiliary variables X. Questionnaire responses
(y11,y12, . . .) and other auxiliary information (z) are collected from n(1)R

respondents during the first phase, leaving (n(1) − n(1)R) > 0 sample cases
with no interview data. Given that n(1)R > 0, the project team needs to
justify the inclusion of a second phase that could extend data collection. The
reasons may include an insufficient respondent sample size n(1)R for the ana-
lytic goals or an indication of sizeable (estimated) nonresponse bias using X.
If this analysis suggests that another phase would not be cost effective, then
the study analysis file is finalized with only the phase 1 responses. Conversely,
if it is determined that a second phase can be conducted with the available
funds and is needed to meet the analytic goals, the statistician randomly
selects a subsample of n(2) cases using the complete set of phase 1 nonre-
spondents. This design generally includes auxiliary information used in the
phase 1 sample design as well as useful paradata obtained during phase 1
data collection such as number of contacts for each case. The phase 2 sample
is then fielded typically with a different data collection protocol (e.g., mode,
incentive, abbreviated questionnaire) than implemented in the first phase.
The phase 1 and phase 2 respondent data are then combined to produce
the analysis data file of nR = n(1)R + n(2)R records from which population
estimates are produced.

Double sampling for stratification and double sampling for nonresponse are
similar in that the phase 1 data collection produces stratifying information
used for the second-phase sample design. However, the mathematics needed
to analyze the two designs is different. Doubling sampling for stratification
assumes that, for a given phase 1 sample, the same strata would always be
formed. If response is treated as random, then the split between respondents
and nonrespondents in a given set of phase 1 units will vary. Examples of
the doubling sampling for stratification design include the identification of
adults with a rare medical condition or households containing children within
a certain age range. Response status is the primary stratifier for the latter
design. Put in terms of the double sampling label, the phase 2 sampling rate
for the phase 1 respondent stratum is 1 (i.e., sampled with certainty for the
study) and the sampling for the phase 1 nonrespondent stratum is generally
less than 1. See Sect. 17.5.2 for methods to determine the sampling rates.
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Fig. 17.3: Transition of sample cases through the states of a survey under a double
sampling for nonresponse design.

DSNR designs of the kind depicted in Fig. 17.3 are included in many
studies. Four examples are provided below:

1. The Tenth Anniversary Gulf War Veterans Health Survey was conducted
to estimate the prevalence of certain adverse health conditions in US
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military personnel who served in the 1991 Persian Gulf War (Singh et al.
2004, 2005). After obtaining a low response rate from a mail survey using
a stratified simple random sample, 1,000 nonrespondents were randomly
subsampled for a telephone follow-up. The nonrespondent sample size was
determined by the available project funds and the sample allocated to the
phase 1 strata to minimize a set of variance constraints.

2. The General Social Survey6 tracks “societal change in the United States”
and facilitates comparisons with other countries through a shared set of
questions. Some question sets are static (referred to as the core modules),
while other modules are newly introduced to capture data on timely issues.
The instrument is primarily administered in a face-to-face setting to a
national sample of adults ages 18 and over randomly selected through
a complex, multistage design. Nonrespondent subsampling has been a
GSS design component since approximately the mid-1990s to increase the
respondent pool and to lower nonresponse bias.7

3. The American Community Survey (ACS) is an on-going, national house-
hold survey conducted by the US Census Bureau.8 ACS staff collect inter-
view data first by mail and then by telephone for nonrespondents who
have not returned a completed questionnaire. Finally, a subsample of non-
respondents and households not contacted through the other modes (e.g.,
mail returned undelivered) is chosen for an in-person visit.

4. The European Social Survey (ESS)9 is implemented in over 30 countries
with the goal of evaluating cross-sectional changes in social attitudinal and
behavioral patterns within and across these nations. In 2006, four countries
implemented a nonresponse survey (ESS-NRS) to estimate nonresponse
bias levels and correlates for the ESS (Matsuo et al. 2010). For example,
the Belgian ESS-NRS sampled all nonrespondents at the doorstep immedi-
ately upon receiving a survey refusal and requested information only for an
abbreviated seven-question instrument. Unlike the two-stage Belgian sur-
vey, the researchers on the Norwegian ESS-NRS implemented a two-phase
design by subsampling ESS nonrespondents at different rates based on the
nonresponse severity category. The Norwegian ESS sample was selected
from a population registry with a one-stage systematic design.

Nonresponse is the primary motivation for two-phase designs with a non-
respondent follow-up or subsample. In the next section, we briefly review a
specialized design that has become popular in our recent history.

6 http://www3.norc.org/GSS+Website
7 http://www.irss.unc.edu/odum/jsp/content node.jsp?nodeid=83
8 http://www.census.gov/acs/www/
9 http://www.europeansocialsurvey.org/

http://www3.norc.org/GSS+Website
http://www.irss.unc.edu/odum/jsp/content_node.jsp?nodeid=83
http://www.census.gov/acs/www/
http://www.europeansocialsurvey.org/
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17.2.3 Responsive Designs

The term responsive design was coined by Groves and Heeringa (2006) to
describe a particular type of survey that attempts to uncover and implement
the best combination of survey conditions (incentives, mode, contact time,
etc.) to maximize participation. The best survey conditions could include,
for example, a mail survey with a 5-dollar incentive (referred to as a pre-
incentive) followed by a reminder postcard, or a telephone interview after
8pm during a weekday. As hinted here, the best conditions likely differ for
various groups of people.

Responsive designs employ two or more survey conditions. As shown
in Fig. 17.4 for a two-phase responsive design, the n(1) phase 1 sample
cases are uniquely assigned to one of the D(1)(≥ 1) survey conditions, i.e.,

n(1) =
∑D(1)

d=1 n(1)d, where n(1)d is the number of phase 1 cases given sur-
vey condition d. The assignment of cases to conditions may be random
or may be informed by prior research. If D(1) = 1, then all cases receive
the same survey condition. The phase 1 interview is conducted, resulting

in n(1)R =
∑D(1)

d=1 n(1)dR respondents with n(1)dR representing the number

of respondents from the dth survey condition and a total of n(1) − n(1)R

nonrespondents. Note that Groves and Heeringa (2006) and many other
researchers call this the first phase of the study whether or not they
plan to subsample for the second phase. For example, consider a survey
that will use either mail/Web or telephone to collect responses where the
literature is not suggestive of the preferred mode. The D(1) = 4 survey
conditions could be: (i) a mail questionnaire sent with a small incentive; (ii)
a mail questionnaire that includes the option of completing the interview on
the Web along with a promised incentive upon completion; (iii) a telephone
interview where the sample member was initially mailed an incentive along
with information about the study; and (iv) a partial interview conducted
by phone with the remainder being completed on the Web and a promised
incentive.

Information gained in the first phase such as paradata or screener responses
along with sampling frame values are used to create the set of D(2) = 1
phase 2 survey conditions. If D(1) is large by construction, then the phase
2 set may be a subset of the cost-effective phase 1 conditions. The phase 1
information is also used to assign the phase 2 nonrespondent subsample to
the conditions. Using the D(1) = 4 example above, results from the first phase
might suggest that the “partial telephone interview” survey condition is more
cost effective than the other conditions developed for the study. Then, either
all or a subsample of the phase 1 respondents would be administered with this
condition with a goal of improving participation. This analysis is discussed in
more detail after we have an understanding of the larger picture. Respondents
from the phase 2 interview are combined with the phase 1 respondents to form
the analysis file.
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Fig. 17.4: Flow of sample cases through a simulated two-phase responsive design.

Now that we have reviewed the overall picture for this type of design, we
can venture back to the phase 1 analysis briefly mentioned earlier. During
data collection, various measures of completion, quality, and cost are typi-
cally monitored. Measures of completion may include rates of completed cases
(e.g., interviews, biospecimens), the projected response rates given the flow
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Fig. 17.5: Flow of responsive-design sample cases assigned to survey condition 1(1)
in phase one.

of completed cases by important reporting subgroups, and the probability of
obtaining a response from the remaining nonrespondents (response propen-
sities) given sampling frame data and possibly paradata. Quality measures,
discussed in detail in Chap. 18, may include nonresponse bias analysis and
estimates of precision for a set of important study variables again by impor-
tant reporting subgroups. Measuring cost efficiency of the “essential survey
conditions” for the current phase is the third prong of the analysis. This may
include, along with the response propensities, an analysis that suggests which
phase 1 condition is best suited for a certain set of phase 1 nonrespondents.
For example, as shown in Fig. 17.5, nonrespondents in phase 1 condition 1(1)
may be assigned to one of D(2) conditions based on this analysis. The results
may also suggest the characteristics included in the phase 2 conditions such
as the size of the increased incentive amount. Once the project statistician
has compiled the analysis, he/she uses a set of predefined decision rules to
determine (i) when the phase 1 conditions are no longer cost effective, (ii)
that more data collection is required to meet the analytic objectives, and
(iii) if sampling or data collection features need to be revisited. At this point,
a new phase of the study design is introduced.

Many would agree that most surveys have some responsive design char-
acteristics. For example, interviewers use a variety of techniques to solicit
cooperation from sample members, and increasing levels of incentive can be
used given the history of refusal for a given sample unit. However, here we
reserve the label “responsive design” for NRFU studies with varying survey
conditions in at least the second phase (i.e., D(2) > 1). One survey that fits
this definition and is the first cited as a responsive design is the National Sur-
vey of Family Growth (NSFG), Cycles 6 and higher (Groves and Heeringa
2006).10

The NSFG is sponsored by the National Center for Health Statistics,
United States Department of Health and Human Services, and was initially
designed to collect information on fertility and health for the noninstitution-
alized population of women aged 15–44years selected through an area proba-
bility sample. Beginning with Cycle 6, a corresponding sample of males aged

10 http://www.cdc.gov/nchs/nsfg.htm

http://www.cdc.gov/nchs/nsfg.htm
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15–44 years was also selected to obtain estimates on fatherhood and involve-
ment with their children. As described in Axinn et al. (2011) and Groves and
Heeringa (2006), the Cycle-6 responsive design was implemented in three
phases that include both subsampling of cases and changes to the data col-
lection protocol. Subsampling strata were developed based on results from
response propensity models. In addition, periodic analyses of paradata and
important study estimates were conducted throughout the data collection
phase with a “dashboard” system (see, e.g., Lepkowski et al. 2010) in an
attempt to predict a cost-effective point in the data collection window to
change study phases.

17.2.4 General Multiphase Designs

We conclude this section with a brief discussion of a general multiphase
design before moving on to the particulars of multiphase survey weights. As
suggested by our discussion at present, subsampling (and changes to the
initial set of essential survey conditions) can occur multiple times within the
data collection window. Figure 17.6 shows the general set-up for a multi-
phase design with an unlimited number of phases. The number of phases is
naturally limited by time and project funds. For some the number of contacts
especially after an initial refusal may be limited by an oversight committee
(e.g., Institutional Review Board or IRB) who, among other responsibil-
ities, protects sample members from coercion and excessive participant
burden.

17.3 Survey Weights

17.3.1 Base Weights

The form of the base (or design) weights for a multiphase design follows
the recipe described in Chap. 13 for multistage designs. The first-phase base
weights d(1)0k are calculated to reflect the sampling design as if the design
contained only a single phase. For example, with a stratified two-stage design,
the unconditional base weight for the kth (second-stage) element is

d(1)0k = π−1
(1)hiπ

−1
(1)k|hi , (17.2)

i.e., the inverse selection probability for the ith cluster in stratum h
(
π−1
(1)hi

)

multiplied by the inverse selection probability for the kth element in cluster

hi, conditional on the cluster being sampled in the first stage
(
π−1
(1)k|hi

)
. The
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Fig. 17.6: Transition of sample cases through the states of a survey under a general
multiphase design.

subscript in parentheses denotes the associated phase of sampling, i.e., “(1)”
represents probabilities of selection associated with phase one. The analytic
units may be selected from strata within each cluster; we suppress the addi-
tional second-stage stratum indicator from the notation only for simplicity.
This two-stage notation used here implies that the elements are selected only
with respect to the selection of cluster hi and no other clusters in the sam-
ple. Therefore, the independence and invariance properties are preserved so
that the “two-stage” label is appropriate. This differs from the second-phase
design as discussed below.

The second-phase base weights are calculated conditional on the first-phase
outcome, the third conditional on the second, and so on. The unconditional
base weight for the kth second-phase sample unit has the following general
form:

d(2)0k = d(1)0kπ
−1
(2)k|(1) , (17.3)

where d(1)0k is the first-phase base weight defined in Eq. (17.2) and π (2)k|(1)
is the phase 2 selection probability for the kth unit conditional on the phase
1 information. In other words, the subscripted “|(1)” says that the phase
2 sample was randomly chosen from the frame generated by the phase 1
sample. Note that expression (17.3) indicates that the kth unit is selected
in both phases, regardless of the type of multiphase design. The phase
2 sample design may include stratification and random selections within
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multiple stages resulting in a complex algorithm for constructing π (2)k|(1).
The notation in expression (17.3) remains somewhat simplistic for this gen-
eral discussion. The following examples will provide the design-specific forms
for the weight components.

Example 17.4 (Weights for a two-phase stsrs/stsrs design). Consider a study
similar to the EPIC survey mentioned in Sect. 17.2.1. The analysis plan devel-
oped at the start of the project states that the study will examine factors
associated with a high quality of life among cancer patients with moderately
high levels of pain experienced during treatment. The sampling plan dictates
that all cancer treatment centers within a region of the country are to be
selected with certainty.11

Having defined the sampling strata, cancer patients are randomly chosen
for the study using sampling rates defined from historic patient-enrollment
statistics:

π(1)h = n(1)h

/
N(1)h,

where n(1)h is the number of sample members selected from treatment cen-
ter h (h=1, . . . , H ), N(1)h is the number of new patients expected to enter

center h for treatment, and d(1)0hk = π−1
(1)h is the associated phase 1 base

weight. The newly recruited n(1) (=
∑H

h=1 n(1)h) sample members are asked
to complete a short (screener) questionnaire. Within their third week of treat-
ment, the sample members are administered a 20m questionnaire to collect
health information as well as inputs for scales on pain threshold and quality
of life. The following indicator variable was generated from the second phase
1 interview results:

δ(1)dk =

{
1 if sample member k has characteristic d,
0 otherwise,

where domain 1 (d = 1) represents those patients experiencing at least a
moderately high level of pain (high score on the pain scale) who also report
a high quality of life (high score on the quality of life scale), and domain 2
(d = 2) identifies patients with moderately high levels of pain but experience
a low quality of life. Sample members who have no or low levels of pain
constitute the third subgroup within our phase 1 sample and are not eligible
for the phase 2 study. The project statistician determined the sampling rates

11 The cancer treatment centers under this design are treated as the first-stage strata
for point and variance estimation because all and not a sample of centers are included
in the study. As an aside, mathematical modelers would label this “cancer treatment
variable” a fixed effect. If a subset of centers were randomly chosen, then these first-
stage clusters (PSUs) usually would be modeled with random effects.
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within each of the two second-phase strata to meet the comparative analysis
objectives. Therefore, the conditional phase 2 selection probabilities are

π (2)hd|(1) = n(2)hd

/
n(1)hd,

where n(2)hd (n(2)hd ≤ n(1)hd) is the number of cancer patients randomly
selected for the phase 2 sample out of the total number of phase 1 patients
identified as members of stratum d, i.e., n(1)hd =

∑
k∈s(1)h

δ(1)dk, through the

phase 1 questionnaire. A second questionnaire is then administered to the
n(2) (=

∑H
h=1

∑2
d=1 n(2)hd) phase 2 subsample members to gather detailed

information on issues related to social support, religiosity, and home life.
Combining the two selection probabilities, the unconditional phase 2 base

weight for the kth sample member is

d(2)0hdk = d(1)0hk π−1
(2)hd|(1) =

N(1)h

n(1)h

n(1)hd

n(2)hd
.

As a quality check, the sum of the base weights for all phase 1 sample mem-
bers, regardless of their phase 2 eligibility status, equals the total number of
cancer patients receiving treatment in cancer treatment centers within the
designated region of the country, i.e.,

∑
k∈s(1)

N(1)h

/
n(1)h =

H∑
h=1

∑
k∈s(1)h

N(1)h

/
n(1)h =

H∑
h=1

N(1)h = N(1).

The sum of the phase 2 base weights estimates the total number of cancer
patients with moderate to high levels of pain during treatment. �

Example 17.5 (Weights for an stsrs NRFU). Let’s recast the study design
from Example 17.4 as one that includes two interviews (screener and combined
pain threshold and social support questionnaire). All n(1) phase 1 sample

members responded to screener, but only a portion, n(1)R

/
n(1), responded to

the larger interview. An initial analysis conducted by the project statistician
identified a significant difference in the estimates for the n(1)R respondents
and n(1)R̄ (= n(1) − n(1)R) nonrespondents calculated from the screener and
administrative record data, i.e., there is the potential for nonresponse bias
(see Sect. 13.5). Consequently, 2H conditional subsampling rates were devel-
oped for the treatment centers with the following form:

π (2)hd|(1) =
{
n(2)hd

/
n(1)hd if d = R̄, a phase1 NR stratum in center h,

1 if d = R, the phase1 R stratum,

where NR stands for nonrespondents and R for respondents. An abbrevi-
ated version of the phase 1 instrument is developed and administered to
the subsample of n(2) patients selected from the n(1)R̄ nonrespondents.
Using the phase 1 base weights defined in the previous example, the
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resulting unconditional base weights included on the preliminary analysis file
of n(1) = n(1)R + n(2) records are

d(2)0hdk = d(1)0hk π−1
(2)hd|(1)

=

⎧
⎪⎨
⎪⎩

N(1)h

n(1)h

n(1)hd

n(2)hd
, phase 1 NRs selected for phase 2 ,

0, phase 1 NRs not selected for phase 2,
N(1)h

n(1)h
, phase 1 Rs.

�

17.3.2 Analysis Weights

Adjustments such as those for nonresponse are applied to the base weights
to form the final multiphase analysis weights. The adjustment procedures for
creating the adjustment factors follow the material presented in Chaps. 13
and 14 for multistage designs. This information is summarized in a series
of steps below for the two-phase and the NRFU designs. The disposition
response status for cases in these two designs was shown in Figs. 17.2 and 17.3,
respectively. The section is concluded by a brief discussion of weights for
general multiphase designs.

Two-Phase Designs. The first step in constructing analysis weights for
phase 2 respondents within a two-phase design is to develop the phase 1
analysis weights. In keeping with the notation used in Chap. 13, the phase 1
weights w(1)k take the following form:

w(1)k = d(1)0k a(1)1k a(1)2k g(1)k (17.4)

where d(1)0k is the base weight calculated as the inverse probability of selec-
tion for the phase 1 sample, a(1)1k is an adjustment for unknown eligi-
bility status, a(1)2k is an adjustment for nonresponse applied to the base
weight adjusted for unknown eligibility (d(1)1k = d(1)0ka(1)1k), and g(1)k
is the calibration adjustment made to the adjusted base weights, d(1)2k =
d(1)0k a(1)1k a(1)2k, using controls generated from the population. Any respon-
dents who are classified as ineligible for the phase 2 study are removed from
the sampling frame. The weights and the phase 1 questionnaire data are used
in the selection of the second-phase sample.

After data have been collected from the responding phase 2 sample mem-
bers, the final unconditional, phase 2 analysis weight is similarly constructed
as follows:

w(2)k = w(1)k a (2)0k|(1) a (2)1k|(1) a (2)2k|(1) (17.5)
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where w(1)k is the final phase 1 weight specified in Expression (17.4), a (2)0k|(1)
is the adjustment for subsampling conditional on the responses from phase
one, and a (2)1k|(1) and a (2)2k|(1) are adjustments for unknown eligibility and
nonresponse strictly associated with the phase 2 sample. An adjustment for
unknown eligibility might apply if, for example, some sample members are
unlocatable during the phase 2 data collection window. Expression (17.5)
could also include a second calibration adjustment, g (2)k|(1), that includes
controls associated with the population of interest as well as estimated
counts tabulated from the phase 1 responses and the final phase 1 weights.
Through a general regression estimator (GREG; see Chap. 14), these calibra-
tion adjustments could be made simultaneously or sequentially. We discuss
this issue in more detail in Sect. 17.3. The set of units that would be used for
estimation would generally be the eligible respondents in phase 2, s(2)R. Or
if the control totals used for the phase 2 calibration include ineligibles, then
the set of units used for analysis is s(2)R ∪ s(2)IN where s(2)IN represents the
set of phase 2 sample units known to be ineligible.

NRFU Designs. As shown in Fig. 17.3, (NRFU) or double sampling for
nonresponse studies differ from two-phase designs in that all or a portion of
the data collected in phase 1 are also collected in the second phase. The final
phase 1 weights

w(1)k = d(1)0ka(1)1kg(1)k (17.6)

are calculated by adjusting the base weight (d(1)0k) for any unknown eligi-
bility (a(1)1k) and then calibrating to population control totals (g(1)k) prior
to selecting the subsample of n(2) (< n(1)R̄) nonrespondents for follow-up in
phase 2. After the phase 2 data collection has ended, the input weights for
the phase 2 sample members (w(1)k) are corrected for subsampling (a (2)0k|(1))
and any unknown eligibility (a (2)1k|(1)) or nonresponse (a (2)2k|(1)), resulting
in adjusted weights of the form:

d(2)2k = w(1)ka (2)0k|(1)a (2)1k|(1)a (2)2k|(1), (17.7)

Note that the unconditional base weight for the phase 2 sample cases is
defined by the first two components above, i.e.,

d(2)0k = w(1)ka (2)0k|(1). (17.8)

The study analysis file will contain questionnaire values for the n(1)R phase 1
respondents as well as the n(2)R (≤ n(2)) phase 2 respondents. A final calibra-
tion adjustment (g (2)k|(1)), using population control totals, may be applied to
all respondent records to generate the unconditional phase 2 analysis weights

w(2)k =

⎧⎨
⎩

w(1)ka (2)0k|(1)a (2)1k|(1)a (2)2k|(1)g (2)k|(1),
for the phase 1 nonrespondents selected for phase 2

w(1)k × g (2)k|(1), for the phase 1 respondents
(17.9)
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for components defined for expression (17.7). Unlike the other two-phase
design, the weights, in general, are calibrated to only population controls
and not to data collected in the first phase.

General Multiphase Designs. Weights for survey designs with more than
two phases (see, e.g., Figs. 17.4 and 17.3) follow the prescription described
above. Appropriate weight adjustments are applied to each subsample and
associated outcomes from the phase-specific data collection efforts. A word
of caution needs to be voiced at this point—as the number of phases of sub-
sampling increases, so does the variability in the resulting analysis weights.
The Sect. 14.4 discussion highlighted the potential damage that widely vary-
ing weights can do to survey estimates, making the precision so poor that
results from the study may not be published. In addition to weight smooth-
ing techniques, optimal subsampling procedures have also been developed to
minimize this problem. We discuss a few of these later in Sect. 17.5.

Example 17.6 (Base weights for an stsrs NRFU). Suppose a project statis-
tician develops the allocation for a single-stage stratified design, assuming
that the response rate will be sufficient to obtain at least 1,000 respondents
as required by the analysis plan. A proportional allocation is chosen because
of the limited information available on the relative sizes of the population
variances across four sampling strata. The following table contains the popu-
lation counts and sample size by stratum, along with the estimated number
of respondents given a response rate of at least 61%. The overall sampling
fraction, used in each of the strata, was 0.022 or 1,650 / 75,000, resulting in
an equal probability sample with identical base weight of 45.45 (1/0.22).

Data collection proceeded with the randomly selected sample of cases. How-

Stratum Pop Sample Estimated
size size respondents

(Nh) (nh) (rh)
1 12,882 284 173
2 27,332 601 366
3 18,361 404 246
4 16,425 361 220
Overall 75,000 1,650 1,005

ever, the perceived conservative response rate of 61% proved too optimistic—
data were collected from only 972 sample members (57.7 unweighted response
rate). A subsequent analysis determined that the existing set of responses
produced inadequate precision based on the approved analysis plan, and
that continuation of the current study protocol would be ineffective. The
team received the appropriate authorization to introduce a more expensive
data collection methodology than initially implemented including a monetary
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incentive for participation. Because of the increased data collection cost and
dwindling project funds, the team determined that this second phase could
be implemented on at most 120 phase 1 nonrespondents. The sampling statis-
tician drew an srs of equal size within the phase 1 sampling strata.

Phase 1 Phase 2
Stratum Sample Respondents Response Frame Sample Sampling

size rate size fraction
h n(1)h (% ) N(2)h n(2)h (% )
1 284 227 79.9 57 30 52.6
2 601 270 44.9 331 30 9.1
3 404 222 55.0 182 30 16.5
4 361 253 70.1 108 30 27.8
Overall 1,650 972 58.9 678 120 17.7

The phase-specific base weights, equal within strata, were constructed as
follows:

Phase 1 Phase 2
Stratum Respondents Base Sample Subsample Base

weight size weight
h n(1)h d(1)0h n(2)h a(2)0h(1) d(2)0h
1 227 45.4 30 1.9 86.2
2 270 45.5 30 11.0 501.8
3 222 45.4 30 6.1 275.7
4 253 45.5 30 3.6 163.8
Overall 972 120

�

Example 17.7 (Nonresponse-adjusted analysis weights for an stsrs NRFU).
Continuing with Example 17.6, 45 of the 120 sample members participated
in the phase 2 data collection. Even though only a 37.5% unweighted, con-
ditional phase 2 response rate was achieved (= 45/120), a total of 1,017
completed cases were processed for the final analysis file.

Weights for the 45 respondents were adjusted for nonresponse specific to
the second phase using a standard weighting class adjustment (see Sect. 13.5)
with the unconditional base weights defined in expression (17.5) within each
of four design strata. The summarized results are provided below.
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Stratum Phase 1 respondents Phase 2 respondents
Sample Adjusted Sample Base Sub- Non- Adjusted

size weight size weight sample response weight
h n(1)h w(2)k n(2)h d(1)0h a(2)0h a(2)2h w(2)k

1 227 45.4 4 45.4 1.9 7.50 646.4
2 270 45.5 22 45.5 11.0 1.36 684.2
3 222 45.4 12 45.4 6.1 2.50 689.3
4 253 45.5 7 45.5 3.6 4.29 702.0
Overall 972 45

The adjusted weight for the phase 1 respondents is approximately the
same as the base weight, i.e., d(1)0h

.
= 45.4 for each respondent. The adjusted

weight for the phase 2 respondents is the phase 1 base weight multiplied
by the conditional subsampling and nonresponse weights, a(2)0h and a(2)2h,
respectively. Notice that, even though the weights for the phase 1 respondents
are all equal and the weights for the NRFU cases are similar to each other
(ranging from 646.4 to 702), there is quite a bit of weight variation in the full
set of responding cases (45.4 to 702). Whether the nonresponse follow-up is
statistically efficient or not should be evaluated using the data collected in
the survey. �

17.4 Estimation

Now that the analysis weights have been defined for multiphase design, we
turn to the construction of point and variance estimates produced from the
study data.

17.4.1 Descriptive Point Estimation

The form of the descriptive point estimates such as means and totals from
multiphase designs follows the same formula specified for other designs. The
following examples are discussed in the literature for two-phase design, pri-
marily to demonstrate the efficiency (or inefficiency) of certain variance esti-
mates. (i) The double expansion estimator (DEE; Kott and Stukel 1997) for
a population total in a two-phase design is calculated as

t̂(2)y =
∑

k∈s(2)

w(2)k yk (17.10)

where w(2)k is the unconditional phase 2 weight defined in expression (17.9);
yk is the characteristic of interest; and s(2) signifies the second-phase sample
(and consequently any design characteristics such as stratification and clus-
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tering). An associated estimator, found by Kott and Stukel (1997) to have
smaller variances than the DEE, is known as the reweighted expansion esti-
mator (REE). Expressed as a mean for a two-phase design, the REE has the
following form:

ȳ(2) =
1

N̂(2)

H∑
h=1

N̂(1)hȳ(2)h, (17.11)

where N̂(2) =
∑

k∈s(1)

∑
k∈s(2)

w(2)k, the estimated number of units in the tar-

get population using weights generated from expression (17.9); h = 1, . . . , H
indexes the mutually exclusive groups, such as strata, associated with
the two-phase sample design; N̂(1)h =

∑
k∈s(1)

w(1)k, the estimated num-

ber of units in stratum h with w(1)k defined in expression (17.6); and

ȳ(2)h =
(∑

k∈s(2)h
w(2)k

)−1∑
k∈s(2)h

w(2)kyk is the estimate of the popula-

tion mean in stratum h based on the phase 2 sample and the unconditional
weights.

Bias of the Estimators
One final note before we move to variance estimators. The unconditional

design-based expectation of a multiphase estimator is evaluated as a function
of the conditional expectations within each successive phase of the design (see,
e.g., Casella and Berger 2002, Theorem 4.4.3). The formula for a two-phase
design is

E
(
θ̂
)
= E(1)

[
E(2)

[
θ̂
∣∣∣ (1)

]]
. (17.12)

Working first with the innermost bracketed term, the expectation of the
generic point estimator θ̂ is evaluated with respect to the second-phase sam-
ple design conditional on the components of the phase 1 design, e.g., the
sample size is fixed. The expectation of the resulting estimator is then eval-
uated treating the phase 1 sample selection as random. Using this same par-
titioning, the expression above can be expanded to more than two phases
by evaluating the conditional expectation and substituting into the previous
equation, e.g.,

E(2)

[
θ̂
∣∣∣ (1)

]
= E(2)

[
E(3)

[
θ̂
∣∣∣ (2)

]∣∣∣ (1)
]
.

In addition to quantifying the theoretical bias of an estimator, this equality
is useful in building variance estimators as shown in the next section.

Example 17.8 (Expectation of a Two-phase Estimator of a Total). Consider

the two-phase estimator θ̂ = t̂(2)y of the population total ty =
∑

k∈U yk,

where t̂(2)y =
∑

k∈s(2)
d(2)0k yk and the unadjusted base weight d(2)0k

defined as d(2)0k = π−1
(1)kπ

−1
(2)k|(1), a function of the unconditional phase 1 and
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conditional phase 2 selection probabilities as defined in expression (17.3). The
unconditional expectation of the population estimate is

E
(
t̂y
)
= E(1)

[
E(2)

[∑
k∈s(2)

d(2)0k yk

∣∣∣ (1)
]]

= E(1)

[
E(2)

[∑
k∈U d(2)0k I(2) yk

∣∣ (1)]].
where I(2) is a binary variable to identify the population units selected for
the phase 2 sample. Note that selection in the phase 2 sample is a function of
the phase 1 selection and conditional phase 2 selection, i.e., I(2) = I(1)×I(2|1).
Substituting the formula for d(2)0k and I(2), we have

E
(
t̂y
)
=
∑

k∈U

(
π−1
(1)kπ

−1
(2)k|(1)

)
E(1)

[
I(1)
]
E(2)

[
I (2)|(1)

∣∣ (1)] yk
=
∑

k∈U

(
π−1
(1)kπ

−1
(2)k|(1)

)
π(1)kπ(2|1)kyk

= ty.

Therefore, t̂y is an unbiased estimator of ty. This assumes that the frame
used for the phase 1 sample covers the whole population. If there are frame
undercoverage problems and nonresponse at either or both phases, unbiased-
ness depends on assumptions about the nonresponse and coverage mecha-
nisms along with the properties of the steps (like calibration) taken to correct
those problems. �

17.4.2 Variance Estimation

Variance estimation techniques for general surveys were covered in Chap. 15.
Once augmented, the same approach is useful for multiphase designs dis-
cussed in this section. As with the previous chapter, this section includes a
discussion of (Taylor Series) linearization and replication variances.

Linearization Variance Estimators

The procedure for developing a multiphase variance estimator for a generic
point estimate, θ̂, begins with the derivation of the unconditional formula
(see, e.g., Casella and Berger 2002, Theorem 4.4.7):

V
(
θ̂
)
= V(1)

[
E(2)

[
θ̂
∣∣∣ (1)

]]
+ E(1)

[
V(2)

[
θ̂
∣∣∣ (1)

]]
(17.13)

where, similar to expression (17.12), E(1) and V(1) are the theoretic expecta-

tion and variance with respect to the phase 1 sample design and E(2)

[
θ̂
∣∣∣ (1)

]
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and V(2)

[
θ̂
∣∣∣ (1)

]
are the corresponding quantities for the phase 2 sam-

ple design conditional on the realized phase 1 sample. Evaluating expres-
sion (17.13) for the complete design results in a Taylor series linearization
variance component that accounts for the random selection within each phase.

Example 17.9 (Variance of an estimated total for a generic two-phase design).
Consider the estimator of a total, t̂(2)y =

∑
k∈s(2)

d(2)0k yk, discussed in

Example 17.8 desired for a two-phase survey where the sample design for
each phase is classified only in generic terms. The first thing to note is that,
similar to the decomposition for a two-stage design, the estimator can be
expressed as a function of phase 1, phase 2 and population terms. Namely,

t̂(2)y − ty =
(
t̂(1)y − ty

)
+
(
t̂(2)y − t̂(1)y

)
= D̂(1) + D̂(2)

where t̂(1)y =
∑

k∈s(1)
d(1)0k yk, the population estimate using the phase 1

data; and D̂(1) =
(
t̂(1)y − ty

)
and D̂(2) =

(
t̂(2)y − t̂(1)y

)
represent the error

associated with the phase 1 and phase 2 random sampling designs, respec-
tively. The variance of t̂(2)y is then evaluated as

V ar
(
t̂(2)y

)
= V ar

(
t̂(2)y − ty

)
= V(1)

{
E(2)

[
t̂(2)y − ty

∣∣ (1)]}+ E(1)

{
V(2)

[
t̂(2)y − ty

∣∣ (1)]}.
Working with the innermost formulas, we have

E(2)

[
t̂(2)y − ty

∣∣ (1)] = E(2)

[
D̂(1) + D̂(2)

∣∣∣ (1)
]
= D̂(1)

assuming that the phase 2 estimator, t̂(2)y, is an unbiased estimator of the

phase 1 estimator, t̂(1)y (conditional on the phase 1 sample). The phase 2

variance, given the phase 1 sample, is V(2)

[
t̂(2)y − ty

∣∣ (1)] = V(2)

[
t̂(2)y

∣∣ (1)].
Thus, the two-phase sampling variance for the estimated total is defined as

V
(
t̂(2)y

)
= V(1)

[
t̂(1)y

]
+ E(1)

{
V(2)

[
t̂(2)y

∣∣ (1)]} . (17.14)

Consequently, the variance of the two-phase estimator, t̂(2)y, will be larger
than the variance of the population total tabulated as if all the data were
obtained in the first phase. But, as noted earlier, the point of doing a second
phase is to either use methods that would be too costly to apply to all first
phase units or to target the sample in a way that would not be feasible using
a single-phase sample.

