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Preface

Und alles ist mir dann immer wieder zerfallen, auf dem Konzentrationshöhepunkt
ist mir dann immer wieder alles zerfallen.

Thomas Bernhard

(...) il faut continuer, je vais continuer.
Samuel Beckett

The central question in Diophantine approximation is: how well can a given
real number ξ be approximated by rational numbers, that is, how small can the
difference |ξ − p/q| be made for varying rational numbers p/q? The accuracy
of the approximation of ξ by p/q is being compared with the ‘complexity’ of
the rational number p/q , which is measured by the size of its denominator q. It
follows from the theory of continued fractions (or from Dirichlet’s Theorem)
that for any irrational number ξ there exist infinitely many rational numbers
p/q with |ξ − p/q| < q−2. This can be viewed as the first general result in
this area.

There are two natural generalizations of the central question. On the one
hand, one can treat rational numbers as algebraic numbers of degree one and
study, for a given positive integer n, how well ξ can be approximated by alge-
braic numbers of degree at most n. On the other hand, ξ − p/q can be viewed
as qξ− p, that is as P(ξ), where P(X) denotes the integer polynomial q X− p.
Thus, for a given positive integer n, one may ask how small |P(ξ)| can be made
for varying integer polynomials P(X) of degree at most n. To do this properly,
one needs to define a notion of size, or ‘complexity’, for algebraic numbers α

and for integer polynomials P(X), and we have to compare the accuracy of

ix



x Preface

the approximation of ξ by α (resp. the smallness of |P(ξ)|) with the size of
α (resp. of P(X)). In both cases, we use for the size the naive height H: the
height H(P) of P(X) is the maximum of the absolute values of its coefficients
and the height H(α) of α is that of its minimal polynomial over Z.

In 1932, Mahler proposed to classify the real numbers (actually, the com-
plex numbers) into several classes according to the various types of answers to
the latter question, while in 1939 Koksma introduced an analogous classifica-
tion based on the former question. In both cases, the algebraic numbers form
one of the classes. Let ξ be a real number and let n be a positive integer. Ac-
cording to Mahler, we denote by wn(ξ) the supremum of the real numbers w

for which there exist infinitely many integer polynomials P(X) of degree at
most n satisfying

0 < |P(ξ)| ≤ H(P)−w,

and we divide the set of real numbers into four classes according to the be-
haviour of the sequence (wn(ξ))n≥1. Following Koksma, we denote by w∗n(ξ)

the supremum of the real numbers w for which there exist infinitely many real
algebraic numbers α of degree at most n satisfying

0 < |ξ − α| ≤ H(α)−w−1.

It turns out that both classifications coincide, inasmuch as each of the four
classes defined by Mahler corresponds to one of the four classes defined by
Koksma. However, they are not strictly equivalent, since there exist real num-
bers ξ for which wn(ξ) and w∗n(ξ) differ for any integer n at least equal
to 2. In addition, it is a very difficult (and, often, still open) question to
determine to which class a given ‘classical’ number like π , e, ζ(3), log 2, etc.
belongs.

The present book is mainly concerned with the following problem: given
two non-decreasing sequences of real numbers (wn)n≥1 and (w∗n)n≥1 satisfy-
ing some necessary restrictions (e.g. w∗n ≤ wn ≤ w∗n + n − 1), does there
exist a real number ξ with wn(ξ) = wn and w∗n(ξ) = w∗n for all positive in-
tegers n? This question is very far from being solved, although we know (see
Chapter 4) that almost all (in the sense of the Lebesgue measure on the line)
real numbers share the same approximation properties, namely they satisfy
wn(ξ) = w∗n(ξ) = n for all positive integers n.

There are essentially two different points of view for investigating such a
problem. We may try to construct explicitly (or semi-explicitly) real numbers
with the required properties (Chapter 7) or, if this happens to be too diffi-
cult, we may try to prove the existence of real numbers with a given property
by showing that the set of these numbers has positive Hausdorff dimension
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(Chapters 5 and 6). Most often, however, we are unable to exhibit a single ex-
plicit example of such a number.

The content of the present book is as follows. Chapter 1 is devoted to the
approximation by rational numbers. We introduce the notion of continued frac-
tions and establish their main properties needed to prove the celebrated metric
theorem of Khintchine saying that, for a continuous function � : R≥1 → R>0

such that x �→ x�(x) is non-increasing, the equation |qξ − p| < �(q) has
infinitely many integer solutions (p, q) with q positive for either almost no
or almost all real numbers ξ , according to whether the sum

∑+∞
q=1 �(q) con-

verges or diverges.
In Chapter 2, we briefly survey the approximation to algebraic numbers by

algebraic numbers, and recall many classical results (including Roth’s Theo-
rem and Schmidt’s Theorem). We make a clear distinction between effective
and ineffective statements.

Mahler’s and Koksma’s classifications of real numbers are defined in
Chapter 3, where we show, following ideas of Wirsing, how closely they are re-
lated. Some links between simultaneous rational approximation and these clas-
sifications are also mentioned, and we introduce four other functions closely
related to wn and w∗n .

In Chapter 4, we establish Mahler’s Conjecture to the effect that almost all
real numbers ξ satisfy wn(ξ) = w∗n(ξ) = n for all positive integers n. This
result, first proved by Sprindžuk in 1965, has been refined and extended since
that time and we state the most recent developments, essentially due to a new
approach found by Kleinbock and Margulis.

Exceptional sets are investigated from a metric point of view in Chapters
5 and 6. To this end, we introduce a classical powerful tool for discriminating
between sets of Lebesgue measure zero, namely the notion of Hausdorff di-
mension. We recall the basic definitions and some well-known results useful
in our context. This allows us to prove the theorem of Jarnı́k and Besicov-
itch saying that for any real number τ ≥ 1 the Hausdorff dimension of the
set of real numbers ξ with w∗1(ξ) ≥ 2τ − 1 is equal to 1/τ . We also estab-
lish its generalization to any degree n (with w∗1(ξ) ≥ 2τ − 1 replaced by
w∗n(ξ) ≥ (n + 1)τ − 1) obtained in 1970 by A. Baker and Schmidt. Chapter 6
is devoted to refined statements and contains general metric theorems on sets
of real numbers which are very close to infinitely many elements of a fixed set
of points which are, in some sense, evenly distributed.

In Chapter 7, we prove, following ideas of Schmidt, that the class formed
by the real numbers ξ with lim supn→+∞wn(ξ)/n infinite and wn(ξ) finite for
all positive integers n is not empty. At the same time, we show that there exist
real numbers ξ for which the quantities wn(ξ) and w∗n(ξ) differ by preassigned
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values, a result due to R. C. Baker. The real numbers ξ with the required prop-
erty are obtained as limits of sequences of algebraic numbers. This illustrates
the importance of results on approximation of algebraic numbers by algebraic
numbers. The remaining part of Chapter 7 is concerned with some other (sim-
pler) explicit constructions.

Mahler’s and Koksma’s classifications emphasize the approximation by al-
gebraic numbers of bounded degree. We may as well exchange the roles played
by degree and height or let both vary simultaneously. We tackle this ques-
tion in Chapter 8 by considering the classification introduced by Sprindžuk in
1962 and the so-called ‘order functions’ defined by Mahler in 1971. Further,
some recent results of Laurent, Roy, and Waldschmidt expressed in terms of a
more involved notion of height (namely, the absolute logarithmic height) are
given.

In Chapter 9, we briefly discuss approximation in the complex field, in the
Gaussian field, in p-adic fields, and in fields of formal Laurent series.

Chapter 10, which begins by a brief survey on the celebrated Littlewood
Conjecture, offers a list of open questions. We hope that these will motivate
further research.

Finally, there are two appendices. Appendix A is devoted to lemmas on
zeros of polynomials: all proofs are given in detail and the statements are the
best known at the present time. Appendix B lists classical auxiliary results
from the geometry of numbers.

The Chapters are largely independent of each other.
We deliberately do not give proofs to all the theorems quoted in the main

part of the text. We have clearly indicated when this is the case (see below).
Furthermore, we try, in the end-of-chapter notes, to be as exhaustive as possible
and to quote less-known papers, which, although interesting, did not yield up
to now to further research. Of course, exhaustivity is an impossible task, and
it is clear that the choice of the references concerning works at the border of
the main topic of this book reflects the personal taste and the limits of the
knowledge of the author.

The purpose of the exercises is primarily to give complementary results,
thus they are often an adaptation of an original research work to which the
reader is directed.

There exist already many textbooks dealing, in part, with the subject of the
present one, e.g., by Schneider [517], Sprindžuk [539, 540], A. Baker [44],
Schmidt [510, 512], Bernik and Melnichuk [90], Harman [273], and Bernik
and Dodson [86]. However, the intersection rarely exceeds two or three chap-
ters. Special mention should be made to the wonderful book of Koksma [332],
which contains an impressive list of references which appeared before 1936.
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Maurice Mignotte and Michel Waldschmidt encouraged me constantly.
Many colleagues sent me comments, remarks, and suggestions. I am very
grateful to all of them. Special thanks are due to Guy Barat and Damien Roy,
who carefully read several parts of this book.

The present book will be regularly updated on my institutional Web page:
http://www-irma.u-strasbg.fr/˜bugeaud/Book

The following statements are not proved in the present book:
Theorems 1.13 to 1.15, 1.17, 1.20, 2.1 to 2.8, 3.7, 3.8, 3.10, 3.11, 4.4 to 4.7,

Proposition 5.1, Theorems 5.7, 5.9, 5.10, Proposition 6.1, Theorems 6.3 to 6.5,
8.1, 8.5, 8.8 (partially proved), 9.1 to 9.8, Lemma 10.1, Theorems 10.1, B.3,
and B.4.

The following statements are left as exercises:
Theorems 1.16, 1.18, 1.19, 5.4, 5.6, 6.2, 6.9, 6.10, 7.2, 7.3, 7.6, 8.4, 8.6,

8.12, and Proposition 8.1.



Frequently used notation

deg degree.
positive strictly positive.
N infinite set of integers.
[·] integer part.
{·} fractional part.
|| · || distance to the nearest integer.
An empty sum is equal to 0 and an empty product is equal to 1.
φ the Euler totient function.
logi the i-fold iterated logarithm.

,� means that there is an implied constant.
Card the cardinality (of a finite set).
c, ci , κ constants.
c(var1, . . . , varm) constant depending (at most) on the variables
var1, . . . , varm .
An the set of real algebraic numbers of degree at most n.
H naive height, Ch. 2.
� size, Ch. 8.
h absolute height, Ch. 8.
M Mahler’s measure, App. A.
λ the Lebesgue measure on the real line.
λ(I ) = |I | the Lebesgue measure of an interval I .
vol the n-dimensional Lebesgue measure.
μ a measure (not the Lebesgue one).
ξ the number we approximate.
d the degree of ξ (when ξ is algebraic).
α the algebraic approximant of ξ .
n (an upper bound for) the degree of the approximant α.
H (an upper bound for) the height of the approximant α.
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x the n-tuple (x1, . . . , xn).
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�, x �→ xτ approximation functions, Ch. 1, 5, 6.
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Res the resultant of two polynomials, App. A.
Disc the discriminant of an integer polynomial, App. A.
C a bounded convex body, App. B.
λ1, . . . , λn the successive minima of a bounded convex body, App. B.





1

Approximation by rational numbers

Throughout the present Chapter, we are essentially concerned with the fol-
lowing problem: for which functions � : R≥1 → R≥0 is it true that, for a
given real number ξ , or for all real numbers ξ in a given class, the equation
|ξ − p/q| < �(q) has infinitely many solutions in rational numbers p/q? We
begin by stating the results on rational approximation obtained by Dirichlet
and Liouville in the middle of the nineteenth century. In Section 1.2, we de-
fine the continued fraction algorithm and recall the main properties of contin-
ued fractions expansions. These are used in Section 1.3 to give a full proof
of a metric theorem of Khintchine. The next two Sections are devoted to the
Duffin–Schaeffer Conjecture and to some complementary results on continued
fractions.

1.1 Dirichlet and Liouville

Every real number ξ can be expressed in infinitely many ways as the limit of
a sequence of rational numbers. Furthermore, for any positive integer b, there
exists an integer a with |ξ − a/b| ≤ 1/(2b), and one may hope that there
are infinitely many integers b for which |ξ − a/b| is in fact much smaller than
1/(2b). For instance, this is true when ξ is irrational, as follows from the theory
of continued fractions. In order to measure the accuracy of the approximation
of ξ by a rational number a/b (written in its lowest terms), we have to com-
pare the difference |ξ − a/b| with the size, or complexity, of a/b. A possible
definition for this notion is, for example, the number of digits of a plus the
number of digits of b. However, as usual, we define the size, or the height, of
a/b as the maximum of the absolute values of its denominator and numerator:
this definition is more relevant and can be easily extended (see Definition 2.1).

The first statement of Theorem 1.1 is often referred to as Dirichlet’s
Theorem, although it is not explicitly stated under this form in [196], a paper
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2 Approximation by rational numbers

which appeared in 1842. However, it follows easily from the proof of the main
result of [196], which actually provides an extension of the second assertion of
Theorem 1.1 to linear forms and to systems of linear forms.

THEOREM 1.1. Let ξ and Q be real numbers with Q ≥ 1. There exists a
rational number p/q, with 1 ≤ q ≤ Q, such that∣∣∣∣ξ − p

q

∣∣∣∣ <
1

q Q
.

Furthermore, if ξ is irrational, then there exist infinitely many rational num-
bers p/q such that ∣∣∣∣ξ − p

q

∣∣∣∣ <
1

q2
, (1.1)

and if ξ = a/b is rational, then for any rational p/q �= a/b with q > 0 we
have ∣∣∣∣ξ − p

q

∣∣∣∣ ≥ 1

|b|q .

PROOF. Let t denote the integer part of Q. If ξ is the rational a/b, with a and
b integers and 1 ≤ b ≤ t , it is sufficient to set p = a and q = b. Otherwise,
the t + 2 points 0, {ξ}, . . . , {tξ}, and 1 are pairwise distinct and they divide
the interval [0, 1] into t + 1 subintervals. Clearly, at least one of these has its
length at most equal to 1/(t + 1). This means that there exist integers k, � and
mk , m� with 0 ≤ k < � ≤ t and

|(�ξ − m�)− (kξ − mk)| ≤ 1

t + 1
<

1

Q
.

We conclude by setting p := m� − mk and q := �− k, and by noticing that q
satisfies 1 ≤ q ≤ t ≤ Q. Instead of reasoning with the lengths of the intervals,
we could as well use an argument dating back to Dirichlet [196], now called
Dirichlet’s Schubfachprinzip (or pigeon-hole principle, or principe des tiroirs,
or principio dei cassetti, or principio de las cajillas, or principiul cutiei, or
skatulya-elv, or lokeroperiaate, or zasada pudełkowa). It asserts that at least
two among the t + 2 points 0, {ξ}, . . . , {tξ}, and 1 lie in one of the t + 1
intervals [ j/(t +1), ( j +1)/(t +1)], where j = 0, . . . , t ; hence, the existence
of integers k, �, mk , and m� as above.

Suppose now that ξ is irrational and let Q0 be a positive integer. By the
first assertion of the theorem, there exists an integer q with 1 ≤ q ≤ Q0 such
that ∣∣∣∣ξ − p

q

∣∣∣∣ <
1

q Q0
≤ 1

q2
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holds for some integer p. We may assume that q is the smallest integer between
1 and Q0 with this property. By the first assertion of the theorem applied with
Q = 1/|ξ − p/q|, there exists a rational number p′/q ′ with 1 ≤ q ′ ≤ 1/|ξ −
p/q| such that∣∣∣∣ξ − p′

q ′

∣∣∣∣ <
1

q ′

∣∣∣∣ξ − p

q

∣∣∣∣ <
1

q ′Q0
and

∣∣∣∣ξ − p′

p′

∣∣∣∣ <
1

q2
.

Our choice of q ensures that q ′ is strictly larger than q and we proceed induc-
tively to get an infinite sequence of distinct rational numbers satisfying (1.1),
thus the second assertion is proved. The third one is immediate.

Theorem 1.1 provides a useful criterion of irrationality: a real number having
infinitely many good rational approximants must be irrational.

Recall that a complex number ξ is an algebraic number if it is root of a
non-zero integer polynomial P(X). Otherwise, ξ is a transcendental number.
In 1844, two years after Dirichlet’s paper, Liouville [368, 369] was the first to
prove that transcendental numbers exist, and, moreover, he constructed explicit
examples of such numbers. Thirty years later, Cantor [152] gave an alternative
proof of the existence of real transcendental numbers: he showed that the set
of real algebraic numbers is countable and that, given a countable set of real
numbers, any real interval of positive length contains points not belonging to
that set. Cantor’s proof, however, does not yield any explicit example of a real
trancendental number.

A detailed proof of Theorem 1.2 is given in [370] and includes the case
n = 1 (that is, the last assertion of Theorem 1.1). The main idea, however,
already appeared in Liouville’s note [369].

THEOREM 1.2. Let ξ be a real root of an irreducible integer polynomial P(X)

of degree n ≥ 2. There exists a positive constant c1(ξ) such that∣∣∣∣ξ − p

q

∣∣∣∣ ≥ c1(ξ)

qn
(1.2)

for all rational numbers p/q. A suitable choice for c1(ξ) is

c1(ξ) := 1

1+max|t−ξ |≤1 |P ′(t)| .

PROOF. With c1(ξ) defined as above, inequality (1.2) is true when |ξ− p/q| ≥
1. Let p/q be a rational number satisfying |ξ − p/q| < 1. Since P(X) is irre-
ducible and has integer coefficients, we have P(p/q) �= 0 and |qn P(p/q)| ≥
1. By Rolle’s Theorem, there exists a real number t lying between ξ and p/q
such that

|P(p/q)| = |P(ξ)− P(p/q)| = |ξ − p/q| × |P ′(t)|.
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Hence, we have |t − ξ | ≤ 1 and∣∣∣∣ξ − p

q

∣∣∣∣ ≥ 1

qn |P ′(t)| ≥
c1(ξ)

qn
,

as claimed.

COROLLARY 1.1. The number ξ :=∑
n≥1 10−n! is transcendental.

PROOF. Since its decimal expansion is not ultimately periodic, ξ is irrational.
For any integer n ≥ 2, set qn = 10(n−1)! and pn = qn(10−1!+. . .+10−(n−1)!).
Then we have ∣∣∣∣ξ − pn

qn

∣∣∣∣ = ∑
m≥n

1

10m!
≤ 2

10n!
= 2

qn
n

and ξ is not algebraic of degree greater than or equal to 2, by Theorem 1.2.
Consequently, ξ is a transcendental number.

Corollary 1.1 illustrates how Theorem 1.2 can be applied to prove the tran-
scendence of a large class of real numbers, which are now called Liouville
numbers.

DEFINITION 1.1. Let ξ be a real number. If for any positive real number w

there exists a rational number p/q such that

0 <

∣∣∣∣ξ − p

q

∣∣∣∣ <
1

qw
,

then ξ is called a Liouville number.

An easy modification of the proof of Corollary 1.1 shows that any real num-
ber

∑
n≥1 an10−n! with an in {1, 2} is a Liouville number. Hence, there exist

uncountably many Liouville numbers. Furthermore, Theorem 1.2 provides a
useful transcendence criterion, see Exercise 1.1.

Combining the theorems of Liouville and Dirichlet, we see that the problem
of rational approximation of real quadratic numbers is, in some sense, solved.

COROLLARY 1.2. Let ξ be a real quadratic algebraic number. Then there
exists a positive real number c2(ξ) such that∣∣∣∣ξ − p

q

∣∣∣∣ ≥ c2(ξ)

q2
for all rationals p/q (1.3)

whereas ∣∣∣∣ξ − p

q

∣∣∣∣ <
1

q2
for infinitely many rationals p/q.



1.2 Continued fractions 5

One may ask whether there exist real numbers, other than quadratic irrational-
ities, for which the property (1.3) is satisfied. The answer is affirmative, and a
way to prove it is to use the theory of continued fractions.

1.2 Continued fractions

Let x0, x1, . . . be real numbers with x1, x2, . . . positive. A finite continued
fraction denotes any expression of the form

[x0; x1, x2, . . . , xn] = x0 + 1

x1 +
1

x2 +
1

. . .+ 1

xn

.

More generally, we call any expression of the above form or of the form

[x0; x1, x2, . . . ] = x0 + 1

x1 +
1

x2 +
1

. . .

= lim
n→+∞ [x0; x1, x2 . . . , xn]

a continued fraction, provided that the limit exists.
The aim of this Section is to show how a real number ξ can be expressed as

ξ = [x0; x1, x2, . . . ], where x0 is an integer and xn a positive integer for any
n ≥ 1. We first deal with the case of a rational number ξ , then we describe an
algorithm which associates to any irrational ξ an infinite sequence of integers
(an)n≥0, with an ≥ 1 for n ≥ 1, and we show that the sequence of rational
numbers [a0; a1, a2, . . . , an] converges to ξ .

For more results on continued fractions or/and different points of view on
this theory, the reader may consult, for example, a text of Van der Poorten
[462] and the books of Cassels [155], Dajani and Kraaikamp [174], Hardy and
Wright [271], Iosifescu and Kraaikamp [286], Perron [454], Rockett and Szüsz
[474], Schmidt [512], and Schweiger [519].

LEMMA 1.1. Any rational number r has exactly two different continued frac-
tion expansions. These are [r ] and [r − 1; 1] if r is an integer and, otherwise,
one of them has the form [a0; a1, . . . , an−1, an] with an ≥ 2, and the other one
is [a0; a1, . . . , an−1, an − 1, 1].

PROOF. Let r be a rational number and write r = u/v with v positive and
u and v coprime. We argue by induction on v. If v = 1, then r = u = [u],
and if r = [a0; a1, . . . , an] with n ≥ 1, we have r = a0 + 1/[a1; a2, . . . , an].
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Since a1 ≥ 1 and r is an integer, we deduce that n = 1 and a1 = 1, thus
r = a0 + 1 = [r − 1; 1].

We assume v ≥ 2 and that the lemma holds true for any rational of de-
nominator positive and at most equal to v − 1. Performing the Euclidean
division of u by v, there exist integers q and c with u = qv + c and
1 ≤ c ≤ v − 1. Thus, u/v = q + c/v and, by our inductive hypothesis, the
rational v/c has exactly two expansions in continued fractions, which we de-
note by [a1; a2, . . . , an−1, an] with an ≥ 2, and [a1; a2, . . . , an−1, an − 1, 1].
Setting a0 equal to q , the desired result follows for u/v.

Unless otherwise explicitly stated, by ‘the’ continued fraction expansion of a
rational number p/q , we mean [1] if p/q = 1, and if not, the unique expansion
which does not end with 1.

The following algorithm allows us to associate to any irrational real number
ξ an infinite sequence of integers. Let us define the integer a0 and the real
number ξ1 > 1 by

a0 = [ξ ] and ξ1 = 1/{ξ}.
We then have ξ = a0 + 1/ξ1. For any positive integer n, we define inductively
the integer an and the real number ξn+1 > 1 by

an = [ξn] and ξn+1 = 1/{ξn},
and we observe that ξn = an + 1/ξn+1. We point out that the algorithm does
not stop since ξ is assumed to be irrational. Thus, we have associated to any
irrational real number ξ an infinite sequence of integers a0, a1, a2, . . . with an

positive for all n ≥ 1.
If ξ is rational, the same algorithm terminates and associates to ξ a finite

sequence of integers. Indeed, the ξ j s are then rational numbers and, if we set
ξ j = u j/v j , with u j , v j positive and gcd(u j , v j ) = 1, an easy induction
shows that we get u j > u j+1, for any positive integer j with v j �= 1. Conse-
quently, there must be some index n for which vn−1 �= 1 and ξn is an integer.
Thus, an+1, an+2, . . . are not defined. We have ξ = [a0; a1, . . . , an], and this
corresponds to the Euclidean algorithm.

DEFINITION 1.2. Let ξ be an irrational number (resp. a rational number). Let
a0, a1, . . . (resp. a0, a1, . . . , aN ) be the sequence of integers associated to ξ

by the algorithm defined above. For any integer n ≥ 1 (resp. n = 1, . . . , N),
the rational number

pn

qn
:= [a0; a1, . . . , an]
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is called the n-th convergent of ξ and an is termed the n-th partial quotient of
ξ . Further, for any integer n ≥ 1 (resp. n = 1, . . . , N − 1), there exists a real
number ηn in ]0, 1[ such that

ξ = [a0; a1, . . . , an−1, an + ηn].

We observe that the real numbers ηn occurring in Definition 1.2 are exactly the
real numbers 1/ξn+1 given by the algorithm.

In all of what follows until the end of Theorem 1.5, unless otherwise ex-
plicitly stated, we assume that ξ is a real irrational number and we associate to
ξ the sequences (an)n≥0 and (pn/qn)n≥1 as given by Definition 1.2. However,
the statements below remain true for rational numbers ξ provided that the ans
and the pn/qns are well-defined.

The integers pn and qn can be easily expressed in terms of an , pn−1, pn−2,
qn−1, and qn−2.

THEOREM 1.3. Setting

p−1 = 1, q−1 = 0, p0 = a0, and q0 = 1,

we have, for any positive integer n,

pn = an pn−1 + pn−2 and qn = anqn−1 + qn−2.

PROOF. We proceed by induction. Since p1/q1 = a0 + 1/a1 = (a0a1 +
1)/a1, the definitions of p−1, q−1, p0, and q0 show that the theorem is true
for n = 1. Assume that it holds true for a positive integer n and denote by
p′0/q ′0, . . . , p′n/q ′n the convergents of the rational number [a1; a2, . . . , an+1].
For any integer j with 0 ≤ j ≤ n + 1 we have

p j

q j
= [a0; a1, . . . , a j ] = a0 + 1

[a1; a2, . . . , a j ]
= a0 +

q ′j−1

p′j−1
,

thus

p j = a0 p′j−1 + q ′j−1 and q j = p′j−1. (1.4)

It follows from (1.4) with j = n + 1 and the inductive hypothesis applied to
the rational [a1; a2, . . . , an+1] that

pn+1 = a0(an+1 p′n−1 + p′n−2)+ an+1q ′n−1 + q ′n−2

= an+1(a0 p′n−1 + q ′n−1)+ a0(p′n−2 + q ′n−2)

and

qn+1 = an+1 p′n−1 + p′n−2,



8 Approximation by rational numbers

whence, by (1.4) with j = n and j = n − 1, we get qn+1 = an+1qn + qn−1

and pn+1 = an+1 pn + pn−1, as claimed.

THEOREM 1.4. For any non-negative integer n, we have

qn pn−1 − pnqn−1 = (−1)n (1.5)

and, for all n ≥ 1,

qn pn−2 − pnqn−2 = (−1)n−1an . (1.6)

PROOF. These equalities are clearly true for n = 0 and n = 1. It then suffices
to argue by induction, using Theorem 1.3.

LEMMA 1.2. For any irrational number ξ and any non-negative integer n, the
difference ξ − pn/qn is positive if, and only if, n is even.

PROOF. We easily check that this is true for n = 0, 1, and 2 and we proceed
by induction. Let n ≥ 4 be an even integer. Then ξ = [a0; a1, [a2; a3, . . . , an+
ηn]] and the inductive hypothesis implies that [a2; a3, . . . , an + ηn] >

[a2; a3, . . . , an]. Since [a0; a1, u] > [a0; a1, v] holds for all positive real num-
bers u > v, we get that ξ > [a0; a1, [a2; a3, . . . , an]] = pn/qn . We deal with
the case n odd in exactly the same way.

As a corollary of Lemma 1.2, we get a result of Vahlen [575].

COROLLARY 1.3. Let pn/qn and pn+1/qn+1 be two consecutive convergents
of the continued fraction expansion of an irrational number ξ . Then at least
one of them satisfies ∣∣∣∣ξ − p

q

∣∣∣∣ <
1

2q2
.

PROOF. We infer from Lemma 1.2 that ξ is an inner point of the inter-
val bounded by pn/qn and pn+1/qn+1. Thus, using (1.5) and the inequality
a2 + b2 > 2ab, valid for any distinct real numbers a and b, we get

1

2q2
n
+ 1

2q2
n+1

>
1

qnqn+1
=

∣∣∣∣ pn

qn
− pn+1

qn+1

∣∣∣∣ =
∣∣∣∣ξ − pn

qn

∣∣∣∣+
∣∣∣∣ξ − pn+1

qn+1

∣∣∣∣,
and the claimed result follows.

The next two theorems show that the real irrational numbers are in a one-to-
one correspondence with the set of integer sequences (ai )i≥0 with ai positive
for i ≥ 1.
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THEOREM 1.5. The convergents of even order of any real irrational ξ form
a strictly increasing sequence and those of odd order a strictly decreasing
sequence. The sequence of convergents (pn/qn)n≥0 converges to ξ , and we set

ξ = [a0; a1, a2, . . . ].

Any irrational number has a unique expansion in continued fractions.

PROOF. It follows from (1.6) that for any integer n with n ≥ 2 we have

pn−2

qn−2
− pn

qn
= (−1)n−1an

qnqn−2
,

and, since the ans are positive, we deduce that the convergents of even order of
the real irrational ξ form a strictly increasing sequence and those of odd order a
strictly decreasing sequence. To conclude, we observe that, by Lemma 1.2, we
have p2n/q2n < ξ < p2n+1/q2n+1 for all n ≥ 0, and, by (1.5), the difference
p2n/q2n − p2n+1/q2n+1 tends to 0 when n tends to infinity. Uniqueness is
clear. Indeed, if (bi )i≥0 is a sequence of integers with bi positive for i ≥ 1
and such that limn→+∞ [b0; b1, b2, . . . ] exist, then this limit cannot be equal
to limn→+∞ [a0; a1, a2, . . . ] as soon as there exists a non-negative integer i
with ai �= bi .

THEOREM 1.6. Let a0, a1, . . . be integers with a1, a2, . . . positive. Then the
sequence of rational numbers [a0; a1, . . . , ai ], i ≥ 1, converges to the irra-
tional number whose partial quotients are precisely a0, a1, . . .

PROOF. For any positive integer n, denote by pn/qn the rational number
[a0; a1, . . . , an]. The recurrence relations obtained in Theorems 1.3 and 1.4
hold true in the present context. As in the proof of Theorem 1.5, we deduce
from (1.5) and (1.6) that the sequences (p2n/q2n)n≥1 and (p2n+1/q2n+1)n≥1

are adjacent. Hence, they converge to the same limit, namely to the irrational
number [a0; a1, a2, . . . ], whose partial quotients are precisely a0, a1, . . . , by
Theorem 1.5.

We observe that for any irrational number ξ the sequences (an)n≥0 and
(ξn)n≥1 given by the algorithm defined below Lemma 1.1 satisfy ξn =
[an; an+1, an+2, . . . ] for all positive integers n.

THEOREM 1.7. Let n be a positive integer and ξ = [a0; a1, a2 . . . ] be an
irrational number. We then have

ξ = [a0; a1, . . . , an, ξn+1] = pnξn+1 + pn−1

qnξn+1 + qn−1
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and

qnξ − pn = (−1)n

qnξn+1 + qn−1
= (−1)n

qn
· 1

ξn+1 + [0; an, an−1, . . . , a1]
.

Furthermore, the set of real numbers having a continued fraction expansion
whose n + 1 first partial quotients are a0, a1, . . . , an is precisely the closed
interval bounded by (pn−1 + pn)/(qn−1 + qn) and pn/qn, which are equal to
[a0; a1, . . . , an, 1] and [a0; a1, . . . , an], respectively.

PROOF. We proceed by induction, using Theorem 1.3 and noticing that we
have ξn = an + 1/ξn+1 and qn/qn−1 = [an; an−1, . . . , a1] for all positive
integers n. The last assertion of the theorem follows immediately, since the
admissible values of ξn+1 run exactly through the interval ]1,+∞[.

COROLLARY 1.4. For any irrational number ξ and any non-negative integer
n, we have

1

qn(qn + qn+1)
<

∣∣∣∣ξ − pn

qn

∣∣∣∣ <
1

qnqn+1
.

PROOF. Writing ξ = [a0; a1, a2, . . . ] and ξn+1 = [an+1; an+2, . . . ], we ob-
serve that an+1 < ξn+1 < an+1 + 1, and we get from Theorem 1.7 that

1

qn
(
(an+1 + 1)qn + qn−1

) <

∣∣∣∣ξ − pn

qn

∣∣∣∣ <
1

qn(an+1qn + qn−1)
.

The corollary follows then from Theorem 1.3.

The following result of Legendre [359] provides a partial converse to Corollary
1.3.

THEOREM 1.8. Let ξ be a real number. Any non-zero rational number a/b
with ∣∣∣∣ξ − a

b

∣∣∣∣ <
1

2b2

is a convergent of ξ .

PROOF. We assume that ξ �= a/b and we write ξ−a/b = εθ/b2, with ε = ±1
and 0 < θ < 1/2. By Lemma 1.1, setting an−1 = 1 if necessary, we may write
a/b = [a0; a1, . . . , an−1], with n given by (−1)n−1 = ε, and we denote by
p1/q1, . . . , pn−1/qn−1 the convergents of a/b. Let ω be such that

ξ = pn−1ω + pn−2

qn−1ω + qn−2
= [a0; a1, . . . , an−1, ω].
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We check that

εθ

b2
= ξ − a

b
= ξ − pn−1

qn−1
= 1

qn−1
(ξqn−1 − pn−1)

= 1

qn−1
· (−1)n−1

ωqn−1 + qn−2
,

whence

ω = 1

θ
− qn−2

qn−1

and ω > 1. Denote by [an; an+1, an+2, . . . ] the continued fraction expansion
of ω. Since a j ≥ 1 for all j ≥ 1, we have

ξ = [a0; a1, . . . , an−1, ω] = [a0; a1, a2, . . . ],

and Theorem 1.6 yields that a/b = pn−1/qn−1 is a convergent of ξ .

A less-known result of Fatou [239] (see Grace [259] for a complete proof) pro-
vides a satisfactory converse to Theorem 1.1. It asserts that if the real number
ξ and the rational number a/b satisfy |ξ − a/b| < 1/b2, then there exists an
integer n such that

a

b
belongs to

{
pn

qn
,

pn+1 + pn

qn+1 + qn
,

pn+2 − pn+1

qn+2 − qn+1

}
.

DEFINITION 1.3. The real number ξ is said to be badly approximable if there
exists a positive constant c3(ξ) such that∣∣∣∣ξ − p

q

∣∣∣∣ ≥ c3(ξ)

q2
for any rational p/q distinct from ξ .

The set of badly approximable real numbers is denoted by B.

Theorem 1.1 and Corollary 1.2 show that rational and quadratic real numbers
are badly approximable. However, many other real numbers share this prop-
erty, as follows from Theorem 1.9.

THEOREM 1.9. An irrational real number ξ is badly approximable if, and
only if, the sequence of its partial quotients is bounded. Consequently, the set
B is uncountable.

PROOF. Assume that ξ is badly approximable, and let c4 be a positive real
number such that |ξ − p/q| > c4/q2 for any rational p/q. Let n be a positive
integer. It follows from Corollary 1.4 that qn ≤ qn−1/c4. Since Theorem 1.3
yields that qn ≥ anqn−1, we get an ≤ 1/c4, and the sequence of partial quo-
tients of ξ is bounded.
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Conversely, if the partial quotients of ξ are not greater than a constant M ,
we then have qn+1 ≤ (M + 1)qn for any non-negative integer n. Furthermore,
if a/b satisfies |ξ − a/b| < 1/(2b2), then, by Theorem 1.8 and Corollary 1.4,
there exists a non-negative integer n such that a/b = pn/qn and∣∣∣∣ξ − a

b

∣∣∣∣ >
1

b(b + qn+1)
≥ 1

(M + 2)b2
.

This shows that ξ is badly approximable. The last assertion of the theorem
follows from Theorem 1.6.

1.3 The theorem of Khintchine

In this Section, we aim to prove Theorem 1.10, due to Khintchine [317], by
using the theory of continued fractions, as in [317] and in his book [323]. This
is one of the first metric results in Diophantine approximation. We denote by λ

the Lebesgue measure on the real line and, if I is a bounded real interval, we
often simply write |I | = λ(I ) for its length. A set of Lebesgue measure zero is
called a null set; the complement of a null set is termed a set of full measure,
usually simply called full. As usual, we say that almost no points belong to a
set if this set is null, while a full set contains almost all points.

THEOREM 1.10. Let � : R≥1 → R>0 be a continuous function such that
x �→ x2�(x) is non-increasing. Then, the set

K∗1(�) :=
{
ξ ∈ R :

∣∣∣∣ξ − p

q

∣∣∣∣ < �(q) for infinitely many rational

numbers
p

q

}

has Lebesgue measure zero if the sum
∑+∞

q=1 q�(q) converges and has full
Lebesgue measure otherwise.

The function � occurring in Theorem 1.10 is called an approximation func-
tion. Throughout this book, we assume for commodity that � is continuous
on R≥1, although it only requires to be defined for every sufficiently large in-
teger. The elements of K∗1(�) are termed �-approximable, or approximable at
order �.

Since x �→ �(x) is non-increasing in Theorem 1.10, for any ξ in K∗1(�)

there are infinitely many reduced rational numbers p/q with |ξ − p/q| <

�(q). Thus, we may add in the definition of K∗1(�) the extra assumption ‘with
p and q coprime’ without any change in the conclusion. Furthermore, we point
out that the assumption ‘x �→ x2�(x) is non-increasing’ can be removed in
the convergence half of Theorem 1.10.
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An alternative proof of Theorem 1.10, valid under slightly less restrictive
conditions on the function �, is given in Chapter 6. It is based on an improve-
ment of the divergence half of the Borel–Cantelli Lemma.

An immediate consequence of Theorem 1.10 is that almost all real numbers
ξ have infinitely many convergents with |ξ− p/q| < q−2(log q)−1, and almost
all real numbers ξ have only finitely many convergents with |ξ − p/q| <

q−2(log q)−2.
Throughout the proof of Theorem 1.10, we often need the following auxil-

iary result, referred to as the (convergence half of the) Borel–Cantelli Lemma.

LEMMA 1.3. Let (En)n≥0 be a sequence of Borelian real subsets such that the
sum

∑
n≥0 λ(En) converges. We then have

λ

( ⋂
N≥1

⋃
n≥N

En

)
= 0,

that is, almost all real numbers belong to only a finite number of sets En.

PROOF. Let ε be a positive real number. Since
∑

n≥0 λ(En) converges, there
exists N0 such that, for any integer N ≥ N0, we have λ

(⋃
n≥N En

)
< ε; hence,

in particular, λ
(⋂

N≥1
⋃

n≥N En
)

< ε.

Before turning to the proof of Theorem 1.10, we state an application of
Lemma 1.2.

DEFINITION 1.4. The real number ξ is said to be very well approximable if
there exists a positive real number τ such that∣∣∣∣ξ − p

q

∣∣∣∣ <
1

q2+τ
for infinitely many rational numbers

p

q
.

As pointed out in [86], it would seem more appropriate to use the terminology
‘well approximable’ instead of ‘very well approximable’. To avoid confusion,
we follow current usage.

COROLLARY 1.5. The Lebesgue measure of the set of very well approximable
numbers is equal to zero.

PROOF OF COROLLARY 1.5 AND OF THE CONVERGENCE HALF OF

THEOREM 1.10. Since K∗1(�) is invariant by translation by 1, it is plainly
enough to prove the conclusion of Theorem 1.10 for the set K∗1(�) ∩ [0, 1].
For any positive integer n, denote by En the union of the intervals [m/n −
�(n), m/n + �(n)] ∩ [0, 1] for m = 0, . . . , n. Observe that K∗1(�) ∩ [0, 1]
is contained in ∩N≥1 ∪n≥N En . If the sum

∑+∞
q=1 q�(q) converges, then∑

n≥1 λ(En) also converges, and Lemma 1.2 yields that K∗1(�) ∩ [0, 1] has
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Lebesgue measure zero. In particular, taking for � the functions x �→ x−2−1/k ,
where k is a positive integer, we get Corollary 1.5.

The divergence half of Theorem 1.10 is much more difficult to prove. We begin
with some preliminary results on continued fractions. As a standard matter, if
ξ is a real number in [0, 1[, we denote its continued fraction expansion by
[0; a1, a2, . . . ] and the sequence of its convergents by (pn/qn)n≥0. Let n ≥ 1
be an integer and k = (k1, . . . , kn) be a n-tuple of positive integers. We denote
by Fk the set of real numbers in [0, 1] whose partial quotients satisfy ai = ki

for i = 1, . . . , n. By Theorem 1.7, Fk is a closed interval bounded by pn/qn

and (pn−1 + pn)/(qn−1 + qn). We can write Fk as the union

Fk =
⋃
s≥1

F(k,s),

where F(k,s) denotes the sub-interval of Fk composed by the real numbers with
an+1 = s. This union is not disjoint but the intersection of two sets F(k,s) and
F(k,s′) with s′ > s ≥ 1 consists of at most one point, which is a rational
number. Since

λ(F(k,s)) =
∣∣∣∣ spn + pn−1

sqn + qn−1
− (s + 1)pn + pn−1

(s + 1)qn + qn−1

∣∣∣∣
= 1

s2
(
qn + qn−1

s

)( qn−1
s + (

1+ 1
s

)
qn

) ,

and

λ(Fk) = 1

qn(qn + qn−1)
,

we get

λ(F(k,s))

λ(Fk)
= 1

s2
·

1+ qn−1
qn

1+ qn−1
sqn

· 1

1+ 1
s + qn−1

sqn

,

and thus

1

3s2
<

λ(F(k,s))

λ(Fk)
<

2

s2
. (1.7)

Two intermediate results are needed towards the proof of Theorem 1.10. The
first one is the Borel–Bernstein theorem [110, 98, 111, 99].

THEOREM 1.11. Let (un)n≥1 be a sequence of positive real numbers. If the
sum

∑
n≥1 u−1

n diverges, then, for almost all ξ = [0; a1, a2, . . . ] in [0, 1[,
there exist infinitely many integers n such that an ≥ un. Further, if this sum
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converges, then, for almost all ξ = [0; a1, a2, . . . ] in [0, 1[, there exist only a
finite number of integers n such that an ≥ un.

PROOF. Let m, n, and j be positive integers with n ≥ 2 and 1 ≤
j ≤ n. Let k be a (m + j)-tuple of positive integers, and set k :=
(k1, . . . , km, km+1, . . . , km+ j ). Let X > 1 be a real number. We infer from
(1.7) that∑

s<X

λ(F(k,s)) =
∑
s≥1

λ(F(k,s))−
∑
s≥X

λ(F(k,s)) ≤
(

1− 1

3

∑
s≥X

1

s2

)
λ(Fk)

≤
(

1− 1

3(1+ X)

)
λ(Fk).

(1.8)

Denote by Fm, j the union of the intervals Fk over all the (m+ j)-tuples k with
ki ≥ 1 for i = 1, . . . , m and km+i < um+i for i = 1, . . . , j . By choosing
X = um+n in (1.8), we get the upper bound

λ(Fm,n) ≤
(

1− 1

3(1+ um+n)

)
λ(Fm,n−1),

whence, by induction,

λ(Fm,n) ≤
n∏

i=2

(
1− 1

3(1+ um+i )

)
λ(Fm,1).

The divergence of the sum
∑

n≥1 u−1
n implies that, for any positive integer m,

the product

n∏
i=2

(
1− 1

3(1+ um+i )

)

and thus λ(Fm,n) tend to 0 when n tends to infinity. Since the set Bm of real
numbers satisfying am+i < um+i for all i ≥ 1 is contained in every set
Fm,n , its Lebesgue measure is zero. Consequently, if ξ belongs to none of
the sets Bm , and that is indeed the case for almost all ξ , then there exist in-
finitely many integers n such that an ≥ un . This proves the first part of the
theorem.

The other part is easier. Assume that the sum
∑

n≥1 u−1
n converges. Let n ≥

1 be an integer and denote by En the set of real numbers satisfying an ≥ un .
The right inequality of (1.7) yields that∑

s≥un+1

λ(F(k,s)) <
∑

s≥un+1

2

s2
λ(Fk) ≤

4 λ(Fk)

un+1
. (1.9)
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By (1.9), we get λ(En+1) < 4/un+1, thus the sum
∑

n≥1 λ(En) converges and
we infer from Lemma 1.2 that the Lebesgue measure of the set of real numbers
belonging to infinitely many sets En is zero.

The next statement, due to Borel [110], is a direct consequence of Theorem
1.11.

COROLLARY 1.6. The Lebesgue measure of the set B of badly approximable
real numbers is equal to zero.

PROOF. Applying Theorem 1.11 to the divergent sequence (1/n)n≥1, we get
that, for almost all real numbers ξ = [a0; a1, a2, . . . ], there exist infinitely
many positive integers n such that an ≥ n. Hence, almost all real numbers
have unbounded partial quotients.

The set B is not too small in the sense that its Hausdorff dimension is equal to
1, see Exercise 5.1.

THEOREM 1.12. There exists a positive real number B and, for almost all real
numbers ξ , an integer n0(ξ) such that qn < eBn for all integers n ≥ n0(ξ).

PROOF. For a real number g ≥ 1 and an integer n ≥ 2, denote by En(g) the
set of real numbers ξ in [0, 1[ such that a1 . . . an ≥ g. By (1.5), Theorem 1.3,
and Theorem 1.7, this set is a union of intervals, each of which being of length∣∣∣∣ pn

qn
− pn + pn−1

qn + qn−1

∣∣∣∣ <
1

q2
n

<
1

(a1 . . . an)2
.

Consequently, we get

λ(En(g)) <
∑

a1...an≥g

1

(a1 . . . an)2
.

In order to estimate the above summation, we compare it with an integral and
we notice that, for any positive integer a, we have

1

a2
≤ 2

∫ a+1

a

dx

x2
.

Thus, if

Jn(g) :=
∫

. . .

∫
xi≥1

x1...xn≥g

dx1

x2
1

. . .
dxn

x2
n

,

we get λ(En(g)) < 2n Jn(g). For g ≤ 1, the integral is on the whole domain
x1 ≥ 1, . . . , xn ≥ 1, thus Jn(g) = 1. For g > 1, an easy induction on n yields
that

Jn(g) = 1

g

n−1∑
i=0

(log g)i

i!
. (1.10)
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Consequently, if we choose g = eAn , where A > 1 is a real number which
will be fixed afterwards, we deduce from (1.10) that

λ
(
En(eAn)

)
< 2ne−An

n−1∑
i=0

(An)i

i!
≤ 2ne−Ann

(An)n

n!
< 2ne−Ann(Ae)n .

If A is large enough, then the sum
∑

n≥1 λ(En(eAn)) converges and we infer
from Lemma 1.2 that almost all real numbers ξ in [0, 1] belong to only a finite
number of sets En(eAn). In other words, for almost all ξ in [0, 1] and for any
sufficiently large integer n (in terms of ξ ), we have a1 . . . an < eAn and then,
by Theorem 1.3,

qn < 2anqn−1 < . . . < 2neAn .

Since for any real number ξ the denominators of the convergents of ξ and ξ+1
are the same, the theorem is proved.

Khintchine [317] proved that any real number B strictly greater than log 2 +
exp(

√
2 log 2) satisfies the conclusion of Theorem 1.12. Actually, a much

stronger statement holds true: there exists a real number � such that for al-
most all real numbers ξ the sequence ( n

√
qn)n≥1 converges to �. This was es-

tablished in 1936 by Khintchine [322] and, the same year, Lévy [366] proved
that � = exp(π2/(12 log 2)).

We are now ready to complete the proof of Theorem 1.10, the main result
of this Section.

COMPLETION OF THE PROOF OF THEOREM 1.10. We assume that the sum∑
q≥1 q�(q) diverges and we aim to prove that the set K∗1(�)∩ [0, 1] has full

measure. For any x > 0, set �(x) := e2Bx �(eBx ), where B is the real num-
ber given by Theorem 1.12. By assumption, the function � is non-increasing.
Further, for any positive real numbers a and A with a < A, we have∫ A

a
�(x)dx = 1

B

∫ eB A

eBa
u�(u)du,

which diverges when A tends to infinity. Consequently, the sum
∑

q≥1 �(q)

diverges. Theorem 1.11 asserts then that for almost all real numbers ξ in [0, 1]
we have an+1 ≥ 1/�(n) for infinitely many integers n. Thus, for all these
integers n we have∣∣∣∣ξ − pn

qn

∣∣∣∣ ≤ 1

qnqn+1
<

1

an+1q2
n
≤ �(n)

q2
n

.

However, by Theorem 1.12, there exists a real number B > 0 such that, for
almost all ξ , we have qn < eBn , that is, n > (log qn)/B, provided that n is
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large enough in terms of ξ . Since � is non-increasing, we get that, for almost
all ξ in [0, 1], there exist infinitely many integers n such that∣∣∣∣ξ − pn

qn

∣∣∣∣ <
1

q2
n

�

(
log qn

B

)
= �(qn),

which concludes the proof of the theorem.

1.4 The Duffin–Schaeffer Conjecture

In the statement of Theorem 1.10, the assumption on the approximation func-
tion � is quite restrictive, and it would be desirable to weaken it. For instance,
the alternative proof of Theorem 1.10 given in Chapter 6 requires only that �

is non-increasing. The result generally conjectured involves the function ϕ, the
Euler totient function, defined for all positive integers q by

ϕ(q) = Card{1 ≤ x ≤ q : gcd(x, q) = 1},
and has been proposed by Duffin and Schaeffer at the end of [213].

CONJECTURE (DUFFIN–SCHAEFFER). Let � : R≥1 → R≥0 be some con-
tinuous function. Then the set{

ξ ∈ R :

∣∣∣∣ξ − p

q

∣∣∣∣ < �(q) for infinitely many rationals
p

q

with gcd(p, q) = 1

}

has full Lebesgue measure if the sum
∑+∞

q=1 ϕ(q)�(q) diverges.

When the above sum converges, the above set has Lebesgue measure zero, as
easily follows from Lemma 1.2.

As observed after the statement of Theorem 1.10, Khintchine’s result holds
also when we demand that the integers p and q are coprime. This is a con-
sequence of the assumption made on � and this remark does not apply for
a general function �. Thus, we must distinguish between approximation by
rationals not necessarily reduced and approximation by reduced rationals. Ac-
cording to [213], ‘(. . .) the more natural formulation of this problem is in terms
of reduced fractions’.

The notorious difficulties in the Duffin–Schaeffer Conjecture are due to the
fact that it is very difficult to control the pairwise intersections of the intervals
]p/q − �(q), p/q + �(q)[, where p and q ≥ 1 are integers. However, it has
been proved that the Conjecture holds true under some additional hypotheses.
We choose to quote only two results, a first one due to Duffin and Schaeffer
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[213], and a second one to Erdös [228]; the interested reader can find an ex-
haustive survey of that problem (including detailed proofs of Theorems 1.13
to 1.15 below) in Harman [273] (see also his survey [274]).

THEOREM 1.13. The Duffin–Schaeffer Conjecture holds true if we assume
that there exists a real number c such that the function x �→ xc�(x) is de-
creasing.

THEOREM 1.14. The Duffin–Schaeffer Conjecture holds true if there exists a
positive real number κ such that, for every positive integer q, we have �(q) =
0 or κ/q2. In particular, if (ni )i≥1 is a strictly increasing sequence of positive
integers, then, for almost all real numbers ξ , it contains infinitely many (resp.
a finite number of) denominators of convergents to ξ if the sum

∑
i≥1 ϕ(ni )/n2

i
diverges (resp. converges).

In the opposite direction, the next result, due to Duffin and Schaeffer [213],
asserts that the divergence of the sum

∑
q≥1 q�(q) is certainly not sufficient

to ensure the existence of infinitely many solutions to |ξ − p/q| < �(q) for
almost all ξ .

THEOREM 1.15. There exists a positive function � such that the sum∑
q≥1 q�(q) diverges and ∣∣∣∣ξ − p

q

∣∣∣∣ < �(q)

has only a finite number of solutions for almost all ξ .

1.5 Complementary results on continued fractions

In this Section, we list a few complementary results on continued fractions.
The reader is referred to the books quoted at the beginning of Section 1.2 for
deeper statements and proofs (notice that proofs of Theorems 1.16, 1.18, and
1.19 are also given in Exercises 1.2 and 1.3).

Corollary 1.2 asserts that quadratic numbers are badly approximable num-
bers, thus, by Theorem 1.9, their partial quotients are bounded. However, much
more is known: the sequence of their partial quotients is ultimately periodic.

THEOREM 1.16. The real irrational number ξ = [a0; a1, a2, . . . ] has a pe-
riodic continued fraction expansion (that is, there exist integers k ≥ 0 and
n ≥ 1 such that am+n = am for all m ≥ k) if, and only if, ξ is a quadratic
irrationality.

The ‘only if’ part is due to Euler [230], and the ‘if’ part was established by
Lagrange [347] in 1770.
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The next result dates back to (at least) 1877 and can be found in Serret [520].

THEOREM 1.17. Let ξ = [a0; a1, a2, . . . ] and η = [b0; b1, b2, . . . ] be two
irrational numbers. There exist integers u and v such that au+n = bv+n for
every positive integer n if, and only if, there exist integers a, b, c, and d such
that |ad − bc| = 1 and η = (aξ + b)/(cξ + d).

Two real numbers satisfying the equivalent conditions of Theorem 1.17 are
called equivalent.

Hurwitz [284] improved the second assertion of Theorem 1.1.

THEOREM 1.18. For any real irrational number ξ , there exist infinitely many
rationals p/q satisfying ∣∣∣∣ξ − p

q

∣∣∣∣ <
1√
5q2

.

Further, the constant
√

5 cannot be replaced by a larger real number.

We observe that the Golden Section (1 + √5)/2 = [1; 1, 1, . . . , 1, . . . ]
is, up to equivalence, the irrational number which is the most badly approx-
imable by rational numbers. As shown by Hurwitz [284], Theorem 1.18 can
be improved if, besides the rationals, we also exclude the numbers which are
equivalent to the Golden Section.

THEOREM 1.19. For any irrational real number ξ which is not equivalent to
(1+√5)/2, there exist infinitely many rationals p/q satisfying∣∣∣∣ξ − p

q

∣∣∣∣ <
1√
8q2

.

The constant
√

8 cannot be replaced by a larger real number.

In other words, the assumptions of Theorem 1.19 are satisfied by any irrational
ξ having infinitely many partial quotients greater than or equal to 2. The limit-
ing case is obtained with real numbers equivalent to (1+√2)/2.

More generally, for a real number ξ we define

ν(ξ) = lim inf
q→+∞ q‖qξ‖,

where ‖ · ‖ denotes the function distance to the nearest integer. Clearly, ν(ξ) =
0 holds for any rational ξ . The set of values taken by the function ν is called
the Lagrange spectrum. By Theorem 1.18, it is contained in [0, 1/

√
5].

THEOREM 1.20. There exists a sequence of numbers

ν1 = 1√
5

> ν2 = 1√
8

> ν3 > ν4 > · · ·
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tending to 1/3 such that, for all νi , there is, up to equivalence, a finite number
of real numbers ξ satisfying ν(ξ) = νi .

More results on the Lagrange spectrum can be found in Cusick and Flahive
[173].

1.6 Exercises

EXERCISE 1.1. Use Liouville’s Theorem 1.2 to prove that if the denominators
qn of the convergents of ξ satisfy

lim sup
n→+∞

log log qn

n
= +∞,

then ξ is transcendental.

EXERCISE 1.2. (Proof of Theorem 1.16). Show that any irrational real num-
ber having a periodic continued fraction expansion is a quadratic irrationality.
Prove the converse, following Steinig [543]. Let ξ be a quadratic real num-
ber and define the sequences (an)n≥0 and (ξn)n≥1 by the algorithm given in
Section 1.2. Set ξ0 := ξ .

1) Show, by induction, that for each non-negative integer n there is an inte-
ger polynomial fn(x) := An x2 + Bn x + Cn , with B2

n − 4AnCn positive and
not a square, such that fn(ξn) = 0. Prove that An+1, Bn+1 and Cn+1 are given
by

An+1 = a2
n An + an Bn + Cn, Bn+1 = 2an An + Bn, and Cn+1 = An .

(1.11)

2) Observe that

D := B2
0 − 4A0 C0 = B2

n − 4An Cn, for any n ≥ 0, (1.12)

and deduce from (1.11) that there exists an infinite set N of distinct positive
integers such that An An−1 is negative for any n in N .

3) Deduce from (1.12) that

|Bn| <
√

D, |An| ≤ D/4, and |Cn| ≤ D/4,

for any n in N . Conclude.

EXERCISE 1.3. (Proof of Hurwitz Theorems 1.18 and 1.19, following Forder
[248].)
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Let ξ be an irrational number and assume that its convergents pn−1/qn−1,
pn/qn , and pn+1/qn+1 satisfy |ξ− p j/q j | ≥ 1/(

√
5q2

j ) for j = n−1, n, n+1.
1) Prove that we have

1

qn−1qn
≥ 1√

5

(
1

q2
n−1

+ 1

q2
n

)
,

and deduce that qn/qn−1 and qn−1/qn belong to the interval ](
√

5 − 1)/2,

(
√

5 + 1)/2[. Prove that the same conclusion also holds for qn/qn+1 and
qn+1/qn . Conclude.

2) With a suitable adaptation of the above proof, show that if the convergents
pn/qn of an irrational number ξ satisfy |ξ − pn/qn| ≥ 1/(

√
8q2

n ) from some
integer n0 onwards then qn+1 < 2qn + qn−1 holds for any sufficiently large
integer n. Conclude.

EXERCISE 1.4. Improvement of Dirichlet’s Theorem 1.1.

Theorem 1.1 asserts that if ξ is a given real number, then, for any positive
integer Q, there exist integers p and q satisfying

1 ≤ q ≤ Q and |qξ − p| < c/Q, (1.13)

with c = 1. Show that this result holds true for a real number ξ with a constant
c strictly less than 1 if, and only if, ξ is badly approximable.

A stronger statement is due to Davenport and Schmidt [183]:
Let ξ = [a0; a1, a2, . . . ] be a real number, and set

c5(ξ) = lim inf
n→+∞ [0; an, an−1, . . . , a1]× [0; an+1, an+2, . . . ].

If c > 1/(1+c5(ξ)), then (1.13) has a solution for all Q sufficiently large, and
this is not true if c < 1/(1+ c5(ξ)).

Use Theorem 1.7 to prove this result and show that the largest possible value
for c5(ξ) is (3−√5)/2.

EXERCISE 1.5. A result of Jarnı́k [292], Satz 6, on approximation order.

Let � : R≥1 → R>0 be a non-increasing function such that �(x) = o(x−2)

as x tends to infinity. Using the theory of continued fractions, prove that there
exists an uncountable set of real numbers ξ which are approximable at order
�, but not at any order c�, with 0 < c < 1.

EXERCISE 1.6. In 1962, Erdös [227] showed that every real number (resp.
every non-zero real number) is the sum (resp. product) of two Liouville num-
bers. He gave two proofs: a first one is direct and constructive, while a second
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one rests on Baire’s Theorem. His result has been extended by Rieger [471],
Schwarz [518], and Alniaçik and Saias [19], who established the following
statement (recall that a Gδ-set is a countable intersection of open sets):

Let I be a real interval of positive length. Let G be a real Gδ-set dense
in I and ( fn)n≥0 be a sequence of continuous, nowhere locally constant, real
functions on I . Then, the set ∩n≥0 f −1

n (G) is a Gδ-set dense in I .

Prove Alniaçik and Saias’ assertion. Show that the set of Liouville numbers
is a dense Gδ-set and deduce Erdös’ result.

1.7 Notes

• In 1844 Liouville [368] used a result of Lagrange on continued fractions to
prove that, for any n, the n-th partial quotient of an algebraic number of degree
d ≥ 2 is less than some number (independent of n) times the (d − 2)-th power
of the denominator of the (n−1)-th convergent. Then, he observed that if ξ is a
real number such that, for any n, its n-th partial quotient an is defined in terms
of the denominator qn−1 of its (n − 1)-th convergent by taking an = qqn−1

n−1
or an = qn

n−1, then the number ξ must be transcendental. These numbers are,
historically, the first examples of transcendental numbers. At the end of [368],
Liouville mentioned that analogous results exist for ordinary sums, including∑

m≥1 a−m! for any integer a ≥ 2. In 1851, he gave [370] a complete proof
of this last assertion. In a second note of 1844, Liouville [369] simplified the
proof given in his first note [368] by removing the use of Lagrange’s result. The
reader wishing more information is directed to Chapter XII of Lützen [374].

• Dirichlet’s Theorem 1.1 has two natural multidimensional extensions (as
also follows from Theorem B.2). Let n ≥ 2 be an integer and ξ1, . . . , ξn be real
numbers. On the one hand (approximation of linear forms), for any positive
integer Q, there exist integers p1, . . . , pn, q not all zero satisfying

|p1ξ1 + . . .+ pnξn + q| < Q−n, max{|p1|, . . . , |pn|} ≤ Q.

On the other hand (simultaneous approximation), for any positive integer Q,
there exist integers p1, . . . , pn, q not all zero satisfying

max{|qξ1 − p1|, . . . |qξn − pn|} < Q−1, |q| ≤ Qn .

Davenport and Schmidt [184] (see also [183] and Schmidt [509] for a further
generalization) proved that for almost every n-tuple (ξ1, . . . , ξn) none of these
two forms of Dirichlet’s Theorem can be improved (in the same sense as in
Exercise 1.4). Raisbeck [466] established a theorem in the opposite direction
(best possible for n = 2), later improved upon by Kaindl [306] for n ≥ 3 (see
also Tichy [559] and Langmayr [350] for systems of linear forms).
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Further extensions of Dirichlet’s Theorem, where the approximants must
satisfy some restriction, have been considered by Obreškov [441], Rogers
[475], Schmidt [511], and Thurnheer [554, 555, 556, 557, 558].

Khintchine [320] proved that, given any function ε(Q) which tends to 0 as
Q tends to infinity, no matter how rapidly, there exists a pair (ξ1, ξ2) of real
numbers, with 1, ξ1, ξ2 linearly independent over the rationals, such that the
inequalities

|p1ξ1 + p2ξ2 + q| < ε(Q), 1 ≤ max{|p1|, |p2|} ≤ Q

are soluble in integers for every Q sufficiently large (see Theorem XIV of
Chapter V of [155]).

• Let ξ be a real irrational number and k be a positive real number. Extend-
ing Fatou’s result [239] quoted after the proof of Theorem 1.8, Worley [601]
has expressed the rational solutions a/b of |ξ − a/b| < k/b2 in terms of the
convergents of ξ .

• An n-tuple (ξ1, . . . , ξn) of real numbers is said to be badly approximable
if there exists a positive constant c6 such that max1≤i≤n ‖qξi‖ > c6 q−1−1/n

for any positive integer q . This extends Definition 1.3. The first proof of the
existence of continuum-many badly approximable pairs of distinct real num-
bers is due to Davenport [175]. For further references and an exposition of the
theory of α-β games, see Chapter III of [512]. Schmidt [514] proved the ex-
istence of infinite sets of real numbers whose finite subsets do not have good
simultaneous rational approximations.

• A very general form of Khintchine’s Theorem 1.10 has been obtained by
Groshev [260], extending earlier work of Khintchine [319] to systems of linear
forms. Let m and n be positive integers and � : R≥1 → R>0 be continuous
and such that x �→ xm−1 �(x)n is non-increasing. Groshev proved that for ei-
ther almost all or almost no matrices M in Rmn there are infinitely many integer
vectors q in Zm such that |〈q M〉| < �(|q|), depending on whether the series∑+∞

x=1 xm−1 �(x)n diverges or converges. Here, for a vector ξ = (ξ1, . . . , ξn),
we set |ξ | = max{|ξ1|, . . . , |ξn|} and 〈ξ〉 = (〈ξ1〉, . . . , 〈ξn〉), where 〈ξ〉 lies in
]− 1/2, 1/2] and differs from ξi to within an integer.

• Theorem 1.10 asserts in the divergence case the existence of infinitely
many rational numbers p/q with |ξ − p/q| < �(q)/q, but the method of
proof does not give any information regarding the asymptotic behaviour of
their number. An asymptotic formula has been obtained by Erdös [226] and
LeVeque [364], and, with a good error term, by Schmidt [500, 502], see also
Chapter III of [512], Chapter 1 of [540], Chapter 4 of [273], and the survey of
Harman [274].
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• Harman [272] established an analogue of Theorem 1.10 where numer-
ators and denominators are restricted to the set of prime numbers. See also
Chapter 6 of his book [273]. An asymptotic formula for the number of solu-
tions in the divergence case, and under some extra hypothesis on the function
�, has been established by Jones in the second chapter of his Ph.D. thesis
[302]. Furthermore, Jones [303] extended the results of [272] to simultaneous
approximation.

• For inhomogeneous approximation, we refer the reader to Cassels [155],
Hardy and Wright [271], Khintchine [323], and Gruber and Lekkerkerker
[262]. An inhomogeneous analogue of Theorem 1.10, due to Schmidt [502]
(who also obtained an asymptotic formula for the number of solutions in the
divergence case), follows from Exercise 6.2 and Theorem 6.1.

• Sullivan [547] established a variant of Khintchine’s Theorem 1.10 under
a weaker assumption. His proof is of a geometric nature.

• Theorems 1.18 and 1.19 are closely related to the works of Korkine and
Zolotareff [337] and Markoff [406], where indefinite, binary quadratic forms
are considered. Hurwitz was first to give these results in the form of a statement
about Diophantine approximation.

• Let b ≥ 2 be an integer. A real number is said to be simply normal in base
b if each digit 0, 1, . . . , b− 1 occurs in its expansion in base b with frequency
1/b. It is said to be normal if it is simply normal in any base b ≥ 2. R. C. Baker
(see Montgomery [427], page 203, and Queffélec and Ramaré [465]) observed
that there exist badly approximable numbers which are normal. Using a similar
method, that is, combining the results of Bluhm [102, 103] (inspired by a work
of Kaufman [315]) with a Theorem of Davenport, Erdös and LeVeque [177],
Bugeaud [126] proved that there exist Liouville numbers which are normal.
Conversely, an explicit example of a Liouville number which is simply normal
in no base has been given by Martin [408] (see also [126]).

• Schmidt [507] established that, for any irrational number ξ which is
not a Liouville number, there exists an irrational number α such that ξ/α

is a Liouville number. Burger [144] extended Erdös’ result [227] quoted in
Exercise 1.6, and he proved that there exists a Liouville number ξ such that
log ξ is also a Liouville number. Alniaçik [16] established the existence of
Liouville numbers with special properties.

•Hall [270] proved that any real number in [0, 1] can be expressed as a sum
of two real numbers having partial quotients less than or equal to 4. See also
related works of Astels [34, 35, 36].
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• From the topological point of view, Gruber [261] proved that the set of
badly approximable real numbers is ‘small’ (precisely, it is a meager set), while
the set of Liouville numbers is ‘large’ (its complement is a meager set).

•Kargaev and Zhigljavsky [309] established metric results related to the ap-
proximation of real numbers by rational numbers with bounded denominators.

• A different metric aspect of rational approximation has been investigated
by Kühnlein [345].

• Viola [580] studied rational Diophantine approximation in short intervals.

• R. C. Baker [50] proved that real numbers having k distinct rational ap-
proximations with given denominators q1, . . . , qk are quite sparse.

