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FOREWORD

More than a century ago Hilbert posed his unsolved (and now famous), 23 problems
of mathematics. When browsing through the Internet recently I found that Hilbert
termed his Sixth Problem non-mathematical. How could Hilbert call a problem of
mathematics non-mathematical? And what does this problem say?

In 1900, Hilbert, inspired by Euclid’s axiomatic system of geometry, formulated
his Sixth Problem as follows: To find a few physical axioms that, similar to the
axioms of geometry, can describe a theory for a class of physical events that is as
large as possible.

The twenties and thirties of the last century were truly exciting times. On the
one hand there emerged the new physics which we call quantum physics today.
On the other hand, in 1933, N. A. Kolmogorov presented a new axiomatic system
which provided a solid basis for modern probability theory. These milestones
marked the entrance into a new epoch in that quantum mechanics and modern
probability theory opened new gates, not just for science, but for human thinking
in general.

Heisenberg’s Uncertainty Principle showed, however, that the micro world is
governed by a new kind of probability laws which differ from the Kolmogorovian
ones. This was a great challenge to mathematicians as well as to physicists and
logicians. One of the responses to this situation was the, now famous, 1936 pa-
per by Garret Birkhoff and John von Neumann entitled “The logic of quantum
mechanics”, in which they suggested a new logical model which was based on
the Hilbert space formalism of quantum mechanics and which we, today, call a
quantum logic. G. Mackey asked the question whether every state on the lattice
of projections of a Hilbert space could be described by a density operator; and
his young student A. Gleason gave a positive answer to this question. Although
this was not part of Gleason’s special field of interest, his theorem, now known
as Gleason’s theorem, had a profound impact and is rightfully considered one of
the most important results about quantum logics and structures. Gleason’s proof
was non-trivial. When John Bell became familiar with it, he said he would leave
this field of research unless there would be a simpler proof of Gleason’s theorem.
Fortunately, Bell did find a relatively simple proof of the partial result that there
exists no two-valued measure on a three-dimensional Hilbert space. An elementary
proof of Gleason’s theorem was presented by R. Cooke, M. Keane and W. Moran
in 1985.

In the eighties and nineties it was the American school that greatly enriched the
theory of quantum structures. For me personally Varadarajan’s paper and subse-
quently his book were the primary sources of inspiration for my work together with
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viii Foreword

Gleason’s theorem. The theory of quantum logics and quantum structures inspired
many mathematicians, physicists, logicians, experts on information theory as well
as philosophers of science. I am proud that in my small country, Czechoslovakia
and now Slovakia, research on quantum structures is a thriving field of scientific
activity.

The achievements characteristic of the eighties and nineties are the fuzzy ap-
proaches which provided a new way of looking at quantum structures. A whole
hierarchy of quantum structures emerged, and many surprising connections with
other branches of mathemtics and other sciences were discovered. Today we can
relate phenomena first observed in quantum mechanics to other branches of sci-
ence such as complex computer systems and investigations on the functioning of
the human brain, etc.

In the early nineties, a new organisation called International Quantum Struc-
tures Association (IQSA) was founded. IQSA gathers experts on quantum logic
and quantum structures from all over the world under its umbrella. It organ-
ises regular biannual meetings: Castiglioncello 1992, Prague 1994, Berlin 1996,
Liptovsky Mikulas 1998, Cesenatico 2001, Vienna 2002, Denver 2004, Malta 2006.

In spring 2005, Dov Gabbay, Kurt Engesser, Daniel Lehmann and Jane Spurr
had an excellent idea — to ask experts on quantum logic and quantum structures to
write long chapters for the Handbook of Quantum Logic and Quantum Structures.
It was a gigantic task to collect and coordinate these contributions by leading
experts from all over the world. We are grateful to all four for preparing this
monumental opus and to Elsevier for publishing it.

When browsing through this Handbook, in my mind I am wandering back to
Hilbert’s Sixth Problem. I am happy that this problem is in fact not a genuinely
mathematical one which, once it is solved, brings things to a close. Rather it has led
to a new development of scientific thought which deeply enriched mathematics, the
understanding of the foundations of quantum mechanics, logic and the philosophy
of science. The present Handbook is a testimony to this fact. Those who bear
witness to it are Dov, Kurt, Daniel, Jane and the numerous authors. Thanks to
everybody who helped bring it into existence.

Anatolij Dvurečenskij, President of IQSA
July 2006



EDITORIAL PREFACE

There is a wide spread slogan saying that Quantum Mechanics is the most
successful physical theory ever. And, in fact, there is hardly a physicist who does
not agree with this. However, there is a reverse of the medal. Not only is Quantum
mechanics unprecedently successful but it also raises fundamental problems which
are equally unprecedented not only in the history of physics but in the history of
science in general.

The most fundamental problems that Quantum Mechanics raises are conceptual
in nature. What is the proper interpretation of Quantum Mechanics? This is a
question touching on most fundamental issues, and it is, at this stage, safe to say
that there is no answer to this question yet on which physicists and philosophers
of science could agree. It is, moreover, no exaggeration to say that the problem of
the conceptual understanding of Quantum Mechanics constitutes one of the great
intellectual puzzles of our time.

The topic of the present Handbook is, though related to this gigantic issue, more
modest in nature. It can, briefly, be described as follows. Quantum Mechanics
owes is tremendous success to a mathematical formalism. It is the mathematical
and logical investigation of the various aspects of this formalism that constitutes
the topic of the present Handbook.

This formalism the core of which is the mathematical structure of a Hilbert
space received its final elegant shape in John von Neumann’s classic 1932 book
“Mathematical Foundations of Quantum Mechanics”. In 1936 John von Neumann
published, jointly with the Harvard matthematician Garret Birkhoff, a paper enti-
tled “The logic of quantum mechanics”. In the Introduction the authors say: ”The
object of the present paper is to discover what logical structure we may hope to
find in physical theories which, like quantum mechanics, do not conform to classi-
cal logic”. The idea of the paper, which was as ingenious as it was revolutionary,
was that the Hilbert space formalism of Quantum Mechanics displayed a logical
structure that could prove useful to the understanding of Quantum Mechanics.
Birkoff and von Neumann were the first to put forward the idea that there is a
link between logic and (the formalism of) Quantum Mechanics, and their now fa-
mous paper marked the birth of a field of research which has become known as
Quantum Logic. The Birkhoff-von Neumann paper triggered, after some time of
dormancy admittedly, a rapid development of quantum logical research. Various
schools of thought emerged. Let us, in this Introduction, highlight just a few of
the milestones in this development.

In his famous essay “Is logic empirical?” Putnam put forward the view that the
role played by logic in Quantum Mechanics is similar to that played by geometry in
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the theory of relativity. On this view logic is as empirical as geometry. Putnam’s
revolutionary thesis triggered a discussion which was highly fruitful not only for
Quantum Mechanics but for our views on the nature of logic in general. The reader
will find a discussion of Putnam’s thesis in this Handbook.

Another school of thought was initiated by Piron’s “Axiomatique quantique”.
This school, which has become known as the Geneva school, aimed at reconstruct-
ing the formalism of Quantum Mechanics from first principles. It was Piron’s
student Diederik Aerts who continued this in Brussels. The achievements of the
Geneva-Brussels school are reflected in various chapters witten by Aerts and for-
mer students of his.

In Italy it was Enrico Beltrametti and Maria Luisa Dalla Chiara, just to mention
two names, who founded another highly influential school which is well represented
in this Handbook.

Highly sophisticated efforts resulted in linking the logic of Quantum Mechanics
to mainstream logic. Just to give a flavour of this, let us mention that Nishimura
studied Gentzen type systems in the context of Quantum Logic. Abramsky and
Coecke in Oxford and Sernadas in Lisbon as well as others established the con-
nection with Categorial Logic and Linear Logic, and the connection with Non-
Monotonic Logic was made by the editors.

Prior to this, another direction of research had focused on the lattice structures
relevant to Quantum Logic. Essentially, this field of research was brought to
fruition in the USA by the pioneering work of Foulis and Greechie on orthomodular
lattices.

Moreover, we have to mention the Czech-Slovak school which was highly influ-
ential in establishing the vast field of research dealing with the various abstract
Quantum Structures which constitute the topic of a whole volume of this Hand-
book. Let us in this context just mention the names of Anatolij Dvurecenskij and
Sylvia Pulmannova in Bratislava and Pavel Ptak in Prague.

The editors are happy and grateful to have succeeded in bringing together the
most eminent scholars in the field of Quantum logic and Quantum Structures for
the sake of the present Handbook. We cordially thank all the authors for their
contributions and their cooperation during the preparation of this work. Most of
these authors are members of the Internatonal Quantum Structures Association
(IQSA). We would like to express our deep gratitude to IQSA and in particular
to its President, Professor Anatolij Dvurecenskij, for cooperating so closely with
us and supporting us so generously during the preparation of this Handbook.

The present Handbook is an impressive document of the intellectual achieve-
ments which have been made in the study of the logical and mathematical struc-
tures arising from Quantum Mechanics. We hope that it will turn out to be a
milestone on the path that will ultimately lead to the solution of one of the great
intellectual puzzles of our time, namely the understanding of Quantum Mechanics.

The Editors: Kurt Engesser, Dov Gabbay and Daniel Lehmann
Germany, London, and Israel

May 2008

Editorial Preface



THE BIRKHOFF–VON NEUMANN CONCEPT
OF QUANTUM LOGIC

Miklós Rédei

1 INTRODUCTION

Quantum logic was born with the following conclusion of Garrett Birkhoff and John
von Neumann in their joint paper (henceforth “Birkhoff-von Neumann paper”)
published in 1936:

Hence we conclude that the propositional calculus of quantum mechan-
ics has the same structure as an abstract projective geometry.
[Birkhoff and von Neumann, 1936] (Emphasis in the original)

This was a striking conclusion in 1936 for two reasons, one ground breaking and one
conservative: ground breaking because it opened the way for the development of
algebraic logic in the direction of non-classical algebraic structures that have much
weaker properties than Boolean algebras. Conservative because an abstract pro-
jective geometry is an orthocomplemeneted, (non-distributive), modular lattice;
however, the non-Boolean algebra that seemed in 1936 to be the most natural
candidate for quantum logic was the non-modular, orthomodular lattice of all pro-
jections on an infinite dimensional complex Hilbert space. Indeed, subsequently
quantum logic was (and typically still is) taken to be an orthocomplemented, non-
modular, orthomodular lattice. Hence, the concept of quantum logic proposed by
Birkhoff and von Neumann in their seminal paper differs markedly from the no-
tion that became later the standard view – it is more conservative than one would
expect on the basis of later developments.

There are not many historical investigations in the enormous quantum logic lit-
erature [Pavicic, 1992] that aim at scrutinizing the Birkhoff-von Neumann notion of
quantum logic, and especially the discrepancy between the standard notion and the
Birkhoff-von Neumann concept: [Bub, 1981b], [Bub, 1981a], [Rédei, 1996], Chap-
ter 7. in [Rédei, 1998], [Rédei, 2001], [Dalla-Chiara et al., 2007] (see also [Popper,
1968] and [Scheibe, 1974]). The recent discovery and publication in [Rédei, 2005]
of von Neumann’s letters to Birkhoff during the preparatory phase (in 1935) of
their 1936 paper have made it possible to reconstruct in great detail [Rédei, 2007]
the conceptual considerations that culminated in the 1936 paper’s main conclusion
cited above. As a result of these historical studies we now understand quite well
why Birkhoff and von Neumann postulated the “quantum propositional calculus”

HANDBOOK OF QUANTUM LOGIC AND QUANTUM STRUCTURES: QUANTUM LOGIC
Edited by K. Engesser, D. M. Gabbay and D. Lehmann
© 2009 Elsevier B.V. All rights reserved
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2 Miklós Rédei

to be a modular lattice and rejected explicitly the idea that quantum propositional
calculus can be identified with the non-modular, orthomodular lattice of all closed
linear subspaces of an infinite dimensional complex Hilbert space (Hilbert lattice).

The aim of this review is to recall the Birkhoff-von Neumann concept of quantum
logic together with the pertinent mathematical notions necessary to understand
the development of their ideas. Special emphasis will be put on the analysis of
the difference between their views and the subsequent standard notion of quantum
logic. The structure of the review is the following. For reference, and in order to
place the Birkhoff-von Neumann concept in appropriate context, section 2 recalls
briefly the standard notion of quantum logic in terms of algebraic semantics. Based
on excerpts from the recently discovered and published letters by von Neumann
to Birkhoff, section 3 reconstructs the main steps of the thought process that led
Birkhoff and von Neumann to abandon Hilbert lattice as quantum logic and to
propose in their published paper an abstract projective geometry as the quantum
propositional system. Section 4 argues that von Neumann was not satisfied with
their idea after 1936: He would have liked to see quantum logic worked out in much
greater detail – he himself tried to achieve this but did not succeed. Section 4 also
attempts to discern the conceptual obstacles standing in the way of elaborating
quantum logic along the lines von Neumann envisaged. The concluding section 5
summarizes the main points and makes some further comments on the significance
of the Birkhoff-von Neumann concept.

2 QUANTUM LOGIC: LOGICIZATION OF NON-BOOLEAN ALGEBRAIC
STRUCTURES. THE STANDARD VIEW.

It is well known that both the syntactic and the semantic aspects of classical
propositional logic can be described completely in terms of Boolean algebras: The
Tarski-Lindenbaum algebra A of classical propositions is a Boolean algebra and a
deductive system formulated in a classical propositional logic can be identified with
a filter in A. The notions of syntactic consistency and completeness correspond
to the filter being proper and being prime (equivalently: maximal), respectively.
The notion of interpretation turns out to be a Boolean algebra homomorphism
from A into the two element Boolean algebra, and all the semantic notions are
defined in terms of these homomorphisms. All this is expressed metaphorically
by Halmos’ famous characterization of the (classical) logician as the dual of a
(Boolean) algebraist [Halmos, 1962, p. 22], a characterization which has been
recently “dualized” by Dunn and Hardegree: “By duality we obtain that the
algebraist is the dual of the logician.” [Dunn and Hardegree, 2001, p. 6].

The problem of quantum logic can be formulated as the question of whether the
duality alluded to above also obtains if Boolean algebras are replaced by other,
typically weaker algebraic structures arising from the mathematical formalism of
quantum mechanics. It turns out that formal logicization is possible for a large
class of non-Boolean structures. Following Hardegree [Hardegree, 1981b], [Hard-
egree, 1981a] the standard (sometimes called “orthodox”) concept is described



The Birkhoff–von Neumann Concept of Quantum Logic 3

below, and it is this concept with which the Birkhoff von Neumann concept will
be contrasted.

Standard quantum logic comes in two forms: abstract (also called orthomodu-
lar) quantum logic and concrete (also called Hilbert) quantum logic. The semantics
is similar in both cases, but the latter determines a stronger logic.

Let K = {P,&,�,∼} be a zeroth order formal language with the set P of
sentence variables p, q . . ., two place connectives & (and), � (or), negation sign ∼,
parentheses (,), and let F be the set of well formed formulas in K defined in the
standard way by induction from P : F is the smallest set for which the following
two conditions hold:

P ⊂ F (1)
if φ, ψ ∈ F then (φ&ψ), (φ � ψ), (∼ φ) ∈ F (2)

Let (L,∨,∧,⊥) be an orthomodular lattice. Orthomodularity of L means that the
following condition holds:

(3) orthomodularity: If A ≤ B and A⊥ ≤ C, then A∨(B∧C) = (A∨B)∧(A∨C)

Orthomodularity is a weakening of the modularity law:

(4) modularity: If A ≤ B, then A ∨ (B ∧ C) = (A ∨B) ∧ (A ∨ C)

which itself is a weakening of the distributivity law:

(5) distributivity: A ∨ (B ∧ C) = (A ∨B) ∧ (A ∨ C) for all A,B,C

The set GQ ⊆ L in an orthomodular lattice is called a generalized filter if

I ∈ GQ (6)
if A ∈ GQ and A⊥ ∨ (A ∧B) ∈ GQ then B ∈ GQ (7)

Given a pair (L,GQ) the map i : F → L is called an (L,GQ)-interpretation if

i(φ&ψ) = i(φ) ∧ i(ψ) (8)
i(φ � ψ) = i(φ) ∨ i(ψ) (9)
i(∼ φ) = i(φ)⊥ (10)

Each interpretation i determines a (L,GQ)-valuation vi by

(11) vi(φ) =

⎧⎨⎩
1 (true) if i(φ) ∈ GQ

0 (false) if i(∼ φ) ∈ GQ

undetermined otherwise

If V (L) denotes the set of all (L,GQ)-valuations and V is the class of valuations
determined by the class of orthomodular lattices, then φ ∈ F is called valid if
v(φ) = 1 for every v ∈ V , and a class of formulas Γ is defined to entail φ if
v(ψ) = 1 for all ψ ∈ Γ implies v(φ) = 1. One can define the quantum analog →Q

of the classical conditional by



4 Miklós Rédei

(12) φ →Q ψ =∼ φ � (φ&ψ)

and one can formulate a deduction system in K using →Q such that one can prove
soundness and completeness theorems for the resulting quantum logical system
(see [Hardegree, 1981b],[Hardegree, 1981a]).

A specific class of orthomodular lattices is the category of Hilbert lattices: A
Hilbert lattice P(H) with lattice operations ∧,∨,⊥ is the set P(H) of all pro-
jections (equivalently: closed linear subspaces) of a complex, possibly infinite di-
mensional Hilbert space H, where the lattice operations ∧,∨ and ⊥ are the set
theoretical intersection, closure of the sum and orthogonal complement, respec-
tively. Note that the Hilbert lattice P(H) is not only non-distributive but it also
is non-modular if the dimension of the Hilbert space is infinite [Rédei, 1998].

It is important that while all the definitions and stipulations made above in
connection with orthomodular lattices are meaningful for Hilbert lattices, no com-
pleteness results are presently known for the semantics determined by Hilbert
lattices: The deduction system that works in the case of (abstract) orthomodular
lattices is not strong enough to yield all statements that are valid in Hilbert lat-
tices: the “ortho-arguesian law”, which is valid in Hilbert lattices, does not hold
in every orthomodular lattice (see [Kalmbach, 1981], [Dalla-Chiara and Giuntini,
2002]).

3 THE BIRKHOFF-VON NEUMANN CONCEPT OF QUANTUM LOGIC

The Birkhoff-von Neumann paper can be viewed as the first paper in which the
suggestion to logicize a non-Boolean lattice appears. There are however several
types of non-Boolean lattice. Which one is supposed to be logicized?

3.1 Which non-Boolean lattice to logicize?

At the time of the birth of quantum logic the notion of an abstract orthomodu-
lar lattice did not yet exist; however, the canonical example of non-distributive,
orthomodular lattices, the Hilbert lattice P(H), was known already, and, since
this structure emerges naturally from the Hilbert space formalism of quantum
mechanics, P(H) was the most natural candidate in 1935 for the propositional
system of quantum logic. Indeed, Birkhoff and von Neumann did consider P(H)
as a possible propositional system of quantum logic; yet, this lattice was not their
choice: The first indication that P(H) may not be a suitable candidate for a quan-
tum propositional system is in von Neumann’s letter of (January 19, 1935). Von
Neumann writes:
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Using the operator-description,
a ∨ b, a ∧ b can be formed, if the
physically significant operators form a ring. (← I believe this).
This, I think should be assumed anyhow,
even if one does not require that
all operators are phys.[ically] significant. (← but I am rather doubting lately this.)

But we need probably not insist on this point too much.
(von Neumann to Birkhoff, January 19, 1935 ?1), [Rédei, 2005, p. 51]

3.2 Von Neumann algebras

A “ring of operators” von Neumann is referring to in the above quotation is known
today as a von Neumann algebra: a set N of bounded operators on a Hilbert
space H is a von Neumann algebra if it contains the unit, is closed with respect
to the adjoint operation and is closed in the strong operator topology. The latter
requirement means that if Qn is a sequence of operators from M such that for all
ξ ∈ H we have Qnξ → Qξ for some bounded operator Q on H, then Q ∈ M (see
[Takesaki, 1979] for the theory of von Neumann algebras).

If S is any set of bounded operators on H, then its (first) commutant S′ is the
set of bounded operators that commute with every element in S i.e.:

S′ ≡ {Q : QX = XQ, for all X ∈ S}

The operation of taking the commutant can be iterated: S′′ ≡ (S′)′, and it is
clear that S is contained in the second commutant, so the second commutant S′′

is an extension of S. How much of an extension? The answer to this question,
von Neumann’s double commutant theorem, is the most fundamental result in the
theory of von Neumann algebras:

PROPOSITION 1 Double commutant theorem. S is strongly dense in S′′.

Proposition 1 implies that a ∗-algebra of bounded operators on a Hilbert space
that contains the unit is a von Neumann algebra if and only if it coincides with
its second commutant. A von Neumann algebra N is called a factor if the only
elements in N that commute with every other element in N are the constant
multiples of the identity, i.e. if

(13) N ∩N ′ = {λI : λ a complex number}
An immediate corollary of the double commutant theorem is the characteristic

property of von Neumann algebras that they contain many projections; in fact,
they contain enough projections for the set of projections P(M) to determine the
von Neumann algebra completely in the sense

1Von Neumann’s letters are not always properly dated: the year is occasionally missing. If
this is the case, we put a question mark after the year – the context makes it clear that the year
of writing is 1935 in cases of all the letters quoted here.



6 Miklós Rédei

(14) M = (P(M))′′

Moreover, we have

PROPOSITION 2. The set P(M) of projections of a von Neumann algebra M is
a complete, orthomodular lattice (called von Neumann lattice) with respect to the
lattice operations inherited from P(H).

In particular the Hilbert lattice P(H) of all projections on a Hilbert space is
a complete orthomodular lattice, since the set B(H) of all bounded operators on
H is a von Neumann algebra. Specifically the spectral projections of the set of
all (not necessarily bounded) selfadjoint operators coincides with the set of all
projections.

It is very important that while all von Neumann lattices are orthomodular, some
have the stronger property of modularity. There is a subtle connection between
the type of a von Neumann algebra (in the sense of the Murray-von Neumann
classification theory) and the modularity of its projection lattice. We shall return
to this issue later.

3.3 Non-modularity of Hilbert lattice

While in January 1935 von Neumann did not intend to insist on restricting the set
of physical quantities to a proper subset of all possible operators, by November
1935 he changed his mind:

I am somewhat scared to consider all physical quantities = bounded
self-adjoint operators as a lattice.
(von Neumann to Birkhoff, November 6, 1935 ?), [Rédei, 2005, p. 53]

The reason why he changed his mind was the realization that the Hilbert lattice
P(H) is not modular if the Hilbert space is infinite dimensional (note that “B-
lattice” means modular lattice in the next quotation):

In any linear space H the linear subspaces K,L,M, . . . form a B-lattice
L with the
“meet” K ∩ L: intersection of K and L

in the sense of set theory
“join” K ∪ L : linear sum of K and L,

i.e. set of all f + g, f ∈ K, g ∈ L

(Proof obvious.) But in a metric-linear space H the lattice L of all
closed-linear subspaces KLM, . . . , for which the “join” is defined as

“join” K ∨K: closure of the linear sum of K and L,
i.e. the set of all condensation points
of the f + g, f ∈ K, g ∈ L
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while the “meet” is as above, is not necessarily a B-lattice. This is in
particular the case in Hilbert space. (K ∪ L and K ∨ L are identical
if K,L are both closed and orthogonal to each other, but not for any
two closed K,L !)

In fact, it is possible to find three closed-linear subspaces K, L, M of
Hilbert space H, for which

(15) K � M, (K ∨ L) ∩M � K ∨ (L ∩M)

(von Neumann to Birkhoff, November 6, 1935 ?), [Rédei, 2005, p. 54],
emphasis in original.

This letter contains a detailed proof that subspaces K, L, M exist that satisfy
(15) (and thereby violate modularity (4)). (The Birkhoff-von Neumann paper just
states this fact without detailed argument.) Von Neumann’s proof makes use of the
theory of unbounded selfadjoint operators, utilizing the fact that one can find two
unbounded selfadjoint operators X and Y on an infinite dimensional Hilbert space
such that the intersection of their domains is empty. Von Neumann emphasizes
this feature of his proof:

Examples could be constructed which make no use of operator theory,
but I think that this example shows more clearly “what it’s all about”:
It is the existence of “pathological” operators – like X,Y above – in
Hilbert space, which destroys the B-lattice character.
(von Neumann to Birkhoff, November 6, 1935 ?), [Rédei, 2005, p. 55]

Von Neumann regarded this pathological behavior of the set of all unbounded op-
erators on a Hilbert space a very serious problem because it prohibits adding and
composing these operators in general, which entails that these operators do not
form an algebra. In von Neumann’s eyes this was a great obstacle to doing compu-
tations with those operators, and since the selfadjoint operators are representatives
of quantum physical quantities, it appeared unnatural to him that they behave
so irregularly that forming an algebra from them was not possible. He pointed
out this pathology several times in his published papers (see e.g. paragraph 6. of
Introduction in [Murray and von Neumann, 1936]), and the pathological character
of the set of all selfadjoint operators was one of the main reasons why he hoped
as late as in his famous talk on “Unsolved Problems in Mathematics” in 1954 (see
[von Neumann, 2001] and [Rédei, 1999]) that a restricted set of operators, and
therefore a specific von Neumann algebra, the type II1 factor (see below) would
be a more suitable mathematical framework for quantum mechanics than Hilbert
space theory.

In this situation von Neumann saw two options:
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(I) Either we define the “join” by ∪ (as a honest linear sum), then
the lattice is B, but we must admitt all (not-necessarily-closed-)
linear subspaces,

(II) or we define the “join” by ∨ (closure of the linear sum), then the
B-character is lost.

(von Neumann to Birkhoff, November 6, 1935 ?), [Rédei, 2005, p. 55]

Since P(H) is not modular and given that von Neumann wished to preserve mod-
ularity as a property of the quantum propositional system, one would expect von
Neumann to choose option (I). But this is not the case. Von Neumann thinks
through the consequences of choosing option (I) first:

Let us first consider the alternative (I). The orthogonal complement
K ′ still has the property K ′ ∪ L′ = (K ∩ L)′, but K ′ ∩ L′ = (K ∪ L)′

and K ′′ = K are lost. We have K∩K ′ = 0, while K∪K ′ is everywhere
dense, but not necessarily I. There is a funny relationship between K
and its “closure” K ′′. (For instance: All probabilities in the state K
are equal to those in the state K ′′, but “meets” (K ∩ L and K ′′ ∩ L′′,
even for closed L’s) may differ.)

The situation is strongly reminiscent of the “excluded middle” troubles,
although I did not yet compare all details with those of the class-
calculus in “intuitionistic” logics.

After all it is so in normal logics, too, that these troubles arise as
soon as you pass to infinite systems, although I must admitt, that the
difficulties there are more “optional” then2 here.

It has to be said, finally, that even in this case (I) complements exist,
i.e., that for every K there exists K∗’s for which K∪K∗ = I, K∩K∗ =
0, but one needs the Hammel-basis-construction to get them.
(von Neumann to Birkhoff, November 6, 1935 ?), [Rédei, 2005, p. 55]

So, while von Neumann evaluates alternative (I) as representing an option which
cannot be excluded on the grounds of being either algebraically or logically ex-
tremely weird (although it is clear from the above that he did not like the asym-
metric failure of De Morgan’s law), he prefers option (II) in spite of its being
seemingly counterintuitive. Here is why:

Alternative (II) seems to exclude Hilbert space, if one sticks to B-
lattices.3 Still one may observe this:

Consider a ring R of operators in Hilbert space. The idempotents of R
form a lattice LR. One sees easily, that LR is irreducible (=no direct
sum), if and only if the center of R consists of the αI (α=complex

2Spelling error, should be “than”.
3Recall that B-lattice means modular lattice.
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number) only, i.e. if R is a ring of the sort which Murray and I consid-
ered. (We called them “factors”.) LR contains 0, I and a complement
which dualises ∪ and ∩. (Now ∪ corresponds to what I called ∨, case
(II).) One may ask: When is LR a B-lattice? The answer is (this is not
difficult to prove): If and only if the ring R is finite in the classification
Murray and I gave. I.e.: R must be isomorphic:

1. either to the full matrix-ring of a finite-dimensional Euclidean
space (say n-dimensional, n = 1, 2, . . .),

2. to one of those of our rings, in which each idempotent has a “di-
mensionality”, the range of which consists of all real numbers
≥ 0,≤ 1, and which is uniquely determined by its formal proper-
ties.

We called 1. “Case In” and 2. “Case II1”.

Thus for operator-lattices the B-lattice axiom

a ≤ b → (a ∪ b) ∩ c = a ∪ (b ∩ c)

leads directly to the cases I1, I2, . . . and II1!
(von Neumann to Birkhoff, November 6, 1935 ?), [Rédei, 2005, p. 56]

3.4 Types of von Neumann algebras

Von Neumann refers here to the Murray-von Neumann classification theory of fac-
tors, which was worked out by him in collaboration with F.J Murray precisely
at the time (1934-1935) when he was working with G. Birkhoff on quantum logic
[Murray and von Neumann, 1936]. Von Neumann (partly in collaboration with
F.J. Murray) published four major papers on the theory of von Neumann algebras
[Murray and von Neumann, 1936], [Murray and von Neumann, 1937], [von Neu-
mann, 1940] and [Murray and von Neumann, 1943]. The first paper’s main result
was a classification theory of von Neumann algebras that are irreducible in the
sense of not containing non-trivial operators commuting with every other operator
in the algebra (i.e. “factors”). The set B(H) of all bounded operators is clearly a
factor and it turned out that there are five classes of factors, the different types
are denoted by von Neumann as In, I∞, II1, II∞ and III∞. The classification
of factors was given in terms of a (relative) dimension function d defined on the
lattice of projections P(M) of a von Neumann algebra M. The map d from P(M)
into the set IR+ ∪ {∞} is a dimension function if

(i) d(A) > 0 if and only if A �= 0,

(ii) d(A) = d(B) if there exists an isometry U ∈ M between ranges of the
projections A and B,

(iii) d(A) + d(B) = d(A ∨B) + d(A ∧B).
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The (relative) dimension function d on an arbitrary factor is a generalization of the
ordinary linear dimension of the closed linear subspace a projection projects to,
and the ordinary dimension takes on the positive integer values 0, 1, 2, . . . , n and
0, 1, 2, . . ., respectively, in the two well-known cases of the set of all bounded oper-
ators on a finite, n-dimensional (respectively infinite) dimensional Hilbert space.
In the cases II1, II∞ and III∞ the ranges of the dimension function are, respec-
tively, the following: the unit interval [0, 1], the set of non-negative real numbers
IR+ and the two element set {0,∞}. (See [Takesaki, 1979] for a systematic treat-
ment, or [Rédei, 1998], [Petz and Rédei, 1995] for a brief review of the Murray-von
Neumann classification theory). The result of the classification theory can thus be
summarized in the form of the following table:

range of d type of factor N the lattice P(M)
{0, 1, 2, . . . , n} In modular
{0, 1, 2, . . . ,∞} I∞ orthomodular, non-modular
[0, 1] II1 modular
IR+ II∞ orthomodular, non-modular
{0,∞} III∞ orthomodular, non-modular

3.5 The type II1 factor

Thus the significance of the existence of type II1 factors is that their projection
lattices are modular. (Accordingly, the set of all (not necessarily bounded) selfad-
joint operators that they determine are free of the pathologies which von Neumann
considered undesirable.)

Von Neumann’s conclusion:

This makes me strongly inclined, therefore, to take the ring of all
bounded operators of Hilbert space (“Case I∞” in our notation) less
seriously, and Case II1 more seriously, when thinking of an ultimate
basis of quantum mechanics.
(von Neumann to Birkhoff, November 6, 1935 ?), [Rédei, 2005, p. 56]

As can be inferred from von Neumann’s letter to Birkhoff (November 6, 1935 ?),
[Rédei, 2005, p. 59-64], Birkhoff suggested another idea to save the modularity of
the lattice formed by some subspaces of a Hilbert space: by restricting the linear
subspaces to the finite dimensional ones. Von Neumann did not consider this idea
in detail, but thought that it was not an attractive one:

Many thanks for your letter. Your idea of requiring a ≤ c → a∪(b∩c) =
(a∪b)∩c in Hilbert space for the finite a, b, c only is very interesting, but
will it permit to differentiate between Hilbert-space and other Banach-
spaces?
(von Neumann to Birkhoff, November 13, 1935 ?), [Rédei, 2005, p. 59]
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Rather than answering this rhetorical question, von Neumann makes his famous
confession (quoted in part by Birkhoff in [Birkhoff, 1961]), reaffirming that the
operator algebraic results related to classification theory of von Neumann algebras
reduce the privileged status of Hilbert space quantum mechanics:

I would like to make a confession which may seem immoral: I do not
believe absolutely in Hilbert space any more. After all Hilbert-space
(as far as quantum-mechanical things are concerned) was obtained by
generalizing Euclidean space, footing on the principle of “conserving
the validity of all formal rules”. This is very clear, if you consider
the axiomatic-geometric definition of Hilbert-space, where one simply
takes Weyl’s axioms for a unitary-Euclidean-space, drops the condition
on the existence of a finite linear basis, and replaces it by a minimum of
topological assumptions (completeness + separability). Thus Hilbert-
space is the straightforward generalization of Euclidean space, if one
considers the vectors as the essential notions.

Now we4 begin to believe, that it is not the vectors which matter but
the lattice of all linear (closed) subspaces. Because:

1. The vectors ought to represent the physical states, but they do it
redundantly, up to a complex factor, only.

2. And besides the states are merely a derived notion, the primi-
tive (phenomenologically given) notion being the qualities, which
correspond to the linear closed subspaces.

But if we wish to generalize the lattice of all linear closed subspaces
from a Euclidean space to infinitely many dimensions, then one does
not obtain Hilbert space, but that configuration, which Murray and I
called “case II1.” (The lattice of all linear closed subspaces of Hilbert-
space is our “case I∞”.) And this is chiefly due to the presence of the
rule

a ≤ c → a ∪ (b ∩ c) = (a ∪ b) ∩ c

This “formal rule” would be lost, by passing to Hilbert space!
(von Neumann to Birkhoff, November 13, 1935 ?), [Rédei, 2005, p. 59]

3.6 From the type II1 factor to abstract continuous geometry

So it would seem that the modular lattice of the type II1 factor von Neumann
algebra emerges as the strongest candidate for logicization, and so one would
expect this lattice to be declared in the Birkhoff-von Neumann paper to be the
propositional system of quantum logic. But this is not the case; in fact, the
published paper does not at all refer to the results of the Murray-von Neumann
classification theory of von Neumann algebras to support the modularity postulate.

4With F.J. Murray, von Neumann’s coauthor.
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Why? Von Neumann’s letters to Birkhoff also contain clues for the the answer
to this question, and the answer is that von Neumann’s mind moved extremely
quickly from the level of abstractness of von Neumann algebras to the level of
abstractness represented by continuous geometries — and this move was taking
place precisely during the preparation of the quantum logic paper: in his letter to
Birkhoff (November 6, 1935 ?) von Neumann writes:

Mathematically – and physically, too – it seems to be desirable, to try
to make a general theory of dimension in complemented, irreducible
B-lattices, without requiring “finite chain conditions”. I am convinced,
that by adding a moderate amount of continuity-conditions, the exis-
tence of a numerical dimensionality could be proved, which

1. is uniquely determined by its formal properties,

2. and after a suitable normalisation has either the range d = 1, 2, . . . , n
(n = 1, 2, . . . , finite!) or d ≥ 0,≤ 1.

I have already obtained some results in this direction, which connect
the notion of dimension in a very funny way with the perspectivities
and projectivities in projective geometry.

It will perhaps amuse you if I give some details of this. Here they are:
(von Neumann to Birkhoff, November 6, 1935 ?), [Rédei, 2005, p. 56]

And there follows in the letter a three page long exposition of the theory of contin-
uous geometries, which is not reproduced here. In his letter written a week later
(November 13, 1935 ?), [Rédei, 2005, p. 59-64], von Neumann gives an even more
detailed description of his results on continuous geometry, which confirm the two
conjectures 1. and 2. above completely: on every projective geometry there exists
a dimension function d having the properties

0 ≤ d(A) ≤ 1 (16)
d(A) + d(B) = d(A ∨B) + d(A ∧B) (17)

and having discrete or continuous range.5 These results do not appear in the
Birkhoff-von Neumann paper on quantum logic, von Neumann published them
separately [von Neumann, 1936] (cf. footnote 33 in the Birkhoff-von Neumann
paper [Birkhoff and von Neumann, 1936]).

Thus by the time it came to the final version of the quantum logic paper, von
Neumann knew that the projection lattice of a type II1 von Neumann algebra is
just a special case of more general continuous geometries that admit well-behaving
probability measures, and this explains why the major postulate in the Birkhoff-
von Neumann paper is formulated in the section entitled “Relation to abstract
projective geometries” and reads:

5The discrepancy between Eq. (16) and the ranges mentioned under 2. above are due to
different normalizations.
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Hence we conclude that the propositional calculus of quantum mechan-
ics has the same structure as an abstract projective geometry.
[Birkhoff and von Neumann, 1936] (Emphasis in the original)

3.7 Probability and quantum logic

The finite dimension function on a projective geometry, in particular the dimension
function with the range [0, 1] on the continuous projective geometry, was for von
Neumann crucially important in his search for a proper quantum logic: he inter-
preted the dimension function as an a priori probability measure on the modular
lattice of the quantum propositional system. Thus by requiring quantum logic to
be an abstract continuous geometry with a dimension function, Birkhoff and von
Neumann created an analogy with classical logic and probability theory, where
a Boolean algebra is both a propositional system and a random event structure
on which probability measures are defined. While there is no detailed discussion
of this aspect of the dimension function in the von Neumann-Birkhoff correspon-
dence, the Birkhoff-von Neumann paper points out that properties (16)-(17) of the
dimension function describe the formal properties of probability. Von Neumann
regarded it as another pathology of the total Hilbert lattice P(H) that there exists
no probability measure on it that satisfies conditions (16)-(17. This is because one
has the following theorem:

PROPOSITION 3. Let L be a bounded lattice. If there exists a finite dimension
function d on L (i.e. a map d from L into the set of real numbers that has the
properties (16)-(17)), then the lattice is modular.

It is very easy to see that subadditivity (property (17)) is a necessary condition
for a measure to be interpreted as probability understood as relative frequency in
the sense of von Mises [von Mises, 1919], [von Mises, 1981]:

Assume that the probability p(X) (X = A,B,A∧B,A∨B) is to be interpreted
as relative frequency in the following sense:

1. There exists a fixed ensemble E consisting of N events such that

2. for each event X one can decide unambiguously and

3. without changing the ensemble whether X is the case or not;

4. p(X) = #(X)
N where #(X) is the number of events in E for which X is the

case.6

Under the assumptions 1.-4. it trivially follows that (17) holds since one can

6Strictly speaking one should write p(X) = limN→∞
#(X)

N
; however, the limit is not impor-

tant from the point of view of the present considerations, so we omit it.
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write

#(A ∪B)
N

+
#(A ∩B)

N
=

#((A \A ∩B) ∪ (B \A ∩B) ∪A ∩B))
N

+
#(A ∩B)

N
=

#(A \A ∩B) + #(B \A ∩B) + #(A ∩B) + #(A ∩B)
N

=

#(A) + #(B)
N

which is the subadditivity. Thus, if a map d on a lattice does not have subadditivity
(17) then the probabilities d(X) cannot be interpreted as probabilities in the sense
of relative frequency formulated above via 1.-4.; consequently, the lattice cannot
be viewed as representing a collection of random events in the sense of a relative
frequency interpreted probability theory specified by 1.-4. (with the understanding
that A ∧B denotes the joint occurrence of events A and B). Since von Neumann
embraced the frequency interpretation of probability in the years 1927-1935, this
makes understandable why he considered the subadditivity (17) a key feature of
probability and, consequently, modularity an important condition to require.

Thus it would seem that within the mathematical framework of continuous
geometry, especially within the theory of the type II1 von Neumann algebras, the
Birkhoff and von Neumann concept of quantum logic could restore the harmonious
classical picture: random events can be identified with the propositions stating that
the event happens, and probabilities can be viewed as relative frequencies of the
occurrences of the events. But this restored harmony is illusory for the following
reason: von Neumann and Murray showed that a dimension function d on the
projection lattice P(N ) of a type II1 algebra N can be extended to a trace τ on
N . The defining property of a trace τ is

(18) τ(XY ) = τ(Y X) for all X,Y ∈ N .

That is to say, the trace is exactly the functional which is insensitive (in the sense
of (18)) for the non-commutativity of the algebra. On the other hand, it can be
shown that a normal state φ on a von Neumann lattice satisfies the additivity (17)
if (and only if) it is a trace [Petz and Zemanek, 1988]. Thus, the only quantum
probability measures that mesh with the relative frequency interpretation via 1.-4.
are the ones given by the trace.

Behind the mathematical fact that only traces satisfy subadditivity lies the
conceptual difficulty that assumptions 2. and 3. of the frequency interpretation
of probability cannot be upheld in interpreting the elements of a von Neumann
lattice as random quantum events and the lattice operation A ∧ B as the joint
occurrence of A and B: assumption 3. fails if “deciding” means “measuring”,
since measuring disturbs the measured system, hence also the ensemble; therefore,
there is no single, fixed, well-defined ensemble in which to compute as relative
frequencies the probabilities of all projections representing quantum attributes.
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Von Neumann was fully aware of this difficulty: One of his arguments against
hidden variables is essentially the argument that if hidden parameters did exist,
then it should be possible to resolve any ensemble into subensembles that are
dispersion-free, but this is not possible if “resolving” means selecting subensembles
by measurement, since if one selection ensures dispersion-freeness with respect to
observable Q1, the subsequent selection by measurement of this subensemble into
a further subensemble in which another observable Q2 has sharp value destroys
the result of the first step if Q1 and Q2 are incompatible (see [von Neumann, 1932,
p. 304]). Yet, in his 1932 book von Neumann thought to be able to maintain an
ensemble interpretation of quantum probability by getting around the problem
that quantum measurements disturb the ensemble:

Even if two or more quantities R,S in a single system are not simulta-
neously measurable, their probability distributions in a given ensemble
[S1, . . . SN ] can be obtained with arbitrary accuracy if N is sufficiently
large.
Indeed, with an ensemble of N elements it suffices to carry out the sta-
tistical inspections, relative to the distribution of values of the quantity
R, not on all N elements [S1, . . . SN ], but on any subset of M (≤ N) el-
ements, say [S1, . . . SM ] – provided that M,N are both large, and that
M is very small compared to N . Then only the M/N -th part of the en-
semble is affected by the changes which result from the measurement.
The effect is an arbitrary small one if M/N is chosen small enough –
which is possible for sufficiently large N , even in the case of large M ...
In order to measure two (or several) quantities R,S simultaneuosly, we
need two sub-ensembles, say [S1, . . . SM ], [SM+1, . . . S2M ] (2M ≤ N),
of such a type that the first is employed obtaining the statistics of
R, and the second in obtaining those of S. The two measurements
therefore do not disturb each other, although they are performed in
the same ensemble [S1, . . . SN ] and they can change this ensemble only
by an arbitrarily small amount, if 2M/N is sufficiently small – which
is possible for sufficiently large N even in the case of large M . . .

[von Neumann, 1932, p. 300]

Implicit in this reasoning is the assumption that the subensembles are repre-
sentative of the large ensemble in the sense that the relative frequency of every
attribute is the same both in the original and in the subensemble. This non-trivial
assumption, known in von Mises’ theory as the requirement of “randomness” con-
cerning the ensembles that can serve as ensembles to compute probabilities as
frequencies, is crucial in von Mises’ theory, and von Mises takes pains in giving it
a precise formulation (see “Forderung II” in [von Mises, 1919], [von Mises, 1981,
p. 61]). Von Neumann does not elaborate on the details and significance for
his interpretation of quantum probability of the randomness requirement; appar-
ently he did not see any problem with taking advantage of this non-trivial (and
controversial) feature of von Mises interpretation.
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However, even granting that an ensemble interpretation remains meaningful if
one relaxes 3. in the specification of the frequency interpretation of probability
in the way von Neumann does, the problem remains for von Neumann that 2.
does not make sense at all in quantum mechanics if one takes the position that (i)
A ∧ B represents the joint occurrence of A and B, and (ii) the joint occurrence
cannot be checked by measurement at all on whatever ensemble if A and B are
not simultaneously measurable.

In sum: There are no “properly non-commutative” probability spaces – as long
as one insists on the frequency interpretation of probability; hence, if one wants to
maintain the idea of non-commutative probability spaces, with a non-distributive
lattice taking the place of Boolean algebra, the frequency view has to go.

4 VON NEUMANN’S POST 1936 STRUGGLE WITH QUANTUM LOGIC

It did: von Neumann abandoned the frequency interpretation after 1936. In an
unfinished manuscript written about 1937 and entitled “Quantum logic (strict-
and probability logics)” he writes:

This view, the so-called ‘frequency theory of probability’ has been very
brilliantly upheld and expounded by R. von Mises. This view, however,
is not acceptable to us, at least not in the present ‘logical’ context.
[von Neumann, 1961]

Instead, von Neumann embraces in this unfinished note a “logical theory of prob-
ability”, which he associates with J. M. Keynes, but which he does not spell out
in detail in the unfinished note. The only formulation of this idea can be found in
his talk delivered years later at the International Congress of mathematicians in
Amsterdam 1954:

Essentially if a state of a system is given by one vector, the transition
probability in another state is the inner product of the two which is
the square of the cosine of the angle between them. In other words,
probability corresponds precisely to introducing the angles geometri-
cally. Furthermore, there is only one way to introduce it. The more
so because in the quantum mechanical machinery the negation of a
statement, so the negation of a statement which is represented by a
linear set of vectors, corresponds to the orthogonal complement of this
linear space.

And therefore, as soon as you have introduced into the projective ge-
ometry the ordinary machinery of logics, you must have introduced
the concept of orthogonality. ... In order to have probability all you
need is a concept of all angles, I mean angles other than 90◦. Now
it is perfectly quite true that in geometry, as soon as you can define
the right angle, you can define all angles. Another way to put it is
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that if you take the case of an orthogonal space, those mappings of
this space on itself, which leave orthogonality intact, leave all angles
intact, in other words, in those systems which can be used as models
of the logical background for quantum theory, it is true that as soon
as all the ordinary concepts of logic are fixed under some isomorphic
transformation, all of probability theory is already fixed.

What I now say is not more profound than saying that the concept
of a priori probability in quantum mechanics is uniquely given from
the start. ... This means, however, that one has a formal mechanism,
in which logics and probability theory arise simultaneously and are
derived simultaneously.
[von Neumann, 2001, p. 244-245]

Von Neumann was intrigued by the determination of probability by logic in
the quantum context but he did not consider this “logical theory” (interpreta-
tion) of probability as fully understood: he mentions the need for an axiomatic
investigation of this issue in his address to the International Congress of Mathe-
maticians (Amsterdam, 1954) [von Neumann, 2001] as one of the open problems
in mathematics: he thought that it would shed

... a great deal of new light on logics and probably alter the whole
formal structure of logics considerably, if one succeeds in deriving this
system from first principles, in other words from a suitable set of ax-
ioms.
[von Neumann, 2001, p. 245]

It seems that he worked on this problem and tried to work out a systematic theory
of quantum logic after 1936, but he did not succeed. The recently published series
of letters he wrote to F.B. Silsbee in [Rédei, 2005], prove this in a remarkable way.
The correspondence between von Neumann and Silsbee, then the president of the
Washington Philosophical Society, starts with Silsbee’s letter (October 31, 1944,
unpublished, Library of Congress, Washington D.C.) inviting von Neumann to
deliver the Fourteenth Joseph Henry Lecture scheduled for March 17, 1945. In his
reply to Silsbee (November 3, 1944) [Rédei, 2005, p. 216] von Neumann accepted
the invitation, promising at the same time to write up the lecture in a paper. In
his second letter to Silsbee (February 14, 1945) [Rédei, 2005, p. 217] von Neumann
specifies the problem of relation of logic and probability in quantum mechanics as
the topic of the lecture. Von Neumann did deliver his talk as planned; however,
as his letter to Silsbee (June 11, 1945) [Rédei, 2005, p. 218] shows, he did not
meet the first deadline of submitting the manuscript of the planned paper entitled
“Logic of quantum mechanics”. He promises at the same time to deliver the paper
by July 7, the latest. But he did not meet this second deadline either; in fact,
the promised paper was never written, and von Neumann’s subsequent letters to
Silsbee (July 2, 1945, October 22, 1945, April 20, 1946 and December 23, 1946, all
in [Rédei, 2005]) show von Neumann agonizing over this project. Most revealing
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is his letter of July 2, 1945 [Rédei, 2005, p. 218-220]. Von Neumann confesses
that even if he had not been disrupted by war-work, he might not have been able
to write the promised paper on quantum logic:

It is with great regret that I am writing these lines to you, but I sim-
ply cannot help myself. In spite of very serious attempts to write the
article on the “Logics of quantum mechanics” I find it completely im-
possible to do it at this time. As you may know, I wrote a paper on
this subject with Garrett Birkhoff in 1936 (“Annals of Mathematics”,
vol. 37, pp. 823-843), and I have thought a good deal on the subject
since. My work on continuous geometries, on which I gave the Amer.
Math. Soc. Colloqium lectures in 1937, comes to a considerable ex-
tent from this source. Also a good deal concerning the relationship
between strict and probability logics (upon which I touched briefly in
the Henry Joseph Lecture) and the extension of this “Propositional
calculus” work to “logics with quantifiers” (which I never so far dis-
cussed in public). All these things should be presented as a connected
whole (I mean the propositional and the “quantifier” strict logics, the
probability logics, plus a short indication of the ideas of “continuous”
projective geometry), and I have been mainly interrupted in this (as
well as in writing a book on continuous geometries, which I still owe
the Amer. Math. Soc. Colloqium Series) by the war. To do it properly
would require a good deal of work, since the subjects that have to be
correlated are a very heterogenous collection — although I think that
I can show how they belong together.
When I offered to give the Henry Joseph Lecture on this subject, I
thought (and I hope that I was not too far wrong in this) that I could
give a reasonable general survey of at least part of the subject in a
talk, which might have some interest to the audience. I did not realize
the importance nor the difficulties of reducing this to writing.
I have now learned — after a considerable number of serious but very
unsuccessful efforts — that they are exceedingly great. I must, of
course, accept a good part of the responsibility for my method of writ-
ing — I write rather freely and fast if a subject is “mature” in my
mind, but develop the worst traits of pedantism and inefficiency if I
attempt to give a preliminary account of a subject which I do not have
yet in what I can believe to be in its final form.
I have tried to live up to my promise and to force myself to write this
article, and spent much more time on it than on many comparable
ones which I wrote with no difficulty at all — and it just didn’t work.
Perhaps if I were not continually interrupted by journeys and other
obligations arising from still surviving war work, I might have been
able to do it — although I am not even sure of this.
(von Neumann to Silsbee, July 2, 1945), [Rédei, 2005][p. 218-219]
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5 SUMMARY AND CONCLUDING REMARKS

As we have seen, the modularity postulate of the 1936 Birkhoff-von Neumann con-
cept of quantum logic was motivated by the need to establish conceptual coherence
between different things “quantum”: (quantum) logic, (quantum) probability and
quantum mechanics. Thus to understand the Birkhoff-Von Neumann concept of
quantum logic one has to keep in mind that while searching for quantum logic, von
Neumann did not just want to create a non-classical logic: he was motivated by
the desire of creating the non-classical (non-commutative) analogy of the classical
situation where a Boolean algebra plays two roles at the same time: it represents
the propositional algebra of a classical propositional calculus and it also represents
the set of random events on which probability measures are defined. Moreover,
probabilities given by a classical probability measure can in principle be inter-
preted as relative frequencies in the sense of von Mises (the well-known difficulties
of the frequency interpretation notwithstanding).

Von Neumann had realized that the failure of modularity in the Hilbert lattice
prohibits the interpretation of the Hilbert lattice as an event structure for a relative
frequency interpreted non-commutative probability theory and, consequently, he
abandoned the Hilbert lattice as quantum logic — thereby also abandoning Hilbert
space quantum mechanics as well. He could do this in 1936 only because by then
he was in the position to suggest another mathematical framework for quantum
theory, a framework that he hoped would be conceptually more suitable than
Hilbert space quantum theory: at the time of cooperating with Birkhoff on the
1936 quantum logic paper, he also was working on the theory of “rings of operators”
(“von Neumann algebras”), and in the year of the publication of the Birkhoff-von
Neumann paper on quantum logic von Neumann also published a joint paper with
J. Murray that established the classification theory of von Neumann algebras.
One result of this classification theory was the discovery of a specific type of a von
Neumann algebra, the so-called type “II1 factor”. The projections of this algebra
form a modular lattice that von Neumann hoped would be a proper quantum logic.
The lattice of a type II1 factor is a special case of a continuous geometry.

Thus the 1936 Birkhoff-von Neumann concept of quantum logic is related to
deep mathematical discoveries in the mid thirties and to conceptual difficulties in
connection with the frequency interpretation of quantum probability. So the issue
is a convoluted one. The complexity of the problem is also reflected by the fact
that, as we have seen, von Neumann himself was never quite satisfied with how
he had worked out quantum logic: It turned out that even the modular lattices of
type II1 von Neumann algebras are too week algebraically to regard them as event
structure for a truly non-commutative probability theory — if the probabilities are
to be interpreted as relative frequencies. This was likely the main reason why von
Neumann abandoned the frequency interpretation of quantum probability after
1936 in favor of a “logical interpretation” of probability, which von Neumann did
not regard as very well developed and understood, however.

While the conceptual coherence between quantum logic, quantum probability
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and quantum mechanics cannot be achieved in the way Birkhoff and von Neumann
seem to have envisaged, and the interpretation of quantum probability remains a
much debated issue even today, their challenging the Hilbert space formalism was
a very significant move — albeit one not widely noticed at the time. Through
the type II1 factor and its projection lattice the Birkhoff-von Neumann concept
of quantum logic got related to the classification theory of von Neumann alge-
bras, which opened up the possibility that types other than II1 and the I∞ (=
Hilbert space quantum mechanics) might also be utilized in applications to quan-
tum systems. The subsequent development of quantum theory proved that von
Neumann algebras of all the types discovered by Murray and von Neumann in
1935 are needed in modelling quantum systems (see [Rédei and Summers, 2007]
for a review of the role of type in quantum theory). The projection lattices of
such von Neumann algebras all represent non-classical (quantum) logics, and the
specific type-related features of these projection lattices are crucial in understand-
ing the behavior of the quantum world. Detailing these latter issues is beyond the
scope of the present review however. Nor were they discussed in the Birkhoff-von
Neumann paper: Birkhoff and von Neumann were fully aware that their work was
just the beginning of a rich field to be developed further:

Your general remarks, I think, are very true: I, too, think, that our
paper will not be very exhaustive or conclusive, but that we should
not attempt to make it such: The subject is obviously only at the
beginning of a development, and we want to suggest the direction of
this development much more, than to reach “final” results. I, for one,
do not even believe, that the right formal frame for quantum mechanics
is already found.
(von Neumann to Birkhoff, November 21, 1935 ?), [Rédei, 2005, p. 65]
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IS QUANTUM LOGIC A LOGIC?

Mladen Pavičić and Norman D. Megill

1 INTRODUCTION

Thirty-seven years ago, Richard Greechie and Stanley Gudder wrote a paper en-
titled Is a Quantum Logic a Logic? [Greechie and Gudder, 1971] in which they
strengthen a previous negative result of Josef Jauch and Constantin Piron. [Jauch
and Piron, 1970]

“Jauch and Piron have considered a possibility that a quantum propositional
system is an infinite valued logic. . . and shown that standard propositional systems
(that is, ones that are isomorphic to the lattice of all closed subspaces of a Hilbert
space) are not conditional and thus cannot be logic in the usual sense.” [Greechie
and Gudder, 1971] A conditional lattice is defined as follows. We define a valuation
v[a] as a mapping from an element a of the lattice to the interval [0, 1]. We
say that two elements a, b are conditional if there exists a unique c such that
v[c] = min{1, 1 − v[a] + v[b]}. We call c the conditional of a and b and write
c = a → b. We say that the lattice is conditional if every pair a, b is conditional.
Greechie and Gudder then proved that a lattice is conditional if and only if it
contains only two elements 0 and 1.1 This implies that [0,1] reduces to {0, 1} and
that the lattice reduces to a two-valued Boolean algebra. In effect, this result
shows that one cannot apply the same kind of valuation to both quantum and
classical logics.

It became obvious that if we wanted to arrive at a proper quantum logic, we
should take an axiomatically defined set of propositions closed under substitutions
and some rules of inference, and apply a model-theoretic approach to obtain val-
uations of every axiom and theorem of the logic. So, a valuation should not be a
mapping to [0,1] or {0, 1} but to the elements of a model. For classical logic, a
model for logic was a complemented distributive lattice, i.e., a Boolean algebra.
For quantum logics the most natural candidate for a model was the orthomodular
lattice, while the logics themselves were still to be formulated. Here we come to
the question of what logic is. We take that logic is about propositions and infer-
ences between them, so as to form an axiomatic deductive system. The system
always has some algebras as models, and we always define valuations that map
its propositions to elements of the algebra — we say, the system always has its
semantics — but our definition stops short of taking semantics to be a part of the

1We define 0 and 1 in a lattice in Section 2.
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system itself. Our title refers to such a definition of logic, and we call quantum
logic so defined deductive quantum logic.2 Classical logic is deductive in the same
sense.

In the early seventies, a number of results and a number of predecessors to
deductive quantum logics were formulated. Jauch, Piron, Greechie, and Gudder
above assumed the conditional — from now on we will call it implication — to be
defined as a →0 b = a′∪b (see Section 2 for notation). However, it was already then
known that in an orthomodular lattice3 an implication so defined would not satisfy
the condition a → b = 1 ⇔ a ≤ b , which holds in every Boolean algebra and
which was considered plausible to hold in an orthomodular lattice too. In 1970, the
following implication was found to satisfy this condition: a →1 b = a′∪ (a∩b) (the
so-called Sasaki hook4) by Peter Mittelstaedt [Mittelstaedt, 1970] and Peter Finch
[Finch, 1970]. The Sasaki hook becomes equal to a′ ∪ b when an orthomodular
lattice satisfies the distributive law, i.e. when it is a Boolean algebra. The Sasaki
implication first served several authors simply to reformulate the orthomodular
lattice in a logic-like way and call it “quantum logic.” [Finch, 1970; Clark, 1973;
Piziak, 1974] In 1974 Gudrun Kalmbach proved that in addition to the Sasaki
hook, there are exactly four other “quantum implications” that satisfy the above
plausible condition and that all reduce to a′ ∪ b in a Boolean algebra.

In the very same year, four genuine (i.e. propositional) deductive quantum logics
— using three different implications and none at all, respectively — were formu-
lated by Gudrun Kalmbach [Kalmbach, 1974] (a standard propositional logic based
on the Kalmbach implication,5) Hermann Dishkant [Dishkant, 1974] (a first-order
predicate logic based on the Dishkant implication6), Peter Mittelstaedt [Mittel-
staedt, 1974] (a dialog logic based on the Sasaki hook), and Robert Goldblatt
[Goldblatt, 1974] (a binary logic with no implication — the binary inference ‘�’
represented the lattice ‘≤’). Several other quantum logics were later formulated by
Maria Luisa Dalla Chiara [Dalla Chiara, 1977] (first-order quantum logic), Jay Ze-
man [Zeman, 1978] (normal logic), Hirokazu Nishimura [Nishimura, 1980] (Gentzen
sequent logic), George Georgacarakos [Georgacarakos, 1980] (orthomodular logics
based on relevance,7 Sasaki, and Dishkant implications), Michael Dunn [Dunn,
1981] (predicate binary logic), Ernst-Walter Stachow [Stachow, 1976] (tableaux
calculus, a Gentzen-like calculus of sequents, and a Brouwer-like logic), Gary Hard-
egree [Hardegree, 1981] (orthomodular calculus), John Bell [Bell, 1986] (quantum

2Note that many authors understand quantum logic as simply a lattice [Jauch, 1968] or a
poset [Varadarajan, 1968; Pták and Pulmannová, 1991]. Quantum logics so defined do not have
the aforementioned valuation and are not deductive quantum logics. Such a definition stems from
an operationalist approach, which started with the idea that quantum logic might be empirical.
It was argued that propositions might be measured and that properties such as orthomodularity
for quantum systems or distributivity for classical ones can be experimentally verified. [Jauch,
1968]

3The lattice of all closed subspaces of a Hilbert space is an orthomodular lattice. See Section 2.
4The Sasaki hook is an orthocomplement to the Sasaki projection [Sasaki, 1964].
5Kalmbach implication is defined as a →3 b = (a′ ∩ b) ∪ (a′ ∩ b′) ∪ (a ∩ (a′ ∪ b)).
6Dishkant implication is defined as a →2 b = b′ →1 a′.
7Relevance implication is defined as a →5 b = (a ∩ b) ∪ (a′ ∩ b) ∪ (a′ ∩ b′).
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“attribute” logic), Mladen Pavičić [Pavičić, 1987] (binary quantum logics with
merged implications8), Mladen Pavičić [Pavičić, 1989] (unary quantum logic with
merged implications),9 Mladen Pavičić and Norman Megill [Pavičić and Megill,
1999] (unary quantum logics with merged equivalences10), etc. Logics with the
v(a) = 1 lattice valuation corresponding to � a we call unary logics and logics
with the v(a) ≤ v(b) lattice valuation corresponding to a � b we call binary logics.

Still, the parallels with classical logic were a major concern of the researchers
at the time. “I would argue that a ‘logic’ without an implication . . . is radically
incomplete, and indeed, hardly qualifies as a theory of deduction” (Jay Zeman,
1978). [Zeman, 1978] So, an extensive search was undertaken in the seventies and
eighties to single out a “proper quantum implication” from the five possible ones
on purely logical grounds,11 but none of the attempts proved successful.

In 1987 Mladen Pavičić [Pavičić, 1987; Pavičić, 1989] proved that there is no
“proper quantum implication” since any one of the conditions a →i b = 1 ⇔
a ≤ b, i = 1, . . . , 512 is the very orthomodularity which, when satisfied by an
orthocomplemented lattice (the so-called ortholattice), makes it orthomodular. In
terms of a logic, the corresponding logical rules of inference turn any orthologic or
minimal quantum logic into a quantum logic. He also proved that when we add
the condition a →0 b = 1 ⇔ a ≤ b is saytisfied by an ortholattice, the lattice
becomes a Boolean algebra.13 A corresponding logical rule of inference turns any
orthologic into a classical logic.

This finding was soon complemented by a proof given by Jacek Malinowski in
1990 that “no logic determined by any class of orthomodular lattices admits the
deduction theorem,” [Malinowski, 1990] where the deduction theorem says that if
we can derive b from S

⋃ {a} then we can derive a→ b from S.14 He also proved
that no extension of quantum logic, i.e., no logic between the quantum and the
classical one, satisfies the deduction theorem. [Mortensen, 1991] The conclusion
was: “Since orthomodular logic is algebraically well behaved, this perhaps shows
that implication is not such a desirable operation to have.” [Mortensen, 1991]

The conjecture was confirmed by Mladen Pavičić in 1993 [Pavičić, 1993]. The
above orthomodularity condition does not require implications. One can also have

8Under merged implications all six implications are meant; a →i b, i = 0, 1, 2, 3, 5 are defined
above; a →4 b = b′ →3 a′ is called non-tollens implication. In these logics of Pavičić, axioms
of identical form hold for each of the implications yielding five quantum logics and one classical
(for i = 0).

9Again, axioms of identical form hold for all implications.
10Merged equivalences, a ≡i b, i = 0, . . . , 5, are explicit expressions (by means of ∪,∩,′) of

(a →i b)∩ (b →j a), i = 0, . . . , 5, j = 0, . . . , 5, in any orthomodular lattice as given by Table 1 of
Ref. [Pavičić and Megill, 1999]. In these logics, axioms of identical form hold for all equivalences.

11An excellent contemporary review of the state of the art was written in 1979 by Gary
Hardegree [Hardegree, 1979].

12a →i b, i = 1, . . . , 5 are defined above. See footnotes Nos. 8 and 9.
13In any Boolean algebra all six implications merge.
14It should be stressed here that the deduction theorem is not essential for classical logic either.

It was first proved by Jaques Herbrand in 1930. [Herbrand, 1931] All classical logic systems before
1930, e.g., the ones by Whitehead and Russell, Hilbert, Ackermann, Post, Skolem, �Lukasiewicz,
Tarski, etc., were formulated without it.
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it with an essentially weaker equivalence operation: a ≡ b = 1 ⇔ a = b, where
a ≡ b = (a ∩ b) ∪ (a′ ∩ b′); we say a and b are equivalent. [Pavičić, 1993; Pavičić
and Megill, 1999] As above, when this condition is satisfied by an ortholattice it
makes it orthomodular.15 Moreover in any orthomodular lattice a ≡ b = (a →i

b)∩ (b →i a), i = 1, . . . , 5. The analogous classical condition a ≡0 b = 1 ⇔ a = b,
where a ≡0 b = (a′ ∪ b) ∩ (a ∪ b ′), amounts to distributivity: when satisfied by
an ortholattice, it makes it a Boolean algebra. [Pavičić, 1998; Pavičić and Megill,
1999]

On the other hand, it turned out that everything in orthomodular lattices is
sixfold defined: binary operations, unary operation, variables and even unities and
zeros. They all collapse to standard Boolean operations, variables and 0,1 when
we add distributivity. For example, as proved by Norman Megill and Mladen
Pavičić [Megill and Pavičić, 2001] 01(a,b) = a ∩ (a′ ∪ b) ∩ (a ∪ b ′),. . .,05(a,b) =
(a∪b)∩(a∪b ′)∩(a′∪b)∩(a′∪b ′); a ≡3 b = (a′∪b)∩(a∪(a′∩b ′)); etc. [Megill and
Pavičić, 2002] Moreover, we can express any of such expressions by means of every
appropriate other in a huge although definite number of equivalence classes. [Megill
and Pavičić, 2002] For example, a shortest expression for ∪ expressed by means
of quantum implications is a ∪ b = (a →i b) →i (((a →i b) →i (b →i a)) →i a),
i = 1, . . . , 5. [Megill and Pavičić, 2001; Megill and Pavičić, 2002; Pavičić and
Megill, 1998a; Megill and Pavičić, 2003]

For such a “weird” model, the question emerged as to whether it is possible to
formulate a proper deductive quantum logic as a general theory of inference and
how independent of its model this logic can be. In other words, can such a logic
be more general than its orthomodular model?

The answer turned out to be affirmative. In 1998 Mladen Pavičić and Norman
Megill showed that the deductive quantum logic is not only more general but also
very different from their models. [Pavičić and Megill, 1998b; Pavičić and Megill,
1999] They proved that

• Deductive quantum logic is not orthomodular.

• Deductive quantum logic has models that are ortholattices that are not or-
thomodular.

• Deductive quantum logic is sound and complete under these models.

This shows that quantum logic is not much different from the classical one since
they also proved that [Pavičić and Megill, 1999]

• Classical logic is not distributive.16

15The same holds for a ≡i b, i = 1, . . . , 5 from footnote No. 10, as well. [Pavičić and Megill,
1999]

16Don’t be alarmed. This is not in contradiction with anything in the literature. The classical
logic still stands intact, and the fact that it is not distributive is just a feature of classical logic
that — due to Boole’s heritage — simply has not occurred to anyone as possible and which
therefore has not been discovered before. See the proof of Theorem 30, Theorem 45, Lemma 50,
and the discussion in Section 10.
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• Classical logic has models that are ortholattices that are not orthomodular
and therefore also not distributive.

• Classical logic is sound and complete under these models.

These remarkably similar results reveal that quantum logic is a logic in the very
same way in which classical logic is a logic. In the present chapter, we present the
results in some detail.

The chapter is organized as follows. In Section 2, we define the ortholattice,
orthomodular lattice, complemented distributive lattice (Boolean algebra), weakly
orthomodular lattice WOML (which is not necessarily orthomodular), weakly dis-
tributive lattice WDOL (which is not necessarily either distributive or orthomod-
ular), and some results that connect the lattices. In Section 3, we define quantum
and classical logics. In Sections 4 and 5, we prove the soundness of quantum logic
for WOML and of classical logic for WDOL, respectively. In Sections 6 and 7,
we prove the completeness of the logics for WOML and WDOL, respectively. In
Sections 8 and 9, we prove the completeness of the logics for OML and Boolean
algebra, respectively, and show that the latter proofs of completeness introduce
hidden axioms of orthomodularity and distributivity in the respective Lindenbaum
algebras of the logics. In Section 10, we discuss the obtained results.

2 LATTICES

In this section, we introduce two models for deductive quantum logic, orthomod-
ular lattice and WOML, and two models for classical logic, Boolean algebra and
WDOL. They are gradually defined as follows.

There are two equivalent ways to define a lattice: as a partially ordered set
(poset)17 [Maeda and Maeda, 1970] or as an algebra [Birkhoff, 1948, II.3. Lattices
as Abstract Algebras]. We shall adopt the latter approach.

DEFINITION 1. An ortholattice, OL, is an algebra 〈OL0,
′ ,∪,∩〉 such that the

following conditions are satisfied for any a, b, c ∈ OL0 [Megill and Pavičić, 2002]:

a ∪ b = b ∪ a (1)
(a ∪ b) ∪ c = a ∪ (b ∪ c) (2)
a′′ = a (3)
a ∪ (b ∪ b ′) = b ∪ b ′ (4)
a ∪ (a ∩ b) = a (5)
a ∩ b = (a′ ∪ b ′)′ (6)

In addition, since a ∪ a′ = b ∪ b ′ for any a, b ∈ OL0, we define:

1def= a ∪ a′, 0def= a ∩ a′ (7)
17Any two elements a and b of the poset have a least upper bound a ∪ b — called join — and

a greatest lower bound a ∩ b — called meet.
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and

a ≤ b
def⇐⇒ a ∩ b = a ⇐⇒ a ∪ b = b (8)

Connectives →1 (quantum implication, Sasaki hook), →0 (classical implication),
≡ (quantum equivalence), and ≡0 (classical equivalence) are defined as follows:

DEFINITION 2. a →1 b
def= a′ ∪ (a ∩ b), a →0 b

def= a′ ∪ b.

DEFINITION 3.18 a ≡ b
def= (a ∩ b) ∪ (a′ ∩ b ′).

DEFINITION 4. a ≡0 b
def= (a →0 b) ∩ (b →0 a).

Connectives bind from weakest to strongest in the order →1 (→0), ≡ (≡0), ∪,
∩, and ′.

DEFINITION 5. (Pavičić and Megill [Pavičić and Megill, 1999]) An ortholattice
that satisfies the following condition:

a ≡ b = 1 ⇒ (a ∪ c) ≡ (b ∪ c) = 1 (9)

is called a weakly orthomodular ortholattice, WOML.

DEFINITION 6. (Pavičić [Pavičić, 1993]) An ortholattice that satifies the follow-
ing condition:

a ≡ b = 1 ⇒ a = b, (10)

is called an orthomodular lattice, OML.

Equivalently:

DEFINITION 7. (Foulis [Foulis, 1962], Kalmbach [Kalmbach, 1974]) An ortho-
lattice that satisfies either of the following conditions:

a ∪ (a′ ∩ (a ∪ b)) = a ∪ b (11)
a C b & a C c ⇒ a ∩ (b ∪ c) = (a ∩ b) ∪ (a ∩ c) (12)

where a C b
def⇐⇒ a = (a∩b)∪(a∩b ′) (a commutes with b), is called an orthomodular

lattice, OML.

DEFINITION 8. (Pavičić and Megill [Pavičić and Megill, 1999]) An ortholattice
that satisfies the following condition:19

(a ≡ b) ∪ (a ≡ b′) = (a ∩ b) ∪ (a ∩ b′) ∪ (a′ ∩ b) ∪ (a′ ∩ b′) = 1 (13)

is called a weakly distributive ortholattice, WDOL.
18In every orthomodular lattice a ≡ b = (a →1 b) ∩ (b →1 a), but not in every ortholattice.
19This condition is known as commensurability. [Mittelstaedt, 1970, Definition (2.13), p. 32]

Commensurability is a weaker form of the commutativity from Definition 7. Actually, a metaim-
plication from commensurability to commutativity is yet another way to express orthomodularity.
They coincide in any OML.



Is Quantum Logic a Logic? 29

DEFINITION 9. (Pavičić [Pavičić, 1998]) An ortholattice that satisfies the fol-
lowing condition:

a ≡0 b = 1 ⇒ a = b (14)

is called a Boolean algebra.

Equivalently:

DEFINITION 10. (Schröder [Schröder, 1890]) An ortholattice to which the fol-
lowing condition is added:

a ∩ (b ∪ c) = (a ∩ b) ∪ (a ∩ c) (15)

is called a Boolean algebra.

The opposite directions in Eqs. (10) and (14) hold in any OL.
Any finite lattice can be represented by a Hasse diagram that consists of points

(vertices) and lines (edges). Each point represents an element of the lattice, and
positioning element a above element b and connecting them with a line means
a ≤ b. For example, in Figure 1 we have 0 ≤ x ≤ y ≤ 1. We also see that in this
lattice, e.g., x does not have a relation with either x′ or y′.

Definition 11 and Theorems 12 and 14 will turn out to be crucial for the com-
pleteness proofs of both quantum and classical logics in Sections 6 and 7.

DEFINITION 11. We define O6 as the lattice shown in Figure 1, with the meaning
0 < x < y < 1 and 0 < y′ < x′ < 1,

�
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�
�

�
�

�
�

0

x y′

y x′

1

�
� �
� �

�

Figure 1. Ortholattice O6, also called benzene ring and hexagon.

THEOREM 12. An ortholattice is orthomodular if only if it does not include a
subalgebra isomorphic to the lattice O6.

Proof. Samuel Holland [Holland, 1970]. See also Gudrun Kalmbach [Kalmbach,
1983, p. 22]. �

COROLLARY 13. O6 violates the distributive law.

Proof. Distributivity implies orthomodularity. We can also easily verify on the
diagram: y ∩ (x ∪ x′) = y ∩ 1 = y, but (y ∩ x) ∪ (y ∩ x′) = x ∪ 0 = x. �
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THEOREM 14. All conditions of WOML and WDOL hold in O6.

Proof. As given by Mladen Pavičić and Norman Megill. [Pavičić and Megill,
1998b; Pavičić and Megill, 1999] It boils down to the fact that O6 violates none
of the conditions given by Eqs. (1-6), (9), and (13) �

THEOREM 15. There exist WDOL lattices that are not orthomodular and there-
fore not distributive, WOML lattices that are not orthomodular, ortholattices that
are neither WOML nor WDOL, and there are WOML lattices that are not WDOL.

Proof. As given by Mladen Pavičić and Norman Megill. [Pavičić and Megill,
1998b; Pavičić and Megill, 1999]. �

On the one hand, the equations that hold in OML and Boolean algebra properly
include those that hold in WOML and WDOL, since WOML and WDOL are
strictly more general classes of algebras. But on the other hand, there is also a
sense in which the equations of WOML and WDOL can be considered to properly
include those of OML and Boolean algebra, via mappings that the next theorems
describe.

THEOREM 16. The equational theory of OMLs can be simulated by a proper
subset of the equational theory of WOMLs.

Proof. The equational theory of OML consists of equality conditions, Eqs. (1)–(6)
together with the orthomodularity condition Eq. (11) (or Eq. (10) or Eq. (12)).
We construct a mapping from these conditions to WOML conditions as follows.
We map each of the OML conditions, which is an equation in the form t = s
(where t and s are terms), to the equation t ≡ s = 1, which holds in WOML. Any
equational proof in OML can then be simulated in WOML by replacing each axiom
reference in the OML proof with its corresponding WOML mapping [Pavičić and
Megill, 2008]. Such a mapped proof will use only a proper subset of the equations
that hold in WOML: any equation whose right-hand side does not equal 1, such
as a = a, will never be used. �

COROLLARY 17. No set of equations of the form t ≡ s = 1, where t and s are
terms in OML and where t = s holds in OML, determines OML when added to
the conditions for ortholattices.

Proof. Theorem 16 shows that all equations of this form hold in a WOML and
none of WOML conditions given by Eqs. (1-6,9) is violated by O6. Hence, Theorem
12 completes the proof. �

THEOREM 18. The equational theory of Boolean algebras can be simulated by a
proper subset of the equational theory of WDOLs.
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Proof. The equational theory of Boolean algebras consists of equality conditions
Eqs. (1)–(6) together with the distributivity condition Eq. (15). We construct
a mapping from these conditions into WDOL as follows. We map each of the
Boolean algebra conditions, which is an equation in the form t = s (where t and
s are terms), to the equation t ≡0 s = 1, which holds in WDOL. Any equational
proof in a Boolean algebra can then be simulated in WDOL by replacing each
condition reference in the Boolean algebra proof with its corresponding WDOL
mapping. [Pavičić and Megill, 2008] Such a mapped proof will use only a proper
subset of the equations that hold in WDOL: any equation whose right-hand side
does not equal 1, such as a = a, will never be used. �

COROLLARY 19. No set of equations of the form t ≡0 s = 1, where t and s are
terms in any Boolean algebra and where t = s holds in the algebra, determines a
Boolean algebra when added to an ortholattice.

Proof. Theorem 18 shows that all equations of this form hold in a WDOL and
none of WDOL conditions given by Eqs. (1-6,8) is violated by O6. Hence, Corollary
13 completes the proof. �

3 LOGICS

Logic, L, is a language consisting of propositions and a set of conditions and rules
imposed on them called axioms and rules of inference.

The propositions we use are well-formed formulas (wffs), defined as follows.
We denote elementary, or primitive, propositions by p0, p1, p2, . . ., and have the
following primitive connectives: ¬ (negation) and ∨ (disjunction). The set of wffs
is defined recursively as follows:

pj is a wff for j = 0, 1, 2, . . .

¬A is a wff if A is a wff.

A ∨B is a wff if A and B are wffs.

We introduce conjunction with the following definition:

DEFINITION 20. A ∧B
def= ¬(¬A ∨ ¬B).

The statement calculus of our metalanguage consists of axioms and rules from
the object language as elementary metapropositions and of compound metapropo-
sitions built up by means of the following metaconnectives: ∼ (not), & (and), ∨
(or), ⇒ (if. . . , then), and ⇔ (iff), with the usual classical meaning. Our meta-
language statement calculus is actually the very same classical logic we deal with
in this chapter, only with the {0,1} valuation. We extend the statement calculus
of the metalanguage with first-order predicate calculus — with quantifiers ∀ (for
all) and ∃ (exists) — and informal set theory in the usual way.
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The operations of implication are the following ones (classical, Sasaki, and
Kalmbach) [Pavičić, 1987]:

DEFINITION 21. A →0 B
def= ¬A ∨B.

DEFINITION 22. A →1 B
def= ¬A ∨ (A ∧B).

DEFINITION 23. A →3 B
def= (¬A ∧B) ∨ (¬A ∧ ¬B) ∨ (A ∧ (¬A ∨B)).

We also define the equivalence operations as follows:

DEFINITION 24. A ≡ B
def= (A ∧B) ∨ (¬A ∧ ¬B).

DEFINITION 25. A ≡0 B
def= (A →0 B) ∧ (B →0 A).

Connectives bind from weakest to strongest in the order →, ≡, ∨, ∧, ¬.

Let F◦ be the set of all propositions, i.e., of all wffs. Of the above connectives,
∨ and ¬ are primitive ones. Wffs containing ∨ and ¬ within logic L are used
to build an algebra F = 〈F◦,¬,∨〉. In L, a set of axioms and rules of inference
are imposed on F . From a set of axioms by means of rules of inference, we get
other expressions which we call theorems. Axioms themselves are also theorems.
A special symbol � is used to denote the set of theorems. Hence A ∈ � iff A is
a theorem. The statement A ∈ � is usually written as � A. We read this: “A
is provable” since if A is a theorem, then there is a proof for it. We present the
axiom systems of our propositional logics in schemata form (so that we dispense
with the rule of substitution).

3.1 Quantum Logic

All unary quantum logics we mentioned in the Introduction are equivalent. Here
we present Kalmbach’s quantum logic because it is the system which has been
investigated in the greatest detail in her book [Kalmbach, 1983] and elsewhere
[Kalmbach, 1974; Pavičić and Megill, 1998b]. Quantum logic, QL, is defined as
a language consisting of propositions and connectives (operations) as introduced
above, and the following axioms and a rule of inference. We will use �QL to denote
provability from the axioms and rule of QL and omit the subscript when it is clear
from context (such as in the list of axioms that follow).

Axioms

A1 � A ≡ A (16)
A2 � A ≡ B →0 (B ≡ C →0 A ≡ C) (17)
A3 � A ≡ B →0 ¬A ≡ ¬B (18)
A4 � A ≡ B →0 A ∧ C ≡ B ∧ C (19)
A5 � A ∧B ≡ B ∧A (20)
A6 � A ∧ (B ∧ C) ≡ (A ∧B) ∧ C (21)
A7 � A ∧ (A ∨B) ≡ A (22)
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A8 � ¬A ∧A ≡ (¬A ∧A) ∧B (23)
A9 � A ≡ ¬¬A (24)

A10 � ¬(A ∨B) ≡ ¬A ∧ ¬B (25)
A11 � A ∨ (¬A ∧ (A ∨B)) ≡ A ∨B (26)
A12 � (A ≡ B) ≡ (B ≡ A) (27)
A13 � A ≡ B →0 (A →0 B) (28)
A14 � (A →0 B) →3 (A →3 (A →3 B)) (29)
A15 � (A →3 B) →0 (A →0 B) (30)

Rule of Inference (Modus Ponens)

R1 � A & � A →3 B ⇒ � B (31)

In Kalmbach’s presentation, the connectives ∨, ∧, and ¬ are primitive. In the
base set of any model (such as an OML or WOML model) that belongs to OL,
∩ can be defined in terms of ∪ and ′, as justified by DeMorgan’s laws, and thus
the corresponding ∧ can be defined in terms of ∨ and ¬ (Definition 20). We shall
do this for simplicity. Regardless of whether we consider ∧ primitive or defined,
we can drop axioms A1, A11, and A15 because it has been proved that they are
redundant, i.e., can be derived from the other axioms. [Pavičić and Megill, 1998b]
Note that A11 is what we would expect to be the orthomodularity20 — see Eq. (37)
and the discussion following the equation.

DEFINITION 26. For Γ ⊆ F◦ we say A is derivable from Γ and write Γ �QL A or
just Γ � A if there is a sequence of formulas ending with A, each of which is either
one of the axioms of QL or is a member of Γ or is obtained from its precursors
with the help of a rule of inference of the logic.

3.2 Classical Logic

We make use of the PM classical logical system CL (Whitehead and Russell’s
Principia Mathematica axiomatization in Hilbert and Ackermann’s presentation
[Hilbert and Ackermann, 1950] but in schemata form so that we dispense with their
rule of substitution). In this system, the connectives ∨ and ¬ are primitive, and
the →0 connective shown in the axioms is implicitly understood to be expanded
according to its definition. We will use �CL to denote provability from the axioms
and rule of CL, omitting the subscript when it is clear from context.
Axioms

A1 � A ∨A →0 A (32)
A2 � A →0 A ∨B (33)
A3 � A ∨B →0 B ∨A (34)
A4 � (A →0 B) →0 (C ∨A →0 C ∨B) (35)

20Cf. Definition (7), Eq. (11)
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Rule of Inference (Modus Ponens)

R1 � A & A →0 B ⇒ � B (36)

We assume that the only legitimate way of inferring theorems in CL is by means
of these axioms and the Modus Ponens rule. We make no assumption about
valuations of the primitive propositions from which wffs are built, but instead
are interested in wffs that are valid in the underlying models. Soundness and
completeness will show that those theorems that can be inferred from the axioms
and the rule of inference are exactly those that are valid.

We define derivability in CL, Γ �CL A or just Γ � A, in the same way as we do
for system QL.

4 THE SOUNDNESS OF QL: ORTHOMODULARITY LOST

In this section we show that the syntax of QL does not correspond to the syntax of
an orthomodular lattice. We do this by proving the soundness of QL for WOML.
To prove soundness means to prove that all axioms as well as the rules of inference
(and therefore all theorems) of QL hold in its models. Since by Theorem 16
WOML properly includes OML, proving the soundness of QL for OML would not
tell us anything new, and we can dispense with it.

DEFINITION 27. We call M = 〈L, h〉 a model if L is an algebra and h : F◦ −→ L,
called a valuation, is a morphism of formulas F◦ into L, preserving the operations
¬,∨ while turning them into ′,∪.

Whenever the base set L of a model belongs to WOML (or another class of
algebras), we say (informally) that the model belongs to WOML (or the other
class). In particular, if we say “for all models in WOML” or “for all WOML
models,” we mean for all base sets in WOML and for all valuations on each base
set. The term “model” may refer either to a specific pair 〈L, h〉 or to all possible
such pairs with the base set L, depending on context.

DEFINITION 28. We call a formula A ∈ F◦ valid in the model M, and write
�M A, if h(A) = 1 for all valuations h on the model, i.e. for all h associated with
the base set L of the model. We call a formula A ∈ F◦ a consequence of Γ ⊆ F◦

in the model M and write Γ �M A if h(X) = 1 for all X in Γ implies h(A) = 1,
for all valuations h.

For brevity, whenever we do not make it explicit, the notations �M A and
Γ �M A will always be implicitly quantified over all models of the appropriate
type, in this section for all WOML models M. Similarly, when we say “valid”
without qualification, we will mean valid in all models of that type.

We now prove the soundness of quantum logic by means of WOML, i.e., that if
A is a theorem in QL, then A is valid in any WOML model.

THEOREM 29. [Soundness] Γ � A ⇒ Γ �M A
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Proof. We must show that any axiom A1–A15, given by Eqs. (16–30), is valid in
any WOML model M, and that any set of formulas that are consequences of Γ in
the model are closed under the rule of inference R1, Eq. (31).

Let us put a = h(A), b = h(B), . . .
By Theorem 16, we can prove that WOML is equal to OL restricted to all

orthomodular lattice conditions of the form t ≡ s = 1, where t and s are terms
(polynomials) built from the ortholattice operations and t = s is an equation that
holds in all OMLs. �

Hence, mappings of QL axioms and its rule of inference can be easily proved to
hold in WOML. Moreover, mappings of A1,A3,A5–A13,A15 and R1 hold in any
ortholattice. In particular, the

A11 mapping : (a ∪ (a′ ∩ (a ∪ b))) ≡ (a ∪ b) = 1 (37)

holds in every ortholattice and A11 itself is redundant, i.e., can be be inferred
from other axioms. Notice that by Corollary 17, a ≡ b = 1 does not imply a = b.
In particular, Eq. (37) does not imply (a ∪ (a′ ∩ (a ∪ b))) = (a ∪ b)

5 THE SOUNDNESS OF CL: DISTRIBUTIVITY LOST

In this section we show that the syntax of CL does not correspond to the syntax
of a Boolean algebra. In a way analogous to the QL soundness proof, we prove
the soundness of CL only by means of WDOL.

Recall Definitions 27 and 28 for “model,” “valid,” and “consequence.”
We now prove the soundness of classical logic by means of WDOL, i.e., that if

A is a theorem in CL, then A is valid in any WDOL model.

THEOREM 30. [Soundness] Γ � A ⇒ Γ �M A

Proof. We must show that any axiom A1–A4, given by Eqs. (32–35), is valid in
any WDOL model M, and that any set of formulas that are consequences of Γ in
the model are closed under the rule of inference R1, Eq. (36).

Let us put a = h(A), b = h(B), . . .
By Theorem 18, we can prove that WDOL is equal to OL restricted to all

Boolean algebra conditions of the form t ≡0 s = 1, where t and s are terms and
t = s is an equation that holds in all Boolean algebras. Notice that according
to Corollary 19, t ≡0 s = 1 is not generally equivalent to t = s in WDOL.
For example, the mappings of A1–A3 and R1 hold in every ortholattice, and the
ortholattice mapping of A4 does not make the ortholattice even orthomodular let
alone distributive. In other words,

(a ∩ (b ∪ c)) ≡0 ((a ∩ b) ∪ (a ∩ c)) = 1 (38)

does not imply (a∩ (b∪ c)) = ((a∩ b)∪ (a∩ c)), and therefore we cannot speak of
distributivity within CL. �
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6 THE COMPLETENESS OF QL FOR WOML MODELS:
NON-ORTHOMODULARITY CONFIRMED

Our main task in proving the soundness of QL in the previous section was to show
that all axioms as well as the rules of inference (and therefore all theorems) from
QL hold in WOML. The task of proving the completeness of QL is the opposite
one: we have to impose the structure of WOML on the set F◦ of formulas of QL.

We start with a relation of congruence, i.e., a relation of equivalence compatible
with the operations in QL. We make use of an equivalence relation to establish
a correspondence between formulas of QL and formulas of WOML. The resulting
equivalence classes stand for elements of a WOML and enable the completeness
proof of QL by means of this WOML.

Our definition of congruence involves a special set of valuations on lattice O6
(shown in Figure 1 in Section 2) called O6 and defined as follows. Its definition
is the same for both the quantum logic completeness proof in this section and the
classical logic completeness proof in Section 7.

DEFINITION 31. Letting O6 represent the lattice from Definition 11, we define
O6 as the set of all mappings o : F◦ −→ O6 such that for A,B ∈ F◦, o(¬A) =
o(A)′, and o(A ∨B) = o(A) ∪ o(B).

The purpose of O6 is to let us refine the equivalence classes used for the
completeness proof, so that the Lindenbaum algebra will be a proper WOML,
i.e. one that is not orthomodular. This is accomplished by conjoining the term
(∀o ∈ O6)[(∀X ∈ Γ)(o(X) = 1) ⇒ o(A) = o(B)] to the equivalence relation defini-
tion, meaning that for equivalence we require also that (whenever the valuations o
of the wffs in Γ are all 1) the valuations of wffs A and B map to the same point in
the lattice O6. For example, the two wffs A∨B and A∨(¬A∧(A∨B)) will become
members of two separate equivalence classes by Theorem 37 below. Without the
conjoined term, these two wffs would belong to the same equivalence class. The
point of doing this is to provide a completeness proof that is not dependent in any
way on the orthomodular law, to show that completeness does not require that
the underlying models be OMLs.

THEOREM 32. The relation of equivalence ≈Γ,QL or just ≈, defined as

A ≈ B (39)
def= Γ � A ≡ B & (∀o ∈ O6)[(∀X ∈ Γ)(o(X) = 1) ⇒ o(A) = o(B)],

is a relation of congruence in the algebra F , where Γ ⊆ F◦

Proof. Let us first prove that ≈ is an equivalence relation. A ≈ A follows from
A1 [Eq. (16)] of system QL and the identity law of equality. If Γ � A ≡ B, we
can detach the left-hand side of A12 to conclude Γ � B ≡ A, through the use of
A13 and repeated uses of A14 and R1. From this and commutativity of equality,
we conclude A ≈ B ⇒ B ≈ A. (For brevity we will not usually mention further
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uses of A12, A13, A14, and R1 in what follows.) The proof of transitivity runs as
follows.

A ≈ B & B ≈ C (40)
⇒ Γ � A ≡ B & Γ � B ≡ C

& (∀o ∈ O6)[(∀X ∈ Γ)(o(X) = 1) ⇒ o(A) = o(B)]
& (∀o ∈ O6)[(∀X ∈ Γ)(o(X) = 1) ⇒ o(B) = o(C)]

⇒ Γ � A ≡ C

& (∀o ∈ O6)[(∀X ∈ Γ)(o(X) = 1) ⇒ o(A) = o(B) & o(B) = o(C)].

In the last line above, Γ � A ≡ C follows (see Sec. 3.1) using A2, A14 twice, and
R1 six times, and the last metaconjunction reduces to o(A) = o(C) by transitivity
of equality. Hence the conclusion A ≈ C by definition.

In order to be a relation of congruence, the relation of equivalence must be
compatible with the operations ¬ and ∨. These proofs run as follows.

A ≈ B (41)
⇒ Γ � A ≡ B

& (∀o ∈ O6)[(∀X ∈ Γ)(o(X) = 1) ⇒ o(A) = o(B)]
⇒ Γ � ¬A ≡ ¬B

& (∀o ∈ O6)[(∀X ∈ Γ)(o(X) = 1) ⇒ o(A)′ = o(B)′]
⇒ Γ � ¬A ≡ ¬B

& (∀o ∈ O6)[(∀X ∈ Γ)(o(X) = 1) ⇒ o(¬A) = o(¬B)]
⇒ ¬A ≈ ¬B

A ≈ B (42)
⇒ Γ � A ≡ B

& (∀o ∈ O6)[(∀X ∈ Γ)(o(X) = 1) ⇒ o(A) = o(B)]
⇒ Γ � (A ∨ C) ≡ (B ∨ C)

& (∀o ∈ O6)[(∀X ∈ Γ)(o(X) = 1) ⇒ o(A) ∪ o(C) = o(B) ∪ o(C)]
⇒ (A ∨ C) ≈ (B ∨ C)

In the second step of Eq. 41, we used A3. In the second step of Eq. 42, we used A4
and A10. For the quantified part of these expressions, we applied the definition of
O6. �

DEFINITION 33. The equivalence class for wff A under the relation of equivalence
≈ is defined as |A| = {B ∈ F◦ : A ≈ B}, and we denote F◦/≈ = {|A| : A ∈ F◦}.
The equivalence classes define the natural morphism f : F◦ −→ F◦/ ≈, which
gives f(A) =def |A|. We write a = f(A), b = f(B), etc.
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LEMMA 34. The relation a = b on F◦/≈ is given by:

|A| = |B| ⇔ A ≈ B (43)

LEMMA 35. The Lindenbaum algebra A = 〈F◦/≈,¬/≈,∨/≈〉 is a WOML, i.e.,
Eqs. (1)–(6) and Eq. (9) hold for ¬/≈ and ∨/≈ as ′ and ∪ respectively [where
— for simplicity — we use the same symbols (′ and ∪) as for O6, since there are
no ambiguous expressions in which the origin of the operations would not be clear
from the context].

Proof. For the Γ � A ≡ B part of the A ≈ B definition, the proofs of the
ortholattice conditions, Eqs. (1)–(6), follow from A5, A6, A9, the dual of A8, the
dual of A7, and DeMorgan’s laws respectively. (The duals follow from DeMorgan’s
laws, derived from A10, A9, and A3.) A11 gives us an analog of the OML law for
the Γ � A ≡ B part, and the WOML law Eq. (9) follows from the OML law in
an ortholattice. For the quantified part of the A ≈ B definition, lattice O6 is a
WOML by Theorem 14. �

LEMMA 36. In the Lindenbaum algebra A, if f(X) = 1 for all X in Γ implies
f(A) = 1, then Γ � A.

Proof. Let us assume that f(X) = 1 for all X in Γ implies f(A) = 1 i.e.
|A| = 1 = |A| ∪ |A|′ = |A∨¬A|, where the first equality is from Definition 33, the
second equality follows from Eq. (7) (the definition of 1 in an ortholattice), and the
third from the fact that ≈ is a congruence. Thus A ≈ (A∨¬A), which by definition
means Γ � A ≡ (A∨¬A) & (∀o ∈ O6)[(∀X ∈ Γ)(o(X) = 1) ⇒ o(A) = o((A∨¬A))].
This implies, in particular, Γ � A ≡ (A∨¬A). In any ortholattice, a ≡ (a∪a′) = a
holds. By analogy, we can prove Γ � (A ≡ (A ∨ ¬A)) ≡ A from QL axioms A1–
A15. Detaching the left-hand side (using A12, A13, A14, and R1), we conclude
Γ � A. �

THEOREM 37. The orthomodular law does not hold in A.

Proof. This is Theorem 3.27 from [Pavičić and Megill, 1999], and the proof
provided there runs as follows. We assume F◦ contains at least two elementary
(primitive) propositions p0, p1, . . .. We pick a valuation o that maps two of them,
A and B, to distinct nodes o(A) and o(B) of O6 that are neither 0 nor 1 such that
o(A) ≤ o(B) [i.e. o(A) and o(B) are on the same side of hexagon O6 in Figure
1 in Section 2]. From the structure of O6, we obtain o(A) ∪ o(B) = o(B) and
o(A)∪(o(A)′∩(o(A)∪o(B))) = o(A)∪(o(A)′∩o(B)) = o(A)∪0 = o(A). Therefore
o(A)∪o(B) �= o(A)∪(o(A)′∩(o(A)∪o(B)), i.e., o(A∨B) �= o(A∨(¬A∧(A∨B))).
This falsifies (A ∨B) ≈ (A ∨ (¬A ∧ (A ∨B)). Therefore a ∪ b �= a ∪ (a′ ∩ (a ∪ b)),
providing a counterexample to the orthomodular law for F◦/≈. �

LEMMA 38. M = 〈F/≈, f〉 is a WOML model.
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Proof. Follows from Lemma 35. �

Now we are able to prove the completeness of QL, i.e., that if a formula A is
a consequence of a set of wffs Γ in all WOML models, then Γ � A. In particular,
when Γ = ∅, all valid formulas are provable in QL. (Recall from the note below
Definition 28 that the left-hand side of the metaimplication below is implicitly
quantified over all WOML models M.)

THEOREM 39. [Completeness] Γ �M A ⇒ Γ � A.

Proof. Γ �M A means that in all WOML models M, if f(X) = 1 for all X in Γ,
then f(A) = 1 holds. In particular, it holds for M = 〈F/≈, f〉, which is a WOML
model by Lemma 38. Therefore, in the Lindenbaum algebra A, if f(X) = 1 for all
X in Γ, then f(A) = 1 holds. By Lemma 36, it follows that Γ � A. �

7 THE COMPLETENESS OF CL FOR WDOL MODELS:
NON-DISTRIBUTIVITY CONFIRMED

In this section we will prove the completeness of CL, i.e., we will impose the
structure of WDOL on the set F◦ of formulas of CL.

We start with a relation of congruence, i.e., a relation of equivalence compatible
with the operations in CL. We have to make use of an equivalence relation to
establish a correspondence between formulas from CL and formulas from WDOL.
The resulting equivalence classes stand for elements of a WDOL and enable the
completeness proof of CL.

THEOREM 40. The relation of equivalence ≈Γ,CL or just ≈, defined as

A ≈ B (44)
def= Γ � A ≡0 B & (∀o ∈ O6)[(∀X ∈ Γ)(o(X) = 1) ⇒ o(A) = o(B)],

is a relation of congruence in the algebra F .

Proof. The axioms and rules of QL, A1–A15 and R1, i.e., Eqs. (16)–(31), are the-
orems of CL, A1–A4 and R1, i.e. Eqs. (32)–(36). To verify this we refer the reader
to Principia Mathematica by Alfred Whitehead and Bertrand Russell [Whitehead
and Russell, 1910], where the QL axioms either will be found as theorems or can
easily be derived from them. For example, axiom A1 of QL is given as Theorem
*4.2 [Whitehead and Russell, 1910, p. 116] after using Theorem *5.23 to convert
from ≡0 to ≡. This will let us take advantage of parts of the completeness proof
for QL, implicitly using Theorem *5.23 [Whitehead and Russell, 1910, p. 124] in
either direction as required.

With this in mind, the proof that ≈ is an equivalence and congruence relation
becomes exactly the proof of Theorem 32. �
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DEFINITION 41. The equivalence class for wff A under the relation of equivalence
≈ is defined as |A| = {B ∈ F◦ : A ≈ B}, and we denote F◦/≈ = {|A| ∈ F◦}. The
equivalence classes define the natural morphism f : F◦ −→ F◦/ ≈, which gives
f(A) =def |A|. We write a = f(A), b = f(B), etc.

LEMMA 42. The relation a = b on F◦/≈ is given as:

|A| = |B| ⇔ A ≈ B (45)

LEMMA 43. The Lindenbaum algebra A = 〈F◦/≈,¬/≈,∨/≈,∧/≈〉 is a WDOL,
i.e., Eqs. (1)–(6) and Eq. (13), hold for ¬/≈ and ∨/≈ as ′ and ∪ respectively.

Proof. For the Γ � A ≡0 B part of the A ≈ B definition, the proofs of the
ortholattice axioms are identical to those in the proof of Lemma 35 (after using
using Theorem *5.23 on p. 124 of Ref. [Whitehead and Russell, 1910] to convert
between ≡0 and ≡). The WDOL law Eq. (13) for the Γ � A ≡0 B part can be
derived using Theorems *5.24, *4.21, *5.17, *3.2, *2.11, and *5.1 [Whitehead and
Russell, 1910, pp. 101–124]. For the quantified part of the A ≈ B definition, lattice
O6 is a WDOL by Theorem 14. �

LEMMA 44. In the Lindenbaum algebra A, if f(X) = 1 for all X in Γ implies
f(A) = 1, then Γ � A.

Proof. Identical to the proof of Lemma 36. �

THEOREM 45. Distributivity does not hold in A.

Proof. (a ∩ (b ∪ c)) = ((a ∩ b) ∪ (a ∩ c)) fails in O6. Cf. the proof of Theorem 37.
�

LEMMA 46. M = 〈F/≈, f〉 is a WDOL model.

Proof. Follows Lemma 43. �

Now we are able to prove the completeness of CL, i.e., that if a formula A is a
consequence of a set of wffs Γ in all WDOL models, then Γ � A. In particular,
when Γ = ∅, all valid formulas are provable in QL.

THEOREM 47. [Completeness] Γ �M A ⇒ Γ � A

Proof. Analogous to the proof of Theorem 39. �

8 THE COMPLETENESS OF QL FOR OML MODELS:
ORTHOMODULARITY REGAINED

Completeness proofs for QL carried out in the literature so far — with the excep-
tion of Pavičić and Megill [Pavičić and Megill, 1999] — do not invoke Definition
11 and Theorem 14, and instead of Theorem 32 one invokes the following one:
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THEOREM 48. Relation ≈ defined as

A ≈ B
def= Γ � A ≡ B (46)

is a relation of congruence in the algebra F .

Instead of Definition 33 one has:

DEFINITION 49. The equivalence class under the relation of equivalence is de-
fined as |A| = {B ∈ F◦ : A ≈ B}, and we denote F◦/ ≈ = {|A| ∈ F◦} The
equivalence classes define the natural morphism f : F◦ −→ F◦/ ≈, which gives
f(A) =def |A|. We write a = f(A), b = f(A), etc.

And instead of Lemma 34 one is able to obtain:

LEMMA 50. The relation a = b on F◦/≈ is given as:

a = b ⇔ |A| = |B| ⇔ A ≈ B ⇔ Γ � A ≡ B (47)

Hence, from the following easily provable theorem in QL:

� (A ≡ B) ≡ (C ∨ ¬C) ⇒ � A ≡ B (48)

one is also able to get:

a ≡ b = 1 ⇒ a = b (49)

in the Lindenbaum algebra A, which is the orthomodularity as given by Definition
6. [Pavičić, 1998]

The point here is that Eq. (49) has nothing to do with any axiom or rule
of inference from QL — it is nothing but a consequence of the definition of the
relation of equivalence from Theorem 48. Hence, the very definition of the standard
relation of equivalence introduces a hidden axiom — the orthomodularity — into
the Lindenbaum algebra A, thus turning it into an orthomodular lattice. Without
this hidden axiom, the Lindenbaum algebra stays WOML as required by the QL
syntax. With it the Lindenbaum algebra turns into OML as follows.

LEMMA 51. In the Lindenbaum algebra A, if f(X) = 1 for all X in Γ implies
f(A) = 1, then Γ � A.

Proof. In complete analogy to the proof of Theorem 36. �
THEOREM 52. The orthomodular law holds in A.

Proof. a ∪ (a′ ∩ (a ∪ b)) = a ∪ b follows from A11, Eq. (26) and Eq. (49). �
LEMMA 53. M = 〈F/≈, f〉 is an OML model.

Proof. Follows from Lemma 51. �
Now we are able to prove the completeness of QL, i.e., that if a formula A is a

consequence of a set of wffs Γ in all OML models, then Γ � A.

THEOREM 54. [Completeness] Γ �M A ⇒ Γ � A

Proof. Analogous to the proof of Theorem 39. �
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9 THE COMPLETENESS OF CL FOR BOOLEAN ALGEBRA MODELS:
DISTRIBUTIVITY REGAINED

The completeness proof carried out in almost all logic books and textbooks do not
invoke Definition 11, Theorem 14, and Theorem 40. An exception is the Classical
and Nonclassical Logics by Eric Schechter [Schechter, 2005, p. 272] who adopted
them from Pavičić and Megill [Pavičić and Megill, 1999] and presented in a reduced
approach which he called the hexagon interpretation. Other books, though, are
based on:

THEOREM 55. Relation ≈ defined as

A ≈ B
def= Γ � A ≡0 B (50)

is a relation of congruence in the algebra F .

Instead of Definition 41 one has:

DEFINITION 56. The equivalence class under the relation of equivalence is de-
fined as |A| = {B ∈ F◦ : A ≈ B}, and we denote F◦/ ≈ = {|A| ∈ F◦} The
equivalence classes define the natural morphism f : F◦ −→ F◦/ ≈, which gives
f(A) =def |A|. We write a = f(A), b = f(A), etc.

And instead of Lemma 42 one is able to obtain:

LEMMA 57. The relation a = b on F◦/≈ is given as:

a = b ⇔ |A| = |B| ⇔ A ≈ B ⇔ Γ � A ≡0 B (51)

Hence, from the following easily provable theorem in CL:

� (A ≡0 B) ≡0 (C ∨ ¬C) ⇒ � A ≡0 B (52)

one is also able to get:

a ≡0 b = 1 ⇒ a = b (53)

in the Lindenbaum algebra A, which is the distributivity as given by Definition 9.
[Pavičić, 1998] The point here is that Eq. (53) has nothing to do with any axiom
or rule of inference from CL — it is nothing but a consequence of the definition
of the relation of equivalence from Theorem 55. Hence, the very definition of the
standard relation of equivalence introduces the distributivity as a hidden axiom
into the Lindenbaum algebra A and turns it into a Boolean algebra.

THEOREM 58. [Completeness] Γ �M A ⇒ Γ � A

Proof. Analogous to the proof of Theorem 47. �
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10 DISCUSSION

In the above sections, we reviewed the historical results that we considered rel-
evant to decide whether quantum logic can be considered a logic or not. In the
Introduction, we showed that many authors in the past thirty years tried to de-
cide on this question by starting with particular models and their syntax — the
orthomodular lattice for quantum logic and Boolean algebra for classical. They
compared the models and often came to a conclusion that since they are so differ-
ent, quantum logic should not be considered a logic. This was, however, in obvious
conflict with the growing number of well-formulated quantum logic systems over
the same period. We mentioned some of them in the Introduction.

Orthomodular lattices and Boolean algebras are very different. As reviewed in
the Introduction, in any orthomodular lattice all operations, variables, and con-
stants are sixfold defined (five quantum and one classical), and in a Boolean algebra
they all merge to classical operations, variables, and constants (0,1). Both an or-
thomodular lattice and a Boolean algebra can be formulated as equational systems
— as reviewed in Section 2. Such equational systems can mimic both quantum
and classical logics and show that one can formulate the Deduction Theorem in a
special orthomodular lattice — a distributive one, i.e., a Boolean algebra — but
cannot in a general one. As a consequence, the operation of implication — which
the Deduction Theorem21 is based on — plays a special unique role in classical
logic and does not in quantum logic. Also, the Boolean algebra used as a model
for classical logic is almost always two-valued, i.e., it consists of only two elements
0 and 1, and an orthomodular lattice, according to the Kochen-Specker theorem,
cannot be given a {0, 1} valuation.22

So, recently research was carried out on whether a logic could have more than
one model of the same type, e.g., an ortholattice, with the idea of freeing logics from
any semantics and valuation. The result was affirmative, and a consequence was
that quantum logic can be considered a logic in the same sense in which classical
logic can be considered a logic. The details are given in Sections 3–9, where we
chose Kalmbach’s system to represent quantum logic in Section 3.1 and Hilbert
and Ackermann’s presentation of Principa Mathematica to represent classical logic
in Section 3.2 (although we could have chosen any other system mentioned in the
Introduction or from the literature).23

In Sections 4 and 6, we then proved the soundness and completeness, respec-
tively, of quantum logic QL for a non-orthomodular model WOML and in Sections

21See footnote No. 14.
22In 2004 Mladen Pavičić, Jean-Pierre Merlet, Brendan McKay, and Norman Megill gave

exhaustive algorithms for generation of Kochen-Specker vector systems with arbitrary number
of vectors in Hilbert spaces of arbitrary dimension. [Pavičić et al., 2004; Pavičić et al, 2005;
Pavičić, 2005] The algorithms use MMP (McKay-Megill-Pavičić) diagrams for which in 3-dim
Hilbert space a direct correspondence to Greechie and Hasse diagrams can be established. Thus,
we also have a constructive proof within the lattice itself.

23Quantum logics given by Mladen Pavičić [Pavičić, 1989] and by Mladen Pavičić and Norman
Megill [Pavičić and Megill, 1999] are particulary instructive since they contain only axioms
designed so as to directly map into WOML conditions.
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5 and 7 the soundness and completeness, respectively, of classical logic CL for a
non-distributive model WDOL. Hence, with respect to these models, quantum
logic QL cannot be called orthomodular and classical logic CL cannot be called
distributive or Boolean. Also, neither QL nor CL can have a numerical valuation
in general, since the truth table method is inapplicable within their OML, WOML,
and WDOL models.

One might be tempted to “explain” these results in the following way. “It is true
that WOML and WDOL obviously contain lattices that violate the orthomodu-
larity law, for example the O6 hexagon (shown in Figure 1 in Section 2) itself, but
most probably they also must contain lattices that pass the law and that would,
with reference to Theorem 16, explain why we were able to prove the complete-
ness of quantum and classical logic for WOML and WDOL.” This is, however, not
the case. We can prove the soundness and completeness of quantum and classical
logics using a class of WOML lattices none of which pass the orthomodularity law
[Pavičić and Megill, 2008]. Moreover, Eric Schechter has simplified the results of
Pavičić and Megill [Pavičić and Megill, 1999] to the point of proving the sound-
ness and completeness of classical logic for nothing but O6 itself. [Schechter, 2005,
p. 272]

One of the conclusions Eric Schechter has drawn from the unexpected non-
distributivity of the WDOL models, especially when reduced to the O6 lattice
alone, is that all the axioms that one can prove by means of {0, 1} truth tables,
one can also prove by any Boolean algebra, and by O6. So, logics are, first of
all, axiomatic deductive systems. Semantics are a next layer that concern models
and valuations. Quantum and classical logics can be considered to be two such
deductive systems. There are no grounds for considering any of the two logics
more “proper” than the other. As we have shown above, semantics of the logics
that consider their models show bigger differences between the two aforementioned
classical models than between two corresponding quantum and classical models.

Whether we will ever use O6 semantics of classical logic or WOML semantics of
quantum logic remains an open question, but these semantics certainly enrich our
understanding of the role of logics in applications to mathematics and physics. We
cannot make use of bare axiomatics of logic without specifying semantics (models
and valuations) for the purpose. By making such a choice we commit ourselves
to a particular model and disregard the original logical axioms and their syntax.
Thus we do not use quantum logic itself in quantum mechanics and in quantum
computers but instead an orthomodular lattice, and we do not use classical logic
in our computers today but instead a two-valued Boolean algebra (we even hardly
ever use more complicated Boolean algebras). We certainly cannot use O6 se-
mantics to build a computer or an arithmetic; however, one day we might come
forward with significant applications of these alternative semantics, and then it
might prove important to have a common formal denominator for all the models
— logics they are semantics of. We can also implement an alternative scenario
— searching for different ortholattice semantics of the same logics [Pavičić and
Megill, 2008].



Is Quantum Logic a Logic? 45

Whatever strategy we choose to apply, we should always bear in mind that the
syntaxes of the logics correspond to WOML, WDOL, and O6 semantics (models)
while OML and Boolean algebra semantics (models) are imposed on the logics with
the help of “hidden” axioms, Eqs. (49) and (53), that emerge from the standard
way of defining the relation of equivalence in the completeness proofs, Theorems
48 and 55, of the logics for the latter models.
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46 Mladen Pavičić and Norman D. Megill

[Jauch, 1968] J. M. Jauch, Foundations of Quantum Mechanics, Addison-Wesley, Reading,
Massachusetts, 1968.

[Jauch and Piron, 1970] J. M. Jauch and C. Piron, What is ‘Quantum Logic’?, in Quanta,
edited by P. G. O. Freund, C. J. Goebel, and Y. Nambu, pages 166–181, The University of
Chicago Press, Chicago and London, 1970.

[Kalmbach, 1974] G. Kalmbach, Orthomodular Logic, Z. math. Logik Grundl. Math. 20, 395–
406 (1974).

[Kalmbach, 1983] G. Kalmbach, Orthomodular Lattices, Academic Press, London, 1983.
[Maeda and Maeda, 1970] F. Maeda and S. Maeda, Theory of Symmetric Lattices, Springer-

Verlag, New York, 1970.
[Malinowski, 1990] J. Malinowski, The Deduction Theorem for Quantum Logic — Some Nega-

tive Results, J. Symb. Logic 55, 615–625 (1990).
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[Pavičić, 1998] M. Pavičić, Identity Rule for Classical and Quantum Theories, Int. J. Theor.

Phys. 37, 2099–2103 (1998).
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IS LOGIC EMPIRICAL?

Guido Bacciagaluppi

1 INTRODUCTION

In 1968 Hilary Putnam published a well-known paper on the question ‘Is logic
empirical?’ (Putnam 1968), which gave rise to much controversy in the 1970s and
1980s. The main claims of Putnam’s paper (repeated in Putnam 1974) can be
paraphrased as follows:

(a) Quantum mechanics prompts us to revise our classical logical notions in
favour of ‘quantum logical’ ones. This is explained by analogy to geometry, in the
sense that also general relativity prompts us to revise our Euclidean (or rather
Minkowskian) geometrical notions in favour of Riemannian (or rather pseudo-
Riemannian) geometrical notions.

(b) This revision of logic is not merely local, i. e. not merely an instance of
a logical system especially suited to a particular subject matter, but it is truly
global. Quantum logic is the ‘true’ logic (just as the ‘true’ geometry of space-time
is non-Euclidean). Indeed, we have so far failed to recognise that our usual logical
connectives are the connectives of quantum logic.

(c) Recognising that logic is thus quantum solves the standard paradoxes of
quantum mechanics, such as the measurement problem or Schrödinger’s cat.

Of these truly ambitious and indeed exciting claims, the third claim (c) in par-
ticular was discussed extensively, and an almost universal consensus was reached
(now shared by Putnam, 1994) that a move to quantum logic, even were it oth-
erwise justified, would not resolve the puzzles of quantum mechanics. There have
been notable reactions also to Putnam’s first two claims. Yet, with few exceptions
(one needs only to recall the masterly paper by Michael Dummett, 1976), the
topic seems to be riddled with misunderstandings. Indeed, very few philosophers
appear to still consider seriously the possibility that quantum mechanics might
have something to say about the ‘true’ logic (I know of only one recent attempt
to resurrect this idea, namely by Michael Dickson, 2001, on whose views more
below). This chapter aims at clearing such misunderstandings, and at providing
a much-needed overall assessment of Putnam’s claims, by updating the debate in
the light of the current state of the art in the foundations of quantum mechanics.

As regards Putnam’s claim (a), I take it that it is indeed justified, at least
provided one takes ‘quantum logic’ as a local logic, suitable to describing a class
of propositions in the context of quantum mechanical experiments (or the corre-
sponding class of propositions about properties of quantum mechanical systems).
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This claim is analogous to the claim that intuitionistic logic is indeed suitable to
describing a class of propositions dealing with mathematical constructions. This
is distinct from the claim that intuitionistic logic is in fact the logic that underlies
all rigorous human thought (and is thus the ‘true’ logic). Claim (a) understood in
this sense, I should think, is relatively uncontroversial, and shall be taken as such
for purposes of further discussion. The explanation that quantum logic, suitably
defined, has all the main formal properties required of a ‘good’ logic will also fall
into this part of the discussion.

Claim (b) is the most controversial one, and its assessment will therefore need
the most care. There are two points at issue (both well emphasised already by
Dummett). The first point is that motivating a revision of logic does not only re-
quire motivating the introduction of some non-classical connectives. An advocate
of a revision of logic must show why these connectives do not merely sit alongside
the classical connectives, but actually replace them. The second point is a Quinean
one: such a revision of logic means that, as part of the various revisions to our
network of beliefs prompted by the empirical consideration of quantum phenom-
ena, it is possible to choose to make some revisions in our conception of logic. But
it is clear that empirical considerations alone cannot force us to revise our logic:
a distinctly philosophical component will be needed in order to justify whether a
revision of logic, as opposed to a revision somewhere else in our network of beliefs,
might be desirable. (In the case of geometry, this is the same situation we have
known ever since Poincaré. And indeed, we shall note in section 7 that in the
interpretation of quantum mechanics one can find a rather close analogy to issues
about conventionalism in physical geometry.)

An aspect of claim (b) that is of special importance is the subsidiary claim
that the quantum logical connectives are not new connectives that can be defined
in terms of the classical ones (and of some additional physical concepts), but
that the classical connectives are in fact the quantum logical ones in disguise.
We shall therefore have to discuss in depth whether there is a sense in which
the classical connectives might be reducible to the quantum logical ones, either
in some strict formal sense, or in some physical limit. In this context, as we
shall see, questions of interpretation in quantum mechanics play an important
role. Indeed, most discussions of quantum logic as the ‘true’ logic have taken
place, at least implicitly, in the context of the so-called standard interpretation of
quantum mechanics. This, however, is the interpretation that is riddled with the
usual paradoxes. As we shall see, which alternative approach to the foundations
of quantum mechanics one accepts might influence the assessment of whether a
global revision of logic is acceptable. Conversely, one might add, one’s views on
whether a global revision of logic is acceptable might influence the assessment of
which approach to the foundations of quantum mechanics is most appealing.

We shall proceed as follows. In section 2, we sketch a few basic elements of
quantum mechanics that will be needed later. In section 3, we introduce quantum
logic (in its lattice-theoretic form) as a local logic of certain experimental proposi-
tions; we further discuss the formal properties of such a logic, and mention a few



Is Logic Empirical? 51

alternative forms of quantum logic. Section 4 introduces the so-called standard
interpretation of quantum mechanics, and section 5 assesses Putnam’s claims in
the context of this interpretation. The claims are found hard to defend, but the
standard interpretation itself is not a believable interpretation because it gives rise
to the usual paradoxes, at least if one applies it to standard quantum mechanics.
Putnam’s claims are thus reassessed first, in section 6, in the context of more gen-
eral quantum-like theories (based on von Neumann algebras), where the classical
connectives seem indeed to be reducible to the quantum ones. Then, in section 7,
we shall reassess Putnam’s claims in the context of the main current approaches to
the foundations of quantum mechanics that explicitly address the paradoxes of the
standard theory. Our conclusions will be that, while in the case of the approaches
known as de Broglie-Bohm theory and as spontaneous collapse theories quantum
logic at most can be introduced alongside classical logic, and thus in no way can
be construed as replacing it, in the case of the Everett (or many-worlds) approach
a case can indeed be made that the classical connectives emerge from the quantum
ones.

Before proceeding, I should emphasise that although the title of this chapter may
suggest a general treatment of the question of whether logic is empirical, it will deal
only with the question of whether considerations related to quantum mechanics
may provide an argument for the general claim. (Putnam’s original paper, 1968,
does the same.1) Of course, if quantum logic provides us with an intelligible global
alternative to classical logic, the case for logic being empirical will be strengthened.
However, I believe that a comprehensive assessment of the question of whether
empirical considerations might prompt us to revise our logic will depend less on
the details of the physics and more on the largely conceptual question of whether
the notion of logical consequence is a priori or is an abstraction from what appear
to be valid inferences in our practical use of language.2 Indeed, unless one tends
towards the latter position, i. e. unless one thinks that classical logic is already an
abstraction from the classical empirical world around us (thus already conceding
that ‘logic is empirical’), one will be disinclined to take discoveries in microphysics
to be relevant at all to the revisability of logic. We shall not attempt to address
this more general question.

2 QUANTUM MECHANICS IN A NUTSHELL

In the interest of a self-contained presentation, I summarise a few essentials about
quantum mechanics that will be needed below. (This section will be rather abstract
but elementary.)

In classical mechanics, the state of a system can be represented by a point

1As a matter of fact, Putnam’s paper was later reprinted with the modified title ‘The logic of
quantum mechanics’.

2For a recent discussion of the apriorism issue in logic, see e. g. Bueno and Colyvan (2004).
Note also that one could very well conceive adopting an apriorist position with regard to quantum
logic rather than classical logic.
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in (or a subset of, or a probability distribution over) a set called phase space,
encoding the positions and momenta of all the particles forming the system. In
quantum mechanics, instead, the state of a system is represented by an element in
a complex Hilbert space (which is a vector space, equipped with a scalar product,
that is complete in the norm induced by the scalar product). In particular, this
means that for any two states (e.g., for a spin-1/2 system, the states of spin-up
and spin-down in direction x), an arbitrary linear combination (or ‘superposition’)
is also a possible state:

(1) |ϕ〉 = α|+x〉 + β|−x〉 .

Note that the same vector can always be expressed as an appropriate linear com-
bination of vectors in any other basis:

(2) |ϕ〉 = γ|+y〉 + δ|−y〉 .

In quantum mechanics, overall scalar factors do not count, i. e. the vectors |ϕ〉
and ε|ϕ〉 for arbitrary complex ε represent the same state, and by convention all
states are usually normalised, i. e. have length 1. Therefore, if the basis vectors
are normalised and orthogonal, as in the example above, one has |α|2 + |β|2 =
|γ|2 + |δ|2 = 1.

A second crucial distinction between classical and quantum mechanics is that,
when describing composite systems in quantum mechanics, instead of taking the
Cartesian product of the given phase spaces as in classical mechanics, one has to
take the tensor product of the given Hilbert spaces. For instance, for two spin-1/2
subsystems with Hilbert spaces generated (spanned) by

(3) {|+1
x〉, |−1

x〉}, {|+2
x〉, |−2

x〉} ,

one takes the Hilbert space generated by a basis given by the products of the basis
vectors:

(4) {|+1
x〉 ⊗ |+2

x〉, |+1
x〉 ⊗ |−2

x〉, |−1
x〉 ⊗ |+2

x〉, |−1
x〉 ⊗ |−2

x〉}

(this construction is independent of the bases chosen for the subsystems).
The fundamental consequence of taking tensor products to describe composite

systems is that some states of the composite are not product states, e. g. the so-
called singlet state of two spin-1/2 systems:

(5)
1√
2

(
|+1

x〉 ⊗ |−2
x〉 − |−1

x〉 ⊗ |+2
x〉
)

.

Such non-factorisable states are called entangled (the property of being entangled
is also independent of the bases chosen for representation in the component sys-
tems3). If the state of a composite system is entangled, then the subsystems are
evidently not described separately by vectors in their respective Hilbert spaces.

3Incidentally, it is not independent of the choice of the subsystems into which the system is
decomposed.
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This is a characteristic trait of quantum mechanics (Schrödinger, 1935, p. 555,
called it ‘not .... one but rather the characteristic trait of quantum mechanics’),
and it is related to the Einstein-Podolsky-Rosen paradox, the Bell inequalities,
quantum non-locality et cetera.

How can this be? The key, and the third crucial ingredient in our brief sum-
mary of quantum mechanics besides Hilbert spaces and tensor products, is the
phenomenology of measurement. In classical mechanics one can idealise measure-
ments as testing whether a system lies in a certain subset of its phase space. This
can be done in principle without disturbing the system, and the result of the test
is in principle fully determined by the state of the system. In quantum mechanics
we are empirically confronted with the following situation. (i) Measurements can
be idealised as testing whether the system lies in a certain (norm-closed) subspace
of its Hilbert space — a subset which, in particular, is closed under linear combi-
nations. (ii) A measurement in general disturbs a system: unless the state of the
system is either contained in or orthogonal to the tested subspace, the state is pro-
jected (‘collapsed’) onto either the tested subspace or its orthogonal complement.
(c) This collapse process is indeterministic, and the relevant probabilities are given
by the squared norms of the projections of the state on the given subspace and its
orthogonal complement, respectively.

For example, take the initial state (1) and test for spin-up in direction x (test
for the subspace P+x

): the final state will be |+x〉 with probability |α|2, or |−x〉
with probability |β|2. Now take the singlet state (5) as the intial state and test for
P 1

+x
⊗ P 2

+x
: the test will come out negative with probability 1, and the state will

be undisturbed, since it lies in a subspace orthogonal to the tested one. (The same
will be the case if one tests for P 1

−x
⊗ P 2

−x
.) Test instead for P 1

+x
⊗ P 2

−x
(or for

P 1
−x

⊗P 2
+x

): the result (in both cases) will now be |+1
x〉⊗|−2

x〉 or |−1
x〉⊗|+2

x〉, each
with probability 1/2. Weaker correlations will be observed if spin is measured along
two different directions on the two subsystems. Entanglement thus introduces
what appear to be irreducible correlations between results of measurements ( even
carried out at a distance), and this for a generic pair of tests.

The last two elements of quantum mechanics that we shall also refer to are
the Schrödinger equation and the notion of (self-ajoint) operator as an observable
quantity.

The Schrödinger equation describes the time evolution of quantum state vectors.
It is a linear and unitary equation, i. e. it maps linear combinations into linear
combinations, and it preserves the norm (length) of vectors. In its most familiar
form, it is a differential equation for the quantum states represented as complex
(square-integrable) functions on configuration space (the space of positions of all
particles), the so-called Schrödinger waves or wave functions.

Operators, specifically self-adjoint operators (which by the spectral theorem can
be decomposed uniquely — in the simplest case — into a real linear combination of
projectors onto a family of mutually orthogonal subspaces) play two roles in quan-
tum mechanics. On the one hand they mathematically generate Schrödinger-type
evolutions, on the other hand they can be conveniently used to classify simulta-
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neous experimental tests of families of mutually orthogonal subspaces. A system
will test positively to only one of these tests, and to this test will be associated the
measured value of the corresponding observable. Instead of being understood as
specifying probabilities for results of tests, quantum states can be thus equivalently
understood as specifying expectation values for observables.

3 QUANTUM LOGIC IN A NUTSHELL

3.1 Quantum logic as a logic of experimental propositions

The easiest way to introduce the concepts of quantum logic is in terms of a logic of
‘experimental propositions’. That is, one can define explicitly some non-classical
connectives for a certain special class of propositions, relating to idealised quantum
mechanical tests. These connectives will be arguably well suited for the limited
subject matter at hand. If as a result one obtains a logical system satisfying
certain formal requirements, we shall say that one has introduced a local non-
classical logic. This is meant to be uncontroversial. Indeed, it should be relatively
uncontroversial that (provided the formal requirements are indeed met) such a
procedure is legitimate, although there may still be scope for disagreement as to
how useful the introduction of such a logic is. In order to go on to assess Putnam’s
further claims it is essential, at least for the sake of argument, that one accept that
in this sense different logics may be better adapted to different subject matters.4

The prime example for such a procedure is Kolmogoroff’s (1931) interpreta-
tion of intuitionistic logic as a calculus of mathematical tasks (Aufgabenrechnung).
In this framework, each mathematical proposition p stands for solving the corre-
sponding mathematical task. The classical negation of p (not solving the task)
is not itself a mathematical task, so the chosen set of propositions is not closed
under classical negation. Instead, showing that a task is impossible to solve is
again a mathematical task. This justifies introducing a strong negation, for which
the law of excluded middle p ∨ ¬p breaks down. On this basis, one can set up a
logical system, which is just the system of intuitionistic logic. More radical claims
are not engaged with at this stage. (Indeed, one can argue that this is the correct
and only way of interpreting intuitionistic logic, thus safeguarding the primacy of
classical logic.)5

In the quantum context, let us define experimental propositions as (suitable
equivalence classes of) statements of the form: ‘The system passes a certain test
with probability 1’. From the discussion in the previous section, we recognise
that these propositions are in bijective correspondence to closed subspaces of the

4What we sketch here is quantum logic as descriptive of the empirical behaviour of certain
experiments (albeit idealised ones). One can of course also introduce quantum logic abstractly
and axiomatically based on the notion of a ‘yes-no’ test. This is the approach of the so-called
‘Geneva school’ of quantum logic (see e. g. Jauch and Piron 1969).

5There are further analogies between intuitionistic logic and quantum logic that could be
brought to bear on the issue of the revision of logic. Both logics, for instance, allow for classical
modal translations (see, respectively, Gödel 1933, and Dalla Chiara 1981).
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Hilbert space of the system. The classical negation of such a proposition is not
an experimental proposition in this sense. Instead, the proposition stating that
the system passes with probability 1 the test corresponding to the orthogonal
complement of the given subspace is an experimental proposition. This, again,
can be taken to define a strong negation. In the quantum case, however, we go
further than in the case of Kolmogoroff’s task logic. Indeed, even the classical
disjunction of two experimental propositions p and q, corresponding to the set-
theoretic union of the two subspaces, is not itself a subspace in general, thus it
is not an experimental proposition. Instead, the proposition corresponding to
the (closed) span of the two subspaces P and Q (the smallest closed subspace
containing both the subspaces P and Q) is an experimental proposition, and we
can introduce a corresponding ‘quantum logical’ disjunction. This proposition
corresponds to the most stringent test that will be passed with probability 1 if
the tests corresponding to P and Q will. The classical conjunction of p and
q, corresponding to the intersection of the two subspaces P and Q, is itself an
experimental proposition, so in this sense there is no need to introduce a separate
quantum logical conjunction. The closed subspaces of a Hilbert space are ordered
by inclusion and form a lattice (i. e. suprema and infima are pairwise always well
defined), which is further orthocomplemented under the orthogonal complement
defined via the scalar product. The quantum logical connectives correspond to the
supremum, infimum and orthocomplement in this lattice.

As a consequence of the introduction of the quantum logical connectives, it is
not the law of excluded middle that fails, but (one half of) the distributive law : the
proposition p∧(q∨r) is generally weaker than the proposition (p∧q)∨(p∧r). This
can be trivially seen by taking the subspaces Q and R to be two rays spanning a
plane, and P to be a ray lying in the same plane but non-collinear with either Q
or R. In that case, p ∧ (q ∨ r) corresponds to the same subspace as p, but both
p∧ q and p∧ r correspond to the zero subspace, and so does their quantum logical
disjunction. Propositions that thus engender violations of distributivity are called
incompatible; more precisely, two propositions p and q are called compatible iff
the sublattice generated by (the subspaces corresponding to) p, ¬p, q and ¬q is
distributive.6

3.2 Formal properties of the logic

So far, what we have described is a semi-interpreted language (Van Fraassen, 1970).
We have taken a propositional language, and we have fixed a class of structures that
are intended as models of the language, namely the class of lattices of subspaces
of Hilbert spaces (henceforth: Hilbert lattices). A model in this sense will be a
mapping of the propositions onto the subspaces of some Hilbert space, such that
(syntactic) conjunctions shall be mapped to intersections, disjunctions to (closed)

6There is more than one definition of compatibility in the literature, but this is immaterial for
the purposes of this paper. Furthermore, they all coincide in the important case of orthomodular
lattices.
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spans and negations to orthogonal complements of the corresponding subspaces.
In order to say that we are introducing a logic in the formal sense (even a local

one), we must have at least also a notion of logical consequence and of logical
validity, and presumably other formal properties as well, such as soundness and
completeness results for some appropriate logical calculus.

With this in mind, let us return to the classical case. Also in the classical case,
we could define a semi-interpreted language by defining a model of the language
in terms of subsets of some set, and mapping the logical connectives to the cor-
responding set unions, set intersections, and complements within the set (these
are the lattice operations for the subset ordering relation). Every such lattice of
subsets is a distributive lattice (also called a Boolean lattice or Boolean algebra),
and conversely every distributive lattice is representable as the lattice of subsets
of some set.

One can turn this semi-interpreted language into a logic by defining truth valu-
ations as (orthocomplemented-lattice) homomorphisms from an arbitrary Boolean
algebra onto the two-element algebra {0, 1}, and defining the notion of logical
validity by taking the class of all Boolean algebras as reference class. That is, a
sentence in the language will be a logical truth, iff it is true under every truth
valuation of every model. The logic characterised by this notion of logical validity
can be axiomatised, is sound and complete, and is of course the usual classical
logic.

In order to extend this treatment to quantum logic, we need to extend the
notion of a truth valuation to non-distributive lattices. Homomorphisms of the
entire lattice onto {0, 1} will not do, because in general there are no such total
homomorphisms (Jauch and Piron 1963). More precisely, Jauch and Piron show
that any so-called orthomodular lattice (in particular any Hilbert lattice) admits
total homomorphisms onto {0, 1} iff it is distributive.7 Note that this means
that any form of quantum logic must give up bivalence. Thus, to insist that every
proposition is indeed always true or false (as a matter of logic!) would be question-
begging, and, at least for the sake of argument, the failure of bivalence must not
be taken as a reason for rejecting the whole framework out of hand.

Instead, one can define workable truth valuations as partial homomorphisms
onto {0, 1}, i. e. homomorphisms q defined on some proper (orthocomplemented)
sublattice Q of a given lattice L, provided one requires also that such a partial
homomorphism be filtered, i. e. for all a ∈ Q and b ∈ L,

(6) a < b, q(a) = 1 ⇒ b ∈ Q and q(b) = 1 ,

and maximal, i. e. have no proper extensions. The intuition behind these properties
is that as many propositions as possible should be true or false under a truth
valuation (maximality) and, in particular, a proposition that is weaker than a
true proposition should also be true (filtering). Both properties are of course
trivial for total homomorphisms on Boolean lattices. Note also that any partial
homomorphism has both a canonical filtered extension and — by an application

7A quick proof for the special case of Hilbert lattices is given in Bell (1987, pp. 5–6).
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of Zorn’s lemma — a maximal extension. A maximal partial homomorphism is
always filtered.

A useful characterisation of truth valuations is the following. For any partial
homomorphism q, let S denote the subset of all s ∈ Q such that q(s) = 1 (the
set of all true propositions). The set S is a non-empty proper subset of Q, closed
under conjunctions. Together with property (6), this means that it is a so-called
filter ; and maximality of q means that S is a maximal filter, so-called ultrafilter.
Truth valuations q are thus in bijective correspondence with ultrafilters S on the
lattice. Note that S⊥ is the set of all false propositions, and Q = S ∪ S⊥.

Given the above definition of truth valuation, one can now proceed with quan-
tum logic as with classical logic and define a notion of logical validity and logical
consequence by fixing a suitable reference class of non-distributive lattices. Quan-
tum mechanics (if assumed to be strictly true) tells us that the world is one specific
(only partially known) Hilbert lattice, but the corresponding notion of logic will
need to be general enough to cover all possible Hilbert lattices.8 Admittedly,
the choice of reference class is not as obvious as in the case of Boolean algebras,
and there is some trade-off involved in the choice. One could choose the class
of all Hilbert lattices, but it is unclear to date whether the resulting logic is ax-
iomatisable. On the other hand, one can choose more general classes of lattices as
reference class, for instance the class of all orthocomplemented lattices or the more
restrictive class of all orthomodular lattices. These yield axiomatisable logics that
are both sound and complete (see e. g. Dalla Chiara and Giuntini 2002, section 6).
Note that the logic of all Hilbert lattices, the logic of all orthomodular lattices and
the logic of all orthocomplemented lattices are indeed all distinct, i. e. they have
different sets of logical truths.

Choosing the logic of all Hilbert lattices would more properly characterise the
‘logic of quantum mechanics’. On the other hand, even if one takes a reference
class more general than that of all Hilbert lattices, one can still argue that quan-
tum phenomena have prompted the adoption (at least locally) of a non-classical
logic. (Also, as mentioned in section 6, quantum theories of systems with infinitely
many degrees of freedom seem to require a larger reference class.) The choice of or-
thomodular lattices seems particularly attractive, since in an orthomodular lattice
there is a unique conditional reducing to the standard conditional for compatible
propositions; the resulting connective has some unusual features, but these can be
explained in analogy to counterfactual connectives, as is reasonably intuitive in a
logic that gives up bivalence (Hardegree 1975).

In any case, the resulting logic is strictly weaker than classical logic, since the
reference class that defines logical validity is extended beyond the class of Boolean
algebras. Irrespectively of the details of the choice, we shall take it that such a
notion of quantum logic provides us with a basis for discussing Putnam’s claims,
the interest of which after all lies primarily in the idea that empirical considerations

8Similarly, general relativity (if assumed to be strictly true) tells us that the world is one
specific (only partially known) Lorentzian manifold, but the corresponding notion of geometry
will cover all possible Lorentzian or pseudo-Riemannian manifolds.
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might force us to give up classical logic, and not (or only in the second place) in
the details of which logic should replace it.

3.3 Alternative frameworks

As an aside, let us remark that we have presented above merely one possible
framework for introducing a quantum logic, and that others have been proposed.
We should mention two in particular.

First, one could choose a different idealisation for quantum mechanical experi-
ments, in order to include more realistic measurements (described technically by
positive-operator-valued measures rather than projection-valued measures). This
leads one to consider, instead of the lattice of projections (equivalent to the lattice
of subspaces), the poset (partially ordered set) of positive operators. This in turn
prompts the introduction of fuzzy quantum logics and other quantum logics that
generalise the lattice-theoretic approach (see e. g. Dalla Chiara and Giuntini 2002,
sections 11–16). More general poset-theoretical structures arise also as the logics
associated with theories of quantum probability, as in the test space approach of
Foulis and Randall (1981).

Second, one can focus on a different general aspect of quantum mechanical
experiments, namely their incompatibility; and instead of introducing apparently
new logical connectives, one can restrict the use of the usual connectives to pairs of
compatible propositions. This is the partial Boolean algebra approach to quantum
logic (Kochen and Specker 1965a, b, 1967), which also gives rise to logical systems
with nice formal properties. The partial Boolean algebra approach and the poset-
theoretical approach overlap, unsurprisingly, in that so-called transitive partial
Boolean algebras are canonically equivalent to so-called coherent orthomodular
posets (Finch 1969, Gudder 1972), so that the corresponding logics are the same.

Note that the partial Boolean algebra approach may present advantages to the
advocate of a global revision of logic, because the implied revision of logic appears
to be more modest (although in a sense equivalent), and because it is easier to
argue that the meaning of the logical connectives has remained the same. One does
not construct new connectives that must somehow turn out to be the usual ones
in disguise. One merely needs to argue that our usual connectives can be applied
only to propositions that are compatible, and that it is an empirical matter, settled
in the negative by quantum mechanics, whether all propositions are indeed so. We
shall not attempt to develop here this line of argument, merely note that Putnam
himself switched to using at least the formalism of partial Boolean algebras in
some later publications (notably Friedman and Putnam 1978). We shall keep to
talking of quantum logic in the lattice-theoretic approach, because most of the
discussion about Putnam’s suggested revision of logic has been in the context of
this approach and of the corresponding failure of distributivity.
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4 STANDARD INTERPRETATION AND MEASUREMENT PROBLEM OF
QUANTUM MECHANICS

It is certainly an empirical fact that, if one defines experimental propositions as
in the previous section, the resulting lattice fails to be distributive, and a fact
that is characteristic of quantum mechanics. If all physics were classical, then the
lattice of experimental propositions defined in this way would be distributive. It
may also be reasonable to want to define a local non-distributive logic for dealing
with such experimental propositions. However, it is not clear at this stage why
this logic should be even a candidate for a revised global logic. If one takes a
‘naive’ instrumentalist position, then quantum mechanics just provides us with
the means of calculating the probabilities for the results of our experiments. The
resulting procedure is certainly different from that in any classical framework, but
there seems to be little need to revise anything but our algorithmic procedures for
predicting experimental results. If one adopts a subtler Bohrian position, then the
language of classical physics becomes a prerequisite for the description of quantum
experiments, so that the very formulation of quantum mechanics would seem to
require classical logic. Clearly, more than empirical considerations are needed in
order to mount a case for the revision of logic at the global level. In particular, a
strong opposition to the instrumentalist or Bohrian position is necessary in order
to reject the overall package that includes classical logic and an instrumentalist or
Bohrian reading of quantum mechanics.

In this section we shall sketch the ‘naive’ realist interpretation of quantum
mechanics. This interpretation, variously referred to as ‘standard’ or ‘orthodox’ or
‘von Neumann-Dirac’, is problematic, because it gives rise to the usual paradoxes,
but it is usually taken as the starting point for further discussion and elaboration
of other subtler approaches to quantum mechanics. It is thus, so to speak, the
default realist position in the foundations of quantum mechanics. And in fact, it
is the interpretation of choice (at least implicitly) also for discussions of Putnam’s
claims on the revision of logic. (Other realist approaches, and their implications
for Putnam’s claims, will be discussed in section 7.)

The standard interpretation consists in the following assignment of (intrinsic)
properties to quantum systems. A quantum system has a certain property iff it
passes with probability 1 a corresponding experimental test (in the sense of the
previous section). Properties assigned in this way are thus in bijective correspon-
dence to the closed subspaces of Hilbert space. What can it mean to assign such
properties to a physical system?

The case of one-dimensional subspaces is relatively straightforward: a one-
dimensional subspace (ray) is the set of all scalar multiples of a given vector,
and these all describe the same quantum state. So, saying that a quantum system
has a certain one-dimensional property corresponds to saying that its state is a
certain vector in the Hilbert space.

The case of multi-dimensional properties is more difficult, but it is also quite
crucial. In this case, one should think of entangled systems, where there is a



60 Guido Bacciagaluppi

vector describing the composite system but no vector describing each subsystem
separately. The composite system will thus be assigned a one-dimensional prop-
erty, but not the subsystems. Nevertheless, if two systems are entangled there are
always multi-dimensional tests (in general non-trivial) on the individual subsys-
tems, for which the subsystems will test positively with probability 1. Therefore,
according to the standard interpretation, the subsystems are assigned the corre-
sponding multi-dimensional properties. Unless one accepts some form of holism,
in which only the composite system is assigned intrinsic properties, one is forced
to generalise the notion of properties for the individual subsystems to include also
multi-dimensional ones.

The motivation behind the standard interpretation can be phrased in the lan-
guage of dispositions. Quantum mechanical systems exhibit a range of disposi-
tional properties in the context of experimental tests, some of which are sure-fire
dispositions. The standard interpretation suggests that these sure-fire dispositions
(whether one-dimensional or multi-dimensional) support an inference to real, ob-
jective properties of the quantum system, which are revealed by idealised tests.

But now, enter the paradoxes, specifically the measurement problem and Schrö-
dinger’s cat (which we shall take here as two examples of the same problem). If
we take quantum mechanics to be correct and universally valid, then one can
easily construct examples in which the dynamics of the theory, the Schrödinger
equation, will lead to entanglement between microscopic and macroscopic systems,
e. g. between a quantum system being measured and the corresponding measuring
apparatus, or between a microscopic system and a cat, in such a way that macro-
scopically distinguishable states of the apparatus (different readings) or the cat
(alive or dead) are correlated with different states of the microscopic system. In
such cases, on the standard interpretation, only the multi-dimensional subspaces
spanned by the macroscopically distinguishable states correspond to properties of
the macroscopic system, and these do not correspond to the macroscopic states
we witness (the different readings, the cat alive or dead).9

One could say, paradoxically, that the cat is neither alive nor dead, but this
formulation trades on an ambiguity: this statement would be paradoxical if ‘dead’
were understood as ‘not alive’ in the classical sense, but if it is understood as ‘not
alive’ in the sense of the strong negation of quantum logic (assuming that the
live and dead states span the Hilbert space of the cat), then the statement makes
perfect sense, since in this case ‘dead’ is strictly stronger than the classical ‘not
alive’.

9Furthermore, this problem cannot be lifted by modelling the states of the apparatus as
statistical distributions over microscopic states. If the dynamics is the unitary Schrödinger
dynamics, one cannot reproduce the correct measurement statistics for all initial states, unless
the state of the apparatus depends on the state of the system to be measured. This result was
known already to von Neumann — indeed it prefaces his discussion of measurement in quantum
mechanics (von Neumann 1932, section VI.3). For a modern, more general discussion, see e. g.
Brown (1986) and references therein.
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5 QUANTUM LOGIC AND THE STANDARD INTERPRETATION OF
QUANTUM MECHANICS

5.1 Quantum logic as a logic of properties

The obvious interest of the standard interpretation, from the point of view of quan-
tum logic, is that it allows one to apply the quantum logical structures introduced
for experimental propositions also to propositions about intrinsic properties of a
quantum system. Thus one speaks of the property lattice of the system, or of the
lattice of ‘testable’ propositions about the system.

This move from experimental propositions to properties of a system is explicitly
made for instance by Jauch and Piron (1969), who further propose that a quantum
state should be understood as the set (in fact the ultrafilter) of true properties
about the system. They thus propose, in effect, that a quantum state should be
understood as a truth valuation on the lattice of properties of a quantum system.
And, indeed, quantum states in the sense of rays in the Hilbert space are in
bijective correspondence to the ultrafilters of true propositions they generate (by
assigning them probability 1 upon measurement). Thus, truth valuations on the
Hilbert lattice of quantum propositions encode all the information about quantum
mechanical expectation values.

Abstractly, the introduction of quantum logic for testable propositions is pos-
sible simply because there is a bijective correspondence between the experimental
propositions and the testable propositions (both being in bijective correspondence
with the closed subspaces of the Hilbert space). A closed subspace of the Hilbert
space will now represent a proposition about an intrinsic property of the relevant
quantum system, and the closed span, intersection and orthogonal complement
of such subspaces will correspond to the quantum logical disjunction, conjunction
and negation of the respective propositions.

Concretely, the standard interpretation introduces properties corresponding
to one-dimensional subspaces P , Q etc., and properties corresponding to multi-
dimensional subspaces such as the span of P and Q. The novelty of these proper-
ties lies in the fact that under all possible truth valuations, whenever P obtains or
whenever Q obtains, also the property corresponding to their span obtains. The
interpretation of this property as a quantum logical disjunction p∨ q allows one to
interpret such relations between propositions as relations of logical consequence.

By considering quantum logic at the level of intrinsic properties of physical
objects, we make a further step in the direction of Putnam’s proposals. Indeed,
at least as regards the more modest claim (a), the fact that this logic in general
is a non-distributive lattice is clearly an empirical fact. The fact that it is best
understood as a semi-interpreted language, and the fact that this language has a
number of properties that justify calling it a logic in the formal sense, have been
discussed above. In this sense thus, it should be relatively uncontroversial that
quantum phenomena give us empirical grounds for introducing a logic adapted
to the world of physics that is non-distributive and hence non-classical. I take it
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that what we have called above Putnam’s claim (a) is thus both intelligible and
justifiable.

The claim that is controversial is claim (b), that this gives us further reasons to
revise logic tout court, i. e. that this logic of testable quantum mechanical propo-
sitions, or logic of quantum mechanics, is in fact the ‘true’ logic and that we have
failed to recognise so far that our usual, apparently classical connectives are in fact
the connectives of quantum logic. We turn at last to this controversial point, for
the time being in the context of the standard interpretation of quantum mechanics.

5.2 The revision of logic

If we have successfully introduced the quantum logical connectives in the context
of propositions about material properties of physical objects, is this not ipso facto
saying that ‘the logic’ of the world is quantum? Surely quantum mechanics is a
theory that applies to all material objects, so that the resulting quantum logic is
not a local but a global logic?

As mentioned in the introduction, the fact that one may justify the introduction
of non-classical connectives does not yet mean that logic has been revised. The
crucial point is whether these connectives have been introduced alongside the clas-
sical connectives, or whether they replace them (in an appropriate sense). As we
shall see now, the standard interpretation is neutral with regard to this question.
Indeed, one has a choice between two opposing views.

On the one hand, it is perfectly possible to interpret the properties assigned
to systems in the standard interpretation as elementary properties in the sense of
classical logic. Indeed, a quantum logical disjunction p ∨ q classically must be an
elementary proposition: it is not a classical disjunction of terms that include p and
q, although one might be tempted to think that it is the disjunction of all one-
dimensional subspaces contained in the span of P and Q. As a matter of fact, this is
not true: if it were, in the case of entangled systems there would be a quantum state
that describes an individual subsystem, contrary to what quantum mechanics says.
On top of the elementary propositions, however, one can perfectly well consider
complex ones, constructing them by applying the classical connectives to this new
quantum set of elementary propositions, e. g. the disjunction of all one-dimensional
subspaces contained in the span of P and Q can be considered alongside with the
quantum disjunction p ∨ q itself. The quantum aspect is physical and lies in the
determination of the elementary properties, while the logic remains classical.

This position has admittedly some disadvantages. Complex propositions in
general are not directly testable, i. e. verifiable with probability 1. This is simply
because neither the set union of P and Q nor the set complement of P are subspaces
of the Hilbert space. This would thus be an empirical limitation characteristic of
quantum mechanics. More importantly, perhaps, the above relation between p or
q and the quantum logical p ∨ q cannot be analysed as logical consequence. That
is, there are triples of propositions p, q, r such that whenever p or q hold, also r
holds; but since r is elementary, this relation of consequence cannot be analysed
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as logical consequence.
This, however, may seem a small price to pay in order to refrain from revising

our logic. And in fact, we shall see in section 7 that this is arguably the position
most naturally associated with the approaches to quantum mechanics known as
spontaneous collapse theories.

The opposite position consists in maintaining that the properties assigned in
the standard interpretation are all the possible properties of a physical system:
there is no property corresponding to the classical disjunction of p and q, or to
the classical negation of p. An equivalent way of saying this is that if p and q
are the propositions that some physical quantities take certain values, say ‘A = 4’
and ‘B = 9’, then there is no meaningful physical quantity that can encode the
classical disjunction ‘A = 4 or B = 9’. Note that there is no quantum mechanical
observable that encodes it. Indeed, in disanalogy to classical physics, the operator
(A− 4)(B − 9) in general does not represent a quantum mechanical quantity, be-
cause in general the operators A and B do not commute (so that (A− 4)(B − 9)
is not self-adjoint). But if there is no meaningful physical quantity whatsoever
that represents a classical disjunction, insisting that the properties of the stan-
dard interpretation are elementary would mean that the vast majority of complex
propositions constructed from elementary propositions about quantum systems
are meaningless.

If one drops altogether the possibility of using the classical connectives to form
complex propositions, one can instead interpret some of the testable propositions
as complex propositions in the sense of quantum logic. In so doing one removes
the mismatch between logical propositions and physical propositions (indeed, all
propositions are testable propositions), and one ensures that the consequence rela-
tion described above between testable propositions and their quantum disjunctions
is indeed a relation of logical consequence.

This is presumably the best case that can be made for a revision of logic in
the context of the standard interpretation of quantum mechanics. It is not made
explicitly by Putnam, although some of it must be implicit in his discussion; it is
present more or less in Dickson (2001), who explicitly denies the ‘empirical signif-
icance’ of classical disjunctions and negations. Still, it appears that if one follows
this line of argument, the quantum logical connectives have supplanted the mean-
ingless classical ones. What about the claim that the quantum logical connectives
are the same as the classical connectives? Indeed, since every physical system is
a quantum system, we seem to have arrived at the conclusion that an ‘everyday’
disjunctive proposition about any physical object whatsoever is meaningless. But
Putnam’s claim that the classical and quantum connectives are the same is surely
meant in the sense that we should be able to gain a better understanding of our
usual everyday classical connectives by realising that they are indeed quantum
logical.

What is missing from the above is an explanation of why classical logic appears
to have been so effective until now. One needs to explain how, if the true logic is
non-distributive, it is still possible for the connectives to behave truth-functionally
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in special cases. This would give rise to the possibility of abstracting classical
logic (empirically!) from our everyday use, and of applying it in the appropriate
circumstances (as Putnam undoubtedly did in the act of writing his famous paper).

Putnam’s claim (c), that adopting quantum logic will solve the paradoxes of
quantum mechanics, can be understood as an attempt to fill this gap: the quantum
logical point of view does indeed explain, according to Putnam, why the world
appears classical to us. Indeed, for Putnam the main advantage of a revision of
logic is precisely that it will solve the paradoxes of quantum mechanics. We shall
briefly discuss now how Putnam argues for this point and why his arguments are
justly regarded as flawed. One other author at least, namely Dickson, attempts
to argue that, although the quantum connectives are the true connectives, they
behave classically when applied to the everyday, macroscopic realm. As we shall
also see, his attempt appears to fail on ultimately similar grounds.

If this is so, then we are left with the following situation. There is a coher-
ent, perhaps even a reasonably convincing case to be made that a non-classical
logic is well adapted to a world in which quantum mechanics under the standard
interpretation is true. But this world is hugely different from our own. This is
precisely what the measurement problem and Schrödinger’s cat highlight. Indeed,
in such a world it would not seem possible for any intelligent beings to develop at
all, let alone beings capable of formulating any kind of logic (let alone quantum
mechanics). If the argument does not apply to our world (or at least to a possible
world similar to ours), then it loses most of its interest.

5.3 Putnam and the paradoxes

The seemingly logical paradox of Schrödinger’s cat, that the cat is neither alive nor
dead, trades as we have mentioned on the ambiguity between classical and quan-
tum logical terms. Putnam’s way of resolving the paradox is to choose a strictly
quantum logical reading: ‘dead’ is interpreted as ‘not alive’ in the quantum logi-
cal sense of orthocomplementation in the lattice, and the cat is then indeed alive
or dead, but in the sense of the quantum logical disjunction. Putnam, however,
seems to want to go further, namely he claims that, since the cat is alive or dead
(quantum logically), there is a matter of fact about the biological state of the cat.

To make the point clearer, let us take an example adapted from Putnam him-
self (1968, pp. 184–185). Consider an n-dimensional Hilbert space and take an
orthonormal basis |x1〉, . . . , |xn〉 in the Hilbert space, which one can associate with
a family of tests, or equivalently with some observable X. Denoting the propo-
sitions corresponding to the one-dimensional projectors onto the basis vectors as
x1, . . . , xn, the following is a true proposition under all truth valuations:

(7) x1 ∨ . . . ∨ xn .

Its truth, however, is understood by Putnam as meaning that the observable X has
indeed a value corresponding to one of the xi. As the reasoning is independent of
the particular choice of basis, Putnam concludes that the system possesses values
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for all such observables. He then interprets measurements as simply revealing those
preexisting values, thus proposing that the measurement problem of quantum
mechanics is solved by a move to quantum logic.

This is rather bewildering, since, as we have seen in section 3, quantum logic
comes equipped with a well-defined semantics, which underlies the quantum logical
notion of consequence. And we have seen that truth valuations in this semantics
are such that the proposition x1 ∨ . . .∨xn can be true without any of the xi being
true. Any quantum state that is a non-trivial linear combination of the basis
vectors will define such a truth valuation; and in the case of entangled systems,
we have seen that a quantum logical proposition can be true without any of the
one-dimensional projections spanning it being true. To be fair, at the time of
Putnam’s 1968 paper, the semantics of quantum logic was not fully developed as
yet, but the reasoning implied in the paper seems to be technically in error, since
he appears to be using a different semantics from that required in quantum logic.

A more charitable reading (perhaps more in line with his later papers, e. g.
Putnam 1981), takes Putnam as distinguishing between a quantum level, obeying
quantum logic, and a ‘hidden’ level obeying classical logic. It has in particular been
suggested that Putnam’s proposals can be analysed in terms of a so-called non-
contextual hidden variables theory (Friedman and Glymour 1972), which however
confronts them with the standard problems facing such approaches, notably the
no-go theorem by Kochen and Specker (1967). Perhaps more plausibly, it has also
been suggested to analyse Putnam’s proposals in terms of a so-called contextual
hidden variables theory (Bacciagaluppi 1993), which however confronts them with
the proofs of non-locality for this kind of approaches, specifically those by Heywood
and Redhead (1983) and by Stairs (1983). In either case, however, Putnam would
seem to be backing away from the proposal that quantum logic is the global logic.
(For Putnam’s most recent views on the subject, see Putnam 1994.) In section 7,
we shall return to the issue of quantum logic in hidden variables approaches,
namely in the context of the most successful of these, pilot-wave or de Broglie-
Bohm theory.

Dickson’s (2001) attempt to explain how classical logic is effective despite quan-
tum logic supposedly being the global logic, proceeds along slightly different lines.
Dickson points out that in the macroscopic realm, when talking about measure-
ment results or cats, we apply logic always to a distributive sublattice of all (quan-
tum logical) propositions. As it stands, however, this argument is inconclusive.
The sublattice generated by the propositions x1, . . . , xn in Putnam’s example is
distributive, but this fact does not guarantee that the logical connectives will be-
have truth-functionally, and that is what is at stake. Again to be fair, Dickson
suggests that the proper framework for discussing Putnam’s claims is that of the
more general quantum-like theories based on the formalism of von Neumann alge-
bras. And we shall see in the next section that in that framework the connectives
can indeed be shown to behave truth-functionally in certain cases.

As far as the claim concerns the usual formalism of quantum mechanics, how-
ever, it may be that Dickson falls prey to a common fallacy. Admittedly, it is
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a fact that we cannot construct in practice an experiment that would test for a
macroscopically entangled state (in particular because of the phenomenon called
decoherence), and that at the macroscopic level the only tests we have available
are all compatible (so that the corresponding experimental propositions form a
distributive lattice). And this fact has often been trumpeted as showing that the
measurement problem does not arise. But this practical impossibility is irrelevant
to the point that macroscopically entangled states (under the standard interpreta-
tion) are incompatible with macroscopic objects having the properties they appear
to have, nor does it show that such states do not arise in practice. It thus seems
that Dickson’s argument fails to improve on Putnam’s attempt.

6 QUANTUM LOGIC AND CLASSICAL PROPOSITIONS

Before proceeding further and enquiring into the status of quantum logic in realist
approaches to quantum mechanics other than the standard interpretation, let us
dwell in more detail on the question of what it could mean for the quantum logical
connectives to be the same as the classical connectives.

There is an interesting way of making the case that the meaning of the connec-
tives is indeed the same in classical and quantum logic, namely to argue that it
is always given in terms of the supremum, infimum and orthocomplement of the
lattice: the conjunction of two propositions is the weakest proposition that implies
both propositions, their disjunction is the strongest proposition that is implied by
either, and the negation of a proposition is its orthocomplement in the lattice.
Until empirical evidence for quantum mechanics was obtained, we used to believe
that all lattices of propositions we could ever consider would be distributive. We
used to believe that the universe of sets was the correct framework for abstract
semantics, because we believed it was rich enough to describe the physical world.
But, so the argument goes, it has turned out that it is only the ‘universe of Hilbert
spaces’ that is rich enough for that purpose. (This line of thought presupposes of
course that one has already accepted that the logic should be read off the structure
of the lattice of empirical propositions.)

The trouble with this suggestion is that, although at this more general level
the quantum and classical connectives can thus be said to be the same, still,
if the actual lattice of properties is a Hilbert lattice (of dimension greater than
1), the connectives will just not behave truth-functionally, so that the quantum
connectives do not seem to reduce to the classical ones in everyday macroscopic
situations. This is precisely the problem facing Dickson: can one have the (unique)
logical connectives behave truth-functionally when applied to some propositions
in the lattice but not to others? We shall see in the present section that, if,
as is quite standardly done, one defines logical consequence through a reference
class of lattices that is larger than the class of all Hilbert lattices (which, as
noted above, is not known to lead to an axiomatisable logic), in particular if one
considers quantum logic to be the logic of all orthocomplemented lattices or of
all orthomodular lattices, then there is a rigorous sense in which the connectives
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interpreted in these non-distributive lattices (i. e. the standard quantum logical
connectives) can behave truth-functionally in certain cases. Thus, at least in this
more abstract setting, there are situations in which one could arguably ‘mistake’
the logic to be classical.

Recall that two propositions p and q are compatible iff the lattice generated by
p, ¬p, q and ¬q is distributive. For a subset A of an orthocomplemented lattice
L, denote by Ac the set of propositions compatible with all propositions in A.
If one considers lattices L more general than Hilbert lattices, the set Lc (the so-
called centre of the lattice) may be non-trivial, i. e. there may exist propositions
(other than the trivially true and false propositions) that are compatible with
all propositions in the lattice. Such propositions are called classical propositions.
Now, it is a theorem that under any truth valuation on L, a classical proposition
is always true or false.

Indeed, let q be a truth valuation from L onto {0, 1}, defined on an orthosub-
lattice Q = S ∪S⊥ of L, where S is the ultrafilter of propositions made true by q.
For any ultrafilter S in L,

(8) (S ∪ S⊥)c ⊂ (S ∪ S⊥)

(Raggio 1981, Appendix 5, Proposition 3). A classical proposition, being compat-
ible with any a ∈ L, is obviously contained in (S ∪ S⊥)c for any set S. Therefore,
for any truth valuation q, c ∈ Q, i. e. q(c) = 1 or q(c) = 0. QED.

It now follows, just as in the classical case, that if a lattice contains classical
propositions, the lattice-theoretical connectives applied to the classical proposi-
tions will behave truth-functionally, in particular for any two classical propositions
a and b, and any truth valuation q that makes a ∨ b true, q will make a true or b
true.

Indeed, let q be any truth valuation with q(a ∨ b) = 1. Since a and b are
classical, by the above they are both either true or false under q. But if q(a) = 0
and q(b) = 0, then, since q is homomorphic, q(a ∨ b) = 0, contrary to assumption.
Therefore, if a and b are classical,

(9) q(a ∨ b) = 1 ⇒ q(a) = 1 or q(b) = 1 ,

for any truth valuation q. QED.
Note that the fact that a certain proposition a is classical depends on the lattice

L chosen as a model of the logic. Specifically, it depends on the relation of a with
all the other propositions in the chosen model. It thus depends on the meaning of a.
We see that the quantum logical connectives can indeed behave truth-functionally
in certain models, but depending on the meaning of the propositions involved.
Classical logic appears to be valid in special cases, but the additional inferences
one can make in these cases are not logical inferences: they are not based on the
propositional form of the statements involved, they are based instead on the fact
that the statements have a classical content.

If the lattice of properties in our world is the lattice of projections of some
Hilbert space, our world does not contain classical propositions (pace Putnam
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and Dickson). On the other hand, at least some lattices that are more general
than Hilbert lattices appear to be physically motivated. Indeed, generalisations of
quantum mechanics that allow in general for classical propositions exist, and are
required to treat systems with infinitely many degrees of freedom, such as in quan-
tum field theory or in quantum statistical mechanics (when taking thermodynamic
limits).

Mathematically, these theories are based on more abstract algebras of observ-
ables than the algebra of (self-adjoint) operators on a Hilbert space. For the
purposes of quantum logic, the most interesting class of such algebras is that of
so-called von Neumann (or W ∗-) algebras, which can be represented as certain
subalgebras of operators on Hilbert space. Von Neumann algebras can be gen-
erated by their projections, so that one can again reduce all statements about
observables to statements about projections (i. e. to yes-no tests).10 The lattices
of projections of von Neumann algebras are always orthomodular lattices. (Indeed,
historically, the study of orthomodular lattices developed out of the study of von
Neumann algebras.) Therefore, unless one insists on characterising quantum logic
by the class of all Hilbert lattices, lattices of projections of von Neumann algebras
are already included in the models of the most usual varieties of quantum logic,
and they are thus a bona fide source of examples for the behaviour of the usual
quantum logical connectives. Incidentally, we note that J. von Neumann is also
associated both with the standard interpretation of quantum mechanics (rightly
or wrongly), through his book Mathematische Grundlagen der Quantenmechanik
(von Neumann 1932), and with the first proposal that quantum mechanics should
be interpreted in terms of a non-distributive logic, clearly stated in his paper with
Birkhoff four years later (Birkhoff and von Neumann 1936).

When we say that general lattices of projections of von Neumann algebras in-
clude classical propositions, the intuition behind it is that there is a breakdown
in the linear structure of the state space of a physical system. Indeed, defining a
classical observable as an observable C such that propositions of the form ‘C has
value α’ are classical, superpositions of states in which a classical observable has
different values simply do not exist (one says that such states are separated by a
superselection rule).

The framework of von Neumann algebras is general enough to include both
quantum and classical physics, and intermediate theories besides. For instance,
one can build algebras that are tensor products of a standard quantum system and
a purely classical system, and for which there are no states entangling the quantum
system and the classical system (Raggio 1988, see also Baez 1987). Although it is
generally believed that such theories would be rather ad hoc, they do allow one to
describe a world in which the measurement problem of quantum mechanics does
not arise, a world in which all measuring apparatuses (as well as cats) are made

10Indeed, Raggio (1981) has proved that if L is the projection lattice of a W ∗-algebra M,
there is a bijective correspondence between truth valuations on L and pure normal states on M,
in the sense of normalised positive linear functionals. That is, truth valuations indeed encode all
the information about expectation values of observables in the algebra.
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out of classical observables.
It is instructive to see explicitly how the truth-functionality of the quantum log-

ical connectives would apply to a measurement scenario if the ‘pointer’ observable
of a measuring apparatus were assumed to be a classical observable C. Suppose the
apparatus measures a non-classical observable B taking, say, the two values ±1.
Now assume that at the end of an (ideal) measurement the following proposition
is true (in obvious notation):

(10) (B = 1 ∧ C = 1) ∨ (B = −1 ∧ C = −1) ,

where ∧ and ∨ denote the infimum and supremum in the lattice. We can now show
from the fact that C is classical that the disjunction in (10) is truth-functional,
i. e. under any truth valuation q that makes (10) true, (B = 1 ∧ C = 1) or (B =
−1 ∧ C = −1) are also true.

Let q be such a truth valuation, i. e.

(11) q
(
(B = 1 ∧ C = 1) ∨ (B = −1 ∧ C = −1)

)
= 1 .

We need to show that

(12) q(B = 1 ∧ C = 1) = 1 or q(B = −1 ∧ C = −1) = 1 .

Because q is filtered, we have

(13) q(C = 1 ∨ C = −1) = 1 .

Since C is classical,

(14) q(C = 1) = 1 or q(C = −1) = 1 ,

by (9). Suppose for instance that q(C = 1) = 1. Since q is a homomorphism, we
have that

(15) q
[(

(B = 1 ∧ C = 1) ∨ (B = −1 ∧ C = −1)
)
∧ C = 1

]
= 1 .

But now, the propositions B = ±1, C = ±1 are all mutually compatible, so that
we can distribute over ∨ in (15), yielding

(16) q(B = 1 ∧ C = 1) = 1 .

Analogously, if q(C = −1) = 1 we obtain q(B = −1 ∧ C = −1) = 1. QED.
Note in particular that the truth-functionality has spread to propositions that

include non-classical terms. (This appears to be related to the results by Bub and
Clifton (1996) on maximal truth-value assignments in a Hilbert lattice compatible
with a certain ‘preferred’ observable being assigned definite values.)

If such examples do not describe the actual physics, however, what have we
gained in showing that the connectives can sometimes behave truth-functionally?
We should perhaps distinguish two questions: (i) Can we envisage worlds, perhaps
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merely inspired by quantum mechanics and sufficiently close to our own, in which
we would consider revising our logic? (ii) Is our world such a world?

In a world as the above, one could indeed maintain that the only meaningful
propositions are the propositions in the lattice, since the lattice is general enough
to include propositions for which classical logic holds, and a generalised quantum
mechanics together with the standard interpretation could arguably meet the ob-
jections detailed in the previous section against a revision of logic. We can thus
make a case that logic is empirical because there is a possible world in which we
might be prompted by empirical considerations to revise our logic (question (i)).
This is different from establishing that in our world we may have good reasons for
a revision of logic (question (ii)). Note that while Putnam’s ultimate aim was to
show that logic is indeed empirical, his actual claim was that we have reasons to
revise our logic in this world.

In order to proceed further with question (ii), and thus address the revision of
logic in Putnam’s own terms, we shall have to return to standard quantum mechan-
ics. However, we shall have to consider approaches to the foundations of quantum
mechanics other than the standard interpretation, in particular approaches that
have some credible claim to providing solutions to the standard puzzles.

7 QUANTUM LOGIC IN OTHER APPROACHES TO QUANTUM
MECHANICS

We now leave the standard interpretation of quantum mechanics. While reverting
to the standard formalism of quantum mechanics in this section, we shall discuss
the status of the claims about quantum logic in the context of other approaches
to the foundations of quantum mechanics, approaches that do propose solutions
to the puzzles presented to us by quantum mechanics and in particular propose to
explain why classical logic is effective (whether or not it be the true logic) in a world
in which quantum mechanics is indeed true. The approaches we shall discuss in
turn are (i) the pilot-wave theory of de Broglie and Bohm, (ii) spontaneous collapse
theories, and (iii) the Everett or many-worlds interpretation. (The presentation
of these approaches will necessarily be rather condensed.)

7.1 de Broglie-Bohm theory

The pilot-wave theory of de Broglie and Bohm is a very well-known and well-
understood approach to the foundations of quantum mechanics. The theory, as
presented by Louis de Broglie at the fifth Solvay conference in October 1927
(de Broglie 1928), is a new dynamics for n-particle systems, described in con-
figuration space (which encodes only the positions of the particles) rather than
in phase space. The motion of the particles is determined by a field of velocities
defined by the phase S of the complex wave function. At least as regards par-
ticle detections, the theory can clearly predict both interference and diffraction
phenomena: around the zeros of the wave function, the phase S will behave very



Is Logic Empirical? 71

irregularly, so one can at least qualitatively expect that the particles will be driven
away from regions of configuration space where the wave function is small (as is in-
deed the case). In fact, it was the qualitative prediction of electron diffraction and
its experimental detection that established the significance of de Broglie’s matter
waves even before his detailed theory of 1927.

The measurement theory for observables other than functions of position was
worked out in general by David Bohm, who rediscovered the theory a quarter of a
century later (Bohm 1952). Indeed, it is at first puzzling how such a theory of par-
ticles in motion may effectively reproduce the collapse process and the rest of the
full phenomenology of quantum mechanics. In modern terminology, what Bohm
showed in general is that in situations such as measurements, the wave function
of the total system decoheres, that is different components of the wave function
effectively cease to interfere, because they are in fact separated in configuration
space by regions with very small wave function. This has as a consequence that
the configuration of the system is effectively trapped inside one of the compo-
nents. This component alone will be relevant at later times for the dynamics of
the system, so that the particles behave as if the wave function had collapsed.

Quantitatively, the statistical predictions of quantum mechanics are reproduced
if the positions of the particles are distributed according to the usual quantum dis-
tribution. As was known to de Broglie, the velocity field preserves the form of the
particle distribution if at any time it is given by the quantum distribution. In-
tuitively, this is some kind of time-dependent equilibrium distribution, and there
is indeed a deep analogy between the statistical aspects of de Broglie-Bohm the-
ory and classical statistical mechanics. Under the assumption of non-equilibrium
distributions, the theory instead yields novel predictions as compared to quantum
mechanics. Furthermore, pilot-wave theory is explicitly non-local, as any hidden
variables theory must be in order to recover the quantum mechanical violations
of the Bell inequalities. Finally, the theory can be easily modified to include spin;
and various generalisations aiming to cover quantum electrodynamics and other
field theories have been proposed. Incidentally, J. S. Bell contributed decisively to
the theory’s current revival (Bell 1987, passim).

As regards quantum logic, it is obvious that since de Broglie-Bohm theory re-
produces the phenomenology of quantum mechanics, physical systems have the
same dispositions to elicit measurement results in pilot-wave theory as in stan-
dard quantum mechanics. The introduction of the connectives at the level of
the experimental propositions therefore goes through unaltered. At the level of
the intrinsic properties of a system, however, it should be clear that configuration-
space properties obey classical logic no less than phase-space properties in classical
physics. Indeed, de Broglie-Bohm theory can be viewed as a theory that is entirely
classical at the level of kinematics (particles moving in space and time), and which
is quantum only as regards its ‘new dynamics’ (as in the title of de Broglie’s pa-
per). Thus, the way de Broglie-Bohm theory explains the effectivenesss of classical
logic at the macroscopic level is that it is already the logic that is operative at the
hidden (‘untestable’) level of the particles.
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Indeed, the emergence of the classical world around us in de Broglie-Bohm the-
ory happens as follows. At the level of the wave function, a process of decoherence
ensures that macroscopically different components will develop that will not gen-
erally reinterfere, e. g. it ensures that the ‘live’ and ‘dead’ components of the state
of the cat do not reinterfere. What turns these different components into different
classical alternatives, however, is the fact that the configuration of the system is
located only in one of these different components, and this is already a matter of
classical logic. The cat is (classically) either alive or dead, because the particles
that compose it are (classically) either in the live component or the dead compo-
nent of the quantum state. (Decoherence further ensures that they will stay there
over time, but this is irrelevant to the point at hand.)

Thus, if one takes the pilot-wave approach to quantum mechanics, although
quantum logic may be introduced as a local logic at the level of experimental
propositions, it cannot be taken as the basis for justifying the everyday use of
classical logic, and thus cannot aspire to replace classical logic as the ‘true’ logic.11

Incidentally, de Broglie-Bohm theory lends itself to discussing issues of con-
ventionalism by analogy to the case of geometry (i. e. the choice between revising
physics or geometry), as mentioned in section 1. In the case of general relativity,
one can take the metric of space-time to be Einstein’s gμν and the geometry to be
curved, or one can take the metric to be the flat Lorentzian ημν and write

(17) gμν = ημν + hμν ,

where hμν is a new physical field, and the geometry is still the flat geometry of
special relativity. This treatment (which lies at the basis of some attempts to
quantise gravity) is observationally equivalent to standard general relativity only
given some constraints on the topology of the phenomenological space-time (i. e.
as described by gμν), but given those constraints, the flat geometry underlying
the split (17) is unobservable, and thus the choice between the two descriptions is
conventional.

Similarly in the case of quantum mechanics: if one accepts some form of Put-
nam’s argument (say, in the context of an Everett interpretation — see below),
then keeping quantum mechanics as it is might indeed prompt us to revise our
logic. But one can always retain classical logic, and have de Broglie-Bohm theory
give a story of why this classical level is ‘hidden’. The theory will be observation-
ally equivalent to standard quantum mechanics only given some constraints on the
position distribution of the particles (‘equilibrium’), but given these constraints
the postulated classical level is indeed not directly observable, and, always given

11If one wishes, one can choose a dual ontology for the theory, in which both the configurations
and the wave function are properties of the system. In this case, one can argue that quantum
logic is applicable also in pilot-wave theory to describe those intrinsic properties of a system that
are encoded in its quantum state (which above we have called testable properties). However, one
rejects the completeness of the standard interpretation, and at the additional level of the hidden
variables one retains classical logic. It is the classical logic of the hidden variables that explains
the effectiveness of classical logic at the macroscopic level.
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the constraints, one could again argue that the choice between the two descriptions
is conventional.

7.2 Spontaneous collapse theories

Spontaneous collapse theories are variants of quantum mechanics in which the
Schrödinger evolution is modified in order to reproduce the phenomenology of
collapse. Such theories are generally stochastic, and the best-known ones are on
the one hand theories of the Ghirardi-Rimini-Weber (GRW) type, in which the
Schrödinger equation is supplemented by certain discontinuous random transfor-
mations (Ghirardi, Rimini and Weber 1986); on the other hand the theory of
continuous spontaneous localisation (CSL) and related ones, in which the wave
function obeys a stochastic differential equation of a certain type (Pearle 1989).
For simplicity, we shall focus on the former.

The original version of the GRW theory consists of the following stochastic
evolution of the wave function. For one particle, the Schrödinger equation is sup-
plemented at random times (with a fixed average frequency 1/τ) by a transforma-
tion known as a ‘hit’, namely a multiplication with a three-dimensional Gaussian
αλ(q − x), with a fixed width λ, centred at some random position x, for which
the theory specifies a probability density. For n particles there are n independent
such three-dimensional hitting processes supplementing the Schrödinger equation,
which greatly increases the frequency of any such hit.

The form of this evolution is the same as that used to describe some of the more
general collapses observed in less idealised experiments, in this case an ‘unsharp’
measurement of position. The novelty with respect to the usual notion of collapse,
however, is that this evolution is spontaneous, i. e. takes place irrespectively of
the presence or absence of a measuring apparatus or any other system. Indeed,
the theory is specifically intended to provide an approach to quantum mechanics
that makes it universally applicable, in particular both to the microscopic and the
macroscopic domains, as well as to their interaction.

The way the GRW theory proposes to solve the measurement problem relies on
the entangled form of the wave function in typical measurement situations, with
components of the wave function corresponding (in the standard interpretation) to
macroscopically different states of the apparatus. For such states, even a single hit
will trigger collapse on a macroscopic scale. Thus, at least prima facie, spontaneous
collapse theories such as GRW embrace the standard interpretation of quantum
mechanics but change the dynamics given by the Schrödinger equation, so that
the states that do not correspond to our everyday experience are very efficiently
suppressed.

This might seem to suggest that in spontaneous collapse approaches one can in-
deed maintain that quantum logic is the true logic, since (as discussed in section 5)
the standard interpretation is compatible with this claim, and since spontaneous
collapse removes the objections to the standard interpretation. However, spon-
taneous collapse theories solve the measurement problem by introducing classical
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alternatives in the possible evolution of the state, through the stochastic element of
the dynamics. Thus, spontaneous collapse theories should be understood accord-
ing to the alternative position that takes the properties assigned by the standard
interpretation to be elementary properties, and complex ones as built from these
using classical logic. Each of the alternatives in the evolution of the state will cor-
respond to different elementary properties of the quantum system, but the overall
state of the system is a classical disjunction of these alternative states.

Thus, also in spontaneous collapse theories (as in pilot-wave theory), the quan-
tum connectives do not provide the basis for the effectiveness of the classical
connectives. There is no story explaining that the cat is dead or alive classically
because it is dead or alive quantum logically. The cat is first fleetingly (if at all)
dead or alive quantum logically, then the dynamics intervenes and ensures the cat
is dead or alive classically. Either a hit on the dead component takes place or one
on the alive component does.

One could say that in spontaneous collapse theories quantum logic is naturally
adapted to describing the kinematics of the theory, but that the dynamics of
the theory requires classical logic. Thus again, although in spontaneous collapse
theories it may be natural to introduce quantum logic as a (local) logic at the
level of the testable propositions, it cannot be taken as the basis for justifying the
everyday use of classical logic. It might claim a place alongside classical logic, but
it cannot replace it.12

7.3 Everett’s many-worlds

The views associated with Everett’s many-worlds are indeed many, and some ver-
sions, such as the idea that the material universe literally multiplies whenever a
measurement occurs, are out of favour for good reason. The modern version we
shall adopt here has been developed over the last fifteen years, mainly through the
work of Saunders (1993), Wallace (2003, 2005) and Greaves (2004), and nowadays
enjoys a broad though admittedly not universal consensus among philosophers of
physics.

The Everett approach is an interpretation of quantum mechanics in the strict
sense, in that it takes the theory without any additions or modifications. It takes
the ontology of quantum mechanics to be given completely by the wave function
(of the universe), but instead of adopting a ‘God’s eye’ perspective on the wave
function, it asks what would be an internal perspective on such a universe. The
key insight of the interpretation is that through the mechanism of decoherence,
the wave function develops components that have a stable identity over extremely
long periods of time and that are dynamically independent of each other. It thus

12More recently, a different way of interpreting spontaneous collapse theories has been pro-
posed, in terms of matter density (Ghirardi, Grassi and Benatti 1995). Analogously to the case
of de Broglie-Bohm theory, regardless of whether this matter density is taken as the sole ontology
of the theory or as a hidden variable additional to an ontological wave function, the effectiveness
of classical logic on the macroscopic scale will then derive from the applicability of classical logic
to this matter density.
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makes sense to identify these components as quasi-separate ‘worlds’, and to define
an internal perspective as centred on each such world.

When a measurement occurs, each observer develops into generally many suc-
cessors, indexed by their different measurement results. So, which measurement
result obtains is a matter of perspective: from the perspective of the live cat, the
atom has not decayed and thereby triggered the smashing of the phial of cyanide;
from the perspective of the dead cat, it has.

Further recent work pioneered by Deutsch (1999) and perfected in particular
by Wallace (2007) has sought to justify the use of the usual quantum probabilities
on the basis of rational decision theory as adapted to such a ‘splitting’ agent. If
one accepts Lewis’s Principal Principle as the definition of objective chances, the
Deutsch-Wallace results imply that the quantum probabilities are indeed objective
in each world.

What about logic? Note first of all that, from the perspective of each world, the
standard interpretation of quantum mechanics can be applied, taking the relevant
component of the universal wave function to be the quantum state for that world.
Note also that, although the description of a world given by the relevant component
of the wave function is perspectival, it is no less objective than the description of
the universe as given by the total wave function.

Thus, again from the perspective of each world (which is the only perspective
that makes sense empirically), quantum logic is well adapted to describe the intrin-
sic properties of physical systems. The question, as we know by now, is whether
classical logic is required separately to make sense of the effectiveness of classical
logic on the macroscopic scale, or whether there is a sense in which quantum logic
can explain how classical logic can be effective in everyday cases, and therefore
how we may have arrived to our classical conception of logic by abstraction from
the everyday world.

In the case of the Everett interpretation it now seems that this challenge is met.
Indeed, while in general a quantum disjunction does not behave truth-functionally
(because the different components of the wave function do not decohere, thus all
belong to the same world), there are cases in which it does (because the differ-
ent components do decohere and thus belong to different worlds). In such cases,
from the perspective of each world, the disjuncts behave like classical alternatives,
one of which is actual, the others counterfactual. Although in every world the
properties of all physical systems are in bijective correspondence with subspaces
of the Hilbert space, de facto unobserved macroscopic superpositions are not the
kind of properties that appear in a typical world, unlike the case of the standard
interpretation. And this is because interference between different components be-
comes negligible, and an effective superselection rule arises between the different
non-interfering components, thus mimicking the case of von Neumann algebras
discussed in section 6. The relation between the quantum and the classical con-
nectives is not a formal relation as we had in the case of von Neumann algebras,
but the connectives behave classically in a suitable physical limit.

Thus, while the structure of the intrinsic properties of physical systems supports
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a non-distributive logic at the fundamental level (even in the individual worlds),
one can claim that, unlike the case of pilot-wave theory or spontaneous collapse,
the perspectival element characteristic of the Everett interpretation introduces a
genuine emergence of the classical connectives from the quantum connectives. In
this sense, it is only the Everett interpretation, among the major approaches to
quantum mechanics, that is compatible with a revision of logic. One is not forced
to accept the overall package, but, while perhaps not entirely as Putnam had
articulated it, there is an intelligible sense in which (standard) quantum mechanics
may suggest that logic be revised.

8 CONCLUSION

We hope to have clarified in what sense empirical considerations of quantum phe-
nomena may have a bearing on the issue of the ‘true’ logic. Some of Putnam’s
(1968) claims in this regard can be justified, but with qualifications.

What can be said about the status of quantum logic in our world, assuming
current approaches to the foundations of quantum mechanics, depends on the
details of the chosen approach. In particular, one might justify a revision of logic
at most if one chooses an Everett interpretation. Indeed, it is a general lesson in
the philosophy of physics, confirmed in the present case, that bold philosophical
claims made on the basis of quantum mechanics turn out to be highly dependent
on the interpretational approach one adopts towards the theory.

The scenario in which consideration of quantum or quantum-like phenomena
might make a revision of logic most appealing is possibly that of von Neumann
algebras — thus perhaps vindicating Dickson’s (2001) intuition —, where there is
a rigorous sense in which the quantum and classical connectives can be said to be
the same and to behave truth-functionally or not according to the meaning of the
propositions involved. This possibility is presumably not realised in our world, but
whether it is or not is itself an empirical issue, thus lending at least some support
to the idea that logic is indeed empirical.
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QUANTUM AXIOMATICS

Diederik Aerts

1 INTRODUCTION

Quantum axiomatics has its roots in the work of John von Neumann, in collabo-
ration with Garett Birkhoff, that is almost as old as the standard formulation of
quantum mechanics itself [Birkhoff and von Neumann, 1936]. Indeed already dur-
ing the beginning years of quantum mechanics, the formalism that is now referred
to as standard quantum mechanics [von Neumann, 1932], was thought to be too
specific by the founding fathers themselves. One of the questions that obviously
was at the origin of this early dissatisfaction is: ‘Why would a complex Hilbert
space deliver the unique mathematical structure for a complete description of the
microworld? Would that not be amazing? What is so special about a complex
Hilbert space that its mathematical structure would play such a fundamental role?’

Let us turn for a moment to the other great theory of physics, namely general
relativity, to raise more suspicion towards the fundamental role of the complex
Hilbert space for quantum mechanics. General relativity is founded on the mathe-
matical structure of Riemann geometry. In this case however it is much more plau-
sible that indeed the right fundamental mathematical structure has been taken.
Riemann developed his theory as a synthesis of the work of Gauss, Lobatsjevski
and Bolyai on nonEuclidean geometry, and his aim was to work out a theory for
the description of the geometrical structure of the world in all its generality. Hence
Einstein took recourse to the work of Riemann to express his ideas and intuitions
on space time and its geometry and this lead to general relativity. General rel-
ativity could be called in this respect ‘the geometrization of a part of the world
including gravitation’.

There is, of course, a definite reason why von Neumann used the mathematical
structure of a complex Hilbert space for the formalization of quantum mechanics,
but this reason is much less profound than it is for Riemann geometry and general
relativity. The reason is that Heisenberg’s matrix mechanics and Schrödinger’s
wave mechanics turned out to be equivalent, the first being a formalization of the
new mechanics making use of l2, the set of all square summable complex sequences,
and the second making use of L2(R3), the set of all square integrable complex func-
tions of three real variables. The two spaces l2 and L2(R3) are canonical examples
of a complex Hilbert space. This means that Heisenberg and Schrödinger were
working already in a complex Hilbert space, when they formulated matrix mechan-
ics and wave mechanics, without being aware of it. This made it a straightforward
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choice for von Neumann to propose a formulation of quantum mechanics in an
abstract complex Hilbert space, reducing matrix mechanics and wave mechanics
to two specific cases.

One problem with the Hilbert space representation was known from the start.
A (pure) state of a quantum entity is represented by a unit vector or ray of the
complex Hilbert space, and not by a vector. Indeed vectors contained in the same
ray represent the same state or one has to normalize the vector that represents
the state after it has been changed in one way or another. It is well known
that if rays of a vector space are called points and two dimensional subspaces
of this vector space are called lines, the set of points and lines corresponding in
this way to a vector space, form a projective geometry. What we just remarked
about the unit vector or ray representing the state of the quantum entity means
that in some way the projective geometry corresponding to the complex Hilbert
space represents more intrinsically the physics of the quantum world as does the
Hilbert space itself. This state of affairs is revealed explicitly in the dynamics
of quantum entities, that is built by using group representations, and one has to
consider projective representations, which are representations in the corresponding
projective geometry, and not vector representations [Wigner, 1959].

The title of the article by John von Neumann and Garett Birkhoff [Birkhoff and
von Neumann, 1936] that we mentioned as the founding article for quantum ax-
iomatics is ‘The logic of quantum mechanics’. Let us explain shortly what Birkhoff
and von Neumann do in this article. First of all they remark that an operational
proposition of a quantum entity is represented in the standard quantum formal-
ism by an orthogonal projection operator or by the corresponding closed subspace
of the Hilbert space H. Let us denote the set of all closed subspaces of H by
L(H). Next Birkhoff and von Neumann show that the structure of L(H) is not
that of a Boolean algebra, the archetypical structure of the set of propositions in
classical logic. More specifically it is the distributive law between conjunction and
disjunction

(a ∨ b) ∧ c = (a ∧ c) ∨ (b ∧ c) (1)

that is not necessarily valid for the case of quantum propositions a, b, c ∈ L(H).
A whole line of research, called quantum logic, was born as a consequence of the
Birkhoff and von Neumann article. The underlying philosophical idea is that, in
the same manner as general relativity has introduced nonEuclidean geometry into
the reality of the physical world, quantum mechanics introduces nonBoolean logic.
The quantum paradoxes would be due to the fact that we reason with Boolean logic
about situations with quantum entities, while these situations should be reasoned
about with nonBoolean logic.

Although fascinating as an approach [Mittelstaedt, 1963], it is not this idea that
is at the origin of quantum axiomatics. Another aspect of what Birkhoff and von
Neumann did in their article is that they shifted the attention on the mathematical
structure of the set of operational propositions L(H) instead of the Hilbert space
H itself. In this sense it is important to pay attention to the fact that L(H) is
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the set of all operational propositions, i.e. the set of yes/no experiments on a
quantum entity. They opened a way to connect abstract mathematical concepts
of the quantum formalism, namely the orthogonal projection operators or closed
subspaces of the Hilbert space, directly with physical operations in the laboratory,
namely the yes/no experiments.

George Mackey followed in on this idea when he wrote his book on the math-
ematical foundations of quantum mechanics [Mackey, 1963]. He starts the other
way around and considers as a basis the set L of all operational propositions,
meaning propositions being testable by yes/no experiments on a physical entity.
Then he introduces as an axiom that this set L has to have a structure isomorphic
to the set of all closed subspaces L(H) of a complex Hilbert space in the case of
a quantum entity. He states that it would be interesting to invent a set of ax-
ioms on L that gradually would make L more and more alike to L(H) to finally
arrive at an isomorphism when all the axioms are satisfied. While Mackey wrote
his book results as such were underway. A year later Constantin Piron proved a
fundamental representation theorem. Starting from the set L of all operational
propositions of a physical entity and introducing five axioms on L he proved that
L is isomorphic to the set of closed subspaces L(V ) of a generalized Hilbert space
V whenever these five axioms are satisfied [Piron, 1964]. Let us elaborate on some
of the aspects of this representation theorem to be able to explain further what
quantum axiomatics is about.

We mentioned already that Birkhoff and von Neumann had noticed that the set
of closed subspaces L(H) of a complex Hilbert space H is not a Boolean algebra,
because distributivity between conjunction and disjunction, like expressed in (1),
is not satisfied. The set of closed subspaces of a complex Hilbert space forms
however a lattice, which is a more general mathematical structure than a Boolean
algebra, moreover, a lattice where the distributivity rule (1) is satisfied is a Boolean
algebra, which indicates that the lattice structure is the one to consider for the
quantum mechanical situation. As we will see more in detail later, and to make
again a reference to general relativity, the lattice structure is indeed to a Boolean
algebra what general Riemann geometry is to Euclidean geometry. And moreover,
meanwhile we have understood why the structure of operational propositions of
the world is not a Boolean algebra but a lattice. This is strictly due to the
fact that measurements can have an uncontrollable influence on the state of the
physical entity under consideration. We explain this insight in detail in [Aerts and
Aerts, 2004], and mention it here to make clear that the intuition of Birkhoff and
von Neumann, and later Mackey, Piron and others, although only mathematical
intuition at that time, was correct.

When Piron proved his representation theorem in 1964, he concentrated on the
lattice structure for the formulation of the five axioms. Meanwhile much more
research has been done, both physically motivated in an attempt to make the
approach more operational, as well as mathematically, trying to get axiomatically
closer to the complex Hilbert space. In the presentation of quantum axiomatics
we give in this article, we integrate the most recent results, and hence deviate
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for this reason from the original formulation, for example when we explain the
representation theorem of Piron.

Axiomatic quantum mechanics is more than just an axiomatization of quan-
tum mechanics. Because of the operational nature of the axiomatization, it holds
the potential for ‘more general theories than standard quantum mechanics’ which
however are ‘quantum like theories’. In this sense, we believe that it is one of the
candidates to generate the framework for the new theory to be developed gener-
alizing quantum mechanics and relativity theory [Aerts and Aerts, 2004]. Let us
explain why we believe that quantum axiomatics has the potential to deliver such
a generalization of relativity theory and quantum mechanics. General relativity
is a theory that brings part of the world that in earlier Newtonian mechanics was
classified within dynamics to the geometrical realm of reality, and more specif-
ically confronting us with the pre-scientific and naive realistic vision on space,
time, matter and gravitation. It teaches us in a deep and new way, compared to
Newtonian physics, ‘what are the things that exists and how they exist and are
related and how they influence each other’. But there is one deep lack in relativ-
ity theory: it does not take into account the influence of the observer, the effect
that the measuring apparatus has on the thing observed. It does not confront
the subject-object problem and its influence on how reality is. It cannot do this
because its mathematical apparatus is based on the Riemann geometry of time-
space, hence prejudicing that time-space is there, filled up with fields and matter,
that are also there, independent of the observer. There is no fundamental role
for the creation of ‘new’ within relativity theory, everything just ‘is’ and we are
only there to ‘detect’ how this everything ‘is’. That is also the reason why general
relativity can easily be interpreted as delivering a model for the whole universe,
whatever this would mean. We know that quantum mechanics takes into account
in an essential way the effect of the observer through the measuring apparatus on
the state of the physical entity under study. In a theory generalizing quantum
mechanics and relativity, such that both appear as special cases, this effect should
certainly also appear in a fundamental way. We believe that general relativity has
explored to great depth the question ‘how can things be in the world’. Quan-
tum axiomatics explores in great depth the question ‘how can be acted in the
world’. And it does explore this question of ‘action in the world’ in a very similar
manner as general relativity theory does with its question of ‘being of the world’.
This means that operational quantum axiomatics can be seen as the development
of a general theory of ‘actions in the world’ in the same manner that Riemann
geometry can be seen as a general theory of ‘geometrical forms existing in the
world’. Of course Riemann is not equivalent to general relativity, a lot of detailed
physics had to be known to apply Riemann resulting in general relativity. This is
the same with operational quantum axiomatics, it has the potential to deliver the
framework for the theory generalizing quantum mechanics and relativity theory,
but a lot of detailed physics will have to be used to find out the exact way of doing
this.

We want to remark that in principle a theory that describes the possible actions
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in the world, and a theory that delivers a model for the whole universe, should
not be incompatible. It should even be so that the theory that delivers a model
of the whole universe should incorporate the theory of actions in the world, which
would mean for the situation that exists now, general relativity should contain
quantum mechanics, if it really delivers a model for the whole universe. That is
why we believe that Einstein’s attitude, trying to incorporate the other forces and
interactions within general relativity, contrary to common believe, was the right
one, globally speaking. What Einstein did not know at that time was ‘the reality
of nonlocality in the micro-world’. Nonlocality means nonspatiality, which means
that the reality of the micro-world, and hence the reality of the universe as a whole,
is not time-space like. Time-space is not the global theatre of reality, but rather
a cristallization and structuration of the macro-world. Time-space has come into
existence together with the macroscopic material entities, and hence it is ‘their’
time and space, but it is not the theatre of the microscopic quantum entities. This
fact is the fundamental reason why general relativity, built on the mathematical
geometrical Riemannian structure of time-space, cannot be the canvas for the new
theory to be developed. A way to express this technically would be to say that
the set of events cannot be identified with the set of time-space points as is done
in relativity theory. Recourse will have to be taken to a theory that describes
reality as a kind of pre-geometry, and where the geometrical structure arises as a
consequence of interactions that collapse into the time-space context. We believe
that operational quantum axiomatics, as presented in this article, can deliver the
framework as well as the methodology to construct and elaborate such a theory. In
the next section we introduce the basic notions of operational quantum axiomatics.