A general formulation of expression (17.14) is given in Result 9.3.1
of Särndal et al. (1992) and recast as follows using the notation specific
to this chapter:
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V
(
t̂(2)y

)
=
∑∑

s(2)

Δ(1)kl

π(2)kl

yk
π(1)k

yl
π(1)l

+
∑∑

s(2)

Δ (2)kl|(1)
π (2)kl|(1)

yk
π(2)k

yl
π(2)l

(17.15)

where π(2)kl and π (2)kl|(1) are the unconditional and conditional phase 2 inclu-
sion probabilities, respectively; π(2)kl = π(1)kl π (2)kl|(1), the unconditional
joint inclusion probability defined as the product of the phase 1 probabil-
ity and the conditional phase 2 probability; Δ(1)kl = π(1)kl − π(1)k π(1)l and
Δ (2)kl|(1) = π (2)kl|(1)−π (2)k|(1) π (2)l|(1), the phase 1 and (conditional) phase 2
joint inclusion probabilities for units k and l, respectively. An explicit formula
for the population variance in expression (17.14) is defined once the sample
designs in each phase are specified. In general, a design consistent sample
estimate of the variance is obtained by substituting the sample estimates for
the population values. The next example provides such a specialization for
one type of two-phase design. �

Example 17.10 (Variance for an srs/stsrs two-phase design, Example 17.9
continued). Consider the double sampling for stratification design where the
phase 1 design is an srs of size n(1) and a second-phase random sample of size

n(2) =
∑H

h=1 n(2)h is selected from the newly identified strata. First, note that
the DEE estimated population total from Example 17.9 can be reexpressed
as a function of estimated stratum means:

t̂(2)y =
∑H

h=1

∑
k∈s(2)h

d(2)0k yk =
∑H

h=1

∑
k∈s(2)h

(
N

n(1)

n(1)h

n(2)h

)
yk

where h indexes the strata identified from the phase 1 sample, w(1)h =(
n(1)h

/
n(1)

)
, and ˆ̄y(2)h =

∑
k∈s(2)h

(
yk
/
n(2)h

)
. Therefore, expression (17.15)

is evaluated as

V
(
t̂(2)y

)
= N2

[
(
1− f(1)

) S2

n(1)
+ E(1)

(
H∑

h=1

w2
(1)h

(
1− f(2)

) s2(1)h

n(2)h

)]

with the phase-specific sampling fractions, f(1) = n(1)

/
N and f(2)h =(

n(2)h

/
n(1)h

)
; the population sampling variance, S2 = (N − 1)−1

∑
k∈U (yk − ȳ)2, and mean, ȳ = N−1

∑
k∈U yk; and the phase 1 sampling

variance
s2(1)h =

(
n(1)h − 1

)−1 ∑
k∈s(1)h

(
ŷ(1)k − ˆ̄y(1)h

)2

with mean ˆ̄y(1)h = n−1
(1)h

(∑
k∈s(1)h

ŷ(1)k

)
where ŷ(1)k = d(1)0k yk. The second

term in V
(
t̂(2)y

)
is left as an expectation because w(1)h and n(2)h are random

variables. Estimates of the variance components due to first, and second-phase
sampling are given by Rao (1973) and Särndal et al. (1992, Sect. 9.4) as
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V̂1 =
1− f(1)

n(1)

[
H∑

h=1

w(1)h

(
1− 1

n(2)h

n(1) − n(1)h

n(1) − 1

)
s2(2)h

+
n(1)

n(1) − 1

H∑
h=1

w(1)h

(
ˆ̄y(2)h − ˆ̄y(2)

)2
]

and V̂2 =
∑H

h=1 w
2
(1)h

(
1− f(2)h

) s2(2)h
n(2)h

. Adding these and assuming that the

first-phase sampling fraction, f(1), is small and that
(
n(1)h − 1

) / (
n(1) − 1

) .
=

w(1)h, the estimated variance of t̂(2)y is

v
(
t̂(2)y

) ∼= N2

[
1

n(1)

H∑
h=1

w(1)h

(
ˆ̄y(2)h − ˆ̄y(2)

)2
+

H∑
h=1

w2
(1)h

(
s2(2)h

n(2)h

)]
,

where ˆ̄y(2) =
∑H

h=1 w(1)h ˆ̄y(2)h, ˆ̄y(2)h =
∑

k∈s(2)h
yk

/
n(2)h, and

s2(2)h =
(
n(2)h − 1

)−1∑
k∈s(2)h

(
ŷ(1)k − ˆ̄y(1)h

)2
. �

We give a numerical illustration of srs/stsrs two-phase sampling for strat-
ification in Example 17.12.

It should be apparent from the previous examples that as the sample
designs become more complex, so does the variance estimator. This also holds
true with an increase in the number of sampling phases. Software for comput-
ing two-phase variance estimates to date is limited and currently non-existent
for multiphase designs. Because researchers must develop and program the
formula, many instead turn to replicate variances that are in general easier
to implement.

Replication Variance Estimators

Replicate variance estimators, such as the jackknife, are applicable to a variety
of sample designs and estimators. As discussed in Chap. 15, the variance

estimate is a function of the deviation of A replicate estimates, θ̂
(r)
(2), calculated

with the replicate weights, w
(r)
(2), from an aggregate value, θ̂

(∗)
(2) ,

v
(
θ̂(2)

)
=

1

C

A∑
r=1

(
θ̂
(r)
(2) − θ̂

(∗)
(2)

)2
,

where C is a constant that depends on the method of replication (jackknife,

BRR, or bootstrap). The aggregate value, θ̂
(∗)
(2) , could be generated as the

average of the replicate estimates,θ̂
(∗)
(2) = R−1

∑
θ̂
(r)
(2), or using the complete

phase 2 data estimate and the original analysis weight (full-sample weight).
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Kott and Stukel (1997) and Kim and Yu (2011) discuss the theoretical and
empirical properties of the jackknife variance estimator while Fuller (1998)
studied balanced repeated replication. The work of Kim et al. (2006) covered
replication variances but did not focus on a specific replicate form. To date,
no research has been implemented on the bootstrap estimators for multiphase
designs.

The generic process for creating the two-phase replicate weights is summa-
rized in three steps:

(1) Identify a sample unit or group of units (for a delete-a-group variance
estimator) from the analysis data file and set their analysis weights to
zero. The remaining units are classified as the replicate subsample.

(2) Next, adjust the base weights for the subsampling implemented in step
1 to form the replicate base weight.

(3) Finally, reapply any weight adjustments used to produce the full-sample
weights to calculate the final replicate analysis weight.

For a jackknife variance the three steps are repeated R times so that each
unit is excluded once to form a replicate weight. A random group variance
estimate is similar in that units are randomly grouped and all or a random
subset of the groups are removed to form the replicate weights.

As implemented with a single-phase sample (e.g., see Valliant 1993, 2004),
the weight adjustments such as nonresponse and calibration are newly applied
to each replicate so that the variance will capture any additional random prop-
erties other than the sampling process. For example, if the phase 2 weights
are calibrated to a set of phase 1 estimates, then new estimated controls are
calculated for each replicate prior to this adjustment. Additional replicate
adjustments have been investigated including one to capture the variation
in the phase 1 estimated controls (Fuller 1998) and a non-negligible phase 1
finite population correction (Korn and Graubard 199912, Lee and Kim 2002)
as well as a correction for bias that is inherent in the jackknife (Kim and Yu
2011).

The three steps above are further specialized for attributes of the phase 1
design. For example, if the phase 1 sample design is clustered and the jack-
knife is used, then clusters are deleted to form replicates and the weights
for all units in a deleted phase 1 cluster are set to zero in step 1. As noted
in Kim et al. (2006), if a consistent variance estimator is available for the esti-
mates under the phase 1 design, then this property will hold for a multiphase
extension.

Example 17.11 (Variance for two-phase design with cluster sampling). Con-
sider a study that requires estimates generated from psychological tests
administered in person. Data from an initial battery of questions (phase one)
were used to ensure that the in-person sample (phase two) includes female

12 Also, see the panel discussion on the appropriate uses of an fpc at http://web.cos.
gmu.edu/∼wss/wss070328paper.pdf.

http://web.cos.gmu.edu/~wss/wss070328paper.pdf
http://web.cos.gmu.edu/~wss/wss070328paper.pdf
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head of households with relatively good health and quality of life (QoL) as
well as those with physical maladies or poor QoL. A sample of mh area seg-
ments is selected from region h (h = 1, 2, 3, H = 4) for phase one; all
female head of households in the sample segments were included in an initial
telephone interview.

The second-phase srs was selected from three strata (G=3) within each
segment with strata defined by the categorization of the phase 1 scale score
of high, medium, and low QoL. All unknowns, i.e., nonrespondents, were
grouped in the “medium” stratum based on prior research. It should be noted
that the clustered nature of the phase 1 design not only enabled a cost-
effective methodology for conducting the phase 2 in-person interview, but
also permitted in-person follow-up with phase 1 nonrespondents.

The project statistician chose to calculate replicate two-phase weights for
the analytic data file. The construction of the base weights began before
implementation of the phase 2 data collection. Suppose the full-sample base
weight defined for cluster i in phase 1 stratum h is d(1)0hi. When cluster (st)
is deleted, the replicate jackknife base weight was created as

d
(st)
(1)0hi =

⎧
⎨
⎩

d(1)0hi h 	= s, i 	= t,
d(1)0hi × (mh/mh − 1) h = s, i 	= t,
0 h = s, i = t.

Note that all members of the cluster were selected with certainty in the
phase 1 sample, so that w(1)hi was applied to all sample units in cluster
hi. The conditional base weight for the second-phase interview was defined
as d (2)0hij|(1) = n(1)hig

/
n(2)hig for sample member j in nested stratum hig

(j ∈ shig), where n(1)hig is the number of eligible, phase 1 sample members
in stratum g within cluster hi (i.e., the number of phase 1 female head of
households) and n(2)hig is the corresponding phase 2 sample size. Combining
the two, the unconditional phase 2 replicate base weight for phase 2 sample

member j in phase 2 stratum hig was calculated as d
(st)
(2)0hij = d

(st)
(1)0hi ×

d (2)0hij|(1). �

The jackknife variance estimator for either the DEE or REE has a nega-
tive bias which, at least in some cases, is negligible (Kim and Yu 2011). For
example, if clusters are selected by srswor, the bias is small when the first
phase sampling fraction is small. When the first phase sampling fraction is
not negligible, Kim and Yu (2011) give methods of construction replication
estimates that remove the bias.

A Comment on Complex Multiphase Designs
Literature to date primarily focuses on what can be classified as “single-

stage” two-phase designs. These designs include, for example, a single-stage
of selection (phase one) followed by a second single stage of selection (phase
two) such as the srs/stsrs design discussed in Example 17.10. This paradigm
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follows the one used to develop the original theory that results in variance
components that are familiar to those with at least one sampling course.
However, literature that includes linearization variance estimators for more
complex designs that include clustering in the first phase, such as with Exam-
ple 17.11, is limited. More research has been done on replication. Review of
a few methodology reports, such as the NSFG-V (Potter et al. 1998) and the
American Time Use Survey (Bureau of Labor Statistics 2012), indicates that
the study (unconditional phase 2) weights should be used with standard soft-
ware that accounts for the (phase 1) clustering. This suggests that only the
first component in expression (17.14) is accounted for in the variance estimate.
If true, the implication of ignoring the “within phase 2” variance component
(i.e., potential underestimation of the variance) requires additional research.

17.4.3 Generalized Regression Estimator (GREG)

The use of strong auxiliary data to select a sample is part of the justification
for multiphase surveys. If not already available, this important information
is collected in earlier phases for subsequent ones. The generalized regression
estimator or GREG discussed in Chap. 15 taps auxiliary information to both
reduce bias and variance of the estimates. In this section, GREGs produced
from multiphase designs are discussed.
GREG Weights and Point Estimation

Kim and Yu (2011), along with Särndal and Lundström (2005) and Särndal
et al. (1992), discuss the benefits of regression estimators related to bias
reduction and improved efficiency in precision estimates over the expansion
estimators. The formula, reproduced from Chap. 14, for calculating a GREG
for a population total is

t̂yGREG = t̂y +
(
tx − t̂x

)′
B̂ (17.16)

=
∑
k∈s

[
1 +
(
tx − t̂x

)′ (
XTDV−1X

)−1
xk/vk

]
dkyk,

where tx is the vector of control totals, t̂x is the associated vector of sample
estimates, gk is the term in brackets in the second line, and wk = gkdk.
The term gk is sometimes referred to as the g-weight or calibration weight.
Focusing on a two-phase design for convenience, we have a total of three
weight calibration scenarios. Namely, the phase 2 weights are calibrated (i)
to phase 1 estimated control totals only, (ii) to population control totals only,
or (iii) to the phase 1 and population controls simultaneously.

Calibration to the phase 1 estimated control totals, scenario 1 above,
should be considered for situations where there is no information (or unreli-
able estimates) for the target population of interest. With this procedure, the
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(adjusted) base weights d(2)k for the phase 2 study respondents are calibrated
to satisfy the constraints

∑
k∈s(2)R

w(2)k z(2)k = t̂(1)z , (17.17)

where z(2)k is a vector of variables collected in phase 1 and populated with
information for the phase 2 respondents (s(2)R); w(2)k is the resulting cal-

ibrated analysis weight; and t̂(1)z =
∑

k∈s(1)R
w(1)k z(1)k is the vector of

estimated controls calculated from the phase 1 respondents. Thus, within
expression (17.16), we have tx = t̂(1)z and t̂x = t̂(2)z =

∑
k∈s(2)R

d(2)k z(2)k.

A survey sample can also be calibrated to estimates from an indepen-
dent survey. The Health and Retirement Study,13 for example, calibrates its
weights to family composition distributions estimated from the Current Pop-
ulation Survey,14 which is an independent household survey. For calibration
to estimated controls, the ideal situation is to have highly precise survey esti-
mates from a study that is much larger than the survey requiring calibration
(Dever and Valliant 2010).

When the group of phase 1 respondents is insufficient in size to produce
efficient estimates for calibration, researchers must follow, if possible, scenario
2 and adjust the weights to population controls. Here the (adjusted) base
weights d(2)k for the phase 2 study respondents are calibrated to satisfy the
constraints ∑

k∈s(2)R

w(2)k x(2)k = tx, (17.18)

where x(2)k is a vector of variables known for the study sample and con-
taining data for the phase 2 respondents; w(2)k is the resulting final cali-
brated analysis weight; and tx is the vector of population totals as defined
in expression (17.16). For studies with a NRFU, this more traditional style
of weight calibration might be appropriate especially if the phase 1 and
phase 2 respondents appear to differ on characteristics relevant to the
study.

Särndal and Lundström (2005, Chap. 8) discuss the use of control totals
estimated from the first-phase sample initially or simultaneously with popu-
lation control totals (calibration scenario 3). We refer to these as sequential
calibration and simultaneous calibration, respectively, and adapt their discus-
sion for a two-phase design. A two-step sequential calibration for the phase
2 respondents is produced as follows:

Step 1: Calibrate the (adjusted) base weights for the phase 2 study respon-
dents to estimated totals from phase 1 as defined for scenario 1 above. The

13 http://hrsonline.isr.umich.edu/
14 http://www.census.gov/cps/

http://hrsonline.isr.umich.edu/
http://www.census.gov/cps/
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resulting calibrated weight is defined as w (2)k|(1) and labeled as “condi-
tional” because it relies on the sample drawn for phase one.
Step 2: Simultaneously calibrate the adjusted weights from step 1 for the
study respondents, w (2)k|(1), to satisfy the constraints

∑
k∈s(2)R

w(2)k x
∗
k =

t̂∗x, where x∗
k =

(
z(2)k, x(2)k

)T
and t̂∗x =

(
t̂(1)z, tx

)T
with the component

vectors defined for expressions (17.17) and (17.18), respectively. While
preserving the estimated-control calibration constraint specified in step 1,
the step 2 procedure additionally forces the respondents estimates to equal
the population controls.

For K -phase studies with K=2, the control total vector could be
expanded to include estimates from the K -1 design phases, t̂∗x =(
t̂(1)z, t̂(2)z , . . . , t̂(K−1)z, tx

)′
. Under this scenario, the second-phase respon-

dent base weight, adjusted for any sample loss in the first phase, would be
calibrated to population totals and estimates calculated from the phase 1
questionnaire responses. To date the benefits of one scenario over another
are not well defined and warrant further research.

GREG Linearization Variance Estimators
GREG variance estimation is premised on a (linear) model containing the

auxiliary information that effectively represents the population characteristic
being estimated. An effective model is one that leads to an estimator with
a smaller variance than would be obtained by not using the auxiliaries. Said
differently, this model will result in small residuals, the deviation from the
value of y and the estimated value of y, i.e., ek = yk−ŷk is small. The residual
is the key component to the GREG variance estimator.

The GREG estimator of a total, t̂yGREG given in Eq. (17.16), is written in
terms of a single-phase design using only population-based auxiliary informa-
tion X. As discussed above, auxiliary information, an important component
in calibration, is obtained from the various phases of the design along with
any population sources. If we consider the simultaneous weight calibration to
population controls and to controls estimated from the first phase, then the
GREG two-phase variance estimator is a function of two estimated residuals:

Phase 1: e(1)k = yk − xT
(2)kB̂(1)

B̂(1) =

⎛
⎝ ∑

k∈s(2)

w(2)kx(2)kx
T
(2)k

σ2
(1)k

⎞
⎠

−1 ∑
k∈s(2)

w(2)kx(2)kyk

σ2
(1)k

Phase 2: e(2)k = yk − x∗T
k B̂(2)

B̂(2) =

⎛
⎝ ∑

k∈s(2)

w(2)kx
∗
kx

∗T
k

σ2
k

⎞
⎠

−1 ∑
k∈s(2)

w(2)kx
∗
kyk

σ2
k

,
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where x∗
k =

(
z(2)k, x(2)k

)T
, a vector of auxiliary values for the respondent

sample taken from the phase 2 and phase 1 data collections, respectively;
and the models for each phase are specified with an assumed variance of σ2

k

and σ2
(1)k. Note if either model variance is assumed to be a constant value

(i.e., σ2
k ≡ σ2 for all k ∈ s(1)), then the quantities in the numerator and

denominator cancel, thereby producing a more familiar form of the regression
coefficients. As discussed in Sect. 9.7 of Särndal et al. (1992), the associated
variance estimator takes the general form

v
(
t̂(2)y

)
=
∑∑

s(2)
Δ̂(1)kl

(
g(1)kê(1)k g(1)lê(1)l

)

+
∑∑

s(2)
Δ̂(2)kl

(
g(2)kê(2)k g(2)lê(2)l

)
,

(17.19)

where ê(1)k = e(1)k
/
w(1)k and ê(2)k = e(2)k

/
w(2)k are estimated model resid-

uals; the phase-specific g-weights are

g(1)k = 1 +
(
tx − t̂x

)′
(∑

k∈s(2)

w(1)kx(2)kx
′
(2)k

σ2
(1)k

)−1
x(2)k

σ2
(1)k

and

g(2)k = 1 +
(
t̂∗x − t̂∗(2)x

)′
(∑

k∈s(2)

w(2)kx
∗
kx

∗T
k

σ2
(2)k

)−1
x∗
k

σ2
(2)k

.

The estimated covariances for units selected in the phase 1 and phase 2
sample designs are designated as Δ̂(1)kl and Δ̂(2)kl. As in Sect. 17.4.2, the
first component in expression (17.19) is the phase 1 variance contribution
and the second component is associated with the second phase.

GREG Replicate Variance Estimators
We make brief mention of the replication variance estimators for the

GREG since they follow the same steps that are discussed previously. Mainly,
any calibration introduced in the weights must be independently implemented
within each replicate.

17.5 Design Choices

A basic design choice is whether to use more than one phase or stick to a
single phase. The situations where multiphase sampling can profitably be
used are discussed in Sect. 17.5.1. If two phases are used, how to allocate
the sample to the phases must be determined. Section 17.5.2 covers sample
size calculation when double sampling for stratification and when doing a
nonresponse follow-up study.
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17.5.1 Multiphase Versus Single Phase

Multiphase sampling involves additional complications and costs compared to
a single-phase design. An administrative system must be developed to track
the cases and distinguish ones assigned to different phases and their dispo-
sitions (i.e., response status) after each phase. Special programs must be
written to translate the final dispositions into the analysis weights. As noted
earlier and discussed in more detail in Sect. 17.6, few options exist with vari-
ance estimation software for multiphase designs at the date of this writing,
and the current options have limited capabilities. These issues raise the ques-
tion of whether using a multiphase design is worth the trouble. There are
at least three important uses of multiphase designs that were mentioned in
previous sections to distinguish them from single-phase designs:

(1) To improve precision of estimates
(2) To obtain target sample sizes in some analytic subgroups
(3) To attempt to reduce nonresponse biases through a NRFU study

Each of these is discussed below. Hansen et al. (1953a, chap. 11, Sect. 3)
give another discussion of these uses and their efficiencies compared to other
options.

Neyman (1938) introduced the idea that precision could be increased by
collecting data in phase 1 to use as stratification variables for the phase 2
sample, or as covariates for phase 2 regression estimates. Hansen et al. (1953a)
illustrate that if stratifying information can be collected in phase 1 that is
highly effective in separating units into homogeneous groups, then double
sampling for stratification with an optimal allocation to the phase 2 strata
can produce variances of estimated means that are much less than would be
obtained with no strata. For example, think of sampling businesses. If there
is no information on business size, employee counts might be collected in the
first phase and used to create strata for phase 2 sampling. Similarly, if an
auxiliary variable that is highly correlated with the analysis variables can be
collected in phase 1, then it can be used in constructing efficient regression
estimators of a total using the phase 2 responses. Hansen and Tepping (1990)
give an example of this in quality control of governmental welfare programs.
Hansen et al. (1953a) give conditions under which there will be gains when
using double sampling for stratification or regression estimation. The appli-
cations where these gains accrue are fairly specialized and are more likely to
occur in surveys of businesses and institutions.

Kalton and Anderson (1986) discuss several techniques for sampling rare
populations. Without good information on the prevalence within the popula-
tion, they highlight several examples of mail screening questionnaires sent to
households to identify adults with a particular characteristic (e.g., disability).
Individuals may then be sampled at revised rates based on the screening infor-
mation to obtain target sample sizes in the subgroups. When the goal is to
obtain target sample sizes of certain groups and estimates with which to set
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the sampling rates are unavailable, then there is little choice in the USA but
to screen and subsample. Commercial lists used in address-based sampling
may help target some domains of persons (e.g., race/ethnicity given the sur-
name15) but the lists are currently incomplete and the estimated accuracy
is not documented. In other countries, e.g., ones in Scandinavia, population
registries allow very accurate identification of some types of people. But, they
too are limited by what items are on the registry.

Thus, for uses (1) and (2) above, multiphase sampling is clearly useful and
may be the only way to achieve the goals of some surveys. When following
up nonrespondents, the decision is less clear-cut. In some surveys a NRFU
study may be the only way to achieve a desired weighted response rate (see,
e.g., AAPOR 2011; Singh et al. 2004) or a target sample size of respondents.
This is especially true if the survey is being conducted under contract and
the contract specifies the minimum response rate or sample size that is to be
achieved. In some surveys the only hope of adding more respondents after
the first phase is to change the mode of collection, start offering incentives
to participate, or both for a subsample. In such cases the survey perforce
becomes multiphase.

17.5.2 Sample Size Calculations

Sample size calculations for multiphase designs follow many of the techniques
already discussed in this book. We discuss a few approaches below to orient
the thought process starting with double sampling for stratification, then
surveys with a nonresponse follow-up, and finally responsive designs.

Double Sampling for Stratification Designs
Sample size calculations with double sampling for stratification designs

(and multiphase designs in general) are conducted using various approaches.
The methods depend on whether population estimates for a key analytic
variable are known by strata (i) during the design of the phase 1 study or (ii)
only after phase 1 data are collected. Cochran (1977, Sect. 12.3) discusses an
optimal allocation to the phase 2 strata by minimizing the variance subject
to a linear cost model. We demonstrate the technique through an example.

Example 17.12 (Sample size calculation for srs/stsrs design with population
estimates). Consider a mental health pilot study that will be conducted
through a computer-assisted telephone interview (CATI). The instrument
contains a set of psychological questions (VDF-14) to identify serious mental
illness that have been validated within a clinical setting but not with CATI.

15 See, e.g., http://www.m-s-g.com/Web/genesys/List-Enhancement-Match
ing.aspx.

http://www.m-s-g.com/Web/genesys/List-Enhancement-Match
ing.aspx.
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Though validated, the cost of conducting the complete study in a clinic setting
is cost prohibitive and therefore this lower-cost option is being investigated
as a viable alternative. A double sampling for stratification design was pro-
posed where a subsample of CATI respondents (phase one) will be asked to
participate in a second interview by a trained psychologist (phase two).

Phase 1 respondents will be grouped into one of four strata based on
the mental health score produced as a linear combination of responses to
the VDF-14. An equal number of persons will be assigned to each stratum
(Wh = 0.25). Additionally, estimated proportions of serious mental illness by
stratum (Ph) were calculated from a series of small clinical studies to assess
the sensitivity of the CATI questions. The associated population variances
were tabulated using the standard Ph (1 − Ph) formula and included in the
table below with the other information. The results (Neyman allocation) are
provided in the final column and justified below.

Stratum Wh Ph S2
h Neyman
allocation

1 0.25 0.02 0.0196 31
2 0.25 0.12 0.1056 72
3 0.25 0.37 0.2331 107
4 0.25 0.54 0.2484 110
Overall 0.26 0.1936 320

Cochran (1977) and Neyman (1938) give the two-phase variance when phase
1 is a simple random sample, phase 2 is stsrs, and an optimal allocation to
strata is used in the second phase. The sampling fractions at both stages
are assumed to be negligible. The optimal proportion of the phase 2 sample
to assign to stratum h for estimating the population mean is n(2)h

/
n(2) =

WhSh/
∑

h WhSh. The formula for the variance of an estimated mean with
this allocation is

Vopt =

∑
h Wh (Ph − P )

2

n(1)
+

(
∑

h WhSh)
2

n(2)
=

V(1)

n(1)
+

V(2)

n(2)
,

where Sh =
√
S2
h. A phase 1 CATI interview is estimated to be 1/5th of the

cost associated with a phase 2 clinical interview. In particular, suppose that
the linear cost model used in the cost-variance optimization takes the form
C = c(1)n(1)+c(2)n(2) where c(1) = $10, and c(2) = $50. If all interviews were
conducted in person by a clinician, suppose that the study could only afford
400 interviews, i.e., $20, 000/c(2). Cochran (1977) then gives the following
expression for the subsampling rate that minimizes the variance expression
above:

n(2)

n(1)
=

√
V(2)

V(1)

/
c(2)
c(1)

.
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The formulas for the phase 1 and phase 2 sample sizes that minimize Vopt

subject to a fixed total cost C are

n(1) =
C

c(1) + c(2)
√
K

,

n(2) = n(1)

√
K,

where
K =

(
V(2)

/
V(1)

) / (
c(2)
/
c(1)
)
.

Using the population estimates above, the variance components are calcu-
lated as V(1) = 0.0419 and V(2) = 0.1307 so that n(2)

/
n(1) = 0.79. Using the

formulas above, the optimal phase 1 and phase 2 sample sizes are n(1) = 404
and n(2) = 319. The phase 2 sample size would then be distributed across
the four strata with the Neyman allocation as shown in the table above. The
size of the simple random sample with total cost C with each unit costing
c(2) is nsrs = C/c(2). The variance of an srs of that size (neglecting an fpc)
is Vsrs = S2/nsrs where S2 is the population unit variance. The gain, if
any, from double sampling is Vopt/Vsrs. In this example, Vopt/Vsrs = 1.06.
Although there is actually a small loss in the precision of the estimated pop-
ulation mean by using double sampling, the real goal is often to get certain
sample sizes in the strata. If so, double sampling can accomplish that, and
the Neyman allocation is probably not what is needed.

The R function, dub, in PracTools will compute the results for this
example. Its inputs are:

c1 Cost per unit in phase 1
c2 Cost per unit in phase 2
Ctot Total variable cost
Nh Vector of stratum population counts or proportions
Sh Vector of stratum population standard deviations
Yh.bar Vector of stratum population means

The inputs and call to the function for this example are:

Wh <- rep(0.25,4)
Ph <- c(0.02,0.12,0.37,0.54)
Sh <- sqrt(Ph*(1-Ph))
c1 <- 10
c2 <- 50
Ctot <- 20000
dub(c1, c2, Ctot, Nh=Wh, Sh, Yh.bar=Ph)

�

If no information about the characteristic of interest is available during
the planning stage, then the statistician may use a variable that is highly
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correlated (or believed to be) with the analysis variable and continue with
the technique discussed above. Otherwise, the phase 2 sample size and allo-
cation to strata are created only after data are analyzed from the first phase
using procedures discussed in Part I of the text. Liu and Aragon (2000), for
example, note that the design effect of the weights (i.e., unequal weighting
effect) is minimized if a probability proportional to the phase 1 weight is
used to draw the phase 2 sample.

Nonresponse Follow-Up Designs
We return to the NRFU application introduced in Sect. 17.2.2 and present

an example based on Särndal et al. (1992, examples 15.4.4 and 15.4.5). Sup-
pose that an initial srswor, s(1) is selected followed by an srswor subsample
of the nonrespondents. In this uncomplicated situation, we can determine
the sample sizes for the phases to either (i) minimize a relvariance for a fixed
cost or (ii) minimize the cost for a fixed relvariance. Suppose that an initial
sample of size n(1) is selected. There are n(1)R respondents and n(1)NR nonre-
spondents. The proportions of respondents and nonrespondents in the phase
1 sample are

p(1)R = n(1)R/n(1) and p(1)NR = n(1)NR/n(1).

A NRFU sample s(2) of n(2) units is selected by simple random sampling
from the n(1)NR phase 1 nonrespondents. Data on the survey variables are
collected on the initial respondents and on the participating units in the
NRFU sample. Notice that this is different from two-phase applications where
only respondent data collected in the second phase are used in estimation.
The base weights for the sample units are

d(2)k =

{
N

n(1)
k ∈ s(1)R,

N
n(1)

n(1)NR

n(2)
k ∈ s(2).

Some units in the phase 2 sample will also be nonrespondents, so that only
n(2)R will respond. A nonresponse-adjusted weight, using an overall correc-
tion, is then

w(2)k =

{
N
n(1)

k ∈ s(1)R,
N
n(1)

n(1)NR

n(2)

n(2)

n(2)R
k ∈ s(2)R.

(17.20)

Using the weights in expression (17.20), the estimator of the population total
of a variable y is

t̂(2)y =
∑
s(1)R

N

n(1)
yk +

∑
s(2)R

N

n(1)

n(1)NR

n(2)R
yk (17.21)

= N
[
p(1)R ȳ(1)R + p(1)NR ȳ(2)R

]
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where ȳ(1)R =
∑

s(1)R
yk
/
n(1)R, the unweighted mean of the phase 1 respon-

dents, and ȳ(2)R =
∑

s(2)R
yk
/
n(2)R, the unweighted mean for the n(2)R

respondents in the subsample. The population mean is estimated by ˆ̄y =
t̂(2)y

/
N . Note that this estimator does leave room for the possibility that the

first- and second-phase respondents do represent groups whose population
means are different, as in Example 17.3.

Assuming that response is a random process and that each sample unit
independently has a probability θ of responding to phase 1, the numbers of
respondents and nonrespondents, n(1)R and n(1)NR, are random. Modifying
the argument in Särndal et al. (1992, example 15.4.5) slightly, the variance
of ˆ̄y, which is a special case of Eq. (17.15), can be found as

V
(
ˆ̄y
)
=

1− f(1)

n(1)
S2
yU + E(1)ERD

(
p2(1)NR

1− f(2)R

n(2)
S2
y(1)NR

∣∣∣ s(1)
)
,

where ERD is the expectation with respect to the phase 1 and 2 response
distributions, S2

y(1)NR is the unit variance among phase 1 nonrespondents,

and f(2) = n(2)R

/
n(1)NR is the responding fraction of the phase 1 nonrespon-

dents. Because n(1)NR is random, we set the achieved second phase sampling
fraction to a constant, ν = f(2)R, which will allow optimal values of n(1)

and ν to be found. Note that ν includes both the initial subsampling rate of
phase 1 nonrespondents and the proportion of the phase 2 subsample that
responds. If the unit variance among nonrespondents is the same as the unit
variance of all units, S2

y(1)NR = S2
yU , the relvariance of the mean can be shown

to be

CV 2
(
t̂(2)y

)
=

CV 2
yU

n(1)

[
1− f(1) +

1− ν

ν
(1− θ)

]
, (17.22)

where CV 2
yU is the unit relvariance in the population (exercise 17.1 asks you

to derive this result and the ones below).
Now, suppose that c0 is the total of fixed costs that do not depend on

sample size, c1 is the cost per unit in phase 1 averaged over respondents and
nonrespondents and that c2 is the unit cost of collecting and processing data
from a unit in phase 2. The linear cost function is expressed as

C = c0 + c1n(1) + c2n(2).

Because n(2) is not a constant due to the randomness of response in the first
phase, we compute the expected cost to use in the optimization:

ERD (C − c0) = c1n(1) + c2ν (1− θ)n(1). (17.23)

The optimum value of ν that either minimizes the relvariance (17.22) for a
fixed cost or minimizes cost for a fixed relvariance is

νopt =

√
c1
c2θ

.
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For this to be a feasible value, we need c1/c2 ≤ θ. Thus, the phase 1 unit cost
may have to be substantially less than that of phase 2 if the phase 1 response
probability is low. The optimal value of the phase 1 sample for a fixed cost
is found by substituting νopt in the cost function:

n(1)opt =
C − c0

c1 + c2νopt (1− θ)
. (17.24)

When the relvariance is fixed at a value of CV 2
0 , the optimum value is

n(1)opt =
1

νopt

1− θ (1− νopt)
CV 2

0

CV 2
yU

+ 1
N

.

Selecting a nonresponse follow-up sample can be disturbingly inefficient
compared to just selecting a larger srs in the first place. The relvariance
of an estimated mean from an srs, neglecting the fpc, is CV 2

srs (ȳsrs) =
CV 2

yU

/
nsrs. Setting this equal to Eq. (17.22) and solving for nsrs gives

nsrs = n(1)

[
θ + (1− θ) /ν − f(1)

]−1
. If only θ of these units respond, the

required initial srs size is

nsrs =
n(1)

θ

[
θ +

1− θ

ν
− f(1)

]−1

. (17.25)

Assuming that the unit cost for the srs is c1 and that θ respond, the total
cost of the srs of nsrs units will be Csrs = c1nsrs. The ratio of the two-phase
cost to the srs cost is then

Ctot

Csrs
=

n(1)

nsrs

[
1 +

c2
c1
ν (1− θ)

]
. (17.26)

This calculation does assume that, within phases, all units are equally likely to
respond, which may be unrealistic. The chance of responding may depend on
demographic characteristics, and the demographic composition of the phase
2 subsample may be different from that of the phase 1 sample. In Chap. 13 we
looked at some techniques that will account for such demographic differences
when making nonresponse adjustments. For getting an idea of the sample
sizes needed for the first and second phases of a NRFU design, the simpler
calculations above are still useful.