• The constant c5(ξ) occurring in Exercise 1.4 allows us to define the so-
called Dirichlet spectrum, studied, for example, by Ivanov [287] and Kopetzky
[335]. Diviš [197] and Burger [145] considered closely related problems.
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Approximation to algebraic numbers

In this book, we study various questions related to classifications of real num-
bers and we mainly focus our attention on the approximation of real tran-
scendental numbers by algebraic numbers. In the present Chapter however, we
briefly review the most important results which have followed Liouville’s The-
orem 1.2 and deal with algebraic approximation to algebraic numbers. Since
a broad literature is available on this topic, we omit most of the proofs and
refer the reader to, for example, the monographs of Mahler [388], Schmidt
[510, 512], A. Baker [44], and Feldman and Nesterenko [244] for further in-
formation.

Completeness is not the only reason for making this survey. Indeed, some
results of the present Chapter will be used in subsequent parts of the book. For
instance, Theorem 2.7 (or Theorem 2.6) is crucial for proving the main result
of Chapter 7, namely the existence of T -numbers. These real transcendental
numbers with very specific properties of approximation by algebraic numbers
are defined in Chapter 3.

We divide our exposition into four main Sections, dealing respectively with
rational approximation, effective rational approximation, algebraic approxima-
tion to algebraic numbers, and effective algebraic approximation to algebraic
numbers. A broad variety of methods are needed for the proofs of the results
below. In a fifth Section, we briefly mention various applications to irrational-
ity and transcendence statements.

2.1 Rational approximation

Let ξ be a real algebraic number. We say that μ is an irrationality measure for
ξ if there exists a positive constant c1(ξ, μ) such that, for any rational number

27
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p/q distinct from ξ and with q > 0, we have∣∣∣∣ξ − p

q

∣∣∣∣ >
c1(ξ, μ)

qμ
. (2.1)

When the constant c1(ξ, μ) can be explicitly computed, we say that μ is an
effective irrationality measure for ξ .

Theorem 1.1 asserts that the rational numbers are precisely the numbers for
which 1 is an irrationality measure and that any irrationality measure of any
irrational number is at least equal to 2. This fact can be rephrased as an irra-
tionality criterion, as already mentioned in Chapter 1. In the opposite direction,
Liouville’s Theorem states that the degree of any real algebraic number ξ is an
irrationality measure for ξ . In particular, when ξ is a real algebraic number of
degree at most 2, its smallest irrationality measure is equal to its degree. On
the other hand, when ξ is of degree at least 3, our knowledge was, a century
ago, not very satisfactory. Fortunately, since the early twentieth century, many
mathematicians succeeded in strengthening Liouville’s result.

The first significant improvement is due to Thue [553], who proved that, for
any real algebraic number ξ of degree d at least 3, every real number greater
than d/2+ 1 is an irrationality measure for ξ . As an immediate application, it
follows that the Diophantine equation

F(x, y) = m, in integers x , y, (2.2)

where F(X, Y ) is an irreducible, homogeneous binary form of degree at least
3 with integer coefficients and m is a non-zero integer, has only finitely many
solutions. Equation (2.2) is now called the Thue Equation.

In 1921, Siegel [524] sharpened considerably Thue’s result by showing that
every real number μ with

μ > min
1≤ j≤d

(
d

j + 1
+ j

)

is an irrationality measure for ξ . Later, Dyson [223] and independently
Gelfond [256], slightly refined Siegel’s estimate by proving that every μ

greater than
√

2d is indeed an irrationality measure for ξ . All these results
have been superseded by Roth’s [477], which can be stated as follows.

THEOREM 2.1. Let ξ be a real algebraic number of degree d ≥ 2. Then, for
any positive real number ε, there exists a positive constant c2(ξ, ε) such that∣∣∣∣ξ − p

q

∣∣∣∣ >
c2(ξ, ε)

q2+ε
(2.3)

for any rational number p/q with q > 0.
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Khintchine’s Theorem 1.10 may suggest that Theorem 2.1 could be further
refined: a conjecture of Lang claims that the map q �→ q2+ε occurring in (2.3)
could be replaced by q �→ q2(log q)1+ε.

The common feature of all the results mentioned in the present Section,
except Liouville’s Theorem, is that they all are ineffective. This means that the
methods used by Thue, Siegel, Dyson, Gelfond, and Roth did not allow them
to compute explicitly the constant c1(ξ, μ) occurring in (2.1).

However, as established by Davenport and Roth [179], Theorem 2.1 pro-
vides a criterion for proving that a real number with ‘too large’ partial quotients
cannot be algebraic, which improves the criterion deduced from Liouville’s
Theorem 1.2 (see Exercise 1.1).

THEOREM 2.2. Let ξ be a real number and, for any integer n ≥ 1, denote by
qn the denominator of the n-th convergent in its continued fraction expansion.
If

lim sup
n→+∞

(log log qn) (log n)1/2

n
= +∞,

then ξ is transcendental.

In 1957, Ridout [470] obtained an important extension of Theorem 2.1, which
can be formulated as follows.

THEOREM 2.3. Let ξ be a non-zero algebraic number and let
p1, . . . , pr , q1, . . . , qs be distinct rational prime numbers. Let μ, ν,
and c be real numbers with 0 ≤ μ ≤ 1, 0 ≤ ν ≤ 1 and c > 0. Let p and q be
restricted to integers of the form p = p∗ pa1

1 . . . par
r , q = q∗qb1

1 . . . qbs
s , where

a1, . . . , ar , b1, . . . , bs are non-negative integers and p∗, q∗ are non-zero
integers satisfying |p∗| ≤ cpμ and |q∗| ≤ cqν . Then, if κ > μ + ν, there are
at most a finite number of solutions of the inequality

0 <

∣∣∣∣ξ − p

q

∣∣∣∣ <
1

qκ
.

We observe that, taking μ = ν = c = 1 in Theorem 2.3, we recover Roth’s
Theorem. For more references on this subject, the reader is directed to [388],
pages 73 to 76. We postpone some applications of Theorems 2.2 and 2.3 to
Section 2.5.

2.2 Effective rational approximation

Let ξ be a real algebraic number of degree d greater than or equal to 3. Roth’s
Theorem 2.1 asserts that every real number strictly larger than 2 is an irra-
tionality measure for ξ , while d is an effective irrationality measure for ξ , by
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Liouville’s Theorem 1.2. There is a big gap between these results and we may
ask whether ξ admits smaller effective irrationality measures. As an immediate
application, this would imply an effectively computable upper bound for the
size of the Thue equation (2.2) which is polynomial in |m|.

A general result has been obtained by Feldman [241] (see also Chapter 9 of
his book [242]) by means of A. Baker’s theory of linear forms in the logarithms
of algebraic numbers [43].

THEOREM 2.4. Let ξ be a real algebraic number of degree d ≥ 3. There exist
effectively computable positive numbers c3(ξ) and τ(ξ) such that∣∣∣∣ξ − p

q

∣∣∣∣ ≥ c3(ξ)

qd−τ(ξ)

for any rational number p/q.

However, τ(ξ) is very small and, denoting by Rξ the regulator of the number
field Q(ξ) (see, for example, [435], page 106, for definition), we may take

τ(ξ) = (
3d+26 d15d+20 Rξ log max{e, Rξ }

)−1
,

as proved by Bugeaud and Györy [136], who used essentially the same method
as Feldman and A. Baker. Notice that Rξ is smaller than (2d2 H log(d H))d−1,
where H ≥ 3 is an upper bound for the absolute values of the coefficients of
the minimal polynomial of ξ over Z (see [136]).

An alternative approach, which yields Theorem 2.4 but does not rest on
the theory of linear forms in logarithms, has been successfully worked out
by Bombieri [104, 105] and developed by Bombieri and several co-authors
[106, 108]. It gives a slightly better value for τ(ξ), as far as the dependence on
the regulator is concerned. As noticed in [120], a combination of both methods
yields the value

τ(ξ) = (
1026d d14d Rξ

)−1
,

which is, at present, the best known general result for d ≥ 4. Furthermore, for
cubic irrationalities, the sharpest estimate is due to A. Baker and Stewart [46].

A short and self-contained proof of Theorem 2.4 has been worked out by
Bilu and Bugeaud [101] (see also [591], Corollary 10.18).

Better effective irrationality measures are known for classes of algebraic
numbers, including k-th roots of rational numbers, see [244] (Sections 3.5 and
3.6 of Chapter 1 and Section 4.6 of Chapter 2) for references.

Results like Theorem 2.4 have many applications to the resolution of Dio-
phantine equations.
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2.3 Approximation by algebraic numbers

Up to now, we were only interested in the approximation of a real number ξ by
rational numbers a/b. To this end, we have compared the difference |ξ − a/b|
with a natural way to measure the size of a/b, namely with max{|a|, |b|}. We
have now to define a notion of size to evaluate the complexity of an algebraic
number α, which, if possible, coincides with max{|a|, |b|} when α is the ra-
tional a/b. Many definitions have been proposed (see Appendix A), and we
choose the most natural one, usually termed the naive height, which we simply
call height.

DEFINITION 2.1. The height of a complex polynomial P(X), denoted by
H(P), is the maximum of the moduli of its coefficients. The height of an
algebraic number α, denoted by H(α), is the height of its minimal polynomial
over Z.

We point out that, in all questions investigated up to Chapter 7, the degree of
the approximant is fixed, and the height is allowed to vary. In this case, and for
these kind of questions, the choice of the size has no particular significance.
This does not remain true in Chapter 8, where degree and height are allowed to
vary simultaneously, and some of the results presented there are given in terms
of the absolute logarithmic height or in terms of the Mahler measure.

The next theorem, asserted by Roth [477] and proved by LeVeque [363],
extends Theorem 2.1 to number fields.

THEOREM 2.5. Let K be a number field and ξ be a real algebraic number
not in K. Then, for any ε > 0, there exists an (ineffective) positive constant
c4(ξ, K, ε) such that

|ξ − α| > c4(ξ, K, ε) H(α)−2−ε, (2.4)

for every α in K.

An extension of Dirichlet’s Theorem 1.1 shows that the exponent 2+ ε in (2.4)
cannot be replaced by a real number strictly less than 2.

Instead of studying approximation of an algebraic number by elements of a
fixed number field, we now consider approximation by algebraic numbers of
degree less than or equal to n. This would generalize Theorem 2.1 in another
direction than Theorem 2.5. Wirsing [599] has given a satisfactory answer to
this problem, by obtaining an exponent depending only on n.

THEOREM 2.6. Let ξ be a real algebraic number and n ≥ 1 be an integer. For
any ε > 0, there exists a positive (ineffective) constant c5(ξ, n, ε) such that

|ξ − α| > c5(ξ, n, ε) H(α)−2n−ε, (2.5)

for any algebraic number α �= ξ of degree at most n.
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Theorem 2.6 reduces to Roth’s Theorem for n = 1; the proof of Wirsing uses
the main steps of that of Roth. However, a metric argument suggests that it
could be possible to replace the exponent −2n − ε in (2.5) by −n − 1 − ε.
This conjecture has been proved by Schmidt (see [504] for n = 2 and [506]
for n ≥ 3), nearly at the same time as Wirsing published Theorem 2.6, but with
very different arguments.

THEOREM 2.7. Let ξ be a real algebraic number and n ≥ 1 be an integer. Let
ε be a positive real number. Then there exists a positive (ineffective) constant
c6(ξ, n, ε) such that

|P(ξ)| > c6(ξ, n, ε) H(P)−n−ε

for any integer polynomial P(X) of degree at most n and such that P(ξ) �=
0. Furthermore, there exists a positive (ineffective) constant c7(ξ, n, ε) such
that

|ξ − α| > c7(ξ, n, ε) H(α)−n−1−ε

for any algebraic number α �= ξ of degree at most n.

The first assertion of Theorem 2.7 is a corollary to the celebrated Subspace
Theorem of Schmidt, a remarkable result having many important applications
in Diophantine approximation. The proof, very involved, is given with many
details in [512], its main lines being also in [510]. The second assertion of
Theorem 2.7 follows from the first one, as proved in Theorem 3.5. Notice that
while it is used in Chapter 7 in order to prove that T -numbers (see Definition
3.1) do exist, Theorem 2.6 however is sufficient to get the same conclusion.
Clearly, Theorem 2.7 (and, thus, Theorem 2.8 below) is interesting only for n
at most equal to the degree of ξ minus two, since otherwise it is superseded by
Liouville’s inequality (Corollary A.2).

THEOREM 2.8. Let n ≥ 1 be an integer and ξ be a real algebraic number
of degree d. Then, for any positive real number ε, there exist an ineffective
constant c8(ξ, n, ε) and infinitely many algebraic numbers α of degree at most
n such that

|ξ − α| < c8(ξ, n, ε) H(α)−min{n+1,d}+ε.

Theorem 2.8 follows from the first assertion of Theorem 2.7, as proved in
Theorem 3.5. In the next Section, we show that Theorem 2.8 can be improved
upon when n ≥ d − 1.
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2.4 Effective approximation by algebraic numbers

Corollary 1.2 asserts that real quadratic algebraic numbers are badly approx-
imable by rational numbers. This is a particular case of a more general phe-
nomenon: for any integers d ≥ 2 and n ≥ d − 1, real algebraic numbers
of degree d are badly approximable by algebraic numbers of degree n. Theo-
rem 2.9 covers the case n = d − 1, while Theorem 2.11 deals with the case
n ≥ d.

THEOREM 2.9. Let ξ be a real algebraic number of degree d ≥ 2. There exist
effectively computable positive constants c9(ξ) and c10(ξ) such that

|ξ − α| ≥ c9(ξ) H(α)−d for any algebraic number α of degree
at most d − 1,

and

|ξ − α| ≤ c10(ξ) H(α)−d for infinitely many real algebraic numbers
α of degree d − 1.

The first part of Theorem 2.9 is a restatement of Corollary A.2, while the sec-
ond part originates in the work of Wirsing [598]. Bombieri and Mueller [107]
have given an alternative proof, which we reproduce here. They proved Theo-
rem 2.10 below, which implies the second part of Theorem 2.9.

THEOREM 2.10. Let ξ with |ξ | ≤ 1/2 be a real algebraic number of degree
d ≥ 2. For every H ≥ 2, there exists an algebraic number α of degree at most
d − 1 such that

|ξ − α| ≤ d!(d − 1)

Hd

and

H(α) ≤ 2d−1(d
√

d + 1 H(ξ)
)(d−1)2/d

H. (2.6)

Moreover, α is real as soon as H > 2d (d + 1)(3d+5)/2 H(ξ)d−1.

PROOF. For any real number H ≥ 2, let C(H) denote the convex symmetric
body in Rd defined by

|x0 + x1ξ + . . .+ xd−1ξ
d−1| ≤ H−d+1,

|x1|, . . . , |xd−1| ≤ H.

Let λi = λi (H), i = 1, . . . , d, be the successive minima of C(H) (see Ap-
pendix B for the definition). We denote by (x (i)

0 , . . . , x (i)
d−1), i = 1, . . . , d,
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linearly independent points at which the successive minima λi are attained and
we set

Pi (X) = x (i)
0 + x (i)

1 X + . . .+ x (i)
d−1 Xd−1.

We first show that there exists some integer i for which

|P ′i (ξ)| ≥ λi

d!
H (2.7)

holds. To this end, we set

M = max
1≤i≤d

|P ′i (ξ)|
λi

,

and we observe that λ1, . . . , λd are as well the successive minima of the convex
body

C(H, M) := C(H) ∩ {|x1 + 2ξ x2 + . . .+ (d − 1)ξd−2xd−1| ≤ M}.
By Theorem B.3, we have the inequalities

2d

d!
≤ λ1 . . . λd vol(C(H, M)) (2.8)

and

λ1 . . . λd ≤ 1, (2.9)

since vol(C(H)) ≤ 2d . Further, the volume of C(H, M) is at most equal to the
volume of the convex body defined by the inequalities

|x0 + x1ξ + . . .+ xd−1ξ
d−1| ≤ H−d+1,

|x1 + 2x2ξ + . . .+ (d − 1)xd−1ξ
d−2| ≤ M,

|x2|, . . . , |xd−1| ≤ H.

Hence, we get

vol(C(H, M)) ≤ 2d M/H.

Combined with (2.8) and (2.9), this implies that M ≥ H/d!, thus (2.7) holds
for some index i .

For such an i , we have by construction |Pi (ξ)| ≤ λi H−d+1 and H(Pi ) ≤
λi H , since H ≥ 2 and |ξ | ≤ 1/2. Hence, Lemma A.5 and (2.7) yield that the
polynomial Pi (X) has a root α with

|ξ − α| ≤ (d − 1)
|Pi (ξ)|
|P ′i (ξ)| ≤

d!(d − 1)

Hd
, (2.10)
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and

H(α) ≤ 2d−1H(Pi ) ≤ 2d−1λi H, (2.11)

by Lemma A.3.
It remains for us to bound λi . We infer from (2.9) that

λi ≤ λd ≤ λ−d+1
1 , (2.12)

and we are led to bound λ1 from below. By Theorem A.1, we get

|P1(ξ)| ≥ d−d+1 (d + 1)−(d−1)/2 H(P1)
−d+1 H(ξ)−d+1. (2.13)

Furthermore, by definition, the polynomial P1(X) satisfies |P1(ξ)| ≤
λ1 H−d+1 and H(P1) ≤ λ1 H , hence

|P1(ξ)| ≤ λd
1 H(P1)

−d+1. (2.14)

Combining (2.13) and (2.14), we get

λ1 ≥
(
d
√

d + 1 H(ξ)
)−(d−1)/d

, (2.15)

and (2.6) follows from (2.10), (2.11), (2.12), and (2.15).
If the algebraic number α constructed above is non-real, then, denoting by

Pα(X) its minimal polynomial over Z and by α its complex conjugate, Lemma
A.6 and (2.10) imply

|Pα(ξ)| ≤ 2d−1
√

d H(α) |ξ − α| · |ξ − α|
≤ 2d−1

√
d (d − 1)2 (d!)2 H(α) H−2d . (2.16)

On the other hand, Theorem A.1 yields

|Pα(ξ)| ≥ d−d+1 (d + 1)−(d−1)/2 H(α)−d+1 H(ξ)−d+1,

which, combined with (2.16) and (2.6), gives the upper bound H ≤ 2d (d +
1)(3d+5)/2 H(ξ)d−1. This completes the proof of the theorem.

We are now concerned with the approximation of algebraic numbers by
algebraic numbers of same or larger degree. Apparently, Theorem 2.11 did
not appear previously. Its first part is a restatement of Corollary A.2, while its
second part originates in a work of Davenport and Schmidt [182]. Theorem
2.11 is used in the proof of Theorem 7.5. We recall that an algebraic integer is
an algebraic number whose minimal polynomial over Z is monic.
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THEOREM 2.11. Let ξ be a real algebraic number of degree d ≥ 2. Let n ≥ d
be an integer. There exist positive, effectively computable, constants c11(ξ, n)

and c12(ξ, n) such that

|ξ − α| ≥ c11(ξ, n) H(α)−d for any algebraic number α �= ξ of
degree at most n,

and

|ξ − α| ≤ c12(ξ, n) H(α)−d for infinitely many real algebraic
integers α of degree n.

PROOF. Without loss of generality, we may assume that |ξ | ≤ 1/2. Theorem
A.1 implies that for any non-zero integer polynomial P(X) of degree at most
d − 1 we have

|P(ξ)| > (d + 1)−3(d−1)/2 H(ξ)−d+1 H(P)−d+1. (2.17)

Set κ = (d + 1)3(d−1)2/(2d) H(ξ)(d−1)2/d and let H be a real number with

Hd > 2n+5 (d + 1)6 (n + 1)5/2 κ2. (2.18)

It follows from (2.17) that the first minimum λ1 of the compact convex C(H)

defined by the inequalities

|xd−1ξ
d−1 + . . .+ x1ξ + x0| ≤ H−d+1,

|x1|, . . . , |xd−1| ≤ H,

satisfies λ1 > κ−1/(d−1). Consequently, by Theorem B.3, the d-th minimum
λd of C(H) is smaller than κ . Thus, there exist d linearly independent integer
polynomials Pj (X) := x ( j)

d−1 Xd−1 + . . .+ x ( j)
1 X + x ( j)

0 , for j = 1, . . . , d , of
degree at most d − 1 satisfying

|Pj (ξ)| ≤ κ H−d+1 and H(Pj ) ≤ κ H, (2.19)

for j = 1, . . . , d , and δ := | det(x ( j)
i )| ≤ d!. Let p be a prime number which

does not divide δ. Since the product of all prime numbers up to d2 exceeds d!,
we may assume that p is not larger than d2. We argue exactly as Davenport
and Schmidt [182] in order to construct a monic polynomial of degree n, small
when evaluated at ξ .

Since p does not divide δ, there exists a superscript j such that p does not
divide x ( j)

0 . Without loss of generality, we assume that j = 1.
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We consider the following linear system of d equations in the d real un-
knowns θ1, . . . , θd :

ξn + p(θ1 P1(ξ)+ . . .+ θd Pd(ξ)) = p(d + 1)κ H−d+1

nξn−1 + p(θ1 P ′1(ξ)+ . . .+ θd P ′d(ξ)) = pH + p
∑

1≤i≤d

|P ′i (ξ)| (2.20)

θ1x (1)
m + . . .+ θd x (d)

m = 0 (m = 2, . . . , d − 1).

Since the polynomials Pi (X), for i = 1, . . . , d , are linearly independent,
this system has one and only one solution (θ1, . . . , θd). We take a d-tuple
(t1, . . . , td) of integers such that |θi − ti | ≤ 1 for i = 1, . . . , d , and we set

xm = t1x (1)
m + . . .+ td x (d)

m , for m = 0, . . . , d − 1.

We consider the polynomial

P(X) = Xn + p(xd−1 Xd−1 + . . .+ x1 X + x0)

= Xn + p(t1 P1(X)+ . . .+ td Pd(X)),

which, by a suitable choice of (t1, . . . , td), is irreducible. Indeed, by using
Eisenstein’s Criterion, it is sufficient to check that its constant coefficient,
namely p(t1x (1)

0 + . . .+ td x (d)
0 ), is not divisible by p2, since its leading coeffi-

cient is congruent to 1 modulo p. We fix a (d − 1)-tuple (t2, . . . , td) and there
remain two possible choices for t1, which we denote by t1,0 and t1,1 = t1,0+1.
Since p does not divide x (1)

0 , at least one of the integers t1,0x (1)
0 + . . .+ td x (d)

0

or t1,1x (1)
0 + . . .+ td x (d)

0 is not divisible by p. This enables us to choose t1
such that the polynomial P(X) is Eisensteinian with respect to the prime num-
ber p, hence, irreducible.

Furthermore, the polynomial P(X) satisfies

P(ξ) = ξn + p(t1 P1(ξ)+ . . .+ td Pd(ξ)),

hence, by (2.18), (2.19), and the first equation of the system (2.20), we have

0 < pκ H−d+1 ≤ P(ξ) ≤ p(2d + 1)κ H−d+1 < 1. (2.21)

On the other hand, we have

P ′(ξ) = nξn−1 + p(t1 P ′1(ξ)+ . . .+ td P ′d(ξ));
thus, by (2.19) and the second equation of (2.20), we get

P ′(ξ) ≥ pH (2.22)



38 Approximation to algebraic numbers

and

P ′(ξ) ≤ pH + 2p
d∑

i=1

|P ′i (ξ)| ≤ pH(1+ 4d(d − 1)κ), (2.23)

since |ξ | ≤ 1/2 and H(P ′i ) ≤ (d − 1)κ H for i = 1, . . . , d . Finally, by (2.19)
and the last equations of (2.20), we get

|xm | ≤ dκ H, for m = 2, . . . , d − 1, (2.24)

and we infer from (2.22), (2.23), (2.24), and |ξ | ≤ 1/2 that

|x1| ≤ 1+ |P ′(ξ)| +
d−1∑
j=2

j |x j | ≤ (d3 + 4d2 p)κ H. (2.25)

It follows from (2.21), (2.24), and (2.25) that

|x0| ≤ 1+ P(ξ)+ |x1| +
d−1∑
j=2

|x j | ≤ (d3 + d2 + 4d2 p)κ H,

and we finally derive from the upper bound p ≤ d2 that

H(P) ≤ 6d4κ H. (2.26)

By (2.21), (2.22), and the first assertion of Lemma A.5, the polynomial P(X)

has a root α satisfying

|ξ − α| ≤ n
P(ξ)

P ′(ξ)
≤ n(2d + 1)κ H−d , (2.27)

thus, by (2.26),

|ξ − α| ≤ 6d+1 n (d + 1)(3d2+5d+5)/2 H(ξ)(d−1)2
H(α)−d .

If α were non-real, then its conjugate would also satisfy (2.27) and, by (2.26),
Lemma A.6, and |ξ | ≤ 1/2, we would then have

P(ξ) ≤ 2n+5 (n + 1)5/2 (d + 1)6 κ3 H1−2d .

Together with (2.18), this would contradict the lower bound P(ξ) ≥ κ H−d+1

obtained in (2.21). Consequently, α is a real algebraic integer of degree n.

For an alternative proof of Theorem 2.9, it suffices to take n = d − 1 in the
proof of Theorem 2.11: the Eisenstein Criterion ensures that the polynomial
P(X) is irreducible.

We could as well state analogues of Theorems 2.9 and 2.11, under the same
hypothesis on ξ , with upper and lower bounds for |P(ξ)|, where P(X) is an
integer (or a monic integer) polynomial of degree d .
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2.5 Remarks on irrationality and transcendence statements

It follows from Theorem 1.1 that a real number ξ is irrational if it has in-
finitely many good rational approximants. In a similar way, Roth’s Theorem
and its generalizations can be applied to establish that ξ is transcenden-
tal if it admits infinitely many very good rational approximants. Clas-
sical results, including the transcendence of the Champernowne number
0.1234567891011121314 . . . , can be obtained by applying Theorems 2.1, 2.2,
and 2.3 (although Mahler’s original proof of this statement [380] used a
weaker transcendence criterion), see Mahler [397] and Zhu [616]. For instance,
Ferenczi and Mauduit [246] gave a combinatorial translation of Theorem 2.3
which shows in particular that real numbers whose expansion in a given base is
Sturmian are transcendental. In most of the cases, an interesting question often
remains open: after having shown that a given real number ξ has an irrational-
ity measure strictly larger than 2 to conclude that ξ is transcendental, what can
be said about its smallest irrationality measure?

Another typical problem is the algebraicity of real numbers defined in terms
of their continued fraction expansion. By Corollary 1.6, real transcendental
numbers with bounded partial quotients do exist and it is of interest to con-
struct explicit examples. The first result of this type is due to Maillet [403] (see
also Section 34 of Perron [454]), who found continued fractions with bounded
partial quotients giving trancendental numbers by using a general form of
Liouville’s inequality (see Corollary A.2) which limits the precision of the
approximation of an algebraic number by quadratic irrationalities. Such an ar-
gument is quite natural when we keep in mind that the quadratic irrationalities
coincide with the real numbers having ultimately periodic continued fraction
expansions (Theorem 1.16). Other examples of transcendental numbers with
bounded partial quotients are due to A. Baker [37, 38] who applied Theorem
2.2, asserting that the partial quotients of the continued fraction expansion of
an algebraic number cannot increase too rapidly.

An interesting application of the case n = 2 of Theorem 2.7 has been
worked out by Queffélec [464] (the idea of using Schmidt’s Theorem in a ‘sim-
ilar’ context goes back to Davison [185]), who proved that the real number

ξ = [1; 2, 2, 1, 2, 1, 1, 2, 2, 1, 1, 2, 1, 2, 2, 1, . . . ],

with partial quotients being the Thue–Morse word on {1, 2}, that is, the fixed
point of the substitution 1 → 12, 2 → 21, is transcendental. Again, although
we know that ξ is too well approximable by quadratic numbers to be algebraic,
we do not know precisely how well it is approximable. As we shall see in
the course of the next Chapters, this question appears, in general, to be very
difficult.
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2.6 Notes

• Let ε be a positive real number. Theorem 2.1 implies that the n-th partial
quotient an of a real algebraic number ξ of degree d satisfies log an < c13(1+
ε)n for any positive integer n and a suitable ineffective constant c13, depending
only on ε and ξ . Using Theorem 2.4, one can get an effective upper bound, but
1 + ε is then replaced by d − 1 − τ , for a (very) small positive number τ . In
the case of cubic algebraic numbers, this has been considerably improved by
Wolfskill [600], who obtained the upper estimate log an < c14(

√
3 + ε)n for

any positive integer n and an effective constant c14, depending only on ε and ξ .

• Using a method of Dyson [223], Mahler [383] proved that if (pn/qn)n≥1

denotes the sequence of convergents of a quadratic or cubic real number, then
the greatest prime factor of qn tends to infinity with n. Actually, it follows from
Ridout’s Theorem 2.3 that this conclusion holds for any real irrational number.
Shorey [523] established related quantitative results.

• Mahler [386] applied Ridout’s Theorem 2.3 to get lower bounds for the
distance to the nearest integer of powers of rational numbers.

• An interesting complement to Ridout’s Theorem 2.3 has been given by
Lagarias [346]. Stewart [544] used a similar construction to investigate a ques-
tion on divisors of a product of consecutive integers.

• Mahler [390] (see also his book [388]) extended Theorem 2.5 and inves-
tigated approximation of algebraic numbers by algebraic integers lying in a
given number field. He also proved an inhomogeneous result, later generalized
by Schmidt, see Section 7.4 of [510].

•Allouche, Davison, Queffélec, and Zamboni [6], Davison [186], and Baxa
[55] established extensions of Queffélec’s result mentioned in Section 2.5. See
also Liardet and Stambul [367] and Chapter 13 of Allouche and Shallit [7].
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The classifications of Mahler and Koksma

The set of real numbers splits into algebraic and transcendental numbers, but
these two subsets do not have the same size, the former being countable, while
the latter has the power of continuum. Such a crude classification of real num-
bers seems to be rather unsatisfactory, and one aims to find some way to clas-
sify the transcendental numbers. First, we have to ask which requirements
should satisfy a ‘good’ classification. Ideally, for a given real number ξ , we
would like to have a simple criterion to determine the class to which ξ belongs.
Furthermore, two algebraically dependent real numbers should belong to the
same class. The first classification of transcendental real numbers has been
proposed by Maillet [403, 404], and others were subsequently described by
Perna [453] and by Morduchai-Boltovskoj [430], but none of these has proved
to be relevant. For instance, Maillet’s classification depends on the size of the
partial quotients of the real numbers and, clearly, does not satisfy the second
requirement.

An attempt towards a ‘reasonable’ classification was made in 1932 by
Mahler [376], who proposed to subdivide the set of real numbers into four
classes (including the class of algebraic numbers) according to, roughly speak-
ing, their properties of approximation by algebraic numbers. Mahler’s clas-
sification satisfies our second requirement: two algebraically dependent real
numbers belong to the same class. However, if a real number is given (that
is, for example, a Cauchy sequence of rational numbers), there is, in general,
very little hope of determining to which class it belongs. Although non-trivial,
Mahler’s classification does not seem to be entirely satisfactory since almost all
real numbers (in the sense of the Lebesgue measure) belong to the same class.
Nevertheless, it has been widely studied, as has the closely related Koksma’s
classification, which was proposed a few years later [333].

In the present Chapter, we begin by defining Mahler’s classification and
we prove some of its properties. We then define Koksma’s classification and
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compare them. Further, we state the ‘Main Problem’, which motivates the next
five Chapters. Finally, we discuss some links between algebraic approximation
and simultaneous rational approximation, and we introduce four other expo-
nents of Diophantine approximation.

3.1 Mahler’s classification

Mahler’s idea [376] consists in classifying the real numbers ξ according
to the accuracy with which non-zero integer polynomials, evaluated at ξ ,
approach 0. For given positive integer n and real number H ≥ 1, we define the
quantity

wn(ξ, H)

:= min{|P(ξ)| : P(X) ∈ Z[X ], H(P)≤ H, deg(P)≤ n, P(ξ) �= 0},
where H(P) denotes the height of the polynomial P(X) (see Definition 2.1).
Then, we set

wn(ξ) = lim sup
H→+∞

− log wn(ξ, H)

log H

and

w(ξ) = lim sup
n→+∞

wn(ξ)

n
.

In other words, wn(ξ) is the supremum of the real numbers w for which there
exist infinitely many integer polynomials P(X) of degree at most n satisfying

0 < |P(ξ)| ≤ H(P)−w.

Further, it is an easy exercise (see Exercise 3.1) to check that for any positive
integer n, for any real number ξ and any non-zero rational number a/b, we
have wn(ξ) = wn(ξ + a/b) = wn(aξ/b). This allows us in most of the proofs
below to assume that ξ belongs to an interval of small length.

For n ≥ 1, we have 0 ≤ wn(ξ) ≤ +∞, since wn(ξ, H) ≤ w1(ξ, H) ≤ 1
for any H with H ≥ |ξ | + 1. Thus, we get 0 ≤ w(ξ) ≤ +∞. Moreover, the
sequence (wn(ξ))n≥1 is clearly non-decreasing. With these notations, Mahler
[376] (actually, he used the Greek letter ω instead of w; hopefully, the present
notation will not perturb the reader!) divided the set of real numbers into four
disjoint classes.

DEFINITION 3.1. Let ξ be a real number. We say that ξ is an
A-number, if w(ξ) = 0;
S-number, if 0 < w(ξ) < +∞;
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T -number , if w(ξ) = +∞ and wn(ξ) < +∞ for any n ≥ 1;
U-number, if w(ξ) = +∞ and wn(ξ) = +∞ from some n onwards.

Theorem 3.1 below shows that the A-numbers are exactly the algebraic num-
bers. According to Stolarsky [546], the terminology ‘S-number’ refers to
Siegel, the letters T and U having then been chosen by alphabetical order.

In another paper of 1932, Mahler [377] proved that almost all (in the
sense of Lebesgue measure) real numbers ξ satisfy wn(ξ) ≤ 4n for any
positive integer n (actually, his result is slightly stronger) and conjectured
that it should be possible to replace 4 by 1. This has been confirmed by
Sprindžuk [538] in 1965; Chapter 4 is devoted to this problem and related
questions.

Mahler [375] had already introduced the terminology ‘S-number’ in 1930,
but this, however, does not match with Definition 3.1: the set of S-numbers in
[375] is equal to the union of the sets of A- and S-numbers in [376].

The classes S, T , and U may be further subdivided into infinitely many
subclasses, by introducing the notion of type.

DEFINITION 3.2. We define the type t (ξ) of an S-number ξ as the value of
w(ξ), that is,

t (ξ) = lim sup
n→+∞

wn(ξ)

n
.

Koksma [333] called ‘Index der S-Zahl ξ ’ the quantity

sup
n≥1

wn(ξ)

n
(3.1)

and he observed ([333], Satz 4) that any S-number is of index at least 1.
Several authors, including Schneider [517], Kasch and Volkmann [311], A.
Baker [38, 44], and Güting [269], used (3.1) to define the type of an S-number,
instead of Definition 3.2. As observed by A. Baker and Schmidt [45] in 1970
in a footnote, it was at that time ‘customary to use sup wn(ξ)/n, but the above
would seem more natural’, where they refer to

lim sup
n→+∞

wn(ξ)+ 1

n + 1
and sup

n≥1

wn(ξ)+ 1

n + 1
. (3.2)

Indeed, the metric results stated in Chapter 5 show that one of the definitions in
(3.2) should be preferred to (3.1). The first alternative in (3.2) coincides with
Definition 3.2: in the author’s opinion, the lim sup is much more relevant than
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the supremum. Notice however that the existence of S-numbers ξ with

lim sup
n→+∞

wn(ξ)+ 1

n + 1
< sup

n≥1

wn(ξ)+ 1

n + 1

remains an open problem. Actually, no matter how one defines the type, Theo-
rem 5.8 asserts that there exist real S-numbers of arbitrary type greater than or
equal to 1.

DEFINITION 3.3. Let ξ be a T -number and, for any n ≥ 1, define the real
number τn by wn(ξ) = nτn . The type of ξ , denoted by t (ξ), is the quantity

t (ξ) = lim sup
n→+∞

τn .

The type of a T -number takes its values in [1,+∞]. Schmidt proved [507, 508]
(see Chapter 7) that there exist T -numbers of arbitrary given type in [3,+∞],
but the problem of the existence of T -numbers of type strictly less than 3 re-
mains open.

DEFINITION 3.4. Let ξ be a U-number. The type of ξ , denoted by t (ξ), is the
smallest positive integer n such that wn(ξ) = +∞.

The U -numbers of type 1 are precisely the Liouville numbers (Definition 1.1).
Furthermore, LeVeque [361] proved that there exist U -numbers of arbitrary
given type (see Section 7.6). There are alternative definitions for the type of a
U -number, see for instance Schmidt [508] and Section 7.1.

We conclude this Section by pointing out that the Lebesgue Density The-
orem (see, for example, Riesz and Sz.-Nagy [472], page 13, or Mattila [415],
Corollary 2.14) implies that the function wn , which is invariant by rational
translation, takes the same value at almost all real numbers, that is, for any real
number w, the set of real numbers ξ with wn(ξ) = w has either measure zero
or has full measure. Consequently, almost all real numbers belong to the same
class and have the same type. This fact was first observed by Sprindžuk [530]
(see also [539], page 23).

Furthermore, as soon as the set of real numbers is divided into disjoint
measurable classes with the property that any two real numbers differing by
a rational number belong to the same class (this is obviously true if any two al-
gebraically dependent real numbers belong to the same class), then there exists
a class to which almost all real numbers belong (see Exercise 6.5).
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3.2 Some properties of Mahler’s classification

Our first result gives a lower bound for w(ξ) when ξ is a real transcendental
number.

PROPOSITION 3.1. Let n be a positive integer and ξ be a real number not
algebraic of degree at most n. We then have wn(ξ) ≥ n. In particular, if ξ is
transcendental, then we have w(ξ) ≥ 1.

PROOF. Without loss of generality, we may assume that 0 < ξ < 1/2. Let
H ≥ 2 be real, and consider the system of inequalities

|anξn + . . .+ a1ξ + a0| ≤ H−n

|a1|, . . . , |an| ≤ H.

By Theorem B.2, it has a non-zero integer solution (a0, a1, . . . , an). Further,
|anξn + . . .+ a1ξ + a0| < H−n and 0 < ξ < 1/2 imply that |a0| ≤ H . Since
ξ is not algebraic of degree at most n, this means that there exists a non-zero
integer polynomial PH (X), of height at most H , such that

0 < |PH (ξ)| ≤ H(PH )−n .

By taking arbitrarily large values of H , we get a sequence of distinct inte-
ger polynomials (Pk)k≥1, whose heights increase to infinity, and which satisfy
0 < |Pk(ξ)| ≤ H(Pk)

−n for k ≥ 1. It immediately follows that wn(ξ) ≥ n.
Consequently, w(ξ) ≥ 1 if ξ is transcendental. We observe that we may al-
ternatively use Dirichlet’s Schubfachprinzip instead of Theorem B.2, see the
proof of Lemma 8.1.

THEOREM 3.1. The A-numbers are exactly the real algebraic numbers. Let
ξ be an algebraic real number of degree d and let n be a positive integer. We
then have wn(ξ) = min{n, d − 1}.
PROOF. Let ξ be an algebraic number of degree d and let P(X) be an integer
polynomial of degree n and of height H such that P(ξ) �= 0. We infer from
Theorem A.1 that wn(ξ) ≤ d − 1, hence, we get that w(ξ) = 0. In view
of the last assertion of Proposition 3.1, this shows that the sets of A-numbers
and of real algebraic numbers coincide. By the first assertion of Schmidt’s
Theorem 2.7, the last inequality can be refined to wn(ξ) ≤ min{n, d − 1}.
Since wn(ξ) ≥ wd−1(ξ) holds if n ≥ d − 1, we then infer from Proposition
3.1 that wn(ξ) = min{n, d − 1}.
It immediately follows from Theorem 3.1 that real numbers ξ with 0 < w(ξ) <

1 do not exist.
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COROLLARY 3.1. Every real S-number is of type at least 1.

Theorem 3.2, due to Mahler [375, 376], ensures that his classification satisfies
the second requirement stated at the beginning of the Chapter.

THEOREM 3.2. Two algebraically dependent real numbers ξ and η belong to
the same class.

PROOF. By Theorem 3.1, we may assume that ξ and η are transcendental.
Let n be a positive integer. The constants c1, c2, and c3 appearing below are
positive, effectively computable, and depend only on ξ , η, and n. Let H ≥ 1
be a real number and A(X) be an integer polynomial of height at most H and
degree at most n with |A(ξ)| = wn(ξ, H). Let

F(X, Y ) =
M∑

h=0

N∑
k=0

bhk XhY k =
M∑

h=0

Bh(Y )Xh

be a primitive, irreducible, integer polynomial vanishing at the point (ξ, η) and
such that BM (Y ) is not identically zero. For some values of y, the polynomials
A(X) and F(X, y) have no common zero, hence the resultant (see Definition
A.1)

R(Y ) = ResX
(

A(X), F(X, Y )
)

is not the zero polynomial. Moreover,

deg R(Y ) ≤ n max
0≤ j≤M

deg B j (Y ) ≤ nN ,

and there exists a constant c1 such that the height of the polynomial R(Y ) is
not greater than c1 H M .

Classical properties of the resultant (see, for example, [349], Chapter IV, or
[586], Chapter 5, or [156], Appendix A) imply that there exist two polynomials
g(X, Y ) and h(X, Y ) satisfying

R(Y ) = A(X)g(X, Y )+ F(X, Y )h(X, Y ),

and such that the height of the polynomial g(X, Y ) is not greater than c2 H M−1.
Hence, we have R(η)= A(ξ)g(ξ, η) and |g(ξ, η)| ≤ c3 H M−1. Since |R(η)| ≥
wnN (η, c1 H M ), our choice of the polynomial A(X) implies that

wn(ξ, H) = |A(ξ)| ≥ c−1
3 H−M+1wnN (η, c1 H M ). (3.3)

Letting H tend to infinity, we obtain

wn(ξ) ≤ M − 1+ MwnN (η). (3.4)
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It follows that

w(ξ) ≤ lim sup
n→+∞

(M − 1)N + M NwnN (η)

nN
≤ M Nw(η) (3.5)

and, inverting the roles played by η and ξ , we get

wn(η) ≤ N − 1+ NwnM (η) and w(η) ≤ M Nw(ξ).

Consequently, w(ξ) and w(η) are simultaneously finite or infinite. Further-
more, wn(ξ) is finite for every positive integer n if, and only if, wn(η) is finite
for every positive integer n. This completes the proof of the theorem.

We may ask whether inequalities (3.4) and (3.5) are optimal: how can the
type of S-numbers ξ and η which are roots of a non-zero integer polynomial
P(X, Y ) of bidegree (M, N ) differ? It follows from (3.4) that for any real tran-
scendental number ξ and any positive integers k and n, we have

wn(ξ)+ 1 ≤ k
(
wn(ξ k)+ 1

)
(3.6)

and

wn(ξ k) ≤ wkn(ξ). (3.7)

Inequality (3.6) is sharp for n = 1, since the difference k(w1(ξ
k) + 1) − 1 −

w1(ξ) can take any non-negative real value, see Exercise 3.6. Furthermore, it
follows from Theorem 7.7 that for any integer d ≥ kn(kn + 2) and for ξ the
positive real number with ξ kn =∑

j≥1 2−(d+1) j
we have wn(ξ k) = wkn(ξ) =

d. This shows that (3.7) is also sharp.
Moreover, it follows from (3.4) and (3.5) that two algebraically dependent

T -numbers have same type. This is not the case for two algebraically depen-
dent U -numbers, see Theorem 7.4.

3.3 Koksma’s classification

Koksma’s point of view [333] is close to that of Mahler, but instead of looking
at the approximation of 0 by integer polynomials evaluated at the real number
ξ , Koksma considered the approximation of ξ by algebraic numbers. For given
positive integer n and real number H ≥ 1, we define the quantity

w∗n(ξ, H)

:= min{|ξ − α| : α real algebraic, deg(α) ≤ n, H(α) ≤ H, α �= ξ},
where H(α) denotes the height of the algebraic number α (see Definition 2.1).
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We then set

w∗n(ξ) = lim sup
H→+∞

− log(Hw∗n(ξ, H))

log H
(3.8)

and

w∗(ξ) = lim sup
n→+∞

w∗n(ξ)

n
.

In other words, w∗n(ξ) is the supremum of the real numbers w for which there
exist infinitely many real algebraic numbers α of degree at most n satisfying

0 < |ξ − α| ≤ H(α)−w−1. (3.9)

We have w∗n(ξ) = w∗n(ξ + a/b) = w∗n(aξ/b) for any real number ξ , any
positive integer n, and any non-zero rational number a/b (see Exercise 3.1).
This implies that the function w∗n takes the same value at almost all real
numbers.

The factor H occurring in (3.8) (corresponding to the exponent−1 of H(α)

in (3.9)) does not appear in the definition of wn(ξ), but it is natural to introduce
it here. Indeed, if an integer polynomial P(X) satisfies |P(ξ)| < H(P)−w,
then, by Lemma A.5, it has a root α with |ξ − α| < n H(P)−w |P ′(ξ)|−1. In
general |P ′(ξ)| is likely to be comparable to H(P) (or, equivalently, P(X) is
likely to have no other root close to ξ ). Then, |ξ − α| is not much bigger than
H(α)−w−1. Furthermore, we shall see in Chapter 4 that wn(ξ) = w∗n(ξ) = n
for almost all real numbers ξ .

For any real number ξ , any positive integer n, and any H ≥ |ξ | + 1, we
have w∗n(ξ, H) ≤ w∗1(ξ, H) ≤ (|ξ | + 1)/H , as can be seen by considering the
rational number with denominator [H ] closest to ξ . Thus, we get 0 ≤ w∗n(ξ) ≤
+∞. Moreover, the sequence (w∗n(ξ))n≥1 is clearly non-decreasing, and the
functions w1 and w∗1 are equal.

DEFINITION 3.5. Let ξ be a real number. We say that ξ is an

A∗-number, if w∗(ξ) = 0;
S∗-number, if 0 < w∗(ξ) < +∞;
T ∗-number, if w∗(ξ) = +∞ and w∗n(ξ) < +∞ for any n ≥ 1;
U∗-number, if w∗(ξ) = +∞ and w∗n(ξ) = +∞ from some n onwards.

Actually, Koksma [333] defined w∗n(ξ, H) as the minimum

min{|ξ − α| : α complex algebraic, deg(α) ≤ n, H(α) ≤ H},
in such a way that ξ is transcendental if, and only if, w∗n(ξ, H) is positive
for any n ≥ 1 and H ≥ 1. When Koksma introduced his classification
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(and also in 1957, when Schneider’s book appeared [517]), it was not known
that w∗(ξ) = 0 is a necessary and sufficient condition for ξ to be algebraic
(a result due to Wirsing [598]). For this reason, Koksma only classified the
transcendental numbers in three families (according to [333], an S∗-number
ξ is a transcendental number with w∗(ξ) < +∞), and, for consistency, he
called A∗-numbers the set of algebraic numbers. Thus, our definition of A∗-
numbers differs from Koksma’s, but this is only apparent. We choose this way
to proceed in order to match with Mahler’s and Sprindžuk’s classifications (see
Chapter 8).

In [333] Koksma defined w∗n(ξ) for a complex transcendental number ξ by
taking into account its complex approximants. Since we restrict our attention
to the approximation of real numbers ξ , it is plainly natural to consider only
real algebraic approximants. This definition is also taken by Schmidt in [512],
page 279.

However, it is important to notice that it makes no difference if we also take
into account complex non-real approximants. Indeed, for n ≥ 1, H ≥ 1, and a
real number ξ , set

w∗c
n (ξ, H)

:= min{|ξ − α| : α algebraic, deg(α) ≤ n, H(α) ≤ H, α �= ξ}
and

w∗c
n (ξ) = lim sup

H→+∞
− log(Hw∗c

n (ξ, H))

log H
.

Clearly, we have the inequality

w∗c
n (ξ) ≥ w∗n(ξ),

which turns out to be an equality, as stated in the next lemma, extracted from
[128].

LEMMA 3.1. For any positive integer n and any real number ξ not algebraic
of degree at most n, we have w∗c

n (ξ) = w∗n(ξ).

PROOF. The case n = 1 is trivial. Let n ≥ 2 be an integer, H > 1 be a real
number, and ξ be a real number not algebraic of degree at most n. Let α1 be
an algebraic number of height at most H and of degree n1 less than or equal
to n such that w∗c

n (ξ, H) = |ξ − α1|. We may assume that α1 is non-real,
otherwise the lemma is clearly true. Then, the minimal polynomial of α1 over
Z, denoted by P1(X), has two distinct roots α1 and α1 lying very close to ξ .
Grace’s complex version of Rolle’s Theorem (see, for example, [114], page 25)
asserts that its derivative P ′1(X) has a root α2 in the closed disc centered at
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(α1+α1)/2 and of radius |α1−α1| cot(π/n1)/2. Observe that this closed disc
reduces to the point (α1 + α1)/2 if n1 = 2. Consequently, we have

|ξ − α2| ≤ |ξ −�e α1| + |α1 − α1|
2

· n

π
≤ n |ξ − α1|,

deg(α2) ≤ n1 − 1, and H(α2) ≤ 2n H(P ′1) ≤ 2nnH,

by Lemma A.3. If α2 is non-real, we proceed further in the same way in or-
der to construct an algebraic approximant α3 of ξ whose degree is strictly less
than the degree of α2. We iterate this process until we end up with a real ap-
proximant. This always happens since the degrees of the algebraic numbers we
construct form a strictly decreasing sequence. Consequently, there exists a real
algebraic number α with

H(α) ≤ (2nn)n H and |ξ − α| ≤ nn |ξ − α1|,
and α �= ξ , since ξ is not algebraic of degree at most n. Thus, we have for any
real number H ≥ 1

w∗n
(
ξ, 2n2

nn H
) ≤ nn w∗c

n (ξ, H)

and

w∗c
n (ξ) ≤ lim sup

H→+∞

− log
(
Hn−n w∗n

(
ξ, 2n2

nn H
))

log H
= w∗n(ξ)

holds, as asserted.

As for Mahler’s classification, the classes S∗, T ∗, and U∗ may be further sub-
divided into infinitely many subclasses.

DEFINITION 3.6. We define the ∗-type t∗(ξ) of an S∗-number ξ as the value
of w∗(ξ), that is,

t∗(ξ) = lim sup
n→+∞

w∗n(ξ)

n
.

As for the S-numbers, this definition may not match with the quantity

sup
n≥1

w∗n(ξ)

n
,

which Koksma [333] called ‘Index der S∗-Zahl ξ ’. The discussion following
Definition 3.2 can be rephrased with w∗n and S∗ instead of wn and S. Again,
no matter how the ∗-type is defined, Theorem 5.6 asserts that there are real
S∗-numbers of arbitrary ∗-type greater than or equal to 1.
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DEFINITION 3.7. Let ξ be a T ∗-number and, for any positive integer n, define
the real number τ ∗n by w∗n(ξ) = nτ∗n . The ∗-type of ξ , denoted by t∗(ξ), is the
quantity

t∗(ξ) = lim sup
n→+∞

τ ∗n .

DEFINITION 3.8. Let ξ be a U∗-number. The ∗-type of ξ , denoted by t∗(ξ), is
the smallest positive integer n such that w∗n(ξ) = +∞.

The U∗-numbers of ∗-type 1 are precisely the Liouville numbers.
The analogue of Theorem 3.2 holds, namely two algebraically dependent

real numbers belong to the same class. Moreover, they have same ∗-type if
both are T ∗-numbers. The proof is left as Exercise 3.6, where it is also shown
that for any real transcendental number ξ and any positive integers k and n, we
have

w∗n(ξ)+ 1 ≤ k
(
w∗n(ξ k)+ 1

)
and

w∗n(ξ k) ≤ w∗kn(ξ). (3.10)

As for inequality (3.7), Theorem 7.7 can be used to prove that (3.10) is sharp.
As in Mahler’s classification, since the functions w∗n are invariant by rational

translations, almost all real numbers belong to the same class and have the
same ∗-type. We end this Section with a metric result due to Koksma [333],
Satz 13.

THEOREM 3.3. Almost all real numbers are S∗-numbers of ∗-type less than
or equal to 1.

PROOF. For any positive integers H , n and k, let E(H, n, k) denote the union
of the intervals [α−H−n−1−1/k, α+H−n−1−1/k] over all real algebraic num-
bers α of degree at most n and of height H . Since there are no more than
n(n + 1)(2H + 1)n such algebraic numbers α, we get

λ
(
E(H, n, k)

) ≤ 2n(n + 1)(2H + 1)n H−n−1−1/k,

and the sum
∑

H≥1 λ(E(H, n, k)) converges. It then follows from the Borel–
Cantelli Lemma 1.2 that λ(E(n, k)) = 0, where E(n, k) denotes the set of real
numbers ξ such that the inequality

|ξ − α| < H−n−1−1/k

has infinitely many solutions in real algebraic numbers α of height at most H
and of degree at most n. Since any S∗-number whose ∗-type is strictly greater
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than 1, any T ∗-number and any U∗-number belong to some set E(n, k), we
conclude that almost all real numbers are S∗-numbers of ∗-type less than or
equal to 1.

3.4 Comparison between both classifications

In this Section, we use a result of Wirsing [598] on the approximation of real
numbers by algebraic numbers of bounded degree to show that the classifica-
tions of Mahler and Koksma are essentially equivalent (first assertion of The-
orem 3.6). Actually, this fact had been established before Wirsing’s result, but
with a slightly more complicated proof, by Koksma [333] in the paper where
he introduced its classification.

PROPOSITION 3.2. For any positive integer n and any real number ξ , we have
wn(ξ) ≥ w∗n(ξ).

PROOF. We may assume that w∗n(ξ) is positive. Let w∗ be real with 0 < w∗ <

w∗n(ξ). By the definition of w∗n(ξ), there exist infinitely many non-zero alge-
braic numbers α of degree at most n such that |ξ−α| ≤ H(α)−1−w∗ . Denoting
by Pα(X) the minimal polynomial over Z of such an α, Rolle’s Theorem im-
plies that

|Pα(ξ)| ≤ |ξ − α| max
t∈[ξ−1,ξ+1]

|P ′α(t)| ≤ c4 H(Pα) H(α)−1−w∗ ,

for some positive constant c4 depending only on ξ and n. Since H(Pα) = H(α),
this shows that wn(ξ) ≥ w∗. Letting w∗ tend to w∗n(ξ), we get wn(ξ) ≥ w∗n(ξ),
as claimed.

One may ask whether there exist real numbers ξ such that wn(ξ) and w∗n(ξ)

are different. The answer is positive, and this will be proved in Chapter 7.
While it is easy to bound wn(ξ) from below in terms of w∗n(ξ), it is highly

non-trivial to estimate w∗n(ξ) from below in terms of wn(ξ). Such a result
was first obtained by Wirsing [598] in 1961 (and, later and independently,
by Sprindžuk). He established various lower bounds for w∗n(ξ), when ξ is a
transcendental real number or a real algebraic number of degree at least n+ 1.

THEOREM 3.4. Let n be a positive integer and ξ be a real number which is
not algebraic of degree at most n. Then we have

w∗n(ξ) ≥ wn(ξ)− n + 1, (3.11)

w∗n(ξ) ≥ wn(ξ)+ 1

2
, (3.12)

w∗n(ξ) ≥ wn(ξ)

wn(ξ)− n + 1
, (3.13)
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and

w∗n(ξ) ≥ n

4
+
√

n2 + 16n − 8

4
. (3.14)

Inequality (3.11), under a hidden form, is due to Schneider [517], Hilfssatz 19.
The lower bound (3.13) and a result slightly weaker than (3.14) (namely, the es-
timate w∗n(ξ) ≥ (n+2+√n2 + 4n − 4)/4, which follows by combining (3.12),
(3.13), and Proposition 3.1) were obtained by Wirsing [598], while (3.14) is a
result of Bernik and Tishchenko [95]. The proof of (3.13) given below is not
the original one of Wirsing and can be found in [122].

We display an immediate consequence of (3.13) and Proposition 3.2.

COROLLARY 3.2. Let n be a positive integer and ξ be a real number which is
not algebraic of degree at most n. If wn(ξ) = n, we then have w∗n(ξ) = n.

We are now able to show how the second assertion of Theorem 2.7 and Theo-
rem 2.8 follow from the first assertion of Theorem 2.7.

THEOREM 3.5. The A∗-numbers are exactly the algebraic numbers. Let ξ be
a real algebraic number of degree d and let n be a positive integer. We then
have w∗n(ξ) = min{n, d − 1}.
PROOF. Inequality (3.12) of Theorem 3.4 combined with Proposition 3.1
shows that w∗(ξ) ≥ 1/2 holds for any real transcendental number ξ . Con-
versely, let ξ be a real algebraic number of degree d and n be a positive in-
teger. We infer from Corollary A.2 that w∗n(ξ) ≤ d − 1, hence we get that
w∗(ξ) = 0, and the first assertion of the theorem is proved. Furthermore, we
observe that for n at most equal to d−1, Theorem 3.1 and Corollary 3.2 imply
that w∗n(ξ) = n = min{n, d−1}. In particular, for any n at least equal to d−1,
we have w∗n(ξ) ≥ w∗d−1(ξ) = d − 1, hence w∗n(ξ) = d − 1, by Corollary A.2.
This completes the proof of the theorem.

It easily follows from Proposition 3.2 and Theorem 3.4 that the classifications
of Mahler and of Koksma are equivalent.

THEOREM 3.6. The classifications of Mahler and of Koksma coincide, in the
sense that any S-number (resp. T -number, U-number) is an S∗-number (resp.
T ∗-number, U∗-number). Further, if ξ is an S-number, we then have t∗(ξ) ≤
t (ξ) ≤ t∗(ξ) + 1. If ξ is either a T -number or a U-number, then its type is
equal to its ∗-type.

PROOF. For a real transcendental number ξ , we infer from (3.11), (3.12), and
Proposition 3.2 that the inequalities

w∗n(ξ) ≤ wn(ξ) ≤ min{n + w∗n(ξ), 2w∗n(ξ)} (3.15)
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hold for any positive integer n. Consequently, wn(ξ) and w∗n(ξ) are simultane-
ously finite or infinite and w∗(ξ) ≤ w(ξ) ≤ min{w∗(ξ) + 1, 2w∗(ξ)}. Thus,
we have t∗(ξ) ≤ t (ξ) ≤ t∗(ξ) + 1 if ξ is an S-number. If ξ is a T -number,
then wn(ξ) ≥ n for infinitely many n and we infer from (3.15) that

lim sup
n→+∞

log w∗n(ξ)

log n
≤ lim sup

n→+∞
log wn(ξ)

log n
≤ lim sup

n→+∞
log 2w∗n(ξ)

log n
,

which implies that t (ξ) = t∗(ξ).

Koksma [333], Satz 11, proved the first assertion of Theorem 3.6 without using
Theorem 3.4 (see also Schneider [517]). Furthermore, he showed (Satz 10) that
any S-number ξ is an S∗-number with t∗(ξ) ≤ t (ξ) ≤ t∗(ξ)+ 2.

We now turn to the proof of Theorem 3.4. Clearly, the functions w1 and w∗1
coincide. Let n ≥ 2 be an integer and let ξ be a real number which is not al-
gebraic of degree at most n. We first prove (3.11), and then inequalities (3.12),
(3.14), and (3.13).

• Proof of the lower bound (3.11).
Let w be a real number with w < wn(ξ). We infer from the definition of wn(ξ)

and Lemma A.3 that there exist infinitely many irreducible integer polynomials
P(X) of degree at most n satisfying

0 < |P(ξ)| ≤ H(P)−w.

By Lemma A.8, such a polynomial P(X) has a root α with

|ξ − α| ≤ (2n)n |P(ξ)| · H(P)n−2.

This implies the lower bound w∗c
n (ξ) ≥ w − n + 1. We conclude by noticing

that w can be taken arbitrarily close to wn(ξ) and by applying Lemma 3.1.

Without any loss of generality, we may assume in the sequel of the proof of
Theorem 3.4 that 0 < ξ < 1/10 holds and, by (3.11), that wn(ξ) is finite. In all
what follows (apart from Lemma 3.2 and its proof), the notation a � b means
that there exists a real number λ, depending only on n, such that a ≥ λ b.

• Proof of the lower bound (3.12).
Let ε be a real number with 0 < ε < 1/2. We infer from the definition of
wn(ξ) and Lemma A.3 that there exist infinitely many irreducible, primitive,
integer polynomials P(X) of degree at most n satisfying

0 < |P(ξ)| ≤ H(P)−wn(ξ)+ε.

Let P(X) be such a polynomial. If R(X) is an integer polynomial of degree at
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most n which is a multiple of P(X), then, again by Lemma A.3, there exists a
positive constant c5, depending only on n, with c5 < 1 and H(R) ≥ 2c5 H(P).
By Theorem B.2, the system of inequalities

|bnξn + . . .+ b0| ≤ c−n
5 H(P)−n

|b1|, . . . , |bn| ≤ c5H(P)

has a non-zero integer solution (b0, . . . , bn). Set Q(X) = bn Xn+ . . .+b1 X+
b0. If H(P) ≥ 2c−1

5 , it follows from the assumption 0 < ξ < 1/10 that H(Q)

is at most equal to c5H(P). Consequently, by our choice of c5, the polynomials
P(X) and Q(X) have no common factor.

Hence, one can build two sequences (Pk)k≥1 and (Qk)k≥1 of non-zero in-
teger polynomials of degree at most n, such that the height of Pk(X) tends to
infinity with k,

|Pk(ξ)| ≤ H(Pk)
−wn(ξ)+ε, H(Qk)
 H(Pk),

|Qk(ξ)| 
 H(Pk)
−n (k ≥ 1), (3.16)

and

Pk(X) and Qk(X) are coprime (k ≥ 1).

To conclude, we need an auxiliary lemma, due to Wirsing [598]. Notice that
in Lemma 3.2 below and in its proof, the constant implied in 
 depends only
on t .

LEMMA 3.2. Let t ≥ 2 be an integer and let P(X) and Q(X) be coprime
polynomials with integer coefficients of degrees less than or equal to t . Let ξ

be a real number with |ξ | ≤ 1 and which is not algebraic of degree less than
or equal to t . Assume that there exist a root of P(X) and a root of Q(X) in the
open disc centered at ξ of radius 1. Then, we either have

1 
 max{P2(ξ) · H(P)t−2 · H(Q)t , Q2(ξ) · H(Q)t−2 · H(P)t }, (3.17)

or there exists a real root α of the polynomial P Q(X) such that one of the
following four cases holds:

|ξ − α| 
 |P(ξ)| · H(P)−1, (3.18)

|ξ − α| 
 |Q(ξ)| · H(Q)−1, (3.19)

|ξ − α|2 
 P2(ξ) · |Q(ξ)| · H(P)t−2 · H(Q)t−1, (3.20)

|ξ − α|2 
 |P(ξ)| · Q2(ξ) · H(P)t−1 · H(Q)t−2. (3.21)
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PROOF. We denote by α1, . . . , αm the roots of P(X) and by β1, . . . , βn those
of Q(X), numbered in such a way that, if pi := |αi − ξ | and q j := |β j − ξ | for
i = 1, . . . , m and j = 1, . . . , n, we have p1 ≤ . . . ≤ pm and q1 ≤ . . . ≤ qn .
Without loosing any generality, we may assume p1 ≤ q1 < 1. Denote by am

the leading coefficient of P(X) and by bn that of Q(X). Corollary A.1 applied
with ρ = 1 gives

|P(ξ)| 
 H(P)
∏

1≤i≤m

min{1, pi } 
 |P(ξ)| (3.22)

and

|Q(ξ)| 
 H(Q)
∏

1≤ j≤n

min{1, q j } 
 |Q(ξ)|. (3.23)

If m = 1 or if m > 1 and p2 > 1 (resp. if n = 1 or if n > 1 and q2 > 1), then
α1 (resp. β1) is real and (3.22) (resp. (3.23)) implies that we are in the case
(3.18) (resp. (3.19)). Thus, we can assume that m ≥ 2, n ≥ 2, and p2 ≤ 1,
q2 ≤ 1. Denoting by R the resultant (see Definition A.1) of the polynomials
P(X) and Q(X), we have

1 ≤ |R| = |am |n|bn|m
∏

1≤i≤m
1≤ j≤n

|αi − β j |


 |ambn|t
∏

1≤i≤m
1≤ j≤n

max{pi , q j } =: AB, (3.24)

where

A =
∏

i :pi≤1

∏
j :q j≤1

max{pi , q j }

and

B ≤ |ambn|t
∏

1≤i≤m
1≤ j≤n

(
max{1, pi }max{1, q j }

)
 H(P)t H(Q)t .

If p2 ≤ q1, we have p1 ≤ p2 ≤ q1 ≤ 1, whence

A ≤
∏

j :q j≤1

q2
j 
 Q2(ξ)H(Q)−2,

by (3.23). This gives (3.17).
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Thus, we can assume that q1 < p2. If moreover q2 is such that p1 ≤ q1 <

p2 ≤ q2, then we get

A 
 q1

( ∏
i≥2:pi≤1

pi

) ( ∏
j≥2:q j≤1

q2
j

)
.

By multiplying (3.24) by p1q1, we infer from (3.22) that

p2
1 ≤ p1q1 


( ∏
i :pi≤1

pi

)( ∏
j :q j≤1

q2
j

)
H(P)t H(Q)t


 |P(ξ)| · Q2(ξ) H(P)t−1H(Q)t−2,

which gives (3.20). In the same way, if q2 is such that p1 ≤ q1 ≤ q2 < p2,
one ends up with (3.21), and the proof of the lemma is complete. Further, α1 is
real since p1 < p2.

Let k be sufficiently large such that the polynomials Pk(X) and Qk(X) have
a root in the open disc centered at ξ of radius 1, and apply Lemma 3.2 to the
pairs of polynomials (Pk, Qk). By (3.16), we get

max{P2
k (ξ) · H(Pk)

n−2 H(Qk)
n, Q2

k(ξ) · H(Qk)
n−2 H(Pk)

n}
H(Pk)
−1,

since wn(ξ) − ε ≥ n − 1/2. Thus, (3.17) cannot hold for k large enough. If
for infinitely many k we are in one of the cases (3.18) or (3.19), we then get
w∗n(ξ) ≥ n. Consequently, we may assume that for k large enough, we are in
one of the cases (3.20) or (3.21). This implies that there exists a real root αk of
the polynomial Pk Qk(X) such that

|ξ − αk |2 
 H(Pk)
−2wn(ξ)+2ε+n−3 or |ξ − αk |2 
 H(Pk)

−wn(ξ)+ε−3.

Since H(αk) 
 H(Pk) and ε can be taken arbitrarily small, we get the lower
bound

w∗n(ξ) ≥ min

{
n, wn(ξ)− n − 1

2
,
wn(ξ)+ 1

2

}
≥ min

{
n,

wn(ξ)+ 1

2

}
,

where we use that wn(ξ) ≥ n. Consequently, (3.12) holds when wn(ξ) ≤
2n − 1. If wn(ξ) > 2n − 1, then (3.12) follows from (3.11).

• Beginning of the proofs of (3.14) and (3.13).
Let A and HA be positive real numbers with 2 < A < n + 1 and such that, for
any algebraic number α of degree at most n and of height at least equal to HA,
we have

|ξ − α| ≥ H(α)−A. (3.25)
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Let ε > 0 and H ≥ 2 be real numbers. By Minkowski’s Theorem B.2, there
exists a non-zero integer polynomial P(X) := an Xn + an−1 Xn−1 + . . . +
a1 X + a0 such that

|P(ξ)| ≤ H−n−ε

|a1| ≤ H1+ε (3.26)

|a2|, . . . , |an| ≤ H.

If |a1| ≤ H , we then have H(P) ≤ H , otherwise we get H(P) = |a1|, since
our assumption on ξ implies that |a0| < H(P).