Mackey and Piron introduced the set of yes/no experiments but then imme-
diately shifted to an attempt to axiomatize mathematically the lattice of (op-
erational) propositions of a quantum entity, Mackey postulating right away an
isomorphism with L(H) and Piron giving five axioms to come as close as possible
to L(H). Also Piron’s axioms are however mostly motivated by mimicking math-
ematically the structure of L(H). In later work Piron made a stronger attempt to
found operationally part of the axioms [Piron, 1976], and this attempt was worked
out further in [Aerts, 1981; Aerts, 1982; Aerts, 1983], to arrive at a full oper-
ational foundation only recently [Aerts, 1999a; Aerts, 1999b; Aerts et al., 1999;
Aerts, 2002].

Also mathematically the circle was closed only recently. At the time when Piron
gave his five axioms that lead to the representation within a generalized Hilbert
space, there only existed three examples of generalized Hilbert spaces that fitted
all the axioms, namely real, complex and quaternionic Hilbert space, also referred
to as the three standard Hilbert spaces.1 Years later Hans Keller constructed

1There do exist a lot of finite dimensional generalized Hilbert spaces that are different from
the three standard examples. But since a physical entity has to have at least a position observ-
able, it follows that the generalized Hilbert space must be infinite dimensional. At the time of
Piron’s representation theorem, the only infinite dimensional cases that were known are the three
standard Hilbert spaces, over the real, complex or quaternionic numbers.



84 Diederik Aerts

the first counterexample, more specifically an example of an infinite dimensional
generalized Hilbert space that is not isomorphic to one of the three standard
Hilbert spaces [Keller, 1980]. The study of generalized Hilbert spaces, nowadays
also called orthomodular spaces, developed into a research subject of its own, and
recently Maria Pia Solèr proved a groundbreaking theorem in this field. She proved
that an infinite dimensional generalized Hilbert space that contains an orthonormal
base is isomorphic with one of the three standard Hilbert spaces [Solèr, 1995]. It
has meanwhile also been possible to formulate an operational axiom, called ‘plane
transitivity’ on the set of operational propositions that implies Solèr’s condition
[Aerts and van Steirteghem, 2000], which completes the axiomatics for standard
quantum mechanics by means of six axioms, the original five axioms of Piron and
plane transitivity as sixth axiom.

2 STATE PROPERTY SPACES

In this section we introduce the basic notions and basic axioms for quantum ax-
iomatics. We introduce notions and axioms that are as simple as possible, but
each time show how the more traditional axioms of quantum axiomatics are re-
lated and/or derived from our set of axioms.

2.1 States and properties

With each entity S corresponds a well defined set of states Σ of the entity. These
are the modes of being of the entity. This means that at each moment the entity S
‘is’ in a specific state p ∈ Σ. Historically quantum axiomatics has been elaborated
mainly by considering the set of properties2. With each entity S corresponds a
well defined set of properties L. A property a ∈ L is ‘actual’ or is ‘potential’ for
the entity S. To be able to present the axiomatisation of the set of states and
the set of properties of an entity S in a mathematical way, we introduce some
additional notions.

Suppose that the entity S is in a specific state p ∈ Σ. Then some of the
properties of S are actual and some are not, hence they are potential. This means
that with each state p ∈ Σ corresponds a set of actual properties, subset of L.
This defines a function ξ : Σ → P(L), which makes each state p ∈ Σ correspond
to the set ξ(p) of properties that are actual in this state. With the notation P(L)
we mean the ‘powerset’ of L, i.e. the set of all subsets of L. From now on we can
replace the statement ‘property a ∈ L is actual for the entity S in state p ∈ Σ’ by
‘a ∈ ξ(p)’.

Suppose that for the entity S a specific property a ∈ L is actual. Then this
entity is in a certain state p ∈ Σ that makes a actual. With each property a ∈ L

2In the original paper of Birkhoff and Von Neumann [Birkhoff and von Neumann, 1936], the
basic notion is the one of ‘operational proposition’. An operational proposition is not the same
as a property [Randall and Foulis, 1983; Foulis et al., 1983], but it points at the same structural
part of quantum axiomatics.



Quantum Axiomatics 85

we can associate the set of states that make this property actual, i.e. a subset
of Σ. This defines a function κ : L → P(Σ), which makes each property a ∈ L
correspond to the set of states κ(a) that make this property actual. We can replace
the statement ‘property a ∈ L is actual if the entity S is in state p ∈ Σ’ by the
expression ‘p ∈ κ(a)’.

Summarising the foregoing we have:

property a ∈ L is actual for the entity S in state p ∈ Σ
⇔ a ∈ ξ(p)
⇔ p ∈ κ(a)

(2)

This expresses a fundamental ‘duality’ between states and properties. We intro-
duce a specific mathematical structure to represent an entity S, its states and its
properties, taking into account this duality. First we remark that if Σ and L are
given, and one of the two functions ξ or κ is given, then the other function can
be derived. Let us show this explicitly. Hence suppose that Σ, L and ξ are given,
and define κ : L → P(Σ) such that κ(a) = {p | p ∈ Σ, a ∈ ξ(p)}. Similarly, if Σ,
L and κ : L → P(Σ) are given, we can derive ξ in an analogous way. This means
that to define the mathematical structure which carries our notions and relations
it is enough to introduce Σ, L and one of the two functions ξ or κ.

DEFINITION 1 State property space. Consider two sets Σ and L and a function

ξ : Σ ← P(L) p �→ ξ(p) (3)

then we say that (Σ,L, ξ) is a state property space. The elements of Σ are inter-
preted as states and the elements of L as properties of the entity S. For p ∈ Σ we
have that ξ(p) is the set of properties of S which are actual if S is in state p. For
a state property space (Σ,L, ξ) we define:

κ : L → P(Σ) a �→ κ(a) = {p | p ∈ Σ, a ∈ ξ(p)} (4)

and hence for a ∈ L we have that κ(a) is the set of states of the entity S which
make the property a actual. The function κ is called the Cartan map of the state
property space (Σ,L, ξ).

PROPOSITION 2. Consider a state property space (Σ,L, ξ), and κ defined as in
(4). We have:

a ∈ ξ(p) ⇔ p ∈ κ(a) (5)

There are two natural ‘implication relations’ on a state property space. If the
situation is such that if ‘a ∈ L is actual for S in state p ∈ Σ’ implies that ‘b ∈ L is
actual for S in state p ∈ Σ’ we say that the property a implies the property b. If
the situation is such that ‘a ∈ L is actual for S in state q ∈ Σ’ implies that ‘a ∈ L
is actual for S in state p ∈ Σ’ we say that the state p implies the state q.
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DEFINITION 3 Property implication and state implication. Consider a state
property space (Σ,L, ξ). For a, b ∈ L we introduce:

a ≤ b ⇔ κ(a) ⊆ κ(b) (6)

and we say that a ‘implies’ b. For p, q ∈ Σ we introduce:

p ≤ q ⇔ ξ(q) ⊆ ξ(p) (7)

and we say that p ‘implies’ q3.

DEFINITION 4 Equivalent properties and equivalent states. Consider a state
property space (Σ,L, ξ). We call properties a, b ∈ L equivalent, and denote a ≈ b
iff κ(a) = κ(b). We call states p, q ∈ Σ equivalent and denote p ≈ q iff ξ(p) = ξ(q).

Let us give two important examples of state property spaces. First, consider
a set Ω and let P(Ω) be the set of all subsets of Ω, and consider the function
ξΩ : Ω → P(P(Ω)), such that for p ∈ Ω

ξΩ(p) = {A |A ∈ P(Ω), p ∈ A} (8)

The triple (Ω,P(Ω), ξΩ) is a state property space. For A ∈ P(Ω) we have κΩ(A) =
{p |p ∈ Ω, A ∈ ξ(p)} = {p |p ∈ Ω, p ∈ A} = A. This shows that κΩ : P(Ω) → P(Ω)
is the identity.

Second, consider a complex Hilbert space H, and let Σ(H) be the set of unit
vectors of H and L(H) the set of orthogonal projection operators of H. Consider
the function ξH : Σ(H) → P(L(H)), such that for x ∈ Σ(H)

ξH(x) = {A | A ∈ L(H), Ax = x} (9)

The triple (Σ(H),L(H), ξH) is a state property space. For A ∈ L(H) we have
κH(A) = {x |x ∈ Σ(H), Ax = x}.

The two examples that we propose here are the archetypical physics examples.
The first example is the state property space of a classical physical system, where
Ω corresponds with its state space. The second example is the state property space
of a quantum physical system, where H is the complex Hilbert space connected to
the quantum system.

DEFINITION 5 Pre-order relation. Suppose that we have a set Z. We say that
≤ is a pre-order relation on Z iff for x, y, z ∈ Z we have:

x ≤ x
x ≤ y and y ≤ z ⇒ x ≤ z

(10)

For two elements x, y ∈ Z such that x ≤ y and y ≤ x we denote x ≈ y and we say
that x is equivalent to y.

3The state implication and property implication are not defined in an analogous way. Indeed,
then we should for example have written p ≤ q ⇔ ξ(p) ⊆ ξ(q). That we have chosen to define the
state implication the other way around is because historically this is how intuitively is thought
about states implying one another.
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It is easy to verify that the implication relations that we have introduced are
pre-order relations.

PROPOSITION 6. Consider a state property space (Σ,L, ξ), then Σ,≤ and L,≤
are pre-ordered sets.

We can show the following for a state property space:

PROPOSITION 7. Consider a state property space (Σ,L, ξ). (1) Suppose that
a, b ∈ L and p ∈ Σ. If a ∈ ξ(p) and a ≤ b, then b ∈ ξ(p). (2) Suppose that p, q ∈ Σ
and a ∈ L. If q ∈ κ(a) and p ≤ q then p ∈ κ(a).

Proof. (1) We have p ∈ κ(a) and κ(a) ⊆ κ(b). This proves that p ∈ κ(b) and
hence b ∈ ξ(p). (2) We have a ∈ ξ(q) and ξ(q) ⊆ ξ(p) and hence a ∈ ξ(p). This
shows that p ∈ κ(a). �

Suppose we consider a set of properties (ai)i ⊆ L. It is very well possible that
there exist states of the entity S in which all the properties ai are actual. This is
in fact always the case if ∩iκ(ai) �= ∅. Indeed, if we consider p ∈ ∩iκ(ai) and S in
state p, then all the properties ai are actual. If it is such that the situation where
all properties ai of a set (ai)i and no other are actual is again a property of the
entity S, we will denote this new property by ∧iai, and call it a ‘meet property’
of (ai)i. Clearly we have ∧iai is actual for S in state p ∈ Σ iff ai is actual for all i
for S in state p. This means that we have ∧iai ∈ ξ(p) iff ai ∈ ξ(p) ∀i.
DEFINITION 8 Meet property. Consider a state property space (Σ,L, ξ) and a
set (ai)i ⊆ L of properties. If there exists a property, which we denote by ∧iai,
such that

κ(∧iai) = ∩iκ(ai) (11)

we call ∧iai the ‘meet property’ of the set of properties (ai)i.

If we have the structure of a pre-ordered set, we can wonder about the existence
of meets and joins with respect to this pre-order, or conjunctions and disjunctions
with respect to the implication related to this pre-order. In relation with the meet
property we can prove the following

PROPOSITION 9. Consider a state property space (Σ,L, ξ) and a set (ai)i ⊆ L
of properties. The property ∧iai, if it exists, is an infimum4 for the pre-order
relation ≤ on L.

Proof. We have κ(∧iai) = ∩iκ(ai) ⊆ κ(aj) ∀ j, and hence ∧iai ≤ aj ∀ j.
Suppose that x ∈ L is such that x ≤ aj∀j, then we have κ(x) ⊆ κ(aj)∀ j, and
hence κ(x) ⊆ ∩iκ(ai) = κ(∧iai). As a consequence we have x ≤ ∧iai. This proves
that ∧iai is an infimum. �

4An infimum of a subset (xi)i of a pre-ordered set Z is an element of Z that is smaller than
all the xi and greater than any element that is smaller than all xi.
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2.2 Tests

For the operational foundations of the state property space, we need to make
explicit how we test whether for a physical entity a specific property is actual.

A test is an experiment we can perform on the physical entity under investiga-
tion with the aim of knowing whether a specific property of this physical entity
is actual or not. We identify for each test two outcomes, one which we call ‘yes’
corresponding to the occurrence of the expected outcome, and another one which
we call ‘no’ corresponding to the non occurrence of the expected outcome. How-
ever, if for a test the outcome ‘yes’ occurs, this does not mean that the property
which is tested is actual. It is only when we can predict with certainty, i.e. with
probability equal to 1, that the test would have an outcome ‘yes’, if we would
perform it, that the property a is actual.

Let us consider the example of an entity which is a piece of wood. We have in
mind the property of ‘burning well’. A possible test for this property consists of
taking the piece of wood and setting it on fire. In general, when we perform the
test on a piece of dry wood, the piece of wood will be destroyed by the test. So
the property of ‘burning well’ is a property that the piece of wood eventually has
before we make the test. Of course it is after having done a number of tests with
pieces of wood and having got always the outcome yes, we decide that the one new
piece of wood, prepared under equivalent conditions, whereon we never performed
the test, has actually the property of burning well. We will say that the test is
‘true’ if this is the case.

DEFINITION 10 Testing a property. Consider a physical entity with correspond-
ing state property space (Σ,L, ξ). α is a test of the property a ∈ L if we have

a ∈ ξ(p) ⇔ ‘yes′ can be predicted with certainty for α when S is in state p (12)

Similarly with the pre-order relations on the sets of properties we have pre-order
relations on the sets of tests.

DEFINITION 11 Test implication. We say that a test α is stronger than a test
β and denote α ≤ β iff whenever the physical entity is in a state such that α is
true then also β is true.

PROPOSITION 12. Consider a state property space (Σ,L, ξ). If the test α tests
property a, and the test β tests property b, we have

α ≤ β ⇔ a ≤ b (13)

Proof. Suppose that α ≤ β, and consider p ∈ Σ such that a ∈ ξ(p). This means
that the test α gives with certainty outcome ‘yes’ if the entity is in state p. Hence
also β gives with certainty ‘yes’ if the entity is in state p. This means that b ∈ ξ(p).
Hence we have proven that a ≤ b. Suppose now that a ≤ b, and suppose that the
entity is in a state p such that α gives with certainty outcome ‘yes’. This means
that a ∈ ξ(p). Then we have b ∈ ξ(p). Since β tests b we have that β gives with
certainty the outcome ‘yes’. Hence we have proven that α ≤ β. �
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DEFINITION 13 Equivalent tests. We say that two tests α and β are equivalent,
and denote α ≈ β iff α ≤ β and β ≤ α.

PROPOSITION 14. Equivalent tests test equivalent properties, and tests that test
equivalent properties are equivalent tests.

Proof. Consider two equivalent tests α ≈ β testing respectively properties a and
b. Since we have α ≤ β and β ≤ α this implies that a ≤ b and b ≤ a, and hence
a ≈ b. Consider two equivalent properties a ≈ b being tested respectively by tests
α and β. Since we have a ≤ b and b ≤ a this implies that α ≤ β and β ≤ α, and
hence α ≈ β. �

In general the outcomes of a test of one property are profoundly influenced by the
testing of another property. In most cases it makes even no sense to perform two
tests at once or one after the other on the entity. But still it is so that every entity
can have several properties which are actual at once. There is indeed a way to
construct a test that makes it possible to test the actuality of several properties at
once, even if the tests corresponding to the different properties disturb each other
profoundly. Let us illustrate this by means of the example of the piece of wood.

Consider the following two properties of the piece of wood: Property c ‘the piece
of wood burns well’ and property d ‘the piece of wood floats on water’. Suppose
that γ is a test of property c which consists of setting the wood on fire and giving
the outcome ‘yes’ if it burns well. The test δ consists of putting the wood on
water and giving the outcome ‘yes’ if it floats, hence it is a test of property d. If
we perform first the test δ, and put the piece of wood on water, we have changed
the state of the wood in a state of ‘wet wood’ and as a result the wood will not
burn well. On the other hand if we perform the test γ and burn the wood, it will
no longer float on water. However we all know plenty of pieces of wood for which
both properties c and d are actual at once. This means that the way in which we
decide both properties to be actual for a specific piece of wood is not related to
performing both tests one after the other. If we analyse carefully this situation
we see that we agree for a piece of wood both properties c and d to be actual if
which ever of the tests γ or δ is performed, the outcome ‘yes’ can be predicted
with certainty for this test. Hence, to state this in a slightly more formal way: ‘If
we choose, or if some process external to us produces a choice, between one of the
two tests γ or δ, and it is certain to obtain the outcome ‘yes’ no matter what is
this choice, then we agree that both properties c and d are actual for the piece of
wood’.

This leads us to the following. Given two tests γ and δ we define a new test
which we denote γ · δ and call the product test of γ and δ. The performance of
γ · δ consists of a choice being made between γ and δ, and then the performance
of this chosen test, and the attribution of the outcome obtained in this way. As
a consequence, we have γ · δ is true iff γ is true ‘and’ δ is true, which shows that
γ · δ tests both properties c and d, or, it tests the conjunction of properties c and
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d. Remark that for the performance of the test γ · δ only one test γ or δ has to be
performed, and hence the definition of the product test is valid independent of the
way in which tests disturb each other. The definition of product test is valid for
any number of tests, which means that we have found a way to test any number
of properties at once, or, to test the conjunction of any number of properties. Let
us formally introduce the product test for an arbitrary number of properties.

Consider a family (ai)i of properties ai and tests αi, such that αi tests property
ai. A test which tests the actuality of all the properties ai, and which we denote
Πiαi and call the product of the αi is the following:

DEFINITION 15 Product test. The performance of Πiαi consists of a choice
between one of the tests αi followed by the performance of this chosen test.

PROPOSITION 16. For a set of tests (αi)i we have

Πiαi ≤ αj ∀ j (14)

Let us prove that the product test tests the meet of a set of properties.

PROPOSITION 17. Consider an entity with corresponding state property space
(Σ,L, ξ) and a set of properties (ai)i ⊆ L. Suppose that we have tests (αi)i avail-
able for the properties (ai)i, then the product test Πiαi tests a meet property ∧iai.

Proof. Following the definition of ‘meet property’ given in Definition 8, to prove
that Πiαi tests the meet property ∧iai of the set of properties (ai)i, where αi tests
ai, we need to show that ‘yes can be predicted with certainty for Πiα the entity
being in state p’ is equivalent to ‘ai ∈ ξ(p) ∀ i’. This follows from the definition of
the product test. Indeed ‘yes can be predicted with certainty for Πiαi the entity
being in state p’ is equivalent to ‘yes can be predicted with certainty for αi ∀ i the
entity being in state p’. �

2.3 Orthogonality

Let us investigate the operational foundation of orthogonality.

DEFINITION 18 Inverse test. For a test α we consider the test that consists
of performing the same experiment and changing the role of ‘yes’ and ‘no’. We
denote this new test by α̃, and call it the inverse test of α.

PROPOSITION 19. Consider a test α and a set of tests (αi)i, then we have

˜̃α = α (15)

Π̃iαi = Πiα̃i (16)

Proof. Obviously if we exchange ‘yes’ and ‘no’ for an experiment corresponding
to the test α, and then exchange ‘yes’ and ‘no’ again, we get the same test. The
test Π̃iαi consists of exchanging ‘yes’ and ‘no’ for the experiment corresponding
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to the test Πiαi. This comes to exchanging ‘yes’ and ‘no’ after the choice of one
of the αj is made. The test Πiα̃i on the contrary consists of exchanging the ‘yes’
and ‘no’ of each of the tests αi, hence before the choice of one of the αj is made.
These are the same tests. �

There is a fundamental problem with the inverse test which is the following. Sup-
pose that α(a) tests the property a, and β(a) also tests the property a, then α̃

and β̃ in general test completely different properties. Let us show this by means
of a concrete example. We introduce the test τ , which is the unit test, in the
sense that it is a test which gives ‘yes’ as outcome with certainty for each state of
the entity. The test τ tests the maximal property I. Obviously τ̃ is a test which
gives with certainty outcome ‘no’ for each state of the entity, which means that it
tests a property which is never actual. It can be shown that this property which
is never actual can only be represented by the minimal property 0, hence τ̃ tests
0. Consider now an arbitrary property a ∈ L, and a test α which tests property
a. Let us suppose that α̃ tests a property b, and that both properties a and b
can be actual. Consider the product test α · τ . This is a test which also tests the
property a, because indeed α · τ gives with certainty the outcome ‘yes’ iff α gives
with certainty the outcome ‘yes’. However α̃·τ = α̃ · τ̃ tests the property 0, and
not the property b. Indeed α̃ · τ̃ gives with certainty the outcome ‘yes’ iff α̃ gives
with certainty ‘yes’ and τ̃ gives with certainty ‘yes’. This is never the case, which
proves that it tests the property 0.

DEFINITION 20 Orthogonal states. If p and q are two states of S we will say
that p is orthogonal to q, iff there exists a test γ such that γ is true if S is in the
state p and γ̃ is true if S is in the state q. We will denote then p ⊥ q

PROPOSITION 21. For p, q, r, s ∈ Σ we have

p ⊥ q ⇒ q ⊥ p (17)
p ⊥ q, r ≤ p, s ≤ q ⇒ r ⊥ s (18)

p ⊥ q ⇒ p ∧ q = 0 (19)

Proof. The orthogonality relation is obviously symmetric. If r ≤ p and s ≤ q,
and p ⊥ q, and γ is a test such that γ is true if the entity is in state p and γ̃ is
true if the entity is in state q, then we have that γ is true if the entity is in state
r and γ̃ is true if the entity is in state s. This proves that r ⊥ s. �

DEFINITION 22 Orthogonal properties and states. We say that a state p ∈ Σ
is orthogonal to a property a ∈ L iff for every q ∈ Σ such that a ∈ ξ(q) we have
p ⊥ q. We denote p ⊥ a. We say that two properties a, b ∈ L are orthogonal iff for
every p, q ∈ Σ such that a ∈ ξ(p) and b ∈ ξ(q) we have p ⊥ q. We denote a ⊥ b.
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PROPOSITION 23. For a, b, c, d ∈ L and p, r ∈ Σ we have

p ⊥ a, r ≤ p, c ≤ a ⇒ r ⊥ c (20)
a ⊥ b ⇒ b ⊥ a (21)

a ⊥ b, c ≤ a, d ≤ b ⇒ c ⊥ d (22)
a ⊥ b ⇒ a ∧ b = 0 (23)

3 A SET OF AXIOMS

In this section we put forward a set of axioms and derive the consequences for the
structure of the state property space of this set of axioms. We make an attempt
to introduce all the axioms in a way which is as operational as possible.

3.1 The axiom of property determination

The first axiom expresses a relation between the states and the properties. We
consider two properties a, b ∈ L of the entity S, and suppose that κ(a) = κ(b).
This means that each state which make property a actual also makes property b
actual, and vice versa. It also means that we cannot distinguish between property
a and property b by means of the states of the entity S. Hence, this means that
for entity S, property a and property b are equivalent.

AXIOM 24 Property determination. We say that the axiom of property determi-
nation is satisfied for a state property space (Σ,L, ξ) iff for a, b ∈ L we have:

κ(a) = κ(b) ⇒ a = b (24)

DEFINITION 25 Partial order relation. Suppose that we have a set Z. We say
that ≤ is a partial order relation on Z iff ≤ is a pre-order relation for which
equivalent elements are equal.

If axiom 24 is satisfied for a state property space (Σ,L, ξ), the pre-order relation
on the set of properties L is then a partial order relation.

THEOREM 26. Consider a state property space (Σ,L, ξ) for an entity S for which
axiom 24 is satisfied. The ‘property implication’ on L is then a partial order
relation on L.

Proof. Suppose that axiom 24 is satisfied for (Σ,L, ξ), and consider a, b ∈ L such
that a ≤ b and b ≤ a. Then we have κ(a) ⊆ κ(b) and κ(b) ⊆ κ(a), and hence
κ(a) = κ(b). As a consequence, because of axiom 24, we have a = b. This proves
that ≤ is a partial order relation on L. �

The two archetypical examples we have introduced both satisfy the axiom of prop-
erty determination. Indeed, consider the first example of classical mechanics. Since
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κ is the identity, we have for A,B ∈ P(Ω) that κ(A) = κ(B) implies A = B. For
the second example of quantum mechanics, consider A,B ∈ L(H), and suppose
that κH(A) = κH(B). Consider the vector x ∈ H such that Ax = x. Since
κH(A) = κH(B) this implies that Bx = x. This proves that AB = A. In an
analoguous way we prove that AB = B, and hence A = B.

3.2 The axiom of completeness

We want to be able to distinguish between properties that are not necessarily of
the type that they are meet properties, and between properties which are meet
properties. In [Aerts, 1981; Aerts, 1982] we have introduced in this way a subset
of properties T ⊆ L, and called it a ‘generating set of properties’ for the state
property space (Σ,L, ξ).

AXIOM 27 Property completeness. We say that the axiom of property complete-
ness is satisfied for a state property space (Σ,L, ξ) iff there exists a subset T ⊆ L
such that for each (ai)i ⊆ T there exists a ∈ L such that

κ(a) =
⋂
i

κ(ai) (25)

and, each property a ∈ L is of this form, i.e. for a ∈ L there exists a subset
(ai)i ⊆ T such that (25) is satisfied. We call T ⊆ L a generating set of properties
of the state property space (Σ,L, ξ), and call the property a of (25) a meet of the
set of properties (ai)i, and denote it by

a =
∧
i

ai (26)

The following definition and proposition explain why we have chosen to call axiom
27 the axiom of completeness.

DEFINITION 28 Complete pre-ordered set. Suppose that Z,≤ is a pre-ordered
set. We say that Z is a complete pre-ordered set iff for each subset of elements of
Z there exists an infimum and a supremum in Z.

PROPOSITION 29. Consider a state property space (Σ,L, ξ) for which axiom 27
is satisfied. Then L,≤ is a complete pre-ordered set, and if for a subset (ai)i ⊆ L
we denote an infimum of (ai)i by ∧iai we have

κ(
∧
i

ai) =
⋂
i

κ(ai) (27)

Proof. Consider an arbitrary set (ai)i ⊆ L of properties. We need to prove that
there exists an infimum and a supremum in L for this set of properties (ai)i. From
axiom 27 we know that for each ai there is a set (bi

ji
)ji

⊆ T , such that ai =
∧ji

bi
ji

, and κ(ai) = ∩ji
κ(bi

ji
). From the same axiom 27 follows that for the subset
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(bi
ji

)i
ji
⊆ T there exists a property a ∈ L such that κ(a) = ∩i ∩ji

κ(bi
ji

) = ∩iκ(ai).
Let us prove that a is an infimum for the set (ai)i ⊆ L. Since κ(a) = ∩iκ(ai) we
have κ(a) ⊆ κ(aj) ∀j, and hence a ≤ aj ∀ j, which proves that a is a lower bound
for (ai)i. Consider x ∈ L such that x ≤ aj ∀j. This implies that κ(x) ⊆ κ(aj) ∀j,
and hence κ(x) ⊆ ∩iκ(ai) = κ(a). From this follows that x ≤ a, which proves that
a is a greatest lower bound or infimum. It is a consequence that for each subset
(ai)i ⊆ L, there exists also a supremum in L, let us denote it by ∨iai. It is given
by ∨

i

ai =
∧

x∈L,ai≤x∀i

x (28)

This proves that L,≤ is a complete pre-ordered set. �

Remark that the supremum for elements of L, although it exists, has no simple
operational meaning.

DEFINITION 30 Complete lattice. Suppose that Z,≤ is a partially ordered set.
We say that Z,≤,∧,∨ is a complete lattice iff for each subset (xi)i ⊆ Z of elements
of Z there exists an infimum ∧ixi ∈ Z and a supremum ∨ixi ∈ Z in Z. A complete
lattice has a minimal element which we denote 0, and which is the infimum of all
elements of Z, and a maximal element, which we denote I, and which is the
supremum of all elements of Z.

THEOREM 31. Consider a state property space (Σ,L, ξ) for which axioms 24 and
27 are satisfied. Then L,≤,∧,∨ is a complete lattice. For I the maximum of L,
(ai)i ⊆ L and p ∈ Σ we have:

κ(I) = Σ (29)⋂
i κ(ai) = κ(

∧
i ai) (30)⋃

i κ(ai) ⊆ κ(
∨

i ai) (31)
ai ∈ ξ(p) ∀i ⇔ ∧

i ai ∈ ξ(p) (32)

Proof. From proposition 26 follows that L,≤ is a partially ordered set, and from
proposition 29 follows that L,≤,∧,∨ is a complete lattice. We have κ(I) ⊆ Σ.
For an arbitrary p ∈ Σ consider ξ(p). Since a ≤ I ∀a ∈ ξ(p), we have I ∈ ξ(p),
and hence p ∈ κ(I). This proves that Σ ⊆ κ(I). As a consequence we have
κ(I) = Σ. From (27) of proposition 29 follows (30). Let us prove (31). Since ∨iai

is a supremum of (ai)i we have aj ≤ ∨iai ∀ j. Hence κ(aj) ⊆ κ(∨iai) ∀ j. This
proves that ∪iκ(ai) ⊆ κ(∨iai). Suppose that ai ∈ ξ(p) ∀i, then p ∈ κ(ai) ∀i, and
hence p ∈ ∩iκ(ai) = κ(∧iai). From this follows that ∧iai ∈ ξ(p), and hence we
have proven one of the implications of (32). Let us prove the other one, and hence
suppose that ∧iai ∈ ξ(p). From this follows that p ∈ κ(∧iai) = ∩iκ(ai). As a
consequence we have p ∈ κ(ai) ∀i, and hence ai ∈ ξ(p) ∀i. �
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If axiom 24 and 27 are satisfied for a state property space (Σ,L, ξ), and hence the
set of properties L is a complete lattice, we can represent the states by means of
properties.

DEFINITION 32 Property state. Consider a state property space (Σ,L, ξ) for
which axioms 24 and 27 are satisfied. For each state p ∈ Σ we define the ‘property
state’ corresponding to p as the property

s(p) =
∧

a∈ξ(p)

a (33)

PROPOSITION 33. Consider a state property space (Σ,L, ξ) for which axioms 24
and 27 are satisfied. For p, q ∈ Σ and a ∈ L we have:

s(p) ∈ ξ(p) (34)
a ∈ ξ(p) ⇔ s(p) ≤ a (35)
p ≤ q ⇔ s(p) ≤ s(q) (36)

ξ(p) = {a | a ∈ L, s(p) ≤ a} = [s(p), I] (37)

Proof. That s(p) ∈ ξ(p) follows directly from (32). Suppose a ∈ ξ(p) then
∧a∈ξ(p)a ≤ a and hence s(p) ≤ a. We have that s(p) ∈ ξ(p), and if s(p) ≤ a,
from proposition 7 follows then that a ∈ ξ(p). Suppose that p ≤ q. Then we
have ξ(q) ⊆ ξ(p). From this follows that s(p) = ∧a∈ξ(p)a ≤ ∧a∈ξ(q)a = s(q).
Suppose now that s(p) ≤ s(q). Take a ∈ ξ(q), then we have s(q) ≤ a. Hence also
s(p) ≤ a. But this implies that a ∈ ξ(p). Hence this shows that ξ(q) ⊆ ξ(p) and
as a consequence we have p ≤ q. Consider b ∈ [s(p), I]. This means that s(p) ≤ b,
and hence b ∈ ξ(p). Consider now b ∈ ξ(p). Then s(p) ≤ b and hence b ∈ [s(p), I].

�

For a state property space satisfying axioms 24 and 27 we can prove that the set
of property states is a full set for the complete lattice L.

THEOREM 34 Full set of property states. Consider a state property space (Σ,L, ξ)
for which axioms 24 and 27 are satisfied. For a ∈ L we have

κ(a) =
⋃

a∈ξ(p) κ(s(p)) (38)

a =
∨

a∈ξ(p) s(p) (39)

Proof. From (35) follows that if a ∈ ξ(p) we have s(p) ≤ a and hence κ(s(p)) ⊆
κ(a). This proves that ∪a∈ξ(p)κ(s(p)) ⊆ κ(a). From (34) follows that for p ∈ Σ we
have p ∈ κ(s(p)) and hence {p} ⊆ κ(s(p)). This proves that κ(a) = ∪p∈κ(a){p} ⊆
∪p∈κ(a)κ(s(p)) = ∪a∈ξ(p)κ(s(p)). From (35) we have a ∈ ξ(p) then s(p) ≤ a.
This proves that ∨a∈ξ(p)s(p) ≤ a. Using (31) we have κ(a) = ∪a∈ξ(p)κ(s(p)) ⊆
κ(∨a∈ξ(p)s(p)). This proves that a ≤ ∨a∈ξ(p)s(p). Hence we have proven that
a = ∨a∈ξ(p)s(p). �
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The two archetypical examples of classical mechanics and quantum mechanics
satisfy the axiom of completeness. Consider the state property space (Ω,P(Ω), ξΩ)
of a classical mechanical physical system with state space Ω. Consider a set of
properties (Ai)i ⊆ P(Ω) of the classical mechanical system. The property A =
∩iAi makes axiom 27 to be satisfied. Indeed, consider an arbitrary state p ∈ Ω.
We have ∩iAi ∈ ξΩ(p) ⇔ p ∈ ∩iAi ⇔ p ∈ Ai ∀i ⇔ Ai ∈ ξΩ(p) ∀i. From (30)
follows that axiom 27 is satisfied.

Next, consider the state property space (Σ(H),L(H), ξH) corresponding to a
quantum mechanical physical system described by means of a complex Hilbert
space H. Consider a set of properties (Ai)i ⊆ L(H) of the quantum mechanical
physical system. The property ∩iAi ∈ L(H) makes axiom 27 to be satisfied. In-
deed, consider an arbitrary state x ∈ Σ(H). We have ∩iAi ∈ ξH(P ) ⇔ (∩iAi)x =
x ⇔ Aix = x ∀i ⇔ Ai ∈ ξH(P ) ∀i. From (30) follows that axiom 27 is satisfied.

3.3 Ortho tests

We have come to the point where we will introduce the first operational element
which is specifically quantum, in the sense that it does not necessarily correspond
with our intuition about reality. We will suppose that a special type test exists,
which we call an ortho test.

DEFINITION 35 Ortho test. A test α is called an ortho test if it is such that if
the physical entity is in a state p ⊥ a, where a is a property tested by α, then α̃
is true, and if the physical entity is in state q ⊥ b, where b is a property tested by
α̃, then α is true.

PROPOSITION 36. Consider a test α. If α is an ortho test then α̃ is an ortho
test.

Proof. Follows directly from the definition. �

We can see immediately that ortho tests are special types of test because of the
next proposition, where we prove that a product test is never an ortho test, except
when it is a trivial product test of equivalent tests.

PROPOSITION 37. Consider a set of tests (αi)i. The product test Πiαi is an
ortho test iff αj is an ortho test for each j, and αj ≈ αk for each j, k.

Proof. Suppose that Πiαi is an ortho test, and let us call ai a property tested
by αi, and hence ∧iai a property tested by Πiαi. Consider an arbitrary αj of the
set (αi)i, and a state p such that p ⊥ aj . From (20) follows that p ⊥ ∧iai. Since
Πiαi is an ortho test, we have that whenever p ⊥ ∧iai the test Π̃iαi = Πiα̃i is
true. This means that α̃k is true for all k. Hence α̃j is true. Hence, we have
proven that if p is a state orthogonal to aj , then α̃j is true, which is one of the
necessary conditions for αj to be an ortho test. Let us proceed proving the other.
Suppose that (bi)i is a set of properties such that each bi is a property tested by
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α̃i, and hence ∧ibi is a property tested by Πiα̃i. Let us consider α̃j which tests bj .
Consider a state q such that q ⊥ bj . From (20) follows that q ⊥ ∧ibi, and since
Πiα̃i is an ortho test, we have that Π̃iα̃i = Παi is true. This implies that αi is
true for all i, and hence αj is true. This proves that αj is an ortho test. Since we
had chosen j arbitrary, this proves that all tests αi are ortho tests. Let us next
prove that all test are equivalent. Consider αj and suppose that the entity is in
state p such that αj is true. From this follows that p ⊥ bj and hence p ⊥ ∧ibi.
Since Πiα̃i is an ortho test, this implies that Πiαi is true, and hence αk is true for
all k. Hence we have proven that αj ≤ αk for all j and k, and as a consequence
all the tests are equivalent. �

Proposition 37 tells us something important. Ortho tests are the test which exist
commonly in quantum mechanics. This proposition proves that such an ortho test
cannot be generated in a non trivial way by the product test mechanism. This
means that if a property can be tested by an ortho test, hence this ortho test
is specific for this property, even if this property is a meet property. It is not
a product of other tests, except in a trivial way, when these other tests are also
ortho tests testing this same property. But ortho test and the corresponding ortho
properties have other unsuspected features.

PROPOSITION 38. Consider two tests α, β such that α is an ortho test. We have

α ≤ β ⇒ β̃ ≤ α̃ (40)

Proof. Suppose that α ≤ β and that the state p of the entity is such that β̃ is
true. This means that p ⊥ b where b is a property tested by β. Suppose that a is
a property tested by α, then we have a ≤ b, and hence p ⊥ a. Since α is an ortho
test, it follows that α̃ is true. Hence we have proven that β̃ ≤ α̃. �

3.4 The axiom of orthocomplementation

There is a specific structure, namely the structure of an orthocomplementation,
which has been identified mathematically in the formalism of quantum mechanics,
and this structure has played an important role in the mathematical axiomati-
zation, for example the one worked out in [Piron, 1964; Piron, 1976]. With the
notion of ortho test we introduce an orthocomplementation in an operational way.
Lets first define what an orthocomplementation on a partially ordered set with
minimum is.

DEFINITION 39 Orthocomplementation. Suppose that we have a set Z with
a partial-order ≤ and a smallest element 0. A bijective map ⊥ : Z → Z is an
orthocomplementation if for x, y ∈ Z we have

(x⊥)⊥ = x (41)
x ≤ y ⇒ y⊥ ≤ x⊥ (42)
0 is the infimum of x and x⊥ (43)
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The ortho test satisfies (41), (42) and (43). Of course, the set of tests corresponding
to a physical entity is not a partially ordered set, but only a pre-ordered set. But
the set of properties, if axiom 24 of property determination is satisfied, is a partially
ordered set. Hence our aim is to make operational steps such that on the set of
properties an orthocomplementation arises. This makes us introduce the following
definition for an ortho property.

DEFINITION 40 Ortho property. Consider a state property space (Σ,L, ξ). We
say that a ∈ L is an ortho property if there exists an ortho test testing a. If α is
the ortho test testing a, we denote by a⊥ the property tested by α̃.

Let us introduce the following definition.

DEFINITION 41 Orthogonal set. For a subset of states A ⊆ Σ we define the
orthogonal A⊥ of this subset

A⊥ = {p | p ⊥ q ∀ q ∈ A} (44)

PROPOSITION 42. Consider a state property space (Σ,L, ξ). If a ∈ L is an ortho
property then we have

κ(a)⊥ = κ(a⊥) (45)

Proof. Suppose that a ∈ L is an ortho property. This means that p ⊥ a ⇔
a⊥ ∈ ξ(p). Hence p ∈ κ(a)⊥ ⇔ p ∈ κ(a⊥). And as a consequence we have
κ(a)⊥ = κ(a⊥). �
AXIOM 43 Orthocomplementation. Consider a state property space (Σ,L, ξ).
For each property a ∈ L there exists an ortho test α testing this property.

THEOREM 44. Consider a state property space (Σ,L, ξ) and suppose that axiom
24, axiom 27 and axiom 43 are satisfied. For a ∈ L and α an ortho test testing
a let us denote the property tested by α̃ by a⊥. For a, b ∈ L and p, q ∈ Σ we then
have

(a⊥)⊥ = a (46)
a ≤ b ⇒ b⊥ ≤ a⊥ (47)
a ∧ a⊥ = 0 (48)

which proves that ⊥ : L → L is an orthocomplementation.

Proof. First we remark that if α and β are ortho tests testing property a, and
hence α ≈ β, we have that α̃ ≈ β̃. This shows that ⊥ is a function. Consider
now a ∈ L and α an ortho test testing a. Then α̃ is an ortho test testing a⊥. We
have that (a⊥)⊥ is the property tested by ˜̃α = α. Hence (a⊥)⊥ = a. Consider
a, b ∈ L such that a ≤ b, and α and β ortho tests testing respectively a and b.
Hence α ≤ β. From this follows that β̃ ≤ α̃, and hence b⊥ ≤ a⊥. Consider a ∈ L
and α an ortho test testing a. Hence α̃ tests a⊥. The infimum property a ∧ a⊥ in
L is tested by α · α̃ and hence a ∧ a⊥ = 0. �
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PROPOSITION 45. Consider a state property space (Σ,L, ξ) for which axioms
24, 27 and 43 are satisfied. We have for a, b ∈ L, (ai)i ⊆ L and p, q ∈ L

(
∨

i ai)⊥ =
∧

i a
⊥
i (49)

(
∧

i ai)⊥ =
∨

i a
⊥
i (50)

0⊥ = I I⊥ = 0 (51)
a ∨ a⊥ = I (52)

p ⊥ q ⇔ ∃ c ∈ L such that c ∈ ξ(p) and c⊥ ∈ ξ(q) (53)

Proof. Let us prove (49) and (50). We have ∧iai ≤ aj ∀j, which implies that
a⊥j ≤ (∧iai)⊥ ∀j, and hence ∨ia

⊥
i ≤ (∧iai)⊥. This also implies ∨i(a⊥i )⊥ = ∨iai ≤

(∧ia
⊥
i )⊥. Hence ((∧ia

⊥
i )⊥)⊥ = ∧ia

⊥
i ≤ (∨iai)⊥. We also have aj ≤ ∨iai ∀j,

which implies that (∨iai)⊥ ≤ a⊥j ∀j. Hence (∨iai)⊥ ≤ ∧ia
⊥
i . This also implies

that (∨ia
⊥
i )⊥ ≤ ∧i(a⊥i )⊥ = ∧iai. Hence (∧iai)⊥ ≤ ((∨ia

⊥
i )⊥)⊥ = ∨ia

⊥
i . Consider

a ∈ L, then 0 ≤ a⊥, and hence a ≤ 0⊥. This proves that 0⊥ is a maximal element
of L, and hence 0⊥ = I. In a analogous way we prove that I⊥ = 0. We have
I = 0⊥ = (a ∧ a⊥)⊥ = a⊥ ∨ a which proves (52). To prove (53) we remark that if
c ∈ L is such that c ∈ ξ(p) and c⊥ ∈ ξ(q), we have p ∈ κ(c) and q ∈ κ(c⊥). Since
κ(c⊥) = κ(c)⊥ we have p ⊥ q. �

In foregoing work on quantum axiomatics we have worked most of the time with
state property systems [Aerts et al., 1999; Aerts and van Steirteghem, 2000; Aerts
et al., 2000; Aerts and Deses, 2002; Aerts and van Valckenborgh, 2002; Aerts and
Deses, 2005; Aerts et al., in press; Aerts and Pulmannova, 2006].

DEFINITION 46 State property system. We say that (Σ,L, ξ) is a state-property
system if (Σ,≤) is a pre-ordered set, (L,≤,∧,∨) is a complete lattice with the
greatest element I and the smallest element 0, and ξ is a function

ξ : Σ → P(L) (54)

such that for p ∈ Σ and (ai)i ⊆ L, we have

I ∈ ξ(p), (55)
0 /∈ ξ(p), (56)

ai ∈ ξ(p) ∀i ⇔ ∧iai ∈ ξ(p) (for an arbitrary set of indices) (57)

and for p, q ∈ Σ and a, b ∈ L we have

p ≤ q ⇔ ξ(q) ⊆ ξ(p) (58)
a ≤ b ⇔ ∀r ∈ Σ : a ∈ ξ(r) ⇒ b ∈ ξ(r) (59)

Elements of Σ are called states, elements of L are called properties.
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A state property space for which the three axioms which we have formulated are
satisfied is a state property system.

THEOREM 47. A state property space for which axioms 24, 27 and 43 are satisfied
is a state property system.

Proof. Consider a state property space (Σ,L, ξ) for which axioms 24, 27 and
43 are satisfied. From (7) follows that (Σ,≤) is a pre-ordered set. In theorem
31 we prove that L,≤,∧,∨ is a complete lattice, and from (29) follows that I ∈
ξ(p) ∀ p ∈ Σ. We have a∧a⊥ = 0 and hence κ(0) = κ(a)∩κ(a)⊥ = ∅. This proves
0 �∈ ξ(p) ∀ p ∈ Σ. From (25) and (26) of axiom 27 follows (57), and (58) and (59)
follows respectively from (7) and (6). �

4 MORPHISMS

We derive the notion of morphism from a covariance situation. Consider two state
property spaces (Σ,L, ξ) and (Σ′,L′, ξ′), describing respectively entities S and S′.
We will arrive at the notion of morphism by analyzing the situation where the
entity S is a sub-entity of the entity S′. In that case, the following three natural
requirements should be satisfied:

i) If the entity S′ is in a state p′ then the state m(p′) of S is determined. This
defines a function m from the set of states of S′ to the set of states of S;

ii) If we consider a property a of the entity S, then to a corresponds a property
n(a) of the ‘bigger’ entity S′. This defines a function n from the set of properties
of S to the set of properties of S′;

iii) We want a and n(a) to be two descriptions of the ‘same’ property of S, once
considered as an entity on itself, once as a sub-entity of S′. In other words we
want a and n(a) to be actual at once. This means that for a state p′ of S′ (and
a corresponding state m(p′) of S) we want the following ‘covariance principle’ to
hold:

a ∈ ξ(m(p′)) ⇔ n(a) ∈ ξ′(p′) (60)

We are now ready to present a formal definition of a morphism of state property
spaces.

DEFINITION 48 Morphism. Consider two state property spaces (Σ,L, ξ) and
(Σ′,L′, ξ′). We say that

(m,n) : (Σ′,L′, ξ′) −→ (Σ,L, ξ) (61)

is a ‘morphism’ (of state property spaces) if m is a function:

m : Σ′ → Σ (62)
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and n is a function:

n : L → L′ (63)

such that for a ∈ L and p′ ∈ Σ′ the following holds:

a ∈ ξ(m(p′)) ⇔ n(a) ∈ ξ′(p′) (64)

PROPOSITION 49. Consider two state property spaces (Σ,L, ξ) and (Σ′,L′, ξ′),
and functions

m : Σ′ → Σ n : L → L′ (65)

We have that

(m,n) : (Σ′,L′, ξ′) −→ (Σ,L, ξ) (66)

is a morphism iff for a ∈ L, and p′ ∈ Σ′

m(p′) ∈ κ(a) ⇔ p′ ∈ κ′(n(a)) (67)

Proof. Let us prove (64) to show that (m,n) is a morphism. We have a ∈
ξ(m(p′)) ⇔ m(p′) ∈ κ(a) ⇔ p′ ∈ κ′(n(a)) ⇔ n(a) ∈ ξ′(p′). �

The next theorem gives some properties of morphisms.

THEOREM 50. Consider two state property spaces (Σ,L, ξ) and (Σ′,L′, ξ′) con-
nected by a morphism (m,n) : (Σ′,L′, ξ′) → (Σ,L, ξ). For p′, q′ ∈ Σ′ and a, b ∈ L
we have:

p′ ≤ q′ ⇒ m(p′) ≤ m(q′) (68)
a ≤ b ⇒ n(a) ≤ n(b) (69)

Proof. Suppose that p′ ≤ q′. We then have ξ′(q′) ⊆ ξ′(p′). Consider a ∈ ξ(m(q′)),
then (64) implies that n(a) ∈ ξ′(q′), and hence n(a) ∈ ξ′(p′), which means that
a ∈ ξ(m(p′)). As a consequence we have ξ(m(q′)) ⊆ ξ(m(p′)), whence m(p′) ≤
m(q′). Next consider a ≤ b. We then have κ(a) ⊆ κ(b). Let r′ ∈ Σ′ be such that
n(a) ∈ ξ′(r′). Then we have a ∈ ξ(m(r′)) and hence m(r′) ∈ κ(a) ⊆ κ(b). This
yields b ∈ ξ(m(r′)). From this follows that n(b) ∈ ξ′(r′). So we have shown that
n(a) ≤ n(b). �
THEOREM 51. Consider two state property spaces (Σ,L, ξ) and (Σ′,L′, ξ′) con-
nected by a morphism (m,n) : (Σ′,L′, ξ′) → (Σ,L, ξ) for which the axioms 24, 27
are satisfied. For I and I ′ the maximum of respectively L and L′ and (ai)i ⊆ L
we have:

n(I) = I ′ (70)
n(

∧
i ai) =

∧
i n(ai) (71)
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Proof. We clearly have n(I) ≤ I ′. Hence remains to show that I ′ ≤ n(I).
Consider r′ ∈ Σ′ = κ′(I ′), then m(r′) ∈ Σ = κ(I). From (67) follows that
r′ ∈ κ′(n(I)). This proves that κ′(I ′) ⊆ κ′(n(I)), and hence I ′ ≤ n(I). Hence we
have proven that n(I) = I ′.
From ∧iai ≤ aj ∀j we obtain n(∧iai) ≤ n(aj) ∀j. This yields n(∧iai) ≤ ∧in(ai).
We still have to show that ∧in(ai) ≤ n(∧iai). Let r′ ∈ Σ′ be such that r′ ∈
κ′(∧in(ai)). Using (30) we have r′ ∈ ∩iκ

′(n(ai)), and hence r′ ∈ κ′(n(ai)) ∀i.
From (67) follows that this implies that m(r′) ∈ κ(ai) ∀i, and hence m(r′) ∈
∩iκ(ai) = κ(∧iai) using again (30). From (67) this implies that r′ ∈ κ′(n(∧iai)).
Hence we have shown that κ′(∧in(ai)) ⊆ κ′(n(∧iai)), and it follows that ∧in(ai) ≤
n(∧iai). Hence we have proven that n(∧iai) = ∧in(ai). �

DEFINITION 52 Orthomorphism. Consider two state property spaces (Σ,L, ξ)
and (Σ′,L′, ξ′) for which the axioms 24, 27, 43 are satisfied. A morphism (m,n) :
(Σ′,L′, ξ′) → (Σ,L, ξ) is an orthomorphism iff

m(p′) ∈ κ(a⊥) ⇔ p′ ∈ κ′(n(a)⊥) (72)

THEOREM 53. Consider two state property spaces (Σ,L, ξ) and (Σ′,L′, ξ′) for
which the axioms 24, 27, 43 are satisfied and connected by an orthomorphism
(m,n) : (Σ′,L′, ξ′) → (Σ,L, ξ). For 0 and 0′ being the minimal elements of L and
L′ respectively, a ⊆ T and p′, q′ ∈ Σ′ we have:

n(a⊥) = n(a)⊥ (73)
n(0) = 0′ (74)

m(p′) ⊥ m(q′) ⇒ p′ ⊥ q′ (75)

Proof.p′ ∈ κ′(n(a)⊥) ⇔ m(p′) ∈ κ(a⊥) ⇔ p′ ∈ κ′(n(a⊥)). This proves that
κ′(n(a)⊥) = κ′(n(a⊥)), and hence n(a)⊥ = n(a⊥). We have 0 = a∧a⊥, and hence
n(0) = n(a ∧ a⊥) = n(a) ∧ n(a⊥) = n(a) ∧ n(a)⊥ = 0′. Consider p′, q′ ∈ Σ′ such
that m(p′) ⊥ m(q′). This means that there exists a ∈ L such that m(p′) ∈ κ(a)
and m(q′) ∈ κ(a⊥). Hence p′ ∈ κ′(n(a)) and q′ ∈ κ′(n(a⊥)) = κ′(n(a)⊥). This
proves that p′ ⊥ q′. �

5 DECOMPOSITION OF A STATE PROPERTY SPACE

In this section we introduce the notion of classical test, classical property and
classical state. This will lead us to elaborate a decomposition theorem for a state
property space into non classical components over a classical state space.

5.1 The classical state property space

In this section we identify the classical part of an entity S. We start by introducing
the notion of classical test. The basic idea for a classical test is that it is a test
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which does not contain any indeterminism. This means that for such a test the
outcome ‘yes’ is certain or the outcome ‘no’ is certain for each state of the physical
entity. Hence we put forward the following definition

DEFINITION 54 Classical test. A test α is a classical test if for any arbitrary
state p of the physical entity we have α is true or α̃ is true.

For the product of classical tests we can prove the following

PROPOSITION 55. If (αi)i is a set of tests, then Πiαi is a classical test iff each
of the αj are classical tests and αj ≈ αk for all j, k.

Proof. Suppose that Πiαi is a classical test. Consider αj and a state p such that
αj is not true if the entity is in state p. Then Πiα is not true and since Πiαi is a
classical test, we have that Π̃iαi = Πα̃i is true. But then α̃i is true for all i, and
hence α̃j is true. This proves that αj is a classical test. Since we had chosen j
arbitrary, we can conclude that αi is a classical test for all i. Suppose now that
αj is true. Then α̃j is not true, and hence Πα̃i = Π̃αi is not true. But then, since
Π̃αi is a classical test, we have that Πiαi is true, and hence αk is true for all k.
Hence we have proven that αj ≤ αk for all k. Hence αj ≈ αk for all j, k. �

It is easy to see that a classical test is always an ortho test.

PROPOSITION 56. If α is a classical test then α is an ortho test.

Proof. Suppose that α is a classical test, and consider a state p such that p ⊥ a
where a is a property tested by α. This means that a �∈ ξ(p), and hence α̃ is true
for the physical entity in state p. In an analogous way we prove that for q ⊥ a⊥

when a⊥ is a property tested by α̃ and the physical entity in state q we have α is
true. This proves that α is an ortho test. �
DEFINITION 57 Classical property. A classical property a ∈ L is a property
such that there exists a set (αi)i of classical tests αi such that Πiαi tests this
property. We denote C the set of all classical properties. A basic classical property
a ∈ L is a property such that there exists a classical test α testing this property.
We denote K the set of basic classical properties.

DEFINITION 58 Classical elements. Consider a state property space for which
axioms 24, 27 and 43 are satisfied. For p ∈ Σ, we introduce

ω(p) =
∧

a∈ξ(p)∩C
a (76)

(77)

and call ω(p) the classical state of the entity S whenever S is in a state p ∈ Σ.
The set of all classical states is denoted by Ω. We introduce

ξc : Ω → C ω(p) �→ ξ(p) ∩ C (78)
κc : C → P(Ω) a �→ {ω(p) |a ∈ ξ(p)} (79)
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and call κc the classical Cartan map of the state property space (Σ,L, ξ).

PROPOSITION 59. Consider a state property space for which axioms 24 and 27
are satisfied. For classical states ω(p), ω(q) ∈ Ω, classical property a ∈ C, and
states p, q ∈ Σ we have

a ∈ ξ(p) ⇔ ω(p) ≤ a (80)
ω(p) ≤ ω(q) ⇔ ξc(q) ⊆ ξc(p) (81)

p ≤ q ⇒ ω(p) ≤ ω(q) (82)

Proof. Suppose that a ∈ C and a ∈ ξ(p). Since ω(p) = ∧a∈ξ(p)∩Ca we have
ω(p) ≤ a. Suppose now that ω(p) ≤ a. Since ω(p) ∈ ξ(p) we have a ∈ ξ(p).
Consider a ∈ ξc(q) = ξ(q) ∩ C and ω(p) ≤ ω(q). This implies that ω(q) ≤ a and
hence ω(p) ≤ a. From this follows that a ∈ ξ(p) and hence a ∈ ξ(p) ∩ C = ξc(p).
Hence we have proven that ξc(q) ⊆ ξc(p). Suppose now that ξc(q) ⊆ ξc(p), then
ω(p) = ∧a∈ξc(p) ≤ ∧a∈ξc(q) = ω(q). Suppose that p ≤ q and hence ξ(q) ⊆ ξ(p).
We then have ξc(q) = ξ(q) ∩ C ⊆ ξ(p) ∩ C = ξc(p), and hence ω(p) ≤ ω(q). �

Let us consider our two physics examples, and see what the notion of classical
property and classical state means in these cases. Consider first the state property
space (Ω,P(Ω), ξΩ) for a classical physical system, and consider a property A ∈
P(Ω). Take p ∈ Ω, then we have p ∈ A or p ∈ AC . This proves that any arbitrary
property A is a classical property for the state property system (Ω,P(Ω), ξΩ)
corresponding to a classical physical system. Clearly, for such a state property
system the states coincide with the classical states, which proves that any state is
a classical state.

Consider now the state property system (Σ(H),L(H), ξH) corresponding to a
quantum physical system, and consider a property A ∈ L(H) such that A �= 0
and A �= H. In this case we have Aorth �= H and Aorth �= 0. Take x ∈ A, x �= 0
and y ∈ Aorth, y �= 0, and consider the vector z = x + y. Then z �∈ A and
z �∈ Aorth, and as a consequence z̄ �∈ A and z̄ �∈ Aorth, which proves that A
is not a classical property. We have proven that for the state property system
corresponding to a quantum physical system the only classical properties are the
minimal property and the maximal property. Moreover, the only classical state
of the state property system corresponding to a quantum physical system is the
classical state corresponding to H itself. This is the state describing the situation
‘the entity is present’.

DEFINITION 60 Classical orthogonality relation. Consider a state property
space describing a physical entity S for which axioms 24 and 27 are satisfied, and
classical states ω(p), ω(q) ∈ Ω of this physical entity. We say that ω(p) ⊥c ω(q)
if there exists a classical test γ such that γ is true if ω(p) is actual, hence if the



Quantum Axiomatics 105

entity is in classical state ω(p), and γ̃ is true if ω(q) is actual, hence if the entity
is in classical state ω(q).

DEFINITION 61 Classical ortho test. Consider a state property space describing
a physical entity S for which axioms 24 and 27 are satisfied. A classical test α
is a classical ortho test if it is such that if the physical entity is in classical state
ω(p) ⊥c a, where a is the property tested by α, then α̃ is true, and if the physical
entity is in state ω(q) ⊥c b, where b is the property tested by α̃, then α is true.

PROPOSITION 62. Consider a state property space for which axioms 24 and 27
are satisfied, and classical states ω(p), ω(q) ∈ Ω of this physical entity. We have

ω(p) �= ω(q) ⇔ ω(p) ⊥c ω(q) ⇔ ω(p) ⊥ ω(q) ⇔ ω(p) �∈ ξ(q) ⇔ q ⊥ ω(p) (83)

Proof. If ω(p) ⊥c ω(q) then obviously ω(p) �= ω(q). Suppose now that ω(p) �=
ω(q). Since ω(p) and ω(q) as classical states are also both classical properties
there exist (αi)i and (βj)j where αi and βj are classical tests for all i, j and such
that Πiαi tests ω(p) and Πjβj tests ω(q). If ω(p) �= ω(q) this can mean that
ω(p) �≤ ω(q) or that ω(q) �≤ ω(p). Suppose we have that ω(p) �≤ ω(q), and suppose
that ω(p) is actual. Since in this case ω(q) is not actual there is at least one βj

which is not true. But then β̃j is true. If ω(q) is actual we have that βj is true.
Hence we have proven that ω(p) ⊥c ω(q). Analogously we prove that ω(p) ⊥c ω(q)
if ω(q) �≤ ω(p). Suppose that ω(p) ⊥c ω(q) and let γ be the test which is true
if ω(p) is actual such that γ̃ is true if ω(q) is actual. Consider states r, s ∈ Σ
such that ω(p) ∈ ξ(r) and ω(q) ∈ ξ(s). If c is the property tested by γ and d the
property tested by γ̃ we have ω(p) ≤ c and ω(q) ≤ d. Hence c ∈ ξ(r) and d ∈ ξ(s).
This proves that r ⊥ s, and hence ω(p) ⊥ ω(q). Suppose now that ω(p) ⊥ ω(q).
Then certainly ω(p) �= ω(q) and hence ω(p) ⊥c ω(q). Suppose that ω(p) �∈ ξ(q).
Then ω(q) �≤ ω(p), and as a consequence we have ω(q) �= ω(p). Hence ω(p) ⊥ ω(q).
If ω(p) ⊥ ω(q) then ω(q) �≤ ω(p) and hence ω(p) �∈ ξ(q). �

PROPOSITION 63. Consider a state property space for which axioms 24 and 27
are satisfied. A classical test α is a classical ortho test.

Proof. Consider a classical test α such that a is the property tested by α and b
is the property tested by α̃, and suppose we have ω(p) ⊥c a. Consider q ∈ Σ such
that a ∈ ξ(q). Then we have ω(q) ≤ a, and hence ω(p) ⊥c ω(q). As a consequence
we have ω(p) ⊥ q and hence p ⊥ q. This implies that b ∈ ξ(p), and hence ω(p) ≤ b.
In an analogous way we show that ω(q) ≤ a if ω(q) ⊥c b. This proves that α is a
classical ortho test. �

Suppose we consider a state property space (Σ,L, ξ) describing a physical entity
S for which axioms 24, 27 and 43 are satisfied. We wonder whether (Ω, C, ξc) is a
state property space satisfying 24, 27 and 43. If this is the case we can consider
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(Ω, C, ξc) as the state property space describing the classical aspects of the physical
entity S.

THEOREM 64. Consider a state property space (Σ,L, ξ) describing a physical
entity S for which axioms 24, 27 and 43 are satisfied. Consider ω(p), ω(q) ∈ Ω
and a, b ∈ C. We have

a ∈ ξ(p) ⇔ ω(p) ≤ a (84)
ω(p) ≤ ω(q) ⇔ ξc(ω(q)) ⊆ ξc(ω(p)) (85)

ω(p) ∈ κc(a) ⇔ a ∈ ξc(ω(p)) (86)
a ≤ b ⇔ κc(a) ⊆ κc(b) (87)
κc(a) = κc(b) ⇒ a = b (88)
κc(∧iai) = ∩iκc(ai) (89)
κ(a⊥) = Σ \ κ(a) (90)

κc(a⊥c) = Ω \ κc(a) (91)
There exists a classical test α testing a, hence C = K (92)

and (Ω, C, ξc) is a state property space satisfying axioms 24, 27 and 43.

Proof. Suppose that a ∈ ξ(p). Since ω(p) = ∧a∈ξ(p)∩Ca we have ω(p) ≤ a.
Suppose now that ω(p) ≤ a. Since ω(p) ∈ ξ(p) we have a ∈ ξ(p). This proves (84).
Suppose that ω(p) ≤ ω(q) and consider a ∈ ξc(ω(q)) and hence ω(q) ≤ a. Then
we have ω(p) ≤ a and hence a ∈ ξc(ω(p)). This proves that ξc(ω(q)) ⊆ ξc(ω(p)).
Suppose now that ξc(ω(q)) ⊆ ξc(ω(p)), and hence ξ(q) ∩ C ⊆ ξ(p) ∩ C. Then we
have ω(p) = ∧a∈ξ(p)∩Ca ≤ ∧a∈ξ(q)∩Ca = ω(q). This proves (85). Suppose that
ω(p) ∈ κc(a), then a ∈ ξ(p) and hence ω(p) ≤ a which shows that a ∈ ξc(ω(p)).
Contrary, suppose that a ∈ ξc(ω(p)) = ξ(p)∩C. Then we have a ∈ ξ(p), and hence
ω(p) ∈ κc(a). This proves (86). Suppose that a ≤ b and consider ω(p) ∈ κc(a).
We then have a ∈ ξ(p) and hence b ∈ ξ(p). From this follows that ω(p) ∈ κc(b).
Hence we have proven that κc(a) ⊆ κc(b). Suppose now that κc(a) ⊆ κc(b) and
suppose we have p ∈ Σ such that a ∈ ξ(p). This means that ω(p) ∈ κc(a), and
hence ω(p) ∈ κc(b), which implies that b ∈ ξ(p). Hence we have proven that a ≤ b.
This proves (87). Suppose that κc(a) = κc(b) and consider p ∈ κ(a). Then we
have a ∈ ξ(p) and hence ω(p) ∈ κc(a). From this follows that ω(p) ∈ κc(b), and
hence b ∈ ξ(p). As a consequence we have p ∈ κ(b). This means that we have
proven that κ(a) ⊆ κ(b). Analogously we prove that κ(b) ⊆ κ(a). Since axiom
24 is satisfied for the state property space (Σ,L, ξ) we have a = b. This proves
(88). Consider (ai)i ⊆ K ⊂ T . Since axiom 27 is satisfied for (Σ,L, ξ) we have a
property ∧iai ∈ L such that κ(∧iai) = ∧iκ(ai). We have ∧iai ∈ C since ai ∈ C ∀ i.
This means that we have the following ω(p) ∈ κc(∧iai) ⇔ p ∈ κ(∧iai) ⇔ p ∈
∩iκ(ai) ⇔ p ∈ κ(ai) ∀ i ⇔ ω(p) ∈ κc(ai) ∀ i ⇔ ω(p) ∈ ∩iκc(ai). This means
that κc(∧iai) = ∩iκc(ai), and hence we have proven (89). Consider p ∈ Σ and
p �∈ κ(a). Then we have ω(p) �≤ a and hence ω(p) �= ω(q) ∀ ω(q) ≤ a. From
this follows that ω(p) ⊥c ω(q) ∀ ω(q) ≤ a, and hence ω(p) ⊥ ω(q) ∀ ω(q) ≤ a.
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As a consequence we have that p ⊥ q ∀ q ∈ κ(a), and hence p ∈ κ(a⊥). This
proves that Σ \ κ(a) ⊆ κ(a⊥). We obviously have that κ(a⊥) ⊆ Σ \ κ(a). Hence
we have proven (90). Consider ω(p) ∈ Ω and ω(p) �∈ κc(a). This means that
ω(p) �= ω(q) ∀ ω(q) ≤ κc(a), and hence ω(p) ⊥c ω(q) ∀ ω(q) ≤ κc(a). As a
consequence we have ω(p) ≤ κc(a)⊥c . This proves that Ω \ κc(a) ⊆ κc(a)⊥c . We
also have that κc(a)⊥c ⊆ Ω \κc(a). Hence we have proven (91). Remark that (85)
shows that ξc defines the pre-order relation on the set of states Ω in a way which
is necessary for (Ω, C, ξc) to be a state property space, while (86) shows that the
classical Cartan map is indeed the Galois inverse of the function ξc which has to be
the case if (Ω, C, ξc) is a state property space. With (87) we prove that the classical
Cartan map indeed defines the pre-order relation on the set of properties. Hence
we have proven that (Ω, C, ξc) is a state property space. That axiom 24 is satisfied
for the state property space (Ω, C, ξc) is proven by (88). Consider now an arbitrary
a ∈ C. From the definition of C follows that there exists (ai)i ⊆ K such that for an
arbitrary p ∈ Σ we have ai ∈ ξ(p) ∀ i ⇔ a ∈ ξ(p). Hence p ∈ κ(ai) ∀ i ⇔ p ∈ κ(a).
This means that κ(a) = ∩iκ(ai). This proves that axiom 27 is satisfied for the
state property space (Ω, C, ξc). Let us prove now that axiom 43 is satisfied for
(Ω, C, ξc). Consider a ∈ C. From (90) we know that κ(a⊥) = Σ\κ(a). Since axiom
43 is satisfied for (Σ,L, ξ) there exists an ortho test α, such that α tests a and
α̃ tests a⊥. Since for p ∈ Σ we have p ∈ κ(a), and then α is true, or p ∈ κ(a⊥)
and then α̃ is true, it follows that α is a classical test. This proves (92). Using
proposition 63 it follows that α is a classical ortho test, which proves that axiom
43 is satisfied for (Ω, C, ξc). �

PROPOSITION 65. Suppose that (Σ,L, ξ) is a state property space describing an
entity S for which axioms 24, 27 and 43 are satisfied. For p ∈ Σ and a ∈ L we
have

a ∈ C ⇔ κ(a) ∪ κ(a⊥) = Σ (93)

Proof. Suppose that a is a classical property. From (92) follows that a is a basic
classical property, and hence there exists a classical test α such that α tests a.
Consider the ortho test β that tests a. We have that α ≈ β and hence α̃ ≈ β̃.
This means that α̃ tests a⊥. Since α is true or α̃ is true we have a ∈ ξ(p) or
a⊥ ∈ ξ(p) for an arbitrary p ∈ Σ, and hence Σ = κ(a) ∪ κ(a⊥). Suppose now that
Σ = κ(a) ∪ κ(a⊥). This means that for an arbitrary p ∈ Σ we have a ∈ ξ(p) or
a⊥ ∈ ξ(p), and consider the ortho test α testing a such that α̃ tests a⊥. For this
ortho test we have that α is true or α̃ is true, which proves that α is a classical
test. Hence a ∈ K = C. �

We can prove that the classical state property system (Ω, C, ξc) is isomorphic to
the canonical state property system (Ω,P(Ω), Id).

THEOREM 66. κc : C → P(Ω) is an isomorphism.
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Proof. From (87) it follows that κc is an injective function. Let us prove that
κc is a surjective function. Take an arbitrary element A ∈ P(Ω). Consider the
property

a =
∧

κc(ω(p))⊆Ω\A

ω(p)⊥c (94)

We have

κc(a) = κc(
∧

κc(ω(p))⊆Ω\A

ω(p)⊥c) =
⋂

κc(ω(p))⊆Ω\A

κc(ω(p)⊥c) =

⋂
κc(ω(p))⊆Ω\A

κc(Ω \ ω(p)) (95)

= Ω \
⋃

κc(ω(p))⊆Ω\A

κc(ω(p)) = Ω \ (Ω \A) = A (96)

�

Let us consider again our two archetypical examples. For the state property system
(Ω,P(Ω), Id) corresponding to a classical physical system, we have that classical
state property system coincides with this state property system. This shows that
in the case of a classical physical system our construction comes out as it should
be, the classical state property system is the state property system of this classical
physics system. For the state property system (Σ(H),P(H), ξH) of a quantum
physical system, the classical state property system (Ω, C, κC) is the following:
Ω = {H}, C = {0,H}, κC : C → P(Ω), such that κC(0) = ∅ and κC(H) = {H}.
This classical state property system describes the aspect of the quantum physical
system which has to do with the properties ‘the system is present’ and ‘the system
is not present’, properties that even for quantum systems are classical properties.
In the next chapter we decompose an arbitrary state property system into its non-
classical components and its classical state space. This structure shows us how we
can describe a general situation.

5.2 The non classical components of a state property space

In this section we study the description of a physical entity whenever it is in a
classical state. This leads to the existence of a non classical property space for
each classical state describing the non classical elements of the entity. Consider a
classical state ω ∈ Ω. Then ω ∈ C is also a classical property. Hence there exists
a classical test testing ω.

DEFINITION 67 ω-test. A classical test testing the classical state ω ∈ Ω is called
a ω-test, and we denote it αω.

DEFINITION 68 ω-inverse. Consider a test α and the product test α · αω. We
define α̃ · αω

ω
= α̃ · αω and call α̃ · αω

ω
the ω-inverse of α · αω.
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PROPOSITION 69. We have

˜̃α · αω
ω

ω

= α · αω (97)

such that the operation is an inverse operation on the set of tests of the form α·αω.

Proof. We have ˜̃α · αω
ω

ω

= ˜̃α · αω

ω

= ˜̃α · αω = α · αω. �

Let us explain the physical meaning of this. Suppose we consider a typical classical
property ω in standard quantum mechanics, for example the property ‘the neutron
is there’, in case the entity we are considering is a neutron. The test αω consists of
verifying whether the neutron is there, for example by absorbing it on a detection
screen. In general such a verification of the presence of the neutron destroys the
neutron, which means that if we want to test another property, this time a non
classical property of the neutron, we need to make recourse to the product test.
And hence indeed, when we test the quantum test α, for example the spin of the
neutron, then actually we perform the test α ·αω. We test whether the neutron is
there ‘and’ whether it has spin in a certain direction, by making sure that which
ever of the two tests αω or α we perform, the outcome will be ‘yes’. But we do not
have to perform both tests together, it is sufficient to perform one ‘or’ the other.
We are in a similar situation as the one with the piece of wood tested to burn well
‘and’ float on water, by performing one of the both tests.

DEFINITION 70 ω-orthogonality. Consider two states p, q ∈ Σ such that ω ∈
ξ(p)∩ξ(q) where ω ∈ Ω. We say that p and q are ω-orthogonal, and denote p ⊥ω q,
if there exists a test α such that α ·αω is true if the entity is in state p and α̃ · αω

ω

is true if the entity is in state q.

PROPOSITION 71. For x ∈ L and a ∈ C we have

x = (x ∧ a) ∨ (x ∧ a⊥) (98)
κ(x) = κ(x ∧ a) ∪ κ(x ∧ a⊥) (99)

Proof. Since x ∧ a ≤ x and x ∧ a⊥ ≤ x we have (x ∧ a) ∨ (x ∧ a⊥) ≤ x. Since
a ∈ C we have κ(a) ∪ κ(a⊥) = Σ. This gives κ(x) = κ(x) ∩ (κ(a) ∪ κ(a⊥)) =
(κ(x)∩κ(a))∪ (κ(x)∩κ(a⊥)) = κ(x∧ a)∪κ(x∧ a⊥) ⊆ κ((x∧ a)∨ (x∧ a⊥)). This
proves (98) and (99). �

PROPOSITION 72. For x, y ∈ L and a ∈ C such that x ≤ a and y ≤ a⊥ we have

(x ∨ y)⊥ = (x⊥ ∧ a) ∨ (y⊥ ∧ a⊥) (100)
(x ∨ y) ∧ a = x (101)
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Proof. We have a⊥ ≤ x⊥ and a ≤ y⊥. From this it follows that y⊥ ∧ a⊥ ≤ x⊥

and x⊥ ∧ a ≤ y⊥. This implies that x⊥ ∧ y⊥ ∧ a⊥ = y⊥ ∧ a⊥ and x⊥ ∧ y⊥ ∧ a =
x⊥ ∧ a. Since a ∈ C we have x⊥ ∧ y⊥ = (x⊥ ∧ y⊥ ∧ a) ∨ (x⊥ ∧ y⊥ ∧ a⊥). So
x⊥ ∧ y⊥ = (x⊥ ∧ a) ∨ (y⊥ ∧ a⊥). Hence x ∨ y = (x ∨ a⊥) ∧ (y ∨ a). But then
(x∨y)∧a = (x∨a⊥)∧a. We know that x⊥ = (x⊥∧a)∨(x⊥∧a⊥) = (x⊥∧a)∨a⊥.
Hence x = (x ∨ a⊥) ∧ a. This proves that (x ∨ y) ∧ a = x. �

PROPOSITION 73. For x, xi ∈ L and a ∈ C we have

a ∧ (∨ixi) = ∨i(a ∧ xi) (102)
a = (a ∧ x) ∨ (a ∧ x⊥) (103)

Proof. We have a ∧ (∨ixi) = a ∧ (∨i((xi ∧ a) ∨ (xi ∧ a⊥)) = a ∧ (∨i(xi ∧ a) ∨
∨i(xi ∧ a⊥)) = ∨i(xi ∧ a). We have a = a ∧ (x ∨ x⊥). From (102) it follows that
a ∧ (x ∨ x⊥) = (a ∧ x) ∨ (a ∧ x⊥), which proves (103). �

PROPOSITION 74. For a ∈ L we have

a =
∨

ω∈Ω

(a ∧ ω) (104)

κ(a) =
⋃

ω∈Ω

κ(a ∧ ω) (105)

with

a ∧ ω ⊥ a ∧ ω′ and κ(a ∧ ω) ∩ κ(a ∧ ω′) = ∅ for ω �= ω′ (106)

Proof. We have that a ∧ ω ≤ a ∀ω ∈ Ω, hence κ(a ∧ ω) ⊆ κ(a) ∀ ω ∈ Ω, and as
a consequence ∪ω∈Ωκ(a ∧ ω) ⊆ κ(a). Consider p ∈ κ(a). We have p ∈ κ(ω(p)),
and hence p ∈ κ(a) ∩ κ(ω(p)) = κ(a ∧ ω(p)) ⊆ ∪ω∈Ωκ(a ∧ ω). So we have shown
that κ(a) ⊆ ∪ω∈Ωκ(a ∧ ω). This proves (105), namely κ(a) = ∪ω∈Ωκ(a ∧ ω).
We have that a ∧ ω ≤ a ∀ω ∈ Ω, hence ∨ω∈Ω(a ∧ ω) ≤ a. Consider p ∈ κ(a).
We have p ∈ ∪ω∈Ωκ(a ∧ ω) ⊆ κ(∨ω∈Ω(a ∧ ω)). So we have shown that κ(a) ⊆
κ(∨ω∈Ω(a ∧ ω)). From this it follows that a ≤ ∨ω∈Ω(a ∧ ω), which proves (104),
namely a = ∨ω∈Ω(a ∧ ω). Consider ω �= ω′, then we have ω ≤ ω′⊥. As a
consequence a∧ω ≤ ω′⊥ ≤ a⊥∨ω′⊥ = (a∧ω′)⊥, which proves that a∧ω ⊥ a∧ω′.
From this it follows that κ(a ∧ ω) ∩ κ(a ∧ ω′) = ∅. �

COROLLARY 75. We have

Σ =
⋃

ω∈Ω

κ(ω) (107)

with

κ(ω) ∩ κ(ω′) = ∅ for ω �= ω′ (108)
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PROPOSITION 76. Consider aω such that aω ≤ ω ∀ ω ∈ Ω. We have

κ(
∨

ω∈Ω

aω) =
⋃

ω∈Ω

κ(aω) (109)

with

κ(aω) ∩ κ(aω′) = ∅ for ω �= ω′ (110)

Proof. We have κ(∨ω∈Ωaω) = ∪ω′∈Ωκ((∨ω∈Ωaω)∧ω′). From (101) it follows that
(∨ω∈Ωaω) ∧ ω′ = aω′ . Hence κ(∨ω∈Ωaω) = ∪ω′∈Ωκ(aω′). This proves (109). �

Let us now investigate the nonclassical parts of the state property system (Σ,L, κ).

DEFINITION 77 Nonclassical components. Suppose that (Σ,L, ξ) is the state
property space of an entity satisfying axioms 24 and 27. For ω ∈ Ω we introduce

Σω = {p |ω ∈ ξ(p), p ∈ Σ} (111)
Lω = {a |a ≤ ω, a ∈ L} (112)

ξω(p) = ξ(p) ∩ Lω (113)

and we call (Σω,Lω, ξω) the nonclassical components of (Σ,L, ξ) corresponding to
ω. We also introduce Cartan map corresponding to ω

κω(a) = {p | p ∈ Σω, a ∈ ξω(p)} (114)

THEOREM 78. Consider (Σ,L, ξ) the state property space of an entity satisfying
axioms 24, 27 and 43. For a, b ∈ Lω, (ai)i ⊆ Lω and p, q ∈ Σω we have

a ∈ ξω(p) ⇔ a ∈ ξ(p) (115)
p ≤ q ⇔ ξω(q) ⊆ ξω(p) (116)

p ∈ κω(a) ⇔ p ∈ κ(a) (117)
a ≤ b ⇔ κω(a) ⊆ κω(b) (118)

κω(a) = κω(b) ⇒ a = b (119)
κω(∧iai) = ∩iκω(ai) (120)

p ⊥ω q ⇔ p ⊥ q (121)
κω(a⊥ω ) = κ(a⊥ ∧ ω) = κω(a)⊥ω (122)

and (Σω,Lω, ξω) is a state property space that satisfies axioms 24, 27 and 43.

Proof. Suppose that a ∈ ξω(p). This means that a ∈ ξ(p) ∩ Lω, and hence
a ∈ ξ(p). Suppose now that a ∈ ξ(p). Since a ∈ Lω we have a ∈ ξ(p)∩Lω = ξω(p).
This proves (115). Suppose that p ≤ q, then we have ξ(q) ⊆ ξ(p), and hence
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ξω(q) = ξ(q) ∩ Lω ⊆ ξ(p) ∩ Lω = ξω(p). Suppose next that ξω(q) ⊆ ξω(p), and
consider a ∈ ξ(q). Applying (115) this gives that a ∈ ξω(q) and hence a ∈ ξω(p).
Applying again (115) this gives that a ∈ ξ(p). Hence we have proven that ξ(q) ⊆
ξ(p) and hence p ≤ q. This proves (116). We have p ∈ κω(a) ⇔ a ∈ ξω(a) ⇔
a ∈ ξ(p) ⇔ p ∈ κ(a). This proves (117). Suppose that a ≤ b and consider
p ∈ κω(a). Applying (117) this gives p ∈ κ(a) and since κ(a) ⊆ κ(b) this gives
p ∈ κ(b). Applying again (117) this gives p ∈ κω(b). Hence we have proven
that κω(a) ⊆ κω(b). Suppose now that κω(a) ⊆ κω(b), and consider p ∈ κ(a).
Applying (117) this gives p ∈ κω(a) and hence p ∈ κω(b). Applying again (117)
this gives p ∈ κ(b). So we have proven that κ(a) ⊆ κ(b) and from this follows that
a ≤ b. This proves (118). Suppose that κω(a) = κω(b) and consider p ∈ κ(a).
Then we have p ∈ κω(a) and hence p ∈ κω(b). From this follows that p ∈ κ(b).
This means that we have proven that κ(a) ⊆ κ(b). Since axiom 24 is satisfied for
the state property space (Σ,L, ξ) we have a = b. This proves (119). We have
p ∈ κω(∧iai) ⇔ p ∈ κ(∧iai) ⇔ p ∈ ∩iκ(ai) ⇔ p ∈ κ(ai) ∀ i ⇔ p ∈ κω(ai) ∀ i ⇔
p ∈ ∩iκω(ai). This proves (120). Suppose that p ⊥ω q. This means that there
exists a test α such that α ·αω is true if the entity is in state p and α̃ · αω

ω
is true

if the entity is in state q. We have α̃ · αω
ω

= α̃ · αω. This means that α is true
if the entity is in state p and α̃ is true if the entity is in state q. Hence p ⊥ q.
Suppose now that p ⊥ q. This means that there exists a test α such that α is true
if the entity is in state p and α̃ is true if the entity is in state q. Since p, q ∈ Σω

we have that ω is actual and hence αω is true. Hence α · αω is true if the entity
is in state p and α̃ · αω = α̃ · αω

ω
is true if the entity is in state q. This means

that p ⊥ω q. This proves (121). Suppose that a ∈ Lω. In this case a ∈ L and
hence there exists an ortho test α testing a. Consider the test α · αω and a state
q such that q ⊥ω a and q ∈ Σω. This means that q ⊥ω r ∀ r such that r ∈ κω(a).
Hence q ⊥ r ∀ r such that r ∈ κ(a). Hence q ∈ κ(a)⊥ = κ(a⊥). This means that
α̃ is true if the entity is in state q. Since q ∈ Σω we also have that αω is true
if the entity is in state q. Hence α̃ · αω = α̃ · αω

ω
is true if the entity is in state

q. Note that property tested by α̃ · αω
ω

is a⊥ ∧ ω. Hence we have proven that
q ⊥ω a ⇒ q ∈ κω(a⊥ ∧ ω), or κ(a)⊥ω ⊆ κω(a⊥ ∧ ω). Consider r ∈ Σω such that
r ⊥ω a⊥ ∧ ω. This means that r ⊥ω s ∀ s such that a⊥ ∧ ω ∈ ξ(s). From this
follows that r ⊥ s ∀ s such that a⊥ ∧ ω ∈ ξ(s). Hence r ∈ κ(a⊥ ∧ ω)⊥. Since
r ∈ Σω we have r ⊥ ω⊥, and hence r ⊥ a⊥ ∧ ω⊥, such that r ∈ κ(a⊥ ∧ ω⊥)⊥.
From (98) and (99) we know that κ(a⊥) = κ(a⊥ ∧ ω) ∪ κ(a⊥ ∧ ω⊥), and hence
κ(a) = κ(a⊥)⊥ = κ(a⊥∧ω)⊥∩κ(a⊥∧ω⊥)⊥. Hence we have r ∈ κ(a). This proves
that for the entity being in state r we have α is true, and hence α · αω is true.
This proves that α ·αω is an ortho test for the orthogonality relation ⊥ω. We can
now denote a⊥ ∧ ω = a⊥ω . And it follows that we have proven (122). Remark
that from (119) follows that axiom 24 is satisfied for (Σω,Lω, ξω), and from (120)
follows that axiom 27 is satisfied. From (122) follows that axiom 43 is satisfied for
(Σω,Lω, ξω). �
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5.3 A decomposition theorem

To see in more detail in which way the classical and nonclassical parts are struc-
tured within the lattice L, we need to introduce some additional structures.

DEFINITION 79 Direct union of state property spaces. Consider a set of state
property spaces (Σω,Lω, ξω) that all satisfy axioms 24, 27 and 43. The direct
union ©∨ ω(Σω,Lω, ξω) of these state property spaces is the state property space
(∪ωΣω,©∨ ωLω,©∨ ωξω), where
(i) ∪ωΣω is the disjoint union of the sets Σω

(ii) ©∨ ωLω is the direct union of the lattices Lω, which means the set of sequences
a = (aω)ω, such that

(aω)ω ≤ (bω)ω ⇔ aω ≤ bω ∀ω ∈ Ω (123)
(aω)ω ∧ (bω)ω = (aω ∧ bω)ω (124)
(aω)ω ∨ (bω)ω = (aω ∨ bω)ω (125)

(aω)⊥ω = (a⊥ω
ω )ω (126)

(iii) ©∨ ωξω is defined as follows:

©∨ ωξω : ∪ωΣω → P(©∨ ωLω) (127)
pω′ �→ {(aω)ω | aω′ ∈ ξω′(pω′), aω ∈ Lω ∀ ω �= ω′} (128)

and hence the corresponding Cartan map is the following

©∨ ωκω : ©∨ ωLω → ∪ωΣω (129)
(aω)ω �→ ∪ω∈Ωκω(aω) (130)

We remark that if Lω are complete orthocomplemented lattices, then also ©∨ ω∈ΩLω

is a complete orthocomplemented lattice. A fundamental decomposition theorem
can now be proven.

THEOREM 80 Decomposition theorem. Consider the state property space (Σ,L, ξ),
and suppose that axioms 24, 27 and 43 are satisfied. Then

(Σ,L, ξ) ∼= ©∨ ω∈Ω(Σω,Lω, ξω) (131)

where Ω is the set of classical states of (Σ,L, ξ), Σω is the set of states and Lω the
lattice of properties of the nonclassical component state property space (Σω,Lω, ξω).

Proof. We use the notion of orthomorphism of state property systems, and need
to prove that there exists an isomorphism of ortho state property systems between
(Σ,L, ξ) and ©∨ ω∈Ω(Σω,Lω, ξω). From (107) it follows that m can be defined in
the following way:

m : Σ → ∪ω∈ΩΣω (132)
p �→ p (133)
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The function n is defined in the following way:

n : ©∨ ω∈ΩLω → L (134)
(aω)ω �→ ∨ω∈Ωaω (135)

The function m is a bijection by definition. Consider (aω)ω, (bω)ω ∈ ©∨ ω∈ΩLω and
suppose that n((aω)ω) = n((bω)ω), hence ∨ω∈Ωaω = ∨ω∈Ωbω . Then (∨ω∈Ωaω) ∧
ω′ = (∨ω∈Ωbω) ∧ ω′ ∀ ω′ ∈ Ω. From (101) it follows that (∨ω∈Ωaω) ∧ ω′ = aω′

and (∨ω∈Ωbω) ∧ ω′ = bω′ . Hence aω′ = bω′ ∀ ω′ ∈ Ω. As a consequence we have
(aω)ω = (bω)ω. This proves that n is injective. Let us prove that n is surjective.
Consider an arbitrary element a ∈ L. From (104) it follows that a = ∨ω∈Ω(a∧ω).
Consider the element (a ∧ ω)ω ∈ ©∨ ω∈ΩLω. Then n((a ∧ ω)ω) = a which proves
that n is surjective. Hence we have proven that m as well as n are bijections. Let
us show that we have an orthomorphism. We need to prove (67) and (72) hence:

m(p) ∈ ©∨ ωκω((aω)ω) ⇔ p ∈ κ(∨ω∈Ωaω) (136)
m(p) ∈ ©∨ ωκω((aω)⊥ω ) ⇔ p ∈ κ((∨ω∈Ωaω)⊥) (137)

Let us calculate ©∨ ωκω((aω)ω) = ∪ω∈Ωκω(aω) = ∪ω∈Ωκ(aω). On the other hand
we have κ(n((aω)ω)) = κ(∨ω∈Ωaω), and following (109), we have κ(∨ω∈Ωaω) =
∪ω∈Ωκ(aω). This means that (136) is satisfied. We have ©∨ ωκω((aω)⊥ω ) =
©∨ ωκω((a⊥ω

ω )ω) = ∪ωκω(a⊥ω
ω ) = ∪ωκω(a⊥ ∧ ω) = κ(∨ω∈Ω(a⊥ ∧ ω)) = κ(a⊥) =

κ((∨ω∈Ωaω)⊥). This proves (137). Hence we have proven that (m,n) is an iso-
morphism of ortho state property spaces. �

6 ADDITIONAL AXIOMS

In the foregoing we have introduced three axioms. If these three axioms are sat-
isfied we can decompose the state property space of an entity into its classical
state property space such that for each classical state there is an underlying non
classical property space describing the entity being in this classical state. We have
proven that the classical state property space is isomorphic to the property space
of classical physics. The underlying non classical state property spaces are however
not necessarily isomorphic to the state property space of quantum mechanics. To
make these underlying non classical state property spaces isomorphic to the state
property space of quantum mechanics we need to introduce additional axioms.

6.1 The axiom of atomisticity

The axiom of property determination makes the pre-order relation on the set of
properties L of a state property space into a partial order relation. The pre-order
relation existing on the set of states is not necessarily a partial order relation.
This means that it is possible for two states p, q ∈ Σ to be different states even
if ξ(p) = ξ(q), which means that the properties which are actual if the entity is
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in state p are the same as the properties which are actual if the entity is in state
q. The next axiom we introduce makes the pre-order relation on Σ into a trivial
order, i.e. p ≤ q iff p = q.

AXIOM 81 Atomisticity. Consider a state property space (Σ,L, ξ) for which
axioms 24, 27 and 43 are satisfied. We say that the axiom of atomisticity is
satisfied if for p, q ∈ Σ we have

ξ(q) ⊆ ξ(p) ⇒ p = q (138)

DEFINITION 82. Consider a partially ordered set Z, ≤. We say that s ∈ Z is an
atom, if whenever 0 ≤ a ≤ s we have a = 0 ot a = s. A lattice Z, ≤, is atomistic,
if there exists a set of atoms A which is ordering. This means that for x, y ∈ Z
we have x ≤ y ⇔ {s | s ∈ A, s ≤ x} ⊆ {s | s ∈ A, s ≤ y}.
THEOREM 83. Consider a state property space (Σ,L, ξ) for which axioms 24, 27,
43 and 81 are satisfied. For p, q ∈ Σ and a, b ∈ L we have

p ≤ q ⇒ p = q (139)
0 ≤ a ≤ s(p) ⇒ a = 0 or a = s(p) (140)

a ≤ b ⇔ {s(p) | s(p) ≤ a} ⊆ {s(p) | s(p) ≤ b} (141)

and L is an atomistic lattice with set of atoms the set of state properties A =
{s(p) | p ∈ Σ}.

Proof. Suppose p ≤ q, then we have ξ(q) ⊆ ξ(p), and hence p = q. This proves
(139). Consider a such that 0 ≤ a ≤ s(p) = ∧b∈ξ(p)b. If a �= 0 there exists q ∈ Σ
such that a ∈ ξ(q). Hence we have s(p) ∈ ξ(q), and as a consequence we have
b ∈ ξ(q) ∀ b ∈ ξ(p). Hence ξ(p) ⊆ ξ(q), and hence p = q. This implies that
s(p) = s(q). Since s(q) ≤ a we have a = s(p). So we have proven (140), which
means that s(p) is an atom of L. If a ≤ b we obviously have that {s(p) | s(p) ≤
a} ⊆ {s(p) | s(p) ≤ b}. Suppose that {s(p) | s(p) ≤ a} ⊆ {s(p) | s(p) ≤ b}.
From (39) follows that a = ∨s(p)≤as(p) ≤ ∨s(p)≤bs(p) = b, Hence we have proven
(141), which means that A is an ordering set for L, and hence L is a complete
orthocomplemented atomistic lattice. �

PROPOSITION 84. Consider a state property space (Σ,L, ξ) for which axioms 24,
27 and 43 are satisfied. The classical state property space (Ω, C, ξc) corresponding
to (Σ,L, ξ) satisfies axiom 81. If (Σ,L, ξ) satisfies also axiom 81, then each non
classical component (Σω,Lω, ξω) of the decomposition of (Σ,L, ξ) satisfies axiom
81.

Proof. Consider ω(p), ω(q) ∈ Ω such that ξc(ω(q)) ⊂ ξc(ω(p)). From (85) follows
that then ω(p) ≤ ω(q), and hence ω(p) ∧ ω(q) = ω(p). Suppose now that ω(p) �=
ω(q), then from (83) follows that ω(p) ⊥ ω(q). But then ω(p) ∧ ω(q) = 0, which
would lead to ω(p) = 0. This is not possible, and hence this proves that ω(p) =
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ω(q). Hence we have proven that (Ω, C, κc) satisfies axiom 81. Suppose now that
axiom 81 is satisfied for (Σ,L, ξ), and consider p, q ∈ Σω such that ξω(q) ⊆ ξω(p).
From (116) follows then that p ≤ q and hence ξ(q) ⊆ ξ(p). Since axiom 81 is
satisfied for (Σ,L, ξ) we have that p = q. Hence we have proven that axiom 81 is
satisfied for (Σω,Lω, ξω). �

PROPOSITION 85. Consider a state property space (Σ,L, ξ) for which axioms
24, 27, 43 and 81 are satisfied. A property a ∈ L is classical, hence a ∈ C, iff a
is a central element of the lattice L, i.e. x = (x ∧ a) ∨ (x ∧ a⊥) ∀ x ∈ L. The
lattice of properties Lω of a non classical component property space (Σω,Lω, ξω)
is an irreducible lattice.

Proof. From (98) follows that a classical property a is a central element of the
lattice L. Consider a central element a of the lattice L, and an arbitrary state
p ∈ Σ. Because axiom 81 is satisfied we have that s(p) is an atom of L. We have
s(p) ∧ a ≤ s(p) and s(p) ∧ a⊥ ≤ s(p) and hence s(p) ∧ a = s(p) or s(p) ∧ a = 0,
and s(p) ∧ a⊥ = s(p) or s(p) ∧ a⊥ = 0. Since a is a central element of L we
have s(p) = (s(p) ∧ a) ∨ (s(p) ∧ a⊥), and hence we cannot have s(p) ∧ a = 0 and
s(p)∧a⊥ = 0, which means that at least one of s(p)∧a = s(p) or s(p)∧a⊥ = s(p)
is true. From this follows that s(p) ≤ a or s(p) ≤ a⊥. Hence a ∈ ξ(p) or a⊥ ∈ ξ(p).
Since axiom 43 is satisfied there exists an ortho test α testing a and hence α̃ testing
a⊥. From the foregoing follows that this ortho test is a classical test, and hence a is
a classical property. Consider a central element a ∈ Lω of the lattice of properties
of a non classical component (Σω,Lω, ξω). Since a ∈ C, we have a = 0 or a = ω
which proves that Lω is irreducible. �

6.2 The axiom of weak modularity

If we consider a closed subspace A ∈ L(H) of a Hilbert space H. The closed
subspace A in itself is a Hilbert space. This means that we can consider the set
L(A) of closed subspaces contained in A. One can prove that L(A) is a complete
orthocomplemented lattice. The relative orthocomplementation B⊥A for B ∈
L(A) is defined as follows: B⊥A = B⊥ ∩ A. An important equality for ⊥A to
be an orthocomplementaion is the following: (B⊥A)⊥A = B. This gives B =
(B⊥ ∩ A)⊥ ∩ A or B = (B ∨ A⊥) ∧ A. This is the way the requirement of ‘weak
modularity’ is usually introduced, hence more specifically: for B,A ∈ L and B ≤ A
we have B = (B ∨ A⊥) ∧ A. We however want to introduce ‘weak modularity’ in
an operational way. To formulate the following axiom we first introduce the idea
of relative state property space.

PROPOSITION 86 Relative state property space. Suppose we have a state prop-
erty space (Σ,L, ξ) and for a ∈ L we consider (Σ,L, ξ)a = (κ(a),La, ξa) where

La = {b | b ≤ a} (142)
ξa : κ(a) → P(La) p �→ ξ(p) ∩ La (143)
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then (Σ,L, ξ)a is a state property space and for b ∈ La we have

κa(b) = κ(b) (144)

We call (Σ,L, ξ)a the state property space relative to property a ∈ L.

Proof. Suppose the entity is in state p ∈ κ(a) and the property b ≤ a is actual.
This means that b ∈ ξ(p). Since b ≤ a we have b ∈ ξ(p) ∩ La = ξa(p). On the
other hand, suppose we have p ∈ κ(a) and b ≤ a, and b ∈ ξa(p). This means
that b ∈ ξ(p), and hence, if the entity is in state p the property b is actual. This
proves that (Σ,L, ξ)a is a state property space describing the same entity as the
one described by the state property space (Σ,L, ξ). Suppose that p ∈ κa(b), and
hence b ∈ ξa(p). This means that b ∈ ξ(p), and hence p ∈ κ(b). Hence we have
κa(b) ⊆ κ(b). Suppose now that p ∈ κ(b) and hence b ∈ ξ(p). Since we have b ≤ a
we also have b ∈ La, and hence b ∈ ξ(p) ∩ La = ξa(p). From this follows that
p ∈ κa(b). Hence we have proven that κa(b) ⊆ κ(b). As a consequence we have
κa(b) = κ(b). �

The operational meaning of the relative state property space is the following.
We study the entity S in the special circumstance when we manage to keep the
property a actual during the study. This means concretely that we can consider
a test α testing a, and hence we consider only the states κ(a) of the entity which
make this test true.

PROPOSITION 87. Consider a state property space (Σ,L, ξ) for which axioms 24
and 27 are satisfied, and a ∈ L. Then the relative state property space (Σ,L, ξ)a

satisfies axioms 24 and 27.

Proof. Consider b, c ∈ La such that κa(b) = κa(c). From (144) follows that
κ(b) = κ(c), and since axiom 24 is satisfied for (Σ,L, ξ) we have b = c. This
proves that axiom 24 is satisfied for (Σ,L, ξ)a. Consider b ∈ La. Since axiom 27
is satisfied for (Σ,L, ξ) there exists (bi)i ⊆ T such that κ(b) = ∩iκ(bi). Consider
Ta = {b∧ a | b ∈ T }. Since b ≤ a we have b = b∧ a. Hence κ(b) = κ(b)∩ κ(a) and
as a consequence we have κ(b) = ∩iκ(bi) ∩ κ(a) = ∩i(κ(bi) ∩ κ(a)) = ∩iκ(bi ∧ a).
Consider now an arbitrary property b ∈ La. Since b ∈ L there exists (bi)i ⊆ T
such that κ(b) = ∩iκ(bi). This gives that κ(b) = ∩iκ(bi ∧ a) for (bi ∧ a)i ⊆ Ta.
Hence we have proven that (Σ,L, ξ)a satisfies axiom 27. �

The axiom 43 of orthocomplementation is however not necessarily satisfied for a
relative state property space. The next axiom, the axiom of weak modularity, is
meant to make sure that also the axiom 43 of orthocomplementation is satisfied
for an arbitrary relative state property space. Before we formulate the axiom of
weak modularity, let us analyse why the axiom 43 of orthocomplementation is not
necessarily satisfied for a relative state property space. We start by introducing
the notion of relative inverse.
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DEFINITION 88 Relative inverse. Consider a state property space (Σ,L, ξ) and
for a ∈ L the relative state property space (Σ,L, ξ)a. For a test β we consider the
test β ·α where α is the test testing the property a, and we introduce β̃ · α

α
= β̃ ·α.

PROPOSITION 89. β̃ · α
α

is an inverse for tests testing properties of the relative
state property space (Σ,L, ξ)a.

Proof. Consider an arbitrary property b ∈ La and a test β testing b. Since b ≤ a

we have that also β · α tests property b. Obviously also β̃ · α
α

= β̃ · α is a test

testing a property of La, and we have ˜̃
β · α

α
α

= ˜̃
β · α

α

= ˜̃
β ·α = β ·α. This proves

that β̃ · α
α

defines an inverse on tests of properties of La. �

DEFINITION 90 Relative orthogonality. Consider a state property space (Σ,L, ξ),
and for a ∈ L the relative state property space (Σ,L, ξ)a. Consider a test α testing
a. For p, q ∈ κ(a) we say that p is relatively orthogonal to q with respect to α,
and denote p ⊥α q, if there exists a test β ·α such that β ·α is true if the entity is
in state p and β̃ · α

α
is true if the entity is in state q.

PROPOSITION 91. Consider a state property space (Σ,L, ξ), and for a ∈ L the
relative state property space (Σ,L, ξ)a, and a test α testing a. For p, q ∈ κ(a) we
have

p ⊥α q ⇔ p ⊥ q (145)

Proof. Suppose that p ⊥α q. This means that there exists β · α such that β · α
is true if the entity is in state p and β̃ · α is true if the entity is in state q. This
means that β is true if the entity is in state p and β̃ is true if the entity is in state
q. Hence p ⊥ q. Suppose that p ⊥ q. This means that there exists a test γ such
that γ is true if the entity is in state p and γ̃ is true if the entity is in state q. If
we consider γ ·α and γ̃ ·α, then, since p, q ∈ κ(a) and α tests a, we have that γ ·α
is true if the entity is in state p and γ̃ · α is true if the entity is in state q. This
proves that p ⊥α q. �

PROPOSITION 92. Consider a state property space (Σ,L, ξ) for which 24, 27 and
43 are satisfied, and for a ∈ L the relative state property space (Σ,L, ξ)a. Axiom
43 is satisfied for the state property space (Σ,L, ξ)a if and only if for b ≤ a we
have b = (b ∨ a⊥) ∧ a.

Proof. Consider an ortho test α testing property a and an ortho test β testing
property b and p ∈ κ(a) such that p ⊥α b. From proposition 91 follows that p ⊥ b

and hence, since axiom 43 is satisfied for (Σ,L, ξ) we have β̃ is true if the entity
is in state p. Since p ∈ κ(a) we have that β̃ · α is true if the entity is in state
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p. Hence p ∈ κ(b⊥ ∧ a). On the other hand, consider q ∈ κ(a) and q ⊥ b⊥ ∧ a.
Since b⊥ ∧ a ∈ L there exists an ortho test γ, such that γ̃ is true if the entity
is in state q. This means that q ∈ κ((b⊥ ∧ a)⊥ ∧ a)). The test γ̃ · α will test b,
and hence be an ortho test for the relative inverse with respect to a, if and only if
κ(b) = κ((b⊥ ∧ a)⊥ ∧ a)). This is equivalent to b = (b⊥ ∧ a)⊥ ∧ a) = (b ∨ a⊥) ∧ a.

�

AXIOM 93 Weak modularity. Consider a state property space (Σ,L, ξ) for which
axioms 24, 27 and 43 are satisfied. We say that the axiom of weak modularity is
satisfied if for a, b ∈ L we have

b ≤ a ⇒ b = (b ∨ a⊥) ∧ a (146)

Operationally this axiom means the following. Consider two properties b ≤ a, an
ortho test β testing b, and a test α testing a. Then β̃ · α tests b⊥ ∧ a. Consider
an ortho test γ ≈ β̃ · α, then also γ tests b⊥ ∧ a. The test γ̃ · α tests the property
(b⊥ ∧ a)⊥ ∧ a. The axiom of weak modularity means that we want γ̃ · α also to
test the property b. Hence we want γ̃ · α ≈ β.

PROPOSITION 94. Consider a state property space (Σ,L, ξ) for which axioms 24,
27 and 43 are satisfied. The classical state property space (Ω, C, ξc) corresponding
to (Σ,L, ξ) satisfies axiom 93. If (Σ,L, ξ) satisfies also axiom 93, then each non
classical component (Σω,Lω, ξω) of the decomposition of (Σ,L, ξ) satisfies axiom
93.

Proof. Consider a, b ∈ C such that b ≤ a. From (102) follows that (b ∨ a⊥) ∧ a =
(b∧a)∨(a⊥∧a) = b∨0 = b. This proves that (Ω, C, ξc) satisfies axiom 93. Suppose
now that axiom 93 is satisfied for (Σ,L, ξ) and consider a, b ∈ Lω such that b ≤ a.
Using (122), and hence b⊥ω = b⊥ ∧ ω, we have (b ∨ a⊥ω ) ∧ a = (b⊥ω ∧ a)⊥ω ∧ a =
(b⊥∧ω∧a)⊥ω∧a = (b⊥∧a)⊥ω∧a = (b⊥∧a)⊥∧ω∧a = (b⊥∧a)⊥∧a = (b∨a⊥)∧a = b.
This proves that axiom 93 is satisfied for (Σω,Lω, ξω). �

6.3 The axiom ‘the covering law’

The covering law is the root of the linear structure of quantum mechanics, which
means that it is a very important axiom. In some sense it demands something
similar to the axiom of atomisticity, but then for all parts of the lattice of proper-
ties.

AXIOM 95 The covering law. Consider a state property space (Σ,L, ξ) for which
axioms 24, 27, 43 and 81 are satisfied. For a, b ∈ L and p ∈ Σ we have

s(p) ∧ a = 0 and a ≤ b ≤ a ∨ s(p) ⇒ b = a or b = a ∨ s(p) (147)

PROPOSITION 96. Consider a state property space (Σ,L, ξ) for which axioms 24,
27 and 43 are satisfied. The classical state property space (Ω, C, κc) corresponding
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to (Σ,L, ξ) satisfies axiom 95. If (Σ,L, ξ) satisfies also axiom 95, then each non
classical component (Σω,Lω, ξω) of the decomposition of (Σ,L, ξ) satisfies axiom
95.

Proof. Consider a, b ∈ C and ω(p) ∈ Ω, such that a∧ω(p) = 0 and a ≤ b ≤ a∨ω(p).
Making use of theorem 66 we have κc(a) ⊆ κc(b) = κc(a∨ω(p)) = κc(a)∪ {ω(p)}.
Hence κc(b) = κc(a) or κc(b) = κc(a) ∪ {ω(p)}. From (87) follows then that b = a
or b = a ∨ ω(p). This proves that (Ω, C, κc) satisfies axiom 95. Suppose now that
axiom 95 is satisfied for (Σ,L, ξ) and consider a, b ∈ Lω and p ∈ Σω such that
a ∧ s(p) = 0 and a ≤ b ≤ a ∨ s(p). From axiom 95 being satisfied for (Σ,L, ξ)
follows that b = a or b = a ∨ s(p), which proves that axiom 95 is satisfied for
(Σω,Lω, ξω). �

6.4 The axiom of plane transitivity

The seventh axiom that brings us directly to the structure of one of the three
standard Hilbert spaces is much more recent [Aerts and van Steirteghem, 2000].

AXIOM 97 Plane transitivity. Consider a state property space (Σ,L, ξ) for which
axioms 24, 27 and 43 are satisfied. The state property space is plane transitive if
for an arbitrary classical state ω ∈ Ω and states p, q ∈ Σω there exist two distinct
atoms s1, s2 ∈ Lω and an automorphism (m,n) of (Σω,Lω, ξω) such that n|[0,s1∨s2]

is the identity and m(p) = q.

Both classical entities and quantum entities can be described by a state property
space where the set of properties is a complete atomistic orthocomplemented lattice
that satisfies the covering law, is weakly modular and plane transitive. In section
8 we consider the converse, namely how this structure leads us to classical physics
and to quantum physics. But first we want to look into one of the basic notions
of quantum mechanics, namely the notion of superposition state.

7 SUPERPOSITION

One of the aspects which is often put forward as the most characteristic feature
of quantum mechanics is the existence of ‘superposition states’. In principle, the
notion of superposition of states is intrinsically linked to the linearity of the Hilbert
space. It is however possible to introduce it on a more fundamental level, which
is what we will do in this section.

DEFINITION 98 Superposition. Consider a state property space (Σ,L, ξ) and
states p, q, r ∈ Σ. We say that r is a superposition of p and q if ξ(p)∩ ξ(q) ⊆ ξ(r).
More generally, for a set of states Γ ⊆ Σ we say that r is a superposition of Γ if
∩p∈Γξ(p) ⊆ ξ(r). We call

Γ̄ = {r | r ∈ Σ,∩p∈Γξ(p) ⊆ ξ(r)} (148)

the superposition set corresponding to Γ ⊆ Σ.
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PROPOSITION 99. Consider a state property space (Σ,L, ξ) and Γ ⊆ Σ. For
Γ,Δ ⊆ Σ we have

Γ ⊆ Γ̄ (149)
Γ ⊆ Δ ⇒ Γ̄ ⊆ Δ̄ (150)

¯̄Γ = Γ̄ (151)

which proves that ¯ is a closure operator.

Proof. We have ∩p∈Γξ(p) ⊆ ξ(r) ∀ r ∈ Γ, and hence that Γ ⊆ Γ̄, which proves
(149). Suppose we have Γ ⊆ Δ ⊆ Σ and consider r ∈ Γ̄. We have ∩p∈Δξ(p) ⊆
∩p∈Γξ(p) ⊆ ξ(r) and hence r ∈ Δ̄. As a consequence we have Γ̄ ⊆ Δ̄, which
proves (150). From (149) follows that Γ̄ ⊆ ¯̄Γ. Consider r ∈ ¯̄Γ, which means that
∩p∈Γ̄ξ(p) ⊆ ξ(r). We have ∩p∈Γξ(p) ⊆ ∩p∈Γ̄ξ(p) ⊆ ξ(r), and hence r ∈ Γ̄. Hence
we have that ¯̄Γ ⊆ Γ̄. This means that we have proven (151). �

PROPOSITION 100. Consider a state property space (Σ,L, ξ) for which axioms
24 and 27 are satisfied, and Γ ⊆ Σ. We have

r ∈ Γ̄ ⇔ s(r) ≤ ∨p∈Γs(p) (152)

Proof. Consider r ∈ Γ̄, which means that ∩p∈Γξ(p) ⊆ ξ(r). We have s(r) =
∧a∈ξ(r)a ≤ ∧a∈∩p∈Γξ(p)a = ∧a∈ξ(p)∀p∈Γa = ∧s(p)≤a∀p∈Γa = ∨p∈Γs(p). Suppose
now that s(r) ≤ ∨p∈Γs(p). This means that ∧a∈∩p∈Γξ(p)a ≤ ∧a∈ξ(r)a and hence
∩p∈Γξ(p) ⊆ ξ(r), which proves that r ∈ Γ̄. �

DEFINITION 101 Superselection. Consider a state property space (Σ,L, ξ). We
say that p, q ∈ Σ are separated by a superselection rule, and we denote p ssr q, if
the only superpositions of p and q are contained in p or in q. Hence, if for r ∈ Σ
such that ξ(p) ∩ ξ(q) ⊆ ξ(r) we have ξ(p) ⊆ ξ(r) or ξ(q) ⊆ ξ(r).

PROPOSITION 102. Consider a state property space (Σ,L, ξ) for which axioms
24 and 27 are satisfied. For p, q ∈ Σ we have

p ssr q ⇔ κ(s(p) ∨ s(q)) = {r | r ∈ Σ, r ≤ p or r ≤ q} (153)

Proof. Suppose that p ssr q and consider r ∈ κ(s(p) ∨ s(q)) and hence s(r) ≤
s(p) ∨ s(q). From (152) follows that r ∈ {p, q}̄ = {r | r ∈ Σ, r ≤ p or r ≤ q}.
Hence r ≤ p or r ≤ q. Suppose that κ(s(p) ∨ s(q)) = {r | r ∈ Σ, r ≤ p or r ≤ q}
and consider r ∈ {p, q}̄ . From (152) follows that s(r) ≤ s(p) ∨ s(q) and hence
r ∈ κ(s(p) ∨ s(q)). As a consequence we have r ≤ p or r ≤ q. This proves that
p ssr q. �
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THEOREM 103. Consider a state property space (Σ,L, ξ) for which axioms 24,
27, 43, 81 and 93 are satisfied. For p, q ∈ Σ we have

p ssr q ⇒ p = q or p ⊥ q (154)

Proof. Suppose that p ssr q and p �⊥ q, and consider r such that r ∈ κ((s(p) ∨
s(q)) ∧ s(q)⊥). This means that r ∈ κ((s(p) ∨ s(q)) and r ∈ κ(s(q)⊥). From
(153) we have that r ≤ p or r ≤ q, but since axiom 81 is satisfied, this gives
r = p or r = q. However, since r ∈ κ(s(q)⊥) we cannot have r = q. Hence
r = p. Hence we have proven that κ((s(p) ∨ s(q)) ∧ s(q)⊥) = κ(s(p) ∧ s(q)⊥). We
have s(p) ∧ s(q)⊥ ≤ s(p) and since s(p) is an atom of L we have s(p) ∧ s(q)⊥ =
s(p) or s(p) ∧ s(q)⊥ = 0. If s(p) ∧ s(q)⊥ = s(p) we have s(p) ≤ s(q)⊥ and
hence p ⊥ q, which is not true. This means that s(p) ∧ s(q)⊥ = 0, and hence
(s(p) ∨ s(q)) ∧ s(q)⊥ = 0. From this follows that (s(p)⊥ ∧ s(q)⊥) ∨ s(q) = I, and
as a consequence we have ((s(p)⊥ ∧ s(q)⊥) ∨ s(q)) ∧ s(q)⊥ = s(q)⊥. Since axiom
93 is satisfied we have ((s(p)⊥ ∧ s(q)⊥) ∨ s(q)) ∧ s(q)⊥ = s(p)⊥ ∧ s(q)⊥. Hence
we have s(q)⊥ = s(p)⊥ ∧ s(q)⊥, and as a consequence s(q)⊥ ≤ s(p)⊥. From this
follows that s(p) ≤ s(q), and since s(q) is an atom of L we have s(p) = s(q), and
hence p = q. �
THEOREM 104. Consider a state property space (Σ,L, ξ) for which axioms 24,
27, 43, 81 and 95 are satisfied. For p, q ∈ Σ we have

p ssr q ⇒ p = q or p ⊥ q (155)

Proof. In the same way as in the proof of theorem 103 we prove that (s(p)⊥ ∧
s(q)⊥)∨s(q) = I if p ssr q and p �⊥ q. This means that I covers s(p)⊥∧s(q)⊥. Since
s(p)⊥∧s(q)⊥ ≤ s(q)⊥ ≤ I, and axiom 95 is satisfied, we have s(p)⊥∧s(q)⊥ = s(q)⊥

and hence s(q)⊥ ≤ s(p)⊥. From this follows that s(p) ≤ s(q), and since s(q) is an
atom, we have s(p) = s(q) and hence p = q. �

From these theorems follows that if axioms 24, 27, 43, 81 and 93 are satisfied or
if axioms 24, 27, 43, 81 and 95 are satisfied, and two different states p and q are
separated by a superselection rule then they are orthogonal. It also means that
for two different states p and q that are not orthogonal there always exists a third
state r which is a superposition of p and q.

8 HILBERT SPACE REPRESENTATIONS

In this section we make further steps to get closer to standard quantum mechanics
in a complex Hilbert space. A first step is based on Piron’s representation theorem
for an irreducible complete orthocomplemented weakly modular lattice satisfying
the covering law [Piron, 1964]. Piron proved that such a lattice can be represented
as the set of closed subspaces of a generalized Hilbert space.
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8.1 Representation in Generalized Hilbert spaces

Starting from the general decomposition theorem 80 we have proven in section 5.3,
and using the extra axioms 81, 93, 95 introduced in section 6, we can prove the
following theorem for each one of the non classical components of the decomposi-
tion.

THEOREM 105. Consider a state property space (Σ,L, ξ), and suppose that ax-
ioms 24, 27, 43, 81, 93 and 95 are satisfied. Consider ©∨ ω∈Ω(Σω,Lω, ξω) the
decomposition of (Σ,L, ξ) in its non classical components. For each nonclassical
component (Σω,Lω, ξω), which has at least four orthogonal states, there exists a
vector space Vω, over a division ring Kω, with an involution of Kω, which means
a function

∗ : Kω → Kω (156)

such that for k, l ∈ Kω we have:

(k∗)∗ = k (157)
(k · l)∗ = l∗ · k∗ (158)

and an Hermitian product on Vω, which means a function

〈 , 〉 : Vω × Vω → Kω (159)

such that for x, y, z ∈ Vω and k ∈ Kω we have:

〈x + ky, z〉 = 〈x, z〉 + k〈x, y〉 (160)
〈x, y〉∗ = 〈y, x〉 (161)

〈x, x〉 = 0 ⇔ x = 0 (162)

and such that for M ⊂ Vω we have:

M⊥ + (M⊥)⊥ = Vω (163)

where M⊥ = {y |y ∈ Vω, 〈y, x〉 = 0,∀x ∈ M}. Such a vector space is called a
generalized Hilbert space or an orthomodular vector space. And we have that:

(Σω,Lω, ξω) ∼= (R(Vω),L(Vω), νω) (164)

where R(Vω) is the set of rays of V , L(Vω) is the set of biorthogonally closed
subspaces (subspaces that are equal to their biorthogonal) of Vω, and νω makes
correspond with each ray the set of biorthogonally closed subspaces that contain
this ray.

Proof. If axioms 24, 27, 43, 81, 93 and 95 are satisfied for (Σ,L, ξ), then from
theorem 78 and propositions 84, 94 and 96 follows that (Σω,Lω, ξω) satisfies axioms
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24, 27, 43, 81, 93 and 95. Hence the lattice Lω is a complete orthocomplemented
atomistic weakly modular lattice satisfying the covering law. Furthermore from
proposition 85 follows that Lω is irreducible, and since (Σω,Lω, ξω) has at least
four orthogonal states, it follows that Lω has at least four orthogonal atoms. This
means that for Lω we can employ Piron’s representation theorem [Piron, 1964;
Piron, 1976; Maeda and Maeda, 1970; Faure and Frölicher, 1995], and hence infer
that there exists a vector space Vω, over a division ring Kω, with an involution ∗

of Kω and an Hermitian product 〈 , 〉 on Vω and such that for M ⊂ Vω we have:

M⊥ + (M⊥)⊥ = Vω (165)

where M⊥ = {y |y ∈ Vω, 〈y, x〉 = 0,∀x ∈ M}, and such that

Lω
∼= L(Vω) (166)

where L(Vω) is the set of all biorthogonal subspaces of Vω, i.e.

L(Vω) = {M | M ⊆ Vω, (M⊥)⊥ = M} (167)

Each atom s(p) of the lattice Lω is represented by a ray, i.e. a one dimensional
subspace of Vω. This means that Σω can be put equal to R(Vω) the set of rays
of the vector space Vω. If we define νω as the function from R(Vω) to P(L(Vω)),
that makes correspond with each ray the set of biorthogonally closed subspaces
that contain this ray, we have proven that (R(Vω),L(Vω), νω) is isomorphic to
(Σω,Lω, ξω). �

8.2 Representation in classical Hilbert spaces

Maria Pia Solèr has proven that if Vω contains an infinite orthonormal sequence,
then K = R,C or H and Vω is the corresponding Hilbert space [Solèr, 1995].
Holland has shown that it is enough to demand the existence of a nonzero λ ∈ K
and an infinite orthogonal sequence (en)n ∈ Vω such that < en, en >= λ for every
n. To be precise, either (Vω,K,< ·, · >) or (Vω,K,− < ·, · >) is then a classical
Hilbert space [Holland, 1995]. In [Aerts and van Steirteghem, 2000] we proved
some alternatives to Solèr’s result, by means of automorphisms of L(Vω).

PROPOSITION 106. Let (V,K,< ·, · >) be an orthomodular space and let L(V )
be the lattice of its closed subspaces. The following are equivalent:
(1) (V,K,< ·, · >) is an infinite dimensional Hilbert space over K = R,C or H.
(2) V is infinite–dimensional and given two orthogonal atoms x̄, ȳ in L(V ), there
is a unitary operator U such that U(x̄) = ȳ.
(3) There exist a, b ∈ L(V ), where b is of dimension at least 2, and an ortholattice
automorphism f of L(V ) such that f(a) � a and f |[0,b] is the identical map.
(4) V is infinite dimensional and given two orthogonal atoms x̄, ȳ in L(V ) there
exist distinct atoms x̄1, ȳ2 and an ortholattice automorphism f of L(V ) such that
f |[0,x̄1∨ȳ2 is the identity and f(x̄) = ȳ.
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Condition (2) is Holland’s Ample Unitary Group axiom [Holland, 1995] and (3)
is due to Mayet [Mayet, 1998]. Using the properties listed in section 2 of [Mayet,
1998], one can easily prove that (4) implies (2).

THEOREM 107. Consider a state property space (Σ,L, ξ), and suppose that ax-
ioms 24, 27, 43, 81, 93, 95 and 97 are satisfied. Consider ©∨ ω∈Ω(Σω,Lω, ξω) the
decomposition of (Σ,L, ξ) in its non classical components. Each nonclassical com-
ponent (Σω,Lω, ξω), which has at least four orthogonal states, is isomorphic to the
canonical state property space (Σ(Hω),L(Hω), ξHω

) where Hω are real, complex or
quaternionic Hilbert spaces.

Proof. An immediate consequence of proposition 106. �

Theorem 107 proves that if axioms 24, 27, 43, 81, 93, 95 and 97 are satisfied, our
theory reduces to standard quantum mechanics with super selection variables, and
eventually on a quaternionic Hilbert space.
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QUANTUM LOGIC AND NONCLASSICAL
LOGICS

Gianpiero Cattaneo, Maria Luisa Dalla Chiara, Roberto Giuntini
and Francesco Paoli

1 INTRODUCTION

Classical logic is sometimes described as “the logic of an omniscient mind in a
deterministic universe”. From an intuitive point of view the basic features of
classical semantics can be summarized as follows:

1) any problem is semantically decided : for any sentence α, either α or its
negation ¬α is true (excluded middle principle); at the same time, a sentence
α and its negation ¬α cannot be both true (noncontradiction principle).

2) Meanings behave in a compositional way: the meaning of a compound ex-
pression is determined by the meanings of its parts.

3) Meanings are sharp and unambiguous.

Some (possibly all) of these principles have been put in question by different
forms of nonclassical logic. In some significant cases, the objective and descriptional
notion of truth (which is characteristic of classical logic) has been replaced by an
epistemic conception. Accordingly, truth has been identified with what is known
by non-omniscient minds, acting in a universe that may be either deterministic or
indeterministic. The first choice is compatible with the intuitionistic approaches to
logic and to mathematics, while the second choice represents the basic assumption
of the quantum logical investigations. In both cases, the classical notion of truth
has been replaced by the following relation:

an information i forces us to assert the truth of a sentence α.

One also briefly says that the information i forces (or verifies) the sentence α (and
one usually writes: i |= α). Should i represent a noncontradictory and complete
information-system, our forcing relation would naturally collapse into the classical
notion of truth. However, human information is generally incomplete and not
necessarily consistent.

As expected, in the case of physical theories, significant pieces of information
correspond to what is known by an observer about the physical systems under
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investigation. In this connection, one usually speaks of physical states (briefly,
states). In the “happiest situations”, a state may represent a maximal knowledge
of the observer: a piece of information that cannot be consistently extended to a
richer information, in the framework of the theory. Even a hypothetical omniscient
mind could not know more about the system in question (if the theory is correct).
States of this kind are usually called pure states, both in classical and in quantum
physics. Pieces of information that are not maximal are generally represented by
mixtures of pure states (also called mixed states). There is an important differ-
ence that concerns the logical behavior of classical and of quantum pure states.
In classical mechanics, maximality implies logical completeness: any pure state se-
mantically decides any physical property (or event) that may hold for the system
under investigation (in other words, the state attributes to the system either the
property or its negation).This is in accordance not only with classical logic, but
also with a number of important nonclassical logics (like intuitionistic logic), where
any noncontradictory and maximal formal system is logically complete. Quantum
pure states, instead, give rise to a somewhat “mysterious” divergence between
maximality and logical completeness, which represents the origin of most logical
anomalies of the quantum world. Although representing a maximal information,
a quantum pure state is never logically complete. This is a consequence of Heisen-
berg’s uncertainty principle, according to which there are pairs of complementary
events that cannot be simultaneously decided by any pure state.

Both in classical and in quantum mechanics, physical states are represented by
special kinds of mathematical objects. In classical mechanics (CM), a pure state of
a single particle can be represented by a sequence of six real numbers (r1, . . . , r6),
where the first three numbers correspond to the position-coordinates, while the
last ones are the momentum-components. The set IR6 of all sextuples of real
numbers represents the phase-space for the particle in question. Similarly for the
case of compound systems, consisting of a finite number n of particles. Hence, any
pure state of a classical particle-system is represented by a point of an appropriate
phase space Σ. How to represent the physical events that may occur to a given
particle? Following the standard ideas of classical (extensional) semantics, it is
quite natural to assume that the such events are mathematically represented by
suitable subsets of Σ. What about the structure of all events? As is well known,
the power set of any set gives rise to a Boolean algebra. And also the set F(Σ)
of all measurable subsets of Σ (which is more tractable than the full power set of
Σ, from a measure-theoretic point of view) turns out to have a Boolean structure.
Hence, we may refer to the following Boolean field of sets:

EVC = 〈F(Σ),∩,∪, c, ∅,Σ〉 ,

where the set-theoretic operations ∩,∪, c represent respectively the conjunction,
the disjunction and the negation of classical events.

As a consequence, the logic of CM turns out to be in perfect agreement with
classical logic. Furthermore, pure states are logically complete: for any point p of
the phase-space Σ and for any event E in F(Σ), either p ∈ E or p ∈ Ec.
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What happens in the case of quantum theory (QT)? As opposed to classical
mechanics, QT is essentially probabilistic. A pure state generally assigns to a
quantum event a probability-value (a real number in the interval [0, 1]). As a
consequence, a quantum event may be semantically indeterminate for a given
pure state, and the excluded middle principle is violated.

According to von Neumann’s axiomatization of QT, the mathematical interpre-
tation of any quantum system is a complex separable Hilbert space H, which has,
for QT, the role played by phase-spaces in CM.1 Any pure state is mathematically
represented by a unit vector |ψ〉 of H, while mixed states are represented by special
operators called density operators. What about quantum events? After Birkhoff
and von Neumann’s celebrated article “The logic of quantum mechanics” (which
is considered the birth-date of quantum logic) the mathematical representatives
of quantum events are identified with the closed subspaces of the Hilbert space
H associated to the quantum system S under investigation. Why are the mere
subsets of H not adequate mathematical representatives for quantum events, as in
the phase-space case? The reason depends on the superposition principle, which
represents one of the basic dividing lines between the quantum and the classical
case. As opposed to classical mechanics, in quantum mechanics, any unit vector,
that is a linear combination of pure states, gives rise to a new pure state. Suppose
two pure states |ψ1〉 , |ψ2〉 are orthogonal vectors and suppose that a pure state
|ψ〉 is a linear combination (a superposition) of |ψ1〉 , |ψ2〉. In other words:

|ψ〉 = c1|ψ1〉 + c2|ψ2〉 (where |c1|2 + |c2|2 = 1).

According to one of the basic axioms of QT (the so called Born rule), this means
that a quantum system in state |ψ〉 might verify with probability |c1|2 those events
that are certain for state |ψ1〉 (and are not certain for |ψ〉) and might verify with
probability |c2|2 those events that are certain for state |ψ2〉 (and are not certain
for |ψ〉). A similar relation also holds for infinite superpositions

∑
i ci|ψi〉. As a

consequence, the mathematical representatives of events should be closed under
finite and infinite linear combinations. The closed subspaces of H are just the
mathematical objects that can realize such a role.

What will be the meaning of negation, conjunction and disjunction in the realm
of quantum events? According to Birkhoff and von Neumann: “The mathematical
representative of the negative of any experimental proposition is the orthogonal
complement of the mathematical representative of the proposition itself”. The
orthogonal complement A′ of a closed subspace A is defined as the set of all vectors
that are orthogonal to all elements of A. In other words, |ψ〉 ∈ A′ iff |ψ〉 ⊥ A iff,
for any |ϕ〉 ∈ A, the inner product 〈ψ|ϕ〉 is 0.2 From the point of view of the
physical interpretation, the orthogonal complement (called also orthocomplement)
is particularly interesting, since it satisfies the following property: a pure state
|ψ〉 assigns to an event A probability 1 (0, respectively) iff |ψ〉 assigns to the
orthocomplement of A probability 0 (1, respectively). As a consequence, one is

1See Deff. 146, 148.
2See Def.142.
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dealing with an operation that inverts the two extreme probability-values, which
naturally correspond to the truth-values Truth and Falsity (as in the classical
truth-table of negation).

As for conjunction, Birkhoff and von Neumann point out that this can be still
represented by the set-theoretic intersection (as in the classical case). For, the
intersection A ∩ B of two closed subspaces is again a closed subspace. Hence, we
will obtain the usual truth-table for the connective and :

|ψ〉 verifies A ∩B iff |ψ〉 verifies both members.

Disjunction, however, cannot be represented here as a set-theoretic union. For,
generally, the union A∪B of two closed subspaces is not a closed subspace, except
in special circumstances. In spite of this, we have at our disposal another good
representative for the connective or : the supremum A∨B of two closed subspaces,
that is the smallest closed subspace including both A and B. Of course, A ∨ B
will include A ∪B.

As a consequence, we obtain the following structure:

EVQ = 〈C(H) , ∧ , ∨ , ′ , 0 ,1〉 ,
where ∧ is the set-theoretic intersection; ∨ , ′ are defined as above; while 0 and
1 represent, respectively, the null subspace (the singleton consisting of the null
vector, which is the smallest possible subspace) and the total space H.

The quantum event structure EVQ turns out to simulate a “quasi-Boolean be-
havior”; however, it is not a Boolean algebra. Something very essential is missing.
Conjunction and disjunction are not distributive. There are triplets of quantum
events A,B,C such that:

A ∧ (B ∨ C) �= (A ∧B) ∨ (A ∧ C).

In fact, EVQ belongs to the variety of all orthocomplemented orthomodular lat-
tices, that are not necessarily distributive.3 Structures of this kind are also called
Hilbert lattices. By the one-to-one correspondence between the set C(H) of all
closed subspaces and the set Π(H) of all projection-operators of H, the lattice
based on Π(H) turns out to be isomorphic to the lattice based on C(H).4 Hence,
quantum events can be equivalently represented either by closed subspaces or by
projection-operators of the Hilbert space associated to the quantum system under
investigation.5 For any quantum system S, the pair (C(H),S) consisting of the set

3See Deff.126 and 129.
4See Deff.157 and 149.
5It is worth-while recalling that von Neumann was not completely satisfied with the basic idea

of the “quantum logical approach”, according to which the lattice of all closed subspaces of a
Hilbert space should faithfully represent the structure of quantum events. The basic reason was
the failure of modularity in the infinite dimensional case (see Def.130). In fact, von Neumann
considered this property as an essential condition for a frequency-interpretation of quantum
probabilities. An interesting analysis of von Neumann’s doubts and critiques can be found in
[Rédei, 1996].
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C(H) of all closed subspaces of H and of the set S of all possible (pure and mixed)
states for S is usually called the event-state system for S (which is equivalently
represented also by the pair (Π(H),S)). Given a state, represented by a density
operator ρ (∈ S) and an event, represented by a projection-operator P (∈ Π(H)),
the probability ρ(P ) that the physical system S in state ρ verifies the event P is
determined by the Born-rule, according to which:

ρ(P ) = tr(ρP ),

(where tr is the trace-functional6).
A similarity space naturally arises in the framework of any event-state system

(C(H),S).

DEFINITION 1. Two states ρ and σ are called similar (ρ ⊥/ σ) iff there is no event
A that is certain for ρ and impossible for σ (in other words, ρ(A) = 1 � σ(A) �= 0).

One can easily show that ⊥/ is a a genuine similarity relation (reflexive and
symmetric, but generally not transitive). Hence, any pair (S,⊥/ ) represents an
example of a similarity space.

Any quantum similarity space (S,⊥/ ) automatically determines a “twin space”
(S,⊥) (also called preclusivity space), where ⊥ is the negation of ⊥/ (in other
words, ρ ⊥ σ iff not ρ ⊥/ σ).

Consider now the power set P(S) of the set of all states S. The preclusivity
relation ⊥ permits one to define on P(S) a unary operation ⊥ (called the preclusive
complement), which turns out to be a weak complement. For any set X of states:

X⊥ := {x ∈ S : ∀t ∈ X(s ⊥ t)} .

The preclusive complement ⊥ satisfies the following properties for any sets X,Y
of states:

• X ⊆ X⊥⊥;

• X ⊆ Y implies Y ⊥ ⊆ X⊥;

• X ∩X⊥ = ∅.

At the same time, the strong double negation principle (X⊥⊥ ⊆ X) and the
excluded middle principle ( X ∪X⊥ = S) generally fails.

Consider now the map ⊥⊥ : P(S) �→ P(S) such that:

X � X⊥⊥, for any X ⊆ S.

One can easily check that this map is a closure operator , satisfying the following
conditions:

∅⊥⊥ = ∅; X ⊆ X⊥⊥; X⊥⊥ = X⊥⊥⊥⊥; X ⊆ Y � X⊥⊥ ⊆ Y ⊥⊥.

6See Def.158.
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Consider then the set C(P(S)) of all closed elements of the power set of S. By
definition, we have:

X ∈ C(P(S)) iff X = X⊥⊥.

The elements of C(P(S)) are called closed sets of states. As we will see, such sets
play a very significant role for the semantics of quantum logic.

Some important properties of the closed sets of states are described by the
following lemmas, which refer to any event-state system (C(H),S).

THEOREM 2. The structure〈
C(P(S)) , ⊆ , ⊥ , ∅ , S

〉
is a complete bounded ortholattice, where for any family {Xi}i∈I ⊆ C(P(S)):

• the meet
∧ {Xi}i∈I exists and coincides with

⋂ {Xi}i∈I ;

• the join
∨ {Xi}i∈I exists and coincides with (

⋃ {Xi}i∈I)
⊥⊥;

• the preclusive complement ⊥ is an orthocomplement.7

The lattice C(P(S)) fails to be distributive.

LEMMA 3. The lattice C(P(S)) is isomorphic to the lattice based on the set C(H)
of all closed subspaces of H.

LEMMA 4. Let X be any subset of S. Then, X is closed iff X satisfies the
following condition:

∀ρ[ρ ∈ X iff ∀σ ⊥/ ρ∃τ ⊥/ σ(τ ∈ X)].

2 HOW QUANTUM LOGIC EMERGES FROM QUANTUM EVENT-STATE
SYSTEMS

Quantum similarity spaces have naturally suggested an abstract possible world
semantics for quantum logic (first proposed by Dishkant [Dishkant, 1972] and
further developed by Goldblatt [Goldblatt, 1974]). Such semantics can be regarded
as a “quantum variant” of the semantics proposed by Kripke for intuitionistic logic.
Accordingly, one usually speaks of Kripkean semantics of quantum logic.

As is well known, Kripkean models for intuitionistic logic are based on sets of
possible worlds possibly correlated by an accessibility relation, which is reflexive
and transitive. According to a canonical interpretation, the possible worlds of an
intuitionistic Kripkean model, can be regarded as states of knowledge in progress.
When a world j is accessible to another world i, the state of knowledge correspond-
ing to j is more informative with respect to the state of knowledge represented
by i. In this framework, knowledge is conservative: when a state of knowledge i

7See Def. 117-126.
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knows a given sentence, then all the states of knowledge that are accessible to i
know the sentence in question.

The Kripkean characterization of quantum logic is based on a different intuitive
idea. The possible worlds of a quantum logical model can be regarded as pieces of
information that correspond to states of physical objects. What about the acces-
sibility relation? This can be identified with the similarity relation that arises in
a given event-state system. From an intuitive point of view, one can easily under-
stand the reason why semantic models based on similarity spaces are physically
significant. In fact, physical theories are not generally concerned with possible
evolutions of states of knowledge with respect to a constant world (as happens
in the case of intuitionistic logic), but rather with sets of physical situations that
may be similar , where states of knowledge must single out some invariants.

We will now briefly sketch the basic concepts of an abstract possible world
semantics for a weak form of quantum logic, that Dishkant had called minimal
quantum logic, while Goldblatt’s preferred denomination is orthologic. This logic
fails to satisfy an important property of quantum event-structures: orthomod-
ularity. Following Goldblatt’s terminology, we will distinguish orthologic (OL)
from orthomodular quantum logic (OQL), which is often simply called quantum
logic. The sentential language of both logics consists of sentential letters and of
the following primitive connectives: ¬ (not), � (and). The notion of sentence (or
formula) is defined in the expected way. We will use the following metavariables:
p, q, ... for atomic sentences and α, β, γ, ... for sentences. The disjunction � (or)
is supposed to be defined via de Morgan law (α � β := ¬(¬α � ¬β)).

Consider an abstract similarity space (I,⊥/ ), consisting of a non-empty set I of
possible worlds and of a similarity relation ⊥/ (which is a reflexive and symmetric
binary relation defined on I). In semantic contexts, similarity relations are dealt
with as special cases of accessibility relations, while similarity spaces are also called
orthoframes. Given an orthoframe (I,⊥/ ), we will use i, j, k, . . . as variables ranging
over the set I of possible worlds.

Like in the concrete Hilbert-space case, any abstract similarity space has a
“twin space” that is an abstract preclusivity space. The preclusivity relation, that
represents the negation of the accessibility relation �⊥, will be denoted by ⊥. In
other words:

i ⊥ j iff not i �⊥ j.

Whenever i ⊥ j we will say that j is inaccessible or orthogonal to i.
On this basis, one can define a preclusive complement ⊥ on the power set P(I)

of I:
∀X ⊆ I[X⊥ := {i ∈ I : i ⊥ X}].

The following conditions hold:

• the map ⊥⊥ : P(I) �→ P(I) is a closure operator;

• the structure
〈
C(P(I)) , ⊆ , ⊥ , ∅ , I

〉
based on the set of all closed subsets of
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I is an ortholattice.8 Hence, in particular, ⊥ is an orthocomplement;

• X is a closed subset of I iff ∀i[i ∈ X iff ∀j �⊥ i∃k �⊥ j(k ∈ X)].

In the framework of semantic applications, the closed subsets of I are usually
called propositions of the orthoframe (I, �⊥).

The following Lemma sums up some basic properties of propositions:

LEMMA 5. Let (I,⊥/ ) be an orthoframe.

(i) I and ∅ are propositions;

(ii) If X is any set of worlds, then X⊥ is a proposition;

(iii) If C is a family of propositions, then
⋂

C is a proposition.

The notion of Kripkean model for OL can be now defined as follows:

DEFINITION 6. Kripkean model for OL
A Kripkean model for OL is a system K = 〈I , ⊥/ , Pr , V 〉, where:

(i) (I,⊥/ ) is an orthoframe and Pr is a set of propositions of the frame
that contains ∅, I and is closed under the orthocomplement ⊥ and the
set-theoretic intersection ∩;

(ii) V is a function that associates to any sentence α a proposition in Pr,
satisfying the following conditions:

V (¬β) = V (β)⊥;
V (β � γ) = V (β) ∩ V (γ).

Instead of i ∈ V (α), one usually writes i |= α and reads: “the information i
forces α to be true” (or briefly, “α is true in the world i”). If T is a set of sentences,
i |= T will mean i |= β for any β ∈ T .

THEOREM 7. For any Kripkean model K and any sentence α:

i |= α iff ∀j �⊥ i∃k �⊥ j (k |= α).

LEMMA 8. In any Kripkean model K:

(i) i |= ¬β iff ∀j �⊥ i [j |=/ β];

(ii) i |= β � γ iff i |= β and i |= γ.

On this basis, the notions of truth, logical truth, consequence, logical consequence
are defined in the expected way.

DEFINITION 9. Truth and logical truth
A sentence α is true in a model K = 〈I , ⊥/ , Pr , V 〉 (abbreviated |=K α) iff
V (α) = I;

8See Def. 126.
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α is a logical truth of OL (|=
OL

α) iff |=K α for any model K.

DEFINITION 10. Consequence in a model and logical consequence
Let T be a set of sentences and let K be a model. A sentence α is a consequence
in K of T (T |=K α) iff for any world i of K, i |= T � i |= α.
A sentence α is a logical consequence of T (T |=

OL
α) iff for any model K, T |=K α.

The set of propositions of any Kripkean model for OL gives rise to an ortholat-
tice. As a consequence, Kripkean models for OL can be canonically transformed
into algebraic models, where the meaning of any sentence is identified with an ele-
ment of an ortholattice, while the connectives are interpreted as the corresponding
lattice-operation.

DEFINITION 11. Algebraic model for OL
An algebraic model for OL is a pair A = 〈B , v〉, consisting of an ortholattice
B = 〈B ,≤ , ′ ,0 ,1〉 and a valuation-function v that associates to any sentence α
of the language an element in B, satisfying the following conditions:

(i) v(¬β) = v(β)′;

(ii) v(β � γ) = v(β) ∧ v(γ).

The notions of truth, logical truth, consequence and logical consequence are then
defined in the expected way.

DEFINITION 12. Truth and logical truth
A sentence α is true in a model A = 〈B , v〉 (abbreviated as |=A α) iff v(α) = 1;
α is a logical truth of OL (|=

OL
α) iff for any algebraic model A = 〈B , v〉, |=A α.

When for any β ∈ T, |=A β, we will also write: |=A T .

DEFINITION 13. Consequence in a model and logical consequence
Let T be a set of sentences and let A = 〈B , v〉 be a model. A sentence α is a
consequence in A of T (T |=A α) iff for any element a of B:
if for any β ∈ T , a ≤ v(β) then a ≤ v(α).
A sentence α is a logical consequence of T (T |=

OL
α) iff for any algebraic model A:

T |=A α.

One can prove that the Kripkean and the algebraic semantics characterize the
same logic OL.9

In order to characterize orthomodular quantum logic (or quantum logic) one
shall require a stronger condition both in the definition of Kripkean model and of
algebraic model for OL:

DEFINITION 14. Kripkean model for OQL
A Kripkean model for OQL is a Kripkean model K = 〈I , ⊥/ , Pr , V 〉 for OL,
where the set of propositions Pr satisfies the orthomodular property : X ⊆ Y �
Y = X ∨ (X⊥ ∧ Y ).

9See [Dalla Chiara and Giuntini, 2002].
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DEFINITION 15. Algebraic model for OQL
An algebraic model for OQL is an algebraic model A = 〈B, v〉 for OL, where B is
an orthomodular lattice.10

We will indicate by QL either OL or OQL. Both logics are characterized by a
deep asymmetry between conjunction and disjunction. By definition of Kripkean
model, we have:

• i |= β � γ iff i |= β and i |= γ;

• i |= β � γ iff ∀j �⊥ i∃k �⊥ j (k |= β or k |= γ).

Hence, a disjunction may be true, even if both members are not true.
A consequence of this asymmetry is the failure of the distributivity principle:

α � (β � γ) |=/QL (α � β) � (α � γ).

The semantic behavior of the quantum logical disjunction, which may appear
prima facie somewhat strange, seems to reflect pretty well a number of concrete
quantum situations. In quantum theory one is often dealing with alternatives
that are semantically determined and true, while both members are, in principle,
indeterminate. For instance, suppose we are referring to a spin one-half particle
(say an electron) whose spin in a certain direction may assume only two possible
values: either up or down. Now, according to one of the uncertainty principles,
the spin in the x direction (spinx) and the spin in the y direction (spiny) represent
two incompatible quantities that cannot be simultaneously measured. Suppose an
electron in state |ψ〉 verifies the proposition “spinx is up”. As a consequence of the
uncertainty principle both propositions “spiny is up” and “spiny is down” shall
be indeterminate. However the disjunction “either spiny is up or spiny is down”
must be true.

As expected, the Kripkean models of OQL admit a quite natural realization
in the framework of the Hilbert event-state systems. Consider a quantum system
S with associated Hilbert space H. Let (C(H),S(H)) be the event-state system
based on H. Consider now a sentential language LS for S, whose atomic sentences
refer to quantum events in C(H). We can construct the following Kripkean model
for S:

KS = 〈I , ⊥/ , Pr , V 〉 , where:

• I is the set S(H) of the states of S;

• ⊥/ is the similarity relation that is defined on S(H). In other words:

i ⊥/ j iff not ∃E ∈ C(H)[i(E) = 1 and j(E) = 0];

• Pr = C(P(S)) (= the set of all closed subsets of S(H));

10See Def.129.
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• for any atomic sentence p,

V (p) is the closed subspace which p refers to.

One immediately realizes that KS is a Kripkean model. For:

• ⊥/ is a similarity relation (reflexive and symmetric);

• Pr is a set of propositions, because every element X of C(P(S)) is a closed
set such that X = X⊥⊥.

Furthermore, Pr contains ∅ and I, and is closed under the operations ⊥ and
∩;

• for any p, V (p) ∈ Pr.

Interestingly enough, the accessibility relation turns out to have the following
physical meaning: i ⊥/ j iff j is a state into which i can be transformed after
the performance of a physical measurement that concerns an observable (i.e. a
physical quantity) of the system (by application of von Neumann-Lüders axiom,
the so called “collapse of the wave function”).

Let us now return to our general definition of Kripkean model for OQL. Ap-
parently, orthomodularity has not been characterized in terms of properties of the
accessibility relation. Hence, the following important question arises:

is it possible to express the orthomodularity of the proposition-structure
in an orthoframe (I,⊥/ ) as an elementary (first-order) property of the
accessibility relation ⊥/ ?

In 1984, Goldblatt gave a negative answer to this question, proving that:

orthomodularity is not elementary.11

Goldblatt’s theorem has revealed a kind of metalogical intractability of OQL.
As a consequence of this negative result, properties like decidability and the finite
model property (which are positively solved for OL) have stubbornly resisted to
many attempts of solution in the case of OQL, and are still open problems.

At the same time, OQL seems to have some logical advantages that are not
shared by the weaker OL. For instance, interestingly enough, a conditional con-
nective → turns out to be definable in terms of the primitive connectives of the
quantum logical language. The most natural definition (originally proposed by
Finch [1970] and Mittelstaedt [1972] and further investigated by Hardegree [1976]
and other authors) is the following:

α → β := ¬[α � ¬(α � β)]

(which is equivalent to ¬α � (α � β)).
11See [Goldblatt, 1984].
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In the quantum logical literature, such a conditional connective is often called
Sasaki hook . Of course, in classical logic (by distributivity), the Sasaki hook is
equivalent to the standard Philo’s conditional ¬α � β. Notice that this classical
conditional could not represent a “good” conditional for quantum logic, because
it does not generally satisfy Modus Ponens. One can easily show that there are
worlds i of a Kripkean model K such that:

i |= α; i |= ¬α � β; i |=/ β.

The Sasaki hook, instead, turns out to be well-behaved with respect to Modus
Ponens, in the case of OQL (but not in the case of OL!).

Both OL and OQL are axiomatizable logics. Many axiomatizations have been
proposed: in the Hilbert-Bernays style and in the Gentzen-style (natural deduction
and sequent-calculi).12

We present here a calculus (in the natural deduction style) which is a slight
modification of the version proposed by Goldblatt in 1974.

This calculus (which has no axioms) is determined as a set of rules. Let
T1, . . . , Tn be finite or infinite (possibly empty) sets of sentences. Any rule has
the form

T1 |−α1, . . . , Tn |−αn

T |−α

(if α1 has been inferred from T1, . . . , αn has been inferred from Tn, then α can be
inferred from T ).

We call any expression of the form T |−α a configuration. The configurations
T1 |−α1, . . . , Tn |−αn represent the premisses of the rule, while T |−α is the con-
clusion. As a limit case, we may have a rule in which the set of premisses is empty;
in such a case we will speak of an improper rule. Instead of ∅

T |−α
we will write

T |−α; instead of ∅ |−α, we will write |−α.

Rules of OL

(OL1) T ∪ {α} |−α (identity)

(OL2)
T |−α, T ∗ ∪ {α} |−β

T ∪ T ∗ |−β
(transitivity)

(OL3) T ∪ {α � β} |−α (�-elimination)

(OL4) T ∪ {α � β} |−β (�-elimination)

12An axiomatization of OQL in the Hilbert-Bernays style see has been proposed by Hardegree
in 1976 (see [Hardegree, 1976] ). Sequent calculi for different forms of quantum logic have been
investigated by Nishimura [1980] and by Battilotti and Sambin [1999]. See also [Battilotti and
Faggian, 2002].
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(OL5)
T |−α, T |−β

T |−α � β
(�-introduction)

(OL6)
T ∪ {α, β} |− γ

T ∪ {α � β} |− γ
(�-introduction)

(OL7)
{α} |−β, {α} |−¬β

¬α
(absurdity)

(OL8) T ∪ {α} |−¬¬α (weak double negation)

(OL9) T ∪ {¬¬α} |−α (strong double negation)

(OL10) T ∪ {α � ¬α} |−β (Duns Scotus)

(OL11)
{α} |−β

{¬β} |−¬α
(contraposition)

An axiomatization of OQL can be obtained by adding to the OL-calculus the
following rule:

(OQL) α � ¬(α � ¬(α � β)) |−β. (orthomodularity)

On this basis, all the standard syntactical notions (derivation, derivability, log-
ical theorem) are defined in the expected way.

DEFINITION 16. Derivation
A derivation of QL is a finite sequence of configurations T |−α, where any element
of the sequence is either the conclusion of an improper rule or the conclusion of a
proper rule whose premisses are previous elements of the sequence.

DEFINITION 17. Derivability
A sentence α is derivable from T (T |−QL α) iff there is a derivation such that
the configuration T |−α is the last element of the derivation.

Instead of {α} |−QL β we will write α |−QL β.

DEFINITION 18. Logical theorem
A sentence α is a logical theorem of QL ( |−QL α) iff ∅ |−QL α.

A soundness and a completeness theorem have been proved for both logics with
standard techniques (using the notion of canonical model)13:

THEOREM 19. Soundness theorem.

T |−QL α � T |=QL α.

THEOREM 20. Completeness theorem

T |=QL α � T |−QL α.

13See [Dalla Chiara and Giuntini, 2002].
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To what extent does orthomodular quantum logic represent a completely faithful
abstraction from QT? As we have seen, the prototypical models of OQL that are
interesting from the physical point of view are based on the class H of all Hilbert
lattices. Let us call Hilbert quantum logic (HQL) the logic that is semantically
characterized by H (both in the Kripkean and in the algebraic semantics). An
important problem that has been discussed at length is the following: do OQL
and HQL represent one and the same logic? In 1981 Greechie gave a negative
answer to this question: there is an ortholattice-theoretical equation, the so-called
orthoarguesian law14 that holds in H, but fails in a particular orthomodular lattice.
As a consequence, OQL does not represent a faithful logical abstraction from its
quantum theoretical origin. The axiomatizability of HQL is still an open problem.

3 QUANTUM LOGIC VS POSITIVE, MINIMAL AND INTUITIONISTIC
LOGIC

Quantum logic represents a “singular point” in the variety of nonclassical logics,
giving rise to a number of logical and metalogical anomalies.

In order to understand some “strange” aspects of quantum logic a comparison
with some logics that are at least as strong as positive logic (the positive fragment
of intuitionistic logic) will be useful. Unlike QL, the language of positive logic
(PL) contains as primitive connectives the conjunction �, the disjunction � and
the conditional →. The notion of Kripkean model for PL is defined as follows:

DEFINITION 21. Kripkean model for PL
A Kripkean model for PL is a system K = 〈I , R , P r , V 〉, where:

(i) I is a nonempty set of possible worlds;

(ii) R is a reflexive and transitive relation on I;

(iii) Pr is the set of all possible propositions; where a proposition is a set X
of possible worlds that is R-closed. In other words:
X ∈ Pr iff X ⊆ I and ∀i, j ∈ I[i ∈ X and iRj � j ∈ X];

(iv) V is a function that associates to any sentence α a proposition in Pr,
satisfying the following conditions:

V (β � γ) = V (β) ∩ V (γ);
V (β � γ) = V (β) ∪ V (γ);
V (β → γ) = {i ∈ I : ∀j[iRj and j ∈ V (β) � j ∈ V (γ)]}.

We will write i |= α instead of i ∈ V (α) (like in QL). The notions of truth,
logical truth,consequence and logical consequence are then defined as in the case
of QL.

14See [Greechie, 1981]. See also [Kalmbach, 1983].
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As is well known, two important nonclassical logics that are stronger than PL
are minimal logic (ML) and intuitionistic logic (IL). Minimal logic can be charac-
terized by adding to the language of LP a privileged atomic sentence f representing
the Falsity . The negation-connective is then defined as follows:

¬α := α → f .

The Kripkean models of ML are defined like in the case of PL. In any minimal
model K, the proposition J = V (f) (representing the meaning of the false sentence)
is called the set of all absurd worlds. As a consequence, one immediately obtains:

i |= ¬α iff ∀j[iRj and j |= α � j ∈ J ].

Finally, intuitionistic logic is characterized by the class of all minimal models where
the set J of all absurd worlds is empty. As a consequence, intuitionistic models
turn out to satisfy the following condition:

i |= ¬α iff ∀j[iRj � j |=/α].

We will now briefly focus upon the basic differences between the quantum logical
Kripkean models and the Kripkean models of PL, ML and IL (briefly called
knowledge-in progress models). As we will see, these differences are responsible for
the main logical and metalogical anomalies of QL.

As we have seen, in any knowledge-in progress model, the accessibility relation is
reflexive and transitive, and propositions are closed with respect to the accessibility
relation. As a consequence, truth turns out to be conservative:

i |= α and iRj � j |= α.

Quantum logical models, instead, are based on similarity frames, where truth is
not conservative and propositions X satisfy the following stability condition:

i ∈ X iff ∀j[i ⊥/ j � ∃k(j ⊥/ k and k ∈ X)].

Interestingly enough, such condition turns out to characterize propositions also in
the case of knowledge-in progress models. In fact, one can prove that for any model
K = 〈I , R , P r , V 〉 and for any set of worlds X, the two following conditions are
equivalent:

I) X is R-closed;

II) i ∈ X iff ∀j[iRj � ∃k(jRk and k ∈ X)].

Of course, condition I) and II) are not equivalent in the case of QL.
Let us now focus on the different truth-conditions for the logical connectives.

Negation
The truth-condition for the connective ¬ turns out to be the same for QL and for
IL:
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i |= ¬α iff for any world j accessible to i, j |=/α.

In both cases, one is dealing with a non-compositional situation: the truth of a
negated sentence ¬α in a given world i essentially depends on the truth-status of
the positive sentence α in all the worlds that are accessible to i.

Conjunction
Conjunction is the only (primitive) connective that has a truth-functional (com-
positional) behavior both in the quantum logical and in the knowledge-in progress
models: a conjunction is true in a given world i iff both members are true in i
(like in classical semantics).

Disjunction
The most important divergence between quantum logical and knowledge-in progress
models concerns the behavior of disjunction. The quantum logical disjunction is
essentially non-compositional: a world i may verify a disjunction α � β even if
both members of the disjunction (α, β) are indeterminate for i. The truth-status
of α � β in a given world depends on the truth-status of α and β in other worlds,
according to the following condition:

i |= α � β iff ∀j ⊥/ i∃k ⊥/ j[k |= α or k |= β].

The positive (minimal and intuitionistic) disjunction is, instead, truth-functional
(like in classical semantics):

i |= α � β iff i |= α or i |= β.

It is worth-while recalling that intuitionistic disjunction is strongly prime even
from the proof-theoretic point of view. For, α � β is an intuitionistic logical
theorem iff either α or β is an intuitionistic logical theorem.

As is well known (unlike classical and quantum disjunction) the intuitionistic
disjunction is not definable in terms of negation and of conjunction (via de Morgan
law). Of course, a de Morgan disjunction �dM can be trivially defined also in the
framework of IL:

α �dM β := ¬(¬α � ¬β).

We have: |=IL α � β → α �dM β, but not the other way around. Apparently,
the truth of the intuitionistic de Morgan disjunction, does not imply the truth
of at least one member of the disjunction (as happens in the case of QL). This
failure of truth-functionality, however, is not sufficient to bring about a violation
of distributivity. One can show that, in spite of their asymmetrical behavior, the
intuitionistic connectives � and �dM do satisfy the distributivity-relations. In
fact, quantum logical non-distributivity seems to be essentially connected with
the non-transitive character of the accessibility relation.
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Conditional
The positive (minimal and intuitionistic) conditional is a primitive connective,
whose behavior is governed by the following (non-truth functional) condition:

i |= α → β iff ∀jRi[j |= α � j |= β].

The quantum logical conditional is, instead, defined in terms of ¬ and of �:

α → β := ¬[α � ¬(α � β)].

As a consequence one obtains that:

i |= α → β iff ∀j ⊥/ i[j |= α � ∃k ⊥/ j(k |= α and k |= β)].

Such a condition (which is clearly weaker than the corresponding condition for
the positive conditional) is responsible for most anomalies of the quantum logical
conditional. For instance, the following laws that hold for positive conditionals are
violated in OQL:

α → (β → α);

(α → (β → γ)) → ((α → β) → (α → γ));

(α → β) → ((β → γ) → (α → γ));

(α � β → γ) → (α → (β → γ));

(α → (β → γ)) → (β → (α → γ)).

Another interesting characteristic of the quantum logical conditional is a weak
nonmonotonic behavior . For, we have:

α → γ |=/QL α � β → γ.

In 1975 Hardegree15 has suggested that such anomalous aspects might be ex-
plained by conjecturing that the quantum logical conditional represents a kind of
counterfactual conditional. This hypothesis seems to be confirmed by some sig-
nificant physical examples. Let us consider again the Kripkean models that are
associated to a quantum system S.

Following Hardegree, we restrict our attention to the case of pure states. As a
consequence, we consider Kripkean models having the following form:

KS = 〈I , ⊥/ , Pr , V 〉 , where :

• I is the set of all pure states of S;

• ⊥/ is the nonorthogonality relation defined on I;

15See [Hardegree, 1975].
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• Pr is the set of all pure propositions of the event-state system

(C(H),S(H)). In other words: Z ∈ Pr iff Z is a closed set of pure states
(i.e., such that Z = Z⊥⊥);

• V (p) is the pure proposition consisting of all pure states that assign probability-
value 1 to the quantum event which p refers to.

Hardegree has shown that, in such a case, the conditional → turns out to receive
a quite natural counterfactual interpretation (in the sense of Stalnaker 16). More
precisely, one can define, for any sentence α of the language LS, a partial Stalnaker-
function fα in the following way:

fα : Dom(fα) �→ I,

where:
Dom(fα) := {i ∈ I : i �⊥ V (α)} .

In other words, fα is defined exactly for all the pure states that are not orthogonal
to the proposition of α.

If i ∈ Dom(fα), then:
fα(i) := PV (α)i,

where PV (α) is the projection determined by the closed subspace that is uniquely
associated with the pure proposition V (α) . The following condition holds:

i |= α → β iff either ∀j �⊥ i(j |=/α) or fα(i) |= β.

From an intuitive point of view, one can say that fα(i) represents the “pure state
nearest” to i, that verifies α, where “nearest” is here defined in terms of the metric
of the Hilbert space H. By definition and in virtue of von Neumann- Lüders axiom
(the collapse of the wave-function), fα(i) turns out to have the following physical
meaning: it represents the transformation of state i after the performance of a
measurement concerning the physical event expressed by α, provided the result
was positive. As a consequence, one obtains: α → β is true in a state i iff either α
is impossible for i or the state into which i has been transformed after a positive
α-test, verifies β.

As we have seen, the minimal and the intuitionistic negation can be defined
(in terms of → and of f). Is such a definition possible also in the case of OQL?
Suppose that the language of OQL contains an atomic sentence f such that for
any orthomodular model K = 〈I,⊥/ , Pr, V 〉 and any world i, i |=/ f . One can easily
show that the following equivalence holds (for any K and for any i):

i |= ¬α iff i |= α → f .

Hence, an alternative description of OQL might assume as primitive logical con-
stants the false sentence f and the positive connectives � and →. Then the

16See [Stalnaker, 1981].
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following conditions should be required for any orthomodular model K and for
any world i of K:

i |=/ f ;
i |= β � γ iff i |= β and i |= γ;
i |= β → γ iff ∀j ⊥/ i[j |= β � ∃k ⊥/ j(k |= β and k |= γ)].
On this basis, both the quantum logical negation and the quantum logical dis-

junction can be dealt with as defined logical constants. Needless to stress, such a
construction would not be possible in the case of orthologic, that does not admit
a well-behaved conditional.

4 THE “LINDENBAUM-ANOMALY”

The consistency-property behaves differently in the framework of different logics.
Let L represent either QL or ML or IL. The following concepts characterize
different semantic aspects of the intuitive idea of consistency. Let T be a set of
sentences of the logic L.

DEFINITION 22.

• T is verifiable in L iff there is an L-model K such that |=K T .

• T is realizable in L iff there is an L-model K and a world i of K such that
i |= T .

• T is semantically noncontradictory in L iff for any sentence α, T �L α�¬α.

• T is semantically α-consistent in L iff T �L α.

• T is semantically consistent in L iff there exists a sentence α such that T is
semantically α-consistent.

As is well known, IL gives rise to a strong relation between these different
aspects of the intuitive notion of consistency (relation that also holds in the case
of CL).

THEOREM 23. The following conditions are equivalent for IL:

• T is verifiable.

• T is realizable.

• T is semantically noncontradictory.

• T is semantically consistent.

• T is semantically f -consistent.
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The equivalence between semantic noncontradictory and semantic consistent
depends on the fact that intuitionistic logic is a scotian logic, where “ex absurdo
sequitur quodlibet” (α � ¬α |=IL β and f |=IL β). Minimal logic, instead, is an
important example of a non-scotian logic (for, α � ¬α |=/MLβ and f |=/MLβ).

At the same time, the noncontradiction principle, which is an immediate con-
sequence of Modus Ponens ( α � (α → f) → f) holds for ML. Furthermore, the
sentence f turns out to be equivalent to the contradictory sentence f � ¬f (:=
f � (f → f)) and to any contradiction expressed in a negative form (¬α � ¬¬α).

As a consequence, the following weaker theorem holds for ML:

THEOREM 24.

• T is verifiable iff T is realizable iff T is semantically noncontradictory iff T
is f -consistent.

• If T is semantically noncontradictory, then T is semantically consistent, but
generally not the other way around.

On this basis, one can prove that both ML and IL satisfy a strong metalogical
condition, that we will call pre-Lindenbaum. Let L be either ML or IL.

LEMMA 25. Pre-Lindenbaum Lemma
If T is semantically noncontradictory in L and T |=/ L¬α, then T ∪ {α} is seman-
tically noncontradictory in L.

An important consequence of the pre-Lindenbaum Lemma is a strong relation
between two relevant metalogical properties: logical completeness and maximality .

DEFINITION 26.

• T is logically complete in the logic L iff for any sentence α, either T |=L α
or T |=L ¬α.

• T is maximal in the logic L iff for any sentence α, the set T ∪ {α} is seman-
tically contradictory, if T |=/ L¬α.

Maximality and logical completeness turn out to be equivalent both in ML and
in IL.

THEOREM 27. A set T of sentences is maximal in L iff T is logically complete
in L.

The proof of the left-to-right implication essentially uses the pre-Lindenbaum
Lemma.

On this basis, both a weak and a strong version of the Lindenbaum-theorem
can be proved for minimal and intuitionistic logic. Let L be either ML or IL.

THEOREM 28. Weak Lindenbaum
For any set of sentences T that is semantically noncontradictory in L, there exists
a set of sentences T ′ such that:



Quantum Logic and Nonclassical Logics 147

• T ⊆ T ′;

• T ′ is semantically noncontradictory in L;

• T ′ is maximal in L.

As is well known, the standard proof of the Lindenbaum-theorem refers to an
enumeration of the sentences of the language (β1, β2, . . . ). On this basis, an infinite
sequence of set of sentences is defined:

T0 = T

Tn+1 =

{
Tn ∪ {βn+1} , if Tn ∪ {βn+1} is semantically noncontradictory;
Tn, otherwise.

By putting T ′ =
⋃

n Tn, one can prove that T ′ is noncontradictory and maxi-
mal.17

By Lemma 25 one immediately obtains that also the strong version of the
Lindenbaum-theorem holds for L.

THEOREM 29. Strong Lindenbaum
For any set of sentences T that is semantically noncontradictory in L, there exists
a set of sentences T ′ such that:

• T ⊆ T ′;

• T ′ is semantically noncontradictory in L;

• T ′ is logically complete in L.

In other words, any noncontradictory set of sentences T can be extended to a
set T ′, where any problem (expressed in the language) is semantically decided .

What happens in the case of QL? As we already know, QL is a scotian logic
(where α � ¬α |= β). Hence, semantically contradictory and semantically consis-
tent collapse into one and the same concept (like in IL and in CL). At the same
time (unlike ML and IL) verifiability and realizability split into two different
concepts.

THEOREM 30. In QL:

I) T is semantically noncontradictory iff T is realizable.

II) If T is verifiable, then T is realizable, but generally not the other way around.

Proof. The proof of I) is trivial. As to II), verifiability trivially implies realiz-
ability. A counterexample to the opposite implication is given by the following
sentence γ (which represents the negation of the a-fortiori principle):

γ = ¬[α → (β → α)] = ¬¬[α � ¬(α � ¬(β � ¬(β � α)))].
17Of course, the proof makes essential use of the completeness theorem for the logic L (or,

alternatively, of the semantic compactness theorem).
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Consider a Kripkean model KS = 〈I,⊥/ , Pr, V 〉, associated to a quantum system S
whose state-event system is (S(H), C(H)), where H is the two-dimensional Hilbert
space C2. Suppose that α and β are two atomic sentences such that V (α) and V (β)
are propositions corresponding to two different non-orthogonal one-dimensional
closed subspaces of H. One immediately obtains that:

V (γ) = V (α) �= ∅.
Hence, there exists a pure state of S that verifies γ, and consequently γ is realiz-
able. At the same time, γ cannot be verifiable. For, one can easily show that the
hypothesis that there exists a model K = 〈I,⊥/ , Pr, V 〉 such that V (γ) = I, leads
to a contradiction. �

As a consequence, one immediately obtains the failure of the strong Lindenbaum-
property for QL. Suppose, by contradiction, that any semantically noncontradic-
tory T admits a semantically noncontradictory and logically complete extension
T ′. One can easily show that any semantically noncontradictory and logically
complete T ′ is verifiable by a classical Kripkean model K = 〈I,⊥/ , Pr, V 〉 such
that:

• I is a singleton set {i}, where i is any object;

• ⊥/ is the identity relation on I;

• Pr is the power-set of I;

• V (p) =

{
{i} , if T ′ |=QL p;
∅, otherwise.

Since T ′ is semantically noncontradictory and logically complete, K is well de-
fined. Moreover we have:

i |= α iff |=K α iff T ′ |=QL α.

Consequently, T ′ is verifiable.
Although the strong version of the Lindenbaum-theorem is violated in QL, the

weak version of the theorem is valid. In other words, any semantically noncon-
tradictory set of sentences T can be extended to a set T ′ that is semantically
noncontradictory and maximal. The proof runs like in the case of ML and of IL.
However (unlike ML, IL and CL) maximality does not imply logical completeness
in QL.

THEOREM 31. If T is logically complete (in QL), then T is maximal (in QL),
but generally not the other way around.

Proof. The proof that logical completeness implies maximality is trivial. Maxi-
mality, instead, cannot imply logical completeness. For, as we have seen, there are
examples of semantically noncontradictory sentences γ that admit a maximal non-
contradictory extension and do not admit any noncontradictory logically complete
extension. �
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Also the pre-Lindenbaum property is violated in QL. A counterexample can be
obtained as follows.

Put T = {β} and α = ¬(γ → β). We have β |=/QL¬α, because
β |=/QL γ → β, as shown by counterexamples in C2. At the same time, T ∪ {α} is
clearly semantically contradictory.

Only the following weak pre-Lindenbaum condition holds for QL.

THEOREM 32. If T is semantically noncontradictory and T |=/QLα, then there
exists a set of sentences T ′ such that:

1) T ′ |=QL ¬α;

2) T and T ′ are logically compatible. In other words, for any sentence β, if
T |=QL β, then T ′ |=/QL¬β.18

5 QUANTUM LOGIC AND THE HIDDEN VARIABLE PROBLEM

The failure of the Lindenbaum property in QL has represented a powerful met-
alogical tool that has been used to prove the impossibility of completing QT via
some (non-contextual) hidden variable hypotheses .19

The debate concerning the question whether QT can be considered a physically
complete account of microphenomena has a long and deep history. A turning point
in this discussion has been the celebrated Einstein-Bohr debate, with the ensuing
charge of incompleteness raised by the Einstein-Podolsky-Rosen argument (EPR).

As we already know, in the framework of orthodox QT, physical systems can be
prepared in pure states that have, in general, positive dispersion for most physical
quantities. In the EPR argument, the attention is focused on the question whether
the account of the microphysical phenomena provided by QT is to be regarded as
an exhaustive description of the physical reality to which those phenomena are
supposed to refer, a question to which Einstein himself answered in the negative.

There is a mathematical side of the completeness issue: the question becomes
whether states with positive dispersion can be represented as a different, dispersion-
free, kind of states in a way that is consistent with the mathematical constraints
of the quantum theoretical formalism. In his book on the mathematical founda-
tions of quantum mechanics, von Neumann proved a celebrated “No go theorem”
asserting the logical incompatibility between the quantum formalism and the ex-
istence of dispersion-free states (satisfying some general conditions). Already in
the preface, von Neumann anticipates the program and the conclusion concerning
the possibility of ‘neutralizing’ the statistical character of QT:

There will be a detailed discussion of the problem as to whether it is
possible to trace the statistical character of quantum mechanics to an
ambiguity (i.e., incompleteness) in our description of nature. Indeed,

18See [Dalla Chiara and Giuntini, 2002].
19See, for instance, [Giuntini, 1991b].
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such an interpretation would be a natural concomitant of the general
principle that each probability statement arises from the incomplete-
ness of our knowledge. This explanation “by hidden parameters” [...]
has been proposed more than once. However, it will appear that this
can scarcely succeed in a satisfactory way, or more precisely, such an
explanation is incompatible with certain qualitative fundamental pos-
tulates of quantum mechanics.

According to the advocates of hidden variables, QT is a physically incomplete
theory . The intuitive idea that represents the common background to almost all
hidden variable theories can be described in the following way:

(I) the reason why a physical theory is statistical depends on the fact that the
description provided by the states is incomplete.

(II) It is possible to add a set Ξ of parameters (hidden variables) in such a way
that

• for every state s and for every ω ∈ Ξ, there exists a dispersion-free (di-
chotomous) state sω which semantically decides every property (event)
of the physical system at issue;

• the statistical predictions of the original theory should be recovered by
averaging over these dichotomous states;

• the algebraic structures determined by the properties (events) of the
system should be preserved in the hidden variable extension.

The hidden variable theories based on the assumptions (I) and (II) are usually
called non-contextual , because they require the existence of a single space Ξ of
hidden variables determining dispersion-free states. A weaker position is repre-
sented by the contextual hidden variable theories, according to which the choice of
the hidden variable space depends on the physical quantity to be dealt with. As
pointed out by Beltrametti and Cassinelli [1981]:

Despite the absence of mathematical obstacles against contextual hid-
den variable theories, it must be stressed that their calling for com-
pleted states that are probability measures not on the whole proposi-
tion [event] lattice E but only on a subset of E is rather far from intuitive
physical ideas of what a state of a physical system should be. Thus,
contextual hidden variable theorists, in their search for the restoration
of some classical deterministic aspects, have to pay, on other sides, in
quite radical departures from properties of classical states.

Von Neumann’s proof of his “No go theorem” was based on a general assumption
that has been, later, considered too strong. The condition asserts the following:

Let sω be a dispersion-free state and let A,B be two (possibly noncompatible)
observables. Then, Exp(A + B, sω) = Exp(A, sω) + Exp(B, sω).
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In other words, the expectation functional Exp determined by the completed
state sω is linear.

In the late Sixties, Kochen and Specker published a series of articles, developing
a purely logical argument for a “No go theorem,” such that von Neumann’s strong
assumption can be relaxed.20

Kochen and Specker’s proof is based on a variant of quantum logic, that has
been called partial classical logic (PCL). The basic semantic idea is the following:
unlike orthologic and orthomodular quantum logic (which are total logics, because
the meaning of any sentence is always defined), molecular sentences of PCL can
be semantically undefined. From the semantic point of view, the crucial relation is
represented by a compatibility relation, that may hold between the meanings of two
sentences. As expected, the intended physical interpretation of the compatibility
relation is the following: two sentences α and β have compatible meanings iff α
and β can be simultaneously tested. Models of PCL are special kinds of algebraic
models based on partial Boolean algebras (weaker versions of Boolean algebras
where the meet and the join are only defined for pairs of compatible elements).

All these investigations have revealed that there is a deep logical connection
between the two following questions:

• does a quantum system S admit a non-contextual hidden variable theory?

• Does PCL satisfy a version of the Lindenbaum property with respect to the
algebraic models concerning the events that may occur to the system S?

6 THE UNSHARP APPROACHES TO QT

The essential indeterminism of QT gives rise to a kind of ambiguity of the quantum
world. Such ambiguity can be investigated at different levels. The first level
concerns the characteristic features of quantum pure states, which represent pieces
of information that are at the same time maximal and logically incomplete. As
we have seen, the divergence between maximality and logical completeness is the
origin of most logical anomalies of the quantum phenomena.

A second level of ambiguity is connected with a possibly fuzzy character of the
physical events that are investigated. We can try and illustrate the difference
between two “fuzziness-levels” by referring to a nonscientific example. Let us
consider the two following sentences, which apparently have no definite truth-
value:

I) Hamlet is 1.70 meters tall;

II) Brutus is an honourable man.

The semantic uncertainty involved in the first example seems to depend on the
logical incompleteness of the individual concept associated to the name “Hamlet.”

20See Kochen and Specker [1965a; 1965b; 1967].
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In other words, the property “being 1.70 meters tall” is a sharp property. However,
our concept of Hamlet is not able to decide whether such a property is satisfied
or not. Unlike real persons, literary characters have a number of indeterminate
properties. On the contrary, the semantic uncertainty involved in the second
example, is mainly caused by the ambiguity of the concept “honourable.” What
does it mean “being honourable?” One need only recall how the ambiguity of the
adjective “honourable” plays an important role in the famous Mark Anthony’s
monologue in Shakespeare’s “Julius Caesar.” Now, orthodox QT generally takes
into consideration examples of the first kind (our first level of fuzziness): events
are sharp, while all semantic uncertainties are due to the logical incompleteness of
the individual concepts, that correspond to pure states of quantum objects. This
is the reason why orthodox QT is sometimes called sharp QT, in contrast with
unsharp QT, which also investigates examples of the second kind (second level of
fuzziness).

Strangely enough, the abstract researches on fuzzy logics and on quantum struc-
tures have undergone quite independent developments for many decades during the
20-th century. Only after the Eighties, there emerged an interesting convergence
between the investigations about fuzzy and quantum structures, in the framework
of the so called unsharp approach to quantum theory . In this connection a sig-
nificant conjecture has been proposed: perhaps some apparent mysteries of the
quantum world should be described as special cases of some more general fuzzy
phenomena, whose behavior has not yet been fully understood.

In 1983 the German physicist G. Ludwig published the book Foundations of
Quantum Mechanics, which has been later regarded as the birth of the unsharp
approach to QT. Paradoxically enough, Ludwig has always been an “enemy” of
quantum logic. In spite of this, his ideas have greatly contributed to the re-
vival of the quantum logical investigations during the last two decades. Ludwig’s
pioneering work has been further developed by many scholars (Kraus, Davies,
Mittelstaedt, Busch, Lahti, Bugajski, Beltrametti, Nisticò, Foulis, Bennett, Gud-
der, Greechie, Pulmannová, Dvurečenskij, Riečan, Riečanova, Schroeck and many
others including the authors of this chapter).

The starting point of the unsharp approach is deeply connected with a general
problem that naturally arises in the framework of Hilbert space QT. Let us consider
the event-state system (Π(H) ,S(H)) of a quantum system S, where Π(H) is the
set of projections, while S(H) is the set of density operators of the Hilbert space H
(associated to S). One can ask the following question: do the sets Π(H) and S(H)
correspond to an optimal possible choice of adequate mathematical representatives
for the intuitive notions of event and of state, respectively?

Consider first the notion of state. Once Π(H) is fixed, Gleason’s Theorem21

guarantees that any probability measure defined on Π(H) is determined by a den-
sity operator of H (provided the dimension of H is greater than or equal to 3).
Hence, S(H) corresponds to an optimal notion of state.

Let us discuss then the notion of event and let us ask whether Π(H) represents

21See [Gleason, 1957] and [Dvurečenskij, 1993].
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the largest set of operators assigned a probability-value, according to the Born
rule. The answer to this question is negative.

One can easily recognize the existence of bounded linear operators E that are
not projections and that satisfy the following condition:

for any density operator ρ, tr(ρE) ∈ [0, 1].22

Recalling the Born rule, this means that such operators E “behave as possible
events,” because any state assigns to them a probability value.

An interesting example of this kind is represented by the operator 1
2 I (where

I is the identity operator). One immediately realizes that 1
2 I is a linear bounded

operator that is not a projection, because:

1
2

I
1
2

I =
1
4

I �= 1
2

I

(hence 1
2 I fails to be idempotent).

At the same time, for any density operator ρ we have:

tr(ρ
1
2

I) =
1
2
.

Thus, 1
2 I seems to represent a totally indeterminate event, to which each state

assigns probability 1
2 . Apparently, the event 1

2 I plays the role that, in fuzzy set
theory, is played by the semitransparent fuzzy set 1

21 such that for any object x
of the universe:

1
2
1(x) =

1
2
.

This situation suggests that we liberalize the notion of quantum event and
extend the set Π(H) to a new set of operators. Following Ludwig, the elements of
this new set have been called effects . The precise mathematical definition of effect
is the following:

DEFINITION 33. Effects
An effect of H is a bounded linear operator E that satisfies the following condition,
for any density operator ρ:

tr(ρE) ∈ [0, 1].

We denote by E(H) the set of all effects of H.
Clearly, E(H) properly includes Π(H). Because:

• any projection satisfies the definition of effect;

• there are examples of effects that are not projections (for instance the effect
1
2 I, that is usually called the semitransparent effect).

22See Deff. 152, 153, 158.
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By definition, effects turn out to represent a kind of maximal mathematical rep-
resentative for the notion of quantum event, in agreement with the basic statistical
rule of QT (the Born rule).

Unlike projections, effects represent quite general mathematical objects that
describe at the same time events and states. Let E be any effect in E(H). The
following conditions hold:

• E represents a sharp event (∈ Π(H)) iff E is idempotent (EE = E);

• E is a density operator (representing a state) iff tr(E) = 1;

• E represents a pure state iff E is at the same time a projection and a density
operator.

6.1 Algebraic effect-structures

There are different algebraic structures that can be induced on the set of all effects
in a Hilbert space.

One immediately realizes that the set E(H) can be naturally structured as a
regular involution bounded poset23:

〈E(H) , ≤ , ′ , 0 ,1〉 ,

where

(i) ≤ is the natural order determined by the set of all density operators. In
other words:

E ≤ F iff for any density operator ρ ∈ D(H), tr(ρE) ≤ tr(ρF ).

(i.e., any state assigns to E a probability-value that is less or equal than the
probability-value assigned to F );

(ii) E′ = 1 − E (where − is the standard operator difference);

(iii) 0, 1 are the null projection (O) and the identity projection (I), respectively.

One can easily check that:

• ≤ is a partial order;

• ′ is an involution;

• 0 and 1 are respectively the minimum and the maximum with respect to ≤;

• the regularity condition holds. In other words:

E ≤ E′ and F ≤ F ′ implies E ≤ F ′.
23See Def. 117- 124.
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The effect poset E(H) turns out to be properly fuzzy. The noncontradiction
principle is violated: for instance the semitransparent effect 1

2 I satisfies the follow-
ing condition:

1
2

I ∧ (
1
2

I)′ =
1
2

I ∧ 1
2

I =
1
2

I �= 0.

This is one of the reasons why proper effects (those that are not projections)
may be regarded as representing unsharp physical events. Accordingly, we will
also call the involution operation of an effect-structure a fuzzy complement .

At the same time, the effect-poset fails to be a lattice. As proved by Greechie
and Gudder in 1996, some pairs of effects have no meet.24

The effect poset E(H) can be expanded to a richer structure, equipped with a
new complement ∼, that has an intuitionistic-like behavior. Such operation ∼ has
been called the Brouwer complement .25

DEFINITION 34. The Brouwer complement

∀E ∈ E(H) : E∼ = PKer(E).

In other words, the Brouwer complement of E is the projection operator PKer(E)

whose range is Ker(E), the kernel of E.26

By definition, the Brouwer complement of an effect is always a projection. In
the particular case, when E is a projection, it turns out that E′ = E∼, in other
words, the fuzzy and the intuitionistic complement collapse into one and the same
operation.

The structure 〈E(H) , ≤ , ′ , ∼ , 0 ,1〉 turns out to be a particular example of
a kind of abstract structure that has been termed Brouwer Zadeh poset .27 The
abstract definition of Brouwer Zadeh posets is the following:

DEFINITION 35. Brouwer Zadeh poset
A Brouwer Zadeh poset (or BZ-poset) is a structure

〈B , ≤ , ′ , ∼ , 0 ,1〉 ,

where

(i) 〈B , ≤ , ′ , 0 ,1〉 is a regular poset;

(ii) ∼ is a unary operation that behaves like an intuitionistic complement:

(iia) a ∧ a∼ = 0;

(iib) a ≤ a∼∼;

(iic) a ≤ b implies b∼ ≤ a∼.

24See [Gudder and Greechie, 1996].
25See [Cattaneo and Nisticó, 1989].
26The kernel of E is the set of all vectors of H that are transformed by E into the null vector.
27See [Cattaneo and Nisticó, 1989].
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(iii) The following relation connects the fuzzy and the intuitionistic complement:

a∼′ = a∼∼.

Of course, any BZ-poset 〈B , ≤ , ′ , ∼ , 0 ,1〉 where the two complements ′ and
∼ coincide, turns out to be an orthoposet (i.e. a bounded involution poset, where
the involution ′ satisfies the noncontradiction and the excluded middle principles).

One can prove that the concrete effect-structure

〈E(H) , ≤ , ′ , ∼ , 0 ,1〉

is a Brouwer Zadeh poset, that is not an orthoposet.
An interesting feature of the Brouwer Zadeh structures is the possibility to

define two unary operations ν and μ, which turn out to behave as the modal
operators necessarily and possibly , respectively.

DEFINITION 36. The modal operators
Let 〈B , ≤ , ′ , ∼ , 0 ,1〉 be a Brouwer Zadeh poset.

ν(a) := a′∼; μ(a) := a∼′.

In other words, necessity is identified with the intuitionistic negation of the fuzzy
negation, while possibility is identified with the fuzzy negation of the intuitionistic
negation.

The modal operators ν and μ turn out to have a typical S5-like behavior. For,
the following conditions are satisfied:

• ν(a) ≤ a

Necessarily a implies a.

• If a ≤ b, then ν(a) ≤ ν(b)

If a implies b, then the necessity of a implies the necessity of b.

• a ≤ ν(μ(a))

a implies the necessity of its possibility.

• ν(ν(a)) = ν(a)

Necessity is equivalent to the necessity of the necessity.

• ν(μ(a)) = μ(a)

The necessity of a possibility is equivalent to the possibility.

Of course, in any BZ-poset 〈B , ≤ , ′ , ∼ , 0 ,1〉 where the two complements ′ and ∼

coincide, we obtain a collapse of the modalities. In other terms, ν(a) = a = μ(a).
Let us now return to concrete (Hilbert-space) Brouwer Zadeh posets

〈E(H) , ≤ , ′ , ∼ , 0 ,1〉 ,
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and consider the necessity ν(E) of a given effect E (which may be either sharp or
unsharp). One can easily prove the following lemma.

LEMMA 37.

(i) E is a projection iff E = ν(E) = E′∼ = PKer(E′).

(ii) Let P be any projection.

P ≤ E implies P ≤ ν(E).

As a consequence, we can say that ν(E) represents a kind of “best sharp lower
approximation of E.”

Brouwer Zadeh posets do not represent the only interesting way of structuring
the set of all concrete effects. Other important structures that have naturally
emerged from effect-systems are effect algebras and quantum MV algebras. Such
structures (introduced in the late Eighties and in the Nineties) have represented a
privileged object of research for the logico-algebraic approach to QT at the turn
of the century.

We will first sketch the definition of effect algebra (also called unsharp orthoal-
gebras)28. One is dealing with a particular kind of partial structure, equipped with
a basic operation � that is only defined for special pairs of elements. From an in-
tuitive point of view, such an operation can be regarded as an exclusive disjunction
(aut), defined for events that are logically incompatible.

The abstract definition of effect algebra is the following.

DEFINITION 38. Effect algebra
An effect algebra is a partial structure

A = 〈A , � , 0 ,1〉 ,

where � is a partial binary operation on A, and 0 and 1 are special distinct
elements of A. When � is defined for a pair a , b ∈ A, we will write ∃(a � b).

The following conditions hold:

(i) Weak commutativity
∃(a � b) implies ∃(b � a) and a � b = b � a;

(ii) Weak associativity
∃(b � c) and ∃(a � (b � c)) implies ∃(a � b) and ∃((a � b) � c) and
a � (b � c) = (a � b) � c;

(iii) Strong excluded middle
For any a, there exists a unique x such that a � x = 1;

(iv) Weak consistency
∃(a � 1) implies a = 0.

28See [Giuntini and Greuling, 1989; Foulis and Bennett, 1994; Dalla Chiara and Giuntini, 1994;
Dvurečenskij, 2000; Dalla Chiara et al., 2004].
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An orthogonality relation ⊥, a partial order relation ≤ and a generalized com-
plement ′ (which generally behaves as a fuzzy complement) can be defined in any
effect algebra.

DEFINITION 39. Let 〈A , � , 0 ,1〉 be an effect algebra and let a, b ∈ A.

(i) a ⊥ b iff a � b is defined in A.

(ii) a ≤ b iff ∃c ∈ A such that a ⊥ c and b = a � c.

(iii) The generalized complement of a is the unique element a′ such that
a � a′ = 1.

One can show that any effect algebra 〈A , � , 0 ,1〉 gives rise to a bounded
involution poset 〈A , ≤ , ′ , 0 ,1〉, where ≤ and ′ are defined according to Definition
39.

(iii) The category of all effect algebras turns out to be (categorically) equivalent
to the category of all difference posets, which have been first studied by Kôpka
and Chovanec and further investigated by Pulmannová and others.29

Effect algebras represent weak examples of orthoalgebras, a category of partial
structures that Foulis and Randall had introduced in 1981.30 Roughly, orthoal-
gebras are effect algebras that satisfy the noncontradiction principle. In such
algebras, the involution ′ becomes an orthocomplementation.

The precise mathematical definition is the following:

DEFINITION 40. Orthoalgebras
An orthoalgebra is an effect algebra 〈A , � , 0 ,1〉 such that the following condition
is satisfied:

∃(a � a) implies a = 0 (Strong consistency).

In other words: 0 is the only element that is orthogonal to itself.

One can easily realize that orthoalgebras always determine an orthoposet. Let
A = 〈A , � , 0 ,1〉 be an orthoalgebra. The structure

〈A , ≤ , ′ , 0 ,1〉

(where ≤ and ′ are the partial order and the generalized complement of A) is an
orthoposet . For, given any a ∈ A, the infimum a ∧ a′ exists and is equal to 0;
equivalently, the supremum a ∨ a′ exists and is equal to 1.

THEOREM 41. Any orthoalgebra A = 〈A , � , 0 ,1〉 satisfies the following condi-
tion: if a, b ∈ A and a ⊥ b, then a � b is a minimal upper bound for a and b in
A.

29See [Kôpka and Chovanec, 1994],[Pulmannová, 1995].
30See [Foulis and Randall, 1981].
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COROLLARY 42. Any orthoalgebra A = 〈A , � , 0 ,1〉 satisfies the following con-
dition: for any a, b ∈ A such that a ⊥ b, if the supremum a ∨ b exists, then
a ∨ b = a � b.

Orthoalgebras and orthomodular posets turn out to be deeply connected. Any
orthomodular poset 〈A , ≤ , ′ , 0 ,1〉 determines an orthoalgebra

〈A , � , 0 ,1〉 ,

where: a� b is defined iff a ≤ b′. Furthermore, when defined, a� b = a∨ b. At the
same time, not every orthoalgebra is an orthomodular poset (as shown by Wright
in 199031).

Genuine examples of effect algebras (which are not generally orthoalgebras) can
be naturally obtained in the domain of fuzzy set systems.

EXAMPLE 43. Effect algebras of fuzzy sets
Let B be the set of all fuzzy subsets of a universe U (in other words, B is the set
of all functions assigning to any element of U a value in the real interval [0, 1] ).

A partial operation � can be defined on B. For any f, g ∈ B:

∃(f � g) iff ∀x ∈ U : f(x) + g(x) ≤ 1,

where + is the usual sum of real numbers. Furthermore:

if ∃(f � g), then f � g := f + g,

where:
∀x ∈ U {(f + g)(x) := f(x) + g(x)} .

Let 1 be the classical characteristic function of the total set U , while 0 is the
classical characteristic function of the empty set ∅.

The structure 〈B , � , 0 ,1〉 is an effect algebra.
It turns out that the effect-algebra generalized complement ′ coincides with the
fuzzy complement. In other words:

∀x ∈ U : f ′(x) = 1 − f(x).

Furthermore, the effect-algebra partial order relation coincides with the natural
partial order of B. In other words:

∀x ∈ U [f(x) ≤ g(x)] iff ∃h ∈ B[f ⊥ h and g = f � h].

The effect algebra 〈B , � , 0 ,1〉 is not an orthoalgebra, because the strong consis-
tency condition is violated by some genuine fuzzy sets (such as the semitransparent
fuzzy set 1

21 that assigns to any object x value 1
2 ).

31See [Wright, 1990].
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How can we induce the structure of an effect algebra on the set E(H) of all
effects of the Hilbert space H? As in the fuzzy-set case, it is sufficient to define
the partial sum � as follows:

∃(E � F ) iff E + F ∈ E(H),

where + is the usual sum-operator. Furthermore:

E � F := E + F, if ∃(E � F ).

It turns out that the structure 〈E(H) , � , O , I〉 is an effect algebra (called standard
effect algebra or Hilbert effect algebra), where the generalized complement of any
effect E is just I−E. Furthermore, the effect-algebra order relation coincides with
the natural order defined on E(H). In other words:

∀ρ ∈ D(H)[tr(ρE) ≤ tr(ρF )] iff ∃G ∈ E(H)[E ⊥ G and F = E � G].

At the same time, this structure fails to be an orthoalgebra. For instance, the
semitransparent effect 1

2 I gives rise to a counterexample to the strong consistency
condition:

1
2

I �= O and
1
2

I � 1
2

I =
1
2

I + (
1
2

I)′ = I.

Let us now turn to the other kind of structure that naturally emerges from con-
crete effect systems. One is dealing with quantum MV algebras (QMV algebras):
they are weak variants of MV algebras (which represent privileged abstractions
from classical fuzzy set structures).32

Before introducing the notion of QMV algebra, it will be useful to sum up some
basic properties of MV algebras. As is well known, the set of all fuzzy subsets
of a given set X gives rise to a de Morgan lattice, where the noncontradiction
and the excluded middle principles are possibly violated. In this framework, the
lattice operations ( the meet ∧, the join ∨ and the fuzzy complement ′) do not
represent the only interesting fuzzy operations that can be defined. An important
role is played by a new kind of conjunction and disjunction, which have been first
investigated in the framework of 
Lukasiewicz’ approach to many valued logics.
These operations are usually called �Lukasiewicz operations.

The definition of 
Lukasiewicz conjunction and disjunction in the framework
of fuzzy set structures turns out to be quite natural. Fuzzy sets are nothing
but generalized characteristic functions whose range is the real interval [0, 1]. Of
course, [0, 1] is not closed under the ordinary real sum + (we may have x, y ∈
[0, 1] and x + y /∈ [0, 1]). However, one can introduce a new operation ⊕, which is
called truncated sum:

∀x, y ∈ [0, 1] {x⊕ y := min(1, x + y)} .

In other words, x⊕ y is the ordinary sum x+ y, whenever this sum belongs to the
interval; otherwise x⊕ y collapses into the maximum element 1.

32See [Giuntini, 1996].



Quantum Logic and Nonclassical Logics 161

One immediately realizes that [0, 1] is closed under the operation ⊕. Now, we
can use the truncated sum in order to define the 
Lukasiewicz disjunction between
fuzzy sets (since no confusion is possible, it will be expedient to use the same
symbol ⊕ both for the truncated sum and for the 
Lukasiewicz disjunction).

Let f, g be fuzzy subsets of a set X. The 
Lukasiewicz disjunction ⊕ is defined
as follows:

∀x ∈ X {(f ⊕ g)(x) := f(x) ⊕ g(x) = min(1, f(x) + g(x))} .

On this basis, the 
Lukasiewicz conjunction # can be defined, via de Morgan, in
terms of ⊕ and ′:

∀x ∈ X {(f # g)(x) := (f ′ ⊕ g′)′(x)} .

As a consequence, one obtains:

(f # g)(x) = max(0, f(x) + g(x) − 1).