The R function NRFUopt in Appendix C will calculate the values of vopt
and n(1)opt for either a fixed cost or a target coefficient of variation. The
function accepts the following parameters:
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Ctot Total variable cost
c1 Cost per unit in phase 1
c2 Cost per unit in phase 2
theta Probability of response for each unit
CV0 Target coefficient of variation for the esti-

mated total or mean
CVpop Unit coefficient of variation
N Population size; default is Inf
type.sw Type of allocation

‘‘cost’’ = target total variable cost
‘‘cv’’ = target coefficient of variation

In addition to vopt and n(1)opt, the outputs from the function include the
expected size of the second-phase sample, the srs size from Eq. (17.25), and
the cost ratio in Eq. (17.26).

Example 17.13 (Optimal sample sizes for a fixed budget). Suppose that the
budget for total variable costs is $100,000, the unit costs for phase 1 and 2
are $50 and $200, the probability of response is 0.5, and the unit coefficient
of variation is 1. The target coefficient of variation for the mean is 0.05. The
function call with these parameter values is

NRFUopt(Ctot=100000, c1=50, c2=200, theta=0.5, CV0=NULL,
CVpop=1, type.sw="cost")

The output is

$allocation
[1] "fixed cost"
$‘Total variable cost‘
[1] 1e+05
$‘Response rate‘
[1] 0.5
$CV
[1] 0.0382
$v.opt
[1] 0.7071
$n1.opt
[1] 828
$‘Expected n2‘
[1] 293
$‘Expected total cases (2-phase)‘
[1] 1121
$‘srs sample for same cv‘
[1] 1373
$‘Cost Ratio: Two phase to srs‘
[1] 1.457

The anticipated CV is 0.0382 with sample sizes of 828 for phase 1 and 293
in phase 2 for a total of 1,121. The subsampling fraction of the phase 1
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nonrespondents is 0.7071. To obtain a CV of 0.0382 by selecting a larger
initial srs, we would need to select 1,373 of whom 0.5*1,373 = 687 would be
expected to respond. Note that the second sampling fraction, 0.7071, is fairly
high. If phase 2 nonresponse is more than 30%, the solution above will not
be feasible. Also, note that the two-phase sample would be more expensive
than an initial srs of 1,373 by a factor of 1.457. �

The preceding example seems to imply that we would be better off to
select a larger initial sample that anticipates how much nonresponse there
will be. We used this method in Chap. 6 to adjust sample sizes. However, a
larger initial sample is not always a solution. For example, an unexpectedly
low response rate may be obtained in phase 1. Also, the initial mode of data
collection may reach a limit of its effectiveness. For instance, in a mail-out
of paper questionnaires, the response rate may be 30%, but a final response
rate of 50% is required. If more mailings will result in few if any additional
responses, then a nonresponse follow-up sample with a different mode will be
needed if there is any hope of obtaining 50% response.

Example 17.14 (Optimal sample sizes for a target CV). In a two-phase NRFU
study, suppose that a CV of 0.10 is desired for the estimated mean. The unit
costs for the two phases are c1 = $75 and c2 = $150. The unit CV in the
population is 3 and a response rate to the first phase is anticipated to be 70%.
Determine the allocation of the sample to both phases and the estimated
variable cost of the survey. The function call and its results are:

NRFUopt(Ctot=NULL, c1=75, c2=150, theta=0.7, CV0=0.10,
CVpop=3, type.sw="cv")

$allocation
[1] "fixed CV"
$‘Total variable cost‘
[1] 107320.2
$‘Response rate‘
[1] 0.7
$CV
[1] 0.1
$v.opt
[1] 0.8452
$n1.opt
[1] 949
$‘Expected n2‘
[1] 241
$‘Expected total cases (2-phase)‘
[1] 1190
$‘srs sample for same cv‘
[1] 1286
$‘Cost Ratio: Two phase to srs‘
[1] 1.113

The expected cost is about $107,320 with 1,190 units split between 949 phase
1 units and 241 second-phase units. A single phase srs of 1,286 would be
needed to yield the same CV of 0.10. �
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Responsive Designs
Key to the responsive design is the inability to plan during the design stage

of the project for the points in time for which a change needs to be made to the
essential survey conditions. For example, two months into the data collection
for Study X, the team decides based on analyzing the current state of the
project to send an additional incentive to hopefully increase participation.
However, little information has been published to date on specific decision
rules for invoking the next phase in a responsive design. We sketch the general
procedures below based on our personal experience starting with the study
viewpoint from at least three different angles:

(1) Response propensity. The project team monitors the response rates and
response propensities throughout the data collection period. The indica-
tors (and possibly response model covariates) may include a combination
of frame information, paradata, “on the ground” information from the
interviewers, past experience, and time/funding in the remaining data
collection period. Through a best and worst case scenario, the team iden-
tifies a point at which the required sample size (overall and within sub-
groups) either analytically or contractually is unlikely to be met given
the current sample.

(2) Nonresponse bias analysis. Some project teams may conduct periodic
nonresponse bias analyses with variables known for respondents and non-
respondents (see, e.g., Ingels et al. 2011). The results may suggest certain
subgroups are underperforming and areas are in need of additional atten-
tion from the field staff.

(3) Precision of key estimates. In addition to response propensity and non-
response bias analysis, a set of key estimates may be analyzed using the
current data. Especially with subgroup analysis, low levels of precision
in the estimates may suggest the release of additional sample or the need
to change the methods for soliciting participation.

Common results among these and other analyses may signal that funds used
for “business as usual” will be wasted. At this point, the project team can
decide to (i) end data collection, (ii) release members of the reserve sample,
or (iii) implement a procedural change on a subsample of the nonresponding
cases. Any decision must also include the remaining funds available for data
collection. As noted for double sampling, special care must be taken to ensure
that any subsampling does not introduce bias by purposively selecting those
that, relatively speaking, are more likely to response.

17.6 R Software

We conclude this chapter with a discussion of software. No software exists for
explicitly drawing multiphase samples because the sample for phase r + 1
depends on information gathered from the rth phase. Consequently, the
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sample selection must be uniquely implemented within each phase using
software developed for single-phase designs. The same is said for multistage
designs where samples are drawn sequentially within each stage. Some of
these procedures were discussed in other chapters of this text and are not
repeated here.

Only one software package was available for analyzing two-phase designs
during the time this text was developed. The R programming language
includes functions for analyzing data from a two-phase design under the
assumption that the first-phase units were drawn either by srs or through a
clustered design. As with other survey designs, a two-phase R survey object
must be constructed prior to conducting the analysis using the twophase16

function.

Example 17.15 (Analyzing a srs/srs Two-Phase Survey Design Object in R).
Borrowing the pbc data from the R library, the following code is used to
develop a design appropriate R object. These data are from a Mayo Clinic
trial in primary biliary cirrhosis (PBC) of the liver conducted between 1974
and 1984. The R survival package describes the data set in more detail.
The subset option in the code below identifies the phase 2 sample units,
which are defined to be persons with missing values of the trt variable:

# two-phase simple random sampling.
data(pbc, package="survival")
pbc$id <- 1:nrow(pbc)
d2pbc <- twophase(id=list(˜id, ˜id), data=pbc,

subset = ˜I(is.na(trt)))

�

Example 17.16 (Two-phase sampling for stratification using the NHIS popula-
tion). Suppose that an initial srswor sample of n = 2, 000 persons is selected
from the nhis.large population. The age of each person is ascertained
and the first phase is stratified into five groups: < 18 years, 18–24years, 25–
44 years, 45–64years, and 65+. A stratified phase 2 sample was selected with
n(2)h=100 in each stratum with the idea being that equal precision is desired
for analyses of persons in the different age groups. Note that this is different
from the examples in Chap. 10 where fixed sampling rates were set in advance
for subgroups in a two-stage area sample. Although the rates in those exam-
ples were designed to produce certain target sample sizes, the within cluster
rates could be determined in advance. In this example, the second-phase rates
depend on how many persons were found in the age groups in the first phase.
R code for selecting the two-phase sample and estimating the proportion of
persons is shown below. The function in the survey package that handles

16 http://rss.acs.unt.edu/Rdoc/library/survey/html/twophase.html

http://rss.acs.unt.edu/Rdoc/library/survey/html/twophase.html
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two-phase samples is twophase. A data frame (p1.dat) in this example must
be constructed that has a record for each phase 1 element with indicators for
whether an element was in the second-phase sample or not (p1.dat$p2).
The parameter

subset = ˜p2

in the call to twophase specifies the field that identifies the second-phase
elements.

In this example, 5.89% of people delayed medical care in the previous 12
months because of cost. The youngest (< 18) and oldest (65+) were less likely
(5% and 2%) to delay care than persons in the other groups:

attach("nhis.large.RData", pos=2)
require(sampling)
require(survey)
set.seed(1716768836)

nhis <- as.data.frame(nhis.large)
n1 <- 2000
N <- nrow(nhis.large)

# recode delay.med to be 0,1
nhis$delay.med <- abs(nhis$delay.med-2)

# select a phase-1 sample of n1
sam <- sort(sample(1:N, n1))
p1.dat <- nhis[sort(sam), ]

# Phase-1 weights
p1.dat$p1wts <- rep(N/n1, n1)
n2 <- rep(100,5)
p2.str.sam <- strata(data.frame(p1.dat),

stratanames = c("age.grp"),
size = n2,
method = "srswor")

# set a T/F variable for whether person is in phase-2 sample
p1.dat$p2 <- FALSE
p1.dat$p2[p2.str.sam$ID_unit] <- TRUE

# Phase-2 conditional weights
p1.dat$p2wts <- 0
p1.dat$p2wts[p2.str.sam$ID_unit] <- 1/p2.str.sam$Prob

# 2-phase design object
d2.nhis <- twophase(id = list(˜ID, ˜ID),

data = p1.dat,
strata=list(NULL, ˜age.grp),
weights = list(˜p1wts, ˜p2wts),
subset = ˜p2,
method = "approx")

mns <-svymean(˜factor(delay.med), design = d2.nhis, na.rm = TRUE)
ftab <- ftable(mns, rownames=list(delay.med = c("No","Yes")))
round(ftab,4)
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delay.med
No mean 0.9411

SE 0.0114
Yes mean 0.0589

SE 0.0114

age.mns <- svyby(formula= ˜delay.med, by=˜age.grp,
FUN=svymean, design = d2.nhis, na.rm=TRUE)

round(age.mns,4)

age.grp delay.med se.delay.med
1 0.0500 0.0219
2 0.0800 0.0272
3 0.0612 0.0243
4 0.0800 0.0272
5 0.0200 0.0140

Estimates of the components of variance due to phases (V̂1 and V̂2 in Exam-
ple 17.10) can be extracted with the following code, which applies to the
overall estimate of the proportion who delayed medical care:

V <- vcov(svymean(˜factor(delay.med), design = d2.nhis, na.rm = TRUE))
V1 <- attr(V, "phases")$phase1
V2 <- attr(V,"phases")$phase2

In this case, V1= 2.79e-05 and V2= 1.028e-04 so that the second-phase
accounts for about 79% of the variance of t̂(2)y.

How does the stratified, double sample compare to an srs of n = 500 for
the overall estimate? If we had selected 500 persons by srs and obtained an
estimate of 0.0589, the standard error would have been

√
(0.058943 (1− 0.058943) /500) = 0.0105

compared to 0.0114 above. Thus, the double sample is slightly less precise,
but the expected numbers of persons in the five age groups in an srs of 500
are 139, 47, 142, 116, and 57. Ages 18–24 and 65+ have fewer than the target
of 100. Two-phase sampling gave overall precision about the same as an srs of
the same size but allowed the numbers of sample persons in each age group
to be controlled. Of course, screening to determine ages costs money that
would not be spent in an srs. �

Note, in addition to allowing the use of standard survey functions, like
svymean, the calibrate function will produce GREG weights for a two-
phase design. However, the calibration is currently reserved only for the phase
2 units.
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Exercises

17.1. Consider a nonresponse follow-up study in which the first phase is
selected by srswor from the population and the second phase is selected by
srswor from the phase 1 nonrespondents. Notation is defined in Sect. 17.5.2.

(a) Show that the double expansion estimator is
t̂(2)y = N

[
p(1)Rȳ(1)R + p(1)NRȳ(2)R

]
.

(b) Beginning with the expression

V
(
t̂(2)y

)
=

1− f(1)
n(1)

S2
yU + E(1)ERD

(
p2(1)NR

1− f(2)
n(2)

S2
y(1)NR

∣∣∣ s(1)
)

show that the variance equals

V
(
t̂(2)y

)
=

S2
yU

n(1)

[
1− f(1) +

1− ν

ν
(1− θ)

]
.

where ν = f(2)R is the fixed second phase achieved sampling fraction (i.e.,
the number of phase 2 respondents divided by the number of phase 1
nonrespondents) and θ is the probability that any unit responds. Assume
that whether a unit responds is independent of any other unit.

(c) Show that if the cost function is C = c0 + c1n(1) + c2n(2) where n(2) is
treated as random, then ERD (C − c0) = c1n(1) + c2ν (1− θ)n(1).

(d) Show that the optimal value of the phase2 subsampling fraction is νopt =√
c1/c2θ.

(e) If the variance is minimized subject to a fixed total (expected) cost, then
show that n(1)opt =

C−c0
c1+c2νopt(1−θ) .

(f) If the cost is minimized for a fixed value, CV0, of the coefficient of variation
of t̂(2)y, then

n(1)opt =
1

νopt

1− θ (1− νopt)
CV 2

0

CV 2
yU

+ 1
N

.

17.2. Suppose that the budget for total variable costs in a NRFU study is
$500,000, the unit costs for phase 1 and 2 are $25 and $200, the probability
of response is 0.3, and the unit coefficient variation is 1. Find the optimal
allocation for a two-phase sample to minimize the coefficient of variation of
the estimated mean. Discuss the results.

17.3. In a two-phase NRFU study, suppose that a CV of 0.10 is desired for
the estimated mean. The unit costs for the two phases are c1 = $75 and
c2 = $350. The unit CV in the population is 2 and a response rate to the
first phase is anticipated to be 40%. Determine the allocation of the sample
to both phases and the estimated variable cost of the survey.
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17.4. In a two-phase NRFU study, suppose that a CV of 0.10 is desired for
the estimated mean. The unit costs for the two phases are c1 = $75 and
c2 = $150. The unit CV in the population is 2 and a response rate to the
first phase is anticipated to be 40%. That is, the assumptions are the same
as in Exercise 17.3, except that the phase 2 cost is much less. Determine the
allocation of the sample to both phases and the estimated variable cost of
the survey. Discuss your results.

17.5. Use the nhis.large population to study double sampling for strati-
fication. Select an initial srswor of n = 2, 000 persons. In R use initialize the
random number generator with set.seed(1716768836). The age of each per-
son is ascertained and the first phase is stratified into five groups: < 18 years,
18–24years, 25–44years, 45–64years, and 65+. A stratified phase two sample
was selected with n(2)h=100 in each stratum.

(a) Estimate the proportion of persons and the SEs of the proportion of
persons that had an overnight hospital stay in the previous 12 months.

(b) What proportion of the variance in (a) was due to phase 1 and phase 2?
(c) Estimate the proportions and SEs for the five age groups.
(d) How do the SEs in (a) and (c) compare to an srs of n = 500 selected in

a single phase?

17.6. Consider a situation where an initial wave of data collection is
attempted. Some units respond and others do not. Suppose the popula-
tion can be divided into two strata—one of cases that respond to the initial
phase and another of the cases that do not. Denote the proportions of the
population in the two strata by W1 and W2 = 1 − W1 and the population
means by ȳU1 and ȳU2. A simple random sample is selected and only cases
in stratum 1 respond. Now, assume that ȳU2 = k ȳU1. Show that the relbias
of ȳ1 as an estimator of ȳU is

relbias (ȳ1) =
W2 (1− k)

1−W2 (1− k)
.

17.7. In this problem we revisit Example 17.7.

(a) Calculate the unequal weighting effect for the final weights w(2)k. Why
might this be important to examine.

(b) What suggested changes would you implement if you had the current
results as your historical information?

17.8. A double sampling for stratification design is proposed for a study with
a telephone screener questionnaire in phase one. A subsample of respondents
will be administered a longer, in-depth questionnaire in the second phase.
Phase 1 is srs and phase 2 is stsrs. The following population estimates are
provided by the two strata:
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Stratum Nh Wh Ph

1 1,580 0.79 0.19
2 430 0.21 0.52

Total 2,010

(a) Determine the overall sample sizes for the first and second phases of
the design using the method described in Example 17.12 with an overall
cost value of C = $10, 000, c1 = 10, and c(2) = $100. Comment on
your findings. Is there a gain from using double sampling with an optimal
allocation to strata compared to selecting an srs with the same total cost?
Why or why not? Assume that each unit in the srs costs c(2). If there is
no gain, why might double sampling still be used?

(b) How do your results change if C=$10,000 but the cost of phase 2 data
collection is double (i.e., c(2) = $200). Comment on your findings.



Chapter 18

Process Control and Quality Measures

So far we have described a wide variety of tools and tasks necessary for
sampling and weighting. Key to a successful project, however, is not only
the mastery of the tools, and knowing which tool to use when, but also
the monitoring of the actual process, as well as the careful documentation
of the steps taken, and the possibility to replicate each of those steps. For
any project, certain quality control measures should be taken prior to data
collection during sample frame construction and sample selection and after
data collection during editing, weight calculation, and database construction.
Well-planned projects are designed so that quality control is possible during
the data collection process and that steps to improve quality can be taken
before the end of the data collection period. Obviously the specific quality
control measures will vary by the type of project conducted. For example,
repeated longitudinal data collection efforts allow comparisons to prior years,
whereas one-time cross-sectional surveys often suffer from uncertainty with
respect to procedures and outcomes. However, we have found a core set of
tools to be useful for almost all survey designs and will introduce those in
this chapter. We do want to emphasize that while it is tempting to think
that assurance of reproducibility and good documentation is only worth the
effort for complex surveys that will be repeated, in our experience, even the
smallest survey “runs” better when the tools introduced here are used.

The material in this chapter is only scratching the surface of what can
be done and focuses in particular on elements of key relevance to researchers.
This chapter is organized into three distinct time periods of a survey: pre-data
collection (study design, frame construction, and sample selection), mid-data
collection (monitoring techniques and performance rates), and post-data col-
lection (editing, weighting, specification writing, and documentation). We
highly recommend reading the Quality Guidelines provided by various sta-
tistical agencies and other organizations such as Eurostat (Aitken et al.
2004), the US Office of Management and Budget (2006),1 Canada (2009), the

1 http://www.whitehouse.gov/sites/default/files/omb/inforeg/statpolicy/standards
stat surveys.pdf
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United Kingdom’s Office for National Statistics,2 and the American Associ-
ation for Public Opinion Research3; reports from large survey projects such
as CAHPS Hospital Survey4 and the Programme for International Student
Assessment (PISA)5; and textbooks and other sources such as Biemer and
Lyberg (2003), Blasius and Thiessen (2012), and the Cross-Cultural Survey
Guidelines hosted at the University of Michigan.6

18.1 Design and Planning

Project design and planning is a critical first step to ensure the timely admin-
istration of the survey and the gathering of high-quality data. The order and
interdependencies of the study tasks should be understood and specified at
the beginning of the project. Several charting tools come in handy during
the overall project planning stage. Ones that are often used are Gantt charts,
Critical Path Method, and flowcharts.

Gantt charts and charts known as Critical Path Methods are designed
both to visualize the time dependency of various project tasks, and to reflect
how the delay in one project step will impact the final outcome. Gantt charts
are a mixture of tables and graphs and list one task in each row of the chart.
Next to each task the estimated begin and end dates are entered as well as
the duration of the project. A graphical representation of the time this task
takes is the signature part of a Gantt chart (see Fig. 18.1). The horizontal
axis in the graphical representation is time, either in absolute time or in time
since beginning of the project. The time resolution depends on the project
and can be days, weeks, or months. The individual rows of a Gantt chart can
be linked with each other. Thus, if one of the task takes longer (or shorter)
than expected, the remaining rows can change accordingly. The Gantt chart
should be updated regularly throughout the duration of the project.

Figure 18.1 displays a portion of a Gantt chart we used for a project in 2011
at the Institute for Employment Research (IAB) in Germany. The second
column in this chart represents a list of all tasks necessary for the project,
followed by an indication of start and end date, from which duration days are
computed (hint: important to not forget holidays and vacation times). The
visual display is on the right-hand side of the graph, where the two shades
indicate the level of completion of these individual tasks. While easy to create
and understand, Gantt charts have been criticized for their heavy grid layout,

2http://www.ons.gov.uk/ons/guide-method/best-practice/gss-best-practice/gss-qua
lity-good-practice/index.html
3 http://www.aapor.org/Best Practices1.htm
4 http://www.hcahpsonline.org/home.aspx
5 http://nces.ed.gov/surveys/pisa/pdf/2011025.pdf
6 http://ccsg.isr.umich.edu/quality.cfm

http://www.ons.gov.uk/ons/guide-method/best-practice/gss-best-practice/gss-qua
lity-good-practice/index.html
http://www.aapor.org/Best_Practices1.htm
http://www.hcahpsonline.org/home.aspx
http://nces.ed.gov/surveys/pisa/pdf/2011025.pdf
http://ccsg.isr.umich.edu/quality.cfm
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Fig. 18.1: Example Gantt chart (using MS Project software)—filter question project
at IAB.

the sparseness of the data display, and their inability to show clearly the
relative importance of individual tasks (Tufte 1990; DeMeyer et al. 2002).

Relative importance and dependency of tasks is visualized more clearly in
charts based on the Critical Path Method. Critical Path Methods use network
diagrams to show the sequence and dependencies of each of the tasks.7 They
clearly show which tasks can occur simultaneously and which need to be
finished before other tasks can start. The longest path determines the overall
length of the project. If activities outside the critical path speed up or slow
down, the total project time does not change. The amount of time that a
noncritical path activity can be delayed without delaying the entire project
is referred to as slack time. The Critical Path Method was developed for
fairly complex but routine activities. For less routine projects, estimates of
completion times are unstable, which limits the usefulness of the Critical
Path Method.

Flowcharts are often used in project planning to visualize steps within a
task. Flowcharts are semantic representations of an algorithm or a process.
Flowcharts can be used for technical aspects of the project, such as weighting,
but are fairly useful in other parts of the project as well (e.g., visualizing the
flow of questionnaires, or detailing recruitment steps and nonresponse follow-
up procedures). Figure 18.2 shows the beginning of a study design flowchart

7 A free online lecture on using CPM with a survey example can be accessed here:
http://gunston.gmu.edu/healthscience/ProjectManagementInIT/
CriticalPathMethod.asp

http://gunston.gmu.edu/healthscience/ProjectManagementInIT/CriticalPathMethod.asp
http://gunston.gmu.edu/healthscience/ProjectManagementInIT/CriticalPathMethod.asp
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as it is used in the Best Practices Manual at the Survey Research Operations
center at the University of Michigan in the USA.

Although not always used for survey research, standardized flowchart sym-
bols have been developed in the context of computer programming (Interna-
tional Organization for Standardization 1985). For example, boxes are used
to represent tasks (or processes) and diamonds are used for decision points.
Each branch leaving a diamond shows the actions following each outcome
at the decision point. Figure 18.2 uses task boxes and decisions diamonds.
The Handbook on Improving Quality by Analysis of Process Variables,8 pub-
lished by Eurostat, shows a series of flowcharts for each step in the survey
process. We saw a flowchart for weighting in Chap. 13. For programming,
this flowchart would need to be specified in much more detail. Flowcharts
are very useful in providing a high-level overview of the process and its inter-
connections. However unlike the Critical Path Method they do not give an
indication how a delay in one task will affect other tasks.

18.2 Quality Control in Frame Creation and Sample
Selection

After constructing or acquiring a sample frame, survey statisticians are well
advised to perform a series of quality control checks on the files. Those quality
control checks typically involve identifying and excluding duplicates as well
as erroneous records, verifying that the count in the frame matches what is
known to be present in the overall population and possibly within certain
subgroups, and comparing the distribution of variables on the frame with
other sources for the population. In some situations, it may be possible to
check frame data for consistency with other frames or administrative data.
For example, surveys that use the US Postal Service Delivery Sequence File,
mentioned in Chaps. 1 and 10, should check if there are areas in the file that
are undercovered compared to census housing counts (Iannacchione 2011).

Variables on the frame that will be used for sampling should also be
checked for missing or unallowable values. In a frame of schools, for example,
variables that may be used for the sample design are the number of students
enrolled in each school, which might be a measure of size for pps sampling,
and the grade range of each school, which may be used for stratification
or to exclude ineligible sample units. Frames of hospitals, households, and
businesses will have different types of checks that should be made on design
variables. When data are missing, imputations may be needed before the
frame can be used for sample selection. We will briefly return to the topic of
editing frame data in Sect. 18.5.

8 http://www.processdox.com/pix/ImprovingQuality.pdf

http://www.processdox.com/pix/ImprovingQuality.pdf
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Fig. 18.2: Example flowchart—study design and sampling from SRO best practice
manual.
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Many software packages allow straightforward checks for duplicates.9 How-
ever, if frames include names and likely typos, then record linkage software
should be used for de-duplication (Herzog et al. 2007). Two free software pack-
ages specifically geared toward use in official statistics and survey research
are Matcher-2 (Porter and Winkler 1997) and the Merge ToolBox (Schnell
et al. 2004). Some governmental agencies have developed their own software
for matching like Statistics Canada’s Generalized Record Linkage System
(GRLS) (Thomas 1999, Willenborg and Heerschap 2012).

During the field period some assessments on the quality of the frame
can be made based on what is found for the sample, for example, deci-
sions on out-of-scope units can be verified, and missed units added (Eck-
man and O’Muircheartaigh 2011). If addresses are released in replicates (see
Chap. 6), the composition and number of the household members at the begin-
ning of each replicate should be similar; if not, interviewer learning effects
might affect how the screening process is done. In some surveys, interviewers
are instructed to select one respondent at random in each sample house-
hold. Quality checks for several European surveys showed clearly that the
selected household members were disproportionably female, suggesting that
interviewer “randomly selected” the contact person as respondents (Kohler
2007).

Sample selection can be an involved process that requires its own quality
control checks. Basic checks are whether the complete frame has been pro-
cessed for sampling, whether the desired number of sample units has been
selected, and whether the selection probabilities of units can be computed
and, if so, whether have they been recorded. As described in Sect. 18.7, speci-
fications should be written that clearly explain all steps in frame construction,
cleaning, and sample selection.

18.3 Monitoring Data Collection

Successful data collection efforts require close monitoring of the sample during
production. Such monitoring can help identify potential shortfalls in achiev-
ing the desired outcome such as, for example, a specified response rate or
other goals associated with sampling and data quality. To do the monitoring,
key process variables need to be identified. These are usually variables that
can vary with each repetition of the process and have a strong effect on the
quality of the survey. Examples of process variables are disposition codes for
the contact attempts (see Chap. 6), measures of resources used, or coding
errors. In Sect. 18.4, we will list a series of such indicators. While indicators
could be monitored in tables as part of reports, graphical displays are often
more efficient for monitoring.

9 In R this would be: duplicated(x, incomparables = FALSE, . . .).
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Fig. 18.3: Contact rates for each subsample by calendar week in the PASS survey
at the Institute of Employment Research, Germany (Müller, 2011).

Common in industry applications are process control charts (Deming 1982).
Their use in surveys is less common, despite the fact that one of its main pro-
ponents, Deming himself, worked at the US Census Bureau between 1939
and 1945. However, the steady increase in computer-aided data collection
procedures has also increased the data flow during data collection. Conse-
quently, we see a revived interest in statistical process control and related
charts to monitor and manage fieldwork procedures (Jans et al. 2013). In
their simplest form, charts to monitor ongoing fieldwork display key process
variables in the development over days or weeks of the fieldwork period. More
informative are displays by relevant subgroups, such as the chart in Fig. 18.3.
Here we see contact rates per calendar week divided by subsamples; it can be
seen from the chart that panel households were contacted at a much higher
rate than households sampled as refreshment cases in this panel survey. Such
differential contact rates can have strong effects on the overall survey quality.

Ideally those charts inform interventions. The result of a successful inter-
vention can be seen in Fig. 18.4 which displays response rates by important
subgroups in the National Survey of Family Growth. Starting with the third
week of data collection Hispanic males between 20 and 44 years of age were
found to be lagging behind in response rates. An intervention was launched
where interviewers were asked to increase their effort on those cases, and
traveling interviewers with bilingual capabilities were sent to segments con-
taining sampled cases in those subgroups. As a result of this intervention
the coefficient of variation in response rates among the relevant subgroups
decreased (Kirgis and Lepkowski 2010).
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Fig. 18.4: Cumulative response rates by subgroups in the national survey of family
growth, intervention was launched during the grey area (Lepkowski et al., 2010).

For a fieldwork manager and those monitoring the sample during data
collection, it is important to not react to “normal” variation in key process
indicators. It would be a waste of resources to intervene if the process is
still in control. Thus, a typical feature of control charts, as they are propa-
gated in the statistical process control literature, is their ability to separate
common and special causes that influence a given process. This separation is
important because the action step required to address special causes is very
different from those that address common causes. A good example for surveys
is interview response times over the course of the field period. In many sur-
veys interview time goes down as the interviewers get more and more used to
administering a given survey (Olson and Peytchev 2007). If such a reduction
in interviewing time is threatening interviewing quality, management has to
intervene and change the system. An example for a special cause would be
an individual interviewer or local area in which a reduction (or an increase)
in interviewing time is visible. Here a one-time, local intervention by the
operating staff might be sufficient.

A chart that displays both common cause variation and special cause vari-
ation is the Shewhart (1931) chart (see example in Fig. 18.5). Here control
limits (usually three times the standard deviation of the key process variable
denoted in the figure as a dashed line) are displayed alongside an x-axis that
groups the data in a meaningful way. Such grouping is often done for certain
time intervals (here days in field), but geographic areas, sample portions, or
interviewers could form the x-axis as well. If the variation does not display a
typical pattern and falls within the control limits, then the variation is said
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Fig. 18.5: Proportion of incomplete calls by days in field. Data from Joint Program
in Survey Methodology (JPSM) practicum survey 2011.

to be due to a common cause. However if there are deviations outside the
control limits or if there is variation in a typical pattern, those are said to be
due to a special cause.

The Shewhart graph in Fig. 18.5 displays the proportions of calls for each
day in the field. Cases can receive multiple calls per day (for instance if the
first call was busy). On most days the proportion of incomplete calls is well
above 80%. On day five the number of incomplete calls is unusually low. The
chart does not judge good or bad; it only indicates what is common and what
is unusual. In this case, the variability is very high because very few calls were
made on day five. Many of them could have been prearranged appointments
causing the number of incomplete calls to be less than the expected limit for
the given sample size. But it could also be the case that an unusually low
proportion of incomplete calls is the result of a programming error or techno-
logical problem (say, cases mistakenly being coded as complete), interviewer
error, or even falsification by interviewers. So when numbers are unusually
good, it is possible that they are too good to be true and in fact are indicative
of some sort of underlying problem.
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For optimal use, key process input variables should be specified prior to
data collection, together with set thresholds. Fieldwork should be stopped if
those key process variables exceed the thresholds or in the language of process
control “go out of control.” Which key process variables are monitored in any
given survey will be a function of the survey itself and its design. However,
care should be taken to select indicators that are meaningful with respect to
the outcome quality, and not just those that are easy to measure or readily
available (Morganstein and Marker 1997).

18.4 Performance Rates and Indicators

Earlier we showed contact and response rates in Figs. 18.3 and 18.4. These
rates are two important performance rates that most surveys track. Whether
they are computed during data collection or at the end of the data collec-
tion efforts, performance indicators are important quality control tools. The
American Association of Public Opinion Research (AAPOR) has provided
standard definitions for the computation or estimation of such performance
rates, many of them related to the proper specification of response rates.
Much broader are the terms and rates specified by the Data Documentation
Initiative (DDI), which is designed to document and manage data across
the entire life cycle from specification of survey design features to survey
outcomes and archiving (www.ddialliance.org). It is important to note that
not all researchers follow the definitions provided by AAPOR or DDI. Con-
sequently, it is advisable to communicate a common understanding within
the project team and essential to use standard terms for comparing out-
comes across surveys. Many journals require performance rates to be explic-
itly described and the DDI or AAPOR document can easily be referenced in
study reports and journal articles. Chapter 6 has definitions and explanations
for the four most common rates: location rate, eligibility rate, cooperation
rate, and response rate.

The rates discussed in Chap. 6, in particular response rates, are very pop-
ular outcome goals set by clients. However, there is not necessarily a link
between response rates and nonresponse bias, which is the actual point of
concern for most clients. Groves and Peytcheva (2008) review 59 methodolog-
ical studies which were designed to estimate the magnitude of nonresponse
bias on a variety of statistics. They found very little relationship between
response rate and bias. Thus, while the response rates will be asked for, they
only carry limited amount of information about survey quality. In response,
attempts have been made to develop alternative measures that capture addi-
tional information about the composition of the responding sample. Those
rates can also be tracked during data collection, given that auxiliary infor-
mation is available about respondents and nonrespondents.

www.ddialliance.org
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R-Indicators

One set of indicators that describe the respondent composition relative to
the sample composition are called Representativity Indicators or R-indicators
(http://www.risq-project.eu/). They are designed to capture imbalances in
response propensities between subgroups of sampled units. In its simple form
the estimated R-indicator for a survey with sample size n is proportional to
the standard deviation of the response propensities for individuals estimated
using a set of covariates. Assuming equal sampling probabilities it is expressed
through

R̂(ρ) = 1− 2

√√√√ 1

n− 1

n∑
i=1

(ρ̂i − ˆ̄ρ)2, (18.1)

where ρ̂i are the individual response propensities and ˆ̄ρ is the average response
propensity over all sample cases (Schouten and Cobben 2007; Bethlehem
et al. 2011; Schouten et al. 2009).10 The R-indicator uses available informa-
tion on both respondents and nonrespondents to estimate response propensi-
ties, either through logistic regression models or classification trees. If all the
response propensities were equal, then the nonrespondents would be missing
completely at random (MCAR) as described in Sect. 13.5. Thus, the larger
R̂(ρ) is, the more the data depart from MCAR.