The idea of Bernik and Tishchenko [95] is to consider the quantity |P ′(ξ)|.
When |P ′(ξ)| is not too small, Lemma A.5 asserts that P(X) has a root very
close to ξ . If H(P) = |a1|, we infer from 0 < ξ < 1/10 that

|P ′(ξ)| = |nanξn−1 + . . .+ 2a2ξ + a1|
≥ |a1| − |nanξn−1 + . . .+ 2a2ξ | ≥ |a1|

2
= H(P)

2
.

Recall that ξ is not algebraic of degree at most n. By (3.25), Lemma A.3, and
Lemma A.5, if H is large enough, we then get

|P(ξ)| � |ξ − α| |P ′(ξ)| � H(P)1−A, (3.27)

where α denotes a root of P(X) with |ξ − α| minimal. Further, by (3.26), we
have

|P(ξ)| ≤ H(P)−(n+ε)/(1+ε),

which, combined with (3.27), yields

ε ≥ n + 1− A

A − 2
− c6

log 3H(P)

for some positive constant c6 depending only on n. Thus, if ε is sufficiently
small, then the height of P(X) is strictly less than |a1| and satisfies H(P) =
max{|a2|, . . . , |an|}. In other words, under the hypothesis

ε <
n + 1− A

A − 2
, (3.28)

and provided that H is large enough, we have constructed a non-zero integer
polynomial P(X) satisfying H(P) ≤ H and |P(ξ)| ≤ H−n−ε, hence such
that

|P(ξ)| ≤ H(P)−n−ε. (3.29)
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We will exploit this remark in two different ways.

• Proof of the lower bound (3.14).
Let ε be a positive real number satisfying (3.28). Using Theorem B.2 as ex-
plained above with arbitrarily large values of H in (3.26), we get that there
exist infinitely many integer polynomials P(X) of degree at most n satisfy-
ing (3.29). Furthermore, we infer from Lemma A.3 that there are infinitely
many integer polynomials P(X), irreducible over Q and primitive, such that
|P(ξ)| 
 H(P)−n−ε. Let P(X) be such a polynomial and consider the system
of inequalities

|bnξn + . . .+ b0| ≤ c−n
5 H(P)−n−ε

|b1| ≤ c5 H(P)1+ε

|b2|, . . . , |bn| ≤ c5 H(P),

where c5 is the same constant as in the beginning of the proof of (3.12). By
Theorem B.2, it has a non-zero integer solution (b0, . . . , bn). Set Q(X) =
bn Xn + . . . + b1 X + b0. Arguing as above, we infer from the assumption
on ε that H(Q) ≤ c5H(P) if H(P) is sufficiently large. Consequently, our
choice of c5 implies that the polynomials P(X) and Q(X) have no common
factor.

Hence, one can build two sequences (Pk)k≥1 and (Qk)k≥1 of non-zero in-
teger polynomials of degree at most n, such that the height of Pk(X) tends to
infinity with k,

|Pk(ξ)| ≤ H(Pk)
−n−ε, H(Qk)
 H(Pk),

|Qk(ξ)| 
 H(Pk)
−n−ε (k ≥ 1), (3.30)

and

Pk(X) and Qk(X) are coprime (k ≥ 1).

As in the proof of (3.12), we apply Lemma 3.2 to the pairs of polynomials
(Pk, Qk). We infer from (3.30) that (3.17) cannot hold for k large enough.
If for infinitely many k we are in one of the cases (3.18) or (3.19), we then
get w∗n(ξ) ≥ n and (3.14) holds. Otherwise, we may assume that for k large
enough, we are in one of the cases (3.20) or (3.21). This means that there exists
a real root αk of the polynomial Pk Qk(X) such that

H(αk)
−2 A 
 |ξ − αk |2 
 H(αk)

−3−n−3 ε. (3.31)

Letting ε tend to the upper bound (n+1−A)/(A−2) given in (3.28), it follows
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from (3.31) that A satisfies the inequality

2 A2 − (n + 4) A + (3− n) ≥ 0,

whence

A ≥ n + 4

4
+
√

n2 + 16n − 8

4
.

The claimed result is proved since w∗n(ξ) ≥ A − 1.

• Proof of the lower bound (3.13).
Since the method allows us to construct infinitely many polynomials satisfying
(3.29), we get wn(ξ) ≥ n + ε. Letting ε tend to the upper bound (n + 1 −
A)/(A − 2) given in (3.28), we obtain

wn(ξ) ≥ n + n + 1− A

A − 2
,

hence,

A ≥ 2 wn(ξ)+ 1− n

wn(ξ)+ 1− n
,

and (3.13) follows from Lemma 3.1 and w∗c
n (ξ) ≥ A − 1.

For approximation by real quadratic numbers, Wirsing’s statement has been
improved upon by Davenport and Schmidt [180], who have obtained the fol-
lowing result, best possible up to the value of the numerical constant.

THEOREM 3.7. For any real number ξ which is neither rational nor
quadratic, and for any real number c7 greater than 160/9, there exist infinitely
many rational or quadratic real numbers α satisfying

|ξ − α| ≤ c7 max{1, |ξ |2}H(α)−3.

Theorem 3.7 is proved in [180] and also in [512]. It has been extended by
Davenport and Schmidt [181] (up to the value of the numerical constant) as
follows.

THEOREM 3.8. Let n ≥ 2 be an integer and let ξ be a real number which is not
algebraic of degree at most n. Then there exists an effectively computable con-
stant c8, depending only on ξ and on n, an integer d with 1 ≤ d ≤ n − 1, and
infinitely many integer polynomials P(X) of degree n whose roots α1, . . . , αn

can be numbered in such a way that

|(ξ − α1) . . . (ξ − αd)| ≤ c8 H(P)−n−1.

Tishchenko [560, 561, 564, 565] obtained slight sharpenings of (3.14) for small
values of n. Furthermore, he proved [563] that there exists a sequence (γn)n≥1
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of positive real numbers, tending to 3, such that, for any real transcendental
number ξ and any positive integer n, we have w∗n(ξ) ≥ n/2 + γn . This re-
mains somehow far away from a celebrated conjecture of Wirsing, saying that
w∗n(ξ) ≥ n holds for any positive integer n and any real transcendental number
ξ . A heuristic support for this conjecture is the fact that there are integer poly-
nomials P(X) with arbitrarily large height such that |P(ξ)| 
 H(P)−n . Here
and below, the constant implied by 
 only depends on ξ and n. By Lemma
A.5, such a polynomial has a root α satisfying |ξ − α| 
 |P(ξ)/P ′(ξ)|. Fur-
thermore, if P(X) has no other root very close to ξ , the order of magnitude of
|P ′(ξ)| is H(P) and we get that |ξ −α| 
 H(P)−n−1. A difficulty arises since
we cannot exclude the case when all but finitely many such polynomials have
two distinct roots very close to ξ .

The plausibility of Wirsing’s Conjecture and (3.11) motivate the following
problem.

MAIN PROBLEM. Let (wn)n≥ 1 and (w∗n)n≥ 1 be two non-decreasing se-
quences in [1,+∞] such that

n ≤ w∗n ≤ wn ≤ w∗n + n − 1, for any n ≥ 1.

Then there exists a real transcendental number ξ such that

wn(ξ) = wn and w∗n(ξ) = w∗n for any n ≥ 1.

There is no evidence against (or for!) the Main Problem, which, in other words,
claims that all that is not trivially impossible may occur. It will be the fil rouge
of the next Chapters. A summary of the results obtained towards its resolution
is given in Section 7.8.

3.5 Some examples

In this Section, we discuss where some classical numbers, like π , e, and log α

for a non-zero algebraic number α, are located in Mahler’s classification.
Popken [463] proved that for any positive integer n there exists a positive

constant c9(n), depending only on n, such that

|P(e)| ≥ H−n−c9(n)/(log log H) (3.32)

for any integer polynomial of degree n and height H sufficiently large. It im-
mediately follows that we have wn(e) = n for any positive integer n, thus e
is an S-number of type 1 and, by Corollary 3.2, an S∗-number of ∗-type 1.
Popken’s result was refined by Mahler [376], who showed that we can take
c9(n) = c10n2 log n in (3.32), for some suitable positive, absolute, constant
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c10. In the same paper, Mahler proved that eα is an S-number for any non-zero
algebraic number α, whose type can be explictly bounded (see, for example,
Diaz [187]).

In [384, 385], Mahler showed that π and log α are not U -numbers, where
α �= 1 is a non-zero algebraic number. Subsequently, A. Baker [40] (see also
Sorokin [528]) established that for any positive integer n and any positive real
number ε, we have wn(log(a/b)) ≤ n + ε if a and b are positive integers,
sufficiently large in terms of n, ε, and |a − b|.

Further results can be found in the doctoral dissertation of Cijsouw [166] or
in the books of Feldman and Nesterenko [244] (Chapter 2) and of Chudnovsky
[164] (Chapter 2). For example, if α and β are algebraic numbers with α �= 0, 1
and β irrational, then αβ is either an S-number or a T -number of type at most
2.

3.6 Exponents of Diophantine approximation

After having defined the functions wn and w∗n in Sections 3.1 and 3.3, we in-
troduce below four other exponents of Diophantine approximation. We survey
known results on these and discuss briefly some related questions.

Davenport and Schmidt [182] investigated the approximation of real num-
bers by algebraic integers of bounded degree. This is an inhomogeneous prob-
lem which needs alternative methods, since, for instance, Theorem B.2 is use-
less in this context. Their approach yields the following result which estab-
lishes a link between simultaneous rational approximation and approximation
by algebraic numbers of bounded degree.

PROPOSITION 3.3. Let n ≥ 2 be an integer and let ξ be a real number. Assume
that there exist positive real numbers κ and w and arbitrarily large values of
X for which the inequalities

|x0| ≤ X, max
1≤m≤ n

|x0ξ
m − xm | ≤ κ X−1/w (3.33)

have no solution in integers x0, . . . , xn not all 0. We then have w∗n(ξ) ≥ w.

PROOF. We may assume that κ < 1. Let X be one of the large numbers spec-
ified in the statement of the proposition and set Y = X (w+1)/(wn+w). Let C(Y )

be the parallelepiped defined by

|x0| ≤ Y n, |x0ξ
m − xm | ≤ Y−1, 1 ≤ m ≤ n.

The first of its successive minima, denoted by λ1(Y ), satisfies

λ1(Y ) ≥ κ Y−(n−w)/(w+1), (3.34)



3.6 Exponents of Diophantine approximation 63

since otherwise there would be a non-zero solution to the system (3.33).
The polar body C∗(Y ) of C(Y ) is defined by

|xnξn + . . .+ x1ξ + x0| ≤ Y−n, |xm | ≤ Y, 1 ≤ m ≤ n,

and it follows from (3.34) and Theorem B.4 that the (n + 1)-th minimum
λ∗n+1(Y ) of C∗(Y ) satisfies

λ∗n+1(Y ) ≤ c11 Y (n−w)/(w+1),

for some positive constant c11 depending only on ξ and n. Thus, there exist
n + 1 linearly independent integer polynomials Pj (X) := x ( j)

n Xn + . . . +
x ( j)

1 X + x ( j)
0 , of degree at most n, with

|Pj (ξ)| ≤ c11 Y−w(n+1)/(w+1) and H(Pj ) ≤ c11 Y (n+1)/(w+1),

for any j = 1, . . . , n+1 and, by Theorem B.3, such that | det(x ( j)
i )| ≤ (n+1)!.

Arguing then as in the proof of Theorem 2.11, we use the Eisenstein Criterion
to construct an irreducible integer polynomial P(X) of degree n by taking a
suitable linear combination of P1(X), . . . , Pn+1(X) in such a way that P(X)

has a real root α with

|ξ − α| ≤ c12 H(α)−1−w,

where c12 only depends on ξ and n. This implies that w∗n(ξ) ≥ w, as claimed.

Proposition 3.3 invites us to introduce the functions w′n and ŵ′n .

DEFINITION 3.9. Let n be a positive integer and let ξ be a real number. We
denote by w′n(ξ) the infimum of the real numbers w such that there are arbi-
trarily large values of X for which the inequalities

|x0| ≤ X, 0 < max
1≤m≤n

|x0ξ
m − xm | ≤ X−1/w

have a solution in integers x0, . . . , xn . Further, we denote by ŵ′n(ξ) the infi-
mum of the real numbers w such that for all sufficiently large values of X the
inequalities

|x0| ≤ X, 0 < max
1≤m≤ n

|x0ξ
m − xm | ≤ X−1/w (3.35)

have a solution in integers x0, . . . , xn .
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It is readily verified that ŵ′n(ξ) is the supremum of the real numbers w such
that there are arbitrarily large values of X for which the inequalities (3.35) have
no solution in integers x0, . . . , xn .

Any real number ξ satisfies w′1(ξ) = 1/w1(ξ) and w
′
n(ξ) ≤ ŵ

′
n(ξ). For any

positive integer n and any real algebraic number ξ of degree d ≥ 2, we have
w
′
n(ξ) = ŵ

′
n(ξ) = min{n, d − 1}. Furthermore, it follows from Theorem 1.1

and Dirichlet’s Schubfachprinzip, that max{1, w′n(ξ)} ≤ w
′
n(ξ) ≤ n holds for

any integer n ≥ 2 and any irrational real number ξ .
Not surprisingly, wn(ξ) and w∗n(ξ) are related to the simultaneous rational

approximation of ξ, ξ2, . . . , ξn .

THEOREM 3.9. For any positive integer n and any real number ξ not alge-
braic of degree at most n, we have

n

wn(ξ)− n + 1
≤ w′n(ξ) ≤ (n − 1)wn(ξ)+ n

wn(ξ)
≤ n

and w∗n(ξ) ≥ ŵ′n(ξ). In particular, we have wn(ξ) > n if, and only if, w′n(ξ) <

n holds.

The first assertion of Theorem 3.9 is a direct consequence of Khintchine’s
Transference Theorem B.5, while the second one follows from Proposition
3.3.

The method of Davenport and Schmidt [182] offers much more flexibility
than the approach Wirsing [598] used to prove Theorem 3.4 above, insofar as
we may impose several constraints on the algebraic approximants, for exam-
ple to be algebraic integers [182, 140] (see also the proof of Theorem 2.11) or
algebraic units [549]. Let n ≥ 2 be an integer and let ξ be a real transcendental
number. Applying a result of Davenport and Schmidt [182] which asserts that
the assumptions of Proposition 3.3 are satisfied with w = [n/2] and a suitable
positive constant κ , Bugeaud and Teulié [140, 549] deduced from Proposition
3.3 the existence of infinitely many real algebraic numbers α of degree n satis-
fying |ξ − α| ≤ c13 H(α)−1−[n/2], with a suitable constant c13 depending only
on ξ and n. Laurent [354] slightly improved upon the result of Davenport and
Schmidt for odd values of n. To state a consequence of his result, we introduce
the following notation: for any positive real number x , set �x� = x when x is
an integer and �x� = [x]+ 1, otherwise.

THEOREM 3.10. Let n be a positive integer and let ξ be a real number which
is not an algebraic number of degree less than or equal to �n/2�. We then have
ŵ′n(ξ) ≥ �n/2� and there exists a constant c14, depending only on ξ and n,
infinitely many real algebraic numbers α of degree n, and infinitely many real
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algebraic integers α of degree n + 1 such that

|ξ − α| ≤ c14 H(α)−1−�n/2�.

Actually, Laurent’s result for n = 2 is weaker than the following one, due to
Davenport and Schmidt [182].

THEOREM 3.11. Let ξ be a real number which is neither rational nor a
quadratic irrationality. We then have ŵ′2(ξ) ≥ (1 + √5)/2 and there exist
a constant c15, depending only on ξ , infinitely many real quadratic numbers α,
and infinitely many real algebraic integers α of degree 3 such that

|ξ − α| ≤ c15 H(α)−(3+√5)/2.

The exponent of H(α) obtained in Theorem 3.10 yields a slightly weaker lower
bound for w∗n(ξ) than (3.14), but we know the exact degree of the approxi-
mants. Furthermore, Theorem 3.7 does not imply the first assertion of Theorem
3.11.

After having defined wn , w∗n , w′n , and ŵ′n , we introduce a fifth function ŵn ,
which appeared for the first time in [182].

DEFINITION 3.10. Let n be a positive integer and let ξ be a real number.
We denote by ŵn(ξ) the supremum of the real numbers w such that for all
sufficiently large values of X the inequalities

0 < |xnξn + . . .+ x1ξ + x0| ≤ X−w, |xm | ≤ X, 1 ≤ m ≤ n, (3.36)

have a solution in integers x0, . . . , xn .

It is readily verified that ŵn(ξ) is the infimum of the real numbers w such that
there are arbitrarily large values of X for which the inequalities (3.36) have no
solution in integers x0, . . . , xn .

For any positive integer n and any real algebraic number ξ of degree d, we
have ŵn(ξ) = min{n, d − 1}, by Théorème 1 of [123]. Assume now that n is
a positive integer and ξ is a real number not algebraic of degree at most n.
It follows from Dirichlet’s Schubfachprinzip that we have ŵn(ξ) ≥ n, and
Davenport and Schmidt [182] (see also Theorem 4.2 of [484]) proved that
ŵn(ξ) ≤ 2n − 1 holds. Furthermore, the proof of Khintchine’s Transference
Theorem B.5 shows that the values ŵ′n(ξ) and ŵn(ξ) are related by

n

ŵn(ξ)− n + 1
≤ ŵ′n(ξ) ≤ (n − 1)ŵn(ξ)+ n

ŵn(ξ)
≤ n. (3.37)

Davenport and Schmidt [183] (for n = 2), R. C. Baker [49] (for n = 3), and
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Bugeaud [123, 125] (for general n) proved that ŵn(ξ) = n and ŵ′n(ξ) = n
(this is a direct consequence of (3.37)) hold for almost all real numbers ξ .

If w < n, the volume of the convex body defined by (3.33) tends to zero
as X tends to infinity. Thus, it is tempting to conjecture that for any integer
n ≥ 2 and any real transcendental number ξ the assumptions of Proposition
3.3 are satisfied with a suitable positive constant κ and w = n, or, at least, that
ŵ′n(ξ) = n holds. This is however surprisingly not true, as was proved by Roy
[479, 480]. Let {a, b}∗ denote the monoid of words on the alphabet {a, b} for
the product given by the concatenation. The Fibonacci sequence in {a, b}∗ is
the sequence of words ( fi )i≥0 defined recursively by

f0 = b, f1 = a, and fi = fi−1 fi−2 (i ≥ 2).

Since, for every i ≥ 1, the word fi is a prefix of fi+1, this sequence converges
to an infinite word f = abaabab . . . called the Fibonacci word on {a, b}. For
two positive distinct integers a and b, let ξa,b = [0; a, b, a, a, b, a, . . . ] be the
real number whose sequence of partial quotients is given by the letters of the
Fibonacci word on {a, b}, and, for any positive integer m, set

ξm := (m + 1+ ξm,m+2)
−1 = [0;m + 1, m, m + 2, m, m, m + 2, . . . ].

Let γ denote the Golden Section (1+√5)/2. Roy showed that ξm is transcen-
dental and that we have ŵ′2(ξm) = γ and ŵ2(ξm) ≥ γ 2. More precisely, there
exists a positive constant c16, depending only on m, such that, for any X ≥ 1,
the inequalities

0 < x0 ≤ X, |x0ξm − x1| ≤ c16 X−1/γ and |x0ξ
2
m − x2| ≤ c16 X−1/γ

have a non-zero integer solution (x0, x1, x2). If c16 is small enough, the same
conclusion also holds true for the inequalities

|x1| ≤ X, |x2| ≤ X, |x2ξ
2
m + x1ξm + x0| ≤ c16 X−γ 2

.

Furthermore, Roy [480] studied the approximation of ξm by real quadratic
numbers and proved the existence of positive constants c17 and c18, depending
only on m, such that |ξm − α| ≤ c17 H(α)−2γ 2

has infinitely many solutions
in algebraic numbers α of degree 2, while |ξm − α| ≤ c18 H(α)−2γ 2

has no
solution in quadratic irrationals α. In addition, he established [481, 482] that
there exists a positive constant c19, depending only on m, such that

|ξm − α| ≥ c19 H(α)−γ−1,
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for any algebraic integer α of degree at most 3, and

|P(ξm)| ≥ c19 H(P)−γ ,

for any monic, integer polynomial P(X) of degree at most 3. This proves that
the last assertion of Theorem 3.11 is the best possible (there is a gap in [567])
and disproves the conjecture claiming that, for any real transcendental number
ξ , for any integer n ≥ 2, and any positive real number ε, there exist infinitely
many algebraic integers α of degree at most n such that |ξ − α| ≤ H(α)−n+ε.
This conjecture was supported by a metric statement saying that almost all real
numbers share this approximation property ([140], Corollaire 1). Moreover,
Arbour and Roy [32] proved that ŵ2(ξ) ≤ γ 2 holds for any real number not
algebraic of degree at most 2. Actually, they showed that if the real number
ξ is such that for any sufficiently large positive real number H there exists a
non-zero integer polynomial P(X) of degree at most 2 and height at most H
with |P(ξ)| ≤ H−γ 2

/4, then ξ is algebraic of degree at most 2. It is worth
noting that

1 = w′2(ξm) <
1+√5

2
= ŵ′2(ξm) <

3+√5

2
= ŵ2(ξm)

< w∗2(ξm) = 2+
√

5,

holds, while we know that the functions w′2, ŵ′2, ŵ2, and w∗2 take the value 2
for almost all real numbers.

To conclude this Section, we define another function, introduced by
Bugeaud and Laurent [137] and motivated by Dirichlet’s Theorem 1.1.

DEFINITION 3.11. Let n be a positive integer and let ξ be a real number.
We denote by ŵ∗n(ξ) the supremum of the real numbers w such that for all
sufficiently large values of X there exists a real algebraic number α of degree
at most n with

0 < |ξ − α| ≤ H(α)−1 X−w and H(α) ≤ X. (3.38)

The discussion at the beginning of Section 3.3 and Dirichlet’s Theorem 1.1
invite us to consider (3.38) rather than the system of inequalities |ξ − α| ≤
X−w−1, H(α) ≤ X .

For any positive integer n and any real algebraic number ξ of degree d , we
have ŵn(ξ) = min{n, d − 1}, by Théorème 1 of [123]. Dirichlet’s Theorem
1.1 obviously implies that ŵ∗n(ξ) ≥ 1 holds for any irrational number ξ and
Corollary A.2 yields the upper bound ŵ∗n(ξ) ≤ 2n−1. Furthermore, Corollaire
1 of Bugeaud [123] asserts that we have ŵ∗n(ξ) = n for all positive integers n
and almost all real numbers ξ . Notice that the numbers ξm defined above satisfy
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ŵ∗2(ξm) = (3 + √5)/2. Other examples of real numbers ξ with ŵ∗2(ξ) > 2
and ŵ′2(ξ) < 2 have been given by Bugeaud and Laurent [137]. They further
improved (3.13) by showing that

ŵ∗n(ξ) ≥ wn(ξ)

wn(ξ)− n + 1
and w∗n(ξ) ≥ ŵn(ξ)

ŵn(ξ)− n + 1
(3.39)

hold for any positive integer n and any real number ξ not algebraic of degree
at most n (see Exercises 3.4 and 3.5).

We conclude by some consideration on inhomogeneous Diophantine ap-
proximation. Let n be a positive integer and θ be a real number. For any real
number ξ , let wn(ξ, θ) denote the supremum of the real numbers w for which
there exist infinitely many integer polynomials P(X) of degree at most n sat-
isfying

0 < |P(ξ)+ θ | ≤ H(P)−w.

Define further the n-th exponent of uniform inhomogeneous approximation
winh

n by

winh
n (ξ) = inf

θ∈R
wn(ξ, θ).

Bugeaud and Laurent [138] proved that ŵ′n(ξ) = winh
n (ξ) for any positive

integer n and any irrational real number ξ . It would be of interest to study
more closely the exponents wn(ξ, θ).

The questions evoked in this Section yield several open problems listed in
Chapter 10.

3.7 Exercises

EXERCISE 3.1. Let a, b, c, and d be rational integers with ad − bc �= 0
and let ξ be a real number. Let n be a positive integer. Prove that we have
wn(ξ) = wn((aξ + b)/(cξ + d)) and w∗n(ξ) = w∗n((aξ + b)/(cξ + d)). For a
fixed real algebraic number α, compare wn(ξ + α) with wn(ξ) and w∗n(ξ + α)

with w∗n(ξ).

EXERCISE 3.2. Let ξ = [a0; a1, a2, . . . ] be an irrational real number with
convergents p0/q0, p1/q1, . . . Following Güting [267], use Theorems 1.3 and
1.7 to prove that we have

w1(ξ) = w∗1(ξ) = 1+ lim sup
n→+∞

log an

log qn−1
,

if this lim sup is finite, and w1(ξ) = w∗1(ξ) = +∞ otherwise.
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Deduce that w1(ξ) = 1 if the sequence (log n
√

a1a2 . . . an)n≥1 converges
(Khintchine [321, 323] proved that this sequence tends to

∑
j≥1{log( j ( j +

2)+ 1)− log( j ( j + 2))}(log j)/ log 2 for almost all real numbers ξ ).

EXERCISE 3.3. Use Bombieri and Mueller’s method described in Theorem
2.10 to get the lower bound w∗n(ξ) ≥ n/(wn(ξ)−n+1), for any integer n ≥ 1
and any real number ξ which is not algebraic of degree at most n. Prove the
same result by means of the approach of Theorem 2.11.

EXERCISE 3.4. Use the method of Wirsing [598] to prove (3.13) and Theorem
2.10 (up to the numerical constants).

Hint. Let n ≥ 2 be an integer and let ξ be a real number which is not
algebraic of degree at most n. Let ε > 0 and set w = wn(ξ) (1 + ε)2. Use
Theorem B.2 to prove that there exists a positive constant c20, depending only
on ξ and n, and, for any positive H , an integer polynomial P(X) such that

|P(ξ)| ≤ H−w, |P(1)|, . . . , |P(n − 1)| ≤ H and

|P(n)| ≤ c20 Hw−n+1.

Show that H(P) ≥ c21 H1+ε for a suitable constant c21, depending only on
ξ , n, and ε, and apply Corollary A.1 to get that, when H is large enough,
the polynomial P(X) has a single (real) root in each small disc centered at
the points ξ, 1, . . . , n − 1; in particular, there exists a suitable constant c22,
depending only on ξ , n, and ε, such that P(X) has a real root α with |ξ −α| ≤
c22 H(α)−1+ε−w/(w−n+1). Conclude and prove the first inequality of (3.39).

With the same approach, use Theorem A.1 to get Theorem 2.10 (up to the
numerical constants).

EXERCISE 3.5. Show that the proof of (3.13) given in Section 3.4 actually
yields the second inequality of (3.39).

EXERCISE 3.6. Let ξ and η be two algebraically dependent transcendental real
numbers. Let F(X, Y ) be an irreducible polynomial with integer coefficients
vanishing at the point (ξ, η). Denote by M (resp. by N ) the degree of F(X, Y )

in X (resp. in Y ). Following Schmidt [508], prove that the inequality

w∗n(ξ)+ 1 ≤ M
(
w∗nN (η)+ 1

)
holds for any positive integer n.

Hint. Use the implicit function theorem to show that there exists a neigh-
bourhood of ξ and a one-to-one differentiable function y defined on this
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neighbourhood such that y(ξ) = η and F(x, y(x)) is identically zero. Let
H ≥ 1 be a real number. Assume that αn is an algebraic number of degree
at most n and height at most H such that w∗n(ξ, H)= |ξ − αn| and denote by

Q(X) := an(X − α
(1)
n ) . . . (X − α

(n)
n ) its minimal polynomial over Z, with

α
(1)
n = αn . Observe that |η − y(αn)| 
 w∗n(ξ, H). Here, and in the sequel of

the proof, the constant implied in
 depends only on ξ and on η. Since y(αn)

is a root of the polynomial

R(Y ) := aM
n F(α(1)

n , Y ) . . . F(α(n)
n , Y ),

which is not identically zero, y(αn) is algebraic of degree less than or equal
to nN . Use Exercise A.1 and Lemma A.3 to prove that H(y(αn)) 
 H M .
Conclude.

EXERCISE 3.7. Show that for any non-negative real number δ, any positive
integer k, and any real number w ≥ k + 1, there exist real numbers ξ such that

w∗1(ξ) = k(w + 1)− 1 and w∗1(ξ k) = w + δ.

Hint. Construct inductively two increasing sequences of prime numbers
(qn)n≥1, (vn)n≥1 and two increasing integer sequences (pn)n≥1, (un)n≥1 such
that the intervals

I2n :=
[

pk
n

qk
n
− 1

qk(w+1)
n

,
pk

n

qk
n
− 1

2qk(w+1)
n

]
and

I2n+1 :=
[

un

vn
− 1

vw+1+δ
n

,
un

vn
− 1

2vw+1+δ
n

]

satisfy I2 ⊃ I3 ⊃ . . . . Let ξ be the positive real number such that {ξ k} is the
intersection of the intervals In , n ≥ 2. Using triangular inequalities, estimate
the difference |ξ − a/b| for any rational number a/b with qk

n < b < qk
n+1

(distinguish three cases, depending on the size of |a/b− pk
n/qk

n |, |a/b−un/vn|,
and |a/b− pk

n+1/qk
n+1|). Prove that if (qn)n≥1 and (vn)n≥1 do not increase too

rapidly, we then have w∗1(ξ k) = w+δ and |ξ k−a/b| ≥ b−w−1 for any integers
a and b such that b does not belong to the sequence (vn)n≥1.

3.8 Notes

• Another presentation of Koksma’s classification, based on equivalence
classes, can be found in [508].

• Let Q be a set of integer polynomials and ξ be a transcendental real
number. At the end of [311], Kasch and Volkmann introduced the quantities
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wn(ξ, H,Q) defined as the minimum of |P(ξ)| over the set of integer polyno-
mials P(X) of degrees at most n and heights at most H which belong to Q.

• A link between Theorem B.3 and the approximation of real numbers by
algebraic numbers has been discussed by Mahler [401]. Notice that his remark
‘In the case of (3.29), ( . . . ) this property’ on page 159 is incorrect, since the
results of Cassels [154] and Davenport [175] quoted therein do not deal with
n-tuples of the particular form (a, a2, . . . , an).

• Khintchine [318] proved that the set of real numbers ξ for which there ex-
ist a positive integer n and a positive constant κ such that |P(ξ)| ≥ κ H(P)−n

for any integer polynomial of degree at most n is a null set.

• Galočkin [254] proved that values at some algebraic points of Mahler
functions satisfying certain functional equations are S-numbers. Improvements
and extensions to more general Mahler functions are due to Becker-Landeck
[58], Wass [595], Becker [56], Nishioka [438] (see also [439], pages 137 and
138), Nishioka and Töpfer [440], and Töpfer [569, 570]. Amou [27] gave ex-
plicit upper bounds for the type of S-numbers obtained as values at algebraic
points of functions satisfying certain functional equations of Mahler’s type.

• Lang [348] established that values taken by E-functions at algebraic
points are S-numbers (see Shidlovskii [522] for further references and results).
Chudnowsky [163] established that if the Weierstrass ℘ function has algebraic
invariants and complex multiplication, then ℘(α) is an S-number for any non-
zero algebraic number α.

• In a very original paper, Duverney [222] showed that the sum of the re-
ciprocals of the Fermat numbers

∑
n≥0 1/(22n + 1) is either an S-number or a

T -number of type at most 2 (actually, with a slight modification of the proof,
it is possible to show that this sum is an S-number of type at most 4, as kindly
communicated to me by Duverney). His proof starts from an irrationality mea-
sure and then works by induction.

• A. Baker [37] used Theorem 2.5 and a method of Maillet [403] to con-
struct explicitly families of badly approximable real transcendental numbers.
He further gave [38] a condition under which such numbers are U -numbers
of type 2. His criterion, however in a less general form, has been improved by
Baxa [54] and Mkaouar [425].

• A. Baker [38] established that the Champernowne number is not a U -
number. Further, he proved that the set of badly approximable real transcen-
dental numbers contains T -numbers or S-numbers ξ with w1(ξ) arbitrarily
large. His main tool is a refinement of Theorem 2.5, providing a criterion
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which, when satisfied by a real number ξ , ensures that ξ is transcendental
but not a U -number. This has been used by Bundschuh [142] who dealt with
a class of real numbers having explicit g-adic and continued fraction expan-
sions. A. Baker’s criterion has also been used by several authors, including
Oryan [446], Zeren [611], Yilmaz [606], and Gürses [264], to prove that val-
ues of specific power series evaluated at algebraic numbers are transcendental
numbers but not U -numbers. Furthermore, Baxa [53] applied it to show that
Cahen’s constant

∑
n≥0 (−1)n/(Sn−1), where S0= 2 and Sn+1 = S2

n− Sn+1
for n ≥ 0, is transcendental but is not a U -number. Actually, Töpfer (Corollary
8 of [569]) proved that Cahen’s constant is an S-number.

• Adhikari, Saradha, Shorey and Tijdeman [3] (see also Saradha and
Tijdeman [493]) applied A. Baker’s theory of linear forms in logarithms of
algebraic numbers with algebraic coefficients to prove that numbers such as∑

n≥0((3n+ 1)(3n+ 2)(3n+ 3))−1,
∑

n≥1 χ(n)/n,
∑

n≥1 2−n Fn/n, where χ

is any non-principal Dirichlet character and (Fn)n≥0 the Fibonacci sequence,
are transcendental but are not U -numbers.

•Dress, Elkies, and Luca [208] established a characterization of U -numbers
by simultaneous rational approximation. For any given positive integer n, they
prove that a real number ξ is algebraic of degree at most n + 1 or satisfies
wn(ξ) = +∞ if, and only if, for each positive integer d , there exist a positive
constant Md and infinitely many integer (d + 1)-tuples (x0, . . . xd) such that
|x0ξ

k − xk | < Md x−1/n
0 for each k = 1, 2, . . . , d .

• Under suitable assumptions on the approximation properties of the T -
number (or the U -number) α and the U -number β, Caveny [159] proved that
αβ is transcendental. Caveny and Tubbs [160] established a quantitative ver-
sion of the particular case of Theorem 3.2 saying that if ξ1 is a U -number and
ξ1 and ξ2 are algebraically dependent, then ξ2 is a U -number.

• A. Baker [42] established the existence of pairs of distinct U -numbers
which are badly approximable pairs (see the Notes of Chapter 1 for the defini-
tion).

• A possible generalization of Wirsing’s problem in dimension 2 is the fol-
lowing question: does there exist a function � : Z≥1 → R>0 such that, for
any pair (ξ1, ξ2) of real transcendental numbers and any integer n ≥ 1, there
are infinitely many integers H such that the equations

|ξ1 − α1| ≤ H−�(n), |ξ2 − α2| ≤ H−�(n)

have a solution in real algebraic numbers α1 and α2 of degree at most n and
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height at most H? If ξ1 or ξ2 is an S-number, it is proved in [131] that the an-
swer is positive with �(n) = c23n, for some positive constant c23, depending
only on ξ1 and ξ2. See also Tishchenko [568]. In the opposite direction, for
any integer n ≥ 1, Roy and Waldschmidt [484] have given explicit examples
of pairs (ξ1, ξ2) of Liouville numbers such that max{|ξ1 − α1|, |ξ2 − α2|} >

H−3
√

n holds for all algebraic numbers α1 and α2 of degree at most n and
height at most H , when H is sufficiently large.

• Kopetzky and Schnitzer [336] applied Theorem 3.7 to the approximation
on the unit circle by points whose coordinates are algebraic of degree at most 2.

•Diophantine approximation by conjugate algebraic integers has been stud-
ied by Roy and Waldschmidt [484], and by Arbour and Roy [32].

• Yu [609] defined a multidimensional generalization of Mahler’s classifi-
cation: all points in Cn (or in Rn) are classified into 3n+ 1 disjoint non-empty
classes, denoted by An , Sn

t , T n
t and U n

t with t = 1, . . . , n, in such a way that
any two algebraic equivalent (over Q) points in Cn fall into the same class.

• Mahler and Szekeres [402] investigated approximation of real numbers
by roots of integers.
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Mahler’s Conjecture on S-numbers

In Theorem 3.3, we used the Borel–Cantelli Lemma 1.2 to prove that almost
all real numbers ξ are S∗-numbers of ∗-type less than or equal to 1. A sim-
ilar statement is however much more difficult to establish when we consider
Mahler’s classification. The first important result in this direction is due to
Mahler [377], who showed in 1932 that almost all real numbers ξ satisfy
supn≥1(wn(ξ)/n) ≤ 4. At the end of [377], he made the conjecture that the
upper bound 4 could be replaced by 1.

Until Sprindžuk [536, 537, 538] gave in 1965 a complete affirmative an-
swer to that conjecture, there appeared various improvements of Mahler’s re-
sult. First, Koksma [333] showed that supn≥1(wn(ξ)/n) ≤ 3 for almost all
real numbers ξ . This has been strengthened by LeVeque [362], who replaced
the upper bound 3 in Koksma’s result by 2. Later on, refining a method in-
troduced by Kasch and Volkmann [311], Schmidt [501] proved the inequality
wn(ξ) ≤ 2n − 7/3 for almost all real numbers ξ and all positive integers n.
Lastly, Volkmann [583, 584] showed that wn(ξ) ≤ 4n/3 holds for almost all
real numbers ξ and all positive integers n. At the same time, Sprindžuk [533]
obtained a slightly stronger result than Volkmann’s, shortly before his reso-
lution of Mahler’s Conjecture. Apart from these general results, it had been
established that wn(ξ) = n for almost all real numbers ξ and for 1 ≤ n ≤ 3.
The case n = 1 is nothing but Khintchine’s Theorem 1.10, while Kubil-
sus [344] used Vinogradov’s method of exponential sums to solve the case
n = 2. A simpler proof is due to Kasch [310], see Exercise 4.1. Furthermore,
Volkmann [582] applied results of Davenport [176] on binary cubic forms
for the case n = 3.

In the present Chapter, we state Sprindžuk’s result, its refinement ob-
tained shortly thereafter by A. Baker [41], and the subsequent improvement
due to Bernik [81], which appears to be the best possible. The proof of

74
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Bernik is lengthy and complicated, and we choose not to quote it, since
it is included in Bernik and Dodson [86]. Instead, we give a full proof of
A. Baker’s result, following largely Harman’s exposition [273]. The end of
Section 4.1 is devoted to results on multiplicative Diophantine approxima-
tion obtained by an approach originated in a work of Kleinbock and Margulis
[330].

4.1 Statements of the theorems

The purpose of the present Chapter is to give a full proof of the following
result.

THEOREM 4.1. Almost all real numbers ξ satisfy wn(ξ) = w∗n(ξ) = n for
every positive integer n.

COROLLARY 4.1. Almost all real numbers are S-numbers of type 1 and
S∗-numbers of ∗-type 1.

Corollary 4.1 improves upon Theorem 3.3. In Chapter 5, it is proved that the
set of S-numbers of type greater than 1 is not ‘too small’, in the sense that its
Hausdorff dimension is equal to 1.

In view of Corollary 3.2, which asserts that w∗n(ξ) = n holds if wn(ξ) =
n, Theorem 4.1 is an easy consequence of the following result of Sprindžuk
[538, 539].

THEOREM 4.2. Let n be a positive integer and ε be a positive real number.
Then, for almost all real numbers ξ , the equation

|P(ξ)| < H−n−ε (4.1)

has only a finite number of solutions in integer polynomials P(X) of degree at
most n and of height at most H.

Keeping in mind Khintchine’s Theorem 1.10, it becomes natural to ask whether
the conclusion of Theorem 4.2 remains true if the functions H �→ H−n−ε

occurring in (4.1) are replaced by more general (non-increasing) functions.
This has been confirmed by A. Baker [41] in 1966.

THEOREM 4.3. Let n be a positive integer and � : R≥1 → R>0 be a non-
increasing continuous function such that the series

∑
h≥1 �(h) converges.

Then, for almost all real numbers ξ , the equation

|P(ξ)| < �n(H) (4.2)
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has only a finite number of solutions in integer polynomials P(X) of degree at
most n and of height at most H.

According to A. Baker [44], ‘it seems likely that the function �n(H) [in (4.2)]
can be replaced by H−n+1�(H), and this conjecture is in fact established for
n ≤ 3.’ A heuristic support for A. Baker’s conjecture is the observation that
there are about Hn integer polynomials P(X) of height exactly H and degree
at most n. If one of these satisfies |P(ξ)| < H−n+1 �(H), then it could have
(this is not always true!) a root α close to ξ , say (see the discussion after The-
orem 3.8) with |ξ − α| 
 H−n �(H), where, as below, the constant implied
by 
 depends only on ξ and n. Hence, ξ would lie in the union of about Hn

intervals centered at the real roots of integer polynomials of degree at most n
and height H . The Lebesgue measure of this union is approximately equal to
�(H). Assuming that the sum of the �(H) converges, it would then follow
from the Borel–Cantelli Lemma 1.2 that the set of real numbers ξ for which
|P(ξ)| < H−n+1 �(H) is satisfied for infinitely many integer polynomials.
P(X) is a null set.

The main difficulty in this approach is that the estimate |ξ − α| 

H−n �(H) does not always hold. To overcome this problem, very precise
information on the distribution of roots of integer polynomials is needed.
Sprindžuk introduced the notion of essential and inessential domains (see Sec-
tion 14 of Chapter 2 of [540] for the description of the general idea) to solve
it when �(H) = H−1−ε for some positive real number ε. His method was
refined by A. Baker [41], and then by Bernik [78, 81], who, in a lengthy and
intricate paper, managed to get rid of the induction lying at the heart of the
proofs of Theorems 4.2 and 4.3 in order to establish the above-mentioned con-
jecture of A. Baker.

THEOREM 4.4. Let n be a positive integer and � : R≥1 → R>0 be a non-
increasing continuous function such that the series

∑
h≥1 �(h) converges.

Then, for almost all real numbers ξ , the equation

|P(ξ)| < H−n+1 �(H)

has only a finite number of solutions in integer polynomials P(X) of degree at
most n and of height at most H.

Apart from the monotonicity condition imposed on �, which may presumably
be somewhat relaxed (this is however a difficult problem, keeping in mind
the Duffin–Schaeffer Conjecture mentioned in Section 1.4), Theorem 4.4 is
best possible, as shown by Beresnevich [61], whose results yield the following
strengthening of Theorem 4.1.
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THEOREM 4.5. Let � : R≥1 → R>0 be a non-increasing continuous func-
tion. If the series

∑
h≥1 �(h) diverges, then for almost all real numbers ξ and

any positive integer n the equations

|P(ξ)| < H−n+1 �(H) and |ξ − α| < H−n �(H) (4.3)

have infinitely many solutions in integer polynomials P(X) and real algebraic
numbers α, of degree at most n and of height at most H, respectively. If the
series

∑
h≥1 �(h) converges, then, for almost all real numbers ξ , the equations

(4.3) have only finitely many solutions in integer polynomials P(X) and real
algebraic numbers α, of degree at most n and of height at most H, respectively.

The first part of Theorem 4.5 is Theorem 3 of [61], quoted in Chapter 6 as
Theorem 6.6. The second part derives from Theorem 4.4, using Lemma A.6.

We end this Section by quoting two deep results on multiplicative ap-
proximation. Following a suggestion of A. Baker [44], another way to gen-
eralize Theorem 4.2 consists in replacing the height H(P) of a polynomial
P(X) = an Xn + . . .+ a1 X + a0 by the function + defined by

+(P) :=
∏

1≤i≤n

max{1, |ai |}.

A. Baker conjectured that, for almost all real numbers ξ and for any pos-
itive real number ε, the equation |P(ξ)| ≤ −1−ε

+ (P) has only finitely
many solutions in integer polynomials P(X) of degree at most n. (Actu-
ally, he formulated the dual problem, asking whether for any positive real
number ε and any positive integer n there exist, for almost all real num-
bers ξ , only finitely many (n + 1)-tuples (q, p1, . . . , pn) of integers such
that q1+ε|qξ − p1| . . . |qξn − pn| < 1. A classical transference theorem
[594, 516, 604] shows that both questions are equivalent.) This has been es-
tablished by Sprindžuk [540] for n = 2 (see also Theorem 2 of Yu [608]),
by Bernik and Borbat [82] for n = 3, 4, and for general n by Kleinbock and
Margulis [330], who developed a rather new approach based on the correspon-
dence between approximation properties of numbers and orbit properties of
certain flows on homogeneous spaces (see, for example, Kleinbock’s survey
[326], Margulis survey [405], and Starkov’s book [542]).

THEOREM 4.6. Let n be a positive integer and ε be a positive real number.
Then, for almost all real numbers ξ , the equation

|P(ξ)| < −1−ε
+ (P)

has only a finite number of solutions in integer polynomials P(X) of degree at
most n.
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Shortly thereafter, Bernik, Kleinbock, and Margulis [89] improved upon The-
orem 4.6.

THEOREM 4.7. Let n be a positive integer and � : R≥1 → R>0 be a non-
increasing continuous function such that∑

h≥1

(log h)n−1 �(h) < +∞.

Then, for almost all real numbers ξ , the equation

|P(ξ)| < �
(
+(P)

)
(4.4)

has only a finite number of solutions in integer polynomials P(X) of degree at
most n.

Observe that the Borel–Cantelli Lemma 1.2 implies that for a function � as in
Theorem 4.7 the set of real n-tuples (ξ1, . . . , ξn) such that there are infinitely
many (n+1)-tuples (a0, a1, . . . , an) of integers with |a0+a1ξ1+. . .+anξn| <
�(

∏n
i=1 max{|ai |, 1}) has Lebesgue measure zero. A presumably difficult

open question is to prove that Theorem 4.7 is best possible in the sense that
(4.4) has infinitely many solutions when the sum

∑
h≥1 (log h)n−1 �(h) di-

verges.

4.2 An auxiliary result

The lemma below deals with integer polynomials having two zeros close to
each other. Since it is very specific for the problem considered in the present
Chapter, we have not included it in Appendix A.

LEMMA 4.1. Let P(X) = a(X − α1) . . . (X − αn) and Q(X) = b(X −
β1) . . . (X − βn) be two distinct, irreducible, integer polynomials of degree
n ≥ 3. Set

p∗ = |an(α1 − α3) . . . (α1 − αn)|−1/2 and

q∗ = |bn(β1 − β3) . . . (β1 − βn)|−1/2.

Assume that

|α1 − α2| ≤ |α1 − α j | and |β1 − β2| ≤ |β1 − β j | (4.5)

for j = 2, . . . , n, and also that

|α1 − α2| < p∗ and |β1 − β2| < q∗. (4.6)

Then, there exists a positive constant c1, depending only on n and
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max1≤ j≤n max{|α j |, |β j |}, such that

|α1 − β1| ≥ c1 min{p∗, q∗}.
PROOF. Throughout the present proof, the constants implied by 
 and �
only depend (at most) on n and max1≤ j≤n max{|α j |, |β j |}. We set

ρ := |α1 − β1|
min{p∗, q∗}

and we aim to show that ρ � 1. The integer polynomial P(X) being without
multiple roots, its discriminant (see Definition A.1) is a non-zero integer, and
we thus get

|a|n−1
∏

1≤i< j≤n

|αi − α j | ≥ 1. (4.7)

Let j be an integer with 3 ≤ j ≤ n. It follows from (4.7) that

|α1 − α2| · |α2 − α j | � (p∗)2 (4.8)

holds. By (4.5), we have |α2 − α j | ≤ 2|α1 − α j |, which, together with (4.6)
and (4.8), implies that p∗ 
 |α1 − α j |. Further, using the definition of ρ, we
get

|α j − β1| ≤ |α1 − β1| + |α1 − α j | ≤ ρp∗ + |α1 − α j |

 (1+ ρ)|α1 − α j |.

Taking the product over all the integers j with 3 ≤ j ≤ n, we obtain

|an−1 P(β1)| 
 |α1 − β1| · |α2 − β2| · |an| ·
∏

3≤ j≤n

(1+ ρ)|α1 − α j |


 (1+ ρ)n−2(p∗)−2|α1 − β1| · |α2 − β1|, (4.9)

and, reversing the roles of P(X) and Q(X), we get

|bn−1 Q(α1)| 
 (1+ ρ)n−2(q∗)−2|α1 − β1| · |α1 − β2|. (4.10)

Since the integer polynomials P(X) and Q(X) have no common roots, their
resultant (see Definition A.1) is a non-zero integer and we have

|ab|n
∏

1≤i, j≤n

|αi − β j | ≥ 1,

hence,

|ab|n−1|P(β1)| · |Q(α1)| · |α2 − β2| · |α1 − β1|−1 � 1. (4.11)
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Combining (4.9), (4.10), and (4.11) we get

|α1 − β1| · |α1 − β2| · |α2 − β1| · |α2 − β2| � (1+ ρ)−2n+4 (p∗q∗)2.

(4.12)

Further, (4.6) and the definition of ρ yield that

|α2 − β1| ≤ |α1 − α2| + |α1 − β1| 
 (1+ ρ)p∗,
|α1 − β2| ≤ |α1 − β1| + |β1 − β2| 
 (1+ ρ)q∗,

and

|α2 − β2| ≤ |α1 − α2| + |α1 − β2| 
 (1+ ρ) max{p∗, q∗}.
It follows from these three inequalities and (4.12) that

|α1 − β1| � (1+ ρ)−2n+1 min{p∗, q∗},
that is,

ρ � (1+ ρ)−2n+1.

Thus, we have proved that ρ � 1, as wanted.

4.3 Proof of Theorem 4.3

Difficulties encountered and general strategy

Let n be a positive integer and � : R≥1 → R>0 be a non-increasing continu-
ous function such that the series

∑
h≥1 �(h) converges. We begin by explain-

ing the general idea underlying the method of Sprindžuk.
Let P(X) be an integer polynomial of degree at most n and height at most

H , and let E(P) denote the set of real numbers ξ satisfying |P(ξ)| < �n(H).
The precise description of E(P) is very difficult, hence, in most cases we are
unable to show the convergence of the series

∑
λ(E(P)), where the summa-

tion is over all non-zero integer polynomials of degree at most n. This would
imply that

λ

( ⋃
H(P)≥H0

E(P)

)
−→

H0→+∞
0, (4.13)

which allows us to conclude by the Borel–Cantelli lemma. However, we may
hope to prove (4.13) even if the series

∑
λ(E(P)) diverges: indeed, (4.13) may

possibly hold if the sets E(P) intersect ‘frequently’ and a lot. Thus, we are led
to analyze the relative arrangement of the sets E(P) in order to evaluate the
multiple intersections.
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The basic idea, explained in Section 14 of Chapter 2 of [540] (see also
[538], pp. 220–221), consists in considering auxiliary sets Ẽ(P) containing
E(P), and in dividing them into two classes:

• The essential intervals, which are the sets Ẽ(P) such that Ẽ(P) has a
small intersection with any interval Ẽ(Q), where Q(X) is an integer polyno-
mial of same height and same degree as P(X).
• The inessential intervals, which are the sets Ẽ(P) such that Ẽ(P) has a

large intersection with some interval Ẽ(Q), where Q(X) is an integer polyno-
mial of same height and same degree as P(X).

Then, the first case is treated by means of Lemma 4.1 above and the Borel–
Cantelli Lemma 1.2, while induction and Lemma 4.1 are used for the second
one.

We proceed by induction on the integer n. For n = 1, the result easily
follows from Lemma 1.2, as in the proof of the easy half of Theorem 1.10. Let
n ≥ 2 be a given integer and assume that Theorem 4.3 holds for any positive
integer less than or equal to n − 1. We introduce in the sequel various sets of
real numbers (or of polynomials) which depend on n, but we choose not to
indicate this dependence to simplify our notation.

Two reductions of the problem

First, we show that, in order to establish Theorem 4.2, it is plainly enough to
prove that the set of real numbers ξ such that (4.2) has infinitely many so-
lutions in integer polynomials P(X) which are irreducible and leading (this
terminology means that the leading coefficient of P(X) is equal to its height)
has Lebesgue measure zero.

Let Ared be the set of real transcendental numbers ξ for which there exist
infinitely many reducible polynomials P(X) of degree n such that |P(ξ)| <

�n(H(P)). These polynomials can be written P(X) = P1(X) · P2(X), where
the degrees of the polynomials P1(X) and P2(X) are integers between 1 and
n − 1. By Lemma A.3, we have H(P1) ≤ 2nH(P) and, since � is non-
increasing, there exist an integer 1 ≤ � ≤ n − 1 and infinitely many poly-
nomials P(X) of degree � such that |P(ξ)| < ��(2−n H(P)). For any positive
integer h, set �̃(h) = �(2−nh). The function �̃ is non-increasing and the
sum

∑
h≥1 �̃(h) converges, hence, by our inductive hypothesis applied to the

integer �, the set Ared is a null set, as expected.
We now deal with the second reduction. By Lagrange interpolation formula,

there exists a positive constant c2, depending only on n, such that any integer



82 Mahler’s Conjecture on S-numbers

polynomial P(X) of degree n belongs to a set

P j := {P(X) : P(X) ∈ Z[X ] of degree n such that |P( j)| ≥ c2 H(P)},
for some integer j with 0 ≤ j ≤ n. Let A denote the set of real transcendental
numbers ξ for which |P(ξ)| < �n(H(P)) has infinitely many solutions with
P(X) irreducible and, for j = 0, . . . , n, set

A j = {ξ ∈ A : |P(ξ)| < �n(H(P)) for infinitely many

irreducible polynomials P(X) in P j }.
Let P(X) be in P j and irreducible. Set G(X) = P(X + j) or −P(X + j),
in such a way that G(0) is positive. There exists an integer c3, that we take
greater than c−1

2 , depending only on n, such that H(G) ≤ c3 H(P). The lead-
ing coefficient G(0) of the polynomial Q(X) := XnG(X−1) then satisfies
G(0) > c−1

3 H(P). Set c4 = c2
3 + 1 and R(X) := Q(c4 X). The leading co-

efficient of R(X) is at least equal to cn
4c−1

3 H(P), while its other coefficients
are, in absolute value, bounded by cn−1

4 c3 H(P), which is strictly less than
cn

4c−1
3 H(P). Hence, the polynomial R(X) is irreducible and leading, and it

satisfies H(R) = cn
4 G(0) ≤ c5H(P), for some positive constant c5 depending

only on n.
Thus, for any integer j = 0, . . . , n and for any real number ξ in A j , there

exist infinitely many irreducible and leading polynomials R(X) satisfying∣∣∣∣R

(
1

c4(ξ − j)

)∣∣∣∣ = |ξ − j |−n |P(ξ)| < |ξ − j |−n �n(
H(P)

)
≤ |ξ − j |−n �n(

c−1
5 H(R)

)
.

Since the function � decreases monotonically, for any given positive real num-
ber κ , the sum

∑
h≥1 �n(h) diverges if, and only if, the sum

∑
h≥1 �n(κh)

diverges. Consequently, if we prove that the set of real transcendental numbers
ξ such that (4.2) has infinitely many solutions in leading, irreducible, integer
polynomials P(X) has Lebesgue measure zero, we then get that A j (and, thus,
the set A) is a null set.

Some auxiliary quantities

Since � is non-increasing and the series
∑

h≥1 �(h) converges, h�(h) tends
to 0 when h tends to infinity. Thus, there exists a positive integer h0 such that

h�(h) ≤ 1/4 (4.14)

holds for h ≥ h0.
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Let P(h) denote the set of leading irreducible integer polynomials P(X) =
an Xn + . . .+ a1 X + a0 of height h = an . Let P(X) be in P(h) and denote by
α1, . . . , αn its roots. Observe that for any integer j = 1, . . . , n we have

h|α j |n ≤ |a0| + . . .+max
{
1, |α j |n−1}|an−1|,

hence,

|α j |n ≤ 1+ |α j | + . . .+ |α j |n−1 if |α j | ≥ 1.

Consequently, we get

|α j | ≤ 2, for j = 1, . . . , n. (4.15)

We number the roots of P(X) in such a way that |α1 − α2| is the minimum
among the |α1 − α j |s with j = 2, . . . , n. We then set

τ = |α1 − α2|,

ν = 2n�n(h)

|P ′(α1)| ,

μ = min{ν, (τν)1/2};
these quantities obviously depend on P(X), but, to simplify the notation, we
choose not to indicate this dependence. If the real transcendental number ξ

satisfies |P(ξ)| < �n(h) and if α1 is a root of P(X) with |ξ − α1| minimal,
then we have |ξ−α1| < ν and |ξ−α1|2 < ντ by Lemma A.5. This implies that
|ξ − α1| < μ. Consequently, in order to prove Theorem 4.3, it is sufficient to
show that, for almost all real numbers ξ , there exist only finitely many integer
polynomials P(X) in ∪h≥h0P(h) with a root α1 such that |ξ − α1| < μ.

Let h ≥ h0 be an integer. For an integer polynomial P(X) in P(h), we set

I ′(P) = {ξ ∈ R : |ξ − α1| < μ},
I (P) = {ξ ∈ R : |ξ − α1| < μ�−1(h)}.

By (4.14), these intervals satisfy I ′(P) ⊂ I (P) and |I ′(P)| = �(h)|I (P)|.
We introduce the quantity p∗ related to the distribution of the roots of P(X)

defined by p∗ = h−1 if n = 2 and by

p∗ = |hn(α1 − α3) . . . (α1 − αn)|−1/2,

otherwise. We observe that, for any integer n ≥ 2, we have

(p∗)−2|α1 − α2| = hn−1|P ′(α1)|, (4.16)

and we divide P(h) into two classes. The subset P1(h) of P(h) is composed
of the polynomials satisfying τ ≥ p∗, while the subset P2(h) of P(h) contains
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exactly those with τ < p∗. Observe that for n = 2 the set P2(h) is empty,
since τ ≥ p∗ holds for any quadratic polynomial with integer coefficients.
In the first step, we show that, for almost all real numbers ξ , there are only
finitely many integer polynomials P(X) in ∪h≥h0P1(h) having a root α1 such
that |ξ − α1| < μ. In the second step, we establish a similar result with P1(h)

replaced by P2(h).

The sets P1(h), essential and inessential intervals

Let h ≥ h0 be an integer. An interval I (P) is said to be inessential if there
exists a polynomial Q(X) in P1(h) such that the Lebesgue measure of the
intersection I (P)∩ I (Q) is greater than |I (P)|/2. We observe that the interval
I (Q) is not necessarily inessential since I (P) and I (Q) do not have, a priori,
the same length. We denote by E(h) the set

{I (P) : there exists Q(X) in P1(h) such that|I (P) ∩ I (Q)|> |I (P)|/2}
of inessential intervals. The set of essential intervals is then

E(h) :=
( ⋃

P∈P1(h)

I (P)

)
\ E(h).

Let P(X) be in P1(h) and ξ be a real number in I (P). By (4.14), (4.16),
and the hypothesis p∗ ≤ τ , we have

|ξ − α1| < μ�−1(h) ≤ ν�−1(h) = 2n�n−1(h) |P ′(α1)|−1

< h1−n |P ′(α1)|−1 = |α1 − α2|−1(p∗)2 ≤ |α1 − α2|. (4.17)

Our choice of α2 ensures that the assumption of the last statement of Lemma
A.5 is fulfilled, hence, we get

|P(ξ)| ≤ 2n−1|P ′(α1)| · |ξ − α1|
< 2n−1ν|P ′(α1)| ·�−1(h) = 22n−1�n−1(h).

In particular, if Q(X) is in P1(h) and is such that ξ is in I (Q), we then have
|Q(ξ)| ≤ 22n−1 �n−1(h) and the polynomial R(X) := P(X)− Q(X), which
is of degree less than or equal to n − 1 since P(X) and Q(X) have the same
leading coefficient, satisfies

|R(ξ)| < 22n�n−1(h) ≤ 22n �n−1(H(R)/2
)
. (4.18)

By our inductive assumption, for almost all ξ , only a finite number of integer
polynomials R(X) of degree at most n−1 satisfy (4.18). Consequently, almost
all ξ belong to only a finite number of intersections I (P)∩ I (Q), where P(X)
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are in some set P1(h) with h ≥ h0 and I (P) is an inessential interval. This
means that the decreasing intersection⋂

H≥h0

⋃
h≥H

⋃
P(X)∈P1(h),Q(X)∈P1(h),

P(X)�=Q(X),|I (P)∩I (Q)|>|I (P)|/2

I (P) ∩ I (Q)

is a null set. Consequently, the Lebesgue measure of⋃
h≥H

⋃
P(X)∈P1(h),Q(X)∈P1(h),

P(X)�=Q(X),|I (P)∩I (Q)|>|I (P)|/2

I (P) ∩ I (Q)

tends to zero when H goes to infinity. However, for polynomials P(X) and
Q(X) in P1(h) with |I (P)∩ I (Q)| > |I (P)|/2, putting IP,Q = I (P)∩ I (Q),
the interval I (P) is contained in the union

IP,Q ∪ (IP,Q + �P,Q) ∪ (IP,Q − �P,Q),

where the plus sign and the minus sign mean ‘translation’, and �P,Q denotes
the length of IP,Q . Thus, the Lebesgue measure of⋃

h≥H

⋃
P(X)∈P1(h)

I (P) inessential

I (P)

tends to zero when H goes to infinity, and the set⋂
H≥h0

⋃
h≥H

⋃
P(X)∈P1(h)

I (P) inessential

I (P)

is a null set, as expected. In other words, for almost all real numbers ξ , there
exist only finitely many polynomials P(X) in ∪h≥h0P1(h) such that I (P) is
inessential and ξ belongs to I (P), hence, to I ′(P).

We now consider the essential intervals, still under the assumption that
P(X) belongs to P1(h), and we set

A(h) =
⋃

I (P)∈E(h)

I ′(P).

Since the interval I (P) is essential, a point in I (P) does not belong to an
intersection I (Q) ∩ I (R) ∩ I (S) of three distinct essential intervals. Indeed,
otherwise, one among the intervals I (P), I (Q), I (R), and I (S) would cover
strictly more than half of the length of another one, which would then be an
inessential interval. Consequently, any point in I (P) belongs to at most three
essential intervals and

λ
(A(h)

)≤�(h)
∑

I (P)∈E(h)

|I (P)| ≤ 3�(h)λ

( ⋃
I (P)∈E(h)

I (P)

)
≤ 36�(h),
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since, by (4.15) and (4.17), any interval I (P) is included in [−6, 6]. It then
follows from Lemma 1.2 and the convergence of

∑
h≥1 �(h) that almost all ξ

belong to only a finite number of intervals I ′(P).
Thus, we have proved that, for almost all ξ , there exist only a finite number

of polynomials P(X) in ∪h≥h0P1(h) such that I (P) is essential and ξ belongs
to I ′(P).

The sets P2(h)

Since P2(h) is empty for n = 2, we assume that n ≥ 3. We aim to show that,
for almost all real numbers ξ , there are only finitely many polynomials P(X)

in ∪h≥h0P2(h) with a root α1 such that |ξ −α1| < μ. Let h ≥ h0 be an integer
and let P(X) be a polynomial in P2(h). We have τ < p∗, hence, by (4.14) and
(4.16), we get

μ2 ≤ τν = |P ′(α)|−1�n(h)2n|α1 − α2|
< h1−n �(h) |P ′(α)|−1|α1 − α2| ≤ �(h)(p∗)2. (4.19)

Using the discriminant as for the proof of (4.8), we infer from (4.15) that there
exists an integer �0, depending only on n, such that p∗ ≤ 2−�0+1. For integers
j ≥ 1 and � ≥ �0 with 4 j−1 ≥ h0, set

P3( j) =
⋃

4 j−1≤h<4 j

P2(h)

and

P4( j, �) = {P(X) ∈ P3( j) : 2−� < p∗ ≤ 2−�+1}.
By (4.15), we have p∗ > 2−n( j+1) for any polynomial P(X) in P3( j). Conse-
quently, the set P4( j, �) is empty for � > n( j + 1).

Let j and � be integers such that P4( j, �) is non-empty and let P(X) be
in P4( j, �) with I ′(P) non-empty. Then we have |�m α1| < μ by the defini-
tion of I ′(P) and |�e α1| ≤ 2, by (4.15). Assume that, for some real number
c6 > 1, there are c62� or more such irreducible polynomials P(X) in P4( j, �).
They furnish c62� distinct complex numbers α1. Denote by δ ≤ 1 the small-
est distance between two of these numbers. Then, a simple covering argument
gives that

c6 2�π

(
δ

2

)2

< 10(μ+ δ). (4.20)

Further, we infer from (4.14) and (4.19) that μ ≤ p∗ ≤ 2−�+1. By (4.15) and
τ < p∗, we can apply Lemma 4.1. It yields that there exists a positive constant
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c7, depending only on n, such that δ ≥ c72−�. Together with (4.20), this gives
that there exist positive constants c8 and c9, depending on n but not on � and
j , such that

c6 ≤ c8 2−� δ−2 (μ+ δ) ≤ c8 2−� δ−1 (μ δ−1 + 1) ≤ c9.

Thus, the real number c6 depends only on n, and we have proved that for at
most c10 polynomials P(X) in P4( j, �) the interval I ′(P) is non-empty, where
c10 is a constant depending only on n. Recall that, by (4.14) and (4.19), we
have

μ ≤ 2−�+1
√

�(4 j−1) ≤ 2−�− j+1

for these polynomials. Thus, there exists a positive real number c11, depending
only on n, such that

∑
P(X)∈P3( j)

|I ′(P)| =
n( j+1)∑
�=�0

∑
P(X)∈P4( j,�)

|I ′(P)|

≤ c10

n( j+1)∑
�=�0

2�+1μ ≤ c11 j 2− j .

Since the series
∑

j≥1 j2− j converges, Lemma 1.2 shows that almost all ξ

belong to only a finite number of intervals I ′(P) with P(X) in P2(h). Con-
sequently, we have proved that for almost all real numbers ξ there exist only
a finite number of polynomials P(X) in ∪h≥h0P2(h) having a root α1 with
|ξ − α1| < μ, that is, such that ξ belongs to I ′(P).

Conclusion

We have proved that for almost all real numbers ξ there exist only a finite num-
ber of polynomials P(X) in ∪h≥h0P(h) having a root α1 with |ξ − α1| < μ.
Thanks to the observations following the definition of μ, this implies that
for almost all real numbers ξ there exist only a finite number of integer
polynomials P(X) with |P(ξ)| < �n(H(P)). The proof of Theorem 4.3 is
complete.

4.4 Exercise

EXERCISE 4.1. Proof of Theorem 4.2 for n = 2, following Kasch [310].
1) Let P(X) = a2 X2 + a1 X + a0 be an integer polynomial with distinct

roots α1, α2 and let Disc(P) := a2
1 − 4a0a2 denote its discriminant. Prove that
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for any complex number ξ we have

min{|ξ − α1|, |ξ − α2|} ≤ 2√|Disc(P)| |P(ξ)|.

2) Let s be a real number with 0 < s < 1. Prove that there exists a positive
constant c12, depending only on s, such that, for any positive integer H , the
inequality ∑

|Disc(P)|−s ≤ c12 H2(1−s)

holds, where the summation is taken over all integer polynomials P(X) of
degree at most 2 and of height H with non-zero discriminant.

3) Combine 1) and 2) with s = 1/2 to conclude using the Borel–Cantelli
Lemma 1.2.

4.5 Notes

• Kubilius’ result [344] has been refined by Cassels [153] and extended by
Sprindžuk [531] (see also the last Section of [539] and Section 11 of Chapter
2 of [540]).

• Bernik and Dombrovskiı̆ [88] established a metric refinement of Theorem
4.2 for general n.

• An effective version of Theorem 4.2 has been obtained by Beresnevich
[60] for n = 2 and by Kalosha [307] for n = 3.