From an intuitive point of view, the 
Lukasiewicz operations and the lattice
operations represent different notions of conjunction and disjunction that can be
used in a fuzzy situation. Consider two fuzzy sets f and g; they can be intuitively
regarded as two ambiguous properties. The number f(x) represents the “degree
of certainty” according to which the object x satisfies the property f . A similar
comment holds for g and g(x). What does it mean that the object x satisfies the
disjunctive property “f or g” with a given degree of certainty? If we interpret
“or” as the lattice join, we assume the following choice: an object satisfies a dis-
junction to a degree that corresponds to the maximum between the degrees of the
two members. If we, instead, interpret “or” as the 
Lukasiewicz disjunction, we
assume the following choice: the degrees of the members of the disjunction have
to be summed in such a way that one never goes beyond the absolute certainty
(the value 1). Of course, in the limit-case represented by crisp sets (i.e., classi-
cal characteristic functions) the 
Lukasiewicz disjunction and the lattice join will
coincide. Suppose x, y ∈ {0, 1}, then x⊕ y = max(x, y).

From the definitions, one immediately obtains that the 
Lukasiewicz operations
are not generally idempotent. It may happen:

a⊕ a �= a and a# a �= a.

As noticed by Mundici33, this is a typical semantic situation that seems to be
governed by the principle “repetita iuvant!” (repetitions are useful!). Of course
repetitions are really useful in all physical circumstances that are accompanied
by a certain noise. As a consequence, ⊕ and # do not give rise to a lattice
structure. At the same time, as with the lattice operations, they turn out to
satisfy commutativity and associativity:

f ⊕ g = g ⊕ f ; f # g = g # f ;
33See [Mundici, 1992].
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f ⊕ (g ⊕ h) = (f ⊕ g) ⊕ h; f # (g # h) = (f # g) # h.

Unlike the fuzzy lattice operations, the 
Lukasiewicz conjunction and disjunction
do satisfy both the excluded middle and the noncontradiction principle:

f ⊕ f ′ = 1; f # f ′ = 0.

Another important difference concerns the distributivity property. As opposed
to the case of ∧ and ∨ (which satisfy distributivity in the fuzzy set environment),
it may happen:

f # (g ⊕ h) �= (f # g) ⊕ (f # h);

f ⊕ (g # h) �= (f ⊕ g) # (f ⊕ h).

What can be said about the relationships between the 
Lukasiewicz operations
and the lattice operations? Interestingly enough, the lattice operations turn out to
be definable in terms of the fuzzy complement and of the 
Lukasiewicz operations.
For, we have:

f ∧ g := (f ⊕ g′) # g;

f ∨ g := (f # g′) ⊕ g.

In this framework, the conjunction ∧ will be also called et , while the disjunction
∨ will be called vel .

An interesting algebraic abstraction from fuzzy set structures can be obtained
if we restrict our attention to the fuzzy complement, the lattice operations and
the 
Lukasiewicz operations.

This gives rise to the abstract notion of an MV algebra (multi-valued algebra),
that Chang introduced in 1958 in order to provide an adequate semantic character-
ization for 
Lukasiewicz’ many-valued logics.34 MV algebras represent a weakening
of Boolean algebras, where the notion of conjunction (disjunction) is split into
two different operations. The first kind of operation behaves like a 
Lukasiewicz
conjunction (disjunction) and is generally nonidempotent; the second kind of oper-
ation is a lattice-meet (join). These algebras are also equipped with a generalized
complement. In this framework, the lattice operations turn out to be defined in
terms of the generalized complement and of the 
Lukasiewicz operations. Whenever
the two conjunctions (resp., disjunctions) collapse into one and the same operation,
one obtains a Boolean algebra.

Let us now recall the formal definition of MV algebra.

DEFINITION 44. MV algebra35

An MV algebra is a structure

M = 〈M , ⊕ , ′ , 0 ,1〉 ,

where ⊕ is a binary operation, ′ is a unary operation and 0, 1 are special distinct
elements satisfying the following conditions:

34See [Chang, 1958; Chang, 1959].
35See [Mangani, 1973; Cignoli and D’Ottaviano, 2000].
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(MV1) a⊕ b = b⊕ a;

(MV2) a⊕ (b⊕ c) = (a⊕ b) ⊕ c;

(MV3) a⊕ a′ = 1;

(MV4) a⊕ 0 = a;

(MV5) a⊕ 1 = 1;

(MV6) a′′ = a;

(MV7) (a′ ⊕ b)′ ⊕ b = (b′ ⊕ a)′ ⊕ a.

In any MV algebra M = 〈M , ⊕ , ′ , 0 ,1〉, the 
Lukasiewicz conjunction #,
the lattice operations ∧ and ∨, the 
Lukasiewicz implication →L, the partial order
relation ≤ can be defined as follows:

• a# b := (a′ ⊕ b′)′;

• a ∧ b := (a⊕ b′) # b;

• a ∨ b := (a# b′) ⊕ b;

• a →L b := a′ ⊕ b;

• a ≤ b iff a ∧ b = a.

It is not difficult to see that ∀a, b ∈ M : a ≤ b iff a →L b = a′ ⊕ b = 1.
Hence, the operation →L represents a well behaved conditional.36

LEMMA 45. Let M = 〈M , ⊕ , ′ , 0 ,1〉 be an MV algebra. Consider the structure

〈M , ≤ , ′ , 0 ,1〉 ,

where ≤ is the partial order defined on M. Such structure is a distributive bounded
involution lattice, where ∧ and ∨ represent the infimum and the supremum, re-
spectively. The noncontradiction principle (a ∧ a′ = 0) and the excluded middle
(a ∨ a′ = 1) are possibly violated.37

A privileged example of MV algebra can be defined by assuming as support the
real interval [0, 1].

DEFINITION 46. The [0, 1]-MV algebra
The [0, 1]-MV algebra is the structure

M[0,1] = 〈[0, 1] , ⊕ , ′ , 0 ,1〉 ,

where
36Generally, a binary operation → of a structure (which is at least a bounded poset) is con-

sidered a well behaved conditional, when: a ≤ b iff a → b = 1, for any elements a and b. By
assuming a natural logical interpretation, this means that the conditional a → b is “true” iff the
“implication-relation” a ≤ b holds.

37See, for instance, [Cignoli and D’Ottaviano, 2000].
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• ⊕ is the truncated sum. In other words:

∀x, y ∈ [0, 1] {x⊕ y = min(1, x + y)} ;

• ∀x ∈ [0, 1] {x′ = 1 − x} ;

• 0 = 0;

• 1 = 1.

One can easily realize that M[0,1] is a special example of MV algebra where:

• the partial order ≤ is a total order (coinciding with the natural real order);

• x ∧ y = min(x, y);

• x ∨ y = max(x, y).

Let us now return to the concrete effect-structure 〈E(H) , � , 0 ,1〉. The par-
tial operation � can be naturally extended to a total operation ⊕ that behaves
similarly to a truncated sum. For any E,F ∈ E(H),

E ⊕ F :=

{
E + F if ∃(E � F ),
1 otherwise.

Furthermore, let us define:
E′ := I − E.

The structure 〈E(H) , ⊕ , ′ , 0 ,1〉 turns out to be “very close” to an MV al-
gebra. However, something is missing: E(H) satisfies the first six axioms of the
definition of an MV algebra; at the same time one can easily check that the final
axiom (usually called “
Lukasiewicz axiom”) is violated. For instance, consider
two nontrivial projections P,Q such that P is not orthogonal to Q′ and Q is not
orthogonal to P ′. Then, by the definition of ⊕ given immediately above, we have
that P ⊕Q′ = I and Q⊕P ′ = I. Hence, (P ′ ⊕Q)′ ⊕Q = Q �= P = (Q′ ⊕P )′ ⊕P .

As a consequence, the 
Lukasiewicz axiom must be conveniently weakened to
obtain an adequate description of concrete effect structures. This can be done by
means of the notion of quantum MV algebra (QMV algebra).38

As with MV algebras, QMV algebras are total structures having the following
form: M = 〈M , ⊕ , ′ , 0 ,1〉 , where:

(i) 0 ,1 represent the impossible and the certain object, respectively;

(ii) ′ is the negation-operation;

(iii) ⊕ represents a disjunction (or) which is generally nonidempotent (a⊕a �= a).

38See [Giuntini, 1996].
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A (generally nonidempotent) conjunction (and) is then defined via the de Mor-
gan law:

a# b := (a′ ⊕ b′)′.

On this basis, a pair consisting of an idempotent conjunction et and of an
idempotent disjunction vel is then defined. As we have already discussed, in any
MV algebra such idempotent operations behave as a lattice-meet and lattice-join,
respectively. However, this is not the case for QMV algebras. As a consequence,
in such a more general situation, we will denote the et operation by the symbol
�, while the vel will be indicated by 	. The definition of et and vel is as in the
MV-case:

a � b := (a⊕ b′) # b

a 	 b := (a# b′) ⊕ b.

DEFINITION 47. QMV algebra
A quantum MV algebra (QMV algebra) (QMV) is a structure

M = 〈M , ⊕ , ′ , 0 ,1〉 ,

where ⊕ is a binary operation, ′ is a unary operation, and 0,1 are special distinct
elements of M . For any a, b ∈ M : a# b := (a′ ⊕ b′)′ , a� b := (a⊕ b′)# b , a 	 b :=
(a# b′) ⊕ b. Assume that the following conditions hold:

(QMV1) a⊕ b = b⊕ a;

(QMV2) a⊕ (b⊕ c) = (a⊕ b) ⊕ c;

(QMV3) a⊕ a′ = 1;

(QMV4) a⊕ 0 = a;

(QMV5) a⊕ 1 = 1;

(QMV6) a′′ = a;

(QMV7) a⊕ [(a′ � b) � (c � a′)] = (a⊕ b) � (a⊕ c).

By Axioms (QMV3), (QMV1) and (QMV4), one immediately obtains that

0′ = 1.

The operations � and 	 of a QMV algebra M are generally noncommutative.
As a consequence, they do not represent lattice-operations. It is not difficult to
prove that � is commutative iff 	 is commutative iff (MV7) of Definition 44 holds.
From this it easily follows that a QMV algebra M is an MV algebra iff � or 	 is
commutative.

At the same time (as in the MV-case), we can define in any QMV algebra
〈M , ⊕ , ′ , 0 ,1〉 the following relation:

a ≤ b iff a � b = a.
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The structure
〈M , ≤ , ′ , 0 ,1〉

turns out to be a bounded involution poset.
One can prove that the concrete effect structure 〈E(H) , ⊕ , ′ , 0 ,1〉 is a QMV

algebra (which is not an MV algebra).

7 UNSHARP QUANTUM LOGICS

Orthologic, orthomodular quantum logic and partial classical logic are all examples
of sharp logics. Both the logical and the semantic version of the noncontradiction
principle hold:

• any contradiction α � ¬α is always false;39

• a sentence α and its negation ¬α cannot both be true.

Some unsharp forms of quantum logic have been proposed (in the late Eighties
and in the Nineties) as natural logical abstractions from the effect-state systems.40

The most obvious unsharp weakening of orthologic is represented by a logic that
has been called paraconsistent quantum logic (briefly, PQL).41 In the algebraic
semantics, this logic is characterized by the class of all models based on a bounded
involution lattice, where the noncontradiction principle (a ∧ a′ = 0) is possibly
violated. In the Kripkean semantics, instead, PQL is characterized by the class
of all models K = 〈I , R , P r , V 〉, where the accessibility relation R is symmetric
(but not necessarily reflexive), while Pr behaves as in the OL case (i.e., Pr is a
set of propositions that contains I, ∅ and is closed under the operations ∩ and
′). Any pair 〈I , R〉, where R is a symmetric relation on I, is called a symmetric
frame. All the other semantic definitions are given as in the case of OL, mutatis
mutandis. On this basis, one can show that our algebraic and Kripkean semantics
characterize the same logic.

Unlike OL and OQL, a world i of a PQL-Kripkean model may verify a con-
tradiction. Since R is generally not reflexive, it may happen that i ∈ V (α) and
i ⊥ V (α). Hence, i |= α � ¬α. In spite of this, a contradiction cannot be verified
by all worlds of a model K. It is worth-while noticing that, unlike OQL, the
connective negation could not be defined in terms of f and of → in the framework
of PQL. In fact, should → satisfy Modus Ponens, we would immediately obtain
for any i: i |= ¬(α � ¬α)(:= α � (α → f) → f).

Hilbert-space models for PQL can be constructed in a natural way. In the
Kripkean semantics, consider the models based on the following frame

〈E(H) − {0} , �⊥〉 ,
39Of course, in the case of partial classical logic, contradictions are false only if defined.
40See [Dalla Chiara et al., 2004].
41See [Dalla Chiara and Giuntini, 1989].
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where �⊥ represents the nonorthogonality relation between effects (E �⊥ F iff
E �≤ F ′). Unlike the corresponding case involving projections, in this situation
the accessibility relation is symmetric but generally nonreflexive. For instance, the
semi-transparent effect 1

2 I (representing the prototypical ambiguous property) is
a fixed point of the generalized complement ′. Hence,

1
2

I ⊥ 1
2

I and (
1
2

I)′ ⊥ (
1
2

I)′.

From the physical point of view, possible worlds are here identified with possible
pieces of information about the physical system under investigation. Any infor-
mation may correspond to:

• a pure state (a maximal information);

• a proper mixture (a non-maximal information);

• a projection (a sharp property);

• a proper effect (an unsharp property).

Thus, unlike the sharp models of orthomodular quantum logic, here possible
worlds do not always correspond to states of the quantum system under investiga-
tion. As expected, violations of the noncontradiction principle will be determined
by unsharp (ambiguous) pieces of knowledge.

PQL represents a somewhat rough logical abstraction from the class of all effect-
structures. As we already know, a characteristic condition that holds in all effect
structures is the regularity property (which may fail in a generic PQL-model).

DEFINITION 48. An algebraic PQL-model 〈B , v 〉 is called regular iff the bounded
involution lattice B is regular.42

The regularity property can be naturally formulated also in the framework of
the Kripkean semantics:

DEFINITION 49. A PQL-Kripkean model 〈I,R , P r , V 〉 is regular iff its frame
〈I ,R〉 is regular . In other words, ∀i, j ∈ I: i ⊥ i and j ⊥ j � i ⊥ j.

One can prove that a symmetric frame 〈I,R〉 is regular iff the involutive bounded
lattice of all propositions of 〈I,R〉 is regular. As a consequence, an algebraic model
is regular iff its Kripkean transformation is regular and viceversa (where the Krip-
kean [algebraic] transformation of an algebraic [Kripkean] model is defined like in
OL).

On this basis one can introduce a proper extension of PQL: regular paraconsis-
tent quantum logic (RPQL). Semantically RPQL is characterized by the class of
all regular models (both in the algebraic and in the Kripkean semantics).

An axiomatization of PQL can be obtained by dropping the absurdity rule and
the Duns Scotus rule in the OL calculus. As with OL, the logic PQL satisfies the
finite model property and is consequently decidable.

42See Deff. 124, 125.
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The calculus for RPQL is obtained by adding to the PQL-calculus the following
rule:

α � ¬α |−β � ¬β Kleene rule

A completeness theorem for both PQL and RPQL can be proved, similarly to
the case of OL.

From the logical point of view, an interesting feature of PQL is represented by
the fact that this logic is a common sublogic in a wide class of important logics.
In particular, PQL is a sublogic of Girard’s linear logic, of 
Lukasiewicz’ infinitely
many-valued logic and of some relevant logics.43

An interesting question concerns the relation between PQL and the orthomod-
ular property.

Let B = 〈B,≤ , ′ , 0 ,1〉 be an ortholattice. It is well known that the following
three conditions (expressing possible definitions of the orthomodular property)
turn out to be equivalent:

(i) ∀a, b ∈ B: a ≤ b � b = a ∨ (a′ ∧ b);

(ii) ∀a, b ∈ B: a ≤ b and a′ ∧ b = 0 � a = b;

(iii) ∀a, b ∈ B: a ∧ (a′ ∨ (a ∧ b)) ≤ b.

However, this equivalence breaks down in the case of bounded involution lat-
tices. One can only prove:

LEMMA 50. Let B be a bounded involution lattice. If B satisfies condition (i),
then B satisfies conditions (ii) and (iii).

LEMMA 51. Any bounded involution lattice B that satisfies condition (iii) is an
ortholattice.

As a consequence, we can conclude that there exists no proper orthomodular
paraconsistent quantum logic when orthomodularity is understood in the sense
(i) or (iii). A residual possibility for a proper paraconsistent quantum logic to be
orthomodular is orthomodularity in the sense (ii). In fact, there are examples of
lattices that are orthomodular (ii) but not orthomodular (i).44

Hilbert space models for orthomodular paraconsistent quantum logic can be
constructed in the algebraic semantics by taking as support the following proper
subset of the set of all effects:

Ec(H) := {aI : a ∈ [0, 1]} ∪ Π(H).

In other words, a possible meaning of a sentence is either a sharp event (projection)
or an unsharp effect that can be represented as a multiple of the universal event
(I). Hence all proper unsharp effects are supposed to have a very special form.
We will call the elements of Ec(H) eccentric effects.

43See also Section 9.
44See [Giuntini, 1990].
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Unlike the case of E(H) (which is not a lattice), the set Ec(H) of all eccentric
effects turns out to be closed under ∧ and ∨. As a consequence, Ec(H) determines
an orthomodular regular bounded involution lattice, where the partial order is the
partial order of E(H) restricted to Ec(H), while the fuzzy complement is defined
like in the class of all effects (E′ := I − E).

As we have seen, PQL is expressed in the same language of orthologic and
of orthomodular quantum logic, representing a weakening thereof. The Brouwer
Zadeh structures (emerging from the concrete effect-state systems) have suggested
a stronger example of unsharp quantum logic, called Brouwer Zadeh logic (also
fuzzy intuitionistic logic).

As expected, a characteristic property of Brouwer Zadeh logic is a splitting
of the connective “not” into two forms of negation: a fuzzy-like negation, that
gives rise to a paraconsistent behaviour, and an intuitionistic-like negation. The
fuzzy “not” represents a weak negation, that inverts the two extreme truth-values
(truth and falsity), satisfies the double negation principle but generally violates
the noncontradiction principle. The second “not” is a stronger negation, a kind of
necessitation of the fuzzy “not”.

The language of Brouwer Zadeh logic (BZL) is an extension of the language of
QL. The primitive connectives are: the conjunction (�), the fuzzy negation (¬),
the intuitionistic negation (∼).

Disjunction is metatheoretically defined in terms of conjunction and of the fuzzy
negation:

α � β := ¬(¬α � ¬β) .

A necessity operator is defined in terms of the intuitionistic and of the fuzzy
negation:

Lα :=∼ ¬α .

A possibility operator is defined in terms of the necessity operator and of the fuzzy
negation:

Mα := ¬L¬α .

As happens to OL, OQL and PQL, also BZL can be characterized by an
algebraic and by a Kripkean semantics.

DEFINITION 52. Algebraic model for BZL
An algebraic model of BZL is a pair 〈B , v〉, consisting of a BZ-lattice 〈B ,≤ , ′ ,∼ ,0 ,1〉
and a valuation-function v that associates to any sentence α an element in B, sat-
isfying the following conditions:

(i) v(¬β) = v(β)′

(ii) v(∼ β) = v(β)∼

(iii) v(β � γ) = v(β) ∧ v(γ).

The definitions of truth, consequence in an algebraic realization for BZL, logical
truth and logical consequence are given similarly to the case of OL.
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A characteristic feature of the Kripkean semantics for BZL is the use of frames
with two accessibility relations.

DEFINITION 53. Kripkean model for BZL
A Kripkean model for BZL is a system K = 〈I , �⊥ , �⊥∼ , P r , V 〉 where:

(i) 〈I , �⊥ , �⊥∼〉 is a frame with a non empty set I of possible worlds and two
accessibility relations: �⊥ (the fuzzy accessibility relation) and �⊥∼ (the
intuitionistic accessibility relation).
Two worlds i , j are called fuzzy-accessible iff i �⊥ j. They are called
intuitionistically-accessible iff i �⊥∼ j. Instead of not (i �⊥ j) and not
(i �⊥∼ j), we will write i ⊥ j and i ⊥∼ j, respectively.
The following conditions are required for the two accessibility relations:

(ia) 〈I, �⊥〉 is a regular symmetric frame;
(ib) any world is fuzzy-accessible to at least one world:

∀i ∃j(i �⊥ j) .

(ic) 〈I, �⊥∼〉 is an orthoframe;
(id) Fuzzy accessibility implies intuitionistic accessibility:

i �⊥ j � i �⊥∼ j.

(ie) Any world i has a kind of “twin-world” j such that for any world
k:
(a) i �⊥∼ k iff j �⊥∼ k

(b) i �⊥∼ k � j �⊥ k.
For any set X of worlds, the fuzzy orthogonal set X⊥ is defined like
in OL:

X⊥ = {i ∈ I : ∀j ∈ X ( i ⊥ j)} .

Similarly, the intuitionistic orthogonal set X∼ is defined as follows:

X∼ = {i ∈ I | ∀j ∈ X (i ⊥∼ j)} .

The notion of proposition is defined like in OL: a set of worlds X
is a proposition iff X = X⊥⊥.
One can prove that for any set of worlds X, both X⊥ and X∼ are
propositions. Further, like in OL, X ∧ Y (the greatest proposition
included in the propositions X and Y ) is X ∩ Y , while X ∨ Y (the
smallest proposition including X and Y ) is (X ∪ Y )⊥⊥.

(ii) Pr is a set of propositions that contains I, and is closed under ⊥ ,∼ ,∧.

(iii) V associates to any sentence a proposition in Pr according to the fol-
lowing conditions:

V (¬β) = V (β)⊥;
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V (∼ β) = V (β)∼;
V (β � γ) = V (β) ∧ V (γ).

THEOREM 54. Let 〈I , �⊥ , �⊥∼ 〉 be a BZ-frame (i.e. a frame satisfying the con-
ditions of Definition 53) and let Pr0 be the set of all propositions of the frame.
Then, the structure

〈
Pr0 ,⊆ , ⊥ , ∼ , ∅ , I

〉
is a complete BZ-lattice such that for

any set Γ ⊆ Pr0: ∧
Γ =

⋂
Γ and

∨
Γ =

(⋃
Γ
)⊥⊥

.

As a consequence, the proposition-structure
〈
Pr ,⊆ , ⊥ , ∼ , ∅ , I

〉
of a BZL-

model, turns out to be a BZ-lattice.
The definitions of truth, consequence in a Kripkean model, logical truth and

logical consequence, are given similarly to the case of OL.
One can prove, with standard techniques, that the algebraic and the Kripkean

semantics for BZL characterize the same logic.
We will now introduce a calculus that represents an adequate axiomatization

for the logic BZL. The most intuitive way to formulate our calculus is to present it
as a modal extension of the axiomatic version of regular paraconsistent quantum
logic RPQL. (Recall that the modal operators of BZL are defined as follows:
Lα :=∼ ¬α; Mα := ¬L¬α).

Rules of BZL.

The BZL-calculus includes, besides the rules of RPQL the following modal rules:

(BZ1) Lα |−α

(BZ2) Lα |−LLα

(BZ3) MLα |−Lα

(BZ4)
α |−β

Lα |−Lβ

(BZ5) Lα � Lβ |−L(α � β)

(BZ6) ∅ |−¬(Lα � ¬Lα)

The rules (BZ1)–(BZ5) give rise to a S5–like modal behaviour. The rule (BZ6)
(the noncontradiction principle for necessitated sentences) is, of course, trivial in
any classical modal system.

One can [Dalla Chiara and Giuntini, 2002] prove a soundness and completeness
Theorem with respect to the Kripkean semantics (by an appropriate modification
of the corresponding proofs for OL).
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THEOREM 55. Soundness theorem

T |−BZLα � T |=
BZL

α.

THEOREM 56. Completeness theorem

T |=
BZL

α � T |−BZLα.

Characteristic logical properties of BZL are the following:

(a) like in PQL, the distributive principles, Duns Scotus, the non-contradiction
and the excluded middle principles break down for the fuzzy negation;

(b) like in intuitionistic logic:

|=
BZL
∼ (α� ∼ α); |=

BZL
/ α� ∼ α ; α |=

BZL
∼∼ α ; ∼∼ α |=

BZL
/ α ;

∼∼∼ α |=
BZL
∼ α ; α |=

BZL
β � ∼ β |=

BZL
∼ α ;

(c) furthermore:

∼ α |=
BZL

¬α ; ¬α |=
BZL

/ ∼ α ; ¬ ∼ α |=
BZL
∼∼ α ;

We have seen that concrete effect-systems give also rise to examples of partial
algebraic structures, where the basic operations are not always defined. How to
give a semantic characterization for a logic that corresponds to the class of all effect
algebras? Such a logic has been called unsharp partial quantum logic (UPaQL).

The language of UPaQL consists of a set of atomic sentences and of two primi-
tive connectives: the negation ¬ and the exclusive disjunction ∨+ (aut). The set of
sentences is defined in the usual way. A conjunction is metalinguistically defined,
via de Morgan law:

α∧. β := ¬(¬α∨+ ¬β).

The intuitive idea underlying the semantics for UPaQL is the following: dis-
junctions and conjunctions are always considered “legitimate” from a mere lin-
guistic point of view. However, semantically, a disjunction α∨+ β will have the
intended meaning only in the “appropriate cases:” where the values of α and β
are orthogonal in the corresponding effect algebra. Otherwise, α∨+ β will have any
meaning whatsoever (generally not connected with the meanings of α and β). As
is well known, a similar semantic “trick” is used in some classical treatments of
the description operator ι (“the unique individual satisfying a given property”; for
instance, “the present king of Italy”). Apparently, one is dealing with a different
idea with respect to the semantics of partial classical logic (PaCL), where the
meaning of a sentence is not necessarily defined. One has proved that UPaQL is
an axiomatizable logic.45

45See [Dalla Chiara and Giuntini, 2002].
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Also the theory of QMV algebras has naturally suggested the semantic char-
acterization of another form of quantum logic (called �Lukasiewicz quantum logic
(�LQL)), which generalizes both OQL and Lℵ (
Lukasiewicz’ infinite many valued
logic). The language of �LQL contains the same primitive connectives as UPaQL
(∨+ ,¬). The conjunction (∧. ) is defined via the de Morgan law (as with UPaQL).
Furthermore, a new pair of conjunction (∧∧ ) and disjunction (∨∨ ) connectives are
defined as follows:

α∧∧ β := (α∨+ ¬β)∧. β

α∨∨ β := ¬(¬α∧∧ ¬β)

�LQL can be easily axiomatized by means of a calculus that simply mimics the
axioms of QMV algebras.46

8 QUANTUM LOGIC AND PARACONSISTENT LOGIC

As we have seen, the orthodox quantum logics whose investigation can be traced
back to the work by Birkhoff and von Neumann, such as orthologic or orthomodular
quantum logic, are not paraconsistent: both logics validate the principle of ex
absurdo quodlibet (any sentence β follows from a contradiction α � ¬α) and the
law of noncontradiction ¬ (α � ¬α), although the acceptance of the latter is clearly
compatible with paraconsistency47. Thus, any inconsistent theory in either OL or
OQL is bound to be trivial. We have learnt, however, that other quantum logics —
in particular, unsharp logics like PQL — have a marked paraconsistent character.
As a consequence, a question naturally arises: should a “good” quantum logic be
paraconsistent? At least two different stances can be adopted in this connection:

• On the one hand, we might believe that orthodox quantum logics are in-
adequate to account for some aspects of quantum theory which are better
captured through recourse to a paraconsistent logic.48 For example, if we
liberalize the notion of quantum event in such a way as to allow for proper
effects as mathematical counterparts of unsharp properties, we end up adopt-
ing one of the paraconsistent quantum logics (either RPQL or BZL or �LQL
or UPaQL).

• On the other hand, we might claim that orthodox quantum logics — whether
or not they adequately capture every single aspect of quantum theory —
are, in a way, already paraconsistent in themselves. For example, it is re-
marked in [Restall, 2002] that both OL and OQL (unlike, for example,

46See [Dalla Chiara et al., 2004].
47Recall the famous anecdote of the judge who had been given the task of settling a controversy

between two litigants asserting opposite claims. After hearing the former’s pleading, he decreed
he was in the right; yet, when the latter set out his reasons, he conceded that he also was in the
right. As his assistant protested that no two parties asserting mutually contradictory statements
can both be in the right, he exclaimed: “You’re in the right, too!”. Similarly, it is possible for a
logic to uphold the noncontradiction principle while allowing for nontrivial inconsistent theories.

48See [Dalla Chiara et al., 2004], [da Costa et al., 2006].
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propositional intuitionistic logic) tolerate classical inconsistencies, because
the falsum-sentence f does not follow therein from the classically inconsis-
tent formula

α � (β � γ) � ¬((α � β) � (α � γ)).

Having discussed at some length in the preceding sections the interaction be-
tween the unsharp approach to quantum logic and paraconsistency, we will focus
here on another application of paraconsistent logic to quantum theory, viz. the
logical treatment of the complementarity problem. According to Bohr’s interpreta-
tion, quantum theory contains pairs of complementary sentences which, although
not mutually contradictory as such, jointly entail a contradiction. Examples could
be “p is a corpuscle” and “p is a wave”, where p refers to a designated photon —
the former sentence is not the negation of the latter, but it entails the negation
of the latter. If the logic underlying our physical theory is classical logic, which
does not support nontrivial inconsistent theories, the triviality of quantum theory
readily follows.

A first attempt to cope with this problem was done as early as in 1937 by P.
Destouches-Février, who (informally) introduced a three-valued logic by adjoining
to the classical values True and False a third one (Absolutely False), meant to act
as the truth value of the conjunctions of complementary sentences [Destouches-
Février, 1937]. Here, “absolutely false” should not be understood as “necessarily
false” or “definitely false”, but rather as “meaningless” or “ungrammatical”, i.e.
as expressing the fact that strictly speaking complementary sentences could not
be conjoined. A paraconsistent version of this logic — where not only the value
True, but also the value Absolutely False is designated — can be found in [da
Costa and Krause, 2005]; the authors claim this modification of Février’s logic can
meet some of the objections levelled against it in the literature.

The same authors also devised another possible way out of the logical problem
aroused by the complementarity phenomenon [da Costa et al., 2006]: they intro-
duced a paraconsistent logical consequence relation �P, termed paraclassical and
specified in the following guise:

DEFINITION 57. Paraclassical consequence
Let L be the language of CL (classical sentential logic), containing the connectives
¬,�,�,→ and let T be a set of sentences of L. A sentence α (of L) is called a
P-consequence of T (in symbols, T �P α) iff:

P1 α ∈ T , or

P2 α is a classical tautology, or

P3 there exists a classically consistent subset T ′ ⊆ T such that T ′ �CL α (where
�CL is the classical consequence relation).

The notions of P-inconsistency and P-triviality are introduced in the expected
way.
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DEFINITION 58. A set T of sentences of L is P-inconsistent iff there exists a
sentence α s.t. T �P α and T �P ¬α; it is P-trivial iff T �P α for every formula
α.49

P-inconsistency and P-triviality are distinct concepts: if p is an atomic sen-
tence, the set {p,¬p} is P-inconsistent, but not P-trivial. Also, P-triviality and
P-inconsistency imply, respectively, classical triviality and classical inconsistency,
but the converse relations do not generally hold.

Complementary sentences easily find a home within this framework. First of
all, one defines a C-theory in the language L as a set of L-sentences closed under
the relation �P, and checks that there exist classically inconsistent C-theories
which are not P-trivial. With these ingredients at our disposal, we can introduce
a proper definition of complementary sentences:

DEFINITION 59. Let T be a C-theory in the language L. Two sentences α and
β of L are said to be T -complementary iff: 1) T �P α and T �P β; 2) there is a
sentence γ of L such that: T, α �P γ and T, β �P ¬γ.

It follows from the definitions that C-theories containing complementary theo-
rems are classically inconsistent, but not P-trivial: if α and β are complementary
theorems and γ is such that T, α �P γ and T, β �P ¬γ, then in general γ � ¬γ
does not follow from T . Da Costa et al. conclude by remarking:

(Complementary) theories are closer to those theories scientists actu-
ally use in their everyday activity than those theories with the classical
concept of deduction. In other words, paraclassical logic (and paracon-
sistent logics in general) seems to fit more accurately the way scientists
reason when stating their theories [da Costa et al., 2006].

9 QUANTUM LOGIC AND LINEAR LOGIC

9.1 A brief survey of linear logic

Since Heyting, followers of the constructive approach to logic have singled out the
notion of proof as the fundamental concept of their discipline, stressing at the
same time that what really matters is not whether a given formula is provable
in a certain logical calculus, but how it can be proved therein. In other words,
the emphasis is not on the outcome, but on the process, the idea being that we
must sharply distinguish between different proofs of one and the same formula.
Given these basic tenets, it does no harm to identify a formula with the set of its
proofs, so that a proof of α from the assumptions α1, ..., αn — seen as a method
for converting any given proofs of α1, ..., αn into a proof of α — boils down to a
function f(x1, ..., xn) which associates to elements ai ∈ αi a result f(a1, ..., an) ∈ α.

49A terminological remark: here “trivial” corresponds to “semantically inconsistent” (in the
sense of Def. 22), while “inconsistent” corresponds to “semantically contradictory”.
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This much is already implicitly contained in the general lines of the so-called
BHK (Brouwer-Heyting-Kolmogorov) interpretation of intuitionistic logic. In the
1960’s, W.A. Howard [Howard, 1980] added to it the identification of intuitionistic
natural deduction proofs with terms of typed lambda calculus. In a nutshell,
a proof of the formula α is associated with a term of type α, whence it becomes
possible to spell out the computational content of the inference rules in the {�,→}-
fragment of the intuitionistic natural deduction calculus:

• if t and s are terms having respective types α and β, then 〈t, s〉 (the pairing
of t and s) is a term of type α � β;

• if t is a term of type α � β, then π1(t) and π2(t) (the first and second
projections of t) are terms having respective types α and β;

• if x is a variable of type α and t is a term of type β, then λx.t (the abstraction
of t w.r.t. x) is a term of type α → β;

• if t and s are terms having respective types α → β and α, then ts (the
application of t to s) is a term of type β.

The ensuing correspondence between intuitionistic natural deduction proofs and
terms in the lambda calculus with projection and pairing functors can be seen
as a full-fledged isomorphism (and it is indeed referred to as the Curry-Howard
isomorphism) in that there is a perfect match between the notions of conversion,
normality and reduction introduced in the two frameworks.

In the light of the Curry-Howard isomorphism, it was readily acknowledged
that the problem of finding a “semantics of proofs” for a given constructive logic
and the problem of providing lambda calculus (or, for that matter, functional
programming) with a semantical interpretation were two sides of the same coin.
In Dana Scott’s domain theory, a first attempt to accomplish this task, a type α
was interpreted by means of a particular topological space. In the mid 1980’s, on
the other hand, Jean-Yves Girard [Girard, 1987] introduced for this purpose the
notion of coherent space over a set X. In the spirit of the BHK tradition, Girard
identifies each formula with the set of its proofs, which are in turn represented as
“coherent” sets of information bits. More precisely:

• the points in X are supposed to represent atomic information tokens;

• a coherence relation between information tokens is defined;

• sets of pairwise coherent tokens correspond to proofs;

• a coherent space represents a formula, viewed as the set of its proofs.

DEFINITION 60. Polar
Let X be a set and let α ⊆ P(X). The polar of α (indicated by ¬α) is defined as
follows:

¬α := {Y ⊆ X : ∀Z ∈ α(card(Y ∩ Z) ≤ 1)} .
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In other words, given a family α of subsets of X, ¬α is the family of all subsets of
X whose intersection with all elements of α is either the empty set or a singleton.

DEFINITION 61. Coherent space
A coherent space over the set X is a family α of subsets of X s.t. α = ¬¬α.

EXAMPLE 62. Let X = {a, b, c}.

• α = {∅ , {a} , {b} , {c} , {a, b}} is a coherent space over X;

• β = {∅ , {b, c} , {a, b, c}} is not a coherent space over X.

A coherence relation ⊥/α can be now defined in any coherent space α.

DEFINITION 63. If α is a coherent space over X and a, b ∈ X, we set:

a ⊥/αb iff {a, b} ∈ α.

Interestingly enough, coherent spaces turn out to be deeply connected with
orthoframes.

LEMMA 64. Let X be a set. There is a 1-1 correspondence between coherent
spaces over X and orthoframes with universe X.

Proof. If α is a coherent space over X, we set, in accordance with Definition 63:

Fα = (X,⊥/α) .

Conversely, let F = (X,⊥/) be an orthoframe with universe X; we define:

αF = {Y ⊆ X : a �⊥ b for any a, b ∈ Y } .

The system Fα is an orthoframe. For, the induced relation ⊥/α is clearly sym-
metric and is likewise reflexive in that α = ¬¬α contains the singletons of all
tokens. A moment’s reflection also shows that αF is a coherent space over X: it
is a family of subsets of X, and it equals its own double polar. It therefore suffices
to show that: F = FαF

and α = αFα

. As to the former claim, just remark that
a ⊥/αF b iff {a, b} ∈ αF iff a ⊥/b. As regards the latter,

αFα

= {Y ⊆ X : a ⊥/αb for any a, b ∈ Y }
= {Y ⊆ X : {a, b} ∈ α for any a, b ∈ Y }
= ¬¬α = α.

�

Definition 60 already provides us with a semantics of proofs for the negation
connective. What about the other logical connectives? Let us consider conjunc-
tion first. Here, Girard departs from the intuitionistic tradition inasmuch as he
distinguishes two non-equivalent proof conditions for a conjunctive sentence:
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• in a sense, I have a proof of a conjunctive sentence when I can assemble
together two different proofs, one for each conjunct;

• yet, in a different sense, I can prove a conjunctive sentence when I have just
one proof, which however suffices to yield any one of the two conjuncts.

From a constructive viewpoint, different proof conditions correspond to different
logical constants; thus, classical (or, for that matter, intuitionistic) conjunction
“splits up” into a multiplicative conjunction ⊗ and an additive conjunction $.
Translating the above into the formal jargon of coherent spaces, we are led to the
following

DEFINITION 65. Let α and β be two coherent spaces, respectively over X and
over Y (which we assume without loss of generality to be disjoint sets50). We
define:

α⊗ β := {Z ⊆ X × Y : there exist W ∈ α, V ∈ β s.t. Z ⊆ V ×W} ;
α $ β := {Z ∪W : Z ∈ α,W ∈ β} .

One can prove that α ⊗ β is a coherent space over X × Y , while α $ β is a
coherent space over X ∪ Y .

Let us now come to implication, which can be defined out of negation and
multiplicative conjunction as ¬ (α⊗ ¬β). This does not quite seem to tally with
the usual picture of a proof for an implicative sentence, i.e. of a method (function)
for extracting a proof for the consequent from a proof for the antecedent. The
following definition and fact, however, provide the required bridge:

DEFINITION 66. Let α, β be coherent spaces. A function f from α to β is called
linear whenever it preserves disjoint unions.

LEMMA 67. If α, β are coherent spaces, respectively over X and Y , Z ∈ α and
W ∈ α → β, then

W̃ (Z) = {b ∈ Y : 〈a, b〉 ∈ W for some a ∈ Z}

is a member of β, W̃ is a linear function from α to β, and

α → β =
{
W : W̃ (Z) ∈ β for every Z ∈ α

}
.

The resulting implication is accordingly termed linear implication. In addition,
Girard considers a coherent space α 
 β corresponding to intuitionistic implica-
tion, which is decomposed in terms of linear implication and a necessity-like unary
operator, !. More precisely, the orthoframe associated to the coherent space α 
 β
is isomorphic (as a first order structure) to the orthoframe associated to !α → β.

Having seen how implication can be dealt with, we observe that disjunction,
like conjunction, is affected by ambiguity. In fact:

50If they are not, it suffices to consider disjoint bijective copies of X and Y , built in the
standard way.
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• I have a proof of a disjunctive sentence when I have a method for converting
a proof for the negation of any disjunct into a proof for the other;

• yet, in a different sense, I can prove a disjunctive sentence when I have a
proof for one of the two disjuncts.

Thus, once again, we have to distinguish between a multiplicative disjunction
⊕ and an additive disjunction �:

DEFINITION 68. Let α and β be two coherent spaces, respectively over X and
over Y (which we assume to be disjoint sets). We define:

α⊕ β := ¬α → β;
α � β := α ∪ β.

One can prove that α ⊕ β is a coherent space over X × Y , while α � β is a
coherent space over X ∪ Y .

How can we make intuitive sense of this logic? A possible option is viewing
formulas as concrete resources that, once they are consumed in a deduction to
get some conclusion, cannot be recycled or reused. Formulas of the form !α, on
the other hand, represent “ideal” resources that can be reused at will. Thus,
while the availability of an intuitionistic implication α 
 β means that using as
many α’s as I might need I can get one β, the availability of a linear implication
α → β expresses the fact that, using just one α, I can get one β — something that
perfectly squares with the coherent space isomorphism pointed out above. We can
also view the other compound formulas of linear logic as concrete resources: for
example, α⊗ β expresses the availability of both resource α and resource β, while
α $ β expresses the availability of any one between such resources — i.e. we can
have just one between α and β and not both, but we are in a position to choose
which51.

In his 1987 seminal paper, Girard sets up a sequent calculus for his newly
discovered logic, henceforth called LL.52

Unlike the calculi we have considered in the previous sections, a sequent calculus
for a logic L is based on axioms and rules that govern the behavior of sequents.
Any sequent has the form

Γ ⇒ Δ,

where Γ and Δ are finite (possibly empty) multisets of formulas.53 Axioms are
51A standard example goes like this: suppose that a cup of coffee and a newspaper cost 1 Euro

each. Thus, for 1 Euro I can get a cup of coffee and (�) a newspaper, but for the same amount
I cannot get a cup of coffee and (⊗) a newspaper.

52One caveat, though: our notation for logical constants does not exactly match Girard’s
original one. For example, he resorts to the symbol ⊕ to denote additive, not multiplicative,
disjunction.

53A multiset is a set of pairs such that the first element of every pair denotes an object, while
the second element denotes the multiplicity of the occurrences of our object. Two multisets are
equal iff all their pairs are equal, that is all their objects together with their multiplicities are
equal.
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particular sequents. Any rule has the form:

Γ1 ⇒ Δ1, . . . ,Γn ⇒ Δn

Γ ⇒ Δ

where Γ1 ⇒ Δ1, . . .Γn ⇒ Δn are the premisses of the rule while Γ ⇒ Δ is
the conclusion. Rules can be either structural or operational . Operational rules
introduce a new connective either on the left or on the right side of a sequent.
Accordingly, one usually speaks of left and of right introduction rule. For example,
consider Gentzen’s calculus LK for classical logic. The left introduction rule for
the connective � can be written as follows:

α,Γ ⇒ Δ
α � β,Γ ⇒ Δ

β,Γ ⇒ Δ
α � β,Γ ⇒ Δ

( � L)

Structural rules, instead, only deal with the structure of sequents (orders, rep-
etitions, etc.). Two important examples of structural rules are weakening and
contraction:

Γ ⇒ Δ
Γ,Π ⇒ Σ,Δ

(weakening);
Γ,Π,Π ⇒ Δ,Δ,Σ

Γ,Π ⇒ Δ,Σ,
(contraction)

A derivation (in the logic L) is a sequence of sequents where any element is either
an axiom or the conclusion of a rule whose premisses are previous elements of the
sequence. A sequent Γ ⇒ Δ is said to be derivable in the logic L (abbreviated
�L Γ ⇒ Δ ) iff Γ ⇒ Δ is the last element of a derivation of L.54

The completeness (and soundness) theorem for Gentzen’s LK can be formulated
as follows:

�LK {α1, . . . , αn} ⇒ {β1, . . . , βm} iff

α1 � . . . � αn → β1 � . . . � βm is a logical truth of classical logic.

Girard’s LL differs from LK in that:

• LL has no weakening or contraction rules — so that its language contains
additive and multiplicative versions of both conjunction and disjunction, as
well as of the verum and falsum constants. The absence of weakening and
contraction is readily explained in terms of the resource interpretation: for
example, contraction would say that if you can get a resource β by using
n copies of the resource α, you can still get β by using just one copy of α,
which is just wishful thinking.

• The language of LL includes the modalities of course! (!) and why not?
(?). The addition of modalities reintroduces weakening and contraction for
special classes of formulas; more precisely, a formula preceded by an ex-
clamation mark can be introduced through unrestricted left weakening and

54Since a rule has generally many premisses, derivations can be also conveniently represented
as special tree-configurations.



Quantum Logic and Nonclassical Logics 181

contraction inferences, while a formula preceded by a question mark can be
introduced through unrestricted right weakening and contraction inferences.
The modalities abide at the same time by structural rules and modal rules:
if we have a look at the sequent calculi for modal logics, in fact, it is easy
to see that ! behaves as an S4 necessity operator, and ? as an S4 possibility
operator.

The importance of the modalities is fully realized if we take into account the fact
that Girard is admittedly not interested in setting up a logic which is weaker than
classical or intuitionistic logic: he rather aims for a logic which permits a better
analysis of proofs through a stricter control of structural rules. Modalities are
there precisely to recapture the deductive power of weakening and contraction,
an aim which is attained — in a sense — by showing that both classical logic
and intuitionistic logic can be embedded into linear logic. Confining ourselves to
classical logic, Girard provides in fact translations of multisets of classical formulas
into multisets of linear formulas in such a way that Γ ⇒ Δ is provable in LK iff a
sequent compounded out of an appropriate translation of its formulas is provable
in LL. Beside this desirable aspect, modalities have their down side too: they are
to blame for the undecidability of propositional linear logic [Lincoln et al., 1992].

The language L1 of LL contains the connectives ⊗,⊕,→,$,� (binary), ¬, !, ?
(unary), %,⊥, f , t (nullary). The notations !Γ and ?Γ mean that the modality at
issue must be prefixed to each element of the given sequence; L0 will denote the
language obtained by barring from L1 the modalities ! and ?.

9.2 Quantum logic vs linear logic: proof theory

A prominent feature shared by quantum logics and linear logic alike is the failure of
lattice distributivity. This means that any adequate proof system for these logics —
for the sake of definiteness, say any sequent calculus — should clamp in some way
or another the mechanism which allows the proof of α�(β�γ) ⇒ (α�β)�(α�γ)
in LK:55

α ⇒ α

α, β ⇒ α, α � γ

β ⇒ β

α, β ⇒ β, α � γ

α, β ⇒ α � β, α � γ

α ⇒ α

α, γ ⇒ α � β, α

γ ⇒ γ

α, γ ⇒ α � β, γ

α, γ ⇒ α � β, α � γ

α, β � γ ⇒ α � β, α � γ

α � (β � γ), α � (β � γ) ⇒ (α � β) � (α � γ), (α � β) � (α � γ)
α � (β � γ) ⇒ (α � β) � (α � γ)

As we have seen, in LL — whose operational rules for the additives are the same
as we used in the above LK proof — we attain such an aim by doing away with
the structural rules of weakening and contraction outright. In the various sequent
systems which have been suggested for quantum logics, on the other hand, one

55The converse half corresponds to an inequality which is valid in the class of general lattices
and, therefore, holds both in linear logic and in all mainstream quantum logics.
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Axioms and rules of LL

α ⇒ α (ID)

⊥,Γ ⇒ Δ (⊥L) Γ ⇒ Δ,% (%R)

f ⇒ (fL)
Γ ⇒ Δ

Γ ⇒ Δ, f
(fR)

Γ ⇒ Δ
t,Γ ⇒ Δ

(tL) ⇒ t (tR)

α, β,Γ ⇒ Δ
α⊗ β,Γ ⇒ Δ

( ⊗ L)
Γ ⇒ Δ, α Π ⇒ Σ, β

Γ,Π ⇒ Δ,Σ, α⊗ β
( ⊗ R)

α,Γ ⇒ Δ β,Π ⇒ Σ
α⊕ β,Γ,Π ⇒ Δ,Σ

( ⊕ L)
Γ ⇒ Δ, α, β

Γ ⇒ Δ, α⊕ β
( ⊕ R)

α,Γ ⇒ Δ
α $ β,Γ ⇒ Δ

β,Γ ⇒ Δ
α $ β,Γ ⇒ Δ

( $ L)
Γ ⇒ Δ, α Γ ⇒ Δ, β

Γ ⇒ Δ, α $ β
( $ R)

α,Γ ⇒ Δ β,Γ ⇒ Δ
α � β,Γ ⇒ Δ

( � L)
Γ ⇒ Δ, α

Γ ⇒ Δ, α � β

Γ ⇒ Δ, β

Γ ⇒ Δ, α � β
( � R)

Γ ⇒ Δ, α β,Π ⇒ Σ
α → β,Γ,Π ⇒ Δ,Σ

( → L)
α,Γ ⇒ Δ, β

Γ ⇒ Δ, α → β
( → R)

Γ ⇒ Δ, α

¬α,Γ ⇒ Δ
(¬L)

α,Γ ⇒ Δ
Γ ⇒ Δ,¬α

(¬R)

α,Γ ⇒ Δ
!α,Γ ⇒ Δ

(!L)
!Γ ⇒?Δ, α

!Γ ⇒?Δ, !α
(!R)

Γ ⇒ Δ
!α,Γ ⇒ Δ

(!W)
!α, !α,Γ ⇒ Δ

!α,Γ ⇒ Δ
(!C)

α, !Γ ⇒?Δ
?α, !Γ ⇒?Δ

(?L)
Γ ⇒ Δ, α

Γ ⇒ Δ, ?α
(?R)

Γ ⇒ Δ
Γ ⇒ Δ, ?α

(?W)
Γ ⇒ Δ, ?α, ?α

Γ ⇒ Δ, ?α
(?C)
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usually manages to avoid distribution by means of appropriate restrictions on side
formulas.56 For example, the calculus for orthologic implicit in [Schütte Monting,
1981]57 is exactly like LK formulated in the {¬,�,�}-language, except for the
fact that sequents can contain at most two formulas. Weakening and contraction
rules are there indeed, but many applications thereof are blocked because they
“take up too much room”. Several steps in the displayed proof of distribution, for
example, turn out to be incorrect by such a standard. If we tighten even further
the mentioned constraint, by allowing only sequents which contain exactly two
formulas, we obtain a calculus for an unbounded version of paraconsistent quantum
logic (where all weakening and contraction inferences clearly become unfeasible,
leading to the unprovability of sequents like α � ¬α ⇒ β or α ⇒ β � ¬β).58

There is, however, a different standpoint we could take while comparing the
proof theories of linear logic and quantum logics. One could, indeed, search for
a common abstraction of such logics, i.e. try to formulate a more general logic
from which they can be obtained through the addition of special postulates. This
perspective has been suggested in [Sambin et al., 2000] and [Battilotti and Faggian,
2002], where the resulting logic is called basic logic59.

Three general assumptions lay the groundwork for the development of basic
logic: the principles of reflection, symmetry, and visibility. The principle of re-
flection amounts, roughly speaking, to the assumption that in the framework of
sequent calculi each propositional connective reflects at the level of the object
language a link between assertions formulated in an appropriate metalanguage.
Such assertions are compounded out of basic assertions of the form α is by means
of the links and and yields, which are sufficient to express all the metalinguistic
assertions occurring in a sequent calculus:

56In any operational rule, the formula in the conclusion that contains the connective introduced
by the rule in question is called the principal formula; the formulas in the premisses that are the
components of the formula introduced by the rule are called the auxiliary formulas. All other
formulas occurring in the rule are called side formulas (or also context-formulas).

57More precisely, it is a calculus which generates the involution lattice inequalities valid in all
ortholattices.

58In the algebraic semantics, this logic is characterized by the class of all models based on
involution lattices that are not necessarily bounded. Hence, truth and logical truth cannot be
defined in this framework; at the same time, consequence and logical consequence are defined in
the usual way.

59This label, as a matter of fact, is all too overworked in the field of non-classical logics. To
the best of our knowledge, there are three more established logics with this same name (a fuzzy
logic, introduced by Hajek; a relevant logic, introduced by Routley; and a constructive logic,
introduced by Visser).
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the sequent calculus configuration abbreviates the complex assertion

α1, ..., αn ↪→ (α1 is) and...and (αn is)

Γ ⇒ Δ ↪→ Γ yields Δ

Γ ⇒ Δ Π ⇒ Σ
Λ ⇒ Θ

↪→ (Γ ⇒ Δ) and (Π ⇒ Σ)

yields (Λ ⇒ Θ)

The truth conditions for a given connective are given by its definitional equa-
tion, a metalinguistic biconditional which relates a definiendum, containing the
connective, and a definiens, not containing it. Definitional equations provide the
justification for the inference rules of the calculus, obtained by ”solving” such
equations according to a general method60. More precisely, every connective has a
formation rule, derived from the direction of the definitional equation which gives
sufficient conditions for asserting a formula containing the connective at issue, and
a reflection rule, which licenses deductions from an already available formula con-
taining the connective. For example, here are the definitional equations for the
multiplicative (⊗) and the additive ($) conjunction of basic logic:

(DE⊗) (α⊗ β is) yields Γ iff (α is and β is) yields Γ;
(DE$) Γ yields (α $ β is) iff (Γ yields (α is)) and (Γ yields (β is)).
Remark that multiplicative conjunction reflects an and link within the scope of

a yields link, while additive conjunction reflects a principal and link. Solving such
definitional equations one gets the rules

α, β ⇒ Γ
α⊗ β ⇒ Γ

( ⊗ F)
Γ ⇒ α Δ ⇒ β

Γ,Δ ⇒ α⊗ β
( ⊗ R)

Γ ⇒ α Γ ⇒ β

Γ ⇒ α $ β
( $ F)

α ⇒ Γ
α $ β ⇒ Γ

β ⇒ Γ
α $ β ⇒ Γ

( $ R)

One can observe how the formation rule for multiplicative conjunction oper-
ates on the antecedent of the sequent, whereas the reflection rule operates on the
succedent; the rules for additive conjunction, instead, follow the opposite pattern.
All the other connectives of basic logic can be likewise divided into left connec-
tives and right connectives, according as they behave like ⊗ or like $ under the
mentioned respect. Every left connective is matched by a symmetric right connec-
tive: for example, ⊗ is matched by a right multiplicative disjunction ⊕, while $ is
matched by a left additive disjunction �. Furthermore, one can notice that all the
rules of basic logic satisfy, like in the example cited above, a visibility requirement:
there are no side formulas on the same side of either the principal, or the auxiliary
formulas. Said otherwise, basic logic adds to the control of structural rules typical

60for the details see e.g. [Sambin et al., 2000].
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of linear logic a control of side formulas, both on the left and on the right of the
arrow.

How can we get back from here to where we started, namely to linear and
quantum logics? Well, we can extend basic logic in at least three ways: relaxing
the visibility constraints, either on the left (L) or on the right (R) of the arrow,
or restoring the structural rules of weakening and contraction (S). According to
the chosen path, we get:

• BL, intuitionistic linear logic without exponentials61;

• BR, “dual intuitionistic” linear logic without exponentials;

• BS, basic orthologic, an expansion of paraconsistent quantum logic;

• BLR, linear logic without exponentials;

• BLS, intuitionistic logic;

• BRS, “dual intuitionistic” logic;

• BLRS, classical logic.

In particular, a calculus for PQL can be obtained by: (i) confining ourselves
to the {$,�} fragment of BS; (ii) introducing negation definitionally: in other
words, we start from positive literals (atomic sentences) and negative literals (the
negations of such) and we inductively stipulate that:

¬¬p := p;
¬(α $ β) := ¬α � ¬β;
¬(α � β) := ¬α $ ¬β.

This calculus is open to further simplification once we consider that weakening and
contraction rules are redundant in it: the calculus admits elimination of contrac-
tion, while left and right weakening are respectively simulated by ($R) and (�R).
In addition, we can turn it into a sequent system for orthologic if we restore the
weakening and contraction rules and we adjoin two rules of transfer — a means
to displace whole multisets of formulae across the arrow:

Γ ⇒ Δ
Γ,¬Δ ⇒ (tr1)

Γ ⇒ Δ
⇒ ¬Γ,Δ

(tr2)

The visibility and symmetry properties enable to overcome in a simple way
two problems that usually make cut elimination for orthologic so complicated:
respectively, the constraints on contexts and negation. For a presentation of the
cut elimination proof, see e.g. [Battilotti and Faggian, 2002].

Another significant connection between the proof theories of linear logic and
quantum logics can be found in the formalism of proofnets. Girard [Girard, 1987]
introduced proofnets in order to amend three flaws of sequent calculi:

61To be precise, what we obtain is an expansion of this logic by a non-associative multiplicative
disjunction.
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• Some “informal” proofs of linear logical sequents are represented in LL by
more than one proof; formally speaking, they count as distinct proofs only
because the order of application of the rules is different. For example:

D :

α ⇒ α β ⇒ β

α, β ⇒ α⊗ β

β ⇒ ¬α, α⊗ β
D′ :

α ⇒ α

⇒ α,¬α β ⇒ β

β ⇒ ¬α, α⊗ β

We might therefore want to find a calculus where these “bureaucratical vari-
ants” correspond to one and the same proof, as it would seem appropriate.

• Sequent proofs are extremely redundant, because side formulas keep being
copied again and again with each inference of the proof itself.

• The cut elimination procedure is highly nondeterministic. For example, con-
sider the proof:

...
Γ ⇒ α, β, σ

Γ ⇒ α⊕ β, σ

...
σ, γ, δ ⇒ Δ
σ, γ ⊗ δ ⇒ Δ

γ ⊗ δ,Γ ⇒ Δ, α⊕ β

The indicated cut can be pushed upwards and replaced by a cut whose
premisses are Γ ⇒ α, β, σ and σ, γ, δ ⇒ Δ. But what comes next? We can
either go on with a (⊗L) inference and then apply the (⊕R) rule, or proceed
the other way around. Both choices are equally legitimate.

The calculus of proofnets is free of these shortcomings and works perfectly well
at least for the constant-free multiplicative fragment of linear logic. Put briefly,
one associates sequent proofs to special undirected graphs, in such a way that a
graph actually represents a sequent proof if and only if it satisfies a simple, purely
geometrical, criterion (namely, if and only if all the graphs one obtains from it
by omitting edges according to a specified procedure are acyclic and connected:
[Danos and Reignier, 1989]). This is all well and good so far as we remain confined
within the multiplicative fragment; however, a completely satisfactory way to fit
additives into the picture has not yet been found, despite several attempts by [Gi-
rard, 1996], [Tortora De Falco, 2003], [Hughes and van Glabbeek, 2003]. Restall
and Paoli [Restall and Paoli, 2005] reversed, so to speak, the perspective and pro-
vided a simple calculus of proofnets for the linear logical additives alone, i.e. for
the logic of general (possibly nondistributive) lattices, also giving a purely geomet-
rical correctness criterion. Even though the possibility to extend such a calculus to
the multiplicative fragment remains to be explored, this approach yielded a bonus
— viz., a proofnet formulation for a number of quantum logics expressed in the
language of involution lattices, such as an unbounded version of paraconsistent
quantum logic and orthologic.
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9.3 Quantum logic vs linear logic: semantics of provability

Although Girard repeatedly pointed out that, in his opinion, the only meaningful
semantics for a logical system is its semantics of proofs, in his 1987 paper he does
provide linear logic with a more traditional, Kripke-style semantics of provability,
which he dubs phase semantics.

This circumstance suggests to highlight another noteworthy similarity between
linear and quantum logics. As we already know, both orthologic (or weakenings
thereof) and linear logic share the failure of lattice distributivity. In particular, the
fragment of linear logic that includes just negation and the additive connectives is
nothing but a version of the paraconsistent quantum logic PQL, whose algebraic
counterpart, as we have seen, is the class of bounded involution lattices, and whose
proper Kripkean counterpart is the class of symmetric frames. In linear logic, how-
ever, we have to model a wider range of connectives, including the multiplicatives
and the modalities. True to form, adequate Kripkean models for full linear logic
can be obtained by tinkering with symmetric frames in an appropriate way. Let
us now fill the details, which we partly draw from [Gallier, 1991]. For the sake of
simplicity, we will leave the modalities aside; throughout this section, therefore,
LL will not denote the whole calculus, but only its fragment corresponding to the
language L0.

DEFINITION 69. Monoidal symmetric frame
A monoidal symmetric frame is a first order structure I = (I, •,1,⊥/) such that
(I,⊥/) is a symmetric frame, (I, •,1) is an Abelian monoid62 and, for every
a, b, c ∈ I,

a �⊥ b • c iff a • b �⊥ c

Intuitively, the elements of I are information tokens which may or may not
verify a given formula; the monoidal operation can be understood as composition
of information bits; 1 represents a “true” piece of information; finally, that a is in
the relation ⊥/ with b should be taken to mean that the information in a does not
conflict with the information in b.

The additional monoidal operation turns out to be the right key to access linear
logical multiplicative connectives. Recalling the notion of closure of a subset in
a symmetric frame63, and recalling the notion of generalized subset product in a
monoid:

XY = {a • b : a ∈ X, b ∈ Y }
we can define the following operations between subsets of a monoidal symmetric
frame I:

X � Y = (XY )⊥⊥;
X � Y = (X⊥Y ⊥)⊥;
X � Y = (X � Y ⊥)⊥.

62See Def.137.
63Given a symmetric frame, define X⊥ := {a ∈ X : a ⊥ X}. The operation ⊥⊥ turns out to

be a closure operator. See Section 1.
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It is immediate to verify that X � Y and X � Y are closed subsets of I, that
X � Y = (X⊥ � Y ⊥)⊥, and that X � Y = (XY ⊥)⊥. Furthermore, the definition
of implication makes sense in the light of the following

LEMMA 70. Let X,Y be closed subsets of I and a ∈ I. We have:
a ∈ X � Y iff for every b ∈ I, if b ∈ X then a • b ∈ Y .

Monoidal symmetric frames can be used to interpret the formulas and sequents
of linear logic. Basically, we associate to each formula the set of information bits
which verify it — formally speaking, a closed subset in a monoidal symmetric
frame.

DEFINITION 71. Monoidal symmetric model
A monoidal symmetric model is a system M = 〈I, •,1, �⊥, v〉, where

(i) 〈I, •,1, �⊥〉 is a monoidal symmetric frame;

(ii) v is a function that associates to any sentence α a closed subset of I, satisfying
the following conditions:

v(¬α) = v(α)⊥; v(α⊗ β) = v(α) � v(β);
v(α⊕ β) = v(α) � v(β); v(α → β) = v(α) � v(β);
v(α $ β) = v(α) ∩ v(β); v(α � β) = (v(α) ∪ v(β))⊥⊥ ;
v(t) = {1}⊥⊥ ; v(f) = {a ∈ I : a ⊥ 1} ;
v(%) = I; v(⊥) = I⊥.

DEFINITION 72. Truth and logical truth
A formula α is true in a model M = 〈I, •,1, �⊥, v〉 (abbreviated |=M α) iff 1 ∈
v(α);
α is a logical truth (or a valid formula) of LL (|=LL α) iff for any model M, |=M α.

DEFINITION 73. Let Γ be a finite, possibly empty multiset of formulas in L0;
we define:

t−(Γ) =
{

α1 ⊗ ...⊗ αn, if Γ = {α1, ..., αn} ;
t, otherwise.

t+(Γ) =
{

α1 ⊕ ...⊕ αn, if Γ = {α1, ..., αn} ;
f , otherwise.

LEMMA 74. �LL Γ ⇒ Δ iff �LL⇒ t−(Γ) → t+(Δ).

We have the following completeness theorem:

THEOREM 75. �LL Γ ⇒ Δ iff t−(Γ) → t+(Δ) is valid.64

In Girard’s paper, phase semantics is not introduced in terms of monoidal sym-
metric frames, but rather in terms of a slightly different class of structures, called
phase structures. Although we preferred the alternative presentation in that it
simplifies comparison with the relational semantics for quantum logics, both per-
spectives are readily seen to be absolutely equivalent.

64See [Girard, 1987].
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9.4 Quantum logic vs linear logic: semantics of proofs

Girard’s attitude towards quantum logic is utterly disparaging. Rather than ab-
stracting away from the structures of quantum mechanics in order to get a logic
— a process which is bound to yield not a “theory of reasoning”, but only a game
of algebra written in a different guise — he claims that one should go the other
way around and use quantum structures to interpret logical proofs, in particu-
lar linear logical proofs [Girard, 1999], [Girard, 2004a], [Girard, 2004b]. Once we
strip away from it similar anathemas — which are invariably, we think, the most
infelicitous component of Girard’s contributions — this particular variant of de-
notational semantics may be worth a mention. Thus, we now turn to expound its
main features.

Some linear logical proofs have a probabilistic flavour. Consider e.g. a possible
proof for the sequent ⇒ α � β. How could we have obtained it? Well, for sure
we applied the (�R) rule to get to it, but we can only guess as to the form of its
premiss: the best we can say is that there is a 50% chance for ⇒ α and a 50%
chance for ⇒ β (the 50-50 assignment being a default one, of course). Thus, we
cannot maintain with certainty that the information tokens constituting a proof
of ⇒ α belong to the envisaged proof of ⇒ α�β; we can only assign a probability
to their so doing. This leads us to revise our previous concept of a proof as a
“crisp” set of information tokens belonging to a set X — or, in other words, as a
(characteristic) function from X to {0, 1}. A more realistic proof model will rather
be a function from X to the whole real interval [0, 1], intuitively representing a
probability assignment which outputs, for each information token, a “likelihood
measure” of its membership in the given proof. Formally:

DEFINITION 76. Let X be a finite non empty set and let α ⊆ IR+X (where IR+X

is the set of all functions from X to the positive reals). The polar of α (denoted
by ¬α), is defined as follows:

¬α = {f ∈ IR+X : for every g ∈ α,
∑
x∈X

f(x) · g(x) ≤ 1}.

The rationale for this definition is clear enough: if f, g are the characteristic
functions, respectively, of the sets Y,Z, then

∑
x∈X

f(x) · g(x) is nothing but the

cardinality of Y ∩ Z. Definition 76 is therefore a natural generalization of Defini-
tion 60, meaning that two proofs are “orthogonal” whenever, allowing for mutual
compensation effects, there is a maximal probability that they share at most one
piece of information.

DEFINITION 77. A probabilistic coherent space over the set X is a set α ⊆ IR+X

s.t. α = ¬¬α.

Let us now examine the treatment of additive connectives within this frame-
work. Since there is nothing probabilistic about additive conjunction, we may
simply generalize the classical definition to our real-valued function setting; to
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cope with additive disjunction, on the other hand, we need to identify each one of
its proofs with a probability assignment that weighs up the respective chances of
its stemming from a proof of the former or from a proof of the latter disjunct. We
are thus led to the following definitions:

DEFINITION 78. If f ∈ IR+X and g ∈ IR+Y , where X,Y are disjoint sets, then
f ∪ g ∈ IR+X∪Y is so defined:

(f ∪ g) (a) =
{

f(a), if a ∈ X;
g(a), if a ∈ Y .

DEFINITION 79. Let α and β be two probabilistic coherent spaces, respectively
over X and over Y (which we assume to be disjoint sets). We define:

α $ β = {f ∪ g : f ∈ α, g ∈ β} ;
α � β = {λf ∪ (1 − λ)g : f ∈ α , g ∈ β , 0 ≤ λ ≤ 1} .

This definition of additive conjunction squares with the standard coherent space
framework in that one can prove that α � β = ¬¬(α ∪ β), as expected.

The standard coherent space perspective dictates that a proof for an implicative
sentence be a function which extracts a proof for the consequent from a proof for
the antecedent; here, however, proofs are themselves functions — it follows that
the objects which correspond to proofs of implications will be functionals. Yet,
this is not exactly what we want: to parallel our development of coherent spaces
in the previous section, we need to simulate each linear functional from IR+X to
IR+Y by means of a function in IR+X×Y . In other words, we want an implication
whose antecedent is a probabilistic space α over X and whose consequent is a
probabilistic space β over Y to be a space α → β over X × Y whose members are
“linear traces” of functionals from α to β.

DEFINITION 80. If h : X × Y �→ IR+, then h̃ : IR+X �→ IR+Y is defined in such
a way that, for every f ∈ IR+X and for every a ∈ X,(

h̃ (f)
)

(a) =
∑
x∈X

h((x, a)) · f(x)

(Remenber that X is a finite set!) The next lemma guarantees the adequacy of
the previous definition:

LEMMA 81. The map sending h to h̃ is a bijection from IR+X×Y onto the set of
linear functions from IR+X to IR+Y .

A fairly straightforward adaptation of the classical case thus gives:

DEFINITION 82. Let α, β be probabilistic coherent spaces, respectively over X
and Y . We define α → β over X × Y as follows:

α → β =
{
h : h̃ (f) ∈ β for every f ∈ α

}
.
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One then proceeds to show that α → β is indeed a probabilistic coherent space,
a fact that carries along the obvious definitions for the multiplicatives:

DEFINITION 83. Let α and β be two probabilistic coherent spaces, respectively
over X and over Y (which we assume to be disjoint sets). We define:

α⊗ β = ¬(α → ¬β);
α⊕ β = ¬α → β.

It is not infrequent to find in the linear logical literature the following analogy:
formulas are to proofs as states (of a system) are to transitions between states.
This perspective suggests a rather natural generalization of the above, obtained by
formalizing linear logical proofs not through real-valued functions, but by means
of self-adjoint operators on a complex finite-dimensional Hilbert space — the idea
being that each state is identified with the set of all transitions leading to it.

DEFINITION 84. Let HX,HY be complex finite-dimensional Hilbert spaces. We
denote by L (HX,HY) the set of all linear maps from HX to HY, abbreviating
L (HX,HX) by L (HX). By HL(HX) we mean the set of all self-adjoint operators
on HX.

The set HL(HX) can be turned in the usual way into a vector space (over IR),
endowed with an inner product à la Hilbert-Schmidt:

〈U | V 〉 = tr(UV ).

DEFINITION 85. Let α ⊆ HL(HX). The polar of α (denoted by ¬α), is defined
as follows:

¬α = {U : for every V ∈ α , 0 ≤ 〈U | V 〉 ≤ 1}

As far as we stay within the domain of positive reals, the inner product of two
operators is a measure of their orthogonality: the lower the product, “the more
orthogonal” they are.

DEFINITION 86. A quantum coherent space over the space HX is a set α ⊆
HL(HX) s.t. α = ¬¬α.

Recall that, in standard coherent space semantics, additive (respectively, mul-
tiplicative) coherent spaces were defined over the disjoint union (respectively, the
cartesian product) of the sets underlying the constituent spaces. Here, disjoint
union is replaced by direct sum of vector spaces, while tensor product plays the
role of cartesian product 65. We begin with the additives:

DEFINITION 87. Let α and β be two quantum coherent spaces over HX and HY,
respectively. α$ β and α� β are spaces over the direct sum HX ⊕HY, defined as

65See Deff. 161 and 162
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follows 66:

α $ β = {U : PXUPX = V ⊕ O andPYUPY = O ⊕W, forV ∈ α ,W ∈ β} ;
α � β = {λ(V ⊕ O) + (1 − λ)(O ⊕W ) : V ∈ α,W ∈ β, 0 ≤ λ ≤ 1} .

While it is fairly clear why disjunction is treated like this (cp. Definition 79),
the definition of conjunction deserves a bit of elucidation. Intuitively, PXUPX and
PYUPY can be thought of as the “restrictions” of the operator U to the subspaces
HX and HY, respectively. Indeed, if U is a self-adjoint operator on HX ⊕HY of
the form U1 ⊕ U2, then, for any |ψ〉 ∈ HX and for any |ϕ〉 ∈ HY:

PXUPX(|ψ〉 ⊕ |ϕ〉) = U1(|ψ〉) ⊕ O

and
PYUPY(|ψ〉 ⊕ |ϕ〉) = O ⊕ U2(|ϕ〉).

Accordingly, if we define

PXUPX ∪ PYUPY = PXUPX + PYUPY,

we obtain in this case:

(PXUPX ∪ PYUPY)(|ψ〉 ⊕ |ϕ〉) = U1(|ψ〉) ⊕ U2(|ϕ〉).

Notice, however, that, in general, not every self-adjoint operator on HX ⊕HY has
the form U1 ⊕ U2.

As regards the multiplicatives, our starting point is the observation that, if
HX and HY are finite-dimensional Hilbert spaces, the space of the linear maps
from the space of the operators over HX to the space of the operators over HY is
isomorphic to the space of the operators over the tensor product HX ⊗HY.

DEFINITION 88. If U ∈ L (HX ⊗HY), then Ũ is a linear map belonging to
L (L (HX) ,L (HY)), defined in such a way that, ∀V ∈ L (HX), ∀ |ψ〉, |ϕ〉 ∈ HY:〈(

Ũ (V )
)

(|ψ〉)|ϕ
〉

= tr(U · (V ⊗W|ψ〉,|ϕ〉)),

where, ∀ |χ〉 ∈ HY: W|ψ〉,|ϕ〉(|χ〉) = 〈χ|ψ〉|ϕ〉.
Restricting ourselves to self-adjoint operators we get, in full analogy with the

probabilistic case:

LEMMA 89. The map sending U to Ũ is a bijection from HL(HX⊗HY) onto
L
(
HL(HX),HL(HY)

)
.

66PX and PY denote the projection operators onto the spaces HX and HY, respectively.
In other terms, for any |ψ〉 ∈ HX and for any |ϕ〉 ∈ HY: PX(|ψ〉 ⊕ |ϕ〉) = |ψ〉 ⊕ 0 and
PY(|ψ〉 ⊕ |ϕ〉) = 0 ⊕ |ϕ〉.
If U and V are self-adjoint operators on HX and HY, respectively, and λ ∈ IR, then U ⊕ V and
λ(U ⊕ V ) are (self-adjoint) operators on HX ⊕ HY such that for any |ψ〉 ∈ HX and for any
|ϕ〉 ∈ HY: (U ⊕ V )(|ψ〉⊕ |ϕ〉) = U(|ψ〉)⊕ V (|ϕ〉) and λ(U ⊕ V )(|ψ〉⊕ |ϕ〉) = λU(|ψ〉)⊕λV (|ϕ〉).
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Thus, as expected,

DEFINITION 90. Let α, β be quantum coherent spaces, respectively over HX and
HY. We define α → β over HX ⊗HY as follows:

α → β =
{
U : Ũ (V ) ∈ β for every V ∈ α

}
.

One then goes on to show that α → β is indeed a quantum coherent space, a
fact that leads once again to the appropriate definitions for the multiplicatives:

DEFINITION 91. Let α and β be two quantum coherent spaces, respectively over
HX and over HY. We define:

α⊗ β = ¬(α → ¬β);
α⊕ β = ¬α → β.

10 QUANTUM LOGIC AND QUANTUM COMPUTATION

Quantum computation has suggested new forms of quantum logic that have been
called quantum computational logics.67 The main difference between these new log-
ics and traditional (sharp and unsharp) quantum logics concerns a basic semantic
question: how to represent the meanings of the sentences of a given language? As
we have learnt, the answer given by “orthodox” quantum logic was the following:
the meanings of the elementary experimental sentences of quantum theory have
to be regarded as determined by appropriate sets of states of quantum objects
(mathematically represented by closed subspaces of a Hilbert space). The answer
given in the framework of quantum computational logics is quite different. The
meaning of a sentence is identified with a quantum information quantity: a system
of qubits or, more generally, a mixture of systems of qubits.68

Two kinds of quantum computational semantics have been investigated:

• A compositional semantics, where (like in classical logic) the meaning of a
compound sentence is determined by the meanings of its parts.

• A holistic semantics, which makes essential use of the characteristic “holistic”
features of the quantum-theoretic formalism. Hence, in this framework, the
meaning of a compound sentence generally determines the meanings of its
parts, but not the other way around.

Let us first recall some basic definitions of quantum computation. Consider the
two-dimensional Hilbert space C2 (where any vector |ψ〉 is represented by a pair
of complex numbers). Let B(1) = {|0〉, |1〉} be the canonical orthonormal basis for
C2, where |0〉 = (1, 0) and |1〉 = (0, 1).

67See [Dalla Chiara et al., 2003].
68Other logical approaches have investigated some interesting relations between quantum com-

putation and linear logic. See, for instance, [Pratt, 1993],[Selinger, 2004],[van Tonder, 2004].
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DEFINITION 92. Qubit
A qubit is a unit vector |ψ〉 of the Hilbert space C2.

From an intuitive point of view, a qubit can be regarded as a quantum variant
of the classical notion of bit: a kind of “quantum perhaps”. In this framework,
the two basis-elements |0〉 and |1〉 represent the two classical bits 0 and 1, re-
spectively. From a physical point of view, a qubit represents a state of a single
particle, carrying an atomic piece of quantum information. In order to carry the
information stocked by n qubits, we need of course a compound system, consisting
of n particles.

DEFINITION 93. Quregister
An n-qubit system (also called n-quregister) is a unit vector in the n-fold tensor
product Hilbert space ⊗nC2 := C2 ⊗ . . .⊗ C2︸ ︷︷ ︸

n−times

(where ⊗1C2 := C2).69

We will use x, y, . . . as variables ranging over the set {0, 1}. At the same time,
|x〉, |y〉, . . . will range over the basis B(1). Any factorized unit vector |x1〉⊗. . .⊗|xn〉
of the space ⊗nC2 will be called a classical register. Instead of |x1〉 ⊗ . . . ⊗ |xn〉
we will simply write |x1, . . . , xn〉. The set B(n) of all classical registers is an
orthonormal basis for the space ⊗nC2.

Quregisters are pure states: maximal pieces of information about the particles
under consideration. In quantum computation (as well as in quantum theory),
one cannot help referring also to mixed states (pieces of information that are not
maximal and might be enriched). In the framework of quantum computation,
mixed states (mathematically represented by density operators of an appropriate
Hilbert space) are also called qumixes.

DEFINITION 94. Qumix
A qumix is a density operator of ⊗nC2 (where n ≥ 1).70

Needless to say, quregisters correspond to particular qumixes that are pure
states (i.e. projections onto one-dimensional closed subspaces of a given ⊗nCn).
We will indicate by D(⊗nC2) the set of all density operators of ⊗nC2. Hence the
set D =

⋃∞
n=1 D(⊗nC2) will represent the set of all possible qumixes.

A classical register |x1, . . . , xn〉 is called true, when xn = 1; false, otherwise.
The idea is that any classical register corresponds to a classical truth-value that
is determined by its last element. Hence, in particular, the bit |1〉 corresponds to
the truth-value Truth, while the bit |0〉 corresponds to the truth-value Falsity .

On this basis, we can identify, in any space ⊗nC2, two special projection-
operators (P (n)

1 and P
(n)
0 ) that represent, in this framework, the Truth-property

and the Falsity-property, respectively. The projection P
(n)
1 is determined by the

closed subspace spanned by the set of all true registers, while P
(n)
0 is determined by

the closed subspace spanned by the set of all false registers. As we already know,
in quantum theory, projections have the role of mathematical representatives of

69See Def. 161.
70See Def. 159.
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possible events (or physical properties) of the quantum objects under investiga-
tion. Hence, it turns out that Truth and Falsity behave here as special cases of
quantum events.

As a consequence, one can naturally apply the Born rule that determines the
probability-value that a quantum system in a given state satisfies a physical prop-
erty . Consider any qumix ρ, which represents a possible state of a quantum system
in the space ⊗nC2. By applying the Born rule, we obtain that the probability-value
that a physical system in state ρ satisfies the Truth-property P

(n)
1 is the number

tr(ρP (n)
1 ) (where tr is the trace functional).71 This suggests the following natural

definition of the notion of probability of a given qumix.

DEFINITION 95. Probability of a qumix
For any qumix ρ ∈ D(⊗nC2):

p(ρ) = tr(ρP (n)
1 ).

From an intuitive point of view, p(ρ) represents the probability that the infor-
mation stocked by the qumix ρ is true. In the particular case where ρ corresponds
to the qubit

|ψ〉 = c0|0〉 + c1|1〉,
we obtain that p(ρ) = |c1|2.

Given a quregister |ψ〉, we will also write p(|ψ〉) instead of p(P|ψ〉), where P|ψ〉
is the density operator represented by the projection onto the one-dimensional
subspace spanned by the vector |ψ〉.

10.1 Quantum gates

In quantum computation, quantum logical gates (briefly, gates) are unitary oper-
ators that transform quregisters into quregisters.72 Being unitary, gates represent
characteristic reversible transformations. The canonical gates (which are studied
in the literature) can be naturally generalized to qumixes. Generally, gates cor-
respond to some basic logical operations that admit a reversible behavior. We
will consider here the following gates: the negation, the Petri-Toffoli gate and the
square root of the negation.

Let us first describe these gates in the framework of quregisters.

DEFINITION 96. The negation
For any n ≥ 1, the negation on ⊗nC2 is the linear operator Not(n) such that for
every element |x1, . . . , xn〉 of the basis B(n):

Not(n)(|x1, . . . , xn〉) := |x1, . . . , xn−1〉 ⊗ |1 − xn〉.

In other words, Not(n) inverts the value of the last element of any basis-vector
of ⊗nC2.

71See Def. 158.
72See Def. 160.
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DEFINITION 97. The Petri-Toffoli gate
For any n ≥ 1 and any m ≥ 1 the Petri-Toffoli gate is the linear operator T(n,m,1)

defined on ⊗n+m+1C2 such that for every element |x1, . . . , xn〉⊗ |y1, . . . , ym〉⊗ |z〉
of the basis B(n+m+1):

T(n,m,1)(|x1, . . . , xn〉⊗|y1, . . . , ym〉⊗|z〉) := |x1, . . . , xn〉⊗|y1, . . . , ym〉⊗|xnym ⊕ z〉,

where ⊕ represents the sum modulo 2.

One can easily show that both Not(n) and T(n,m,1) are unitary operators. Con-
sider now the set R of all quregisters |ψ〉. The gates Not and T can be uniformly
defined on this set in the expected way:

Not(|ψ〉) := Not(n)(|ψ〉), if |ψ〉 ∈ ⊗nC2

T(|ψ〉 ⊗ |ϕ〉 ⊗ |χ〉) := T(n,m,1)(|ψ〉 ⊗ |ϕ〉 ⊗ |χ〉),
if |ψ〉 ∈ ⊗nC2, |ϕ〉 ∈ ⊗mC2 and |χ〉 ∈ C2.

On this basis, a conjunction And, a disjunction Or, can be defined for any pair
of quregisters |ψ〉 and |ϕ〉:

And(|ψ〉, |ϕ〉) := T(|ψ〉 ⊗ |ϕ〉 ⊗ |0〉);

Or(|ψ〉, |ϕ〉) := Not(And(Not(|ψ〉), Not(|ϕ〉))).
Clearly, |0〉 represents an “ancilla” in the definition of And.
The quantum logical gates we have considered so far are, in a sense, “semiclas-

sical”. A quantum logical behavior only emerges in the case where our gates are
applied to superpositions. When restricted to classical registers, such operators
turn out to behave as classical (reversible) truth-functions. We will now consider
an important example of a genuine quantum gate that transforms classical regis-
ters (elements of B(n)) into quregisters that are superpositions. This gate is the
square root of the negation.

DEFINITION 98. The square root of the negation
For any n ≥ 1, the square root of the negation on ⊗nC2 is the linear operator√
Not

(n)
such that for every element |x1, . . . , xn〉 of the basis B(n):

√
Not

(n)
(|x1, . . . , xn〉) := |x1, . . . , xn−1〉 ⊗

1
2
((1 + i)|xn〉 + (1 − i)|1 − xn〉),

where i :=
√
−1.

One can easily show that
√
Not

(n)
is a unitary operator. The basic property of√

Not
(n)

is the following:

for any |ψ〉 ∈ ⊗nC2,
√
Not

(n)
(
√
Not

(n)
(|ψ〉)) = Not(n)(|ψ〉).

In other words, applying twice the square root of the negation means negating.
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From a logical point of view,
√
Not

(n)
can be regarded as a “tentative partial

negation” (a kind of “half negation”) that transforms precise pieces of information
into maximally uncertain ones. For, we have:

p(
√
Not

(1)
(|1〉)) =

1
2

= p(
√
Not

(1)
(|0〉)).

As expected, also
√
Not can be uniformly defined on the set R of all quregisters.

Interestingly enough, the gate
√
Not seems to represent a typically quantum

logical operation that does not admit any counterpart either in classical logic or
in standard fuzzy logics.

THEOREM 99. [Dalla Chiara and Leporini, 2005]

1. There is no function f : {0, 1} �→ {0, 1} such that for any x ∈ {0, 1} :
f(f(x)) = 1 − x.

2. There is no continuous function f : [0, 1] �→ [0, 1] such that for any x ∈
[0, 1] : f(f(x)) = 1 − x.

The gates considered so far can be naturally generalized to qumixes [Gudder,
2003]. When our gates will be applied to density operators, we will write: NOT,√
NOT, T, AND, OR (instead of Not,

√
Not, T, And, Or).

DEFINITION 100. The negation
For any qumix ρ ∈ D(⊗nC2),

NOT(n)(ρ) := Not(n) ρ Not(n).

DEFINITION 101. The square root of the negation
For any qumix ρ ∈ D(⊗nC2),

√
NOT

(n)
(ρ) :=

√
Not

(n)
ρ
√
Not

(n)∗
,

where
√
Not

(n)∗
is the adjoint of

√
Not

(n)
.73

It is easy to see that for any n ∈ N+, both NOT(n)(ρ) and
√
NOT

(n)
(ρ) are qumixes

of D(⊗nC2).

DEFINITION 102. The conjunction
Let ρ ∈ D(⊗nC2) and σ ∈ D(⊗mC2).

AND(n,m,1)(ρ, σ) = T(n,m,1)(ρ, σ, P (1)
0 ) := T(n,m,1)(ρ⊗ σ ⊗ P

(1)
0 )T(n,m,1).

Like in the quregister-case, the gates NOT,
√
NOT, T, AND, OR can be uniformly

defined on the set D of all qumixes.
An interesting preorder relation can be defined on the set of all qumixes.

DEFINITION 103. Preorder
ρ & σ iff the following conditions hold:

73See Def. 155.
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(i) p(ρ) ≤ p(σ);

(ii) p(
√
NOT(σ)) ≤ p(

√
NOT(ρ)).

One immediately shows that & is reflexive and transitive, but not antisymmet-
ric. Counterexamples can be easily found in D(C2).

10.2 The compositional quantum computational semantics

Both the compositional and the holistic semantics are based on the following intu-
itive idea: any sentence α of the language is interpreted as an appropriate qumix,
that generally depends on the logical form of α; at the same time, the logical
connectives are interpreted as special operations defined in terms of gates. We will
consider a minimal (sentential) quantum computational language L that contains
a privileged atomic sentence f (whose intended interpretation is the truth-value
Falsity) and the following primitive connectives: the negation (¬), the square root
of the negation (

√¬), a ternary conjunction
∧

(which corresponds to the Petri-
Toffoli gate). For any sentences α and β, the expression

∧
(α, β, f) is a sentence of

L. In this framework, the usual conjunction α � β is dealt with as metalinguistic
abbreviation for the ternary conjunction

∧
(α, β, f). The disjunction connective

(�) is supposed to be defined via de Morgan (α�β := ¬(¬α�¬β)). This minimal
quantum computational language can be extended to richer languages containing
other primitive connectives.

We will first introduce the notion of compositional quantum computational model
(briefly, compositional QC-model or qumix-model).

DEFINITION 104. Compositional QC-model
A compositional QC-model of L is a map Qum that associates a qumix to any
sentence α of L, satisfying the following conditions:

Qum(α) :=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

a density operator of D(C2) if α is an atomic sentence;
P0 if α = f ;
NOT(Qum(β)) if α = ¬β;√
NOT(Qum(β)) if α =

√¬β;
T(Qum(β), Qum(γ), Qum(f)) if α =

∧
(β, γ, f).

The concept of compositional QC-model seems to have a “quasi intensional”
feature: the meaning Qum(α) of the sentence α partially reflects the logical form
of α. In fact, the dimension of the Hilbert space where Qum(α) “lives” depends on
the number of occurrences of atomic sentences in α.

DEFINITION 105. The atomic complexity of α

At(α) =

⎧⎪⎨⎪⎩
1 if α is an atomic sentence;
At(β) if α = ¬β or α =

√¬β;
At(β) + At(γ) + 1 if α =

∧
(β, γ, f).

LEMMA 106. If At(α) = n, then Qum(α) ∈ D(⊗nC2).
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We can say that the space ⊗At(α)C2 represents the semantic space where all
possible meanings of α should “live”. Accordingly we will also write Hα instead
of ⊗At(α)C2.

Given a model Qum, any sentence α has a natural probability-value, which can
be also regarded as its extensional meaning with respect to Qum.

DEFINITION 107. The probability-value of α in a model Qum

pQum(α) := p(Qum(α)).

As we have learnt, qumixes are preordered by the relation &. This suggests a
natural definition of a logical consequence relation.

DEFINITION 108. Consequence in a model Qum
A sentence β is a consequence in a model Qum of a sentence α (α |=Qum β) iff
Qum(α) & Qum(β).

DEFINITION 109. Logical consequence
A sentence β is a logical consequence of a sentence α (α |= β) iff for any model
Qum, α |=Qum β.

We call quantum computational logic (QCL) the logic that is semantically char-
acterized by the logical consequence relation we have just defined. Hence, β is a
logical consequence of α in the logic QCL (α |=QCL β) iff β is a consequence of α
in any model Qum.

So far we have considered models, where the meaning of any sentence is rep-
resented by a qumix. A natural question arises: do density operators have an
essential role in characterizing the logic QCL? This question has a negative an-
swer. In fact, one can prove that quregisters are sufficient for our logical aims in
the case of the minimal quantum computational language L.

Let us first introduce the notion of qubit-model.

DEFINITION 110. Qubit-model
A qubit-model of L is a function Qub that associates a quregister to any sentence
α of L, satisfying the following conditions:

Qub(α) :=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

a qubit in C2 if α is an atomic sentence;
|0〉 if α = f ;
Not(Qub(β)) if α = ¬β;√
Not(Qub(β)) if α =

√¬β;
T(Qub(β), Qub(γ), Qub(f)) if α =

∧
(β, γ, f).

The notions of consequence and logical consequence are defined like in the case
of qumix-models, mutatis mutandis. One can prove that the qubit-semantics and
the qumix-semantics characterize the same logic.74

Quantum computational logic turns out to be a non-standard form of quantum
logic. Conjunction and disjunction do not correspond to lattice operations, because

74See [Dalla Chiara et al., 2003].
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they are not generally idempotent (α �QCL α�α, α�α �QCL α). Unlike the usual
(sharp and unsharp) versions of quantum logic, the weak distributivity principle
breaks down ((α � β) � (α � γ) �QCL α � (β � γ)). At the same time, the strong
distributivity, that is violated in orthodox quantum logic, is here valid (α � (β �
γ) |=QCL (α � β) � (α � γ)). Both the excluded middle and the noncontradiction
principles are violated. As a consequence, one can say that the logic arising from
quantum computation represents, in a sense, a new example of fuzzy logic.

The axiomatizability of QCL is an open problem.

10.3 Quantum trees

The meaning and the probability-value of any sentence α can be naturally de-
scribed (and calculated) by means of a special configuration called quantum tree,
that illustrates a kind of reversible transformation of the atomic subformulas of
α. The notion of quantum tree can be dealt with either in the framework of the
qubit-semantics or in the framework of the qumix-semantics. In the first case
quantum trees will be called qubit trees, while in the second case we will speak of
qumix trees.

Any sentence α can be naturally decomposed into its parts, giving rise to a
special configuration called the syntactical tree of α ( indicated by STreeα).

Roughly,75 STreeα can be represented as a sequence of levels:

Levelk(α)

. . .

Level1(α),

where:

• each Leveli(α) (with 1 ≤ i ≤ k) is a sequence of subformulas of α;

• the bottom level (Level1(α)) consists of α;

• the top level (Levelk(α)) is the sequence of all atomic occurrences of α;

• for any i (with 1 ≤ i < k), Leveli+1(α) is the sequence obtained by dropping
the principal connective76 in all molecular formulas occurring at Leveli(α),
and by repeating all the atomic sentences that possibly occur at Leveli(α).

As an example, consider the following sentence: α = q�¬q =
∧

(q,¬q, f). The
syntactical tree of α is the following configuration:

75A formal definition of syntactical tree can be found in [Dalla Chiara and Leporini, 2005].

76The principal connective of α is

8><
>:

¬, if α = ¬β;√¬, if α =
√¬β;V

, if α =
V

(β, γ, f).
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Level3(α) = (q,q, f);
Level2(α) = (q,¬q, f);

Level1(α) = (
∧

(q,¬q, f)).

By Height of α (indicated by Height(α) we mean the number of levels of the
syntactical tree of α. For instance, Height(

∧
(q,¬q, f)) = 3.

The syntactical tree of α (which represents a purely syntactical object) uniquely
determines a sequence of gates that are all defined on the semantic space of α. We
will call this gate-sequence the qubit tree of α.

Consider a sentence α such that At(α) = t and Height(α) = k. Let Levelji (α)
represent the j-th node of Leveli(α). Each Levelji (α) (where 1 ≤ i < Height(α))
can be naturally associated to a unitary operator Opj

i , according to the following
operator-rule:

Opj
i :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
I(1) if Levelji (α) is an atomic sentence;
Not(r) if Levelji (α) = ¬β and At(β) = r;
√
Not

(r)
if Levelji (α) =

√¬β and At(β) = r;
T(r,s,1) if Levelji (α) =

∧
(β, γ, f), At(β) = r and At(γ) = s,

where I(1) is the identity operator of C2.
On this basis, one can associate a gate Gα

i to each Leveli(α) (such that 1 ≤ i <
Height(α)):

Gα
i :=

|Leveli(α)|⊗
j=1

Opj
i ,

where |Leveli(α)| is the length of the sequence Leveli(α).
Being the tensor product of unitary operators, every Gα

i turns out to be a
unitary operator. One can easily show that all Gα

i are defined on the same space,
Hα.

DEFINITION 111. The qubit tree of α
The qubit tree of α (denoted by QTreeα) is the gate-sequence

(Gα
1 , . . . , G

α
Height(α)−1)

that is uniquely determined by the syntactical tree of α.

As an example, consider again the sentence: α =
∧

(q,¬q, f).
In order to construct the qubit tree of α, let us first determine the operators

Opj
i corresponding to each node of Streeα. We will obtain:

• Op1
1 = T(1,1,1), because

∧
(q,¬q, f) is connected with (q,¬q, f) (at Level2(α));
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• Op1
2 = I(1), because q is connected with q (at Level3(α));

• Op2
2 = Not(1), because ¬q is connected with q (at Level3(α));

• Op3
2 = I(1), because f is connected with f (at Level3(α)).

The qubit tree of α is represented by the gate-sequence (Gα
1 , G

α
2 ), where:

Gα
1 = Op1

1 = T(1,1,1);

Gα
2 = Op1

2 ⊗Op2
2 ⊗Op3

2 = I(1) ⊗ Not(1) ⊗ I(1).

As we have seen, qubit trees consist of unitary operators (which can be applied
to quregisters). The notion of qubit tree can be naturally generalized to qumixes.
In such a case we will speak of qumix trees, and we will call quantum tree either
a qubit tree or a qumix tree. Let (Gα

1 , . . . , G
α
k−1) be the qubit tree of α. We can

define the following sequence of functions on the set D(Hα):

DGα
1 (ρ) = Gα

1 ρGα∗
1

. . .

DGα
k−1(ρ) = Gα

k−1 ρGα∗
k−1.

One can easily prove that, for any ρ ∈ D(Hα) and for any i (1 ≤ i ≤ k − 1),
DGα

i (ρ) is a density operator of D(Hα). The sequence

QumTreeα = (DGα
1 , . . . ,

DGα
k−1)

is called the qumix tree of α.
Consider now a sentence α and let (DGα

1 , . . . ,
DGα

k−1) be the qumix tree of α.
Any choice of a qumix ρ in Hα determines a sequence (ρk, . . . , ρ1) of qumixes of
Hα, where:

ρk = ρ

ρk−1 = DGα
k−1(ρk)

. . .

ρ1 = DGα
1 (ρ2)

The qumix ρk can be regarded as a possible input-information concerning the
atomic parts of α, while ρ1 represents the output-information about α, given the
input-information ρk. Each ρi corresponds to the information about Leveli(α),
given the input-information ρk.

How to determine an information about the parts of α under a given input? It
is natural to apply the standard quantum-theoretic rule that determines the states
of the parts of a compound system.

Suppose that:
Leveli(α) = (βi1 , . . . βir

)
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We have:
Hα = Hβi1 ⊗ . . .⊗Hβir

We know that QumTreeα and the choice of an input ρk (in Hα) determine a
sequence of qumixes:

ρk  Levelk(α) = (q1, . . .qt)

. . .

ρi  Leveli(α) = (βi1 , . . . , βir
)

. . .

ρ1  Level1(α) = (α)

Consider redj(ρi), the reduced state of ρi with respect to the j-th subsystem
(where 1 ≤ j ≤ r).77 From a semantic point of view, this state can be regarded
as a contextual information about βij

(the subformula of α occurring at the j-th
position at Leveli(α)) under the input ψk. Apparently, a contextual information
about a subformula is generally a mixture.

An interesting situation arises when the qumix ρk, representing a global infor-
mation about the atomic parts of α, is an entangled pure state.78

As an example, consider the sentence α = ¬∧
(q,¬q, f) (which represents an ex-

ample of the noncontradiction principle formalized in the quantum computational
language). The input-information might be the following entangled state:

|ψ4〉 =
1√
2
|110〉 +

1√
2
|000〉  Level4(α) = (q,q, f)

The reduced states of |ψ4〉 turn out to be the following:
red1( 1√

2
|110〉 + 1√

2
|000〉) = 1

2P
(1)
0 + 1

2P
(1)
1

red2( 1√
2
|110〉 + 1√

2
|000〉) = 1

2P
(1)
0 + 1

2P
(1)
1

red3( 1√
2
|110〉 + 1√

2
|000〉) = P

(1)
0

Hence, the contextual information about both occurrences of q is the (proper)
mixture

1
2
P

(1)
0 +

1
2
P

(1)
1 .

77We recall that redj(ρi) is the unique density operator that satisfies the following condition:

for any self-adjoint operator Aj of Hβij ,

tr(redj(ρi)A
j) = tr(ρi(I

1 ⊗ . . . ⊗ Ij−1 ⊗ Aj ⊗ Ij+1 ⊗ . . . ⊗ Ir)),

(where Ih is the identity operator of Hβih ). As a consequence, ρi and redj(ρi) are statistically
equivalent with respect to the j-th subsystem of the compound system described by ρi.

78As is well known, the basic features of an entangled state |ψ〉 are the following: 1) |ψ〉
is a maximal information (a pure state) that describes a compound physical system S; 2) the
pieces of information determined by |ψ〉 about the parts of S are, generally, non-maximal (proper
mixtures). Hence, the information about the whole is more precise than the information about
the parts.
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At the same time, the contextual information about f is the false projection P
(1)
0 .

Quantum trees can be naturally regarded as examples of quantum circuits that
compute outputs under given inputs. Since both qubit trees and qumix trees are
determined by the syntactical tree of a given sentence, one can also say that any
sentence of the quantum computational language plays the role of an intuitive and
“economical” description of a quantum circuit.

10.4 Holistic semantics

As we have seen, in the compositional quantum computational semantics, the
meaning of a molecular sentence is determined by the meanings of its parts (like
in classical logic). In this framework, the input-information about the top level
of the syntactical tree of a sentence α is always associated to a factorized state
ρ1 ⊗ . . .⊗ ρt, where t is the atomic complexity of α and ρ1, . . . , ρt are qumixes of
C2. As a consequence, the meaning of a molecular α cannot be a pure state, if the
meanings of some atomic parts of α are proper mixtures.

The holistic quantum compositional semantics79 is based on a more “liberal”
assumption: the input information about the top-level of the syntactical tree of
α can be represented by any qumix “living” in the semantic space of α. As a
consequence, the meanings of all levels of STreeα are not, generally, factorized
states.

Suppose that:

Leveli(α) = (β1, . . . , βr).

As we already know, the space Hα can be naturally regarded as the Hilbert space
of a compound physical system consisting of r parts (mathematically represented
by the spaces Hβ1 , . . . ,Hβr ), where each part may be compound. On this basis,
for any qumix ρi (associated to Leveli(α)) and for any node Levelji (α), we can
consider the reduced state redj(ρi) with respect to the j-th subsystem of the system
described by ρi. From an intuitive point of view, redj(ρi) describes the j-th
subsystem on the basis of the global information ρi. Since Leveli(α) = (β1, . . . , βr),
the qumix redj(ρi) (which is a density operator of the space Hβj ) represents a
possible meaning of the sentence βj .

We can now introduce the basic definitions of the holistic semantics. Unlike
compositional models, a holistic quantum computational model is a function Hol
that assigns to any sentence α of the quantum computational language a global
meaning that cannot be generally inferred from the meanings of the parts of α.
Of course, the function Hol shall respect the logical form of α.

In order to define the concept of holistic quantum computational model , we will
first introduce the notions of atomic holistic model and of tree holistic model .

DEFINITION 112. Atomic holistic model
An atomic holistic model is a map HolAt that associates a qumix to any sentence
α of L , satisfying the following conditions:

79In [Dalla Chiara and Leporini, 2005] we have presented a weaker version of holistic semantics.
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(1) HolAt(α) ∈ D(Hα);

(2) Let At(α) = n and LevelHeigth(α) = q1, . . . ,qn. Then,

(2.1) if qj = f , then redj(HolAt(α)) = P0;

(2.2) if qj and qh are two occurrences in α of the same atomic sentence, then
redj(HolAt(α)) = redh(HolAt(α)).

Apparently, HolAt(α) represents a global interpretation of the atomic sentences
occurring in α. At the same time, redj(HolAt(α)), the reduced state of the com-
pound system (described by HolAt(α)) with respect to the j-th subsystem, rep-
resents a contextual meaning of qj with respect to the global meaning HolAt(α).
Conditions (2.1) and (2.2) guarantee that HolAt(α) is well behaved. For, the con-
textual meaning of f is always the Falsity , while two different occurrences (in α)
of the same atomic sentence have the same contextual meaning.

The map HolAt (which assigns a meaning to the top-level of the syntactical tree
of any sentence α) can be naturally extended to a map HolTree that assigns a
meaning to each level of the syntactical tree of any α, following the prescriptions
of the qumix tree of α.

Consider a sentence α such that:

QumTreeα = (DGα
1 , . . . ,

D Gα
Heigth(α)−1).

The map HolTree is defined as follows:

HolTree(LevelHeigth(α)) = HolAt(α)

HolTree(Leveli(α)) = DGα
i (HolTree(Leveli+1(α))

(where Heigth(α) > i ≥ 1).
On this basis, one can naturally define the notion of holistic (quantum compu-

tational ) model of L.

DEFINITION 113. Holistic model
A map Hol that assigns to any sentence α a qumix of the space Hα is called a
holistic (quantum computational) model of L iff there exists an atomic holistic
model HolAt s.t.:

Hol(α) = HolTree(Level1(α)),

where HolTree is the extension of HolAt.

Given a sentence γ, Hol determines the contextual meaning, with respect to the
context Hol(γ), of any occurrence of a subformula β in γ.

DEFINITION 114. Contextual meaning of a node
Let β be a subformula of γ occurring at the j − th position of the i − th level of
the syntactical tree of γ. We indicate by β[ij ] the node of STreeγ corresponding
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to such occurrence. The contextual meaning of β[ij ] with respect to the context
Hol(γ) is defined as follows:

Holγ(β[ij ]) := redj(HolTree(Leveli(γ))).

Hence, we have:

Holγ(γ) = HolTree(Level1(γ)) = Hol(γ).

Suppose that β[ij ] and β[hk ] are two nodes of the syntactical tree of γ, representing
two occurrences of the same subformula β. One can show that:

Holγ(β[ij ]) = Holγ(β[hk ]).

In other words, two different occurrences of one and the same subformula in
a sentence γ receive the same contextual meaning with respect to the context
Hol(γ).

On this basis, one can define the contextual meaning of a subformula β of γ,
with respect to the context Hol(γ):

Holγ(β) := Holγ(β[ij ]),

where β[ij ] is any occurrence of β at a node of STreeγ .
Suppose now that β is a subformula of two different formulas γ and δ. Generally,

we have:
Holγ(β) �= Holδ(β).

In other words, sentences may receive different contextual meanings in different
contexts!

Apparently, Holγ is a partial function that only assigns meanings to the subfor-
mulas of γ. Given a sentence γ, we will call the partial function Holγ a contextual
holistic model of the language.

As expected, compositional models turn out to be limit-cases of holistic models.
One can easily prove that Hol represents a compositional model iff the following
condition is satisfied for any sentence α:

HolAt(α) = Hol(q1) ⊗ . . .⊗ Hol(qt),

where q1, . . . ,qt are the atomic sentences occurring in α.
Unlike holistic models, compositional models are, of course, context-independent.

Suppose that β is a subformula of two different formulas γ and δ, and let Hol rep-
resent a compositional model. We have:

Holγ(β) = Holδ(β) = Hol(β).

The notion of logical consequence in the framework of the holistic quantum
computational semantics can be now defined in a natural way.
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Let us first define the notion of consequence in a given contextual model .

DEFINITION 115. Consequence in a given contextual model Holγ

A sentence β is a consequence of a sentence α in a given contextual model Holγ

(α |=Holγ β) iff

1. α and β are subformulas of γ;

2. Holγ(α) & Holγ(β) (where & is the preorder relation defined in Def. 103).

DEFINITION 116. Logical consequence (in the holistic semantics)
A sentence β is a consequence of a sentence α (in the holistic semantics) iff for
any sentence γ such that α and β are subformulas of γ and for any Hol,

α |=Holγ β.

We call HQCL the logic that is semantically characterized by the logical con-
sequence relation we have just defined. Hence, α |=HQCL β iff for any sentence γ
such that α and β are subformulas of γ and for any Hol,

α |=Holγ β.

Although the basic ideas of the holistic and of the compositional quantum com-
putational semantics are quite different, one can prove that HQCL and QCL are
the same logic.80 In other words, for any sentences α and β,

α |=HQCL β iff α |=QCL β.

This means that the logics (formalized in our “poor” sentential languages) are
not able to capture the difference between an analytical and a holistic semantic
procedure.

The holistic quantum computational semantics provides a formalism that might
represent a useful abstract tool for describing gestaltic semantic patterns, which
arise in a number of different rational and perceptual activities. As we have seen,
an important role in this game is played by the notion of tensor product , which
is mainly responsible for most holistic quantum phenomena. The compositional
and analytical features of classical semantics (and of many other non-classical
approaches) are, instead, generally based on cartesian products. In this connection,
an interesting question arises: to what extent is it possible (and reasonable) to try
and generalize the tensor-product formalism to some abstract semantic situations,
that might be quite independent of the notion of Hilbert space?

11 MATHEMATICAL APPENDIX

We give here a survey of the definitions of some basic mathematical concepts that
play a fundamental role in quantum logic.

80See [Dalla Chiara et al., 2006].
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11.1 Algebraic structures

DEFINITION 117. Poset
A partially ordered set (called also poset) is a structure

B = 〈B , ≤〉 ,
where: B (the support of the structure) is a nonempty set and ≤ is a partial
order relation on B. In other words, ≤ satisfies the following conditions for all
a, b, c ∈ B:

(i) a ≤ a (reflexivity);
(ii) a ≤ b and b ≤ a implies a = b (antisymmetry);
(iii) a ≤ b and b ≤ c implies a ≤ c (transitivity).

DEFINITION 118. Chain
Let B = 〈B , ≤〉 be a poset. A chain in B is a subset C ⊆ B such that ∀a, b ∈ C:
a ≤ b or b ≤ a.

DEFINITION 119. Bounded poset
A bounded poset is a structure

B = 〈B , ≤ , 0 ,1〉 ,
where:

(i) 〈B , ≤〉 is a poset;

(ii) 0 and 1 are special elements of B: the minimum and the maximum with
respect to ≤. In other words, for all b ∈ B:

0 ≤ b and b ≤ 1.

DEFINITION 120. Lattice
A lattice is a poset B = 〈B , ≤〉 in which any pair of elements a, b has a meet a∧ b
(also called infimum) and a join a ∨ b (also called supremum) such that:

(i) a ∧ b ≤ a, b, and ∀c ∈ B: c ≤ a, b implies c ≤ a ∧ b;
(ii) a, b ≤ a∨ b , and ∀c ∈ B: a, b ≤ c implies a ∨ b ≤ c.

In any lattice the following condition holds:

a ≤ b iff a ∧ b = a iff a ∨ b = b.

DEFINITION 121. Complemented lattice
A complemented lattice is a bounded lattice B where: ∀a ∈ B ∃b ∈ B such that
a ∧ b = 0 and a ∨ b = 1.

Let X be any set of elements of a lattice B. If existing, the infimum
∧

X and
the supremum

∨
X are the elements of B that satisfy the following conditions:
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(ia) ∀a ∈ X :
∧

X ≤ a;
(ib) ∀c ∈ B : ∀a ∈ X[c ≤ a] implies c ≤ ∧

X;
(iia) ∀a ∈ X : a ≤ ∨

X;
(iib) ∀c ∈ B : ∀a ∈ X[a ≤ c] implies

∨
X ≤ c.

On can show that, when they exist the infimum and the supremum are unique.
A lattice is complete iff for any set of elements X the infimum

∧
X and the

supremum
∨

X exist. A lattice is σ-complete iff for any countable set of elements
X the infimum

∧
X and the supremum

∨
X exist.

In many situations, a poset (or a lattice) is closed under a unary operation that
represents a weak form of logical negation. Such a finer structure is represented
by a bounded involution poset .

DEFINITION 122. Bounded involution poset
A bounded involution poset is a structure B = 〈B , ≤ , ′ , 0 ,1〉 where:

(i) 〈B , ≤ , 0 ,1〉 is a bounded poset;

(ii) ′ is a unary operation (called involution or generalized complement) that
satisfies the following conditions:

(a) a = a′′ (double negation);
(b) a ≤ b implies b′ ≤ a′ (contraposition).

The presence of a negation-operation permits us to define an orthogonality re-
lation ⊥, that may hold between two elements of a bounded involution poset.

DEFINITION 123. Orthogonality
Let a and b belong to a bounded involution poset. The object a is orthogonal to
the object b (indicated by a ⊥ b) iff a ≤ b′. A set of elements S is called a pairwise
orthogonal set iff ∀a, b ∈ S such that a �= b, a ⊥ b.
A maximal set of pairwise orthogonal elements is a set of pairwise orthogonal
elements that is not a proper subset of any set of pairwise orthogonal elements.

When a is not orthogonal to b we write: a �⊥ b. The orthogonality relation ⊥ is
sometimes also called preclusivity; while its negation �⊥ is also called accessibility .

Since, by definition of bounded involution poset, a ≤ b implies b′ ≤ a′ (con-
traposition) and a = a′′ (double negation), one immediately obtains that ⊥ is a
symmetric relation.

Notice that 0 ⊥ 0 and that ⊥ is not necessarily irreflexive. It may happen that
an object a (different from the null object 0) is orthogonal to itself:

a ⊥ a (because a ≤ a′).

Objects of this kind are called self-inconsistent . Suppose we have two self-inconsistent
objects a and b, and let us ask whether in such a case a is necessarily orthogonal
to b. Generally, the answer to this question is negative. There are examples of
bounded involution posets such that for some objects a and b:
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a ⊥ a and b ⊥ b and a �⊥ b.

DEFINITION 124. Kleene poset
A bounded involution poset is a Kleene poset (or also a regular poset) iff it satisfies
the Kleene condition for any pair of elements a and b:

a ⊥ a and b ⊥ b implies a ⊥ b.

DEFINITION 125. Bounded involution lattice
A bounded involution lattice is a bounded involution poset that is also a lattice.

A Kleene lattice (or regular lattice) is a Kleene poset that is also a lattice. One
can prove that a bounded involution lattice is regular iff a ∧ a′ ≤ b ∧ b′ (for any
pair of elements a and b).

Generally, bounded involution lattices and Kleene lattices may violate both
the noncontradiction principle and the excluded middle. In other words, it may
happen that:

a ∧ a′ �= 0 and a ∨ a′ �= 1.

DEFINITION 126. Orthoposet and ortholattice
An orthoposet is a bounded involution poset B = 〈B , ≤ , ′ , 0 ,1〉 that satisfies

the conditions:

(i) a ∧ a′ = 0 (noncontradiction principle);

(ii) a ∨ a′ = 1 (excluded middle principle).

An ortholattice is an orthoposet that is also a lattice.
The involution operation ′ of an orthoposet (ortholattice) is also called ortho-

complementation (or shortly orthocomplement).

A σ-orthocomplete orthoposet (σ-orthocomplete ortholattice) is an orthoposet
(ortholattice) B such that for any countable set {ai}i∈I of pairwise orthogonal
elements the supremum

∨ {ai}i∈I exists in B.

DEFINITION 127. Distributive lattice
A lattice B = 〈B , ∧ , ∨〉 is distributive iff the meet ∧ is distributed over the join
∨ and vice versa. In other words:

(i) a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c);

(ii) a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c).

Distributive involution lattices are also called de Morgan lattices.
In this framework, Boolean algebras can be then defined as particular examples

of de Morgan lattices.

DEFINITION 128. Boolean algebra
A Boolean algebra is a structure

B = 〈B , ∧ , ∨ , ′ , 0 ,1〉
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that is at the same time an ortholattice and a de Morgan lattice.

In other words, Boolean algebras are distributive ortholattices.

DEFINITION 129. Orthomodular poset and orthomodular lattice
An orthomodular poset is an orthoposet

B = 〈B , ≤ , ′ , 0 ,1〉

that satisfies the following conditions:

(i) ∀a, b ∈ B, a ⊥ b implies a ∨ b ∈ B;

(ii) ∀a, b ∈ B, a ≤ b implies b = a ∨ (a ∨ b′)′.

An orthomodular lattice is an orthomodular poset that is also a lattice.

Clearly, any distributive ortholattice (i.e., any Boolean algebra), is orthomodu-
lar.

DEFINITION 130. Modularity
A lattice B is called modular iff ∀a, b ∈ B,

a ≤ b implies ∀c ∈ B[a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c)].

Every modular ortholattice is orthomodular, but not the other way around.
Furthermore, any distributive lattice is modular.

A bounded poset (lattice) B may contain some special elements, called atoms.

DEFINITION 131. Atom
An element b of B is called an atom of B iff b covers 0. In other words, b �= 0 and
∀c ∈ B: c ≤ b implies c = 0 or c = b.

Apparently, atoms are nonzero elements such that no other element lies between
them and the lattice-minimum.

DEFINITION 132. Atomicity
A bounded poset B is atomic iff ∀a ∈ B − {0} there exists an atom b such that
b ≤ a.

Of course, any finite bounded poset is atomic. At the same time, there are
examples of infinite bounded posets that are atomless (and hence nonatomic), the
real interval [0, 1] being the most familiar example.

It turns out that any atomic orthomodular lattice B is atomistic in the sense
that any element can be represented as the supremum of a set of atoms, i.e., for
any element a there exists a set {bi}i∈I of atoms such that a =

∨ {bi}i∈I .

DEFINITION 133. Covering property
A lattice B satisfies the covering property iff ∀a, b ∈ B: if a covers a∧ b, then a∨ b
covers b.
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It turns out that an atomic lattice B has the covering property iff for every atom
a of B and for every element b ∈ B such that a∧ b = 0, the element a∨ b covers b.

One of the most significant quantum relations, compatibility , admits a purely
algebraic definition.

DEFINITION 134. Compatibility
Let B be an orthomodular lattice and let a and b be elements of B. The element
a is called compatible with the element b iff

a = (a ∧ b′) ∨ (a ∧ b).

One can show that the compatibility relation is symmetric. The proof uses the
orthomodular property in an essential way.

Clearly, if B is a Boolean algebra, then any element is compatible with any
other element by distributivity.

One can prove that a, b are compatible in the orthomodular lattice B iff the
subalgebra of B generated by {a, b} is Boolean.

DEFINITION 135. Irreducibility
Let B be an orthomodular lattice. B is said to be irreducible iff

{a ∈ B : ∀b ∈ B (a is compatible with b)} = {0,1} .

If B is not irreducible, it is called reducible.

DEFINITION 136. Separability
An orthomodular lattice B is called separable iff every set of pairwise orthogonal
elements of B is countable.

DEFINITION 137. Group
A group is a structure G = 〈G ,+ ,− , 0〉, where + is a binary operation, − is a
unary operation, 0 is a special element. The following conditions hold:

(i) 〈G ,+ , 0〉 is a monoid . In other words,

(a) the operation + is associative:
a + (b + c) = (a + b) + c;

(b) 0 is the neutral element :
a + 0 = a;

(ii) ∀a ∈ G, −a is the inverse of a:

a + (−a) = 0.

An Abelian monoid (group) is a monoid (group) in which the operation + is
commutative: a + b = b + a.

DEFINITION 138. Ring
A ring is a structure D = 〈D ,+ , · ,− , 0〉 that satisfies the following conditions:
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(i) 〈D ,+ , 0〉 is an Abelian group;

(ii) the operation · is associative:

a · (b · c) = (a · b) · c;

(iii) the operation · distributes over + on both sides, i.e., ∀a, b, c ∈ D:

(a) a · (b + c) = (a · b) + (a · c);
(b) (a + b) · c = (a · c) + (b · c).

If there is an element 1 in D that is neutral for · (i.e., if 〈D , · , 1〉 is a monoid),
then the ring is called a ring with unity .

A ring is trivial in case it has only one element, otherwise it is nontrivial . It is
easy to see that a ring with unity is nontrivial iff 0 �= 1.

A commutative ring is a ring in which the operation · is commutative.

DEFINITION 139. Division ring
A division ring is a nontrivial ring D with unity such that any nonzero element is
invertible; in other words, for any a ∈ D (a �= 0), there is an element b ∈ D such
that a · b = b · a = 1.

DEFINITION 140. Field
A field is a commutative division ring.

Both the real numbers (IR) and the complex numbers (C) give rise to a field.
An example of a genuine division ring (where · is not commutative) is given by
the quaternions (Q).

11.2 Hilbert spaces

DEFINITION 141. Vector space
A Vector space over a division ring D is a structure V = 〈V ,+ ,− , · , 0〉 that
satisfies the following conditions:

(i) 〈V ,+ ,− , 0〉 (the vector structure) is an Abelian group, where 0 (the null
vector) is the neutral element;

(ii) for any element a of the division ring D and any vector |ϕ〉 of V , a|ϕ〉 (the
scalar product of a and |ϕ〉) is a vector in V . The following conditions hold
for any a, b ∈ D and for any |ϕ〉, |ψ〉 ∈ V :

(a) a(|ϕ〉 + |ψ〉) = (a|ϕ〉) + (a|ψ〉);
(b) (a + b)|ϕ〉 = (a|ϕ〉) + (b|ϕ〉);
(c) a(b|ϕ〉) = (a · b)|ϕ〉;
(d) 1|ϕ〉 = |ϕ〉.
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The elements (vectors) of a vector space V are indicated by |ϕ〉, |ψ〉, |χ〉, . . .,
while a, b, c, . . . represent elements (scalars) of the division ring D.
Any finite sum of vectors |ψ1〉, . . . , |ψn〉 is indicated by |ψ1〉 + . . . + |ψn〉 (or∑

i∈K |ψi〉, when K = {1, . . . , n}.)
On this basis, one can introduce the notion of pre-Hilbert space. Hilbert spaces

are then defined as special cases of pre-Hilbert spaces. We will only consider
pre-Hilbert spaces (and Hilbert spaces) whose division ring is either IR or C.

DEFINITION 142. Pre-Hilbert space
Let D be the field of the real or the complex numbers. A pre-Hilbert space over D
is a vector space V over D, equipped with an inner product 〈.|.〉 that associates to
any pair of vectors |ϕ〉, |ψ〉 ∈ V an element 〈ϕ|ψ〉 ∈ D. The following conditions
are satisfied for any |ϕ〉, |ψ〉, |χ〉 ∈ V and any a ∈ D:

(i) 〈ϕ|ϕ〉 ≥ 0;

(ii) 〈ϕ|ϕ〉 = 0 iff |ϕ〉 = 0;

(iii) 〈ψ|aϕ〉 = a〈ψ|ϕ〉;

(iv) 〈ϕ|ψ + χ〉 = 〈ϕ|ψ〉 + 〈ϕ|χ〉;

(v) 〈ϕ|ψ〉 = 〈ψ|ϕ〉∗, where ∗ is the identity if D = IR, and the complex conjuga-
tion if D = C.

The inner product 〈.|.〉 permits one to generalize some geometrical notions of
ordinary 3-dimensional spaces.

DEFINITION 143. Norm of a vector
The norm ‖|ϕ〉‖ of a vector |ϕ〉 is the number 〈ϕ|ϕ〉1/2.

A unit (or normalized) vector is a vector |ψ〉 such that ‖|ψ〉‖ = 1.
Two vectors |ϕ〉, |ψ〉 are called orthogonal iff 〈ϕ|ψ〉 = 0.

DEFINITION 144. Orthonormal set of vectors
A set {|ψi〉}i∈I of vectors is called orthonormal iff its elements are pairwise or-
thogonal unit vectors. In other words:

(i) ∀i, j ∈ I(i �= j) : 〈ψi|ψj〉 = 0;

(ii) ∀i ∈ I : ‖|ψi〉‖ = 1.

The norm ‖.‖ induces a metric d on the pre-Hilbert space V:

d(|ψ〉, |ϕ〉) := ‖|ψ〉 − |ϕ〉‖.

We say that a sequence {|ψi〉}i∈N of vectors in V converges in norm (or simply
converges) to a vector |ϕ〉 of V iff limi→∞ d(|ψi〉, |ϕ〉) = 0. In other words, ∀ ε >
0∃n ∈ N∀k > n : d(|ψk〉, |ϕ〉) < ε.

A Cauchy sequence is a sequence {|ψi〉}i∈N of vectors in V such that ∀ε > 0∃n ∈
N∀h > n∀k > n : d(|ψh〉, |ψk〉) < ε.
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It is easy to see that whenever a sequence {|ψi〉}i∈N of vectors in V converges to
a vector |ϕ〉 of V , then {|ψi〉}i∈N is a Cauchy sequence. The crucial question is the
converse one: which are the pre-Hilbert spaces in which every Cauchy sequence
converges to an element in the space?

DEFINITION 145. Metrically complete pre-Hilbert space
A pre-Hilbert space V with inner product 〈.|.〉 is metrically complete with respect
to the metric d induced by 〈.|.〉 iff every Cauchy sequence of vectors in V converges
to a vector of V .

DEFINITION 146. Hilbert space
A Hilbert space is a metrically complete pre-Hilbert space.

A real (complex ) Hilbert space is a Hilbert space whose division ring is IR (C).
The notion of pre-Hilbert space (Hilbert space) can be generalized to the case
where the division ring is represented by Q (the division ring of all quaternions).

Consider a Hilbert space H over a division ring D.

DEFINITION 147. (Hilbert) linear combination
Let {|ψi〉}i∈I be a set of vectors of H and let {ai}i∈I ⊆ D. A vector |ψ〉 is called a
(Hilbert) linear combination (or superposition) of {|ψi〉}i∈I (with scalars {ai}i∈I)
iff ∀ε ∈ IR+ there is a finite set J ⊆ I such that for any finite subset K of I
including J :

‖|ψ〉 −
∑
i∈K

ai|ψi〉‖ ≤ ε.

Apparently, when existing, the linear combination of {|ϕi〉}i∈I (with scalars {ai}i∈I)
is unique. We denote it by

∑
i∈I ai|ψi〉. When no confusion is possible, the index

set I will be omitted.

DEFINITION 148. Orthonormal basis
An orthonormal basis of H is a maximal orthonormal set {|ψi〉}i∈I of H. In other
words, {|ψi〉}i∈I is an orthonormal set such that no orthonormal set includes
{|ψi〉}i∈I as a proper subset.

One can prove that every Hilbert space H has an orthonormal basis and that
all orthonormal bases of H have the same cardinality. The dimension of H is then
defined as the cardinal number of any basis of H.

Let {|ψi〉}i∈I be any orthonormal basis of H. One can prove that every vector
|ϕ〉 of H can be expressed in the following form:

|ϕ〉 =
∑
i∈I

〈ψi|ϕ〉|ψi〉.

Hence, |ϕ〉 is a linear combination of {|ψi〉}i∈I with scalars 〈ψi|ϕ〉 (the scalars
〈ψi|ϕ〉 are also called Fourier coefficients.)
A Hilbert space H is called separable iff H has a countable orthonormal basis. In
the following, we will always refer to separable Hilbert spaces.

DEFINITION 149. Closed subspace
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A closed subspace of H is a set X of vectors that satisfies the following conditions:

(i) X is a subspace of H. In other words, X is closed under finite linear
combinations. Hence,

|ψ〉, |ϕ〉 ∈ X implies a|ψ〉 + b|ϕ〉 ∈ X;

(ii) X is closed under limits of Cauchy sequences. In other words: if each
element of a Cauchy sequence of vectors belongs to X, then also the
limit of the sequence belongs to X.

The set of all closed subspaces of H is indicated by C(H). For any vector |ψ〉,
we indicate by [|ψ〉] the unique 1-dimensional closed subspace that contains |ψ〉.
DEFINITION 150. Operator
An operator of H is a map

A : Dom(H) �→ H,

where Dom(A) (the domain of A) is a subset of H.

DEFINITION 151. Densely defined operator
A densely defined operator of H is an operator A that satisfies the following con-
dition: ∀ε ∈ IR+ ∀|ψ〉 ∈ H ∃|ϕ〉 ∈ Dom(A) [d(|ψ〉, |ϕ〉) < ε], where d represents
the metric induced by 〈.|.〉.
DEFINITION 152. Linear operator
A linear operator on H is an operator A that satisfies the following conditions:

(i) Dom(A) is a closed subspace of H;

(ii) ∀|ψ〉, |ϕ〉 ∈ Dom(A)∀a, b ∈ D : A(a|ψ〉 + b|ϕ〉) = aA|ψ〉 + bA|ϕ〉.

In other words, a characteristic of linear operators is preserving the linear combi-
nations.

DEFINITION 153. Bounded operator
A linear operator A is called bounded iff there exists a positive real number a such
that ∀|ψ〉 ∈ H : ‖A|ψ〉‖ ≤ a‖|ψ〉‖.

The set B(H) of all bounded operators of H turns out to be closed under the
operator sum, the operator product and the scalar product. In other words, if
A ∈ B(H) and B ∈ B(H), then A + B ∈ B(H) and A.B ∈ B(H) ; for any scalar a,
if B ∈ B(H), then aB ∈ B(H).

DEFINITION 154. Positive operator
A bounded operator A is called positive iff ∀|ψ〉 ∈ H : 〈ψ|Aψ〉 ≥ 0.

DEFINITION 155. The adjoint operator
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Let A be a densely defined linear operator of H. The adjoint of A is the unique
operator A∗ such that

∀|ψ〉 ∈ Dom(A) ∀|ϕ〉 ∈ Dom(A∗) : 〈Aψ|ϕ〉 = 〈ψ|A∗ϕ〉 .

DEFINITION 156. Self-adjoint operator
A self-adjoint operator is a densely defined linear operator A such that A = A∗.

If A is self-adjoint, then ∀|ψ〉, |ϕ〉 ∈ Dom(A) : 〈Aψ|ϕ〉 = 〈ψ|Aϕ〉.
If A is self-adjoint and everywhere defined (i.e., Dom(A) = H), then A is bounded.

DEFINITION 157. Projection operator
A projection operator is an everywhere defined self-adjoint operator P that satisfies
the idempotence property: ∀|ψ〉 ∈ H : P |ψ〉 = PP |ψ〉.
There are two special projections O and I called the zero (or null projection) and
the identity projection which are defined as follows: ∀|ψ〉 ∈ H,

O|ψ〉 = 0 and I|ψ〉 = |ψ〉.

Any projection other than O and I is called a nontrivial projection.

Thus, P is a projection operator if Dom(P ) = H and P = P 2 = P ∗. The set
of all projection operators will be indicated by Π(H).

One can prove that the set C(H) of all closed subspaces and the set Π(H) of all
projections of H are in one-to-one correspondence.

Let X be a closed subspace of H. By the projection theorem every vector
|ψ〉 ∈ H can be uniquely expressed as a linear combination |ψ1〉 + |ψ2〉, where
|ψ1〉 ∈ X and |ψ2〉 is orthogonal to any vector of X. Accordingly, we can define
an operator PX on H such that

∀|ψ〉 ∈ H : PX |ψ〉 = |ψ1〉

(in other words, PX transforms any vector |ψ〉 into the “X-component” of |ψ〉)
It turns out that PX is a projection operator of H.
Conversely, we can associate to any projection P its range,

XP = {|ψ〉 : ∃|ϕ〉(Pϕ = |ψ〉)} ,

which turns out to be a closed subspace of H.
For any closed subspace X and for any projection P , the following conditions

hold:
X(PX) = X; P(XP ) = P.

DEFINITION 158. The trace functional
Let {|ψi〉}i∈I be any orthonormal basis for H and let A be a positive operator.
The trace of A (indicated by tr(A)) is defined as follows:

tr(A) :=
∑

i

〈ψi|Aψi〉 .
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One can prove that the definition of tr is independent of the choice of the basis.
For any positive operator A, there exists a unique positive operator B such

that: B2 = A. If A is a (not necessarily positive) bounded operator, then A∗A
is positive. Let |A| be the unique positive operator such that |A|2 = A∗A. A
bounded operator A is called a trace-class operator iff tr(|A|) < ∞.

DEFINITION 159. Density operator
A density operator is a positive, self-adjoint, trace-class operator ρ such that
tr(ρ) = 1.

It is easy to see that, for any vector |ψ〉, the projection P[|ψ〉] onto the 1-
dimensional closed subspace [|ψ〉] is a density operator.

DEFINITION 160. Unitary operator
A unitary operator is a linear operator U such that:

• Dom(U) = H;

• UU∗ = U∗U = I.

One can show that the unitary operators U are precisely the operators that pre-
serve the inner product. In other words, for any |ψ〉, |ϕ〉 ∈ H :

〈ψ|ϕ〉 = 〈Uψ|Uϕ〉 .

Any pair of Hilbert spaces H1 ,H2 gives rise to two new Hilbert spaces H1⊗H2

and H1 ⊕H2 that represent the tensor product of H1 and H2 and the direct sum
of H1 and H2, respectively.

Tensor products play an important role for the mathematical representation of
compound quantum systems. They are also systematically used in the mathemat-
ical formalism of quantum computation.

DEFINITION 161. Tensor product Hilbert space
Let H1 and H2 be two Hilbert spaces over the same field D (the real or the complex
numbers). A Hilbert space H is the tensor product of H1 and H2 iff the following
conditions are satisfied:

(i) there exists a map (called tensor product) from the cartesian product H1×H2

into H that satisfies the following conditions:

(a) the tensor product ⊗ is linear in each “slot”; in other words, ∀|ψ〉 , |ϕ〉 ∈
H1 ∀|χ〉, |δ〉 ∈ H2 ∀a, b ∈ D:
(a1) (a|ψ〉 + b|ϕ〉) ⊗ |χ〉 = (a|ψ〉) ⊗ |χ〉 + (b|ϕ〉) ⊗ |χ〉;
(a2) |ψ〉 ⊗ (a|χ〉 + b|δ〉) = |ψ〉 ⊗ (a|χ〉) + |ψ〉 ⊗ (b|δ〉);

(b) the external product with a scalar carries across the tensor product; in
other words, ∀|ψ〉 ∈ H1 ∀|ϕ〉 ∈ H2 ∀a ∈ D:
a(|ψ〉 ⊗ |ϕ〉) = (a|ψ〉) ⊗ |ϕ〉 = |ψ〉 ⊗ (a|ϕ〉).
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(ii) every vector of H can be expressed as a linear combination of vectors of the
set {|ϕ〉 ⊗ |ψ〉 : |ϕ〉 ∈ H1 , |ψ〉 ∈ H2}.

One can show that the tensor product is unique up to isomorphism.
As required by condition (ii), every vector of H1 ⊗ H2 can be expressed as a

linear combination of vectors of the form |ψ〉 ⊗ |ϕ〉 (where |ψ〉 ∈ H1, |ϕ〉 ∈ H2).
At the same time, there are vectors of H1 ⊗H2 that cannot be written as a single
product |ψ〉 ⊗ |ϕ〉 for any |ψ〉 ∈ H1, |ϕ〉 ∈ H2. These vectors are called non
factorized.

If {|ψi〉}i∈I and {|ϕj〉}j∈J are orthonormal bases for H1 and H2, respectively,
then the set {|ϕi〉 ⊗ |ψj〉 : i ∈ I , j ∈ J} is an orthonormal basis of the tensor
product Hilbert space. In particular, if {|ψi〉, . . . , |ψn〉} and {|ϕ1〉, . . . |ϕm〉} are
orthonormal bases of the finite dimensional Hilbert spaces H1, H2, then every
vector |ψ〉 ∈ H1 ⊗H2 can be written as

|ψ〉 =
n∑

i=1

m∑
j=1

aij |ψi〉 ⊗ |ϕj〉.

This shows that the dimension of the tensor product Hilbert space H1 ⊗H2 is the
product of the dimensions of H1 and H2.

DEFINITION 162. Direct sum Hilbert space
Let H1 and H2 be two Hilbert spaces over the same field D (the real or the complex
numbers), with inner products 〈 ·| ·〉1 and 〈 ·| ·〉2, respectively. The direct sum of H1

and H2 (denoted by H1 ⊕H2) is the vector space based on the cartesian product
H1 × H2, where the vector operations are defined as follows ∀ |ψ1〉, |ϕ1〉 ∈ H1,
∀|ψ2〉, |ϕ2〉 ∈ H2, ∀a ∈ D:

(i) (|ψ1〉, |ψ2〉) + (|ϕ1〉, |ϕ2〉) = (|ψ1〉 + |ϕ1〉 , |ψ2〉 + |ϕ2〉);

(ii) a(|ψ1〉, |ψ2〉) = (a|ψ1〉, a|ψ2〉).

The inner product 〈 ·| ·〉 of H1 ⊕H2 is defined in the following way:

(iii) 〈(|ψ1〉, |ψ2〉)|(|ϕ1〉, |ϕ2〉)〉 = 〈ψ1|ϕ1〉1 + 〈ψ2|ϕ2〉2.

One can easily show that H1 ⊕H2 is a Hilbert space.
Instead of (|ψ1〉, |ψ2〉) we will write |ψ1〉⊕ |ψ2〉. Clearly, the subspaces H1×{0}

and {0} ×H2 of H1 ⊕H2 are isomorphic to H1 and H2, respectively.
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[Dvurečenskij, 2000] A. Dvurečenskij, New trends in quantum structures, Mathematics and Its
Applications, vol. 516, Kluwer Academic Publishers, Dordrecht, 2000.

[Einstein et al., 1035] A. Einstein, B. Podolsky, and N. Rosen, Can quantum-mechanical de-
scription of reality be considered complete?, Physical Review 47 (1935), 777–780.

[Engesser and Gabbay, 2002] K. Engesser and D. Gabbay, Quantum logic, Hilbert space, revi-
sion theory, Artificial Intelligence 136 (2002), 61–100.

[Faggian, 1998] C. Faggian, Classical proofs via basic logic, Computer Science Logic 11th Inter-
national Workshop, CSL’97 (M. Nielson and W. Thomas, eds.), Lecture Notes in Computer
Science, vol. 1414, Springer Verlag, 1998, pp. 203–219.

[Faggian and Sambin, 1997] C. Faggian and G. Sambin, From basic logic to quantum logics with
cut-elimination, International Journal of Theoretical Physics 12 (1997), 31–37.

[Finch, 1970] P. D. Finch, Quantum logic as an implication algebra, Bulletin of the Australian
Mathematical Society 2 (1970), 101–106.

[Fitting, 1969] M. Fitting, Intuitionistic logic, model theory and forcing, North-Holland, Ams-
terdam, 1969.

[Foulis, 1999] D. J. Foulis, A half-century of quantum logic, what have we learned?, Quantum
Structures and the Nature of Reality (D. Aerts and J. Pykacz, eds.), vol. 7, Kluwer Academic
Publishers, Dordrecht, 1999, pp. 1–36.

[Foulis, 2000] D. J. Foulis, MV and Heyting effect algebras, Foundations of Physics 30 (2000),
1687–1706.

[Foulis and Bennett, 1994] D. J. Foulis and M. K. Bennett, Effect algebras and unsharp quantum
logics, Foundations of Physics 24 (1994), 1325–1346.

[Foulis and Greechie, 2000] D. J. Foulis and R. J. Greechie, Specification of finite effect algebras,
International Journal of Theoretical Physics 39 (2000), 665–676.

[Foulis and Randall, 1981] D. J. Foulis and C. H. Randall, Empirical logic and tensor product,
Interpretation and Foundations of Quantum Mechanics, Grundlagen der exakten Naturwis-
senschaften, vol. 5, Bibliographisches Institut, Mannheim, 1981, pp. 9–20.

[Foulis and Randall, 1983] D. J. Foulis and C. H. Randall, Properties and operational proposi-
tions in quantum mechanics, Foundations of Physics 13 (1983), 843–857.

[Foulis et al., 1996] D.J. Foulis, R.J. Greechie, M. L. Dalla Chiara, and R. Giuntini, Quan-
tum Logic, Encyclopedia of Applied Physics (G. Trigg, ed.), vol. 15, VCH Publishers, 1996,
pp. 229–255.

[Gallier, 1991] J. Gallier, Constructive Logics. II: Linear Logic and Proof Nets, Research Report
no. 9, Digital PRL, 1991.

[Garola, 1980] C. Garola, Propositions and orthocomplementation in quantum logic, Interna-
tional Journal of Theoretical Physics 19 (1980), 369–378.

[Garola, 1985] C. Garola, Embedding of posets into lattices in quantum logic, International Jour-
nal of Theoretical Physics 24 (1985), 423–433.

[Gibbins, 1985] P. F. Gibbins, A user-friendly quantum logic, Logique-et-Analyse.-Nouvelle-
Serie 28 (1985), 353–362.

[Gibbins, 1987] P. F. Gibbins, Particles and paradoxes — the limits of quantum logic, Cam-
bridge University Press, Cambridge, 1987.

[Girard, 1987] J. Y. Girard, Linear logic, Theoretical Computer Science 50 (1987), 1–102.
[Girard, 1996] J.-Y. Girard, Proofnets: The parallel syntax for proof theory, Logic and Algebra
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[Kôpka and Chovanec, 1994] F. Kôpka and F. Chovanec, D-posets, Mathematica Slovaca 44
(1994), 21–34.

[Kraus, 1983] K. Kraus, States, effects and operations, Lecture Notes in Physics, vol. 190,
Springer, Berlin, 1983.

[Lincoln et al., 1992] P.D. Lincoln, J.C. Mitchell, A. Scedrov, N. Shankar, Decision problems
for propositional linear logic, Annals of Pure and Applied Logic 56 (1992), 239-311.

[Ludwig, 1983] G. Ludwig, Foundations of quantum mechanics, vol. 1, Springer, Berlin, 1983.
[�Lukasiewicz, 1936] J. �Lukasiewicz, Logistic and philosophy, Selected Work (L. Borkowski, ed.),

North-Holland, Amsterdam, 1970, pp. 218–235.
[�Lukasiewicz, 1946] J. �Lukasiewicz, On determinism, Selected Work (L. Borkowski, ed.), North-

Holland, Amsterdam, 1970, pp. 110–128.
[�Lukasiewicz, 1970] J. �Lukasiewicz, On three-valued logic, Selected Work (L. Borkowski, ed.),

North-Holland, Amsterdam, 1970.
[Mackey, 1957] G. Mackey, The Mathematical Foundations of Quantum Mechanics, Benjamin,

New York, 1957.
[Mangani, 1973] P. Mangani, Su certe algebre connesse con logiche a più valori, Bollettino
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GENTZEN METHODS IN QUANTUM LOGIC

Hirokazu Nishimura

1 INTRODUCTION

Since Birkhoff and von Neumann [Birkhoff and von Neumann, 1936] a new area
of logical investigation has grown up under the name of quantum logic. During
its early days emphasis was put exclusively on its algebraic aspects. A new impe-
tus came from Dishkant and Goldblatt’s ([Dishkant, 1972], [Dishkant, 1977] and
[Goldblatt, 1974]) remarkable discovery on the relationship between ortholattices
and the Brouwerian modal logic B in the 1970’s, which is comparable to Mckinsey
and Tarski’s [McKinsey and Tarski, 1948] translation of intuitionistic logic into
the modal logic S4. As the semantics of possible worlds has been one of the main
tools in modal logic since Kripke [Kripke, 1963], the discovery naturally admitted
to a Kripkian relational semantics of minimal quantum logic. Since it was then
well known that there is a close relationship between Gentzen-style formulations
of modal logics and their Kripkian relational semantics (cf. [Nishimura, 1983] and
[Sato, 1977]), Nishimura [Nishimura, 1980] was driven on closing days of the 1970’s
to a Gentzen-style formulation of minimal quantum logic, which regrettably failed
to enjoy the cut-elimination theorem. A more natural Gentzen-style formulation
of minimal quantum logic with closer inspection on its relationship to the rela-
tional semantics was given by Cutland and Gibbins [Cutland and Gibbins, 1982],
but it still failed to acquiesce in the cut-elimination property. The first cut-free
Gentzen-style formulation of minimal quantum logic was presented by Tamura
[Tamura, 1988], though it suffered from unnecessary clumsiness, which made his
system appear more esoteric than it really was. A final step was taken again by
Nishimura ([Nishimura, 1994a] and [Nishimura, 1994b]), which was followed by
Takano’s [Takano, 1995] significant remark that the inference rule from a sequent
to its contraposition is redundant. The first stage of the story has thus ended, and
the principal objective in this paper is to present its fruits to a novice thoroughly.

In Section 2 we will present our cut-free Gentzen-style sequential system GMQL.
We will remark, following [Cutland and Gibbins, 1982], that admitting unrestricted
(cut) as an inference rule would force our system GMQL to degenerated into clas-
sical logic. In Section 3 we will show, following [Cutland and Gibbins, 1982], that
the inference rule from a sequent to its contraposition is admissible in GMQL.
In Section 4 we will establish the fundamental fact that the negation ′ is invo-
lutive with respect to its proof-theoretical behaviors. In Section 5 the desired
cut-elimination theorem is to be demonstrated. The final section is devoted to the
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completeness theorem with respect to the relational semantics of Dishkant and
Goldblatt.

The reader may wonder what is to be the second stage of the story. We will
give two suggestions. The modal logics S4 and B stand to the modal logic S5 in
opposite directions, but they are complementary against S5, as may be illustrated
in the following figure:

S5
↗ ↖
S4 B

The complementarity of the modal logics S4 and B corresponds to the following
complementarity of intuitionistic logic and minimal quantum logic against classical
logic, as may be illustrated in the following figure:

classical
logic

↗ ↖

intuitionistic
logic

minimal
quantum

logic

Logics between classical logic and intuitionistic logic have been studied vigorously
under the name of intermediate logics. It would be interesting to investigate logics
between classical logic and minimal quantum logic, among which you can find
quantum logic.

The other intriguing topic for future study is a semantical proof of the cut-
elimination theorem of GMQL. In other words, it would be interesting to give a
proof of the completeness theorem with respect to the Kripkian relational seman-
tics without any recourse to the cut-elimination theorem, which would surely open
a new area of research.

2 MINIMAL QUANTUM LOGIC IN GENTZEN STYLE

The sequential system GMQL that we have enunciated for minimal quantum
logic in our [Nishimura, 1994a] and that has then been elaborated by Takano in
[Takano, 1995] consists of the following inference rules:

Γ → Δ
π,Γ → Δ,Σ

(extension)

α,Γ → Δ
α ∧ β,Γ → Δ

β,Γ → Δ
α ∧ β,Γ → Δ

(∧ →)

Γ → Δ, α

Γ → Δ, α ∨ β

Γ → Δ, β

Γ → Δ, α ∨ β
(→ ∨)
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α → Δ β → Δ
α ∨ β → Δ

(∨ →)

Γ → α Γ → β

Γ → α ∧ β
(→ ∧)

Γ → Δ
Δ′,Γ → (′→)

Γ → Δ
→ Δ,Γ′ (→′)

α,Γ → Δ
α′′,Γ → Δ

(′′→)

Γ → Δ, α

Γ → Δ, α′′ (→′′)

α′,Γ → Δ
(α ∨ β)′,Γ → Δ

β′,Γ → Δ
(α ∨ β)′,Γ → Δ

(∨′ →)

Γ → Δ, α′

Γ → Δ, (α ∧ β)′
Γ → Δ, β′

Γ → Δ, (α ∧ β)′
(→ ∧′)

α′ → Δ β′ → Δ
(α ∧ β)′ → Δ,

(∧′ →)

Γ → α′ Γ → β′

Γ → (α ∨ β)′
(→ ∨′)

Γ → α′ Γ → β′

α ∨ β,Γ → (∨ →′)

α′ → Δ β′ → Δ
→ Δ, α ∧ β

(′→ ∧)

Now some notational and terminological comments are in order. In this paper
we adopt ′ (negation), ∧ (conjunction), and ∨ (disjunction) as primitive logical
symbols. Propositional variables are denoted by p, q, ... , while wffs (well-formed
formulas), also called formulas, are denoted by α, β, .... The grade of a wff α,
denoted by G(α), is defined inductively as follows:

1. G(p) = 0 for any propositional variable p.

2. G(α′) = G(α) + 1.

3. G(α ∧ β) = G(α ∨ β) = G(α) + G(β) + 2.
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Finite (possibly empty) sets of wffs are denoted by Γ,Δ,Π, .... Given a finite
set Γ of wffs, Γ′ denotes the set {α′|α ∈ Γ}. A sequent Γ → Δ means the ordered
pair (Γ,Δ) of finite sets Γ and Δ of wffs, while the sets Γ and Δ are called the
antecedent and the succedent of the sequent Γ → Δ, respectively. Such self-
explanatory notations as Π,Γ → Δ,Σ for Π ∪ Γ → Δ ∪ Σ are used freely. A
sequent of the form α → α is called an axiom sequent. Given a sequent Γ → Δ,
the sequent Δ′ → Γ′ is called the contraposition of Γ → Δ.

The notion of a proof P of a sequent Γ → Δ with length n is defined inductively
as follows:

1. Any axiom sequent α → α is a proof of itself with length 0.

2. If P is a proof of a sequent Γ → Δ with length n and

Γ → Δ
Π → Σ

is an instance of an inference rule of GMQL, then

P

Π → Σ

is a proof of the sequent Π → Σ with length n + 1.

3. If Pi is a proof of a sequent Γi → Δi with length ni (i = 1, 2) and

Γ1 → Δ1 Γ2 → Δ2

Π → Σ

is an instance of an inference rule of GMQL, then

P1 P2

Π → Σ

is a proof of the sequent Π → Σ with length max{n1, n2} + 1.

The length of a proof P is denoted by l(P ). A sequent Γ → Δ is said to be
provable if it has a proof. Otherwise it is called consistent.

Although our cut-free sequential system GMQL does not satisfy the so-called
subformula property in its strict sense, it gives a decision procedure for the word
problem of free ortholattices once the completeness theorem is established, for
which it suffices to note that G(α′) < G((α ∧ β)′) and G(β′) < G((α ∧ β)′) for the
rule (∧′ →) by way of example. For algebraic and semantical decision procedures,
the reader is referred to [Bruns, 1976], [Goldblatt, 1974] and [Goldblatt, 1975].
Fortunately, minimal quantum logic enjoys these three kinds of decision proce-
dures. However, algebraic and semantical approaches to the decision problem of
quantum logic have not succeeded so far. This is why we should try the third one.
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Generally speaking, (cut) is the inference rule of the following form:

Γ1 → Δ1, α α,Γ2 → Δ2

Γ1,Γ2 → Δ1,Δ2
(cut)

However, following [Cutland and Gibbins, 1982], we should remark that the infer-
ence rule (cut) in such an unrestricted form forces our system GMQL to degen-
erate into classical logic. In other words, we have

PROPOSITION 1. If we add the inference rule (cut) to the system GMQL, then
we obtain classical logic. Schematically, we have

GMQL+(cut) = classical logic

Proof. It suffices to show that the following three rules are admissible in GMQL+(cut):

Γ → Δ, α

α′,Γ → Δ
(′ → )c

α,Γ → Δ
Γ → Δ, α′ ( →′ )c

Γ → Δ, α Γ → Δ, β

Γ → Δ, α ∧ β
( → ∧)c

Since we have

Γ → Δ, α

α → α

α, α′ → (′→)

α′,Γ → Δ
(cut)

the inference rule (′ →)c is admissible in GMQL+(cut). Similarly, since we have

α → α

→ α′, α
(→′)

α,Γ → Δ
Γ → Δ, α′ (cut)

the inference rule (→′)c is admissible in GMQL+(cut). Now we deal with the
last inference rule (→ ∧)c. The sequents Γ,Δ′ → α and Γ,Δ′ → β follow from the
sequents Γ → Δ, α and Γ → Δ, β respectively by a finite number of applications
of the inference rule (′ →)c. Now we have

Γ,Δ′ → α Γ,Δ′ → β

Γ,Δ′ → α ∧ β
(→ ∧)

The sequent Γ → Δ′′, α ∧ β follows from the sequent Γ,Δ′ → α ∧ β by a finite
number of applications of the inference rule (→′)c. Since we have

γ → γ

→ γ, γ′ (→′)

γ′′ → γ
(′→)c
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we are sure that the sequent γ′′ → γ is provable in GMQL+(cut) for any γ ∈ Δ.
Therefore the desired sequent Γ → Δ, α∧β follows from the sequent Γ → Δ′′, α∧β
by a finite number of applications of the inference rule (cut). �

This is the reason why Cutland and Gibbins [Cutland and Gibbins, 1982] should
have proposed (cut) in the following restricted form:

Γ → Δ1, α α → Δ2

Γ → Δ1,Δ2
(cut-1)

Γ1 → α α,Γ2 → Δ
Γ1,Γ2 → Δ

(cut-2)

The wff α in (cut-1) and (cut-2) is called the cut formula. Both (cut-1) and (cut-2)
are called (cut)q as a whole. Roughly speaking, if we deprive our system GMQL
of the inference rules (∨′ →), (→ ∧′), (∧′ →), (→ ∨′), (∨ →′), and (′→ ∧) and we
agree to admit the inference rules (cut-1) and (cut-2), then we obtain the system
of Cutland and Gibbins [Cutland and Gibbins, 1982]. We will prove in Section 5
that the inference rules (cut-1) and (cut-2) are admissible in GMQL.

Tamura [Tamura, 1988] gave a cut-free system by exploiting the legacy of Cut-
land and Gibbins [Cutland and Gibbins, 1982] but incorporating their inference
rules surely except (cut-1) and (cut-2) into his system in an unnecessarily re-
stricted manner. This unreasonable restriction forced him in the proof of the cut-
elimination theorem to combine wffs in the antecedent of a sequent by conjunction
and wffs in its succedent by disjunction, and then to dissolve such unnatural com-
binations. Such a proof is not compatible with Gentzen’s [Gentzen, 1935] original
philosophy and aesthetics, and is to be avoided if possible. Furthermore, the
conceptual significance of Lemma 4 in Tamura’s [Tamura, 1988] paper remained
vague at best there. This is distilled into the duality theorem in Section 4, which
is followed by the so-called cut-elimination theorem in Section 5.

Our original GMQL, proposed in [Nishimura, 1994a], contains the following
inference rule besides the above ones:

Γ → Δ
Δ′ → Γ′ (′→′)

It was pointed out by Takano [Takano, 1995] that the rule is redundant, which is
the topic of the succeeding section.

3 THE CONTRAPOSITION THEOREM

The principal objective in this section is to show the following theorem on the
lines of Takano [Takano, 1995].

THEOREM 2. The following inference rule is admissible in GMQL.

Γ → Δ
Δ′ → Γ′ (′→′)
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To establish the above theorem, we introduce an auxiliary formal system to be
denoted by GMQL# and to be obtained from GMQL by admitting not only
sequents α → α but also sequents α, α′ → and → α, α′ as axiom sequents while
deleting the inference rules (′ →) and (→′) and adding the following two inference
rules:

Γ → α Γ → β

(α ∧ β)′,Γ → (∧′ →)#

α → Δ β → Δ
→ Δ, (α ∨ β)′

(→ ∨′)#

We need three lemmas so as to establish the equivalence of GMQL and GMQL#.

LEMMA 3.

1. If a sequent α′′,Γ → Δ is provable in GMQL#, then so is α,Γ → Δ.

2. If a sequent Γ → Δ, α′′ is provable in GMQL#, then so is Γ → Δ, α.

Proof. We prove only the first statement by induction on the length l(P ) of a
proof P of the sequent α′′,Γ → Δ, while leaving a similar treatment of the second
statement to the reader. Our treatment is divided into several cases, some of which
are again divided into several subcases.

1. The case that the sequent α′′,Γ → Δ is an axiom sequent: We divide this
case into three subcases.

(a) The subcase that the sequent α′′,Γ → Δ is α′′ → α′′: Since we have

α → α

α → α′′ (→′′)

the sequent α → α′′ is also provable.

(b) The subcase that the sequent α′′,Γ → Δ is α′′, α′ →: The sequent
α, α′ → is an axiom, and so is provable.

(c) The subcase that the sequent α′′,Γ → Δ is α′′, α′′′ →: Since we have

α, α′ →
α, α′′′ → (′′→)

the sequent α, α′′′ → is also provable.

2. The case that the last inference is (extension): The last inference has one of
the following two forms:

Γ1 → Δ1

α′′,Γ2,Γ1 → Δ1,Δ2
(extension)
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α′′,Γ1 → Δ1

α′′,Γ2,Γ1 → Δ1,Δ2
(extension)

In the former case, since we have

Γ1 → Δ1

α,Γ2,Γ1 → Δ1,Δ2
(extension)

the sequent α,Γ2,Γ1 → Δ1,Δ2 is also provable. In the latter case, since the
sequent α,Γ1 → Δ1 is provable by induction hypothesis and we have

α,Γ1 → Δ1

α,Γ2,Γ1 → Δ1,Δ2
(extension)

the sequent α,Γ2,Γ1 → Δ1,Δ2 is also provable.

3. The case that the last inference is (′′→): We divide this case into two subcases
according as the principal formula of the last inference is α′′ or not.

(a) The subcase that the principal formula of the last inference is α′′: The
last inference has one of the following two forms:

α,Γ → Δ
α′′,Γ → Δ

(′′→)

α′′, α,Γ → Δ
α′′,Γ → Δ

(′′→)

In the former case the sequent α,Γ → Δ is palpably provable, while in
the latter case it should be provable by induction hypothesis.

(b) The subcase that the principal formula of the last inference is not α′′:
The last inference has the form

α′′, β,Γ1 → Δ
α′′, β′′,Γ1 → Δ

(′′→)

Since the sequent α, β,Γ1 → Δ is provable by induction hypothesis and
we have

α, β,Γ1 → Δ
α, β′′,Γ1 → Δ

(′′→)

the sequent α, β′′,Γ1 → Δ is also provable.

4. The case that the last inference is neither (extension) nor (′′→):Similar to
the subcase (3-b).

�

LEMMA 4. The inference rule (′ →′) is admissible in GMQL#.
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Proof. We will prove that if a sequent Γ → Δ is provable in GMQL#, then its
contraposition Δ′ → Γ′ is also provable in GMQL#. The proof is carried out by
induction on the length of a proof P of the given sequent Γ → Δ. Our treatment
is divided into several cases.

1. The case that the given sequent Γ → Δ is an axiom sequent: The sequent
Γ → Δ has one of the following three forms α → α, α′, α → and → α, α′,
whose contrapositions are also axioms α′ → α′, → α′, α′′ and α′′, α′ →.

2. The case that the last inference in P is (extension), (∧ →), (→ ∧), (∨ →),
(→ ∨), (′′→) or (→′′): All these cases can be dealt with similarly, so we
deal only with the case that the last inference is (→ ∧) as follows:

Γ → α Γ → β

Γ → α ∧ β
(→ ∧)

Since the sequents α′ → Γ′ and β′ → Γ′ are provable by induction hypothesis
and we have

α′ → Γ′ β′ → Γ′

(α ∧ β)′ → Γ′ (∧′ →)

the sequent (α ∧ β)′ → Γ′ is also provable.

3. The case that the last inference in P is either (∧′ →)# or (→ ∨′)#: Here we
deal only with the former case, leaving a similar treatment of the latter case
to the reader. So we suppose that the last inference in P is

Γ1 → α Γ1 → β

(α ∧ β)′,Γ1 → (∧′ →)#

Since the sequents α′ → Γ′
1 and β′ → Γ′

1 are provable by induction hypothesis
and we have

α′ → Γ′
1 β′ → Γ′

1

→ Γ′
1, α ∧ β

(′ → ∧)

→ Γ′
1, (α ∧ β)′′

( →′′ )

we are sure that the sequent → Γ′
1, (α ∧ β)′′ is also provable.

4. The case that the last inference in P is either (′→ ∧) or (∨ →′): Here we
deal only with the former case, leaving a similar treatment of the latter case
to the reader. So we suppose that the last inference in P is

α′ → Δ1 β′ → Δ1

→ Δ1, α ∧ β
(′→ ∧)

The sequents Δ′
1 → α′′ and Δ′

1 → β′′ are provable by induction hypothesis,
which imply by Lemma 3 that the sequents Δ′

1 → α and Δ′
1 → β are also

provable. Since we have

Δ′
1 → α Δ′

1 → β

(α ∧ β)′,Δ′
1 → (∧′ →)#
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we are sure that the sequent (α ∧ β)′,Δ′
1 → is also provable.

5. The case that the last inference in P is (∧′ →), (→ ∧′), (∨′ →) or (→
∨′): Here we deal only with the first case, leaving similar treatments of the
remaining three cases to the reader. So we suppose that the last inference
in P is

α′ → Δ1 β′ → Δ1

(α ∧ β)′ → Δ1
(∧′ →)

The sequents Δ′
1 → α′′ and Δ′

1 → β′′ are provable by induction hypothesis,
which imply by Lemma 3 that the sequents Δ′

1 → α and Δ′
1 → β are also

provable. Since we have

Δ′
1 → α Δ′

1 → β

Δ′
1 → α ∧ β

( → ∧)

Δ′
1 → (α ∧ β)′′

( →′′ )

we are sure that the sequent Δ′
1 → (α ∧ β)′′ is also provable.

�

LEMMA 5.

1. If a sequent Γ → Δ is provable in GMQL#, then so is Δ′,Γ →.

2. If a sequent Γ → Δ is provable in GMQL#, then so is → Δ,Γ′.

Proof. The proof is by induction on the length of a proof P of the given sequent
Γ → Δ. We deal only with the first statement, leaving a similar treatment of the
second treatment to the reader. Our treatment is divided into several cases.

1. The case that the given sequent Γ → Δ is an axiom sequent: The sequent
Γ → Δ is one of the three forms α → α, α′, α → and → α, α′. Then the
sequent Δ′,Γ → is one of the two forms α′, α → and α′′, α′ →, both of which
are axioms.

2. The case that the last inference in P is (extension), (∧ →), (→ ∨), (′′→),
(→′′) or (∨′ →): Here we deal only with the third case, leaving similar
treatments of the remaining five cases to the reader. Thus the last inference
of P is of the following form:

Γ → Δ1, α

Γ → Δ1, α ∨ β
(→ ∨)

Since the sequent α′,Δ′
1,Γ → is provable by induction hypothesis and we

have
α′,Δ′

1,Γ →
(α ∨ β)′,Δ′

1,Γ → (∨′ →)

we are sure that the sequent (α ∨ β)′,Δ′
1,Γ → is also provable.
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3. The case that the last inference in P is (→ ∧′): The last inference in P is in
the following form:

Γ → Δ1, α
′

Γ → Δ1, (α ∧ β)′
(→ ∧′)

The sequent α′′,Δ′
1,Γ → is provable by induction hypothesis, which implies

by Lemma 3 that the sequent α,Δ′
1,Γ → is also provable. Since we have

α,Δ′
1,Γ →

α ∧ β,Δ′
1,Γ → (∧ →)

(α ∧ β)′′ ,Δ′
1,Γ → (′′→)

we are sure that the sequent (α ∧ β)
′′
,Δ′

1,Γ → is also provable.

4. The case that the last inference in P is (→ ∧): The last inference in P is of
the following form:

Γ → α Γ → β

Γ → α ∧ β
(→ ∧)

Since we have
Γ → α Γ → β

(α ∧ β)′,Γ → (∧′ →)#

we are sure that the sequent (α ∧ β)′,Γ → is also provable.

5. The case that the last inference in P is (→ ∨′): The last inference in P is of
the following form:

Γ → α′ Γ → β′

Γ → (α ∨ β)′
(→ ∨′)

Since we have
Γ → α′ Γ → β′

α ∨ β,Γ → (∨ →′ )

(α ∨ β)′′,Γ → (′′→)

we are sure that the sequent (α ∨ β)′′,Γ → is also provable.

6. The case that the last inference in P is either (′→ ∧) or (∧′ →): The last
inference in P is one of the following two forms:

α′ → Δ1 β′ → Δ1

→ Δ1, α ∧ β
(′→ ∧)

α′ → Δ1 β′ → Δ1

(α ∧ β)′ → Δ1
(∧′ →)

In both cases, the sequents Δ′
1 → α′′ and Δ′

1 → β′′ are provable by Lemma
4, which implies by dint of Lemma 3 that the sequents Δ′

1 → α and Δ′
1 → β

are also provable. Since we have

Δ′
1 → α Δ′

1 → β

(α ∧ β)′,Δ′
1 → (∧′ →)#

we are sure that the sequent (α ∨ β)′′,Γ → is also provable.
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7. The case that the last inference in P is (∨ →): The last inference in P is of
the following form:

α → Δ β → Δ
α ∨ β → Δ

(∨ →)

The sequents Δ′ → α′ and Δ′ → β′ are provable by Lemma 4. Since we
have

Δ′ → α′ Δ′ → β′

Δ′, α ∨ β → (∨ →′)

we are sure that the sequent Δ′, α ∨ β → is also provable.

8. The case that the last inference in P is (→ ∨′)#: The last inference in P is
of the following form:

α → Δ β → Δ
→ Δ, (α ∨ β)′

(→ ∨′)#

The sequents Δ′ → α′ and Δ′ → β′ are provable by Lemma 4. Since we
have

Δ′ → α′ Δ′ → β′

Δ′, α ∨ β → (∨ →′)

Δ′, (α ∨ β)′′ → (′′→)

9. The case that the last inference in P is either (∨ →′) or (∧′ →)#: There is
nothing to prove, for the succedent Δ of the given sequent Γ → Δ is empty.

�

Now we are ready to present a proof of the main theorem.

THEOREM 6. A sequent Γ → Δ is provable in GMQL# iff it is provable in
GMQL.

Proof.

1. First we deal with the only-if part. Since

α → α

α′, α → (′→)

and
α → α

→ α, α′ (→′)

sequents α, α′ → and → α, α′ are provable in GMQL. Since

Γ → α Γ → β

Γ → α ∧ β

(α ∧ β)′,Γ →
(→ ∧)
(′→)
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and
α → Δ β → Δ

α ∧ β → Δ
→ Δ, (α ∨ β)′

(∨ →)
(→′)

the inferene rules (∧′ →)# and (→ ∨′)# are admissible in GMQL. Thus the
only-if part has been established

2. The if part follows directly from Lemmas 4 and 5

�

Our desired theorem at the beginning of this section follows at once from the
above theorem. Since the inference rule (′→′) is admissible in GMQL, we will
often take it as a basic inference rule of the system GMQL.

4 THE DUALITY THEOREM

Two wffs α and β are said to be provably equivalent, in notation α + β, if for any
finite sets Γ and Δ of wffs we have that

1. the sequent α,Γ → Δ is provable iff the sequent β,Γ → Δ is provable; and

2. the sequent Γ → Δ, α is provable iff the sequent Γ → Δ, β is provable.

It is easy to see that this is indeed an equivalence relation among wffs. We will
show that it is even a congruence relation.

THEOREM 7. (The fundamental theorem of provability equivalence). If α1 + β1

and α2 + β2, then α′
1 ∼ β′

1, α1 ∧ α2 + β1 ∧ β2, and α1 ∨ α2 + β1 ∨ β2.

Proof. If γ, δ1, ..., δn are wffs and p1, ..., pn are distinct propositional variables, we
write γ[δ1/p1, ..., δn/pn] for the wff obtained from γ by replacing every occurrence
of pi by δi (1 ≤ i ≤ n). Whenever we use this notation, it will always be assumed
that the propositional variables at issue are distinct. The theorem follows readily
from the following two statements:

1. If δ1 + σ1, ..., δn + σn and a sequent γ[δ1/p1, ..., δn/pn],Γ → Δ has a proof P
with l(P ) ≤ m, then the sequent γ[σ1/p1, ..., σn/pn],Γ → Δ is also provable.

2. If δ1 + σ1, ..., δn + σn and a sequent Γ → Δ, γ[δ1/p1, ..., δn/pn] has a proof P
with l(P ) ≤ m, then the sequent Γ → Δ, γ[σ1/p1, ..., σn/pn] is also provable.

These two statements are proved simultaneously by double induction principally
on G(γ) and secondly on m. The proof is divided into cases according to which
inference rule is used as the last inference in P . The details are safely left to the
reader. �



240 Hirokazu Nishimura

THEOREM 8. (The first duality theorem). If α + β, then α + β′′.

Proof. It suffices to show the following claim:

CLAIM 9.

1. If a sequent α,Γ → Δ is provable, then the sequent β′′,Γ → Δ is also
provable.

2. If a sequent Γ → Δ, α is provable, then the sequent Γ → Δ, β′′ is also
provable.

3. If a sequent α′′,Γ → Δ is provable, then the sequent β,Γ → Δ is also
provable.

4. If a sequent Γ → Δ, α′′ is provable, then the sequent Γ → Δ, β is also
provable.

It is easy to see that the first and second statements of the above claim follow at
once from a simple application of the inference rules (′′→) and (→′′), respectively,
while 3 and 4 of the above claim follow at once from the following, ostensibly more
general statement.

CLAIM 10. If α1 + β1, ..., αn + βn, αn+1 + βn+1, ..., αn+m + βn+m and a sequent
α′′

1 , ..., α
′′
n,Γ → Δ, α′′

n+1, ..., α
′′
n+m has a proof P with l(P ) ≤ k then the sequent

β1, ..., βn,Γ → Δ, βn+1, ..., βn+m is also provable.

We will prove Claim 10 by induction on k. The proof is divided into cases
according to which inference rule is used in the last step of P . To make the
notation simpler, we proceed as if n = 1 and m = 0, leaving safely easy but due
modifications to the reader. In dealing with the rules (∧ →), (→ ∨), (∨′ →) and
(→ ∧′), each of which consists of two forms, we treat only one of them.

1. The case that the sequent α′′
1 ,Γ → Δ is an axiom sequent: It must be that

α′′
1 → α′′

1 . Since β1 → β1 is an axiom sequent and α1 + β1 by assumption,
the sequent β1 → α1 is provable, which implies that the sequent β1 → α′′

1 is
also provable as follows:

β1 → α1

β1 → α′′
1

(→′′)

2. The case that the last inference of the proof of the sequent α′′
1 ,Γ → Δ is

(extension), (∧ →), (→ ∨), (∧ →), (→′′), (∨′ →), (→ ∧′), (→ ∨′), or (∨ →′):
All the cases can be dealt with similarly, so here we deal only with the case
in which the last inference of the proof is (→ ∧) as follows:

α′′
1 ,Γ → β α′′

1 ,Γ → γ

α′′
1 ,Γ → β ∧ γ

(→ ∧)
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By the induction hypothesis the sequents β1,Γ → β and β1,Γ → γ are
provable, which gives the desired result as follows:

β1,Γ → β β1,Γ → γ

β1,Γ → β ∧ γ
(→ ∧)

3. The case that the last inference of the proof of α′′
1 ,Γ → Δ is (′′→): Then

the last inference is one of the following two forms.

α1,Γ → Δ
α′′

1 ,Γ → Δ
(′′→ ∧)

α′′
1 , β

′′,Γ1 → Δ
α′′

1 , β
′′,Γ1 → Δ

(′′→)

In the former case the sequent β1,Γ → Δ is provable for α1 + β1 and the
sequent α1,Γ → Δ is provable by assumption. In the latter case the sequent
β1, β,Γ1 → Δ is provable by the induction hypothesis, which implies that
the sequent β1, β

′′,Γ1 → Δ is provable as follows:

β1, β,Γ1 → Δ
β1, β′′,Γ1 → Δ

(′′→)

4. The case that the last inference of the proof of the sequent α′′
1 ,Γ → Δ is

(′→): This case is divided into several subcases according to how the upper
sequent of (′→) is obtained.

(a) The case that the upper sequent of (′→) is an axiom sequent: In this
case the axiom sequent must be α′

1 → α′
1, so the proof that we must

consider is as follows:

α′
1 → α′

1

α′′
1 , α

′
1 → (′→)

Since the sequent α1 → α1 is an axiom sequent and α1 + β1 by assump-
tion, the sequent β1 → α1 is provable, which implies that the desired
sequent β1, α

′
1 → is also provable as follows:

β1, α1 →
α′

1, β1 → (′→)

(b) The case that the upper sequent of (′→) is obtained as the lower sequent
of (extension), (∧ →), (′′→), or (∨′ →): All these cases can be dealt
with similarly, so here we consider only the case of (′′→), in which the
last two steps of the proof go as follows:

β,Γ2 → α′
1,Γ1

β′′,Γ2 → α′
1,Γ1

(′′→)

α′′
1 ,Γ

′
1, β

′′,Γ2 → (′→)
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The sequent α′′
1 ,Γ

′
1, β,Γ2 → has a shorter proof than the sequent α′′

1 ,Γ
′
1, β

′′,Γ2 →,
as follows:

β,Γ2,→ α′
1,Γ

′
1

α′′
1 ,Γ

′
1, β,Γ2 → (′→)

Therefore the sequent β1,Γ′
1, β,Γ2 → is provable by the induction hy-

pothesis, which implies that the desired sequent β1,Γ′
1, β

′′,Γ2 → is also
provable as follows:

β1,Γ′
1, β,Γ2 →

β1,Γ′
1, β

′′,Γ2 → (′′→)

(c) The case that the upper sequent of (′→) is obtained as the lower sequent
of (→′′): The last two steps of the proof that we must consider can be
supposed to be one of the following two forms:

Γ2 → β,Γ1

Γ2 → β′′,Γ1
(→′′)

β′′,Γ1,Γ2 → (′→)

Γ2 → α′
1, β,Γ1

Γ2 → α′
1, β

′′,Γ1
(→′′)

α′′
1 , β

′′′,Γ1,Γ2 → (′→)

In the former case α1 is supposed to be β′, Since the latter case can
be dealt with in a similar manner to the case (2), here we deal with
the former case, in which the sequent α1,Γ′

1,Γ2 → is provable with a
shorter proof than that of the sequent α′′

1 ,Γ
′
1,Γ2 → as follows:

Γ2,→ β,Γ1

β′,Γ′
1,Γ2 → (′→)

Thus the desired sequent β1,Γ′
2,Γ2 → is also provable by hypothesis,

(d) The case that the upper sequent of (′→) is obtained as the lower sequent
of (→ ∨): The last two steps of the proof go as follows:

Γ2 → α′
1, β,Γ1

Γ2 → α′
1, β ∨ γ,Γ1

(→ ∨)

α′′
1 , (β ∨ γ)′,Γ′

1,Γ2 → (′→)

The sequent α′′
1 , β

′,Γ′
1,Γ2 → has a shorter proof than the sequent

α′′
1 , (β ∨ γ)′,Γ′

1,Γ2 → as follows:

Γ2,→ α′
1, β,Γ1

α′′
1 , β

′,Γ′
1,Γ2 → (′→)
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Therefore the sequent β1, β
′,Γ′

1,Γ2 → is provable by the induction hy-
pothesis, which implies that the desired sequent β1, (β ∨ γ)′,Γ′

1,Γ2 →
is provable as follows:

β1, β
′,Γ′

1,Γ2 →
β1, (β ∨ γ)′,Γ′

1,Γ2 → (∨′ →)

(e) The case that the upper sequent of (′→) is obtained as the lower sequent
of (→ ∧′); The last two steps of the proof are of one of the following
two forms:

Γ2 → α′
1, β

′,Γ1

Γ2 → α′
1, (β ∧ γ)′,Γ1

(→ ∧′)

α′′
1 , (β ∧ γ)′′,Γ′

1,Γ2 → (′→)

Γ2 → β′,Γ1

Γ2 → (β ∧ γ)′,Γ1
(→ ∧′)

(β ∧ γ)′′,Γ′
1,Γ2 → (′→)

In the latter case α1 is assumed to be β ∧ γ. Here we deal only with
the former case, leaving a similar treatment of the latter case to the
reader. The sequent α′′

1 , β
′′,Γ′

1,Γ2 → has a shorter proof than the
sequent α′′

1 , (β ∧ γ)′′,Γ′
1,Γ2 → as follows:

Γ2,→ α′
1, β

′,Γ1

α′′
1 , β

′′,Γ′
1,Γ2 → (′→)

This implies by the induction hypothesis that the sequent β1, β,Γ′
1,Γ2 →

is also provable. Thus the desired sequent β1, (β ∧ γ)′′,Γ′
1,Γ2 → is also

provable, as follows:

β1, β,Γ′
1,Γ2 →

β1, β ∧ γ,Γ′
1,Γ2 → (∧ →)

β1, (β ∧ γ)′′,Γ′
1,Γ2 → (′′→)

(f) The case that the upper sequent of (′→) is obtained as the lower sequent
of (∨ →): The last two steps of the proof that we must consider go as
follows:

β → α′
1,Γ1 γ → α′

1,Γ1

β ∨ γ → α′
1,Γ1

(∨ →)

α′′
1 ,Γ

′
1, β ∨ γ → (′→)

The sequents α′′
1 ,Γ

′
1 → β′ and α′′

1 ,Γ
′
1 → γ′ are provable with shorter

proofs than that of α′′
1 ,Γ

′
1, β ∨ γ → as follows

β → α′
1,Γ1

α′′
1 ,Γ

′
1 → β′ (′→′)
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γ → α′
1,Γ1

α′′
1 ,Γ

′
1 → γ′ (′→′)

Therefore the sequents β1,Γ′
1 → β′ and β1,Γ′

1 → γ′ are provable by
the induction hypothesis, which implies that the desired sequent β ∨
γ, β1,Γ′

1 → is also provable as follows:

β1,Γ′
1 → β′ β1,Γ′

1 → γ′

β ∨ γ, β1,Γ′
1 → (∨ →′)

(g) The case that the upper sequent of (′→) is obtained as the lower sequent
of (∧′ →): The last two steps of the proof that we must consider go as
follows:

β′ → α′
1,Γ1 γ′ → α′

1,Γ1

(β ∧ γ)′ → α1,Γ1
(∧′ →)

α′′
1 ,Γ

′
1, (β ∨ γ)′ → (′→)

The sequents α′′
1 ,Γ

′
1 → β′′ and α′′

1 ,Γ
′
1 → γ′′ are provable with shorter

proofs than that of the sequent α′′
1 ,Γ

′
1, (β ∨ γ)′ → as follows:

β′ → α′
1,Γ1

α′′
1 ,Γ

′
1 → β′′ (′→′)

γ′ → α′
1,Γ1

α′′
1 ,Γ

′
1 → γ′′ (′→′)

Thus the sequents β1,Γ′
1 → β and β1,Γ′

1 → γ are provable by the induc-
tion hypothesis, which implies that the desired sequent (β∧γ)′, β1,Γ′

1 →
is also provable as follows:

β1,Γ′
1 → β β1,Γ′

1 → γ

β1,Γ′
1 → β ∧ γ,

(→ ∧)

(β ∧ γ)′, β1,Γ′
1 → (′→)

(h) The case that the upper sequent of (′→) is obtained as the lower sequent
of (→ ∨′): The last two steps of the proof that we must consider go as
follows:

Γ′
1 → β′ Γ1 → γ′

Γ′
1 → (β ∨ γ)′

(→ ∨′)

(β ∨ γ)′′,Γ1 → (′→)

Here α1 is supposed to be β ∨ γ. The sequent β ∨ γ,Γ1 → is provable
as follows:

Γ1 → β′ Γ1 → γ′

β ∨ γ,Γ1 → (∨ →′)

Since β1 + α1 by assumption, the desired sequent β1,Γ1 → is also
provable.
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(i) The case that the upper sequent of (′→) is obtained as the lower sequent
of (′→ ∧): The last two steps of the proof that we must consider go as
follows:

β′ → α′
1,Γ

′
1 γ′ → α′

1,Γ
′
1

→ β ∧ γ, α′
1,Γ

′
1

(′→ ∧)

(β ∧ γ)′, α′′
1 ,Γ

′
1 → (′→)

The sequents α′
1,Γ

′
1 → β and α′′

1 ,Γ
′
1 → γ′′ are provable with shorter

proofs than that of the sequent (β ∧ γ)′, α′′
1 ,Γ

′
1 → as follows:

β′ → α′
1,Γ1

α′′
1 ,Γ

′
1 → β′′ (′→′)

γ′ → α′
1,Γ

′
1

α′′
1 ,Γ

′
1 → γ′′ (′→′)

Thus the sequents β1,Γ′
1 → β and β1,Γ′

1 → γ are provable by the induc-
tion hypothesis, which implies that the desired sequent (β∧γ)′, β1,Γ′

1 →
is also provable as follows:

β1,Γ′
1 → β β1,Γ′

1 → γ

β1,Γ′
1 → β ∧ γ

(→ ∧)

(β ∧ γ)′, β1,Γ′
1 → (′→)

(j) The case that the upper sequent of (′→) is obtained as the lower sequent
of (′→′): The last two steps of the proof that we must consider go as
follows:

α1,Γ1 → Γ2

Γ′
2 → α′

1,Γ
′
1

(′→′)

α′′
1 ,Γ

′′
1 ,Γ

′
2 → (′→)

Since the sequent α1,Γ1 → Γ2 is provable and α1 + β1 by assumption,
β1,Γ1 → Γ2 is also provable, which implies that the desired sequent
β1,Γ′′

1 ,Γ
′
2 → is provable, as follows:

β1,Γ1 → Γ2

β1,Γ1,Γ′
2 → (′→)

β1,Γ′′
1 ,Γ

′
2 → (′′→)

5. The case that the upper sequent of (′→) is obtained as the lower sequent of
(→′): We can proceed similarly to (4-j). The case that the last inference of
the proof of the sequent α′′

1 ,Γ → Δ is (′→′): This case is divided into several
subcases according to how the upper sequent of (′→′) is obtained.

(a) The case that the upper sequent of (′→′) is an axiom sequent: The
treatment of this case is similar to (4-a) and is safely left to the reader.
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(b) The case that the upper sequent of (′→′) is obtained as the lower se-
quent of (extension): This case can safely be left to the reader.

(c) The case that the upper sequent of (′→′) is obtained as the lower se-
quent of (∧ →): The last two steps of the proof that we must consider
go as follows:

α,Δ1 → α′
1,Γ1

α ∧ β,Δ1 → α′
1,Γ1

(∧ →)

α′′
1 ,Γ

′
1 → (α ∧ β)′,Δ′

1

(′→′)

The sequent α′′
1 ,Γ

′
1 → α′,Δ′

1 is provable with a shorter proof than that
of α′′

1 ,Γ
′
1 → (α ∧ β)′,Δ′

1 as follows:

α,Δ1 → α′
1,Δ

′
1

α′′
1 ,Γ1 → α′,Δ′

1

(′→′)

Thus the sequent β1,Γ′
1 → α′,Δ′

1 is provable by the induction hypoth-
esis, which implies that the desired sequent β1,Γ′

1 → (α∧β)′,Δ′
1 is also

provable as follows:

β1,Γ′
1 → α′,Δ′

1

β1,Γ′
1 → (α ∧ β)′,Δ′

1

(→ ∧′)

(d) The case that the upper sequent of (′→′) is obtained as the lower se-
quent of (→ ∨): The treatment is similar to (5-c) and is safely left to
the reader.

(e) The case that the upper sequent of (′→′) is obtained as the lower se-
quent of (∨ →): The last two steps of the proof that we have to consider
go as follows:

α → α′
1,Γ1 β → α′

1,Γ1

α ∨ β → α′
1,Γ1

(∨ →)

α′′
1 ,Γ

′
1 → (α ∨ β)′

(′→′)

The sequents α′′
1 ,Γ1 → α′ and α′′

1 ,Γ
′
1 → β′ are provable with shorter

proofs than that of α′′
1 ,Γ

′
1 → (α ∨ β)′ as follows:

α → α′
1,Γ1

α′′
1 ,Γ

′
1 → α′ (′→′)

β → α′
1,Γ1

α′′
1 ,Γ

′
1 → β′ (′→′)

Thus the sequents β1,Γ′
1 → α′ and β1,Γ′

1 → β′ are provable by the
induction hypothesis, which implies that the desired sequent α′′

1 ,Γ
′
1 →

(α ∨ β)′ is provable, as follows:

β1,Γ′
1 → α′ β1,Γ′

1 → β′

β1,Γ′
1 → (α ∨ β)′

(→ ∨′)
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(f) The case that the upper sequent of (′→′) is the lower sequent of (→′):
The last two steps of the proof that we should consider can be supposed
to be one of the following two forms:

α1,Γ1 → Γ2

→ α′
1,Γ

′
1,Γ2

(→′)

α′′
1 ,Γ

′′
1 ,Γ

′
2 → (′→′)

Γ1 → α′
1,Γ2

→ α′
1,Γ

′
1,Γ2

(→′)

α′′
1 ,Γ

′′
1 ,Γ

′
2 → (′→′)

In the former case the sequent α1,Γ′′
1 ,Γ

′
2 → is provable as follows:

α1,Γ1 → Γ2

α1,Γ1,Γ′
2 → (′→)

α1,Γ′′
1 ,Γ

′
2 → (′′→)

Since α1 + β1 by assumption, the desired sequent β1,Γ′′
1 ,Γ

′
2 → is also

provable. As for the latter case, the sequent α′′
1 ,Γ

′
2 → Γ′

1 is provable
with a shorter proof than that of the sequent α′′

1 ,Γ
′′
1 ,Γ2 →, as follows:

Γ1 → α′
1,Γ2

α′′
1 ,Γ

′
2 → Γ′

1

(′→′)

By the induction hypothesis the sequent β1,Γ′
2 → Γ′

1 is also provable,
which implies that the desired sequent β1,Γ′′

1 ,Γ
′
2 → is provable, as

follows:
β1,Γ′

2 → Γ′
1

β1,Γ′′
1 ,Γ

′
2 → (′→)

(g) The case that the upper sequent of (′→′) is obtained as the lower se-
quent of (′′→) or (→′′): The treatment is similar to (4-c) and is safely
left to the reader.

(h) The case that the upper sequent of (′→′) is the lower sequent of another
(′→′): The last two steps of the proof that we have to consider go as
follows:

α1,Γ1 → Δ1

Δ′
1 → α′

1,Γ
′
1

(′→′)

α′′
1 ,Γ

′′
1 → Δ′′

1

(′→′)

Since the sequent α1,Γ1 → Δ1 has a shorter proof than the sequent
α′′

1 ,Γ
′′
1 → Δ′′

1 , the sequent β1,Γ1 → Δ1 is also provable by the induction
hypothesis, which implies that the desired sequent β1,Γ′′

1 → Δ′′
1 is also

provable, as follows

β1,Γ1 → Δ1

β1,Γ′′
1 → Δ1

(′′→)

β1,Γ′′
1 → Δ′′

1

(→′′)
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(i) The case that the upper sequent of (′→′) is obtained as the lower se-
quent of (∨′ →), (→ ∧′), (∧′ →), or (→ ∨′): These four cases can be
. dealt with similarly, so here we deal only with the case of (→ ∨′),
in which the last two steps of the proof that we must consider go as
follows:

Δ1 → α′ Δ1 → β′

Δ1 → (α ∨ β)′
(→ ∨′)

(α ∨ β)′′ → Δ′
1

(′→′)

Here α1 is supposed to be α∨ β. The sequents α′′ → Δ′
1 and β′′ → Δ′

1

are provable with shorter proofs than that of (α∨β)′′ → Δ′
1 as follows:

Δ1 → α′

α′′ → Δ′
1

(′→′)
Δ′

1 → β′′

β′′ → Δ′
1

(′→′)

Therefore the sequents α → Δ′
1 and β → Δ′

1 are provable by the
induction hypothesis, which implies that the sequent α ∨ β → Δ′

1 is
also provable, as follows:

α → Δ1 β → Δ1

α ∨ β → Δ1
(∨ →)

Since β1 + α1 = α ∨ β by assumption, the desired sequent β1 → Δ1 is
provable.

(j) The case that the upper sequent of (′→′) is obtained as the lower se-
quent of (′→ ∧): The last two steps of the proof that we must consider
go as follows:

α′ → α′
1,Γ1 β′ → α′

1,Γ1

→ α′
1,Γ

′
1, α ∧ β

(′→ ∧)

α′′
1 ,Γ

′
1, (α ∧ β)′ → (′→′)

The sequents Γ′
1, α

′′
1 → α′′ and Γ′

1, α
′′
1 → β′′ are provable with shorter

proofs than that of α′
1,Γ

′
1, (α ∧ β)′′ → as follows:

α′ → α′
1,Γ1

α′′
1 ,Γ

′
1 → α′′ (′→′)

β′ → α′
1,Γ1

α′′
1 ,Γ

′
1 → β′′ (′→′)

By the induction hypothesis the sequents β1,Γ′
1 → α and β1,Γ′

1 → β
are provable, which implies that the desired sequent β1,Γ′

1, (α ∧ β)′ →
is also provable, as follows:

β1,Γ′
1 → α β1,Γ′

1 → β

β1,Γ′
1 → α ∧ β

(→ ∧)

β1,Γ1, (α ∧ β)′ → (′→)

�
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COROLLARY 11.

1. If a sequent Γ,Π′ → Δ,Σ′ is provable, then the sequent Δ′,Σ → Γ′,Π is also
provable.

2. If a sequent Γ → Δ′ is provable, then the sequent Γ,Δ → is provable.

3. If a sequent Γ′ → Δ is provable, then the sequent → Γ,Δ is also provable.

Proof. By Theorem 8 it suffices only to take into account the rules (′→′), (′→),
and (→′). �

THEOREM 12. (The second duality theorem). If α1 + β1 and α2 + β2, then
α1 ∧ α2 + (β′

1 ∨ β′
2)

′ and α1 ∨ α2 + (β′
1 ∧ β′

2)
′.

Proof. First we show the following claim:

CLAIM 13.

1. If a sequent α1 ∧ α2,Γ → Δ is provable, then the sequent (β′
1 ∨ β′

2)
′,Γ → Δ

is also provable.

2. If a sequent Γ → Δ, α1 ∧ α2 is provable, then the sequent Γ → Δ, (β′
1 ∨ β′

2)
′

is also provable.

3. If a sequent α1 ∨ α2,Γ → Δ is provable, then the sequent (β′
1 ∧ β′

2),Γ → Δ
is also provable.

4. If a sequent Γ → Δ, α1 ∨ α2 is provable, then the sequent Γ → Δ, (β′
1 ∧ β′

2)
′

is also provable.

Here we deal only with the second statement in the above claim, leaving the
remaining three statements to the reader. The proof is carried out by induction
on the construction of a proof P of the sequent Γ → Δ, α1∧α2. Here we deal only
with the critical case in which the last inference is (→ ∧) as follows:

Γ → α1 Γ → α2

Γ → α1 ∧ α2
(→ ∧)

Since α1 + β1 and α2 + β2 by assumption, the sequents Γ → β1 and Γ → β2 are
provable, which implies that the sequent Γ′′ → (β′

1 ∨ β′
2) is is provable, as follows:

Γ → β1

β′
1 → Γ′ (

′→′)
Γ → β2

β′
2 → Γ′ (′→′)

β′
1 ∨ β′

2 → Γ′ (∨ →)

Γ′′ → (β′
1 ∨ β′

2)′
(′→′)

Therefore the sequent Γ → (β′
1 ∨ β′

2)
′ s provable by Theorem 8. To establish the

remaining half of the theorem smoothly, we introduce a useful notion weaker than
provability equivalence. A wff β is said to be provably dominated by a wff α, in
notation α � β, if we have that for any finite sets Γ rand Δ of wffs:
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1. Whenever the sequent α,Γ → δ is provable, the sequent β,Γ → Δ is also
provable.

2. Whenever the sequent Γ → Δ, α is provable, the sequent Γ → Δ, β is also
provable.

We notice that what we have really proved in Claim 13 is that if γ1→̃δ1 and
γ2→̃δ2, then γ1∧γ2→̃(δ′1∨δ′2)

′ and γ1∨γ2→̃(δ′1∧δ′2)
′. Similarly, what we have really

proved in the proof of Theorem 7 is that if γ1→̃δ1 and γ2→̃δ2, then γ′
1→̃δ′1, γ1 ∧

γ2→̃δ1 ∧ δ2 nd γ1 ∨ γ2→̃δ1 ∨ δ2, while what we have really proved in the proof of
Theorem 8 is that if α→̃β, , then α′′→̃β. It is easy to see that two wffs α and β
are provably equivalent iff each of them is provably dominated by the other. Thus,
to conclude the proof of the theorem, it suffices to notice that

α1 ∧ α2→̃(β′
1 ∨ β′

2)
′→̃(α′′

1 ∧ α′′
2)→̃α1 ∧ α2

�

COROLLARY 14.

1. If α1 + β1 and α2 + β2, then α′
1 ∧ α′

2 + (β1 ∨ β2)′ and α′
1 ∨ α′

2 + (β1 ∧ β2)′.

Proof. By Theorems 7, 8, and 12, we have that α′
1 ∧α′

2 + (α′′
1 ∨α′′

2)′ + (β1 ∨ β2)′

and α′
1 ∨ α′

2 + (α′′
1 ∧ α′′

2)′ + (β1 ∧ β2)′. �

5 THE CUT-ELIMINATION THEOREM

THEOREM 15. A sequent α, β,Γ → Δ is provable iff the sequent α∧β,Γ → Δ is
provable. Similarly, a sequent Π → Σ, γ, δ is provable iff the sequent Π → Σ, γ ∨ δ
is provable.

Proof. For both statements, the only-if part follows readily from (∧ →) or (→ ∨).
The if part can be established by induction on the construction of a proof of
α ∧ β,Γ → Δ or Γ → Δ, α ∨ β. �

COROLLARY 16. A sequent α′, β′,Γ → Δ is provable iff the sequent (α∨β)′,Γ →
Δ is provable. Similarly, a sequent Π → Σ, γ′, δ′ is provable iff the sequent Π →
Σ, (γ ∧ δ)′ is provable.

Proof. Follows from Corollary 1 and Theorem 15. �

THEOREM 17. If a sequent α∨β,Γ → Δ is provable, then the sequents α,Γ → Δ
and β,Γ → Δ are provable. Similarly, if a sequent Π → Σ, γ ∧ δ is provable, then
the sequents Π → Σ, γ and Π → Σ, δ are provable.
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Proof. By induction on the construction of a proof of α ∨ β,Γ → Δ or Π →
Σ, γ ∧ δ. Here we deal only with the case that the last step of a proof of a sequent
α ∨ β,Γ → Δ is (∨ →′). So it must be one of the following two forms.

Γ → α′ Γ → β′

α ∨ β,Γ → (∨ →′)

α ∨ β,Γ1 → σ′ α ∨ β,Γ1 → ρ′

α ∨ β, σ ∨ ρ,Γ1 → (∨ →′)

In the former case the sequents α′′,Γ → and β′′,Γ → are provable by (′→). So
the desired sequents α,Γ → and β,Γ → are provable by Theorem 8. In the latter
case the sequents α,Γ1 → σ′, β,Γ1 → σ′, and β,Γ1 → ρ′, are provable by the
induction hypothesis. So the desired sequents α, σ ∨ ρ, Γ1 → and β, σ ∧ ρ,Γ1 →
are provable as follows:

α,Γ1 → σ′ α,Γ1 → ρ′

α, σ ∨ ρ,Γ1 → (∨ →′)

β,Γ1 → σ′ β,Γ1 → ρ′

β, σ ∨ ρ,Γ1 → (∨ →′)

�

COROLLARY 18. If a sequent (α ∧ β)′,Γ → Δ is provable, then the sequents
α′,Γ → Δ and β′,Γ → Δ are provable. Similarly, if a sequent Π → Σ, (γ ∨ δ)′ is
provable, then the sequents Π → Σ, γ′ and Π → Σ, δ′ are provable.

Proof. This follows from Theorem 17 and Corollary 1. �

THEOREM 19. (The cut-elimination theorem). If sequents Γ1 → Δ1, α and
α,Γ2 → Δ2 are provable with either Δ1 = ∅ or Γ2 = ∅, then the sequent
Γ1,Γ2 → Σ1,Δ2 is also provable. In other words, (cut)q is permissible in GMQL.

Proof. Suppose that the sequents Γ1 → Δ1, α and α,Γ2 → Δ2 have proofs P1

and P2, respectively. We prove the theorem by double induction principally on
G(α) and secondarily on l(P1) + l(P2). By Theorem 12 we can assume that there
is no occurrence of the disjunction symbol ∨ in P1 or P2. As in the proof of
Theorem 8, whenever we are forced to deal with the rules (∧ →) or (→ ∧′), each
of which consists of two forms, only one of them is treated. Our proof is divided
into several cases according to which inference rule is used in the last step of P1

or P2 as follows:

1. The case that one of the sequents Γ1 → Δ1, α and α,Γ2 → Δ2 is an axiom
sequent: There is nothing to prove.
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2. The case that one of the sequents Γ1 → Δ1, α and α,Γ2 → Δ2 is obtained
as the lower sequent of (extension): Here we deal only with the case that the
former sequent Γ1 → Δ1, α is obtained as the lower sequent of (extension),
leaving the dual case to the reader. Then the last step of the proof P1 is in
one of the following two forms:

Γ11 → Δ11, α

Γ11,Γ12 → Δ11,Δ12, α
(extension)

Γ11 → Δ11

Γ11,Γ12 → Δ11,Δ12, α
(extension)

In the former case the desired sequent Γ11,Γ12,Γ2 → Δ11,Δ12,Δ2 is provable
by induction hypothesis as follows.

Γ11 → Δ11, α α,Γ2 → Δ2

Γ11,Γ2 → Δ11,Δ2
(cut)q

Γ11,Γ12,Γ2 → Δ11,Δ12,Δ2
(extension)

In the latter case the desired sequent Γ11,Γ12,Γ2 → Δ11,Δ12,Δ2 is obtained
as follows.