Balance Indicators

Similar in spirit to the R-indicator is the Q2 indicator developed by Särndal
and Lundström (2008), which is defined as the variance of the predicted
inverse response probabilities. Smaller values of the Q2 indicator imply that
there may be more work needed on the weight adjustments to correct for
potential nonresponse bias. In both cases the potential for nonresponse bias
can be assessed only for those variables that are available for both respon-
dents and nonrespondents. This is a strong limitation of both approaches.
Often variables that are available for both respondents and nonrespondents
are not strongly related to the survey outcome variables (and those are the
ones where bias is feared). Nevertheless, R-indicators and other balance indi-
cators are used to monitor the incoming respondent pool. Similar to tracking
response rates for subgroups (as shown in Sect. 18.3) those indicators can help
reallocate recruitment efforts. Note that the nonresponse adjustments could
be made using the same covariates used to estimate response propensities in
R̂(ρ). If these covariates are good predictors of response and of survey analysis
variables, then nonresponse bias can be reduced by weighting. But, removing

10 In the case of unequal sampling variance this equation changes to reflect the design
weights. Sampling weights are not included in the estimation of the propensity models
but are used when the variance is constructed.

http://www.risq-project.eu/
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imbalance between the respondents and nonrespondents during data collec-
tion can reduce the variation in nonresponse adjustment weights and lessen
the burden on weighting to correct nonresponse bias.

The National Survey of Family Growth uses the Fraction of Missing Infor-
mation (FMI) indicator to track fieldwork progress. The FMI seeks to mea-
sure uncertainty about values imputed for missing elements (Rubin 1987;
Little and Rubin 2002). We have not covered imputation procedures in this
book and will therefore not go into detail on how FMI is estimated. However,
a detailed explanation for the survey setting can be found in Wagner (2010).

Interviewer-Specific Indicators

Often overlooked, but very important, is the role of interviewers in face-to-
face and telephone surveys, in particular with respect to the indicators dis-
cussed in the previous section. In addition to conducting the survey itself,
interviewers do play an important role in recruitment and within household
respondent selection. Many of the performance rates discussed here vary sig-
nificantly among interviewers. To monitor interviewers, it is therefore useful
to compute missing data rates by interviewer, several statistics by interviewer
such as average interview length, cost per interview, refusal conversion rates,
level of effort by interviewer, etc. In face-to-face surveys interviewers work
often only in one geographical area. Therefore, variation in response rates
could be due to variation in respondent characteristics or to the geographic
clustering as well as the interviewers. In telephone surveys, cases are usu-
ally randomly assigned to interviewers and several interviewers might have
“touched” a case before the respondent agrees to participate. Nevertheless,
the few studies that did allow a separation of interviewer effects and effects
from other sources show strongly the role interviewers play both with respect
to measurement error (O’Muircheartaigh and Campanelli 1998, Schnell and
Kreuter 2005) as well as nonresponse (O’Muircheartaigh and Campanelli
1999, Durrant and Steele 2009, West and Olson 2010).

Interviewer-specific indicators can take various shapes and forms. West
and Groves (2013) recently developed propensity-adjusted interviewer scor-
ing indicators that take respondents’ covariate information into account. For
effects of interviewers on survey responses, interviewer-specific design effects
can be useful indicators (Kreuter et al. 2010). Figure 18.6 shows for 18 inter-
viewers in a CATI survey the relative contribution of each interviewer to the
overall design effect. More specifically the intraclass correlation coefficient ρ
is estimated 18 times, each time leaving out all interviews conducted by one
of the interviewers. The horizontal line in Fig. 18.6 shows the average ρ with
all interviewers. There are two outliers in this graph. When removing inter-
viewer #3, ρ dropped from an average of 0.0130 to 0.009 (Interviewer IDs
mark the plot symbols). With an average workload of 75 the effective sample
size in a survey of 1600 cases would be 816 without interviewer #3 and only
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Fig. 18.6: Interviewer contribution to rho in the DEFECT telephone survey, based
on Kreuter (2002); survey data are described in Schnell and Kreuter (2005).

209 with this interviewer.11 Upon further examination of the interviewing
staff, this interviewer was found to be the only male interviewer among a
staff of female telephone interviewers in a survey on fear of crime.

18.5 Data Editing

Data editing is a common quality control step. While some surveys, and in
particular surveys conducted through statistical agencies, suffer from over-
editing (Lyberg et al. 1997), there are various editing steps that need to be
done in (almost) every survey. Clean data facilitate sample selection, the cre-
ation of analysis weights, analysis tables, and the final project data set. Some
edits also need to be done on a flow basis, for example, to quickly identify
problems with interviewers, to check skip patterns in electronic questionnaires
in the first days of the field period, and to check if all variables forming an
index are adequately captured. Some editing might also be needed to feed into
the monitoring charts discussed above. Thus, ideally, the edit specifications
are developed during the planning phase of a project and will be updated as
the project progresses. In general it is fair to say that the data-editing phase
is only as good as the specifications. Consistent with the scope of this book
we will not talk in detail about specifications to edit questionnaire variables
but focus on those that are relevant for creating a sampling frame, eligibil-

11 1600/(1 + 0.09 ∗ (74)) = 208.88; and 1600/(1 + 0.0130 ∗ (74)) = 815.49
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ity variables, disposition codes, and weighting variables. Our suggestions for
writing the actual specifications are discussed in Sect. 18.7.

18.5.1 Editing Disposition Codes

In Chap. 6 we introduced disposition codes (see Table 6.2) used to compute
or estimate performance rates. While these codes seem straightforward, in
practice they often are not. Two points should be discussed with a client: first,
the mapping of detailed disposition codes into one of the seven categories and,
second, the hierarchy of outcome codes to determine a current or final status.

Mapping

When mapping survey-specific disposition codes to those used in the stan-
dardized rate definitions, assignments may differ as a function of target pop-
ulations. For example, some studies exclude institutionalized persons. Thus,
a person who is (temporarily) institutionalized would in one survey be clas-
sified as “other non-interview” while in the other the same person would be
“not eligible.” Second, researchers may express different preferences on how
assignments should be executed; this is particularly true for the use of partial
interviews. Addressing these issues ahead of time is important. For example,
the sample disposition codes recorded for the May 2004 Status of Forces Sur-
vey of Reserve Component Members (SOFReserves), a survey conducted by
Defense Manpower Data Center (Defense Manpower Data Center 2004) of
Military Reservists, are provided in Table 18.1. If these disposition codes are
also used to tailor fieldwork recruitment during the data collection, it would
be advisable to differentiate between refusals and deployed personnel. Both
of these codes are currently lumped into one disposition category: 8. Depend-
ing on the survey and the mode of data collection, the number of disposition
codes can be rather large.

It is useful to specify ahead of time how disposition codes can be grouped
to later compute study performance rates. In the mapping task it is important
to capture all outcomes seen in the survey. Thus, in some instances, assign-
ments made prior to data collections will need to be revised once field data
are available. Survey statisticians should review the disposition code mapping
to make sure that all assignments needed for weighting can be made. Even
prior to data collection it is important that supervisors and data collectors
understand what is later needed for weighting purposes. Once data are col-
lected a case designation to a specific disposition code can change given the
amount of data provided by the respondent (i.e., the classification into par-
tial completes vs. nonrespondents classification) and the quality of the data
provided (data reset to missing after failing edit/consistency checks).



18.5 Data Editing 545

Table 18.1: Sample dispositions for the May 2004 SOF reserves study

Disposition
code

Description

1 Ineligible–based on check of updated personnel
records

2 Ineligible–self/proxy report, deceased, ill, incarcer-
ated, separated

3 Ineligible–survey self report

4 Complete eligible response

5 Incomplete eligible response

8 Refused–refusal, deployed, other refusal

9 Blank (returned questionnaire)

10 Postal nondelivery (PND)

11 Other nonrespondent

Hierarchy

More difficult and often more important than the decisions about mapping are
the decisions regarding the hierarchy of outcome codes. Many sample cases
will be contacted repeatedly throughout the survey and data collectors differ
in their translations of preliminary response status codes to final case outcome
codes. If the most recent status code is used to determine the final outcome,
then the assignment is straightforward, though it might not properly reflect
the case. For example, if a sample unit was successfully contacted early in the
field period but subsequent contact attempts failed to lead to an interview
and the final contact attempt is a noncontact, some researchers would count
such a case as a refusal whereas others would count this as a noncontact.
Variations in how the coding decisions are made can make comparisons among
performance rates from different surveys difficult. If decisions are made based
on the entire history of outcome codes, a priority coding can be very useful.
Here one should agree with the client upfront about the hierarchy of codes.
For example, if a sample unit that had one refusal in their history and no
successful refusal conversion is recorded, then this case would be classified as a
refusal even if the last outcome code was a noncontact. A detailed discussion
on effects of various outcome codes in particular when comparing surveys
across countries is given by Blom (2008).

18.5.2 Editing the Weighting Variables

In the editing process survey statisticians also need to ensure that relevant
weighting variables are available either by matching to the sampling frame
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or because they have been collected in the interview. Matching to the frame
should be straightforward, though in practice files coming out of the field
may not have the proper identification variables that allow a match to the
sampling frame. If matching to frame information is planned, the need for
these variables should be clearly communicated to field managers. If variables
used for weighting are based on respondents’ answers during the interview,
then prior to data collection, care should be taken that the questions asked
in the survey match those of benchmarking surveys. Even for demographic
variables this seems like a straightforward task, but is often not that simple.
For example, the questions on race/ethnicity in Fig. 18.7 were included in
the 2010 US decennial census.

If a survey does not ask for race/ethnicity in exactly the same way, the
survey estimate of, say, the number of Hispanics in the population will not
be comparable to the census count. In that case, calibrating survey weights
to census counts may actually introduce bias rather than reduce it.

18.6 Quality Control of Weighting Steps

Check Weighting Variables

Before starting the weighting process you need to check that a clean file of
weighting variables is available. This means weighting variables should have
no illegal codes and no missing values (or have those imputed if need be);
all stratum codes and PSUs used in sampling should be clearly indicated;
domain identifiers need to be present if different sampling rates were used
for domains (e.g., different sampling rates for varying racial and ethnic groups,
different age groups); and variables not used in sampling must be present if
they are planned for poststratification or other types of calibration. When
planning the weighting steps, care should be taken that weight variables are
edited prior to any edits of the substantive questionnaire variables, so that
weighting can proceed.

Check Selection Probabilities

Selection probabilities, also known as inclusion probabilities, are the building
block for weights in most surveys. In general, selection probabilities must
be between (0,1). This range check applies to most surveys. On the other
hand, some designs allow units to be selected more than once (see Sect. 13.3).
This can happen in samples where units are selected with probability pro-
portional to size and some units are very large or in samples selected with
replacement. In such cases, the selection probability is replaced with the
expected number of hits, which can be greater than one. You need to repeat
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Fig. 18.7: Ethnicity and race questions used in the 2010 decennial census.

this check for each stage of the sampling design—PSU, SSUs, etc.—and store
the selection probabilities in separate fields, while also creating an additional
field with the product of them all. If the design is a self-weighting design
for some subgroups, you need to check the equality of the selection proba-
bilities within each group. The National Health and Nutrition Examination
Survey (NHANES), for example, is self-weighting with respect to age, gender,
and race/ethnicity domains; the Commercial Buildings Energy Consumption
Survey (CBECS) is self-weighting within building size and building usage cat-
egories. In practice, it will be often necessary to allow for exceptions. Good
documentation of selection probabilities is required in international surveys
that have to assure comparability across countries. The Programme for the
International Assessment of Adult Competencies (PIAAC) study issued by
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the Office of Economic Cooperation and Development (OECD)12 provides
the following instructions for information to be collected for each stage of
selection:

• A list of variables used for stratification and their categories
• Procedures used to construct the sampling frame and to stratify and select

sampling units
• The definition of sampling unit
• Data sources used for forming sampling units
• Average, minimum and maximum cluster size
• List of certainty units, such as large primary sampling units
• Measure of size for the sampling units, as well as minimum measure of size
• A description of units collapsed to obtain the minimum measure of size
• A formula describing the probability of selection for each sampling unit
• A sample selection worksheet that provides the following details:

– Target population totals for each level of stratification
– Number of sampling units on the frame for each level of stratification
– Total measure of size on the frame for each level of stratification
– Target sample size, or rate, prior to sampling for each stratum
– Actual sample size for each stratum, for certainty and noncertainty

units
– Weighted sample estimates for each level of stratification, where the

weight is equal to the inverse of the overall selection probability for the
sampling unit of the current selection stage

Exact Checks on Record Counts and Weight Sums

When checking weights, it is helpful to remember that the numbers of records
within an input file entering each step must equal the number of records on
the output file exiting the step plus any records discarded. Likewise, the sums
of the incoming weights and outgoing weights in each step must balance. For
example, the sum of the weights in the input file that has respondents and
nonrespondents in it must equal the sum of the weights of the respondents
in the outgoing file after certain types of nonresponse adjustments have been
made.

Statistical Checks

Finally the sum of the weights should be an estimate of the number of units
in the population. You therefore should compare the sum of the weights to
the external population count. We suggest you make this check after each

12 PIAAC Technical Standards and Guidelines, Second Draft presented at the Meet-
ing of the National Project Managers, 23–27 March 2009, Barcelona, Spain.



18.7 Specification Writing and Programming 549

weighting step (see Chaps. 13 and 14): base weight, adjustments for unknown
eligibility, and adjustments for nonresponse. If calibration is used, the esti-
mate of the total for each calibration variable should exactly equal its control
total and should have a standard error of 0, as we saw in Chap. 14. For exam-
ple, if age group poststrata are used in a household survey, the estimated
total number of persons in each age group should equal the population con-
trol total. If a method of estimating variances is used that properly accounts
for the poststratification, the SEs of the estimated total number of persons
in each poststratum should be 0.

Another excerpt from the PIAAC instruction regarding general quality
control procedures in the weighting steps is the following:

• The quality checks will be performed after each step in the weighting
process. The checks will include:

– Reviewing the distribution of weights at each stage to identify any miss-
ing or extreme values.

– Computing the weighted frequencies of important survey characteristics
after each weighting adjustment to show how each adjustment affects
the estimates for key survey variables. In addition, weighted frequencies
will be compared to reliable external totals.

– Reviewing a random listing of records for abnormalities.
– Producing the mean, median, minimum, and maximum and checking

for each jackknife replicate weight after each weight adjustment.
– After the final weights are produced, producing preliminary standard

errors and design effects on survey variables as a check on the replicate
weights.

Although these are intended for PIAAC and include some items specifically
for the methods used in that program (e.g., checks on replicate weights), the
general steps apply to many surveys.

18.7 Specification Writing and Programming

Writing good specifications will save a lot of work later on, avoid ambigu-
ities in the steps that must be completed, and, in the end, lead to better
documented projects. In smaller projects it is tempting to not even write
specifications at all because the same person would be writing the specifica-
tion as well as the programming code. Nevertheless, taking the extra step
of writing specifications allows for effective communication with the team,
for good documentation of the work, and for making changes afterwards.
When specification memos are written, it is useful to just write one memo for
each task. Having a standard format for the names of files that contain the
memos is a good practice. The actual file name of a specification memo should
include indicators for the task within a sequence of tasks, include the version
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Fig. 18.8: Project memo log.

Fig. 18.9: Example memo.

number of the memo, and indicate the purpose of the task. For example, a
file name S1.2.doc may contain the second version of a specification memo
related to the first task in the sampling section. A master file should provide
good mapping between each individual task, the program, and preferably the
programmer as well. An example for such mapping is given in Fig. 18.8. A
template for the memo is given in Fig. 18.9.
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We advise writing separate programs that perform individual tasks. Modu-
lar programming allows tracking changes to parts of the process. Figure 18.10
shows an example of header comment statements that might be used in a SAS
program written for a specific task. Of course, how a task is defined is a mat-
ter of taste. Tasks can be large or small depending on the organizational style
of the programmer. As an example, consider a school survey. “Construct sam-
ple frame” could be a task, but it may be more manageable to break it into
several steps:

• Download latest school universe from the Department of Education web
site.

• Eliminate ineligible schools based on survey eligibility criteria.
• Check file for missing data.
• Create stratum codes.
• Write output file.

One or more of these steps might deserve a separate task number and
program, depending on the details required for a step. An example of part of
a flowchart for weight calculation in the National Assessment of Education
Progress (NAEP) is shown later in Fig. 18.11. (Weighting includes a number
of other steps that follow the continuation block at the bottom of the chart
but are not shown here.) Particular tasks in the flowchart, like W0, W1, and
WP0, have their own specification memos. The specifications for these tasks
can be saved in files whose names include the task numbers as shown in
Fig. 18.8.

Within each program, comments should be included to highlight subtasks
and their purpose. Likewise, programs need comments to link different oper-
ations to the steps in the specification such as those suggested in the project
memo log (Fig. 18.8). Numbers in program file names can be used to keep
steps in sequence (see the last column of Fig. 18.8). We recommend creating
and keeping output log files from programs including program headers, as
illustrated in Fig. 18.10, that indicate the task of the program (and the corre-
sponding log file). General rules about documentation of programming codes
and effective coding can be found in Long (2009) and Kohler and Kreuter
(2012).

18.8 Project Documentation and Archiving

A quality project requires proper documentation. Such documentation needs
to be well organized so that decisions are recorded and can be retraced later
on. If issues arise, well-documented projects can address those easily. The
project documentation should at any point in time be ready for audit. When
thinking of how to structure your documentation it might help to develop
one system of documentation for external and one for internal use.
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Fig. 18.10: Program header (SAS file).

External Documentation

The external documentation needs to include a sample design report with
sufficient details to make the work reproducible and defensible. The sample
design report should also allow a comparison of the contractual promises
to the final outcome (and reasons for any change). That means a sample
design report would include information on the target population, the sam-
pling frame, the sample size, the sample design, the sample selection, the
response rates (and other prespecified performance indicators), sample moni-
toring, and sample quality control steps. Likewise the weighting reports would
include all details on designing the weights and adjustments and importantly
an evaluation of the final weights (e.g., weight variation). Given that the
client will receive a data file, the external report should also include a lay-
out of the analysis file and a codebook. The overall layout of the file needs
to be determined with the client (we recommend beforehand) but usually
includes all edited questionnaire items, imputed values and imputation flags,
sample weights and disposition codes, final weights, and individual adjust-
ment weights. Depending on the confidentiality agreements, variables used
alone or in combination to identify a participant need to be masked. The
codebook itself describes the file layout, variable names and labels, value
labels, etc. Sometimes codebooks are created in the form of an annotated
questionnaire. Good example codebooks can be found for the General Social
Survey (GSS, http://www3.norc.org/GSS+Website) and the National Health
Interview Survey (http://www.cdc.gov/nchs/nhis/nhis questionnaires.htm).

http://www3.norc.org/GSS+Website
http://www.cdc.gov/nchs/nhis/nhis_questionnaires.htm
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Fig. 18.11: Flowchart for weighting in the NAEP survey.
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Internal Documentation

Internal documentation is typically much more detailed than external docu-
mentation. Specification memos are included along with a dictionary of the
files that contain memos and programs. Intermediate files that are created
during frame creation, sample selection, field data collection, and weight com-
putation will all be part of internal documentation.



Appendix A

Notation Glossary

This appendix collects much of the notation used in chapters of this book.
More detailed descriptions can be found in the chapters that are referenced
below.

Sample Design and Sample Size for Single-Stage
Surveys (Chap. 3)

General Notation

N = number of elements in the population

ȳU =
∑N

i=1 yi

/
N = finite population mean of an analysis variable y

tU =
∑N

i=1 yi = population total of an analysis variable y
ȳs =

∑n
i=1 yi/n = sample mean of a variable y

S2 =
∑N

i=1 (yi − ȳU )
2
/
(N − 1) = population variance or unit variance of y

CVU = S/ȳU = population (or unit) coefficient of variation of y.
CV 2

U = S2
/
ȳ2U = population (or unit) relvariance

θ̂ is an estimator of some population parameter, e.g., a total or mean,

E
(
θ̂
)
= expected value of θ̂ in repeated sampling under a particular sampling

design

V
(
θ̂
)
= variance of an estimator θ̂

SE
(
θ̂
)
=

√
V
(
θ̂
)
= standard error of θ̂

v
(
θ̂
)
= estimator of V

(
θ̂
)

se
(
θ̂
)
=

√
v
(
θ̂
)
= estimated standard error of θ̂
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CV
(
θ̂
)
=

√
V
(
θ̂
)/

θ = coefficient of variation (CV ) of θ̂

cv
(
θ̂
)
=

√
v
(
θ̂
)/

θ̂ = sample estimator of CV
(
θ̂
)

relvar
(
θ̂
)
=
[
cv
(
θ̂
)]2

= estimated relvariance of θ̂

V (ȳs) =
(
1
n − 1

N

)
S2 = variance of ȳs in a simple random sample selected

without replacement (srswor)
t̂ = Nȳs is an estimator of the population total of y in an srswor
pU = population proportion of a 0–1 characteristic; qU = 1− pU

Single-Stage Sampling

srswor = simple random sample selected without replacement
srswr = simple random sample selected with replacement
ppswr = probability proportional to some measure of size selected with

replacement
n = number of sample elements
pwr = “probability with replacement,” used to refer to any design in which

the first-stage units are selected with replacement
ȳs =

∑n
i=1 yi/n = mean of y in a simple random sample of n elements

ps =
∑

i∈s yi
/
n is an estimator of pU from a simple random sample of n

elements
pi = one-draw selection probability for unit i in a sample selected with vary-

ing probabilities
πi = selection probability of unit i in a sample of size n selected with varying

probabilities
πij = joint selection probability of units i and j in a sample of size n selected

with varying probabilities
ˆ̄yπ = N−1

∑
i∈s yi/πi = π-estimator of the population total of y; also called

the Horvitz–Thompson estimator
ˆ̄ypwr =

1
Nn

∑
s

yi

pi
= “probability with-replacement” estimator of a total when

the sample is selected with varying probabilities and with replacement
ˆ̄yr = ˆ̄yπ +

∑p
j=1 bj

(
x̄Uj − ˆ̄xπj

)
= general regression estimator of a total; x̄Uj

is the population mean of an auxiliary variable xj (j=1, . . . ,p); ˆ̄xπj is
the π-estimator of the total of xj ; bj is an estimator of the slope on xj

in a regression of y on all p x ’s

Stratified Single-Stage Sampling

stsrswor = stratified simple random sample selected without replacement in
each stratum
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Nh = number of population elements in stratum h
Wh = Nh/N = population proportion of units in stratum h
yhi = value of an analysis variable for unit i in stratum h

S2
h =

∑Nh

i=1 (yhi − ȳUh)
2
/
(Nh − 1) = population or unit variance in stratum

h
Uh= set of all units in the population from stratum h

ȳUh =
∑Nh

i=1 yhi

/
Nh = population mean in stratum h

ȳU =
∑H

h=1WhȳUh = population mean expressed as a weighted sum of stra-
tum means

sh = sample of elements from stratum h
nh = number of sample elements from stratum h in a stratified simple random

sample
ȳhs =

∑
i∈sh

yhi
/
nh = sample mean of elements in stratum h

ȳst =
∑H

h=1 Whȳsh = estimated mean when an stsrs is selected

pst =
∑H

h=1 Whpsh = estimated proportion of units with a characteristic
when an stsrs is selected; psh = proportion of units in the sample in
stratum that have the characteristic

V (ȳst) =
∑H

h=1 W
2
h

1−fh
nh

S2
h = variance in stsrswor of ȳst where fh = nh/Nh

ch = cost per element of all costs that vary with the number of sample
elements

Designing Multistage Samples (Chap. 9)

Two-Stage Sampling

U = universe of PSUs
M = number of PSUs in universe
Ui = universe of elements in PSU i
Ni = number of elements in the population for PSU i
N =

∑
i∈U Ni = total number of elements in the population

πi = selection probability of PSU i
πij = joint selection probability of PSUs i and j
m = number of sample PSUs
ni = number of sample elements in PSU i
s = set of sample PSUs
si = set of sample elements in PSU i
yik = analysis variable for element k in PSU i
ȳU = mean per element in the population
ȳUi = mean per element in the population in PSU i
tU =

∑
i∈U

∑
k∈Ui

yk = population total of an analysis variable y
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t̂π =
∑

i∈s
t̂i
πi

= π-estimator of the population total of y where t̂i =
(Ni/ni)

∑
k∈si

yk. The sample design is two-stage with PSUs selected
with varying probabilities and elements selected with equal probability
within each PSU

S2
U1 =

∑
i∈U (ti−t̄U )2

M−1 = variance among PSU totals with ti being the popula-
tion total of y in PSU i

t̄U =
∑

i∈U ti
/
M is the mean total per PSU

S2
U2i =

∑
k∈Ui

(yk−ȳUi)
2

Ni−1 = unit variance of y among the elements in PSU i

V
(
t̂π
)
= M2

m
M−m
M S2

U1 +
M
m

∑
i∈U

N2
i

ni

Ni−ni

Ni
S2
U2i

= variance of the π-estimator in a two-stage sample in which PSUs
are selected by srswor and units within sample PSUs are selected by
srswor

B2 = S2
U1

/
t̄2U = unit relvariance among PSU totals

W 2 = 1
Mȳ2

U

∑
i∈U S2

U2i = within-PSU relvariance among elements

t̂pwr = 1
m

∑
i∈s

t̂i
pi

= pwr -estimator of a total when the PSUs are selected

with replacement; t̂i =
Ni

ni

∑
k∈si

yik is the estimated total for PSU i
from a simple random sample and pi is the 1-draw selection probability
of PSU i.

When m PSUs are selected with replacement and an srswor of size ni is
selected in sample PSU i, the variance of t̂pwr is

V
(
t̂pwr

)
=

1

m

∑
i∈U

pi

(
ti
pi

− tU

)2

+
∑
i∈U

N2
i

mpini

(
1− ni

Ni

)
S2
U2i

≡ VPSU + VSSU .

(A.1)

Special case of the variance of t̂pwr when m PSUs are selected with replace-
ment and n̄ elements are selected by srswor in each PSU:

V
(
t̂pwr

)
=

S2
U1(pwr)

m
+

1

mn̄

∑
i∈U

(
1− n̄

Ni

)
N2

i S
2
U2i

pi
.

Special case of the relvariance of t̂pwr when PSUs are selected with replace-
ment, n̄ elements are selected by srswor in each PSU, and the within-PSU
sampling fraction, n̄/Ni, is negligible:

V
(
t̂pwr

)
t2U

.
=

B2

m
+

W 2

mn̄
=

B2 +W 2

mn̄
[1 + δ (n̄− 1)]

B2 = S2
U1(pwr)

/
t2U

= between relvariance component
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W 2 =
1

t2U

∑
i∈U

N2
i

S2
U2i

pi

= within relvariance component

δ = B2
/ (

B2 +W 2
)

= measure of the homogeneity of elements within PSUs

(A.2)

Variance Component Estimation in Two-Stage Sampling

In a design in which PSUs are selected by ppswr and elements within PSUs
are selected by simple random sampling, the variance of the pwr -estimator
is V

(
t̂pwr

)
= VPSU + VSSU as defined in (A.1). Estimators of the variance

components are

vSSU =
∑
i∈s

V̂i

(π∗
i )

2

= an estimator of VSSU in (A.1)

vPSU =
1

m (m− 1)

∑
i∈s

(
t̂iπ
pi

− t̂pwr

)2

−
∑
i∈s

1− π∗
i

(π∗
i )

2 V̂i

= an estimator of VPSU in (A.1)

where V̂i =
N2

i

ni
(1− fi) Ŝ

2
2i where π

∗
i = mpi, Ŝ

2
2i = (ni − 1)

∑
k∈si

(yk − ȳsi)
2
,

and ȳsi =
∑

k∈si
yk
/
ni.

Estimators of the between- and within-relvariance components in (A.2) for a
ppswr/srs sample are

B̂2 = 1
t̂2pwr

{
1

(m−1)

∑
i∈s

(
t̂iπ
pi

− t̂pwr

)2
−∑i∈s

1−π∗
i

mp2
i
V̂i

}
and

W 2 = 1
t̂2pwr

∑
i∈s

N2
i Ŝ2i

mp2
i

Three-Stage Sampling

Ui = population of SSUs in PSU i
Uij .= population of elements in PSU/SSU ij
Ni = population number of SSUs in PSU i
N =

∑
i∈U Ni = total number of SSUs in the population

m = number of sample PSUs
ni = number of sample SSUs; Chap. 9 gives results applicable to srswor sam-

pling of SSUs
Qij = population number of elements in PSU/SSU ij
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Qi =
∑

j∈Ui
Qij = total number of elements in PSU i in the population is Q

qij = number of elements selected by srswor from PSU/SSU ij

ȳsij =
∑

k∈sij
yk

/
qij , the sample mean of elements in SSU ij

tij =
∑

k∈Uij
yk being the population total for PSU/SSU ij

t̂ij = Qij ȳsij , the estimated total for SSU ij assuming that an equal proba-
bility sample is selected within the SSU

t̂iπ = Ni

ni

∑
j∈si

t̂ij , the estimated total for PSU i assuming that SSUs are
selected by srs

t̂π = M
m

∑
i∈s

Ni

ni

∑
j∈si

Qij

qij

∑
k∈sij

yk = π-estimator if an srswor (or another

type of equal probability sample) is selected at each stage.

S2
U1 =

∑
i∈U (ti−t̄U )2

M−1 = variance among PSU totals

S2
U2i =

1
Ni−1

∑
j∈Ui

(tij − t̄Ui)
2
= unit variance of SSU totals in PSU i where

t̄Ui =
∑

j∈Ui
tij

/
Ni is the average total per SSU in PSU i

S2
U3ij = 1

Qij−1

∑
k∈Uij

(yk − ȳUij)
2

= unit variance among elements in

PSU/SSU ij where ȳUij =
∑

k∈Uij
yk

/
Qij

Relvariance of the π-estimator in three-stage sampling when each stage of
sampling is srswor :

V (t̂π)
t2U

= 1
t2U

{
M2

m
M−m
M S2

U1 +
M
m

∑
i∈U

N2
i

ni

Ni−ni

Ni
S2
U2i +

M
m

∑
i∈U

Ni

ni

∑
j∈Ui

Q2
ij

qij

Qij−qij
Qij

S2
U3ij

}
.

A special case of the relvariance of the π-estimator in three-stage sampling
follows. The requirements are that all stages are srswor the same number
of SSUs, n̄, is selected from each PSU, the same number of elements, ¯̄q, is
selected from each SSU, the number of SSUs in the population for each PSU
is the same, Ni = N̄ , and the number of elements in the population in each
SSU is the same, Qij =

¯̄Q:

V
(
t̂π
)

t2U
=

1
¯̄̄y2U

{
1

m

M −m

M
S2
1 +

1

mn̄

N̄ − n̄

N̄
S2
2 +

1

mn̄ ¯̄q

¯̄Q− ¯̄q
¯̄Q

S2
3

}

where ¯̄̄yU =
∑

i∈U

∑
j∈Ui

∑
k∈Uij

yk

/
MN̄ ¯̄Q

S2
1 = (M − 1)−1∑

U

(
¯̄yUi − ¯̄̄yU

)2
; ¯̄yUi = ti

/
N̄ ¯̄Q is the mean per ele-

ment in PSU i
S2
2 =

∑
i∈U

∑
j∈Ui

(ȳUij − ¯̄yUi)
2
/
M
(
N̄ − 1

)

ȳUij =
∑

k∈Uij
yk

/
¯̄Q is the mean per element in SSU ij ; and

S2
3 =

∑
k∈Uij

(yk − ȳUij)
2
/
MN̄

(
¯̄Q− 1

)

Another special case of the relvariance when all stages are selected by
srswor is
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V
(
t̂π
)

t2U
=

{
1

m

M −m

M
B2 +

1

mn̄

N̄ − n̄

N̄
W 2

2 +
1

mn̄ ¯̄q

¯̄Q− ¯̄q
¯̄Q

W 2
3

}

with B2 = S2
1

/
¯̄̄y2U , W

2
2 = S2

2

/
¯̄̄y2U , and W 2

3 = S2
3

/
¯̄̄y2U

When PSUs are selected with replacement, the pwr -estimator of a total is:

t̂pwr = 1
m

∑
i∈s

t̂i
pi

where t̂i is a design-unbiased estimator of the total for PSU i and pi is the
1-draw probability of selection of PSU i.

Relvariance of the pwr-estimator in a three-stage sample in which the first
stage is selected with varying probabilities and with replacement and the
second and third stages are selected by srswor :

V (t̂pwr)
t2U

= 1
t2U

{
S2
U1(pwr)

m + 1
m

∑
i∈U

N2
i

pini

Ni−ni

Ni
S2
U2i+

1
m

∑
i∈U

1
pi

Ni

ni

∑
j∈Ui

Q2
ij

qij

Qij−qij
Qij

S2
U3ij

}

≡ 1
t2U

{VPSU + VSSU + VTSU}
(A.3)

S2
U1(pwr) =

∑
i∈U pi

(
ti
pi

− tU

)2
is the unit variance appropriate for the pwr -

estimator when the first stage is selected with replacement
V (t̂pwr)

t2U

.
= B2

m +
W 2

2

mn̄ +
¯̄Q− ¯̄q
¯̄Q

W 2
3

mn̄ ¯̄q is a special case of the three-stage sam-

pling relvariance in a ppswr/srswor/srswor design that assumes that n̄
SSUs are sampled in each sample PSU, the sampling fractions of SSUs in
each PSU, n̄/Ni, are small, and ¯̄q elements in each sample SSU. The com-

ponents are B2 = S2
U1(pwr)

/
t2U , W 2

2 = 1
t2U

∑
i∈U N2

i S
2
U2i

/
pi, and W 2

3 =
1
t2U

∑
i∈U

Ni

pi

∑
j∈Ui

Q2
ijS

2
U3ij

A rewritten version of the relvariance in a ppswr/srswor/srswor design is

V
(
t̂pwr

)
t2U

.
=

Ṽ

mn̄¯̄q
{k1δ1n̄¯̄q + k2 [1 + δ2 (¯̄q − 1)]} , (A.4)

where
k1 = Ṽ1

/
Ṽ with Ṽ = 1

Q−1

∑
i∈U

∑
j∈Ui

∑
k∈Uij

(yk − ȳU )
2
/
t2U being the

unit variance of y in the population

k2 = Ṽ2

/
Ṽ with Ṽ2 = W 2

2 +
(
¯̄Q− 1

)
W 2

3

/
¯̄Q

δ1 =
B2−W 2/Q̄

Ṽ1
is a measure of homogeneity of elements within PSUs

(i.e., ignoring SSU membership); Ṽ1 = B2 +
(
Q̄− 1

)
W 2
/
Q̄, Q̄ =∑

i∈U Qi

/
M is the average number of elements per PSU
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W 2 = 1
t2U

∑
i∈U Q2

iS
2
U3i

/
pi with S2

U3i =
1

Qi−1

∑
j∈Ui

∑
k∈Uij

(yk − ȳUi)
2
and

ȳUi =
∑

j∈Ui

∑
k∈Uij

yk

/
Qi, i.e., S

2
U3i is the element-level variance among

all elements in PSU i

δ2 =
W 2

2 −W 2
3 / ¯̄Q

Ṽ2
is a measure of homogeneity of elements within the SSUs

Variance Component Estimation in Three-Stage Sampling

Direct estimates of the components of the variance of the pwr -estimator of
the total in (A.3) can be made from a sample. The estimates presented below
are for the case of ppswr sampling of m PSUs and simple random sampling
of ni SSUs in PSU i and qij elements in SSU ij. First, define

Ŝ2
2ai = (ni − 1)−1∑

j∈si

(
t̂ij − ¯̂ti

)2
, the sample variance among estimated

SSU totals, where ¯̂ti =
∑

j∈si
t̂ij

/
ni and t̂ij = Qij ȳsij , the estimated

total for SSU ij
Ŝ2
3ij = (qij − 1)

−1∑
k∈sij

(yk − ȳsij)
2
, the sample variance among elements

in SSU ij

V̂3ij =
Q2

ij

qij

Qij−qij
Qij

Ŝ2
3ij , the estimated variance of the estimated total t̂ij for

SSU ij
Ŝ2
3ij = (qij − 1)

−1∑
k∈sij

(yk − ȳsij)
2
, the sample variance among elements

in SSU ij, an estimator of S2
U3ij

V̂3ij =
Q2

ij

qij

Qij−qij
Qij

Ŝ2
3ij , the estimated variance of the estimated total t̂ij for

SSU ij ;
Ŝ2
2bi =

1
ni

∑
j∈si

V̂3ij

Ŝ2
2i = Ŝ2

2ai − Ŝ2
2bi, an estimator of S2

2Ui the variance of the SSU totals;

Ŝ2
1a = 1

m−1

∑
i∈s

(
t̂iπ
pi

− t̂π

)2
;

Ŝ2
1b =

1
m

∑
i∈s

N2
i

pini

[
(1− f2i) Ŝ

2
2ai + f2iS

2
2bi

]
where f2i = ni/Ni

Ŝ2
1 = Ŝ2

1a − Ŝ2
1b, an estimator of S2

U1(pwr)

The estimator of the third-stage component,

VTSU =
1

m

∑
i∈U

1

pi

Ni

ni

∑
j∈Ui

Q2
ij

qij

Qij − qij
Qij

S2
U3ij ,

in (A.3) is

vTSU =
∑
i∈s

1

(mpi)
2

N2
i

n2
i

∑
j∈si

V̂3ij .