• Harman [275] established asymptotic formulae for the number of solu-
tions to (4.2) when � diverges and satisfies some extra assumptions.

• Using a terminology introduced by Sprindžuk, a curve ( f1, . . . , fn) de-
fined on an open subset U of R is called extremal if, for almost all (in the sense
of the Lebesgue measure) points ξ in U , the supremum of the real numbers w

for which there exist infinitely many integer (n + 1)-tuples (q1, . . . , qn, p)

such that |q1 f1(ξ) + . . . + qn fn(ξ) + p| < max{|q1|, . . . , |qn|}−w is equal
to n. Theorem 4.2 asserts that the curve {(ξ, . . . , ξn) : ξ ∈ R} is extremal.
Many extensions of this result have been obtained, see, for example, [89]
and the Notes of Chapter 2 of [86]. As for multiplicative approximation, a
curve is called strongly extremal if, for almost all points ξ in U , the supre-
mum of the real numbers w for which there exist infinitely many integer
(n + 1)-tuples (q1, . . . , qn, p) such that |q1 f1(ξ) + . . . + qn fn(ξ) + p| <∏n

i=1 max{|qi |, 1}−w/n is equal to n. The first general results on strong ex-
tremality are due to Kleinbock and Margulis [330] and imply Theorem 4.6.
They have been superseded by Bernik, Kleinbock, and Margulis [89]. Observe
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that these results cover the approximation by lacunary polynomials, since they
include that for any n-tuple (a1, . . . , an) of distinct positive integers the curve
{(ξa1 , . . . , ξan ) : ξ ∈ R} is strongly extremal. Further results are due to Beres-
nevich [63], Dickinson and Dodson [193], Beresnevich, Bernik, Kleinbock,
and Margulis [68], and Kleinbock [327]. Kleinbock, Lindenstrauss, and Weiss
[329] identified purely geometrical conditions on measures which are sufficient
to guarantee strong extremality, obtaining thus a generalization of the results
from [330].

• Theorem 4.3 for n= 2 has been extended by Yu [608] and Mashanov
[409].

• Bernik, Dickinson, and Dodson [84] proved the inhomogeneous analogue
of Theorem 4.4, namely that for any positive integer n and any real number
θ the inequality |P(ξ) + θ | < H−n+1�(H) has, for almost all real numbers
ξ , only a finite number of solutions in integer polynomials P(X) of degree at
most n and height at most H , where � is as in Theorem 4.4. The case n = 2
was already established by Beresnevich, Bernik, and Dodson [66], who proved
the inhomogeneous analogue of Theorem 4.5 for n = 2.

• The analogue of Theorem 4.4 with the coefficients of the polynomials
being prime numbers has been establish by Bernik, Vasiliev, and Dodson [97].

• Bernik [76] confirmed a conjecture of Sprindžuk ([538], Problem C) ex-
tending Theorem 4.2. He proved that for any integers k, n with 1 ≤ k ≤ n and
for any positive real number ε, the inequality

∏k
i=1 |P(ξi )| < H−n+k−1−ε has

only finitely many solutions in integer polynomials P(X) of degree at most n
and height at most H for almost all real k-tuples (ξ1, . . . , ξk).

• Bernik and Borbat [83] established a two-dimensional analogue of Theo-
rem 4.4.

• Slesoraı̆tene ([527] and earlier works) established analogues of Theorem
4.2 for polynomials of small degree in two variables. For arbitrary degrees, a
slightly weaker result is due to Vinogradov and Chudnovsky [579] (see also
Bernik [74]).

• As for multiplicative approximation, Gallagher [253] proved that for any
positive integer n the inequality ‖qξ1‖ . . . ‖qξn‖ < q−1(log q)−n(log log q)−1

has infinitely many solutions in integers q for almost all real n-tuples
(ξ1, . . . , ξn). Asymptotic formulae have been established by Wang and Yu
[593]. Some results from [253] were applied in harmonic analysis by Stokolos
[545].
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Hausdorff dimension of exceptional sets

In the preceding Chapters, we have encountered several sets of real numbers of
Lebesgue measure zero, including the set of Liouville numbers, the set of real
numbers with bounded partial quotients, the set of very well approximable
numbers, and the set of S∗-numbers of ∗-type strictly greater than 1. Some
of them are certainly strictly larger than others: indeed, as it may be seen by
considering continued fraction expansions (see Exercise 1.5), there are very
well approximable numbers other than the Liouville numbers. On the other
hand, the set of S∗-numbers of ∗-type at least 2 contains the set of S∗-numbers
of ∗-type at least 3, but the results of Chapters 1 to 4 do not enable us to decide
whether the inclusion is strict or not.

In the present Chapter, we introduce a powerful tool for discriminating be-
tween the sets of Lebesgue measure zero, namely the notion of Hausdorff
dimension, developed by Hausdorff in 1919 [276]. Shortly thereafter, Jarnı́k
[288, 292] and, independently, Besicovitch [100], applied it to number the-
oretical problems, and they determined the Hausdorff dimension of sets of
real numbers very close to infinitely many rational numbers (Theorem 5.2).
Their result has been subsequently generalized in many directions. For in-
stance, A. Baker and Schmidt [45] showed in 1970 that there exist S∗-numbers
of arbitrarily large but finite ∗-type (Theorem 5.5). In the present Chapter, we
prove both these results and we quote some other extensions of the Jarnı́k–
Besicovitch Theorem. Further refinements are stated in Chapter 6.

5.1 Hausdorff measure and Hausdorff dimension

Hausdorff’s idea [276] consists in measuring a set by covering it by an infinite,
countable family of sets of bounded diameter, and then in looking at what
happens when the maximal diameter of these covering sets tends to 0. The

90
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reader interested in Hausdorff dimension theory is directed, for example, to
Rogers [476], Falconer [234, 236], and Mattila [415].

If U is a non-empty subset of Rn , its diameter, denoted by diam(U ), is by
definition

diam(U ) = sup{‖x − x ′‖∞ : x, x ′ ∈ U },
where ‖x‖∞ denotes the maximum of the absolute values of the coordinates of
a point x in Rn . Let J be a finite or infinite set of indices. If for some positive
real number δ the sets E and U j satisfy E ⊂⋃

j∈J U j and 0 < diam(U j ) ≤ δ

for any j in J , then {U j } j∈J is called a δ-covering of E .
Let f be a dimension function, that is, a strictly increasing continuous func-

tion defined on R>0 (actually, it is enough to assume that f is defined on some
open interval ]0, t[ with t positive) satisfying limx→0 f (x) = 0. For any posi-
tive real number δ, set

H f
δ (E) := inf

J

∑
j∈J

f
(
diam(U j )

)
,

where the infimum is taken over all the countable δ-coverings {U j } j∈J of E .

Clearly, the function δ �→ H f
δ (E) is non-increasing. Consequently,

H f (E) := lim
δ→0

H f
δ (E) = sup

δ>0
H f

δ (E)

is well-defined and lies in [0,+∞]. If E1 and E2 are two subsets of Rn with E1

included in E2, we then have H f (E1) ≤ H f (E2). Furthermore, H f is subad-
ditive and is a regular outer measure for which the Borelian sets are measurable
(see, for example, Rogers [476] or Mattila [415]), called the H f -measure.

Let f and g be two dimension functions. We say that g corresponds to a
‘smaller’ generalized dimension than f and we write g ≺ f if

lim
x→0

g(x)

f (x)
= +∞.

Observe that if g ≺ f , then g increases faster than f in a neighbourhood of
the origin, and we have Hg(E) ≥ H f (E) for any subset E of Rn . Further,
the ordering induced by ≺ is not a total ordering since there exist dimension
functions f and g satisfying

lim inf
x→0

g(x)

f (x)
= 0 and lim sup

x→0

g(x)

f (x)
= +∞.

LEMMA 5.1. Let f , g, and h be dimension functions satisfying f ≺ g ≺ h.
If the set E satisfies 0 ≤ Hg(E) < +∞ (resp. 0 < Hg(E) ≤ +∞), we then
have Hh(E) = 0 (resp. H f (E) = +∞).
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PROOF. Assume that E satisfies 0 ≤ Hg(E) < +∞ and let ε be a positive
real number. There exists δ > 0 such that h(x) ≤ εg(x)/(Hg(E)+ 1) for any
x with 0 < x < δ. For any positive real number δ′ less than δ, there exists a
countable δ′-covering {U j } j≥1 of E such that∑

j≥1

g
(
diam(U j )

) ≤ Hg(E)+ 1,

whence ∑
j≥1

h
(
diam(U j )

) ≤ ε.

This means that Hh
δ′(E) ≤ ε and yields Hh(E) = 0.

Replacing the functions g and h by f and g, respectively, we get by contra-
position the result asserted into brackets.

When f is a power function x �→ xs , with s a positive real number, we write
Hs(E) instead of H f (E) and we call it the s-dimensional Hausdorff mea-
sure of the set E . We define H0 as the counting measure: H0(E) is equal to
the cardinality of the set E . Furthermore, for any Borelian subset E of Rn , we
have

Hn(E) = 2n (n/2)!

πn/2
vol(E),

where vol denotes the Lebesgue measure on Rn . In particular, in the real case,
HId = H1 coincides with the Lebesgue measure on R.

We infer from Lemma 5.1 that Hs(E) ≥ Ht (E) when t ≥ s ≥ 0. Conse-
quently, the function s �→ Hs(E) is non-increasing on R≥0.

COROLLARY 5.1. Let E be a subset of Rn . If there exists s ≥ 0 such that
Hs(E) < +∞, then Hs+ε(E) = 0 for any ε > 0. If there exists s > 0 such
that Hs(E) > 0, then Hs−ε(E) = +∞ for any ε in ]0, s].

PROOF. This follows from Lemma 5.1 since we have (x �→ xs) ≺ (x �→ xt )

for any real numbers s and t with t > s > 0.

Corollary 5.1 shows that there is a critical value of s at which Hs(E) ‘jumps’
from +∞ to 0. This value is called the Hausdorff dimension of E .

DEFINITION 5.1. Let E be a subset of Rn . The Hausdorff dimension of E,
denoted by dim E, is the unique non-negative real number s0 such that

Hs(E) = 0 if s > s0



5.2 Upper bound for the Hausdorff dimension 93

and

Hs(E) = +∞ if 0 < s < s0.

In other words, with the notation of Definition 5.1, we have

dim E = inf{s : Hs(E) = 0} = sup{s : Hs(E) = +∞}.
The main properties of Hausdorff dimension for subsets E, E1, E2, . . . of Rn

are (see for example [86], p. 65):

(i) dim E ≤ n;
(ii) If vol(E) is positive, then dim E = n;

(iii) If E1 ⊂ E2, then dim E1 ≤ dim E2;
(iv) dim∪+∞j=1 E j = sup{dim E j : j ≥ 1};
(v) The Hausdorff dimension of a finite or countable set of points is 0;

(vi) Two sets differing by a countable set of points have the same Hausdorff
dimension.

Observe that there exist sets of Hausdorff dimension zero which are uncount-
able (for example, the set of Liouville numbers, by Corollaries 1.1 and 5.2
below) as well as uncountable sets of Lebesgue measure zero and with Haus-
dorff dimension one (for example, the set of badly approximable real numbers,
see Exercise 5.1).

By property (iv), to determine the Hausdorff dimension of a subset E of
Rn , it is enough to know the Hausdorff dimension of intersections of E with
products of bounded intervals.

The choice of another norm in the definition of the diameter does not af-
fect the measure when it is either 0 or +∞. In particular, the critical expo-
nent is the same. Borelian sets of Hausdorff dimension s with positive finite
s-dimensional Hausdorff measure are called s-sets and enjoy some special
properties (see, for example, [234], Chapters 2 to 4, or [236], Chapter 5).

The introduction of dimension functions is a tool for discriminating be-
tween sets of same Hausdorff dimension, as will be made clear in Chapter 6.

In the remainder of the present Chapter, except in the notes at the end, we
study only subsets of R.

5.2 Upper bound for the Hausdorff dimension

The exact calculation of the Hausdorff dimension (and, a fortiori, of the H f -
measure) of a set E is in most cases a difficult problem. It is however often
possible to bound it from above by applying the following analogue of the
Borel–Cantelli Lemma 1.2.
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LEMMA 5.2. Let E be a Borelian subset of R and {U j } j≥1 be a countable
family of subsets of R such that

E ⊂ {ξ ∈ R : ξ ∈ U j for infinitely many j ≥ 1}.

If f is a dimension function such that∑
j≥1

f
(
diam(U j )

)
< +∞,

then H f (E) = 0. In particular, if there exists a positive real number s such
that ∑

j≥1

(
diam(U j )

)s
< +∞,

then Hs(E) = 0 and dim E ≤ s.

PROOF. By assumption, for any positive integer N , the family {U j } j≥N

is a covering of E . Let δ and ε be positive real numbers. Since the sum∑
j≥1 f (diam(U j )) converges, there exists a positive integer N such that

diam(U j ) < δ for any j ≥ N and∑
j≥N

f
(
diam(U j )

)
< ε.

This means that H f
δ (E) < ε, hence, we get H f (E) ≤ ε which, by letting ε

tend to 0, implies H f (E) = 0.

We give at once an application of Lemma 5.2 to Mahler’s classification of
numbers. Corollary 5.2 is due to Kasch and Volkmann [311], but their proof,
slightly more complicated, does not involve Theorem 3.6. A further result is
given in Section 7.5.

COROLLARY 5.2. The set of T -numbers and the set of U-numbers have
Hausdorff dimension zero.

PROOF. For any real number w > 1 and any positive integer H0, the set of
T ∗-numbers and the set of U∗-numbers are contained in

E(H0, w) :=
⋃
n≥1

⋃
H≥H0

⋃
α

]α − H−nw, α + H−nw[,

where the last union is taken over all real algebraic numbers α of degree n and
height H . Since there are no more than n(n + 1)(2H + 1)n such algebraic
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numbers, we have for any real number s with 1/w < s ≤ 2/w the estimate

Hs(E(H0, w)
) ≤∑

n≥1

∑
H≥H0

4n(n + 1) 2n
(

2H0 + 1

2H0

)n

H−n(ws−1).

The above double series converges if H0 is greater than 41/(ws−1). Thus, by
Lemma 5.2, the Hausdorff dimension of the set E(H0, w) is at most 1/w.
Hence, the set of T ∗-numbers and the set of U∗-numbers have Hausdorff di-
mension zero. We conclude by Theorem 3.6.

Lemma 5.2, called the Hausdorff–Cantelli Lemma by Bernik and Dodson
([86], Lemma 3.10), provides in general, but not always (see Dodson [199]),
an upper bound which is the exact value of the dimension. Furthermore, a cov-
ering argument as Lemma 5.2 is in some cases unfortunately useless, as it can
be seen, for example, in Section 5.7 below. An alternative approach resting on
the study of exponential sums is discussed in [86], Section 4.4.2.

5.3 The mass distribution principle

Different methods, more or less sophisticated, allow one to bound from below
the Hausdorff dimension of a real set.

Since the sets occurring in Diophantine approximation are often of this
form, we consider a set K included in a bounded interval E , and defined as
follows. We set E0 = E and we assume that, for any positive integer k, there
exists a finite family Ek of disjoint compact intervals in E such that any in-
terval U belonging to Ek is contained in exactly one of the intervals of Ek−1

and contains at least two intervals belonging to Ek+1. We also suppose that the
maximum of the lengths of the intervals in Ek tends to 0 when k tends to in-
finity. For k ≥ 0, we denote by Ek the union of the intervals belonging to the
family Ek . Then, we define a mass distribution μ on the set

K :=
+∞⋂
k=1

Ek

by successive subdivisions. We set μ(E) = 1, and we distribute this mass
between the intervals U (E)

1 , . . . , U (E)
m1 composing E1 in such a way that∑m1

i=1 μ(U (E)
i ) = 1. Likewise, if V belongs to the family Ek , we define, for

the intervals U (V )
1 , . . . , U (V )

mV composing Ek+1 and included in V , the masses

μ(U (V )
1 ), . . . , μ(U (V )

mV ) in such a way that
∑mV

i=1 μ(U (V )
i ) = μ(V ). Further,

for k ≥ 0, we set μ(E \ Ek) = 0.
Let E be the family consisting of the sets E \ Ek for k ≥ 0, and of all the

intervals belonging to the families Ek with k ≥ 0. We have defined μ(A) for
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any set A belonging to E . As claimed in the following result, this is enough in
order to define μ(A) for any Borelian set A included in E .

PROPOSITION 5.1. If K and μ are as above, then μ can be extended to all the
subsets of R in such a way that it is a Borelian measure. Moreover, the support
of μ is included in K.

The proof is involved. We just briefly mention that, if A is a Borelian set in E ,
we set

μ(A) = inf

{∑
j≥1

μ(U j ) : A ⊂
⋃
j≥1

U j and U j ∈ E for j ≥ 1

}
.

The main difficulties occur in showing that μ defined in this way is indeed a
measure. See, for example, [236], Proposition 1.7.

After having defined a measure on the set K, it is often possible to bound
its Hausdorff dimension from below by using the following lemma, called the
mass distribution principle, or the (easy half of the) Frostman Lemma [251].

LEMMA 5.3. Let μ be a probability measure with support in a bounded real
set K. Let f be a dimension function. Assume that there exist positive real
numbers κ and δ such that

μ(J ) ≤ κ f (|J |)

for any interval J with length |J | ≤ δ. We then have H f (K) ≥ 1/κ . Further-
more, if f (x) = xs for some real number s in ]0, 1], then dimK ≥ s.

PROOF. If {U j } j≥1 is a countable δ′-covering of K, with 0 < δ′ ≤ δ, then,
denoting by Ũ j the smallest interval containing U j , we have diam(U j ) = |Ũ j |
and

1 = μ(K) = μ

(⋃
j≥1

U j

)
≤

∑
j≥1

μ(U j ) ≤
∑
j≥1

μ(Ũ j )

≤ κ
∑
j≥1

f
(
diam(U j )

)
.

We deduce that H f
δ′(K) ≥ κ−1 for any δ′ ≤ δ, and the first assertion follows

by letting δ′ tend to 0. Furthermore, if f (x) = xs for some s > 0, then Hs(K)

is positive, which implies that the Hausdorff dimension of K is at least equal
to s.

An illustration of the strength of Lemma 5.3 is provided by the following re-
sult, which is Example 4.6 in [236].
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PROPOSITION 5.2. Keep the same notation as above. Assume further that
there exists a positive integer k0 such that, for any k ≥ k0, each interval of
Ek−1 contains at least mk ≥ 2 intervals of Ek, these being separated by at
least εk , where 0 < εk+1 < εk . We then have

dimK ≥ lim inf
k→+∞

log(m1 . . . mk−1)

− log(mkεk)
. (5.1)

PROOF. Replacing K by a smaller set if needed, one can assume that, for
k ≥ k0, each interval of Ek−1 exactly contains mk intervals of Ek , and
that there exists a positive integer m such that the set Ek is composed of
mmk0 . . . mk disjoint intervals U (k), to which we uniformly give the mass
μ(U (k)) = (mmk0 . . . mk)

−1. Let U be an interval of length smaller than εk0 ,
and let k ≥ k0 + 1 be such that

εk ≤ |U | < εk−1. (5.2)

Observe that the number of intervals of Ek which intersect U is, on the one
hand, at most equal to mk (since, by (5.2), U intersects a single interval of
Ek−1) and, on the other hand, at most equal to 1 + |U |/εk , since the intervals
of Ek are distant by at least εk . Consequently, we get

μ(U ) ≤ 1

mmk0 . . . mk
min

{
mk,

2|U |
εk

}
≤ 1

mmk0 . . . mkms−1
k

(
2|U |
εk

)s

≤ 2|U |s(mkεk)
−s

mmk0 . . . mk−1
,

for any real number s in [0, 1]. This implies that μ(U )/|U |s is bounded pro-
vided that

s < lim inf
k→+∞

log(mmk0 . . . mk−1)

− log(mkεk)
.

Since mkεk tends to 0 when k grows to infinity, we conclude by applying
Lemma 5.3.

As pointed out by Falconer [236], if for any k ≥ 1 the components of Ek have
the same length δk and if each interval of Ek−1 contains exactly mk intervals of
Ek , which are evenly spaced in the sense that mkεk ≥ cδk−1 for some positive
constant c, then (5.1) becomes

dimK ≥ lim inf
k→+∞

log(m1 . . . mk−1)

− log(δk−1)
. (5.3)

Conversely, under the same assumption, the set K can be covered by m1 . . . mk
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intervals of length δk , thus, by the definition of the Hausdorff dimension, we
have equality in (5.3). Such examples occur frequently in number theory, as it
will be seen throughout this and the next Chapter.

It follows from Proposition 5.2 that the Hausdorff dimension of the triadic
Cantor set is log 2/ log 3. With some additional effort, it is possible to prove
that its measure at the critical exponent is equal to 1 (see [234], Theorem 1.14),
hence, it is an s-set.

There are other techniques for establishing lower bounds for the Hausdorff
dimension. Potential theoretic and Fourier transform methods are briefly dis-
cussed in Chapter 4 of [236], see also Sections 3.5.7 and 4.1.3 of [86]. A full
treatment can be found Mattila [415].

5.4 Regular systems

The notion of regular system was introduced in 1970 by A. Baker and Schmidt
[45] to compute the Hausdorff dimension of sets K∗S of real numbers close to
infinitely many points of a given countable set S (namely, in [45], sets of al-
gebraic real numbers of bounded degree). Here, we slightly change their def-
inition, in order to point out more accurately which properties of S are really
required to get the Hausdorff dimension of K∗S .

DEFINITION 5.2. Let E be a bounded open real interval. Let S = (α j ) j≥1 be
a sequence of distinct real numbers. Let � : Z≥1 → R≥1 and � : Z≥1 → R≥1

be increasing functions such that �(n) ≥ n and �(n) ≥ n for any n ≥ 1.
The triple (S, �, �) is called a regular system of points in E if there exist a
positive constant c1 = c1(S, �, �) and, for any interval I in E, a number
K0 = K0(S, �, �, I ) such that, for any K ≥ K0, there exist integers

1 ≤ i1 < . . . < it ≤ �(�(K ))

with αih in I for any h = 1, . . . , t ,

|αih − αi� | ≥
1

�(K )
(1 ≤ h �= � ≤ t),

and

c1|I |�(K ) ≤ t ≤ |I |�(K ).

In the original work of A. Baker and Schmidt [45], the set S is not indexed
and the function � is the identity. The introduction of � rests on an idea of
Rynne [487], who defined the concept of ‘weakly regular system’, used, for
example, in [130] (see Exercise 5.7). We emphasize that we do not assume
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that every point of S belongs to E . Furthermore, we have supposed that E is
bounded, although this was not assumed in [45]. This does not involve any loss
of generality as far as calculating Hausdorff dimension is concerned since any
unbounded set can be covered by a countable collection of bounded, open sets
to which the results may be applied.

In the applications, the real number K0(S, �, �, I ) need not be effectively
computable.

Ideally, when the points of S are very well distributed, then we may hope
that (S, x �→ κ1x, x �→ κ2x) is a regular system for suitable positive real
numbers κ1 and κ2. If this occurs, S is said to be optimal and we can get
sharper results on sets of real numbers close to infinitely many points of S, see
Chapter 6.

To illustrate the notion of a regular system, we start with an example.

PROPOSITION 5.3. We order the rational numbers as follows. First, we divide
Q into classes containing rational numbers of the same height, starting with
height 0, 1, 2, and so on. Then within each class, the rationals are ordered in
the usual way (as real numbers). Then, the triple (Q, x �→ 4x, x �→ x) is a
regular system in ]0, 1[.

PROOF. For any integer B ≥ 2, the number of pairs of integers (a, b) with
1 ≤ a, b ≤ B and gcd(a, b) = 1 is at least equal to

B2 −
B/2∑
d=2

(
B

d

)2

≥ B2 − B2
(

π2

6
− 1

)
≥ B2

3
.

On the other hand, strictly fewer than 2B2 rational numbers have their height
bounded by B. Consequently, for any positive integer j , we have

√
j

2
≤ H(α j ) ≤

√
3( j + 1)+ 1. (5.4)

Let I be a bounded real interval in ]0, 1[ and Q > 100 be a real number. By
Dirichlet’s Theorem 1.1, for any ξ in I , there exists a rational number p/q
such that ∣∣∣∣ξ − p

q

∣∣∣∣ <
1

q Q
and 1 ≤ q ≤ Q. (5.5)

The Lebesgue measure of the set E of points ξ in I for which (5.5) is satisfied
by a rational number p/q with q ≤ Q/10 is less than or equal to

[Q/10]+1∑
q=1

2

q Q
(q|I | + 1),
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hence, to |I |/4, provided that Q ≥ 100|I |−1 log(100|I |−1). Further, for ξ in
I \ E , there exists a rational number p/q such that∣∣∣∣ξ − p

q

∣∣∣∣ <
10

Q2
and Q/10 ≤ q ≤ Q.

Let {p j/q j }1≤ j≤t be a maximal family of rational numbers in I with Q/10 ≤
q j ≤ Q and |p j/q j − p�/q�| ≥ 10/Q2 for 1 ≤ j �= � ≤ t . The union of the
intervals ]

p j

q j
− 20

Q2
,

p j

q j
+ 20

Q2

[
, 1 ≤ j ≤ t,

covers I \ E , thus its Lebesgue measure is at least 3|I |/4. Consequently, we
get

t ≥ 3

160
Q2|I |.

Furthermore, it follows from (5.4) that for any j = 1, . . . , t we have p j/q j =
αi j with Q2/400 ≤ i j ≤ 4Q2. We have proved that for any K ≥ K0

with

K0 ≥ 104|I |−2 log2(100|I |−1) (5.6)

there exist integers 1 ≤ i1 < . . . < it ≤ 4K such that |αi j − αi� | ≥ 1/K
for 1 ≤ j �= � ≤ t and t ≥ 3K |I |/160. This shows that the triple (Q, x �→
4x, x �→ x) is a regular system in ]0, 1[.

Proposition 5.4 shows that the set of algebraic numbers of bounded degree
forms a regular system. Further examples are given at the end of this Section
and in Section 6.1.

Thanks to Proposition 5.2, we are able to compute a lower bound for the
Hausdorff dimension of sets of real numbers close to infinitely many points in
a given regular system.

THEOREM 5.1. Let E be a bounded open real interval. Let S = (α j ) j≥1 be
a sequence of distinct real numbers. Let � : Z≥1 → R≥1 and � : Z≥1 →
R≥1 be increasing and assume that the triple (S, �, �) is a regular system of
points in E . Let � : R≥1 → R>0 be continuous, non-increasing and such
that

lim sup
x→∞

x�(�(x)) < +∞.

Then, the Hausdorff dimension of the set

K∗S(�) = lim sup
j→+∞

{ξ ∈ E : |ξ − α j | < �( j)}
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satisfies

dimK∗S(�) ≥ lim inf
x→+∞

− log x

log �(�(x))
.

Obviously, the set K∗S(�) also depends on E , but we choose not to indicate this
dependence in the notation; this should not cause any trouble in the sequel.

Although the approximation function � needs only to be defined for every
sufficiently large integer, we choose for commodity (as in the statement of
Theorem 1.10 and in Chapters 4 and 6) to assume that it is defined on R≥1 and
continuous.

We point out that the lower bound for dimK∗S(�) obtained in Theorem 5.1
does not depend on the function �, as it was observed by Rynne [487].

As will be apparent below, Theorem 5.1 shows that the points in S do not
need to be very well distributed in order that we get the exact dimension of
K∗S(�).

PROOF. We proceed as follows: we construct a Cantor set K of the form con-
sidered in Section 5.3 and contained in K∗S(�); we then apply Proposition
5.2 to estimate its Hausdorff dimension from below. Set E0 = E . Let c2 and
c3 be positive real numbers such that c2 < 1/3 and x�(�(x)) < (3c2)

−1

for any x ≥ c3. By Definition 5.2, there exist a positive constant c4, de-
pending only on S, �, and �, an integer t1, a real number K1 ≥ c3 with
c4|E0|K1 ≤ t1 ≤ |E0|K1, and a set A′1 = {i (1)

1 , . . . , i (1)
t1+2} included in

{1, . . . , �(K1)} such that αh is in E0 and |αh − α�| ≥ 1/K1 for any dis-
tinct integers h, � in A′1. We may further assume that K1 is a value taken by
the function �. Define

E1 =
⋃
j∈A1

[
α j − c2 �(�(K1)), α j + c2 �(�(K1))

]
,

where A1 is a subset of A′1 such that E1 is contained in E0 and has maximal
cardinality. Clearly, E1 is the union of at least t1 intervals, which are pairwise
disjoint since we have assumed K1 ≥ c3.

We proceed inductively and we let k ≥ 1 be an integer such that we have
constructed a set Ek contained in E of the form

Ek =
⋃
j∈Ak

[
α j − c2 �(�(Kk)), α j + c2 �(�(Kk))

]
,

where Kk is in �(Z≥1) and Ak is a set of tk integers in {1, . . . , �(Kk)}.
For j in Ak , denote by U j the interval [α j − c2�(�(Kk)), α j +

c2�(�(Kk))] and by KU j = K0(S, �, �, U j ) the constant given by Definition
5.2. We construct a new set EU j as a finite union of closed intervals contained
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in U j . Let Kk+1 be a value taken by � and greater than �(KU j ) for any j in
Ak . To simplify the notation, we omit the subscript j and denote by U one of
the U j s. By the definition of a regular system, there exist a positive integer tU
with c4|U |Kk+1 ≤ tU ≤ |U |Kk+1 and a set A′U = {i (U )

1 , . . . , i (U )
tU+2} included

in {1, . . . , �(Kk+1)} such that αh is in U and |αh − α�| ≥ 1/Kk+1 for any
distinct integers h, � in A′U . Define

EU =
⋃

h∈AU

[
αh − c2 �(�(Kk+1)), αh + c2 �(�(Kk+1))

]
,

where AU is a subset of A′U such that EU is contained in U and has maximal
cardinality. Clearly, EU is the union of at least tU intervals, which are pairwise
disjoint since Kk+1 ≥ c3.

Set

Ek+1 =
⋃
j∈Ak

EU and K :=
⋂
k≥1

Ek .

Each interval U j of Ek contains at least

tU j ≥ c4|U j |Kk+1 ≥
[
c2c4�(�(Kk)) Kk+1

] =: mk+1

intervals of Ek+1, these being separated by at least c2 K−1
k+1 =: εk+1, since

c2 < 1/3.
All the assumptions of Proposition 5.2 are fulfilled, hence, the Hausdorff

dimension of K satisfies

dimK ≥ lim inf
k→+∞

k−1∑
�=1

log
(
c2c4�

(
�(K�)

)
K�+1 − 1

)
− log

(
c2c4�

(
�(Kk)

)
Kk+1εk+1

) . (5.7)

For any positive real number δ and any k ≥ 2, we may select Kk large enough
in such a way that the numerator in (5.7) is larger than (log Kk)/(1+ δ). Con-
sequently, we have

dimK ≥ lim inf
k→+∞

log Kk

−(1+ δ) log
(
c2

2c4�(�(Kk))
) .

Since δ can be taken arbitrarily small, we get

dimK ≥ lim inf
x→+∞

− log x

log �(�(x))
.

Further, we observe that K∗S(�) contains K, since � is non-increasing and
�(n) ≥ n for any n ≥ 1. Hence, the result follows.
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A closer look at the proof of Theorem 5.1 suggests that we are able to consider
simultaneously several regular systems, and even a countable set of regular
systems. Indeed, at each step k, we use a regular system in order to construct
the set Ek+1 from the set Ek . If we have at our disposal several regular systems,
we may use any one of them at each step and, provided that we use all of
them infinitely many times, the resulting set, that is, K := ∩k≥1 Ek , will be
composed of points close to infinitely many elements of each regular system. It
remains for us to bound the Hausdorff dimension of K from below. To this end,
assume that, for any positive integer n, we have a regular system (Sn, �n, �n)

of points in K, and a non-increasing continuous function �n : R≥1 → R>0

with

lim inf
x→+∞ x�n(�n(x)) < +∞.

Then, following the proof of Theorem 5.1, we get

dimK ≥ lim inf
x→∞

− log x

log
(
minn≥1 �n(�n(x))

) . (5.8)

This observation is the key point for the proof of Theorem 5.4.
As observed by Bernik and Dodson [86], page 104, points with an asymp-

totic distribution in ]0, 1[ with a suitable error term also form a regular sys-
tem. Indeed, let S = (α j ) j≥1 be a sequence of real numbers in ]0, 1[. As-
sume that its discrepancy is controlled in the sense that there exists a posi-
tive constant κ < 1 such that, for any interval I in ]0, 1[ and any real number
Q ≥ 1, the number of points α1, . . . , αQ contained in I is asymptotically
equal to Q|I | + O(Qκ), where the numerical constant implied in O is inde-
pendent on I and Q. Define the function � on the set of positive integers by
�(n) = [n1/(1−κ)]. Then (see [86], page 104) the triple (S, �, �) forms a
regular system for some suitable linear function �.

As an application to inhomogeneous approximation, Bernik and Dodson
[86] proved that, for almost all real numbers α and for any real number τ > 1,
the set of real numbers β such that |qα − β − p| < q−τ holds for infinitely
many pairs of integers (p, q) with q positive has Hausdorff dimension 1/τ .
This result holds in fact for all irrational numbers α (see Exercise 5.7 for a
proof of this assertion).

5.5 The theorem of Jarnı́k–Besicovitch

It follows from Corollary 1.5 that, for any τ > 1, the set

K∗1(τ ) :=
{
ξ ∈ R :

∣∣∣∣ξ − p

q

∣∣∣∣ <
1

q2τ
for infinitely many rationals

p

q

}
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has Lebesgue measure zero. It is uncountable since it contains the Liouville
numbers. Its Hausdorff dimension has been calculated by Jarnı́k [289], and,
later and independently, by Besicovitch [100].

THEOREM 5.2. For any τ ≥ 1, the Hausdorff dimension of the set K∗1(τ ) is
equal to 1/τ .

COROLLARY 5.3. For any real number τ ≥ 1, we have

dim{ξ ∈ R : w∗1(ξ) ≥ 2τ − 1} = 1

τ
.

PROOF. This is a straigthforward consequence of Theorem 5.2. Indeed, for
any real numbers τ and ε with τ > 1 and 0 < ε < τ − 1, the set introduced in
the corollary is contained in K∗1(τ − ε) and contains K∗1(τ + ε).

Corollary 5.3 does not imply that the Hausdorff dimension of the set

W∗
1 (τ ) := {ξ ∈ R : w∗1(ξ) = 2τ − 1}

is equal to 1/τ . This result, proved in Exercise 5.3, is a straightforward conse-
quence of Satz 4 of Jarnı́k [292]. It was rediscovered by Güting [266], thanks
to a refinement of Besicovitch’s proof [100] of Theorem 5.2.

The set of very well approximable numbers (Definition 1.4) has Lebesgue
measure zero (Corollary 1.5) and Hausdorff dimension 1, by Theorem 5.2. This
is also the case for the set of badly approximable numbers (Definition 1.3), by
Corollary 1.6 and Exercise 5.1.

We deduce Theorem 5.2 from Proposition 5.3 and Theorem 5.1 above. An-
other proof, which directly depends on Proposition 5.2, is given in Section 5
of Falconer’s book [236].

PROOF OF THEOREM 5.2. By Theorem 1.1, K∗1(1) is the set of irrational
numbers, hence, its Hausdorff dimension is 1. Let τ > 1 be a real number.
Our aim is to prove that dim(K∗1(τ )∩]0, 1[) = 1/τ , which implies Theo-
rem 5.2. For any positive integer q , denote by E(q) the set of ξ in ]0, 1[
for which there exists an integer p such that |ξ − p/q| < q−2τ . Each point
of the set K∗1(τ )∩]0, 1[ is contained in infinitely many sets E(q). Since the
series ∑

q≥1

(q + 1)(2q−2τ )s

converges for any real number s greater than 1/τ , it follows from Lemma 5.2
that the Hausdorff dimension of K∗1(τ ) is less than or equal to 1/τ .

In order to prove the reverse inequality, denote by S = (α j ) j≥1 the set of
non-zero rational numbers, ordered as in the statement of Proposition 5.3. For
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any integer j ≥ 1, set

�( j) = H(α j )
−2τ .

By Proposition 5.3, the triple ((α j ) j≥1, x �→ 4x, x �→ x) is a regular system
and we get from (5.4) that x�(4x) ≤ 1 holds when x is large enough. Since
the sets K∗S(�) (defined with E =]0, 1[) and K∗1(τ )∩]0, 1[ coincide, it follows
from Theorem 5.1 and (5.4) that

dim
(K∗1(τ )∩ ]0, 1[

) ≥ lim inf
x→∞

− log x

log �(4x)
≥ lim inf

x→∞
log x

2τ log H(α4x )
= 1

τ
,

as claimed.

5.6 Hausdorff dimension of sets of S∗-numbers

Theorem 3.3 asserts that almost all real numbers are S∗-numbers of ∗-type less
than or equal to 1 (see also Corollary 4.1). However, we have not proved up to
now that S∗-numbers of ∗-type strictly greater than 1 do exist. We will achieve
this in the present Section.

Recall that An denotes the set of real algebraic numbers of degree bounded
by n. A. Baker and Schmidt [45] have extended Theorem 5.2 as follows.

THEOREM 5.3. For any integer n ≥ 1 and any real number τ ≥ 1, the Haus-
dorff dimension of the set

K∗n(τ ) := {ξ ∈ R : |ξ − α| < H(α)−τ(n+1) for infinitely many α ∈ An}
is equal to 1/τ .

Exactly as we derived Corollary 5.3 from Theorem 5.2, we have the following
consequence of Theorem 5.3.

COROLLARY 5.4. For any integer n ≥ 1 and any real number τ ≥ 1, we have

dim{ξ ∈ R : w∗n(ξ) ≥ τ(n + 1)− 1} = 1

τ
.

In the proof of Theorem 5.3 detailed below we have simplified the approach of
A. Baker and Schmidt by using the weaker form of Frostman’s Lemma given
by Proposition 5.2. However, a slight modification of our argument and the use
of Lemma 5.3 instead of Proposition 5.2 yields a sharper result than Corollary
5.4.

THEOREM 5.4. For any integer n ≥ 1 and any real number τ ≥ 1, the Haus-
dorff dimension of the set

W∗
n (τ ) := {ξ ∈ R : w∗n(ξ) = τ(n + 1)− 1}

is equal to 1/τ .
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PROOF. See Exercise 5.3.

Theorem 5.4, due to A. Baker and Schmidt [45], obviously implies that for
any positive integer n, the set of values taken by the function w∗n includes the
interval [n,+∞[. It should be pointed out that no other method is known for
proving this last statement.

We now turn to the proof of Theorem 5.3, which proceeds in several steps.
First, we use results from Chapter 4 to show that real algebraic numbers of
bounded degree are well distributed (Proposition 5.4). Then we suitably order
the sets An (Lemma 5.4), and we conclude by applying Theorem 5.1.

PROPOSITION 5.4. Let n ≥ 2 be an integer. For any bounded real interval I
there exist a real number K (I ) and, for any K ≥ K (I ), algebraic numbers
γ1, . . . , γt in An ∩ I such that

H(γh) ≤ K 1/(n+1)(log K )n, |γh − γk | ≥ K−1 (1 ≤ h < k ≤ t) (5.9)

and

t ≥ |I |K
8

.

Using Theorem 4.3, A. Baker and Schmidt established Proposition 5.4 (ac-
tually under a slightly weaker form). We could apply Theorem 4.4 to get a
sharper statement (that is, with a smaller exponent for (log K ) in (5.9)), as in
[86], page 101, but the result obtained would not yield more applications than
Proposition 5.4. In particular, it would not allow us to get the results established
in Chapter 6.

Proposition 5.4 does not look best possible because of the factor (log K )n in
(5.9): if the real algebraic numbers of degree at most n are ‘evenly’ distributed,
then Proposition 5.4 should hold with H(γ j ) ≤ cK 1/(n+1) in (5.9) for some
constant c. This is indeed the case, as was proved by Beresnevich [61], see
Section 6.1.

PROOF OF PROPOSITION 5.4. For any integer H ≥ 3, denote by RI (H) the
set of ξ in I for which there exists a real algebraic number α of degree at most
n and of height at most H such that

|ξ − α| < H−n−1(log H)n(n+1). (5.10)

Let ξ be a real transcendental number in I . Denote by M ≥ 1 a real number
such that I is contained in [−M, M] and let H > 34Mn2

be a real number.
By Theorem B.2, there exists a non-zero integer polynomial P(X) = an Xn +
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. . .+ a1 X + a0, of degree at most n, such that

0 < |P(ξ)| ≤ (4M)n H−n(log H)n2−1

|a1| ≤ (4M)−n H

|a j | ≤ H(log H)−n−1 (2 ≤ j ≤ n). (5.11)

Since the height of P(X) is bounded by 2−n H , the height of any root of P(X)

is at most equal to H , by Lemma A.3. We have several cases to distinguish. In
the sequel, we adopt the convention that the constants implied by 
 depend
only on n and M .

Assume first that |P ′(ξ)| ≤ n (4M)n H(log H)−n−1. We infer from (5.11)
that we have |a1| 
 H(log H)−n−1, hence, H(P) 
 H(log H)−n−1. Conse-
quently, we get

|P(ξ)| 
 H(P)−n(log H(P))−n−1 < H(P)−n(log H(P))−n−1/2, (5.12)

when H is sufficiently large, since H(P) tends to infinity with H . However,
since the series

∑
h≥2 h−1(log h)−1−1/2n converges, Theorem 4.3 asserts that

for almost all real numbers η, the equation

|Q(η)| < H−n(log H)−n−1/2

has only a finite number of solutions in integer polynomials Q(X) of degree
at most n and of height at most H . This shows that the Lebesgue measure
of the set of real numbers ξ satisfying (5.12) tends to zero when H tends to
infinity.

Assume now that |P ′(ξ)| > n (4M)n H(log H)−n−1. Lemma A.5 ensures
that there exists a zero α of P(X) satisfying

|ξ − α| ≤ n
|P(ξ)|
|P ′(ξ)| < H−n−1(log H)n(n+1),

whence ξ belongs to RI (H).
Consequently, the Lebesgue measure of the set RI (H) tends to |I | when

H tends to infinity. In particular, there exists H0 such that, for any H ≥ H0,
we have λ(RI (H)) ≥ |I |/2. Let H ≥ H0 be large enough such that K :=
Hn+1(log H)−n(n+1) is greater than H . Let γ1, . . . , γt be a maximal subset of
An ∩ I composed of algebraic numbers satisfying

H(γi ) ≤ H ≤ K 1/(n+1) (log K )n

and

|γi − γ j | ≥ H−n−1(log H)n(n+1) = K−1.
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By maximality, any real algebraic number γ in An such that H(γ ) ≤ H is
separated by at most K−1 from some γi . Thus, by (5.10), any real number
ξ belonging to RI (H) is separated by at most 2K−1 from some γi , and the
Lebesgue measure of the union of the intervals centered at the points γi for
i = 1, . . . , t and of radius 2K−1 is greater than or equal to λ(RI (H)). Hence,
we get |I |/2 ≤ 4t K−1, as claimed.

In order to apply Theorem 5.1, we have to define an ordering on the set An of
real algebraic numbers of degree at most n.

LEMMA 5.4. Let n ≥ 1 be an integer. We order the set An := (α j ) j≥1 as
follows. First, we put its elements into classes containing algebraic numbers
of the same height, starting with height 0, 1, 2, and so on. Then within each
class, the elements of An are ordered in the usual way (as real numbers). Then,
there exist two positive constants c5 and c6, depending only on n, such that, for
any j ≥ 1, we have

c5 j1/(n+1) ≤ H(α j ) ≤ c6 j1/(n+1). (5.13)

PROOF. The left-hand side inequality in (5.13) is clear, since, for any positive
integer H , there are at most n(2H+1)n+1 algebraic numbers of height at most
H and degree at most n. As for the right-hand side, let h ≥ 5 be an odd integer.
Consider an integer polynomial

P(X) := h Xn − an−1 Xn−1 − . . .− a1 X − a0,

where a0 is congruent to 2 modulo 4 and, for 0 ≤ j ≤ n − 1, the integer
a j is even and belongs to {0, 2, . . . , 2[h/2]}. By Eisenstein’s Criterion, the
polynomial P(X) is irreducible. Furthermore, it has (at least) one real root.
Consequently, there are at least c7hn real algebraic numbers of height h and
degree n, for some positive constant c7 depending only on n. Hence, there
exists a positive constant c8, depending only on n, such that, for any posi-
tive integer H , there are at least c8 Hn+1 real algebraic numbers of height at
most H and degree at most n. This proves the right-hand side inequality of
(5.13).

We now are able to complete the proof of Theorem 5.3.

PROOF OF THEOREM 5.3. Let τ > 1 be a real number and n ≥ 1 be an integer.
By Theorem 5.2, we assume n ≥ 2. For any H ≥ 1, denote by E(H, n) the set
of real numbers ξ in ]0, 1[ for which there exists an algebraic number α in An

with H(α) = H and

|ξ − α| < H(α)−τ(n+1).
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This is the union of at most n(n + 1)(2H + 1)n intervals, each of which with
length at most 2H−τ(n+1). Furthermore, the set ∪H≥1 E(H, n) is a countable
covering of K∗n(τ ). Since for any real number s > 1/τ the series∑

H≥1

n(n + 1)(2H + 1)n(
2H−τ(n+1)

)s

converges, it follows from Lemma 5.2 that the Hausdorff dimension of K∗n(τ )

is less than or equal to 1/τ .
In order to prove the reverse inequality, denote by (α j ) j≥1 the set An or-

dered as in Lemma 5.4. For any integer j ≥ 1, set

�( j) = H(α j )
−τ(n+1).

By Proposition 5.4 and Lemma 5.4, the triple (An, �n, x �→ x) is a regular
system, where

�n(x) = [
c9 x (log 3x)n(n+1)

]
(x ≥ 1), (5.14)

for a suitable positive constant c9, depending only on n. Further, by (5.13), we
have x�(�n(x)) ≤ 1 when x is large enough. Consequently, we infer from
Theorem 5.1 that

dimK∗n(τ ) ≥ lim inf
x→∞

− log x

log �(�n(x))

≥ lim inf
x→∞

− log x

−τ
(
log x − c10 log log x

) = 1

τ
,

where c10 is a positive constant depending only on n. This completes the proof
that dimK∗n(τ ) = 1/τ , and this implies that dimK∗n(1) = 1.

As announced at the end of Section 5.4, we may use simultaneously infinitely
many regular systems.

THEOREM 5.5. Let (τn)n≥1 be a sequence of real numbers greater than or
equal to 1. We then have

dim
⋂
n≥1

K∗n(τn) = 1

supn≥1 τn
.

In particular, for any real number τ ≥ 1, the Hausdorff dimension of the set⋂
n≥1

K∗n(τ )

is equal to 1/τ . Thus, there exist S∗-numbers of arbitrarily large ∗-type.
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PROOF. The upper bound immediately follows from Theorem 5.3. For the
lower bound, we consider the regular systems (An, �n, x �→ x), with �n as in
(5.14), and the functions

�n : j �→ H(α j )
−τ(n+1).

We conclude by (5.8).

Theorem 5.5 asserts that the Hausdorff dimension of a countable intersection
of sets K∗n(τn) is the infimum of the dimensions of the sets K∗n(τn). In the next
Chapter, we refine this result by using the notion of intersective sets, introduced
by Falconer.

With a slight modification of the proof of Theorem 5.5, similar to that
suggested for getting Theorem 5.4, it is possible to prove that there exist S∗-
numbers with any prescribed ∗-type greater than 1.

THEOREM 5.6. For any real number τ ≥ 1, the Hausdorff dimension of the
set of real S∗-numbers of ∗-type τ is equal to 1/τ .

PROOF. See Exercise 5.4.

Theorems 5.4 and 5.6 also follow from deeper results obtained in Chapter 6
(Theorem 6.3). It seems that Theorem 5.6 appeared for the first time in [132].
However, it can be relatively easily deduced from the results of A. Baker and
Schmidt [45]. Theorems 5.4 and 5.6 remain true if the ∗-type of an S∗-number
ξ is defined as the supremum of the sequence ((w∗n(ξ)+ 1)/(n + 1))n≥1.

5.7 Hausdorff dimension of sets of S-numbers

In the previous Section, we have calculated the Hausdorff dimension of sets of
real numbers related to Koksma’s classification. A parallel with the classifica-
tion of Mahler leads us to consider the sets

Kn(τ ) = {ξ ∈ R : |P(ξ)| < H(P)−τ(n+1)+1 for infinitely many
integer polynomials P(X) of degree ≤ n},

for any integer n ≥ 1 and any real number τ ≥ 1. Obviously, the sets K1(τ )

and K∗1(τ ) coincide. By Theorem 4.1, the sets Kn(τ ) have Lebesgue measure
zero when τ > 1, thus we would like to discriminate them using the Hausdorff
dimension. It follows from Lemma A.6 that the Hausdorff dimension of Kn(τ )

is at least equal to that of K∗n(τ ); unfortunately, we cannot apply the Hausdorff–
Cantelli Lemma 5.2 to bound it from above, for the same reasons as explained
in Section 4.1.
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A. Baker and Schmidt [45] combined Theorem 3.4 and Lemma 5.2 to show
that

1

τ
≤ dimKn(τ ) <

2

τ
, (5.15)

which, together with the upper bound dimK2(τ ) ≤ 1/τ obtained by Kasch
and Volkmann [311], yield that dimK2(τ ) = 1/τ (see Exercise 5.5). They
conjectured that the left inequality in (5.15) is indeed an equality. For n and
τ large enough, this was proved by R. C. Baker [48], and, a few years later, a
complete proof of the conjecture was established by Bernik [75, 77] (see also
[90]).

THEOREM 5.7. For any n ≥ 1 and any τ ≥ 1, the Hausdorff dimension of the
set Kn(τ ) is equal to 1/τ .

The proof of the upper bound (unlike for Theorem 5.3, this is the most difficult
half) is involved and uses the method of essential and inessential domains, at a
technical level comparable with (and maybe slightly superior to) the proof of
Theorem 4.4. Without much effort, we deduce from Theorem 5.7 the analogues
of Theorems 5.4 and 5.6.

THEOREM 5.8. For any integer n ≥ 1 and any real number τ ≥ 1, the Haus-
dorff dimension of the set

Wn(τ ) := {ξ ∈ R : wn(ξ) = τ(n + 1)− 1}
is equal to 1/τ . Furthermore, for any real number τ ≥ 1, the Hausdorff di-
mension of the set of real S-numbers of type τ is equal to 1/τ .

PROOF. It follows from Theorem 5.7 that dimWn(τ ) ≤ 1/τ . Write

W≥
n (τ ) := {ξ ∈ R : wn(ξ) ≥ τ(n + 1)− 1},

and observe that

W≥
n (τ ) =Wn(τ ) ∪

+∞⋃
�=1

W≥
n (τ + 1/�). (5.16)

For any real numbers τ ′ > 1 and ε with 0 < ε < τ ′ − 1, the set W≥
n (τ ′ + ε) is

included in Kn(τ ′), hence, its Hausdorff dimension is at most equal to 1/τ ′, by
Theorem 5.7. Consequently, we have H f (W≥

n (τ + 1/�)) = 0 for any integer
n ≥ 1, where f is the dimension function f : x �→ x1/τ exp(

√
log 1/x). Fur-

thermore, we infer from Proposition 3.2 and Exercise 5.3 that H f (W≥
n (τ )) >

0, and we get H f (Wn(τ )) > 0 by (5.16). Thus the Hausdorff dimension of
Wn(τ ) is at least equal to 1/τ , and the first assertion of Theorem 5.8 is proved.
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As for the second assertion, we observe that, for any real number τ ≥ 1, we
have

+∞⋂
n=1

W≥
n (τ ) ⊂

+∞⋂
n=1

Wn(τ ) ∪
+∞⋃
n=1

+∞⋃
�=1

W≥
n (τ + 1/�).

Arguing as above with the same dimension function f , we infer from Propo-
sition 3.2 and Exercise 5.4 that H f (∩n≥1 Wn(τ )) > 0. Thus, the Hausdorff
dimension of ∩n≥1 Wn(τ ) is at least equal to 1/τ and the proof of Theo-
rem 5.8 is complete, since any element of ∩n≥1 Wn(τ ) is an S-number of
type τ .

The last assertion of Theorem 5.8 remains true if the type of an S-number ξ is
defined as the supremum of the sequence ((wn(ξ)+ 1)/(n + 1))n≥1.

We end this Section by introducing a new exponent of Diophantine ap-
proximation, related to multiplicative approximation. Let τ > 1 be a real
number and let n ≥ 1 be an integer. For an integer polynomial P(X) =
an Xn + . . .+ a1 X + a0 we introduced in Chapter 4 the quantity

+(P) :=
∏

1≤i≤n

max{1, |ai |}.

For a given real number ξ , let w+n (ξ) be the supremum of the real numbers w

for which there exist infinitely many integer polynomials P(X) of degree at
most n satisfying

0 < |P(ξ)| ≤ −w
+ (P).

Observe that we have w+n (ξ) ≥ wn(ξ)/n. By Proposition 3.1, this implies that
w+n (ξ) ≥ 1 if ξ is transcendental. Furthermore, we set

K+n (τ ) = {ξ ∈ R : |P(ξ)| < −2τ+1
+ (P) for infinitely many

integer polynomials P(X) of degree ≤ n},
and

W+
n (τ ) := {ξ ∈ R : w+n (ξ) = 2τ − 1}.

By Proposition 3.1 and Theorem 4.6, almost all real numbers ξ satisfy
w+n (ξ) = 1, thus the Lebesgue measure of K+n (τ ) is zero. Clearly, K+n (τ ) con-
tains the sets K1(τ ), . . . ,Kn(τ ), therefore its Hausdorff dimension is greater
than or equal to 1/τ , by Theorem 5.2. Yu [608] conjectured that this is in fact
the exact value. The conjecture for n = 1 is nothing but Theorem 5.2 and it has
been established by Yu [608] for n = 2 (see Exercise 5.6). This result has been
rediscovered by Beresnevich and Bernik [64], but it remains an open problem
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for n ≥ 3. Furthermore, the Hausdorff dimension of W+
2 (τ ) is equal to 1/τ ,

as proved in Exercise 5.6.

5.8 Restricted Diophantine approximation

The sets K∗1(τ ) are defined without any restriction on the rational approximants
p/q. We could however impose some conditions on them, for instance, we
could ask that q belongs to a given infinite subset of the integers, like the
prime numbers or the powers of 2, etc. Such questions have been considered
by Borosh and Fraenkel [112], who extended earlier results of Eggleston [225],
and established the following statement.

THEOREM 5.9. Let N be an infinite set of distinct positive integers, and let v

in [0, 1] be the real defined by the conditions∑
q∈N

q−v diverges and
∑
q∈N

q−v−ε converges for any ε > 0.

For any real number τ ≥ (1+ v)/2, the Hausdorff dimension of the set{
ξ ∈ R :

∣∣∣∣ξ − p

q

∣∣∣∣ <
1

q2τ
for infinitely many rationals

p

q
with q ∈ N

}

is equal to (1+ v)/(2τ).

The proof of Theorem 5.9 given in [112] is quite technical and is inspired by
the proof of Theorem 5.3 due to A. Baker and Schmidt [45]. It proceeds by
contradiction and does not use the mass distribution principle (see also Chap-
ter 10 of Harman [273]).

In particular, Theorem 5.9 asserts that, for any real number τ > 3/2, the
Hausdorff dimension of the set of real numbers ξ such that infinitely many ra-
tional numbers p/q satisfy |ξ − p/q2| < q−τ is equal to 3/(2τ). Furthermore,
it allows us to answer a conjecture of Erdös related to the convergents of the
continued fraction expansion of real numbers.

COROLLARY 5.5. Let N be an infinite set of distinct positive integers. The
Hausdorff dimension of the set of real numbers having infinitely many conver-
gents whose denominators belong to N is greater than or equal to 1/2.

The proof is immediate since any convergent pn/qn of the continued frac-
tion expansion of the real number ξ satisfies |ξ − pn/qn| < q−2

n . Actually,
Eggleston’s results [225] are sufficient to get Corollary 5.5.

We end this Section by stating a corollary to Theorem 5.9 and a result,
due to Harman ([273], Theorem 10.8), on approximation by rational numbers
whose denominators and numerators are restricted.
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THEOREM 5.10. Let τ ≥ 1 be a real number. The Hausdorff dimensions of
the sets{

ξ ∈ R :

∣∣∣∣ξ − p

q

∣∣∣∣ <
1

q2τ
for infinitely many rationals

p

q
with q prime

}

and {
ξ ∈ R :

∣∣∣∣ξ − p

q

∣∣∣∣ <
1

q2τ
for infinitely many rationals

p

q
with p

and q prime

}

are equal to 1/τ .

Restrictions on numerators introduce new difficulties which do not seem to be
easy to overcome.

5.9 Exercises

EXERCISE 5.1. The Hausdorff dimension of the set B of badly approximable
real numbers, following Jarnı́k [288].

We keep the notation of Chapter 1. Let M ≥ 2 be an integer and denote by
BM the set of real numbers in [0, 1] having their partial quotients at most equal
to M . Let s be a real number with 0 < s < 1.

1) To determine Hs(BM ), prove that we need only to consider finite cover-
ings U of BM composed of closed intervals having their endpoints in BM .

2) Let U be an interval belonging to U . Prove that there exist a m-tuple
k = (k1, . . . , km) of positive integers not greater than M and two integers h
and � with 1 ≤ h < � ≤ M such that

U ∩ F(k,h) �= ∅ and U ∩ F(k,�) �= ∅.
Deduce that λ(Fk) ≤ 4 M3 |U |.

3) In order to determine whether Hs(BM ) is positive or not, prove that we
need only consider finite coverings U of BM composed of closed intervals Fk ,
where k is an m-tuple of positive integers not greater than M for some positive
integer m.

4) Assume that s is such that for any integer m ≥ 0 and any m-tuple k of
positive integers not greater than M we have

λ(Fk)
s ≤

M∑
h=1

λ(F(k,h))
s .
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Prove that this implies that the Hausdorff dimension of BM is at least equal
to s.

5) Use 4) to prove that dimB2 > 1/4 and that, for any integer M ≥ 9, we
have dimBM > 1− 4/(M log 2).

6) Prove that we have dimBM < 1−1/(8M log M) for any integer M ≥ 9.

EXERCISE 5.2. Denote by [0; a1, a2, . . . ] the continued fraction expansion of
a real number ξ in [0, 1[. Let b > 1 and c > 1 be real numbers and set

�(b, c) := {ξ : an ≥ cbn
for infinitely many n}

and

�̃(b, c) := {ξ : an ≥ cbn
for all positive integers n}.

1) Following Feng, Wu, Liang and Tsen [245], prove that we have

dim �(b, c) = dim �̃(b, c) ≥ 1/(b + 1).

2) Following Ganesa Moorthy [255], prove that dim �(b, c) ≤ 2/(b + 1)

and deduce that the set

U = {ξ : the sequence (log an)1/n is unbounded}
has Hausdorff dimension zero.

Actually, both sets �(b, c) and �̃(b, c) turn out to have Hausdorff dimen-
sion 1/(b + 1), as proved by Łuczak [372].

Hint. For 1), apply Proposition 5.2 with the sets

Ek := {ξ ∈ [0, 1] : cbn ≤ an ≤ 3cbn
for 1 ≤ n ≤ k + 1}

and use Theorems 1.3 and 1.7.
For 2), let k < b be fixed. Arguing by contradiction, prove that for every ξ =

[0; a1, a2, . . . ] with an ≥ cbn
for infinitely many n, there are infinitely many n

such that the n-th convergent pn/qn to ξ satisfies qn+1 > qk
n . Deduce that for

every positive integer m, the collection of intervals ]r/q−q−k−1, r/q+q−k−1[,
with 1 ≤ r ≤ q − 1 and q ≥ m, forms a cover for the set �̃(b, c). Conclude.
Prove that dimU = 0.

EXERCISE 5.3. Prove that dimW∗
n (τ ) = 1/τ holds for any positive integer n

and any real number τ > 1.
Hint. Use the regular system (An, �n, x �→ x) with �n as in (5.14)

to construct inductively a Cantor set contained in K∗n(τ ) and of the same
form as in the proof of Theorem 5.1. Instead of applying Proposition 5.2,
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argue as in the proof of Proposition 5.2 to define a measure μ on K∗n(τ )

and show that μ(U ) ≤ c|U |1/τ exp(
√

log 1/|U |) for some absolute con-
stant c and any sufficiently small interval U . Use Lemma 5.3 to prove that
for f : x �→ x1/τ exp(

√
log 1/x), we have H f (K∗n(τ )) > 0. Observe that

H f (K∗n(τ+1/k)) = 0 for any positive integer k and prove that H f (W∗
n (τ )) >

0. Conclude.

EXERCISE 5.4. Prove that dim∩n≥1W∗
n (τ ) = 1/τ holds for any positive inte-

ger n and any real number τ > 1.
Hint. Use the observation at the end of Section 5.4 and the same general

idea as in Exercise 5.3 to show that, with f as in Exercise 5.3, we have
H f (∩n≥1W∗

n (τ )) > 0.

EXERCISE 5.5. Following Kasch and Volkmann [311], prove that dimK2(τ ) =
1/τ .

Hint. Use 1) of Exercise 4.1 to find a suitable countable covering of K2(τ )

and then use 2) of Exercise 4.1 to prove that dimK2(τ ) ≤ 1/τ .

EXERCISE 5.6. Following Beresnevich and Bernik [64], prove that
dimK+2 (τ ) = 1/τ . Proceed as in Exercise 5.3 to establish that dimW+

2 (τ ) =
1/τ .

Hint. It is sufficient to show that dim(K+2 (τ ) ∩ [1, 2]) = 1/τ . Let ξ be in
[1, 2] and P(X) = a2 X2 + a1 X + a0 be an integer polynomial with |P(ξ)| <
−2τ+1
+ (P).
Prove that H(P) ≤ 7 max{|a1|, |a2|}.
Let J (τ ) denote the subset of K+2 (τ ) composed of the real numbers ξ in

[1, 2] for which there are infinitely many integer polynomials Q(X) = a2 X2+
a1 X + a0 with

|Q(ξ)| < +(Q)−2τ+1 and |Q′(ξ)| < H(Q)

14
.

Prove that each of these polynomials satisfies |a2| ≤ |a1| ≤ 8|a2|, and derive
from Exercise 5.5 that dim J (τ ) ≤ 3/(4τ − 1).

Assume now that there are infinitely many integer polynomials P(X) =
a2 X2 + a1 X + a0 with

|P(ξ)| < +(P)−2τ+1 and |P ′(ξ)| ≥ H(P)

14
. (5.17)

For a fixed polynomial P(X), denote by σ(P) the set of ξ in [1, 2] satisfying
(5.17). Prove that σ(P) is the union of at most three intervals, whose lengths
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are at most 28 +(P)−2τ+1 H(P)−1 (use the Mean Value Theorem). For any
ρ in ]1/τ, 1[, show that the sum∑

P(X)

∑
1≤i≤3

|σ i (P)|ρ

converges, where the first sum is taken over all the integer polynomials
P(X) = a2 X2 + a1 X + a0 (sum up over k and �, and then over |a1| in
[2k, 2k+1 − 1] and |a2| in [2�, 2�+1 − 1]). Conclude.

EXERCISE 5.7. Prove that, for any real irrational number α and any τ > 1, the
Hausdorff dimension of the set{

ξ ∈ R : ‖nα − ξ‖ <
1

nτ
holds for infinitely many integers n

}

is equal to 1/τ , a result due to Bugeaud [127] and, independently, to Schmeling
and Troubetzkoy [497].

Hint. The Three Distance Theorem asserts (see, for example, [529], [525]
or [5] 1) that, for any integer N ≥ 2, the points {α}, {2α}, . . . , {Nα} divide
the interval [0, 1] in N + 1 intervals, whose lengths take at most three distinct
values, one of these being the sum of the two others. Deduce that there exists
a strictly increasing infinite sequence of positive integers (Nr )r≥1 with the
following property: For any interval I in [0, 1] and any integer r large enough
(in terms of |I |), at least |I |Kr/3 numbers among {α}, . . . , {Nrα} belong to I
and are mutually distant by at least 1/Kr , where Kr denotes the greatest even
integer smaller than (Nr + 1)/3. Conclude by applying Theorem 5.1 with a
suitably chosen function �. As observed by Drmota, it is also possible to use
Theorem 1.7 instead of the Three Distance Theorem to solve this exercise.

5.10 Notes

• Besides the Hausdorff dimension, there exist various other ‘fractal dimen-
sions’, like the lower and upper box-counting dimensions, the Fourier dimen-
sion and the packing dimension introduced by Tricot [571, 572], see Chapter 3
of [236] and Chapters 5 and 12 of [415]. Falconer [237] proved that, for any
τ ≥ 1, the set K∗1(τ ) has packing dimension equal to 1.

• Theorem 5.2 has been extended to systems of linear forms by Bovey and
Dodson [116].

1 There is a misprint in the statement of the Three Distance Theorem in [5]: ηk is the smallest
length, not the largest one.
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• An inhomogeneous analogue of Theorem 5.2 together with an extension
to systems of linear forms has been obtained by Levesley [365] (see also Ex-
ercise 6.3 and [497]). His main theorem implies earlier results of Dickinson
[192] and Dodson [202].

• Kaufman [315] (see also Bluhm [102]) gave a new proof of Theorem 5.2.
He established the stronger property that, for any real number τ > 1, there
exists a positive measure μτ with support in a compact subset of K∗1(τ ) and
whose Fourier-Stieltjes transform satisfies

μ̂τ (x) =
∫

R

exp(−2iπxy) dμτ (y)

= o(log |x |) |x |−1/(2τ), |x | → +∞.

Furthermore, he showed that the Fourier dimension (see [415], page 168, for
definition) of K∗1(τ ) is equal to its Hausdorff dimension. Sets with this property
are called Salem sets and are very rare as deterministic sets; the first construc-
tions of such sets, due to Salem, were random.

• Another extension of Theorem 5.2 has been obtained by Falconer [238].

• Let k ≥ 1 be an integer, τ > (k + 1)/2 be a real number and set

K(k)(τ ) :=
{
(ξ1, . . . , ξk) ∈ Rk :

∣∣∣∣ξ − p1

q

∣∣∣∣× . . .×
∣∣∣∣ξ − pk

q

∣∣∣∣ <
1

q2τ

for infinitely many integers p1, . . . , pk, q

}
.

Bovey and Dodson [115] established that dimK(k)(τ ) = k−1+2/(2τ−k+1).
This provides a generalization of Theorem 5.2, and has been extended to
systems of linear form by Yu [607]. A function F : Rk → R is a dis-
tance function if, by definition, F is continuous, non-negative and satisfies
F(t x) = t F(x) for all t ≥ 0. Examples of distance functions are pro-
vided by the ‘sup’ norm, the usual Euclidean norm, and by (x1, . . . , xk) �→∏k

j=1 |x j |1/k . Sets of the form {(ξ1, . . . , ξk) ∈ Rk : F(〈qx1〉, . . . , 〈qxk〉) <

�(q) for infinitely many integers q}, where F is a distance function and �

some approximation function, have been studied by Dodson [198, 199], who
obtained generalizations of the above quoted result from [115]. Extensions to
systems of linear forms have been worked out by Dodson [198] and Dodson
and Hasan [204].