Γ11 → Δ11

Γ11,Γ12,Γ2 → Δ11,Δ12,Δ2
(extension)

3. The case that either the sequent Γ1 → Δ1, α is obtained as the lower sequent
of one of the inference rules (′′→) and (∧ →) or the sequent α,Γ2 → Δ2 is
obtained as the lower sequent of one of the inference rules (→′′) and (→ ∧′):
Here we deal only with the case that the sequent α,Γ2 → Δ2 is obtained as
the lower sequent of (→ ∧′), leaving the remaining three cases to the reader.
So the last step of P2 is of the following form:

α,Γ2 → Σ2, β
′

α,Γ2 → Σ2, (β ∨ γ)′
(→ ∧′)

The desired sequent Γ1,Γ2 → Δ1,Σ2, (β ∧ γ)′ is provable by induction hy-
pothesis as follows:

Γ1 → Δ1, α α,Γ2 → Σ2, β
′

Γ1,Γ2 → Δ1,Σ2, β′ (cut)q

Γ1,Γ2 → Δ1,Σ2, (β ∧ γ)′
(→ ∧′)

4. The case that either the sequent Γ1 → Δ1, α is obtained as the lower sequent
of (∧′ →) or the sequent α,Γ2 → Δ2 is obtained as the lower sequent of
(→ ∧): Here we deal only with the former case, leaving a similar treatment
of the latter case to the reader. So the last step of P1 goes as follows:
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β′ → Δ1, α γ′ → Δ1, α

(β ∧ γ)′ → Δ1, α
(∧′ →)

If γ2 = ∅, then the desired sequent (β ∧ γ)′ → Δ1,Δ2 is provable by the
induction hypothesis as follows:

β′ → Δ1, α α → Δ2

β′
1 → Δ1,Δ2

(cut)q
γ′ → Δ1, α α → Δ2

γ′
2 → Δ1,Δ2

(cut)q

(β ∧ γ)′ → Δ1,Δ2
(∧′ →)

Unless Γ2 = ∅, the situation can be classified into cases according to which
inference rule is used in the last step of P2. If Γ2 �= ∅ and it is not the case
that the last inference of P2 is (→ ∧), the situation is subsumed under the
cases that have been or will be dealt with. If Γ2 �= ∅ and the last inference
of P2 is (→ ∧), then surely Γ1 �= ∅, so that the situation can be handled
dually to the case that Γ2 = ∅.

5. The case that either the sequent Γ1 → Δ1, α is obtained as the lower sequent
of one of the inference rules (→′′) and (→ ∧′) or the sequent α,Γ2 → Δ2 is
obtained as the lower sequent of one of the inference rules (′′→) and (∧ →):
Here we deal only with the case that the sequent Γ1 → Δ1, α is obtained as
the lower sequent of (→ ∧′), leaving the remaining three cases to the reader.
So the last step of P1 is in one of the following two forms:

Γ1 → Σ, β′, α
Γ1 → Σ, (β ∧ γ)′, α

(→ ∧′)

Γ1 → Δ1, β
′

Γ1 → Δ1, (β ∧ γ)′
(→ ∧′)

In the latter case α is supposed to be (β ∧ γ)′. In the former case the (cut)q

at issue is an instance of (cut-1), so that Γ2 = ∅, and the desired sequent
Γ1 → Σ, (β ∧ γ)′,Δ2 is provable by induction hypothesis, as follows:

Γ1 → Σ, β′, α α → Δ2

Γ1 → Σ, β′ (cut)q

Γ1 → Σ, (β ∧ γ)′
(→ ∧′)

As for the latter case, the cut formula is (β∧γ)′, and the sequent, β′,Γ2 → Δ2

is provable by Corollary 18. Thus the desired sequent Γ1,Γ2 → Δ1,Δ2 is
provable by the induction hypothesis, as follows:

Γ1 → Δ1, β
′ β′,Γ2 → Δ2

Γ1,Γ2 → Δ1,Δ2
(cut)q
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6. The case that either the sequent Γ1 → Δ1, α is obtained as the lower sequent
of (→ ∧) or the sequent α,Γ2 → Δ2 is obtained as the lower sequent . of
(∧′ →): Here we deal only with the latter case, leaving a similar treatment
of the latter to the reader. So the last step of P2 goes as follows:

β′ → Δ2 γ′ → Δ2

(β ∧ γ)′ → Δ2
(∧′ →)

Here α is supposed to be (β∧γ)′, and the (cut)q at issue is an instance of (cut-
1) with the cut formula (β ∧ γ)′. By Corollary 8 the sequent Γ1 → Δ1, β

′, γ′

is provable, so that the desired sequent Γ1 → Δ1,Δ2 is also provable, as
follows:

Γ1 → Δ1, β
′, γ′ β′ → Δ2

Γ1 → Δ1,Δ2, γ′ γ′ → Δ2
(cut)q

Γ1 → Δ1,Δ2
(cut)q

7. The case that the sequent Γ1 → Δ1, α is obtained as the lower sequent of
(′→ ∧): The last step of P1 is in one of the following two forms:

β′ → Σ, α γ′ → Σ, α

→ Σ, β ∧ γ, α
(′→ ∧)

β′ → Δ1 γ′ → Δ1

→ Δ1, β ∧ γ
(′→ ∧)

In the latter case α is assumed to be β ∧ γ. First we deal with the former
case, in which the (cut)q at issue is (cut-1) so that Γ2 = ∅. Then the desired
sequent → Σ, β ∧ γ,Δ2 is provable by the induction hypothesis as follows:

β′ → Σ, α α → Δ2

β′
1 → Σ,Δ2

(cut)q
γ′ → Σ, α α → Δ2

γ′ → Σ,Δ2
(cut)q

→ Σ, β ∧ γ,Δ2
(′→ ∧)

As for the latter case, suppose first that Δ1 �= ∅, so that Γ2 = ∅. Then
the sequents Δ′

1 → β and Δ′
1 → γ are provable by Corollary 11, while

the sequent β, γ → Δ′′
1 ,Δ2 is provable by Theorem 15. Thus the sequent

→ Δ′′
1 ,Δ2 is provable by the induction hypothesis, as follows:

Δ′
1 → β β, γ → Δ2

Δ′
1 → γ γ,Δ′

1 → Δ2
(cut)q

Δ′
1 → Δ2

(cut)q

→ Δ′′
1 ,Δ2

(→′)

Thus the desired sequent → Δ1,Δ2 is provable by Theorem 8. If Δ1 = ∅,
then the sequents → β and → γ are provable by Corollary 11, while the
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sequent β, γ,Γ2 → Δ2 is provable by Theorem 15. Thus the desired sequent
Γ2 → Δ2 is provable by the induction hypothesis as follows:

→ β β, γ,Γ2 → Δ2

→ γ γ,Γ2 → Δ2
(cut)q

Γ2 → Δ2
(cut)q

8. The case that one of the sequents Γ1 → Δ1, α and α,Γ2 → Δ2 is obtained as
the lower sequent of (→′): Here we deal only with the case that the sequent
Γ1 → Δ1, α is obtained as the lower sequent of (→′), leaving the dual case
to the reader. So the last step of the proof P1 is in one of the following two
forms:

Δ′
12 → Δ11, α

→ Δ11,Δ′
12, α

(→′)

Δ′
12, β → Δ11

→ Δ11,Δ′
12, β

′ (→′)

In the latter case α is supposed to be β′. First we deal with the former
case. If Γ2 = ∅, then the desired sequent → Δ11,Δ′

12,Δ2 is provable by the
induction hypothesis, as follows:

Δ12 → Δ11, α α → Δ2

Δ12 → Δ11,Δ2
(cut)q

→ Δ11,Δ′
12,Δ2

(→′)

If Γ2 �= ∅, then α is of the form γ′ and the sequent Δ12 → Δ11, α is γ → γ′.
The sequents γ → and Δ′

2 → γ are provable by Corollary 11, which implies
that the sequent Δ′

2 → is also provable by the induction hypothesis, as
follows:

Δ′
2 → γ γ →

Δ′
2 → (cut)q

By Corollary 11 the sequent → Δ2 is provable, which implies that the desired
sequent → Δ1,Δ2 is provable as follows:

→ Δ2

→ Δ1,Δ2
(extension)

Now we deal with the latter case. If Γ2 = ∅, then the sequent Δ′
2 → β is

provable by Corollary 11, and the sequent → Δ11,Δ′
12,Δ

′′
2 is also provable

by the induction hypothesis as follows: .

Δ′
2 → β Δ12, β → Δ11

Δ12,Δ′
2 → Δ11

(cut)q

→ Δ11,Δ′
12,Δ

′′
2

(→′)
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Thus the desired sequent → Δ11,Δ12,Δ2 is provable by Theorem 8. If
Γ2 �= ∅, then the sequent Δ12, β → Δ11 must be β → or β → β′, the latter
of which implies by Corollary 11 that the sequent β → is provable. Thus
in any case the sequent β → is provable. Since the sequent Δ′

2 → Γ′
2, β

is provable by Corollary 11, the sequent Δ′
2 → Γ′

2 is provable by induction
hypothesis as follows:

Δ′
2 → Γ′

2, β β →
Δ′

2 → Γ′
2

(cut)q

Therefore the sequent Γ2 → Δ2 is provable by Corollary 11, which implies
that the desired sequent Γ2 → Δ1,Δ2 is provable as follows:

Γ2 → Δ2

Γ2 → Δ1,Δ2
(extension)

9. The case that both the sequent Γ1 → Δ1, α and the sequent α,Γ2 → Δ2 are
obtained as the lower sequent of (′→′): The last steps of the proofs P1 and
P2 go as follows:

Σ1, β → Π1

Π′
1 → Σ′

1, β
(′→′)

Σ2,→ β,Π2

β′,Π′
2 → Σ′

2

(′→′)

In the above α is supposed to be β′. The desired sequent Π1,Π2 → Σ1,Σ2

is provable by the induction hypothesis as follows:

Σ2 → Π2, β β,Σ1 → Π1

Σ1,Σ2 → Π1,Π2

Π′
1,Π

′
2 → Σ′

1,Σ
′
2

(cut)
(′→′)

�

6 THE COMPLETENESS THEOREM

An O-frame is a pair (X,⊥) of a nonempty set X and an orthogonality relation
(i.e., an irreflexive and symmetric binary relation) on X. Given Y ⊆ X, we write
Y ⊥ for the set {x ∈ X|x ⊥ y for any y ∈ Y }. A subset Y of X is said to be
⊥-closed if Y = Y ⊥⊥.

An O-model is a triple (X,⊥, D), where (X,⊥) is an O-frame and D assigns to
each propositional variable p a ⊥-closed subset D(p) of X. The notation ‖α‖ for
a wff α is defined inductively as follows:

1. ‖p‖ = D(p) for any propositional variable p.
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2. ‖α ∧ β‖ = ‖α‖ ∩ ‖β||.

3. ‖α′‖ = ||α||⊥.

4. ‖α ∨ β‖ = ‖α′ ∧ β′‖ = (‖α‖⊥ ∩ ‖β||⊥)⊥.

Given x ∈ X and a wff α, we write V (α;x) = 1 if x ∈ ‖α‖ and V (α;x) = 0
if x /∈ ‖α‖. Given x ∈ X and a sequent Γ → Δ, we write V (Γ → Δ;x) = 1 if
x ∈ ⋂{‖α‖ |α ∈ Γ} and x /∈ (∪{‖β‖⊥|β ∈ Δ})⊥, and V (Γ → Δ;x) = 0 otherwise.

A sequent Γ → Δ is said to be realizable if there exists an O-model (X,⊥, D)
and some x ∈ X such that V (Γ → Δ;x) = 1. The sequent Γ → Δ is called valid
otherwise.

THEOREM 20. (The soundness theorem). If a sequent Γ → Δ is provable, then
it is valid.

Proof. By induction on the construction of a proof of the sequent Γ → Δ. �

A set Ω of wffs is said to be admissible if it satisfies the following conditions:

1. If p is a propositional variable and p ∈ Ω, then p′ ∈ Ω.

2. If α ∈ Ω and β is a subformula of α, then β ∈ Ω.

3. If (α ∨ β) ∈ Ω, then (α′ ∧ β′)′ ∈ Ω.

A finite set Γ of wffs is said to be inconsistent if for some wff α, both of the
sequents Γ → α and Γ → α′ are provable. Otherwise the set Γ is said to be
consistent.

LEMMA 21. A finite set Γ of wffs is inconsistent iff the sequent Γ → is provable.

Proof. The if part is obvious. The only-if part can be shown easily as follows:

Γ → α Γ → α′

Γ → α ∧ α′ (→ ∧)

α → α

α, α′ → (′→)

α ∧ α′ → (∧ →)

Γ → (cut)q

�

Given an admissible set Ω of wffs, the Ω-canonical O-model M(Ω) = (XΩ, ⊥Ω ,
DΩ) is defined as follows:

1. XΩ is the set of all the consistent subsets of Ω.

2. For any Γ1,Γ2 ∈ XΩ,Γ1 ⊥Ω Γ2 iff for some α′ ∈ Ω, either: (a) both of the
sequents Γ1 → α and Γ1 → α′ are provable, or (b) both of the sequents
Γ1 → α′ and Γ2 → α are provable.
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3. If p /∈ Ω, then DΩ(p) = ∅, while if p ∈ Ω, then DΩ(p) consists of all the
consistent subsets Γ of Ω such that the sequent Γ → p is provable.

THEOREM 22. M(Ω) is an O-model.

Proof. Obviously the relation ⊥Ω is symmetric. That the relation ⊥Ω is irreflexive
follows from our assumption that every element of XΩ is a consistent set of wffs.
Now it remains to show that DΩ(p) is ⊥Ω-closed for any propositional variable p.
Unless p ∈ Ω, there is nothing to prove. So let p ∈ Ω. Let Γ be an element of XΩ

such that the sequent Γ → p is not provable. Suppose for the sake of contradiction
that the set {p′} is inconsistent, which implies by Lemma 21 that the sequent
p′ → is provable. By Corollary 11 the sequent → p is provable, which implies
by (extension) that the sequent Γ → p is provable. This is a contradiction. So
{p′} ∈ XΩ. Suppose, for the sake of contradiction, that for some α′ ∈ Ω, either
both of the sequents Γ → α′ and p′ → α are provable or both of the sequents
Γ → α′ and p′ → α are provable. Here we deal only with the former case, leaving
a similar treatment of the latter to the reader. By Corollary 11 the sequent α → p
is provable, which implies by (cut) that the sequent Γ → p is provable. This is a
contradiction. Thus it cannot be the case that Γ ⊥Ω {p′}, while for any Δ ∈ XΩ

such that the sequent Δ → p is provable, Δ ⊥Ω {p}. This implies that the set of
all Δ ∈ XΩ such that the sequent Δ → p is provable is ⊥Ω-closed. �

The disjunction grade of a wff α, denoted by G∨(α), is defined inductively as
follows:

1. G∨(p) = o for any propositional variable p.

2. G∨(α′) = G∨(α).

3. G∨(α ∧ β) = G∨(α) + G∨(β).

4. G∨(α ∨ β) = G∨(α) + G∨(β) + 1.

THEOREM 23. (The fundamental theorem for M(Ω)). For any α ∈ Ω and any
Γ ∈ XΩ, the sequent Γ → α is provable iff Γ ∈ ‖α|| in M(Ω).

Proof. The proof is carried out by double induction principally on G∨(α) and
secondarily on G(α). The proof is divided into several cases.

1. In the case that α is a propositional variable: It follows from the definition
of DΩ.

2. In the case that α = β′ for some wff β: If Γ → β′ is provable, then Γ ⊥Ω ‖β‖
by induction hypothesis, which implies that Γ ∈ ‖β′‖. Suppose, for the sake
of contradiction, that the set {β} is inconsistent, which implies by Lemma
21 that the sequent β → is provable. Thus the sequent Γ → β′ is provable
as follows:
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β →
→ β′ (→′)

Γ → β′ (extension)

This is a contradiction. So it must be the case that {β} ∈ XΩ. Suppose, for
the sake of contradiction, that for some γ′ ∈ Ω, either both of the sequents
Γ → γ′ and β → γ are provable or both of the sequents Γ → γ and β → γ′

are provable. Here we deal only with the former case, leaving safely a similar
treatment of the latter to the reader. The desired contradiction is obtained
as follows:

Γ → γ′
β → γ

γ′ → β′ (′→′)

Γ → β
(cut)q

Thus it cannot be the case that Γ ⊥ Ω{β}. Since {β} ∈ ‖β‖ by induction
hypothesis, this means that Γ /∈ ‖β‖ ⊥ Ω = ‖β′‖.

3. In the case that α is of the form β ∧ γ for some wffs β and γ: If the sequent
Γ → α is provable, then both of the sequents Γ → β and Γ → γ are provable
by Theorem 17, which implies by induction hypothesis that Γ ∈ ‖β‖ and
Γ ∈ ‖γ‖. So Γ ∈ ‖β‖∩‖γ‖ = ‖β∧γ‖. Unless the sequent Γ → α is provable,
suppose, for the sake of contradiction, that both of the sequents Γ → β and
Γ → γ are provable. The desired conclusion is obtained as follows:

Γ → β Γ → γ

Γ → β ∧ γ
(→ ∧)

Thus one of the sequents Γ → β and Γ → γ is consistent, which implies by
induction hypothesis that Γ /∈ ‖β‖ or Γ /∈ ‖γ‖. So Γ /∈ ‖β ∧ γ‖ = ‖β‖ ∩ ‖γ‖.

4. In the case that α is of the form β ∨ γ for some wffs β and γ: Use Theorem
12.

�

THEOREM 24. (The completeness theorem). A sequent Γ → Δ is realizable iff it
is consistent.

Proof. The only-if part is the soundness theorem already established. To see
the if part, take an admissible set Ω such that Γ ∪ {β1 ∨ ... ∨ βn} ⊆ Ω, where
Δ = {β1, ..., βn}. By Theorem 15 the sequent Γ → Δ is consistent iff the sequent
Γ → β1∨...∨βn is consistent. The desired conclusion follows readily from Theorem
23. �

We remark in passing that in the proof of Theorem 24 it does not matter how
to insert parentheses in β1 ∨ ... ∨ βn.
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CATEGORICAL QUANTUM MECHANICS

Samson Abramsky and Bob Coecke

1 INTRODUCTION

Our aim is to revisit the mathematical foundations of quantum mechanics from a
novel point of view. The standard axiomatic presentation of quantum mechanics
in terms of Hilbert spaces, essentially due to von Neumann [1932], has provided
the mathematical bedrock of the subject for over 70 years. Why, then, might it
be worthwhile to revisit it now?

First and foremost, the advent of quantum information and computation (QIC)
as a major field of study has breathed new life into basic quantum mechanics,
asking new kinds of questions and making new demands on the theory, and at the
same time reawakening interest in the foundations of quantum mechanics.

As one key example, consider the changing perceptions of quantum entanglement
and its consequences. The initial realization that this phenomenon, so disturbing
from the perspective of classical physics, was implicit in the quantum-mechanical
formalism came with the EPR Gedanken-experiment of the 1930’s [Einstein et
al., 1935], in the guise of a “paradox”. By the 1960’s, the paradox had become
a theorem — Bell’s theorem [Bell, 1964], demonstrating that non-locality was an
essential feature of quantum mechanics, and opening entanglement to experimental
confirmation. By the 1990’s, entanglement had become a feature, used in quantum
teleportation [Bennett et al., 1993], in protocols for quantum key distribution
[Ekert, 1991], and, more generally, understood as a computational and informatic
resource [Bouwmeester et al., 2001].

1.1 The Need for High-Level Methods

The current tools available for developing quantum algorithms and protocols, and
more broadly the whole field of quantum information and computation, are defi-
cient in two main respects.

Firstly, they are too low-level. One finds a plethora of ad hoc calculations with
‘bras’ and ‘kets’, normalizing constants, matrices etc. The arguments for the ben-
efits of a high-level, conceptual approach to designing and reasoning about quan-
tum computational systems are just as compelling as for classical computation.
In particular, we have in mind the hard-learned lessons from Computer Science of
the importance of compositionality, types, abstraction, and the use of tools from
algebra and logic in the design and analysis of complex informatic processes.
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At a more fundamental level, the standard mathematical framework for quan-
tum mechanics is actually insufficiently comprehensive for informatic purposes. In
describing a protocol such as teleportation, or any quantum process in which the
outcome of a measurement is used to determine subsequent actions, the von Neu-
mann formalism leaves feedback of information from the classical or macroscopic
level back to the quantum implicit and informal, and hence not subject to rigorous
analysis and proof. As quantum protocols and computations grow more elaborate
and complex, this point is likely to prove of increasing importance.

Furthermore, there are many fundamental issues in QIC which remain very
much open. The current low-level methods seem unlikely to provide an adequate
basis for addressing them. For example:

• What are the precise structural relationships between superposition, entan-
glement and mixedness as quantum informatic resources? Or, more gener-
ally,

• Which features of quantum mechanics account for differences in computa-
tional and informatic power as compared to classical computation?

• How do quantum and classical information interact with each other, and
with a spatio-temporal causal structure?

• Which quantum control features (e.g. iteration) are possible and what addi-
tional computational power can they provide?

• What is the precise logical status and axiomatics of No-Cloning and No-
Deleting, and more generally, of the quantum mechanical formalism as a
whole?

These questions gain additional force from the fact that a variety of different quan-
tum computational architectures and information-processing scenarios are begin-
ning to emerge. While at first it seemed that the notions of Quantum Turing
Machine [Deutsch, 1985] and the quantum circuit model [Deutsch, 1989] could
supply canonical analogues of the classical computational models, recently some
very different models for quantum computation have emerged, e.g. Raussendorf
and Briegel’s one-way quantum computing model [Raussendorf and Briegel, 2001;
Raussendorf et al., 2003] and measurement based quantum computing in general
[Jozsa, 2005], adiabatic quantum computing [Farhi et al., 2000], topological quan-
tum computing [Freedman et al., 2004], etc. These new models have features which
are both theoretically and experimentally of great interest, and the methods de-
veloped to date for the circuit model of quantum computation do not carry over
straightforwardly to them. In this situation, we can have no confidence that a
comprehensive paradigm has yet been found. It is more than likely that we have
overlooked many new ways of letting a quantum system compute.

Thus there is a need to design structures and develop methods and tools which
apply to these non-standard quantum computational models . We must also address
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the question of how the various models compare — can they be interpreted in each
other, and which computational and physical properties are preserved by such
interpretations?

1.2 High-Level Methods for Quantum Foundations

Although our initial motivation came from quantum information and computa-
tion, in our view the development of high-level methods is potentially of great
significance for the development of the foundations of quantum mechanics, and
of fundamental physical theories in general. We shall not enter into an extended
discussion of this here, but simply mention some of the main points:

• By identifying the fundamental mathematical structures at work, at a more
general and abstract level than that afforded by Hilbert spaces, we can hope
to gain new structural insights, and new ideas for how various physical fea-
tures can be related and combined.

• We get a new perspective on the logical structure of quantum mechanics,
radically different to the traditional approaches to quantum logic.

• We get a new perspective on “No-Go” theorems, and new tools for formu-
lating general results applying to whole classes of physical theories.

• Our structural tools yield an effective calculational formalism based on a
diagrammatic calculus, for which automated software tool-support is cur-
rently being developed. This is not only useful for quantum information and
computation, it may also yield new ways of probing key foundational issues.
Again, this mirrors what has become the common experience in Computer
Science. In the age of QIC, Gedanken-experiments turn into programs!

We shall take up some of these issues again in the concluding sections.

1.3 Outline of the Approach

We shall use category theory as the mathematical setting for our approach. This
should be no surprise. Category theory is the language of modern structural math-
ematics, and the fact that it is not more widely used in current foundational studies
is a regrettable consequence of the sociology of knowledge and the encumbrances
of tradition. Computer Science, once again, leads the way in the applications of
category theory; abstract ideas can be very practical!

We shall assume a modest familiarity with basic notions of category theory,
including symmetric monoidal categories. Apart from standard references such as
[MacLane, 1998], a number of introductions and tutorials specifically on the use of
monoidal categories in physics are now available [Abramsky and Tzevelekos, 2008;
Baez and Stay, 2008; Coecke and Paquette, 2008]. More advanced textbooks in
the area are [Kock, 2003; Street, 2007].
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We shall give an axiomatic presentation of quantum mechanics at the abstract
level of strongly compact closed categories with biproducts — of which the stan-
dard von Neumann presentation in terms of Hilbert spaces is but one example.
Remarkably enough, all the essential features of modern quantum protocols such as
quantum teleportation [Bennett et al., 1993], logic-gate teleportation [Gottesman
and Chuang, 1999], and entanglement swapping [Żukowski et al., 1993] —which
exploit quantum mechanical effects in an essential way— find natural counterparts
at this abstract level. More specifically:

• The basic structure of a symmetric monoidal category allows compound sys-
tems to be described in a resource-sensitive fashion (cf. the ‘no cloning’
[Dieks, 1982; Wootters and Zurek, 1982] and ‘no deleting’ [Pati and Braun-
stein, 2000] theorems of quantum mechanics).

• The compact closed structure allows preparations and measurements of en-
tangled states to be described, and their key properties to be proved.

• The strong compact closed structure brings in the central notions of adjoint,
unitarity and sesquilinear inner product —allowing an involution such as
complex conjugation to play a role— and it gives rise to a two-dimensional
generalization of Dirac’s bra-ket calculus [Dirac, 1947], in which the struc-
ture of compound systems is fully articulated, rather than merely implicitly
encoded by labelling of basis states.

• Biproducts allow probabilistic branching due to measurements, classical com-
munication and superpositions to be captured. Moreover, from the combi-
nation of the—apparently purely qualitative—structures of strong compact
closure and biproducts there emerge scalars and a Born rule.

We are then able to use this abstract setting to give precise formulations of quan-
tum teleportation, logic gate teleportation, and entanglement swapping, and to
prove correctness of these protocols — for example, proving correctness of telepor-
tation means showing that the final state of Bob’s qubit equals the initial state of
Alice’s qubit.

1.4 Development of the Ideas

A first step in the development of these ideas was taken in [Abramsky and Coecke,
2003], where it was recognized that compact-closed structure could be expressed in
terms of bipartite projectors in Hilbert space, thus in principle enabling the struc-
tural description of information flows in entangled quantum systems. In [Coecke,
2003] an extensive analysis of a range of quantum protocols was carried out con-
cretely, in terms of Hilbert spaces, with a highly suggestive but informal graphical
notation of information-flow paths through networks of projectors. The decisive
step in the development of the categorical approach was taken in [Abramsky and
Coecke, 2004], with [Abramsky and Coecke, 2005] as a supplement improving the
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definition of strongly compact closed category. The present article is essentially
an extended and revised version of [Abramsky and Coecke, 2004]. There have
been numerous subsequent developments in the programme of categorical quan-
tum mechanics since [Abramsky and Coecke, 2004]. We shall provide an overview
of the main developments in Section 7, but the underlying programme as set out
in [Abramsky and Coecke, 2004] still stands, and we hope that the present article
will serve as a useful record of this approach in its original conception.

1.5 Related Work

To set our approach in context, we compare and contrast it with some related
approaches.

Quantum Logic

Firstly, we discuss the relationship with quantum logic as traditionally conceived,
i.e. the study of lattices abstracted from the lattice of closed linear subspaces of
Hilbert space [Birkhoff and von Neumann, 1936].

We shall not emphasize the connections to logic in the present article, but in fact
our categorical axiomatics can be seen as the algebraic or semantic counterpart
to a logical type theory for quantum processes. This type theory has a resource-
sensitive character, in the same sense as Linear logic [Girard, 1987] — and this
is directly motivated by the no-cloning and no-deleting principles of quantum
information. The correspondence of our formalism to a logical system, in which
a notion of proof-net (a graphical representation of multiple-conclusion proofs)
gives a diagrammatics for morphisms in the free strongly compact closed category
with biproducts, and simplification of diagrams corresponds to cut-elimination, is
developed in detail in [Abramsky and Duncan, 2006].

This kind of connection with logic belongs to the proof-theory side of logic,
and more specifically to the Curry-Howard correspondence, and the three-way
connection between logic, computation and categories which has been a staple of
categorical logic, and of logical methods in computer science, for the past three
decades [Lambek and Scott, 1986; Abramsky and Tzevelekos, 2008].

The key point is that we are concerned with the direct mathematical represen-
tation of quantum processes. By contrast, traditional quantum logic is concerned
with quantum propositions, which express properties of quantum systems. There
are many other differences. For example, compound systems and the tensor prod-
uct are central to our approach, while quantum logic has struggled to accommodate
these key features of quantum mechanics in a mathematically satisfactory fash-
ion. However, connections between our approach and the traditional setting of
orthomodular posets and lattices have been made by John Harding [2007; 2008].
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Categories in Physics

There are by now several approaches to using category theory in physics. For
comparison, we mention the following:

• [Baez and Dolan, 1995; Crane, 2006]. Higher-dimensional categories, TQFT’s,
categorification, etc.

• [Isham and Butterfield, 1998; Doëring and Isham, 2007]. The topos-theoretic
approach.

Comparison with the topos approach The topos approach aims ambitiously
at providing a general framework for the formulation of physical theories. It is
still in an early stage of development. Nevertheless, we can make some clear
comparisons.

Our approach Topos approach
monoidal vs. cartesian
linear vs. intuitionistic
processes vs. propositions
geometry of proofs vs. geometric logic

Rather as in our comparison with quantum logic, the topos approach is primarily
concerned with quantum propositions, whereas we are concerned directly with the
representation of quantum processes. Our underlying logical setting is linear, theirs
is cartesian, supporting the intuitionistic logic of toposes. It is an interesting topic
for future work to relate, and perhaps even usefully combine, these approaches.

Comparison with the n-categories approach The n-categories approach is
mainly motivated by the quest for quantum gravity. In our approach, we emphasize
the following key features which are essentially absent from the n-categories work:

• operational aspects

• the interplay of quantum and classical

• compositionality

• open vs. closed systems.

These are important for applications to quantum informatics, but also of founda-
tional significance.

There are nevertheless some intriguing similarities and possible connections,
notably in the rôle played by Frobenius algebras, which we will mention briefly in
the context of our approach in Section 7.
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1.6 Outline of the Article

In Section 2, we shall give a rapid review of quantum mechanics and some quan-
tum protocols such as teleportation. In Sections 3, 4 and 5, we shall present the
main ingredients of the formalism: compact and strongly compact categories, and
biproducts. In Section 6, we shall show how quantum mechanics can be axioma-
tized in this setting, and how the formalism can be applied to the complete specifi-
cation and verification of a number of important quantum protocols. In Section 7
we shall review some of the main developments and advances made within the
categorical quantum mechanics programme since [Abramsky and Coecke, 2004],
thus giving a picture of the current state of the art.

2 REVIEW OF QUANTUM MECHANICS AND TELEPORTATION

In this paper, we shall only consider finitary quantum mechanics, in which all
Hilbert spaces are finite-dimensional. This is standard in most current discussions
of quantum computation and information [Nielsen and Chuang, 2000], and corre-
sponds physically to considering only observables with finite spectra, such as spin.
(We refer briefly to the extension of our approach to the infinite-dimensional case
in the Conclusion.)

Finitary quantum theory has the following basic ingredients (for more details,
consult standard texts such as [Isham, 1995]).

1. The state space of the system is represented as a finite-dimensional Hilbert
space H, i.e. a finite-dimensional complex vector space with a ‘sesquilinear’
inner-product written 〈φ | ψ〉, which is conjugate-linear in the first argument
and linear in the second. A state of a quantum system corresponds to a one-
dimensional subspace A of H, and is standardly represented by a vector
ψ ∈ A of unit norm.

2. For informatic purposes, the basic type is that of qubits, namely 2-dimensional
Hilbert space, equipped with a computational basis {|0〉, |1〉}.

3. Compound systems are described by tensor products of the component sys-
tems. It is here that the key phenomenon of entanglement arises, since the
general form of a vector in H1 ⊗H2 is

n∑
i=1

αi · φi ⊗ ψi

Such a vector may encode correlations between the first and second compo-
nents of the system, and cannot simply be resolved into a pair of vectors in
the component spaces.

The adjoint to a linear map f : H1 → H2 is the linear map f† : H2 → H1 such
that, for all φ ∈ H2 and ψ ∈ H1,

〈φ | f(ψ)〉H2 = 〈f†(φ) | ψ〉H1 .
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Unitary transformations are linear isomorphisms U : H1 → H2 such that

U−1= U† : H2 → H1 .

Note that all such transformations preserve the inner product since, for all φ, ψ ∈
H1,

〈U(φ) | U(ψ)〉H2 = 〈(U†U)(φ) | ψ〉H1 = 〈φ | ψ〉H1 .

Self-adjoint operators are linear transformations M : H → H such that M = M†.

4. The basic data transformations are represented by unitary transformations.
Note that all such data transformations are necessarily reversible.

5. The measurements which can be performed on the system are represented
by self-adjoint operators.

The act of measurement itself consists of two parts:

5a. The observer is informed about the measurement outcome, which is a value
xi in the spectrum σ(M) of the corresponding self-adjoint operator M . For
convenience we assume σ(M) to be non-degenerate (linearly independent
eigenvectors have distinct eigenvalues).

5b. The state of the system undergoes a change, represented by the action of the
projector Pi arising from the spectral decomposition

M = x1 · P1 + . . . + xn · Pn

In this spectral decomposition the projectors Pi : H → H are idempotent, self-
adjoint, and mutually orthogonal

Pi ◦ Pi = Pi Pi = P†
i Pi ◦ Pj = 0, i �= j.

This spectral decomposition always exists and is unique by the spectral theorem
for self-adjoint operators. By our assumption that σ(M) was non-degenerate each
projector Pi has a one-dimensional subspace of H as its fixpoint set (which equals
its image).

The probability of xi ∈ σ(M) being the actual outcome is given by the Born
rule which does not depend on the value of xi but on Pi and the system state ψ,
explicitly

Prob(Pi, ψ) = 〈ψ | Pi(ψ)〉 .
The status of the Born rule within our abstract setting will emerge in Section 8.
The derivable notions of mixed states and non-projective measurements will not
play a significant rôle in this paper.

The values x1, . . . , xn are in effect merely labels distinguishing the projectors
P1, . . . ,Pn in the above sum. Hence we can abstract over them and think of a
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measurement as a list of n mutually orthogonal projectors (P1, . . . ,Pn) where n
is the dimension of the Hilbert space.

Although real-life experiments in many cases destroy the system (e.g. any mea-
surement of a photon’s location destroys it) measurements always have the same
shape in the quantum formalism. When distinguishing between ‘measurements
which preserve the system’ and ‘measurements which destroy the system’ it would
make sense to decompose a measurement explicitly in two components:

• Observation consists of receiving the information on the outcome of the mea-
surement, to be thought of as specification of the index i of the outcome-
projector Pi in the above list. Measurements which destroy the system can
be seen as ‘observation only’.

• Preparation consists of producing the state Pi(ψ).

In our abstract setting these arise naturally as the two ‘building blocks’ which are
used to construct projectors and measurements.

We now discuss some important quantum protocols which we chose because of
the key rôle entanglement plays in them — they involve both initially entangled
states, and measurements against a basis of entangled states.

2.1 Quantum teleportation

The quantum teleportation protocol [Bennett et al., 1993] (see also [Coecke, 2003,
§2.3&§3.3]) involves three qubits a, b and c and two spatial regions A (for “Alice”)
and B (for “Bob”).

|00〉+|11〉

MBell

Ux
x ∈ B2

|φ〉

|φ〉

�

time

A B

a b c
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Qubit a is in a state |φ〉 and located in A. Qubits b and c form an ‘EPR-pair’,
that is, their joint state is |00〉+ |11〉. We assume that these qubits are initially in
B e.g. Bob created them. After spatial relocation so that a and b are located in A,
while c is positioned in B, or in other words, “Bob sends qubit b to Alice”, we can
start the actual teleportation of qubit a. Alice performs a Bell-base measurement
on a and b at A, that is, a measurement such that each Pi projects on one of the
one-dimensional subspaces spanned by a vector in the Bell basis:

b1 :=
|00〉+|11〉√

2
b2 :=

|01〉+|10〉√
2

b3 :=
|00〉−|11〉√

2
b4 :=

|01〉−|10〉√
2

.

This measurement can be of the type ‘observation only’. Alice observes the out-
come of the measurement and “sends these two classical bits (x ∈ B2) to Bob”.
Depending on which classical bits he receives Bob then performs one of the unitary
transformations

β1 :=
(

1 0
0 1

)
β2 :=

(
0 1
1 0

)
β3 :=

(
1 0
0 −1

)
β4 :=

(
0 −1
1 0

)
on c — β1, β2, β3 are all self-inverse while β−1

4 = −β4. The final state of c proves
to be |φ〉 as well. (Because of the measurement, a no longer has this state —
the information in the source has been ‘destroyed’ in transferring it to the tar-
get). Note that the state of a constitutes continuous data —an arbitrary pair
of complex numbers (α, β) satisfying |α|2 + |β|2 = 1— while the actual physical
data transmission only involved two classical bits. We will be able to derive this
fact in our abstract setting. Teleportation is simply the most basic of a family
of quantum protocols, and already illustrates the basic ideas, in particular the
use of preparations of entangled states as carriers for information flow, perform-
ing measurements to propagate information, using classical information to control
branching behaviour to ensure the required behaviour despite quantum indetermi-
nacy, and performing local data transformations using unitary operations. (Local
here means that we apply these operations only at A or at B, which are assumed
to be spatially separated, and not simultaneously at both).

Since in quantum teleportation a continuous variable has been transmitted while
the actual classical communication involved only two bits, besides this classical
information flow there has to exist some kind of quantum information flow. The
nature of this quantum flow has been analyzed by one of the authors in [Coecke,
2003; Coecke, 2004], building on the joint work in [Abramsky and Coecke, 2003].
We recover those results in our abstract setting (see Subsection 3.5), which also
reveals additional ‘fine structure’. To identify it we have to separate it from the
classical information flow. Therefore we decompose the protocol into:

1. a tree with the operations as nodes, and with branching caused by the inde-
terminism of measurements;

2. a network of the operations in terms of the order they are applied and the
subsystem to which they apply.
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|00〉+|11〉

MBell

U00 U01 U10 U11

00 01 10 11

...

...

...

a b c

The nodes in the tree are connected to the boxes in the network by their temporal
coincidence. Classical communication is encoded in the tree as the dependency of
operations on the branch they are in. For each path from the root of the tree to a
leaf, by ‘filling in the operations on the included nodes in the corresponding boxes
of the network’, we obtain an entanglement network, that is, a network

|00〉+|11〉

Px

Ux

a b c

�
time

for each of the four values x takes. A component Px of an observation will be
referred to as an observational branch. It will be these networks, from which we
have removed the classical information flow, that we will study in Subsection 3.5.
(There is a clear analogy with the idea of unfolding a Petri net into its set of
‘processes’ [Petri, 1977]). The classical information flow will be reintroduced in
Section 5.

2.2 Logic gate teleportation

Logic gate teleportation [Gottesman and Chuang, 1999] (see also [Coecke, 2003]§3.3)
generalizes the above protocol in that b and c are initially not necessarily an EPR-
pair but may be in some other (not arbitrary) entangled state |Ψ〉. Due to this
modification the final state of c is not |φ〉 but |fΨ(φ)〉 where fΨ is a linear map
which depends on Ψ. As shown in [Gottesman and Chuang, 1999], when this
construction is applied to the situation where a, b and c are each a pair of qubits
rather than a single qubit, it provides a universal quantum computational primi-
tive which is moreover fault-tolerant [Shor, 1996] and enables the construction of
a quantum computer based on single qubit unitary operations, Bell-base measure-
ments and only one kind of prepared state (so-called GHZ states). The connection
between Ψ, fΨ and the unitary corrections UΨ,x will emerge straightforwardly in
our abstract setting.
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2.3 Entanglement swapping

Entanglement swapping [Żukowski et al., 1993] (see also [Coecke, 2003]§6.2) is
another modification of the teleportation protocol where a is not in a state |φ〉 but
is a qubit in an EPR-pair together with an ancillary qubit d. The result is that
after the protocol c forms an EPR-pair with d. If the measurement on a and b is
non-destructive, we can also perform a unitary operation on a, resulting in a and
b also constituting an EPR-pair. Hence we have ‘swapped’ entanglement:

|00〉+|11〉

|00〉+|11〉

|00〉+|11〉 |00〉+|11〉�

b

a d

c b

a d

c

In this case the entanglement networks have the shape:

|00〉+|11〉 |00〉+|11〉

Px

Ux’ Ux

d a b c

�
time

Why this protocol works will again emerge straightforwardly from our abstract set-
ting, as will generalizations of this protocol which have a much more sophisticated
compositional content (see Subsection 3.5).

3 COMPACT CLOSED CATEGORIES AND THE LOGIC OF
ENTANGLEMENT

3.1 Monoidal Categories

Recall that a symmetric monoidal category consists of a category C, a bifunctorial
tensor

−⊗− : C × C → C ,

a unit object I, and natural isomorphisms

λA : A + I ⊗A ρA : A + A⊗ I

αA,B,C : A⊗ (B ⊗ C) + (A⊗B) ⊗ C

σA,B : A⊗B + B ⊗A

which satisfy certain coherence conditions [MacLane, 1998].
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Examples The following two examples are of particular importance and will
recur through this section.

1. The category FdVecK, of finite-dimensional vector spaces over a field K and
linear maps. The tensor product is the usual construction on vector spaces.
The unit of the tensor is K, considered as a one-dimensional vector space
over itself.

2. The category Rel of sets and relations, with cartesian product as the ‘tensor’,
and a one-element set as the unit. Note that cartesian product is not the
categorical product in Rel.

The Logic of Tensor Product Tensor can express independent or concurrent
actions (mathematically: bifunctoriality):

A1 ⊗A2
f1 ⊗ 1� B1 ⊗A2

A1 ⊗B2

1 ⊗ f2

�

f1 ⊗ 1
� B1 ⊗B2

1 ⊗ f2

�

But tensor is not a categorical product, in the sense that we cannot reconstruct
an ‘element’ of the tensor from its components.

This turns out to comprise the absence of diagonals and projections:

A
Δ−→ A⊗A A1 ⊗A2

πi−→ Ai

Cf. A � A ∧A A1 ∧A2 � Ai

Hence monoidal categories provide a setting for resource-sensitive logics such as
Linear Logic [Girard, 1987]. No-Cloning and No-Deleting are built in! Any sym-
metric monoidal category can be viewed as a setting for describing processes in a
resource sensitive way, closed under sequential and parallel composition

3.2 The ‘miracle’ of scalars

A key step in the development of the categorical axiomatics for Quantum Mechan-
ics was the recognition that the notion of scalar is meaningful in great generality
— in fact, in any monoidal (not necessarily symmetric) category.

Let (C,⊗, I, λ, α, σ) be a monoidal category . We define a scalar in C to be a
morphism s : I → I, i.e. an endomorphism of the tensor unit.

EXAMPLE 1. In FdVecK, linear maps K → K are uniquely determined by the
image of 1, and hence correspond biuniquely to elements of K ; composition corre-
sponds to multiplication of scalars. In Rel, there are just two scalars, correspond-
ing to the Boolean values 0, 1.
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The (multiplicative) monoid of scalars is then just the endomorphism monoid
C(I, I). The first key point is the elementary but beautiful observation by Kelly
and Laplaza [Kelly and Laplaza, 1980] that this monoid is always commutative.

LEMMA 2. C(I, I) is a commutative monoid

Proof:

I
ρI � I ⊗ I ====== I ⊗ I

λ−1
I � I

I

s

�

ρI � I ⊗ I

s⊗ 1

�

s⊗ t� I ⊗ I

1 ⊗ t

� λ−1
I � I

t

�

I

t

�

λI

� I ⊗ I

1 ⊗ t

�
====== I ⊗ I

s⊗ 1

�

ρ−1
I

� I

s

�

using the coherence equation λI = ρI. �

The second point is that a good notion of scalar multiplication exists at this
level of generality. That is, each scalar s : I → I induces a natural transformation

sA : A
+� I ⊗A

s⊗ 1A� I ⊗A
+� A .

with the naturality square

A
sA � A

B

f

�

sB

� B

f

�

We write s • f for f ◦ sA = sB ◦ f . Note that

1 • f = f
s • (t • f) = (s ◦ t) • f
(s • g) ◦ (t • f) = (s ◦ t) • (g ◦ f)
(s • f) ⊗ (t • g) = (s ◦ t) • (f ⊗ g)

which exactly generalizes the multiplicative part of the usual properties of scalar
multiplication. Thus scalars act globally on the whole category.
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3.3 Compact Closure

A category C is ∗-autonomous [Barr, 1979] if it is symmetric monoidal, and comes
equipped with a full and faithful functor

( )∗ : Cop → C

such that a bijection

C(A⊗B,C∗) + C(A, (B ⊗ C)∗)

exists which is natural in all variables. Hence a ∗-autonomous category is closed,
with

A � B := (A⊗B∗)∗ .

These ∗-autonomous categories provide a categorical semantics for the multiplica-
tive fragment of linear logic [Seely, 1989].

A compact closed category [Kelly, 1972] is a ∗-autonomous category with a self-
dual tensor, i.e. with natural isomorphisms

uA,B : (A⊗B)∗ + A∗ ⊗B∗ uI : I∗ + I .

It follows that
A � B + A∗ ⊗B .

A very different definition arises when one considers a symmetric monoidal cat-
egory as a one-object bicategory. In this context, compact closure simply means
that every object A, qua 1-cell of the bicategory, has a specified adjoint [Kelly and
Laplaza, 1980].

DEFINITION 3 Kelly-Laplaza. A compact closed category is a symmetric monoidal
category in which to each object A a dual object A∗, a unit

ηA : I → A∗ ⊗A

and a counit
εA : A⊗A∗ → I

are assigned, in such a way that the diagram

A
ρA� A⊗ I

1A ⊗ ηA� A⊗ (A∗ ⊗A)

A

1A

�
�

λ−1
A

I ⊗A �
εA ⊗ 1A

(A⊗A∗) ⊗A

αA,A∗,A

�

and the dual one for A∗ both commute.
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Examples The symmetric monoidal categories (Rel,×) of sets, relations and
cartesian product and (FdVecK,⊗) of finite-dimensional vector spaces over a field
K, linear maps and tensor product are both compact closed. In (Rel,×), we
simply set X∗ = X. Taking a one-point set {∗} as the unit for ×, and writing R∪

for the converse of a relation R:

ηX = ε∪X = {(∗, (x, x)) | x ∈ X} .

For (FdVecK,⊗), we take V ∗ to be the dual space of linear functionals on V . The
unit and counit in (FdVecK,⊗) are

ηV : K → V ∗⊗V :: 1 �→
i=n∑
i=1

ēi⊗ei and εV : V ⊗V ∗ → K :: ei⊗ ēj �→ ēj(ei)

where n is the dimension of V , {ei}i=n
i=1 is a basis of V and ēi is the linear functional

in V ∗ determined by ēj(ei) = δij .

DEFINITION 4. The name �f� and the coname �f� of a morphism f : A → B
in a compact closed category are

A∗⊗A
1A∗⊗f� A∗⊗B I

I

ηA

�

�f
�

�

A⊗B∗
f⊗1B∗

�

�f�
�

B⊗B∗

εB

�

For R ∈ Rel(X,Y ) we have

�R� = {(∗, (x, y)) | xRy, x ∈ X, y ∈ Y } and �R� = {((x, y), ∗) | xRy, x ∈ X, y ∈ Y }

and for f ∈ FdVecK(V,W ) with (mij) the matrix of f in bases {eV
i }i=n

i=1 and
{eW

j }j=m
j=1 of V and W respectively

�f� : K → V ∗ ⊗W :: 1 �→
i,j=n,m∑

i,j=1

mij · ēV
i ⊗ eW

j

and

�f� : V ⊗W ∗ → K :: eV
i ⊗ ēW

j �→ mij .

Given f : A → B in any compact closed category C we can define f∗ : B∗ → A∗
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as

B∗ λB∗� I ⊗B∗ ηA ⊗ 1B∗� A∗ ⊗A⊗B∗

A∗

f∗

�
�

ρ−1
A∗

A∗ ⊗ I �
1A∗ ⊗ εB

A∗ ⊗B ⊗B∗

1A∗⊗ f ⊗ 1B∗

�

This operation ( )∗ is functorial and makes Definition 3 coincide with the one given
at the beginning of this section. It then follows by

C(A⊗B∗, I) + C(A,B) + C(I,A∗ ⊗B)

that every morphism of type I→A∗⊗ B is the name of some morphism of type
A → B and every morphism of type A⊗B∗→ I is the coname of some morphism
of type A → B. In the case of the unit and the counit we have

ηA = �1A� and εA = �1A� .

For R ∈ Rel(X,Y ) the dual is the converse, R∗ = R∪ ∈ Rel(Y,X), and for
f ∈ FdVecK(V,W ), the dual is

f∗ : W ∗ → V ∗ :: φ �→ φ ◦ f .

The following holds by general properties of adjoints and symmetry of the tensor
[Kelly and Laplaza, 1980]§6.

PROPOSITION 5. In a compact closed category C there is a natural isomorphism
dA : A∗∗ + A and the diagrams

A∗ ⊗A
σA∗,A� A⊗A∗ I

ηA∗� A∗∗ ⊗A∗

A∗ ⊗A∗∗

1A∗ ⊗ d−1
A

�

εA∗
� I

εA

�
A∗ ⊗A

ηA

�

σA∗,A

� A⊗A∗

dA ⊗ 1A∗

�

commute for all objects A of C.

Graphical representation. Complex algebraic expressions for morphisms in
symmetric monoidal categories can rapidly become hard to read. Graphical repre-
sentations exploit two-dimensionality, with the vertical dimension corresponding
to composition and the horizontal to the monoidal tensor, and provide more intu-
itive presentations of morphisms. We depict objects by wires, morphisms by boxes
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with input and output wires, composition by connecting outputs to inputs, and
the monoidal tensor by locating boxes side-by-side. We distinguish between an
object and its dual in terms of directions of the wires. In particular, g ◦ f , f ⊗ g,
�f� and �f� will respectively be depicted by

f

g f
f g

f

Implicit in the use of this graphical notation is that we assume we are working in
a strict monoidal category, in which the unit and associativity isomorphisms are
identities. We can always do this because of the coherence theorem for monoidal
categories [MacLane, 1998]. Similarly, strictness is assumed for the duality in
compact closed categories:

A∗∗ = A, (A⊗B)∗ = A∗ ⊗B∗, I∗ = I .

Pointers to references on diagrammatic representations and corresponding calculi
are in Section 7.8.

3.4 Key lemmas

The following Lemmas constitute the core of our interpretation of entanglement in
compact closed categories. It was however observed by Radha Jagadeesan [2004]
that they can be shown in arbitrary ∗-autonomous categories using some of the
results in [Cockett and Seely, 1997].

LEMMA 6 absorption. For A
f� B

g� C we have that

(1A∗⊗ g) ◦ �f� = �g ◦ f�.

Proof: Straightforward by Definition 4. �

In a picture,

=
gg ffoof

g

LEMMA 7 Compositionality. For A
f� B

g� C we have that

λ−1
C ◦ (�f� ⊗ 1C) ◦ (1A ⊗ �g�) ◦ ρA = g ◦ f .
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Proof:

A
g ◦ f � C

Lemma 7

A ⊗ I
1A ⊗ �g��

ρ
A

�

A ⊗ B∗⊗ C
�f� ⊗ 1C � I ⊗ C

λ
−1

C

�

A ⊗ B∗⊗ B

1A
⊗B

∗⊗
g

�1
A ⊗

η
B �

B ⊗ B∗⊗ C

εB
⊗ 1C

�f ⊗
1
B ∗⊗

C �

B ⊗ I

f ⊗ 1I

�

1B ⊗ ηB

� B ⊗ B∗ ⊗ B
εB ⊗ 1B

�
1B

∗⊗B
⊗ g�f ⊗

1
B ∗⊗

B �

I ⊗ B

1I ⊗ g

�

Compact closedness

B

f

�

1B

�

ρB

�

B

g

�

λ −
1B

�

The top trapezoid is the statement of the Lemma. The diagram uses bifunctorial-
ity and naturality of ρ and λ. �

In a picture,

f

g
=

g

f

LEMMA 8 Compositional CUT. For A
f� B

g� C
h� D we have that

(ρ−1
A ⊗ 1D∗) ◦ (1A∗⊗ �g� ⊗1D) ◦ (�f� ⊗ �h�) ◦ ρI = �h ◦ g ◦ f�.

Proof:
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I
�h ◦ g ◦ f� � A∗⊗D

Lemma 8

I ⊗ I
�f�⊗�h��

ρ
I

�

A∗⊗B⊗C∗⊗D
1A∗⊗�g�⊗1D� A∗⊗I⊗D

ρ
−1

A

⊗1D
∗

1A
⊗λ

−1

D
∗

�

Lemma 7

A∗⊗A ⊗I

ηA⊗1I

�
1A∗⊗f⊗1I� A∗⊗B⊗I

1A∗⊗�h�
�

� ρA∗⊗B

�f�⊗1
I

�
A∗⊗B

1 A
∗⊗

(h
◦g

)
�

A∗⊗A

ηA

�

1A∗⊗A

�
ρA

∗⊗A

�

A∗⊗A

1A∗⊗(h◦g◦f)

�

�

1
A ∗⊗

f

The top trapezoid is the statement of the Lemma. The diagram uses Lemma 7
and naturality of ρ and λ. �

In a picture,

=
gg ffoo oohhf

g

h

Discussion. On the right hand side of Lemma 7 we have g ◦ f , that is, we first
apply f and then g, while on the left hand side we first apply the coname of g, and
then the coname of f . In Lemma 8 there is a similar, seemingly ‘acausal’ inversion
of the order of application, as g gets inserted between h and f .

For completeness we add the following ‘backward’ absorption lemma, which
again involves a reversal of the composition order.

LEMMA 9 backward absorption. For C
g� A

f� B we have that

(g∗ ⊗ 1A∗) ◦ �f� = �f ◦ g�.

Proof: This follows by unfolding the definition of g∗, then using naturality of
λA∗ , λI = ρI, and finally Lemma 8. �

In a picture,
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=
ggff oof

g**

The obvious analogues of Lemma 6 and 9 for conames also hold.

3.5 Quantum information flow in entanglement networks

We claim that Lemmas 6, 7 and 8 capture the quantum information flow in the
(logic-gate) teleportation and entanglement swapping protocols. We shall provide
a full interpretation of finitary quantum mechanics in Section 6 but for now the
following rule suffices:

• We interpret preparation of an entangled state as a name and an observa-
tional branch as a coname.

For an entanglement network of teleportation-type shape, applying Lemma 7 yields

U ◦
(
λ−1

C ◦ (�f� ⊗ 1)
)
◦ ((1 ⊗ �g�) ◦ ρA) = U ◦ g ◦ f .

In a picture,

f

g
=

g

f

U U

We make the information flow more explicit in the following version of the same
picture:

f

g
=

U U

g

f
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Note that the quantum information seems to flow ‘following the line’ while being
acted on by the functions whose name or coname labels the boxes (and this fact
remains valid for much more complex networks [Coecke, 2003]).

Teleporting the input requires U ◦ g ◦ f = 1A — we assume all functions have
type A → A. Logic-gate teleportation of h : A → B requires U ◦ g ◦ f = h.

We calculate this explicitly in Rel. For initial state x ∈ X after preparing
�S� ⊆ {∗} × (Y × Z) we obtain {x} × {(y, z) | ∗ �S�(y, z)} as the state of the
system. For observational branch �R� ⊆ (X × Y )×{∗} we have that z ∈ Z is the
output iff �R�× 1Z receives an input (x, y, z) ∈ X × Y ×Z such that (x, y)�R� ∗ .
Since

∗ �S�(y, z) ⇔ ySz and (x, y)�R� ∗ ⇔ xRy

we indeed obtain x(R;S)z. This illustrates that the compositionality is due to a
mechanism of imposing constraints between the components of the tuples.

In FdVecC the vector space of all linear maps of type V → W is V � W and
hence by V ∗ ⊗W + V � W we have a bijective correspondence between linear
maps f : V → W and vectors Ψ ∈ V ∗⊗W (see also [Coecke, 2003; Coecke, 2004]):

Ψf =
1√
2
· �f�(1) and �f� = 〈

√
2 · Ψf |−〉 .

In particular we have for the Bell base:

bi =
1√
2
· �βi�(1) and �βi� = 〈

√
2 · bi|−〉 .

Setting g := β1 = 1V , f := βi and U := β−1
i indeed yields β−1

i ◦ 1A ◦ βi = 1A,
which expresses the correctness of the teleportation protocol along each branch.

Setting g := h and f := βi for logic-gate teleportation requires Ui to satisfy
Ui ◦ h ◦ βi = h that is h ◦ βi = U† ◦ h (since U has to be unitary). Hence we have
derived the laws of logic-gate teleportation — one should compare this calculation
to the size of the calculation in Hilbert space.

Deriving the swapping protocol using Lemma 6 and Lemma 8 proceeds analo-
gously to the derivation of the teleportation protocol.

=β

11

γii

ii

γii
-1-1

ii
-1-1β

1

1

– the two triangles within the dashed line stand for �γi� ◦ �βi�. We obtain two
distinct flows due to the fact that a non-destructive measurement is involved.
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=

γii
-1-1

ii
-1-1β

βii

γii

How γi has to relate to βi such that they make up a true projector will be discussed
in Section 6.

For a general entanglement network of the swapping-type (without unitary cor-
rection and observational branching) by Lemma 8 we obtain the following ‘reduc-
tion’:

gg ffoo oohhf

g

h

rewriterewrite

This picture, and the underlying algebraic property expressed by Lemma 3.5, is
in fact directly related to Cut-Elimination in the logic corresponding to compact-
closed categories. If one turns the above picture upside-down, and interprets names
as Axiom-links and conames as Cut-links, then one has a normalization rule for
proof-nets. This perspective is developed in [Abramsky and Duncan, 2006].

4 STRONGLY COMPACT CLOSED CATEGORIES AND 2-DIMENSIONAL
DIRAC NOTATION

The key example In Section 3 we analysed the compact closed structure of
FdVecK, where we took the dual of a vector space V to be the vector space of its
linear functionals V ∗. In the case that V is equipped with an inner product we
can refine this analysis. We discuss this for the key example of finite-dimensional
Hilbert spaces, i.e. finite-dimensional complex vector spaces with a sesquilinear
inner product: the inner product is linear in the second argument, and

〈φ | ψ〉 = 〈ψ | φ〉

which implies that it is conjugate-linear rather than linear in its first argument.
We organize these spaces into a category FdHilb, where the morphisms are

linear maps. Note that we do not require morphisms to preserve the inner product.
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This category provides the basic setting for finite-dimensional quantum mechan-
ics and for quantum information and computation.1

In the setting of Hilbert spaces, we can replace the dual space by a more el-
ementary construction. In a Hilbert space, each linear functional ψ̄ : H → C is
witnessed by some ψ ∈ H such that ψ̄ = 〈ψ | · 〉. This however does not induce
an isomorphism between H and H∗, due to the conjugate-linearity of the inner
product in its first argument. This leads us to introduce the conjugate space H̄
of a Hilbert space H: this has the same additive group of vectors as H, while the
scalar multiplication and inner product are “twisted” by complex conjugation:

α •H̄ φ := ᾱ •H φ 〈φ | ψ〉H̄ := 〈ψ | φ〉H

We can define H∗ = H̄, since H and H̄ have the same orthornormal bases, and we
can define the counit by

εH : H⊗ H̄ → C :: φ⊗ ψ �→ 〈ψ | φ〉H

which is indeed (bi)linear rather than sesquilinear! Note that

¯̄H = H, A⊗B = Ā⊗ B̄ .

4.1 Why compact closure does not suffice

Note that the categories FdHilb and FdVecC are equivalent! This immediately
suggests that some additional categorical structure must be identified to reflect
the rôle of the inner product.

A further reason for seeking additional categorical structure is to reflect the
centrally important notion of adjoint in Hilbert spaces:

A
f� B

A �f
†

B
〈fφ | ψ〉B = 〈φ | f†ψ〉A

This is not the same as the dual — the types are different! In “degenerate” CCC’s
in which A∗ = A, e.g. Rel or real inner-product spaces, we have f∗ = f†. In
Hilbert spaces, the isomorphism A + A∗ is not linear, but conjugate linear :

〈λ • φ | −〉 = λ̄ • 〈φ | −〉

and hence does not live in the category Hilb at all!

1Much of quantum information is concerned with completely positive maps acting on density
matrices. An account of this extended setting in terms of a general categorical construction
within our framework is discussed in Section 7.
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4.2 Solution: Strong Compact Closure

A key observation is this: the assignment H �→ H∗ on objects has a covariant
functorial extension f �→ f∗, which is essentially identity on morphisms; and then
we can define

f† = (f∗)∗ = (f∗)∗.

Concretely, in terms of matrices ()∗ is transpose, ()∗ is complex conjugation, and
the adjoint is the conjugate transpose. Each of these three operations can be
expressed in terms of the other two. For example, f∗ = (f†)∗. All three of these
operations are important in articulating the foundational structure of quantum
mechanics. All three can be presented at the abstract level as functors, as we shall
now show.

4.3 Axiomatization of Strong Compact Closure

We shall adopt the most concise and elegant axiomatization of strongly compact
closed categories, which takes the adjoint as primitive, following [Abramsky and
Coecke, 2005].

It is convenient to build the definition up in several stages, as in [Selinger, 2007].

DEFINITION 10. A dagger category is a category C equipped with an identity-
on-objects, contravariant, strictly involutive functor f �→ f†:

1† = 1, (g ◦ f)† = f† ◦ g†, f†† = f .

We define an arrow f : A → B in a dagger category to be unitary if it is an
isomorphism such that f−1 = f†. An endomorphism f : A → A is self-adjoint if
f = f†.

DEFINITION 11. A dagger symmetric monoidal category (C,⊗, I, λ, ρ, α, σ, †)
combines dagger and symmetric monoidal structure, with the requirement that
the natural isomorphisms λ, ρ, α, σ are componentwise unitary, and moreover
that † is a strong monoidal functor:

(f ⊗ g)† = f† ⊗ g† .

Finally we come to the main definition.

DEFINITION 12. A strongly compact closed category is a dagger symmetric monoidal
category which is compact closed, and such that the following diagram commutes:

I
ηA� A∗ ⊗A

A⊗A∗

σA∗,A

�

ε †
A

�
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This implies that the counit is definable from the unit and the adjoint:

εA = η†A ◦ σA,A∗

and similarly the unit can be defined from the counit and the adjoint. Further-
more, it is in fact possible to replace the two commuting diagrams required in the
definition of compact closure by one. We refer to [Abramsky and Coecke, 2005]
for the details.

DEFINITION 13. In any strongly compact closed category C, we can define a
covariant monoidal functor

A �→ A∗, f : A → B �→ f∗ = (f†)∗ : A∗ → B∗ .

Examples Our central example is of course FdHilb. Any compact closed cat-
egory such as Rel, in which ( )∗ is the identity on objects, is trivially strongly
compact closed (we just take f† = f∗). Note that in this case f∗ = f∗∗ = f . Thus
in Rel the adjoint is relational converse. The category of finite-dimensional real
inner product spaces and linear maps, with A = A∗, offers another example of this
situation. A construction of free strongly compact closed categories over dagger
categories is given in [Abramsky, 2005].

Scalars Self-adjoint scalars s = s† in strongly compact closed categories are of
special interest. In the case of FdHilb, these are the positive reals R+. The
passage from s to ss†, which is self-adjoint, will track the passage in quantum
mechanics from amplitudes to probabilities.

4.4 Inner Products and Dirac Notation

With the adjoint available, it is straightforward to interpret Dirac notation — the
indispensable everyday notation of quantum mechanics and quantum information.
A ket is simply an arrow ψ : I → A, which we can write as |ψ〉 for emphasis. We
think of kets as states, of a given type of system A. The corresponding bra will
then be ψ† : A → I, which we can think of as a costate.

Example In FdHilb, a linear map f : C → H can be identified with the vector
f(1) = ψ ∈ H: by linearity, all other values of f are determined by ψ. Even better,
we can identify f with its image, which is the ray or one-dimensional subspace of
H spanned by ψ — the proper notion of (pure) state of a quantum system.

DEFINITION 14. Given ψ, φ : I → A we define their abstract inner product 〈ψ | φ〉
as

ψ† ◦ φ : I −→ I .



Categorical Quantum Mechanics 287

Note that this is a scalar, as it should be. In FdHilb, this definition coincides
with the usual inner product. In Rel, for x, y ⊆ {∗} ×X:

〈x | y〉 = 1I, x ∩ y �= ∅ and 〈x | y〉 = 0I, x ∩ y = ∅.

We now show that two of the basic properties of adjoints in FdHilb hold in
generality in the abstract setting.

PROPOSITION 15. For ψ : I → A, φ : I → B and f : B → A we have

〈f† ◦ ψ | φ〉B = 〈ψ | f ◦ φ〉A .

Proof: 〈f†◦ ψ | φ〉 = (f†◦ ψ)†◦ φ = ψ†◦ f ◦ φ = 〈ψ | f ◦ φ〉. �
PROPOSITION 16. Unitary morphisms U : A → B preserve the inner product,
that is for all ψ, φ : I → A we have

〈U ◦ ψ | U ◦ φ〉B = 〈ψ | φ〉A .

Proof: By Proposition 15, 〈U ◦ ψ | U ◦ φ〉B = 〈U†◦ U ◦ ψ | φ〉A = 〈ψ | φ〉A. �
Finally, we show how the inner product can be defined in terms of the ‘complex

conjugate’ functor ()∗.

PROPOSITION 17. For ψ, φ : I → A we have:

〈ψ | φ〉A = I
ρI � I ⊗ I

1I⊗uI� I ⊗ I∗
φ⊗ψ∗� A⊗A∗ εA � I.

Proof: Since uI = ρ−1
I∗ ◦ ηI by naturality of ρ we have

ηI = ρI∗ ◦ ρ−1
I∗ ◦ ηI = ρI∗ ◦ uI = (uI ⊗ 1I) ◦ ρI

where we use ρ−1 = ρ† and similarly we obtain εI = ρ†I ◦ (1I ⊗ u†
I ). Hence by

1I = u†
I ◦ uI and the analogues to Lemmas 6 and 9 for the counit we obtain

ψ† ◦ φ = ρ†I ◦ ((ψ† ◦ φ) ⊗ 1I) ◦ ρI = εI ◦ (ψ† ⊗ 1I∗) ◦ (φ⊗ 1I∗) ◦ ε†I
= �ψ†� ◦ (φ⊗ 1I∗) ◦ ε†I
= εI ◦ (1I ⊗ ψ∗) ◦ (φ⊗ 1I∗) ◦ ε†I

which is equal to εI ◦ (φ⊗ ψ∗) ◦ (1I ⊗ uI) ◦ ρI. �

4.5 Dissection of the bipartite projector

Projectors are a basic building block in the von Neumann-style foundations of
quantum mechanics, and in standard approaches to quantum logic. It is a notable
feature of our approach that we are able, at the abstract level of strongly compact
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closed categories, to delineate a fine-structure of bipartite projectors, which can
be applied directly to the analysis of information flow in quantum protocols.

We define a projector on an object A in a strongly compact closed category to
be an arrow P : A → A which is idempotent and self-adjoint:

P2 = P, P = P† .

PROPOSITION 18. Suppose we have a state ψ : I → A which is normalized,
meaning 〈ψ | ψ〉 = 1I. Then the ‘ket-bra’ |ψ〉〈ψ| = ψ ◦ ψ† : A → A is a projector.

Proof: Self-adjointness is clear. For idempotence:

ψ ◦ ψ† ◦ ψ ◦ ψ† = 〈ψ | ψ〉 • ψ ◦ ψ† = ψ ◦ ψ† .

�

We now want to apply this idea in a more refined form to a state ψ : I → A∗ ⊗B
of a compound system. Note that, by Map-State duality:

C(I, A∗ ⊗B) ≡ C(A,B)

any such state ψ corresponds biuniquely to the name of a map f : A → B, i.e.
ψ = �f�. This arrow witnesses an information flow from A to B, and we will use
this to expose the information flow inherent in the corresponding projector.

Explicitly, we define

Pf := �f� ◦ (�f�)† = �f� ◦ �f∗� : A∗ ⊗B → A∗ ⊗B ,

that is, we have an assignment

P : C(I, A∗ ⊗B) −→ C(A∗ ⊗B,A∗ ⊗B) :: Ψ �→ Ψ ◦ Ψ†

from bipartite elements to bipartite projectors. Note that the strong compact
closed structure is essential in order to define Pf as an endomorphism.

We can normalize these projectors Pf by considering sf • Pf for sf := (�f∗� ◦
�f�)−1 (provided this inverse exists in C(I, I)), yielding

(sf • Pf ) ◦ (sf • Pf ) = sf • (�f� ◦ (sf • (�f∗� ◦ �f�)) ◦ �f∗�) = sf • Pf ,

and also

(sf • Pf ) ◦ �f� = �f� and �f∗� ◦ (sf • Pf ) = �f∗� .

A picture corresponding to this decomposed bipartite projector is:
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f

f †

4.6 Trace

Another essential mathematical instrument in quantum mechanics is the trace of
a linear map. In quantum information, extensive use is made of the more general
notion of partial trace, which is used to trace out a subsystem of a compound
system.

A general categorical axiomatization of the notion of partial trace has been
given by Joyal, Street and Verity [Joyal, Street and Verity, 1996]. A trace in a
symmetric monoidal category C is a family of functions

TrUA,B : C(A⊗ U,B ⊗ U) −→ C(A,B)

for objects A, B, U of C, satisfying a number of axioms, for which we refer
to [Joyal, Street and Verity, 1996]. This specializes to yield the total trace for
endomorphisms by taking A = B = I. In this case, Tr(f) = TrUI,I(f) : I → I
is a scalar. Expected properties such as the invariance of the trace under cyclic
permutations

Tr(g ◦ f) = Tr(f ◦ g)

follow from the general axioms.
Any compact closed category carries a canonical (in fact, a unique) trace. The

definition can be given slightly more elegantly in the strongly compact closed case.
For an endomorphism f : A → A, the total trace is defined by

Tr(f) = εA ◦ (f ⊗ 1A∗) ◦ ε†A .

More generally, if f : A⊗ C → B ⊗ C, TrCA,B(f) : A → B is defined to be:

A
ρA� A⊗I

1⊗ε†C� A⊗C⊗C∗ f⊗1C∗� B⊗C⊗C∗ 1⊗εC� B⊗I
ρ−1

B � B .

These definitions give rise to the standard notions of trace and partial trace in
FdHilb.
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5 BIPRODUCTS, BRANCHING AND MEASUREMENTS

As we have seen, many of the basic ingredients of quantum mechanics are present
in strongly compact closed categories. What is lacking is the ability to express the
probabilistic branching arising from measurements, and the information flows from
quantum to classical and back. We shall find this final piece of expressive power
in a rather standard piece of additional categorical structure, namely biproducts.

5.1 Biproducts

Biproducts have been studied as part of the structure of Abelian categories. For
further details, and proofs of the general results we shall cite in this sub-section,
see e.g. [Mitchell, 1965; MacLane, 1998].

Recall that a zero object in a category is one which is both initial and terminal.
If 0 is a zero object, there is an arrow

0A,B : A � 0 � B

between any pair of objects A and B. Let C be a category with a zero object and
binary products and coproducts. Any arrow

A1

∐
A2

f� A1

∏
A2

with injections qi : Ai → A1

∐
A2 and projections pj : A1

∏
A2 → Aj can be

written uniquely as a matrix (
f11 f21

f12 f22

)
where fij := pj ◦ f ◦ qi : Ai → Aj . If the arrow(

1 0
0 1

)
is an isomorphism for all A1, A2, then we say that C has biproducts, and write
A⊕B for the biproduct of A and B.

PROPOSITION 19 Semi-additivity. If C has biproducts, then we can define an
operation of addition on each hom-set C(A,B) by

A
f + g� B

A⊕A

Δ

�

f ⊕ g
� B ⊕B

∇
�
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for f, g : A → B, where Δ = 〈1A, 1A〉 and ∇ = [1B , 1B ] are respectively the
diagonal and codiagonal. This operation is associative and commutative, with 0AB

as an identity. Moreover, composition is bilinear with respect to this additive
structure. Thus C is enriched over abelian monoids.

Because of this automatic enrichment of categories with biproducts over abelian
monoids, we say that such a category is semi-additive.

PROPOSITION 20. If C has biproducts, we can choose projections p1, . . ., pn

and injections q1, . . ., qn for each
⊕k=n

k=1 Ak satisfying

pj ◦ qi = δij and
k=n∑
k=1

qk ◦ pk = 1L
kAk

where δii = 1Ai
, and δij = 0Ai,Aj

, i �= j.

5.2 Strongly compact closed categories with biproducts

We now come to the full mathematical structure we shall use as a setting for fini-
tary quantum mechanics: namely strongly compact closed categories with biprod-
ucts.

A first point is that, because of the strongly self-dual nature of compact closed
categories, weaker assumptions suffice in order to guarantee the presence of biprod-
ucts. The following elegant result is due to Robin Houston [2006], and was in fact
directly motivated by [Abramsky and Coecke, 2004], the precursor to the present
article.

THEOREM 21. Let C be a monoidal category with finite products and coproducts,
and suppose that for every object A of C, the functor A ⊗ − preserves products
and the functor −⊗A preserves coproducts. Then C has finite biproducts.

Because a compact closed category is closed and self-dual, the existence of
products implies that of coproducts, and vice versa, and the functor −⊗A is a left
adjoint and hence preserves coproducts. Moreover, since A∗ � B + A∗∗ ⊗ B +
A ⊗ B, the functor A ⊗ − is a right adjoint and preserves products. Hence this
result specializes to the following:

PROPOSITION 22. If C is a compact closed category with either products or
coproducts, then it has biproducts, and hence is semiadditive.

Examples There are many examples of compact closed categories with biprod-
ucts: the category of relations for a regular category with stable disjoint coprod-
ucts; the category of finitely generated projective modules over a commutative ring;
the category of finitely generated free semimodules over a commutative semiring;
and the category of free semimodules over a complete commutative semiring are all
semi-additive compact closed categories. Examples have also arisen in a Computer
Science context in the first author’s work on Interaction Categories [Abramsky,



292 Samson Abramsky and Bob Coecke

Gay and Nagarajan, 1995]. Compact closed categories with biproducts with addi-
tional assumptions, in particular that the category is abelian, have been studied
in the mathematical literature on Tannakian categories [Deligne, 1990].

In the case of strongly compact closed categories, we need a coherence condition
between the dagger and the biproduct structure. We say that a category is strongly
compact closed with biproducts if we can choose biproduct structures pi, qi as in
Proposition 20 such that p†i = qi for i = 1, . . . , n.

PROPOSITION 23. If C is strongly compact closed with biproducts, then

k=n∑
k=1

p†k ◦ pk =
k=n∑
k=1

qk ◦ q†k = 1L
kAk

.

Moreover, there are natural isomorphisms

νA,B : (A⊕B)∗ + A∗ ⊕B∗ and νI : 0∗ + 0 ,

and ( )† preserves biproducts and hence is additive:

(f ⊕ g)† = f† ⊕ g† , (f + g)† = f† + g† and 0†A,B = 0B,A .

Examples Examples of semi-additive strongly compact closed categories are the
category (Rel,×,+), where the biproduct is the disjoint union, and the category
(FdHilb,⊗,⊕), where the biproduct is the direct sum.

Distributivity and classical information flow As we have already seen, in
a compact closed category with biproducts, tensor distributes over the biproduct.
This abstract-seeming observation in fact plays a crucial rôle in the representation
of classical information flow. To understand this, consider a quantum system
A ⊗ B, composed from subsystems A(lice) and B(ob). Now suppose that Alice
performs a local measurement, which we will represent as resolving her part of
the system into say A1 ⊕A2. Here the biproduct is used to represent the different
branches of the measurement. At this point, by the functorial properties of ⊕, Alice
can perform actions f1⊕f2, which depend on which branch of the measurement has
been taken. The global state of the system is (A1 ⊕A2) ⊗B, and as things stand
Bob has no access to this measurement outcome. However, under distributivity
we have

(A1 ⊕A2) ⊗B + (A1 ⊗B) ⊕ (A2 ⊗B)

which corresponds to propagating the classical information as to the measurement
outcome ‘outwards’, so that it is now accessible to Bob, who can perform an action
depending on this outcome, of the form 1A ⊗ (g1 ⊕ g2).

We shall record distributivity in an explicit form for future use.
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PROPOSITION 24 Distributivity of ⊗ over ⊕. In any monoidal closed category
there is a right distributivity natural isomorphism τA,B,C : A ⊗ (B ⊕ C) + (A ⊗
B) ⊕ (A⊗ C), which is explicitly defined as

τA,·,· := 〈1A ⊗ p1, 1A ⊗ p2〉 and τ−1
A,·,· := [1A ⊗ q1, 1A ⊗ q2] .

A left distributivity isomorphism υA,B,C : (A ⊕ B) ⊗ C + (A ⊗ C) ⊕ (A ⊗ C) can
be defined similarly.

Semiring of scalars. In a strongly compact closed category with biproducts,
the scalars form a commutative semiring. Moreover, scalar multiplication satisfies
the usual additive properties

(s1 + s2) • f = s1 • f + s2 • f, 0 • f = 0

as well as the multiplicative ones. For Hilbert spaces, this commutative semiring
is the field of complex numbers. In Rel the commutative semiring of scalars is the
Boolean semiring {0, 1}, with disjunction as sum.

Matrix calculus. We can write any arrow of the form f : A⊕B → C ⊕D as a
matrix

Mf :=
(

pC,D
1 ◦ f ◦ qA,B

1 pC,D
1 ◦ f ◦ qA,B

2

pC,D
2 ◦ f ◦ qA,B

1 pC,D
2 ◦ f ◦ qA,B

2

)
.

The sum f + g of such morphisms corresponds to the matrix sum Mf + Mg and
composition g ◦ f corresponds to matrix multiplication Mg ·Mf . Hence categories
with biproducts admit a matrix calculus.

5.3 Spectral Decompositions

We define a spectral decomposition of an object A to be a unitary isomorphism

U : A →
i=n⊕
i=1

Ai .

(Here the ‘spectrum’ is just the set of indices 1, . . . , n). Given a spectral decom-
position U , we define morphisms

ψj := U†◦ qj : Aj → A and πj := ψ†
j = pj ◦ U : A → Aj ,

diagramatically

Aj

ψj � A

i=n⊕
i=1

Ai

qj
�

pj

�

�

U

Aj

πj

�
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and finally projectors
Pj := ψj ◦ πj : A → A .

These projectors are self-adjoint

P†
j = (ψj ◦ πj)† = π†

j ◦ ψ†
j = ψj ◦ πj = Pj

idempotent and orthogonal

Pi ◦ Pj = ψi ◦ πi ◦ ψj ◦ πj = ψi ◦ δij ◦ πj = δA
ij ◦ Pi.

Moreover, they yield a resolution of the identity :

i=n∑
i=1

Pi =
i=n∑
i=1

ψi ◦ πi =
i=n∑
i=1

U† ◦ qi ◦ pi ◦ U

= U† ◦ (
i=n∑
i=1

qi ◦ pi) ◦ U = U−1 ◦ 1L
iAi

◦ U = 1A .

5.4 Bases and dimension

Writing n ·X for types of the shape
⊕i=n

i=1 X it follows by self-duality of the tensor
unit I that

ν−1
I,...,I ◦ (n · uI) : n · I + (n · I)∗ .

A basis for an object A is a unitary isomorphism

base : n · I → A .

Given bases baseA and baseB for objects A and B respectively we can define the
matrix (mij) of any morphism f : A → B in those two bases as the matrix of

base†B ◦ f ◦ baseA : nA · I → nB · I .

PROPOSITION 25. Given f : A → B, baseA : nA · I → A and baseB : nB · I → A
the matrix (m′

ij) of f† in these bases is the conjugate transpose of the matrix (mij)
of f .

Proof: m′
ij = pi ◦ base†A ◦ f† ◦ baseB ◦ qj = (pj ◦ base†B ◦ f ◦ baseA ◦ qi)† = m†

ji. �

If in addition to the assumptions of Proposition 15 and Proposition 16 there exist
bases for A and B, we can prove converses to both of them.

PROPOSITION 26. If there exist bases for A and B then f : A → B is the adjoint
to g : B → A if and only if

〈f ◦ ψ | φ〉B = 〈ψ | g ◦ φ〉A
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for all ψ : I → A and φ : I → B.

Proof: Let (mij) be the matrix of f† and (m′
ij) the matrix of g in the given bases.

mij = pi ◦ base†A ◦f† ◦ baseB ◦ qj

= 〈f ◦ baseA◦ qi | baseB◦ qj〉B
= 〈f ◦ ψ | φ〉B
= 〈ψ | g ◦ φ〉A
= 〈baseA◦ qi | g◦ baseB◦ qj〉A
= pi ◦ base†A ◦g ◦ baseB ◦ qj

= m′
ij .

Hence the matrix elements of g and f† coincide so g and f† are equal. The converse
is Proposition 15. �
PROPOSITION 27. If there exist bases for A and B then a morphism U : A → B
is unitary if and only if it preserves the inner product, that is for all ψ, φ : I → A
we have

〈U ◦ ψ | U ◦ φ〉B = 〈ψ | φ〉A .

Proof: We have 〈U−1◦ ψ | φ〉A = 〈U ◦U−1◦ ψ | U ◦ φ〉B = 〈ψ | U ◦ φ〉B and hence
by Proposition 26, U† = U−1. The converse is given by Proposition 16. �

Note also that when a basis is available we can assign to ψ† : A → I and φ : I → A
matrices (

ψ†
1 · · · ψ†

n

)
and

⎛⎜⎝ φ1

...
φn

⎞⎟⎠
respectively, and the inner product becomes

〈ψ | φ〉 =
(

ψ†
1 · · · ψ†

n

)⎛⎜⎝ φ1

...
φn

⎞⎟⎠ =
i=n∑
i=1

ψ†
i ◦ φi .

Dimension Interestingly, two different notions of dimension arise in our setting.
We assign an integer dimension dim(A) ∈ N to an object A provided there exists
a base

base : dim(A) · I → A .

Alternatively, we introduce the scalar dimension as

dims(A) := Tr(1A) = εA ◦ ε†A ∈ C(I, I).

We also have:

dims(I) = 1I dims(A∗) = dims(A) dims(A⊗B) = dims(A)dims(B)



296 Samson Abramsky and Bob Coecke

In FdVecK these notions of dimension coincide, in the sense that dims(V ) is
multiplication with the scalar dim(V ). In Rel the integer dimension corresponds
to the cardinality of the set, and is only well-defined for finite sets, while dims(X)
always exists; however, dims(X) can only take two values, 0I and 1I, and the two
notions of dimension diverge for sets of cardinality greater than 1.

5.5 Towards a representation theorem

As the results in this section have shown, under the assumption of biproducts we
can replicate many of the familiar linear-algebraic calculations in Hilbert spaces.
One may wonder how far we really are from Hilbert spaces.

The deep results by Deligne [1990] and Doplicher-Roberts [1989] on Tannakian
categories, the latter directly motivated by algebraic quantum field theory, show
that under additional assumptions, in particular that the category is abelian as
well as compact closed, we obtain a representation into finite-dimensional modules
over the ring of scalars. One would like to see a similar result in the case of
strongly compact closed categories with biproducts, with the conclusion being a
representation into inner-product spaces.

6 ABSTRACT QUANTUM MECHANICS: AXIOMATICS AND QUANTUM
PROTOCOLS

We can identify the basic ingredients of finitary quantum mechanics in any semi-
additive strongly compact closed category.

1. A state space is represented by an object A.

2. A basic variable (‘type of qubits’) is a state space Q with a given unitary
isomorphism

baseQ : I ⊕ I → Q

which we call the computational basis of Q. By using the isomorphism n · I +
(n · I)∗ described in Section 5, we also obtain a computational basis for Q∗.

3. A compound system for which the subsystems are described by A and B
respectively is described by A ⊗ B. If we have computational bases baseA

and baseB , then we define

baseA⊗B := (baseA ⊗ baseB) ◦ d−1
nm

where
dnm : n · I ⊗m · I + (nm) · I

is the canonical isomorphism constructed using first the left distributivity
isomorphism υ, and then the right distributivity isomorphism τ , to give the
usual lexicographically-ordered computational basis for the tensor product.
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4. Basic data transformations are unitary isomorphisms.

5a. A preparation in a state space A is a morphism ψ : I → A for which there
exists a unitary U : I ⊕B → A such that

I
ψ � A

I ⊕B

q1

�

U
�

commutes.

5b. Consider a spectral decomposition

U : A →
i=n⊕
i=1

Ai

with associated projectors Pj . This gives rise to the non-destructive mea-
surement

〈Pi〉i=n
i=1 : A → n ·A.

The projectors Pi : A → A for i = 1, . . . , n are called the measurement
branches. This measurement is non-degenerate if Ai = I for all i = 1, . . . , n.
In this case we refer to U itself as a destructive measurement or observation.
The morphisms πi = pi ◦ U : A → I for i = 1, . . . , n are called observation
branches.

Note that the type of a non-destructive measurement makes it explicit that it is
an operation which involves a non-deterministic transition (by contrast with the
standard Hilbert space quantum mechanical formalism).

6a. Explicit biproducts represent the branching arising from the indeterminacy
of measurement outcomes.

Hence an operation f acting on an explicit biproduct A ⊕ B should itself be an
explicit biproduct, i.e. we want

f = f1 ⊕ f2 : A⊕B → C ⊕D ,

for f1 : A → C and f2 : B → D. The dependency of fi on the branch it is
in captures local classical communication. The full force of non-local classical
communication is enabled by Proposition 24.

6b. Distributivity isomorphisms represent non-local classical communication.
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To see this, suppose e.g. that we have a compound system Q ⊗ A, and we (non-
destructively) measure the qubit in the first component, obtaining a new system
state described by (Q ⊕ Q) ⊗ A. At this point, we know ‘locally’, i.e. at the
site of the first component, what the measurement outcome is, but we have not
propagated this information to the rest of the system A. However, after applying
the distributivity isomorphism

(Q⊕Q) ⊗A + (Q⊗A) ⊕ (Q⊗A)

the information about the outcome of the measurement on the first qubit has been
propagated globally throughout the system, and we can perform operations on A
depending on the measurement outcome, e.g. (1Q ⊗U0)⊕ (1Q ⊗U1) where U0, U1

are the operations we wish to perform on A in the event that the outcome of the
measurement we performed on Q was 0 or 1 respectively.

6.1 The Born rule

We now show how the Born rule, which is the key quantitative feature of quantum
mechanics, emerges automatically from our abstract setting.

For a preparation ψ : I → A and spectral decomposition U : A → ⊕i=n
i=1 Ai,

with corresponding non-destructive measurement

〈Pi〉i=n
i=1 : A → n ·A ,

we can consider the protocol

I
ψ � A

〈Pi〉i=n
i=1� n ·A .

We define scalars

Prob(Pi, ψ) := 〈ψ | Pi | ψ〉 = ψ† ◦ Pi ◦ ψ .

PROPOSITION 28. With notation as above,

Prob(Pi, ψ) = (Prob(Pi, ψ))†

and
i=n∑
i=1

Prob(Pi, ψ) = 1 .

Hence we think of the scalar Prob(Pj , ψ) as ‘the probability of obtaining the j’th
outcome of the measurement 〈Pi〉i=n

i=1 on the state ψ’.

Proof: From the definitions of preparation and the projectors, there are unitaries
U , V such that

Prob(Pi, ψ) = (V ◦ q1)† ◦ U† ◦ qi ◦ pi ◦ U ◦ V ◦ q1
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for each i. Hence
i=n∑
i=1

Prob(Pi, ψ) =
i=n∑
i=1

p1 ◦ V † ◦ U† ◦ qi ◦ pi ◦ U ◦ V ◦ q1

= p1 ◦ V †◦ U†◦
( n∑

i=1

qi ◦ pi

)
◦ U ◦ V ◦ q1

= p1 ◦ V −1◦ U−1◦ 1n·I ◦ U ◦ V ◦ q1 = p1 ◦ q1 = 1I .

�

Moreover, since by definition Pj = π†
j ◦πj , we can rewrite the Born rule expression

as

Prob(Pj , ψ) = ψ† ◦ Pj ◦ ψ = ψ† ◦ π†
j ◦ πj ◦ ψ = (πj ◦ ψ)† ◦ πj ◦ ψ = s†j ◦ sj

for some scalar sj ∈ C(I, I). Thus sj can be thought of as the ‘probability ampli-
tude’ giving rise to the probability s†j ◦ sj , which is of course self-adjoint. If we
consider the protocol

I
ψ � A

〈πi〉i=n
i=1� n · I .

which involves an observation 〈πi〉i=n
i=1 , then these scalars sj correspond to the

branches

I
ψ � A

πj � I .

We now turn to the description of the quantum protocols previously discussed in
Section 2 within our framework. In each case, we shall give a complete description
of the protocol, including the quantum-to-classical information flows arising from
measurements, and the subsequent classical-to-quantum flows corresponding to
the classical communications and the actions depending on these performed as
steps in the protocols. We shall in each case verify the correctness of the protocol,
by proving that a certain diagram commutes. Thus these case studies provide
evidence for the expressiveness and effectiveness of the framework.

Our general axiomatic development allows for considerable generality. The stan-
dard von Neumann axiomatization fits Quantum Mechanics perfectly, with no
room to spare. Our basic setting of strongly compact closed categories with biprod-
ucts is general enough to allow very different models such as Rel, the category
of sets and relations. When we consider specific protocols such as teleportation,
a kind of ‘Reverse Arithmetic’ (by analogy with Reverse Mathematics [Simpson,
1999]) arises. That is, we can characterize what requirements are placed on the
semiring of scalars C(I, I) (where I is the tensor unit) in order for the protocol to
be realized. This is often much less than requiring that this be the field of complex
numbers, but in the specific cases which we shall consider, the requirements are
sufficient to exclude Rel.
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6.2 Quantum teleportation

DEFINITION 29. A teleportation base is a scalar s together with a morphism

prebaseT : 4 · I → Q∗ ⊗Q

such that:

• baseT := s • prebaseT is unitary.

• the four maps βj : Q → Q, where βj is defined by �βj� := prebaseT ◦ qj, are
unitary.

• 2s†s = 1.

The morphisms s • �βj� are the base vectors of the teleportation base. A telepor-
tation base is a Bell base when the Bell base maps β1, β2, β3, β4 : Q → Q satisfy2

β1 = 1Q β2 = σ⊕
Q β3 = β†

3 β4 = σ⊕
Q ◦ β3

where

σ⊕
Q := baseQ ◦ σ⊕

I,I ◦ base−1
Q .

A teleportation base defines a teleportation observation

〈s† • �βi�〉i=4
i=1 : Q⊗Q∗ → 4 · I .

To emphasize the identity of the individual qubits we label the three copies of Q
we shall consider as Qa, Qb, Qc. We also use labelled identities, e.g. 1bc : Qb → Qc,
and labelled Bell bases. Finally, we introduce

Δ4
ac := 〈s†s • 1ac〉i=4

i=1 : Qa → 4 ·Qc

as the labelled, weighted diagonal. This expresses the intended behaviour of tele-
portation, namely that the input qubit is propagated to the output along each
branch of the protocol, with ‘weight’ s†s, corresponding to the probability am-
plitude for that branch. Note that the sum of the corresponding probabilities
is

4(s†s)†s†s = (2s†s)(2s†s) = 1 .

2This choice of axioms is sufficient for our purposes. One might prefer to axiomatize a notion
of Bell base such that the corresponding Bell base maps are exactly the Pauli matrices — note
that this would introduce a coefficient i in β4.
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THEOREM 30. The following diagram commutes.

Qa =============== Qa

import unknown state

Qa ⊗ I

ρa

�

produce EPR-pair

Qa ⊗ (Q∗
b⊗Qc)

1a ⊗ (s • �1bc�)

�

spatial delocation

(Qa ⊗Q∗
b) ⊗Qc

αa,b,c

�

teleportation observation

(4 · I) ⊗Qc

〈s† • �βab
i �〉i=4

i=1 ⊗1c

�

classical communication

4 ·Qc

(
4 · λ−1

c

)
◦ υc

�

unitary correction

4 ·Qc

Δ4
ac

�
============ 4 ·Qc

⊕i=4
i=1(β

c
i )

−1

�

The right-hand-side of the above diagram is our formal description of the telepor-
tation protocol; the commutativity of the diagram expresses the correctness of the
protocol. Hence any strongly compact closed category with biproducts admits quan-
tum teleportation provided it contains a teleportation base. If we do a Bell-base
observation then the corresponding unitary corrections are

β−1
i = βi for i ∈ {1, 2, 3} and β−1

4 = β3 ◦ σ⊕
Q .

Proof: For each j ∈ {1, 2, 3, 4} we have a commutative diagram of the form below.
The top trapezoid is the statement of the Theorem. We ignore the scalars – which
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cancel out against each other – in this proof.

Qa
〈1ac〉i � 4 · Qc

Quantum teleportation

Qa⊗I
1a⊗�1bc��

ρ
a

�

Qa⊗Q
∗
b⊗Qc

〈�βab
i �〉i⊗1c� (4 · I) ⊗ Qc

〈pI
i⊗1c〉i� 4 · (I⊗Qc)

4 · λ−1
c� 4 · Qc

L i
(β

c
i
)
−1

i

�

Qc
� λ−1

c

λc

� I ⊗ Qc

pI
j ⊗1c

�
1I⊗Qc

�

�β abj �⊗1
c

�
I ⊗ Qc

pI⊗Qc
j

�

λ−1
c

� Qc

pQc
j

�

Qa

1Qa

�
1ac

�
β
a
c

j

�

Qc

pQc
j

�

(β c
j ) −

1 �

We use the universal property of the product, naturality of λ and the explicit form
of the natural isomorphism υc := 〈pI

i⊗1c〉i=4
i=1. In the specific case of a Bell-base

observation we use 1†Q = 1Q, (σ⊕
Q)† = σ⊕

Q and (σ⊕
Q ◦ β3)† = β†

3 ◦ (σ⊕
Q)† = β3 ◦ σ⊕

Q.
�

Although in Rel teleportation works for ‘individual observational branches’ it fails
to admit the full teleportation protocol since there are only two automorphisms
of Q (which is just a two-element set, i.e. the type of ‘classical bits’), and hence
there is no teleportation base.

We now consider sufficient conditions on the ambient category C for a telepor-
tation base to exist. We remark firstly that if C(I, I) contains an additive inverse
for 1, then it is a ring, and moreover all additive inverses exist in each hom-set
C(A,B), so C is enriched over Abelian groups. Suppose then that C(I, I) is a ring
with 1 �= −1. We can define a morphism

prebaseT = baseQ∗⊗Q ◦M : 4 · I → Q∗⊗Q

where M is the endomorphism of 4 · I determined by the matrix⎛⎜⎜⎝
1 0 1 0
0 1 0 1
0 1 0 −1
1 0 −1 0

⎞⎟⎟⎠
The corresponding morphisms βj will have 2 × 2 matrices determined by the
columns of this 4 × 4 matrix, and will be unitary. If C(I, I) furthermore con-
tains a scalar s satisfying 2s†s = 1, then s•prebaseT is unitary, and the conditions
for a teleportation base are fulfilled. Suppose we start with a ring R containing
an element s satisfying 2s2 = 1. (Examples are plentiful, e.g. any subring of C,
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or of Q(
√

2), containing 1√
2
). The category of finitely generated free R-modules

and R-linear maps is strongly compact closed with biproducts, and admits a tele-
portation base (in which s will appear as a scalar with s = s†), hence realizes
teleportation.

6.3 Logic-gate teleportation

Logic gate teleportation of qubits requires only a minor modification as compared
to the teleportation protocol.

THEOREM 31. Let unitary morphism f : Q → Q be such that for each i ∈
{1, 2, 3, 4} a morphism ϕi(f) : Q → Q satisfying f ◦ βi = ϕi(f) ◦ f exists. The
diagram of Theorem 30 with the modifications made below commutes.

Qa ⊗ I
�
......

produce f-state

Qa ⊗ (Q∗
b⊗Qc)

1a ⊗ (s • �f�)

�

....................

4 ·Qc

�

.................

unitary correction

4 ·Qc

Δ4
ac◦f

�
========= 4 ·Qc

⊕i=4
i=1(ϕi(f))−1

�

The right-hand-side of the diagram is our formal description of logic-gate telepor-
tation of f : Q → Q; the commutativity of the diagram under the stated conditions
expresses the correctness of logic-gate teleportation for qubits.

Proof: The top trapezoid is the statement of the Theorem. The a, b and c-labels
are the same as in the proof of teleportation. For each j ∈ {1, 2, 3, 4} we have a
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diagram of the form below. Again we ignore the scalars in this proof.

Q
〈f〉i � 4 · Q

Logic-gate teleportation

Q⊗I
1Q⊗�f��

ρ
Q

�

Q⊗Q
∗⊗Q

〈�βi�〉i⊗1Q� (4 · I)⊗Q
〈pI

i⊗1Q〉i� 4 · (I⊗Q)
4 · λ−1

Q� 4 · Q

L i
ϕ i

(f
)
−1 �

Lemma 7

Q

1Q

�
f ◦ βj

� Q
� λ−1

Q

λQ

� I ⊗ Q

pI
j ⊗1Q

�
1I⊗Q

�

�β
j �⊗1

Q �
I ⊗ Q

pI⊗Q
j

�

λ−1
Q

� Q

pQ
j

�

Q

Q

�
f

�
ϕ j

(f
)
◦f
�

Q

pQ
j

�

ϕ
j (f) −

1 �

�

This two-dimensional case does not yet provide a universal computational prim-
itive, which requires teleportation of Q⊗Q-gates [Gottesman and Chuang, 1999].
We present the example of teleportation of a CNOT gate [Gottesman and Chuang,
1999] (see also [Coecke, 2003] Section 3.3).

Given a Bell base we define a CNOT gate as one which acts as follows on tensors
of the Bell base maps:

CNOT◦ (σ⊕
Q ⊗1Q) = (σ⊕

Q ⊗σ⊕
Q)◦CNOT CNOT ◦ (1Q ⊗σ⊕

Q) = (1Q ⊗σ⊕
Q)◦CNOT

CNOT ◦ (β3 ⊗ 1Q) = (β3 ⊗ 1Q) ◦ CNOT CNOT ◦ (1Q ⊗ β3) = (β3 ⊗ β3) ◦ CNOT

It follows from this that

CNOT ◦ (β4 ⊗ 1Q) = (β4 ⊗ σ⊕
Q) ◦ CNOT CNOT ◦ (1Q ⊗ β4) = (β3 ⊗ β4) ◦ CNOT

from which in turn it follows by bifunctoriality of the tensor that the required uni-
tary corrections factor into single qubit actions, for which we introduce a notation
by setting

CNOT ◦ (βi ⊗ 1Q) = ϕ1(βi) ◦ CNOT CNOT ◦ (1Q ⊗ βi) = ϕ2(βi) ◦ CNOT

The reader can verify that for

42 · (Qc1⊗Qc2) := 4 · (4 · (Qc1⊗Qc2))

and
Δ42

ac :=〈s†s • 〈s†s •1ac〉i=4
i=1〉i=4

i=1 :Qa1⊗Qa2 → 42 · (Qc1⊗Qc2)

the following diagram commutes.
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Qa1⊗Qa2 ================= Qa1⊗Qa2

import unknown state

(Qa1⊗Qa2 ) ⊗ I

ρa

�

produce CNOT-state

(Qa1⊗Qa2 ) ⊗ ((Qb1⊗Qb2 )
∗⊗ (Qc1⊗Qc2 ))

1a ⊗ (s2 • �CNOT�)

�

spatial delocation

((Qa1⊗Q
∗
b1

) ⊗ (Qc1⊗Qc2 )) ⊗ (Qa2⊗Q
∗
b2

)

(α, σ)◦ (1a⊗ (ub⊗1c))

�

1st observation

((4 · I) ⊗ (Qc1⊗Qc2 )) ⊗ (Qa2⊗Q
∗
b2

)

(〈s†•�β
a1b1
i �〉i=4

i=1⊗1c)⊗12

�

1st communication

(4 · (Qc1⊗Qc2 )) ⊗ (Qa2⊗Q
∗
b2

)

((4 · λ−1
c )◦υc) ⊗ 12

�

1st correction

(4 · (Qc1⊗Qc2 )) ⊗ (Qa2⊗Q
∗
b2

)

`Li=4
i=1(ϕ

c
1(βi))

−1´⊗12

�

2nd observation

(4 · (Qc1⊗Qc2 )) ⊗ (4 · I)

(4 · 1c)⊗〈s†•�β
a2b2
i �〉i=4

i=1

�

2nd communication

(4 · (4 · (Qc1⊗Qc2 )))

(4 · ρ−1
4c )◦τ4c

�

2nd correction

4
2 · (Qc1⊗Qc2 )

Δ42
ac ◦ CNOT

�
============ 4

2 · (Qc1⊗Qc2 )

Li=4
i=1(4 · ϕc

2(βi))
−1

�
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6.4 Entanglement swapping

THEOREM 32. Setting

γi := (βi)∗
Pi := s†s • (�γi� ◦ �βi�)

ζac
i :=

⊕i=4
i=1

(
(1∗b ⊗ γ−1

i ) ⊗ (1∗d ⊗ β−1
i )

)
Θab := 1∗d ⊗ 〈Pi〉i=4

i=1 ⊗1c

Ωab := 〈s†s3 • (�1ba�⊗�1dc�)〉i=4
i=1

the following diagram commutes.

I ⊗ I ============== I ⊗ I

produce EPR-pairs

(Q∗
d ⊗Qa) ⊗ (Q∗

b⊗Qc)

s2 • (�1da�⊗�1bc�)

�

spatial delocation

Q∗
d ⊗ (Qa ⊗Q∗

b) ⊗Qc

α

�

Bell-base measurement

Q∗
d ⊗ (4 · (Qa⊗Q∗

b)) ⊗Qc

Θab

�

classical communication

4 · ((Q∗
b⊗Qa)⊗(Q∗

d ⊗Qc))

(4 · (α, σ)) ◦ (τ, υ)

�

unitary correction

4 · ((Q∗
b⊗Qa)

Ωab

�
⊗(Q∗

d ⊗Qc))

ζac
i

�

The right-hand-side of the above diagram is our formal description of the entan-
glement swapping protocol.
Proof: The top trapezoid is the statement of the Theorem. We have a diagram
of the form below for each j ∈ {1, 2, 3, 4}. To simplify the notation of the types
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we set (a∗, b, c∗, d) for Q∗
a ⊗Qb ⊗Q∗

c ⊗Qd etc. Again we ignore the scalars in this
proof.

I⊗I
〈�1ba�⊗ �1dc�〉i � 4·(b∗, a, d∗, c)

Entanglement swapping

(d∗, a, b∗, c)
Θab�

�1
da�⊗�1

bc��
(d∗, 4·(a, b∗), c)

(τ, υ)� 4·(d∗, a, b∗, c)
4·σ� 4·(b∗, a, d∗, c)



�

Lemma 8

(d∗, c) �
ρ−1

d∗⊗1c

(d∗, I , c)
1∗d⊗�γj�⊗1c

�

1 ∗
d ⊗ �β

j �⊗
1c �

(d∗, a, b∗, c)

pj

�

σ
�

1 ∗
d ⊗

p (a,b ∗
)

j

⊗1
c�

(b∗, a, d∗, c)

pj

�

L. 6

I

ρI

�

�β j
� �

(I , d∗, c)

λd∗⊗ 1c

��
σ
−1

(d∗, a, b∗, c)

1∗d⊗�1ab�⊗β−1
j

�
======== (d∗, a, b∗, c)

�
�

σ
� (b∗, a, d∗, c)

pj

�

‡
�

Lemma 6

I⊗I

λI

�

�1ba�⊗ �1dc�
� (b∗, a, d∗, c)

σ−1

�

�1
ba�⊗1 ∗

d ⊗β −1j �

where

� :=
⊕

i

(1∗b⊗γ−1
i ⊗1∗d⊗β−1

i ) , ‡ := 1∗b⊗γ−1
j ⊗1∗d⊗β−1

j and . := 1∗d⊗γ−1
j ⊗1∗b⊗β−1

j

�

We use γi = (βi)∗ rather than βi to make Pi an endomorphism and hence a
projector. The general definition of a ‘bipartite entanglement projector’ is

Pf := �f� ◦ �f∗� = �f� ◦ �f†� ◦ σA∗,B : A∗ ⊗B → A∗ ⊗B

for f : A → B, so in fact Pi = P(βi)∗ .

7 EXTENSIONS AND FURTHER DEVELOPMENTS

Since its first publication in 2004, a number of elaborations on the categorical
quantum axiomatics described above have been proposed, by ourselves in collab-
oration with members of our group, Ross Duncan, Dusko Pavlovic, Eric Oliver
Paquette, Simon Perdrix and Bill Edwards, and also by others elsewhere, most
notably Peter Selinger and Jamie Vicary. We shall present some of the main
developments.
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7.1 Projective structure

We shall discuss our first topic at considerably greater length than the others we
shall cover in this survey. The main reason for this is that it concerns the passage
to a projective point of view, which makes for an evident comparison with the
standard approaches to quantum logic going back to [Birkhoff and von Neumann,
1936]. Thus it seems appropriate to go into some detail in our coverage of this
topic, in the context of the Handbook in which this article will appear.

The axiomatics we have given corresponds to the pure state picture of quan-
tum mechanics. The very fact that we can faithfully carry out linear-algebraic
calculations using the semi-additive structure provided by biproducts means that
states will typically carry redundant global phases, as is the case for vectors in
Hilbert spaces. Eliminating these means ‘going projective’. The quantum logic
tradition provides one way of doing so [Birkhoff and von Neumann, 1936]. Given
a Hilbert space one eliminates global scalars by passing to the projection lattice.
The non-Boolean nature of the resulting lattice is then taken to be character-
istic for quantum behaviour. This leads one then to consider certain classes of
non-distributive lattices as ‘quantum structures’.

Hilbert space

lattice of subspaces

kill redundant global scalars

�

go abstract
� non-distributive lattices

Birkhoff-von Neumann�

It is well-known that there is no obvious counterpart for the Hilbert space tensor
product when passing to these more general classes of lattices. This is one reason
why Birkhoff-von Neumann style quantum logic never penetrated the mainstream
physics community, and is particularly unfortunate in the light of the important
role that the tensor product plays in quantum information and computation.

But one can also start from the whole category of finite dimensional Hilbert
spaces and linear maps FdHilb. Then we can consider ‘strongly compact closed
categories + some additive structure’ as its appropriate abstraction, and hope to
find some abstractly valid counterpart to ‘elimination of redundant global scalars’.

FdHilb
go abstract � ‘vectorial’ strong compact closure

‘projective’ strong compact closure

kill redundant global scalars

�

our approach �
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The major advantage which such a construction has is that the tensor product
is now part of the mathematical object under consideration, and hence will not be
lost in the passage from vectorial spaces to projective ones.

This passage was realised in [Coecke, 2007a] as follows. For morphisms in
FdHilb, i.e. linear maps, if we have that f = eiθ ·g with θ ∈ [0, 2π[ for f, g : H1 →
H2, then

f ⊗ f† = eiθ· g ⊗ (eiθ· g)† = eiθ· g ⊗ e−iθ· g† = g ⊗ g† .

Now in abstract generality, given a strongly compact closed category C, we can
define a new category WProj(C) with the same objects as those of C, but with

WProj(C)(A,B) :=
{
f ⊗ f† ∣∣ f ∈ C(A,B)

}
as hom-sets and in which composition is given by

(f ⊗ f†) ◦̄ (g ⊗ g†) := (f ◦ g) ⊗ (f ◦ g)†.

One easily shows that WProj(C) is again a strongly compact closed category. The
abstract counterpart to elimination of global phases is expressed by the following
propositions.

PROPOSITION 33. [Coecke, 2007a] For morphisms f , g and scalars s, t in a
strongly compact closed category, we have

s • f = t • g ∧ s ◦ s† = t ◦ t† = 1I =⇒ f ⊗ f†= g ⊗ g†.

PROPOSITION 34. [Coecke, 2007a] For morphisms f and g in a strongly compact
closed category with scalars S we have

f ⊗ f†= g ⊗ g† =⇒ ∃s, t ∈ S. s • f = t • g ∧ s ◦ s† = t ◦ t†.

In particular we can set

s := (�f�)† ◦ �f� and t := (�g�)† ◦ �f�.

While the first proposition is straightforward, the second one is somewhat more
surprising. It admits a simple graphical proof. We represent units by dark tri-
angles and their adjoints by the same triangle but depicted upside down. Other
morphisms are depicted by square boxes as before, with the exception of scalars
which are depicted by ‘diamonds’. The scalar s := (�f�)† ◦ �f� is depicted as

f

†f
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Bifunctoriality means that we can move these boxes upward and downward, and
naturality provides additional modes of movement, e.g. scalars admit arbitrary
movements. Now, given that f ⊗ f†= g ⊗ g†, that is, in a picture,

f g

=

f g ††

we need to show that s • f = t • g and s ◦ s† = t ◦ t† for some choice of scalars s
and t, that is, in a picture,

sfs t g s tt

= =

† †

The choice that we will make for s and t is

:

f

†f
s

= :

f

†g
t

=

Then we indeed have s • f = t • g since in

g

f

= †

f

† gff

the areas within the dotted line are equal by assumption. We also have that
s ◦ s† = t ◦ t† since
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g

f

= †

f

†f

f

†f

g

f†

which completes the proof.
As expected, biproducts do not survive the passage from C to WProj(C) but

the weaker structure which results still suffices for a comprehensive description of
the protocols we have discussed in this article. In particular, the distributivity
natural isomorphisms

dist0,l : A⊗ 0 + 0 distl : A⊗ (B ⊕ C) + (A⊗B) ⊕ (A⊗ C)

dist0,r : 0 ⊗A + 0 distr : (B ⊕ C) ⊗A + (B ⊗A) ⊕ (C ⊗A) .

carry over to WProj(C). Details can found in [Coecke, 2007a].
Our framework also allows a precise general statement of the incompatibility of

biproducts with projective structure.
Call a strongly compact closed category projective iff equality of projections

implies equality of the corresponding states, that is,

(1) ∀ ψ, φ : I → A . ψ ◦ ψ† = φ ◦ φ† =⇒ ψ = φ .

PROPOSITION 35. [Coecke, 2007a] If a strongly compact closed category with
biproducts is projective and the semiring of scalars admits negatives, i.e. is a ring,
then we have 1 = −1, that is, there are no non-trivial negatives.

Having no non-trivial negatives of course obstructs the description of interference.

7.2 Mixed states and Completely Positive Maps

The categorical axiomatics set out in this article primarily refers to the pure-state
picture of quantum mechanics. However, for many purposes, in particular those
of quantum information, it is mixed states, acted on by completely positive maps,
which provide the most appropriate setting. Peter Selinger [2007] proposed a
general categorical construction, directly in the framework of the categorical ax-
iomatics of [Abramsky and Coecke, 2004] which has been described in this article,
to capture the passage from the pure states to the mixed states picture.

The construction proceeds as follows. Given any strongly compact closed cat-
egory C we define a new category CPM(C) with the same objects as C but with
morphisms given by

CPM(C)(A,B) :=



312 Samson Abramsky and Bob Coecke

{
(1B ⊗ εC ⊗ 1B∗) ◦ (1B⊗C ⊗ σB∗,C∗) ◦ (f ⊗ f∗)

∣∣ f ∈ C(A,B ⊗ C)
}

where for simplicity we assume that the monoidal structure is strict. Composi-
tion in CPM(C) is inherited pointwise from C. The morphisms of the category
CPM(FdHilb) are exactly the completely positive maps, and the morphisms in the
hom-set CPM(FdHilb)(C,H) are exactly the self-adjoint operators with positive
trace on H. The category WProj(C) faithfully embeds in CPM(C) by setting

f ⊗ f† �→ f ⊗ f∗.

Metaphorically, we have

CPM(C)
WProj(C)

=
density operators

projectors
.

For more details on the CPM-construction we refer the reader to [Selinger, 2007].
Recently it was shown that the CPM-construction does not require strong com-

pact closure, but only dagger symmetric monoidal structure. Details are in [Co-
ecke, 2007]. An axiomatic presentation of categories of completely positive maps
is given in [Coecke, 2008].

7.3 Generalised No-Cloning and No-Deleting theorems

The No-Cloning theorem [Dieks, 1982; Wootters and Zurek, 1982] is a basic lim-
itative result for quantum mechanics, with particular significance for quantum
information. It says that there is no unitary operation which makes perfect copies
of an unknown (pure) quantum state. A stronger form of this result is the No-
Broadcasting theorem [Barnum et al., 1996], which applies to mixed states. There
is also a No-Deleting theorem [Pati and Braunstein, 2000].

The categorical and logical framework which we have described provides new
possibilities for exploring the structure, scope and limits of of quantum informa-
tion processing, and the features which distinguish it from its classical counterpart.
One area where some striking progress has already been made is the axiomatics
of No-Cloning and No-Deleting. It is possible to delimit the classical-quantum
boundary here in quite a subtle way. On the one hand, we have the strongly com-
pact closed structure which is present in the usual Hilbert space setting for QIC,
and which we have shown accounts in generality for the phenomena of entangle-
ment. Suppose we were to assume that either copying or deleting were available
in a strongly compact closed category as uniform operations. Mathematically, a
uniform copying operation means a natural diagonal

ΔA : A → A⊗A

i.e. a monoidal natural transformation, which moreover is co-associative and co-
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commutative:

A
Δ� A⊗A

1 ⊗ Δ� A⊗ (A⊗A)

A

7777777777
Δ
� A⊗A

Δ ⊗ 1
� (A⊗A) ⊗A

αA,A,A

�

A
Δ� A⊗A

A⊗A

σA,A

�

Δ
�

Thinking of the diagonal associated with the usual cartesian product, one sees
immediately that co-commutativity and co-associativity are basic requirements for
a copying operation: if I have two copies of the same thing, it does not matter which
order they come in, and if I produce three copies by iterating the copying operation,
which copy I choose to perform the second copying operation on is immaterial.
Naturality, on the other hand, corresponds essentially to basis-independence in
the Hilbert space setting; it says that the operation exists ‘for logical reasons’, in
a representation-independent form.

We have shown recently that under these assumptions the category trivializes;
in other words, that this combination of quantum and classical features is incon-
sistent, leading to a collapse of the structure. The precise form of the result is that
under these hypotheses every endomorphism in the category is a scalar multiple
of the identity.

Similar generalizations of the No-Deleting theorem [Pati and Braunstein, 2000]
and the No-Broadcasting theorem [Barnum et al., 1996] also hold. Papers on these
results are in preparation.

One striking feature of these results is that they are visibly in the same genre as
a well-known result by Joyal in categorical logic [Lambek and Scott, 1986] showing
that a ‘Boolean cartesian closed category’ trivializes, which provides a major road-
block to the computational interpretation of classical logic. In fact, they strengthen
Joyal’s result, insofar as the assumption of a full categorical product (diagonals
and projections) in the presence of a classical duality is weakened. This shows a
heretofore unsuspected connection between limitative results in proof theory and
No-Go theorems in quantum mechanics.

Another interesting point is the way that this result is delicately poised. The
basis structures to be discussed in the next sub-section do assume commutative
comonoid structures existing in strongly compact closed categories—indeed with
considerable additional properties, such as the Frobenius identity. Not only is this
consistent, such structures correspond to a major feature of Hilbert spaces, namely
orthonormal bases. The point is that there are many such bases for a given Hilbert
space, and none are canonical. Indeed, the choice of basis corresponds to the choice
of measurement set-up, to be made by a ‘classical observer’. The key ingredient
which leads to inconsistency, and which basis structures lack, is naturality, which,
as we have already suggested, stands as an abstract proxy for basis-independence.
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7.4 Basis Structures and Classical Information

In this article, an approach to measurements and classical information has been
developed based on biproducts. This emphasizes the branching structure of mea-
surements due to their probabilistic outcomes.

One may distinguish the ‘multiplicative’ from the ‘additive’ levels of our axioma-
tization (using the terminology of Linear logic [Girard, 1987]). The multiplicative,
purely tensorial level of strongly compact closed categories shows, among other
things, how a remarkable amount of multilinear algebra, encompassing much of
the structure needed for quantum mechanics and quantum information, can be
done without any substrate of linear algebra. Moreover, this level of the ax-
iomatization carries a very nice diagrammatic calculus, which we have sampled
informally. In general, the return on structural insights gained from the axioma-
tization seems very good. The additive level of biproducts reinstates a linear (or
‘semilinear’) level of structure, albeit with fairly weak assumptions, and there is
more of a sense of recapitulating familiar definitions and calculations. While a dia-
grammatic calculus is still available here (see [Abramsky and Duncan, 2006]), it is
subject to a combinatorial unwieldiness familiar from process algebra in Computer
Science [Milner, 1989] (cf. the ‘Expansion Theorem’).

An alternative approach to measurements and classical information has been
developed in a series of papers [Coecke and Pavlovic, 2007; Coecke and Paquette,
2006; Coecke, Pavlovic and Vicary, 2008a; Coecke, Paquette and Perdrix, 2008]
under various names, the best of which is probably ‘basis structure’. Starting
from the standard idea that a measurement set-up corresponds to a choice of
orthonormal basis, the aim is to achieve an axiomatization of the notion of basis
as an additional structure. Of course, the notion of basis developed in Section 5
has all the right properties, but it is defined in terms of biproducts, while the aim
here is to achieve an axiomatization purely at the multiplicative level.

This is done in an interesting way, bringing the informatic perspective to the
fore. One can see the choice of a basis as determining a notion of ‘classical data’,
namely the basis vectors. These vectors are subject to the classical operations
of copying and deleting, so in a sense classical data, defined with respect to a
particular choice of basis, stands as a contrapositive to the No-Cloning and No-
Deleting theorems. Concretely, having chosen a basis {|i〉} on a Hilbert space H,
we can define linear maps

H −→ H⊗H :: |i〉 �→ |ii〉, H −→ C :: |i〉 �→ 1

which do correctly copy and delete the basis vectors (the ‘classical data’), although
not of course the other vectors.

These considerations lead to the following definition. A basis structure on an ob-
ject A in a strongly compact closed category is a commutative comonoid structure
on A

Copy : A → A⊗A, Delete : A → I
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subject to a number of additional axioms, the most notable of which is the Frobe-
nius identity [Carboni and Walters, 1987]. In FdHilb these structures exactly
correspond to orthonormal bases [Coecke, Pavlovic and Vicary, 2008a], which jus-
tifies their name and interpretation.

Quantum measurements can be defined relative to these structures, as self-
adjoint Eilenberg-Moore coalgebras for the comonads induced by the above comonoids
[Coecke and Pavlovic, 2007]. In FdHilb these indeed correspond exactly to pro-
jective spectra. The Eilenberg-Moore coalgebra square

A
Measure � X ⊗A

X ⊗A

Measure

�

Copy ⊗ 1A

� X ⊗X ⊗A

1X ⊗Measure

�

can be seen as an operational expression of von Neumann’s projection postulate
in a resource-sensitive setting: measuring twice is the same as measuring once and
then copying the measurement outcome. This abstract notion of measurement
admits generalisation to POVMs and PMVMs, for which a generalised Naimark
dilatation theorem can be proved at the abstract level [Coecke and Paquette, 2006].

Within CPM(C) the decoherence aspect of quantum measurement, which, con-
cretely in FdHilb, is the completely positive map which eliminates non-diagonal
elements relative to the measurement basis, arises as

Copy ◦ Copy† : X ⊗X → X ⊗X

where X is now taken to be self-dual, that is, X = X∗.
These basis structures not only allow for classical data, measurement and control

operations to be described but also provide useful expressiveness when discussing
multipartite states and unitaries. For example, they capture GHZ-states in a
canonical fashion [Coecke and Pavlovic, 2007], and enable an elegant description
of the state-transfer protocol [Coecke, Paquette and Perdrix, 2008].

Vicary showed that if one drops the co-commutativity requirement of basis
structures in FdHilb, then, rather than all orthonormal bases, one finds exactly
all finite dimensional C*-algebras [Vicary, 2008].

The fact that these multiplicative basis structures allow measurements to be
expressed without any explicit account of branching may be compared to the
way that the pure λ-calculus can be used to encode booleans and conditionals
[Barendregt, 1984]. From this perspective, explicit branching can be seen to have
its merits, while model-checking [Clarke et al., 1999] has done much to ameliorate
the combinatorial unwieldiness mentioned above. It is likely that further insights
will be gained by a deeper understanding of the relationships between the additive
and multiplicative levels.



316 Samson Abramsky and Bob Coecke

7.5 Complementary observables and phases

A further step is taken in [Coecke and Duncan, 2008], where abstract counterparts
to (relative) phases are defined. Given a basis structure on X and a point ψ : I →
X its action on X is defined to be the morphism

Δ(ψ) := Copy† ◦ (ψ ⊗ 1X) : X → X.

From the axioms of basis structures it follows that the set of all these actions on
the hom-set C(I, X) is a commutative monoid. Defining unbiassed points as those
ψ ∈ C(I, X) for which Δ(ψ) is unitary, the corresponding set of unbiassed actions
is always an abelian group, which we call the phase group. In the case of the qubit
in FdHilb the phase group corresponds to the equator of the Bloch sphere, that
is, indeed, to relative phase data.

Also in [Coecke and Duncan, 2008] an axiomatics is proposed for complemen-
tary observables. It is shown that for all known constructions of complementary
quantum observables, the corresponding basis structures obey a ‘scaled’ variant of
the bialgebra laws. This scaled bialgebra structure together with the phase group
is sufficiently expressive to describe all linear maps, hence all mutipartite states
and unitary operators, in FdHilb. It provides an abstract means to reason about
quantum circuits and to translate between quantum computational models, such
as the circuit model and the measurement-based model.

As an application, a description is given of the quantum Fourier transform, the
key ingredient of Shor’s factoring algorithm [Shor, 1994], the best-known example
of a quantum algorithm.

7.6 The quantum harmonic oscillator

Jamie Vicary [2007] gave a purely categorical treatment of the quantum harmonic
oscillator, directly in the setting described in this article, of strongly compact
closed categories with biproducts. In Linear logic terminology, he introduced an
‘exponential level’ of structure, corresponding to Fock space. This provides a
monoidal adjunction that encodes the raising and lowering operators into a co-
commutative comonoid. Generalised coherent states arise through the hom-set
isomorphisms defining the adjunction, and it is shown that they are eigenstates
of the lowering operators. Similar results were independently obtained in [Fiore,
2007] in an abstract ‘formal power series’ context, with a motivation stemming
from Joyal’s theory of species.

7.7 Automated quantum reasoning

The structures uncovered by the research programme we have described provide
a basis for the design of software tools for automated reasoning about quantum
phenomena, protocols and algorithms. Several MSc students at Oxford University



Categorical Quantum Mechanics 317

Computing Laboratory have designed and implemented such tools for their Mas-
ters Thesis projects. An ongoing high-level comprehensive approach has recently
be initiated by Lucas Dixon and Ross Duncan [2008].

7.8 Diagrammatic reasoning

We have used a diagrammatic notation for tensor categories in an informal fashion.
In fact, this diagrammatic notation, which can be traced back at least to Penrose
[1971], was made fully formal by Joyal and Street [1991]; topological applications
can be found in [Turaev, 1994].

The various structures which have arisen in the above discussion, such as strong
compact closure, biproducts, dagger Frobenius comonoids, phase groups, scaled
bialgebras, and the exponential structures used in the description of the quan-
tum harmonic oscilator, all admit intuitive diagrammatic presentations in this
tradition. References on these include [Abramsky and Duncan, 2006; Coecke
and Paquette, 2006; Coecke and Duncan, 2008; Vicary, 2007]. Tutorial intro-
ductions to these diagrammatic calculi are given in [Coecke and Paquette, 2008;
Selinger, 2008a]

These diagrammatic calculi provide very effective tools for the communication
of the structural ideas. The software tools mentioned in the previous sub-section
all support the presentation and manipulation of such diagrams as their interface
to the user.

7.9 Free constructions

In [Abramsky, 2005] a number of free constructions are described in a simple, syn-
thetic and conceptual manner, including the free strongly compact closed category
over a dagger category, and the free traced monoidal category. The Kelly-Lapalaza
[1980] construction of the free compact closed category is recovered in a structured
and conceptual fashion.

These descriptions of free categories in simple combinatorial terms provide a
basis for the use of diagrammatic calculi as discussed in the previous sub-section.

7.10 Temperley-Lieb algebra and connections to knot theory and topo-
logical quantum field theory

Our basic categorical setting has been that of symmetric monoidal categories.
If we weaken the assumption of symmetry, to braided or pivotal categories, we
come into immediate contact with a wide swathe of developments relating to knot
theory, topology, topological quantum field theories, quantum groups, etc. We
refer to [Freyd and Yetter, 1989; Kaufmann, 1991; Turaev, 1994; Yetter, 2001;
Kock, 2003; Street, 2007] for a panorama of some of the related literature.

In [Abramsky, 2007], connections are made between the categorical axiomatics
for quantum mechanics developed in this article, and the Temperley-Lieb algebra,
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which plays a central rôle in the Jones polynomial and ensuing developments. For
illustration, we show the defining relations of the Temperley-Lieb algebra, in the
diagrammatic form introduced by Kauffman:

=

U1U2U1 = U1

=

U2
1 = δU1

=

U1U3 = U3U1

The relationship with the diagrammatic notation we have been using should be
reasonably clear, The ‘cups’ and ‘caps’ in the above diagrams correspond to the
triangles we have used to depict units and counits.

An important mediating rôle is played by the geometry of interaction [Girard,
1989; Abramsky, 1996], which provides a mathematical model of information flow
in logic (cut-elimination of proofs) and computation (normalization of λ-terms).

The Temperley-Lieb algebra is essentially the (free) planar version of our quan-
tum setting; and new connections are made between logic and geometry in [Abram-
sky, 2007]. For example, a simple, direct description of the Temperley-Lieb algebra,
with no use of quotients, is given in [Abramsky, 2007]. This leads in turn to full
completeness results for various non-commutative logics. Moreover, planarity is
shown to be an invariant of the information flow analysis of cut elimination.

This leads to a number of interesting new kinds of questions:

• It seems in practice that few naturally occurring quantum protocols require
the use of the symmetry maps. (For example, none of those described in this
paper do). How much of Quantum Informatics can be done ‘in the plane’?
What is the significance of this constraint?

• Beyond the planar world we have braiding, which carries 3-dimensional geo-
metric information. Does this information have some computational signif-
icance? Some ideas in this direction have been explored by Kauffman and
Lomonaco [2002], but no clear understanding has yet been achieved.

• Beyond this, we have the general setting of Topological Quantum Field The-
ories [Witten, 1988; Atiyah, 1998] and related notions. This may be relevant
to Quantum Informatic concerns in (at least) two ways:

1. A novel and promising paradigm of Topological Quantum Computing
has recently been proposed [Freedman et al., 2004].

2. The issues arising from distributed quantum computing, quantum secu-
rity protocols etc. mean that the interactions between quantum infor-
matics and spatio-temporal structure will need to be considered.
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7.11 Logical syntax

In [Abramsky and Duncan, 2006] a strongly normalising proof-net calculus cor-
responding to the logic of strongly compact closed categories with biproducts is
presented. The calculus is a full and faithful representation of the free strongly
compact closed category with biproducts on a given category with an involution.
This syntax can be used to represent and reason about quantum processes.

In [Duncan, 2006] this is extended to a description of the free strongly compact
category generated by a monoidal category. This is applied to the description of
the measurement calculus of [Danos et al., 2007].

7.12 Completeness

In [Selinger, 2008] Selinger showed that finite-dimensional Hilbert spaces are equa-
tionally complete for strongly compact closed categories. This result shows that if
we want to verify an equation expressed purely in the language of strongly compact
closed categories, then it suffices to verify that it holds for Hilbert spaces.

7.13 Toy quantum categories

In [Coecke and Edwards, 2008] it is shown that Spekkens’ well-known ‘toy model’
of quantum mechanics described in [Spekkens, 2007] can be regarded as an instance
of the categorical quantum axiomatics. The category Spek is defined to be the
dagger symmetric monoidal subcategory of Rel generated by those objects whose
cardinality is a power of 4, the symmetry group on 4 elements, and a well-chosen
copying-deleting pair for the 4 element set.
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EXTENDING CLASSICAL LOGIC FOR
REASONING ABOUT QUANTUM SYSTEMS

Rohit Chadha, Paulo Mateus, Amı́lcar Sernadas,

and Cristina Sernadas

1 INTRODUCTION

A new logic EQPL (exogenous quantum propositional logic) was proposed in [Ma-
teus and Sernadas, 2004a; Mateus and Sernadas, 2004b; Mateus and Sernadas,
2006] for modeling and reasoning about quantum systems, embodying all that is
stated in the relevant Postulates of quantum physics (as presented, for instance, in
[Cohen-Tannoudji et al., 1977; Nielsen and Chuang, 2000]). The logic was designed
from the semantics upwards, starting with the key idea of adopting superpositions
of classical models as the models of the proposed quantum logic.

This novel approach to quantum reasoning is different from the mainstream
approach [Foulis, 1999; Chiara et al., 2004]. The latter, as initially proposed by
Birkhoff and von Neumann [Birkhoff and von Neumann, 1936], focuses on the lat-
tice of closed subspaces of a Hilbert space and replaces the classical connectives by
new connectives representing the lattice-theoretic operations. The former adopts
superpositions of classical models as the models of the quantum logic, leading to
a natural extension of the classical language containing the classical connectives
(just as modal languages are extensions of the classical language). Furthermore,
EQPL allows quantitative reasoning about amplitudes and probabilities, being in
this respect much closer to the possible worlds logics for probability reasoning than
to the mainstream quantum logics. Finally, EQPL is designed to reason about fi-
nite collections of qubits and, therefore, it is suitable for applications in quantum
computation and information. The models of EQPL are superpositions of classical
valuations that correspond to unit vectors expressed in the computational basis
of the Hilbert space resulting from the tensor product of the independent qubit
systems.

Therefore, in EQPL we can express a wide range of properties of states of such
a finite collection of qubits. For example, we can impose that some qubits are
independent of (that is, not entangled with) other qubits; we can prescribe the
amplitudes of a specific quantum state; we can assert the probability of a classical
outcome after a projective measurement over the computational basis; and, we
can also impose classical constraints on the admissible quantum states.
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Herein, we concentrate on presenting a decidable fragment of EQPL by suitably
relaxing the semantic structures of EQPL. Instead of considering Hilbert spaces
we work with inner product spaces over an arbitrary real closed field and its
algebraic closure. The decidability results from the fact that the first order theory
of such fields is decidable [Tarski, 1948; Hodges, 1993; Basu et al., 2003]. This
technique was inspired by related work on probabilistic logic [Abadi and Halpern,
1994]. Furthermore, the decidable fragment of EQPL so established turns out to
be strongly complete although we concentrate on weak completeness. The price we
have to pay for decidability is a weak arithmetic language — we loose the analytic
aspects of complex numbers.

The exogenous approach to extending a given logic is discussed and illustrated
in Section 2. Section 3 presents dEQPL step by step: design options, models,
language and its interpretation, sound axiomatization, and some useful metathe-
orems. In Section 4 we show that dEQPL is weakly complete and decidable. The
proof of weak completeness can easily be adapted to a proof of strong completeness
but we refrained to do so since our primary interest is in applications involving
finitely presented theories. We illustrate the use of dEQPL with two worked ex-
amples in Section 5. First we reason about a Bell state. Afterwards, we reason
about the quantum teleportation protocol proposed in [Bennett et al., 1993]. Fi-
nally, in Section 6 we assess what was achieved and provide an outlook of further
developments of the proposed approach to quantum reasoning.

2 EXOGENOUS APPROACH

The exogenous semantics approach to enriching a given logic roughly consists
of taking as models of the new logic sets of models of the original logic, possibly
together with some additional structure. This general mechanism for building new
logics is described in detail in [Mateus et al., 2005; Caleiro et al., 2006]. The first
example of the approach appeared in the context of probabilistic logics [Nilsson,
1986; Nilsson, 1993], although by then not yet recognized as a general construction.

The adjective “exogenous” is used as a counterpoint to “endogenous”. For in-
stance, in order to enrich some given logic with probabilistic reasoning it may be
convenient to tinker with the models of the original logic. This endogenous ap-
proach has been used extensively. For example, the domains of first-order struc-
tures are endowed with probability measures in [Halpern, 1990]. Other examples
include labeling the accessibility pairs with probabilities in the case of Kripke
structures [Hansson and Jonsson, 1995] for reasoning about probabilistic transi-
tion systems.

By not tinkering with the original models and only adding some additional
structure on collections of those models as they are, the exogenous approach has
the potential for providing general mechanisms for enriching a given logic with
some additional reasoning dimension. As we shall see, in our case the exogenous
approach has the advantage of closely guiding the design of the language around
the underlying concepts of quantum physics while keeping the classical connectives.
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The exogenous approach of collecting the original models as proposed in [Ma-
teus and Sernadas, 2004a; Mateus and Sernadas, 2004b] is inspired by the possible
worlds semantics of modal logic [Kripke, 1963]. It is also akin to the society se-
mantics for many-valued logic [Carnielli and Lima-Marques, 1999] and to the pos-
sible translations semantics for paraconsistent logic [Carnielli, 2000]. The possible
worlds approach also plays a role in probabilistic logic [Nilsson, 1986; Nilsson, 1993;
Bacchus, 1990b; Bacchus, 1990a; Fagin et al., 1990; Abadi and Halpern, 1994;
Chadha et al., 2007].

As an introductory example of the exogenous approach, we briefly explain how
a probabilistic logic can be obtained from classical propositional logic, following
closely [Mateus et al., 2005]. Since quantum reasoning subsumes probabilistic
reasoning, this example will also be useful for our purposes. However, before we
proceed to explain the probabilistic logic, we first concentrate on a fragment of the
probabilistic logic called global propositional logic. Global logic is also a fragment
of the quantum logic proposed in this paper.

We start by taking a set Π of propositional symbols. From a semantic point
of view, the models of global logic are sets of valuations over Π. The language of
global logic consists of:

• Classical propositional formulas constructed from Π using the classical con-
nectives ⊥ and ⇒.

• Global formulas constructed from the classical propositional formulas by the
global connectives ⊥⊥ and �. The global connectives mimic the classical
connectives in a sense which we will make precise shortly.

The satisfaction relation between the semantic models and the formulas is as
follows. A model V (V is some set of “classical” valuations) of the global logic
satisfies a classical propositional formula α if every classical valuation v ∈ V
satisfies α. Therefore, any classical tautology is a global tautology.

Analogous to the case of classical logic, a global valuation V satisfies the global
formula γ1 � γ2 if either V satisfies γ2 or V does not satisfy γ1. The global
connective ⊥⊥ is never satisfied. Clearly this is a copy of the classical propositional
logic and indeed, if we replace the classical connectives in a classical tautology by
their global counterparts we will get a global tautology.

As we just saw, there are two copies of the classical propositional logic in the
global logic. A natural question to ask is whether the two copies are necessarily
distinct. The answer is yes and while the connectives ⊥ and ⊥⊥ collapse, it is not
the case with the two implications. However, there is a relation between those two
and if V satisfies α1 ⇒α2 then V also satisfies α1 �α2. The reverse does not hold
in general.

There is a sound and strongly complete axiomatization for global logic which
contains five axiom schemas and an inference rule. One axiom schema says that
every classical tautology is a global tautology while the other says that replacing
classical connectives by their global counterparts results in a global tautology. One
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axiom identifies ⊥ and ⊥⊥, a second one axiomatizes the relation between the two
implications that we mentioned above, and the last one says that the classical
and global conjunctions (global conjunction is introduced as usual) collapse. The
inference rule is the global counterpart of modus ponens.

Global logic is the first step towards creating the exogenous probabilistic logic.
The probabilistic logic is obtained “exogenously” by assigning probabilities to each
of the classical valuations in a global valuation V . This allows us to reason about
the probability that a classical propositional formula is true in V : the probability
of ϕ is the sum of the probabilities of the valuations that satisfy ϕ. Given a set Π
of propositional symbols, the language of the probabilistic logic consists of:

• Classical propositional formulas constructed from Π using the classical con-
nectives ⊥ and ⇒.

• A set of terms that include:

- real-valued variables and real computable numbers;

- probability terms denoting probabilities of classical formulas; and

- sum and product of terms.

• Comparison formulas of the form t1 ≤ t2 where t1 and t2 are terms.

• Formulas constructed from classical propositional formulas and comparison
formulas using the global connectives ⊥⊥ and �.

A model for the probabilistic logic, that is a probabilistic valuation, contains a
global valuation along with a probability measure which assigns to each classical
valuation a real value between 0 and 1. As explained, this gives us an interpretation
of the probability terms in the language. The satisfaction of classical formulas is
the same as in the global logic. Observe that if V satisfies a classical formula α
then the probability of α being true is 1 regardless of the probability measure on
V . Hence, the probability of a classical tautology in any model is always 1.

In order to interpret the variables, the model also contains an assignment of
variables to real numbers. This helps to interpret the terms and the comparison
formulas in the natural way. The interpretation of the global connectives is the
same as before.

An axiomatization of probabilistic logic is obtained by extending the axiomati-
zation for global logic as follows. The connection between the classical connectives
and probability terms is obtained by three axioms:

1. The probability of any classical tautology is 1.

2. If the probability of the classical formula α1 ∧ α2 is 0 then the probability
of α1 ∨ α2 is the sum of the probabilities of α1 and α2. This is the finite
additivity of probability measures.
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3. If the probability of the classical formula α1 ⇒ α2 is 1 then the probability
of α1 is less than the probability of α2. This is the monotonicity property of
probability measures.

For the comparison formulas, an oracle is used which gives the valid comparison
formulas. The axiomatization is sound and weakly complete modulo the oracle.
However, even with the oracle strong completeness fails as the logic is not compact.

The development of the exogenous quantum logic herein follows the same lines
as the development of the probabilistic one. Instead of assigning probabilities, we
assign amplitudes to the classical valuations in a global valuation. The classical
valuations themselves represent the computational basis of the qubits in a quantum
system. In fact, we are only interested in quantum systems composed of a finite
number of qubits since applications in quantum computation and information only
deal with such systems. A superposition of these classical valuations will then give
the state of the quantum system. We will explicitly have terms in the language
to interpret these amplitudes and they will be at the core of the design of our
language. We postpone the detailed discussion of the language and the logic to
Section 3. The resulting quantum logic is a decidable fragment of the logic in
[Mateus and Sernadas, 2006].

These quantum logics obtained using the exogenous approach are philosophi-
cally closer to some probabilistic logics (like [Fagin et al., 1990; Abadi and Halpern,
1994]) than to the mainstream quantum logics in the tradition of Birkhoff and von
Neumann [Birkhoff and von Neumann, 1936; Foulis, 1999; Chiara et al., 2004].
Both types of quantum logic are motivated by semantic considerations, albeit very
different ones. The mainstream quantum logics are based on the idea of replacing
the Boolean algebras of truth values by the more relaxed notion of orthomodular
lattices. Thus, they end up with non classical connectives reflecting the properties
of meets and joins of those lattices. The exogenous quantum logics are based on
the idea of replacing classical valuations by superpositions of classical valuations
while preserving the classical connectives. On the other hand, in both types of
quantum logic a formula and a propositional symbol in particular denotes a sub-
space of the Hilbert space at hand. However, in the exogenous quantum logics a
quantum system is assumed to be composed of n qubits and, hence, the underlying
Hilbert space has dimension 2n.

Our semantics of quantum logic, although inspired by modal logic, is also com-
pletely different from the alternative Kripke semantics given to mainstream quan-
tum logics (as first proposed in [Dishkant, 1972]). That Kripke semantics is based
on orthomodular lattices.

The quantum logic proposed in [van der Meyden and Patra, 2003b; van der
Meyden and Patra, 2003a; Patra, 2008] is also inspired by probabilistic logics [Fa-
gin et al., 1990] and capitalizes on some techniques first proposed for those logics,
but it has aspects of both mainstream quantum logics and exogenous quantum
logics. In short, it is a classical logic of probabilistic measurements over a quan-
tum system where quantum formulas denote projectors, quantum negation stands
for orthogonal complement and quantum conjunction stands for composition.
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Note also that no amplitude terms appear in [van der Meyden and Patra, 2003b;
van der Meyden and Patra, 2003a] contrarily to exogenous quantum logics where
amplitudes replace probabilities as the central concept.

The tensor product plays a key role in the exogenous quantum logics as it does
in the categorical semantics proposed in [Abramsky and Coecke, 2004; Abramsky
and Duncan, 2006]. However, in our logics we still use the concrete characteriza-
tion of tensor product of qubits (represented in our language by the propositional
symbols).

3 DECIDABLE FRAGMENT OF EQPL

We start by discussing design issues, and then proceed to introduce the logic.

3.1 Design issues

In this section, we shall discuss how the Postulates of quantum mechanics [Cohen-
Tannoudji et al., 1977] guided the design of the proposed logic, and give a brief
introduction to the relevant concepts and results. The first Postulate of quantum
mechanics states:

Postulate 1: Every isolated quantum system is described by a Hilbert space. The
states of the quantum system are the unit vectors of the corresponding Hilbert space.

Please recall that a Hilbert space is a complete inner product space over C
(the field of complex numbers). In quantum computation and information the
quantum systems are composed of qubits. For example, the states of an isolated
qubit are vectors of the form z0|0〉 + z1|1〉 where z0, z1 ∈ C and |z0|2 + |z1|2 = 1.
In other words, they are unit vectors in the (unique up to isomorphism) Hilbert
space of dimension two. As pointed out in the introduction, instead of working
with a Hilbert space we shall consider a “generalized” inner product space over
the algebraic closure of an arbitrary real closed field. This design decision has the
advantage that the resulting logic is decidable. It is possible to work with Hilbert
spaces and still get a weakly-complete calculus as was the case in EQPL [Mateus
and Sernadas, 2006], a previous version of the logic developed herein. Indeed, the
logic defined here identifies a decidable fragment of EQPL, and hence we shall
call it dEQPL. In addition to being decidable, dEQPL turns out to be strongly
complete and, therefore, compact. In fact, the source of the non compactness of
EQPL mentioned in [Mateus and Sernadas, 2006] was in its arithmetic component.

We shall now briefly review some definitions and results concerning real closed
fields and their algebraic closures.

DEFINITION 1 Real closed fields.
An ordered field K = (K,+, ., 1, 0,≤) is said to be a real closed field if the

following hold:



Extending Classical Logic for Reasoning about Quantum Systems 331

• Every non-negative element of the K has a square root in K.

• Any polynomial of odd degree with coefficients in K has at least one solution
in K.

We shall use K1,K2, . . . to range over real closed fields and k1, k2, . . . to range
over the elements of a real closed field. The set of real numbers with the usual
multiplication, addition and order constitute a real closed field. The set of com-
putable real numbers with the same operations is another example of a real closed
field.

The algebraic closure of a real closed field K = (K,+,×, 1, 0,≤) is obtained by
adjoining an element δ to K such δ2 + 1 = 0. The algebraic closure, denoted by
K(δ), is a two-dimensional vector space over K. Each element in K(δ) is of the
form k1 + k2δ where k1, k2 ∈ K. The addition and multiplication are defined as:

(k1 + k2 δ) + (k′
1 + k′

2 δ) = (k1 + k′
1 δ) + (k2 + k′

2 δ)
(k1 + k2 δ).(k′

1 + k′
2 δ) = (k1.k

′
1 − k2.k

′
2) + (k1.k

′
2 + k′

1.k2δ)
where −k2.k

′
2 is the additive inverse of k2.k

′
2

We shall use c1, c2, . . . to range over the elements of K(δ). For example, the
field of complex numbers is the algebraic closure of the set of real numbers with
δ = i. The standard notion of conjugation, absolute value and real and imaginary
parts from complex numbers can be generalized to K(δ) as follows:

Re(k1 + k2 δ) = k1

Im(k1 + k2 δ) = k2

|k1 + k2 δ| = k2
1 + k2

2

k1 + k2δ = k1 + (−k2)δ where −k2 is the additive inverse of k2

The conjugation allows us to generalize the notion of inner product and normed
vector space over C to an arbitrary K(δ) as follows:

DEFINITION 2 K(δ)-inner product space. A K(δ)-inner product space is a vector
space W over the field K(δ) together with a map

〈·, ·〉 : W ×W → K(δ)

such that for all w,w1, w2 ∈ V and k ∈ K(δ), the following hold:

1. 〈w,w1 + w2〉 = 〈w,w1〉 + 〈w,w2〉.

2. 〈w,w〉 ∈ K and 〈w,w〉 ≥ 0.

3. 〈w,w〉 = 0 if and only if w = 0.

4. 〈w1, w2〉 = 〈w2, w1〉.
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5. 〈w1, cw2〉 = c〈w1, w2〉.

DEFINITION 3 K(δ)-normed vector space. A K(δ)-normed space is a vector
space W over the field K(δ) together with a map

||.|| : W ×W → K

such that for all w,w1, w2 ∈ V and k ∈ K, the following hold

1. ||w|| ≥ 0.

2. ||w|| = 0 if and only if w = 0.

3. ||cw|| = |c|||w|| where |c| is the absolute value of c.

4. ||w1 + w2|| ≤ ||w1|| + ||w2||.

We shall say that a vector w is a unit vector if ||w|| = 1.

As in the case of inner product spaces over complex numbers, a K(δ)−inner
product space (W, 〈·, ·〉) gives rise to a norm by letting:

||w|| =
√
〈w,w〉.

For example, the field K(δ) together with the map: 〈c1, c2〉 = c1.c2 is itself a
K(δ)-inner product space. In this case, the resulting norm ( ||c|| =

√
c.c ) is the

absolute value function.
Any Hilbert space is a C-inner product space. However, we shall model quantum

systems as K(δ)−inner product spaces instead of Hilbert spaces, and the field K(δ)
will be a part of our semantic structure. Therefore, any theorem we prove in the
logic would remain valid if we had just used Hilbert spaces.

It is also worthwhile to point out that, unlike Hilbert spaces, K(δ)−inner prod-
uct spaces in general may not have an analytical structure. So, we will not be able
to express properties that necessarily depend upon the analytical structure1.

Moreover, as the logic is intended to be applied for quantum computation and
information, we shall work only with a special kind of K(δ)−inner product spaces
that are defined by free construction from finite sets:

DEFINITION 4 Free K(δ)-inner product space. Given an arbitrary finite set B,
we can construct the free K(δ)-inner product space HK(δ)(B) as:

• Each element of HK(δ)(B) is a map |ψ〉 : B → K(δ).

• |ψ1〉 + |ψ2〉 is pointwise addition, i.e.,

(|ψ1〉 + |ψ2〉)(b) = |ψ1〉(b) + |ψ2〉(b).
1For example, we cannot define the exponential function on an arbitrary K(δ).



Extending Classical Logic for Reasoning about Quantum Systems 333

• c|ψ〉 is pointwise scalar multiplication, i.e.,

(c|ψ〉)(b) = c (|ψ〉(b)).

• The inner product is given by2

〈ψ1|ψ2〉 =
∑
b∈B

|ψ1〉(b) |ψ2〉(b).

The dimension of the vector space HK(δ)(B) is the cardinality of the set B.
Given b ∈ B, let |b〉 ∈ HK(δ)(B) be the vector defined as

|b〉(b) = 1 and |b〉(b1) = 0 for every b1 �= b.

It can be easily checked that the set {|b〉 : b ∈ B} forms a basis of the vector
space HK(δ)(B). Furthermore, it is the case that 〈b|b〉 = 1 and 〈b|b1〉 = 0 for every
b �= b1. For obvious reasons, we say that {|b〉 : b ∈ B} is an orthonormal basis of
HK(δ)(B). This basis plays an important role in the semantics of dEQPL and for
this reason we will henceforth refer to it as being the canonical basis of HK(δ).

A natural question that arises in this context is how do we choose B. The
answer lies in our interest in quantum systems composed of qubits. As mentioned
before, the states of an isolated qubit are vectors of the form z0|0〉 + z1|1〉 where
z0, z1 ∈ C and |z0|2 + |z1|2 = 1. The set of states can be identified with (upto
isomorphism) the unit vectors in the free C-inner product HC(B) where B is an
set of 2 elements. Keeping this is mind, it is natural to represent a qubit by a
propositional symbol (henceforth called a qubit symbol) and take B in this case to
be the set of two possible classical valuations of the qubit symbol: 0 that assigns
false to the qubit symbol and 1 that assigns true to it.

Similarly, the states of a isolated pair of qubits are of the form z00|00〉+z01|01〉+
z10|10〉+z11|11〉, where z00, z10, z01, z11 ∈ C and |z00|2 + |z01|2 + |z10|2 + |z11|2 = 1.
The set of states in this case can be identified with the unit vectors in the free
C-inner product HC(B) where B is the set of the four classical valuations over the
pair of qubit symbols representing the two qubits at hand.

The pattern becomes clear, and in general, we will fix a finite set of qubit
symbols 3:

qB = {qbk : 0 < k ≤ n}.
These will represent the n qubits in our system. As we need to work with the

algebraic closure of arbitrary real closed fields, the states in our systems will be
unit vectors in the free K(δ)-inner product space HK(δ)(2qB), where 2qB is the set

2We adopt here the Dirac notation, given its widespread use by the community of quantum
physics and computation.

3In [Mateus and Sernadas, 2006], the set of qubits was infinite. However, the set was restricted
when judgments were considered.
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of 2n possible classical valuations of the n qubit symbols. We shall call these unit
vectors K(δ)-quantum valuations over the set qB.

Another characteristic of quantum systems that we are likely to encounter in
applications in computation and information is that they will be built from inde-
pendent sub-systems. We shall model the sub-systems by partitioning the set qB,
and a semantic structure will contain this partition. Each member of the parti-
tion, henceforth called a component, will then model the qubits of an independent
sub-system.

If A ⊆ qB is a component, then the states of the A sub-system will be quantum
valuations over A, i.e., unit vectors in HK(δ)(2A). If S is the partition, then the
semantic structure also includes a collection {|ϕ〉A : A ∈ S}, where |ϕ〉A is a
quantum valuation over A. These represent the states of the sub-systems.

In addition to reasoning about component sub-systems, we also need to reason
about bigger sub-systems. The sets of qubits of bigger sub-systems are given by
union of qubits of the component sub-systems. Therefore, given a partition S of
qB, we define Alg(S) = {∪iAi : Ai ∈ S}. A member F ∈ Alg(S) models the qubits
of the component systems. It is easy to see that Alg(S) satisfies the following
properties4:

1. ∅, qB ∈ S.

2. G ∈ S implies that qB \G ∈ S.

3. G1, G2 ∈ S implies that G1 ∪G2 ∈ S

We also need a way to construct the states of sub-systems from smaller ones.
For this, we take recourse to the second Postulate of quantum mechanics:

Postulate 2: The Hilbert space of a quantum system composed of a finite number
of independent components is the tensor product of the component Hilbert spaces.

Therefore, for instance, the state of a sub-system composed of two independent
sub-systems is the “tensor product” of the states of the sub-system. Of course,
we remember that we are not working with Hilbert spaces. Therefore, we need a
definition of a K(δ)-tensor product. For this, we will assume that the reader is
familiar with tensor products of vector spaces. Given two vector (K)(δ) vector
spaces W1 and W2, we shall denote the tensor product by W1 ⊗W2. Please recall
that the vector space W1 ⊗ W2 is generated by vectors of form w1 ⊗ w2 where
w1 ∈ W1 and w2 ∈ W2. We are ready to define K(δ)-tensor products:

DEFINITION 5 K(δ)-tensor product. The tensor product of two K(δ)-in-ner
product spaces (W1, 〈·, ·〉1) and (W2, 〈·, ·〉2), is the pair (W1 ⊗ W2, 〈·, ·〉), where
〈·, ·〉 is defined as:

〈
∑

i

ai vi ⊗ wi ,
∑

j

bj v′j ⊗ w′
j〉 =

∑
i,j

aibj 〈vi, v
′
j〉〈wi, w

′
j〉

4These properties define a structure often called an algebra in probability theory.
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Observe also that given w ∈ W1 ⊗W2 it is not always possible to find w1 ∈ W1

and w2 ∈ W2 such that w = w1 ⊗ w2. Furthermore, when that factorization is
possible it is not necessarily unique.

Please also observe that in our case, the K-vector spaces over the set of qubits A
are generated by vectors |v〉 where v is a classical valuation over A. Therefore, if S
is the partition of qB in our model and A1, A2 ∈ S then the sub-system composed
of A1 and A2 will be generated by vectors of the form |v1〉⊗|v2〉 where vi ∈ H(2Ai).
We will identify |v1〉 ⊗ |v2〉 with the vector |v1v2〉 ∈ H(2A1∪A2) where v1v2 is the
unique valuation that extends v1 and v2. Furthermore, the state of sub-system
composed of A1 and A2 is the tensor product ψA1 ⊗ ψA2 . (Please note that the
tensor product of two unit vectors is again a unit vector.)

When given a quantum state |ψ〉 ∈ HK(δ)(2qB) and non empty G 	 qB, we
say that the qubits in G are not entangled with the other qubits if there are
|ψ1〉 ∈ HK(δ)(2G) and |ψ2〉 ∈ HK(δ)(2qB\G) such that |ψ〉 = |ψ1〉 ⊗ |ψ2〉.

Therefore, given any G ∈ Alg(S), the qubits in G are not entangled with the
other qubits, thanks to the way we build the whole state of the system from
the states of the components. Hence, qubits taken from any two independent
components of the system are not entangled in every possible quantum state.

Please note also that (contrarily to what was adopted in [Mateus and Sernadas,
2006]) we do not require that each component state be non factorisable. This
relaxation of the notion of quantum structure had no impact on the entailment
relation.

Another key concept in the design of our logic is the concept of logical ampli-
tudes. Given a K(δ)-quantum valuation |ψ〉 and a classical valuation v, the inner
product 〈v|ψ〉 is said to be the logic amplitude of |ψ〉 for v. As we shall see, these
logical amplitudes are at the core of dEQPL. These amplitudes appear in two ways
in the structure which we discuss below.

It is also sometimes convenient to work with V 	 2qb, as we may want to
impose classical constraints on the quantum valuations. For example, we may
want to impose (qb1 ∨ qb2) requiring states to have (logical) amplitude zero for
every classical valuation not satisfying this classical formula. In our semantics
structures, we shall therefore explicitly have a set V ⊆ 2qB and we shall call V the
set of admissible classical valuations. Furthermore, for any v �∈ V , we will require
that the amplitude 〈v|ψ〉 = 0 where ψ is the quantum state of the full system.

Note also that every subset A of qB can be identified with a classical valuation
v over qB: v assigns true to qb if and only if qb ∈ A. This, of course, can be
generalized. Any set A ⊂ G ⊂ qB can be identified with a classical valuation vG

A

over G: vG
A assigns true to all elements of A and false to all elements of G \A.

Finally, we also have a collection of K(δ) values ν = {νGA}G⊆qB, A⊆G in the
semantic structure. We impose that if G ⊂ Alg(S) then νGA = 〈vG

A |ψ〉G where
|ψ〉G is the state of the sub-system composed of qubits modeled by G. In other
words, they are logic amplitudes when the qubits in G constitute an independent
sub-system.

It should be stressed that these values are not always physically meaningful. A
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term νGA is meaningful only if G ∈ Alg(S). The others are nevertheless useful
for our purposes and help to avoid partial denotation maps. We are now ready to
assemble the different pieces of our semantic structure:

DEFINITION 6 Quantum structure. A quantum structure over qB is a tuple

w = (K, δ, V,S, |ψ〉, ν)

where:

• K is a real closed field and K(δ) is its algebraic closure;

• V is a nonempty subset of 2qB;

• S is a partition of qB;

• |ψ〉 = {|ψ〉S}S∈S where each |ψ〉S is a unit vector of HS . We extend |ψ〉 to
Alg(S) as follows:

1. |ψ〉∅ = 1;

2. |ψ〉S1∪···∪Sn
= |ψ〉S1

⊗ · · · ⊗ |ψ〉Sn
;

• 〈v|ψ〉qB = 0 if v �∈ V ;

• ν : {νGA}G⊆qB,A⊆G where νGA = 〈vG
A |ψ〉G if G ∈ Alg(S). In particular,

ν∅∅ = 1.

The proposed quantum logic will be interpreted over these quantum structures.
Obviously, we have some redundancy in the notion of quantum structure, namely,
|ψ〉 can be reconstructed from ν. However, this redundancy pays off in ease of use
and in clarifying the connection to quantum physics.

The first two Postulates were sufficient to guide us in the task of setting up the
notion of quantum structures over which we shall be able to define the semantics
of dEQPL. Now, we turn our attention to the Postulates concerning measurements
of physical quantities.

Postulate 3: Every measurable physical quantity of an isolated quantum system
is described by an observable acting on its Hilbert space.

Please recall that an observable is a Hermitian operator such that the direct sum
of its eigensubspaces coincides with the underlying Hilbert space. Also recall that
the spectrum Ω of a Hermitian operator (set of its eigenvalues) is a subset of the
set of real numbers, R. For each e ∈ Ω, we denote the corresponding eigensubspace
by He, and the projector onto the subspace Ee by Pe.

It might seem at first that we need to extend the definition of Hermitian oper-
ators to an arbitrary K(δ) as Hermitian operators are usually defined over Hilbert



Extending Classical Logic for Reasoning about Quantum Systems 337

spaces. However, as we shall see shortly, fortunately that is not required. This is
because we do not have constructs in the language for denoting such measurement
operators. In order to use Postulate 3, we need to consider Postulate 4.

Postulate 4: The possible outcomes of the measurement of a physical quantity
are the eigenvalues of the corresponding observable. When the physical quantity
is measured using observable A on a system in a state |ψ〉, the resulting outcomes
are ruled by the probability space PA

|ψ〉 = (Ω, E|Ω, μA
|ψ〉) where (in the case A has a

countable spectrum)

- Ω is the spectrum of the observable A,

- E|Ω is ℘Ω the power-set of Ω , and

- μA
|ψ〉 : E|Ω → R is the probability measure defined as

μA
|ψ〉(E) =

∑
e∈E

||Pe|ψ〉||2 .

For the applications in quantum computation and information that we have in
mind, only logic projective measurements are relevant. Given a quantum system
with the set of qubits qB and a set of classical valuations V , these are measurements
A such that:

- The spectrum of A is equipotent5 to V , i.e., there is a bijection between the
spectrum of A and V .

- If we identify V with the spectrum of A then for each v ∈ V , the correspond-
ing eigenspace Hv is generated by the vector |v〉. The projector Pv is the
operator |v〉〈v|, i.e., Pv|ψ〉 = 〈v, ψ〉 |v〉 for each vector ψ ∈ HC(2qB).

Postulate 4 then tells us that the stochastic result of making a logic projective
measurement A given a quantum structure w = (K, δ, V,S, |ψ〉, ν) is described by
the finite probability space Pw = (V, ℘V, μw) where for each U ⊆ V :

(1) μw(U) =
∑
v∈U

|〈v|ψ〉|2 .

For example, if the quantum system is in the particular state

α00ω1 |00ω1〉 + α01ω2 |01ω2〉 + α01ω3 |01ω3〉 + α10ω4 |10ω4〉
5The chosen bijection depends on how the qubits are physically implemented. For example,

when implementing a qubit using the spin of an electron, we may impose that spin + 1
2

corre-

sponds to true and spin − 1
2

corresponds to false. But, as we shall see, the semantics of EQPL
does not depend on the choice of the bijection, as long as one exists. The same happens in the
case of classical logic — its semantics does not depend on how bits are implemented. The details
of which voltages correspond to which truth values are irrelevant.
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then the probability of observing the first two qubits qb0, qb1 in the classical
valuation 01 (here we take V as {00ω1, 00ω2, 00ω3, 00ω4}) is given by |α01ω2 |2 +
|α01ω3 |2.

We have probability terms in the language of the proposed logic and Equation 1
is all that we need from Postulates 3 and 4 for interpreting them as we shall see
in Section 3.2.

Once again, we recall that we are working with an arbitrary real closed field.
Given a quantum structure w = (K, δ, V,S, |ψ〉, ν), we define the probability map
μw : ℘(V ) → K as:

(2) μw(U) =
∑
v∈U

|〈v|ψ〉|2 .

The essential difference between Equation 1 and 2 is that summands in the
former are real numbers while the summands of the latter one are elements of
a real closed field given by the quantum structure. It is easy to check that μV

defined in Equation 2 satisfies the “usual” finite probability axioms:

1. μV (∅) = 0 and μV (V ) = 1, and

2. μV (U1 ∪ U2) = μV (U1) + μV (U2) if U1 and U2 are disjoint sets.

Therefore, given a quantum structure w, we have the means for interpreting
dEQPL terms of the form (

∫
α) that denote probabilities.

Finally, although irrelevant to the design of dEQPL, we mention en passant
Postulate 5 that rules how quantum systems evolve beyond measurements:

Postulate 5: Excluding measurements, the evolution of a quantum system is
described by unitary transformations.

This last Postulate becomes relevant only when designing a dynamical extension
of the logic (see for instance [Mateus and Sernadas, 2004b]).

3.2 Language and semantics

There are two kinds of terms in dEQPL, one denoting elements of real closed field
in the quantum structure and the other denoting elements in its algebraic closure.
The formulas of dEQPL, henceforth called quantum formulas, are constructed from
classical propositional formulas, formulas denoting sub-system and comparison
formulas (comparing terms denoting elements of real closed fields) using global
connectives introduced in Section 2. We present language of dEQPL in Table 1
using an abstract version of BNF notation [Naur, 1963] for a compact presentation
of inductive definitions. We discuss the language in detail below.

The first syntactic category is classical formulas. Please recall that we fixed a
finite set of qubit symbols qB. Classical formulas are built from qubit symbols in qB
using the classical disjunctive connectives, falsum ⊥ and implication ⇒. As usual,
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Classical formulas
α := ⊥ � qb � (α⇒ α)

Term language (with the proviso A ⊆ G ⊆ qB)
t := x � 0 � 1 � (t + t) � (t t) � Re(u) � Im(u) � |u| � (

∫
α)

u := z � |%〉GA � t + it � u � (u + u) � (uu) � (α � u; u)

Quantum formulas (with the proviso F ⊆ qB):
γ := α � (t ≤ t) � [F ]� ⊥⊥ �(γ � γ)

Table 1. Language of dEQPL

other classical connectives like ¬, ∧,∨,⇔ and % are introduced as abbreviations.
We denote the set of qubit symbols occurring in α by qB(α), and say that a
classical formula α is over a set S of qubit symbols if qB(α) ⊆ S.

For the term language, we pick two disjoint denumerable sets of variables. The
first set of variables X = {xk : k ∈ N} is interpreted in the real closed field of
the quantum structure, and the second set Z = {zk : k ∈ N} is interpreted in the
closure of the real closed fields. As we shall see in Section 5, variables are often
useful for applications that we have in mind. There are two syntactic categories t
and u for terms, which are mutually defined. The syntactic category t denotes the
elements of a real closed field and u denotes the elements of its closure respectively.
We will often abuse the notation by saying that t is a real term and u is a complex
term.

Most of the term constructs are self-explanatory and already motivated in the
previous section. The term |%〉GA denotes the logical amplitude νGA in the quan-
tum structure, and henceforth will be called an amplitude term. The term (

∫
α)

denotes the probability that classical formula α holds for an outcome of a logical
projective measurement, and will be called a probability term. The denotation of
the alternative term (α � u1; u2) will be the value denoted by u1 if α is true, and
the value denoted by u2 otherwise.

As usual, we may define the notion of occurrence of a term t1 in a term t, and
the notion of replacing zero or more occurrences of terms t1 in t by t2. If �x, �t, �z
and �u are sequences of real variables, real terms, complex variables and complex
terms respectively, we will write t{|�x/�t, �z/�u|} to mean the real term obtained by
substituting all occurrences of xi by ti and all occurrences of zj by uj . The complex
term u{|�x/�t, �z/�u|} is similarly defined.

The quantum formulas are built from classical formulas α, sub-system formulas
[F ] and comparison formulas (t ≤ t) using the connectives ⊥⊥ and �. The formulas
consisting of just the classical formulas, sub-system and comparison formulas are
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called quantum atoms, and the set of quantum atoms shall henceforth be called
qAtom. We shall use δ, δ′ to range over elements of qAtom. Please note that
quantum bottom ⊥⊥ and quantum implication � are global connectives and should
not be confused with their classical (local) counterparts.

The notion of occurrence of a term t in a quantum formula γ can be easily
defined. However, we have to be careful while defining the notion of occurrence of
a quantum formula γ in the quantum formula γ1. This is because we want γ to
occur as a quantum sub-formula of γ1 and rule out situations where γ occurs as
classical sub-formula. More precisely, we define γ1 q-occurs in γ inductively as:

• if γ is a classical formula, a comparison formula, a sub-system formula, or
⊥⊥, then γ1 q-occurs in γ if and only if γ1 is γ and;

• if γ is γ′ � γ′′ then γ1 q-occurs in γ if and only if one of the following holds:

– γ1 is γ, or

– γ1 q-occurs in γ′, or

– γ1 q-occurs in γ′′.

The notion of replacing zero or more q-occurrences of a quantum formula γ1 in γ
by γ′ can now be suitably defined.

For example, the classical formula qb q-occurs in (qb � qb1) and replacing one
q-occurrence of qb by qb2 will yield the quantum formula (qb2 � qb1). On the
other hand qb does not q-occur in (qb ⇒ qb1) (qb is a classical sub-formula and
not quantum sub-formula). The replacement qb by qb2 in (qb⇒qb1) has no effect.
Similarly, qb does not q-occur in [{qb}].

For clarity sake, we shall often drop parenthesis in formulas and terms if it does
not lead to ambiguity. As expected, other quantum connectives will be introduced
as abbreviations. However, before introducing a whole set of useful abbreviations,
we present the semantics of the language.

The language is interpreted in a quantum structure as defined in Section 3.1.
Given a quantum structure w = (K, δ, V,S, |ψ〉, ν), recall that K is a real closed
field with K(δ) as its algebraic closure, V is a set of valuations over qB, S is a
partition of qB, |ψ〉 is a collection of K(δ)-quantum states, and ν is a collection of
amplitude terms. We shall assume the semantics of classical propositional logic,
and say that v �c α if the classical valuation v satisfies the classical formula α.

For interpreting the probability terms, we shall use the probability map μw :
℘(V ) → K defined in Section 3.1 as:

μw(U) =
∑
v∈U

||〈v|ψ〉||2 .

For the probability terms, we shall also need the extent at a set V of classical
formulas over S defined as:

|α|V = {v ∈ V : v �c α}.
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For interpreting the variables, we need the concept of an assignment. Given a
real closed field K, a K-assignment ρ is a map such that ρ(x) ∈ K for each x ∈ X
and ρ(z) ∈ K(δ) for each z ∈ Z. Please note that when K is clear from the context,
we shall drop K.

Given a quantum structure w = (K, δ, V,S, |ψ〉, ν) and a K-assignment ρ. The
denotation of terms and satisfaction of quantum formulas at w and ρ and is in-
ductively defined in Table 2 (omitting the obvious ones).

Denotation of terms
[[x]]wρ = ρ(x)
[[t1 + it2]]wρ = [[t1]]wρ + δ[[t2]]wρ

[[(
∫
α)]]wρ = μw(|α|V )

[[z]]wρ = ρ(z)
[[|%〉GA]]wρ = νGA

[[(α � u1; u2)]]wρ =
{

[[u1]]wρ if |α|V = V
[[u2]]wρ otherwise

Satisfaction of quantum formulas
wρ � α iff |α|V = V
wρ � (t1 ≤ t2) iff [[t1]]wρ ≤ [[t2]]wρ
wρ � [A] iff A ∈ Alg(S)
wρ ��⊥⊥
wρ � (γ1 � γ2) iff wρ �� γ1 or wρ � γ2

Table 2. Semantics of dEQPL

Please observe that the set V is sufficient to interpret the classical formulas,
and the partition S is sufficient to interpret the sub-system formulas. The K-
assignment ρ is sufficient to interpret a useful sub-language of the formulas defined
as:

κ := (a ≤ a)� ⊥⊥ �(κ � κ)
a := x � 0 � 1 � (a + a) � (a a) � Re(b) � Im(b) � |b|
b := z � a + ia � b � (b + b) � (b b)

Henceforth, the terms of this sub-language will be called arithmetical terms and
the formulas will be called arithmetical formulas.

We may use the satisfaction relation to define entailment as expected: we say
that a set of quantum formulas Γ entails a quantum formula η, written Γ � η,
if wρ � η for every w and ρ satisfying every element of Γ. We say a quantum
formula η is valid when it is entailed by the empty set of quantum formulas. Please
note also that the metatheorem of entailment holds: Γ, η1 � η2 iff Γ � (η1 � η2).
That is, quantum implication internalizes the notion of quantum entailment. The
following are some examples of entailment:
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� (¬α) � (�α)
� (α1 ∧ α2) ≡ (α1 $ α2)

[G1], [G2] � [G1 ∩G2]
α � ((

∫
α) = 1)

[G] � ((
∑

A⊆G ||%〉GA|2) = 1)

We shall now present some useful abbreviations, and give some small examples.

3.3 Abbreviations and examples

As anticipated, the proposed quantum language with the semantics above is rich
enough to express interesting properties of quantum systems. To this end, it is
quite useful to introduce other operations, connectives and modalities through
abbreviations. We start with some additional quantum connectives:

• quantum negation: (� γ) for (γ� ⊥⊥);

• quantum disjunction: (γ1 � γ2) for ((� γ1) � γ2);

• quantum conjunction: (γ1 $ γ2) for (�((� γ1) � (� γ2)));

• quantum equivalence: (γ1 ≡ γ2) for ((γ1 � γ2) $ (γ2 � γ1)).

It is also useful to introduce some additional comparison formulas:

• (t1 < t2) for ((t1 ≤ t2) $ (�(t2 ≤ t1)));

• (t1 = t2) for ((t1 ≤ t2) $ (t2 ≤ t1));

• (u1 = u2) for ((Re(u1) = Re(u2)) $ (Im(u1) = Im(u2)))

Please note that the only constants in our term language are 0 and 1. As every
real closed field K has characteristic 0, we can embed a copy of rationals in K. It
is also possible to take square roots of positive numbers. Hence, it will be useful
to use the following abbreviations (with the proviso n > 0):

• (t = n) for t =
((1 + (1 + . . . ...)))︸ ︷︷ ︸

n times
;

• (t = m
n ) for ((m.t) = n);

• (t1 =
√

t2) for ((t2 ≥ 0) $ (t12 = t2)).

Given A ⊆ G ⊆ qB, the following classical formula will also be useful:

• (∧GA) is ((∧qbk∈ Aqbk) ∧ (∧qbk∈ G\A(¬ qbk)).
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The classical formula (∧GA) specifies the unique classical valuation that satisfies
all the qubit symbols in A and does not satisfy the qubit symbols in G \ A. We
will often need this classical formula in the case the set G is the full set of qubit
symbols qB. Therefore, we will often use the following abbreviation

• (∧A) for (∧qBA).

The logical amplitude terms, |%〉GA, are easily extendible to any classical for-
mula as (with the provisos qB(α) ⊆ G and A ⊆ G ⊆ qB):

• |α〉GA for (((∧GA) ⇒ α) � |%〉GA; 0).

Intuitively, the amplitude term |α〉GA coincides with |%〉GA when the valuation
∧GA satisfies with α and is 0 otherwise. We will often use this term in the case G
is the full set of qubit symbols qB. Therefore, the following abbreviation will also
be useful:

• |α〉A for |α〉qBA.

We introduce a couple of probability modalities as abbreviations:

• (♦α) for (0 < (
∫
α));

• (�α) for (1 = (
∫
α)).

Finally, we can also define a quantum modality as an abbreviation:

• ([G]♦ α : u) for ([G] $ (|u| > 0) $ (�A⊆G(|α〉GA = u))).

Intuitively ([G]♦ α : u) is true iff G is a sub-system, there is a subset A of G such
that the classical valuation ∧GA satisfies α and the logical amplitude |%〉GA takes
the non-zero value u.

We discuss a small example where we demonstrate the usefulness of dEQPL to
specify properties of a quantum system. We postpone the discussion of more in-
volved examples to Section 5. Consider the following variant of Schrödinger’s cat.
The attributes of the cat that we consider are: being inside or outside the box, alive
or dead, and moving or still. We choose three qubit symbols qb0, qb1, qb2 to repre-
sent these attributes. For the sake of readability, we use cat-in-box, cat-alive and
cat-moving instead of the symbols qb0, qb1 and qb2 respectively. The following
dEQPL formulas constrain the state of the cat at different levels of detail:

1. [cat-in-box, cat-alive, cat-moving];

2. (cat-moving ⇒ cat-alive);

3. ((♦ cat-alive) $ (♦ (¬ cat-alive)));

4. (�[cat-alive]);

5. ((
∫
cat-alive) = 1

3 );
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6. ([cat-alive, cat-moving] $ ((
∫
cat-alive ∧ cat-moving) = 1

6 )
$ ((

∫
cat-alive ∧ (¬ cat-moving)) = 1

6 )
$ ((

∫
(¬ cat-alive) ∧ (¬ cat-moving)) = 2

3 )).

Please observe that all the above assertions are consistent with each other.
Intuitively, the first assertion states that the qubits cat-in-box, cat-alive and
cat-moving form a sub-system and therefore, are not entangled with the other
qubits of the cat system. The second is a classical constraint on the set of ad-
missible valuations: if the cat is moving then it is alive. The third assertion is a
consequence of the famous paradox: the cat can be in a state where it is possible
that the cat is alive and it is possible that the cat is dead. The fourth assertion
states that the qubit cat-alive is necessarily entangled with other qubits. The
fifth assertion states that the cat is in a state where the probability of observing
it alive (after collapsing the wave function) is 1

3 . Finally, the sixth assertion states
that the qubits cat-alive, cat-moving are not entangled with other qubits, and
that the cat is in quantum state where: the probability of observing it alive and
moving is 1

6 , the probability of observing it alive and not moving is 1
6 , and the

probability of observing it dead (and, thus also not moving by second assertion)
is 2

3 .

3.4 The axiomatization

We shall present a Hilbert-style axiomatization of the dEQPL. We need two new
concepts for the axiomatization, one of quantum tautology and the second of a
valid arithmetical formula.

Let P be a countable set of propositional symbols disjoint from qB. Given a
classical formula β over P, let βq be the syntactic entity obtained by replacing
all occurrences of ⊥ by ⊥⊥ and ⇒ by �. A quantum formula σ is said to be a
quantum tautology if there is a classical tautology β over P and a map σ : P →
qAtom such that σ coincides with βqσ where βqσ is the quantum formula obtained
from βq by replacing each p ∈ P by σ(p). For instance, the quantum formula
((x1 ≤ x2) � (x1 ≤ x2)) is tautological (obtained, for example, from the classical
tautology p⇒ p).

Please recall that an arithmetical formula in the dEQPL is any formula that does
not have probability terms, amplitude terms, alternative terms, classical formulas
and sub-system formulas. As noted in Section 3.2, given an quantum structure
with K0 as the underlying real closed field, a K0-assignment is enough to inter-
pret all arithmetical formulas. We say that an arithmetical formula κ is a valid
arithmetical formula if it holds for any assignment that maps variables into an
arbitrary real closed field K. Clearly, a valid arithmetical formula holds for all
semantic structures of dEQPL. It is a well-known fact from the theory of quanti-
fier elimination [Hodges, 1993; Basu et al., 2003] that the set of valid arithmetical
formulas so defined is decidable6. However, we shall not go into details of this

6For the arithmetical sub-language, we may treat the global connectives as classical connec-
tives.
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result as we want to focus our attention on reasoning about quantum aspects only.
The axioms and inference rules of dEQPL are listed in Table 3. In total, we

have two inference rules and sixteen axioms. The two inference rules are modus
ponens for classical implication CMP and modus ponens for quantum implication
QMP7. The axioms are better understood in the following groups.

Axioms
[CTaut] � α for each classical tautology α
[QTaut] � γ for each quantum tautology γ

[Lift⇒] � ((α1 ⇒ α2) � (α1 � α2))
[Eqv⊥] � (⊥≡ ⊥⊥)
[Ref$] � ((α1 $ α2) � (α1 ∧ α2))

[Sub∅] � [∅]
[Sub∪] � ([G1] � ([G2] � [G1 ∪G2]))
[Sub\] � ([G] ≡ [qB \G])

[RCF] � κ{|�x/�t , �z/�u|} where κ is a valid arithmetical formula,
�x, �z, �t and �u are sequences of real variables, complex
variables, real terms and complex terms respectively

[If%] � (α � ((α � u1; u2) = u1))
[If⊥] � ((�α) � ((α � u1; u2) = u2))

[Empty] � (|%〉∅∅ = 1)
[NAdm] � ((¬(∧A)) � (|%〉qBA = 0))
[Unit] � ([G] � ((

∑
A⊆G ||%〉GA|2) = 1))

[Mul] � (([G1] $ [G2]) � (|%〉G1∪G2A1∪A2
= |%〉G1A1

|%〉G2A2
))

where G1 ∩G2 = ∅, A1 ⊆ G1 and A2 ⊆ G2

[Prob] � ((
∫
α) = (

∑
A ||α〉A|2))

Inference rules
[CMP] α1, (α1 ⇒ α2) � α2

[QMP] γ1, (γ1 � γ2) � γ2

Table 3. Axioms for dEQPL

7Actually, CMP can be derived from QMP and Lift⇒.
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We have as axioms the classical tautologies and the quantum tautologies (CTaut
and QTaut, respectively). Since the set of classical tautologies and the set of
quantum tautologies are both recursive, there is no need to spell out the details
of tautological reasoning.

The axioms Lift⇒, Eqv⊥ and Ref$ are sufficient to relate (local) classical
reasoning and (global) quantum tautological reasoning. These are exactly the
axioms that relate classical connectives and global connectives in global logic (see
Section 2). We refer to [Mateus et al., 2005] for more details.

The axioms Sub, Sub∪, and Sub\ are enough to reason about sub-systems.
Together, they impose that sub-systems are closed under set-theoretic operations
(closure under intersection and set difference appear as theorems).

The axiom RCF says that if κ is a valid arithmetical formula, then any formula
obtained by replacing variables with the terms of dEQPL is a tautology. Since
the set of valid arithmetical formulas is recursive, we refrain from spelling out the
details.

The axioms If% and If⊥ are self-explanatory, and will be used in the complete-
ness proof to remove alternative terms.

The axioms Empty, NAdm, Unit and Mul rule logical amplitudes. Each of
them closely reflects a property of our semantic structures. The axiom empty says
that the logical amplitude |%〉∅∅ is always 1. The axiom Unit says that the state
of each sub-system is a unit vector. The axiom NAdm says that the amplitude of
a non-admissible classical valuation is 0. The axiom Mul says that the state of a
system composed of two subs-systems is a tensor product of the two sub-systems.

Finally, the axiom Prob relates probabilities and amplitudes, closely following
Postulate 4 of quantum mechanics.

As expected, we say that a formula γ is a theorem, written � γ, if we can build a
derivation of γ from the axioms using the inference rules. We say that a (possibly
infinite) set of formulas Γ derives γ, written Γ � γ, if we can build a derivation of
γ from axioms and the inference rules using formulas in Γ as hypothesis. As an
illustration of the axiomatization, we establish the following theorems:

PROPOSITION 7. For any classical formulas α1, α2, we have

[Lift∧] � (α1 ∧ α2) � (α1 $ α2).
[PUnit] � ((

∫
%) = 1).

Proof. Derivation of [Lift∧]:
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1 (α1 ∧ α2) ⇒ α1 CTaut

2 ((α1 ∧ α2) ⇒ α1) � ((α1 ∧ α2) � α1) Lift⇒

3 (α1 ∧ α2) � α1 QMP:1,2

4 (α1 ∧ α2) ⇒ α2 CTaut

5 ((α1 ∧ α2) ⇒ α2) � ((α1 ∧ α2) � α2) Lift⇒

6 (α1 ∧ α2) � α2 QMP:4,5

7 ((α1 ∧ α2) � α1) � (((α1 ∧ α2) � α2) � ((α1 ∧ α2) � (α1 � α2))) Qtaut

8 ((α1 ∧ α2) � α2) � ((α1 ∧ α2) � (α1 � α2)) QMP:3,8

9 (α1 ∧ α2) � (α1 � α2) QMP:6,8

Derivation of [PUnit]

1 [∅] Sub∅

2 [∅] � [qB] Sub\

3 [qB] QMP:1,2

4 ([qB] � ((
P

A⊆qB ||�〉qBA|2) = 1)) Unit

5 ((
P

A⊆qB ||�〉qBA|2) = 1) QMP:3,4

6 ((
R �) = (

P
A⊆qB ||�〉qBA|2)) Prob

7 (((
R �) = (

P
A⊆qB ||�〉qBA|2)) � (((

P
A⊆qB ||�〉qBA|2) = 1) � ((

R �) = 1))) RCF

8 (((
P

A⊆qB ||�〉qBA|2) = 1) � ((
R �) = 1)) QMP:6,7

9 ((
R �) = 1) QMP:5,8

�

We finish this section with a list of interesting theorems. The first three shall
be proved in Section 3.6 using the metatheorems of the logic. The first two relate
local equivalence and negation with their global counterparts, while the third one
says sub-systems are closed under set intersection and the fourth one says that
sub-systems are closed under set difference.

[Lift⇔] � (α1 ⇔ α2) � (α1 ≡ α2).
[Lift¬] � ¬α � �α.
[Sub∩] �F ([G1] � ([G2] � [G1 ∩G2])).
[SubDiff] �F ([G1] � ([G2] � [G1 \G2])).

The following theorems give some insight on the major properties of logical
amplitudes.
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[AAdd] � ((|(α1 ∨ α2)〉G + |(α1 ∧ α2)〉G) = (|α1〉G + |α2〉G)).
[AMon] � ((α1 ⇒ α2) � (||α1〉G| ≤ ||α2〉G|)).
[ASoE] � ((α1 ⇔ α2) � (|α1〉G = |α2〉G)).
[ANec] � (α � (|α〉G = |%〉G)).
[AMExc] � ((|α〉G + |(¬α)〉G) = |%〉G) .

The first of the following theorems about probability after measurements just
states finite additivity. The second relates logical reasoning with probability rea-
soning (monotonicity). These two theorems and the theorem PUnit illustrated in
Proposition 7 are axioms in the exogenous probabilistic logic discussed in Section 2.

[PAdd] � (((
∫
(α1 ∨ α2)) + (

∫
(α1 ∧ α2))) = ((

∫
α1) + (

∫
α2))).

[PMon] � ((α1 ⇒ α2) � ((
∫
α1) ≤ (

∫
α2))).

The following theorems show that probability modalities behave as normal modal-
ities.

[PNec] � (α � (�α)).
[PNorm] � ((�(α⇒ α′)) � ((�α) � (�α′))).

The quantum modalities also behave as normal modalities.

[QNorm] � (([G]♦ (α ∨ α′) : u) ≡ (([G]♦ α : u) � ([G]♦ α′ : u))) .
[QMon] � ((α⇒ α′) � (([G]♦ α : u) � ([G]♦ α′ : u))).
[QCong] � ((u = u′) � (([G]♦ α : u) � ([G]♦ α : u′))) .

3.5 Soundness

We now show that the calculus is strongly sound, i.e., if Γ � γ then Γ � γ. It
suffices to show that each of the axioms is valid, i.e., if � γ1 is an axiom, then
every semantic structure satisfies γ1.

LEMMA 8. The axiom QTaut is valid.

Proof. Assume that β is a classical tautology over the set of propositional symbols
P and let σ : P → qAtom be a map from P into quantum atoms. We show that
βqσ is valid in all models of dEQPL.

Take an arbitrary quantum structure w = (K, δ, V,S, |ψ〉, ν), and consider the
classical valuation v′ over P such that

v′(p) =
{

1 if wρ � σ(p)
0 otherwise .

We show that for any classical formula β′ over P

v′ � β′ iff wρ � β′
qσ
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by induction on the structure of β′ as follows.
If β′ is a propositional symbol then it follows from the definition of v′. The case

where β′ is the connective ⊥ is immediate.
If β′ is (β1 ⇒ β2), then v′ satisfies β2 or v′ does not satisfy β1. If v′ satisfies

β2 then by induction hypothesis wρ � (β2)q. If v′ does not satisfy β1, then by
induction hypothesis once again, v′ �� (β1)q. Therefore, in either case, wρ �
(β1)q � (β2)q. Now, note that β′

q is (β1)q � (β2)q.
The lemma now follows by observing that v′ � β. �

LEMMA 9. The axioms are valid.

Proof. The axioms CTaut, Eqv⊥, RCF, If%, If⊥, Empty, Sub∅, Sub∪ and
Sub\ are easy to show. For the rest, let w = (K, δ, V,S, |ψ〉, ν) be a quantum
structure and ρ a K-assignment. We consider the other axioms one by one:

• Lift⇒. Assume that wρ � (α1 ⇒ α2). Then, by definition, all classical
valuations in V must satisfy (α1 ⇒ α2). Therefore, if all classical valuations
in V satisfy α1 they must satisfy α2 also. Hence, either |α1|V �= V or
|α2|V = V . We conclude, by definition, w � α1 � α2.

• Ref$. Similar to the axiom Lift⇒.

• NAdm. Assume that wρ � (¬(∧A)). This means that the classical val-
uation vqB

A that assigns 1 to the qubit symbols in A and 0 to all other
qubits is not an element of V . Therefore, νqBA = 〈vqB

A |ψ〉qB = 0 and hence
wρ � |%〉qBA = 0.

• Prob. Using the definition [[(
∫
α)]]wρ = μw(|α|V ) =

∑
v∈|α|V |〈v|ψ〉qB|2, it

suffices to show that

∑
v∈|α|V

|〈v|ψ〉qB|2 = [[
∑
A

||α〉A|2]]wρ.

Please note that [[|α〉A]]wρ =
{

νqBA if vqB
A ∈ |α|V

0 otherwise
.

Also, by definition, νqBA = 〈vqB
A |ψ〉qB. Therefore,

[[
∑
A

||α〉A|2]]wρ =
∑

vqB
A ∈|α|V

|〈vqB
A |ψ〉qB|2

We conclude by observing that every v is a vqB
A for some unique A ⊆ qB.
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• Unit. Assume that wρ � [G]. Then G ∈ Alg(S). Please note that {|vG
A〉 :

A ⊆ G} forms an orthonormal basis of H(2G). Hence,

|ψ〉G =
∑
A⊆G

〈vG
A |ψ〉G |vG

A〉.

Again, by definition, 〈vG
A |ψ〉G = νGA and so

|ψ〉G =
∑
A⊆G

νGA |vG
A〉.

Since |ψ〉G is a unit vector, we get∑
A⊆G

|νGA|2 = 1.

We conclude by noting that [[|%〉GA]]wρ = νGA by definition.

• Mul. Assume that wρ � [G1] $ [G2] where G1 ∩ G2 = ∅. Then G1, G2 ∈
Alg(S). The definition of quantum structure says that |ψ〉G1∪G2

= |ψ〉G1
⊗

|ψ〉G2
.

The definition of tensor product says that |vG1∪G2
A1∪A2

〉 = |vG1
A1

〉 ⊗ |vG2
A2

〉.
The definition of quantum structure gives

νG1∪G2A1∪A2 = 〈vG1∪G2
A1∪A2

|ψ〉
G1∪G2

.

The definition of tensor product then gives,

νG1∪G2A1∪A2 = 〈vG1
A1

⊗ vG2
A2

| ψG1 ⊗ ψG2〉G1∪G2
= 〈vG1

A1
|ψ〉

G1
〈vG2

A2
|ψ〉

G2
.

We conclude by observing that νG1A1 is 〈vG1
A1

|ψ〉
G1

and νG2A2 is 〈vG2
A2

|ψ〉
G2

.

�

THEOREM 10 Soundness. The proof system of dEQPL is sound.

Proof. The proof now follows by induction on the number of steps in the deriva-
tion. �

3.6 Metatheorems

We now prove some useful metatheorems for dEQPL. We start by showing that
the inference rule Hypothetical Syllogism holds for dEQPL.

LEMMA 11 Hypothetical Syllogism. Let γ1, γ2, γ3 be quantum formulas. Then,

[HypSyl] Γ � γ1 � γ2 and Γ � γ2 � γ3 imply Γ � γ1 � γ3.
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Proof. Observe that by QTaut,

� (γ1 � γ2) � ((γ2 � γ3) � (γ1 � γ3)).

The proposition follows by using two instances of QMP. �

The inference rule HypSyl is a useful rule as illustrated in the derivation of the
theorem Lift¬ below:

PROPOSITION 12. For any classical formula α, we have

[Lift¬] � ¬α � �α.

Proof.

1 ((⊥� ⊥⊥) � (⊥⊥ �⊥)) Eqv⊥

2 ((⊥� ⊥⊥) � (⊥⊥ �⊥)) � (⊥� ⊥⊥) QTaut

3 (⊥� ⊥⊥) QMP: 1,2

4 (⊥� ⊥⊥) � ((α �⊥) � (α� ⊥⊥)) QTaut

5 (α �⊥) � (α� ⊥⊥) QMP: 3,4

6 (α ⇒⊥) � (α �⊥) Lift⇒

7 (α ⇒⊥) � (α� ⊥⊥) HypSyl: 5,6

�

The axiomatization also enjoys the metatheorem of deduction:

THEOREM 13 Metatheorem of deduction. Let Γ be a set of quantum formulas
and γ1, γ2 be quantum formulas. Then,

Γ ∪ {γ1} � γ2 iff Γ � γ1 � γ2.

Proof. (←) Assume that Γ � γ1�γ2. Let Π be a proof of the derivation Γ � γ1�γ2

and assume that the length of Π is n. We can extend Π to obtain Γ ∪ {γ1} � γ2

as follows:

n γ1 � γ2 Π
n+1 γ1 Hyp
n+2 γ2 QMP: n,n+1

(→) Assume that Γ ∪ {γ1} � γ2. We will prove Γ � γ1 � γ2 by induction on n,
the length of proof of Γ∪{γ1} � γ2. The base step n = 1 will be subsumed by the
inductive step. In the inductive step, we consider the last rule applied. There are
three cases:
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• γ2 is either an hypothesis or an axiom. In this case:

1 γ2 axiom or hypothesis
2 γ2 � (γ1 � γ2) QTaut
3 γ1 � γ2 QMP: 1,2

• γ2 is obtained from γ and γ � γ2 by QMP where γ and γ � γ2 are also
derived from Γ ∪ {γ1}. Then, by the induction hypothesis,

- Γ � γ1 � γ;

- Γ � γ1 � (γ � γ2)

Let Π1 and Π2 be the proofs of Γ � γ1 � γ and Γ � γ1 � (γ � γ2) of lengths
m1 and m2, respectively. Let m3 be m1 + m2. The proof of Γ � γ1 � γ2 is
as follows:

m1. γ1 � γ Π1

m3. γ1 � (γ � γ2) Π2

m3 + 1. (γ1 � (γ � γ2)) � ((γ1 � γ) � (γ1 � γ2)) QTaut
m3 + 2. (γ1 � γ) � (γ1 � γ2) QMP: m3,m3 + 1
m3 + 3. γ1 � γ2 QMP: m1,m3 + 2

• γ2 is obtained from γ and γ ⇒ γ2 by CMP where γ and γ ⇒ γ2 are also
derived from Γ ∪ {γ1}. Then, by the induction hypothesis,

- Γ � γ1 � γ;

- Γ � γ1 � (γ ⇒ γ2).

By the axiom Lift⇒ we also have Γ � (γ ⇒ γ2) � (γ � γ2).

By hypothetical syllogism (Lemma 11) we also have Γ � γ1 � (γ � γ2). The proof
now proceeds as in the previous case. �

We get as a corollary:

COROLLARY 14 Metatheorem of reductio ad absurdum. Let Γ be a set of quan-
tum formulas and γ be a quantum formula. Then,

If Γ ∪ {γ} �⊥⊥ then Γ � � γ.

We use the metatheorem of equivalence to derive the following theorems:

PROPOSITION 15. For every classical formulas α1 and α2 and subsets G1, G2 ∈
qB, we have

[Lift≡] � (α1 ⇔ α2) � (α1 ≡ α2).
[Sub∩] �F ([G1] � ([G2] � [G1 ∩G2])).
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Proof. We shall use metatheorem of deduction to show each of the theorems:
Lift≡. It suffices to show that (α1 ⇔ α2) � (α1 ≡ α2)

1 (α1 ⇒ α2) ∧ (α2 ⇒ α1) Hyp

2 ((α1 ⇒ α2) ∧ (α2 ⇒ α1)) ⇒ (α1 ⇒ α2) CTaut

3 (α1 ⇒ α2) CMP: 1,2

4 (α1 ⇒ α2) � (α1 � α2) Lift⇒

5 (α1 � α2) QMP: 3, 4

6 ((α1 ⇒ α2) ∧ (α2 ⇒ α1)) ⇒ (α2 ⇒ α1) CTaut

7 (α2 ⇒ α1) CMP: 1,2

8 (α2 ⇒ α1) � (α2 � α1) Lift⇒

9 (α2 � α1) QMP: 7, 8

10 (α1 � α2) � ((α2 � α1) � (α1 ≡ α2)) QTaut

11 (α2 � α1) � (α1 ≡ α2) QMP: 5,10

12 (α1 ≡ α2) QMP: 9,11

Sub∩. It suffices to show that [G1], [G2] � [G1 ∩G2]

1 [G1] Hyp

2 [G1] � [qB \ G1] Sub\

3 [qB \ G1] QMP: 1,2

4 [G2] Hyp

5 [G2] � [qB \ G2] Sub\

6 [qB \ G2] QMP: 4,5

7 [qB \ G1] � ([qB \ G2] � [qb \ (G1 ∩ G2)]) Sub∪

8 [qB \ G2] � [qb \ (G1 ∩ G2)] QMP: 3,7

9 [qb \ (G1 ∩ G2)] QMP: 6,8

10 [qb \ (G1 ∩ G2)] � [G1 ∩ G2]) Sub\

11 [G1 ∩ G2] QMP: 9,10

�

We also have the principles of substitution of equal terms and equivalent for-
mulas.
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THEOREM 16 Principle of substitution of equal terms. Given a quantum formula
γ, two real terms t1 and t2, let γ′ be a quantum formula obtained from γ by
replacing zero or more occurrences of t1 in γ1 by t2. Then,

� t1 = t2 � (γ ≡ γ′).