The estimator of the second-stage component,

VSSU = 1
m

∑
i∈U

N2
i

pini

Ni−ni

Ni
S2
U2i, in (A.3) is
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vSSU =
∑
i∈s

1

(mpi)
2

N2
i

ni

Ni − ni

Ni
Ŝ2
2i.

The estimator of the first-stage component, VPSU = S2
U1(pwr)

/
m, in (A.3) is

vPSU = Ŝ2
1

/
m.

Special case of the relvariance of the pwr-estimator in three-stage sampling
for the case of the same number of sample SSUs, n̄, and the same number of
sample elements, ¯̄q, and population elements, ¯̄Q, in each SSU; an ad hoc fpc,(
N̄ − n̄

) /
N̄ , is used on the second-stage component where N̄ is the average

number of SSUs per PSU:

v
(
t̂pwr

)

t̂2pwr

=
B̂2

m
+

N̄ − n̄

N̄

Ŵ 2
2

mn̄
+

¯̄Q− ¯̄q
¯̄Q

Ŵ 2
3

mn̄ ¯̄q
,

where B̂2 =
Ŝ2
1

t̂2pwr

,

Ŵ 2
2 = 1

t̂2pwr

∑
i∈s

N2
i

mp2
i
Ŝ2i, and

Ŵ 2
3 = 1

t̂2pwr

{∑
i∈s

1
mp2

i

N2
i

ni

∑
j∈si

Q2
ijŜ

2
3ij

}
.

Plug-in estimators of the measures of homogeneity in (A.4) are:

δ1 =
B̂2−Ŵ 2/Q̄

ˆ̃V1

with

ˆ̃V1 = B̂2 +
(
Q̄− 1

)
Ŵ 2
/
Q̄ and

Ŵ 2 = 1
t̂2pwr

∑
i∈s

Q2
ij S̃

2
i

mp2
i
, where

S̃2
i =

(∑
j∈si

∑
k∈sij

wk

)−1∑
j∈si

∑
k∈sij

wk

(
yk − ˆ̄yi

)2

ˆ̄yi =
∑

j∈si

∑
k∈sij

wkyk

/∑
j∈si

∑
k∈sij

wk

δ̂2 =
Ŵ 2

2 −Ŵ 2
3 / ¯̄Q

ˆ̃V2

with ˆ̃V2 = Ŵ 2
2 +

(
¯̄Q− 1

)
Ŵ 2

3

/
¯̄Q

Cost Functions in Two-Stage and Three-Stage Sampling

C = C0 +C1m+ C2mn̄ is a cost function for two-stage sampling with C0 =
costs that do not depend on the number of sample PSUs and elements;
C1 = cost per sample PSU; C2 = cost per element

C = C0 +C1m+C2mn̄+C3mn̄ ¯̄q is a cost function for three-stage sampling
with C0, C1 defined as in two-stage sampling; C2 is the cost per SSU;
and C3 is the cost per element
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Basic Steps in Weighting (Chap. 13)

d0i = π−1
i = base weight for unit i in a single-stage sample, computed as

the inverse of the selection probability, πi. If stratification is used, a
subscript h is added to give d0hi

d0ij = π−1
ij = base weight for element j in cluster i in a two-stage sample

where πij = πiπj|i with
πi = selection probability of cluster i
πj|i = selection probability of element j within cluster i
s = initial set of all sample units
sIN = set of units in s that are known to be ineligible
sER = set of units that are eligible respondents
sENR = set of units that are eligible nonrespondents
sKN = set of units whose eligibility is known (sIN ∪ sER ∪ sENR, where ∪

denotes the union of one or more sets)
sUNK = set whose eligibility is unknown

a1b =
∑

i ∈sb
d0i

∑
i∈sb,KN

d0i
= weight adjustment for unknown eligibility, assuming

that elements are placed into b = 1, . . . , B adjustment classes; sb is the
set of all sample elements in cell b; sb,KN is the set of elements whose
eligibility status is known

d1i = a1bd0i = adjusted weight for unit i insb,KN

a2c =

∑
i∈sc,E

d1i
∑

i∈sc,ER
d1i

= weight class adjustment for nonresponse, assuming that

elements are placed into c = 1, . . . , C adjustment classes; sc,E is the
set of cases known to be eligible in class c; sc,ER is the set of eligible
respondents in class c

The weight for unit i in the initial sample, after the adjustments for unknown
eligibility and nonresponse, depends on whether the unit is an eligible respon-
dent, a known ineligible, or a nonresponding or unknown-eligibility case:

d2i =

⎧
⎨
⎩

d1ia2c i ∈ sc,ER,
d1i i ∈ sIN ,
0 i ∈ sUNK ∪ sENR,

=

⎧
⎨
⎩

d0ia1ba2c i ∈ sb,KN ∩ sc,ER,
d0ia1b i ∈ sb,KN ∩ sIN ,
0 i ∈ sUNK ∪ sENR,

Calibration (Chap. 14)

The GREG estimator of the population total of y is

T̂yGREG = t̂y +
(
tx − t̂x

)T
B̂

=
∑

i∈s

[
1 +
(
tx − t̂x

)T (
XTDV−1X

)−1
xi/vi

]
diyi,
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where t̂y =
∑

s diyi is the estimator of the total based on the input weights

tx = (tx1, . . . , txp)
T is the p× 1 vector of population (or control) totals of p

auxiliaries using the number of rows by the number of column matrix
notation (the superscript T denotes the transpose of a vector)

t̂x =
∑

s dixi is the estimate of totals of the x ’s based on the di weights (these
can be base weights or weights adjusted for unknown eligibility and
nonresponse)

xi is the p× 1 vector of auxiliary values for the i th sample unit
D = diag (di) is the n× n diagonal matrix of input weights

X =

⎛
⎜⎜⎜⎝

xT
1

xT
2
...
xT
n

⎞
⎟⎟⎟⎠ is the n× p matrix of auxiliaries for the n sample units

B̂=
(
XTDV−1X

)−1
XTDV−1y with y = (y1, . . . , yn)

T
being the vector of

y’s for the sample units
V = diag (vi) is an n × n diagonal matrix of values associated with the

variance parameters in an underlying linear model
The GREG weight for element i is

wi = digi

≡ di

[
1 +
(
tx − t̂x

)T (
XTDV−1X

)−1
xi/vi

]
.

The term in brackets is called the g-weight.

Variance Estimation (Chap. 15)

To estimate design-based variances, the design of the sample must be con-
sidered more explicitly than when computing weights. Consequently, the
notation must include the stages of sampling that were used.

Sample design: sample is selected with varying probabilities and
with replacement (ppswr). The pwr -estimator of the mean is ˆ̄ypwr =
1

Nn

∑
s

yi

pi
where pi is the 1-draw selection probability. Its variance is esti-

mated with

v
(
ˆ̄ypwr

)
=

1

N2

1

n (n− 1)

∑
i∈s

(
yi
pi

− t̂pwr

)2

.

Sample design: PSUs are stratified and a two-stage sample is
selected. The PSUs are selected with replacement. The pwr -
estimator of the mean is
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ˆ̄ypwr = N−1
∑

h n
−1
h

∑
i∈sh

y′hi/phi where
phi = the 1-draw probability of selection of PSU i in stratum h
y′hi =

∑
k∈shi

dk|hi yhik = estimated total just for units in PSU hi.
shi = set of sample units in PSU hi
dk|hi = weight for unit k in PSU hi that expands the PSU sample to only

the population of that PSU.
dk = dk|hi

/
phi = full weight for unit k in shi where dk|hi is sometimes

referred to as the conditional within-PSU weight for unit k. The pwr
variance formula for ˆ̄ypwr is

v
(
ˆ̄ypwr

)
= 1

N2

∑
h

1
nh(nh−1)

∑
i∈sh

(
y′
hi

phi
− t̂pwr,h

)2
,

where t̂pwr,h = n−1
h

∑
sh

y′hi/phi,
Ŷhi =

∑
k∈shi

dkyk, and
ˆ̄Yh = n−1

h

∑
i∈sh

Ŷhi.

Jackknife Variance Estimator

Sample design: A single-stage of size n is selected. n replicate esti-
mates are formed in the basic jackknife method by dropping one unit at a
time and reweighting the remaining units. The jackknife variance estimator
of the estimated total, t̂ =

∑
k∈s dkyk, used in this book is

vJ
(
t̂
)
=

n− 1

n

n∑
i=1

(
t̂(i) − t̂

)2
, (A.5)

where
t̂(i) =

∑
k∈s(i) dk(i)yk = the estimated total for a variable y based on replicate

i
d(k)i =

n
n−1dk = weight for unit k that is retained for replicate i

s (i) denotes the set of sample units excluding unit i

Formula (A.5) also applies to a nonlinear estimator θ̂ = f
(
t̂1, . . . , t̂p

)
that is

a differentiable function of the vector of estimated totals, t̂ =
(
t̂1, . . . , t̂p

)T
.

Sample design: A stratified multistage with n PSUs is selected;
any number of stages can be used within the PSUs. The jack-
knife variance estimator of a differentiable function of estimated totals,
θ̂ = f

(
t̂1, . . . , t̂p

)
, is
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vJ

(
θ̂
)
=
∑
h

nh − 1

nh

∑
i∈sh

(
θ̂(hi) − θ̂

)2
,

where
sh = the set of sample PSUs in stratum h
θ̂(hi) is the estimate from replicate hi found by dropping all sample units in

PSU hi and reweighting the remaining sample units
The adjusted base weight for unit k when PSU hi is deleted is

dk(hi) =

⎧⎨
⎩

0 if unit k is in PSU i in stratum h,
nh

nh−1dk if unit k is in stratum h but not in PSU i, and

dk if unit k is not in stratum h.

Balanced Repeated Replication (BRR) Variance Estimator

BRR is mainly used in PSU samples but applies generally when the sample
is stratified and two first-stage units are selected in each stratum. Suppose
that the full sample estimator is θ̂ = f

(
t̂1, . . . , t̂p

)
, a differentiable function of

a vector of estimated totals. Replicate subsamples are formed by identifying
half-samples using the method prescribed in Sect. 15.4.2. The standard BRR
variance estimator is

vBRR

(
θ̂
)
= A−1

A∑
α=1

(
θ̂α − θ̂

)2
,

where
θ̂α = f

(
t̂1α, . . . , t̂pα

)
where t̂jα is the estimated total for the j-th variable

based on the units in half-sample α
A = number of replicates
The replicate weights for the standard BRR are

dk(α) =

{
0 if unit k is in a PSU that is not in the half-sample,
2dk if unit k is in a PSU that is in the half-sample.

The Fay BRR uses all units in the sample to calculate replicate estimates.
Weights for units in replicates are

dk(α) =

{
ρdk if unit k is in a PSU that is not in the half-sample,
(2− ρ) dk if unit k is in a PSU that is in the half-sample,

where 0 ≤ ρ < 1.
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Bootstrap Variance Estimator

The bootstrap is implemented by selecting an srswr of mh PSUs from the
nh initial sample PSUs in stratum h:

m∗
hi = number of times that PSU i is selected from stratum h∑nh

i=1 m
∗
hi = mh; m

∗
hi = 0 for PSUs not selected for the bootstrap sample.

The replicate weight for each sample unit k within the initial sample PSUs
(k ∈ shi) is

d∗k = dk

({
1−
√

mh

(nh−1)

}
+
√

mh

(nh−1)
nh

mh
m∗

hi

)

= dkBhi,
(A.6)

where Bhi is defined by the last equality. This is computed for units in all
sample PSUs, not just those in the bootstrap sample.
The Rao–Wu bootstrap variance estimator is

vboot

(
θ̂
)
=

1

B

B∑
b=1

(
θ̂(b) − θ̂

)2
,

where θ̂(b) is the estimate from bootstrap sample b computed using the
weights in (A.6).

Multiphase Designs (Chap. 17)

Multiphase designs refer to sample designs in which two or more phases are
used to select the sample. Generally, information is collected on an initial
set of units (the first phase) and used to select a subsample of units for the
next phase (the second phase). This pattern can be continued to subsequent
phases. Subscripts in parentheses are used to denote phases:
n(1), n(1)R = numbers of initial sample units selected in phase 1 and the

number that respond
n(2), n(2)R = numbers of sample units selected in phase 2 and the number

that respond
n(p)d = number of phase p units given survey condition d. A survey condition

might be defined by whether an incentive was offered and, if so, the
amount of the incentive

D(p) = number of survey conditions used in phase p
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The notation below refers to a sample design in which a stratified sample
of clusters is selected followed by a sample of elements within each sample
cluster
π(1)hi = selection probability for the ith cluster in stratum h in phase 1
π (1)k|hi = selection probability for the kth element in cluster hi conditional

on the cluster being sampled in the first stage
d(1)0k = π−1

(1)hi × π−1
(1)k|hi = base weight of an element in the phase 1 sample

π (2)k|(1) = phase 2 selection probability for the kth unit conditional on being
selected in phase 1

d(2)0k = d(1)0k π−1
(2)k|(1) = base weight of unit k in phase 2

Analysis weights for phase 1 elements may be computed if data are collected
from them that can be analyzed separately. In that case, an analysis weight,
w(1)k, can be computed as

w(1)k = d(1)0ka(1)1ka(1)2kg(1)k = analysis weight for an element in the phase
1 responding sample where

a(1)1k = adjustment for unknown-eligibility status of element k
a(1)2k = adjustment for nonresponse applied to the base weight adjusted for

unknown eligibility d(1)1k = d(1)0k × a(1)1k
g(1)k = calibration adjustment made to the adjusted base weights, d(1)2k =

d(1)0k a(1)1k a(1)2k, using controls generated from the population
s(2)R = set of eligible sample respondents in phase 2

After data have been collected from the responding phase 2 sample members,
the final unconditional, phase 2 analysis weight can be constructed for the
elements in s(2)R as follows:

w(2)k = w(1)k a (2)0k|(1) a (2)1k|(1) a (2)2k|(1) g (2)k|(1),

where
w(1)k = final phase 1 weight
a (2)0k|(1) = adjustment for subsampling conditional on the responses from

phase one, a (2)1k|(1) = adjustment for unknown eligibility strictly asso-
ciated with the phase 2 sample

a (2)2k|(1) = nonresponse strictly associated with the phase 2 sample
g (2)k|(1) = calibration adjustment applied to the adjusted weights

d(2)2k = w(1)k a (2)0k|(1) a (2)1k|(1) a (2)2k|(1)
t̂(2)y =

∑
k∈s(2)R

w(2)k yk = double expansion estimator of the population

total of y
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Variance Estimation in a Two-Phase Design

Consider the double sampling for stratification design where the phase-one
design is an srs of size n(1) and a second-phase random sample of size n(2) =∑H

h=1 n(2)h is selected from the newly identified strata. The variance of the
double expansion estimator is

V
(
t̂(2)y

)
= N2

[(
1− f(1)

)
S2

n(1)
+ E(1)

(∑H
h=1 w

2
(1)h

(
1− f(2)

) s2(1)h
n(2)h

)]
,

= V1 + V2

(A.7)
where E(1) is the expectation over the phase 1 sample design

f(1) = n(1)

/
N = phase 1 sampling fraction

f(2)h =
(
n(2)h

/
n(1)h

)
= fraction of the phase 1 sample in stratum h that is

sampled for phase 2
S2 = (N − 1)

−1∑
k∈U (yk − ȳU )

2
= the population (unit) variance

s2(1)h =
(
n(1)h − 1

)−1∑
k∈s(1)h

(
ŷ(1)k − ˆ̄y(1)h

)2
= phase 1 unit variance among phase 1 sample units in stratum h

ˆ̄y(1)h = n−1
(1)h

(∑
k∈s(1)h

ŷ(1)k

)

= mean of ŷ(1)k = d(1)0k yk among phase 1 elements
Estimates of the components of variances associated with phases 1 and 2
in (A.7) are

V̂1 =
1−f(1)
n(1)

[∑H
h=1 w(1)h

(
1− 1

n(2)h

n(1)−n(1)h

n(1)−1

)
s2(2)h+

n(1)

n(1)−1

∑H
h=1 w(1)h

(
ˆ̄y(2)h − ˆ̄y(2)

)2]

V̂2 =

H∑
h=1

w2
(1)h

(
1− f(2)h

) s2(2)h
n(2)h

,

where

ˆ̄y(2) =
∑H

h=1 w(1)h

ˆ̄y(2)h,

ˆ̄y(2)h =
∑

k∈s(2)h
yk

/
n(2)h

s2(2)h =
(
n(2)h − 1

)−1∑
k∈s(2)h

(
ŷ(1)k − ˆ̄y(1)h

)2

Adding V̂1 and V̂2 and assuming that the first phase sampling fraction, f(1),

is small and that
(
n(1)h − 1

) / (
n(1) − 1

) .
= w(1)h, the estimated variance of

t̂(2)y is

v
(
t̂(2)y

) ∼= N2

[
1

n(1)

H∑
h=1

w(1)h

(
ˆ̄y(2)h − ˆ̄y(2)

)2
+

H∑
h=1

w2
(1)h

(
s2(2)h
n(2)h

)]
.
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Data Sets

Several data sets are used in this book for examples. This appendix gives a
brief description of each. These data files are also included in the companion
R package, PracTools.

Domainy1y2

A small data set with 30 observations and two variables, y1 and y2, is used
in an exercise.

hospital

The hospital data are from the National Hospital Discharge Survey con-
ducted by the US National Center for Health Statistics. The survey collects
characteristics of inpatients discharged from non-federal short-stay hospitals
in the United States. This population is from the January 1968 survey and
contains observations on 393 hospitals.

Variable Description
y Number of patients discharged by the hospital in

January 1968
x Number of inpatient beds in the hospital

R. Valliant et al., Practical Tools for Designing and Weighting
Survey Samples, Statistics for Social and Behavioral Sciences 51,
DOI 10.1007/978-1-4614-6449-5, © Springer Science+Business Media New York 2013
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labor

This population is a clustered population of 478 persons extracted from the
September 1976 Current Population Survey (CPS) in the United States. The
clusters are compact geographic areas used as one of the stages of sampling
in the CPS and are typically composed of about four nearby households. The
units within clusters for this illustrative population are individual persons.

Variable Description
h Stratum of clusters
hsub Substratum (each stratum contains two sub-

strata)
cluster Cluster (or segment) number. Each segment is a

small group of persons living near each other
person Person number
age Age
agecat Age category

1 = 19 years and under
2 = 20–24
3 = 25–34
4 = 35–64
5 = 65 years and over

race Race (1 = non-Black; 2 = Black)
sex Gender (1 = male; 2 = female)
HourPerWk Usual number of hours worked per week
WklyWage Usual amount of weekly wages (in 1976 US dol-

lars)
y An artificial variable generated to follow a model

with a common mean. Persons in the same clus-
ter are correlated. Persons in different clusters
are uncorrelated under the model

MDarea.pop

A data set of 403,997 persons based on the 2000 decennial US Census for Anne
Arundel County in the state of Maryland. Person records were generated
based on counts from the 2000 census. Individual values for each person were
generated using models. Groupings to form the variables PSU and SSU were
done after sorting the census file by tract and block group within tract.
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Variable Description
PSU Primary sampling unit; a grouping of block groups (BLKGROUP)

which has about 5,000 persons
SSU Secondary sampling units; a grouping of block groups which has

about 1,000 persons
TRACT A geographic area defined by the Census Bureau. Tracts generally

have between 1,500 and 8,000 people but have a much wider range
in Anne Arundel county

BLKGROUP Block group. A geographic area defined by the Census Bureau.
Block groups generally have between 600 and 3,000 people

Hispanic Hispanic ethnicity (1=Hispanic; 2=non-Hispanic)
Gender Gender (1 = male; 2 = female)
Age 23 level age category:

1 = under 5 years
2 = 5–9 years
3 = 10–14 years
4 = 15–17 years
5 = 18–19 years
6 = 20 years
7 = 21 years
8 = 22–24 years
9 = 25–29 years
10 = 30–34 years
11 = 35–39 years
12 = 40–44 years
13 = 45–49 years
14 = 50–54 years
15 = 55–59 years
16 = 60–61 years
17 = 62–64 years
18 = 65–66 years
19 = 67–69 years
20 = 70–74 years
21 = 75–79 years
22 = 80–84 years
23 = 85 years and over

person Counter for person within tract/block group/Hispanic/gender/
age combination

y1 Artificial continuous variable
y2 Artificial continuous variable
y3 Artificial continuous variable
ins.cov Medical coverage:

0 = person does not have medical insurance coverage
1 = person has medical insurance coverage

hosp.stay Overnight hospital stay:
0 = person did not have an overnight hospital stay in last
12months
1 = person did have an overnight hospital stay in last 12months
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nhis

The National Health Interview Survey (NHIS) is used to monitor health con-
ditions in the US Data are collected through personal household interviews.
Only demographic variables are included in this subset which was collected
in 2003. The nhis data set contains observations for 3,911 persons. The file
contains only persons 18 years and older.

Variable Description
ID Identification variable
stratum Sample design stratum (1–100)
psu Primary sampling unit, numbered within each stratum (1,2)
svywt Survey weight
sex Gender (1 = male; 2 = female)
age Age, continuous
age r Recoded age:

3 = 18–24 years
4 = 25–44 years
5 = 45–64 years
6 = 65–69 years
7 = 70–74 years
8 = 75 years and older

hisp Hispanic ethnicity:
1 = Hispanic
2 = non-Hispanic

marital Marital status:
1 = separated
2 = divorced
3 = married
4 = single/never married
5 = widowed
9 = unknown marital status

parents Parent(s) of sample person present in the family:
1 = mother, no father
2 = father, no mother
3 = mother and father
4 = neither mother nor father

parents r Parent(s) of sample person present in the family recode (1 = yes;
2 = no)
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Variable Description
educ Education:

1 = 8th grade or less
2 = 9-12th grade, no high school diploma
3 = high school graduate
4 = general education development (GED) degree recipient
5 = some college, no degree
6 = associate’s degree, technical or vocational
7 = associate’s degree, academic program
8 = bachelor’s degree (BA, BS, AB, BBA)
9 = master’s, professional, or doctoral degree

educ r Education recode:
1 = high school, general education development degree (GED), or
less
2 = some college
3 = bachelor’s or associate’s degree
4 = master’s degree and higher

race Race (1 = White; 2 = Black; 3 = other)
resp Respondent (0 = nonrespondent; 1 = respondent)

nhis.large

The National Health Interview Survey (NHIS) is used to monitor health con-
ditions in the US Data are collected through personal household interviews.
Demographic variables and a few health-related variables are included in this
subset. The nhis.large data set contains observations on 21,588 persons.
nhis.large is a set of 21,588 persons extracted from the 2003 US survey. The
file contains only persons 18 years and older.
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Variable Description
ID Identification variable
stratum Sample design stratum (1–100)
psu Primary sampling unit, numbered within each stratum (1,2)
svywt Survey weight
sex Gender (1 = male; 2 = female)
age.grp Age group:

1 = < 18 years
2 = 18–24 years
3 = 25–44 years
4 = 45–64 years
5 = 65+

hisp Hispanic ethnicity:
1 = Hispanic
2 = non-Hispanic White
3 = non-Hispanic Black
4 = non-Hispanic all other race groups

parents Parents present in the household:
1 = mother, father, or both present
2 = neither present

educ Highest level of education attained:
1 = high school graduate, graduate equivalence degree less
2 = some college
3 = bachelor’s or associate’s degree
4 = master’s degree or higher
NA = missing

race Race:
1 = White
2 = Black
3 = all other race groups

inc.grp Family income group:
1 = < $20K
2 = $20,000-$24,999
3 = $25,000-$34,999
4 = $35,000-$44,999
5 = $45,000-$54,999
6 = $55,000-$64,999
7 = $65,000-$74,999
8 = $75K+
NA = missing

delay.med Delayed medical care in last 12months because of cost:
1 = yes;
2 = no;
NA = missing

hosp.stay Had an overnight hospital stay in last 12months:
1 = yes;
2 = no;
NA = missing
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Variable Description
doc.visit During 2 Weeks before interview, did person see a doctor or other

health care professional at a doctor’s office, a clinic, an emergency
room, or some other place? (excluding overnight hospital stay)?
1 = yes
2 = no

medicaid Covered by medicaid, a governmental subsidy program for the
poor:
1 = yes
2 = no
NA = missing

notcov Not covered by any type of health insurance
1 = Yes;
2 = No;
NA = missing

doing.lw What was person doing last week?
1 = working for pay at a job or business
2 = with a job or business but not at work
3 = looking for work
4 = working, but not for pay, at a job or business
5 = not working and not looking for work
NA = missing

limited Is the person limited in any way in any activities because of
physical, mental, or emotional problems?
1 = limited in some way
2 = not limited in any way
NA = missing

smho.N874

The 1998 Survey of Mental Health Organizations (SMHO) was conducted by
the US Substance Abuse and Mental Health Services Administration. It col-
lected data on mental health care organizations and general hospitals that
provide mental health care services, with an objective to develop national-
and state-level estimates for total expenditure, full-time equivalent staff, bed
count, and total caseload by type of organization. The population omits one
extreme observation in the smho98 population and contains observations on
874 facilities.
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Variable Description
EXPTOTAL Total expenditures in 1998
BEDS Total inpatient beds
SEENCNT Unduplicated client/patient count seen during year
EOYCNT End of year count of patients on the role
FINDIRCT Hospital receives money from the state mental health agency

(1=yes; 2=no)
hosp.type Hospital type:

1 = psychiatric
2 = residential or veterans
3 = general
4 = outpatient, partial care
5 = multi-service, substance abuse

smho98

The 1998 SMHO was conducted by the US Substance Abuse and Mental
Health Services Administration. It collected data on mental health care orga-
nizations and general hospitals that provide mental health care services, with
an objective to develop national- and state-level estimates for total expen-
diture, full-time equivalent staff, bed count, and total caseload by type of
organization.

Variable Description
STRATUM Sample design stratum

1 = psychiatric hospital
2 = residential
3 = general hospital
4 = military veterans
5 = partial care or outpatient
6 = multiservice or substance abuse

BEDS Total inpatient beds
EXPTOTAL Total expenditures in 1998
SEENCNT Unduplicated client/patient count seen during year
EOYCNT End of year count of patients on the role
Y IP Number of inpatient visits during year
OPCSFRST Number of outpatients on the roles on the first day of the report-

ing year
OPCSADDS Number of outpatients admitted, readmitted, or transferred to

the organization during the reporting year for less than a 24 h
period and not overnight

OPCSVIST Number of outpatient visits during the reporting year for less
than a 24 h period and not overnight

EMGWALK Number of emergency walk-ins during the reporting year
PSYREHAB Number of visits for psychiatric rehabilitation services
IPCSADDS Number of residential patients added during the reporting year

or patients admitted for more than a 24 h period
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R Functions Used in this Book

Many examples in the book were developed using the R programming
language (R Core Team, 2012). Below we provide a brief overview of R includ-
ing steps to download a new or updated version (Sect. C.1). The functions in
the R package PracTools are listed in Sect. C.2.

C.1 R Overview

R encompasses a statistical language and a full graphical user interface (RGui)
with data manipulation, analysis, and graphic capabilities. The software is
available free to all from the R website, http://www.r-project.org/.

Documentation and Resources

Free, downloadable user’s manuals are located on the R website under the
Documentation—Manuals link.1 Additionally, all R functions have an asso-
ciated help screen that is seen by (i) typing a question mark and the name
of the function on the R command line or (ii) By using the help function
(e.g., ?mean or help(mean)) in the RGui or (iii) By running an “R Site
Search” on the website (see the R Project—Search link). The website also
contains an abbreviated list of books on various topics for users including
guides for translating SAS or Stata concepts and code into R. An example
of a comprehensive text used by the authors is Crawley (2007).

1 http://cran.r-project.org/manuals.html.
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Download a New Version of R

To obtain a new version of R, access the website and select “Download,
Packages–CRAN” from the list on the left side of the screen. Select a mirror
site near you and the version of R most appropriate for your computer system
(e.g., Windows). Select the “base” and then the “download” links.

R Packages/Libraries

Many functions have been created by R users, vetted by the R Core Team,
and made available to all in the R community. These user-written functions
are organized into packages also referred to as libraries. A few key packages
used in this book are listed below.

R package Purpose of associated functions
alabama Nonlinear optimization (Varadhan, 2010)
doBy Summary statistics by specified subgroups (Højsgaard and

Halekoh, 2012)
foreign Import/export data created from/to other software such as

SAS or Stata (R Core Team and contributors worldwide, 2012a)
graphics Graphics (R Core Team and contributors worldwide, 2012b)
lme4 Linear mixed effects for estimating variance components (Bates

et al., 2012)
nlme Linear and nonlinear mixed-effect models (Pinheiro and Bates,

2000)
pps Selection of samples from finite populations (Gambino, 2005)
quadprog Quadratic programming (Turlach and Weingessel, 2011)
reshape Data frame manipulation (Wickham, 2011)
rpart Classification and regression tree (CART) analysis (Therneau

et al., 2012)
sampling Selection of samples from finite populations (Tillé and Matei,

2012)
samplingbook Sample size and estimation currently for single-stage designs

(Manitz, 2012)
stats Statistical functions including classical hypothesis test and

regression (R Core Team and contributors worldwide, 2012c)
survey Analysis of complex survey data (Lumley, 2012)
survival Data files and analytic functions for survival analysis

(Therneau, 2012)

Functions within most packages are available for use only after the library has
been installed from a selected CRAN mirror and accessed during an R session.
To install an external package not included with the base installation, choose
“Install Package(s)” from the “Packages” menu within RGui, select a local
CRAN mirror, and then choose one or more packages from the resulting list.
A few libraries, such as MASS, are automatically loaded when an R session
begins. Other installed packages are accessed using either the require or
the library functions, e.g., require(survey) or library(survey).
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Updating R

The R base package is occasionally updated with no set schedule. Users should
regularly check the R website for a new release of the base package along with
updates to the function packages. The most recent version of the software
available for download is listed in the “News” section on the main RWeb page.
To upgrade to the latest version, first uninstall the current version of R from
your system and then install the latest version of R from the website. Note
that even though the software has been uninstalled, the R folder containing
the previously downloaded function packages still remains.

As with the base package, the function packages are periodically updated
to include new functions or enhancements to old functions. Previously down-
loaded function packages are updated using either the update.packages()
function or selecting the appropriate filename from the “Packages/Update
Packages. . . ” RGui list. With an updated version of the base package, simply
copy the function packages from the old R folder to the new folder prior to
running the updates.

Creating and Executing R Code

R code is executed interactively (through the RGui) in one of three ways:

(1) By entering the code line-by-line, pressing the enter key after each line
entry

(2) By copying and pasting a complete set of code developed in a text editor
(3) By including a complete R program using the source(‘‘file

name’’) function

Additionally, R programs can be executed in batch mode. There are several
text editors that are designed to work closely with R—RWinEdt,2 Tinn-R,3

and RStudio4 are three. R also comes with a built-in editor that has fewer
capabilities. RWinEdt is an R package that uses the WinEdt5 editor, which
also is a popular choice for editing with the LaTex6 typesetting language.
These specialized editors have several nice features, including highlighting of
matching parentheses, brackets, and braces; ability to highlight, copy, and
paste R code directly to the R Console; and accenting R reserved words, like
function names and operators.

2 http://cran.r-project.org/web/packages/RWinEdt/.
3 http://www.sciviews.org/Tinn-R/.
4 http://rstudio.org/.
5 http://www.winedt.com/.
6 http://miktex.org/ or http://www.latex-project.org/.

http://cran.r-project.org/web/packages/RWinEdt/
http://www.sciviews.org/Tinn-R/
http://rstudio.org/
http://www.winedt.com/
http://miktex.org/
http://www.latex-project.org/
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C.2 Author-Defined R Functions

Functions developed by the authors for use with this textbook are detailed
in alphabetical order below. These functions are available in the PracTools
library available for download at the book website and the main R website.
Following the lead of the R help files, each description below contains:

• The function name and summary of its purpose
• Syntax along with a description of the arguments
• The value(s) returned by the function
• Example code

More details for each function can be found in the help files for PracTools.
Other useful functions can be found in, for example, Valliant et al. (2000).

BW2stagePPS—Relvariance components for 2-stage sample

Description
Compute components of relvariance for a sample design where primary sam-
pling units (PSUs) are selected with probabilities proportional to size (pps)
and elements are selected via simple random sampling (srs). The input is an
entire sampling frame.

Usage
BW2stagePPS(X, pp, psuID)

Arguments

X data vector; length is the number of elements in the population.
pp vector of 1-draw probabilities for the PSUs. This vector must

be as long as X. Each element in a given PSU should have the
same value in pp. PSUs must be in the same order as in X.

psuID vector of PSU identification numbers. This vector must be as
long as X. Each element in a given PSU should have the same
value in psuID. PSUs must be in the same order as in X.