• In order to obtain lower bounds for the Hausdorff dimension of sets of
‘very well approximable’ points in a multidimensional setting, Dodson, Rynne,
and Vickers [206], inspired by geometrical ideas of Besicovitch [100], intro-
duced the notion of ubiquitous systems. Actually, in the one dimension case,
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ubiquitous and regular systems are almost equivalent, see Rynne [487] for an
interesting discussion. Using this powerful tool, Theorem 5.2 has been ex-
tended to ‘very well approximable’ linear forms and to ‘very well approx-
imable’ systems of linear forms in [206] and by Dickinson [190, 191]. We
refer the reader to the survey of Dodson [201], to Chapter 5 of Bernik and
Dodson [86], and to the survey of Beresnevich, Bernik and Dodson [67]. A
new technique involving a multidimensional analogue of regular systems has
been developed by Beresnevich, Bernik, Kleinbock, and Margulis [68].

•Weiss [596, 597] proved that, for any real number τ > 1, almost no points
on a Cantor set (with respect to the standard measure supported on it) belong to
K∗1(τ ). This has been extended by Kleinbock, Lindenstrauss, and Weiss [329].

• Pollington [458] established that the Hausdorff dimension of the set of
real numbers in K∗n(τ ) which are simply normal (see the Notes of Chapter 1
for the definition) in no base is equal to 1/τ .

• Hinokuma and Shiga [281] slightly improved Theorem 5.2. Furthermore,
they [282] asserted an extension of Theorem 5.9, but there is apparently a prob-
lem in their proof: the term (log N j−1)

−3 occurring in the denominator of the
fraction at the bottom of page 371 should be (log N j )

−3, and this only gives
that the Hausdorff dimension is non-negative. Presumably, Proposition 5.2 can-
not be used to get Theorem 5.9, since the points of the regular system are not
sufficiently spaced from each other. However, a proof of the assertions claimed
in [282] can be found in [488].

• Theorem 5.9 has been extended to simultaneous approximation and then
generalized in several directions by Rynne [486, 488, 489] and by Rynne and
Dickinson [491]. Simultaneous approximation with differing exponents in the
approximation functions for each coordinate is studied in [489, 491].

• As a corollary to Theorem 5.9, R. C. Baker and Harman (see Theorem
10.7 in [273]) proved that, given a non-negative function � such that the sum∑

q≥1 q�(q) diverges, the set of real numbers ξ for which |ξ − p/q| < �(q)

has infinitely many solutions in coprime positive integers p and q has Haus-
dorff dimension 1. This result means that the Duffin–Schaeffer Conjecture (see
Section 1.4) cannot ‘fail badly’.

•Vilchinskiı̆ [577] and Vilchinskiı̆ and Dombrovskiı̆ [578] obtained various
metric results in restricted Diophantine approximation.

• It follows from Exercise 5.1 and the fact that H1 coincides with the
Lebesgue measure that the set B of badly approximable real numbers is not
an s-set.
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• The results obtained in Exercise 5.1 have been refined by several au-
thors, including Bumby, Cusick, and Hensley. Among other statements, Hens-
ley [277] established that

dimBM = 1− 6

π2 M
− 72 log M

π4 M2
+ O(M−2),

as M tends to infinity. Further, he proved [278] that dimB2 = 0.5312805...

and gave the first six significant digits for the Hausdorff dimensions of some
other sets of real numbers with finitely many different partial quotients. A more
efficient approach to calculating these dimensions has been developed by Jenk-
inson and Pollicott [301]. Vallée [576] determined the Hausdorff dimension of
sets of real numbers whose continued fraction expansion obeys a not necessar-
ily finite but periodic set of constraints.

• Schmidt [503, 505] extended some results of Jarnı́k [288] by showing that,
for any positive integers m and n, the Hausdorff dimension of the set of badly
approximable m× n real matrices is equal to mn. Continued fractions are use-
less for this problem; Schmidt’s proof rests on the method of α-β games (see
also Chapter III of [512]). An inhomogeneous analogue of Schmidt’s results
has been obtained by Kleinbock [325], using the methods from [330].

• The Ganesa Moorthy theorem, proved in Exercise 5.2, contains as an
immediate corollary a result of Cusick [172] asserting that dim{ξ ∈ R :
log2 log2 log2 an ≥ n for all n ≥ 1} = 0. In the same vein, Hirst [283] showed
that dim{ξ ∈ R : an ≥ an for all n ≥ 1} = 1/2. Good [258] claimed that the
Hausdorff dimension of U is zero, but, as noticed, for example, by Hirst [283],
there is a gap in his proof. For related results, see Jarnı́k [298] and Ramharter
[467, 468].

• Extensions of the result proved in Exercise 5.7 to simultaneous approx-
imation and to approximation of linear forms have been studied by Bugeaud
and Chevallier [134].

• As for restricted Diophantine approximation, denoting by pn/qn the con-
vergents of a real number, Erdös and Mahler [229] asserted without proof that
there exist real numbers for which the greatest prime factor of both pn and qn

is bounded for infinitely many n. They also conjectured that these numbers,
which are necessarily transcendental (by Ridout’s Theorem 2.3), are Liou-
ville numbers. The claim of Erdös and Mahler has been proved by Fraenkel
[249]. However, their conjecture remains open. Fraenkel and Borosh [250]
have determined the Hausdorff dimension of sets of real numbers very close
to infinitely many rational numbers, whose numerators and denominators are
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mainly composed of fixed prime numbers. Furthermore, they have generalized
their result to simultaneous Diophantine approximation [113].

• For Hausdorff dimension of exceptional sets of real n-tuples related to n-
dimensional extensions of Dirichlet’s Theorem 1.1 established by Davenport
and Schmidt [184], see R. C. Baker [51] and the references given therein.

• Let n ≥ 2 be an integer and w1, w2 be real numbers with w1 ≥ w2 ≥ 1
and w1 + w2 > n + 1. Using planar regular systems, Dombrovskiı̆ [207]
computed the Hausdorff dimension of the set of vectors (ξ1, ξ2) in the plane
for which the inequalities |ξ1 − α1| < H(P)−w1 , |ξ2 − α2| < H(P)−w2 , hold
for infinitely many integer polynomials P(X) of degree at most n, where α1

and α2 are two zeros of P(X). Further results are due to Kovalevskaya [338].

• The Hausdorff dimension of sets of points (ξ1, ξ2) in R2 for which the
inequality |P(ξ1)| · |P(ξ2)| < H(P)−w has infinitely many solutions in integer
polynomials P(X) of bounded degree has been studied by Pereverzeva [451,
452].

• There are many papers concerned with Diophantine approximation on
classical curves and Hausdorff dimension. The reader is directed to Bernik and
Dodson [86] and to the survey by Beresnevich and Bernik [65]. Recent results
are due to Beresnevich [63], Dickinson and Dodson [193], and Rynne [490].

• For applications of results connected with this Chapter to the problem of
small denominators or to the Schrödinger equation, see Chapter 7 of Bernik
and Dodson [86], Section 7 of Dodson and Kristensen [205], the survey by
Dodson [203], and Kristensen [343].
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Deeper results on the measure
of exceptional sets

Theorem 5.4, due to A. Baker and Schmidt [45], asserts that for any integer n ≥
1 and any real number τ ≥ 1 the Hausdorff dimension of the set W∗

n(τ ) of real
numbers ξ with w∗n(ξ) = τ(n + 1)− 1 is equal to 1/τ . In the present Chapter,
we are concerned with various refinements, including the determination of the
Hausdorff measure of W∗

n (τ ) at the critical exponent (Corollary 6.3 below).
There are essentially two new ingredients. On the one hand, we need an

improvement of Proposition 5.4, which is due to Beresnevich [61] and asserts
that real algebraic numbers of bounded degree are distributed ‘as evenly as they
could be’. On the other hand, we present a refined analysis of the Hausdorff
measure of sets of real numbers close to infinitely many points in a given real
sequence.

One essential tool, introduced in Section 6.1, is the notion of ‘optimal
regular systems’ (also termed ‘best possible regular systems’ by Beresnevich,
Bernik, and Dodson [67]). We state four general results on sets of real numbers
close to infinitely many points in an optimal regular system. We establish
the first one in Section 6.2, which allows us to give an alternative proof of
(a slightly stronger form of) Khintchine’s Theorem 1.10. The second one,
stated in Section 6.3, provides the Hausdorff dimension of general exceptional
sets. The third one, given in Section 6.4, refines Theorem 5.1 inasmuch as it
yields the Hausdorff measure instead of the Hausdorff dimension. Finally, in
Section 6.5, the fourth one shows that the sets of real numbers considered here
share a stability property. Namely, the Hausdorff dimension of a countable
intersection of a family (K j ) j≥1 of such sets is equal to the minimum of
the Hausdorff dimensions of the K j s. Section 6.6 is devoted to applications
of the general statements obtained in the previous Sections to Diophantine
approximation.

We stress that (apart from Theorems 6.1 and 6.2) none of the results stated
in this Chapter are fully proved in the present book. Theorems 6.6 to 6.10 rest
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on Proposition 6.1, a difficult result on the distribution of algebraic numbers of
bounded degree. Furthermore, proofs of Theorems 6.3 to 6.5 are quite technical
and lie beyond the scope of this book: the reader is directed to [132, 130] and
to the impressive work of Beresnevich, Dickinson, and Velani [71].

6.1 Optimal regular systems

Our aim is to give more accurate information on sets K∗S of real numbers close
to infinitely many points belonging to a given countable set S. In Chapter 5, we
have seen that if the points in S are evenly distributed in some sense, then we
are able to compute the Hausdorff dimension of K∗S . However, we would like
to get more, in particular to obtain Khintchine-type results and to determine
the Hausdorff measure of K∗S at the critical exponent. It appears that we then
need refined information on the distribution of the points in S, whence the
introduction of the notion of optimal regular system.

DEFINITION 6.1. Let E be a bounded open real interval. Let S = (α j ) j≥1

be a sequence of distinct real numbers. Then S is called an optimal regular
system of points in E if there exist positive constants c1, c2, and c3, depending
only on S, and, for any bounded interval I in E, a number K0 = K0(S, I )
such that, for any K ≥ K0, there exist integers

c1 K ≤ i1 < . . . < it ≤ K

with αih in I for h = 1, . . . , t ,

|αih − αi� | ≥
c2

K
(1 ≤ h �= � ≤ t)

and

c3|I |K ≤ t ≤ |I |K .

As in the definition of a regular system, we index the set S and we do not
assume that all points of S belong to E .

Ideally, when the points of the set S are ‘very well’ distributed, then S is
likely to be an optimal regular system. This is the case for the set of rational
numbers, as follows from Proposition 5.3, and for every set An of real algebraic
numbers of degree at most n, as shown by Beresnevich ([60] for n ≥ 2 and [61]
for general n). Observe that Proposition 5.4 is not sharp enough to yield this
assertion. We do not give the proof of the result from [61], since it lies beyond
the scope of the present book. It rests, among others, on a difficult lemma
due to Bernik [79] (extended by Borbat [109]) and auxiliary results (see, for
example, [86], Section 2.4) used in the proofs of Theorems 4.4 and 5.7. One of
these lemmas asserts that, for any given positive real number ε and for almost
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all real numbers ξ , all but finitely many integer polynomials P(X) of degree
n and with |P(ξ)| ≤ H(P)−n satisfy |P ′(ξ)| > H(P)1−ε; a statement which
may be compared with Theorem 4.2. We quote Theorem 3 of [61].

PROPOSITION 6.1. Let n ≥ 1 and M ≥ 2 be integers and let I be an interval
contained in ]−M+1, M−1[. There exist positive constants c4, c5, depending
only on n, a number K0 = K0(n, I ) and, for any K ≥ K0, there are α1, . . . , αt

in An ∩ I such that

c4 Mn K ≤ H(αh) ≤ Mn K , (1 ≤ h ≤ t),

|αh − α�| ≥ K−n−1 (1 ≤ h < � ≤ t),

t ≥ c5|I |K n+1.

Actually, the existence of c4 is not proved in [61]. However, it is not difficult
to deduce it by following the proof of Beresnevich (see, for example, [124],
Théorème G). The constants c4 and c5, but not K0(n, I ), are explic-
itly given in [124]. It follows from (5.6) of Chapter 5 that we can take
K0(1, I ) = 100|I |−1 log(100|I |−1) for any interval I in [0, 1]. Furthermore,
Beresnevich [60] showed that Proposition 6.1 holds true with K0(2, I ) =
48|I |−1 log(24|I |−1) for any interval I in [0, 1]. When n is greater than
or equal to 3, an effective value for K0(n, I ) has not been calculated at
present.

COROLLARY 6.1. We number the elements of An := (α j ) j≥1 by increasing
order of their height, and, when the heights are equal, by increasing numerical
order. Then, the set An is an optimal regular system in any bounded open real
interval.

Corollary 6.1 immediately follows from Proposition 6.1 and Lemma 5.6. We
draw the reader’s attention to the assumption that E has to be bounded. Indeed,
otherwise the constants c2 and c3 occurring in Definition 6.1 would have to
depend on I .

Actually, Beresnevich [61] proved that the set of real algebraic numbers of
fixed degree n is an optimal regular system. Consequently, all the following
results also hold with the set An replaced by the set of real algebraic numbers
of degree exactly n.

Other examples of optimal regular systems include the set of real algebraic
integers of any fixed degree n ≥ 2, the set of real algebraic units of any fixed
degree n ≥ 3, the set of real algebraic integers in a given (non-totally complex)
number field, and the sequence ({nα})n≥1 for any badly approximable real
number α (see Exercise 6.4).
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6.2 A Khintchine-type result

The aim of this Section is to show that sets of real numbers close to infinitely
many points in an optimal regular system satisfy a Khintchine-type statement.
This result is due to Beresnevich [61, 62].

THEOREM 6.1. Let E be a bounded open real interval. Let S = (α j ) j≥1

be a sequence of real numbers which is an optimal regular system in E . Let
� : R≥1 → R>0 be a non-increasing continuous function and set

K∗S(�) = lim sup
j→+∞

{ξ ∈ E : |ξ − α j | < �( j)}.

Then the set K∗S(�) is a null set if the sum
∑

j≥1 �( j) converges, and it has
full measure if this sum diverges.

We need several auxiliary lemmas to prove the divergence half of Theorem 6.1.
Here, we closely follow Beresnevich [61].

LEMMA 6.1. Let E be a measurable real set. If there exists an absolute pos-
itive constant κ such that λ(E ∩ I ) ≥ κλ(I ) for any bounded real interval I ,
then E has full measure.

PROOF. If the set R \ E has positive measure, then, by the Lebesgue Density
Theorem (see, for example, Riesz and Sz.-Nagy [472], page 13, or Mattila
[415], Corollary 2.14), there exists a real number x0 such that, for any ε > 0,
there is δ > 0 with

λ
(
(R \ E) ∩ [x0 − δ, x0 + δ]) ≥ 2δ(1− ε

)
.

Taking ε = κ/2, this yields λ(E ∩ [x0− δ, x0+ δ]) ≤ δκ , a contradiction with
our assumption. Consequently, E has full measure.

Lemma 6.2 provides a converse of the Borel–Cantelli Lemma 1.2. It originates
in a work of Chung and Erdös [165].

LEMMA 6.2. Let Ei , i ≥ 1, be measurable real sets contained in a bounded
interval I . If the sum

∑∞
i=1 λ(Ei ) diverges, then we have

λ
(
lim sup
i→+∞

Ei
) ≥ lim sup

n→+∞

(∑n
i=1 λ(Ei )

)2∑n
i=1

∑n
j=1 λ(Ei ∩ E j )

.
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PROOF. We follow Sprindžuk [539], p. 18, and Harman [274]. Let m, n be
positive integers with m ≤ n and set

En
m =

⋃n
j=m E j , M(m, n) =∑n

j=m λ(E j ),

and V (m, n) =
n∑

j=m

n∑
k=m

λ(E j ∩ Ek).

Let χm,n denote the characteristic function of En
m and χ j denote that of E j for

any positive integer j . Since

M(m, n) =
∫

I

n∑
j=m

χ j (x) dx =
∫

I
χm,n(x)

n∑
j=m

χ j (x) dx,

the Cauchy–Schwarz inequality yields that

M(m, n)2 ≤
( ∫

I
χm,n(x) dx

) ( ∫
I

n∑
j=m

n∑
k=m

χ j (x) χk(x) dx

)
(6.1)

= λ(En
m) V (m, n).

Since

M(1, n)2

V (1, n)
≤ M(m, n)

(
M(m, n)+ 2m|I |)+ m2|I |2

V (m, n)

and the sum
∑∞

i=1 λ(Ei ) diverges, we let n tend to infinity and keep m fixed to
obtain

lim sup
n→∞

M(m, n)2

V (m, n)
≥ lim sup

n→∞
M(1, n)2

V (1, n)
.

Combined with (6.1), this gives

lim
n→∞ λ

(
En

m

) ≥ lim sup
n→∞

M(1, n)2

V (1, n)
,

and we now let m tend to infinity to get the lemma.

LEMMA 6.3. Let (an)n≥1 be a non-increasing sequence of positive numbers
such that the sum

∑
n≥1 an diverges. Let κ be a positive real number and,

for n ≥ 1, set bn := min{an, κ/n}. Then the sequence (bn)n≥1 is also non-
increasing, and the sum

∑
n≥1 bn diverges.

PROOF. Since (an)n≥1 and (κ/n)n≥1 are non-increasing, so is (bn)n≥1. Thus,
for any integer � ≥ 2, we have

�b� ≤ 2
�∑

n=[�/2]

bn . (6.2)
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Assume that the sum
∑

n≥1 bn converges. It follows from (6.2) that �b� tends
to 0 as � tends to infinity. However, since

∑
n≥1 an diverges, the definition of

(bn)n≥1 yields that there exist infinitely many integers � such that b� = κ/�,
which is a contradiction. Hence, the sum

∑
n≥1 bn diverges.

LEMMA 6.4. Let � : R>0 → R>0 be a given non-increasing, continuous
function such that the sum

∑
h≥1 �(h) diverges (resp. converges). Let κ and

M be positive real numbers with M > 1. Then, the sum
∑

h≥1 Mh �(κ Mh)

also diverges (resp. converges).

PROOF. This follows from the equality∫ ∞

1
Mx�(κ Mx )dx = 1

κ log M

∫ ∞

κ M
�(y)dy,

which is nothing but the change of variable y := κ Mx .

We now turn our attention to the proof of Theorem 6.1.

PROOF OF THEOREM 6.1. The convergence half is a straightforward appli-
cation of Lemma 1.2, thus we omit the details. We assume that the sum∑

j≥1 �( j) diverges. Let c6 and c7 denote the second and the third posi-
tive constants given by Definition 6.1 applied with S. For any j ≥ 1, set
�̃( j) := min{�( j), c6/(3 j)}. By Lemmas 6.3 and 6.4, the sums

∑
j≥1 �̃( j)

and
∑

k≥1 2k�̃(2k) also diverge. Let I be a bounded interval in E and let
K0 = K0(S, I ) be given by Definition 6.1. For any integer k ≥ K0, there is a
collection Ak(I ) := {i1, . . . , it } of distinct integers such that

1 ≤ i1 < · · · < it ≤ 2k,

|αih − αi� | ≥
c6

2k
(1 ≤ h < � ≤ t),

c7|I |2k ≤ t ≤ |I |2k .

For any j in Ak(I ), set

Ek(α j ) := {ξ ∈ I : |ξ − α j | < �̃(2k)}
and define

Ek =
⋃

j∈Ak (I )

Ek(α j ) and E(I ) = lim sup
k→+∞

Ek .

Since �̃(2k) ≤ �(2k) for any positive integer k and since (by Lemma 6.3) �̃

is non-increasing, we get

λ(E(I )) ≤ λ
(K∗S(�) ∩ I

)
, (6.3)

and we now establish a lower bound for λ(E(I )).
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To this end, we observe that for distinct integers j and h in Ak(I ), the
intervals Ek(α j ) and Ek(αh) are disjoint, since |α j − αh | ≥ c62−k and c6 ≥
2k+1 �̃(2k), by the definition of �̃. It follows that

2k+1c7|I |�̃(2k) ≤ λ(Ek) ≤ 2k+1|I |�̃(2k), (6.4)

whence we get that ∑
k≥K0

λ(Ek) = +∞. (6.5)

Let N0 be such that we have

N0∑
k=K0

2k�̃(2k) > 1, (6.6)

and let k, �, and N with K0 ≤ k < � ≤ N and N ≥ N0.
For an integer j in Ak(I ), the number of distinct integers h in A�(I ) such

that E�(αh) and Ek(α j ) have non-empty intersection is at most

2+ 2�̃(2k)

c62−�
= 2+ 2�+1c−1

6 �̃(2k),

whence

λ(E� ∩ Ek(α j )) ≤ 4�̃(2�)(1+ 2�c−1
6 �̃(2k)). (6.7)

Since the cardinality of Ak(I ) is less than or equal to 2k |I |, we infer from (6.7)
that

λ(E� ∩ Ek) ≤ 4|I |(2k�̃(2�)+ c−1
6 2k+��̃(2k)�̃(2�)

)
. (6.8)

We are now ready to estimate from above the double summation

N∑
�=K0

N∑
k=K0

λ(E� ∩ Ek) =
N∑

k=K0

λ(Ek)+ 2
N∑

�=K0+1

�−1∑
k=K0

λ(E� ∩ Ek). (6.9)

We first observe that

N∑
k=K0

λ(Ek) ≤ 2|I |
N∑

k=K0

2k�̃(2k) ≤ 2|I |
( N∑

k=K0

2k�̃(2k)

)2

, (6.10)

by (6.6) and N ≥ N0. Furthermore, we notice that

N∑
�=K0+1

�−1∑
k=K0

2k�̃(2�) ≤
N∑

�=K0+1

2��̃(2�) ≤
( N∑

k=K0

2k�̃(2k)

)2

, (6.11)
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again by (6.6). Finally, we check that

N∑
�=K0+1

�−1∑
k=K0

2k+��̃(2k)�̃(2�) ≤
( N∑

k=K0

2k�̃(2k)

)2

, (6.12)

and we deduce from (6.4) and (6.8)–(6.12) that

(
∑N

k=K0
λ(Ek))

2∑N
�=K0

∑N
k=K0

λ(E� ∩ Ek)
≥ (2c7|I |)2

(10+ 8c−1
6 )|I | =: c8|I |. (6.13)

By (6.3), (6.5), (6.13), and Lemma 6.2, we get

λ
(K∗S(�) ∩ I

) ≥ λ(E(I )) ≥ c8|I |,
for any bounded interval I in E . Thus, Lemma 6.1 asserts that K∗S(�) has full
measure, as claimed.

We observe that the method of the proof of Theorem 6.1 works as well with a
slightly weaker definition of regular system: indeed, the existence of the con-
stant c1 in Definition 6.1 is not needed. This remark also applies for Theorem
6.2, but it does not seem to hold for Theorem 6.3.

6.3 Hausdorff dimension of exceptional sets

Clearly, with the notation of Theorem 6.1, if �1 decreases more rapidly than
�2, then the set K∗S(�1) is smaller than the set K∗S(�2). The aim of this Sec-
tion is to determine their Hausdorff dimensions. An indication of how a func-
tion g : R≥1 → R>0 grows near infinity is provided by its lower order at
infinity λ(g).

DEFINITION 6.2. The lower order at infinity λ(g) of a function g : R≥1 →
R>0 is defined by

λ(g) = lim inf
x→+∞

log g(x)

log x
.

This notion arises naturally in the theory of Hausdorff dimension, see, for ex-
ample, Dodson [200] and Dickinson [192]. Clearly, λ(g) is non-negative when
limx→+∞ g(x) = +∞.

THEOREM 6.2. Keep the notation of Theorem 6.1, and assume that the sum∑
j≥1 �( j) converges. Let λ denote the lower order at infinity of the function

1/�. Then the Hausdorff dimension of the set K∗S(�) is equal to 1/λ.

Observe that the assumption of Theorem 6.2, whose proof is left as Exercise
6.1, implies that λ is at least equal to 1.
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6.4 Hausdorff measure of exceptional sets

In the previous Section, we determined the Hausdorff dimensions of the sets
K∗S(�); we are now interested in calculating their Hausdorff measures.

THEOREM 6.3. Keep the notation of Theorem 6.1. Let f be a dimension func-
tion such that limx→0 f (x)/x = +∞ and x �→ f (x)/x decreases in a neigh-
bourhood of the origin. Assume that x �→ x f (2�(x)) is non-increasing and
tends to 0 when x goes to infinity. Then we have

H f (K∗S(�)) = +∞ if
∑
j≥1

f (2�( j)) diverges

and

H f (K∗S(�)) = 0 if
∑
j≥1

f
(
2�( j)

)
converges.

We point out that Theorem 6.3 does not imply Theorem 6.2.
Since x �→ f (x)/x decreases in a neighbourhood of the origin, the sum∑
j≥1 f

(
�( j)

)
converges if, and only if, the sum

∑
j≥1 f

(
2�( j)

)
converges.

The latter sum arises naturally in the proof of Theorem 6.3, that is the reason
why it occurs in its statement, as in Satz 4 of Jarnı́k [292].

Theorem 6.3, proved in [71] and in [130], refines Theorem 6.1. A straight-
forward application of the Hausdorff–Cantelli Lemma 5.5 yields the conver-
gence half, while the divergence half is quite technical and much more difficult
to establish. The general idea is however easy to explain and originates in
Jarnı́k’s work [292]: we construct inductively a Cantor set ‘as large as possi-
ble’ contained in K∗S(�) and to which we apply the full power of the Frostman
Lemma 5.3.

6.5 Sets with large intersection properties

Several authors have introduced large classes of sets of Hausdorff dimension at
most s which turn out to have the property that countable intersections of such
sets also have dimension at most s. Such sets share a large intersection property
in an s-dimensional sense. Examples include the regular sets of A. Baker and
Schmidt (see Theorem 5.4), the Ms∞-sequences of Rynne [487], constructions
using the ‘ubiquitous systems’ of Dodson, Rynne, and Vickers [206] and the
‘Ms∞-dense’ construction of Falconer [235]. These constructions have been
unified by Falconer [237], who gave a more direct definition of classes Gs

of subsets of Rn with a large intersection property. His theory can be easily
extended to general dimension functions [132].
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DEFINITION 6.3. Let f be a dimension function concave on a neighbourhood
of the origin. We define G f (R) to be the class of real Gδ-sets F such that

Hg(∩+∞i=1 fi (F)
) = +∞

for any dimension function g with g ≺ f and any sequence of similarity trans-
formation { fi }+∞i=1 .

THEOREM 6.4. The class G f (R) is closed under countable intersections and
under bi-Lipschitz transformations on R.

THEOREM 6.5. We keep the notation and hypotheses of Theorem 6.3. We fur-
thermore assume that S is an optimal regular system in any bounded open real
interval. If the sum ∑

j≥1

f
(
2�( j)

)
diverges, then the set

lim sup
j→+∞

{ξ ∈ R : |ξ − α j | < �( j)}

belongs to the class G f (R).

Theorem 6.5, proved in [132], does not imply Theorem 6.3, and vice-versa. It
yields some results which seem to be out of reach with the methods used in
the proof of Theorem 6.3. Both the stability by countable intersection and the
stability by bi-Lipschitz transform are important properties of G f (R). We refer
the reader to Falconer [235, 236, 237] for more details, and to the next Section
for applications in the context of Diophantine approximation; most of which
have been pointed out in [235, 236, 237].

6.6 Application to the approximation by algebraic numbers

Since the set of real algebraic numbers of bounded degree is an optimal regular
system (Proposition 6.1), many important results derive in a straightforward
way from Theorems 6.1 to 6.5. Throughout this Section, n denotes a positive
integer and � : R≥1 → R>0 is a continuous, non-increasing function. We set

K∗n(�) := {
ξ ∈ R : |ξ − α| < �(H(α)) for infinitely many α ∈ An

}
,

and we aim to give accurate metric results on the set K∗n(�). Observe that,
for any real number τ ≥ 1, the set K∗n(x �→ x−τ(n+1)) coincides with the set
K∗n(τ ) defined in Chapter 5.



132 Deeper results on the measure of exceptional sets

The convergence half of Theorem 6.6 is due to Koksma [333], Satz 12.
Its divergence half, established by Beresnevich [61], implies that Theorem 4.4
from Chapter 4 is best possible.

THEOREM 6.6. The set K∗n(�) has Lebesgue measure zero if the sum∑∞
x=1 xn�(x) converges, and it has full measure if the sum

∑∞
x=1 xn�(x)

diverges.

PROOF. Let E be a bounded real open interval. By Corollary 6.1, the set An =
(α j ) j≥1 is an optimal regular system in E . We apply Theorem 6.1 with the
non-increasing function �̃ defined by �̃( j) := �(H(α j )) and affine on any
interval [ j, j + 1], with j a positive integer. We only have to check that the
sums

∑
j≥1 �̃( j) and

∑
j≥1 jn�( j) have the same behaviour. To this end, we

infer from Lemma 5.4 that there exist positive constants c9 and c10, depending
only on n, such that, for any j ≥ 1, we have

�
(
c9 j1/(n+1)

) ≤ �̃( j) ≤ �
(
c10 j1/(n+1)

)
. (6.14)

It follows from (6.14) and the fact that � is non-increasing that there exist
positive constants c11, . . . , c14, depending only on n, such that

[c11 M1/(n+1)]∑
k=1

c12 kn �(k) ≤
M∑

j=1

�̃( j) ≤
[c13 M1/(n+1)]∑

k=1

c14 kn �(k)

holds for any sufficiently large integer M . Consequently, the sum
∑

j≥1 �̃( j)
converges if, and only if, the sum

∑
j≥1 jn �( j) converges. Hence, we in-

fer from Theorem 6.1 that K∗n(�) ∩ E has Lebesgue measure zero if the sum∑∞
x=1 xn�(x) converges, and has full measure otherwise. Theorem 6.6 fol-

lows immediately.

We emphasize that we have given a complete proof of Theorem 6.6 for n = 1,
which depends on Proposition 5.3 and Theorem 6.1. This slightly improves
upon Theorem 1.10, established by Khintchine [317] by means of the theory of
continued fractions. Indeed, we get that if � : R≥1 → R>0 is a non-increasing
continuous function, then the set

K∗1(�) =
{
ξ ∈ R :

∣∣∣∣ξ − p

q

∣∣∣∣ < �(q)

for infinitely many rational numbers
p

q

}

has Lebesgue measure zero if the sum
∑∞

q=1 q�(q) converges and full
Lebesgue measure otherwise. Theorem 1.10 requires a stronger assumption
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on �, namely that the function x �→ x2�(x) is non-increasing. A slightly dif-
ferent proof of Theorem 1.10 can also be found in Cassels [155], Chapter VII.

It follows from Theorem 5.3 that, for any real numbers τ and τ ′ with τ ′ >

τ ≥ 1, the set K∗n(τ ′) is strictly contained in K∗n(τ ). This motivates the study
of the following question, asked in [124].

PROBLEM. Let �1 and �2 be given non-increasing, continuous, positive func-
tions defined on R≥1 and such that

�1(x) < �2(x) for x sufficiently large.

Do there exist real numbers approximable by elements of An at the order �2,
but not at the order �1? In other words, is the set K∗n(�2) \ K∗n(�1) empty or
not?

This has been solved by Jarnı́k ([292], Satz 5 and Satz 6; see also Exercise
1.5) under some restriction when n = 1, and by A. Baker and Schmidt [45]
for general n and functions �i , i = 1, 2, of the form x �→ x−2τi (see Theorem
5.3).

To obtain further results on the above question, we determine the Hausdorff
dimensions and the generalized Hausdorff measures of the null sets occurring
in Theorem 6.6. For the proofs of Theorems 6.7 and 6.8 below, we argue as in
the proof of Theorem 6.6, except that we apply Theorems 6.2 to 6.5 instead of
Theorem 6.1.

THEOREM 6.7. Assume that the sum
∑∞

x=1 xn�(x) converges. Denote by λ

the lower order at infinity of the function 1/�. We then have

dimK∗n(�) = n + 1

λ
.

THEOREM 6.8. Let f be a dimension function such that x �→ f (x)/x is de-
creasing in a neighbourhood of the origin and limx→0 f (x)/x = +∞. Assume
that x �→ xn+1 f

(
2�(x)

)
is non-increasing. Then, we have H f (K∗n(�)) = 0

if the sum
+∞∑
x=1

xn f (2�(x))

converges. Otherwise, we have H f (K∗n(�)) = +∞ and the set K∗n(�) belongs
to the class G f (R).

Theorem 6.8 allows us to give a rather satisfactory partial answer to the above
Problem. Namely, given the approximation functions �1 and �2, we con-
struct a suitable dimension function f for discriminating between K∗n(�1) and
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K∗n(�2), when these sets have Lebesgue measure zero. The idea goes back to
Jarnı́k [292], Satz 5, and yields Corollary 6.2.

COROLLARY 6.2. Let �1 and �2 be continuous, positive, non-increasing
functions defined on R≥1. For i = 1, 2, assume that the sum

∑∞
i=1 xn�i (x)

converges and that the function x �→ xn�i (x) is non-increasing. If the
function

x �→ �−1
2 ◦�1(x)

x

is non-decreasing and tends to infinity with x, then the set

K∗n(�2) \K∗n(�1)

is non-empty and has the same Hausdorff dimension as the set K∗n(�2).

For n = 1, Bugeaud [129] proved a sharper result, namely that, for any positive
real number c < 1, any continuous function � : R≥1 → R>0 such that
x �→ x2�(x) is non-increasing and the sum

∑
x≥1 x�(x) converges, the set

K∗1(�) \ K∗1(c�) has same Hausdorff dimension as the set K∗1(�). This does
not follow from Theorem 6.8, which does not help to get an analogous result
for general n.

Let c1 < c2 and τ > 1 be given positive real numbers. For a general n ≥ 2,
we do not even know whether there exist real numbers ξ such that infinitely
many algebraic numbers α of degree n satisfy |ξ − α| < c2 H(α)−(n+1)τ ,
but only finitely many of them satisfy |ξ − α| < c1 H(α)−(n+1)τ . However,
for n = 2, a partial positive answer follows from a nested interval con-
struction based on Beresnevich’s effective proof [60] of Proposition 6.1 for
n = 2.

For a given positive integer n, the exact order of approximation of the real
number ξ by algebraic numbers of degree at most n is

sup{τ : ξ ∈ K∗n(τ )} = w∗n(ξ)+ 1

n + 1
.

Inspired by Beresnevich, Dickinson, and Velani, who gave in [70] sharp conse-
quences of Theorem 1 of [195], Bugeaud [124] introduced a refined notion of
exact order: the exact ‘logarithmic’ order. Recall that for any positive integer
i we denote by logi the i-fold iterated logarithm. For n ≥ 1 and t ≥ 1, let
ν0 ≥ 1, ν1, . . . , νt−1 be real numbers. For a non-zero real number τ , denote by
K∗n(ν0, . . . , νt−1, τ ) the set of real numbers ξ for which the inequality

|ξ − α| < H(α)−(n+1)ν0
(
log H(α)

)−ν1 . . .(
logt−1 H(α)

)−νt−1
(
logt H(α)

)−τ
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is satisfied by infinitely many algebraic numbers α of degree at most n. For
any real number νt , we then set ν = (ν0, . . . , νt−1, νt ) and we consider the set

W∗
n (ν) := {ξ ∈ R : sup{τ : ξ ∈ K∗n(ν0, . . . , νt−1, τ )} = νt }.

In particular, when t = 0, we have W∗
n ((ν0)) = W∗

n (ν0). Theorem 6.8 al-
lows us to describe very precisely the metric structure of the sets W∗

n (ν): their
Hausdorff dimension is equal to 1/ν0, independently of ν1, . . . , νt , but they
have different sizes, as it can be seen by considering dimension functions.

Let t ≥ 0 and ν = (ν0, . . . , νt ) with ν0 ≥ 1. For any non-negative real
number δ, define the dimension function fν,δ for u > 0 (and small) by

fν,δ(u) := uδ+1/ν0 if t = 0,

and

fν,δ(u) := u1/ν0

t−1∏
i=1

(
logi

1

u

)−1+νi /ν0
(

logt
1

u

)−1−δ+νt /ν0

if t ≥ 1.

With the above notation, Theorem 6.9 is an almost straigthforward conse-
quence of Theorem 6.8.

THEOREM 6.9. Let ν = (ν0, . . . , νt ) be a real (t+1)-tuple with ν0 > 1. Then,
the Hausdorff dimension of W∗

n (ν) is equal to 1/ν0 and, more precisely,

H fν,δ (W∗
n (ν)) =

{+∞ if δ = 0,

0 if δ > 0.

COROLLARY 6.3. For any positive integer n and any real number τ > 1, we
have

H1/τ
(K∗n(τ )

) = H1/τ
(W∗

n (τ )
) = +∞.

Corollary 6.3 implies that the sets K∗n(τ ) and W∗
n (τ ) are not s-sets. For K∗1(τ ),

this result goes back to Jarnı́k [290, 291] (see also [205]) and is actually a
particular case of a more general statement due to Bugeaud, Dodson, and
Kristensen [135]: for any given dimension function f , the H f -measure of any
real set invariant by rational translation is either 0 or +∞ (see Exercise 6.5).

In the case n = 1, Theorem 6.9 is contained in Theorem 1 of Beresnevich,
Dickinson, and Velani [70], whose Theorem 3 deals with an even more general
formalism and is deeper.

A further metric statement is given in [124], where it is pointed out that
we do not have any information on the Hausdorff dimension of the sets
W∗

n ((1, 1/2)). For n ≥ 2, we even do not know whether these sets are empty
or not.
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Theorem 6.10, established in [132], provides a nice application of the theory
of intersective sets.

THEOREM 6.10. Let ν = (ν0, . . . , νt ) with ν0 > 1. Then, the Hausdorff di-
mension of the set ⋂

n≥1

⋂
k≥1

{ξ ∈ R : ξ k ∈W∗
n (ν)}

is equal to 1/ν0.

COROLLARY 6.4. For any real number τ ≥ 1, the Hausdorff dimension of the
set ⋂

n≥1

⋂
k≥1

{ξ ∈ R : w∗n(ξ k) = τ(n + 1)− 1}

is equal to 1/τ . Thus, the set of real numbers ξ whose integer powers are all
S∗-numbers of ∗-type τ has Hausdorff dimension 1/τ .

Corollary 6.4 remains true if the ∗-type of an S∗-number ξ is defined as the
supremum of the sequence ((w∗n(ξ)+ 1)/(n + 1))n≥1. Unlike Theorem 5.6, it
can presumably not be proved with the tools developed in Chapter 5. It heavily
depends on the notion of intersective sets.

We point out that there exist real transcendental numbers ξ for which
w∗n(ξ) �= w∗n(ξ2), see Theorem 7.7 for explicit examples. However, it is not
known whether t∗(ξ) = t∗(ξ2) holds for any S∗-number ξ .

For distinct positive integers n and n′ and given real numbers τ and τ ′

with τ ′ > τ ≥ 1, the methods presented here are unable to decide whether
the intersection W∗

n (τ ) ∩W∗
n′(τ

′) is empty or not. This is a challenging open
problem.

6.7 Exercises

EXERCISE 6.1. Prove Theorem 6.2.
Hint. Use Lemma 5.2 and a similar argument as in the proof of Theorem 5.1.

EXERCISE 6.2. Use Theorem 6.8 to prove Theorems 6.9 and 6.10.

EXERCISE 6.3. Let α be a given real number. The aim of this exercise is to
establish an inhomogeneous extension of Theorem 5.2: For any τ > 1, the
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Hausdorff dimension of the set{
ξ ∈ R : ‖qξ − α‖ <

1

q2τ−1
holds for infinitely many

positive integers q

}
is equal to 1/τ . To this end, prove that the set Sα composed of the points{

p + α

q

}
, p, q ∈ Z, q ≥ 1, 0 ≤ p ≤ q − 1,

form an optimal regular system in ]0, 1[ and apply Theorem 5.1.
Hint. Let Y > 1 be a real number and I be an interval in ]0, 1[. Set

J (Y ) = I ∩
Y⋃

q=Y/2
(p,q)=1

]
p

q
− 1

4q2
,

p

q
+ 1

4q2

[
.

Observe that any ξ in J (Y ) has a convergent ph/qh such that Y/2 ≤ qh ≤ Y <

qh+1. Write ξ = ph/qh + δ/(Y qh) and α = (t/qh)+ δ′/(2qh), with |δ| < 1/2
and |δ′| ≤ 1. Prove that there exist integers x and y such that qh ≤ x < 2qh

and xph − yqh = t . Show that we have |ξ − (y + α)/x | ≤ 3/Y 2 and argue as
at the end of the proof of Proposition 5.3 to conclude.

EXERCISE 6.4. Let α be a badly approximable real irrational number. Use the
Three Distance Theorem (or use Theorem 1.7) as in Exercise 5.7 to prove that
the sequence ({nα})n≥1 is an optimal regular system.

EXERCISE 6.5. Let f be a dimension function, and let E be a real set, invariant
by rational translation. Prove that H f (E) = 0 or +∞ (see [135]). Taking
f = Id, prove that either E or its complementary set is a null set.

Hint. Observe that any real open interval ]a, b[ can be represented as a
countable union of intervals [u j/v j , (u j + 1)/v j ] such that b− a =∑

j 1/v j .

Deduce that H f (]a, b[∩E ∩ [0, 1]) ≤ (b − a)H f (E ∩ [0, 1]). Observe that
if E ∩ [0, 1] does not have full Lebesgue measure, then it can be covered by
a countable union of open intervals ]am, bm[ such that

∑
m(bm − am) < 1.

Conclude.

6.8 Notes

• Hinokuma and Shiga [282] (but see notes in Chapter 5) and Rynne [488]
obtained the Hausdorff dimension of K∗1(�) for any arbitrary non-negative ap-
proximation function � without any monotonicity assumption. See also Dick-
inson [192].
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• Theorem 6.8 for n = 1 is due to Jarnı́k [292] and has been extended to sys-
tems of linear forms by Dickinson and Velani [195]. Beresnevich, Dickinson,
and Velani [70] derived from Theorem 1 of [195] sharp results on the exact
order of approximation of systems of linear forms.

• Under suitable assumptions, the notion of ubiquitous system may be used
to prove that the Hausdorff measure is infinite at the critical exponent, see
Theorem 1 of Dodson, Rynne, and Vickers [206].

• A (slightly) weaker version of Theorem 6.8 (apart from the last assertion)
appeared in [124]. Measure theoretic laws for lim sup sets in a very general
framework have been established by Beresnevich, Dickinson, and Velani [71].
Applications of their results include Theorems 6.1, 6.2, 6.3, 6.6, 6.7, and 6.8
(apart from the last assertion).

• An inhomogeneous analogue of Theorem 6.8 for n= 1 can be found in
[130]. See also [71] for generalizations to systems of linear forms.

• For extensions of the case n = 1 of Corollary 6.2 to simultaneous approx-
imation and to systems of linear forms, see Černy [161] and Jarnı́k [300].

• It is interesting to compare Theorem 5.2 with the results proved in Exer-
cises 5.7 and 6.3.
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On T -numbers and U -numbers

As Mahler [376] proposed his classification of real numbers, he observed that
the set of U -numbers is non-empty, for it contains the Liouville numbers (Def-
inition 1.1). He further showed that the set of T -numbers and the set of U -
numbers have Lebesgue measure zero, a result later improved upon by Kasch
and Volkmann [311], who established that both have Hausdorff dimension zero
(Corollary 5.2). However, Mahler was not able to decide whether the set of T -
numbers is non-empty.

The first proof of the existence of T -numbers goes back to 1968, thirty-six
years after Mahler’s paper, and is due Schmidt [507], who, shortly thereafter,
gave a simpler proof [508], together with a slightly stronger statement. The
main ideas of Schmidt’s proof lie at the heart of every paper providing new re-
sults on the set of T -numbers. In the present Chapter, we establish the existence
of T -numbers following R. C. Baker [47]. Sections 7.2 and 7.3 are devoted
to the proof, which incidentally allows us to construct real numbers ξ with
wn(ξ) �= w∗n(ξ) for every n ≥ 2, a question further discussed in Section 7.4.
We emphasize that the construction of T -numbers is fundamentally a nested
interval construction. This observation is used in Section 7.5 to get one metric
result of R. C. Baker [47], who proved that the set of T -numbers is not ‘too
small’, although of Hausdorff dimension zero.

Schmidt’s construction also establishes the existence of U -numbers of any
given type (Definition 3.4). The problem, however, had already been solved by
LeVeque [361] who, in 1953, produced explicit examples of Liouville numbers
whose positive real m-th root is a U -number of type exactly m. Section 7.6
is devoted to LeVeque’s result and includes an alternative construction of U -
numbers of given type. In Section 7.7, we present an approach due to Güting
[269], who, thanks to explicit constructions of real numbers as roots of sums of
convergent series, produced examples of real numbers ξ with prescribed values
for wn(ξ) and w∗n(ξ) for finitely many values of n. Finally, in Section 7.8,

139
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we summarize the results obtained in the previous Chapters towards the Main
Problem.

7.1 T -numbers do exist

R. C. Baker’s theorem asserts the existence of T -numbers with specific proper-
ties. This provides an important step towards the resolution of the Main Prob-
lem stated at the end of Section 3.4.

THEOREM 7.1. Let (wn)n≥1 and (w∗n)n≥1 be two non-decreasing sequences
in [1,+∞] such that

w∗n ≤ wn ≤ w∗n + (n − 1)/n, wn > n3 + 2n2 + 4n + 3,

for any n ≥ 1. (7.1)

Then there exists a real transcendental number ξ such that

w∗n(ξ) = w∗n and wn(ξ) = wn, for any n ≥ 1.

In particular, T -numbers do exist.

The fact that the function f : n �→ n3+2n2+4n+3 occurring in the statement
of Theorem 7.1 is of order of magnitude n3 is due to technical constraints.
Presumably, the conclusion of Theorem 7.1 still holds if f is replaced by any
non-decreasing function g such that g(n)/n tends to infinity with n or, even,
such that lim supn→+∞ g(n)/n is infinite. Theorem 7.1 implies that there exist
T -numbers of any type τ greater than or equal to 3. However, the existence of
T -numbers of type strictly smaller than 3 is an open problem. No particular
significance should be attached to this value 3, which appears for technical
reasons.

Theorem 3.4 asserts that any real transcendental number ξ satisfies wn(ξ) ≤
w∗n(ξ)+n−1 for every positive integer n. This leads to conjecture that the term
(n − 1)/n occurring in (7.1) could perhaps be replaced by n − 1, a question
discussed in Section 7.4.

It should be pointed out that Theorem 7.1 does not imply the existence of
real numbers ξ with w(ξ) �= w∗(ξ). This remains an open problem.

Theorem 7.1 is (very slightly) better than the main result of [47], since
we use (7.24) below instead of setting χn = wn − n + 2, as R. C. Baker
did. Furthermore, it is possible to slightly decrease the lower bound for wn in
(7.1) if we seek for numbers ξ for which wn(ξ) and w∗n(ξ) are equal for every
positive integer n (see Exercise 7.1).

Schmidt’s construction is rather tedious and complicated. The T -numbers
are obtained as limits of sequences of algebraic numbers in a ‘semi-explicit’
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way. Indeed, at the heart of his proof, Schmidt used the fact that algebraic
numbers are not ‘too well’ approximable by algebraic numbers of bounded
degree, which is a result of an ineffective nature (Theorems 2.6 and 2.7). For
this reason, Schmidt’s method does not allow us to construct explicit examples
of T -numbers. This remains an open problem.

Incidentally, Theorem 7.1 shows the existence of U -numbers of arbitrary
given type, a result established by LeVeque [361] in 1953 with a constructive
method (Theorem 7.4). Following Schmidt [508], there are, however, alter-
native ways to split the U -numbers into infinitely many classes, including the
following one. Write β(ξ) for the infimum of the numbers β such that for every
positive integer n we have

wn(ξ, H) ≤ cn e−Hβ

, as H →+∞,

for some constant cn depending only on n. Observe that if ξ and ξ ′ are two al-
gebraically dependent U -numbers, we then have β(ξ) = β(ξ ′). Consequently,
we may subdivide the set of U -numbers ξ according to the value of β(ξ).
Using the same ideas as in his proof of the existence of T -numbers, Schmidt
[508] established that, for any β in [0,+∞], there exist uncountably many
U -numbers ξ with β(ξ) = β.

Schmidt [508] also proposed a possible generalization of the notion of
Liouville numbers. A real number field K being given, a real number ξ is
called K-Liouville if for every positive real number w there is a real number α

in K with |ξ − α| < H(α)−w. According to this definition, the usual Liouville
numbers are termed Q-Liouville. Assuming that F is a collection of real alge-
braic number fields such that K1 ⊂ K2 and K1 in F implies K2 in F , Schmidt
proved (again with the same kind of construction) that there exist real numbers
ξ which are K-Liouville precisely for the fields K in F .

7.2 The inductive construction

Before proceeding with the construction of sequences of real numbers satis-
fying various conditions, we recall (part of) Schmidt’s Theorem 2.7, which
follows from his Subspace Theorem.

THEOREM 2.7. Let ξ be a real algebraic number and n be a positive inte-
ger. Then, for any positive real number ε, there exists a positive (ineffective)
constant κ(ξ, n, ε) such that

|ξ − α| > κ(ξ, n, ε) H(α)−n−1−ε (7.2)

for any algebraic number α of degree at most n.
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The exponent of H(α) in (7.2) does not depend on ξ : this fact is crucial for
establishing the existence of T -numbers. Actually, Schmidt applied Theorem
2.6 (that is, the generalization due to Wirsing of Roth’s Theorem 2.1) in [507]
and in [508], thus getting a lower bound for wn of order of magnitude 2n3

instead of n3 in (7.1).
We follow step by step the arguments of R. C. Baker [47], who deduced

Theorem 7.1 from Proposition 7.1 below, as will be shown in Section 7.3. In
fact, we build a T ∗-number; by Theorem 3.6, this is equivalent to constructing
a T -number.

PROPOSITION 7.1. Let ν1, ν2, . . . be real numbers > 1 and μ1, μ2, . . . be real
numbers in [0, 1]. Let m1, m2, . . . be positive integers and χ1, χ2, . . . be real
numbers satisfying χn > n3 + 2n2 + 4n + 3 for any n ≥ 1. Then, there exist
positive real numbers λ1, λ2, . . . , prime numbers g1, g2, . . . , and integers c1,
c2, . . . such that the following conditions are satisfied.

(I j ) g j � |cm j
j + 2(−1)m j+1v

m j
j , where v j = [g

μ j
j ] ( j ≥ 1).

(I I1) ξ1 = (c1 + 21/m1v1)/g1 ∈ I0 :=]1, 2[.

(I I j ) ξ j = (c j + 21/m j v j )/g j belongs to the interval I j−1 defined by

ξ j−1 + 1

2
g
−ν j−1
j−1 < x < ξ j−1 + 3

4
g
−ν j−1
j−1 ( j ≥ 2).

(I I I j ) |ξ j − αn| ≥ λn H(αn)−χn

for any algebraic number αn of degree n≤ j which is distinct from
ξ1, . . . , ξ j ( j ≥ 1).

Let us see how one should interpret the different parameters introduced in
Proposition 7.1. Observe that the sequence (ξ j ) j≥1 we construct is strictly
increasing and bounded, hence, it converges to a limit ξ . Since c j ≤ 2g j ,
Lemma A.4 implies that for any j ≥ 1 the height of ξ j is at most 4m j+1 g

m j
j .

Thus, conditions (I I j+1) show that the order of approximation of ξ by the al-
gebraic number ξ j depends only on ν j and m j , namely that we have |ξ−ξ j | ≤
24ν j H(ξ j )

−ν j /m j . Consequently, if for some positive integer n and some real
number ν > 1 there are infinitely many indices j such that m j = n and ν j = ν,
then conditions (I I j ) give us that w∗n(ξ) ≥ ν/n − 1. Furthermore, conditions
(I I I j ) show that the algebraic numbers other than the ξ j s are not too close to
ξ and they yield that w∗n(ξ) ≤ max{χn, ν/n} − 1. With a suitable choice of
the sequences (m j ) j≥1, (ν j ) j≥1, and (χn)n≥1, the real number ξ obtained is a
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T ∗-number. However, some technical conditions impose that χn has to grow
at least as fast as n3, thus, with this method, it does not seem to be possible to
construct T -numbers of type smaller than 3.

The role of the parameter μ is to measure the gap between wn(ξ) and w∗n(ξ),
as it will be clear in Section 7.3. Taking μ j equal to 1 for any j , we have
v j = g j and

ξ j = 21/m j + c j

g j
.

The condition (I j ) is then satisfied if g j does not divide c j , and the T -numbers
ξ obtained in this way satisfy wn(ξ) = w∗n(ξ) for any n.

In Schmidt’s original construction, the algebraic numbers 21/m j are re-
placed by arbitrary real algebraic numbers of degree m j . These play a piv-
otal role. The particular choice of the numbers 21/m j allows us to build real
numbers ξ for which wn(ξ) and w∗n(ξ) are different.

PROOF OF PROPOSITION 7.1. In all what follows, we denote by αn a real
algebraic number of degree exactly n. We fix a sequence (εn)n≥1 in ]0, 1[ such
that, for any n ≥ 1, we have

χn > n3 + 2n2 + 4n + 3+ 20n2εn . (7.3)

We begin by adding four extra conditions (I Vj ), . . . , (V I I j ) to be satisfied by
the numbers ξ j .

Set J0 = I0. For any positive integer j , let J j denote the subset of I j con-
sisting of the real numbers x in I j such that

|x − αn| ≥ 2λnH(αn)−χn

for any algebraic number αn of degree n ≤ j , distinct from ξ1, . . . , ξ j , x and
of height H(αn) sufficiently large, that is, satisfying

H(αn) ≥ (λng
ν j
j )1/χn .

The supplementary conditions are the following.

(I Vj ) ξ j ∈ J j−1 ( j ≥ 2).

(Vj ) |ξ j − α j | ≥ 2λ j H(α j )
−χ j for any α j �= ξ j ( j ≥ 1).

(V I j )

If n ≤ j and H(αn) ≤ g1/(n+1+εn)
j , then |ξ j − αn| ≥ 1/g j ( j ≥ 1)

(V I I j ) λ(J j ) ≥ λ(I j )/2 ( j ≥ 1).
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We construct the numbers ξ1, λ1, ξ2, λ2, . . . by induction. At the j-th stage,
there are two distinct steps. Step (A j ) consists in building an algebraic number

ξ j = c j + 21/m j v j

g j

satisfying conditions (I j ) to (V I j ). In step (B j ), we show that the number ξ j

constructed in (A j ) satisfies (V I I j ) as well, provided that g j is chosen large
enough in terms of

ν1, . . . , ν j , μ1, . . . , μ j , m1, . . . , m j , χ1, . . . , χ j , ε1, . . . , ε j ,

ξ1, . . . , ξ j−1, λ1, . . . , λ j−1. (7.4)

The symbols o, � and 
 used throughout steps (A j ) and (B j ) mean that the
numerical implicit constants depend (at most) on the quantities (7.4). Further-
more, the symbol o implies ‘as g j tends to infinity’.

Step (A1) is rather easy. Let P(X) := Xm1 − 2 v
m1
1 denote the minimal

polynomial of 21/m1v1 over Z and observe that (I1) is satisfied if, and only if,
g1 does not divide P(−c1). Let g be a prime number and assume that g divides
P(d), P(d + 1), . . . , P(d + m1) for some integer d . Then g also divides the
difference P(d + j + 1) − P(d + j) = m1(d + j)m1−1 + ... for any integer
j = 0, . . . , m1−1. If m1 ≥ 2, we similarly get that g divides m1(m1−1)(d+
j)m1−2 + ... for any integer j = 0, . . . , m1 − 2. Continuing in this way, it
follows that g divides m1!. Consequently, if the prime number g1 is larger than
m1, then there are� g1 numbers ξ1 = (c1+ 21/m1v1)/g1 in the interval ]1, 2[
satisfying condition (I1). These � g1 numbers have mutual distances at least
g−1

1 and, since there are only o(g1) rational numbers α1 satisfying H(α1) ≤
g1/(2+ε1)

1 , we are able to choose ξ1 such that (V I1) is verified. Moreover, by
Theorem 2.7 with n = 1 (this is Roth’s Theorem 2.1), there exists λ1 in ]0, 1[
such that both (I I I1) and (V1) hold.

Let j ≥ 2 be an integer and assume that ξ1, . . . , ξ j−1 have been constructed.
Step (A j ) is much harder to verify, since we have no control on the set J j−1.
Thus, it seems difficult to check that the condition (I Vj ) holds. To overcome
this problem, we introduce a new set J ′j−1 which contains J j−1.

Set ξ j = (c j + 21/m j v j )/g j for some positive integers c j and g j with

g
ν j
j > 8g

ν j−1
j−1 , (7.5)

and denote by J ′j−1 the set formed by the real numbers x in I j−1 satisfying

|x − αn| ≥ 2λn H(αn)−χn
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for any algebraic number αn of degree n ≤ j , distinct from ξ1, . . . , ξ j , x , and
whose height H(αn) satisfies the inequalities

(λn g
ν j−1
j−1 )1/χn ≤ H(αn) ≤ (2λn gn2+n+1+2nεn

j )1/(χn−n−1−εn). (7.6)

Since

χn − n − 1− εn > n3 + 2n2 + 2n + 1+ 5n2εn

> (n + 1)(n2 + n + 1+ 2nεn), (7.7)

the exponent of g j in the right member of (7.6) is strictly less than 1/(n + 1).
Thus, there are o(g j ) algebraic numbers αn satisfying (7.6), and we observe
that, unlike J j−1, the set J ′j−1 is a finite union of intervals, and, more pre-
cisely, a union of o(g j ) intervals. We will prove that for g j large enough
we have � g j suitable choices for c j such that conditions (I j ) to (Vj ) are
fulfilled.

Let αn be an algebraic number of degree n. By Theorem 2.7, there exists a
positive constant κ(m j , n, εn) such that

|ξ j − αn| = v j

g j

∣∣∣∣21/m j −
(

g jαn − c j

v j

)∣∣∣∣
≥ κ(m j , n, εn)

v j

g j
H

(
v−1

j (g jαn − c j )
)−n−1−εn

≥ g−(n2+n+1+2nεn)
j H(αn)−n−1−εn , (7.8)

if g j satisfies

g j ≥ κ(m j , n, εn)−1/(nεn) 2(2n+1)(n+1+εn)/(nεn).

Here, we have used v j ≥ 1, max{c j , g j , v j } ≤ 2g j , and Lemma A.4. In par-
ticular, if g j is large enough, we have

|ξ j − αn| ≥ 2λn H(αn)−χn (7.9)

as soon as

H(αn)χn−n−1−εn ≥ 2λn gn2+n+1+2nεn
j . (7.10)

By (V I I j−1) and J ′j−1 ⊃ J j−1, we have λ(J ′j−1) � 1. Since the set J ′j−1 is
the union of o(g j ) intervals, if g j is a sufficiently large prime number, then,
arguing as in step (A1), we get that there exist � g j numbers ξ j = (c j +
21/m j v j )/g j in J ′j−1 such that (I j ) is satisfied. Such ξ j s also belong to J j−1,
since (7.10) implies (7.9), and condition (I Vj ) is verified.
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Thus, we are left with� g j suitable algebraic numbers ξ j , mutually distant
by at least g−1

j . Only o(g j ) algebraic numbers αn satisfy

H(αn) ≤ g1/(n+1+ε)
j , (7.11)

thus there are � g j algebraic numbers ξ j such that |ξ j − αn| ≥ 1/g j for the
numbers αn verifying (7.11). Further, Theorem 2.7 ensures that there exists λ j

in ]0, 1[ such that (Vj ) is satisfied. Consequently, there are � g j algebraic
numbers ξ j satisfying (I j ), (I I j ), (I Vj ), (Vj ) and (V I j ).

It remains for us to show that such a ξ j also satisfies (I I I j ). To this end, it
suffices to prove that

|ξ j − αn| ≥ λn H(αn)−χn

holds for any algebraic number αn of degree n < j , which is different from
ξ1, . . . , ξ j and whose height H(αn) satisfies

H(αn) < (λn g
ν j−1
j−1 )1/χn .

Since the sequence (gνt
t )t≥1 is increasing, we either have

g−νn
n < λnH(αn)−χn , (7.12)

or there exists an integer t with n < t < j such that

g−νt
t < λnH(αn)−χn ≤ g−νt−1

t−1 . (7.13)

In the former case, we infer from (Vn), (7.5) and (7.12) that

|ξ j − αn| ≥ |ξn − αn| − |ξ j − ξn| ≥ 2λnH(αn)−χn − g−νn
n > λnH(αn)−χn .

In the latter case, (I Vt ), (7.5) and (7.13) yield that

|ξ j − αn| ≥ |ξt − αn| − |ξ j − ξt | ≥ 2λnH(αn)−χn − g−νt
t > λnH(αn)−χn .

Thus, condition (I I I j ) holds and the proof of step (A j ) is completed.
Before going on with step (B j ), we observe that the integer c j is far from

being uniquely determined. Indeed, it follows from the argument used in step
(A1) that there exist at least

g j λ(J j−1)

m j + 1

candidates ξ j having the property (I j ). In the course of step (A j ), we excluded
only o(g j ) of them. Thus, if g j is sufficiently large, we have at least

g j g
−ν j−1
j−1

32m j
(7.14)
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suitable choices for ξ j . This observation is valid at any step j and shows that
the construction actually gives an uncountable set of T -numbers. It will be
used in Section 7.5.

Let j ≥ 1 be an integer. For the proof of step (B j ), we first establish that if
g j is large enough and if x lies in I j , then we have

|x − αn| ≥ 2λnH(αn)−χn (7.15)

for any algebraic number αn �= ξ j of degree n ≤ j such that

(λng
ν j
j )1/χn ≤ H(αn) ≤ g

ν j /(χn−n−1−εn)

j . (7.16)

Let, then, αn �= ξ j be an algebraic number satisfying (7.16) and let x be in I j ,
that is, such that

1

2
g
−ν j
j < x − ξ j <

3

4
g
−ν j
j . (7.17)

If ν j (n + 1 + εn) ≤ χn − n − 1 − εn , then H(αn) ≤ g1/(n+1+εn)
j and it

follows from (V I j ), (7.16), (7.17), and the assumption ν j > 1 that

|x − αn| ≥ |ξ j − αn| − |ξ j − x |
≥ g−1

j − g
−ν j
j ≥ 2g

−ν j
j ≥ 2λnH(αn)−χn ,

provided that g j is large enough.
Otherwise, we have

ν j (n + 1+ εn) > χn − n − 1− εn, (7.18)

and, by (7.8), we get

|x − αn| ≥ |ξ j − αn| − |ξ j − x |
≥ g−(n2+n+1+2nεn)

j H(αn)−n−1−εn − g
−ν j
j

≥ g−(n2+n+1+2nεn)
j H(αn)−n−1−εn /2. (7.19)

To check the last inequality, we have to verify that

2g
−ν j
j ≤ g−(n2+n+1+2nεn)

j H(αn)−n−1−εn . (7.20)

In view of (7.16), inequality (7.20) is true as soon as

2g
ν j (n+1+εn)/(χn−n−1−εn)

j ≤ g
ν j
j g−(n2+n+1+2nεn)

j ,
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which, by (7.18), holds for g j large enough when

n + 1+ εn

χn − n − 1− εn
< 1− (n2 + n + 1+ 2nεn)

n + 1+ εn

χn − n − 1− εn
, (7.21)

and in particular when χn satisfies (7.3). Furthermore, we have

g−(n2+n+1+2nεn)
j H(αn)−n−1−εn ≥ 4λnH(αn)−χn . (7.22)

Indeed, by (7.16), λn < 1, and (7.18), we get

H(αn)χn−n−1−εn ≥ (λng
ν j
j )(χn−n−1−εn)/χn

≥ λn g
ν j (χn−n−1−εn)/χn
j

> λn g(χn−n−1−εn)2/(χn(n+1+εn))
j ≥ 4λn gn2+n+1+2nεn

j ,

since we infer from (7.3) that

(χn − n − 1− εn)2 > χn(n + 1+ εn)(n2 + n + 1+ 2nεn). (7.23)

Combining (7.19) and (7.22), we have checked that

|x − αn| ≥ 2λn H(αn)−χn

holds under the assumption (7.18). By (7.18), this implies that (7.15) is true if
αn satisfies (7.16) and is not equal to ξ j . Consequently, for g j large enough,
the complement J c

j of J j in I j is contained in the union of the intervals

]αn − 2λnH(αn)−χn , αn + 2λnH(αn)−χn [,

where αn runs over the real algebraic numbers of degree n ≤ j and height

greater than g
ν j /(χn−n−1−ε)

j . The Lebesgue measure of J c
j is then



j∑

n=1

∑
H>g

ν j /(χn−n−1−εn )

j

Hn−χn = o(g
−ν j
j ) = o(λ(I j )),

since for any positive integers H and n there are at most (8H)n algebraic num-
bers of height H and degree n (see (8.5) in Chapter 8). Thus, we conclude that
we can find g j large enough such that λ(J j ) ≥ λ(I j )/2. This completes step
(B j ) as well as the proof of Proposition 7.1.

At this point, we may summarize where the condition χn > n3 + 2n2 +
4n + 3 appears. There are three steps where it is needed, namely (7.7), (7.21)
and (7.23). Asymptotically, these three inequalities reduce, respectively, to
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χn > (n + 1)(n2 + n + 2), χn > (n + 1)(n2 + n + 3), and (χn − n − 1)2 >

χn(n+1)(n2+n+1). The most restricting condition is given by (7.21), hence,
our assumption on χn .

7.3 Completion of the proof of Theorem 7.1

The sequence (ξ j ) j≥1 obtained in Proposition 7.1 is strictly increasing and
bounded, thus it converges to a real number which we denote by ξ . It is easily
seen that if the sequence (m j ) j≥1 is chosen in such a way that all the integers
1, 2 . . . appear in it infinitely many times, then ξ is a T -number. Now, we ex-
plain how to choose the sequence (μ j ) j≥1 such that wn(ξ) and w∗n(ξ) are
different.

Let (m j ) j≥1 be a sequence of positive integers taking infinitely many times
each value 1, 2, . . . . For j ≥ 1, we set ν j = m j (w

∗
m j
+ 1) and we define μ j

in [0, 1] by

w∗m j
+ (m j − 1)(1− μ j )/m j = wm j .

Moreover, for any integer n ≥ 1, we set

χn = wn, (7.24)

in such a way that χn > n3 + 2n2 + 4n + 3. Let λ1, λ2, . . . , ξ1, ξ2, . . . be as
in Proposition 7.1 and denote by ξ the limit of the strictly increasing sequence
(ξ j ) j≥1.

We fix an integer n ≥ 1. Observe that the minimal polynomial of ξ j over Z

is the polynomial

Pj (X) = (g j X − c j )
m − 2vm

j ,

which is primitive since, by condition (I j ), its leading coefficient is coprime
with its constant term. Thus, recalling that c j ≤ 2g j , we get that g

m j
j ≤

H(ξ j ) ≤ (2g j )
m j . Furthermore, for any j ≥ 1 we have

ξ j + g
−ν j
j /2 < ξ < ξ j + g

−ν j
j ,

and the definition of ν j implies that

H(ξ j )
−w∗m j

−1
/2 ≤ |ξ − ξ j | ≤ 2ν j H(ξ j )

−w∗m j
−1

. (7.25)

Moreover, if αm is a real algebraic number of degree m ≤ n which is not equal
to one of the ξ j , then, by (I Vj ) we have

|ξ j − αm | ≥ λmH(αm)−χm ,
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hence, as j tends to infinity,

|ξ − αm | ≥ λmH(αm)−χm ≥ λmH(αm)−w∗m−1, (7.26)

since χm ≤ w∗m + 1. As m j = n for infinitely many integers j , it follows
from (7.25), (7.26) and from the fact that the sequence (w∗m)m≥1 is increasing
that

w∗n(ξ) = w∗n .