Proof. The proof is by a straightforward induction on the structure of γ. We
note that in the case where γ is t ≤ t′, we use the axiom RCF. The other cases
are immediate. �

Substitution of equivalent terms preserves quantum equivalence:

THEOREM 17 Principle of substitution of equivalent formulas. Given three quan-
tum formulas γ, γ1 and γ2, let γ′ be obtained from γ by replacing zero or more
q-occurrences of γ1 in γ by γ2. Then,

� (γ1 ≡ γ2) � (γ ≡ γ′).

Proof. The case γ1 does not q-occur in γ is trivial. We just consider the case
in which γ1 has at least one q-occurrence in γ and γ′ is obtained by replacement
of at least one such q-occurrence. The proof is carried out by induction on the
structure of γ. There are two cases:

1. γ is a quantum atom or ⊥⊥. Then γ1 is γ, γ1 q-occurs in γ exactly once, and
replacement of q-occurrence of γ1 in γ by γ2 yields γ2. Hence, in that case
γ′ is γ2. So the theorem holds trivially by the following assertion (justified
by the axiom QTaut):

� (γ1 ≡ γ2) � (γ1 ≡ γ2).

2. γ is γa � γb. Then there are two cases.

• γ1 is γ. Then the theorem follows as in the previous case.

• γ1 q-occurs in γa or γb (it may occur in both). Let γ′ be γ′
a � γ′

b where
γ′

a and γ′
b are obtained by replacing zero or more occurrences of γa and

γb respectively. Then, by the induction hypothesis we have

(γ1 ≡ γ2) � (γa ≡ γ′
a)

and
(γ1 ≡ γ2) � (γb ≡ γ′

b).

We show that
(γ1 ≡ γ2), γ � γ′

as follows.
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1 γ1 ≡ γ2 Hyp
2 γa � γb Hyp
3 γb � γ′

b 1, Induction Hypothesis
4 γa � γ′

b HypSyl: 2, 3
5 γ′

a � γa 1, Induction Hypothesis
6 γ′

a � γ′
b HypSyl: 4, 5

We can show similarly that

(γ1 ≡ γ2), γ′ � γ.

The theorem now follows from metatheorem of deduction.

�

We get as a corollary that substitution of classically equivalent formulas pre-
serves quantum equivalence:

COROLLARY 18. Given a quantum formula γ, two classical formulas α1, α2, let
γ′ be obtained from γ by replacing zero or more q-occurrences of α1 in γ by α2.
Then

� (α1 ⇔ α2) � (γ ≡ γ′).

Proof. We observe that by Lift⇔, we have � (α1 ⇔ α2) � (α1 ≡ α2). The result
then follows from principle of substitution of equivalent formulas and hypothetical
syllogism. �

Please note that we are only concerned with occurrence of classical formulas
only as quantum sub-formulas and not as classical formulas. Indeed, replacement
of a classical formula by a quantum formula may not always yield valid a quantum
formula. Even in the case it yields a valid quantum formula, the principle of
substitution does not hold. For example, let α1 be qb1, α2 be qb2 and γ be qb3.
Now, consider the quantum formula:

(qb1 ≡ qb2) � ((qb1 ⇒ qb3) ≡ (qb2 ⇒ qb3)).

Let V be the set of two valuations v1, v2 such that:

• v1(qb1) = v1(qb3) = 0, v1(qb2) = 1;

• v2(qb1) = v2(qb3) = 1, v2(qb2) = 0.

Any quantum structure with V as the set of valuations would then invalidate the
above quantum formula.
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4 COMPLETENESS AND DECIDABILITY

We shall prove weak completeness of dEQPL — if Γ is a finite set of quantum
formulas, then Γ � γ implies that Γ � γ. As our proof system enjoys principle of
deduction, it suffices to demonstrate weak completeness when the set Γ is empty.
The proof of weak completeness will go hand-in-hand with the proof of decidability,
and can be adapted to a proof of strong completeness as we will sketch later.

The proof of weak completeness essentially follows the proof in [Mateus and
Sernadas, 2006], which in turn was inspired by the Fagin-Megiddo-Halpern tech-
nique for probabilistic logic [Fagin et al., 1990]. The main difference is in the way
the sub-system formulas are treated here. The other difference is that the proof is
carried out in a manner so as to facilitate the proof of decidability.

The central result in the proof is the Model Existence Lemma, namely, if γ is
consistent then there is a quantum structure w and an assignment ρ such that
wρ � γ. A quantum formula γ is said to be consistent if �� (� γ). It will suffice to
show that the model existence lemma holds for specials kinds of quantum formula,
namely quantum molecular formulas. A quantum molecular formula is a quantum
disjunction of quantum literals (a quantum literal is either a quantum atom or the
quantum negation of a quantum atom). Please recall that quantum atoms are
classical formulas, comparison terms and sub-system assertions.

The first steps in the proof of the Model Existence Lemma are to remove the
probability and alternative terms using the axioms Prob, If% and If⊥. Next, we
use the weak completeness of classical propositional logic to construct the set of
valuations V in the envisaged quantum structure. The partition S is constructed
by considering the sub-system literals in the quantum molecule, and the con-
struction is guided by the fact that sub-systems are closed under set operations
(axioms Sub∅, Sub∪ and Sub\). The logical amplitudes νGA are constructed
by first adding all consistent equations using the axioms NAdm, Unit, Empty
and Mul, and then “solving” for the (in)equations in the quantum molecule using
RCF.

Before proceeding with carrying out the above outline, we start with a few
abbreviations and notations. We introduce the following abbreviation where Q ⊂
qAtom and D ⊆ Q:

• (
�

Q D) for ((
�

μ∈D μ) $ (
�

μ∈(Q\D) (�μ))).

We shall say that D is the positive part of the quantum molecule (
�

Q D) and
that Q \D is its negative part. Given a molecule η, we denote by η+ and η− the
positive and negative parts respectively. We denote by ηc the conjunction of the
classical literals in η. In a similar way we define η≤ and ηs.

As is the case with classical propositional logic, every dEQPL formula has a
quantum disjunctive normal form. A quantum formula is said to be in quantum
disjunctive normal form if it is a disjunction of quantum molecules.

PROPOSITION 19. Every quantum formula is equivalent to a quantum disjunc-
tive normal form. Furthermore, there is an algorithm that computes the quantum
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disjunctive normal form.

Proof. It is easier to prove a stronger result. That is, we show that any quantum
formula η has both a quantum disjunctive normal form and a quantum conjunctive
normal form. We say that η is in quantum conjunctive normal form if it is a
quantum conjunction of quantum disjunctions of literals. The proof is constructive
and follows by induction on the structure of the quantum formula as in the case
of classical logic. The construction also gives the algorithm for computing the
normal forms. �

From now on we will assume that every quantum formula is in quantum disjunc-
tive normal form. The following proposition will ensure that to decide consistency
of a quantum formula we only need to check if one of its molecules is consistent.

PROPOSITION 20. A quantum formula is consistent iff one of its molecules is
consistent.

Proof. (⇒) It suffices to show that the quantum disjunction of two inconsistent
quantum formulas γ1 and γ2 is inconsistent. If γ1 and γ2 are inconsistent then
� (� γ1) and � (� γ2). We can easily show that in this case � �(γ1�γ2) as follows:

1 (�γ1) � ((�γ2) � �(γ1 � γ2)) QTaut

2 (�γ1) Hyp

3 (�γ2) Hyp

4 (�γ2) � �(γ1 � γ2) QMP: 1,2

5 �(γ1 � γ2) QMP: 3,4

Hence the formula, (γ1 � γ2) is inconsistent.
(⇐) Assume that η is inconsistent. Then � (� η). Let η be η1 � . . . � ηn. By

QTaut, � (� η)≡ (� η1$ . . .$� ηn). Using QMP and QTaut we can easily show
that ηi is inconsistent for i = 1, . . . , n. �

The first step in the proof is to remove the probability terms.

PROPOSITION 21. Given a quantum molecule η, there is a η′ such that η′ has no
probability terms and � η≡ η′. Furthermore, there is an algorithm that computes
η′.

Proof. Let η be a molecule. For every probability term of the form (
∫
α) replace

it by (
∑

A ||α〉A|2)). Then by axiom Prob and the principle of substitution of
equal terms, the resulting formula is equivalent to η. �

The following proposition allows us to remove alternative terms in quantum
molecules.
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PROPOSITION 22. A quantum molecule η is consistent iff there is a consistent
quantum molecule η′ such that η′ has no alternative terms and � (η′ � η). More-
over, if there is an algorithm for deciding the consistency of quantum molecules
without alternative terms then there is an algorithm for deciding the consistency
of quantum molecules.

Proof. The existence of a consistent η′ such that � (η′ � η) clearly implies the
consistency of η. For the other direction, consider an ordering α0, . . . , αm of the
guards of alternative terms occurring in η. Let α0

i be αi and α1
i be �αi for

i = 0, . . . ,m.
Given b0 . . . bm ∈ {0, 1}m, let

ηb0...bm
:= η $ αb0

0 $ . . . $ αbm
m .

Using QTaut we get,
� η ≡

⊔
b0...bm∈{0,1}m

ηb0...bm
.

Observe that, using the axioms If% and If⊥ and the principle of substitution
of equal terms, each ηb0...bm

is equivalent to a formula in which the alternative
(αi � u0

i ; u1
i ) is replaced by ubi

i . Let ηb0...bm
be the resulting formula. Therefore,

� η ≡
⊔

b0...bm∈{0,1}m

ηb0...bm
.

With a reasoning similar to the one in Proposition 20, we conclude that η is
consistent iff ηb0...bm

is consistent for some b0 . . . bm ∈ {0, 1}m. Please note that
� ηb0...bm

� η for each b0 . . . bm ∈ {0, 1}m.
Finally, as the construction of each ηb0...bm

can be defined by an algorithm, we
get the proposition. �

We shall now build the set of classical valuations V . Given a classical formula
α and a non-empty set of valuations V , we write V �c α if every element of V
classically satisfies α. We say that V �c η if V �c α for every α ∈ η+

c and V ��c β
for every β ∈ η−c .

We will consider only a special kind of molecular formulas which will allow us to
deal with the restrictions imposed by the axiom NAdm. Please recall that given
A ⊆ qB, vA is the valuation that assigns true to qubit symbols in A and false to
qubit symbols in qb \A. A molecular formula η is said to be maximal with respect
to admissible classical valuations if for every subset A of qB and set of valuations
V such that V �c η, we have:

vA /∈ V iff (¬(∧A)) ∈ η+
c .

The following proposition ensures that it suffices to consider molecular formulas
maximally consistent with classical valuations.
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PROPOSITION 23. A molecule η is consistent iff there is a consistent molecule
η′ such that η′ is maximal with respect to admissible classical valuations and
� η′�η. Moreover, if there is an algorithm for deciding the consistency of quantum
molecules maximal with respect to admissible valuations then there is an algorithm
for deciding consistency of quantum molecules.

Proof. Let A1, . . . , Am be an ordering of the subsets of qB. Let A0
i be (¬(∧Ai))

and A1
i be �(¬(∧Ai)) for i = 0, . . . ,m. Given b0 . . . bm ∈ {0, 1}m, let

ηb0...bm
:= η $Ab0

0 $ . . . $Abm
m .

Using QTaut,
� η ≡

⊔
b0...bm∈{0,1}m

ηb0...bm
.

With a reasoning similar to the one in Proposition 20, we can conclude that η
is consistent iff ηb0...bm

is consistent for some b0 . . . bm ∈ {0, 1}m. Please note that
� ηb0...bm

� η for each b0 . . . bm ∈ {0, 1}m. We claim that each ηb0...bm
is maximal

with respect to admissible valuations. Fix one ηb0...bm
.

Let V be a set of valuations such that V �c ηb0...bm
. We will show that

vAi
�∈ V iff (¬(∧Ai)) ∈ (ηb0...bm

)+c .

Clearly if (¬(∧Ai)) ∈ (ηb0...bm
)+c then vAi

�∈ V .
For the other part, if vAi

�∈ V it suffices to show that bi = 0. Suppose that
bi = 1. Then V ��c (¬(∧Ai)). That means there is v ∈ V such that v ��c (¬(∧Ai)).
This means that v �c ∧Ai which in turn implies that v is equal to vAi

. Therefore
vAi

∈ V contradicting the assumption bi = 1.
As the construction of ηb0...bm

can be defined by an algorithm, we get the propo-
sition. �

We will say that η is g-satisfiable if there is a set of valuations V such that
V �c η. Given a consistent molecule η, we now construct V such that V �c η as
follows.

LEMMA 24 g-satisfiability. If η is consistent then η is g-satisfiable. Furthermore,
there is an algorithm to decide if η is g-satisfiable.

Proof. Let V be the set of valuations v such that v �c α for every α ∈ η+
c . This

set can be computed since the set of qubit symbols is finite.
If V is empty then η is not g-satisfiable. If V is not empty, then η is g-satisfiable

iff V ��c β for every β ∈ η−c . As V and η−c are finite sets, this gives us an algorithm
to check if η is g-satisfiable.

Assume that η is a consistent formula. Please note that using the theorem
Lift∧ and the principle of substitution, it is easy to show that if η is consistent
then (∧α∈η+

c
α) is consistent as a classical propositional formula.
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We show that η is g-satisfiable. As (∧α∈η+
c
α) is consistent (in propositional

logic), there is a classical valuation v that satisfies every α. As above, let V be
the set of valuations v such that v �c α for every α ∈ η+

c . It suffices to show that
V ��c β for every β ∈ η−c .

We proceed by contradiction. Assume that there is β ∈ η−c such that V �c β.
Fix one such β say β0. Therefore, by construction of V , we get:

�c

⎛⎝⎛⎝ ∧
α∈η+

c

α

⎞⎠⇒ β0

⎞⎠ .

So, by CTaut we get:

�

⎛⎝⎛⎝ ∧
α∈η+

c

α

⎞⎠⇒ β0

⎞⎠ .

Thus, by Lift⇒, we obtain

�

⎛⎝⎛⎝ ∧
α∈η+

c

α

⎞⎠ � β0

⎞⎠ .

Thus, by Ref$ and QTaut (transitivity of �) we get

�

⎛⎝⎛⎝ �
α∈η+

c

α

⎞⎠ � β0

⎞⎠ .

Therefore, by QTaut (right weakening of �)

�

⎛⎝⎛⎝ �
α∈η+

c

α

⎞⎠ �

⎛⎝ ⊔
β∈η−

c

β

⎞⎠⎞⎠
leading to

�

⎛⎝�

⎛⎝⎛⎝ �
α∈η+

c

α

⎞⎠ $

⎛⎝ �
β∈η−

c

(�β)

⎞⎠⎞⎠⎞⎠
by several obvious tautological steps. That is, we have � (� η), contradicting the
consistency of η. �

Please observe that if η has neither probability nor alternative terms then η′

as constructed in the above proof also does not have probability and alternative
terms.

Given a sub-system formula [G] and a partition S of the set of qubits, we write
S �s [G] if G ∈ Alg(S). We say that S �s η if S �s [G] for every [G] ∈ η+

s
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and S ��s [G] for every [G] ∈ η−s . We will say that η is s-satisfiable if there is a
partition S such that S �s η. We construct the partition S in the proof of Model
Existence Lemma as follows.

LEMMA 25 s-satisfiability. If η is consistent then η is s-satisfiable. There is an
algorithm to decide if η is s-satisfiable.

Proof.
Assume that η is consistent. We will show that η is s-satisfiable. Please recall

that an algebra of sets on a domain X is a non-empty collection of subsets of X
closed under complements and unions. Let Alg(η+

s ) be the smallest algebra on qB
containing η+

s .
Find the minimal elements for Alg(η+

s ): a set G ∈ Alg(η+
s ) is minimal if G′ ⊆ G

and G ∈ Alg(η+
s ) implies that G′ is either the empty set or G itself. Take S to be

the set of minimal elements of Alg(η+
s ) (it can be easily shown that they form a

partition). Therefore, by construction, S �s [G] for every [G] ∈ η+
s .

If [H] ∈ η−s then we need to show [H] /∈ Alg(η+
s ). We proceed by contradiction

and assume H ∈ Alg(η+
s ). Then H = H1 ∪ . . . ∪ Hm, where either Hi ∈ η+

s or
qB \Hi ∈ η+

s for each 1 ≤ i ≤ m. Using the axioms QTaut, Sub\ and Sub∪, we
can show that

� η ≡ η $ [H].

Now as [H] ∈ η−s , we get

� η ≡ η $ [H] ≡ η $ [H] $ �[H].

Now, by QTaut,
� (η $ [H] $ �[H])� ⊥⊥ .

Then, by principle of substitution of equivalent formulas, we get

� (� η).

This contradicts the consistency of η.
The algorithm for checking the s-consistency is as follows. Take η+

s and generate
the algebra Alg(η+

s ) with them. This algebra can be computed since the set of
qubit symbols is finite. The formula η is s-satisfiable iff G /∈ Alg(η+

s ) for every
[G] ∈ η−s . This can be checked by an algorithm again as the set of qubits is finite.

�

We are now ready to construct the model (the amplitudes νGA will be con-
structed in the proof). We need some auxiliary definitions. Recall that assign-
ments are enough to interpret the arithmetical formulas. Let κ be a quantum
conjunction of comparison literals. Let K be a real closed field with algebraic
closure K(δ) and ρ be a K-assignment. We say that K(δ), ρ �i κ if

• [[s]]ρ ≤ [[t]]ρ if s ≤ t ∈ κ+;
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• [[s]]ρ �≤ [[t]]ρ if s ≤ t ∈ κ−.

We say that ρ is a solution of κ in K(δ). We say that κ is ≤-consistent if there is
a real closed field K with algebraic closure K(δ), and a K-assignment ρ such that
K(δ), ρ �i κ. Please note that the theory of elimination of quantifiers ensures
that there is an algorithm to decide the ≤-consistency [Hodges, 1993; Basu et al.,
2003].

THEOREM 26 Model Existence Theorem. If the molecule η is consistent then
there is a quantum structure w = (K, δ, V,S, |ψ〉, ν) and a K-assignment ρ such
that wρ � η.

Proof. As a result of Propositions 21 and 22, we can assume that η does not have
any probability and alternative terms and is maximally consistent with respect to
admissible valuations.

Using Lemma 24 and Lemma 25, we find V and S such that V �c η and S �s η.
We can show that � η≡ (η$�

[G]∈Alg(S)[G]) using axioms Sub∅, Sub∪ and Sub\.
Please observe that the axiom Unit allows us to establish for every [G] ∈ Alg(S):

� η � (
∑
A⊆G

||%〉GA|2 = 1).

Let η1 be the formula

η $
�

G∈Alg(S)

(
∑
A⊆G

||%〉GA|2 = 1).

As a result we get that � (η1 ≡ η).
We also get as a result of the axiom NAdm, for every (¬(∧A)) occurring in η:

� η1 � (|%〉qBA = 0).

Let η2 be the formula

η1 $
�

(¬(∧A)) in η+
c

(|%〉qBA = 0).

As a result of axiom Mul, for every G1, G2, A1, A2 such that G1, G2 ∈ Alg(S),
A1 ⊆ G1 and A2 ⊆ G2, we get

� η2 � (|%〉G1∪G2A1∪A2
= |%〉G1A1

|%〉G2A2
).

Let η3 be the formula

η2 $
�

G1,G2∈Alg(S)
A1⊆G1,A2⊆G2

(|%〉G1∪G2A1∪A2
= |%〉G1A1

|%〉G2A2
).
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The axiom Empty gives us

� η3 � (|%〉∅∅ = 1).

Let η• be the formula
η3 $ (|%〉∅∅ = 1).

Observe that we can show:
� (η ≡ η•).

Please recall that η•≤ is the conjunction of the (in)equations in η•. Let ηR be
the formula obtained from η• by replacing each term of the form |%〉GA by a fresh
variable z|�〉GA

. Please observe that η• is ηR{|z|�〉GA
/ |%〉GA|}.

Now, either there is a real closed field K with K(δ) as its algebraic closure, and
a K-assignment ρ such that K(δ), ρ �i (ηR)≤ or not. If there is no such K and ρ
then it must be the case that �(ηR)≤ is a valid arithmetic formula. So, by axiom
RCF,

� (�(ηR)≤){|z|�〉GA
/ |%〉GA|}.

However, the formula (�(ηR)≤){|z|�〉GA
/ |%〉GA|} is (� η≤) and this will imply that

η is inconsistent.
Therefore there are K(δ) and ρ such that K(δ), ρ �i (ηR)≤. We fix such a K,

K(δ) and ρ.
We now construct |ψ〉 = {|ψ〉S}S∈S as follows:

• |ψ〉[∅] = 1;

• Let νSA = ρ(z|�〉SA
) for every S ∈ S and A ⊆ S. Then,

|ψ〉[S] =
∑
A⊆S

νSA|vS
A〉.

We construct ν = {νGA}G⊂qB,A⊆G as follows:

νGA =
{

ρ(z|�〉GA
) if z|�〉GA

is a variable in ηR

0 otherwise
.

Please note that, by construction νGA = 〈vG
A |ψ〉[G] if G ∈ Alg(S). Let w be

(K, δ, V,S, |ψ〉, ν). We can easily show that w is a quantum structure and wρ � η.
�

The decidability of consistency of molecular formulas follows as a corollary to
the proof of the Model Existence Lemma.

COROLLARY 27. There is an algorithm to decide if a quantum molecule η is
consistent.
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Proof. As a result of Propositions 21 and 22, we can assume that η does not have
any probability and alternative terms and is maximally consistent with respect to
admissible valuations. Now as a result of the model existence lemma, all we need
to do is to check if there is a quantum structure w such that w � η. We refer to
the proof of model existence lemma.

We first check if η is g-satisfiable and s-satisfiable which is algorithmic by Lem-
mas 24 and 25. If not then η is not consistent. Otherwise, let V and S be as in
the proof of the model existence lemma.

Now, we construct ηR as in the same proof. Note that the construction is
algorithmic. We check if (ηR)≤ is ≤-consistent or not. If it is not the case then
η is not consistent. If (ηR)≤ is ≤-consistent then we can construct w as in that
proof such that w � η. Therefore η will be consistent if (ηR)≤ is ≤-consistent. �

Please note any formula γ is equivalent to a disjunction of quantum molecular
formulas. Furthermore, if γ is consistent, so is one of its molecules, say η. Theo-
rem 26 gives a quantum structure w and an assignment ρ such that wρ |= η. As η
is a quantum molecule of Γ we get easily wρ |= γ. Hence, if any quantum formula
γ is consistent then γ has a model. We can now deduce the weak completeness of
dEQPL in the standard way.

THEOREM 28 Completeness. The proof system of dEQPL is weakly complete,
i.e., � γ implies � γ.

Proof.
We prove completeness by contradiction. Assume that �� γ. So by Qtaut

and QMP, we have �� (�(� γ)). Therefore, � γ is consistent, and hence there
is a quantum structure w and an assignment ρ such that wρ |= � γ. Therefore,
wρ �|= γ. �

Finally, we get the decidability of dEQPL.

THEOREM 29 Decidability. The set of theorems is decidable.

Proof. As a result of soundness and completeness we have, � η iff � η is inconsis-
tent. We can decide consistency of a formula by Corollary 27, Proposition 19 and
Proposition 20. �

We finish this section by observing two things. The first observation is that
the proof of weak completeness can be adapted to a proof of strong completeness
as follows. The key in the proof is again the Model Existence Lemma. Given a
possibly infinite consistent set of quantum formulas Γ, we construct a maximally
consistent set (the usual Henkin-Lindenbaum construction). Next, by looking
at the classical formulas in Γ, we construct V using the strong completeness of
propositional logic. The construction of the partition S is by considering the sub-
system literals in Γ and is similar to the one in the above proof. Finally, just as
in the proof above, we replace the amplitude terms in comparison-literals by fresh
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variables and “solve” the resulting equations using the strong completeness of first-
order logic (note that as Γ is maximal all the maximally consistent information
about logical amplitudes is already in Γ).

The second observation is that in our semantic structures, if G is the set of
qubits of a sub-system then the qubits in G are necessarily not entangled with the
rest. That is, the following is a theorem in dEQPL:

� [G] �
�

A1⊆G , A2⊆qB\G

(|%〉qB(A1∪A2)
= |%〉GA1

|%〉(qB\G)A2
).

In EQPL [Mateus and Sernadas, 2006], the reverse implication was also true.
That is in [Mateus and Sernadas, 2006], it was the case that G is a sub-system
if and only if the qubits in G are not entangled with the rest. We can extend
our results to such semantic structures by considering the (finite) set of formulas
Γ = {γG |G ⊆ qB} where

γG := ([G] ≡ (
�

A1⊆G , A2⊆qB\G

(|%〉qB(A1∪A2)
= |%〉GA1

|%〉(qB\G)A2
))).

Clearly Γ � γ if and only γ holds in all the semantic structures where every set
of qubits not entangled with the rest forms a sub-system. If were to augment
our axiom system with elements of Γ, then γ is a theorem in the augmented
axiomatization if and only if Γ � γ. The weak completeness and decidability in
the augmented system then follow from the results of this section.

5 APPLICATION EXAMPLES

As it is, dEQPL is appropriate for reasoning about quantum states only. For
reasoning about the evolution of quantum systems through the application of
measurements and unitary transformations we will need to extend it towards a
dynamic logic, as already sketched in [Mateus and Sernadas, 2004a; Mateus and
Sernadas, 2004b].

Herein, we first illustrate how dEQPL can be used to reason about a Bell state.
Afterwards, we turn our attention to quantum teleportation and outline there some
of the relevant constructs of the envisaged dynamic logic. In the following exam-
ples, we write |F 〉 as an abbreviation for the vector (|%〉FA)A⊆F assuming the lex-
icographic ordering of the subsets of F . We may also abbreviate {qbk1

, . . . , qbkm
}

by qbk1,...,km
in amplitude terms.

5.1 Reasoning about Bell states

Bell states were first discussed by Einstein, Podolsky and Rosen [Einstein et al.,
1935] and have been very useful in designing quantum protocols. An independent
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sub-system composed of a pair of qubits is said to be in a Bell state if they are
maximally entangled. For instance,

|ψ〉 =
1√
2
(|10〉 − |01〉)

is a Bell state.
In order to represent this pair in our logic, we choose two qubit symbols, say

qb0 and qb1. The fact that these qubits are independent from other qubits can be
written as

γind := [qb0, qb1].

We can express the state as the following formula

γEPR := (|qb01〉 =
1√
2
(0,−1, 1, 0)).

We can use our logic to derive that these qubits are necessarily entangled, that
is, neither qb0 nor qb1 form an independent sub-system. In other words we will
show that

γind, γEPR � �[qb0] $ �[qb1].

The proof will follow by applying the metatheorem theorem of deduction. In
particular, we show

γind, γEPR, [qb0] �⊥⊥,

as follows:
1 [qb0, qb1] Hyp

2 [qb0] Hyp

3 ([qb0, qb1] � ([qb0] � [qb1])) SubDiff

4 ([qb0] � [qb1])) QMP: 1,3

5 [qb1] QMP :2,4

6 (|�〉qb01∅ = 0) � ((|�〉qb01qb0
= − 1√

2
) � (|�〉qb01qb1

= 1√
2
) � (|�〉qb01qb01

= 0)) Hyp

7 (γ1 � γ2) � γ2 QTaut

8 (|�〉qb01qb0
= − 1√

2
) � (|�〉qb01qb1

= 1√
2
) � (|�〉qb01qb01

= 0) QMP: 6,7

9 |�〉qb01qb0
= |�〉qb0qb0

|�〉qb1∅ Mul: 2,5

10 |�〉qb01qb1
= |�〉qb0∅|�〉qb1qb1

Mul: 2,5

11 |�〉qb01qb1
= |�〉qb0qb0

|�〉qb1qb1
Mul: 2,5

12 ⊥ RCF: 8–11

13 ⊥⊥ Eqv⊥: 12
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Therefore, by metatheorem of deduction, we get

γind, γEPR � �[qb0].

In a similar way, we can derive

γind, γEPR � �[qb1],

and consequently, we get

γind, γEPR � �[qb0] $ �[qb1].

In the next section, we consider a protocol which uses this Bell state to achieve
teleportation.

5.2 Reasoning about quantum teleportation

A protocol for quantum teleportation was first proposed in [Bennett et al., 1993].
The idea is to move a qubit from one agent to another who share an entangled
pair of qubits while exchanging only classical information.

Before describing and verifying the protocol we need to extend dEQPL with
some features from dynamic logic. Namely, we shall use formulas, called Hoare
triples for historical reasons [Hoare, 1969], of the form

{γ1}P {γ2}

where γ1 and γ2 are dEQPL formulas and P is a quantum program denoting some
composition of unitary transformations and measurements. It is often useful to
reserve some qubits that are always in a classical state. Let us call them classical
bits and use the symbols cb1, . . . , cbm to range over them. We shall avoid going
into the details of the quantum program language and semantics, better left to a
specific paper on a dynamic extension of dEQPL. However, we shall provide the
needed intuitions. Namely, the Hoare triple above means that if the system is in a
quantum state satisfying γ1 then after running P it reaches a state satisfying γ2.

The protocol in [Bennett et al., 1993] uses three qubits, say qb0, qb1 and qb2

plus two classical bits cb0 and cb2. The purpose is to transfer the quantum state
of qb0 to qb1, using qb2 and the classical bits as auxiliary variables. Initially,
qb1 and qb2 will be prepared in a Bell state not entangled with qb0. Afterwards,
a measurement of qb0 and qb2 is made (by Alice). Note that this measurement
will also affect qubit 1 because it is entangled with qubit 2. The classical bits
are used to store the result of measuring the corresponding qubits. The classical
information to be exchanged is precisely the contents of the classical bits after the
measurement. Finally, this information is used (by Bob) to decide which unitary
transformation to apply on qb1 in order to achieve the required state. In short,
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the protocol QTP is as follows:

Mqb02
;

IF
|cb02〉 = (1, 0, 0, 0) → −Iqb1

|cb02〉 = (0, 1, 0, 0) → −Zqb1

|cb02〉 = (0, 0, 1, 0) → Xqb1

|cb02〉 = (0, 0, 0, 1) → −Xqb1
Zqb1

FI

where I is the identity operator and X and Z are the standard Pauli operators
(not and phase flip, respectively).

The initial state of the system (after preparing the qubits 1 and 2) is assumed
to comply with:

γinit := [qb0] $ (|qb12〉 =
1√
2
(0, 1,−1, 0)) $ (|qb0〉 = (z0, z1)) .

Observe that we are not constraining the state of qubit 0. We just need to refer
to it which we achieve by using the (rigid) variables z0 and z1. Note also that in
such a state the qubits 1 and 2 are entangled. Actually, they are in a Bell state
as discussed in the previous example.

We want the final state of the system (after running the protocol) to comply
with:

γfin := [qb1] $ (|qb1〉 = (z0, z1)) .

In other words, we want to establish:

Spec := {γinit}QTP {γfin} .

To this end, it is enough to assume that the measurement operator Mqb02
com-

plies with the following non probabilistic specification:

{γinit}Mqb02
{�4

k=1γk}

where

γ1 := (|cb02〉 = (1, 0, 0, 0)) $ (|qb02〉 = 1√
2
(1, 0, 0, 1)) $ (|qb1〉 = −(z0, z1));

γ2 := (|cb02〉 = (0, 1, 0, 0)) $ (|qb02〉 = 1√
2
(−1, 0, 0, 1)) $ (|qb1〉 = (−z0, z1));

γ3 := (|cb02〉 = (0, 0, 1, 0)) $ (|qb02〉 = 1√
2
(0, 1, 1, 0)) $ (|qb1〉 = (z1, z0));

γ4 := (|cb02〉 = (0, 0, 0, 1)) $ (|qb02〉 = 1√
2
(0,−1, 1, 0)) $ (|qb1〉 = (z1,−z0)).

Observe that the IF part of the protocol QTP complies with:

{γk} IF {γfin}

for k = 1, . . . , 4. Therefore, we can derive Spec using the traditional composition
rules of dynamic logic.
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6 CONCLUDING REMARKS

A decidable quantum logic allowing us to reason about amplitudes of quantum
states and probabilities of classical outcomes was obtained as a fragment of EQPL.
Decidability was achieved by relaxing the semantics, replacing Hilbert spaces by
inner product spaces over arbitrary real closed fields and their algebraic closures.
The proof of decidability was carried out hand in hand with the proof of weak com-
pleteness and follows the Fagin-Halpern-Megiddo technique (originally proposed
for probabilistic logics [Fagin et al., 1990; Abadi and Halpern, 1994]).

We envision to use this decidable quantum logic in the specification and verifi-
cation of quantum procedures and protocols, either via model checking or the-
orem proving. To this end, the hardness of the proposed decision algorithm
needs to be analyzed. We also intend to enrich this decidable quantum logic
with Hoare triples as outlined in Section 5 and in [Mateus and Sernadas, 2004a;
Mateus and Sernadas, 2004b]. Temporal extensions of dEQPL should also be ex-
plored to reason about liveness and progress properties of quantum computations.
Another interesting line of research would be to develop a first-order quantum
logic based on the exogenous semantics approach.

Both EQPL and dEQPL allow us to express amplitudes of pure quantum states
of collections of qubits, so these logics are not insensitive to the global phase of the
quantum state. One may argue that it should be insensitive since no physical mea-
surement will ever be able to distinguish two quantum states that are equivalent
up to global phase. We decided to leave dEQPL as it is (that is, sensitive to global
phase) for two reasons. In practice, physicists and quantum computer scientists
need to work with both levels of abstraction. Sometimes they want to work with
states as unit vectors and other times they want to abstract away the global phase.
So, a calculus supporting the former level of abstraction is also useful. The second
reason is a consequence of the fact that forgetting global phase requires a major
semantic shift. Indeed, it is better solved by identifying a quantum state with a
density operator working on the underlying inner product space, that is, working
with probabilistic ensembles or mixed quantum states in general.

Such a shift toward a semantics based on density operators will lead to a quite
different quantum logic (but still extending classical logic by applying the ex-
ogenous approach) that will also be useful for reasoning about quantum systems
evolving under partial tracing, besides unitary transformations and measurements.
Clearly, this is yet another line of research that will deserve attention.

The relationship between the exogenous quantum logics and the more tradi-
tional quantum logics (based on the original Birkhoff and von Neumann pro-
posal) should be further explored. At the preliminary stage of work in this di-
rection, it seems that most of the qualitative assertions possible in the latter can
be made in the former and that the latter can be easily extended with quanti-
tative aspects of the former. In other words, it seems feasible to combine the
two quantum logics into a single logic by using fibring techniques [Gabbay, 1996;
Caleiro et al., 2005].
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Alexander Prestel

Solèr’s Theorem gives an axiomatic characterization (in algebraic terms) of in-
finite dimensional Hilbert spaces over the reals, the complex, and the quaternions.
At the same time it gives a characterization of the lattices that are isomorphic to
the lattice of closed subspaces of the just mentioned Hilbert spaces. These lattices
play an important role in quantum logic (see [Holland, 1995]) and, more gene-
rally, in Hilbert space logic (see [Engesser and Gabbay, 2002]). More about the
history of Solèr’s Theorem and its consequences in areas like Baer *-rings, infinite
dimensional projective geometry, orthomodular lattices, and the logic of quantum
mechanics can be found in S. Holland’s exposition [Holland, 1995].

The aim of this paper is to provide a complete proof of Solèr’s Theorem for the
reader of the ‘Handbook of Quantum Logic and Quantum Structures’.1

Solèr’s Theorem deals with infinite dimensional hermitian spaces (E,<>) over
an arbitrary skew field K which are orthomodular, i.e., every subspace X of E
satisfies

(1) X = (X⊥)⊥ ⇒ E = X ⊕X⊥.

The theorem can be stated as follows (for definitions see below):

Solèr’s Theorem Let (K,∗ ) be a skew field together with an (anti-)involution
∗, and let (E,<>) be an infinite dimensional hermitian vector space over (K,∗ ). If
(E,<>) is orthomodular and contains an infinite orthonormal sequence (en)n∈N,
then

(i) K = R,C, or H where in the first case ∗ is the identity and in the case of C
and the quaternions H,∗ is the canonical conjugation,

(ii) (E,<>) is a Hilbert space over R,C or H, resp.

The main part of this theorem actually is (i). Once we know that K is the field
of real or complex numbers, or the skew field H of the quaternions, it is not difficult
to prove (ii) (cf. the end of Section 2). While the (skew) fields R,C and H carry a
canonical metric that makes them complete, there is no mention of any metric on

1The proof presented here is identical with that of [Prestel, 1995].

HANDBOOK OF QUANTUM LOGIC AND QUANTUM STRUCTURES: QUANTUM LOGIC
Edited by K. Engesser, D. M. Gabbay and D. Lehmann
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K in the assumption of the theorem. Not even any topology is mentioned. Nevert-
heless, the seemingly ‘algebraic’ conditions of orthomodularity and the existence of
an infinite orthonormal sequence will lead to the surprising fact that K is R,C or H.

It has been a long standing open problem whether orthomodularity of (E,<>)
would already force K to be one of R,C or H. In 1980, finally, H. Keller (see [Kel-
ler, 1980]) constructed “non-classical Hilbert spaces”, i.e., orthomodular hermitian
spaces, not isomorphic to one of the classical Hilbert spaces. Only in 1995, M.P.
Solèr showed in her Ph.D. thesis (cf [Solèr, 1995]) that adding the existence of an
infinite orthonormal sequences expelles all the non-classical Hilbert spaces.

In sections 2 to 4 below we shall first treat the commutative case, i.e., we let K
be a commutative field. Under this additional assumption we give a complete proof
of Solèr’s Theorem. In Section 4 we deal with the general case, i.e., we let K be an
arbitrary skew field. The proof in this case needs a few refinements of the earlier
ones which we shall explain. The structure of the proof in the non-commutative
case, however, is essentially the same as that in the commutative case.

1 PRELIMINARIES AND STRUCTURE OF THE PROOF

Let K be a (commutative) field and ∗ : K → K an involution on K, i.e. ∗ satisfies

(α + β)∗ = α∗ + β∗, (αβ)∗ = α∗β∗, α∗∗ = α

for all α, β ∈ K. The identity on R and the complex conjugation − on C are our
standard examples for such an involution.

Furthermore, let E be an infinite dimensional K-vector space and <>: E×E →
K a hermitian form on E, i.e. <> satisfies

< αx + βy, z > = α < x, z > + β < y, z >

< z, αx + βy > = α∗ < z, x > + β∗ < z, y >

< x, z > = < z, x >∗

for all α, β ∈ K and x, y, z ∈ E, The pair (E,<>) is called a hermitian space if
<> is a hermitian form on E. The hermitian form <> is called anisotropic if for
x ∈ E,

< x, x > = 0 implies x = 0.

As usual, we define orthogonality x ⊥ y by < x, y >= 0 for vectors x, y ∈ E.
The orthogonal space U⊥ to a subset U of E is defined by

U⊥ = {x ∈ E| x ⊥ u for all u ∈ U}.

We simply write U⊥⊥ for (U⊥)⊥. The space U⊥⊥ is called the closure of U , and U
is called closed if U⊥⊥ = U . In case (E,<>) is anisotropic, every finite dimensional
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subspace of E is closed. Since U⊥⊥⊥ = U⊥, U⊥ is also closed. Thus, in particular,
orthomodularity of (E,<>) may be equivalently expressed by

(1) E = U⊥ ⊕ U⊥⊥ for all subspaces U of E.

Two important consequences of orthomodularity of a hermitian space are

(2) if U and V are orthogonal subspaces of E then (U + V )⊥⊥ = U⊥⊥ + V ⊥⊥

and U⊥⊥ ⊥ V ⊥⊥,

(3) if U is a closed subspace of E, then U together with the restriction of

<> to U × U is an orthomodular space, too.

Applying (1) to U = {x} we see that orthomodular spaces are anisotropic. A
finite dimensional hermitian space is orthomodular if and only if it is anisotropic.
It is also well-known that any R-Hilbert space and any C-Hilbert space is orthomo-
dular (w.r.t. its defining inner product). The content of the above theorem is that
there are no other examples of hermitian spaces (E,<>) which are orthomodular
and contain an infinite sequence (en)n∈N which is orthonormal, i.e. for all n,m ∈ N
we have:

(4) < en, en >= 1 and en ⊥ em for n �= m.

As H. Keller has shown in [Keller, 1980], infinite dimensional orthomodular
spaces exist which do not contain any orthonormal sequence, hence cannot be real
or complex Hilbert spaces.

Now let us explain the three steps into which we will divide the proof of the
theorem.

In Step 1 we will show that <> is ‘positive definite’, i.e. we will show that the
fixed field

F = {α ∈ K| α∗ = α}
of ‘symmetric’ elements admits an ordering ≤ such that < x, x >≥ 0 for all x ∈ E.
(Note that < x, x > is symmetric.) In fact, the ordering on F will be given by

(5) α ≤ β iff β − α ∈ P,

where P = {< x, x > | x ∈ E} is the set of ‘lengths’ of vectors x ∈ E.

In Step 2 we will show first that ≤ is archimedean on F , i.e.

(6) to every α ∈ P there exists n ∈ N such that α ≤ n.

At this point we make use of the fact that, in order to prove that (5) defines
an ordering, it suffices to know here that ≤ is a semi-ordering (as introduced in
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[Prestel, 1984] by the author), i.e. ≤ linearly orders F such that in addition we
have for α, β ∈ F :

(7)
0 ≤ α, 0 ≤ β =⇒ 0 ≤ α + β

0 ≤ α =⇒ 0 ≤ αβ2

0 ≤ 1

In fact, an archimedean semi-ordering is already an ordering, i.e., it satisfies in
addition

0 ≤ α, 0 ≤ β =⇒ 0 ≤ α · β
for all α, β ∈ F ([Prestel, 1984], Theorem 1.20). Thus, in Step 1 it therefore suffices
to show that (5) defines a semi-ordering on F . The linearity of ≤ is obtained
from Solèr’s main Lemma 5, which also gives the archimedeanity (Lemma 6).
Actually, the linearity of ≤, i.e. P ∪−P = F , is not important in the commutative
case, since it may be simply obtained by maximalizing a subset P of F satisfying
P + P ⊂ P, PF 2 ⊂ P, P ∩ −P = {0} and 1 ∈ P by Zorn’s Lemma to some P0,
w.r.t. to these properties. The maximal object P0 then satisfies P0∪−P0 = F (see
[Prestel, 1984], Lemma 1.13). In the non-commutative case, however, this method
may not work (see the remarks at the end of Section 6).

As it is well-known, an archimedean ordered field (F,≤) contains (an isomor-
phic) copy of the rational number field Q as a dense subfield. Thus, it suffices to
prove that every Dedekind cut is realized in (F,≤) in order to find that F is iso-
morphic to R. This is done in Lemma 7. Since F is the fixed field of the involution
∗, we have [K : F ] ≤ 2. Hence K = R and ∗=id or K = C and ∗ is the complex
conjugation.

Now we know that K is R or C and <> is positive definite, i.e., (E,<>) is a
pre-Hilbert space. Thus, in Step 3 it remains to prove that every orthomodular
pre-Hilbert space is complete. This, however, can already be found in the literature
(see [Maeda and Maeda, 1970], Theorem 34.9). The argument runs as follows.

Let Ê be the completion of E w.r.t. the metric induced by <>. Given a ∈ Ê
we have to show that a already belongs to E. Choosing c ∈ E suitably such that
< a, c >�= 0, we find b ∈ Ê such that a ⊥ b and c = a + b. By standard arguments
we then find sequences (an)n∈N and (bn)n∈N in E converging to a and b resp. such
that an ⊥ bm for all n,m ∈ N. If we then take

A = {bn| n ∈ N}⊥

we see that A⊥⊥ = A in E and thus the modularity (1) of E gives us a decomposition
c = c1 + c2 with c1 ∈ A and c2 ∈ A⊥.

Denoting by A the topological closure of A in Ê we trivially have c1 ∈ A and
by continuity of <> also a ∈ A. Again by continuity arguments we see that b and
c2 belong to (A)⊥ in Ê. Since Ê is a Hilbert space, the closed subspace A yields
a decomposition

Ê = A⊕ (A)⊥.
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Thus, it follows from a + b = c = c1 + c2 that a = c1 ∈ E.

2 CONSTRUCTION OF THE SEMI-ORDERING ON F

Let (E,<>) be an orthomodular hermitian space and (fi)i∈I be some orthogonal
sequence in E, i.e., fi ⊥ fj for i �= j. Then the map

x �−→ (< x, fi >)i∈I

is K-linear and injective on the subspace U = (fi)i∈I
⊥⊥ of E. In fact, if

< x, fi >= 0 for all i ∈ I, then x ∈ (fi)i∈I
⊥. Thus, for x ∈ U we get x ⊥ x which

implies x = 0, since <> is anisotropic. Hence, every vector x from U is uniquely
determined by the sequence (< x, fi >)i∈I . We therefore write

(1) x =
∑
i∈I

αifi with αi :=
< x, fi >

< fi, fi >

and call αi the ‘Fourier-coefficient’ of x w.r.t. (fi)i∈I . It should be clear, however,
that

∑
in (1) is not an infinite sum converging w.r.t. some metric. It is only a

formal notation, expressing nothing else than: x is the unique vector in U satisfying
< x, fi >= αi < fi, fi > for all i ∈ I.

In case I is a finite set,
∑

in (1) is actually a finite sum and the identity in (1)
is familiar.

As an ordered field, K clearly will have characteristic zero. This, however, is
already clear from the existence of an infinite orthonormal sequence (en)n∈N and
the anisotropy of <>. In fact, for any prime p

0 �=< e1 + ... + ep, e1 + ... + ep >= p.

The next proposition contains one main tool for constructing the desired ordering
on F .

PROPOSITION 1. Let (fn)n∈N and (gn)n∈N be two orthonormal sequences such
that fn ⊥ gm for all n,m ∈ N. Then to every vector x =

∑
n αnfn ∈ (fn)n∈N

⊥⊥ a
vector y =

∑
n αngn ∈ (gn)n∈N

⊥⊥ exists such that < x, x >=< y, y >.

Proof. Since char K �= 2, the systems (fn)n∈N ∪ (gn)n∈N and (fn + gn)n∈N ∪ (fn −
gn)n∈N generate the same linear subspace H of E. From (fn)n∈N

⊥⊥ ⊂ H⊥⊥ and (2)
we get x = x1 + x2 with

x1 =
∑

n

α′
n(fn + gn) ∈ (fn + gn)n∈N

⊥⊥

x2 =
∑

n

α′′
n(fn − gn) ∈ (fn − gn)n∈N

⊥⊥
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(Note that (fn + gn) ⊥ (fm − gm) for all n,m ∈ N.) For α′
n we find

α′
n =

< x1, fn + gn >

< fn + gn, fn + gn >
=

< x, fn + gn >

2
− < x2, fn + gn >

2
=

1
2
αn

Similarly, we get α′′
n = 1

2αn.
From (fn + gn)n∈N

⊥⊥ ⊂ H⊥⊥ and (2) we next get 2x1 =
∑

n αn(fn+gn) = y1+y2

with

y1 =
∑

n

β′
nfn ∈ (fn)n∈N

⊥⊥

y2 =
∑

n

β′′
ngn ∈ (gn)n∈N

⊥⊥
.

For β′
n we find

β′
n =< y1, fn >=< 2x1, fn >=< x1, (fn + gn)+ (fn − gn) >=< x1, fn + gn >= αn

and similarly

β′′
n =< y2, gn >=< 2x1, gn >=< x1, (fn + gn) − (fn − gn) >= αn.

Thus, we first see that y1 = x , and, taking

y := y2 =
∑

n

αngn ∈ (gn)n∈N
⊥⊥

,

we then find < y, y >=< x, x > from y = 2x1 − x and < x, x1 >=< x1, x1 >=
< x1, x >. �

In order to apply this proposition we will make the

ASSUMPTION 2. E = (en)n∈N
⊥⊥ is orthomodular.

By (3) this is without restriction since by Step 3 of Section 2 it suffices to prove
that F ∼= R.

LEMMA 3. Let (E,<>) satisfy Assumption 2 and let (fn)n∈N, (gn)n∈N be two
othonormal sequences in E. Then the map assigning to every x =

∑
n αnfn ∈

(fn)n∈N
⊥⊥ the vector y =

∑
n αngn ∈ (gn)n∈N

⊥⊥ defines an isometry of the sub-
spaces (fn)n∈N

⊥⊥ and (gn)n∈N
⊥⊥ of E.

Proof. The only difference of this lemma to Proposition 1 is that the sequences
(fn)n∈N and (gn)n∈N may not be orthogonal to each other.

Let Ei = (e4n+i)n∈N
⊥⊥ with i ∈ {0, 1, 2, 3}. Then
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(2) E = E′ ⊕ E′′ with E′ = E1 ⊕ E2 and E′′ = E3 ⊕ E4.

From Proposition 1 we immediately get the isometries

E′ ∼= E′′, E′′ ∼= E1, E′′ ∼= E2.

Together we therefore also obtain E = E′ ⊕ E′′ ∼= E1 ⊕ E2 = E′ and E ∼= E′′.
Now we are able to deduce the lemma from Proposition 1. In fact, we first move

the sequence (fn)n∈N from E to E′ and the sequence (gn)n∈N from E to E′′. Then
we apply Proposition 1. �

From this lemma we get two easy consequences which will be used in the next
sections.

COROLLARY 4. Let (E,<>) satisfy Assumption 2. Then:

(a) E contains a subspace U isomorphic to the infinite orthogonal sum E ⊕E ⊕
E ⊕ ...

(b) There is no vector x ∈ E having Fourier-coefficient < x, en >= 1 for all
n ∈ N.

Proof. (a) Let N =
⋃

m∈N Im be a disjoint partition of N into infinite sets In.
Then by Lemma 3, every closure (Im)⊥⊥ is isometric to E. Now let

U = I⊥⊥1 + I⊥⊥2 + I⊥⊥3 + ...

(b) Assume x ∈ E has < x, en >= 1 for all n ∈ N. Observing that E =
(e2n)n∈N

⊥⊥ + (e2n+1)n∈N
⊥⊥ we get x = x1 + x2 with x1 ∈ (e2n)n∈N

⊥⊥ and x2 ∈
(e2n+1)n∈N

⊥⊥. By Lemma 3 we get < x, x >=< x1, x1 >=< x2, x2 >. Now x1 ⊥ x2

yields the contradiction

< x, x >=< x1, x1 > + < x2, x2 >= 2 < x, x > .

�

We are now able to prove that the set of lengths

P = {< x, x > | x ∈ E}

satisfies the following properties:

(i) P + P ⊂ P(3)
(ii) PF 2 ⊂ P

(iii) P ∩ −P = {0}
(iv) 1 ∈ P
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Obviously, (ii) and (iv) are trivial. To see (i), let α =< x, x > and β =
< y, y >. By (2) choose x′ ∈ E′ and y′ ∈ E′′ such that < x′, x′ >=< x, x >
and < y′, y′ >=< y, y >. Since E′ and E′′ are orthogonal, we get < x′ + y′, x′ +
y′ >= α + β. For proving (iii), let α =< x, x > and −α =< y, y >. Now we find
< x′ + y′, x′ + y′ >= α − α = 0. Since <> is anisotropic, we have x′ + y′ = 0.
Thus, x′ = y′ = 0 and α = 0.

From (3) we see that
α ≤ β ⇐⇒ β − α ∈ P

defines a partial order on F which satisfies (7). Thus, ≤ is be a semi-ordering on
F , if we can prove its linearity, i.e. α ≤ β or β ≤ α for all α, β ∈ F . This clearly
is equivalent to P ∪ −P = F .

The next lemma will easily imply linearity of ≤. This lemma actually is the
heart of Solèr’s Thesis.

LEMMA 5. Let (E,<>) satisfy Assumption 2 and let α ∈ F\{0,±1}. Then either
the vector a =

∑
n αnen exists in E with length < a, a >= (1 − α2)−1 or the

a′ =
∑

n α−nen exists in E with length < a′, a′ >= (1 − α−2)−1.

Proof. We define for all n ∈ N:

xn =
n∑

i=0

αiei , yn = xn − 1
1 − α2

e0

an = x2n+1 − α2x2n , bn = y2n+2 − α2y2n+1

From these definitions we find
< xn, yn >

< xn−1, yn−1 >
= 1 + α2n < xn−1, yn−1 >−1

= 1 + α2n(1 − 1
1 − α2

+ α2 + α4 + ... + α2(n−1))−1 = α2

An easy computation shows

an ⊥ bm for all n,m ∈ N.

The subspace A = (bn)n∈N
⊥ is closed. Hence orthomodularity of E yields

E = A⊕A⊥.

Thus, we get a ∈ A and b ∈ A⊥ such that

1
1 − α2

e0 = a− b.

Clearly, a ⊥ an and b ⊥ bn for all n ∈ N.
We now set

a =
∑

n

(αn + εn)en
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where εn is suitably chosen from K. The following computations then yield recur-
sive conditions on the εn:

0 = < b, an >=< b, x2n+1 − α2x2n >

= < a, x2n+1 − α2x2n > −(1 − α2)−1 < e0, x2n+1 − α2x2n >

= < a, y2n+2 − α2y2n+1 − α2n+2e2n+2 + α2α2n+1e2n+1 + e0) − (1 − α2)−1(1 − α)
= −(α2n+2 + ε2n+2)α2n+2 + (α2n+1 + ε2n+1)α2n+3 + (1 + ε0) − 1
= −ε2n+2α

2n+2 + ε2n+1α
2n+3 + ε0

Hence

(5) ε2n+2 = ε2n+1α + ε0α
−(2n+2)

Similarly we get

0 = < a, y2n+2 − α2y2n+1 >

= < b, x2n+3 − α2x2n+2 − α2n+3e2n+3 + α2n+4e2n+2 − e0 > +(1 − (1 − α2)−1)
= −ε2n+3α

2n+3 + ε2n+2α
2n+4 − ε0

and thus

(6) ε2n+3 = ε2n+2α− ε0α
−(2n+3)

Finally

0 =< b, a0 >=< a− 1
1 − α2

e0 , (1 − α2)e0 + αe1 >= ε0(1 − α2) + ε1α

gives

(7) ε1 = −ε0α
−1(1 − α2)

If now ε0 = 0, the recursive conditions (5), (6) and (7) imply εn = 0 for all
n ∈ N. Hence, in this case we get

a =
∑

n

αnen.

In case ε0 �= 0, by Lemma 3 and the recursion formulas (5) and (6) the following
vector exists in E:

a′′ =
∑
n≥2

(αn + εn)en − α
∑
n≥2

(αn−1 + εn−1)en

=
∑
n≥2

(αn + αεn−1 + (−1)nα−nε0)en − α
∑
n≥2

(αn−1 + εn−1)en

=
∑
n≥2

((−1)nα−nε0)en
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Thus, again by Lemma 3 the vector

a′ =
∑

n

α−nen

exists in E.
This proves the difficult part of the Lemma. The computation of < a, a > or

< a′, a′ > resp. is easy (note that we shall use Lemma 3 in the last step):

< a, a > = 1 + 〈
∑
n≥1

αnen,
∑
n≥1

αnen〉 = 1 + α2〈
∑
n≥1

αn−1en,
∑
n≥1

αn−1en〉

= 1 + α2〈
∑

n

αnen+1,
∑

n

αnen+1〉 = 1 + α2〈
∑

n

αnen,
∑

n

αnen〉

This clearly gives

< a, a > =
1

1 − α2

and similarly

< a′, a′ > =
1

1 − α−2

�

From this lemma we get the linearity of ≤ as follows. For every α ∈ F\{0,±1}
we have

1
1 − α2

∈ P or
1

1 − α−2
∈ P.

Using (3)(ii) twice we find for every α ∈ F :

1 − α2 ∈ P or α2 − 1 ∈ P.

Now let β ∈ F\{−1} be given and take α = 2
β+1 − 1. This clearly yields

4β
(β + 1)2

∈ P or − 4β
(β + 1)2

∈ P

Again by (3)(ii) we finally find

β ∈ P or − β ∈ P.

Thus linearity of ≤ is proved.
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3 ARCHIMEDEANITY AND COMPLETENESS OF (F,≤)

The next lemma shows that ≤ is archimedean. Thus by [Prestel, 1984], Theorem
1.20, ≤ is even an ordering and therefore F may be considered as a subfield of R
with ≤ induced by the ordinary ordering of R.

LEMMA 6. Let (E,<>) satisfy Assumption 2 and let ≤ be a semi-ordering on
the fixed field F such that < x, x >≥ 0 for all x ∈ E. Then ≤ is archimedean.

Proof. Assume that ≤ is not archimedean. Then γ ∈ F exists such that n < γ
for all n ∈ N. Then by the laws of semi-orderings (cf.[Prestel, 1984], Lemma 1.18),
we have 0 < 2nδ < 1 for all n ∈ N in case we take δ = γ−1. Thus by Lemma 5 a
vector h′

n exists such that < h′
n, h

′
n >= (1−(2nδ)2)−1. Scaling h′

n by 1−(2nδ)2 we
obtain some vector hn with < hn, hn >= 1 − (2nδ)2 for each n ∈ N. By Corollary
4(a) we may also assume that hn ⊥ hm for all n �= m. Moreover we may assume
that there exists an orthonormal sequence (e′n)n∈N orthogonal to all vectors hn.
Then the vectors fn = hn + 2nδe′n obviously have length < fn, fn >= 1 and are
pairwise orthogonal. Thus (fn)n∈N is an orthonormal sequence in E.

Now by Lemma 5 together with Lemma 3 the vector

x′ =
∑

n

2−ne′n

exists in (e′n)n∈N
⊥⊥. From the orthomodularity of E we find by (2.1)

E = (fn)n∈N
⊥⊥ + (fn)n∈N

⊥

and thus x′ = f +g with f ∈ (fn)n∈N
⊥⊥ and g ∈ (fn)n∈N

⊥. Computing the Fourier
coefficients of f w.r.t. the orthonormal system (fn)n∈N, we find

< f, fn > = < x′, fn >=< x′, hn + (2nδ)e′n >

= < x′, 2nδe′n >= 2nδ < x′, e′n >= δ .

Thus δ−1f would have Fourier coefficients 1 w.r.t. (fn)n∈N which contradicts Co-
rollary 4 (b) (together with Lemma 3).

�

LEMMA 7. Let (E,<>) satisfy Assumption 2. Then every Dedekind cut is realized
in the archimedean ordered field (F,≤).

Proof. It clearly suffices that every Dedekind cut in the interval from 0 to 16
5 is

realized.
Taking α = 3

4 in Lemma 5 we see that the vector x =
∑

n αnen exists in E and
has length

< x, x >=
16
5

=
1

1 − α2
=

∑
n

α2n.
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Now let β be any real number from the interval [0, 16
5 ]. It is not difficult to see

that a subset M of N exists such that

(1) β =
∑
n∈M

α2n

From (2) we get

E = (en)n∈M
⊥⊥ + (en)n/∈M

⊥⊥
.

Thus x admits a decomposition x = y+z with y ∈ (en)n∈M
⊥⊥ and z ∈ (en)n/∈M

⊥⊥.
We claim that < y, y > realizes the Dedekind cut determined by the real number
β of (1) in the interval [0, 16

5 ]. In fact, if I is any finite subset of M we find again
from (2) that

(en)n∈M
⊥⊥ = (en)n∈I

⊥⊥ + (en)n∈M\I
⊥⊥

.

Thus y admits a representation y = y′ + y′′ with y′ ∈ (en)n∈I
⊥⊥ and y′′ ∈

(en)n∈M\I
⊥⊥. Since (en)n∈I is a finite orthonormal system, we get

< y, y >=
∑
n∈I

α2n+ < y′′, y′′ >

and, hence, in particular

(2)
∑
n∈I

α2n ≤ < y, y > .

Arguing similarly for the vector z which has length < z, z >=
∑

n/∈M α2n =
16
5 − β, we find for every finite subset J of N\M

(3)
∑
n∈J

α2n ≤ < z, z > .

From (2) and (3) we finally obtain

(4)
∑
n∈I

α2n ≤ < y, y >≤ 16
5

−
∑
n∈J

α2n.

Since in (4) the left hand and the right hand side both are rational numbers
converging to β in R for increasing sets I and J , and since Q is dense in F (by
Lemma 6), the length < y, y > realizes in F the Dedekind cut determined by β.

�
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4 THE NON-COMMUTATIVE CASE

As alraedy mentioned at the beginning of this paper, M.P. Solèr’s Thesis also
covers Hilbert spaces over the quaterions H. We will now explain this and also
show how some slight changes in the above proof of the commutative case give the
theorem in full generality.

Let now K be a skew field (commutative or not) and ∗ : K → K an involution2,
i.e. for all α, β ∈ K we have

(α + β)∗ = α∗ + β∗, (αβ)∗ = β∗α∗, α∗∗ = α

The main non-commutative example is the skew field K = H = R + Ri+ RjRk of
quaterions with i2 = j2 = −1, ij = k = −ji, and

(α + βi + γj + δk)∗ = α− βi− γj − δk

for all α, β, γ, δ ∈ R.
Now the set

F = {α ∈ K|α∗ = α}

of symmetric elements of K need no longer be a sub-skew-field of K, in fact, F
need not be closed under multiplication.

Next let E be an infinite dimensional K-vector space and <>: E × E → K a
hermitian form on E which now has the properties

< αx + βy, z > = α < x, z > +β < y, z >

< z, αx + βy > = < z, x > α∗+ < z, y > β∗

< x, z > = < z, x >∗

for all α, β ∈ K and x, y, z ∈ E. All the other notions like orthogonality, anisotropy,
orthomodularity and orthonormal sequences are defined as in the commutative
case.

The Theorem of Solèr then says that the only infinite dimensional hermitian K-
vector spaces (E,<>) which are orthomodular and admit an orthonormal sequence
(en)n∈N are the usual Hilbert spaces over R,C, and H.

The proof of this theorem can be obtained from the one above by observing the
following modifications.

We first observe that Lemma 3 and Corollary 4 also hold in the generalized
situation.3 The proofs are literally the same. Also Solèr’s main lemma (Lemma
5) now holds. The proof, however, is more involved (see [Solèr, 1995], Lemma 4,

2Sometimes also called an anti-involution
3By an ‘isometry’ of subspaces U and V we here mean a K-linear isomorphism f satisfying

< f(x), f(x) >=< x, x > for all x ∈ U . In the commutative case this clearly implies
< f(x), f(y) >=< x, y > for all x, y ∈ U .
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and its proof). Nevertheless, it only uses Lemma 3 and Corollary 4, with a slight
generalization in (b):

(b’) Let α �= 0 and (fn)n∈N be a sequence of pairwise orthogonal vectors such
that
< fn, fn >= α for all n ∈ N. Then there is no vector f ∈ (fn)n∈N

⊥⊥
having all

Fourier coefficients equal to 1 w.r.t. (fn)n∈N.
The proof of (b’) is just the same as that of (b) using (3.2).
From Lemma 3 and Corollary 4 we obtain that the set P = {< x, x > |x ∈ E}

of lengths defines a Baer-ordering on K, i.e.

α ≤ β iff β − α ∈ P,

linearly orders F and satisfies

(1)
0 ≤ α, 0 ≤ β ⇒ 0 ≤ α + β

0 ≤ α ⇒ 0 ≤ γαγ∗

0 ≤ 1

for all α, β ∈ F and γ ∈ K. All these properties are proved as in Section 3.
Concerning linearity, i.e. 0 ≤ α or α ≤ 0 for all α ∈ F , one should be aware of the
fact that L = Q(α) is a commutative sub-skew-field of K, and that ≤ restricted
to L therefore yields a semi-ordering.

This very fact also allows us to use the proof of Lemma 6 in order to see that ≤
is an archimedean Baer-ordering of K, i.e. 0 ≤ λ < 1

n for all n ∈ N\{0} can only
hold for λ = 0.

At this point we make use of S. Holland’s result (see [Holland, 1977], Theorem
2 and Corollary 3) that a skew field K with involution ∗ which admits an archime-
dean Baer-ordering is isomorphic to a sub-skew-field of R,C, or H and is actually
equal to R,C, or H in case every Dedekind cut is realized in F . This last fact,
however, follows literally as in Lemma 7.

In [Holland, 1995] Holland actually shows that a non-commutative skew field
K with involution ∗ can not be generated as a ring by the set F of symmetric
elements of K. But then a theorem from Dieudonné (cf. [Holland, 1995], Lemma
1) states that K is a generalized quaterion algebra K = Z(αβ) over its center Z,
that is

K = Z + Zi + Zj + Zk

with i2 = α, j2 = β, ij = −ji = k, and

(α0 + α1i + α2j + α3k)∗ = α0 − α1i− α2j − α3k

for all α0, . . . , α3 ∈ Z.

It now follows that F = Z is a commutative subfield of Kand thus by the above
arguments has to be isomorphic to R. This then clearly implies that K = H.
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Now that we know that the field K of scalars is R,C, or H, and that <> is
positive definite, the completeness of (E,<>) follows as in Step 3 of Section 2.

Remark. It should be pointed out that the linearity of the Baer-ordering ≤ defined
by P was essential in the above arguments. If we did not have P ∪ −P = F , i.e.
≤ is only a partial ordering of F satisfying (1), it is not known whether P could
be extended to some Baer-ordering on K or not.
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[Prestel, 1995] A. Prestel. On Solèr’s characterization of Hilbert spaces. Manuscripta Math., 86
(1995), 225-238.
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OPERATIONAL QUANTUM LOGIC:
A SURVEY AND ANALYSIS

David J. Moore and Frank Valckenborgh

1 INTRODUCTION

One of the basic assumptions of standard quantum physics is that the collection
of experimentally verifiable propositions that are associated with a quantum sys-
tem has a logico-algebraic structure isomorphic with the lattice of closed linear
subspaces of some complex Hilbert space or, dually, with the lattice of orthogonal
projections on these subspaces. The quantum logic approach to the mathemat-
ical and conceptual foundations of quantum mechanics attempts to provide an
advanced perspective on the rather high-level languages of standard text-book
classical and quantum theory, in the hope that the resulting theory leads to addi-
tional simplifications in the conceptual framework of conventional quantum theory.
For example, for a slightly idiosyncratic basic text-book on elementary quantum
mechanics with an operational twist, the intrepid reader can consult the blue book
by Constantin Piron 1998).

The goal of the particular branch of operational quantum logic — the subject of
this work — consists first and foremost in developing a suitable global framework
in which the general discussion of physical processes can take place. The driving
principle here is the conviction that the primitive terms of a candidate mathe-
matical framework in which at a second stage more concrete models for physical
phenomena can be developed, should be based, as much as possible, on concrete
physical notions and operations. In other words, the abstract language should be
developed in terms of operationally well-defined entities, closely related to the ac-
tual practice of the experimental physicist, rather than on mathematically possibly
more convenient or elegant but experimentally less motivated terms. That is, in
the development of a suitable framework we have to adopt the more concrete line
of thinking of the experimental physicist, where the characterisation of a system
depends on how we can act upon that system. One then exploits explicitly the
empirical fact that there exists a certain class of systems, so-called measuring in-
struments, that are capable of undergoing macroscopically observational changes
triggered by their interaction with single micro-systems (Kraus, 1983). By way of
contrast, in the construction of a mathematical theory the choice of primitive terms
is usually motivated internally (how else?) by the elegance and simplicity of the
resulting theory; in physics this choice then should ideally be justified externally.

HANDBOOK OF QUANTUM LOGIC AND QUANTUM STRUCTURES: QUANTUM LOGIC
Edited by K. Engesser, D. M. Gabbay and D. Lehmann
© 2009 Elsevier B.V. All rights reserved
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Instead of defining properties of a physical system by reference to its putative
internal structure, one thus proceeds by analyzing its external relationships with
other systems; this information is then used to attribute properties to the system
under investigation. We will argue that an operational approach — at least from a
methodological point of view — on fundamental physical concepts such as system
and particle, in particular composite particle, evolution and dynamics, space and
spacetime, and so on, possibly also leads to additional clarifications and maybe
even a reformulation of the foundations of physical theory. More concretely, we
will indicate how the resulting language encompasses many of the essentials of
both classical physics and quantum physics, and so is obviously of considerable
independent interest.

From a philosophical perspective, it is important to remark that the word op-
erational in this context has to be considered as a pragmatic attitude — in which
we privilege mathematical terms possessing a definite physical heuristic in the de-
velopment of a framework theory overarching the plethora of specific models —
rather than a doctrine. Specifically, we do not commit ourselves to a definite meta-
physical position when we insist on developing a general mathematical language
by abstracting from concrete physical operations. On the contrary, one of the im-
portant underlying motivations to do so is based upon the conviction that many of
the interpretational issues that haunt standard quantum mechanics, in particular
those associated with the wave-mechanical formalism, will present themselves in
a different light when the primitive terms of the formalism have a clear physical
interpretation. For that matter, the Q in OQL seems to have more historical roots,
when the necessity for a deeper analysis of the descriptional framework of physi-
cal systems became more acute with the investigation of micro-systems. Finally,
trying to analyze the meaning of the L would almost certainly stir up an academic
hornet’s nest, so we happily refrain from doing so, positions of members of the
quantum logic research community covering the whole available spectrum from
a purely algebraic perspective on the usage of the word ‘logic’ to much stronger
philosophical commitments. We have to emphasise, however, that OQL has an
explicit physical origin, contrary to the metaphysical basis of empirical quantum
logic sensu Finkelstein (1968) and Putnam (1968).

It is also from this perspective that at least some part of the general operational
methodology and philosophy of the researchers active in the thriving domains of
quantum information science and quantum computation is actually quite close in
spirit to the conceptual methodology used by OQL, the behaviour of individual
physical systems rather than statistical ensembles of such objects moving more
into the focus of attention. On the other hand, it is only fair to mention that there
are also important differences. Specifically, we will argue that at least the original
incarnations of OQL have some difficulty when confronted with the notions of
composite systems on the one hand, and with the explicit sequential composition
of quantum processes on the other. Indeed, the explicit incorporation of multistage
quantum processes in more general terms seems to require some form of typing,
which reflects a conditional aspect in performing consecutive operations, due to
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the probabilistic character of measurements on quantum systems (at least from the
perspective of the system itself). In other words, both the serial composition and
parallel composition of physical operations are usually not explicitly accounted
for. In this context, we will also have another look at the important work of Pool
(1968a, b).

Distinct approaches to formulating an adequate framework for a better under-
standing of physical phenomena attribute basic physical significance to different
concepts, reflecting the fact that various notions play an important conceptual
role in physical thinking. Consequently, it is clear that a priori various choices
for the primitive terms can be made, and this handbook reflects some parts of the
corresponding spectrum of possibilities. Most authors ascribe a fundamental im-
portance to the two concepts of state and observable; the physical interpretation
of these notions, however, varies considerably from one author to another. Let
us briefly discuss these notions from an operationally oriented perspective, more
details about the particular incarnations in our perception of OQL being referred
to a later section.

The abstract notion of a state that can be assigned to a physical system is a
very natural one from the more static perspective that focuses on sufficiently stable
physical objects in the here and now, but it is not necessarily restricted to this
setting. States come in two conceptually distinct flavours. In principle, knowledge
of the state allows one to predict the experimental behaviour to the best of one’s
knowledge, but often only in probabilistic terms. Indeed, it is one of the essential
features of quantum physics that for each state — even states that apparently are
not reducible to more fundamental states — there exist many observables with
highly non-trivial probability distributions. Contrary to the orthodox ensemble-
based interpretation of quantum mechanics, we claim that pure states can be
construed — and that it is a conceptual advantage to do so — as abstract names
that encode the possible singular realisations of a given particular physical system.
In other words, pure states are admittedly somewhat idealised objects that adopt
the somewhat privileged role of being able to refer to individual physical systems
in an ensemble, at least under mildly favourable conditions. As a consequence,
there will always exist some kind of duality between the set of pure states and
the collection of properties attributed to a physical system, reflecting the well-
established practice among physicists to describe a general system either by its
properties or by its states. In fact, on the one hand knowledge of the pure state
of the individual system allows one to predict its behaviour, or its properties, in
the best possible way, and on the other hand we expect that the knowledge of all
its actual properties determines the pure state completely. Often, it is sufficient
to know a particular subset of its actual properties to identify the state; such a
collection of properties is then state-determining.

Alternatively, mixed states are often and meaningfully regarded as a convenient
heuristic that summarises the probabilistic behaviour of an ensemble of systems
that can be subjected to various experimental protocols. We can always interpret
these, with some care, as a probabilistic mixture of pure states; the mixed state
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then also incorporates the maximal information we can assign a priori to the
individual objects in the ensemble. Mathematically speaking, for a given physical
system we then have to assume the existence of an abstract collection of states, say
M, in this generalised sense, that forms a convex set, the pure states corresponding
with the extreme points, say ∂eM. In practice, pure or mixed states can often be
assigned to physical systems by a physically well-defined preparation procedure.
Sometimes however, this is not the case, and we are forced to attribute a state
to an object that is beyond our immediate control, based on our experience with
objects that can be prepared in a certain state.

Observables on the other hand can be construed as encoding the abstract rela-
tion between some physically relevant collection of properties of a measurement
device and corresponding properties assigned to our physical system. For exam-
ple, after performing an experiment — an interaction between a physical system
and the appropriate device — the position of a pointer of the measurement de-
vice should better reflect a possible property of the system under investigation.
Operationally speaking, properties assigned to a system will then be construed as
candidate elements of reality corresponding to definite experimental projects that
are defined for that particular physical system. From a mathematical perspective,
the collection of physically useful properties associated with the measurement de-
vice can be represented by a boolean algebra of some sort, and this structure should
then be faithfully represented also at the level of the description of the physical
system. Often, such a correspondence will be subject to additional constraints at
the level of the measurement devices, due to symmetry considerations, and such
constraints should then be appropriately incorporated, also with regard to the
system. Standard examples are given by the position and momentum observables
with respect to a given reference frame, coordinates and intervals of space and time
being defined in a physically standardised way (Audoin & Guinot, 2001). In many
approaches, a distinguished role is played by the subset of two-valued observables.
In conventional quantum mechanics, such observables will correspond with pairs
of orthogonal projections in the complex Hilbert space.

In our view, a general operational attitude — methodologically speaking —
towards the formulation of physical theories has other advantages. In fact, one
is inclined to critically examine the various concepts that otherwise would be
taken for granted. For example, the world-view of many working physicists is
still (dangerously?) close to the classical Descartian one that pictures physical
particles as point-like particles that move — possibly under the influence of fields
of some sort — in an otherwise independent spatio-temporal containing arena
(Piron, 2002). We think that one of the lessons that we have to learn from the
progress of technology is to take non-locality seriously, although it is admittedly
very difficult for us macroscopic beings to think in terms of individual microscopic
objects that have an extension but no parts, acting as a single whole. Specifically,
neutron interferometric experiments performed during the last decennia of the
previous century indicate that our current notion of space-time is more subtle
than anticipated. Indeed, individual neutrons can be manipulated in spatially



Operational Quantum Logic: A Survey and Analysis 393

separated regions, hence at least for a micro-system the property of being localised
in a certain region of space cannot be decided with certainty from the knowledge
of its state. As some sort of an afterthought, we can also add that it may be useful
to regard the notion of a physical system as being ‘composed’ of more fundamental
entities in an operational light.

For the sake of completeness, for the convenience of the reader, and to make the
paper as self-contained as possible, we have included many of the proofs of at least
the simpler statements, so that the reader is not only spared the interruption of the
train of thought by feeling the need to show a particular result before proceeding
with the text, but also the task of having to look up the widely dispersed and —
with the progress of time — not necessarily easily available original sources, both
papers and monographs, if she or he wishes to do so.

2 SOME HISTORICAL REMARKS

The subject of quantum logic started essentially with the monumental treatise
of John von Neumann (1932, 1955), in which the complex Hilbert space model
of quantum physics was developed and its structural, logical and physical impli-
cations explored. One can argue that the intellectual heritage of this work was
the essential dominance of the complex Hilbert space model for the mathematical
description and the physical and philosophical analysis of all physical systems,
a priori without any additional restrictions. It is, however, rarely appreciated
that von Neumann himself started expressing his dissatisfaction with the result-
ing Hilbert space framework not long after (Rédei, 1996). One manifestation of
this eventually led to the pioneering paper — co-authored by Garrett Birkhoff
— that was appropriately titled “The Logic of Quantum Mechanics”, published
in 1936 in the Annals of Mathematics (Birkhoff & von Neumann, 1936). In this
paper, the authors take a more structural view, based upon a deeper analysis of
the “logical” structure one may expect to find in general physical theories, and in
particular quantum mechanics, for the description of physical systems for which
the collection of experimentally verifiable propositions does not seem to conform
to the laws of classical logical discourse. In this paper, the idea was presented that
the primitive mathematical building blocks (and the relations connecting them)
that are used in the abstract mathematical description of physical systems, should
take into account the basic structure of some sort of more concrete and admittedly
slightly idealised operational calculus about physical systems, in which one tries
to isolate key aspects of the general behaviour of such systems in an experimen-
tal context. In particular, notions of “experimental proposition”, “observation
space”, “experimental implication” and the like gained some ground in developing
the structural foundations of a physical theory.

This perspective led almost automatically to a shift of the burden of the con-
ceptual weight to the projective structure associated with the traditional complex
Hilbert space model, the linear structure becoming a secondary — though tech-
nically extremely useful — construction, in view of the first fundamental theorem
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of projective geometry. A more detailed analysis of this part of the story is given
in this handbook by the paper by Isar Stubbe & Bart Van Steirteghem (2007).

In 1957, George W. Mackey, in an influential article in the American Mathe-
matical Monthly that was later expanded in an important monograph (Mackey,
1957, 1963), sketched a probabilistic framework for the mathematical foundations
of quantum (and classical) mechanics. In his set-up, he starts with an abstract set
of observables O that can be effectuated on a physical system; this set is closed
under the action of real Borel functions, which represent measurements of the same
observable followed by a simple computation of f . States attributed to this system
are conceived as functions μ : O �� M, where the latter set denotes the collection
of probability measures on the Borel or Lebesgue sets in R. An important role is
played by Mackey’s questions, which correspond with the two-valued observables
that take their values in the outcome set

{
0, 1

}
. Each observable A generates a

family of questions of the form χE(A), where χE is the characteristic function of
some Borel set E ⊆ R. The whole mathematical structure is then determined by
the restriction of the states to the set of questions. Mackey then observes that one
can partially order the set of questions by the prescription

(1) Q1 ≤ Q2 iff ∀μ : μ(Q1)(
{
1
}
) ≤ μ(Q2)(

{
1
}
)

and define a relation of orthogonality on this set by setting Q1 ⊥ Q2 iff Q1 ≤ 1−Q2.
Notice the reliance on probabilistic arguments to define this order relation. In his
1963 monograph, this framework was refined and extended into a system of nine
axioms for the mathematical foundations of quantum mechanics. His Axiom VII
is somewhat remarkable and ad hoc in the sense that it explicitly demands that
the partially ordered set of all questions associated with a quantum system should
be isomorphic with the lattice of all closed subspaces of a separable, infinite-
dimensional complex Hilbert space. Parts of this work were generalised in an im-
portant paper by Varadarajan (1962) into a more general probabilistic formalism,
that considerable extended the axiomatic model that was proposed by Kolmogorov
(1956) to take into account the phenomenology associated with quantum systems.
More explicitly, the author proceeds in developing an experimentally motivated
probability calculus on orthomodular σ-orthoposets. In particular, he developed
and thoroughly analysed the notion of observables — generalised random variables
with respect to his framework — and their mathematical characterisation in terms
of Boolean subalgebras. In addition, he generalised the functional calculus of the
more conventional quantum mechanical observables in this setting, and the related
problem of simultaneous measurability for such observables.

Some of the central tenets of the axiomatic structure of quantum theory as it was
developed by the so-called Geneva school from the early sixties or so consist in the
affirmation that it is possible to erect the framework of quantum theory on the basis
of the notion of certainty instead of probability, and in the assumption that and
the physical motivation why the collection of experimentally verifiable propositions
has the structure of a lattice and not merely a partially ordered set of some sort
(Piron, 1964; Jauch, 1968; Jauch & Piron, 1969; Piron, 1976). Remarkably, the
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axiomatic framework that was developed by this group of researchers is explicitly
non-probabilistic; in the words of Jauch & Piron (1969):

“If one introduces probability at this stage of the axiomatics one has
difficulties of avoiding the criticism of Einstein that a state is not an
attribute of an individual system but merely the statistical property of
a homogeneous ensemble of similarly prepared identical systems.”

This desideratum requires that any probabilistic characteristics associated with
the system itself have to be eliminated right from the start, and so the restriction
to pure states only as part of the primitive objects of the framework is essential
in this program. Specifically, the aims of Piron were at least twofold: (1) De-
velop a general theory valid for both classical and quantal systems; (2) Justify the
usual formalisms for these two extremal cases by an intrinsic characterisation of
the structure of their sets of observables. This program culminates in Piron’s cel-
ebrated representation theorem, about which more will be said in the next section
(Piron, 1964, 1976). At the end of the day, one then likes to reconstruct explicitly
the usual concrete particle models of classical Hamiltonian mechanics and Hilbert
space quantum physics in this light. Hereto, one has to appeal to more advanced
techniques of group representation theory. The by now classical work of Mackey
on the induced representations of locally compact groups has proven instrumental
in this respect; for a rather leisurely overview, see Mackey (1968).

The operational statistics approach that was developed in an extensive series
of papers by Charles Randall and Dave Foulis in Amherst is in many respects a
parallel branch in the evolutionary tree of foundational approaches (see Foulis &
Randall, 1972; Randall & Foulis, 1973). For a more elaborate analysis of this work
and its more recent development, see the contribution on test spaces by Alex Wilce
(2008) in this handbook. For the relation between the Geneva school approach
and the Amherst approach, see Foulis, Piron & Randall (1983) and Coecke, Moore
& Wilce (2000) for a more general discussion.

For the sake of completeness, let us also mention that a third highly opera-
tionally motivated sibling was developed by the school of Ludwig, starting from
the early 1960’s (see, for example Ludwig, 1983). For another account of parts of
this approach, the reader can consult the monograph by Kraus (1983).

In the light of the recent explosion of the domains of quantum computation
and quantum information science, new axiom systems have been proposed that
emphasise various concepts that stem from the more specialised perspectives of
this type of research. Here is a quick anthology of some more recent attempts:
Fuchs (2001); Hardy (2001); D’Ariano (2007a, b), and there are undoubtedly
many others. Without going into details, we only remark that — to avoid some
of the conceptual and methodological pitfalls of the past on the one hand, and
to highlight the successes achieved and the weaknesses exposed in the operational
quantum logic approach to the foundations of the physical sciences on the other —
we consider it useful and appropriate also from this more specialised perspective
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to give a reasonably detailed annotated exposition of what has been achieved so
far by this part of the quantum logic community.

3 QUANTUM OBJECTS

The empirical basis for the statistical laws of quantum physics consists in the
reproducibility of the relative frequencies of the results one obtains when subjecting
micro-systems, prepared according to a given experimental protocol, to various
measurement procedures. It is indeed an empirically well-established fact that
there exist macroscopic devices capable of undergoing macroscopically observable
changes when interacting with such micro-systems (Kraus, 1983). Experience also
tells us that the outcome of a single experiment is not determined completely by
the specifications of the preparation procedure and the macroscopic change that
occurred in the measuring instrument after the interaction between the system
and the device.

As we have already indicated, there exist various established schools in the
quantum logic enterprise and they attribute basic physical significance to different
concepts as the primitive building blocks. A priori, various choices can be made:
in general, a physical system can be described by a class of events, propositions,
properties, operations, etc., and a class of states. Sometimes the events alone
are seen as fundamental and states are considered as derived entities, sometimes
both events and states are considered as primitive, and sometimes the collection
of states plays a central role. In operational quantum logic, the Geneva school
approach occupies a central position. The central observation of this approach
is that the abstract sets ∂eM of pure states and L of properties each admit an
abstract mathematical structure, induced by concrete physical considerations on
the concrete primitive notions of particular physical system and definite experi-
mental project. It is important to remark that these properties can be introduced
in a non-probabilistic way. In the following development, we will first work in the
apparently slightly more general probabilistically oriented framework, and subse-
quently add the refinements that are particular to the Geneva approach.

The highly idealised concept of a physical system is central in physics, and
usually taken for granted, without much further comments. As such, the po-
tential difficulties it embodies tend to escape attention and scrutiny. From the
more object-oriented viewpoint that we adopt in this section, however, it may be
wise to add a few comments on this potentially problematic notion. Indeed, it is
important to clearly express the ambiguities inherent in any precisification of a
physical concept rather than trying to ignore or minimise their cognitive impor-
tance and consequences. A physical system is usually conceived as a sufficiently
well-circumscribed part of reality external to the physicist, in the sense that its
interaction with its surroundings can either be ignored or modeled in an effective
way. An extreme case corresponds with the notion of a closed system, where the
interaction with the external world can be totally neglected. In practice however,
it is hard, if not impossible, to isolate physical systems completely from their en-
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vironment, and the classical thermodynamic concept of an open system is perhaps
a more appropriate term in the other extreme case where the very identity of the
system becomes somewhat blurred. For example, we can choose to investigate the
properties of a certain part of space-time, identified with respect to some reference
frame that attributes coordinates of space and time to potential events, and then
electromagnetic radiation generated by the environment is often an issue. Another
yet not unrelated reason why we have to be careful in this case, is the experimen-
tal reality of non-locality, that manifests itself in some well-known cases (see for
example, Rauch et al., 1975). The typical adventures of the paradigmatic couple
Alice and Bob dramatically illustrates some of these aspects. Of course, it is part
of conventional scientific methodology that some idealisation is inescapable in the
elaboration of our physical models, considered as abstract and hence partial reflec-
tions of concrete world situations. In this text, we will take the point of view that
the state attributed to an individual member of a closed or almost closed physical
system is always a pure state. This then can also be taken as a characterization
of the type of physical systems that we favour in this development. On the other
hand, if we happen to encounter a physical system where this would not be the
case, we may be inclined to embark on a more comprehensive investigation of that
particular phenomenon.

Physical systems can be investigated by their potential interaction with a privi-
leged class of macroscopic probing devices. Notice that the inherently active nature
of experimentation, which implies that probing a system will in general perturb
and sometimes even destroy it entirely, is an essential part of modern scientific
methodology. A definite experimental project — also called question or sometimes
test — then consists of a complete experimental protocol: a measurement device
and instructions on how to properly use it, together with a rule for interpreting
its possible results in terms of two alternatives only: either the positive result,
identified with a particular predefined set of configurations of the measurement
device before the actual measurement takes place, would be obtained (yes), or not
(no). We emphasise that this notion explicitly refers to the empirical existence
of independent macroscopic arrangements that can interact with single individual
samples of the physical system under investigation, and that can leave an objective
macroscopic effect due to such a singular interaction; this effect is then interpreted
as the occurrence of the positive result for the measurement. In other words, this
approach is explicitly relational in that systems are characterised by their inter-
action — hypothetical or de facto — with other systems. The class of definite
experimental projects relative to the system will be denoted by Q. To avoid any
confusion and possible conflation with Mackey’s notion of a question, we will avoid
the use of the term “question” in the context of the Geneva approach. Observe
that the notion of a definite experimental project is sufficiently general, since each
multi-outcome experiment can be chopped up into a collection of two-valued tests.

We say that a definite experimental project α ∈ Q is certain for a given singular
realisation of a particular physical system (with state μ ∈ M) when the positive
result would be obtained with certainty, should the experiment be (properly) exe-
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cuted. For notational brevity, we shall encode this relationship between the set of
all possible states M and the class of definite experimental projects Q succinctly
as μ � α, or sometimes also T (μ, α); alternatively, we use the notation F (μ, α)
whenever the negative result would obtain with certainty. Note the counterfac-
tual locution in this statement! It implies that the notion of certainty has a sense
before, after, and even in the absence of an experiment. The crucial point is that
definite experimental projects are hypothetical, so that their certainty or otherwise
can be regarded as an objective feature of the particular physical system. In prac-
tice, we often convince ourselves that a definite experimental project is certain for
some preparation of a physical system by running the experiment on a number of
samples of the physical system; if the positive result is always obtained, we have
the right to claim that similarly prepared new samples will also yield a positive
result, if we would actually run the experiment (Aerts, 1983). The emphasis of
the founders of the Geneva approach on the notion of certainty, in contrast to
probability, at this early level of the formalisation circumvents Einstein’s criticism
on conventional quantum mechanics that a state is not an attribute of an individ-
ual system but rather of a homogeneous ensemble of similarly prepared systems
(Jauch & Piron, 1969).

The class Q can then be endowed with an elementary mathematical structure by
exploiting these concrete epistemological considerations. Specifically, there exists
a physically natural pre-order relation — encoding phenomenological implication
— where we say that α & β when α certain implies the certainty of β, for any
preparation or realisation of the particular physical system under investigation.
Symbolically,

(2) α & β iff ∀ μ ∈ M : μ � α implies μ � β

The advantage of this counterfactual notion of certainty is that it allows one to
give a sensible justification for claiming that more than one definite experimental
project is certain for a given single sample of a particular physical system, even
when the various experimental conditions are incompatible. From an operational
perspective then, the problem is the following: Given a family of not necessarily
compatible experimental protocols, is it possible to construct a definite experi-
mental project for the conjunction of these properties? In fact, the counterfactual
notion of certainty, given a bunch of definite experimental projects

{
αj | j ∈ J

}
,

allows one to define a new project, denoted by
∏{

αj | j ∈ J
}
, that tests the

certainty of all these questions. For example, pick any j ∈ J at random and
perform the corresponding experiment on an individual sample of the physical
system under investigation; this then is an explicit observational procedure for the
conjunction of a collection of properties. Formally,

(3) μ �
∏{

αj | j ∈ J
}

iff μ � αj for all j ∈ J

Mathematically speaking, the thin category Q is then finitely complete, σ-complete,
or complete, depending upon whether one allows only finite products, countable
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products, or all products, depending somewhat upon one’s philosophical attitude.
In the Geneva approach proper, one always takes Q to be complete.

This definition of the notion of certainty immediately leads to a second defini-
tion, the notion of two definite experimental projects being equivalent:

(4) α ∼ β iff α & β and β & α

In other words, α ∼ β iff for all μ ∈ M, μ � α ⇔ μ � β.
There is another natural elementary operation on Q, which consists in simply

interchanging the positive and the negative labels for a given test α. This is a
new test α∼ — the inverse test — although it is associated with the same piece of
experimental equipment as α. Clearly, μ � α∼ iff F (μ, α); notice that α∼∼ = α.
In addition, one can always add two ideal elements 0 and 1 to Q, where 1∼ = 0.
A definite experimental project that tests 1 could for example be described by
using some given experimental protocol and always assign the positive result. A
remarkable consequence of these heuristic definitions that has led to considerable
confusion is the following:

(5)
(∏{

αj | j ∈ J
})∼

∼
∏{

α∼
j | j ∈ J

}
In particular, given any α ∈ Q, it is always the case that

(6)
∏{

α, 1
}
∼ α and

(∏{
α, 1

})∼
∼ 0

In order to build a well defined mathematical theory one must pass from the
concrete primitive notions of particular physical system and definite experimental
project to abstract concepts susceptible to formal symbolical analysis. That is, we
must provide a physical relation between particular physical systems and definite
experimental projects which lifts to a mathematical relationship between states
and properties. Two definite experimental projects whose positive responses are
determined with certainty for exactly the same singular realisations of a given
particular physical system have the same epistemic content and so should refer to
the same property attributed to the system. Consequently, the abstract property
assigned to the system should correspond with an equivalence class in Q induced
by the equivalence relation ∼ and one writes L := Q/∼. It is easy to see that
L inherits the pre-order relation and the completeness from Q. More precisely,
the pre-order becomes a partial order, hence L is a complete meet-semilattice.
Since elements of L are sometimes construed as potential properties of the physical
system under investigation, it is often called the property lattice associated with the
physical system, although strictly speaking there is a cognitive distinction between
a property assigned to a system and an equivalence class of definite experimental
projects, and so one should not conflate the two concepts; this distinction has
also led to some confusion in the past. Alternatively, its elements are sometimes
called propositions, certainly in the older literature on the subject. In any case,
one envisages a one-to-one correspondence between properties attributed to the
system, and propositions about the system. According to one of our previous
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remarks, any equivalence class of definite experimental projects contains a test
whose inverse is in the absurd equivalence class.

One should note that the meet in the complete meet-semilattice L is then op-
erationally well-defined, whereas the join, defined by the prescription

(7)
∨{

aj | j ∈ J
}

:=
∧{

c ∈ L | ∀j ∈ J : aj ≤ c
}

admits no direct physical meaning. Consequently, physical arguments must pro-
ceed from the meet as encoded by the product operation rather than the join
whose existence is induced by completeness of the lattice. Also, the attentive
reader should not fail to recall that α ∼ β does not imply α∼ ∼ β∼ in general;
that is, the operation of taking inverses is not compatible with the equivalence
relation induced by the pre-order &.

A property is said to be actual if any — hence all — of the definite experimental
projects in the corresponding equivalence class is certain; in this case, the system
is also said to have an element of reality corresponding to this test, in a sense
derived from the terminology used in the famous paper of Einstein, Podolsky
& Rosen (1935). It is worth noting that the derived notion of actuality is also
counterfactually defined, and that the clever device of product questions then
allows one to attribute more than one property to a given singular realisation of a
particular physical system. Consequently, by the usual abuse of language, we shall
sometimes use the term “property” also for these equivalence classes. To make the
terminology complete, a property that is not actual is said to be potential.

Just as properties should not be conflated with equivalence classes of definite
experimental projects, we insist that the notion of state is an independent prim-
itive concept whose empirical realisation at the level of properties is something
to be established and not merely posited. In its most general form, the state —
pure or mixed — attributed to a general physical system should be representable
as some sort of probability measure on Q, since empirically speaking physical
experiments often yield only probabilistic information. In more detail, a very gen-
eral formalisation of these ideas would then lead to the consideration of test-state
triples (Q,M,P), where P : Q × M �� [0, 1] encodes the probability P(α, μ) to
obtain a positive result for the test α for a physical system in an initial state μ,
should the corresponding experiment be performed, and proceed by developing an
axiomatic framework for these objects that reduces the generality and increases
the applicability. In this way, we indeed obtain a correspondence

(8) M ��
[
0, 1

]Q : μ �→ P(−, μ)

We have already indicated that some approaches treat the notion of state as a
derived concept, defined in terms of the definite experimental projects. Here, it
is one of our aims to characterise the independent notion of state, in particular
pure states, in terms of the algebraic structure on Q, and as independent of the
probabilistic structure as possible. This can be done by associating to a given
state μ the collection of all tests that are certain, or properties that are actual, for
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a system in this state μ. In general, one should not expect this correspondence to
be one-to-one, since it is conceivable that distinct mixtures of the same set of pure
states may lead to the same collection of certain tests.

From an operational perspective then, it may be useful to make the distinction
between the a priori primitive concrete notion of a preparation, represented by
some sort of probability measure on Q, and the more ideal elements that represent
pure states that can be attributed to single samples of the system, more explicit.
This cognitive distinction may be particularly relevant from the perspective of
evolutions, interactions and possibly also composite systems. In more detail, each
preparation procedure μ — possibly corresponding with a mixed state — defines
the subsets S1(μ) ⊆ Q and S0(μ) ⊆ Q of all definite experimental projects that are
certain, respectively impossible for that particular preparation μ, and in this sense
determines the maximal a priori information the physicist has about the actual
properties of individual single samples of the system prepared according to μ. By
the very definition of the pre-order on Q, it is clear that S1(μ) is always a filter in Q.
It is a basic assumption of a realistic philosophical attitude, at least in combination
with a careful notion of physical system, that these specifications should be caught
by certain ideal elements — the pure states — that are mathematically realised
by principal ultrafilters in Q. This desideratum reflects the requirement that the
actualisation of some potential properties for a given system is impossible without
the concomitant disappearance of some currently actual properties in the realm
of potentiality. In other words, pure states correspond exactly with principal
ultrafilters in Q, while for each mixed state the corresponding filter should always
be contained in at least one principal ultrafilter. Metaphorically, in the words of
one of the authors: The web of potentialities captures the particularity of a given
physical system, whereas the filter of actualities captures the singularity of a given
realisation. An immediate consequence of this requirement is that we can then
reformulate all the previous definitions only in terms of pure states:

(9) α & β iff ∀ μ ∈ ∂eM : μ � α implies μ � β

and this prescription then corresponds with the fundamental definition of the
Geneva approach.

As a consequence, we automatically obtain some sort of operational duality at
the level of the representing objects, between the set of (pure) states and the class
of definite experimental projects associated with a given physical system. This
duality can be expressed by the mapping

(10) κQ : Q �� P(∂eM) : α �→
{
μ ∈ ∂eM | μ � α

}
By the definition (4) of equivalence in Q, we immediately infer that there exists a
unique injection

(11) κL : L �� P(∂eM)

as expressed in the diagram
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(12) Q
q

��

κQ
��������������� L

κL

��

P(∂eM)

where q is the canonical quotient. We will sometimes use the derived notation
� ⊆ M × L, where μ � a iff μ � α for any (hence all) α ∈ a. Observe that κQ and
κL are order-preserving in the appropriate sense. In addition, our specifications
indicate that ∂eM should be strongly order-determining, in the sense that two non-
equivalent tests can always be distinguished by some (pure) state μ. The function
κL is sometimes called the Cartan map, because it was Elie Cartan who introduced
the notion of a state space, as opposed to the phase space, in mathematical physics
in the early 1920’s (Cartan, 1971).

Summarising, in the Geneva approach Q is taken to be complete as a thin cat-
egory, and the primitive set of (pure) states are explicitly non-statistical, referring
to a singular realisation of a physical system and not to an ensemble; that is,
pure states are construed as attributes of individual samples of physical systems;
general mixed states then being a derived concept. In addition, there exist two
mappings

(13) EQ : M �� P(Q) : μ �→ S1(μ) =
{
α ∈ Q | μ � α

}
and its associated

(14) EL = q→ ◦ EQ : M �� P(L) : μ �→
{
a ∈ L | μ � a

}
where q→ denotes the direct-image function induced by q, and the range of these
mappings is included in the class of principal filters on Q and L respectively, due
to the completeness of both structures. Now any state, in particular a pure state,
that is assigned to a physical system completely determines its associated filter of
certain tests or actual properties, but for physical reasons a partial converse should
also be true: Knowing the collection of all certain tests or actual properties for a
singular realisation of a physical system should determine its pure state uniquely,
and so it is natural to require that the restrictions to pure states of both mappings
are one-to-one. Again, during the evolution of a physical system some properties
become actual and some potential; it is an old and venerable principle that a
given system does not obtain new actual properties ex nihilo. Mathematically,
this requirement translates in the condition that the (necessarily non-trivial) filter
associated with a pure state should be maximal, and so corresponds with an atom
in Q and L, respectively. Next, we also have to require for the class of physical
systems under consideration that the collection of pure states is strongly order-
determining on Q, in the sense that we can always find a pure state μ ∈ ∂eM such
that μ � α and μ �� β whenever α �∼ β. Collecting all these requirements in a
single statement, we obtain
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THEOREM 1. Suppose that the restriction EQ|∂eM is one-to-one and its range
consists of maximal ultrafilters in Q. In addition, let ∂eM be strongly order-
determining on Q. Then Q and L are atomistic, atoms corresponding with pure
states.

Proof. The completeness of Q and the interpretation of the product test force
all filters in the range of EQ and EL to be principal, and the maximality condition
implies that each filter associated with some μ ∈ ∂eM is represented by an atom
pμ in Q. If α and β are non-trivial tests and α �∼ β, we can find a pure state μ � α,
μ �� β. In other words, ∂eM corresponds with the order-generating set A(Q) of all
atoms in Q, and this property is equivalent with atomisticity. �

In conventional quantum theory, the operational duality between states and prop-
erties is manifested by the one-to-one correspondence between the complete lat-
tices of projection operators on the one hand and closed subspaces of the complex
Hilbert space on the other.

For many physical systems, there exist non-trivial definite experimental projects
that are always either certain or false. In other words, for each μ ∈ ∂eM, we have
either μ � α or μ � α∼. Such tests are called classical tests, and the properties that
they determine classical properties. Minimal non-trivial classical properties are
also called macroscopic states, since they correspond with the atoms in the Boolean
sublattice of all classical properties (Piron, 1998); we come back to this situation in
the next section. In the same vein, two pure states μ1 and μ2, represented by atoms
pμ1 and pμ2 are said to be separated by a superselection rule, in a usage derived
from that of Wick, Wightman & Wigner (1952), if there exist no superposition
states relative to μ1 and μ2, in the sense that the only atoms under pμ1 ∨ pμ2 are
pμ1 and pμ2 .

Readers who are interested in a more formal presentation of the Geneva ap-
proach along logical lines may consult the papers by Cattaneo et al. (1988) and
Cattaneo & Nisticó (1991). In this work, the global (relative) coherence of the for-
malism — in the usual model-theoretic sense — is explicitly shown by presenting a
concrete Hilbert space model, where Q consists of the effect algebra associated with
this space, properties correspond to the projections, (pure) preparations are given
by non-zero vectors, and pure states become equivalent with one-dimensional sub-
spaces; two effects E1 and E2 being equivalent whenever ker(1−E1) = ker(1−E2).
Recall that a Hilbert space effect is a non-negative operator E satisfying 0 ≤ E ≤ 1.
In this model, the inverse effect is given by E∼ := 1 − E, and the product of a
collection { Ej | j ∈ J } of effects is defined as

(15)
∏{

Ej | j ∈ J
}

:=
1
2

(
PM1(J ) + PM0(J )⊥

)
where M1(J ) =

⋂
j∈J ker(1−Ej) and M0(J ) =

⋂
j∈J ker(Ej). In particular, the

product of the sharp effect given by a projection P and the maximal effect 1 is
explicitly given by the effect
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(16)
∏{

P, 1
}

=
1
2

(
1 + P

)
;

(∏{
P, 1

})∼
=

1
2

(
1 − P

)
Since ker 1

2

(
1−P

)
= ker

(
1−P

)
, we see that indeed

∏{
P, 1

}
∼ P . On the other

hand, ker 1
2

(
I1 + P

)
=

{
0
}
, and so indeed

(∏{
P, 1

})∼
∼ 0.

Another important operational ingredient, the relation of orthogonality, has
its most natural formulation on the set of all states. In the Geneva approach,
orthogonality of states is usually defined at the level of ∂eM, using the structural
properties of Q (Aerts, 1982):

(17) μ1 ⊥ μ2 iff ∃ α ∈ Q : μ1 ∈ κQ(α), μ2 ∈ κQ(α∼ )

which turns the pair (∂eM,⊥) into an orthogonality space; specifically, ⊥ defines
an anti-reflexive and symmetric relation on ∂eM that under appropriate conditions
also separates points in the following sense: If μ1 �= μ2, there exists ν ∈ ∂eM such
that ν ⊥ μ1, ν �⊥ μ2 (Moore, 1995). The first two properties are trivial, the third
follows from the fact that ∂eM is strongly order-determining on Q, and so also
on L. Physically, two orthogonal states can be separated by the execution of a
single measurement. A standard argument then constructs the complete atomistic
ortholattice of all biorthogonally closed subsets F(∂eM,⊥) from this space. Of
course, there exists also a converse construction, which yields an orthogonality
space from a complete atomistic ortholattice L. Explicitly, the space is given by
the set of all atoms A(L) of the lattice, and the relation of orthogonality becomes
p ⊥ q iff p ≤ q⊥. Actually, this correspondence between mathematical objects can
be extended into a dual equivalence of the categories of complete atomistic lattices
and join-preserving mappings that map atoms to atoms or 0 on the one hand, and
T1-closure spaces and continuous partially defined functions on the other. For more
details, we refer to Moore (1995) and Faure & Frölicher (2000); the intrepid reader
should find it fairly easy to fill in the details. We will come back to this point in the
next section, after discussing appropriate classes of structure-preserving mappings.
Observe also that if a = [α] and b = [β] are disjoint classical properties, in the
sense that a ∧ b = 0, and μ1 � α, μ2 � β, then μ1 ⊥ μ2. Indeed, in this case
necessarily μ2 � α∼, from which the assertion follows.

At this point of structural detail, there is no need for the complete atomistic
ortholattice of biorthogonally closed subsets of ∂eM and the complete atomistic
property lattice L to be related to each other. Additional axioms make this corre-
spondence more precise. First, Piron (1976) postulates the existence of a so-called
compatible complement a⊥ for each property a (his axiom C), a⊥ being a com-
plement in the lattice-theoretic sense (a ∧ a⊥ = 0, a ∨ a⊥ = 1). This is the only
axiom in the traditional development of the Geneva approach in which the struc-
tural properties of Q and L are required to interlock at a deeper level than the
equivalence relation; the point is that one requires the existence of a privileged test
α ∈ a such that α∼ ∈ a⊥. Second, Piron (1976) formulates his axiom P, which
postulates that the sublattice generated by

{
a, a⊥, b, b⊥

}
should be distributive

whenever a ≤ b. If both conditions are satisfied, compatible complements are
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unique and L acquires the structure of a complete atomistic orthocomplemented
lattice.1 Operationally speaking, the existence of an orthocomplementation on L
is not completely trivial. For example, Aerts (1984) gives an example of a com-
binatorial structure obtained from two complete atomistic ortholattices where the
orthocomplementation fails. A more elaborate discussion of the interplay of and
the possible confusions between the mappings α �→ α∼ and a �→ a⊥ is given in the
paper by Cattaneo and Nisticó (1991).

At the level of Q, the orthocomplementation seems to be related to some sort
of symmetry between the certainly-true and certainly-false domains of a test and
its compatible complement. In fact, recall that T (μ, α∼) iff F (μ, α). We have
remarked previously that the equivalence of two tests does not imply the equiv-
alence of their inverses, due to the asymmetry in the definition of the pre-order
relation & with respect to the certainly-true and certainly-false domains. We may,
however, require the existence of some sort of sharp test �α for each property [α]
that maximises the certainly-false domain, in the sense of

(18) β ∼ �α only if F (mu, β) ⇒ F (p,�α)

for all μ ∈ ∂eM. These considerations lead us to formulate an axiom that is similar
in spirit to the axiom CC proposed by Cattaneo and Nisticó (1991):

AXIOM 2 C3. There exists a mapping Q �� Q : α �→ �α that satisfies the
conditions

(1) α ∼ �α

(2) �α & β only if ∀ μ ∈ ∂eM : F (μ, β) implies F (μ,�α)

(3) �α ∼ (�(�α)∼)∼

In this case, two states μ and ν will be orthogonal iff T (μ,�α) and T (ν, (�α)∼)
for some α ∈ Q:

(19) μ ⊥ ν iff T (μ,�α), T (ν, (�α)∼) for some α ∈ Q

Indeed, if T (μ, α) and T (ν, α∼), then obviously T (μ,�α). On the other hand,
F (ν, α) implies F (ν,�α), and so T (ν, (�α)∼).

THEOREM 3. If Q satisfies Axiom C3, the mapping

(20) q∼ : Q �� L : α �→ [(�α)∼]

is well-defined, and there exists a unique mapping L �� L : a �→ a⊥ such that the
following diagram commutes:

(21) Q
q

��

q∼
��������������� L

⊥
��

L
1An orthocomplementation on a lattice is an order-reversing involution a �→ a′ such that

a ∧ a′ = 0 and a ∨ a′ = 1.
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This mapping defines an orthocomplementation on L. In addition, two states μ
and ν are orthogonal iff μ ∈ κL(a) and ν ∈ κL(a⊥) for some a ∈ L.

Proof. If �α & �β, then T (μ, (�β)∼) iff F (μ,�β) only if F (μ,�α) iff T (μ, (�α)∼),
and so (�β)∼ & (�α)∼. It follows also that

(22) �α ∼ �β iff (�β)∼ ∼ (�α)∼

Consequently, the mapping q∼ is well-defined, and correspondingly induces a
unique mapping

(23) ⊥: L �� L : [α] �→ [α]⊥ := [(�α)∼]

such that ⊥ ◦ q = q∼. It is clear that a⊥⊥ = a and that a ≤ b implies b⊥ ≤ a⊥.
Indeed, if α ∈ a and β ∈ b, there exist �α ∈ a and �β ∈ b, and we can recycle
the argument above at the start of the proof. Similarly, a∧ a⊥ / �α · (�α)∼, and
so a∧ a⊥ = 0. Next, since �0 ∼ 0, we always have F (μ,�0), and so T (μ, (�0)∼),
hence (�0)∼ ∼ 1, hence 0⊥ = 1. Finally, if both a ≤ c and a⊥ ≤ c, we obtain
c⊥ ≤ a ≤ c, and so c⊥ = c ∧ c⊥ = 0, from which c = 1. The last result follows
from the argument immediately before the formulation of the proposition. �

Two elements a and b in an orthocomplemented lattice are said to be orthogonal
if a ≤ b⊥; one denotes this situation also as a ⊥ b.

If a is a classical property determined by a classical test αc, we expect that αc is
sharp. This is indeed the case, because if αc & β then ¬F (μ, αc) iff T (μ, αc) only
if T (μ, β) only if ¬F (μ, β). Consequently, a⊥ = [α∼

c ] is also a classical property.
If Q is represented by the effect algebra associated with a complex Hilbert

space, this axiom is satisfied. Specifically, the mapping F �→ Pker(1−F ) — where
PM denotes the projection operator on the subspace M — clearly satisfies the
first requirement. As for the second condition, suppose that P is a projection with
P ≤ F ; that is, ker(1 − P ) ⊆ ker(1 − F ). We have to show that ker(F ) ⊆ ker(P );
if φ ∈ ker(F ) and ψ ∈ ker(P )⊥ = ker(1 − P ), we have

〈φ, ψ〉 = 〈φ, Pψ〉 = 〈φ, Fψ〉 = 〈Fφ, ψ〉 = 0

from which our assertion follows. The third condition is easily verified.
Additional mathematical structure can then be progressively introduced at the

level of the sets of pure states ∂eM, the class of tests Q, or the property lattice L.
Unfortunately, or fortunately, there is no shortage of physically motivated axioms,
but they can apply to different levels, and this often leads to considerable confusion.
So far, we have introduced some general axioms indicated by physical reflection on
the nature of orthogonality and products. Now we have to look for more specific
axioms for which the justification based on physical or operational demonstration
is only partial. In fact, we may have to restrict our attention to a particular
subclass of physical systems — the class to which the additional requirements
apply — and try to strike a balance between the competing desiderata of cognitive
accessibility and methodological power. In such cases, we should at the very least
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aim for a justification of the additional structure in retrospect, with the benefit of
hindsight.

In algebraic quantum logic, orthomodular structures play a predominant role.
From an operational perspective, it is the opinion of the authors that the physical
meaning of the orthomodular law in the property lattice L, in particular its relation
to the class of definite experimental projects Q, needs additional clarification. The
orthomodular property states that

(24) a ≤ b implies b = a ∨ (b ∧ a⊥)

This statement is valid for the lattice of closed subspaces of a complex Hilbert
space, and has important physical consequences. From a more pragmatic perspec-
tive, it is fair to say that it is more convenient to do calculations in orthomodular
structures. On the other hand, the orthomodular law for example fails for the
complete atomistic orthocomplemented lattice of all subspaces of a pre-Hilbert
space that is not complete in the topological sense.

Here is a selection of some equivalent characterisations of the orthomodular
property:

PROPOSITION 4. Let L be an orthocomplemented poset. The following two prop-
erties are equivalent:

(i) L is orthomodular.

(ii) For all a, b ∈ L, if b ≤ a⊥, a ∧ b = 0 and a ∨ b = 1, then b = a⊥.

Proof. First, suppose that L is orthomodular, and let a, b satisfy the assumptions
in (ii). Orthomodularity yields

a⊥ = b ∨ (a⊥ ∧ b⊥) = b ∨ (a ∨ b)⊥ = b

Conversely, let a ≤ b, hence also a ∨ (a⊥ ∧ b) ≤ b. We then have

(a ∨ (a⊥ ∧ b)) ∨ b⊥ = (a⊥ ∧ b)⊥ ∨ (a⊥ ∧ b) = 1
(a ∨ (a⊥ ∧ b)) ∧ b⊥ ≤ b ∧ b⊥ = 0

and we infer that b = (a ∨ (a⊥ ∧ b)). �

In other words, orthogonal complements are always unique in an orthomodular
lattice.

For future reference, we also state the following auxilliary result.

LEMMA 5. If L is an orthomodular lattice, a ≤ b and a ≤ c⊥, then

a ∨ (b ∧ c) = b ∧ (c ∨ a)
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Proof. Two successive applications of the orthomodular property yield

b ∧ (c ∨ a) = a ∨ (b ∧ (c ∨ a) ∧ a⊥)
= a ∨ (b ∧ c)

�
As we will see later in this section, this result can be succinctly expressed under
the more condensed form

(25) c ⊥ a ⇒ (c, a)M∗

the expression at the right meaning that (c, a) forms a dual modular pair in the
sense of Maeda & Maeda (1970).

There is another physically fairly transparent property which automatically
leads to the orthomodular property. If M is a collection of probability measures
on an orthocomplemented lattice L, then it is said to be separating if M can
distinguish the elements of the lattice, in the sense that μ(a) = μ(b) for all μ ∈ M
only if a = b. Recall that a probability measure on an orthocomplemented lattice
is a mapping that should behave as a classical probability measure when restricted
to Boolean subalgebras of L. To be precise, we will use the next

DEFINITION 6. A probability measure on a σ-complete orthocomplemented lat-
tice L is a map μ : L �� [ 0, 1 ] that satisfies the following requirements:

(1) μ(0) = 0 ; μ(1) = 1

(2) For any pairwise orthogonal countable family
{
an | n ∈ N

}
in L:

μ(
∨{

an | n ∈ N
}

) =
∑
n∈N

μ(an)

(3) If a, b ∈ L satisfy μ(a) = μ(b) = 1, then also μ(a ∧ b) = 1

The last property is the so-called Jauch-Piron property. We add it explicitly to the
list of requirements in the definition, in view of the interpretation of the infimum
in property lattices. The definition can be relaxed slightly by requiring that (2)
only holds for finite families. In this case, the definition also makes sense when L
is an orthocomplemented lattice, and we obtain the next

PROPOSITION 7. If an orthocomplemented lattice L admits a separating set M
of probability measures, then L is orthomodular.

Proof. Again, suppose that a ≤ b, and let μ ∈ M. We compute

μ(a ∨ (b ∧ a⊥)) = μ(a) + μ(b ∧ a⊥)
= μ(a) + μ(b⊥ ∨ a)⊥)
= μ(a) + 1 − μ(b⊥ ∨ a)
= μ(a) + 1 − μ(b⊥) − μ(a)
= μ(b)
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Since μ was arbitrary, we deduce that a ∨ (b ∧ a⊥) = b. �

According to the following physically interesting result, only orthogonal atoms
in a complete atomistic orthomodular lattice can be separated by a superselection
rule (Pulmannová, 1985).

PROPOSITION 8. If L is a complete atomistic orthomodular lattice and p and q
are two distinct atoms separated by a superselection rule, then p ≤ q⊥.

Proof. First, observe that

(p ∨ q) ∧ q⊥ =
∨{

r ∈ A(L) | r ≤ (p ∨ q) ∧ q⊥
}

= p ∧ q⊥

Suppose that p ∧ q⊥ = 0, then orthomodularity yields

p ∨ q = q ∨ ((p ∨ q) ∧ q⊥) = q ∨ (p ∧ q⊥) = q

and this is impossible. Consequently, p ∧ q⊥ = p. �

Last but not least, there is the covering property, which states that for each
atom p ∈ A(L) and a ∈ L we should have

(26) p �≤ a implies a 
 a ∨ p

where b 
 c means that b ≤ x ≤ c implies x = b or x = c; one says that c
covers b. Also here, the immediate operational significance of this requirement is
unclear, but it is satisfied by the collection of closed subspaces of a complex Hilbert
space. As will become apparent later, the covering property, in combination with
orthomodularity, is important from a more dynamic perspective, in view of the
following well-known results. Here, the exchange property states that, given atoms
p, q ∈ L and an x ∈ L, the two conditions p �≤ x and p ≤ q∨x imply that q ≤ p∨x,
and so p and q can be interchanged.

PROPOSITION 9. Let L be an atomistic orthomodular lattice. The following
properties are equivalent:

(1) L has the covering property.

(2) L has the exchange property.

(3) For all p ∈ A(L) and a ∈ L, (p ∨ a⊥) ∧ a ∈ A(L) whenever p �≤ a⊥.

(4) For all p ∈ A(L) and a, b ∈ L such that a ⊥ b, if p ≤ a ∨ b, p �≤ a, p �≤ b,
there exist unique p1, p2 ∈ A(L) such that p1 ≤ a, p2 ≤ b, and p ≤ p1 ∨ p2.
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Proof. (1) implies (2): Take p, q ∈ A(L), with p �≤ a and p ≤ a ∨ q. On the one
hand, we have a < a∨ p ≤ a∨ q; on the other hand, since also q �≤ a, the covering
property yields a 
 a ∨ q. Consequently, a ∨ p = a ∨ q, hence q ≤ a ∨ p.
(2) implies (3): Let p ∈ A(L), p �≤ a⊥. Since

a⊥ ∨ ((p ∨ a⊥) ∧ a) = p ∨ a⊥ > a⊥

it follows that (p ∨ a⊥) ∧ a > 0. By the atomistic property, there is an atom r
under (p ∨ a⊥) ∧ a. Consequently,

r ≤ a⊥ ∨ ((p ∨ a⊥) ∧ a) = a⊥ ∨ p

and the exchange property implies that r ∨ a⊥ = p ∨ a⊥, and so

(p ∨ a⊥) ∧ a = (r ∨ a⊥) ∧ a = r ∈ A(L)

where we have used orthomodularity twice.
(3) implies (4): By our assumptions, both p1 := (p∨a⊥)∧a and p2 := (p∨ b⊥)∧ b
are atoms, since p �≤ a⊥, b⊥. Indeed, p ≤ a⊥ would imply p ≤ a⊥ ∧ (a ∨ b) = b by
orthomodularity, and similarly p �≤ b⊥. Next, observe that

p ≤ (p ∨ a) ∧ (p ∨ a⊥)
≤ (p ∨ a) ∧ (((p ∨ a⊥) ∧ a) ∨ a⊥)
≤ ((p ∨ a⊥) ∧ a) ∨ ((p ∨ a) ∧ a⊥)

where we have used lemma 5 in the last step. Next, observe that

(p ∨ a) ∧ a⊥ ≤ (a ∨ b) ∧ a⊥ = b

and so

(p ∨ a) ∧ a⊥ ≤ (p ∨ b⊥) ∧ b

Since p �≤ a and p �≤ b⊥, both expressions are atoms in L, hence equality holds.
This proves existence. As for uniqueness, suppose that p ≤ p1 ∨ p2, with p1 ≤ a
and p2 ≤ b; then

(p ∨ a⊥) ∧ a ≤ (p1 ∨ p2 ∨ a⊥) ∧ a

≤ (p1 ∨ a⊥) ∧ a = p1

and so p1 = (p ∨ a⊥) ∧ a. Similarly, p2 = (p ∨ b⊥) ∧ b.
(4) implies (3): Suppose that p �≤ a⊥, hence a⊥ ∨ p > a⊥. By the orthomodular
identity,

p ∨ a⊥ = ((p ∨ a⊥) ∧ a) ∨ a⊥

and so (p ∨ a⊥) ∧ a �= 0. If p ⊥ a⊥, then p ≤ a, and so (p ∨ a⊥) ∧ a = p. If not,
then we obtain two atoms r1, r2 with r1 ≤ a, r2 ≤ a⊥ such that p ≤ r1 ∨ r2. We
then have

(p ∨ a⊥) ∧ a ≤ (r1 ∨ r2 ∨ a⊥) ∧ a

≤ (r1 ∨ a⊥) ∧ a = r1
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and this shows that (p ∨ a⊥) ∧ a ∈ A(L).
(3) implies (1): Suppose that p is an atom, with p �≤ a, and let a ≤ x ≤ a∨ p. We
then have also 0 ≤ x∧a⊥ ≤ (a∨p)∧a⊥, which is an atom in L. Either x∧a⊥ = 0,
and so x = a ∨ (x ∧ a⊥) = a, invoking orthomodularity; or x ∧ a⊥ = (a ∨ p) ∧ a⊥,
and then

x = a ∨ (x ∧ a⊥) = a ∨ ((a ∨ p) ∧ a⊥) = a ∨ p

The proof is complete. �

According to this result, in an orthomodular lattice with the covering property
the orthogonal projections of a given atom on a pair of orthogonal subspaces are
necessarily unique, a property with a nice physical interpretation. The mappings

(27) φa : L �� L : x �→ (x ∨ a⊥) ∧ a

are usually called the Sasaki projections, and are important in the theory of mea-
surement.

Here are two physically useful examples of complete atomistic orthomodular
lattices that satisfy the covering property, at extreme ends of the spectrum of
possibilities. The first one consists of the complete lattice of all subsets of a set
Σ; verification of the axioms is trivial. The second model corresponds with the
usual “quantum logic” of conventional quantum physics, given by the collection
of all closed linear subspaces of a complex separable Hilbert space; in this case,
establishing the properties required by the axioms is definitely less trivial. This
example also leads to another perspective on the physical meaning of the infimum
of a collection of not necessarily compatible properties, in analogy with von Neu-
mann’s alternating projections theorem, which states that the infimum of a pair
of projection operators E and F in the projection lattice determined by a complex
Hilbert space is given by the following expression which involves a strong limit of
a sequence of finite alternating products of the operators (von Neumann, 1950):

(28) E ∧ F = s -lim
n→+∞(E F )n

Specifically, Jauch (1968) interprets the property corresponding to this expression
to be actual for a particular quantum system when it passes with certainty through
the filter that consists in an alternating sequence of any chosen length of passive
elementary filters associated with the individual projections.

By far, the most important result in the Geneva school approach — according to
some more critical physicists even the only significant result of the whole quantum
logic enterprise — is the celebrated representation theorem proved by Constantin
Piron in the early 1960’s. For a more detailed analysis, we refer to the original
source (Piron, 1964, 1976), to Valckenborgh (2000), and, in the first volume of this
handbook, to Stubbe & Van Steirteghem (2007). In a nutshell, given a complete
atomistic orthomodular lattice with the covering property L and with chains of
length at least 4, this result is established by the construction of a family of or-
thomodular spaces H(L)ω, indexed by the minimal non-trivial classical properties
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ω ∈ Ω, such that L is ortho-isomorphic with the product lattice, each component
consisting of the set of closed subspaces of H(L)ω.23 It is important to realise that
one allows the existence of continuous superselection rules in the formalism, and so
it is a proper generalisation of conventional quantum theory. From the perspective
of the system, it is immaterial whether such apparent constraints are induced by
the environment or arise for intrinsic reasons. Operationally, superselection rules
correspond with the existence of classical tests in Q. Conceptually, contrary to
the orthodox formalism, the superselection rules don’t need to be introduced a
posteriori in the usual rather ad hoc fashion, but live in the structural framework
right from the start. For example, this type of superselection rule may play a role
in the explanation of stable chiral states, so important in chemistry and molecular
biology (Amann, 1988).

The first steps of establishing the representation of a property lattice in terms of
an underlying vector space usually consist in the observation that the collection of
atoms in the property lattice has a natural projective geometric structure. Recall
that a projective geometry G can be regarded either as a set G with a ternary
“collinearity” relation  , where  (p, q, r) expresses the fact that the three points
p, q, r lie on a line; or alternatively, as a set G endowed with an operation ! :
G×G �� P(G), where p ! q is the line incident with both p and q.4 The subsets
of G that contain all lines through its points are the projective subspaces, and one
can show without too much difficulties that the collection L (G) of all projective
subspaces always has the structure of a projective lattice: a complete atomistic
meet-continuous modular lattice. See Faure & Frölicher (2000) and Stubbe & Van
Steirteghem (2007) for additional details.

The crucial property in establishing that a given lattice defines a projective
geometry is the so-called intersection property. The intersection property holds
in a lattice L if for each pair p, q of distinct atoms and for any a ∈ L such that
p ≤ a ∨ q, there exists an atom r with r ≤ (p ∨ q) ∧ a.

THEOREM 10. The atom space A(L) of a lattice L with the intersection property,
endowed with the ternary operation  (p, q, r) iff p ≤ q ∨ r or q = r — or p ! q ={
r ∈ A(L) | r ≤ p∨q

}
— forms a projective geometry G(L). If L is also atomistic,

the mapping

(29) ηL : L �� L (G(L)) : a �→
{
p ∈ A(L) | p ≤ a

}
is meet-preserving and injective.

2Recall that the length of a finite chain C ⊆ L is given by l(C) = #C − 1.
3An orthomodular space (V, F), or generalised Hilbert space, is a (left) vector space over an

involutive division ring F endowed with a positive definite Hermitian form.
4Specifically, the axioms for a projective geometry (G, �) in terms of the ternary collinearity

relation � are: (1) �(a, b, a) for all a, b ∈ G; (2) �(a, p, q), �(b, p, q), p �= q only if �(a, b, p); (3)
�(p, a, b), �(p, c, d) implies �(q, a, c), �(q, b, d) for some q ∈ G. Alternatively, the axioms for (G, �)
in terms of the operator � : G × G �� P(G) are: (1) a � a = {a}; (2) a ∈ b � a; (3) a ∈ b � p and
p ∈ c � d and a �= c imply (a � c) ∩ (b � d) �= ∅, for all a, b, c, d, p ∈ G.
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Proof. First, we verify that the relation  ⊆ A(L) × A(L) × A(L) satisfies the
requirements for a projective geometry. Since p ≤ q ∨ p, it is always the case
that  (p, q, p). Second, suppose that  (a, p, q) and  (b, p, q) for p �= q. If p = b,
then trivially  (a, b, p); if not, we have b ≤ p ∨ q, and the intersection property
implies the existence of an atom r ≤ (b ∨ p) ∧ q, and so r = q, hence q ≤ (b ∨ p),
hence p ∨ q ≤ b ∨ p, and we infer that also a ≤ b ∨ p, and so  (a, b, p). Third,
suppose that  (p, a, b) and  (p, c, d); we have to show that there exists an atom q
for which both  (q, a, c) and  (q, b, d). Without loss of generality, we can assume
that a, b, c, d are all distinct, and so either p �= a or p �= b; let’s suppose that
p �= b. The intersection property applied to p ≤ a∨ b implies that a ≤ p∨ b, hence
a ≤ b ∨ c ∨ d, and since a �= c, a second application of the intersection property
yields an atom q ≤ (a ∨ c) ∧ (b ∨ d). Next, we show that the mapping ηL is
well-defined and preserves all existing meets. In fact, ηL(a) is always a projective
subspace, since p ≤ a and q ≤ a implies p ∨ q ≤ a, and so ηL(a) contains all lines
incident with points in ηL(a). If L is atomistic and a �= b and a �= 0, there exists
an atom p ∈ A(L) such that p ≤ a, p �≤ b, and so ηL(a) �= ηL(b). Finally, it follows
from the definition that

(30) ηL

(∧{
ai | i ∈ I

})
=

⋂{
ηL(ai) | i ∈ I

}
and so ηL preserves all existing infima. �

It follows trivially that ηL is order-preserving. An atomistic lattice that has the
covering property is sometimes called an AC-lattice (Maeda & Maeda, 1970).

THEOREM 11. Each orthocomplemented AC-lattice has the intersection property.

Proof. Take any p, q ∈ A(L) such that p �= q, and let a ∈ L, p ≤ a ∨ q. We have
to show that there exists an atom r ≤ (p ∨ q) ∧ a. By the atomicity of L, it is
sufficient to show that (p∨ q)∧ a �= 0. If p ≤ a we are done; if not, because of the
covering property, a⊥ ∧ p⊥ 
 a⊥, and so there is an atom s such that

a⊥ = (a ∨ p)⊥ ∨ s = (a ∨ p ∨ q)⊥ ∨ s = (a⊥ ∧ (p ∨ q)⊥) ∨ s

where we have used the covering law again in the second step. Consequently, we
also have

a⊥ ∨ (p ∨ q)⊥ = (p ∨ q)⊥ ∨ s

and so (p∨ q) either covers or equals a∧ (p∨ q). Since p �= q, the assertion follows.
�

In a projective geometry, the join of two projective subspaces satisfies the projective
law: If M and N are subspaces of a projective geometry, then

(31) M ∨N =
⋃{

p ! q | p ∈ M, q ∈ N
}

This expression follows essentially from the simpler case
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(32) M ∨
{
q
}

=
⋃{

q ! y | y ∈ M
}

where q is a point of the projective geometry. If G(L) is the projective geometry
associated with a lattice that has the intersection property, the latter equality is
easy to prove. In fact, we can do better. If p ≤ q ∨ b and q �≤ b, we can assume
that p �= q, in which case the intersection property yields an atom r ≤ (p ∨ q) ∧ b.
Since r �= q, a second application gives p ≤ q∨ r, where r ≤ b. The other inclusion
is obvious, and so

(33) ηL(q ∨ b) =
⋃{

ηL(q ∨ r) | r ∈ A(L), r ≤ b
}

= ηL(q) ∨ ηL(b)

since the union is clearly contained in ηL(q)∨ ηL(b), and it obviously also the case
that ηL(q) ∨ ηL(b) ⊆ ηL(q ∨ b). The former expression can be proved in a similar
fashion, by reiterating the same process several times and considering the various
cases that arise. In this context, the projective law then states that

(34) ηL(a) ∨ ηL(b) =
⋃{

ηL(q ∨ r) | q, r ∈ A(L), q ≤ a, r ≤ b
}

In a general lattice a pair a, b ∈ L is said to form a modular pair, denoted by
(a, b)M iff for all x ≤ b, (x ∨ a) ∧ b = x ∨ (a ∧ b); a dual modular pair, denoted by
(a, b)M∗ iff for all y ≥ b, we have (a∨ b)∧y = (a∧y)∨ b (Maeda & Maeda, 1970).
In an orthocomplemented lattice, it is easy to verify that (a, b)M iff (a⊥, b⊥)M∗.
Lemma 5 then states that in an orthomodular lattice, orthogonal pairs always
form dual modular pairs. The following related result can be found in Aerts &
Piron (1979).

THEOREM 12. Let L be an orthocomplemented AC-lattice. Then

(35) (a, b)M∗ ⇔ ηL(a ∨ b) = ηL(a) ∨ ηL(b)

Proof. First, suppose that ηL(a ∨ b) = ηL(a) ∨ ηL(b), and let y ≥ b. Since L is
atomistic, it is sufficient to show that each atom dominated by (a ∨ b) ∧ y is also
under (a ∧ y) ∨ b. Let q be such an atom; since q ∈ ηL(a ∨ b) = ηL(a) ∨ ηL(b), the
projective law implies that q ≤ p∨r for some p ∈ ηL(a) and r ∈ ηL(b). If q = r, we
are done; if not, since also q ≤ y and r ≤ y, the intersection property implies that
p ≤ q∨ r ≤ y, and so p ≤ a∧y. Consequently, q ≤ (a∧y)∨ b. Conversely, suppose
that ηL(a∨ b) > ηL(a)∨ηL(b). In that case, there is an atom q such that q ≤ a∨ b
but q �∈ ηL(a) ∨ ηL(b). In particular, q �≤ b. We show that (b ∨ q) ∧ a = b ∧ a. In
fact, if r is an atom for which r ≤ (b ∨ q) ∧ a, then r ≤ a and r ≤ β ∨ q for some
atom β ≤ b. If r = β, then r ≤ a∧ b; if not, the intersection property implies that
q ≤ r ∨ β, and so q ∈ ηL(a) ∨ ηL(b), which is impossible. Therefore, r = β and so
r ≤ a ∧ b. It follows that

((b ∨ q) ∧ a) ∨ b = (b ∧ a) ∨ b = b

(b ∨ q) ∧ (a ∨ b) = b ∨ q

and so (a, b) �∈ M∗. �
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An easy consequence of this theorem is the fact that the relation M∗ — and so
also the relation M — is symmetric in an orthocomplemented AC-lattice. In other
words, such lattices are always semimodular. Indeed, it is easy to see that in an
orthocomplemented lattice, M is symmetric iff M∗ is symmetric. The combination
of this result with the projective law then states that

(36) ηL(a ∨ b) =
⋃{

ηL(q ∨ r) | q, r ∈ A(L), q ≤ a, r ≤ b
}

in an orthocomplemented AC-lattice whenever a ⊥ b. This also corresponds with
statement (4) in proposition 9.

PROPOSITION 13. Let L be an atomic orthomodular lattice. Then L has the
covering property iff it is semimodular.

Proof. First, we assert that each atomic orthomodular lattice is actually atom-
istic. Indeed, suppose that x ≥ p for all p ∈ ηL(a). To prove that a =

∨
ηL(a), we

have to show that x ≥ a. Suppose not, then a ∧ x < a, and so orthomodularity
yields

a = (a ∧ x) ∨ (a ∧ (a ∧ x)⊥)

hence a ∧ (a ∧ x)⊥ �= 0. By the atomicity of L, there exists an atom q under
a∧ (a∧x)⊥ ≤ (a∧x)⊥. Since q ≤ a, we have q ≤ x, and so q ≤ a∧x, hence q = 0
which is impossible. Therefore, a ∧ x = a, and so a ≤ x. This shows that our
first assertion holds. Second, if the covering property holds it follows directly from
this observation and the previous proposition that L is semimodular. Conversely,
semimodularity of L implies the covering property. First, one verifies easily that
(a, p)M whenever p ∈ A(L) and a ∈ L. Semimodularity then implies that (p, a)M
for all a ∈ L. It then follows also that (p, a)M∗ for all p ∈ A(L) and a ∈ L, and
so the conditions p �≤ a, a ≤ x ≤ a∨ p and a∨ (p∧ x) = (a∨ p)∧ x together imply
that x = a∨ (p∧x), and so x = a or x = a∨ p, depending on whether p∧x equals
0 or p respectively. �

In the final paragraphs of this section, we briefly sketch some additional de-
velopments and potentially interesting digressions, without going into too much
detail, because of lack of space. We start with the observation that for the next
step in the transition from the abstract framework in terms of property lattices to
the conventional models of classical and quantum theory, it is necessary to imple-
ment additional structural constraints on the framework. Indeed, the nature of the
underlying involution division ring of the orthomodular space that is determined
by a property lattice with the appropriate technical conditions is left unspecified
by the standard axioms. It is however known that the projective geometries asso-
ciated with two (left) vector spaces (V,F) and (W,G) of dimension at least three
are isomorphic iff they have the same dimension as vector spaces and F and G are
isomorphic division rings (Baer, 1952). The situation at this stage is not unlike the
relation between classical probability theory on the one hand and the impressive
fortress of classical mechanics in terms of symplectic spaces on the other, where
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important physical observables subject to additional symmetry constraints of a
group-theoretic nature are fully integrated in the basic framework of measurable
spaces and accordingly bring them to life.

We then note that also in the general case the properties of a physical system
often have a more concrete interpretation as the properties defined by a convenient
set of physical observables, such as the measurement of a position or momentum
for instance. In this way, a whole collection of properties in the property lattice
are related when they refer to the same observable, giving a certain additional
coherence to the property lattice as a whole. We will use the following slightly
idealised mathematical translation of this idea, in the spirit of the conventional
probability calculus:

DEFINITION 14. A weak observable is a mapping F from the Borel sets B(S)
associated with a second countable locally compact Hausdorff space S to the prop-
erty lattice L that satisfies the following properties:

(i) F (∅) = 0; F (S) = 1;

(ii) If A ∩B = ∅, then F (A) ⊥ F (B);

(iii) For any sequence n �→ An of Borel sets in S, we have

F
(⋂

n∈N

An

)
=

∧
n∈N

F (An)

In case we also have

(iv) F (A) ∨ F (Ac) = 1

then F is said to be an observable.

In the most common situation, the appropriate topological space is of course given
by R with its natural topology, or a suitable subspace. Not every experimental
physical procedure yields an observable in the strong sense. For example, Jauch &
Piron (1967) argue that the property of (weak) localisation for elementary particles
of zero mass corresponds with a weak observable, but not with the stronger notion
of an observable. Notice that for an observable F each pure state in L can be
written uniquely as a superposition of a pure state under F (A) and a pure state
under F (Ac) under the appropriate conditions, according to proposition 9. The
latter property does not need to hold in the more general case of a weak observable.
The potential existence of observables in the strong sense for a physical system is
particularly interesting, in view of the following result:

PROPOSITION 15. If F is an observable and L is orthomodular, then also

F
(⋃

n∈N

An

)
=

∨
n∈N

F (An)
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Proof. Properties (i) and (iii) imply that F (A) ∧ F (Ac) = 0, and (ii) yields
F (A) ⊥ F (Ac). Taking into account (iv), it follows that F (Ac) = F (A)⊥ by the
uniqueness of the orthogonal complement in an orthomodular lattice. To prove
that F preserves countable joins, we compute

F
(⋃

n∈N

An

)
= F

(⋂
n∈N

Ac
n

)⊥

=
(∧

n∈N

F (Ac
n)

)⊥
=

∨
n∈N

F (An)

�

Consequently, the range of an observable is always a Boolean σ-algebra in L. Con-
versely, a Boolean σ-algebra in L can always be regarded as some sort of abstract
observable, with domain a concrete σ-algebra of sets, after invoking Loomis’ repre-
sentation theorem (Loomis, 1947). In particular, observables corresponding with
maximal Boolean σ-algebras will potentially play an important role in the repre-
sentation theory of property lattices, giving some sort of global coherence to the
whole structure.

For the sake of completeness, we notice that it is also possible to define ob-
servables in a similar way but requiring that the domain Boolean algebra of the
observable is actually complete instead, the observable then preserving all meets.
Without going into details, we can remark that this eventually leads to some rather
subtle set-theoretic questions. See Piron (1998) for a brief discussion.

Next, various more or less equivalent definitions that try to capture the com-
patibility of two experimental procedures have been proposed in the quantum
logic literature, but not always with an immediate operational significance. For
example, two elements a, b in an ortholattice L are often said to be compatible
whenever there exist three mutually orthogonal elements a0, b0 and c such that
a = a0 ∨ c, b = b0 ∨ c. An alternative definition may be formulated in terms of
the requirement that the sub-ortholattice generated by a and b in L should be
distributive. In orthomodular lattices, the two notions are equivalent (Beltrametti
& Cassinelli, 1981). Since we are constrained by operational considerations in this
work, we have to look for a more operationally inclined notion of compatibility.
The definition of Varadarajan (1962) appears the most useful from our perspec-
tive: C(a, b) iff there exists an observable such that both a and b are in its range.
This definition then allows the latter author to develop the theory of simultaneous
observability of families of observables in his setting, and he shows that a count-
able family n �→ Fn of observables is simultaneously observable iff there exists a
global observable ξ such that all observables in the initial family are functionally
related to ξ, in the sense that there exists a family of Borel functions n �→ un such
that Fn(B) = ξ(u←

n (B)) for all Borel sets B, where u←
n is the inverse-image func-

tion induced by un. This classic paper is warmly recommended to all prospective
students of quantum logic.
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An important class of definite experimental projects corresponds with the col-
lection of so-called ideal experiments of the first kind, a notion which is due to
Pauli (1958) and for which a more sophisticated theory of measurement exists.
With an appropriate notion of compatibility, recall that a definite experimental
project α is said to be

(i) ideal iff C(β, α) and μ ∈ κQ(β) imply φα(μ) ∈ κQ(β);

(ii) first-kind iff φα(μ) ∈ κQ(α).

where φα(μ) is the state of the physical system immediately after the measurement
has been executed on a system in an initial state μ ∈ ∂eM in case the result of
the experiment was positive.5 Observe that this prescription requires that φα is a
partially defined mapping that maps pure states to pure states.

The notion of an ideal experiment of the first kind is intimately linked with the
covering property in an orthomodular lattice. Indeed, we have shown earlier that
the covering property is valid iff the following condition is essentially valid:

(37) ∀ μ ∈ ∂eM : μ �∈ κQ((�α)∼) implies φ�α(μ) ∈ ∂eM

A definite experimental project α is said to be perfect if both α and α∼ are ideal
first-kind. One can argue that this abstract notion of an ideal experiment of the
first kind may well reflect some sort of optimal balance of the vague idea that
if one acts upon nature, nature acts back; in other words, the fact that nature
appears to be sensitive to our touch requires an adequate theory of measurement
in terms of reasonably well-behaved measurement protocols.

It is amusing to observe that the theory of orthomodular lattices — and the
theory of order structures in general — can be presented in fully category-theoretic
terms, and this presentation makes the connection with Heyting algebras more
explicit (Khatcherian, 1991). In a nutshell, one can regard a lattice L as a thin
category, and a projectale as a lattice (with 0) equipped with a class of endofunctors
a $ − : L �� L, one for each a ∈ L, with the additional properties

(1) ∀x ∈ L : a $ x ≤ x

(2) ∀x ∈ L : x ≤ a ⇒ a $ x = x

(3) ∀x ∈ L : a $ x = 0 ⇔ x $ a = 0

and such that for each a ∈ L, a$− has a right adjoint a ⇓ −. Notice the correspon-
dence between some of these properties and the physical properties required for a
first kind experiment. It turns out that a projectale is a Heyting algebra iff it is
commutative, i.e. a$x = x$a for all a, x ∈ L; in this case, a$− corresponds with

5By way of contrast, an experiment is said to be of the second kind if the state of the
system immediately after the measurement is changed in such a way that the repetition of the
measurement will not give the same result, but the change of state happened in a controllable
fashion and an unambiguous conclusion can be drawn regarding the quantity that was measured
for the system before the measurement (Pauli, 1958).
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a ∧−. Orthomodular lattices are related to general projectales in much the same
way as Boolean algebras are related to Heyting algebras. In particular, in analogy
with the Heyting algebra case — for which (a ∧ −) 1 (a ⇒ −) — the opposite of
a is defined as a⊥ = a ⇓ 0, and it turns out that this operation similarly defines a
contravariant endofunctor on L that makes L into an orthomodular lattice under
the additional assumption of regularity, i.e. a⊥⊥ = a, or equivalently a ∨ a⊥ = 1,
where 1 = 0⊥. For more details, see the reference above.

4 MORPHISMS

The quest for an appropriate class of morphisms that relates the mathematical
representants for physical systems as presented in the previous section, has led
to the identification of various classes of structure-preserving mappings. In the
conventional model of quantum theory — complex Hilbert spaces — the problem
is arguably obscured by the fact that distinct physical concepts can be represented
by similar mathematical constructs. For example, physical observables correspond
with spectral measures on the Hilbert space, and the spectral theorem leads to
a duality between such measures and self-adjoint operators defined on the space.
Smooth evolutions are represented by groups or semigroups of unitary operators,
and ideal measurements of the first kind by projections, which also represent the
properties one can attribute to the given system. Probability measures correspond,
via Gleason’s theorem, with trace class operators of trace one (Gleason, 1957).

From an operational perspective, the meet on the property lattice and the or-
thogonality relation on the state space have a physically transparent meaning,
and so it makes sense to use this operation respectively binary relation as the
primitive ingredients that should be preserved by a privileged class of morphisms.
Various such classes of morphisms have been investigated by Coecke & Moore
(2002), among others. On the other hand, the standard representation theorems
in terms of underlying linear or semilinear functions on the representing vector
spaces specifically refer to join-preserving mappings. Fortunately, there is a deep
connection between meet-preserving and join-preserving mappings, which is briefly
sketched in this section. In essence, the theory of Galois adjunctions is the the-
ory of adjoint functors specialised to the context of lattices, since each partially
ordered set can be regarded as a thin category. In other words, we can apply
the tools of category theory to convert categories of arrows with a deeper physical
significance into categories for which the arrows are representable in terms of more
convenient mathematical structures.

Suppose then that g : L2
�� L1 is a function between lattices with 0 and 1

that preserves all existing meets. It is important that g should also preserve
empty meets, that is g(1) = 1. The adjoint functor theorem then yields a unique
function, say g∗ : L1

�� L2 such that

(38) a ≤ g(b) ⇔ g∗(a) ≤ b

for all a ∈ L1, b ∈ L2. More generally, the equation (38) can also be regarded
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as the definition of an adjunction between partially ordered sets. From an order-
theoretic perspective, the function g has then the property that the inverse images
of principal up-sets are principal up-sets, and dually g∗ has the property that the
inverse images of principal down-sets are again principal down-sets. Therefore, if g
has this property, one can define a new function g∗ that gives the minimal element
of the principal up-set g←(↑ a): g←(↑ a) =↑ g∗(a). Categorically speaking, this
function g∗ is the left adjoint of g, and one writes g∗ 1 g. It is easy to see that g∗
preserves all existing suprema. In fact,

g∗(
∨
i∈I

ai) ≤ b ⇔
∨
i∈I

ai ≤ g(b)

⇔ ∀ i ∈ I : ai ≤ g(b)
⇔ ∀ i ∈ I : g∗(ai) ≤ b

⇔
∨
i∈I

g∗(ai) ≤ b

In particular, g∗(0) = 0. Dually, each join-preserving mapping f : L1
�� L2 has a

unique meet-preserving right adjoint f∗ : L2
�� L1, f 1 f∗. This follows also from

the fact that each meet-preserving mapping can be regarded as a join-preserving
mapping between the opposite lattices, viz. the lattices with the order operation
reversed. Join-preserving mappings between lattices are often called residuated
mappings and sometimes hemimorphisms, their right adjoints then referred to as
residual mappings. One can easily verify that (g2 ◦ g1)∗ = (g1)∗ ◦ (g2)∗, and so
functional composition defines an endo-operation in the set of residuated map-
pings. We then obtain a unital semigroup of residuated endomappings on L, since
the identity function is always residuated.

The lattices of the form P(E) for a set E are complete join-semilattices, the
join corresponding with set-theoretic union. Any relation R ⊆ A × B defines a
function

(39) ξR : P(A) �� P(B) : X �→
{
y ∈ B | ∃x ∈ X : (x, y) ∈ R

}
and it is easy to verify that ξR is residuated, since it preserves unions. Conversely,
it is not too difficult to show that each residuated mapping ξ : P(A) �� P(B)
can be regarded as the residuated mapping induced by a relation R ⊆ A × B.
Specifically, define a relation Rξ ⊆ A × B by setting (x, y) ∈ Rξ iff y ∈ ξ(

{
x
}
),

and verify that ξ and ξRξ
agree on atoms. Observe also that the relation R reduces

to a genuine function A �� B whenever ξR maps atoms in P(A) to atoms in P(B);
to a partial function whenever ξR maps atoms in P(A) to atoms or to the empty
set in P(B). According to our definition, a second important example is given by
an observable, in the strong sense, from a σ-algebra to a complete ortholattice L
under the appropriate conditions.

If the lattices involved are complete, the left and right adjoints can be explicitly
expressed in terms of their respective adjoints. If g : L2

�� L1 preserves all existing
infima, then
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(40) g∗(a) =
∧
i∈I

{
b ∈ L2 | a ≤ g(b)

}
since in this case the minimal element of the principal up-set always exists, with a
similar expression and argument for the right adjoint of a join-preserving mapping
f : L1

�� L2:

(41) f∗(b) =
∨
i∈I

{
a ∈ L1 | f(a) ≤ b

}
In the terminology of operational quantum logic, the adjunction relation has a
direct physical interpretation: g∗(a) corresponds with the strongest property in
L2 for which the actuality of the image (by g) is guaranteed by a ∈ L1, and
f∗(b) is the weakest property in L1 for which the image (by f) is guaranteeing the
actuality of b ∈ L2.

These considerations naturally lead to a dual equivalence between the category
JCLattt with objects complete lattices and arrows join-preserving maps and the
category MCLatt with the same objects and meet-preserving mappings respec-
tively. The first category is the prototypic example of a so-called quantaloid, viz.
a category enriched in join-semilattices.

An important special case is given by the situation where the direct image
g→∗ (A(L1)) ⊆ A(L2) ∪

{
0
}
. In this case, g∗ restricts and corestricts to a partial

function A(L1) ���� A(L2). If the domain and codomain both have the structure
of a projective geometry, the tools of this discipline become available, and the
second fundamental theorem usually yields a family of semilinear functions such
that each restriction of g∗ to an irreducible component of the projective geometry
corresponds with a semilinear function defined on the underlying vector spaces.
In more detail, two points p and q in A(L1) are said to be in the same irreducible
component if there exists a third distinct point r ≤ p ∨ q. In this case, g∗(r) ≤
g∗(p)∨g∗(q), g∗(p) ≤ g∗(q)∨g∗(r) and g∗(q) ≤ g∗(p)∨g∗(r), since g∗ preserves joins,
and we deduce that g∗(p) and g∗(q) also belong to the same component. In other
words, g∗ restricts and corestricts to a family of irreducible components, and under
mild technical assumptions on its range each restriction can be represented by a
semilinear function on the underlying vector spaces generated by the irreducible
projective geometries. See Faure & Frölicher (2000), and also Stubbe & Van
Steirteghem (2007) in the first volume of this handbook.

If all lattices involved are orthocomplemented and f : L1
�� L2 is residuated,

with f 1 f∗, one can define a new mapping

(42) f† : L2
�� L1 : b �→ f∗(b⊥)⊥ =

(∨{
a ∈ L1 | f(a) ≤ b⊥

})⊥

Notice that f† goes in the reverse direction. It is easy to see that f† is also
residuated, since f∗ preserves infima. In addition, f† is the unique mapping that
satisfies the relation

f†(a) ≤ b⊥ ⇔ b ≤ f∗(a⊥)
⇔ f(b) ≤ a⊥
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from which it easily follows that (f†)† = f and (f2 ◦ f1)† = f†
1 ◦ f†

2 . The mapping
f† is sometimes called the ortho-adjoint of f .

In our earlier example, the lattices of the form P(E) are complete, atom-
istic and orthocomplemented, and so the previous construction applies. If ξR :
P(A) �� P(B) is the residuated mapping associated with a relation R ⊆ A × B,
then one verifies that (ξR)† = ξRd : P(B) �� P(A) is the residuated mapping
associated with the converse relation.

If f is residuated and maps atoms to atoms or 0, and the same holds for f†,
then the tools of projective geometry apply to both f and f† under appropriate
conditions, and the similarities with the concepts of standard operator theory
become even more conspicuous. For example, f is said to be unitary iff f† is
inverse to f . In this case, f(a) ⊥ f(b) whenever a ⊥ b and f(a⊥) = f(a)⊥.

The physical duality that exists at the object-level between states and properties
was encoded by the Cartan map κL : L �� P(∂eM) and it is easy to see that κL

preserves all infima. We then automatically obtain a join-preserving left adjoint,
which was called the operational resolution by Amira, Coecke and Stubbe (1998)
and is explicitly given by

(43) ρ : P(∂eM) �� L : A �→
∨{

pμ | μ ∈ A
}

This duality can then be extended into a categorical equivalence, and this refor-
mulation gives access to the tools of category theory (Moore, 1995, 1999). Indeed,
the fact that the standard representation theorems are based on the join requires
a categorical formalism enabling adequate translations from one level to the other.
Specifically, we can then translate physically meaningful statements about the
meet into mathematically convenient statements about the join, since the pow-
erful mathematical representation theorems from the field of projective geometry
live mainly at the level of the second category. Consequently, we are confronted
with the highly non-trivial problem of identifying a physically relevant notion of
structure-preserving mapping between state spaces as encoded by orthogonality
spaces on the one hand, and property lattices as represented by complete atomistic
orthocomplemented lattices on the other.

As indicated previously, one class to contemplate consists of the set of all meet-
preserving mappings between two property lattices, in view of the physical meaning
attributed to the infimum of a collection of properties. On the other hand, observe
that this class does not contain the physically important class of Sasaki projections:

(44) φa : L �� L : x �→ (x ∨ a⊥) ∧ a

since φa(1) = a �= 1. In addition, Sasaki projections do not preserve the orthogo-
nality relation when restricted to A(L). On the other hand, for a physicist this is
not a surprise, because of the rather drastic evolution represented by a Sasaki pro-
jection, φa(pμ) representing the state of the system after a measurement of an ideal
experiment of the first kind has been performed on the system in an initial state
μ and the positive result is obtained. Following Moore (1995), we construct the
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category Prop with objects complete atomistic orthocomplemented lattices and
arrows residuated mappings that map atoms to atoms or 0, which is dual to the
category Prop∗ with same objects and arrows given by meet-preserving mappings
g : L1

�� L2 that satisfy the additional property

(45) ∀ p2 ∈ A(L2) : ∃ p1 ∈ A(L1) : p2 ≤ g(p1)

and the category State with objects orthogonality spaces and morphisms partial
functions f : Σ1

���� Σ2 such that K1 ∪ f←(F2), K1 being the kernel of f , is a
biorthogonal subset of Σ1 whenever F2 is a biorthogonal subset of Σ2.6 It is then
straightforward but somewhat tedious to show that Prop and State are equivalent
in the precise sense of category theory (Moore, 1995).

This categorical reformulation of the basic ideas of the Geneva approach also
makes the decomposition of property lattices into its irreducible components math-
ematically more precise. Given a complete atomistic orthocomplemented lattice
L, first construct the subset C of its classical properties. If

{
cj | j ∈ J

}
is a

collection of classical properties and μ ∈ ∂eM, then pμ �≤ ∧{
cj | j ∈ J

}
im-

plies that pμ �≤ ck for some k ∈ J , hence pμ ≤ c⊥k for some k ∈ J , and so
pμ ≤ ∨{

c⊥j | j ∈ J
}
; a similar argument holds for the join of a collection of clas-

sical properties. Next, if c is a classical property, then obviously c⊥ is. In addition,
C is atomistic, with atoms given by the elements cp =

∧{
c ∈ C | p ≤ c

}
, where

p runs through the atoms of L. Finally, if cp ≤ ∨{
cj | j ∈ J

}
, then necessarily

cp ≤ ck for some k ∈ J , which implies that J is distributive. Altogether, C
is a distributive complete atomistic orthocomplemented sublattice of L. Consider
then the canonical projections

(46) prcp
: L ��

[
0, cp

]
: a �→ a ∧ cp

It is easy to see that all prcp
preserve infima; moreover, for each p ∈ A(L), p ≤ cp,

it is obvious that p ≤ p = prcp
(p), and so the projections are arrows in Prop∗.

Since for a ∈
[
0, cp

]
we also have

(47) a ≤ cp ∧ b iff a ≤ b

and so we obtain the adjunction coprcp
1 prcp

, with the canonical coprojection
coprcp

:
[
0, cp

]
�� L the left adjoint of prcp

, hence an arrow in Prop. It is then
not difficult to show that the source given by

(48)
(
prcp

: L ��
[
0, cp

])
cp∈A(C )

defines a product in Prop∗, hence the sink

(49)
(
coprcp

:
[
0, cp

]
�� L
)

cp∈A(C )

6Recall that the kernel K of a partially defined function is the subset of the domain where f
is not defined.
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defines a coproduct in Prop by the dual equivalence of both categories. In addition,
the state spaces in State accordingly form the underlying objects of a coproduct
at their level of the description of a physical system.

If μ1, μ2 ∈ ∂eM are two states such that μ1 � cp and μ2 � cq for p, q ∈ A(L),
cp �= cq, then μ1 and μ2 are orthogonal, as we have seen previously, but they are
also separated by a superselection rule. In fact, first observe that for each a ∈ L
we have

(50) a =
∨{

a ∧ cp | p ∈ A(L)
}

which follows easily from the fact that L is atomistic, and each atom r ∈ A(L),
r ≤ a is under (exactly) one of the cq, for some q ∈ A(L). Second, we also have,
for any pair of atoms p, q ∈ A(L) for which cp �= cq

(51) (p ∨ q) ∧ cp = p ; (p ∨ q) ∧ cq = q

In fact, we only have to show that p⊥ ≤ (p⊥ ∧ q⊥) ∨ c⊥p . Now if r ⊥ p, r ∈ A(L),
then either r ≤ cr for some cr �= cp, and then r ≤ c⊥p (since all atoms in cp are
then automatically orthogonal to r), or r ≤ p⊥ ∧ cp, in which case r ≤ p⊥ ∧ q⊥,
for essentially the same reason. If the pure states μ1 and μ2 are represented by
the atoms pμ1 and pμ2 respectively, the initial assertion follows immediately from
equation (51).

The dagger operation defines an involution on the unital semigroup of residuated
endomappings on L. Recall that involution semigroups (S, ◦, ∗) have an intrinsic
notion of projection: these are idempotent elements e for which e = e∗. More gen-
erally, at the category-theoretic level the category JCOLatt with objects complete
orthocomplemented lattices and arrows join-preserving mappings has the proper-
ties of a dagger category, a notion that was introduced by Peter Selinger (2007)
by abstraction from some of the categorical structures that arise in the pioneering
paper by Abramsky & Coecke (2004).

If L happens to be orthomodular, the unital involution semigroup of residuated
endomappings becomes a Foulis semigroup, a particular kind of Baer ∗-semigroup,
the latter notion being due to Foulis (1960). In this case, the right annihilator

(52) R(x) =
{
y ∈ S | x ◦ y = 0

}
of each element x ∈ S is required to be a right principal ideal x′ S generated by
a projection x′ ∈ S. One can show that the set of projections that satisfy this
condition play a privileged role and they are referred to as closed projections. The
collection of closed projections of a Baer ∗-semigroup always forms an orthomod-
ular lattice (Foulis, 1960).

The prototypic Baer ∗-semigroups are given by the collection of bounded lin-
ear operators on a complex Hilbert space, with involution A �→ A† and Baer
∗-projection A �→ A′ = Pker A, and by its projective counterpart — the collection
of equivalence classes of such operators under the equivalence relation
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(53) A ∼ B iff ∃ λ ∈ C : λ �= 0 and A = λB

The collection of residuated endomappings on a complete orthocomplemented
lattice L has another related mathematical structure that has surfaced in more
recent literature (Mulvey & Pelletier, 1992). Specifically, it has the structure of
a so-called Gelfand quantale, and in particular a Hilbert quantale. Recall that a
quantale is a complete join-semilattice L endowed with a second binary operation
& : L × L �� L that distributes at the left and at the right with all joins. If
there is a unit element u for &, the quantale is unitary. If it has an involution
that respects joins and such that (a&b)∗ = b∗&a∗, the quantale is involutive.
A Gelfand quantale is an involutive unital quantale that satisfies the additional
property a&a∗&a = a for all a ∈ L. Finally, a Hilbert quantale is a Gelfand
quantale that is isomorphic — in the sense of unital involutive quantales — to the
Gelfand quantale of residuated mappings for some orthocomplemented complete
lattice. In this case, the binary operation “&” is given by functional composition.

Finally, we remark that Aerts & Piron (1979) investigated a category of com-
plete orthomodular lattices for which the morphisms were taken to satisfy the
additional requirement of preserving dual modular pairs, i.e. join-preserving map-
pings f that map orthogonal elements to orthogonal elements and (a, b)M∗ only
if (f(a), f(b))M∗.

5 DYNAMICAL EVOLUTION

To illustrate the operational ideas and the fruitful interplay between physical rea-
soning and mathematical deduction that is so characteristic for OQL, we will
consider some models of important physical phenomena in some detail. In partic-
ular, we will consider the deterministic evolution — mathematically represented
by so-called Schrödinger flows — and the indeterministic case associated with the
action of an ideal experiment of the first kind on a physical system (Faure, Moore
and Piron, 1995; Piron, 1998). In this section, we will investigate some structural
consequences of explicitly allowing for a deterministic evolution in the conceptual
framework, a discussion of the second model being referred to the next section.

To incorporate the notion of an evolution at this basic level of the framework
requires first and foremost that the observer is equipped with an appropriate phys-
ical clock, so that the potential (consecutive) performance of experiments can be
timed. Operationally speaking, the second is currently defined as the duration of
9 192 631 770 periods of the radiation corresponding to the transition between the
two hyperfine levels of the ground state of the Cs13355 atom (Audoin and Guinot,
2001).

In this way, the class of experimental projects can be regarded as a trivial
bundle over T ⊆ R: for each t ∈ T we have a complete sub-prelattice Qt, where
T is related to the stability of the system under investigation. The central idea
consists in the observation that a given evolution can be regarded as part of an
experimental project (Daniel, 1989). In fact, for each pair (t0, t1) ∈ T 2, with



426 David J. Moore and Frank Valckenborgh

t0 ≤ t1, we can define a mapping

(54) φ(t1, t0) : Qt1
�� Qt0

Specifically, the experimental project φ(t1, t0)(α) ∈ Qt0 has the same operational
prescriptions as the project α, modulo a waiting period of t1 − t0 time units;
φ(t1, t0)(α) is certain (at t0) iff the execution of the experimental project associated
with α (at time t1) would yield the positive result with certainty should this
experiment be performed at time t1. In this way, the desideratum of describing a
given evolution explicitly defines a whole bunch of experimental projects, and to
be consistent we have to incorporate these projects into Q. Of course, the system
under investigation will naturally evolve during this time period, so we need to
distinguish between various possible physical scenarios, depending on the possible
interactions of the system with its environment or otherwise.

If φ(t1, t0)(α) �∼ φ(t1, t0)(β), the system can evolve into a state such that only
one of α or β is certain, and so α �∼ β; indeed, the evolution of the system should
not depend on the particular experimental project we may or may not decide to
perform in the future. Consequently, we have a natural factorisation as displayed
in the picture

(55) Qt1

q1 ��

φ(t1,t0)

��

Lt1

Φ(t1,t0)

��

Qt0 q0
�� Lt0

where the qj are the usual quotient maps. Observe that

(56) φ(t1, t0)(α∼) = φ(t1, t0)(α)∼

In addition, by definition of product questions in the Geneva approach, the map-
pings φ will preserve products, and so the corresponding mappings Φ(t1, t0) are
meet-preserving, hence also order-preserving. In principle, it can happen that the
system vanishes for some initial states, and so we cannot assume in general that
Φ(t1, t0)(1) = 1. However, we can always consider the appropriate corestrictions
of the various mappings, conveniently denoted by the same symbol

(57) Φ(t1, t0) : Lt1
�� [ 0,Φ(t1, t0)(1) ]

and these mappings will preserve all infima, including the empty one, and so the
theory of Galois adjunctions (or the adjoint functor theorem) provides a left adjoint
Ψ(t0, t1) 1 Φ(t1, t0), where

(58) Ψ(t0, t1) : [ 0,Φ(t1, t0)(1) ] �� Lt1

preserves all suprema, and is explicitly given by the expression

(59) Ψ(t0, t1)(a) =
∧{

b ∈ Lt1 | a ≤ Φ(t1, t0)(b)
}
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In words, Ψ(t0, t1)(a) is the strongest property of which the actuality at t1 is
guaranteed by the actuality of a at t0. Physically speaking, there then exists some
sort of duality between propagation and causation.

From now on, we will assume that Qt
∼= Qt0 =: Q for all t ∈ T . In other

words, the physical system is sufficiently stable for the experimental projects one
can perform at some initial time t0 to make sense at the appropriate later times.
If t0 ≤ t1 ≤ t2, it is clear by the prescriptions of the corresponding experimental
projects that φ(t1, t0) ◦ φ(t2, t1) = φ(t2, t0), and so also Φ(t1, t0) ◦ Φ(t2, t1) =
Φ(t2, t0) and

(60) Ψ(t1, t2) ◦ Ψ(t0, t1) = Ψ(t0, t2)

by the standard properties of left adjoints. In other words, we obtain a unital
semigroup of mappings that describes the evolution.

In particular, for p ∈ A(L), Ψ(t0, t1)(p) is the strongest property of which the
actuality at time t1 is guaranteed by the actuality of p at time t0. It is then
natural to define a given evolution as deterministic relative to an initial pure
state when its associated mapping Ψ(t0, t1) maps the corresponding atom to an
atom; maximally deterministic if Ψ(t0, t1) maps all atoms under Φ(t1, t0)(1) to
atoms (Faure, Moore & Piron, 1995). If the atom space of L — hence also of the
sublattice [ 0,Φ(t1, t0)(1) ] — has the structure of a projective geometry, the second
fundamental theorem of projective geometry applies, and the mapping Ψ(t0, t1)
can be represented as a collection of semilinear mappings defined on the underlying
vector spaces. For additional details, see the previous reference.

Notice that maximally deterministic evolutions reverse the orthogonality rela-
tion on the atom space associated with their domain. In fact, if Ψ(t0, t1)(p) is
orthogonal to Ψ(t0, t1)(q), there exists an experimental project α ∈ Q for which

Ψ(t0, t1)(p) ∈ κQ(α) and Ψ(t0, t1)(q) ∈ κQ(α∼)

According to our previous specifications, this means that

p ∈ κQ(φ(t1, t0)(α)) and q ∈ κQ(φ(t1, t0)(α∼)) = κQ(φ(t1, t0)(α)∼)

which proves our assertion. In particular, unitary evolutions on complex Hilbert
spaces become an important example of this part of the formalism.

For the concrete example of applying this formalism to the evolution of so-called
separated physical systems, see Ishi (2000, 2001).

6 FROM BEING TO BECOMING

The postulates of the quantum logic approach are usually introduced in a way
that is more or less independent of the general theory of measurement. If one tries
to incorporate explicitly the potential concatenation of successive measurements
explicitly into the standard framework, one needs to take into account the potential
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effects at the end of a single observation procedure on the initial state assigned
to a singular realisation of a particular physical system. It is in this context that
the role of notions of typing, of conditional probability, and of partially defined
operations, become more prominent.

In classical probability theory, this problem does not occur, since the actual
observation of a random variable in general does not need to take into account a
potential change of state of the physical system. On the other hand, it is amusing
to note that a probabilistic model may have to refer explicitly to the operational
procedure that is used to obtain the results, as is vividly illustrated by Bertrand’s
random-chord paradox, for example. In quantum theory, this is no longer the case
in general, and the potential order of successive operations is indeed an important
part of the conceptual framework. In other words, measuring an observable B
immediately before or after a measurement of A in general yields different results.
This experimental fact is usually interpreted as resulting from a change of state
of the system after the interaction with a measurement device associated with the
observable A. In other words, in quantum physics there appears an irreducible
element in the interaction between a measurement device and a particular physical
system.

In quantum logic, this problem was — to the best of our knowledge — first
tackled in a systematic way in the late 1960’s in the work of Pool (1968a, b).
Some years earlier, Foulis (1960) had established an intimate but purely abstract
connection between orthomodular lattices on the one hand and a particular type
of involution semigroups on the other, the Baer ∗-semigroups. Given this duality,
and in view of the central role of orthomodular structures in algebraic quantum
logic, it was a natural idea to investigate the potential phenomenological role
and interpretation of these semigroups in fundamental physical theory. It turns
out that the semigroup perspective adds a more active twist as compared with the
essentially passive picture provided by the object-focused state space and property
lattice perspective.

Pool starts with assigning an event-state structure to a physical system. This
is a triple (E,S, P ) where E denotes the collection of events, S the collection of
(mixed) states, and P : E×S �� [ 0, 1 ] a probability function; although events in
his sense explicitly refer to observational procedures, they are more similar to the
concept of property that arises in the Geneva school approach, since also in this
framework events e1 and e2 are actually identified when S1(e1) = S1(e2), where
S1(e) consists of the collection of all states μ for which P (e, μ) = 1. In this way, he
obtains the structure of a partially ordered set for E, the partial order reflecting
the same phenomenological implication as in the Geneva school approach:

(61) e1 ≤ e2 iff S1(e1) ⊆ S1(e2)

The usual progression of axioms then guarantees that E is an orthomodular σ-
orthoposet, and S a strongly order-determining σ-convex set, which can be iden-
tified with the collection of generalised probability measures defined on E.

A central role in the work of Pool is played by the notion of an operation associ-
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ated with a definite experimental project — a concept that is inspired by the work
of Haag and Kastler (1964) in the setting of algebraic quantum field theory — and
which tries to formalise the potential state transition suffered by the system, after
it has been tortured by the execution of a measurement and the positive response
is obtained. Actually, Pool associates a simple operation Ωe not with each definite
experimental project, but with each event e, which may alternatively be regarded
as the choice from a privileged set of definite experimental projects associated with
the individual events, in the spirit of our axiom C3. Notice that such a procedure
only makes sense when the probability for a positive response is indeed non-zero.
In other words, there is a partially defined operation Ωe associated with the event
e that can be formalised as a partial endo-function of the state space, defined on
those states μ for which P (e, μ) > 0 — and the type of the system doesn’t change
— with restricted domain

(62) D(Ωe) =
{
μ ∈ S | P (e, μ) �= 0

}
The state Ωe is of couse conceived as the state of the system immediately after the
privileged experimental project associated with the event e has been effectuated
and a positive result is obtained. Alternatively, from a more probabilistic perspec-
tive one can also regard the state transition Ωe as a procedure that provides the
new state as conditioned on the event e.

A general operation is then regarded as a succession of simple operations, with
the domain defined in the standard way when one deals with the composition of
partial functions:

(63) D(Ωen ◦ · · · ◦ Ωe1) =
n

μ ∈ S | (Ωek ◦ · · · ◦ Ωe1)(μ) ∈ D(Ωek+1), 1 ≤ k ≤ n − 1
o

In this way, he obtains a semigroup of operations, which has a zero element and
a unit element. Incorporating the operations as primitive objects into the funda-
mental framework, Pool defines an event-state-operation structure as a quadruple
(E,S, P,Ω), where (E,S, P ) is an event-state structure and

(64) Ω : E → Pfn(S,S)

generates a subsemigroup of the set Pfn(S,S) of all partial endofunctions on S
by composition of partial functions, subject to various additional conditions. In
particular, he requires that P (e, μ) = 1 only if Ωe(μ) = μ, and P (e,Ωe(μ)) = 1
when this expression is defined; these two conditions are reminiscent of the notion
of an ideal first-kind experiment. In fact, if we demand that the rules of classical
probability theory should hold on Boolean subalgebras of E, the state transitions
should be consistent with the usual requirements of conditional probability, and
so we naturally require

(65) P (b,Ωa(μ)) =
P (a ∧ b, μ)
P (a, μ)

whenever C(a, b) in an appropriate sense, and μ ∈ D(Ωa). If C(a, b) and P (b, μ) =
1, we obtain P (b,Ωaμ) = 1, and so the operation Ωa corresponds with an ideal
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measurement. Specifically, we also have

P (a ∧ b, μ) = P (b, μ)P (a,Ωb(μ))
= P (a,Ωb(μ))
= P (a, μ)

since Ωb(μ) = μ follows from P (b, μ) = 1.
An involution on this semigroup is then defined by reversing a succession of

operations:

(66) (Ωen
◦ · · · ◦ Ωe1)

∗ = Ωe1 ◦ · · · ◦ Ωen

For this definition to make sense, it is necessary to require, together with Pool,
that

(67) Ωen
◦ · · · ◦ Ωe1 = Ωfm

◦ · · · ◦ Ωf1 =⇒ Ωe1 ◦ · · · ◦ Ωen
= Ωf1 ◦ · · · ◦ Ωfm

Again, we require the existence of a privileged collection of definite experimental
projects such that this reversal makes sense and is well-defined. The final axiom
asserts that for each succession of elementary operations X = Ωen

◦ · · · ◦Ωe1 there
is an event eX for which

(68) S1(eX) =
{
μ ∈ S | μ �∈ D(X)

}
The heuristic motivation for this axiom is the following: Given a particular state,
one can always experimentally verify whether or not this state is in D(X) by the
following procedure: μ �∈ D(X) iff μ �∈ D(Ωe1) or μ ∈ D(Ωek

◦ · · · ◦ Ωe1) and
μ �∈ D(Ωek+1 ◦ · · · ◦ Ωe1) for some 1 ≤ k < n. We then require the existence
of an event eX associated with this experimental procedure. In this way, the
involution semigroup generated by the elementary operations becomes a Baer ∗-
semigroup, the closed projections being the elementary operations of the form Ωe,
and the correspondence e �→ Ωe is an isomorphism of partially ordered sets. The
latter poset is an orthomodular lattice, and so the set of events also obtains a
lattice structure in this way, which is a priori not obvious in this setting. Both
the conventional probabilistic model sensu Kolmogorov (1956) and von Neumann’s
Hilbert space model are instances of the general notion of an event-state-operation
structure.

On the other hand, if (E,S, P,Ω) is an event-state-operation structure with E an
orthomodular lattice, one can consider the associated Baer ∗-semigroup (S(E), ◦, †)
of residuated endomappings on E, and investigate the relation between this semi-
group and the semigroup of operations induced by the mapping Ω; the latter
semigroup consists of partial endofunctions on S, while the first one corresponds
with endomappings on E. The bridge is formed by the notion of support of a state
μ. This is conceived as an event sμ such that for all events e, P (e, μ) = 0 iff e ⊥ sμ;
in other words, it is an event sμ such that the filter of all certain events in E in-
duced by the state μ is the principal filter ↑sμ. Physically speaking, the support
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associated with a general state corresponds with the strongest actual property we
actually know about the single individual samples of a system prepared according
to this state. If E is complete, supports for states will always exist; otherwise, the
existence has to be assumed. Since

P (s⊥μ ∧ e, μ) ≤ P (s⊥μ , μ)
≤ 1 − P (sμ, μ) = 0

and so

P (sμ ∨ e⊥,Ωe(μ)) = 1 − P (s⊥μ ∧ e,Ωe(μ))

= 1 −
P (s⊥μ ∧ e, μ)

P (e, μ)
= 1

we infer that sΩe(μ) ≤ sμ ∨ e⊥. In addition, P (e,Ωe(μ)) = 1 for μ ∈ D(Ωe), and
so sΩe(μ) ≤ e. Consequently, it is always the case that

(69) sΩeμ ≤ (sμ ∨ e⊥) ∧ e = φe(sμ)

where φe corresponds again with a suitable Sasaki projection associated with the
event e, this time defined on the collection of supports of states. Pool (1968b)
then postulates that equality actually holds in all cases, and shows that one can
construct a Baer ∗-semigroup morphism Θ — an involutive semigroup morphism
also preserving the unary operation ′ — from the semigroup of operations into the
semigroup of residuated mappings. This mapping is defined on generators as

(70) Θ(Ωe) = φe

and extended by functional composition. It is then also true that

(71) (Θ(Ωe))(sμ) = sΩe(μ) = φe(sμ)

and so the (partial) state transforming map Ωe is converted into the corresponding
support transforming map φe. Finally, the covering law reduces to the statement
that the restriction of Ωe to the set of pure states only also corestricts to pure
states.

Conversely, one can show that each event-state structure that consists of an
orthomodular lattice L equipped with a strongly separating set of (generalised)
probability measures M admits a set of (partial) endomappings on M that can
be interpreted as ideal first-kind measurements (Cassinelli & Beltrametti, 1975).

More recent work that focusses on the quantale and quantaloid properties of
the mathematical objects, and a discussion of how this leads to a more dynamic
perspective on operational quantum logic, can be found in Coecke & Stubbe (2000)
and Coecke, Moore & Stubbe (2001).
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7 COMPOSITE QUANTUM OBJECTS

Let us start with a brief discussion of and some of the problems associated with
an elementary model in standard quantum mechanics for a typical “2-particle”,
the hydrogen atom. For a more extensive discussion, see Piron’s blue book (Piron,
1998). In standard Hilbert space quantum mechanics, the behaviour of protons
and electrons is conventionally modeled with the aid of the complex Hilbert space
L2(R3, λ) ⊗ C2, where λ denotes Lebesgue measure, and R3 refers, for example,
to the spatial coordinates that diagonalise the respective position operators. The
hydrogen atom is conceived as consisting of a proton and an electron interacting
with one another. Taking into account the spins, according to the prescriptions of
standard textbook quantum mechanics the appropriate Hilbert space becomes

(72)
(
L2(R3, λ) ⊗ C2

)
⊗

(
L2(R3, λ) ⊗ C2

)
∼=

4⊕
j=1

L2(R6, λ)

For the sake of the discussion, we will disregard the spin-orbit coupling and con-
sider the Hamiltonian operator

(73) H = − �2

2mp

3∑
i=1

∂2

∂xi
p
2 − �2

2me

3∑
j=1

∂2

∂xj
e
2 − 1

4πε0
e2

‖�rp − �re‖

acting on each of the four components of the wave function in the space above.
The usual transformations to the centre-of-mass coordinate system

(74)
�R = 1

mp+me

(
mp �rp + me �re

)
�P = �pp + �pe

�r = �re − �rp �p = 1
mp+me

(
mp �re −me �rp

)
lead us to the transformed Hamiltonian

(75) H ′ = − �2

2M

3∑
i=1

∂2

∂Xi2
− �2

2μ

3∑
j=1

∂2

∂xj2 − 1
4πε0

e2

‖�r‖

where

(76) M = mp + me ;
1
μ

=
1

mp
+

1
me

and this PDE can be separated into a free part and a part that is familiar from the
related one-particle problem. The free part, which has a purely continuous spec-
trum ( 0,+∞ ), and therefore leads to a purely continuous spectrum and hence also
the absence of stationary states for the total Hamiltonian (75), is usually dismissed
by physical hand-waving arguments, because the second equation conforms to the
experimentally observed discrete spectrum, at least at this level of precision. In
addition, the solution associated with the centre-of-mass part will quickly expand
in space (Piron, 1998).
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From the perspective of OQL, there is a corresponding treatment of the problem,
using a model with continuous superselection rules instead (Piron, 1965; 1998).
Specifically, the observables associated with �Q, �P and t are regarded as determining
classical properties in the property lattice, and can be represented by functions on
R7. The appropriate Hilbert space then becomes the trivial Hilbert bundle

(77) ( �Q, �P , t) �→ L2(R3, λ) ⊗ C2 ⊗ C2 ∼=
4⊕

j=1

L2(R3, λ)

In other words, pure states of this system are completely determined by the spec-
ification of a point (�Q, �P , t) ∈ R7 and a ray in the direct sum Hilbert space. The
Schrödinger operator (73) becomes, after transforming to CM-coordinates,

(78) H ′′ =
P 2

2M
− �2

2μ

3∑
j=1

∂2

∂xj2 − 1
4πε0

e2

‖�r‖

acting on each of the four components in the direct sum. In this model, the
first term becomes a rather innocent constant that does not affect the calculation
of energy differences, at least not at this level of precision. Consequently, the
spectrum of H ′′ has a discrete part, stationary states exist, and all is well. Observe
that this is a model which uses a continuous superselection rule. From the endo-
perspective of the system, the potential origin of this apparent “decoherence” is
immaterial. It is there because of its potential interaction with the appropriate
class of definite experimental projects, and it is usually considered as part of
current scientific practice that the scientist investigates a reasonably circumscribed
part of the external world.

So what do we mean then in more general terms with a composite physical
system? Which criteria do we have to use to assign the label “composite” to a
given physical system? From the perspective of OQL, it is arguably desirable that
such criteria are purely operational. Before continuing the discussion, we want to
point out that the very notion of a composite physical system creates a potential
conceptual conflict between the two archetypical approaches — top-bottom and
bottom-top — towards the description of a physical system that is conceived as
composite, or at least moves the potential schizophrenia that is involved in these
two possible extreme viewpoints into sharper focus. More precisely, the first type
of approach describes a physical system by investigating and abstracting its inter-
action as a single entity with all sorts of external devices, leading to the notion of
an “n-particle”; the second type of approach will rather try to describe a compos-
ite system by attributing some appropriate intrinsic substructure ab initio, using
independent empiric or other information and/or considerations of a theoretical
nature, presumably leading to some notion of n interacting particles. To make
matters worse, there is also a dynamical component involved. For example, we
are inclined to construe the singlet state as referring to a composite system be-
cause we can interact with the system in such a way that we obtain two individual
components, but the interaction involved is rather disruptive.
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In the second case, we are led to expect that the behaviour of a physical system
that is being conceived as composite can be deduced from the properties attributed
to its putative constituents. We then have to require that and investigate how this
independent knowledge can be incorporated in the description. It is in this context
that a typical subsystem recognition problem appears: How do we recognise the
constituents in the global system? At this stronger level, we may then actively
look for the operational recognition of potential subsystems in a given system. In
other words, construct an explicit embedding of the properties attributed to the
putative subsystem in the collection of properties assigned to the larger composite
system. For a more elaborate discussion of some of these aspects, see Valckenborgh
(2000).

Some of these difficulties with forming an appropriate notion of a composite
physical system are highlighted in the early work of Aerts (1982). Conceptu-
ally speaking, one expects that the simplest type of compound physical system
corresponds with a system of two objects that are separated from one another.
Using the operational principles and prescriptions of the Geneva approach, Aerts
constructed explicitly a mathematical model for the description of several oper-
ationally identified and separated systems as one global system. It turned out
that two of the axioms formulated in Piron (1976) — weak modularity and the
covering property — in general fail in this case, unless all but at most one of the
constituents have only classical properties. More precisely, it turns out that the
property lattice that results from the combination of two operationally separated
pure quantum systems cannot be embedded in a natural way in the collection of
closed subspaces of an appropriate complex Hilbert space. Even worse, the collec-
tion of pure states attributed to the composite entity no longer forms a projective
geometry, even in the extended sense of Faure and Frölicher (2000). Since these
ingredients are necessary for the representation of the property lattice as the col-
lection of closed subspaces of a suitable orthomodular space, these results highlight
some of the tensions that exist between quantum physics and the more classical
notions of a composite system and separation of systems. Although the physical
justification takes some work, from a mathematical perspective the property lat-
tice, denoted by L1©∧ L2, is easy to construct, given the (pure) state spaces ∂eM1

and ∂eM2 associated with the two components. Specifically, L1©∧ L2 consists of
the collection of all biorthogonally closed subsets of the set ∂eM1 × ∂eM2, with
Aerts’ orthogonality relation given by

(79) (μ1, μ2) ⊥ (ν1, ν2) iff μ1 ⊥1 ν1 or μ2 ⊥2 ν2

For the sake of argument, suppose that L1 and L2 are both non-trivial irreducible
complete atomistic orthomodular lattices that satisfy the covering property. Take
three distinct pure states p1, q1, r1 ∈ ∂eM1 with r1 ∈ {p1, q1}⊥⊥, and do the same
for ∂eM2; in other words, rj is on the line generated by pj and qj for j = 1, 2.
Using the standard results

(80)
(⋃{

m | m ∈ M
})⊥

=
⋂{

m⊥ | m ∈ M
}
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which holds in any orthogonality space, and the (79)-specific result

(81)
{
(p1, p2)

}⊥ =
({

p1

}⊥ × ∂eM2

)
∪
(
∂eM1 ×

{
p2

}⊥)
it is then not difficult to verify that the orthogonality relation (79) implies that

(82)
{
(p1, p2), (r1, r2)

}⊥⊥ =
{
(p1, p2), (r1, r2)

}
(83)

{
(q1, p2), (r1, q2)

}⊥⊥ =
{
(q1, p2), (r1, q2)

}
and so

(84)
{
(p1, p2), (r1, r2)

}⊥⊥ ∩
{
(q1, p2), (r1, q2)

}⊥⊥ = ∅

although (r1, p2) ∈
{
(p1, p2), (q1, p2)

}⊥⊥ ∩
{
(r1, r2), (r1, q2)

}⊥⊥. In other words,
we have a pair of intersecting lines and two points on each line for which the new
pair of lines generated by these points is not intersecting, and so axiom (3) of a
projective geometry in terms of the ternary collinearity relation fails to hold for
the pair (∂eM1 × ∂eM2,  A), where the ternary relation  A satisfies

(85)  A(a, b, c) iff b = c or a ≤
{
b, c

}⊥⊥

Similarly, properties of the form
{
(p1, p2), (q1, q2)

}
, where we require that p1 �=

q1, p1 �⊥ q1 and p2 �= q2, p2 �⊥ q2, lie at the basis of the failure of the orthomodular
law. Specifically, we obviously have

(86) (p1, p2) ∈
{
(p1, p2), (q1, q2)

}
(87)

{
(p1, p2)

}⊥ ∩
{
(p1, p2), (q1, q2)

}
= ∅

and so we have found two properties a and b such that a < b and a⊥ ∧ b = 0.
Consequently

(88) a ∨ (b ∧ a⊥) = a < b

and the orthomodular law fails.
In the same spirit, if μ is a generalised probability measure on an ortholattice

L in the sense of definition 6, then a ≤ b and a⊥ ∧ b = 0 automatically imply that
μ(a) = μ(b). Indeed,

μ(a⊥ ∧ b) = μ((a ∨ b⊥)⊥)
= 1 − μ(a ∨ b⊥)
= 1 − μ(a) − μ(b⊥)
= μ(b) − μ(a)

where the third equality holds because of the orthogonality of a and b⊥. Conse-
quently, the collection of all probability measures — in the sense of definition 6
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— on L1©∧ L2 is not separating, although the collection of atoms, corresponding
with the set of pure states attributed to the separated physical system, obviously
does. In other words, whereas one physically expects that each pure state induces
a probability measure in some general sense on L1©∧ L2, these probabilities will
behave erratically with respect to Boolean algebras in L1©∧ L2.

Finally, separated physical systems also exhibit a very anomalous behaviour
with respect to superselection sectors. More precisely, the particularities of the
orthogonality relation (79) imply that there exist superselection rules for some
non-orthogonal states, a situation that does not occur in conventional quantum
theory, because of proposition 8. For example, the states (p1, p2) and (q1, q2)
used in the previous argument are separated by a superselection rule, because the
line they generate contains no other points. As a consequence, proposition 8 then
implies again that the orthomodular law fails for the separated product of two non-
classical complete atomistic ortholattices. We happily refer the reader to Aerts &
Valckenborgh (2002) for additional discussion, and the application of these ideas
to the physically more concrete example of two separated spin-1/2 systems.

The fact that a given physical system can be regarded as composite, for exam-
ple due to its possible behaviour under certain experimental conditions, seems to
compel us to explicitly try to incorporate this additional information in one way or
another. From the more operational top-bottom perspective, it is conceivable that
such a priori information would be only statistical, due to the potential disruptive
aspects of an explicit interaction of the initial system with the measurement device
that may break it apart, not unlike the situation that arises in the measurement
problem. If we have access to only one of the parts of a system that has been
prepared in this state, a situation which seems to make sense from the perspec-
tive of the enigmatic couple Alice and Bob, we can only use the class of definite
experimental projects that applies to the perceived subsystem. With respect to
the property lattice that is so constructed, the initial state attributed to one of
the components necessarily becomes the mixed state that arises from the partial
tracing of the pure state of the global system.

In orthodox quantum mechanics in Hilbert space, composite physical systems
are mathematically described by means of the Hilbert tensor product H1 ⊗ H2

of the Hilbert spaces H1 and H2 that represent the individual subsystems, or an
appropriate subspace thereof, if there are additional externally imposed symmetry
constraints in the interaction, at least before the potential disruption takes place.
This weaker type of predicting the behaviour of the components is achieved in
this case by the mathematical device of partial tracing, while the stronger notion
would correspond with the actual explicit existence of an embedding

(89) j1 : P(H1) �� P(H1 ⊗ H2)

at the level of the projective geometries associated with the Hilbert spaces, and
similarly for j2. Aerts & Daubechies (1978) have used such desiderata to opera-
tionally justify the use of the Hilbert space tensor product in quantum physics. In
more detail, they show that when the following three conditions are imposed on
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mappings h1 : L(H1) �� L(H ) and h2 : L(H2) �� L(H ), where L(H ) denotes
the lattice of closed subspaces of a Hilbert space H

(1) h1 and h2 are unital, preserve infima and the orthogonality relation

(2) C(h1(a1), h2(a2)) for all a1 ∈ L(H1) and a2 ∈ L(H2)

(3) h1(p1) ∧ h2(p2) ∈ A(L(H )) for all p1 ∈ A(L(H1)), p2 ∈ A(L(H2))

then L(H ) will be canonically isomorphic with the lattice of closed subspaces of
either the Hilbert space H1⊗H2 or the space H1⊗H †

2 , where H † denotes the dual
space of H . Some structural subtleties that arise are discussed in Valckenborgh
(2000).

8 QUANTUM PROCESSES

We want to end our exposition with some musing on the more dynamical ideas
on quantum processes and indulge in some speculations about work that, in our
opinion, remains to be done.

In mathematical terms, the categorical view on mathematical structures char-
acterises objects not intrinsically, but rather by the way how they relate to other
objects of the same kind, by means of the network of arrows into and out of the
object (Mac Lane, 1998). In other words, it is the relational pattern that matters,
and not the potential intrinsic properties of a particular object. Operationally
speaking, applying such principles in the physical context points to a more op-
erational and dynamical attitude towards physical systems: the way the system
behaves with respect to the external world is given physical preference above the
way the system is supposed to be.

There exists a general type of category that allows the expression of a coher-
ent calculus of sequential and parallel operations; these are the so-called monoidal
categories. Interestingly, many categories that are of interest in current physical
thinking are examples of monoidal categories, the monoidal structure reflecting
the conventional representations of composite physical systems. For example, the
category of finite-dimensional Hilbert spaces and linear transformations is a sym-
metric monoidal category with respect to the usual Hilbert space tensor product,
as is the category of sets and functions when we pick the cartesian product for the
monoidal product. Here, category theory itself becomes an appropriate language
to express the formalism, in contrast to its more organising role in the setting of
the previous sections. Specifically, symmetric monoidal categories can be regarded
as an appropriate mathematical vehicle in which general processes are conveniently
expressed. From this perspective, a quantum process can almost literally be re-
garded as a path in a symmetric monoidal category, and parallel processes are
formed by invoking the properties of the monoidal bifunctor ⊗. This visualisa-
tion is very intuitive, and can be formally justified by the existence of a powerful
graphical calculus for symmetric monoidal categories (Joyal & Street, 1991). For
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more details on the development of such a categorical framework for the discussion
of abstract and various concrete processes that are relevant for quantum computa-
tion and information processing, see Abramsky & Coecke (2004). For an overview
of the fascinating interplay between the domains of physics, topology, logic and
computation to which this unifying framework leads, see the recent paper by Baez
& Stay (2008).

A dagger category is a pair consisting of a category and an involutive, identity-
on-objects endofunctor (Selinger, 2007). Therefore, the set of all endomorphisms
of an object in a dagger category has always the structure of an involutive monoid,
and so each object comes with a partially ordered set of projections. The relation
between the role of involution semigroups in the more object-oriented quantum
logic approach and the more dynamical afterthoughts in this section becomes more
obvious if we restrict ourselves to the more gentle experimental procedures that do
not change the type of the physical system under investigation (Amira, Coecke &
Stubbe, 1998). Indeed, in many important cases, the phenomenon under investiga-
tion is sufficiently stable and this observation should allow us to recover the more
traditional static picture from this dynamic setting, and some recent work suggests
how this can be done (Coecke, Paquette & Pavlovic, 2007). Another domain where
one expects this approach to become important, is in quantum scattering theory,
where a change in the types of objects after a dynamical process has occurred is
the rule rather than the exception. It is possible that the structural axioms sensu
Abramsky & Coecke (2004) have to be extended in this setting. More precisely, in
that paper preference is given to a particular type of symmetric monoidal category,
the compact closed categories.

One can argue that physics is, first and foremost, the study of detailed models of
specific situations. Consequently, to narrow the remaining gap between OQL and
standard quantum theory, additional empirical structure seems necessary. In par-
ticular, the characterisation of the underlying division ring D — an invariant of the
projective geometry — remains unclear. By requiring the existence of a certain
type of observable, in combination with some additional technical assumptions,
Gudder & Piron (1971) were able to show that D contains at least a copy of R.
One possible strategy would consist in studying the structural consequences when
one explicitly requires the representability of symmetry groups of a certain type
— in particular second countable locally compact Hausdorff groups, a collection
that encompasses all groups that are currently conceived as physically important
— in the existing framework. In particular, the incorporation of the physically
important notion of localisability at a much earlier stage of the discussion may
lead to important constraints on the admissible lattice-theoretic and related con-
structions. We know, for example, that the mathematical property of modularity
is incompatible with localisability (Piron, 1964; Jauch & Piron, 1967). In the
categorical framework that was discussed, these ideas lead to the investigation of
the structural properties of appropriate subcategories of categories of representa-
tions of a symmetry group G, in particular of the categories PropG, StateG and
ProjG. More specifically, for groups that have the additional internal algebraic
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and topological structure that are important in physics.
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TEST SPACES

Alexander Wilce

0 INTRODUCTION AND OVERVIEW

As is well known, the mathematical framework for quantum physics can be reduced
to a generalization of classical probability theory, in which boolean algebras are
replaced by what one might broadly call projective geometries — more technically,
the projection lattices of von Neumann algebras.

In the simplest cases, e.g., that of a small number of non-relativistic particles,
a quantum-mechanical system is represented by a Hilbert space H, in such a way
that every physical state of the system is encoded by a density operator W on
H, and each real-valued observable, by a self- adjoint operator A on H. The
probability that the observable A takes a value in a Borel set B ⊆ R, when the
system is in state W , is given by Tr (πA(B)W ), where πA is the spectral measure
of A. Evidently, we can regard the projection πA(B) as encoding the proposition
that the observable A will take its value in the set B. Two such propositions are
simultaneously testable iff they are in the range of the spectral projection of a
single observable — in other words, iff the corresponding projections commute.

The lattice L(H) of all projection operators H can thus be regarded as an al-
gebraic model for the “logic” of all measurement propositions, i.e, propositions
asserting that an observable takes a value in a particular range.1 Remarkably,
once we have decided so to represent this logic, all of the remaining structure of
quantum mechanics, up to the choice of a particular Hamiltonian, is simply de-
termined. Although L(H) is not a Boolean algebra, it retains enough “locally”
Boolean structure to support a natural definition of probability measures; Glea-
son’s theorem identifies these with the density operators on H. Reversible tempo-
ral evolution would naturally be modeled by a pointwise-continuous one-parameter
group of symmetries of L(H); by Wigner’s Theorem, such a one-parameter group
corresponds to a strongly continuous one-parameter group of unitaries on H. By
Stone’s Theorem, this in turn has the form t �→ e−itH for a self-adjoint operator
H, which we identify with the system’s Hamiltonian observable. In the represen-
tation in which H is diagonal, this reduces to the usual Schrödinger equation. 2

1This point of view was emphasized by von Neumann in his monograph of 1932 [von Neumann,
1932], and again in his joint paper with Birkhoff [Birkhoff and von Neumann, 1936] in 1936.

2For a more detailed sketch of the reduction of quantum mechanics to probability theory
on L(H), see the book [Beltrametti and Cassinelli, 1981] of Beltrametti and Cassinelli. For
the details, see the book [Varadarajan, 1985] of V. S. Varadarjan. The story is somewhat more
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Quantum Logics. That so much structure should follow from one simple pos-
tulate — that the logic of measurement propositions is the projection lattice of
a Hilbert space — is entrancing. However, once we decide that the logic of mea-
surement should allow for non-simultaneously testable propositions, we open the
door to a host of formal possibilities, most of them far less tame than a Hilbert
space projection lattice. Why, then, should Nature (or we) hew to the latter? In
order even to approach such a question, we need to be able to step outside of
quantum probability theory. That is, we require a conceptual and mathematical
framework for a generalized probability theory that allows for incommensurable
random quantities (“observables”), but that is as far as possible independent of
any special physical assumptions. Within this, we may hope to characterize quan-
tum probability theory in a way that casts some light on the question posed above.
Broadly speaking, any formal structure of “propositions” (or the like) and proba-
bilities, serving as such a framework, counts as a “quantum logic”.