Value
List object with elements:

B2 between-PSU unit relvariance
W2 within-PSU unit relvariance
B2+W2 sum of between- and within-relvariance estimates
delta intraclass correlation estimated as B2/(B2 +W 2)
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Examples

data(MDarea.pop)
# Use PSU and SSU variables to define psu’s

pp.PSU <- table(MDarea.pop$PSU) / nrow(MDarea.pop)
pp.SSU <- table(MDarea.pop$SSU) / nrow(MDarea.pop)

# components with psu’s defined by the PSU variable
BW2stagePPS(MDarea.pop$y1, pp=pp.PSU, psuID=MDarea.pop$PSU)

# components with psu’s defined by the SSU variable
BW2stagePPS(MDarea.pop$y1, pp=pp.SSU, psuID=MDarea.pop$SSU)

# Use census tracts and block groups to define psu’s
trtBG <- 10*MDarea.pop$TRACT + MDarea.pop$BLKGROUP
pp.trt <- table(MDarea.pop$TRACT) / nrow(MDarea.pop)
pp.BG <- table(trtBG) / nrow(MDarea.pop)

# components with psu’s defined by tracts
BW2stagePPS(MDarea.pop$ins.cov, pp=pp.trt,

psuID=MDarea.pop$TRACT)
# components with psu’s defined by block groups

BW2stagePPS(MDarea.pop$ins.cov, pp=pp.BG, psuID=trtBG)

BW2stagePPSe—Estimated relvariance components for 2-stage sample

Description
Estimate components of relvariance for a sample design where primary sampling units
(PSUs) are selected with probabilities proportional to size (pps) and elements are
selected via simple random sampling (srs). The input is a sample selected in this way.

Usage
BW2stagePPSe(Ni, ni, X, psuID, w, m, pp)

Arguments

Ni vector of number of elements in the population of each sample
PSU; length is the number of PSUs in the sample.

ni vector of number of sample elements in each sample PSU; length
is the number of PSUs in the sample. PSUs must be in the same
order as in X.

X data vector for sample elements; length is the number of ele-
ments in the sample. These must be in PSU order. PSUs must
be in the same order as in X.

psuID vector of PSU identification numbers. This vector must be as
long as X. Each element in a given PSU should have the same
value in psuID.
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w vector of full sample weights. This vector must be as long as X.
Vector must be in the same order as X.

m number of sample PSUs
pp vector of 1-draw probabilities for the PSUs. This vector must

be as long as X. Each element in a given PSU should have the
same value in pp. Vector must be in the same order as X.

Value
List object with elements:

Vpsu estimated between-PSU unit variance
Vssu estimated within-PSU unit variance
B2 estimated between-PSU unit relvariance
W2 estimated within-PSU unit relvariance
delta intraclass correlation estimated as B2/(B2 +W 2)

Examples

require(sampling)
require(reshape) # has function that allows renaming vars
data(MDarea.pop)
Ni <- table(MDarea.pop$TRACT)
m <- 20
probi <- m*Ni / sum(Ni)

# select sample of clusters
sam <- cluster(data=MDarea.pop, clustername="TRACT", size=m,

method="systematic",
pik=probi, description=TRUE)

# extract data for the sample clusters
samclus <- getdata(MDarea.pop, sam)
samclus <- rename(samclus, c(Prob = "pi1"))

# treat sample clusters as strata and select srswor from
each

s <- strata(data = as.data.frame(samclus),
stratanames = "TRACT",
size = rep(50,m), method="srswor")

# extracts the observed data
samdat <- getdata(samclus,s)
samdat <- rename(samdat, c(Prob = "pi2"))

# extract pop counts for PSUs in sample
pick <- names(Ni) %in% sort(unique(samdat$TRACT))
Ni.sam <- Ni[pick]
pp <- Ni.sam / sum(Ni)
wt <- 1/samdat$pi1/samdat$pi2

BW2stagePPSe(Ni = Ni.sam, ni = rep(50,20), X = samdat$y1,
psuID = samdat$TRACT, w = wt,
m = 20, pp = pp)
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BW2stageSRS—Relvariance components for 2-stage sample

Description
Compute components of relvariance for a sample design where primary sam-
pling units (PSUs) and elements are selected via simple random sampling
(srs). The input is an entire sampling frame.

Usage
BW2stageSRS(X, psuID)

Arguments
X data vector; length is the number of elements in the population.
psuID vector of PSU identification numbers. This vector must be as

long as X. Each element in a given PSU should have the same
value in psuID. PSUs must be in the same order as in X.

Value
List object with elements:

B2 between-PSU unit relvariance
W2 within-PSU unit relvariance
unit relvar unit relvariance for population
delta full intraclass correlation

Examples

data(MDarea.pop)
# psu’s are defined by PSU variable

BW2stageSRS(abs(MDarea.pop$Hispanic-2),
psuID=MDarea.pop$PSU)

# psu’s are defined by SSU variable
BW2stageSRS(abs(MDarea.pop$Hispanic-2),

psuID=MDarea.pop$SSU)

BW3stagePPS—Relvariance components for 3-stage sample

Description
Compute components of relvariance for a sample design where primary sam-
pling units (PSUs) are selected with probabilities proportional to size and
with replacement (ppswr) and secondary sampling units (SSUs) and elements
within SSUs are selected via simple random sampling (srs). The input is an
entire sampling frame.
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Usage
BW3stagePPS(X, pp, psuID, ssuID)

Arguments
X data vector; length is the number of elements in the popula-

tion.
pp vector of 1-draw probabilities for the PSUs. This vector must

be as long as X and will contain the same value for the units
that are in the same PSU. PSUs must be in the same order
as in X.

psuID vector of PSU identification numbers. This vector must be as
long as X. Each element in a given PSU should have the same
value in psuID. PSUs must be in the same order as in X.

ssuID vector of SSU identification numbers. This vector must be as
long as X. Each element in a given SSU should have the same
value in ssuID. PSUs and SSUs must be in the same order
as in X. ssuID should have the form psuID||(ssuID within
PSU).

Value
List object with elements:

B between-PSU unit relvariance
W within-PSU unit relvariance computed as if the sample were two

stage
W2 unit relvariance among SSU totals
W3 unit relvariance among elements within PSU/SSUs
delta1 homogeneity measure among elements within PSUs
delta2 homogeneity measure among elements within SSUs

Examples

data(MDarea.pop)
M <- length(unique(MDarea.pop$PSU))

# srs/srs/srs design
pp.PSU <- rep(1/M,M)
BW3stagePPS(X=MDarea.pop$y1, pp=pp.PSU,

psuID=MDarea.pop$PSU, ssuID=MDarea.pop$SSU)
# ppswr/srs/srs design

pp.PSU <- table(MDarea.pop$PSU) / nrow(MDarea.pop)
BW3stagePPS(X=MDarea.pop$y1, pp=pp.PSU,

psuID=MDarea.pop$PSU, ssuID=MDarea.pop$SSU)



C.2 Author-Defined R Functions 587

BW3stagePPSe—Estimated relvariance components for 3-stage sample

Description
Estimate components of relvariance for a sample design where primary sam-
pling units (PSUs) are selected with probabilities proportional to size and
with replacement (ppswr) and secondary sampling units (SSUs) and elements
within SSUs are selected via simple random sampling (srs). The input is a
sample.

Usage
BW3stagePPSe(dat, v, Ni, Qi, Qij, m)

Arguments
dat data frame for sample elements with PSU and SSU identi-

fiers, weights, and analysis variable(s). The data frame should
be sorted in hierarchical order: by PSU and SSU within PSU.
Required names for columns:
psuID = PSU identifier
ssuID = SSU identifier. These must be unique, i.e., number-
ing should not restart within each PSU. Setting ssuID =
psuID||(ssuID within PSU) is a method of doing this.
w1i = vector of weights for PSUs
w2ij = vector of weights for SSUs (PSU weight*SSU weight
within PSU)
w = full sample weight

v name or number of column in dat with variable to be analyzed.
Ni m-vector of number of SSUs in the population in the sample

PSUs; m is number of sample PSUs.
Qi m-vector of number of elements in the population in the sample

PSUs
Qij vector of numbers of elements in the population in the sample

SSUs
m number of sample PSUs

Value
List object with elements:

Vpsu estimated between-PSU unit variance
Vssu estimated second-stage unit variance among SSU totals
Vtsu estimated third-stage unit variance
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B estimated between-PSU unit relvariance
W estimated within-PSU unit relvariance computed as if the sam-

ple were two-stage
W2 estimated unit relvariance among SSU totals
W3 estimated third-stage unit relvariance among elements within

PSU/SSUs
delta1 estimated homogeneity measure among elements within PSUs
delta2 estimated homogeneity measure among elements within SSUs

Examples
See the help file for BW3stagePPSe in the PracTools package for an

extended example.

clusOpt2—Compute optimal sample sizes for a two-stage sample

Description
Compute the sample sizes that minimize the variance of the pwr -estimator,
the “p-expanded with-replacement” estimator developed by Hansen and
Hurwitz (1943), of a total in a two-stage sample.

Usage
clusOpt2(C1, C2, delta, unit.rv, CV0 = NULL, tot.cost =
NULL, cal.sw)

Arguments
C1 unit cost per primary sampling unit (PSU)
C2 unit cost per element
delta homogeneity measure

unit.rv unit relvariance or B2 +W 2

CV0 target CV
tot.cost total budget for variable costs
cal.sw specify type of optimum 1 = find optimal m.opt for fixed

total budget 2 = find optimal m.opt for target CV0

Value
List object with elements:

C1 unit cost per PSU
C2 unit cost per element
delta homogeneity measure
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unit relvar unit relvariance or B2 +W 2

cost total budget for variable costs, C–C0
m.opt optimum number of sample PSUs
n.opt optimum number of sample elements per PSU
CV target CV

Examples

# optimum for a fixed total budget
clusOpt2(C1=750, C2=100, delta=0.05, unit.rv=1,

tot.cost=100000, cal.sw=1)
# optimum for a target CV

clusOpt2(C1=750, C2=100, delta=0.01, unit.rv=1,
CV0=0.05, cal.sw=2)

clusOpt2fixedPSU—Optimal number of sample elements per primary
sampling unit (PSU) in a two-stage sample

Description
Compute the optimum number of sample elements per PSU for a fixed set
of PSUs.

Usage

clusOpt2fixedPSU(C1, C2, m, delta, unit.rv, CV0=NULL,
tot.cost, cal.sw)

Arguments
C1 unit cost per PSU
C2 unit cost per element
m number of sample PSU’s (fixed)
delta homogeneity measure
unit.rv unit relvariance or B2 +W 2

CV0 target CV
tot.cost total budget for variable costs
cal.sw specify type of optimum

1 = find optimal n̄ for fixed total budget
2 = find optimal n̄ for target CV0
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Value
List object with elements:

C1 unit cost per PSU
C2 unit cost per element
m number of (fixed) sample PSUs
delta homogeneity measure
unit relvar unit relvariance or B2 +W 2

budget total budget for variable costs, C − C0

n optimum number of sample elements per PSU
CV target CV

Examples

# optima for a vector of budgets
clusOpt2fixedPSU(C1=500, C2=100, m=100, delta=0.05,

unit.rv=2, CV0=NULL,
tot.cost=c(100000, 500000, 10ˆ6),
cal.sw=1)

# optima for a target CV and vector of PSU costs
clusOpt2fixedPSU(C1=c(500,1000,5000), C2=100, m=100,

delta=0.05, unit.rv=2, CV0=0.05, tot.cost=NULL,
cal.sw=2)

clusOpt3—Compute optimal sample sizes for a three-stage sample

Description
Compute the sample sizes that minimize the variance of the pwr -estimator
of a total in a three-stage sample. The “p-expanded with-replacement” (pwr)
estimator is discussed in Hansen and Hurwitz (1943).

Usage

clusOpt3(unit.cost, delta1, delta2, unit.rv, CV0=NULL,
tot.cost=NULL, cal.sw)

Arguments
unit.cost vector with three components for unit costs:

C1 = unit cost per primary sampling unit (PSU)
C2 = unit cost per secondary sampling units (SSUs)
C3 = unit cost per element

delta1 homogeneity measure among elements within PSUs
delta2 homogeneity measure among elements within SSUs
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unit.rv unit relvariance or B2 +W 2

CV0 target CV
tot.cost total budget for variable costs
cal.sw specify type of optimum

1 = find optimal m.opt for fixed total budget
2 = find optimal m.opt for target CV0

Value
List object with elements:

C1 unit cost per PSU
C2 unit cost per SSU
C3 unit cost per element
delta1 homogeneity measure among elements within PSUs
delta2 homogeneity measure among elements within SSUs
unit
relvar

unit relvariance

budget total budget for variable costs
m.opt optimum number of sample PSUs
n.opt optimum number of sample SSUs per PSU
q.opt optimum number of sample elements per SSU
CV target CV if cal.sw=2 or achieved CV if cal.sw=1

Examples

# optima for a fixed total budget
clusOpt3(unit.cost=c(500, 100, 120), delta1=0.01,

delta2=0.10, unit.rv=1,
tot.cost=100000,cal.sw=1)

# optima for a target CV
clusOpt3(unit.cost=c(500, 100, 120), delta1=0.01,

delta2=0.10, unit.rv=1,
CV0=0.01,cal.sw=2)

clusOpt3fixedPSU—Compute optimal number of sample secondary sam-
pling units (SSUs) and elements per primary sampling unit (PSU) in a
three-stage sample

Description
Compute the sample sizes that minimize the variance of the pwr -estimator
of a total in a three-stage sample when the PSU sample is fixed. The “p-
expanded with-replacement” (pwr) estimator is discussed in Hansen and
Hurwitz (1943).
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Usage

clusOpt3fixedPSU(unit.cost, m, delta1, delta2, unit.rv,
CV0=NULL, tot.cost=NULL, cal.sw)

Arguments
unit.cost 3-vector of unit costs:

C1 = unit cost per PSU
C2 = unit cost per SSU
C3 = unit cost per element

m number of sample PSUs (fixed)
delta1 homogeneity measure among elements within PSUs
delta2 homogeneity measure among elements within SSUs
unit.rv unit relvariance or B2 +W 2

CV0 target CV
tot.cost total budget for variable costs, including PSU costs
cal.sw specify type of optimum. 1 = find optimal m.opt for fixed

total budget; 2 = find optimal m.opt for target CV0

Value
List object with elements:

C1 unit cost per PSU
C2 unit cost per SSU
C3 unit cost per element
m number of sample PSUs (fixed)
delta1 homogeneity measure among elements within

PSUs
delta2 homogeneity measure among elements within

SSUs
unit relvar unit relvariance
cost check budget constraint (tot.cost); used if cal.sw=1
cost computed cost; used if cal.sw=2
n optimum number of sample SSUs per PSU
q optimum number of sample elements per SSU
CV achieved CV, used if cal.sw=1, or target CV,

used if cal.sw=2
CV check computed CV based on optimal sample sizes; used

only if cal.sw=2

Examples

# optima for a fixed total budget
clusOpt3fixedPSU(unit.cost=c(500, 100, 120), m=100,

delta1=0.01, delta2=0.05,
unit.rv=1, tot.cost=500000,cal.sw=1)

# optima for a target CV
clusOpt3fixedPSU(unit.cost=c(500, 100, 120), m=100,
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delta1=0.01, delta2=0.05,
unit.rv=1, CV0=0.05,cal.sw=2)

gamEst—Estimate variance model parameter

Description
Regresses a Y on a set of covariates X where VM (yi) = σ2γ and then
regresses the squared residuals on log(x) to estimate γ.

Usage
gamEst(X1, x1, y1, v1)

Arguments
X1 matrix of predictors in the linear model for y1
x1 vector of x’s for individual units in the assumed spec-

ification of var(y)
y1 vector of dependent variables for individual units
v1 vector proportional to var(y)

Value
The estimate of γ.

Examples

data(hospital)
x <- hospital$x
y <- hospital$y
X <- cbind(sqrt(x), x)
gamEst(X1 = X, x1 = x, y1 = y, v1 = x)

gammaFit—Estimate of variance model parameter γ

Description
Iteratively computes estimate of γ in a model with EM (yi) = xT

i β and
VM (yi) = σ2γ.
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Usage
gammaFit(X, x, y, maxiter = 100, show.iter = FALSE, tol
= 0.001)

Arguments
X matrix of predictors in the linear model for y
x vector of x’s for individual units in the assumed specifica-

tion of var(y)
y vector of dependent variables for individual units
maxiter maximum number of iterations allowed
show.iter should values of γ be printed of each iteration? TRUE or

FALSE
tol size of relative difference in γ̂’s between consecutive itera-

tions used to determine convergence. Algorithm terminates
when relative difference is less than tol

Value
List object with elements:

g.hat estimate of γ when iterative procedure stopped
converged TRUE or FALSE depending on whether convergence was

obtained
steps number of steps used by the algorithm

Examples

data(hospital)
x <- hospital$x
y <- hospital$y
X <- cbind(sqrt(x), x)
gammaFit(X = X, x = x, y = y, maxiter=100, tol=0.001)

nCont—Compute a simple random sample size for an estimated mean

Description
Compute a simple random sample size using either a target coefficient of
variation, CV0, or target variance, V0, for an estimated mean.

Usage

nCont(CV0=NULL, V0=NULL, S2=NULL, ybarU=NULL, N=Inf,
CVpop=NULL)
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Arguments
CV0 target value of coefficient of variation of ȳs
V0 target value of variance of ȳs
S2 unit (population) variance
ybarU population mean of target variable
N number of units in finite population
CVpop unit (population) coefficient of variation

Value
numeric sample size

Examples

nCont(CV0=0.05, CVpop=2)
nCont(CV0=0.05, CVpop=2, N=500)
nCont(CV0=0.10/1.645, CVpop=1)

# sample size for ratio estimator in smho98 pop
data(smho98)

# extract certainties
cert <- smho98[,"BEDS"] > 2000
tmp <- smho98[!cert, ]
tmp <- tmp[tmp[, "BEDS"] > 0, ]
x <- tmp[,"BEDS"]
y <- tmp[, "EXPTOTAL"]
m <- lm(y ˜ 0 + x, weights = 1/x)
ybarU <- mean(y)
S2R <- sum(m$residualsˆ2/(length(x)-1))
nCont(CV0=0.15, S2=S2R, ybarU=ybarU)

nDep2sam—Simple random sample size for difference in means

Description
Compute a simple random sample size for difference in means when samples
overlap.

Usage

nDep2sam(S2x, S2y, g, r, rho, alt, del, sig.level=0.05,
pow=0.80)
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Arguments
S2x unit variance of analysis variable x in sample 1
S2y unit variance of analysis variable y in sample 2
g proportion of sample 1 that is in the overlap with sample 2
r ratio of the size of sample 1 to that of sample 2
rho unit-level correlation between x and y
alt should the test be 1-sided or 2-sided; allowable values are

alt="one.sided" or alt="two.sided".
del size of the difference between the means to be detected
sig.level significance level of the hypothesis test
pow desired power of the test

Value
List object with elements:

n1 sample size in group 1
n2 sample size in group 2
S2x.S2y unit variances in groups 1 and 2
delta difference in group means to be detected
gamma proportion of sample 1 that is in the overlap with sample 2
r ratio of the size of sample 1 to that of sample 2
rho unit-level correlation between analysis variables in groups

1 and 2
alt type of test: one-sided or two-sided
sig.level significance level of test
power power of the test

Examples

nDep2sam(S2x=200, S2y=200,
g=0.75, r=1, rho=0.9,
alt="one.sided", del=5,
sig.level=0.05, pow=0.80)

nLogOdds—Calculate simple random sample size for estimating a proportion

Description
Calculate the simple random sample size for estimating a proportion using
the log-odds transformation.

Usage
nLogOdds(moe.sw, e, alpha=0.05, pU, N=Inf)
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Arguments
moe.sw switch for setting desired margin of error (1 = CI half-width on

the proportion; 2 = CI half-width on a proportion divided by
pU)

e desired margin of error
alpha 1 - (confidence level)
pU population proportion
N number of units in finite population

Value
numeric sample size

Examples

nLogOdds(moe.sw=1, e=0.05, alpha=0.05, pU=0.2, N=Inf)
nLogOdds(moe.sw=2, e=0.05, alpha=0.05, pU=0.2, N=Inf)

nProp—Compute simple random sample (srs) size for estimating a propor-
tion

Description
Compute the simple random sample size for estimating a proportion based
on different precision requirements.

Usage
nProp(CV0 = NULL, V0 = NULL, pU = NULL, N = Inf)

Arguments
CV0 target value of coefficient of variation of the estimated pro-

portion
V0 target value of variance of the estimated proportion
pU population proportion
N number of units in finite population

Value
numeric sample size

Examples

# srs sample size so that CV of estimated proportion
# is 0.05 assuming the population is large and pU=0.01
# Both examples below are equivalent.
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nProp(V0=0.0005ˆ2, N=Inf, pU=0.01) #or
nProp(CV0=0.05, N=Inf, pU=0.01)

# srswor sample size so that half-width of 2-sided
# 95% CI is 0.005

nProp(V0=(0.005/1.96)ˆ2, N=Inf, pU=0.01)

nProp2sam—Simple random sample size for difference in proportions

Description
Compute a simple random sample size for difference in proportions when
samples overlap.

Usage
nProp2sam(px, py, pxy, g, r, alt, sig.level=0.05, pow=
0.80)

Arguments
px proportion in group 1
py proportion in group 2
pxy proportion in the overlap has the characteristic in both

samples
g proportion of sample 1 that is in the overlap with sample 2
r ratio of the size of sample 1 to that of sample 2
alt should the test be 1-sided or 2-sided; allowable values are

alt="one.sided" or alt="two.sided".
sig.level significance level of the hypothesis test
pow desired power of the test

Value
List object with elements:

n1 sample size in group 1
n2 sample size in group 2
px.py.pxy input values of the px, py, pxy parameters
gamma proportion of sample 1 that is in the overlap with sample 2
r ratio of the size of sample 1 to that of sample 2
alt type of test: one-sided or two-sided
sig.level significance level of test
power power of the test

Examples

nProp2sam(px=0.5, py=0.55, pxy=0.45, g=0.5, r=1,
alt="two.sided")
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nPropMoe—Simple random sample (srs) size for a proportion based on
margin of error

Description
Calculates a simple random sample size based on a specified margin of error.

Usage
nPropMoe(moe.sw, e, alpha = 0.05, pU, N = Inf)

Arguments
moe.sw switch for setting desired margin of error (1 = CI half-width

on the proportion; 2 = CI half-width on a proportion divided
by pU

e desired margin of error; either e = z1−α/2

√
V (ȳs) or e =

z1−α/2

√
CV (ȳs)

alpha 1 - (confidence level)
pU population proportion
N number of units in finite population

Value
numeric sample size

Examples

# srs sample size so that half-width of a 95% CI is 0.01
# population is large and population proportion is 0.04

nPropMoe(moe.sw=1, e=0.01, alpha=0.05, pU=0.04, N=Inf)
# srswor sample size for a range of margins of error
# defined as half-width of a 95\% CI

nPropMoe(moe.sw=1, e=seq(0.01,0.08,0.01), alpha=0.05, pU=0.5)
# srswor sample size for a range of margins of error
# defined as the proportion that the half-width of a
# 95% CI is of pU

nPropMoe(moe.sw=2, e=seq(0.05,0.1,0.2), alpha=0.05, pU=0.5)

NRFUopt—Sample sizes for a nonresponse follow-up study

Description
Compute optimal values of the first-phase sample size and the second-phase
sampling fraction in a two-phase sample.
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Usage

NRFUopt(Ctot=NULL, c1, c2, theta, CV0=NULL, CVpop=NULL,
N=Inf, type.sw)}

Arguments
Ctot total variable cost
c1 cost per unit in phase 1
c2 cost per unit in phase 2
theta probability of response for each unit
CV0 target coefficient of variation for the estimated total or

mean
CVpop unit coefficient of variation
N population size; default is Inf
type.sw type of allocation; "cost" = target total variable cost,

"cv" = target coefficient of variation

Value
List object with elements:

allocation type of allocation: either "fixed
cost" or "fixed CV"

"Total variable cost" expected total cost: fixed cost
if type.sw="cost" or computed
cost if type.sw="cv"

"Response rate" first-phase response rate
CV anticipated coefficient of variation

(CV ) if type.sw="cost" or target
CV if type.sw="cv"

v.opt optimal fraction of first-phase nonre-
spondents to select for second-phase
follow-up

n1.opt optimal number of units to sample at
first phase

"Expected n2" expected number of respondents
obtained at second phase

"Expected total cases
(2-phase)"

expected number of respondents
across both phases

"srs sample for same cv" size of single-phase simple random
sample (srs) needed to obtain same
CV as the two-phase sample

"Cost Ratio: Two phase
to srs"

ratio of expected cost for two-phase
sample to cost of single-phase srs

Examples

# optima for fixed target CV
NRFUopt(Ctot=NULL, c1=50, c2=200, theta=0.5, CV0=0.05,
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CVpop=1, type.sw = "cv")
# optima for fixed total cost

NRFUopt(Ctot=100000, c1=50, c2=200, theta=0.5, CV0=NULL,
CVpop=1, type.sw = "cost")

nWilson—Calculate a simple random sample (srs) size for estimating a
proportion

Description
Calculate a simple random sample size for estimating a proportion using the
Wilson method.

Usage
nWilson(moe.sw, alpha = 0.05, pU, e)

Arguments
moe.sw switch for setting desired margin of error (1 = CI half-

width on the proportion; 2 = CI half-width on a proportion
divided by pU

alpha 1 - (confidence level)
pU population proportion
e desired margin of error; either the value of CI half-width

or the value of the half-width divided by pU

Value
numeric sample size

Examples

# srs sample size using Wilson method so that half-width
# of a 95% CI is 0.01. Population proportion is 0.04

nWilson(moe.sw = 1, pU = 0.04, e = 0.01)

strAlloc—Allocate a sample to strata

Description
Compute the proportional, Neyman, cost-constrained, and variance-
constrained allocations in a stratified simple random sample.
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Usage

strAlloc(n.tot = NULL, Nh = NULL, Sh = NULL, cost = NULL,
ch = NULL, V0 = NULL, CV0 = NULL, ybarU = NULL, alloc)

Arguments
n.tot fixed total sample size
Nh vector of population stratum sizes (Nh) or pop stratum propor-

tions (Wh)
Sh stratum unit standard deviations (Sh), required unless alloc

= "prop"
cost total variable cost
ch vector of costs per unit in stratum ch
V0 fixed variance target for estimated mean
CV0 fixed CV target for estimated mean
ybarU population mean of y (ȳU
alloc type of allocation; must be one of "prop", "neyman",

"totcost", "totvar"

Value
numeric vector of stratum sample sizes

Examples

# Neyman allocation Nh <- c(215, 65, 252, 50, 149, 144)
Sh <- c(26787207, 10645109, 6909676, 11085034,

9817762, 44553355)
strAlloc(n.tot = 100, Nh = Nh, Sh = Sh,

alloc = "neyman")
# cost constrained allocation

ch <- c(1400, 200, 300, 600, 450, 1000)
strAlloc(Nh = Nh, Sh = Sh, cost = 100000, ch = ch,

alloc = "totcost")
# allocation with CV target of 0.05

strAlloc(Nh = Nh, Sh = Sh, CV0 = 0.05, ch = ch,
ybarU = 11664181, alloc = "totvar")

wtdvar—Compute weighted variance

Description
Compute an estimate of a population unit variance from a complex sample
with survey weights.

Usage
wtdvar(x,w)
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Arguments
x data vector
w vector of survey weights; must be same length as X

Value
numeric estimate of population unit variance

Examples

x <- c(1:3)
wts <- c(4, 6, 8)
wtdvar(x=x, w=wts)
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Solutions to Selected Exercises

Chapter 3

3.2

(a) Calculate CV (ps) and
√
V (ps) for a sample size of n = 100.

n <- 100
p <- c(0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,

0.8, 0.9, 0.95, 0.99)
SE <- sqrt(p*(1-p)/n)
CV <- SE/p
cbind(p, SE = round(SE,4), CV = round(CV,4))

p SE CV
[1,] 0.01 0.0099 0.9950
[2,] 0.05 0.0218 0.4359
[3,] 0.10 0.0300 0.3000
[4,] 0.20 0.0400 0.2000
[5,] 0.30 0.0458 0.1528
[6,] 0.40 0.0490 0.1225
[7,] 0.50 0.0500 0.1000
[8,] 0.60 0.0490 0.0816
[9,] 0.70 0.0458 0.0655

[10,] 0.80 0.0400 0.0500
[11,] 0.90 0.0300 0.0333
[12,] 0.95 0.0218 0.0229
[13,] 0.99 0.0099 0.0101

R. Valliant et al., Practical Tools for Designing and Weighting
Survey Samples, Statistics for Social and Behavioral Sciences 51,
DOI 10.1007/978-1-4614-6449-5, © Springer Science+Business Media New York 2013
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(b) Graph SEs versus p.
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(c) Discuss the differences:
CVs for small p are extremely large, implying that this criterion would be
difficult to use for rare characteristics. The relative differences in the SE
are smaller over the range of p than for the CV. For setting a precision
target for ps the SE may be a more easily understood criterion than the
CV.

3.8

(a) Relvariances of the variables beds and discharges in the hospital popula-
tion

(a) beds, discharges

0.6024728 # unit relvariance of beds
0.5239741 # unit relvariance of discharges

(b) Relvariances of the variables total expenditures (EXPTOTAL), number of inpatient
beds (BEDS), number of patients seen during 1998 (SEENCNT), the number of
clients on the roles at the end of 1998 (EOYCNT), and number of in-patient visits
(Y IP) in the smho98 population.

var mean relvar
beds 4.546172e+04 2.746972e+02 0.6024728
discharges 3.477412e+05 8.146539e+02 0.5239741
smho exp 5.893495e+14 1.166418e+07 4.3317602
smho beds 2.559340e+04 8.389371e+01 3.6363792
smho seen 3.612683e+07 2.259911e+03 7.0737089
smho eoy 1.145212e+07 9.327166e+02 13.1639586
smho yip 2.834705e+08 7.574629e+03 4.9406626

3.10

(a) Determine n for CV (IPV) = 0.10.

CV0 <- 0.10
attach("C:\\Data\\smho98.RData")
pop <- smho98[smho98\$Y\_IP 0, ]
N <- nrow(pop)
N
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[1] 484
pk <- pop$BEDS / sum(pop$BEDS)
y <- pop$Y_IP
T <- sum(y)
T
[1] 6627800

ybarU <- mean(y)
V1 <- sum(pk*(y/pk - T)ˆ2)
V1
[1] 3.19933e+13
n <- V1 / (N*ybarU*CV0)ˆ2
n <- ceiling(n)
n
[1] 73
pk1 <- n*pk
summary(pk1)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.001301 0.039040 0.095660 0.150800 0.163300 1.766000

certs <- (1:N)[pk1 $>$= 0.80]
certs # Unit numbers of certainties
[1] 154 155 156 157 161 179 189 191 192

length(certs)
[1] 9

n - length(certs)
64

# Re-calculate excluding certainties
pk <- pop$BEDS[-certs] / sum(pop$BEDS[-certs])
y <- pop$Y_IP[-certs]
T <- sum(y)
T
[1] 5706952

V1 <- sum(pk*(y/pk - T)ˆ2)
V1
[1] 2.552992e+13

nNc <- V1 / (N * ybarU * CV0)ˆ2
nNc <- ceiling(nNc)
nNc
[1] 59

# Recheck to see whether there are new certainties.
# There are none.

summary(nNc * pk)
Min. 1st Qu. Median Mean 3rd Qu. Max.

0.001233 0.037000 0.088790 0.124200 0.149200 0.731300
# total sample size

length(certs) + nNc
[1] 68

# check that CV0 met
CV <- sqrt(V1)/(N * sqrt(nNc) * ybarU)
CV
[1] 0.09924974

(b) Repeat part (a) with a CV target of 0.15. There are no certainties. n=33.
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(c) Now, suppose that you decide to use a regression estimator of the mean
number of inpatient visits. Use a model with no intercept and with the
square root of beds and beds itself as predictors. If this model is correct,
what is the optimum measure of size to use in a pps sample? What
sample would be required to obtain an anticipated CV of 0.10 with this
regression estimator and a sample selected with the optimal MOS?
The optimal MOS for the model EM (y) = β1

√
x + β2x, VM (y) = σ2x

is
√
x.

CV0 <- 0.10
#Create model variables

x <- pop[, "BEDS"]
y <- pop$Y_IP
rtvBar <- mean(sqrt(x))
vBar <- mean(x)
rtvBar; vBar
[1] 9.397201
[1] 115.8926

#Object containing results of functions of x
# modeled on y

m <- glm(y ˜ 0 + sqrt(x) + x, weights = 1/x)
#Model results

ybarU <- mean(y)
S2R <- sum(m\$residualsˆ2/(length(x)-1))
nCont(CV0=0.15, S2=S2R, ybarU=ybarU, N=670)
[1] 41.88943

# check for any certainties with n=42 and
# pp(sqrt(x)) sampling

newPk <- 42 * sqrt(x)/sum(sqrt(x))
summary(newPk)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.009234 0.050580 0.079170 0.086780 0.103400 0.340200

There are no certainties with this plan.
(d) Explain any differences in the results for parts (a), (b), and (c). The

sample sizes in (a), (b), and (c) are:
59 noncertainties plus 9 certainties with pp(x) and CV0 = 0.10
33 with 0 certainties with pp(x) and CV0 = 0.15
42 with 0 certainties with pp(sqrt(x)), a regression estimator, and

CV0 = 0.10

With pp(x) and the pi-estimator a smaller sample is naturally required for a
target CV of 0.15 than 0.10. If a more efficient regression estimator is used,
42 units rather than 70 are required for CV0=0.10. Thus, sampling with pps
does not gain all the efficiency possible from a sample when a strong y-x
relationship is present.

3.12

(a) Calculate the design weights for the 50 sample hospitals. How might you
verify that the weights were calculated correctly? Show the verification.
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hosp50 <- read.csv("C:\\Data\\hospital_50.txt", header=TRUE)
wts <- sum(hospital[, "x"]) / 50 / hosp50[, "x"]
N <- nrow(hospital)
n <- nrow(hosp50)
wts <- 1/pik[sam == 1]
sum(wts)
[1] 442.3302

# sum of wtd beds should equal pop total of beds
sum(wts*hosp50\$x)
[1] 107956

sum(hospital\$x)
[1] 107956

(b) Estimate the average number of discharges based on the sample using
the π-estimator of the mean.

tHat <- sum(wts*hosp50\$y)
ybarHat <- tHat / N
tHat; sum(hospital\$y)
[1] 317339.5
[1] 320159

ybarHat; mean(hospital\$y)
[1] 807.4796
[1] 814.6539

(c) Estimate the sample variance for your estimate in (b) using the formula
for with-replacement sampling. If you used more than one estimator in
(b), compute the estimated variance of each.

y <- hosp50$y
pk <- 1/(n*wts)
V1Hat <- sum( (y/pk -- mean(y/pk))ˆ2 ) / (n-1)
vHat <- V1Hat/Nˆ2/n
vHat
[1] 918.535

sqrt(vHat)
[1] 30.30734

sqrt(vHat) / ybarHat
[1] 0.03753326

(d) Estimate the 95% confidence interval for your estimate in (b).

