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Preface

This book is primarily aimed at graduate students of statistics, mathematics, sci-
ence and engineering who have had an undergraduate course in statistics, an upper
division course in analysis and some acquaintance with measure theoretic prob-
ability. We have often taught courses based on it with very little emphasis on
measure theory. Part I is designed as a one-semester course on basic parametric
mathematical statistics whose presentation owes a great deal to the classic texts by
Lehmann (1959) and Ferguson (1967). Part II deals with the large sample theory
of statistics—parametric and nonparametric—and received a somewhat greater
emphasis than Part I. But its main contents may be covered in a semester as well.
Part III provides brief accounts of a number of topics of current interest. We ex-
pect the book to be used also as a reference by practitioners in other disciplines
whose work involves the use of statistical procedures.

The Appendices at the end of the book provide a ready access to a number
of standard results, with many proofs. Also, solutions are given to a number of
selected exercises from Part I. For Part II, instead, exercises with a certain level
of difficulty appear with detailed hints.

Statistics is a very big discipline and is growing fast in even new directions. The
present book attempts to provide a rigorous presentation of what we consider to
be the core of mathematical statistics.

It took us a long time to write this book which began with a set of class notes
used over many years at Indiana University for a two-semester course in theoretical
statistics. Its present incarnation, however, is quite different—much expanded and
with many changes from the original.

We would like to take this opportunity to thank the NSF for its support over
the years which enabled us to spend time on this project. In particular, we would
like to acknowledge support from NSF grants DMS 1406872, IIS 1546331 and
DMS 1106935. In addition, a UT-Austin start-up grant helped defray some of
the expenses in the preparation of the manuscript. The Springer editors dealing
with this book project deserve our sincere appreciation for their patience and
for their counsel. Finally, we are extremely grateful to Virginia Jones, or Ginny,
for her meticulous conversion of often badly handwritten material into beautiful
LATEX; her expertise with the alternate formats acceptable to the publisher and
her judgement on which of them to adopt have also helped us greatly.

Tucson, AZ, USA Rabi Bhattacharya
Austin, TX, USA Lizhen Lin
Tallahassee, FL, USA Victor Patrangenaru
October 2015
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Part I

Mathematical Statistics: Basic
(Nonasymptotic) Theory



Chapter 1

Introduction

Abstract After describing the general inductive nature of statistical inference,
this chapter introduces two popular methods of collecting data: simple random
sampling—with or without replacement, and stratified random sampling. A com-
parison of these methods is made for estimating the mean of a population. The last
section is devoted to some simple examples illustrating parametric, nonparametric
and semiparametric inference problems.

1.1 What is Statistical Inference?

Mathematics, including probability theory, is mostly concerned with deductive
inference: derivation of consequences of a given mathematical model. The goal of
Statistics, on the other hand, is the inverse problem of inductive inference, i.e., to
figure out the (probability) model, or at least some features of the model, from
some of its consequences (or observations). Since the model cannot be completely
recovered from a finite set of observations from it, this inverse problem can only
be solved approximately. The present course deals with the problem of finding an
optimal approximation or, at least, a “good” approximation.

The underlying probability model, usually referred to as the population or popu-
lation distribution, is said to be parametric, if it can be identified by the value of a
finite-dimensional parameter. One then engages in parametric statistical inference.
If the model can not be so identified, or indexed, by a finite-dimensional parameter,
the model and the corresponding inference are said to be nonparametric. A special
class of the nonparametric models are the so-called semi-parametric models, whose
structure usually involves a finite-dimensional parameter of interest, as well as a
non-parametric family of distributions. If a member of the latter family is speci-
fied (as “true”), then the model is parametric with a finite-dimensional unknown
parameter.

Often the interest lies only in knowing some features of the model, and not the
model itself. This is generally the case with non-parametric and semi-parametric
models. But even in the case of a parametric model one may only want to know
the value of a subset of the parameter vector. The remaining parameters are then
called nuisance parameters.

© Springer-Verlag New York 2016
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4 1 Introduction

A simple illustration of the role of uncertainty in statistical analysis is provided
by the problem of estimation of unknown parameters involved in the description
of a deterministic physical law. If there are k unknown parameters, it would only
require k observations of appropriate characteristics to compute the parameters,
provided the observations are without error. In practice, however, there are always
random measuremental errors, and no matter how many observations are taken,
one can only obtain estimates of the parameters, and the estimates are subject
to random errors. More commonly, the object of interest itself is random. For
example, the life length of an electric bulb, the yearly rainfall in Tucson, an opinion
poll. One may be interested in estimating the mean or a population proportion
in such cases. Statistics analyzes the random variability inherent in the estimates
and makes inferences based on them.

1.2 Sampling Schemes

(a) Simple Random Samples As mentioned above, the underlying probability
model in a statistical inference problem is often referred to as the population.
Sometimes this term is used broadly to also denote an actual finite (but generally
large) group of individuals or objects whose characteristics are being explored. It
is to be distinguished from the term sample which usually comprises a relatively
small number of units, chosen from the population (distribution) at random, i.e.,
by a suitable probability mechanism, to ensure that the mathematical laws of
probability may be applied for a scientific analysis of the sample.

We do not deal here much with the theory of sample surveys which is con-
cerned with the design of efficient and cost effective sampling schemes, taking into
account the practical difficulties that arise in the implementation of such schemes.
For although this is a subject of great importance in many problems such as the
early projection of the results of an election, or constructing cost of living indices,
or even conducting an opinion poll, for the most part in this course we consider
either (1) a simple random sample of observations which may be taken to be i.i.d.
or independent and identically distributed (each having the population distribu-
tion), or (2) a set of observations provided a priori by nature or some agency, and
which may be reasonably assumed to be governed by a certain probability model.
We will below briefly consider two types of simple random sampling from a finite
population, as well as a stratified random sample from it, in order to estimate
the mean of a population characteristic.

From a population of size N a simple random sample of size n is drawn with
replacement, if (1) each of the n observations is drawn such as to give each of the
N members of the population the same chance (namely, 1/N) to be selected, and
(2) the n observations are statistically independent. One may think of implement-
ing this by having cards bearing numbers 1, . . . , N , identifying the N members
of the population, (1) mixing these up thoroughly in a hat, and then (2) picking
one from the hat blindfolded, and observing or measuring the characteristic of the
individual so chosen. Next, (3) return the chosen card back to the hat, and (4) re-
peat the procedures (1), (2) and (3), until n cards have been picked. For a simple
random sample without replacement, the step (3) is skipped. That is, the r-th card
is picked from the group of N − (r − 1) cards remaining in the hat after the first
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r−1 cards are drawn and put away, giving each of these remaining cards the same
chance of selection, namely, 1/(N − r + 1) (r = 1, 2, . . . , n). For sampling without
replacement, one requires n < N . Various statistical softwares are available, which
use sophisticated random number generators for obtaining a random sample.

A simple random sample without replacement is more efficient than a simple
random sample of the same size taken with replacement. For the latter allows the
wasteful possibility of observing the same individual in the population more than
once. However, since the population size is in most cases enormously large com-
pared to the sample (i.e., n/N is extremely small), these two methods are vir-
tually the same. Since it is always easier to analyze independent and identically
distributed (i.i.d.) observations, we will assume that the sample observations are
independent (i.e., sampling is with replacement), unless stated otherwise. When
random data are not provided by sampling, e.g., repeated measurements of length
of an object using the same instrument, or amount of yearly rainfall in Tucson
over the past 50 years, etc., one may consider these as independent observations
or simple random samples with replacement.

(b) Stratified Random Samples A perfectly homogeneous population (distribu-
tion), namely, one without variability, can be estimated without error by just one
observation. For good statistical inference about a population with a great deal
of heterogeneity, on the other hand, one needs a sufficiently large random sample.
Thus it would make sense to divide a highly heterogeneous population into a small
number of relatively homogeneous subpopulations, or strata, and draw randomly
and independently from each of these. Such a sampling scheme is called stratified
random sampling. One popular way to draw a stratified random sample of size n
from a population divided into k strata 1, 2, . . . , k, with given sizes N1, N2 . . . , Nk

(whose sum is N) is to draw k independent simple random samples, one from each
stratum and with sample of size n(Ni/N) = nwi, say, drawn from the i-th stratum
(i = 1, . . . , k). For simplicity, we assume nwi to be an integer. This is the type of
stratified sampling most commonly used. When good estimates of the variances
vi (i = 1, . . . , k) of the k strata are available, the mean of the population is more
effectively estimated by letting the size ni of the sample from the i-th stratum be
proportional (approximately) to vi as well as Ni (See Exercise 1.2(d)). This proce-
dure is used instead only when reasonably reliable past information is available on
the variances vi. On the other hand, stratum sizes are often available from census
data, e.g., in the case of opinion polls, surveys of cost of living indices, etc. It may
be a little surprising from the intuitive point of view that one can have arbitrarily
chosen strata, without any reference to their homogeneity, and still have smaller
expected squared error in estimating the mean m than one would have using a
simple random sample of the same size, unless the means of all the strata are the
same (Exercise 1.2(c)). Two different explanations one may advance to explain
this seeming puzzle are the following. First, the statistician is using additional
information here, namely, the knowledge of the sizes of sub-populations. Consider
drawing a random observation X from the population in two steps. In the first
step, choose a stratum at random, with the probability Ni/N of choosing the i-th
stratum. At the second step, choose an observation at random from the chosen
stratum giving equal chance of selection to every member of the stratum. Repeat
these two steps independently n times to have a simple random sample of size n.
Then note that the conditional expectation v = E{(X −m))2|given the outcome
of the first step}, is larger than vi ≡ E{(X −mi)

2| given the outcome of the first
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step}, if the first step outcome is the choice of the i-th stratum. Taking expecta-
tions on both sides of the inequality, one gets the desired result (Exercise 1.3). For
the second intuitive explanation, note that differences among means of strata may
be attributed to having on the whole less within stratum variability than the over-
all variability in the whole population. [However, it is easy to construct a stratum
with a larger variance than in the population as a whole, for example by putting
a stratum together by taking extreme observations from the right and left tails of
the population. But that will reduce variability in the remaining population.]

We emphasize again that there are many practical issues that arise (1) in app-
ropriately (and efficiently) designing statistical experiments for data collection,
and (2) in finding corrective methods for non-response, missing data, dishonest
reporting of data, etc., even in a properly designed experiment. Unfortunately, we
would have little time in this course to deal with these important problems. A good
classical reference on some of these matters is the book by W.G. Cochran (1977)
entitled Sampling Techniques (Wiley).

1.3 Some Simple Examples of Inference

The most common inference problems are those of (1) estimation of the model or
of some features of it, and (2) testing hypotheses concerning the model. Among
other somewhat different problems, we mention the one of (3) classification of
some observation as belonging to one of several populations. One may think of
these as special cases of the general statistical decision problem as described in the
next chapter.

Convention Henceforth we use the term random sample to mean a simple
random sample with replacement, unless stated otherwise.

Example 1.1. The Normal distribution N(μ, σ2) provides a parametric model for
measurements of lengths, etc., of some physical object. One may seek to estimate
the mean length (or the “true” length) μ and the standard deviation σ (a measure
of imprecision of the measuring device), based on a random sample of size n. If
the sole interest is in μ, and not in σ, then the parameter σ may be viewed as a
“nuisance parameter”. This is somewhat of a misnomer in the present example,
since to judge the precision of any reasonable estimator of μ, one must estimate σ.
Note that (i) the sample mean X is an unbiased estimator of μ, i.e., E(X) = μ;
(ii) E(X − μ)2 = σ2/n, and (iii) s2 ≡ ∑

1≤i≤n(Xi − X)2/(n − 1) is an unbiased

estimator of σ2.

Example 1.2. One wishes to compare two brands of automobile tires by observing
the life times X1, . . . , Xm of m tires of the first brand and those of n tires of the
second brand, namely, Y1, . . . , Yn. There is a claim that the second brand has a
greater longevity than the first one. One may assume a parametric model with
the two distributions Q1, Q2 on [0,∞) (of life lengths of tires of brands 1 and 2)
being exponential with means μ1 and μ2. The claim may be stated as a hypothesis
H : μ2 > μ1. One may test H by comparing the means X and Y of the two sets
of observations, and accept the claim if Y is much larger than X , and reject the
claim, or H , otherwise.



1.4 Notes and References 7

One may also consider the nonparametric model comprising all pairs (Q1, Q2) of
distributions with finite means μ1, μ2, respectively, and follow a similar procedure
for testing H as above, based on the observed means.

Another interesting nonparametric approach to the problem in this example
is the following. Instead of comparing the means of the two distributions of life
lengths, it may be more appropriate to compare the two distribution functions F1

and F2. The claim may be stated as a test of the hypothesis involving random
variables X and Y with distribution function F1 and F2, respectively: H : 1 −
F2(t) ≡ Prob(Y > t) ≥ Prob(X > t) ≡ 1 − F1(t) for all positive t, with a strict
inequality for a least some t. Suppose one only assumes that F1, F2 are continuous.
Then the underlying model is the set of all pairs of continuous distributions on
[0,∞). This is a nonparametric model. An appropriate and popular test of this
hypothesis H is based on first ranking all the m+ n observations from 1 through
m+n in increasing order of their magnitudes, and then computing the mean rank
of the Y observations among these. If this mean is sufficiently large compared to
the mean of all the ranks, namely (m+n+1)/2, then one would accept the claim,
and otherwise reject it. This test is known as the Wilcoxon rank test.

Example 1.3. Consider the linear regression equation

Y = α+ βX + ε (1.1)

where X is a non-stochastic “predictor variable”, Y is the “response variable”,
and ε is Normal N(0, σ2

e). If n independent observations (Xi, Yi), i = 1, . . . , n,
follow this relation, then the underlying model is parametric as it is specified by
the parameter θ = (α, β, σ2

e ). One is generally interested in estimating the values
of α and β, as these allow one to make a prediction of the value of Y based on
(a value of) X by the formula: Y = α̂ + β̂X , where α̂ and β̂ are least squares
estimates of the corresponding parameters derived from the observations. If X is
stochastic one assumes (Xi, εi), 1 ≤ i ≤ n, i.i.d. two-dimensional Normal, with
E(Xi) = μx, Eεi = 0, var(Xi) = σ2

x, var(εi) = σ2
ε , cov(Xi, εi) = 0, and carries out

the same analysis.
If one drops the assumption of Normality of ε and, instead, simply assumes that

it has finite second moments and E(ε) = 0, then the model is semi-parametric.

1.4 Notes and References

The present book is not concerned with the methodology for obtaining sample
data; it simply assumes that the data conform to the hypothesis of randomness.
There are many instances where nature provides data automatically (monthly rain-
fall, daily temperature, number of traffic accidents per week at a city cross section,
etc.). In contrast, proper designing of sampling schemes are very important in the
sampling of items for testing for defects or other features, public opinion polls,
etc. Cochran (1977) is a classic text on the pitfalls involved in taking samples
and sample surveys (bias arising from non-response and other forms of missing
data, deliberate falsification of data, etc.), and on how to deal with them. It also
describes optimal sampling schemes taking both accuracy and costs into consid-
eration. In view of the advent of the computer and the internet, newer methods
of taking samples are being developed. Still, some of the basic issues of sampling
remain the same.
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Exercises for Chap. 1

Ex. 1.1. From a population of size N a simple random sample of size n is drawn
without replacement, and a real-valued characteristic X measured to yield obser-
vations Xj (j = 1, 2, . . . , n). Show that

(a) the sample mean X is an unbiased estimator of the population mean m
(i.e., E(X) = m).

(b) the expected squared error of X as an estimator of m, i.e., the variance of X ,
is smaller than that of the mean of a simple random sample of the same size
n drawn with replacement, and

(c) the difference between the expected squared errors of the two estimators is
O(n/N), as n/N goes to zero.

Ex. 1.2. Suppose a population of size N is divided into k strata of sizes Ni

(i = 1, 2, . . . , k). Let mi be the mean of the i-th stratum and νi its variance
(i = 1, 2, . . . , k). For each i, a simple random sample {Xij : j = 1, . . . , ni} of size
ni is drawn with replacement from the i-th stratum, and let X i denote the cor-
responding sample mean. Let {xij : j = 1, . . . , Ni} be the values of the Ni units
in the ith population (stratum), and {xi : i = 1, . . . , N} be an enumeration of
the values of the N units in the population overall. For the following statements,
assume νi > 0 and ni > 0 for all i, to avoid trivialities.

(a) Show that (1) Y :=
∑

wiX i is an unbiased estimator of the population mean
m (i.e., E(Y ) = m), where wi = Ni/N , and (2) E(Y −m)2 =

∑
w2

i (νi/ni).
(b) Let v denote the population variance: v = ( 1

N )
∑

1≤i≤N (xi−m)2 = E(X−m)2,
where xi is the characteristic of the i-th member of the population, and X is
a random observation from the population, i.e., P (X = xi) = 1/N for all i.
Show that ν =

∑
1≤i≤k wivi +

∑
1≤i≤k wi(mi −m)2.

(c) Let X = ( 1n )
∑

1≤j≤n Xj be the mean of a simple random sample with re-

placement. Show that if ni = nwi for all i, then E(Y − m)2 < E(X − m)2,
unless mi’s are all equal, in which case equality holds.

(d) Suppose you know νi for all i. Show that the optimal choices of ni (for mini-
mizing the expected squared error of estimation of m by Y ) are

ni =
nwi

√
νi∑

1≤r≤k wr
√
νr

(1 ≤ i ≤ k), (1.2)

assuming the right sides are integers. [Hint: Use calculus and Lagrange multi-
pliers for the constraint

∑
ni = n.]

Ex. 1.3. (a) Justify the inequality V ≡ E((X−m)2 | I) ≥ vI ≡ E((X−mI)
2 | I)

in Sect. 1.2(b) on stratified random samples, where I is the index of the stratum
picked at random, and mI = E(X | I).

(b) Use this to show that v ≡ E(X −m)2 ≥∑k
i=1

Ni

N vi, with equality if and only
if mi’s are all the same.



Reference 9

Ex. 1.4 (A Problem of Non-response). In a large random sample of size n
from a very big population of size N , there were a sizeable number n˜ of non-
responses. To avoid the possibility of a systematic bias in the estimation of the
population meanm of a certain variable X , a random sub-sample of size s is drawn
from the n˜ non-respondents and their X-values obtained, with additional efforts
and costs. Let Xj , 1 ≤ j ≤ n− n˜ denote the (observed) X-values of the original
respondents, and Xj , n− n˜ + 1 ≤ j ≤ n those of the (unobserved) respondents.
Let Yj , 1 ≤ j ≤ s, be the sub-sample observations.

Assume that the population comprises two groups—one (of size N −N˜, say,)
from which the responses came and the other from which non-responses occurred.
The two groups have possibly different means mR and m˜, respectively, and vari-
ances σ2

R and σ2˜. Let XR =
∑n−n˜

j=1 Xj/(n−n˜) denote the mean of the responses,

Y =
∑s

j=1 Yj/s, X˜ =
∑n

j=n−n˜+1Xj/n˜.

(a) Show that Z = [(n−n˜)XR+n˜Y ]/n is an unbiased estimate of the population
mean m. [Hint: m = [(N − N˜)mR + N˜m˜]/N , EZ = E(E[Z | ξn˜; Xj ,
n− n˜ + 1 ≤ j ≤ n]) = E((n− n˜)mR + n˜X˜)/n.]

(b) Compute the variance of Z. [Hint: E(Z − m)2 = E[Z − E(Z | F ) + E(Z |
F ) − m]2 = E(E((Z − E)Z | F )2 | F ) + E(E(Z | F ) − m)2, where F =
σ{n˜;Xj, n− n˜ + 1 ≤ j ≤ n}.]

Reference

Cochran, G. W. (1977). Sampling techniques (3rd ed.). New York: Wiley.



Chapter 2

Decision Theory

Abstract Statistical inference problems such as estimation and testing come under
the purview of decision theory, in which one is given a parameter space Θ indexing a
family of distributions Pθ of an observation (vector)X (θ ∈ Θ), an action space A ,
and a loss function L(θ, a) signifying the loss incurred when θ is the true parameter
value and the action taken by the statistician is a. The statistician’s strategy for
action based on the observation X is a decision rule d(X), a function on the space
X of observations into A . A decision rule d is admissible if there does not exist
any rule d1 such that R(θ, d1) ≡ EθL(θ, d1(X)) ≤ R(θ, d) ≡ EθL(θ, d(X)) ∀ θ,
with strict inequality for some θ.

2.1 Decision Rules and Risk Functions

For a substantial part of this course our main interest will be in parametric models.
The theory here is well developed and it helps one understand the issues that arise
in the analysis of more complex models.

In the following the observation X comprises all that is observed. For example,
it may be given as a vector of i.i.d. random variables constituting the sample from
a population: X = (X1, . . . , Xn), as in the case of Example 1.1. In Example 1.2,
X = (X1, . . . , Xm, Y1, . . . , Yn) where the Xi’s are i.i.d. observations from one pop-
ulation while the Yj ’s are i.i.d. observations from a second population, the two sets
being independent of each other. In Example 1.3, X = ((X1, Y1), . . . , (Xn, Yn)),
obeying (1.1) as specified. Sometimes, with a slight abuse of this terminology,
we will also describe the individual components of X as observations, when the
context is clear.

We begin informally. Let Θ be the parameter space, X the observation (vector),
and A the set of all possible decisions or actions the statistician can take. A
decision rule is a function d(·) of the observation, taking values in A . A loss
function L(θ, a) is prescribed, measuring the loss incurred when an action a is
taken while θ is the true parameter value. The risk function R(θ, d) associated
with a decision rule d is defined by

R(θ, d) = EθL(θ, d(X)), (2.1)

where Eθ denotes expectation under θ (i.e., when the true parameter value is θ).

© Springer-Verlag New York 2016
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Suppose (S1,B(S1)), (S2,B(S2)) are two measurable spaces, i.e., B(Si) is a
sigma-field on Si (i = 1, 2). A function f : S1 → S2 is measurable if f−1(B2) ∈
B(S1) ∀ B2 ∈ B(S2). We will often express this by saying f is measurable on
(S1,B(S1)) into (S2,B(S2)).

Definition 2.1. The parameter space, action space, and observation space are
three measurable spaces (Θ,B(Θ)), (A ,B(A )), (X ,B(X )), respectively. In
the case of a metric space S, B(S) denotes the Borel sigma-field on S. A loss
function is a real-valued measurable function on (Θ × A ,B(Θ) ⊗ B(A )) (into
R,B(R)). Here ⊗ is used to denote the product sigma-field of its factors. For
each parameter value θ, there exists a (specified) probability measure Pθ on a
measurable space (Ω,F ), with the corresponding probability space (Ω,F , Pθ).
An observation X is a measurable map on (Ω,F ) into the observation space
(X ,B(X )). A (non-randomized) decision rule d is a measurable map on the ob-
servation space (X ,B(X )) into the action space (A ,B(A )). The risk function
R of a decision rule d is given by (2.1), where Eθ denotes expectation w.r.t. Pθ.

In most problems that we deal with, the spaces Θ, A , and X are either count-
able or separable metric spaces. In the case a space is countable one uses the
discrete topology on it, so that the sigma-field on it comprises all its subsets.

We consider four examples, the first two concern the problem of estimation,
while the other two deal with the problem of testing hypotheses.

Example 2.1. For the estimation of the mean of a Normal distribution based on
a random sample X = (X1, X2, . . . , Xn) of size n, considered in Example 1.1 in
Chap. 1, the parameter space is Θ = (−∞,∞)×(0,∞) = R×R++, and the action
space is A = R. Here the observation space is X = R

n. The most commonly used
loss function is squared error loss

L(θ,a) = |μ− a|2, (θ = (μ, σ2)). (2.2)

One may take Ω = R
∞, the space of all infinite sequences of reals (x1, x2, . . . ).

Then the sigma-field F is the Kolmogorov product sigma-field B(R∞), and Pθ

is the product probability measure with all factors being the Normal distribution
N(μ, σ2). That is, Pθ is the distribution of a sequence of i.i.d. N(μ, σ2) random
variables. The observationX is the projection map onΩ into its first n coordinates.
Alternatively, one may take Ω = X = R

n, X as the identity map: X(ω) = ω =
(x1, . . . , xn) and Pθ as the product probability measure with all n factors the same,
namely, N(μ, σ2).

For the decision rule d(x) = x ≡ (x1 + x2 + · · ·+ xn)/n (x = (x1, x2, . . . , xn) ∈
X = R

n), d(X) = X, and the risk function is given by

R(θ, d) = Eθ(μ−X)2 =
σ2

n
, θ = (μ, σ2) ∈ Θ. (2.3)

If, instead of μ, the parameter of interest is σ2, then the action space is R++.
One may use the decision rule d(x) =

∑
1≤i≤n(xi − x)2/(n − 1). Then d(X) =

s2, as defined in Example 1.1 in Chap. 1. One may let A = [0,∞), and show
(Exercise 2.1) that with squared error loss function L(θ, a) = (σ2 − a)2, the risk
function of this decision rule d is given by

R(θ, d) = Eθ(σ
2 − s2)2 = 2σ4/(n− 1). (2.4)
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Finally, suppose one wishes to estimate the vector parameter θ, then the action
space is R × [0,∞) = R × R+. If the loss function is squared error (in Euclidean
distance),

L(θ, a) = |(μ, σ2)− a|2 θ = (μ, σ2), a = (a1, a2) ∈ R× R+, (2.5)

and one uses the estimator d(X) = (X, s2), then the risk function is given by the
sum of the right sides of (2.3) and (2.4),

R(θ, d) =
σ2

n
+

2σ4

n− 1
, θ = (μ, σ2). (2.6)

Since the units of μ and σ2 are different, it may be more appropriate to define
the loss function as (μ − a1)

2 + (σ − √
a2)

2. Then the risk function of d above
is c(n)σ2, where c(n) only depends on n and is of the order O(n−1), as n → ∞
(Exercise 2.1).

For computations related to this example, the following proposition is useful. It
is also an important property of samples from a Normal distribution. We will write

U
d∼ G to indicate that the random variable U has distribution G. Also U

d
= V

means U has the same distribution as V .

Proposition 2.1. Let X1, X2, . . . , Xn be i.i.d. N(μ, σ2). Then X and s2 are in-

dependent, with X
d∼ N(μ, σ

2

n ) and (n− 1)s2/σ2 d
=
∑n

i=2 Y
2
i , where Y2, . . . , Yn are

i.i.d. standard Normal N(0, 1).

Proof. First let μ = 0, σ2 = 1. Write X as the column vector X = (X1, . . . , Xn)
′.

Let O be an n × n orthogonal matrix whose first row is
(

1√
n
, 1√

n
, . . . , 1√

n

)
[For

example, take the (k + 1)-th row of O as (a, a, . . . , a
︸ ︷︷ ︸
k elements

,−ka, 0, 0, . . . , 0), with a =

(k(k + 1))−
1
2 (k = 1, 2, . . . , n− 1)]. Define Y = OX. Then the probability density

function of Y = (Y1, Y2, . . . , Yn)
′ is the same as that of X, i.e., Y1, Y2, . . . , Yn are

i.i.d. N(0, 1) [The Jacobian of the transformation has determinant |O′| = ±1;
|X|2 = |Y|2]. But Y1 =

√
nX, and Y 2

2 + Y 2
3 + · · · + Y 2

n ≡ ∑n
i=1 Y

2
i − Y 2

1 =
∑n

i=1X
2
i − nX

2 ≡ (n− 1)s2 are independent.

To complete the proof in the general caseXi
d∼ N(μ, σ2), write Zi = (Xi−μ)/σ,

and apply the above argument to Z = (Z1, Z2, . . . , Zn)
′. �

Example 2.2. One of the most common statistical problems is that of estimation
of the proportion θ of members of a population possessing some characteristic.
For example, θ may be the proportion of adult Americans who are supportive of
a pending gun control legislation, or it may be the proportion of defective items
among all items of some kind manufactured by a company. A random sample
X = (X1, . . . , Xn) is observed, where Xi is 1 or 0 according as the i-th observation
possesses the characteristic (“support gun control”, “defective”) or it does not. The
most common estimate is the sample proportion d1(X) = (X1 + · · · + Xn)/n of
those in the sample possessing the characteristic. Its risk function is (Exercise 2.2)

R(θ, d1(X)) = θ(1 − θ)/n, θ ∈ Θ = [0, 1]. (2.7)
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Here the observation space is X = {0, 1}n, and one may take Ω = X , and
Pθ as the product probability: Pθ({x}) = θ

∑
xi(1 − θ)

∑
(1−xi), for all x =

(x1, x2, . . . , xn) ∈ {0, 1}n.
If, instead of the sample proportion, one uses the (seemingly bad) estimator

d2(X) ≡ 1/3, then the risk function is

R(θ, d2(X)) = (θ − 1/3)2, which is 0 for θ = 1/3. (2.8)

No other estimator has a risk as low as that of d2(·) at the value θ = 1/3. Although
for values of θ a bit away from 1/3, this estimator has a large risk, one can not
get an estimator as good as d2 everywhere on the parameter space! Thus one can
not hope for a decision rule which is better (or, at least, as good as) every other
estimator uniformly over the entire parameter space. We will introduce later less
stringent notions of optimality.

We next consider the problem of testing hypotheses about the underlying model,
which may be expressed in terms of a null hypothesis H0 : θ ∈ Θ0 where Θ0 is a
subset of Θ, and an alternative hypothesis H1 : θ ∈ Θ1 = Θ\Θ0. Here the action
space is A = {a0, a1}, where ai accepts the hypothesis Hi (i = 0, 1). The most
commonly used loss function in this case is the 0− 1 loss function,

L(θ, ai) = 1− δij if θ ∈ Θj , (i, j ∈ {0, 1}), (2.9)

where δij is Kronecker’s delta, which equals 1 or 0 according as i = j or i �= j.
Thus the loss incurred is 0 if ai is the correct decision (to accept Hi), and 1 if it
is the wrong decision.

Definition 2.2. The error of accepting the alternative hypothesis H1 when the
null hypothesis H0 is correct, is called a Type I Error. Its probability is Pθ(d(X) =
a1) = Pθ(Accept the alternative hypothesis), when θ ∈ Θ0. The error of accepting
the null hypothesis H0 when the alternative hypothesis H1 is correct is called a
Type II Error. Its probability is Pθ(d(X) = a0) = Pθ(Accept the null hypothesis),
when θ ∈ Θ1.

Example 2.3. In quality control experiments, an inspector is often confronted with
the problem of deciding whether to “pass” or “fail” a product. For example, a
product or a large batch of it may be considered good only if no more than 5%
of the items are defective. The inspector’s decision is to be based on a random
sample X = (X1, X2, . . . , Xn), where Xi = 0 or 1 according as the i-th item
picked is defective or not. The parameter space Θ here is the set of all possible
proportions θ of defective items, conveniently taken as the unit interval [0, 1]. The
spaces X , Ω, Θ, and the probability distribution Pθ are as in Example 2.2. Let
Θ0 = [0, 0.05], while Θ1 = (0.05, 1.0]. The action space is {a0, a1}, where the action
a0 means the product is passed and a1 means it is failed. Suppose one uses the
decision rule: d(x) = a0 if the sample proportion p̂ of defectives is 0.03 or less,
and d(x) = a1 otherwise. Under the loss function (2.9), the risk function of the
decision rule d(·) is (Exercise 2.3)
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R(θ, d)=EθL(θ, d(X)) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Pθ(p̂>0.03) =
n∑

r>0.03n
Crθ

r(1−θ)n−r for 0 < θ ≤ 0.05,

Pθ(p̂ ≤ 0.03) =
n∑

r≤0.03n

Crθ
r(1−θ)n−r for 0.05 < θ ≤ 1.

(2.10)

The top probability in (2.10) is the probability of a Type I Error, while the bottom
probability is that of a Type II Error.

Example 2.4. Consider Example 1.2 of Chap. 1, assuming that the lifetime dis-
tributions are exponential with means μ1 and μ2. We let H1 denote the claim:
μ2 > μ1, so that Θ1 = {(μ1, μ2) ∈ (0,∞)2 : μ2 > μ1}, while Θ0 = {(μ1, μ2) ∈
(0,∞)2 : μ2 ≤ μ1}. The observation space is X = {(x,y) : x = (x1, . . . , xm) ∈
[0,∞)m, y = (y1, . . . , yn) ∈ [0,∞)n}. Let us denote the observation vector by
X = ({Xj : j = 1, . . . ,m}, {Yj : j = 1, . . . , n}). Write x =

∑
xj/m, y =

∑
yj/n,

and X , Y for the means of the corresponding sample observations.

Suppose one uses the decision rule d(x,y) = a1 if y > (1 + c)x for some con-
stant c > 0, and d(x,y) = a0 if y ≤ (1 + c)x. Then the risk function of d is
EθL(θ, d(X)), which equals Eθ(1[Y≤(1+c)X)]) for θ in Θ1, and Eθ(1[Y >(1+c)X ]) for
θ in Θ0. That is,

R(θ, d)=

{
Pθ(Y ≤ (1+c)X) if θ ∈ Θ1 (i.e., if μ2 > μ1), [Type II Error Probability]

Pθ(Y > (1+c)X) if θ ∈ Θ0 (i.e., if μ2 ≤ μ1), [Type I Error Probability].

(2.11)

2.2 Randomized Decision Rules, Admissibility

Sometimes for a given observation one may wish to assign probabilities among
different (sets of) actions, instead of choosing a single action. We will later see
that such allowance for randomization among several actions is particularly im-
portant in the case of hypothesis testing. Thus a general decision rule δ (allowing
randomization in the action space) may be defined as a measurable map from the
observation space (X ,B(X )) into the space P(S) of all probability measures on
the action space (A ,B(A )). The sigma-field on P(S) is generally taken to be
the Borel sigma-field under the topology of weak convergence (assuming A is a
metric space).

To avoid confusing notation, we will continue to denote a decision rule by the
symbol d, with or without subscripts or superscripts, whether the rule is a ran-
domized one or not.

We have seen in Example 2.2 that no estimator of the population proportion
θ, based on a random sample of size n, has the smallest risk function on the
whole parameter space. Indeed, the smallest risk at every point θ is zero. This
is true not just for the squared error loss function, but for any loss function L
such that L(θ, a) > 0 for all θ �= a, and = 0 for θ = a (Exercise 2.2). We must
then relax our requirement for optimality. One reasonable requirement would seem
to be the following. From now on we will assume that the loss function L is
given, so that all comparisons among decision rules are based on the risk function
R(θ, d) = EθL(θ, d(X)) (θ ∈ Θ).
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Definition 2.3. A decision rule d is said to be inadmissible if there exists a deci-
sion rule d1 such that

R(θ, d1) ≤ R(θ, d) for all θ ∈ Θ, (2.12)

with strict inequality for a least one θ. A decision rule which is not inadmissible is
said to be admissible.

It turns out, unfortunately, that although it is easy to establish the admissibility
of such estimators as d2 (X) ≡ 1/3 in Example 2.2 (Exercise 2.4), it is not so easy
to prove the admissibility of time honored estimators such as the sample proportion
d1! We will later introduce other notions of optimality, or restrictions which will
rule out frivolous estimators such as d2.

2.3 Notes and References

For basic notions of loss and risk functions in testing (probabilities of Type 1 and
Type 2 errors) and estimation (expected squared error) and admissibility one may
refer to Bickel and Doksum (2001), Sect. 1.3, or Ferguson (1967), Sects. 1.3, 2.1.

Exercises for Chap. 2

Ex. 2.1. In Example 2.1, prove (2.4) and (2.6). Also with the loss function as
L(θ,a) = (μ − a1)

2 + (σ − √
a2 )

2, instead of (2.5), compute the risk function of
the estimator d(X) = (X, s2).

Ex. 2.2. (a) Prove (2.7).
(b) In Example 2.2, with the loss function as specified, show that mind{R(θ,

d(X))} = 0 ∀ θ, where the minimum is taken over all decision rules.
(c) Justify the corresponding statement for any loss function for which L(θ, a) > 0

if θ �= a, L(θ, θ) = 0.

Ex. 2.3. Prove (2.10) in Example 2.3.

Ex. 2.4. Show that (a) the estimator d2(X) ≡ 1
3 in Example 2.2 is admissible,

and

(b) the estimator d3(X) = X1+···+Xn−1

n−1 is inadmissible (n > 1).
(c) Find the range of values of θ over which R(θ, d2) ≤ R(θ, d3), and show that as

n increases this interval converges to the singleton
{
1
3

}
.

Ex. 2.5. Graph the two error probabilities in (2.10) in the case n = 20.

Ex. 2.6. Express the two error probabilities in (2.11) in terms of the parameters
(and the sample sizes m,n).
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Chapter 3

Introduction to General Methods
of Estimation

Abstract In this chapter we will introduce some important methods for finding
reasonable estimators of parameters of a population. Of these, Bayes estimators
will be treated in some detail, especially to illustrate various admissible estima-
tors. The maximum likelihood estimators (MLE) and the method of moments are
discussed briefly. Although the MLE is generally regarded as the most important
method of estimation, its asymptotic optimality properties are best described in
Part II on large sample theory.

3.1 The Maximum Likelihood Estimator

Perhaps the most important estimator is statistics is the maximum likelihood
estimator, originally used by Gauss for estimating the parameters of a Normal dis-
tribution N(μ, σ2) in connection with his astronomical observations. The method
in its general form is due to the British statistician R.A. Fisher who introduced it
in the early part of the twentieth century. Fisher is widely regarded as the father
of modern statistical theory.

Definition 3.1. Let f(x|θ) denote the density of the distribution of the observa-
tion (vector) X, with respect to some sigma-finite measure ν. For example, ν may
be Lebesgue measure on X = Rn, in which case f is the classical density of X,
or ν may be the counting measure on a countable observation space X such as
{0, 1}n, in which case f is called a probability mass function (pmf). The function
(θ) = f(X|θ), θ ∈ Θ, is called the likelihood function. The maximum likelihood
estimator (MLE) of θ is the value of θ where the likelihood function attains its
maximum, assuming the existence of a unique such point in Θ.

One may argue (and we will make this precise in connection with the notion
of sufficiency later) that all the statistical information about the true parameter
value in the (sample) observation X is contained in the likelihood function (θ).
The magnificent intuition of Gauss and Fisher is that the proper estimator of the
true parameter value is the one that maximizes the likelihood—it is the value of
the parameter which makes the given observation X as the most likely to occur
[You may think of this as a rather vain point of view!]

© Springer-Verlag New York 2016
R. Bhattacharya et al., A Course in Mathematical Statistics and Large Sample
Theory, Springer Texts in Statistics, DOI 10.1007/978-1-4939-4032-5 3
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Example 3.1 (N(μ, σ2)). In the Normal example, Example 1.1, the density is with
respect to Lebesgue measure ν on Rn. The likelihood function is given by (with
θ = (μ, σ2) ∈ Θ = R× (0,∞))

(θ) = (2πσ2)−n/2 exp

{

−1

2

∑
(Xi − μ)2/σ2

}

= (2πσ2)−n/2 exp

{

−
(

1

2σ2

)[∑
(Xi −X)2 + n(X − μ)2

]}

. (3.1)

The maximizer of  maximizes the strictly increasing function of  given by the
log-likelihood function

ln (μ, σ2) = −n

2
ln(2π)− n

2
ln(σ2)−

(
1

2σ2

)[∑
(Xi−X)2 +n(X−μ)2

]
. (3.2)

Setting the derivative of this with respect to μ to zero yields the MLE μ̂ of μ:

0 =
∂

∂μ
ln  =

( n

σ2

)
(X − μ), or μ̂ = X . (3.3)

Also, differentiation with respect to σ2 (using the solution for μ) yields

0 =
(
− n

2σ2

)
+

(
1

2σ4

)∑
(Xi −X)2, or σ̂2 =

∑ (Xi −X)2

n
. (3.4)

Thus the MLE of θ = (μ, σ2) is given by (X,
∑

(Xi−X)2/n). One may easily check
that the matrix of second derivatives of (θ) is negative-definite (Exercise 3.1),
so that the above solution is the unique maximizer of the likelihood function.
Equations (3.3), (3.4) yielding this solution are called likelihood equations.

Example 3.2 (Bernoulli (θ)). Consider Example 2.2 of Chap. 2.1, on estimating the
proportion θ, based on a random sample of n i.i.d. Bernoulli random variables with
probabilities θ and 1− θ for values 1 and 0, respectively. Here we take Θ = (0, 1)
and consider the density f(x|θ) with respect to the counting measure ν on {0, 1}n.
The likelihood and the log-likelihood functions are

(θ) = θ
∑

Xi(1− θ)
∑

(1−Xi), ln (θ) =
(∑

Xi

)
ln θ +

(
n−

∑
Xi

)
ln(1− θ).

(3.5)

The likelihood equation is then

0 =
∂ ln (θ)

∂θ
=

1

θ

∑
Xi − n−∑

Xi

1− θ
, or (1− θ)

∑
Xi − θ(n−

∑
Xi) = 0,

or
∑

Xi − nθ = 0, (3.6)

which has the solution θ̂ =
∑

Xi/n. Hence the MLE of the population proportion
θ is the sample proportion of 1’s. You may check that the second derivative of the
log-likelihood function is negative (Exercise 3.1).
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Example 3.3 (U(0, θ)). Let X = (X1, . . . , Xn) be a random sample from the uni-
form distribution on the interval (0, θ] where θ ∈ Θ = (0,∞). Here the den-
sity f(x|θ) =

∏
1≤i≤n(1/θ)1 {0 < xi ≤ θ}, x = (x1, . . . , xn), is with respect to

Lebesgue measure ν on (0,∞)n. The likelihood function is

(θ) =
1

θn
1{Xi≤θ, 1≤i≤n}, (3.7)

or (θ) = θ−n1 {θ ≥ Mn ≡ max(X1, . . . , Xn)} , θ ∈ (0,∞).

Here 1{. . . } denotes the indicator function of the set {. . . }. Since the likelihood
function has the value zero for θ < Mn, and decreases monotonically as θ increases
from Mn to infinity, its maximum is attained at θ = Mn. Thus the MLE of θ is
Mn = max(Xi : i = 1, . . . , n). Note that the maximum here occurs at a point
where (θ) is discontinuous (Exercise 3.2).

3.2 Method of Moments

Classically, in order to estimate an r-dimensional parameter θ = (θ1, . . . , θr) by
the method of moments, one equates the first r population moments with the
corresponding r sample moments. More generally, one may equate r functionally
independent population averages, say, Eθgj(X1), 1 ≤ j ≤ r, with the correspond-
ing sample averages (1/n)

∑
1≤i≤n gj(Xi), 1 ≤ j ≤ r, to solve for θj , j = 1, . . . , r.

Although the MLE can be generally shown to be superior to these estimates, the
latter are sometimes a lot easier to compute and, may be used as initial solutions
in an iterative process to numerically compute the MLE (Exercise 3.11). In Ex-
amples 3.1, 3.2, however, the classical method of moments, of equating as many
sample moments with population moments as there are parameters, yield the same
estimates as the MLE.

Example 3.4 (Gamma G (α, β)). Suppose the observation vector X comprises n
i.i.d. random variablesXi (i = 1, . . . , n) each with the gamma density (with respect
to Lebesgue measure on (0,∞)) given by

γ(x;α, β) = (αβΓ (β))−1xβ−1e−x/α, x > 0, (α > 0, β > 0). (3.8)

The first two moments of the gamma distribution are easily computed as
(Exercise 3.3)

E(X1) = αβ, E(X2
1 ) = α2β(β + 1), (3.9)

which, when equated with the corresponding sample moments m1 =
∑

Xi/n and
m2 =

∑
X2

i /n, yield the solutions

α̃ =
(m2 −m2

1)

m1
, β̃ =

m1

α
=

m2
1

(m2 −m2
1)
, (3.10)

that is, the right sides of the two equations in (3.10) are the method-of-moment
estimates of α and β.
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3.3 Bayes Rules and Bayes Estimators

Sometimes the statistician has prior information about the true parameter value.
This information does not generally specify a particular value, but, instead, is
given as a probability distribution τ on Θ, called the prior distribution, or simply
the prior. This distribution gives more weight to those values which, according
to the statistician, are more likely to be true compared to other values. Following
the same line of thought, if the statistician does not have any particular preference
for any value, then a prior to use may be the uniform distribution (provided the
parameter space admits one). We will not here get into the philosophical viewpoint
of a Bayesian. Indeed, in this course our approach may appear closer to that of
the so-called frequentist, although that is not entirely intentional. Hopefully this
apparent bias will be corrected in a follow up course. We remind the reader once
again that we fix an arbitrarily chosen loss function L(θ, a), which may satisfy
certain general properties to be specified as needed.

Given a prior τ , the statistician computes the Bayes risk r(τ, d) of a decision
rule d given by

r(τ, d) =

∫

Θ

R(θ, d)dτ(θ). (3.11)

Definition 3.2. A Bayes rule d0 is a decision rule, if one exists, which has the
smallest Bayes risk among all decision rules:

r(τ, d0) = inf r(τ, d), (3.12)

where the infimum is over all decision rules d. In the case of an estimation problem,
a Bayes rule is called a Bayes estimator.

Observe that the Bayes risk of a decision rule d (with respect to a prior τ) may
be expressed as

r(τ, d) =

∫

Θ

R(θ, d)dτ(θ) =

∫

Θ

{∫

X

L(θ, d(x))dPθ(x)

}

dτ(θ). (3.13)

Here Pθ is defined canonically as the distribution of the observation X on X
when θ is the true parameter value. Suppose we define on (a possibly enlarged
probability space (Ω,F , P )) a random variable ϑ whose distribution is τ , and
a random variable X (with values in X ) whose conditional distribution, given
ϑ = θ, is Pθ. Indeed, one can define this space canonically as Ω = X × Θ with
the product sigma-field, and with the probability measure P specified by

P (C ×D) =

∫

D

Pθ(C)dτ(θ) for all C ∈ B(X ) and D ∈ B(Θ). (3.14)

Denoting expectation with respect to P as E, (3.13) then may be expressed as

r(τ, d0) = EL(ϑ, d(X)). (3.15)

Note that (3.13) computes this expectation by (1) first taking the conditional
expectation given ϑ = θ (the inner integral in (3.13)) and (2) then integrating this
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conditional expectation with respect to the (marginal) distribution of ϑ (i.e., with
respect to the prior τ). That is, (3.13) says

r(τ, d) = EL(ϑ, d(X)) = E[E(L(ϑ, d(X)) | ϑ)]. (3.16)

One may reverse the order of integration, by first taking the conditional expecta-
tion, givenX, and then integrating this conditional expectation over the (marginal)
distribution of X:

r(τ, d) = EL(ϑ, d(X)) = E[E(L(ϑ, d(X)) | X)]. (3.17)

The conditional expectation in (3.17) is obtained by integrating L(θ, d(x)) with
respect to the conditional distribution of ϑ, given X = x. This is the so-called
posterior distribution of ϑ, denoted dτ(θ|x). Next this conditional expectation is
integrated with respect to the marginal distribution G of X, which has the density
(with respect to ν) given by

g(x) =

∫

Θ

f(x|θ)dτ(θ), [dG(x) = g(x)dν(x)]. (3.18)

Hence

r(τ, d) =

∫ [∫

L(θ, d(x))dτ(θ | x)
]

g(x)dν(x) (3.19)

If the prior τ has a density t(θ) with respect to some sigma-finite measure λ (for
example, λ may be Lebesgue measure on Θ), then the conditional density of ϑ,
given X = x, that is, the posterior density, is given by

t(θ | x) = t(θ)f(x | θ)
g(x)

, [dτ(θ | x) = t(θ | x)dλ(x)]. (3.20)

One may think of the posterior distribution as the updating of the prior given
the observed data X. In the Bayesian paradigm, all inference is to be based on the
posterior.

Theorem 3.1. Let τ be a given prior with a finite second moment. In the problem
of estimating the parameter θ belonging to a (measurable) set Θ ⊂ Rk, with the
action space A a (measurable) convex subset of R containing Θ, and under squared
error loss, the posterior mean of ϑ is a Bayes estimator of θ.

To prove this we first need a simple lemma.

Lemma 3.1. Let Z be a random vector with mean μ and a finite second moment.
Then

E|Z− μ|2 < E|Z− c|2 for every c �= μ. (3.21)

Proof. Let Z = (Z1, . . . , Zk), μ = (μ1, . . . , uk). Then (3.21) follows from the rela-
tions

E(Zi−ci)
2 ≡ E(Zi−μi + μi−ci)2 = E(Zi−μi)

2 + (μi−ci)2 + 2(μi−ci)E(Zi−μi)

= E(Zi−μi)
2 + (μi−ci)2 (i = 1, . . . , k).

��
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Proof of Theorem 3.1. The posterior mean of ϑ is E(ϑ | X) = d0(X), say. If d is
any other decision rule (estimator), then one has, by applying the Lemma to the
conditional distribution of ϑ, given X,

E(L(ϑ, d(X)) | X) ≡ E(|ϑ− d(X)|2 | X) ≥ E(|ϑ− d0(X)|2 | X)

≡ E(L(ϑ, d0(X)) | X). (3.22)

Hence

r(τ, d) = E(L(ϑ, d(X)) = E[E(L(ϑ, d(X)) | X] ≥ E[E(L(ϑ, d0(X)) | X)]

= E(L(ϑ, d0(X)) = r(τ, d0). (3.23)

��
Remark 3.1. The convexity of A ensures that d0(X) ∈ A a.s. The conclusion of
Theorem 3.1 and its proof apply to any (measurable) real or vector valued function
g(θ) of θ having a finite second moment under the given prior τ :

Proposition 3.1. If the action space A is a (measurable) convex set C, containing
the range of g, then under squared error loss L(θ, a) = |g(θ)− a|2, E(g(ϑ) | X) is
a Bayes estimator of g(θ).

Theorem 3.2. Let g(θ) be a real-valued measurable function on Θ having a finite
absolute first moment under the prior τ . Let the action space A be an interval
containing the range of g. Under absolute error loss L(θ, a) = |g(θ) − a|, a (the)
median of the posterior distribution of ϑ (i.e., the conditional distribution of ϑ,
given X) is a Bayes estimator of θ.

Remark 3.2. Recall that a median of a probability measure Q on R is a number
M such that

Q((−∞,M ]) ≡ Q({x ≤ M}) ≥ 1

2
, and Q([M,∞)) ≡ Q({x ≥ M}) ≥ 1

2
.

(3.24)

Unlike the mean, a median of a distribution need not be unique. There are two
cases in which the median is unique: (1) There is a unique M such that FQ(M) = 1

2 ,
where FQ is the (right-continuous) distribution function of Q, and (2) there is a
(necessarily unique) point M such that FQ(M) > 1

2 , and FQ(M−) < 1
2 . In the

remaining case, FQ has a flat stretch of x-values where it has the value 1
2 . This

may be either of the form (iii) [M0,M1) (with a jump discontinuity at M1), or of
the form (iv) [M0,M1], M0 < M1. Such an interval comprises the set of medians
of Q, illustrating the case of non-uniqueness.

We will need the following Lemma to prove Theorem 3.2.

Lemma 3.2. Let Z be a real-valued random variable with a finite mean. If M is
a median of the distribution Q of Z, then

inf{E|Z − c| : c ∈ R} = E|Z −M |. (3.25)



3.3 Bayes Rules and Bayes Estimators 25

Proof. Let M be a median of Q, and a < M . Then

E|Z − a| = E
[
(Z − a)1{Z≥a}

]
+ E

[
(a− Z)1{Z<a}

]

= E
[
(Z−M)1{Z≥a}+(M − a)1{Z≥a}+(a−M)1{Z<a}+(M − Z)1{Z<a}

]

= E
[
(Z −M)(1{Z≥M} + 1{a≤Z<M}) + (M − Z)(1{Z<M} − 1{a≤Z<M})

]

+(M − a)[P (Z ≥ a)− P (Z < a)]

= E|Z −M | − 2E[(M − Z)1{a≤Z<M}] + (M − a)[2P (Z ≥ a)− 1]

≥ E|Z −M | − 2(M − a)P (a ≤ Z < M) + (M − a)[2P (Z ≥ a)− 1]

= E|Z −M |+ 2(M − a)[P (Z ≥ a)− P (a ≤ Z < M)]− (M − a)

= E|Z −M |+ 2(M − a)P (Z ≥ M)− (M − a) ≥ E|Z −M |

using P (Z ≥ M) ≥ 1
2 in the last step. Similarly, one can show that for a > M

one has E|Z − a| ≥ E|Z −M |. Else one may use the fact that −M is a median of
the distribution of −Z. Hence if a > M , −a < −M , so that the above argument
shows that E| − Z − (−a)| ≥ E| − Z − (−M)|. ��
Proof of Theorem 3.2. This follows by first taking conditional expectation, given
X : E[L(ϑ, d(X)) | X] ≡ E[(|g(ϑ) − d(X)|)|X] ≥ E[(|g(ϑ) − d0(X)|) | X] ≡
E[L(ϑ, d0(X)) | X], where d0(X) is a (the) median of the conditional distribution
of g(ϑ), given X. Integrating this over the marginal distribution of X, the proof is
completed. ��
Remark 3.3. In the case of a vector parameter θ = (θ1, . . . , θk), if one uses the
additive loss function, L(θ, a) = |θ1 − a1| + · · · + |θk − ak|, then it follows by
Lemma 3.1 that the vector of medians of the coordinates of ϑ, given X, is a Bayes
estimator of θ.

Example 3.5. Let Θ = [0, 1] = A , L(θ, a) = c(θ−a)2 (where c > 0 does not depend
on θ), X = {0, 1}n ≡ set of all n-tuples of 0’s and 1’s (the observation space for
a random sample of size n from a Bernoulli distribution B(θ)), and

f(x | θ) = Pθ({X = x}) = θr(1− θ)n−r, x = (x1, . . . , xn) ∈ X ,

r :=
n∑

i=1

xi is the number of 1’s in the sample. (3.26)

We wish to compute the Bayes estimator of θ for the prior τ with density t (with
respect to Lebesgue measure on Θ = [0, 1]) given by

dτ(θ) = t(θ)dθ, t(θ) =
Γ (α+ β)

Γ (α)Γ (β)
θα−1(1− θ)β−1 (3.27)

where α > 0, β > 0 are parameters of this beta distribution Be(α, β). Note that
(See the Appendix on Univariate Distributions)

∫ 1

0

θα−1(1− θ)β−1dθ =
Γ (α)Γ (β)

Γ (α+ β)
. (3.28)

The mean of the Be(α, β) distribution is

∫ 1

0

θt(θ)dθ =
Γ (α+ β)

Γ (α)Γ (β)

∫ 1

0

θα(1− θ)β−1dθ
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=
Γ (α+ β)

Γ (α)Γ (β)
· Γ (α+ 1)Γ (β)

Γ (α+ β + 1)
=

α

α+ β
, (3.29)

using (3.28) and the identity: Γ (α+1) = αΓ (α) for all α > 0. The posterior density
or ϑ (i.e., the conditional density of ϑ, given (X = x) is computed as in (3.20),

t(θ | x) = t(θ)f(x | θ)
g(x)

=
c(α, β)

g(x)
θα+r−1(1− θ)β+n−r−1

[

c(α, β) =
Γ (α+ β)

Γ (α)Γ (β)

]

(r =
n∑

i

xi), (3.30)

where the marginal density (w.r.t. counting measure on X ) g(x) is given by
(see (3.18))

g(x) =

∫

Θ

f(x | θ)t(θ)dθ. (3.31)

Although we can surely compute g(x) from (3.31), note that a simpler way is to
recognize that (3.30) gives a probability density function (in θ) for every given x
and, therefore, must integrate out to 1. Then

g(x) = c(α, β)

∫ 1

0

θα+r−1(1− θ)β+n−r−1dθ =
Γ (α+ β)

Γ (α)Γ (β)

Γ (α+ β + n)

Γ (α+ r)Γ (β + n− r)
.

(3.32)

But even this computation is unnecessary! For the functional form (3.30), as a
density in θ, shows that the posterior distribution of ϑ is Be(α+r, β+n−r). Hence
the Bayes estimator of θ, namely, the mean of its (or ϑ’s) posterior distribution
is, by (3.29),

d0(x) = E(O | X = x) =
r + α

n+ α+ β

(

r =
n∑

i=1

xi

)

. (3.33)

If n is large (and α, β are relatively small), then this is not significantly different

from the traditional (maximum likelihood) estimator θ̂ = x ≡
n∑

i=1

xi/n (the sample

proportion of 1’s).

To compute the Bayes risks of d0 and θ̂ (Exercise 3.4), first compute the second
moment of a Be(α, β) distribution as

Γ (α+ β)

Γ (α)Γ (β)

∫ 1

0

θ2θα−1(1− θ)β−1dθ =
Γ (α+ β)

Γ (α)Γ (β)
· Γ (α+ 2)Γ (β)

Γ (α+ β + 2)

=
α(α+ 1)

(α+ β)(α + β + 1)
. (3.34)

Example 3.6. Let Θ = R = A , X = R
n = Ω, Pθ has density f(x | θ) (w.r.t.

Lebesgue measure on R
n), given by

f(x | θ) = (2πσ2)−n/2 exp

{

−
n∑

i=1

(xi − θ)2/2σ2

}

,

x = (x1, . . . , xn) ∈ R
n. (3.35)



3.3 Bayes Rules and Bayes Estimators 27

Here σ2 > 0 is assumed to be known. Finally, let L(θ, a) = c(θ − a)2, with c > 0
not dependent on θ. We will construct the Bayes estimator of θ for the Normal
prior τ with density (w.r.t. Lebesgue measure on Θ = R) t(·) given by

t(θ) = (2πβ2)−
1
2 exp

{

− θ2

2β2

}

, θ ∈ R, (3.36)

where β > 0 is a given constant. The posterior density (w.r.t. Lebesgue measure)
of ϑ given X is

t(θ | x) = t(θ)f(x | θ)
g(x)

=
(2πβ2)−

1
2 (2πσ2)−

n
2 exp

{
− θ2

2β2 − 1
2σ2

∑
(xi − θ)2

}

g(x)

= c1(β, σ
2,x) exp

{

− θ2

2β2
− n(θ − x)2

2σ2

}

= c2(β, σ
2,x) exp

{

−
(

1

2β2
+

n

2σ2

)

θ2 +
nx

σ2
θ

}

(3.37)

= c3(β, σ
2,x) exp

{

−1

2

(
nβ2 + σ2

β2σ2

)(

θ − nβ2

nβ2 + σ2
x

)2
}

on X = x,

where ci(β, σ
2,x) (i = 1, 2, 3) do not involve θ. Hence the posterior distribution

dτ(θ | x) is NormalN
(

nβ2x
nβ2+σ2 ,

β2σ2

nβ2+σ2

)
, with mean [nβ2/(nβ2+σ2)]x. Therefore,

the Bayes estimator of θ is

d0(x) =
nβ2

nβ2 + σ2
x. (3.38)

In this example d0(X) is also the median of the posterior, in view of the sym-
metry of the Normal distribution. Hence d0 in (3.38) is also the Bayes estimator
under the loss function L(θ, a) = |θ − a|.

This example is easily extended to k-dimensional i.i.d. N(θ, Ik) observations,
where θ ∈ R

k, and Ik is the k × k identity matrix. The prior distribution of
θ is taken to be that of independent N(0, β2

i ) random variables (i = 1, . . . , k)
(Exercise 3.10).

A parametric family of priors is said to be conjugate if, for every prior τ in the
family, the posterior distribution belongs to the same family (∀x ∈ X ). Exam-
ples 3.5, 3.6 and Exercise 3.5 above provide examples of such priors.

Bayes estimators are, under mild restrictions, admissible. Our next couple of
results make this precise.

Definition 3.3. A Bayes rule d0 (w.r.t. a prior τ , and a given loss function) is
said to be unique up to equivalence if for any other Bayes rule d1 (w.r.t. τ) one
has R(θ, d0) = R(θ, d1) ∀ θ ∈ Θ.

Theorem 3.3. If, for a given prior τ , a Bayes rule is unique up to equivalence,
then it is admissible.

Proof. Let a Bayes rule d0 be unique up to equivalence, and suppose, if possible,
d0 is inadmissible. Then there exists a decision rule d1 satisfying (i) R(θ, d1) ≤
R(θ, d0) ∀ θ ∈ Θ, and (ii) R(θ1, d1) < R(θ1, d0) for some θ1 ∈ Θ. By integrating
the first inequality (i) w.r.t. τ , one gets r(τ, d1) ≤ r(τ, d0). But d0 has the smallest
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possible Bayes risk among all decision rules. Hence r(τ, d1) = r(τ, d0), implying
d1 is a Bayes rule. By the hypothesis of uniqueness, one then has R(θ, d1) =
R(θ, d0) ∀ θ ∈ Θ, contradicting inequality (ii). ��

Often the following stronger uniqueness holds for Bayes rules.

Definition 3.4. A Bayes rule d0 is said to be unique if for every Bayes rule d1
(w.r.t. the same prior τ) one has

Pθ(d1(X) = d0(X)) = 1 ∀ θ ∈ Θ. (3.39)

It is clear that (3.39) implies R(θ, d1) = R(θ, d0) ∀ θ ∈ Θ.

Example 3.7. Let Θ = [0, 1] = A , L(θ, a) = c(θ − a)2 (c > 0 does not depend on
θ), X = {0, 1}n,

f(x | θ) ≡ Pθ({x})=θr(1 − θ)n−r (r =

n∑

1

xi, x = (x1, . . . , xn)).

In this example, let τ be a prior assigning all its mass to {0, 1} (τ({0, 1}) = 1),
say, τ({0}) = p, τ({1}) = q = 1− p. Assume n ≥ 2. Consider the estimators

d0(X) ≡ X, d1(X) ≡ X1. (3.40)

Then

R(θ, d0) =
cθ(1 − θ)

n
, R(θ, d1) = cθ(1− θ),

r(τ, d0) =

∫

Θ

R(θ, d0)dτ(θ) = R(0, d0)p+R(1, d0)q = 0,

r(τ, d1) = R(0, d1)p+R(1, d1)q = 0.

For P0(Xi = 0) = 1, P1(Xi = 1) = 1 ∀ i = 1, 2, . . . , n, and P0(Xi = 0) = 1,
P1(X = 1) = 1. Thus d0 and d1 are both Bayes estimators. But d1 is clearly
inadmissible, since for all 0 < θ < 1, R(θ, d0) < R(θ, d1), while R(θ, d0) = R(θ, d1)
for θ = 0, 1.

To rule out situations like this, one may require a property such as P1 below.

Property P1 There exists a subset Θ̃ of Θ such that (1) τ(Θ̃) > 0 and (2) if

Pθ0(A) = 0 for some θ0 ∈ Θ̃ (and for some event A ⊂ X ), then Pθ(A) = 0 for all
θ ∈ Θ.

Note that the prior τ in Example 3.7 does not satisfy P1.

Theorem 3.4. In a decision problem with loss c(θ−a)2 (c > 0 independent of θ),
suppose a prior τ has the property P1. Then a Bayes estimator w.r.t. τ is unique,
assuming r(τ, d0) < ∞.

Proof. A Bayes rule w.r.t. to τ is the posterior mean d0(X) = E(ϑ | X). Write

r(τ, d0) = c

∫

X

v(x)dG(x), v(x) := E[(ϑ− d0(x))
2 | X = x],
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where G is the (marginal) distribution of X. Now suppose d1 is another Bayes
estimator w.r.t. τ , and

r(τ, d1) = c

∫

X

v1(x)dG(x), v1(x) := E
[
(ϑ− d1(x))

2 | X = x
]
.

Let A = {x ∈ X : d0(x) �= d1(x)}. Then

r(τ, d1) = c

∫

A

v1(x)dG(x) + c

∫

Ac

v1(x)dG(x),

r(τ, d0) = c

∫

A

v(x)dG(x) + c

∫

Ac

v(x)dG(x).

Since r(τ, d1) = r(τ, d0), it follows that
∫
A(v1(x) − v(x))dG(x) = 0. But on A,

v1(x) > v(x). Therefore, G(A) = 0. This implies

0 = G(A) =

∫

Θ

Pθ(A)dτ(θ) ≥
∫

Θ̃

Pθ(A)dτ(θ),

so that the last integral must be zero. Hence Pθ(A) = 0 a.e. (w.r.t. τ) on Θ̃. But

τ(Θ̃) > 0. Therefore, there exists θ0 ∈ Θ̃ such that Pθ0(A) = 0. By property P1,
one now gets Pθ(A) = 0 ∀ θ ∈ Θ. Thus uniqueness holds. ��
Remark 3.4. The above argument extends to the absolute error loss |θ−a|, provided
the posterior distribution has a unique median a.s. for all x. This is the case, e.g.,
when the prior has a strictly positive density on Θ.

Corollary 3.1. Under the hypothesis of Theorem 3.4, a Bayes estimator is ad-
missible.

We next turn to the (uneasy) relationship between Bayes estimators and un-
biased estimators. Recall d(X) is an unbiased estimator of a parametric function
g(θ) if

Eθd(X) = g(θ) ∀ θ ∈ Θ.

Theorem 3.5. Let loss be proportional to squared error. Then the Bayes estimator
d(X) = E(θ | X) (with a finite Bayes risk) is not unbiased, if r(τ, d) > 0.

Proof. Suppose, if possible, that d(X) is unbiased. Then

Eϑd(X) = E[ϑE(d(X) | ϑ)] = Eϑϑ = Eϑ2, (by unbiasedness of d),

Eϑd(X) = E[d(X)E(ϑ | X)] = Ed(X)d(X) = Ed2(X).

On the other hand,

0 < r(τ, d) = E[ϑ− d(X)]2 = Eϑ2 + Ed2(X)− 2Eϑd(X) = 0,

a contradiction. ��
Remark 3.5. In the proof of Theorem 3.4 the nature of the loss function is only
used to require that ν1(x) > ν(x) ∀ x ∈ {d0(x) �= d1(x)}. Thus Theorem 3.4 and
Corollary 3.1 hold under every loss function such that E[L(O,X) | X = x] has a
unique minimizer for every x.
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3.4 Minimax Decision Rules

A conservative statistician may try to avoid maximum penalty by choosing a de-
cision rule d∗ whose risk function R(θ, d∗) has the smallest maximum value.

Definition 3.5. A decision rule d∗ is minimax for a decision problem (specified
by Θ, A , L(θ, a), X , and Pθ ∀ θ ∈ Θ), if for every decision rule d one has

sup
θ∈Θ

R(θ, d∗) ≤ sup
θ∈Θ

R(θ, d) (3.41)

or, equivalently, if
sup
θ∈Θ

R(θ, d∗) = inf
d

sup
θ∈Θ

R(θ, d), (3.42)

where the infimum on the right side is over the class of all decision rules d.

Theorem 3.6. Suppose τN (N = 1, 2, . . . ) is a sequence of priors with correspond-
ing Bayes rules dN such that r(τN , dN ) → C < ∞, as N → ∞. If there exists a
decision rule d∗ such that

R(θ, d∗) ≤ C ∀ θ ∈ Θ, (3.43)

then d∗ is minimax.

Proof. If d∗ is not minimax, there exists d such that supθ∈Θ R(θ, d) <
supθ∈Θ R(θ, d∗) ≤ C. Let ε > 0 be such that R(θ, d) ≤ C − ε ∀ θ ∈ Θ. Then
r(τN , d) ≡ ∫

Θ R(θ, d)dτN (θ) ≤ C − ε for all N , and r(τN , d) < r(τN , dN ) for all
sufficiently large N (since r(τN , dN ) → C as N → ∞). This contradicts the fact
that dN is Bayes (w.r.t. τN ) for every N . ��
Example 3.8. Let Θ = R = A , X = R

n, Pθ (on Ω = X ) has the density

f(x | θ) = (2πσ2)−n/2 exp

{

− 1

2σ2

n∑

i=1

(xi − θ)2

}

.

Let the loss function be L(θ, a) = c(θ−a)2 (c > 0). Consider the rule d∗(x) = x =
1
n

∑n
i=1 xi. For each N = 1, 2, . . . , consider the prior τN which is N(0, N) (Normal

with mean 0 and variance N). Then the Bayes estimator dN for the prior τN is
(See Example 3.6) is dN (x) = nNx

nN+σ2 with the corresponding Bayes risk

r(τN , dN ) = cE(ϑ− dN (X))2 = cE[E(ϑ− dN (X))2 | X)]

= cE

(
Nσ2

Nn+ σ2

)

= c
Nσ2

Nn+ σ2
−→ cσ2

n
as N → ∞.

Since R(θ, d∗) = cEθ(X − θ)2 = cσ
2

n , Theorem 3.6 applies, and d∗ is minimax.

Theorem 3.7. Suppose d∗ is a decision rule whose risk function is a constant c′,

R(θ, d∗) = c′ ∀ θ ∈ Θ. (3.44)

If, in addition, (i) there exists some prior τ such that d∗ is Bayes w.r.t. to τ , or
(ii) d∗ is admissible, then d∗ is minimax.
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Proof. Let d be any other decision rule. Then, if (i) holds,

sup
θ∈Θ

R(θ, d) ≥
∫

Θ

R(θ, d)dτ(θ) ≡ r(τ, d) ≥ r(τ, d∗)

=

∫

Θ

R(θ, d∗)dτ(θ) = c′ = sup
θ∈Θ

R(θ, d∗).

Suppose now that (ii) holds, and d∗ is not minimax. Then there exists d1 such
that

sup
θ∈Θ

R(θ, d1) < R(θ, d∗) = c′ ∀ θ.

This means d∗ is not admissible, a contradiction. ��
Note that condition (1) in Theorem 3.7 does not necessarily imply condition

(2) without some condition such as P1 ensuring the uniqueness of the Bayes rule
for τ .

Example 3.9 (Admissibility of the Sample Proportion). Consider Example 3.7 (or
Exercise 3.4), but with Θ = (0, 1), A = [0, 1], and L(θ, a) = (θ−a)2/θ(1−θ). The
decision rule d∗ = x has constant risk

R(θ, d∗) = Eθ(θ −X)2/θ(1− θ) =
1

n
∀ θ ∈ Θ. (3.45)

We will show that d∗ is also Bayes with respect to the beta prior τ = Be(1, 1).
For any decision rule d, the Bayes risk w.r.t. the uniform prior τ is

r(τ, d) =

∫ 1

0

Eθ(θ − d(X))2

θ(1− θ)
dθ =

∫ 1

0

∑

x∈{0,1}n

(θ − d(x))2

θ(1− θ)
θr(1− θ)n−rdθ

=
∑

x∈{0,1}n

∫ 1

0

(θ − d(x))2θr−1(1− θ)n−r−1dθ. (3.46)

If r = 0, the integral is infinite, unless d(x) = 0, and if r = n the integral is infinite
unless d(x) = 1. Hence a Bayes rule d0 must have the values

d0(x) =

{
0 if x = (0, 0, . . . , 0),
1 if x = (1, 1, . . . , 1).

(3.47)

For every other x, the summand in (3.46) may be expressed as

Γ (r)Γ (n− r)

Γ (n)

∫ 1

0

(θ − d(x))2br,n−r(θ)dθ, (3.48)

where br,n−r is the density of the beta distribution Be(r, n − r). The integral
in (3.48) is then E(ϑ − d(X))2, where ϑ has the Be(r, n − r) distribution, and is
therefore minimum when d(x) = Eϑ = r

n = x. Thus the (unique) Bayes estimator

is d∗ = x. In particular, d∗ is minimax (w.r.t. the loss (θ−a)2

θ(1−θ)), by Theorem 3.7

and admissible (by Theorem 3.3). Admissibility w.r.t. the loss function L(θ, a) =
(θ − a)2/[θ(1 − θ)] means that there does not exist any decision rule d such that

R(θ, d) ≡ Eθ(θ − d(X))2

θ(1− θ)
≤ Eθ(θ −X)2

θ(1− θ)
≡ R(θ, d∗) ∀ θ ∈ (0, 1), (3.49)



32 3 Introduction to General Methods of Estimation

with strict inequality for some θ ∈ (0, 1). Canceling out θ(1 − θ) from both sides,
this implies that d∗(x) ≡ x is admissible w.r.t. squared error loss L(θ, a) = (θ−a)2,
as well as w.r.t. the loss [θ(1− θ)]−1(θ − a)2.

3.5 Generalized Bayes Rules and the James-Stein Estimator

1. Improper Priors and Generalized Bayes Rules. If the (prior) weight measure τ
is allowed to be an arbitrary non-zero sigma-finite measure on Θ, it is called an
improper prior in case τ(Θ) = ∞. Whether τ is finite or not, a decision rule
d0(x) which minimizes

a −→
∫

Θ

L(θ, a)f(x | θ)dτ(θ) (3.50)

for every x (over all a ∈ A ) is called a generalized Bayes rule for the possibly
improper prior τ . If τ is finite, then this minimizer is the same as that w.r.t.
the (normalized) prior τ/τ(Θ).

Example 3.10 (N(θ, σ2)). Consider the problem of estimating the Normal mean θ,
with σ2 known, discussed in Examples 3.6, 3.8. If τ is the Lebesgue measure on
Θ = R, then the integral (3.50) equals

(2πσ2)−n/2

∫ ∞

−∞
(θ − a)2e−

1
2σ2

∑n
1 (xi−θ)2dθ

=
(2πσ2)−(n−1)/2

√
n

e−
1

2σ2

∑n
1 (xi−x)2

∫ ∞

−∞
(θ − a)2

√
n√

2πσ2
e−

n
2σ2 (x−θ)2dθ (3.51)

The last integral is the expected value of (ϑ− a)2 where ϑ is N(x, σ
2

n ). Hence the
minimum is attained at a = x, and d0(x) = x is the generalized Bayes estimator
for τ .

We will apply the following theorem to prove that d0(x) = x is admissible as
an estimator of θ in this example.

We continue to use the notation r(τ, d) as in (3.11), for improper priors as well
as proper priors.

Theorem 3.8 (Blyth’s Method). Suppose that θ → R(θ, d) is finite and con-
tinuous for every decision rule d for which R(θ′, d) < ∞ for some θ′ ∈ Θ. Let
d0 be a decision rule with a finite risk function. Assume there exists a sequence
of proper or improper priors τN (N = 1, 2, . . . ) with the following properties:
(i) for every nonempty open subset Θ0 of Θ there exist N0 and b0 > 0 such that
τN (Θ0) ≥ b0 ∀ N ≥ N0, and (ii) r(τN , d0)− r(τN , dN ) → 0 as N → ∞, where dN
is a generalized Bayes rule for τN .

Then d0 is admissible.

Proof. Suppose d0 is inadmissible. Then there exists a decision rule d, θ0 ∈ Θ and
ε > 0 such that R(θ, d) ≤ R(θ, d0) ∀ θ, R(θ0, d) < R(θ0, d0) − ε. By continuity
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of risk functions, there exists an open subset Θ0 of Θ, with θ0 ∈ Θ0, for which
R(θ, d) < R(θ, d0)− ε ∀ θ ∈ Θ0. By (i) there exist N0 and b0 > 0 so that τN (Θ0) ≥
b0 ∀N ≥ N0. Hence

r(τN , d0)− r(τN , d) > ετN (Θ0) ≥ εb0 > 0 ∀ N ≥ N0.

This contradicts (ii), since r(τN , d) ≥ r(τN , dN ). ��
Example 3.11 (Admissibility of the Mean of a Sample from N(θ, σ2)). In context
of the Normal example above, let τN =

√
N N(0, N). To check condition (i) in

Theorem 3.8, let Θ0 be a nonempty open subset of Θ = R. There exist θ0 < θ1
such that (θ0, θ1) ⊂ Θ0. Now

τN (Θ0) ≥ τN ((θ0, θ1)) =
√
N

∫ θ1

θ0

1√
2πN

e−θ2/2Ndθ

=
1√
2π

∫ θ1

θ0

e−θ2/2Ndθ −→ 1√
2π

(θ1 − θ0) > 0 as N → ∞, (3.52)

from which (i) follows. Also, r(τN , x) =
∫
R(θ, x)dτN (θ) =

√
N σ2

n , r(τN , dN ) =√
N
(

Nσ2

nN+σ2

)
(See Example 3.6, with β2 = N), so that

r(τN , x)− r(τN , dN ) =
√
N

(
nN + σ2 −Nn

n(nN + σ2)

)

σ2 =

√
N

n(nN + σ2)
σ4 −→ 0,

(3.53)

as N → ∞, proving condition (ii) of Theorem 3.8, and establishing the admissi-
bility of x.

Remark 3.6. If one tries to extend the proof to the k-dimensional Normal dis-
tribution N(θ, I) (where θ = (θ1, . . . , θk) ∈ Θ = R

k, and I the k × k identity
matrix), by letting τN be the product measure

√
nN(0, N) × · · · × √

nN(0, N),
then condition (i) of Theorem 3.8 holds as in (3.52) (with (

√
N )k canceling out

from the numerator and denominator). However, condition (ii) breaks down, since
r(τN ,x) − r(τN , dN ) = (

√
N )k/2k/{n(nN + 1)}, which does not go to zero as

N → ∞, if k ≥ 2. It may be shown that x is admissible for the case k = 2.
However, x is inadmissible for k ≥ 3, a fact first discovered by Charles Stein in
1956 and which came as a big shock to most statisticians. We give below a proof
of this inadmissibility due to James and Stein (1961) by showing that the so-called
James–Stein estimator

dJS(x) :=

(

1− (k − 2)σ2

n|x|2
)

x (3.54)

is uniformly better than x for k ≥ 3, when the underlying distribution Pθ is
N(θ, σ2I) for some known σ2 > 0, and the loss function is squared error L(θ, a) =

|θ − a|2 =
∑k

j=1 |θj − aj |2 (θ = (θ1, . . . , θk), a = (a1, . . . , ak) ∈ R
k).

Theorem 3.9. One has

R(θ, dJS) = k
σ2

n
− (k − 2)2

σ2

n
Eθ

(
1

|Y |2
)

, (k ≥ 3), (3.55)

where Y is N(
√
n θ/σ, I).
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We need two auxiliary properties of the Normal distribution.

Lemma 3.3. Let g be a real-valued differentiable function on R such that
E|g′(X)| < ∞ where X is N(θ, 1), and assume g(x)ϕ(x − θ) → 0 as |x| → ∞.
Then Eg′(X) = cov(X, g(X)).

Proof. Integrating by parts, and denoting the standard normal density by ϕ,

Eg′(X) =

∫ ∞

−∞
g′(x)ϕ(x − θ)dx =

∫ ∞

−∞
g(x)(x − θ)ϕ(x − θ)dx

��
Lemma 3.4. Let g = (g1, g2, . . . , gk) be differentiable on R

k into R
k. Let X =

(X1, . . . , Xk) have the distribution N(θ, I), θ = (θ1, . . . , θk) ∈ R
k, I k×k identity

matrix. Assume that E|g(X)|2 < ∞ and define hj(y) = E(gj(X)|Xj)Xj=y =
Egj(X1, . . . , Xj−1, y,Xj+1, . . . , Xk). Assume that hj satisfies the hypothesis of
Lemma 3.3 (in place of g there), 1 ≤ j ≤ k. Then

E|X+ g(X)− θ|2 = k + E

⎛

⎝|g(X)|2 + 2

k∑

j=1

∂

∂xj
gj(x) |x=X

⎞

⎠ . (3.56)

Proof. The left side equals

E|X−θ|2+E|g(X)|2+2E(X−θ) ·g(X) = k+E|g(X)|2+2

k∑

j=1

E(Xj −θj)gj(X).

Now E(Xj − θj)gj(X) = E[(Xj − θj) · E(gj(X)|Xj)] = E(Xj − θj)hj(Xj).
Apply Lemma 3.3 (with g = hj) to get E(Xj − θj)hj(Xj) = Eh′

j(Xj) =

E
[(

∂
∂xj

gj(x)
)

x=X

]
. ��

Proof of Theorem 3.9. Since X is distributed as N
(
θ, σ

2

n I
)
, by rescaling it as

√
n
σ X (which is distributed as N(γ, I), with γ =

√
n
σ θ), one may take n = 1,

σ2 = 1 in the Theorem and write X for X. In this case write g(x) = − (k−2)
|x|2 x to

have (by (3.56))

Eθ

∣
∣
∣d

JS(X)− θ
∣
∣
∣

2

= E|X+g(X)−θ|2 = k+(k−2)2E

(
1

|X|2
)

+2E

[
k∑

j=1

∂

∂xj
gj(x)

∣
∣
x=X

]

.

Now
∑

(∂/∂xj)gj(x) = −(k − 2)2/|x|2, so that

Eθ

∣
∣dJS(X)− θ

∣
∣2 = k − (k − 2)2E

(
1

|X|2
)

, (k ≥ 3).

��
Remark 3.7. It has been shown that even dJS is not admissible (James and Stein,
1961).
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We conclude this chapter with a result which implies, in particular, that the
sample mean X is an admissible estimator of the population mean θ of a Normal
distribution N(θ, σ2) when both θ and σ2 > 0 are unknown parameters.

Theorem 3.10. Let Θ = Θ1 ×Θ2 and suppose a decision rule d is admissible for
the parameter space{(θ1, θ2) : θ1 ∈ Θ1} for every given value of θ2 ∈ Θ2. Then d
is admissible when the parameter space is Θ.

Proof. Suppose d is inadmissible when the parameter space is Θ = Θ1 ×Θ2. Then
there exists a decision rule d1 and a point θ0 = (θ01 , θ

0
2) such that R(θ, d1) ≤

R(θ, d) ∀ θ ∈ Θ and R(θ0, d1) < R(θ0, d). But this implies R((θ1, θ
0
2), d1) ≤

R((θ1, θ
0
2), d) ∀ θ1 ∈ Θ1, R((θ01 , θ

0
2), d1) < R((θ01, θ

0
2), d), contradicting the fact

that d is admissible when the parameter space is Θ1 × {θ02}. ��

3.6 Notes and References

For Bayes estimation we refer to Ferguson (1967, Sects. 1.8, 2.1–2.3), and Lehmann
and Casella (1998, Chaps. 4 and 5).

Exercises for Chap. 3

Ex. 3.1. (a) In Example 3.1, show that the solution (μ̂, σ̂2) of the likelihood equa-
tions (3.3), (3.4) is the unique value of the parameter θ = (μ, σ2) which max-
imizes the likelihood function (θ).

(b) In Example 3.2, show that θ̂ =
∑

Xi/n is the unique maximizer of (θ).

Ex. 3.2. In Example 3.3,

(a) plot (θ) for n = 4, Mn = 2, and
(b) schematically draw the graph of (θ) for a general n ≥ 2.

Ex. 3.3. (a) Write down the likelihood function and the likelihood equation in
Example 3.4. Note that no explicit solution is available for the MLE.

(b) Verify (3.9).

Ex. 3.4. Calculate the Bayes risk r(τ, d0) in Example 3.5, and compare this with

the Bayes risk of θ̂, namely,

r(τ, θ̂) =

∫

Θ

R(θ, θ̂)t(θ)dθ =

∫ 1

0

θ(1 − θ)

n
t(θ)dθ. (3.57)

Ex. 3.5. Let the observation space be X = {0, 1, . . .}n ≡ Z
n
+,

f(x | θ) =
n∏

i=1

e−θ θ
xi

xi!
≡ e−nθ θ

∑n
1 xi

∏n
i=1 xi!