There have been various proposals. The most prominent are those of Mackey
[Mackey, 1963], Kochen and Specker [Kochen and Specker, 1967], and Piron [Piron,
1964]. For Mackey, a quantum logic is (essentially) an orthomodular poset with
a strong order-determining sets of states; for Kochen and Specker, it is a partial
boolean algebra; and for Piron, a complete, atomistic, irreducible orthomodular
lattice satisfying the covering law — which, as Piron’s celebrated representation
theorem shows, is representable as the lattice of orthogonally closed subspaces
of an inner product space over an involutive division ring. However, all three
approaches are problematic. First, all make, either explicitly or tacitly, technical
assumptions that are difficult to motivate. For instance, both Mackey, and Kochen
and Specker assume that pairwise compatible propositions should be jointly com-
patible. Piron’s approach, too, contains ad hoc elements, notably the conditions
required to make his lattice of propositions orthocomplemented. Secondly, as was
pointed out by Aerts (in connection with Piron lattices) and by Foulis and Randall
(in connection with orthomodular posets), these structures do not admit natural
natural tensor products. Finally, all three approaches are poorly equipped to deal
with situations involving repeated measurements, where, in quantum mechanics,
one needs to take account of relative phase information.

Test Spaces. A different approach, free from these difficulties, was pursued
by D. J. Foulis and C. H. Randall in a series of more than two dozen papers
(e.g., [Foulis et al., 1985; Foulis and Randall, 1971; Foulis and Randall, 1981a;
Foulis and Randall, 1981b; Randall and Foulis, 1970; Randall and Foulis, 1976;
Randall and Foulis, 1978; Randall and Foulis, 1983a; Randall and Foulis, 1983b;
Randall et al., 1973]), beginning in the early 1970s and continuing until Randall’s

complicated for quantum field theory, where L(H) must be replaced by the projection lattice of a
von Neumann algebra. However, the key result, Gleason’s Theorem, as extended by Christensen
[Christensen, 1982] and Yeadon [Yeadon, 1983], applies here too: if A is a von Neumann algebra
having no type I2 factor, then every countably-additive probability measure on the projection
lattice of A extends uniquely to a state on A.
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untimely death in 1987. The Foulis-Randall theory begins with the simple idea of
a test space. Mathematically, this is just a hypergraph, i.e., a collection A of sets;
but the intended interpretation is that each set E ∈ A represents the outcome
set of some discrete, classical statistical experiment.3 Accordingly, each E ∈ A is
called a test; subsets of tests are called events, and elements of tests — that is,
points x ∈ X — are called outcomes. The simplest example, of course, is that in
which A consists of just one test. More generally, in classical probability theory,
it is assumed that the various sets E ∈ A can be represented as partitions of
a common set M , which may then be regarded as the outcome-set of a single,
idealized measurement, of which each test in A is a “coarse-grained” version; one
further assumes that any two tests E,F ∈ A have a common refinement that again
belongs in A. In contrast, the simplest quantum test space takes for A the set of
orthonormal bases for a Hilbert space. In this case, each test E ∈ A is maximally
informative — there exists no common refinement for two distinct tests.

In both of the preceding examples, distinct tests are permitted to overlap, that
is, to share outcomes. In fact, from the combinatorial structure of A alone one can
recover, in the classical case, the boolean algebra B of measurable sets, and, in
the quantum case, the lattice L(H) of closed subspaces of H. More generally, the
combinatorial structure of an arbitrary test space A allows one to associate to it
various order-theoretic and partial-algebraic invariants that can serve as “logics”
of measurement propositions. However, these logics are regarded, in the Foulis-
Randall approach, only as useful mathematical invariants of the underlying test
space, which is the real object of interest.

As has already been mentioned, test spaces avoid all of the problems described
above in connection with order-theoretic approaches to quantum logic. In partic-
ular, test spaces admit a very natural tensor product, and can be composed in a
way that faithfully mirrors the construction of iterated experiments in orthodox
quantum mechanics, phases and all. But perhaps the single greatest advantage
test spaces enjoy, as a framework for quantum logic, is that they are conceptually
very simple, and hence, transparent.

The theory of test spaces commands, by now, a literature consisting of scores
of papers, scattered through a variety of journals, as well as a good number of
unpublished doctoral dissertations. However, it has never enjoyed a monographic
treatment, and so remains in some degree inaccessible, and hence, less well known
than it ought to be. I hope the present paper will help to correct this. I have tried
to write with a general mathematical audience in mind, assuming little background
beyond the essential functional-analytic machinery of quantum theory (in particu-
lar, elementary spectral theory), some acquaintance with ordered sets and lattices,
and basic abstract algebra. I have tried, also, to produce something that a non-
expert might find agreeable to read. Accordingly, I have in many cases included
fully detailed proofs of even rather elementary propositions, where I thought they
might help the reader to absorb the flavor of the subject, while omitting some

3By which one means, a little circularly, some process, such as a measurement, that has a
well-defined outcome-set.



446 Alexander Wilce

longer, and more technically involved, arguments in the interest of maintaining
the flow of the discussion.

Synopsis

Background on Quantum Logic. In order to make these notes reasonably self-
contained, I have collected in Section 1 some essential background material on
quantum logics, beginning with a sketch of the elementary theory of orthomodular
lattices and posets, orthoalgebras, and effect algebras, and their characterization in
terms of partial abelian semigroups. Included also is a précis of Mackey’s axioms
for quantum mechanics, a brief discussion of the Piron representation theorem,
the characterization of complete orthomodular lattices in terms of orthogonality
spaces due to J. R. Dacey, and the celebrated “Loop Lemma” of R. Greechie.

Test Space Basics. Section 2 develops the elementary theory of test spaces. After
introducing the concept of a test space, and illustrating it with many examples, I
discuss certain basic constructions with, and mappings between, test spaces. This
section concludes with a brief discussion of spaces of vector-valued weights associ-
ated with test spaces, which may be regarded as optional (as it is referred to again
only at the end of Section 5).

Logics of Test Spaces. Associated to any test space is an involutive poset called
its logic. This is the subject of Section 3. In all but pathological cases, the logic
of a test space is orthocomplemented, but little more can be said unless some ad-
ditional conditions are imposed. In particular, if the test space satisfies a simple
combinatorial condition called algebraicity (in older terminology, if it is a manual),
then its logic has the structure of an orthoalgebra; conversely, every orthoalgebra
arises as the logic of a canonical algebraic test space. Among other results proved
in this section is a generalization of the Loop Lemma, due to Foulis, Greechie
and Rüttimann, giving a sufficient condition for an algebraic test space to have a
lattice-ordered logic.

Supports, Entities and Property Lattices. Section 4 concerns might be called the
FPR formalism. This derives from the joint paper [Foulis et al., 1985] of Foulis,
Piron and Randall, in which a test space is equipped with a family Σ of supports
— roughly, sets of outcomes that are possible in various states — and from this
is constructed a complete lattice L(A,Σ), called the property lattice of the entity.
We present a basic theorem, due to Foulis and Randall, giving sufficient condi-
tions for the logic Π and the property lattice L to be isomorphic — in which case,
each is a complete OML. We then discuss how one can formulate many parts of
the standard machinery of algebraic quantum logic – in particular, centers, Sasaki
projections, and the covering law — in terms of supports.

Sections 1 - 4, which are designed to be read in sequence, present what I would
regard as the essential core of the Foulis-Randall theory. In contrast, sections 5,
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6, and 7 are more nearly independent of one another, and represent three areas of
still active development:

Tensor Products. Section 5 concerns tensor products of test spaces, orthoalgebras,
and entities. I reproduce the basic example, due to Foulis and Randall [Foulis and
Randall, 1981a], showing that no suitable tensor product construction is available
for orthomodular posets or lattices, and then discuss the bilateral product of test
spaces, and associated tensor products of orthoalgebras and property lattices. I
also discuss, briefly, the representation of states on the bilateral tensor product of
frame manuals as bilinear forms, and the resulting “unentangled Gleason Theo-
rem”.

Symmetric Test Spaces. The basic classical test space, consisting of a single dis-
crete outcome-set, and the basic quantum-mechanical test space, consisting of
frames of a Hilbert space, both exhibit strong symmetry properties. In Section 6,
I summarize recent work [Wilce, 2005c] on test spaces subject to similarly strong
symmetry requirements. In particular, I show that a minimum of group-theoretic
data suffices to fix the structure of such a test space, and give a group-theoretic
characterization of algebraicity in this context. I also discuss how one can extend
a test space to accommodate a larger symmetry group.

Topological Test Spaces. Section 7 deals with test spaces in which the under-
lying set of outcomes carries a topology. This is a natural direction in which
to develop this theory, since the basic quantum-mechanical example enjoys a
rich and very relevant topological structure. I outline some of the basic gen-
eral theory of topological test spaces and their logics, following [Wilce, 2005a;
Wilce, 2005b]. Among other results, I show that a very large class of topological
test spaces always have dense semi-classical sub-test spaces. This shows that the
Meyer/Clifton/Kent “non-contextual hidden variables” theorems [Meyer, 1999;
Clifton-Kent, 2000] are fairly generic.

What has been omitted. These notes deal primarily on logico-algebraic and
combinatorial aspects of the theory of test spaces. In the interest of producing
a work that is short enough and focussed enough to be of use to the general
quantum logician (a narrow enough audience as it is!), I have omitted a great deal
of analytic machinery supporting a generalized probability theory — notably, the
generalized Bayesian probability theory of, e.g., [Randall and Foulis, 1976] and
[Gaudard, 1977]. Omitted, too, is any discussion of the way in which the Foulis-
Randall machinery can be extended to accommodate effect algebras — for that,
see [Pulmannová and Wilce, 1995; Foulis et al., 1996]. I should also mention that
there exists a certain body of work applying category-theoretic methods to the
theory of test spaces including, e.g., [Lock, P., 1981; Nishimura, 1995], which is
not dealt with here.

All three of these topics bear on a particularly interesting issue, namely, the
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degree to which test spaces can serve as a foundation for a general non-classical
information theory, extending (and, one would hope, clarifying) what is currently
known about quantum information theory. This, however, is a project just barely
begun (see, e.g., [Barnum et al., 2005]).

1 BACKGROUND ON QUANTUM LOGICS

Before introducing test spaces, it seems prudent to begin with a detailed review
of quantum logic in its more familiar, order-theoretic formulation. I begin by
sketching the basic algebraic theory of orthomodular lattices and posets, from
both an order-theoretic and a partial algebraic point of view, and then discuss
the coordinatization theorems of Piron, Amemiya and Araki, and Solér, charac-
terizing lattice-theoretically the projection lattices of Hilbert spaces. Readers well
familiar with this material may wish to proceed directly to sub-section 1.4, which
develops the representation theory for complete ortholattices in terms of so-called
orthogonality spaces. Here, I discuss Dacey’s Theorem, characterizing complete
orthomodular lattices in these terms, as well as Greechie’s celebrated Loop Lemma.
This section closes with a critique of traditional apporaches to quantum logic, the
centerpiece of which is the Foulis-Randall example showing that there is no satis-
factory tensor product of orthomodular lattices or posets.

1.1 Orthomodular Lattices and Posets

Recall that a lattice is a partially ordered set (L,≤) in which every two elements,
say a and b, have both a greatest lower bound, or meet, a ∧ b, and a least upper
bound or join, a ∧ b. Note that a ≤ b iff a = a ∧ b iff a ∨ b = b. We say that
L is complete iff every subset A of L has a meet and join, denoted

∧
A and

∨
A,

respectively. A lattice is bounded iff it has a least element, usually denoted 0,
and a greatest element, usually denoted 1. Two elements, a and b, in a bounded
lattice L are said to be complements of one another iff a ∧ b = 0 and a ∨ b = 1. If
every element has a complement, then L is complemented. A lattice L is said to
be distributive iff the two distributive laws

a ∧ (b ∨ c) = (a ∧ b) ∨ c and a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c)

hold for all a, b, c ∈ L. We have the following very basic

LEMMA 1. An element of a bounded distributive lattice can have at most one
complement.

Proof. Suppose that b, c ∈ L are complements for a ∈ L. Then

b = b ∧ 1 = b ∧ (a ∨ c) = (b ∧ a) ∨ (b ∧ c) = 0 ∨ (b ∧ c) = b ∧ c.

Thus, b ≤ c. By the same token, c ≤ b. �
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DEFINITION 2. A Boolean algebra is a complemented, distributive lattice.

By Lemma 1, every element a in a Boolean algebra has a unique complement a′.
Thus, a lattice in which an element has two or more complements is ipso facto not
distributive. A familiar example is the lattice of subspaces of a finite-dimensional
vector space. Indeed, if V is a vector space (real or complex, say) of dimension
greater than 1, then every proper subspace M of V has infinitely many distinct
complements. On the other hand, in the presence of an inner product on V, there
is a preferred complement, namely, the subspace M⊥ = {y ∈ V|〈x, y〉 = 0∀x ∈ M}
orthogonal to M. The assignment M �→ M⊥ enjoys a number of formal properties
reminiscent of complementation in a Boolean algebra.

DEFINITION 3. Let L be a bounded poset (that is, a poset with least element 0
and greatest element 1). An orthocomplementation on L is a map ′ : L → L such
that for all a, b ∈ L,

(i) a ≤ b ⇒ b′ ≤ a′

(ii) a = a′′

(iii) a ∧ a′ = 0.

Note that from this we have 1′ = 1 ∧ 1′ = 0, whence 1′ = 0. An orthoposet is a
pair (L,′ ) where L is a poset and ′ is a distinguished orthocomplementation on L.
An orthoposet that is a lattice is called an ortholattice.

For later reference: a mapping ′ : L → L satisfying conditions (i) and (ii), and
with 1′ = 0, but not necessarily satisfying condition (iii), is called an involution
on L.

Familiar examples of ortholattices include boolean algebras and lattices of sub-
spaces of finite-dimensional inner-product spaces. Note that any subset of an
ortholattice that contains both 0 and 1, and is closed under the taking of ortho-
complements, is an orthoposet. Note, too, that a version of deMorgan’s laws hold
in any orthoposet. Here, we denote the meet and join of a family {ai|i ∈ I} of
elements of L by

∨
i ai and

∧
i ai, anti-respectively:

LEMMA 4. Let L be any orthoposet. Then for any family of elements {ai} ⊆ L,(∨
i

pi

)′
=

∧
i

p′i and

(∧
i

pi

)′
=

∨
i

p′i

(in the sense that, if either side of the above equation is defined, so is the other,
and the two are equal).

Proof. From (i) in Definition 3, we have (
∨

i ai)′ ≤ a′j for every j ∈ I. If b ≤ a′j
for every j ∈ I, then aj = a′′j ≤ b′ for every j, whence,

∨
i ai ≤ b′, whence,

b = b′′ ≤ (
∨

i ai)′. Thus, (
∨

i ai)′ =
∧

i ai. The other identity now follows by
taking orthocomplements. �
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An immediate consequence is that the dual of condition (iii) in the definition of
an orthocomplement holds, namely, a ∨ a′ = 1 for all a ∈ L.

It is convenient to introduce the following usages and notations:

DEFINITION 5. If L is an orthoposet and a, b ∈ L, then

(i) if a ≤ b, we write b− a for b ∧ a′, provided this exists, and speak of it as the
relative difference between b and a.

(ii) We say that elements a, b ∈ L are orthogonal iff a ≤ b′, and indicate this
relation by writing a ⊥ b.

Note that if a ≤ b and b− a exists, then a ⊥ (b− a), since

(a− b)′ = (b ∧ a′)′ = b′ ∨ a ≥ a.

The principal focus of this section is the class of orthoposets in which the relative
difference operation is reasonably well-behaved.

DEFINITION 6. An orthomodular poset (OMP) is an orthoposet P satisfying

(i) a ∨ b exists whenever a ⊥ b.

(ii) a ≤ b ⇒ (b− a) ∨ a = b.

Condition (ii) is often called the orthomodular law.4 An orthomodular lattice
(OML) is simply an orthomodular poset that happens to be a lattice (in which
case, note, condition (i) above is vaccuously satisfied). Orthomodularity has a
particularly nice characterization in this case. I leave the proof of the following to
the reader:

LEMMA 7. Let (L,≤,′ ) be an ortholattice. The following are equivalent:

(a) L is orthomodular;

(b) For all a, b ∈ L, if a ≤ b and b− a = 0, then a = b

EXAMPLES 8.

(i) Clearly, any boolean algebra is an OML.

(ii) Let L(H) denote the lattice of closed subspaces of a Hilbert space H. This is
orthocomplemented by the map M �→ M⊥. If N ∈ L(H), let pN denote the
orthogonal projection onto N. If N ⊆ M and x ∈ M \ N, then x − pN(x) ∈
M ∩ N⊥, where pN(x) is the orthogonal projection of x onto M. Thus,
M ∩ N⊥ = {0} implies M = N. By Lemma 7, then, L(H) is orthomodular.

4The existence of the quantity (b − a) ∨ a requires some comment. Notice that if a ≤ b, then
a ⊥ b′, so (a ∨ b′)′ = b − a exists, by (i). By the preceding Lemma, (b − a) ∨ a therefore also
exists. Conversely, if a ≤ b ⇒ b − a exists, then a ≤ b′ ⇒ b′ ∧ a′ = (b ∨ a)′ exists, whence, so
does a ∨ b.
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Note that L(H) can equivalently be described as the lattice of projection
operators on H, under the obvious isomorphism M �→ pM. We’ll use the
notation L(H) for both lattices, usually leaving it to context to make it clear
which we intend.

(iii) A simple example of a non-orthomodular ortholattice is the so-called benzene
ring, the Hasse diagram of which appears below:

���������

��������� ��
��

��
��

�

��
��

��
��

�

0

a

b

1

a′

b′

Here a ≤ b, but b ∧ a′ = 0, so that (b ∧ a′) ∨ a = a, rather than b as
required by the orthomodular law. Indeed, it is easy to see that a lattice L is
orthomodular if and only if it contains no sub-ortholattice isomorphic to the
benzine ring.

(iv) Here is the Hasse diagram of a small non-boolean OML:
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Notice that this lattice consists of two two Boolean algebras “pasted” together
at 0, c, c′ and 1.

(v) Here is an example of an OMP that is not a lattice. Let X be a finite set
of even cardinality six or greater, and let L be the collection of subsets of
X having even cardinality, ordered by set-inclusion. Then, for all a, b ∈ L,
a ⊥ b iff a and b are disjoint, and in this case a ∪ b belongs to L, where it
serves as a ∨ b. Also note that if a, b ∈ L with a ≤ b, then b′ ∧ a exists in L,
being just the set-theoretic difference b \ a ∈ L. It follows that if a ≤ b, then
(b′ ∧ a) ∨ a = (b \ a) ∪ a = b, so L is orthomodular. On the other hand, L is
not a lattice. Indeed, let u, v, x, y and z be five distinct elements of X, and
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let a = {x, y} and b = {y, z}. Then {x, y, z, u} and {x, y, z, v} are distinct
minimal upper bounds for a and b in L.

9 THE CENTER OF AN OML. If L is an OML and a, b ∈ L, one says that
a and b commute, writing aCb, iff a = (a∧ b)∨ (a∧ b′). One can show that a and b
commute iff they belong to a common boolean sub-OML of L. If L = L(H) for a
Hilbert space H, projections a, b ∈ L(H) commute in the above sense iff ab = ba.
The center of L, i.e., the set C(L) of all elements of L commuting with every
element of L, is a boolean sub-OML of L. It can be shown that a ∈ C(L),
then L + [0, a] × [0, a′]. Thus, the possible direct-product decompositions of
L are parametrized by C(L). In particular, L is irreducible — that is, has no
direct-product decompositions — iff C(L) = {0, 1}. For details, see Kalmbach
[Kalmbach, 1983].

10 SASAKI PROJECTIONS. On any ortholattice L, we may define a binary
operation φ : L × L → L by φ(a, b) := a ∧ (a′ ∨ b). If L is Boolean, of course,
φ(a, b) is simply a ∧ b. If L is the lattice of closed subspaces of a Hilbert space
and M,N ∈ L(H), φ(M,N) = M ∩ (M⊥ ∨ N) is the subspace obtained by
projecting N orthogonally onto M. It is not difficult to show that an ortholattice
L is orthomodular iff, for all a, b ∈ L, b ≤ a ⇒ φ(a, b) = b. In this context, φ is
usually called the Sasaki map, and the mapping φa : L → L taking b to φ(a, b) is
the Sasaki projection associated with a ∈ L.

11 ATOMS. An atom in an ordered set L with least element 0, is a minimal
non-zero element. A poset L is said to be atomic iff there exists at least one atom
under each non-zero element, and atomistic in case every element of L is the join
of a set of atoms. It is not hard to see that if L is any complete atomic OML, then
it is automatically atomistic. Indeed, let a ∈ L, and let A denote the set of atoms
under a. Let b =

∨
A; then b ≤ a; hence, a 3 b exists in L. If a 3 b is non-zero,

then, as L is atomic, there exists an atom x under a 3 b. But then x �≤ b, which
is absurd, as b is the joint of all atoms under a.

States on OMPs

DEFINITION 12. Let L be an OMP. A state on L is a map μ : L → [0, 1] such
that

(i) μ(1) = 1

(ii) a ⊥ b ⇒ μ(a⊕ b) = μ(a) + μ(b).

If L is a Boolean algebra, then a state is just a (finitely additive) probability
measure on L. Accordingly, one also speaks of states on arbitrary orthomodular
posets or, more generally, effect algebras, as probability measures. This suggests
the following

DEFINITION 13. A state μ on an orthomodular poset L is σ-additive iff, for
every pair-wise orthogonal sequence (an) in L for which

∨
n an exists, μ(

∨
n an) =
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∑
n μ(an). An OMP in which the join of a countable pair-wise orthogonal set

always exists is called a σ-OMP.
The following celebrated result characterizes the σ-additive states on L(H):

THEOREM 14 [Gleason, 1957]. Every countably additive state μ on L(H), for
a separable Hilbert space H of dimension ≥ 3, extends uniquely to a positive linear
functional φ : B(H) → R with φ(1) = 1, and hence, has the form μ(p) = Tr (Wp)
where W is a density operator — that is, a positive, trace-class operator with trace
1 — on H.

Gleason’s theorem has since been extended to non-separable Hilbert spaces
[Eilers and Horst, 1975], to finitely-additive measures, and to the projection lattices
of von Neumann algebras not containing type-I2 summands [Christensen, 1982;
Yeadon, 1983].

The connection between an orthomodular poset or lattice L and its state-space
can be very loose. A theorem of Schultz [Schultz, 1974] shows that any compact
convex set can be represented as the state-space of an orthomodular lattice. On
the other hand, there exist orthomodular lattices admitting no states whatever;
other examples exist of orthomodular lattices admitting just a single state. In-
deed, results of Pták [Pták, 1983], Navara [Navara, 1992] and Harding and Navara
[Harding and Navara, 2000] show that one can manufacture orthomodular lattices
having any desired center, automorphism group, and (compact) state-space. This
notwithstanding, a good deal of classical measure theory can be made to work with
OMPs in place of boolean algebras. This includes versions of the Brookes-Jewett
and Nikodym convergence theorems [D’Andrea and De Lucia, 1991; Habil, 1995],
and the Yosida-Hewitt and Lebsgue decompositions [De Simone and Navara, 2001;
De Simone and Navara, 2002].

1.2 Orthomodular Posets as Partial Semigroups

It is possible, and in some ways advantageous, to view orthomodular posets as
a special class of partial semigroups. In any orthoposet, we may define a partial
binary operation ⊕ — the orthogonal sum — by setting a⊕ b = a∨ b iff a ≤ b′ and
the join exists. Thus, condition (i) of Definition 6 says that, in an orthomodular
poset, a ⊕ b is defined iff a ⊥ b. Using the notation b 3 a for b ∧ a′, then the
orthomodular law reads a ≤ b ⇒ (b3 a) ⊕ a = b.

Let us agree to call a partial binary operation ∗ on a set S commutative iff, for
all a, b ∈ S, the existence of a∗ b implies that of b∗a, and the two agree. Similarly,
we say that ∗ is associative iff, for all a, b, c ∈ S, whenever either of a ∗ (b ∗ c) and
(a ∗ b) ∗ c is defined, the other is also defined, and the two agree. Finally, let us
call ∗ cancellative iff a ∗ b = a ∗ c ⇒ b = c for all a, b, c ∈ L.

Note that, in an arbitrary poset P , the partial operation ∨ is associative only
in the weak sense that if a ∨ (b ∨ c) and (a ∨ b) ∨ c both exist, then they agree —
one can easily construct examples in which one of these exists but the other does
not. Note, too, that a ∨ b = a ∨ c does not generally entail that b = c; so the join
operation is not cancellative.
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LEMMA 15. Let (L,≤,′ ) be an orthoposet in which a ⊕ b := a ∨ b is defined for
every orthogonal pair a, b. Then

(a) ⊕ is associative;

(b) L is orthomodular iff ⊕ is cancellative.

Proof. (a) To see that ⊕ is associative, suppose a, b, c ∈ L with a⊕(b⊕c) defined.
Then b ≤ c′ and a ≤ (b⊕c)′ = (b∨c)′ = b′∧c′. Hence, a ≤ b′, whence a⊕b = a∨b
exists. Since a ≤ c′ and b ≤ c′, a⊕ b ≤ c′; whence, (a⊕ b) ⊕ c also exists. By the
weak associativity of existing joins, the two sums are the same.

(b) Suppose L is orthomodular. To see that orthogonal addition is cancellative,
we exploit the orthomodular identity: If a ⊥ b, a ⊥ c, and a ⊕ b = a ⊕ c, then
c = (a⊕ c) − a = (a⊕ b) − a = b. Conversely, suppose ⊕ is cancellative. If a ≤ b,
then a ⊥ (b− a) by Lemma 4. As b ∧ a′ = (b′ ∨ a)′, we have

(b ∧ a′) ∨ (b′ ∨ a) = 1.

Both of the joins appearing above are orthogonal joins, so we have

1 = ((b− a) ⊕ a) ⊕ b′

by the associativity (and evident commutativity) of ⊕. Since 1 is also equal to
b ∨ b′, cancellativity yields (b− a) ⊕ a = b. But this is just the orthomodular law.

�

A pair (L,⊕) consisting of a set L and a commutative, associative partial op-
eration ⊕ on L, is called a partial abelian semigroup or PAS [Wilce, 1998]. A zero
element for (L,⊕) is an element 0 ∈ L satisfying 0⊕a = a⊕0 = a for every a ∈ L.
Such an element, if it exists, is unique. Evidently, one can formally adjoin a zero
to any PAS; accordingly, we assume in what follows that every PAS has a zero.5

According to Lemma 15, every OMP (L,≤) gives rise to a PAS (L,⊕). One
can ask for an abstract characterization of OMPs in terms of partial abelian semi-
groups. It is easy to see that the PAS obtained from an OMP satisfies all of the
following conditions:

DEFINITION 16. A partial abelian semigroup (L,⊕) is said to be

(i) positive iff, for all a, b ∈ L, a⊕ b = 0 implies a = b = 0;

(ii) cancellative iff, for all a, b, c ∈ L, a⊕ b = a⊕ c implies b = c;

(iii) unital iff it contains an element 1 such that for every a ∈ L, there exists an
element b ∈ L with a⊕ b = 1. Such an element is termed a unit for L; and

5Arguably, a PAS with zero element should be called a “partial abelian monoid”; but I think
considerations of euphony dictate otherwise.
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(iv) orthocoherent iff, for all a, b, c ∈ L, if a⊕ b, b⊕ c and c⊕ a all exist, then so
does a⊕ b⊕ c.

It is straightforward to show that if a PAS L is positive and cancellative, then
it can be partially ordered by setting a ≤ b iff b = a ⊕ c for some c ∈ L [Wilce,
1998]. In this context, the unit element 1 of condition (iii) is unique, and maximal
in the poset (L,≤); moreover, for each element a ∈ L, there is a unique element
a′ ∈ L with a⊕ a′ = 1. The mapping a �→ a′ is an involution, and a⊕ b exists iff
a ≤ b′.

The following is not hard to prove directly, but it will emerge even more easily
as a consequence of material discussed below.

LEMMA 17. Let (L,⊕) be a positive, cancellative, unital PAS. Then the associated
involutive poset (L,≤,′ ) is an OMP iff L is orthocoherent. In this case, a⊕b = a∨b
for all a ≤ b′.

Mackey’s Axioms

In an influential paper [Mackey, 1957] and subsequent monograph [Mackey, 1963],
George Mackey proposed a set of axioms for a generalized probability calculus,
within which he hoped to characterize quantum probability. Mackey’s axioms
were framed in terms of a structure (O, S, p), where O is a set of “observables”,
S is a set of “states”, and p is a function associating to each a ∈ O and s ∈ S, a
Borel probability measure on the real line, intended to represent the distribution
of possible values of a when measured in the state s. Rather than reproducing
Mackey’s axiomatic in detail, I’ll paraphrase it as follows. Let S be any set, and
let RS be the set of all real-valued functions f : S → R, ordered pointwise. Let 0
and 1 denote the constant functions on S with value 0 and 1, respectively. By the
unit interval in RS , I mean the set [0,1] = {f ∈ RS |0 ≤ f(s) ≤ 1| for all s ∈ §}.
DEFINITION 18. A Mackey system over S is a set L ⊆ [0,1] such that

(i) 1 ∈ L;

(ii) ∀f ∈ L, 1 − f ∈ L;

(iii) If f1, f2, f3 ∈ L and fi+fj ≤ 1 for all i �= j, i, j = 1, 2, 3, then f1+f2+f3 ∈ L.

Remark: From (i) and (ii), we see that 0 ∈ L. It follows from (iii) (with f3 = 0)
that for any f1, f2 ∈ L, f1 + f2 ≤ 1 ⇒ f1 + f2 ∈ L. Notice that (iii) is a strong
property. In particular, it is not satisfied by [0,1].

The intended interpretation of a Mackey system over S is that every s ∈ S
represents a possible state of a physical system, every f ∈ L represents a binary
observable on that system, and f(s) gives the probability that f has value 1 when
measured in state s. The following simple result6 captures in a compact way much
of the content of Mackey’s construction.

6Attributed to Maczynski in [Beltrametti and Cassinelli, 1981]
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PROPOSITION 19. Let L be a Mackey system over S, ordered pointwise. For
each f ∈ L, let f ′ := 1 − f . Then (L,≤,′ ) is an orthomodular poset. Moreover,
each s ∈ S defines a state ŝ on L via ŝ(f) = f(s).

Proof. If f, g ∈ L, define f ⊕ g = f + g, provided that this lies in L. It is
straightforward to check that (L,⊕) is a cancellative, positive PAS. Conditions (i)
and (ii) in the definition of a Mackey system guarantee that L has a unit, and
condition (iii) is essentially orthocoherence. Thus, by Lemma 17, (L,≤) is an
OMP. �

DEFINITION 20. A set Δ of states on an OMP L is said to be order determining
iff, for all a, b ∈ L,

μ(a) ≤ μ(b) ∀μ ∈ Δ ⇒ a ≤ b.

One says that Δ is strongly order-determining iff

a �≤ b ⇒ ∃μ ∈ Δ μ(a) = 1 & μ(b) < 1.

It is not difficult to see that the states ŝ, s ∈ S, constitute a strong, order-
determining set of states for a Mackey system L over S. Conversely, if Δ is any
strong, order-determining set of states for an orthomodular poset L, then one can
embed L in [0, 1]S via the evaluation mapping a �→ â with â(μ) = μ(a) for every
μ ∈ S. Then { â | a ∈ L } is a Mackey system over S, and, for every s ∈ S, a ∈ L,
ŝ(â) = s(a). Thus, the models of Mackey’s axioms are pairs (L, S) where L is an
orthomodular poset and S is a strong, order-determining, convex set of states on
L. In much of the literature from the mid 1960s onwards, a quantum logic is taken
to be, by definition, just such a pair.7

Effect Algebras and Orthoalgebras

A cancellative, positive unital partial abelian is more usually called an effect algebra
[Bennett and Foulis, 1994] . In this language, then, Lemma 17 says that an OMP
is effectively the same thing as an orthocoherent effect algebra. Examples of
non-orthocoherent effect algebras abound: if G is any ordered abelian group, the
interval [0, e] of positive elements below any particular positive element e, is an
effect algebra under the operation a⊕ b = a+ b, provided a+ b ≤ e. One can show
that all cancellative, unital partial abelian semigroups arise as extensions of effect
algebras by abelian groups [Feldman and Wilce, 1998].

If a is an element of an effect algebra L, the unique element a′ ∈ L such that
a ⊕ a′ = 1 is called the orthosupplement of a. As mentioned above, the mapping
a �→ a′ is an involution. A particularly natural class of effect algebras is that in
which the orthosupplement behaves as an orthocomplement.

LEMMA 21. Let (L,⊕) be an effect algebra, ordered in the usual way. The fol-
lowing are equivalent:

7To be scrupulously correct, I should note that Mackey required that L be a σ-OMP and S,
a convex set of σ-additive state.
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(a) For all a ∈ L, a ∧ a′ = 0;

(b) The mapping a �→ a′ is an orthocomplementation on L;

(c) a⊕ a is defined only if a = 0;

(d) For any orthogonal elements a, b ∈ L, a⊕ b is a minimal upper bound for a
and b.

Proof. Since a �→ a′ is in any event an involution, condition (a) is all that is
required to make it an orthocomplementation. If it is an orthocomplementation,
and a⊕a is defined, then a ≤ a′, whence, a = a∧a′ = 0. This establishes that (a)
implies (b) and (b) implies (c). Now suppose that condition (c) holds, and that a
and b are orthogonal elements of L. If c ∈ L satisfies a, b < c ≤ a ⊕ b, then there
exist elements x, y, z ∈ L with c = a⊕ x = b⊕ y and a⊕ b = c⊕ z. But then, by
associativity, we have

a⊕ b = (a⊕ x) ⊕ z = a⊕ (x⊕ z).

By cancellativity, x⊕ z = b. Similarly, y ⊕ z = a. But then, as a⊕ b = (x⊕ z) ⊕
(y⊕ z) is defined, we can invoke commutativity and associativity to conclude that
(x⊕ y)⊕ (z ⊕ z), and hence, in particular, z ⊕ z, is defined — whence, z = 0, and
hence c = a⊕ b. Thus, (c) implies (d). Finally, suppose (d) holds. Let c ≤ a and
c ≤ a′. We must show that c = 0. We have a = c ⊕ x and a′ = c ⊕ y for some
x, y ∈ L. Again invoking commutativity and associativity, we may write

1 = a⊕ a′ = (c⊕ x) ⊕ (c⊕ y) = c⊕ (x⊕ c⊕ y).

In particular, the element u := (x ⊕ c ⊕ y) is defined. Plainly, u = (x ⊕ c) ⊕ y =
a ⊕ y ≥ a and likewise u = x ⊕ (c ⊕ y) = x ⊕ a′ ≥ a′, so u is an upper bound for
a and a′. But by (d), 1 is a minimal upper bound for a and a′, so u = 1. On the
other hand, c ⊕ u = 1, so c ≤ u′ = 1′ = 0. This shows that (d) implies (a), and
completes the proof. �

DEFINITION 22. An effect algebra satisfying the equivalent conditions of Lemma
21 is called an orthoalgebra.

In view of condition (d), any orthomodular poset is an (orthocoherent) orthoal-
gebra. On the other hand, suppose L is an orthocoherent effect algebra: then
(L,≤,′ ) is an orthoposet, for which the orthogonal sum a ⊕ b = a ∨ b is defined
whenever a ≤ b′; hence, by Lemma 15, (L,≤,′ ) is an OMP. This supplies the
proof of Lemma 17. Thus, we can, and shall, identify OMPs with orthocoherent
orthoalgebras. As will emerge in Section 2, there exist plentiful examples of non-
orthocoherent orthoalgebras. We shall see that orthoalgebras provide in many
ways a more natural framework for quantum logic than do orthomodular posets
or lattices.
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23 JOINT ORTHOGONALITY. A finite pair-wise orthogonal set F =
{a1, ..., an} in an orthoalgebra L is said to be jointly orthogonal iff it is pairwise
orthogonal, and the sum

⊕
F := a1 ⊕ · · · ⊕ an (as defined, say, by the obvious

recursion) exists. An infinite set A ⊆ L is jointly orthogonal iff every finite sub-
set F ⊆ A is jointly orthogonal. If the join of all partial sums

⊕
F , F ranging

over finite subsets of A, exists, we denote it by
⊕

A, and say that A is ortho-
summable. We shall say that L is orthocomplete (respectively, σ- orthocomplete)
if every jointly orthogonal subset (respectively, every countable jointly orthogonal
subset) of L has a sum in this sense. An orthoalgebra is atomistic iff every element
of L can be expressed as the sum of a jointly orthogonal set of atoms.

24 BOOLEAN ORTHOALGEBRAS AND COMPATIBILITY. An or-
thoalgebra (L,⊕) is said to be Boolean iff the corresponding orthoposet (L,≤
,′ , 0, 1) is a Boolean lattice. A subset of L is said to be compatible iff it is contained
in a Boolean sub-orthoalgebra of L. One can show that two elements a, b ∈ L are
compatible iff there exist elements a1, b1 and c with a = a1 ⊕ c, b = c ⊕ b1, and
a ⊥ b1, so that a1 ⊕ c⊕ b1 exists [5]. Equivalently, a and b are compatible iff there
exists an element c ≤ a, b with a ⊥ (b3 c). The triple (a1, c, b1) = (a3 c, c, b3 c) is
then called a Mackey decomposition for a and b. If L is Boolean, then every pair of
elements a, b ∈ L has a unique Mackey decomposition, namely, (a3 b, a∧ b, b3 a).
It is possible, even in an OMP, for a pairwise compatible set of elements not to be
compatible. 8 An orthoalgebra in which pairwise compatible sets are compatible is
said to be regular. Note that such an orthoalgebra is automatically orthocoherent,
i.e., an OMP.

25 THE CENTER OF AN ORTHOALGEBRA. If L1 and L2 are orthoal-
gebras, then L1 × L2 is an orthoalgebra under the orthogonal sum defined by

(a, b) ⊕ (c, d) = (a⊕ c, b⊕ d)

provided that a ⊥ c and b ⊥ d. The unit element is given by 1 = (11,12) where
1i is the unit element of Li. For any element a of an orthoalgebra L, the interval
[0, a] = {x ∈ L|0 ≤ x ≤ a} is itself an orthoalgebra, the orthogonal sum of x, y ≤ a
being given by x ⊕ y, provided this exists in L and is again below a. There is
a natural mapping [0, a] × [0, a′] → L given by (x, y) �→ x ⊕ y. If this is an
isomorphism, a is said to be central. The center of L is the set C(L) of all central
elements of L. It can be shown [8] that C(L) is a Boolean sub-orthoalgebra of L.
In particular, L is Boolean iff L = C(L). L is irreducible iff C(L) = {0, 1}, i.e., L
admits no non-trivial decomposition as a direct product.

1.3 Lattices of Subspaces

Mackey’s axioms lead only to a σ-complete orthomodular poset. This is a far cry
from the lattice L(H) of closed subspaces of a Hilbert space, upon which quantum

8Indeed, there exist non-Boolean OAs, called centeria, in which every pair of elements is
compatible [Obeid, 1990].
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probability rests. In [Mackey, 1963], Mackey asks for additional axioms that will
bridge this gulf. In considering what such axioms might look like, it is natural to
begin by trying to find an ortho-lattice characterization of the subspace lattices of
Hilbert spaces. For finite-dimensional Hilbert spaces, such a characterization is a
chapter of classical projective geometry. It is worth a few paragraphs to review
this.

Modular Ortholattices

A lattice L is modular iff, for all a, b, c ∈ L,

c ≤ a ⇒ a ∧ (b ∨ c) = (a ∧ b) ∨ c

for all a, b, c ∈ L.9 Besides distributive lattices, examples of modular lattices
include the lattice of subgroups of an arbitrary group, and, more significantly for
our purposes, the lattice L(V) of all submodules of a module over an arbitrary ring
R. There is a partial converse. A lattice L has finite height iff there is a finite upper
bound on the length of a chain in L. In this case, the height of L is n − 1, where
n is the maximal length of a chain in L. The classical coordinatization theorem of
projective geometry asserts that every irreducible, complemented modular lattice
of finite height four or greater, is isomorphic to the lattice L(V) for a finite-
dimensional vector space V over a division ring.

Of course, the lattice of subspaces of a vector space is not naturally ortho-
complemented: our interest here is rather in lattices of subspaces of inner product
spaces. To be a bit more general, let V be a (left) vector space over a division
ring D. An involution on D is a mapping ∗ : D → D such that, for all a, b ∈ D,
(ab)∗ = b∗a∗, (a + b)∗ = a∗ + b∗, and a∗∗ = a. If D is equipped with a particular
involution, we call it an involutive division ring. An inner product on a vector
space V over an involutive division ring D is a mapping q : V × V → D that
is linear in its first variable, satisfies q(x, y) = q(y, x)∗ for all x, y ∈ V, and is
non-degenerate in the sense that q(x, x) = 0 implies x = 0 for all x ∈ V. We call
vectors in V orthogonal relative to q iff q(x, y) = 0, writing x ⊥ y. If A ⊆ V,
then A⊥ := {x ∈ V|x ⊥ y∀y ∈ A} is a subspace of V. If V is finite-dimensional,
then V = M ⊕ M⊥ for all subspaces M of V; in this case, M �→ M⊥ is an
orthocomplementation on L(V).

The greater part of von Neumann and Birkhoff’s paper [Birkhoff and von Neu-
mann, 1936] on quantum logic is devoted to the following result (the proof of which
is laid out in detail in Chapter IV of Varadarajan’s book [Varadarajan, 1985]):

THEOREM 26 [Birkhoff-von Neumann, 1937]. Let V be a vector space of finite
dimension n ≥ 3 over a division ring D. If ′ : L(V) → L(V) is any orthocomple-
mentation on the lattice L(V) of subspaces of V, then there exists an involution
on D and, relative to this, an inner product on V such that M′ = M⊥.

9More generally, a pair of elements a and b for which the foregoing holds for all c ≤ a is said
to be a modular pair. It is not difficult to show that a lattice is orthomodular iff every orthogonal
pair is a modular pair — indeed, this is the origin of the term.
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Thus, irreducible modular ortholattices of finite height ≥ 4 are exactly the sub-
space lattices of finite-dimensional inner product spaces over involutive division
rings.

Piron’s Theorem

If H is infinite dimensional, then, while the lattice of all subspaces of H is modu-
lar, the lattice of closed subspaces is not.10 In light of this, it is natural to seek a
coordinatization theorem characterizing Hilbert-space projection lattices in terms
of non-modular orthomodular lattices. The major step towards such a coordinati-
zation theorem for infinite-dimensional Hilbert space lattices was achieved by C.
Piron in [Piron, 1964]. Before stating Piron’s theorem, we need some preliminary
definitions. A quadratic space over an involutive division ring D is a pair (V, q),
where V is a vector space over D and q is a non-degenerate quadratic form on
V. A subspace M ⊆ V is said to be ortho-closed iff M = M⊥⊥. The collection
of all ortho-closed subspaces of V is denoted by L(V). If V is finite-dimensional,
then it is easy to show that every subspace is ortho-closed; otherwise, L(V) is a
proper subset of L(V). It is easily verified that L(V) is a complete lattice, with∧

i Mi =
⋂

i Mi and
∨

i Mi = (
⋃

i Mi)
⊥⊥.

LEMMA 27. Let (V, q) be a quadratic space. The following are equivalent:

(a) L(V) is an orthomodular lattice;

(b) V = M ⊕ M⊥ for every M ∈ L(V).

Proof. To see that (a) implies (b), just note that (b) makes (L(V),⊕) an or-
thoalgebra. To see that (b) implies (a), let M,N ∈ L(V) with M ⊆ N. As
V = M ⊕ M⊥, each n ∈ N has a unique expression of the form n = a(n) + b(n)
where a(n) ∈ M and b(n) ∈ M⊥. Since M ⊆ N, a(n) ∈ N, from which it follows
that b(n) = a−a(n) ∈ M as well. Thus, b(n) ∈ N∩N⊥. Hence, N ⊆ M∨(N∩M⊥),
which suffices to show that L is orthomodular. �

A quadratic space (V, q) satisfying the equivalent conditions of Lemma 27 is
called an orthomodular space, or a generalized Hilbert space. Beyond being a
complete OML, the lattice L(V) of subspaces of an orthomodular space has some
additional structural features that stand out. For one thing, it is atomic. For
another, it satisfies the so-called covering law. Recall that, in any poset L, one
element y is said to cover another, x, iff x < y and there is no element of L properly
between x and y.

10If H is infinite dimensional, one can find two closed subspaces M and N of H such that
M + N is not closed (cf [Halmos, 1957], p. 20). Let x ∈ (M∨N)� (M + N). Let V = M∨ (x),
i.e., the span of M and x. Equivalently, V = {a + tx|t ∈ C}. Clearly, V is closed, and M ≤ V.
Note that x ∈ V ∩ (M ∨ N). Now, consider any vector y ∈ V ∩ N: We have y = a + tx for
some scalar t and some a ∈ M. It follows that tx = b − a ∈ N + M — which, by the choice
of x, is impossible unless t = 0, in which case, y = a ∈ M. It follows that V ∩ N ⊆ M. Thus,
(V ∩N)∨M = M — which definitely does not contain x. Thus, V ∩ (M∨N) �⊆ (V ∩N) ∨M.
Modularity fails.
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DEFINITION 28. An atomistic lattice L satisfies the covering law iff, for every
atom x of L and every element a ∈ L with x �≤ a, a ∨ x covers a.

The covering law can be regarded as a weakening of modularity — to which it
reduces, for ortholattices of finite height.

We are now ready to state Piron’s result:

THEOREM 29 [Piron, 1964]. Let L be a complete, irreducible atomistic OML
satisfying the covering law. If L has height 4 or more, then there exists an involu-
tive division ring D, a vector space (left module) V over D, and a non-degenerate
sesquilinear form on V, such that L is isomorphic to the ortholattice L(V) of
ortho-closed subspaces of V.

The question arises: Are there any “non-classical” — that is, non Hilbert —
examples of orthomodular quadratic spaces? If the involutive ring D of V is one
of the classical division rings — R, C or H then the answer is no. For a proof
of the following, see the original paper [Amemiya and Araki, 1967] of Araki and
Amemiya:

THEOREM 30 [Amemiya-Araki, 1967]. If V is an orthomodular space over the
D = R,C or H (the quaternions), then V is complete, i.e., a Hilbert space.

For a time, it was thought that perhaps the only orthomodular quadratic spaces
were in fact Hilbert spaces. However, in the late 1970s, Keller produced examples
of orthomodular spaces over more general division rings [Keller, 1980]. Efforts to
find sharp characterizations of the classical examples culminated in the work of
Solèr [Solèr, 1995], which shows that if an orthomodular quadratic space contains
any infinite orthonormal sequence, then D = R,C, or H. This has an equivalent,
purely lattice-theoretic formulation in terms of a cetain angle-bisection axiom.11

Remark: Pitowsky [Pitowsky, 2005] has recently argued that the hypotheses of
Solér’s angle-bisection axiom can be interpreted as natural rationality constraints
on gambles, similar in spirit to such constraints in classical Bayesian probability
theory. This might suggest that project of deducing quantum theory from a priori
principles is essentially complete; but later sections of this paper may temper such
optimism.

31 PIRON’S AXIOMS. In order to motivate the hypotheses in the repre-
sentation theorem, Piron presented a series of axioms for quantum logic in which
the primitive notion is, just as for Mackey, the idea of a yes-no question. This is
understood to mean a realizable experiment having two possible outcomes, desig-
nated yes and no. A question α is deemed stronger than another question β iff β
is certain to yield the affirmative outcome in any state in which α is certain so to
do. This defines a pre-order on the class of questions. By a property of the sys-

11Prestel [Prestel, 1995] gives a nice treatment of the case in which D is commutative. Further
discussion can be found in Holland [Holland, 1995]. See [Mayet, 1998] for an interesting variant
on Solér’s Theorem.
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tem, Piron means an equivalence class of questions with respect to the equivalence
relation α ≈ β iff α ≤ β ≤ α — that is, α ≈ β iff α and β are certain to yield
affirmative outcomes in all and only the same states. The set L of all properties
is then partially ordered by [α] ≤ [β] iff α ≤ β. The various axioms adduced
by Piron constrain L to have exactly the structure of an irreducible, complete,
atomistic OML with the covering law. I will not reproduce Piron’s axioms here;
see [Coecke et al., 2000] for a detailed exposition and commentary. Suffice it to
say that, while some of Piron’s axioms are fairly innocent, it is at least arguable
that the orthocomplementation on L is introduced by force.

1.4 Orthogonality Spaces

In the mid-1960s, it was discovered by Foulis and his students that one can con-
struct examples of OMPs and OMLs from very simple combinatorial objects called
orthogonality spaces. The motivating example is the unit sphere X of a Hilbert
space H. The relation ⊥ of orthogonality — x ⊥ y meaning 〈x, y〉 = 0 — entirely
determines the structure of H (since maximal pairwise orthogonal subsets of X
are precisely the orthonormal bases of H).

DEFINITION 32. A symmetric, irreflexive binary relation on a set X is called an
orthogonality relation on X. An orthogonality space is a pair (X,⊥) consisting of
a set X and a fixed orthogonality relation ⊥ on X.

If (X,⊥) is an orthogonality space, we shall call a subset of X orthogonal iff it is
pairwise so. Clearly, the union of a chain of orthogonal subsets of X is still pairwise
orthogonal, so, by Zorn’s Lemma, every orthogonal subset of X is contained in
a maximal orthogonal set. We shall denote the collection of all such maximal
orthogonal subsets of X by O(X,⊥).

EXAMPLES 33.
(i) For any set X, (X, �=) is an orthogonality space having only one maximal

orthogonal subset — X itself.
(ii) Any collection E of subsets of a set X is an orthogonality space under the

orthogonality relation a ⊥ b ⇔ a ∩ b = ∅. Note that any partition of X into cells
belonging to E gives a maximal orthogonal subset of E , but that there may well
be additional maximal orthogonal sets not of this form.

(iii) If V is an inner product space, the unit sphere X = {x ∈ V|‖x‖ = 1} is
an orthogonality space under the relation x ⊥ y ⇔ 〈x, y〉 = 0. In particular, if
V is a Hilbert space, then the elements of O(X,⊥) are precisely the (unordered)
orthonormal bases for V.

(iv) If L is an orthomodular poset, let X = L \ {0}, and, for a, b ∈ L, let a ⊥ b
iff a ≤ b′. Then any orthopartition in L — that is, any finite set E of non-zero
elements with

∨
E = 1 — is a maximal orthogonal set. More generally, if E is

pairwise orthogonal and
∨

E exists, then E is a maximal pairwise-orthogonal set
iff

∨
E = 1.

The preceding examples — particularly the last one — suggest the following
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general interpretation for an orthogonality space (X,⊥): the set X consists of
the possible outcomes of various measurements, and two outcomes x, y ∈ X are
orthogonal iff they are mutually exclusive and jointly testable, i.e., if they can be
regarded as distinct outcomes of one and the same measurement. If, with Mackey,
we take the view that all pairwise co-testable outcomes can be regarded as jointly
co-testable, i.e., outcomes of some single measurement, then the collection O(X,⊥)
of maximal pairwise-orthogonal subsets of (X,⊥) serves as a model for the set of
(outcome-sets of) the possible measurements. As we shall see below, this point of
view runs into difficulties.

DEFINITION 34. Let (X,⊥) be an orthogonality space. For A ⊆ X, let A⊥ =
{x ∈ X|∀a ∈ A x ⊥ a}. Write x⊥ for {x}⊥. A set A ⊆ X is ⊥-orthoclosed iff
A = A⊥⊥. The set of ⊥-orthoclosed subsets of X is denoted by C(X,⊥).

It is easy to see that, for any sets A,B ⊆ X, A ⊆ B implies B⊥ ⊆ A⊥ and
A ⊆ A⊥⊥. From this, it follows that A⊥ = A⊥⊥⊥. Using these observations, it is
difficult to show that C(X,⊥) is a complete lattice, with the meet and join of a
family {Ai}i∈I of orthoclosed sets given by

∧
i

Ai =
⋂
i

Ai and
∨
i

Ai =

(⋃
i

Ai

)⊥⊥
.

Moreover, the mapping A �→ A⊥ provides an orthocomplementation on C(X,⊥).
If X is the unit sphere of a Hilbert space H, then a set A ⊆ X is orthoclosed iff

A = M ∩ X for a closed subspace M. Accordingly, C(X,⊥) is isomorphic to the
orthomodular lattice L(H) of closed subspaces of H. On the other hand, if V is
an incomplete inner product space over R,C or H, the Araki-Amemiya Theorem
(Theorem 30) tells us that C(X,⊥) is not orthomodular. It is natural, then, to
ask whether one can identify conditions on an abstract orthogonality space that
will guarantee that C(X,⊥) is an OML. This was accomplished by J. R. Dacey in
his dissertation [Dacey, 1968]:

THEOREM 35 [J. R. Dacey, 1968]. Let (X,⊥) be an orthogonality space. The
following are equivalent:

(a) C(X,⊥) is an orthomodular lattice.

(b) For all orthogonal sets D ⊆ X and all x ∈ X,

x �∈ D⊥⊥ ⇒ D⊥ ∩ (x⊥ ∩D⊥)⊥ �= ∅.

(c) If D is a maximal orthogonal subset of A ∈ C(X,⊥), then A = D⊥⊥.

Proof. (a) ⇒ (b): Suppose D⊥ ∩ (x⊥ ∩ D⊥)⊥ = ∅. Since x⊥ ∩ D⊥ ⊆ D⊥,
orthomodularity of (X,⊥) yields D⊥ = x⊥ ∩ D⊥. Hence D⊥ ⊆ x⊥, whence
x⊥⊥ ⊆ D⊥⊥. Since x ∈ x⊥⊥, x ∈ D⊥⊥, a contradiction.
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(b) ⇒ (c): Let D be a maximal orthogonal subset of A ⊆ A⊥⊥. Suppose
x ∈ A \ D⊥⊥. By (b), there exists some y ∈ D⊥ ∩ (x⊥ ∩ D⊥)⊥. Then y ∈
x⊥⊥ ∪D⊥⊥ ⊆ A⊥⊥ = A, which contradicts the maximality of D.

(c) ⇒ (a): Let A,B ∈ C(X,⊥) with A ⊆ B and B ∩ A⊥ = ∅. Let D ⊆ A be
maximal among orthogonal subsets of A. By (c), A = D⊥⊥. Hence, A⊥ = D⊥,
and it follows that D is maximal among orthogonal subsets of B as well. But then
B = D⊥⊥ = A, and C(X,⊥) is orthomodular. �

DEFINITION 36. An orthogonality space satisfying the conditions of Theorem
35 is called a Dacey space.12

Remark: One can ask whether or not there exists a first-order characterization of
orthomodular spaces — that is, one that refers only to points, rather than subsets,
of X. The answer, as shown by Goldblatt [Goldblatt, 1984], is no: orthomodular-
ity is (as the Amemiya-Araki theorem already suggests) an inherently second-order
property of (X,⊥).

If L is any complete OML, the set X \{0}, with the usual orthogonality relation
p ⊥ q ⇔ p ≤ q′, is an orthomodular space, with C(X,⊥) + L. It remains an im-
portant open question whether or not every OML can be embedded in a complete
OML, i.e., in one of the form C(X,⊥). A discussion of this problem can be found
in the paper [Bruns and Harding, 2000].

In [Greechie, 1966; Greechie, 1968], R. J. Greechie described a method for con-
strucing orthomodular lattices and posets by “pasting” Boolean algebras together
in various configurations.

DEFINITION 37. A maximal orthogonal subset of an orthogonality space is called
a block. A Greechie space is an orthogonality space in which every block has at
least three points, and in which two blocks intersect, if at all, in a single point. A
Greechie diagram of such an orthogonality space displays the points of each block
along a distinct line or other smooth curve.

EXAMPLE 38. Let X5 be the orthogonality space, the graph of whose orthogo-
nality relation is pictured below. This is plainly a Greechie space with five three-
element blocks. The corresponding Greechie diagram appears at right.

12Dacey christened those orthogonality spaces satisfying the equivalent conditions of his theo-
rem orthomodular spaces. Since that time, the term has come to be more commonly applied to
orthomodular quadratic spaces — whose unit spheres, needless to say, are orthomodular spaces
in Dacey’s sense.



Test Spaces 465

��������

								




















���������

��������


���������

��
��
��
�� ������������

��
��
��
��
�

��������

������������

��
��

��
��

� ���������



















���
���

���
���

��
��

��

��
��

��

DEFINITION 39. A loop of length n in a Greechie space is a finite sequence
E0, ..., En−1 of blocks such that the consecutive intersections E1∩E2, ... En−1∩En

and En ∩ E1 are all non-empty, and all distinct.

A simple version of Greechie’s result takes the following form:

LEMMA 40 The Loop Lemma [Greechie, 1966]. Let (X,⊥) be a Greechie space.
Then,

(a) If X contains no loop of order less than four, C(X,⊥) is an OMP;

(b) If X contains no loop of order less than five, then C(X,⊥) is an OML.

I’ll not pause to prove this here, as a more general result is discussed in section
2.4. For an example of the Loop Lemma, note that the Greechie space X5 of
the preceding example (which consists of a single loop of order five) has no loops
of order less than 5. Accordingly, C(X5,⊥) is an orthomodular lattice. It is not
difficult to show that it hosts a strongly order-determining set of dispersion-free
states, and hence, is embeddable in a Boolean algebra [Wright, 1978b]. In other
words, C(X5,⊥) seems a very respectable quantum logic.

Orthomonoids

If X is any set, let X∗ denote the free monoid over X. Thus, X∗ consists of finite
strings x = x1....xn of elements of X, multiplication in X∗ is simply juxtaposition,
and the unit element is the empty string, which we denote by 1. If A,B ⊆ X∗, we
write AB for the set of all strings of the form ab with a ∈ A, b ∈ B.

DEFINITION 41. The free orthomonoid over an orthogonality space (X,⊥) is
the orthogonality space (X∗,#), where # is defined lexicographically: ∀a, b ∈ X∗,
a#b ⇔ ∃x, y ∈ X and c, d, e ∈ X∗ with a = cxd, b = cye, and x ⊥ y.

To the extent that we regard (X,⊥) as a model for the set of outcomes of a
collection of possible measurements, it would seem reasonable to regard (X∗,#)
as a model for the set of outcomes of possible compound measurements.
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Remarks. We treat X as a subset of X∗. If A ⊆ X∗, we denote by π(A) the set of
first terms of strings in A. (When dealing with singletons, we write, e.g., π(a) = x
rather than π({a}) = {x}. Note, though, that π(1) = ∅. ) Notice that for any
a, b ∈ X∗, (ab)⊥ = a⊥ ∪ ab⊥. Also observe that for A ⊆ X, (AX∗)⊥ = A#X∗.

The (non-trivial) proof of the following can be found in [Foulis and Randall,
1971]:

THEOREM 42. Let (X,#) be a Dacey space. Then the free orthomonoid (X∗,⊥)
over X is also a Dacey space.

The structure of the lattice C(X∗,⊥) of ortho-closed subsets of a free orthomonoid
can be quite complex. In particular, C(X,⊥) is totally non-atomic [Foulis and
Randall, 1971].

The Problem of Tensor Products

A compound quantum-mechanical system having two component subsystems, rep-
resented by Hilbert spaces H1 and H2, is represented by the tensor product
H1 ⊗ H2. Naturally, any satisfactory generalized probability theory will have
to include some analogous device for combining models of systems in a manner
consistent with the Hilbert space tensor product. In particular, given two ortho-
modular posets L1 and L2, we should like to construct a orthomodular poset L
that serves as their “tensor product”. Some minimal requirements might be that

(a) There exists an injection L1×L2 ⊆ L sending (a, b) ∈ L1×L2 to an element
ab ∈ L;

(b) For all states α on L1 and β on L2, there exists a state α ⊗ β on Z with
(α⊗ β)(ab) = α(a)β(b); and

(c) If a1 ⊥ a2 in L1, then a1b ⊥ a2b for all b ∈ L2; similarly if b1 ⊥ b2 in L2,
then ab1 ⊥ ab2 for all a ∈ L1.

Suppose that L1 = C(X1,⊥) and L2 = C(X2,⊥) for two Dacey spaces (X1,⊥) and
(X2,⊥). A natural candidate for such a tensor product would then be C(X1 ×
X2,#) where # is defined by condition (c). As it turns out, however, this is in
general no longer Dacey. Indeed, as Foulis and Randall showed [Foulis and Randall,
1981a; Foulis and Randall, 1981b], in general, even for quite well-behaved quantum
logics, no such tensor product exists. A proof of the following — which would be
slightly tedious to write down using only the materials we have to hand — is given
in Section 5:

EXAMPLE 43 [Foulis-Randall, 1979]. Let L = C(X5,⊥), where X5 is the Greechie
space of Example. There exists no orthomodular poset L satisfying conditions (a),
(b) and (c) for L1 = L2 = C(X5,⊥), where X5 is the Greechie space of Example
38.

As mentioned above, the lattice C(X5,⊥) is very well-behaved, even to the point
of being embeddable in a Boolean algebra. Thus, the Foulis-Randall example
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suggests very strongly that Mackey-style quantum logics — that is, orthomodular
posets with ample state spaces — are simply too special to supply an adequate
generalized probability theory. The crucial problem, as we’ll see more clearly
in later sections, is the ortho-coherence assumption, that any maximal pairwise
orthogonal set should count as a test — a strong assumption in any case, with little
heuristic motivation. Section 2 develops the theory of test spaces, which generalizes
Mackey’s theory in several ways, but most crucially, in relaxing this assumption.
In sections 3 and 4, we’ll see how one can associate two quite different “quantum
logics” to a test spaces, in a manner that generalizes Mackey’s construction. One
of these turns out to be orthocomplemented, but rarely a lattice; the other turns
out to be a complete lattice, but only rarely orthocomplemented. In section 5, we’ll
return to the problem of tensor products, and show that this framework, unlike
that of Mackey and Piron, is stable under the formation of a tensor product.

2 TEST SPACE BASICS

As we’ve seen, the approach to quantum logic that begins with orthomodular lat-
tices and posets is beset by serious conceptual and technical difficulties. In this
chapter, we develop the concept of a test space, which offers a much less problem-
atic foundation for quantum logic. In brief, a test space is simply the collection, or
catalogue, of outcome-sets (that is, sample spaces) associated with some collection
of discrete classical measurements. As we’ll see, such objects are easy to manipu-
late, and, in particular, lend themselves to free constructions modelling sequential
experiments. Our focus in this section is on test spaces and their state spaces ex-
clusively. More traditional models of quantum logics such as orthocomplemented
posets and lattices will emerge again in Chapter 3, as useful (but not complete)
mathematical invariants associated with test spaces.

2.1 Examples of Test Spaces

In its simplest formulation, classical probability theory concerns a set E of possible
outcomes — as of some process, experiment, measurement, operation, selection or
test. It is understood that, on each realization of this test, exactly one outcome
x ∈ E will occur.13 A probability weight on E is a mapping ω : E → [0, 1] assigning,
to each outcome x ∈ E, a number 0 ≤ ω(x) ≤ 1, to be construed as the probability
of the occurrence of that outcome, and summing to unity. The theory of test spaces
generalizes this simple apparatus in the most direct imaginable way:

DEFINITION 44. A test space is a collection A of non-empty subsets E,F, ....
Elements of A are called tests; elements of tests are called outcomes, and subsets

13I want to stress here that any phenomenon associated with a definite and exhaustive set of
mutually alternatives, to which a modality of occurrence is appropriate, may count as a test. In
particular, tests need not involve any notion of agency.
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of tests are called events. The outcome set of A is the collection X =
⋃

A of all
outcomes of all tests E ∈ A. A probability weight, or state, on A is a mapping
ω : X → [0, 1] such that

∑
x∈E ω(x) = 1 for every test E ∈ A.14 The set of all

states on A, denoted by Ω(A), is called the state space of A. (Note that this is a
convex subset of RX .)

Remark. It will sometimes be convenient to denominate a test space A with
outcome-set X as a pair (X,A). In this case, we write E(X,A) for the set of
events, Ω(X,A) for the set of states, etc.

A test space A is locally finite iff every test E ∈ A is finite. The rank of A is
the supremum of the cardinalities of its tests. If the outcome set X is finite, then
A is totally finite.15 It is usually assumed that A is irredundant — that is, that
no test properly contains another. In some contexts, it is convenient to relax this
assumption, but I’ll generally adhere to it in this paper. Thus, unless otherwise
noted, all test spaces are irredundant. However, there is no requirement
that the sets comprising A be disjoint. In other words, distinct tests are permitted
to share outcomes. This certainly occurs in practice, as we shall see below. The
definition of a state requires that, where an outcome is shared by two or more
tests, its probability in a given state not depend upon which test is used to secure
it. (To use the current term of art, these probabilities are non-contextual.)

DEFINITION 45. A test space in which distinct tests do not intersect is said to
be semi-classical. A test space consisting of but a single test is classical.

As the following examples illustrate, non-semiclassical test spaces occur abun-
dantly in practice.

EXAMPLE 46 Borel Test Spaces. Let (M,F) be a measurable space. The
corresponding Borel test space, or Borel manual16, is the collection B = B(M,F)
of all countable F- measurable partitions of M . States on B are in an obvious
one-to-one correspondence with probability measures on (M,F). Thus, classical
probability theory is a special case of the theory of states on test spaces.

EXAMPLE 47 Frame Manuals. Let H be a Hilbert space. Let X denote the
unit sphere of H, and let F = F(H) be the collection of all frames, i.e., unordered
orthonormal bases, for H. Note that this is locally finite iff H is finite dimensional,
and that then the rank of F is the dimenion of H. We can regard F as a test space
with outcome set X; and indeed, in orthodox non-relativistic quantum mechanics
this interpretation is taken quite literally. If φ is a unit vector of H and E ∈ F is
an orthonormal basis, the completeness of H gives us

∑
x∈E |〈x, φ〉|2 = ‖φ‖2 = 1.

14If E is infinite, this is to be understood as an unordered sum, i.e., the limit of the net of
finite partial sums.

15In this case, A is what combinatorists call a hypergraph — that is, nothing but a finite set
of finite sets. The language introduced above reflects the specific probabilistic interpretation we
have in mind.

16In the older literature, a test space was often referred to as a manual. The term now survives
mostly in connection with particular test spaces. See the remarks following Theorem 116
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Hence,the unit vector φ defines a state ωφ(x) = |〈φ, x〉|2 on F, which we call
a vector state. Gleason’s theorem tells us that every state on F is a σ-convex
combination of such vector states. Thus, the standard probabilistic machinery of
quantum mechanics is a special case of the theory of states on test spaces. The
test space F(H) is called the frame manual of H.

EXAMPLE 48 Orthopartitions. Let L be an orthoalgebra. A set of non-zero
elements of L is said to be an orthopartition (or partition of unity) iff it is jointly
orthogonal, in the sense of def..., and sums to the unit element of L. Let AL be
the set of all finite partitions of unity in L. Then AL is is naturally regarded as a
test space. States on AL correspond to states on L in an obvious manner.

Many variations are possible on this example. One can, for example, consider
the collection of all countable partitions of unity, or the set of partitions of unity
by atoms, in the case in which L is atomistic. Notice, too, that since any Boolean
algebra is an orthoalgebra, Example 49 subsumes Example 46.

EXAMPLE 49. Let A = {E,F} be a semi-classical test space consisting of two
disjoint, two-outcome tests E = {a, b} and F = {c, d}. A two-stage test over A is
a test in which one a predetermined one of the two tests E and F is executed first,
and then another, depending in a pre-determined way upon the outcome of the
first. The ordered pair xy of outcomes thus secured is recorded as the outcome of
the two-stage test. Thus, the outcome-set of the test, “execute E; upon obtaining
a, execute E again; upon obtaining b, execute F” would be {aa, ab, bc, bd}; that
of “execute E twice in succession”, which would have outcome-set {aa, ab, ba, bb}.
Let A2 denote the collection of all eight such outcome-sets for two-stage tests over
A: this has a rich combinatorial structure, and is certainly not semiclassical.

EXAMPLE 50. Let A consist of the rows and columns of the array {1, 2, 3}2. The
states on A are exactly the 3× 3 doubly-stochastic matrices. Here is a “physical”
model for this test space. Suppose two urns each contain three balls, labelled 1, 2
and 3. Consider the following experiment: a permutation σ of the set {1, 2, 3} is
selected, and then one of the urns is chosen at random, and a ball is selected. If ball
i is drawn from urn 1, then the pair (i, σ(i)) is written down as the outcome of the
experiment. If ball i is drawn from urn 2, the outcome is recorded as (σ−1(i), i).
The possible outcomes for this experiment are the pairs (i, j) belonging to the
graph of σ. It is easy to check that the graphs of the six possible permutations of
{1, 2, 3} have exactly the structure of the rows and columns of a 3 × 3 array.

51 Test Spaces vs Orthogonality Spaces. If (X,⊥) is any orthogonality
space, we can regard the space O(X,⊥) of maximal pairwise-orthogonal subsets of
X as a test space. Both the Borel and Frame manuals discussed above are of this
form. Conversely, if A is a test space with outcome-set X, then we can define an
orthogonality relation on X by setting x ⊥ y iff x and y are distinct outcomes of
a single test. In this case, every test will be pairwise-orthogonal; however, there is
no guarantee that these will be maximal, nor is it necessarily the case that every
maximal orthogonal set will be a test. We’ll see some examples below.
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52 Greechie Diagrams. One can adapt Greechie diagrams, introduced in sec-
tion 1 in connection with orthogonality spaces, to represent small finite test spaces.
In such a diagram, the outcome set of the test space is represented by a set of points
or nodes, and each test is represented by a smooth arc running through the points
corresponding its outcomes. The test space of Example 50, for instance, might be
represented by the diagram

Some further examples of Greechie diagrams are the following:
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(i) (ii) (iii)

In figure (i), we have a Greechie diagram for a test space

W = {{a, x, b}, {b, y, c}, {c, z, a}}

consisting of three, three-outcome tests pasted together in a loop. Figure (ii)
represents the test space obtained by adjoining the set {a, b, c} to W as a fourth
test; similarly, Figure (iii) represents the test space obtained by adjoining the set
{x, y, z} to W.

Remark. Notice that only in figure (ii) is every maximal pairwise-orthogonal set
a test! For a more striking illustration of the distinction between a test space
and an orthogonality space, consider the test space having the following Greechie
diagram:

������
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Here the tests are the lines of the Fano plane. In this example, every outcome is
orthogonal to every other, so that the only maximal orthogonal set is X itself. In
particular, no test is a maximal pairwise orthogonal set.
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Greechie diagrams are very useful in the construction of finite test spaces having
special properties. For a very simple example, the test space represented by the
Greechie diagram

has no states at all (since 3 �= 4).
Where distinct tests overlap in more than a single outcome, Greechie diagrams

become a bit less agreeable, but one can still manage. For instance, the test space

A = {{a, b, x, y}, {b, c, y, z}, {x, y, u, v}, {y, z, v, w}}

can be represented by a Greechie diagram in which each test is indicated by four
points lying on one of four intersecting circles. A test space in which distinct tests
intersect, if at all, in single outcomes, is said to be Greechie. For instance, the
projection manual of a three-dimensional Hilbert space is Greechie, but that of a
higher dimensional Hilbert space is not.

Test Spaces of Partitions

Many interesting test spaces arise as spaces of partitions of an underlying set.
We’ve seen one example already, the Borel manual B(M,F) of a measurable space
(M,F).

DEFINITION 53. A state ω on a test space A is dispersion-free iff it takes only
the values 0 and 1. A set Δ ⊆ Ω(A) of states on A is unital iff ∀x ∈ X. A test
space A carrying a unital set of dispersion-free states is said to be UDF.

LEMMA 54. Let A be a test space with outcome-set X. The following are equiv-
alent:

(a) A is UDF.

(b) There exists a set S and a mapping φ : X → P(S) sending each test E ∈ A
to a partition of S.

Proof. If (a) holds, we may take for S the set of all dispersion-free states on
(X,A), and for φ, the mapping φ(x) = {ω ∈ S|ω(x) = 1}. Conversely, if (b) holds,
then for every point s ∈ S, we have a dispersion-free state ωs on (X,A) defined
by ωs(x) = 1 iff s ∈ φ(x), and ωs(x) = 0 otherwise. Evidently, ωs(x) = 1 for any
s ∈ φ(x). �

We shall make frequent reference in the sequel to the following simple but
illuminating
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EXAMPLE 55 The “Wright Triangle”. Imagine a covered, three-sided box in
which is trapped a firefly. Imagine, further, that the three walls of the box are
transparent, and that the interior of the box is divided into three chambers, which
communicate in such a way that the fire-fly can move freely among the chambers,
but we can view only two of the chambers (through one of the side-windows) at a
time.

Label the three chambers a, b and c. Consider the experiment of viewing cham-
bers a and b: The possible outcomes are that we see the firefly in chamber a, or in
chamber b, or that we see no light (either because the fire-fly is not lit, or because
it occupies chamber c). Call this last outcome x. Thus, the outcome-set for this
experiment is the set E = {a, x, b}. We have two similar experiments correspond-
ing to the other two windows, with outcome-sets F = {b, y, c} and G = {c, z, a}
(y and z being the ”no light” outcomes for these experiments).

The test space W = {E,F,G} is usually called the Wright Triangle17. It may
be represented by the Greechie diagram of Figure 2.1.8 (i) above — which I’ll
reproduce for convenience:

a

z
������

c
������ y��

��
��

b

��
��

��

x

The Wright Triangle has a separating set of dispersion-free states, hence, can be
embedded in a Borel test space. Indeed, let S denote the set of dispersion-free
states on A, corresponding to the firefly’s being in one of the three chambers,
with its light on, or being anywhere, with its light off. Denote these states by
{α, β, γ, δ}, where δ represents the “light off” state. Then we can assign each
outcome to a subset of S: a �→ {α}, b �→ {β}, c �→ {γ}, x �→ {γ, δ}, and so on. In
this way, each test corresponds to a partition of S.

However, not every state on W survives this embedding. Consider the state
ω(a) = ω(b) = ω(c) = 1/2, ω(x) = ω(y) = ω(z) = 0. This might represent a
gregarious state of the firefly, in which the insect always contrives to occupy (lit,
and with equal probability) one of the two rooms under observation. This state
is clearly not a convex combination of dispersion-free states, and hence, does not
arise from a probability distribution on S.

Remark. It is easy to construct variants of the Wright triangle involving “firefly
boxes” with any number of chambers. In particular, the pentagonal Greechie
diagram for the orthogonality space X5 of Example 38 can be interpreted in terms
of a five-sided firefly-box.

56 The Semiclassical Cover. A semiclassical test space is obviously UDF.
Moreover, any state on any locally countable semiclassical test space arises as an

17So named for R. Wright, who made extensive use of it. The example is in fact due to Foulis.
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average over dispersion free states.18 In this respect, semiclassical test spaces are
quite close to being classical. Now, any test space A may be understood as arising
from a semiclassical test space by the conflation of certain outcomes of distinct
tests — perhaps to reflect some conviction that the conflated outcomes “mean”
the same thing. Indeed, given any test space A, we can construct what we may
call the semiclassical cover, of A, as follows: let X̃ be the graph of the incidence
(that is, element-hood) relation between outcomes and tests:

X̃ = {(x,E)|x ∈ E ∈ A}.

For each E ∈ A, let Ẽ = {(x,E)|x ∈ E} ⊆ X̃, and let

Ã := {Ẽ|E ∈ A}.19

Clearly, any state ω on A lifts to a state on Ã, given by ω̃(x,E) = ω(x); and this,
in turn, may be interpreted as an average over dispersion-free states on Ã. This
seems to be the essential content of various “contextual” hidden variables schemes
discussed in the literature.

2.2 Combinations of Test Spaces

Since they are such simple objects, test spaces are easy to manipulate. In par-
ticular, there are many, many ways in which test spaces can meaningfully and
usefully be combined. In this section, we consider several of these. Throughout
this section, A and B are test spaces with outcome sets X and Y , respectively.

Horizontal and Direct Sums of Test Spaces

If A and B are any two sets, let’s write A⊕B for their coproduct, or disjointified
union (identifying this with A∪B if A and B happen to be disjoint.)20 Certainly
the simplest combination of A and B is the one that simply lays them side by side,
as it were:

DEFINITION 57. The horizontal sum of A and B is the test space whose outcome
set is X ⊕ Y and whose set of tests, A

·
+ B, consists of (copies of) tests E ∈ A,

understood as disjoint from Y , and (copies of) tests F ∈ B, understood as disjoint
from X.

Note that the state space of A
·
+ B is essentially just the Cartesian product of

the states spaces of A and B.

DEFINITION 58. The direct sum of A and B is the test space on X ⊕ Y having
tests E ⊕ F , where E ∈ A and F ∈ B. By abuse of notation, we write the set of
such tests as A ⊕ B.

18This is an easy consequence of the Bishop-deLeuw theorem; see [Wilce, 2002].
19This represents the extremity of “de-Occamization”, to use Michael Redhead’s nice phrase.
20That is, A⊕B = (A×{1})∪(B×{2}). I’ll follow the usual relaxed convention that identifies

a ∈ A and b ∈ B with (a, 1) and (b, 2) ∈ A ⊕ B, respectively, that identifies A ⊕ B with A ∪ B
in case A and B happen to be disjoint, and that treats A ⊕ B and B ⊕ A as the same.
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A test in A⊕B is executed by choosing either of two tests, E ∈ A or F ∈ B (say,
by flipping a coin), executing that test, and recording the result as the outcome
of E ⊕ F .

If μ ∈ Ω(A) and ν ∈ Ω(B), then we can regard both μ and ω as functions on
X ⊕ Y by setting μ(y) = ν(x) = 0 for all x ∈ X and all y ∈ Y . We can then
meaningfully form convex combinations of μ and ν, e.g., tμ+(1− t)ν; it is easy to
see that this will be a state on A⊕B, and that every state on A⊕B has a unique
representation as such a convex combination.

Product and Compound Test Spaces

Given two test spaces A and B, it is easy to construct a test space modelling the
situation in which tests from A and from B are executed in parallel. It will be
convenient to use the juxtapositive notation xy for an ordered pair (x, y) in X×Y .

DEFINITION 59. The cartesian product of two test spaces (X,A) and (Y,B) is
the test space (XY,A × B) where

A × B = {EF |E ∈ A, F ∈ B}.

A test EF ∈ A × B is called a product test. Such a test may be performed
by separately performing the tests E ∈ A and F ∈ B, and then collating the
results. The following construction models the situation in which one executes a
test E ∈ A first, and then executes a test Fx ∈ B, depending upon the outcome
x ∈ E that was secured.

DEFINITION 60. Let A and B be test spaces. The forward product of A and B

is the test space
−→
AB consisting of two-stage tests of the form

⋃
x∈E xFx, where

E ∈ A and, for each outcome x ∈ E, Fx ∈ B. Note that
−→
AB is semi-classical if,

and only if, both A and B are classical.

The states on the forward product are easy to describe. Let ω be a state on
the initial test space A, and, for each outcome x ∈ X =

⋃
A, let ωx be a state B.

Then we may define a state ω on
−→
AB by ω(xy) = μ(x)νx(y). It is easy to see

that every state on
−→
AB has this form. In particular, then, the state at the second

stage will in general depend, and may depend in an arbitrary way, upon which
outcome was secured at the previous stage. We’ll examine the forward product of
test spaces in more detail in section 5, in connection with tensor products.

Obviously, one can construct compound tests involving any number of stages.
The collection of all such multi-stage tests that can be built up from the tests
belonging to a fixed test space A gives us a new test space, called the compounding
of A. This can be defined as follows:

DEFINITION 61. The compounding of a test space A is the test space Ac :=⋃
n∈N An, where An is defined recursively by

(i) A0 = A;
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(ii) An+1 =
−→

AnA.

Outcomes of Ac are, in effect, finite strings over the alphabet X. One can
represent a test in Ac by a rooted tree whose nodes are labelled by elements of
A and in which the edges leaving a node E are indexed by the outcomes x ∈ E.
Clearly, even if A is quite simple, Ac will typically be very complex. Note that⋃

Ac is the free semi-group on X, and that the orthogonality relation induced by
Ac is the lexicographic one associated with the free orthomonoid over (X,⊥), as
discussed in section 1.4.

Remark. It should be mentioned that the construction of
−→
AB can be generalized

to allow the tests at the second stage to come from a family of test spaces Bx

indexed by outcomes of A. The resulting test space is called the Dacey sum of the
Bx over A.

Test Spaces of Bijections

The following construction, discussed in more detail in [Wilce, 1997b], generalizes
Example 50.

DEFINITION 62. Let E and F be two sets of the same cardinality, regarded
as the outcome-sets of two tests. Let B(E,F ) denote the set of all bijections
f : E → F . Identifying f with its graph, we can regard B(E,F ) as a test space
with outcome-set E × F .

This has the following interpretation: to execute the test (corresponding to)
f ∈ B(E,F ), choose and execute one of the two tests E and F . If E is executed
and the outcome x ∈ E is obtained, record (x, f(x)) as the outcome of f ; if F is
executed and the outcome y ∈ F is obtained, record (f−1(y), y) as the outcome
of f . If |E| = |F | = 2, then the structure of B(E,F ) is quite simple: it is a
semi-classical test space consisting of two, two-outcome tests. On the other hand,
if the cardinality of E and F is three or greater, the structure of B(E,F ) is quite
complex. Indeed, in the next-simplest case, where E = F = {1, 2, 3}, we find
that B(E,E) is the 3 × 3 “array” test space of Example 50, whose states are
the doubly-stochastic three-by-three matrices. Obviously, we can generalize this
construction:

DEFINITION 63. Let A and B are test spaces, both of uniform rank n (finite or
otherwise). Then B(A,B) is the union of the test spaces B(E,F ) where E ∈ A
and F ∈ B.

If A and B are both uniform and of the same rank n, then B(A,B) is also of
uniform rank n, and in this case,

⋃
B(A,B) = XY . One can show that B(A,B)

is effective as the direct product of A and B in a suitable category of uniform test
spaces of a fixed rank.

2.3 Orthogonality and Perspectivity of Events

Above (in 51), we defined an orthogonality relation on the outcomes of a test
space: two outcomes x and y are orthogonal iff they belong to a common test —
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equivalently, iff {x, y} is a two-element event. There is a natural orthogonality
relation on the set of events of a test space, extending that on outcomes:

DEFINITION 64. Let A be a test space. Events A and B of A are compatible
iff they are contained in a common test — equivalently, if their union is again an
event. Events A and B are orthogonal, written A ⊥ B, iff they are compatible and
disjoint.

If A ⊥ B in E(A), then A ⊆ B⊥; but the converse is in general false. Consider
the Wright triangle W = {{a, x, b}, {b, y, c}, {c, z, a}} (Example 55): Then{a} ⊆
{b, c}⊥, as a ⊥ b and a ⊥ c; but {a} �⊥ {b, c}, since {a, b, c} is not an event.

A large part of the theory of test spaces involves on the following notion of
perspectivity between events:

DEFINITION 65. We say that two events A and B, of a test space A are com-
plementary, or that A is a complement for B, and write AcoB, iff A ⊥ B and
A ∪B ∈ A. Equivalently, A and B are complementary iff they partition a test. If
events A and B share a complement, we say that they are perspective, and write
A ∼ B.

It is sometimes useful to illustrate the perspectivity of A and B via axis C by
means of the following sort of diagram:

C

A ����

B

��
��

This is much like a Greechie diagram, but with the lines indicating complemen-
tarity rather than mere orthogonality. Call a diagram of this kind a co-diagram .
We say here that C is an axis of perspectivity for A and B.

Note that, for any pair of tests E,F ∈ A, we have E ∼ F with axis ∅ and
E\F ∼ F \E with axis C = E∩F . Notice, too, that if A and C are complementary
events, and ω is a state, then ω(A) = 1 − ω(C). Hence, if A ∼ B, ω(A) = ω(B)
for every state ω. The following observation is sometimes useful:

LEMMA 66. Let A be any test space. Then for all A,B ∈ E(A),

A ∼ B ⊆ A ⇒ A = B.

Proof. If A ∼ B, then for some event C, AcoCcoB. In particular, both C ∪ A
and C ∪B belong to A. If B ⊆ A, we have C ∪B ⊆ C ∪A. Since A is irredundant,
C ∪A ⊆ C ∪B. Since C is disjoint from A and B, it follows that A ⊆ B, whence,
A = B. �

EXAMPLE 67. If B = B(M,F) is the Borel manual of all countable measurable
partitions of a measurable space (M,F), then events of B are merely disjoint
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families of sets in F . It follows easily that two such families are perspective iff
they have the same union.

EXAMPLE 68. In the case of a quantum test space A = F(H), events are pairwise
orthogonal sets of unit vectors, and it is a simple exercise to show that two such
sets A and B are orthogonal iff their spans are orthogonal. Note that, in this
case A ⊆ B⊥ implies A ⊥ B. Events are complementary iff their spans are
complementary subspaces of H, and hence, perspective iff they have the same
closed span.

The preceding examples may suggest that perspectivity is a kind of “physical
equivalence”. This idea is reinforced by the observation, made above, that per-
spective events have the same probability in every state. However, the following
examples should temper one’s enthusiasm for this interpretation.

EXAMPLE 69. Consider — yet again! — the “Wright Triangle” test space

W = {{a, x, b}, {b, y, c}, {c, z, a}},

discussed above in Example 55. The events {a, x} and {y, c} are perspective with
axis {b}. These two events represent two possible situations in which b might be
observed, but is not. However, as the discussion in Example 46 shows, these two
events are not, strictly speaking, physically equivalent, if we regard the choice of
test as influencing the state of the “firefly”.

Another obstacle to viewing perspectivity as an absolute physical equivalence
is the fact that perspective events behave differently in two-stage experiments.

EXAMPLE 70. Consider a compound test space AB where the first test space
consists of two tests E = {a, c} and F = {c, b}, and where B is a classical test
space consisting of the single test G = {x, y}. Then the outcomes a and b are
perspective in A, but the outcomes ax and bx are not perspective in the forward
product

−→
AB= {{ax, ay, cx, cy}, {cx, cy, bx, by}}.

Notice here that different states on
−→
AB will generally assign different probabilities

to ax and bx.

As these last two example show, one should be careful not to take perspectivity
too seriously as representing a strict notion of “physical equivalence”. This caveat
notwithstanding, however, the concept of perspectivity is the central structural
tool in the theory of test spaces. It will be exploited at every turn in the sequel.

2.4 Mappings of Test Spaces

If we wish to employ test spaces with any fluency, we need to single out appropriate
morphisms between them. It will be convenient, in what follows, to treat a relation
between two sets X and Y as a set-valued mapping φ : X → P(Y ). In this case the
relational image of a set A ⊆ X is given by φ(A) =

⋃
a∈A φ(a). The composition
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of two set-valued mappings φ : X → P(Y ) and ψ : Y → P(Z) is given by
(ψ ◦ φ)(x) =

⋃
y∈φ(x) ψ(y).

DEFINITION 71. Let A and B be test spaces with outcome-sets X and Y respec-
tively. A homomorphism from A to B is an event-valued mapping φ : X → E(B)
taking events to events, and preserving both orthogonality and perspectivity —
that is,

(i) ∀A ∈ E(A), φ(A) ∈ E(B);

(ii) ∀ x, y ∈ X, x ⊥ y ⇒ φ(x) ⊥ φ(y); and

(iii) ∀ A,B ∈ E(X,A), A ∼ B ⇒ φ(A) ∼ φ(B).

If φ also preserves tests — that is, if φ(E) ∈ B for every E ∈ A — then we call φ
an interpretation.

I’ll abuse notation to the extent of writing φ : A → B (rather than φ : X →
E(B)) to indicate that φ is an homomorphism from A to B. The set of all ho-
momorphisms and the set of all interpretations from A to B will be denoted by
Hom(A,B) and Int(A,B), respectively. Evidently, the composition of two homo-
morphisms is another homomorphism, and likewise for interpretations.

Remark. Any event-valued mapping φ : X → E(B) satisfying the condition
φ(x) ⊥ φ(y) for x ⊥ y in X and taking tests to tests, automatically preserves
perspectivity, and hence, is a homomorphism, and, in particular, an interpreta-
tion. Thus, an interpretation simply identifies (interprets!) each test E ∈ A as a
partition — a coarse-grained version — of a test φ(E) in B. This is surely a very
natural way of linking two test spaces. In contrast, the more general notion of a
homomorphism may seem somewhat arbitrary. However, as we’ll see below, there
is a natural sense in which a homomorphism is simply an interpretation onto a
certain fragment of its codomain, which we may regard as its image.

DEFINITION 72. Notice that the image of an outcome under a homomorphism
may be empty. The support of a homomorphism φ : A → B is the set

Sφ = {x ∈ X | φ(x) �= ∅ }.

We say that φ is positive iff Sφ = X. We say that φ is single-valued, or outcome-
preserving, iff ∀x ∈ Sφ, |φ(x)| = 1. In this case, we generally write φ(x) = y rather
than φ(x) = {y}.

Given any set S ⊆ X, we can define a set-valued characteristic function χS :
X → 2S by setting

χS(x) =
{

{x} x ∈ S
∅ x �∈ S

for each x ∈ X. Notice that χS(A) = ∅ iff A ∩ S is empty.
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LEMMA 73. Let A be a test space with outcome set X, and let S ⊆ X. Let
AS := {E ∩ S|E ∈ A}. The following are equivalent:

(a) S = Sφ for some homomorphism φ : A → B;

(b) A ∼ B implies S ∩A = ∅ iff S ∩B = ∅, for all events A,B ∈ E.

(c) AS is irredundant, hence, a test space in its own right.

(d) χS : X → 2S defines a positive interpretation from A to AS.

Proof. Obviously, (d) implies (a). To see that (a) implies (b), suppose that
S = Sφ for a homomorphism φ : A → B. For any event A in E(A), we have
A ∩ S = ∅ iff φ(A) = ∅. If A ∼ B, then φ(A) ∼ φ(B); hence, if φ(A) = ∅, then
φ(B) ∼ ∅. It follows from the irredundancy of B that then φ(B) = ∅, whence,
B ∩S = ∅ as well. Thus, (a) implies (b). Suppose now that (b) holds. If E,F ∈ A
and E ∩ S ⊆ F ∩ S, then S ∩ (F \ E) = ∅, whence, as (F \ E) ∼ (E \ F ),
S ∩ (E \ F ) = ∅ — that is, S ∩ F ⊆ S ∩ E. Thus, AS is irredundant. Finally,
suppose that AS is irredundant, i.e., a test space in its own right. It is easy to
check that the “characteristic function” given by

χS(x) =
{

{x} x ∈ S
∅ x �∈ S

defines a homomorphism — indeed, an interpretation — from A to AS . �

We call a set S ⊆ X satisfying the equivalent conditions of Lemma 73, a support.
We call the test space AS the restriction of A to S, and the interpretation A → AS

given by χS , the restriction interpretation associated to S.

EXAMPLES 74. (i) The mapping x �→ {x} sending each outcome x ∈ X =
⋃

A
to the corresponding one-outcome event is the identity interpretation on the test
space A.

(ii) Let E and F be any two sets, and let f ⊆ F × E. Then f−1 : E → P(F )
is a morphism iff f is a partially-defined function, an interpretation iff f is totally
defined, and outcome-preserving iff f is injective.

(iii) The coarsening of a test space A is the test space A# consisting of of finite
partitions of A-tests into non-empty events. Note that each non-empty event
of A corresponds to an outcome of A#. There are natural outcome-preserving
interpretations ι : A → A#, δ : A# → A. The former takes each outcome x ∈ X to
the corresponding outcome {{x}}, while the latter takes each outcome A ∈ ⋃

A#

to the corresponding event A ∈ E(A).
(iv) Let L1 and L2 be two orthomodular lattices. Let Ai be the test space of

(finite) partitions of unity in Li, i = 1, 2. Then any homomorphism φ : L1 → L2

defines a homomorphism A1 → A2. This is an interpretation iff φ maps the unit of
L1 to that of L2. As a special case, let Bi = B(Mi,Fi), i = 1, 2, be two Borel test
spaces associated with measurable spaces (M1,F2) and (M2,F2) respectively. If f :
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M2 → M1 is any measurable function, the mapping f−1 : F1 → F2 is a complete
Boolean homomorphism, and hence maps partitions to partitions. We obtain an
outcome-preserving interpretation φ : B1 → B2 given by φ(a) = {f−1(a)} for all
a ∈ F1.

(v) Let A(H) be the quantum test spaces associated with the Hilbert space H,
and let U : H → H be unitary or anti- unitary mapping from H to itself. Since
U maps orthonormal bases to orthonormal bases, we may define an interpretation
φ : A(H) → A(H) by φ(x) = {Ux}. Note that this interpretation is invertible.
More generally, let c be a completely arbitrary mapping assigning to each unit
vector x a complex number c(x) with |c(x)| = 1. Then φ : x �→ {c(x)U(x)} is
again an outcome- preserving interpretation. It follows from Wigner’s theorem
that every invertible interpretation φ : A(H) → A(H) arises in this manner.
(Arbitrary interpretations between quantum test spaces can be characterized using
a powerful generalization of Wigner’s theorem due to R. Wright [Wright, 1978a].)

We now establish that arbitrary morphisms are essentially just interpretations in
disguise. Evidently, if φ : A → B is a homomorphism, then φ(A) := {φ(E)|E ∈ A}
is a set of mutually perspective events in B. The following gives us a converse:

LEMMA 75. Let B ⊆ E(A) be any collection of mutually perspective events. Let
Y =

⋃
B. If we view (Y,B) as a test space, the natural injection i : Y → P(X)

given by i(x) = {x} is a homomorphism.

Proof. To see this, it suffices to check that if A and B are perspective as B-events,
then they are perspective as A-events as well. But if A ∼ B in E(B), there exists
some event C such that A ∩ C = C ∩B = ∅ and A ∪ C,C ∪B ∈ B. But then, as
the members of B are mutually perspective in E(A), there exists some event D of
A such that (A∪C)∪D = D ∩ (C ∪B) = ∅ and A∪ (C ∪D), (D ∪C)∪B ∈ E(A)
— whence, A and B are perspective in A. �

We shall call iB the inclusion homomorphism associated with B. Evidently,
any homomorphism φ : A → B with support S factors as φ = iφ(A) ◦φ◦χS , where
χS is the restriction interpretation associated with S, and where φ is a positive
interpretation. It seems reasonable to call the test space φ(A) = {φ(E)|E ∈ A}
the image of the homomorphism φ. Thus, in particular, every homomorphism
defines an interpretation onto its image.

Categories of Test Spaces

It is easy to see that the composition of two homomorphisms, or of two interpre-
tations, is again a homomorphism or interpretation. Accordingly, we may speak
of the category of test spaces and homomorphisms, and the sub-category of test
spaces and interpretations. I’ll denote these, respectively, by TES and TES1. Note
that TES comes equipped with two obvious functors, namely, the outcome-space
functor and the forgetful functor that regards A merely as a set. The former
takes TES to REL (the category of sets and relations) and the latter, to SET (the
category of sets and mappings).
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Let A and B be test spaces with outcome sets X and Y , respectively, and
let φ ∈ Int(A,B). It is not hard to show that φ is invertible iff there exists a
bijective mapping f : X → Y , taking the tests of A bijectively to the those of B,
such that φ(x) = {f(x)} for every x ∈ X. The characterization of epimorphisms
and monomorphisms in TESP1 is much less straightforward. For example, let
A = {{a, b}, {c, d}} and let B = {{x, y}, {y, z}, {x, z}}. It is easy to check that
the mapping φ : A → B given by

φ(a) = x, φ(b) = φ(c) = y, φ(d) = z

is both an epimorphism and a monomorphism, even though it is neither injective
on outcomes, nor surjective on tests.

For any test spaces A1 and A2, there are natural inclusion interpretations φi :
Ai → A1 ⊕ A2 given by φi(x) = {x} for x ∈ Xi, i = 1, 2. It is easy to show that
these make A1 ⊕ A2 the direct product of A1 and A2 in TES.

We have thus far been regarding interpretations as set-valued mappings, but,
as remarked above, we can equally well regard them as relations. If φ : A → B is
an interpretation, its graph is the corresponding relation Rφ ⊆ X × Y given by

Rφ := {(x, y) ∈ X × Y |y ∈ φ(x)}

The set Int(A,B) of all graphs of interpretations is an irredundant set of subsets
of X × Y , hence, can itself be regarded as a test space. The following is due to P.
Lock [Lock, P., 1981]:

THEOREM 76. Let A,B and C be test spaces. Then

Int(A × B,C) + Int(A, Int(B,C)).

For any fixed test space A, we have a functor Int(A,−) from TES to SET. Lock’s
theorem tells us that the endo-functor − × B : A �→ A × B is left-adjoint to the
endo-functor Int(B,−) : C �→ Int(B,C).21

2.5 Spaces of Weights on Test Spaces22

If a state on a test space A is a generalization of a probability measure, it is natural
to attempt to generalize the notion of an arbitrary bounded measure, or for that
matter, a vector-valued measure, in a similar spirit. What follows is drawn mainly
from [Cook, 1985; Wilce, 1995].

DEFINITION 77. Call a function ω : X(A) → R a weight on A iff
21This divergence between the direct product and the adjoint of the Hom functor is equally a

feature of the category of vector spaces and linear mappings, where the adjoint of Int(−, V ) is
the functor − ⊗ V . Indeed, if A and B are test spaces consisting of bases for vector spaces V
and W , then A× B may be regarded as a collection of bases for V ⊗ W .

22This material will be used only in section 5.5, where we discuss tensor products of frame
manuals.
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(i) ω has uniformly bounded variation over elements of A, and

(ii)
∑

x∈E ω(x) — which exists, by (i) — is independent of E ∈ A.

Clearly, a weight on the Borel test space of a measurable space (M,F) corresponds
to a bounded measure on F . It is an easy extension of Gleason’s theorem that
a weight on the test space of frames of a Hilbert space H is representable by a
self-adjoint operator on H.

It is not difficult to show that a linear combination of two weights on A is
another weight on A. Thus, the set of all weights on A is a vector space, which we
denote by W (A). This space was first studied by Cook in [Cook, 1985].

DEFINITION 78. Let A be a test space, and V, any (real) normed linear space.
A function ω from X =

⋃
A to V is A-summable iff

‖ω‖ := sup
E∈A

∑
x∈E

‖ω(x)‖ < ∞.

We refer to ‖ω‖ as the variation of ω. We will denote the space of all such functions
by Λ1(A,V), abbreviating Λ1(A,R) to Λ1(A).

LEMMA 79. Let A and V be as above. Then

(a) For every event A of A and every ω ∈ Λ1(A,V), ω(A) :=
∑

x∈A ω(x) exists;

(b) If V = R or C, then ‖ · ‖ is equivalent to the supremum norm given by

‖ω‖s = sup
A∈E(A)

|ω(A)|.

Proof. (a) Straightforward. (b) Let ω ∈ Λ1(A) and E ∈ A. If V is R, let
A = {x ∈ E | ω(x) > 0} and let B = E \A. Then

∑
x∈E |ω(x)| = ω(A) − ω(B) ≤

2 supA∈E |ω(A)|. If V is C, note that ω’s real and imaginary parts are real-valued
weights, and apply the foregoing argument to each of these. On the other hand,
if A ⊂ E, E a test, then |ω(A)| ≤ ∑

x∈E |ω(x)|. �

THEOREM 80. For any test space A and for any Banach space V, the space
(Λ1(A,V), ‖ · ‖) is complete.

Proof. For any set S and any Banach space V, let  ∞(S,V) denote the space
of bounded X-valued functions on S, with the supremum-norm. This is clearly
complete. Let  1(S,V) denote the space of summable V-valued functions on S,
i.e., those with

‖f‖1 :=
∑
s∈S

‖f(s)‖ < ∞.

Note that ‖ · ‖1 is a norm on  1(S,V), and that the latter is complete in this norm
(using, e.g., the fact that a normed space is complete iff every norm-absolutely
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summable series is summable). Now, given any ω ∈ Λ1(A,V), define a map
ω̂ : A →  1(X,V), where X =

⋃
A, by ω̂(E)(x) = δx,Eω(x), where δx,E is 1 if

x ∈ E and 0 otherwise. Then

‖ω̂‖∞ = sup
E∈A

‖ω̂(E)‖1 = ‖ω‖.

Thus, the map ω �→ ω̂ provides an isometric embedding of Λ1(A,V) into the space
 ∞(A,  1(X, ,V)).

We now show that the image of the map ·̂ is closed: If φ ∈  ∞(A,  1(X(A),V))
and E ∈ A, define fE,x(φ) = φ(E)(x). Clearly, fE,x is a bounded linear functional
for each pair (E, x). It is equally clear that φ belongs to the image of ·̂ iff φ(E)(x) =
φ(F )(x) for all x ∈ E ∩ F , where E and F range over A. Thus,

ran (̂·) =
⋂

x∈E∩F

ker(fE,x − fF,x),

a closed subspace of  ∞(A,  1(X,V)). �
DEFINITION 81. Let A be a test space and V, a Banach space. An element ω
of Λ1(A,V) is called an V-valued weight on A iff for all E,F ∈ A,∑

x∈E

ω(x) =
∑
y∈F

ω(y).

The space of all V-valued weights on A will be denoted W (A,V). We denote the
space of scalar-valued weights by W (A).

COROLLARY 82. W (A,V) is closed as a subspace of Λ1(A,V), and hence, com-
plete.

Proof. For each test E of A, let TE be the bounded linear map from Λ1(A,V) to
V given by TE(ω) =

∑
x∈E ω(x). Then

W (A,V) =
⋂

E,F∈A

ker(fE − fF ).

�
Any state on A is a weight on A; indeed, Ω(A) is a base for the positive cone

W+ of W (A). The space W+ −W+ spanned by Ω(A) is usually denoted by V (A).
It can be shown ([3]) that this space is complete in the base-norm induced by
Ω(A). In general, V (A) is a proper subspace of W (A) — that is, no analogue of
the Jordan decomposition theorem obtains in this general setting [9]. However,
we do have the following easy

LEMMA 83. Let A be a test space of finite rank n. Then every weight on A is a
difference of positive weights.

Proof. Since every test in A has, say, cardinality n, the constant function η(x) ≡ 1
is a weight on A. If ω is any real-valued weight, then μ := ω + 2‖ω‖η is a positive
weight, with μ > ω; hence, ω = μ− (μ− ω) is Jordan. �
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3 LOGICS OF TEST SPACE

In section 2.3, we acquired some scruples about interpreting perspective events as
“physically equivalent”. On the other hand, the fact that two perspective events
have the same probability in every state suggests that it may be mathematically
worthwhile to identify perspective events. Pursuing this idea, we arrive at a useful
order-theoretic invariant of a test space, called its logic. This always carries a
natural involution, and is often orthocomplemented.

3.1 An Implication Relation on Events

In general, perspectivity is not even transitive, much less an equivalence relation
on the set of events of a test space. Thus, if we wish to identify perspective events
with one another, we need first to find a suitable equivalence relation extending
perspectivity.

DEFINITION 84. Let A be any test space. For any events A,B ∈ E(A), say
that A weakly implies B iff there exists a chain A1, ...., An of events with A = A1,
An = B, and, for each i = 1, ..., n − 1, either Ai ∼ Ai+1 or Ai ⊆ Ai+1. In this
case, write A ≤ B. Evidently, ≤ is a pre-order on E . Let ≡ be the associated
equivalence relation, i.e., given two events A and B, set A ≡ B iff A ≤ B and
B ≤ A. Write [A] for the equivalence class of A with respect to ≡, and Π(X,A)
for the ordered set E/ ≡, with [A] ≤ [B] iff A ≤ B. This is called the logic of

(X,A) .

EXAMPLE 85. Let B = B(M,F) be the Borel manual of a measurable space
(M,F), that is, the test space of countable partitions of M by sets a ∈ F . Events
are thus countable, pairwise-disjoint families A = {ai} of non-empty sets ai ∈ M .
As discussed above, two events are perspective iff they have the same union. If
A ⊆ B then a :=

⋃
A ⊆ b :=

⋃
B. Hence, if A ≤ B, then again a ⊆ b. Conversely,

if
⋃

A ⊆ ⋃
B, then B ∼ A1 where A1 = A ∪ {b \ a}; accordingly, A ⊆ A1 ∼ B, so

A ≤ B. Consequently, the logic Π(B) is order-isomorphic to F .

EXAMPLE 86. Let F be the frame manual of a hilbert space H, that is, the test
space of unordered orthonormal bases for H. Then events of F are orthonormal
subsets of H; as discussed above, two events A and B are perspective iff they have
the same closed span, i.e., iff A⊥⊥ = B⊥⊥. Hence, if A ≤ B, then A⊥⊥ ⊆ B⊥⊥.
Conversely, if A⊥⊥ = M and B⊥⊥ = N, and M ⊆ N, then we can enlarge A to
an orthonormal basis A1 for N; then A ⊆ A1 ∼ B, so A ≤ B. Hence, Π(F) is
order-isomorphic to the lattice L(H) of closed subspaces of H.

LEMMA 87. Let A,B,C and D be events in E(A) with A co C and B co D. Then
A ≤ B ⇒ D ≤ C.

Proof. This is clear if A ∼ B, so it suffices to show that A ⊆ B ⇒ D ≤ C. But
A ⊆ B co D ⇒ A co D∪(B\A). Hence, D∪(B\A) ∼ C. Since D ⊆ D∪(B\A),
we have D ≤ C. �
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By Lemma 87, the relation ≡ respects complementarity of events. Thus, we
may define, for any A ∈ E(A), p(A)′ := p(E \ A) where E is an arbitrary
element of A containing A. The map (·)′ is evidently an involution on Π(A),
but need not be an orthcomplementation — consider, for instance, the test space
{{a, b}, {b, c}, {c, a}}:

a

b
������������ c

��
��

��
��

��
��

Here, all three outcomes (treated as singleton events) are perspective. Thus, the
logic is the three-element chain {0, p,1}, where p = p(a) = p(b) = p(c). This is
not even complemented, and hence, supports no orthocomplementation.

DEFINITION 88. We say that A is consistent iff its logic Π is orthocomplemented
by (·)′ — equivalently, iff ∀p ∈ Π, p ≤ p′ ⇒ p = 0.23

REMARK 89. If ω is a state on A, then A ≤ B ⇒ ω(A) ≤ ω(B) for all events A
and B. Hence, ω lifts to a function ω : Π(A) → [0, 1] given by ω(p(A)) = ω(A).
This function is monotone, takes values in [0, 1], and satisfies ω(p) + ω(p′) = 1 for
all p ∈ Π(A). A test space A is said to be semi-unital iff ∀x ∈ X, ∃ω ∈ Ω(A) with
ω(x) > 1/2. It is immediate from what has just been said that if A is semi-unital,
then A is consistent.

DEFINITION 90. Events A and B of A are weakly perspective, and we write
A

w∼ B, iff there is a chain of events A = D1 ∼ D2 ∼ . . . ∼ Dn = B.

Note that weakly equivalent events are equivalent, in the sense of Definition 84.

LEMMA 91. In a consistent test space, equivalent events are weakly perspective.

Proof. Suppose that, for C,D ∈ E(A), C ∩D = ∅ and

A ≤ D ⊆ D ∪ C ≤ B ≤ A.

Let E ∈ A be an test with D∪C ⊆ E. Then D ⊆ E \C co C. Hence C ⊆ D∪C ≤
A ≤ D ⊆ E \C — whence p(C) ≤ p(C)′. If A is consistent, it follows that C = ∅.
Hence given a chain Di with A = D1, B = Dn and Di ⊆ Di+1 or Di ∼ Di+1,
there can be no proper inclusions Di ⊂ Di+1. It follows that Di ∼ Di+1 for all
i = 1, ..., n− 1, whence A

w∼ B. �

The Logic as a Functor

Let A and B be test spaces, and φ : A → B, an homomorphism. If A and B
are events of A with A ∼ B, then φ(A) ∼ φ(B); also, if A ⊆ B, then φ(A) ⊆

23It is easy to see that an involution is an orthocomplementation iff it satisfies p ≤ p′ ⇒ p = 0.
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φ(B). Hence, A ≤ B in E(A) implies that φ(A) ≤ φ(B) in E(B). It follows
that φ descends to a well-defined order-preserving mapping Πφ : Π(A) → Π(B),
given by (Πφ)(p(A)) = p(φ(A)). It is easy to verify that Πφ(1) = 1 iff φ is an
interpretation. In this case, since an interpretation preserves complementarity
of events, the mapping Πφ : Π(A) → Π(B) also preserves the involution, i.e.,
φ(p′) = φ(p)′. It is also straightforward that Π(φ◦ψ) = (Πφ)◦ (Πψ) whenever the
composite φ ◦ ψ is defined; thus, we can regard Π as a functor from the category
of test spaces and interpretations to that of involutive posets and homomorphisms
of these (that is, order- and involution-preserving mappings).

In general there will exist unital homomorphisms f : Π(A) → Π(B) that do
not have the form Πφ for any interpretations φ : A → B. In fact, this is the
case even if A and B are classical. Let A = {E} where E is any infinite set, and
let B = {{a}}. Then Π(A) + 2E and Π(B) + 2. Any non- principal ultrafilter
on E yields a homomorphism f : 2E → 2 such that f(x) = 0 for every x ∈ E;
accordingly, f can not be obtained from any interpretation from A to B.

If L1 and L2 are involutive posets, their cartesian product L1 × L2 is again
an involutive poset with respect to the natural slot-wise order involution. The
following observation will be of some use later. I leave the straightworward proof
to the reader.

LEMMA 92. Let A and B be test spaces. Then Π(A ⊕ B) + Π(A) × Π(B).

3.2 Regular and Dacey Test Spaces

As noted in section 2.1, any test space (X,A) gives rise to an orthogonality space
(X,⊥). This in turn gives rise to the complete ortholattice C(X,⊥) of ortho-
closed subsets of X, as discussed in section 1.4. In certain cases there is an
intimate connection between C(X,⊥) and the logic Π(A) just constructed. For
instance, if A consists of all ortho-partitions of unity in a complete OML L, we
have, for any events A and B, A ∼ B ⇔ A⊥⊥ = B⊥⊥. In this case, then,
Π(A) + C(X,⊥) + L. In general, however, even if A is consistent, Π(A) need bear
little relation to C(X,⊥). There is, to be sure, an obvious map γ : E(A) → C(X,⊥)
given by γ(A) := A⊥⊥; but this map does not necessarily respect perspectivity,
and hence, does not necessarily descend to a well-defined map Π(A) → C(X,⊥).

DEFINITION 93. A test space A is

(i) regular iff A ∼ B ⇒ A⊥ = B⊥ for all A,B ∈ E(A), and

(ii) Dacey iff AcoB ⇒ A⊥ = B⊥⊥ for all A,B ∈ E(A)

In other words, A is regular iff γ(A) = γ(B) for all perspective events A and B,
and Dacey iff γ(A) = γ(B)′ whenever A and B are complementary. Clearly, every
Dacey test space is regular. The converse is false:

EXAMPLE 94. Let A be the Greechie test space diagrammed below, consisting
of four, three-outcome tests, together with the four-outcome test {a, b, c, d}. It



Test Spaces 487

is not difficult to check that A is regular (indeed, any two perspective events A
and B have a unique axis of perspectivity, consisting of a singleton event {v}, and
A⊥ = B⊥ = {v}.) On the other hand, A is not Dacey. For, consider the two
complementary events A = {a, c} and B = {b, d}: we have A⊥ = {b, d, x} and
B⊥ = {a, c, y}. But then B⊥⊥ = {b, d} �= A⊥. .

a

������

x
������ ��

��
��

c��
��

��

b

��
��

��

y

��
��

�� ������

d
������

Virtually all test spaces that occur in practice are Dacey; however, this condition
does not seem easy to motivate independently. Regularity, on the other hand,
seems at least somewhat natural. In fact, any test space that admits the following
abstract version of the projection postulate, must be regular:

LEMMA 95. Suppose that, for every outcome x ∈ X, there exits a state ωx on A
with ωx(y) = 0 iff x ⊥ y. Then A is regular.

Proof. Let A ⊥ B and let x ∈ A⊥. Then ωx(A) = 0, so ωx(B) = 0. In particular,
ωx(b) = 0 for all b ∈ B, so x ⊥ b — that is, x ∈ B⊥. �

LEMMA 96. If A is regular, then

(a) A ≤ B ⇒ B⊥ ⊆ A⊥ for all events A and B

(b) E⊥ = ∅ for all E ∈ A.

(c) A is consistent.

Proof. (a) Certainly if A ⊆ B, B⊥ ⊆ A⊥; regularity supplies the remaining case.
(b) Suppose x ∈ E⊥. Let x ∈ F . Then E ∼ F , so E⊥ = F⊥, whence x ∈ F⊥,
which is impossible. (c) Suppose A ≤ E \A. Then (E \A)⊥ ⊆ A⊥ by (a), whence
A ⊆ A⊥ and A is empty. Thus, A is consistent. �

The following characterization of Dacey-ness is often useful:

LEMMA 97. A is Dacey iff, for all E ∈ A and x, y ∈ X,

E ⊆ x⊥ ∪ y⊥ ⇒ x ⊥ y.

As an illustration, in the non-Dacey test space of Example 94, the test E =
{a, b, c, d} is contained in x⊥ ∪ y⊥, yet x �⊥ y.
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Proof. Suppose A is Dacey and E ⊆ x⊥ ∪ y⊥. Let Ex = {z ∈ E|z ⊥ x} and
Ey = E \ Ex. Then ExcoEy , so E⊥

x = E⊥⊥
y . But x ∈ E⊥

x and y ∈ E⊥
y . For

the converse, suppose A satisfies the given condition and AcoB in E(A). Then
certainly A ⊆ B⊥, whence B⊥⊥ ⊆ A⊥. Let x ∈ A⊥. For any y ∈ B⊥, A ⊆ x⊥

and B ⊆ x⊥, whence E = A ∪B ⊆ x⊥ ∪ y⊥, so x ⊥ y. Thus, A⊥ ⊆ B⊥⊥. �

Recall that, for any orthogonality space (X,⊥), the set of maximal pairwise
orthogonal subsets of X is denoted by O(X,⊥).

LEMMA 98. If A is Dacey, then A ⊆ O(X,⊥).

Proof. If A is Dacey and x ∈ E⊥ for some x ∈ X,E ∈ A, then by the preceding
Lemma, E ⊆ x⊥ ∪ x⊥, whence x ⊥ x, a contradiction. �

Of course, O(X,⊥) can always be regarded as a test space in its own right. The
following is a corollary to Dacey’s Theorem (Theorem 35):

THEOREM 99. If C(X,⊥) is an orthomodular lattice, then O(X,⊥) is Dacey.

Proof. Let A,B ∈ E(O(X,⊥)) with AcoB. Then (A ∪ B)⊥ = A⊥ ∩ B⊥ = ∅ and
A ⊆ B⊥. Thus, A⊥⊥ ⊆ B⊥ and B⊥ ∩ A⊥⊥⊥ = B⊥ ∩ A⊥ = ∅. Since both B⊥

and A⊥⊥ are closed and C(X,⊥) is orthomodular, B⊥ = A⊥⊥. Thus, O(X,⊥) is
Dacey. �

The converse is false:

EXAMPLE 100 Janowitz. Consider the test space the test space

A = {{a, x, b}, {b, y, c}, {c, z, d}, {d,w, a}} :

a x b

y

czd

w

It is easily verified that A is Dacey; but C(X,⊥) is not orthomodular. To see this,
let M = {a, c}. Then M⊥ = {b, d} and M⊥⊥ = M . Notice that {a} is a maximal
orthogonal subset of M , but {a}⊥⊥ = {a} �= M .

3.3 Algebraic Test Spaces

We next consider a particularly important class of test spaces, the logics of which
are orthoalgebras.

DEFINITION 101. A test space A is algebraic iff perspective events share exactly
the same complements — that is,

A ∼ B co C ⇒ A co C
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for all events A,B,C ∈ E(A). In terms of the co-diagrams introduced in Section
2.3, this means that every co-diagram of the form AcoCcoBcoD “closes” with
DcoA:

A

C B

D� � �

Most of the test spaces that arise in practice are either algebraic, or embeddable
in one that is. For example, both the Borel test spaces of measurable spaces and
the frame manuals of Hilbert spaces are algebraic. Any test space in which, for
all E,F , |E ∩ F | < |E \ F | for all tests E and F , is algebraic by default. Thus,
in particular, Greechie test spaces are algebraic. As we shall see below, any test
space having a reasonably rich supply of states is embeddable in an algebraic test
space having the same outcomes and the same state space.

It follows immediately from the definition of algebraicity that, if A is algebraic,
then perspectivity is an equivalence relation on E(A). In fact, as we’ll now see,
the logic Π(A) is simply the set of perspectivity-classes of events.

LEMMA 102. Let A be algebraic. Then for all A-events A,B and C,

(a) If A ∼ B ⊆ C, then there is some event B′ with A ⊆ B′ ∼ C;

(b) A ≤ B iff there exists an event B′ with A ⊆ B′ ∼ B.

(c) A is consistent

(d) A ≡ B iff A ∼ B.

Proof. (a) If A ∼ B ⊆ C, let C1 = C \B, and let DcoC. Then A ∼ Bco(C1 ∪D).
Since A is algebraic, Aco(C1∪D). Set B′ = A∪C1. Then A ⊆ B′ and B′coDcoC,
i.e., B′ ∼ C.

(b) If A ≤ B, then there exists a chain of events A1, ..., An with A = A1, An = B,
and for each i = 1, ..., n − 1, either Ai ∼ Ai+1 or Ai ⊆ Ai+1. Since both ⊆ and
∼ are transitive (the latter, since A is algebraic), we can assume without loss of
generality that Ai ⊆ Ai+1 ⇒ Ai+1 ∼ Ai+2 and Ai ∼ Ai+1 ⇒ Ai+1 ⊆ Ai+2 for
i = 1, ..., n − 2. Suppose that the length, n, or such a chain is at least 4. We are
then faced with two possibilities:

Case I: A1 ⊆ A2 ∼ A3 ⊆ A4 ∼ · · · or Case II: A1 ∼ A2 ⊆ A3 ∼ A4 ⊆ · · ·

In Case I, part (a) gives us an event A′
3 with A1 ⊆ A2 ⊆ A3 ∼ A4; in case II, we

have an event A′
2 with A1 ⊆ A′

2 ∼ A3 ∼ A4. Thus, in either Case, we can replace
the given chain by one of length n− 1, namely,

A1 ⊆ A′
3 ⊆ A4 ∼ · · · or A1 ⊆ A′

2 ∼ A4 ⊆ · · · .
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Evidently, then, any chain of length n ≥ 4 can be reduced to one of length 3, for
which, again, part (a) supplies the desired conclusion.

(c) It is sufficient to show that if p(A) ≤ p(A)′ in Π(A), then p(A) = 0. But
if p(A) ≤ p(A)′, then A ≤ C for some CcoA. By part (b), there is some B′ with
A ⊆ B′coA — which is absurd unless A = ∅, i.e., p(A) = 0.

(d) As A is consistent, equivalent events are weakly perspective, by Lemma 91.
But since ∼ is already an equivalence relation on E , weakly perspective events are
in fact perspective. �

Recall from Section 1.2 that an orthoalgebra is a positive, cancellative, unital
partial abelian semigroup (an effect algebra) (L,⊕) in which a ⊕ a exists only if
a = 0. As we’ll now see, the logic of an algebraic test space is an orthoalgebra.

LEMMA 103 Additivity Lemma. Let A be algebraic, and let A ∼ A′ and B ∼ B′

in E(A). Then
A ⊥ B ⇒ A′ ⊥ B′ and A ∪B ∼ A′ ∪B′.

Proof. Since A ⊥ B, we can find a test E ∈ A with A ∪ B ∈ E ∈ A. Let
C = E \A∪B. Then B∪CcoA, whence, as A′ ∼ A and A is algebraic, B∪CcoA′.
Now Bco(C ∪ A′), whence, as B′ ∼ B, B′co(C ∪ A′) also. Hence, B′ ⊥ A′ and
(A′ ∪B′)coCco(A ∪B), i.e., A ∪B ∼ A′ ∪B′. �

It follows from Lemma 103 that, for all p(A), p(B) in Π(A), the relation

p(A) ⊥ p(B) ⇔ A ⊥ B

is well defined, as is the partial operation

p(A) ⊥ p(B) ⇒ p(A) ⊕ p(B) := p(A ∪B).

PROPOSITION 104. Let A be an algebraic test space with logic Π. Then (Π,⊕)
is an orthoalgebra.

Proof. To see that ⊕ is associative, it suffices to note that, for a = p(A), b = p(B)
and c = p(C) in Π, where A,B,C ∈ E , (a ⊕ b) ⊕ c is defined iff A ⊥ B and
(A∪B) ⊥ C — whence, (a⊕ b)⊕ c = p(A∪B ∪C) = a⊕ (b⊕ c). The rest of the
proof is similarly straightforward. �

The following representation theorem is proved in several places, e.g., [Gudder,
1988].

PROPOSITION 105. If (L,⊕) is an abstract orthoalgebra, the set AL of all finite
sets E = {a1, ..., an} of non-zero elements of L with a1 ⊕ · · · ⊕ an = 1, is an
algebraic test space with Π(AL) + L via the bijection A �→ ⊕

A, where A is an
event of E(AL).

Thus, orthoalgebras are the same things as logics of algebraic test spaces. Nat-
urally, one wants to identify conditions on an algebraic test space A that will force
its logic to be an orthomodular poset, an orthomodular lattice, etc.
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DEFINITION 106. A test space is ortho-coherent iff every pairwise orthogonal
triple of events is jointly orthogonal.

If A is algebraic, orthocoherence is equivalent to the condition that the orthoal-
gebra Π(A) be orthocoherent, i.e., an OMP (cf Lemma 21 and remarks following).
Both Borel and frame manuals are manifestly orthocoherent. However, orthoco-
herence is difficult to motivate on purely “operational” grounds. Indeed, we have
already seen a simple and plausible toy example in which it fails, namely, the
“Wright triangle” of Example 55:

������

������ ��
��

��

��
��

��

The three corner outcomes (corresponding, in the “firefly box” interpretation, to
the appearance of a light in one of the three chambers) are pairwise, but not
jointly, orthogonal.

A further reason to be suspicious of orthocoherence as a fundamental principle
is that it is not stable under the formation of tensor products [Foulis and Randall,
1981a; Foulis and Randall, 1981b] — something we’ll take up in Section 5.

Pre-algebraic test spaces

We now show that, under very weak conditions, a test space can be “filled out” to
an algebraic test space without change to either its outcome set or its state space.
Call a set Γ of states on a test space A semi-unital iff, for every x ∈ X =

⋃
A,

there exists a state ω ∈ Γ with ω(x) > 1/2.

LEMMA 107. ‘Let A be a test space with a semi-unital set of states. Then there
exists an algebraic test space A′ ⊇ A, having the same outcome set, and the same
states as A.

Proof. Let A consist of all subsets of X over which all states sum to 1. It is
routine to verify that this test space is algebraic, and has exactly the same states
as A. �

One can go further, to show that any test space that can be embedded in an
algebraic test space, has a canonical minimal such embedding. Let us call a test
space A pre-algebraic iff there exists an algebraic test space B with A ⊆ B. (Note
that we do not require that

⋃
B =

⋃
A.)

LEMMA 108. Let A be a pre-algebraic test space with outcome-set X. Suppose B
is any algebraic test space with A ⊆ B. Define

〈A〉 =
⋂

{ C ⊆ B | A ⊆ C & C is algebraic}.

Then
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(a) 〈A〉 is algebraic.

(b)
⋃〈A〉 = X.

(c) 〈A〉 does not depend upon B.

Proof. (a) is trivial. To verify (b), let A ⊆ C ⊆ B, where C is algebraic. Let
y ∈ ⋃

C \ X. Let Ĉ = {E ∈ C|y �∈ E} and note that Ĉ is an algebraic test space
containing A. Statement (c) now follows. �

The test space 〈A〉 is called the algebraic closure of A. Notice if A is contained
in any algebraic test space B, then 〈A〉 ⊆ B. There is a constructive description
of 〈A〉 due to P. Lock [Lock, P., 1981]. If A is any test space, the derived test space
A′ has the same outcomes, and tests given by

A′ = { A ∪D | ∃B ∈ E(A) A ∼ B co D }.

Define A(n) recursively: A(0) = A, A(n+1) = (A(n))′.

THEOREM 109 [P. Lock, 1981]. A is pre-algebraic if and only if A(n) is consis-
tent for all n. In this case, 〈A〉 =

⋃
n A(n).

Proof. We show first that A is algebraic iff A is consistent and A = A′. Note that
A ⊆ A′ (take E = F = G in the definition). Let A′ ⊆ A and suppose A,C,B,D
form an N -configuration. Then A ∪ D ∈ A. If A is consistent, then A ∩ D = ∅;
consequently A co D, i.e., the N -configuration closes. Thus A is algebraic.

More generally, if A is pre-algebraic, then A′ ⊆ 〈A〉. Now let B =
⋃

n A(n).
Certainly A ⊆ B and B′ = B. Thus, our remaining task is to show that B is
consistent iff every A(n) is consistent. One implication is trivial, and the other,
nearly so: If B is the union of an ascending chain of test spaces An, then E(A) is
the ascending union of the sets E(An). Since the relation ≤ involves only a finite
chain of comparable and complementary pairs of events, A ≤ B holds in E(B) iff
for some n, A,B ∈ E(An). and A ≤ B holds in An. Consequently, the union of an
ascending chain of consistent test spaces is consistent. �

COROLLARY 110. Let A be a pre-algebraic test space. Then

(a) Ω(〈A〉) = Ω(A);

(b) For any algebraic test space B, Int(A,B) = Int(〈A〉,B).

Proof. (a) In light of Theorem 109, it suffices to show that every ω ∈ Ω(A) is a
state on A′. Let ω ∈ Ω(A). If A ∼ Bco D then ω(A) = ω(B) and ω(D) = 1−ω(B),
so ω(A) +ω(D) = 1. Since A is consistent, A∩D = ∅. Hence, ω(A∪D) = 1. The
proof of (b) is similar. �
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3.4 Coherent Test Spaces

As we discussed in Section 1, traditional approaches to quantum logic make, either
explicitly or implicitly, some assumption to the effect that pairwise co-testable
events are jointly testable. A strong form of this requirement is the following:

DEFINITION 111. A test space A is said to be coherent iff for all events A and
B in E(A),

A ⊆ B⊥ ⇒ A ⊥ B.

Coherence is a stronger condition than ortho-coherence: If A,B and C are
pairwise orthogonal events, then C ⊆ (A ∪ B)⊥, whence, if A is coherent, C ⊥
(A ∪ B). If A is locally finite, the two conditions coincide, and amount to the
requirement that pair-wise orthogonal sets of outcomes be events.

LEMMA 112. If (X,A) is coherent, then A ⊆ O(X,⊥).

Proof. If E ∈ A and x ∈ E⊥, then by coherence, x ⊥ E, whence, E ∪ {x} is an
event properly larger than E. Since A is irredundant, this is impossible. Thus,
E⊥ is empty, i.e., E is a maximal orthogonal set in X. �

In the presence of coherence, the three classes of test spaces introduced earlier
coalesce:

LEMMA 113. Let (X,A) be coherent. Then the following are equivalent:

(a) A is Dacey.

(b) A is regular;

(c) A is algebraic;

Proof. Suppose A is coherent. If A is Dacey, it is regular in any case. If A is
regular and A ∼ B ⊥ C, then C ⊆ B⊥ and B⊥ = A⊥ by regularity, so C ⊥ A by
coherence; thus A is algebraic. It remains to show that a coherent algebraic test
space is Dacey. Suppose E ⊆ x⊥ ∪ y⊥. Let A = E ∩ x⊥ and C = E \ A. Then
A ⊆ x⊥ and C ⊆ y⊥, so A ⊥ {x} and C ⊥ {y} by coherence. It follows that
p(x) ≤ p(A)′ ≤ p(C) ≤ p(y)′; if A is algebraic, it then follows that x ⊥ y. Thus A
is Dacey, by Lemma 97. �

An Isomorphism Theorem

Recall that, for any test space A with outcome-set X, there is a natural mapping
γ : E(A) → C(X,⊥) given by γA �→ A⊥⊥. If A is regular, this descends to an
injection γ : Π(A) → C(X,⊥), given by γ : p(A) �→ A⊥⊥. If A is also Dacey, then
γ : p(C) �→ p(A)′ where C is any event complementary to A.

THEOREM 114. Let A be a coherent, algebraic test space, and let A,B ∈ E(A).
Then A ≤ B iff A⊥⊥ ⊆ B⊥⊥.
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Proof. If A ⊆ C ∼ B, then since A is regular, we have B⊥ = C⊥ ⊆ A⊥, whence
A⊥⊥ ⊆ C⊥⊥ = B⊥⊥. Conversely, suppose A⊥⊥ ⊆ B⊥⊥. Then B⊥ ⊆ A⊥. Hence,
if C is any event complementary to B, C ⊆ A⊥, whence, C ⊥ A. Thus, there is
some A′ ∈ E with A ⊆ A′coC, whence, A ⊆ A′ ∼ B — i.e., A ≤ B. �

It follows that, for a coherent algebraic test space, the mapping γ : E → C(X,⊥)
induces an ortho-embedding γ : Π(A) → C(X,⊥), given by γ : p(A) �→ A⊥⊥. As we
shall now show, if Π is a complete lattice, then γ is in fact an ortho-isomorphism.

LEMMA 115. Let A be algebraic, with logic Π = Π(A). Then

(a) If A is regular, then for every event A ∈ E(A), p(A) =
∨

a∈A p(a), provided
that the latter join exits in Π.

(b) A is coherent iff, for every event A ∈ E(A), p(A) =
∨

a∈A p(a) in Π(A).

Proof. (a) Let
∨

a∈A p(a) exist. Then there exists some event Ao in E(A) with∨
a∈A p(a) = p(Ao). Since p(a) ≤ p(A) for every a ∈ A, we have p(Ao) ≤ p(A).

Thus, by part (b) of Lemma 102, there exists some A1 ∈ E(A) with Ao ⊆ A1 ∼ A.
Let x ∈ A1 \ Ao (supposing this set to be non-empty). Then x ⊥ Ao, whence,
p(Ao) ≤ p(x)′. It follows that p(a) ≤ p(x)′ for every a ∈ A. Since A is algebraic,
a ⊥ x for every a ∈ A, i.e., x ∈ A⊥. Since A is regular, and A1 ∼ A, it follows
that x ∈ A1 ∩ A⊥

1 , a contradiction. Thus, A1 \ Ao = ∅, i.e., Ao = A1, whence,
p(Ao) = p(A).

(b) Suppose first that p(A) =
∨

a∈A p(a) for every event A of A. Let A ⊆ B⊥.
Then p(a) ≤ p(B)′ for every a ∈ A, whence, p(A) =

∨
a∈A p(a) ≤ p(B)′, whence,

as A is algebraic, B ⊥ A. Thus, A is coherent. Conversely, let A be coherent, and
let A ∈ E(A). Clearly, p(a) ≤ p(A) for every a ∈ A. Suppose that p(a) ≤ p(B) for
all a ∈ A, and let CcoB. Then p(C) = p(B)′ ≤ p(a)′, whence, C ⊥ a for each a.
By coherence, then, C ⊥ A. It follows that p(A) ≤ p(C)′ = p(B). �

Combining the preceding lemmas, we arrive at the following isomorphism the-
orem, due to Foulis and Randall [Randall and Foulis, 1983a]:

THEOREM 116. Let A be a regular algebraic test space with outcome-space X. If
Π(A) is a complete lattice, then A is coherent, and the mapping γ : Π(A) → C(X,⊥)
is an ortho- isomorphism. In particular, C(X,⊥) is a complete orthomodular lat-
tice.

Proof. Since Π is a complete lattice,
∨

a∈A p(a) exists for every event A ∈ E(A).
Therefore, by Lemma 115 (a) p(A) =

∨
a∈A p(a) for every event A. By Lemma

115 (b), then, A is coherent. Thus, by the remarks following Theorem 114, γ
is an ortho-embedding. It now suffices to show that γ is surjective. Suppose
M = M⊥⊥ ∈ C(X,⊥): we wish to show that M = A⊥⊥ for some A ∈ E . Since Π
is a complete lattice, the join

∨
m∈M p(m) exists in Π; therefore, there exists some

event A ∈ E with p(A) =
∨

m∈M p(m). Let x ∈ A⊥. Then, by coherence, x ⊥ A.
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Hence, p(x) ≤ p(A)′, i.e., p(A) =
∨

m∈M p(m) ≤ p(x)′. Accordingly, p(m) ≤ p(x)′

for every m ∈ M . Since A is algebraic, it follows that m ⊥ x, for every m ∈ M , i.e.,
x ∈ M⊥. Thus, A⊥ ⊆ M⊥, whence, M = M⊥⊥ ⊆ A⊥⊥. To see that A⊥⊥ ⊆ M ,
it suffices to show that M⊥ ⊆ A⊥. Let x ∈ M⊥: then p(m) ≤ p(x)′ for every
m ∈ M , so

∨
m∈M p(m) = p(A) ≤ p(x)′. Since A is algebraic, it follows that

A ⊥ x, whence, x ∈ A⊥. �

Historical Remark: Prior to about 1979, the term manual was used to describe
coherent test spaces, with most attention being devoted to Dacey manuals —
equivalently, coherent algebraic test spaces, in the current terminology. Through-
out the 1980s, algebraic test spaces (coherent or not) were termed manuals; since
the early 1990s, the term manual has largely been dropped. In these notes, I retain
the term manual for certain special test spaces — e.g., Borel and Frame manuals
— that are both coherent and algebraic.

Coherence and Coarse-Graining

There is a sense in which the property of being a coherent algebraic test space is
simply a special form of regularity.

Recall (Example 74 (iii)) that the coarsening of a test space A is the collection
A# of partitions of tests E ∈ A into non-empty events. Note that an outcome of
A# is a non-empty event of A, while an event of A# is a jointly orthogonal family
of events of A. We regard tests in A# as “coarse-grained” versions of tests in A.

THEOREM 117. Let (X,A) be a test space. Then A is a coherent algebraic test
space iff A# is regular.

Proof. We shall identify A with its canonical image in A#, i.e., we do not distin-
guish between x and {x} for an outcome x ∈ X. Thus, we may speak of x ∈ X
and A ∈ A as outcomes and events of A# as well. To avoid a proliferation of
curly brackets, let’s agree to denote by xA the outcome of A# corresponding to
the event A ∈ E(A) — that is, xA = {A}. Notice that if A ⊆ E ∈ A, then
{xA} ∪ (E \ A) ∈ A#; so {xA} ∼ A. Thus, if A# is regular, we have x⊥

A = A⊥.
Suppose now that A and B are events of A with A ⊆ B⊥ = x⊥

B. For each x ∈ A,
then, x ⊥ xB; hence, xB ∈ A⊥ = x⊥

A. It follows that xB ⊥ xA. In view of the
definition of A#, this is only possible if A ⊥ B. It follows that A is coherent. It is
not difficult to show that the regularity of A# entails that of A; hence, by Lemma
113, A is algebraic as well.

For the converse, suppose A is both coherent and algebraic. Let {Ai} and {Bj}
be two events in E(A#). Thus, {Ai} is a partition of an event A =

⋃
i Ai of A, and

likewise {Bj} is a partition of an event B =
⋃

j Bj of A. Note that {Ai} ∼ {Bj} if
and only if A ∼ B. Suppose this is the case, and suppose that C is an outcome of
A# — that is, an event of A — with C ∈ {Ai}⊥. Then C ⊥ Ai for each i, whence,
C ∈ (

⋃
i Ai)⊥ = A⊥. Since A is coherent, C ⊥ A. Since A is algebraic and A ∼ B,

we have C ⊥ B as well. But then C ∈ {Bj}⊥. It follows that A# is regular. �

Remark: It is not hard to show that, similarly, a test space A is ortho-coherent iff
the test space of finite coarse-grainings of A-tests, is regular.
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The Loop Lemma

The following result, generalizes the “Loop Lemma” of Greechie [Greechie, 1971]
(our Theorem 42). A square in a test space (X,A) is a sequence of four (distinct)
outcomes a, b, c and d with a ⊥ b, b ⊥ c, c ⊥ d and d ⊥ a, but a �⊥ d and b �⊥ c.
Call a test space (X,A) square free iff contains no squares.

THEOREM 118 The Generalized Loop Lemma [Foulis et al., 1993]. Let (X,A)
be a coherent, square-free algebraic test space. Suppose, further, that there exists
some integer n such that |E ∩ F | < n for all E,F ∈ A. Then Π(X,A) is an
orthomodular lattice.

Notice that if (X,A) has finite rank, the hypotheses reduce to the absence of
three or four loops, hence the name,“loop lemma”.

LEMMA 119. Let A be a coherent, algebraic test space, and let A,B ∈ A. If
D = A⊥⊥ ∩B⊥⊥ is an event, then p(D) = p(A) ∧ p(B).

Proof. If D is an event, then D ⊆ A⊥⊥ implies D ≤ A, by Theorem 114 above;
likewise, D ≤ B. Now if C ≤ A and C ≤ B, then C⊥⊥ ⊆ A⊥⊥ and C ⊆ B⊥⊥, so
C ⊆ A⊥⊥ ∩B⊥⊥ = D. Thus, p(C) ≤ p(D). �

Proof of Theorem 117. Our approach will be to show that, if Π is not a lattice,
then there is no upper bound to |E∩F | as E,F range over distinct tests. Suppose,
then, that A and B are events of A such that p(A) and p(B) have no meet in Π.
Let D = A⊥⊥ ∩B⊥⊥. We claim that D is pairwise orthogonal, but not an event.
In particular, D is infinite.

To begin with, note that if D were an event, then we should have p(D) =
p(A) ∧ p(B), by Lemma 115. Now suppose that D is not pairwise orthogonal.
Then we can find two elements c, d ∈ D with c �⊥ d. Now d ∈ A⊥⊥ implies
p(d) ≤ p(A), by coherence, so A ∼ N ∪ {d} for some event N . Likewise, there is
some event M with A ∼ M ∪ {d}. Replacing A and B by N ∪ {d} and M ∪ {d} if
necessary, we may now suppose that d ∈ A ∩B. Let A′, B′ be local complements
for A and B. Since p(A)∧p(B) does not exist, p(A) and p(B) can lie in no common
block; hence, the same is true of p(A)′ = p(A′) and p(B)′ = p(B′). In particular,
A′ ∪B′ is not an event.

We now invoke coherence again to obtain a square in X. Since A′ ∪ B′ is not
an event, it can not be pairwise orthogonal. Pick distinct elements x ∈ A′ and
y ∈ B′ with x �⊥ y. Since A′ ⊆ A⊥ and B′ ⊆ B⊥, and d ∈ A⊥ ∩B⊥, we now have
d ⊥ x and d ⊥ y. But now (d, c, x, y) is a square, contrary to our assumption that
(X,A) is square-free.

This completes the proof that D is pairwise orthogonal. As D is not an event,
it follows that D is infinite. Let C be any finite subset of D. By coherence, C is an
event. As in the proof of the Lemma, we may replace A and B by equivalent events
so that C ⊆ A∩B (this having no effect on A⊥⊥ or B⊥⊥, hence, no effect on D).
Let E and F be tests with A ⊆ E and B ⊆ F . Since p(A) ∧ p(B) does not exist,
E �= F . Now C ⊆ E ∩ F implies that |E ∩ F | ≥ |C|. As C is an arbitrary finite
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subset of the infinite set D, the cardinalities of intersections of tests is unbounded,
as claimed. �

Planar Test Spaces

As an application of the Loop Lemma, we shall now characterize orthocomple-
mented projective planes in terms of test spaces.

DEFINITION 120. A Greechie test space A is cubic iff it is of uniform rank 3. A
test space A has the plane property iff, for all A-outcomes x and y, x⊥ ∩ y⊥ �= ∅.

The following is due to Greechie [Greechie, 1974]:

PROPOSITION 121. Let (X,A) be a cubic Greechie test space having the plane
property and no 3-loops or 4-loops. Let L = {x⊥|x ∈ X}. Then (X,L) is an
orthocomplemented projective plane.

Proof. By assumption, every pair of lines meets. If x and y are distinct points in
X, let u, v ∈ x⊥∩y⊥. Then we have x ⊥ u ⊥ y ⊥ v ⊥ x. Since L is lattice-ordered,
(X,A) is square-free; hence, either x ⊥ y, u ⊥ v, x = y, or u = v. If x ⊥ y, then
{x, u, y} is a pairwise orthogonal triple. Since (X,A) is orthocoherent, this is a
test. Likewise, {x, v, y} is pairwise orthogonal, hence, a test. By assumption, no
two (distinct) tests meet in two outcomes; hence u = v. Thus, every pair of lines
meets in exactly one point. To see that every pair of points belongs to a unique
line, again let x and y be distinct. Let z ∈ x⊥ ∩ y⊥: then x, y ∈ z⊥, so x and y
are co-linear. Since the intersection of two lines is unique, x and y lie on no other
line. This establishes that (X,L) is a projective plane. It is orthocomplemented
by the mapping x �→ x⊥, which interchanges lines and planes. �

4 SUPPORTS AND ENTITIES

Recall that a filter in a Boolean algebra L is a set Φ ⊆ L such that

(i) ∀a ∈ Φ,∀b ∈ L a ≤ b ⇒ b ∈ Φ, and

(ii) ∀a, b ∈ Φ, a ∧ b ∈ Φ.

If we interpret elements of L as propositions about the outcomes of measurements,
then a filter Φ may naturally be interpreted as a set of propositions that are certain
to occur. In [von Neumann, 1932], von Neumann interpreted the projection lattice
L(H) of a Hilbert space H as a lattice of physical properties of the quantum-
mechanical system modelled by H. It has widely been supposed that physical
properties can be individuated by keeping track of those outcomes of experiments
that are certain to occur when the various properties are present, or actual. At the
very least, where a preparation yields systems for which a given set of outcomes
— and only those outcomes — are possible, then those systems do indeed share
a physical property. This echoes the famous remark of Einstein, Podolsky and
Rosen [Einstein et al., 1935]:
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If, without in any way disturbing the system, we can predict with
certainty ... the value of a physical quantity, then there exists an
element of physical reality corresponding to this physical quantity.

This notion of property can be formalized very naturally in terms of test spaces.
The main ideas of this section first appeared in the joint paper [Foulis et al., 1985]
of Foulis, Piron and Randall, and were further developed in [Randall and Foulis,
1983a; Foulis et al., 1992].

4.1 Supports and Local Filters

Suppose we are given a physical system which is modelled (at least partially) by
a test space A. Suppose P is a property of this system. Let f(P ) denote the set of
all events that are certain to occur when the property P is actual (that is, when
the system’s state is such that P obtains). We would expect f(P ) to satisfy the
conditions of the following definition.

DEFINITION 122. A local filter on a test space A is a set of events f ⊆ E(A)

(i) A ∈ f, A ⊆ B imply B ∈ f

(ii) Ai ⊆ E ∈ A and Ai ∈ f imply that
⋂

Ai ∈ f.

In computational practice, it is often easier to work, not with f, but with the
associated set of possible outcomes. Notice that if f is a local filter of A and E ∈ A,
then f∩ 2E is a complete filter on the Boolean algebra 2E , and hence, is generated
by a minimal element A =

⋂{B ⊆ E|B ∈ f}. This event must be construed as
the set of all outcomes of E that are possible of occurrence when the property P
is actual. Noticing that an event A ⊆ E is minimal in f ∩ 2E iff it is minimal in f,
we are led to the following

DEFINITION 123. If f is a local filter, its support is the set

Sf =
⋃

{A ∈ f|A is minimal in f}.

If f represents the set of events that are certain when some property is actual,
then Sf represents the set of outcomes that are possible. Notice that the set Sf

completely determines f — indeed,

f = { A ∈ E(f) | ∃E ∈ A Sf ∩ E ⊆ A ⊆ E }.

Sets of the form Sf can be characterized abstractly in a variety of ways, and thus
are fairly easy to recognize. The proof of the following is straightforward:

LEMMA 124. Let A be a test space with outcome set X. For a subset S ⊆ X, the
following are equivalent:

(a) S = Sf for some local filter f on E(A),
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(b) For every pair of tests E,F ∈ A, S ∩ E ⊆ F ⇒ S ∩ F ⊆ E.

(c) The collection AS := {E ∩ S|E ∈ A} is irredundant, i.e., a test space.

(d) For every pair of events A,B of A,

A ∼ B & S ∩A = ∅ ⇒ S ∩B = ∅.

(e) The collection of events

fS := {A ∈ E|∃E ∈ A S ∩ E ⊆ A ⊆ E}

is a local filter.

In other words, supports of filters are the same things as the supports of inter-
pretations, as discussed in Section 2.4. (see Lemma 73).

DEFINITION 125. A set S satisfying the equivalent conditions of Lemma 124 is
said to be a support of A.

We denote the collection of all supports of A by S(A). Using Lemma 124, it is
easy to see that the union of any collection of supports is again a support. Hence,
S(A) is a complete lattice under set-inclusion.

EXAMPLES 126. (i) Let A be any test space. If ω is a state on A, let Sω =
{x ∈ X|ω(x) > 0}, i.e., the support of ω in the usual analytic sense. This is easily
seen to be a support. Any support having this form is said to be stochastic. It is
easy to construct finite test spaces having non-stochastic supports, i.e., supports
that support no probability weights. For a simple example, consider the three-by-
three “window” test space (Example 50), whose states are three-by-three doubly
stochastic matrices. As we’ve seen, this has a simple physical interpretation. Omit
one test, to obtain the test space with the Greechie diagram

• • ◦

◦••

• • ◦

The set S of outcomes corresponding to the nodes shaded in black is a support,
as is easily verified. However, AS , a 2 × 3 window, admits no states at all.

(ii) Let B0(M,F) be the Borel test space of finite partitions of a measurable
space (M,F) by measurable sets. There is a one-to-one correspondence between
the supports of B0 and the filters of the Boolean algebra F . Indeed, if Φ is any filter
in the Boolean algebra F , let f = {A ∈ E(B)|⋃A ∈ Φ}. It is not difficult to show
that this is a local filter with corresponding support S = {a ∈ F|∀b ∈ Φ a∩b �= ∅}.
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(iii) If A = A(H) is the quantum test space associated with a Hilbert space H,
then for every x ∈ X (i.e., for every unit vector of H), X \ x⊥ is a support, and
indeed, minimal in the lattice of all supports, as shown by Cohen and Svetlichny
[Cohen and Svetlichny, 1987].

Regularity via Supports

There is a useful — and independently interesting — characterization of regular
test spaces in terms of supports. Recall that the forward product of two test spaces

A and B is the test space
−→
AB consisting of all two-stage tests of the form ∪x∈ExFx,

where E ∈ A and Fx ∈ B for each x ∈ E.

LEMMA 127. A set V ⊆ XY is a support of
−→
AB iff V =

⋃
x∈S x Sx where

S ∈ S(A) and Sx ∈ S(B) for each x ∈ S.

Proof. Any subset V of XY can be written uniquely in the form
⋃

x∈S xSx: Let
S = {x ∈ X|∃ y ∈ Y xy ∈ V } and set Sx = xY ∩ V . Then V =

⋃
x∈S x Sx.

(
⋃
x∈S

x Sx) ∩ (
⋃

x∈E

x Fx) =
⋃

x∈E∩S

x (Fx ∩ Sx).

It follows at once that if S and Sx are supports, so is V . Conversely, if V is a
support, let F ∈ B be arbitrary and suppose E,E′ ∈ A with S ∩ E ⊆ E′: Then
V ∩EF ⊆ E′F , whence V ∩E′F ⊆ EF , whence S∩E′ ⊆ E. Thus, S is a support.
Suppose for some x ∈ S, Fx, F

′
x ∈ B with Sx ∩ Fx ⊆ F ′

x. Fix E ∈ A containing x
and F ∈ B arbitrarily, and set Fy = F ′

y = F for all y ∈ E \ x. Let G =
⋃

y∈E y Fy

and G′ =
⋃

y∈E y F ′
y. Then V ∩G ⊆ G′, whence V ∩G′ ⊆ G, whence Sx∩F ′

x ⊆ Fx,
and Sx is also a support. �
THEOREM 128. Let A be a test space with outcome set X. Then the following
are equivalent:

(a) A is regular

(b) X \ x⊥ is a support of A for every x ∈ X

(c) X2\ ⊥ is a support of
−→
AA.

Proof. (a) ⇒ (b): Suppose that A is regular, and let S = X \ x⊥ for an outcome
x ∈ X. For any event A, S ∩ A = A \ x⊥ = ∅ iff A ⊆ x⊥ iff x ∈ A⊥. Hence, if
A ∼ B, we have S ∩ A = ∅ iff x ∈ A⊥ = B⊥ iff S ∩ B = ∅. Hence, by part (c) of
Lemma 124, S is a support.

(b) ⇒ (c): Now suppose that X \ x⊥ is a support for every x ∈ X. Then

X2\ ⊥=
⋃

x∈X x(X \ x⊥). By Lemma 127, this is a support of
−→
AB.

(c) ⇒ (a): Suppose that X \ x⊥ is a support of
−→
AA. Let A,B ∈ A. For any

x ∈ X, xA ∼ xB in
−→
AA. Note that xA∩(X\ ⊥) is empty iff x ∈ A⊥, and similarly,

xB ∩ (X\ ⊥) is empty iff x ∈ B⊥. Thus, if X\ ⊥ is a support, we have x ∈ A⊥ iff
x ∈ B⊥, i.e., A⊥ = B⊥. �
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Supports, Ideals, and Filters in Orthoalgebras

The supports — equivalently, the local filters — on an algebraic test space A
descend in a natural way to the orthoalgebra L = Π(A).

DEFINITION 129. An ideal in an orthoalgebra L is a set I ⊆ L such that, for all
a, b ∈ L with a ⊥ b, a ⊕ b ∈ I ⇔ a, b ∈ I. A filter in L is a set Φ ⊆ L such that
{a′|a ∈ Φ} is an ideal. A support in L is the complement of an ideal.

A straightforward application of Lemma 124 yields the following

LEMMA 130. Let L = Π(A) for an algebraic test space A. If f is a local filter on
A, then Φ := {p(A)|A ∈ f}, is a filter on L. If A is locally finite, then conversely,
if Φ is a filter on L, the set {A ∈ E(A)|p(A) ∈ Φ} is a local filter on A.

The following result, due to Foulis (cf [Foulis et al., 1992]) generalizes the com-
pactness theorem of first order logic — equivalently, the prime ideal theorem for
Boolean algebras — to the setting of an arbitrary orthoalgebra.

THEOREM 131 The Foulis Compactness Theorem. Let L be an orthoalgebra,
and let M be a subset of L such that S ∩ M �= ∅ for every non-empty support
S ∈ S(L). Then some finite subset of M also has this property.

Proof. Let T be the set of points a ∈ L such that, for every finite set N ⊆ M ,
some proper minimal support S with a ∈ S, is disjoint from N . We shall show,
first, that T is a support, and then, that T = ∅. From this, the result follows:
since 1 �∈ T , there must exist some finite set N ⊆ M meeting every support that
contains 1. But every support contains 1.

We proceed to show that T is a support. Let a ∈ T and a ≤ b ∈ L. Then any
support containing a contains b, so b ∈ T as well. Thus, T is an order filter. Now
suppose that p⊕ q ∈ T . If neither a nor b belonged to T , there would exist finite
sets Na, Nb ⊆ M such that for every support S containing a, S ∩ Na �= ∅, and
likewise b ∈ S ⇒ S ∩ Nb �= ∅. Thus, if a ⊕ b ∈ S, we have either a ∈ S or b ∈ S,
whence, now we have S ∩ (Na ∪ Nb) �= ∅, contradicting a ⊕ b ∈ T . Thus, T is a
support. If T is non-empty, it must contain a minimal support So. By assumption,
M meets every non-empty support, so in particular, M meets So. Let c ∈ M ∩So.
Take N = {c}: then c is contained in some support S′ with S′ ∩ N = ∅, which is
absurd. Thus, T = ∅, whence, 1 �∈ T . But then there exists some finite N ⊆ M
such that, for any support S containing 1, S ∩N �= ∅. But every support contains
1, so the proof is done. �

Theorem 131 seems likely to be important in the future development of the
theory of orthoalgebras; so far as I know, however, it has yet to be exploited.

4.2 Entities

Suppose the test space A represents the set of measurements or observations by
means of which we acquire knowledge of some particular physical system. As
argued above, every detectable physical property of the system is represented by,
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a support of A. It does not follow, however, that every support corresponds to a
physically meaningful property. Thus, we are led to the following definition [Foulis
et al., 1985]:

DEFINITION 132. An entity is a pair (A,Σ) consisting of a test space A and a
distinguished collection of supports Σ, called states. The collection Σ is called the
state space of the entity.

There is, of course, a conflict between this use of the term state and the usage
of Section 2, in which states are probability weights. In general, context will make
it clear which is meant; but if there is any danger of ambiguity, I’ll refer to states
qua probability weights, as statistical states, and to states qua supports as realistic
states (to emphasize their interpretation as Einstein-Podolsky-Rosen “elements of
reality”). Of course, any statistical state ω is associated with a realistic state,
namely, its support Sω; however, as many different probability weights may share
the same support, Sω typically carries less information than ω. On the other hand,
as remarked above, many test spaces possess non-stochastic supports, which carry
information not encoded in any statistical state.

Classically, any subset of the state-space Σ defines a categorical property of the
entity (A,Σ). However, it will not in general be possible to detect or discriminate
between such properties using the tests comprising A. Indeed, if Λ ⊆ Σ, let

Λ := {S ∈ Σ|S ⊆
⋃

Λ},

and notice that
⋃

Λ =
⋃

Λ. In other words, the properties Λ and Λ are associated
with exactly the same sets of possible outcomes, and thus cannot be distinguished
by tests in A. 24 This suggests the following

DEFINITION 133. A subset Λ ⊆ Σ of the state-space of an entity A is detectable
iff Λ = Λ. We say that such a property Λ is actual in a state S ∈ Σ iff S ∈ Λ.

Note that the mapping Λ �→ Λ is a closure on 2Σ. Notice also that there is
a one-to-one correspondence between closed subsets of Σ and the collection of
supports of the form

⋃
Λ, Λ ⊆ X. Thus, we can identify detectable properties of

the entity (A,Σ) with certain supports of A, as follows:

DEFINITION 134. The property lattice of an entity (A,Σ) is the complete sub-
lattice L = L(A,Σ) of S(A) generated by Σ — that is, L consists of all supports
of the form

⋃
Λ where Λ ⊆ Σ.

If A is an event of A, let ΣA denote the set of all states making A certain to
occur if tested — that is, the set of all supports S ∈ Σ such that for all E ∈ A,
A ⊆ E ⇒ S ∩E ⊆ A. The principal property generated by A is

[A] :=
⋃

ΣA ∈ L
24States in Λ are, in an abstract sense, superpositions of states in Λ [Bennett and Foulis, 1990].

Indeed, if A = F(H) is the test space of frames of a Hilbert space H and Σ = {X \ x⊥|x ∈ X}
(X being the unit sphere of H), then for Λ = {X \ x⊥|x ∈ A}, A ⊆ X, one finds that Λ =
{X \ x⊥|x ∈ span (A) ∩ X}.
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Thus, [A] represents the largest (detectable) property of the entity making the
event A certain to occur if tested.

Mappings of Entities

Let A and B be test spaces, with outcome sets X and Y , respectively, and let
φ : A → B be a homomorphism. If T is any subset of Y , define

φ+(T ) = {x ∈ X|φ(x) ∩ T �= ∅}.

(If we think of φ as representing a relation R ⊆ X × Y , then φ+(T ) is simply the
relational pre-image of T under R.) Notice that, for any set A ⊆ X,

φ+(T ) ∩A = ∅ ⇔ T ∩ φ(A) = ∅.

It follows easily (from 124 (d)) that, if T is a support of B, then φ+(T ) is a
support of A. Observe also that φ+(

⋃
i Ti) =

⋃
i φ

+(Ti), for any family {Ti|i ∈ I}
of B-supports. Thus, φ+ is a complete lattice-homomorphism from S(B) to S(A).
This suggests the following

DEFINITION 135. Let (A,Σ) and (B,Γ) be entities. A mapping of entities from
(A,Σ) to (B,Γ) is a homomorphism φ : A → B such that φ+(T ) ∈ Σ for every
T ∈ Γ. In this case, we write φ : (A,Σ) → (B,Γ).

Obviously, mappings of entities compose to yield the same. Thus, we can speak
of the category of entities. One can construct products and co-products et.c (refs);
but we shall not pursue this here. Notice that if φ : (A,Σ) → (B,Γ) is a mapping
of entities, then the mapping φ+ : S(B) → S(A) restricts to a complete lattice-
homomorphism φ+ : L(B,Γ) → L(A,Σ). Thus, we have a natural contravariant
functor L from the category of entities to the category of complete lattices.

Standard Entities

Suppose A is a regular test space with outcome space X. By Lemma 127, X \ x⊥

is a support for every x ∈ X. Let (A,Σ) be the entity obtained by taking Σ =
{X \ x⊥|x ∈ X}. Then the property lattice L = L(X,Σ) consists of sets

SZ :=
⋃

x∈Z

(X \ x⊥) = X \ Z⊥

where Z ⊆ X is arbitrary. Notice that SZ = SZ⊥⊥ . Thus, we have an order-
preserving bijection from C to L, sending each set Z = Z⊥⊥ in the former to
the set SZ = X \ Z⊥ in the latter. The inverse mapping is clearly also order-
preserving, so Z �→ SZ is an order-isomorphism. Since both L and C are complete
lattices, the mapping S( · ) is in fact a lattice isomorphism. We can transfer the
orthocomplementation from C to L by defining S′

Z := SZ⊥ .

EXAMPLE 136. If A = A(H), the quantum test space associated with a Hilbert
space H, then C(X,⊥) + L + L(H). In the case of the Borel test space B(M,F)
of a measurable space (M,F), C + L + F .
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The mapping [·] : E(A) → L is order- preserving. Moreover, its image in L is
meet-dense — indeed, for an arbitrary P ∈ L, we have [Foulis et al., 1985]

P =
∧

E∈A

[P ∩ E].

In some special cases, a good deal more can be said. Recall that if (X,A) is a
regular test space, then, for every outcome x ∈ X, X \ x⊥ is a support.

DEFINITION 137. Let us call an entity (A,Σ) standard25 iff A is regular and

Σ = { X \ x⊥ | x ∈ X }

LEMMA 138. Let (A,Σ) be a standard entity. Then for every event A ∈ E(A),
[A] = X \ C⊥⊥, where C is any event complementary to A.

Proof. If x ∈ X, X \ x⊥ ∈ ΣA iff, for every test E ⊇ A, E \ x⊥ ⊆ A, or,
equivalently, iff E \ A ⊆ x⊥. Thus, X \ x⊥ ∈ ΣA iff C ⊆ x⊥ iff x ∈ C⊥,
for every event CcoA. However, as A is regular and all events complementary
to A are perspective, if C1, C2coA, C⊥

1 = C⊥
2 . Hence, if C is any fixed event

complementary to A, we have

[A] =
⋃

ΣA

=
⋃

{X \ x⊥|x ∈ C⊥}

= X \
⋂

{x⊥|x ∈ C⊥}
= X \ C⊥⊥

�

Thus, for a standard entity, we have canonical mappings linking E , L, and C, as
indicated the following diagram. Recall here that γ : E → C(X,⊥) is the mapping
A �→ A⊥⊥.

γ
C(X,⊥)

�
��
S(·)

L�
[ · ]

E(A) �
�	

The question arises of when this diagram commutes. Evidently, what is required
is that [A] = X \A⊥ for all events A, or, equivalently, that

AcoC ⇒ A⊥ = C⊥⊥

25or biregular, in [Randall and Foulis, 1983a]
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for all A,C ∈ E(A) – that is, A must be Dacey. There is an interesting alternative
characterization of Dacey-ness in terms of an orthogonality relation on L:

DEFINITION 139. Let us call two supports S and T of A orthogonal 26 iff there
exists a test E ∈ A such that S ∩ T ∩ E = ∅. In this case, we shall write S ⊥ T .

LEMMA 140. Let (A,Σ) be a standard entity. Then the following are equivalent:

(a) A is Dacey

(b) [x] ⊥ [y] ⇒ x ⊥ y for all outcomes x, y ∈ X.

Proof. If A is Dacey, then [x] ⊥ [y] implies that there exists some E ∈ A with
E \ (x⊥ ∪ y⊥) = ∅, i.e., E ⊆ x⊥ ∪ y⊥. Let A = E ∩ x⊥ and B = C \ A. Note
that x ∈ A⊥ and y ∈ C⊥. Since AcoC, A⊥ = C⊥⊥, so x ⊥ y. For the converse,
suppose [x] ⊥ [y] ⇒ x ⊥ y. If AcoC, then clearly C⊥⊥ ⊆ A⊥. Let x ∈ A⊥. For
any y ∈ C⊥, we have A ⊆ x⊥ and C ⊆ y⊥, so E := A∪C ⊆ x⊥∪y⊥. Equivalently,
E \ x⊥ = E ∩ [x] and E \ y⊥ = E ∩ [y] are disjoint, whence, [x] ⊥ [y]. Hence,
x ⊥ y. As x and y were arbitrary elements of A⊥ and C⊥, we have A⊥ ⊆ C⊥⊥,
concluding the proof. �

If A is algebraic, the mapping [·] : E(A) → L descends (by Lemma 73 (B))
to a canonical, well-defined order-preserving mapping [·] : Π(A) → L, given by
[p(A)] = [A] for all p(A) ∈ Π(A). The following theorem, the proof of which is
omitted, is a slightly watered- down version of the main result (Theorem 16) of
[Foulis et al., 1985].27

THEOREM 141 [Foulis-Piron-Randall, 1985]. Suppose (A,Σ) is a standard en-
tity, with A algebraic and locally finite. Then the following are equivalent:

(a) Π(A) is a complete lattice

(b) The canonical mapping [ · ] is an isomorphism

(c) A is coherent, and the canonical mapping [ · ] is surjective.

What happens if the logic Π(A) is a lattice, but not complete? In that case (still
assuming we are dealing with a regular algebraic test space A and its standard
entity (A,Σ)), both L and C are isomorphic to the McNeille completion of Π(A) —
which, as is well known (cf [Bruns and Harding, 2000]), is seldom orthomodular.

26In [Foulis et al., 1985], the term used is uniformly orthogonal.
27The hypotheses that the entity be standard and that A be locally finite can be avoided, at

the cost of complicating condition (c).
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4.3 Central Supports

Recall from section 1.2 that the center of an orthoalgebra L is the set C(L) of all
elements p such that both p and p′ are principal — that is, p ∈ C(L) the sum of
two orthogonal elements of L lying below p is again below p, and likewise for p′

— and such that for every a ∈ L, a = x ⊕ y where x ≤ p and y ≤ p′. C(L) is a
Boolean sub-orthoalgebra of L, and if p ∈ C(L), then L + [0, p] × [0, p′]. In this
section, I shall discuss how the idea of centrality plays out in the setting of test
spaces.

A starting point is the following observation: an element p in the logic Π = Π(A)
of a test space is, in literal fact, a set of events. Moreover, by Lemma 66, p is
irredundant (since we never have A ∼ B 	 A), and so, can be viewed as a test
space in its own right. Let’s agree to write Ap when we wish to view p in this way,
rather than as a point in an abstract structure Π.

LEMMA 142. Let A be algebraic. Then for every p ∈ Π,

(a) Ap is algebraic

(b) For all B,C ∈ E(Ap), A ∼ B in Ap iff A ∼ B in A

(c) Π(Ap) + [0, p] ⊆ L.

Proof. (a) Notice that E(Ap) is the set of all events A of A such that p(A) ≤ p.
Let A,B ∈ E(Ap) be perspective in Ap; then there is some C ∈ E(Ap) such that
A ∩ C = B ∩ C = ∅ and A ∪ C,B ∪ C ∈ p. Hence p(A) ⊥ p(C), p(B) ⊥ p(C)
and p(A) ⊕ p(C) = p(B) ⊕ p(C) = p. Thus, p(A) = p(B). If C ′ is any event of p
complementary to A in E(Ap), then p = p(A) ⊕ p(C ′) = p(B) ⊕ p(C ′), whence C ′

is also complementary to B. Parts (b) and (c) are straightforward. �

THEOREM 143. An algebraic test space A is a direct sum iff there exists a support
S such that AS = Ap for some p ∈ Π(A). In this case, A + Ap ⊕ Ap′ .

Proof. If C = A ⊕ B, let X =
⋃

A and Y =
⋃

B; then Z :=
⋃

C = X ⊕ Y , and
X and Y are evidently supports of C with A = CX and B = CY . Moreover, if
E,F ∈ C, then

E ∩X ∼ F ∩X and E ∩ (Z \X) ∼ F ∩ (Z \X);

conversely, if C ∈ E(C) is equivalent to E ∩ S, then C ∈ CS . Thus, the support S
is the union of Ap for some p ∈ Π(C), and Z \ S =

⋃
Ap′ . �

DEFINITION 144. Let A be algebraic. A set S ⊆ X is a central support iff

E,F ∈ A ⇒ S ∩ E ∼ S ∩ F.

Equivalently, S is central iff AS = Ap for some p ∈ Π(A). The collection of all
central supports is the center of A, denoted Z(A).
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Note that a central support is, in fact, a support. For suppose E,F ∈ A and
S ∩ E ⊆ S ∩ F . Since E ∼ F and S is central, S ∩ E ∼ S ∩ F . It follows easily
(using Lemma 66) that S ∩ E = S ∩ F .

LEMMA 145. Z(A) is a field of sets.

Proof. It is clear that the complement of a central support is again a central
support. Thus, it suffices to show that the intersection of two central supports,
say S and T , is again a central support. Let E,F ∈ A. Let A = S∩E,A′ = S∩F ,
B = T ∩E,B′ = T ∩F . We need to show that A∪B ∼ A′∪B′. Let C = E\(A∪B)
and C ′ = F \(A′∪B′). Since A ∼ A′, we have A∪(F \A) = A∪(B′ \A′)∪C ′ ∈ A;
similarly, since B ∼ B′, we have (A \B) ∪C ∪B′ ∈ A. As S is a central support,
we have

(A \B) ∪ (B′ ∩A′) = S ∩ [(A \B) ∪B′ ∪ C ∼ S ∪ F = A.′

It follows that
(A \B) ∪ (B′ ∩A′) ∪ (B′ \A′) ∪D ∈ A.

But now (A \B) ∼ (A′ \B′), so the additivity lemma (Lemma ??) gives us

A ∪B = (A \B) ∪B ∼ (A′ \B′) ∪B′ = A′ ∪B′.

�

If A = {E} is a classical test space, then Z(A) = 2E . If A is a semi-classical
test space, i.e., if E ∩ F = ∅ for any two distinct tests in A, then Z(A) = {∅, X}.
This last example illustrates, by the way, that not every complemented support
is central. Indeed, suppose that A is semiclassical, then any set S ⊆ X =

⋃
A

such that, for every E ∈ A, S ∩ E is neither empty nor all of E, is a support, the
complement of which is again a support.

LEMMA 146. If A is algebraic, the mapping S �→ p(S ∩ E) (where E ∈ A is
arbitrary) takes Z(A) defines a Boolean embedding of Z(A) into C(Π(A)).

Proof. By Lemma 92, Π(Ap(S)) × Π(Ap(S)′) = Π(AS ⊕ AS′) = Π(A); hence,
p(S) ∈ C(Π(A)). The rest of the claim is clear. �

The embedding of Lemma 146 need not be surjective, even when the logic in
question is Boolean. Indeed, let A = {{a, x, b}, {b, b′}}. It is not difficult to show
that Z(A) = {∅, {a, x, b′}, {b}, X} + 22, while Π(A) = 23.28

On the other hand, it is not hard to establish the following. Call an orthoalgebra
L atomistic iff every p ∈ L has the form p =

⊕
i ai for a finite jointly orthogonal

set of atoms ai. If L is atomistic, let A0
L denote the collection of all finite jointly

orthogonal sets E of atoms with
⊕

E = 1. It is straightforward to show that A0
L

is algebraic, with Π(A0
L) + L.

PROPOSITION 147. If L is atomistic, then C(L) + Z(Ao
L).

28This reflects the fact that, in general, A# ⊕ B# � (A⊕ B)#.
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Proof. Let L be atomistic, and let X denote the set of atoms of L. Let p ∈ C(L).
Since p is principal, (p) = {q ∈ L|q ≤ p} is an ideal. If a ∈ X, then a = x ⊕ y
for some x ≤ p and y ≤ p′. As a is an atom, x = 0 and a = y ≤ p′ or y = 0 and
a = x ≤ p. Thus, Sp := X∩(p) and and Sp′ := X∩(p′) are disjoint supports of A0

L

partitioning X. Moreover, if E ∈ AL
0 and A = Sp ∩ E, then we have q := ⊕A ≤ p

(since every a ∈ A lies below p and p is principle). If q �= p then there exists
r = p − q ≤ p, whence, for any atom x ≤ r, we have x ⊥ A. But since Sp is a
support, A ⊆ A∪{x} implies x ∈ A, which is impossible since then x ⊥ x. Hence,⊕

(Sp ∩ E) = p, whence, Sp ∩ E ∼ Sp ∩ F for all E,F ∈ A0
L. Thus, Sp is central.

That the mapping p �→ Sp is a boolean isomorphism is straightforward. �

4.4 Generalized Sasaki Projections

As we saw in Section 1.1, an ortholattice L is orthomodular iff the Sasaki projection
φa : L × L → L, given by φa(b) = a ∧ (a′ ∨ b), satisfies the condition b ≤ a ⇒
φa(b) = b. Recall also that, if L is an atomic OML, the covering law amounts
to the statement that if x and y are non-orthogonal atoms of L, then φx(y) is
another atom. In this section, following [Bennett and Foulis, 1998; Wilce, 2000],
I’ll describe a generalization of Sasaki projections to the context of an arbitrary
entity. As we shall see, this greatly clarifies the interpretation of Sasaki projections
in terms of conditioning.

In what follows, L is an orthoalgebra and A is an algebraic test space having L
as its logic. As in section 4.3, if p ∈ L we write Ap for the set of events comprising
p when this is to be regarded as an algebraic test space in its own right. In this
case Π(Ap) + [0, p]. We also write Xp for

⋃
Ap, the set of outcomes x ∈ X with

p(x) ≤ p. By Lemma 124 (d), for any support S of A, S ∩Xp is a support of Ap.
This suggests the following construction.

DEFINITION 148. Let (A,Σ) be an entity with logic L = Π(A) and property
lattice L. For p ∈ L and S ∈ L, let Lp,S denote the collection of all properties
T ∈ L such that

(i) T ⊆ [p]

(ii) T ∩Xp ⊆ S.

We define the conditioning map γp : L → L by γp(S) :=
⋃Lp,S .

To motivate this, let Σp,S = Σ ∩ Lp,S . This is the set of states in which it is
certain that p will be confirmed, and impossible that S will be refuted, by a test
of p. Then Lp,S is the complete sub-lattice of the interval [0, [p]] in L generated by
Σp,S , and that γp(S) =

⋃
Σp,S . The maps p, S �→ Σp,S and p, S �→ γp,S represent

a simple form of conditioning. If are given data from a large number of tests of
p ∈ L, all confirming p, and if the actual state of the entity for all of these tests
was S, then all our data lies in Xp ∩S. We will be inclined to infer not only that p
is certain, but that the state of the entity belongs to Σp,S , and that the property
γp(S) is actual.
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EXAMPLE 149. Let X = {a, x, b, y, c, z} and A = {{a, x, b}, {b, y, c}, {c, z, a}} be
the “Wright triangle” of Example 55. (For convenience, a Greechie diagram is
given below.) We shall compute γp(S) for p = b′ and S = [z] = {b, z, y, z} where Σ
consists of all supports of X. Note that Xb′ = {a, x, y, c} and [b′] = {a, x, y, z, c}.
Hence, S ∩ Xb′ = {x, y}. The largest support contained in [b′] having this same
intersection with Xb′ is the support {x, y, z}. Hence, γb′([z]) = {x, y, z}.

a

z
������

c
������ y��

��
��

b

��
��

��

x

EXAMPLE 150. To illustrate the dependence of γa on Σ, let A be as above but
suppose that Σ consists only of the principal properties [p] = X − p⊥ where p is
an atom of L. Again, S = [z], S ∩Xb′ = {x, y} and [b′] = {a, x, y, z, c}. However,
in this case the only elements of Σ below [b′] are [x] = {x, y, z, c}, [y] = {a, x, y, z},
[a] = {a, y} and [c] = {x, c}. None of these has intesection with Xb′ = {a, x, y, c}
contained in {x, y}; hence, in this setting, γb′([z]) = 0.

THEOREM 151. For any p ∈ L and S ∈ L, γp(S) =
∧

A∈p[S ∩A].

Proof. Suppose that T ∈ Lp,S . Then for every event A ∈ p, T ∩A ⊆ S ∩A (since
T ∩Xp ⊆ S ∩Xp and A ⊆ Xp). Since T ⊆ [p], we have for every test E containing
A that T ∩ E ⊆ A, so T ∩ E ⊆ T ∩ A ⊆ S ∩ A. Hence, T ∈ ΣS∩A, whence,
T ⊆ [S ∩ A]. It follows that γp(S) =

⋃Lp,S ⊆ [S ∩ A]. Now suppose T ⊆ [S ∩ A]
for every A ∈ p. Then in particular, since [S ∩ A] ⊆ [A] = [p], we have T ⊆ [p].
Now, noting that for any test E containing A we have T ∩A = T ∩E ⊆ S ∩A, it
follows that

T ∩Xp =
⋃
A∈p

T ∩A ⊆
⋃
A∈p

S ∩A = S ∩Xp.

Hence, T ∈ Lp,S , so T ⊆ γp(S). �

As observed above, the principal properties [A], A ∈ E(A), are meet-dense in
L. Hence, we can extend γ to a mapping γ : L × L → L given by

γQ(S) :=
∧

Q≤[p]

γp(S).

For the proof of the following, see [Wilce, 2000].

THEOREM 152. Let L be an OML and let A be the test space of orthopartitions
of the unit in L. Let Σ consist of all supports of L. Then ∀a, b ∈ L,

γa([ b ]) = [φ(a, b)].
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In [Bennett and Foulis, 1998], Bennett and Foulis introduce (for any effect
algebra) the quantity

∇(a, b) := {x ≤ a | b ≤ x⊕ a′}.

They then define a generalized Sasaki projection Φ(a, b) to be the set of all minimal
elements of ∇(a, b) (if any). If L is an OML, there is a unique minimal element,
namely φ(a, b). It can be shown that if L is an OMP satisfying the descending
chain condition, then the two definitions are essentially the same [Wilce, 2000,
Theorem 3]; however, they generally diverge for non-orthocoherent orthoalgebras.

4.5 Minimal Supports and the Covering Law

We now revisit the covering law from the point of view of supports. The main result
(Theorem 157 below), due to D. Cohen and G. Svetlichny [Cohen and Svetlichny,
1987], shows that for an OML of finite rank, the covering law is equivalent to a
certain minimality condition on supports of the form X \ x⊥.

DEFINITION 153. A regular algebraic test space A satisfies the minimal support
condition (MSC) iff, for every x ∈ X and every p ∈ Π(A) with rank Ap > 2,
Xp \ x⊥ is a minimal support of Ap. We shall call a regular algebraic test space
satisfying the MSC an MSC test space, for short.

EXAMPLES 154. (i) If A has rank 2, then it satisfies the MSC by default. It is
easy to check that, for instance, the Wright Triangle also enjoys the MSC.

(ii) If A satisfies the MSC, then so does Ap for every p ∈ Π(A).
(iii) Using a clever geometric argument, which I omit here, Cohen and Svetlichny

establish that, for a Hilbert space H of dimension at least three, the frame manual
F(H) is MSC.

Call a test space A chain-connected iff, for any tests E,F ∈ A, there exists a
finite sequence E1, ..., En of tests in A with E = E1, En = F , and Ei ∩ Ei+1 �= ∅
for all i = 1, ..., n − 1. It is easy to show that A is chain-connected iff it can not
be represented non-trivially as a horizontal sum.

LEMMA 155. Any MSC test space is chain-connected.

Proof. If A = A1

·
+ A2, and neither A1 nor A2 is empty, then the regularity

of A1 implies that of both A1 and A2. Choose any x ∈ X1 :=
⋃

A1 and any
y ∈ X2 :=

⋃
A2. Then (X1 \x⊥)∪(X2 \y⊥) is a support of A. But this is properly

contained in X \ x⊥ = (X1 \ x⊥) ∪X2, contradicting the MSC. �

We can regard the minimal support condition as asserting that supports of the
form X \ x⊥ are maximally informative, and remain maximally informative when
we condition upon various propositions in Π. This enforces a strong degree of
uniformity on a test space.
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LEMMA 156. Let A be an MSC test space. If A contains a test of cardinality n,
but no test of cardinality less than n, then it has uniform rank n.

Proof. By induction on n. Notice that the conclusion is trivial if n = 1 or n = 2.
Therefore, suppose n ≥ 3, and that the result is known for all smaller values of
n. Let E,F ∈ A with |E| = |F | = n. We claim that E ∩ F �= ∅. For suppose
a ∈ E ∩F . Then Aa′ has a test of size n−1, but no smaller test; moreover, by the
remarks following the Definition, it again has the MSC. Thus, it is n− 1 uniform.
But then F \ {a} ∈ Aa′ also has cardinality n. Now let An be the set of tests in
A having cardinality exactly n, and let B = A \ An. By the foregoing argument,

A = An

·
+ B. But then, by the Lemma above, B is empty, finishing the proof. �

Let L be a complete atomistic OML. Denote by XL the set of atoms of L,
and by AL, the set of maximal pairwise orthogonal sets of atoms joining to 1.
As discussed in Section 4.2, (XL,AL) is a coherent algebraic test space (hence,
regular) with Π(AL) + L. Note that for every p ∈ L, Ap = A[0,p].

THEOREM 157 [Cohen-Svetlichny, 1987]. Let L be an OML of finite rank. Then
L satisfies the covering law iff AL satisfies the minimal support condition.

I refer the reader to the original paper of Cohen and Svetlichny for the somewhat
involved inductive proof.

5 TENSOR PRODUCTS OF QUANTUM LOGICS

We now revisit the question, touched upon briefly in section 1, of how one ought to
define the tensor product of two “quantum logics”. Section 5.1 examines in more
detail the example of Foulis and Randall, exhibited in section 1.4, that shows there
can be no reasonable (and reasonably general) tensor product for orthomodular
posets or lattices. In section 5.2, we’ll see that there does exist a perfectly good
tensor product for test spaces, and also for unital algebraic test spaces. This last
allows one to define a tensor product of orthoalgebras having unital sets of states.
In particular, we’ll see that the tensor product of the offending orthomodular
lattices of the Foulis-Randall example does exist — but as a non-orthocoherent
orthoalgebra.

Sections 5.3 and 5.4 discusses work of R. Lock [Lock, R., 1981] on tensor prod-
ucts of UDF test spaces, and Golfin [Golfin, 1987] on tensor products of property
lattices, respectively. To round out the discussion, section 5.5 characterizes the
state-space of the tensor product of two frame manuals, following [Kläy et al., 1987;
Wilce, 1990; Wilce, 1992].

5.1 The Problem of Tensor Products, bis

If H1 and H2 are Hilbert spaces, understood as representing a pair of particles,
one understands H1⊗H2 as a model for the system consisting of the two particles
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together. Now, if we are dealing with a pair of bosons, it is customary to use, not
the entire tensor product, but the symmetric tensor product H1 ⊗s H2, i.e., the
null-space of the operator A : H1 ⊗H2 → H2 ⊗H1 given by A(x⊗ y) = y ⊗ x. If
our particles are fermions, we use the antisymmetric tensor product, H1 ⊗a H2,
i.e., the orthogonal complement of H1 ⊗s H2 in H1 ⊗H2. If we wish, we can view
these two subspaces as representing two possible (and complementary) properties
of the entity represented by H1 ⊗H2. Indeed, we are virtually forced to do so by
the following considerations. Each orthonormal basis E ∈ F(H1) represents (ac-
cording to the usual interpretation) a possible experiment performable on the first
particle — realizable, say, by some suitably involved collection of Stern- Gerlach
experiments. Similarly, each F ∈ F(H2) represents an experiment performable on
the system represented by H2. Clearly, if the two systems are indeed separated
(e.g., the apparatus for measuring E is in Copenhagen while that for measuring
F is in Chicago) we can perform the experiment EF on the composite system:
Measure the first component using E, the second using F ; record the results as
the pair xy, x ∈ E and y ∈ F . Thus, we must allow test spaces corresponding to
our composite system to contain at least the product test EF ∈ F(H1)×F(H2). If
we insist on representing the composite entity by a frame manual F(K) for some
Hilbert space K, it quickly follows that K = H1 ⊗ H2. The symmetric and anti-
symmetric tensor products enter into the description of the possible states of a
fermionic or bosonic system.

Recall that a quantum logic is traditionally defined as a pair (L,Δ) where L is at
least an OMP and Δ is a strong order-determining set of states for L. We wish to
consider the question: What is meant by the tensor product of two quantum logics?
What is required, presumably, is some device ⊗ whereby two quantum logics
(M,Δ) and (N,Γ) can be coupled to yields a quantum logic (L,Ω) = (M,Δ) ⊗
(N,Γ). As discussed in Section 1.4, such a device ought to satisfy at least the
following requirements:

(1) There exists a map ⊗ : M ×N → L such that 1M ⊗ 1N = 1L and

(p⊗ q) ⊥ (p′ ⊗ q) & (p⊗ q) ⊕ (p′ ⊗ q) = 1 ⊗ q

for all p ∈ M, q ∈ N ; and similarly for p⊗ q and p⊗ q′;

(2) For every μ ∈ Δ and ν ∈ Γ, there exists a state ω ∈ Ω with ω(p ⊗ q) =
μ(p)ν(q).

We are now in a position to give an easy exposition of the Foulis-Randall counter-
example (Example 43)

EXAMPLE 158. Let A be the “pentagon” test space consisting of five three-
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element operations pasted in a loop:

b









c









d���
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���
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��
��

��

Let M = N = Π(A). Then M is an orthomodular poset. Indeed, it is an ortho-
modular lattice (by the Loop Lemma) and has a strongly order-determining state
space. Suppose now that there exists an OMP L and a map ⊗ : M × M → L
satisfying (1) and (2) as above. Let μ be the state on A assigning value 1/2 to
each of the five outcomes a, b, c, d, e in the figure above, and 0 to the rest. By
assumption (2), there exists a state ω on M ⊗M such that ω(a⊗b) = μ(a)μ(b) for
all p, q ∈ M . By assumption (1), A := {a⊗ a, b⊗ c, c⊗ e, e⊗ d, d⊗ b} is pairwise
orthogonal. Since L is an OMP, A is jointly orthogonal. But ω takes the value
1/4 on each element of this set, whence

∑
x∈A ω(x) = 5/4 > 1, a contradiction. It

follows that no such state ω — and hence, no tensor product L satisfying (1) and
(2) — exists.

There are two ways in which we might react to such an example. One is to re-
gard it as a pathology, to be eliminated by adopting a more restrictive definition of
quantum logics. However, the pentagon test space is quite well-behaved: it is co-
herent, algebraic, UDF, and even embeddable in a Boolean algebra [Wright, 1978b;
Foulis and Randall, 1981b]. Alternatively, we may conclude that the category of
OMPs (or OMLs, or quantum logics) is too narrow to admit tensor products, and
seek to enlarge the category. This is the strategy we pursue in the sequel. As we
shall see, the category of unital orthoalgebras (and, more broadly, the category of
unital test spaces) does support a perfectly sensible notion of a tensor product,
satisfying the Foulis-Randall desiderata.

5.2 Bilateral and Tensor Products of Test Spaces

Recall from Section 2.2 that the cartesian product of two test spaces A and B (with
outcome sets X and Y respectively), is A×B = {EF |E ∈ A, F ∈ B}. Recall also
that the forward product of A and B is

−→
AB= {

⋃
x∈E

xFx | E ∈ A & Fx ∈ B ∀ x ∈ E }.

Since
⋃

(
−→
AB) = XY =

⋃
A×B, every state on the former is a state on the latter.
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We have the following characterization of states on
−→
AB:

LEMMA 159. A state ω on A × B belongs to Ω(
−→
AB) iff ω(xF1) = ω(xF2) for all

x ∈ X and all F1, F2 ∈ B.

Proof. For any x ∈ X, and for any F1, F2 ∈ B, xF1 ∼ xF2 in
−→
AB; therefore, for

any state ω ∈ Ω(
−→
AB), ω(xF1) = ω(xF2). Conversely, if ω(xF ) is independent of

F , and G =
⋃

x∈E x Fx ∈
−→
AB, then selecting any F ∈ A, we have∑

xy∈G

ω(xy) =
∑
x∈E

ω(xFx) =
∑
x∈E

ω(xF ) = ω(EF ) = 1

(where the convergence of ω(EF ) guarantees that of
∑

xy∈G ω(xy)). �

We can interpret Lemma 159 as follows: ω(xF ) is the probability to obtain
x upon executing a test for x, given that F is executed on the second system.
This ought not depend on the choice of F unless the system represented by B has
some influence on the system represented by A. The idea is that the execution
of F might involve some perturbation of the one system, leading in turn to some
statistically observable perturbation of the other, if such influence is possible.
(This is necessarily a bit vague: we are, in effect, laying down a definition of

statistical influence.) In this language, then, the states on
−→
AB are exactly those

states on A × B that display no influence of B on A.

Reversing the roles of A and B, we define
←−
AB to be π(

−→
BA) where π : Y X → XY

is the map π(yx) = xy. That is,
←−
AB consists of operations of the form

⋃
y∈F Ey y.

We call this the backward product of A and B. Of course, the states on
←−
AB are

just those states on A × B that display no influence of A on B.

DEFINITION 160. The bilateral product29 of two test spaces A and B is

AB :=
−→
AB ∪

←−
AB .

Clearly, the states on AB are precisely those states on A × B that exhibit no
influence in either direction between A and B. A situation in which we would
certainly like to enforce this condition would be one in which A and B represent
localized, space-like separated physical systems. For a slightly fanciful illustration,
consider a pair of observatories, one on earth, the other on a planet orbiting a
nearby star. Suppose the laboratories are in communication with one another
(over a purely classical channel). One observatory takes measurements of some
remote astronomical event, and relays instructions to the other to make specific
specific follow-up measurements, depending upon what has been seen. The set of

29The term originally used by Foulis and Randall was pre-tensor product.
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such compound experiments initiated by either observatory corresponds exactly
to the bilateral product of their respective obervational repertoires.

It is worth noting that the bilateral product satisfies, almost trivially, a version
of the Foulis-Randall desiderata for a model of coupled systems. Obviously, if
μ ∈ Ω(A) and ν ∈ Ω(B), the product state μ⊗ ν given by

(μ⊗ ν)(xy) = μ(x)ν(y)

is a state on AB. Also, if A1 ⊥ A2 ∈ E(A), and B ∈ E(B), then A1B ⊥ A2B in
AB, and similarly AB1 ⊥ AB2 if A ∈ E(A) and B1 ⊥ B2 in E(B).

Tensor Products of Algebraic Test Spaces

In general, AB is not algebraic, or even pre-algebraic, even if A and B are both
algebraic. For instance, it can be shown [Lock, R., 1981] that if A the test space
having the Greechie diagram

������

������ ��
��

��

��
��

��

then AA is not pre-algebraic. However, the following is easily verified:

LEMMA 161. If A and B are unital, so is AB.

Proof. If xy ∈ XY , let μ ∈ Ω(A) with μ(x) = 1 and ν ∈ Ω(B) with ν(y) = 1;
then (μ⊗ ν)(xy) = 1. �

DEFINITION 162. Two algebraic test spaces A and B admit a tensor product iff
AB is pre-algebraic. In that case, the tensor product of A and B is

A ⊗ B := 〈AB〉.

Since a unital test space is pre-algebraic, the preceding Lemma guarantees that
the tensor product of unital algebraic test spaces always exists.

Having defined a tensor product for algebraic test spaces, we have a natural
definition of the tensor product of two orthoalgebras:

DEFINITION 163. Let L and M be orthoalgebras. We say that L and M admit
a tensor product iff their respective test spaces AL and AM of orthopartitions of
unity admit a tensor product, in which case we define

L⊗M := Π(AL ⊗ AM ).

EXAMPLE 164. Let A be the “pentagon” test space used in the example of section
1, and let M = Π(A). Note that A is unital. Thus, there exists a tensor product
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M ⊗ M in the category of (unital) orthoalgebras, though not in that of unital
OMPs.

Let A,B and C be algebraic test spaces. A bi-interpretation from A×B to C is
a map Φ : X(A)×X(B) → E(C) such that for every fixed a ∈ X(A) and b ∈ X(B)
the maps Φ(a, · ),Φ( · , b) satisfy

(i) x ⊥ y ⇒ Φ(x, b) ⊥ Φ(y, b) for all x, y ∈ X(A) and u ⊥ v ⇒ Φ(a, u) ⊥ Φ(a, v);

(ii) Φ(E, b) =
⋃

x∈E Φ(x, b) ∈ E(C) and Φ(a, F ) =
⋃

y∈F Φ(a, y) ∈ E(C);

(iii) Φ(E,F ) =
⋃

b∈F Φ(E, b) =
⋃

a∈E Φ(a, F ) ∈ C.

THEOREM 165. Let A and B be locally finite algebraic test spaces admitting a
tensor product. For any bi- interpretation Φ : A × B → C, there exists a unique
interpretation φ : A ⊗ B → C such that Φ(a, b) = φ(a ⊗ b) for all a ∈ X(A) and
b ∈ X(B).

Proof. Let L = Π(A), M = Π(B), and N = Π(C). It is straightforward that
every bi-interpretation Φ : A×B → C determines a unique bi-morphism L×M →
N , hence, extends to a unique unital homorphism L ⊗ M → N , which in turn
yields an interpretation AL⊗M → AN . By restriction, we have an interpretation
A ⊗ B → AN . �

COROLLARY 166. If L and M are orthoalgebras admitting a tensor product, then
AL⊗M = AL ⊗ AM .

Remark: Theorem 165 implies that if A and B are locally finite algebraic test
spaces admitting a tensor product, then Π(A ⊗ B) depends only upon Π(A) and
Π(B). This need not be true, however, for more general test spaces. (For an
example, see R. Lock [Lock, R., 1981], §7.3.)

5.3 Tensor Products of UDF test spaces

In this section, we consider bilateral and tensor products of test spaces of par-
titions, i.e., UDF test spaces. In particular, we present a result of R. Lock that
gives a sharp characterization of the tensor product of two semiclassical test spaces.
Among other things, Lock’s result shows that the bilateral product of semiclassi-
cal test spaces is already algebraic, so that, in this case, the bilateral and tensor
products coincide.

In general, a UDF test space can be represented in many inequivalent ways as a
test space of partitions of a set M . However, there is always a smallest candidate
for the set M , namely, the set of dispersion-free states on X. This gives rise to a
useful duality.

DEFINITION 167. A transversal of a test space A is a subset T of X =
⋃

A such
that for all E ∈ A, #(T ∩ E) = 1. The Lock Dual of a test space A is the set A∗

of all transversals of A.
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Remarks: Note that
⋃

A∗ ⊆ X =
⋃

A, with equality iff A is UDF. It is easy to see
that A ⊆ A∗∗, and that if A and B are UDF test spaces having the same outcome
set, then A ⊆ B implies B∗ ⊆ A∗. It follows that if A is UDF (so that A and A∗

have the same outcome set), A∗∗∗ = A∗. A test space A is reflexive iff A = A∗∗.
Evidently, a test space is reflexive iff it is the Lock dual of a test space.

As long as it is non-empty, the Lock dual A∗ of a test space A may be viewed
as a test space in its own right.

LEMMA 168. The lock dual of any test space is either algebraic, or empty.

Proof. Let A,B,C and D be events of A∗ with AcoCcoBcoD. Thus, A ∪ C,
C ∪ B, and B ∪ D are transversals of A, with A ∩ C = C ∩ B = B ∩ D = ∅. Let
E ∈ A, and suppose that A∩E is non-empty. Then A∩E = {x} for some x ∈ E,
and C∩E = ∅. It follows that B∩E is non-empty, and, from this, that D∩E = ∅.
Reversing the argument, if D ∩ E is not empty, then it consists of a single point,
and A∩E is empty. Hence A∩D = ∅, and A∪D meets every test of A in a single
outcome, i.e., is a transversal. Thus AcoD. �

LEMMA 169. Let A and B be UDF test spaces. Then A∗ × B∗ ⊆
−→
AB

∗
,
←−
AA

∗
.

−→
AB,

←−
AB⊆ (A∗ × B∗)∗.

Proof. Let G =
⋃

x∈E xFx ∈
−→
AB, where E ∈ A and, for every x ∈ E, Fx ∈ B.

Let S ∈ A∗ and T ∈ B∗. Let S ∩ E = {xo} and T ∩ Fxo
= {yo}. Then

(ST ) ∩G =
⋃

x∈E

xFx ∩ ST = {xoyo}.

Hence, ST ∈
−→
AB

∗
. A symmetrical argument shows that ST ∈

←−
AB

∗
. �

It follows, upon taking duals on both sides, that
−→
AB,

←−
AB⊆ (A∗ × B∗)∗. Since

a non-empty Lock dual is always algebraic, we also have the following

COROLLARY 170. Let A and B be algebraic UDF test spaces. Then 〈AB〉 ⊆
(A∗ × B∗)∗.

The following is due to Robin Lock [Lock, R., 1981].

THEOREM 171. Let A and B be semiclassical test spaces. Then

AB = (A∗ × B∗)∗.

Consequently, AB is algebraic.