It remains for us to prove that wn(ξ) = wn . This is clear for n = 1, thus we
assume n ≥ 2. Denote by ξ j = θ j,1, θ j,2, . . . , θ j,m j the roots of the polynomial
Pj (X). Until the end of this proof, we write A 
 B when there is a positive
constant c(m j ), depending only on m j , such that |A| ≤ c(m j ) |B|, and we

write A  B if both A 
 B and B 
 A hold. We have |ξ j − θ j,k |  g
μ j−1
j

for k = 2, . . . , m j , and, since |ξ j − θ j,k | ≥ 2|ξ j − ξ |, we get

|ξ − θ j,k |  g
μ j−1
j for k = 2, . . . , m j .

Consequently, since H(Pj )  g
m j
j , we have

|Pj (ξ)| = g
m j
j

m j∏
k=1

|ξ − θ j,k |

 g
m j
j g

−m j (w
∗
m j
+1)

j g
(m j−1)(μ j−1)

j (7.27)

 H(Pj )
−w∗m j

+((m j−1)/m j )(μ j−1) = H(Pj )
−wm j .

Since m j = n for infinitely many j , we infer from (7.27) that wn(ξ) ≥ wn .
In order to show that we have equality, let P(X) be an integer polynomial of
degree at most n, which we write under the form

P(X) = a R1(X) . . . Rp(X) · Q1(X) . . . Qs(X),

where a is an integer and the polynomials Ri (X) and Q j (X) are primitive
and irreducible. We moreover assume that the Ri (X) do not have a root equal
to one of the ξ�s, but that each Q j (X) has a root equal to some ξ�. If k de-
notes the degree of the polynomial Ri (X), then, by Lemma A.8, it has a root θ

satisfying

|Ri (ξ)| � H(Ri )
2−k |ξ − θ |

� λn H(Ri )
−χk−k+2 = λnH(Ri )

−wk � λnH(Ri )
−wn . (7.28)

If � denotes the degree of Q j (X), then (7.27) shows that

|Q j (ξ)|  H(Q j )
−w� ≥ H(Q j )

−wn .
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Together with (7.28) and Lemma A.3, this gives

|P(ξ)| � (
H(R1) . . . H(Rp)H(Q1) . . . H(Qs)

)−wn � H(P)−wn ,

and we get wn(ξ) = wn , as claimed.

7.4 On the gap between w∗n and wn

Many ideas from the construction of T -numbers have been used by Bugeaud
[128] to prove that, for any integer n ≥ 3, the set of values taken by the function
wn − w∗n includes the interval [0, n/4].

THEOREM 7.2. Let n ≥ 3 be an integer. Let wn and w∗n be real numbers such
that

w∗n ≤ wn ≤ w∗n + n/4, wn > 2n3 + 2n2 + 3n − 1.

Then there exists real numbers ξ such that

w∗n(ξ) = w∗n and wn(ξ) = wn .

Exercise 7.2 is devoted to the proof of Theorem 7.2. The main idea is how-
ever easy to explain. As pointed out after the statement of Proposition 7.1, the
algebraic numbers 21/m j occurring there have no particular importance for ob-
taining a T -number, and they could be replaced by other algebraic numbers of
the same degree. Since we are only interested in approximation by algebraic
numbers of degree at most n, we use a suitable version of Proposition 7.1
where m j = n and ξ j = (c j + γ j )/g j for every j ≥ 1. Here, the c j s and the
g j s are positive integers and the γ j s are real algebraic numbers of degree n.
The differences |ξ − ξ j | are precisely controlled and w∗n(ξ) satisfies

w∗n(ξ) = lim
j→+∞

− log |ξ − ξ j |
log H(ξ j )

− 1.

The idea consists in choosing the γ j s such that the algebraic numbers ξ j have
a complex conjugate ξσ

j very close to ξ j in terms of H(ξ j ). It then follows

that |ξ − ξσ
j | is very small, and that |Pj (ξ)| is much smaller than H(ξ j )

−w∗n (ξ),
where Pj (X) denotes the minimal polynomial of ξ j over Z. Consequently,
wn(ξ) is larger than w∗n(ξ). In [128], Bugeaud took γ j to be roots of the integer
polynomials Qa,n(X) := Xn − 2(aX − 1)2, which were first mentioned by
Mignotte [421]. It is readily verified that for any integers n ≥ 3 and a ≥ 10,
the polynomial Qa,n(X) is irreducible and has two conjugate roots distant by
at most 2n H(Qa,n)−n/4−1/2: this estimate yields the upper bound n/4 for the
range of values of wn − w∗n in Theorem 7.2.
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Furthermore, by considering the family of integer polynomials Pa,d(X) :=
(Xd − aX + 1)2 − 2X2d−2 (aX − 1)2 mentioned below Theorem A.3, it is
possible to improve Theorem 7.2. For any integer d ≥ 3, it follows either
from the results of Müller [433] or of Laurent and Poulakis [355] that the
polynomial Pa,d(X) is irreducible for any integer a sufficiently large, thus it
has two conjugate roots distant by at most 4a−2d . Taking for γ j one of these
roots, it follows from the proof of [128] that, for any even integer n ≥ 6, the
set of values taken by the function wn − w∗n contains the interval [0, n/2[, see
[133].

Unlike Theorem 7.1, Theorem 7.2 is effective. Indeed, it does not rest on
Theorem 2.7, but on Liouville’s inequality. As explained in Section 8 of [128],
the construction of Theorem 7.2 does not ensure the existence of T -numbers ξ

with wn(ξ)− w∗n(ξ) > (n − 1)/n for some positive integer n.

7.5 Hausdorff dimension and Hausdorff measure

It has been proved (Corollary 5.2) that the Hausdorff dimension of the set
of T -numbers is zero. However, thanks to the multiple possible choices for
the integers c j occurring in the proof of Proposition 7.1, R. C. Baker [47]
showed that this set is not ‘too small’. Namely, its H f -measure is infinite for
any dimension function f increasing in a neighbourhood of the origin faster
than any power function, that is, for any dimension function f such that

f ≺ (x �→ xδ) for any δ > 0. (7.29)

It is possible to rework R. C. Baker’s argument to prove the existence of S-
numbers ξ for which wn(ξ) and w∗n(ξ) are different for finitely many inte-
gers n.

THEOREM 7.3. Let n1 < . . . < nk be positive integers. Let w∗1 ≤ . . . ≤ w∗k
and w1 ≤ . . . ≤ wk be real numbers satisfying

w∗i ≤ wi ≤ w∗i + ni/4, wi > 2n3
i + 2n2

i + 3ni − 1 (1 ≤ i ≤ k).

Then there exists a real S-number ξ such that

w∗ni
(ξ) = w∗i and wni (ξ) = wi (1 ≤ i ≤ k). (7.30)

As explained in [128], the proof of Theorem 7.2 can easily be adapted to assert
the existence of real numbers ξ satisfying (7.30). To prove that some of them
are S-numbers, it is sufficient, by Corollary 5.2, to show that they form a set of
positive Hausdorff dimension. We use a version of Proposition 7.1 in which the
sequence (m j ) j≥1 takes only the values n1, . . . , nk , and each of these appears
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infinitely often. Further, proceeding as in Section 7.4, we take ν j = ni (w
∗
i +1)

if m j is equal to ni . Denote by ν the maximum of the ν j and let ε be a real
number with 0 < ε < 1/2. We can choose the sequence (g j ) j≥1 in such a way
that, besides the requirements of Proposition 7.1, we have

gε
j > 32nk gν

j−1,

for any integer j ≥ 2. Then, (7.14) implies that, at each step, there are at
least g1−ε

j suitable choices for the integer c j . We thus have a Cantor-type
construction (see Section 5 from [47]), at the j-th stage of which there are
at least g1−ε

j intervals of length g−ν
j /4 and distant by at least 1/g j . It fol-

lows from Proposition 5.2 that the Hausdorff dimension of the residual set
obtained is positive and even at least equal to (1 − ε)/ν. Consequently, this
set contains S-numbers, and even S-numbers of type less than ν + 2νε, by
Theorem 5.8.

7.6 On U -numbers

As mentioned in Chapter 3 and in Section 7.1, there are several ways to define
subclasses of the set of U -numbers. We consider in the present book the most
classical one, introduced by LeVeque [361] and recalled below.

DEFINITION 7.1. Let m be a positive integer. The Um-numbers are precisely
the U-numbers of type m, that is, the real numbers ξ such that wm(ξ) = +∞
and wn(ξ) < +∞ for any integer n with 1 ≤ n < m.

Since for any positive integer n both functions wn and w∗n take simultaneously
finite values or are simultaneously infinite, we may replace the functions wm

and wn in Definition 7.1 by w∗m and w∗n .
The first examples of U2-numbers are due to Maillet [403] (see also Perron

[454], pp. 143–148). In the first paper entirely devoted to U -numbers, LeVeque
[361] proved, among other deeper results, that none of the sets of Um-numbers
is empty.

THEOREM 7.4. For any positive integer m, there exist uncountably many real
Um-numbers.

PROOF. For any positive integer j , let a j be an element of {2, 4}. We
prove that, for any integer m ≥ 1, the positive real m-th root ξ of (3 +∑

j≥1 a j 10− j!)/4 is a Um-number. For k ≥ 1, set

pk = 10k!
(

3+
k∑

j=1

a j 10− j!
)

, qk = 4 · 10k!, and αk =
(

pk

qk

)1/m

.
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Then, we have H(αk) = 4 · 10k! and

|ξ − αk | ≤ |ξm − αm
k | ≤ 2 · 10−(k+1)! ≤ 22k+3 H(αk)

−k−1. (7.31)

Consequently, ξ is an U -number, and its type does not exceed m.
Let β be a non-zero real algebraic number of degree n strictly less than m

and of height greater than H(α1). Then, there exists a positive integer k such
that

H(αk) ≤ H(β)2m ≤ H(αk+1) ≤ H(αk)
k+1. (7.32)

It follows from Corollary A.2 that

|β − αk | ≥ 2 (m + 1)−5m/2 H(β)−m H(αk)
−n

≥ 2 (m + 1)−5m/2 H(αk)
−m−(k+1)/2. (7.33)

By taking H(β) large enough, the index k satisfies

H(αk)
−m+(k+1)/2 > 22k+3 (m + 1)5m/2,

and it follows from (7.31) and (7.33) that |β − αk | > 2|ξ − αk |. Thus, except
for finitely many algebraic numbers β of degree strictly less than m, we have

|ξ − β| ≥ |β − αk | − |ξ − αk | > |β − αk |/2

≥ (m+ 1)−5m/2 H(β)−m H(αk)
−n ≥ (m + 1)−5m/2 H(β)−m−2mn,

by (7.32). We conclude that

w∗n(ξ) ≤ 2mn + m − 1 (7.34)

for n = 1, . . . , m − 1, hence, ξ is not a U -number of type strictly less than m.

Using the idea explained in Section 7.5, R. C. Baker [47] proved that, for
any positive integer m, the set of Um-numbers has infinite H f -measure for
any dimension function f satisfying (7.29). In particular, the H f -measure
of the set of Liouville numbers is infinite if f satisfies (7.29), and is zero
if there exists a positive real number δ such that (x �→ xδ) ≺ f (see also
Exercise 6.5).

In Theorem 7.4, we constructed explicitly Um-numbers ξ and gave effec-
tive upper bounds for w∗n(ξ) for any positive integer n smaller than m. These
are somehow unsatisfactory, since they are quite large (a slight improvement
of (7.34) has been obtained by Güting ([269], Satz 10) who, essentially, re-
placed 2mn by mn). Alniaçik, Avci, and Bugeaud [18] improved upon The-
orem 7.4 in the sense that they established the existence of Um-numbers ξ

with sharper upper bounds for w∗n(ξ), where n = 1, . . . , m − 1. Like Theorem
7.4, Theorem 7.5 below is of an effective nature, since it ultimately rests on
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Theorem 2.11. The underlying idea is to construct ξ as the limit of a rapidly
converging sequence of real algebraic numbers of degree m, using the fact that
these numbers can be quite well approximated by algebraic integers of same
degree.

THEOREM 7.5. Let m ≥ 2 be an integer. There are uncountably many Um-
numbers ξ with

w∗n(ξ) ≤ m + n − 1, for n = 1, . . . , m− 1.

The proof of Theorem 7.5 relies on the following consequence of Theorem
2.11.

LEMMA 7.1. Let n ≥ 2 be an integer and ξ be a real algebraic number of
degree n. There exist an effectively computable constant κ(ξ) and infinitely
many algebraic integers α of degree n such that

0 < |ξ − α| < κ(ξ) H(α)−n .

Moreover, we use repeatedly an easy consequence of the triangle inequality.

LEMMA 7.2. Let (α1, α2, β) be a triple of real numbers. Let H, N, and c be
positive real numbers such that

0 < |α1 − α2| < N−1 and |α1 − β| ≥ c−1 H−1.

Then, for any positive real number δ, we have

|α2 − β| > (c + δ)−1 H−1 as soon as H ≤ c−1δ(c + δ)−1 N .

PROOF. Assuming that H ≤ c−1δ(c + δ)−1 N , we have

|α2 − β| ≥ |α1 − β| − |α1 − α2|
> c−1 H−1 − N−1

≥ H−1(c−1 − c−1δ(c + δ)−1) = H−1(c + δ)−1,

as claimed.

PROOF OF THEOREM 7.5. Let m ≥ 2 be an integer. Thanks to repeated use
of Liouville’s inequality, we construct by induction a converging sequence of
real algebraic integers of degree m, whose limit is a Um-number with the given
property. Throughout the proof, for n = 1, . . . , m − 1, we denote by βn a real
algebraic number of degree n.

Let ξ1 be a real algebraic number of degree m. By Corollary A.2, we have

|ξ1 − βn| > c−1
1 H(ξ1)

−n H(βn)−m ≥ c−1
1 H(ξ1)

−m H(βn)−m, (7.35)
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with c1 = (m + 1)2m . Furthermore, Lemma 7.1 implies that there is an ef-
fectively computable constant κ(ξ1) > 1 and infinitely many real algebraic
integers ξ2 of degree m with

0 < |ξ1 − ξ2| < κ(ξ1) H(ξ2)
−m . (7.36)

We infer from (7.35), (7.36), and Lemma 7.2 applied to the triple (ξ1, ξ2, βn)

with H = H(βn)m , N = κ(ξ1)
−1 H(ξ2)

m , c = c1H(ξ1)
m , and δ = 1/2 that

|ξ2 − βn| > (c2 + 1/2)−1H(βn)−m, (7.37)

with c2 = c1H(ξ1)
m , provided that

H(βn) ≤ (c2(2c2 + 1))−1/m κ(ξ1)
−1/m H(ξ2) := A.

Furthermore, we deduce from Corollary A.2 that

|ξ2 − βn| > c−1
1 H(ξ2)

−n H(βn)−m, (7.38)

and, if H(βn) > A, we infer from (7.38) that

|ξ2 − βn| > c−1
1

(
c2(2c2 + 1)κ(ξ1)

)−n/m H(βn)−m−n

> H(βn)−m−n (
log 3H(βn)

)−1 (7.39)

holds if H(βn) exceeds some effectively computable constant c3 depending
only on ξ1. We choose ξ2 such that we have H(ξ2) > κ(ξ1)H(ξ1) and A > c3.
Then, by (7.37) and (7.39), we see that

|ξ2 − βn| > (c2 + 1/2)−1H(βn)−m−n (
log 3H(βn)

)−1

holds for any algebraic number βn .
Let k ≥ 2 be an integer. Assume that there are real algebraic integers

ξ2, . . . , ξk of degree m and real numbers κ(ξ1), . . . , κ(ξk−1) such that

|ξi+1 − βn| >
(

c2 + 1

2
+ . . .+ 1

2i

)−1

H(βn)−m−n (
log 3H(βn)

)−1
,

for any βn ,

0 < |ξi − ξi+1| < κ(ξi ) H(ξi+1)
−m and H(ξi+1) > κ(ξi ) H(ξi )

i

for i = 1, . . . , k − 1.
By Lemma 7.1, there exists a real number κ(ξk) > 1 and a real algebraic

number ξk+1 of degree m satisfying

H(ξk+1) > κ(ξk) H(ξk)
k and |ξk − ξk+1| < κ(ξk) H(ξk+1)

−m .

(7.40)
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By assumption, we have

|ξk − βn| ≥ c−1
4 H(βn)−m−n (

log 3H(βn)
)−1

,

with c4 = c2 + 2−1 + . . . + 2−k+1, and we infer from Lemma 7.2 applied to
the triple (ξk, ξk+1, βn) with δ = 2−k that

|ξk+1 − βn| ≥ (c4 + 2−k)−1 H(βn)−m−n (
log 3H(βn)

)−1 (7.41)

holds provided that

H(βn)m+n (
log 3H(βn)

) ≤ c−1
4 (2kc4 + 1)−1 κ(ξk)

−1 H(ξk+1)
m . (7.42)

By Corollary A.2, we have

|ξk − βn| ≥ c−1
1 H(ξk)

−n H(βn)−m,

and we apply Lemma 7.2 to the triple (ξk, ξk+1, βn) with the parameters H =
H(βn)m , N = κ(ξk)

−1 H(ξk+1)
m , c = c1H(ξk)

n and δ = H(ξk)
n to get

|ξk+1 − βn| > (c1 + 1)−1H(ξk)
−n H(βn)−m

provided that

H(βn) ≤ (
c−1

1 (c1 + 1)−1 κ(ξk)
−1 H(ξk)

−n)1/m H(ξk+1) := B. (7.43)

Hence, we have

|ξk+1 − βn| > H(βn)−m−1 (7.44)

as soon as βn satisfies

(c1 + 1)H(ξk)
n ≤ H(βn) ≤ B. (7.45)

By choosing ξk+1 with H(ξk+1) large enough in terms of ξ1 and ξk , (7.42) is
satisfied for all algebraic numbers βn with H(βn) < (c1 + 1)H(ξk)

n . Thus, by
(7.41), (7.44), and (7.45), we have

|ξk+1 − βn| > (c4 + 2−k)−1H(βn)−m−n (
log 3H(βn)

)−1 (7.46)

when H(βn) ≤ B.
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Finally, assuming that H(βn) > B, we use

|ξk+1 − βn| > c−1
1 H(ξk+1)

−n H(βn)−m,

given by Corollary A.2, to get from (7.43) that, for H(ξk+1) large enough in
terms of m, ξ1, and ξk , we have

|ξk+1 − βn| > c−1
1

(
c1(c1 + 1)κ(ξk)H(ξk)

n)−n/m H(βn)−m−n

> H(βn)−m−n (log B)−1 > H(βn)−m−n (
log 3H(βn)

)−1
.

(7.47)

The desired conclusion follows from (7.46) and (7.47): for any algebraic num-
ber βn , we have

|ξk+1 − βn| >
(

c2 + 1

2
+ . . .+ 1

2k

)−1

H(βn)−m−n (
log 3H(βn)

)−1
.

(7.48)

We deduce from (7.40) that, for any integers i , j with 2 ≤ i < j , we have

|ξ j − ξi | ≤ 2 H(ξi )
−i . (7.49)

Thus, the sequence (ξ j ) j≥1 is a Cauchy sequence, and we denote its limit by
ξ . Letting j tend to infinity in (7.49), we get |ξ − ξi | ≤ 2 H(ξi )

−i , whence
w∗m(ξ) = +∞. Moreover, by (7.48), we get that w∗n(ξ) ≤ m + n − 1, for any
n = 1, . . . , m−1, as claimed. Finally, we observe that, at each step, we have in
fact infinitely many choices for the algebraic integer ξk , thus we can construct
uncountably many real numbers satisfying the required properties.

Unfortunately, Theorem 7.5 does not assert the existence of Um-numbers ξ

with a prescribed value of wn(ξ) or w∗n(ξ) for some integer n with 1 ≤ n < m.
However, using Lagrange’s Theorem 1.16 (asserting that the continued fraction
expansion of a real number is ultimately periodic if, and only if, this number
is a quadratic irrationality), we can construct real U2-numbers ξ with any pre-
scribed value for w1(ξ) (see Exercise 7.3). Moreover, again with the use of
continued fractions, Alniaçik [9] gave effective constructions of U -numbers
which are not well approximable by rational numbers.

THEOREM 7.6. For any integer m ≥ 2, there exist Um-numbers ξ with
w1(ξ) = 1.

Exercise 7.4 is devoted to a proof of Theorem 7.6. Actually, the Um-numbers
ξ constructed by Alniaçik in [9] satisfy w1(ξ) = 1 and w∗n(ξ) ≤ c5 m6 for any
integer n with 2 ≤ n < m and some absolute constant c5.
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7.7 A method of Güting

The main idea behind LeVeque work [361] mentioned in Section 7.6 can be
phrased as follows: Any real number with sufficiently many very good alge-
braic approximations of given degree cannot have infinitely many very, very
good algebraic approximants of smaller or comparable degree.

This can be seen by applying Liouville’s inequality under the form given by
Corollary A.2. Indeed, assume that the algebraic numbers α1 and α2 are very
close to the transcendental real number ξ . Suppose that the algebraic number
β satisfies

H(α1) < H(β) < H(α2).

For i = 1, 2 we have

|ξ − β| ≥ |αi − β| − |αi − ξ |,
and Corollary A.2 gives a lower bound for |αi − β|. Thus, if |αi − ξ | is suffi-
ciently small, say smaller than |αi − β|/2, then |ξ − β| must be greater than
|αi − β|/2, thus greater than |αi − ξ |; consequently, β cannot be a very good
approximation of ξ . Of course, the above argument is rather rough, since we
have omitted any reference to the heights and to the degrees of the algebraic
numbers involved. However, it lies at heart of Güting’s work [269], where the
existence of real numbers ξ with prescribed values for wn(ξ) for some integers
n is established in a constructive way.

THEOREM 7.7. Let n ≥ 1 and k ≥ 0 be integers. Let d be a real number with
(d + 1− n)(d + 1− n− k) > n(n+ k)(d + 1). Then, there exist real numbers
ξ with

wn(ξ) = w∗n(ξ) = . . . = wn+k(ξ) = w∗n+k(ξ) = d.

In particular, the functions wn and w∗n take any value d > (2n + 1 +√
4n2 + 1)/2.

PROOF. Let d, n, and k be as in the statement of the theorem. Throughout the
proof, the numerical constants implied by 
 and � depend, at most, on n, k,
and d. Let (ni )i≥1 be a strictly increasing sequence of positive integers such
that ni+1/ni tends to d + 1 and gcd(ni , n) = 1 for any i ≥ 1. Define the
positive real number ξ by

ξn =
∑
j≥1

2−n j .

Let ε be a real number with 0 < ε < 1. Let i0 ≥ 1 be such that d + 1 − ε <
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ni+1/ni < d + 1+ ε holds for any integer i ≥ i0. For i ≥ i0, the polynomial

Pi (X) := 2ni Xn − 2ni

i∑
j=1

2−n j

satisfies H(Pi ) = 2ni and, since ni and n are coprime, a result by Dumas [214]
(see also [585], page 76) asserts that Pi (X) is irreducible. It follows from

Pi (ξ) =
∑
j>i

2ni−n j =
∑
j>i

H(Pi )
1−n j /ni , P ′i (ξ) = nξn−1 H(Pi ),

and Lemma A.5 that Pi (X) has a root αi such that H(αi ) = H(Pi ) and

H(αi )
−d−1−ε 
 |ξ − αi | 
 H(αi )

−d−1+ε. (7.50)

It is immediate that, for i ≥ i0, we have

H(αi ) ≤ H(αi+1) ≤ H(αi )
d+1+ε. (7.51)

Let α be a real algebraic number of degree n+k. There exists an integer i with

H(αi ) ≤ H(α) < H(αi+1). (7.52)

We may assume that H(α) is sufficiently large in order to ensure that i ≥ i0.
Thus, (7.50) and (7.51) are satisfied. We distinguish two cases and introduce a
real number u > n, which will be specified later on.

First, we assume that α �= αi and

H(α)n ≤ H(αi )
u . (7.53)

Corollary A.2 asserts that |αi − α| � H(α)−n H(αi )
−n−k , whence, by (7.53),

we get

|αi − α| � H(αi )
−n−k−u . (7.54)

By (7.50), (7.52), (7.54), and the triangle inequality |ξ−α| ≥ |αi−α|−|ξ−αi |,
we have |ξ − α| ≥ H(αi )

−d−1+ε, and thus |ξ − α| ≥ H(α)−d−1+ε, as soon as

u < d + 1− n − k − ε (7.55)

and H(α) is large enough.
We assume now that α �= αi+1 and H(α)n > H(αi )

u . We then get |αi+1 −
α| � H(α)−n H(αi+1)

−n−k by Corollary A.2, and we infer from (7.50),
H(α) < H(αi+1), and the triangle inequality |ξ −α| ≥ |αi+1−α|− |ξ −αi+1|
that |ξ − α| ≥ H(α)−d−1+ε holds if H(α)−nH(αi+1)

−n−k � H(α)−d−1+ε.
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This condition is fulfilled as soon as

H(αi+1)
n+k 
 H(αi )

(d+1−n−ε)u/n,

thus, by (7.51), as soon as

u >
n(n + k)(d + 1+ ε)

d + 1− n − ε
. (7.56)

We can select a real number u such that (7.55) and (7.56) hold simultaneously
if ε satisfies

n(n + k)(d + 1+ ε)

d + 1− n − ε
< d + 1− n − k − ε.

Together with (7.50), by letting ε tend to 0, we obtain that w∗n+k(ξ) = d as
soon as

(d + 1− n − k)(d + 1− n) > n(n + k)(d + 1), (7.57)

as claimed. The last statement of the theorem follows by applying the first
assertion to the pair (n, k) = (1, n−1). Indeed, condition (7.57) then becomes
d(d − n + 1) > n(d + 1), that is, precisely d > (2n − 1+√4n2 + 1)/2.

A similar argument yields the result for the function wn , as proved by
Güting [269]. Instead of taking an arbitrary algebraic number α with (7.52),
we take a polynomial P(X) and we consider the index i for which H(Pi ) ≤
H(P) < H(Pi+1). We then apply Theorem A.1 and Rolle’s Theorem to get
that wn+k(ξ) = d .

Güting ([269], Satz 7 and Satz 8) gave analogous, but slightly weaker, state-
ments for roots of real numbers defined by their continued fraction expansions.
In that case, there is a new difficulty, since the polynomials playing the roles
of Pi (X) may not be irreducible.

It follows from a general result of Nishioka [438, 439] that, for any positive
integer d, the number

∑
j≥1 2−(d+1) j

is an S-number.

7.8 Brief summary of the results towards the Main Problem

In Chapters 5, 6 and in Sections 7.1 to 7.7 of the present Chapter, we have
developed different methods yielding to results towards the Main Problem in-
troduced in Chapter 3.

MAIN PROBLEM. Let (wn)n≥1 and (w∗n)n≥1 be two non-decreasing sequences
in [1,+∞] such that

n ≤ w∗n ≤ wn ≤ w∗n + n − 1, for any n ≥ 1.
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Then there exists a real transcendental number ξ such that

wn(ξ) = wn and w∗n(ξ) = w∗n for any n ≥ 1.

We first summarize the results concerning a single function wn or w∗n . As em-
phasized in Chapter 1, the function w1 (which is equal to w∗1) is well un-
derstood thanks to the theory of continued fractions. Further, Theorem 7.7
asserts, in an explicit way, that wn and w∗n take any value w with w >

(2n + 1 + √4n2 + 1)/2. In the range n ≤ w ≤ (2n + 1 + √4n2 + 1)/2,
using Hausdorff dimension theory, it is proved in Chapter 5 that there exist
real numbers ξ and ξ∗ with wn(ξ) = w and w∗n(ξ∗) = w. Moreover, by means
of a Cantor-type construction based on the effective, explicit result of Beres-
nevich [60] (see below Proposition 6.1), it is possible to construct real numbers
ξ with prescribed values for w∗2(ξ).

The Main Problem is partially solved when the sequence (w∗n)n≥1 increases
sufficiently rapidly, that is, faster than n3+2n2+4n+3 (see Theorem 7.1). This
result follows ultimately from Schmidt’s Subspace Theorem, hence, it does not
yield explicit examples of transcendental numbers ξ with the required property.
Moreover, this approach is up to now the only one allowing us to confirm the
existence of real numbers ξ with wn(ξ) �= w∗n(ξ) for some integer n ≥ 2. The
real numbers obtained in this way are limits of sequences of algebraic numbers
which converge very rapidly. A similar idea is also used in Section 7.6, but the
construction is simpler.

For given integers n < n′ and real numbers n ≤ wn ≤ wn′ with (wn +
1)(n′ + 1) = (wn′ + 1)(n + 1), we can use the Hausdorff dimension theory to
ensure the existence of real numbers ξ with w∗n(ξ) = wn and w∗n′(ξ) = wn′ .
However, this method is ineffective.

Alternatively, fully explicit examples of real numbers ξ with (very) specific
values of wn1(ξ), . . . , wnk (ξ) for some integers n1 < . . . < nk have been
obtained as n-th roots of suitable convergent series, see Section 7.7.

7.9 Exercises

EXERCISE 7.1. Modify (very) slightly the proof of Theorem 7.1 to show that if
0 < w1 ≤ w2 ≤ . . . is a sequence in [1,+∞] such that wn > n3+2n2+3n+1
for any n ≥ 1, then there exists a real number ξ such that w∗n(ξ) = wn and
wn(ξ) = wn for any n ≥ 1.

Hint. Observe that the exponent of g j in (7.8) is replaced by −(n2 + n +
2nεn) since we have g j = v j . Consequently, (7.7), (7.21), and (7.23) have
to be modified accordingly. Furthermore, (7.24) can be replaced by χn =
wn + 1.
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EXERCISE 7.2. Prove Theorems 7.2 and 7.3.
Hint. For δ in [(n − 1)/n, n/4], use for γ j a root close to [gμ

j ]−1 of the

polynomial Xn − 2([gμ
j ]X − 1)2, where μ = 2(nδ − n + 1)/(n − 2). To get

Theorem 7.2, argue as in the proof of Theorem 7.1, replacing, however, the use
of Theorem 2.7 by that of Corollary A.2 and (7.24) by χn = wn − n+ 2. With
a slight modification, prove Theorem 7.3.

EXERCISE 7.3. Let w ≥ 1 be a real number. Apply Theorem 1.16 to prove that
there exist uncountably many U2-numbers ξ with w1(ξ) = w.

EXERCISE 7.4. Proof of Theorem 7.6.
Let m ≥ 2 be an integer and let α := [0; a1, a2, a3, . . .] be a real algebraic

number of degree m. For any j ≥ 1, denote by q j the denominator of the j-
th convergent of α. Let (rk)k≥1 be an increasing sequence of positive integers
such that the ratio (log qrk+1)/(log qrk ) tends to infinity with k. For any j ≥ 1,
set b j = a j if j does not belong to the sequence (rk)k≥1 and b j = a j + 1
otherwise. Our aim is to prove that the number ξ := [0; b1, b2, b3, . . .] is a
Um-number with w1(ξ) = 1.

First, use Roth’s Theorem 2.1 to show that w1(ξ) = 1. Next, for any integer
k ≥ 1, set αk := [0; b1, b2, . . . , brk , ark+1, ark+2, . . .], which is an algebraic
number of degree m. Show that −(log |ξ − αk |)/(log H(αk)) tends to infinity
with k. It remains for us to prove that ξ is not a Un-number for some integer
n < m. Let β be a real algebraic number of degree at most m−1 and with large
height. Let k be the integer such that qrk ≤ H(β) < qrk+1 . Bound |ξ − β| from
below in terms of H(β) by using the inequality |ξ − β| ≥ |β − α�| − |ξ − α�|
with � = k or k + 1 according as H(β) ≤ q1/m3

rk+1 or not. Conclude.

7.10 Notes

• Güting [269] gave a sufficient condition for a real number to be a T -
number.

• Alniaçik [11] used continued fractions to construct real numbers with
specific properties. He claimed that, for any positive real number ε, there ex-
ist T -numbers ξ with w1(ξ) ≤ 1 + ε. However, it seems that his work con-
tains serious gaps (not only because he did not use the correct definition of
T ∗-numbers). His idea was to construct ξ as a limit of algebraic numbers
ξ� = [a0; a1, . . . , an�

, α�], where the ai s are integers and the α�s are algebraic
numbers. Compared with Schmidt who considered a limit of numbers of the
shape α� + p�/q�, the advantage of Alniaçik’s approach is that the continued



164 On T -numbers and U-numbers

fraction expansion allows us to control w1(ξ) in a satisfactory way. The re-
maining problem is to ensure that ξ has good, but not too good, algebraic
approximants. To this end, one needs to establish a precise lower bound for
the height of ξ�, essentially in terms of the denominator of the n�-th conver-
gent of ξ�. This does not seem to be easy, and Alniaçik’s assertion still remains
unproved.

• LeVeque [361] introduced the notion of strong (and weak) Liouville num-
bers. This has been further studied and refined by Alniaçik [8, 10, 15] who
defined semi-strong Um-numbers and irregular semi-strong Um-numbers. For
any positive integers m and k, Alniaçik [15] proved that every algebraic num-
ber of degree m can be represented by the sum and the product of two Umk-
numbers. Further, he established [12] that every real number, except possibly
Liouville numbers, can be represented as the sum of two U2-numbers. His ap-
proach, somehow intricate, depends on the theory of continued fractions and
is explicit. Shortly thereafter, Pollington [459] adapted the method used by
Schmidt to confirm the existence of T -numbers to show that, for any positive
integer m, every real number can be expressed as a sum of two Um-numbers.
He also briefly outlined the proof that every real number can be written as a
sum of two T -numbers. Petruska [455] showed that the sum or the product of
an arbitrary number of strong Liouville numbers is either rational or a Liouville
number.

• Results on the distribution of the sequence (nα) for a U2-number α have
been established by Baxa [54].

• Burger and Struppeck [150] have investigated the statistical behaviour of
the partial quotients of real U2-numbers. They proved the existence of U2-
numbers with the property that if translated by any non-negative integer and
then squared, the result is a Liouville number (see Burger [148] for refined
statements). They further showed that there exists a real positive Liouville
number whose square root has, in its continued fraction expansion, only the
partial quotients 1 and 2, the partial quotient 2 occurring with probability 0,
for some given probability measure on the set of positive integers.

• Other constructions of Um-numbers have been obtained by Oryan [442,
444, 446, 447] and by Yilmaz [606]. Results of Zeren [610, 611] (see also
Mahler [392] and Braune [117]) on values of gap power series at algebraic
points have been extended by Gürses [264, 265].

• We have been concerned with the Lebesgue measure and with Haus-
dorff measures. However, a rather different measure for the size of sets of
real numbers arises in harmonic analysis. A set E of real numbers is called
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an M0 set if it carries a probability measure μ, the Fourier–Stieltjes transform
of which

μ̂(x) =
∫

E
exp(−2iπxy) dμ(y)

vanishes at infinity. Aside from the Riemann–Lebesgue Lemma, no purely
metric property of E can ensure that E is an M0 set. Further, there exist sets
of full Lebesgue measure which do not share this property (see, for example,
[304]). This is also the case for the triadic Cantor set (see, for example, [305]
and [415], p. 168). Kaufman [314, 315] proved that the set B of badly ap-
proximable real numbers carries a measure in M0, and so does any set K∗1(τ )

for τ > 1 (see also the notes at the end of Chapter 5). The former result
has been used by Pollington and Velani [460] towards Littlewood’s Conjecture
(see Chapter 10). Moran, Pearce, and Pollington [428], following Schmidt’s
approach, proved that the set of T -numbers is an M0 set and claimed that, for
any positive integer m, the set of Um-numbers is an M0 set.

• Haseo Ki [324] studied the sets of A-, S-, T - and U -numbers from the
point of view of Descriptive Set Theory. He established their possible loca-
tions in the Borel hierarchy (see, for example, the book of Kechris [316] for
an introduction to that topic). He followed the main steps of Schmidt’s con-
struction and proved that the set of T -numbers is 0

3-hard, while the set of
U -numbers is �0

3 -complete.

• Let w be a positive real number and m ≥ 2 be an integer. Feldman [240]
constructed real numbers ξ with w < wn(ξ) ≤ m(m + 2)w for any integer
n = 1, . . . , m − 1.

• Amou [25] determined the values of wn(ξ) and w∗n(ξ) for the Champer-
nowne number and any integer n = 1, . . . , 4. He used the fact, observed by
Mahler [380], that ξ has a sequence of very good rational approximants whose
heights do not increase too rapidly. Lemma 1 of [25] rests on an idea of Güting
[269].



8

Other classifications of real and
complex numbers

In 1932, Mahler [376] introduced the first relevant classification of complex
numbers into several classes. To this end, for given positive integers n and
H and for any complex number ξ , he considered the minimum of the real
numbers |P(ξ)|, where P(X) runs through the (finite) set of integer polyno-
mials of degree at most n and height at most H , which do not vanish at ξ .
Then, he let first H tend to infinity, and then n. This order is arbitrary, and
we may as well do the converse, or let tend to infinity some given function
of the height and the degree. The former suggestion has been proposed by
Sprindžuk [532] in 1962, and the latter one by Mahler [393] in 1971. Both
yield new classifications of complex numbers, to which Sections 8.1 and 8.2
are devoted, respectively. In Section 8.3, we present further results on the ap-
proximation by algebraic numbers, which, to some extend, refine Wirsing’s
Theorem 3.4.

Unlike in the previous chapters, we approximate complex numbers, and not
only real numbers. The main reason for doing this is that the results obtained
here are not sharp enough to ensure that, when we start with a real number, the
approximants we construct are also real numbers.

We warn the reader that in all the metric statements below the expression
‘almost all’ refers to the Lebesgue measure on the line (resp. on the plane) if
the set under consideration is a real set (resp. a complex set). A similar remark
applies for the Hausdorff dimension.

8.1 Sprindžuk’s classification

According to Sprindžuk [532], for a complex number ξ and for positive
integers n and H , we set

166
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wn(ξ, H) := min{|P(ξ)| : P(X)∈Z[X ], H(P) ≤ H, deg(P) ≤ n,

P(ξ) �= 0}, w̃(ξ, H)= lim sup
n→∞

log log(1/wn(ξ, H))

log n
,

and

w̃(ξ) = sup
H≥1

w̃(ξ, H).

In case w̃(ξ) = +∞ and if there exists a positive integer H with w̃(ξ, H) =
+∞, we denote by H0(ξ) the smallest integer with this property and, other-
wise, we put H0(ξ) = +∞. Further, we set

μ̃(ξ, H) = lim sup
n→∞

− log wn(ξ, H)

nw̃(ξ)

and

μ̃(ξ) = lim sup
H→∞

μ̃(ξ, H)

log H
.

The quantities w̃(ξ) and μ̃(ξ) are called the -̃order and the -̃type of ξ , re-
spectively.

DEFINITION 8.1. Let ξ be a complex number. We say that ξ is an

Ã-number, if 0 ≤ w̃(ξ) < 1 or if w̃(ξ) = 1 and μ̃(ξ) = 0;

S̃-number, if 1 < w̃(ξ) < +∞ or if w̃(ξ) = 1 and μ̃(ξ) > 0;

T̃ -number, if w̃(ξ) = +∞ and H0(ξ) = +∞;

Ũ -number, if w̃(ξ) = +∞ and H0(ξ) < +∞.

Two algebraically dependent complex numbers belong to the same class (see
Exercise 8.1), thus this classification satisfies the second requirement stated in
the Introduction to Chapter 3.

Sprindžuk [532] established that the Ã-numbers are exactly the algebraic
numbers (see Exercise 8.1) and that the -̃type of any real (resp. complex)
transcendental number of -̃order 1 is at least 1 (resp. at least 1/2).

Let (w̃H )H≥1 be a sequence of numbers in [0,+∞] such that there is a
positive integer H0 with

w̃H = 0 for H < H0 and 1 ≤ w̃H ≤ w̃H+1 ≤ +∞ for H ≥ H0. (8.1)

If ξ is a complex transcendental number, then the sequence (w̃(ξ, H))H≥1 sat-
isfies (8.1), and, conversely, we may ask whether, for any sequence (w̃H )H≥1
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with (8.1), there exists a complex number ξ such that w̃(ξ, H) = w̃H for any
H ≥ 1. This is the analogue of the Main Problem stated in Chapter 3. Amou
[28] gave in 1996 an affirmative answer to that question.

THEOREM 8.1. Let (w̃H )H≥1 be a sequence of numbers in [0,+∞] satisfying
(8.1). Then, there exist real numbers ξ such that w̃(ξ, H)= w̃H for any H≥1.

The proof is involved and will not be reproduced here. We merely give some of
the main ideas. While we were previously interested in the distribution of alge-
braic numbers of bounded degree, the proof of Theorem 8.1 requires informa-
tion on the distribution of algebraic numbers of fixed height. Using an effective
version of a theorem of Kornblum on the polynomial analogue of Dirichlet’s
theorem on primes in arithmetic progressions, Amou obtained the following
auxiliary result. Let H be a positive integer and let ξ be a real number with
|ξ | �= 1 and (H + 1)−1 < |ξ | < H + 1. Then there exists a positive constant
c(ξ, H), depending only on ξ and H , and an infinite set N (ξ, H) of positive
integers such that, for each n in N (ξ, H), there are at least (2H+1)n/9 real al-
gebraic numbers α of degree n, height H , and with |ξ−α| < exp{−c(ξ, H) n}.
The lower estimate for the number of real algebraic numbers α with these
properties is sharp and appears to be crucial in the remaining part of the proof,
which essentially rests on the method developed by Schmidt for constructing
T ∗-numbers (see Chapter 7).

COROLLARY 8.1. For any real number w̃ ≥ 1, there exist S̃-numbers ξ with
w̃(ξ) = w̃. There exist T̃ -numbers. For any positive integer H, there exist
Ũ -numbers ξ with H0(ξ) = H.

Corollary 8.1 shows that Sprindžuk’s classification is non-trivial. As for met-
ric results, Sprindžuk [532] established that almost all complex numbers are
S̃-numbers of -̃order at most 2 and conjectured that 2 may be replaced by 1.
This was claimed by Chudnovsky [164], who only sketched the proof. Amou
[28] supplied a complete proof and gave some improvements in a subsequent
work [29].

THEOREM 8.2. Almost all complex (resp. real) numbers are S̃-numbers of -̃
order 1.

Theorem 8.2 is a straightforward consequence of Theorem 8.3, due to Amou
and Bugeaud [31].

THEOREM 8.3. Let ε be a positive real number. Then, for almost all complex
(resp. real) numbers ξ , there exists a positive constant c1(ξ, ε), depending only
on ξ and on ε, such that

|P(ξ)| > exp
{−(3+ ε)n log(nH)− n log n

}
(8.2)
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for all integer polynomials P(X) of degree n and height H satisfying
max{n, H} ≥ c1(ξ, ε).

PROOF. We only give a proof for the real case, since the complex case follows
exactly the same lines. Let I be a real interval of length 1. Let n0 ≥ 4 be
an integer which will be chosen later. In view of Sprindžuk’s Theorem 4.2, for
almost all real numbers ξ in I , there are only finitely many integer polynomials
P(X) of degree n less than n0 and height H with

|P(ξ)| ≤ exp
{−(1+ ε)n log H

}
.

Consequently, in order to prove the theorem, it is sufficient to show that the set
E of real numbers ξ in I for which there exist infinitely many integer polyno-
mials P(X) of degree n at least n0 and height H such that

|P(ξ)| ≤ exp
{−(3+ ε)n log(nH)− n log n

}
is a null set. To this end, for any positive integers n, s, and H with 1 ≤ s ≤ n
and n ≥ n0, we consider the set A(H, n, s) of complex algebraic numbers α

satisfying P(α) = 0 with multiplicity s for some integer polynomial P(X) of
degree at most n and height H . Let E(H, n, s) denote the set of all real numbers
ξ for which there exists an algebraic number α in A(H, n, s) such that

|ξ − α| ≤ exp

{(
2

s2
− 3+ ε

s

)
n log H +

(
3

2s2
− 3+ ε

s

)
n log n

}
, (8.3)

and set E(H, n) := E(H, n, 1) ∪ . . . ∪ E(H, n, n). By Lemma A.7, each ξ in
E belongs to infinitely many sets E(H, n), thus

E ⊂
⋂

N≥n0

+∞⋃
n=N

+∞⋃
H=1

E(H, n) ∪
⋂

H0≥1

+∞⋃
n=n0

+∞⋃
H=H0

E(H, n). (8.4)

Observe that the cardinality of A(H, n, s) is bounded by n times the number
of integer polynomials of degree at most n and of height H , hence, we get

CardA(H, n, s) ≤ n
(
(2H + 1)n+1 − (2(H − 1)+ 1)n+1)

≤ 2n(n + 1)(2H + 1)n ≤ 23n Hn . (8.5)

Furthermore, for any element α in A(H, n, s), the minimal polynomial of α

over Z, denoted by Pα(X), divides some integer polynomial of degree n and
height H . By Lemma A.3, we have H(Pα) ≤ 2n/s H1/s , hence,

CardA(H, n, s) ≤ n

s
(21+n/s H1/s + 1)1+n/s ≤ 27n2/s2

H2n/s2
. (8.6)

Let D(H, n, s) be the domain in the complex plane consisting of numbers
whose distance from the interval I is less than the number in the right-hand
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side of (8.3). It follows from Theorems A.1 and A.2 that

|α − β| ≥ 2−n/s n−5n/(2s) H−2n/s

holds for any α, β in A(H, n, s) with α �= β. For s ≥ 3, this yields the upper
estimate

Card (A(H, n, s) ∩D(H, n, s)) ≤ 23n/s n5n/(2s) H2n/s, (8.7)

if n is large enough.
To bound the Lebesgue measure of E(H, n, s), we combine (8.3) with (8.5)

(resp. with (8.6), with (8.7)) if s = 1, 2 (resp. if n
√

7/ log n ≤ s ≤ n, if
3 ≤ s < n

√
7/ log n), and, choosing n0 sufficiently large, we get for any

s = 1, . . . , n the upper bound λ(E(H, n, s)) ≤ (nH)−(2+ε) as soon as n ≥ n0.
Thus, we obtain

λ(E(H, n)) ≤ (nH)−(1+ε)

and the double sum ∑
n≥n0

∑
H≥1

λ(E(H, n))

converges. The Borel–Cantelli Lemma 1.2 and (8.4) then show that the set E
has zero Lebesgue measure.

Maybe, it is possible to replace (8.2) by

|P(ξ)| > exp
{−(1+ ε)n log H − f (n)

}
,

for some suitable function n �→ f (n). Such a result seems however difficult to
prove.

A refinement of the proof of Theorem 8.3 yields a strengthening of Theorem
8.2, whose proof is left as Exercise 8.2.

THEOREM 8.4. There exists a complex (resp. real) set Ec (resp. Er ) of Haus-
dorff dimension zero such that, for all complex (resp. real) numbers ξ not in Ec

(resp. Er ), there exists a positive constant κ , depending only on ξ , such that

|P(ξ)| > exp
{−κ n log(nH)

}
for all integer polynomials P(X) of degree n and height H. In particular, the
complex (resp. real) S̃-numbers of -̃order strictly larger than 1, the complex
(resp. real) T̃ -numbers and the complex (resp. real) Ũ -numbers form sets of
Hausdorff dimension zero.

We may as well define an analogous classification of the complex numbers in
terms of their approximation properties by algebraic numbers. For a complex
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number ξ and positive integers H and n, we set

w̃∗n(ξ, H) := min{|ξ − α| : α algebraic, deg(α) ≤ n, H(α) = H, α �= ξ}.
Observe that w̃∗n(ξ, H) does not coincide with w∗n(ξ, H) defined in Chapter 3,
which is equal to the minimum of the w̃∗n(ξ, h) for h varying between 1 and
H . We then set

w̃∗(ξ, H) = lim sup
n→∞

log log(1/w̃∗n(ξ, H))

log n
.

The function H �→ w̃∗(ξ, H) describes how well ξ can be approximated by
algebraic numbers of height H .

The method used to prove Theorem 8.1 allowed Amou [28] to obtain a
similar statement for the functions H �→ w̃∗(ξ, H).

THEOREM 8.5. Let (w̃∗H )H≥1 be a sequence of numbers in [0,+∞] satisfying

w̃∗H = 0 for H < H0, 1 ≤ w̃∗H ≤ +∞ for H ≥ H0,

for some positive integer H0. There exist real numbers ξ such that w̃∗(ξ, H) =
w̃∗H for any H ≥ 1.

We refer to [28] for a proof of Theorem 8.5. We point out that in the above
theorem the sequence (w̃∗H )H≥1 is not assumed to be non-decreasing, unlike
the sequence (w̃∗H )H≥1 in Theorem 8.1.

8.2 Another classification proposed by Mahler

In 1971, Mahler [393] introduced a new classification of complex numbers in
terms of their approximation properties by algebraic numbers. Unlike his first
classification and Sprindžuk’s one, he allowed degree and height to vary simul-
taneously. In this Section, we study this classification, and we report on various
results obtained by Mahler [393], Durand [216, 219], Nesterenko [436], and
Amoroso [21].

For an integer polynomial P(X) = an Xn + . . .+ a1 X + a0 of degree n, we
set L(P) := |a0| + . . .+ |an| its length and

�(P) := 2n L(P) = 2n (|a0| + . . .+ |an|) (8.8)

its size. We may replace the number 2 in (8.8) by any real number strictly
greater than 1 and L(P) by the naive height H(P) of P(X) without any no-
table change in the results below. Although the length is at present rarely used,
we choose to keep the original definition of Mahler. For a non-zero algebraic
number α, we define L(α) and �(α) as L(P) and �(P), respectively, where
P(X) denotes the minimal polynomial of α over Z. Setting �(0) = 2, we have
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�(α) ≥ 2 for any algebraic number α, and we point out that, for any positive
real number M , there exist only finitely many complex algebraic numbers α

with �(α) ≤ M .
The idea of Mahler was to associate to a given complex number ξ a non-

negative valued non-decreasing function u �→ O(u | ξ) of the integer variable
u, called the order function of ξ .

DEFINITION 8.2. Let ξ be a complex number. The order function u �→ O(u |
ξ) of ξ is defined for any integer u ≥ 2 by

O(u | ξ) = sup{− log |P(ξ)| : P(X) ∈ Z[X ], �(P) ≤ u, P(ξ) �= 0}.
Analogously, we define the order function u �→ O∗(u | ξ) by

O∗(u | ξ) = sup{− log |ξ − α| : α algebraic, �(α) ≤ u, α �= ξ}.
Both functions u �→ O(u | ξ) and u �→ O∗(u | ξ) are non-decreasing. We
check that u �→ O(u | ξ) vanishes identically if, and only if, ξ is an algebraic
integer in an imaginary quadratic field. Otherwise, O(u | ξ) is positive as soon
as u is sufficiently large.

Mahler [393] defined a partial ordering and an equivalence relation on the
set of positive valued non-decreasing functions. Let a and b be two such func-
tions of the integer variable u. If there exist two positive integers c and u0 and
a positive real number γ such that

a(uc) ≥ γ b(u) for u ≥ u0,

then we write a(u)� b(u) and b(u)
 a(u). The relation� defines a partial
ordering. If a(u)� b(u) and b(u)� a(u) hold simultaneously, then we write
a(u)  b(u), which defines the equivalence relation . With respect to this
relation, the order functions can be distributed into disjoint classes, and �
defines a partial ordering on these classes, which is not a total ordering. By
definition, two complex numbers ξ and η belong to the same class if, and only
if, their order functions u �→ O(u | ξ) and u �→ O(u | η) are in the same
class.

Mahler [393] (see Exercise 8.3) proved that two algebraically dependent
complex transcendental numbers belong to the same class, thus this classifica-
tion satisfies the second requirement stated in the Introduction of Chapter 3 (if
we adopt the convention that all algebraic numbers belong to the same class).

The next lemma is used in the proofs of Theorems 8.6, 8.9, and 8.11.

LEMMA 8.1. Let ξ be a complex number. Let n be an integer with n ≥ 2 and
H be a real number. There exist a positive constant c2, depending only on ξ ,
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and an absolute positive constant c3 such that, for any H ≥ c2, there is a
non-zero integer polynomial P(X) with

deg P ≤ n, H(P) ≤ H, and |P(ξ)| ≤ H−c3n .

Moreover, if n ≥ 50, suitable values for c2 and c3 are given by (4+ |ξ |)50 and
0.455, respectively.

PROOF. Assume H ≥ 30 and set H ′ = [
√

H ]2/2 if [
√

H ] is even, and
H ′ = ([

√
H ] − 1)2/2 otherwise. Put c4 = 1 + |ξ | + . . . + |ξ |n . The

(2H ′ + 1)n+1 points anξn + . . . + a1ξ + a0, where a0, . . . , an are integers
with −H ′ ≤ a0, . . . , an ≤ H ′, lie in the square centered at the origin and
of sidelength 2H ′c4. We divide this square into (2H ′)n+1 small squares of
sidelength 2 H ′ (2H ′)−(n+1)/2 c4. By Dirichlet’s Schubfachprinzip, two among
these (2H ′ + 1)n+1 points lie in the same small square, thus we get a non-zero
integer polynomial P(X) of degree at most n and height at most 2H ′ such
that

|P(ξ)| ≤ 21−n/2 H ′−(n−1)/2 c4,

and the desired estimate follows from H − 4
√

H ≤ 2H ′ ≤ H and n ≥ 2. The
last assertion is an easy computation and reproduces the numerical values ob-
tained in [356]. We observe that we may alternatively use Theorem B.2 instead
of Dirichlet’s Schubfachprinzip (see the proof of Proposition 3.1).

Theorem 8.6, the proof of which is left as Exercise 8.4, derives from
Lemma 8.1.

THEOREM 8.6. Let ξ be a complex number which is not an algebraic integer
in an imaginary quadratic field. Then O(u | ξ)  log u if ξ is algebraic,
otherwise we have O(u | ξ)� (log u)2.

We infer from Theorem 8.6 that all algebraic numbers which are not integers
in an imaginary quadratic field belong to the same class.

At the end of [393], Mahler addressed some (at that time) open problems,
including the following ones. Do there exist uncountably many distinct classes
of real numbers? Do there exist real transcendental numbers ξ and η such that
the functions O(u | ξ) and O(u | η) are not comparable? Given a positive
valued non-decreasing function a, establish necessary and sufficient condi-
tions for the existence of a real number ξ with O(u | ξ)  a(u). Does
there exist such a function a with O(u | ξ)  a(u) for almost all real
numbers ξ?

In the following text, we answer (at least partially) these questions and we
investigate the relationship between O(u | ξ) and O∗(u | ξ).
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PROPOSITION 8.1. For any transcendental complex number ξ and any real
number τ ≥ 2, we have O∗(u | ξ)
 O(u | ξ) and

lim sup
u→∞

O∗(u | ξ)

(log u)τ
= +∞ iff lim sup

u→∞
O(u | ξ)

(log u)τ
= +∞.

The proof of Proposition 8.1 is left as Exercise 8.5. As noticed by Mahler
[393], the works of Koksma [333] and Wirsing [598] suggest that the results for
O∗(u | ξ) should be ‘completely analogous to those for O(u | ξ)’. However,
this is surprisingly not the case: Corollary 8.4 below asserts that O∗(u | ξ) 
O(u | ξ) does not hold for all transcendental real numbers ξ .

DEFINITION 8.3. Let A−∞ denote the set composed of the rational integers
and the non-real quadratic integers. For any complex number ξ not in A−∞,
the transcendence type of ξ is

τ(ξ) = sup{τ ≥ 0 : O(u | ξ)� (log u)τ }.
Furthermore, for τ in [0,+∞], we set Aτ = {ξ ∈ C : τ(ξ) = τ }.
By Theorem 8.6, any complex transcendental number ξ satisfies τ(ξ) ≥ 2 and
A1 consists of all algebraic numbers which are not in A−∞. Further, we ob-
serve that the transcendence type of ξ is the infimum of the real numbers τ

such that log |P(ξ)| > −(log �(P))τ holds for any integer polynomial P(X)

of sufficiently large size (see Amoroso [21], Chudnovsky [164], and Wald-
schmidt [588]; there are some subtle differences between the definitions of
‘transcendence type’).

Theorems 8.7 and 8.8 are concerned with the sets Aτ . The first assertion of
Theorem 8.7 has been proved independently by Durand [216] and Nesterenko
[436], while the second assertion is due to Amoroso [21, 24].

THEOREM 8.7. The set A2 has full Lebesgue measure, that is, almost all com-
plex numbers (resp. real numbers) have transcendence type 2. Furthermore,
there exists a complex set Ec (resp. a real set Er ) of Hausdorff dimension zero
such that, for all complex (resp. real) numbers not in Ec (resp. not in Er ), we
have O(u | ξ)  (log u)2.

PROOF. Let ξ be a complex transcendental number. If O(u | ξ) 
 (log u)2,
we have O(u | ξ)  (log u)2 by Theorem 8.6. Otherwise, for any positive real
number κ , there exist infinitely many integer polynomials P(X) such that

log |P(ξ)| < −κ
(
log(�(P))

)2
< −κ

2
(deg P)

(
log(H(P) deg(P))

)
.

Thus, by Theorem 8.4, the set of complex (resp. real) transcendental numbers
ξ for which O(u | ξ) �
 (log u)2 has Hausdorff dimension zero, and the proof
of Theorem 8.7 is complete.
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THEOREM 8.8. Let q ≥ 2 and τ ≥ (3 + √5)/2 be real numbers. For any
positive integer k, set

bk =
[
qτ k ]

and σk =
k∑

j=1

2−b j .

The transcendence type of the Liouville number

ξ (q)
τ :=

∑
k≥1

2−bk = lim
k→+∞

σk

is exactly equal to τ . Furthermore, for any real number τ > 2, there are
uncountably many real numbers in Aτ .

PROOF. Write ξ instead of ξ
(q)
τ . Let k be a positive integer. The minimal poly-

nomial over Z of σk is 2bk X − 2bk σk , thus we have

bk/2 < log �(σk) < bk . (8.9)

Further, since the b j s are pairwise distinct, we get

2−bk+1 ≤ ξ − σk ≤ 21−bk+1 . (8.10)

Combining (8.9), (8.10), and the inequalities

bτ
k /2 < bk+1 < (2bk)

τ , (8.11)

we deduce that there exist absolute, positive constants c5 and c6 such that

exp
{−c5(log �(σk))

τ
} ≤ ξ − σk ≤ exp

{−c6(log �(σk))
τ
}
. (8.12)

Thus, we have τ(ξ) ≥ τ by Proposition 8.1.
We now deal with the reverse inequality. Let α be an algebraic number

with α �= σ j for any integer j ≥ 1. By Corollary A.2, we have |α − σk | ≥
exp{−2 log �(α) log �(σk)}, whence, by (8.9), we get

|α − σk | ≥ �(α)−2bk . (8.13)

By (8.10), (8.11), and the triangle inequality |ξ −α| ≥ |α− σk | − |ξ − σk |, we
infer from (8.13) that, under the assumption

bτ−1
k ≥ 9 log �(α), (8.14)

we have

|ξ − α| ≥ 1

2
�(α)−2bk . (8.15)
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Let � be the smallest positive integer k for which (8.14) is satisfied. If � > 1,
we have

bτ−1
�−1 < 9 log �(α) ≤ bτ−1

� .

Together with (8.11), this yields

b� ≤ 2τ 9τ/(τ−1)
(
log �(α)

)τ/(τ−1)
,

and it follows from (8.15) that there exists a positive constant c7, depending
only on τ and q , such that

|ξ − α| ≥ exp
{−c7(log �(α))1+τ/(τ−1)

}
. (8.16)

Taking c7 large enough, (8.16) also holds if � = 1. Since 1 + τ/(τ − 1) ≤
τ , it follows from (8.12) and (8.16) that there exists a positive constant c8,
depending only on τ and q , such that

|ξ − α| ≥ exp
{−c8(log �(α))τ

}
holds for any algebraic number α. Consequently, we have

lim sup
u→∞

O∗(u | ξ)

(log u)τ
< +∞,

hence, τ(ξ) ≤ τ by Proposition 8.1, and τ(ξ) = τ , by (8.12).
For the last assertion of the theorem, the reader is directed to Amoroso [21]

(notice that Amoroso used the size function max{log H(P), deg(P)} rather
than �(P)). For any given real number τ > 2, he constructed inductively (and
in an effective way) uncountably many real transcendental numbers ξ with pre-
scribed type τ as the limits of sequences of algebraic numbers with increasing
degrees.

The first assertion of Theorem 8.8, due to Durand [216], allowed him to answer
Problem 1 of Mahler [393], since any two functions u �→ (log u)t1 and u �→
(log u)t2 , where t1 and t2 are positive, distinct real numbers, belong to different
classes. Furthermore, as observed by Durand [219], the set A+∞ of complex
numbers of infinite type is uncountable, for it contains the Liouville numbers
given by the series

∑
j≥0 2−b j , where (b j ) j≥1 is any increasing sequence of

distinct integers with

lim sup
j→∞

log b j+1

log b j
= +∞.

This can be shown by a suitable modification of the beginning of the proof of
Theorem 8.8.
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COROLLARY 8.2. There are uncountably many distinct classes of real
numbers.

The construction given in Theorem 8.8 also implies the existence of real num-
bers whose order functions are not comparable.

COROLLARY 8.3. Let t ≥ 3 be an integer and, for any k ≥ 1, set

bk = 2tk
and dk = 4t2k

.

Then the Liouville numbers

ξ =
∑
k≥1

2−bk and η =
∑
k≥1

2−dk

do not satisfy either one of the following order relations: O(u | ξ)
 O(u | η),
O(u | η)
 O(u | ξ), O∗(u | ξ)
 O∗(u | η), O∗(u | η)
 O∗(u | ξ).

PROOF. By Theorem 8.8, we have τ(ξ) = t and τ(η) = t2, thus the relations
O(u | η)
 O(u | ξ) and O∗(u | η)
 O∗(u | ξ) cannot hold. The remaining
part of the proof is left as Exercise 8.6.

Theorems 8.9 and 8.10 are needed to show that the functions u �→ O(u | ξ)

and u �→ O∗(u | ξ) behave differently for some complex numbers ξ . They
have been announced by Durand [219] (up to the values of the numerical con-
stants in Theorem 8.9).

THEOREM 8.9. For any transcendental complex number ξ and for any real
number � with � ≥ (4+|ξ |)1000, there exists an algebraic number α satisfying
�(α) ≤ � and

log |ξ − α| ≤ − (log �)(log �(α))

5000
.

In particular, we have

lim sup
u→∞

O∗(u | ξ)

(log u)2
> 0.

We do not give a specific proof of Theorem 8.9 here, since it is an immediate
consequence of Corollary 8.5, established in Section 8.3.

THEOREM 8.10. Let ξ be a transcendental complex number. Let ν and τ be
positive real numbers with

lim inf
u→∞

O∗(u | ξ)

(log u)ν
> 0 (8.17)
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and

lim sup
u→∞

O(u | ξ)

(log u)τ
= +∞. (8.18)

We then have ν(τ − 1) < τ .

PROOF. Since ξ is transcendental, we may assume that τ ≥ 2. By Proposition
8.1, (8.18) is then equivalent to

lim sup
u→∞

O∗(u | ξ)

(log u)τ
= +∞.

Thus, there exists a sequence (αk)k≥1 of algebraic numbers with

10 ≤ 2�(αk) < �(αk+1) and log |ξ − αk | ≤ −3k
(
log �(αk)

)τ
,

for any k ≥ 1. Let k be a positive integer and α be a non-zero algebraic number
such that α �= αk and

k

2

(
log �(αk)

)τ−1 ≤ log �(α) ≤ k
(
log �(αk)

)τ−1 (8.19)

holds. By Corollary A.2, we have log |α−αk | ≥ −2 log �(α) log �(αk). Since
|ξ − α| ≥ |α − αk | − |ξ − αk |, we infer from (8.19) that

log |ξ − α| ≥ −5 k−1/(τ−1)
(
log �(α)

)τ/(τ−1)
. (8.20)

However, by (8.17), there exists an absolute positive constant c9 such that

log |ξ − α| ≤ −c9
(
log �(α)

)ν
,

which, combined with (8.20), implies that

c9
(
log �(α)

)ν ≤ 5 k−1/(τ−1)
(
log �(α)

)τ/(τ−1)
.

Since k can be taken arbitrarily large, we get ν(τ − 1) < τ , as claimed.

Theorem 8.6 immediately implies that

lim sup
u→∞

O(u | ξ)

(log u)2
≥ lim inf

u→∞
O(u | ξ)

(log u)2
> 0

holds for any transcendental complex number ξ . The analogous statement, with
the function O(u | ·) replaced by O∗(u | ·), is, however, not true.

COROLLARY 8.4. For any complex transcendental number ξ , we have

lim inf
u→∞

O∗(u | ξ)

(log u)2
> 0 iff lim sup

u→∞
O(u | ξ)

(log u)2
< +∞

iff lim sup
u→∞

O∗(u | ξ)

(log u)2
< +∞.
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Thus, any complex transcendental number ξ of type strictly greater than 2
satisfies O∗(u | ξ) � O(u | ξ). Furthermore, apart from a set of Hausdorff
dimension zero, any complex number ξ satisfies

O∗(u | ξ)  O(u | ξ)  (log u)2.

PROOF. Let ξ be a complex transcendental number. By Theorem 8.6, the sec-
ond and the third inequalities of the corollary are equivalent. Furthermore, it
follows directly from Theorem 8.10 that (8.18) does not hold with τ = 2 if
(8.17) holds for ν = 2. Hence, it only remains for us to prove that the second
inequality of the corollary implies the first one. Assume that there exists a pos-
itive constant c10 such that log |ξ − α| ≥ −c10 (log �(α))2 for any algebraic
number α. By Theorem 8.9, for any sufficiently large integer u, there exists an
algebraic number αu satisfying

�(αu) ≤ u and log |ξ − αu | ≤ −10−4 (log u)
(
log �(αu)

)
.

Consequently, we get log u ≤ 104 c10 log �(αu) and − log |ξ − αu | ≥
(108 c10)

−1 (log u)2. This yields O∗(u | ξ) ≥ (108 c10)
−1 (log u)2 for u large

enough, and completes the proof of the first assertion of the corollary.
As an immediate consequence, if the type of ξ strictly exceeds 2, we then

have

lim sup
u→∞

O(u | ξ)

(log u)2
= +∞ and lim inf

u→∞
O∗(u | ξ)

(log u)2
= 0.

This implies that O∗(u | ξ) �� (log u)2, and we deduce from Theorem 8.6
that O∗(u | ξ) � O(u | ξ) holds. Finally, the last assertion of the corollary
follows from Theorem 8.7.

Many interesting questions on the order functions u �→ O(u | ξ) and
u �→ O∗(u | ξ) have not been investigated up to now. For instance, we may
introduce, for any complex transcendental number ξ , the quantity

i(ξ) := inf

{
ν ≥ 0 : lim inf

u→∞
O∗(u | ξ)

(log u)ν
= 0

}
.