(x ∈ X ) (3.58)

where θ ∈ Θ = (0,∞), A = [0,∞). Find the Bayes estimator of θ (with squared
error loss) for the prior G (α, β) (See definition in Example 3.4).
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Ex. 3.6. Let Θ = [0, 1] = A , X = {0, 1}n, Pθ({x}) = θr(1 − θ)n−r (r =
∑n

1 xi),
L(θ, a) = c(θ − a)2 (c > 0). By Example 3.5, the Bayes rule for the beta prior
Be(α, β) is (r + α)/(n + α + β) ≡ d0(X). Show that for α = β =

√
n/2, the risk

function of the Bayes rule of d0(X) is a constant (R(θ, d0) = c/[4(
√
n+ 1)2] ∀ θ ∈

Θ), and conclude that

d∗(X) :=

∑n
i Xi +

√
n
2

n+
√
n

≡
X + 1

2
√
n

1 + 1√
n

(3.59)

is minimax, as well as admissible.

Ex. 3.7. Admissibility of the Sample Mean from a Poisson Distribution. Let Θ =
(0,∞), A = [0,∞), X = Z

n
+ ≡ {0, 1, 2, . . .}n = Ω,

Pθ({x}) =
n∏

i=1

e−θ θ
xi

xi!
= e−nθ θ

∑n
1 xi

∏n
1 xi!

≡ f(x | θ).

Let L(θ, a) = eθ

θ (θ − a)2 for (a), (b) below.

(a) Find the Bayes estimator w.r.t. the prior G (α, β)(Gamma).
(b) Show that X = 1

n

∑n
i=1Xi is Bayes w.r.t. some prior τ , and admissible.

(c) Show that X is admissible under squared error loss: L(θ, a) = (θ − a)2.

(d) Show that X is minimax, w.r.t. loss function (θ−a)2

θ .

Ex. 3.8. Show that, under squared error loss, (a) X is an admissible estimator
of μ ∈ Θ1 = R

k when the sample is from N(μ, σ2I) with μ, σ2 both unknown
and k = 1, 2, and that (b) X is inadmissible if k ≥ 3 (Θ = R

k × (0,∞)). [Hint:
Assume the admissibility of the sample mean for k = 1, 2, when σ2 is known, and
use Theorem 3.10.]

Ex. 3.9. LetX be the mean of a random sample fromN(μ, Σ) when μ ∈ R
k ≡ Θ1,

Σ ∈ Θ2 ≡ set of all symmetric positive definite k × k matrices. Let Θ = Θ1 ×Θ2,
A = Θ1, and let the loss function be squared error L(θ, a) = |μ− a|2.

(a) Show that X is an admissible estimator of μ when the parameter space is
restricted to Θ1 × {Σ} for any given Σ ∈ Θ2, and k = 1 or 2.

(b) Show that X is an admissible estimator of μ if k = 1 or 2 and when μ and
Σ are both unknown, i.e., the parameter space is Rk ×Θ2.

*(c) (Optional.) In the cases (a), (b) show that X is inadmissible if k ≥ 3. [Hint:
Brownian motion with zero drift and arbitrary non-singular diffusion matrix
Γ is recurrent iff k ≤ 2.]

Ex. 3.10. Extend Example 3.6 to obtain

(a) the posterior distribution of the mean θ of the Normal distribution N(θ, Ik),
based on a random sample X1, . . . ,Xn, when the prior distribution of θ is

taken to be that of k independent Normal random variables, θi
d∼ N(0, β2

i ) (i =
1, . . . , k). Also,

(b) compute the Bayes estimator of θ under squared error loss.
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(c) Compute the Bayes estimator of θ when the prior distribution is that of k

independent Normal random variables θi
d∼ N(Ci, β

2
i ) for some ci ∈ R and

β2
i > 0 ∀ i.

Ex. 3.11. Consider a random sample (X1, . . . , Xn) of size n = 50 from a gamma
distribution G (α, β), with X = 4.5, 1

n

∑n
j=1 X

2
j = 41, and 1

n

∑n
j=1 logXj = 0.95.

(a) Find the method-of-moments estimates of α, β.
(b) Use the estimates in (a) as the initial trial solution of the likelihood equa-

tions, and apply the Newton–Raphson, or the gradient method, to compute
the MLEs α̂, β̂, by iteration.

Ex. 3.12. ConsiderX = (X1, . . . , Xn) whereXi’s are i.i.d. N(μ, σ2) with μ known
and θ = σ2 > 0 is the unknown parameter. Let the prior τ for σ2 be the inverse
gamma IG (α, β), i.e., 1/σ2 has the gamma distribution G (α, β).

(a) Compute the posterior distribution of σ2. [Hint: First compute the posterior
distribution of 1/σ2.]

(b) Find the Bayes estimator of σ2 under squared error loss L(σ2, a) = (σ2 − a)2.
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Chapter 4

Sufficient Statistics, Exponential Families,
and Estimation

Abstract A sufficient statistic is a function of the observed data X containing
all the information that X holds about the model. A complete sufficient statis-
tic is one that reduces the data the most, without losing any information. More
importantly, according to Rao–Blackwell-, Lehmann–Scheffé-theorems, statistical
inference procedures must be based on such statistics for purposes of efficiency or
optimality.

4.1 Sufficient Statistics and Unbiased Estimation

For simplicity, we assume Ω = X , X : X → X the identity map. Let (T ,
B(T )) be a measurable space and T : Ω → T ≡ RT (range space of T ) a
measurable map. Then T is said to be a statistic. Generally one requires that
T does not depend on unknown population parameters (i.e., it can be computed
entirely based on the observation X). We will often write BT for B(T ) and
σ(T ) = T−1(BT ) ≡ {T−1(B) : B ∈ BT }.
Definition 4.1. A statistic T is said to be sufficient for a family P of probability
measures P on X if the conditional distribution of the observation (vector) X,
given T , is the same for all P ∈ P. If we index P as {Pθ : θ ∈ Θ} where Θ
is an index (or parameter- ) set, one says T is sufficient for θ if the conditional
distribution of X, given T , does not depend on θ.

Example 4.1. Ω = X = {0, 1}n, Pθ({x}) ≡ f(x | θ) = θ
∑

xi(1 − θ)n−
∑

xi , θ ∈
Θ = (0, 1). Then T ≡ ∑n

1 Xi (i.e., T (x) =
∑n

i=1 xi ∀ x) is a sufficient statistic
for θ. To see this note that, for any given x = X and t ∈ RT = {0, 1, . . . , n},

Pθ(X = (x1, . . . xn) ≡ x | T = t) =
Pθ(X1 = x1, . . . , Xn = xn & T = t)

Pθ(T = t)

=

{
0 if T (x) �= t,

θt(1−θ)n−t

(nt)θt(1−θ)n−t
≡ 1

(nt)
if T (x) = t.

(4.1)
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For, T has the binomial distribution B(n, θ), and (i) if T (x) �= t, the set {X1 =
x1, . . . , Xn = xn, & T (X) = t} = ∅, (ii) if T (x) = t, then the set {T = t} ≡ {y ∈
X : T (y) = t} ⊃ {X = x} ≡ {x}, so that {X = x, T = t} = {X = x}.

Note that, equivalently, X is sufficient for θ.

Example 4.2. LetX = R
n = Ω, θ ∈ Θ = R, and Pθ has density (with respect to

Lebesgue measure on R
n)

f(x | θ) = (2π)−n/2e−
1
2

∑n
i=1(xi−θ)2 , (x ∈ R

n). (4.2)

In this case T = X = 1
n

∑n
i=1Xi is sufficient for θ. To see this consider the

orthogonal transformation U : x → y given by

y1 =

n∑

i=1

1√
n
xi, yj =

n∑

i=1

cijxi (2 ≤ j ≤ n), (4.3)

where the vectors (c1j , c2j , . . . , cnj), 2 ≤ j ≤ n, are of unit length, orthogonal
to (1/

√
n, 1/

√
n, . . . , 1/

√
n ), and orthogonal to each other. Then Y = U(X) ≡

(Y1, . . . , Yn) has the distribution of n independent Normal random variables, with
Y1 having the distribution N(

√
n θ, 1), while the distribution of each Yj (2 ≤

j ≤ n) is N(0, 1). Therefore, the conditional distribution of Y, given Y1 = y1 is
the distribution of (y1, Y2, . . . , Yn) with Yj ’s i.i.d. N(0, 1), 2 ≤ j ≤ n. Now note
that X = 1√

n
Y1. Hence the conditional distribution of Y, given X = z is the

distribution of (
√
n z, Y2, . . . , Yn). But X = U−1(Y) (= U ′(Y) if U is identified

with the matrix of orthogonal rows in (4.3)). Hence the conditional distribution of
X given X = z is the distribution of U−1(

√
n z, Y2, . . . , Yn) which does not depend

on θ. Hence X is sufficient for θ.

Remark 4.1. For statistical inference about θ (or, Pθ), θ ∈ Θ, it is enough to know
the value of a sufficient statistic T for θ. For, given T = t, one can simulate
the random variable X0 = (X0

1 , X
0
2 , . . . , X

0
n), say, whose distribution is the same

as the conditional distribution, given T = t. The (unconditional, or) marginal
distribution of X0 is then the same as the distribution Pθ of X. In other words,
given T the rest of the data contain no additional information about θ that can
not be gleaned from T . (Exercise 4.1)

Since the conditional distribution of X, given a statistic T , is not generally very
easy to calculate the following criterion is very useful.

Theorem 4.1 (The Factorization Theorem). Let P = {Pθ : θ ∈ Θ} be such
that each Pθ is absolutely continuous with respect to a sigma-finite measure μ on
(X ,B(X )) with density f(x | θ) = (dPθ/dμ)(x). Then T is sufficient for P if
and only if one has a factorization of f in the form

f(x | θ) = g(T (x), θ)h(x) a.e. (μ), (4.4)

where, for each θ ∈ Θ, t → g(t, θ) is a measurable nonnegative function on T ,
and h is a nonnegative measurable function on X which does not depend on θ.

Proof. For a complete proof, see Testing Statistical Hypothesis (2005), by E.
Lehmann and J. Romano, pp. 43–44. We will give a proof for the discrete case
(i.e., X countable). Let f(x | θ) denote Pθ({x}). Suppose (4.4) holds. Without
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loss of generality, assume h(x) > 0 ∀ x ∈ X . For, if h(x) = 0, then (4.4) implies
f(x | θ) = 0 ∀ θ. Hence the set {x ∈ X : h(x) = 0} may be removed from X .
Then the distribution of T (under Pθ) is given by

Pθ(T = t) =
∑

{x∈X ,T (x)=t}
f(x | θ) = g(t, θ)h1(t), (4.5)

where h1(t) =
∑

{x∈X :T (x)=t} h(x). Then

Pθ(X = x, T = t) =

{
0 if T (x) �= t
Pθ(X = x) if T (x) = t,

i.e.,
Pθ(X = x, T = t) = g(t, θ)h(x)1{T (x)=t}. (4.6)

If Pθ(T = t) > 0, then dividing (4.6) by (4.5) one gets

Pθ(X = x | T = t) =
h(x)

h1(t)
1{T (x)=t}. (4.7)

Now note that Pθ′ (T = t) = 0, for some θ if and only if {x : T (x) = t} = ∅.
Hence (4.7) holds for all θ, x and dT , and T is sufficient.

Conversely, suppose T is sufficient for θ. Then, writing Pθ(T = t) = g(t, θ) and
Pθ(X = x | T = t) = h2(x, t), one obtains, on the set {T (x) = t} ⊂ X , for a
given t,

f(x | θ) ≡ Pθ(X = x) = Pθ(X = x, T = t) = Pθ(T = t)h2(x, t)

= g(t, θ)h2(x, t) = g(T (x), θ)h2(x, T (x)) = g(T (x), θ)h(x),

say. ��
Example 4.3. Let X = (X1, . . . , Xn) where Xi’s are independent uniform random
variables on the interval [α, β] (α < β). That is, X = R

n, θ = (α, β) ∈ Θ =
{(α, β) : α < β real}, Pθ has density (w.r.t. Lebesgue measure on R

n)

f(x | θ) = 1

(β − α)n

n∏

i=1

1[α,β](xi)

≡ 1

(β − α)n
1{α≤min(x1,...,xn),β≥max(x1,...,xn)}

= g(T (x), θ), say,

where T (x) = (min(x1, . . . , xn),max(x1, . . . , xn)) (a measurable map on X into
T = {(m,M) : m,M real numbers m ≤ M}), and g((m,M), (α, β)) = (β −
α)−n1{m≥α}1{M≤β}. Here one may take h(x) ≡ 1 in (4.4). Hence T is sufficient
for θ = (α, β).

Example 4.4. Let X = (X1, . . . , Xn) be i.i.d. N(μ, σ2), μ ∈ R and σ2 > 0 being
both unknown parameters. That is, X = R

n, Θ = R × (0,∞), Pθ has density
(w.r.t. Lebesgue measure on R

n), given by

f(x | (μ, σ2)) = (2πσ2)−n/2 exp

{

− 1

2σ2

n∑

i=1

(xi − μ)2

}
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which may be expressed as

f(x | (μ, σ2)) = (2πσ2)−n/2 exp

{

−
n∑

i=1

(xi − x+ x− μ)2/2σ2

}

= (2πσ2)−n/2 exp

{

−
[

n∑

i=1

(xi − x)2 + n(x− μ)2

]
/
2σ2

}

= g(T (x), θ), say, (θ = (μ, σ2)),

with T (x) = (
∑n

i=1(xi − x)2, x). Hence taking h(x) ≡ 1 in (4.4), it follows that T
is sufficient for (μ, σ2).

The next theorem describes the important role sufficient statistics play in im-
proving decision rules. Before we state and prove it, let us prove

Lemma 4.1 (Jensen’s Inequality for Convex Functions in Multi-
dimension). Let C be a (measurable) convex subset of Rk and f a real-valued
convex function on C. If Y is a random variable with values in C such that EY
is finite, then EY ∈ C and

f(EY ) ≤ Ef(Y ).

If f is strictly convex, then this inequality is strict unless P (Y = EY ) = 1.

Proof. Convexity of f means that, for every z ∈ C, there exists m ∈ R
k such that

f(y) ≥ f(z) +m · (y − z) y ∈ C, (4.8)

with a strict inequality for y �= z if f is strictly convex. [Note: In the case C is an
open convex set and f is twice continuously differentiable with the Hessian matrix
((DiDjf(x)) positive definite for every x, (4.8) follows by a Taylor expansion of f
around z, with m(z) = (grad f)(z)].

To prove the desired inequality, let z = EY , y = Y in (4.8) to get

f(Y ) ≥ f(EY ) +m(EY ) · (Y − EY ). (*)

Taking expectations on both sides, the inequality in the Lemma is obtained. In
case f is strictly convex, the inequality (*) is strict for every Y (ω) �= EY , and
hence the inequality in the Lemma is strict unless Y is a constant (= EY ) a.s.

��
Theorem 4.2 (Rao–Blackwell Theorem). Let A be a (measurable) convex
subset of Rk, a → L(θ, a) a convex function for each θ ∈ Θ, and T a sufficient
statistic for θ. If d is a (non-randomized) decision rule, then the decision rule

d̂(T ) = Eθ(d(X) | T ) = E(d(X) | T ) (4.9)

is at least as good as d : R(θ, d̂) ≤ R(θ, d) for all θ ∈ Θ.

Proof. Fix θ ∈ Θ, and use (4.8) with f = L(θ, ·), z = d̂(T ), y = d(X) to get

L(θ, d(X)) ≥ L(θ, d̂(T )) + (d(X)− d̂(T )) ·m(d̂(T )). (4.10)
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Now take conditional expectation, given T , on both sides to get

E(L(θ, d(X)) | T ) ≥ L(θ, d̂(T )),

and then taking expectation complete the proof. ��
Remark 4.2. It is important to note that d̂(T ) as defined by the first equation

in (4.9) does not depend on θ, in view of the sufficiency of T . In other words, d̂(T )
is an estimator. The inequality (4.10) holds whether T is sufficient or not.

Corollary 4.1. Let c(θ) be a real-valued parametric function of θ, and d(X) an
estimator of c(θ), with Eθd

2(X) finite for all θ. Let T be a sufficient statistic for
θ. (a) Then, for every θ ∈ Θ,

Eθ(d̂(T )− c(θ))2 ≤ Eθ(d(X) − c(θ))2, (4.11)

with a strict inequality unless Pθ(d(X) = d̂(T )) = 1.
(b) If d(X) is an unbiased estimator of c(θ) (i.e., Eθd(X) = c(θ) ∀ θ), then so

is d̂(T ).

Proof. (a) One can derive this from Theorem 4.2, by letting A = R and noting
that a → L(θ, a) ≡ (c(θ) − a)2 is strictly convex. Alternatively, one has

Eθ(d(X)− c(θ))2 = Eθ(d(X) − d̂(T ) + d̂(T )− c(θ))2

= Eθ(d̂(T )− c(θ))2 + Eθ(d(X) − d̂(T ))2,

since

Eθ[(d(X)− d̂(T ))(d̂(T )− c(θ))] = Eθ[(d̂(T )− c(θ)) ·Eθ(d(X)− d̂(T ) | T )] = 0.

(b)

Eθ(d̂(T )) = Eθ[Eθ(d(X) | T )] = Eθd(X) = c(θ) ∀ θ.
��

Corollary 4.2. In the hypothesis of Corollary 4.1 assume Eθ|d(X)| < ∞ for all θ.
Then (a) one has

Eθ | d̂(T )− c(θ)| ≤ Eθ|d(X)− c(θ)|.
Also, (b) d̂(T ) is an unbiased estimator of c(θ) if d(X) is.

Proof. (a) One may apply Theorem 4.2 here, noting that the function a → |a −
c(θ)| is convex. But, more simply, |d̂(T ) − c(θ)| = E(|d(X) − c(θ) | T )| ≤
E(|d(X) − c(θ)| | T ), and taking expectation with respect to Pθ one obtains
the desired result.

(b) The proof of part (b) is the same as that of Corollary 4.1(b). ��

Remark 4.3. As the statement of Theorem 4.2 indicates, Corollaries 4.1, 4.2 extend
to the case of estimation of vector valued parametric functions c(θ) = (c1(θ), . . . ,
ck(θ)) for additive loss functions such as L(θ, a) =

∑
1≤i≤k(ai − ci(θ))

2 and
L(θ, a) =

∑
1≤i≤k |ai − ci(θ)|, respectively.

Remark 4.4. In general there are many sufficient statistics for θ. Which one should
you use to improve on a given decision rule or estimator in the manner of Theo-
rem 4.2 or its Corollary above? To answer this, consider two sufficient statistics
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T1, T2 (for θ) such that T1 is a function of T2, i.e., T1 = f(T2), where f(T2)
is a measurable function of T2. Then given an estimator d2(T2) of a para-

metric function c(θ), the estimator d̂1(T1) ≡ Eθ(d2(T2) | T1) is at least as
good as d2(T2) (say, under squared error loss L(θ, a) = (c(θ) − a)2). One of
course can reverse the argument and begin with an estimator d1(T1) and have

d̂2(T2) ≡ Eθ(d1(T1) | T2), which would be at least as good as d1(T1). But, in

this case, d̂2(T2) = Eθ(d1(f(T2)) | T2) = d1(f(T2)) = d1(T1). That is, d1(T1)
being already a function of T2, the Rao–Blackwellization (of taking conditional
expectation of a decision rule, given a sufficient statistic) does not alter the es-

timator! On the other hand, d̂1(T1) is a strict improvement over d2(T2) unless

Pθ(d̂1(T1) = d2(T2)) = 1 ∀ θ ∈ Θ (i.e., unless d2(T2) is essentially a function of T1

already). Thus the “smaller” the sufficient statistic T the better.

Remark 4.5. A statistic T may be identified with the sigma-field

σ(T ) ≡ T−1(BT ) ≡ {T−1(C) : C ∈ BT }.

If T1 and T2 are statistics (with possibly different range spacesRTi and correspond-
ing σ-fields BTi (i = 1, 2)) are such that there is a bi-measurable one-to-one map
g on RT1 onto RT2 with T2 = g(T1) (so that T1 = g−1(T2)), then σ(T1) = σ(T2)
and the statistics may be viewed as the same, or to contain the same information
about θ, since knowing one means knowing the other.

It is technically more convenient to say that T1 is a smaller statistic than T2

if σ(T1) ⊂ σ(T2), and that they are equivalent if σ(T1) = σ(T2). In a statistical
decision problem (with a family of distributions Pθ, θ ∈ Θ), we say σ(T1) ⊂ σ(T2)
with Pθ-probability one ∀ θ ∈ Θ, if for every B1 ∈ σ(T1) there exists B2 ∈ σ(T2)
such that Pθ(B1ΔB2) = 0 ∀ θ ∈ Θ. Here Δ denotes symmetric difference between
sets: B1ΔB2 = (B1 ∩Bc

2) ∪ (Bc
1 ∩B2).

Definition 4.2. In a statistical decision problem a sufficient statistic T ∗ is said
to be minimal sufficient (for θ ∈ Θ) if given any other sufficient statistic T ,
σ(T ∗) ⊂ σ(T ) with Pθ-probability one ∀ θ ∈ Θ.

It can be shown that minimal sufficient statistics exist under fairly weak as-
sumptions. But one can find examples when a minimal sufficient statistic does not
exist.

For the purpose of unbiased estimation the following generally stronger property
than minimality is very useful.

Definition 4.3. A sufficient statistic T is said to be complete if for any real-valued
function g(T ) of T , integrable w.r.t. Pθ ∀ θ ∈ Θ,

Eθg(T ) = 0 ∀ θ ∈ Θ =⇒ Pθ(g(T ) = 0) = 1 ∀ θ ∈ Θ. (4.12)

A sufficient statistic T is said to be boundedly complete if (4.12) holds for all
bounded measurable functions g(T ) of T . A complete sufficient statistic is obvi-
ously boundedly complete.

Proposition 4.1. Suppose a minimal sufficient statistic S exists. Then if a suffi-
cient statistic T exists which is boundedly complete then T is minimal.
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Proof. Suppose S is minimal sufficient and T is boundedly complete sufficient. Let
f(T ) be any real-valued bounded σ(T )-measurable function, and consider g(S) ≡
Eθ(f(T )|σ(S)). By minimality of S, there exists a σ(T )-measurable h(T ) such
that Pθ(g(S) = h(T )) = 1 ∀ θ ∈ Θ. But Eθ(f(T ) − h(T )) = 0 ∀ θ ∈ Θ, which,
by bounded completeness of T , implies Pθ(f(T ) = h(T )) = 1 ∀ θ ∈ Θ. Therefore,
Pθ(f(T ) = g(S)) = 1 ∀ θ ∈ Θ. Hence, σ(T ) ⊂ σ(S) with Pθ-probability one
∀ θ ∈ Θ (See Exercise 4.2). ��
Definition 4.4. A parametric function c(θ) is said to be estimable if there exists
an estimator d(X) such that Eθd(X) = c(θ) ∀ θ ∈ Θ. In this case d(X) is said to
be an unbiased estimator of c(θ). An unbiased estimator d∗(X) of c(θ) is said to
be an UMVU (uniformly minimum variance unbiased) estimator if

Eθ(d
∗(X)− c(θ))2 ≤ Eθ(d(X) − c(θ))2 ∀θ ∈ Θ (4.13)

for all unbiased estimators d(X) of c(θ).

Theorem 4.3 (Lehmann–Scheffé Theorem). Let T be a complete sufficient
statistic for θ ∈ Θ. Then for every estimable parametric function c(θ) for which
there exists an unbiased estimator d(X) satisfying Eθd

2(X) < ∞, there exists a

unique UMVU estimator given by d̂(T ) = Eθ(d(X) | T ).
Proof. Clearly, d̂(T ) is an unbiased estimator of c(θ). Also, by the Corollary to

the Rao–Blackwell Theorem, Eθ(d̂(T ) − c(θ))2 ≤ Eθ(d(X) − c(θ))2 ∀ θ ∈ Θ. To

show that d̂(T ) is UMVU, suppose, if possible, there exists an unbiased estimator

d1(X) such that for some θ = θ0, say, Eθ0(d1(X) − c(θ0))
2 < Eθ0(d̂(T )− c(θ0))

2.

Let d̂1(T ) = E(d1(X) | T ). By the Rao–Blackwell Theorem, Eθ0(d̂1(T )−c(θ0))
2 ≤

Eθ0(d1(X)−c(θ0))
2. But this would imply Eθ0(d̂1(T )−c(θ0))

2 < Eθ0(d̂(T )−c(θ0))
2,

and, in particular, Pθ0(d̂1(T )− d̂(T ) �= 0) > 0. But g(T ) ≡ d̂1(T )− d̂(T ) satisfies
Eθg(T ) = 0 ∀ θ ∈ Θ, and, therefore, by the completeness of T , Pθ(g(T ) �= 0) =
0 ∀θ ∈ Θ, contradicting Pθ0(g(T ) �= 0) > 0. ��
Example 4.5. Let X = {0, 1}n, Pθ({x}) ≡ f(x | θ) = θ

∑n
1 xi(1 − θ)n−

∑n
i xi ∀x ∈

X , Θ = (0, 1). We will show that T =
∑n

1 Xi is a complete sufficient statistic.
For this let g be a real-valued function on RT = {0, 1, . . . , n} such that Eθg(T ) =
0 ∀ θ ∈ Θ. Now the distribution of T , under Pθ, is the binomial distribution B(n, θ),

Pθ(T = t) =

(
n

t

)

θt(1 − θ)n−t (t = 0, 1, . . . , n), (4.14)

so that Eθ0g(T ) = 0 ∀ θ ∈ (0, 1) may be expressed as

n∑

t=0

g(t)

(
n

t

)

θt(1 − θ)n−t = 0 ∀ θ ∈ (0, 1). (4.15)

The left side is a polynomial of degree n, and can not have more than n zeroes
in (0, 1) unless it is identically zero. Thus g(t) = 0 ∀ t ∈ {0, 1, . . . , n}, proving
T =

∑
Xi is a complete sufficient statistic for θ ∈ Θ. [Note that we could have

taken Θ = [0, 1] also.] To apply Theorem 4.3, let us first identify the set of all
estimable parametric functions c(θ). If c(θ) is estimable, then there exists d(X)

such that Eθd(X) = c(θ) ∀ θ ∈ Θ. Then d̂(T ) ≡ Eθ[d(X) | T ] is an unbiased
estimator of c(θ). From the expression of the expectation on the left in (4.15),

it follows that c(θ) =
∑n

t=0 d̂(t)
(
n
t

)
θt(1 − θ)n−t is a polynomial of degree n (or
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less). Hence the set Cn of all estimable functions is a subset of the set Γn of all
polynomials (in θ) of degree n or less. To show that Γn is precisely Cn, note that
θk is estimable for k = 0, 1, . . . , n, with an estimator d(X) = X1X2 · · ·Xk for
k = 1, . . . , n, and d(X) ≡ 1 for k = 0. Hence all polynomials of degree n or less
are estimable. The UMVU estimator of θk is given by

d̂k(T ) = E(X1 . . .Xk | T ), (4.16)

(Exercise 4.3).

Example 4.6. Let X1, . . . , Xn be a random sample from the uniform distribution
U (0, θ), θ > 0, with p.d.f. f1(x | θ) = (1/θ)1(0,θ](x), so that the (joint) density of
X = (X1, . . . , Xn) is

f(x | θ) = 1

θn

n∏

j=1

1[0<xj≤θ] =
1

θn
1[0<xj≤θ ∀ j=1,...,n]

=
1

θn
1[0<M(x)≤θ], x ∈ X = (0,∞)n

where M(x) = max{xj : 1 ≤ j ≤ n}. By the Factorization Theorem, M is a
sufficient statistic for θ. We will show that M is a complete sufficient statistic for
θ. For this note that the distribution function of M is

FM (t) ≡ P (M ≤ t) = P (Xj ≤ t ∀ j = 1, . . . , n) =

⎧
⎨

⎩

0 for t ≤ 0,(
t
θ

)n
for 0 < t ≤ θ,

1 for t > θ,

so that its p.d.f. is fM (t | θ) = 1
θnnt

n−11[0<t≤θ]. Now let g(t) be such that
Eθg(M) = 0 ∀ θ ∈ Θ = (0,∞). This says

nθn
∫ θ

0

g(t)tn−1dt = 0 ∀ θ > 0,

implying g(t) = 0 a.e. (with respect to Lebesgue measure on R). (Exercise 4.4).
From the expression for Eθg(M) given by the last integral, it follows that every
function (of θ) of this form (i.e., with g(t)tn−1 integrable on every interval [0, a],
a > 0) is estimable. In particular, with g(t) = t, one gets

EθM =
n

θn
· θ

n+1

n+ 1
=

n

n+ 1
θ,

so that n+1
n M is an unbiased estimator of θ (and M is an unbiased estimator of

n
n+1 θ). By the Lehmann–Scheffé Theorem,

(
n+1
n

)
M is the uniformly minimum

variance unbiased estimator (UMVU) of θ. Note that EθM
2 = n

n+2θ
2, so that

Eθ(M − n

n+ 1
θ)2 = (

n

n+ 2
θ2)− (

n

n+ 1
θ)2 = θ2 n

[
1

n+ 2
− n

(n+ 1)2

]

=
n

(n+ 2)(n+ 1)2
θ2 ∼ θ2

n2
;

Eθ

(
n+ 1

n
M − θ

)2

=

(
n+ 1

n

)2

varθ(M) =
1

n(n+ 2)
θ2.
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We now turn to a large class of parametric families where complete sufficient
statistics exist, so that every estimable parametric function has an UMVU esti-
mator (unique, in case its risk function, or variance, is finite). Examples 4.2, 4.4
and 4.5 are such families, although Example 4.6 is not.

4.2 Exponential Families

We begin with the one-parameter case.

Definition 4.5. A one-parameter exponential family of distributions {Pθ : θ ∈ Θ},
Θ an interval, is such that the probability measure Pθ on a state space S has a
density p(x | θ), with respect to a reference measure v on S, of the form

p(x | θ) = c(θ)h(x)eπ(θ)t(x), x ∈ S,

[

c(θ) = 1/

∫

s

h(x)eπ(θ)t(x)v(dx)

]

, (4.17)

where h(x) > 0 for all x in S, and θ → π(θ) is one-to-one, and t(x) is a real-
valued (measurable) function on S. Reparametrizing θ → π(θ) = π, and writing
p̃(x | π) = p(x | θ) for θ such that π(θ) = π, one has

p̃(x | π) = c̃(π)h(x)eπt(x),

(

c̃(π) =

[∫

s

h(x)eπt(x)v(dx)

]−1
)

. (4.18)

The new parameter is called the natural parameter and the natural parameter
space is

Π =

{

π ∈ R :

∫

h(x)eπt(x)v(dx) < ∞
}

. (4.19)

In the case S is an interval, finite or infinite, and v(dx) is Lebesgue measure dx,
p or p̃ is the usual density on S, while on a countable state space S the measure
v is the counting measure with v({x}) = 1 for every x ∈ S. The distribution with
density p̃(x | π) (with respect to v) will be written as Pπ , or even Pθ.

Consider now a random sample X = (X1, . . . , Xn) from Pθ, with X1, . . . , Xn

independent having the common distribution Pθ (or Pπ). The (joint) density of X
(with respect to the product measure μ = v×v×· · ·×v) on the observation space
X = Sn is written as

f(x | θ) = cn(θ)
∏

h(xj)e
π(θ)

∑
t(xj), or f̃(x | π) = c̃n(π)

∏
h(xj)e

π
∑

t(xj),

(4.20)
where the product

∏
and the sum

∑
are both over the indices j = 1, . . . , n. Note

that if v(dx) = dx is the Lebesgue measure then μ(dx) = dx1 . . . dxn is the usual
Lebesgue measure in n-dimension. In the case v is the counting measure on S, μ
is the counting measure on X = Sn : μ({x}) = 1 for every x ∈ X . Note that, by
the Factorization Theorem, T (x) =

∑
1≤j≤n t(xj) is a sufficient statistic.

As an example, let X1, . . . , Xn be independent normal N(θ, σ2) random vari-
ables (each with mean θ and variance σ2). Assume σ2 is known. Then with S = R,
v(dx) = dx, the common pdf of the Xi’s is
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p(x | θ) = (2πσ2)−
1
2 exp

{

− (x− θ)2

2σ2

}

= c(θ)h(x)exp

{(
θ

σ2

)

x

}

(θ ∈ Θ = R),

[

c(θ) = (2πσ2)−1/2 exp

{−θ2

2σ2

}

, h(x) = exp

{−x2

2σ2

}]

. (4.21)

Hence the natural parameter is π = θ/σ2 and t(x) = x. The natural parameter
space is

∏
= R. Also, the distribution of the sufficient statistic T =

∑
1≤j≤n Xj

is N(nθ, nσ2) is a one-parameter exponential family, with density (with respect to
Lebesgue measure on R) given by

fT (t | θ) = (2πnσ2)−1/2 exp

{

− (t− nθ)2

2nσ2

}

= c(θ)h(t) exp

{(
θ

σ2

)

t

}

= c1̃(π)h(t) exp{πt}, (4.22)

where c(θ) = (2πnσ2)−1/2 exp{−nθ2/2σ2}, h(t) = exp{−t2/2nσ2}, and π = θ/σ2.
An example of a one-parameter family of discrete distributions is the Bernoulli

family considered in Example 4.8.
We next consider the general case of k-parameter exponential families.
Let {Gθ : θ ∈ Θ} be a family of probability measures on a measurable space

(S,S ) which are absolutely continuous with respect to a sigma-finite measure ν.
If the density p(x | θ) of Gθ (w.r.t. ν) is of the form

p(x | θ) = C(θ)h(x) exp

{
k∑

i=1

πi(θ)Ti(x)

}

(x ∈ S, θ ∈ Θ), (4.23)

where h is a nonnegative measurable function on S, Ti, 1 ≤ i ≤ k, are
real-valued measurable functions on S, then {Gθ : θ ∈ Θ} is said to be a
k-parameter exponential family. Here πi are real-valued functions on Θ, and C(θ)
is a normalizing constant,

C(θ) =

(∫

S

h(x) exp

{
k∑

i=1

πi(θ)Ti(x)

}

ν(dx)

)−1

. (4.24)

Let νT denote the image of the measure h(x)dν(x) on (Rk,B(Rk)) under the map
x → T (x) ≡ (T1(x), . . . , Tk(x)). That is,

νT (B) =

∫

T−1(B)

h(x)dν(x), B ∈ B(Rk) (4.25)

Then the distributions GT
θ , say, of T under Gθ have densities with respect to νT

given by

p
T
(t | θ) = C(θ) exp

{
k∑

i=1

πi(θ)ti

}

(t = (t1, . . . , tk) ∈ R
k, θ ∈ Θ), (4.26)

so that {GT
θ : θ ∈ Θ} is a k-parameter exponential family. Note that [see (4.23)],

by the Factorization Theorem, T is a sufficient statistic for {Gθ : θ ∈ Θ}. One may
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reparametrize {Gθ : θ ∈ Θ} with the new parameter π = (π1, π2, . . . , πk) ∈ R
k,

noting that if π(θ) = π(θ′) then Gθ = Gθ′ . One then writes the density (4.23) in
the form

p̃(x | π) = C̃(π)h(x) exp

{
k∑

i=1

πiTi(x)

}

(C̃(π)) = (
∫
h(x)e

∑k
1 πiTi(x)dν(x))−1.

(4.27)
π is called a natural parameter, and the density (4.26) (w.r.t. νT ) becomes

p̃T (t | π) = C̃(π) exp

{
k∑

i=1

πiti

}

(t ∈ R
k). (4.28)

The natural parameter space Π is taken to be the set of all π ∈ R
k for which the

integral within parentheses in (4.27) is finite:

Π =

{

π ∈ R
k :

∫

S

h(x)e
∑k

1 πiTi(x)dν(x) < ∞
}

⊂ R
k. (4.29)

Suppose X1, X2, . . . , Xn are i.i.d. random variables having a common density
(w.r.t. ν) of the form (4.23) [or, of the form (4.27)]. Then the (joint) distribution
Pθ ofX = (X1, . . . , Xn) has a density w.r.t. the product measure dμ(x) = dν(x1)×
dν(x2)× · · · × dν(xn) (on (Sn,S⊗n)), given by

f(x | θ) = Cn(θ)

⎛
⎝

n∏
j=1

h(xj)

⎞
⎠ exp

⎧⎨
⎩

k∑
i=1

πi(θ)

⎛
⎝

n∑
j=1

Ti(xj)

⎞
⎠
⎫⎬
⎭ , (x = (x1, x2, . . . , xn)),

(4.30)

or, in terms of the natural parameter,

f̃(x | π) = C̃n(π)

⎛

⎝
n∏

j=1

h(xj)

⎞

⎠ exp

⎧
⎨

⎩

k∑

i=1

πi

⎛

⎝
n∑

j=1

Ti(xj)

⎞

⎠

⎫
⎬

⎭
. (4.31)

Thus the family of distributions {Pθ : θ ∈ Θ} on (X = Sn,S ⊗n) is a k-parameter
exponential family, and T(x) = (

∑n
j=1 T1(xj), . . . ,

∑n
j=1 Tk(xj)) is a sufficient

statistic for {Pθ : θ ∈ Θ} (or, {P̃π : π ∈ Π}). The same argument as above shows

that the distributions PT
θ (θ ∈ Θ) (or {P̃T

π : π : Π}) of T form a k-parameter
exponential family with density

fT(t | θ) = Cn(θ) exp

{
k∑

i=1

πi(θ)ti

}

(θ ∈ Θ, t ∈ R
k)

or,

f̃T(t | π) = C̃n(π) exp

{
k∑

i=1

πiti

}

(π ∈ Π, t ∈ R
k)

w.r.t. the measure (on (Rk,B(Rk)) given by

μT(B) =

∫

T−1(B)

⎛

⎝
n∏

j=1

h(xj)

⎞

⎠ dμ(x) (B ∈ B(Rk)). (4.32)
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Example 4.7 (Normal). Let X1, . . . , Xn be i.i.d. with common distribution Gθ =
N(μ, σ2), (θ = (μ, σ2) ∈ R× (0,∞) ≡ Θ), whose density w.r.t. Lebesgue measure
ν on R is

p(x | θ) = 1√
2πσ2

exp

{

− (x− μ)2

2σ2

}

=
1√
2πσ2

exp

{

− μ2

2σ2

}

exp

{
μ

σ2
x− 1

2σ2
x2
}

.

Thus {Gθ : θ ∈ Θ} is a 2-parameter exponential family, with natural parameters
π1 = μ

σ2 , π2 = − 1
2σ2 , and (sufficient statistic) T (x) = (x, x2). The natural param-

eter space is Π = R × (−∞, 0). The (joint) distribution Pθ of X = (X1, . . . , Xn)
(on X = R

n) has the density (w.r.t. μ ≡ Lebesgue measure on R
n)

f(x | θ) = (2πσ2)−
n
2 exp

{

−nμ2

2σ2

}

exp

⎧
⎨

⎩

μ

σ2

n∑

j=1

xj − 1

2σ2

n∑

j=1

x2j

⎫
⎬

⎭
,

or

f̃(x | π) = C̃n(π) exp

⎧
⎨

⎩
π1

n∑

j=1

xj + π2

n∑

j=1

x2j

⎫
⎬

⎭
,

and T = (
∑n

j=1 Xj ,
∑n

j=1 X
2
j ) is a sufficient statistic for {Pθ : θ ∈ Θ}.

Example 4.8 (Bernoulli). Let X1, . . . , Xn be i.i.d. Bernoulli B(θ), i.e., Probθ(Xj =
1) = θ, Probθ(Xj = 0) = 1 − θ, θ ∈ Θ = (0, 1). Then (with ν({0}) = ν({1}) = 1,
as the counting measure on S = {0, 1}),

p(x | θ) = θx(1− θ)1−x [x ∈ {0, 1}, θ ∈ (0, 1) = Θ]

= (1− θ)

(
θ

1− θ

)x

= (1− θ)ex log( θ
1−θ ),

so that {Gθ : θ ∈ (0, 1)} is a one-parameter exponential family, with π(θ) ≡
π1(θ) = log( θ

1−θ ), T (x) = x. Also, the distribution Pθ of X = (X1, . . . ,Xn) has
the density (w.r.t. counting measure μ on Sn = {0, 1}n) given by

f(x | θ) ≡ Pθ({x}) = θ
∑n

1 xj (1− θ)n−
∑n

1 xj

= (1 − θ)ne(
∑n

1 xj) log(
θ

1−θ ) = C̃n(π)eπ
∑n

j=1 xj (x ∈ {0, 1}n).

The natural parameter space is Π = (−∞,∞) = R. The distribution of the
sufficient statistic T =

∑n
j=1 Xj is Binomial B(n, θ):

fT(t | θ) =
(
n

t

)

θt(1 − θ)n−t = (1− θ)n
(
n

t

)

eπt

(
t ∈ {0, 1, . . . , n}, π = log

(
θ

1− θ

)

∈ R
)
.
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Example 4.9 (Poisson). Let X1, X2, . . . , Xn be i.i.d. Poisson P(θ), θ ∈ Θ =
(0,∞). That is,

Gθ({x}) = p(x | θ) = e−θ θ
x

x!
(x ∈ S = {0, 1, 2, . . .})

= e−θ 1

x!
ex log θ.

The (joint) distribution of X = (X1, . . . , Xn) is given by the density (w.r.t. the
counting measure on Sn)

f(x | θ) = e−nθ 1
∏n

j=1 xj !
e(log θ)

∑n
1 xj x = (x1, . . . , xn) ∈ Sn.

The natural parameter is π = log θ ∈∏ = (−∞,∞), and T = X1 + · · ·+Xn is a
sufficient statistic for {Pθ : θ ∈ (0,∞)} (Pθ being the distribution of X). This is a
one-parameter exponential family.

Example 4.10 (Gamma). X1, . . . , Xn are i.i.d. gamma G (α, β) with common pdf

p(x | θ) = 1

αβΓ (β)
e−

x
αxβ−11(0,∞)(x), (θ = (α, β) ∈ (0,∞)× (0,∞) = Θ),

=
1

αβΓ (β)

1

x
e−

1
α x+β log x.

This is a two-parameter exponential family, with natural parameters π1 = − 1
α ,

π2 = β, Π = (−∞, 0) × (0,∞). The (joint) distribution Pθ of X = (X1, . . . , Xn)
has pdf (w.r.t Lebesgue measure on R

n)

f(x | θ) =
(

1

αβΓ (β)

)n
1

∏n
j=1 xj

e−
1
α

∑n
1 xj+β

∑n
j=1 log xj .

A sufficient statistic for {Pθ : θ ∈ Θ} is T = (
∑n

1 Xj ,
∑n

1 logXj).

Example 4.11 (Beta). X1, . . . , Xn are i.i.d. (Beta Be(α, β)) with common pdf

p(x | θ) = Γ (α+ β)

Γ (α)Γ (β)
xα−1(1− x)β−1, 0 < x < 1 (θ = (α, β) ∈ Θ = (0,∞)2)

=
C(α, β)

x(1 − x)
eα log x+β log(1−x),

with natural parameters π1 = α, π2 = β. This is a two-parameter exponential
family. The (joint) pdf of X = (X1, . . . , Xn) is

f(x | θ) = C̃n(π)
1

∏n
j=1 xj(1 − xj)

exp

{

π1

n∑

1

log xj + π2

n∑

1

log(1 − xj)

}

,

(x = (x1, . . . , xj) ∈ (0, 1)n),

with (π1, π2) ∈ (0,∞)2 = Π . T(x) = (
∑n

1 log xj ,
∑n

1 log(1 − xj)) is a sufficient

statistic for this family of distributions P̃π (with pdf f̃(x | π)).
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Example 4.12 (Multivariate Normal). Let X1, . . . , Xn be i.i.d. with common distri-
bution N(μ, Σ) on R

m, with common density (with respect to Lebesgue measure)

p(x̃ | θ) = (2π)−
k
2 (DetΣ)

− 1
2 exp

{

−1

2
(x̃− μ)′ Σ−1(x̃ − μ)

}

(x̃ ∈ R
m),

θ = (μ, Σ) ∈ R
m × Mm = Θ [Mm is the set of all symmetric positive-definite

m×m matrices] which may be expressed as

p(x̃ | θ) = C(θ) exp

⎧
⎨

⎩

m∑

i=1

(
m∑

i′=1

σii′μi′

)

xi − 1

2

m∑

i=1

σiix2i −
∑

1≤i<i′≤m

σii′xixi′

⎫
⎬

⎭
,

(4.33)

where σii′ is the (i, i′) element of the matrix Σ−1, and x̃ = (x1, . . . , xm)′. The
natural parameters are πi =

∑m
i′=1 σ

ii′μi′ (1 ≤ i ≤ m), πii = − 1
2σ

ii (1 ≤ i ≤ m),

πii′ = −σii′ (1 ≤ i < i′ ≤ m), so that this is a k-parameter exponential family with

k = m+m+
(
m
2

)
= m(m+3)

2 . If P̃π denotes the distribution of X = (X1, . . . , Xn),

then T(x) =
(
(
∑n

j=1 xij)1≤i≤m, (
∑n

j=1 x
2
ij)1≤i≤m, (

∑n
j=1 xijxi′j)1≤i<i′≤m

)
is a

sufficient statistic for {P̃π : π ∈ Π}. Note that Π is an open subset of Rk (k =
m(m + 3)/2), since Θ is; and π is a relabeling of θ ∈ Θ. This is the multivariate
Normal model.

Example 4.13 (Multinomial). Suppose a population comprises k + 1 differ-
ent classes (sub-populations, or strata), with the i-th class having probabil-
ity θi being picked in random sampling (i = 1, . . . , k + 1). The probability
(mass) function of a randomly selected observation x̃ = (x1, . . . , xk+1) ∈ S =
{(1, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, 0, . . . , 0, 1)}, is

p(x̃ | θ) = θx1
1 θx2

2 . . . θ
xk+1

k+1 (θk+1 = 1−
k∑

i=1

θi, θ = (θ1, . . . , θk)).

Here the i-th vector (0, 0, . . . , 0, 1, 0, . . . , 0) (with 1 in the i-th position and 0’s
elsewhere) represents the selection to belong to the i-th class. The parameter

space is Θ = {(01, . . . , θk) ∈ R
k : θi > 0 ∀ i = 1, . . . , k,

∑k
i=1 θi < 1}, which is an

open simplex (an open subset of Rk). One may express p(x̃ | θ) as

p(x̃ | θ) = θx1
1 θx2

2 · · · θxk

k (1− θ1 − θ2 − · · · − θk)
1−x1−x2−···−xk

= (1− θ1 − · · · − θk)
k∏

i=1

[
θi

(1− θ1 − · · · − θk)

]xi

= C(θ) exp

{
k∑

i=1

log

(
θi

1− θ1 − · · · − θk

)

xi

}

,

so that the natural parameter is π = (π1, . . . , πk) ∈ Π = R
k, with πi =

log( θi
1−θ1−···−θk

). [Given (π1, . . . , πk) ∈ R
k, θr = eπr

1+
∑k

i=1 eπi
(1 ≤ r ≤ k).] For

a random sample of size n, the observation space is X = Sn, with probability
(mass) function
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f(x | θ) = θ
∑n

1 x1j
1 θ

∑n
1 x2j

2 . . . θ
∑n

1 xk+1,j

k+1 = Cn(θ) exp

⎧

⎨

⎩

k∑

i=1

log

(
θi

1− θ1 − · · · − θk

) n∑

j=1

xij

⎫

⎬

⎭

= f̃(x | π) = C̃n(π) exp

{
k∑

i=1

πiTi(x)

}

[Ti(x) = (
∑n

j=1 xij)1≤i≤k ]

where (x1j , x2j , . . . , xkj , xk+1,j) ∈ S, 1 ≤ j ≤ n. T(x) = (T1(x), . . . , Tk(x)) is a

sufficient statistic for {P̃π : π ∈ Π}. This is the so-called multinomial model.

The following result shows that the sufficient statistic T in Examples 4.7–4.13 is
complete. Before we state it, it is worthwhile to note that one may consider (4.27)
to be the general form of a k-parameter exponential family with respect to a
natural parameter. The joint distribution of X = (X1, . . . , Xn) based on a ran-
dom sample from such a family happens to be of the same form. One may have
similar joint distributions of random variables which are not independent, and
the joint distribution may still belong to the exponential family (as is the case,
for example, for Gaussian time series or Gaussian random fields). Thus we may
regard (4.26), (4.27) to represent a general exponential family (Exercise 4.5).

Theorem 4.4. Let Π denote the natural parameter space of a k-parameter expo-
nential family. Then the following hold.

(a) Π is convex.
(b) If Π has a nonempty interior, then the sufficient statistic T is complete for

{P̃π : π ∈ Π} where P̃π has the density (4.27) with respect to a sigma-finite
measure ν on an observation space X = S, say.

Proof. (a) Let π, π′ ∈ Π , and 0 < α < 1. Then, writing dν̃ = hdν,

∫

S

h(x)e(απ+(1−α)π′)·T (x)dν(x) =

∫

S

eαπ·T (x) · e(1−α)π′·T (x)dν̃(x)

≤
[∫

S

(
eαπ·T (x)

) 1
α

dν̃(x)

]α [∫

S

(
e(1−α)π′·T (x)

) 1
1−α

dν̃(x)

]1−α

< ∞,

by Hölder’s inequality.
(b) Let π0 be an interior point of Π . There exists δ > 0 such that the open ball

B(π0, δ) = {π : |π − π0| < δ} is contained in Π . Let g be a P̃π-integrable

function (∀π ∈ Π) on R
k such that Ẽπg(T ) = 0 ∀π ∈ Π . Writing g =

g+ − g− (g+(t) = g(t)1[0,∞)g(t)), g
−(t) = −g(t)1(−∞,0)(g(t)) one then has

Ẽπg
+(T ) = Ẽπg

−(T ) ∀ π ∈ Π. (4.34)

In particular,
Ẽπ0

g+(T ) = Ẽπ0
g−(T ). (4.35)

Suppose, if possible, P̃π0(g(T ) = 0) < 1. This means that the expectations
in (4.35) are positive. Write ν̃+T and ν̃−T for the probability measures

dν̃+T (t) =
g+(t)dP̃π0

(t)

Ẽπ0
g+(T )

, dν̃−T (t) =
g−(t)dP̃π0

(t)

Ẽπ0
g−(T )

. (4.36)
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The moment generating function (mgf) of ν̃+T in B(0, δ) is given by

C̃(π0)

Ẽπ0
g+(T )

∫

eξ·tg+(t)eπ0·tdνT (t) =
C̃(π0)

Ẽπ0
g+(T )

∫

e(π0+ξ)·tg+(t)dνT (t)

< ∞ ∀|ξ| < δ.

But, by (4.34), the last integral equals
∫
e(π0+ξ)·tg−(t)dνT (t) ∀ |ξ| < δ. Also,

Ẽπ0g
+(T ) = Ẽπ0g

−(T ). Hence, the mgf’s of ν̃+T and ν̃−T are equal in a
neighborhood of the origin, namely, in B(0, δ). By the proposition below it
follows that the two probability measures ν̃+T and ν̃−T are identical. This means

P̃π0(g
+(T ) = g−(T )) = 1, or, P̃π0(g(T ) = 0) = 1, a contradiction. ��

Remark 4.6 (General Structure of Exponential Families). On a probability space
(S,S , Q) let T = (T1, . . . , Tk) be a random vector having a finite mgf ϕ on a
set Θ (⊂ R

k) with a non-empty interior. Then the family of probability measures

Gθ (θ = (θ1, . . . , θk) ∈ R
k) with density f(t | θ) = exp{∑k

i=1 θiti}
ϕ(θ) with respect to

the distribution v ofT in a k-parameter exponential family with natural parameter
θ. Every exponential family has this form if the parameter space has a non-empty
interior.

Proposition 4.2. If two probability measures Q1 and Q2 on R
k have the same

mgf in a neighborhood of the origin, then Q1 = Q2.

Proof. First consider the case k = 1. Suppose there exists u0 > 0 such that

ϕ1(u) ≡
∫

R

euxdQ1(x) = ϕ2(u) ≡
∫

R

euxdQ2(x) for all u in (−u0, u0). (4.37)

Since
e|ux| ≤ eux + e−ux,

one has, on integrating both sides with respect to Qj ,

∞∑

n=0

βn,j
|u|n
n!

≤ ϕj(u) + ϕj(−u) < ∞ for −u0 < u < u0, (4.38)

where βn,j =
∫ |x|ndQj(x). Since eux ≤ e|ux|, it follows that

∞∑

n=0

mn,j
un

n!
converges absolutely in −u0 < u < u0, (i = 1, 2)

and

ϕj(u) =

∞∑

n=0

mn,j

n!
un (j = 1, 2), −u0 < u < u0.

Here mn,j =
∫
xndQj(x) (j = 1, 2). Since a power series with a positive radius of

convergence is infinitely differentiable within its radius of convergence, and can be
differentiated term by term there, it follows in particular, mn,1 = mn,2, ∀n. To
prove the proposition, we will show that the characteristic functions

fj(v) =

∫

R

eivxdQj(x) (v ∈ R), (j = 1, 2),
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are identical. Now fj is infinitely differentiable on R, and the n-th derivative is

(Dnfj)(ν) =

∫

R

(ix)neivxdQj(x) (v ∈ R), j = 1, 2. (4.39)

By a Taylor expansion, using

∣
∣
∣
∣
∣
ei(v+h)x −

(
N∑

n=0

(ihx)n

n!

)

eivx

∣
∣
∣
∣
∣
≤ |hx|N+1

(N + 1)!
(4.40)

one obtains, using the convergence of the series in (4.38),

∣
∣
∣
∣
∣
fj(v + h) −

N∑

n=0

hn

n!
(Dnfj)(v)

∣
∣
∣
∣
∣
≤ βN+1,j

(N + 1)!
|h|n (j = 1, 2)

−→ 0 as N → ∞ ∀ |h| < u0.

Therefore,

fj(v + h) =

∞∑

n=0

hn

n!
Dnfj(v), (j = 1, 2) ∀ |h| < u0. (4.41)

Now letting v = 0, and using Dnfj(0) = inmn,j (j = 1, 2), one gets

f1(h) = f2(h) ∀ |h| < u0, (4.42)

which also implies thatDnf1(v) = Dnf2(v) ∀ n, if |v| < u0. Thus f1(v+h) = f2(v+
h) ∀ |v| < u0 and ∀ |h| < u0. In other words, f1(v) = f2(v) ∀ v ∈ (−2u0, 2u0) ∀ ε >
0. Thus f1(v) = f2(v) ∀ |v| < 2u0. Continuing in this manner, it follows that
f1(v) = f2(v) ∀ v ∈ R.

Now let k > 1. Let X,Y have distribution Q1, Q2, respectively. Fix v ∈ R
k\{0}.

The mgf’s of the distributions of the random variables ν.X and ν.Y have finite
and equal mgf’s in a neighborhood of the origin (namely, Eeτv.X = Eeτv.Y for
−u0

|v| < τ < u0

|v| , if the mgf’s of Q1, Q2 are finite and equal in B(0, u0)). Hence

v.X and v.Y have the same distribution. This being true for all v ∈ R
k, f1(v) ≡

Eeiv.X = Eeiv.Y = f2(v) ∀ v ∈ R
k. Hence Q1 = Q2. ��

Remark 4.7. Theorem 4.4, together with the Lehmann–Scheffé Theorem (Theo-
rem 4.3), provides UMVU estimators of all estimable parametric functions.

4.3 The Cramér–Rao Inequality

We have seen that uniformly minimum variance unbiased (UMVU) estimators
exist for estimable parametric functions if a complete sufficient statistic exists. In
particular, this is the case with k-parameter exponential families if the natural
parameter space has a non-empty interior in R

k. We now derive a lower bound
for the variance (expected squared error) of unbiased estimators of parametric
functions under a set of regularity conditions which are satisfied by exponential
families (ifΠ is an open subset of Rk) and many other families. Although this lower
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bound is rarely attained, it is approached in the large sample limit by maximum
likelihood estimators under the regularity conditions.

Theorem 4.5 (Cramér–Rao Information Inequality). Suppose X has a den-
sity f(x | θ) (with respect to a sigma-finite measure μ on (X ,B(X )) satisfying
the following conditions:

(i) Θ is an open interval;
(ii) ∃ a μ-null set N such that f(x | θ) > 0 ∀ x ∈ X \N , ∀ θ ∈ Θ;
(iii)

∫
d
dθ f(x | θ)dμ(x) = d

dθ

∫
X \N f(x | θ)dμ(x) ≡ 0, ∀ θ ∈ Θ;

(iv) if T (X) is a real-valued statistic such that EθT
2 < ∞ ∀ θ ∈ Θ, then writing

a(θ) = EθT , one has

d

dθ
a(θ) ≡ d

dθ

∫

X

T (x)f(x | θ)dμ(x) =
∫

X \N
T (x)

d

dθ
f(x | θ)dμ(x).

Then

varθT ≡ Eθ(T − a(θ))2 ≥ (a′(θ))2

Eθ

(
d log f(X|θ)

dθ

)2 . (4.43)

Proof. Condition (iii) may be restated as

0 = Eθ
d log f(X | θ)

dθ

(

=

∫

X \N

d
dθf(x | θ)
f(x | θ) f(x | θ)dμ(x)

)

. (4.44)

Similarly, condition (iv) says (writing covθ for covariance under Pθ)

covθ(T,
d

dθ
log f(X | θ)) = a′(θ), (4.45)

since covθ(T,
d log f(X|θ)

dθ ) = EθT
d log f(X|θ)

dθ , as Eθ(
d log f(X|θ)

dθ ) = 0. The inequal-
ity (4.43) now follows from the Cauchy–Schwarz inequality applied to (4.45). ��
Remark 4.8. The most common case covered in this course is X = (X1, . . . , Xn),
Xj ’s being i.i.d. with a (common) pdf f1(x | θ) (w.r.t. a sigma-finite measure ν
on a measurable space (S,B(S)). In this case, assumption (ii) may be replaced by
(ii)1 : f1(x1 | θ) > 0 ∀ x1 ∈ S\N1, where ν(N1) = 0. Note that, in this case

f(x | θ)=
n∏

j=1

f1(xj | θ), log f(x | θ)=
n∑

j=1

log f1(xj | θ) (x=(x1, . . . , xn) ∈ Sn=X ),

so that (iii) [or, (4.44)] is equivalent to

(iii)1 : Eθ
d

dθ
log f1(X1 | θ) = 0. (4.46)

Also,

Eθ

(
d log f(X | θ)

dθ

)2

= varθ

(
d log f(X | θ)

dθ

)

= nEθ

(
d log f1(X1 | θ)

dθ

)2

= n varθ

(
d log f1(X1 | θ)

dθ

)

, (4.47)
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under (iii)1. Then the Cramér–Rao inequality (4.43) takes the form

varθT ≥ (a′(θ))2

nEθ

(
d log f1(X1|θ)

dθ

)2 . (4.48)

Remark 4.9. A set of sufficient conditions for (iii) and (iv) in Theorem 4.5, in
presence of (i), (ii), are the following: For each θ0 ∈ Θ there exist h = h(θ0) > 0,
and functions g1, g2 on X such that

∫
g1(x)dμ(x) < ∞, Eθ0g

2
2(X) < ∞, and

(R1):

∣
∣
∣
∣
df(x | θ)

dθ

∣
∣
∣
∣ ≤ g1(x) ∀ θ satisfying |θ − θ0| ≤ h, ∀ x ∈ X ,

(R2):

∣
∣
∣
∣
df(x | θ)

dθ

∣
∣
∣
∣ ≤ g2(x) ∀ θ satisfying |θ − θ0| ≤ h, ∀ x ∈ X .

Remark 4.10. The assumptions of Theorem 4.5 hold for one-parameter exponential
families where the natural parameter space is an open interval (Exercise 4.6).

Remark 4.11. For X = (X1, . . . , Xn) with Xj’s i.i.d., as in Remark 4.8, let n(θ)
be the log-likelihood function

n(θ) =
n∑

j=1

log f1(Xj | θ). (4.49)

Assume that the likelihood equation

Dn(θ) ≡ d

dθ
n(θ) = 0 (4.50)

has a solution θ̂n which is consistent, i.e., Pθ(θ̂n → θ) = 1 ∀ θ. Assuming θ →
f1(x | θ) is twice continuously differentiable, one may use the Taylor expansion

0 =
d

dθ
n(θ)

∣
∣
θ̂n

≡ Dn(θ̂n) = Dn(θ0) + (θ̂n − θ0)
d

dθ
Dn(θ)

∣
∣
∣
∣
θ=θ∗

n

where θ∗n lies between θ̂n and θ0. Multiplying both sides by
√
n, one has, by the

law of large numbers and the central limit theorem,

√
n(θ̂n − θ0) =

= − 1√
n

n∑

j=1

(
d

dθ
log f1(Xj | θ)

)

θ=θ0

/
1

n

n∑

j=1

{(
d2

dθ2
log f1(Xj | θ)

)

θ=θ∗
n

}

L−→ N(0, σ2(θ0)). (4.51)

under Pθ0 . Here

σ2(θ0) =

⎡

⎣Eθ0

(
d log f1(X1 | θ)

dθ

)2

θ=θ0

/(

Eθ0

{
d2

dθ2
log f1(X1 | θ)

}

θ=θ0

)2
⎤

⎦ .

(4.52)
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Now, under regularity conditions (allowing the interchange of the order of differ-
entiation and integration below),

Eθ
d2 log f1(X1 | θ)

dθ2
=

∫

X

d

dθ

(
d
dθf1(x | θ)
f1(x | θ)

)

f1(x | θ)dν(x)

=

∫

X

f ′′
1 (x | θ)f1(x | θ)− (f ′

1(x | θ))2
f2
1 (x | θ) f1(x | θ)dv(x)

=

∫

X

f ′′
1 (x | θ)dv(x) −

∫

X

(
d log f1(x | θ)

dθ

)2

f1(x | θ)dv(x)

=
d2

dθ2

∫

X

f1(x | θ)dv(x) − Eθ

(
d log f1(X1 | θ)

dθ

)2

= −Eθ

(
d log f1(X1 | θ)

dθ

)2

. (4.53)

Substituting this in (4.52), we get

σ2(θ0) =

[
1

Eθ0

(
d log f1(X1 | θ)

dθ

)2

θ=θ0

]−1

=
1

I(θ0)
, (4.54)

say. The quantity I(θ) is referred to as the Fisher information. Thus θ̂n is asymp-
totically Normal with mean θ0 and variance 1

nI(θ0)
, the latter being the lower

bound in Theorem 4.5 for the variance of unbiased estimators of the parametric
function a(θ) = θ [see (4.48)].

Consider next a k-parameter exponential family (4.17) or (4.21), k > 1, but
with q restrictions on the parameters given by q < k smooth functionally indepen-
dent relations among the parameters. The reduced model is expressed in terms of
d = k − q independent parameters and is called a curved exponential family since
the new parameter space is a d-dimensional surface in the original k-dimensional
parameter space. Generally, this term is restricted to those cases where the new
model is not a d-dimensional exponential family. The following examples are taken
from Bickel and Doksum (2001, pp. 126, 405).

Example 4.14 (Estimation of Mean of a Gaussian with a Fixed Signal-to-Noise
Ratio). HereX1, . . . , Xn (n ≥ 2) are i.i.d. N(μ, σ2), μ > 0 with the ratio μ

σ = λ > 0
known. The common density may then be expressed as

f(x;μ) =
1

√
2πμ2/λ2

exp

{

− λ2

2μ2
x2 +

λ2

μ
x− λ2

2

}

=
λ/u√
2π

e−x2/2 exp
{
π1(μ)x + π2(μ)x

2
}
, (4.55)

where π1(μ) = λ2/μ, π2(μ) = −λ2/2μ2. If λ was not known, this would be a
two-parameter exponential family in natural parameters π1 = −1/2σ2 ∈ (−∞, 0),
π2 = μ/σ2 ∈ (0,∞). But with the given relation μ/σ = λ known, it is a curved
exponential family with k − q = 2− 1 = 1 = d. The log-likelihood function is

 = log fn(X;μ) = −n

2
log 2π + n logλ− n logμ− λ2

2μ2
T2 +

λ2

μ
T1 − nλ2

2
(
T2 =

∑n
1 X

2
j , T1 =

∑n
1 Xj

)
,
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and the likelihood equation is

0 = −n

μ
+

λ2T2

μ3
− λ2

μ2
T1, or, μ2 = λ2m2 − λ2Xμ,

where m2 =
∑n

1 X
2
j /n. The solutions of this quadratic equation are

μ = −1

2
λ2X ±

√
1

4
λ4X

2
+ λ2m2.

Since μ > 0, the MLE of μ is therefore given by

μ̂ = −1

2
λ2X +

1

2

√

λ4X
2
+ 4λ2m2 . (4.56)

Example 4.15 (The Fisher Linkage Model). The following genetic model was con-
sidered by Fisher (1958, p. 301). Self-crossing of maize heterozygous on two alleles
yield four types of offspring: sugary-white, sugary-green, starchy-white, starchy-
green. If θ1, θ2, θ3, θ4 are the probabilities of having an offspring of these four
types and if N1, N2, N3, N4 are the numbers of offspring of these types among n
offspring, then (N1, N2, N3, N4) has a multinomial distribution (See Example 4.13)

Pθ(Ni = ni; i = 1, . . . , 4) =
n!

n1!n2!n3!n4!
θn1
1 θn2

2 θn3
3 (1− θ1 − θ2 − θ3)

n4 ,

a k = 3-parameter exponential family. According to a linkage model, θ1 = 1
4 (2+η),

θ2 = θ3 = 1
4 (1 − η) and, consequently, θ4 = 1

4η, where the unknown parameter
η lies in [0, 1]. One then arrives at a curved exponential family with d = 1. The
likelihood equation is

n1

2 + η
− n2 + n3

1− η
+

n4

η
= 0, or,

−nη2 + [n1 − 2(n2 + n3)− n4]η + 2n4 = 0,

whose solutions are

η = −1

2

[
1− 2p̂1 + p̂2 + p̂3 ±

√
(1− 2p̂1 + p̂2 + p̂3)2 + 4p̂4

]
,

where p̂i = ni/n (i = 1, 2, 3, 4). The positive solution is the MLE:

η̂ = −1

2
(1− 2p̂1 + p̂2 + p̂3) +

1

2

√
(1− 2p̂1 + p̂2 + p̂3)2 + 4p̂4 . (4.57)

4.4 Notes and References

Our presentation is influenced by Ferguson (1967, Chap. 3), Lehmann (1959,
Chap. 2), and Bickel and Doksum (2001, Sect. 3.4).

The notion of sufficiency is due to R.A. Fisher (1922), who also stated the
factorization criterion. A rigorous derivation of the criterion for general dominated
families is due to Halmos and Savage (1949), and further generalized by Bahadur
(1954). The Rao–Blackwell theorem is due to Rao (1945) and Blackwell (1947).
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The Lehmann–Scheffé theorem is due to Lehmann and Scheffé (1947, 1950, 1955),
where the notion of minimal sufficiency is also introduced. Exponential families
were introduced by R.A. Fisher (1934) in one dimension and extended to higher
dimensions by G. Darmois, B.O. Koopman and E.J.G. Pitman. Barndorff-Nielsen
(1978) and Brown (1986) provide rigorous accounts of general exponential families.

Diaconis and Ylvisaker (1979) explore the existence of conjugate priors for Bayes
estimation in exponential families. Generally, the computation of the posterior
distribution poses numerical challenges if the prior is not conjugate. See chap. 14
in the context.

Exercises for Chap. 4

Ex. 4.1. Show that, irrespective of the hypothesis of convexity of the loss function
in Theorem 4.2, given any decision rule d(X) one can construct X0 based entirely
on the value of the sufficient statistic T such that X and X0 have the same dis-
tribution Pθ, ∀ θ ∈ Θ. Hence d(X0) has the same risk function as d(X). In this
sense, no information is lost by recording only the value of T (and nothing else)
from the observation X,

Ex. 4.2. Consider a family of distributions Pθ, θ ∈ Θ, of the observation
X, and let T1, T2 be two statistics. Show that σ(T1) ⊂ σ(T2) with Pθ-
probability one ∀ θ ∈ Θ, if and only if for every bounded σ(T1)-measurable
real-valued function f(T1) there exists a σ(T2)-measurable bounded g(T2) such
that Pθ(f(T1) = g(T2)) = 1 ∀ θ ∈ Θ.

Ex. 4.3. (a) In Example 4.5, find the UMVU estimator of θk (k = 1, . . . , n).
(b) In Example 4.6, find the UMVU estimators of (i) sin θ, (ii) eθ.

Ex. 4.4. In Example 4.6, show that ‘
∫ θ

0 g(t)tn−1dt = 0 ∀ θ > 0’ implies g(t) = 0
a.e. (w.r.t. Lebesgue measure on (0,∞)). [Hint: Write g(t) = g+(t)− g−(t), where
g+(t) = max{0, g(t)}, g−(t) = −min{0, g(t)}. Then F+(θ) ≡ ∫ θ

0
g+(t)tn−1dt is the

distribution function of the Lebesgue–Stieltjes (L–S) measure μ+ on (0,∞), which

equals F−(θ) ≡ ∫ θ

0 g−(t)tn−1dt—the distribution function of an L–S measure μ−,
say. Hence μ+ = μ−. In particular, g+(t) = g−(t) a.e. on (0,∞)].

Ex. 4.5 (Ornstein–Uhlenbeck Process). Let {Vt : 0 ≤ t < ∞} be a stationary
Gaussian process with Vt having distribution N(0, σ2/2γ), and cov(Vs, Vs+t) =
σ2

2γ e−γt for some s ≥ 0, t ≥ 0 (σ2 > 0, γ > 0). Consider observations Xj =

Vtj (j = 1, . . . , n), where 0 = t1 < t2 < · · · < tn. Find UMVU estimators of σ2

and γ.

Ex. 4.6. Show that the assumptions of Theorem 4.5 hold for one-parameter ex-
ponential families where the natural parameter space is an open interval.

Ex. 4.7. In Example 4.12, find the UMVU estimators of (a) μ and (b) Σ. That

is, find μ̂ and Σ̂ such that (ia) Eμ̂ = μ, (ib) E Σ̂ = Σ and (iia) μ̂ = arg

minE|d1(X) − μ|2 and (iib) Σ̂ = argminE|d2(X) − Σ|2, over the class of all
unbiased estimators d1(X) of μ, and the class of all unbiased estimators d2(X) of
Σ. Here the distances in (iia,b) are Euclidean distances between vectors.
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Ex. 4.8. Let X1, . . . , Xn be i.i.d. N(μ, σ2), θ = (μ, σ2) ∈ R × (0,∞). Find the
UMVU estimator of μ/σ. [Hint: Use the fact that X, and s2 are independent,

unbiased estimators of μ, and of σ2. Also, it is known that U = (n−1)s2

σ2 has a χ2
n−1

distribution. Therefore, s−2 = n−1
σ2 U−1, where U ∼ χ2

n−1, and s−1 =
√
n−1
σ U− 1

2 ,

where U ∼ χ2
n−1. We get E(s−1) =

√
n−1
σ E(U− 1

2 ), where U ∼ χ2
n−1. Note that

for n ≥ 3, since U ∼ χ2
n−1, we have

cn = E(U− 1
2 ) =

∫ ∞

0

u
n
2 −2 exp

(
−u

2

)
,

a finite integral that can be expressed in terms of the Gamma function. Thus
1
σ = E( 1

cn
√
n−1sn

), and d(X) = X̄
cn

√
n−1sn

is an unbiased estimator of μ
σ , and one

may apply Lehmann–Scheffé’s theorem.]

Ex. 4.9. Let Xj (j = 1, 2, . . . , n) be i.i.d. real-valued observations from an un-
known distribution P .

(a) Let Θ be the (infinite dimensional) set of all continuous distributions on
(R,B(R)) (i.e., P ({x}) = 0 ∀ x ∈ R). Show that the order statistic T =
(X(1), X(2), . . . , X(n)) is sufficient for {P : P ∈ Θ}. [Hint: Compute the condi-
tional distribution of X given T .]

(b) Let Θ be the set of all discrete distributions on {0, 1, 2, . . .} (i.e.,
∑

j P ({j}) =
1). Let nj = #{i : Xi = j} (j = 0, 1, . . . ). Show that T = {nj : j = 0, 1, . . .}
is a sufficient statistic for {P : P ∈ Θ}.

Ex. 4.10 (Negative Binomial Distribution). Let Xj (j = 1, 2, . . . , n) be i.i.d.
observations, with Pθ(X1 = x) =

(
r+x−1

x

)
(1 − θ)rθx (x = 0, 1, . . . ). Here r is a

positive integer (known) and θ ∈ Θ = (0, 1). In a coin tossing experiment, r +X1

may be the first time the r-th tail shows up.

(a) Calculate EθX1 [Hint: Think of X1 as the sum of r i.i.d. random variables
each of which has the Pθ-distribution above, but with r = 1].

(b) Find the UMVU estimator of θ
1−θ , and calculate its variance.

(c) Find the MLE of θ and compute its asymptotic distribution as n → ∞.

Ex. 4.11. Let X1, . . . , Xn be i.i.d. observations with the common density (w.r.t.
Lebesgue measure on (0, 1)) f(x | θ) = θxθ−1 (0 < x < 1), θ ∈ Θ = (0,∞).

(a) Find the UMVU estimator of θ.
(b) Find the UMVU estimator of 1/θ.
(c) Find the MLE of θ. [Hint: Look at Yj = − lnXj .]

Ex. 4.12. (a) Derive the asymptotic distribution of the MLE μ̂ in (4.56).
(b) Derive the asymptotic distribution of the MLE η̂ in (4.57).

Ex. 4.13. Assume θ ∈ (0, 1), and let X1, . . . , Xn be i.i.d. from a geometric dis-
tribution Pθ(X = x) = θ(1 − θ)x−1, x = 1, 2, . . . . Show that T =

∑n
i=1Xi is

sufficient for θ. Is T a complete sufficient statistic?
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A Project for Students

Project: Space Shuttle Disaster In 1986, the space shuttle Challenger ex-
ploded during take off, killing the seven astronauts aboard. It was determined
that the explosion was the result of an O-ring failure, a splitting of a ring of rub-
ber that seals different parts of the ship together. The flight accident was believed
to be caused by the unusually cold weather (31 ◦F) at the time of the launch. The
past O-ring failure data along with temperature at launch time are given below
(in increasing order of temperature) for 23 prior flights. The flight numbers denote
the (unimportant) time order of launch. The numbers 0 and 1 indicate “no O-ring
failure” and “O-ring failure”, respectively.

Flight# 14 9 23 10 1 5 13 15 4 3 8 17 2

Failure 1 1 1 1 0 0 0 0 0 0 0 0 1

Temp. in Degrees F 53 57 58 63 66 67 67 67 68 69 70 70 70

Flight# 11 6 7 16 21 19 22 12 20 18

Failure 1 0 0 0 1 0 0 0 0 0

Temp. in Degrees F 70 72 73 75 75 76 76 78 79 81

Project Objective Estimate the probability of O-ring failure at temperature
31 ◦F and at 65 ◦F.

Suggested Model Let Y denote the failure status (response variable), and X the
temperature in degrees F at launch time (explanatory variable). Use the logistic
regression model,

P (Y = 1 | X = x) = exp
{α+ βx}

[1 + exp{α+ βx}] = P (X), say, and

P (Y = 0 | X = x) = 1− p(x). (4.58)

Note that one may express the model as

log

[
p(x)

(1 − p(x))

]

= α+ βx. (4.59)

Hence the name logistic regression.
Assume that the regressor x is stochastic and (Xi, Yi) are i.i.d. random vectors.
For 23 independent Y observations (y1, . . . , y23) the conditional likelihood func-

tion (i.e., the conditional p.d.f. of Yi, given Xi = xi (i = 1, . . . , 23)), is

(y | x;α, β) =
∏

i=1,...,23

[
p(xi)

yi(1− p(xi))
1−yi

]
, (4.60)

and the (conditional) log likelihood is

log  =
∑

i

[yi(α+ βxi)]−
∑

i

log[1 + exp{α+ βxi}]. (4.61)

Assume that the distribution of Xi does not involve α, β.
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(a) (i)Find the maximum likelihood estimates α̂, β̂ of α and β, and (ii) use these
to estimate the desired failure probabilities at x = 310F, and at x = 65 ◦F,
using (4.58). [Hint: You will need to compute the estimates numerically e.g., by
the gradient method, as solutions of the likelihood equations ∂ log /∂α = 0,
∂ log /∂β = 0, or using direct maximizing algorithms (e.g., as is available on
Matlab). There is also a fast algorithm for this called a Re-weighted Least
Squares Algorithm (See Wasserman 2003, pp. 223–224).]

(b) By bootstrapping from the i.i.d. observations {(Xi, Yi); 1 ≤ i ≤ 23}, (i) find
a lower 90% confidence bound for the probability of failure at launch tem-
perature x = 31 ◦F. In other words, you are to find a number U such that
Prob (p(31) ≥ U) = 0.90. [Hint: Find the lower tenth percentile q0.10 of the

bootstrap values α̂∗ + β̂∗(31), using estimates α̂, β̂ of α, β as in (a), but from
each bootstrap resample from {(Xi, Yi) : i = 1, . . . , 23} instead of the original
sample. Now use exp{q0.10}/(1+exp{q0.10}) as the desired lower bound for the
probability of failure (noting that eq/(1 + eq) is a strictly increasing function
of q). Observe that this says that you are (approximately) 90% sure that the
probability of failure at 31 ◦F is at least exp{q0.10}/(1 + exp{q0.10}).]

(ii) Also find an upper 90% bound for the probability of O-ring failure at the
temperature x = 65 ◦F. That is, find a value q such that the probability of
O-ring failure is less than eq/(1 + eq), with a probability 0.90.

[Note: Bootstrapping means taking repeated samples of size 23 (with replace-
ment) from the observations {(yi, xi) : i = 1, . . . , 23}. Between 500 and 1000 such
re-samples from the observed data should be enough. Each bootstrap sample (of

size 23) is used to compute (α̂∗, β̂∗) as in (a)].

Appendix for Project: The Nonparametric Percentile
Bootstrap of Efron

Let σ̂n be the standard error of θ̂n (That is, σ̂n is an estimate of the standard

deviation of θ̂n). An asymptotic confidence interval of confidence level 1− α for θ

would follow from the relation P (zα/2σ̂n ≤ θ̂n−θ ≤ z1−α/2σ̂n) ≈ 1−α, namely, it is

the interval [θ̂n−z1−α/2σ̂n, θ̂n−zα/2σ̂n] = [θ̂n−zα/2σ̂n, θ̂n+z1−α/2σ̂n] = [l, u], say.

Now the bootstrap version θ̂∗n of θ̂n is, under the empiricalP∗ = P̂n, asymptotically

Normal N(θ̂n, σ̂
2
n), so that the α/2-th and (1 − α/2)-th quantiles of θ̂∗n, q

∗
α/2 and

q∗1−α/2 say, are asymptotically equal to θ̂n + zα/2σ̂n = l and θ̂n + z1−α/2σ̂n = u,
respectively.

Hence the percentile bootstrap based confidence interval for θ is given by

[
q∗α/2, q

∗
1−α/2

]
. (4.62)

Note that the construction of this interval only involves resampling from the data
repeatedly to construct bootstrap versions θ̂∗n of θ̂n; it does not involve the com-

putation of the standard error θ̂n.
Although (4.62) does not involve computing the standard error σ̂n, the latter

is an important object in statistical analysis. It follows from the above that the
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variance σ̂∗2
n of the θ̂∗n values from the repeated resamplings provide an estimate

of σ̂2
n [A rough estimate of σ̂n is also provided by ([q∗1−α/2 − q∗α/2]/2z1−α/2)

1
2 ].

When the standard error σ̂n of θ̂n is known in closed form, one may use the
studentized or pivoted statistic Tn = (θ̂n − θ)/σ̂n which is asymptotically stan-
dard Normal N(0, 1). The usual CLT-based symmetric confidence interval for θ is
given by

[
θ̂n + zα/2σ̂n, θ̂n + z1−α/2σ̂n

]
=
[
θ̂n − z1−α/2σ̂n, θ̂n − zα/2σ̂n

]
, (4.63)

using P (|Tn| ≤ z1−α/2) = 1 − α. The corresponding pivotal bootstrap confidence

interval is based on the resampled values of T ∗
n = (θ̂∗n − θ̂n)/σ̂

∗
n, where σ̂∗

n is the
bootstrap estimate of the standard error as described in the preceding paragraph.
Let c∗α/2 be such that P ∗(|T ∗

n | ≤ c∗α/2) = 1 − α. The bootstrap pivotal confidence
interval for θ is then [

θ̂n − c∗α/2σ̂
∗
n, θ̂n + c∗α/2σ̂

∗
n

]
. (4.64)

Suppose θ̂n is based on i.i.d. observations X1, . . . , Xn, whose common distribution
has a density (or a nonzero density component), and that it is a smooth function
of sample means of a finite number of characteristics of X , or has a stochastic
expansion (Taylor expansion) in terms of these sample means (such as the MLE
in regular cases). It may then be shown that the coverage error of the CLT-based
interval (4.63) is O(n−1), while that based on (4.64) isO(n−3/2), a major advantage
of the bootstrap procedure. The coverage error of the percentile interval (4.62) is
O(n−1/2), irrespective of whether the distribution of X is continuous or discrete.

Definition 4.6. The coverage error of a confidence interval for a parameter θ is
the (absolute) difference between the actual probability that the true parameter
value belongs to the interval and the target level 1− α.
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Chapter 5

Testing Hypotheses

Abstract This chapter develops the theory of optimal parametric tests. The
Neyman–Pearson Lemma provides the most powerful test of any given size for a
simple null hypothesis H0 against a simple alternative hypothesis H1. For one pa-
rameter exponential models such tests are uniformly most powerful (UMP) against
one-sided alternatives. For two-sided alternatives here one obtains a UMP test
among all unbiased tests of a given size. In multiparameter exponential models
one may similarly obtain UMP unbiased tests in the presence of nuisance param-
eters. For statistical models which are invariant under a group of transformations
all reasonable tests should be invariant under the group. The theory of UMP tests
among all invariant tests is developed for linear models.

5.1 Introduction

An observation (vector) X is distributed according to Pθ on the observation space
X . Here θ is an unknown parameter lying in a set Θ. Suppose there are two
competing hypotheses for θ:

Null Hypothesis H0 : θ ∈ Θ0,
Alternative Hypothesis H1 : θ ∈ Θ1

(5.1)

where Θ0 and Θ1 are nonempty and Θ0 ∪Θ1 = Θ. On the basis of the observation
X, the statistician must decide whether to accept H0 or to accept H1 (reject H0).
Generally,H0 is such that one can not afford to reject it unless the evidence against
it is very compelling. This creates an asymmetry in the problem.

As discussed in Chap. 2, on page 14, one may take the action space here as A =
{a0, a1}, where a0 = “accept H0”, a1 = “accept H1”. The usual loss function is

L(θ, ai) =

{
0 if θ ∈ Θi,
1 if θ �∈ Θi (i = 0, 1).

(5.2)

Definition 5.1. A nonrandomized test d is of the form

d(x) =

{
a0 if x ∈ A,
a1 if x ∈ C = X \A, (5.3)
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where A (the acceptance region for H0), or C (the rejection region for H0, or
critical region), is a measurable subset of X . The risk function is given by

R(θ, d) = EθL(θ, d(X)) =

{
αd(θ) = Pθ(X ∈ C) if θ ∈ Θ0,
βd(θ) = Pθ(X ∈ A) if θ ∈ Θ1.