# 95% CI
LB <- ybarHat - 1.96*sqrt(vHat)
UB <- ybarHat + 1.96*sqrt(vHat)
c(LB, UB)
[1] 748.0772 866.8820

(e) Suppose you want to select a new sample with probabilities proportional
to the square root of beds. Estimate the appropriate V1 for this design.
How many sample hospitals would be needed to meet the target CV (ȳst)
= 0.15 with this design?

qk <- sqrt(hospital\$x) / sum(sqrt(hospital\$x))
qk <- qk[sam==1]
V1 <- sum(yˆ2/pk/qk)/n - (mean(y/pk))ˆ2 + vHat
V1
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[1] 13791105407
CV0 = 0.04
ybarU <- mean(hospital\$y)
newN <- V1 / (N * ybarU * CV0)ˆ2
newN
[1] 84.09064

3.14

(a) Determine the sample size needed to meet a target CV=0.05 for the
estimated mean of the two analysis variables, y1 and y2. Are the estimated
sample sizes different? Is so, why?

domy1y2 <- read.table("C:\\Data\\Domainy1y2.txt",
header=TRUE)

ybar1 <- mean(domy1y2\$y1)
ybar2 <- mean(domy1y2\$y2)
s2y1 <- var(domy1y2\$y1)
s2y2 <- var(domy1y2\$y2)
nCont(CV0=0.05, S2=s2y1, ybarU=ybar1, N=100)
[1] 41.28193

nCont(CV0=0.05, S2=s2y2, ybarU=ybar2, N=100)
[1] 25.941

s2y1
[1] 552.5725

s2y2
[1] 706.7866
s2y1/ybar1ˆ2
[1] 0.1757633

s2y2/ybar2ˆ2
[1] 0.08756869

Sample sizes are different because the unit relvariance of y2 is smaller.
Note that the variance of y2 is larger than that of y1, however.

(b) If the target precision level is increased to a CV=0.03, how do your
calculations in (a) change?

nCont(CV0=0.03, S2=s2y1, ybarU=ybar1, N=100)
[1] 66.13528

nCont(CV0=0.03, S2=s2y2, ybarU=ybar2, N=100)
[1] 49.31539

(c) Repeat your calculations in parts (a) and (b) for the proportion of y1
responses that are less than or equal to 50 (y1 ≤ 50).

less50 <- rep(0, length(domy1y2$y1))
less50[domy1y2\$y1 $<$= 50] <- 1
ybar1 <- mean(less50)
nProp(CV0=c(0.05,0.03), pU=ybar1, N=100)
[1] 80.16032 91.81893

(d) Repeat your calculations in parts (a) and (b) for the proportion of y1
responses that are less than or equal to 22 (y1 ≤ 22). Compare your
results from parts (c) and (d).

less22 <- rep(0, length(domy1y2\$y1))
less22[domy1y2\$y1 $<$= 22] <- 1
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ybar1 <- mean(less22)
nProp(CV0=c(0.05,0.03), pU=ybar1, N=100)
[1] 99.15377 99.69370

3.16

(a) Compare the selection probabilities for these two sample designs. For
example, compute the mean pps selection probability within each stratum
and compare it to the stsrs selection probabilities.

attach("C:\\Data\\smho.N874.RData",pos=2)
hospPop <- smho.N874[smho.N874\$BEDS > 0, ]
x <- sqrt(hospPop$BEDS)
hospPop <- hospPop[order(x), ]
x <- sort(x)
N <- nrow(hospPop)
n <- 50
cumx <- cumsum(x)
H <- 25
size <- cumx[N]/H
brks <- (0:H)*size
strata <- cut(cumx, breaks = brks, labels = 1:H)
Nh <- table(strata)
strSelprobs <- rep(2,H) / Nh
allStrProbs <- NULL
for (h in 1:H){

allStrProbs <- c(allStrProbs, rep(strSelprobs[h], Nh[h]))
}

# selection probabilities for pp(sqrt(x))
ppsSelprobs <- n*x / sum(x)
both <- NULL
both <- cbind(stratum = strata, pps = ppsSelprobs,

stsrs = allStrProbs)
plot(both[, c(2,3)])
abline(0,1)
round(cbind(stsrs = strSelprobs,

ppsMeans = by(both[,2],strata,mean)),4)
stsrs ppsMeans

1 0.0263 0.0259
2 0.0357 0.0357
3 0.0417 0.0415
4 0.0465 0.0467
5 0.0526 0.0524
6 0.0571 0.0577
7 0.0625 0.0622
8 0.0667 0.0674
9 0.0714 0.0711
10 0.0769 0.0749
11 0.0769 0.0785
12 0.0833 0.0814
13 0.0833 0.0853
14 0.0909 0.0902
15 0.0952 0.0947
16 0.1000 0.1010
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17 0.1111 0.1076
18 0.1111 0.1134
19 0.1250 0.1232
20 0.1333 0.1377
21 0.1538 0.1477
22 0.1538 0.1583
23 0.1818 0.1835
24 0.2222 0.2070
25 0.2500 0.2704

(b) Graph the stsrs probabilities versus the pps selection probabilities.

Chapter 4

4.2 Consider Example 4.6 where one-sided tests were used to determine
sample sizes with 80 and 90% power to detect differences in estimates for
males and females.

(a) How does the sample size change if σ2
d = 200?

√
σ2
d

/
2 =

√
200/2 = 10

power.t.test(power = 0.8,
delta = 5,
sd = 10,
type = "two.sample",
alt = "one.sided",
sig.level = 0.05
)
# Two-sample t test power calculation

n = 50.1508



Solutions to Selected Exercises 625

delta = 5
sd = 10

sig.level = 0.05
power = 0.8

alternative = one.sided
NOTE: n is number in *each* group

power.t.test(power = 0.9,
delta = 5,
sd = 10,
type = "two.sample",
alt = "one.sided",
sig.level = 0.05
)

# Two-sample t test power calculation
n = 69.19782

delta = 5
sd = 10

sig.level = 0.05
power = 0.9

alternative = one.sided

(b) How does a σ2
d = 800 affect your previous calculation?

√
σ2
d

/
2 =

√
800/2 =

√
400

power.t.test(power = 0.8,
delta = 5,
sd = sqrt(400),
type = "two.sample",
alt = "one.sided",
sig.level = 0.05
)

# Two-sample t test power calculation
n = 198.5217

delta = 5
sd = 20

sig.level = 0.05
power = 0.8

alternative = one.sided

power.t.test(power = 0.9,
delta = 5,
sd = sqrt(400),
type = "two.sample",
alt = "one.sided",
sig.level = 0.05
)

# Two-sample t test power calculation
n = 274.7222

delta = 5
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sd = 20
sig.level = 0.05

power = 0.9
alternative = one.sided

4.4

(a) The client is interested in determining if the average BMI for children
in the first grade (ages 6–7) has increased by 1.5% from a previously
estimated average of 17.5. What is the sample size needed to detect this
difference given that the population standard deviation is 0.70?

d <- 17.5 * 1.015 - 17.5
power.t.test(power = 0.8,

delta = d,
sd = 0.7,
type = "one.sample",
alt = "one.sided",
sig.level = 0.05
)

# One-sample t test power calculation
n = 45.34875

delta = 0.2625
sd = 0.7

sig.level = 0.05
power = 0.8

alternative = one.sided

(b) How does the sample size change if the client is willing to accept a 3.0%
increase?

d <- 17.5 * 1.03 - 17.5
power.t.test(power = 0.8,

delta = d,
sd = 0.7,
type = "one.sample",
alt = "one.sided",
sig.level = 0.05
)

# One-sample t test power calculation
n = 12.46081

delta = 0.525
sd = 0.7

sig.level = 0.05
power = 0.8

alternative = one.sided

(c) How does the sample size change if the client wants to detect a 0.5%
increase?

d <- 17.5 * 1.005 - 17.5
power.t.test(power = 0.8,

delta = d,
sd = 0.7,
type = "one.sample",
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alt = "one.sided",
sig.level = 0.05
)

# One-sample t test power calculation
n = 397.0399

delta = 0.0875
sd = 0.7

sig.level = 0.05
power = 0.8

alternative = one.sided

4.6What simple random sample size would be needed to detect a 10% decline
with a power of 0.90? How would your answer change if the unit relvariance
were 6?

capGain <- 44000
d <- capGain - 0.9*capGain
unitRv <- 3
sd1 <- sqrt(unitRv * capGainˆ2)
power.t.test(power = 0.9,

delta = d,
sd = sd1,
type = "one.sample",
alt = "one.sided",
sig.level = 0.05

)

# One-sample t test power calculation
n = 2570.508

delta = 4400
sd = 76210.24

sig.level = 0.05
power = 0.9

alternative = one.sided

d <- capGain - 0.9*capGain
unitRv <- 6
sd1 <- sqrt(unitRv * capGainˆ2)
power.t.test(power = 0.9,

delta = d,
sd = sd1,
type = "one.sample",
alt = "one.sided",
sig.level = 0.05
)

# One-sample t test power calculation
n = 5139.661

delta = 4400
sd = 107777.5

sig.level = 0.05
power = 0.9

alternative = one.sided
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4.8

(a) If the time 1 unemployment rate is anticipated to be 8% and you want to
be able to detect a decline of 1.5% points with power 0.8 in a 1-sided, 0.05
level test, how large should the sample be at each time period? Assume
that 0.08-0.015=0.065 will be unemployed at both times.

p1 <- 0.08
p2 <- p12 <- 0.065
nProp2sam(px=p1,

py=p2, pxy=p12,
g=0.75, r=1,
sig.level = 0.05,
alt="one.sided")

# Two-sample comparison of proportions
Sample size calculation for overlapping samples

n1 = 1228
n2 = 1228

px.py.pxy = 0.080, 0.065, 0.065
gamma = 0.75

r = 1
alt = one.sided

sig.level = 0.05
power = 0.8

(b) If you can only afford to sample 500 persons, what will be the power to
detect a 1.5% point change?

p1 <- 0.08
p2 <- p12 <- 0.065
Sxy <- p12 - p1*p2
Vd <- (p1*(1-p1) + p2*(1-p2) - 2*0.75*1*Sxy) / 500
Z <- 1.645 - (p1-p2)/sqrt(Vd)
1 - pnorm(Z)
# [1] 0.4768264

4.10 The Council of Governments (COG) is an organization in the Wash-
ington DC area that is funded by local governments from the District of
Columbia and surrounding counties. The COG would like to fund a survey
to compare crime rates in the central city to that of one of the suburban
counties.

cRate <- 1105/100000
c1 <- 0.75 * cRate
c2 <- 2*c1
pow <- seq(0.5, 0.9, 0.05)
samsize <- vector("numeric", length(pow))
for (k in 1:length(pow))\{

samsize[k] <- powerPropTest(n=NULL,
p1 = c1,
p2 = c2,
alt = "one.sided",
sig.level = 0.05,
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power = pow[k])\$n
}
out <- cbind(samsize = ceiling(samsize), power = pow)
out

samsize power
[1,] 968 0.50
[2,] 1121 0.55
[3,] 1288 0.60
[4,] 1474 0.65
[5,] 1682 0.70
[6,] 1923 0.75
[7,] 2210 0.80
[8,] 2569 0.85
[9,] 3060 0.90

Chapter 5

5.2 Using the data in Example 5.2 calculate (a) the proportional allocation,
(b) the Neyman allocation for estimating total revenue, and (c) the cost-
constrained allocation for revenue, assuming a budget of $300,000.

h

Cost
constrained
nh

Prop.
allocation

Neyman
allocation

1 413 350 845
2 318 661 83
3 124 244 80
4 1,397 1,284 465
5 596 308 1,376

Total 2,848 2,848 2,848

Cost $ 300,000 $ 276,211 $ 362,556
CV
Revenue 0.047 0.061 0.033
Employees 0.024 0.031 0.016
Research
credit 0.021 0.019 0.035
Offshore 0.030 0.031 0.050

Proportional allocation meets the budget constraint. Neyman does not. Pro-
portionalCV on revenue is worse than cost-constrained, but Neyman is better
(0.033 vs. 0.047). Proportional CV on employees, research credit meets con-
straints. CV on offshore is close. Neyman meets CV constraint on employees
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but not on research credit and offshore. Constraint of nh ≥ 100 is met by
allocation proportional but violated by Neyman.

5.4 Resolve Example 5.2 with the same CV constraints as in Exercise 5.3
(0.05 on employees, 0.03 on total establishments claiming the research credit,
0.05 on total establishments with offshore affiliates) but revise the objective
to be minimizing the total cost.

h nh CV of t.hat
1 129 Revenue 0.09716
2 245 Employees 0.0500
3 108 Research 0.0300
4 511 Offshore 0.0500
5 129

Total 1,122

Chapter 9

9.2

(a) Compute the coefficient of variation that you would anticipate from a
sample of 20 PSUs, 2 SSUs per PSU, and ten persons per sample SSU.

(b) Repeat the calculation of the coefficient of variation for a sample of 20
PSUs, 5 SSUs per PSU, and four persons per sample SSU.

#(a)
p <- 0.32; q <- 1-p
delta1 <- 0.003; delta2 <- 0.174
m <- 20; nbar <- 2; qDbar <- 10
V <- q/p
a <- V/(m*nbar*qDbar)
b <- delta1*nbar*qDbar
c <- 1 + delta2*(qDbar-1)
CV <- sqrt(a*(b+c))
CV
# [1] 0.1181128
#(b)
p <- 0.32; q <- 1-p
delta1 <- 0.003; delta2 <- 0.174
m <- 20; nbar <- 5; qDbar <- 4
V <- q/p
a <- V/(m*nbar*qDbar)
b <- delta1*nbar*qDbar
c <- 1 + delta2*(qDbar-1)
CV <- sqrt(a*(b+c))
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CV
# [1] 0.09167538

9.4 Suppose that a two-stage sample is selected and the π-estimator of the
total is used for a series of analysis variables. The average number of sample
elements per cluster is 23. What are approximate estimates of the measure
of homogeneity for design effects equal to 1.1, 1.2, 1.3, . . . , 2.7, 2.8, 2.9, and
3.0? How do your answers change if n̄ = 13?

deltaCalc <- function(from,to,by,m){
deff <- seq(from=1.1,to=3.0,by=0.1)
nbar <- m
delta <- (deff-1)/(nbar-1)
cbind(deff,delta)

}
#For nbar = 23

deltaCalc(1.1,3.0,0.1,23)
deff delta

[1,] 1.1 0.004545455
[2,] 1.2 0.009090909
[3,] 1.3 0.013636364
[4,] 1.4 0.018181818
[5,] 1.5 0.022727273
[6,] 1.6 0.027272727
[7,] 1.7 0.031818182
[8,] 1.8 0.036363636
[9,] 1.9 0.040909091
[10,] 2.0 0.045454545
[11,] 2.1 0.050000000
[12,] 2.2 0.054545455
[13,] 2.3 0.059090909
[14,] 2.4 0.063636364
[15,] 2.5 0.068181818
[16,] 2.6 0.072727273
[17,] 2.7 0.077272727
[18,] 2.8 0.081818182
[19,] 2.9 0.086363636
[20,] 3.0 0.090909091

#For nbar = 13
deltaCalc(1.1,3.0,0.1,13)

deff delta
[1,] 1.1 0.008333333
[2,] 1.2 0.016666667
[3,] 1.3 0.025000000
[4,] 1.4 0.033333333
[5,] 1.5 0.041666667
[6,] 1.6 0.050000000
[7,] 1.7 0.058333333
[8,] 1.8 0.066666667
[9,] 1.9 0.075000000
[10,] 2.0 0.083333333
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[11,] 2.1 0.091666667
[12,] 2.2 0.100000000
[13,] 2.3 0.108333333
[14,] 2.4 0.116666667
[15,] 2.5 0.125000000
[16,] 2.6 0.133333333
[17,] 2.7 0.141666667
[18,] 2.8 0.150000000
[19,] 2.9 0.158333333
[20,] 3.0 0.166666667

9.6 Repeat the calculations in Example 9.11 for two-stage sampling using
block groups as PSUs in the Maryland population. Use set.seed(-780087528)
in R. Select 20 BGs with probabilities proportional to number of persons per
tract and 50 persons per BG using srswor. Compare your results to those in
Example 9.9 where tracts were used as PSUs.

attach("C:\\Data\\MDarea.pop.RData", pos=2)
trtBG <- 10*MDarea.pop$TRACT + MDarea.pop$BLKGROUP
MDpop <- cbind(MDarea.pop, trtBG)
require(sampling)
require(reshape) # has function that allows renaming

# variables
Ni <- table(MDpop$trtBG)
m <- 20
probi <- m*Ni / sum(Ni)

# select sample of clusters
set.seed(-780087528)
sam <- cluster(data=MDpop, clustername="trtBG", size=m,

method="systematic", pik=probi, description=TRUE)
# extract data for the sample clusters

samclus <- getdata(MDarea.pop, sam)
samclus <- rename(samclus, c(Prob = "pi1"))
table(samclus$trtBG)

# treat sample clusters as strata and select srswor from each
s <- strata(data = as.data.frame(samclus), stratanames = "TRACT",

size = rep(50,m), method="srswor")
# extracts the observed data

samdat <- getdata(samclus,s)
samdat <- rename(samdat, c(Prob = "pi2"))
table(samdat$trtBG)

# extract pop counts for PSUs in sample
pick <- names(Ni) \%in\% sort(unique(samdat$trtBG))
Ni.sam <- Ni[pick]
pp <- Ni.sam / sum(Ni)
wt <- 1/samdat$pi1/samdat$pi2

BW <- rbind(BW2stagePPSe(Ni = Ni.sam, ni = rep(50,20),
X = samdat$y1,
psuID = samdat$TRACT, w = wt,
m = 20, pp = pp),

BW2stagePPSe(Ni = Ni.sam, ni = rep(50,20),
X = samdat$y2,
psuID = samdat$TRACT, w = wt,
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m = 20, pp = pp),
BW2stagePPSe(Ni = Ni.sam, ni = rep(50,20),

X = samdat$y3,
psuID = samdat$TRACT, w = wt,
m = 20, pp = pp),

BW2stagePPSe(Ni = Ni.sam, ni = rep(50,20),
X = samdat$ins.cov,
psuID = samdat$TRACT, w = wt,
m = 20, pp = pp),

BW2stagePPSe(Ni = Ni.sam, ni = rep(50,20),
X = samdat$hosp.stay,
psuID = samdat$TRACT, w = wt,
m = 20, pp = pp)

)
round(BW,4)
# Vpsu Vssu B W delta
#[1,] 1.369864e+12 1.051959e+12 0.0347 1.3761 0.0246
#[2,] 1.068294e+10 9.071762e+09 0.0226 0.9935 0.0222
#[3,] 7.540980e+11 1.089802e+11 0.0118 0.0884 0.1177
#[4,] 4.256465e+07 2.575943e+07 0.0084 0.2651 0.0309
#[5,] 6.128648e+06 1.045993e+07 0.1449 12.7945 0.0112

The results from Example 9.11 are below. When BGs are used as clusters,
the measures of homogeneity are larger.

Tracts as clusters BGs as
clusters

B2 W 2 δ δ
y1 0.0418 1.3934 0.0291 0.0246
y2 0.0208 1.0416 0.0196 0.0222
y3 0.0101 0.1028 0.0894 0.1177
ins.cov 0.0007 0.3051 0.0023 0.0309
hosp.stay 0.1056 13.9161 0.0075 0.0112

9.8 Use the Maryland population and the function BW3stagePPSe to
compute variance components from a sample of 30 PSUs (tracts), 2 SSUs
(block groups) per tract, and 50 persons per sample SSU. Assume that
tracts are selected with probabilities proportional to the number of per-
sons in the tract and that SSUs and persons are selected via srs. Use
set.seed(1696803792) in R. (a) Do the computation for the variables
y2, y3, ins.cov, and hosp.stay. (b) How do your answers compare to the full
population results in Example 9.12? (c) Use the estimated values of δ1 and
δ2 to compute the optimum values of m, n̄, and ¯̄q in a three-stage where
C1 = 500, C2 = 100, C3 = 120, and the total budget for variable costs is
$100,000. How can you estimate the unit relvariance for each variable? (d)
Discuss your results in (c).

#(a) Do the computation for the variables y2, y3, ins.cov, and
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hosp.stay.

# select 3-stage sample from Maryland population

attach("C:\\Data\\MDarea.pop.RData", pos=2)

trtBG <- 10*MDarea.pop$TRACT + MDarea.pop$BLKGROUP

MDpop <- cbind(MDarea.pop, trtBG)

require(sampling)

require(reshape) # has function that allows renaming variables

# make counts of SSUs and elements per PSU

xx <- do.call("rbind",list(by(1:nrow(MDpop),MDpop$trtBG,head,1)))

pop.tmp <- MDpop[xx,]

Ni <- table(pop.tmp$TRACT)

Qi <- table(MDarea.pop$TRACT)

Qij <- table(MDpop$trtBG)

m <- 30 # no. of PSUs to select

probi <- m*Qi / sum(Qi)

#---------------------------------------------------------------------------------------

# select sample of clusters

set.seed(1696803792)

sam <- cluster(data=MDpop, clustername="TRACT", size=m,

method="systematic",

pik=probi, description=TRUE)

# extract data for the sample clusters

samclus <- getdata(MDpop, sam)

samclus <- rename(samclus, c(Prob = "p1i"))

samclus <- samclus[order(samclus$TRACT, samclus$BLKGROUP),]

#---------------------------------------------------------------------------------------

# treat sample clusters as strata and select srswor of block

groups from each

# identify psu IDs for 1st instance of each ssuID

xx <- do.call("rbind",list(by(1:nrow(samclus),samclus$trtBG,head,1)))

SSUs <- cbind(TRACT=samclus$TRACT[xx], trtBG=samclus$trtBG[xx],

BG=samclus$BLKGROUP[xx])

# select 2 BGs per tract

n <- 2

s <- strata(data = as.data.frame(SSUs), stratanames = "TRACT",

size = rep(n,m), method="srswor")

s <- rename(s, c(Prob = "p2i"))

# extract the BG data

# s contains selection probs of SSUs, need to get those onto

data file

SSUsam <- SSUs[s$ID\_unit, ]

SSUsam <- cbind(s, SSUsam[, 2:3])

# identify rows in PSU sample that correspond to sample SSUs

tmp <- samclus$trtBG %in% SSUsam$trtBG

SSUdat <- samclus[tmp,]

SSUdat <- merge(SSUdat, SSUsam[, c("p2i","trtBG")], by="trtBG")

rm(tmp)

#---------------------------------------------------------------------------------------

# select srswor from each sample BG

n.BG <- m*n

s <- strata(data = as.data.frame(SSUdat), stratanames = "trtBG",

size = rep(50,n.BG), method="srswor")

s <- rename(s, c(Prob = "p3i"))

samclus <- getdata(SSUdat, s)

del <- (1:ncol(samclus))[dimnames(samclus)[[2]] \%in\%

c("ID\_unit","Stratum")]
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samclus <- samclus[, -del]

#---------------------------------------------------------------------------------------

# extract pop counts for PSUs in sample

pick <- names(Qi) \%in\% sort(unique(samclus$TRACT))

Qi.sam <- Qi[pick]

# extract pop counts of SSUs for PSUs in sample

pick <- names(Ni) \%in\% sort(unique(samclus$TRACT))

Ni.sam <- Ni[pick]

# extract pop counts for SSUs in sample

pick <- names(Qij) \%in\% sort(unique(samclus$trtBG))

Qij.sam <- Qij[pick]

# compute full sample weight and wts for PSUs and SSUs

wt <- 1 / samclus$p1i / samclus$p2i / samclus$p3i

w1i <- 1 / samclus$p1i

w2ij <- 1 / samclus$p1i / samclus$p2i

samdat <- data.frame(psuID = samclus$TRACT, ssuID = samclus$trtBG,

w1i = w1i, w2ij = w2ij, w = wt,

samclus[, c("y1","y2","y3","ins.cov",

"hosp.stay")])

#----------------------------------------------------------------

# call fcn to compute variance component estimates

wtdvar <- function(x, w){

xbarw <- sum(w*x) / sum(w)

varw <- sum(w * (x-xbarw)ˆ2) / sum(w)

varw

}

BW3 <-

rbind(BW3stagePPSe(dat=samdat, v="y1", Ni=Ni.sam, Qi=Qi.sam,

Qij=Qij.sam, m),

BW3stagePPSe(dat=samdat, v="y2", Ni=Ni.sam, Qi=Qi.sam,

Qij=Qij.sam, m),

BW3stagePPSe(dat=samdat, v="y3", Ni=Ni.sam, Qi=Qi.sam,

Qij=Qij.sam, m),

BW3stagePPSe(dat=samdat, v="ins.cov", Ni=Ni.sam, Qi=Qi.sam,

Qij=Qij.sam, m),

BW3stagePPSe(dat=samdat, v="hosp.stay", Ni=Ni.sam, Qi=Qi.sam,

Qij=Qij.sam, m)

)

round(BW3,4)

Vpsu Vssu Vtsu B W W2 W3 delta1 delta2

[1,] 5.634050e+11 1.877326e+12 474697662057 0.0178 1.2553 0.3554 1.5477 0.0138 0.1863

[2,] 7.820266e+09 1.512943e+10 3875989824 0.0221 0.9307 0.2822 1.1299 0.0230 0.1994

[3,] 1.809921e+12 1.752007e+12 44878287984 0.0402 0.0909 0.2458 0.1027 0.3065 0.7052

[4,] 8.769247e+07 1.420352e+08 10750509 0.0250 0.2612 0.2318 0.3162 0.0873 0.4227

[5,] 5.905489e+05 8.930217e+05 4235957 0.0203 12.4614 0.2102 14.9988 0.0014 0.0132

(c) Use the estimated values of delta1 and delta2 to compute the

optimum values of mbar, nbar, and qbarbar in a three-stage where C1=500,

C2=100, C3=120, and the total budget for variable costs is \$100,000.

# estimate the unit relvariance for each variable

wtdrelvar <- function(x, w){

xbarw <- sum(w*x) / sum(w)

varw <- sum(w * (x-xbarw)ˆ2) / sum(w)

c(mean = xbarw, relvar = varw/xbarwˆ2)

}
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rv.y1 <- wtdrelvar(samdat[,"y1"], wt)

rv.y2 <- wtdrelvar(samdat[,"y2"], wt)

rv.y3 <- wtdrelvar(samdat[,"y3"], wt)

rv.inscov <- wtdrelvar(samdat[,"ins.cov"], wt)

rv.hosp <- wtdrelvar(samdat[,"hosp.stay"], wt)

round(

rbind(y1 = rv.y1,

y2 = rv.y2,

y3 = rv.y3,

inscov = rv.inscov,

hosp.stay = rv.hosp), 4)

clusOpt3(unit.cost=c(500, 100, 120),

delta1=0.0138, delta2=0.1863,

unit.rv=rv.y1[2],

tot.cost=100000,

cal.sw=1)

C1 = 500

C2 = 100

C3 = 120

delta1 = 0.0138

delta2 = 0.1863

unit relvar = 1.344438

budget = 1e+05

cost check = 1e+05

m.opt = 31.2

n.opt = 8.2

q.opt = 1.9

CV = 0.0617

clusOpt3(unit.cost=c(500, 100, 120),

delta1=0.0230, delta2=0.1994,

unit.rv=rv.y2[2],

tot.cost=100000,

cal.sw=1)

C1 = 500

C2 = 100

C3 = 120

delta1 = 0.023

delta2 = 0.1994

unit relvar = 1.002332

budget = 1e+05

cost check = 1e+05

m.opt = 38.4

n.opt = 6.6

q.opt = 1.8

CV = 0.0559

clusOpt3(unit.cost=c(500, 100, 120),

delta1=0.3065, delta2=0.7052,

unit.rv=rv.y3[2],

tot.cost=100000,

cal.sw=1)

C1 = 500

C2 = 100

C3 = 120

delta1 = 0.3065

delta2 = 0.7052
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unit relvar = 0.1266218

budget = 1e+05

cost check = 1e+05

m.opt = 92.6

n.opt = 3.4

q.opt = 0.6

CV = 0.0301

clusOpt3(unit.cost=c(500, 100, 120),

delta1=0.0873, delta2=0.4227,

unit.rv=rv.inscov[2],

tot.cost=100000,

cal.sw=1)

C1 = 500

C2 = 100

C3 = 120

delta1 = 0.0873

delta2 = 0.4227

unit relvar = 0.2722481

budget = 1e+05

cost check = 1e+05

m.opt = 61.7

n.opt = 4.9

q.opt = 1.1

CV = 0.0354

clusOpt3(unit.cost=c(500, 100, 120),

delta1=0.0014, delta2=0.0132,

unit.rv=rv.hosp[2],

tot.cost=100000,

cal.sw=1)

C1 = 500

C2 = 100

C3 = 120

delta1 = 0.0014

delta2 = 0.0132

unit relvar = 12.95215

budget = 1e+05

cost check = 1e+05

m.opt = 13

n.opt = 6.9

q.opt = 7.9

CV = 0.1464

9.8 Discussion. The unit relvariance can be estimated as

RV =

(∑
s

wk

)−1∑
s

wk (yk − ȳw)
2

/[∑
s

wkyk

/∑
s

wk

]2
.

The allocations are different for the five variables because the delta1 and delta2
are quite different. Delta2 is relatively high for y3 and ins.cov. This leads to
the optimal ¯̄q about 1 for both those variables. For hosp.stay, delta2=0.0132
and ¯̄q=8. For y1 and y2, ¯̄q=2. The mopt’s are also quite different. Some sort
of compromise is needed since the same allocation will not be optimal for
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every variable. If all the variables were equally important, we could average
the allocations and use m=45, n̄=6, ¯̄q=2, giving a total cost of about $114,000.
However, the relative importance to the survey of the five variables would have
to be considered, along with (as always) the budget.

Chapter 10

10.2

(a) Total expected sample sizes for the two domains. Domain 1: 16; domain
2: 28.

(b) Composite measure of size for each PSU and the total across PSUs. Verify
that the grand total equals the total expected sample size.

(c) Selection probability for each PSU.
(d) Domain sampling rate and expected domain sample size within each PSU.

Are the expected sample sizes integers? If not, what method can be used
for sampling within a PSU that will achieve the desired rate?

(b) (c ) (d) Dom. Sampling
rate

Dom. Sample size

PSU PSU
MOS

PSU
prob

1 2 1 2

1 7.5 0.34091 0.14667 0.29333 7.3 14.7
2 11 0.50000 0.10000 0.20000 2.0 20.0
3 10.5 0.47727 0.10476 0.20952 9.4 12.6
4 15 0.68182 0.07333 0.14667 11.7 10.3

(e) Verify that the expected sample sizes for any two of the PSU’s sum to
the total expected sample size you computed in (a).

Sums of sample sizes for any 2
PSUs

(1,2) 44.0
(1,3) 44.0
1,4) 44.0
(2,3) 44.0
(2,4) 44.0
(3,4) 44.0

10.4 The two PSUs below are an existing PSU sample selected some years
ago. A new survey is to be done in these PSUs.
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(a) Compute the expected sample sizes in each domain in each SSU and the
total sample size in each SSU across the domains. Assume that rates of
0.03 and 0.01 are used for domains 1 and 2. Note that the population
totals for the domains are 5,000 and 2,200 as shown in the table above.
Domain 1: 75; domain 2: 11.

(b) Compute the composite MOS for each SSU using the method in Sect. 10.5
(c) Compute the SSU selection probabilities assuming that the SSU sample

will be selected with probabilities proportional to the composite MOS.
(d) Calculate the within-SSU probabilities required for the sample in each

domain to be self-weighting.
(e) Compute the expected workload in each SSU if it were to be sampled.

Are these equal? If not, explain why.
(f) Verify that the SSU and within-SSU probabilities computed in (c) and

(d) do yield a self-weighting sampling in each domain.

(g) Determine a sampling scheme for SSUs and units within SSUs that will
give an equal workload in each SSU. Carry out the calculations for SSU
and within-SSU selection probabilities and verify that the total expected
sample size across the two domains is the same in every SSU.

(h) Does the scheme you designed in (g) lead to a self-weighting sample?
Why or why not? Support your answer with calculations.
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Chapter 13

13.2 Find the following:

(a) Selection probabilities for the three sample PSUs
(b) Within-PSU sampling rates needed to achieve the desired overall sam-

pling rates
(c) Base weights for each unit
(d) Expected number of sample persons in each PSU by race/ethnic group

and in total

(a) (b) (c) (d)
Within-
PSU
rates Unit weights

Expected no.
in sample

PSU Mi

Non-
His-
panic
White Other

PSU
prob πi

Non- His-
panic
White Other

Non-
His-
panic
White Other

Non-
His-
panic
White Other

Total
PSU
sample

1 1,000 800 200 0.3000 0.0333 0.1333 100 25 26.7 26.7 53.3
2 850 400 450 0.2550 0.0392 0.1569 100 25 15.7 70.6 86.3
3 150 110 40 0.0450 0.2222 0.8889 100 25 24.4 35.6 60.0

Population total M+ 10,000

13.4 The following table gives sums of weights for samples of establishments
in three cities that were classified as being in retail trade based on yellow
page listings

1. Adjust the weights separately in each city first for unknown eligibility
and then for nonresponse. Show your calculations in each step.

2. What is the estimated total number of eligible units in each city and
across all cities?

3. What is the estimated number of ineligible establishments on the sam-
pling frame?

4. In what circumstance would it be reasonable to combine all three cities
together to make the adjustments for unknown eligibility and nonre-
sponse? Do those circumstances hold here?
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13.6 (a) Logistic

glm(formula = resp ˜ age + as.factor(sex) + as.factor(hisp) +
as.factor(race), family=binomial(link="logit"), data=nhis)

Coefficients:
Estimate Std. Error z value Pr(>z)

(Intercept) 1.014972 0.114182 8.889 $<$ 2e-16 ***
age -0.009686 0.002039 -4.749 2.04e-06 ***
as.factor(sex)2 -0.077060 0.069995 -1.101 0.2709
as.factor(hisp)2 0.404795 0.088047 4.598 4.28e-06 ***
as.factor(race)2 -0.212043 0.098400 -2.155 0.0312 *
as.factor(race)3 -0.352277 0.160388 -2.196 0.0281 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
AIC: 4813.5

L.hat <- glm.logit$linear.predictors
# transform link values to probability scale

pred.logit <- exp(L.hat) / (1 + exp(L.hat) )

Probit

glm(formula = resp ˜ age + as.factor(sex) + as.factor(hisp) +
as.factor(race), family=binomial(link="probit"), data=nhis)

Coefficients:
Estimate Std. Error z value Pr(>z)

(Intercept) 0.622283 0.069330 8.976 $<$ 2e-16 ***
age -0.005824 0.001237 -4.710 2.48e-06 ***
as.factor(sex)2 -0.046346 0.042339 -1.095 0.2737
as.factor(hisp)2 0.245814 0.053728 4.575 4.76e-06 ***
as.factor(race)2 -0.128363 0.059762 -2.148 0.0317 *
as.factor(race)3 -0.216234 0.098442 -2.197 0.0281 *
AIC: 4813.6

L.hat <- glm.probit$linear.predictors
pred.probit <- pnorm(L.hat)

cloglog

glm(formula = resp ˜ age + as.factor(sex) + as.factor(hisp) +
as.factor(race), family=binomial(link="cloglog"), data=nhis)

Coefficients:
Estimate Std. Error z value Pr(>z)

(Intercept) 0.271632 0.068058 3.991 6.57e-05 ***
age -0.005551 0.001211 -4.583 4.59e-06 ***
as.factor(sex)2 -0.044086 0.041044 -1.074 0.2828
as.factor(hisp)2 0.240590 0.053616 4.487 7.21e-06 ***
as.factor(race)2 -0.124046 0.058554 -2.118 0.0341 *
as.factor(race)3 -0.219619 0.099917 -2.198 0.0279 *
AIC: 4814

L.hat <- glm.cloglog$linear.predictors
pred.cloglog <- 1- exp(-exp(L.hat) )
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(b) Which variables are significant? The same variables are significant
in all models: intercept, age, hisp, and race.