We infer from Corollary 8.4 that i(ξ) = 2 for almost all complex num-
bers ξ and from Theorem 8.10 that i(ξ) ≤ τ/(τ − 1) if τ(ξ) ≥ 2, hence,
i(ξ) = 1 if ξ has infinite type. However, it seems to be difficult to construct
explicit examples of complex numbers ξ with prescribed values for τ(ξ) and
i(ξ).
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8.3 Transcendence measures and measures of algebraic approximation

Let ξ be a given complex transcendental number. If, for any integer polyno-
mial P(X), we establish explicit (even up to the numerical constants) lower
bounds for |P(ξ)| in terms of the degree of P(X) and its height, we then get
immediately information on the classes to which ξ belongs in the different
classifications of numbers we have considered. This motivates the introduction
of the notion of transcendence measure.

DEFINITION 8.4. Let ξ be a complex transcendental number. A function � :
R≥1 × R≥1 → R>0 is a transcendence measure for ξ if, for any sufficiently
large integer n and any sufficiently large real number H, we have |P(ξ)| ≥
exp{−�(n, log H)}, for all non-zero integer polynomials P(X) of degree at
most n and height at most H.

For instance, a transcendence measure for π is (see Waldschmidt [589])

240 n (log H + n log n) (1+ log n),

which implies that π is either an S-number or a T -number, and that its tran-
scendence type is 2.

It follows from Definitions 8.2 and 8.4 that the transcendence type τ(ξ) of a
given complex number ξ is the infimum of the real numbers τ for which there
exists a positive constant c(ξ, τ ) such that c(ξ, τ ) (n + log H)τ is a transcen-
dence measure for ξ .

We may as well adopt Koksma’s point of view and introduce an analogue
of Definition 8.4. It becomes in that context more convenient to use Mahler’s
measure (defined in Appendix A) instead of the naive height, although this is
not followed by all authors.

DEFINITION 8.5. Let ξ be a complex transcendental number. A function
� : R≥1 × R≥1 → R>0 is a measure of algebraic approximation for ξ if
there exists a positive constant κ with the following property: for any positive
integer n and any real number M with n ≥ κ and log M ≥ κ n, we have
|ξ − α| ≥ exp{−�(n, log M)} for all algebraic numbers α of degree at most
n and Mahler’s measure at most M.

For instance, a measure of algebraic approximation for π is (see [589])

3 · 238 n (log M + n log n) (1+ log n).

From the knowledge of a measure of algebraic approximation for a complex
number ξ we immediately get information on its location in Koksma’s classi-
fication.
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Connection between transcendence measures and measures of algebraic ap-
proximation are discussed in [589] and in Chapter 15 of [591]. A useful tool
is Lemma A.7 [189]. Examples of transcendence measures and measures of
algebraic approximation can be found in [164], pp. 41–47, and in [244], pp.
163–178.

Up to the present Section, we have used a function of the naı̈ve height and
the degree in order to measure the size of an algebraic number. However, a
refined notion of height, called the absolute height, is also frequently used in
transcendental number theory. It has its own advantages and disadvantages and
yields, for various kinds of problems, very precise results. The absolute height
of an algebraic number α is denoted by h(α) and is defined as

h(α) = 1

deg(α)
log M(α),

where M(α) is the Mahler measure of α.
The remaining part of this Section is devoted to some results by Diaz [188],

Laurent and Roy [357], and Roy and Waldschmidt [483], in which both the de-
grees and the heights of the approximants are allowed to vary simultaneously.

The most interesting feature in Theorem 8.11, due to Diaz [188] (see also
Philippon [457]) and inspired by ideas of Laurent and Roy [356], is the as-
sumption M ≥ n+1, which advantageously replaces the condition log M � n
occurring in [356]. This is a direct consequence of the good dependence on the
degree n (essentially nn instead of 2n2

) in Lemma A.8.

THEOREM 8.11. Let ξ be a complex number. Let n be an integer and M a real
number with n ≥ 50, M ≥ n + 1, and M ≥ (4+ |ξ |)100. Then, there exists an
algebraic number α with

deg(α) ≤ n, M(α) ≤ M, and

|ξ − α| ≤ exp

{
− 6

1000
(n log M(α)+ deg(α) log M)

}
.

PROOF. We follow step by step the proof of Diaz [188]. By Lemma 8.1 ap-
plied with ξ , n, and H := M(n + 1)−1/2, there exists a non-zero integer poly-
nomial P(X) of degree at most n and height at most H satisfying |P(ξ)| ≤
exp{−0.455 n log H}. By Lemma A.3, we have M(P) ≤ (n+1)1/2 H(P) ≤ M
and

|P(ξ)| ≤ exp{−0.227 n log M}, (8.21)

since M ≥ n + 1. Write P(X) as a product P(X) = a P1(X) . . . Pk(X) of
irreducible integer polynomials, where a is a non-zero integer and Pj (X) has
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degree n j ≥ 1 for j = 1, . . . , k. By the additivity of the degrees and the
multiplicativity of the Mahler measure, we have

n log M = (n1 + . . .+ nk) log M and

n log M ≥ n(log M(P1)+ . . .+ log M(Pk)),

and (8.21) yields that∏
1≤ j≤k

|Pj (ξ)| ≤ |P(ξ)| ≤ exp

{
−0.113

∑
1≤ j≤k

(n j log M

+ n log M(Pj ))

}
.

Consequently, there exists an index j with 1 ≤ j ≤ k such that

|Pj (ξ)| ≤ exp
{−0.113 (n j log M + n log M(Pj ))

}
. (8.22)

Let α be a root of Pj (X) such that |ξ − α| is minimal. For any positive integer
�, Lemma A.8 and (8.22) yield that

|ξ − α|�(�+1)/2 ≤ exp
{−0.113 � (n j log M + n log M(Pj ))

+ �n j log 2+ n j log
(
n1/2

j M(Pj )
)}

.

Since n j ≤ n ≤ M and M(Pj ) ≤ M , we get

|ξ − α|�(�+1)/2 ≤ exp
{−(0.113�− 0.5)n j log M

+ (−0.113�+ 1)n log M(Pj )+ �n j log 2
}
.

We take � = 18 and bound log 2 by (log M)/200 in order to obtain

|ξ − α|171 ≤ exp
{−1.034

(
deg(α) log M + n log M(α)

)}
,

since deg(α) = n j and M(α) = M(Pj ). This proves the theorem.

COROLLARY 8.5. Let ξ be a complex number. Let n be an integer and � be
a real number with n ≥ 50 and � ≥ 215n(4 + |ξ |)100. Then there exists an
algebraic number α satisfying

deg(α) ≤ n, �(α) ≤ �, and

|ξ − α| ≤ exp

{
− 3

1000
(n log �(α)+ deg(α) log �)

}
.

PROOF. Set M := 2−3n �. We infer from Theorem 8.10 that there exists an
algebraic number α with deg(α) ≤ n, M(α) ≤ M , and

|ξ − α| ≤ exp

{
− 6

1000
(n log M(α)+ deg(α) log M)

}
. (8.23)
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Lemma A.2 implies that �(α) ≤ 23 deg(α) M(α), hence, we get

n log M(α)+ deg(α) log M ≥ n log �(α)+ deg(α) log �− 5n deg(α)

≥ (
n log �(α)+ deg(α) log �

)
/2, (8.24)

by the assumption log � ≥ 10n. The corollary follows from (8.23) and (8.24),
since �(α) ≤ 23n M ≤ �.

Theorem 8.9 follows from Corollary 8.5 applied with n and � satisfying
� ≥ (4 + |ξ |)1000 and n = [(log �)/14]. Actually, Durand [221], pp. 95–96,
asserted a stronger result than Theorem 8.9: namely that, for any transcenden-
tal complex number ξ and any positive real number ε, there exist infinitely
many algebraic numbers α such that

|ξ − α| ≤ exp

{
− (log �(α))2

48 log 2+ ε

}
.

Conversely, he claimed that, for almost all transcendental complex numbers ξ

and any positive real number ε, there exist only finitely many algebraic num-
bers α such that

|ξ − α| ≤ exp

{
− (log �(α))2

8 log 2− ε

}
.

Theorem 8.12 below, due (up to the numerical constants) to Laurent and Roy
[357], provides a more general statement than Corollary 8.5.

THEOREM 8.12. Let ξ be a transcendental complex number. Let (nk)k≥0 be a
non-decreasing sequence of positive integers and let (tk)k≥0 be an unbounded
non-decreasing sequence of positive real numbers. Assume that, for any k ≥ 0,
we have

nk ≥ 50, tk ≥ 2nk, nk+1 ≤ 2nk, tk+1 ≤ 2tk .

Then, there exist infinitely many integers k ≥ 0 with the following property:
for each of these k, there exists an algebraic number α satisfying

nk

4000
≤ deg(α) ≤ nk, log M(α) ≤ tk, and log |ξ − α| ≤ − nktk

22000
.

The proof of Theorem 8.12 requires many steps, which are displayed in Ex-
ercise 8.7. An interesting feature of Theorem 8.12 is the lower bound for the
degree of the approximants.

Corollary 8.6 should be compared with Theorem 3.4, which however pro-
vides no lower bound for the degrees of the algebraic approximants. Although
superseded by Theorem 3.12 (which depends on a statement not proved in the
present book), we quote it.



184 Other classifications of real and complex numbers

COROLLARY 8.6. Let ξ be a transcendental complex number. For any integer
n ≥ 50, there exist infinitely many algebraic numbers α with

n

4000
≤ deg(α) ≤ n and |ξ − α| ≤ M(α)−n/22000.

PROOF. Set nk = n and tk = k for each integer k ≥ 2n. Since ξ is transcen-
dental, the set of algebraic numbers given by Theorem 8.12 applied with these
two sequences is necessarily infinite.

Up to the numerical constants, Corollary 8.7 is due to Roy and Waldschmidt
[483] (see also Corollaire 2 from [357]).

COROLLARY 8.7. Let ξ be a transcendental complex number and κ ≥ 8000
be a real number. There exist infinitely many algebraic numbers α with

h(α) ≤ κ and log |ξ − α| ≤ −10−8κ deg(α)2.

PROOF. Set nk = k and tk = κk/4000 for any k ≥ 1. Since κ ≥ 8000, we
have tk ≥ 2nk for any k ≥ 1. Applying Theorem 8.12, we get for infinitely
many positive integers k an algebraic number αk with

h(αk) = log M(αk)

deg(αk)
≤ tk

nk/4000
= κ

and

log |ξ − αk | ≤ − nktk
22000

= − κk2

88× 106
≤ −10−8κ deg(αk)

2.

Infinitely many of the αks are distinct since ξ is trancendental.

Theorem 8.12 asserts the existence of infinitely many integers k with a given
property, but it gives no information regarding the distribution of these integers.
In fact, U -numbers show that we cannot hope for a much more precise result
than Theorem 8.12 (Brownawell [118], Bugeaud [123], and Laurent [353]),
although a refined statement holds for almost all complex numbers [123].

8.4 Exercises

EXERCISE 8.1. Use Theorems A.1 and B.2 to prove that the Ã-numbers are
exactly the algebraic numbers. Use estimate (3.3) of Chapter 3 to show that
two algebraically dependent complex numbers belong to the same class in
Sprindžuk’s classification.

EXERCISE 8.2. Let κ > 5 be a real number and denote by E(κ) the set of real
numbers ξ for which the equation |P(ξ)| < exp{−κ n log(nH)} has infinitely
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many solutions in integer polynomials P(X) of degree at most n and height at
most H . Prove that the Hausdorff dimension of E(κ) is less than or equal to
5/(κ − 3) and establish Theorem 8.4.

EXERCISE 8.3. Prove that the order functions of two algebraically dependent
transcendental complex numbers are equivalent.

EXERCISE 8.4. Use Theorem A.1, Dirichlet’s Schubfachprinzip, and Lemma
8.1 to prove Theorem 8.6.

EXERCISE 8.5. Use Lemmas A.6 and A.8 to prove Proposition 8.1.

EXERCISE 8.6. Completion of the proof of Corollary 8.3.
We keep the notation of Corollary 8.3. For any integer k ≥ 1, set ξk =∑k
j=1 2−b j and uk = �(ξ2k). Show that there exists a positive constant c11,

depending only on t , such that O∗(uk | ξ) ≥ c11 b2k+1. Let r be a positive
integer and let α be an algebraic number with �(α) ≤ ur

k . Argue as in the

proof of Theorem 8.8 to show that O∗(ur
k | η) ≤ c12 b(1+t2/(t2−1))/t

2k+1 holds for
a constant c12, depending only on t and r , and for k large enough. Prove that
O∗(u | ξ) 
 O∗(u | η) does not hold and make the suitable adaptations to
establish that O(u | ξ)
 O(u | η) does not hold either.

EXERCISE 8.7. Proof of Theorem 8.12. Let ξ be a transcendental complex

number. Proceed as in the beginning of the proof of Theorem 8.11 to show that
for any sufficiently large integer k there exists a non-zero integer polynomial
Pk(X) such that

deg(Pk) ≤ nk, log M(Pk) ≤ tk/2, and log |Pk(ξ)| ≤ −nktk/10.

Then, prove that (at least) one of the following two statements holds.

(i) There exists a factor Qk(X) of Pk(X) in Z[X ] which is a power of an
irreducible, integer polynomial and satisfies

deg(Qk) ≤ nk, log M(Qk) ≤ tk/2, and log |Qk(ξ)| ≤ −nktk/15;
(ii) There exist two factors Fk(X) and Gk(X) of Pk(X) in Z[X ] which are

coprime and satisfy

deg(Fk)+ deg(Gk) ≤ nk, log M(Fk)+ log M(Gk) ≤ tk/2

and

log max{|Fk(ξ)|, |Gk(ξ)|} ≤ −nktk/30.
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We further need a first auxiliary result (Lemme 3.4 and Proposition 3.5 from
[483]).

Let ξ be a complex number and r be a positive real number. Let F(X) =
am

∏m
i=1 (X − αi ) and G(X) = bn

∏n
j=1 (X − β j ) be non-constant complex

polynomials of degree m and n, respectively. Let f (resp. g) denote the number
of roots of F(X) (resp. of G(X)) in the closed disc of radius r centered at ξ

and set

ρ := min{|ξ − γ | : γ root of FG(X)}.
We then have

ρ f g|Res(F, G)| ≤ 2mn M(F)n−g M(G)m− f |F(ξ)|g|G(ξ)| f . (8.25)

If furthermore |am | ≥ 1 and |bn| ≥ 1 hold, then, for any non-negative integer
s, we have

min{1, ρ}s2/4|Res(F, G)| ≤ 2mn M(F)n M(G)m max{|F(ξ)|, |G(ξ)|}s .
(8.26)

Hint. For inequality (8.25), set pi := |ξ − αi | and q j := |ξ − β j |,
in such a way that we have p1 ≤ . . . ≤ pm and q1 ≤ . . . ≤
qn . Bound

∏
1≤i≤ f,g< j≤n |αi − β j | from above in terms of the q j s and∏

f <i≤m,1≤ j≤g |αi − β j | from above in terms of the pi s. Further, show that
we have

(2ρ) f g
∏

1≤i≤ f
1≤ j≤g

|αi − β j | ≤
( ∏

1≤i≤ f

2pi

)g ( ∏
1≤ j≤g

2q j

) f

,

and ∏
f <i≤m
g< j≤n

|αi − β j | ≤ 2(m− f )(n−g)

×
( ∏

f <i≤m

max{1, |αi |}
)n−g ( ∏

g< j≤n

max{1, |β j |}
)m− f

.

Prove (8.25) by combining the above inequalities.
If s ≤ m + n and all the |ξ − γ | are distinct, where γ runs over the roots of

FG(X ), then observe that a suitable choice of r yields (8.26). Use a continuity
argument to treat the case when all the |ξ − γ | are not distinct. Finally, deal
with the case s > m + n.
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The second auxiliary result, asserted below, follows from (8.26) with a suitable
choice of s.

Let n be an integer and t be a real number with t ≥ n ≥ 1. Let ξ be a real
number. Assume that there exist coprime integer polynomials F(X) and G(X)

such that

deg(F) ≤ n, log M(F) ≤ t and log |F(ξ)| ≤ −nt/62,

deg(G) ≤ n, log M(G) ≤ t and log |G(ξ)| ≤ −nt/62.

Then, there exists an algebraic number α such that

(FG)(α) = 0 and log |ξ − α| ≤ −nt/11000.

The third auxiliary result, asserted below, is a consequence of the second one.
Let n be an integer and t be a real number with t ≥ n ≥ 7 and tn ≥ 650.

Let ξ be a real number. Assume that there exist coprime integer polynomials
F(X) and G(X) such that

deg(F) ≤ n, log M(F) ≤ t, and log |F(ξ)| ≤ −nt/30

deg(G) ≤ n, log M(G) ≤ t, and log |G(ξ)| ≤ −nt/30.

Then, there exists a root α of the polynomial FG(F + G)(X) which satisfies

n/4000 ≤ deg(α) ≤ n, log M(α) ≤ 2t,

and log |ξ − α| ≤ −nt/11000.

Hint. The second auxiliary result applied to the pair of polynomials (F, G)

yields an algebraic approximant α1 of ξ . Without any loss of generality, we
may assume that F(ξ) = 0. Use Lemma A.3 to check that log M(F+G) ≤ 2t
and apply the second auxiliary result with 2t in place of t to the pair of polyno-
mials (G, F+G). We then get another algebraic approximant α2 of ξ . Observe
that α1 and α2 are distinct. Show that any non-zero algebraic number α satis-
fies log |α| ≥ − deg(α)h(α). Set δ := max{deg(α1), deg(α2)} and derive that
log |α1−α2| ≥ −3.7δt . Give an upper bound for log |α1−α2| using the triangle
inequality and conclude.

Finish the proof of Theorem 8.12.
Hint. You may proceed as follows. If condition (i i) is satified for in-

finitely many integers k, conclude by applying the third auxiliary result with
n = nk and t = tk/2 to the polynomials Fk(X) and Gk(X). If condition (i)
is satisfied for any k sufficiently large, then observe that there are infinitely
many integers k such that the polynomials Qk−1(X) and Qk(X) are coprime.
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Conclude by applying the third auxiliary result with n = nk and t = tk/2 to
these polynomials.

8.5 Notes

• Clearly, we may define other classifications of transcendental complex num-
bers as well, by simultaneously varying the upper bounds for the degree and
height of the approximants, denoted by n and H , respectively. For many rea-
sons, it turns out to be convenient to regard n and log H as equivalent. Another
example of size has been proposed by Mahler [395], where, for an integer poly-
nomial P(X) = an Xn + . . .+ a1 X + a0, the quantity �(P) is replaced by the
product (2+ |a0|) . . . (2+ |an|).
• Philippon [456] investigated classifications of complex numbers by using

non-standard analysis. He defined the equivalence relation ∼ on the field of
complex numbers by saying that α ∼ β if, and only if, α is algebraic over the
field Q(β) and β is algebraic over the field Q(α). The quotient set C/∼ is the
set of algebraically closed subfields of C of transcendence degree≤ 1; the spe-
cial point in this set is the class of algebraic numbers. Using Diophantine ap-
proximation properties of complex numbers, Philippon defined a non-standard
local distance called ‘dam’ (acronym of ‘distance d’approximation mutuelle’,
that is, mutual approximation distance translated into French) on C/∼ which
endows this space with a non-discrete Hausdorff topology. He recovered the
classification defined by Mahler [393] in 1971 by considering the dam to the
special point.

• Chudnovsky ([164], Theorem 2.8, page 45) proved that eπ is a S̃-number
of -̃order 1. Other examples of S̃-numbers of -̃order 1 have been given by
Amou [26].

• Nesterenko [436] and Durand [217] introduced a multidimensional gen-
eralization of the classification defined by Mahler in [393]. They defined a
function �(u | ξ1, . . . , ξn) extending to Cn the order function O(u | ξ). Du-
rand showed some properties of � which appropriately generalize those of
O(u | ξ). A conjecture of Chudnovsky ([163], Problem 1.3, page 178) has
been confirmed by Amoroso [24]. As for the real case, the metric statement
of Nesterenko [436], Theorem 2, gives a weaker result than expected and the
conjecture proposed on page 237 of [436] is still open.

• Gelfond’s criterion ([257], Chapter III, Section 4, Lemma VII) asserts
that the existence of a, in some sense, gap-free infinite sequence of non-zero
integer polynomials taking small values at a given complex number ξ implies
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that ξ is algebraic. It has been subsequently refined by Brownawell [118] and
Waldschmidt [587] (see also Chapitre 5 of [588]). A Gelfond–type criterion
with multiplicities has been established by Laurent and Roy [356]. Theorem
2b of Davenport and Schmidt [182] (see also [32]) and Theorem 4.2 of Roy
and Waldschmidt [484] are further variants of Gelfond’s criterion.

• Proposition 3.1 and Theorem 3.1 yield a necessary and sufficient condi-
tion for a real number ξ to be transcendental. Mahler [394, 396] obtained a
simplified criterion, depending only on the approximation behaviour of a sin-
gle sequence of integer polynomials of arbitrary degrees. Mahler’s result can
be compared to transcendence criteria of Durand [215, 218].

• Cijsouw [166], Waldschmidt [589], Chudnovsky [164], Diaz [187],
Nesterenko and Waldschmidt [437], and others obtained transcendence mea-
sures for some families of numbers, including log α, eβ and αβ , for non-zero
algebraic numbers α, β with log α �= 0 and β irrational. Galočkin [254], Miller
[424], Becker-Landeck [58], Wass [595], Becker [56], Nishioka [438, 439],
Nishioka and Töpfer [440], Töpfer [569, 570], and others established tran-
scendence measures for values of Mahler functions at algebraic points. Lang
[348], Brownawell [119], and others (for further references and results, see,
for example, Shidlovskii [522] and Section 5.2 of Chapter 5 of [244]) obtained
transcendence measures for values of E-functions at algebraic points.

• Let n and t be two real numbers with t ≥ n ≥ 1 and set

Q(n, t) := {α ∈ Q : [Q(α) : Q] ≤ n, log M(α) ≤ t}.
The distribution of the sets Q(n, t) in the complex plane has been studied by
Waldschmidt [590], who defined specific sets of pairs (n, t). His results are
in some respect not entirely satisfactory and Bugeaud [123] was led to con-
sider subsets of R (or C) rather than sets of pairs (n, t). For any κ > 0, he
introduced

Fκ :=
⋂

κ ′<κ

⋃
n0≥1

⋃
h0≥1

⋂
n≥n0

⋂
t≥h0n⋃

α∈Q(n,t)∩R
]α − e−κ ′nt , α + e−κ ′nt [

and

F ′κ :=
⋂

κ ′>κ

⋃
n0≥1

⋃
h0≥1

⋂
n≥n0

⋂
t≥h0n⋂

α∈Q(n,t)∩R
]α − e−κ ′nt , α + e−κ ′nt [c.

Further, for a real number ξ , he defined

κ0(ξ) := max{κ > 0 : ξ ∈ Fκ} and κ ′0(ξ) := min{κ > 0 : ξ ∈ F ′κ},
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with the convention that κ0(ξ) = 0 (resp. κ ′0(ξ) = +∞) if ξ belongs to none of
the sets Fκ (resp. F ′κ ). The relationship between Waldschmidt’s and Bugeaud’s
definitions are explained in [123]. It is proved in [123] that there exist two
real numbers κ and κ ′ with 1/850 ≤ κ ≤ κ ′ ≤ 1, such that almost all real
numbers ξ satisfy κ0(ξ) = κ and κ ′0(ξ) = κ ′. This statement expresses that the
quality of the algebraic approximation is the same for almost all real numbers.
Presumably, we have κ = κ ′ = 1.

• Laurent [353] studied the location of the algebraic approximants of the
Liouville number

∑
j≥1 2− j!. Simultaneous algebraic approximation of Liou-

ville numbers has been considered by Roy [478].

• Results in a similar spirit as Theorem 8.12, but without a lower bound
for the degree of the approximants have been obtained by Laurent and Roy
[356] (see also [358] for deep generalizations to, for example, approximation
by hypersurfaces) and Laurent [352] (see his Theorem 4 for a weaker condition
between tk and nk).
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Approximation in other fields

In Chapters 1 to 7, we have exclusively considered approximation of real num-
bers. However, Mahler [376] and Koksma [333] defined their classifications
for complex numbers as well, and Mahler [378] also introduced an analogous
classification for the transcendental numbers in the field Qp, the completion of
Q with respect to the prime number p. Furthermore, approximation in the field
of formal power series has also been investigated, for example, by Sprindžuk
[534, 539]. In the present Chapter, we consider each of these settings, and we
briefly describe the state of the art for the problems corresponding to those
studied in Chapters 1 to 7. Roughly speaking, it is believed (and it often turns
out to be true) that Diophantine approximation results in the real case have got
their complex and p-adic analogues, the proofs of which are a (more or less)
straightforward adaptation of those in the real case. This however does not hold
true anymore for Diophantine approximation in fields of power series. For in-
stance, the analogue of Roth’s Theorem 2.1 does not exist when the ground
field has positive characteristic, see, for example, the surveys by Lasjaunias
[351] and by Schmidt [515] for additional information.

9.1 Approximation in the field of complex numbers

Let ξ be a complex non-real number and let n be a positive integer. Following
Mahler [376] and Koksma [333], we define the quantities wn(ξ) and w∗n(ξ),
and the classes A, S, T , U , A∗, S∗, T ∗, and U∗, exactly as in Chapter 3.
Notice (see, for example, (16) of [598]) that we have w1(ξ) = w∗1(ξ) = 0,
w2(ξ) = w∗2(ξ), and w3(ξ) = w∗3(ξ). Both classifications turn out to be equiv-
alent, see, for example, Schneider [517]. Using Dirichlet’s Schubfachprinzip it
is easy to show that wn(ξ) ≥ (n−1)/2 holds for any complex non-real number
ξ which is not algebraic of degree at most n. Further, by a suitable modifica-
tion of the proof of Theorem A.1 (see the Notes at the end of Appendix A),

191
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we have wn(ξ) ≤ (d−2)/2 if ξ is algebraic of degree d , regardless of the pos-
itive integer n. This implies that wn(ξ) = (n−1)/2 holds true for any complex
non-real algebraic number ξ of degree n+ 1. Moreover, proceeding exactly as
in the proof of Proposition 3.2, we get wn(ξ) ≥ w∗n(ξ) for any complex num-
ber ξ and any positive integer n. Wirsing [598] proved the complex analogue of
Theorem 3.4.

THEOREM 9.1. Let n ≥ 2 be an integer and ξ be a complex non-real number
which is not algebraic of degree at most n. Then, we have

w∗n(ξ) ≥ wn(ξ)− n − 1

2
,

w∗n(ξ) ≥ wn(ξ)

2
, (9.1)

w∗n(ξ) ≥ wn(ξ)

2wn(ξ)− n + 2
, (9.2)

and

w∗n(ξ) ≥ n

4
. (9.3)

Inequality (9.3) is a consequence of (9.1), (9.2), and wn(ξ) ≥ (n− 1)/2. It has
been slightly improved by Tishchenko [562].

It follows from (9.2) that w∗n(ξ) = (n − 1)/2 holds as soon as we have
wn(ξ) = (n − 1)/2. Combined with the observation above Theorem 9.1, this
implies that w∗n(ξ) = (n − 1)/2 holds for any complex non-real algebraic
number ξ of degree n + 1. A partial result concerning the approximation of
complex non-real algebraic numbers follows from Schmidt’s Subspace The-
orem. Namely, Evertse [233] showed that, for a complex non-real algebraic
number ξ of degree d and a positive integer n, we have wn(ξ) = w∗n(ξ) =
min{(n − 1)/2, (d − 2)/2} either if [Q(ξ) : Q(ξ) ∩ R] ≥ �(n + 3)/2� or
if [Q(ξ) ∩ R : Q] ≤ [(n + 1)/2]. It is likely that this assumption could be
removed.

At the end of [377], Mahler conjectured that almost all complex numbers
ξ satisfy wn(ξ) ≤ n/2 for all positive integers n. The fact that the equality
wn(ξ) = (n − 1)/2 should hold almost everywhere has been conjectured by
Kasch [310] and established for n = 2 in [310]. Shortly thereafter, Volkmann
[581] confirmed Kasch’s conjecture for n = 3. Using his powerful method of
essential and inessential domains, Sprindžuk [538, 539] established the com-
plex analogues of Theorems 4.1 and 4.2.

THEOREM 9.2. Almost all complex numbers ξ satisfy wn(ξ)=w∗n(ξ)=
(n − 1)/2 for every positive integer n.
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The complex analogue of Theorem 4.3 is due to A. Baker [41]. Bernik and
Vasiliev [96] proved the complex analogue of Theorem 4.4 and deduced from
their result that complex algebraic numbers of bounded degree form a regular
system with parameters of regularity slightly better than in [94]. Kleinbock
[328] established the complex analogue of Theorem 4.6.

Bernik and Sakovich [94] used regular systems of complex algebraic num-
bers to establish the complex analogue of Theorem 5.3. They obtained partial
results towards the complex analogue of Theorem 5.7 (see also R. C. Baker
[48] and Sakovich [492]).

R. C. Baker [47] proved the existence of complex non-real numbers ξ for
which wn(ξ) and w∗n(ξ) differ from pre-assigned values for every even integer
n ≥ 4, by constructing T -numbers with this property. Bugeaud [133] showed
that, for any given integer n ≥ 4, there exist complex non-real numbers ξ for
which wn(ξ) differs from w∗n(ξ).

9.2 Approximation in the field of Gaussian integers

The most natural complex extension of approximation to real numbers by ra-
tional integers is approximation to complex numbers by ratios of Gaussian
integers. This has been considered by Hermite and Hurwitz in the nineteenth
century (see [332], Chapter IV, Section 4). Unlike in the real case, a continued
fraction approach did not give the analogue of Hurwitz’ Theorem 1.18. This
was established by Ford [247], who used additional geometrical ideas based
on the Picard group SL (2, Z). Theorem 4.5 of Dodson and Kristensen [205]
provides an analogue of Theorem 1.1, but is presumably not best possible. The
problem of generalizing the theory of continued fractions to the complex field
has been studied by A. L. Schmidt [499].

LeVeque [360] established the analogue in Z[i] of Khintchine’s Theorem
1.10. Another proof (yielding a slightly sharper result) has been given by Sul-
livan [547]. For extensions to other imaginary quadratic fields, see [547] and
Nakada [434].

Melián and Pestana [416] proved that balls in C of radius 1/|w|2 and cen-
tered at z/w, where z, w are Gaussian integers with w �= 0 form a ‘well-
distributed system’, a notion close to that of regular system. They obtained
Theorem 5.2 and its analogue in imaginary quadratic fields. Diophantine ap-
proximation in hyperbolic space has been investigated by many authors, see
[205] and Section 7.7 of Bernik and Dodson [86] for references. A full proof
of the analogue in Z[i] of Theorem 5.2 (as well as other results, including the
existence of badly approximable complex numbers), independent of the hyper-
bolic space framework, has been given by Dodson and Kristensen [205].
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9.3 Approximation in the p-adic fields

In this Section, p denotes a given prime number. Every non-zero rational num-
ber a can be expressed uniquely under the form a = pma′, where m is an
integer and a′ is a rational number whose numerator and denominator are
prime to p. By definition, the p-adic valuation vp(a) is equal to m and we
set vp(0) = +∞. It defines a p-adic metric | · |p on Q, which we normalize
by setting |p|p = p−1. Since vp(a + b) ≥ min{vp(a), vp(b)} for any rational
numbers a and b, the metric | · |p is ultrametric. The completion of Q with
respect to | · |p is the p-adic field Qp of p-adic numbers. Each element ξ in
Qp has a unique representation

ξ =
∞∑

r=m

cr pr ,

where m and the coefficients cr are integers with cm non-zero and 0 ≤ cr ≤
p − 1 for any r ≥ m. We then have |ξ |p = p−m . In order to simplify the
notation, we write in this Section | · | instead of | · |p for the p-adic absolute
value. Furthermore, we denote by Qp a fixed algebraic closure of Qp and we
recall that | · | extends uniquely to Qp. For more information and results on
p-adic fields, see, for example, the books of Amice [20], Mahler [398], Robert
[473], and Schickhof [494].

In analogy with his classification of complex numbers, Mahler [378] pro-
posed a classification of p-adic numbers. Let ξ be an element of Qp. For given
n ≥ 1 and H ≥ 1, define the quantity

wn(ξ, H) := min{|P(ξ)| : P(X) ∈ Z[X ], H(P) ≤ H, deg(P) ≤ n, P(ξ) �= 0}

and set

wn(ξ) = lim sup
H→∞

− log(Hwn(ξ, H))

log H
and w(ξ) = lim sup

n→∞
wn(ξ)

n
. (9.4)

In analogy with Koksma’s classification of complex numbers, we define the
quantity

w∗n(ξ, H) := min{|ξ − α| : α algebraic in Qp, deg(α) ≤ n,

H(α) ≤ H, α �= ξ}, (9.5)

where H(α) (resp. deg(α)) denotes the height (resp. the degree) of the p-adic
number α, that is, by definition, the height (resp. the degree) of its minimal
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polynomial over Z. Then, we set

w∗n(ξ) = lim sup
H→∞

− log(Hw∗n(ξ, H))

log H
and w∗(ξ) = lim sup

n→∞
w∗n(ξ)

n
. (9.6)

In other words, wn(ξ) (resp. w∗n(ξ)) is the upper limit of the real numbers w

for which there exist infinitely many integer polynomials P(X) (resp. algebraic
numbers α in Qp) of degree at most n satisfying

0 < |P(ξ)| ≤ H(P)−w−1 (resp. 0 < |ξ − α| ≤ H(α)−w−1 ).

Exactly as in Chapter 3, we call ξ an A-, S-, T - or U -number and an A∗-, S∗-,
T ∗- or U∗-number according to the behaviour of the sequences (wn(ξ))n≥1

and (w∗n(ξ))n≥1, respectively. As in the real and complex cases, both classifi-
cations turn out to be equivalent.

Mahler [378] proved that two algebraically dependent elements ξ and η in
Qp belong to the same class. Furthermore, if there is an integer polynomial
F(X, Y ) of degree M in X and degree N in Y such that F(ξ, η) = 0, then, for
any integer n ≥ 1, we have

wn(ξ)+ 1 ≤ M(wnN (η)+ 1) and wn(η)+ 1 ≤ N (wnM (ξ)+ 1).

Actually, the definitions of the quantities wn(ξ) and w∗n(ξ) given here
differ from those used by Mahler [378], Sprindžuk [539], and Schlickewei
[496]. Indeed, for these authors, the numerator of the first fraction in (9.4)
is − log wn(ξ, H) instead of − log(Hwn(ξ, H)) (the same applies to (9.6)).
This means that there is a shift by 1 in the value of the critical exponent, which
however does not imply any change regarding the class of a given p-adic num-
ber. We have adopted this choice in order to have, as will be stated below,
wn(ξ) = w∗n(ξ) = n for almost all p-adic numbers ξ , with respect to the Haar
measure on Qp (see, for example, [539] or [86] for definition).

The shift by 1 is however not the only difference between our definition of
w∗n(ξ) and the previous definitions. Indeed, in the previous literature, w∗n(ξ)

is defined as in (9.6), with however w∗n(ξ, H) replaced by the minimum of
|ξ − α| over all numbers α �= ξ which are zero of an integer polynomial of
degree at most n and height at most H . The point is that not every such α is in
Qp. However, as can be seen by using the p-adic analogue of Rolle’s Theorem,
both definitions coincide (compare with the discussion before Lemma 3.1). To
prove this claim, let n ≥ 1 be an integer, H > 1 be a real number and ξ

be a p-adic number not algebraic of degree at most n. Let α1 be an algebraic
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number in Qp of height at most H and degree n1 at most n, such that

|ξ − α1| = min{|ξ − α| : α algebraic in Qp, deg(α) ≤ n, H(α) ≤ H, α �= ξ}.

We may assume that α1 is not in Qp, otherwise there is nothing to prove.

Denote by α
(1)
1 := α1, α

(2)
1 , . . . , α

(n1)
1 the conjugates of α1 numbered in such

a way that

|ξ − α1| ≤ |ξ − α
(2)
1 | ≤ . . . ≤ |ξ − α

(n1)
1 |.

If |ξ − α1| < |ξ − α
(2)
1 |, then Krasner’s Lemma (see, for example, [473],

page 130) implies that α1 lies in Qp, that we have excluded. Consequently,

the minimal polynomial P1(X) of α1 over Z has two roots α1 and α
(2)
1 with

|ξ − α1| = |ξ − α
(2)
1 |. Let � be the largest integer such that

|p−�ξ − p−�α1| = |p−�ξ − p−�α
(2)
1 | < p−1/(p−1).

The polynomial P1(p� X + ξ) has then two roots in the open disc of radius
p−1/(p−1). By the p-adic version of Rolle’s Theorem (see, for example, [473],
page 316), we deduce that the polynomial P ′1(p� X + ξ) has a root in the open
unit disc. Thus, the integer polynomial P ′1(X) has a root α2 with H(α2) ≤
2n1 H(P ′1) ≤ 2nnH and

|ξ − α2| < p−� ≤ p2 |ξ − α1|,

by our choice of �. We do not know whether α2 is a p-adic number, but, if this is
not the case, we iterate this process as soon as we end up with an approximant
lying in Qp. This always happen since the degrees of the algebraic numbers
we construct from a strictly decreasing sequence. Consequently, there exists a
p-adic number α with

H(α) ≤ 2n2
nn H and |ξ − α| ≤ p2n |ξ − α1|.

By the same argument used to conclude the proof of Lemma 3.1, this shows
that the value of w∗n(ξ) does not increase if the minimum in (9.5) is taken over
all algebraic numbers in Qp of degree at most n and height at most H . This
proves our claim.

Proposition 9.1, due to Mahler [378], provides the p-adic analogue of
Proposition 3.1.

PROPOSITION 9.1. Let n ≥ 1 be an integer and let ξ be a p-adic number
which is not algebraic of degree at most n. Then, we have wn(ξ) ≥ n and, if ξ

is transcendental, w(ξ) ≥ 1.
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Proceeding exactly as in the proof of Proposition 3.2, we also get wn(ξ) ≥
w∗n(ξ) for any p-adic number ξ and any positive integer n. Conversely, we
have the following analogue of Theorem 3.4.

THEOREM 9.3. Let n ≥ 1 be an integer and ξ be a p-adic number which is
not algebraic of degree at most n. Then, we have

w∗n(ξ) ≥ wn(ξ)− n + 1, (9.7)

w∗n(ξ) ≥ wn(ξ)+ 1

2
, (9.8)

w∗n(ξ) ≥ n

wn(ξ)− n + 1
(9.9)

and

w∗n(ξ) ≥ n

4
+
√

n2 + 8n

4
. (9.10)

Theorem 9.3 slightly improves Theorem 1 of Morrison [432], who got (9.7)
and w∗n(ξ) ≥ min{n − 1, (wn(ξ) + 1)/2} instead of (9.8). Throughout this
paragraph, the numerical constants implied by 
 depend only on ξ and on n.
Morrison’s proof follows exactly the same lines as that of (3.12) of Theorem
3.4, and splits into several cases. In one case, using the notation of the bottom
of page 342 of [432], he obtained that there exist infinitely many primitive,
integer polynomials P(X) = at Xt + . . . + a1 X + a0 = at (X − α1) . . . (X −
αt ) of degree t at most n such that |P(ξ)| 
 H(P)−n−1, where the roots
of P(X) are numbered in such a way that |ξ − α1| ≤ |ξ − α2| ≤ . . . ≤
|ξ − αt | and |ξ − α1| < 1, |ξ − α2| > 1. According to [432], this implies that
wn(ξ) ≥ n − 1, but this yields actually the sharper estimate wn(ξ) ≥ n, as
we show now. Without loss of generality, we may assume that |ξ | = 1. Hence,
we get |α1| = 1 and |ξ − α j | = |α j | > 1 for j = 2, . . . , t . Consequently,
|ξ−1 − α−1| = |ξ − α| and |ξ−1 − α−1

j | = 1 holds for j = 2, . . . , t . Setting

Q(X) := Xt P(1/X), we have |Q(ξ−1)| = |a0(ξ
−1−α−1

1 ) . . . (ξ−1−α−1
t )| 


H(P)−n−1, thus |a0(ξ − α)| 
 H(P)−n−1. Furthermore, relations between
coefficients and roots of Q(X) yield that vp(a j ) ≥ vp(a0) for j = 0, . . . ,

t − 1. Since P(X) is primitive, we get |a0| = 1, hence |ξ − α| 
 H(P)−n−1,
as expected. Consequently, we obtain w∗n(ξ) ≥ min{n, (wn(ξ)+1)/2}, which,
combined with (9.7), gives (9.8).

Estimate (9.9) is due to Bugeaud and Teulié [548], page 62, and rests essen-
tially on [550], where Teulié carried the approach of Davenport and Schmidt
[182] to the field of p-adic numbers. Combined with (9.8) and Proposition 9.1,
this gives (9.10). Tishchenko [566] obtained a slight refinement of (9.10).
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The definitive result on the approximation of p-adic algebraic numbers by
p-adic algebraic numbers of bounded degree is a consequence of (9.9) and the
p-adic version of Schmidt’s Subspace Theorem, due to Schlickewei [495].

THEOREM 9.4. Let ξ be an algebraic p-adic number of degree d and let n ≥ 1
be an integer. Then we have

wn(ξ) = w∗n(ξ) = min{n, d − 1}.
Teulié [551] improved an earlier result of Morrison [432] by showing that
w∗2(ξ) ≥ 2 holds for every p-adic number ξ not algebraic of degree at most 2,
thus establishing the p-adic analogue of Theorem 3.7 (this has been previously
claimed by Guntermann, page 347 of [263]).

Metric results over the p-adic fields are discussed in [539] and in Chapter 6
of [86]. The Haar measure replaces the Lebesgue measure, while the Hausdorff
dimension is defined exactly as the Hausdorff dimension on R.

THEOREM 9.5. Almost all p-adic numbers ξ satisfy wn(ξ) = w∗n(ξ) = n for
every positive integer n.

Theorem 9.5 follows from (9.9) and the p-adic analogue of Theorem 4.2 due to
Sprindžuk [539]. Previously, Turkstra [573] proved in his dissertation that al-
most all p-adic numbers are S-numbers. Further, partial results towards the
resolution of the p-adic version of Mahler’s conjecture were due to Lock
[371], Kasch and Volkmann [312, 313] (however, there is a gap in [313]), and
Sprindžuk [535].

The p-adic analogue of Theorem 5.2 has been established by Melničuk
[417] and that of Theorem 5.7 by Morotskaya [431].

THEOREM 9.6. For any integer n ≥ 1 and any real number τ ≥ 1, the Haus-
dorff dimension of any of the sets

{ξ ∈ Qp : wn(ξ) ≥ τ(n + 1)− 1}, {ξ ∈ Qp : w∗n(ξ) ≥ τ(n + 1)− 1},
{ξ ∈ Qp : wn(ξ) = τ(n + 1)− 1}, {ξ ∈ Qp : w∗n(ξ) = τ(n + 1)− 1}

is equal to 1/τ .

Theorem 9.6 is a restatement of Theorem 6.19 of [86]. Partial results were
obtained by Bernik and Morotskaya [91].

Beresnevich, Bernik and Kovalevskaya [69] proved that algebraic numbers
of bounded degree in Qp form an optimal regular system and they established
a complete p-adic analogue of Theorem 4.5 (see also Kovalevskaya [339, 340]
for the convergence case and the p-adic analogue of Theorem 4.4, and Beres-
nevich and Kovalevskaya [72] for the p-adic analogue of [62]). The p-adic
analogue of Theorem 4.6 is due to Kleinbock and Tomanov [331].
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Schlickewei [496] (see also [279]) proved that p-adic T -numbers exist by
adapting to the p-adic case the proof of Schmidt [507]. Alniaçik [14] tried to
carry the proof of Schmidt [508] to the p-adic case, but the definition of T -
numbers he used is not the correct one. Hernandez [279] adapted [128] to the
p-adic case and proved that, for any integer n ≥ 2, there exist p-adic numbers
ξ for which wn(ξ) differs from w∗n(ξ).

The existence of p-adic Um-numbers has been proved by Alniaçik [8, 13],
who carried some of LeVeque’s results [361] to the p-adic case. Zeren [610],
Oryan [445], Xin [602], and Yilmaz [606] have constructed p-adic Um-
numbers.

9.4 Approximation in fields of formal power series

Let k be a (finite or infinite) field of arbitrary characteristic and denote by k[x]
the ring of polynomials with coefficients in k and by k(x) the quotient field
of k[x]. We define a non-Archimedean absolute value | · | on k(x) by setting
|0| = 0 and

| f/g| := exp{degx ( f )− degx (g)}, for any non-zero
polynomials f , g in k[x],

where degx denotes the degree of a polynomial. The completion of k(x) for
this absolute value is the field of formal power series K with coefficients in k.
We denote by K̂ an algebraic closure of k(x) contained in the algebraic closure
of K.

Let n be a positive integer and ξ be in k. In analogy with Chapter 3, we
define wn(ξ) as the supremum of the real numbers w for which there exist
infinitely many polynomials P(X) in k[x][X ] of degree at most n satisfying

0 < |P(ξ)| ≤ H(P)−w,

and w∗n(ξ) as the supremum of the real numbers w for which there exist in-
finitely many algebraic numbers α in K̂ of degree at most n and height arbi-
trarily large satisfying

0 < |ξ − α| ≤ H(α)−w−1.

Here, the height of P(X) is the maximum of the absolute values of its coef-
ficients (these are elements of k[x]) and the height of α is the height of its
minimal polynomial over k[x]. We require the height of the approximants to
be arbitrarily large to avoid trivialities: when the field k is infinite, there are
infinitely many algebraic elements of bounded degree and bounded height in
K̂, unlike in the complex and p-adic cases.
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With the above defintions of wn(ξ) and w∗n(ξ), we define the classes A, S,
T , U , A∗, S∗, T ∗, and U∗ exactly as in Chapter 3. For k a finite field, this
classification has been introduced by Bundschuh [141].

Mahler [382] worked out an analogue in fields of formal power series to
Minkowski’s theory of geometry of numbers. It follows from the analogue of
Theorem B.2 that wn(ξ) ≥ n holds for any ξ in K which is not algebraic of
degree at most n (when k is finite, see Amou [30] for a best possible statement
obtained via Dirichlet’s Schubfachprinzip).

When ξ is algebraic of degree d and k has characteristic zero, Ratliff [469]
(see also Dubois [211]) proved that wn(ξ) = min{n, d−1}. This does not hold
any more when k is a finite field, as shown by de Mathan [412].

Guntermann [263] investigated the analogue of Theorem 3.4 in fields of
power series and proved Theorem 9.7 below.

THEOREM 9.7. Let n be a positive integer. For any ξ in K which is not al-
gebraic of degree at most n, we have w∗n(ξ) ≥ (n + 1)/2 and w∗2(ξ) ≥ 2 if
n = 2.

When k is a field of characteristic zero, Theorem 9.7 and the inequality
w∗n(ξ) ≥ wn(ξ)− n + 1 were previously obtained by Sprindžuk [534].

Sprindžuk [539] proved the analogue of Theorem 4.1 when k is a finite field.
Like in the p-adic case, the Haar measure replaces the Lebesgue measure (see
[539], Part II, Chapter I).

THEOREM 9.8. When k is a finite field, almost all ξ in K satisfy wn(ξ) = n
for every positive integer n.

At the end of [263], Guntermann stated without proof that one can deduce
from Theorem 9.8 that almost all ξ in K satisfy w∗n(ξ) = n for every integer
n ≥ 1. However, this presumably needs an estimate like w∗n(ξ) ≥ n/(wn(ξ)−
n+1), which does not seem to be in the literature; most likely, results of [382]
combined with the method of proof of Theorem 2.10 (see Exercise 3.3) should
yield such an estimate.

As noticed by Sprindžuk [534] (see also [539], page 150), taking for k the
field of complex numbers, we get a classification of analytic functions in terms
of their behaviour with respect to approximation by algebraic functions.

When k is a finite field, Kristensen [341] established the analogues of The-
orems 1.10 and 5.2, as well as multidimensional extensions.

Examples of U2-numbers for k arbitrary have been given by Burger and
Dubois [149] and Dubois [212]. Oryan [443] gave explicit constructions of
Um-numbers when k is a finite field.
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9.5 Notes

• As for multiplicative approximation, metric results in the complex domain
involving the function + introduced in Chapter 4 have been established by
Yu [608].

• Bernik and Morozova [92, 93] studied approximation of complex num-
bers by lacunary polynomials. They established [92] the exact value of the
Hausdorff dimension of the set of complex numbers at which the lacunary
polynomials of the form a3 Xm + a2 Xn + a1 X� + a0 approximate 0 with a
given error term.

•Generalizations of Dirichlet’s Theorem 1.1 and Khintchine’s Transference
Theorem B.5 to S-integer approximation in a number field have been worked
out by Burger [143].

• For simultaneous Diophantine approximation and improvements of
Dirichlet’s Theorem 1.1 in real quadratic fields, see Burger [146, 147].

• The analogues in Z[i] of Theorems 6.6 and 6.8 have been established in
[71].

• Hightower [280] proved the analogue of Theorem 3.7 for the approxi-
mation of complex numbers by algebraic numbers of degree at most 2 over a
given imaginary quadratic field.

• Markovich [407] proved the case n = 2 of Theorem 4.2 for polynomials
with coefficients in a given real number field.

• A. L. Schmidt [498] studied the approximation of quaternions.

• Teulié [552] established the p-adic analogue of a result of Peck [450].

• Abercrombie [1] established the existence of badly approximable p-adic
integers and thus provided a p-adic analogue of Jarnı́k’s results [289]. He used
an approximation scheme of Mahler [381], which is a substitute for the con-
tinued fraction algorithm. His work can be viewed as the p-adic analogue of
Schmidt’s paper [503].

• Abercrombie [2] generalized the case n = 1 of Theorem 9.6 to systems
of linear forms and established the p-adic analogue of a result of Bovey and
Dodson [116]. This has been further extended by Dickinson, Dodson, and Yuan
[194].

• Diophantine approximation by conjugate algebraic integers in p-adic
fields has been studied by Roy and Waldschmidt [484].
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• Jarnı́k [297] proved a p-adic generalization of Khintchine’s Theorem
1.10. It has been extended to systems of linear forms by Lutz [373].

• A p-adic inhomogeneous analogue of Theorem 4.2 has been established
by Bernik, Dickinson, and Yuan [85]. For n = 1 (that is, for rational inhomo-
geneous approximation), the result is due to Lutz [373].

• Zheludevich [614] proved Sprindžuk’s Conjecture H3 [541] on simulta-
neous approximation in the real, complex, and p-adic fields. This generalizes
an earlier result of Bernik [76] (see Notes to Chapter 4) and allowed him to ex-
tend [612, 613, 615] Theorem 4.2 to simultaneous approximation by algebraic
numbers. See the survey of Bernik [80] for further references. Zheludevich’s
results have been extended by Kleinbock and Tomanov [331], in particular to
multiplicative approximation. See also Kalosha [308].

• The p-adic analogues of Theorems 6.6 and 6.8 have been established by
Beresnevich, Dickinson, and Velani [71].

• Jarnı́k [296] established a p-adic transference theorem.

• Slesoraı̆tene [526] worked out an analogue of Sprindžuk’s theorem 4.2
for polynomials of degree two in two p-adic variables. For arbitrary degrees, a
weaker result is due to Yanchenko [605].

• Menken [418] studied semi-strong p-adic U -numbers. He proved the p-
adic analogue of Erdös’ result [227], that is, that any p-adic number is the sum
of two p-adic Liouville numbers.

• Väänänen [574] established transcendence measures for the values of the
p-adic exponential function at algebraic points. Xu [603] proved that the values
of p-adic E-functions at algebraic points are S-numbers and he established a
trancendence measure. Molchanov [426] showed that values at some p-adic
algebraic points of Mahler functions satisfying certain functional equations
are p-adic S-numbers.

• Diophantine approximation over the ring of adeles has been studied by
D. G. Cantor [151], who established an analogue of Khintchine’s Theorem
1.10.

• Zong [617] worked out analogues of Mahler’s results [401] in p-adic
fields and in fields of formal power series.

• Zero–infinity laws for Diophantine approximation over p-adic fields and
fields of formal power series over a finite field have been obtained by Bugeaud,
Dodson, and Kristensen [135].
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• Sprindžuk [539], page 160, claimed (and this has been later established
by Kleinbock [328]) that Theorem 4.3 holds in the complex case, with the
exponent n replaced by (n−1)/2. According to him, ‘probably a similar result
is true for locally compact fields with a non-Archimedean valuation’.

• Burger [144] investigated decompositions of elements from an arbitrary
local field into Liouville numbers.

• An analogue of Khintchine’s Theorem 1.10 for formal power series over
a finite field has been established by de Mathan [410] (see also Fuchs [252],
Kristensen [341], and Inoue and Nakada [285]).

• Bundschuh [141] established transcendence measures for classical ele-
ments of fields of formal power series over a finite field. His method has been
applied by Özdemir [448, 449], who showed that some explicitly given ele-
ments of K are not U -numbers.

• Amou [30] established a formal power series analogue of Theorem 8.3
when k is a finite field.

• When k is finite, Becker [57] established transcendence measures for the
values of generalized Mahler functions and gave the first explicit examples of
S-numbers.

• Badly approximable linear forms over a field of formal series have been
considered by Kristensen [342], who provided the analogue of Schmidt’s gen-
eralization [505] of Jarnı́k’s result [288].
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Conjectures and open questions

We begin this Chapter with a short survey on the celebrated Littlewood Con-
jecture. We then gather open problems encountered in the preceding Chapters
with several new questions.

The reader interested in open questions in Diophantine approximation is
also directed to survey papers by Schmidt [513], Waldschmidt [592], Beres-
nevich and Bernik [65], and to the Appendix of Montgomery’s book [427].

10.1 The Littlewood Conjecture

A famous open problem in Diophantine approximation is Littlewood’s Con-
jecture which claims that, for any given pair (ξ, η) of real numbers and for any
positive real number ε, there exist integers q, r , and s with q > 0 such that

q · |qξ − r | · |qη − s| ≤ ε.

Denoting by ‖ · ‖ the distance to the nearest integer, this statement is equiva-
lent to

inf
q≥1

q · ‖qξ‖ · ‖qη‖ = 0. (10.1)

Obviously, the conjecture holds true if ξ or η have unbounded partial quotients
in their continued fraction expansions. This is also the case if the numbers
1, ξ , and η are linearly dependent over the rational integers, by Dirichlet’s
Theorem 1.1.

Apart from these easy remarks, very little is known towards a proof or a
disproof of Littlewood’s Conjecture. The first important contribution is due to
Cassels and Swinnerton-Dyer [158] who showed that (10.1) holds when 1, ξ ,
and η belong to the same cubic field. To this end, they applied Minkowski’s
Theorem B.2 to get a dual formulation of the conjecture (actually, they only
used and proved the ‘if’ part of Lemma 10.1).

204
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LEMMA 10.1. Let ξ and η be real numbers such that 1, ξ , and η are linearly
independent over the rational integers. Then

inf
q≥1

q · ‖qξ‖ · ‖qη‖ = 0

holds if, and only if, we have

inf
{|x + ξ y + ηz| ·max{|y|, 1} ·max{|z|, 1} : x, y, z ∈ Z,

(y, z) �= (0, 0)
} = 0.

An open problem is to decide whether Littlewood’s Conjecture holds for pairs
(ξ, 1/ξ), when the real number ξ has bounded partial quotients. It follows
from Lemma 10.1 that the answer is positive if ξ is not badly approximable by
quadratic numbers, that is, when we have

inf{|x + ξ y + ξ2z| ·max{|x |, |y|, |z|}2 : x, y, z ∈ Z,

(x, y, z) �= (0, 0, 0)} = 0. (10.2)

However, the existence of transcendental real numbers not satisfying (10.2)
is still unproved, while it follows from Theorem A.1 that real cubic numbers
do not verify (10.2). Thus, Cassels and Swinnerton-Dyer [158] provide exam-
ples of real numbers ξ such that Littlewood’s Conjecture is true for the pair
(ξ, 1/ξ), although (10.2) does not hold. Since it remains unknown whether or
not cubic real numbers have bounded partial quotients, their result does not
yield examples of pairs of badly approximable real numbers for which Lit-
tlewood’s Conjecture holds. However, Pollington and Velani [460] confirmed
that such pairs do exist.

THEOREM 10.1. Let ξ be a real number with bounded partial quotients. Then
the Hausdorff dimension of the set of real numbers η with bounded partial
quotients such that the pair (ξ, η) satisfies the Littlewood Conjecture is equal
to 1.

Chowla and DeLeon [162] observed that (
√

2,
√

3) satisfies the Littlewood
Conjecture provided 0 is a limit point of the sequence ((

√
6/4)(

√
2+ 1)n)n≥1

modulo 1. The first explicit non-trivial examples of pairs of real numbers (ξ, η)

such that (10.1) holds have been given by de Mathan [413].
De Mathan and Teulié [414] have proposed a very interesting ‘mixed Little-

wood Conjecture’, claiming that, for any real number ξ and any prime number
p, we have

inf
q≥1

q · ‖qξ‖ · |q|p = 0. (10.3)



206 Conjectures and open questions

They proved that (10.3) holds (actually, their result is much more general)
when ξ is a quadratic irrationality, which can be viewed as the p-adic analogue
of the above quoted result from [158].

10.2 Open questions

This Section is devoted to open problems. Instead of formulating them in terms
of questions, we merely prefer to propose statements whose validity is open.
In most of the cases there is no evidence for, or against, the assertion claimed.
We do not recall the partial results obtained towards these problems, since they
can be easily found in the present book.

We begin by assertions on Mahler’s and Koksma’s classifications of num-
bers, we continue with metric number theory, and we end up with rational
approximation and questions related to polynomials.

Problem 1 has been pointed out at the end of Section 3.4 of Chapter 3.
No argument can reasonably be put forward against it, although there is no
evidence in favour of it.

PROBLEM 1. (Main Problem) Let (wn)n≥1 and (w∗n)n≥1 be two non-
decreasing sequences in [1,+∞] such that

n ≤ w∗n ≤ wn ≤ w∗n + n − 1, for any n ≥ 1.

Then there exists a real transcendental number ξ such that

wn(ξ) = wn and w∗n(ξ) = w∗n for any n ≥ 1.

The first conjecture, due to Wirsing [598], deals with the approximation of real
transcendental numbers by real algebraic numbers of bounded degree.

PROBLEM 2. (Wirsing’s Conjecture) For any integer n ≥ 1 and for any real
transcendental number ξ , we have w∗n(ξ) ≥ n.

We propose a slightly weaker problem than Wirsing’s Conjecture.

PROBLEM 3. The ∗-type of any S∗-number is at least equal to 1, that is, we
have

lim sup
n→∞

w∗n(ξ)+ 1

n + 1
≥ 1

for any S∗-number ξ .

As we discussed in Chapter 3, there are several possibilities to define the type
of an S-number, but two of them may coincide.
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PROBLEM 4. There exist real S-numbers ξ with

lim sup
n→∞

wn(ξ)+ 1

n + 1
< sup

n≥1

wn(ξ)+ 1

n + 1

and/or lim sup
n→∞

w∗n(ξ)+ 1

n + 1
< sup

n≥1

w∗n(ξ)+ 1

n + 1
.

Corollary 3.2 asserts that w∗n(ξ) = n holds if wn(ξ) = n, but the converse is
an open question.

PROBLEM 5. For any positive integer n, we have wn(ξ) = n if w∗n(ξ) = n.

Corollary 3.2 also suggests the following claim.

PROBLEM 6. Any S-number of type 1 is an S∗-number of ∗-type 1.

It is known (see Chapter 7) that there exist real numbers ξ with wn(ξ) �= w∗n(ξ)

for every integer n ≥ 2, but it is not known if there exist S-numbers with this
property.

PROBLEM 7. There exist real numbers ξ such that w(ξ) �= w∗(ξ).

The existence of T -numbers has been proved by Schmidt (see Chapter 7).
However, it is at present not known whether or not there exist T -numbers with
some specific properties.

PROBLEM 8. There exist T -numbers ξ such that

lim
n→+∞

wn(ξ)

n
�= +∞.

PROBLEM 9. Let τ be a real number with 1 ≤ τ < 3. There exist real T -
numbers of type τ .

PROBLEM 10. Give an effective proof of the existence of T -numbers.

Let ξ be a transcendental real number and let n, k be positive integers with
k ≥ 2. At the end of Section 3.2 (resp. in Exercise 3.6), we established a rela-
tion between wn(ξ) and wn(ξ k) (resp. between w∗n(ξ) and w∗n(ξ k)). A natural
question (answered when n = 1 in Exercise 3.7) asks whether or not it is
possible to refine these estimates.

PROBLEM 11. For any positive integers n, k, and any non-negative real num-
ber δ, there exist real transcendental numbers ξ such that

k
(
wn(ξ k)+ 1

) = wn(ξ)+ 1+ δ
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and

k
(
w∗n(ξ k)+ 1

) = w∗n(ξ)+ 1+ δ.

A similar question concerns the relations between wkn(ξ) and wn(ξ k).

PROBLEM 12. For any positive integers n, k and any non-negative real num-
ber δ, there exist real transcendental numbers ξ such that

wkn(ξ) = wn(ξ k)+ δ

and

w∗kn(ξ) = w∗n(ξ k)+ δ.

Problems 11 and 12 invite us to ask whether all integer powers of an S-number
have same type.

PROBLEM 13. For any S-number ξ and any non-zero integer k we have
t (ξ) = t (ξ k) and t∗(ξ) = t∗(ξ k).

The formulation of Problem 14, closely related to Problem 4, is rather vague.
There is no known result in this direction, and Theorem 7.7 suggests that Prob-
lem 14 could be very difficult.

PROBLEM 14. Let ξ be a transcendental real number and let n, m be positive
integers with n > m. Give a lower estimate of wn(ξ) (resp. w∗n(ξ)) in terms of
n, m, and wm(ξ) (resp. w∗m(ξ)).

In Section 3.6, we introduced the functions w′n , ŵn , ŵ′n , and ŵ∗n . Problem 15
is motivated by Theorem 3.9 establishing a link between wn and simultaneous
rational approximation.

PROBLEM 15. Let n ≥ 2 be an integer and let w′n ≤ n and wn ≥ n be two
real numbers satisfying

n

wn − n + 1
≤ w′n ≤

(n − 1)wn + n

wn
.

There exist real numbers ξ such that wn(ξ) = wn and w′n(ξ) = w′n .

Jarnı́k’s results [293, 295] on Khintchine’s Transference Theorem B.5 allows
us to think that the answer of Problem 15 could be affirmative.

PROBLEM 16. For any integer n ≥ 2, find relations between the six functions
wn, w∗n , w′n, ŵn, ŵ∗n , and ŵ′n . Find the sets of values taken by each of these
functions and the sets of their limit points.
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PROBLEM 17. For any integer n ≥ 3 and any real transcendental number ξ ,
we have ŵn(ξ) = ŵ′n(ξ) = n.

By Proposition 3.3 and the proof of Theorem 2.11, a positive answer to Prob-
lem 17 implies a positive answer to Problem 18.

PROBLEM 18. For any integer n ≥ 4, any positive real number ε, and any
real transcendental number ξ , there exist a constant c1(ξ, n, ε) and infinitely
many real algebraic integers α of degree less than or equal to n such that

|ξ − α| ≤ c1(ξ, n, ε) H(α)−n+ε.

The assumption n ≥ 3 in Problem 17 (resp. n ≥ 4 in Problem 18) is
needed because of Roy’s results [480, 481] asserting the existence of real
transcendental numbers ξ with ŵ′2(ξ) = (1 + √5)/2 and such that |ξ −
α| ≥ c2H(α)−(3+√5)/2 holds for any algebraic integer α of degree at most
three, for a suitable positive constant c2 depending only on ξ . In view of
this result, it may be doubtful that the answers of Problems 17 and 18 are
affirmative.

Recall that an algebraic unit is an algebraic integer whose minimal poly-
nomial over Z has constant coefficient equal to 1. Approximation by algebraic
units has been investigated by Teulié [549].

PROBLEM 19. For any integer n ≥ 3, any positive real number ε and any real
transcendental number ξ , there exist a constant c3(ξ, n, ε) and infinitely many
real algebraic units α of degree less than or equal to n such that

|ξ − α| ≤ c3(ξ, n, ε) H(α)−n+1+ε.

It is known that the conclusions of Problems 17, 18, and 19 hold true for almost
all real numbers ξ .

Théorème 6 of [140] and Theorem 2 of [125] give links between approx-
imation by algebraic integers of degree at most n and algebraic numbers of
degree at most n − 1.

PROBLEM 20. For any integer n with n ≥ 3, compare the quality of approx-
imation by algebraic numbers of degree at most n − 1 with the quality of ap-
proximation by algebraic integers of degree at most n, and with the quality of
approximation by algebraic units of degree at most n + 1.

We now state more precise questions on the approximation by algebraic num-
bers. For a given positive integer n and a given real number ξ , we observe that
the quantities wn(ξ) and w∗n(ξ) have been defined as the infima of two sets,
hence, they provide no information on the following problems:
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(P.1) Do there exist a positive constant c(ξ, n) and infinitely many integer poly-
nomials P(X) of degree at most n such that

|P(ξ)| ≤ c(ξ, n) H(P)−wn(ξ)?

(P.2) Do there exist a positive constant c∗(ξ, n) and infinitely many algebraic
numbers α of degree at most n such that

|ξ − α| ≤ c∗(ξ, n) H(α)−w∗n (ξ)−1?

After having determined the exact value of wn(ξ) and that of w∗n(ξ), it is natu-
ral to ask whether (P.1) and (P.2) have an affirmative answer. This corresponds
to the notion of ‘eigentlicher Index’ introduced by Koksma [333]. In order to
take into account these two problems, we introduce some new notation.

DEFINITION 10.1. Let n be a positive integer and ξ be a real number. Let w

be a positive real number. We write wn(ξ)
.= w if wn(ξ) = w holds and the

answer to (P.1) is positive. Likewise, we write w∗n(ξ)
.= w if w∗n(ξ) = w holds

and the answer to (P.2) is positive.

For instance, it follows from Theorem 4.5 that almost all real numbers ξ satisfy
wn(ξ)

.= n and w∗n(ξ)
.= n for any positive integer n. We propose a refinement

of Problem 1.

PROBLEM 21. Let (wn)n≥1 and (w∗n)n≥1 be two non-decreasing sequences in
[1,+∞] such that

n ≤ w∗n ≤ wn ≤ w∗n + n − 1, for any n ≥ 1.

Then there exists a real transcendental number ξ such that

wn(ξ)
.= wn and w∗n(ξ)

.= w∗n .

Some of the results of Chapter 7 show, or can be adapted to show, that the
answer to Problem 21 is positive for certain pairs (n, w).

Schmidt [512], p. 258, proposed a slightly stronger conjecture than Wirs-
ing’s; however, he expressed in Summer 2003 serious doubts on the validity of
his conjecture.

PROBLEM 22. (Schmidt’s Conjecture) For any positive integer n and any real
transcendental number ξ , there exist a constant c4(ξ, n) and infinitely many
real algebraic numbers α of degree less than or equal to n such that

|ξ − α| ≤ c4(ξ, n) H(α)−n−1.
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Using Definition 10.1, Schmidt’s Conjecture can be rephrased as follows: For
any integer n ≥ 1 and any real transcendental number ξ , we have either
w∗n(ξ) > n or w∗n(ξ)

.= n.
Davenport and Schmidt [180] gave a positive answer to Problem 22 in the

case n = 2, but Problem 23, where we fix the exact degree of the approximants
instead of an upper bound for it, remains unsolved, even for n = 2.

PROBLEM 23. For any integer n ≥ 2 and any real transcendental number ξ ,
there exist a constant c5(ξ, n) and infinitely many real algebraic numbers α of
degree n such that

|ξ − α| ≤ c5(ξ, n) H(α)−n−1.