(5.4)

The quantity αd(θ) is called the probability of a Type I Error, or the level of
significance of the test, while βd(θ) is the probability of a Type II Error, and
γd(θ) = 1− βd(θ) ≡ Pθ(X ∈ C), θ ∈ Θ1, is called the power of the test.

Definition 5.2. More generally, a (randomized) test δ is a measurable assignment
of probabilities x → (1 − ϕ(x), ϕ(x)), 0 ≤ ϕ(x) ≤ 1, so that, given X = x, one
takes the action a1 (accept H1 or, equivalently, reject H0) with probability ϕ(x)
and takes the action a0 (accept H0) with probability 1 − ϕ(x). We will generally
refer to ϕ as the test, since δ is determined by it. Then

R(θ, δ) =

{
αδ(θ) = Eθϕ(X) if θ ∈ Θ0,
βδ(θ) = 1− Eθϕ(X) if θ ∈ Θ1.

(5.5)

The power of the test is γδ(θ) = Eθϕ(X) (for θ ∈ Θ1).
In the case of a non-randomized test, ϕ(x) = 1C(x).

The maximum value (or, the supremum) of αδ(θ) over Θ0 is referred to as the
size of the test and is also sometimes called the level of significance of the test:

αδ ≡ size of the test δ = sup
θ∈Θ0

αδ(θ). (5.6)

In view of the asymmetry of the nature of the hypotheses mentioned above, the
classical testing procedure aims at keeping the size of the test small (say αδ = 0.05
or 0.01) while trying to minimize βδ(θ), or maximize the power γδ(θ), θ ∈ Θ1, as
far as possible.

Definition 5.3. A test δ∗ is said to be uniformly most powerful (UMP) of size α
if

αδ∗ ≡ sup
θ∈Θ0

αδ(θ) = α, (5.7)

and

γδ∗(θ) ≥ γδ(θ) ∀ θ ∈ Θ1, (5.8)

for all tests δ of size α or less.

As we will see UMP tests exist only under special circumstances.

Choice of H0 and H1 in One-Sided Tests To appreciate the importance of
the choice of H0 and H1 in practical situations, consider the problem of a retailer
deciding whether to buy a large consignment of a manufactured item. He would be
happy if the proportion p of defectives did not exceed 5%. One may then consider
H0 : p ≤ 0.05,H1 : p > 0.05. Suppose a random sample of size n yields a proportion
of defectives 4%. At any reasonable level of significance, say α = 0.05, the optimal
test will “accept” H0. But accepting H0 is not in general a strong endorsement
of H0, since it is given so much protection, and the statistician declares that H0

is “not rejected”. On the other hand, let H0 : p ≥ 0.05, H1 : p < 0.05. It may
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very well happen that the corresponding optimal test will reject H0. This would
be a rather strong indictment against H0, since it got rejected in spite of such a
strong protection (namely, α = 0.05). The retailer may now feel confident that the
quality of the product meets his criterion.

5.2 Simple Hypotheses and the Neyman–Pearson Lemma

Consider the case where Θ0 = {θ0} is a singleton. Then H0 is called a simple
null hypothesis (Else it is a composite null hypothesis). Similarly, if Θ1 = {θ1},
then H1 is called a simple alternative hypothesis (Else it is a composite alternative
hypothesis). We first consider the case of a simple null hypothesis H0 : θ = θ0 and
a simple alternative hypothesis H1 : θ = θ1 (so that Θ = {θ0, θ1}). We will show
that there exists a most powerful test δ∗ for a given size α (0 ≤ α ≤ 1). Let Pθ

have density f(x | θ) (w.r.t. a σ-finite measure μ).

Theorem 5.1 (The Neyman–Pearson Lemma). For H0 : θ = θ0, H1 : θ =
θ1, consider the test ϕ∗(x) of the form

ϕ∗(x) =

⎧
⎨

⎩

1 if f(x | θ1) > kf(x | θ0),
γ if f(x | θ1) = kf(x | θ0),
0 if f(x | θ1) < kf(x | θ0),

(5.9)

where 0 ≤ k < ∞ and 0 ≤ γ ≤ 1 are constants.

(a) Then ϕ∗ is a most powerful test of its size.
(b) The test

ϕ∗(x) =
{
1 if f(x | θ0) = 0,
0 if f(x | θ0) > 0,

(5.10)

is most powerful of size 0.
(c) For every α, 0 ≤ α ≤ 1, there exists a test of the above form.

Proof. (a) Let ϕ∗ be as in (5.9), and consider a test ϕ of size no more than that
of ϕ∗. Then, writing β∗ = βδ∗(θ1), β = βδ(θ1),

β − β∗ = Eθ1 [(1− ϕ(X)) − (1− ϕ∗(X))] = Eθ1(ϕ
∗(X)− ϕ(X))

=

∫

A1={x:f(x|θ1)>kf(x|θ0)}
(ϕ∗(x) − ϕ(x))f(x | θ1)dμ(x)

+

∫

A2={x:f(x|θ1)=kf(x|θ0)}
(ϕ∗(x)− ϕ(x))f(x | θ1)dμ(x)

+

∫

A3={x:f(x|θ1)<kf(x|θ0)}
(ϕ∗(x)− ϕ(x))f(x | θ1)dμ(x)

≥
∫

A1

(ϕ∗(x)− ϕ(x))kf(x | θ0)dμ(x)

+

∫

A2

(ϕ∗(x)− ϕ(x))kf(x | θ0)dμ(x) +
∫

A3

(ϕ∗(x) − ϕ(x))kf(x | θ0)dμ(x),
(5.11)

since (1) on A1, ϕ
∗(x)−ϕ(x) ≥ 0, (2) on A2, f(x | θ1) = kf(x | θ0), and (3) on

A3, ϕ
∗(x)−ϕ(x) ≤ 0 (and the factor f(x | θ1) is replaced by a smaller quantity
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on A3). But the (extreme) right side of (5.11) equals k(Eθ0ϕ
∗(X)−Eθ0ϕ(X)) =

k(αδ∗ − αδ) ≥ 0, since by hypothesis αδ ≤ αδ∗ .
(b) The size of ϕ∗, given by (5.10), is αδ∗ = Eθ0ϕ

∗(X) =
∫
{x:f(x|θ0)=0} f(x |

θ0)dμ(x) +
∫
{x:f(x|θ0)>0} 0 · f(x | θ0)dμ(x) = 0. If ϕ is a test of size 0, then

Eθ0ϕ(X) = 0, so that ϕ(x) = 0 a.e. μ on {x : f(x | θ0) > 0}. Clearly, among
all such tests a (the) most powerful test assigns ϕ(x) = 1 on the rest of the
observation space {x : f(x | θ0) = 0}.

(c) Let 0 < α ≤ 1. Write Y = f(X | θ1)/f(X | θ0). Note that Pθ0(Y = ∞) =
Pθ0({x : f(x | θ0) = 0}) = 0. Hence, under Pθ0 , 0 ≤ Y < ∞, a.s. We need to
determine k and γ such that Pθ0(Y > k) + γPθ0(Y = k) = α, or

Pθ0(Y ≤ k)− γPθ0(Y = k) = 1− α. (5.12)

If there exists k such that Pθ0(Y ≤ k) = 1−α, then use this k and take γ = 0.
If not, there exists k0 such that Pθ0(Y < k0) < 1−α and Pθ0(Y ≤ k0) > 1−α.
In this case, (5.12) is solved by taking k = k0 and

γ =
Pθ0(Y ≤ k0)− (1 − α)

Pθ0(Y = k0)
=

α− Pθ0(Y > k0)

Pθ0(Y = k0)
.

That is, α = Pθ0(Y > k0) + γPθ0(Y = k0). ��
Remark 5.1. The use of densities f(x | θ0), f(x | θ1) of the distributions Pθ0 ,
Pθ1 on X is not a restriction. For, one may always take the dominating measure
μ = Pθ0 + Pθ1 . In most of the examples that we deal with in this course, Pθ has
density w.r.t. Lebesgue measure (on R

n), or w.r.t. the counting measure (on Sn

where S is countable).

5.3 Examples

Consider a one-parameter exponential family of distributions with density (w.r.t.
a σ-finite measure μ on the observation space X )

f(x | θ) = C(θ)h(x) exp{π(θ)T (x)}, (5.13)

which may be written in natural parameter form as

f̃(x | π) = C̃(π)h(x) exp{πT (x)}. (5.14)

Assume the natural parameter space Π is a nonempty open interval, Π = (a, b).
We want to test

H0 : π = π0 against H1 : π = π1. (5.15)

The most powerful test ϕ∗ of a given size α is of the form given by the N–P Lemma:

ϕ∗(x) =

⎧
⎪⎪⎨

⎪⎪⎩

1 if f̃(x | π1)/f̃(x | π0) > k

γ if f̃(x | π1)/f̃(x | π0) = k

0 if f̃(x | π1)/f̃(x | π0) < k.

(5.16)
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That is,

ϕ∗(x) =

⎧
⎪⎨

⎪⎩

1 if exp{(π1 − π0)T (x)} > k1 ≡ kC̃(π0)/C̃(π1)

γ if exp{(π1 − π0)T (x)} = k1

0 if exp{(π1 − π0)T (x)} < k1.

Suppose π1 > π0. Then

ϕ∗(x) =

⎧
⎨

⎩

1 if T (x) > k2 = (ln k1)/(π1 − π0)
γ if T (x) = k2
0 if T (x) < k2.

(5.17)

If, on the other hand, π1 < π0, then the most powerful test is

ϕ∗(x) =

⎧
⎨

⎩

1 if T (x) < k2
γ if T (x) = k2
0 if T (x) > k2.

(5.18)

Note that k2 and γ are determined only by the size of the test. For example, in the
case π1 > π0, one has

α = Pπ0(T > k2) + γPπ0(T = k2). (5.19)

Example 5.1. LetX = R
n, Pθ the joint distribution of n i.i.d. variables, each with

distribution N(θ, 1), so that

f(x | θ) = (2π)−n/2 exp

⎧
⎨

⎩
−

n∑

j=1

(xj − θ)2/2

⎫
⎬

⎭

f̃(x | π) = (2π)−n/2e−nθ2/2 exp

⎧
⎨

⎩
−

n∑

j=1

x2j/2

⎫
⎬

⎭
exp

⎧
⎨

⎩
θ

n∑

j=1

xj

⎫
⎬

⎭

= C̃(π)h(x) exp{πT (x)}, (x ∈ X )

where π = θ ∈ Π = R, and T (x) =
∑n

j=1 xj . The most powerful test for

H0 : θ = θ0 (or π = π0) against H1 : θ = θ1(π = π1),

with θ1 > θ0, is given by

ϕ∗(x) =

⎧
⎨

⎩

1 if T (x) > k2
γ if T (x) = k2
0 if T (x) < k2.

To determine k2 and γ, using (5.19), note first that Pπ0(T = k2) = 0, since the
Pπ0 -distribution of T =

∑n
1 Xj is N(nθ0, n) (Normal with mean nθ0 and variance

n), which assigns probability 0 to every singleton {k2}. Hence we can take the test
to be nonrandomized,

ϕ∗(x) =
{
1 if T (x) > k2,
0 if T (x) ≤ k2,

(5.20)
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where, noting that (T − nθ0)/
√
n is N(0, 1), one has

α = Pθ0(T > k2) = Pθ0

(
T − nθ0√

n
>

k2 − nθ0√
n

)

= 1− Φ

(
(k2 − nθ0)√

n

)

(5.21)

i.e.,

k2 − nθ0√
n

= Φ−1(1− α) (k2 = nθ0 +
√
nΦ−1(1− α)), (5.22)

Φ being the (cumulative) distribution function of N(0, 1). A standard way of ex-
pressing (5.21)–(5.22) is:

ϕ∗(x) =
{
1 if

√
n(x− θ0) > z1−α ≡ Φ−1(1− α)

0 if
√
n(x− θ0) ≤ z1−α.

(5.23)

Note that (5.23) is of the form (5.20), and this test has size α (since
√
n(x − θ0)

has the distribution N(0, 1) if θ0 is the true parameter value).

Example 5.2. Let X = {0, 1}n, and the probability mass function (i.e., density
w.r.t. counting measure μ on X ) is

p(x | θ) = θ
∑n

1 xj (1− θ)n−
∑n

1 xj = (1− θ)n
(

θ

1− θ

)∑n
1 xj

= C̃(π)eπ
∑n

1 xj = C̃(π)eπT (x), say, (T =
∑n

j=1 Xj),

with the natural parameter π = ln
(

θ
1−θ

)
∈ Π = R (corresponding to θ ∈ Θ =

(0, 1)). Suppose we wish to test

H0 : θ = θ0 against H1 : θ = θ1 (θ1 > θ0). (5.24)

Since θ → π(θ) is strictly increasing, one has π0 ≡ ln
(

θ0
1−θ0

)
< π1 = ln

(
θ1

1−θ1

)
,

since θ1 > θ0. The best test ϕ∗ of a given size α ∈ (0, 1) is then of the form

ϕ∗(x) =

⎧
⎨

⎩

1 if
∑n

1 xj > k2
γ if

∑n
1 xj = k2

0 if
∑n

1 xj < k2

where k2 (integer) and γ are determined by

α = Pθ0

(
n∑

1

Xj > k2

)

+ γPθ0

(
n∑

1

Xj = k2

)

=

n∑

r=k2+1

(
n

r

)

θr0(1− θ0)
n−r + γ

(
n

k2

)

θk2
0 (1 − θ0)

n−k2 . (5.25)

For example, let n = 20, θ0 = 0.20, α = 0.10. Then the solution of (5.25) is given
by (Look up Binomial tables with n = 20, θ = 0.20)

k2 = 6,

γ =
α− Pθ0 (

∑n
1 Xj > 6)

Pθ0 (
∑

Xj = 6)
=

0.10− 0.0867

0.1091
= 0.1219.
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Here, Pθ0(T > 6) = 0.0867(Pθ0(T > 5) > 0.10), and Pθ0(T = 6) = 0.1091. Hence

Pθ0(T > 6) + γPθ0(T = 6) = 0.0867 +

(
0.10− 0.0867

0.1091

)

0.1091

= 0.0867 + 0.10− 0.0867 = 0.10 = α.

Three important remarks may now be made.

Remark 5.2 (Uniformly Most Powerful Tests). It follows from (5.13)–(5.19) (as il-
lustrated by Examples 5.1 and 5.2 above) that the test (5.18) for H0 : π = π0
satisfying the size restriction (5.19), is most powerful of size α for every alterna-
tive H1 : π = π1, as long as π1 > π0. Hence this test is uniformly most powerful
of size α for testing H0 : π = π0 against H1 : π > π0. Now compare this test ϕ∗

against the test ϕα given by ϕα(x) = α ∀ x ∈ X (i.e., whatever be the observation
x, this test rejects H0 with probability α, and accepts it with probability 1− α).
Since this test is of size α, it follows that Eπϕ

∗(X) ≥ Eπϕα(X) = α ∀π > π0.
This property of a test, namely, that its power is at least as large as its size (i.e.,
the probability of rejecting H0 when it is false is at least as large as the proba-
bility of rejecting H0 when H0 is true), is called unbiasedness (of the test). We
now argue that ϕ∗ is uniformly most powerful (UMP) of its size, say α, for testing
H0 : π ≤ π0 against H1 : π > π0. Since it is UMP of size α among all tests of
size α or less for testing H0 : π = π0 (against H1 : π > π0), and since every test
of size α or less for H0 : π ≤ π0 is also of size α or less for testing H0 : π = π0,
we only need to show that ϕ∗ is of size α for testing H0 : π ≤ π0. Fix π− < π0.
The test ϕ∗ is most powerful of its size, say α−, for testing H0 : π = π− against
H1 : π = π0 (since π0 > π−). In particular, it is at least as powerful as the test ϕα−
(of the same size α−). But the power of ϕ∗ (for testing H0 : π = π−, H1 : π = π0)
is Eπ0ϕ

∗(X) = α, and that of ϕα− is Eπ0ϕα−(X) = α−. Therefore, α− ≤ α.
This shows that Eπϕ

∗(X) ≤ α ∀π < π0. Hence, for testing H0 : π ≤ π0 against
H1 : π > π0, the size of ϕ∗ is α. Incidentally, we have shown that Eπϕ

∗(X) is
monotone increasing with π.

Finally, reversing the inequalities in the proof of the N–P Lemma, one shows
that for testing H0 : π = π0, against H1 : π < π0, ϕ

∗ is the least powerful of all
tests of its size.

One may also consider the problem of testing H0 : σ2 ≤ σ2
0 against H1 :

σ2 > σ2
0 based on i.i.d. observations X1, . . . , Xn from N(μ0, σ

2), with μ0 known
(Exercise 5.9(a)). One may think of this as a statistical test to determine if a new
equipment for measuring length is at least as accurate as a standard equipment,
by taking measurements with the new equipment. Here σ2

0 is the known variance
for the standard equipment.

Remark 5.3. Note that for testing H0 : π = π0 againstH1 : π = π1, where π1 < π0,
the most powerful test, given by the N–P Lemma in the case of a one-parameter
exponential family (5.13)–(5.16) becomes instead of (5.17))

ϕ∗(x) =

⎧
⎨

⎩

1 if T (x) < k2 (= (nk1)/(π1 − π0))
γ if T (x) = k2
0 if T (x) > k2.

(5.26)

Arguments entirely analogous to those made for the case π1 > π0 show that the
test (5.26) is UMP of its size for testing H0 : π ≥ π0 (for any given π0) against
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H1 : π < π0. One may also derive this fact by changing the parameter π → −π
and the statistic T → −T (so that π1 < π0 becomes −π1 > −π0). (Exercise 5.1.)

Remark 5.4. Although one-parameter exponential families constitute the most im-
portant examples for the existence of uniformly most powerful tests for hypotheses
of the kind H0 : θ ≤ θ0 against H1 : θ > θ0, the property that is actually used
is that of the monotone likelihood ratio f(x | θ1)/f(x | θ0) as a function of a
(sufficient) statistic T : If θ1 > θ0, f(x | θ1)/f(x | θ0) is a monotone increasing
(or, monotone decreasing) function of T (Exercise 5.4).

Finally, in practice, statisticians generally do not rigidly fix the size α of a test.
Instead, they compute the P -value of the test, namely, given the observation, the
smallest value of α for which H0 would be rejected (in favor of H1). In Example 5.2
above, if n = 20, θ0 = 0.20, (H0 : θ = θ0, H1 : θ > θ0) and if the observed T (x) ≡∑n

1 xj = 7, then the P -value of the test is Pθ0(T > 6) = Pθ0(T ≥ 7) = 0.0867.
One would reject H0 here if the size, or level of significance, α is larger than 0.0867
(e.g., α = 0.10). In general, a test would reject H0 for every α ≥ P -value. Hence
the smaller the P -value, the stronger is the evidence against H0.

5.4 The Generalized N–P Lemma and UMP Unbiased Tests

In this section we consider the problem of testing of a null hypothesis against a
two-sided alternative

H0 : θ = θ0, H1 : θ �= θ0,

where θ is a real parameter. It is clear that for this, a UMP test of any given size
α ∈ (0, 1) does not exist in general. As pointed out in the preceding section, even
in the case of a one-parameter exponential family, a UMP test for H0 : θ = θ0
against H1 : θ > θ0 is uniformly least powerful (among all tests of the same size)
against alternatives θ < θ0 (and vice versa). The following diagram schematically
illustrates the situation (Fig. 5.1): We will, therefore, restrict our attention to the
class G of unbiased tests ϕ, i.e., power of ϕ ≥ size of ϕ, or

Eθϕ(X) ≥ α = sup
θ∈Θ0

Eθ(X) ∀ θ ∈ Θ1. (5.27)

[infθ∈Θ1 Eθϕ(X) ≥ supθ∈Θ0
Eθϕ(X).] Note that there always exist unbiased tests

of any given size. For example, the test ϕα : ϕα(x) = α ∀x ∈ X , is of size α
and is unbiased (since Eθϕα(X) = α ∀ θ). The following theorem shows that, for

θ

)X(ϕθE
θE ϕ*− ( )X

θ 0

α

(X )ϕE
θ +

*

Fig. 5.1 ϕ∗
+, ϕ∗

− are UMP for H1 : θ > θ0, H1 : θ < θ0, respectively
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one-parameter exponential families, a uniformly most powerful test exists in the
class of all unbiased tests of any specified size. Such tests are said to be uniformly
most powerful unbiased or UMPU.

Theorem 5.2. Consider the one-parameter exponential family (5.14), in natural
parameter form, with Π an open interval. A UMP unbiased test ϕ∗ of size α, for
testing H0 : π = π0 against H1 : π �= π0 is given by

ϕ∗(x) =

⎧
⎨

⎩

1 if T (x) < t1 or > t2,
γi if T (x) = ti (i = 1, 2)
0 if t1 < T (x) < t2,

(5.28)

where t1 < t2 and γi (i = 1, 2) satisfy the equations

α = Eπ0ϕ
∗(X) = Pπ0(T < t1) + Pπ0(T > t2) + γ1Pπ0(T = t1) + γ2Pπ0(T = t2),

(5.29)
and all tests ϕ (including ϕ∗) in G satisfy

0 =

(
d

dπ
Eπϕ(X)

)

π=π0

(Unbiasedness), (5.30)

or, equivalently, the relation (5.36) below, namely.

Eπ0ϕ(X)T (X) = αEπ0T (X).

The following generalized version of the N–P Lemma is needed for the proof.

Theorem 5.3 (Generalized N–P Lemma). Let fi, 1 ≤ i ≤ m+1, be functions
on X , and G the class of tests ϕ, 0 ≤ ϕ ≤ 1, satisfying

∫

X

fi(x)ϕ(x)dμ(x) = ci (1 ≤ i ≤ m). (5.31)

If ϕ∗ is in G and is of the form

ϕ∗(x) =

⎧
⎨

⎩

1 if fm+1(x) >
∑m

i=1 kifi(x),
γ(x) if fm+1(x) =

∑m
i=1 kifi(x),

0 if fm+1(x) <
∑m

i=1 kifi(x),
(5.32)

for some constants ki (1 ≤ i ≤ m) and some measurable γ(x), 0 ≤ γ(x) ≤ 1, then

∫

X

ϕ∗(x)fm+1(x)dμ(x) = sup
ϕ∈G

∫

X

φ(x)fm+1(x)dμ(x). (5.33)

Proof. Let ϕ ∈ G . Then the function (ϕ∗(x) − ϕ(x))(fm+1(x) −
∑m

i=1 kif(x)) is
nonnegative on X . Therefore, by (5.31),

0 ≤
∫

X

(ϕ∗(x)− ϕ(x))(fm+1(x)−
m∑

i=1

kifi(x))dμ(x)

=

∫

X

(ϕ∗(x)− ϕ(x))(fm+1(x))dμ(x)

=

∫

X

ϕ∗(x)fm+1(x)dμ(x) −
∫

X

ϕ(x)fm+1(x)dμ(x).
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��

Next note that, for the case of a one-parameter exponential family with Π an
open interval, one can differentiate under the integral sign (Exercise 5.4(a)):

d

dπ
Eπϕ(X) =

d

dπ

∫

X

ϕ(x)C(π)h(x)eπT (x)dμ(x)

= C′(π)
∫

X

ϕ(x)h(x)eπT (x)dμ(x)

+

∫

X

ϕ(x)C(π)h(x)T (x)eπT (x)dμ(x)

=
C′(π)
C(π)

Eπϕ(X) + Eπϕ(X)T (X). (5.34)

Now

0 =
d

dπ

∫

X

C(π)h(x)eπT (x)dμ(x)

= C′(π)
∫

X

h(x)eπT (x)dμ(x) +

∫

X

C(π)h(x)T (x)eπT (x)dμ(x)

=
C′(π)
C(π)

+ EπT (X),

or,

EπT (X) = −C′(π)
C(π)

. (5.35)

Hence the condition (5.30) may be expressed as

Eπ0ϕ(X)T (X) = Eπ0ϕ(X) · Eπ0T (X)

= αEπ0T (X). (5.36)

To prove Theorem 5.2, use the Generalized N–P Lemma with f1(x) = f(x | π0),
f2(x) = T (x)f(x | π0), c1 = α, c2 = αEπ0T (X), and f3(x) = f(x | π) for some
π �= π0.

Case A. Fix π, π0 with π > π0. The inequality f3(x) > k1f1(x) + k2f2(x)
may be written as C(π) exp{πT (x)}h(x) > k1C(π0) exp{π0T (x)}h(x) +
k2C(π0) exp{π0T (x)}h(x)T (x), or, using different constants, exp{πT (x)} >
k′1 exp{π0T (x)} + k′2 exp{π0T (x)}T (x), or

exp{(π − π0)T (x)} > k′1 + k′2T (x), [k′i = kiC(π0)/C(π)]. (5.37)

For a given pair t1 < t2, one may find k′1, k
′
2 > 0 such that the function g(t) :=

exp{(π−π0)t} satisfies g(t) = k′1+k′2t for the values t = t1, t = t2 [i.e., t → k′1+k′2t
is the line passing through the points (t1, g(t1)) and (t2, g(t2)).] See Fig. 5.2a.

Then “t < t1 or t > t2” is equivalent to “g(t) > k′1 + k′2t”, and “t1 < t < t2”
means “g(t) < k′1+k′2t”, “t = ti for i = 1 or 2” means “g(t) = k′1+k′2t”. Hence the
test ϕ∗ given by (5.28) may be expressed in the form (5.32) which, by the Gener-
alized N–P Lemma, is uniformly most powerful in the class of all tests ϕ satisfying
(1) Eπ0ϕ(X) ≡ ∫

X ϕ(x)f1(x)dμ(x) = α, (2) αEπ0T (X) ≡ ∫
X ϕ(x)f2(x)dμ(x).

Since (5.30) is equivalent to (5.36), this class of tests is precisely the class of all
tests of H0 : π = π0, H1 : π �= π0 of size α, satisfying (5.30). Since this last
class includes the class of all unbiased tests of size α, the proof of Theorem 5.2 is
complete in the Case A. The Case B: π < π0, is entirely analogous. In this case
one takes k′2 < 0, and Fig. 5.2b applies.
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tt 21
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z = k’+ k’1 2 t

a b

Fig. 5.2 Case A: π > π0 (k′2 > 0). Case B: π < π0 (k′2 < 0)

It remains to show that for any α ∈ (0, 1) there exists a test of the form (5.28)
with t1 < t2, γi (i = 1, 2) satisfying (5.29) and (5.30). The proof in the present
generality is long1 and is omitted. Instead, Examples 5.3–5.5 and a number of Ex-
ercises illustrate the construction of UMPU tests for arbitrary sizes α, 0 < α < 1.
��
Example 5.3. Let X = R

n, f(x | θ) = f(x | π) = (2π)−n/2 exp{− 1
2

∑n
1 (xj −

π)2} = C(π)h(x) exp{π∑n
j=1 xj}, where h(x) = exp{− 1

2

∑n
j=1 x

2
j}. That is, X =

(X1, . . . , Xn), where Xi are i.i.d. Normal N(θ, 1) ≡ N(π, 1). For a given π0 ∈ R,
we will construct the UMPU test of size α for

H0 : θ = 0, H1 : θ �= 0. (5.38)

By Theorem 5.2, the desired test is of the form

ϕ∗(X) =

{
1 if T ≡∑n

1 Xj < t1 or > t2
0 if t1 ≤ T ≤ t2,

(5.39)

where
P0(t1 ≤ T ≤ t2) = 1− α, (5.40)

and
E0ϕ

∗(X)T = αE0T = 0. (5.41)

Now (5.40) is equivalent to

P0

(

c1 ≤ T√
n
≤ c2

)

= 1− α
(
ci =

ti√
n
, i = 1, 2

)
, (5.42)

and (5.41) is equivalent to E0(1 − ϕ∗(X))T = 0, or E0(1 − ϕ∗(X)) T√
n

= 0, or,

noting that T√
n
is N(0, 1) under P0,

∫ c2

c1

zϕ(z)dz = 0
(
z = t√

n

)
. (5.43)

Since zϕ(z) is an odd function, the last condition implies c1 = −c2 (c2 > 0).
Then (5.42) fixes c2 = Φ−1

(
1− α

2

)
, where Φ(x) is the cumulative distribution

function of the standard Normal distribution. Hence the UMPU test of size α is
given by

Reject H0 iff

∣
∣
∣
∣
∣

∑n
j=1 Xj√
n

∣
∣
∣
∣
∣
> Φ−1

(
1− α

2

)
= z1−α

2
, say. (5.44)

1 See Ferguson (1967, pp. 215–221).
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Example 5.4. Let X1, X2, . . . , Xn be i.i.d. gamma G (θ, β), with β > 0 known, i.e.,
with density (w.r.t. Lebesgue measure on (0,∞)) given by

f(x | θ) = 1

Γ (β)θβ
e−x/θxβ−1, 0 < x < ∞.

The (joint) density of X = (X1, . . . , Xn) (w.r.t. Lebesgue measure on (0,∞)n =
X ) is

f(x | θ) =
(

1

Γ (β)θβ

)n

e−
1
θ

∑n
j=1 xj

n∏

j=1

xβ−1
j

= C(θ)h(x) exp{πT } (
π = − 1

θ , T (x) =
∑n

1 xj
)

with the natural parameter π = − 1
θ , and the complete sufficient statistic T =∑n

j=1Xj (for the one-parameter exponential family of probability measures {Pπ :

π = − 1
θ ∈ (−∞, 0) = Π}). By Theorem 5.2, the UMPU test of size α for

H0 : θ = 1 i.e., π = −1, H1 : θ �= 1 (5.45)

is given by

ϕ∗(X) =

{
1 if T < t1 or T > t2,
0 if t1 ≤ T ≤ t2,

where, using the fact that, under P0, T has the gamma distribution G (1, nβ) with
density

g(t) =
1

Γ (nβ)
e−ttnβ−1, 0 < t < ∞, (5.46)

one has
∫ t2

t1

g(t)dt = 1− α,

∫ t2

t1

tg(t)dt = (1− α)E0T = (1− α)(nβ). (5.47)

The second integral above is

(1− α)nβ =

∫ t2

t1

1

Γ (nβ)
tnβd(−e−t)

=
1

Γ (nβ)

{
tnβ1 e−t1 − tnβ2 e−t2

}
+

nβ

Γ (nβ)

∫ t2

t1

tnβ−1e−tdt

=
1

Γ (nβ)

{
tnβ1 e−t1 − tnβ2 e−t2

}
+ nβ(1 − α),

that is, one has tnβ1 e−t1 − tnβ2 e−t2 = 0, which may be expressed as

(
t2
t1

)nβ

= et2−t1 . (5.48)

Thus t1 < t2 are determined by the size restriction (or, the first integral in (5.47)
and (5.48)), usually by trial and error, using interpolation and a table of gamma
probabilities.

Example 5.5. Let Xj ’s (1 ≤ j ≤ n) be i.i.d. N(0, θ), θ ∈ Θ = (0,∞). Then the
(joint) density of X = (X1, . . . , Xn) (w.r.t. Lebesgue measure on R

n) is



5.5 UMP Unbiased Tests in the Presence of Nuisance Parameters 79

f(x | θ) = (2πθ)−n/2 exp

⎧
⎨

⎩
− 1

2θ

n∑

j=1

x2j

⎫
⎬

⎭
,

which is the density of a one-parameter exponential family with natural parameter
π = − 1

θ ∈ Π = (−∞, 0), and a complete sufficient statistic T =
∑n

j=1X
2
j /2. The

distribution of T is gamma G (θ, n/2) (See the Appendix on Standard Distribu-
tions) with density (w.r.t. Lebesgue measure on (0,∞)) given by

g(t) =
1

Γ
(
n
2

)
θn/2

e−t/θtn/2−1, 0 < t < ∞, (5.49)

constituting a one-parameter exponential family, the same as in Example 5.4, with
β = 1/2. Hence the UMPU test for H0 : θ = 1, H1 : θ �= 1, is given by

Reject H0 iff

∑n
1 X

2
j

2
< t1 or > t2, (5.50)

where t1 and t2 are determined by the first (size) condition in (5.47), and (5.48)
with β = 1

2 .

Note that statistical tables are more readily available for the chi-square distri-
butions Chi(n) = G (2, n/2) than for general gamma distributions. Hence the test
is generally expressed in terms of the chi-square random variable U =

∑n
j=1 X

2
j

with n degrees of freedom, so that (5.50) becomes

Reject H0 iff: U < u1 or > u2, (5.51)

where ui = 2ti (i = 1, 2). That is,

P (u1 ≤ U ≤ u2) = 1− α,

(
u2

u1

)n
2

= e
u2
2 −u1

2 . (5.52)

5.5 UMP Unbiased Tests in the Presence of Nuisance
Parameters

Implicitly or explicitly, all optimal statistical procedures so far have been shown
to be based on sufficient statistics. Since their considerations are particularly im-
portant in this section, we begin with a simple affirmation that it is enough to
restrict attention to functions of sufficient statistics.

Proposition 5.1. Let T = t(X) be a sufficient statistic for {Pθ : θ ∈ Θ}. Given a
test ϕ = ϕ(X) for H0 : θ ∈ Θ0, H1 : θ ∈ Θ1 = Θ\Θ0, there exists a test ψ = ψ(T )
which has the same performance as ϕ, in the sense Eθψ(T ) = Eθϕ(X) ∀ θ ∈ Θ.

Proof. Let ψ(T ) = Eθ(ϕ(X) | T ). Then ψ does not depend on θ and is (hence)
a statistic, 0 ≤ ψ(T ) ≤ 1 (almost surely (Pθ) ∀ θ), and it satisfies Eθψ(T ) =
Eθ[Eθ(ϕ(X) | T )] = Eθϕ(X) ∀ θ ∈ Θ. ��

Given a parameter set Θ which is a metric space, and nonempty subsets Θ0,
Θ1 = Θ\Θ0, let ΘB be the boundary of Θ0 (or, of Θ1), i.e., ΘB = Θ0 ∩Θ1.



80 5 Testing Hypotheses

Proposition 5.2. If the power function θ → Eθϕ(X) of a test is continuous on
Θ, then every unbiased test ϕ of size α has the property

Eθϕ(X) = α ∀ θ ∈ ΘB. (5.53)

Proof. Let θ ∈ ΘB. Then ∃ sequences {θ(i)n : n = 1, 2, . . . } ⊂ Θi (i = 0, 1) such

that θ
(i)
n → θ as n → ∞ (i = 1, 2). If i = 0, then the size restriction of ϕ implies

E
θ
(0)
n
ϕ(X) ≤ α ∀n, so that, by continuity of the power function, Eθϕ(X) ≤ α.

Similarly, unbiasedness of ϕ implies E
θ
(1)
n
ϕ(X) ≥ α ∀n, and therefore Eθϕ(X) ≥ α.

��
Definition 5.4. A test ϕ satisfying (5.53) is called α-similar.

Proposition 5.3. Suppose the power function θ → Eθϕ(X) is continuous on Θ
for all tests ϕ. If ϕ∗ is UMP in the class of all α-similar tests, and if ϕ∗ is of
size α, then ϕ∗ is UMP in the class of all unbiased tests of size α of H0 : θ ∈ Θ0,
H1 : θ ∈ Θ1.

Proof. The test ϕα(x) = α ∀ x is α-similar. Therefore, Eθϕ
∗(X) ≥ Eθϕα(X) =

α ∀ θ ∈ Θ1. Thus ϕ
∗ is unbiased (and of size α, by assumption). On the other hand,

by Proposition 5.2, every unbiased test of size α is α-similar. Since ϕ∗ is UMP in
the (bigger) class of all α-similar tests, ϕ∗ is UMP in the class of all unbiased tests
of size α. ��

Consider now the problem of testing

H0 : θ1 ≤ θ01, H1 : θ1 > θ01, (5.54)

where θ1 is the first coordinate of the parameter θ = (θ1, θ2, . . . , θk), parametrizing
the family of probability measures {Pθ : θ ∈ Θ}, Θ ⊂ R

k. Here Θ0 = {θ ∈ Θ :
θ1 ≤ θ01}, Θ1 = {θ ∈ Θ : θ1 > θ01}, and ΘB = {θ ∈ Θ : θ1 = θ01}. Suppose there
exists a sufficient statistic TB for the family {Pθ : θ ∈ ΘB}. Given any α-similar
test ϕ(X), the random variable

ψ(TB) = Eθ[ϕ(X) | TB] (θ ∈ ΘB) (5.55)

does not involve any unknown parameter and is, therefore, a test, which is α-
similar.

Definition 5.5. An α-similar test ϕ(X) is said to have the Neyman structure if
ψ(TB) ≡ Eθ[ϕ(X) | TB] = α a.s. Pθ ∀ θ ∈ ΘB.

Theorem 5.4. Suppose TB is a complete sufficient statistic for the family {Pθ :
θ ∈ ΘB}. Then every α-similar test has the Neyman structure.

Proof. Let ϕ(X) be α-similar. Then, with ψ(TB) = Eθ[ϕ(x) | TB] (θ ∈ ΘB), one
has Eθ(ψ(TB)−α) = 0 ∀ θ ∈ ΘB . By the hypothesis of completeness, Pθ(ψ(TB) =
α) = 1 ∀ θ ∈ ΘB . ��
Remark 5.5. Note that the proof only required that the sufficient statistic T (for
{Pθ : θ ∈ ΘB}) be boundedly complete, i.e., if for a bounded measurable function g,
Eθg(TB) = 0 ∀ θ ∈ ΘB , then Pθ(g(TB) = 0) = 1 ∀ θ ∈ ΘB.
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5.5.1 UMPU Tests in k-Parameter Exponential Families

For the problem of testing (5.54) in the case of a k-parameter exponential fam-
ily with a complete sufficient statistic T = (T1, T2, . . . , Tk) with density (w.r.t.
Lebesgue measure on an open subset T of Rk)

gT (t | θ) = C(θ)h(t) exp

{
k∑

i=1

θiti

}

, t ∈ T ⊂ R
k, (h(t) > 0 ∀ t ∈ T ), (5.56)

with natural parameter θ = π ∈ Θ = Π ⊂ R
k, the (marginal) density of

(T2, . . . , Tk) is

g̃(t2, . . . , tk | θ) = C(θ) exp

{
k∑

i=2

θiti

}∫

R

h(t1, t2, . . . , tk)e
θ1t1dt1

= C(θ)h1(t2, . . . , tk, θ1) exp

{
k∑

i=2

θiti

}

, (5.57)

(t2, . . . , tk) ∈ T̃ = {(t2, . . . , tk) :h(t1, t2, . . . , tk) > 0 for some t1} .

Dividing gT by g̃ we obtain the conditional density of T1, given T2 = t2, . . . , Tk =
tk, as

g1(t1 | t2, . . . , tk; θ1) = C1(θ1; t2, . . . , tk)h(t1, t2, . . . , tk)e
θ1t1 ,

t1 ∈ T1(t2, . . . , tk) = {t1 : (t1, t2, . . . , tk) ∈ T }, (5.58)

which is a one-parameter exponential family on T1(t2, . . . , tk). One may consider
the problem of testing (5.54) for this one-parameter exponential family (condition-
ally given T2 = t2, . . . , Tk = tk). For this family a UMP test of size α is of the
form

ϕ∗
1(T1 | T2 = t2, . . . , Tk = tk) =

{
1 if T1 > t1(t2, . . . , tk),
0 if T1 ≤ t1(t2, . . . , tk),

(5.59)

where t1(t2, . . . , tk) is determined by

∫ ∞

t1(t2,...,tk)

g1(t1 | t2, . . . , tk; θ01)dt1 = α. (5.60)

Not that TB = (T2, . . . , Tk) is a complete sufficient statistic for the (k − 1)-
parameter exponential family {Pθ : θ ∈ ΘB} with density [see (5.57)]

g3(t2, . . . , tk | θ2, . . . , θk) ≡ g̃(t2, . . . , tk | θ01, θ2, . . . , θk)

= C(θ01 , θ2, . . . , θk)h1(t2, . . . , tk, θ
0
1) exp

{
k∑

i=2

θiti

}

.

(5.61)

Hence, by Theorem 5.4, every α-similar test for (5.54) has the Neyman structure.
That is, such a test ϕ(T ) = ϕ(T1, T2, . . . , Tk) satisfies

ψ(TB) ≡ Eθ(ϕ(T ) | T2, . . . , Tk) = α a.s. Pθ ∀ θ ∈ ΘB . (5.62)
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But among all such tests ϕ(T ), ϕ∗(T ) ≡ ϕ∗
1(T1 | T2, . . . , Tk) has the maximum

conditional power:

Eθ(ϕ
∗(T ) | T2, . . . , Tk) ≥ Eθ(ϕ(T ) | T2, . . . , Tk) (a.s. (Pθ)) ∀ θ ∈ Θ1,

for all unbiased ϕ = ϕ(T ) of size α. Taking expectation (Eθ) on both sides, one
concludes that ϕ∗ is UMP unbiased among all unbiased tests of size α.

Consider now a k-parameter exponential family on a countable observation
space, and let (5.56) denote the probability mass function (pmf) of the complete
sufficient statistic T = (T1, T2, . . . , Tk), with values in a (countable) set T . Replac-
ing integrations by summations in (5.57), one arrives at (5.58) as the pmf of the
conditional distribution of T1, given T2 = t2, . . . , Tk = tk, which is a one-parameter
exponential family. Reasoning as above, the UMPU test of size α for (5.54) is
given by

ϕ∗
1(T1 | T2 = t2, . . . , Tk = tk) =

⎧
⎨

⎩

1 if T1 > t1(t2, . . . , tk),
γ if T1 = t1(t2, . . . , tk),
0 if T1 < t1(t2, . . . , tk),

(5.63)

where t1(t2, . . . , tk) and γ, 0 ≤ γ < 1, are determined by

∑

t1>t1(t2,...,tk)

g(t1 | t2, . . . , tk; θ01) + γg(t1(t2, . . . , tk) | t2, . . . , tk; θ01) = α. (5.64)

Example 5.6. Let X1, . . . , Xn be i.i.d. N(μ, σ2), n ≥ 2, with joint density

(2πσ2)−n/2 exp

⎧
⎨

⎩
−

n∑

j=1

(xj − μ)2

2σ2

⎫
⎬

⎭
= C(θ)eθ1T1(x)+θ2T2(x),

θ1 =
μ

σ2
, θ2 = − 1

2σ2
,

T1(x) =

n∑

j=1

xj , T2(x) =

n∑

j=1

x2j , C(θ) = (2πσ2)−n/2enμ
2/2σ2

. (5.65)

Here the natural parameter is θ = (θ1, θ2) ∈ R× (−∞, 0) = Θ. We wish to test

H0 : μ ≤ 0, H1 : μ > 0, or

H0 : θ1 ≤ 0, H1 : θ1 > 0. (5.66)

By the preceding theory, the UMP unbiased test of size α ∈ (0, 1) is given by

Reject H0 iff
n∑

1

Xj > η1(T2), (5.67)

where η1(t2) is determined for each value T2 = t2 so that

Pθ

(
n∑

1

Xj > η1(t2) | T2 = t2

)

= α a.s. (Pθ) (5.68)

∀ θ ∈ ΘB = {(0, θ2) : θ2 < 0} = {(0, σ2) : σ2 > 0}.
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Since the conditional distribution in (5.68) (w.r.t. Pθ, θ ∈ ΘB) depends only on
θ01 = 0, and not on θ2 (or σ2), one can find t1 (t2), for every t2 > 0, so that (5.68)
holds. However, to use standard statistical tables express the test (5.67) as

Reject H0 iff

√
n X

√[
1

n−1

(∑
X2

j − nX
2
)] ≡

√
nX

s
> c1(T2), (5.69)

where c1(t2) is determined, for T2 = t2, to satisfy

Pθ

(√
n X

s
> c1(t2) | T2 = t2

)

= α a.s. Pθ ∀ θ = (0, θ2). (5.70)

Note that, for each t2, y ≡ ∑n
1 xj →

√
n x
s =

√
n−1
n

y
(t2−y2/n)1/2

= h(y), say, is a

strictly increasing function of y (for y2/n < t2), since the derivative of the function
h(y) w.r.t. y is positive. Hence, one can find a unique η1(t2) such that {y > η1(t2)}
is equivalent to {h(y) > c1(t2)}.

A second important fact about the t-statistic
√
nX
s is that, under H0, i.e., w.r.t.

Pθ, θ ∈ ΘB , its distribution does not depend on θ ∈ ΘB . From Basu’s Theorem
below, it then follows that

√
nX/s is, under H0, independent of T2. Hence (5.70)

becomes

P(0,σ2)

(√
n X

s
> c1(t2)

)

= α,

so that c1(t2) does not depend on t2 and is obtained from the standard t-table
(with n− 1 d.f.). Then, finally, the UMP test among all unbiased tests of size α is
given by

Reject H0 iff

√
n X

s
> t1−α(n− 1), (5.71)

where t1−α(n− 1) is the (1− α)th quantile of the t-distribution with n− 1 d.f.

Example 5.7. Let X1, X2, . . . , Xn be i.i.d. N(μ, σ2), n ≥ 2, (μ, σ2) ∈ R × (0,∞).
We wish to test, for some given σ2

0 > 0,

H0 : σ2 ≤ σ2
0 , H1 : σ2 > σ2

0 . (5.72)

As in Example 5.6, the UMP unbiased test of size α is given by

Reject H0 iff

n∑

1

X2
j > η2(T1),

where η2(t1) is determined by

P(μ,σ2
0)

(
n∑

1

X2
j > η2(t1) | T1 = t1

)

= α ∀μ ∈ R (i.e., ∀ θ ∈ ΘB).
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Since y =
∑n

1 x
2
j →∑n

1 (xj −x)2/σ2
0 = [

∑n
1 x

2
j −nx2]/σ2

0 = (y− t21/n)σ
2
0 is strictly

increasing (for y > 0, T1 = t1), this test reduces to

Reject H0 iff
n∑

1

(Xj −X)2/σ2
0 > c1(t1), (5.73)

where c1(t1) is determined so that

P(μ,σ2
0)

(
n∑

1

(Xj −X)2/σ2
0 > c1(t1) | T1 = t1

)

= α ∀μ ∈ R. (5.74)

But, as is well known, T1 = nX and
∑n

1 (Xj − X)2/σ2
0 are independent random

variables (∀ (μ, σ2
0)), the latter having a chi-square distribution with n− 1 degrees

of freedom (See Proposition 2.1). Hence c1(t1) does not depend on t1 and is given
by χ2

1−α(n − 1)—the (1 − α)th quantile of the chi-square distribution with n− 1
d.f.:

Reject H0 iff
n∑

1

(Xj −X)2/σ2
0 > χ2

1−α(n− 1). (5.75)

5.6 Basu’s Theorem

In this section we use a useful result of Basu (1959) to compute certain UMPU
tests.

Theorem 5.5 (Basu’s Theorem). Let X have distribution Pθ, θ ∈ Θ̃. Suppose

T is a (boundedly) complete sufficient statistic for {Pθ : θ ∈ Θ̃}. If Y is a statistic

whose distribution does not depend on θ ∈ Θ̃ (i.e., it is the same for all θ ∈ Θ̃),

then T and Y are independent under Pθ ∀ θ ∈ Θ̃.

Proof. We need to show that for every pair of bounded real-valued measurable
statistics g(T ) and h(Y ), depending only on T and Y , respectively, one has

Eθ(g(T )h(Y )) = Eθ(g(T )) · Eθ(h(Y )), ∀ θ ∈ Θ̃. (5.76)

Since c ≡ Eθh(Y ) does not depend on θ, and neither does V (T ) = Eθ(h(Y ) | T ),
we have Eθ(V (T ) − c) = 0 ∀ θ ∈ Θ̃, so that, by (bounded) completeness of T ,

V (T ) = c a.s. (Pθ) ∀ θ ∈ Θ̃. Hence

Eθ(g(T )(h(Y )− c)) = Eθ[g(T )Eθ(h(Y )− c | T )]
= Eθ[g(T )(V (T )− c)] = 0 ∀ θ ∈ Θ̃.

Therefore, (5.76) holds. ��
We now apply the theory of this section to the so-called two-sample problems.

Example 5.8. Let X1, . . . , Xm, and Y1, Y2, . . . , Yn be independent samples from
N(μ1, σ

2
0) and N(μ2, σ

2
0), respectively, where σ2

0 > 0 is given, and μ1, μ2 are
unknown means. The (joint) density of these m+ n observations is
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f(x,y | μ1, μ2) = (2πσ2
0)

−(m+n)/2 exp

{

− 1

2σ2
0

m∑

1

x2j +
mμ1x

σ2
0

− mμ2
1

2σ2
0

}

· exp
{

− 1

2σ2
0

n∑

1

y2j +
nμ2y

σ2
0

− nμ2
2

2σ2
0

}

= C(μ1, μ2)h(x,y)e
(μ1/σ

2
0)

∑m
1 xj+(μ2/σ

2
0)

∑n
1 yj

= C(μ1, μ2)h(x,y) exp

{(
μ1

σ2
0

−μ2

σ2
0

) m∑

1

xj+
μ2

σ2
0

(
m∑

1

xj+

n∑

1

yj

)}

= C̃(θ1, θ2)h(x,y) exp{θ1T1(x) + θ2T2(x,y)}, (5.77)

where θ1 = (μ1−μ2)/σ
2
0 , θ2 = μ2/σ

2
0 , T1(x) =

∑m
1 xj , T2(x,y) =

∑m
1 xj+

∑n
1 yj .

Thus {Pθ : θ ∈ Θ}, with Θ = R
2, is a two-parameter exponential family, with

natural parameter θ = (θ1, θ2). We wish to test

H0 : μ1 ≤ μ2, H1 : μ1 > μ2, (5.78)

which may be cast as
H0 : θ1 ≤ 0, H1 : θ1 > 0.

By the preceding theory, a UMP unbiased test of size α is given by

Reject H0 iff T1 > η1(T2), (5.79)

where η1(t2) is determined, for every value t2 of T2, such that

Pθ(T1 > η1(t2) | T2 = t2) = α ∀ θ ∈ ΘB = {(0, θ2) : θ2 ∈ R}.
Since X − Y =

(
1
m + 1

n

)
mX − 1

n (mX + nY ) =
(

1
m + 1

n

)
T1 − 1

n T2, which is
a strictly increasing function of T1, for any given value of T2, the test may be
expressed as

Reject H0 iff
X − Y

σ0

√
1
n + 1

m

> c(T2), (5.80)

where

Pθ

⎛

⎝ X − Y

σ0

√
1
m + 1

n

> c(T2) | T2

⎞

⎠ = α ∀ θ = (0, θ2) ∈ ΘB.

But the Pθ-distribution of X−Y

σ0

√
1
m+ 1

n

is N(0, 1), which does not involve θ, ∀ θ ∈ ΘB .

Hence, by Basu’s Theorem (or, checking that this Normal random variable and

the Normal random variable T2 are uncorrelated ∀ θ), X−Y

σ0

√
1
m+ 1

n

is independent of

T2. Therefore, c(T2) = z1−α = Φ−1(1−α), and the UMP unbiased test is given by

Reject H0 iff
X − Y

σ0

√
1
m + 1

n

> z1−α. (5.81)

Example 5.9. Let X1, X2, . . . , Xm and Y1, Y2, . . . , Yn be independent random sam-
ples from N(μ1, σ

2) and N(μ2, σ
2), respectively, where μ1, μ2, σ

2 are all unknown.
We wish to find the UMP unbiased test of size α for

H0 : μ1 ≤ μ2, H1 : μ1 > μ2. (5.82)
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The joint density of the observations maybe expressed as [see (5.77)]

f(x,μ | μ1, μ2, σ
2) = C(μ1, μ2, σ

2) exp{θ1T1(x) + θ2T2(x) + θ3T3(x)}, (5.83)

where θ1 = μ1

σ2 − μ2

σ2 , θ2 = μ2

σ2 , θ3 = − 1
2σ2 , and T1(x) =

∑m
1 xj , T2(x) =

∑m
1 xj +∑n

1 yj, T3(x) =
∑m

1 x2j +
∑n

1 y
2
j . θ = (θ1, θ2, θ3) is the natural parameter, θ ∈

Θ = R × R × (−∞, 0), and (T1, T2, T3) is a complete sufficient statistic for {Pθ :
θ ∈ Θ}, while (T2, T3) is a complete sufficient statistic for {Pθ : θ ∈ ΘB} with
ΘB = {(θ1, θ2, θ3) ∈ Θ : θ1 = 0}. Hence the UMP unbiased test of size α for (5.82)
(i.e., for H0 : θ1 ≤ 0, H1 : θ1 > 0) is given by

Reject H0 iff T1 > η1(T2, T3), (5.84)

where η1(T2, T3) is determined by

Pθ(T1 > η1(T2, T3) | T2, T3) = α ∀ θ ∈ ΘB. (5.85)

We will show that this is equivalent to the classical test which replaces the σ0
in (5.80) (which is here unknown) by its pooled estimate

sp =

√
∑

(Xj −X)2 +
∑

(Yj − Y )2

m+ n− 2
=

√
∑

X2
j − (

∑
Xj)2

m +
∑

Y 2
j − (

∑
Yj)2

n

m+ n− 2

=

√

T3 − T 2
1

m − (T2−T1)2

n

m+ n− 2
. (5.86)

We have shown in Example 5.8 that (X − Y )/
√

1
m + 1

n is an increasing function

of T1, for any given T2. It is easy to check, using (5.86), that the derivative of s2p
w.r.t. T1 (for fixed T2,T3) is a decreasing function of T1. Therefore,

T1 −→ τ =
X − Y

sp

√
1
m + 1

n

is an increasing function of T1, for given T2 and T3.

Hence the test (5.84) is equivalent to

Reject H0 iff τ =
X − Y

sp

√
1
m + 1

n

> c(T2, T3)

where c(T2, T3) is determined from

Pθ(τ > c(T2, T3) | T2, T3) = α ∀ θ ∈ ΘB. (5.87)

But for θ ∈ ΘB (i.e., for μ1 − μ2 = 0), the distribution of τ is that of a Student’s
t with m+ n− 2 d.f.,2 and is independent of θ ∈ ΘB . Hence, by Basu’s Theorem,
τ is independent of (T2, T3) under Pθ, for all θ ∈ ΘB . Thus c(T2, T3) does not

2 Note. Since (X−Y )/σ
√

1
m

+ 1
n

is N(0, 1) and independent of the chi-square random variables

U =
∑

(Xj −X)2/σ2 +
∑

(Yi − Y )2/σ2 (having d.f. m− 1 + n− 2 = m+ n− 2), by definition,

[(X − Y )/σ
√

1
m

− 1
n
]/
√

U/(m + n− 2) has Student’s distribution with m+ n− 2 d.f.
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depend on (T2, T3) and is equal to t1−α(m + n− 2)—the 1 − αth quantile of the
t-distribution with m + n − 2 d.f. The UMP unbiased test of size α for (5.82) is
given by

Reject H0 iff
X − Y

sp

√
1
m + 1

n

> t1−α(m+ n− 2). (5.88)

Remark 5.6. There does not exist a UMP unbiased test of size α ∈ (0, 1) for
H0 : μ1 ≤ μ2 against H1 : μ1 > μ2 if the unknown variance σ2

1 of Xi’s is not equal
to the unknown variance σ2

2 of Yj ’s, in Example 5.9. The problem of obtaining a
“good” test in this case is known as the Behrens-Fisher problem.

Example 5.10. Let X1, . . . , Xm and Y1, . . . , Yn (m ≥ 2, n ≥ 2) be independent
random samples from N(μ1, σ

2
1) and N(μ2, σ

2
2) with all the parameters μi ∈ R (i =

1, 2), σ2
i > 0 (i = 1, 2) unknown. We wish to test, at a level of significance α ∈

(0, 1),
H0 : σ2

1 ≤ σ2
2 against H1 : σ2

1 > σ2
2 . (5.89)

The (joint) density of the observation vector (X1, X2, . . . , Xm, Y1, Y2, . . . , Yn) may
be expressed as [see (5.83)]

c(μ1, μ2, σ
2
1 , σ

2
2) exp

{

− 1

2σ2
1

m∑

1

x2i −
1

2σ2
2

n∑

1

y2j +
μ1

σ2
1

(∑
xi

)
+

μ2

σ2
2

(∑
yj

)
}

= c1(θ1, θ2, θ3, θ4) exp{θ1T1(x) + θ2T2(x,y) + θ3T3(x) + θ4T4(y)}, (5.90)

where

θ2 = − 1

2σ2
2

, T2(x,y) =
∑

x2i +
∑

y2j , θ1 =
1

2σ2
2

(

1−σ2
2

σ2
1

)

, T1(x) =
∑

x2i ,

θ3 =
μ1

σ2
1

, T3(x) =
∑

xi, θ4 =
μ2

σ2
2

, T4(y) =
∑

yj . (5.91)

Then (5.89) may be expressed as

H0 : θ1 ≤ 0, H1 : θ1 > 0. (5.92)

Hence the UMP unbiased test is of the form

Reject H0 : iff T1 > η1(T2, T3, T4), (5.93)

where η(t2, t3, t4) satisfies

Pθ(T1 > η1(t2, t3, t4) | T2 = t2, T3 = t3, T4 = t4) = α ∀ θ ∈ ΘB,

ΘB = {(0, θ2, θ3, θ4) : θ2 < 0, θ3 ∈ R, θ4 ∈ R}. (5.94)

This probability does not depend on θ ∈ ΘB . Consider the statistic

F =

∑
(Xi −X)2/(m− 1)

∑
(Yj − Y )2/(n− 1)

=

(
T1 − T 2

3

m

)
/(m− 1)

(
T2 − T1 − T 2

4

n

)
/(n− 1)

, (5.95)

which is easily seen to be a strictly increasing function of T1, for every set of given
values of T2, T3, T4 that may occur a.s. (Pθ), for all θ ∈ ΘB . Hence (5.93) is
equivalent to

Reject H0 iff F > η2(T2, T3, T4),
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for an appropriate η2. But

F =

∑
(Xi −X)2/σ2

1∑
(Yj − Y )2/σ2

1

· n− 1

m− 1
=

U

V
· n− 1

m− 1
, (5.96)

where, ∀ θ ∈ ΘB , U and V are two independent chi-square random variables.
Hence the distribution of F does not depend on θ ∈ ΘB. It follows from Basu’s
Theorem that F is independent of T2, T3, T4, under Pθ, θ ∈ ΘB. Therefore, the
UMP unbiased test is given by

Reject H0 iff F > F1−α, (5.97)

where F1−α is the 1−αth quantile of the so-called F -distribution with d.f. (m− 1,
n− 1). The distribution of F is computed in Appendix A, Example A.VIII.

Example 5.11 (Match Pair Experiments). In order to test the effectiveness of an
exercise regimen in reducing systolic blood pressures of people with moderately
elevated blood pressure belonging to a certain age group, a random sample of
n individuals is chosen from this population. For each individual the (systolic)
blood pressure x before the start of the exercise regimen is recorded, as well as
the blood pressure y after the completion of the exercise regimen. The model
assumed is that (Xi, Yi), i = 1, . . . , n, are i.i.d. Normal N((μx, μy)

t
∑

) where
(μx, μy) ∈ R

2, and
∑

is a positive definite covariance matrix with σ2
x = var(Xi),

σ2
y = var(Yi), σx,y = covar(Xi, Yi) = pσxσy. All the parameters are unknown.

One wishes to test H0 : μx = μy against H1 : μx > μy. Just as in the Behrens-
Fisher problem, there is no uniformly most powerful unbiased (UMPU) test in
this generality. However, if one assumes that σ2

x = σ2
y, the UMPU test of size α

exists by the theory of Sects. 5.5, 5.6, and it is given by (Exercise 5.14(a)): Reject
H0 iff d > tn−1(1 − α)(sd/

√
n) where, writing di = Xi − Yi, d =

∑
1≤i≤n di/n,

s2d =
∑

1≤i≤n(di − d)2/(n − 1), and tn−1(1 − α) is the (1 − α)-th quantile of the
t-distribution with n− 1 degrees of freedom.

Consider now an alternative design where a random sample of size n is
chosen from the target population, and their blood pressures Xi are recorded
(i = 1, . . . , n); this is the so-called control group. Another random sample of n
individuals is drawn independently from this population and subjected to the ex-
ercise regimen. This is the treatment group. Let Yi (i = 1, . . . , n) be the blood
pressures of these individuals measured after the exercise regimen is completed.
Suppose Xi’s are N(μx, σ

2
x) and Yi’s are N(μy, σ

2
y), with μx, σ

2
x, μy, σ

2
y , the same

as in the preceding paragraph. Assume that σ2
x = σ2

y, and consider the UMPU test
provided by Example 5.8 for H0 : μx = μy againstH1 : μx > μy. Give an argument
to show that the match pair design is more efficient than this independent samples
design if p > 0 and n is sufficiently large (Exercise 5.14(b)).

5.7 Duality Between Tests and Confidence Regions

Given a family of non-randomized tests {ϕθ0 : θ0 ∈ Θ} for testing H0 : θ = θ0
against H1 : θ ∈ Θθ0

1 ⊂ Θ\{θ0}, there exists a ‘confidence region’ for the unknown
parameter θ given by

S(x) := {θ0 ∈ Θ : ϕθ0(x) = 0} , x ∈ X . (5.98)
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That is, S(x) is the set of values of θ = θ0 which are accepted by the test when
presented as the null hypothesis H0 : θ = θ0. If the family of tests is of size α, then

Pθ0 (θ0 ∈ S(X)) = Pθ0 (ϕθ0(X) = 0) = 1− α ∀ θ0 ∈ Θ. (5.99)

One expresses this as: ‘S(X) is a confidence region for θ of confidence level 1−α’.
Conversely, suppose one is given a confidence region S of confidence level 1 − α,
that is, x → S(x) is a map on X into the class of subsets of Θ such that

Pθ0(θ0 ∈ S(X)) = 1− α ∀ θ0 ∈ Θ. (5.100)

Then the family of tests ϕθ0 given by

ϕθ0(x) =

{
1 if θ0 �∈ S(x), x ∈ X , θ0 ∈ Θ,
0 if θ0 ∈ S(x),

(5.101)

is of size α.
We now consider the more general situation of the estimation of, and confidence

regions for, functions f(θ) of θ.

Definition 5.6. Let {Pθ : θ ∈ Θ} be a family of distributions on the observation
space X . Let f(θ) be a function on Θ into some space Γ . Suppose x → S(x) is
a map on X into the class of subsets of Γ such that, (i) for each θ ∈ Θ, the set
{x : f(θ) ∈ S(x)} is a measurable subset of X , and

(ii) Pθ({x : f(θ) ∈ S(x)) = 1− α ∀ θ ∈ Θ.

Then S(·) (or, S(X)), where X has distribution Pθ, θ being the unknown ‘true’
parameter value) is called a confidence region for f(θ) having a confidence level
1− α.

Remark 5.7. To avoid confusion, X may be taken to be the identity map x → x
on X .

Notation Let H(f(θ0)) be the space of alternatives against H0 : f(θ) = f(θ0).

Definition 5.7. A confidence region S∗(·) of confidence level 1 − α is said to be
uniformly most accurate (UMA) of level 1− α, if, ∀ θ0 ∈ Θ and ∀ θ ∈ H(f(θ0)),

Pθ({x ∈ X : f(θ0) ∈ S∗(x)}) ≤ Pθ({x ∈ X ; f(θ0) ∈ S(x)}), (5.102)

holds for every confidence region S(·) for f(θ) of confidence level 1−α. A confidence
region S(·) for f(θ) is said to be unbiased of level 1− α if, ∀ θ0 ∈ Θ,

Pθ({x ∈ X : f(θ0) ∈ S(x)}) ≤ 1− α ∀ θ ∈ H(f(θ0)). (5.103)

A confidence region S∗(·) is said to be UMA unbiased of level 1− α, if among all
unbiased confidence regions S(·) of level 1−α, it is the most accurate, i.e., (5.102)
holds.
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Theorem 5.6 (Duality Between Confidence Regions and Tests).

(a) Given a family of non-randomized tests {ϕθ : θ ∈ Θ} of size α, where ϕθ0 is
a test (of size α) for H0 : f(θ) = f(θ0) (θ0 ∈ Θ),

S(x) := {f(θ) : θ ∈ Θ, ϕθ(x) = 0}, x ∈ X , (5.104)

is a confidence region for f(θ) of confidence level 1− α.
(b) Conversely, given a confidence region S(·) for f(θ) of confidence level 1 − α,

consider the family of tests {ϕθ : θ ∈ Θ} defined by

ϕθ(x) :=

{
1 if f(θ) �∈ S(x),
0 if f(θ) ∈ S(x),

(x ∈ X ). (5.105)

Then, for each θ0 ∈ Θ, ϕθ0 is a test of size α for H0 : f(θ) = f(θ0).
(c) If a family of tests {ϕ∗

θ : θ ∈ Θ} is given such that, for each θ0 ∈ Θ, ϕ∗
θ0

is

UMP of size α for testing H0 : f(θ) = f(θ0), against H1 : θ ∈ H(f(θ0)), then
S∗(·) defined by (5.104), with ϕθ replaced by ϕ∗

θ, is UMA of size 1− α.
(d) If ϕ∗

θ0
is UMA unbiased of size α for testing H0 : f(θ) = f(θ0), against

H1 : θ ∈ H(f(θ0)) (∀ θ0 ∈ Θ), then the corresponding S∗(·) is UMA unbiased
of level 1− α.

Proof. (a) By (5.104), we have equality of the events

{x ∈ X : f(θ) ∈ S(x)} = {x ∈ X : ϕθ(x) = 0}, ∀ θ ∈ Θ. (5.106)

Hence

Pθ({x ∈ X : f(θ) ∈ S(x)}) = Pθ({x ∈ X : ϕθ(x) = 0}) = 1− α ∀ θ ∈ Θ.
(5.107)

(b) if S(·) is a confidence region for f(θ) of confidence level 1 − α, then for the
family of tests {ϕθ : θ ∈ Θ} defined by (5.105), again (5.106) holds. Hence
Pθ({x ∈ X : ϕθ(x) = 1}) = 1− Pθ({x ∈ X : ϕθ(x) = 0}) = 1− Pθ({x ∈ X :
f(θ) ∈ S(x)}) = 1− (1 − α) = α (∀ θ ∈ Θ).

(c) Suppose ϕ∗
θ0

is UMP of size α for testing H0 : f(θ) = f(θ0), against H1 :

θ ∈ H(f(θ0)), for every θ0 ∈ Θ. Then if S∗(·) is the corresponding confidence
region for f(θ) and S(·) is any other confidence region of level 1− α for f(θ),
with corresponding family of tests defined by (5.105), then, ∀ θ ∈ H(f(θ0)),

Pθ({x ∈ X : f(θ0) ∈ S∗(x)})
= Pθ({x ∈ X : ϕ∗

θ0(x) = 0}) = 1− Pθ({x : ϕ∗
θ0(x) = 1})

= 1− (Power of the test ϕ∗
θ0 at θ) ≤ 1− (Power of the test ϕθ0 at θ)

= 1− Pθ({x ∈ X : ϕθ0(x) = 1}) = Pθ({x ∈ X : ϕθ0(x) = 0})
= Pθ({x ∈ X : f(θ0) ∈ S(x)}). (5.108)

(d) This follows from (5.108), since the unbiasedness of the family of tests {ϕθ :
θ ∈ Θ} means, Pθ({x ∈ X : ϕθ0(x) = 1}) ≡ (Power of ϕθ0 at θ) ≥ α ∀ θ ∈
H(f(θ0)). Therefore, for S(·) defined by (5.103),
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Pθ({x ∈ X : f(θ0) ∈ S(x)}) = Pθ({x ∈ X : ϕθ0(x) = 0})
= 1− Pθ({x ∈ X : ϕθ0(x) = 1}) ≤ 1− α, ∀ θ ∈ H(f(θ0).

Same is true for S∗(·). ��
Example 5.12. Let X1, . . . , Xn be i.i.d. exponential with p.d.f.

f(x | θ) = e−x/θ

θ
, 0 ≤ x < ∞, θ ∈ (0,∞). (5.109)

The uniformly most powerful test of size α for testing H0 : θ ≤ θ0, H1 : θ >
θ0 is (See Example 5.4, with β = 1; but consider one-sided alternatives; or, see
Exercise 5.2)

ϕ∗
θ0(x) =

{
1 if

∑n
1 xi > θ0c1−α(n),

0 if
∑n

1 xi ≤ θ0c1−α(n),

where c1−α(n) is the (1 − α)th quantile of the gamma distribution G (1, n). The
UMA confidence region S∗(·) for θ of level 1− α is given by

S∗(x) =

{

θ0 > 0 :

n∑

1

xi ≤ θ0c1−α(n)

}

=

{

θ0 : θ0 ≥
∑n

1 xi
c1−α(n)

}

=

[ ∑n
1 xi

c1−α(n)
,∞

)

.

In this example, f(θ) = θ, H(θ0) = Θ\{θ0}.
Example 5.13. Consider Exercise 5.7(c). Here X1, . . . , Xn are i.i.d. N(μ, σ2) (μ ∈
R, σ2 > 0 are unknown). The UMPU test, of size α ∈ (0, 1), for H0 : μ = μ0,

H1 : μ �= μ0 is: ϕ∗(x) = 0 if
∣
∣
∣
√
n (x−μ0)

s

∣
∣
∣ ≤ t1−α

2
(n− 1), and ϕ∗(x) = 1 otherwise.

Hence the UMA unbiased confidence region S∗ of level 1− α is given by S∗(x) ={
μ ∈ R :

∣
∣
∣
√
n (x−μ)

s

∣
∣
∣ ≤ t1−α

2
(n− 1)

}
=

{
μ ∈ R : |x− μ| ≤ t1−α

2
(n− 1) s√

n−1

}
=

[
x− t1−α

2
(n− 1) s√

n
, x+ t1−α

2
(n− 1) s√

n

]
.

If σ2 is known, σ2 = σ2
0 , say, then the UMPU test ϕ∗ of size α for the above

hypotheses is given by ϕ∗(x) = 0 iff
∣
∣
∣
√
n(x−μ)
σ0

∣
∣
∣ ≤ z1−α

2
(See Example 5.3). Hence

the UMA unbiased confidence region (interval) for μ is S∗(x) = [x − z1−α
2

σ0√
n
,

x+ z1−α
2

σ0√
n
].

Note that here f(θ) = θ1, where θ = (θ1, θ2) = (μ, σ2). Here f(θ0) = μ0,
H(f(θ0)) = {(μ, σ2) : μ �= μ0}. Also, unbiasedness of a confidence region S(·) of
level (1− α) here means

Pμ,σ2 ({x : μ0 ∈ S(x)}) ≤ 1− α ∀ μ0 �= μ, σ2 > 0. (5.110)

Example 5.14. (See Example 5.7, and Exercise 5.8(b)). Let X1, . . . , Xn be i.i.d.
N(μ, σ2) with μ ∈ R, σ2 > 0 both unknown. Consider, for each σ2

0 > 0, the
test H0 : σ2 = σ2

0 against H1 : σ2 �= σ2
0 . The UMPU test of size α is given by

ϕ∗(x) = 0 if c1σ
2
0 ≤ (n− 1)s2 ≤ c2σ

2
0 , and ϕ∗(x) = 1 otherwise, where c1 < c2 are

determined by the Eq. (5.179). Hence S∗(x) = {σ2 : c1σ
2 ≤ (n − 1)s2 ≤ c2σ

2} =

{σ2 : c1 ≤ (n−1)s2

σ2 ≤ c2} = {σ2 : 1
c2

≤ σ2

(n−1)s2 ≤ 1
c1
} =

[
(n−1)s2

c2
, (n−1)s2

c1

]
, is the

UMA unbiased confidence region.



92 5 Testing Hypotheses

Remark 5.8. To avoid computation of c1, c2 numerically, one sometimes uses an
equal-tailed test, or confidence region, choosing c1 = χ2

α
2
< c2 = χ2

1−α
2
, where χ2

p

is the pth quantile of the chi-square distribution with n− 1 d.f.

5.8 Invariant Tests, the Two-Sample Problem and Rank
Tests

Consider a testing problem with observation X having distribution Pθ, θ ∈ Θ, and
H0 : θ ∈ Θ0, H1 : θ ∈ Θ1 = Θ\Θ0. Denote by X the observation space in which
X takes values. Assume Pθ1 �= Pθ2 if θ1 �= θ2 (Identifiability).

Let g be a (bi-measurable) transformation on X , i.e., g is a one-to-one map on
X onto X , and g and g−1 are both measurable.

Suppose Y := gX (:= g(X)) has a distribution Pθ′ (in the family {Pθ : θ ∈
Θ}) when X has distribution Pθ. Writing θ′ = gθ in this case, one has a map g
(associated with g) on Θ into Θ. This map is one to one, i.e., if θ1 �= θ2 then
gθ1 �= gθ2 (Exercise 5.15). Assume that this map is also onto Θ:

gΘ = Θ. (5.111)

Assume also that g leaves Θ0 (and, therefore, also Θ1) invariant:

gΘ0 = Θ0, gΘ1 = Θ1. (5.112)

We then say that the statistical testing problem is invariant under g. The reason for
the nomenclature is that the testing problem stated forX is exactly the same when
stated for Y, namely, with the same observation space X , the same parameter
space Θ or family of distributions {Pθ : θ ∈ Θ}, the same null hypothesis H0 : θ ∈
Θ0 and the same alternative hypothesis H1 : θ ∈ Θ1. Therefore, if ϕ is a reasonable
test, one should have

ϕ(x) = ϕ(g−1x) x ∈ X . (5.113)

For, given any x ∈ X , the decision based on X = x (namely, ϕ(x)) should be the
same as that based on Y = x (where Y = gX), i.e., based on x = g−1x. If one
replaces x by gx in (5.113) then one gets

ϕ(gx) = ϕ(x) ∀ x ∈ X . (5.114)

Note that (5.113) and (5.114) are equivalent.
Let now G be a group of transformations with each g ∈ G of the above kind

(The group operations are (1) g → g−1, in the usual sense of the inverse of a
function, and (2) g1g2 = g1(g2), the composition of functions). This also gives rise
to the corresponding group G on the parameter space Θ. Then (5.113), (5.114)
should hold for all g ∈ G for a reasonable test ϕ. In other words, for each x ∈ X ,
ϕ should be constant on the orbit of x,

O(x) := {gx : g ∈ G }. (5.115)

The invariant tests ϕ are therefore functions on the space of orbits. In this sense
the map x → O(x), say, T (x) = O(x), is a maximal invariant,

(i) (Invariance). T (gx) = T (x) ∀ g ∈ G , ∀ x ∈ X ,

(ii) (Maximality). If T (x1) = T (x2), then ∃ g ∈ G such that gx1 = x2. (5.116)
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Since it is not generally convenient to directly use the map x → O(x) on X
onto the space O of orbits, we will consider any suitable (measurable) map T
with the properties (1), (2) in (5.116) as a maximal invariant, e.g., T may be a
continuous map on X onto a subset of an Euclidean space with these properties.
Note that the latter set may be considered a relabeling of the orbit space, and the
map T a renaming of the map x → O(x). After a suitable maximal invariant T is
identified, one may restrict one’s attention to tests which are functions of T (since
all invariant tests are functions of T ).

Example 5.15. Let X = (X1, . . . , Xk)
′ be Normal N(μ, Ik), where μ =

(μ1, . . . , μk)
′ ∈ Θ = R

k, and Ik is the k × k identity matrix. We wish to test
H0 : μ = O. against H1 : μ �= O. Let O be a k × k orthogonal matrix (i.e.,
O′O = Ik), and consider the transformed observation vector Y = OX. Then
Y is N(ν, Ik), ν ∈ R

k = Θ, and H0 and H1 are expressed as ν = o and
ν �= o, respectively. Thus the statistical problem is invariant under all orthogonal
transformations O. Since T (x) = ‖x‖2 is a maximal invariant under orthogonal
O : Rk → R

k, every invariant test here is a function of T = ‖X‖2. Now, under
H0, T has the chi-square distribution with k degrees of freedom and, under H1,
it has the non-central chi-square distribution with the non-centrality parameter
Δ =

∑k
i=1 μ

2
i = ‖μ‖2, with respective densities t0(t), f1(t;Δ) (with respect to

Lebesgue measure on [0,∞)). From Appendix C it follows that f1(t;Δ)/f0(t) is
an increasing function of t. Therefore (See Remark 5.4), the UMP invariant test
is given by

Reject H0 iff T ≡ ‖X‖2 > χ2
1−α(k).

It follows, by simple translation, that the UMP invariant test for H0 : μ = μ0

against H1 : μ �= μ0 is given by

Reject H0 iff ‖X− μ0‖2 > χ2
1−α(k).

More generally, Let X be N(μ, Σ| ), μ ∈ R
k = Θ, and Σ| a known k× k positive

matrix. Let B be a k × k non-singular matrix such that B′B = Σ|−1
(See Lemma

in Appendix B). Instead of X, one may equivalently consider Z = BX which
is Normal N(ν, Ik) with ν = Bμ. The test for H0 : μ = μ0, H1 : μ �= μ0 is
equivalent to that for H0 : ν = ν0 ≡ Bμ0, H1 : ν �= ν0. By the preceding, the
UMP test invariant under the group of orthogonal transformations is given by

Reject H0 iff ‖Z− ν0‖2 > χ2
1−α(k).

Since ‖Z−ν0‖2 = 〈B(X−μ0), B(X−μ0)〉 = 〈Σ|−1
(X−μ0), (X−μ0)〉, the above

test may be expressed as

Reject H0 iff (X− μ0)
′Σ|−1

(X− μ0) > χ2
1−α(k).

Next let Xi = (Xi1 . . . , Xik)
′, 1 ≤ i ≤ n, be a random sample from N(μ, Σ).

Assume first that Σ is known. Then X = (X0.1, . . . , X .k)
′ is a complete sufficient

statistic for μ(X .j =
∑n

i=1 Xij/n). Hence the UMP invariant test for H0 : μ = μ0

against H1 : μ �= μ0 is to reject H0 if n(X − μ0)
′Σ−1(X − μ0) > χ2

1−α(k).

Note that, by Basu’s theorem, X is independent of the sample covariance matrix
S = ((sjj′ )), where sjj′ =

∑n
i=1(Xij −X .j)(Xij′ −X .j′)/(n− 1), 1 ≤ j ≤ j′ ≤ k.

If Σ is unknown then a UMP unbiased invariant test is of the form: Reject H0 if
W = n(X − μ0)

′S−1(X − μ0) > c. (See Exercise 5.7(c) for the case k = 1, and
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Lehmann 1959, p. 299, for k > 1). Under H0 the distribution ofW does not involve
Σ, so that c can be computed. The statistic W , or some multiple of it, is referred
to as Hotelling’s T 2. It can be shown that n−k

k(n−1)W has the F distribution Fk,n−k

(Lehmann, 1959, pp. 296–300).
Finally, consider the two-sample problem: H0 : μ1 = μ2, H1 : μ1 �= μ2,

where μ1, μ2 are the means of the k-dimensional Normal distributions N(μ1, Σ),
N(μ2, Σ). Arguing as above one can show (See Lehmann, loc. cit.) that the
UMP unbiased invariant test based on independent samples Xi = (Xi1, . . . , Xik)

′,
1 ≤ i ≤ n1, from N(μ1, Σ), and Yi′ = (Yi′1, . . . , Yi′k)

′, 1 ≤ i′ ≤ n2, from
N(μ2, Σ), is to reject H0 if

T 2 ≡ n− k − 1

k(n− 2)
(X−Y)′

[

S

(
1

n1
+

1

n2

)]−1

(X−Y) > Fk,n−k−1(1 − α),

where n = n1+n2, S = (n1−1)S1+(n2−1)S2

n1+n2−2 , S1 and S2 being the sample covariance

matrices of X and Y. This is the two-sample Hotelling’s T 2 test. This provides
the motivation for the large sample nonparametric t tests used in Chap. 8.

5.8.1 The Two-Sample Problem

In many statistical investigations one inquires whether one commodity (or brand)
is better than another, whether, e.g., one brand of tires has a greater life length
than another, or whether one diet reduces cholesterol level more than another diet,
etc. Among the most common parametric models of this kind is that of two normal
distributions N(μ, σ2) and N(η, σ2), and one wishes to test H0 : μ = η (or, μ ≤ η)
against H1 : μ > η. Here μ, η, σ2 are unknown. The uniformly most powerful
unbiased test of size α for this model, based on two independent random samples
Xi (1 ≤ i ≤ m) and Yj (1 ≤ j ≤ n) from N(μ, σ2) and N(η, σ2), respectively,

is the t-test: reject H0 iff T ≡ X−Y

sp
√

1
m+ 1

n

> t1−α(m + n − 2) (See Example 5.9).

One could also have a model in which Xi’s are i.i.d. exponential with parameter
(mean) θ1 and Yj ’s are i.i.d. exponential with parameter θ0, and one wishes to
test H0 : θ1 ≤ θ2 against H1 : θ1 > θ2 (See Exercise 5.11). In the absence of
a reliable parametric model one may use a nonparametric model based on the
following notion of stochastic order.

Definition 5.8. A random variable X is said to be stochastically larger than a
random variable Y if

P (X > x) ≥ P (Y > x) x ∈ R, (5.117)

with strict inequality for some x. Note that, if F and G are the cumulative distri-
bution functions of X and Y , respectively, then (5.117) is equivalent to

F (X) ≤ G(x) ∀ x ∈ R,

with strict inequality for at least one x. (5.118)

Thus we may talk about a stochastic order (a partial order, given by the first
line in (5.118) among distributions on R. In both parametric examples given above,
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(the distribution of) X is stochastically larger than (that of) Y under H1. Since
the interest in the problems mentioned earlier in these examples seems to concern
stochastic order, we may formulate the testing nonparametrically as follows. Based
on independent random samples Xi (1 ≤ i ≤ m) from a distribution with d.f.
(distribution function) F and Yj (1 ≤ j ≤ n) from a distribution with d.f. G,
consider the testing problem

H0 : θ ∈ Θ0 = {(F,G) : F (x) = G(x) ∀x, F and G continuous}
= {(F, F ) : F continuous}

H1 : θ �∈ Θ0 = {(F,G) : F (x) ≤ G(x) ∀x, F �= G, F and G continuous}
Θ = Θ0 ∪Θ1 = {(F,G) : F,G are continuous, F (x) ≤ G(x) ∀x}. (5.119)

Remark 5.9. To simplify the discussion we have chosen H0 as above, instead of
{(F,G) : F (x) ≥ G(x) ∀ x, F and G continuous}. The tests we derive, are valid
for this more reasonable version of H0.