Remark: It is conjectured in [Lock, R., 1981] that the conclusion of Theorem
171 holds for all reflexive UDF test spaces. So far as I am aware, this remains
unsettled.
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Suppose that B1 and B2 are the partition manuals of two Boolean algebras (for
instance, the Borel manuals associated with two measurable spaces). We should
like to understand the structure of B1 ⊗ B2 in terms of some natural product of
the Boolean algebras The following is proved in [Lock, R., 1981, Theorem 7.18]:

THEOREM 172. Let B1 and B2 be Boolean algebras, and let B1 and B2 denote
their corresponding manuals of finite orthopartitions of unity. Let S1 and S2 be the
Stone spaces of B1 and B2, respectively. Then the logic Π(B1⊗B2) is isomorphic
to the boolean algebra of clopen subsets of S1 × S2.

5.4 Tensor products of property lattices

We now characterize the supports on a bilateral product. This leads us to consider
two possible definitions for the tensor product of a pair of entities, in the sense of
section 4. The results in this section are due to A. Golfin [Golfin, 1987].

Recall (from Lemma 127) that a set R ⊆ XY is a support of
−→
AB iff R =⋃

x∈S x Sx where S ∈ S(A) and Sx ∈ S(B) for each x ∈ S. This yields immedi-
ately the following

PROPOSITION 173. R ⊆ XY is a support of AB iff

R =
⋃
x∈S

x Sx =
⋃
y∈T

Ty y

where S ∈ S(A), T ∈ S(B), and for all x ∈ S and y ∈ T , Sx ∈ S(A) and
Ty ∈ S(B).

In particular, note that S(A) × S(B) ⊆ S(AB).

THEOREM 174. S(AB) = S(
−→
AB) ∩ S(

←−
AB).

Proof. One inclusion is obvious. For the other, let R ∈ S(
−→
AB) ∩ S(

−→
BA). We

wish to prove that R ∈ S(AB). It will be sufficient to show that if G ∈
−→
AB and

H ∈
←−
AB, then R∩ (G \H) �= ∅ implies R∩ (H \G) �= ∅. Thus, let G =

⋃
x∈E xEx

and H =
⋃

y∈F Fyy (where E ∈ A and Ex ∈ B for all x ∈ E, and where F ∈ B
and Fy ∈ A for all y ∈ F ). Since R is a support of both the forward and backwards
products of A and B, by Lemma 127, there exist supports S ∈ S(A), T ∈ S(B),
and, for all x ∈ S, y ∈ T , supports Sx ∈ S(B) and Ty ∈ S(A), such that

R =
⋃
x∈S

xSx =
⋃
y∈T

Tyy.

Now suppose that xy ∈ S∩(G\H). We wish to show that S∩(H \G) is non-empty
as well. We proceed by cases. First, suppose that y ∈ F . Then x �∈ Fy, since
otherwise xy ∈ H. Since y ∈ T and x ∈ Ty, we have x ∈ Ty ∩ (E \ Fy). Since Ty

is a support of A, there exists some x′ ∈ Ty ∩ (Fy \ E). Then x′y ∈ R ∩ (H \G).
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Now suppose that y �∈ F . Since y ∈ Ex∩Sx, we have y ∈ Sx∩(Ex\F ). As Sx is a
support of B, there is some y′ ∈ Sx∩(F \Ex). Note that xy′ ∈ R. If x ∈ Fy′ , then
we have xy′ ∈ H, but (as y′ �∈ Ex), xy′ �∈ G, whence, xy′ ∈ R ∩ (H \ G). On the
other hand, if x �∈ Fy′ , then, since xy′ ∈ R, we have y′ ∈ T and xy′ ∈ Ty′∩(E\Fy′),
whence, there exists some x′′ ∈ Ty′ ∩ (Fy′ \ E), whence, x′′y′ ∈ R ∩ (H \G). �

There are at least two ways in which one might define a tensor product of two
property lattices L(X,Σ) and L(Y,Γ). The smallest reasonable candidate would
be L(XY,Σ × Γ), where Σ × Γ = {ST |S ∈ Σ, T ∈ Γ}. The largest would be the
following:

DEFINITION 175. Let Σ1 and Σ2 be two families of subsets of sets X1 and X2,
respectively. The square product of two property lattices L1 = L(X1,Σ1) and
L2 = L(X2,Σ2) is the lattice L1 � L2 consisting of all sets V ⊆ XY having
marginals πx(V ) = V ∩ xX2 and πy(V ) = X1y ∩ V in L1 and L2, respectively for
all x ∈ X1, y ∈ X2.

Using Theorem 174, one can characterize L1 � L2 directly in terms of L1 and
L2. Recall that a Galois connection between two lattices L and M is a pair (f, g)
of order-preserving mappings f : L → M and g : M → L, such that for all
a ∈ L, b ∈ M , a ≤ g(b) iff f(a) ≤ b. The set of all Galois connections between L
and M is a lattice, and a complete lattice, if L and M are complete.

For a proof of the following, see [Golfin, 1987]

THEOREM 176. L1 �L2 is order-isomorphic to the lattice of Galois connections
L1 → L2

op.

It is worth remarking that, in [Shmuely, 1974], Z. Shmuely had already intro-
duced the lattice of anti-Galois connections as a categorical tensor product of two
complete lattices.

It is not difficult to verify that the pentagon test space of section 1 is coherent
and regular, and thus supports a standard bi-regular entity. By simply surveying
the possible properties, one verifies that the canonical map is surjective for this
entity, and therefore, by Theorem 141, an isomorphism. Thus the considerations
of section 1 also show that there is no tensor product (satisfying the condition
(1) and the obvious analogue of condition (2) in terms of supports) for standard
entities that preserves the equivalent conditions of Theorem 141.

Remark: A complementary series of results by Aerts [Aerts, 1982], and more
recently, Ischi [Ischi, 2002; Ischi, 2005], show that there is no reasonable tensor
product for complete atomistic lattices that preserves both orthocomplementation
and the covering law.

5.5 The tensor product of frame manuals

We now briefly sketch how the Foulis-Randall tensor product works for a pair
of frame manuals, focussing on the finite-dimensional case. For further details,
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see [Barnum et al., 2005] and [Kläy et al., 1987], and, for an extension to the
infinite-dimensional case, [Wilce, 1990; Wilce, 1992].

We begin by noticing that the signed weight space on a bilateral product has
a natural representation as a space of linear mappings. Let A and B be test
spaces. For a given state ω on A × B, the function y �→ ω(Ey) is independent
of E ∈ A if and only if, for every fixed y ∈ Y , the map ωy : x �→ ω(xy) is a
(non-normalized, but positive) weight on A. If it happens that x �→ ω(xF ) is
independent of F ∈ B — in which case, let us call ω influence-free — then the
map y �→ ωy can be interpreted as a vector-valued weight on B with values in the
space V (A) of signed weights on A, as described in section 2.5.

If the spaces V (A) and V (B) of signed weights on A and B are finite-dimensional,
we can immediately dualize the foregoing picture: each positive influence-free
weight ω on A × B corresponds to a positive linear operator ω̂ : V ∗(B) → V (A)
with the property that ω(1) ∈ Ω(A) where 1 denotes the constant function with
that value on Ω(B). Any such map φ, conversely, determines a influence-free
weight ω via φ(fx) = ω(x) for all x ∈ X. Thus, we have

THEOREM 177. The mapping ω �→ ω̂ is affine isomorphism between the cone of
positive influence-free weights on A×B and the cone of positive linear maps from
V ∗(B) to V (A), sending the state space Ω(AB) to the set of positive linear maps
ω such that ω(1) ∈ Ω(A). Thus, these two spaces are isomorphic as base-normed
spaces.

COROLLARY 178. With A and B as above, there is a linear isomorphism

V (AB) + V (A) ⊗ V (B).

EXAMPLE 179. Applied to the frame manuals of two finite-dimensional Hilbert
spaces H and K, this gives us, for every influence-free state on F(H) × F(K), a
positive linear map ω̂ : Bsa(H) → Bsa(K) (where Bsa(H) is the space of bounded
self-adjoint operators on H) satisfying Tr (φ(1)) = 1. This extends, by the carte-
sian decomposition, to a positive linear map B(H) → B(K), where B(H) is the
space of all bounded linear operators on H. Conversely, any positive linear map
φ : B(H) → B(H) determines a state ω on F(H) × F(K) via

ω(xy) := Tr (φ(Px)Py) = 〈φ(Px)y, y〉.

where Px is the orthogonal projection operator determined by x ∈ H.

Thus, the set of influence-free states on F(H) × F(K) is affinely isomorphic to
the space of positive linear maps on L(K), normalized as above. Suppose now that
H and K are complex Hilbert spaces with dim(H) = dim(K) < ∞. For simplicity,
we may assume H = K. In this setting, one can represent influence-free states on
F(H) × F(K) by operators on H ⊗ H, thanks to the following useful observation:

LEMMA 180. Let H be a finite-dimensional complex Hilbert space. For any linear
map φ : L(H) → L(H), there exists a unique operator W = Wφ on H ⊗ H such
that, for all x, y, u, v ∈ H, 〈φ(Px)y, y〉 = 〈Wx ⊗ y, x ⊗ y〉. Conversely, every
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operator W on H ⊗ H arises in this way from a unique linear map φ : B(H) →
B(H).

Proof. For any linear operator on L(H), the quantity 〈φ(Px)y, y〉 is bi-quadratic
in x and y. Polarizing twice, we see that φ is uniquely determined by the form
(x, u, y, v) �→ 〈φ(x# u)y, v〉, where x# u is the skew-projection y �→ 〈y, u〉x. Note
that this is linear in x and y, conjugate-linear in u and v. Accordingly, there is a
unique sesquilinear form Φ on H⊗H satisfying Φ(x⊗ y, u⊗ v) := 〈φ(x#u)y, v〉.
By the Riesz representation theorem, there is a unique operator Wφ on H ⊗ H
such that Φ(τ1, τ2) = 〈Wφτ1, τ2〉 for all tensors τ1, τ2 ∈ H⊗H. Setting τ1 = x⊗ y
and τ2 = u⊗ v gives the result. �

In combination with Example 179, this immediately yields the following “un-
entangled Gleason theorem” [Kläy et al., 1987] (see also [Fuchs, 2002; Wallach,
2000]):

COROLLARY 181 [Kläy, Randall and Foulis, 1987]. Let H be a finite-dimensional
complex Hilbert space. For every influence-free state ω on F(H)×F(H), there ex-
ists an operator W = W ∗ on H with ω(xy) = 〈Wx⊗y, x⊗y〉 for all unit vectors
x, y ∈ H.

Evidently, the operator W must be positive on pure tensors (POPT), in that
〈Wx⊗ y, x⊗ y〉 ≥ 0 for all x, y ∈ H. However, W need not be positive:

EXAMPLE 182. Let S be the unitary operator on H ⊗ H (uniquely) defined
by S(x ⊗ y) = y ⊗ x for all unit vectors x, y ∈ H. Then S is POPT, since
〈Sx ⊗ y, x ⊗ y〉 = 〈y ⊗ x, x ⊗ y〉 = 〈y, x〉〈x, y〉 = |〈x, y〉|2. But S is certainly not
positive. Indeed, if τ = x⊗ y − y ⊗ x, then Sτ = −τ , whence 〈Sτ, τ〉 = −‖τ‖2.

The question now arises: when is the POPT operator Wφ arising from a positive
linear map φ : L(H) → L(H) in fact positive on H⊗H? Recall that a linear map
φ : L(H) → L(H) is completely positive (CP) iff the map φ ⊗ Id : L(H ⊗ K) →
L(H ⊗ K) remains positive for all Hilbert spaces K. The following well-known
result is due independently to Choi [Choi, 1975] and Hellwig and Kraus [Hellwig
and Kraus, 1969]:

THEOREM 183. Let W = Wφ be the operator associated with the linear map
φ : L(H) → L(H) as in Proposition 4.1. Then W is positive iff φ is completely
positive.

Remark: Since non-completely positive “states” will not comport happily with the
usual quantum-mechanical coupling via the tensor product, we have here, perhaps,
a reason to reject the non-quantum mechanical states on a tensor product of frame
manuals as “unphysical”. This line of thought is further explored in the paper
[Barnum et al., 2005].
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6 SYMMETRIC TEST SPACES

Quantum test spaces are marked by a particularly high degree of symmetry. If
F(H) is the frame manual of a Hilbert space H, then any two tests (that is, frames)
E and F have the same cardinality, and any bijection E → F extends uniquely to
a unitary operator on H, which in turn defines a symmetry of F.

In this section, we study abstract test spaces that are in various degrees ho-
mogeneous with respect to a given group action. Most of what follows derives
from the papers [Foulis, 2000; Foulis and Wilce, 2000; Wilce, 1997a; Wilce, 2005c;
Quan and Wilce, 2008].

6.1 G-Test Spaces

If G is a group, a G-set is a set X equipped with an action of G on X, that is,
a homomorphism φ : G → S(X), where S(X) is the group of all bijections on X.
We generally suppress reference to φ in the notation, writing φ(α)(x) more briefly
as αx, for α ∈ G and x ∈ X. If X and Y are two G-sets, we say that a mapping
f : X → Y is G-equivariant iff g(αx) = αf(x) for every x ∈ X and every α ∈ G.
The orbit of an element x of a G-set X under G is the set

Gx := { αx | α ∈ G }.

The set of distinct orbits partition X. More generally, the orbit of a set A ⊆ X
is the collection {αA|α ∈ G}. We say that a G-set X is transitive iff it has only
one orbit, i.e., ∀x, y ∈ X, there exists some α ∈ X with αx = y. The stabilizer of
x ∈ X is the subgroup Gx ≤ G consisting of all α ∈ G with αx = x. Notice that
if y = αx, then Gy = αGxα

−1.

DEFINITION 184. A symmetry of a test space (X,A) is a bijection α : X → X
such that, for all E ∈ A, αE ∈ A and α−1E ∈ A. The group of all symmetries of
(X,A) will be denoted by S(X,A). By an action of a group G on A, I mean an
action of G on X by symmetries of A, i.e., a homomorphism φ : G → S(X,A).

Clearly, any symmetry of A takes events to events, and respects both orthog-
onality and perspectivity. Hence, if G acts on A, it also acts (by appropriate
automorphisms) on the lattice S of all A-supports, and on the logic Π(A). Note,
too, that, for any x, y ∈ X and any symmetry α of A, x ⊥ αy iff α−1x ⊥ y. Hence,
α(x⊥) = (αx)⊥; more generally, α(A⊥) = (αA)⊥ for all events (indeed, for all
subsets of X). Thus, α takes ⊥-closed subsets of X to ⊥-closed subsets, and thus
defines an automorphism of the ortholattice C(X,⊥).

DEFINITION 185. Let G be a group. A G-test space a test space A equipped
with a fixed G-action. A is symmetric iff

(i) G acts transitively on A, and

(ii) the stabilizer, GE , of any test E ∈ A acts transitively on E.
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We shall say that A is fully symmetric iff all tests have the same size, and any
bijection between two tests is effected by some element of G. If this element is
always unique, then we shall say that A is strongly symmetric.

EXAMPLES 186. (i) As noted above, the test space of frames of a Hilbert space H
is strongly symmetric with respect to H’s unitary group U(H). On the other hand,
the projective test space of H is fully, but not strongly symmetric with respect to
U(H), since a bijection between two maximal orthogonal sets of one-dimensional
projections determines a unitary operator only up to a choice of phase factors.

(ii) The Fano plane test space described earlier (52, Remark) is strongly sym-
metric with respect to its full symmetry group, i.e., the collineation group of the
Fano plane. More generally, any finite projective plane furnishes an example of a
strongly symmetric test space. ‘For another source of finite examples, let X be
the set of edges of a platonic solid; for each vertex v, let Ev be the set of edges
meeting at that vertex, and let A be the collection of all sets of the form Ev as v
ranges over the vertices of the solid. The test space (X,A) is strongly symmetric
with respect to the group of symmetries of the solid.

Constructing Symmetric Test Spaces

All symmetric test spaces can be recovered from group-theoretic data, as instances
of the following construction.

Let Eo be a set, regarded as the outcome-set for some “standard” experiment
on a system of interest. Let H be a group acting transitively on Eo, reflecting
some physical symmetries of this system under which Eo is invariant. Suppose we
believe that the system is invariant under a larger symmetry group G, of which
H is a subgroup. We should like to enlarge our repertoire of tests by considering,
roughly speaking, the orbit of Eo under this enlarged group.

To accomplish this, fix an outcome xo ∈ Eo, and let Hxo
denote the stabilizer

of xo in H. Let K be any subgroup of G such that K ∩ H = Hxo
. (Think of

this as consisting of symmetries in G under which we expect the outcome xo to
be invariant.) Let X = G/K, the space of left K-cosets in G. There is a natural
H-equivariant injection i : E → X given by σx �→ σK, where σ ∈ H. Thus,
identifying Eo with its image under this injection, we may regard Eo as a subset
of X, invariant under H. Now let A(Eo) denote the orbit of Eo under the action
of G — that is, let

A = {αEo|α ∈ G}.
Clearly, G acts transitively on A, and the stabilizer GEo

of Eo, as it contains
H, acts transitively on Eo. It follows that the stabilizer of any test E ∈ A acts
transitively on E. Thus, A is a G-symmetric test space. If we take H to act as
the full symmetric group SE of all bijections on E, the resulting symmetric test
space A will be fully symmetric. It will be strongly symmetric iff, in addition, the
only element of G fixing every outcome in E is the identity element.

Conversely, given a G-symmetric test space A, choose any test Eo ∈ A and any
outcome xo ∈ Eo; setting H = GEo

and K = Gxo
(the stabilizers, respectively, of

Eo and xo in G), the preceding construction reproduces A.
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DEFINITION 187. The G-test space A constructed above from the classical H-set
Eo and the subgroup K, will be called the G-expansion of Eo based on K, and
will be denoted by AG,K(Eo).

Remarks:
(a) Notice that, in the construction AG,K(Eo), we can begin with purely group

theoretic data. Indeed, if G is a group and H,K are subgroups of G, set X = G/K
and let E = {ηK|η ∈ K} ⊆ X. Let A = {αE|α ∈ G}. Then A is a G-symmetric
test space. Every G-symmetric test space has this form.

(b) The possible G-symmetric test spaces extending the classical H-symmetric
test space Eo in 187 are parametrized by the subgroups K ≤ G with K ∩ H =
Hxo

. If K1 and K2 are two such subgroups with K1 ≤ K2, the natural surjec-
tion φ : G/K1 → G/K2 induces a surjective outcome-preserving interpretation
AG,K1(Eo) → AG,K2(Eo). The smallest possible choice for K is Hxo

itself. In this
case, the orbit of Eo in X = G/K partitions X. In other words, the test space
AG,Hxo

(Eo) is semi-classical — a horizontal sum of copies of Eo. Choosing a larger
subgroup K will in general produce a non-semiclassical test space.

We now characterize the orthogonality relation on a G-symmetric test space. If
A is G-symmetric and xo ∈ E ∈ A are given, let xα = αxo and Eα = αEo for all
α ∈ G.

LEMMA 188. Let A be G-symmetric, let xo ∈ E ∈ A be given, and let K = Gxo

and H = GE, as above. Then, for all α, β ∈ G, xα ⊥ xβ iff β−1α ∈ K(H \K)K.

Proof. Since xα ⊥ xβ iff xβ−1α ⊥ xo, we need only show that xα ∈ x⊥
o iff

α ∈ K(H \ K)K. Suppose first that α = βσγ where β, γ ∈ K and σ ∈ H \ K.
Then xo ⊥ σxo, so xo = βxo ⊥ βσxo = βσγxo = αxo.

Conversely, suppose xα ⊥ xo. Then xα �= xo, and there exists some E = Eβ ∈ A
with xo, xα ∈ Eβ . It follows that there exist σ, σ′ ∈ H with (i) xα = βσxo and (ii)
xo = βσ′xo. From (ii), we have βσ′ ∈ K, whence, β ∈ Kσ′−1. Now (i) requires
that xα = βσxo �= xo, so σ′−1σ ∈ H \K. We also have from (i) that (βσ)−1α ∈ K,
whence, α ∈ βσK ⊆ Kσ′−1σK ⊆ K(H \K)K. �

6.2 Fully Symmetric Test Spaces

If A is fully G-symmetric, then G acts transitively on each of the sets Ek of k-
element events. To see this, suppose A,B ∈ Ek: choose tests E ⊇ A and F ⊇ B
and a bijection f : A → B. Since |E| = |F |, we can extend f to a bijection
f : E → F ; by assumption, this is induced by a group element α ∈ G. But then
αA = B.

If X is a G-set and A ⊆ X, we denote by FA the fixing subroup of A, that is, the
subgroup consisting of all elements α of G such that αx = x for every x ∈ A. (If
A = {x}, this is just the stabilizer of x.) The following observation is very simple,
but also very useful:
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LEMMA 189 Pivoting Lemma. Let A be fully G-symmetric. If A ⊆ E∩F , where
E,F ∈ A, then there exists some γ ∈ FA with F = γE.

Proof. Since A is G-symmetric, |E| = |F |. Choose a bijection f : E → F that
fixes each x ∈ A, and extend this to an element of G. �

.
The following theorem gives a sharp characterization of algebraicity for fully

symmetric test spaces, in terms of the fixing subgroups of complementary events.

THEOREM 190. Let A be a fully-symmetric G-test space. Choose and fix E ∈ A.
If A ⊆ E, write A′ for E \ A, and let FA be the subgroup of G fixing each x ∈ A.
Then A is algebraic iff, for every A ⊆ E, FAFA′ = FA′FA.

Proof. (⇒) Suppose A is algebraic. Let A ⊆ E and A′ = E \A. It is sufficient to
show that FAFA′ ⊆ FA′FA. If α ∈ FA and α′ ∈ FA′ , we obtain a “hook” of events
αA′coAcoA′coα′A:

αA′

A A′

α′A� � � �

E

F

Since A is algebraic, αA′coα′A. Let αA′ ∪ α′A =: F ∈ A. Since |αA′| = |A′| and
|α′A| = |A|, and since every bijection E → F extends to an element of G, we can
find β ∈ G with βx = αx for every x ∈ A′ and βx = α′x for every x ∈ A. Then
α−1β ∈ FA′ and β−1α′ ∈ FA, whence, α−1α′ = (α−1β)(β−1α′) ∈ FA′FA. Since
α−1α′ is an arbitrary element of FA′FA, we have FAFA′ ⊆ FA′FA.

(⇐) Now suppose that FAFA′ = FA′FA for every A ⊆ E. To show A is algebraic,
it is sufficient to consider configurations of the form AcoA′coBcoC, with A ⊆ E

A

A′ B

C� � � �

E

(any other hook in E being a translate of one of these). We wish to show that
AcoC. Now, by Lemma 189, B = α′A for some α′ ∈ FA′ , and C = βA′ for some
β ∈ FB. But FB = Fα′A = α′FAα′−1 ⊆ FA′FAFA′ . Since FA′FA = FAFA′ , we
have FA′FAFA′ ⊆ FAFA′ . Thus, β ∈ FB ⇒ β = αα′′ where α ∈ FA and α′′ ∈ FA′ .
But then C = βA′ = αA′ — whence, indeed, AcoC. �
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EXAMPLE 191. As an illustration of the preceding result, let G = U(H), the
unitary group of a Hilbert space H, and let E be an orthonormal basis for H. If
A ⊆ E, let 〈A〉 be the subspace spanned by A. Then FA is the group of unitaries
of the form W = 1〈A〉 ⊕ U , where 1〈A〉 is the identity operator on 〈A〉 and U

is any unitary operator on 〈A〉⊥. Likewise, FA′ consists of unitaries of the form
W ′ = V ⊕ 1〈A〉⊥ , V a unitary on 〈A〉. Since WW ′ = W ′W for any two such W
and W ′, we have FAFA′ = FA′FA.

Recall that a test space A is chain connected iff every pair of tests is linked
by a finite sequence of consecutively overlapping tests. By Zorn’s lemma, every
test in A is contained in a maximal chain-connected subset C of A, called the
chain component of A. Note that if C1 and C2 are distinct chain components, then
X1 =

⋃
C1 and X2 =

⋃
C2 are disjoint. Thus, every test space is the horizontal

sum of its chain-connected components.

PROPOSITION 192. Let A be a fully G-symmetric test space. Let xo ∈ Eo ∈ A,
let K = Gxo

, H = GEo
be the stabilizers of xo and Eo, respectively, and let 〈H,K〉

be the subgroup of G generated by H and K. Then A is chain-connected iff it is
fully 〈H,K〉- symmetric.

Proof. Let Ao be the chain component of Eo. Then obviously Ao is both H-
invariant and K-invariant, whence, 〈H,K〉-invariant. Hence, if A is 〈H,K〉 tran-
sitive (much less fully symmetric), Ao = A, whence, A is connected. For the
converse, let B denote the orbit of Eo under 〈H,K〉. Suppose that E = αEo ∈ B,
where α ∈ 〈H,K〉, and let F ∈ A with E ∩ F �= ∅. Let x ∈ E ∩ F . Then we
have x = ασxo for some σ ∈ H (since, by assumption, any permutation of Eo can
be effected by an element of H). Let β := ασ ∈ 〈H,K〉. Then, by the Pivoting
Lemma, F = γE for some γ ∈ Gx = βKβ−1. But βKβ−1 ⊆ 〈H,K〉. Thus, any
test intersecting a test in B, is again in B. In particular, B is chain-connected. If
A is chain-connected, therefore, B = A. This shows that A is 〈H,K〉-transitive.
That it is fully 〈H,K〉-transitive follows from the fact that H acts on Eo as the
latter’s full permutation group (since A is, by assumption, fully G-transitive). �

Ortho-symmetric test spaces

We now isolate a particularly strong symmetry condition, enjoyed by the frame
manual of a Hilbert space, that, among other things, forces a test space to be both
algebraic and regular.

DEFINITION 193. A G test space A is ortho-symmetric iff for all events A and
B of A

(i) A ∼ B ⇒ |A| = |B|, and

(ii) for every bijection f : A → B, there exists some α ∈ G with αx = f(x) for
all x ∈ A and αx = x for all x ∈ A⊥.

If H is a Hilbert space, then two perspective events A and B are simply or-
thonormal bases for some closed subspace M of H. Any bijection f : A → B
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extends uniquely to a unitary operator U : M → M; this in turn extends uniquely
to a unitary operator on H that fixes M⊥ pointwise, namely, U ⊗ 1M⊥ . Thus,
F(H) is ortho-symmetric with respect to the unitary group on H.

Orthosymmetric test spaces satisfy many of the regularity requirements consid-
ered thus far:

LEMMA 194. Let A be an ortho-symmetric G-test space. Then

(a) A is symmetric.

(b) A is algebraic.

(c) A is regular.

(d) ∀p ∈ Π(A), Ap is ortho-symmetric under its stabilizer Gp ≤ G.

Proof. That A is symmetric is clear. To see that A is algebraic, let A ∼ B and
BcoC. Then there exists some α ∈ G with αB = A and αx = x for all x ∈ A⊥ —
including all x ∈ C. Hence, C = αCcoαB = A. To see that A is regular, suppose
that A ∼ B; again select α such that B = αA and gx = x for all x ∈ A⊥. Then
α(A⊥) = (αA)⊥ = B⊥. To prove (d), suppose A and B are perspective events
of Ap. By Lemma 142, it follows that A and B are also perspective as events of
A; hence, there is a unique α ∈ G with B = αA and αC = C for any C ⊥ A. It
follows that α ∈ Gp′ , whence, α ∈ Gp. �

The foregoing result notwithstanding, orthosymmetric test spaces can be fairly
pathological. For instance, the test space

������

������ ��
��

��

��
��

��

is ortho-symmetric with respect to its automorphism group, but is not ortho-
coherent.

6.3 Systems of Imprimitivity

In this section, we discuss how a test space can be enlarged so as to accommodate
a larger symmetry group, using the classical theory of induced group actions.
This is related to, but not identical with, the construction of induced unitary
representations in quantum mechanics. The definitions in this section are in a sense
dual to those discussed by Randall and Foulis in [Randall and Foulis, 1978]; for a
comparison of the two, see [Wilce, 1997a]. A result more general than Theorem
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198 below can be found in [Foulis, 2000]. (See also [Gudder, 1971] for a discussion
of induced representations in the context of orthomodular lattices.)

LEMMA 195. Let A be a transitive G-test space.

(a) If A is algebraic and p ∈ Π is G-invariant, then Xp ∈ Z(A).

(b) If A is locally finite, then every G-invariant subset of X is a support. Con-
sequently, every G-invariant support is complemented.

Proof. (a) If p = p(A) with A ⊆ E ∈ A then for any F = αE ∈ A,

F ∩Xp = αE ∩Xp = α(E ∩Xp) = α(A) ∈ Ap.

Hence, AXp
⊆ Ap. Hence, Xp is a support (since Ap is irredundant) and central.

(b) Notice first that a non-empty G-invariant set S must intersect every oper-
ation of A. Now, suppose S is a G-invariant subset of X. Given tests E,F ∈ A
with S ∩ E ⊆ S ∩ F , let α ∈ G be such that αF = E. Then

α(S ∩ F ) ⊆ αS ∩ E ⊆ S ∩E.

Thus, α induces an injection S ∩ F → S ∩ E. Thus, the two sets have the same
cardinality. Being finite, and one containing the other, they must then be equal.
The second statement is immediate, since the complement of an invariant set is
also invariant. �

The following is straightforward:

THEOREM 196. Let A be transitive and algebraic, and let 1 = p1 ⊕ · · · ⊕ pn be a
partition of 1 in Π(A) by invariant propositions. Then A = Ap1 ⊕ · · ·⊕Apn

, and
G acts transitively on each summand Api

.

Let G and H be groups, with H ≤ G, and let X be an H-set. A G- extension
of X is an H-equivariant injection η : X → Y , Y a G-space. A universal, or
free G-extension can be constructed as follows [Foulis and Wilce, 2000]. Define
an equivalence relation on G ×H X by setting (α, x) ≡ (β, y) iff β−1α = η ∈ H
and ηx = y. The quotient set G ×H X := (G × H)/ ≡ is then a G-set under
the action α[β, x] = [αβ, x]. Denoting the equivalence class of (α, x) by [α, x], we
have [αη, x] = [α, ηx] ∀η ∈ H. In particular, the map x �→ [e, x] is H-equivariant.
Identifying x with [e, x], we may regard X as a subset of G×H X invariant under
the action of H. It is easy to show that if p : X → Z is any H-equivariant
map into a G-space Z, then p can be extended uniquely to a G-equivariant map
f : G×H X → Z via f([α, x]) = αp(x). (This is an abstract version of the so-called
Frobenius reciprocity; cf [Foulis and Wilce, 2000]).

The orbit of X in G ×H X in fact partitions the latter. Conversely, given a
G-space Y and an invariant partition E of Y on which G acts transitively, there
is a unique H-equivariant bijection Y + G×H X where X ∈ E and H = GX , the
stabilizer of X in G (namely, [α, x] �→ αx). Such an invariant, transitive partition
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of Y is called a system of imprimitivity for Y . Any subset of Y , the orbit of
which is a partition of Y (and hence, a system of imprimitivity), is called a set of
imprimitivity for Y .

DEFINITION 197. Let A be an H-test space. If H ≤ G, the free G-extension of
A is

G×H A :=

{ ⋃
α∈G

[α,Eα] | Eα ∈ A & ∀η ∈ H,Eαη = η−1Eα].

}

Any mapping α �→ Eα with Eαη = η−1Eα yields an element of G ×H A. In
particular, we may select Ee arbitrarily and define Eα = τ(α)Ee where τ is a
twist [Foulis and Wilce, 2000], i.e., a mapping τ : G → H with τ(1) = 1 and
τ(αη) = η−1τ(α) for all g. Twists are abundant: any normalized cross-section
σ : G/H → G of the canonical surjection G → G/H defines a twist via the
formula τ(α) = α−1σ(αH). Thus, G×H A contains sufficiently many sets to cover
G×H X. Moreover, X (which we identify with the set [e,X] = {[e, x]|x ∈ X}) is a
support — indeed, a central support — of G×H A and (G×H A)|X is isomorphic
to A.

Let π be the H-equivariant interpretation G×H A to A sending [α, x] to {αx}
if α ∈ H, and to the empty set otherwise.

THEOREM 198. Let G and H be as above. If H acts on A, G acts on B, and
φ : B → A is an H-equivariant interpretation, then there exists a unique G-
equivariant interpretation φ̂ : B → G×H A with π ◦ φ̂ = φ

Proof. Let Z = ∪B. The only possible G- equivariant map φ̂ : Z → 2G×HX such
that φ(z) ∩X = φ(z) for all z ∈ Z is given by

φ̂(z) :=
⋃

α∈G

[α, φ(α−1z)].

For, if [α, x] ∈ φ̂(z), then x ∈ α−1φ̂(z) = φ̂(α−1z), whence x ∈ φ̂(α−1z) ∩ X =
φ(α−1z), whence αx ∈ αφ(α−1z). Conversely,

[α, φ(α−1z)] = α(φ̂(α−1z) ∩X) = φ̂(z) ∩ αX ⊆ φ̂(z).

We now show that the map φ̂ defined above is indeed an interpretation. It is
enough to verify, first, that φ̂(E) belongs to G ×H A for every operation E of A,
and second, that z ⊥ z′ entails φ̂(z)∩ φ̂(z′) = ∅ for all z, z′ in Z. To this end note
that

φ̂(E) =
⋃
z∈E

⋃
α∈G

[α, φ(α−1z)] =
⋃

α∈G

[α, φ(α−1E)]

Let Eα = φ(α−1E): Then Eαη = φ(η−1g−1E) = η−1Eα. Thus, φ̂(E) =
⋃

α∈G αEα

indeed belongs to G×H A. Now, notice that since φ is a morphism, z ⊥ z′ implies
that φ(α−1z) ⊥ φ(α−1z′), whence, φ̂(z) ∩ φ̂(z′) ∩X = ∅. Since { [α,X] | α ∈ G }
partitions G×H X and since φ̂ is G- equivariant, φ̂(z) ∩ φ̂(z′) = ∅. �
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DEFINITION 199. A set of imprimitivity for a G-test space A is a central support
S ∈ Z(A) such that the orbit of S under G partitions X =

⋃
A.

Notice that such a set S is also a set of imprimitivity for the G-set X. Hence,
X = G×H S where H is the stabilizer of S in A. The following may be regarded
as an imprimitivity theorem for finite G-test spaces.

COROLLARY 200. Let S be a set of imprimitivity for a G-test space A, where G
is a finite group. Then A + G×H A|S.

Proof. Let φ : S → E(B) be any H-equivariant interpretation from A|S to a
G-test space B. Since X = G ×H S and E(B) is a G- set, there is a unique
extension of φ to a G-equivariant mapping φ : X → E(B), namely, for αx ∈ αS,
φ(αx) = αφ(x). (Since φ is H-equivariant, this is well-defined: If αx = α′y
for x, y ∈ S, then α−1α′x = y, so α−1α′S ∩ S �= ∅, whence α−1α′S = S, i.e.,
α−1α′ ∈ H. Thus, α−1αφ(x) = φ(α−1αx) = φ(y), since φ is H-equivariant.)
Now, since S is central, A + ⊕

α∈H A|αS , and φ =
⊕

α∈G α ◦ φ ◦ α−1, which
is clearly an interpretation.Thus, A enjoys the same universal property attributed
by Theorem 198 to G ×H A|S ; hence, the two are isomorphic via a unique G-
equivariant interpretation. �

Remarks: (a) There is a construction, due to Foulis and Randall [Randall and
Foulis, 1978], that is in a sense dual to that of G ×H A. Let G ×H X be the free
G-expansion of the set X =

⋃
A, as described above. Identifying x ∈ X with

[e, x] ∈ G ×H X, we view X as an H-invariant subset of G ×H X. In particular,
every test E ∈ A may be regarded as a subset of G×H X. Define

G×H A = { gE ⊆ G×H X | E ∈ A }.

It is not hard to see that, as a collection of sets, G ×H A is a horizontal sum of
copies of A, parametrized by G/H. It is interesting to note that, in the special
case in which A is a classical test space, say A = {Eo}, the test space G ×H A is
just the (semi-classical) test space AG,K(Eo) of Definition 187, where K = Hxo

.
(b) It should be understood that, when applied to the the frame manual of a

Hilbert space carrying a unitary representation of a group H, the foregoing free
extension construction does not yield the frame manual of the Hilbert space of
the induced unitary representation. (Indeed, our “imprimitivity theorem” yields
something more akin to a covariant superselection rule than to the covariant ob-
servable associated with a system of imprimitivity in the sense of Mackey [Mackey,
1963].)

7 TOPOLOGICAL CONSIDERATIONS

In this final section, we discuss how the theory of test spaces can be topologized.
There are at least two compelling reasons to undertake this exercise. First, the ba-
sic quantum test space, the frame manual F(H) of a Hilbert space H, has a signifi-
cant topological structure, as does its logic, the projection lattice L(H). Secondly,



Test Spaces 531

continuity assumptions are both very natural and very powerful in the context
of axomatic physics — and, indeed, have played a role in both earlier [Zierler,
1961] and more recent [Holland, 1995; Hardy, 2001] efforts to axiomatize quan-
tum theory. This suggests that it may be fruitful to study test spaces endowed
with a priori topological structure. Here, I shall summarize what is presently
known about topological test spaces, topological orthoalgebras, and the relation-
ship between the two. The material for this section derives from [Wilce, 2005a;
Wilce, 2005b; Wilce, 2005c], and represents quite recent work — with many loose
ends.

7.1 Topological Test Spaces

We begin by asking, what ought we to mean by a topological test space? Among
several possible definitions that suggest themselves, the following one, while not
the most general that might be considered, seems in practice not too constraining
— and is, as we’ll presently see, fruitful.

DEFINITION 201. A topological test space is a test space (X,A), where X is a
Hausdorff space and the relation ⊥ is closed in the product topology on X ×X.

EXAMPLES 202. (i) Let H be a Hilbert space. Let S be the unit sphere of H,
in any topology making the inner product continuous. Then the test space (S,F)
defined above is a topological test space, since the orthogonality relation is closed
in S2.

(ii) More generally, suppose that X is Hausdorff and that (X,A) is locally finite
and supports a set Γ of continuous probability weights that are ⊥-separating in
the sense that p �⊥ q iff ∃ω ∈ Γ with ω(p) + ω(q) > 1. Then ⊥ is closed in X2, so
again (X,A) is a topological test space.

(iii) A topological OML, or TOML, in the sense of [Cho and Greechie, 1993],
is an orthomodular lattice equipped with a Hausdorff topology making the lattice
operations and the orthocomplementation continuous. If L is any TOML, the
mapping φ : L2 → L2 given by φ(p, q) = (p, p ∧ q′) is continuous, and ⊥= φ−1(Δ)
where Δ is the diagonal of L2. Since L is Hausdorff, Δ is closed, whence, so is ⊥.
Hence, the test space (L \ {0},AL) of orthopartitions of unity in L is topological.

The following two lemmas collect some elementary, but important, observations
about topological test spaces.

DEFINITION 203. Let (X,A) be a topological test space. A set A ⊆ X is totally
non-orthogonal iff it contains no two orthogonal elements.

LEMMA 204. Let A be a topological test space with outcome set X. Then

(a) Each outcome x ∈ X has a totally non-orthogonal open neighborhood.

(b) If X is compact, then all pairwise orthogonal sets are finite, and of uniformly
bounded size. In particular, A is of finite rank.
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Proof. (a) Since (x, x) �∈⊥, and ⊥ is closed in X2, there exist open sets V and
W about x with V ×W∩ ⊥= ∅. Taking U = V ∩W , we have that U ×U∩ ⊥= ∅,
which is to say, U is totally non-orthogonal.

(b) By part (a), every point x ∈ X is contained in some totally non- orthogonal
open set. Since X is compact, a finite number of these, say U1, ..., Un, cover X. A
pairwise orthogonal set D ⊆ X can meet each Ui at most once; hence, |D| ≤ n.

�

LEMMA 205. Let (X,A) be a topological test space. Then

(a) For every set A ⊆ X, A⊥ is closed.

(b) Each pairwise orthogonal subset of X is discrete

(c) Each pairwise orthogonal subset of X is closed.

Proof. (a) Let y ∈ X \ x⊥. Then (x, y) �∈⊥. Since the latter is closed, there exist
open sets U, V ⊆ X with (x, y) ∈ U × V and (U × V )∩ ⊥= ∅. Thus, no element
of V is orthogonal to any element of U ; in particular, we have y ∈ V ⊆ X \ x⊥.
Thus, X \ x⊥ is open, i.e., x⊥ is closed. It now follows that for any set A ⊆ X,
the set A⊥ =

⋂
x∈A x⊥ is closed.

(b) Let D be pairwise orthogonal. Let x ∈ D: by part (a), X \ x⊥ is open,
whence, {x} = D ∩ (X \ x⊥) is relatively open in D. Thus, D is discrete.

(c) Now suppose D is pairwise orthogonal, and let z ∈ D: if z �∈ D, then for
every open neighborhood U of z, U ∩ D is infinite; hence, we can find distinct
elements x, y ∈ D ∩ U . Since D is pairwise orthogonal, this tells us that (U ×
U)∩ ⊥�= ∅. But then (x, x) is a limit point of ⊥. Since ⊥ is closed, (x, x) ∈⊥,
which is a contradiction. Thus, z ∈ D, i.e., D is closed. �

A Topology for Events

The collection of all closed subsets of a topological space X carries a natural
topology, called the Vietoris topology. This is the weakest topology making the
set [U ] = {F ∈ 2X |F ∩U �= ∅} open whenver U ⊆ X is open, and closed whenever
U is closed. Equivalently, the Vietoris topology is generated by open sets of the
form [U ] and (U) = [U c]c = {F ∈ 2X |F ⊆ U}, with U ranging over open subsets
of X. It is not hard to see that a basis for the resulting topology consists of sets
of the form

〈U1, ..., Un;V 〉 := [U1] ∩ · · · ∩ [Un] ∩ (V ).

Evidently, 〈U1, ..., Un;V 〉 is the collection of all closed sets F meeting each of
the open sets U1, and contained in the open set V . Equipped with the Vietoris
topology, the collection of closed subsets of X is commonly denoted by 2X , and
called the hyperspace of X. 30 For later reference, we collect here some basic facts
about hyperspaces. Proofs can be found in, e.g., [Illones and Nadler, 1999].

30This usage courts trouble, of course, since 2X is also used for the power set of X. I’ll rely
on context to distinguish between the two.
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PROPOSITION 206. Let X be any topological space, and let 2X be the collection
of closed subsets of X, with the Vietoris topology. Then

(a) The union of a Vietoris-compact set of compact sets, is compact;

(b) If X is compact, so is 2X , and vice versa;

(c) The operation
⋃

: 2X × 2X → 2X of taking unions of closed sets, is contin-
uous

(d) If X and Y are two spaces, then the mapping π : 2X × 2Y → 2X×Y given by
π(A,B) = A×B, is continuous.

If A be a topological test space with outcome space X. It follows from parts
(b) and (c) of Lemma 205 that every event of A is a closed, discrete subset of X.
Thus, we can construe the set E of events as a subspace of 2X of all closed subsets
of X.

Remark: The empty set is isolated in 2X — and hence, in E — since ∅ = [∅]. Many
authors omit ∅ from 2X , but for our purposes, it is more convenient to include it.

207 Standard Neighborhoods. For locally finite topological test spaces, the
Vietoris topology on the space of events has a particularly nice description. Sup-
pose A is a finite event: By Part (a) of Lemma 204, for each point x ∈ A we can
find a totally non-orthogonal open neighborhood Ux. Since X is Hausdorff and A
is finite, we can choose these to be disjoint from one another. The set

V = 〈Ux, x ∈ A〉 ∩ E

is a Vietoris open neighborhood of A in E . An event B belonging to V is contained
in

⋃
x∈A Ux and meets each Ux in at least one point; however, being pairwise

orthogonal, B can meet each Ux at most once. Thus, B selects exactly one point
from each of the open sets Ux — in particular, |B| = |A|.

Since the totally non-orthogonal sets form a basis for the topology on X, open
sets of the form just described form a basis for the Vietoris topology on E . We
shall refer to these sets as standard neighborhoods.
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A standard open neighborhood for a finite event A = {x, y, z}, and a second

event {a, y, b} in this neighborhood.
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An immediate consequence of these remarks is the following:

PROPOSITION 208. Let (X,A) be locally finite. Then the set En of all events of
a given cardinality n is clopen in E(X,A).

Remark: If V is a standard open neighborhood of a test E ∈ A, then we an regard
V as a test space in its own right. The considerations above show that this is UDF.
In this sense, then, any locally finite topological test space is locally UDF.

The Closure of a Topological Test Space

If (X,A) is a topological test space, let A denote the closure of A in 2X . Note that
elements of A are (closed) subsets of X, so we can interpret (X,A) as a test space.

LEMMA 209. Let (X,A) be any topological test space, and let E ∈ A. Then E is
pairwise orthogonal (with respect to the orthogonality induced by A).

Proof. Let x and y be two distinct points of E. Let U and V be disjoint neigh-
borhoods of x and y respectively, and let (Eλ)λ∈Λ be a net of closed sets in
A converging to E in the Vietoris topology. Since E ∈ [U ] ∩ [V ], we can find
λU,V ∈ Λ such that Eλ ∈ [U ] ∩ [V ] for all λ ≥ λU,V . In particular, we can find
xλU,V

∈ EλU,V
∩ U and yλU,V

∈ EλU,V
∩ V . Since U and V are disjoint, xλU,V

and yλU,V
are distinct, and hence, — since they belong to a common test Eλ —

orthogonal. This gives us a net (xλU,V
, yλU,V

) in X × X converging to (x, y) and
with (xλU,V

, yλU,V
) ∈⊥. Since ⊥ is closed, (x, y) ∈⊥, i.e., x ⊥ y. �

It follows that the orthogonality relation on X induced by A is the same as
that induced by A, and, in particular, is closed. Thus, (X,A) is a topological test
space. We shall now show that, if (X,A) is locally finite, then (X,A) has the same
states as (X,A).

We need a preliminary lemma. Let Fn denote the collection of all non-empty
finite subsets of X having n or fewer elements, understood as a subspace of 2X .
Let q : Xn → Fn be the natural surjection q(x1, ..., xn) = {x1, ..., xn}.
LEMMA 210. Let X be Hausdorff. Then for every n,

(a) q is an open continuous mapping.

(b) Fn is closed in 2X .

(c) If f : X → R is continuous, then so is the mapping f̂ : Fn → R given by

f̂(A) :=
∑
x∈A

f(x).

Proof. (a) Let U1, ..., Uk be open subsets of X. Then

q(U1 × · · · × Uk) = 〈U1, ..., Un〉 ∩ Fk(X),
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so q is an open mapping. Also, if {U1, ..., Uk} is pairwise disjoint, so that 〈U1, ..., Uk〉∩
Fk(X) is a basic open set in Fk(X), then

q−1(〈U1, ..., Un〉 ∩ Fk(X)) =
⋃
σ

(Uσ(1) × · · · × Uσ(n))

where σ runs over all permutations of {1, 2, ..., k}; thus, q is continuous.
(b) Let F be a closed set of cardinality greater than n. Let x1, ..., xn+1 be

distinct elements of F , and let U1, ...., Un be pairwise disjoint open sets with xi ∈ Ui

for each i = 1, ..., n. Then no closed set in U := [U1] ∩ · · · ∩ [Un] has fewer than
n + 1 points — i.e, U is an open neighborhood of F disjoint from Fn. This shows
that 2X \ Fn is open, i.e., Fn is closed.

(c) By part (a), Fn is the quotient space of Xn induced by the surjection q :
(x1, ..., xn) �→ {x1, ..., xn}. The mapping f : Xn → R given by (x1, ..., xn) �→∑n

i=1 f(xi) is plainly continuous; hence, so is f̂ . �

PROPOSITION 211. Let (X,A) be a rank-n (respectively, n-uniform) test space.
Then A is also a rank-n (respectively, n-uniform) test space having the same con-
tinuous states as A.

Proof. If A is rank-n, then A ⊆ Fn. Since the latter is closed, A ⊆ Fn also.
If A is n-uniform and E ∈ A, then any net Eλ → E is eventually in bijective
correspondence with E, by Proposition 208; hence, A is also n-uniform. Finally,
every continuous state on (X,A) lifts to a continuous state on A by Lemma 210
(c). �

COROLLARY 212. Let A be a topological test space of finite rank, supporting
a semi-unital set of continuous states. Then A can be extended to an algebraic
topological test space B having the same outcomes and continuous states as A,
that is closed in 2X .

Proof. Recall that any test space having a semi-unital set of states is pre-algebraic.
Let Ao = A, and define a sequence of test spaces Aα by transfinite recursion, setting
Aα+1 = 〈Aα〉, where the closure is taken in 2X . Lemma 107 and Corollary 110,
together with Proposition 211, imply that Aα+1 has the same continuous states as
Ai, and hence, is again pre-algebraic. If α is a limit ordinal, let Aα =

⋃
β<α Aβ .

This again supports the same continuous states as A. Since each Aα ⊆ 2X , the
sequence (Aα) stabilizes, with limit B having the desired properties. �

Dense semi-classical subspaces

We now show that every member of a very large and natural class of test spaces,
which includes the frame manuals of infinite-dimensional Hilbert spaces, has a
dense, semi-classical subspace. Since every state on a (locally countable) semi-
classical test space is an average, or mixture, of dispersion- free states, this can
be interpreted as saying the given test space has an approximate “non-contextual
hidden-variables” interpretation. This generalizes the results of Meyer [Meyer,



536 Alexander Wilce

1999] and Clifton and Kent [Clifton-Kent, 2000], who establish substantially the
same thing in the special context of quantum states.31

LEMMA 213. Let X be any Hausdorff (indeed, T1) space, and let U ⊆ X be a
dense open set. Then (U) = {F ∈ 2X |F ⊆ U} is a dense open set in 2X .

Proof. Since sets of the form 〈U1, ...., Un〉, U1, ..., Un open in X, form a basis for
the Vietoris topology on 2X , it will suffice to show that (U) ∩ 〈U1, ..., Un〉 �= 0 for
all choices of non-empty opens U1, ..., Un. Since U is dense, we can select for each
i = 1, ..., n a point xi ∈ U ∩ Ui. The finite set F := {x1, ..., xn} is closed (since X
is T1), and by construction lies in (U) ∩ 〈U1, ..., Un〉. �

COROLLARY 214. Let (X,A) be any topological test space with X having no
isolated points, and let E be any test in A. Then open set (Ec) = [E]c of tests
disjoint from E is dense in A.

Proof. Since E is a closed set, its complement Ec is an open set; since E is
discrete and includes no isolated point, Ec is dense. The result follows from the
preceding Lemma. �

THEOREM 215. Let (X,A) be a topological test space with X (and hence, A) sec-
ond countable, and without isolated points. Then there exists a countable, pairwise-
disjoint sequence En ∈ A such that (i) {En} is dense in A, and (ii)

⋃
n En is dense

in X.

Proof. Since it is second countable, A has a countable basis of open sets Wk,
k ∈ N. Selecting an element Fk ∈ Wk for each k ∈ N, we obtain a countable dense
subset of A. We shall construct a countable dense pairwise-disjoint subsequence
{Ej} of {Fk}. Let E1 = F1. By Corollary 214, [E1]c is a dense open set; hence,
it has a non-empty intersection with W2. As {Fk} is dense, there exists an index
k(2) with E2 := Fk(2) ∈ W2 ∩ [E1]c. We now have E1 ∈ W1, E2 ∈ W2, and
E1 ∩ E2 = ∅. Now proceed recursively: Since [E1]c ∩ [E2]c ∩ · · · ∩ [Ej ]c is a dense
open and Wj+1 is a non-empty open, they have a non-empty intersection; hence,
we can select Ej+1 = Fk(j+1) belonging to this intersection. This will give us a test
belonging to Wj+1 but disjoint from each of the pairwise disjoint sets E1, ..., Ej .
Thus, we obtain a sequence Ej := Fk(j) of pairwise disjoint tests, one of which lies
in each non-empty basic open set Wj — and which are, therefore, dense.

For the second assertion, notice that for each open set U ⊆ X, [U ] is a non-
empty open in A, and hence contains some Ej . But then Ej ∩ U �= ∅, whence,⋃

j Ej is dense in X. �

31Indeed, the problem of extending these results to arbitrary test spaces played a role in
motivating the theory of topological test spaces.
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7.2 Topological Orthoalgebras

If A is a topological test space, and the space E of A-events has its relative Vietoris
topology, as discussed above, then we can endow the logic Π = Π(X,A) of A with
the quotient topology induced by the canonical surjection p : E → Π. In this
section, we establish a set of conditions on (X,A) sufficient to make Π, in this
quotient topology, a topological orthoalgebra in the sense of the following

DEFINITION 216. A topological orthoalgebra (hereafter: TOA) is an orthoalgebra
(L,⊕) equipped with a topology making the relation ⊥⊆ L × L closed, and the
mappings ⊕ :⊥→ L and ′ : L → L, continuous.

LEMMA 217. Let (L,⊕) be a topological orthoalgebra. Then

(a) The order relation ≤ is closed in L× L

(b) L is a Hausdorff space.

(c) The mapping 3 :≤→ L is continuous.

Proof. For (a), notice that a ≤ b iff a ⊥ b′. Thus, ≤= f−1(⊥) where f : L×L →
L×L is the continuous mapping f(a, b) = (a, b′). Since ⊥ is closed, so is ≤. That
L is Hausdorff now follows easily.32 Finally, since b 3 a = (b′ ⊕ a)′, and ⊕ and ′

are both continuous, 3 is also continuous. �

EXAMPLES 218. (i) Any product of discrete orthoalgebras, with the product
topology, is a TOA.

(ii) Another source of examples are topological orthomodular lattices (TOMLs)
[Cho and Greechie, 1993]. A TOML is an orthomodular lattice equiped with a
Hausdorff topology making both the lattice operations and the orthocomplemen-
tation continuous. If L is a TOML and a, b ∈ L, then a ⊥ b iff a ≤ b′ iff a = a∧ b′.
This is obviously a closed relation, since L is Hausdorff and both ∧ and ′ are
continuous. Thus, every TOML may be regarded as a TOA. However, there are
simple and important examples of lattice-ordered TOAs that are not TOMLs —
in particular, we have the following:

(iii) Let H be a Hilbert space, and let L = L(H) be the space of projection
operators on H, with its operator-norm topology. As multiplication is jointly
continuous, the relation P ⊥ Q iff PQ = QP = 0 is closed. Since addition and
subtraction are continuous, the partial operation P,Q �→ P ⊕ Q := P + Q is
continuous on ⊥, as is the operation P �→ P ′ := 1 − P . Thus, L(H) is a lattice-
ordered topological orthoalgebra. It is not, however, a topological lattice. Indeed,
if Q is a non-trivial projection, choose unit vectors xn not lying in ran (Q), but
converging to a unit vector in x ∈ ran (Q). If Pn is the projection generated by
xn and P , that generated by x, then Pn → P . But Pn ∧Q = 0, while P ∧Q = P .

32Indeed, suppose a �= b. Then either a �≤ b or b �≤ a. Without loss of generality, suppose the
former. Then (a, b) �∈≤. Since ≤ is closed, there exist open sets U and V in L with (a, b) ∈ U ×V
and U × V ∩ ≤= ∅. But then a ∈ U , b ∈ V , and U × V = ∅.
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We can also endow L(H) with the relative strong operator topology.33 Multi-
plication is jointly SOT-continuous for operators of norm ≤ 1, the same arguments
as given above show that this topology also makes L(H) a lattice-ordered TOA,
but not a topological lattice.

Remark: Topologically, projection lattices and TOMLs are strikingly different. As
shown by Tae-Hae Cho and R. Greechie, any compact TOML is totally discon-
nected ([Cho and Greechie, 1993], Lemma 3). In strong contrast to this, if H is
finite dimensional, then L(H) is compact, but the set of projections of a given
dimension in L(H) is a manifold.

Compact Orthoalgebras

The structure of compact TOAs is particularly tractable. It is a standard fact
([Johnstone, 1983], Corollary VII.1.3) that any ordered topological space with a
closed order is isomorphic to a closed subspace of a cartesian power of the real
unit interval [0, 1] in its product order and topology. It follows that such a space L
is topologically order-complete, meaning that any upwardly-directed net in L has
a supremum, to which it converges. Applied to a compact TOA, this yields the
following completeness result:

LEMMA 219. Any compact TOA L is orthocomplete. Moreover, if A ⊆ L is
jointly orthogonal, the net of finite partial sums of A converges topologically to⊕

A.

We are going to show (Theorem 223 and Proposition 225 below) that any com-
pact TOA that any compact regular TOA, and likewise, any compact TOA with
an isolated zero, is atomistic. If L is any orthoalgebra, let

M(L) := {(a, c, b) ∈ L× L× L|c ≤ a, c ≤ b, and a ⊥ (b3 c)}.

In other words, (a, c, b) ∈ M(L) iff (a 3 c, c, b 3 c) is a Mackey decomposition for
a and b.

LEMMA 220. For any TOA L, the relation M(L) is closed in L× L× L.

Proof. Just note that M(L) = (≥ ×L) ∩ (L× ≤) ∩ (Id × 3)−1(⊥). Since the
relations ≤ and ⊥ are closed and 3 :≤→ L is continuous, this also is closed. �

Since lattice-ordered TOAs need not be topological lattices, the following is
noteworthy:

PROPOSITION 221. A compact Boolean topological orthoalgebra is a topological
lattice, and hence, a compact topological Boolean algebra.

Proof. If L is Boolean, then M(L) is, up to a permutation, the graph of the
mapping a, b �→ a ∧ b. Thus, by Lemma 220, ∧ has a closed graph. Since L is

33Or, equivalently, the relative weak operator topology; these coincide for projections: [Conway,
1990], Section 2.8, Exercise 4.
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compact, this suffices to show that ∧ is continuous.34 It now follows from the
continuity of ′ that ∨ is also continuous. �

Remarks:
(a) The compactness assumption in Proposition 221 is quite necessary. John

Harding (personal communication) has constructed a non- compact Boolean TOA
that is not a topological Boolean algebra.

(b) Every compact topological Boolean algebra has the form 2E , where E is
a set and 2E has the product topology [Johnstone, 1983]. In particular, every
compact Boolean algebra is atomistic. This will be useful below.

For any orthoalgebra L, let Comp(L) be the set of all compatible pairs in L,
and for any fixed a ∈ L, let Comp(a) be the set of elements compatible with a.

PROPOSITION 222. Let L be a compact TOA. Then

(a) Comp(L) is closed in L× L;

(b) For every a ∈ L, Comp(a) is closed in L;

(c) The closure of a pairwise compatible set in L is pairwise compatible;

(d) A maximal pairwise compatible set in L is closed.

Proof. (a) Comp(L) = (π1 × π3)(M(L)). Since M(L) is closed, and hence
compact, and π1 × π3 is continuous, Comp(L) is also compact, hence closed. For
(b), note that Comp(a) = π1(Comp(L) ∩ (L × {a})). As Comp(L) is closed, so
is Comp(L) ∩ (L × {a}); hence, its image under π1 is also closed (remembering
here that L is compact). For (c), suppose M ⊆ L is pairwise compatible. Then
M ×M ⊂ Comp(L). By part (a), Comp(L) is closed, so we have

M ×M ⊆ M ×M ⊆ Comp(L),

whence, M is again pairwise compatible. For (d), if M is maximally pairwise
compatible, then since M ⊆ M and M is also pairwise compatible, M = M . �

There exist (non-orthocoherent) orthoalgebras in which Comp(L) = L×L (for
instance, the Fano test space of 52). However, in an OML, Comp(L) = C(L),
the center of L. Thus, from part (a) of Proposition 222 we have the result (not
hard to prove directly [Cho and Greechie, 1993]) that the center of a compact
TOML is a compact Boolean algebra. In fact, we get more than this. Recall
that an orthoalgebra regular iff every pairwise compatible subset is contained in a
Boolean sub-orthoalgebra. Many orthoalgebras that arise in practice, including all
lattice-ordered orthoalgebras, are regular. Recall that a block in an orthoalgebra is

34Recall here that if X and Y are compact spaces, and the graph Gf of f : X → Y is closed,
then f is continuous. Indeed, let F ⊆ Y be closed. Then f−1(F ) = π1((X ×F )∩Gf ), where π1

is projection on the first factor. Since X and Y are compact, π1 sends closed sets to closed sets.
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a maximal Boolean sub-orthoalgebra. In a regular orthoalgebra, this is the same
thing as a maximal pairwise compatible set.

THEOREM 223. Let L be a compact, regular TOA. Then

(a) Every block of L is a compact Boolean algebra, as is the center of L;

(b) L is atomistic .

Proof. (a) If L is regular, then a block of L is the same thing as a maximal
pairwise compatible set. It follows from part (d) of Proposition 222 that every
block is closed in L, and hence compact. It is not hard to show that in a regular
TOA the center is the intersection of the blocks. Thus we also have that C(L) is
also closed, hence compact. Proposition 221 now supplies the result.

To prove (b), suppose a ∈ L. By Zorn’s Lemma, there is some block B ⊆ L
with a ∈ B. Since B is a compact Boolean algebra, it is complete and atomistic ;
hence, a can be written as the join,

∨
B A, of a set A of atoms in B. Equivalently,

a =
∨

B{⊕F |F ⊆ A,F finite}. By Lemma 219, L is orthocomplete, hence,⊕
A =

∨
L{

⊕
F |F ⊆ A, F finite} also exists, and is the limit of the partial sums⊕

F , F ⊆ A finite. Since each partial sum lies in B, and B is closed,
⊕

A ∈ B.
It follows that

⊕
A = a. It remains to show that every atom of B is an atom of

L. Suppose that b is an atom of B and that x ∈ L with 0 < x ≤ b. Since B is
Boolean, every y ∈ B satisfies either b ≤ y or y ≤ b′; thus, either x ≤ y or y ≤ x.
In particular, x is compatible with every element of B. Since a block in a regular
orthoalgebra is a maximal pairwise compatible set, x ∈ B, whence, x = b. �

TOAs with Isolated Zero

In [Cho and Greechie, 1993], it is established that any TOML with an isolated
point is discrete. In particular, a compact TOML with an isolated point is finite.
This does not hold for lattice-ordered TOAs generally. Indeed, if H is a finite-
dimensional Hilbert space, then L(H) is a compact lattice-ordered TOA in which
0 is isolated. On the other hand, as I’ll now show, a compact TOA with isolated
zero does have quite special properties.

To begin with, call an open set in a TOA L totally non-orthogonal if it contains
no two orthogonal elements. Since ⊥ is a relatively closed orthogonality relation on
L\{0}, and since the latter set is open (L being Hausdorff), we have the following

LEMMA 224. Every non-zero element of a TOA has a totally non-orthogonal open
neighborhood.

PROPOSITION 225. Let L be a compact TOA with 0 isolated. Then

(a) L is atomistic and of finite height;

(b) The set of atoms of L is open.
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Proof. (a) We first show that there is a finite upper bound on the size of a pairwise
orthogonal set. Since 0 is isolated in L, L \ {0} is compact. By Lemma 224, we
can cover L \ {0} by finitely many totally non-orthogonal open sets U1, ..., Un. A
pairwise- orthogonal subset of L \ {0} can meet each Ui at most once, and so,
can have at most n elements. Now given a finite chain x1 < x2 < ... < xm in
L, we can construct a pairwise orthogonal set y1, ..., ym−1 defined by y1 = x1 and
yk = xk 3 yk−1 for k = 2, ...,m− 1. Hence, m− 1 ≤ n, so m ≤ n + 1. This shows
that L has finite height, from which it follows that L is atomistic .

(b) Note that if A and B are any closed subsets of L, then (A × B)∩ ⊥ is a
closed, hence compact, subset of ⊥. Since ⊕ is continuous on ⊥, the set

A⊕B := {a⊕ b|a ∈ A, b ∈ B and a ⊥ b} = ⊕((A×B)∩ ⊥)

is compact, hence closed. The set of non-atoms is precisely (L \ {0}) ⊕ (L \ {0}).
Since 0 is isolated, (L \ {0}) is closed. Thus, the set of non-atoms is closed. �

Remark: Both the statements and proofs of Lemma 224 and Part (a) of Propo-
sition 230 apply verbatim to any topological orthoposet, i.e., any ordered space
having a closed order and equipped with a continuous orthocomplementation.

If a belongs to the center of a TOA L, then [0, a] × [0, a′] ⊆⊥. Hence, the
natural isomorphism φ : [0, a] × [0, a′] → L given by (x, y) �→ x⊕ y is continuous.
If L is compact, then so are [0, a] and [0, a′]; hence, φ is also an homeomorphism.
Since the center of an orthoalgebra is a Boolean sub- orthoalgebra of L, and since
a Boolean algebra of finite height is finite, Proposition 225 has the following

COROLLARY 226. Let L be a compact TOA with 0 isolated. Then the center of
L is finite. In particular, L decomposes, both algebraically and topologically, as the
product of finitely many compact irreducible TOAs.

7.3 Logics of Topological Test Spaces

We now return to the question: when is the logic of a topological test space, in
the quotient topology, a topological orthoalgebra? For the balance of this section,
(X,A) is a topological algebraic test space, and E = E(A) is understood as having
its relative Vietoris topology as a subspace of 2X .

LEMMA 227. Suppose E is closed in 2X . Then

(a) The orthogonality relation ⊥E on E is closed in E2.

(b) The mapping ∪ :⊥E→ E is continuous

Proof. The mapping E2 → 2[X] given by (A,B) �→ A ∪B is continuous; hence, if
E is closed in 2[X], then so is the set C := {(A,B) ∈ E2|A ∪B ∈ E} of compatible
pairs of events. It will suffice to show that the set O := {(A,B) ∈ E|A ⊆ B⊥} is
also closed, since ⊥= C∩O. But (A,B) ∈ O iff A×B ⊆⊥, i.e., O = π−1((⊥))∩E
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where π : 2X ×2X → 2X×X is the product mapping (A,B) �→ A×B. As observed
in section 1 (Proposition 206 (d)), this mapping is continuous, and since ⊥ is
closed in 2X×X , so is (⊥) in 2X×X . Statement (b) now follows from the Vietoris
continuity of ∪ (Proposition 206 (c)). �

Remarks: We did not use the hypothesis that E be closed in 2X in showing that
the relation O is closed. If (X,A) is coherent, then O =⊥, so in this case, the
hypothesis can be avoided altogether. On the other hand, if X is compact and
A is closed, then E will also be compact and hence, closed: by 206 (b), To 2X is
compact; hence, so is the closed set (E) = {A ∈ 2X |A ⊆ E} for each E ∈ A. The
mapping 2X → 22X

given by E �→ (E) is easily seen to be continuous. Since A is
closed, hence compact, in 2X , it follows that {(E)|E ∈ A} is a compact subset of
22X

. By 206 (a), then, E =
⋃

E∈A(E) is compact, hence closed, in 2X .)

In order to apply Lemma 227 to show that ⊥⊆ Π2 is closed and ⊕ :⊥→ Π is
continuous, we’d like to the canonical surjection p : E → Π be be an open mapping.
The following condition is sufficient to secure this, along with the continuity of the
orthocomplementation ′ : Π → Π.

DEFINITION 228. Call a topological test space (X,A) is stably complemented iff
for any open set U in E , the set Uco of events complementary to events in U is
again open.

As we’ll show in Section 7.4, the frame manual of a finite-dimensional Hilbert
space is stably complemented.

LEMMA 229. Let (X,A) be a topological test space, and let p : E → Π be the
canonical quotient mapping (with Π having the quotient topology). Then the fol-
lowing are equivalent:

(a) (X,A) is stably complemented

(b) The mapping p : E → Π is open and the mapping ′ : Π → Π is continuous.

Proof. Suppose first that (X,A) is stably complemented, and let U be an open
set in E . Then

p−1(p(U)) = {A ∈ E|∃B ∈ UA ∼ B}
= {A ∈ E|∃C ∈ UcoAcoC}
=

(
Uco)co

which is open. Thus, p(U) is open. Now note that ′ : Π → Π is continuous iff,
for every open set V ⊆ Π, the set V ′ = {p′|p ∈ V } is also open. But p−1(V ′) =
(p−1(V ))co: since p is continuous and (X,A) is stably complemented, this last is
open. Hence, V ′ is open. For the converse, note first that if ′ is continuous, it is also
open (since a′′ = a for all a ∈ Π). Now for any open set U ⊆ E , Uco = p−1(p(U)′),
which is open, since p and ′ are continuous open mappings. �
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PROPOSITION 230. Let (X,A) be a stably complemented algebraic test space
with E closed in 2X . Then Π is a topological orthoalgebra.

Proof. Continuity of ′ has already been established. We show first that ⊥⊆ Π2

is closed. If (a, b) �∈⊥, then for all A ∈ p−1(a) and B ∈ p−1(b), (A,B) �∈⊥E .
The latter is closed, by Part (a) of Lemma 227. Hence, we can find Vietoris-open
neighborhoods U and V of A and B, respectively, with (U × V)∩ ⊥E= ∅. Since
p is open, U := p(U) and V := p(V) are open neighborhoods of a and b with
(U × V )∩ ⊥= ∅. To establish the continuity of ⊕ :⊥→ Π, let a ⊕ b = c and
let A ∈ p−1(a), B ∈ p−1(B) and C ∈ p−1(c) be representative events. Note that
A ⊥ B and A ∪ B = C. Let W be an open set containing c: then W := p−1(W )
is an open set containing C. By Part (b) of Lemma 227, the mapping ∪ :⊥E→ E
is continuous; hence, we can find open sets U about A and V about B with
A1 ∪B1 ∈ W for every (A1, B1) ∈ (U ×V)∩ ⊥E . Now let U = p(U) and V = p(V):
these are open neighborhoods of a and b, and for every a1 ∈ U and b1 ∈ V with
a1 ⊥ b1, a1 ⊕ b1 ∈ p(p−1(W )) = W (recalling here that p is surjective). Thus,
(U × V )∩ ⊥⊆ ⊕−1(W ), so ⊕ is continuous. �

7.4 Topological G-Test Spaces

We conclude this section by considering topological G-test spaces associated with
a compact group G. We shall see that, in the presence of sufficient symmetry, the
topological hypotheses of Proposition 230 are automatically satisfied.

PROPOSITION 231. Let (X,A) be a G-test space, where G is a compact group
acting continuously on X. Then the natural action of G on E(X,A) is likewise
continuous.

Proof. Let Ek denote the space of k-element events of (X,A): this is G-invariant
and, as remarked above, clopen in E . Thus, it is sufficient to show that G’s action
on Ek is continuous. By Lemma 210 (a), the canonical surjection q : Xk →
Fk, where Fk is the set of all finite subsets of X having k or fewer elements, is
continuous and open. Giving Xk the natural diagonal G-action, q is equivariant.
It follows easily that the action of G on Fk(X) — and hence, on any invariant
subset of Fk(X), e.g., Ek — is also continuous. �

Let G be a group and let H and K be closed subgroups of G. As noted
above (Remark (a) following Definition 189), we can construct from this data
a G-symmetric test space (X,A), where X = G/K; letting xo = K ∈ X, and
writing xα for αxo = αK for α ∈ G, we set Eo = Hxo ⊆ X, and take A be the
G-orbit of the set Eo, i.e., A = {αEo|α ∈ G}.
THEOREM 232. Let G be a compact topological group, and let H and K be closed
subgroups. Let (X,A) be the G-symmetric test space constructed from this data
as discussed above. Let X = G/K have the quotient topology. Then (X,A) is a
topological test space iff H \K is closed in G.
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Proof. Note first that since G is compact and Hausdorff, X = G/K is likewise
Hausdorff. It remains to show that the orthogonality relation on X is closed in
X ×X iff H \K is closed in G. Since G is compact, the closed subgroups K and
H are compact. If H \ K is closed, then certainly so is K(H \ K)K (as this is
the image of the compact set K × (H \ K) × K under the continuous mapping
(α, β, γ) �→ αβγ). Thus, so is the set {(α, β)|β−1α ∈ K(H \K)K}. Finally, since
G is compact, the image of this set under the quotient mapping (α, β) �→ (xα, yβ)
is closed. But, by Lemma 188, this image is just the orthogonality relation on X.
For the converse, suppose ⊥ is closed. Then so is K(H \ K)K, again by Lemma
188. It follows that (H \ K) is likewise closed. For suppose ηi → η in H, with
ηi �∈ K. If η ∈ H ∩ K, then we have η−1ηiη → η and η−1ηiη ∈ K(H \ K)K,
whence, η ∈ K(H \ K)K. Thus, we can find φ, ψ ∈ K and η′ ∈ H \ K with
η = φη′ψ. Then η′ = φ−1ηψ−1 ∈ K, a contradiction. �

Notice that the condition that H\K be closed will certainly hold if H is discrete.
This is the case, for instance, for the frame test space of a Hilbert space H with
respect to U(n), since here the stabilizer of an orthonormal basis E is isomorphic
to the group of permutations of E.

THEOREM 233. Let (X,A) be a fully G-symmetric topological test space, with G
compact. Then (X,A) is stably complemented, and E is closed in 2X .

Proof. As (X,A) has finite rank n, and as each set Ek of k-element events (k =
0, ..., n) is clopen in E , it suffices to show that, for every k = 0, ..., n, if U is open
in Ek, then Uco is open in En−k. As observed above, the mapping G → Ek given
by α �→ αA is continuous and open for each A ∈ Ek. Thus, if U is an open
neighborhood of an event A ∈ Ek, then the set U = {α ∈ G|αA ∈ U} is open in G.
Let BcoA. Then for every α ∈ U , αBcoαA ∈ U , i.e., αB ∈ Uco. In other words,
the open set U ·B = {αB|α ∈ U} about B is contained in Uco. Thus, Uc is open
in En−k. It remains to show that E is closed in 2X . It will suffice to show that each
clopen set Ek is closed in Fk(X) (since, by Lemma 210 (b), the latter is closed
in 2X). Suppose, then, that Ai is a net in Ek converging in Fk(X) to a set A.
Since G acts transitively on Ek, we can find a net αi in G with Ai = αiAo, where
Ao is some arbitrary “base” event in Ek. Since G is compact, we can choose a
convergent sub-net αi′ → α ∈ G. By the continuity of the map G → Fk(X) given
by α �→ αAo, we have Ai′ = αi′Ao → αAo ∈ E , in the latter’s Vietoris topology.
Since 2X is Hausdorff, it follows that A = αAo ∈ E . �

Thus, the topological assumptions of Proposition 230 are automatically satisfied
for any fully symmetric test space of a compact topological group. If (X,A) is
algebraic, its follows that its logic L = Π(X,A) is a compact TOA with isolated
zero — hence, in particular, that L is atomistic. Indeed, the atoms of L are
precisely the points of the form p({x}), where x ∈ X. It is easy to see that G
continues to act on L by continuous automorphisms, and that the atoms of L form
a transitive G-space.
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[Solèr, 1995] Solèr, M. P., Characterization of Hilbert space by orthomodular spaces, Commu-
nications in Algebra 23, 219-243, 1995.

[Varadarajan, 1985] Varadarajan, V. S., The Geometry of Quantum Theory, 2nd ed., Springer
Verlag, 1985

[von Neumann, 1932] Von Neumann, J., Mathematische Grundlagen der Quantenmechanik,
Springer, Berlin, 1932 (Reissued in English translation as Mathematical Foundations of Quan-
tum Mechanics by Princeton University Press, 1957).

[Wallach, 2000] Wallach, N. R., An Unentangled Gleason’s Theorem, preprint (quant-
ph/0002058)

[Wilce, 1990] Wilce, A., Tensor products of frame manuals, International Journal of Theoretical
Phsics 29 (1990), 805-814.

[Wilce, 1992] Wilce, A., Tensor products in generalized measure theory, International Journal
of Theoretical Phsics 31 (1992) 1915-1928

[Wilce, 1995] Wilce, A., Spaces of vector-valued weights on test spaces, preprint
[Wilce, 1997a] Wilce, A., Symmetric test spaces, in S. P. Hotaling and A. R. Pirich (Eds.),

Proceedings of SPIE 3076 (1997), 111-130.
[Wilce, 1997b] Wilce, A., Pull-backs and product tests, Helvetica Physica Acta 70 (1997), 803-

812.
[Wilce, 1998] Wilce, A., Perspectivity and congruence in partial abelian Semigroups, Mathe-

matica Slovaca 47, 1998, 117–135.
[Wilce, 2000] Wilce, A., On generalized Sasaki projections, International Journal of Theoretical

Physics 39 (2000), 969-974.
[Wilce, 2002] Wilce, A., Quantum logic and quantum probability, Stanford Encyclopedia of

Philosophy, Feb. 2002
[Wilce, 2005a] Wilce, A., Topological test spaces, International Journal of Theoretical Physics

44 (2005), 1227-1238.
[Wilce, 2005b] Wilce, A., Compact orthoalgebras, Proceedings of the American Mathematical

Society 133 (2005), 2911-2920.
[Wilce, 2005c] Wilce, A., Symmetry and Topology in Quantum Logic, International Journal of

Theoretical Physics 44 (2005), 2265-2278.



Test Spaces 549

[Wright, 1977] Wright, R., The structure of projection-valued states, International Journal of
Theoretical Physics 16 (1977) 567-573.

[Wright, 1978a] Wright, R., Spin manuals, in R. Marlow (ed.), Mathematical Foundations of
Quantum Mechanics, Academic Press, 1978

[Wright, 1978b] Wright, R., The state of the pentagon, in R. Marlow (ed.), Mathematical Foun-
dations of Quantum Mechanics, Academic Press, 1978

[Yeadon, 1983] Yeadon, F. J., Measures on projections in W ∗-algebras of type II1, Bulletin of
the London Mathematical Society 15, 139-145, 1983.

[Zierler, 1961] Zierler, N., Axioms for non-relativistic quantum mechanics, Pacific Journal of
Mathematics 11 (1961), 1151-1169.



This page intentionally left blank 



CONTEXTS IN QUANTUM, CLASSICAL AND
PARTITION LOGIC

Karl Svozil

It is not enough to have no concept,
one must also be incapable of expressing it.

Karl Kraus

But no sooner do we depart from sense and instinct to follow the light of a
superior principle, to reason, meditate, and reflect on the nature of things, but a

thousand scruples spring up in our minds concerning those things which before we
seemed fully to comprehend. Prejudices and errors of sense do from all parts

discover themselves to our view; and, endeavouring to correct these by reason, we
are insensibly drawn into uncouth paradoxes, difficulties, and inconsistencies,
which multiply and grow upon us as we advance in speculation, till at length,

having wandered through many intricate mazes, we find ourselves just where we
were, or, which is worse, sit down in a forlorn Scepticism

George Berkeley

1 MOTIVATION

In what follows, the term context refers to a maximal collection of co-measurable
observables “bundled together” to form a “quasi-classical mini-universe” within
some “larger” nonclassical structure. Similarly, the contexts of an observable
are often defined as maximal collections of mutually co-measurable (compati-
ble) observables which are measured or at least could in principle be measured
alongside of this observable [Bohr, 1949; Bell, 1966; Heywood and Redhead, 1983;
Redhead, 1990]. Quantum mechanically, this amounts to a formalization of con-
texts by Boolean subalgebras of Hilbert lattices [Svozil, 2005c; Svozil, 2005d], or
equivalently, to maximal operators (e.g., Ref. [von Neumann, 1932, Sec. II.10, p.
90], English translation in Ref. [von Neumann, 1955, p. 173], Ref. [Kochen and
Specker, 1967, § 2], Ref. [Neumark, 1954, pp. 227,228], and Ref. [Halmos, 1974,
§ 84]).

In classical physics, contexts are rather unrevealing, as all classical observables
are in principle co-measurable, and there is only a single context which comprises
the entirety of observables. Indeed, that two or more observables may not be
co-measurable; i.e., operationally obtainable simultaneously, and thus may be-
long to different, distinct contexts, did not bother the classical mind until around
1920. This situation has changed dramatically with the emergence of quantum
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mechanics, and in particular with the discovery of complementarity and value in-
definiteness. Contexts are the building blocks of quantum logics; i.e., the pastings
of a continuity of contexts form the Hilbert lattices.

We shall make use of algebraic formalizations, in particular logic. Quantum logic
is about the relations and operations among statements referring to the quantum
world. As quantum physics is an extension of classical physics, so is quantum
logic an extension of classical logic. Classical physics can be extended in many
mindboggling, weird ways. The question as to why Nature “prefers” the quantum
mindboggling way over others appears most fascinating to the open mind. Before
understanding some of the issues, one has to review classical as well as quantum
logic and some of its doubles.

Logic will be expressed as algebra. That is an approach which can be formalized.
Other approaches, such as the widely held opportunistic belief that something is
true because it is useful might also be applicable (for instance in acrimonious
divorces), though less formalized. Some of the material presented here has al-
ready been published elsewhere [Svozil, 1998], in particular the partition logic
part [Svozil, 2005b], or the section on quantum probabilities [Svozil and Tkadlec,
1996]. Here we emphasize the importance of the notion of context, which may
serve as a unifying principle for all of the logics discussed.

2 CLASSICAL CONTEXTS

Logic is an ancient philosophical discipline. Its algebraization started in the mid-
nineteenth century with Boole’s Laws of Thought [Boole, 1958]. In what follows,
Boole’s approach, in particular to probability theory, is reviewed.

2.1 Boolean algebra

A Boolean algebra B is a set endowed with two binary operations ∧ (called “and”)
and ∨ (called “or”), as well as a unary operation “ ’ ” (called “complement”
or “negation”). It also contains two elements 1 (called “true”) and 0 (called
“false”). These entities satisfy associativity, commutativity, the absorption law
and distributivity. Every element has a unique complement.

A typical example of a Boolean algebra is set theory. The operations are identi-
fied with the set theoretic intersection, union, and complement, respectively. The
implication relation is identified with the subset relation.

2.2 Classical contexts as classical logics

A classical Boolean algebra is the representation of all possible “propositions” or
“knowables.” Every knowable can be combined with every other one by the stan-
dard logical operations “and” and “or.” Operationally, all knowables are in prin-
ciple knowable simultaneously. Stated differently: within the Boolean “universe,”
the knowables are all consistently co-knowable. In this sense, classical contexts
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Figure 1. Measurements of E1, E2, E3 on the “left,” and F1, F2, F3 on the “right”
hand side, along directions θi.

coincide with the collection of all possible observables, which are expressed by
Boolean algebras. Thus, classical contexts can be identified with the respective
classical logics.

2.3 Classical probabilities

Classical probabilities and joint probabilities can be represented as points of a
convex polytope spanned by all possible “extreme cases” of the classical Boolean
algebra; more formally: by all two-valued measures on the Boolean algebra. Two-
valued measures, also called dispersionless measures or valuations, acquire only
the values “0” and “1,” interpretable as falsity and truth, respectively. If some
events are independent, then their joint probability pq · · · can be expressed as the
product of their individual probabilities p, q, . . ..

The associated correlation polytope [Pitowsky, 1989b; Pitowsky, 1989a; Pitowsky,
1991; Pitowsky, 1994; Pitowsky and Svozil, 2001] (see also Refs. [Froissart, 1981;
Cirel’son (=Tsirel’son), 1980; Cirel’son (=Tsirel’son), 1993]) is spanned by a con-
vex combination of vertices, which are vectors of the form (p, q, . . . , pq, . . .), where
the components are the individual probabilities of independent events which take
on the values 0 and 1, together with their joint probabilities, which are the prod-
ucts of the individual probabilities. The polytope faces impose “inside–outside”
distinctions. The associated inequalities must be obeyed by all classical probability
distributions; they are bounds on classical (joint) probabilities termed “conditions
of possible experience” by Boole [Boole, 1958; Boole, 1862].

Two-event “1–1” case

Let us demonstrate the bounds on classical probabilities by the simplest nontrivial
example of two propositions; e.g.,

E ≡“a particle detector aligned along direction a clicks,” and
F ≡“a particle detector aligned along direction b clicks.”

Consider also the joint proposition
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E F E ∧ F ≡ E · F
1 0 0 0
2 0 1 0
3 1 0 0
4 1 1 1

full facet inequality
1 pq ≥ 0
2 p ≥ pq
3 p ≥ pq
4 pq ≥ p + q − 1

(a) (b)

Table 1. Construction of the correlation polytope for two events: (a) the four
possible cases are represented by the truth table, whose rows can be interpreted
as three-dimensional vectors forming the vertices of the correlation polytope; (b)
the resulting four faces of the polytope are characterized by half-spaces which are
obtained by solving the hull problem. .

E ∧ F ≡ “the two particle detectors aligned along directions a and b
click.”

The notation “1–1” alludes to the experimental setup, in which the two events
are registered by detectors located at two “adjacent sites.” For multiple direction
measurements, see Fig. 1.

There exist four possible cases, enumerated in Table 1(a). The correlation poly-
tope in this case is formed by interpreting the rows as vectors in three-dimensional
vector space. Four cases, interpretable as truth assignments or two-valued mea-
sures, correspond to the four vectors (0, 0, 0), (0, 1, 0), (1, 0, 0), and (1, 1, 1). The
correlation polytope for the probabilities p, q and the joint probabilities pq of an
occurrence of E, F , and both E&F

(p, q, pq) = κ1(0, 0, 0) + κ2(0, 1, 0) + κ3(1, 0, 0) + κ4(1, 1, 1) = (κ3 + κ4, κ2 + κ4, κ4)

is spanned by the convex sum κ1 + κ2 + κ3 + κ4 = 1 of these four vectors, which
thus are vertices of the polytope. κi can be interpreted as the normalized weight
for event i to occur. The configuration is drawn in Figure 2.

By the Minkoswki-Weyl representation theorem (e.g, Ref. [Ziegler, 1994, p.29]),
every convex polytope has a dual (equivalent) description: either as the convex
hull of its extreme points (vertices); or as the intersection of a finite number of half-
spaces. Such facets are given by linear inequalities, which are obtained from the
set of vertices by solving the so called hull problem. The inequalities coincide with
Boole’s “conditions of possible experience.” The hull problem is algorithmically
solvable but computationally hard [Pitowsky, 1990].

In the above example, the “conditions of possible experience” are given by
the inequalities enumerated in Table 1b). One of their consequences are bounds
on joint occurrences of events. Suppose, for example, that the probability of a
click in detector aligned along direction a is 0.9, and the probability of a click
in the second detector aligned along direction b is 0.7. Then inequality 4 forces
us to accept that the probability that both detector register clicks cannot be
smaller than 0.9 + 0.7 − 1 = 0.6. If, for instance, somebody comes up with a
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Figure 2. The correlation polytope for two events. The vertices are (0, 0, 0),
(0, 1, 0), (1, 0, 0), and (1, 1, 1). The four faces of the polytope are characterized by
the inequalities in Table 1(b).

joint probability of 0.4, we would know that this result is flawed, possibly by
fundamental measurement errors, or by cheating.

Four-event “2–2” case

A configuration discussed in quantum mechanics is one with four events grouped
into two equal parts E1, E2 and F1, F2. There are 24 different cases of occurrence
or nonoccurrence of these four events enumerated in Table 2.

By solving the hull problem, one obtains a set of conditions of possible expe-
rience which represent the bounds on classical probabilities enumerated in Table
3. For historical reasons, the bounds 17-18, 19-20, 21-22, and 23-24 are called the
Clauser-Horne inequalities [Clauser and Horne, 1974; Clauser and Shimony, 1978].
They are equivalent (up to permutations of pi, qi), and are the only additional
inequalities structurally different from the two-event “1–1” case.

Six event “3–3” case

A similar calculation [Pitowsky and Svozil, 2001] for six events E1, E2, E3, F1, F2, F3

depicted in Fig. 1 yields an additional independent [Colins and Gisin, 2004; Sliwa,
2003] inequality for their probabilities p1, p2, p3, q1, q2, q3 and their joint probabil-
ities of the type

p1q1 + p2q2 + p1q3 + p2q1 + p2q2 − p2q3 + p3q1 − p3q2 ≤ p1 + 2q1 + q2.
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E1 E2 F1 F2 E1F1 E1F2 E2F1 E2F2

1 0 0 0 0 0 0 0 0
2 0 0 0 1 0 0 0 0
3 0 0 1 0 0 0 0 0
4 0 0 1 1 0 0 0 0
5 0 1 0 0 0 0 0 0
6 0 1 0 1 0 0 0 1
7 0 1 1 0 0 0 1 0
8 0 1 1 1 0 0 1 1
9 1 0 0 0 0 0 0 0
10 1 0 0 1 0 1 0 0
11 1 0 1 0 1 0 0 0
12 1 0 1 1 1 1 0 0
13 1 1 0 0 0 0 0 0
14 1 1 0 1 0 1 0 1
15 1 1 1 0 1 0 1 0
16 1 1 1 1 1 1 1 1

Table 2. Construction of the correlation polytope for four events. The 16 pos-
sible cases are represented by the truth table, whose rows can be interpreted as
three-dimensional vectors forming the vertices of the correlation polytope; (b) the
resulting four faces of the polytope are characterized by half-spaces which are
obtained by solving the hull problem.

3 QUANTUM CONTEXTS

Omniscience in a classical sense is no longer possible for quantum systems. Some of
the reasons are: (i) quantum complementarity and, algebraically associated with
it, the breakdown of distributivity; (ii) the impossibility to consistently assign
truth and falsity for all observables simultaneously and, associated with it, the
nonexistence of two-valued measures on even finite subsets of Hilbert logics; and
(iii) the alleged randomness of certain single outcomes.

3.1 Hilbert lattices as quantum logics

Quantum logic has been introduced by Garrett Birkhoff and John von Neumann
[von Neumann, 1932; Birkhoff and von Neumann, 1936; Mackey, 1957; Jauch, 1968;
Pták and Pulmannová, 1991] in the thirties. They organized it top-down, start-
ing from the Hilbert space formalism of quantum mechanics. Certain entities of
Hilbert spaces are identified with propositions, partial order relations and lattice
operations. These relations and operations are identified with the logical impli-
cation relation and operations such as “and,” “or,” and the negation. Thereby,
as we shall see, the resulting logical structures are “nonclassical,” in particular
“nonboolean.”

Kochen and Specker [Kochen and Specker, 1965b; Kochen and Specker, 1965a]
suggested to consider only relations and operations among compatible, co-measurable
observables; i.e., within Boolean subalgebras, which will be identified with blocks



Contexts in Quantum, Classical and Partition Logic 557

full facet inequality inequality for p1 = p2 = q1 = q2 = 1
2

1 p1q1 ≥ 0 p1q1 ≥ 0
2 p1q2 ≥ 0 p1q2 ≥ 0
3 p2q1 ≥ 0 p2q1 ≥ 0
4 p2q2 ≥ 0 p2q2 ≥ 0
5 p1 ≥ p1q1

1
2
≥ p1q1

6 p1 ≥ p1q2
1
2
≥ p1q2

7 q1 ≥ p1q1
1
2
≥ p1q1

8 q1 ≥ p1q2
1
2
≥ p1q2

9 p2 ≥ p2q1
1
2
≥ p2q1

10 p2 ≥ p2q2
1
2
≥ p2q2

11 q2 ≥ p2q1
1
2
≥ p2q1

12 q2 ≥ p1q2
1
2
≥ p2q2

13 p1q1 ≥ p1 + q1 − 1 p1q1 ≥ 0
14 p1q2 ≥ p1 + q2 − 1 p1q2 ≥ 0
15 p2q1 ≥ p2 + q1 − 1 p2q1 ≥ 0
16 p2q2 ≥ p2 + q2 − 1 p2q2 ≥ 0
17 0 ≥ p1q1 + p1q2 + p2q1 − p2q2 − p1 − q1 1 ≥ +p1q1 + p1q2 + p2q1 − p2q2

18 p1q1 + p1q2 + p2q1 − p2q2 − p1 − q1 ≥ −1 p1q1 + p1q2 + p2q1 − p2q2 ≥ 0
19 0 ≥ p1q1 + p1q2 − p2q1 + p2q2 − p1 − q2 1 ≥ +p1q1 + p1q2 − p2q1 + p2q2

20 p1q1 + p1q2 − p2q1 + p2q2 − p1 − q2 ≥ −1 p1q1 + p1q2 − p2q1 + p2q2 ≥ 0
21 0 ≥ p1q1 − p1q2 + p2q1 + p2q2 − p2 − q1 1 ≥ p1q1 − p1q2 + p2q1 + p2q2

22 p1q1 − p1q2 + p2q1 + p2q2 − p2 − q1 ≥ −1 p1q1 − p1q2 + p2q1 + p2q2 ≥ 0
23 0 ≥ −p1q1 + p1q2 + p2q1 + p2q2 − p2 − q2 1 ≥ −p1q1 + p1q2 + p2q1 + p2q2

24 −p1q1 + p1q2 + p2q1 + p2q2 − p2 − q2 ≥ −1 −p1q1 + p1q2 + p2q1 − p2q2 ≥ 0

Table 3. Construction of the correlation polytope for four events. The 24 faces
of the polytope spanned by the vertices corresponding to the rows enumerated
in Table 2. The bounds 17-18, 19-20, 21-22, and 23-24 are the Clauser-Horne
inequalities.

and contexts of Hilbert lattices. Nevertheless, some of their theorems formally
take into account ensembles of contexts [Kochen and Specker, 1967] for which a
multitude of incompatible observables contribute.

If theoretical physics is assumed to be a faithful representation of our experience,
such an “empirical,” “operational” [Bridgman, 1927; Bridgman, 1934; Bridgman,
1952] logic derives its justification by the phenomena themselves. In this sense,
one of the main justifications for quantum logic is the construction of the logical
and algebraic order of events based on empirical findings.

Definition

The dimensionality of the Hilbert space for a given quantum system depends on the
number of possible mutually exclusive outcomes. In the spin–1

2 case, for example,
there are two outcomes “up” and “down,” associated with spin state measurements
along arbitrary directions. Thus, the dimensionality of Hilbert space needs to be
two.
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generic lattice order relation “meet” “join” “complement”
propositional implication disjunction conjunction negation

calculus → “and” ∧ “or” ∨ “not” ¬
“classical” lattice subset ⊂ intersection ∩ union ∪ complement

of subsets
of a set
Hilbert subspace intersection of closure of orthogonal
lattice relation subspaces ∩ linear subspace

⊂ span ⊕ ⊥
lattice of E1E2 = E1 E1E2 E1 + E2 − E1E2 orthogonal

commuting projection
{noncommuting} { lim

n→∞(E1E2)n}
projection
operators

Table 4. Comparison of the identifications of lattice relations and operations for
the lattices of subsets of a set, for experimental propositional calculi, for Hilbert
lattices, and for lattices of commuting projection operators.

Then the following identifications can be made. Table 4 lists the identifications
of relations of operations of classical Boolean set-theoretic and quantum Hillbert
lattice types.

• Any closed linear subspace of — or, equivalently, any projection operator on —
a Hilbert space corresponds to an elementary proposition. The elementary
“true”–“false” proposition can in English be spelled out explicitly as

“The physical system has a property corresponding to the associ-
ated closed linear subspace.”

• The logical “and” operation is identified with the set theoretical intersection
of two propositions “∩”; i.e., with the intersection of two subspaces. It is
denoted by the symbol “∧”. So, for two propositions p and q and their
associated closed linear subspaces Mp and Mq,

Mp∧q = {x | x ∈ Mp, x ∈ Mq}.

• The logical “or” operation is identified with the closure of the linear span “⊕”
of the subspaces corresponding to the two propositions. It is denoted by the
symbol “∨”. So, for two propositions p and q and their associated closed
linear subspaces Mp and Mq,

Mp∨q = Mp ⊕ Mq = {x | x = αy + βz, α, β ∈ C, y ∈ Mp, z ∈ Mq}.

The symbol ⊕ will used to indicate the closed linear subspace spanned by
two vectors. That is,

u⊕ v = {w | w = αu + βv, α, β ∈ C, u, v ∈ H}.
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Notice that a vector of Hilbert space may be an element of Mp⊕Mq without
being an element of either Mp or Mq, since Mp⊕Mq includes all the vectors
in Mp ∪ Mq, as well as all of their linear combinations (superpositions) and
their limit vectors.

• The logical “not”-operation, or “negation” or “complement,” is identified with
operation of taking the orthogonal subspace “⊥”. It is denoted by the symbol
“ ′ ”. In particular, for a proposition p and its associated closed linear
subspace Mp, the negation p′ is associated with

Mp′ = {x | (x, y) = 0, y ∈ Mp},

where (x, y) denotes the scalar product of x and y.

• The logical “implication” relation is identified with the set theoretical subset
relation “⊂”. It is denoted by the symbol “→”. So, for two propositions p
and q and their associated closed linear subspaces Mp and Mq,

p → q ⇐⇒ Mp ⊂ Mq.

• A trivial statement which is always “true” is denoted by 1. It is represented by
the entire Hilbert space H. So,

M1 = H.

• An absurd statement which is always “false” is denoted by 0. It is represented
by the zero vector 0. So,

M0 = 0.

Diagrammatical representation, blocks, complementarity

Propositional structures are often represented by Hasse and Greechie diagrams.
A Hasse diagram is a convenient representation of the logical implication, as well
as of the “and” and “or” operations among propositions. Points “ • ” represent
propositions. Propositions which are implied by other ones are drawn higher than
the other ones. Two propositions are connected by a line if one implies the other.
Atoms are propositions which “cover” the least element 0; i.e., they lie “just above”
0 in a Hasse diagram of the partial order.

A much more compact representation of the propositional calculus can be given
in terms of its Greechie diagram [Greechie, 1971]. In this representation, the
emphasis is on Boolean subalgebras. Points “ ◦ ” represent the atoms. If they
belong to the same Boolean subalgebra, they are connected by edges or smooth
curves. The collection of all atoms and elements belonging to the same Boolean
subalgebra is called block; i.e., every block represents a Boolean subalgebra within
a nonboolean structure. The blocks can be joined or pasted together as follows.

• The tautologies of all blocks are identified.
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• The absurdities of all blocks are identified.

• Identical elements in different blocks are identified.

• The logical and algebraic structures of all blocks remain intact.

This construction is often referred to as pasting construction. If the blocks are
only pasted together at the tautology and the absurdity, one calls the resulting
logic a horizontal sum.

Every single block represents some “maximal collection of co-measurable ob-
servables” which will be identified with some quantum context. Hilbert lattices
can be thought of as the pasting of a continuity of such blocks or contexts.

Note that whereas all propositions within a given block or context are co-
measurable; propositions belonging to different blocks are not. This latter fea-
ture is an expression of complementarity. Thus from a strictly operational point
of view, it makes no sense to speak of the “real physical existence” of different
contexts, as knowledge of a single context makes impossible the measurement of
all the other ones.

Einstein-Podolski-Rosen (EPR) type arguments [Einstein et al., 1935] utilizing
a configuration sketched in Fig. 1 claim to be able to infer two different contexts
counterfactually. One context is measured on one side of the setup, the other
context on the other side of it. By the uniqueness property [Svozil, 2005d; Svozil,
2005a] of certain two-particle states, knowledge of a property of one particle entails
the certainty that, if this property were measured on the other particle as well,
the outcome of the measurement would be a unique function of the outcome of the
measurement performed. This makes possible the measurement of one context,
as well as the simultaneous counterfactual inference of another, mutual exclusive,
context. Because, one could argue, although one has actually measured on one
side a different, incompatible context compared to the context measured on the
other side, if on both sides the same context would be measured, the outcomes on
both sides would be uniquely correlated. Hence measurement of one context per
side is sufficient, for the outcome could be counterfactually inferred on the other
side.

As problematic as counterfactual physical reasoning may appear from an opera-
tional point of view even for a two particle state, the simultaneous “counterfactual
inference” of three or more blocks or contexts fails because of the missing unique-
ness property [Svozil, 2005a] of quantum states.

As a first example, we shall paste together observables of the spin one-half
systems. We have associated a propositional system

L(a) = {0, E,E′, 1},

corresponding to the outcomes of a measurement of the spin states along some
arbitrary direction a. If the spin states would be measured along a different spatial
direction, say b �= ±a, an identical propositional system

L(b) = {0, F, F ′, 1}
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Figure 3. Two-dimensional configuration of spin 1/2 state measurements along
two directions a and b.
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Figure 4. (a) Hasse diagram of the “Chinese lantern” form obtained by the past-
ing of two spin one-half propositional systems L(x) and L(x) which are nonco-
measurable. The resulting logical structure is a modular orthocomplemented lat-
tice L(x)⊕L(x) = MO2. The blocks (without 0, 1) are indicated by dashed boxes.
(b) Greechie diagram of the configuration depicted in (a).

would have resulted, with the propositions E and F explicitly expressed before.
The two-dimensional Hilbert space representation of this configuration is depicted
in Figure 3.

L(a) and L(b) can be joined by pasting them together. In particular, we identify
their tautologies and absurdities; i.e., 0 and 1. All the other propositions remain
distinct. We then obtain a propositional structure

L(a) ⊕ L(b) = MO2

whose Hasse diagram is of the “Chinese lantern” form and is drawn in Figure
4(a). The corresponding Greechie Diagram is drawn in Figure 4(b). Here, the
“O” stands for orthocomplementation, expressing the fact that for every element
there exists an orthogonal complement. The term “M” stands for modularity;
i.e., for all x → b, x ∨ (a ∧ b) = (x ∨ a) ∧ b. The subscript “2” stands for the
pasting of two Boolean subalgebras 22. Since all possible directions a ∈ R3 form
a continuum, the Hilbert lattice is a continuum of pastings of subalgebras of the
form L(a).
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The propositional system obtained is not a classical Boolean algebra, since the
distributive laws are not satisfied; i.e.,

F ∨ (E ∧ E′) ?= (F ∨ E) ∧ (F ∨ E′)
F ∨ 0 ?= 1 ∧ 1
F �= 1,

F ∧ (E ∨ E′) ?= (F ∧ E) ∨ (F ∧ E′)
F ∧ 1 ?= 0 ∨ 0
F �= 0.

Notice that the expressions can be easily evaluated by using the Hasse diagram
4(a): For any a, b, a ∨ b is just the least element which is connected by a and b;
a ∧ b is just the highest element connected to a and b. Intermediates which are
not connected to both a and b do not count. That is,

�
�

��
�

�

�
�

��
�

�
���

���a b

a ba ∨ b

a ∧ b

a∨ b is called a least upper bound of a and b. a∧ b is called a greatest lower bound
of a and b.

MO2 is a specific example of an algebraic structure which is called a lattice. Any
two elements of a lattice have a least upper and a greatest lower bound satisfying
the commutative, associative and absorption laws.

Nondistributivity is the algebraic expression of nonclassicality, but what is the
algebraic reason for nondistributivity? It is, heuristically speaking, scarcity, the
lack of necessary algebraic elements to “fill up” all propositions necessary to obtain
one and the same result in both ways as expressed by the distributive law.

3.2 Quantum contexts as blocks

All that is operationally knowable for a given quantized system is a single block
representing co-measurable observables. Thus, single blocks or, in another termi-
nology, maximal Boolean subalgebras of Hilbert lattices, will be identified with
quantum contexts. As Hilbert lattices are pastings of a continuity of blocks or
contexts, contexts are the building blocks of quantum logics.

A quantum context can equivalently be formalized by a single (nondegener-
ate) “maximal” self-adjoint operator C, such that all commuting, compatible co-
measurable observables are functions thereof. (e.g., Ref. [von Neumann, 1932],
Sec. II.10, p. 90, English translation p. 173; Ref. [Kochen and Specker, 1967], § 2;
Ref. [Neumark, 1954], pp. 227,228; Ref. [Halmos, 1974], § 84). Note that mutually
commuting opators have identical pairwise orthogonal sets of eigenvectors (forming
an orthonormal basis) which correspond to pairwise orthogonal projectors adding
up to unity. The spectral decompositions of the mutually commuting opators thus
contain sums of identical pairwise orthogonal projectors.
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Thus the “maximal” self-adjoint operator C has a spectral decomposition into
some complete set of orthogonal projectors Ei which correspond to elementary
“yes”-“no” propositions in the Von Neumann-Birkhoff type sense [von Neumann,
1932; Birkhoff and von Neumann, 1936]. That is, C =

∑n
i=1 ciEi with mutu-

ally different ci and
∑n

i=1 Ei = I. In n dimensions, contexts can be viewed
as n-pods spanned by the n orthogonal vectors corresponding to the projectors
E1, E2, · · · , En. As there exist many such representations with many different
sets of coefficients ci, “maximal” operator are not unique.

An observable belonging to two or more contexts is called link observable. Con-
texts can thus be depicted by Greechie diagrams [Greechie, 1971], consisting of
points which symbolize observables (representable by the spans of vectors in n-
dimensional Hilbert space). Any n points belonging to a context; i.e., to a max-
imal set of co-measurable observables (representable as some orthonormal basis
of n-dimensional Hilbert space), are connected by smooth curves. Two smooth
curves may be crossing in common link observables. In three dimensions, smooth
curves and the associated points stand for tripods. Still another compact represen-
tation is in terms of Tkadlec diagrams [Tkadlec, 2000], in which points represent
complete tripods and smooth curves represent single legs interconnecting them.

In two dimensional Hilbert space, interlinked contexts do not exist, since every
context is fixed by the assumption of one property. The entire context is just
this property, together with its negation, which corresponds to the orthogonal ray
(which spans a one dimensional subspace) or projection associated with the ray
corresponding to the property.

The simplest nontrivial configuration of interlinked contexts exists in three-
dimensional Hilbert space. Consider an arrangement of five observables A, B, C,
D, K with two systems of operators {A,B,C} and {D,K,A}, the contexts, which
are interconnected by A. Within a context, the operators commute and the associ-
ated observables are co-measurable. For two different contexts, operators outside
the link operators do not commute. A is a link observable. This propositional
structure (also known as L12) can be represented in three-dimensional Hilbert
space by two tripods with a single common leg. Fig. 5 depicts this configuration
in three-dimensional real vector space, as well as in the associated Greechie and
Tkadlec diagrams. The operators B,C,A and D,K,A can be identified with the
projectors corresponding to the two bases

BB−C−A = {(1, 0, 0)T , (0, 1, 0)T , (0, 0, 1)T },
BD−K−A = {(cosϕ, sinϕ, 0)T , (− sinϕ, cosϕ, 0)T , (0, 0, 1)T },

(the superscript “T” indicates transposition). Their matrix representation is the
dyadic product of every vector with itself.

Physically, the union of contexts {B,C,A} and {D,K,A} interlinked along
A does not have any direct operational meaning; only a single context can be
measured along a single quantum at a time; the other being irretrievably lost if
no reconstruction of the original state is possible. Thus, in a direct way, testing
the value of observable A against different contexts {B,C,A} and {D,K,A} is
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Figure 5. Three equivalent representations of the same geometric configuration:
(a) Two tripods with a common leg; (b) Greechie (orthogonality) diagram: points
stand for individual basis vectors, and orthogonal tripods are drawn as smooth
curves; (c) Tkadlec diagram: points represent complete tripods and smooth curves
represent single legs interconnecting them.

metaphysical.
It is, however, possible to counterfactually retrieve information about the two

different contexts of a single quantum indirectly by considering a singlet state
|Ψ2〉 = (1/

√
3)(|+−〉+ | −+〉− |00〉) via the “explosion view” Einstein-Podolsky-

Rosen type of argument depicted in Fig. 1. Since the state is form invariant with
respect to variations of the measurement angle and at the same time satisfies the
uniqueness property [Svozil, 2005a], one may retrieve the first context {B,C,A}
from the first quantum and the second context {D,K,A} from the second quan-
tum. (This is a standard procedure in Bell type arguments with two spin one-half
quanta.)

More tightly interlinked contexts such as {A,B,C} − {C,D,E} − {E,F,A},
whose Greechie diagram is a triangle with the edges A, C and E, or {A,B,C} −
{C,D,E} − {E,F,G} − {G,H,A}, whose Greechie diagram is a quadrangle with
the edges A, C, E and G, cannot be represented in Hilbert space and thus have no
realization in quantum logics. The five contexts {A,B,C}−{C,D,E}−{E,F,G}−
{G,H, I}− {I, J,A} whose Greechie diagrams is a pentagon with the edges A, C,
E, G and I have realizations in R3 [Svozil and Tkadlec, 1996].

3.3 Probability theory

Kochen-Specker theorem

Quantum logics of Hilbert space dimension greater than two have not a single two-
valued state interpretable as consistent, overall truth assignment [Specker, 1960].
This is the gist of the beautiful construction of Kochen and Specker [Kochen
and Specker, 1967]. For similar theorems, see Refs. [Zierler and Schlessinger,
1965; Alda, 1980; Alda, 1981; Kamber, 1964; Kamber, 1965]. As a result of the
nonexistence of two-valued states, the classical strategy to construct probabilities



Contexts in Quantum, Classical and Partition Logic 565

by a convex combination of all two-valued states fails entirely.
One of the most compact and comprehensive versions of the Kochen-Specker

proof by contradiction in three-dimensional Hilbert space R3 has been given by
Peres [Peres, 1991]. (For other discussions, see Refs. [Stairs, 1983; Redhead, 1990;
Jammer, 1992; Brown, 1992; Peres, 1991; Peres, 1993; Zimba and Penrose, 1993;
Clifton, 1993; Mermin, 1993; Svozil and Tkadlec, 1996].) Peres’ version uses a
33-element set of lines without a two-valued state. The direction vectors of these
lines arise by all permutations of coordinates from

(0, 0, 1), (0,±1, 1), (0,±1,
√

2), and (±1,±1,
√

2).

These lines can be generated (by the “nor”-operation between nonorthogonal
propositions) by the three lines [Svozil and Tkadlec, 1996]

(1, 0, 0), (1, 1, 0), (
√

2, 1, 1).

Note that as three arbitrary but mutually nonorthogonal lines generate a dense
set of lines [Havlicek and Svozil, 1996], it can be expected that any such triple of
lines (not just the one explicitly mentioned) generates a finite set of lines which
does not allow a two-valued probability measure.

The way it is defined, this set of lines is invariant under interchanges (permu-
tations) of the x1, x2 and x3 axes, and under a reversal of the direction of each of
these axes. This symmetry property allows us to assign the probability measure 1
to some of the rays without loss of generality. Assignment of probability measure
0 to these rays would be equivalent to renaming the axes, or reversing one of the
axes.

The Greechie diagram of the Peres configuration is given in Figure 6 [Svozil
and Tkadlec, 1996]. For simplicity, 24 points which belong to exactly one edge
are omitted. The coordinates should be read as follows: 1̄ → −1 and 2 →

√
2;

e.g., 11̄2 denotes Sp(1,−1,
√

2). Concentric circles indicate the (non orthogonal)
generators mentioned above.

Let us prove that there is no two-valued probability measure [Svozil and Tkadlec,
1996; Tkadlec, 1998]. Due to the symmetry of the problem, we can choose a par-
ticular coordinate axis such that, without loss of generality, P (100) = 1. Fur-
thermore, we may assume (case 1) that P (211̄) = 1. It immediately follows
that P (001) = P (010) = P (102) = P (1̄20) = 0. A second glance shows that
P (201̄) = 1, P (11̄2) = P (112) = 0.

Let us now suppose (case 1a) that P (201) = 1. Then we obtain P (1̄12) =
P (1̄1̄2) = 0. We are forced to accept P (110) = P (11̄0) = 1 — a contradiction,
since (110) and (11̄0) are orthogonal to each other and lie on one edge.

Hence we have to assume (case 1b) that P (201) = 0. This gives immediately
P (1̄02) = 1 and P (211) = 0. Since P (011̄) = 0, we obtain P (21̄1̄) = 1 and
thus P (120) = 0. This requires P (21̄0) = 1 and therefore P (121̄) = P (121) = 0.
Observe that P (210) = 1, and thus P (1̄21̄) = P (1̄21) = 0. In the following step,
we notice that P (101̄) = P (101) = 1 — a contradiction, since (101) and (101̄) are
orthogonal to each other and lie on one edge.
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Figure 6. Greechie diagram of a finite subset of the continuum of blocks or con-
texts embeddable in three-dimensional real Hilbert space without a two-valued
probability measure [Svozil and Tkadlec, 1996, Figure 9].
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Thus we are forced to assume (case 2) that P (21̄1) = 1. There is no third
alternative, since P (011) = 0 due to the orthogonality with (100). Now we can
repeat the argument for case 1 in its mirrored form.

The most compact way of deriving the Kochen-Specker theorem in four dimen-
sions has been given by Cabello [Cabello et al., 1996; Cabello, 2000]. It is depicted
in Fig. 7.

Gleason’s derivation of the Born rule

In view of the nonexistence of classical two-valued states on even finite superstruc-
tures of blocks or contexts associated with quantized systems, one could still resort
to classicality within blocks or contexts. According to Gleason’s theorem, this is
exactly the route, the “via regia,” to the quantum probabilities, in particular to
the Born rule.

According to the Born rule, the expectation value 〈A〉 of an observable A is the
trace of ρA; i.e., 〈A〉 = tr(ρA). In particular, if A is a projector E corresponding to
an elementary yes-no proposition “the system has property Q,” then 〈E〉 = tr(ρE)
corresponds to the probability of that property Q if the system is in state ρ. The
equations ρ2 = ρ and tr(ρ2) = 1 are only valid for pure states, because ρ is not an
projector and thus idempotent for mixed states.

It is still possible to ascribe a certain degree of classical probabilistic behaviour
to a quantum logic by considering its block superstructure. Due to their Boolean
algebra, blocks are “classical mini-universes.” It is one of the mindboggling fea-
tures of quantum logic that it can be decomposed into a pasting of blocks. Con-
versely, by a proper arrangement of “classical mini-universes,” quantum Hilbert
logics can be obtained. This theme is used in quantum probability theory, in par-
ticular by the Gleason and the Kochen-Specker theorems. In this sense, Gleason’s
theorem can be understood as the functional analytic generalization of the gen-
eration of all classical probability distributions by a convex sum of the extreme
cases.

Gleason’s theorem [Gleason, 1957; Dvurečenskij, 1993; Cooke et al., 1985; Peres,
1993; Hrushovski and Pitowsky, 2004; Richman and Bridges, 1999] is a deriva-
tion of the Born rule from fundamental assumptions about quantum probabilities,
guided by the quasi–classical; i.e., Boolean, sub-parts of quantum theory. Essen-
tially, the main assumption required for Gleason’s theorem is that within blocks
or contexts, the quantum probabilities behave as classical probabilities; in partic-
ular the sum of probabilities over a complete set of mutually exclusive events add
up to unity. With these quasi–classical provisos, Gleason proved that there is no
alternative to the Born rule for Hilbert spaces of dimension greater than two.

3.4 Quantum violations of classical probability bounds

Due to the different form of quantum correlations, which formally is a consequence
of the different way of defining quantum probabilities, the constraints on classical
probabilities are violated by quantum probabilities. Quantitatively, this can be
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Figure 7. Greechie diagram of a finite subset of the continuum of blocks or contexts
embeddable in four-dimensional real Hilbert space without a two-valued proba-
bility measure [Cabello et al., 1996; Cabello, 2000]. The proof of the Kochen-
Specker theorem uses nine tightly interconnected contexts a = {A,B,C,D},
b = {D,E, F,G}, c = {G,H, I, J}, d = {J,K,L,M}, e = {M,N,O, P},
f = {P,Q,R,A}, g = {B, I,K,R}, h = {C,E,L,N}, i = {F,H,O,Q} consist-
ing of the 18 projectors associated with the one dimensional subspaces spanned
by A = (0, 0, 1,−1), B = (1,−1, 0, 0), C = (1, 1,−1,−1), D = (1, 1, 1, 1),
E = (1,−1, 1,−1), F = (1, 0,−1, 0), G = (0, 1, 0,−1), H = (1, 0, 1, 0), I =
(1, 1,−1, 1), J = (−1, 1, 1, 1), K = (1, 1, 1,−1), L = (1, 0, 0, 1), M = (0, 1,−1, 0),
N = (0, 1, 1, 0), O = (0, 0, 0, 1), P = (1, 0, 0, 0), Q = (0, 1, 0, 0), R = (0, 0, 1, 1). (a)
Greechie diagram representing atoms by points, and contexts by maximal smooth,
unbroken curves. (b) Dual Tkadlec diagram representing contexts by filled points,
and interconnected contexts are connected by lines. (Duality means that points
represent blocks and maximal smooth curves represent atoms.) Every observable
proposition occurs in exactly two contexts. Thus, in an enumeration of the four
observable propositions of each of the nine contexts, there appears to be an even
number of true propositions. Yet, as there is an odd number of contexts, there
should be an odd number (actually nine) of true propositions.
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investigated [Filipp and Svozil, 2004a] by substituting the classical probabilities
by the quantum ones; i.e.,

p1 → q1(θ) = 1
2 [I2 + σ(θ)] ⊗ I2,

p3 → q3(θ) = I2 ⊗ 1
2 [I2 + σ(θ)] ,

pij → qij(θ, θ′) = 1
2 [I2 + σ(θ)] ⊗ 1

2 [I2 + σ(θ′)] ,

with σ(θ) =
(

cos θ sin θ
sin θ − cos θ

)
, where θ is the relative measurement angle in the

x–z-plane, and the two particles propagate along the y-axis, as depicted in Fig. 1.
The quantum transformation associated with the Clauser-Horne inequality for

the 2–2 case is given by

O22(α, β, γ, δ) = q13(α, γ) + q14(α, δ) + q23(β, γ) − q24(β, δ) − q1(α) − q3(γ)
= 1

2 [I2 + σ(α)] ⊗ 1
2 [I2 + σ(γ)] + 1

2 [I2 + σ(α)] ⊗ 1
2 [I2 + σ(δ)]

+ 1
2 [I2 + σ(β)] ⊗ 1

2 [I2 + σ(γ)] − 1
2 [I2 + σ(β)] ⊗ 1

2 [I2 + σ(δ)]
− 1

2 [I2 + σ(α)] ⊗ I2 − I2 ⊗ 1
2 [I2 + σ(γ)] ,

where α, β, γ, δ denote the measurement angles lying in the x–z-plane: α and β
for one particle, γ and δ for the other one. The eigenvalues are

λ1,2,3,4(α, β, γ, δ) =
1
2
(
±

√
1 ± sin(α− β) sin(γ − δ) − 1

)
yielding the maximum bound ‖O22‖ = maxi=1,2,3,4 λi. Note that for the particular
choice of parameters α = 0, β = 2θ, γ = θ, δ = 3θ adopted in [Cabello, 2004; Filipp
and Svozil, 2004b], one obtains |O22| = 1

2

{
[(3 − cos 4θ) /2]1/2 − 1

}
≤ 1

2

(√
2 − 1

)
,

as compared to the classically allowed bound from above 0.

3.5 Interpretations

The nonexistence of two-valued states on the set of quantum propositions (of
greater than two-dimensional Hilbert spaces) interpretable as truth assignments
poses a great challenge for the interpretation of quantum logical propositions,
relations and operations, as well as for quantum mechanics in general. At stake is
the meaning and physical co-existence of observables which are not co-measurable.
Several interpretations have been proposed, among them contextuality, as well as
the abandonment of classical omniscience and realism discussed below.

Contextuality

Contextuality abandons the context independence of measurement outcomes [Bell,
1966; Heywood and Redhead, 1983; Redhead, 1990] by supposing that it is wrong
to assume (cf. Ref. [Bell, 1966], Sec. 5) that the result of an observation is in-
dependent of what observables are measured alongside of it. Bell [Bell, 1966,
Sec. 5] states that the “. . . result of an observation may reasonably depend not
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only on the state of the system . . . but also on the complete disposition of the ap-
paratus.” Note also Bohr’s remarks [Bohr, 1949] about “the impossibility of any
sharp separation between the behavior of atomic objects and the interaction with
the measuring instruments which serve to define the conditions under which the
phenomena appear.”

Contextuality might be criticized as an attempt to maintain omniscience and
omni-realism even in view of a lack of consistently assignable truth values on quan-
tum propositions. Omniscience or omni-realism is the belief that “all observables
exist even without being experienced by any finite mind.” Contextuality supposes
that an “observable exists without being experienced by any finite mind, but it may
have different values, depending on its context.”

So far, despite some claims to have measured contextuality, there is no direct ex-
perimental evidence. Some experimental findings inspired by Bell-type inequalities
[Aspect et al., 1981; Aspect et al., 1982; Weihs et al., 1998], the Kochen-Specker
theorem [Simon et al., 2000; Hasegawa et al., 2006] as well as the Greenberger-
Horne-Zeilinger theorem [Pan et al., 2000] measure incompatible contexts one af-
ter another; i.e., temporally sequentially, and not simultaneously. Hence, different
contexts can only be measured on different particles. A more direct test of contex-
tuality might be an EPR configuration of two quanta in three-dimensional Hilbert
space interlinked in a single observable, as discussed above.

Abandonment of classical omniscience

As has been pointed out already, contextuality might be criticized for its presump-
tion of quantum omniscience; in particular the supposition that a physical system,
at least in principle, is capable of “carrying” all answers to any classically retriev-
able question. This is true classically, since the classical context is the entirety of
observables. But it need not be true for other types of (finite) systems or agents.
Take for example, a refrigerator. If it is automated in a way to tell you whether or
not there is enough milk in it, it will be at a complete loss at answering a totally
different question, such as if there is enough oil in the engine of your car. It is a
matter of everday experience that not all agents are prepared to give answers to
all perceivable questions.

Nevertheless, if one forces an agent to answer a question it is incapable to
answer, the agent might throw some sort of “fair coin” — if it is capable of doing
so — and present random answers. This scenario of a context mismatch between
preparation and measurement is the basis of quantum random number generators
[id Quantique, 2004] which serve as a kind of “quantum random oracle” [Calude,
2004; Calude and Dinneen, 2005]. It should be kept in mind that randomness, at
least algorithmically [Chaitin, 1990; Chaitin, 1987; Calude, 2002], does not come
“for free,” thus exhibiting an amazing capacity of single quanta to support random
outcomes. Alternatively, the unpredictable, erratic outcomes might, in the context
translation [Svozil, 2004] scenario, be due to some stochasticity originating from
the interaction with a “macroscopic” measurement apparatus, and the undefined.
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One interpretation of the impossibility to operationalize more than a single
context is the abandonment of classical omniscience: in this view, whereas it
might be meaningful theoretically and formally to study the entirety of the con-
text superstructure, only a single context operationally exists. Note that, in a
similar way as retrieving information from a quantized system, the only infor-
mation codable into a quantized system is given by a single block or context. If
the block contains n atoms corresponding to n possible measurement outcomes,
then the information content is a nit [Zeilinger, 1999; Donath and Svozil, 2002;
Svozil, 2002]. The information needs not be “located” at a particular particle,
as it can be “distributed” over a multi–partite state. In this sense, the quantum
system could be viewed as a kind of (possibly nonlocal) programmable integrated
circuit, such as a field programmable qate array or an application specific integrated
circuit.

Quantum observables make only sense when interpreted as a function of some
context, formalized by either some Boolean subalgebra or by the maximal opera-
tor. It is useless in this framework to believe in the existence of a single isolated
observable devoid of the context from which it is derived. In this holistic approach,
isolated observables separated from its missing contexts do not exist.

Likwise, it is wrong to assume that all observables which could in principle
(“potentially”) have been measured, also co-exist, irrespective of whether or not
they have or could have been actually measured. Realism in the sense of “co-
measurable entities sometimes exist without being experienced by any finite mind”
might still be assumed for a single context, in particular the one in which the
system was prepared.

Subjective idealism

Still another option is subjective idealism, denying the “existence” of observables
which could in principle (“potentially”) have been measured, but actually have
not been measured: in this view, it is wrong to assume that [Stace, 1949]

“entities sometimes exist without being experienced by any finite mind.”

Indeed, Bekeley states [Berkeley, 1710],

“For as to what is said of the absolute existence of unthinking things
without any relation to their being perceived, that seems perfectly un-
intelligible. Their esse [[to be]] is percepi [[to be perceived]], nor is it
possible they should have any existence out of the minds or thinking
things which perceive them.”

With this assumption, the Bell, Kochen-Specker and Greenberger-Horne-Zeilinger
theorems and similar have merely theoretical, formal relevance for physics, be-
cause they operate with unobservable physical “observables” and entities or with
counterfactuals which are inferred rather than measured.
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4 AUTOMATA AND GENERALIZED URN LOGIC

The following quasi–classical logics take up the notion of contexts as blocks rep-
resenting Boolean subalgebras and the pastings among them. They are quasi–
classical, because unlike quantum logics they possess sufficiently many two-valued
states to allow embeddings into Boolean algebras.

4.1 Partition logic

The empirical logics (i.e., the propositional calculi) associated with the generalized
urn models suggested by Ron Wright [Wright, 1978; Wright, 1990], and automaton
logics (APL) [Svozil, 1993; Schaller and Svozil, 1996; Dvurečenskij et al., 1995;
Calude et al., 1997; Svozil, 1998] are equivalent (cf. Refs. [Svozil, 1998, p.145] and
[Svozil, 2005b]) and can be subsumed by partition logics. The logical equivalence
of automaton models with generalized urn models suggests that these logics are
more general and “robust” with respect to changes of the particular model than
could have been expected from the particular instances of their first appearance.

Again the concept of context or block is very important here. Partition logics
are formed by pasting together contexts or blocks based on the partitions of a set
of states. The contexts themselves are derived from the input/output analysis of
experiments.

4.2 Generalized urn models

A generalized urn model U = 〈U,C,L,Λ〉 is characterized as follows. Consider an
ensemble of balls with black background color. Printed on these balls are some
color symbols from a symbolic alphabet L. The colors are elements of a set of
colors C. A particular ball type is associated with a unique combination of mono-
spectrally (no mixture of wavelength) colored symbols printed on the black ball
background. Let U be the set of ball types. We shall assume that every ball
contains just one single symbol per color. (Not all types of balls; i.e., not all
color/symbol combinations, may be present in the ensemble, though.)

Let |U | be the number of different types of balls, |C| be the number of different
mono-spectral colors, |L| be the number of different output symbols.

Consider the deterministic “output” or “lookup” function Λ(u, c) = v, u ∈ U ,
c ∈ C, v ∈ L, which returns one symbol per ball type and color. One interpretation
of this lookup function Λ is as follows. Consider a set of |C| eyeglasses build from
filters for the |C| different colors. Let us assume that these mono-spectral filters
are “perfect” in that they totally absorb light of all other colors but a particular
single one. In that way, every color can be associated with a particular eyeglass
and vice versa.

When a spectator looks at a particular ball through such an eyeglass, the only
operationally recognizable symbol will be the one in the particular color which is
transmitted through the eyeglass. All other colors are absorbed, and the symbols
printed in them will appear black and therefore cannot be differentiated from the
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black background. Hence the ball appears to carry a different “message” or symbol,
depending on the color at which it is viewed. This kind of “complementarity” has
been used for a demonstration of quantum cryptography [Svozil, 2006].

An empirical logic can be constructed as follows. Consider the set of all ball
types. With respect to a particular colored eyeglass, this set disjointly “decays”
or gets partitioned into those ball types which can be separated by the particular
color of the eyeglass. Every such partition of ball types can then be identified with
a Boolean algebra whose atoms are the elements of the partition. A pasting of all
of these Boolean algebras yields the empirical logic associated with the particular
urn model.

Consider, for the sake of demonstration, a single color and its associated par-
tition of the set of ball types (ball types within a given element of the partition
cannot be differetiated by that color). In the generalized urn model, an element a
of this partition is a set of ball types which corresponds to an elementary propo-
sition

“the ball drawn from the urn is of the type contained in a.”

4.3 Automaton models

A (Mealy type) automaton A = 〈S, I,O, δ, λ〉 is characterized by the set of states
S, by the set of input symbols I, and by the set of output symbols O. δ(s, i) = s′

and λ(s, i) = o, s, s′ ∈ S, i ∈ I and o ∈ O represent the transition and the output
functions, respectively. The restriction to Mealy automata is for convenience only.

In the analysis of a state identification problem, a typical automaton experiment
aims at an operational determination of an unknown initial state by the input of
some symbolic sequence and the observation of the resulting output symbols. Ev-
ery such input/output experiment results in a state partition in the following way.
Consider a particular automaton. Every experiment on such an automaton which
tries to solve the initial state problem is characterized by a set of input/output
symbols as a result of the possible input/output sequences for this experiment.
Every such distinct set of input/output symbols is associated with a set of ini-
tial automaton states which would reproduce that sequence. This state set may
contain one or more states, depending on the ability of the experiment to sepa-
rate different initial automaton states. A partitioning of the automaton states is
obtained if one considers a single input sequence and the variety of all possible
output sequences (given a particular automaton). Stated differently: given a set
of inputs, the set of initial automaton states “break down” into disjoint subsets
associated with the possible output sequences. (All elements of a subset yield the
same output on the same input.)

This partition can then be identified with a Boolean algebra, with the elements
of the partition interpreted as atoms. By pasting the Boolean algebras of the
“finest” partitions together one obtains an empirical partition logic associated
with the particular automaton. (The converse construction is also possible, but
not unique; see below.)
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For the sake of simplicity, we shall assume that every experiment just deals
with a single input/output combination. That is, the finest partitions are reached
already after the first symbol. This does not impose any restriction on the partition
logic, since given any particular automaton, it is always possible to construct
another automaton with exactly the same partition logic as the first one with the
above property.

More explicitly, given any partition logic, it is always possible to construct a
corresponding automaton with the following specification: associate with every
element of the set of partitions a single input symbol. Then take the partition
with the highest number of elements and associate a single output symbol with any
element of this partition. (There are then sufficient output symbols available for
the other partitions as well.) Different partitions require different input symbols;
one input symbol per partition. The output function can then be defined by
associating a single output symbol per element of the partition (associated with a
particular input symbol). Finally, choose a transition function which completely
looses the state information after only one transition; i.e., a transition function
which maps all automaton state into a single one.

A typical proposition in the automaton model refers to a partition element a
containing automaton states which cannot be distinguished by the analysis of the
strings of input and output symbols; i.e., it can be expressed by

“the automaton is initially in a state which is contained in a.”

4.4 Contexts

In the generalized urn model represent everything that is knowable by looking in
only a single color. For automata, this is equivalent to considering only a single
string of input symbols. Formally, this amounts to the identification of blocks with
contexts, as in the quantum case.

4.5 Proof of logical equivalence of automata and generalized urn mod-
els

From the definitions and constructions mentioned in the previous sections it is
intuitively clear that, with respect to the empirical logics, generalized urn models
and finite automata models are equivalent. Every logic associated with a gener-
alized urn model can be interpreted as an automaton partition logic associated
with some (Mealy) automaton (actually an infinity thereof). Conversely, any logic
associated with some (Mealy) automaton can be interpreted as a logic associ-
ated with some generalized urn model (an infinity thereof). We shall proof these
claims by explicit construction. Essentially, the lookup function Λ and the output
function λ will be identified. Again, the restriction to Mealy automata is for con-
venience only. The considerations are robust with respect to variations of finite
input/output automata.
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Direct construction of automaton models from generalized urn models

In order to define an APL associated with a Mealy automaton A = 〈S, I,O, δ, λ〉
from a generalized urn model U = 〈U,C,L,Λ〉, let u ∈ U , c ∈ C, v ∈ L, and
s, s′ ∈ S, i ∈ I, o ∈ O, and assume |U | = |S|, |C| = |I|, |L| = |O|. The following
identifications can be made with the help of the bijections tS , tI and tO:

tS(u) = s, tI(c) = i, tO(v) = o,
δ(s, i) = si for fixed si ∈ S and arbitrary s ∈ S, i ∈ I,
λ(s, i) = tO

(
Λ(t−1

S (s), t−1
I (i))

)
.

More generally, one could use equivalence classes instead of a bijection. Since
the input-output behavior is equivalent and the automaton transition function is
trivially |L|-to-one, both entities yield the same propositional calculus.

Direct construction of generalized urn models from automaton models

Conversely, consider an arbitrary Mealy automaton A = 〈S, I,O, δ, λ〉 and its
associated propositional calculus APL.

Just as before, associate with every single automaton state s ∈ S a ball type u,
associate with every input symbol i ∈ I a unique color c, and associate with every
output symbol o ∈ O a unique symbol v; i.e., again |U | = |S|, |C| = |I|, |L| = |O|.
The following identifications can be made with the help of the bijections τU , τC

and τL:

τU (s) = u, τC(i) = c, τL(o) = v, Λ(u, c) = τL(λ(τ−1
U (u), τ−1

C (c))).

A comparison yields

τ−1
U = tS , τ−1

C = tI , τ−1
L = tO.

Schemes using dispersion-free states

Another equivalence scheme uses the fact that both automaton partition logics and
the logic of generalized urn models have a separating (indeed, full) set of dispersion-
free states. Stated differently, given a finite atomic logic with a separating set of
states, then the enumeration of the complete set of dispersion-free states enables
the explicit construction of generalized urn models and automaton logics whose
logic corresponds to the original one.

This can be achieved by “inverting” the set of two-valued states as follows. (The
method is probably best understood by considering the examples below.) Let us
start with an atomic logic with a separating set of states.

(i) In the first step, every atom of this lattice is labeled by some natural number,
starting from “1” to “n”, where n stands for the number of lattice atoms.
The set of atoms is denoted by A = {1, 2, . . . , n}.
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(ii) Then, all two-valued states of this lattice are labeled consecutively by natural
numbers, starting from “m1” to “mr”, where r stands for the number of two-
valued states. The set of states is denoted by M = {m1,m2, . . . ,mr}.

(iii) Now partitions are defined as follows. For every atom, a set is created whose
members are the numbers or “labels” of the two-valued states which are
“true” or take on the value “1” on this atom. More precisely, the elements
pi(a) of the partition Pj corresponding to some atom a ∈ A are defined by

pi(a) = {k | mk(a) = 1, k ∈ M} .

The partitions are obtained by taking the unions of all pi which belong to the
same subalgebra Pj . That the corresponding sets are indeed partitions fol-
lows from the properties of two-valued states: two-valued states (are “true”
or) take on the value “1” on just one atom per subalgebra and (“false” or)
take on the value “0” on all other atoms of this subalgebra.

(iv) Let there be t partitions labeled by “1” through “t”. The partition logic is
obtained by a pasting of all partitions Pj , 1 ≤ j ≤ t.

(v) In the following step, a corresponding generalized urn model or automaton
model is obtained from the partition logic just constructed.

(a) A generalized urn model is obtained by the following identifications (see
also [Wright, 1978, p. 271]).

• Take as many ball types as there are two-valued states; i.e., r types
of balls.

• Take as many colors as there are subalgebras or partitions; i.e., t
colors.

• Take as many symbols as there are elements in the partition(s)
with the maximal number of elements; i.e., max1≤j≤t |Pj | ≤ n. To
make the construction easier, we may just take as many symbols as
there are atoms; i.e., n symbols. (In some cases, much less symbols
will suffice). Label the symbols by vl. Finally, take r “generic”
balls with black background. Now associate with every measure a
different ball type. (There are r two-valued states, so there will be
r ball types.)

• The ith ball type is painted by colored symbols as follows: Find
the atoms for which the ith two-valued state mi is 1. Then paint
the symbol corresponding to every such lattice atom on the ball,
thereby choosing the color associated with the subalgebra or par-
tition the atom belongs to. If the atom belongs to more than one
subalgebra, then paint the same symbol in as many colors as there
are partitions or subalgebras the atom belongs to (one symbol per
subalgebra).
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This completes the construction.

(b) A Mealy automaton is obtained by the following identifications (see also
[Svozil, 1993, pp. 154–155]).

• Take as many automaton states as there are two-valued states; i.e.,
r automaton states.

• Take as many input symbols as there are subalgebras or partitions;
i.e., t symbols.

• Take as many output symbols as there are elements in the parti-
tion(s) with the maximal number of elements (plus one additional
auxiliary output symbol “∗”, see below); i.e., max1≤j≤t |Pj | ≤ n+1.

• The output function is chosen to match the elements of the state
partition corresponding to some input symbol. Alternatively, let
the lattice atom aq ∈ A must be an atom of the subalgebra corre-
sponding to the input il. Then one may choose an output function
such as

λ(mk, il) =
{

aq if mk(aq) = 1
∗ if mk(aq) = 0

with 1 ≤ k ≤ r and 1 ≤ l ≤ t. Here, the additional output symbol
“∗” is needed.

• The transition function is r–to–1 (e.g., by δ(s, i) = s1, s, s1 ∈ S,
i ∈ I), i.e., after one input the information about the initial state
is completely lost.

This completes the construction.

Example 1: The generalized urn logic L12

In what follows we shall illustrate the above constructions with a couple of exam-
ples. First, consider the generalized urn model

〈{u1, . . . , u5}, {red, green}, {1, . . . , 5},Λ〉

with Λ listed in Table 5(a).
The associated Mealy automaton can be directly constructed as follows. Take

tS = tO = id, where id represents the identity function, and take tI(red) = 0
and tI(green) = 1, respectively. Furthermore, fix a (five×two)-to-one transition
function by δ(., .) = 1. The transition and output tables are listed in Table 5(b).
Both empirical structures yield the same propositional logic L12 which is depicted
in Fig. 5(b).

Example 2: The automaton partition logic L12

Let us start with an automaton whose transition and output tables are listed in
Table 5(b) and indirectly construct a logically equivalent generalized urn model by
using dispersion-free states. The first thing to do is to figure out all dispersion-free
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ball type red green
1 1 3
2 1 4
3 2 3
4 2 4
5 5 5

δ λstate
1 2 3 4 5 1 2 3 4 5

0 1 1 1 1 1 1 1 2 2 5
1 1 1 1 1 1 3 4 3 4 5

(a) (b)

Table 5. (a) Ball types in Wright’s generalized urn model [Wright, 1990] (cf. also
[Svozil, 1998, p.143ff]). (b) Transition and output table of an associated automaton
model.

colors
c1 c2ball type

“red” “green”
1 ∗ ∗ ∗ ∗ 5 ∗ ∗ ∗ ∗ 5
2 ∗ 2 ∗ ∗ ∗ ∗ ∗ ∗ 4 ∗
3 ∗ 2 ∗ ∗ ∗ ∗ ∗ 3 ∗ ∗
4 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ 4 ∗
5 1 ∗ ∗ ∗ ∗ ∗ ∗ 3 ∗ ∗

Table 6. Representation of the sign coloring scheme Λ. “∗” means no sign at all
(black) for the corresponding atom.

states of L12 depicted in Fig. 5(b). There are five of them, which we might write
in vector form; i.e., in lexicographic order:

m1 = (0, 0, 0, 0, 1), m2 = (0, 1, 0, 1, 0), m3 = (0, 1, 1, 0, 0),
m4 = (1, 0, 0, 1, 0), m5 = (1, 0, 1, 0, 0).

Now define the following generalized urn model as follows. There are two sub-
algebras with the atoms 1, 2, 5 and 3, 4, 5, respectively. Since there are five two-
valued measures corresponding to five ball types. They are colored according to
the coloring rules defined above. and Λ as listed in Table 6.

Example 3: generalized urn model of the Kochen-Specker “bug” logic

Another, less simple example, is a logic which is already mentioned by Kochen
and Specker [Kochen and Specker, 1967] (this is a subgraph of their Γ1) whose
automaton partition logic is depicted in Fig. 8. (It is called “bug” by Professor
Specker [Specker, 1999] because of the similar shape with a bug.) There are 14
dispersion-free states which are listed in Table 7(a). The associated generalized
urn model is listed in Table 7(b).
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a3 = {10, 11, 12, 13, 14} a4 = {2, 6, 7, 8} a5 = {1, 3, 4, 5, 9}

a2 = {4, 5, 6, 7, 8, 9} a6 = {2, 6, 8, 11, 12, 14}

a1 = {1, 2, 3} a7 = {7, 10, 13}
a13 =
{1, 4, 5, 10, 11, 12}

a12 = {4, 6, 9, 12, 13, 14} a8 = {3, 5, 8, 9, 11, 14}

a11 = {5, 7, 8, 10, 11} a10 = {3, 9, 13, 14} a9 = {1, 2, 4, 6, 12}




  






Figure 8. Greechie diagram of automaton partition logic with a nonfull set of
dispersion-free measures.

(a) lattice atoms (b) colors
mr and

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 c1 c2 c3 c4 c5 c6 c7ball type

1 1 0 0 0 1 0 0 0 1 0 0 0 1 1 5 5 9 9 1 13
2 1 0 0 1 0 1 0 0 1 0 0 0 0 1 4 6 9 9 1 4
3 1 0 0 0 1 0 0 1 0 1 0 0 0 1 5 5 8 10 3 10
4 0 1 0 0 1 0 0 0 1 0 0 1 1 2 5 5 9 9 12 13
5 0 1 0 0 1 0 0 1 0 0 1 0 1 2 5 5 8 11 11 13
6 0 1 0 1 0 1 0 0 1 0 0 1 0 2 4 6 9 9 12 4
7 0 1 0 1 0 0 1 0 0 0 1 0 0 2 4 7 7 11 11 4
8 0 1 0 1 0 1 0 1 0 0 1 0 0 2 4 6 8 11 11 4
9 0 1 0 0 1 0 0 1 0 1 0 1 0 2 5 5 8 10 12 10
10 0 0 1 0 0 0 1 0 0 0 1 0 1 3 3 7 7 11 11 13
11 0 0 1 0 0 1 0 1 0 0 1 0 1 3 3 6 8 11 11 13
12 0 0 1 0 0 1 0 0 1 0 0 1 1 3 3 6 9 9 12 13
13 0 0 1 0 0 0 1 0 0 1 0 1 0 3 3 7 7 10 13 10
14 0 0 1 0 0 1 0 1 0 1 0 1 0 3 3 6 8 10 12 10

Table 7. (a) Dispersion-free states of the Kochen-Specker “bug” logic with 14
dispersion-free states and (b) the associated generalized urn model (all blank en-
tries “∗”have been omitted).
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4.6 Probability theory

The probability theory of partition logics is based on a full set of state, allowing to
define probabilities via the convex sum of those states. This is essentially the same
procedure as for classical probabilities. In the same way, bounds on probabilities
can be found through the computation of the faces of correlation polytopes.

Consider, as an example, a logic already discussed. Its automaton partition
logic is depicted in Fig. 8. The correlation polytope of this lattice consists of 14
vertices listed in Table 7, where the 14 rows indicate the vertices corresponding
to the 14 dispersion-free states. The columns represent the partitioning of the
automaton states. The solution of the hull problem yields the equalities

1 = P1 + P2 + P3 = P4 + P10 + P13,
1 = P1 + P2 − P4 + P6 + P7 = −P2 + P4 − P6 + P8 − P10 + P12,
1 = P1 + P2 − P4 + P6 − P8 + P10 + P11,
0 = P1 + P2 − P4 − P5 = −P1 − P2 + P4 − P6 + P8 + P9.

The operational meaning of Pi = Pai
is “the probability to find the automaton

in state ai.” The above equations are equivalent to all probabilistic conditions on
the contexts (subalgebras) 1 = P1 + P2 + P3 = P3 + P4 + P5 = P5 + P6 + P7 =
P7 + P8 + P9 = P9 + P10 + P11 = P4 + P10 + P13.

Let us now turn to the joint probability case. Notice that formally it is possible
to form a statement such as a1 ∧ a13 (which would be true for measure number
1 and false otherwise), but this is not operational on a single automaton, since
no experiment can decide such a proposition on a single automaton. Neverthe-
less, if one considers a “singlet state” of two automata which are in an unknown
yet identical initial state, then an expression such as a1 ∧ a13 makes operational
sense if property a1 is measured on the first automaton and property a13 on the
second automaton. Indeed, all joint probabilities ai ∧ aj ∧ . . . an make sense for
n-automaton singlets.

5 SUMMARY

Regarding contexts; i.e., the maximum collection of co-measurable observables,
three different cases have been discussed. The first, classical case, is characterized
by omniscience. Within the classical framework, all observables form a single con-
text, and everything that is in principle knowable is also knowable simultaneously.
Classical probability can be based upon the convex combinations of all two-valued
states. Fig. 9 depicts a “mind map” representing the use of contexts to build up
logics and construct probabilities.

In the generalized urn or automaton cases, if one sticks to the rules — that is,
if one does not view the object unfiltered or “screw the automaton box open” —
omniscience is impossible and a quasi–classical sort of complementarity emerges:
depending on the color (or input string) chosen, one obtains knowledge of a par-
ticular observable or context. All other contexts are hidden to the experimenter
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Figure 9. “Mind map” representing the use of contexts to build up logics and
construct probabilities.

unable to lift the bounds of one color filter or one input sequence. A system
science issue is emerging here; namely the question of how intrinsic observers per-
form inside of a given system [Svozil, 1993; Svozil, 1994]. The situation resembles
quantum mechanics even more if reversible systems are considered; where an ex-
periment can be “undone” only by investing all the information gained from previ-
ous experiments (without being able to copy these)[Greenberger and YaSin, 1989;
Herzog et al., 1995]. All incompatible blocks or contexts are pasted together to
form the partition logic. These pasting still allow a sufficient number of two-valued
states for the construction of probabilities based upon the convex combinations
thereof.

In the quantum case, the Hilbert lattices can formally be thought of as pastings
of a continuum of blocks or contexts, but the mere assumption of the physical
existence — albeit inaccessible to an intrisic observer — of even a finite number
of contexts yields a complete contradiction. In view of this, one can adopt at
least two interpretations: that an observable depends on its context; or that more
than one context for quantum systems has no operational meaning. The former
view has been mentioned by Bell (and also by Bohr to some degree), and can be
subsumed by the term “contextuality.” To the author, contextuality is the last
resort of a realism which is inclined to maintain “a sort of” classical omniscience,
even in view of the Kochen-Specker and Bell-type theorems.
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The latter viewpoint — that quantum systems do not encode more than a
single context — abandons omniscience, but needs to cope with the fact that
it is indeed possible to measure different contexts; even if there is a mismatch
between the preparation and the measurement context. It has been proposed that
in these cases the measurement apparatus “translates” one context into the other
at the prize of randomizing the measurement result [Svozil, 2004]. This context
translation principle could be tested by changing the measurement apparatus’
ability of translation.

All in all, contexts seem to be an exciting subject. The notion may become
more useful and relevant, as progress is made towards a better comprehension of
the quantum world and its differences with respect to other classical and quasi–
classical systems.
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NONMONOTONICITY AND HOLICITY IN
QUANTUM LOGIC

Kurt Engesser, Dov Gabbay and Daniel Lehmann

INTRODUCTION

The question whether we need a ‘new logic’ in order to reason properly in quantum
theory is asked frequently. Do we have to depart from classical logic in building
‘quantum logic’ and, if so, how? The answer that most physicists give to this
question is that we do not. In fact, physicists put quantum mechanics to good use
in an unprecedentedly successful way, and in this do they not use classical logic?
In [Popper, 1968] Popper denies any need to depart from classical logic in order
to reason properly in quantum mechanics.

Why did the question arise at all? The question of ‘the logic of quantum me-
chanics’ was in the scientific literature first raised by Birkhoff and von Neumann
in their seminal 1936 paper [Birkhoff and von Neumann, 1936]. Their chief mo-
tivation for trying to discover the ‘logic of quantum mechanics’ was the fact that
they considered the novel features of quantum mechanics such as the uncertainty
relations to be logical in nature. Since these features are not reflected in classical
logic, there is, according to Birkhoff-von Neumann, a need to construct a (logical)
‘calculus’ in which they are actually represented.

Later on it was Putnam, Finkelstein and others who put forward a view of
quantum logic which for some time attracted considerable attention. Central to
this paradigm is the idea that logic may be empirical. Putnam and his followers
argued that the role of logic in quantum mechanics was similar to that of geometry
in the theory of relativity. In the theory of relativity, Euclidean geometry, which
in Newtonian physics was still considered a priori, had to be revised on empirical
grounds. In quantum mechanics, Putnam argued, it is (classical) logic that needs
revision on empirical grounds. Similar to the way the theory of relativity teaches
us the ‘real’ geometry quantum mechanics would teach us the ‘real’ logic. This
is undoubtedly an attractive idea which, however, we will not pursue here. We
refer the interested reader to Bacciagaluppi’s chapter “Is Logic Empirical?” in this
Handbook.

Rather we adopt a different attitude, which is already implicit in the Birkhoff-
von Neumann paper. In the Introduction they write: “The object of the present
paper is to discover what logical structure one may hope to find in physical theories
which, like quantum mechanics, do not conform to classical logic”.
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In fact, this is the task we pose ourselves: searching for logical structures in
quantum mechanics. The procedure is this. We take a close look at Hilbert space
and, as a result, identify and study certain logical structures implicit in Hilbert
space. We then pursue the question whether these logical structures represent
essential features of the formalism of quantum mechanics. Can the structures
found shed light on the formalism of quantum mechanics? We think that they in
fact can. We think that the science of logic can detect and study logical structures
in the formalism of quantum mechanics which are relevant to the understanding of
the formalism itself. Are there any guidelines that may help in searching for these
structures? Are there any traits of quantum mechanics itself that could suggest
certain directions of investigation? Let us speculate about this.

As a good starting point we may look at the relationship between classical and
quantum mechanics. We may start by analysing the way how quantum mechan-
ics departs from classical mechanics. Given that quantum mechanics, as is often
claimed more or less vaguely, does not conform to classical logic, then it is reason-
able to ask how the transition from classical to quantum mechanics is reflected in
the logical structures we are looking for.

There are various ways of viewing the relationship between classical and quan-
tum mechanics. Since in classical mechanics we have no uncertainty relations, it is
the uncertainty relations that are often regarded as constituting the essential dif-
ference. Another crucial difference concerns the role of measurement. In classical
mechanics a measurement does not involve a change of the state of the system mea-
sured. The fact that in quantum mechanics measurement does, in general, involve
such a change of state is undoubtedly an essential difference between classical and
quantum mechanics. Classical mechanics is often considered to be a limiting case
of quantum mechanics as Newtonian mechanics is a limiting case of the theory of
relativity. We may ask the question how these observations are reflected in the
logical structures we may find. What are uncertainty relations from the logical
point of view? We will see that, logically, the presence of uncertainty relations is
reflected as nonmonotonicity of the logical structures implicit in the formalism of
quantum mechanics. There is, however, a general feeling expressed in a vast body
of literature, popular scientific and seriously scientific or philosophical alike, that
the fairly obvious differences between classical and quantum mechanics mentioned
above are not the whole story. Rather the general impression seems to be that the
way how quantum mechanics departs from classical mechanics touches on deeper
ground. Take the famous Einstein-Podolsky-Rosen (EPR) argument put forward
in their famous paper entitled “Can the quantum-mechanical description of reality
be considered complete?” [Einstein et al., 1935]. In the EPR argument the term
‘element of reality’ plays a crucial role. EPR take it for granted that (physical)
reality is to be viewed as consisting of separate ‘elements of reality‘. And, in fact,
once this fragmenting view of reality is accepted, it is hard to avoid the EPR
conclusion that quantum mechanics does not provide a complete description of
physical reality. Therefore, if quantum mechanics is in fact a complete description
of physical reality as seems to be generally assumed nowadays, then something
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must be wrong with this view of reality. It seems that the way quantum mechan-
ics departs from classical mechanics is of an even more profound nature than the
way the theory of relativity departs from classical mechanics. In the latter case
we ‘just’ have to abandon our view of space and time. In the case of quantum
mechanics it seems that we have to abandon our view of the very nature of reality.
This is all pervading the literature on the foundations of quantum mechanics be
it popular scientific or seriously philosophical. It is the intuition of oneness, inter-
connectedness and wholeness, which is prevalent in Eastern thought for instance,
that finds strong support in quantum mechanics.

How can we, at the level of logic, reflect the shift in our perception of reality
which is forced upon us in the transition from classical mechanics to quantum
mechanics? A possible answer is this. Classical mechanics and classical logic
conform to each other and the view of reality that underlies classical mechanics
also underlies classical logic. If, as seems to be the case, our ‘classical’ view of
reality is to be revised in quantum mechanics, we must ask the question whether
logic, i.e. the quantum logic to be constructed, can account for quantum mechanics
if it does not reflect this shift. We will in Section 4 describe a way of departing from
classical logic for the sake of quantum logic which may be regarded as reflecting
this intuition.

Most, though not all of the material presented in this chapter was first published
in a less condensed form in our monograph [Engesser and Gabbay, 2002].

1 STRUCTURE OF THIS CHAPTER

The core logical structure of this chapter is what we call a holistic logic. This
concept reflects two intuitions that inevitably arise in connection with quantum
mechanics, namely the intuition of nonmonotonicity as expressed by the uncer-
tainty relations and the intuiton of holicity , which pervades the literature on the
foundations of quantum mechanics. This concept is introduced and studied ex-
tensively in Section 4, the core section of this chapter. Section 2 entitled “Basics
of Nonmonotonic Logic” and Section 3 entitled “Consequence Revision Systems”
provide the background for Section 4. In Section 6 entitled “Towards Hilbert
Space” we study the connection between the concept of a holistic logic and that
of a Hilbert space. In particular, we prove a representation theorem for holistic
logics in terms of Hilbert spaces. Section 5 entitled “Some Hilbert Space Theory”
provides the mathematical machinery needed for the investigations in Section 6.

2 BASICS OF NONMONOTONIC LOGIC

2.1 What is nonmonotonic logic?

Classical logic is monotonic. Given a set Σ of assumptions and a formula α such
that Σ � α. If we add more assumptions to Σ so as to get Σ∗ we will still have
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Σ∗ � α. ‘More information’ cannot invalidate inferences drawn on the basis of
‘less information’. This is what monotonicity means. In the last decades, logicians
studied modes of reasoning that do not have this property. In these so-called non-
monotonic logics ‘old inferences’ may be invalidated by ‘new information’. What
reason can there be for this phenomenon? One reason is incomplete information.
This is for instance the case in common sense reasoning. If we view a common
sense reasoner’s activity as ‘jumping to conclusions’ on the basis of certain ‘pieces
of information’, it seems quite natural that certain of his conclusions cannot be
maintained in the light of additional information.

Another source of nonmonotonicity is perfect introspection of the (reasoning)
agent. Imagine a reasoner, i.e. an agent who can infer propositions from sets of
assumptions. Suppose, moreover, this reasoner has an additional ability. Namely
assume that whenever he can, in his system of reasoning, infer a certain proposition
α from a certain set Σ of assumptions, he can, in the same system, infer the
proposition saying “I can infer α” denoted by Iα and whenever he cannot infer
α from Σ he can infer the proposition “I cannot infer α”, i.e. ¬Iα. The former
capability is called positive introspection, the latter is called negative introspection.
Assume a consistent agent having both capabilities. We give an informal argument
to the effect that such a reasoner cannot be monotonic. So assume he is monotonic.
Given a set Σ of assumptions and let α be a proposition the reasoner cannot infer
from Σ. By negative introspection he can then infer ¬Iα. Assume that α is
consistent with Σ and can be consistently added to Σ. Then the agent can infer
α from Σ ∪ {α} and thus by (positive) introspection he can infer Iα from the
enlarged set of assumptions. Since he is assumed to be monotonic, he can still
infer ¬Iα. But this would mean that he is inconsistent. It follows that he cannot
be monotonic.

2.2 Consequence relations

A consequence relation is a binary relation between formulas satisfying certain
intuitive conditions we expect logical consequence to satisfy. We assume the (full)
language L of propositional logic. We state some minimal conditions a conse-
quence relation is supposed to satisfy. The following are the minimal conditions as
suggested by Gabbay in [Gabbay, 1985]. The reader may verify that the classical
consequence relation � in fact satisfies these conditions.

Reflexivity
α |∼ α

Cut
α ∧ β |∼ γ, α |∼ β

α |∼ γ

Restricted Monotonicity
α |∼ β, α |∼ γ
α ∧ β |∼ γ



Nonmonotonicity and Holicity in Quantum Logic 591

As observed in [Kraus et al., 1990], any consequence relation satisfying the above
conditions has the following property AND:

α |∼ β, α |∼ γ
α |∼ β ∧ γ

In nonmonotonic logic we of course do not insist on the requirement of mono-
tonicity.

2.3 Semantics of nonmonotonic logic

How can nonmonotonic consequence relations be presented? As to this problem
a breakthrough was achieved in the seminal paper by Kraus-Lehmann-Magidor
(KLM) [Kraus et al., 1990]. Namely, it was shown by KLM that certain semantic
structures which have become known as KLM models are suitable for this purpose.
We present here a slight modification of the original KLM structures introduced
in [Gabbay, 1996].

DEFINITION 1.

• A Scott model for Fml is any function s : Fml → {0, 1}.
• A GKLM (Generalised Kraus–Lehmann–Magidor) model is a structure of

the form 〈S,<, l〉, where S is a non-empty set, < is a binary relation on S
and l is a function associating with each t ∈ S a set of Scott models l(t).
The model is required to satisfy the smoothness condition stated in the next
definition.

DEFINITION 2. Let M = 〈S,<, l〉 be a structure as described in the last defini-
tion. Let t ∈ S and α a formula. Then define the satisfaction relation t |= α as
follows:

• t |= α iff for all s ∈ l(t) we have s(α) = 1

• Let A ⊂ S. We say that t is <-minimal in A iff for all t′ ∈ A such that
t′ < t we have t′ = t. We say that A is smooth iff for every t ∈ A, either t is
minimal in A or for some s ∈ A, s < t and s is minimal in A.

• Let [α] = {t ∈ S | t |= α}. We say that M is smooth iff for all α, [α] is
smooth.

• For a smooth model M we define the consequence relation |∼M as follows:
α |∼M β iff for all t minimal in [α], we have t |= β.

• Given a consequence relation |∼ and a smooth model M. We say M is a
model for |∼ iff |∼=|∼M.

We cannot motivate the above definitions here. We leave it by reporting that
GKLM models have turned out to be extremely suited for presenting nonmono-
tonic consequence relations semantically. The concept has a long history taking
its origin in investigations on the semantics of conditionals.
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2.4 Uncertainty relations and nonmonotonicity

The reader may ask the question why we want to consider nonmonotonic logics in
our study of quantum logic. The answer is that nonmonotonicity is an essential
feature of quantum mechanics. We encounter nonmonotonic (logical) systems in
nature so to speak. Imagine a (quantum) physical system S and let A and B be
two observables pertaining to S. Suppose we measure A. Through measurement
we get a certain value, say μ. Viewing a measurement as a sort of proof we
have then ‘proved’ the proposition A = μ. This is then a fact about the system
S. Now assume we measure B. Again, we get a value, say λ, and we have
proved the proposition B = λ, another fact about the system S. We are now,
used to classical physics and classical logic as we are, inclined to say that we
now know the facts A = μ and B = λ and that subsequent measurements could
only confirm these facts. This, however, is according to quantum mechanics not
neccessarily the case. Namely, if there exists an uncertainty relation between A
and B, a subsequent measurement of A may yield a value different from μ. The
measurement of B can invalidate the result of the measurement of A and vice versa.
This is by Heisenberg’s uncertainty principle for instance the case if observable A
is momentum and observable B is position. From the point of view of logic this is
nonmonotonicity. It is via the uncertainty relations that nonmonotonicity enters
quantum logic.

3 CONSEQUENCE REVISION SYSTEMS

3.1 Formal motivation: the Lindenbaum algebra viewed as an opera-
tor algebra

In order to motivate the concepts we are going to introduce we start with an
observation from classical logic. We denote the language by Fml and the classical
consequence relation by �. Given a formula α, we may form a new consequence
relation �α as follows: β �α γ iff α∧β � γ. We get a class of consequence relations
C = {�α| α ∈ Fml}. By the deduction theorem of classical logic we have β �α γ
iff �α β → γ for all �α∈ C. We say that →, i.e. material implication, is an
internalising connective for C. Again, given α ∈ Fml and �β∈ C, we may form the
consequence relation �α∧β . Thus every α ∈ Fml induces an operator α : C → C.
We have α = β iff α and β are classically equivalent. It is readily verified that
the class of operators is partially ordered by: α ≤ β iff α � β. Moreover, it is
routine to verify that this structure forms a Boolean algebra isomorphic to the
Lindenbaum algebra of classical logic. This is our motivating example of what
we will call a consequence revision system. Its main ingredients are a class of
consequence relations C, a function F : Fml × C → C and a connective which is
an internalising connective for all consequence relations of C. In this case this is
material implication. We have �α β → γ iff β �α γ for any α. The structure of
interest is the triple L = 〈C,F ,→〉.
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There is a straightforward generalisation of the above consideration. We could
have started with any consistent set of formulas Σ and the consequence relation
�Σ defined by: α �Σ β iff Σ∪ {α} � β and would by the same procedure as above
have arrived at the structure LΣ = 〈CΣ,FΣ,→〉. Note that, by the deduction
theorem of classical logic, material implication is still the internalising connective
in this more general case.

3.2 The concept of a consequence revision system

We will, in this chapter, be concerned with classes of consequence relations and
must therefore consider conditions these consequence relations are supposed to
satisfy. These conditions go beyond those stated so far. We will see in Section 6
that all these conditions are satisfied in Hilbert space.

We denote the universal (inconsistent) universal consequence relation by 0. We
assume that for the consequence relations we consider this is equivalent to the
existence of a formula α such that |∼ α and |∼ ¬α. Any class of consequence
relations considered is assumed to contain 0. That means we assume for any
|∼�= 0 that for no α ∈ Fml we have |∼ α and |∼ ¬α. If α |∼ β and β |∼ α we
write α ≡ β. Given a class C of consequence relations. Then we write α |∼C β iff
α |∼ β for every |∼∈ C. We say α ≡C β if α |∼C β and β |∼C α. For the concept of
a consequence revision system we impose in addition to the conditions of the last
section the following conditions on the consequence relations.

α ≡ ¬¬α

% ≡ α ∨ ¬α

⊥ ≡ α ∧ ¬α

α ∧ β |∼ α

|∼ α and |∼ β implies |∼ α ∧ β

α ∧ β |∼ β

α |∼ α ∨ β

β |∼ α ∨ β

|∼ α ∨ ¬α

α |∼ %

⊥ |∼ α

¬(α ∧ β) ≡ ¬α ∨ ¬β
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¬(α ∨ β) ≡ ¬α ∧ ¬β

The conditions we imposed so far are ‘local’ in the sense that they are imposed
separately on every single consequence relation belonging to the class considered.
We, moreover, impose the following conditions which have a global character in
the sense that they are related to the class C as a whole.

α |∼C γ, β |∼C γ
α ∨ β |∼C γ

α |∼C β
¬β |∼C ¬α

Let us now define the key concept of a consequence revision system.

DEFINITION 3. Let C be a class of consequence relations over Fml satisfying the
conditions described. Let F be a function

F : Fml × C → C.

We say that F is an action on C iff for every |∼∈ C and α, β ∈ Fml the following
conditions are satisfied.

(i) F (%, |∼) =|∼

(ii) F (α, |∼) = 0 iff |∼ ¬α

(iii) F (β, F (α, |∼)) = F (α, |∼) iff α |∼ β

If F is an action on C, we call the pair 〈C, F 〉 a consequence revision system
(CRS).

Note that by |∼ α we mean % |∼ α. For a given class C of consequence relations
call the formulas α and β C-equivalent, in symbols α ≡C β, if for every |∼∈ C we
have α |∼ β and β |∼ α.
Remark: We are aware of the fact that the way we use the term revision in the
above definition does not fully capture the way it is used in traditional revision
theory (see for instance [Alchourrón et al., 1985]). If at all, the action of formulas
on consequence relations as defined above represents a simple type of revision.
Condition (ii) above says that given a consequence relation |∼ and a formula α
which is inconsistent with |∼ then the result of ‘revising’ |∼ by α is the inconsistent
consequence relation. The corresponding case in traditional revision theory is that
of a theory T and a formula α inconsistent with T . The result of revising T
by α usually denoted by T ∗ α is then, according to traditional revision theory,
not necessarily the inconsistent theory. Since, however, in our most important
examples, namely those arising from Hilbert spaces, we are concerned with a
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process which, in the intuitive sense, deserves to be called revision, we freely use
the term revision. Every α ∈ Fml induces a (revision) operator on C

α : C → C

via
α |∼=: F (α, |∼)

For α |∼ we will also write |∼α.
Denote the class of these operators by Fml. We have α = β iff α ≡C β.

LEMMA 4. For any α ∈ Fml we have α ◦ α = α.

Proof. By Reflexivity we have α |∼ α for every |∼∈ C. Then the claim follows by
condition (iii) of the definition of an action. �

LEMMA 5. Let 〈C, F 〉 be a CRS. Then for any |∼∈ C the following conditions
are equivalent

• (i) |∼ α

• (ii) |∼α=|∼

• (iii) There exists a |∼1∈ C such that |∼1,α=|∼

Proof. For the equivalence of (i) and (ii) observe first that |∼�,α= |∼α. By
condition (iii) of the definition of an action we have that % |∼ α iff |∼α= |∼�,α =
|∼� =|∼. Clearly, (ii) implies (iii). In order to show that (iii) implies (ii) suppose
|∼1,α=|∼. Note that by Reflexivity we have α |∼1 α. Then it follows by condition
(iii) of the definition of an action that |∼α=|∼. �

LEMMA 6. α |∼ β iff |∼α β,

Proof. Suppose α |∼ β. By condition (iii) of the definition of an action this is
equivalent to |∼α,β=|∼α. By (i) of the above lemma this means that |∼α β. �

It follows by the above two lemmas that |∼α=|∼β implies α ≡ β, i.e. α |∼ β and
β |∼ α. We see that α = β iff α ≡C β.

DEFINITION 7. Let 〈C, F 〉 be a CRS. Then define the proposition [α] by

[α] =: {|∼ | |∼ α}

We denote the class of propositions of 〈C, F 〉 by Prop.
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It is routine to verify the statements made in the following lemma.

LEMMA 8. Let 〈C, F 〉 be a CRS. Then

α ≤ β iff [α] ⊂ [β]

α = β iff [α] = [β]

α |∼C β iff [α] ⊂ [β]

α ≡C β iff [α] = [β]

α ≤ β iff ¬β ≤ ¬α

[α] ⊂ [β] iff [¬β] ⊂ [¬α]

The conditions we imposed on the consequence relations guarantee that the
following holds.

PROPOSITION 9. For any CRS both 〈Fml,≤〉 and 〈Prop,⊂〉 are lattices. For
α, β ∈ Fml and [α], [β] ∈ Prop the greatest lower bounds are α ∧ β and [α ∧ β]
respectively. The lowest upper bounds are given by α ∨ β and [α ∨ β] respectively.
The unit and the zero element are given by [%] and [⊥] respectively.

Given a CRS 〈C, F 〉. Then define unary operations
∗ : Fml → Fml and ∗ : Prop → Prop as follows.

α∗ =: ¬α

and
[α]∗ =: [¬α]

Note that in view of Lemma 8 these operations are well defined. Moreover, we
define a mapping ψ : Fml → Prop by

ψ(α) = [α]

again, by Lemma 8 this mapping is well defined. It is routine to verify the fol-
lowing proposition which bears an analogy to the well known fact that in Hilbert
space the lattice of projections and the lattices of closed subspaces are isomorphic
(orthomodular) lattices.

PROPOSITION 10. Let 〈C, F 〉 be a CRS. Then

• 〈Fml,≤,∗ 〉 and 〈Prop,⊂,∗ 〉 are ortholattices.

• ψ is an isomorphism between ortholattices.
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We now define the concept of an internalising connective , which provides the
link between the object level and the meta level. Whenever we use the term
connective we mean a connective definable by the usual propositional connectives
in the following sense. We say that α � β is definable if there exists a formula
of propositional logic ϕ(p, q) with exactly two propositional variables such that
the formula α � β is the result of uniformly substituting α in ϕ for p and β for
q. We say that ϕ defines �. Given two connectives �1 and �2 defined by ϕ1

and ϕ2 respectively. Then we say that �1 and �2 are classically equivalent if
ϕ1 and ϕ2 are classically equivalent. Consider for instance the Sasaki hook �s

which is defined by ϕ(p, q) =: ¬p ∨ (p ∧ q). This says that α �s β is just short
for ¬α∨ (α∧β). The Sasaki hook is classically equivalent to material implication.

DEFINITION 11. Let |∼ be a consequence relation and � a connective such that
α |∼ β iff |∼ α � β. Then we say that � is an internalising connective for |∼.
Given a CRS 〈C, F 〉. Then we say that � is an internalising connective for 〈C, F 〉
iff � is an internalising connective for all |∼∈ C.

PROPOSITION 12. Let 〈C, F 〉 be a CRS and let � be an internalising connective
for 〈C, F 〉. Then the following holds.

• (i) α |∼ (β � γ) iff β |∼α γ

• (ii){|∼| α |∼ β} is a proposition, namely [α � β]

Proof. By Lemma 6 we have α |∼ (β � γ) iff |∼α (β � γ). Since � is internalis-
ing, this is equivalent to β |∼α γ. This proves (i).
(ii) follows from the fact that � is internalising. �

Note that in view of the above we can in case we have an internalising connective
� describe the process of revision simply as follows. Revise the consequence
relation |∼ by α so as to get |∼α. Then γ can be proved from β in |∼α iff β � γ
can be proved from α in |∼.

Given a class of consequence relations C and two connectives �1 and �2. We
then say that �1 and �2 are C-equivalent iff for all formulas α, β ∈ Fml we have
α �1 β ≡C α �2 β.

LEMMA 13. Let 〈C, F 〉 be a CRS. Then any two internalising connectives for
〈C, F 〉 are C-equivalent.

Proof. Let �1 and �2 be two internalising connectives for 〈C, F 〉. By symmetry
it suffices to prove that α �1 β |∼C α �2 β. So let |∼ be any element of C
such that |∼ α �1 β. Since �1 is internalising, we have α |∼ β and, since �2 is
internalising, |∼ α �2 β. �

The above lemma says that the action ‘determines’ the internalising connective
modulo C-equivalence. The next lemma states a sort of converse for this, namely
that the internalising connective ‘determines’ the action.
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LEMMA 14. Let 〈C, F1〉 and 〈C, F2〉 be CRS and let � be a connective which is
internalising for both. Then we have F1 = F2.

The concept of an orthomodular lattice is a dominant concept in virtually all
approaches to quantum logic. It is the quantum logical counterpart of the concept
of a Boolean algebra in classical logic. In our approach, this fact is highlighted
by Theorem 16. For its proof we need the following theorem of Mittelstaedt, the
proof of which can for instance be found in [Engesser et al., 2008].

THEOREM 15 Mittelstaedt. Let L be an orthocomplemented lattice with ortho-
complementation ⊥. Then L is orthomodular if there exists a conditional S(A,B)
such that the following conditions are satisfied.

(i) A ∧ S(A,B) ≤ B

(ii) A ∧ C ≤ B implies A⊥ ∨ (A ∧ C) ≤ S(A,B)

A conditional satisfying the above conditions is unique, namely

S(A,B) = A⊥ ∨ (A ∧B).

L is a Boolean algebra if the above conditions are satisfied by ‘material implication’,
i.e. S(A,B) = A⊥ ∨B.

We denote A⊥ ∨ (A ∧B) by A �s B.

THEOREM 16. Let 〈C, F 〉 be a CRS such that for any |∼∈ C, |∼ α �s β implies
α |∼ β and let � be an internalising connective for 〈C, F 〉. Then 〈Fml,≤,∗ 〉 and
thus 〈Prop,⊂,∗ 〉 are orthomodular lattices and � is C-equivalent to �s.
If �s is C-equivalent to →, i.e. material implication, then the above lattices are
Boolean algebras.

Proof. In view of Proposition 10 it suffices to prove orthomodularity. We first
show that for any |∼∈ C

(1) α ∧ (α � β) |∼ β

By Lemma 6 it suffices to show that |∼α∧(α�β) β. By the same lemma we get
|∼α∧(α�β) α ∧ (α � β) and thus |∼α∧(α�β) α and |∼α∧(α�β) α � β. Moreover,
since � is internalising, we have |∼α∧(α�β),α β. But |∼α∧(α�β),α=|∼α∧(α�β),
since |∼α∧(α�β) α. Now (1) is proved.
It follows that

(2) α ∧ α � β ≤ β

We now prove that the operator α � β has the following property.

(3) α ∧ β ≤ γ implies α �s β ≤ α � γ.
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For this we have to use that every |∼∈ C satisfies Cut. Assume α ∧ β ≤ γ and
let |∼∈ C be such that |∼ α � β. We then have α ∧ β |∼ γ and, since � is
internalising, α |∼ β. Then we get, using Cut, that α |∼ γ and again, since � is
internalising, |∼ (α � γ). Thus α � β ≤ α � γ.
Now, by the hypothesis, |∼ (α �s β implies α |∼ β and thus, since � is inter-
nalising, |∼ (α � β). This means α �s β ≤ α � β. By transitivity we have
α �s β ≤ α � γ.
We have proved that, if α∧β ≤ γ, then |∼ α �s β implies |∼ α � γ for any |∼∈ C,
which means α �s β ≤ α � γ. We now get by (2), (3) and Mittelstaedt’s The-
orem 15 that 〈Fml,≤,∗ 〉 and thus 〈Prop,⊂,∗ 〉 are orthomodular and, moreover,
α � β = α∗ ∨ (α ∧ β). From this it follows that � and �s are C-equivalent.
That the lattices under consideration are Boolean if �s is C-equivalent to material
implication, again, follows by Mittelstaedt’s theorem. �

Remark: Note that in the above proof two ‘logical’ properties of the class C play a
crucial role in establishing the fact that the lattices 〈Fml,≤,∗ 〉 and 〈Prop,⊂ ∗〉
have the algebraic property of being orthomodular. The first ‘logical’ property is
that an internalising connective having a certain property exists for 〈C, F 〉. This
property of an action can, as we will see, be viewed as a generalisation of the
property that the deduction theorem holds. The second crucial property is that
all consequence relations of C satisfy Cut.
For the purposes of this chapter we introduce the following notion of a logic.

DEFINITION 17. Let 〈C, F 〉 be a CRS and � an internalising connective for
〈C, F 〉. Then call the triple L = 〈C, F,�〉 a logic.

We may thus interpret the above theorem as essentially saying that for a CRS
to become a logic (with �s as its internalising connective), it is necessary that the
lattice of operators 〈Fml,≤,∗ 〉 and thus the lattice of propositions 〈Prop,⊂,∗ 〉
have the algebraic property of being orthomodular.
Given a consequence relation |∼, then define C(|∼) =: {α ||∼ α}. We have the

PROPOSITION 18. Let L = 〈C, F,�〉 be a logic. Given |∼1, |∼2∈ C. Then
C(|∼1) = C(|∼2) iff |∼1=|∼2.

Proof. Suppose C(|∼1) = C(|∼2) and let α |∼1 β. It follows, since � is internalising
that |∼1 (α � β) and thus by the hypothesis |∼2 (α � β). Again, since � is
internalising, we get α |∼2 β, thus |∼1⊂|∼2. By symmetry we also get the other
inclusion. �

3.3 Classical logic revisited

Let us now return to our motivating example from classical logic and look at it
from the point of view of the framework developed in the last subsection. Let
Σ ⊂ Fml be any consistent set of formulas. Define the class CΣ,α of consequence
relations as follows. For a given formula α, define �Σ,α by:

β �Σ,α γ iff Σ ∪ {α ∧ β} � γ
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Moreover, define CΣ = {�Σ,α| α ∈ Fml} and the function FΣ : Fml × CΣ → CΣ

by FΣ(α,�Σ,α) �Σ,α∧β . It is immediately verified, using familiar facts of classical
logic such as the deduction theorem, that consequence relations as defined above
satisfy all the conditions we imposed and that 〈CΣ,FΣ〉 is a CRS. We have

�Σ,α=�Σ,β iff Σ � α ↔ β

THEOREM 19. LΣ = 〈CΣ,FΣ,→〉 is a logic. The lattice of operators OLΣ and
thus the lattice of propositions PLΣ are Boolean algebras isomorphic to the Lin-
denbaum algebra B(Σ).

Proof. For the first part of our claim we need to prove that → is an internalising
connective for 〈CL,Σ,FL,Σ〉. But this is exactly what the deduction theorem says:

Σ ∪ {α} � (β → γ) iff Σ ∪ {α ∧ β} � γ

It follows from the fact that → is internalising and Theorem 16 that the lattices
under consideration are Boolean algebras. Moreover, it is straightforward to prove
that the following function ϕ : OLΣ → B(Σ) is well defined and is an isomorphism

ϕ(α) = [α]Σ,

where [α]Σ denotes the (unique) element of the Lindenbaum algebra B(Σ) to which
α belongs. �

Note that this way of establishing the well known fact that the Lindenbaum algebra
is a Boolean algebra is radically different from the usual method.

4 HOLISTIC LOGICS: EVERYTHING IS ENCODED IN EVERYTHING

4.1 What is a physical state from the logical point of view?

In classical physics, the concept of a state is, from the logical point of view, un-
problematic. Logically, in classical physics a state is a complete classical theory.
It can be identified with the set of all physical statements true about the system.
In this sense the state of the system at a certain point in time fully contains all the
information about the system. What in classical mechanics is particularly conve-
nient is the fact that once we know the momenta and the positions of the particles
constituting the system, we know all relevant physical properties. Therefore, from
the logical point of view, a state can be described by a single proposition, namely
by the proposition specifying all values of the momenta and positions at a given
time. From this we can then compute (deduce) the values of all relevant physi-
cal quantities. This is what in classical mechanics is known as phase space. So,
the logical analogue of the concept of a state in classical mechanics is that of a
complete classical theory.

Why can’t we represent the state of a quantum system analogously, namely by
the set of those propositions that are true in this state? In quantum mechanics
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things aren’t that simple. Given a state x in quantum mechanics and a proposition
of the form A = μ, where A is an observable and μ a real number. Suppose we
perform a measurement of the observable A in x. Then the following three cases
may occur. First, the probability to measure μ is 1 in which case we may reasonably
say that A = μ is true (in state x). Second, the probability to get μ as a result of
measurement may be 0. In this case we may reasonably say that A = μ is false or,
equivalently, ¬(A = μ) is true. In quantum mechanics there is, however, a third
case which marks the difference with classical mechanics. Namely, the probability
to get μ may be greater than zero and smaller than one. Let us for the moment call
these propositions contingent with respect to x. It is then obviously insufficient
to represent the state x by the set of those propositions that are true in x because
this does not give us any information about the contingent propositions and their
probabilities. It seems that a proper representation of a quantum state must
specify probabilities. In a purely logical treatment of the concept of a physical
state we should, however, try to avoid specifying probabilities.

We may think of the contingent propositions as coming true rather than being
true in the following sense. Let us think of a proposition α of the form A = μ as
a projection in a Hilbert space H , namely as the projection corresponding to the
eigenspace for eigenvalue μ of observable A. This eigenspace is the set FP (α) of
fixed points of the projection α. We may say then that α is true in x if x ∈ FP (α)
and x is false in x if x ∈ FP (¬α). Otherwise, i.e. in case that α(x) = y �= x and
α(x) �= 0 we may say that α comes true in x. Thus α comes true in x if it is true
in α(x). Hence the representation of the state x must give us information not just
on what is true in x but about what comes true in x. Thus in the quantum case
it is the coming true of a proposition that replaces or generalises the being true
of a proposition in classical physics and classical logic. This is, in the quantum
case, the dynamic analogue of the static concept of being true in classical physics
and classical logic. However, coming true in x involves a different state which
in turn must be specified. Thus, intuitively, we must require the logical entity
representing a state x as also specifying other states, namely all those states in
which a proposition is true when it comes true in state x.

Technically speaking, it is as follows. The logical entity representing a (physical)
state x in classical logic, namely a complete theory, contains all propositions true
in state x. When, however, we are concerned with propositions that act on the
state x or, as we said, have the property of coming true rather than being true
in state x, then the logical representation of x must encode all propositions that
come true at x. In other words, the logical representation of a state x must encode
the action of the propositions on x. The action of a proposition on x, however,
yields a new state y, and therefore the state x must encode other states. So we
inevitably hit here on the phenomenon of encodedness of states in other states
which will play a dominant role in our study of holistic logics introduced in this
chapter. We will see that, there, a state is a logical entity that encodes other states
and also itself.
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4.2 The concept of a holistic logic

Let us start from our motivating Example 3.1. In that example the consequence
relations cannot be ‘characterised’ by a single formula, i.e. given any �α, then
there exists no formula β such that β is provable in �α and only in �α. We take
this observation as a motivation for studying logics in which every consequence
relation has a ‘characterising’ formula.

DEFINITION 20. Given a logic L = 〈C, F,�〉 in the sense of Definition 17. Con-
sider the following conditions.

• For any non-zero |∼0∈ C there exists a formula σ|∼0 such that |∼ σ|∼0 iff
|∼=|∼0. We call σ a pointer to |∼0.

• For every |∼∈ C there exist a formula α such that neither |∼ α nor |∼ ¬α.

We call L a (non-degenerate) holistic logic if both of the above conditions are
satisfied. We call L degenerate holistic if the first condition is satisfied but not
the second. We call L totally degenerate holistic if the first condition is satisfied
but for no consequence relation |∼ does there exist an α such that neither |∼ α nor
|∼ ¬α.

Remarks: Any two pointers σ1 and σ2 to the same consequence relation are
equivalent, i.e. [σ1] = [σ2] We assume the consequence relation referred to later to
be non-zero, i.e. consistent without explicit mentioning.

Intuitively, the second condition says that every consequence relation |∼ must
be genuinely revisable, i.e. we assume that there exists a formula α such that
|∼α is consistent and distinct from |∼. It follows that a (non-degenerate) holistic
logic has at least two consequence relations. We will always use the term ‘holistic’
in the sense of ‘non-degenerate holistic’ except in the theorem which we call the
limiting case theorem. In the case of a totally degenerate holistic logic there is no
genuine revision at all.

In the next subsections we state some salient properties of holistic logics.

4.3 Everything is Encoded in Everything

The findings of this subsection have given rise to the term ‘holistic’. We will see
that, roughly, in a holistic logic every consequence relation is ‘encoded’ in every
other consequence relation and that it also ‘encodes’ itself.

DEFINITION 21. Let L be a holistic logic and let |∼1 and |∼2 be two consequence
relations of L with pointers σ1 and σ2 respectively. Then we say that |∼1 and |∼2

are orthogonal if |∼1 ¬σ2 and |∼2 ¬σ1.

Actually it suffices to require one of the two conditions. It can then be proved
using the second of the global conditions we impose on the consequence relations
that the relation of orthogonality is symmetric.

The following lemma follows from the definition of a pointer and that of a
consequence revision systems.
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LEMMA 22. Let L = 〈C, F,�〉 be a holistic logic, |∼1, |∼2∈ C. If |∼1 and |∼2 are
not orthogonal, then |∼1,σ2=|∼2 and vice versa. If they are orthogonal we have
|∼1,σ2= 0 and vice versa.

DEFINITION 23. Let L be a holistic logic. We call a family (|∼i)i∈I of pairwise
orthogonal consequence relations a basis of L if for any |∼ of L there exists a basis
consequence relation |∼j not orthogonal to |∼. We call L finite-dimensional iff it
admits a finite basis. If L is finite-dimensional we say it has dimension n if it
admits a basis of n elements and no basis of fewer elements.

LEMMA 24. Let L = 〈C, F,�〉 be a holistic logic and |∼∈ C with pointer σ. Then
we have

• (i) |∼ α iff [σ � α] = [%] and thus [¬(σ � α)] = [⊥]

• (ii) |�∼ α iff [σ � α] = [¬σ] and thus [¬(σ � α)] = [σ]

Remark: Note that by the above lemma we have that |∼ α iff |∼ σ � α and |�∼ α iff
|∼ ¬(σ � α). We may therefore view the formula σ � α as expressing provability
of α at the object level and the formula ¬(σ � α) as expressing the unprovability
of α at the object level. In particular we have ‘provability of unprovability’ in the
sense that if |∼ cannot prove α, then it can prove that it cannot prove α.

Proof. (i) For the direction from left to right suppose |∼ α and note that for any
|∼1 orthogonal to |∼1 we have |∼1 σ � α, see Lemma 22. If |�∼1 is non-orthogonal
to |∼, we have by Lemma 22 that |∼ σ � α. Thus [σ � α] = C = [%]. The other
direction is obvious.
(ii) Suppose that |�∼ α. Then, again, we have for every |∼1 orthogonal to |∼ that
|∼1 σ � α. But if |∼1 is not orthogonal to |∼, |∼1 σ � α cannot hold, since this
would imply |∼ α contrary to the hypothesis. Thus [σ � α] = [¬σ]. The other
direction is obvious. �

Remark: Note that the propositions [σ], [¬σ], [%], [⊥] do not depend on the pointer
σ, since any two pointers are equivalent. They form a Boolean algebra in a natural
way.

PROPOSITION 25. Assume the hypotheses of the last lemma and let ϕ and ψ
have the form ϕ = σ � α or ϕ = ¬(σ � α) and ψ = σ � β or ψ = ¬(σ � β).
Then we have

• (i) |∼ ¬ϕ iff |�∼ ϕ

• (ii) |∼ ϕ ∧ ψ iff |∼ ϕ and |∼ ψ

• (iii) |∼ ϕ ∨ ψ iff |∼ ϕ or |∼ ψ

• (iv) |∼ ϕ → ψ iff |�∼ ϕ or |∼ ψ

• (v) ϕ |∼ ψ iff |∼ ϕ → ψ
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• (vi) |∼ ϕ → ψ iff |∼ ϕ � ψ

Proof. For (i) we reason as follows. Let ϕ have the form ϕ = σ � α and suppose
|∼ ¬ϕ. Then, clearly, |�∼ ϕ. Now suppose |�∼ ϕ. By Lemma 24 we then have
[¬ϕ] = [σ]. It follows that |∼ ¬ϕ.

(ii) is a general property of the consequence relations considered. (iii) and (iv)
follow from (i) and the definition of the connectives ∨ and →. In order to see
that (v) holds recall that ϕ |∼ ψ means that |∼ϕ ψ and observe that by Lemma 24
|∼ϕ=|∼, namely if |∼ ϕ, or |∼ϕ= 0, namely if |�∼ ϕ. (vi) follows from (v) and the
fact that � is an internalising connective. �

THEOREM 26. Let L be a holistic logic and |∼1 and |∼2 two non-orthogonal
consequence relations with pointers σ1 and σ2 respectively. Then we have

• (i) α |∼1 β iff |∼2 σ1 � (α � β)

• (ii α |�∼1 β iff |∼2 σ1 � ¬(σ1 � (α � β))

By symmetry the claim also holds if we interchange the indices 1 and 2.

Proof. (i) Recall that |∼1 and |∼2 are non-orthogonal iff |∼2σ1
=|∼1 (and vice

versa). We have α |∼2 β iff |∼2 α � β, since � is internalising. α |∼2 β is thus
equivalent to |∼2σ1

α � β. This is the case iff σ1 |∼2 α � β, which is equivalent
to |∼2σ1 � (α � β).

(ii) Note that α |�∼1 β is by ‘provability of unprovability’ equivalent to |∼1

¬(σ1 � (α � β) and apply (i). �

The above theorem says that non-orthogonal consequence relations of a holistic
logic are ‘encoded’ in each other. This fact is the motivation for calling these
structures holistic.

THEOREM 27. Let L be a holistic logic and |∼1 and |∼2 be any consequence
relations. Denote for convenience of notation the respective pointers by σx and
σy. Suppose |∼3 is non-orthogonal to both |∼1 and |∼2 and denote its pointer by
σz. Then we have

• α |∼2 β iff |∼1 σz � (σy � (α � β))

• α |�∼2 β iff |∼1 σz � (σy � ¬(σy � (α � β)))

Proof. Repeated application of Theorem 26. �

The significance of Theorem 27 is this. For those holistic logics that are pre-
sented by a Hilbert space (see Section 6) it is true that for any two consequence
relations there exists a third consequence relation (superposition) which is non-
orthogonal to both. This means that in such systems any two consequence relations
encode each other. Loosely speaking, every single consequence relation ‘mirrors’
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the whole system. For those readers familiar with Leibniz’s Monadology this may
come as a striking resemblance. In fact, there are several such parallels between
our theory of holistic logics and Leibniz’s famous metaphysical treatise. We elab-
orated on this in the form of a Platonic dialogue in our monograph [Engesser et
al., 2008].

4.4 Self-referential soundness and completeness

In this section we study self-referential soundness and completeness in holistic
logics. This notion was, essentially, first introduced by Smullyan in [Smullyan,
1987] and [Smullyan, 1992] for modal systems. We will prove that the consequence
relations of a holistic logic are self-referentially sound and complete and –apart
from the classical limiting case– nonmonotonic.

We now define a meta language in which we can talk about provability. Intu-
itively, DER(α, β) means “β is derivable from α in |∼”.

DEFINITION 28.

• (i) If α, β are formulas of the object language, then DER(α, β) ∈ ML.

• If α is a formula of the object language and ϕ ∈ ML, then DER(α,ϕ) ∈ ML
and DER(ϕ, α) ∈ ML.

• If ϕ,ψ ∈ ML, then DER(ϕ,ψ) ∈ ML.

• If ϕ,ψ ∈ ML, so are ¬ϕ and ϕ ∧ ψ, ϕ ∨ ψ, ϕ → ψ, where ∨ and → are
defined as usual in terms of ¬ and ∧.

We will use the following abbreviations:

PROV α =: DER(%, α)

CONα =: ¬PROV ¬α

EQUIV (α, β) =: DER(α, β) ∧DER(β, α)

We now define a natural translation of the meta language ML into the object
language. We assume that we have a logic L = 〈C, F,�〉. The following definitions
are relative to a fixed |∼∈ C having a pointer σ to itself. Since any two pointers
are equivalent, they do not ‘depend’ on the pointer chosen.

DEFINITION 29. Let σ be a pointer to |∼. Define the translation ′ as follows.

• (i) If ϕ = DER(α, β) where α and β are formulas of the object language,
ϕ′ =: σ � (α � β).

• (ii) If ϕ = DER(α,ψ), where α is a formula of the object language and
ψ ∈ ML, then ϕ′ =: σ � (α � ψ′); analogously for the case DER(ψ, α).

• (iii) If ϕ = DER(ψ, ρ) with ψ, ρ ∈ ML, ϕ′ =: σ � (ψ′ � ρ′).
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• (iv) If ϕ = ¬ψ, ϕ′ =: ¬(σ � ψ′).

• (v) If ϕ = ψ ∧ ρ, ϕ′ =: ψ′ ∧ ρ′.

We now define the notion of truth for ML in a natural way. This definition
of truth is in the spirit of what Smullyan calls a self-referential interpretation in
the above mentioned books. The essential feature of Smullyan’s notion of self-
referential truth is this. Given a modal system M with the modal operator �.
Then we say that a formula of the form �A is (self-referentially) true with respect
to M iff A is provable in M .

DEFINITION 30.

• (i) If ϕ = DER(α, β), where α, β are formulas of the object language, then
TRUE ϕ iff α |∼ β.

• (ii) If ϕ = DER(α,ψ), where α is a wff of the object language, then TRUE
ϕ iff α |∼ ψ′; analogously for the case DER(ψ, α).

• (iii) If ϕ = DER(ψ, ρ) for ψ, ρ ∈ ML, then TRUE ϕ iff ψ′ |∼ ρ′.

• (iv) If ϕ = ¬ψ, then TRUE ϕ iff not TRUE ψ.

• (v) If ϕ = ψ ∧ ρ, then TRUE ϕ iff TRUE ψ and TRUE ρ.

THEOREM 31. Let L = 〈C, F,�〉 be a holistic logic, |∼∈ C. Then we have for
any |∼∈ C and any ϕ ∈ ML

TRUE ϕ iff |∼ ϕ′

The above theorem expresses self-referential soundness and completeness of the
consequence relations of a holistic logic. The fact that |∼ ϕ′ implies TRUE ϕ ex-
presses self-referential soundness and the fact that TRUE ϕ implies |∼ ϕ′ expresses
self-referential completeness.

Proof. By induction on the construction of the formulas of ML.
(i) Case ϕ = DER(α, β). By definition TRUE ϕ means α |∼ β. This means
|∼ α � β, which is equivalent to |∼ σ � (α � β). But this says that |∼ ϕ′.
(ii) Case ϕ = DER(α,ψ). Suppose TRUE ϕ. By definition this says α |∼ ψ′ or
equivalently |∼ σ � (α � ψ′). But this is exactly what |∼ ϕ′ means.
(iii) The case ϕ = DER(ψ, ρ) is proved analogously to that of (ii).
(iv) Case ϕ = ¬ψ. TRUE ϕ means that not TRUE ψ. By the induction hypothesis
this is equivalent to |�∼ ψ′. This is by Lemma 24 the case iff |∼ ¬(σ � ψ′). But
this says |∼ ϕ′.
(v) Case ϕψ ∧ ρ. We have by definition TRUE ϕ iff TRUE ψ and TRUE ρ. The
latter is by the induction hypothesis equivalent to “|∼ ϕ′ and |∼ ρ′” which in turn
is equivalent to |∼ ϕ′. �
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Remark: Inspecting the translation of the metalanguage into the object language,
we may view the metalanguage as a ‘sublanguage’ of the object language. The
peculiar feature of this ‘sublanguage’ is that it contains a ‘proof operator’ �,
namely �α =: σ � α, as opposed to ‘proof predicates’ which we have in other
languages.

Instead of explicitly defining a metalanguage we could have proceeded as fol-
lows. We could from the outset have confined ourselves to defining a sublanguage
MSL of the object language doing the job of the metalanguage. In this case the
expression DER(α, β) would be an abbreviation for σ � (α � β). We could then
have defined TRUE ϕ directly for the formulas of MSL, i.e. for object formulas.
Theorem 31 would then read: TRUE ϕ iff |∼ ϕ.

The notion of self-referentiality thus becomes fully analogous to that introduced
by Smullyan in connection with self-application of modal systems, where the modal
operator � plays the role of a proof operator.

Example: Let us consider an example and let us for the sake of illustration
verify the truth of the claim made in the above theorem directly. Let α be an
object formula and consider the following meta-statement

ϕ = PROV α → CONα

Its translation is

ϕ′ = (σ � (% � α)) → ¬(σ � (σ � (% � ¬α)))

Let us first verify that TRUE ϕ implies |∼ ϕ′. Assume that not TRUE PROV α.
This means that TRUE¬PROV α, which says that |�∼ α. By Lemma 24 we have
[¬(σ � (% � α))] = [σ]. Thus [ϕ′] = [σ ∨ ...] and we have |∼ ϕ′.
Now assume TRUE CONα, i.e. |�∼ ¬α and thus |�∼ % � ¬α, hence |�∼ σ � (% �

¬α). In this case we have by Lemma 24 [¬(σ � (σ � (% � ¬α)))] = [σ]. Thus
[ϕ′] = [... ∨ σ] and we have |∼ ϕ′.
Let us now verify that |∼ ϕ′ implies TRUE ϕ. So assume |∼ ϕ′. [¬(σ � (σ �

(% � α)))] equals either [⊥] or [σ]. In the first case we have |∼ α. Since |∼ is
assumed to be consistent, we have |�∼ ¬α, which means TRUE CONα. But this
says that TRUE ϕ.
In the second case we have |�∼ α and thus not TRUE PROV α in which case again
TRUE ϕ.