13.9 Using the NHIS data set, fit a classification tree for the response (resp)
variable using the covariates age, sex, hisp, race, parents, and educ. Require
that a minimum of 50 cases be assigned to each node. Describe the compo-
sition of each node in words and draw a picture of the tree. Compute the
unweighted response rates in each of the nodes that are formed.

require(rpart)
set.seed(15097)
nhis <- data.frame(nhis)
t1 <- rpart(resp ˜age + sex + hisp + race + parents + educ,

method = "class",
control = rpart.control(minbucket = 50, cp=0),
data = nhis)

print(t1, digits=2)

par(mfrow=c(1,1))
plot(t1, uniform=TRUE, compress=TRUE, margin = 0.1)
text(t1, use.n=TRUE, all=TRUE,

digits=4,
cex=1,
pretty=1,
fancy=TRUE,
xpd = TRUE,
font = 3)

title("Tree for identifying nonresponse adjustment cells
in the NHIS data set")

n= 3911
node), split, n, loss, yval, (yprob)

* denotes terminal node
1) root 3911 1200 1 (0.31 0.69)
2) educ$<$ 4 1964 690 1 (0.35 0.65)

4) age$>$=56 588 240 1 (0.41 0.59)
8) hisp$<$ 1.5 88 44 0 (0.50 0.50) *
9) hisp$>$=1.5 500 200 1 (0.39 0.61)
18) age$>$=82 73 36 1 (0.49 0.51) *
19) age$<$ 82 427 160 1 (0.37 0.63)

38) educ$>$=2 261 100 1 (0.39 0.61)
76) age$<$ 60 52 25 0 (0.52 0.48) *
77) age$>$=60 209 76 1 (0.36 0.64) *

39) educ$<$ 2 166 56 1 (0.34 0.66) *
5) age$<$ 56 1376 450 1 (0.33 0.67)
10) parents$<$ 3.5 277 110 1 (0.40 0.60)

20) age$>$=32 67 31 0 (0.54 0.46) *
21) age$<$ 32 210 75 1 (0.36 0.64) *

11) parents$>$=3.5 1099 340 1 (0.31 0.69) *
3) educ$>$=4 1947 520 1 (0.27 0.73) *



644 Solutions to Selected Exercises

Chapter 14

14.1 Use the smho.N874 data set to complete this exercise on poststratifi-
cation.

(a) What are the means of expenditures in the five hospital types in the
population? What should you look for in order for poststratification to
be worth considering?

(b) Compute the population counts of facilities by hospital type, treating the
smho98 data set as the full population. Compute the unweighted sample
counts by hospital type to verify that each type is represented in the
sample. If one of the hospital types was not represented in the sample,
what would be the practical and theoretical implications? Discuss this in
the context of design-based and model-based inference.

(c) Calculate the set of poststratified weights for the sample using hospital
type as the poststratification variable. What do the weights sum to before
and after poststratification? Is this what you expect?

(d) Verify that the calibration controls are met by the set of poststratified
weights.

(e) Estimate the population total of expenditures and its standard error for
the expansion estimator under the srswor design and for the poststrat-
ified estimator. Be sure and incorporate a finite population correction
factor into the variance estimates. Discuss any similarities or differences
in the estimated totals and SEs.
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attach("C:\\Data\\smho98sub.RData", pos=2)
require(sampling)
require(doBy)
set.seed(-530049348)
smho <- smho98sub

# (a) population means of expenditures by hospital type
summaryBy(EXPTOTAL ˜ hosp.type, data = smho98sub, fun = mean)

hosp.type EXPTOTAL.mean
1 1 21240408
2 2 10852136
3 3 4913008
4 4 6118415
5 5 12041188

Poststrata will be effective if the PS have different means, which they do in
this case.

# Select an srswor and poststratify
n <- 80
N <- nrow(smho)

# select srswor of size n
sam <- sample(1:N, n)
samdat <- smho[sam, ]

# (b) Population and sample counts by hospital type
table(smho[, "hosp.type"])
1 2 3 4 5

215 115 252 149 143
table(samdat[, "hosp.type"])
1 2 3 4 5
17 13 23 15 12

If one of the poststrata was not represented in the population, the practi-
cal implication is that it would have to be collapsed with one of the other
poststrata in order to compute an estimate. This creates a kind of adaptive
procedure for which the design-based theory for the poststratified estimator
does not apply. The usual assumption there is that every poststratum is in
the sample. If a different model applies in each poststratum, e.g., each PS
has a different mean, then the PS estimator is not model unbiased for that
configuration of sample units.

# (c) poststratified weights, srs weights
d <- rep(N/n, n)
f1 <- rep(n/N, n)
N.hosp <- table(smho[, "hosp.type"])
require(survey)
smho.dsgn <- svydesign(ids = ˜0, # no clusters

strata = NULL, # no strata
fpc = ˜f1,
data = data.frame(samdat),
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weights = ˜d)

# form vector of pop totals and and poststratify
pop.tots <- c(’(Intercept)’= 874, Ng = N.hosp[-1])
ps.calib <- calibrate(design = smho.dsgn,

formula = ˜ as.factor(hosp.type),
population = pop.tots,
bounds = c(-Inf,Inf),
calfun = c("linear"),
)

# sum of weights before and after PS
sum(weights(smho.dsgn))
[1] 874
sum(weights(ps.calib))
[1] 874

Both sets of weights sum to the population size N=874 as they should.

# (d) Verify that calibration controls are met
svytotal(˜ as.factor(hosp.type), ps.calib)

total SE
as.factor(hosp.type)1 215 1.829e-14
as.factor(hosp.type)2 115 2.974e-15
as.factor(hosp.type)3 252 9.790e-15
as.factor(hosp.type)4 149 3.897e-15
as.factor(hosp.type)5 143 6.476e-15

# (e) Estimate population total of expenditures and SEs
# PS standard error and cv

svytotal(˜ EXPTOTAL, ps.calib)
total SE

EXPTOTAL 9406934020 1323048236
cv(svytotal(˜ EXPTOTAL, ps.calib))
EXPTOTAL

0.1406461
# srs standard error and cv

svytotal(˜ EXPTOTAL, smho.dsgn)
total SE

EXPTOTAL 9085181570 1363966973
cv(svytotal(˜ EXPTOTAL, smho.dsgn))
EXPTOTAL

0.1501310

The actual total in the population is 9,686,295,207, so the PS estimate is
closer to the population total in this particular sample. The SE of the PS
estimator is slightly lower, but poststratifying has not improved the precision
of the estimated total much. Of course, one sample does not tell us anything
about the long-run performance.

14.6 Using the random seed value of 15097 in R, select a sample of n=50 hos-
pitals from the data file Hospital pop.txt with probabilities proportional
to the square root of the number of BEDS, i.e., pps

(
x1/2

)
.
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# load sampling package
require(sampling)

# attach Hospitals pop
attach("C:\\Data\\hospital.RData")

#Random seed for sample selection
set.seed(15097)

# Calculate 1-draw selection probabilities - pps
mos <- sqrt(hospital$x)

#Calculate 1-draw selection probabilities
hospital$prbs.1d <- mos / sum(mos)
summary(hospital$prbs.1d)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0005277 0.0016850 0.0025470 0.0025450 0.0033080 0.0052400

# Select sample - pps
#Define size of sample

n <- 50
# probabilities for selecting a sample of n

pk <- n * hospital$prbs.1d
#PPS sample

sam <- UPrandomsystematic(pk)
sam <- sam==1
sam.dat <- hospital[sam, ]

#Design weights
dsgn.wts <- 1/pk[sam]
sum(dsgn.wts)
[1] 393.8783
summary(dsgn.wts)

Min. 1st Qu. Median Mean 3rd Qu. Max.
3.955 5.383 6.837 7.878 9.746 27.490

(a) Calculate the estimated design effects using Spencer’s formula and Kish’s
approximation.

#Calculate WLS values
sam.wls <- lm(y ˜ prbs.1d, data=sam.dat, weights=dsgn.wts)

#DEFF component - var of y
sam.mean.y <- sum(sam.dat$y * dsgn.wts) / sum(dsgn.wts)
sam.mean.y
[1] 805.9594
sam.var.y <- sum(dsgn.wts * (sam.dat$y - sam.mean.y)ˆ2) /

sum(dsgn.wts)
sam.var.y
[1] 263510.3

#DEFF component - alpha squared
sam.alpha2 <- sam.wls$coefficients[1] ˆ2
sam.alpha2
(Intercept)

141821.9
#DEFF component - squared correlation

sam.rho2.yP <- summary(sam.wls)$r.squared
sam.rho2.yP
[1] 0.8261859

#DEFF component - Kish
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kish.deff <- n*sum(dsgn.wtsˆ2) / (sum(dsgn.wts)ˆ2)
kish.deff
[1] 1.231421

#Spencer’s DEFF
spencers.deff <- as.numeric((1 - sam.rho2.yP)*kish.deff +

(sam.alpha2/sam.var.y)*(kish.deff-1))
spencers.deff
[1] 0.3385895

(b) Describe the estimators of the population total to which the Kish and
Spencer deff ’s refer. Why do the computed values differ? Which do you
think is the most relevant here? Why?
The Kish deff is 1.23; Spencer’s is 0.34. If the goal is to estimate the total
of discharges (y), then Spencer’s is more appropriate.

(c) Estimate the total of discharges (y) in the population using the π-
estimator along with its SE and CV. How does this compare to the
estimate of the variance of the total from a simple random sample of
n=50. Estimate the srswor variance from the sample of 50 selected for
this problem.

h.dsgn <- svydesign(ids = ˜0,
strata = NULL,
data = data.frame(sam.dat),
weights = ˜dsgn.wts)

svytotal(˜y, h.dsgn)
total SE

y 317450 14682
cv(svytotal(˜y, h.dsgn))

y
0.04624832

# estimate the SE if an srswor had been selected
w <- dsgn.wts
y <- sam.dat$y
wm <- weighted.mean(x=y, w=w)
sig2 <- (n/(n-1) * sum(w*(y - wm)ˆ2) / (sum(w)-1))
SE.srs <- sqrt(N*(N/n - 1)* sig2)
SE.srs
[1] 51365.75

The SE is much smaller for the π-estimator in pps sampling than in srswor
(14682 vs. 51365.75). This is because discharges (y) is related to beds (x) and
square root of beds. Spencer’s deff reflects this fact but Kish’s does not.

14.8 Using the data file smho.N874, (a) calculate the probabilities for all
population units in a sample of 50 selected with probabilities proportional to
the following measure of size (MOS): EXPTOTAL.

(a) Select a sample of size 50 using the probabilities computed in (a).
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# set mos = expenditures
mos <- smho$EXPTOTAL
n <- 50
N <- nrow(smho)
cert <- mos N * mean(mos)/n
certs1 <- (1:N)[cert]
certs1
[1] 161

set.seed(429336912)
n.nc <- n - length(certs1)
pk <- n.nc * mos / sum(mos[-certs1])
pk[certs1] <- 1
sam <- UPrandomsystematic(pk[-certs1])
nc.units <- (1:N)[-certs1]

# Sample units are:
noncerts <- nc.units[sam == 1]
sam.units <- sort(c(certs1, nc.units[sam == 1]))
sam.units
[1] 18 21 28 61 68 79 81 84 93 152 155 156 159
161 162 163 168 171 189 190 193 199 204 207 221 246 250
286 315 386 506 515 539 557 610 628 660 666 674 679 695
696 713 722 728 754 802 819 822 864
sam.dat <- smho[sam.units, ]
wk <- 1/pk[sam.units]
summary(wk)

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.000 4.425 7.971 19.820 19.650 206.600

(b) Compute Kish’s and Spencer’s deff for this sample. In the case of
Spencer’s deff use the variable SEENCNT as y.

p.d1 <- pk/n.nc
p.d1[certs1] <- mos[certs1]/sum(mos)
sam.dat$prbs.1d <- p.d1[sam.units]

#Calculate WLS values
sam.wls <- lm(SEENCNT ˜ prbs.1d, data=sam.dat, weights=wk)

#DEFF component - var of y
sam.mean.y <- sum(sam.dat$SEENCNT * wk) / sum(wk)
sam.mean.y
[1] 2306.742
sam.var.y <- sum(wk*(sam.dat$SEENCNT-sam.mean.y)ˆ2)/sum(wk)
sam.var.y
[1] 6359677

#DEFF component - alpha squared
sam.alpha2 <- sam.wls$coefficients[1] ˆ2
sam.alpha2
(Intercept)

3352160
#DEFF component - squared correlation

sam.rho2.yP <- summary(sam.wls)$r.squared
sam.rho2.yP
[1] 0.09294825

#DEFF component - Kish
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kish.deff <- n*sum(wkˆ2) / (sum(wk)ˆ2)
kish.deff
[1] 4.268636

#Spencer’s DEFF
spencers.deff <- as.numeric((1 - sam.rho2.yP)*kish.deff +

(sam.alpha2/sam.var.y)*(kish.deff-1))
spencers.deff
[1] 5.59476

(c) Explain in words the meaning of the value you obtained in (c) for 1+L?
What should be considered in determining whether the value is exces-
sively large or not? How do Kish’s and Spencer’s measures compare in
this problem?
A value of 4.27 means that the variance of a mean is 4.27 times larger
than it would be if equal weighting were optimal. However, pps sampling
with probabilities proportional to EXPTOTAL may be very efficient for
some estimates. The estimands that are important in the sample must be
considered to decide whether 4.27 is a problem or not. In this case, Kish
and Spencer’s deff’s are both large because SEENCNT is only weakly
related to the MOS, EXPTOTAL. Both are saying that EXPTOTAL is
not a good MOS if SEENCNT is the most important analysis variable.

(d) Repeat parts (a)–(d) using BEDS as the MOS. Set the MOS for any unit
with BEDS = 0 to the minimum value of BEDS for those with non-zero
BEDS.

# (a) Compute MOS
# set mos = BEDS

mos <- smho$BEDS
mos[mos == 0] <- min(mos[mos 0])
n <- 50
N <- nrow(smho)
cert <- mos N * mean(mos)/n
sum(cert)
[1] 0
certs1 <- (1:N)[cert]
certs1 # no certs in this case
integer(0)

# (b) Select a sample of size 50.
set.seed(429336912)
pk <- n * mos / sum(mos)
sam <- UPrandomsystematic(pk)

# Sample units are:
sam.units <- (1:N)[sam == 1]
sam.units
[1] 6 9 33 49 77 82 106 111 129 154 157 163
167 179 181 190 193 197 207 210 233 242 246 265 268
271 288 334 338 352 360 384 393 403 416 481 499 500
513 549 614 742 762 770 782 791 822 823 850 852
sam.dat <- smho[sam.units, ]
wk <- 1/pk[sam.units]
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summary(wk)
Min. 1st Qu. Median Mean 3rd Qu. Max.
1.049 4.198 10.630 45.980 19.380 1424.000

# (c) Compute Kish’s and Spencer’s deffs for this sample.
p.d1 <- pk/n
sam.dat$prbs.1d <- p.d1[sam.units]

#Calculate WLS values
sam.wls <- lm(EXPTOTAL ˜ prbs.1d, data=sam.dat, weights=wk)

#DEFF component - var of y
sam.mean.y <- sum(sam.dat$EXPTOTAL * wk) / sum(wk)
sam.mean.y
[1] 4664970
sam.var.y <- sum(wk * (sam.dat$EXPTOTAL -

sam.mean.y)ˆ2) / sum(wk)
sam.var.y
[1] 8.229275e+13

#DEFF component - alpha squared
sam.alpha2 <- sam.wls$coefficients[1] ˆ2
sam.alpha2
(Intercept)
4.167288e+12

#DEFF component - squared correlation
sam.rho2.yP <- summary(sam.wls)$r.squared
sam.rho2.yP
[1] 0.6500734

#DEFF component - Kish
kish.deff <- n*sum(wkˆ2) / (sum(wk)ˆ2)
kish.deff
[1] 19.69660

#Spencer’s DEFF
spencers.deff <- as.numeric((1-sam.rho2.yP)*kish.deff +

(sam.alpha2/sam.var.y)*(kish.deff-1))
spencers.deff
[1] 7.839158

The Kish value of 19.7 is extremely large, but so is the Spencer deff of 7.8.
The weight summary shows that the largest weight is 1,424 which corresponds
to a unit whose MOS was recoded to 1 from 0. In fact, the next smallest weight
is 178.0. This appears to be a case where it would be advisable to do either
(i) use a different recoding for the MOS, e.g., make the minimal value 5 or
10 rather than 1 or (ii) bound the weights. Quadratic programming may be a
good choice to do this.

14.10

(a) Report the summary for the resulting weights, i.e., the min, max, quar-
tiles, and the mean. Do any units have weights that seem to be of concern?
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smho.N874 <- read.csv("C:\\Data\\smho.N874.csv",
row.names = 1)

smho <- smho.N874
# set mos = BEDS

mos <- smho$BEDS
mos[mos == 0] <- min(mos[mos 0])
n <- 50
N <- nrow(smho)
set.seed(429336912)
pk <- n * mos / sum(mos)
sam <- UPrandomsystematic(pk)

# Sample units are:
sam.units <- (1:N)[sam == 1]
sam.units
[1] 6 9 33 49 77 82 106 111 129 154 157 163 167
179 181 190 193 197 207 210 233 242 246 265 268 271 288
334 338 352 360 384 393 403 416 481 499 500 513 549 614
742 762 770 782 791 822 823 850 852
sam.dat <- smho[sam.units, ]
d <- 1/pk[sam.units]
summary(d)

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.049 4.198 10.630 45.980 19.380 1424.000

sort(d)
[1] 1.049462 1.200776 1.206881 1.382641
1.849506 2.401551 2.401551 2.579928 2.738692
2.831252 3.901699 3.966908 4.045795 4.653987
5.353835 5.394394 5.606772 6.593148 6.593148
6.846731 7.697946 9.494133 9.889722 10.029014
10.549037 10.707669 13.309533 13.309533 13.435094
14.241200 14.241200 14.531837 14.990737 15.479565
16.001348 17.581728 18.988267 19.508493 19.779444
20.344571 20.942941 21.577576 22.969677 37.476842
44.503750 59.338333 61.918261 71.206000 178.015000
1424.120000

The largest weight of 1,424 is far bigger than any others. This is not likely
to be efficient.

(b) Use quadratic programming to bound the weights in the range [1, 50].
Plot the resulting weights versus the design weights. What was the effect
of the bounding? Is quadratic programming an effective way of bounding
the weights here?

# Tabulate pop totals for constraints
x.beds <- sum(smho$BEDS)
x.seen <- sum(smho[,"SEENCNT"])
x.eoy <- sum(smho[,"EOYCNT"])
X.hosp <- model.matrix(˜ 0 + as.factor(hosp.type):BEDS,

data = sam.dat)
X <- rbind(sam.dat[, "BEDS"],

sam.dat[, "SEENCNT"],
sam.dat[, "EOYCNT"]

)
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c0a <- c(x.beds, x.seen, x.eoy)
# Compute full sample weights via quadratic programming

In <- diag(nrow = n)
L <- 1
U <- 50
one <- rep(1, n)
c0b <- c( L * one,

-U * one)
Cmat <- rbind(X, In, -In)
fs.wts <- solve.QP(Dmat = diag(1/d),

dvec = 2 * one,
Amat = t(Cmat),
bvec = c(c0a, c0b),
meq = 3 # 1st 3 are equality constraints

)
sort(fs.wts$solution)

[1] 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
1.000000 1.000000 1.000000 1.000000 1.000000 2.821197
2.982887 3.181804 5.488968 9.867670 12.623416 14.049774
14.235627 14.577856 14.728491 17.755924 18.204255 19.235434
19.393679 19.535066 22.993572 24.105195 27.706496 28.908379
29.005913 31.769392 32.262358 33.271899 34.805294 40.470829
50.000000 50.000000 50.000000 50.000000 50.000000 50.000000
50.000000 50.000000
plot(d,fs.wts$solution)
abline(0,1)
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There are eight weights that were trimmed back to 50; otherwise, most
weights were not modified too much.

(c) Re-do parts (a) and (b) but recode any unit with BEDS = 0 to BEDS=10.
Discuss your results. Are the weight adjustments as extreme as in (b)?
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mos <- smho$BEDS
mos[mos $<$ 10] <- 10
n <- 50
N <- nrow(smho)
set.seed(429336912)
pk <- n * mos / sum(mos)
sam <- UPrandomsystematic(pk)

# Sample units are:
sam.units <- (1:N)[sam == 1]
sam.units
[1] 6 26 49 52 53 77 82 94 111 116 129 136 154
155 157 163 167 179 181 183 189 190 193 197 233 271 288
352 360 481 499 500 513 535 721 742 769 782 788 791 802
811 823 826 832 838 852 864 865 872

sam.dat <- smho[sam.units, ]
d <- 1/pk[sam.units]
summary(d)

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.078 4.301 10.720 17.460 17.400 146.300
# Tabulate pop totals for constraints

x.beds <- sum(smho$BEDS)
x.seen <- sum(smho[,"SEENCNT"])
x.eoy <- sum(smho[,"EOYCNT"])
X.hosp <- model.matrix(˜ 0 + as.factor(hosp.type):BEDS,

data = sam.dat)
X <- rbind(sam.dat[, "BEDS"],

sam.dat[, "SEENCNT"],
sam.dat[, "EOYCNT"]

)
c0a <- c(x.beds, x.seen, x.eoy)

# Compute full sample weights via quadratic programming
In <- diag(nrow = n)
L <- 1
U <- 50
one <- rep(1, n)
c0b <- c( L * one,

-U * one)
Cmat <- rbind(X, In, -In)
fs.wts <- solve.QP(Dmat = diag(1/d),

dvec = 2 * one,
Amat = t(Cmat),
bvec = c(c0a, c0b),
meq = 3 # 1st 3 are equality constraints

)
sort(fs.wts$solution)
[1] 1.000000 1.000000 1.000000 1.000000 1.000000
1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
1.000000 1.000000 3.043553 3.839364 4.839955 6.087290
7.387588 8.230181 13.038428 14.421487 16.876299 17.517496
18.532730 20.903125 22.139108 22.909465 23.599381 23.914943
25.941203 28.815430 29.358972 29.982384 32.729851 32.849170
37.342522 37.523764 38.214365 45.850978 50.000000 50.000000
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50.000000 50.000000 50.000000

plot(d,fs.wts$solution)
abline(0,1)
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The initial range of the weights (1.078, 146.3) is much smaller here because of
the recoding of the MOS. This may be efficient, but specific analysis variables
would have to be examined to be sure.

Chapter 15

15.2 The following data were collected from a sample of two PSUs selected
from each of two strata.

h PSU Yhi

1 1 5
1 2 6
2 1 10
2 2 4

Total 25

Yhi is the weighted PSU total observed for PSU i in stratum h.

(a) Compute the balanced repeated replication (BRR) variance estimator for

the estimated total ŷ =
∑2

h=1

∑2
i=1 Yhi. Specify which form of the BRR

estimator you are using. Use the following orthogonal matrix where rows
designate the strata and columns the replicates:
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A =

⎡
⎢⎢⎣
+ + + +
+ − + −
+ + − −
+ − − +

⎤
⎥⎥⎦ .

A balanced set of replicates has a number of replicates equal to the smallest
number greater than or equal to the number of strata—4 in this case. We
can use any two rows of the matrix. Use the last two rows above to denote
strata since this will give 4 different estimates. We could use rows 1 and 2
but this will give only two different estimates. However, in the 2 stratum
case, the standard BRR variance estimate will be the same whether we
use rows 1–2 or 3–4. Using rows 3–4:
Replicate 1: 2*5 + 2*10=30 ; Replicate 2: 2*5 + 2*4=18 ; Replicate 3:
2*6 + 2*4=20 ; Replicate 4: 2*6 + 2*10=32

vB = 1
4

[
(30− 25)

2
+ (18− 25)

2
+ (20− 25)

2
+ (32− 25)

2
]

= 1
4 [25 + 49 + 25 + 49] = 37

(b) What is the variance formula for the estimated total ŷ if PSUs are
assumed to be selected with replacement? Evaluate this formula using
the data in the table above. How does it compare with your answer in
part (a)?

The variance formula is vWR=
∑

h
nh

nh−1

∑
sh

(
Ŷhi − ˆ̄Yh

)2
.

15.6 Use the nhis.large file as a population and select a simple random
sample of size n = 500. If you are using R, use a random number seed of
428274453. Poststratify the sample to population counts for age.grp. (a)
Compute the estimated proportion of the population who reported a doctor
visit (doc.visit) in the 2weeks prior to the interview. (b) Calculate the
SEs using the linearization method and JKn. What would be the effect on
estimated SEs of ignoring the poststratification? (c) Estimate the proportions
and SEs of the population who reported a doctor visit in a table defined by
Hispanic ethnicity (hisp). Combine categories 3 and 4 of hisp together. What
would be the effect of ignoring the poststratification for these estimates?

attach("C:\\Data\\nhis.large.RData", pos=2)
require(sampling)
require(survey)

# collapse hisp = 3,4
hisp.r <- nhis.large$hisp
hisp.r[nhis.large$hisp ==4] <- 3
table(hisp.r)

1 2 3
5031 12637 3920

nhis.large1 <- data.frame(nhis.large, hisp.r)
t1 <- table(nhis.large$doc.visit, nhis.large1$hisp.r)
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100*round(prop.table(t1,2),3);
1 2 3

1 12.0 17.2 14.7
2 88.0 82.8 85.3

nhis.large1$PS <- nhis.large1$age.grp
N.PS <- table(PS = nhis.large1$PS)
N.PS
PS

1 2 3 4 5
5991 2014 6124 5011 2448

# select srswor of size n
set.seed(428274453)
n <- 500
N <- nrow(nhis.large1)
sam <- sample(1:N, n)
samdat <- nhis.large1[sam, ]
n.PS <- table(samdat[, "age.grp"])
as.vector(n.PS)
[1] 155 46 128 107 64

# compute srs weights and sampling fraction
d <- rep(N/n, n)

# srswor design object
nhis.dsgn <- svydesign(ids = ˜0,

strata = NULL,
data = data.frame(samdat),
weights = ˜d)

# Linearization variances
# poststratified design object

ps.dsgn <- postStratify(design = nhis.dsgn,
strata = ˜PS,
population = N.PS)

# Check that weights are calibrated for x’s
svytotal(˜ as.factor(PS), ps.dsgn)

total SE
as.factor(PS)1 5991 0
as.factor(PS)2 2014 0
as.factor(PS)3 6124 0
as.factor(PS)4 5011 0
as.factor(PS)5 2448 0

# PS linearization standard errors and cv’s
a1.lin <- round(svymean(˜ as.factor(doc.visit),

ps.dsgn, na.rm=TRUE), 4)
a2.lin <- round(cv(svymean(˜ as.factor(doc.visit),

ps.dsgn, na.rm=TRUE)), 4)
# crosstab: age group x hispanic

b1.lin <- round(svyby(˜as.factor(doc.visit),
by = ˜hisp.r, design = ps.dsgn,
svymean, na.rm=TRUE), 4)

b2.lin <- round(cv(svyby(˜as.factor(doc.visit),
by = ˜hisp.r, design = ps.dsgn,
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svymean, na.rm=TRUE)), 4)

# linearization standard errors and cv’s ignoring
# poststratification

wts <- weights(ps.dsgn)
# design object ignoring PS

noPS.dsgn <- svydesign(ids = ˜0,
strata = NULL,
data = data.frame(samdat),
weights = ˜wts)

a1.noPS <- round(svymean(˜ as.factor(doc.visit),
noPS.dsgn, na.rm=TRUE), 4)

a2.noPS <- round(cv(svymean(˜ as.factor(doc.visit),
noPS.dsgn, na.rm=TRUE)), 4)

b1.noPS <- round(svyby(˜as.factor(doc.visit), by = ˜hisp.r,
design = noPS.dsgn, svymean, na.rm=TRUE), 4)

b2.noPS <- round(cv(svyby(˜as.factor(doc.visit), by = ˜hisp.r,
design = noPS.dsgn, svymean, na.rm=TRUE)),

# Jackknife variances
jk1.dsgn <- as.svrepdesign(design = nhis.dsgn, type = "JK1")

# poststratified design object
jk1.ps.dsgn <- postStratify(design = jk1.dsgn,

strata = ˜PS,
population = N.PS)

# PS JK1 standard errors and cv’s
a1.jk <- round(svymean(˜ as.factor(doc.visit), jk1.ps.dsgn,

na.rm=TRUE), 4)
a1.jk

mean SE
as.factor(doc.visit)1 0.1602 0.0162
as.factor(doc.visit)2 0.8398 0.0162

a2.jk <- round(cv(svymean(˜ as.factor(doc.visit), jk1.ps.dsgn,
na.rm=TRUE)), 4)

a2.jk
as.factor(doc.visit)1 as.factor(doc.visit)2

0.1008 0.0192

# crosstab: age group x hispanic
b1.jk <- round(svyby(˜as.factor(doc.visit), by = ˜hisp.r,

design = jk1.ps.dsgn, svymean, na.rm=TRUE), 4)
b2.jk <- round(cv(svyby(˜as.factor(doc.visit), by = ˜hisp.r,

design = jk1.ps.dsgn, svymean, na.rm=TRUE)), 4)
SEs <- cbind(b1.noPS, b1.lin, b1.jk)
SEs <- SEs[, -c(1,6,11)] # remove columns of hisp IDs
pt.ests <- SEs[, c(1,5,9)] # keep pt. ests of prop. with doc

# visit
SEs <- SEs[, c(3,7,11)]
dimnames(pt.ests)[[1]] <-

dimnames(SEs)[[1]] <- c("Hispanic", "non-Hisp white",
"non-Hisp Black & Other")

dimnames(pt.ests)[[2]] <- c("noPS doc=1","lin PS doc=1",
"jk doc=1")
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pt.ests
noPS doc=1 lin PS doc=1 jk doc=1

Hispanic 0.0785 0.0785 0.0785
non-Hisp white 0.2077 0.2077 0.2077
non-Hisp Black & Other 0.1044 0.1044 0.1044
dimnames(SEs)[[2]] <- c("noPS SE doc=1","lin SE doc=1",

"jk SE doc=1")

# SEs on estimated proportions of persons with doctor visits
# by the Hispanic variable.
SEs

noPS SE doc=1 lin SE doc=1 jk SE doc=1
Hispanic 0.0253 0.0252 0.0255
non-Hisp white 0.0235 0.0228 0.0230
non-Hisp Black & Other 0.0331 0.0330 0.0336

CVs <- cbind(b2.noPS, b2.lin, b2.jk)
CVs <- CVs[, c(1,3,5)] # keep CV ests of proportion with doc

visit

dimnames(CVs)[[1]] <- c("Hispanic", "non-Hisp white",
"non-Hisp Black & Other")

dimnames(CVs)[[2]] <- c("noPS CV doc=1","linCV doc=1",
"jkCV doc=1")

# CVs on estimated proportions of persons with doctor visits
# by the Hispanic variable.
CVs

noPS CV doc=1 linCV doc=1 jkCV doc=1
Hispanic 0.3222 0.3213 0.3253
non-Hisp white 0.1132 0.1098 0.1109
non-Hisp Black & Other 0.3173 0.3164 0.3215

Discussion: The point estimates of the proportions with doctor visits are not
affected by the choice of variance estimation method. In this example, there
is very little difference in the SE and CV estimates whether poststratification
is accounted for or not. Linearization and jackknife SEs and CVs are very
similar.

15.8 Repeat Exercise 15.6 using the bootstrap method with 500 replicates. If
you are using R, use a random number seed of -711384152. How do your esti-
mates of standard errors and CV s compare to the linearization and jackknife
estimates in Exercise 15.6?

attach("C:\\Data\\nhis.large.RData", pos=2)
require(sampling)
require(survey)

# collapse hisp = 3,4
hisp.r <- nhis.large$hisp
hisp.r[nhis.large$hisp ==4] <- 3
table(hisp.r)
nhis.large1 <- data.frame(nhis.large, hisp.r)
nhis.large1$PS <- nhis.large1$age.grp
N.PS <- table(PS = nhis.large1$PS)
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# select srswor of size n
set.seed(-711384152)
n <- 500
N <- nrow(nhis.large1)
sam <- sample(1:N, n)
samdat <- nhis.large1[sam, ]
n.PS <- table(samdat[, "age.grp"])
as.vector(n.PS)

# compute srs weights and sampling fraction
d <- rep(N/n, n)

# srswor design object
nhis.dsgn <- svydesign(ids = ˜0,

strata = NULL,
data = data.frame(samdat),
weights = ˜d)

# create design with boostrap wts.
# Rao-Wu version used with mh = nh-1

nhis.boot <- as.svrepdesign(design = nhis.dsgn,
type = "subbootstrap",
replicates = 500)

# poststratified design object
boot.ps <- postStratify(design = nhis.boot,

strata = ˜PS,
population = N.PS)

# PS boot standard errors and cv’s
a1.boot <- round(svymean(˜ as.factor(doc.visit),

boot.ps, na.rm=TRUE), 4)
a2.boot <- round(cv(svymean(˜ as.factor(doc.visit),

boot.ps, na.rm=TRUE)), 4)
# crosstab: age group x hispanic

b1.boot <- round(svyby(˜as.factor(doc.visit), by = ˜hisp.r,
design = boot.ps, svymean, na.rm=TRUE), 4)

b2.boot <- round(cv(svyby(˜as.factor(doc.visit), by = ˜hisp.r,
design = boot.ps, svymean, na.rm=TRUE)), 4)

ests <- cbind(b1.boot, b2.boot)
ests <- ests[, c(2,4,6)] # keep ests for prop. with doc visit
dimnames(ests)[[1]] <- c("Hispanic", "non-Hisp white",

"non-Hisp Black & Other")
dimnames(ests)[[2]] <- c("doc=1", "SE","CV")
ests

doc=1 SE CV
Hispanic 0.1613 0.0338 0.2096
non-Hisp white 0.2032 0.0232 0.1140
non-Hisp Black & Other 0.1097 0.0314 0.2863
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