We will first reduce the data by sufficiency. The (pair of) ordered statistics T =
((X(1), X(2), . . . , X(m)), (Y(1), Y(2), . . . , Y(n))) are sufficient for θ = (F,G) ∈ Θ.
Here X(1) < X(2) < · · · < X(m) are the ordering of the Xi’s among themselves, and
similarly for Yj ’s. To prove sufficiency of T , note that (because Xi’s are i.i.d.) the
m! different orderings Xi1 < Xi2 < · · · < Xim (with (i1, i2, . . . , im) an arbitrary
permutation of (1, 2, . . . ,m)) are all equally likely, so that each has probability
1
m! . Similarly, the n! different orderings Yj1 < Yj2 < · · · < Yjn all have the same
probability 1

n! . Thus, for each value of T = (u1, u2, . . . , um, v1, v2, . . . , vn) with
u1 < u2, · · · , < um, v1 < v2 < · · · < vn, one has

Pθ(X1 = x1, X2 = x2, . . . , Xm = xm, Y1 = y1, Y2 = y2, . . . , Yn = yn) |
T = (u1, u2, . . . , um, v1, v2, . . . , vn))

=

⎧
⎨

⎩

1
m!n! if (x1, x2, . . . , xm) is a permutation of (u1, u2, . . . , um) and

(y1, y2, . . . , yn) is a permutation of (v1, v2, . . . , vn),
0 otherwise.

(5.120)

Thus the conditional distribution of (X1, X2, . . . , Xm, Y1, . . . , Yn), given T , does
not depend on θ ∈ Θ. This establishes the desired sufficiency of T . Since F and G
are continuous and the m+n random variables Xi’s and Yj ’s are independent, we
may take the observation space (of the sufficient statistic T ) to be

X =
{
(u,v) ∈ R

m+n : u1 < u2, · · · < um, v1 < v2 < · · · < vn, ui �= vj ∀ i, j} ,
(u = (u1, . . . , um),v = (v1, . . . , vn)). (5.121)

Let Pθ denote the distribution of T , when θ = (F,G) is the true parameter
value, θ ∈ Θ.

That is, Pθ(B) = Probθ(T ∈ B), where Probθ is the probability measure on the
underlying probability space on which Xi’s and Yj ’s are defined.

Let ψ denote a strictly increasing continuous function on R onto R. Define,
∀ x = (u,v) ∈ X , g = gψ by

gψ ≡ gψ(u,v) = (ψ(u1), . . . , ψ(um), ψ(v1), . . . , ψ(vn)). (5.122)
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Then gψ is a one-to-one map on X onto X , and gψ and g−1
ψ are both continuous.

Indeed, if ψ−1 is the inverse of ψ on R onto R, then g−1
ψ ≡ gψ−1 :

g−1
ψ x = (ψ−1(u1), ψ

−1(u2), . . . , ψ
−1(um), ψ−1(v1), . . . , ψ

−1(vn)).

Let G denote the group of all such transformations on X (corresponding to the
group Ψ of all transformations ψ on R onto R such that ψ is strictly increasing
and continuous). Then one obtains the following.

Proposition 5.4. (a) The testing problem (5.119) based on
T = T (X1, . . . , Xm, Y1, . . . , Yn) = (X(1), . . . , X(m), Y(1), . . . , Y(n)) is
invariant under G .

(b) Every invariant test is a function of

R = (R1, R2, . . . , Rm) (5.123)

where Ri is the rank of X(i) among the m + n values X(1), . . . , X(m),
Y(1), . . . , Y(n) (or, equivalently, the rank of X(i) among {X1, . . . , Xm, Y1,
. . . , Yn}). That is, R is a maximal invariant under G .

Proof. (a) Suppose θ = (F, F ) ∈ Θ0. That is, X1, . . . , Xm are i.i.d. with (com-
mon) d.f. F and Y1, . . . , Yn are i.i.d with (common) d.f. F . Then, for any
given ψ ∈ Ψ , gψX1, . . . , gψXm are i.i.d. with d.f. F ◦ ψ−1. In particu-
lar, the distribution of T under this transformation (i.e., the distribu-
tion of T ◦ ψ(X1, . . . , Xm, Y1, . . . , Yn) = T (ψX1, . . . , ψXm, ψY1, . . . , ψYn))
is Pgψθ, with gψθ = (F ◦ ψ−1, F ◦ ψ−1) ∈ Θ0, when the distribu-
tion of T (X1, . . . , Xm, Y1, . . . , Yn) is Pθ with θ = (F, F ) ∈ Θ0. Also,
if F (x) ≤ G(x) ∀x, with strict inequality for some x = x0, say, then
F ◦ ψ−1(x) ≤ G ◦ ψ−1(x) ∀x, with strict inequality for x = ψ(x0). Thus
the distribution Pθ of T (X1, . . . , Xm, Y1, . . . , Yn) under θ = (F,G) ∈ Θ
is transformed to the distribution Pgψθ of T (ψX1, . . . , ψXm, ψY1, . . . , ψYn)

under gψθ = (F ◦ ψ−1, G ◦ ψ−1) ∈ Θ1.
(b) It is clear thatR is invariant under G , since a strictly increasing transformation

ψ does not change the relative orders of numbers on the line. To prove that
R is a maximal invariant, let (u,v), (u′,v′) ∈ X be such that R(u,v) =
(r1, . . . , rm) = R(u′,v′). This means that the relative orders of ui’s and vj ’s
are the same as those of the u′

i’s and v′j ’s. For example, the number of vj ’s
smaller than u1 is r1 − 1, the same is true of the number of v′j ’s smaller than
u′
1. In general, the number of vj ’s lying between ui and ui+1 is ri+1 − ri − 1,

and the same is true of u′
i’s and v′j ’s. Now order m + n numbers ui’s and

vj ’s as w1 < w2 < · · · < wm+n, and similarly order the u′
i’s and v′j ’s as

w′
1 < w′

2 < · · · < w′
m+n. From the above argument it follows that if wk = ui

then w′
k = u′

i, and if wk = vj then w′
k = v′j . Define the piecewise linear strictly

increasing map ψ by

ψ(wi) = w′
i, 1 ≤ i ≤ m+ n,

with linear interpolation in (wi, wi+1), 1 ≤ i ≤ m + n − 1. For x < w1, let
ψ(x) be defined by extending the line segment joining (w1, w

′
1) and (w2, w

′
2).

Similarly, for x > wm+n, define ψ(x) by extending the line segment joining
(wm+n−1, w

′
m+n−1) and (wm+n, w

′
m+n). Then ψ(ui) = u′

i and ψ(vj) = v′j ∀ i, j
and gψ(u,v) = (u′,v′). ��
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Among commonly used rank tests for the two-sample problem (5.119) are the
following.

Example 5.16 (Wilcoxon, or Mann-Whitney Test).

φ(r1, . . . , rm) =

⎧
⎨

⎩

1 if
∑m

i=1 ri > c,
γ if

∑m
i=1 ri = c,

0 if
∑m

i=1 ri < c,
(5.124)

where r1 < · · · < rm are the values of R1 < R2 < · · · < Rm. The positive integer
c and γ ∈ (0, 1) are chosen so that the size is α.

Example 5.17 (The Fisher-Yates Test).

φ(r1, . . . , rm) =

⎧
⎪⎨

⎪⎩

1 if
∑m

i=1 η
m+n
(ri)

> c,

γ if
∑m

i=1 η
m+n
(ri)

= c,

0 if
∑m

i=1 η
m+n
(ri)

< c,

(5.125)

where ηm+n
(r) is the expected value of the r-th order statistic of a random sample

of size m+ n from a standard Normal distribution N(0, 1).

There is, of course, no uniformly most powerful test for (5.119). We
may, however, look for admissible tests in the class of all rank tests. Both
tests (5.124), (5.125) may be shown to be admissible in this sense. We will
later discuss asymptotic (as m → ∞, n → ∞) superiority of these tests compared
to the classical t-test based on X − Y , in the location model: F (x) = F0(x),
G(x) = F0(x+ θ), θ < 0. Here F0 is a given continuous distribution function.

5.9 Linear Models

5.9.1 The Gauss-Markov Theorem

Consider the linear model
X = Aθ + ε, (5.126)

where X = (X1, . . . , Xn)
′ is the observation vector, θ = (θ1, . . . , θk)

′ ∈ R
k is the

vector of unknown parameters, A is the (n× k) known coefficient matrix

A =

⎛

⎜
⎜
⎜
⎝

a11 a12 · · · a1k
a21 a22 · · · a2k
...

...
an1 an2 · · · ank

⎞

⎟
⎟
⎟
⎠

= [α1α2 · · ·αk] =

⎡

⎢
⎢
⎢
⎣

β1

β2
...
βn

⎤

⎥
⎥
⎥
⎦
, (5.127)

and ε = (ε1, ε2, . . . , εn)
′ is the vector of unobservable errors,

Eεi = 0, Eεiεj = σ2δij (1 ≤ i, j ≤ n), (5.128)

0 < σ2 < ∞, σ2 unknown.



98 5 Testing Hypotheses

Definition 5.9. A linear parametric function ′θ =
∑k

j=1 jθj is said to be es-

timable if there exists a linear function of the observations d′X =
∑n

i=1 diXi such
that

E(θ,σ2)d
′X = ′θ ∀ θ ∈ R

k, σ2 > 0. (5.129)

A linear unbiased estimator d′
0X of ′θ is said to be the best linear unbiased

estimator or BLUE, if

E(θ,σ2)(d
′
0X− ′θ)2 = inf E(θ,σ2)(d

′X− ′θ)2 ∀ θ ∈ R
k, σ2 > 0, (5.130)

where the infimum is taken over the class d′X of all linear unbiased estimators
of ′θ.

For the present subsection, nothing is assumed about the distribution of the
errors other than (5.128). Hence the notation E(θ,σ2) here simply means expec-
tation under an arbitrary distribution satisfying (5.128) and a given θ. In later
subsections, ε’s are also assumed to be Normal, so that the pair (θ, σ2) specifies a
distribution of X.

Theorem 5.7 (Gauss-Markov Theorem).

(a) ′θ is estimable if and only if  ∈ Lr—the vector space spanned by the rows
βi (1 ≤ i ≤ n) of A.

(b) Suppose ′θ is estimable and d′X is an unbiased estimator of ′θ. Then the
unique BLUE of ′θ is d′

0X, where d0 is the orthogonal projection of d on the
vector space Lc spanned by the column vectors αj (1 ≤ j ≤ k) of A.

Proof. (a) One has E(θ,σ2)d
′X = ′θ for some d ∈ R

n if and only if

′θ ≡
k∑

j=1

jθj = E(θ,σ2)d
′X = d′Aθ ≡

k∑

j=1

(
n∑

i=1

diβi

)

j

θj ∀ θ ∈ R
k,

i.e., iff  =
∑n

i=1 diβi for some d ∈ R
n.

(b) Let d′X be an unbiased estimator of ′θ, and d0 the orthogonal projection of d

onto Lc. Then E(θ,σ2)(d−d0)
′X = (d−d0)

′ Aθ = (d−d0)
′∑k

j=1 θjαj = 0,

since d − d0 is orthogonal to
∑k

j=1 θjαj ∈ Lc. It follows that d′
0X is an

unbiased estimator of ′θ:

E(θ,σ2)d
′
0X = E(θ,σ2)[d

′X− (d− d0)
′X] = E(θ,σ2)d

′X = ′θ.

Also, E(θ,σ2)(d
′
0X−′θ)(d′X−d′

0X) = E(θ,σ2)(d
′
0X)(d′X−d′

0X) = σ2d′
0(d−

d0) = 0, so that

E(θ,σ2)(d
′X− ′θ)2 = E(θ,σ2)(d

′
0X− ′θ + d′X− d′

0X)2

= E(θ,σ2)(d
′
0X− ′θ)2 + E(θ,σ2)(d

′X− d′
0X)2 ≥ E(θ,σ2)(d

′
0X− ′θ)2,

with a strict inequality unless E(θ,σ2)(d
′X − d′

0X)2 = 0, i.e., unless σ2|d −
d0|2 = 0, i.e., unless d0 = d, or d ∈ Lc.

To prove uniqueness, let γ′X be another unbiased estimator of ′θ, and let γ0

be the orthogonal projection of γ on Lc. Then E(θ,σ2)(γ
′
0X− d′

0X) = 0 ∀ θ, i.e.,

(γ0 −d0) ·
∑k

i=1 θiαi = 0 ∀θ ∈ R
k. This implies γ0 −d0 is orthogonal to Lc. But

γ0 − d0 ∈ Lc. Hence γ0 − d0 = 0. ��
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Remark 5.10. Suppose n ≥ k, and A is of full rank k. Then the vector space Lr

is of rank k, so that every  in R
k belongs to Lr. Therefore, all linear parametric

functions are estimable, by part (a) of the Gauss-Markov Theorem (Theorem 5.7).
Also, in this case, A′A is a non-singular k × k matrix, and

E(θ,σ2)A
′X = A′Aθ, or E(θ,σ2)(A

′A)−1A′X = θ ∀ θ ∈ R
k.

Hence an unbiased estimator of the vector θ is given by

θ̂ = (A′A)−1A′X = D′
0X, cov θ̂ = σ2D′

0D0 = σ2(A′A)−1, (5.131)

D0 := A(A′A)−1 = [α1α2 · · ·αk]

⎡

⎢
⎢
⎢
⎣

b11 b12 · · · b1k
b21 b22 · · · b2k
...

...
...

bk1 bk2 · · · bkk

⎤

⎥
⎥
⎥
⎦
, say.

The j-th column of D0 is

d0,j =

k∑

j=1

bj′jαj′ ∈ Lc,

and

θ̂j = d′
0,jX

is, therefore, the best linear unbiased estimator of θj (1 ≤ j ≤ k), as is
∑k

1 j θ̂j =∑k
1(jd0,j)

′X of
∑k

1 jθj , whatever be  ∈ R
k.

In view of part (b) of the Gauss-Markov Theorem, the best linear unbiased
estimator of an estimable function ′θ is also called its least squares estimator.

5.9.2 Testing in Linear Models

In addition to (5.126), (5.128), assume

εi are i.i.d. N(0, σ2) (1 ≤ i ≤ n) (0 < σ2 < ∞).

In fact, for simplicity let us assume for the time being that we have the canonical
linear model for the observations Y1, . . . , Yn, i.e.,

Y =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

μ1

μ2

...
μk

0
0
...
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

+

⎛

⎜
⎜
⎜
⎝

ε1
ε2
...
εn

⎞

⎟
⎟
⎟
⎠

(5.132)
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where (μ1, μ2, . . . , μk)
′ ∈ R

k, Θ = {(μ1, . . . , μk, σ
2) : μi ∈ R, 1 ≤ i ≤ k, 0 < σ2 <

∞} = R
k × (0,∞) and εi’s are i.i.d. N(0, σ2). We want to test

H0 : μ1 = μ2 = · · · = μr = 0 (Θ0 = {(0, . . . , 0)} × R
k−r × (0,∞))

against
H1 : H0 is not true (Θ1 = Θ\Θ0), (5.133)

where 1 ≤ r ≤ k. For r = k, Θ0 = {O} × (0,∞).
The testing problem is invariant under each of the following three groups of

transformations:

G1 : g1(y) = z, zi = yi + ci (r + 1 ≤ i ≤ k)

zi = yi for i �∈ {r + 1, r + 2, . . . , r + k}.

ci (r + 1 ≤ i ≤ k) are arbitrary reals.

G2 : g2(y) = z,

⎛

⎜
⎜
⎜
⎝

z1
z2
...
zr

⎞

⎟
⎟
⎟
⎠

= Or

⎛

⎜
⎜
⎜
⎝

y1
y2
...
yr

⎞

⎟
⎟
⎟
⎠

, zi = yi for r + 1 ≤ i ≤ n,

where Or is an arbitrary r × r orthogonal matrix.

G3 : g3(y) = by, b > 0.

Let G be the group of transformations generated by Γ = G1 ∪ G2 ∪ G3.

Proposition 5.5. The statistic T (y) ≡
∑r

1 y2
i∑n

k+1 y2
i
is a maximal invariant function

of the sufficient statistic

S(y) ≡
(

y1, . . . , yk,

n∑

i=k+1

y2i

)

. (5.134)

Proof. The joint p.d.f. of Y1, . . . , Yn is

(
1√
2πσ2

)n

e−
1

2σ2

∑k
i=1(yi−μi)

2− 1
2σ2

∑n
i=k+1 y2

i , (5.135)

implying S(y) is indeed a sufficient statistic for (μ1, . . . , μk, σ
2). (Use the Factor-

ization Theorem). We need to show that a function T (y), of S(y), which is also
invariant under G , is a function of T (y).

Now a maximal invariant under G1 is

W1(y) = (y1, . . . , yr, yk+1, . . . , yn) (5.136)

Observe that W1(g1y) = W1(y), since W1 does not involve the coordinates
yr+1, . . . , yk which are the only ones affected by g1; also, if W1(y) = W1(z), then
z = (y1, . . . , yr, yr+1+(zr+1− yr+1), . . . , yk +(zk− yk),yk+1, . . . , yn) = g1(y) with
ci = zi − yi for r + 1 ≤ i ≤ k. Thus y and z belong to the same orbit under G1

proving that W1 is a maximal invariant under G1. Hence T1 must be a function of
W1, say,

T1(y) = f1(y1, . . . , yr, yk+1, . . . , yn). (5.137)
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A maximal invariant under G2 is

W2(y) =

(
r∑

i=1

y2i , yk+1, . . . , yn

)

(5.138)

For, W2(gy) = W2(y), since

∥
∥
∥
∥
∥
∥
∥

Or

⎛

⎜
⎝

y1
...
yr

⎞

⎟
⎠

∥
∥
∥
∥
∥
∥
∥

2

=

∥
∥
∥
∥
∥
∥
∥

⎛

⎜
⎝

y1
...
yr

⎞

⎟
⎠

∥
∥
∥
∥
∥
∥
∥

2

. Also, given two vectors

(z1, . . . , zr)
′ and (y1, y2, . . . , yr)

′ of equal length there exists an orthogonal transfor-
mation Or such that Or(z1, . . . , zr) = (y1, . . . , yr). Hence W2(y) = W2(z) implies
that z = g(y) for some g ∈ G2. Therefore, T1(y) depends on y1, . . . , yr only through∑r

1 y
2
i , i.e., T1 is of the form [see (5.137)]

T1(y) = f2

(
r∑

i=1

y2i , yk+1, . . . , yn

)

. (5.139)

Now since T1(y) is a function of S(y), it must be of the form (using (5.134)
and (5.139))

T1(y) = f3

(
r∑

i=1

y2i ,

n∑

k+1

y2i

)

. (5.140)

In view of invariance under G3, one must have

T1(by) = T1(y) ∀ b > 0, (5.141)

i.e.,

f3

(

b2
r∑

1

y2i , b
2

n∑

k+1

y2i

)

= f3

(
r∑

1

y2i ,

n∑

k+1

y2i

)

. (5.142)

This implies T1 is of the form

T1(y) = f4

(
r∑

1

y2i

/ n∑

k+1

y2i

)

if

n∑

k+1

y2i �= 0, (5.143)

where f4 is one-to-one, i.e., strictly monotone on (0,∞). For if this is not the case
then there exist y, z such that

∑r
1 y

2
i /
∑n

k+1 y
2
i =

∑r
1 z

2
i /
∑n

k+1 z
2
i , but T1(y) �=

T1(z). Write b = (
∑n

k+1 z
2
i /
∑n

k+1 y
2
i )

1/2 (assuming
∑n

k+1 z
2
i > 0, by (5.143)).

Then, by invariance under G3,

T1(by) = T1(y)

so that

T1(z) = f3

(
r∑

1

z2i ,

n∑

k+1

z2i

)

= f3

( ∑r
1 z

2
i∑n

k+1 z
2
i

·
n∑

k+1

z2i , b
2

n∑

k+1

y2i

)

= f3

( ∑r
1 y

2
i∑n

k+1 y
2
i

·
n∑

k+1

z2i , b
2

n∑

k+1

y2i

)

= f3

(

b2
r∑

1

y2i , b
2

n∑

k+1

y2i

)

= T1(by) = T1(y),

which is a contradiction. Hence (5.143) holds. ��
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Theorem 5.8. For the canonical linear model, the U.M.P. invariant (under G )
test of H0 against H1 (of size α) is given by

ϕ(y) =

⎧
⎪⎪⎨

⎪⎪⎩

1 if
∑r

1 y2
i

r

/∑n
k+1 y2

i

n−k > Fα(r, n− k)

0 if
∑r

1 y2
i

r

/∑n
k+1 y2

i

n−k ≤ Fα(r, n− k)
(5.144)

where F1−α(r, n− k) is the (1−α)th quantile of the F -distribution with d.f.s r for
the numerator, and n− k for the denominator.

Proof. We know that the UMP invariant test must be based on
∑r

1 y
2
i /
∑n

k+1 y
2
i .

We need to prove that among all tests which are functions of this ratio, the
test (5.144) is UMP. This follows from the Neyman–Pearson Lemma and the fact
that the ratio hγ2(u)/h0(u) of the p.d.f. of

(∑r
1 y

2
i /r

) / (∑n
k+1 y

2
i

/
(n− k)

)
under

H1 and under H0 is monotone increasing in u (see Remark 5.4 and Example C.6).
Here γ2 =

∑r
i=1 μ2

i /σ
2. ��

Remark 5.11. For (5.143) note that Probμ(
∑n

k+1 Y
2
i = 0) = 0, so that one can

restrict the observation space to exclude the set {∑n
k+1 y

2
i = 0}.

Reduction of the General Case to the Canonical Model The general linear hypoth-
esis in the linear model (5.126) is of the form

H0 : Bθ = 0, (5.145)

where B = ((bij)) is an r × k matrix of full rank r (1 ≤ r ≤ k). Without loss of
generality one may assume that the first r columns of B are linearly independent.
Then the matrix Br, which is r × r and is composed of the first r columns of B,
is nonsingular, and one may rewrite (5.145) as

Br

⎛

⎜
⎝

θ1
...
θr

⎞

⎟
⎠ = −

⎛

⎜
⎝

b1 r+1 · · · b1k
...

...
br r+1 · · · brk

⎞

⎟
⎠

⎛

⎜
⎝

θr+1

...
θk

⎞

⎟
⎠ ,

or,

⎛

⎜
⎝

θ1
...
θr

⎞

⎟
⎠ = −B−1

r

⎛

⎜
⎝

b1 r+1 · · · b1k
...

...
br r+1 · · · brk

⎞

⎟
⎠

⎛

⎜
⎝

θr+1

...
θk

⎞

⎟
⎠ =

⎛

⎜
⎝

d1 r+1 · · · d1k
...

...
dr r+1 · · · drk

⎞

⎟
⎠

⎛

⎜
⎝

θr+1

...
θk

⎞

⎟
⎠ , (5.146)

say.
Observe that in the linear model (5.126), we assume that X is Normal with

mean (vector) Aθ and dispersion matrix σ2In, and A is of full rank k. Here θ is
unknown (i.e., θi’s can take arbitrary real values), and σ2 > 0 is unknown; and

In is the n× n identity matrix. Thus EX ≡∑k
1 θiαi (αi being the ith column of

A) spans the subspace of Lc of dimension k of an n-dimensional Euclidean space
En, say, which may be identified with R

n (w.r.t. the standard orthonormal basis).
Under H0, EX lies in a (k− r)-dimensional subspace, say Lc,0, of Lc (expressing
θ1, . . . , θr in terms of θr+1, . . . , θk, by (5.146)). We will now construct an n × n
orthogonal matrix O such that Y = OX is in the form (5.132) of a canonical
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model, with H0 and H1 given by (5.133). For this (1) choose the first r rows of
O to lie in Lc, but orthogonal to Lc,0, (2) choose the next k − r rows of O to
span Lc,0, and (3) choose the last n− k rows of O orthogonal to Lc. Because of
the orthogonality of O, the error O ε remains N(O, σ2In), and μ ≡ EY = OAθ
span L . Also, under H0, the first r elements of μ are zero, leaving the next k− r
elements arbitrary (unknown).

Before turning to Examples, let us note that, because of orthogonality of O in
the relation Y = OX, one has ‖X− EX‖2 = ‖Y − EY‖2. Hence

n∑

i=k+1

Y 2
i = min

μ

{
k∑

i=1

(Yi − μi)
2 +

n∑

i=k+1

Y 2
i

}

= min
EY

‖Y − EY‖2

= min
m≡EX∈Lc

‖X− EX‖2 = ‖X− m̂‖2, (5.147)

where m̂ = Aθ̂ is the projection of X on Lc. Similarly, writing μ0 = (0, . . . , 0,
μr+1, . . . , μk), one has

r∑

i=1

Y 2
i +

n∑

i=k+1

Y 2
i = min

μ0
‖Y − EY‖2 = min

m∈Lc,0

‖X−m‖2 = ‖X− ˆ̂m‖2,

where ˆ̂m is the projection of X on Lc,0, ˆ̂m = A
ˆ̂
θ, say. Hence, by Pythagoras,

r∑

i=1

Y 2
i = ‖X− ˆ̂m‖2 − ‖X− m̂‖2 = ‖m̂− ˆ̂m‖2. (5.148)

Therefore, the UMP invariant test of size α for H0 : Bθ = 0 against H1 : Bθ �= 0
is given by (See Theorem 5.8)

Reject H0 iff
‖m̂− ˆ̂m‖2/r

‖X− m̂‖2/(n− k)
≡ ‖A(θ̂ − ˆ̂

θ)‖2/r
‖X−Aθ̂‖2/(n− k)

> F1−α(r, n− k),

(5.149)

where θ̂,
ˆ̂
θ are, respectively, the least squares estimators of θ under the linear

model (5.126) and under H0.

Example 5.18 (One-Way Layout, or the k-Sample Problem). For k ≥ 2, let Xji

be independent N(θi, σ
2) random variables (1 ≤ j ≤ ni, 1 ≤ i ≤ k). We wish

to test H0 : θ1 = θ2 = · · · = θk against H1 which says H0 is not true. Here
n =

∑k
1 ni, r = k − 1, and X = Aθ + ε, where aji = 1 for n1 + · · · + ni−1 <

j ≤ n1 + · · · + ni (2 ≤ i ≤ k), aj1 = 1 for 1 ≤ j ≤ n1: aji = 0 otherwise. The

minimum of ‖X − Aθ‖2 ≡ ∑k
i=1

∑ni

j=1(Xji − θi)
2 over all θ ∈ R

k is attained by

taking θi = θ̂i = X.i ≡ 1
ni

∑ni

j=1 Xji (1 ≤ i ≤ k). Under H0, letting θ0 denote the

common value of θi’s, the minimum value of
∑k

i=1

∑ni

j=1 (Xji − θ0)
2 is attained

by θ0 = θ̂0 = 1
n

∑
j,iXji = X.., say. Hence the test (5.149) becomes, in view

of (5.147), (5.148),

Reject H0 iff

∑k
i=1 ni(X.i −X..)2/(k − 1)

∑k
i=1

∑ni

j=1(Xji −X.i)2/(n− k)
> F1−α(k − 1, n− k). (5.150)
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Example 5.19 (Two-Way Layout). Consider an agricultural field experiment in
which certain varieties of a crop, say wheat, is grown on plots of equal size treated
with different fertilizers. The objective is to study the effect of variety and fertilizer
on the yield of the crop. Let Xijq denote the yield of the q-th plot treated with
fertilizer j on which the ith variety is grown (q = 1, . . . , S; j = 1, 2, . . . , J ; i =
1, 2, . . . , I), I > 1, J > 1, S > 1. Assume the linear model

Xijq = θij + εijq, (5.151)

where εijq are independent N(0, σ2) random variables. To test various hypotheses,
it is useful to express θij as

θij = μ+ δi + γj + ηij (1 ≤ i ≤ I, 1 ≤ j ≤ J), (5.152)

where with θ.. = 1
IJ

∑I
i=1

∑J
j=1 θij , θi. =

1
J

∑J
j=1 θij , θ.j =

1
I

∑I
i=1 θij ,

μ = θ.., δi = θi. − θ.., γj = θ.j − θ.., ηij = θij − θi. − θ.j + θ.. . (5.153)

The quantities δi, γj are called the main effects (of variety i and fertilizer j, respec-
tively), and ηij are the interactions. The presence of non-zero interactions indicate
that some varieties yield more in the presence of certain fertilizers than with others
even after the main effects are accounted for. In analogy with continuous variables
x, y (in place of i, j), the presence of interactions indicates a nonlinear dependence
of the mean yield θ on the two variables—variety and fertilizer. Note that, in the
parametrization (5.152), the following restrictions hold:

μ ∈ R,

I∑

i=1

δi = 0,

J∑

j=1

γj = 0,

J∑

j=1

ηij = 0 ∀ i,

I∑

i=1

ηij = 0 ∀ j. (5.154)

We consider several tests of interest.

(a) Test of Equality of all θij: H0 : θij = μ ∀ i, j. In this case, under H0, the mini-
mum value of

∑
i,j,q(Xijq−μ)2 is attained by setting μ = X ... =

1
n

∑
i,j,q Xijq ,

where n = SIJ . Also write Xi.. =
1
SJ

∑
j,q Xijq , X.j. = 1

SI

∑
i,q Xijq .

Under the general model (5.151) (or, (5.152)), the minimum value of
∑

i,j,q(Xijq − θij)
2 is attained by taking θij = θ̂ij = Xij. ≡ 1

S

∑
q Xijq . Hence,

with k = IJ and r = IJ − 1, the test is to

Reject H0 iff

∑I
i=1

∑J
j=1(X ij. −X ...)

2/(IJ − 1)
∑

i,j,q(Xijq −X ij.)2/(n− IJ)
> F1−α(IJ − 1, n− IJ).

(5.155)
Note that this is the same test as the k-sample test of the preceding example,
with k = IJ .

(b) Test of Absence of Variety Main Effect: H0 : δi = 0 ∀ i. For this, and for the
cases (c), (d) below, it is convenient to express

∑
i,j,q(Xijq − θij)

2 as



5.9 Linear Models 105

‖X−m‖2 =
∑

i,j,q

(Xijq − μ− δi − γj − ηij)
2

=
∑

i,j,q

(Xijq −Xij.)
2 +

∑

i,j,q

(X ij. −Xi.. −X .j. +X ... − ηij)
2

+
∑

i,j,q

(X i.. −X ... − δi)
2 +

∑

i,j,q

(X .j. −X ... − γj)
2 +

∑

i,j,q

(X ... − μ)2.

(5.156)

That (5.156) is an identity follows from the representation

Xijq − μ− δi − γj − ηij = (Xijq −Xij.) + (Xij. −Xi.. −X.j. +X... − ηij)

+(Xi.. −X... − δi) + (X .j. −X... − γj) + (X ... − μ), (5.157)

noting that the sum (over i, j, q) of products of any two terms among the five
terms on the right vanishes. Now the minimum of the sum of squares in (5.156),
subject to δi = 0 ∀ i, is attained by setting ηij = Xij. − X i.. − X .j. + X ...,
γj = X .j. − X ..., μ = X ... . Thus the minimum sum of squares under H0 is
attained by setting

θij =
ˆ̂
θij = X ... +X .j. −X ... +Xij. −Xi.. −X .j. +X ...

= Xij. −Xi.. +X ... (1 ≤ i ≤ I, 1 ≤ j ≤ J).

Hence

‖m̂− ˆ̂m‖2 =
∑

i,j,q

(θ̂ij − ˆ̂
θij)

2 = SJ

I∑

i=1

(Xi.. −X ...)
2.

Thus the test is:

Reject H0 iff

∑I
i=1 SJ(Xi.. −X ...)

2/(I − 1)
∑

i,j,q(Xijq −Xij.)2/(n− IJ)
> F1−α(I−1, n−IJ). (5.158)

(c) The test for H0 : γj = 0 ∀ j is entirely analogous to the case (b):

Reject H0 iff

∑J
j=1 SI(X .j. −X ...)

2/(J − 1)
∑

i,j,q(Xijq −Xij.)2/(n− IJ)
> F1−α(J−1, n−IJ). (5.159)

(d) Finally, we consider the test for the absence of interactions: H0 : ηij = 0 ∀ i, j.
The minimum value of the sum of squares (5.156) is attained under H0 by

setting δi = Xi.. −X..., γj = X .j.−X ..., μ = X ... . That is,
ˆ̂
θij = X ...+Xi..−

X ... +X .j. −X ... = X i.. +X .j. −X ... . Hence

‖m̂− ˆ̂m‖2 = S
∑

i,j
(Xij. −Xi.. −X .j. +X ...)

2,

so that the test is:

Reject H0 iff
S
∑

i,j(Xij. −X i.. −X .j. +X ...)
2/(I − 1)(J − 1)

∑
i,j,q(Xijq −Xij.)2/(n− IJ)

.

Note that there are (I − 1)(J − 1) linearly independent functions of θ = (θij :
1 ≤ i ≤ I, 1 ≤ j ≤ J) among {ηij , 1 ≤ i ≤ I, 1 ≤ j ≤ J}.
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Remark 5.12. If in the two-way layout above s = 1, then the denominators of
the tests (a)–(d) all vanish. This is due to the fact that in this case the least

squares estimators θ̂ij = Xij take up all the observations and it is not possible to
estimate σ2. If one assumes ηij = 0 ∀ i, j, then one can still find UMP invariant
tests for (a)–(c) (Exercise 5.17).

Example 5.20 (UMPU Invariant Tests for Regression). Consider the multiple re-
gression model

Xi = α+

p∑

j=1

βjzji + εi (i = 1, . . . , n), p+ 1 < n, (5.160)

where β1, . . . , βp are unknown regression coefficients, βi ∈ R ∀ i, and Z =
((zji))1≤j≤p,1≤i≤n a known design matrix of full rank p. As usual, assume εi’s
are i.i.d. N(0, σ2), σ2 > 0 is unknown. We wish to explore the effects of the p
regressors or independent variables, zj , 1 ≤ j ≤ p, on the predictor or dependent
variable X , assuming that the relationship is linear.

(a) Test H0 : β1 = · · · = βp = 0, i.e., the regressors have no effect on X . To
simplify the computation it is best to rewrite the model (5.160) as the equiv-
alent model

Xi = δ +

p∑

j=1

βj(zji − zj.) + εi, (5.161)

δ := α+

p∑

j=1

βjzj., zj. =
1

n

n∑

i=1

zji (1 ≤ j ≤ p).

Here k = p + 1, and to minimize

‖X− EX‖2 =

n∑

i=1

(Xi − δ −
p∑

j=1

βj(zji − zj.))
2,

differentiate with respect to these parameters to obtain

n∑

i=1

(Xi − δ −
p∑

j=1

βj(zji − zj.)) = 0,

n∑

i=1

(zj′i − zj′.)

⎛

⎝
n∑

i=1

Xi − δ −
p∑

j=1

βj(zji − zj.)

⎞

⎠ = 0, 1 ≤ j′ ≤ p. (5.162)

The first equation yields the solution

δ = δ̂ = X =
1

n

n∑

i=1

Xi, (5.163)

while the remaining p equations yield
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Sxj ≡
n∑

i=1

(zj′i − zj′.)(Xi −X) =

p∑

j=1

Sj′jβj′ ,

Sj′j :=
n∑

i=1

(zj′i − zj′.)(zji − zj.), 1 ≤ j′ ≤ p. (5.164)

Hence, in matrix notation, the solution β̂ of the test p equations may be
expressed as

β̂ =
(
β̂1, . . . , β̂p

)′
= S−1Sx,

S = ((Sj′j)), Sx = (Sx1, . . . , Sxp)
′. (5.165)

Together (5.161) and (5.165) provide the solution to α as

α̂ = δ̂ −
p∑

j=1

β̂jzj. = X −
p∑

j=1

β̂jZj.. (5.166)

Hence, writing Sxx =
∑n

i=1(Xi −X)2,

min
EX

‖X− EX‖2 =

n∑

i=1

(Xi −X)2 +

p∑

j′,j=1

β̂j′ β̂jSj′j − 2

p∑

j=1

β̂jSxj

=

n∑

i=1

(Xi −X)2 + β̂′Sβ̂ − 2β̂′Sx

=
n∑

i=1

(Xi −X)2 + S′
xS

−1Sx − 2S′
xS

−1Sx

= Sxx − SxS
−1Sx

=

n∑

i=1

(Xi −X)2 −
p∑

j,j′=1

Sjj′ β̂j β̂j′ . (5.167)

Next, under H0, EXx = δ = α, and ‖X−EX‖2 =∑n
i=1(Xi−δ)2 is minimized

by δ = δ̂ = X , so that

min
EX under H0

‖X− EX‖2 =

n∑

i=1

(Xi −X)2 = Sxx. (5.168)

Hence the UMPU invariant test for (a) is to

reject H0 iff
S′
xS

−1Sx/p

[Sxx − S′
xS

−1Sx]/(n− p− 1)
→ F1−α(p, n− p− 1). (5.169)

It may be noted that S′
xS

−1Sx =
∑p

j,j′=1 S
jj′ β̂j β̂j′ , where ((Sjj′ )) = S−1.

(b) Test H0 : βq+1 = · · · = βp = 0, where 1 ≤ q ≤ p− 1. This is to test if some
of the independent variables Zj have no effect on the predictor (or dependent)
variable X . Proceeding as in (5.160)–(5.167), but with p replaced by q, one

has the least squares estimate
ˆ̂
βq
1 = (

ˆ̂
β1, . . . ,

ˆ̂
βq)

′ given by

ˆ̂
βq
1 = (Sq

1)
−1Sq

x,1, Sq
1 := ((Sj′j))1≤j,j′≤q, Sq

x,1 := (Sx,1, . . . , Sx,q)
′. (5.170)
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Also,
ˆ̂
δ = X , and

ˆ̂α = X −
q∑

j=1

ˆ̂
βjzj . (5.171)

Then

min
EX under H0

‖X− EX‖2 = Sxx − (Sq
x,1)

′(Sq
1)

−1Sq
x,1. (5.172)

The F test is now to

reject H0 iff
[S′

xS
−1Sx − (Sq

x,1)
′(Sq

1)
−1Sq

x,1]/(p− q)

[Sxx − S′
xS

−1Sx]/(n− p− 1)
> F1−α(p− q, n− p− 1).

(c) For the test H0 : α = 0, the sum of squares under H0 to be minimized is

‖X− EX‖2 =

n∑

i=1

(Xi −
p∑

j=1

βjzji)
2, (5.173)

and the minimizer is
ˆ̂
β = (

ˆ̂
β1, . . . ,

ˆ̂
βp)

′ obtained by setting zero to the deriva-
tives of (5.173) with respect to βj (1 ≤ j ≤ p). This gives

ˆ̂
β = S−1

0 S0x, S0 := ((S0jj′ ))1≤j,j′≤p, S0x := (X0x1 , . . . , S0xp)
′, (5.174)

where

S0jj′ =

n∑

i=1

ZjiZj′i, S0xj =

n∑

i=1

Xizji (1 ≤ j ≤ p). (5.175)

Therefore, writing S0xx =
∑n

i=1X
2
i , S

−1
0 = ((Sjj′

0 )), one has

min
EX under H0

‖X−EX‖2 = SOxx−S′
OxS

−1
0 SOx =

n∑

i=1

X2
i −

p∑

j,j′=1

Sjj′
O SOxjSOxj′ .

(5.176)
This leads to the UMPU invariant test for H0 which would

reject H0 iff
nx2 + S′

xS
−1Sx − S′

OxS
−1
O SOx

[Sxx − S′
xS

−1Sx]/(n− p− 1)
> F1−α(1, n− p− 1). (5.177)

Note that one may similarly test (a)e H0 : βj = cj for arbitrarily given constants
cj (1 ≤ j ≤ p), (b)d H0 : βj = dj for given dj (1 ≤ j ≤ q), and (c)a0 H0 : α = a0
for given a0.

Remark 5.13 (ANOVA—Analysis of Variance). In Examples 5.18, 5.19, a conve-
nient and intuitively meaningful tabulation of calculations of the various tests is
by the so-called ANOVA-table, ANOVA being the abbreviation for analysis of
variance. The idea is to consider the total variability in the data, namely, the total
sum of squares (Total SS) of all the observed X-values around the grand total.
This Total SS into sums of squares of orthogonal components. For example, for
Example 5.18, the ANOVA Table is
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Source DF SS MS F

Treatments k − 1 SST MST = SST/(k − 1) MST/MSE

Error N − k SSE MSE = SSE(N − k)

Total N − 1 Total SS

HereDF is degrees of freedom, i.e., the number of linearly independent contrasts
or comparisons which can be attributed to the particular source of variation; SS is
the sum of squares andMS stands for mean squares. The treatment sum of squares
SSI equals

∑k
i=1 ni(X i.−X ..)

2, the Total sum of squares is
∑k

i=1

∑ni

j=1(Xij−X ..)
2,

and the error sum of squares is SSE = Total SS−SST =
∑k

i=1

∑ni

j=1 (Xij−Xi.)
2.

For the two-way layout of Example 5.19, the ANOVA table is

Source DF SS MS F

Variety I − 1 SSV SSV/(I − 1) MSV/MSE

Fertilizer J − I SSF SSF/(J − 1) MSF/MSE

Interaction (I − 1)× (J − 1) SSI SSI(I − 1)(J − 1) MSI/MSE

Error n− IJ SSE SSE/(n− IJ)
Total IFS − 1 = n− 1 Total

Here SSV = JS
∑I

i=1(Xi.. − X ...)
2, SSF = IS

∑J
j=1(X .j. − X ...)

2, SSI =

S
∑I

i=1

∑J
j=1(X ij. − Xi.. − X .j. + X ...)

2, Total SS =
∑

i,j,q(Xijq − X ...)
2, and

SSE = Total SS − SSV − SSF − SSI.

5.10 Notes and References

The presentation in this chapter follows (Ferguson, 1967, Chap. 5), which in turn is
strongly influenced by Lehmann (1959). The theory in Sects. 5.1–5.7 is mostly due
to Neyman and Pearson (1933, 1936, 1938). Theorem 5.5 is due to Basu (1955).
Pitman (1939) introduced the notion of invariance in problems of estimation of
location and scale, and this was generalized in broader estimation problems by
Kiefer (1957). As mentioned by Lehmann (1959, p. 261), the general theory of
invariant tests is due to Hunt and Stein (1946). Analysis of variance introduced
and presented in Fisher (1925, 1935) has had a profound impact on paramet-
ric statistics especially in the study of so-called linear models and multivariate
analysis. Rao (1952), Scheffé (1959) and Anderson (1958) are early standard refer-
ences on these topics. Fisher’s efforts at construction of designs that allow proper
and/or optimal statistical analysis of agricultural experiments in the 1930s and
1940s led to the creation of a theory by him and other statisticians with wide
applications to the construction of error correcting codes in information theory,
such as the famous Bose–Chaudhuri–Hocquenghem code (Bose and Ray-Chaudhuri
(1960), Hocquenghem (1959)). Many of its applications to combinatorial mathe-
matics included the settling in 1959 in the negative by R.C. Bose, S.S. Shrikhande
and, independently, by E.T. Parker (Bose et al. (1960)), of the famous conjecture
of Euler on the construction of certain Latin squares.
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Exercises for Chap. 5

Ex. 5.1. Using the theory of UMP tests for H0 : π ≤ π0 against H1 : π > π0
in one-parameter exponential families (See Sect. 5.3, and Remarks 5.2, 5.3), show
that the test (5.26) is UMP of its size for testing H0 : π ≥ π0 against H1 : π < π0.

Ex. 5.2. Given X = (X1, . . . , Xn) with Xj ’s i.i.d. gamma G (θ, β), β > 0 known
(as in Example 5.4), find the UMP test of size α (0 < a < 1) for H0 : θ ≤ θ0
against H1 : θ > θ0, where θ0 > 0 is a given (threshold) number.

Ex. 5.3. Use Remark 5.4 to find UMP tests of size α for testingH0 : θ ≤ θ0 against
H1 : θ > θ0 in the following examples, based on i.i.d. observations X1, . . . , Xn.

(a) Xj has the double exponential distribution with p.d.f. f(x | θ) =
(2α)−1 exp{−|x− θ|/α} (x ∈ R), θ ∈ R = Θ (α > 0 known).

(b) Xj has the shifted exponential distribution with p.d.f. f(x | θ) = exp{−x(x−
θ)} (x > θ), and f(x | θ) = 0 (x ≤ θ). Here Θ = R.

(c) Xj has the uniform distribution U (0, θ) on (0, θ), θ ∈ (0,∞) = Θ.
(d) Xj has the uniform distribution U (θ, θ + 1) on (θ, θ + 1), θ ∈ Θ = R.

Ex. 5.4. (a) Justify the interchange of the order of differentiation (w.r.t. π) and
integration (w.r.t. μ) in (5.34).

(b) Show that the UMP unbiased test in Example 5.1 for

H0 : θ = θ0, H1 : θ �= θ0 (5.178)

is given by

Reject H0 iff

∣
∣
∣
∣

∑n
1 Xj − nθ0√

n

∣
∣
∣
∣ > z1−α

2
.

More generally, if the model is N(θ, σ2
0), with σ2

0 > 0 known, then the UMP
unbiased test for (5.178) is given by

Reject H0 iff

∣
∣
∣
∣

√
n(X − θ0)

σ0

∣
∣
∣
∣ > z1−α

2
.

[Hint: Take T =
∑n

1 Xj−nθ0
σ0

, and apply (5.42), (5.43).]

Ex. 5.5. In the Normal example N(μ0, θ), show that the UMP unbiased test of
size α for H0 : θ = σ2

0 , H1 : θ �= σ2
0 , is given by

Reject H0 iff

n∑

j=1

(Xj − μ0)
2

2σ2
0

< t1 or > t2,

where t1 and t2 are determined by the first condition in (5.47) and (5.48) (both
with β = 1

2 ). [Hint: Consider observations (Xj − μ0)/σ0 (1 ≤ j ≤ n), and apply
Example 5.8.]

Ex. 5.6. Let Xj (1 ≤ j ≤ n) be i.i.d. with common density (w.r.t. Lebesgue
measure on (0, 1))

f(x | θ) = θxθ−1 0 < x < 1, θ ∈ Θ = (0,∞).
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Find the UMP unbiased test of size α, 0 < α < 1, for testing H0 : θ = 1 against
H1 : θ �= 1.

Ex. 5.7. In Example 5.6, show that

(a) the UMP unbiased test of size α for H0 : μ ≤ μ0, H1 : μ > μ0, is given by:

Reject H0 iff
√
n(X−μ0)

s > t1−α(n− 1),
(b) the UMP unbiased test of size α for H0 : μ ≥ μ0, H1 : μ < μ0, is given by:

Reject H0 iff
√
n(X−μ0)

s < −t1−α(n− 1),
(c) the UMP unbiased test of size α for H0 : μ = μ0, H1 : μ �= μ0, is given by:

Reject H0 if
∣
∣
∣
√
n(X−μ0)

s

∣
∣
∣ > t1−α

2
(n− 1).

Ex. 5.8. (a) Suppose X1, . . . , Xn are i.i.d. observations from N(μ0, σ
2), with μ0

known. Find the UMP test of size α for testing H0 : σ2 ≤ σ2
0 against H1 :

σ2 > σ2
0 , where σ

2
0 > 0 is given.

In Example 5.7, show that
(b) the UMP unbiased test of size α for H0 : σ2 ≥ σ2

0 , H1 : σ2 < σ2
0 is given

by: Reject H0 iff
∑n

1 (Xj −X)2/σ2
0 < χ2

α, the αth quantile of the chi-square
distribution with n− 1 d.f.

(c) the UMP unbiased test of size α for H0 : σ2 = σ2
0 , H1 : σ2 �= σ2

0 is given
by: Reject H0 iff

∑n
1 (Xj − X)2 < c1σ

2
0 or > c2σ

2
0 where 0 < c1 < c2 are

determined by the equations (see Sect. 5.4, Examples 5.4, 5.5)

∫ C2

C1

g(t)dt = 1− α,

(
c2
c1

)(n−1)/2

= e(c2−c1)/2, (5.179)

where g(t) is the density of the chi-square distribution with n− 1 d.f.

Ex. 5.9. Let X1, . . . , Xm and Y1, Y2, . . . , Yn be independent random samples from
exponential distributions with means θ1, θ2 respectively (i.e., from G (θ1, 1) and
G (θ2, 1)). Find the UMP unbiased test of size α for H0 : θ1 ≤ θ2 against
H1 : θ1 > θ2.

Ex. 5.10. Let U1 and U2 be independent gamma random variables G (θ,m) and
G (θ, n). Prove that Z1 ≡ U1/(U1+U2) and Z2 ≡ U1+U2 are independent random
variables with Z1 having the beta distribution Beta(m,n) and Z2 have the gamma
distribution G (θ,m+ n).

Ex. 5.11. (a) Let X1, . . . , Xm and Y1, Y2, . . . , Yn be independent random samples
from N(μ1, σ

2
1) and N(μ2, σ

2
2), respectively, where σ

2
i > 0 (i = 1, 2) are known,

and (μ1, μ2) ∈ R
2. Find a UMP unbiased test of size α ∈ (0, 1) for (5.78).

(b) In the context of Example 5.8, find the UMP unbiased test of size α for (i) H0 :
μ1 ≥ μ2, H1 : μ1 < μ2, and for (ii) H0 : μ1 = μ2, H1 : μ1 �= μ2.

(c) Extend (b) to the case (a).

Ex. 5.12. In Example 5.10, find the UMP unbiased test of size α ∈ (0, 1) for

H0 :
σ2
2

σ2
1

≤ γ0, H1 :
σ2
2

σ2
1

> γ0,

for a given γ0 > 0. [Hint: change Yj to Yj/γ0, 1 ≤ j ≤ n, in Example 5.10.]
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Ex. 5.13. Let X = (X1, . . . , X20), where Xj, 1 ≤ j ≤ 20, are i.i.d. Bernoulli
B(θ), θ ∈ Θ = (0, 1). Construct the UMPU test of size α for H0 : θ = 0.5, against
H1 : θ �= 0.5. [Hint: By symmetry, the test should be of the form: ϕ(x) = 1 if
∑20

1 xj < 10− r or > 10+ r, ϕ(x) = γ if
∑20

1 xj = 10− r or 10+ r, and ϕ(x) = 0

if 10− r <
∑20

1 xj < 10 + r. Here r is a positive integer, and 0 ≤ γ < 1.]

Ex. 5.14 (Match Pair Test). Assume that (Xi, Yi), 1 ≤ i ≤ n, are i.i.d. Normal
N((μx, μy)

t, Σ), where Σ is positive definite and all the parameters are unknown.

(a) Prove that under the assumption σ2
x = σy , the match pair test for H0 : μx =

μy, H1 : μx > μy described in Example 5.11 is UMPU of size α.
(b) Prove the assertion that the match pair design is more efficient than the inde-

pendent samples design, at least for sufficiently large n, provided ρ > 0.

Ex. 5.15. (a) Show that the map g : Θ → Θ defined in Sect. 5.8 is one-to-one.
(b) (i) Show that the two-sample problem in Example 5.8 is invariant under the

group G of all translations ga : Rm × R
n −→ R

m × R
n, given by ga((x1,

. . . , xm, y1, . . . , yn)) = (x1 + a, . . . , xm + a, y1 + a, . . . , yn + a), a ∈ R.
(ii) Also, show that the UMPU test is also an invariant test.

(c) Show that the two-sample problem in Example 5.9 is invariant under
the group G of transformations ga,c : R

m × R
n → R

m × R
n given by

ga,c((x1, . . . , xm, y1, . . . , yn)) =
(
x1+a

c , . . . , xm+a
c , y1+a

c , . . . , yn+a
c

)
, a ∈ R,

c > 0. Show also that the UMPU test is invariant.

Ex. 5.16. Let X be k-dimensional Normal N(μ, Σ| ) with Σ| a known positive def-
inite matrix.

(a) Find the UMA invariant confidence region for μ using the UMP invariant test
in Example 5.15.

(b) Find a UMA invariant confidence region for μ (under the group as in (a)) based
on n i.i.d. observations X1, . . . ,Xn with common distribution N(μ, Σ| )).

Ex. 5.17 (Two-way Layout with One Observation Per Cell). In Exam-
ple 5.19, let S = 1, and assume ηij = 0 ∀ i, j (in addition to the other assumptions).
Find the UMP invariant tests (a)–(c).

Ex. 5.18. In Example 5.19, let the number of replications, say Sij , vary for dif-
ferent pairs (i, j), with Sij ≥ 2 ∀ (i, j). Carry out the tests (a)–(d) in this case.
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Part II

Mathematical Statistics: Large
Sample Theory



Chapter 6

Consistency and Asymptotic
Distributions of Statistics

Abstract Notions of convergence for large sample theory are introduced: almost
sure convergence, convergence in probability and convergence in distribution. Con-
sistency of several classes of estimators and their asymptotic distributions are
derived, including those of sample moments, quantiles and linear regression coef-
ficients.

6.1 Introduction

Unlike the so-called exact sampling theory, where one needs to look for optimal
estimators separately for each parametric function in every individual parametric
family, in large sample theory there is a remarkable unity in the methodology for
optimal estimators. Also, unlike the former, the optimality criterion is essentially
uniquely and unambiguously specified and this (asymptotic) optimality is achieved
under fairly general hypotheses. Indeed, one may say that the maximum likelihood
estimator (MLE) is optimal in an asymptotic sense under broad assumptions. In
addition, if nothing is known about the form of the distribution except perhaps
that it has certain finite moments, or that it has a continuous and positive density
over the effective range, one may still construct reasonably good estimators for
important classes of population indices such as moments or quantiles. For example,
one may use sample moments and sample quantiles as the respective estimators.
The present chapter introduces the basic notions of convergence in large sample
theory and develops some of its main tools. Asymptotics of sample moments and
quantiles, and of semiparametric linear regression, are derived here, which allow
one to construct nonparametric or semiparametric confidence regions or tests for
the corresponding population parameters.

6.2 Almost Sure Convergence, Convergence in Probability
and Consistency of Estimators

A minimal requirement of any reasonable estimator Un := Un(X1, . . . , Xn) of a
population parameter γ is that of consistency.

© Springer-Verlag New York 2016
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Definition 6.1. A statistic Un (n ≥ 1) is said to be a consistent estimator of a

parameter γ, if Un converges to γ in probability: Un
P−→ γ, i.e.,

P (|Un − γ| > ε) −→ 0 as n → ∞, for every ε > 0. (6.1)

More generally, a sequence of random variables Yn is said to converge to a

random variable Y in probability, Yn
P−→ Y , if

P (|Yn − Y | > ε) −→ 0 as n → ∞, for every ε > 0. (6.2)

In (6.1), Y is the constant random variable Y = γ.
A common method for proving consistency is the following.

Proposition 6.1. (a) If, for some r > 0, E|Un−γ|r → 0, then Un is a consistent
estimator of γ. (b) If Un is an unbiased estimator of γ and var(Un) → 0, then
Un is a consistent estimator of γ.

Proof. (a) By Chebychev’s Inequality (see note below), for every ε > 0,

P (|Un − γ| ≥ ε) ≤ E|Un − γ|r
εr

−→ 0 as n → ∞. (6.3)

(b) is a special case of (a) with r = 2, and var(Un) = E|Un − γ|2. ��
Note: Let X be a random variable (e.g., X = Un − γ) such that E|X |r < ∞

for some r > 0, then writing E(Y : A) for the expectation of Y on the set A, i.e.,
E(Y : A) =

∫
A
Y dP ,

E|X |r = E [|X |r : |X | < ε] + E [|X |r : |X | ≥ ε]

≥ E [|X |r : |X | ≥ ε] ≥ εrP (|X | ≥ ε), (6.4)

which gives Chebyshev’s Inequality

P (|X | ≥ ε) ≤ E|X |r
εr

. (6.5)

Proposition 6.2. Suppose Un and Vn are two sequences of random variables such

that Un
P−→ a, Vn

P−→ b. If g(u, v) is a function (of two variables) which is contin-

uous at (a, b), then g(Un, Vn)
P−→ g(a, b).

Proof. Fix ε > 0. There exists δ = δ(ε) such that if |u − a| ≤ δ and |v − b| ≤ δ
then |g(u, v)− g(a, b)| ≤ ε. Now

P (|g(Un, Vn)− g(a, b)| > ε) =

= P ({|Un − a| > δ or |Vn − b| > δ} ∩ {|g(Un, Vn)− g(a, b)| > ε})
+P ({|Un − a| ≤ δ and |Vn − b| ≤ δ} ∩ {|g(Un, Vn)− g(a, b)| > ε})
≤ P (|Un − a| > δ) + P (|Vn − b| > δ) → 0. (6.6)

Note that the set {|Un − a| ≤ δ, |Vn − b| ≤ δ}∩ {g(Un, Vn)− g(a, b)| > ε} is empty,
and has therefore zero probability—a fact used for the last inequality. ��
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Remark 6.1. Proposition 6.2 extends to any fixed number, say k, of sequences

U
(i)
n

P−→ ai, 1 ≤ i ≤ k, and a function g(u1, u2, . . . , uk) of k variables which is

continuous at (a1, . . . , ak), yielding: g(U
(1)
n , U

(2)
n , . . . , U

(k)
n )

P−→ g(a1, a2, . . . , ak).
The proof is entirely analogous (Exercise 6.1).

Corollary 6.1. If Un
P−→ a, Vn

P−→ b then (i) Un+Vn
P−→ a+b, (ii) UnVn

P−→ ab,

and (iii) assuming b �= 0, Un/Vn
P−→ a/b.

Proof. Use Proposition 6.2 with (i) g(u, v) = u + v, (ii) g(u, v) = uv and (iii)
g(u, v) = u/v. ��

Proposition 6.2 and Remark 6.1 extend to vector-valued random variables (i.e.,
random vectors) Un, Vn and vector-valued functions g(u, v). One needs to use the
definition for convergence in probability in Eq. (6.2) with | · | denoting Euclidean

norm: |x| = (
∑k

i=1 x
2
i )

1/2 (Exercise 6.1).
A stronger form of consistency than that considered above involves the notion

of almost sure convergence. A sequence Yn (n ≥ 1) of random variables (vectors)
converges almost surely to a random variable (vector) Y , denoted Yn → Y a.s., or

Yn
a.s.−→ Y , if

lim
n→∞ Yn = Y (or, lim

n→∞ |Yn − Y | = 0) (6.7)

holds with probability one. That is, Yn → Y a.s. if (6.7) holds for all sample
points ω in the underlying probability space (Ω,F , P ) on which Yn (n ≥ 1), Y
are defined, except for a set N of ω’s with P (N) = 0. It is a standard result in
probability that almost sure convergence implies convergence in probability.1 The
main tool for proving almost sure convergence is the following.

Proposition 6.3 (Strong Law of Large Numbers). 2 Let Xn (n ≥ 1) be a
sequence of independent and identically distributed (i.i.d.) random variables having
a finite mean μ = EXn. Then (X1 + · · ·+Xn)/n converges almost surely to μ.

We will often refer to this result by the abbreviation SLLN.

Definition 6.2. A statistic Un (n ≥ 1) is said to be a strongly consistent estimator
of a parameter γ if Un → γ a.s.

Proposition 6.4. If Un → a a.s. and Vn → b a.s., then g(Un, Vn) −→ g(a, b) a.s.
for every function g of two variables which is continuous at the point (a, b).

We leave the proof of Proposition 6.4, as well as that of the a.s. convergence
version of Corollary 6.1 to Exercise 6.2.

6.3 Consistency of Sample Moments and Regression
Coefficients

Example 6.1 (Consistency of the Sample Mean). Let X1, . . . , Xn be independent
observations from an unknown distribution of which we assume a finite variance σ2.

1 See, e.g., Bhattacharya and Waymire (2007, pp. 7, 179, 180) or Billingsley (1986, p. 274).
2 See, e.g., Bhattacharya and Waymire (2007, pp. 7, 50–53) or Billingsley (1986, p. 80).
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Let Un(X) = X = X1+···+Xn

n be used as an estimator of the unknown population

mean μ. Since EX = μ, and var(X) = σ2/n → 0 as n → ∞, it follows from
Proposition 6.2, that X is a consistent estimator of μ.

One may actually prove strong consistency of X under the assumption of finite-
ness of μ, using the SLLN.

Example 6.2 (Consistency of Sample Moments). Suppose a random sample X1,
. . . , Xn is taken from a distribution with a finite k-th moment, for some k ≥ 1 (i.e.,
E|Xj |k < ∞). Then it can be shown by the strong law of large numbers (SLLN)
that the sample moments m̂r are strongly consistent estimators of population
moments mr for r = 1, . . . , k,

m̂r =
1

n

n∑

j=1

Xr
j
a.s.−→ E(Xr

1 ) = mr (the r-th ‘population moment’)

r = 1, 2, . . . , k. (6.8)

Note that m̂r is an unbiased estimator of mr (r = 1, 2, . . . , k). Hence if EX2k
1 ≡

m2k < ∞, then it follows from Proposition 6.1 that m̂r is a consistent estimator of
mr (r = 1, 2, . . . , k). The SLLN implies that it is enough to assume E|X1|k < ∞.
Next consider the centered population moments μr = E(X1−m1)

r, where m1 = μ
is the mean of the distribution (population). A natural estimator of μr is the
(corresponding) centered r-th sample moment μ̂r = 1

n

∑n
j=1(Xj −X)r. Note that

by the binomial expansion,

μ̂r =
1

n

n∑

j=1

{

Xr
j −

(
r

1

)

Xr−1
j X + − · · ·+ (−1)t

(
r

t

)

Xr−t
j X

t ± · · ·+ (−1)rX
r
}

=
1

n

n∑

j=1

r∑

t=0

(−1)t
(
r

t

)

Xr−t
j X

t
=

r∑

t=0

(−1)t
(
r

t

)

X
t
m̂r−t ·

=
r∑

t=0

(−1)t
(
r

t

)

m̂r−tm̂
t
1. (6.9)

By repeated application of Proposition 6.2 or Corollary 6.1 it follows that the last
sum converges in probability to

r∑

t=0

(−1)t
(
r

t

)

mr−tm
t
1 = E(X1 −m1)

r, (6.10)

provided m̂r′
p→ mr′ as n → ∞ (r′ = 1, . . . , r). The latter is assured for all

r′ = 1, . . . , r if EX2r
1 < ∞ (by Proposition 6.1). Once again this last requirement

may be relaxed to E|Xr
1 | < ∞, by the SLLN. Thus sample moments, raw as well

as centered, are strongly consistent estimators of the corresponding population
moments if the corresponding population moments are finite.

Remark 6.2. Although the ‘raw’ sample moments m̂r are unbiased estimators of
the corresponding population moments mr (if mr is finite), this is not true for
centered sample moments μr, r ≥ 2. For example, writing μ = m1, σ

2 = μ2, and
assuming σ2 > 0, one has
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Eμ̂2 = E

⎧
⎨

⎩

1

n

n∑

j=1

(Xj −X)2

⎫
⎬

⎭
= E

⎧
⎨

⎩

1

n

n∑

j=1

[Xj − μ− (X − μ)]2

⎫
⎬

⎭

= E

⎧
⎨

⎩

1

n

n∑

j=1

(Xj − μ)2 + (X − μ)2 − 2(X − μ)2

⎫
⎬

⎭

= E

⎧
⎨

⎩

1

n

n∑

j=1

(Xj − μ)2 − (X − μ)2

⎫
⎬

⎭
= μ2 − μ2

n
= σ2 − σ2

n

=

(

1− 1

n

)

σ2 �= μ2. (6.11)

Example 6.3 (Linear Regression). Consider the semiparametric regression model

Yj = α+ βXj + εj (1 ≤ j ≤ n), (6.12)

where the response variable Y and the nonstochastic explanatory variable X are
observable, while the random errors εj are not. Assume that εj are i.i.d. with mean

0 and finite variance σ2. Consider the least squares estimators α̂, β̂ of α, β, i.e.,
values of α, β which minimize

∑n
1 (Yj − α − βXj)

2. For ease of computation, let
δ = α+ βX, and express (6.12) in terms of the new parameters δ and β as

Yj = δ + β(Xj −X) + εj. (6.13)

Then, by calculus, δ̂ = Y and

β̂ =

∑n
j=1(Xj −X)Yj

∑n
j=1(Xj −X)2

=

∑n
j=1(Xj −X)(α+ βXj + εj)

∑n
j=1(Xj −X)2

= β+

∑n
j=1 εj(Xj −X)

∑n
j=1(Xj −X)2

.

(6.14)
In particular,

Eδ̂ = δ, var δ̂ = σ2/n ,

Eβ̂ = β, var β̂ =
σ2
∑n

j=1(Xj −X)2

[
∑n

j=1(Xj −X
2
)]2

=
σ2

∑n
j=1(Xj −X)2

,

cov(δ̂, β̂) = cov(ε, β̂) = 0. (6.15)

Hence, by Proposition 6.1, β̂ is a consistent estimator of β if
∑n

j=1(Xj−X)2 → ∞
as n → ∞. Next,

α̂ = Y − β̂X = α+ βX +
1

n

n∑

j=1

εj − β̂X = α− (β̂ − β)X +
1

n

n∑

j=1

εj

Eα̂ = α, var α̂ = X
2
(var β̂) +

σ2

n
− 2X

n
cov

⎧
⎨

⎩

∑n
j=1 εj(Xj −X)

∑n
j=1(Xj −X)2

,

n∑

j=1

εj

⎫
⎬

⎭

= X
2
(var β̂) +

σ2

n
− 2

n
(0)

= σ2

{
1

n
+

X
2

∑n
j=1(Xj −X)2

}

, cov(α̂, β̂) = cov(δ̂ − β̂X, β̂) = −Xvar β̂. (6.16)
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Hence α̂, β̂ are consistent estimators of α, β, respectively, if
∑n

1 (Xj −X)2 → ∞
and X

2
/
∑n

1 (Xj −X)2 → 0 as n → ∞ (also see Exercise 6.5).

Remark 6.3 (Consistency of α̂, β̂ Under Dependence). Note that the calcula-
tions (6.14)–(6.16) only required that

Eεj = 0, Eε2j = σ2, Eεjεj′ = 0 for j �= j′. (6.17)

Thus α̂, β̂ are consistent estimators of α, β if εj are mean-zero uncorrelated (but
not necessarily independent) random variables having a common variance σ2, and
∑n

1 (Xj −X)2 → ∞,
∑n

1 (Xj −X)2/X
2 → ∞.

Remark 6.4 (Consistency of α̂, β̂ under Heteroscedasticity). Assume again that εj
are mean-zero and uncorrelated, but heteroscedastic, i.e.,

Eε2j = σ2
j (j = 1, 2, . . . ). (6.18)

Then δ̂ = Y , β̂ are still unbiased estimators, as is α̂. (This only requires Eεj = 0
for all j). But

varδ̂ =

n∑

j=1

σ2
j /n,

varβ̂ =
Σn

j=1σ
2
j (Xj −X)2

[
Σn

j=1(Xj −X)2
]2 ,

var α̂ = X
2
(var β̂) +

Σn
j=1σ

2
j

n2
− 2Σσ2

j (Xj −X)

nΣn
j=1(Xj −X)2

X

cov(δ̂, β̂) = cov

(

ε,

∑n
1 (Xj −X)εj

∑n
1 (Xj −X)2

)

=

∑n
1 σ

2
j (Xj −X)2

∑n
1 (Xj −X)2

. (6.19)

Check that var β̂ and var α̂ both go to zero as n → ∞, provided the following
conditions hold:

σ2
j ≤ c < ∞ for all j,

n∑

j=1

(Xj −X)2 −→ ∞,

n∑

1

(Xj −X)2/X
2 −→ ∞ as n → ∞. (6.20)

For the last term in var α̂, use | 1n
∑n

j=1 σ
2
j (Xj−X)| ≤ ( 1n

∑n
j=1 σ

4
j )

1/2( 1
n

∑n
j=1(Xj−

X)2)1/2 ≤ c2( 1n
∑n

j=1(Xj −X)2)1/2. One may relax the assumption of bounded-

ness of σ2
j in (6.18) even further (Exercise 6.5).

The estimators δ̂, α̂, β̂ here are called ordinary least squares estimators or OLS
as opposed to weighted least squares estimators considered later in Example 6.8.

Consider now the problem of predicting Y from a future observation X, based
on past observations (Yj , Xj), 1 ≤ j ≤ n, satisfying (6.12), with i.i.d. errors εj .

The natural predictor Ŷ = α̂+ β̂X has the prediction error Ŷ − Y with expected
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squared error var α̂ + X2var β̂ + 2Xcov(α̂, β̂) + σ2 which may be estimated by

replacing σ2 by σ̂2 =
∑n

j=1(Yj − α̂− β̂Xj)
2/(n− 2) [See (6.87), (6.88)].

Example 6.4 (Autoregressive Model). A commonly used time series model is the
linear autoregressive model of order k ≥ 1. For the case k = 1, it takes the form

Yj = α+ βYj−1 + εj (j = 1, 2, . . . , n), (6.21)

where Y0, Y1, . . . , Yn are observed, α and β are unknown parameters to be esti-
mated and εj , 1 ≤ j ≤ n, are uncorrelated mean zero random variables with
common variance σ2 > 0 (unknown). Once again the least squares estimators are
(see (6.14), (6.16), with Xj = Yj−1)

α̂ = Y 1,n − β̂Y 0,n−1, β̂ = β +

∑n
r=1 εr(Yr−1 − Y 0,n−1)

∑n
r=1(Yr−1 − Y 0,n−1)2

, (6.22)

where Y 1,n = 1
n

∑n
r=1 Yr, Y 0,n−1 = 1

n

∑n−1
r=0 Yr = Y 1,n+(Y0−Yn)/n. Assume the

stability condition
|β| < 1. (6.23)

One also assumes that Y0 is uncorrelated with of {ε1, . . . , εn}, and Eε4j < ∞,

EY 2
0 < ∞. It may be shown that, α̂, β̂ are consistent estimators of α, β, respec-

tively:

β̂
P−→ β, α̂

P−→ α as n → ∞. (6.24)

Proof of (6.24). First, by iteration of (6.21),

Y1 = α+ βY0 + ε1, Y2 = α+ βY1 + ε2 = α+ αβ + β2Y0 + βε1 + ε2, . . . ,

Yr = α+ αβ + · · ·+ αβr−1 + βrY0 + βr−1ε1 + βr−2ε2 + · · ·+ βεr−1 + εr

= α(1 − βr)/(1− β) + βrY0 +

r∑

j=1

βr−jεj. (6.25)

Hence

Yr − α

1− β
=

−αβr

1− β
+ βrY0 +

r∑

j=1

βr−jεj,

Y 0,n−1 − α

1− β
=

−α(1− β)

n(1− β)
+

1− βn

n(1− β)
Y0 +

1

n

n∑

r=1

r∑

j=1

βr−jεj ,

E

(

Y 0,n−1 − α

1− β

)2

= E

[
−α(1−βn)

(1−β) + 1−βn

1−β Y0 +
∑n−1

j=1
1−βn−j

1−β εj

]2

n2

≤
3
[
α2(1−βn)2

(1−β)2 + (1−βn)2

(1x−β)2EY 2
0 + E(

∑n−1
j=1

1−βn−j

1−β εj)
2
]

n2

(for, (a+ b+ c)2 ≤ 3a2 + 3b2 + 3c2)

= O

(
1

n2

)

+
3

n2

n−1∑

j=1

(1 − βn−j)2

(1 − β)2
σ2

= O

(
1

n2

)

+O

(
1

n

)

−→ 0. (6.26)
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Next, writing Yr−1 − Y 0,n−1 = Yr−1 − α
1−β − (Y 0,n−1 − α

1−β ) one gets

1

n

n∑

r=1

(Yr−1 − Y 0,n−1)
2

=
1

n

n∑

r=1

(

Yr−1 − α

1− β

)2

− 2

n

n∑

r=1

(

Y 0,n−1 − α

1− β

)(

Y 0,n−1 − α

1− β

)

+

(

Y 0,n−1 − α

1− β

)2

=
1

n

n∑

r=1

(

Yr−1 − α

1− β

)2

−
(

Y 0,n−1 − α

1− β

)2

,

so that, by (6.26),

1

n

n∑

r=1

(Yr−1 − Y 0,n−1)
2 − 1

n

n∑

r=1

(Yr−1 − α

1− β
)2

P−→ 0. (6.27)

Now, using the first relation in (6.26),

(

Yr−1 − α

1− β

)2

−
⎛

⎝
r−1∑

j=1

βr−j−1εj

⎞

⎠

2

=

(−αβr−1

1− β
+ βr−1Y0

)2

+ 2

(−αβr−1

1− β
+ βr−1Y0

)

·
⎛

⎝
r−1∑

j=1

βr−j−1εj

⎞

⎠ ,

so that, by the Cauchy-Schwartz Inequality,

∣
∣
∣
∣
∣
∣
∣

n∑

r=1

(

Yr−1 − α

1− β

)2

−
n∑

r=1

⎛

⎝
r−1∑

j=1

βr−j−1εj

⎞

⎠

2
∣
∣
∣
∣
∣
∣
∣

≤
n∑

r=1

(−αβr−1

1− β
+ βr−1Y0

)2

+ 2

[(
n∑

r=1

{−αβr−1

1− β
+ βr−1Y0

}2
)]1/2

·

⎡

⎢
⎣

n∑

r=1

⎛

⎝
r−1∑

j=1

βr−j−1εj

⎞

⎠

2
⎤

⎥
⎦

1/2

,

E

∣
∣
∣
∣
∣
∣
∣

⎡

⎢
⎣

∑n
r=1(Yr−1 − α

1−β )
2

n
− 1

n

n∑

r=1

⎛

⎝
r−1∑

j=1

βr−j−1εj

⎞

⎠

2
⎤

⎥
⎦

∣
∣
∣
∣
∣
∣
∣

≤ 2α2

n(1− β)2
1− β2n

1− β2
+

2(1− β2n)

n(1− β2)
EY 2

0

+
2

n

⎡

⎢
⎣E

(
n∑

r=1

{−αβr−1

1− β
+ βr−1Y0

}2
)

· E
⎛

⎝
n∑

r=1

r−1∑

j=1

βr−j−1εj

⎞

⎠

2
⎤

⎥
⎦

1/2
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= O

(
1

n

)

+
2

n
·O(1)

⎛

⎜
⎝E

⎡

⎣
n−1∑

j=1

1− βn−j

1− β
εj

⎤

⎦

2
⎞

⎟
⎠

1/2

= O

(
1

n

)

+
2

n
· O(1)

⎡

⎣
n−1∑

j=1

(1− βn−j)2

(1− β)2
σ2

⎤

⎦

1/2

= O(n−1/2) −→ 0. (6.28)

Therefore, by Chebyshev’s inequality (with p = 1),

∑n
r=1(Yr−1 − Y 0,n−1)

2

n
− 1

n

n∑

r=1

⎛

⎝
r−1∑

j=1

βr−j−1εj

⎞

⎠

2

P−→ 0. (6.29)

Also,

E
1

n

n∑

r=1

⎛

⎝
r−1∑

j=1

βr−j−1εj

⎞

⎠

2

=
σ2

n

n∑

r=1

r−1∑

j=1

β2(r−j−1)

=
σ2

n

n∑

r=1

1− β2(r−1)

1− β2
−→ σ2

1− β2
. (6.30)

A little extra work shows that (Exercise 6.8)

1

n

n∑

r=1

⎛

⎝
r−1∑

j=1

βr−j−1εj

⎞

⎠

2

P−→ σ2

1− β2
. (6.31)

Also, from the above estimates (6.28), one gets

E

[
1

n

n∑

r=1

εr(Yr−1 − Y 0,n−1)

]2

−→ 0 as n → ∞. (6.32)

Combining (6.29), (6.31) and (6.32), we get

|β̂ − β| =
∣
∣
∣
∣
∣

1
n

∑n
r=1 εr(Yr−1 − Y 0,n−1)

1
n

∑n
r=1(Yr−1 − Y 0,n−1)2

∣
∣
∣
∣
∣

P−→ 0
σ2

1−β

= 0.

That is, β̂
P−→ β. Clearly then

α̂ = Y 1,n − β̂Y 0,n−1
P−→ α

1− β
− βα

1− β
= α.

��
Remark 6.5. To prove (6.24) one may relax the assumption of common variance of
εj by “σ2

j := Eε2j (j = 1, 2, . . . ) is a bounded sequence”.
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Remark 6.6. Suppose Yn
P−→ Y . Although this does not in general imply that

Yn
a.s.−→ Y , it is a useful fact that there exists a subsequence Ynk

(k ≥ 1), n1 <

n2 < · · · , such that Ynk

a.s.−→ Y .3

6.4 Consistency of Sample Quantiles

As a general definition, a p-th quantile of a random variableX , or of its distribution
Q, is a number c such that P (X ≤ c) ≥ p, P (X < c) ≤ p, i.e., F (c) ≥ p, F (c−) ≤ p,
where F (c−) = limx↓c (x<c) F (x) is the left-hand limit of F (x) as x ↓ c. Note that
if F is continuous at x = c, then F (c−) = F (c) but otherwise F (c−) < F (c), i.e.,
there is a jump in F at x = c, P (X = c) > 0. One may also write the requirement
as F (c) ≥ p, 1− F (c−) ≡ P (X ≥ c) ≥ 1− p.

Let X1, X2, . . . , Xn be a random sample from Q. Ordering them from the small-
est to the largest, one may arrange them as X(1) ≤ X(2),≤ · · · ≤ X(n). Note that
if we add another observation Xn+1, then the orderings (even of the first n order
statistics) generally change. For example, consider the samples {2, 7, 5} (n = 3),
and {2, 7, 5, 3} (n = 4). For the first sample X(1) = 2, X(2) = 5, X(3) = 7. When
a fourth observation is added one has X(1) = 2, X(2) = 3, X(3) = 5, X(4) = 7.
For this reason, one should write the order statistics as X(1):n, X(2):n, X(n):n, indi-
cating that this ordering is based on the first n observations. When there is little
chance of confusion, we will continue to write X(j) in place of X(j):n, keeping in
mind that for any given n, X(j) depends on n, as the sample size is increased.

Definition 6.3. For a random sample {X1, . . . , Xn} the sample p-th quantile

ξ̂p (0 < p < 1) is defined either as X([np]) or X([np]+1), where [np] is the inte-
ger part of np. One may think of (or define) the sample p-th quantile as the p-th
quantile of the empirical distribution Qn, which assigns mass 1

n to each of the
observed n points X1, X2, . . . , Xn. The empirical distribution function (d.f.) of Qn

is:
Fn(x) =

1

n
# {j : 1 ≤ j ≤ n, Xj ≤ x} (x ∈ R). (6.33)

If F is continuous then, with probability one, X(1) < X(2) < · · · < X(n), i.e., there
are no ties.

It follows from the SLLN that, for a given x, F̂n(x) → F (x) almost surely,

i.e., F̂n(x) is a strongly consistent estimator of F (x). Indeed, by the so-called

Gilvenko–Cantelli Theorem4 sup{|F̂n(x) − F (x)| : x ∈ R} → 0 almost surely as
n → ∞.

Proposition 6.5 (Consistency of Sample Quantiles). Let Xj, 1 ≤ j ≤ n,
be i.i.d. real-valued random variables with the common distribution function F .
Suppose, for a given p ∈ (0, 1), the p-th quantile ξp is uniquely defined, i.e., there

is a unique solution of F (x) = p. Then ξ̂p is a consistent estimator of ξp.

Proof. The hypothesis on F implies

F (x) < p for all x < ξp and F (x) > p for all x > ξp. (6.34)

3 See Bhattacharya and Waymire (2007, pp. 179, 180) or Billingsley (1986, p. 274).
4 See Billingsley (1986, pp. 275, 276).
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Fix any ε > 0. Then, writing Yn = Σn
j=11{Xj≤ξp−ε},

P (ξ̂p ≤ ξp − ε) = P (X([np]) ≤ ξp − ε) = P (Yn ≥ [np])

= P

(
Yn

n
− F (ξp − ε) ≥ [np]

n
− F (ξp − ε)

)

≤ P

(∣
∣
∣
∣
Yn

n
− F (ξp − ε)

∣
∣
∣
∣ ≥

[np]

n
− F (ξp − ε)

)

. (6.35)

In view of (6.34) and the fact that [np]
n → p as n → ∞ (indeed, | [np]n − p| ≤ 1

n ), it
follows that for all sufficiently large n (e.g., n ≥ 2/δ(ε))

P (ξ̂p ≤ ξp − ε) ≤ P

(∣
∣
∣
∣
Yn

n
− F (ξp − ε)

∣
∣
∣
∣ ≥

δ(ε)

2

)

, (6.36)

where
δ(ε) = p− F (ξp − ε) > 0.

By Chebyshev’s Inequality (6.5) applied to Yn/n− F (ξp − ε) = Yn/n− E(Yn/n),
one gets from (6.36) the inequality

P
(
ξ̂p ≤ ξp − ε

)
≤ var(Yn/n)

(δ(ε)/2)2
=

F (ξp − ε)(1 − F (ξp − ε))

n(δ(ε/2)2)
−→ 0 as n → ∞.

(6.37)
Similarly, writing Zn =

∑n
j=1 1{Xj≤ξp+ε},

P
(
ξ̂p > ξp + ε

)
= P (Zn < [np])

= P

(
Zn

n
− F (ξp + ε) <

[np]

n
− F (ξp + ε)

)

≤ P

(
Zn

n
− F (ξp + ε) < −δ′(ε)

)

≤ P

(∣
∣
∣
∣
Zn

n
− F (ξp + ε

∣
∣
∣
∣ > δ′(ε)

)

(6.38)

where, by (6.34),
δ′(ε) := F (ξp + ε)− p > 0.

Note that [np]
n − F (ξp + ε) < p − F (ξp + ε) = −δ′(ε). It now follows from (6.38)

that, as n → ∞,

P
(
ξ̂p > ξp + ε

)
≤ var(Zn

n )

(δ′(ε))2
=

F (ξp + ε)(1− F (ξp + ε))

n(δ′(ε))2
−→ 0. (6.39)

The inequalities (6.37) and (6.39) imply P (|ξ̂p − ξp| > ε) → 0, as n → ∞.

��
Note that ξ1/2, if it is uniquely defined, is called the median of F .

Remark 6.7. Suppose Un
P−→ U , and U2

n (n ≥ 1) are uniformly integrable i.e.,
supnE[U2

n : |Un| ≥ λ] → 0 as λ → ∞, then E(Un − U)2 → 0.5 This allows one to

sometimes derive E(Un − θ)2 → 0 from Un
P−→ θ.

5 See Bhattacharya and Waymire (2007, p. 12).
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6.5 Convergence in Distribution or in Law (or Weak
Convergence): The Central Limit Theorem

Definition 6.4. A sequence of random variables Zn (real-valued) is said to con-
verge in distribution to a probability measure P on R if

Ef(Zn) −→
∫ ∞

−∞
fdP as n → ∞ (6.40)

for all bounded real-valued continuous functions f on R. If the distribution of Zn is
Pn (i.e., Prob(Zn ∈ A) = Pn(A) for all Borel sets, A), then one also describes this
convergence as “Pn converges weakly to P”. Sometimes instead of “convergence in
distribution” one uses the terminology “convergence in law,” and uses the notation

Zn
L−→ P. (6.41)

Recall that the distribution function F of a random variable Z is defined by

F (x) = Prob(Z ≤ x) < −∞ < x < ∞. (6.42)

One may show that the convergence in distribution (6.41) is equivalent to conver-
gence of the distribution functions Fn(x) of Zn to F (x) = P ((−∞, x]) at all points
of continuity of F .