Results from Roy [480, 481] would speak in favour of the existence of tran-
scendental numbers which do not satisfy the conclusion of Problem 23, even
for n = 2.

The next problem deals with transcendental numbers badly approximable
by algebraic numbers.

PROBLEM 24. Let n be a positive integer. There exist a real transcendental
number ξ and positive constants c6(ξ, n) and c7(ξ, n) such that

|ξ − α| ≥ c6(ξ, n) H(α)−n−1 for any real algebraic number α

of degree ≤ n

and

|ξ − α| ≤ c7(ξ, n) H(α)−n−1 for infinitely many real
algebraic numbers α of degree ≤ n.

Theorem 1.9 answers positively Problem 24 for n = 1, however, there is no
contribution for n ≥ 2. Furthermore, Theorem 2.9 asserts that for any integer
d ≥ 2, real algebraic numbers of degree d are badly approximable by real
algebraic numbers of degree at most d − 1.

Problem 24 can be formulated in terms of polynomials, as well.

PROBLEM 25. Let n be a positive integer. There exist a real transcendental
number ξ and a positive constant c8(ξ, n) such that

|P(ξ)| ≥ c8(ξ, n) H(P)−n for any integer
polynomial P(X) of degree ≤ n. (10.4)
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Khintchine [318] proved that the set of real numbers ξ for which (10.4) holds
for some positive integer n and some positive constant c8(ξ, n) has Lebesgue
measure zero.

Very little is known regarding transcendental numbers which are badly ap-
proximable by algebraic numbers of bounded degree.

PROBLEM 26. Let n ≥ 2 be an integer. There exist transcendental real num-
bers ξ such that, for some positive constant c9(ξ, n), we have

|ξ − α| ≥ c9(ξ, n) H(α)−n−1 (
log 3H(α)

)−1
,

for any non-zero real algebraic number α of degree at most n.

Of course, if Problem 26 could be solved affirmatively, it then would be desir-
able to determine the Hausdorff dimension of such exceptional sets. Problem
26 can be formulated in terms of polynomials, as well.

The next problem extends a question posed by Beresnevich, Dickinson, and
Velani [70] in the case of (simultaneous) rational approximation.

PROBLEM 27. Let n be a positive integer and let τ > 1 be real. Is the set of
real numbers ξ for which there exists a positive constant c10(ξ) such that

|ξ − α| ≤ H(α)−τ(n+1) for infinitely many α in An

and

|ξ − α| ≥ c10(ξ) H(α)−τ(n+1) for every α in An

non-empty? If yes, determine its Hausdorff dimension.

Problem 27 has been solved by Bugeaud [129] when n = 1. One may also
replace the approximation functions x �→ x−τ(n+1) by more general non-
increasing functions �.

Problem 28 is likely to be difficult, especially for n ≥ 3.

PROBLEM 28. For any integer n ≥ 2 and any real number τ > 1, determine
the Hausdorff measure at the critical exponent 1/τ of the set Kn(τ ).

Problems 29 and 30 deal with the exponents of approximation introduced in
Section 3.6.

PROBLEM 29. Let n ≥ 2 be an integer. Let w′n be a real number with 1 ≤
w′n < n. Determine the Hausdorff dimension of the set of real numbers ξ such
that w′n(ξ) = w′n .

PROBLEM 30. Determine the Hausdorff dimension of the set of real numbers
ξ such that ŵ2(ξ) > 2 (resp. ŵ∗2(ξ) > 2).

There are very few results concerning the existence of real numbers with pre-
scribed order of approximation by algebraic numbers of different degrees.
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PROBLEM 31. Let n and n′ be positive distinct integers. Let τ ≥ 1 and τ ′ ≥ 1
be real numbers. Then the set W∗

n (τ )∩W∗
n′(τ

′) is non-empty, and its Hausdorff
dimension is equal to min{1/τ, 1/τ ′}.

PROBLEM 32. Let n ≥ 2 be an integer and τ ≥ 1 be a real number. The sets
Wn(τ ) and W∗

n (τ ) contain badly approximable real numbers.

The existence of normal (resp. non-normal) numbers with specific approxima-
tion properties by rational numbers has been investigated by several authors
(see Notes in Chapters 1 and 5).

PROBLEM 33. Let n be a positive integer and τ > 1 be a real number. The
sets Wn(τ ) and W∗

n (τ ) contain normal numbers and numbers which are simply
normal in no base.

PROBLEM 34. There exist normal T -numbers and T -numbers which are sim-
ply normal in no base.

The next two problems concern Diophantine approximation on sets of
Lebesgue measure zero. They were posed by Mahler [394, 399, 400].

PROBLEM 35. There exist very well approximable numbers, other than Liou-
ville numbers, in the triadic Cantor set.

PROBLEM 36. Every point in the triadic Cantor set is either rational or tran-
scendental.

It is known that the triadic Cantor set contains badly approximable real num-
bers (see, for example, Theorem 10.3 of [329]).

We propose three problems on multiplicative approximation. With the func-
tions w+n introduced in Section 5.7, we set

w+(ξ) = lim sup
n→+∞

w+n (ξ),

and we say that ξ is an

A+-number, if w+(ξ) = 0;
S+-number, if 0 < w+(ξ) < +∞;

T+-number, if w+(ξ) = +∞ and w+n (ξ) < +∞ for any n ≥ 1;
U+-number, if w+(ξ)=+∞ and w+n (ξ)=+∞ from some n onwards.

PROBLEM 37. What can be said about the sets of A+-, S+-, T+-, and U+-
numbers?

Problem 37 requires presumably new methods and seems to be very difficult.
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PROBLEM 38. Let n ≥ 1 be an integer and � : R≥1 → R>0 be a non-
increasing continuous function such that∑

h≥1

(log h)n−1 �(h) = +∞.

Then, for almost all real numbers ξ , the equation

|P(ξ)| < �
(
+(P)

)
(10.5)

has infinitely many solutions in integer polynomials P(X) of degree at most n.

Theorem 4.7 asserts that if the above sum converges, then (10.5) has only a
finite number of solutions in integer polynomials P(X) of degree at most n.

PROBLEM 39. Let ε be a positive real number and let n be a positive integer.
Then the Hausdorff dimension of the set K+n (τ ) of real numbers ξ such that the
inequality

|P(ξ)| < +(P)−2τ+1

has infinitely many solutions in integer polynomials P(X) of degree at most n
is equal to 1/τ .

This is Theorem 5.2 for n = 1 and has been proved for n = 2 (see Exercise 5.6).
We recall a celebrated problem on rational approximation of algebraic num-

bers, which is perhaps due to Khintchine (see [521], p. 156).

PROBLEM 40. Any real algebraic number ξ of degree at least 3 has un-
bounded partial quotients in its continued fraction expansion, that is, for
any positive real number ε, there exists a rational number p/q such that
|ξ − p/q| < ε/q2.

As observed in the Notes in Chapter 2, known upper bounds for the partial
quotients of real algebraic numbers of degree at least 3 are presumably much
larger than the truth.

PROBLEM 41. Let ξ be an algebraic number of degree at least 3. Give sharp
upper bounds for its partial quotients.

We mentioned in Section 1.4 the Duffin–Schaeffer Conjecture.

PROBLEM 42. (Duffin–Schaeffer’s Conjecture) Let � : R≥1 → R≥0 be some
continuous function. Then the set{

ξ ∈ R :

∣∣∣∣ξ − p

q

∣∣∣∣ < �(q) for infinitely many rationals
p

q

with gcd(p, q) = 1

}

has full Lebesgue measure if the sum
∑+∞

q=1 ϕ(q)�(q) diverges.
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There are many open problems concerning continued fractions. One of them is
related to Ridout’s Theorem 2.3, and has been firstly formulated by Erdös and
Mahler [229].

PROBLEM 43. Let ξ be a real transcendental number for which there exist a
positive number M and infinitely many convergents pn/qn such that the great-
est prime factor of pnqn is less than M . Then ξ is a Liouville number.

The fact that such numbers ξ do exist has been asserted by Erdös and Mahler
[229] and proved by Fraenkel and Borosh [250], who also showed that they
form a set of Hausdorff dimension zero.

Maillet [403] proved that if ξ is a Liouville number and f a rational function
with rational coefficients, then f (ξ) is also a Liouville number. This motivated
the following question posed by Mahler [400].

PROBLEM 44. Which analytic functions f have the property that if ξ is any
Liouville number, then so is f (ξ)? In particular, are there entire transcendental
functions with this property?

Bernik and Dombrovskiı̆ [87] and Alniaçik [17] obtained some results related
to Problem 44.

For two positive real numbers i and j with i + j = 1, let us denote by
B(i, j) the set of pairs (ξ, η) of real numbers for which there exists a positive
constant c11(α, β) such that

max{‖qα‖1/ i , ‖qβ‖1/j } ≥ c11(α, β)

q

holds for any positive integer q . Schmidt [513] proposed the following conjec-
ture, investigated by Pollington and Velani [461].

PROBLEM 45. (Schmidt’s Conjecture) For any pairs (i, j) and (i ′, j ′) of pos-
itive real numbers with i + j = i ′ + j ′ = 1, the sets B(i, j) and B(i ′, j ′) have
non-empty intersection.

As noted by Schmidt [513], a counter-example to his conjecture would imply
Littlewood’s Conjecture.

PROBLEM 46. (Littlewood’s Conjecture) Let ξ and η be real numbers. For
any positive ε, there exist integers q, r , and s with q > 0 and

q · |qξ − r | · |qη − s| ≤ ε.

We display a particular case of the Littlewood Conjecture, and a related
question.
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PROBLEM 47. Let ξ be a badly approximable real number. For any positive
ε, there exist integers q, r , and s with q > 0 and

q · |qξ − r | · |qξ−1 − s| ≤ ε.

By Lemma 10.1, there is a connection between Problems 25 and 47.

PROBLEM 48. Let i be a real number with 0 ≤ i ≤ 1. There exist transcen-
dental real numbers ξ and η and a positive constant c12(ξ, η) such that

|pξ + qη + r | ≥ c12(ξ, η)

max{|p|, |q|, 1}1+i min{|p|, |q|, 1}1−i
,

for any non-zero integer triple (p, q, r).

Davenport [175] proved that Problem 48 is true for i = 1. By Lemma 10.1,
Problem 48 for i = 0 corresponds to the Littlewood Conjecture.

We recall the ‘mixed Littlewood Conjecture’, proposed by de Mathan &
Teulié [414].

PROBLEM 49. Let ξ be a real number and p be a prime number. For any
positive ε, there exist integers q and r with q > 0 and

q · |qξ − r | · |q|p ≤ ε.

As for restricted simultaneous Diophantine approximation, Schmidt [511] (see
also Thurnheer [554, 555, 556, 557, 558]) investigated the following question.

PROBLEM 50. Let ξ and η be real numbers. There exist a constant c13(ξ, η)

and infinitely many triples (p, q, r) of integers with p and q positive and

|pξ + qη + r | < c13(ξ, η) (max{p, q})−2. (10.6)

An easy metric argument shows that Problem 50 holds true for almost all pairs
(ξ, η) of real numbers. One may ask for the Hausdorff dimension of the set of
pairs (ξ, η) for which (10.6) holds with an exponent of max{p, q} greater than
2, for infinitely many triples (p, q, r) of integers with p and q positive.

We recall a question posed in Chapter 8.

PROBLEM 51. Let ε be a positive real number. Then, for almost all real num-
bers ξ , there exist a constant c14(ξ, ε), depending only on ξ and on ε, and a
constant c15(n) depending only on n such that

|P(ξ)| > exp
{−(1+ ε)n log H − c15(n)

}
for all integer polynomials P(X) of degree n and height H satisfying
max{n, H} ≥ c14(ξ, ε).

There are many connections between approximation by algebraic numbers and
separation of roots of integer polynomials.
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PROBLEM 52. Let n ≥ 2 and H be positive integers. Denote by L(n, H)

(resp. L∗(n, H), L0(n, H), L∗0(n, H)) the minimum of the minimal distance
between two of the roots of a (resp. an irreducible, a monic, an irreducible
and monic) separable integer polynomial P(X) of degree n and height at most
H . Give sharp upper bounds for the upper limits as H tends to infinity of the
quantities

− log L(n, H)

log H
,
− log L∗(n, H)

log H
,
− log L0(n, H)

log H
,

and
− log L∗0(n, H)

log H
.

In particular, we may ask whether the dependence on H(P) in Theorem A.3 is
best possible.

The point of view taken in Problem 52 is that of Wirsing, since we fix an
upper bound for the degree and let then the height tend to infinity. We may as
well do the converse.

PROBLEM 53. With the notation of Problem 52, for a fixed positive integer
H, determine the asymptotic behaviour of the functions n �→ L(n, H), n �→
L∗(n, H), n �→ L0(n, H), and n �→ L∗0(n, H) as n tends to infinity.

To conclude, we state a conjecture of Schmidt [513] on approximation in a
given number field.

PROBLEM 54. (Schmidt’s Conjecture) For any number field K and any posi-
tive real number ε, we have

|α − β| > c16(K, ε)
(
max{H(α), H(β)})−2−ε

,

for any distinct α, β in K, where c16(K, ε) is some constant depending only on
K and on ε.

Schmidt’s Conjecture, if established, would provide a considerable improve-
ment on Theorem 2.5. For results towards this problem, see the survey of Ev-
ertse [232].

Most of the questions posed in this Section can be addressed in the context
of Diophantine approximation in p-adic fields or in fields of formal power
series, as well.

10.3 Notes

• Davenport and Lewis [178] have proved that the analogue of the Littlewood
Conjecture does not hold in the fields of formal power series over infinite fields.
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Specific examples have been given by A. Baker [39] and Cusick [170, 171].
Armitage [33] showed that the analogue of Littlewood’s Conjecture does not
hold in the fields of formal power series over fields of characteristic at least
equal to 5. De Mathan [411] established that, in any algebraic extension of
the field with two elements, the Littlewood Conjecture holds true for every
pair of quadratic elements. De Mathan and Teulié [414] have investigated the
analogue of Problem 49 in fields of power series and they established that this
conjecture does not hold if the ground field is infinite.

• Some of Cassels and Swinnerton-Dyer’s results [158] have been extended
by Peck [450].

• Problem 40 can be addressed also for p-adic algebraic numbers. An inter-
esting contribution is due to Lagarias [346]. In a field or formal power series,
the situation is different: there exist algebraic elements of degree at least three
which have bounded partial quotients (see Baum and Sweet [52] and the sur-
veys [351] and [515] for additional references).
•M. Einsiedler, A. Katok and E. Lindenstrauss have established that the set

of exceptions to the Littlewood Conjecture has Hausdorff dimension zero.



Appendix A

Lemmas on polynomials

In the present Appendix, we gather several lemmas on polynomials, which
have been used throughout the preceding Chapters. They provide us with es-
timates, for example, for the distance between two algebraic numbers, or be-
tween a complex number and the set of zeros of an integer polynomial. The
first systematic study of such questions is due to Güting [268] and no sig-
nificant progress has been made since that time, at least concerning the most
useful lemmas. Apart from in Chapter 8, we have always used the most natural
height, that is, the naive height (Definition 2.1), in order to measure the size
of an algebraic number. In particular, we did not work with either the loga-
rithmic height, or with the Mahler measure, since the problems investigated in
Chapters 1 to 7 do not require such precise and sophisticated tools. Proofs of
several classical auxiliary results can nevertheless be slightly simplified by the
use of the Mahler measure, defined in Section A.1. Nevertheless, we express
most of the statements in this Appendix only in terms of the naive height. Fur-
thermore, we mention totally explicit examples, due to Bugeaud and Mignotte
[139], showing that some of the classical results gathered here are near to best
possible.

A.1 Definitions and useful lemmas

The height (or naive height) of a polynomial with complex coefficients

P(X) = an Xn + . . .+ a1 X + a0 = an(X − α1) . . . (X − αn),

denoted by H(P), is the maximum of the moduli of its coefficients. If P(X) is
non-zero, its Mahler measure is, by definition, the quantity

M(P) := |an|
n∏

i=1

max{1, |αi |}.

219
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The height (resp. the Mahler measure) of an algebraic number α, denoted by
H(α) (resp. by M(α)), is the height (resp. the Mahler measure) of its min-
imal polynomial over Z (that is, the integer polynomial of lowest positive
degree, with coprime coefficients and positive leading coefficient, which van-
ishes at α).

The Mahler measure of a polynomial appeared for the first time in a paper
by Mahler [387], which contains the following lemma.

LEMMA A.1. For any non-zero complex polynomial P(X), we have

M(P) = exp

{∫ 1

0
log |P(e2iπ t )| dt

}
. (A.1)

PROOF. This is Jensen’s formula, see, for example, Ahlfors [4], page 205, or
Lemma 1.9 of Everest and Ward [231].

Unlike the naive height, the Mahler measure is a multiplicative function; for
this reason, it is, in many cases, much easier to handle. It turns out, however,
that these two notions of size are comparable.

LEMMA A.2. Let P(X) be a non-zero complex polynomial of degree n. We
have the inequalities(

n

[n/2]

)−1

H(P) ≤ M(P) ≤ √n + 1 H(P). (A.2)

PROOF. Write P(X) = an Xn + . . .+ a1 X + a0 = an(X − α1) . . . (X − αn).
For any integer j = 0, . . . , n − 1, the relations between coefficients and roots
of P(X) give

a j = (−1)n− j an

∑
1≤s1<...<sn− j≤n

αs1 . . . αsn− j .

The above sum is composed of at most
( n

[n/2]

)
terms, each of which has modu-

lus at most equal to M(P)/|an|. We thus get

|a j | ≤
(

n

[n/2]

)
M(P).

Since |an| ≤ M(P), this proves the left-hand side of (A.2).
As for the right-hand side, the convexity of the exponential function to-

gether with the Cauchy–Schwarz inequality yield

M(P) ≤
∫ 1

0
|P(e2iπ t )| dt ≤

(∫ 1

0
|P(e2iπ t )|2 dt

)1/2

= (|an|2 + . . .+ |a0|2
)1/2 ≤ √n + 1 H(P),

as claimed.
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Lemma A.2 allows us to recover estimate (12) of Wirsing [598].

COROLLARY A.1. Let P(X) = an(X − α1) . . . (X − αn) be a non-zero com-
plex polynomial of degree n with leading coefficient an in R. Let ξ be a complex
number and ρ be a positive real number. We then have

2−n−1 (n + 1)−1/2 max{1, |ξ |}−n |P(ξ)|
H(P)

≤
∏

i :|ξ−αi |<ρ

|ξ − αi |

≤ 2n+1
(

n

[n/2]

)
max{ρ, ρ−1}n max{1, |ξ |}n |P(ξ)|

H(P)
.

PROOF. The Mahler measure of the polynomial Pξ (X) := P(X + ξ) is

M(Pξ ) = |an|
n∏

i=1

max{1, |ξ − αi |}.

Since |P(ξ)| = M(Pξ )
∏n

i=1 min{1, |ξ − αi |}, Lemma A.2 implies

1√
n + 1

· |P(ξ)|
H(Pξ )

≤
n∏

i=1

min{1, |ξ − αi |} ≤
(

n

[n/2]

) |P(ξ)|
H(Pξ )

.

The inequalities

2−n−1 max{1, |ξ |}−n H(P) ≤ H(Pξ ) ≤ 2n+1 max{1, |ξ |}n H(P)

then yield

2−n−1 (n + 1)−1/2 max{1, |ξ |}−n |P(ξ)|
H(P)

≤
∏

i :|ξ−αi |<1

|ξ − αi |

≤ 2n+1
(

n

[n/2]

)
max{1, |ξ |}n |P(ξ)|

H(P)
,

and the corollary is established for ρ = 1. The general statement now follows
straightforwardly.

The next lemma relates the height of a product of polynomials to the product of
the heights of these polynomials. Koksma and Popken’s original result [334],
Hilfssatz 13, has been considerably refined by Gelfond [257], and Lemma A.3
is often referred to as Gelfond’s Lemma.

LEMMA A.3. Let P1(X), . . . , Pr (X) be non-zero complex polynomials of de-
gree n1, . . . , nr , respectively, and set n = n1 + . . .+ nr . We then have

2−n H(P1) . . . H(Pr ) ≤ H(P1 . . . Pr ) ≤ 2n H(P1) . . . H(Pr ). (A.3)
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PROOF. We follow an idea of Mahler [387]. Lemma A.2 and the multiplica-
tivity property of the Mahler measure imply(

n1

[n1/2]

)−1

. . .

(
nr

[nr/2]

)−1

H(P1) . . . H(Pr ) ≤ M(P1) . . . M(Pr )

= M(P1 . . . Pr ) ≤
√

n + 1 H(P1 . . . Pr ).

Further, we check that(
n1

[n1/2]

)
. . .

(
nr

[nr/2]

)√
n + 1 ≤ 2n,

since (
�

k

)
≤ 2�/

√
�+ 1 for any integers � ≥ 0, k ≥ 0

Thus, we get the left inequality of (A.3). Moreover, we have

H(P1 . . . Pr ) ≤
r∏

j=1

(n j + 1)H(Pj ) ≤
r∏

j=1

2n j H(Pj ) = 2n
r∏

j=1

H(Pj ),

which concludes the proof of the lemma.

LEMMA A.4. Let α be a non-zero algebraic number of degree n. Let k, a, b,
and c be integers with c �= 0. We then have

H(αk) ≤ 2n (n + 1)|k|/2 H(α)|k|

and

H

(
aα + b

c

)
≤ 2n+1 H(α) max{|a|, |b|, |c|}n .

PROOF. The first assertion easily follows from Lemma A.2 and the fact that
M(αk) ≤ M(α)|k|. As for the second assertion, denoting by P(X) the min-
imal polynomial of α over Z, we see that Q(X) := an P(cX/a − b/a) is
the one of (aα + b)/c. Since the height of Q(X) is bounded from above by
2n+1H(α) max{|a|, |b|, |c|}n , the proof is complete.

A.2 Liouville’s inequality

The easiest version of Liouville’s inequality states that the absolute value of
any non-zero integer is at least equal to one. More generally, the results of
this Section give non-trivial lower bounds for the distance between two dis-
tinct algebraic numbers and for the value of an integer polynomial evaluated
at an algebraic number. Liouville’s inequality is a generic name for similar
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estimates. Standard tools to investigate these questions are the notions of dis-
criminant and resultant. Recall that a separable polynomial is a polynomial
with distinct roots.

DEFINITION A.1. Let P(X) = an(X−α1) . . . (X−αn) and Q(X) = bm(X−
β1) . . . (X − βm) be non-constant integer polynomials. The resultant of P(X)

and Q(X), defined as

Res(P, Q) = am
n bn

m

∏
1≤i≤n

∏
1≤ j≤m

(αi − β j )

= am
n

∏
1≤i≤n

Q(αi ) = (−1)mn bn
m

∏
1≤ j≤m

P(β j ),

is an integer and is non-zero if, and only if, P(X) and Q(X) have no common
root. The discriminant of P(X), defined as

Disc(P) = a2n−2
n

∏
1≤i< j≤n

(αi − α j )
2 = (−1)n(n−1)/2 a−1

n Res(P, P ′),

is an integer and is non-zero if, and only if, P(X) is separable.

Further results on resultants and discriminants can be found in most of the
textbooks on algebra, for example, in [349], Chapter IV, in [586], Chapter 5,
or in [156], Appendix A.

For any integer n ≥ 2 and any non-zero integer a we have

Res(Xn − aX + 1, aX − 1) = 1

and

Res(Xn − aX + 1, (a + 1)Xn − Xn−1 − aX + 1) = 1,

hence, it seems to be difficult to improve the trivial lower bound for the abso-
lute value of the resultant of integer polynomials with no common root.

Theorem A.1 is of comparable strength as Theorem 6 of Güting [268]. An
earlier (and less precise) version goes back to Cohn [167], who used it to con-
struct transcendental numbers.

THEOREM A.1. Let P(X) and Q(X) be non-constant integer polynomials of
degree n and m, respectively. Denote by α a zero of P(X) of order s and by β

a zero of Q(X) of order t . Assuming that P(β) �= 0, we have

|P(β)| ≥ (n + 1)1−m/t (m + 1)−n/(2t) H(P)1−m/t H(Q)−n/t

× (
max{1, |β|})n (A.4)
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and

|α − β| ≥ 21−n/s (n + 1)1/(2s)−m/(st) (m + 1)−n/(2st)

×H(P)−m/(st) H(Q)−n/(st) (
max{1, |α|}) (

max{1, |β|}).
PROOF. Set P(X) = an(X − α1)

s1 . . . (X − αp)
sp and Q(X) = bm(X −

β1)
t1 . . . (X − βq)tq , where α = α1, β = β1, s = s1, t = t1, and the αi s (resp.

the β j s) are pairwise distinct. Denote by Q1(X) = b(X − β1) . . . (X − βq1)

the minimal polynomial of β over Z. Since the resultant of P(X) and Q1(X)

is a non-zero integer, we get

1 ≤ |Res(P, Q1)| = |b|n
∏

1≤i≤q1

|P(βi )|,

and, using that |P(βi )| ≤ (n + 1) H(P)(max{1, |βi |})n for i = 2, . . . , q1, we
obtain

1 ≤ |b|n|P(β)|(n + 1)q1−1H(P)q1−1
(

M(Q1)

|b|max{1, |β|}
)n

. (A.5)

Then, (A.4) follows from (A.5), q1 ≤ m/t , M(Q1) ≤ M(Q)1/t , and M(Q) ≤√
m + 1 H(Q). Furthermore, by combining (A.4) with the estimates

|P(β)| = |β − α|s · |an| · |β − α2|s2 . . . |β − αp|sp

≤ 2n−s |β − α|s · |an|
(
max{1, |β|})n−s

×(
max{1, |α2|}

)s2 . . .
(
max{1, |αp|}

)sp

≤ 2n−s |β − α|s (
max{1, |β|})n−s M(P)

max{1, |α|}s

and M(P) ≤ √n + 1 H(P), we get the second assertion of the theorem.

For any integer n ≥ 2 and any non-zero integer a, set

P(X) = Xn − aX + 1, Q(X) = aX − 1, and

R(X) = (a + 1)Xn − Xn−1 − aX + 1.

Let α (resp. γ ) be the root of P(X) (resp. of R(X)) closest to 1/a, and set
β = 1/a. We observe that

|α − β| ≤ 2 |a|−n−1 = 2 H(P)−1 H(Q)−n

and

|α − γ | ≤ 2 |a|−2n ≤ 3 H(P)−n H(R)−n

hold provided that |a| is large enough in terms of n. Consequently, Theorem
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A.1 is best possible regarding the dependence on the heights of the polynomi-
als.

A lower bound for the distance between two distinct roots of the same poly-
nomial is slightly less easy to obtain, especially when there are multiplici-
ties. Theorem A.2, due to Amou and Bugeaud [31], strengthens Theorem 7
of Güting [268] in terms of n (a factor 2−n2/st is removed). A similar im-
provement has been obtained previously by Amou [28], but in his result the
dependence on H(P) is less sharp than in [268].

THEOREM A.2. Let P(X) be an integer polynomial of degree n ≥ 2. Denote
by α a zero of P(X) of order s and by β a zero of P(X) of order t . Assuming
that α �= β, we have

|α − β| ≥ 2−n/t n−n/t−3n/(2st) H(P)−2n/(st) max{1, |α|} max{1, |β|}
if t > s, while we have

|α − β| ≥ 2−n/s n−n(2s+3)/(4s2) H(P)−n/s2+1/(2s) max{1, |α|}3/2

×max{1, |β|}3/2

if s = t .

PROOF. Let Q(X) = a(X − α1) . . . (X − αd) be a separable integer polyno-
mial with α = α1 and such that Q(X) divides P(X) in Z[X ] and the polyno-
mials Q(X) and P(X)/Qs(X) are coprime. Since the resultant of Q(X) and
P(s)(X)/s! is a non-zero integer, we get

1 ≤ |a|n−s
∏

1≤i≤d

|P(s)(αi )|
s!

. (A.6)

For any integer i = 2, . . . , d , we obtain

|P(s)(αi )|
s!

≤ H(P)

n∑
k=s

(
k

s

)
max{1, |αi |}n−k

≤
(

n + 1

s + 1

)
H(P) max{1, |αi |}n−s . (A.7)

Denoting by an the leading coefficient of P(X), we have

|P(s)(α)|
s!

= |an|
∏
γ �=α

P(γ )=0

|α − γ |

≤ 2n−s−t |an| · |α − β|t · max{1, |α|}n−s−t

·
∏

γ �=α,γ �=β
P(γ )=0

max{1, |γ |},
(A.8)
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where the roots of P(X) are counted with their multiplicities in the above prod-
ucts. Now, the combination of (A.6), (A.7), (A.8), d ≤ n/s with the inequality
M(Q) ≤ M(P)1/s yields

|α − β|t ≥ 2−n+s+t M(P)−n/s
((

n + 1

s + 1

)
H(P)

)1−n/s

×max{1, |α|}t max{1, |β|}t ,
and the first assertion of the theorem follows from Lemma A.2 since n ≥ 2
and (

n + 1

s + 1

)
≤ (n + 1)(n/2)s .

If s = t , we may assume that α2 = β. We have the analogue of (A.8) for
|P(s)(β)|/s!, namely the upper bound

|P(s)(β)|
s!

≤ 2n−2s |an| · |α − β|s ·max{1, |β|}n−2s ·
∏

γ �=α,γ �=β
P(γ )=0

max{1, |γ |},

(A.9)

where, again, the roots of P(X) are counted with their multiplicities in the
above product. Combining (A.9) with (A.6), (A.8), and (A.7) for i = 3, . . . , d ,
we get

|α − β|2s ≥ 2−2n+4s M(P)−1−n/s
((

n + 1

s + 1

)
H(P)

)2−n/s

×max{1, |α|}3s max{1, |β|}3s,

which yields the last assertion of the theorem.

In case of separable polynomials, Theorem A.2 is superseded by the following
result of Mahler [391].

THEOREM A.3. Let P(X) be a separable, integer polynomial of degree n ≥ 2.
For any two distinct zeros α and β of P(X) we have

|α − β| >
√

3 (n + 1)−(2n+1)/2 max{1, |α|, |β|}H(P)−n+1.

PROOF. Denote by an the leading coefficient of P(X) and by α1, . . . , αn its
roots, numbered in such a way that α1 = α and α2 = β. Without loss of
generality, we may assume that |α| ≥ |β|. Recalling that

Disc(P) = ± a2n−2
n (detM)2 with M = (α

j
i ) 1≤i≤n

0≤ j≤n−1
,
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we substract the second line of M from the first one and we apply Hadamard’s
inequality to get the upper bound

|Disc(P)| ≤ |an|2n−2
( n−1∑

j=1

|α j − β j |2
)
×

∏
2≤i≤n

(
1+ |αi |2 + . . .+ |αi |2n−2 )

≤ |an|2n−2 · |α − β|2 ·
( n−1∑

j=1

|α j−1+α j−2β + . . .+β j−1|2
)
·

× nn−1
∏

2≤i≤n

max{1, |αi |}2n−2

< |α − β|2 n3

3
max{1, |α|}−2 nn−1 M(P)2n−2. (A.10)

Since the polynomial P(X) has distinct roots, Disc(P) is a non-zero integer
and (A.10) and Lemma A.2 yield the theorem.

As observed in [139], for any integer d ≥ 2 and any non-zero integer a suf-
ficiently large in terms of d , the polynomial Pa,d(X) := (Xd − aX + 1)2 −
2X2d−2 (aX − 1)2 has two real roots distant by at most 4a−2d . This example
shows that, when n is even, the exponent of H(P) in Theorem A.3 cannot be
replaced by any number greater than −n/2.

We deduce from Theorems A.1 and A.3 the following useful lower estimate
for the distance between two distinct algebraic numbers.

COROLLARY A.2. Let α and β be two distinct non-zero algebraic numbers of
degree n and m, respectively. Then we have

|α − β| ≥ 2 (n + 1)−m/2 (m + 1)−n/2

×max{2−n (n + 1)−(m−1)/2, 2−m (m + 1)−(n−1)/2} × H(α)−m H(β)−n .

It is an interesting open question to decide whether the dependence on the
degrees m and n in Theorems A.1 to A.3 is optimal or not. There is apparently
no contribution to this problem.

A.3 Zeros of polynomials

This Section is concerned with the following problem: if P(X) is a complex
polynomial which is small but does not vanish at a complex number ξ , what
can be said on the distance between ξ and the set of zeros of P(X)?
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LEMMA A.5. Let P(X) = an(X−α1) . . . (X−αn) be a non-constant complex
polynomial. Let ξ be a complex number with P(ξ) �= 0. Assume that α1 is such
that |ξ − α1| is minimal. If P ′(ξ) �= 0, then we have

|ξ − α1| ≤ n
|P(ξ)|
|P ′(ξ)| . (A.11)

If P ′(α1) �= 0, then we have

|ξ − α1| ≤ 2n−1 |P(ξ)|
|P ′(α1)| (A.12)

and, if n ≥ 2,

|ξ − α1|2 ≤ 2n−2 |P(ξ)| · |α1 − α2|
|P ′(α1)| , (A.13)

for any root α2 �= α1 of P(X). If, further, |ξ−α1| ≤ |α1−α j | for j = 2, . . . , n,
then we have

|ξ − α1| ≥ 21−n |P(ξ)|
|P ′(α1)| . (A.14)

PROOF. To prove (A.11), it is enough to note that the rational function
P ′(X)/P(X) can be written as

P ′(X)

P(X)
=

∑
1≤i≤n

1

X − αi
. (A.15)

Taking X = ξ in (A.15), we obtain

|P ′(ξ)|
|P(ξ)| ≤

n

|ξ − α1| ,

and the proof is complete. To get (A.12), we combine

|P(ξ)|
|P ′(α1)| = |ξ − α1|

∏
2≤ j≤n

|ξ − α j |
|α1 − α j | (A.16)

with the fact that, for any integer j = 2, . . . , n, we have

|α1 − α j | ≤ |ξ − α1| + |ξ − α j | ≤ 2|ξ − α j |. (A.17)

Moreover, for any integer j = 2, . . . , n, the triangle inequality ensures that
|ξ − α j | ≤ 2|α1 − α j | holds as soon as |ξ − α1| ≤ |α1 − α j |. Thus, (A.14)
follows from (A.16).
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Finally, we get (A.13) by combining

|P(ξ)|
|P ′(α1)| =

|ξ − α1| · |ξ − α2|
|α1 − α2|

∏
3≤ j≤n

|ξ − α j |
|α1 − α j |

≥ |ξ − α1|2
|α1 − α2|

∏
3≤ j≤n

|ξ − α j |
|α1 − α j |

and (A.17).

LEMMA A.6. Let P(X) = an(X −α1) . . . (X −αn) be a non-constant integer
polynomial of degree n. Let ξ be a complex number which is not a root of
P(X). Then, for any subset J of {1, . . . , n}, we have

|an|
∏

j∈J |ξ − α j | ≤ 2n
(
max{1, |ξ |})n√

n + 1 H(P), (A.18)

and, in particular,

|P(ξ)| ≤ 2n
(
max{1, |ξ |})n√

n + 1 H(P) min1≤ j≤n |ξ − α j |.
PROOF. We have

|an|
∏
j∈J

|ξ − α j | ≤ |an|
∏
j∈J

2 max{|ξ |, |α j |}

≤ 2n(
max{1, |ξ |})n|an|

∏
j∈J

max{1, |α j |}

≤ 2n(
max{1, |ξ |})n

M(P),

and we apply Lemma A.2 to get (A.18). The last assertion follows by taking
J = {1, . . . , n} \ {k} where k is such that |ξ − αk | = min1≤ j≤n |ξ − α j |.
Lemma A.7, due to Diaz and Mignotte [189], slightly improves upon an earlier
result of Chudnovsky [164]. To take multiplicities into account, Chudnovsky
introduced the notion of semi-discriminant, which generalizes that of discrim-
inant to polynomials with multiple roots. Let P(X) = an(X − α1)

s1 . . . (X −
αp)

sp be an integer polynomial of degree n = s1 + . . . + sp. Assume that
αi �= α j if 1 ≤ i �= j ≤ p. Then the semi-discriminant of P(X), denoted by
SD(P), is the quantity

SD(P) = an−2
n

p∏
i=1

P(si )(αi )

si !
. (A.19)

If P(X) is separable, then SD(P) reduces to the discriminant of P(X). Ac-
tually, Chudnovsky [164] defined the semi-discriminant with an−1

n instead of
an−2

n in (A.19). He proved that anSD(P) is a non-zero rational integer and he
used this observation to get Lemma 1.12 of [164], which is slightly weaker
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than Lemma A.7 below. Amou [28] used the same idea to obtain a weaker
version of Theorem A.2. Further, Diaz and Mignotte [189] pointed out that
the use of the semi-discriminant can be replaced by the consideration of a
suitable resultant. Their method, which is also applied to get Theorem A.2
above, enabled them to considerably simplify Chudnovsky’s proof. Lemma
A.7 follows from [189], except for the last assertion, kindly communicated by
Amou.

LEMMA A.7. Let P(X) be a non-constant integer polynomial of degree n. Let
ξ be a complex number and α be a root of P(X) such that |ξ − α| is minimal.
Then, denoting by s the multiplicity of α as root of P(X), we have

|ξ − α|s ≤ nn+3n/(2s) H(P)2(n/s−1) |P(ξ)|.

Further, if P(X) is the s-th power of a separable polynomial of degree at least
2, we get

|ξ − α|s ≤ 2n/2 nn/2+3n/(4s) H(P)n/s−3/2 |P(ξ)|.

PROOF. Without any restriction, we may assume that n �= s, hence, n/s ≥ 2.
Let Q(X) = a(X − α1) . . . (X − αd) be as in the proof of Theorem A.2,
with α = α1. For any root γ of P(X) different from α, we have |α − γ | ≤
|ξ − α| + |ξ − γ | ≤ 2|ξ − γ |. Thus, we get

|P(s)(α)|
s!

= |an|
∏
γ �=α

P(γ )=0

|α − γ | ≤ 2n−s |P(ξ)| |ξ − α|−s, (A.20)

where an denotes the leading coefficient of P(X) and the roots of P(X) are
counted with their multiplicities in the above product. We combine (A.6),
(A.7), and (A.20) to obtain

|ξ − α|s ≤ 2n−s
((n+1

s+1

)
H(P)

)d−1

M(Q)n−s |P(ξ)|. (A.21)

Since(
n + 1

s + 1

)
≤ (n + 1)(n/2)s, d ≤ n/s, and M(Q) ≤ M(P)1/s,

the first assertion follows from (A.21) and Lemma A.2.
For the last statement, we take Q(X) such that Q(X)s = P(X). We may

assume that β = α2 satisfies

|ξ − α| ≤ |ξ − β| ≤ |ξ − αi |, for i = 3, . . . , d,
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hence, we get |β − γ | ≤ 2|ξ − γ | for any root γ of P(X) different from α.
Consequently, we have

|P(s)(β)|
s!

≤ 2n−2s |α − β|s |P(ξ)| |ξ − α|−s |ξ − β|−s

(A.22)≤ 2n−s |P(ξ)| |ξ − α|−s,

since |α − β| ≤ 2|ξ − β|. Combining (A.6), (A.20), (A.22), and (A.7) for
i = 3, . . . , d, we get

|ξ − α|s ≤ 2n−s
((

n + 1

s + 1

)
H(P)

)−1+d/2

M(Q)(n−s)/2 |P(ξ)|,

which, since d = n/s, completes the proof of the lemma.

For the case of a separable polynomial, Lemma A.7 has been improved upon
by Feldman [243] (Chapter 7, Lemma 1.7) and Diaz [188] (for � ≥ 2 in Lemma
A.8, which strengthens Lemma 5 of Laurent and Roy [356]).

LEMMA A.8. Let P(X) be a non-constant, separable, integer polynomial of
degree n. Let ξ be a complex number and α be a root of P(X) such that |ξ−α|
is minimal. Then, for any positive integer � with � < n we have

(2|ξ − α|)�(�+1)/2 ≤ 2�n (n − �)(n−�)/2 M(P)n−�−1 |P(ξ)|�. (A.23)

In particular, we have

|ξ − α| ≤
√

2 (2n)n−3/2 H(P)n−2 |P(ξ)|. (A.24)

If, moreover, |P(ξ)| ≤ 1, then, for any positive integer �, we have

|ξ − α|�(�+1)/2 ≤ 2�n nn/2 M(P)n |P(ξ)|�. (A.25)

PROOF. We may assume that ξ �= α. We order the roots α1, . . . , αn of P(X)

in such a way that α = α1 and |ξ − α1| ≤ . . . ≤ |ξ − αn|. Set Q�(X) =
an(X − α�+1) . . . (X − αn), where an denotes the leading coefficient of P(X).
Putting

�� :=
∏

1≤i< j≤n
i≤�

|αi − α j |,

the discriminants Disc(P) and Disc(Q�) of P(X) and Q�(X) satisfy

|Disc(P)|1/2 = |an|� �� |Disc(Q�)|1/2. (A.26)

The quantity |Disc(Q�)|1/2 equals |an|n−�−1 times the absolute value of the
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determinant � of the matrix (α
j
i )�+1≤i≤n,0≤ j≤n−�−1. As in the proof of Theo-

rem A.3, we infer from Hadamard’s inequality that

|�| ≤ (n − �)(n−�)/2
∏

�+1≤i≤n

max{1, |αi |}n−�−1,

hence, we get

|Disc(Q�)|1/2 ≤ (n − �)(n−�)/2 M(Q�)
n−�−1, (A.27)

and, since Disc(P) is a non-zero integer, it follows from (A.26) and (A.27) that

1 ≤ |an|� �� (n − �)(n−�)/2 M(P)n−�−1. (A.28)

For positive integers i and j with i < j ≤ n, we have |αi − α j | ≤ 2|ξ − α j |,
thus

|an|� �� ≤ |an|� 2n�−�(�+1)/2
∏

1≤ j≤�

|ξ − α j | j−1
∏

�< j≤n

|ξ − α j |�. (A.29)

Since

|an|�
∏

�< j≤n

|ξ − α j |� = |P(ξ)|�
∏

1≤ j≤�

|ξ − α j |−�

and |ξ − α1| ≤ . . . ≤ |ξ − α�|, we infer from (A.29) that

|an|� �� ≤ 2n� |P(ξ)|� (2|ξ − α1|)−�(�+1)/2,

which, together with (A.28), gives (A.23). Choosing � = 1 in (A.23), we get
(A.24). Further, (A.25) is clear when n = 1 and it follows from (A.23) if
� = 1, . . . , n − 1. If n ≥ 2, we infer from (A.23) with � = n − 1 that

|ξ − α| ≤ 2 |P(ξ)|2/n . (A.30)

For � ≥ n, we raise both sides of (A.30) to the power �n/2 and, noticing that
|ξ − α| ≤ 1, we get an inequality in fact stronger than (A.25).

Theorems A.2 and A.3 should be compared with Lemmas A.7 and A.8, respec-
tively. In both cases, the result obtained for separable polynomials is consid-
erably better than that for arbitrary polynomials: roughly speaking, we gain a
factor 2 in the exponent of H(P). Furthermore, the polynomials Pa,d(X) de-
fined below the proof of Theorem A.3 show that the dependence on the height
in (A.24) is close to be best possible: indeed, when n is even, the exponent
of H(P) in (A.24) cannot be replaced by any number smaller than −1 + n/2.
However, the dependence on the degree may possibly be improved.
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A.4 Exercises

EXERCISE A.1. Let P(X) := an(X−α1) . . . (X−αn) be an irreducible, integer
polynomial. Let i1, . . . , it be positive integers with 1 ≤ i1 < . . . < it ≤ n.
Prove that the number anαi1 . . . αit is an algebraic integer (see, for example,
[591], pp. 71–72) with absolute value at most equal to

√
n + 1 H(P).

EXERCISE A.2. Study how sharp Theorems A.1, A.2, and Lemma A.7 are in
terms of s and t (see [31]).

EXERCISE A.3. Let P(X) be a separable, integer polynomial of degree n ≥ 2
and let α1, . . . , αk be distinct zeros of P(X), with 2 ≤ k ≤ n. With a suitable
modification of the proof of Theorem A.3, show that there exists a positive,
effective constant c(n) such that∏

1≤i< j≤k

|αi − α j | ≥ c(n) H(P)−n+1. (A.31)

By considering the polynomials Pa,d,k(X) := (Xd−aX+1)k−2Xdk−k (aX−
1)k , where a and d are integers with d ≥ 2, prove that (A.31) is near to best
possible (see [139]).

EXERCISE A.4. Prove that Theorem A.3 is, up to the numerical constant, best
possible for cubic, reducible, integer polynomials.

Hint. Following an idea of Deshouillers (see [419]), consider the polynomi-
als Pk(X) := (qk X − pk)(X2 − 2), where pk/qk denotes the k-th convergent
in the continued fraction expansion of

√
2.

A.5 Notes

• The formula (A.1) can be generalized to define the Mahler measure of a poly-
nomial in finitely many variables, see Mahler [389] and Chapter 3 of Everest
and Ward [231].

• For inequalities relating the naive height of a polynomial to other notions
of size, see papers by Durand [220] and the Annex to Chapter 3 in [591].

• Theorem A.1 can be considerably improved if β is non-real, see, for ex-
ample, Güting [268]. Roughly speaking, one can take the square roots of the
lower bounds obtained. The interested reader may easily write down the de-
tails of the proof and improve upon several other results from this Appendix in
similar particular cases.
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• There are more general versions of Liouville’s inequality providing
non-trivial lower bounds for the non-zero quantity |P(α1, . . . , αn)|v , where
α1, . . . , αn are elements of an algebraic number field K, the polynomial
P(X1, . . . , Xn) has integer coefficients, and v is some place on K. We refer
to [591] for estimates involving the Mahler measure and the Weil’s height (see
especially Exercise 3.5). When α and β are real algebraic numbers with the
Mahler measure of α relatively small compared with its degree, improvements
upon Liouville’s inequality have been obtained for |α − β| and |α − 1|, see
Mignotte [420], Amoroso [22, 23], Dubickas [210], and the last chapter of
[512]. A p-adic analogue has been worked out by Bugeaud [121].

• Dubickas [209] and Mignotte [422] have slightly improved Theorem A.3.
Their method also yields lower bounds for products of differences of roots of
a separable polynomial (like the statement given in Exercise A.3). Polynomial
root separation is an important problem in computer algebra, see, for example,
Rump [485] for more references. Following Collins and Horowitz [169], for
any positive integers n ≥ 2 and H , we denote by L(n, H) the minimum of the
minimal distance between two of the roots of a separable, integer polynomial
P(X) of degree n and height at most H . Mignotte [419] and Mignotte and
Payafar [423] studied L(n, H) and introduced the related quantities L∗(n, H),
L0(n, H), and L∗0(n, H), where we restrict the consideration to irreducible,
monic, and irreducible and monic polynomials, respectively. The determina-
tion of the upper limits when H tends to infinity of − log L(n, H)/ log H and
of the related quantities is apparently a very difficult problem.

Supported by computational evidence, Collins [168] conjectured that the
minimal distance between two real roots of an integer polynomial P(X) of
degree n and height H is at least equal to n−n/4 H−n/2. This is compatible
with the examples given below the proof of Theorem A.3.



Appendix B

Geometry of numbers

Geometry of numbers turns out to be a very useful tool in Diophantine approx-
imation. For instance, it allows us to construct non-zero integer polynomials
taking small values at prescribed points. In the course of the book, we applied
several times the ‘first Theorem of Minkowski’ and the ‘second Theorem of
Minkowski’, which are Theorems B.2 and B.3 below, respectively. We give
a full proof of Theorem B.2, but not of Theorem B.3, which is much deeper.
Throughout this Appendix, n denotes a positive integer. A set C in Rn having
inner points and contained in the closure of its open kernel is called a body (or
a domain).

THEOREM B.1. Let C be a bounded convex body in Rn, symmetric about the
origin and of volume vol(C). If vol(C) > 2n or if vol(C) = 2n and C is compact,
then C contains a point with integer coordinates, other than the origin.

PROOF. This proof is due to Mordell [429]. By classical arguments from el-
ementary topology, it is enough to treat the case where vol(C) > 2n . For any
positive integer m, denote by Cm the set of points of C having rational coor-
dinates with denominator m. As m tends to infinity, the cardinality of Cm be-
comes equivalent to vol(C)mn , and is thus strictly larger than (2m)n when m is
large enough. Dirichlet’s Schubfachprinzip asserts that there exist two distinct
points A = (a1/m, . . . , an/m) and B = (b1/m, . . . , bn/m) in Cm with ai , bi

integers and ai ≡ bi (mod 2m) for i = 1, . . . , n. By symmetry and convex-
ity, the point (A − B)/2, which is not the origin and has integer coordinates,
belongs to C.

THEOREM B.2. Let (ui j )1≤i, j≤n be a matrix with real coefficients and
with determinant ±1. Let A1, . . . , An be positive real numbers satisfying
A1 . . . An = 1. Then there exists a non-zero integer point (x1, . . . , xn) such
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that

|ui1x1 + . . .+ uin xn| < Ai , 1 ≤ i ≤ n − 1,

and

|un1x1 + . . .+ unn xn| ≤ An .

PROOF. Since the absolute value of the determinant of the matrix (ui j )1≤i, j≤n

is equal to the product of the Ai ’s, we may assume that A1 = · · · = An = 1.
For i = 1, . . . , n and x = (x1, . . . , xn), we set

Li (x) := ui1x1 + . . .+ uin xn .

The linear system |Li (x)| ≤ 1, 1 ≤ i ≤ n, defines a symmetric, bounded,
compact convex body of volume 2n . By Theorem B.1, it contains a non-zero
integer point. Classical topological arguments then allow us to replace n − 1
of the large inequalities by strict inequalities.

We now state a deep generalization of Theorem B.2. Let C be a convex,
compact body in Rn , symmetric about the origin and of volume vol(C). Let
λ1 := λ1(C) be the infimum of the real numbers λ such that λC contains an
integer point other than the origin. Since C is compact, this infimum is a mini-
mum. Further, we have 0 < λ1 < +∞. Setting λ̃ := 2 vol(C)−1/n , the volume
of the compact convex set λ̃C is equal to 2n , and Theorem B.2 implies the
upper bounds λ1 ≤ λ̃ and

λn
1 vol(C) ≤ 2n . (B.1)

Theorem B.3 allows us to strengthen (B.1). For any integer j = 1, . . . , n,
denote by λ j := λ j (C) the infimum of the positive real numbers λ for which λC
contains j linearly independent integer points. Each of the λ j s is a minimum
and we have

0 < λ1 ≤ λ2 ≤ . . . ≤ λn < +∞.

The real numbers λ1, . . . , λn are called the successive minima of C.

THEOREM B.3. For a set C as above, we have

2n

n!
≤ λ1 . . . λnvol(C) ≤ 2n .

Moreover, if the points x1, . . . , xn are linearly independent and realize the
successive minima of C, then we have

det(x1, . . . , xn) ≤ n!.
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PROOF. This is Theorem V and Corollary, pages 218 and 219, of Cassels
[157]. The proof of the upper bound for the product of the λi is difficult, while
the lower bound is easier to establish.

Any hyperplane not containing the origin can be put in the form y1x1 + . . .+
yn xn = 1, and so it may be represented as a point y = (y1, . . . , yn) in Rn . It
turns out that the points y corresponding to hyperplanes having empty inter-
section with C form a convex set C∗, called the polar body of C.

THEOREM B.4. Let λ1, . . . , λn be the successive minima of a convex body C
and let λ∗1, . . . , λ

∗
n be the successive minima of the polar body C∗. Then, for

any integer j = 1, . . . , n, we have

1 ≤ λ jλ
∗
n+1− j ≤ n!.

PROOF. This is Theorem VI, page 219, of Cassels [157].

To conclude this Appendix, we state and prove Khintchine’s Transference The-
orem, which relates small values of linear forms to simultaneous Diophantine
approximation. Let x = (x1, . . . , xn) be a real n-tuple. We define w(x) and
w′(x) to be the suprema of the real numbers w and w′ for which the inequali-
ties

|u0 + u1x1 + . . .+ un xn| ≤
(

max
1≤i≤n

|ui |
)−n−w

and

max
1≤i≤n

|v0xi + vi | ≤ |v0|−(1+w′)/n

have infinitely many integer solutions (u0, . . . , un) and (v0, . . . , vn), with
v0 �= 0. It follows from Theorem B.2 that w(x) and w′(x) are non-negative.
Theorem B.5 shows how they are related.

THEOREM B.5. With the above notation, we have

w(x)

n2 + (n − 1)w(x)
≤ w′(x) ≤ w(x). (B.2)

PROOF. We may assume that n ≥ 2. We begin by treating some particular
cases. If w(x) = 0 (resp. w′(x) = 0), then the left (resp. the right) inequality
of (B.2) holds trivially. If |u0 + u1x1 + . . . + un xn| = 0 for some non-zero
integer (n + 1)-tuple (u0, . . . , un), then 1, x1, . . . , xn are linearly dependent
over Z and there exists a positive constant c such that max1≤i≤n |v0xi + vi | ≤
c|v0|−1/(n−1) has infinitely many integer solutions (v0, . . . , vn) with v0 �= 0.
Consequently, we have w(x) = +∞ and w′(x) ≥ 1/(n − 1), hence, (B.2)
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holds. Furthermore, if max1≤i≤n |v0xi + vi | = 0 for some non-zero integer
(n + 1)-tuple (v0, . . . , vn), then x1, . . . , xn are rational numbers and w(x) =
w′(x) = +∞, hence, (B.2) holds.

We now assume that we are in none of these particular cases. Let w > 0 be
a real number and let u0, . . . , un be integers, not all zero, such that

0 < ρ := |u0 + u1x1 + . . .+ un xn| ≤ U−n−w,

where U = max{|u0|, . . . , |un|}. (B.3)

By Theorem B.2, there exist v0, . . . , vn integers, not all zero, such that

|v0xi − vi | ≤ ρ1/n (i = 1, . . . n),
(B.4)|v0u0 + v1u1 + . . .+ vnun| < 1,

since the system of linear forms appearing in the left-hand members of these
inequalities has determinant ±ρ. The ui s and the vi s are integers, thus we get

v0u0 + v1u1 + . . .+ vnun = 0. (B.5)

Combining (B.3) and (B.5), we obtain

|ρv0| = |(v0x1 − v1)u1 + . . .+ (v0xn − vn)un| ≤ n U ρ1/n . (B.6)

It follows from (B.3) that U ≤ ρ−1/(n+w), thus (B.6) gives

|v0| ≤ nρ1/n−1−1/(n+w) = nρ−(n2+(n−1)w)/(n2+nw),

which, combined with (B.4), yields the left inequality of (B.2).
As for the right inequality, let w′ > 0 be a real number and let v0, . . . , vn

be integers with v0 �= 0 and

0 < ρ := max
1≤i≤n

|v0xi + vi | ≤ |v0|−(1+w′)/n .

Without any loss of generality, we assume that ρ = |v0x1 + v1|. By Theorem
B.2, there exist u0, . . . , un integers, not all zero, such that

| − u0 + u1x1 + . . .+ un xn| ≤ ρ(w′+n)/(w′+1),

|v0u0 + . . .+ vnun| < 1, (B.7)

|ui | ≤ ρ−1/(w′+1) (i = 2, . . . , n),

since the system of linear forms appearing in the left-hand members of these
inequalities has determinant ±ρ. Arguing as previously, we get (B.5) and we
deduce that |u1| ≤ nρ−1/(w′+1), which, combined with (B.7), completes the
proof of Theorem B.5.
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Theorem B.5 is due to Khintchine [318, 320], and its proof has been simplified
by Mahler [379] (see, for example, Gruber and Lekkerkerker [262], Section
45.3, Cassels [155], Chapter V, Theorem IV, or Schmidt [512], Chapter IV,
Section 5). Inequalities (B.2) turn out to be best possible, as proved by Jarnı́k
[293, 295], who got some related results [294]. The generalization of Theorem
B.5 to systems of linear forms is due to Dyson [224] and has been proved to be
best possible by Jarnı́k [299]. For other transference theorems, see Wang, Yu,
and Zhu [594], Schmidt and Wang [516], and the survey of Xu [604].
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scendental numbers’. Istanbul Üniv. Fen Fak. Mecm. Ser., 44, 39–82. (Cited in
Chapters 7 & 9.)

[9] (1982). ‘On Um -numbers’. Proc. Amer. Math. Soc., 85, 499–505. (Cited in
Chapter 7.)

[10] (1983). ‘On Mahler’s U-numbers’. Amer. J. Math., 105, 1347–1356. (Cited in
Chapter 7.)

[11] (1986). ‘On T-numbers’. Glasnik Math., 21, 271–282. (Cited in Chapter 7.)
[12] (1990). ‘Representation of real numbers as sums of U2-numbers’. Acta Arith.,

55, 301–310. (Cited in Chapter 7.)
[13] (1991). ‘On p-adic Um -numbers’. Istanbul Üniv. Fen Fak. Mat. Der., 50, 1–7.
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[99] (1912). ‘Über geometrische Wahrscheinlichkeit und über das Axiom der
beschränkten Arithmetisierbarkeit der Beobachtungen’. Math. Ann., 72, 585–
587. (Cited in Chapter 1.)

[100] Besicovitch, A. S. (1934). ‘Sets of fractional dimension (IV); on rational ap-
proximation to real numbers’. J. London Math. Soc., 9, 126–131. (Cited in
Chapter 5.)

[101] Bilu, Yu. & Bugeaud, Y. (2000). ‘Démonstration du théorème de Baker–
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mesure de transcendence’. C. R. Math. Rep. Acad. Sci. Canada, 13, 131–134.
(Cited in Chapter 8 and Appendix A.)

[190] Dickinson, H. (1993). ‘The Hausdorff dimension of systems of simultaneously
small linear forms’. Mathematika, 40, 367–374. (Cited in Chapter 5.)

[191] (1994). ‘The Hausdorff dimension of sets arising in metric Diophantine ap-
proximation’. Acta Arith., 68, 133–140. (Cited in Chapter 5.)

[192] (1997). ‘A remark on the Jarnı́k–Besicovitch theorem’. Glasgow Math. J., 39,
233–236. (Cited in Chapters 5 & 6.)

[193] Dickinson, H. & Dodson, M. M. (2001). ‘Diophantine approximation and Haus-
dorff dimension on the circle’. Math. Proc. Cambridge Phil. Soc., 130, 515–522.
(Cited in Chapters 4 & 5.)

[194] Dickinson, H., Dodson, M. M. & Yuan, J. (1999). ‘Hausdorff dimension and p-
adic Diophantine approximation’. Indag. Math. (N. S.), 10, 337–347. (Cited in
Chapter 9.)

[195] Dickinson, H. & Velani, S. L. (1997). ‘Hausdorff measure and linear forms’. J.
reine angew. Math., 490, 1–36. (Cited in Chapter 6.)

[196] Dirichlet, L. G. P. (1842). ‘Verallgemeinerung eines Satzes aus der Lehre von
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[197] Diviš, B. (1972). ‘An analog to the Lagrange numbers’. J. Number Theory, 4,
274–285. (Cited in Chapter 1.)

[198] Dodson, M. M. (1984). ‘A note on the Hausdorff–Besicovitch dimension of sys-
tems of linear forms’. Acta Arith., 44, 87–98. (Cited in Chapter 5.)

[199] (1991). ‘Star bodies and Diophantine approximation’. J. London Math. Soc.,
44, 1–8. (Cited in Chapter 5.)

[200] (1992). ‘Hausdorff dimension, lower order and Khintchine’s theorem in met-
ric Diophantine approximation’. J. reine angew. Math., 432, 69–76. (Cited in
Chapter 6.)

[201] (1993). ‘Geometric and probabilistic ideas in the metrical theory of Diophan-
tine approximation’. Tsp. Mat. Nauk, 48, 77–106 (in Russian). English transl.
in Russian Math. Surveys, 48 (1993), 73–102. (Cited in Chapter 5.)

[202] (1997). ‘A note on metric inhomogeneous Diophantine approximation’. J.
Austral. Math. Soc., 62, 175–185. (Cited in Chapter 5.)

[203] (2002). ‘Exceptional sets in dynamical systems and Diophantine approxima-
tion’. Rigidity in dynamics and geometry (Cambridge, 2000), 77–98, Springer,
Berlin. (Cited in Chapter 5.)

[204] Dodson, M. M. & Hasan, S. (1992). ‘Systems of linear forms and covers for star
bodies’. Acta Arith., 61, 119–127. (Cited in Chapter 5.)

[205] Dodson, M. M. & Kristensen, S. (To appear). ‘Hausdorff dimension and Dio-
phantine approximation’. Fractal Geometry and Applications: A Jubilee of
Benoit Mandelbrot, Proceedings of Symposia in Pure Mathematics, American
Mathematical Society. (Cited in Chapters 5, 6 & 9.)

[206] Dodson, M. M., Rynne, B. P. & Vickers, J. A. G. (1990). ‘Diophantine approxi-
mation and a lower bound for Hausdorff dimension’. Mathematika, 37, 59–73.
(Cited in Chapters 5 & 6.)



References 251

[207] Dombrovskiı̆, R. I. (1989). ‘Simultaneous approximations of real numbers by
algebraic numbers of bounded degree’. Dokl. Akad. Nauk BSSR, 33, 205–208,
283 (in Russian). (Cited in Chapter 5.)

[208] Dress, A., Elkies, N. & Luca, F. (Preprint). ‘A characterization of Mahler’s gen-
eralized Liouville numbers by simultaneous rational approximation’. (Cited in
Chapter 3.)

[209] Dubickas, A. (1992). ‘An estimation of the difference between two zeros of a
polynomial’. New Trends in Probability and Statistics, Vol. 2 (Palanga, 1991),
17–21, VSP, Utrecht. (Cited in Appendix A.)

[210] (1998). ‘On algebraic numbers close to 1’. Bull. Austral. Math. Soc., 58, 423–
434. (Cited in Appendix A.)

[211] Dubois, E. (1977). ‘Application de la méthode de W. M. Schmidt à
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[221] (1990). ‘Approximations algébriques d’un nombre transcendant’. Cinquante
ans de polynômes (Paris, 1988), pp. 94–96, Lecture Notes in Math., 1415,
Springer, Berlin. (Cited in Chapter 8.)

[222] Duverney, D. (2001). ‘Transcendence of a fast converging series of rational
numbers’. Math. Proc. Cambridge Phil. Soc., 130, 193–207. (Cited in Chap-
ter 3.)

[223] Dyson, F. J. (1947). ‘The approximation to algebraic numbers by rationals’.
Acta Math., 79, 225–240. (Cited in Chapter 2.)

[224] (1947). ‘On simultaneous Diophantine approximations’. Proc. London Math.
Soc., 49, 409–420. (Cited in Appendix B.)

[225] Eggleston, H. G. (1951). ‘Sets of fractional dimension which occur in some
problems in number theory’. Proc. London Math. Soc., 54, 42–93. (Cited in
Chapter 5.)



252 References

[226] Erd ′′os, P. (1959). ‘Some results on Diophantine approximation’. Acta Arith., 5,
359–369. (Cited in Chapter 1.)

[227] (1962). ‘Representations of real numbers as sums and products of
Liouville numbers’. Michigan Math. J., 9, 59–60. (Cited in Chapters
1 & 9.)

[228] (1970). ‘On the distribution of convergents of almost all real numbers’. J.
Number Theory, 2, 425–441. (Cited in Chapter 1.)

[229] Erd ′′os, P. & Mahler, K. (1939). ‘Some arithmetical properties of the convergents
of a continued fraction’. J. London Math. Soc., 14, 12–18. (Cited in Chapters 5
& 10.)

[230] Euler, L. (1737). ‘De fractionibus continuis’. Commentarii Acad. Sci. Imperiali
Petropolitanae, 9. (Cited in Chapter 1.)

[231] Everest, G. & Ward, T. (1999). Heights of polynomials and entropy in alge-
braic dynamics. Universitext, Springer-Verlag London, Ltd, London. (Cited in
Appenidx A.)

[232] Evertse, J-H. (2000). ‘Symmetric improvements of Liouville’s inequality: A
survey’. In Algebraic Number Theory and Diophantine Analysis (Graz, 1998),
129–141, de Gruyter, Berlin. (Cited in Chapter 10.)

[233] ‘Approximation of complex algebraic numbers by algebraic numbers of
bounded degree’. www.math.leidenuniv.nl/evertse/publicaties.shtml (Cited in
Chapter 9.)

[234] Falconer, K. (1985). The geometry of fractal sets. Cambridge Tracts in Mathe-
matics, 85, Cambridge University Press. (Cited in Chapter 5.)

[235] (1985). ‘Classes of sets with large intersections’. Mathematika, 32, 191– 205.
(Cited in Chapter 6.)

[236] (1990). Fractal Geometry: Mathematical Foundations and Applications. John
Wiley & Sons. (Cited in Chapters 5 & 6.)

[237] (1994). ‘Sets with large intersection properties’. J. London Math. Soc., 49,
267–280. (Cited in Chapters 5 & 6.)

[238] (2000). ‘Representation of families of sets by measures, multifractal analy-
sis and Diophantine approximation’. Math. Proc. Cambridge Philos. Soc., 128,
111–121. (Cited in Chapter 5.)

[239] Fatou, P. (1904). ‘Sur l’approximation des incommensurables et des séries
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[300] (1969). ‘Un théorème d’existence pour les approximations diophantiennes’.
Enseignement Math., 15, 171–175. (Cited in Chapter 6.)

[301] Jenkinson, O. & Pollicott, M. (2001). ‘Computing the dimension of dynamically
defined sets: E2 and bounded continued fractions’. Ergod. Th. Dynam. Sys., 21,
1429–1445. (Cited in Chapter 5.)

[302] Jones, H. (2001). Contributions to Metric Number Theory. Ph.D. thesis, Cardiff.
(Cited in Chapter 1.)

[303] (2001). ‘Khintchine’s theorem in k dimensions with prime numerator and
denominator’. Acta Arith., 99, 205–225. (Cited in Chapter 1.)

[304] Kahane, J.-P. & Katznelson, Y. (1973). ‘Sur les ensembles d’unicité U(ε) de
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[345] Kühnlein, S. (1996). ‘On a measure theoretic aspect of Diophantine approxima-
tion’. J. reine angew. Math., 477, 117–127. (Cited in Chapter 1.)



258 References

[346] Lagarias, J. C. (1981). ‘A complement to Ridout’s p-adic generalization of the
Thue–Siegel–Roth theorem’. Analytic Number Theory (Philadelphia, 1980),
264–275, Lecture Notes in Math., 899, Springer, Berlin–New York. (Cited in
Chapters 2 & 10.)

[347] Lagrange, J. L. (1770). ‘Additions au mémoire sur la résolution des équations
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Monatsh. Math.. (Cited in Chapter 10.)

[415] Mattila, P. (1995). Geometry of Sets and Measures in Euclidean Spaces. Cam-
bridge University Press. (Cited in Chapters 3, 5, 6 & 7.)

[416] Melián, M. V. & Pestana, D. (1993). ‘Geodesic excursions into cusps in finite
volume hyperbolic manifolds’. Mich. Math. J., 40, 77–93. (Cited in Chapter 9.)
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Fak. Mat. Derg., 59, 111–143. (Cited in Chapter 9.)

[419] Mignotte, M. (1976). ‘Sur la complexité de certains algorithmes où intervient
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als of fourth degree in two variables’. Litovsk. Mat. Sb., 27, 165–171 (in
Russian). English transl. in Lithuanian Math. J., 27 (1987), 94–99. (Cited in
Chapter 4.)

[528] Sorokin, V. N. (1991). ‘Hermite–Padé approximations of sequential powers of
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