Some examples of true meta-statements

PROPOSITION 32. The following meta-statements are true and thus their trans-
lations are provable.

• ϕ1 = PROV ϕ ↔ PROV PROV ϕ

• ϕ2 = ¬PROV ϕ ↔ PROV ¬PROV ϕ

• ϕ3 = CONϕ → ¬EQUIV (ϕ,¬PROV ϕ)



608 Kurt Engesser, Dov Gabbay and Daniel Lehmann

• ϕ4 = (CONϕ ∧ ¬PROV ϕ) → (PROV ¬PROV ϕ ∧ ¬DER(ϕ,¬PROV ϕ)

• ϕ5 = PROV ϕ ↔ EQUIV (ϕ,¬PROV⊥)

• ϕ6 = PROV ¬PROV⊥

• ϕ6 = (PROV ϕ ∧DER(ϕ,ψ)) → PROV ψ

Comment: The above claims are immediate consequences of Lemma 24. The
reader should note that by self-referential completeness the consequence relation
‘knows’ the facts expressed by the above meta-statements.

Intuitively, ϕ1 expresses ‘provability of provability’: ϕ is provable iff it is prov-
able that ϕ is provable.

ϕ2 expresses ‘provability of unprovability’: ϕ is not provable iff its unprovability
can be proved.

ϕ3 says that if ϕ is consistent, then it is not equivalent to its ‘own unprovability’.
This says that the consequence relations of a holistic logic do not admit Gödel fixed
points.

ϕ4 says the following. Suppose ϕ is consistent and not provable. Then we
know that its unprovability can be proved. What ϕ4 says is that, however, its
unprovability cannot be proved ‘from ϕ’. So, ϕ4 can be rephrased as follows. If ϕ
is consistent and not provable, then its unprovability can be proved but not from
ϕ. In the non-degenerate case, ϕ4 says in particular that the consequence relation
is nonmonotonic, since in the non-degenerate case we assume it to have an object
formula which is consistent and not provable.

ϕ5 says that ϕ is provable iff it is equivalent to the consistency of the consequence
relation.

ϕ6 says that the consequence relation can prove its consistency.
ϕ7 expresses modus ponens for meta-statements. In a sense, the consequence

relation can ‘justify’ the logical rule of modus ponens. Normally, logical rules such
as modus ponens are justified at the meta level as preserving truth. The intuitive
meaning of ϕ7 is that holistic logics can prove its own rules (at the object level).

The case of a complete classical theory

Recall the definition of LΣ = 〈CΣ,FΣ,→〉 from the motivating Example 3.1. We
have the

PROPOSITION 33. Let Σ be a consistent set of formulas. Then LΣ = 〈CΣ,FΣ,
→〉 is holistic iff Σ is a complete classical theory. In this case LΣ is (totally)
degenerate. It has dimension 1 and we have C = {�Σ, 0} and FΣ(α,�Σ) =�Σ if
α ∈ Σ, else 0.

Proof. Observe that for any α such that neither Σ � ¬α nor Σ � α, �Σ is a proper
subset of �Σ, α. So in this case �Σ cannot have a pointer. It follows that �Σ can
have a pointer only if for every α either Σ � α or Σ � ¬α, i.e. Σ is a complete
theory. In fact, in this case any formula α such that Σ � α is a pointer to �Σ �
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4.5 No windows theorems

The local no windows theorem

Given a holistic logic L = 〈C, F,�〉 and |∼∈ C with pointer σ. Then we define
Σ|∼ =: {α ||∼ α}, to be the local theory of |∼. We denote by Σg its global theory,
i.e. Σg =: {α ||∼ α for all |∼∈ C}.
LEMMA 34. Let L = 〈C, F,�〉 be a holistic logic and |∼∈ C with pointer σ.
Suppose |∼ α. Then σ � α ∈ Σg.

Proof. Let |∼1∈ C. Suppose |∼1 is orthogonal to |∼. Then |∼1σ= 0 and, clearly,
σ |∼1 α. Hence |∼1 σ � α. Suppose |∼1 is not orthogonal to |∼. In this case we
have |∼1σ =|∼. Thus |∼1σα. It follows that σ |∼1 α which means |∼1 σ � α. We
have proved that σ � α ∈ Σg. �

In the sequel we will use the terminology ‘the connective � is classically equiv-
alent to material implication’. By this we simply mean that α � β is an abbre-
viation for a formula which is classically equivalent to α → β. For instance the
Sasaki hook �s has this property because α �s β =: ¬α ∨ (α ∧ β) is classically
equivalent to α → β.

LEMMA 35. Let L = 〈C, F,�〉 be a holistic logic and |∼∈ C with pointer σ.
Suppose � is classically equivalent to →, i.e. material implication. Assume that
Σg ∪ {σ} is classically consistent. Then we have |∼ α iff Σg ∪ {σ} � α.

Proof. For the direction from left to right note that |∼ α implies by Lemma 34
that σ � α ∈ Σg and, since � is assumed to be classically equivalent to →, we
have Σg ∪ {σ} � α.
For the other direction suppose Σg∪{σ} � α and assume |�∼ α. We have Σg∪{σ} �
σ → α. On the other hand we have by ‘provability of unprovability’ |∼ ¬(σ � α)
and thus, by the direction already proved, Σg ∪ {σ} � ¬(σ � α) and thus, since
� is classically equivalent to → Σg ∪ {σ} � ¬(σ → α)

Σg ∪ {σ} would thus be classically inconsistent contrary to the hypothesis. It
follows that |∼ α. �

We call the following theorem the (local) no windows theorem because it is rem-
iniscent of what Leibniz in his Monadology says about the monads: “The monads
have no windows”. Again, the interested reader is referred to our monograph
[Engesser et al., 2008].

THEOREM 36. Let L = 〈C, F,�〉 be a non-degenerate holistic logic. Suppose �

is classically equivalent to material implication. Let |∼∈ C with pointer σ. Then
Σg ∪ {σ} is classically inconsistent. Thus, Σ|∼ is classically inconsistent.

Proof. Let σ be any pointer with corresponding |∼∈ C. Assume that Σg ∪ {σ} is
classically consistent. Let α be such that |�∼ ¬α and |�∼ α. By the hypothesis of non-
degeneracy such a formula exists. Then we have by ‘provability of unprovability’
and nonmonotonicity
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(1)|∼ ¬(σ � α)

(2) α |�∼ ¬(σ � α)

We have by Lemma 35

(3) Σg ∪ {σ} � ¬(σ � α)

and thus by classical logic

(4) Σg ∪ {σ} � α → ¬(σ � α)

Since � is classically equivalent to →, it follows that

(5) Σg ∪ {σ} � α � ¬(σ � α)

Again, by Lemma 35 we get

(6) |∼ α � ¬(σ � α)

and thus

(7) α |∼ ¬(σ � α)

But (7) contradicts (2). It follows that Σg ∪ {σ} is classically inconsistent. �

The global no windows theorem

We now restrict ourselves to the case of a finite-dimensional holistic logic. In this
case we can sharpen the no windows theorem so as to get a Kochen-Specker type
result as a special case.

LEMMA 37. Let L be any logic and α such that |�∼ α for every |∼�= 0. Then
α � ⊥ ∈ Σg.

Proof. Given any |∼∈ C and α as in the hypothesis. We claim that |∼α= 0.
For otherwise we would have |∼α α with |∼α �= 0 contrary to the hypothesis. Thus
|∼α ⊥, which means α |∼ ⊥ and thus |∼ α � ⊥. We have proved that α � ⊥ ∈ Σg.

�

The following theorem is a summary of previous results and, moreover, contains
the strengthened version of the no windows theorem.

THEOREM 38. Let L = 〈C,F ,�〉 be a non-degenerate holistic logic. Suppose
that � is classically equivalent to →, i.e. material implication. Then we have the
following

(i) Every consistent |∼∈ C is nonmonotonic.

(ii) For any |∼∈ C, Σ|∼ is classically inconsistent.
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(iii) If L is finite dimensional, then Σg is classically inconsistent. In fact, it
contains a classical contradiction.

Proof. (i) and (ii) summarise results proved earlier.
As to (iii) let (|∼i), i = 1, .., n a basis with pointers σi. The local no windows

Theorem 36 tells that Σ ∪ {σi} is classically inconsistent, i = 1, ..., n. This means
that

Σg � ¬σi, i = 1, ..., n.

Therefore

Σg � ∧
i ¬σi

For any |∼�= 0 we have by the definition of a basis

|�∼ ∧
i ¬σi

For otherwise |∼ would be orthogonal to all elements of the basis contrary to the
definition of a basis. It follows by Lemma 37 that

∧
i ¬σi � ⊥ ∈ Σg

Thus

Σg � ∧
i ¬σi � ⊥

and, since � is classically equivalent to →,

Σg � ∧
i ¬σi → ⊥

It follows that

Σg � ⊥

Thus Σg is classically inconsistent. Then there exists a finite set {α1, ..., αn} ⊂ Σg

which is classically inconsistent. Since Σg is closed under conjunctions we have∧
i αi ∈ Σg

But this conjunction is a classical contradiction. �



612 Kurt Engesser, Dov Gabbay and Daniel Lehmann

4.6 Limiting case theorem

In this section we prove a limiting case theorem for holistic logics. Let us start
with the following observation.

PROPOSITION 39. Given a consequence revision system 〈C, F 〉. Suppose that all
revision operators commute. Then every |∼∈ C is monotonic.

Proof. Assume that all operators commute and let |∼∈ C. Assume |∼ β. This
means |∼β=|∼. Now let α be any formula. Note that |∼α,β β. The above notation
means that |∼ is first revised by α and then by β. Since the revision operators
corresponding to α and β commute, we have |∼β,α=|∼α,β . But |∼β,α=|∼α. It
follows that |∼α β. This says that α |∼ β. We have proved that |∼ is monotonic.

�

It follows from the above lemma that in a consequence revision system contain-
ing nonmonotonic consequence relations we have non-commuting revision opera-
tors, i.e. ‘uncertainty relations’.

LEMMA 40. Let L = 〈C, F,�〉 be a holistic logic such that every |∼∈ C is mono-
tonic. Then for every |∼∈ C we have |∼=�Σ|∼ , i.e. L is totally degenerate.

Proof. Suppose that |∼∈ C is monotonic. Let α be such that |�∼ α. Hence
|∼α �=|∼. By ‘provability of unprovability’ we have that that |∼ ¬(σ � α) and by
monotonicity α |∼ ¬(σ � α). Since [¬(σ � α)] = {|∼, 0}, we have |∼α= 0. But
this says that |∼ ¬α. It follows that for any α we have either |∼ α or |∼ ¬α. We
say that |∼ is complete as a consequence relation.

Recall that by Σ|∼ we denote the set {α ||∼ α}. We have proved that for any α
we have α ∈ Σ|∼ or ¬α ∈ Σ|∼. We prove, moreover, that Σ|∼ has the property that
(α → β) ∈ Σ|∼ iff not α ∈ Σ|∼ or β ∈ Σ|∼. It follows that Σ|∼ is a complete theory.
Suppose that (α → β) ∈ Σ|∼. This says that ¬(α ∧ ¬β) ∈ Σ|∼. By the property
already proved this is equivalent to |�∼ α ∧ ¬β. This is by a general condition
imposed on the consequence relation considered the case iff |�∼ α or |�∼ ¬β which
in turn is equivalent to not α ∈ Σ|∼ or β ∈ Σ|∼.

We now need to prove that |∼=�Σ|∼ . For this we need to see that α |∼ β iff
|∼ ¬α or |∼ β. We have α |∼ β iff |∼α β. Note that |∼α= 0, which means |∼ ¬α
or |∼α=|∼. |∼α β therefore holds iff |∼ ¬α, which says that not α ∈ Σ|∼ or |∼ β,
which means that β ∈ Σ|∼ �

The following theorem is the limiting case theorem for holistic logics.

THEOREM 41. Let L = 〈C, F,�〉 be a holistic logic. Then the following condi-
tions are equivalent.

(i) Every |∼∈ C is monotonic.

(ii) For every |∼∈ C we have |∼=�Σ|∼ .

(iii) All operators commute.
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Proof. (i) implies (ii by Lemma 40. That (ii) implies (iii) from the fact that if (ii)
holds, then the operation is trivial in the sense that F (α, |∼) =|∼ or F (α, |∼) = 0.
From Proposition 39 we see that (iii) implies (i). �

In the limit we have in particular monotonicity , classical consistency and thus
models, a ‘reality outside the logic’.

5 SOME HILBERT SPACE THEORY

For this section we refer the reader also to the chapter “Solèr’s Theorem” by A.
Prestel of this Handbook, in particular for the definition of an orthomodular space.

In quantum mechanics we are (primarily) concerned with infinite-dimensional
Hilbert spaces. We define, for historical reasons, a classical Hilbert lattice to be
a lattice isomorphic to the lattice of closed subspaces of an infinite-dimensional
Hilbert space over the real numbers, the complex numbers or the quaternions.

In this section we give a characterisation of classical Hilbert lattices among
ortholattices which was first presented in [Engesser, 2000]. For this purpose we
need, apart from Piron’s theorem, two deep theorems of modern Hilbert space
theory, namely the theorems of Solèr and Mayet stated below. Mayet’s theorem
heavily relies on a theorem of Wigner, which we state too. In his pioneering
paper [Keller, 1980], Keller settled a long standing question, namely the question
whether every infinite-dimensional orthomodular space is already a Hilbert space.
Keller’s construction of a counter example settled the question in the negative.
This, however, posed another problem, namely the problem of characterising those
orthomodular spaces that are in fact Hilbert spaces. This problem was solved by
Maria Pia Solèr in [Solèr, 1995].

THEOREM 42 Solèr. Let 〈H, 〈, 〉〉 be an orthomodular space over K and let c ∈ K.
Suppose there exists an infinite family (xi)i∈I of pairwise orthogonal elements of
H such that for all i ∈ I, 〈xi, xi〉 = c. Then K must be the (skew-) field of the real
numbers, the complex numbers or the quaternions and H is an infinite-dimensional
Hilbert space.

This way of stating Solèr’s theorem is due to Holland, see [Holland, 1995].

DEFINITION 43. Let H1 and H2 be two orthomodular spaces and σ : H1 → H2

be a bijective map. We say that σ is a semi-unitary map iff the following conditions
are satisfied.

• For any x, y ∈ H1, σ(x + y) = σ(x) + σ(y).

• There exists an automorphism ρ of K such that, for any λ ∈ K and any
x ∈ H1, we have σ(λx) = ρ(λ)(σx).

• There exists λσ ∈ K such that, for any x, y ∈ H1, we have 〈σ(x), σ(y)〉 =
ρ(〈x, y〉)λσ.
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If, moreover, we have ρ = idK and λσ = 1, we say that σ is unitary.

THEOREM 44 Wigner. Let H1 and H2 be orthomodular spaces of dimension at
least 3. Then every ortholattice isomorphism f : Sub(H1) → Sub(H2) is induced
by some semi-unitary map.

We need the following result by Mayet which, essentially, is a consequence of
Wigner’s theorem.

THEOREM 45 Mayet. Let H be an orthomodular space of dimension at least 3
and let X ∈ Sub(H) of dimension at least 2. Let f be an automorphism of Sub(H)
whose restriction to [0, X] is the identical map. Then there exists a unique unitary
operator σ on H inducing f such that the restriction of σ to X is the identical
map.

Solèr’s theorem characterises Hilbert spaces among orthomodular spaces. We
are interested in a characterisation of classical Hilbert lattices among ortholattices.
For this we need Piron’s Representation Theorem.

THEOREM 46 Piron. An ortholattice L of height ≥ 4 is a Hilbert lattice iff it is
atomistic, complete, irreducible, orthomodular and satisfies the covering property.

For more more on this see [Holland, 1995]. The characterisation we give is in
terms of a symmetry property, see [Engesser, 2000].

For a given ortholattice L we call two atoms σ1 and σ2 orthogonal if σ1 ≤ σ⊥
2 .

This relation is readily seen to be symmetric.

DEFINITION 47. Let L be a complete ortholattice and let Δ = (σi)i∈I be an
infinite pairwise orthogonal family of atoms of L. We say that L satisfies the sym-
metry property (synonymously: is symmetric) with respect to Δ iff the following
holds. For any permutation f : I → I there exists an ortholattice automorphism
ρf of L with the following properties.

• ρf extends f , i.e. ρf (σi) = σf(i)) for any i ∈ I.

• If the set J of those elements of I which are left fixed by f is non-empty, ρf

induces the identical map on [0, A], where A denotes the least upper bound
of the family (σj)j∈J .

We say that L is symmetric iff there exists an infinite pairwise orthogonal family
Δ of atoms of L such that L is symmetric with respect to Δ.

We have the following characterisation theorem.

THEOREM 48 Engesser. A Hilbert lattice is a classical Hilbert lattice iff it is
symmetric.

Proof. Let us first verify that for a given infinite-dimensional classical Hilbert
space H, Sub(H) is symmetric. To see this consider an orthonormal basis (xi)i∈I

of H. Then the family of one-dimensional subspaces (〈xi〉)i∈I is an infinite orthog-
onal system of atoms of Sub(H). Let f : I → I be any permutation of I. Recall
that x =

∑
i∈I〈x, xi〉xi. Define the map ϕf as follows. For x =

∑
i∈I〈x, xi〉xi put
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ϕf (x) =:
∑

i∈I〈x, xf−1(i)〉xi. ϕ is well defined. For any i ∈ I we have ϕf (xi) =
xf(i). Moreover, ϕf is unitary, since for any x, y ∈ H we have by Parseval’s iden-
tity 〈ϕf (x), ϕf (y)〉 =

∑
i∈I〈x, xf−1(i)〉〈y, xf−1(i)〉 =

∑
i∈I〈x, xi〉〈y, xi〉 = 〈x, y〉.

Suppose {i | f(i) = i} is non-empty and denote by X the smallest closed sub-
space containing {xi | f(i) = i}. X is the smallest closed subspace containing
{〈xi〉 | f(i) = i} and ϕf induces the identity on X. For the latter claim observe
that ϕf induces the identity on the subspace spanned by {xi | f(i) = i} and and
X is the closure of that subspace. Since ϕf is continuous, it induces the identity
on X too. ϕf thus induces an ortholattice automorphism ρf on Sub(H) such that
for any i ∈ I , ρf (〈xi〉) = 〈xf(i)〉. Clearly, ρf induces the identical map on [0, X].
Thus symmetry of Sub(H) is proved.
For the other direction note that the symmetry property implies infinite height. By
Piron’s Representation Theorem it therefore suffices to show that any orthomodu-
lar space H such that Sub(H) has the symmetry property is an infinite-dimensional
classical Hilbert space. So let (〈xi〉)i∈I be an infinite orthogonal family with re-
spect to which Sub(H) is symmetric. Let i0 ∈ I. For any j ∈ I, i0 �= j consider
the permutation fj of I defined as follows.

fj(i0) = j, fj(j) = i0, fj(i) = i else.

Denote by X the smallest closed closed subspace of X containing 〈xi〉 for all i ∈ I.
X is infinite - dimensional. By symmetry there exists an automorphism ρj of
Sub(H) inducing the identity on [0, X] such that for all i ∈ I, ρj(〈xi〉) = 〈xfj(i)〉.
So, by Mayet’s theorem, ρj is induced by some unitary map ϕj . Put yj =: ϕj(xi0)
for j �= i0 and yi0 = xi0 . Then, since ϕj is unitary, the family (yj)j∈I is a family
as required in Solèr’s theorem. It follows by Solér’s theorem that H must be an
infinite-dimensional classical Hilbert space. �

As a corollary we get the following theorem, which gives another characterisation
of Hilbert spaces among orthomodular spaces.

THEOREM 49. Let 〈H, 〈.〉〉 be an orthomodular space over K. Then the following
conditions are equivalent.

• There exists an infinite family (xi)i∈I of pairwise orthogonal elements of H
and a non-zero c ∈ H such that for all i ∈ I we have 〈xi, xi〉 = c.

• Sub(H) is symmetric.

• H is an infinite–dimensional classical Hilbert space.

6 TOWARDS HILBERT SPACE

Let us in this section come to an idea which is central to the enterprise of this
chapter. In the Introduction we speculated about what logic can do about quantum
mechanics. We said that it would not be our aim to find a new deductive system
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especially suited for reasoning in quantum mechanics, which does not mean that
we would not consider this a reasonable enterprise. Rather we said that we should
look for logical structures implicit in the formalism of quantum mechanics which
could prove useful in the task of trying to understand this very formalism. In
this section we ask the question “Can we cast light on the core concept of the
formalism, namely that of a Hilbert space, using these structures?” This is part
of what in the literature on the foundations of quantum mechanics is sometimes
called the representation enterprise.

6.1 Presenting holistic logics

Let H be an orthomodular space. Sub(H) denotes its the set of closed subspaces
of H. We know that 〈Sub(H),⊂,⊥ 〉 is an orthomodular lattice. Recall that ⊥

means orthogonal complement formation. We will, as we did earlier, use capital
letters A,B, ... for closed subspaces and, if there is no danger of confusion, for the
corresponding projections. Moreover, we use the symbols for Boolean connectives
in connection with closed subspaces, i.e we write A ∧B for A ∩B and we denote
the smallest closed subspace containing the closed subspaces A and B by A ∨B.

Let Fml be the a language propositional logic. Let Ψ : Fml → Sub(H) be
a surjective function such that Ψ(¬α) = Ψ(α)⊥ and Ψ(α ∧ β)) = Ψ(α) ∧ Ψ(β).
Denote the projection corresponding to Ψ(α) by A. Let x ∈ H. Then we define
the consequence relation �x by

α �x,Ψ β iff Ax ∈ Ψ(β).

We will simply write �x if Ψ is clear from the context. Note that �x depends only
on the ray of x, i.e. �x1=�x2 iff the one dimensional subspace 〈x1〉 generated by
x1 is equal to the one dimensional subspace 〈x2〉 generated by x2.
Given an orthomodular space H and a function Ψ as described above, we define

CH,Ψ =: {�x| x ∈ H}.

Let us now define a function that will turn out to be an action on CH,Ψ. Define
FH,Ψ : Fml × CH,Ψ → CH,Ψ by

FH,Ψ(α,�x) =:�Ax.

Note that FH,Ψ is well defined, since 〈x1〉 = 〈x2〉 implies 〈Ax1〉 = 〈Ax2〉.
Recall that the Sasaki hook �s is the connective defined as follows: α � β =:
¬α ∨ (α ∧ β. The following lemma generalises an observation made by Hardegree
in [Hardegree, 1974] in connection with Hilbert spaces.

LEMMA 50. Let H be an orthomodular space, x ∈ H, A,B ∈ Sub(H). Then
Ax ∈ B iff x ∈ A⊥ ∨ (A ∧B)

Proof. First note that the closed subspaces A⊥ and A ∧B are orthogonal. Then
we have A⊥ ∨ (A ∧B) = A⊥ ⊕ (A ∧B).
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For the direction from left to right let x = y + z be the unique decomposition
of x with respect to A and A⊥, i.e. y ∈ A and z ∈ A⊥. We have Ax = y. The
hypothesis says that y ∈ B. Thus y ∈ A ∧B. It follows that x ∈ A⊥ ⊕ (A ∧B).

For the direction from right to left observe A⊥⊕(A∧B) is again an orthomodular
space with the Hermitian form properly restricted. We have thus, in addition to the
above decomposition, a decomposition x = y1 + z1 with y1 ∈ A and z1 ∈ A ∧ B.
Since the decomposition is unique we have y = y1 and z = z1. It follows that
Ax = y = y1 ∈ B. �

THEOREM 51. Let H be an orthomodular space and Ψ a function as described
above. Then LH,Ψ =: 〈CH,Ψ,FH,Ψ,�s〉 is a holistic logic. All consequence rela-
tions satisfy the conditions we impose on consequence relations with the possible
exception of Cut and Cautious Monotonicity. In case H is a Hilbert space all
conditions are satisfied.

The following proof is in case that H is a Hilbert space. Cut and Cautious
Monotonicity work in the Hilbert space case only.

Proof. We first need to verify the conditions imposed on the elements of C. This
is routine for the most part.
Reflexivity is a consequence of the fact that for x ∈ Ψ(α) we have Ax = x.
Let us first verify Cut. So let x ∈ H and assume α ∧ β �x γ and α �x β. α �x β
says that Ψ(α)x ∈ Ψ(β). Moreover, from the above assumptions it follows that
Ψ(α ∧ β)x = Ψ(α)x. By the hypothesis we have Ψ(α ∧ β)x ∈ Ψ(γ) and thus
Ψ(α)x ∈ Ψ(γ). But this means that α �x γ. Thus, Cut is verified.
We now verify Restricted Monotonicity. Assume α �x β and α �x γ. It follows
that Ψ(α)x = Ψ(α ∧ β)x and, since by the hypothesis we have Ψ(α)x ∈ Ψ(γ), we
see that Ψ(α∧β)x ∈ Ψ(γ), which says that α �x γ. Thus Restricted Monotonicity
is verified.
In order to verify the other conditions use that by definition we have Ψ(α ∧ β) =
Ψ(α) ∧ Ψ(β) and Ψ(¬α) = Ψ(α)⊥ and elementary Hilbert space theory.

For the first global condition for instance suppose α |∼CH,Ψ γ and β |∼CH,Ψ γ.
This means Ψ(α) ⊂ Ψ(γ) and Ψ(β) ⊂ Ψ(γ). It is then elementary Hilbert space
theory that Ψ(α ∨ β) ⊂ Ψ(γ). But this says that α ∨ β |∼CH,Ψ γ.

We now prove that FH,Ψ is an action on C. Condition (i) in the definition of
an action is obvious, see Definition 3. Consider condition (ii) in the definition of
an action. Suppose �x ¬α. This is equivalent to x ∈ Ψ(α)⊥, which is the case iff
Ax = 0. But this means �Ax= FH,Ψ(α,�x) = 0.
As to condition (iii) in the definition of an action let FH,Ψ(β, (FH,Ψ(α,�x)) =
FH,Ψ(α),�x). This is the case iff BAx = Ax, which is equivalent to Ax ∈ Ψ(β).
But this says that α �x β.

We still need to prove that �s is internalising for C. Suppose α �x β. By
definition this means that Ax ∈ Ψ(β). By Lemma 50 this is the case iff x ∈
¬A ∨ (A ∧B). But this says �x α �s β.

We still need to see that LH,Ψ is holistic. We need to show that any �x has a
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pointer. Since Ψ is assumed to be surjective, it is easily seen that such a pointer
is given by any formula σ such that Ψ(σ) = 〈x〉. �

We call a logic of the above form an orthomodular space logic. In case case H
is a classical Hilbert space we call LH,Ψ a Hilbert space logic.

6.2 Classical inconsistency in Hilbert space logics

Let us recall here a phenomenon first observed by Kochen and Specker, namely
that Birkhoff-von Neumann quantum logic is in a sense ‘classically inconsistent’.
We will see that this phenomenon is not accidental. In fact, it is a consequence of
the no windows theorem for holistic logics.

We start with the following simple observation. We denote by Hn an n-
dimensional Hilbert space. Let x1, x2 be non-orthogonal and non-colinear vectors
of H2. Let Fml be the language of propositional logic and consider a Hilbert space
logic LH2,Ψ0 such that for the propositional variables p1, p2 we have Ψ0(pi) = 〈xi〉,
i = 1, 2. Consider the formula φ = φ1 ∧ φ2 ∧ φ3 ∧ φ4 such that

φ1 = p1 ∨ p2

φ2 = ¬p1 ∨ p2

φ3 = p1 ∨ ¬p2

φ4 = ¬p1 ∨ ¬p2

It is easily seen that φ is a classical contradiction which is provable in all conse-
quence relations of LH ,Ψ0.

PROPOSITION 52. φ is a classical contradiction and for all consequence relations
|∼ of LH2 ,Ψ0 we have |∼ φ

In the case of three dimensional Hilbert space H the above result is more difficult
to establish. In [Kochen and Specker, 1967] Kochen and Specker presented a
classical tautology the negation of which is provable in all consequence relations
of a Hilbert space logic presented by a three dimensional Hilbert space.

PROPOSITION 53. There exists a classical contradiction α and a Hilbert space
logic LH3,Ψ such that |∼ α for all |∼ of L.

Remark: The formula presented by Kochen and Specker contains 117 variables.
It represents the full space under a certain ‘valuation’ of these variables. It is
important to note that this valuation is such that only compatible elements of
Sub(H3) are combined by the connectives. The following theorem predicts the
existence of a classical contradiction which is a ‘quantum tautology’. It does,
however, not capture the additional property of the Kochen-Specker formula just
mentioned.

THEOREM 54. Let Hbe a finite dimensional orthomodular space and dimH ≥ 2.
Let LH,ψ be a logic presented by H. Then Σg is classically inconsistent.
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COROLLARY 55. Under the above hypotheses there exists a classical tautology φ
such that for all x ∈ H we have �x ¬φ.

Proof. The claim is an immediate consequence of Theorem 51 and the global
no windows theorem 38. Recall that the Sasaki hook is classically equivalent to
material implication and note that holistic logics presented by finite-dimensional
orthomodular spaces are finite dimensional as holistic logics. �

6.3 Symmetry and Hilbert space presentability: A representation the-
orem

In this subsection we are looking for properties characterising Hilbert space logics.
To pose the problem more precisely, let us introduce the following terminology.
Given a logic L = 〈C, F,�〉, a Hilbert space H and a function Ψ → Sub(H) such
that L = LH,Ψ. Then we say that L is presented by H via Ψ. We say that L is
presentable by H if there exists a function Ψ such that L is presented by H via Ψ.
It is our aim to characterise the logics presentable by some Hilbert space H. In
other words, we are looking for necessary and sufficient conditions for a logic L to
be presentable by some Hilbert space H. We will see that, besides some natural
logical conditions, there are two properties essential for the characterisation we
have in mind. The first property is holicity. The second essential property is a
symmetry property. We will call it the symmetry property. These two properties
play a vital role in our characterisation of Hilbert space logics.

LEMMA 56. Let L = 〈C, F,�s〉 be a holistic logic. Then 〈Fml,≤,∗ 〉 and thus
〈Prop,⊂,∗ 〉 are orthomodular, atomistic and irreducible lattices.

Proof. We have orthomodularity by the fact that L is a logic with the Sasaki
hook as its internalising connective and Theorem 16. As to atomicity observe that
the atoms of 〈Prop,⊂,∗ 〉 are of the form [σ|∼].

For irreducibility we need to prove that the centre of that lattice consists of
truth and falsity only. For this it suffices to prove that for every proposition [α]
not representing truth or falsity there exists an atom [σ|∼] such that [α] and [σ|∼] are
not compatible. In the special case of a pointer σ|∼ and a formula α compatibility
says that [σ|∼] ⊂ [α] or [σ|∼] ⊂ [¬α]. Since L is non-trivial, for a given formula α
there exists a |∼o ∈ C such that neither [σ|∼0 ] ⊂ [α] nor [σ|∼0

] ⊂ [¬α] and thus [α]
and [σ|∼0

] are not compatible. �

DEFINITION 57. Let L = 〈C, F,�〉 be a logic.

• We say that L has the upward finiteness property, in brief the uf-property, iff
the following holds: Given a set Σ of formulas. Then there exists a formula
ψ such that σ |∼C ψ for every σ ∈ Σ and the following condition is satisfied.
For any formula ρ such that σ |∼C ρ for every σ ∈ Σ, we have ψ |∼C ρ.

• We say that L has the downward finiteness property, in brief the df-property
iff the following holds:
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Given a set Σ of formulas. Then there exists a formula χ such that χ |∼C σ
for every σ ∈ Σ and the following condition is satisfied. For any formula ρ
such that ρ |∼C σ for every σ ∈ Σ, we have ρ |∼C χ.

• In case that L is holistic we say that L has the covering property iff the
following condition is satisfied. Given a formula α and |∼∈ C such that
|�∼ α. Then for any formula ρ such that α |∼C ρ and ρ |∼C α ∨ σ|∼ we have
ρ ≡C α ∨ σ|∼ or ρ ≡C α

Intuitively we may think of the formulas ψ and χ in the above definition of playing
the role of ‘infinite disjunction’ and ‘infinite conjunction’ of the formulas of Σ. The
properties defined above are such that the following lemma holds.

LEMMA 58. Let L = 〈C, F,�s〉 be a holistic logic having the df, uf and the
covering properties. Then the lattices 〈Fml,≤,∗ 〉 and thus 〈Prop,⊂,∗ 〉 are ortho-
modular, atomic, irreducible, complete lattices having the covering property.

Recall the following observation already made in the proof of Theorem 48.
Let H be a Hilbert space and let (xi)i∈I be a complete orthonormal system of

H. Then any permutation of the system (xi)i∈I , more precisely any permutation
of the index set I, induces a unique unitary transformation on H and thus an
automorphism of the lattice Sub(H). This fact reflects a symmetry property of
Hilbert spaces and in view of Solér’s theorem seems to be at the heart of the
concept of a Hilbert space. It is the above fact that serves us as a motivation for
the concept of a symmetric logic which we will study in the sequel.

DEFINITION 59. Let L be a holistic logic having the properties in the last lemma.
Let Δ = (|∼i)i∈I be an infinite family of consequence relations of L with the
following properties

(i) For i �= j, |∼i and |∼j are orthogonal.

(ii) For any consequence relation |∼ of L there exists an i0 ∈ I such that |∼ and
|∼i0 are not orthogonal.

Then we call Δ a basis for L.

Remark: Intuitively, we may think of a basis Δ of a holistic logic L as follows.
Given any consequence relation |∼ of L. Then there exists a member of Δ in
which |∼ is encoded. The system Δ may thus be viewed as containing the ‘whole
information’ of L.

DEFINITION 60. Let L be a logic as in the last definition and let Δ = (|∼i)i∈I
be a basis for L. We say that L satisfies the symmetry condition with respect to
Δ iff the following holds. Let f : I → I be any permutation of the index set I.
Then there exists an automorphism ϕf of the algebra of propositions of L (and
thus of th algebra of operators) such that

• ϕf ([σi]) = [σf(i)], where (σi)i∈I is any family such that σi is a pointer to |∼i.
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• If the subset J ⊂ I of those elements of I that are left fixed by f is non-empty,
then ϕf induces the identity on [0, A], where A is the smallest proposition
containing [σj ] for all j ∈ J .

We say that L satisfies the (synonymously: is symmetric) iff there exists a basis
Δ for L such that L is symmetric with respect to Δ.

Recall the notation [0, A]. It is the set of all propositions smaller than or equal
to A equipped with a lattice structure in a natural way. The next theorem is
our Representation Theorem. The proof we give can be simplified by making use
of the Theorem 48 characterising classical Hilbert lattices. Essentially, we repeat
the argument in the proof of 48 so as to make this section as self-contained as
possible.

THEOREM 61. Let L = 〈C, F,�s〉 be a logic. Then the following conditions are
equivalent.

(i) L is symmetric.

(ii) There exists an infinite-dimensional classical Hilbert Space H presenting L.

Proof. Most of the work has been done in the proof of Theorem 48. We therefore
give just a sketch of the proof.

For the direction from (ii) to (i) assume that there exists an infinite-dimensional
classical Hilbert space H and a (surjective) function Ψ such that L = LH,Ψ. We
need to verify that L is symmetric. Let (xi)i∈I be a complete orthonormal system
of H. Then Δ = (�xi

)i∈I is a basis for L. Observe that the lattice of propositions
of L and Sub(H) are isomorphic in a canonical way, namely via [α] �→ Ψ(α). Then,
for the proof of the symmetry of L, essentially, use the argument establishing the
symmetry of Sub(H) in the proof of Theorem 48.

For the other direction it is routinely verified that the conditions imposed on
a symmetric logic guarantee that its lattice of propositions PropL has infinite
height and also satisfies the other hypotheses of Piron’s representation Theorem 46.
Therefore there exists an orthomodular space H and an isomorphism Φ : PropL →
Sub(H). Moreover, this lattice is symmetric in the sense of Definition 47. It then
follows by Theorem 48 that H is an infinite-dimensional classical Hilbert space.
We then need to see that H presents L. For this define the function Ψ. Define
Ψ : Fml → Sub(H) by Ψ(α) = Φ([α]) and routinely verify the following:

1. C = CH,Ψ

2. If |∼=�x, then for any α, |∼α= FH,Ψ(α,�x)

�
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A QUANTUM LOGIC OF DOWN BELOW

P. D. Bruza, D. Widdows and J. H. Woods

1 INTRODUCTION

The logic that was purpose-built to accommodate the hoped-for reduction of arith-
metic gave to language a dominant and pivotal place. Flowing from the founding
efforts of Frege, Peirce, and Whitehead and Russell, this was a logic that incorpo-
rated proof theory into syntax, and in so doing made of grammar a senior partner
in the logicistic enterprise. The seniority was reinforced by soundness and com-
pleteness metatheorems, and, in time, Quine would quip that the “grammar [of
logic] is linguistics on purpose” [Quine, 1970, p. 15] and that “logic chases truth
up the tree of grammar” [Quine, 1970, p. 35]. Nor was the centrality of syntax
lost with the Gödel incompleteness results, which, except for the arithmeticization
of syntax, would have been impossible to achieve.

Logic’s preoccupation with language is no recent thing. In Aristotle’s logic of
the syllogism, the target properties of necessitation and syllogistic entailment are
properties of sentences or sets of sentences of Greek. Only with the likes of Peirce
and Frege is the rejection of natural language explicit, each calling for a logic whose
properties would attach to elements of artificial languages, and — after Tarski —
to such elements in semantic relation to non-linguistic set theoretic structures.

It is hardly surprising that mathematical logic should have given such emphasis
to language, given that the motivating project of logic was to facilitate the reduc-
tion of arithmetic to an obviously analytic discipline. Still, it is also worthy of
note that the historic role of logic was to lay bare the logical structure of human
reasoning. Aristotle is clear on this point. The logic of syllogisms would serve as
the theoretical core of a wholly general theory of real-life, two-party argumenta-
tion. Even here, the centrality of language could not be ignored. For one thing,
it was obvious that real-life argumentation is transacted in speech. For a second,
it was widely held (and still is) that reasoning is just soliloquial argumentation
(just as argumentation is held to be reasoning in public — out loud, so to speak).
Given these purported equivalences, reasoning too was thought of as linguistic.

It is convenient to date the birth of modern mathematical logic from the ap-
pearance in 1879 of Frege’s great book on the language of logic, Begriffsschrift.
It is easy to think of logic as having a relatively unfettered and richly progres-
sive course ever since, one in which even brutal setbacks could be celebrated as
triumphs of metalogic. There is, however, much of intervening importance from
1904 onwards, what with developments in intuitionist, modal, many-valued and
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relevant logics, which in retrospect may seem to presage crucial developments in
the second half of that century. Suffice it here to mention Hintikka’s seminal work
on epistemic logic [Hintikka, 1962], which is notable in two important respects.
One is the introduction of agents as load-bearing objects of the logic. The other
is the influence that agents are allowed to have on what the theory is prepared to
count as its logical truths. The logical truths of this system include its indefensible
sentences, where these in turn include sentences which it would be self-defeating
for an agent to utter (e.g., “I can’t speak a single word of English”). It is easy to
see that Hintikka here allows for a sentence to be a truth of logic if its negation
is pragmatically inconsistent. To this extent, the presence of agents in his logic
occasions the pragmaticization of its semantics.

Agents now enter logic with a certain brisk frequency. They are either expressly
there or are looming forces in theories of belief dynamics and situation semantics,
in theories of default and non-monotonic reasoning, and in the incipient stirrings
of logics of practical reasoning. Notable as these developments are, they all lie
comfortably within the embrace of the linguistic presumption. Agents may come
or go in logic, but whether here or there, they are, in all that makes them of
interest to logicians, manipulators of language. What is more, notwithstanding
the presence of agents, these were logics that took an interest in human reasoning
rather than human reasoners. This made for a fateful asymmetry in which what
human reasoners are like (or should be) is read off from what human reasoning is
like (or should be).

It may be said, of course, that this is exactly the wrong way around, that
what reasoning is (or should be) can only be read off from what reasoners are
(and can be). Such a view one finds, for example in [Gabbay and Woods, 2001]
and [Gabbay and Woods, 2003b], among logicians, and, also in the social scientific
literature [Simon, 1957; Stanovich, 1999; Gigerenzer and Selten, 2001b]. Here the
leading idea of the “new logic” is twofold. First, that logic’s original mission as a
theory of human reasoning should be re-affirmed. Second, that a theory of human
reasoning must take empirical account of what human reasoners are like – what
they are interested in and what they are capable of.

It is easy to see that the human agent is a cognitive being, that human beings
have a drive to know. They desire to know what to believe and what to do. And
since, whatever else it is, reasoning is an aid to cognition, a theory of human
reasoning must take into account how beings like us operate as cognitive systems.
Here, too, the empirical record is indispensable. It is the first point of contact
between logic and cognition. In this way symbolic inference becomes “married” to
computations through state (dimensional) spaces motivated from cognition which
may open the door the large-scale operational symbolic inference systems. The
logicians Barwise and Seligman have advocated such a marriage between logic and
cognition [Barwise and Seligman, 1997, p.234]. This bears in an important way
on what we have been calling the linguistic presumption. For if the empirical
record is anything to go on, much of the human cognitive project is sublinguistic,
and inaccessible to introspection. This, the cognition of “down below”, carries
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consequences for the new logic. If logic is to attend to the cognizing agent, it must
take the cognizer as he comes, warts and all. Accordingly, a theory of human
reasoning must subsume a logic of down below.

These days, the logic of down below appears to have a certain memetic status. It
is an idea whose time has come. In addition to the work of Gabbay and Woods, the
idea is independently in play in a number of recent writings. In [Churchland, 1989;
Churchland, 1995] we find a connectionist approach to subconscious abductive
processes (cf. [Burton, 1999]). In a series of papers, Horgan and Tiensen develop
a rules without representation (RWR) framework for cognitive modeling [Hor-
gan and Tienson, 1988; Horgan and Tienson, 1989; Horgan and Tienson, 1990;
Horgan and Tienson, 1992; Horgan and Tienson, 1996; Horgan and Tienson, 1999b;
Horgan and Tienson, 1999a] (Cf. [Guarini, 2001]). Other non-representational ori-
entations include [Wheeler, 2001; Sterelny, 1990; Brooks, 1991; Globus, 1992;
Shannon, 1993; Thelen and Smith, 1993; Wheeler, 1994; Webb, 1994; Beer, 1995]
(Cf. [Wimsatt, 1986] and [Clark, 1997]). A neural symbolic learning systemic
framework is developed in [d’Avila Garcez et al., 2002; d’Avila Garcez and Lamb,
2004] and extended to abductive environments in [Gabbay and Woods, 2005, ch.
6]. Bruza and his colleagues advance a semantic space framework [Bruza et al.,
2004; Bruza and Cole, 2005b; Bruza et al., 2006].

The present chapter is offered as a contribution to the logic of down below.
In the section to follow, we attempt to demonstrate that the nature of human
agency necessitates that there actually be such a logic. The ensuing sections de-
velop the suggestion that cognition down below has a structure strikingly similar
to the physical structure of quantum states. In its general form, this is not an idea
that originates with the present authors. It is known that there exist mathematical
models from the cognitive science of cognition down below that have certain formal
similarities to quantum mechanics. We want to take this idea seriously. We will
propose that the subspaces of von Neumann-Birkhoff lattices are too crisp for mod-
elling requisite cognitive aspects in relation to subsymbolic reasoning. Instead, we
adopt an approach which relies on projections into nonorthogonal density states.
The projection operator is motivated from cues which probe human memory.

2 AGENCY

In this section our task is to orient the logic of down below by giving an overview
of salient features of individual cognitive agency. Investigations of non-monotonic
reasoning (NMR) have successfully provided an impressive symbolic account of
human practical reasoning over the last two and half decades. The symbolic char-
acterization of practical reasoning, however, is only part of the picture. Gärdenfors
[Gärdenfors, 2000, p. 127] argues that one must go under the symbolic level of
cognition. In this vein, he states, “. . . information about an object may be of two
kinds: propositional and conceptual. When the new information is propositional,
one learns new facts about the object, for example, that x is a penguin. When
the new information is conceptual, one categorizes the object in a new way, for
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example, x is seen as a penguin instead of as just a bird”. Gärdenfors’ mention
of “conceptual” refers to the conceptual level of a three level model of cogni-
tion [Gärdenfors, 2000]. How information is represented varies greatly across the
different levels. The sub-conceptual level is the lowest level within which infor-
mation is carried by a connectionist representation. Within the uppermost level
information is represented symbolically. It is the intermediate, conceptual level, or
conceptual space, which is of particular relevance to this account. Here properties
and concepts have a geometric representation in a dimensional space. For example,
the property of “redness” is represented as a convex region in a tri-dimensional
space determined by the dimensions hue, chromaticity and brightness. The point
left dangling for the moment is that representation at the conceptual level is rich in
associations, both explicit and implicit. We speculate that the dynamics of associ-
ations are primordial stimuli for practical inferences drawn at the symbolic level of
cognition. For example, it seems that associations and analogies generated within
conceptual space play an important role in hypothesis generation. Gärdenfors
([Gärdenfors, 2000], p48) alludes to this point when he states, “most of scientific
theorizing takes place within the conceptual level.”

Gärdenfors’ conjecture receives strong endorsement from an account of practi-
cal reasoning developed in [Gabbay and Woods, 2003a; Gabbay and Woods, 2005],
in which reasoning on the ground is understood to function under economic con-
straints. In this essay, our own point of departure is that subsymbolic reasoning
is valuable to human agents precisely for the economies it achieves. It will help
to place this assumption in its proper context by giving a brief overview of our
approach to cognitive agency.

A Hierarchy of Agency Types

It is useful to repeat the point that since reasoning is an aid to cognition, a logic,
when conceived of as a theory of reasoning, must take this cognitive orientation
deeply into account. Accordingly, we will say that a cognitive system is a triple
of a cognitive agent, cognitive resources, and cognitive target performed in real
time. (See here [Norman, 1993; Hutchins, 1995].) Correspondingly, a logic of
a cognitive system is a principled description of conditions under which agents
deploy resources in order to perform cognitive tasks. Such is a practical logic
when the agent it describes is a practical agent.

A practical logic is but an instance of a more general conception of logic. The
more general notion is reasoning that is target-motivated and resource-dependent.
Correspondingly, a logic that deals with such reasoning is a Resource-Target Logic
(RT-logic). In our use of the term, a practical logic is a RT-logic relativized to
practical agents.

How agents perform is constrained in three crucial ways: in what they are
disposed towards doing or have it in mind to do (i.e., their agendas); in what
they are capable of doing (i.e., their competence); and in the means they have for
converting competence into performance (i.e., their resources). Loosely speaking,
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agendas here are programmes of action, exemplified by belief-revision and belief-
update, decision-making and various kinds of case-making and criticism transacted
by argument. 1

Agency-type is set by two complementary factors. One is the degree of command
of resources an agent needs to advance or close his (or its) agendas. For cognitive
agendas, three types of resources are especially important. They are (1) informa-
tion, (2) time, and (3) computational capacity. The other factor is the height of
the cognitive bar that the agent has set for himself. Seen this way, agency-types
form a hierarchy H partially ordered by the relation C of commanding-greater-
resources-in-support-of-higher-goals-than. H is a poset (a partially ordered set)
fixed by the ordered pair 〈C,X〉 of the relation C on the unordered set of agents
X.

Human agency divides roughly into the individual and the institutional. By
comparison, individual agency ranks low in H. For large classes of cases, individ-
uals perform their cognitive tasks on the basis of less information and less time
than they might otherwise like to have, and under limitations on the processing
and manipulating of complexity. Even so, paucity must not be confused with
scarcity. There are lots of cases in which an individual’s resources are adequate
for the attainment of the attendant goal. In a rough and ready way, we can say
that the comparative modesty of an agent’s cognitive goals inoculates him against
cognitive-resource scarcity. But there are exceptions, of course.

Institutional entities contrast with human agents in all these respects. A re-
search group usually has more information to work with than any individual, and
more time at its disposal; and if the team has access to the appropriate com-
puter networks, more fire-power than most individuals even with good PCs. The
same is true, only more so, for agents placed higher in the hierarchy — for cor-
porate actors such as NASA, and collective endeavours such as particle physics
since 1970. Similarly, the cognitive agendas that are typical of institutional agents
are by and large stricter than the run-of-the-mill goals that motivate individual
agents. In most things, NASA aims at stable levels of scientific confirmation, but,
for individuals the defeasibly plausible often suffices for local circumstances.

These are vital differences. Agencies of higher rank can afford to give max-
imization more of a shot. They can wait long enough to make a try for total
information, and they can run the calculations that close their agendas both pow-
erfully and precisely. Individual agents stand conspicuously apart. He must do his
business with the information at hand, and, much of the time, sooner rather than
later. Making do in a timely way with what he knows now is not just the only
chance of achieving whatever degree of cognitive success is open to him as regards
the agenda at hand; it may also be what is needed in order to avert unwelcome
disutilities, or even death. Given the comparative humbleness of his place in
H, the human individual is frequently faced with the need to practise cognitive
economies. This is certainly so when either the loftiness of his goal or the supply of
drawable resources create a cognitive strain. In such cases, he must turn scantness

1Agendas are discussed at greater length in [Gabbay and Woods, 2002].
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to advantage. That is, he must (1) deal with his resource-limits and in so doing (2)
must do his best not to kill himself. There is a tension in this dyad. The pauci-
ties with which the individual is chronically faced are often the natural enemy of
getting things right, of producing accurate and justified answers to the questions
posed by his agenda. And yet, not only do human beings contrive to get most
of what they do right enough not to be killed by it, they also in varying degrees
prosper and flourish. This being so, we postulate for the individual agent slight-
resource adjustment strategies (SRAS), which he uses to advantage in dealing with
the cognitive limitations that inhere in the paucities presently in view. We make
this assumption in the spirit of Simon [1957] and an ensuing literature in psychol-
ogy and economics. At the heart of this approach is the well-evidenced fact that,
for ranges of cases, “fast and frugal” is almost as good as full optimization, and
at much lower cost [Gigerenzer and Selten, 2001a]. We shall not take time here to
detail the various conditions under which individuals extract outcome economies
from resource limitations and target modesty, but the examples to follow will give
some idea of how these strategies work.

Although resource-paucity should not be equated with resource-scarcity, it re-
mains the case that in some sense practical agents operate at a cognitive disadvan-
tage. It is advisable not to make too much of this. What should be emphasized
is that in relation to the cognitive standards that an institutional agent might be
expected to meet, the resources available to a practical agent will typically not en-
able him (or it) to achieve that standard. Whether this constitutes an unqualified
disadvantage depends on the nature of the task the individual has set for him-
self and the cognitive resources available to him. For a practical agent to suffer
an unqualified disadvantage, two factors must intersect in the appropriate way:
his resources must be inadequate for the standard he should hit, in relation to a
goal that has reasonably been set for him. So, the measure of an agent’s cognitive
achievement is a function of three factors: his cognitive goal; the standard required
(or sufficient) for achieving that goal; and the cognitive wherewithal on which he
can draw to meet that standard.

In discharging his cognitive agendas, the practical agent tends to set goals that
he can attain and to be stocked with the wherewithal that makes attainment
possible (and frequent). In the matter of both goals set and the execution of
standards for meeting them, the individual is a satisficer rather than an optimizer.
There are exceptions, of course; a working mathematician won’t have a solution
of Fermat’s Last Theorem unless he has a full-coverage proof that is sound (and,
as it happens, extremely long).

The tendency to satisfice rather than maximize (or optimize) is not what is
distinctive of practical agency. This is a point to emphasize. In most of what
they set out to do and end up achieving, institutional agents exhibit this same
favoritism. What matters — and sets them apart from the likes of us — is not
that they routinely optimize but that they satisfice against loftier goals and tougher
standards.
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Slight-resource Adjustment Strategies

Slight-resource adjustment strategies lie at the crux of the economy of effort, as
Rescher calls it [Rescher, 1996, p.10]. They instantiate a principle of least effort,
and they bear on our tendency to minimize the expenditure of cognitive assets.2We
note here some examples.

Statistical studies such as opinion polls always give results to within a given
level of confidence (e.g., “these predictions are valid to within ±3% with 95%
confidence”), and part of the science of statistics lies in making reliable statements
of this nature given the size of sample taken. Medical tests are often only correct to
a known precision, and given the fequency of false-positives, the result of a positive
test-result is often a further round of more reliable but more invasive tests.

It may be tempting to presume that such knowledge-constrained strategies are
mainly confined to empirical or practical sciences, but this is far from the case. For
example, mathematics is full of rules-of-thumb and famous theorems that reduce
difficult problems to easy ones. These begin for many early students with the
familiar division rules, such as “if a number ends in a 2 or a 5, it is divisible by
2 or 5”, or the more complex “if the alternating sum of the digits of a number is
divisible by 11, the number itself is divisible by 11”. Such results do not produce
the quotient of the division, but they may tell the student whether such a com-
putation is worth the trouble if the goal is to end up with a whole number. More
advanced division properties are embodied in results such as Fermat’s Little The-
orem, which states that if p is prime and 1 ≤ a ≤ p, then ap−1 ∼= 1 (mod p). Like
many important theorems, this only gives necessary but not sufficient conditions
for a statement (in this case, the statement “p is prime”) to be true. However,
if this necessary condition holds for enough values of a, we may conclude that p
is probably prime, which is in fact a strong enough guarantee for some efficient
encryption algorithms. Even in mathematics, often regarded as the most exact
and uncompromising discipline, short-cuts that are close enough are not only im-
portant, they are actively sought after.

2.1 Hasty Generalization

Individual cognitive agents are hasty generalizers, otherwise known as thin-slicers.
Hasty generalization is a SRAS. In standard approaches to fallacy theory and
theories of statistical inference, hasty generalization is a blooper; it is a serious
sampling error. This is the correct assessment if the agent’s objective is to find a
sample that is guaranteed to raise the conditional probability of the generalization,
and to do so in ways that comport with the theorems of the applied mathematics
of chance. Such is an admirable goal for agents who have the time and know-how
to construct, or find samples that underwrite such guarantees. But as J.S. Mill
shrewdly observed, human individuals often lack the wherewithal for constructing
these inferences. The business of sample-to-generalization induction often exceeds

2See here the classic work of George Zipf. [Zipf, 1949].
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the resources of individuals and is better left to institutions. (See [Woods, 2004].)
A related issue, even supposing that the requisitely high inductive standards are
meetable in a given situation in which a practical agent finds himself, is whether it
is necessary or desirable for him (or it) to meet that standard. Again, it depends
on what the associated cognitive goal is. If, for example, an individual’s goal is to
have a reasonable belief about the leggedness of ocelots is, rather than to achieve
the highest available degree of scientific certainty about it, it would suffice for him
to visit the ocelot at the local zoo, and generalize hastily “Well, I see that ocelots
are four-legged”.

2.2 Generic Inference

Often part of what is involved in a human reasoner’s facility with the one-off
generalization is his tendency to eschew generalizations in the form of universally
quantified conditional propositions. When he generalizes hastily the individual
agent is often making a generic inference. In contrast to universally quantified
conditional propositions, a generic claim is a claim about what is characteristically
the case. “For all x, if x is a ocelot, then x is four-legged” is one thing; “Ocelots
are four-legged” is quite another thing [Krifka et al., 1995]. The first is felled by
any true negative instance, and thus is brittle. The second can withstand multiples
of true negative instances, and thus is elastic. There are significant economies in
this. A true generic claim can have up to lots of true negative instances. So it is
true that ocelots are four-legged, even though there are up to lots of ocelots that
aren’t four-legged. The economy of the set-up is evident: With generic claims, it
is unnecessary to pay for every exception. One can be wrong in particular without
being wrong in general.

Generic claims are a more affordable form of generalization than the univer-
sally quantified conditional. This is part of what explains their dominance in the
generalizations that individual agents tend actually to make (and to get right,
or some near thing). It must not be thought, however, that what constitutes the
rightness (or some near thing) of an individual’s hasty generalizations is that when
he generalizes thus he generalizes to a generic claim. Although part of the story,
the greater part of the rightness of those hasty generalizations arises from the fact
that, in making them, an individual typically has neither set himself, nor met,
the standard of inductive strength. This, together with our earlier remarks about
validity, is telling. Given the cognitive goals typically set by practical agents, va-
lidity and inductive strength are typically not appropriate (or possible) standards
for their attainment. This, rather than computational costs, is the deep reason
that practical agents do not in the main execute systems of deductive or inductive
logic as classically conceived.
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2.3 Natural Kinds

Our adeptness with generic inference and hasty generalization is connected to our
ability to recognize natural kinds [Krifka et al., 1995, pp.63–95]. Natural kinds
have been the object of much metaphysical skepticism of late [Quine, 1969], but
it is a distinction that appeals to various empirical theorists. The basic idea is
evident in concepts such as frame [Minsky, 1975], prototype [Rosch, 1978], script
[Schank and Abelson, 1977] and exemplar [Smith and Medin, 1981]. It is possible,
of course, that such are not a matter of metaphysical unity but rather of perceptual
and conceptual organization.

It goes without saying that even when the goal is comparatively modest —
say, what might plausibly be believed about something at hand — not every
hasty generalization that could be made comes anywhere close to hitting even
that target. The (defeasible) rule of thumb is this: The hasty generalizations that
succeed with these more modest goals are by and large those we actually draw
in actual cognitive practice. We conjecture that the comparative success of such
generalizations is that they generalize to generic propositions, in which the process
is facilitated by the agent’s adeptness in recognizing natural kinds. In section 5, we
discuss the extent to which a quantum logical framework provides a more useful
model for adapting to natural kinds than either Boolean set theory or taxonomy.

2.4 Consciousness

A further important respect in which individual agency stands apart from insti-
tutional agency is that human agents are conscious. (The consciousness of insti-
tutions, such as it may be figuratively speaking, supervenes on the consciousness
of the individual agents who constitute them.) Consciousness is both a resource
and a limitation. Consciousness has a narrow bandwidth. This makes most of
the information that is active in a human system at a time consciously unproces-
sible at that time. In what the mediaevals called the sensorium (the collective
of the five senses operating concurrently), there exist something in excess of 10
million bits of information per second; but fewer than 40 bits filter into conscious-
ness at those times. Linguistic agency involves even greater informational entropy.
Conversation has a bandwidth of about 16 bits per second.3

The narrow bandwidth of consciousness bears on the need for cognitive economy.
It helps elucidate what the scarcity of information consists in. We see it explained
that at any given time the human agent has only slight information by the fact
that if it is consciously held information there is a bandwidth constraint which

3[Zimmermann, 1989]. Here is John Gray on the same point: “If we do not act in the way
we think we do, the reason is partly to do with the bandwidth of consciousness — its ability to
transmit information measured in terms of bits per second. This is much too narrow to be able
to register the information we routinely receive and act on. As organisms active in the world,
we process perhaps 14 million bits of information per second. The bandwidth of consciousness
is around eighteen bits. This means that we have conscious access to about a millionth of the
information we daily use to survive” [Gray, 2002, p. 66].
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regulates its quantity. There are also devices that regulate consciously processible
information as to type. A case in point is informational relevance. When H.P.
Grice issued the injunction, “Be relevant”, he left it undiscussed whether such
an imperative could in fact be honoured or ignored by a conscious act of will.
There is evidence that the answer to this question is “No”; that, in lot’s of cases,
the mechanisms that steer us relevantly in the transaction of our cognitive tasks,
especially those that enable us to discount or evade irrelevance, are automatic and
pre-linguistic [Gabbay and Woods, 2003a]. If there is marginal capacity in us to
heed Grice’s maxim by consciously sorting out relevant from irrelevant information,
it is likely that these informational relevancies are less conducive to the closing of
cognitive agendas than the relevancies that operate “down below”. Thus vitally
relevant information often can’t be processed consciously, and much of what can
is not especially vital.4

Consciousness can claim the distinction of being one of the toughest problems,
and correspondingly, one of the most contentious issues in the cognitive sciences.
Since the agency-approach to logic subsumes psychological factors, it is an issue
to which the present authors fall heir, like it or not. Many researchers accept the
idea that information carries negative entropy, that it tends to impose order on
chaos.5 If true, this makes consciousness a thermodynamically expensive state to
be in, since consciousness is a radical suppressor of information. Against this are
critics who abjure so latitudinarian a conception of information [Hamlyn, 1990]
and who remind us that talk about entropy is most assured scientifically for closed
systems (and that ordinary individual agents are hardly that).

The grudge against promiscuous “informationalism”, in which even physics goes
digital [Wolfram, 1984], is that it fails to explain the distinction between energy-
to-energy transductions and energy-to-information transformations [Tallis, 1999,
p. 94]. Also targeted for criticism is the view that consciousness arises from or
inheres in neural processes. If so, “[h]ow does the energy impinging on the nervous
system become transformed into consciousness?” [Tallis, 1999, p. 94].

In the interests of economy, we decline to join the metaphysical fray over con-
sciousness. The remarks we have made about consciousness are intended not as
advancing the metaphysical project but rather as helping characterize the economic
limitations under which individual cognitive agents are required to perform.

Consciousness is tied to a family of cognitively significant issues. This is reflected
in the less than perfect concurrence among the following pairs of contrasts:

1. conscious v unconscious processing
4Consider here taxonomies of vision in which implicit perception has a well-established place

[Rensink, 2000].
5Thus Colin Cherry: “In a descriptive sense, entropy is often referred to as a ‘measure of

disorder’ and the Second Law of Thermodynamics as stating that ‘systems can only proceed to a
state of increased disorder; as time passes, entropy can never decrease.’ The properties of a gas
can change only in such a way that our knowledge of the positions and energies of the particles
lessens; randomness always increases. In a similar descriptive way, information is contrasted, as
bringing order out of chaos. Information, then is said to be ‘like’ negative energy” [Cherry, 1966,
p. 215].



A Quantum Logic of Down Below 635

2. controlled v automatic processing

3. attentive v inattentive processing

4. voluntary v involuntary processing

5. linguistic v nonlinguistic processing

6. semantic v nonsemantic processing

7. surface v depth processing

What is striking about this septet of contrasts is not that they admit of large
intersections on each side, but rather that their concurrence is approximate at
best. For one thing, “tasks are never wholly automatic or attentive, and are
always accomplished by mixtures of automatic and attentive processes” [Shiffrin,
1997, p. 50]. For another, “depth of processing does not provide a promising
vehicle for distinguishing consciousness from unconsciousness (just as depth of
processing should not be used as a criterial attribute for distinguishing automatic
processes . . . ” [Shiffrin, 1997, p. 58]). Indeed “[s]ometimes parallel processing
produces an advantage for automatic processing, but not always . . . . Thoughts
high in consciousness often seem serial, probably because they are associated with
language, but at other times consciousness seems parallel . . .” [Shiffrin, 1997, p.
62].

It is characteristic of agents of all types to adjust their cognitive targets upwards
as the cognitive resources for attaining them are acquired. A practical agent may
take on commitments previously reserved for agents of higher rank if, for example,
he is given the time afforded by a tenured position in a university, the information
stored in the university’s library and in his own PC, and the fire-power of his uni-
versity’s mainframe. In like fashion, institutional agents constantly seek to expand
their cognitive resources (while driving down the costs of their acquisition, storage
and deployment), so that even more demanding targets might realistically be set.
Accordingly, agents tend toward the enhancement of cognitive assets when this
makes possible the realization of cognitive goals previously unattainable (or unaf-
fordable). Asset enhancement is always tied to rising levels of cognitive ambition.
In relation to cognitive tasks adequately performed with present resources, an in-
terest in asset enhancement is obsessive beyond the range of what would count as
natural and proportionate improvements upon what is already adequately dealt
with.

2.5 Subsymbolic reasoning

Practical reasoning is reasoning performed by practical agents, and is therefore
subject to economic constraints. In this connection, we advance the following
conjecture: It may well be that because such associations are formed below the
symbolic level of cognition, significant cognitive economy results. This is not only
interesting from a cognitive point of view, but also opens the door to providing
a computationally tractable practical reasoning systems, for example, operational
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abduction to drive scientific discovery in biomedical literature [Bruza et al., 2004;
Bruza et al., 2006]

The appeal of Gärdenfors’ cognitive model is that it allows inference to be con-
sidered not only at the symbolic level, but also at the conceptual (geometric) level.
Inference at the symbolic level is typically a linear, deductive process. Within a
conceptual space, inference takes on a decidedly associational character because
associations are often based on similarity (e.g., semantic or analogical similarity),
and notions of similarity are naturally expressed within a dimensional space. For
example, Gärdenfors states that a more natural interpretation of “defaults” is to
view them as “relations between concepts”.6 This is a view which flows into the
account which follows: the strength of associations between concepts change dy-
namically under the influence of context. This, in turn, influences the defaults
haboured within the symbolic level of cognition.

It is important to note the paucity of representation at the symbolic level and
reflect how symbolic reasoning systems are hamstrung as a result. In this con-
nection, Gärdenfors ([Gärdenfors, 2000, p. 127]) states, “ ..information about
categorization can be quite naturally transfered to propositional information: cat-
egorizing x as an emu, for example, can be expressed by the proposition “x is an
emu”. This transformation into the propositional form, however, tends to suppress
the internal structure of concepts. Once one formalizes categorizations of objects
by predicates in a first-order language, there is a strong tendency to view the
predicates as primitive, atomic notions and to forget that there are rich relations
among concepts that disappear when put into standard logical formalism.”

The above contrast between the conceptual and symbolic levels raises the ques-
tion as to what are the implications for providing an account of practical reason-
ing. Gärdenfors states that concepts generate “expectations that result in different
forms of non-monotonic reasoning”, which are summarized as follows:

Change from a general category to a subordinate

When shifting from a basic category, e.g., “bird” to a subordinate category, e.g.,
“penguin”, certain default associations are given up (e.g., “Tweety flies”), and new
default properties may arise (e.g., “Tweety lives in Antarctica”).

Context effects

The context of a concept triggers different associations that “lead to non-monotonic
inferences”. For example, Reagan has default associations “Reagan is a president”,
“Reagan is a republican” etc., but Reagan seen in the context of Iran triggers as-
sociations of “Reagan” with “arms scandal”, etc.

6In the theory of Gabbay and Woods, default reasoning is a core slight-resource compensation
strategy.
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The effect of contrast classes

Properties can be relative, for example, “a tall Chihuahua is not a tall dog”
([Gärdenfors, 2000, p. 119]),. In the first contrast class “tall” is applied to Chi-
huahuas and the second instance it is applied to dogs in general. Contrast classes
generate conceptual subspaces, for example, skin colours form a subspace of the
space generated by colours in general. Embedding into a subspace produces non-
monotonic effects. For example, from the fact that x is a white wine and also an
object, one cannot conclude that x is a white object (as it is yellow).

Concept combination

Combining concepts results in non-monotonic effects. For example, metaphors
([Gärdenfors, 2000, p. 130]), Knowing that something is a lion usually leads
to inferences of the form that it is alive, that it has fur, and so forth. In the
combination, stone lion, however, the only aspect of the object that is lion-like is
its shape. One cannot conclude that a stone lion has the other usual properties of
a lion, and thus we see the non-monotonicity of the combined concept.

An example of the non-monotonic effects of concept combination not involving
metaphor is the following: A guppy is not a typical pet, nor is guppy is a typical
fish, but a guppy is a typical pet fish.

In short, concept combination leads to conceptual change. These correspond
to revisions of the concept and parallel belief revisions modelled at the symbolic
level, the latter having received thorough examination in the artificial intelligence
literature.

The preceding characterization of the dynamics of concepts and associated non-
monotonic effects is intended to leave the impression that a lot of what happens
in connection with practical reasoning takes place within a conceptual (geometric)
space, or a space of down-below. What is more, this impression may provide a
foothold towards realizing genuine operational systems. This would require that
at least three issues be addressed. The first is that a computational variant of
the conceptual level of cognition is necessary. Secondly, the non-monotonic effects
surrounding concepts would need to be formalized and implemented. Thirdly,
the connection between these effects and NMR at the symbolic level needs to
be specified. This account will cover aspects related to the first two of these
questions. Computational approximations of conceptual space will be furnished
by semantic space models which are emerging from the fields of cognition and
computational linguistics. Semantic space models not only provide a cognitively
motivated basis to underpin human practical reasoning, but from a mathematical
perspective, they show a marked similarity with quantum mechanics (QM) [Aerts
and Czachor, 2004]. This introduces the tantalizing and unavoidably speculative
prospect of formalizing aspects of human practical reasoning via QM.
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3 SEMANTIC SPACE: COMPUTATIONAL APPROXIMATIONS OF
CONCEPTUAL SPACE

To illustrate how the gap between cognitive knowledge representation and ac-
tual computational representations may be bridged, the Hyperspace Analogue to
Language (HAL) semantic space model is employed [Lund and Burgess, 1996;
Burgess et al., 1998]. HAL produces representations of words in a high dimen-
sional space that seem to correlate with the equivalent human representations.
For example, “...simulations using HAL accounted for a variety of semantic and
associative word priming effects that can be found in the literature...and shed
light on the nature of the word relations found in human word-association norm
data”[Lund and Burgess, 1996]. Given an n-word vocabulary, HAL computes an
n× n matrix constructed by moving a window of length l over the corpus by one
word increment ignoring punctuation, sentence and paragraph boundaries. All
words within the window are considered as co-occurring with the last word in the
window with a strength inversely proportional to the distance between the words.
Each row i in the matrix represents accumulated weighted associations of word i
with respect to other words which preceded i in a context window. Conversely,
column i represents accumulated weighted associations with words that appeared
after i in a window. For example, consider the text “President Reagan ignorant
of the arms scandal”, with l = 5, the resulting HAL matrix H would be:

arms ig of pres reag scand the
arms 0 3 4 1 2 0 5

ig 0 0 0 4 5 0 0
of 0 5 0 3 4 0 0

pres 0 0 0 0 0 0 0
reag 0 0 0 5 0 0 0
scand 5 2 3 0 1 0 4
the 0 4 5 2 3 0 0

Table 1. A simple semantic space computed by HAL

If word precedence information is considered unimportant the matrix S = H +
HT denotes a symmetric matrix in which S[i, j] reflects the strength of association
of word i seen in the context of word j, irrespective of whether word i appeared
before or after word j in the context window. The column vector Sj represents the
strengths of association between j and other words seen in the context of the sliding
window: the higher the weight of a word, the more it has lexically co-occurred with
j in the same context(s). For example, table 2 illustrates the vector representation
for “Reagan” taken from a matrix S computed from a corpus of 21578 Reuters7

7The Reuters-21578 collection is standard test collection used for research into automatic text
classification.
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def calculate hal(documents, n)

HAL = 2DArray.new()

for d in documents {
for i in 1 .. d.len {

for j in max(1,i-n) .. i-1 {
HAL[d.word(i),d.word(j)] += n+1-(i-j)

}}}
return HAL

end

Figure 1. Algorithm to compute the HAL matrix for a collection of documents. It
is assumed that the documents have been pruned of stop words and punctuation.

president (5259), administration (2859), trade (1451), house (1426), bud-
get (1023), congress (991), bill (889), tax (795), veto (786), white (779),
japan (767), senate (726), iran (687), billion (666), dlrs (615), japanese
(597), officials (554), arms (547), tariffs (536) . . .

Table 2. Example representation of the word “Reagan”

news feeds taken from the year 1988. (The weights in the table are not normalized).
Highly weighted associations reflect Reagan in his presidential role dealing with
congress, tax, vetoes etc. In addition, the more highly weighted association reflect
a default-like character, e.g., “president” and “administration”. Associations with
lower weights seem to reflect the trade war with Japan (“japan”, “tariffs”) and the
Iran-contra scandal (“Iran”, “arms”). In other words, the representation of Reagan
represents a mixture of different “senses” of Reagan. This facet is intuitively
similar to the QM phenomenon of a particle being in a state of superposition.

HAL is an exemplar of a growing ensemble of computational models emerging
from cognitive science, which are generally referred to as semantic spaces [Lund
and Burgess, 1996; Burgess et al., 1998; Lowe, 2000; Lowe, 2001; Landauer and
Dumais, 1997; Landauer et al., 1998; Patel et al., 1997; Schütze, 1998; Levy and
Bullinaria, 1999; Sahlgren, 2002]. Even though there is ongoing debate about
specific details of the respective models, they all feature a remarkable level of
compatibility with a variety of human information processing tasks such as word
association. Semantic spaces provide a geometric, rather than propositional, rep-
resentation of knowledge. They can be considered to be approximations of con-
ceptual space proposed by Gärdenfors [Gärdenfors, 2000], and of reasoning down
below as proposed by [Gabbay and Woods, 2003a; Gabbay and Woods, 2005].

Within a conceptual space, knowledge has a dimensional structure. For exam-
ple, the property colour can be represented in terms of three dimensions: hue,
chromaticity, and brightness. Gärdenfors argues that a property is represented as
a convex region in a geometric space. In terms of the example, the property “red”
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is a convex region within the tri-dimensional space made up of hue, chromaticity
and brightness. The property “blue” would occupy a different region of this space.
A domain is a set of integral dimensions in the sense that a value in one dimen-
sion(s) determines or affects the value in another dimension(s). For example, the
three dimensions defining the colour space are integral since the brightness of a
colour will affect both its saturation (chromaticity) and hue. Gärdenfors extends
the notion of properties into concepts, which are based on domains. The concept
“apple” may have domains taste, shape, colour, etc. Context is modelled as a
weighting function on the domains, for example, when eating an apple, the taste
domain will be prominent, but when playing with it, the shape domain will be
heavily weighted (i.e., it’s roundness). One of the goals of this article is to provide
both a formal and operational account of this weighting function.

Observe the distinction between representations at the symbolic and conceptual
levels. At the symbolic level “apple” can be represented as the atomic proposition
apple(x). However, within a conceptual space (conceptual level), it has a repre-
sentation involving multiple inter-related dimensions and domains. Colloquially
speaking, the token “apple” (symbolic level) is the tip of an iceberg with a rich
underlying representation at the conceptual level. Gärdenfors points out that the
symbolic and conceptual representations of information are not in conflict with
each other, but are to be seen as “different perspectives on how information is
described”.

Barwise and Seligman [Barwise and Seligman, 1997] also propose a geometric
foundation to their account of inferential information content via the use of real-
valued state spaces. In a state space, the colour “red” would be represented as
a point in a tri-dimensional real-valued space. For example, brightness can be
modelled as a real-value between white (0) and black (1). Integral dimensions are
modelled by so called observation functions defining how the value(s) in dimen-
sion(s) determine the value in another dimension. Observe that this is a similar
proposal, albeit more primitive, to that of Gärdenfors as the representations cor-
respond to points rather than regions in the space.

Semantic space models are also an approximation of Barwise and Seligman
state spaces whereby the dimensions of the space correspond to words. A word
j is a point in the space. This point represents the “state” in the context of the
associated text collection from which the semantic space was computed. If the
collection changes, the state of the word may also change. Semantic space models,
however, do not make provision for integral dimensions. An important intuition
for the following is the state of a word in semantic space is tied very much with
its “meaning”, and this meaning is context-sensitive. Further, context-sensitivity
will be realized by state changes of a word.

In short, HAL, and more generally semantic spaces, are a promising, prag-
matic means for knowledge representation based on text. They are computational
approximations, albeit rather primitively, of Gärdenfors’ conceptual space. More-
over, due to their cognitive track record, semantic spaces would seem to be a fitting
foundation for considering realizing computational variants of human reasoning.
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Finally, it has been shown that a semantic space is formally a density matrix, a
notion from QM [Aerts and Czachor, 2004; Bruza and Cole, 2005a]. This opens
the door to exploring further connections with QM.

4 BRIDGING SEMANTIC SPACE AND QUANTUM MECHANICS

HAL exemplifies how a semantic space model assigns each word in a given vocab-
ulary a point in a finite dimensional vector space. Lowe [Lowe, 2001] formalizes
semantic space models as a quadruple 〈A,B, F,M〉 where

• B is a set of m basis elements

• A is a function which maps the co-occurrence frequencies between words in
a vocabulary V and the basis elements so each w ∈ V is represented by a
vector (A(b1, w), . . . , A(bm, w))

• F is a function which maps pairs of vectors onto continuous valued quan-
tity. The interpretation of F is often “semantic similarity” between the two
vectors in question.

• M is a transformation which takes one semantic space and maps it into
another, for example via dimensional reduction

A semantic space8 S is an instance of the range of the function A. That is, S is a
m × n matrix where the columns {1, . . . , n} correspond to vector representations
of words. A typical method for deriving the vocabulary V is to tokenize the corpus
from which the semantic space is computed and remove non information bearing
words such as “the”, “a”, etc. The letters u, v, w will be used to identify individual
words.

The interpretation of the basis elements corresponding to the rows {1 . . .m}
depends of the type of semantic space in question. For example, table 3 illustrates
that HAL produces a square matrix in which the rows are also interpreted as rep-
resentations of terms from the vocabulary V . In contrast, a row in the semantic
space models produced by Latent Semantic Analysis [Landauer et al., 1998] cor-
responds to a text item, for example, a whole document, a paragraph, or even a
fixed window of text, as above. The value S[t, w] = x denotes the salience x of
word w in text t. Information-theoretic approaches are sometimes use to compute
salience. Alternatively, the (normalized) frequency of word w in context t can be
used.

For reasons of a more straightforward embedding of semantic space into QM,
we will focus on square, symmetric semantic spaces (m = n). The following draws
from [van Rijsbergen, 2004].

A word w is represented as a column vector in S:
8Bear in mind that the term “space” should not be interpreted as a “vector space”. This un-

fortunate blurring between “matrix” and “space” in the technical sense occurs because “semantic
space” is a term from the cognitive science literature.



642 P. D. Bruza, D. Widdows and J. H. Woods

(1) |w〉 =

⎛⎜⎝ w1

...
wn

⎞⎟⎠
The notation on the LHS is called a ket, and originates from quantum physicist
Paul Dirac. Conversely, a row vector v = (v1, . . . , vn) is denoted by the bra 〈v|.

Multiplying a ket by a scalar α is as would be expected:

(2) α|w〉 =

⎛⎜⎝ αw1

...
αwn

⎞⎟⎠
Addition of vectors |u〉 + |v〉 is also as one would expect. In Dirac notation, the
scalar product of two n-dimensional real9 valued vectors u and v produces a real
number:

(3) 〈u|v〉 =
n∑

i=1

uivi

The outer product |u〉〈u| produces a n × n symmetric matrix. Vectors u and
v are orthogonal iff 〈u|v〉 = 0. Scalar product allows the length of a vector to be
defined: ‖u‖ =

√
〈u|u〉. A vector |u〉 can be normalized to unit length (‖u‖ = 1)

by dividing each of its components by the vector’s length: 1
‖u‖ |u〉.

A Hilbert space is a complete10 inner product space. In the formalization to be
presented in ensuing sections, a semantic space S is an n-dimensional real-valued
Hilbert space using Euclidean scalar product as the inner product.

A Hilbert space allows the state of a quantum system to be represented. It is
important to note that a Hilbert space is an abstract state space meaning QM
does not prescribe the state space of specific systems such as electrons. This is the
responsibility of a physical theory such as quantum electrodynamics. Accordingly,
it is the responsibility of semantic space theory to offer the specifics: In a nutshell,
a ket |w〉 describes the state of “meaning” of a word w. It is akin to a particle
in QM. The state of a word changes due to context effects in a process somewhat
akin to quantum collapse. This in turn bears on practical inferences drawn due to
context effects of word seen together with other words as described above.

In QM, the state can represent a superposition of potentialities. By way of
illustration consider the state σ of a quantum bit, or qubit as:

(4) |σ〉 = α|0〉 + β|1〉
9QM is founded on complex vector spaces. We restrict our attention to finite vector spaces of

real numbers.
10The notion of a “complete” vector space should not be confused with “completeness” in

logic. The definition of a completeness in a vector space is rather technical, the details of which
are not relevant to this account.
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where α2 + β2 = 1. The vectors |0〉 and |1〉 represent the characteristic states, or
eigenstates, of “off” and “on”. Eigenstates are sometimes referred to as pure, or
basis states. They can be pictured as defining orthogonal axes in a 2- D plane:

(5) α|0〉 =
(

0
1

)
and

(6) α|1〉 =
(

1
0

)
The state σ is a linear combination of eigenstates. Hard though it is to conceptu-
alize, the linear combination allows the state of the qubit to be a mixture of the
eigenstates of being “off” and “on” at the same time.

In summary, a quantum state encodes the probabilities of its measurable prop-
erties, or eigenstates. The probability of observing the qubit being off (i.e., |0〉 is
α2). Similarly, β2 is the probability of observing it being “on”.

The above detour into QM raises questions in relation to semantic space. What
does it mean that a word is a superposition? What are the eigenstates of a word?

4.1 Superposed and eigenstates of a word meaning

Consider the following traces of text from the Reuters-21578 collection:

• President Reagan was ignorant about much of the Iran arms scandal

• Reagan says U.S to offer missile treaty

• Reagan seeks more aid for Central America

• Kemp urges Reagan to oppose stock tax.

Each of these is a window which HAL will process accumulating weighted word
associations in relation to the word “Reagan”. In other words, included in the
HAL vector for “Reagan” are associations dealing with the Iran-contra scandal,
missile treaty negotiations with the Soviets, stock tax etc. The point is when HAL
runs over the full collection, the vector representation for “Reagan”is a mixture of
eigenstates, whereby an eigenstate corresponds to a particular “sense”, or “charac-
teristic meaning” of the concept “Reagan”. For example, Reagan, in the political
sense, in the sense dealing with the Iran-Contra scandal, etc. The senses of a con-
cept are equivalent of the eigenstates of a particle in QM [Bruza and Cole, 2005a;
Aerts et al., 2005; Widdows and Peters, 2003].

Consider once again the HAL matrix H computed from the text “President
Reagan ignorant of the arms scandal”. As mentioned before, S = H + HT is a
real symmetric matrix. Consider a set of y text windows of length l which are
centred around a word w. Associated with each such text window j, 1 ≤ j ≤ y,
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is a semantic space Sj . It is assumed that the semantic space is n-dimensional,
whereby the n dimensions correspond to a fixed vocabulary V as above. The
semantic space around word w, denoted by Sw, can be calculated by the sum:

(7) Sw =
y∑

j=1

Sj

The above formula provides a toehold for computing a semantic space in terms
of a sum of semantic spaces; each constituent semantic space corresponding to
a specific sense of the concept w. By way of illustration, Let the concept w be
“Reagan” and assume there are a total of y traces centred on the word “Reagan”, x
of which deal with the Iran-contra issue. These x traces can be used to construct a
semantic space using equation 7. Let Si denote this semantic space. Its associated
probability pi = x

y . Assume the concept w has m senses. As each sense i represents
a particular state of w, each can be represented as a semantic space Si with an
associated probability.

(8) Sw = p1S1 + . . . + pmSm

where p1 + . . . + pm = 1.
This formula expresses that the semantic space around a concept w can be

conceived of as a linear combination of semantic spaces around senses of w. The
formula is intuitively close to an analogous formula from QM whereby a density
matrix can be expressed as a probability mixture of density matrices [Barndorff-
Nielsen et al., 2003, p. 778]. A density matrix corresponding to a superposed state
can be expressed as a weighted combination of density matrices corresponding to
basis states. There is no requirement that the state vectors of the pure states
are orthogonal to one another. This is a very important point. Intuitively, it is
unrealistic to require the senses of a concept to be orthogonal. For this reason, the
term “sense” will be used to denote the basis state of a word meaning, rather than
“eigenstate”, because, in QM, eigenstates are assumed to be mutually orthogonal.

The connection between the notions of semantic space and density matrix have
been detailed elsewhere [Aerts and Czachor, 2004; Bruza and Cole, 2005a]. As
mentioned in the introduction, there are various semantic space models presented
in the literature. Each will involve a different rendering as density matrix. The
method adopted in this account rests on the intuition the ket |ei〉 in each semantic
space Si of equation 8 corresponds to a state vector representing a sense of concept
w. A density matrix ρi can be formed by the product |ei〉〈ei|. Building on this, a
density matrix ρw corresponding to the semantic space Sw can be constructed as
follows.

(9) ρw = p1ρ1 + . . . + pmρm

Importantly, no assumption of orthogonality has been made.
This approach to representing a semantic space in a state contrasts approaches

using the spectral decomposition of the semantic space [Aerts and Czachor, 2004;
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Aerts and Gabora, 2005]. As the semantic space Sw is a symmetric matrix, the
spectral decomposition of singular value decomposition (SVD) allows Sw to be
reconstructed, where k ≤ n:

Sw =
k∑

i=1

|ei〉di〈ei|

=
k∑

i=1

di|ei〉〈ei|

= d1|e1〉〈e1| + . . . + dk|ek〉〈ek|

This equation parallels the one given in equation 9. The singular values di relate to
the probabilities of the associated eigenvectors (eigenstates in QM terminology).
Each eigenstate |ei〉 contributes to the linear combination via the density matrix
|ei〉〈ei|. The eigenstates |ei〉 of Sw should ideally correspond to the senses of word
w. Unfortunately, this does not bear out in practice. A fundamental problem
is that the eigenstates |ei〉 computed by SVD are orthogonal, and in reality the
senses of a word w need not be. (See [Bruza and Cole, 2005a] for more details).

4.2 The collapse of meaning in the light of context

We continue by connecting the above development of quantum mechanics in se-
mantic space to Gärdenfors’ views on the interaction of context and the meaning
of concepts. He states, “The starting point is that, for some concepts, the meaning
of the concept is determined by the context in which it occurs” [Gärdenfors, 2000,
p.119]. Context effects manifest in relation to contrast classes. In the introduction,
the Chihuahua showed how property tall is relative, “a tall Chihuahua is not a
tall dog”. He also illustrates how contrast classes manifest in word combinations.
Consider, “red” in the following combinations, “red book”, “red wine”, “red hair”,
“red skin”, “red soil”. Gärdenfors argues contrast classes generate conceptual sub-
spaces, for example, skin colours form a subspace of the space generated by colours
in general. In other words, each of the combinations involving “red” results in a
separate subspace representing the particular quality of “red”, for example, the
quality of “red” would actually be “purple” when “red” is seen in the context of
“wine”.

The collapse of word meaning can be thought of in terms of the quantum collapse
of the particle but with an important difference: The collapse due to context may
not always result in a basis state because the context may not be sufficient to fully
resolve the sense in question. By way of illustration, consider “Reagan” in the
context of “Iran”. For the purposes of discussion, assume there are two possible
senses. The first deals with the Iran-contra scandal, and the other deals with
hostage crisis at the American embassy in Teheran. The distinction between a
measurement due to context and a physical measurement possibly has its roots
in human memory. Matrix models of human memory also contain the notion
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of superimposed memory states, and it has been argued, “The superposition of
memory traces in a vector bundle resulting from a memory retrieval has often been
considered to be a noisy signal that needs to be ‘cleaned up’ [i.e., full collapse onto
a basis state as in QM]. The point we make here is that this is not necessarily so
and that the superposition of vectors [after retrieval] is a powerful process that
adds to the flexibility of memory processes.” (Emphasis ours) [Wiles et al., 1994].

This distinction requires a less stringent notion of collapse as maintained within
QM. Consider a concept w considered in the light of some context, for example,
other words. The context is denoted generically by X. The effect of context X
is brought about by a projection operator Px. Assuming the density matrix ρw

corresponding to a concept w, the collapse of meaning in the light of context X is
characterized by the following equation:

(10) Pxρw = pρx
w

where p denotes the probability of collapse and ρx
w is the state of w after the

“collapse” of its meaning.
In terms of QM, ρw is an “observable” meaning an observable physical quantity.

An observable is represented by a self-adjoint operator. As ρw is a real symmetric
matrix, it is therefore also a self-adjoint operator. This is consistent with the
second axiom of QM [Byron and Fuller, 1992]. Even though this equation has the
form of an eigenvalue problem, the value p is not an eigenvalue. It is a theorem
that the eigenstates of a self adjoint operator belonging to different eigenvalues
must be orthogonal, a requirement which is too strong for word meanings as was
motivated earlier. Nevertheless, it will be be shown later that p derives from the
geometry of the space as do eigenvalues.

The previous equation is also consistent with the third axiom of QM as the
result of “measurements of the observable [ρw]” is an element of “the spectrum of
the operator”. In our case, the spectrum is specified by the probability mixture
given in equation 9, but more of the flexibility of this equation is exploited than is
the case in QM. The key to this flexibility revolves around the fact that the sum
of density matrices is a density matrix. By way of illustration, equation 9 can be
equivalently written as the probability mixture:

ρw = p1ρ1 + p2ρ2

where p1 + p2 = 1. Let ρ1 correspond to the state of “Reagan” in the context of
“Iran” and ρ2 the state of “Reagan” in all other contexts. Assume, that “Reagan”
is seen in the context of “Iran”. The projection operator Px collapses ρw onto ρ1

with probability p1. Unlike, QM, the state ρ1 is not a basis state but corresponds
to a partially resolved sense. Let the Iran-contra sense be denoted |c〉 and the
Iranian embassy hostage crisis be denoted |h〉. In the light of this example, the
density matrix corresponding to the state after collapse due to “Iran” would be of
the form ρ1 = pc|c〉〈c| + ph|h〉〈h|, where pc + ph = 1.

It has been argued in [Bruza and Cole, 2005a] that in terms of this running
example many would assume the “Iran-contra” sense of “Reagan” when “Reagan”
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is seen in the context of “Iran”. This phenomenon may have its roots in cognitive
economy. Full resolution requires processing, and to avoid this processing, humans
“guess” the more likely sense (In the example, pc happens to be substantially
greater than ph). In other words, we cautiously put forward the conjecture that
collapse of meaning and abductive processes go hand in hand to fully resolve the
sense, i.e., collapse onto a basis state. Even though “full” collapse eventually
results, the process is not direct as is the the case of the collapse in QM.11.

The running example reveals something of the nature of the projection oper-
ator Px. If Px is orthogonal to a sense |ei〉 represented by the density matrix
ρi = |ei〉〈ei|, then Px projects this sense onto the zero vector |0〉. (Note the cor-
responding density matrix is |0〉〈0|). If the projection Px is not orthogonal to a
sense |ei〉, then it has the effect of retrieving those senses out of the combina-
tion expressed in equation 9. This is not unlike the notion of a cue which probes
human memory. Cues can be used to access memory in two ways; via matching
or retrieval processes. Matching entails the “comparison of the test cue(s) with
the information stored in memory” [Humphreys et al., 1989, p 41.]. This process
measures the similarity of the cue(s) and the memory representation. The output
of this process is a scalar quantity (i.e., a single numeric value representing the
degree or strength of the match). Memory tasks which utilise this access proce-
dure include recognition and familiarity tasks. Retrieval involves the “recovery of
qualitative information associated with a cue” [Humphreys et al., 1989, p 141.].
This information is modelled as a vector of feature weights. Retrieval tasks include
free recall, cued-recall, and indirect production tasks.

The intuition we will attempt to develop is that collapse of word meaning due to
context is akin to a cued-recall retrieval operation driven by the projector Px on a
given density matrix corresponding to the state of a word meaning. The probability
of collapse p is a function of the scalar quantity resulting from matching.

In the matrix model of memory [Humphreys et al., 1989] , memory represen-
tations can include items, contexts or, combinations of items and contexts (asso-
ciations). Items can comprise stimuli, words, or concepts. Each item is modelled
as a vector of feature weights. Feature weights are used to specify the degree to
which certain features form part of an item. There are two possible levels of vector
representation for items. These include:

• modality specific peripheral representations (e.g., graphemic or phonemic
representations of words)

• modality independent central representations (e.g., semantic represenata-
tions of words)

In our case, our discussion will naturally focus on the latter due to assumption that
semantic spaces deliver semantic representations of words. For example, the “Rea-

11For a more detailed discussion of how the logic of abduction engages with the cognitive
economy of practical agency, see [Gabbay and Woods, 2005]. For the link between abduction
and semantic space, see [Bruza et al., 2006]
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gan” vector |r〉 from the semantic space Sr illustrates a “modality independent
central representation”.

Context can be conceptualised as a mental representation (overall holistic pic-
ture) of the context in which items, or events have occurred. (e.g., “Reagan” in
the context of “Iran”). Context is also modelled as a vector of feature weights.
Following from this, context is X is assumed to be represented by a ket |x〉. In
the case of the running example, the “Iran” vector |i〉 drawn from the semantic
space Si could be employed as a context vector.

Memories are associative by nature and unique representations are created by
combining features of items and contexts. Several different types of associations
are possible [Humphreys et al., 1989]. The association of interest here is a two
way association between a word |w〉 and a context |x〉. In the matrix model of
memory, an association between context and a word is represented by an outer
product; |w〉〈x|. Seeing a given word (a target) in the context of other words (cue)
forms an association which probes memory. Observe with respect to the running
example how the probe |r〉〈i| embodies both the cue of the probe “Iran” and the
target “Reagan”.

In the light of the above brief digression into a matrix model of human memory,
one possibility is to formalize the projector Px as the probe |w〉〈x|. The object
being probed is a density matrix which is not a superposition of memory traces
but of semantic spaces hinged around a particular word or concept. Equation 8
and its density matrix equivalent (equation 9) reflect this superposition, however
in this case the traces, in their raw form, are windows of text.

In short, viewing the collapse of meaning in terms of retrieval and matching
processes in memory refines the collapse equation 10 as follows. Let |w〉 be a target
concept and |x〉 be the context. Firstly, collapse of meaning is characterized by
projecting the probe into the memory corresponding to the state of the target
word w. The collapse equates with retrieving a new state of meaning reflecting
the change of meaning of w in light of the context.

(11) Pxρw = |w〉〈x|ρw = ex
w

The probability p of collapse is assumed to be a function12 of the match between
the probe and the memory:

(12) p = f(〈x|ρw|w〉)

Motivating the collapse of meaning by means of the matrix model of memory in-
troduces a deviation from orthodox QM. After application of the probe |w〉〈x|,
the the state after the collapse, denoted ρx

w is not guaranteed to be density ma-
trix. This deviation from orthodox QM is not solely a technical issue. It may
well be that there are different qualities of probe. For example, “Reagan” in the
context of “Iran” would intuitively involve a projection of the global “Reagan”

12Further research is needed to provide the specifics of this function which will take into account
issues such as decay processes in memory.
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semantic space onto a subspace dealing with “Iran”. On the other hand, consider
“lion” in the context of “stone”. In this case, the result after the application of
the context would seem to be considerably outside the “lion” space as a “stone
lion” does not share many of the attributes of a living one. It would seem, then, a
projection operator is not the appropriate mechanism, but rather a more general
linear operator which can project “outside” the space. In the latter case, equating
Px with the probe |w〉〈x| is arguably justified as such probes in the matrix model
of memory briefly described earlier are transformations of the space, rather than
projections into it. An alternative view is that “stone lion” is a result of concept
combination and mechanisms other than projection operators are required to suit-
ably formalize it. For example, Aerts and Gabora [Aerts and Gabora, 2005] resort
to tensor products for concept combination. These are slippery issues requiring a
clean distinction between context effects and concept combination. More research
is needed to clarify these issues in relation to a logic of down below.

It remains to provide a characterization of Px as an orthodox projector as typ-
ified by the “Reagan in the context of “Iran” example. In order to do this, the
senses B = {|e1〉, . . . , |em〉} are assumed to form a basis. (The assumption here
is linear independence, which is a weaker assumption than assuming the |ei〉’s
are mutually orthogonal, i.e., an orthonomal basis as is commonly seen in ortho-
dox QM). The set B represents the basis of the space Sw in relation to ρw. Let
Bx = {|x1〉, . . . , |xr〉} and By = {|y1〉, . . . , |ym−r〉} such that Bx ∪ By = B. The
set Bx is the basis of the subspace Sx due to context X. The complementary
space is denoted Sy. By way of illustration in terms of the running example,
Bx = {|x1〉, |x2〉} would corresponds to the two senses of “Reagan” in the context
of “Iran” previously introduced as |ec〉 and |eh〉. Though complementary spaces,
Sx and Sy are not assumed to be orthogonal. Consequently, the projection op-
erator Px is “oblique” rather than orthogonal. Once again, this is a deviation
from orthodox QM, but nevertheless faithful to the underlying intuition behind
projection operators. As stated earlier, the projection operator Px “retrieves” the
relevant senses out of the probability mixture (equation 9), that is Px|xi〉 = |xi〉,
for xi ∈ {|x1〉, . . . , |xr〉}. These are the so called fixed points of the projector
Px. As a consequence, the density matrix form of the fixed points also holds as
Px(|xi〉〈xi|) = (Px|xi〉)〈xi| = |xi〉〈xi|. This establishes that Px will retrieve the
density matrix form of the relevant senses expressed in equation 9.

Bn×m is an n×m matrix with columns

[|x1〉|x2〉 · · · |xr〉||y1〉|y2〉 · · · |ym−r〉] = [Xn×r|Yn×(m−r)]

The projection operator Px retrieves those fixed points relevant to the context.
All other senses are projected onto the zero vector |0〉:

PxB = Px[X|Y ]
= [PxX|PxY ]
= [X|0]
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For the case m = n, the matrix B has an inverse B−1 so the makeup of the
required projection operator is given by:

(13) Px = [X|0]B−1 = B

(
Ir 0
0 0

)
B−1

With an eye on operational deployment on a large scale, a simple algorithmic
construction of Px is based on the intuition that those senses which are not or-
thogonal to the cue should be retrieved from the linear combination of m senses
(equation 9):

Bx = {|ei〉|〈x|ρi|x〉 > 0, 1 ≤ i ≤ m}

(Recall that ρi = |ei〉〈ei|). In terms of the running example, Bx = {|ec〉, |eh〉}, the
two senses relevant to “Reagan” seen in the context of “Iran”.

The scalar 〈x|ρi|x〉 decomposes as follows:

〈x|ρi|x〉 = 〈x|(|ei〉〈ei|)|x〉
= (〈x|ei〉)2

= cos2 θi

= ai

where cos θi is the angle between |x〉 and |ei〉. In the second last line the equivalence
between Euclidean scalar product and cosine was employed due to the vectors
being normalized to unit length. This value reflects how much the given sense is
being activated to the level ai by the cue |x〉. Stated otherwise, ai reflects the
strength with which the sense ρi is aligned with the cue |x〉. All senses |ei〉 in
the basis Bx will have a positive activation value ai. By appropriately scaling the
values ai, the effect of projector Px can now be expressed as a probability mixture:

(14) Pxρw = p1ρ1 + . . . + prρr

where ρi = |ei〉〈ei|, for all |ei〉 ∈ Bx and p1 + . . . + pr = 1. The import of the last
equation is that the effect of the projector Px results in a density matrix.

4.3 The probability of collapse

It is illustrative to examine how in the light of the running example the scalar
value resulting from the matching process determines the probability of collapse
(equation 12). First, the effect of the cue “Iran” via the context vector |i〉 is shown.
The “memory” to be probed derives from the target “Reagan” and is denoted by
the density matrix ρr.

〈i|ρr = 〈i|(p1ρ1 + . . . + pmρm)
= p1〈i|ρ1 + . . . + pm〈i|ρm
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Recall that each of the m constituent density matrices ρi derives from a particular
sense of “Reagan” denoted ei. Therefore the previous equation can be written as,

〈i|ρr = p1〈i|(|e1〉〈e1|) + . . . + pm〈i|(|em〉〈em|)
= p1(〈i|e1〉)〈e1| + . . . + pm(〈i|em〉)〈em|
= p1 cos θ1〈e1| + . . . + pm cos θm〈em|

The salient facet of the last line is those senses that are not orthogonal to the
context vectors will be retrieved (cos θi > 0)and will contribute to the probability
of collapse. This accords with the intuitions expressed in the previous section. In
the running example, these senses were denoted |ec〉 and |eh〉. So,

〈i|ρr = pc cos θc〈ec| + ph cos θh〈eh|

A second aspect of the matching is post multiplying with the target vector
“Reagan”, denoted |r〉:

(pc cos θc〈ec| + ph cos θh〈eh|)|r〉 = pc cos θc(〈ec|r〉) + ph cos θh(〈eh|r〉)
= pc cos θc cosψc + ph cos θh cosψh

= pcmc + phmh

The angles cosψ reflects how strongly the the sense correlates with the given
target. It can be envisaged as a measure of significance of the given sense with
the target |r〉. The scores due to matching of the probe with memory are reflected
by the scalars mc and mh. These are modified by associated probabilities of the
respective senses. Finally, the two terms are added to return a single scalar. The
probability of collapse is assumed to be a function of this value.

4.4 Summary

The preceding development has centred around providing an account of the col-
lapse of meaning in the light of context. It is important that the formalization
rests on non-orthogonal density matrices, which is in contrast to the orthogo-
nal approach used in the SCOP model [Aerts and Gabora, 2005]. The approach
presented here draws inspiration from a cue which probe human memory and de-
scribes collapse of meaning in terms of memory cues. The notion of a “probe” is
not foreign to QM. The most useful probes of the various wave functions of atoms
and molecules are the various forms of spectroscopy. In spectroscopy , an atom
or molecule starting with some wave function (represented by a density matrix) is
probed with light, or some other particle. The light interacts with the molecule
and leaves it in another state. This process is analogous to the probing of memory
just described. Chemical physics also shares another similarity with our account
in the sense that the underlying density matrices cannot be assumed to be or-
thogonal. Nonorthogonal density matrix perturbation theory has arisen to deal
with nonorthogonal density matrices and may turn out to be a relevant area for
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formalizing additional aspects of a logic of “down below”. The analogy should be
mindfully employed, however. Human memory is a vast topic abundant with tex-
ture and nuance, not to mention strident debate. However we feel investigations
into the memory literature can bear further fruit in relation to a QM inspired
account of a logic of “down below”. The matrix model of memory described above
has been extended to provide an account of analogical mapping [Wiles et al., 1994].
In our opinion, it is reasonable to assume that analogical reasoning has roots in
subsymbolic logic. Dunbar [Dunbar, 1999] concludes from cognitive studies that
scientists frequently resort to analogies when there is not a straightforward an-
swer to their current problem. Therefore, analogical reasoning sometimes plays
a crucial role in hypothesis formation which is fundamental to abduction[Gabbay
and Woods, 2005, Chapter 7]. Reasoning, then, becomes highly confounded with
memory processes. Consider the “Tweety” example described earlier. When one
learns that “Tweety is a penguin”, it is debatable whether any reasoning takes
place at all. We would argue that the example can be explained in terms of probes
to memory and the associated dynamics of defaults emerge out of context effects.
We have argued such probes bear a striking similarity to quantum collapse.

5 QUANTUM LOGIC AND CONCEPTUAL GENERALIZATION

A proposal for reasoning at the subsymbolic level must give an account for how
conceptual structures may arise from perceptual observations. For example, in
Word and Object, Quine [Quine, 1960, p. 25] famously challenged philosophers to
give an account for how a hearer might reliably deduce that a speaker who utters
the word “gavagai” upon seeing a rabbit actually means “rabbit”, instead of “part
of a rabbit”, or a member of some other class such as “rabbit or guppy”, or even
“rabbit or Reagan”. In other words, how might a conceptual logic give rise to a
recognition and representation of natural kinds, in such a way that this logic is
cognitively beneficial?

It is known that some logics are more amenable to inductive learning than oth-
ers, and that direct adherence to the Boolean distributive law effectively prevents
the sort of smoothing or closure operations that may lead to the formation of nat-
ural kinds (see [Widdows and Higgins, 2004]). For example, since Boolean logic
is modelled on set theory and the union of the set of rabbits and the set of frogs
is a perfectly well-formed set, the concept “rabbit or guppy” is as natural as the
concept of “rabbit” in Boolean logic. At the other extreme, a single-inheritance
taxonomic logic (based, for example, on phylogenetic inheritance) may overgener-
alize by assuming that the disjunction of “rabbit” and “guppy” must be the lowest
common phylogenetic ancestor “vertebrate”. This would lead also to unfortunate
consequences, such as the presumption that, since a rabbit makes a good pet for
a child and a guppy makes a good pet for a child, any vertebrate makes a good
pet for a child.

Compared with the discrete extreme of Boolean classification, and the oppo-
site extreme of a single-inheritance taxonomy, the vector lattice of quantum logic
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presents and attractive middle ground. There are distinctly well-formed concepts
represented by lines and planes, there is a natural closure or smoothing operator
defined by the linear span of a set, and there is a scope for multiple inheritance
(since a line is contained is many different planes and an m-dimensional subspace is
contained in many m+n-dimensional subspaces). Some practical evidence for the
usefulness of the linear span as a disjunction of two concept vectors was provided
by the experiments in [Widdows, 2003], in which the removal of a pair of concepts
using negated quantum disjunction proved greatly more effective than Boolean
negation at the task of removing unwanted keywords and their synonyms. The ar-
gument that projection onto subspaces of a vector space can be used as a solution
to the age-old problem of learning from incomplete experience has been made one
of the mainstays of Latent Semantic Analysis, by [Landauer and Dumais, 1997]
and others.

It should also be noted that the use of a pure quantum logic for concept gen-
eralization in semantic space leads to problems of its own, as one would expect
with any attempt to apply such a simple mathematical model to a wholesale de-
scription of language. In particular, quantum disjunctions may often overgenerate,
because of the nature of the linear independence and the operation of taking the
linear span. In practice, vectors that are very close to one another in semantic
space may still be linearly independent, and will thus generate a large subspace
that does not reflect that fact that the vectors were in fact drawn from a small
region of this subspace. This danger is illustrated in Figure 2, which depicts two
groups of three vectors in a 3-dimensional vector space. In the left hand picture,
the vectors A, B and C are orthogonal and can be used to generate the whole of
the space. The vectors D, E and F , far from being orthogonal, have high mutual
similarity. However, since these vectors are still linearly independent, they can
still be used to generate the whole of the space. In other words, the quantum
disjunctions A∨B ∨C and D ∨E ∨F are identical. This seems quite contrary to
intuition, which would suggest that the concept D ∨ E ∨ F should be much more
specific than the concept A ∨B ∨ C. A practical drawback of this overgeneration
is that a search engine that used quantum disjunction too liberally would be likely
to generate results that would only be judged relevant by users willing for their
queries to be extrapolated considerably.

There is a natural way to fix this problem in the formalism, and it bears an
interesting relation to the observation that non-orthogonal vectors and subspaces
give rise to subtly related non-commuting density matrices. In the diagram, the
vector E lies nearly but not quite upon the line from D to F . To simplify the
description of the local situation, a reasonable approximation would be to represent
E by its projection onto the subspace D ∨ F . This would amount to making
the assertion “E is between D and F”, which might not be exact, but from a
human standpoint is certainly true. To generalize from this example, it would
be reasonable to say that a vector B can be approximately derived from a set
A1, . . . , Aj if distance between B and the projection of B onto A1 ∨ . . . ∨ Aj is
small. Defining ‘small’ in practice is a subtle challenge, and to some extent is
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Figure 2. Orthogonal vectors in 3-space compared with 3 similar vectors.
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in the eye of the beholder — to some, Liszt is adequately represented as being
somewhere between Beethoven and Brahms, but to some, his music has special
qualities independently of both.

Such a discussion suggest that one of the requirements for a working quantum
logic of semantic space is the ability to model automatically the “natural dimen-
sion” of a sample of points. This problem will have many variants, and different
solutions will be appropriate for different users. However, there are some general
techniques such as the Isomap algorithm [Tenenbaum et al., 2000] that provide
dimensional decompositions of this sort, even for samples of points taken from
nonlinear submanifolds of vector spaces. From a cognitive point of view, such a
dimensional simplification is to be expected and indeed preferred. From micro-
scopic observation and subsequent progress in chemistry and physics, we know
that the surface of a wooden tabletop is a complex 3-dimensional structure, which
may have a detailed fractal surface and according to some physical theories may
consist of particles that need several more dimensions to be represented correctly.
However, even to those humans who are well versed in such scientific precision, the
tabletop is for all practical purposes a 2-dimensional structure, and you can cer-
tainly describe the whereabouts of any perceptual object on the table at a relevant
scale of reference by giving two coordianates.

The challenges for adapting the vector space model to describing semantics and
perception do not end here, of course. Many of the vector space axioms (such as
the underlying assumption that vectors form a commutative group under addition)
are seriously off the mark when viewed from a cognitive perspective. The purpose
of this discussion is not to convince the reader that these problems have been
completely solved, but that the immediate drawbacks of a naive implementation
of quantum logic and concept formation in semantic space can be anticipated
by a more careful consideration of the cognitive and logical goals of the system,
whereupon plausible solutions can be found using existing mathematics.

6 SUMMARY AND CONCLUSIONS

A logic that is shaped by the empirical make-up of reasoning agents is subject to
the same experimental challenges and limitations that affect the investigation of
human subjects quite generally. The interior of the atom is, in well-known ways,
difficult to access, but the interior of the reasoning agent throws up accessibility
difficulties of an entirely different order. Experimental psychology, to take the
most obvious example, has had to learn how to flourish despite the collapse of
behaviourism and introspectivism. A great part of its success, such as it is, is owed
to the skill with which it organizes its theoretical outputs around strongly plausible
conjectures. In a rough and ready way, conjecturing is what one does in the absence
of observation. In this regard, we are reminded of the grand conjecture with which
Planck launched quantum theory itself, an idea whose immediate import in 1900
was the unification of the laws of black body radiation. In taking a quantum
approach to the logic of reasoning down below, two sources of conjecture merge.
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In probing the down below, we conjecture in ways that incorporate the conjectures
of quantum mechanics. Of course, by now there is ample empirical confirmation of
quantum theory, as well as encouraging empirical support for cognitive psychology
in some of its manifestations, but neither of those desirable outcomes would have
been possible without the founding conjectures around which the original theories
organized themselves. It is the same way with the logic of down below. A reliable
empirical understanding of it has no chance of occurring spontaneously. It must
be preceded by theoretical speculation. Eddington once quipped that theories are
“put-up jobs”, anticipating Quine’s crack that theories are “free for the thinking
up”. These, of course, are jokes. The fact is that the practice of scientific conjecture
is respectable to the degree that it conforms to the canons of abductive logic. One
of the marks of an abductively successful conjecture is its narrative coherence
with what is known observationally about the subject in question. [Thagard,
1989],[Gabbay and Woods, 2005]. Smooth narratives identify possible scenarios.
This is how we find ourselves positioned here. We have sketched what we take
to be a coherent narrative of the quantum character of reasoning down below.
To the extent that we have succeeded in this, we have outlined a possible theory
for such reasoning. What remains now is to sort out ways in which the theory
might be made responsive to observational test. Initial steps in this direction have
been made in the realm of text-mining and search, a field which benefits from the
comparative ease of empirical measurement and hypothesis testing. Whether the
theory provides a truly useful model of cognitive processes will require different
observational methods.
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A COMPLETENESS THEOREM OF
QUANTUM SET THEORY

Satoko Titani

1 INTRODUCTION

In [1936], Birkhoff and von Neumann introduced a new mathematical formulation
of quantum physics in the language of lattice, where the structure of propositions
was represented as the algebraic structure of lattices and considered as logic.

By the formulation, quantum propositions are represented as projections on
a Hilbert space H, and quantum physical system is represented as complete or-
thomodular lattice P (H) consisting of all projections on a Hilbert space H, or
equivalently, consisting of all closed subspaces of H. We call the logic which cor-
responds to complete orthomodular lattices a quantum logic.

In Titani [1999], we formulated a lattice valued logic corresponding to general
complete lattices. A complete lattice is an object of mathematics which is devel-
oped in the classical set theory based on the classical logic. We fix a universe V
of the classical set theory, and construct a lattice valued universe V L in V . The
lattice valued logic is a logic in the universe V L. Let (L,�,∧,∨) be a complete
lattice in the universe V of classical set theory. The relation � is represented as
an operator → on L :

(a → b) =

{
1 if a � b

0 otherwise,
(1)

where 1, 0 are the top and bottom of the lattice. We introduced the logical operator
→ corresponding to the algebraic operator →. Either algebraically or logically,
the operator → is called a basic implication. Thus, primitive logical symbols of
the lattice valued logic are →, ∧, ∨,¬ ∀x, and ∃x. The completeness of the lattice
valued logic was proved by Takano [Takano, 2002].

In the present paper, first we formulate a quantum logic QL as the lattice valued
logic with additional logical operator ⊥ and logical axioms.

Takeuti proposed a quantum set theory developed in P (H)-valued universe
V P (H) in [Takeuti, 1978] and [Takeuti, 1981], where he defined an implication in
terms of operators ∧, ∨, ⊥. We denote his implication by →T to distinguish from
the basic implication, and call it local implication :

ϕ →T ψ
def⇐⇒ ϕ⊥ ∨ (ψ ∧ ϕ).

HANDBOOK OF QUANTUM LOGIC AND QUANTUM STRUCTURES: QUANTUM LOGIC
Edited by K. Engesser, D. M. Gabbay and D. Lehmann
© 2009 Elsevier B.V. All rights reserved
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The corresponding operator →T on an orthomodular lattice, defined by (a →T

b) def= a⊥ ∨ (a ∧ b) is an implication in the sense that :

a ∧ (a →T b) � b. (2)

However,
a ∧ b � c =⇒ a � (b →T c) (3)

does not hold generally. (3) holds if a, b are compatible, i.e. a |◦b (cf. Definition 4).
On the other hand,

a ∧ b � c =⇒ a � (b → c) (4)

holds if a is global (i.e. 1 or 0). We use both of → and →T to develop a quantum
set theory. → is global and →T is local, in the sense that:

(a → b) =
∨

{c∈{1, 0} | a ∧ c � b}, (a →q b) =
∨

{c | a |◦c, a ∧ c � b}.

REMARK 1. On a complete orthomodular lattice Q, we could interprete the basic
implication of QL as →z defined by

(a →z b) =
∨

{c∈Z | a ∧ c � b},

where Z is a complete Boolean sub-algebra of the center of Q, consisting of all
elements which are distributive over arbitrary joins in Q. The center of P (H) is
{0, 1}, and →{0,1} coincides with our basic implication →.

REMARK 2. We could formulate the quantum logic which is equivalent to QL,
by introducing a modal operator � interpreted as :

�a =

{
1 if a = 1
0 otherwise,

(5)

as a primitive operator, instead of the basic implication →. For, the basic impli-
cation → on a complete orthomodular lattice can be defined in terms of �, ∧, ∨
and ⊥ :

(a → b) = �(a →T b) ;

and the modal operator � is defined by the basic implication → :

�a = (a → a) → a.

We formulated a lattice valued set theory LZFZ in [Titani, 1999] as the lattice
valued logic with ZF-type non-logical axioms A1–A11 (in Theorem 24), and proved
a completeness theorem of LZFZ, where “ a formula ϕ of LZFZ is valid” means
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that ““ [[ϕ]] = 1 on V L for all complete lattice L ” is provable in ZFC”. Thus, the
completeness theorem of LZFZ asserts that:

ZFC � “ [[ϕ]] = 1 in V L for all complete lattice L ”
=⇒ LZFZ � ϕ.

In the present paper, we formulate a quantum set theory QZFZ as quantum logic
QL with the nonlogical axioms A1– A11 of LZFZ, and prove the “completeness
theorem” of quantum set theory QZFZ (Theorem 28) :

ZFC � “ [[ϕ]] = 1 in V Q for all complete orthomodular lattice Q ”
=⇒ QZFZ � ϕ.

We use several notations of implication. → and →T are used as the logical and
algebraic operators, ⇒ is a formal symbol which constructs sequents. Further-
more, we use long arrow =⇒ as the implication in meta-language.

2 COMPLETE ORTHOMODULAR LATTICES

A logical system of quantum physics is represented as a complete lattice P (H)
consisting of all closed subspaces of a Hilbert space H. P (H) satisfies the following
conditions (C), (P) and (A).

(C) There exists a unary operation c �→ c⊥ such that

(C1) c⊥⊥ = c

(C2) c ∨ c⊥ = 1, and c ∧ c⊥ = 0

(C3) b � c =⇒ c⊥ � b⊥ for every element b, c.

(P ) If b, c are elements such that b � c, then the sub-lattice generated by {b, b⊥, c, c⊥}
is distributive.

(A) If b �= c and b � c, one say that c covers b when

b � x � c =⇒ x = b or x = c.

An element which covers 0 is called an atom.

(A1) If b is an element different from 0, there exists an atom p such that
p � b.

(A2) If p is an atom and if p ∧ b = 0, then p ∨ b covers b.
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DEFINITION 3. A lattice satisfying (C) is called an ortho-lattice. A lattice sat-
isfying (C) and (P) is called an orthomodular lattice. A complete lattice satisfying
(C), (P), (A) is called a proposition system. Top and bottom elements of a lattice
will be denoted by 1 and 0, respectively.

DEFINITION 4. Elements b, c of a complete orthomodular lattice Q are said
to be compatible, in symbols b |◦c, if the sublattice generated by {b, b⊥, c, c⊥} is
distributive. For a subset C of Q and b∈Q,

b |◦C
def⇐⇒ ∀c∈C (b |◦c ).

THEOREM 5. [Piron, 1976] For elements b, c of a complete orthomodular lattice,
the following conditions are equivalent.

(1) b, c are compatible

(2) (b ∧ c) ∨ (b⊥ ∧ c) ∨ (b ∧ c⊥) ∨ (b⊥ ∧ c⊥) = 1

(3) (b ∧ c) ∨ (b⊥ ∧ c) = c

(4) (b ∨ c⊥) ∧ c = b ∧ c

THEOREM 6. [Piron, 1976] In a complete orthomodular lattice Q, if b∈Q, C⊂Q
and b |◦C, then∨

c∈C

(b ∧ c) = b ∧ (
∨

C),
∧
c∈C

(b ∨ c) = b ∨ (
∧

C).

THEOREM 7. [Piron, 1976] In an orthomodular lattice Q, if b ∈ Q, C ⊂ Q and
b |◦C, then

b |◦
∨

C and b |◦
∧

C.

DEFINITION 8. [Takeuti, 1981] In an orthomodular lattice,

(a →T b) def= a⊥ ∨ (a ∧ b).

THEOREM 9. In an orthomodular lattice, if a |◦ c, then

c � (a →T b) ⇐⇒ a ∧ c � b.
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Proof. Assume a |◦c. Then c = (a⊥ ∧ c) ∨ (a ∧ c). Since a |◦a
⊥ and a |◦ (a ∧ b),

c � (a →T b) =⇒ a ∧ c � a ∧ (a⊥ ∨ (a ∧ b))
=⇒ a ∧ c � (a ∧ a⊥) ∨ (a ∧ b)) � b

a ∧ c � b =⇒ a ∧ c � a ∧ b

=⇒ c = (a⊥ ∧ c) ∨ (a ∧ c) � a⊥ ∨ (a ∧ b)

�

On a complete orthomodular lattice, operations →, ¬, � and ♦ are defined by

(a → b) def=
∨

{x∈2 | a ∧ x � b } =

{
1, if a � b,

0, otherwise,

¬a
def= (a → 0) =

∨
{x∈2 | a ∧ x � 0} =

{
1, if a = 0,
0, otherwise.

�a
def= ((a → a) → a) = (1 → a) =

{
1 if a = 1
0 otherwise.

♦a
def= ¬�¬a =

{
1 if a �= 0
0 otherwise.

As immediate consequents of the definitions, we have:

THEOREM 10. In a complete orthomodular lattice,

(1) ¬0 = 1 ; ¬1 = 0

(2) a ∧ ¬a = 0 ; a � ¬¬a

(3) (a → b) � (¬b → ¬a)

(4) ¬(a ∨ b) = ¬a ∧ ¬b ; ¬a ∨ ¬b � ¬(a ∧ b)

(5) (a ∨ b)⊥ = a⊥ ∧ b⊥ ; (a ∧ b)⊥ = a⊥ ∨ b⊥

(6) (�a)⊥ = ¬(�a)

(7) �a � a ; ��a = �a

(8) ¬a = �¬a

(9) If �a � b, then �a � �b

(10) a � ♦a

(11) If a � �b then ♦a � �b
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(12) �a ∧∨
k bk =

∨
k(�a ∧ bk) ; a ∧∨

k �bk =
∨

k(a ∧ �bk)

(13) �a ∨∧
k bk =

∧
k(�a ∨ bk) ; a ∨∧

k �bk =
∧

k(a ∨ �bk)

(14) �a ∨ ¬�a = 1

(15) If a ∧ �c � b, then ¬b ∧ �c � ¬a.

(16) (a → b) =
∨{c∈Q | c = �c, a ∧ c � b}

(17) �(
∧

k ak) =
∧

k �ak

(18)
∧

k �ak = �
∧

k �ak

(19)
∨

k �ak = �
∨

k �ak

(20) �(a → b) = (a → b).

(21) If �a ∧ b � c then �a � (b → c)

(22) ((�a ∧ b) → c) = (�a → (b → c))

(23) ♦
∨

k ak =
∨

k ♦ak

(24) ♦(�a ∧ b) = �a ∧ ♦b

3 QUANTUM LOGIC QL

Quantum logic QL is a logic representing the structure of complete orthomodular
lattice. QL is formulated as a lattice valued logic with an additional logical opera-
tor ⊥ and additional logical axioms. Here, we consider only = and ∈ as predicate
symbols.

3.1 Language

Primitive symbols are :

(1) free variables : a1, a2, · · ·

(2) bound variables : x1, x2, · · ·

(3) constants : c1, c2, · · ·

(4) predicate symbols : =, ∈,

(5) logical symbols : ∧, ∨, →, ¬, ⊥, ∀, ∃.

(6) parentheses : (, ), [, ].
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Free variables and constants are called terms, and denoted by t1, t2, · · · . Atomic
formula of QL are expressions of the form t1 = t2 or t1∈ t2 with terms t1, t2. For-
mulas of QL are constructed from atomic formulas, by using the logical symbols.
To denote formulas, we use

ϕ,ψ, ξ, · · · , ϕ(a), · · · .

DEFINITION 11. �-closed formulas are defined inductively :

(1) A formula of the form ϕ → ψ or ¬ϕ is �-closed.

(2) If formulas ϕ and ψ are �-closed, then ϕ ∧ ψ, ϕ ∨ ψ and ϕ⊥ are �-closed.

(3) If a formula ϕ(a) is a �-closed formula with free variable a, then ∀xϕ(x) and
∃xϕ(x) are �-closed.

(4) �-closed formulas are only those obtained by (1)–(3).

Γ,Δ,Π,Λ, · · · will be used to denote finite sequences of formulas ; ϕ,ψ, · · ·
to denote �-closed formulas ; and Γ,Δ,Π,Λ, · · · to denote finite sequences of
�-closed formulas.

A formal expression of the form Γ ⇒ Δ is called a sequent.

3.2 Inference rules

Beginning sequents of QL

Every proof starts with sequents of the following form (E), (C) or (P), which are
called logical axioms.

E : ϕ ⇒ ϕ

C (Orthogonal complements):

C1 ϕ ⇒ ϕ⊥⊥, ϕ⊥⊥ ⇒ ϕ

C2 ⇒ ϕ ∨ ϕ⊥, ϕ ∧ ϕ⊥ ⇒
C3 (ϕ → ψ) ⇒ (ψ⊥ → ϕ⊥)

P (Orthomodularity): (ϕ → ψ), ψ ⇒ ψ ∧ ϕ, ψ ∧ ϕ⊥.
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Structural rules:

Thinning :
Γ ⇒ Δ

ϕ,Γ ⇒ Δ
Γ ⇒ Δ

Γ ⇒ Δ, ϕ

Contraction :
ϕ,ϕ,Γ ⇒ Δ
ϕ,Γ ⇒ Δ

Γ ⇒ Δ, ϕ, ϕ

Γ ⇒ Δ, ϕ

Interchange :
Γ, ϕ, ψ,Π ⇒ Δ
Γ, ψ, ϕ,Π ⇒ Δ

Γ ⇒ Δ, ϕ, ψ,Λ
Γ ⇒ Δ, ψ, ϕ,Λ

Cut :
Γ ⇒ Δ, ϕ ϕ,Π ⇒ Λ

Γ,Π ⇒ Δ,Λ
Γ ⇒ Δ, ϕ ϕ,Π ⇒ Λ

Γ,Π ⇒ Δ,Λ

Γ ⇒ Δ, ϕ ϕ,Π ⇒ Λ
Γ,Π ⇒ Δ,Λ

Logical rules:

¬ :
Γ ⇒ Δ, ϕ

¬ϕ,Γ ⇒ Δ
Γ ⇒ Δ, ϕ

¬ϕ,Γ ⇒ Δ
ϕ,Γ ⇒ Δ

Γ ⇒ Δ,¬ϕ

ϕ,Γ ⇒ Δ
Γ ⇒ Δ,¬ϕ

∧ :
ϕ,Γ ⇒ Δ

ϕ ∧ ψ,Γ ⇒ Δ
Γ ⇒ Δ, ϕ Γ ⇒ Δ, ψ

Γ ⇒ Δ, ϕ ∧ ψ

ψ,Γ ⇒ Δ
ϕ ∧ ψ,Γ ⇒ Δ

Γ ⇒ Δ, ϕ Γ ⇒ Δ, ψ

Γ ⇒ Δ, ϕ ∧ ψ

∨ :
ϕ,Γ ⇒ Δ ψ,Γ ⇒ Δ

ϕ ∨ ψ,Γ ⇒ Δ
Γ ⇒ Δ, ϕ

Γ ⇒ Δ, ϕ ∨ ψ

ϕ,Γ ⇒ Δ ψ,Γ ⇒ Δ
ϕ ∨ ψ,Γ ⇒ Δ

Γ ⇒ Δ, ψ

Γ ⇒ Δ, ϕ ∨ ψ

→:
Γ ⇒ Δ, ϕ ψ,Π ⇒ Λ
(ϕ → ψ),Γ,Π ⇒ Δ,Λ

ϕ,Γ ⇒ Δ, ψ

Γ ⇒ Δ, (ϕ → ψ)
ϕ,Γ ⇒ Δ, ψ

Γ ⇒ Δ, (ϕ → ψ)
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∀ :
ϕ(t),Γ ⇒ Δ

∀xϕ(x),Γ ⇒ Δ

where t is any term

Γ ⇒ Δ, ϕ(a)
Γ ⇒ Δ,∀xϕ(x)

Γ ⇒ Δ, ϕ(a)
Γ ⇒ Δ,∀xϕ(x)

where a is a free variable which does
not occur in the lower sequent.

∃ :
ϕ(a),Γ ⇒ Δ

∃xϕ(x),Γ ⇒ Δ
ϕ(a),Γ ⇒ Δ

∃xϕ(x),Γ ⇒ Δ

where a is a free variable which does
not occur in the lower sequent.

Γ ⇒ Δ, ϕ(t)
Γ ⇒ Δ,∃xϕ(x)

where t is any term

We use the following abbreviations :

�ϕ
def⇐⇒ (ϕ → ϕ) → ϕ, ♦ϕ

def⇐⇒ ¬�¬ϕ,

ϕ ↔ ψ
def⇐⇒ (ϕ → ψ) ∧ (ψ → ϕ).

If Γ ⇒ Δ is provable in QL, then we write

QL � Γ ⇒ Δ,

where QL may be omitted if it is obvious. � ϕ ⇔ ψ means that “� ϕ ⇒ ψ and
� ψ ⇒ ϕ ”.

REMARK 12. The quantum logic is also formulated as a sequential system, us-
ing the compatibility instead of �-closedness, by Kodera [Kodera and Titani,
submitted].

THEOREM 13. For formulas of ϕ, ψ, ξ of QL,

(1) � ϕ ∧ ψ,Γ ⇒ Δ if and only if � ϕ,ψ,Γ ⇒ Δ

(2) � Γ ⇒ Δ, ϕ ∨ ψ if and only if � Γ ⇒ Δ, ϕ, ψ

(3) � �ϕ ⇒ ϕ

(4) � ϕ ⇒ ♦ϕ

(5) � Γ ⇒ Δ, ϕ if and only if � Γ ⇒ Δ,�ϕ

(6) If ϕ is �-closed, then � ϕ ⇔ �ϕ

(7) � ϕ,Γ ⇒ Δ if and only if � ♦ϕ,Γ ⇒ Δ

(8) � ϕ ∧ (ϕ → ψ) ⇒ ψ
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(9) � ϕ ∧ ¬ϕ ⇒

(10) � ϕ,Γ ⇒ Δ, ψ implies � ¬ψ,Γ ⇒ Δ,¬ϕ

(11) � ϕ ⇒ ¬¬ϕ ; � �ϕ ⇔ ¬¬�ϕ ;

(12) � ¬(ϕ ∨ ψ) ⇔ (¬ϕ ∧ ¬ψ)

(13) � (¬ϕ ∨ ¬ψ) ⇒ ¬(ϕ ∧ ψ)

(14) � (�ϕ → ψ) ⇔ (�ϕ → �ψ) ⇔ (¬�ϕ ∨ �ψ)

(15) � �ϕ ∧ ∃xψ(x) ⇔ ∃x(�ϕ ∧ ψ(x));
� ϕ ∧ ∃x�ψ(x) ⇔ ∃x(ϕ ∧ �ψ(x))

(16) � ⇒ �ϕ ∨ ¬�ϕ

(17) � [(ϕ ∧ �ξ) → ψ] ⇒ [(¬ψ ∧ �ξ) → ¬ϕ]

(18) � (�ϕ)⊥ ⇔ ¬�ϕ

(19) � (ϕ → �ψ) ⇒ (♦ϕ → �ψ)

(20) � ♦(�ϕ ∧ ψ) ⇒ �ϕ ∧ ♦ψ

(21) � ∀x�ϕ(x) ⇔ �∀xϕ(x)

(22) � ∃x♦ϕ(x) ⇔ ♦∃xϕ(x)

(23) If A(ϕ) is a formula with subformula ϕ and � ϕ ⇔ ψ, then

� A(ϕ) ⇔ A(ψ).

Proofs are in Appendix A.

4 QUANTUM SET THEORY QZFZ

4.1 Q-valued universe V Q

In what follows, Q denotes a complete orthomodular lattice unless otherwise men-
tioned. Q-valued universe V Q is constructed by transfinite induction :

V Q
α = {u | ∃β<α ∃Du⊂V Q

β (u : Du → Q)},
V Q =

⋃
α∈On

V Q
α .

The least α such that u∈V Q
α is called the rank of u.
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Formulas of quantum set theory are constructed from atomic formulas of the
form t1 = t2 or t1 ∈ t2 by logical operators ∧, ∨, ¬, ⊥, →, ∀, ∃. Atomic formulas
are interpreted in V Q as

[[u=v]] =
∧

x∈Du

(u(x) → [[x∈v]]) ∧
∧

x∈Dv

(v(x) → [[x∈u]]),

[[u∈v]] =
∨

x∈Dv

(v(x) ∧ [[u=x]]).

Logical operators ∧, ∨, ¬, →, ∀x, ∃x and ⊥ are interpreted as the corresponding
operators on Q, and

[[�ϕ]] = [[(ϕ → ϕ) → ϕ]] = �[[ϕ]] =

{
1 if [[ϕ]] = 1
0 otherwise.

We say an element p of Q is �-closed if p = �p. Obviously we have:

LEMMA 14. [Titani, 1999] For a formula ϕ of QZFZ and u, v ∈ V Q,

(1) If ϕ is �-closed then [[ϕ]] is �-closed in Q.

(2) [[u=v]] is �-closed.

(3) [[u=v]] is distributive over arbitrary join in Q :(∨
k

bk

)
∧ [[u=v]] =

∨
k

(bk ∧ [[u=v]]).

(4) [[u=v]] = [[v=u]]

(5) If x ∈ Du then u(x) � [[x∈u]].

(6) [[u=u]] = 1

LEMMA 15. For u, v, w ∈ V Q,

(1) [[u=v ∧ v=w]] � [[u=w]]

(2) [[u=v ∧ v∈w]] � [[u∈w]]

(3) [[u=v ∧ w∈v]] � [[w∈u]]

Proof. (1) We proceed by induction. Assume that u, v, w ∈ V Q
α . If x∈Du and

y∈Dv, then x, y∈V Q
<α and

[[u=v]] ∧ u(x) � (u(x) → [[x∈v]]) ∧ u(x) � [[x∈v]].
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Hence, by using Lemma 14,

[[u=v ∧ v=w]] ∧ u(x) � [[v=w]] ∧
∨

y∈Dv

[[x=y]] ∧ v(y)

�
∨

y∈Dv

[[x=y]] ∧ [[v=w]] ∧ v(y)

�
∨

y∈Dv

[[x=y]] ∧
∨

z∈Dw

([[y=z]] ∧ w(z))

�
∨

y∈Dv

∨
z∈Dw

[[x=y ∧ y=z]] ∧ w(z).

By induction hypothesis,

�
∨

z∈Dw

[[x=z]] ∧ w(z)

� [[x∈w]].

Since [[u = v ∧ v = w]] is �-closed, [[u = v ∧ v = w]] �
∧

x∈Du(u(x) → [[x ∈ w]]).
Similarly, we have [[u=v ∧ v=w]] �

∧
z∈Dw(w(z) → [[z∈u]]). Hence,

[[u=v ∧ v=w]] � [[u=w]].

(2) and (3) follows from Lemma 14 and (1). �

As imediate consequents of Lemma 15, we have:

THEOREM 16. For u, v, w ∈ V Q,

(1) [[u=v]] � [[v=w ↔ u=w]]

(2) [[u=v]] � [[v∈w ↔ u∈w]]

(3) [[u=v]] � [[w∈v ↔ w∈u]]

(4) [[u=v]] � [[ϕ(u) ↔ ϕ(v)]] for a formula ϕ(a).

DEFINITION 17. ∀x∈uϕ(x) and ∃x∈uϕ(x) are usual abbreviations, i.e.

∀x∈uϕ(x) def⇐⇒ ∀x(x∈u → ϕ(x)), ∃x∈uϕ(x) def⇐⇒ ∃x(x∈u ∧ ϕ(x)).

THEOREM 18. For a formula ϕ(a) and u∈V Q,

(1) [[∀x∈uϕ(x)]] =
∧

x∈Du[[x∈u → ϕ(x)]]

(2) [[∃x∈uϕ(x)]] =
∨

x∈Du[[x ∈ u ∧ ϕ(x)]]
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Proof.

(1) [[∀x(x∈u → ϕ(x))]] �
∧

x∈Du[[x∈u → ϕ(x)]] is obvious.

Proof of (�) : Let y∈V Q.
∧

x∈Du[[x∈u → ϕ(x)]] is �-closed, and

(
∧

x∈Du

[[x∈u → ϕ(x)]]) ∧ [[y∈u]]

= (
∧

x∈Du

[[x∈u → ϕ(x)]]) ∧ (
∨

x′∈Du

[[y = x′]] ∧ u(x′))

�
∨

x′∈Du

([[x′∈u → ϕ(x′)]] ∧ [[y=x′]] ∧ [[x′∈u]])

� [[ϕ(y)]]

Hence, ∧
x∈Du

[[x∈u → ϕ(x)]]) � [[∀x(x ∈ u → ϕ(x))]].

(2) Since [[x∈u]] �
∨

x′∈Du[[x = x′]] and [[x = x′]] is �-closed for x′∈Du,

[[∃x(x∈u ∧ ϕ(x))]] �
∨

x∈V Q

∨
x′∈Du

([[x=x′]] ∧ [[x∈u ∧ ϕ(x)]])

�
∨

x′∈Du

[[x′∈u ∧ ϕ(x′)]].

�

DEFINITION 19. u∈V Q is said to be definite if u(x) = [[x∈u]] for all x∈Du.

THEOREM 20. For any u∈V Q there exists a definte v∈V Q such that

[[u = v]] = 1.

Proof. For u∈V Q, let

Dv = Du, v(x) = [[x∈u]].

Then v is definte and [[u = v]] = 1. �

In what follows we may assume that each u∈V Q is definite. For a formula ϕ(a)
and definite u∈V Q,

(1) [[∀x∈uϕ(x)]] =
∧

x∈Du(u(x) → [[ϕ(x)]])
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(2) [[∃x∈uϕ(x)]] =
∨

x∈Du u(x) ∧ [[ϕ(x)]]

For convenience, we write x
�∈ y instead for �(x∈y) :

x
�∈ y

def⇐⇒ �(x∈y)

DEFINITION 21. x is said to be global if ∀t∈x(t
�∈ x), in symbols Gl(x):

Gl(x) def⇐⇒ ∀t∈x(t
�∈ x)

Let V be a universe of ZFC in which Q-valued universe V Q is constructed. Sub-
lattice 2 ( = {1, 0} ) of Q is a Boolean algebra, and the universe V is isomorphic
to V 2.

DEFINITION 22. Elements of the sub-universe V 2⊂V Q are called check sets in
V Q.

If u is a set in V , ǔ∈V Q defined by{
Dǔ = {x̌ | x∈u}
ǔ(x̌) = 1

is a check set. “x is a check set ”, in symbols ck(x), can be expressed in the

language of quantum set theory by
�∈-recursion ( Theorem 37 ), as

ck(x) ⇐⇒ ∀t[t∈x ↔ (t
�∈ x) ∧ ck(t)].

Embedding I : 2 → Q induces an embedding V → V Q by

u �→ ǔ ∈ V 2⊂V Q (u ∈ V ).

Then, obviouly

u = v ⇐⇒ [[ǔ = v̌]] = 1, u∈v ⇐⇒ [[ǔ∈ v̌]] = 1,

and generally, we have the following theorem.

THEOREM 23. If ϕ(u1, · · · , un) is a bounded sentence of ZFC with constants
u1, · · · , un in V , then

ϕ(u1, · · · , un) holds in V ⇐⇒ [[ϕ(ǔ1, · · · , ǔn)]] = 1 in V Q.



A Completeness Theorem of Quantum Set Theory 675

4.2 Non-logical axioms of QZFZ

For any complete orthomodular lattice Q, (V Q, [[ ]]) is a model of lattice valued
set theory in [Titani, 1999], and also a model of quantum logic QL, since the logical
axioms (C) and (P) of QL represent the axioms (C) and (P) of orthomodular
lattice. Thus, we adopt the quantum logic QL and the non-logical axioms A1–A11
of lattice valued set theory as those of quantum set theory.

THEOREM 24. [Titani, 1999] The following A1–A11 are valid, that is, [[A1]] =
· · · = [[A11]] = 1 have truth value 1 in (V Q, [[ ]]) for any complete orthomodular
lattice Q.

A1 (Equality) ∀u∀v [u = v ∧ ϕ(u) → ϕ(v)] .

A2 (Extensionality) ∀u, v [∀x(x∈u ↔ x∈v) → u = v ].

A3 (Pairing) ∀u, v∃z∀x(x∈z ↔ (x = u ∨ x = v)).

The set z satisfying ∀x[x∈z ↔ (x = u ∨ x = v) ] is denoted by {u, v} .

A4 (Union) ∀u∃z∀x[x∈z ↔ ∃y∈u(x∈y) ].

The set z satisfying ∀x[x∈z ↔ ∃y∈u(x∈y) ] is denoted by
⋃

u.

A5 (Power set) ∀u∃z∀x(x∈z ↔ x ⊂ u), where x⊂u
def⇐⇒ ∀y(y∈x → y∈u).

The set z satisfying ∀x(x∈z ↔ x⊂u) is denoted by P(u).

A6 (Infinity) ∃u
[
∃x(x

�∈ u) ∧ ∀x �∈ u∃y �∈ u(x
�∈ y)

]
.

A7 (Separation) ∀u∃v∀x[x∈v ↔ x∈u ∧ ϕ(x) ].

The set v satisfying ∀x[x∈v ↔ x∈u ∧ ϕ(x) ] is denoted by {x∈u | ϕ(x)}.

A8 (Collection) ∀u∃v
[
∀x∈u∃yϕ(x, y) → ∀x∈u∃y �∈ vϕ(x, y)

]
.

A9 (∈-induction) ∀x [∀y∈xϕ(y)) → ϕ(x)] → ∀xϕ(x).

A10 (Zorn) ∃x(x∈u) ∧ Gl(u) ∧ ∀v [Chain(v, u) → ⋃
v∈u] → ∃zMax(z, u),

where Chain(v, u)
def⇐⇒ v⊂u ∧ ∀x, y∈v(x⊂y ∨ y⊂x),

Max (z, u)
def⇐⇒ z ∈ u ∧ ∀x∈u(z⊂x → z = x).
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A11 (♦) ∀u∃z∀t [t∈z ↔ ♦(t∈u) ], where ♦ϕ
def⇐⇒ ¬�¬ϕ.

The set z satisfying ∀t[t∈z ↔ ♦(t∈u) ] is denoted by ♦u.

Proof. See Appendix B. �

DEFINITION 25. Quantum set theory QZFZ is the quantum logic QL with non-
logical axioms A1–A11 in Theorem 24. That is, quantum set theory QZFZ is
obtained from lattice valued set theory LZFZ by adding logical operator ⊥ and
logical axioms (C1), (C2), (C3), (P).

“ Sequent Γ ⇒ Δ is provable in QZFZ ” is written as

QZFZ � Γ ⇒ Δ,

where QZFZ will be omitted if it is obvious, and QZFZ � ⇒ ϕ is shortened as
� ϕ. Even “ � ” will be omitted if it is obvious.

DEFINITION 26. Formulas ϕ and ψ are said to be compatible , in symbols ϕ |◦ψ,
if ϕ → (ϕ ∧ ψ) ∨ (ϕ ∧ ψ⊥).

ϕ |◦ψ
def⇐⇒ ϕ → (ϕ ∧ ψ) ∨ (ϕ ∧ ψ⊥)

By Theorem 5, [[ϕ |◦ψ]] = 1 in V Q if and only if [[ϕ]] |◦ [[ψ]] in Q.

G. Takeuti developed a quantum set theory in V P (H), where he used an im-
plication defined in terms of ∨, ∧, and ⊥. We denote his implication by →�
with subscript ⊥ to distinguish from the basic implication →. Implication →T is
defined in QZFZ by

ϕ →T ψ
def⇐⇒ ϕ⊥ ∨ (ϕ ∧ ψ),

and called a local implication. Equality =
T

and membership relation ∈
T

correspond-

ing to the quantum implication are defined in QZFZ by

u =
T

v
def⇐⇒ ∀x(x∈u →T x ∈

T
v) ∧ ∀x(x∈v →T x ∈

T
u),

u ∈
T

v
def⇐⇒ ∃x(x∈v ∧ u =

T
x).

By equality axiom we have the following lemma.

LEMMA 27. � u = v ⇒ u =
T

v, � u∈v ⇒ u ∈
T

v.
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5 A COMPLETENESS THEOREM OF QZFZ

By “a sentence ϕ of QZFZ is valid” we mean that ““[[ϕ]] = 1 on V Q for all complete
orthomodular lattice Q” is provable in ZFC”, i.e.

ZFC � “ [[ϕ]] = 1 in V Q for all complete orthomodular lattice Q ”

In this section, we prove a completeness theorem of QZFZ in that sense of validity:

THEOREM 28. For a sentence ϕ of QZFZ,

ZFC � “ [[ϕ]] = 1 in V Q for all complete orthomodular lattice Q ”
=⇒ QZFZ � ϕ,

where V Q is the Q-valued universe constructed in ZFC.

5.1 Well-Founded Relations in QZFZ

Any formula with two free variables determines a binary relation. For a binary
relation A(x, y), we use the following abbreviations:

x ∈ DomA
def⇐⇒ ∃yA(x, y), x ∈ RgeA

def⇐⇒ ∃yA(y, x),

x ∈ FldA
def⇐⇒ ∃y [A(x, y) ∨A(y, x)] .

DEFINITION 29. A binary relation ≺ is said to be well-founded if the following
conditions are satisfied.

WF1 ∀x, y ¬(x≺ y ∧ y≺ x),

WF2 ∀x∈Fld(≺)[∀y ≺ xϕ(y) → ϕ(x)] → ∀x∈Fld(≺)ϕ(x),

WF3 ∀x∃y∀z ≺ x (z∈y).

In view of the axiom A9 (∈-induction), the membership relation ∈ is a well-

founded relation, and so is
�∈.

Singlton {x} and ordered pair 〈x, y〉 are defined as usual:

{x} def= {x, x}, 〈x, y〉 def= {{x}, {x, y}}

Then
� x∈{y} ⇔ x=y, � 〈x, y〉=〈x′, y′〉 ⇔ x=x′ ∧ y=y′.
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DEFINITION 30. A binary relation F (x, y) is said to be global, if

∀x, y [F (x, y) → �F (x, y)] ;

and a global relation F (x, y) is functional, if

∀x, y, y′ [F (x, y) ∧ F (x, y′) → y=y′] .

For a global functional relation F , we write F (x)=y instead for F (x, y). If F is
a global functional relation and ≺ is a well-founded relation, then F≺u is defined
for each set u∈Fld(≺) by

F≺u
def= {〈x, y〉 | F (x, y) ∧ ♦(x ≺ u) }.

F≺u is a global set of QZFZ, i.e. � ∃x(F≺u∈x) ∧ Gl(F≺u), by WF3, A11(♦) and
A8(Collection).

The following recursion principle is justified in QZFZ, as usual.

THEOREM 31 Recursion Principle in QZFZ. Let ≺ be a well founded relation
and H(a, b) be a global functional relation such that ∀x∃yH(x, y). Then there
exists a unique global functional relation F such that

DomF =Fld(≺) ∧ ∀x∈Fld(≺) (F (x)=H(F≺x))) .

Proof. Outline of the proof is in Appendix C. �

DEFINITION 32. We define the formula Ord(α) (“α is an ordinal”) in QZFZ by
∈-recursion :

Ord(α) def⇐⇒ Gl(α) ∧ Tr(α) ∧ ∀β∈α [Gl(β) ∧ Tr(β) ] , where

Gl(α) def⇐⇒ ∀β(β∈α → β
�∈ α)

Tr(α) def⇐⇒ ∀β, γ(β∈α ∧ γ∈β → γ∈α)

On def= {α | Ord(α)}

The following lemma is an immediate consequence of the definition of Ord.

LEMMA 33.

(1) � Ord(α) ∧ β∈α ⇒ Ord(β)

(2) � Gl(X) ∧ ∀x∈X Ord(x) ⇒ Ord(
⋃

X)
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DEFINITION 34. A global well founded relation ≺ is called a well order on u if

(Fld(≺) = u) ∧ (≺ is transitive) ∧ (≺ is extensional), where

≺ is transitive def⇐⇒ ∀x, y, z[(x≺y) ∧ (y ≺ z) → (x ≺ z)]

≺ is extensional def⇐⇒ ∀x, y[x, y∈u ∧ ∀z(z≺x ↔ z≺y) → x = y].

THEOREM 35 in QZFZ. Every global set can be well-ordered, i.e. for every global
set u, there exists a well-order ≺ on u.

Proof. Suppose Gl(u), and let

P
def= {〈v, w〉 | Gl(v) ∧ Gl(w) ∧ v ⊂ u ∧ (w is a well-order on v)},

and let 〈v, w〉≺〈v′, w′〉 mean that w = w′7v and v is an initial w′-section of v′, i.e.

〈v, w〉≺〈v′, w′〉 def⇐⇒ (v⊂v′) ∧ (w=w′ ∩ (v×v)) ∧ (v×(v′ − v) ⊂ w′).

Furthermore, let

I def= {I ⊂ P | ∀p, q∈I[ (p≺q) ∨ (p=q) ∨ (q≺p) ]∧

∀p, q∈P [(p∈I) ∧ (q≺p) → (q∈I)]}.
Then

(I ′ ⊂ I) ∧ ∀I, I ′∈I ′ [ (I ⊂ I ′) ∨ (I ′ ⊂ I) ] ⇒
⋃

I ′ ∈ I.

By using GA10(Zorn), there exists a maximal I0 ∈ I. Set

v0 =
⋃

{v | 〈v, w〉 �∈ I0}, w0 =
⋃

{w | 〈v, w〉 �∈ I0}

It suffices to show that 〈v0, w0〉∈P and v0 = u.

Lemma 35-1 If 〈v, w〉, 〈v′, w′〉∈P , then

� 〈v, w〉≺〈v′, w′〉 ∧ x∈v ∧ 〈y, x〉∈w′ ⇒ y∈v.

Proof. Let Ψ be the formula 〈v, w〉≺〈v′, w′〉 ∧ x∈v ∧ 〈y, x〉∈w′. Ψ is �-closed,
and by WF1,

� Ψ ∧ ¬(y∈v) ⇒ 〈x, y〉∈w′

⇒ ⊥

Hence, � Ψ ⇒ ¬¬(y∈v). Since � Gl(v) ∧ ¬¬(y∈v) ⇒ y∈v, � Ψ ⇒ y∈v. �
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Lemma 35-2 � 〈v, w〉 �∈ I0 ∧ x∈v ∧ 〈y, x〉∈w0 ⇒ 〈y, x〉∈w.

Proof. Let Ψ be the formula 〈v, w〉 �∈ I0 ∧ x∈v ∧ 〈y, x〉∈w0.

� Ψ ⇒ ∃〈v′, w′〉 �∈ I0[〈y, x〉∈w′ ∧ x∈v ∧ 〈v, w〉 �∈ I0]
⇒ y∈v by using Lemma 35-1
⇒ 〈y, x〉∈w.

�

Gl(v0), Gl(w0) and v0 ⊂ u are obvious. In order to prove 〈v0, w0〉 ∈P , it is to
prove that “w0 is a well order on v0”.

WF1 “ � 〈x, y〉∈w0 ∧ 〈y, x〉∈w0 ⇒ ⊥” is obvious.

WF2 ∀x∈v0[∀y(〈y, x〉∈w0 → ϕ(y)) → ϕ(x)] → ∀x∈v0ϕ(x)

Proof. Let Ψ(x) be formula ∀y(〈y, x〉 ∈ w0 → ϕ(y)) → ϕ(x). By Lemma

35-2, x∈v ∧ 〈v, w〉 �∈ I0 ⇒ [〈y, x〉∈w0 → 〈y, x〉∈w]. Hence,

� x∈v0 ∧ Ψ(x) ∧ 〈v, w〉 �∈ I0 ⇒ Ψ(x) ∧ [〈y, x〉∈w0 → 〈y, x〉∈w]
⇒ ∀y(〈y, x〉∈w → ϕ(y)) → ϕ(x)
⇒ ϕ(x)

�

WF3 ∀x∃y∀z(〈z, x〉∈w0 → z
�∈ y) is obvious.

Transitivity of w0 is obvious, and extensionality of w0 on v0 follows from Lemma
35-2. Therefore, w0 is a well order, and 〈v0, w0〉∈P .

Now we prove that u = v0. Assume that x∈u− v0 and let

v1 = v0 ∪ {x}, w1 = w0 ∪ (v0 × {x}).

Then it is straightforward to prove that

〈v0, w0〉 ≺ 〈v1, w1〉∈P,

and this contradicts the maximality of I0. Therefore, u = v0. �

THEOREM 36 in QZFZ. If u is a global set and ≺ is a well-order on u, then
〈u,≺〉 is isomorphic to an ordinal 〈α,∈〉, i.e. there exists ρ such that

∃ρ
[
(ρ :u → α) ∧ ρ(u) = α ∧ ∀x, y∈u(x ≺ y ↔ ρ(x)∈ρ(y)) ∧

∀x, y∈u(x = y ↔ ρ(x) = ρ(y) )
]
.
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Proof. We define ρ by ≺-recursion :

ρ(x) =
⋃

{ρ(y) + 1 | y ≺ x}, where ρ(y) + 1 = ρ(y) ∪ {ρ(y)}.

It is easy to see by WF2 (≺-induction) that ∀x∈uOrd(ρ(x)), and

∀x∈u∀t∈ρ(x)∃y ≺ x(t = ρ(y)).

Set α = {ρ(x) | x∈u}. Then Ord(α), and 〈u,≺〉 is isomorphic to (α,∈). �

5.2 Check sets

The notion of check set is defined in QZFZ, by
�∈-recursion:

ck(x) def⇐⇒ ∀t
(
t∈x ↔ t

�∈ x ∧ ck(t)
)

.

That is, set

H(u, v) def⇐⇒ v={t | 〈t, t〉∈u}.

H is a global functional relation such that ∀u∃vH(u, v). Let ≺ be
�∈ . ≺ is a well

founded relation. Since ∀x [x∈Fld(≺)], there exists a unique global functional
relation C(x, y) such that

∀x [x∈Dom(C) ∧ C(x)=H(C≺x)] ,

by Recursion Principle (Theorem 31).

THEOREM 37. The followings are provable in QZFZ.

(1) y∈C(x) ↔ (y
�∈ x) ∧ C(y, y)

(2) C(x, x) ↔ ∀t[t∈x ↔ (t
�∈ x ∧ C(t, t))]

(3) C(x)=CC(x)

Proof. (1) and (2) are immediate results of the definition of C. (3) is proved by :

y ∈ CC(x) ⇔ [ y
�∈ C(x) ∧ C(y, y) ] ⇔ [ y

�∈ x ∧ C(y, y) ] ⇔ y∈C(x)

�
ck(x) (“x is a check set”) is defined as C(x, x), i.e.

ck(x) def⇐⇒ x=C(x) ⇐⇒ ∀t
(
t∈x ↔ t

�∈ x ∧ ck(t)
)

.

The class of check sets will be denoted by W :

x∈W
def⇐⇒ ck(x).
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5.3 The model W of ZFC in QZFZ

An interpretation of ZFC in QZFZ is obtained by relativizing the range of
quantifiers to check sets. In this section we will show that

QZFZ � “the class W of check sets is a model of ZFC” , where

W = {x | ck(x)}, ck(x) ⇔ ∀t[t∈x ↔ (t
�∈ x ∧ ck(t))].

We denote quantifiers relativized on check sets by ∀W ,∃W , i.e.

∀Wxϕ(x) def⇐⇒ ∀x(ck(x) → ϕ(x))

∃Wxϕ(x) def⇐⇒ ∃x(ck(x) ∧ ϕ(x)).

For a formula ϕ of ZFC, ϕW is the formula obtained from ϕ by replacing all
quantifiers ∀x, ∃x, by ∀Wx, ∃Wx, respectively.

LEMMA 38. The following (1)–(9) are provable in QZFZ, for any formula ϕ of
ZFC.

(1) ∀Wx, y(x∈y → x
�∈ y)

(2) ∀Wx1 · · ·xn[ϕW (x1, · · · , xn) → �ϕW (x1, · · · , xn)]

(3) ∀Wx(∀Wy(y∈x → ϕW (y)) → ϕW (x)) → ∀WxϕW (x)

(4) ∀α[Ord(α) ↔ ck(α) ∧ OrdW (α)]

(5) ck(∅), where ∅ is the empty set.

(6) ∀Wx, y[ck({x, y}) ∧ ck(
⋃

x) ∧ ck({z∈x | �ϕ(z))})]

(7) The set of natural numbers ω is defined by recursion as follows:

Suc(x)
def⇐⇒ [x=∅ ∨ ∃z(x=z + 1) ], where z + 1 = z ∪ {z},

HSuc(x)
def⇐⇒ [ Suc(x) ∧ ∀y∈xHSuc(y) ], and

ω
def
= {x : HSuc(x)}.

Then ∃x(ω∈x) ∧ Ord(ω) ∧ ∀Wn∈ω[n = ∅ ∨ ∃Wm∈n(n = m + 1) ].
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Proof.

(1) By the definition of ck(y), � ck(x) ∧ ck(y) ∧ x∈y → x
�∈ y.

(2) By induction on complexity of ϕ. If ϕ has no logical symbol, then ϕ is of
the form x=y or x∈y. ∀Wx, y[x = y → �(x = y)] since x = y is �-closed,
and ∀Wx, y[x ∈ y → �(x ∈ y)] by (1). Here we prove only the case that
ϕ is of the form ∃xψ(x, x1, · · · , xn), since the other cases are similar. Let
� ck(x1) ∧ · · · ∧ ck(xn). By using induction hypothesis,

� ψW (x, x1, · · · , xn) ∧ ck(x) ⇒ �
(
ck(x) ∧ ψW (x, x1, · · · , xn)

)
.

Hence, by Theorem 13(21),

� ∃WxψW (x, x1, · · · , xn) ⇒ �∃WxψW (x, x1, · · · , xn).

(3) Let Ψ(x) be formula ck(x) → ϕW (x). Then, using ∈-induction, we have

� ∀Wx[∀W y(y ∈ x → ϕW (y)) → ϕW (x)]
⇒ ∀x[∀y(y∈x → Ψ(y)) → Ψ(x)]
⇒ ∀xΨ(x)
⇒ ∀WxϕW (x).

(4) � Ordα ∧ β∈α ⇒ Ordβ by the definition of Ord. Set

Ψ(α) def⇐⇒ (Ord(α) → ck(α)).

� Ordα ∧ ∀β∈αΨ(β) ⇒ Gl(α) ∧ ∀β∈α[Ord(β) ∧ Ψ(β)]
⇒ Gl(α) ∧ ∀β∈α ck(β)
⇒ ck(α)

Since ∀β ∈ αΨ(β) is �-closed, � ∀β ∈ αΨ(β) ⇒ Ψ(α). Therfore, by ∈-
induction, ∀αΨ(α). That is,

� ∀α[Ord(α) → ck(α)].

� ∀α[Ord(α) ↔ ck(α) ∧ OrdW (α)] is straightforward.

(5) � ck(∅) follows from:

� x∈∅ ⇒ ¬(x = x)

⇒ x
�∈ ∅ ∧ ck(x).
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(6)

� ck(x) ∧ ck(y) ∧ (z∈{x, y}) ⇔ ck(x) ∧ ck(y) ∧ (z=x ∨ z=y)

⇒ ck(z) ∧ z
�∈ {x, y}.

� ck(x) ∧ z∈
⋃

x ⇒ ck(x) ∧ ∃t∈x(z∈ t)

⇒ ∃t[ck(t) ∧ t
�∈ x ∧ z∈ t]

⇒ ck(z) ∧ z
�∈

⋃
x.

� ck(x) ∧ t∈{z∈x | �ϕ(z)} ⇒ ck(t) ∧ t
�∈ x ∧ �ϕ(t)

⇒ ck(t) ∧ t
�∈ {z∈x | �ϕ(t)}.

(7) (a) � ∀x(HSuc(x) → ck(x)).

Proof. Let Ψ(x) def⇐⇒ [ HSuc(x) → ck(x) ]. Then

� ∀y∈xΨ(y) → Ψ(x).

Therefore, � ∀xΨ(x) by ∈-induction. �
(b) �“ω is a set”, i.e. � ∃x(ω∈x).

Proof. Let
Ux

def=
⋃

{C(P(Uy)) | y �∈ x},

where C(P(X)) = {Y ⊂ X | ck(Y )} (cf. Theorem 37). By Axiom

A6(Infinity), � ∃u[∃x(x
�∈ u) ∧ ∀x �∈ u∃y �∈ u(x

�∈ y) ]). Assume

(a
�∈ u) ∧ ∀x �∈ u∃y �∈ u(x

�∈ y),

and we show � ω∈P(Uu).
(i) � ck(Ux) and
(ii) � Tr(Ux), i.e. � ∀y∈Ux(y⊂Ux). Because:

� ∀z∈xTr(Uz) ∧ y∈Ux ∧ t∈y

⇒ ∀z∈xTr(Uz) ∧ ∃z∈x[ y∈C(P(Uz)) ] ∧ t∈y ∧ ck(y)
⇒ ∃z[ z∈x ∧ Tr(Uz) ∧ ck(t) ∧ t∈Uz]
⇒ ∃z[z∈x ∧ ck(t) ∧ t⊂Uz]
⇒ t∈Ux
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∴ � ∀z∈xTr(Uz) ⇒ Tr(Ux).

Therefore, � ∀xTr(Ux) by ∈-induction.

(iii) ∅∈Uu, since � ck(∅) ∧ a
�∈ u ∧ ∅⊂Ua.

(iv) β∈Uu ⇒ β + 1∈Uu.

∵) β∈Uu ⇒ ck(β) ∧ ∃x �∈ u(β⊂Ux) ∧ ∀x �∈ u∃y �∈ u(x
�∈ y)

⇒ ck(β) ∧ ∃x, y[x
�∈ u ∧ y

�∈ u ∧ x
�∈ y ∧ β⊂Ux]

⇒ ∃x, y[ck(β) ∧ y
�∈ u ∧ x

�∈ y ∧ β⊂Ux]

⇒ y
�∈ u ∧ β∈Uy

⇒ y
�∈ u ∧ β ∪ {β} ⊂ Uy, sinse Tr(Uy)

⇒ β ∪ {β} = β + 1∈Uu

It follows that � ω⊂Uu, that is, ω = {x∈Uu | HSuc(x)}∈P(Uu). �
It is easy to see that

� Gl(ω) ∧ Tr(ω) ∧ ∀α∈ω[Gl(α) ∧ Tr(α)].

That is, � Ord(ω).

� ∀Wn∈ω(n=∅ ∨ ∃Wm∈n(n=m + 1)) is obvious.

�

THEOREM 39 Interpretation of ZFC in QZFZ. If ϕ is a theorem of ZFC, then
ϕW is provable in QZFZ.

Proof. For a formula ϕ(a1, · · · , an) of ZFC, if u1, · · · , un∈W , then ϕW (u1, · · · , un)
is �-closed by Lemma 38(2), i.e.

QZFZ � ∀Wx1, · · · , xn(ϕW → �ϕW ).

QZFZ � �ϕ ∨ ¬�ϕ, and �ϕ is distributive over all ∨ and ∃. Hence, �-closed
formulas form a system of classical logic, i.e. W is a model of classical logic. Now
it suffices to show that QZFZ � AW for each nonlogical axiom A of ZFC. In what
follows in this proof, � Ψ means QZFZ � Ψ as above.

� (Equality axiom)W and � (Extensionality)W are obvious.

� (Pairing)W : By Lemma 38(6),

� ck(u) ∧ ck(v) ⇒ ck({u, v}) ∧ ∀Wx(x ∈ {u, v} ↔ x = u ∨ x = v).

� (Union)W : Similarly.
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� (Power set)W : � ck(C(P(u))) and

� ∀Wu, x[x ∈ C(P(u)) ↔ ∀Wt(t ∈ x → t ∈ u)],

where C(P(u)) = {x∈P(u) | ck(x)}.
� (∈ -induction)W : By Lemma 38(3).

� (Separation)W : If � ck(u), then � ck({x ∈ u | ϕW (x)}) by Lemma 38(6), and

� ∀Wu, x
[
x ∈ {z ∈ u | ϕW (z)} ↔ x ∈ u ∧ ϕW (x)

]
.

� (Collection)W : Suppose � ck(u) ∧ ∀Wx∈u∃WyϕW(x, y). By GA8,

� ∃v∀x∈u∃y�∈v(ck(y) ∧ ϕW(z, y)).

Since � y
�∈ v ∧ ck(y) → y∈C(v) ∧ ck(C(v)), where y∈C(v) = y

�∈ v ∧ ck(y) (cf.
Theorem 37), we have

� ∃Wv∀Wx∈u∃Wy∈vϕW(z, y).

� (Infinity)W : By Lemma 38(7).

� (Choice)W , i.e. � ∀Wu∃Wf∀Wx∈ u[x �= ∅ → ∃!Wy ∈ x(〈x, y〉 ∈ f)], where x �= ∅
stands for ∃W y(y ∈ x). Assume ck(u) and apply A10(Zorn) to the set of partial
choice functions on u :

I = {f | ∃I⊂u [ ck(I) ∧ f :I→
⋃

I ∧ ∀x∈I(f(x)∈x) ] }.

Let f0 be a maximal element of I. Then f0 :u→⋃
u such that ∀x∈u(f0(x)∈x).

�

5.4 Power set P(1) of 1 in QZFZ

The power set P(1) of 1 (= {∅}) is a global set and a complete lattice with respect
to inclusion ⊂. Namely, if {xα}α∈K ⊂P(1), where index set K is a check set, then
the supremum

⋃
α∈K xα and the infimum

⋂
α∈K xα of {xα}α∈K are elements of

P(1). Let
a⊥ = {x∈1 | (0∈a)⊥} for a∈P(1).

Then ⊥ is an operator on P(1) satisfying conditions (C) of ortholattice, and
(P(1), ⊂,

⋃
,
⋂

, ⊥) is a complete orthomodular lattice with top 1 =
⋃P(1) and

bottom 0 =
⋂P(1).

Since P(1) is a global set, there exists a check set Q and a bijection ρ such that
ρ : P(1) → Q by Theorem 36.
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DEFINITION 40. We fix a check set Q and a bijection ρ such that

ρ : P(1) → Q,

and define �,
∧

,
∨

, ⊥, → on Q so that Q is a complete orthomodular lattice
isomorphic to P(1), i.e.

p � q
def⇐⇒ ρ−1(p)⊂ρ−1(q)∧

α

pα
def= ρ(

⋂
α

ρ−1(pα))

∨
α

pα
def= ρ(

⋃
α

ρ−1(pα))

p⊥ def= ρ({x∈1 | (0∈ρ−1(p))⊥})

(p → q) def= ρ({x∈1 | ρ−1(p)⊂ρ−1(q)})

Then (Q,�,
∧

,
∨

,⊥) is a complete orthomodular lattice in W .

DEFINITION 41. For a sentence ϕ, let

|ϕ| def= ρ({x∈1 | ϕ}).

LEMMA 42. If ϕ is a sentence of QZFZ, then

|ϕ|∈Q and QZFZ � ϕ ⇔ 0∈ρ−1(|ϕ|).

Proof. QZFZ � ϕ ⇔ 0∈{x∈1 | ϕ} ⇔ 0∈ρ−1|ϕ|. �

LEMMA 43. For p, q∈Q,

QZFZ � 0∈ρ−1(p⊥) ⇔ (0∈ρ−1(p))⊥,

QZFZ � 0∈ρ−1(p → q) ⇔ [ρ−1(p)⊂ρ−1(q)]

Proof. By the definitions of ⊥ and →. �

5.5 Q-valued universe WQ in QZFZ

Complete orthomodular lattice Q in W represents the truth value set of QZFZ,

and the relation ≺ defined by α ≺ β
def⇐⇒ (α, β∈On ∧ α∈β) is a well founded
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relation with Fld(≺) = On. Thus, recursive definition on On is justified in QZFZ,
by Recursion Principle. Q-valued universe WQ is constructed in W by ∈-recursion.

WQ
α = {u∈W |

(
∃β∈α∃Du⊂WQ

β (Gl(Du) ∧ u :Du→Q)
)W }

WQ =
⋃

α∈On

WQ
α

Truth value of ϕ in WQ will be denoted by [[ϕ]]W . Atomic relations = and ∈
are interpreted in WQ, as

[[x=y]]W =
∧

t∈Dx

(x(t) → [[t ∈ y]]W ) ∧
∧

t∈Dy

(y(t) → [[t ∈ x]]W )

[[x ∈ y]]W =
∨

t∈Dy

[[x= t]]W ∧ y(t).

Logical operations ∧, ∨, ⊥, →, ¬,∀, ∃ are interpreted as the corresponding
operations on Q. Then every sentence in WQ has its truth value in Q. We will
show that QZFZ � [[ϕ]]W = |ϕ|.
DEFINITION 44. For x ∈ WQ, define F (x) by

F (x)={F (t) | t ∈ Dx ∧ 0∈ρ−1(x(t))}.

LEMMA 45. QZFZ � ∀u∃x∈WQ(F (x)=u).

Proof. By ∈-induction. Let Ψ(u, α) def⇐⇒ ∃x∈WQ
α (u=F (x)). Then by using A8

(Collection) we have

∃α∈On[∀v∈u∃βΨ(v, β)) → ∀v∈u∃β �∈ α∃y∈WQ
β (v = F (y))].

Let {
Dx = WQ

α

x(y) = ρ({t∈1 | F (y)∈u})

Then x∈WQ and F (x) = u, i.e.

∀v∈u∃βΨ(v, β)) → ∃αΨ(u, α)

Hence, ∀u∃x(F (x)=u). �

THEOREM 46. For every sentence ϕ of QZFZ,

QZFZ � [[ϕ]]W = |ϕ|.
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Proof. It suffices to prove that for every formula ϕ(a1, · · · , an) of QZFZ, and for
x1, · · ·xn∈WQ,

QZFZ � [[ϕ(x1, · · · , xn)]]W = |ϕ(F (x1), · · · , F (xn))|,

by induction on the complexity of ϕ.

(1) QZFZ � |F (x)=F (y)| = [[x=y]]W , QZFZ � |F (x)∈F (y)| = [[x∈y]]W .

∵) By induction.

QZFZ � 0∈ρ−1([[x = y]]W ), F (t)∈F (x) ⇒ t∈Dx ∧ 0∈ρ−1(x(t))
⇒ 0∈ρ−1[[t∈y]]W

⇒ F (t)∈F (y)

Since 0∈ρ−1([[x = y]]W ) is �-closed, we have

QZFZ � 0∈ρ−1[[x=y]]W ⇒ F (x) = F (y)
⇒ 0∈ρ−1|F (x) = F (y)|

QZFZ � F (x) = F (y) ∧ t∈Dx ∧ 0∈ρ−1(x(t)) ⇒ F (t)∈F (y)
⇒ ∃s∈Dy[F (t) = F (s) ∧ 0∈ρ−1y(s))].

∴ QZFZ � F (x) = F (y) ⇒ 0∈ρ−1[[x = y]]W .

QZFZ � 0∈ρ−1[[x∈y]]W ⇔ ∃t∈Dy[ 0∈ρ−1([[x = t]]W ∧ y(t)) ]
⇔ F (x) = F (t)∈F (y)

(2) If ϕ is of the form ϕ1 ∧ ϕ2, then

QZFZ � 0∈ρ−1|ϕ ∧ ψ| ⇔ ϕ ∧ ψ

⇔ 0∈ρ−1|ϕ| ∧ 0∈ρ−1ψ

⇔ 0∈ρ−1|ϕ| ∩ ρ−1ψ

⇔ 0∈ρ−1|ϕ ∧ ψ|

(3) If ϕ is of the form ϕ1 ∨ ϕ2, then similarly to (2).

(4) If ϕ is of the form ϕ⊥
1 , then by Lemma 43,

QZFZ � 0∈ρ−1|ϕ⊥
1 | ⇔ ϕ⊥

1

⇔ (0∈ρ−1|ϕ1|)⊥

⇔ 0∈ρ−1(|ϕ1|⊥)



690 Satoko Titani

(5) If ϕ is of the form ϕ1 → ϕ2, then similarly

QZFZ � 0∈ρ−1|ϕ1 → ϕ2| ⇔ ϕ1 → ϕ2

⇔ 0∈ρ−1|ϕ1| → 0∈ρ−1|ϕ2|
⇔ ρ−1|ϕ1|⊂ρ−1|ϕ2|
⇔ 0∈ρ−1(|ϕ1| → |ϕ2|)

(6) If ϕ(x1, · · · , xn) is of the form ∀xψ(x, x1, · · · , xn), then using Lemma 45

QZFZ � 0∈ρ−1[[ϕ]]W ⇔ 0∈ρ−1(
∧
x

[[ψ(x, x1, · · · , xn)]]W )

⇔ ∀x(ψ(F (x), F (x1), · · · , F (xn))
⇔ ∀zψ(z, F (x1), · · · , F (xn)).

where Lemma 45 was used.

(7) If ϕ is of the form ∃xψ(x, x1, · · · , xn), then similar to (6).

�

COROLLARY 47. QZFZ � �ϕ ⇔ “[[ϕ]]W = 1 in WQ ”.

5.6 Proof of a completeness theorem of QZFZ

Suppose that ϕ is a sentence of QZFZ and

ZFC � “ [[ϕ]] = 1 in V Q for all complete orthomodular lattice Q ”.

Then, since W is a model of ZFC and Q is a complete orthomodular lattice in W ,

QZFZ � [[ϕ]]W = 1 in WQ .

Hence, by Corollary 47, QZFZ � ϕ. Therefore, our completeness theorem of QZFZ
(Theorem 28) has proved. That is, for a sentence ϕ of QZFZ,

ZFC � “ [[ϕ]] = 1 in V Q for all complete orthomodular lattice Q ”
=⇒ QZFZ � ϕ.
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A PROOF OF THEOREM 13

Some obvious parts in the following proof figures will be skipped.

(1) � ϕ ∧ ψ,Γ ⇒ Δ if and only if � ϕ,ψ,Γ ⇒ Δ

Proof. � ϕ,ψ ⇒ ϕ ∧ ψ by ∧-right. Hence, by using Cut,

� ϕ ∧ ψ,Γ ⇒ Δ implies � ϕ,ψ,Γ ⇒ Δ.

The converse follows from ∧-left as usual. �

(2) � Γ ⇒ Δ, ϕ ∨ ψ if and only if � Γ ⇒ Δ, ϕ, ψ

Proof. Similar to (1). �

(3) � �ϕ ⇒ ϕ

Proof.
ϕ ⇒ ϕ

⇒ (ϕ → ϕ)
ϕ ⇒ ϕ

(ϕ → ϕ) → ϕ ⇒ ϕ

�

(4) � ϕ ⇒ ♦ϕ

Proof. ¬ϕ and �¬ϕ are �-closed. Hence,

...
�¬ϕ ⇒ ¬ϕ

...
¬ϕ,ϕ ⇒

�¬ϕ,ϕ ⇒
ϕ ⇒ ¬�¬ϕ

�

(5) � Γ ⇒ Δ, ϕ if and only if � Γ ⇒ Δ,�ϕ

Proof.

If-part is obvious by (3). The converse follows from the fact:

Γ ⇒ Δ, ϕ

(ϕ → ϕ),Γ ⇒ Δ, ϕ

Γ ⇒ Δ, (ϕ → ϕ) → ϕ

�
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(6) If ϕ is �-closed, then � �ϕ ⇔ ϕ.

Proof. By (5). �

(7) � ϕ,Γ ⇒ Δ if and only if � ♦ϕ,Γ ⇒ Δ

Proof. If-part is obvious by (4). The converse follows from:

ϕ,Γ ⇒ Δ

Γ ⇒ Δ,¬ϕ

Γ ⇒ Δ,�¬ϕ

¬�¬ϕ,Γ ⇒ Δ

�

(8) � ϕ ∧ (ϕ → ψ) ⇒ ψ

Proof.
ϕ ⇒ ϕ ψ ⇒ ψ

(ϕ → ψ), ϕ ⇒ ψ

ϕ ∧ (ϕ → ψ) ⇒ ψ

�

(9) � ϕ ∧ ¬ϕ ⇒

Proof. By ¬ -left and (1). �

(10) � ϕ,Γ ⇒ ψ,Δ implies � ¬ψ,Γ ⇒ ¬ϕ,Δ

Proof. By ¬ -left and then ¬ -right, where we use the �-closedness of ¬ϕ
and Γ. �

(11) � ϕ ⇒ ¬¬ϕ ; � �ϕ ⇔ ¬¬�ϕ ;

Proof. Since ¬ϕ is �-closed, by ¬-right,

ϕ ⇒ ϕ

¬ϕ,ϕ ⇒
ϕ ⇒ ¬¬ϕ

By the �-closedness of �ϕ, � ¬¬�ϕ ⇒ �ϕ. �

(12) � ¬(ϕ ∨ ψ) ⇔ (¬ϕ ∧ ¬ψ)
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Proof. Since ¬(ϕ ∨ ψ) is �-closed, � ¬(ϕ ∨ ψ) ⇒ ¬ϕ.

∵ )
ϕ ⇒ ϕ

ϕ ⇒ ϕ ∨ ψ

¬(ϕ ∨ ψ), ϕ ⇒
¬(ϕ ∨ ψ) ⇒ ¬ϕ

Similarly, � ¬(ϕ∨ψ) ⇒ ¬ψ. Hence, � ¬(ϕ∨ψ) ⇒ (¬ϕ∧¬ψ). The converse
is proved, by using the fact that ¬ϕ ∧ ¬ψ is �-closed, i.e.

...
¬ϕ ∧ ¬ψ,ϕ ⇒

...
¬ϕ ∧ ¬ψ,ψ ⇒

¬ϕ ∧ ¬ψ,ϕ ∨ ψ ⇒
¬ϕ ∧ ¬ψ ⇒ ¬(ϕ ∨ ψ)

�

(13) � ¬ϕ ∨ ¬ψ ⇒ ¬(ϕ ∧ ψ).

Proof. Similar to the first part of (12). �

(14) � (�ϕ → ψ) ⇔ (�ϕ → �ψ) ⇔ (¬�ϕ ∨ �ψ)

Proof. Since the first (⇔) is obvious from (5), we prove only the second
(⇔).

...
�ϕ → �ψ,�ϕ ⇒ �ψ

�ϕ → �ψ ⇒ �ψ,¬�ϕ

�ϕ → �ψ ⇒ ¬�ϕ ∨ �ψ

�ψ ⇒ �ψ

�ϕ,�ψ ⇒ �ψ

...
¬�ϕ,�ϕ ⇒ �ψ

¬�ϕ ∨ �ψ,�ϕ ⇒ �ψ

¬�ϕ ∨ �ψ ⇒ (�ϕ → �ψ)
�

(15) � �ϕ ∧ ∃xψ(x) ⇔ ∃x(�ϕ ∧ ψ(x)) ; � ϕ ∧ ∃x�ψ(x) ⇔ ∃x(ϕ ∧ �ψ(x))

Proof.
...

�ϕ,ψ(a) ⇒ �ϕ ∧ ψ(a)
�ϕ,ψ(a) ⇒ ∃x(�ϕ ∧ ψ(x))

�ϕ,∃xψ(x) ⇒ ∃x(�ϕ ∧ ψ(x))
�ϕ ∧ ∃xψ(x) ⇒ ∃x(�ϕ ∧ ψ(x))
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�ϕ ⇒ �ϕ

�ϕ ∧ ψ(a) ⇒ �ϕ

...
�ϕ ∧ ψ(a) ⇒ ∃xψ(x)

�ϕ ∧ ψ(a) ⇒ �ϕ ∧ ∃xψ(x)
∃x(�ϕ ∧ ψ(x)) ⇒ �ϕ ∧ ∃xψ(x)

Similarly, � (ϕ ∧ ∃x�ψ(x)) ⇔ ∃x(ϕ ∧ �ψ(x)). �

(16) � �ϕ ∨ ¬�ϕ

Proof. Obvious. �

(17) � [(ϕ ∧ �ξ) → ψ] ⇒ [(¬ψ ∧ �ξ) → ¬ϕ]

Proof.
...

ϕ,�ξ ⇒ ϕ ∧ �ξ

...
ψ,¬ψ ⇒

(ϕ ∧ �ξ → ψ),¬ψ,ϕ,�ξ ⇒
...

(ϕ ∧ �ξ → ψ),¬ψ ∧ �ξ ⇒ ¬ϕ

(ϕ ∧ �ξ → ψ) ⇒ (¬ψ ∧ �ξ) → ¬ϕ

�

(18) � (�ϕ)⊥ ⇔ ¬�ϕ

Proof. ⇒ �ϕ, (�ϕ)⊥ and �ϕ, (�ϕ)⊥ ⇒ are axioms (C2), and
(�ϕ)⊥ is �-closed. Hence,

� ¬�ϕ ⇒ (�ϕ)⊥ and � (�ϕ)⊥ ⇒ ¬�ϕ.

�

(19) � (ϕ → �ψ) ⇒ (♦ϕ → �ψ)

Proof. By (7). �

(20) � ♦(�ϕ ∧ ψ) ⇒ �ϕ ∧ ♦ψ

Proof. By (4) and (7). �

(21) � ∀x�ϕ(x) ⇔ �∀xϕ(x)
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Proof. (⇒) is obvious. Proof of (⇐) is:

...
�∀xϕ(x) ⇒ �ϕ(a)

�∀xϕ(x) ⇒ ∀x�ϕ(x)

�

(22) � ∃x♦ϕ(x) ⇔ ♦∃xϕ(x)

Proof. Similar to (21). �

(23) If A(ϕ) is a formula with subformula ϕ and � ϕ ⇔ ψ, then

� A(ϕ) ⇔ A(ψ).

Proof. By induction on the complexity of A(ϕ). �

B PROOF OF THEOREM 24

In this section it will be proved that each of nonlogical axioms A1–A11 of lattice
valued set theory has truth value 1 in Q-valued universe V Q.

A1 (Equality) For any formula ϕ(a) of QZFZ and u, v ∈ V Q,

[[u=v ∧ ϕ(u)]] � [[ϕ(v)]].

Proof. By Theorem 16(4). �

A2 (Extensionality) ∀x(x∈u ↔ x∈v) → u=v.

Proof. [[∀x(x∈u ↔ x∈v)]] = [[u=v]] by Theorem 18. �

A3 (Pairing) ∀u, v∃z ∀x[x∈z ↔ x=u ∨ x=v ].

Proof. For u, v ∈ V Q define z by{
Dz = {u, v}
z(t) = 1 for t∈Dz

Then [[x∈z]] =
∨

t∈Dz[[x= t]] ∧ z(t) = [[x=u]] ∨ [[x=v]].
Therefore, [[∀x(x∈z ↔ x=u ∨ x=v)]] = 1. �
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A4 (Union) ∀u∃v∀x[x∈v ↔ ∃y(y∈u ∧ x∈y) ].

Proof. For u ∈ V Q defined v by{
Dv =

⋃
y∈Du Dy

v(x) = [[∃y(y∈u ∧ x∈y)]].

Then, by Theorem 18,

[[∃y(y∈u ∧ x∈y)]] =
∨

y∈Du

[[y∈u]] ∧ [[x∈y]]

=
∨

y∈Du

[[y∈u]] ∧ [[x∈y]] ∧
∨

x′∈Dy

[[x = x′]]

=
∨

y∈Du, x′∈Dy

[[x=x′]] ∧ [[x′∈y ∧ y∈u]]

= [[x∈v]]

�

A5 (Power set) ∀u∃v∀x[x∈v ↔ x⊂u], where x⊂u
def⇐⇒ ∀t(t∈x → t∈u).

Proof. Let u ∈ V Q
α . For every x ∈ V Q, define x∗ by{

Dx∗ = Du

x∗(t) = [[x⊂u ∧ t∈x]].

Since
[[x⊂u ∧ t∈x]] � [[t∈u]] �

∨
t′∈Du

[[t= t′]],

we have

[[x⊂u ∧ t∈x]] �
∨

t′∈Du

[[t= t′ ∧ x⊂u ∧ t′∈x]] � [[t∈x∗]].

It follows that for every x∈V Q there exists x∗∈V Q
α such that [[x⊂u]] � [[x=

x∗]]. Now we define v by{
Dv = {x∈V Q

α | Dx = Du}
v(x) = [[x⊂u]].

Then

[[∀x(x∈v ↔ x⊂u)]] = 1.

�
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Definition 4.1 For each set x we define x̌∈V Q by{
Dx̌ = {ť | t∈x}
x̌(ť) = 1.

x̌ is called the check set associated with x. For check sets x̌, y̌, we have

[[x̌= y̌]] =

{
1 if x = y

0 if x �= y
; [[x̌∈ y̌]] =

{
1 if x ∈ y

0 if x �∈ y.

A6 (Infinity) ∃u
[
∃x(x

�∈ u) ∧ ∀x �∈ u∃y∈u(x
�∈ y)

]
.

Proof. ω̌ associated with the set ω of all natural numbers satisfies

[[∃x(x
�∈ ω̌) ∧ ∀x �∈ ω̌∃y �∈ ω̌(x

�∈ y))]] = 1.

�

A7 (Separation) ∀u∃v∀x[x∈v ↔ x∈u ∧ ϕ(x) ].

Proof. For a given u∈V Q define v by{
Dv = Du

v(x) = [[x∈u ∧ ϕ(x)]]

Then

[[∀x(x∈v ↔ x∈u ∧ ϕ(x))]] = 1.

�

A8 (Collection) ∀u∃v
[
∀x∈u∃yϕ(x, y) → ∀x∈u∃y �∈ vϕ(x, y)

]
.

Proof. Let

p = [[∀x∈u∃yϕ(x, y))]] =
∧

x∈Du

([[x∈u]] →
∨
y

[[ϕ(x, y)]]).

Since Q is a set, there exists an ordinal α(x) such that

p ∧ [[x∈u]] �
∨

y∈V Q
α(x)

[[ϕ(x, y)]]
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for each x∈Du. By using the axiom of collection externally, there exists an
ordinal α such that

p ∧ [[x∈u]] �
∨

y∈V Q
α

[[ϕ(x, y)]] for all x∈Du.

Now we defined v by {
Dv = V Q

α

v(y) = 1

Then

p ∧ [[x∈u]] �
∨

y∈Dv

[[y
�∈ v ∧ ϕ(x, y)]] = [[∃y �∈ vϕ(x, y)]] for all x∈Du.

Since p = �p, we have

p � [[∀x(x∈u → ∃y �∈ vϕ(x, y)]].

�

A9 (∈-induction) ∀x [∀y(y∈x → ϕ(y)) → ϕ(x)] → ∀xϕ(x).

Proof. Let p = [[∀x (∀y(y∈x → ϕ(y)) → ϕ(x)]]. We prove

p � [[∀xϕ(x)]] =
∧

x∈V Q

[[ϕ(x)]]

by induction on the rank of x. Let x∈V Q
α . Since p � [[ϕ(y)]] for all y∈Dx ⊂

V Q
<α by induction hypothesis,

p ∧ [[y∈x]] � [[ϕ(y)]] for all y ∈ Dx.

Hence, by using p = �p, we have

p � [[∀y(y∈x → ϕ(y))]].

It follows that p � [[∀xϕ(x)]]. �

DEFINITION 48. Restriction u�p of u∈V Q by p∈Q is defined inductively
by{

D(u�p) = {x�p | x∈Du}
(u�p)(x�p) =

∨{u(x′) ∧ p | x′∈Du, x�p = x′ �p} for x∈Du.

If u ∈ V Q
α then u�p ∈ V Q

α , and we have

LEMMA 49. Let u, x ∈ V Q, p, q ∈ Q, and p = �p. Then
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(1) p � [[u = u�p]]
(2) [[x∈u�p]] = [[x∈u]] ∧ p

(3) (u�q)�p = u�(p ∧ q).

Proof. We proceed by induction on the rank of u,

(1) : For x∈Du,

p ∧ u(x) � (u�p)(x�p) ∧ [[x=x�p]] � [[x∈u�p]]
(u�p)(x�p) =

∨
x′∈Du, x	p=x′	p

u(x′) ∧ p ∧ [[x=x′=x�p]]

� [[x�p∈u]].

Therefore, p � [[u=u�p]].

(2) : By (1) and Theorem 16,

[[x∈u]] ∧ p � [[x∈u�p]].

(�) follows from the fact that x′′ �p = x′ �p implies p � [[x′′=x′]]:

[[x∈u�p]] =
∨

x′∈Du

[[x=x′ �p]] ∧
∨

x′′∈Du, x′′	p=x′	p
u(x′′) ∧ p

� [[x∈u]] ∧ p

(3) : D ((u�q)�p) = D (u�(q ∧ p)), by the induction hypothesis. Since p is
�-closed, (

∨
x′(u(x′) ∧ q)) ∧ p =

∨
x′ (u(x′) ∧ q ∧ p). Therefore,

((u�q)�p) ((x�q)�p) = (u�(q ∧ p)) (x�(q ∧ p))

�

A10 (Zorn) ∃x(x∈u)∧Gl(u)∧∀v[Chain(v, u) → ⋃
v∈u] → ∃zMax(z, u), where

Gl(u) def⇐⇒ ∀x(x∈u → x
�∈ u),

Chain(v, u) def⇐⇒ v⊂u ∧ ∀x, y(x, y∈v → x⊂y ∨ y⊂x),

Max(z, u) def⇐⇒ z∈u ∧ ∀x(x∈u ∧ z⊂x → z=x).

Proof. For u ∈ V Q
α , let

p = [[Gl(u) ∧ ∀v(Chain(v, u) →
⋃

v∈u)]].
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By using Zorn’s lemma externally, let U be a maximal subset of V Q
α such

that

∀x, y∈U
(
[[x∈u ∧ ∃t(t∈x) ∧ y∈u ∧ ∃t(t∈y)]] ∧ p � [[x⊂y ∨ y⊂x]]

)
Define v by {

Dv = U

v(x) = p ∧ [[x∈u ∧ ∃t(t∈x)]].

Then it suffices to show that p � [[Max(
⋃

v, u)]]. Since p = �p and p ∧
v(x) � [[x∈ u]] for all x∈Dv, we have p � [[v ⊂ u]]. By the definition of v,
p � [[Chain(v, u)]]. Therefore, p � [[

⋃
v∈u]]. Now we prove the maximality

of
⋃

v in u, i.e.

p ∧ [[x∈u ∧
⋃

v⊂x]] � [[x⊂
⋃

v]] for x ∈ Du.

Let x∈Du and r = p ∧ [[x∈u ∧ ⋃
v⊂x]]. Then r is �-closed and r � [[x=

x�r]] by Lemma 49. Besides, for each y ∈ U ,

[[y∈u ∧ ∃t(t∈y) ∧ (x�r)∈u ∧ ∃t(t∈x�r)]] ∧ p

� [[y∈v]] ∧ r

� [[y⊂
⋃

v⊂x]] ∧ [[x=x � r]]

� [[y⊂x�r]]
� [[y⊂x�r ∨ x�r⊂y]].

Therefore, x�r∈U . It follows that :

r ∧ x(t) � [[x=x�r ∧ x∈u ∧ t∈x]] ∧ p

� [[x=x�r ∧ x�r∈u ∧ ∃t(t∈x�r)]] ∧ p

� [[x=x�r]] ∧ v(x�r)
� [[x∈v]] � [[x⊂

⋃
v]].

Consequently, we have r � [[x⊂⋃
v]]. That is, [[Zorn]] = 1. �

A11 (♦) ∀u∃v∀x(x∈v ↔ ♦(x∈u)), where ♦ϕ
def⇐⇒ ¬�¬ϕ.

Proof. For a given u∈V Q, defined v by{
Dv = Du

v(x) = [[♦(x∈u)]].
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By using Theorem 10,

[[♦(x∈u)]] = ♦
∨

x′∈Du

[[x=x′]] ∧ u(x′)

�
∨

x′∈Du

[[x=x′]] ∧ [[♦(x′∈u)]] = [[x∈v]].

Hence [[∀x(x∈v ↔ ♦(x∈u))]] = 1. �

C OUTLINE OF A PROOF OF THEOREM 31(RECURSION PRINCIPLE)

Theorem 31 (Recursion Principle)
Let ≺ be a well founded relation and H be a global functional relation such that
∀x∃yH(x, y). Then there exists a unique global functional relation F such that

DomF =Fld(≺) ∧ ∀x [x ∈ Fld(≺) → (F (x)=H(F≺x))] ,

where F≺x = {〈t, s〉∈F | ♦(t ≺ x)}.

Proof. Set

Sx
def= {y | ♦(y ≺ x)}

Fn(f) def⇐⇒ f is a global functional relation, i.e.
∀x, y [f(x, y) → �f(x, y)] ∧ ∀x, y, y′[f(x, y) ∧ f(x, y′) → y = y′ ]

R(f) def⇐⇒ Fn(f) ∧ [Dom f⊂Fld(≺)] ∧
∀x[x∈Dom f → (Sx⊂Dom f) ∧ f(x) = H(f≺x)]

T (f, x) def⇐⇒ R(f) ∧ Sx⊂Dom f ∧ ∀f ′[R(f ′) ∧ Sx⊂Dom(f ′) → f⊂f ′]

If there exists a unique f such that T (f, x), i.e. ∀x∈Fld(≺)∃!fT (f, x), then the
desired functional relation F is obtained by

F (x, y) def⇐⇒ ∃f [T (f, x) ∧ y = H(f≺x)].

Sx is a global set by WF3 in Definition 29. If there exists f such that T (f, x),
then uniqueness of f follows from

∀f, f ′∀x
[
R(f) ∧R(f ′) ∧ (x∈Dom f ∩ Dom f ′) → f(x) = f ′(x)

]
,

which is proved by ≺-induction.

Existence of f is proved again by ≺-induction : Assuming

x∈Fld(≺) ∧ ∀y(y ≺ x → ∃!fT (f, y)),
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put

f0
def=

⋃
{f | ∃y(♦(y ≺ x) ∧ T (f, y))} ∪ {〈y,H(f �Sy)〉 | ♦(y ≺ x) ∧ T (f, y)}

Then T (f0, x) �

BIBLIOGRAPHY

[Birkhoff and von Neumann, 1936] Garrett Birkhoff and John von Neumann, The logic of Quan-
tum Mechanics, Ann. Math., 37, 823, 1936.

[Grayson, 1975] Robin J. Grayson, A sheaf approach to models of set theory. M.Sc. thesis.
Oxford 1975.

[Halmos, 1951] Paul R. Halmos, Introduction to Hilbert Space, Chelsea Publishing Company,
1951.

[Kodera and Titani, submitted] Heiji Kodera and Satoko Titani, The equivalence of two sequen-
tial calculi of quantum logic. Submitted.

[von Neumann, 1955] John von Neumann, Mathematical Foundation of Quantum Mechanics,
Princeton University Press, 1955.

[Piron, 1976] Constantin P. Piron, Foundations of Quantum Physics, W.A. Benjamin, Inc. 1976.
[Takano, 2002] Michio Takano, Strong Completeness of Lattice Valued Logic, Archive for Math-

ematical Logic, 41 (2002) 497-505.
[Takeuti, 1978] Gaisi Takeuti, Two Applications of Logic to Mathematics, Iwanami and Prince-

ton University Press, Tokyo and Princeton (1978).
[Takeuti, 1981] Gaisi Takeuti, Quantum Set Theory, Current Issues in Quantum Logic, eds.

E.Beltrametti and B.C.van Frassen, Plenum,New York (1981) pp.303-322
[Titani, 1999] Satoko Titani, Lattice Valued Set Theory, Archive for Mathematical Logic 38-

6(1999) pp.395-421.



INDEX

(α � u1;u2), 339
(
∫

α), 339
(∧GA), 343
(A,Σ), 502
C(x, y), C(x) = y, 681
F≺u, 678
L()̋, 450
MO2, 561
P (H), 661, 663
V , 661
V L, 661
V Q, 670
W , 681
WQ, 688
�-closed, 671
Dom, 677
Fld, 677
⇔, 669
LZFZ, 662
=⇒, 663
Ord(α), 678
Π(A), 484
Q-valued universe, 670
QL, 661, 666
QZFZ, 663, 676
Rge, 677
⇒, 663
| α〉GA, 343
[[ϕ]]W , 688⋃

u, 675
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