Convergence in distribution of Zn to a probability law P is also equivalent to the
convergence of characteristic functions of Zn to the characteristic function of P :

EeiξZn −→
∫ ∞

−∞
eiξzdP (z), ξ ∈ R. (6.43)

The above definitions and results extend word for word when Zn are vector-
valued.6

The most important convergence theorem in law is the following theorem, ab-
breviated as CLT.7

Proposition 6.6 (Central Limit Theorem). If Zn is a sequence of i.i.d. ran-
dom variables (or vectors) with common mean (or mean vector) zero and a finite
common variance σ2 (or dispersion matrix |Σ), then

n− 1
2 (Z1 + Z2 + · · ·+ Zn)

L−→ N(0, σ2) (or N(0, Σ)). (6.44)

Here N(0, σ2) is the Normal distribution having mean zero and variance σ2. For
convenience we allow the possibility σ2 = 0 and in this case interpret N(0, 0)
as the probability measure degenerate at 0 (which assigns probability one to the
singleton {0}). Similarly, Σ is in general a nonnegative definite matrix.

We will sometimes use the alternative notation Φ0,σ2 (or Φ0,Σ) for N(0, σ2)
(or N(0, Σ)), and denote the corresponding distribution function by Φ0,σ2 (x), and
the density function by φ0,σ2(x). According to the criterion stated immediately
after (6.42), the central limit theorem (CLT) says: if σ2 > 0.

6 See, e.g., Bhattacharya and Waymire (2007, pp. 62, 63, 86).
7 For a proof, see Bhattacharya and Waymire (2007, pp. 92, 93) or Billingsley (1986, pp. 398,
399).
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Prob

(
Z1 + Z2 + · · ·+ Zn

n
1
2

≤ x

)

−→ Φ0,σ2(x) =
1√
2πσ2

∫ x

−∞
e−y2/2σ2

dy (6.45)

for all x. An old result of Polya implies that actually the convergence in (6.45) is
uniform over all x:

sup
x

∣
∣
∣
∣P

(
Z1 + · · ·+ Zn√

n
≤ x

)

− Φ0,σ2(x)

∣
∣
∣
∣ −→ 0 as n → ∞. (6.46)

For a precise statement and proof of Polya’s Theorem, see the Appendix to this
chapter (Appendix D).

An immediate application of the CLT is that the rth sample moment (Xr
1 +

· · ·+Xr
n)/n is asymptotically normal if EX2r

1 < ∞. (Here r is a positive integer).
The italicized statement means:

√
n

(
1

n

n∑

i=1

Xr
i − EXr

1

)
L−→ N(0, σ2), (6.47)

where σ2 = var(Xr
1 ) = EX2r

1 − (EXr
1 )

2.

Remark 6.8. The law of large numbers shows that for a sequence of i.i.d. random
variables Zn,

1
n

∑n
i=1 Zi � μ (= EZ1), i.e., the difference between the two sides in

� goes to zero as n → ∞. Under the additional assumptionEZ2
1 < ∞, Chebyshev’s

Inequality strengthens this approximation by showing that the difference is of the
order of n

1
2 in probability:

1

n

n∑

i=1

Zi − μ = Op

(
1√
n

)

. (6.48)

This means that, given ε < 0 there exists A > 0 such that

Prob

(∣
∣
∣
∣
∣

1

n

n∑

i=1

Zi − μ

∣
∣
∣
∣
∣
>

A√
n

)

< ε (6.49)

for all sufficiently large n. The CLT is of course a more precise statement
than (6.48) [or (6.49)]. In particular, it provides a computation of the left side
of (6.49) as

2Φ0,1

(

−A

σ

)

+ δn =
2√
2π

∫ −A/σ

−∞
e−y2/2dy + δn, (6.50)

where δn → 0 as n → ∞ (uniformly w.r.t. A). (See Exercise 6.12.)

Before we may consider more important applications of the CLT we need some
useful elementary facts.

First, we shall use the notation

Zn
L−→ Z (6.51)

sometimes, in place of (6.41), and say that Zn converges in distribution (or law) to
Z, with the understanding that Z is a random variable (or random vector) whose
distribution is P . Although the definition (6.41) does not imply (and in most
situations of interest it is not true) that there exists a limiting random variable in
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the sense of convergence in probability or a.s. convergence, the notation (6.51) and
the corresponding language has some advantage—as the following results show.

Proposition 6.7. Suppose Zn
L−→ Z and g is a continuous function. Then

g(Zn)
L−→ g(Z).

Proof. Use Definition 6.4 (6.40) (Exercise 6.14). ��
Proposition 6.8 (Slutsky’s Lemma). Suppose Un, Vn,Wn (n ≥ 1) are three

sequences of real-valued random variables such that Un
P−→ a, Vn

P−→ b, Wn
L−→

W . Let h(u, v, w) be a function which is continuous on [a− δ1, a+ δ1]× [b− δ2, b+

δ2]× (−∞,∞) for some δ1 > 0, δ2 > 0. Then h(Un, Vn,Wn)
L−→ h (a, b,W ).

Proof. We will first prove that h(Un, Vn,Wn)−h(a, b,Wn)
P−→ 0. The desired result

would follow from this, using the continuity of w → h(a, b, w) (see Proposition 6.4).
Fix ε > 0 and θ > 0, however small. In view of the convergence in distribution of
Wn there exists A = A(θ) such that P (|Wn| > A) < θ/3 for all n (Exercise 6.15).
In view of (uniform) continuity of h on the compact set [a− δ1, a+ δ1]× [b− δ2, b+
δ2] × [−A,A], there exists δ = δ(ε) > 0 such that |h(u, v, w) − h(a, b, w)| ≤ ε for

all (u, v, w) satisfying |u − a| ≤ δ, |v − b| ≤ δ and |w| ≤ A. Now since Un
P−→ a,

Vn
P−→ b, there exists a positive integer n(θ, ε) such that

P (|Un − a| > δ) <
θ

3
, P (|Vn − b| > δ) <

θ

3
∀ n ≥ n(θ, ε). (6.52)

Hence

P (|h(Un, Vn,Wn)− h(a, b,Wn)| > ε)

≤ P (|Un − a| > δ) + P (|Vn − b| > δ) + P (|Wn| > A)

+P ({|Un − a| ≤ δ, |Vn − b| ≤ δ, |Wn|
≤ A, |h(Un, Vn,Wn)− h(a, b,Wn)| > ε}) (6.53)

≤ 3
θ

3
= θ,

since the set within curly brackets in (6.53) is empty and has, therefore, probability
zero. ��
Remark 6.9. Proposition 6.8 easily extends to the case of k sequences Uni

P−→,

ai (i = 1, . . . , k), Wn
L−→ W R

p-valued, h(u1, . . . , uk, w) continuous on O ×
R

p, where O is an open neighborhood of (a1, . . . , ak), h(Un1, . . . , Unk,Wn)
L−→

h(a1, . . . , ak,W ). Indeed, the function h may also be vector-valued.

The following simple result is widely used in large sample theory.

Theorem 6.1. Suppose Wn is a sequence of random variables and g(n) a sequence

of constants, g(n) ↑ ∞, such that g(n)(Wn − μ)
L−→ V . Then for every function

H which is continuously differentiable in a neighborhood of μ, one has

g(n)[H(Wn)−H(μ)]
L−→ H ′(μ)V. (6.54)

(b)
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Proof. By the mean value theorem there exists μ∗ between μ and Wn such that
the left side of (6.54) is

g(n)(Wn − μ)H ′(μ∗) = g(n)(Wn − μ){H ′(μ) + op(1)} (6.55)

where op(1) → 0 in probability. Note that this is a consequence of the fact that

Wn − μ
P−→ 0 [since g(n) ↑ ∞ and g(n)(Wn − μ)

L−→ V (Exercise 6.13(c))]. The
convergence (6.54) now follows from Proposition 6.8. ��

The most commonly used consequence of Theorem 6.1 is the following, called
the delta method.

Corollary 6.2 (The Delta Method). Suppose Zj, j ≥ 1, are i.i.d. random
variables with common mean and variance μ and σ2 < ∞. If H is continuously
differentiable in a neighborhood of μ, then

√
n[H(Z)−H(μ)]

L−→ H ′(μ)V L
= N(0, (H ′(μ))2σ2), (6.56)

where Z = Zn =
∑n

j=1 Zj/n, and V is N(0, σ2).

For future reference and notational convenience, the following definition is use-
ful.

Definition 6.5. A statistic T = Tn (i.e., a function of observations X1, . . . , Xn)

is said to be asymptotically Normal with mean θ and variance σ2

n , or AN(θ, σ
2

n ),

if
√
n(Tn − θ)

L−→ N(0, σ2). A vector valued Tn is said to be AN(θ, 1
nΣ) if

√
n(Tn − θ)

L−→ N(0, Σ).

Remark 6.10. Corollary 6.2 (and, indeed, Theorem 6.1) extends to the case where
Zj , j ≥ 1, are i.i.d. k-dimensional random vectors with mean vector μ and covari-
ance matrix Σ = ((σij)), while H is real-valued and continuously differentiable (as
a function of k variables) in a neighborhood of μ. In this case

√
n[H(Z)−H(μ)]

L−→ Grad H(μ) · V L
= N(0,

∑k
i,j=1 ijσij), (6.57)

with i := (DiH)(μ) = (∂H(z)/∂zi)z=μ, and V is N(0, σ).

Example 6.5 (t-Statistic). Let Yn be a sequence of i.i.d. one-dimensional random
variables and consider the t-statistic

tn =

√
n(Y − μ)

[(
∑n

j=1 Y
2
j − nY

2
)/(n− 1)]

1
2

=

√
n− 1(Y − μ)

( 1
n

∑n
1 Y

2
j − Y

2
)

1
2

=

√
n− 1

n
tn, tn =

√
n(Y − μ)

( 1n
∑n

1 Y
2
j − Y

2
)

1
2

. (6.58)

Here EYn = μ, varYn = σ2 > 0 (finite). Note that

√
n(Y − μ)

L−→ N(0, σ2),

1

n

n∑

1

Y 2
j − Y

2 a.s.−→ EY 2
1 − μ2 = σ2 > 0,

so that Proposition 6.8 applies to show that tn
L−→ N(0, 1).
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Example 6.6 (Sample Correlation Coefficient). Let (Xj , Yj), j ≥ 1, be i.i.d. two-
dimensional random vectors with EXj = μx, EYj = μy, varXj = σ2

x > 0, varYj =
σ2
y > 0, cov(Xj , Yj) = σxy. The population coefficient of correlation is ρ = ρxy =

σxy/σxσy. The sample coefficient correlation based on n observations is

r = rxy =
1
n

∑n
j=1(Xj −X)(Yj − Y )

[
1
n

∑n
j=1(Xj −X)2

]1/2 [
1
n

∑n
j=1(Yj − Y )2

]1/2 . (6.59)

Since the sample and population correlation coefficients are invariant under trans-
lation and scale change, we will replace Xj and Yj in (6.59) by Uj = (Xj −μx)/σx
and Vj = (Yj − μy)/σy , respectively. Then

r = ruv =
1
n

∑n
j=1(Uj − U)(Vj − V )

[
1
n

∑n
j=1(Uj − U)2

]1/2 [
1
n

∑n
j=1(Vj − V )2

]1/2

=
1
n

∑n
j=1 UjVj − U V

[
1
n

∑n
j=1 U

2
j − U

2
]1/2 [

1
n

∑n
j=1 V

2
j − V

2
]1/2 ,

ρ = ρuv = E UjVj . (6.60)

We will show that, under the assumption E U4
j < ∞ and E V 4

j < ∞, one has

√
n(r − ρ)

L−→ N(0, σ2), (6.61)

for some σ2 > 0, to be computed later. We will apply the delta method in the
form (6.57) with k = 5 and

Zj = (Uj , Vj , U
2
j , V

2
j , UjVj) (j ≥ 1), μ = EZj = (0, 0, 1, 1, ρ),

Z =

(

U, V ,
1

n

n∑

1

U2
j ,

1

n

n∑

1

V 2
j ,

1

n

n∑

1

UjVj

)

, (6.62)

and

H(z1, z2, z3, z4, z5) =
z5 − z1z2

(z3 − z21)
1
2 (z4 − z22)

1
2

, (6.63)

defined and continuously differentiable on the open set (⊂ R
5)

{
(z1, z2, z3, z4, z5) : z3 > z21 , z4 > z22

}
.

Note that H(Z) = r and H(μ) = ρ, so that
√
n(r − ρ) =

√
n[H(Z) − H(μ)]. To

apply (6.57) we need to compute the five partial derivatives of H evaluated at μ.
It is simple to check

1 =

(
∂H

∂z1

)

z=μ

= 0, 2 =

(
∂H

∂z2

)

z=μ

= 0, 3

(
∂H

∂z3

)

z=μ

= −1

2
ρ,

4 =

(
∂H

∂z4

)

z=μ

= −1

2
ρ, 5 =

(
∂H

∂z5

)

z=μ

= 1. (6.64)
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Then, since 1 = 0 = 2,

σ2 =

5∑

i,j=1

ijσij =

5∑

i,j=3

ijσij . (6.65)

Now

σ33 = var(U2
j ) = EU4

j − 1, σ44 = var(V 2
j ) = EV 4

j − 1,
σ55 = var(UjVj) = EU2

j V
2
j − ρ2, σ34 = σ43 = cov(U2

j , V
2
j ) = EU2

j V
2
j − 1,

σ35 = σ53 = cov(U2
j , UjVj) σ45 = σ54 = EV 3

j Uj − ρ.
= EU3

j Vj − ρ,

(6.66)

From (6.64) to (6.66) we get

σ2 =

(

−1

2
ρ

)2

(EU4
j − 1) +

(

−1

2
ρ

)2

(EV 4
j − 1) + 12(EU2

j V
2
j − ρ2)

+2

(

−1

2
ρ

)2

(EU2
j V

2
j − 1) + 2

(

−1

2
ρ

)

(1)(EU3
j Vj − ρ)

+2

(

−1

2
ρ

)

(1)(EV 3
j Uj − ρ)

= ρ2

[
EU4

j

4
+

EV 4
j

4
+

EU2
j V

2
j

2

]

− ρ
[
EU3

j Vj + EV 3
j Uj

]
+ EU2

j V
2
j . (6.67)

In particular, if (Xj , Yj) are normal, then (Exercise 6.16)

σ2 = ρ2
[
3

4
+

3

4
+

1

2
+ ρ2

]

−ρ[3ρ+3ρ]+1+2ρ2 = 1−2ρ2+ρ4 = (1−ρ2)2, (6.68)

using the facts EU2 = EV 2 = 1, EU4 = EV 4 = 3, the conditional distribution
of U , given V , is N(ρV, 1 − ρ2) and, similarly, the conditional distribution of V ,
given U , is N(ρU, 1− ρ2).

Remark 6.11. If one attempts to derive (6.61) directly without using the delta
method, then one arrives at

√
n(r − ρ) =

√
n
[
1
n

∑n
j=1(UjVj − ρ)− U V

]

[
1
n

∑n
j=1(Uj − U

2
)
]1/2 [

1
n

∑n
j=1(Vj − V )2

]1/2

−√
nρ

⎛

⎜
⎝1 − 1

[
1
n

∑n
j=1(Uj − U)2

]1/2 [
1
n

∑n
j=1(Vj − V )2

]1/2

⎞

⎟
⎠ .

(6.69)

Using the fact that
√
n U V

P−→ 0, and the denominator of the first term on the
right in (6.69) converges to 1 in probability, one arrives at the fact that this term
converges in distribution to N(0, EU2

1V
2
1 − ρ2). One may similarly prove that the

second term on the right converges in distribution to some Normal distribution
N(0, δ), say. However, from these facts alone one can not conclude convergence
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of the sum to a Normal law and/or derive the asymptotic variance of
√
n(r − ρ).

For problems such as these, Efron’s, percentile bootstrap method for estimating
the distribution of the statistic is very effective (see Chap. 9). Diaconis and Efron
(1983) may be consulted for an example.

6.6 Asymptotics of Linear Regression

Consider the semiparametric regression model described in Example 6.3, Sect. 6.3.
Write

bn =

⎡

⎣
n∑

j=1

(Xj −X)2

⎤

⎦

1
2

. (6.70)

We will first prove that

bn(β̂ − β) ≡
⎛

⎝
n∑

j′=1

(Xj′ −X)2

⎞

⎠

1
2

(β̂ − β)
L−→ N(0, σ2) as n → ∞, (6.71)

if

δn := max
1≤j≤n

(Xj −X)2
∑n

j′≤1(Xj′ −X)2
−→ 0 as n → ∞. (6.72)

Now the left side of (6.71) may be expressed as [see (6.14)]

n∑

j=1

εj,n, εj,n =:
(Xj −X)εj

(
∑n

j′=1(Xj′ −X)2)
1
2

, (6.73)

so that

Eεj,n = 0 Eε2j,n =
(Xj −X)2

∑n
j′=1(Xj′ −X)2

σ2 ≤ δnσ
2,

n∑

j=1

Eε2j,n = σ2. (6.74)

By the Lindeberg central limit theorem (see Appendix D), it is enough to prove
that for every η > 0,

γn := E

n∑

j=1

ε2j,n1[|εj,n|>η] −→ 0 as n → ∞. (6.75)

But the expectation on the left satisfies

γn ≤
n∑

j=1

(Xj −X)2
∑n

j′=1(Xj′ −X)2
Eε2j1[ε2j>η2/δn]

= Eε211[ε21>η2/δn] −→ 0. (6.76)

Note that 1[ε21>η2/δn]
a.s.−→ 0 since η2/δn → ∞, and ε211[ε21>η2/δn] ≤ ε21, so that one

may apply Lebesgue’s dominated convergence theorem to obtain the last relation
in (6.76). Using (6.16) one may write
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an(α̂− α) =

n∑

j=1

ε̃j,n (6.77)

where

an =

{
1

n
+

X
2

∑n
j=1(Xj −X)2

}− 1
2

= n
1
2

[∑n
j=1(Xj −X)2
∑n

j=1 X
2
j

] 1
2

=
bn

m
1
2
2

, (6.78)

so that

ε̃j,n = an

{
−(Xj −X)X
∑n

j=1(Xj −X)2
+

1

n

}

εj =
1

m
1
2
2

{−(Xj −X)X

bn
+

bn
n

}

εj . (6.79)

Here

m2 =
1

n

n∑

j=1

X2
j . (6.80)

Then ε̃j,n, 1 ≤ j ≤ n, are independent,

Eε̃j,n = 0, ε̃2j,n ≤ 2a2n

⎧
⎪⎨

⎪⎩

(Xj −X)2X
2

[∑n
j=1(Xj −X)2

]2 +
1

n2

⎫
⎪⎬

⎪⎭
ε2j = θj,nε

2
j , say,

n∑

j=1

Eε̃2j,n = σ2. (6.81)

Now, noting that nX
2 ≤∑n

j=1 X
2
j , one has

θj,n =
2nX

2
(Xj −X)2

(∑n
j=1(Xj −X)2

)(∑n
j=1 X

2
j

) +
2
∑n

j=1(Xj −X)2

n
∑n

j=1 X
2
j

≤ 2δn +
2

n
−→ 0, (1 ≤ j ≤ n);

n∑

1

θjn =
2nX

2

∑n
j=1X

2
j

+
2
∑n

j=1(Xj −X)2
∑n

j=1 X
2
j

≤ 2 + 2 = 4. (6.82)

Hence

E

n∑

j=1

ε̃2j,n1{ε̃2j,n>η2} ≤ E

n∑

j=1

θj,nε
2
j1{ε2j>η2/(2δn+

2
n )}

=

n∑

j=1

θj,nEε211{ε21>η2/(2δn+
2
n )} −→ 0 as n → ∞,(6.83)

for every η > 0. Hence, by the Lindeberg CLT,

an(α̂− α)
L−→ N(0, σ2), as n → ∞. (6.84)
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From (6.72), (6.84) one can construct confidence intervals for α and β, separately,
for any desired asymptotic level (or, confidence coefficient), provided a consistent
estimator of σ2 can be found. Such an estimator is

σ̂2 =
1

n− 2

n∑

j=1

(
Yj − α̂− β̂Xj

)2
. (6.85)

To see this, let Zn =
∑n

j=1(Xj −X)εj and express the right side of (6.85) as

1

n− 2

n∑

j=1

[

−Zn

b2n
(Xj −X) + εj − ε

]2
=

1

n− 2

⎡

⎣Z
2
n

b2n
+

n∑

j=1

(εj − ε)2 − 2
Z2
n

b2n

⎤

⎦

=
1

n− 2

n∑

j=1

ε2j −
n

n− 2
ε2 − Z2

n

b2n(n− 2)
. (6.86)

By the SLLN, the first two terms on the extreme right side converge to σ2and
0 a.s.; also, EZ2

n/(b
2
n(n − 2)) = σ2/(n − 2) → 0, so that the last term in (6.86)

converges in probability to 0. Hence

σ̂2 −→ σ2 in probability, as n → ∞. (6.87)

In addition, σ̂2 is an unbiased estimator of σ2. For

Eσ̂2 =
1

n− 2
E

⎡

⎣
n∑

j=1

(εj − ε)2 − Z2
n

b2n

⎤

⎦ =
1

n− 2

[
(n− 1)σ2 − σ2

]

= σ2. (6.88)

Thus

α̂± σ̂

an
z1− θ

2
, β̂ ± σ̂

bn
z1− θ

2
(6.89)

are confidence intervals for α and β, each of asymptotic confidence coefficient 1−θ.
Here zα is the α-th quantile of the standard Normal distribution N(0, 1),—that is,
the N(0, 1)—probability of this set of values larger than zθ/2 is θ/2. Although, a
Bonferroni-type confidence region for the pair (α, β) may be given by the rectangle

{

(α, β) : α̂− σ̂

an
z1− θ

4
≤ α ≤ α̂+

σ̂

an
z1− θ

4
, β̂ − σ̂

bn
z1− θ

4
≤ β ≤ β̂ +

σ̂

bn
z1− θ

4

}

,

(6.90)
having an asymptotic confidence coefficient of at least (1 − θ), for a better and
more precise confidence region for (α, β), we need to look at the joint distribution

of (α̂, β̂). The k × k identity matrix is denoted by Ik.

Theorem 6.2 (Asymptotic Joint Distribution of Regression Coeffi-
cients). Consider the linear regression model (6.12) with i.i.d. errors εj satisfying

Eεj = 0, 0 < Eε2j ≡ σ2 < ∞. If the quantity δn in (6.72) goes to zero, then (α̂, β̂)
is asymptotically Normal, i.e.,

(Un, Vn)
′ ≡ Γn(an(α̂− α), bn(β̂ − β))′ L−→ N

((
0

0

)

, σ2I2

)

, (6.91)
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where Γn = ((γii′ )) is the symmetric positive definite matrix satisfying

Γ 2
n =

⎡

⎣
1 −X

m
1/2
2

−X

m
1/2
2

1

⎤

⎦

−1

≡ 1

1− X
2

m2

⎡

⎣
1 X

m
1/2
2

X

m
1/2
2

1

⎤

⎦ . (6.92)

Proof. Note that the covariance matrix of (an(α̂− α), bn(β̂ − β))′ is

Σn = σ2

⎡

⎣
1 −X

m
1/2
2

−X

m
1/2
2

1

⎤

⎦ , (6.93)

so that the covariance matrix of the left side of (6.91) is σ2I2, where I2 is the

2× 2 identity matrix. Let a, b be arbitrary reals. We will show that aUn+ bVn
L−→

N(0, σ2). For this write

aUn + bVn =

n∑

j=1

ζj,n, ζj,n := (aγ11 + bγ21)ε̃j,n + (aγ12 + bγ22)εj,n (6.94)

Then ζj,n are independent, Eζj,n = 0, and [see (6.74), (6.90)]

Eζ2j,n ≤ 2σ2

[

(aγ11 + bγ21)
2

(

2δn +
2

n

)

+ (aγ12 + bγ22)
2
δn

]

≤ 2σ2

(

2δn +
2

n

) ∣
∣
∣
∣Γn

(
a

b

)∣
∣
∣
∣

2

−→ 0 as n → ∞. (6.95)

To prove the convergence to 0 in (6.95), check that

γ11 = γ22 =
1

2
√
1− X

2

m2

[√

1 +
X

m
1/2
2

+

√

1− X

m
1/2
2

]

,

γ12 = γ21 =
X

2
√
1− X

2

m2

[√

1 +
X

m
1/2
2

−
√

1− X

m
1/2
2

]

. (6.96)

Now it is easy to verify (6.95). Also,
∑n

j=1 Eζ2j,n = σ2(a2 + b2), using the

fact that the covariance matrix of (Un, Vn)
′ is ΓnΣnΓn = σ2I2. The proof of∑n

j=1Eζ2j,n1{ζ2
j,n>η2} → 0, as n → ∞, for every η > 0, now follows exactly as

in (6.76), or (6.83). Thus for all (a, b), aUn + bVn
L−→ N(0, (a2 + b2)σ2). By the

so-called Cramér–Wold device,8 it now follows that (Un, Vn)
′ L−→ N

((
0
0

)
, σ2I2

)
.

�

It follows from Theorem 6.2 that, if (6.74) holds, a confidence region for (α, β),
with asymptotic confidence coefficient 1− θ, is given by the ellipse (Exercise 6.21).

Cn :=

{

(α, β) : p(an(α̂− α))2

+q(bn(β̂ − β))2 + γanbn(α̂− α)(β̂ − β) ≤ σ̂2χ2
1−θ(2)

}

, (6.97)

8 See Bhattacharya and Waymire (2007, p. 105) or Billingsley (1986, p. 397).
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where

p =
1

1− X
2

m2

=
m2

b2n
n

= q, r =
2 X

m
1/2
2

1− X
2

m2

, (6.98)

and χ2
α(2) is the α-th quantile of the chi square distribution with 2 degrees of

freedom.

Remark 6.12. In Sect. 6.9, Theorem 6.2 is extended to the case of multiple linear
regression, allowing more than one explanatory real-valued variable X . It is also
shown there in particular that the condition δn → 0 in (6.72) is also necessary

from the asymptotic Normality of (α̂, β̂).

Remark 6.13 (Parametric Linear Regression with Normal Errors). Assume that

εj ’s in (6.12) are i.i.d. N(0, σ2). Then the least squares estimators α̂, β̂ above
are also the maximum likelihood estimators of α, β. It follows, from the fact that
α̂ − α, β̂ − β are linear combinations of εj ’s, that they are Normal, (individually
and jointly, with zero means and variances given by (6.15), (6.16), and covariance
−σ2X/b2n. Note that this is true for all n ≥ 3, assuming Xj ’s (1 ≤ j ≤ n) are not
all the same:

(
α̂− α, β̂ − β

)′ L
= N

((
0

0

)

, σ2

[
1
n + X

2

b2n
−X

b2n

−X
b2n

b−2
n

])

(6.99)

From the theory of Linear Models in Part I, Sect. 5.9, it is known that σ̂2 is
independent of (α̂, β̂), and that the left side of (6.91) has the Normal distribution
on the right side for all n ≥ 3. In particular, the quadratic form appearing on the
left of the inequality within curly brackets in (6.97) is σ2-times chi-square random
variable with degrees of freedom 2, and

D̃n :=

{

(α, β) : n
[
α̂− α+ (β̂ − β)X

]2
+ b2n(β̂ − β)2 ≤ 2σ̂2F1−θ(2, n− 2)

}

(6.100)

is a confidence region for (α, β) of exact confidence coefficient 1− θ, for all n ≥ 3
(assuming Xj, 1 ≤ j ≤ n, are not all the same) (Exercise 6.22). Here Fα(r, s) is the
α-th quantile of the F -distribution with numerator d.f. r and denominator d.f. s.

Example 6.7 (A Heteroscedastic Linear Regression Model with Known Error Vari-
ances). Consider the linear regression

Yj := α+ βXj + εj (1 ≤ j ≤ n),

εj ’s are independent,

Eεj = 0, 0 < σ2
j = Eε2j < ∞. (6.101)

Assume that σ2
j are known (1 ≤ j ≤ n). If one also assumes that εj ’s are Normal

N(0, σ2
j ), then the M.L.E.’s α̂, β̂ are the solutions of

n∑

j=1

1

σ2
j

(Yj − α− βXj) = 0,

n∑

j=1

1

σ2
j

Xj(Yj − α− βXj) = 0. (6.102)
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Rewrite these as
n∑

j=1

1

σ2
j

(
Yj − {α+ βXω} − β{Xj −Xω}

)
= 0,

n∑

j=1

1

σ2
j

Xj

(
Yj − {α− βXω} − β{Xj −Xω}

)
= 0, (6.103)

where Xω is the weighted mean of Xj (1 ≤ j ≤ n),

Xω =

∑n
j=1

1
σ2
j
Xj

∑n
j=1

1
σ2
j

. (6.104)

Writing α+ βXω = δ, one obtains

δ̂ = Y ω ≡
∑n

j=1
Yj

σ2
j∑n

j=1
1
σ2
j

, β̂ =

∑n
1 (Yj − Y ω)Xj/σ

2
j

∑n
1 (Xj −Xω)Xj/σ2

j

, (6.105)

α̂ = δ̂ − β̂Xω = Y ω − β̂Xω. (6.106)

Note that

β̂ =

∑n
1 Yj(Xj −Xω)/σ

2
j

∑n
1 Xj(Xj −Xω)/σ2

j

= β +

n∑

j=1

(Xj −Xω)/σ
2
j

∑n
1 Xj(Xj −Xω)/σ2

j

εj ,

δ̂ = α+ βXω +

n∑

j=1

1/σ2
j∑n

j=1 1/σ
2
j

εj

= δ +

n∑

j=1

1/σ2
j∑n

j=1 1/σ2
j

εj . (6.107)

Thus, for Normal εj ’s, (δ̂, β̂)
′ is Normal N

((
δ
β

)
, Σ̃
)
, where Σ̃ = ((σ̃ii′ )) is given

by

σ2
δ̂
= σ̃11 =

⎛

⎝
n∑

j=1

1

σ2
j

⎞

⎠

−1

, σ2
β̂
= σ̃22 =

(
n∑

1

(Xj −Xω)
2/σ2

j

)−1

,

σ̃12 = σ̃21 = 0. (6.108)

Also, (α̂, β̂)′ is Normal N
((

α
β

)
, Σ
)
with Σ = ((σii′ )), given by

σ11 = σ̃11 +X
2

ωσ̃22, σ22 = σ̃22, σ12 = σ21 = −Xωσ̃22. (6.109)

Consider next the general case (6.101), εj ’s not necessarily Normal, but σ2
j (1 ≤

j ≤ n) are known. Writing the weighted least squares estimators as

δ̂ = δ +

n∑

1

ωjεj , β̂ = β +

n∑

1

γjεj , ωj =

1
σ2
j∑n

1
1
σ2
j

. (6.110)

one has
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σ−1

δ̂
(δ̂ − δ) =

n∑

1

εj,n, σ−1

β̂
(β̂ − β) =

n∑

1

ξj,n,

εj,n =

⎧
⎪⎪⎨

⎪⎪⎩

1
σ2
j

(∑n
1

1
σ2
j

) 1
2

⎫
⎪⎪⎬

⎪⎪⎭

εj , ξj,n =

(Xj−Xω)

σ2
j

[∑n
1 (Xj −Xω)2/σ2

j

] 1
2

εj. (6.111)

Note first that εj,n (1 ≤ j ≤ n) are independent, and

Eεj,n = 0, Eε2j,n = (1/σ2
j )/

n∑

1

1/σ2
j = ωj,

n∑

j=1

Eε2j,n = 1. (6.112)

If

(i) εj/σj (j = 1, 2, . . . ) are uniformly integrable and

(ii) θn := max{ωj : 1 ≤ j ≤ n} −→ 0, (6.113)

then it is simple to check that the Lindeberg conditions hold for the (triangular)
sequence {εj,n : 1 ≤ j ≤ n, n ≥ 1} (Exercise 6.23). Hence, if (6.20) holds,

σ−1

δ̂
(δ̂ − δ)

L−→ N(0, 1). (6.114)

Similarly, if

δ̃n :=
max

{
(Xj −Xω)

2/σ2
j : 1 ≤ j ≤ n

}

∑n
1 (Xj −Xω)2/σ2

j

−→ 0, (6.115)

then one can show that (Exercise 6.23)

σ−1

β̂
(β̂ − β)

L−→ N(0, 1). (6.116)

More generally, if (6.20), (6.115) hold, then (Exercise 6.23)

(
σ−1

δ̂
(δ̂ − δ)

σ−1

β̂
(β̂ − β)

)
L−→ N

((
0

0

)

, I2

)

. (6.117)

Just as argued in Remark 6.12 in the case of homoscedastic linear regres-
sion (6.115), for the present heteroscedastic case, a confidence region for (α, β)
with asymptotic confidence coefficient 1− θ is given by the ellipse (Exercise 6.23)

D̃n :=

{

(α, β) : (σ2
δ̂
)−1{(α̂− α) + (β̂ − β)Xω}2 +

(
σ2
β̂

)−1

(β̂ − β)2 ≤ χ2
1−θ(2)

}

.

(6.118)

For an application, consider the commonly arising problem9 of estimating the
postulated relationship D = α + βT−1 between the diffusion coefficient D of a
substance in a given medium and the temperature T of the medium (Ito and
Ganguly 2006). Under isothermal conditions at each of temperatures T1, . . . , Tn,

9 Communicated by Professor Jiba Ganguly, University of Arizona.
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the diffusion coefficient D is estimated in n independent experiments, perhaps
by observing concentration profiles. These experiments also yield estimates of the
standard deviations σj of the estimates yj of Dj (1 ≤ j ≤ n). Writing x = T−1,
one then has the model (6.101).

Remark 6.14. Suppose that σ2
j in (6.101), is known up to a positive scalar, i.e.,

σ2
j = η2jσ

2, where η2j is known (1 ≤ j ≤ n), but σ2 > 0 is not. For example, one

may postulate that σ2
j is proportional toXj (for a positive explanatory variable), in

which case σ2
j = Xjσ

2(η2j = Xj). If the εj ’s are also Normal, then the Eqs. (6.102)–

(6.107), (6.110), all hold if σ2
j is replaced by η2j . For the variances and covariances

in (6.108), (6.109), a multiplier σ2 is to be used to each of σ̃ii′ , σii′ . If εj’s are
not necessarily Normal, the arguments leading to (6.12), (6.15), (6.117) remain
the same. However, for statistical inference using the CLT one needs to have a
consistent estimator of σ2. This is given by

σ̂2 =
1

n− 2

n∑

j=1

(Yj − α̂− β̂Xj)
2/η2j . (6.119)

First note that σ̂2 is unbiased (Exercise 6.24). Next

σ̂2 =
1

n− 2

n∑

j=1

1

η2j

[
δ̂ − δ + (β̂ − β)(Xj −Xω)− εj

]2

=
1

n− 2

⎛

⎝
n∑

j=1

1

η2j

⎞

⎠ (δ̂ − δ)2 +
1

n− 2
(β̂ − β)2

n∑

1

(Xj −Xω)
2/η2j

+
1

n− 2

n∑

j=1

ε2j/η
2
j −

2

n− 2
(δ̂ − δ)

n∑

j=1

εj/η
2
j

− 2

n− 2
(β̂ − β)

n∑

j=1

εj(Xj −Xω)/η
2
j −

1

n− 2
(δ̂ − δ)(β̂ − β)

n∑

j=1

(Xj −Xω)/η
2
j

=
σ2

n− 2
σ−2

δ̂
(δ̂ − δ)2 +

σ2

n− 2
σ−2

β̂
(β̂ − β)2 +

1

n− 2

n∑

j=1

ε2j/η
2
j

− 2σ2

n− 2
σ−2

δ̂
(δ̂ − δ)2 − 2σ2σ−2

β̂

(β̂ − β)2

n− 2
− 2σ2

n− 2
σ−1

δ̂
σ1
β̂
(δ̂ − δ)(β̂ − β).

(6.120)

Since σ−1

δ̂
(δ̂ − δ)

L−→ N(0, 1), σ−1

β̂
(β̂ − β)

L−→ N(0, 1), these quantities

are bounded in probability. Hence all the terms on the extreme right of (6.120)
go to zero in probability, except for the term 1

n−2

∑n
j=1 ε

2
j/η

2
j = Jn, say. Now

Eε2j/η
2
j = σ2. So if either εj/ηj are i.i.d. (as in the Normal case), or if their

variances are bounded, i.e.,

sup
j

E (εj/ηj)
4
< ∞, (6.121)

then Jn converges in probability to σ2. Hence σ̂2 is an unbiased consistent estima-
tor of σ2 if, in addition to (6.113) and (6.115), (6.121) holds. In particular, it then
follows that a confidence region for (α, β) with asymptotic confidence coefficient
1− θ is given by the modified version of (6.118) obtained by replacing σ2 by σ̂2 as
given in (6.119), provided (6.113), (6.115), (6.121) hold.
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The estimates in Example 6.7 are special cases of what are called weighted least
squares estimates.

Remark 6.15. If one simply assumes (6.101) and that the εj ’s are uncorrelated
(instead of being independent), then the OLS estimator (6.14) is unbiased with
variance

∑
[(Xj −X)2σ2

j /
∑

(Xj −X)2]. If the latter goes to zero as n → ∞, then
the OLS is a consistent estimator of β.

Remark 6.16 (Confidence Region for Regression Lines). Given a confidence region
D for (α, β) with (asymptotic) confidence coefficient 1 − θ, the set L of lines
y = a + bx with (a, b) ∈ D is a confidence region for the true regression line
y = α + βx with (asymptotic) confidence coefficient 1 − θ. However, for a given

x, the confidence bound for the regression is α̂ + β̂x ± z1− θ
2
SE(α̂ + β̂x), where

the standard error SE(α̂ + β̂x) is obtained from (6.99) with σ2 replaced by σ̂2

[see (6.85)]. By a confidence band (with confidence level 1− θ) one usually means
the regions between the upper and lower curves constructed as above (for all x).

The asymptotic probability that this confidence band contains the entire re-
gression line is in general smaller than 1− θ. On the other hand, an application of
Scheffé’s method of multiple comparison10 provides a confidence band containing
the regression line with a probability at least 1 − θ. Scheffé’s method is based
on the simple fact that for a random vector U and a constant c > 0, the events
{‖U‖2 ≤ c2} and {〈U,γ〉2 ≤ ‖γ‖2c2 ∀ vectors γ} are equivalent and, therefore,
have the same probability.

Proposition 6.9 (Simultaneous Confidence Region for Regression). Un-
der the hypothesis of Theorem 6.2, the asymptotic probability that

|α̂+ β̂x− (α+ βx)| ≤ σ̂

bn

[
m2 − 2xX + x2

] 1
2

√
χ2
1−θ(2) for all x (6.122)

is at least 1− θ.

Proof. By (6.93) or (6.16), the covariance matrix of (α̂, β̂) is

Vn =
σ2

b2n

⎡

⎣
m2 −X

−X 1

⎤

⎦ ,

and, by Theorem 6.2, Q ≡ (α̂ − α, β̂ − β)V −1
n (α̂ − α, β̂ − β)′ converges in dis-

tribution to the chi-square distribution with two degrees of freedom, as n → ∞.

Now Q = ‖U‖2 where U = V
−1/2
n (α̂ − α, β̂ − β)′, V 1/2

n being the symmetric

positive definite matrix such that V
1/2
n V

1/2
n = Vn and V

−1/2
n = (V

1/2
n )−1. One

has P (‖U‖2 ≤ χ2
1−θ(2)) −→ 1 − θ as n → ∞. Now {‖U‖2 ≤ χ2

1−θ(2)} =

{〈U, V
1/2
n γ〉2 ≤ ‖V 1/2

n γ‖2χ2
1−θ(2) ∀ γ ∈ R

2} = {〈(α̂ − α, β̂ − β)′,γ〉2 ≤
〈γ, Vnγ〉χ2

1−θ(2) ∀ γ ∈ R
2}. In particular taking γ = (1, x)′, one gets {‖U‖2 ≤

χ2
1−θ(2)} ⊂ {|(α̂+ β̂x − (α + βx)|2 ≤ σ2

b2n
[m2 − 2nX + x2]χ2

1−θ(2)∀ x}. Hence the

last event has asymptotic probability at least 1−θ. Replacing σ2 by σ̂2 one obtains
the desired result.

10 H. Scheffé (1959).
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Often the explanatory variable X is random. In the so-called correlation model
one assumes that, in (6.12), Xj’s are i.i.d. with finite positive variance (j ≥ 1)
and that they are independent of the error sequence {εj : j ≥ 1}, the latter being
i.i.d. with mean zero and variance σ2 > 0 as assumed above. One may then apply
the above arguments verbatim, conditionally given Xj’s (1 ≤ j ≤ n), noting that
in this case (6.72) holds with probability one. Hence (6.91) holds, conditionally
given Xj ’s (j ≥ 1). Since the nonrandom limit does not depend on the Xj ’s it
follows that (6.91) holds unconditionally as well. We state this as a corollary to
Theorem 6.2. (Exercise 6.25).

Corollary 6.3 (The Correlation Model). Suppose that in (6.12), Xj’s are
also i.i.d., independent of the i.i.d. εj’s, and that 0 < varXj < ∞. Then (6.91)
holds.

As a final remark on convergence in distribution, we state the following useful
fact.11

Remark 6.17. Suppose Pn (n ≥ 1), P are probability measures on (R,B(R)) such
that Pn converges weakly to P . If f is a bounded measurable function whose points
of discontinuity comprise a set D with P (D) = 0, then

∫
fdPn → ∫

fdP .

6.7 Asymptotic Distribution of Sample Quantiles, Order
Statistics

Throughout this section it will be assumed that X1, X2, . . . is an i.i.d. sequence
of random variables whose common distribution function F is continuous on
(−∞,∞). For each fixed n, let X(1) < X(2) < · · · < X(n) be an ordering of

X1, X2, . . . , Xn. Note that Prob(Xi = Xj) =
∫∞
−∞ Prob(Xi = x/Xj = x)dF (x) =

∫∞
−∞ Prob(Xi = x)dF (x) =

∫∞
−∞ 0dF (x) = 0, for each pair (i, j) with i �= j. Hence

one may assume strict ordering among X1, . . . , Xn. Observe also that one should
write X(1):n < X(2):n < · · · < X(n):n, in order to emphasize that X(i), for any
i (1 ≤ i ≤ n), depends on n. However, we will write X(1), . . . , X(n) for the n order
statistics to simplify notations. With this notation the distribution function of the
rth order statistic is easily seen to be

Prob(X(r) ≤ x) = Prob(At least r of the n random variables X1, . . . , Xn are ≤ x)

=

n∑

j=r

Prob(Exactly j of the random variables are ≤ x)

=

n∑

j=r

(
n

j

)

(F (x))j(1 − F (x))n−j , [1 ≤ r ≤ n]. (6.123)

Fix 0 < p < 1. Define the pth quantile ξp of F as the solution of

F (x) = p (6.124)

if this solution is unique; else let a pth quantile be any solution of (6.124). By the

sample pth quantile ζ̂p we shall mean the order statistic X([np]). (Once again, a

more appropriate notation would be ζ̂p:n).

11 See Bhattacharya and Waymire (2007, Theorem 5.2, p. 62).
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Theorem 6.3. (a) Fix p, 0 < p < 1. Assume that the solution ζp of (6.124) is
unique, F is continuously differentiable in a neighborhood of ζp and F ′(ζp) =
f(ζp) > 0. Then

√
n(ζ̂p − ζp)

L−→ N

(

0,
p(1− p)

f2(ζp)

)

as n → ∞. (6.125)

(b) Let 0 < p1 < p2 < · · · < pk, k > 1, and assume that the hypothesis of (a)
holds for p = pi for all i = 1, 2, . . . , k. Then

√
n
(
ξ̂p1 − ξp1 , ξ̂p2 − ξp2 , . . . , ξ̂pk

− ξpk

)
L−→ N(0, Σ), (6.126)

where Σ = ((σij)), σij = pi(1− pj)/f(ξpi)f(ξpj ) for 1 ≤ i ≤ j < k.

Proof. (a) Fix z ∈ (−∞,∞). Then, writing 1A for the indicator of A,

Prob
(√

n(ζ̂p − ζp) ≤ z
)

= Prob

(

ζ̂p ≤ ζp +
z√
n

)

= Prob

(

# of observations among X1, . . . , Xn which are ≤ ζp +
z√
n

is ≥ [np]

)

= Prob

(
n∑

j=1

1{Xj≤ζp+z/
√
n} ≥ [np]

)

= Prob

[

1√
n

(
n∑

j=1

1{Xj≤ζp+
z√
n
} − nF

(

ζp +
z√
n

))

≥ 1√
n

(

[np]− nF

(

ζp +
z√
n

))]

= P (Zn ≥ Cn), (6.127)

where Zn = 1√
n
(
∑n

j=1 1{Xj≤ξp+z/
√
n}−nF (ξp+ z/

√
n)), and cn = 1√

n
([np]−

nF (ξp + z/
√
n)). Let

Wn = n
1
2 (Fn(ξp)− F (ξp))

=
1√
n

n∑

j=1

(
1{Xj≤ξp} − F (ξp)

)
. (6.128)

Then EZn = 0, EWn = 0, and

var(Zn −Wn) = var

⎡

⎣ 1√
n

n∑

j=1

(
1{ξp<Xj≤ξp+z/

√
n}
)
⎤

⎦

=

(

F (ξp +
Z√
n
)− F (ξp)

)(

1− F (ξp +
Z√
n
) + F (ξp)

)

→ 0 as n → ∞. (6.129)

Therefore Zn − Wn converges in probability to zero. By the classical CLT,
Wn converges in distribution to N(0, p(1 − p)). By (6.129), Zn converges in
distribution to the same limit. Also, cn → −zf(ζp). Hence (6.127) yields

lim
n→∞Prob(

√
n(ζ̂p − ζp) ≤ z) = Prob(W ≥ −zf(ζp))

= Prob(W ≤ zf(ζp)) = Prob(W/f(ζp) ≤ z),

where W has the Normal distribution N(0, p(1− p)). This proves (6.125).
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(b) From the argument above applied to p = pi (1 ≤ i ≤ k), it follows that

Zn − W̃n = (Z(1)
n −W (1)

n , . . . , Z(k)
n −W (k)

n ) converges in probability to 0,
(6.130)

where Z
(i)
n and W

(i)
n are the same as Zn and Wn, but with p = pi, and

Zn = (Z
(1)
n , . . . , Z

(k)
n ), Wn = (W

(1)
n , . . . ,W

(k)
n ).

Now

Wn =
1√
n

n∑

j=1

(
1{Xj≤ζp1} − F (ξp1 ), . . . ,1{Xj≤ζpk} − F (ζpk

)
)

L−→ N(0, ((pi(1− pj)))1≤i≤j≤k), as n → ∞, (6.131)

by the classical multivariate CLT. Writing c
(i)
n for cn and z(i) for z in (a), one

has c
(i)
j → −z(i)f(ζpi). Therefore, as in the proof of (a),

Prob(
√
n(ζ̂p1 − ζp) ≤ z(1), . . . ,

√
n(ζ̂pk

− ζpk
) ≤ z(k))

−→ Prob(W (1) ≤ z(1)f(ζp1), . . . ,W
(k) ≤ z(k)f(ζpk

),

where W = (W (1), . . . ,W (k)) is N(0, ((pi(1 − pj))). Let 0 < p1 < p2 < · · · <
pk, k > 1, and assume that the hypothesis of (a) holds for p = pi for all
i = 1, 2, . . . , k. Then

√
n
(
ζ̂p1 − ζp1 , ζ̂p2 − ζp2 , . . . , ζ̂pk

− ζpk

)
L−→ N(0, Σ), (6.132)

where Σ = ((σij)), σij = pi(1− pj)/f(ζpi)f(ζpj ) for 1 ≤ i ≤ j < k.

Prob(
√
n(ζ̂p1 − ζp) ≤ z(1), . . . ,

√
n(ζ̂pk

− ζpk
) ≤ z(k))

= Prob(Z(1)
n ≥ c(1)n , . . . , Z(k)

n ≥ c(k)n )

−→ Prob(W (1) ≤ z(1)f(ζp1), . . . ,W
(k) ≤ z(k)f(ζpk

)),

where W = (W (1), . . . ,W (k)) is N(0, ((pi(1− pj)))1≤i≤j≤k).

��
Precise asymptotic analysis of sample quantiles was spurred by the so-called

Bahadur representation

ζ̂p = ζp +
p− Fn(ζp)

f(ζp)
+Rn (6.133)

where Rn → 0 almost surely as n → ∞. This was derived by Bahadur (1966)
under the additional assumption of twice differentiability of F at ζp, but with
an estimation of the remainder term Rn = O(n−3/4(logn)1/2(log logn)1/4) a.s. as
n → ∞, and he suggested the problem of finding the precise rate of convergence
of Rn to zero. Kiefer (1967) derived the precise rate given by

limn→∞
n3/4Rn

(log logn)3/4
=

z3/4[p(1− p)]1/4

33/4
(6.134)
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with probability one. Our proof follows Ghosh (1971), who proved the representa-

tion (6.133) with the remainder satisfying n
1
2Rn → 0 in probability with the help

of a simple but useful lemma.

6.8 Asymptotics of Semiparametric Multiple Regression

In this section, we extend the results of Sect. 6.6 to multiple regression with p
explanatory variables, p ≥ 1. This is one of the most widely applied models in
statistics. Consider the semiparametric regression model

y = Xθ + ε

⎡

⎣i.e., yi =

p∑

j=1

xijθj + εi (1 ≤ i ≤ n)

⎤

⎦ , (6.135)

where y is the observation vector, X = ((xij))1≤i≤n, 1≤j≤p (p ≤ n) is a known
design matrix of full rank p and ε (1 ≤ i ≤ n) are i.i.d. (unobserved) errors
satisfying

Eεi = 0, Eε2i = σ2 (0 < σ2 < ∞), (6.136)

(σ2 unknown) and θ = (θ1, θ2, . . . , θp)
′ is the unknown parameter vector to be

estimated. The least squares estimator of θ is θ̂ which minimizes

f(θ) :=

n∑

i=1

⎛

⎝yi −
p∑

j=1

xijθj

⎞

⎠

2

. (6.137)

Differentiating w.r.t. θk one gets the normal equations ∂f(θ)/∂θk = 0, or

n∑

i=1

xik

p∑

j=1

xijθj

︸ ︷︷ ︸
(Xθ)i

=
n∑

i=1

xikyi

︸ ︷︷ ︸
(X′y)k

(1 ≤ k ≤ p),

or, treating the left side as the k-th element of the column vector X ′Xθ one has

X ′Xθ = X ′y, (6.138)

so that the minimum of f(θ) is attained as

θ̂ = (X ′X)−1X ′y. (6.139)

Substituting from (6.135), one has

θ̂ = θ + (X ′X)−1X ′ε, (6.140)

and
∫

Eθ̂ = θ, covθ̂ = (X ′X)−1X ′σ2InX(X ′X)−1 = σ2(X ′X)−1, (6.141)
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where In is the n× n identity matrix. It is well known, and not difficult to prove,
that θ̂ has the smallest expected square error (E|θ̂ − θ|2 = σ2 trace (X ′X)−1)
in the class of all linear unbiased estimators of θ (i.e., among all estimators of
the form θ∗ = b + Ay). In fact this latter property holds even under the milder
assumption on ε: εi satisfy (6.136) and are uncorrelated. (See the Gauss-Markov
Theorem in Part I, Sect. 5.9.) Write (X ′X)1/2 as the positive definite symmetric
matrix whose square is X ′X .

If, in addition to the assumptions made above, εi’s are Normal N(0, σ2),

then it follows from (6.140) that θ̂ is Normal N(θ, σ2(X ′X)−1)). For this clas-
sical linear model an optimal confidence region for θ is based on the F -statistic
{(θ̂ − θ)′X ′X(θ̂ − θ)/p}/σ̂2 where σ̂2 = ‖Y −X θ̂‖2/(n− p) (see Chap. 5, Exam-
ple 5.20).

Theorem 6.4. In the model (6.135), assume (6.136) where the εi’s are i.i.d. and
that the nonstochastic matrix X is of full rank p. Assume also that εi’s are non-
Normal. Then (X ′X)1/2(θ̂−θ) converges in distribution to N(0, σ2Ip) if and only
if the maximum among the diagonal elements of the matrix X(X ′X)−1X ′ goes to
zero as n → ∞.

We first prove a lemma.

Lemma 6.1. The n×n matrix H = X(X ′X)−1X ′ is symmetric and idempotent,
and it has the eigenvalue 1 of multiplicity p and the eigenvalue 0 of multiplicity
n− p. Also, 0 ≤ Hii ≤ 1 ∀ i.

Proof. Symmetry and idempotence are easy to check. If λ is an eigenvalue with a
corresponding eigenvector x, then Hx = λx and Hx = HHx = Hλx = λHx =
λ2x, implying λ = λ2, i.e. λ(1 − λ) = 0, or, λ = 0 or 1. Clearly, rank of H is no
more than p (since Hx = 0 ∀ x orthogonal to the rows of X ′, i.e., columns of X).
On the other hand, rank of H is no less than the rank of HX = X , which is p.
Hence the rank of H is p. Note that H has p linearly independent row vectors and,
therefore, exactly an (n − p)-dimensional subspace orthogonal to them. That is,
the null space of H is of dimension n− p. Hence the multiplicity of the eigenvalue
zero is n− p. It follows that the eigenvalue 1 is of multiplicity p. Since Hii ≤ max
eigenvalue of H , and Hii ≥ min eigenvalue of H , one gets 0 ≤ Hii ≤ 1. ��
Proof of Theorem. Let a ∈ R

p, a �= 0. Then

a′θ̂ − a′θ = a′(X ′X)−1X ′ε = ε′X(X ′X)−1a

var(a′θ̂) = a′(X ′X)−1X ′σ2InX(X ′X)−1a

= σ2a′(X ′X)−1a = γ2, say. (6.142)

a′θ̂ − a′θ
γ

= ε′X(X ′X)−
1
2
b

σ
=

n∑

1

si
σ
εi

where

b =
(X ′X)−

1
2a

‖(X ′X)−
1
2a‖ is a unit vector in R

p,

and si is the i-th element of

X(X ′X)−
1
2b = Gb, say, si =

p∑

k=1

gikbk. (6.143)
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Note that

s2i =

(
p∑

k=1

gikbk

)2

≤
∑

k

g2ik ·
∑

k

b2k =
∑

k

g2ik = (GG′)ii

=
[
X(X ′X)−

1
2 (X ′X)−

1
2X ′

]

ii
= Hii. (6.144)

Now

a′θ̂ − a′θ̂
γ

=

n∑

i=1

si
σ
εi, E

(
n∑

i=1

si
σ
εi

)2

=
var(a′θ̂)

γ2
= 1, (6.145)

and, for every δ > 0,

n∑

i=1

E

(
s2i
σ2

ε2i1{|Si
σ εi|>δ}

)

=
1

σ2

n∑

i=1

s2iEε2i1{|siεi|>δσ}

≤ 1

σ2

n∑

i=1

s2iEε2i1{|εi|> δσ
s }, (6.146)

where
s2 = max

1≤i≤n
s2i ≤ max

i
Hii −→ 0 by hypothesis. (6.147)

Thus

n∑

i=1

E

(
s2i
σ2

ε2i1{|Si
σ εi|>δ}

)

≤ 1

σ2

n∑

i=1

s2iEε211{|ε1|> δσ
s }

=

∑n
1 s

2
i

σ2
Eε211{|ε1|> δσ

s } (6.148)

Since [see (6.143)],

n∑

1

s2i = 〈Gb, Gb〉 = b′G′Gb = b′b = 1,

(G′G = (X ′X)−
1
2X ′X(X ′X)−

1
2 = Ip)

one gets

n∑

i=1

E

(
s2i
σ2

ε2i1
{ |siεi|

σ >δ
}

)

≤ 1

σ2
Eε211{|ε1|> δσ

s } −→ 0

as n → ∞
(

since
δσ

s
→ ∞

)

. (6.149)

This proves the “sufficiency” part of the theorem, applying the Lindeberg-Feller
CLT.

To prove the “necessary” part, choose b (and, therefore, a) such that (6.144) is
an equality, i.e., bk = gi0k for the particular i0 for which maxi′ Hi′i′ = Hi0i0 . Then,

if Hi0i0 :�→ 0, E

(
s2i0
σ2 ε2i0

)

= s2i0 �→ 0 (as n → ∞). This violates Feller’s necessary

condition for the Lindeberg-Feller CLT.
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You may directly consider
∑n

i=1
si
σ εi =

si0
σ εi0 +

∑
i�=i0

si
σ εi. There ex-

ists a subsequence n′ of integers n = 1, 2, . . . , such that as n′ → ∞,
si0
σ → α > 0, so that

si0
σ εi0

L−→ αε1 (which is non-Normal). What-
ever may be the limit of

∑
i�=i0

si
σ εi, the sum of two independent random

variables, one of which is non-Normal, cannot be Normal (Exercise 6.30).
��

Remark 6.18. If εi’s are i.i.d. N(0, σ2), then of course θ̂ = θ + (X ′X)−1X ′ε is
normal, no matter what X is (assuming full rank).

Corollary 6.4. Let

sij =
1

n

n∑

k=1

xkixkj (1 ≤ i, j ≤ p),

S = ((sij)),

Λ = largest eigenvalue of S−1 =
1

λ
. (6.150)

where λ = smallest eigenvalue of S. Thus
√
nS

1
2 (θ̂ − θ)

L−→ N(0, σ2Ip) if

n−1Λmax
i

⎛

⎝
p∑

j=1

x2ij

⎞

⎠ −→ 0 as n → ∞. (6.151)

Proof. Let ei (∈ R
n) have 1 in the i-th coordinate and 0 elsewhere. Then, writing

〈 , 〉m for the Euclidean inner product in R
m,

Hii = 〈Hei, ei〉n ≡ 〈X(X ′X)−1X ′ei, ei〉n
= 〈(X ′X)−1X ′ei, X ′ei〉p [since 〈Bx, y〉n = 〈x,B′y〉]

≤ Λ

n
‖X ′ei‖2 =

Λ

n
‖(xij)1≤j≤p‖2 =

Λ

n

⎛

⎝
p∑

j=1

x2ij

⎞

⎠ . (6.152)

��
Corollary 6.5. Let

yi = α+

r∑

j=1

βjZij + εi (1 ≤ i ≤ n), (6.153)

where y = (y1, . . . , yn)
′ is observed, Zi ≡ (Zi1, . . . , Zir)

′, i ≥ 1, are i.i.d. r-
dimensional random vectors with finite mean vector μ = (μ1, . . . μr)

′ and nonsin-
gular covariance matrix Σ = ((σjk))1≤j,k≤r. Assume εi, i ≥ 1, are i.i.d. satisfy-
ing (6.136), and that the two families {Zi : i ≥ 1} and {εi : i ≥ 1} are independent.

(a) Then the least squares estimators of α, β1, . . . , βr are
⎛

⎜
⎝

β̂1
...

β̂r

⎞

⎟
⎠ = Σ̂−1

⎛

⎜
⎝

σ̂y1
...

σ̂yr

⎞

⎟
⎠

[
Σ̂ := ((σ̂jk)), σ̂jk := 1

n

∑n
i=1(Zij − Z.j)(Zik − Z.k),

σ̂yj :=
1
n

∑n
i=1(yi − y)(Zij − Z.j)

]

,
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α̂ = y −
r∑

j=1

β̂jZ .j (y = 1
n

∑n
i=1 yi, Z.j =

1
n

∑n
i=1 Zij). (6.154)

(b) Also,

⎛

⎜
⎜
⎜
⎝

α̂

β̂1
...

β̂r

⎞

⎟
⎟
⎟
⎠

is AN

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎛

⎜
⎜
⎜
⎝

α
β1
...
βr

⎞

⎟
⎟
⎟
⎠

,
σ2

n

A
︷ ︸︸ ︷⎡

⎢
⎢
⎢
⎣

a0 a1 . . . ar
a1
... Σ−1

ar

⎤

⎥
⎥
⎥
⎦

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (6.155)

[a0 := 1 +
∑

j,k σ
jkμjμk, ak := −∑r

j′=1 σ
kj′μj′ (k ≥ 1)].

Proof. (a) One may directly prove (6.154), by rewriting (6.153) as

yi = α1 +
r∑

j=1

βj(Zij − Z .j) + εi (α1 := α+
∑r

j=1 βjZ .j), (6.156)

and solve for α1, β1 . . . βr by differentiating w.r.t. α1, β1, . . . , βr the quantity∑n
i=1(yi−α1−

∑r
j=1 βj(Zij−Z .j))

2, and setting the derivatives equal to zero.
(b) For the proof of (b), write (6.153) in the form (6.135) with p = r + 1, and

X =

⎡

⎢
⎢
⎢
⎣

1 Z11 Z12 . . . Z1r

1 Z21 Z22 . . . Z2r

...
...

... · · · ...
1 Zn1 Zn2 . . . Znr

⎤

⎥
⎥
⎥
⎦
. (6.157)

Then

X ′X = n

⎡

⎢
⎢
⎢
⎣

1 Z.1 Z .2 . . . Z .r

Z .1 s̃11 s̃12 . . . s̃2r
...

...
...

...
Z .r s̃r1 s̃r2 . . . s̃rr

⎤

⎥
⎥
⎥
⎦
= n

⎡

⎢
⎢
⎢
⎣

1 Z .1 . . . Z .r

Z.1

... S̃
Z.r

⎤

⎥
⎥
⎥
⎦
,

X ′X
n

a.s.−→

⎡

⎢
⎢
⎢
⎣

1 μ1 . . . μr

μ1

... Γ
μr

⎤

⎥
⎥
⎥
⎦
= B, say, [Γ := ((γjk))], (6.158)

where s̃jk = 1
n

∑n
i=1 ZijZik, γjk = E(ZijZik) = Es̃jk. It is simple to check

that AB = Ir+1. In particular, B is nonsingular so that the probability that
X ′X is nonsingular (=⇒ X is of full rank) converges to 1 as n → ∞. Thus,
one may apply Corollary 6.4 above, conditionally given {Zi : i ≥ 1}, to show

that (α̂, β̂1, . . . , β̂r)
′ is

AN

⎛

⎜
⎜
⎜
⎝

⎛

⎜
⎜
⎜
⎝

α
β1
...
βr

⎞

⎟
⎟
⎟
⎠

, σ2(X ′X)−1

⎞

⎟
⎟
⎟
⎠

,
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outside a set of sample points whose probability is zero. ��
Remark 6.19. The model in Corollary 6.5 is called the correlation model, to in-
dicate that yi and Zi ≡ (Zi1, . . . , Zi,r) are correlated. The asymptotic normal-
ity can be proved directly in this case, using the expressions (6.154) for α̂ and

β̂ ≡ (β̂1, . . . , β̂r)
′, without invoking the general result contained in Theorem 6.4.

6.9 Asymptotic Relative Efficiency (ARE) of Estimators

We have seen in Sects. 6.5–6.8 that large classes of statistics Tn are asymptotically

normal, i.e.,
√
n(Tn − g(θ))

L−→ N(0, σ2(θ)), where Tn maybe taken to be an
estimator of a parametric function g(θ).

Here we consider an index of asymptotic comparison of estimators of g(θ), θ be-
ing an unknown parameter which identifies the underlying probability distribution,
say, Pθ, from which independent observations X1, . . . , Xn are drawn.

Definition 6.6. If two estimators T
(1)
n , T

(2)
n of g(θ) are both asymptotically nor-

mal with

√
n(T

(1)
n − g(θ))

L−→ N(0, σ2
1(θ)),√

n(T
(2)
n − g(θ))

L−→ N(0, σ2
2(θ)),

when θ is the true parameter value (6.159)

then the asymptotic relative efficiency (ARE) of T
(2)
n with respect to T

(1)
n is defined

by

eT (2),T (1) =
σ2
1(θ)

σ2
2(θ)

, (T (i) = {T (i)
n : n = 1, 2, . . . }). (6.160)

Thus if (for some value θ of the parameter) the above efficiency is 2/3 then
σ2
1 is two-thirds of σ2

2 , and adopting T (1) with a sample size (2/3)n leads to the
same accuracy (asymptotically, as n → ∞) in the estimation of g(θ) as would be
achieved by using T (2) with n observations.

Example 6.8 (Mean Versus Median in Normal and Cauchy Models). IfX1, X2, . . . ,
Xn are i.i.d. N(θ, σ2), θ ∈ (−∞,∞), σ2 ∈ (0,∞). Consider X = X1+···+Xn

n and

ζ̂ 1
2
= the sample median (= 1

2 -quantile) as estimators of θ. Now
√
n(X − θ) is

N(0, σ2) (and, therefore,
√
n(X− θ)

L−→ N(0, σ2), trivially) and, by Theorem 6.3,√
n(ζ̂ 1

2
− θ)

L−→ N(0, 2πσ
2

4 ) = N(0, π2σ
2). Hence

eζ̂ 1
2
,X =

σ2

π
2σ

2
=

2

π
� 0.637. (6.161)

Thus X is decidedly the better of the two estimators (no matter what θ, σ2 may
be).

When the same two estimators are used to estimate the median θ of a Cauchy
distribution with density

f(x; θ) =

(
1

πa

)
1

1 +
(
x−θ
a

)2 , −∞ < x < ∞, (−∞ < θ < ∞, a > 0), (6.162)
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then X is not even consistent, since the distribution of X is the same as that of a
single observation (Exercise). But Theorem 6.3 applies to yield

√
n(ζ̂ 1

2
− θ)

L−→ N

(

0,
π2a2

4

)

. (6.163)

Although, strictly speaking, the ARE of ζ̂ 1
2
w.r.t. X is not defined for this case,

one may informally take it to be ∞. No matter how large a number A may be, X
based on nA observations is worse than ζ̂ 1

2
based on n observations.

To compare the two statistics as estimators of the median θ of a distribution
which has a density symmetric about θ, let f(x) be a p.d.f. (with respect to
Lebesgue measure) which is an even function: f(x) = f(−x). The common p.d.f.
of the observations is f(x; θ) = f(x − θ), θ ∈ (−∞,∞). (There may be other
unknown parameters in f(x; θ)). Here are some examples:

Example 6.9. The Logistic L(0, a) has the density f(x) = 1
ae

−x/a/(1 + e−x/a)2,
a > 0. For this case

√
n(ζ̂ 1

2
− θ)

L−→ N(0, 4a2),

√
n(X − θ)

L−→ N(0, σ2),

where

σ2 =

∫ ∞

−∞
x2f(x)dx = a2

∫ ∞

−∞
x2e−x/(1 + e−x)2dx

= 2a2
∫ ∞

0

x2e−x/(1 + e−x)2dx = (4a2)
π2

12
.

(Exercise 6.34). Hence

eζ̂ 1
2
,X =

π2

12
� 0.82.

Example 6.10 (Contaminated Normal or Tukey Model).

f(x) = (1 − ε)ϕ(x) + εϕτ (x), (0 < ε < 1, τ > 0)

where ϕ is the Normal p.d.f. with mean zero and variance one and ϕτ is the Normal
p.d.f. with mean zero and variance τ . For f(x − θ) the median ζ 1

2
is θ and the

mean is also θ.

f(ζ 1
2
; θ) = f(θ − θ) = f(0) =

1√
2π

(1− ε) + ε

(
1√

2π
√
τ

)

=
1√
2π

(

1− ε+
ε√
τ

)

.

The variance is σ2 =
∫∞
−∞ x2f(x)dx = (1 − ε) + ετ . Hence

eζ̂ 1
2
,X =

(1− ε) + ετ
1
4/f

2(0)
=

4{(1− ε) + ετ}(1− ε+ ε/
√
τ )2

2π
.
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6.10 Constructing (Nonparametric) Confidence Intervals

In this section we briefly consider constructing confidence regions for nonpara-
metric functional estimates. Sections 6.6 and 6.8 dealt with what one might call
semiparametric estimation of regression.

Corollary 6.2 may be used to construct an asymptotic confidence interval for
the unknown quantity H(μ): such as [H(Z)−z1−α/2

σ̂√
n
, H(Z)+z1−α/2

σ̂√
n
], where

z1−α/2 is the (1− α
2 )th quantile of N(0, 1), and

σ̂2 =

k∑

i,j=1

̂îj b̂ij

with ̂i obtained by replacing μ by Z in the expression for i in (6.57), and letting

b̂ij be the sample covariance between fi(Y1) and fj(Y1):

b̂ij =
1

n

n∑

r=1

fi(Yr)fj(Yr)−
(
1

n

n∑

r=1

fi(Yr)

)(
1

n

n∑

r=1

fj(Yr)

)

.

By the SLLN, ̂i and b̂ij are consistent estimators of i and bij , respectively (1 ≤ i,

j ≤ k). Hence σ̂2 P−→ σ2. It follows that (use Slutsky’s Lemma and Corollary 6.2)

P

(

H(Z)− z1−α/2
σ̂√
n
≤ H(μ) ≤ H(Z) + z1−α/2

σ̃√
n

)

= P

(∣
∣
∣
∣

√
n(H(Z)−H(μ))

σ̂

∣
∣
∣
∣ ≤ z1−α/2

)

−→ 1− α.

(6.164)

One may similarly obtain an asymptotic confidence interval for ζp, under the
hypotheses of Theorem 6.3, by estimating the density at ζp. A nonparametric
density estimation is carried out in a later chapter. It is possible, however, to
provide a different nonparametric confidence interval for ζp without resorting to
density estimation. We describe this below.

For every s, 1 ≤ s ≤ n, one has

P (ζp < X(s)) = P (#of observations Xj , 1 ≤ j ≤ n, which are less than

or equal to ζp is less than s)

=

s−1∑

m=0

(
n

m

)

Fm(ζp)(1− F (ζp))
n−m =

s−1∑

m=0

(
n

m

)

pm(1− p)n−m.

(6.165)
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For 1 ≤ r < s ≤ n, one then has

P (X(r) ≤ ζp < X(s)) = P (ζp < X(s))− P (ζp < X(r))

=
s−1∑

m=r

(
n

m

)

pm(1− p)n−m. (6.166)

One now needs to look up binomial tables to find r and s such that (6.166) is
approximately 1 − α. For the approximately equal tailed confidence interval, one
finds s such that (6.165) is closest to 1− α/2, and r such that

∑r−1
m=0 (

n
m ) pm(1−

p)n−m is closest to α/2. If n is large and np, n(1 − p) are both moderately large
then one may use normal approximation to the binomial:

s =
[
np+ z1−α/2

√
np(1− p)

]
, r =

[
np− z1−α/2

√
np(1− p)

]
,

([y] := integer part of y).

(6.167)

Addendum The Berry-Esséen bound for the classical CLT says: If Xj , 1 ≤
j ≤ n, are i.i.d. with mean μ, variance σ2 and a finite third absolute moment
ρ3 = E|X1|3, then

sup
x∈R

∣
∣P (

√
n(X − μ) ≤ x)− Φ0,σ2 (x)

∣
∣ ≤ (0.5600)

ρ3
σ3

√
n
. (6.168)

The constant 0.7975 is due to Shevtsova (2010). The same inequality holds
also for non-identically distributed, but independent, Xj (1 ≤ j ≤ n) with
μ =

∑n
j=1 EXj/n, σ

2 = 1/n
∑n

j=1 var(Xj), and ρ3 = 1
n

∑n
j=1 E|Xj − E(Xj)|3.

For the multidimensional CLT there are Berry-Esséen type bounds available,
although good numerical constants in the bound [such as given in (6.168)] are
difficult to obtain. (Reference: Bhattacharya and Rang (2010).)

6.11 Errors in Variables Models

In standard regression models the independent or explanatory variables are as-
sumed to be observed exactly, i.e., without errors. However, in many situations
the independent variables can be contaminated, mismeasured or they cannot be
directly observed. Under these circumstances the model is referred to as an errors
in variables model. Consider for simplicity the linear regression model

Yj = α+ βX∗
j + εj (j = 1, . . . , n), (6.169)

where εj has mean zero and a finite variance σ2
ε > 0. The “true” value X∗

j of the
independent variable cannot be observed and, instead, one observes Xj subject to
a random error,

Xj = X∗
j + ηj (j = 1, . . . , n), (6.170)

where ηj are mean zero i.i.d. random variables with finite variance σ2
η > 0. Consider

first X∗
j to be random with a finite variance σ2

x∗ > 0, and assume that X∗
j , ηj
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and εj are independent. Also, assume the n observations (Xj , Yj), 1 ≤ j ≤ n,
are independent. The ordinary least squares (OLS) estimate of β based on these
observations is (see (6.14))

β̂ =
[
∑

1≤j≤n(Xj −X)(Yj − Y )]

[
∑

1≤j≤n(Xj −X)2]

=
[
∑

1≤j≤n(X
∗
j −X

∗
+ ηj − η)(β(X∗

j −X
∗
) + εj − ε)]

[
∑

1≤j≤n(X
∗
j −X

∗
+ ηj − η)]2

. (6.171)

When divided by n, the denominator converges in probability to σ2
x∗ +σ2

η, and the
numerator to βσ2

x∗ (Exercise 6.37), so that

β̂
p−→ β

(1 + σ2
η/σ

2
x∗)

= κβ, (6.172)

where
κ :=

(
1 + σ2

η/σ
2
x∗
)−1

(6.173)

is the so-called reliability ratio determined by the noise-to-signal ratio σ2
η/σ

2
x∗ .

Therefore, β̂ is an inconsistent underestimate of β. This errors in variables model
with a stochastic X∗ is called a structural model in economics; here one stipulates
an error free relation between the “true” random variables X∗ and Y ∗ of the form

θ1Y
∗ + θ2X

∗ = α, (θ1 �= 0, θ2 �= 0), (6.174)

but with both X∗ and Y ∗ subject to measuremental errors.
In the so-called functional model, X∗ is non-stochastic, while the other as-

sumptions above remain intact. If n−1
∑

1≤j≤n(X
∗
j −X

∗
)2 converges to a positive

quantity, say σ2
x∗ , as n → ∞, then (6.172) still holds (see Exercise 6.37).

We now concentrate on the structural model. Suppose one knows, or has a
consistent estimate of, κ (i.e. of the noise-to-signal ratio σ2

η/σ
2
x∗). We assume that

κ is known. Then

β̃ =

(
1

κ

)

β̂ =
(
1 + σ2

η/σ
2
x∗
)
β̂ (6.175)

is a consistent estimate of β. Assume, for simplicity, that X∗, η and ε are Normal.
Then (X, η) is bivariate Normal with EX = μ, say, var(X) = σ2

x∗ + σ2
η, Eη = 0,

var(η) = σ2
η, cov(X, η) = σ2

η. Therefore, the conditional distribution of η, given

X , is Normal with mean Eη +
[
σ2
η/(σ

2
x∗ + σ2

η)
]1/2

ρ(X − μ) and variance σ2
η(1 −

ρ2), where ρ = cov(X, η)/(var(X)var(η))1/2 = (1 − κ)1/2 (see Appendix A.3,

Exercise A.3). Now express β̂ as [see (6.171)]

β̂ =
∑

(Xj −X)

[
β(Xj −X)− β(ηi − η) + εj − ε

]

∑
(Xj −X)2

= β

(

1−
∑

(Xj −X)ηj
∑

(Xj −X)2

)

+

∑
(Xj −X)εj

∑
(Xj −X)2

. (6.176)

Hence, conditionally given X = (Xj ; 1 ≤ j ≤ n), β̂ is Normal with mean and
variance given by (Exercise 6.38)

E(β̂ | X) = κβ, var(β̃ | X) =
β2σ2

x∗ + σ2
ε

[
∑

1≤j≤n(Xj −X)2]
. (6.177)
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Since [
∑

1≤j≤n(Xj −X)2]/n
P−→ σ2

x∗ + σ2
η, it follows that the conditional distri-

bution of
√
n(β̂ − κβ) converges in distribution to N(0, δ2), where (Exercise 6.38)

δ2 =
[β2σ2

x∗ + σ2
ε ]

[σ2
x∗ + σ2

η]
= β2κ+

σ2
ε

σ2
x∗ + σ2

η

= β2κ+
σ2
εκ

σ2
x∗

. (6.178)

This latter distribution does not involve X; hence we have shown that

√
n(β̂ − κβ)

L−→ N(0, δ2), as n → ∞. (6.179)

It follows that
√
n(β̃ − β)

L−→ N

(

0,
δ2

κ2

)

. (6.180)

One may similarly derive the asymptotic distribution of
√
n(α̃− α, β̃ − β).

Since the above argument is conditional on X, the corresponding results also
hold for the functional model, if

∑

1≤j≤n

X∗
j

n
−→ μ,

∑

1≤j≤n

(X∗
j −X

∗
)2

n
−→ σ2

x∗ (for some μ, σ2
x∗ ; 0 < σ2

x∗ < ∞).

(6.181)
Fuller (1987, pp. 18–20), describes an agricultural experiment in which a con-

sistent estimate of σ2
η and, therefore, of κ, is obtained. In the absence of such addi-

tional information the parameter θ = (α, β, μ = x∗, σ2
x∗ , σ2

η, σ
2
ε ) is not identifiable

in the bivariate Normal model for (X,Y ) presented above [see (6.169), (6.170)]. In
particular, β is not identifiable. That is, there are θ1 and θ2 with different values
of β yielding the same bivariate Normal distribution for (X,Y ). We give a proof
of this fact due to Riersøl (1950). That θ is not identifiable in the Normal model,
of course, is easy to see. For the bivariate Normal is entirely determined by five
parameters—two means, two variances and a covariance. But θ has six functionally
independent parameters, i.e., with a parameter space in R

6 with a non-empty in-
terior. On the other hand five parametric functions are identifiable and, therefore,
can be estimated consistently. Unfortunately, the most important parameter β is
not. To see this assume that the errors ε and η are independent and Normal with
zero means and variances σ2

ε > 0, σ2
η > 0. Also assume that X∗ is independent of

ε and η. It will be shown that β is not identifiable precisely when X∗ is Normal,
i.e., if (X,Y ) is bivariate Normal. Let there exist θj = (αj , βj , μj, σ

2
x∗j , σ

2
ηj , σ

2
εj),

j = 1, 2, such that β1 �= β2, but the distributions of (X,Y ) the same under θ1 and
θ2. The characteristic function of (X,Y ) under θj is

ϕ(t1, t2) = Eθj
exp {it1X + it2Y }

= Eθj
exp {it1X∗ + it1ηj + it2αj + it2βjX

∗ + it2εj}

= eit2αj exp

{

−1

2

(
t21σ

2
ηj

+ t22σ
2
εj

)}

ψθj
(t1 + t2βj) (j = 1, 2), (6.182)

where ψθj is the characteristic function of X∗ under θj. Fix z ∈ R. There exist
t1, t2 such that t1 + t2β1 = z and t1 + t2β2 = 0, namely, t1 = −β2z/(β1 − β2),
t2 = z/(β1 − β2). Then by (6.182), and equating ϕ1 and ϕ2, one has
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ψθ1
(z) = exp

{
iz
(α2 − α1)

(β1 − β2)
− 1

2

(
β2
2

(β1 − β2)2

)
(
σ2
η2 − σ2

η1

)
z2

−1

2
(β1 − β2)

−2
(
σ2
ε2 − σ2

ε1

)
z2
}

= exp

{

icz − 1

2
dz2

}

for some constants c and d. In other words, the distribution of X∗ under θ1 (and,
therefore, also θ2) is Normal (or a constant, which may be taken as Normal). We
have arrived at the fact that if the errors η and ε in the variables are Gaussian,
then β is unidentifiable if and only if X∗ is Gaussian, that is, if and only if (X,Y )
has the bivariate Normal.

Before moving away from the bivariate Normal model for (X,Y ) in the absence

of additional information, note that the OLS β̂xy for the regression of X on Y

provides a lower estimate of 1/β and, therefore, β̂xy is an upper estimate of β, just

as β̂ = β̂yx is a lower estimate of β.
It was pointed out by Berkson (1950) that in many applications observationsXj

of the regressor are controlled. For example, in bioassay for different levels of fixed
dosages Xj one finds the response Yj . In this case there may still be some errors in
the actual dosages x∗j that are administered, but Xj is nonrandom, Xj = x∗j + ηj .
Here x∗j and ηj are negatively correlated, but Xj is uncorrelated with them. The

OLS β̂ is now an unbiased and consistent estimator of β and the regression model
is formally the same as the one without measuremental errors [see (6.14)–(6.16)]

Yj = α+ βXj = γj , γj := −βηj + εj ,

β̂ = β +

∑n
j=1 γj(Xj −X)

∑n
j=1(Xj −X)2

, α̂ = Y − β̂X. (6.183)

Theorem 6.2 holds for the joint distribution of α̂, β̂, where σ2
γ = β2σ2

η = σ2
ε re-

places σ2.
As a final observation on the model (6.169), (6.170), express the equation (6.169)

as
Yj = α+ βXj − βηj + εj . (6.184)

Since η is not observed, this can be thought of as a special case of linear regression
with one regressor missing. See Bhattacharya and Bhattacharyya (1994).

6.12 Notes and References

A general reference to this chapter is Ferguson (1996). Serfling (1980, Chaps. 1,
2) and Bickel and Doksum (2001, Chap. 5 and Appendices A.14, A.15), contain
many basic results and fine exercises. Dasgupta (2008, Chaps. 1, 5 and 7) may be
consulted for many additional facts and references as well as a wealth of exercises.
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Exercises for Chap. 6

Exercises for Sect. 6.2

Ex. 6.1. (a) Extend Proposition 6.1 to k sequences U
(i)
n

P−→ ai (1 ≤ i ≤ k) and a
function g of k variables continuous at (a1, a2, . . . , ak), as stated in Remark 6.1.

(b) Extend (a) to vector-valued sequences U
(i)
n , 1 ≤ i ≤ k, and vector-valued

functions g(u, v).

Ex. 6.2. (a) Show that Corollary 6.1 holds if
P−→ is replaced by

a.s.−→ .
(b) Prove Proposition 6.4.

Ex. 6.3. Let Xn (n ≥ 1) be a sequence of i.i.d. random variables, and assume that
the infimum and supremum of values of X1 are m and M , respectively. That is,
P (m ≤ X1 ≤ M) = 1, P (X1 < a) > 0 ∀ a > m, P (X1 > b) > 0 ∀ b < M (Here Xn

real-valued, but m and/or M may be infinite). Prove that max{X1, . . . , Xn} a.s.−→
M and min{X1, . . . , Xn} a.s.−→ m.

Ex. 6.4. Let Yn
P−→ Y . Prove that there exists a subsequence Ynk

(k =

1, 2, . . . ) (n1 < n2 < · · · ) such that Ynk

a.s.−→ Y as k → ∞.

Exercises for Sect. 6.3

Ex. 6.5. (a) Let δn = max{(Xj −X)2 : 1 ≤ j ≤ n}/∑n
1 (Xj −X)2. Prove that,

under the assumptions of Example 6.3, α̂ and β̂ are consistent estimators of
α, β if δn → 0.

(b) Prove the statement in Remark 6.4 for consistency of α̂, β̂ under the hypoth-
esis (6.17), and assuming δn → 0 as n → ∞.

(c) Extend (b) to the heteroscedastic case (6.18) with bounded σ2
j (j ≥ 1).

(d) Write γn = max{σ2
j : 1 ≤ j ≤ n}. Extend (c) to the case of possibly unbounded

sequences σ2
j (j ≥ 1), but satisfying γn/n −→ 0, m2γn/

∑n
j=1(Xj −X)2 → 0,

where m2 =
∑n

1 X
2
j /n.

Ex. 6.6. Give simpler proofs of consistency of α̂, β̂ assuming εj are i.i.d. N(0, σ2)
in

(a) Example 6.3,
(b) Example 6.4.

Ex. 6.7. (a) Let Xn (n ≥ 1) be uncorrelated random variables, σ2
n = varXn.

Suppose 1
n

∑n
j=1 EXj → μ as n → ∞. Prove that X = 1

n

∑n
j=1 is a consistent

estimator of μ if 1
n2

∑n
j=1 σ

2
j → 0.

(b) In (a), assume EXj = μ ∀ j, and while μ is unknown, σ2
j > 0 are known.

If X1, . . . , Xn are observed, show that the linear unbiased estimator Un =∑n
1 ωjXj of μ with the minimum expected squared error is obtained by taking

ωj =
1
σ2
j
/
∑n

1
1
σ2
i
(1 ≤ j ≤ n).

(c) Show that the optimal estimator Un (n ≥ 1) of μ in (b) is consistent if∑n
1

1
σ2
i
→ ∞ as n → ∞.

Ex. 6.8. Prove (6.30) by showing that the second moment of the left side converges
to [σ2/(1− β2)]2, and then using (6.31).
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Exercises for Sect. 6.4

Ex. 6.9. Using the general definition of a quantile, prove the following assertions
for 0 < p < 1.

(a) If F is continuous and strictly increasing on (c, d) where F (c) < p and F (d) >
p, then F has a unique p-th quantile.

(b) If F (x) = p for all x ∈ (c, d), F (x) < p ∀ x < c and F (x) > p ∀ x > d, then
the set of p-th quantiles is [c, d].

Ex. 6.10. Assume F is continuous.

(a) If np is not an integer, show that X([np]+1) is the unique p-th quantile of the
empirical distribution.

(b) If np is an integer, show that the set of p-th quantiles is the interval
[X([np]), X([np]+1)].

Ex. 6.11. Let X be a discrete random variable with values a1 < a2 < · · · < ak <
· · · (finite or denumerable sequence), P (X = ak) = πk > 0 ∀ k. Its d.f. is

F (x) =

{
0 if x < a1
pk if ak ≤ x < ak+1 (k = 1, 2, · · · ) (6.185)

where pk = π1 + π2 + · · · + πk (k ≥ 1). Let pk < p < pk+1. Show that X([np])

(≡ X([np]):n) converges in probability to the population p-th quantile ak+1, as
n → ∞. [Hint: Let Nk (≡ Nk:n) = #{j : 1 ≤ j ≤ n, Xj ≤ ak}. Then Nk is
binomial B(n, pk), and P (X([np]) = ak+1) = P (Nk < [np] ≤ Nk+1) = P (Nk <
[np])− P (Nk+1 < [np]) −→ 1− 0 = 1.]

Exercises for Sect. 6.5

Ex. 6.12 (Designing a Sampling Plan). For taking an opinion poll one wishes
to know the size n of the random sample needed to ensure that the error of
estimating the population proportion p by the sample proportion p̂ be no more
than 0.03 with a 95% probability.

(a) Use Chebyshev’s Inequality (6.5) with r = 2 to get n = 5556.
(b) Use Chebyshev’s Inequality with r = 4 to get n = 2153.
(c) Use the CLT to get n = 1067. [Hint: Use the fact that p(1−p) has the maximum

value 1
4 at p = 1

2 .]

Ex. 6.13. Let Pn (n ≥ 1), P be probability measures on (R,B(R)) such that Pn

converges weakly to P .

(a) Give an example to show that Pn(B) need not converge to P (B) for all Borel
sets B.

(b) Give an example to show that the distribution function Fn of Pn may not
converge to the distribution function F of P at every point x.

(c) Suppose gnYn
L−→ V for some random variable V , where gn → ∞ as n → ∞.

Show that Yn
P−→ 0.
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Ex. 6.14. Extend (6.57) to vector valued H .

Ex. 6.15. Suppose Pn (n ≥ 1), P are probability measures on (R,B(R)) such
that Pn converges weakly to P . Show that {Pn : n ≥ 1} is tight: for every ε > 0
there exists Aε > 0 such that Pn ({x : |x| > Aε}) < ε for all n.

[Hint: (i) Find points of continuity −Bε, Cε of the distribution function F of
P such that F (−Bε) < ε/3, F (Cε) > 1− ε/3.

(ii) Find Nε such that Fn(−Bε) < ε/3 and Fn(Cε) > 1 − ε/3 for all n ≥ Nε,
where Fn is the distribution function of Pn. Then Pn([−Bε, Cε]) > 1− 2ε

3 for
all n ≥ Nε.

(iii) For n = 1, . . . , Nε, find Dε > 0 such that Pn([−Dε, Dε]) > 1−ε (1 ≤ n ≤ Nε).
(iv) Let Aε = maxBε, Cε, Dε to get Pn({x : |x| > Aε}) < ε for all n.]

Ex. 6.16. Suppose
(
U
V

)
has the bivariate Normal distribution N

(
(
0
0

)
,

[
1 ρ
ρ 1

])

.

(a) Prove that the conditional distributions of V , given U , is N(ρU, 1− ρ2).
(b) Show that EU2V 2 = 1 + 2ρ2, EU3V = EV U3 = 3ρ.

Ex. 6.17. Assume Xj , j ≥ 1, are i.i.d. real-valued, with EXj = μ, var(Xj) =
σ2 > 0, EX4

j < ∞. Prove that

(a)
√
n(s2 − σ2)

L−→ N(0, E(X1 − μ)4 − σ4), and

(b)
√
n(1s − 1

σ )
L−→ N(0, [E(X1 − μ)4 − σ4] · [1/4σ6]).

[Hint: (a) Consider Uj = Xj − μ, j ≥ 1, s2 = ( n
n−1 )

1
n

∑1
j=1(Uj − U)2 =

( n
n−1 )

[
1
n (
∑n

j=1)U
2
j − U

2
]
, so that

√
n(s2 − σ2)−√

n( 1
nΣ

n
j=1(U

2
j − σ2))

P−→ 0.

(b)
√
n(1s − 1

σ )−
√
n[H(z)−H(σ2)]

P−→ 0, where zj = U2
j , EZj = σ2, H(z) =

z−1/2, H(Z) = ( 1nΣ
n
j=1U

2
j )

−1/2, H(σ2) = 1/σ. Apply Corollary 6.2.]

Ex. 6.18. (a) Let Xn have the discrete uniform distribution on {0, 1
n ,

2
n , . . . , 1}

(i.e., P (Xn = k
n ) =

1
n+1 (k = 0, 1, . . . , n). Show that Xn converges in distri-

bution to the uniform distribution on [0, 1] (with constant density 1).

(b) Use (a) to prove that (1/n+1)
∑n

k=0 f(k/n) →
∫ 1

0 f(x)dx for every continuous
function f on [0, 1].

(c) Extend (b) to the case of all bounded measurable f on [0, 1] with a finite set
of discontinuities.

Ex. 6.19. Yn = min{Xi : 1 ≤ i ≤ n} where X1, X2, . . . are i.i.d. beta Be(α, 1)
random variables.

(a) What is the distribution of Yn?
(b) Find a value of α such that Yn converges in distribution to a nondegenerate

law.

Ex. 6.20 (Fieller’s Method for the Estimation of a Ratio). Let θ1, θ2
be unknown parameters, θ2 > 0. The problem is to obtain a confidence interval
for ρ = c+dθ1

θ2
(d �= 0), based on asymptotically jointly Normal estimators θ̂1, θ̂2
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of θ1, θ2, with available consistent estimates Ŵ11, Ŵ22, Ŵ12 of W11 = var(θ̂1),

W22 = var(θ̂2), W12 = cov(θ̂1, θ̂2).

(a) Use the delta method to obtain a confidence interval for ρ of confidence level
1− α.

(b) (Fieller method.) Let W2 = var(c+dθ̂1−ρθ̂2) = d2W11+ρ2W22−2dρW12. Let

Ŵ 2 = d2Ŵ11 + ρ2Ŵ22 − 2dρŴ12. Show that (c+ dθ̂1 − ρθ̂2)/Ŵ is AN N(0, 1),

so that {(c + dθ̂1 − ρθ̂2)
2 ≤ Ŵ 2z21−α

2
} has asymptotic probability 1 − α (zβ

being the β-th quantile of N(0, 1)). Use the last relation to obtain a quadratic
equation in ρ with roots ρ̂� < ρ̂u, and argue that [ρ̂�, ρ̂u] is a confidence interval
for ρ with asymptotic level 1− α. [See Fieller 1940.]

Exercises for Sect. 6.6

Ex. 6.21. (a) Prove that δn → 0 implies m2/b
2
n → 0 (see (6.70)). [Hint: Let

|Xj −Xj′ | = c > 0 for some j, j′. Then δn ≥ (c/2)2/b2n ∀ n ≥ max{j, j′}, since
either |Xj−X| ≥ c/2 or |Xj′ −X| ≥ c/2. Also, X2

i ≤ 2X2
1 +4δnb

2
n (1 ≤ i ≤ n),

so that m2/b
2
n ≤ 2X2

1/b
2
n + 4δn → 0.]

(b) Verify (6.95).
(c) Prove that the random ellipse given by (6.97) is a confidence region for (α, β)

with asymptotic confidence coefficient 1 − θ, if (6.72) holds for the linear re-
gression model (6.12).

Ex. 6.22 (Normal Correlation Model). Show that, under Normal errors εj
in (6.12),

(a) α̂, β̂ are M.L.E.’s, and
(b) the confidence region (6.100) for (α, β) has exact confidence coefficient 1 − θ,

for all n ≥ 3, assuming that Xj ’s, 1 ≤ j ≤ n, are not all the same.

Ex. 6.23. For the heteroscedastic linear regression model (6.101) of Example 6.7,

(a) prove (6.114) under the assumption (6.113),
(b) prove (6.116) under the assumption (6.115),

(c) derive (6.117), assuming (6.113) and (6.115), and show that D̃n in (6.118) is
a confidence region for (α, β) with asymptotic confidence coefficient 1− θ.

Ex. 6.24. For the heteroscedastic linear regression model considered under Re-
mark 6.14 (i.e., in (6.101) with Eε2j = η2jσ

2 (1 ≤ j ≤ n), where η2j > 0 are known,

but σ2 > 0 is unknown), prove that σ̂2 defined in (6.119) is an unbiased estimator
of σ2.

Ex. 6.25. (a) Write out a detailed proof of Corollary 6.3.
(b) Show that the hypothesis of the correlation model holds if (Xj , Yj), j ≥ 1,

are i.i.d. observations from a bivariate normal distribution, where α+βjXj is
the conditional mean of Yj , given Xj . [Hint: Use the fact that the conditional
distribution of Yj , given Xj , is Normal with mean α + βjXj (for appropriate
α, β) and εj := Yj − α − βXj uncorrelated with Xj . This says that the
conditional distribution of εj := Yj − α − βXj , given Xj is N(0, σ2), so that
εj is independent of Xj .]
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Ex. 6.26 (Linear Regression Passing Through a Point).

(a) Consider the linear regression (6.12) with α = 0 (i.e., the regression line passes

through the origin (0, 0)). Show that the least squares estimator of β is β̂ =
∑n

1 XjYj/
∑n

1 X
2
j and that β̂ is asymptotically Normal N(β, σ2/

∑n
1 X

2
j ) if

δ̃n := max{X2
j /
∑n

1 X
2
j : 1 ≤ j ≤ n} → 0 as n → ∞.

(b) Consider the linear regression passing through a given point (x0, y0), i.e., Yj −
y0 = β(Xj −x0) (so that α = y0−βx0). Show that the least squares estimator

of β is β̂ =
∑n

1 (Xj −x0)(Yj − y0)/
∑n

1 (Xj −x0)
2 and that β̂ is asymptotically

Normal N(β, σ2/
∑n

1 (Xj − x0)
2), provided δn := max{(Xj − x0)

2/
∑n

1 (Xi −
x0)

2 : 1 ≤ j ≤ n} → 0.

Ex. 6.27. Suppose in (6.12) X represents blood pressure and Y platelet calcium
in 38 people with normal blood pressure. Let X = 84.5, Y = 105.8,

∑
(Xj−X)2 =

2397.5,
∑

(Xj −X)Yj = 2792.5.

(a) Find the usual 90% confidence band for the regression line.
(b) Find the simultaneous confidence bound with asymptotic confidence level at

least 90% using Scheffé’s method (See Proposition 6.9).

Ex. 6.28 (Transformation to Linear Regression). Consider the relations
(i) y = β0 exp{β1x} (β0 > 0, β1 ∈ R), x ∈ R; (ii) y = β0x

β1 (β0 >: 0, β1 ∈ R),
x > 0. In both (i) and (ii) y > 0 and a multiplicative error ζ may be more
appropriate than a linear one.

(a) Find appropriate transformations of observations Yj , Xj, 1 ≤ j ≤ n, to make
them linear regression models.

(b) Assuming that ζj are i.i.d. positive multiplicative errors, obtain appropriate
estimates of β0, β1 and find their asymptotic distributions in each case (i), (ii).

Exercises for Sect. 6.7

Ex. 6.29. This exercise shows that Theorem 6.3(a) breaks down if the density
f is not continuous (and positive) at ζp. Consider a density whose right-hand
limit f(ζ 1

2
+) and left-hand limit f(ζ 1

2
−) are positive but unequal (at the median

ζ 1
2
). Show that

√
n(ζ̂ 1

2
− ζ 1

2
) does not converge to a Normal distribution. [Hint:

If z > 0, 1{Xi≤ζ 1
2
+ z√

n
} (1 ≤ i ≤ n) are i.i.d. Bernoulli, taking the value 1 with

probability 1
2 +

∫ ζ1/2+
z√
n

ζ1/2
f(x)dx = 1

2 +
z√
n
f
(
ζ 1

2
+

)
+ o(n− 1

2 ). Hence, by following

the steps (6.127)–(6.128), P
(√

n
(
ζ̂1/2 − ζ1/2

)
≤ z

)
−→ P

⎛

⎝ 1

2f

(

ζ 1
2
+

) Z ≤ z

⎞

⎠,

where Z is standard Normal. But for z < 0, the same argument shows that
P (

√
n(ζ̂1/2 − ζ1/2) ≤ z) −→ P ( 1

2f(ζ 1
2
− )Z ≤ z).]

Ex. 6.30. Fix p ∈ (0, 1). Assume that ζp is uniquely defined and F is three times
continuously differentiable in a neighborhood of ζp, with f(ζp) ≡ F ′(ζp) = 0, and

f ′′(ζp) �= 0. Show that P (n
1
6 (ζ̂p − ζp) ≤ z) → Φ(cz3) where Φ is the standard

Normal distribution function and c = 1
6f

′′(ζp)/
√
p(1− p).
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Ex. 6.31. Find the asymptotic distribution of the sample inter-quartile range
ζ̂0.75 − ζ̂0.25 assuming that the hypothesis of Theorem 6.3(a) holds for p = 0.75
and p = 0.25.

Exercises for Sect. 6.8

Ex. 6.32. Prove that the sum of two independent mean-zero random variables,
one of which is Normal while the other is non-Normal, can not be Normal. [Hint:
Use characteristic functions.]

Ex. 6.33. Derive Theorem 6.2 as a corollary of Theorem 6.4, and show that the
condition δn → 0 in (6.72) is also necessary for (6.91) to hold, if εi’s are not
Normal.

Exercises for Sect. 6.9

Ex. 6.34. Verify the computations in Example 6.9.

Ex. 6.35. In Example 6.10, compare the relative performances of ζ̂1/2 and X as
the parameters ε and τ vary over their respective ranges (0 < ε < 1, τ > 0). [Hint:
Write σ =

√
τ .] Let h(ε, σ) := eζ̂1/2,X , as given in Example 6.10. Fix ε ∈ (0, 1).

Show that ∂h/∂σ is negative for 0 < σ < 1, positive for σ > 1, and vanishes at
σ = 1. Also, h(ε, σ) → ∞ as σ ↓ 0 and as σ ↑ ∞. Thus,

(i) for every given ε ∈ (0, 1), h(ε, σ) has the unique minimum value h(ε, 1) = 2
π <

1, and
(ii) there exist σi(ε) (i = 1, 2), 0 < σ1(ε) < 1 < σ2(ε) such that h(ε, σi(ε)) = 1 (i =

1, 2), h(ε, σ) > 1 if σ ∈ (0, σ1(ε))∪(σ2(ε),∞), h(ε, σ) > 1 if σ1(ε) < σ < σ2(ε).
In particular, h(ε, σ) ≥ 2

π ∀ ε, σ, but the lower bound of eX,ζ̂1/2
= 1/h(ε, σ) is

zero.]

Conclusion: ξ̂1/2 is robust compared to X in the Normal mixture model.

Exercise for Sect. 6.10

Ex. 6.36. Take a random sample of size n = 50 from the standard Normal distri-
bution. Treating this as a random sample from an unknown population, find an
approximate 95% confidence interval for ξ.25.

Exercise for Sect. 6.11

Ex. 6.37. (a) In the so-called structural model as considered in (6.169), (6.170),
(6.174) with a stochastic X∗, prove (6.172). [Hint: Show that the quantities

n−1
∑

(X∗
j −X

∗
)(εj − ε), n−1

∑
(X∗

j −X
∗
)(ηj − η) and n−1

∑
(ηj − η)(εj − ε)

have all zero means and variances converging to zero.]

(b) Prove (6.172) for the functional model, assuming n−1
∑

1≤j≤n(X
∗
j −X

∗
)2 →

σ2
x∗ > 0, as n → ∞.

(c) In the functional model, show that β̂ is a consistent estimator of β if and only if
n−1

∑
1≤j≤n

(X∗
j −X

∗
)2 → ∞ as n → ∞.

Ex. 6.38. Derive (6.177), (6.178) under the given assumptions of the structural
bivariate Normal model.

Ex. 6.39. Carry out a simulation study of the structural bivariate Normal model
with κ = 0.9, and compute β̂ = β̂yx and β̂−1

xy .
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Chapter 7

Large Sample Theory of Estimation
in Parametric Models

Abstract The main focus of this chapter is the asymptotic Normality and opti-
mality of the maximum likelihood estimator (MLE), under regularity conditions.
The Cramér–Rao lower bound for the variance of unbiased estimators of paramet-
ric functions is shown to be achieved asymptotically by the MLE. Also derived
are the asymptotic Normality of M -estimators and the asymptotic behavior of the
Bayes posterior.

7.1 Introduction

We begin with the derivation of an important inequality known as the Cramér-Rao
bound which gives a lower bound to the expected squared error (or, variance) of
unbiased estimators of parametric functions under certain regularity conditions.
This bound is attained by some estimators of special parametric functions in ex-
ponential families (see Chap. 4, Part I for definition of exponential families). In
general the bound is rarely attained (exactly). We will see, however, that this
lower bound is attained in an asymptotic sense by maximum likelihood estimators
(MLEs) in large samples, provided certain regularity conditions hold. This shows
that the MLEs are asymptotically optimal under these conditions.

Notation In order to avoid having to make the arguments separately for the
discrete and absolutely continuous cases (or, for a mix of them), we will in this
section write g(x; θ) for the density of the observed random vectorX w.r.t. a sigma
finite measure μ on the set x of all values x in the range X of X. In the absolutely
continuous case, g(x; θ) is the probability density function (p.d.f.) of X (and μ is
Lebesgue measure: μ(dx) = dx). In the discrete case g(x; θ) is the probability mass
function (p.m.f.) of X on a countable set X (and μ is the counting measure,∫
X

h(x)g(x; θ)μ(dx) =
∑

x∈X h(x)g(x; θ)). Sometimes, when X = (X1, . . . , Xn)
with X1, . . . , Xn i.i.d. (or when Xi’s are n observations in a time series), we write
fn(x; θ), instead of g(x; θ), to indicate the sample size. In the i.i.d. case, f(x; θ)
always indicates the density of a single observation Xi. The range of Xi is X in
this case, while that of X is X = X n.
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The random variables, or vectors, are all defined on a measurable space (Ω,F )
and, for each value θ of the parameter, they are governed by a probability law Pθ

on (Ω,F ). The expectation under Pθ is denoted Eθ. Also, Y
L∼ Q denotes “Y has

distribution Q”.

7.2 The Cramér-Rao Bound

Theorem 7.1 (Cramér-Rao Information Inequality). Suppose X has p.d.f.
g(x; θ) (with respect to a sigma-finite measure μ) on a space X satisfying

(i) g(x; θ) > 0 ∀ x ∈ X , ∀ θ ∈ Θ—an open interval,
(ii)

∫
X

d
dθg(x; θ)μ(dx) =

d
dθ

∫
X

g(x; θ)μ(dx) ≡ 0.
Let T = t(X) be a (real-valued) statistic with c(θ) := EθT , EθT

2 < ∞ ∀ θ,
satisfying

(iii) d
dθ

∫
X t(x)g(x; θ)μ(dx) ≡ c′(θ) =

∫
X t(x)dg(x;θ)dθ μ(dx).

Then

varθT ≡ Eθ(T − c(θ))2 ≥ c′(θ)2

Eθ

(
d log g(X;θ)

dθ

)2 . (7.1)

Proof. Condition (ii) may be restated as

0 = Eθ
d log g(X; θ)

dθ

(

≡
∫

X

d
dθg(x; θ)

g(x; θ)
g(x; θ)μ(dx)

)

(7.2)

Similarly, condition (iii), together with (ii), says

covθ

(

T,
d log g(X; θ)

dθ

)

= c′(θ), (7.3)

The inequality (7.1) now follows from (7.3) by the Cauchy-Schwartz inequality.

��
Remark 7.1. Assumptions (ii), (iii) in the theorem concern the interchangeability of
the order of differentiation and integration. IfX depends on θ, then these generally
do not hold. For example, let X = (X1, . . . , Xn) with Xj ’s i.i.d. uniform on (0, θ).
Then X = (0, θ)n. Take T = Mn ≡ max{X1, . . . , Xn}. Note that g(x; θ) = 1/θn

on X , so that dg(x; θ)/dθ = −n/θn+1,
∫
X

d
dθg(x; θ)dx ≡ ∫

(0,θ)n
(−n/θn+1)dx =

− n
θn+1 · θx = −n/θ �= 0. Also, letting c(θ) = EθMn = n

n+1θ (Exercise 7.1),

one has c′(θ) = n
n+1 , while

∫
X t(x)(dg(x; θ)/dθ)dx = Eθ(Td log g (X; θ)/dθ) =

Eθ (Mnd[−n log θ]/dθ) = Eθ

(

Mn(−n
θ )

)

= − n2

n+1 .

Remark 7.2. The most common X encountered in this course is that of a random
vector X = (X1, . . . , Xn) with Xj’s i.i.d. and having a (common) p.d.f. or p.m.f.
f(x; θ). In this case

g(x; θ) =
n∏

j=1

f(xj ; θ), log g(x; θ) =
n∑

j=1

log f(xj ; θ), x = (x1, . . . , xn). (7.4)
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so that (ii) or (7.2) is equivalent to

Eθ
d log f(X1; θ)

dθ

(

≡
∫

X

df(x; θ)

dθ
dx, or

∑

x∈X

df(x; θ)

dx

)

= 0

Also,

Eθ

(
d log g(X; θ)

dθ

)2

≡ varθ

(
d log g(X; θ)

dθ

)

= varθ

⎛

⎝
n∑

j=1

d log f(Xj ; θ)

dθ

⎞

⎠ =

n∑

j=1

varθ

(
d log f(Xj ; θ)

dθ

)

= n varθ

(
d log f(X1; θ)

dθ

)

= nEθ

(
d log f(X1; θ)

dθ

)2

.

The quantity I(θ) := Eθ

(
d log f(X1;θ)

dθ

)2
is called, in the case of i.i.d. observa-

tions, the information per observation, and Eθ

(
d log g(X;θ)

dθ

)2
= nI(θ) is the infor-

mation contained in the whole sample. We have derived the following corollary of
the theorem.

Corollary 7.1. Suppose X1, . . . , Xn are i.i.d. with a common density f(x; θ) with
respect to a sigma-finite measure μ, and let X = (X1, . . . , Xn). Then, under the
hypothesis of the theorem above, one has

varθ(T ) ≥ (c′(θ))2

nI(θ)
, (7.5)

where I(θ) = Eθ

(
d log f(X1;θ)

dθ

)2
.

Remark 7.3. The hypothesis of Corollary 7.1 holds if the following conditions hold:

(R0) f(x; θ) > 0 ∀ x ∈ X , θ ∈ Θ, where X does not depend on θ.

(R1)
df(x;θ)

dθ is continuous on Θ (∀ x ∈ X ), and for each θ0 ∈ Θ there ex-

ists h1 = h1(θ0) > 0 such that sup
{
|df(x;θ)dθ | : |θ − θ0| ≤ h1

}
≤ g1(x), where

∫
X

g1(x)μ(dx) < ∞.
(R2) For each θ0 ∈ Θ there exists h2 = h2(θ0) > 0 such that

sup
{
|df(x;θ)dθ | : |θ − θ0| ≤ h2

}
≤ g2(x) where Eθ0g

2
2(X) (≡ ∫

X g22(x)f(x; θ0)μ

(dx) < ∞).

Remark 7.4. If one estimates some function h(θ) by T , and EθT = c(θ), then under
the hypothesis of Theorem 7.1 one has

Eθ(T − h(θ))2 = Eθ(T − c(θ))2 + (c(θ) − h(θ))2

≥ (c′(θ))2

Eθ

(
d log g(X;θ)

dθ

) + (c(θ)− h(θ))2 (7.6)
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Remark 7.5. It may be shown in the case of i.i.d. observations X1, . . . , Xn

from a one-parameter exponential family (with p.d.f. or p.m.f. f(x; θ) =
c1(θ)h(x)e

θt1(x), θ ∈ Θ—an open interval) that (R0)–(R2) hold. Hence (7.5) is valid
in this case. However, the lower bound is attained only by T = t(X) =

∑n
j=1 t1(Xj)

(and its linear functions). (Exercise 7.2(b).)

7.3 Maximum Likelihood: The One Parameter Case

As mentioned in Sect. 7.1, one of the main reasons why the Rao–Cramér bound
is so important is that the MLE’s, under appropriate regularity conditions, attain
this bound in an asymptotic sense. In other words, the MLE is asymptotically
optimal or, asymptotically efficient. The following result is a precise statement of
this fact.

Theorem 7.2 (CLT for the MLE). Let f(x; θ) be the p.d.f. with respect to
a sigma-finite measure μ of the common distribution of i.i.d. random variables
X1, X2, . . . , for θ belonging to an open interval Θ. Assume that f(x; θ) > 0 ∀ x ∈
X , ∀ θ ∈ Θ, where Pθ(X1 ∈ X ) = 1 (∀ θ ∈ Θ). Assume also the following

(A∗
1) θ → f(x; θ) is three times continuously differentiable on Θ, ∀ x ∈ X ;

(A∗
2)

∫
X

d
dθf(x; θ)μ(dx) = 0 (≡ d

dθ

∫
X f(x; θ)μ(dx)),

∫
X

d2

dθ2 f(x; θ)μ(dx) =

0(≡ d2

dθ2

∫
X f(x; θ)μ(dx));

(A∗
3) 0 < I(θ) := Eθ

(
d log f(X1;θ)

dθ

)2
< ∞ ∀ θ ∈ Θ;

(A∗
4) For each θ0 ∈ Θ there exists an ε (= ε(θ0)) > 0 such that |d3 log f(x;θ)

dθ3 |3 ≤
g(x) ∀ θ ∈ [θ0 − ε, θ0 + ε], where

∫
X

g(x)f(x; θ0)μ(dx) < ∞.
(A∗

5) The likelihood equation (writing (θ) :=
∑n

j=1 log f(Xj ; θ))

d(θ)

dθ
= 0, i.e.,

n∑

j=1

d log f(Xj ; θ)

dθ
= 0, (7.7)

has a consistent solution θ̂n.

Then
√
n(θ̂n − θ0) converges in distribution to N(0, 1/I(θ0)) if θ0 is the true

parameter value (i.e., under Pθ0), as n → ∞.

Proof. Using a Taylor expansion of d(θ)/dθ around θ = θ0, one has

0 =
d(θ)

dθ
|θ=θ̂n

=
d(θ)

dθ
|θ=θ0+(θ̂n−θ0)

d2(θ)

dθ2
|θ=θ0+

(θ̂n − θ0)
2

2

d3(θ)

dθ3
|θ=θ∗ (7.8)

where θ∗ lies in the line segment joining θ0 and θ̂n. Thus,

√
n(θ̂n − θ0) =

− 1√
n

(
d�(θ)
dθ

)

θ=θ0

1
n

(
d2�(θ)
dθ2

)

θ=θ0
+ 1

n
θ̂n−θ0

2
d3�(θ)
dθ3 |θ=θ∗

. (7.9)
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First note that

Eθ
d2 log f(Xj; θ)

dθ2
=

∫

X

d

dθ

(
d
dθf(x; θ)

f(x; θ)

)

f(x; θ)dx

=

∫

X

f ′′(x; θ)f(x; θ) − (f ′(x; θ))2

f2(x; θ)
f(x; θ)dx

=

∫

X

f ′′(x; θ)μ(dx) −
∫

X

(
d log f(x; θ)

dθ

)2

f(x; θ)μ(dx)

= −I(θ), (7.10)

using the second relation in (A∗
2) for the last step. Thus by the strong law of large

numbers (SLLN),

1

n

(
d2(θ)

dθ2

)

θ=θ0

≡ 1

n

n∑

j=1

(
d2 log f(Xj ; θ)

dθ2

)

θ=θ0

−→ −I(θ0) (7.11)

with probability one (under Pθ0). By (A∗
4),

1
n |d

3�(θ)
dθ3 | ≤ 1

n

∑n
j=1 g(Xj) ∀ θ ∈ [θ0 −

ε, θ0+ε], but by (A∗
5), Pθ0(|θ0−θ∗| ≤ ε) ≤ Pθ0(|θ̂n−θ0| ≤ ε) → 1 as n → ∞. Using

this and the fact that 1
n

∑n
j=1 g(Xj) → Eθ0g(X1) < ∞, one finds that 1

n |d3�(θ)dθ3 |θ∗

remains bounded in probability as n → ∞ (See Definition 7.1 below). Since, also,
θn − θ0 → 0 in probability, one gets

1

n

θ̂n − θ0
2

d3(θ)

dθ3
−→ 0 in Pθ0-probability as n → ∞.

Using this and (7.11) in (7.9), one gets

√
n(θ̂n − θ0) ≈

1√
n

(
d�(θ)
dθ

)

θ=θ0

I(θ0)
≡

1√
n

∑n
j=1

(
d log f(Xj ;θ)

dθ

)

θ=θ0

I(θ0)
, (7.12)

where ≈ indicates that the difference between its two sides goes to zero. But(
d log f(Xj ;θ)

dθ

)

θ=θ0
(j = 1, 2, . . . ) is an i.i.d. sequence of random variables having

mean zero (by (A∗
2)) and finite variance I(θ0) (by (A∗

3)). Therefore, by the classical
CLT, writing Z for a Normal random variable N(0, I(θ0)),

√
n(θ̂n − θ0)

L−→ Z

−I(θ0)

L
= N

(

0,
I(θ0)

I2(θ0)

)

= N

(

0,
1

I(θ0)

)

.

Q.E.D. ��
Remark 7.6. In particular, the above theorem says that (under Pθ0) the “asymp-

totic variance” of (θ̂n − θ0) is 1
nI(θ0)

, which is the Rao–Cramér lower bound for

the expected squared error of any estimator of θ (at θ = θ0).

Example 7.1. The hypothesis of Theorem 7.2 is satisfied by one-parameter expo-
nential families with p.d.f.

f(x; θ) = C(θ)h(x)eθt(x), x ∈ X (7.13)
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where X does not depend on θ, h(x) > 0 for x ∈ X . This form of the exponential
family is said to be in natural parametric form with θ being the natural parameter
(belonging to an open interval Θ). The likelihood equation is

d log

dθ

⎡

⎣Cn(θ)

⎛

⎝
n∏

j=1

h(Xj)

⎞

⎠ exp

⎧
⎨

⎩
θ

n∑

j=1

t(Xj)

⎫
⎬

⎭

⎤

⎦ = 0, (7.14)

i.e.,

− d logC(θ)

dθ
=

1

n

n∑

j=1

t(Xj). (7.15)

But

− d logC(θ)

dθ
= −C′(θ)

C(θ)
= −C′(θ)

∫

h(x) exp{θt(x)}μ(dx)

= − d

dθ

(∫

h(x) exp{θt(x)}μ(dx)
)−1 ∫

h(x) exp{θt(x)}μ(dx)

=

∫
t(x)h(x) exp{θt(x)}μ(dx)
∫
h(x) exp{θt(x)}μ(dx) =

∫

t(x)f(x; θ)μ(dx)

= Eθt(X1). (7.16)

Hence, one may rewrite (7.15) as the equation

Eθt(X1) =
1

n

n∑

j=1

t(Xj). (7.17)

Now, the second derivative of the log likelihood function is (see the left side of
the first equation in (7.15) and the relations (7.16))

n
d2 logC(θ)

dθ2
=

=
n[(
∫
t(x) exp{θt(x)}μ(dx))2−(

∫
h(x) exp{θt(u)}μ(dx))(∫ t2(x)h(x)eθt(x)μ(dx))]

(
∫
h(x) exp{θt(x)}μ(dx))2

= −n varθ t(X1) < 0. (7.18)

Thus the log likelihood function is strictly concave, and, therefore, (7.15) cannot

have more than one root θ̂. We will show later (see Theorem 7.5) that in this

case the likelihood equation has a unique solution θ̂ on a set with Pθ0-probability

tending to 1, as n → ∞, under θ0, and that θ̂ is consistent. Thus Theorem 7.2
applies.

Example 7.2 (Logistic). In this case

f(x; θ) =
e−(x−θ)

(1 + e−(x−θ))2
, −∞ < x < ∞ (Θ = (−∞,∞)),

so that the likelihood equation (d log fn(X; θ)/dθ = 0) is

d

dθ

⎧
⎨

⎩
−

n∑

j=1

(Xj − θ)− 2

n∑

j=1

log
(
1 + e−(Xj−θ)

)
⎫
⎬

⎭
= 0, (7.19)



7.3 Maximum Likelihood: The One Parameter Case 171

or

n− 2

n∑

j=1

e−(Xj−θ)

1 + e−(Xj−θ)
= 0

or,

n− 2

n∑

j=1

{

1− 1

1 + e−(Xj−θ)

}

= 0,

or,

n− 2n+ 2
n∑

j=1

1

1 + e−(Xj−θ)
= 0 (7.20)

or,
n∑

j=1

1

1 + e−(Xj−θ)
=

n

2
. (7.21)

Since the left hand side is strictly decreasing in θ, and goes to n as θ ↓ −∞ and to
0 as θ ↑ ∞, there is a unique solution θ̂ of (7.20). Also the left hand side of (7.19)

(which gives the first derivative of log fn(X; θ)) is positive for θ < θ̂ and negative

for θ > θ̂. Hence θ̂ is the MLE. The hypothesis of Theorem 7.2 can be easily
verified for this case.

Example 7.3 (Double Exponential). Here

f(x; θ) =
1

2
e−|x−θ|, −∞ < x < ∞, θ ∈ (−∞,∞).

log fn(X; θ) = −n log 2−
n∑

j=1

|Xj − θ|, (7.22)

which is maximized by that value of θ for which ϕ(θ) :=
∑n

j=1 |Xj−θ| is minimized.

The minimizing value is the median of X1, X2, . . . , Xn; i.e., θ̂ is the n+1
2 th observa-

tion when X1, X2, . . . , Xn are arranged in increasing order, for the case when n is
odd. If n is even, then θ̂ is any number between the n

2 th and (n2 +1)th observation
(arranged in increasing order). To see this, let X(1) < X(2) < · · · < X(n) denote
the ordering of the n observations. Let θ ∈ [X(r), X(r+1)), and let δ > 0 be such
that θ+δ ∈ [X(r), X(r+1)]. Then ϕ(θ+δ) = ϕ(θ)+rδ−(n−r)δ = ϕ(θ)+(2r−n)δ.
Thus ϕ(θ + δ) < ϕ(θ) if and only if r < n

2 , and ϕ(θ + δ) = ϕ(θ) if r = n
2 . In other

words, if n is odd, then ϕ(θ) is strictly decreasing on (−∞, X([n2 ]+1)], and strictly
increasing on (X([n2 ]+1),∞), attaining its unique minimum at θ = X([n2 ]+1). On
the other hand, if n is even, ϕ(θ) is strictly decreasing on (−∞, X(n

2 )], strictly
increasing on (X(n

2 +1),∞), and constant on [X(n
2 ), X(n

2 +1)].
Although the hypothesis of Theorem 7.2 does not hold, the conclusion holds.

Note that

d log f(x; θ)

dθ
=

{
−1 for x < θ

1 for x > θ.
(7.23)

I(θ) = Eθ

(
d log f(X1; θ)

dθ

)2

= Eθ1 = 1. (7.24)
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We know from Theorem 6.3 that, under Pθ,

√
n(θ̂ − θ)

L−→ N

(

0,
1

4f2(θ; θ)

)

= N(0, 1).

Hence θ̂ is asymptotically efficient. This also explains the poor performance of the
mean relative to the median: eθ̂,X = 2. (Note that

√
n(X − θ) → N (0, σ2) where

σ2 = Eθ(X1 − θ)2 = 1
2

∫∞
−∞ x2e−|x|dx =

∫∞
0

x2e−xdx = Γ3 = 2).

Example 7.4.

f(x; θ) =

(
1√
2πθ2

)n

e−
1

2θ2
(x−θ)2, −∞ < x < ∞,

Θ = {θ ∈ R
1, θ �= 0} = R

1 \ {0}.

The likelihood equation d log fn(X; θ)/dθ = 0 may be expressed as

−n

θ
+

∑n
1 X

2
i

θ3
−
∑

Xi

θ2
= 0,

or,

θ2 +Xθ −m2 = 0,

(

X :=

∑
Xi

n
, m2 :=

∑
X2

i

n

)

, (7.25)

whose roots are

θ+ =
−X +

√

X
2
+ 4m2

2
, θ− =

−X −
√

X
2
+ 4m2

2
. (7.26)

Note that (1) as θ → 0, fn(X; θ) → 0 (except for X = (θ, θ, . . . , θ) which has zero
probability), and (2) as θ → ±∞, maxx fn(x; θ) = (2πθ2)−n/2 → 0. There are,
therefore, at least two extrema: at least one between −∞ and 0, and at least one
between 0 and +∞. However, the only critical points are θ+, θ− . Hence there are
exactly two extrema. Note that θ+ > 0 and θ− < 0. Now at θ̂ = θ+, θ− one has

log fn(X; θ) = −n

2
log 2π − n

2
log θ̂2 − n

2θ̂2

(
θ̂2 − 2Xθ̂ +m2

)

= −n

2
log 2π − n

2
− n

2
log θ̂2 − n

2θ̂2

(
θ̂2 −Xθ̂

)

= −n

2
log 2π − n

2
log θ̂2 − n+

n

2θ̂
X. (7.27)

If X > 0, then (7.27) is larger at θ̂ = θ+, and if X < 0, then (7.27) is larger at

θ̂ = θ− . Therefore, the MLE is

θ̂n =

{
θ+ if X > 0

θ− if X ≤ 0.
(7.28)

Theorem 7.2 applies to consistent solutions (i.e., an estimator (sequence) θ̂n
which is consistent and solves the likelihood Eq. (7.2) on a set whose probability
goes to 1 as n → ∞). How does one obtain such a solution? There is no general
method that works in all cases, from the computational point of view. However,
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under the hypothesis of Theorem 7.2 one may show that there exists essentially one
consistent sequence of solutions.1 A general numerical method which often works
is the following: find a consistent estimator (sequence) θ̃n (e.g., by the method
of moments if that is applicable, or by using the median in case of a symmetric
location problem etc.); taking θ̃n as a trial solution, use iteration (or Newton–
Raphson method):

θ̃(i+1)
n (x) = θ̃(i)n (x) −

(
d log fn(x; θ)/dθ

d2 log fn(x; θ)/dθ2

)

θ̃
(i)
n

θ̃(0)n = θ̃n, (i = 0, 1, 2, . . . ). (7.29)

As the following result shows, one may use (7.29) with i = 0 and use the

estimator θ̃
(1)
n in place of a consistent root, in situations involving multiple roots

and computational difficulties.

Definition 7.1. A sequence of random variables (or, vectors) Yn is said to be
bounded in probability if for every ε > 0 there exists A = A(ε) such that

P (|Yn| > A) < ε.

Note that Yn, n ≥ 1, is bounded in probability if E|Yn| is a bounded sequence.

Theorem 7.3. Suppose that the hypothesis of Theorem 7.2 concerning f(x; θ)
holds. Assume that θ̃n is an estimator (sequence) such that for each θ0 ∈
Θ,

√
n(θ̃n − θ0) is bounded in Pθ0-probability. Then the estimator (sequence)

δn = θ̃n −
(

d log fn(X; θ)/dθ

d2 log fn(X; θ)/dθ2

)

θ̃n

(7.30)

is asymptotically efficient.

Proof. One has, by a Taylor expansion of (d log fn(X; θ)/dθ)θ̃

√
n(δn − θ0) =

√
n(θ̃n − θ0)−

1√
n
(d log fn(X; θ/dθ)θ0

1
n (d

2 log fn(X; θ)/dθ2)θ̃n

−
√
n(θ̃n − θ0)

1
n (d

2 log fn(X; θ)/dθ2)θ∗
n

1
n (d

2 log fn(X; θ)/dθ2)θ̃n
(7.31)

where θ∗n lies between θ0 and θ̃n. Now, under Pθ0 ,

1
n (d

2 log fn(X; θ)/dθ2)θ∗
n

1
n (d

2 log fn(X; θ)/dθ2)θ̃n
− 1

Pθ0−→ 0. (7.32)

One may prove (7.32)) by expanding the numerator and the denominator around
θ0 and using A∗

4.
Using (7.32) in (7.31) one gets

√
n(δn − θ0)−

{

−
1√
n
(d log fn(X; θ)/dθ)θ0

1
n (d

2 log fn(X; θ)/dθ2)θ̃n

}
Pθ0−→ 0. (7.33)

But the expression within curly brackets converges in distribution to N
(
0, 1

I(θ0)

)

under Pθ0 . ��
1 See Lehmann and Casella (1998, p. 448).
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Remark 7.7. Suppose now that Tn is bounded in probability and Un converges in

probability to zero (written Un
P−→ 0 or, Un = op(1)). Then one can easily show

that UnTn converges in probability to zero as n → ∞. [Proof: P (|UnTn| > δ) ≤
P (|Tn| > Aε) + P (|UN | > δ/Aε) < ε+ εn for all sufficiently large n, with εn → 0].
This fact has been used in getting (7.33) from (7.31) and (7.32).

Remark 7.8. A variant of (7.30) is

δ′n = θ̃n +
(d log fn(X; θ)/dθ)θ̃n

nI(θ̃n)
. (7.34)

Since −(d2 logFn(X : θ)/dθ2)θ̃n/nI(θ̃n) converges to 1 in probability, by Slutsky’s
Lemma, δn and δ′n converge asymptotically to the same distribution.

7.4 The Multi-Parameter Case

We will now prove a multi-parameter analogue of the Cramér–Rao inequality.

Theorem 7.4 (Multi-Parameter Cramér-Rao Information Inequality).
Let X be a random quantity whose distribution has density g(x; θ) with respect
to a sigma finite measure ν (on a sigma field A on the range space X of X);
here θ ∈ Θ—a nonempty open subset of R

p. Assume the following: (Notation:
θ = (θ1, θ2, . . . , θp))

(B1) C = {x; g(x; θ) > 0} is independent of θ.
(B2) θ → g(x; θ) is once differentiable on Θ, ∀ x (outside a ν-null set).
(B3)

∫
C(∂/∂θr)g(x; θ)ν(dx) = (∂/∂θr)

∫
C g(x; θ)ν(dx)(= 0) ∀ r = 1, 2, . . . , p

and ∀ θ ∈ Θ.
(B4) The matrix I (θ) = ((Eθ[(∂ log g(X; θ)/∂θr)·(∂ log g(X; θ)/∂θr′)])) is non-

singular.
Let now T = (T1, T2, . . . , Tp) be an unbiased estimator of θ (i.e., EθTr =
θr ∀ θ ∈ Θ) such that Eθ(Tr)

2 < ∞ ∀ r and ∀ θ. Assume further that
(B5)

∫
C
Tr(x)(∂/∂θr′)g(x; θ)ν(dx) = (∂/∂θr′)

∫
C
Tr(x)g(x; θ)ν(dx) (= δrr′,

Kronecker’s delta) ∀ r, r′ and ∀ θ.

Then one has the inequality

Σ(θ) ≥ I −1(θ), (7.35)

where Σ(θ) = ((covθ(Tr, Tr′))), and the inequality (7.35) means the Σ(θ)−I −1(θ)
is a nonnegative definite matrix.

Proof. It follows from (B3) that

Eθ(∂ log g(X; θ)/∂θr′ =

∫

C

(∂g(x; θ)/∂θr′)

g(x′; θ)
g(x; θ)ν(dx) = 0. (7.36)

Hence, using (B5),

covθ(Tr, (∂/∂θr′) log g(X; θ)) = Eθ[Tr(∂ log g(X; θ)/∂θr′)]

=

∫

C

Tr(x)(∂g(x; θ)/∂θr′)ν(dx) = δrr′ . (7.37)
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Let a = (a1, a2, . . . , ap), b = (b1, b2, . . . , bp) be arbitrary vectors in R
p. Then,

by (7.37),

covθ

(
p∑

1

arTr,

p∑

1

br(∂ log g(X; θ)/∂θr)

)

=

p∑

1

arbr. (7.38)

Therefore, by Schwartz’ inequality, writing σrr′(θ) = covθ(Tr, Tr′), I (θ) =
((Irr′(θ)),

(
p∑

1

arbr

)2

≤ varθ

(
p∑

1

arTr

)

· varθ
(

p∑

1

br(∂ log g(X; θ)/∂θr)

)

=

(
p∑

r=1

p∑

r′=1

arar′ σrr′(θ)

)(
p∑

r=1

p∑

r′=1

brbr′Irr′(θ)

)

. (7.39)

Writing 〈a,b〉 =∑p
r=1 arbr (the Euclidean inner product), one may rewrite (7.39) as

〈a,b〉2 ≤ 〈a, Σ(θ)a〉 〈b,I (θ)b〉 . (7.40)

Now choose b = I −1(θ)a to get

〈
a,I −1(θ)a

〉2 ≤ 〈a, Σ(θ)a〉 〈I −1(θ)a, a
〉
,

or,
〈a, Σ(θ)a〉 ≥ 〈

aI −1(θ)a
〉

or, 〈
a, (Σ(θ)−I −1(θ))a

〉 ≥ 0 ∀ a ∈ R
p. (7.41)

��
Remark 7.9. As in the one-parameter case, (see proof of Cramér–Rao Theorem 7.1)
the following conditions ensure the validity of the inequality (7.35) at θ = θ0 :
(B1), (B2) hold, as well as the following conditions

(R′
1):

∣
∣
∣
∂g(x;θ)

∂θr

∣
∣
∣ ≤ g1(x) (∀ r = 1, 2, . . . , p) in a neighborhood of θ0, where g1(x)

does not depend on values of θ in this neighborhood, and
∫
g1(x)ν(dx) < ∞.

(R′
2): In a neighborhood of θ = θ0 one has

∣
∣
∣
∂g(x;θ)

∂θr

∣
∣
∣ ≤ g2(x) (∀ r = 1, 2, . . . , p),

where g2(x) does not depend on θ in this neighborhood, and
∫ g2

2(x)
g(x;θ0)

ν(dx)
< ∞.

Remark 7.10. In case X = (X1, X2, . . . , Xn) where X1, X2, . . . , Xn are i.i.d. with
common p.d.f. (w.r.t. μ) f(x; θ), one takes g(x; θ) = fn(x; θ) =

∏n
j=1 f(xj ; θ).

The information inequality then becomes

Σ(θ) ≥ 1
nI

−1
1 (θ), (7.42)

where I1(θ) = ((Eθ
∂ log f(X1;θ)

∂θr
· ∂ log f(X1;θ)

∂θr′
)).

Remark 7.11. Letting a in (7.41) be the vector with 1 as the jth component and
zeros elsewhere, one gets

varθ(Tj) ≥
(
I −1(θ)

)
jj
. (7.43)
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In the context of Remark 7.10 this becomes

varθ(Tj) ≥ 1

n

(
I −1

1 (θ)
)
jj
. (7.44)

Note also that (7.41) (and, therefore, (7.35)) says that the variance of an
unbiased estimator of a linear parametric function g(θ) =

∑p
1 arθr is at least〈

a,I −1(θ)a
〉
when θ is the true parameter value.

Definition 7.2. Assume that (B1), (B2), hold for f(x; θ) (in place of g(x; θ)),
and that (R′

1), (R
′
2) hold for fn(x; θ) =

∏n
j=1 f(xj ; θ) (in place of g(x; θ)). Then

a sequence of estimators Tn of θ is said to be asymptotically efficient (in Fisher’s
sense) if, ∀ θ ∈ Θ,

√
n(Tn − θ)

L−→ N(o,I −1
1 (θ)), under Pθ. (7.45)

Remark 7.12. Apart from the motivation for the above definition provided in Re-
mark 7.11, one may show that an asymptotically efficient estimator Tn concentrates
more probability around the true parameter value, asymptotically, than a compet-
ing asymptotically normal estimator δn which is not asymptotically efficient. More
precisely,

lim
n→∞Pθ(

√
n(Tn − θ) ∈ C) = ΦI−1(θ)(C) ≥ ΦV (θ)(C)

≡ lim
n→∞Pθ(

√
n(δn − θ) ∈ C) (7.46)

for all symmetrically convex sets C (i.e., convex C satisfying: C = −C = {−x :
x ∈ C}). Here V (θ) is the dispersion matrix of the limiting normal distribution of√
n(δn−θ) under Pθ. The two equalities in (7.46) are consequences of convergence

in distribution, while the inequality follows from a theorem of T.W. Anderson
(Proc. Amer. Math. Soc. 6, 170–176): If V1(θ) ≥ V2(θ), V1(θ), V2, (θ) nonnegative
definite, then ΦV1(θ)(C) ≤ ΦV2(θ)(C) ∀ symmetric convex sets C.

To provide an alternative justification in terms of risk functions, define a loss
function L(θ−θ′) (loss when θ is the true parameter value and θ′ is the estimated
value) to be negative unimodal (or bowl shaped) if L ≥ 0 and {z : z ∈ R

p, L(z) ≤
r} is convex for all r ≥ 0; a loss function L(θ − θ′) is symmetric if L(z) =
L(−z) ∀ z ∈ R

p. Let L0 denote the class of all negative unimodal symmetric
and bounded loss functions. For each L ∈ L0 define the loss function (sequence)
Ln(θ, θ

′) = L(
√
n(θ−θ′)). Then one can show, using T.W. Anderson’s inequality

and weak convergence, that

lim
n→∞EθLn(θ, Tn) =

∫

Rp

L(z)dΦI−1(θ)(z) ≤
∫

Rp

L(z)dΦV (θ)(z)

= lim
n→∞EθLn(θ, δn) (7.47)

∀ L ∈ L0 (provided V (θ) ≥ I−1(θ)).

Finally note that the loss function Ln is a “normalization” of L, which is in the
class L0, and such that the limits in (7.47) become discriminating. On the other
hand,

lim
n→∞EθL(θ − Tn) = L(0) = lim

n→∞EθL(θ − δn). (7.48)
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Theorem 7.5 (Asymptotic Efficiency of the MLE). Suppose X1, X2, . . . is
an i.i.d. sequence with common p.d.f. f(x; θ) (w.r.t. μ) and that the following
assumptions hold: Θ is an open subset of Rp and

(A1): C = {x : f(x; θ) > 0} is independent of θ.
(A2): θ → f(x; θ) is thrice differentiable on Θ, ∀ x ∈ C (i.e., ∂3f(x; θ)/∂θr∂θr′∂θr′′

exist ∀ r, r′, r′′).
(A3):

∫
C(∂/∂θr)f(x; θ)μ(dx) = (∂/∂θr)

∫
C f(x; θ)μ(dx) (= 0),

∫
C(∂

2/∂θr∂θr′)
f(x; θ)μ(dx) = (∂2/∂θr∂θr′)

∫
C
f(x; θ)μ(dx) (= 0) ∀ r, r′ and ∀ θ ∈ Θ.

(A4): The matrix I (θ) =
((

Eθ

(
∂ log f(X1;θ)

∂θr
· ∂ log f(X1;θ)

∂θr′

)))
is finite and non-

singular, ∀ θ ∈ Θ.
(A5): for each θ0 ∈ Θ there exists an ε > 0 and a Pθ0

-integrable function g(x)
such that, ∀ r, r′, r′′,

∣
∣
∣
∣
∂3 log f(x; θ)

∂θr∂θr′∂θr′′

∣
∣
∣
∣ ≤ g(x) if |θ − θ0| ≤ ε.

(|θ − θ0|2 =
∑p

r=1(θr − θ0r)
2).

Then for each θ0 ∈ Θ, there exists a sequence θ̂n with the following properties:

(1) θ̂n is a solution of the likelihood equations

Pθ0
((∂fn(x; θ)/∂θr)θ̂n = 0 for 1 ≤ r ≤ p) −→ 1 as n → ∞,

(2) θ̂n

Pθ0−→ θ0,

(3)
√
n(θ̂n − θ0)

L−→ N(0,I−1
1 (θ)).

Proof. To prove (1) and (2), for each x ∈ X n consider the set

Sx;n =

{

θ ∈ Θ :
∂fn(x; θ)

∂θr
= 0 for 1 ≤ r ≤ p

}

. (7.49)

Sx,n is a closed set. In case Sx,n is nonempty choose the (or a) solution of the
likelihood equations

∂fn(x; θ)

∂θr
= 0 for 1 ≤ r ≤ p, (7.50)

which is nearest θ0, and denote it by θ̂n(x). If, for some x, Sx,n is empty choose

θ̂n(x) from Θ arbitrarily. (A measurable choice of θ̂n is possible). Now consider a
δ > 0 such that {θ : |θ − θ0| ≤ δ} ⊂ Θ. Under A2 one has, for |θ − θ0| ≤ δ,

1

n

n∑

j=1

log f(Xj; θ)

=
1

n

n∑

j=1

log f(Xj; θ0) +

p∑

r=1

(θr − θ0r)
1

n

n∑

j=1

(
∂ log f(Xj ; θ)

∂θr

)

+
1

2!

p∑

r,r′=1

(θr − θ0r)(θr′ − θ0r′)
1

n

n∑

j=1

(
∂2 log f(Xj ; θ)

∂θr∂θr′

)

θ0

+
1

3!

p∑

r,r′,r′′=1

(θr − θ0r)(θr′ − θ0r′)(θr′′ − θ0r′′)
1

n

n∑

j=1

(
∂3 log f(Xj; θ)

∂θr∂θr′∂θr′′

)

θ∗
(7.51)
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where θ∗ lies on the line segment joining θ and θ0, and therefore |θ∗−θ0| ≤ δ. The
second summand on the right side of (7.51) may be expressed, by the strong law
of large numbers, as

p∑

r=1

(θr − θ0r)ηr,n, ηr,n → a.s. Eθ0

(
∂ log f(X1; θ)

∂θr

)

θ0

= 0. (7.52)

(under Pθ0
)

The third summand converges a.s. (under Pθ0
) to

− 1

2!

p∑

r,r′=1

(θr − θ0r)(θr′ − θ0r′)Irr′(θ0); (7.53)

for one may show, as in (7.10), that

Eθ0

(
∂2 log f(X1; θ)

∂θr∂θr′

)

θ0

= −Eθ0

(
∂ log f(X1; θ)

∂θr
· ∂ log f(X1; θ)

∂θr′

)

θ0

. (7.54)

The last summand in (7.51) is, by (A5), bounded by

p
3
2

3!
|θ − θ0|3 1

n

n∑

j=1

g(Xj). (7.55)

(Note: (
∑p

r=1 |θr − θ0r|)3 ≤ p
3
2 |θ − θ0|3).)

By the strong law of large numbers the expression (7.55) converges a.s., under
Pθ0

, to

p
3
2

3!
|θ − θ0|3 · Eθ0g(X1). (7.56)

Let λ be the smallest eigenvalue of I1(θ0). Then

1

2!

p∑

r,r′=1

(θr − θ0r)(θr′ − θ0r′)Irr′(θ0) ≥ 1

2!
λ1|θ − θ0|2. (7.57)

Choose δ such that
p

3
2

3!
δEθ0

g(X1) <
λ1

8
, (7.58)

so that the expression (7.56) is less than λ1|θ − θ0|2/8 for |θ − θ0| ≤ δ. Consider
the set

Bn1 =

{

x : xj ∈ C ∀ j = 1, 2, . . . , n, and the right side of (7.51) is less than

(7.59)

1

n

n∑

j=1

log f(Xj ;θ0) +

p
∑

r=1

(θr − θ0r)ηr,r′ − 1

4
λ1|θ − θ0|2 ∀ θ s.t. |θ − θ0| ≤ δ

}

.

It follows from (7.41)–(7.58) that

Pθ0
(Bn1) → 1 as n → ∞. (7.60)
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Now on the (surface of the) sphere {θ : |θr − θθ0 | = δ}
p∑

r=1

(θr − θ0r)ηr,n − 1

4
λ1|θ − θ0|2 ≤ |θ − θ0| ·

(
p∑

r=1

η2r,n

) 1
2

− 1

4
λ1|θ − θ0|2

= δ

(
p∑

r=1

η2r,n

) 1
2

− 1

4
λ1δ

2. (7.61)

Consider the set

Bn2 =

⎧
⎨

⎩
x :

(
p∑

r=1

η2r,n

) 1
2

<
λ1δ

8

⎫
⎬

⎭
. (7.62)

On Bn2 the expression (7.61) is strictly negative. Therefore for x belonging to

Bn = Bn1 ∩Bn2 (7.63)

one has

1

n

n∑

j=1

log f(Xj; θ) <
1

n

n∑

j=1

log f(Xj; θ0) ∀ θ ∈ {|θ − θ0| = δ}. (7.64)

i.e.,
fn(x; θ) < fn(x; θ0) ∀ θ ∈ {|θ − θ0| = δ}. (7.65)

But (7.65) implies that the maximum of the function fn(x; θ) on the closed ball
{|θ− θ0| ≤ δ} is attained in the interior {|θ− θ0| < δ}. Therefore, inside this ball
there exists a (at least one) point θ satisfying (7.50). On the other hand by (7.60)
Pθ0

(Bn1) → 1 as n → ∞. Therefore, by (7.52),

Pθ0
(Bn) −→ 1 as n → ∞. (7.66)

Since x ∈ Bn imples Sx,n is nonempty and |θ̂n(x)−θ0| < δ, and since the definition

of θ̂n does not involve δ, the proof of (1), (2) is complete. (Note that (7.66) holds
for all sufficiently small δ).

In order to prove part (3) we proceed as in the proof of Theorem 7.2 i.e., write
for x ∈ Bn

0 =

(
∂ log fn(x; θ)

∂θr

)

θ̂n(x)

=

(
∂ log fn(x; θ)

∂θr

)

θ0

+

p∑

r′=1

(θ̂n,r′(x) − θ0r′)

(
∂2 log fn(x; θ)

∂θr∂θr′

)

θ0

(7.67)

+
1

2!

p∑

r′,r′′=1

(θ̂n,r′(x)−θ0r′)(θ̂n,r′′(x)−θ0r′′)

(
∂3 log fn(x; θ)

∂θr∂θr′∂θr′′

)

θ(x,r))

, 1 ≤ r ≤ p,

where θ(x; r) lies on the line segment joining θ̂n(x) and θ0. Express (7.67) as

√
n(θ̂n(x)− θ0) =

= −
(((

1

n

∂2 log fn(x; θ)

∂θr∂θr′

)

θ0

+ ηn,r,r′(x)

))−1(
1√
n
grad log fn(x; θ)

)

θ0

(7.68)
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where

ηn,r,r′(x) =
1

2

p∑

r′′=1

(
θ̂n,r′′(x)− θ0r′′

) 1

n

(
∂3 log fn(x; θ)

∂θr∂θr′∂θr′′

)

θ(x;r)

, (7.69)

and (7.68) is defined only for those x for which the matrix (( )) (whose (r, r′)
element is given in (7.68)) is nonsingular. Now, by (A5),

∣
∣
∣
∣
∣

1

n

(
∂3 log fn(x; θ)

∂θr∂θr′∂θr′′

)

θ(x,r)

∣
∣
∣
∣
∣
≤ 1

n

n∑

j=1

g(xj) (7.70)

which is bounded in Pθ0
probability (since the right side converges a.s. (Pθ0

) to a

constant). But θ̂n,r′′ − θ̃0r′′ → 0 in Pθ0
-probability (∀ r′′ = 1, 2, . . . , p) as n → ∞.

Hence

ηr,r,r′
Pθ0−→ 0 as n → ∞. (7.71)

Also, writing I1 = ((Irr′)), one has

1

n

(
∂2 log fn(X; θ)

∂θr∂θr′

)

θ0

a.s.(Pθ0
)−→ −Irr′(θ0), as n → ∞. (7.72)

Therefore, the matrix (( )) in (7.68) converges a.s. to −I1(θ0), and its inverse
converges a.s. to −I−1

1 (θ0), as n → ∞. By the multidimensional classical central
limit theorem,

1√
n
(grad log fn(X; θ))θ0

=
1√
n

n∑

j=1

(grad log f(Xj; θ))θ0

L−→ N(0,I (θ0)).

(7.73)
Therefore, by (a vector version of) Slutsky’s theorem,

√
n(θ̂n − θ0)

L−→ I −1
1 (θ0)Z, Z

L∼ N(0,I1(θ0)), (7.74)

from which part (3) of the theorem follows. To be completely precise one needs to
write √

n(θ̂n − θ0) =
√
n(θ̂n − θ0) · 1Dn +

√
n(θ̂n − θ0)1Dc

n
, (7.75)

where Dn is the subset of Bn on which the matrix ((·)) in (7.68) is nonsingular.

Then use the representation (7.68) for the first summand in (7.75). Since 1Dn

Pθ0−→
1, and, therefore,

√
n(θ̂n − θ0)1Dc

n

Pθ0−→ 0, the proof is complete. ��
Example 7.5 (Multi-Parameter Exponential Family). Here

f(x; θ) = C(θ)e
∑p

r=1 θrtr(x)h(x), (7.76)

Θ =

{

θ = (θ1, θ2, . . . , θp) ∈ R
p :

∫

X

e
∑p

r=1 θrtr(x)h(x)μ(dx) < ∞
}

.

Assume that Θ is a nonempty open subset of Rp. In this set up θ is called a natural
parameter. Note that

C(θ) =

(∫

X

e
∑p

r=1 θrtr(x)h(x)μ(dx)

)−1

. (7.77)
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A family of distributions {f(x; θ) : θ ∈ Θ} given by (7.76) is called a multi-
parameter exponential family in the natural parameter form. One may easily show,
by Hölder’s inequality, thatΘ is convex (See Sect. 4.2 and Theorem 4.4). Also under
the assumption underlined above

∫
X

exp{∑p
r=1 θrtr(x)}h(x)μ(dx) is analytic (in

particular, infinitely differentiable) in θ. One has the likelihood equations

− ∂ logC(θ)

∂θr
=

1

n

n∑

j=1

tr(Xj), (1 ≤ r ≤ p), (7.78)

(See Exercise 7.12). As in Theorem 7.1 (iii), one may easily show that

Eθtr(X1) = −∂ logC(θ)

∂θr
, (1 ≤ r ≤ p), (7.79)

and
∂2 logC(θ)

∂θr∂θri
= −covθ(tr(X1), tr′(X1)). (7.80)

Since

∂2 log fn(x, θ)

∂θr∂θr′
= n

∂2 logC(θ)

∂θr∂θr′
= −n covθ(tr(X1), tr′(X1)), (7.81)

the matrix of second derivatives of log fn(x; θ) is a strictly concave function of
θ. Hence there can not be more than one solution to the likelihood Eq. (7.78).
If there is a solution it is the MLE. Since the assumptions (A1) − (A5) are all
satisfied in this case it follows that the MLE (equivalently, the unique solution
of the likelihood equations) exists on a set whose probability goes to one. When
extended arbitrarily (but measurably) to these x for which a solution to (7.78)
does not exist, the MLE is, therefore, asymptotically efficient.

The following special multi-parameter families are important in applications.

(a) Univariate Normal N(μ, σ2). In this case write θ = (θ1, θ2) with θ1 = μ/σ2

and θ2 = − 1
2σ2 . Then

f(x;μ, σ2) =
1√
2πσ2

e−(x−μ)2/2σ2

=
1√
2πσ2

e−
x2

2σ2 +μx

σ2 − μ2

2σ2

= C(θ)eθ1t1(x)+θ2t2(x) = f(x; θ) θ1 =
μ

σ2
, θ2 = − 1

2σ2
,

C(θ) =
1√
2πσ2

e−μ2/2σ2

=

(

−θ2
π

) 1
2

e
1
4 θ

2
1/θ2 ; t1(x) = x, t2(x) = x2.

From (7.78) we get the MLE as

θ̂ = (θ̂1, θ̂2) =

(
X

s2
,− 1

2s2

)

,

where X = 1
n

∑n
j=1 Xj and s2 = 1

n

∑n
j=1(Xj −X)2. The information matrix

is given by I1(θ) = ((Iij(θ))), where
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I11(θ) = −∂2 logC(θ)

∂θ21
= − 1

2θ2
= σ2,

I12(θ) = I21(θ) = −∂2 logC(θ)

∂θ1∂θ2
= − θ1

2θ22
= −2μσ2,

I22(θ) = −∂2 logC(θ)

∂θ22
=

1

2θ22
+

θ21
2θ32

= 2σ4 + 4μ2σ4. (7.82)

Since (θ1, θ2) → (μ, σ2) is one-to-one (and differentiable), the MLE of (μ, σ2)
is (Note: μ = −θ1/2θ2, σ

2 = − 1
2θ2

.)

μ̂ = − θ̂1

2θ̂2
= X, σ̂2 = s2. (7.83)

The information matrix in terms of μ, σ2 is then given by

I11(μ, σ
2) = Eμ,σ2

(
∂ log f(X1;μ, σ

2)

∂μ

)2

= Eμ,σ2

(
X1

σ2
− μ

σ2

)2

=
1

σ4
Eμ,σ2(X1 − μ) =

1

σ2
,

I12(μ, σ
2) = Eμ,σ2

(
∂ log f(X1;μ, σ

2)

∂μ
· ∂ log f(X1;μ, σ

2)

∂σ2

)

= Eμ,σ2

(
X1 − μ

σ2
·
{

− 1

2σ2
+

X2
1

2σ4
− μX1

σ4

})

= Eμ,σ2

(
X1 − μ

σ2

{
(X1 − μ)2

2σ4
− 1

2σ2
− μ2

2σ4

})

= Eμ,σ2

(X1 − μ)3

2σ6
= 0,

I22(μ, σ
2) = Eμ,σ2

(
∂ log f(X1;μ, σ

2)

∂σ2

)2

= var

(
∂ log f(X1;μ, σ

2)

∂σ2

)

= var

{
(X1 − μ)2

2σ4

}

=
2σ4

4σ8
=

1

2σ4
.

I−1
11 (μ, σ2) = σ2, I−1

12 = I−1
21 (μ, σ2) = 0, I−1

22 (μ, σ2) = 2σ4.

Therefore, (
√
n(X − μ),

√
n(s2 − σ2))

L−→ N

(

0,

(
σ2 0
0 2σ4

))

.

(b) Multivariate Normal N

⎛

⎜
⎝μ =

⎛

⎜
⎝

μ1

...
μk

⎞

⎟
⎠ , Σ = ((σij))

⎞

⎟
⎠ .

Let X1 = (X11, X12, . . . , X1k), . . . , Xn = (Xn1, Xn2, . . . , Xnk) be i.i.d.
N(μ, Σ), μ ∈ R

k, Σ ∈ set of all positive definite symmetric k × k matri-
ces. One has, with θ = (μ, Σ),
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fn(x; θ) = (2π)−nk/2 (detΣ)−n/2 exp

⎧

⎨

⎩
−1

2

n∑

j=1

⎡

⎣

k∑

i,i′=1

σii′(xji − μi) · (xji′ − μi′)

⎤

⎦

⎫

⎬

⎭

(7.84)

where ((σii′ )) = Σ−1. If μ is known then (7.84) is a p(= k(k + 1)/2)-
parameter exponential family with natural parameters {σii′ : 1 ≤ i ≤ i′ ≤ p}.
By (7.78), (7.79) one has the likelihood equations (with tii′ (xj) = −(xji −
μi)(xji′ − μi′) for i < i′, and tii(xj) = − 1

2 (xji − μi)
2).

Eθtii′(X1) =
1

n

n∑

j=1

tii′(Xj), (7.85)

or, the MLE θ̂n = {σ̂ii′ : 1 ≤ i ≤ i′ ≤ k} is given by

σ̂ii′ = sii′ (1 ≤ i ≤ i′ ≤ k), (7.86)

where

sii′ =
1

n

n∑

j=1

(Xji − μi)(Xji′ − μi′). (7.87)

The p = (k(k+1)
2 )-dimensional random vectors

√
n(θ̂n − θ) converges in

distribution to a p-variate Normal distribution N(0, V (θ)), where V (θ) =
((v(ii′),(�,�′)(θ)))

v(i,i′),(�,�′)(θ) = covθ((X1i − μi)(X1i′ − μi′ ), (X1� − μ�)(X1�′ − μ�′ ))

= Eθ(X1i − μi)(X1i′ − μi′ )(X1� − μ�)(X1�′ − μ�′ )− σii′σ��′

=

⎛

⎝
∂4

∂ξi∂ξi′∂ξ�∂ξ�′
exp

⎧

⎨

⎩

1

2

k∑

r,r′=1

σrr′ξrξr′

⎫

⎬

⎭

⎞

⎠

ξ=0

− σii′σ��′ . (7.88)

In particular,
v(i,i′),(i,i′) = σiiσi′i′ + σ2

ii′ . (7.89)

In case μi’s are also unknown, one has

f(x; θ) = (2π)−k/2 (detΣ)
− 1

2 exp

⎧
⎨

⎩
−1

2

k∑

i,i′=1

σii′ (xi − μi)(xi′ − μi′)

⎫
⎬

⎭

= C(θ) exp

⎧
⎨

⎩
−1

2

k∑

i,i′=1

xixi′σ
ii′ +

k∑

i=1

xi

(
k∑

i′=1

μi′σ
ii′
)⎫
⎬

⎭
,

with θ = {σii′ , 1 ≤ i ≤ i′ ≤ k;
∑k

i′=1 μi′σ
ii′ , 1 ≤ i ≤ k}. Hence f(x; θ) belongs

to the p-parameter exponential family with p = k(k+1)
2 + k = k(k + 3)/2.

The natural parameters are the coordinates of θ. The likelihood equations are
(see (7.78), (7.79)).

Eθ t̃ii′(X1) =
1

n

n∑

j=1

t̃ii′(Xj),



184 7 Large Sample Theory of Estimation in Parametric Models

EθTi(X1) =
1

n

n∑

j=1

Ti(Xj), (7.90)

with t̃ii′(x) = −xixi′ (if i < i′), t̃ii(x) = − 1
2x

2
i , Ti(x) = xi. Hence one has the

equations

σii′ + μiμi′ =
1

n

n∑

j=1

XjiXji′ = s′ii′ ,

μi =
1

n

n∑

j=1

Xji = Xi (1 ≤ i ≤ i′ ≤ k), (7.91)

whose solution is

μ̂i = Xi, σ̃ii′ = s′ii′ −X iXi′ =
1

n

n∑

j=1

(Xji −Xi)(Xji′ −X i) (7.92)

It may be shown (See Problem 5.6, Lehmann, Theory of Point Estimation,
Chap. 6) that {σ̃ii′ ; 1 ≤ i ≤ i′ ≤ k} are independent of {μ̂i; 1 ≤ i ≤ k}
and that the joint distribution of {σ̃ii′ ; 1 ≤ i ≤ i′ ≤ k} is the same as that
of {sii′ ; 1 ≤ i ≤ i′ ≤ k} based on n − 1 observations. Thus the asymptotic
distribution of {√n(σ̃ii′−σii′); 1 ≤ i ≤ i′ ≤ k} is the same as that of {√n(sii′−
σii′ ); 1 ≤ i ≤ i ≤ k}. The (asymptotic) distribution of {√n(μ̂i − μi); 1 ≤
i ≤ k} is N(0, Σ). In view of the independence mentioned above the limiting
distribution of

√
n(θ̃−θ) is now completely specified (θ̃ = {σ̃ii′ , 1 ≤ i ≤ i′ ≤ k;

μ̂i; 1 ≤ i ≤ k}). (See Exercise 7.16).
(c) The multinomial distribution. A population is divided into k categories, with

proportion pi belonging to the ith category, 0 < pi < 1 (1 ≤ i ≤ k):
∑k

i=1 pi = 1. Consider n observations taken at random (with replacement)
from this population. Let us code an observation as the unit k-dimensional
vector ei with 1 as the ith coordinate and zeros elsewhere, if the observation
belongs to the ith category. Let X1, X2, . . . , Xn (Xj = (Xj1, . . . , Xjk)) be the
random observations. Then X1, X2, . . . , Xn are i.i.d. with common p.d.f.

f(x; θ) =

k∏

i=1

pxi

i = px1
1 px2

2 . . . p
xk−1

k−1 (1− p1 − · · · − pk−1)
xk

for x = (x1, . . . , xk) ∈ {ei; 1 ≤ i ≤ k} = X . (7.93)

Write

f(x; θ) = e
∑k−1

i=1 xi log pi+(1−∑k−1
1 xi) log(1−

∑k−1
1 pi)

= c(θ)e
∑k−1

i=1 θixi , (7.94)

where θi = log(pi/(1−
∑k−1

1 pi)), 1 ≤ i ≤ k − 1, are natural parameters. The
likelihood equations are

pi = EθX1i =
1

n

n∑

j=1

Xji, (1 ≤ i ≤ k − 1), (7.95)
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or, the MLE of (p1, . . . , pk−1) is given by

p̂i =
1

n

n∑

j=1

Xji = proportion of the sample belonging to ith category (1 ≤ i

≤ k − 1),

p̂ = (p̂1, . . . p̂k−1).

Of course, in this case one may represent

√
n(p̂− p) =

√
n

n∑

j=1

(Yj − p), p =

⎛

⎜
⎝

p1
...

pk−1

⎞

⎟
⎠ (7.96)

where Y1, . . . , Yn are i.i.d. (k − 1)-dimensional random vectors with

Prob

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Y1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
...
0
1
0
...
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

}i

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= pi (1 ≤ i ≤ k−1), P (Y1 = 0) = 1−
k−1∑

1

pi (7.97)

The classical multidimensional CLT then yields (Exercise 7.12)

√
n(p̂− p)

L−→ N(0, V ), V = ((vij′ )),

vii = pi(1 − pi)(1 ≤ i ≤ k − 1), vii′ = −pipi′ (i �= i′), (7.98)

although one could also use Theorem 7.5.

7.5 Method of Moments

Let X1, X2, . . . , Xn be i.i.d. real-valued with common p.d.f. f(x; θ) where θ =
(θ1, θ2, . . . , θp) ∈ Θ which is an open subset of Rp. Assume that

E|X1|p < ∞. (7.99)

The method of moments consists in solving the equations

EθX
r
1 =

1

n

n∑

j=1

Xr
j (1 ≤ r ≤ p) (7.100)

for θ1, θ2, . . . , θp. In case (7.99) does not hold, or Xj ’s are not real-valued,
or (7.100) are difficult to solve, one may take some suitable real-valued functions
g1(x), g2(x), . . . , gp(x) such that

Eθ|gr(X1)| < ∞, 1 ≤ r ≤ p, (7.101)
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and solve the equations

Mr(θ) := Eθgr(X1) =
1

n

n∑

j=1

gr(Xj), 1 ≤ r ≤ p, (7.102)

for θ1, θ2, . . . , θp.

Proposition 7.1. Let Θ be an open subset of Rp. Let gr, 1 ≤ r ≤ p, be real-valued
functions on X such that

Eθg
2
r(X1) < ∞ for 1 ≤ r ≤ p, ∀ θ ∈ Θ. (7.103)

Assume (i) (7.102) has a unique solution θ̃ = (θ̃1, θ̃2, . . . , θ̃p) (a.s. Pθ0
∀ θ0 ∈ Θ),

(ii) the map θ → M(θ) = (M1(θ), . . . ,Mp(θ)) is a diffeomorphism, i.e., M and its
inverse H (say) are both continuously differentiable. Then, for each θ0 ∈ Θ,

√
n(θ̃ − θ0)

L−→ N(0, V (θ0)) under Pθ0 , (7.104)

where

V (θ0) = ((vii′ (θ0))),

vii′ (θ0) =

p∑

r,r′=1

σrr′(θ0)ir(θ0)i′r′(θ0),

σrr′(θ0) = Eθ0 [(gr(X1)−Mr(θ0))(gr′(X1)−Mr′(θ0))],

ir(θ0) =

(
∂Hi(M)

∂Mr

)

M=M(θ0)

(7.105)

Proof.

√
n(θ̃ − θ0)

′ =
√
n

⎡

⎣H

⎛

⎝ 1

n

n∑

j=1

g1(Xj), . . . ,
1

n

n∑

j=1

gp(Xj)

⎞

⎠−H(M(θ0))

⎤

⎦

′

=
√
n (Grad H(M(θ0)) + εn)

⎛

⎜
⎝

1
n

∑n
j=1 g1(Xj)−M1(θ0)

...
1
n

∑n
j=1 gp(Xj)−Mp(θ0)

⎞

⎟
⎠ , (7.106)

where Grad H(M(θ0)) is the p× p matrix who (i, r) element is ir(θ0), and εn is
a p× p matrix whose elements converge in probability (Pθ0

) to zero. ��
Example 7.6. Let X1, X2, . . . , Xn be i.i.d. with common p.d.f. f(x;μ, α) =

1
μαΓ (α)e

−x/μxα−1, 0 < x < ∞; μ ∈ (0,∞), α ∈ (0,∞). Note that EX1 = αμ,

EX2
1 = (α+ 1)αμ2. Therefore, solve

αμ =
1

n

n∑

j=1

Xj = X, (α+ 1)αμ2 =
1

n

n∑

j=1

X2
j = m′

2, (7.107)

for α, μ to get
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α̃ =
X

2

m′
2 −X

2 =
X

2

s2
,

⎛

⎝s2 =
1

n

n∑

j=1

(Xj −X)2

⎞

⎠ ,

μ̃ =
X

α̃
=

s2

X
. (7.108)

Here (check)
M1(μ, α) = αμ, M2(μ, α) = α2μ2 + αμ2;

H1(z1, z2) =
z2 − z21

z1
, H2(z1, z2) =

z21
z2 − z21

. (7.109)

Therefore, with θ = (μ, α),

11(θ0) = −
(
z2 + z21

z21

)

z1=α0μ0,z2=(α0+1)α0μ2
0

= −2α2
0μ

2
0 + α0μ

2
0

α2
0μ

2
0

= −
(

2 +
1

α0

)

,

12(θ0) =
1

α0μ0
, 22(θ0) = −α2

0μ
2
0

α2
0μ

4
0

= − 1

μ2
0

,

21(θ0) =
2α0μ0(α0μ

2
0)− α2

0μ
2
0(−2α0μ0)

α2
0μ

4
0

=
2(1 + α0)

μ0
;

σ11(θ0) = varθ0(X1) = Eθ0X
2
1 − (Eθ0X1)

2 = α0μ
2
0,

σ12(θ0) = Eθ0X
3
1 − (Eθ0X1)(Eθ0X

2
1 ) = (α0 + 2)(α0 + 1)α0μ

3
0 − (α0 + 1)α2

0μ
3
0

= 2(α0 + 1)α0μ
3
0 = σ21(θ0),

σ22(θ0) = Eθ0X
4
1 − (Eθ0X

2
1 )

2 = (α0 + 3)(α0 + 2)(α0 + 1)α0μ
4
0 − (α0 + 1)2α2

0μ
4
0

= 2(2α0 + 3)(α0 + 1)α0μ
4
0. (7.110)

V (θ) can be computed from (7.110). For example,

v11(θ0) = σ11(θ0)
2
11(θ0) + σ12(θ0)(11(θ0)12(θ0)

+12(θ0) + 11(θ0)) + σ22(θ0)
2
12(θ0). (7.111)

One may show that θ̃ is not asymptotically efficient in the above example.
However, since

√
n(θ̃ − θ0) is bounded in probability (under Pθ0

) one may obtain
an asymptotically efficient estimator by adding a “correction” term, as in the
one-parameter case (See Theorem 7.3). You may also check that the likelihood
equations are intractable for this example.

Theorem 7.6. Suppose the hypothesis of Theorem 7.1 holds, and that θ̃n is an
estimator (sequence) of θ such that

√
n(θ̃n − θ0) is bounded in probability under

Pθ0 (for each θ0 ∈ Θ). Then
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δn = θ̃n −
((

∂2 log fn(X; θ)

∂θr∂θr′

))−1

θ̃n

(Grad log fn(X; θ))θ̃n (7.112)

is an asymptotically efficient estimator of θ. Here

Grad log fn(x; θ) =

⎛

⎜
⎝

∂ log fn(x; θ)/∂θ1
...

∂ log fn(x; θ)/∂θp

⎞

⎟
⎠ . (7.113)

Proof. Entirely analogous to the proof of Theorem 7.3. ��
Example 7.7. To find an asymptotically efficient estimator of θ = (μ, α) in the
above example, write f(x;μ, α) = c(μ, α)e−x(1/μ)+(log x)αx−1, 0 < x < ∞.
Thus this is a two-parameter exponential family with θ1 = 1/μ, θ2 = α,
t1(x) = −x, t2(x) = log x. The likelihood equations, therefore, may be expressed
as (See (7.78), (7.79))

EX1 =
1

n

n∑

j=1

Xj , E logX1 =
1

n

n∑

j=1

logXj ,

or,

αμ =
1

n

n∑

j=1

Xj , E logX1 =
1

n

n∑

j=1

logXj. (7.114)

But E logX1 cannot be computed in a tractable form. Hence the likelihood
equations are impossible to solve explicitly. One may, therefore, take recourse
to Theorem 7.6 with θ̃n as the method-of-moments estimator given by (7.114):

θ̃n1 = 1
μ̃ = X

s2 , θ̃n2 = α̃ = X
s2 . One has

∂ log fn(x; θ)/∂θ1 = n
∂ logC(θ)

∂θ1
−

n∑

j=1

Xj = nαμ−
n∑

j=1

Xj ,

∂ log fn(x; θ)/∂θ2 = n
∂ logC(θ)

∂θ2
+

n∑

j=1

logXj , (7.115)

with logC(θ) = θ2 log θ1 − logΓ (θ2). Hence ∂ logC(θ)/∂θ1 = θ2/θ1,

∂ logC(θ)/∂θ2 = log θ1 − 1

Γ (θ2)

∫ ∞

0

e−xxθ2−1 log x dx,

∂2 logC(θ)/∂θ21 = −θ2/θ
2
1,

∂2 logC(θ)/∂θ1∂θ2 =
1

θ1
,

∂2 logC(θ)/∂θ22 =

(
1

Γ (θ2)

)2(∫ ∞

0

e−xxθ2−1 log xdx

)2

− 1

Γ (θ2)

(∫ ∞

0

e−xxθ2−1(log x)2dx

)

.
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Since

∂2 log fn(x; θ)

∂θi∂θi′
= n

∂2 logC(θ)

∂θi∂θi′
. (7.116)

The estimator δn in (7.115) may now be computed numerically. Note that δn is a
first approximation to the solution of the likelihood Eq. (7.114).

7.6 Asymptotic Efficiency of Bayes Estimators

Suppose that the observation vector X in a statistical experiment has a p.d.f.
g(x; θ) (w.r.t. a sigma-finite measure ν(dx)), and θ ∈ Θ—an open subset of Rp.
Let π(dθ) be a probability measure (the prior) on the Borel sigma-field of Θ. The
Bayesian thinks of θ as a random variable with distribution π(dθ), and g(x; θ) is
regarded as the conditional p.d.f. of X given θ. Hence the joint distribution of X
and θ is

g(x; θ)ν(dx)π(dθ). (7.117)

Let π(dθ|x) denote the conditional distribution of θ given X = x, i.e.,

π(dθ|x) = g(x; θ)π(dθ)
∫
Θ g(x; θ′)π(dθ′)

=
g(x; θ)π(dθ)

g(x)
. (7.118)

where g(x) is the marginal p.d.f. of X:

g(x) =

∫

Θ

g(x; θ)π(dθ). (7.119)

Then π(dθ|x) is called the posterior distribution of θ given X = x.
In this section it will be shown that, under the regularity conditions of Theo-

rem 7.5, and with respect to a prior π(dθ) having a positive density on Θ (with
respect to Lebesgue measure on Θ) the posterior distribution of θ is asymptotically

normal with mean θ̂(x) (the maximum likelihood estimator, i.e., the consistent so-
lution of the likelihood equation) and covariance matrix g′−1(θ′)/n, a.s. (Pθ′) for
every θ′. Thus, irrespective of the prior density, the Bayes estimator is asymptoti-
cally the same as the MLE. We will outline the proof whose details may be found
in Bickel and Doksum (2001, pp. 337–345).

Assume for simplicity that p = 1 and Θ = (a, b), −∞ ≤ a < b ≤ ∞, and
π(dθ) has a positive and continuous density on (a, b). Let X1, . . . , Xn be i.i.d.
with common p.d.f. f(x; θ), X = (X1, . . . , Xn) and fn(x; θ) =

∏n
i=1 f(xi; θ) ∀ x =

(x1, . . . , xn). The posterior density of
√
n(θ − θ̂n) at t is

π(θ̂n +
t√
n
| X) =

π(θ̂n + t√
n
)fn(X; θ̂nj +

t√
n
)

∫
π(θ̂n + s√

n
)fn(X; θ̂n + s√

n
)ds

, (7.120)

making the change of variables θ → s = (θ − θ̂n)/
√
n. Now, given θ = θ′,

log fn(X; θ̂n +
s√
n
) = log fn(X; θ̂n) +

s2

2n

n∑

i=1

d2 log f(Xi; θ)

dθ2

∣
∣
∣
∣
θ̂n

+Rn

= log fn(X; θ̂n) +
s2

2
I1(θ̂n) +R′

n, (7.121)
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where Rn, R
′
n go to zero in Pθ′-probability as n → ∞, uniformly for |s| ≤ M

√
n,

for every M > 0. For simplicity assume this convergence is a.s. (Pθ′). In particular,
R′

n → 0 for every s a.s. (Pθ′). One may now express (7.121) as

fn

(

X; θ̂n +
s√
n

)

= fn(X; θ̂n) exp

{
s2

2
I1(θ̂n)

}

(1 + o(1)) ∀ s, (7.122)

a.s. (Pθ′). Applying this to (7.120) one arrives at

π

(

θ̂n +
t√
n

∣
∣
∣
∣X

)

=
π(θ̂n + t√

n
)fn(X; θ̂n) exp{− t2

2 I1(θ̂n)}(1 + o(1))
∫
π(θ̂n + s√

n
)fn(X; θ̂n) exp{− s2

2 I1(θ̂n)}(1 + o(1))ds

=
π(θ̂n + t√

n
) exp{− t2

2 I1(θ̂n)}(1 + o(1))
∫
π(θ̂n + s√

n
) exp{− s2

2 I1(θn)}(1 + o(1))ds

−→ exp{− t2

2 I1(θ
′)}

∫
exp{− s2

2 I1(θ′)}ds
=

exp{− t2

2 I1(θ
′)}

√
2π/I1(θ′)

≈
√

I1(θ̂n)

2π
exp

{

− t2

2
I1(θ̂n)

}

, (7.123)

where the difference between the two sides of ≈ goes to zero a.s. (Pθ′).
Thus the total variation distance between the posterior distribution of θ and the

Normal distribution N(θ̂n,
1
nI1(θ̂n)), or N(θ̂n,

1
nI1(θ

′)), goes to zero as n → ∞,
a.s. Pθ′ , for every (true) parameter value θ′. The posterior distribution concentrates

most of its mass near the maximum likelihood estimator θ̂n. In particular, the
asymptotic mean and the asymptotic median of the posterior are both θ̂n.

We state the result for the general multi-parameter case for which the proof is
not substantially different from that outlined above.

Theorem 7.7 (Bernstein–von Mises Theorem). If the assumptions (A1)–
(A5) of Theorem 7.5 hold and the prior π of θ has a continuous and positive
density on Θ then, under Pθ′ , the total variation distance between the posterior
distribution of θ and the Normal distribution N(θ̂n,I −1(θ′)/n) converges to zero
as n → ∞, a.s. (Pθ′).

Example 7.8. Let X1, . . . , Xn be i.i.d. Bernoulli with Pθ(Xi = 1) = θ, Pθ(Xi =
0) = 1− θ, θ ∈ Θ = (0, 1). Let π(θ) = Beta density with parameters α, β : π(θ) =
Γ (α+β)
Γ (α)Γ (β)θ

α−1(1− θ)β−1 (α > 0, β > 0). Then

fn(x; θ) = θ
∑n

1 xi(1 − θ)n−
∑n

1 xi ,

πn(θ|x) = θ
∑n

i=1 xi+α−1(1− θ)n−Σn
1 xi+β−1

Γ (
∑n

1 xi + α− 1)Γ (n−∑n
1 xi + β − 1)/Γ (n+ α+ β − 2)

,

i.e., the posterior distribution is a beta distribution with parameters
∑

xi + α
and n −∑

xi + β, so that one can directly show that a beta random variable Y

with this distribution is asymptotically Normal N(θ̂n, 1/n I1(θ)) under Pθ, a.s. as
n → ∞ (Exercise 7.12).
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7.7 Asymptotic Normality of M -estimators

Let Xi (i = 1, 2, . . . , n) be i.i.d. with values in (X ,S ) defined on (Ω,F , Pθ).
An M -estimator (or a maximum likelihood type estimator), a term coined by

Huber (1981), may be defined to be an estimator θ̂n = θ̂n (X1, . . . , Xn) which
maximizes (on Θ) a real-valued function of the form

gn(θ) :=
1

n

n∑

i=1

g(Xi, θ), (θ ∈ Θ open ⊂ R
k) (7.124)

where g(x, θ) : X × Θ → R is measurable (w.r.t. the given sigma-field S on X )
for each θ ∈ Θ. Just as in the case of the MLE, it is more common to define an
M -estimator as a critical point of gn(θ), i.e., an estimator which satisfies

∂gn(θ)

∂θr
= 0, 1 ≤ r ≤ k. (7.125)

Writing h(x, θ) = grad g(x, θ) ≡ (∂g(x, θ)/∂θ1, . . . , ∂g(x, θ)/∂θk), one may
rewrite (7.125) as

h(r)
n (θ) = 0 (1 ≤ r ≤ k), (7.126)

where

h(r)
n (θ) =

1

n

n∑

i=1

h(r)(Xi, θ), 1 ≤ r ≤ k. (7.127)

More generally, we define an M -estimator θ̂n to be a solution of a vector equa-
tion

hn(θ) = 0 [i.e., h(r)
n (θ) = 0 (1 ≤ r ≤ k)] (7.128)

where hn(θ) ≡ (h
(1)
n (θ, . . . , h

(k)
n (θ))′ is defined by (7.127), h(r)(x, θ) being, for each

r (= 1, 2, . . . , k), a real-valued (measurable) function on X ×Θ.

Theorem 7.8. Let Θ be an open subset of Rk, and let θ̂n be a consistent solution
of (7.128). Assume (i) Eθh(X1, θ) = 0 ∀ θ ∈ Θ, (ii) θ → h(x, θ) is twice contin-
uously differentiable on Θ, for every x ∈ X , (iii) Γ (θ) ≡ EθGradh(X1, θ) is a
nonsingular k × k matrix (∀ θ ∈ Θ), whose r-th row is given by

Eθ(gradh
(r)(X1, θ))

′ ≡ (Eθ(∂h
(r)(X1, θ)/∂θ1), . . . , Eθ(∂h

(r)(X1, θ)/∂θk)),

(iv) V (θ) ≡ Covθh(X1, θ) is finite and nonsingular ∀ θ ∈ Θ, and (v) for each

θ ∈ Θ, there exists δ(θ) > 0 such that sup{θ′:|θ′−θ|≤δ(θ)}
∣
∣
∣
∂2h(r)(x,θ)

∂θi∂θj

∣
∣
∣
θ′

≤ b
(r)
ij (x)

where
Eθb

(r)
ij (X1) < ∞ ∀ 1 ≤ r, i, j ≤ k. (7.129)

Then √
n(θ̂n − θ0)

L−→ N(0, Γ−1(θ0)V (θ0)(Γ
−1(θ0))

′)

under Pθ0 (∀ θ0 ∈ Θ).

Proof. For simplicity of notation, let us first consider the case k = 1. Then h is
real-valued and θ is one-dimensional. One has, by a Taylor expansion,
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0 = hn(θ̂n) = hn(θ0) + (θ̂n − θ0)

(
dhn(θ)

dθ

)

θ=θ0

+
1

2
(θ̂n − θ0)

2

(
d2hn(θ)

dθ2

)

θ=θ∗
n

(7.130)

on the set An = {|θ̂n − θ0| < δ(θ0)}, where |θ∗n − θ0| ≤ |θ̂n − θ0| < δ(θ0). Let Bn ={(
dhn(θ)

dθ

)

θ0
+ 1

2 (θ̂n − θ0)
(

d2hn(θ)
dθ2

)

θ∗
n

�= 0

}

. Then Pθ0(An) → 1, by consistency

of θ̂n. Also, under Pθ0 ,
(
dhn(θ)

dθ

)

θ0

≡ 1

n

n∑

i=1

(
dh(Xi, θ)

dθ

)

θ0

−→ Eθ0

(
dh(X1, θ)

dθ

)

θ0

= Γ (θ0) a.s.

(7.131)
Moreover, on An (using (v) and writing b for b11),

∣
∣
∣
∣
∣

(
d2hn(θ)

dθ2

)

θ∗
n

∣
∣
∣
∣
∣
≤ 1

n

n∑

i=1

b(Xi),

so that, under Pθ0 ,

lim
n→∞

∣
∣
∣
∣
∣

(
d2hn(θ)

dθ2

)

θ∗
n

∣
∣
∣
∣
∣
≤ lim

n→∞
1

n

n∑

i=1

b(Xi) = Eθ0b(X1) < ∞.

It follows that, under Pθ0 ,

(
dhn(θ)

dθ

)

θ0

+
1

2
(θ̂n − θ0)

(
d2hn(θ)

dθ2

)

θ∗
n

converges in (Pθ−
0
) probability to Γ (θ0).

(7.132)
In particular, Pθ0(Bn) → 1, and (7.130) yields

√
n(θ̂n − θ0) =

−√
nhn(θ0)

Γ (θ0) + op(1)

L−→ N(0, Γ−2(θ0)V (θ0)), (7.133)

since −√
nhn(θ0) =

1√
n

∑n
i=1(−h(Xi, θ0)) and −h(Xi, θ0) has mean zero and vari-

ance V (θ0), under Pθ0 .
For k > 1 one may write, in place of (7.130)

0 = h(r)
n (θ̂n) (7.134)

= h(r)
n (θ0) + (gradh(r)

n (θ0))
′(θ̂n − θ0)

+
1

2
(θ̂n − θ0)

′H(r)
n (ζ(r)

n )(θ̂n − θ0) (1 ≤ r ≤ k),

where |ζ(r)
n − θ0| ≤ δ(θ0), and H

(r)
n (θ) =

((
∂2

∂θi∂θj
h
(r)
n (θ)

))

1≤i,j≤k
. In matrix

notation one may express (7.134) as

0 = hn(θ0) + Grad hn(θ0)(θ̂n − θ0) +

[
1

2
(θ̂n − θ0)

′H(r)
n (ζ(r)n )

]

1≤r≤k

(θ̂n − θ0)

(7.135)

where [ ]1≤r≤k is a k× k matrix whose r-th column is 1
2 (θ̂n − θ0)

′H(r)
n (ζ(r)

n ). By

assumption (v) and the consistency of θ̂n, all elements of this matrix converge to
zero in probability, by the same argument as in the case k = 1. Hence one may
rewrite (7.135) as
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−√
nhn(θ0) =

{

Gradhn(θ0) +

[
1

2
(θ̂n − θ0)

′H(r)
n (ζ(r)

n )

]

1≤r≤k

}
√
n(θ̂n − θ0),

(7.136)
or, on the set An ∩ Bn, with Bn = the expression { } within curly brackets
in (7.136) is nonsingular,

√
n(θ̂n − θ0) =

{ }−1

(−√
nhn(θ0)). (7.137)

Since (7.124) −√
nhn(θ0) → N(0, V (θ0)), under Pθ0 (by CLT), and { } con-

verges to Γ (θ0) in Pθ0 -probability, it follows that

√
n(θ̂n − θ0)

L−→ Γ−1(θ0)Z, Z
L∼ N(0, V (θ0)).

��
Remark 7.13. The hypothesis of Theorem 7.8 may be relaxed. Instead of assuming
θ → h(x, θ) is twice continuously differentiable (and (7.129) holds), it is enough
to assume that θ → h(x; θ) is (once) continuously differentiable, and that for each
θ0 ∈ Θ, and every ε > 0, there exists δ(ε, θ0) > 0 such that

sup

{∣
∣
∣
∣
∣

(
∂h(r)(x, θn)

∂θi

)

θ′
−
(
∂h(r)(x, θ)

∂θi

)

θ0

∣
∣
∣
∣
∣
: |θ′ − θ0| ≤ δ(ε, θ0)

}

≤ εbi(x),

with Eθ0bi(X1) < ∞ ∀ i.

Example 7.9 (MLE). Let f(x; θ) be the p.d.f. of Xi (under Pθ) w.r.t. a σ-finite

measure μ(dx). The log likelihood equations for the MLE θ̂n are

n∑

i=1

∂ log f(Xi; θ)

∂θr
= 0 (1 ≤ r ≤ k), (7.138)

which one may write as (7.126) or (7.128), with h(r)(x, θ) = ∂ log f(x; θ)/∂θr (1 ≤
r ≤ k).

Example 7.10 (Method of Moments). Let Xi be real-valued, and

mr(θ) = EXr
i (r = 1, 2, . . . , k) (7.139)

finite. Themethod of moments provides an estimator θ̂n which solves the equations

h(r)
n (θ) =

1

n

n∑

i=1

Xr
i −mr(θ) = 0 (1 ≤ r ≤ k). (7.140)

Here h(r)(x, θ) = Xr − mr(θ), 1 ≤ r ≤ k. More generally, one may choose k
functions ψr(x), 1 ≤ r ≤ k, such that Eθ|ψr(X1)| < ∞, and solve (for θ)

h(r)
n (θ) ≡ 1

n

n∑

i=1

ψr(Xi)− Eθψr(X1) = 0 (1 ≤ r ≤ k), (7.141)

so that h(n)(x, θ) = ψr(x) − Eθψr(X1).
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7.8 Asymptotic Efficiency and Super Efficiency

When does the variance of an unbiased estimator Tn attain the lower bound given
by the information inequality? Under (R0)–(R2), this happens if and only if the

coefficient of correlation between Tn − EθTn and d log fn(X;θ)
dθ is +1 or −1, i.e.,

Tn(x) − EθTn = λn(θ)
d log fn(x; θ)

dθ

with Pθ-probability one for some λn. Thus

log fn(x; θ) =

∫
(Tn(x) − gn(θ))

λn(θ)
dθ = πn(θ)Tn(x)− γn(θ) + ϕn(x).

In view of the information inequality (7.1) or (7.5), the following definition is
reasonable.

Definition 7.3. Under (R0)–(R2) a sequence of estimators Tn (n = 1, 2, . . . ) of
g(θ) is asymptotically efficient (in Fisher’s sense) if

√
n(Tn − g(θ))

L−→ N(0, σ2(θ)) (7.142)

with

σ2(θ) =
1

Eθ

(
d log f(X1;θ)

dθ

)2 . (7.143)

Remark 7.14. Note that an asymptotically efficient Tn in the above sense is asymp-
totically normal with mean g(θ) and variance equal to the information lower bound.
This does not necessarily imply that g(θ) is the mean of Tn, i.e., Tn is unbiased.
But it implies that Tn is consistent. Suppose EθTn = gn(θ) and varEθT

2
n → 0.

Then one may show by Chebyshev’s inequality that Tn − gn(θ)
P−→ 0. But by

consistency of Tn as an estimator of g(θ), Tn − g(θ)
P−→ 0. Therefore, the bias

gn(θ)− g(θ) → 0 as n → ∞. Note that (7.5) also implies for biased estimators Tn

Eθ(Tn − g(θ))2 ≥ varθTn ≥
(

d
dθEθTn

)2

nEθ

(
d log f(X1;θ)

dθ

)2

=

[
d
dθ (g(θ) + EθTn − g(θ))

]2

nEθ

(
d log f(X1;θ)

dθ

)2 =
(g′(θ) + b′n(θ))

2

nEθ

(
d log f(X1;θ)

dθ

)2 , (7.144)

where bn(θ) = EθTn − g(θ) is the bias. Since in the present case bn(θ) → 0 as
n → ∞, it is usually true that b′n(θ) → 0 as n → ∞. Hence, from that asymptotic
point of view, one need not restrict attention only to unbiased estimators in order
to compare efficiencies in Fisher’s sense.

Remark 7.15. Relation (7.142) does not imply

Eθ

(√
n(Tn − g(θ))

)2 −→ σ2(θ) as n → ∞. (7.145)

For the function f(x) = x2 is not bounded. Thus σ2(θ)
n is not, in general, the

asymptotic variance of Tn; it is the variance of the asymptotic distribution of Tn.
In general one can only prove
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lim
n→∞

Eθ

(√
n(Tn − g(θ))

)2 ≥ σ2(θ), (7.146)

if (7.142) holds. (See Lehmann, Theory of Point Estimation, Lemma 5.1.2).

Remark 7.16. For statistical experiments satisfying (R0)–(R2) the information in-
equality (7.5) holds. However, the equality in (7.5) rarely holds. We have seen
that the equality in (7.5), under mild additional conditions, implies that f(x; θ)
belongs to the exponential family. Even in the exponential case, however, the
equality holds only for the estimation of 1

nEθTn(x) = ( d
dπ ) log

∫
h(x)eπT1(x)μ(dx)

or some linear function of it, and not for other parametric functions. On the other
hand, it will be shown that there are asymptotically efficient estimators of every
‘smooth’ parametric function in the exponential family case and, more generally,
when (R0)–(R2) and some additional conditions are satisfied.

Remark 7.17 (Superefficiency). Let X1, X2, . . . , Xn be i.i.d. N(θ, 1). Hodges
pointed out that the estimator

Tn =

{
X = 1

n

∑n
j=1 Xj for |X| > n− 1

4

αX for |X| ≤ n− 1
4 ,

(7.147)

where α is a constant, 0 ≤ α < 1, satisfies (where θ is the true value)

√
n(Tn − θ)

L−→ N(0, 1) if θ �= 0,√
n(Tn − 0) −→ N(0, α2) if θ = 0.

(7.148)

In other words, at all θ �= 0 the estimator Tn is asymptotically efficient; and at
θ = 0 the variance of the asymptotic distribution of

√
n(Tn − 0) is α2, which is

smaller than the information lower bound 1 (note that
√
n(X − θ) → N(0, 1) for

all θ). Such an estimator has come to be known as superefficient, and the point
θ = 0 as a point of superefficient of Tn. To check (7.148) note that, for θ �= 0,

Pθ

(|√n(Tn − θ)−√
n(X − θ)| > 0

)

= Pθ

(
|X| ≤ n− 1

4

)
=

∫ n− 1
4

−n− 1
4

√
n√
2π

e−n(x−θ)2/2dx

=
1√
2π

∫ √
n(n− 1

4 −θ)

−√
n(−n− 1

4 −θ)

e−y2/2dy ≤ 1√
2π

(

2
√
nn

1
4 e−(|θ√n |−n

1
4 )2/2

)

=
2n

1
2√
2π

e
n

1
2
2 (|n 1

4 θ|−1)2 = n
1
4 · o

(

e−n
1
2
/2

)

−→ 0 as n → ∞. (7.149)

This means that

√
n(Tn − θ) =

√
n(X − θ) +Rn with Rn

P−→ 0. (7.150)

Since
√
n(X − θ) is N(0, 1), the first relation in (7.148) follows (by Theorem 6.1).

Now, if θ = 0, then

√
nTn = α

√
n X · I{|X|≤n− 1

4 } +R′
n, R′

n =
√
n X · I{|X|>n− 1

4 } . (7.151)

Since θ = 0,
√
n X is N(0, 1). Also,
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Prob
(
I{|X|≤n− 1

4 } = 1
)
= Prob

(
|X| ≤ n− 1

4

)
=

1√
2π

∫ n
1
4

−n
1
4

e−y2/2dy −→ 1

as n → ∞;

Prob(R′
n = 0) = Prob

(
|X| ≤ n− 1

4

)
−→ 1 as n → ∞. (7.152)

Therefore, (by Theorem 6.1)
√
nTn → αZ · 1 + 0 = αZ where Z is N(0, 1),

proving (7.148). Hence the first term on the right side in (7.151) converges in
distribution to αZ, where Z is N(0, 1), while the second term goes to Z · 0 = 0 in

probability. Thus, under θ = 0,
√
nTn

L−→ N(0, α2).
A calculation of the risk function Rn(θ, Tn) ≡ Eθ(Tn−θ)2 shows, however, that

(Exercise 7.22)

Rn(θ, Tn) =
An(θ)

n
with sup

|θ|≤n−1
4

An(θ) = ∞, (7.153)

whereas

Rn(θ,X) =
1

n
∀ θ. (7.154)

Thus an event near the point of superefficiency Tn behaves poorly compared to
X, if one would like to control the risk uniformly for all θ in at least a small
neighborhood of each parameter point.

Remark 7.18. Under slightly stronger conditions than (R0)–(R2) it has been
proved by Le Cam (1953), and by Bahadur (1958), that if an estimator Tn of

θ is asymptotically N(θ, σ
2(θ)
n ) (i.e.,

√
n(Tn−θ)

L−→ N(0, σ2(θ))), then the points
of superefficiency (i.e., θ such that σ2(θ) < 1/Eθ((d log f(X1; θ)/dθ)

2) constitute
at most a set of Lebesgue measure zero). If one requires that the normalized risk

function nRn(θ, Tn) perform uniformly well in an interval of width O(n− 1
2 ) around

each parameter point θ0, then under the same regularity conditions LeCam and
Hajek proved that there do not exist estimators which are superior to asymptoti-
cally normal estimators.

Exercises for Chap. 7

Exercises for 7.2, 7.3

Ex. 7.1. Let X = (X1, . . . , Xn) where Xi’s are i.i.d. uniform on (0, θ) (θ ∈ Θ =
(0,∞)). Show that

(a) Mn ≡ max{X1, . . . , Xn} is the MLE of θ, and

(b) EθMn = n
n+1 θ, varθMn = n

(n+2)(n+1)2 θ
2, Eθ

(
n+1
n M − θ

)2
= 1

n(n+2) θ
2.

Ex. 7.2. (a) Show that the hypothesis of Theorem 7.1 holds if (R0), (R1), (R2)
stated in Remark 7.3 hold.

(b) Show that the hypothesis of Theorem 7.1 holds for one-parameter exponential
families as stated in Remark 7.5.
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(c) In the context of Remark 7.5 show that the Cramér-Rao lower bound is only
attained by linear functions of T .

Ex. 7.3. Show that truncated exponential families are also exponential.

Ex. 7.4 (Dasgupta 2008). (Missing data). In a city the number of traffic acci-
dents per day is assumed to follow the Poisson distribution P(λ).

(a) Suppose records are available only for days with more than r accidents, and the
number of days with r or less accidents is not known. Show that Theorem 7.2
applies for the estimation of λ, and find the asymptotic distribution of the MLE
λ̂. Do not attempt to find closed form expressions. [Hint: Use the truncated
P(λ).]

(b) Suppose the over a period of n days n −m days have more than r accidents
and the numbers of accidents on these days are recorded. For the remain-
ing m days with r or less accidents the actual numbers of accidents are not
recorded. Regarding m as random write down the likelihood equation. Show
that Theorem 7.2 applies for the MLE.

(c) One way of dealing with the missing observations in (b) is to compute λ̂ as
in (a) based on the n − m observations fully recorded, and then replace the

missing data by a random sample of size m drawn from P(λ̂). Considering
the n observations so obtained as a random sample from P(λ), the “MLE”
λ∗ is computed. As an example, compute numerically the estimates of λ in
(a) (with n−m observations), (b), (c), from a random sample of size n = 100
from P(10), letting r = 2. Do the same with r = 1.

Ex. 7.5 (Bhattacharyya Inequality). Suppose the pd.f. g(x; θ) of X belongs
to a one-parameter exponential family. Let T = t(X) be as in Theorem 7.1, and
write ur = c(r)(θ), the r-th derivative of c(θ) = EθT , u = (u1, . . . , uk)

′, k ≥ 1.
Also write ars = Eθ((g

(r)(X; θ)/g)(g(s)(X; θ)/g)), A = ((ars))1≤r,s≤k.

(a) Derive the inequality (Bhattacharyya 1946)

varθT ≥ u′A−1u.

[Hint: covθ(T,
∑k

r=1 brg
(r)/g) =

∑
r brcovθ(T, g

(r)/g) =
∑

r brur, so

that varθT ≥ (b′u)2/
∑

r,s brbsars = (b′u)2/b′Ab = (γ′A− 1
2 )2)/‖γ‖2

(γ := A− 1
2b). The supremum of the last quantity over all b �= 0 equals

sup{‖γ‖=1} (γ ′A− 1
2 )2 = ((u′/‖u‖)A− 1

2u)2 = u′A−1u.]

(b) Let X = (X1, . . . , Xn), Xi’s i.i.d. N(μ, 1), μ ∈ R. Let the MLE T = X
2

estimate μ2. Find the lower bound of varθT using k = 1 (Cramér-Rao) and

k = 2 (Bhattacharyya), and compare these with the true variance of X
2
.

Note that the UMVU estimator of μ2 is X
2 − 1

n , having the same asymptotic
distribution around μ2 as the MLE.

Ex. 7.6 (Hardy-Weinberg Model). The Hardy-Weinberg formula for prob-
abilities of the three genotypes of a single gene with two alleles is p1 = θ2,
p2 = 2θ(1 − θ), p3 = (1 − θ)2, 0 < θ < 1. A random sample of size n from the
populations yields frequencies n1, n2, n3 for the three genotypes, n1+n2+n3 = n.
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(a) Show that this is a one-parameter exponential family. Find the UMVU esti-

mator of θ and show that it coincides with the MLE θ̂.
(c) Compare θ̂ with the naive estimator

√
n1/n.

Ex. 7.7. Instead of the Hardy-Weinberg formula in Exercise 7.6, assume p1 = π,
p2 = π2, P3 = 1− π − π2 (0 < π < (

√
5− 1)/2).

(a) Show that the (log-) likelihood equation has a consistent solution π̂.
(b) Find the asymptotic distribution of π̂.
(c) Find the asymptotic distribution of p̂1 and compute the asymptotic relative

efficiency ep̂1,π̂.

Ex. 7.8. In Example 7.4 let the parameter space Θ be (0,∞).

(a) Find the asymptotic distribution of the MLE.

(b) Compare the estimate in (a) with X
+ ≡ max{X, 0}.

Ex. 7.9. To study if animals are free of a toxin after being fed a contaminated
feed, a veterinarian combines blood samples fromm different animals to determine
if the combined specimen is free of the toxin. Let X = 0 if the combined specimen
indicates presence of the toxin and X = 1 otherwise. Let π be the probability that
an animal is free of the toxin. What is the distribution of X? Suppose a random
sample {X1, . . . , Xn} of such combined samples is drawn. Find the MLE π̂ of π
and the asymptotic distribution of π̂.

Ex. 7.10. Let X1, . . . , Xn be i.i.d. binomial B(m, p), 0 < p < 1.

(a) Find the UMVU estimate π̃ of π(p) = (1−p)m (= probability of “no success”).
(b) Find the MLE π̂ of π(p) and show that

√
n(π̃ − π̂) → 0 in probability as

n → ∞.
(c) Find the asymptotic distributions of π̃, π̂.

Ex. 7.11. Suppose X1, . . . , Xn are independent random variables with Xi having
the Poisson distribution P(ciθ) where ci’s are known positive constants (i =
1, 2, . . . ), and θ > 0 is an unknown parameter.

(a) Find the MLE θ̂ of θ and prove that it is also UMVU.
(b) Find a reasonably broad criterion (i.e., condition on the sequence of constants

ci, i ≥ 1) for the consistency of θ̂. [Hint: Calculate varθ(θ̂).]

(c) Prove that θ̂ is inconsistent if
∑

ci converges to a finite limit δ. [Hint: In

this case θ̂ − θ is approximately of the form
∑n

1 Yi − δ where Y1, Y2, . . . , are
independent positive random variables.]

(d) Use the Lindeberg CLT to find a broad condition for the asymptotic Normality

of θ̂ around θ.

Ex. 7.12 (Neyman-Scott). Let Xij be independent N(μi, σ
2) random variables

(i = 1, . . . , n; j = 1, . . . , k).

(a) Show that the MLE of the parameter θ = (μ1, . . . , μn, σ
2) is given by μ̂i =

X i. =
1
k

∑k
j=1 Xij , 1 ≤ i ≤ n, and σ̂2 = 1

nk

∑
i,j(Xij −Xi.)

2.
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(b) Show that σ̂2 is not consistent. [Hint: nkσ̂2/σ2 has the chi-square distribution
with n(k − 1) degrees of freedom.]

(c) Show that the bias-corrected MLE σ̃2 = nkσ̂2/n(k−1) is a consistent estimator
of σ2.

Ex. 7.13. Suppose the hypothesis of Theorem 7.5 holds. Let γ : Θ → R
s be a

continuously differentiable function in a neighborhood of θ0 contained in Θ. Find
the asymptotic distribution of the MLE of γ(θ0) under Pθ0 .

Ex. 7.14. Consider the multivariate Normal N(μ, Σ) distribution of Exam-
ple 7.5(b).

(a) Prove that {σ̂ii′ : 1 ≤ i ≤ i′ ≤ k} and {μ̂i : 1 ≤ i ≤ k} defined by (7.92) are
independent.

(b) Prove that the joint distribution of {nσ̂ii′ : 1 ≤ i ≤ i′ ≤ k} based on n
independent observations from N(μ, Σ) is the same as that of {(n− 1)σii′ ≡∑n−1

j=1 XjiXji′ : 1 ≤ i ≤ i′ ≤ k} based on (n − 1) observations from N(0, Σ).

[Hint: Proceed as in the case ofN(μ, σ2) considered in Proposition 2.1, Chap. 2,
Part I.]

Exercises for Sect. 7.4

Ex. 7.15. Let Xj = (Xj1, . . . , Xjk), j ≥ 1, be i.i.d. with P (Xj = ei) = pi, 0 <

pi < 1 for 1 ≤ i ≤ k,
∑k

i=1 pi = 1, where ei’s (i = 1, . . . , k) are the standard unit
vectors in R

k as defined in Example 7.5(c).

(a) Show that
√
n(p̂−p)

L−→ N(0, Σ), where p̂i =
1
n

∑n
j=1 Xji, p̂ = (p̂1, . . . , p̂k)

′,
p = (p1, . . . , pk)

′, and σii = pi(1− pi), σii′ = −pipi′ (i �= i′).
(b) Restricting the result (a) to the first k − 1 coordinates of p̂, derive (7.98).

Ex. 7.16. Suppose
√
n(θ̃n − θ0) converges in distribution, under Pθ0 . Check that√

n(θ̃n − θ0) is bounded in probability.

Ex. 7.17. Assume Θ in Example 7.5, defined by (7.76) is a nonempty open subset
of Rp.

(a) Show that C(θ), 1/C(θ) and f(x, θ) are analytic functions of θ in Θ. [Hint:
Fix θ0 ∈ Θ and let δ > 0 be such that B(θ0 : δ) ≡ {θ : |θ − θ0| < δ} ⊂ Θ.
Express 1/C(θ) as (1/C(θ0))-times the m.g.f. of t(X) = (t1(X), . . . , tp(X)) in
a neighborhood of the origin 0 ∈ R

p, under the distribution of X given by
f(x; θ0)μ(dx).]

(b) Check that the hypothesis of Theorem 7.5 is satisfied by the family (7.76).

Exercises for 7.5

Ex. 7.18. Let X1, . . . , Xn be i.i.d. observations from the gamma distribution
G (μ, α), μ > 0, α > 0.

(a) Suppose μ is known. Show that both T1 = X/μ and T2 = (
∑

X2
i /n−X

2
)/(1−

1
n )μ

2 are unbiased estimates of α, and find the asymptotic relative efficiency
eT1,T2 .
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(b) Suppose α is known. Show that both T3 = X/α and T4 = [
∑

X2
i /(nα(α+1))]

1
2

are consistent estimators of μ. Find the ARE eT3,T4 .

Exercises for 7.6

Ex. 7.19. Directly check the conclusion of the Bernstein–von Mises Theorem for
the following examples: (i) Example 7.8, (ii) X1, . . . , Xn i.i.d. Poisson P(θ) with
θ ∈ (0,∞) and prior given by Gamma G (α, β), (iii) Example 3.6, Chap. 3, Part I,
where X1, . . . , Xn are i.i.d. N(θ, σ2), σ2 > 0 known, θ ∈ R, and the prior is
N(0, β2).

Ex. 7.20. Show that in Examples (i)–(iii) in the preceding Exercise (7.19) the
Bayes estimator under squared error, or absolute error, loss is asymptotically effi-
cient.

Exercises for 7.7, 7.8

Ex. 7.21. Let X1, . . . , Xn, be independent observations with the common distri-
bution Q on R, having a finite sixth moment. Define g(θ) = E(X1 − θ)4 and
gn(θ) = n−1

∑n
j=1(Xj − θ)4, θ ∈ R.

(a) Prove that g(θ) has a unique minimizer θ0, and gn(θ) has a unique minimizer

θ̂. [Hint: g, gn are strictly convex.]

(b) First assume θ̂ → θ0 a.s. as n → ∞, and obtain a Taylor expansion of

θ ≡ g′n(θ̂) around θ0 to prove that
√
n(θ̂ − θ0)

L−→ N(0, γ2), where γ2 =
E(X1 − θ0)

6/{(6(E(X1 − θ0)
2)2}.

(c∗) Prove θ̂ → θ0 a.s. [Hint: On a compact interval gn(θ) → g(θ) uniformly, a.s.]

Ex. 7.22. Prove (7.153), (7.154).
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Chapter 8

Tests in Parametric and Nonparametric
Models

Abstract The asymptotic theory of tests in parametric and nonparametric models
and their relative efficiency is presented here. In particular, livelihood ratio, Wald’s
test and chisquare tests are derived in parametric models. The nonparametric tests
discussed include two-sample rank tests and the Kolmogorov–Smirnov tests. Also
presented are goodness-of-fit tests and inference for linear time series models.

8.1 Pitman ARE (Asymptotic Relative Efficiency)

Example 8.1. Let X1, X2, . . . be i.i.d. real valued with common distribution func-
tion F (x − θ), where F ′(x) = f(x) is symmetric about x = 0 and is continuous
at x = 0. Consider the problem of testing H0 : θ = 0 against H1 : θ > 0, by the
following procedures:

(1) Mean Test: Assume

σ2
f ≡

∫ ∞

−∞
x2f(x)dx < ∞.

Reject H0 iff X > an, where X = 1
n

∑n
j=1 Xj and (the sequence) an is so

chosen that the test has (asymptotic) size α (0 < α < 1) : P0(X > an) → α.
This may be expressed as

P0(X > an) = P0

(√
n X >

√
n an

) −→ α, (8.1)

which implies by the CLT that

√
nan
σf

= Φ1−α + o(1), (8.2)

Φ(x) denoting the distribution function of N(0, 1), and Φβ its β-th quantile.
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(2) Sign Test: Reject H0 iff Tn > bn, when Tn = 1
n

∑n
j=1 1{Xj>0} and (the

sequence) bn is so chosen that the test has (asymptotic) size α : P0(Tn > bn) →
α. This yields, by the CLT (and the fact that 1{Xj>0} are i.i.d. Bernoulli which

have, under H0, common mean 1
2 and common variance 1

2 (1 − 1
2 ) =

1
4 ),

P0

(

Tn − 1

2
> bn − 1

2

)

= P0

(

2
√
n

(

Tn − 1

2

)

> 2
√
n

(

bn − 1

2

))

−→ α,

or,

2
√
n

(

bn − 1

2

)

= Φ−1(1− α) + o(1). (8.3)

Now if one fixes an alternative θ1 > 0, then it is simple to check that the
probability of the type II error of each of the above tests converges to zero, i.e., the
power goes to one. (This property is referred to as consistency of a test.) In order to
make a comparison among such tests one may choose (a sequence of) alternatives
θn ↓ θ0 = 0 as n ↑ ∞. Suppose that θn ↓ 0 are so chosen that the probability of

type II error β
(1)
n of test (1) converges to a desired level β, 0 < β < 1−α (β < 1−α

means unbiasedness for a test; hence we are requiring asymptotic unbiasedness).
Thus

β(1)
n ≡ Pθn

(
X ≤ an

) −→ β. (8.4)

This means

Pθn(X − θn ≤ an − θn) = P0(X ≤ an − θn)

= P0

(√
n X/σf ≤ √

n(an − θn)/σf
) −→ β, (8.5)

or, by the CLT, √
n(an − θn)/σf = Φ−1(β) + o(1)

θn = an − σfΦ
−1(β)n− 1

2 + o
(
n− 1

2

)

= σf
(
Φ−1(1− α)− Φ−1(β)

)
n− 1

2 + o
(
n− 1

2

)
. (8.6)

A fruitful way of comparing test (2) with test (1) is to find the sample size h(n)
required for test (2) (which has asymptotic size α—the same as that of test (1)) to
have the same limiting power 1− β or probability of the type II error β under the
alternative θn. One may then define the Pitman Asymptotic Relative Efficiency of
test (2) relative to test (1) as

lim
n→∞

n

h(n)
= ep(Tn, X) (8.7)

provided this limit exists (and is independent of α, β for 0 < β < 1 − α). One
must then find h(n) such that

β
(2)
h(n) ≡ Pθn

(
Th(n) ≤ bh(n)

) −→ β. (8.8)

Now the distribution of (the finite sequence) 1{Xj>0} ≡ 1{Xj−θn>−θn} (j =
1, 2, . . . , h(n)) under θ = θn is the same as that of 1{Xj>−θn} under H0 : θ = 0.
Hence (by an application of Liapounov’s CLT to triangular arrays)



8.1 Pitman ARE (Asymptotic Relative Efficiency) 205

β
(2)
h(n) = Pθn

⎛

⎝ 1

h(n)

h(n)∑

j=1

1{Xj>0} ≤ bh(n)

⎞

⎠ = P0

⎛

⎝ 1

h(n)

h(n)∑

j=1

1{Xj>−θn} ≤ bh(n)

⎞

⎠

= P0

⎛

⎝2
√
h(n)

⎛

⎝ 1

h(n)

h(n)∑

j=1

(
1{Xj>−θn}−F (θn)

)
⎞

⎠ ≤ 2
√
h(n)(bh(n)−F (θn))

⎞

⎠

= Φ
(
2
√
h(n)

(
bh(n)−F (θn)

))
+o(1) −→ β. (8.9)

Here we have made use of the facts

P0(Xj > −θn) = P0(Xj < θn) = F (θn),

var01{Xj>−θn} = F (θn)(1 − F (θn)) =
1

4
+ o(1). (8.10)

Thus, by (8.9), (8.3), and (8.6)

Φ−1(β) + o(1) = 2
√
h(n) (bh(n) − F (θn)) = 2

√
h(n)

(

bh(n) − 1

2
+

1

2
− F (θn)

)

= Φ−1(1− α)− 2
√
h(n)

(

F (θn)− 1

2

)

+ o(1)

= Φ−1(1− α)− 2
√
h(n) (θn(f(0) + o(1))) + o(1)

= Φ−1(1− α)− 2

√
h(n)

n
σf
(
Φ−1(1− α)−Φ−1(β)

)
f(0)

+o

(√
h(n)

n

)

+ o(1),

which yields

2σff(0) ∼
√

n

h(n)
. (8.11)

The symbol “∼” indicates that the ratio of the two sides (of ∼) goes to one.
It follows from (8.11) (and (8.7)) that

eP (Tn, X) = 4σ2
ff

2(0). (8.12)

Consider now the following special cases:

F eP (Tn,X)

N(0, σ2) 2/π

Double exponential 2

Uniform on [− 1
2
, 1
2
] 1/3

A more realistic version of the mean test is the t-test:

Reject H0 iff t ≡ X

s
> a′n, (8.13)
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where s = [ 1
n−1

∑n
i=1(Xi −X)2]

1
2 . Since, under H0,

√
n X/s → N(0, 1) (provided

σ2
f < ∞), one has

√
n a′n = Φ−1(1 − α) + o(1),

a′n = n− 1
2

[
Φ−1(1− α) + o(1)

]
. (8.14)

Usually, the p.d.f. f may not be known, so that σ2
f is unknown. Proceeding as

above one shows that eP (Tn, t) = 4σ2
ff

2(0), the same as in (8.12). (Exercise 8.1.)

Remark 8.1. The reason why one may use the sign test and not the t-test is that
one may not be sure of the underlying distribution. The t-test is not nearly as
“robust” (against model variation) as the sign test. In particular, ep(Tn, X) = ∞
if σ2

f = ∞. Although one may look at the asymptotic relative efficiency (ARE)
of two tests in a parametric model also, there do exist under broad assumptions
asymptotically optimal tests in parametric models—for example, the likelihood
ratio test is asymptotically optimal under appropriate regularity conditions. We
shall consider such tests in the next section.

The theorem below allows one to compute Pitman ARE of tests of the type in
Example 8.1. Consider two tests δi,n (i = 1, 2) which may be expressed as

δi,n : Reject H0 if Ti,n > ai,n (i = 1, 2), (8.15)

where ai,n are such that

lim
n→∞Pθ0 (Ti,n > ai,n) = α (i = 1, 2), (8.16)

for a given α ∈ (0, 1). Fix β ∈ (0, 1) such that β < 1− α.

Theorem 8.1. (A1) Assume that there exists functions μi,n(θ), σi,n(θ) > 0 (i =
1, 2) and δ > 0 such that

sup
θ∈[θ0−δ,θ0+δ]

sup
x∈(a,b)

∣
∣
∣
∣Pθ

(
Ti,n − μi,n(θ)

σi,n(θ)
≤ x

)

−G(x)

∣
∣
∣
∣ −→ 0 (8.17)

as n → ∞, where G is a continuous distribution function which is strictly increas-
ing on an interval (a, b) with G−1(a) = 0, G−1(b) = 1 (−∞ ≤ a < b ≤ ∞).
(A2) Assume that θ → μi,n(θ) is k times continuously differentiable in a neighbor-

hood of θ0, where k is the smallest positive integer such that μ
(k)
i,n(θ0) �= 0 (i = 1, 2).

(A3) Assume that

lim
n→∞

σi,n(θ
′
n)

σi,n(θ0)
= 1, lim

n→∞
μ
(k)
i,n(θ

′
n)

μ
(k)
i,n(θ0)

= 1 (i = 1, 2) (8.18)

for every sequence {θ′n} converging to θ0. Finally assume (A4) that there exist
positive constants ci (i = 1, 2), γ such that

lim
n→∞n−γ

μ
(k)
i,n(θ0)

σi,n(θ0)
= ci, (i = 1, 2). (8.19)
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Under assumptions (A1)–(A4), for the test H0 : θ = θ0, H1 : θ > θ0, one has

eP (δ2,n, δ1,n) =

(
c2
c1

) 1
γ

. (8.20)

Proof. Let

θn = θ0 +

(
k!

c1

) 1
k (

G−1(1− α)−G−1(β)
) 1

k n−γ
k (1 + o(1)),

h(n) =

[

n

(
c1
c2

) 1
γ

]

+ 1 ([x] := integer part of x). (8.21)

By assumptions (A2), (A3), (A4), there exists θ
∗
n,i lying between θn and θ0 such

that

μi,n(θn)− μi,n(θ0) =
(θn − θ0)

k

k!
μ
(k)
i,n(θ

∗
n,i)

=
1

c1

{
G−1(1 − α)−G−1(β)

}
n−γμ

(k)
i,n(θ0)(1 + o(1))

=
ci
c1

{
G−1(1 − α)−G−1(β)

}
σi,n(θ0)(1 + o(1)) (i = 1, 2).

(8.22)

Now (8.16) may be expressed as

Pθ0

(
Ti,n − μi,n(θ0)

σi,n(θ0)
>

ai,n − μi,n(θ0)

σi,n(θ0)

)

−→ α (i = 1, 2). (8.23)

Therefore, by (A1),

lim
n→∞

ai,n − μi,n(θ0)

σi,n(θ0)
== G−1(1 − α) (i = 1, 2). (8.24)

Now

Pθ0 (T1,n ≤ a1,n) = Pθ0

(
T1,n − μ1,n(θn)

σ1,n(θn)
≤ a1,n − μ1,n(θn)

σ1,n(θn)

)

, (8.25)

and, by (A3) and (8.22), (8.24),

a1,n − μ1,n(θn)

σ1,n(θn)

=
a1,n − μ1,n(θ0) + μ1,n(θ0)− μ1,n(θn)

σ1,n(θ0)
(1 + o(1))

=
[
G−1(1 − α)− {

G−1(1− α)−G−1(β)
}]

(1 + o(1)) −→ G−1(β). (8.26)

Similarly,

Pθn

(
T2,h(n) ≤ a2,h(n)

)
= Pθn

(
T2,h(n) − μ2,h(n)(θn)

σ2,h(n)(θn)
≤ a2,h(n) − μ2,h(n)(θn)

σ2,h(n)(θn)

)



208 8 Tests in Parametric and Nonparametric Models

and μ2,h(n)(θ0) − μ2,h(n)(θn) = {−(θn − θ0)
k/k!}[μ(k)

2,h(n)(θ0) + o(1)], so that

by (8.19), (8.21), one has

a2,h(n)−μ2,h(n)(θn)

σ2,h(n)(θn)
=

{
a2,h(n)−μ2,h(n)(θ0)

σ2,h(n)(θ0)
+
μ2,h(n)(θ0)−μ2,h(n)(θn)

σ2,h(n)(θ0)

}

(1+o(1))

=

[

G−1(1− α)− 1

c1

{
G−1(1 − α)−G−1(β)

} (1/n)γ

σ2,h(n)(θ0)

·μ(k)
2,h(n)(θ0)

]

(1 + o(1))

−→ G−1(1− α) − {
G−1(1 − α)−G−1(β)

}
= G−1(β). �

8.2 CLT for U -Statistics and Some Two-Sample Rank Tests

Let X1, X2, . . . , Xm be a random sample drawn from a population with p.d.f.
f
(
x
σ

)
, and let Y1, Y2, . . . , Yn be a random sample (independent of Xj ’s) from an-

other population with p.d.f. f
(
x−θ
σ

)
. We will suppress σ. Consider

H0 : θ = 0, H1 : θ > 0. (8.27)

Here σ is an unknown scale parameter.
The Wilcoxon (or Mann–Whitney) test rejects H0 iff

n∑

j=1

Rj > cm,n, (8.28)

where Rj is the rank of Yj among the m + n observations X1, X2, . . . , Xm,
Y1, Y2, . . . , Yn. Assume that m → ∞, n → ∞ in such a way that

m

m+ n
−→ λ for some λ ∈ (0, 1). (8.29)

One chooses cm,n in such a way that (Pθ denotes probability under f(x−θ
σ )),

limP0

(
n∑

i=1

Rj > cm,n

)

= α, (8.30)

where the limit is through sequences of values of m,n satisfying (8.29), and α ∈
(0, 1). Now, under H0, the distribution of (R1, R2, . . . , Rn) is

P0 (R1 = r1, R2 = r2, . . . , Rn = rn) =
m!

(m+ n)!
(8.31)

for every m-tuple of distinct integers (r1, r2, . . . , rn) from {1, 2, . . . ,m+n}. Hence
the null distribution of the Wilcoxon statistic

∑n
1 Rj does not depend on the

underlying f .
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The Fisher–Yates test rejects H0 iff

n∑

i=1

Z(Ri) > dm,n (8.32)

where Z(r) is the expected value of the rth order statistic of a sample of size m+n
from a standard normal distribution. This test is also called the normal scores
test. Once again, since the distribution of the statistic on the left (8.32) depends
only the distribution of (R1, . . . , Rm), the null distribution of the normal scores
statistic is independent of the underlying p.d.f. f , and dm,n depends only on m, n
and α.

In order to compute the ARE’s of the above tests (with respect to each other,
or with respect to their parametric competitors) we will use the following central
limit theorem for U -statistics.

Theorem 8.2. Let ϕ(x, y) be a real-valued measurable function of (x, y). Assume

Eϕ(Xi, Yj) = 0, 0 < σ2
1 := Eg2(X1) < ∞,

0 < σ2
2 := Eh2(Y1) < ∞, (8.33)

where g(x) := Eϕ(x, Y1), h(y) := Eϕ(X1, y). Then under the assumption (8.29),

∑m
i=1

∑n
j=1 ϕ(Xi, Yj)

√
var

∑m
i=1

∑n
j=1 ϕ(Xi, Yj)

L−→ N(0, 1). (8.34)

Proof. Write U =
∑∑

ϕ(Xi, Yj). Then, writing σ2
0 = Eϕ2(X1, Y1) =

varϕ(X1, Y1),

EU = mnEϕ(X1, Y1) = 0,

varU = mn varϕ(X1, Y1) +mn(n− 1)σ2
1 +mn(m− 1)σ2

2

= mnσ2
0 +mn(n− 1)σ2

1 +mn(m− 1)σ2
2 , (8.35)

since (taking conditional expectation given X1 first)

cov(ϕ(X1, Y1), ϕ(X1, Y2)) = Eg2(X1) = σ2
1 ,

and (taking conditional expectation given Y1 first)

cov(ϕ(X1, Y1), ϕ(X2, Y1)) = Eh2(Y1) = σ2
2 .

In the computation of variance (U) in (8.35) we have also used the fact that
cov(ϕ(Xi, Yj), ϕ(Xi′ , Yj′)) = 0 if i �= i′ and j �= j′.

Now consider the following approximation of U :

S :=

m∑

i=1

E(U |Xi) +

n∑

j=1

E(U |Yj)

= n

m∑

i=1

g(Xi) +m

n∑

j=1

h(Yj). (8.36)
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Note that S is the projection of U onto the subspace (of L2-functions on the
probability space) (⊕Li)⊕ (⊕L ′

j ), where Li is the space of (L2-) functions of Xi,

L ′
j is the space of (L 2-) functions of Yj . In any case

varS = mn2σ2
1 +m2nσ2

2 , (8.37)

cov(S,U) = n

m∑

i=1

cov(g(Xi), U) +m

n∑

j=1

cov(h(Yj), U)

= n

m∑

i=1

n cov(g(Xi), ϕ(Xi, Y1)) +m

n∑

j=1

m cov(h(Yj), ϕ(X1, Yj))

= mn2σ2
1 +m2nσ2

2 = varS,

cov(S,U − S) = cov(S,U)− varS = 0. (8.38)

Also,
var(U − S) = var(U)− varS = mn(σ2

0 − σ2
1 − σ2

2). (8.39)

Therefore,

var

(
U − S√
varU

)

−→ 0,
varU

varS
−→ 1. (8.40)

Hence it is enough to prove that

S√
varS

L−→ N(0, 1). (8.41)

But (8.41) is an immediate consequence of the classical CLT applied separately to
the two components of (8.36), using their independence and (6.29). ��
Remark 8.2. Suppose, under Pθ, ϕ(Xi, Yj) is of the form

ϕ(Xi, Yj) = ψ(Xi, Yj)− Eθψ(X1, Y1),

Also, write σ2
0(θ), σ

2
1(θ), σ

2
2(θ) to indicate the dependence of the variances on θ.

Write

m,n(θ) :=
n3mEθ|g(X1)|3 + nm3Eθ|h(Y1)|3

(n2mσ2
1(θ) + nm2σ2

2(θ))
3
2

. (8.42)

By the Berry–Esséen Theorem1

sup
x

∣
∣
∣
∣
∣
Pθ

(
S

√
mn2σ2

1(θ) +m2nσ2
2(θ)

≤ x

)

−Φ(x)

∣
∣
∣
∣
∣
≤ cm,n(θ) (8.43)

where Φ is the standard normal distribution function, and c is an absolute constant
(c = 1 will do). Also,

Δm,n(θ) := Eθ

(
U

√
varθ(U)

− S
√
varθ(S)

)2

=
Eθ(U − S)2

varθ(U)
+ varθ(S)

(
1

varθ(S)
− 1

varθ(U)

)2

. (8.44)

1 See Bhattacharya and Rao Ranga (2010), pp. 104, 186.
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Now assume

(B) :

{
(i) Eθ|ϕ(X1, Y1)|3 is bounded away from infinity in a neighborhood of θ0,

(ii) σ2
1(θ), σ

2
2(θ) are bounded away from zero in a neighborhood of θ0.

Then both m,n(θ) and Δm,n(θ) (see (8.42), (8.44)) go to zero uniformly for θ
in a neighborhood [θ0 − δ, θ0 + δ], as m,n → ∞ (still assuming (8.29)). It may be
shown from this that (Exercise 8.2)

sup
θ∈[θ0−δ,θ0+δ]

sup
x∈R1

∣
∣
∣
∣
∣
Pθ

(∑
i,j ψ(Xi, Yj)−mnEθψ(X1, Y1)√

varθU
≤ x

)

−Φ(x)

∣
∣
∣
∣
∣

→ 0, (8.45)

as m,n → ∞.

Example 8.2. Let us now compute the ARE of the Wilcoxon test (8.28) with re-
spect to the two-sample t-test. First note that, writing Y(1) < Y(2) < · · · < Y(n) as
the order statistics of Yj ’s,

m∑

i=1

n∑

j=1

1{Xi<Yj} =

n∑

j=1

(#{i : Xi < Yj}) =
n∑

j=1

(
#{i : Xi < Y(j)}

)
,

since each Yj is a unique Y(k). But #{i : Xi < Y(j)} equals the rank of Y(j) among
{X1, . . . , Xm, Y1, . . . , Yn} minus j (since there are j Yk’s ≤ Y(j)). Hence

m∑

i=1

n∑

j=1

1{Xi<Yj} =
n∑

j=1

R(j) −
n∑

j=1

j =
n∑

j=1

Rj − n(n+ 1)

2
. (8.46)

Here R(j) is the j-th order statistic among R1, . . . , Rn (which is the same as the
rank of Y(j) among {X1, . . . , Xm, Y1, . . . , Yn}). Hence the Wilcoxon test (8.28) may
be expressed as

Reject H0 iff
m∑

i=1

n∑

j=1

1{Xi<Yj} > am,n (8.47)

where am,n is so chosen that

lim
m,n→∞P0

⎛

⎝
m∑

i=1

n∑

j=1

1{Xi<Yj} > am,n

⎞

⎠ = α. (8.48)

Now write ψ(x, y) = 1{x<y}, ϕ(x, y) = ψ(x, y) − Eθ(1{Xi<Yj}), to get, from The-
orem 8.2,

lim
m,n→∞P0

(
U

√
mn
12 (m+ n+ 1)

>
am,n − 1

2 mn
√

mn
12 (m+ n+ 1)

)

= α. (8.49)

Note that, ∀ θ > 0,

pθ := Eθ

(
1{Xi<Yj}

)
= Pθ(Xi < Yj) =

∫ ∞

−∞
F (y)f(y − θ)dy

=

∫ ∞

−∞
F (z + θ)f(z)dz ≥

∫ ∞

−∞
F (z)f(z)dz
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=
1

2

∫ ∞

−∞
dF 2(z) =

1

2
= E0

(
1{Xi<Yj}

)
;

σ2
0 = varθ1{Xi<Yj} = pθ(1− pθ);

g(x) = 1− F (x− θ)− pθ, h(y) = F (y)− pθ;

σ2
1 = Eθg

2(X1) = varθF (X1 − θ) = EθF
2(X1 − θ)− (EθF (X1 − θ))2

=

∫ ∞

−∞
F 2(x − θ)f(x)dx −

(∫ ∞

−∞
F (x− θ)f(x)dx

)2

;

σ2
2 = varθF (Y1) =

∫ ∞

−∞
F 2(y)f(y − θ)dy −

(∫ ∞

−∞
F (y)f(y − θ)dy

)2

=

∫ ∞

−∞
F 2(x+ θ)f(x)dx − p2θ;

σ2
0 − σ2

1 − σ2
2 = pθ −

∫ ∞

−∞

(
F 2(x − θ) + F 2(x+ θ)

)
f(x)dx

+

(∫ ∞

−∞
F (x− θ)f(x)dx

)2

(8.50)

Under θ = 0,

σ2
0 =

1

4
, σ2

1 =
1

3
− 1

4
=

1

12
= σ2

2 ,

var0(U) = mn
(
σ2
0 − σ2

1 − σ2
2

)
+

mn

12
(n+m)

=
mn

12
+

mn

12
(m+ n) =

mn

12
(m+ n+ 1). (8.51)

In particular, am,n is determined by the relation

am,n − 1
2mn

√
mn
12 (m+ n+ 1)

= z1−α,

where zβ = Φ−1(β). In general

varθ(U) = mn
(
σ2
0 − σ2

1 − σ2
2

)
+mn

(
nσ2

1 +mσ2
2

)
= σ2

m,n(θ),

Eθ(U) = mnpθ = μ2,m,n(θ). (8.52)

Now, d
dθpθ =

∫∞
−∞ f(z + θ)f(z)dz (if, e.g., f is bounded and continuous), so that

(
μ
(1)
2,m,n(θ)

)

θ=0
= mn

∫ ∞

−∞
f(z)f(z)dz = mn

∫ ∞

−∞
f2(z)dz > 0, (8.53)

Also,

σm,n(0) =
√
var0(U) =

√
mn

12
(m+ n+ 1) , (8.54)
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so that k = 1 (in the application of Theorem 8.1) and

n− 1
2

μ
(1)
2,m,n(0)

σm,n(0)
= n− 1

2

(n2
√
λ )(1 + o(1))

∫∞
−∞ f2(z)dz

n
3
2

(
1
12

) 1
2 (1 + o(1))

−→
√
λ
√
12

∫ ∞

−∞
f2(z)dz = c2. (8.55)

Thus γ = 1
2 . (See (8.18).)

On the other hand for the Student’s t,

t =
Y −X

s
√

1
m + 1

n

[

s2 :=

∑m
i=1(Xi −X)2 +

∑n
j=1(Yj − Y )2

m+ n− 2

]

, (8.56)

the test of asymptotic size α is

Reject H0 iff Y −X > zαs

√
1

m
+

1

n
= bm,n. (8.57)

Writing σ2
f = varθX = varθY =

∫
(x− μx)

2f(x)dx (μx =
∫
xf(x)dμ), one has

μ1,m,n(θ) = EθY1 − EX1 =

∫ ∞

−∞
xf(x− θ)dx −

∫ ∞

−∞
xf(x)dx

=

∫ ∞

−∞
(y + θ)f(y)dy −

∫ ∞

−∞
xf(x)dx = θ,

σm,n(θ) =

√

var(Y ) + var(X) =
√
σ2
f/n+ σ2

f/m

= σf

√

1 +
1− λ

λ
n− 1

2 (1 + o(1)) =

(
σf√
λ

)

n− 1
2 (1 + o(1)). (8.58)

Thus

μ
(1)
1,m,n(θ) =

d

dθ
θ = 1, (8.59)

σm,n(0) = n− 1
2
σf√
λ
(1 + o(1)). (8.60)

Thus, as before, γ = 1
2 , k = 1, and

c1 = lim
n→∞n− 1

2

μ
(1)
1,m,n(0)

σm,n(0)
=

1

σf

√
1
λ

=

√
λ

σf
. (8.61)

From (8.55) and (8.61), we get

eP (W, t) ≡ eP (Wilcoxon, t) =

(
c2
c1

) 1
1/2

=

(
c2
c1

)2
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= 12σ2
f

(∫ ∞

−∞
f2(x)dx

)2

(8.62)

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

3
π ≈ 0.95 if f is normal density,

3
2 if f is double exponential,

1 if f is uniform on [−1, 1].

It has been shown by Hodges and Lehmann (1956) that eP (W, t) ≥ 108/125 =
0.864, whatever be f . On the other hand, eP (W, t) = ∞ if σ2

f = ∞. Even in the

class of f with σ2
f < ∞, the supremum of eP (W, t) is infinity. Thus the t-test can

be very bad for certain f ’s.
Similarly, one may compute the ARE of the Fisher–Yates test NS with respect

to the two-sample t-test. Indeed,

eP (NS, t) = σ2
f

(∫ ∞

−∞

f2(x)

ϕ{Φ−1[F (x)]} dx

)2

.

One may show that eP (NS, t) > 1 for all f �= ϕ, and equals 1 when f = ϕ. It also
follows that

eP (W,NS) =
3

π
if f is normal.

See Hodges and Lehmann (1960).

Remark 8.3. The two-sample rank tests are often used to testH0 : F (x) = G(x) ∀ x
against H1 : F (x) ≥ G(x) ∀ x with strict inequality for some x ∈ R

1. Here
F,G are the (common) distribution functions of the X ’s and the Y ’s, respec-
tively, and it is assumed that F,G are continuous. (Note that H1 says that
Y ’s are stochastically larger than X ’s: P (Y > x) ≥ P (X > x) ∀ x, with
strict inequality for some x.) Consider now the group G (under composition
of maps) of all continuous homeomorphisms of R

1. An element ϕ of G trans-
forms an observation vector (x1, . . . , xm, y1, . . . , yn) ∈ R

m+n into the vector
(ϕ(x1), . . . , ϕ(xm), ϕ(y1), . . . , ϕ(yn)). Thus ϕ induces a transformation ϕ̃ on R

m+n

(onto R
m+n ≡ observation space X ). Let G̃ denote the group of these transfor-

mations on R
m+n. Because ϕ̃ does not change the orders (or ranks) among the

observations, it is reasonable to require that the test based on ϕ̃x rejects H0 iff the
same test based on x ≡ (x1, . . . , xm, y1, . . . , yn) does so. For the form of H0 and
H1 remain unchanged if F,G are replaced by the distributions of ϕ(X1), ϕ(Y1),
respectively. (Also, F,G are completely unknown, except for the properties as-
sumed.) The only tests which are invariant under every ϕ̃ in G̃ are the rank tests,
i.e., tests based on the ranks of {X1, . . . , Xm, Y1, . . . , Yn}. (See Proposition 5.4.)

The power of a rank test of course depends on specific pairs (F,G). For example,
if F,G have densities f(x), f(x − θ), θ > 0, and f(x) is the normal p.d.f. with
mean 0, then the most powerful rank test is the Fisher–Yates test. If, on the other
hand f(x) is the logistic with mean zero, then the most powerful rank test is the
Wilcoxon test. For a simple derivation of these facts, see T. Ferguson (1967), pp.
250–257.

Remark 8.4. There is a one-sample version of Theorem 8.2, which is even simpler
to prove (Exercise 8.4):
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Proposition 8.1 (CLT for One-Sample U-Statistics).

∑

1≤i�=j≤n

ϕ(Xi, Xj)
√
var

∑
i�=j ϕ(Xi, Xj)

L−→ N(0, 1) if

(i) Eϕ(X1, X2) = 0,
(ii) 0 < σ2

1 := Eg2(X1) < ∞.

Example 8.3. One may write

n∑

1

(Xi − E(Xi)) =
1

n− 1

∑

i�=j

[(Xi − E(Xi)) + (Xj − EXj)] , (8.63)

n∑

i=1

(Xi −X)2 =
1

2n

∑

1≤i�=j≤n

(Xi −Xj)
2. (8.64)

Remark 8.5. Let T = T (X) be an unbiased estimator of some parameter θ =
ET (X), where X = (X1, . . . , Xn) and X1, X2, . . . , Xn are i.i.d. The U -statistic
ϕ(X) = 1

n!

∑
ϕ(Xi1 , Xi2 , . . . , Xin) is also an unbiased estimator of θ; here the sum

is over all n! permutations (i1,i2, . . . , in) of the indices (1, 2, . . . , n). If E|T |p < ∞
for some p ≥ 1, then E|ϕ(X) − θ|p ≤ E|T − θ|p (See Exercise 8.1).

8.3 Asymptotic Distribution Theory of Parametric Large
Sample Tests

Let X1, X2, . . . , Xn be i.i.d with common p.d.f. f(x; θ) (w.r.t. a σ-finite measure
μ), with the parameter space Θ an open subset of Rp. Assume that the hypothesis
of Theorem 7.2, Chap. 7, holds. Suppose that the null hypothesis may be expressed
in the form

H0 : πi(θ) = 0, 1 ≤ i ≤ k, (8.65)

where 1 ≤ k ≤ p. To test this, against the alternative that H0 is not true (i.e.,
H1 : θ �∈ Θ0 ≡ {θ ∈ Θ : πi(θ) = 0 ∀ i}), a natural procedure would be to see
if πi(θ̃n) are close to zero (for 1 ≤ i ≤ k) or not; here θ̃n is an asymptotically
efficient estimator of θ. If θ0 is the true parameter value, then under H0 (i.e., for
θ0 ∈ Θ0) one has

πi(θ̃n) = πi(θ0) +

p∑

r=1

(
θ̃(r)n − θ

(r)
0

)(∂πi
∂θr

)

θ∗

=

p∑

r=1

(
θ̃
(r)

n − θ
(r)
0

)
[(

∂πi
∂θ(r)

)

θ0

+ op(1)

]

, (8.66)

assuming πi(θ) is continuously differentiable (in θ) on Θ. One may express (8.66)
for all i compactly as

√
nπ(θ̃n) =

[
(Gradπ)θ0

+ op(1)
]√

n(θ̃n − θ0) (8.67)
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where π(θ) is a k× 1 (column) vector with i-th element πi(θ), (θ̃n − θ0) is a p× 1
vector, and (Gradπ) is a k × p matrix with (i, r) element ∂πi(θ)/∂θ

(r). Assume
now that Gradπ is of rank k on Θ0. Then, under H0,

√
nπ(θ̃n)

L−→ Nk(0, V (θ0)) (8.68)

where V (θ0) is the k × k matrix

V (θ0) = (Grad π)θ0I
−1(θ0)(Grad π)′θ0

(8.69)

with I(θ0) as the p× p information matrix. It follows that

√
n π(θ̃n)

′V −1(θ0)
√
n π(θ̃0)

L−→ Z0
k (8.70)

where Z0
k denotes the chi-square distribution with k degrees of freedom. Since

V (θ̃n) → V (θ0) almost surely (Pθ0
) as n → ∞, V (θ̃n)

−1 exists on a set whose
probability converges to 1 as n → ∞, and V (θ̃n)

−1 → V (θ0)
−1 a.s. as n → ∞.

Therefore,

Wn ≡ √
n π(θ̃n)

′V −1(θ̃n)
√
nπ(θ̃n)

L−→ Z0
k . (8.71)

Therefore, a reasonable test of (asymptotic) size α is given by

Reject H0 iff Wn > χ2
1−α(k), (8.72)

where
1

2k/2Γ
(
k
2

)

∫ ∞

χ2
1−α(k)

e−u/2u
k
u−1du = α. (8.73)

In case H0 is simple, i.e., k = p and Θ0 = {θ0}, one may use the statistic in (8.70)
rather than (8.71) (See Example 5.15 for a motivation). We have thus arrived at
the following result.

Theorem 8.3. Assume that the hypothesis of Theorem 7.3, Chap. 7, holds, and
that Gradπ is continuous and of full rank on Θ. If θ̃n is an asymptotically efficient

estimator of θ, then the test statistic Wn
L−→ Z0

k , where Z0
k has a χ2

k distribution
under the null hypothesis H0, and the test (8.72) is of asymptotic size α.

Definition 8.1. A test (sequence) is said to be consistent if its power (= 1−
probability of type II error) goes to 1 as n → ∞.

The test (8.72) may be shown to be consistent. For this let θ �∈ Θ0, i.e., πi(θ) �= 0

for some i, say i = 1. Then, under Pθ, n(π(θ̃n)−π(θ))′V −1(θ̃n)(π(θ̃n)−π(θ))
L−→

Z0
k , where Z0

k has a χ2
k distribution as n → ∞. The probability of a type II error

under Pθ is

βn(θ) = Pθ

(
Wn ≤ χ2

1−α(k)
)

(8.74)

= Pθ

(
n
(
π(θ̃n)− π(θ)

)′
V −1(θ̃n)

(
π(θ̃n)− π(θ)

)

≤ χ2
1−α(k)

+n
{
π(θ)′V −1(θ̃n)π(θ)− π(θ̃n)

′V −1(θ̃n)π(θ)− π(θ)′V −1(θ̃n)π(θ̃n)
})

.
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The expression within curly brackets in (8.74) converges to −π(θ)′V −1(θ)π(θ)
almost surely (Pθ). Since this last quantity is strictly negative, χ2

1−α(k) + n{. . . }
converges to −∞ almost surely as n → ∞. Hence βn → 0.

Since all reasonable tests are consistent, to discriminate among them one must
consider a sequence of alternatives θn such that θn �∈ Θ0, θn → θ0 ∈ Θ0, and

βn(θn) −→ β. (8.75)

for some β < 1− α. This requires that one takes

θn = θ0 + n− 1
2 δ (δ = (δ1, . . . , δp)

′) (8.76)

such that θ0 is an element of Θ0 and δ �= 0 is an element of Rp, θ0 + n− 1
2 δ �∈ Θ0.

Since

πi(θn) = πi(θ0) + n− 1
2

p∑

r=1

δr

(
∂πi(θ)

∂θ(r)

)

θ0

+ o
(
n− 1

2

)
, (8.77)

π(θn) = o+ n− 1
2 ·Gradπ(θ0)δ + o

(
n− 1

2

)
,

one ought to choose δ so that it is not orthogonal to all the vectors Gradπi(θ0),
1 ≤ i ≤ k. Then under (8.74)–(8.77) we have

βn(θn) = Pθn
(Wn ≤ χ2

1−α(k))

= Pθn
(n(π(θ̃n)− π(θn))

′V −1(θ̃n)(π(θ̃n)− π(θn))

≤ χ2
1−α(k)− δ′ Gradπ(θ0)V

−1(θ0)(Gradπ(θ0))
′δ + op(1)).

Assume now that there exists ε > 0 such that for all x > 0

sup
|θ−θ0|≤ε

∣
∣
∣Pθ(n(π(θ̃n)−π(θ))′V −1(θ)(π(θ̃n)−π(θ)) ≤ x)−Gk(x)

∣
∣
∣ → 0 as n → ∞,

(A)
where Gk is the distribution function of a chi-square random variable with k de-
grees of freedom. Then

lim
n→∞βn(θn) = Gk

(
χ2
1−α(k)− δ′(Gradπ(θ0))

′V −1(θ0)Gradπ(θ0)δ
)
. (8.78)

In order that this limit be β, one must choose δ so that Gk(χ
2
1−α(k)− γ(δ)) = β,

where
γ(δ) := δ′(Gradπ(θ0))

′V −1(θ0)Gradπ(θ0)δ. (8.79)

This is possible since Gk(χ
2
1−α(k)) = 1− α and β < 1− α.

Remark 8.6. Theorem 8.3 is due to Wald (1943). To motivate the test (8.72), sup-

pose (as is often the case) that the MLE θ̂n is a sufficient statistic for θ. It is then

enough to confine one’s attention to tests based on θ̂n. By Theorem 7.5, Chap. 7,
the asymptotic distribution of θ̂n is the k-dim. Normal distribution N(θ, 1

nI
−1(θ)).

If the latter was the exact distribution of θ̂n, and if I(θ) was known, then an opti-
mal test for H0 : θ1 = θ2 = · · · = θk = 0 would be given by (See Lehmann, Testing
Statistical Hypotheses)

Reject H0 if n
(
θ̂
(1)

n

)′
V −1θ̂

(1)

n > χ2
1−α(k), (8.80)
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where θ̂
(1)

n = (θ̂n1, . . . , θ̂nk)
′ and V = the matrix formed by the elements in the

first k rows and the first k columns of the information matrix. In case I = I(θ)

depends on θ, one may replace θ by θ̂n. This yields test (8.72). The case (8.65)
simply needs a reparametrization.

An alternative test of (8.65) is the likelihood ratio test originally proposed by
Neyman and Pearson (1928) and explored by Wilks (1938). According to this
procedure one calculates the likelihood ratio statistic

Λn =
maxθ∈Θ0 fn(X; θ)

maxθ∈Θ fn(X; θ)
=

fn(X;
ˆ̂
θn)

fn(X; θ̂n)
. (8.81)

The test statistic is then

λn = −2 logΛn = 2 log fn(X; θ̂n)− 2 log fn(X;
ˆ̂
θn) (8.82)

and the likelihood ratio test is

Reject H0 iff λn > χ2
1−α(k). (8.83)

Theorem 8.4. Assume the hypothesis of Theorem 8.3.

(a) If H0 holds, then
λn = Wn + op(1), (8.84)

so that λn converges in law to a chi-square distribution with k d.f., and the
test (8.83) has asymptotic size α.

(b) The likelihood ratio test (8.83) is consistent. Also, for alternatives θn given
by (8.76) (with δ not orthogonal to the linear span of Gradπi(θ) (1 ≤ i ≤ k)
on Θ0),

lim
n→∞Pθn

(
λn ≤ χ2

1−α(k)
)
= β, (8.85)

provided β < 1− α, γ(δ) in (8.79) satisfies Gk(χ
2
1−α(k) = γ(δ)) = β, and an

analogue of (A) holds for λn.

Proof. (a) Fix θ0 ∈ Θ0. All op(1) errors below are under Pθ0
. Assume for the sake

of simplicity that πi(θ) = θ(i) (θ := (θ(1), . . . , θ(p))′ ∈ Θ), 1 ≤ i ≤ k. This may
be achieved, at least in a neighborhood of θ0, by reparametrization. Write

I(θ0) =

[
I11 I12
I21 I22

]

, I−1(θ0) =

[
I11 I12

I21 I22

]

, (8.86)

where I11 comprises the elements of I(θ0) belonging to the first k rows
and the first k columns, etc. Also write (x)rr′ = (x(r), . . . , x(r

′))′ for x =
(x(1), . . . , x(p))′ ∈ R

p. With this notation, Wald’s statistic (see (8.70), (8.71))
becomes

Wn = n(θ̂n)
1′
k (I11)−1(θ̂n)

1
k. (8.87)

Since (θ̂n)
1
k = 0 = (

ˆ̂
θn)

1
k, λn may be expressed as

λn = n(θ̂n − ˆ̂
θn)

′I(θ0)(θ̂n − ˆ̂
θn) + op(1)

= (I(θ0)
√
n(θ̂n − ˆ̂

θn))
′√n(θ̂n − ˆ̂

θn) + op(1)
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=

[
I11

√
n(θ̂n)

1
k + I12

√
n(θ̂n − ˆ̂

θn)
k+1
p

I21
√
n(θ̂n)

1
k + I22

√
n(θ̂n − ˆ̂

θn)
k+1
p

]′ √
n(θ̂n − ˆ̂

θn) + op(1). (8.88)

Now, as θ̂n and
ˆ̂
θn are solutions of the likelihood equations on Θ and Θ0,

respectively, it follows from the proof of Theorem 7.5 that

I(θ0)
√
n(θ̂n − θ0) = +

1√
n

DLn(θ0) + op(1),

I22
√
n(
ˆ̂
θn − θ0)

k+1
p = +

1√
n
(DLn(θ0))

k+1
p + op(1). (8.89)

The first relation in (8.89) may be expressed as

I11
√
n(θ̂n)

1
k + I12

√
n(θ̂n − θ0)

k+1
p = − 1√

n
(DLn(θ0))

1
k + op(1),

I21
√
n(θ̂n)

1
k + I22

√
n(θ̂n − θ0)

k+1
p = − 1√

n
(DLn(θ0))

k+1
p + op(1). (8.90)

Comparing the last relations in (8.89) and (8.90), we get

I22
√
n(θ̂n − ˆ̂

θn)
k+1
p = −I21

√
n(θ̂n)

1
k + op(1). (8.91)

Using this, the second block of rows of the matrix within square brackets in (8.88)
may be taken to be null. The (8.88) becomes

λn = n(θ̂n)
1′
k

(
I11 − I12I

−1
22 I21

)
(θ̂n)

1
k + op(1). (8.92)

To establish (8.84), it is now enough to show that (see (8.87)),

I11I
11 − I12I

−1
22 I21I

11 = Ik, (8.93)

where Ik is the k × k identity matrix. But I(θ0)I
−1(θ0) = Ip, from which we get

I11I
11 + I12I

12 = Ik,

I21I
11 + I22I

21 = 0. (8.94)

Substituting this in (8.93), the left side of (8.93) becomes

Ik − I12I
21 + I12I

−1
22 I22I

21 = Ik. (8.95)

(b) The proof of part (b) follows along the lines of the computations (8.77)–(8.79).

��
Remark 8.7 (Amplification of (8.87)–(8.88)). Let the k × k-matrix

V (θ0) =

(k×p)-matrix
︷ ︸︸ ︷
Gradπ(θ0)

p×p
︷ ︸︸ ︷
I−1(θ0)(Gradπ(θ0))

′.
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If πi(θ) = θi, 1 ≤ i ≤ k, then Gradπ(θ0) =
[
Ik 0

]
k×(p−k)

V (θ0) =
[
Ik 0

]
[
I11 I12

I21 I22

] [
Ik
0

]

(p−k)×k

=
[
I11 I12

]
[
Ik
0

]

= I11.

V −1(θ0) =
(
I11

)−1
.

Then

Wn = n

[(
θ̂n

)k

1

]′
(I11)−1(θ̂n)

k
1 .

The log of the likelihood ratio

λn = 2 log fn(X; θ̂n)− 2 log fn(X;
ˆ̂
θn))

= 2 (θ̂n − ˆ̂
θn)

′grad (θ)|
θ=

ˆ̂
θn︸ ︷︷ ︸

=0

+

k∑

i,j=1

n(θ̂n − ˆ̂
θn)i(θ̂n − ˆ̂

θn)j

· 1
n

∂2(θ)

∂θi∂θj

∣
∣
∣
∣
θ0︸ ︷︷ ︸

=I(θ0)+op(1)

+op(1) (under Pθ0)

= n(θ̂n − ˆ̂
θn)

′I(θ0)(θ̂n − ˆ̂
θn) + op(1).

Corollary 8.1. The Pitman ARE of the likelihood ratio test (8.83) relative to
Wald’s test (8.72) is one.

Example 8.4 (Multinomial Models and the Chi-square Test). A population is di-
vided into M + 1 categories and a random sample of size n is drawn from it
(without replacement). Let θ(j) denote the probability of an observation to be-
long to the j-th category (j = 1, 2, . . . ,M + 1), and assume θ(j) > 0 for all j.
Write θ = (θ(1), . . . , θ(M))′. From Example 7.1, Chap. 7, we know that (i) the

MLE of θ is θ̂n = (θ̂
(1)
n , . . . , θ̂

(M)
n ), θ̂

(M+1)
n := 1 − ∑M

1 θ̂
(j)
n , where θ̂

(j)
n is the

proportion in the sample belonging to the j-th category (1 ≤ j ≤ M), and

(ii)
√
n(θ̂n − θ)

L−→ N(0, I−1(θ)), where the (i, j) element of I−1(θ) is

σij(θ) :=

{−θ(i)θ(j) if i �= j,
θ(i)(1 − θ(i)) if i = j

(8.96)

A widely used alternative to (8.72) or (8.83) for testing (8.65) in this case is the
so-called frequency chi-square test, originally due to Karl Pearson:

Reject H0 iff
M+1∑

j=1

n2(θ̂
(j)
n − ˆ̂

θ
(j)
n )2

n
ˆ̂
θ
(j)
n

> χ2
1−α(M). (8.97)

We will show that the statistic on the left differs from the likelihood ratio statistic
λn by a quantity which is op(1), under H0. First note that

fn(X; θ) =
M∏

j=1

(
θ(j)

)νj
, νj := nθ̂(j)n .
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Hence

λn = 2Ln(θ̂n)− 2Ln(
ˆ̂
θn) = 2

M∑

j=1

νj log
θ̂
(j)

n

ˆ̂
θ(j)
n

= 2

M∑

j=1

νj log

(

1 +
θ̂
(j)

n

ˆ̂
θ(j)
n

− 1

)

= 2

M∑

j=1

νj

⎧
⎨

⎩

θ̂
(j)

n

ˆ̂
θ(j)
n

− 1− 1

2

(
θ̂
(j)

n

ˆ̂
θ(j)
n

− 1

)2

+ op(n
−1)

⎫
⎬

⎭
, (8.98)

since | log(1 + x)− (x− 1
2x

2)| ≤ (43 )|x|3 if |x| ≤ 1
2 , and

∣
∣
∣
∣
∣

θ̂
(j)

n

ˆ̂
θ(j)
n

− 1

∣
∣
∣
∣
∣

3

≤ 4n− 3
2

⎧
⎨

⎩

∣
∣
∣
∣
∣

√
n(θ̂

(j)

n − θ
(j)
0 )

ˆ̂
θ(j)
n

∣
∣
∣
∣
∣

3

+

∣
∣
∣
∣
∣

√
n(
ˆ̂
θ(j)
n − θ

(j)
0 )

ˆ̂
θ(j)
n

∣
∣
∣
∣
∣

3
⎫
⎬

⎭
. (8.99)

Since
√
n(θ̂

(j)

n − θ
(j)
0 )/

ˆ̂
θ(j)
n ,

√
n(
ˆ̂
θ(j)
n − θ

(j)
0 /

ˆ̂
θ(j)
n converges in distribution under

Pθ0 , the expression within curly brackets in (8.99) is bounded in probability, so
that (8.99) is op(n

−1).
From (8.98) we get

λn = 2

M∑

j=1

nθ̂
(j)

n

⎧
⎪⎨

⎪⎩

θ̂
(j)

n

ˆ̂θ
(j)

n

− 1− 1

2

⎛

⎝ θ̂
(j)

n

ˆ̂θ
(j)

n

− 1

⎞

⎠

2
⎫
⎪⎬

⎪⎭
+ op(1)

=
M∑

j=1

⎡

⎢
⎢
⎢
⎣
2n

(

θ̂
(j)

n − ˆ̂θ
(j)

n

)
⎛

⎝ θ̂
(j)

n − ˆ̂θ
(j)

n

ˆ̂
θ
(j)

n

⎞

⎠

+ 2n

(

θ̂
(j)

n − ˆ̂θ
(j)

n

)

− θ̂
(j)

n

ˆ̂
θ
(j)

n

n

(

θ̂
(j)

n − ˆ̂θ
(j)

n

)2

ˆ̂
θ
(j)

n

⎤

⎥
⎥
⎥
⎦
+ op(1)

= 2
M∑

j=1

n

(

θ̂
(j)

n − ˆ̂θ
(j)

n

)2

ˆ̂
θ
(n)

n

+2n

M∑

j=1

(

θ̂
(j)

n − ˆ̂
θ
(j)

n

)

−
M∑

j=1

n

(

θ̂
(j)

n − ˆ̂θ
(j)

n

)2

ˆ̂
θ
(j)

n

(1 + op(1)) + op(1)

=

M∑

j=1

n

(

θ̂
(j)

n − ˆ̂
θ
(j)

n

)2

ˆ̂θ
(j)

n

+ 0+ op(1), (8.100)
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using the facts (i)
∑

θ̂
(j)

n = 1 =
∑ ˆ̂

θ(j)
n , (ii) θ̂

(j)

n /
ˆ̂
θ(j)
n → 1 in probability, and

(iii) n(θ̂
(j)

n − ˆ̂
θ(j)
n )2/

ˆ̂
θ(j)
n is bounded in probability. This completes the proof of the

italicized statement above.

With a little extra effort it may be proved that, for every ε > 0,

Pθn

⎛

⎜
⎜
⎜
⎝

∣
∣
∣
∣
∣
∣
∣
∣
∣

λn −
M∑

j=1

n

(

θ̂
(j)

n − ˆ̂
θ
(j)

n

)2

ˆ̂θ
(j)

n

∣
∣
∣
∣
∣
∣
∣
∣
∣

> ε

⎞

⎟
⎟
⎟
⎠

−→ 0 as n → ∞. (8.101)

From this it follows that the Pitman ARE of the frequency chi-square test relative to
the likelihood ratio test is one. Thus for this example, the Wald test, the likelihood
ratio test, and the frequency chi-square test are all asymptotically equivalent from
the point of view of the Pitman ARE.

We now discuss Rao’s scores test which is an important alternative to Wald’s
and likelihood ratio tests under the hypothesis of Theorem 8.3. First consider a
simple null hypothesis: H0 : θ = θ0 (H1 : θ �= θ0). Under H0, as in the proof of
Theorem 7.5,

Un :=
1√
n
grad log fn(X; θ)

∣
∣
θ=θ0

L−→ N(0, I(θ0)), (8.102)

where N is k-dimensional normal. Hence

Qn := U ′
n I

−1(θ0)Un
L−→ Z0

k, (8.103)

where Z0
k has a χ2

k distribution, and H0 is rejected if Qn > χ2
1−α(k). Unlike the

likelihood ratio and Wald’s tests, this test does not require computation of the
MLE. For testing a composite H0 : θ ∈ Θ0, θ0 in (8.102), (8.103) is replaced by

the MLE
ˆ̂
θn under H0. As in Corollary 8.1, one can prove that the ARE of Rao’s

scores test relative to Wald’s test (and, therefore, to the likelihood ratio test) is
one. For details see Rao (1973), Serfling (1980), Sen and Singer (1979) and van der
Vaart (1998). For higher order comparisons among the three tests see Mukherjee
and Reid (2001). Also see Brown et al. (2001) for a comparison of coverage errors
for confidence intervals for the binomial proportion based on Wald’s and Rao’s
(score) tests.

8.4 Tests for Goodness-of-Fit

It is a common practice in statistics to see if a random sample of observations
X1, . . . , Xn may fit a distribution F—a parametric model specified up to perhaps
an unknown finite dimensional parameter θ. That is, test if the observations may
be considered to have been drawn from F . For continuous data, one may, e.g.,
test if F is Normal N(μ, σ2), with θ = (μ, σ2) unknown. Similarly, one may test
if the number of accidents per week at a particular traffic intersection follows the
Poisson distribution P(λ), θ = λ > 0 unknown.

Before considering a number of goodness-of-fit tests, we recall the follow widely
used notion or index.

Definition 8.2. The p-value of a test is the smallest level of significance (or size)
at which the null hypothesis H0 would be rejected by the observed value of the
test statistic.
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Informally, the p-value of a test is the probability of having a discrepancy from
the null hypothesis as much (or more) as observed, if the null hypothesis were true.
Thus a very small p-value may be taken as a strong evidence against H0, whereas
a relatively large p-value provides some evidence in support of H0.

A classical goodness-of-fit procedure is by the frequency chi-square. Here the
range of the distribution is divided into a finite number, say k, of disjoint classes,
or consecutive intervals, and the number of observations nj in the jth class is
compared with the ‘expected’ number of observations Ej in the class under H0.

Here Ej equals n
ˆ̂
θ

(j)
n , where

ˆ̂
θ

(j)
n is the estimated probability of the jth class

computed by using a good estimate, usually the MLE of the unknown parameters
of the model. Pearson’s chi-square statistic

∑k
j=1(nj−Ej)

2/E2
j has asymptotically

a chi-square distribution χ2
q, as n → ∞, where the degrees of freedom (d.f.) q

equals k−1−r, r being the number of unknown parameters required to specify F .
(See the derivation of the frequency chi-square test in the preceding section.) For
details see Chernoff and Lehmann (1954), Rao (1973) and Sen and Singer (1979).
If the chi-square statistic has a large observed value, i.e., if the p-value is small,
one rejects H0; otherwise the model is not rejected. Generally, this test is not
consistent; for two different distributions may assign the same probability to each
of the k classes, unless the model is discrete with only k different values.

To present one of the earliest consistent goodness-of-fit tests due to Kolmogorov
and Smirnov, and also derive later tests due to Cramér and von Mises and by
Anderson and Darling, we now provide an informal introduction to the functional
central limit theorem and Brownian motion.2

Consider a sequence of i.i.d. random variables Xn (n = 1, 2, . . . ) with mean μ
and finite variance σ2 > 0. Changing to Zn = Xn−μ, and writing Sn = Z1+· · ·+Zn

and S0 = 0, one obtains, by the classical CLT,

Sn/
√
n

L−→ N(0, σ2) as n → ∞. (8.104)

Consider now the stochastic processes Yn (n = 1, 2, . . . ) on [0,∞) defined by

Yn(t) = S[nt]/
√
n, t ∈ [0,∞), ([nt] := integer part of nt). (8.105)

It is a (random) step function, with Yn(0) = 0, Yn(1/n) = S1/
√
n, Yn(j/n) =

Sj/
√
n, and Yn(t) is constant for j/n ≤ t < (j + 1)/n. Then Yn(0) = 0, and

for any fixed t, 0 < t < ∞, Yn(t) is asymptotically Normal with mean zero and
variance [nt]σ2/n ≈ tσ2. That is,

Yn(t)
L−→ N(0, tσ2), as n → ∞,

and if 0 < t1 < t2 < · · · < tk, then as n → ∞, for i ≤ j,

cov(Yn(ti), Yn(tj)) =

(
1

n

)

cov(Z1 + · · ·+ Z[nti], Z1 + · · ·+ Z[ntj ]) =

=

(
1

n

)

cov(Z1 + · · ·+ Z[nti], Z1 + · · ·+ Z[ntj ]) =

=

(
1

n

)

var(Z1 + · · ·+ Z[nti]) = ([nti]/n)σ
2 −→ tiσ

2.

2 See, e.g., Bhattacharya and Waymire (2007), Chap. 11, or Billingsley (1968), Sects. 10, 11.
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Therefore, by the multivariate CLT (by taking linear combinations of Yn(ti), 1 ≤
i ≤ k, and applying Lindeberg’s CLT),

(Yn(t1), Yn(t2), . . . , Yn(tk))
L−→ N(0, ((min{ti, tj}σ2)), as n → ∞. (8.106)

Since k and 0 < t1 < t2 < · · · < tk are arbitrary, one may think of this as
convergence of the processes Yn = {Yn(t) : t ∈ [0,∞)} to a Gaussian process B on
[0,∞) satisfying

E(B(t)) = 0, cov(B(s), B(t)) = E(B(s)B(t)) = min{s, t}σ2 (for all s, t ≥ 0).
(8.107)

We will call such a B the Brownian motion with zero mean and dispersion σ2. It is
simple to check either using the corresponding fact for Yn, or directly using (8.107)
that Brownian motion has independent increments, i.e., if 0 < t1 < t2 < · · · < tk
then

B(ti)−B(ti−1), i = 1, . . . , k,

are k independent N(0, (ti − tj−1)σ
2) random variables (t0 = 0). (8.108)

Indeed, (8.108) is equivalent to (8.107) for a Gaussian process, since a Gaussian
process is determined by its mean and covariance (functions). If σ2 = 1, then the
Brownian motion is said to be a standard Brownian motion. It was proved by
Wiener in 1923 that Brownian paths are (or, can be taken to be) continuous. The
distribution of B on C[0,∞) is called the Weiner measure. Here C(0,∞) is the
space of all real-valued continuous functions on the half line [0,∞). It is a metric
space in which convergence fn → f means uniform convergence of fn to f on
bounded intervals. The usual sigma-field on it is the Borel sigma-field generated
by its open sets. Although Yn is a step function since it has the value Sj/

√
n for

j/n ≤ t < (j + 1)/n), one may still write (in an appropriate sense)

Yn
L−→ B as n → ∞. (8.109)

Another possibility is to linearly interpolate Yn on j/n < t < (j + 1)/n, for all

j = 0, 1, . . . , yielding a continuous process Ỹn(t) (with polygonal paths) which
agrees with Yn(t) at points t = j/n,

Ỹn(t) = Sj/
√
n+ n((t− j/n)(Sj+1/

√
n− Sj/

√
n)

= Sj/
√
n+ n((t− j/n)Zj+1/

√
n for j/n ≤ t ≤ (j + 1)/n (j = 0, 1, 2, . . . ).

Then, in the usual sense of weak convergence of probability measures on metric
spaces,

Ỹn
L−→ B, as n → ∞. (8.110)

That is, if h is a real-valued bounded continuous function on C[0,∞), then

E(h(Ỹn)) −→ E(h(B)) as n → ∞. (8.111)

Also, if h is a continuous real-valued function on C[0,∞), then

h(Ỹn))
L−→ h(B) as n → ∞. (8.112)
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As an example,

max{Yn(t); 0 ≤ t ≤ 1} = max{Ỹn(t); 0 ≤ t ≤ 1}
= max{Sj/

√
n : j = 0, 1, . . . , n} L−→ max{B(t) : 0 ≤ t ≤ 1}. (8.113)

Using a simple symmetric random walk Sn (with Zj = +1 or −1 with probabilities
1/2 each), the limiting distribution function on the left can be computed directly
(from binomial probabilities), thus determining the distribution of max{B(t) : 0 ≤
t ≤ 1}. On the other hand, the convergence (8.113) holds for partial sums Sj of an
arbitrary mean zero sequence Zj . Hence the limiting distribution for max{Sj/

√
n :

j = 0, 1, . . . , n} is determined for arbitrary partial sum processes (up to a scalar
factor σ2, which can be taken into account simply by standardizing). The second
assertion is referred to as the invariance principle, while the convergence (8.110)
is called the functional central limit theorem.

We will apply the functional central limit theorem (FCLT) to derive the
Kolmogorov-Smirnov goodness-of-fit test: H0 : Q = Q0, based on i.i.d. real-valued
observations X1, . . . , Xn from an unknown continuous distribution Q (on the real
line R). Here Q0 is a given hypothesized distribution for the observations.

Theorem 8.5 (Kolmogorov-Smirnov One-Sample Statistic). Let Fn(t) =
n−1

∑
1≤j≤n 1{Xj≤t} be the empirical distribution function. Also let F be the

distribution function of Q. If F is continuous on R, then

√
n sup{|Fn(t)− F (t)| : t ∈ R} L−→ max{|B(t)− tB(1)| : t ∈ [0, 1]}, as t → ∞.

(8.114)
Here B is a standard Brownian motion.

Proof. First, by the CLT for proportions (or sums of Bernoulli random variables),

1{Xj≤t},
√
n(Fn(t)− F (t))

L−→ N(0, F (t)(1− F (t)). If t1 < t2, · · · < tk, then

√
n(Fn(t1)−F (t1), Fn(t2)−F (t2), . . . , Fn(tk)−F (tk))

L−→ N(0, Γ (t1, t2, . . . , tk)),

where the (i, i)-element of the symmetric matrix Γ is var(1{Xj≤ti}) = F (ti)(1 −
F (ti)), and the (i, j)-elements are Cov(1{Xj≤ti},1{Xj≤tj}) = F (ti)(1 − F (tj)) for
i < j. Note that the above equation may be checked by taking a linear combination
of the k components on the left and applying the classical one-dimensional CLT
to the summands c11{Xj≤t1} + c21{Xj≤t2} + · · · + ck1{Xj≤tk} (j = 1, . . . , n). By
the arguments leading to (8.109), one now has

√
n(Fn(·)− F (·)) L−→ W, (8.115)

where W is a Gaussian process on R, with E(W (t)) = 0 for all t, var(W (t)) =
F (t)(1 − F (t)), and Cov(W (s),W (t)) = F (s)(1 − F (t)) for s < t. In particular,

sup
{√

n|Fn(t)− F (t)| : t ∈ R
} L−→ sup{|W (t)| : t ∈ R}. (8.116)

To simplify (8.116) for computational as well as theoretical purposes, we now
consider the random variables Uj = F (Xj), 1 ≤ j ≤ n, and show that

Uj = F (Xj), 1 ≤ j ≤ n, are i.i.d. uniform on [0, 1]. (8.117)
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To see this first assume that the continuous function F is strictly increasing on
the range of Xj (i.e., on the smallest interval (a, b) (finite or infinite) such that
P (a < Xj < b)) = 1). Then P (Uj ≤ u) = P (F (Xj) ≤ u) = P (Xj ≤ F−1(u)) =
F (F−1(u)) = u, for all 0 < u < 1 and, clearly, P (U < 0) = 0 and P (U > 1) = 0.
This argument extends to the case where F may not be strictly increasing on (a, b).
For if u is such that F−1(u) is an interval [c, d], so that F (t) = u on [c, d] and
F (t) < u for t < c and F (t) > u for t > b, then one has the equality of the sets
{F (Xj) ≤ u} and {Xj ≤ d}, so that P (F (Xj) ≤ u) = P (Xj ≤ d) = F (d) = u.

Applying the same arguments to Uj (1 ≤ j ≤ n) as we used for Xj (1 ≤ j ≤ n)
above, and writing the empirical distribution function of Uj (1 ≤ j ≤ n) as Gn, it
follows that √

n{(Gn(u)− u) : 0 ≤ u ≤ 1} L−→ B∗, (8.118)

where B∗ is a Gaussian process on [0, 1], with E(B∗(u)) = 0 for all 0 ≤ u ≤ 1,
and Cov(B∗(s), B∗(t)) = s(1 − t) for 0 ≤ s ≤ t ≤ 1. Checking means, variances
and covariances, we easily see that the process B∗ has the same distribution as
the Gaussian process

{B(u)− sB(1) : 0 ≤ s ≤ 1}, (8.119)

where B(·) is the standard Brownian motion. Hence B∗ is identified as the pro-
cess (8.119) and is known as the Brownian Bridge.

The analog of (8.116) is then

Dn ≡ sup{√n|Gn(u)− u| : u ∈ [0, 1]} L−→ sup{|B∗(u)| : u ∈ [0, 1]} = D, say.
(8.120)

Now, in view of (8.117), one has

Fn(t) = n−1
∑

1≤j≤n

1{Xj≤t} = n−1
∑

1≤j≤n

1{F (Xj)≤F (t)} = n−1
∑

1≤j≤n

1{Uj≤F (t)} = Gn(F (t)),

so that

sup{√n|Fn(t)− F (t)| : t ∈ R} = sup
√
n|Gn(F (t))− F (t)| : t ∈ R}

= sup{√n|Gn(u)− u| : u ∈ [0, 1]}. (8.121)

From (8.120) and (8.121) we arrive at (8.114). ��
The distribution of D on the right side of (8.120) is known, and is given by3

P (D ≤ d) = 1− 2
∑

1≤k<∞
(−1)k+1 exp{−2k2d2}, d ∈ [0,∞). (8.122)

The following Corollary is an immediate consequence of the theorem above.

Corollary 8.2 (Kolmogorov-Smirnov Goodness-of-Fit Test). Let F0 be the
distribution function of Q0. Consider the Kolmogorov-Smirnov test for H0 : Q =
Q0 to reject H0 iff

Dn > d1−α (8.123)

3 See Billingsley (1968), p. 85.
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where Dn is as given by the left side of (8.114) with F = F0, and d1−α is the
(1 − α)th quantile of the distribution (8.122). Then the test has asymptotic level
of significance α. ��
Remark 8.8. Note that the limiting distribution (8.122) under H0 does not depend
on F0.

By similar arguments one may derive the following results (See Serfling 1980,
Chap. 6, and van der Vaart 1998, Chaps. 12, 19) for the Cramér-von Mises statistic

Cn = n

∫

(Fn(t)− F (t))2dF (t), (8.124)

and the Anderson-Darling statistic

An = n

∫
(Fn(t)− F (t))2

F (t)(1− F (t))
dF (t). (8.125)

Theorem 8.6. Under the hypothesis of Theorem 8.5 the following hold:

Cn
L−→

∫ 1

0

B∗2(t)dt, An
L−→

∫ 1

0

B∗2(t)
t(1 − t)

dt, (8.126)

where B∗(t), 0 ≤ t ≤ 1, is the Brownian bridge. ��
The limiting distributions in (8.126) do not depend on F provided F is con-

tinuous. Let c1−α and a1−α be the (1 − α)-th quantiles of
∫ 1

0
(B∗(t))2dt and

∫ 1

0 {(B∗(t))2/t(1− t)}dt, respectively.
Corollary 8.3. Let F0 be a continuous distribution function. For the null hypoth-
esis H0 : F = F0, (a) the Cramér-von Mises test: Reject H0 iff Cn > C1−α and
(b) the Anderson-Darling test: Reject H0 iff An > a1−α, are of asymptotic level
α, where Cn and An are computed with F = F0.

The following expressions for the statistics Dn, Cn and An facilitate their com-
putation:

Dn =
√
n max

1≤i≤n
max

{
i

n
− U(i), U(i) − i− 1

n

}

,

Cn =
1

12n
+

n∑

i=1

(

U(i) − 2i− 1

n

)2

,

An = −n− 1

n

n∑

i=1

(2i− 1)
{
logU(i) + log(1− U(n−i+1))

}
(8.127)

where U(i) = F0(X(i)), and X(1) < X(2) < · · · < X(n) is the ordering of the obser-
vations X1, X2, . . . , Xn (See Exercise 8.9 for the verification of the expression for
Dn in (8.127)). For the expressions for Cn and Dn and much more see D’Agostino
and Stephens (1986).

Usually, the models one is required to check for validity are parametric models
with unknown parameters, e.g., the Normal model N(μ, σ2) with μ and σ2 un-
known. For such composite goodness-of-fit tests, in the expression F (t) = F (t; θ)

one replaces the unknown parameter(s) θ by a good estimator θ̂n, which we take
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to be the MLE (See (8.121), (8.124), (8.125)). This changes the asymptotic distri-
butions, as may be seen from the following expansion around the true parameter
value θ0: √

n(Fn(t)− F (t; θ̂n)) =
√
n(Fn(t)− F (t; θ0))

−√
n(θ̂n − θ0)

∂F (t; θ)

∂θ

∣
∣
∣
∣
θ=θ0

+ op(1). (8.128)

Under regularity conditions, the second term on the right is asymptotically Normal
and therefore cannot be ignored. For a detailed discussion of and comprehensive
references to the goodness-of-fit literature, see Dasgupta (2008), Chaps. 26–28.

The Cramér-von Mises and Anderson-Darling tests and more recent tests such
as the one due to Shabiro and Wilk (1965), mostly outperform the Kolmogorov-
Smirnov test since the latter is less sensitive to probabilities at the tail than the
other tests.

Finally, note that the above procedures based on the empirical process can-
not test the goodness-of-fit of discrete distributions such as the Poisson. Hence,
although the frequency chi-square test is not consistent, it provides a reasonable
and widely used procedure in this case.

8.5 Nonparametric Inference for the Two-Sample Problem

One of the most important problems in statistics is to decide if two populations,
or distributions, are different, based on random samples from them. Does one
brand of a certain commodity last longer than another? Has the position of the
earth’s magnetic poles, say the South Pole, shifted from the Quaternary period
(2.59 million years ago) to the modern era? To answer the first type of questions
on one-dimensional distributions, in Sect. 8.2 procedures such as those based on
ranks were compared to the nonparametric procedure based on the two-sample t-
statistic. The second type of questions concern multivariate distributions for which
no natural ordering of data is available. The particular example mentioned here
involves observations lying on the unit sphere S2; a surface of dimension two. The
analysis based on Fréchet means appears in Chap. 12.

In general, a multi-dimensional version of t2, namely a chi-square statistic, may
be used to test effectively if two distributions have different mean vectors.

Let X1, . . . , Xm and Y1, . . . , Yn be two independent random samples from two
populations with distributions Qx and Qy with means μx and μy, and finite vari-
ances σ2

x and σ2
y. For testing a hypothesis concerning μx − μy, or estimating it we

use the two-sample t-statistic

t = {X − Y − (μx − μy)}/
√

(s2x/m+ s2y/n), s2x =
∑

1≤j≤m

(Xj −X)2/(m− 1),

s2y =
∑

1≤j≤n

(Yj − Y )2/(n− 1). (8.129)

We will denote by t∼ the statistic obtained from (8.129) on replacing s2x, s
2
y by σ2

x

and σ2
y , respectively.
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Proposition 8.2. The statistic t in (8.129) converges in distribution to N(0, 1),
as m → ∞ and n → ∞.

Proof. Write

t∼ = U − V =
∑

1≤j≤m+n

ζj,m,n

where

ζj,m,n = (1/m){Xj − μx}/
√
(σ2

x/m+ σ2
y/n) for 1 ≤ j ≤ m,

ζm+j,m,n = −(1/n){Yj − μy}/
√
(σ2

x/m+ σ2
y/n) for 1 ≤ j ≤ n.

Let γ2
j,n = Eζ2j,m,n, so that

∑
1≤j≤m+n γ

2
j,n = 1. To apply Lindeberg’s CLT, we

need to show that, for every given ε > 0,

∑

1≤j≤m+n

E
[
ζ2j,m,n : |ζj,m,n| > ε

] −→ 0 as m → ∞ and n → ∞, (8.130)

where E(Z : A) denotes E(Z1A). Now the left side of (8.130) equals

∑

1≤j≤m

E

⎡

⎣

{
1

m
(Xj − μx)/

√
σ2
x

m
+

σ2
y

n

}2

:

∣
∣
∣
∣
∣

1

m
(Xj − μx)/

√
σ2
x

m
+

σ2
y

n

∣
∣
∣
∣
∣
> ε

⎤

⎦

+
∑

1≤j≤n

E

⎡

⎣

{
1

m
(Yj − μy)/

√
σ2
x

m
+

σ2
y

n

}2

:

∣
∣
∣
∣
∣

1

n
(Yj − μy)/

√
σ2
x

m
+

σ2
y

n

∣
∣
∣
∣
∣
> ε

⎤

⎦

≤
∑

1≤j≤m

E

[{
1

m
(Xj − μx)/

√
(σ2

x/m)

}2

:

∣
∣
∣
∣
1

m
(Xj − μx)/

√
(σ2

x/m)

∣
∣
∣
∣ > ε

]

+
∑

m+1≤j≤m+n

E

[{
1

n
(Yj − μy)/

√
(σ2

y/n)

}2

:

∣
∣
∣
∣
1

n
(Yj − μy)/

√
(σ2

y/n)

∣
∣
∣
∣ > ε

]

≤ mE

[{
1

m
(X1 − μx)/

√
(σ2

x/m)

}2

:

∣
∣
∣
∣
1

m
(X1 − μx)/

√
(σ2

x/m)

∣
∣
∣
∣ > ε

]

+ nE

[{
1

m
(Y1 − μy)/

√
(σ2

x/m+ σ2
y/n)

}2

:

∣
∣
∣
∣
1

n
(Yj − μy)/

√
(σ2

y/n)

∣
∣
∣
∣ > ε

]

= E
[{(X1 − μx/σx)

2 : |(X1 − μx)/σx| >
√
mε}]

+E
[{(Y1 − μy/σy)

2 : |(Y1 − μy| >
√
n ε)}]

=

∫

{|x|>√
mε}

x2Q∼
x (dx) +

∫

{|y|>√
nε}

y2Q∼
y (dy) −→ 0 as m → ∞ and n → ∞,

where Q∼
x is the distribution of (X1 − μx)/σx and Q∼

y is the distribution of (Y1 −
μy)/σy). This shows that t

∼ L−→ N(0, 1), as m → ∞ and n → ∞. Application of

Slutsky’s Lemma now shows that t
L−→ N(0, 1), as m → ∞ and n → ∞. ��

One rejects H0 : μx = μy if |t| > z1−α where z1−α is the (1− α)-th quantile of
N(0, 1). One may also reject H0 : Qx = Qy if |t| > z1−α.
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We next turn to the case of the two-sample multi-dimensional problem. Here
X1, . . . , Xm, and Y1, . . . , Yn are independent random samples from two distribu-
tionsQx andQy onR

k having respective means (vectors) μx and μy, and finite non-
singular covariance matrices

∑
x = ((σr,s,x))1≤r,s≤k and

∑
y = ((σr,s,y))1≤r,s≤k.

Then one has the following result. We regard all vectors as column vectors, unless
specified otherwise. Recall the notation χ2(k) for the chi-square distribution with
k degrees of freedom, and χ2

1−α(k) for the (1− α)th quantile of a χ2
k distribution.

Proposition 8.3. As m → ∞ and n → ∞, one has

[X − Y − (μx − μy)]
∑̂−1

m,n[X − Y − (μx − μy)]
L−→ χ2

k,

where
∑̂

m,n = [(1/m)
∑̂

x + (1/n)
∑̂

y], and
∑̂

x = ((σ̂r,s,x))1≤r,s≤k and
∑̂

y =
((σ̂r,s,y))1≤r,s≤k are the sample covariance matrices with elements

σ̂r,s,x = (m− 1)−1
∑

1≤j≤m

(X
(r)
j −X

(r)
)(X

(s)
j −X

(s)
),

Xj = (X
(1)
j , . . . , X

(k)
j )′, X

(r)
= m−1

∑

1≤j≤m

X
(r)
j ;

σ̂r,s,y = (n− 1)−1
∑

1≤j≤n

(Y
(r)
j − Y

(r)
)(Y

(s)
j − Y

(s)
),

Yj = (Y
(1)
j , . . . , Y

(k)
j )′, Y

(r)
= n−1

∑

1≤j≤n

Y
(r)
j .

Proof. Note that, if Z = (Z(1), . . . , Z(k))′ is a k-dimensional standard Normal
random vector N(0, Ik), where Ik is the k × k identity matrix, then |Z|2 =
(Z(1))2 + · · · + (Z(k))2 has the chi-square distribution χ2

k. More generally, if
Z = (Z(1), . . . , Z(k)) is a k-dimensional Normal distribution N(0,

∑
), where

∑
= ((σrs)) is a k × k positive definite (covariance) matrix, and

∑−1 = ((σrs)),
then

Z ′
−1∑

Z =
∑

1≤r,s≤k

σrsZ(r)Z(s) has a χ2
k distribution.

Now, as in the case of k = 1, one has the multidimensional CLT

(∑
x

m
+

∑
y

n

)− 1
2

[X − Y − (μx − μy)]
L−→ N(0, Ik), as m → ∞ and n → ∞.

(8.131)
Here, for a symmetric positive definite matrixA, A−1/2 is the symmetric positive

definite matrix satisfying A−1/2A−1/2 = A−1. To prove (8.131), denote the random

vector on the left side of (8.131) by Wn = (W
(1)
n , . . . ,W

(k)
n )′[. It is enough to prove

that every linear combination
∑

1≤r≤k crW
(r)
n of the k coordinates of Wn con-

verges in distribution to the corresponding Normal distribution of
∑

1≤r≤k crZ
(r),

where Z = (Z(1), . . . , Z(k)) is Normal N(0, Ik). The last convergence follows from
Lindeberg’s CLT the same way as in the case of k = 1. Hence

W ′
nWn = [X − Y − (μx − μy)]

′
(

1

m
Σx +

1

n
Σy

)−1

[X − Y − (μx − μy)]
L−→ χ2

k.

(8.132)
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Finally, applying the general version of Slutsky’s Lemma, using the fact that
σ̂r,s,x → σr,s,x and σ̂r,s,y → σr,s,y almost surely for all r, s, as m → ∞ and
n → ∞, one obtains the desired result. It may be noted that the elements
of the inverse (

∑
x /m +

∑
y /n)

−1 are continuous functions of the elements of
(
∑

x /m+
∑

y /n) (on the set where this matrix is nonsingular). Thus the Propo-
sition follows from (8.132) and this consistency. ��

The above proposition may be used to obtain an ellipsoidal confidence region
D for μx − μy of asymptotic level 1− α given by

P [μx − μy ∈ D = {c ∈ R
k : [X − Y − c]′

∑̂−1

m,n[X − Y − c] ≤ χ2
1−α(k)] −→ 1− α,

as m → ∞ and n → ∞.

A test, of asymptotic size α, rejects H0 : μx = μy iff the origin 0 does not belong
to D, i.e., iff

[X − Y ]′
∑̂−1

m,n[X − Y ] > χ2
1−α(k). (8.133)

Note that in the case k = 1, T 2 = t2 is an asymptotic chi-square statistic with
degrees of freedom 1. We used t there since it can be used to obtain one-sided tests
and confidence intervals as well.

Although two different (multivariate) distributions may have the same means,
i.e., the test (8.133) is not consistent for testing Qx = Qy, in many high-
dimensional problems the test is usually quite effective in discriminating two dis-
tributions with different features (See the section on Fréchet means in Chap. 12,
for example).

We next turn to the two-sample Kolmogorov-Smirnov test, which is consistent.
Suppose X1, . . . , Xm and Y1, . . . , Yn are real-valued independent random samples
from distributions Qx and Qy, respectively. We wish to test H0 : Qx = Qy,
(or, equivalently, that the distribution function Fx of Xj equals the distribution
function Fy of Yj).

Theorem 8.7 (Kolmogorov-Smirnov Two-Sample Statistic). Suppose Fx

and Fy are continuous, m → ∞ and n → ∞, and m/(m+ n) → θ, 0 < θ < 1. Let
Fm,x(t), Fn,y(t) be the empirical distribution functions of Xjs (1 ≤ j ≤ m) and
Yjs (1 ≤ j ≤ n), respectively. If Fx = Fy, then

Dm,n≡
(

mn

(m+ n)

) 1
2

sup{|Fm,x(t)−Fn,y(t)| : t ∈ R} L−→ sup{|B∗(u)| : u ∈ [0, 1]}=D,

(8.134)
say, where B∗ is a Brownian bridge.

Proof. Assume Fx = Fy = F , say. By the proof of Theorem 8.5,

√
m(Fm,x(t)− F (t)) =

√
m(Gm,x(F (t))− F (t))

L−→ B∗
1(F (t)),

√
n(Fn,y(t)− F (t)) =

√
n(Gn,y(F (t)) − F (t))

L−→ B∗
2 (F (t)), (t ∈ R), (8.135)

where (i) Fm,x(t) = m−1
∑

1≤j≤m 1{Uj,x ≤ F (t)}, Uj,x = F (Xj) (1 ≤ j ≤ m)

are independent uniform on [0, 1], (ii) Fn,y(t) = n−1
∑

1≤j≤n 1{Uj,y ≤ F (t)},
Uj,y = F (Yj) (1 ≤ j ≤ n) are independent uniform on [0, 1], (iii) B∗

1 and B∗
2 are

independent Brownian bridges.
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Hence

(
mn

(m+ n)

) 1
2

((Fm,x(t)) − Fn,y(t))

=

(
n

(m+ n)

) 1
2

m
1
2 (Fm,x(t))− F (t)) −

(
m

(m+ n)

) 1
2

n
1
2 (Fn,y(t)) − F (t))

L−→ θB∗
1(F (t)) − (1− θ)B∗

2 (F (t)) = B∗(F (t)), say, (8.136)

where, by checking means and covariances, it is seen that B∗ = θB∗
1 − (1 − θ)B∗

2

is a Brownian bridge. Arguing as above, this says

(
mn

(m+ n)

) 1
2

((Fm,x(·)− Fn,y(·)) L−→ B∗(F (·)), (8.137)

in the sense of convergence in distribution of the stochastic process on [0,∞) on
the left to the one on the right. Therefore, writing u = F (t), one has

Dm,n ≡ sup

{∣
∣
∣
∣
∣

(
mn

(m+ n)

) 1
2

((Fm,x(t))− Fn,y(t))

∣
∣
∣
∣
∣
: t ∈ R

}

L−→ sup{|B∗(F (t))| : t ∈ R}
= sup{|B∗(u)| : u ∈ [0, 1]} = D, say. (8.138)

Corollary 8.4. Suppose Fx and Fy are continuous, and m and n → ∞ as specified
in Theorem 8.7. Then a test of asymptotic level of significance α for H0 : Fx = Fy

is given by
Reject H0 iff Dm,n > d1−α,

where d1−α, is the (1− α)th quantile of the distribution of D.

Remark 8.9. Note that (8.138) provides a nonparametric test for the equality of
two continuous distributions.

Remark 8.10. Since the distribution function of D in Theorem 8.7 is continuous,
one can dispense with the assumption in this theorem and in Corollary 8.4 that
m/(m+ n) → θ ∈ (0, 1), and simply require m → ∞ and n → ∞.

We conclude this section with a description of a simple method for multiple
testing known as the Bonferroni method.

To illustrate the Bonferroni method, consider the testing of the equality of

two multivariate means μx = (μ
(1)
x , . . . , μ

(k)
x )′ and μy = (μ

(1)
y , . . . , μ

(k)
y )′ of two

populations based on random samples taken from them. Suppose the level of sig-
nificance for the test of the null hypothesis H0 : μx = μy is set at α. One may

try to test the component null hypotheses μ
(i)
x = μ

(i)
y (i = 1, . . . , k) by k sepa-

rate tests. Then the Bonferroni principle says that H0 is to be rejected if at least

one of the null hypotheses H
(i)
0 : μ

(i)
x = μ

(i)
y , is rejected at a level of significance

α/k (i = 1, . . . , k). To see that under this procedure the level of significance for

H0 is no more than α, let R(i) be the event that the null hypothesis H
(i)
0 is

rejected, and suppose that its level of significance is set at α(i). Then the proba-
bility (under H0) that H0 is rejected equals PH0 (at least one R(i) occurs among
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i = 1, . . . , k) ≤ ∑
1≤i≤k PH0 (R

(i)) =
∑

1≤i≤k α
(i) = α, if α(i) = α/k for each i.

Thus the Bonferroni principle is conservative in that the actual level of significance
is less than or equal to α under this procedure. As an illustration, if k = 3 and
α = 0.05, then the Bonferroni procedure is to test each of the three component
hypotheses at a level of significance (0.05)/3 = 0.01666 . . . , and reject H0 if at
least one of the component hypotheses is rejected at level 0.01666 . . . .

For estimating the p-value using the Bonferroni principle, let p-min denote

the smallest p-value of the k tests (for H
(i)
0 , i = 1, . . . , k). Then the p-value for

H0 is no more than k (p-min). That is, p-value of H0 ≤ k(p-min). For suppose
one sets α = k (p − min), and applies the procedure described in the preceding
paragraph, namely, to reject H0 if at least one of the tests is rejected at a level
of significance α/k; then the test with the smallest p-value (= p-min) meets that
rejection criterion.

There are modifications/corrections of the Bonferroni principle which provide
sharper estimates of the actual p-value. But we will consider those in Chap. 13.

8.6 Large Sample Theory for Stochastic Processes

This section provides an introduction to semiparametric inference for an important
class of time series models, and to an extension of the asymptotic properties of
the maximum likelihood estimators for stationary ergodic processes. Because the
linear time series here may be viewed as coordinates of Markov processes, we begin
with a brief review of ergodic Markov processes.

Recall that a Markov process Xn in discrete time n (n = 0, 1 . . . ) is a sequence
of random variables defined on some probability space (Ω,F , P ) taking values on
a (measurable) state space S (with a sigma-field S ) and governed by a transition
probability function p(x,B), which is the probability that the process moves to a
set B in one step (or one unit of time), starting from a state x in S. The Markov
property is the following:

p(Xn, B) = P (Xn+1 ∈ B | X0, . . . , Xn) = P (Xn+1 ∈ B | Xn) (∀B ∈ S , and ∀n).
(8.139)

Thus the conditional distribution of the “future” Xn+1 given the “past”
X0, . . . , Xn−1 and “present” Xn depends only on the “present” state Xn. This
may also be expressed as

E[f(Xn+1) | X0, . . . , Xn] = E[f(Xn+1) | Xn]

=

∫

f(y)p(Xn, dy) ∀ bounded measurable function f on S.

(8.140)

Here p(x, dy) denotes the distribution of Xn+1, given Xn = x. One may check by
iteration that the Markov property (8.139) or (8.140) implies (and is equivalent
to) the more general property

P (Xn+k ∈ B | X0, . . . , Xn) = P (Xn+k ∈ B | Xn) ∀ k = 1, 2, . . . , and ∀ n.
(8.141)
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The probability on the right provides the k-step transition probability p(k)(x,B),
which may be iteratively obtained from the (one-step) transition probability
p(x, dy). For example,

p(2)(x,B) = P (Xn+2 ∈ B | Xn = x) = E[P (Xn+2 ∈ B | Xn, Xn+1) | Xn)]Xn=x =

= E[P (Xn+2 ∈ B | Xn+1) | Xn = x]

= E[p(Xn+1, B) | Xn = x] =

∫

p(y,B)p(x, dy). (8.142)

The second equality is a property of the conditional expectation, while the Markov
property is used for the third equality. One may express p(k)(x,B) similarly as

p(k)(x,B) =

∫

p(k−1)(y,B)p(x, dy). (8.143)

Also, the Markov property implies that, for every (measurable) subset C of Sk+1.

P [(Xn, Xn+1, . . . , Xn+k) ∈ C | Xn = x] = P [(X0, X1, . . . , Xk) ∈ C | X0 = x] ∀ n.
(8.144)

That is, the conditional distribution of (Xn, Xn+1, . . . , Xn+k), given Xn = x, does
not depend on n.

Remark 8.11. In the case p(x, dy) has, for every x, a density p(x, y) with respect
to some sigma-finite measure μ one may express the Markov property by sim-
ply writing down the joint probability density of (Xn+1, Xn+2, . . . , Xn+k) at a
point (y1, y2, . . . , yk), given (X0, X1, . . . , Xn), as p(x, y1)p(y1, y2) . . . p(yk−1, yk) on
{Xn = x}.
Definition 8.3. A probability measure π on S is said to be an invariant probabil-
ity, or a steady state distribution, for a Markov process with transition probability
p(x, dy) if

(i)

∫

p(y,B)π(dy) = π(B) ∀B ∈ S , or (equivalently),

(ii)

∫

Tf(y)π(dy) ≡
∫

f(z)p(y, dz)π(dy) =

∫

f(z)π(dz)∀ bounded measurable f

on S.

Note that in the case p(x, dy) has a density p(x, y), an invariant probability
density π(y) satisfies

∫

p(x, y)π(x)μ(dx) = π(y) for all y (outside a set of μ-measure zero).

In Definition 8.3 (ii), we have used the notation Tf to denote the function
Tf(y) =

∫
f(z)p(y, dz). Note that the left side of Definition 8.3 (i) says that

X1 has the same distribution as X0 if X0 has distribution π. Similarly, the left
side of Definition 8.3 (ii) equals

∫
[Ef(X1 | X0 = y)]π(dy) which is Ef(X1) if

X0 has distribution π, while the right side is Ef(X0)). By the same argument
if X1 has distribution π, then X2 has distribution π, and so on, implying that
Xn has distribution π for all n, if X0 has distribution π. Indeed more is true.
If X0 has distribution π, then the distribution of (X0, X1, . . . , Xk) is the same
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as the distribution of (Xn, Xn+1, . . . , Xn+k) ∀n. This follows from (8.144) and
the fact that Xn has the same distribution as X0, namely, π. Hence, if X0 has
distribution π, then the after-n process X+

n = (Xn, Xn+1, . . . , Xn+k, . . . ) has the
same distribution as X+

0 = (X0, X1, . . . , Xk, . . . ). This last property is referred to
as the stationarity of the process {Xn : n = 0, 1, . . . }.
Example 8.5 ((AR(1) Model). Let a stochastic processXn (n = 0, 1, . . . ) be defined
on the state space S = R by the recursion

Xn+1 = g(Xn) + εn+1 (n = 0, 1, . . . ), and X0 is given, (8.145)

where g is a given (measurable) function on R, and εn (n = 1, 2, . . . ) is an i.i.d.
sequence. Assume X0 is independent of {εn : n = 1, 2, . . . }. Then {Xn : n =
0, 1, . . .} is a Markov process with transition probability function given by

p(x,B) = P (X1 ∈ B | X0 = x) = P (g(x) + ε1 ∈ B) = P (ε1 ∈ B − g(x)),

where B−g(x) = {y−g(x) : y ∈ B}. A special case of (8.145) is the autoregressive
model of order 1, or AR(1) model,

Xn+1 = α+ βXn + εn+1 (n = 0, 1, . . . ), X0 is independent of {εn : n = 1, 2, . . . },
(8.146)

where {εn : n = 1, 2, . . . } is an i.i.d. sequence satisfying

Eεn = 0, 0 < Eε2n = σ2 < ∞. (8.147)

We now show that this Markov process has a unique steady state or invariant
probability if the following stability condition is satisfied:

|β| < 1. (8.148)

To prove the existence of a unique invariant probability, we now demonstrate that

Xn
L−→ α

(1− β)
+ Z, where Z =

∑

0≤j<∞
βjεj+1. (8.149)

To see this, use (8.146) to get successively,

X1 = α+ βX0 + ε1, X2 = α+ βX1 + ε2 = α+ βα+ β2X0 + βε1 + ε2,

X3 = α+ βX2 + ε3 = α+ βα+ β2α+ β3X0 + β2ε1 + βε2 + ε3, . . .

Xj = α+ βα+ β2α+ · · ·+ βj−1α+ βjX0 + βj−1ε1 + βj−2ε2 + · · ·+ βεj−1 + εj ,

L
= α+ βα+ β2α+ · · ·+ βj−1α+ βjX0 +

∑

0≤r≤j−1

βrεr+1. (8.150)

The last equality in distribution follows from the fact {εn : n = 1, 2, . . . } is
an i.i.d. sequence (independent of X0). Now (8.149) follows from (8.150), since
{εn : n = 1, 2, . . . } is an i.i.d. sequence. We now appeal to the following general
result.

Proposition 8.4. Let {Xn : n = 0, 1, . . . } be a Markov process on a metric space
S with a transition probability p(x, dy) such that Xn converges in distribution to
the same probability π, as n → ∞, whatever be the initial sate X0. Assume also
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that x → p(x, dy) is weakly continuous, i.e., the function Tf(x) =
∫
f(y)p(x, dy)

is continuous for every bounded continuous f . Then π is the unique invariant
probability for the Markov process.

Proof. Whatever the initial state X0, one has

Ef(Xn+1) = E[E(f(Xn+1) | Xn)] = ETf(Xn) −→
∫

Tf(y)π(dy) as n → ∞.

(8.151)

This follows from the definition of convergence in distribution, since Xn con-
verges to π in distribution and Tf is a bounded continuous function. On the other
hand, Xn+1 converges in distribution to π, so that the left side of (8.151) converges
to
∫
f(y)π(dy). We, therefore, have

∫

Tf(y)π(dy) =

∫

f(y)π(dy) ∀ bounded continuous f .

From this the criterion (ii) in Definition 8.3 follows (for all bounded measurable
f). For (a) the set of all bounded continuous functions is dense in L1(π)—the set
of all (equivalence classes of) functions on R integrable with respect to π, which
includes all bounded measurable functions,4 and (b) f → Tf is a contraction on
L1(π), i.e., if f , g are in L1(π) then by the invariance of π,

‖Tf − Tg‖1 ≡
∫

|Tf(y)− Tg(y)|π(dy) = E|E(f(X1)− g(X1) | X0)|
≤ E E(|f(X1)− g(X1)| | X0))

= E|f(X1)− g(X1)| =
∫

|f(y)− g(y)|π(dy) ≡ ‖f − g‖1.

To prove uniqueness of the invariant probability π, let γ be any invariant probabil-
ity of the Markov process, which implies that if X0 has distribution γ then Xn has
distribution γ for all n. But, no matter what X0 is, Xn converges in distribution
to π as n → ∞. This implies that γ cannot be anything other than π. ��
Corollary 8.5. Under the hypotheses (8.147) and (8.148), the Markov process Xn

in (8.146) has the unique invariant probability given by the distribution π of the
random variable α/(1 − β) + Z, where Z =

∑
0≤j<∞ βjεj+1. The mean of π is

μ = α/(1− β), and the variance of π is δ = σ2/(1− β2).

For purposes of inference the following simple calculations are needed
(see (8.150)).

E(Xn) = α+ βα + β2α+ · · ·+ βn−1α+ βnE(X0)

= βnE(X0) + α(1 − βn)/(1 − β);

var(Xn) = var(α+ βα+ β2α+ · · ·+ βn−1α+ βnX0 + βn−1ε1 + βn−2ε2

+ · · ·+ βεn−1 + εn) =

= β2nvar(X0) + (β2(n−1) + β2(n−2) + · · ·+ β2 + 1)σ2

= β2nvar(X0) + σ2(1− β2n)/(1− β2);

4 See, e.g., Bhattacharya and Waymire (2007), p. 180.
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Cov(Xn, Xn+j) = Cov(Xn, α+ βα+ β2α+ · · ·+ βj−1α+ βjXn + βj−1εn+1

+βj−2εn+2 · · ·+ βεn+j−1 + εn+j)

= βjvar(Xn) = βj{β2nvar(X0) + σ2(1− β2n)/(1− β2}. (8.152)

We now turn to the problem of estimating α and β from observations
X0, X1, . . . , Xn. The least squares estimates are given, as usual, by

argmin
α,β

∑

1≤j≤n

[Xj − (α+ βXj−1)]
2, (8.153)

whose solution is (See (6.14), (6.16))

β̂ =

⎡

⎣
∑

1≤j≤n

Xj(Xj−1 −X)

⎤

⎦
/
⎡

⎣
∑

1≤j≤n

(Xj−1 −X)2

⎤

⎦ , α̂ = Y − β̂X, where

X =
∑

1≤j≤n

Xj−1/n, and Y =
∑

1≤j≤n

Xj/n. (8.154)

Theorem 8.8. For the AR(1) model (8.146) assume in addition to (8.147)
and (8.148) that either (a) X0 has the invariant distribution, or (b) Eε4j < ∞ and

E(X0)
4 < ∞. Then √

n(β̂ − β)
L−→ N(0, 1− β2), (8.155)

and √
n(α̂− α, β̂ − β)′ L−→ N((0, 0)′, Γ ), (8.156)

where

Γ =

⎡

⎣
σ2 + α2(1 + β)/(1 − β) −ασ2(1 + β)

−ασ2(1 + β) 1− β2

⎤

⎦ (8.157)

Proof. We will first prove (8.155). By (8.154),

√
n(β̂ − β) =

⎡

⎣n− 1
2

∑

1≤j≤n

(Xj−1 −X)εj

⎤

⎦
/
⎡

⎣n−1
∑

1≤j≤n

(Xj−1 −X)2

⎤

⎦ . (8.158)

We will first show that the denominator on the right converges in probability to
the variance of the invariant distribution π,

⎡

⎣n−1
∑

1≤j≤n

(Xj−1 −X)2

⎤

⎦ −→ δ = σ2/(1− β2) in probability, as n → ∞.

(8.159)
First, writing μ = α/(1 − β), one has (See (8.152)),

EX = n−1
∑

0≤j≤n−1

{βjEX0 + α(1 − βj)/(1− β)}

= μ+ {n−1(1 − βn)/(1− β)}EX0 − n−1α(1 − βn)/(1− β)2

= μ+O(1/n), EX − μ = O(1/n);
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E(X − μ)2 = E(X − EX)2 + (EX − μ)2

= var(X) +O(n−2),

var(X) = n−2

⎧
⎨

⎩

∑

0≤j≤n−1

var(Xj) + 2
∑

0≤j≤n−1

∑

1≤r≤n−1−j

Cov(Xj , Xj+r)

⎫
⎬

⎭

= n−2
∑

0≤j≤n−1

{β2jvar(X0) + σ2/(1− β2)− σ2β2j/(1− β2)}

+2n−2

⎧
⎨

⎩

∑

0≤j≤n−1

∑

1≤r≤n−1−j

βr
[
β2jvar(X0) + (1−β2r)σ2/(1−β2)

]
⎫
⎬

⎭

= O(1/n).

Using EXj − μ = βj(EX0 − μ) and var(Xj) = β2jvar(X0) + σ2(1− β2j)/(1− β2)
(See (8.152)), one has E|(EXj − μ)(Xj − EXj)| ≤ |βj | |EX0 − μ|{β2jvar(X0) +
σ2(1− β2j)/(1− β2)}1/2, so that

n−1
∑

0≤j≤n−1

(Xj −X)2 =

= n−1
∑

0≤j≤n−1

(Xj − μ)2 − (X − μ)2 = n−1
∑

0≤j≤n−1

(Xj − μ)2 +Op(n
−1) =

= n−1
∑

0≤j≤n−1

{(Xj − EXj)
2 + (EXj − μ)2 + 2(EXj − μ)(Xj − EXj)}+Op(n

−1)

= n−1
∑

0≤j≤n−1

var(Xj) +Op(n
−1) = σ2/(1− β2) +Op(n

−1), (8.160)

yielding (8.159). Note that in the stationary case EXj = μ. Next,

E

∣
∣
∣
∣
∣
∣

⎡

⎣n− 1
2

∑

1≤j≤n

(Xj−1 −X)εj

⎤

⎦− n− 1
2

∑

1≤j≤n

(Xj−1 − μ)εj

∣
∣
∣
∣
∣
∣

= n− 1
2E

∣
∣
∣
∣
∣
∣
(X − μ)

∑

1≤j≤n

εj

∣
∣
∣
∣
∣
∣

≤ n− 1
2 (E(X − μ)2))

1
2 (nσ2)

1
2 = O

(
n− 1

2

)
,

so that n−1/2
∑

1≤j≤n(Xj−1 −X)εj ]− n−1/2
∑

1≤j≤n(Xj−1 − μ)εj → 0 in proba-
bility as n → ∞. Hence, by (8.158) and (8.160)

√
n(β̂−β) = [n− 1

2

∑

1≤j≤n

(Xj−1−μ)εj]/δ+ op(1), where op(1) → 0 in probability.

(8.161)
Now [n−1/2

∑
1≤j≤n(Xj−1 − μ)εj ]/δ is a martingale. For, writing Fj−1 for the

sigma-field of events generated by {X0, X1, . . . , Xj−1}, one has, by independence
of {X0, X1, . . . , Xj−1} and εj ,

E[(Xj−1 − μ)εj | Fj−1] = (Xj−1 − μ)E(εj | Fj−1) = 0 for all j.
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If X0 has the invariant distribution, the process {(Xn, εn) : n = 0, . . . } is station-
ary, and (Xj−1 − μ)εj are stationary ergodic martingale differences. In this case
the martingale CLT applies and (8.155) is proved. Otherwise we may check the
Lindeberg-type conditions for the martingale CLT to hold.5 First,

∑

1≤j≤n

E
[
(n− 1

2 (Xj−1 − μ)εj)
2 | Fj−1

]
= n−1

∑

1≤j≤n

(Xj−1 − μ)2E(ε2j | Fj−1) =

= σ2n−1
∑

1≤j≤n

(Xj−1 − μ)2 −→ σ2δ in probability as n → ∞, (8.162)

using (8.159) in the last step. It remains to show that, for every θ > 0,

∑

1≤j≤n

E
[
(n− 1

2 (Xj−1 − μ)εj)
21{|n− 1

2 (Xj−1 − μ)εj | > θ} | Fj−1

]
→ 0 in probability.

(8.163)
By Chebyshev’s inequality, the left side of (8.163) is bounded above by

n−1
∑

1≤j≤n

(E[(((Xj−1 − μ)εj)
2)2 | Fj−1])

1
2

·E[(1{|n− 1
2 (Xj−1 − μ)εj}| > θ} | Fj−1)]

1
2

≤ n−1
∑

1≤j≤n

{(Xj−1 − μ)4} 1
2 γ · {E[(Xj−1 − μ)2ε2j | Fj−1]} 1

2 /(θ
√
n)

≤ n−1
∑

1≤j≤n

(Xj−1 − μ)2γσ|Xj−1 − μ|/(θ√n)

=

⎛

⎝n−1
∑

1≤j≤n

|Xj−1 − μ|3
⎞

⎠ γσ/(θ
√
n)

≤
⎧
⎨

⎩
n−1

∑

1≤j≤n

(Xj−1 − μ)4

⎫
⎬

⎭

3
4

γσ/(θ
√
n) [γ := (Eε4j)

1
2 ]. (8.164)

By calculations using the expression for Xj in (8.150) (Exercise 8.14), one has

lim
n

E

⎛

⎝n−1
∑

1≤j≤n

(Xj−1 − μ)4

⎞

⎠ < ∞. (8.165)

Now (8.163) follows from (8.164), (8.165). This proves (8.155). The proof of (8.156)
may be given by expressing an arbitrary linear combination of

√
n(α̂ − α) and√

n(β̂−β) as a martingale (plus a negligible term), and appealing to the martingale

central limit theorem, noting that
√
n(α̂−α) = n− 1

2

∑
1≤j≤n εj+

√
n(β̂−β)μ+op(1)

(Exercise 8.14). ��
Under the assumptions of Theorem 8.8, one can obtain CLT-based classical

confidence intervals and tests for the parameters, using sample estimates of the

5 See, e.g., Bhattacharya and Waymire (2009), pp. 507–511.
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dispersions (see (8.154), (8.155), (8.159)) (Exercise 8.15). Bootstrap confidence
intervals and tests for the parameters may be derived by resampling from the
estimated residuals

{ε̂j := Xj − α̂− β̂Xj−1 : j = 1, . . . , n}.

See Bose (1988) and Lahiri (2003).

Example 8.6 (AR(p) Model). We next consider the more general autoregressive
model of order p ≥ 1, or the AR(p) model. Here the sequence of real-valued random
variables {Xn : n = 0, 1, 2, . . .} are recursively defined by

Xn = α+
∑

1≤r≤p

βrXn−r + εn (n = p, p+ 1, . . . ), (βp �= 0), (8.166)

given the initial set of p values (X0, . . . , Xp−1). The sequence {εn : n = p, p+1, . . . }
is i.i.d. and independent of (X0, . . . , Xp−1), and satisfy (8.147). Since Xn depends
on the past p values in the sequence, in addition to the random error εn, it is not
Markov. However, the vector sequence {Yn = (Xn−p+1, Xn−p+2, . . . , Xn)

′ : n =
p− 1, p, . . . } is Markov and satisfies the recursion

Yn = α∼ +BYn−1 + ε∼n (n = p, p+ 1, . . . ), (8.167)

where the p-dimensional vectors α∼ and ε∼n and the p× p matrix B are defined as
α∼ = (0, 0, . . . , 0, α)′, ε∼n = (0, 0, . . . , 0, εn)

′ (n = p, p+ 1, . . . ),

B =

⎡

⎢
⎢
⎢
⎢
⎣

0 1 0 0 0 0 0
0 0 1 0 0 0 0
. . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 0 1
βp βp−1 . . . β2 β1

⎤

⎥
⎥
⎥
⎥
⎦

(8.168)

Note that the initial value Yp−1 = (X0, X1, . . . , Xp−1)
′ is independent of the i.i.d.

sequence {ε∼n : n = p, p+1, . . . }. The state space of the Markov process {Yn : n =
p, p + 1, . . . } is S = R

p. A convenient way of expressing (8.167), for purposes of
the analysis that follows, is

Yn = BYn−1 + ζn, ζn := α∼ + ε∼n (n = p, p+ 1, . . . ), (8.169)

The random vectors ζn are still i.i.d. and independent of Yp−1, although their
mean vector is α∼ which is not zero. For stability, i.e., for convergence of the
Markov process to a unique invariant probability irrespective of the initial state,
a necessary and sufficient condition turns out to be

Maximum modulus of the eigenvalues of B is less than 1. (8.170)

Expanding the determinant det(B − λIp) by its last row, one gets the polynomial
(in λ) det(B − λIp) = (−1)p{λp − β1λ

p−1 − β2λ
p−2 − · · · − βp}. Thus (8.170) says

that all its roots lie in the interior of the unit circle of the complex plane. One can
show that (8.170) is equivalent to (see, e.g., Bhattacharya and Waymire 2009, pp.
168–172):

There exists a positive integer m such that ‖Bm‖ < 1. (8.171)
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The relations (8.170) and (8.171) are called stability conditions. Successive itera-
tions of (8.169) lead to

Yn = Bn−p+1Yp−1 +
∑

p≤r≤n

Bn−rζr. (8.172)

Using and proceeding as the case AR(1), one arrives at (Exercise 8.16).

Proposition 8.5. Assume, as before, that the i.i.d. εn satisfy (8.147) and are
independent of Yp−1, and that (8.170) (or, equivalently, (8.171) holds. Then the
Markov process converges in distribution to a unique invariant distribution π, ir-
respective of its initial state Yp−1, given by the distribution of

Z =
∑

0≤n<∞
Bnζn = b∼ +

∑

0≤n<∞
Bnε∼n , (8.173)

where all the elements of b∼ are α(1 − ∑
r βr)

−1. Each coordinate of EZ
equals α(1 − ∑

βr)
−1, while the covariance matrix of Z is σ2V , where

V = ((
∑

0≤n<∞ b
(n)
ip b

(n)
i′p ))i,i′=1,...,p, and b

(n)
i.i′ is the (i, i′) element of the matrix Bn.

Given observations X0, . . . , Xn from the AR(p) model (8.166), the least square
estimators of the parameters are obtained algebraically the same way as in linear
regression models (see (6.152), (6.153)) and one has

β̂ = C−1
n c0,n, α̂ = Xp,n −

∑

1≤r≤p

β̂rXp−r,n, (8.174)

where Cn is a p× p matrix, c0,n is a p× 1 (column) vector, and Xp,n, Xp−r,n are
lag averages, define by

Xp−r,n = (n− p+ 1)−1
∑

p≤j≤n

Xj−r(r = 1, . . . , p); Xp,n = (n− p+ 1)−1
∑

p≤j≤n

Xj .

Cn = ((cr,s,n))1≤r,s≤p,

cr,s,n = (n− p+ 1)−1
∑

p≤j≤n

(Xj−r −Xp−r,n)(Xj−s −Xp−s,n),

c0,n = (c0,1,n, c0,2,n, . . . , c0,p,n)
′. (8.175)

Proceeding as in the case p = 1, one shows that Cn converges to Cov(Z) = σ2V
(Exercise 8.17), and

√
n(β̂ − β) =

= C−1
n

(
1√
n

) ∑

p≤j≤n

((Xj−1 − μ)εj , (Xj−2 − μ)εj , . . . , (Xj−p − μ)εj)
′ + op(1)

= (σ2V )−1

(
1√
n

) ∑

p≤j≤n

((Xj−1 − μ)εj , (Xj−2 − μ)εj , . . . , (Xj−p − μ)εj)
′ +

+op(1)
L−→ N(0, V −1), (8.176)

by the martingale CLT, noting that every linear combination of (Xj−1 − μ)εj ,
(Xj−2 − μ)εj , . . . , (Xj−p − μ)εj is a martingale difference sequence, and the
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covariance matrix of its components is σ2Cov(Z) = σ4V . One may also show
that the least squares estimate of σ2, namely,

σ̂2 = (n− p+ 1)−1
∑

p≤j≤n

ε̂2j , ε̂j := Xj − α̂−
∑

1≤r≤p

β̂rXj−r, (8.177)

is consistent (Exercise 8.17). We have arrived at the following useful result.

Theorem 8.9. Assume (8.170) holds for the AR(p) model (8.166) with i.i.d.
errors satisfying (8.147), and that X0, . . . , Xp−1 and εn have finite fourth mo-
ments, or that their joint distribution is the invariant distribution (of Z). Then√
nC

1/2
n ((β̂ − β)/σ̂ converges in distribution to N(0, Ip) as n → ∞.

Note that (α̂, β̂) as given by (8.174) is now easily shown to be jointly asymp-
totically Normal, and by computing variances and covariances of α̂ and the com-
ponents of β̂, one can find the (joint) Normal distribution of

√
n(α̂ − α, β̂ − β).

Classical CLT-based confidence regions for β and for (α,β) may now be con-
structed (Exercise 8.18). One may also obtain bootstrap confidence regions by
resampling from the estimated residuals in (8.177) (see Bose 1988; Lahiri 2003).

Remark 8.12. If one assumes that the errors εn are Normal N(0, σ2), a common
assumption in time series analysis (see Brockwell and Davis 2002), then the least

squares estimates α̂, β̂ are the MLEs, conditionally given the initial values (Exer-
cise 8.20).

Remark 8.13. It is customary in texts on time series to express the polynomial
equation: determinant (B−λIp) = 0, for the AR(p) model, namely, λp = β1λ

p−1+
β2λ

p−2+ · · ·+βp, in terms of the variable ζ = λ−1. The stability condition (8.170)
then becomes: the polynomial β(ζ) = 1 −∑

1≤r≤p βrζ
r (in ζ) has all its roots in

|ζ| > 1, i.e., outside the unit circle in the complex plane.

Our final example is the autoregressive-moving average model ARMA(p, q),
where to the new innovation (error) in each period is added a linear combina-
tion of the past q errors.

Example 8.7 (ARMA(p, q) Model). For p ≥ 1, q ≥ 1, and a sequence of mean zero
(and finite variance) i.i.d. sequence {εn : n ≥ 1} define

Xn = α+
∑

1≤r≤p

βrXn−r+
∑

1≤r≤q

θrεn−r+εn, (n ≥ p), (βp �= 0+θq �= 0). (8.178)

If the initial states {X0, X1, . . . , Xp−1} are independent of {εn : n ≥ p}, the se-
quence {Yn = (Xn−p+1, Xn−p+2, . . . , Xn, εn−q+1, εn−q, . . . , εn)

′ : n = p− 1, p, p+
1, . . . } is Markov, as follows from the representation

Yn = α∼ +HYn−1 + ζn, (8.179)

where α∼ = (0, . . . , 0, α, 0, . . . , 0)′ with p− 1 zero’s before α and q zero’s after it;
ζn = (0, . . . , 0, εn, 0, . . . , 0, εn)

′, and the (p+ q)× (p+ q) matrix H is of the form

H =

⎡

⎣
B C

Oq×p D

⎤

⎦ .
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Here B is the p×p matrix (8.168); the p×q matrix C has all elements zero, except
for its last (p-th) row which is (θq, . . . , θ1); the q × p matrix Oq×p has all zero
elements; the i-th row of the q × q matrix D has 1 as its (i + 1)-th element and
zeros for the rest (i = 1, . . . , q − 1), its last (q-th) row has all zeros. For example,
if p = 3, q = 3, then H is given by

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 0 0 0 0
0 0 1 0 0 0
β3 β2 β1 θ3 θ2 θ1
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

Expanding by the last row, determinant (H − λIp+q) = (−λ)q× determinant of
(B−λIp). Therefore the eigenvalues ofH all lie inside the unit circle in the complex
plane, iff the same is true of B. Iterations of (8.179) yield

Yn = Hn−p+1Yp−1 +
∑

p≤r≤n

Hn−rξr, (ξr = ζr + α∼). (8.180)

Proposition 8.6. If the eigenvalues of the matrix B in (8.168) all lie in the in-
terior of the unit circle in the complex plane, then the Markov process (8.179) has
a unique invariant distribution π given by the distribution of Z =

∑
0≤n<∞Hnξn,

whose mean vector is the constant vector equal to α/(1 −∑
r βr) in each coordi-

nate, and the covariance matrix is σ2V , V =
∑

0≤n<∞HnA(H ′)n with σ2A as
the covariance matrix of ζr and A has (p, p), (p+ q, p+ q), (p, p+ q) and (p+ q, p)
elements equal to 1 and all other elements zero. Also, no matter what the initial
state Yp−1 is, the process converges in distribution to π.

Note that the variance γ(0), say, of Xn under the stationary distribution is
σ2Vpp (or σ2Vii, for any i, 1 ≤ i ≤ p), and one obtains γ(r) := cov(Xn−r, Xn)
as the element σ2V1,1+r for 1 ≤ r ≤ p − 1. Also, ρ(q) := cov(Xn, εn) = σ2 and
ρ(r) := cov(Xn, εn−q+r) = σ2Vp,p+r for 1 ≤ r < q. Clearly, cov(Xn, εn+r) = 0
for r > 0. One may derive γ(r) := cov(Xn−r, Xn) for r > p − 1 recursively,
using (8.178), namely,

γ(s) =
∑

1≤r≤p

βrγ(s− r) +
∑

1≤r≤min{s,q}
θrρ(q + s− r) (s > p). (8.181)

However, as illustrated by Example 8.8 below (also see Exercise 8.21), it is generally
much simpler to compute the covariances γ(s) using (8.178) (and (8.181)) for all
s ≥ 0, than by using the expression for V in Proposition 8.6 for the computation
of γ(r) for r = 0, . . . , p − 1 and ρ(r) for r = 0, . . . , q first and then (8.181). The
function r → γ(r) is referred to as the autocovariance function or ACVF.

In the stable AR(p) and, more generally, ARMA(p, q) models one may subtract
the mean from the original variables Xn or from the augmented Markovian Yn to
simplify the equations. For example, (8.178), (8.179) may then be expressed as

Xn =
∑

1≤r≤p

βrXn−r +
∑

1≤r≤q

θrεn−r + εn (n ≥ p− q), (βp �= 0 + θq �= 0),

Yn = HYn−1 + ζn. (8.182)
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If one also assumes that the initial data Y0 = (X0, . . . , Xp−1) has the distribution
π, then iterations such as (8.172) lead to the so-called (infinite order) moving
average representations of stationary time series:

Xn =
∑

0≤r<∞
ψrεn−r. (8.183)

The coefficients ψr may be computed from (8.181) in different ways. One conve-
nient formalism is to use the one-step backward operator B : BUn = Un−1. (We
use slanted and bold B to distinguish it from the matrix B in the models above).
Then (8.181) may be expressed as

Xn =
∑

1≤r≤p

βrB
rXn +

∑

1≤r≤q

θrB
rεn + εn. (8.184)

Write β(z), θ(z) for the polynomials β(z) = 1 − ∑
1≤r≤p βrz

r, θ(z) = 1 +∑
1≤r≤q θrz

r. By Remark 8.13, the stability condition of the process means
that the zeros of β(z) all lie outside the unit circle in the complex plane, and
ψ(z) := θ(z)/β(z) may be expanded in a convergent series expansion around z = 0,
cancelling out common zeros of β(z) and θ(z), namely, ψ(z) =

∑
0≤r<∞ ψrz

r. One
then has β(B)Xn = θ(B)εn, or

Xn = ψ(B)εn =
∑

0≤r<∞
ψrεn−r. (8.185)

If one assumes the invertibility condition that all the zeros of θ(z) also lie outside
the unit circle, one may similarly invert (8.185) to write

∑

0≤r<∞
χrz

r = β(z)/θ(z),

εn = [β(B)/θ(B)]Xn =
∑

0≤r<∞
χrXn−r,

1

θ(z)
=

∑

0≤j<∞
ajz

j,

εn =
∑

0≤j<∞
ajB

jβ(B)Xn =
∑

0≤j<∞
aj(Xn−j − β1Xn−j−1 − · · · − βpXn−j−p).

(8.186)

For the estimation of the stationary ergodic ARMA(p, q) model, one may first
estimate the mean μ by X and the autocovariances γ(r) by

γ̂(r) = n−1
∑

0≤j≤n−r

(Xj −X)(Xj+r −X), (r = 0, 1, 2, . . . ), X = n−1
∑

0≤j≤n

Xj.

(8.187)
In general, one requires γ̂(r) (r = 0, 1, . . . , p+ q) values to estimate the p+ q + 1
parameters βr (r = 1, . . . , p), θr (r = 1, . . . , q) and σ2 by this rather elemen-
tary method. The estimates (8.187) are easily shown to be consistent, and, there-
fore, the estimates of the p+ q + 1 parameters, using (8.181) are consistent. This
“method of moments” is also known as the Yule-Walker method. Assume now
that Eε4n < ∞. By using general central limit theorems under dependence, such
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as that for martingales with stationary ergodic differences (See Bhattacharya and
Waymire 2009, pp. 507–513), one may show that the estimates γ̂(r), for any finite
set of values of r, are (jointly) Normal. By the delta method one may then de-

rive the asymptotic (joint) Normality of β̂r (r = 1, . . . , p), θ̂r (r = 1, . . . , q). This
method is rather messy, and generally inefficient, and there exist more efficient, but
computationally elaborate procedures in the literature (see Brockwell and Davis
2002). For a comprehensive account of bootstrap methods we refer to Lahiri (2003),
especially Sect. 8.5. Here is a brief outline of the latter section. By (8.186), writing
β0 = −1, θ0 = 1, and −∑0≤k≤p βkXr−k =

∑
0≤k≤q θkεr−k, one may represent

the innovations εn as

εi =
∑

0≤j<∞
aj(Xi−j − β1Xi−j−1 − · · · − βpXi−j−p)

=
∑

0≤j<i0+1

aj(Xi−j − β1Xi−j−1 − · · · − βpXi−j−p) +Ri0,i

Ri0,i :=
∑

j≥i0+1

aj(Xi−j − β1Xi−j−1 − · · · − βpXi−j−p)

=
∑

j≥i0+1

aj
∑

0≤r≤q

θrεi−j−r .

(8.188)

Note that ai → 0 exponentially fast with i, in view of ‖Hm‖ < 1 for some
m (see (8.171)), so that one may ignore the term Ri0,i in (8.188) for large
enough i. Since the coefficients ai are polynomial in θj (use the identity (1 +∑

1≤r≤q θrz
r)(
∑

0≤j<∞ ajz
j) = 1), consistent and asymptotically Normal esti-

mates (for example, the Yule-Walker estimates θ̂r of θr) lead to consistent and
asymptotically Normal estimates âj of aj (j = 1, . . . , i). Together with similar

estimates β̂k of βk one uses (8.188), after deleting the term Ri0,i, to obtain es-
timates ε̂i of the residuals εi, i = 1, 2, . . . , i0 for a large enough i0. To make its
mean zero (in bootstrap sampling), let ε̂i,n = ε̂i − ε, where ε = (1/i0)

∑
1≤i≤i0

ε̂i.
The bootstrap observations X∗

i are now recursively obtained using the relation

X∗
i =

∑
1≤k≤p β̂kX

∗
i−k +

∑
0≤k≤q β̂kε̂i−k,n + ε∗i , for i ≥ 1−max{p, q} and setting

X∗
i = 0, ε∗i = 0 for i ≤ −max{p, q}.

Example 8.8 (ARMA(1, 1)). Assume the stability condition |β1| < 1 and the in-
vertibility condition |θ1| < 1. Here, after subtracting the mean μ = α/(1 − β1)
from the original sequence, the mean zero stationary AR(1, 1) sequence satisfies

Xn = β1Xn−1 + θ1εn−1 + εn,

where, the i.i.d. εn have mean zero, variance σ2 > 0 and a finite fourth moment.
The covariance γ(r) of Xn−r and Xn is obtained by taking covariances of both
sides of (8.185) with Xn−r, yielding γ(0) = β1γ(1) + σ2(1 + θ1(β1 + θ1)), and
γ(1) = β1γ(0) + θ1σ

2, to solve for both γ(0) and γ(1). One thus has

γ(0) = σ2(1 + 2β1θ1 + θ21)/(1− β2
1), γ(1) = β1γ(0) + θ1σ

2;

γ(r) = β1γ(r − 1) = βr−1
1 γ(1) for r > 1. (8.189)

One may use the sample estimates γ̂(r) of γ(r) in (8.187) to estimate the three
parameters β1, θ1, σ

2 by the “method of moments”:
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σ̂2(1 + 2β̂1θ̂1 + θ̂21)/(1− β̂2
1) = γ̂(0), β̂1γ̂(0) + θ̂1σ̂

2 = γ̂(1), β̂1γ̂(1) = γ̂(2).
(8.190)

As mentioned above, (γ̂(0), γ̂(1) γ̂(2)) has a three-dimensional asymptotic Normal

distribution. It then follows, by the delta method, that (β̂1, θ̂1) is asymptotically
bivariate Normal, and its covariance matrix may be computed using that of (γ̂(0),
γ̂(1), γ̂(2)). Also, for purposes of bootstrapping as described above, one has

1

θ(z)
= (1 + θ1z)

−1 = 1− θ1z + θ21z
2 + · · ·+ (−1)jθj1z

j + . . . ;

a0 = 1, aj = (−1)jθj1 (j ≥ 1). (8.191)

We next turn to an extension of Theorem 7.5 to maximum likelihood estimators
in parametric models for stationary ergodic stochastic processes.

Let {Xn : n ≥ 1} be a stochastic process with values in a measurable space X
(with σ-field S ), defined on a probability space (Ω,F , Pθ). Here θ ∈ Θ—an open
subset of Rp. Assume that μn (n ≥ 1) are σ-finite measures on (X ,S ) such that
under Pθ the distribution of (X1, . . . , Xn) is absolutely continuous with respect to
the product measure μ1 × · · · × μn with density fn(x

n
1 ; θ) (xn

1 := (x1, . . . , xn)
′).

Write hn for the conditional p.d.f. of Xn, given Xn−1
1 ≡ (X1, . . . , Xn−1)

′. That is,

hn(xn;x
n−1
1 , θ) = fn(x

n
1 ; θ)/fn−1(x

n−1
1 ; θ), (n ≥ 2)

h1(x1; θ) = f1(x1; θ). (8.192)

For n ≥ 2, hn is defined whenever the denominator in (8.192) is positive. If
fn−1(x

n−1
1 ; θ) = 0, then fn(x

n
1 ; θ) = 0 (for all xn outside a set of μn-measure

zero). Therefore, one may define hn(xn;x
n−1
1 , θ) arbitrarily in this case. We make

the following assumptions:

(D1): θ → fn(x
n
1 ; θ) is thrice continuously differentiable on Θ, for all xn

1 outside
a set of zero μ1 × · · · × μn-measure (n ≥ 1).

(D2):

(i) 0 ≡ ∂

∂θr

∫

hn(xn;x
n−1
1 , θ)μn(dxn)

=

∫
∂

∂θr
hn(xn : xn−1

1 , θ)μn(dxn) (1 ≤ r ≤ p, n ≥ 1).

(ii) 0 ≡ ∂2

∂θr∂θr′

∫

hn(xn;x
n−1
1 , θ)μn(dxn)

=

∫
∂2

∂θr∂θr′
hn(xn;x

n−1
1 ; θ)μn(dxn) (1 ≤ r, r′ ≤ p; n ≥ 1).

(D3): Eθ

(
∂ log fn(X

n
1 ; θ)

∂θr

)2

< ∞ (1 ≤ r ≤ p, n ≥ 1).

(D4): For each θ0 ∈ Θ there exists δ = δ(θ0) > 0 such that

sup

⎧
⎨

⎩

∣
∣
∣
∣
∣
∣

1

n

n∑

j=1

∂3 log hj(Xj ;X
j−1
1 , θ)

∂θr∂θr′∂θr′′

∣
∣
∣
∣
∣
∣
: |θ − θ0| ≤ δ

⎫
⎬

⎭

is bounded by a function gn(X
n
1 ) such that limn→∞Eθ0gn(X

n
1 ) < ∞.
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(D5):

(i)
1

n

n∑

j=1

∂

∂θr
log hj(Xj ;X

j−1
1 , θ)

Pθ−→ 0, (1 ≤ r ≤ p);

(ii)
1

n

n∑

j=1

∂2

∂θr∂θr′
log hj(Xj ;X

j−1
1 , θ)

Pθ−→ −Ir,r′(θ), (1 ≤ r, r′ ≤ p),

where I(θ) := ((Ir,r′(θ))) is, for each θ ∈ Θ, a positive definite matrix.

Theorem 8.10. Under the assumptions (D1)–(D5), for each θ0 ∈ Θ there exists

a measurable sequence θ̂n : Ω → Θ such that θ̂n is Fn-measurable and

(i) Pθ0(θ̂n is a solution of the likelihood equation ∂fn(x
n
1 ; θ)/∂θr = 0, 1 ≤ r ≤

p) −→ 1 as n → ∞,

(ii) θ̂n
Pθ0−→ θ0.

Proof. The proof follows exactly as the first part of the proof of Theorem 7.5.
(See (7.49)–(7.66).) ��

In addition to the above assumptions if one assumes also that

(D6):
1√
n
Grad log fn(X

n
1 ; θ0) ≡ 1√

n

n∑

j=1

Grad log hj(Xj ;X
j−1
1 , θ0)

L−→

N(0, I(θ0))
under Pθ, then the proof of the second part of Theorem 7.5 also goes over.

Theorem 8.11. Let θ0 be the true parameter value. Under the assumptions
(D1)–(D6) every θ̂n satisfying (i), (ii) of Theorem 8.10 converges in law to
N(0, I−1θ0)).

Definition 8.4. Assume (D1)–(D6). An estimator θ̂n of θ is said to be asymptot-

ically efficient if
√
n(θ̂n − θ0)

L−→ N(0, I−1(θ0)), under Pθ0 , for every θ0 ∈ Θ.

Remark 8.14. Suppose θ̃n is an unbiased estimator of θ, and Eθ|θ̃n|2 < ∞. Then
Theorem 7.4 yields ∣

∣
∣

∑

n
(θ) ≥ I−1

n (θ), (8.193)

where |∑n(θ) is the dispersion matrix of θ̃n (under Pθ), and

1

n
In(θ)

=
1

n

((

Eθ

[
∂ log fn(X

n
1 ; θ)

∂θr

∂ log fn(X
n
1 ; θ)

∂θr′

]))

=
1

n

⎛

⎝

⎛

⎝Eθ

⎡

⎣

⎧
⎨

⎩

n∑

j=1

∂ log hj(Xj ;X
j−1
1 , θ)

∂θr

⎫
⎬

⎭

⎧
⎨

⎩

n∑

j=1

∂ log hj(Xj ;X
j−1
1 , θ)

∂θr′

⎫
⎬

⎭

⎤

⎦

⎞

⎠

⎞

⎠

=
1

n

⎛

⎝

⎛

⎝
n∑

j=1

Eθ

[
∂ log hj(Xj ;X

j−1
1 , θ)

∂θr
· ∂ log hj(Xj ;X

j−1
1 , θ)

∂θr′

]⎞

⎠

⎞

⎠ , (8.194)
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since Eθ

(
∂ log hj(Xj ;X

j−1
1 ,θ)

∂θr

∣
∣Fj−1

)
= 0 ∀ j. Suppose now that

(
∂ log hj(XjX

j−1
1 ,θ)

∂θr

)2

(j ≥ 1) is a uniformly integrable sequence for every r. Then (D6) implies that the
sum in (8.194) converges to I(θ). Together with (8.193), this leads to

lim
n→∞

n
∣
∣
∣

∑

n
(θ) ≥ I−1(θ). (8.195)

This justifies the definition of asymptotic efficiency. It may be noted that, under
uniform integrability of

√
n(θ̃n − θ), Eθ

√
n(θ̃n − θ) → 0 (by (D5)). Therefore,

Eθ θ̃n = θ + o(n− 1
2 ), and (8.195) holds without the requirement of unbiasedness

of θ̃n.

Remark 8.15. Observe that ∂ log hj(Xj ;X
j−1
1 , θ)/∂θr (j ≥ 1) is a martingale dif-

ference sequence (under Pθ), by (D2). Therefore one may often apply martingale
limit theorems to verify (D4)–(D6). For example, if {Xn : n ≥ 0} is a station-
ary ergodic Markov process then hj(Xj ;X

j−1
1 , θ) ≡ g(Xj , Xj−1; θ) for an appro-

priate g (the so-called transition probability density of the Markov process), so
that ∂ log g(Xj, Xj−1; θ)/∂θr (j ≥ 1) is a stationary ergodic martingale difference
sequence, and (D5) holds by Birkhoff’s ergodic theorem and (D6) holds by the
Billingsley–Ibragimov martingale CLT.6

Example 8.9 (AR(p) Model). Let p > 1, {εj : j ≥ p} an i.i.d. sequence of mean
zero squared integrable random variables, X0, X1, . . . , Xp−1 square integrable ran-
dom variables independent of the sequence {εj : j ≥ p}. Define, recursively, the
p-th order autoregressive process (or, the AR(p) process)

Xn = α+ β1Xn−1 + β2Xn−2 + · · ·+ βpXn−p + εn (n ≥ p). (8.196)

Assume first that εj are i.i.d. N(0, σ2). Then the log of the conditional p.d.f. of
Xj given Xj−p, . . . , Xj−i is

log hj =
1

2
log 2π − 1

2
log σ2 − 1

2σ2
(Xj − α− β1Xj−1 − · · · − βpXj−p)

2
,

and

∂ log hj

∂α
=

1

σ2
(Xj − α− β1Xj−1 − · · · − βpXj−p) ,

∂ log hj

∂βr
=

1

σ2
Xj−r (Xj − α− β1Xj−1 − · · · − βpXj−p) , 1 ≤ r ≤ p,

∂ log hj

∂σ2
= − 1

2σ2
+

1

2σ4
(Xj − α− β1Xj−1 − · · · − βpXj−p)

2
. (8.197)

The likelihood equations are (for observations Xp, . . . , Xn, given X0, . . . , Xp−1)

0 =
1

σ2

n∑

j=p

(Xj − α− β1Xj−1 − · · · − βpXj−p)
(
= 1

σ2

∑n
j=p εj

)
;

0 =
1

σ2

n∑

j=p

Xj−r (Xj − α− β1Xj−1 − · · · − βpXj−p)
(
= 1

σ2

∑n
p Xj−rεj

)
,

6 See Billingsley (1968), p. 206, or Bhattacharya and Waymire (2009), p. 511.
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(1 ≤ r ≤ p);

0 = −n− p+ 1

2σ2
+

1

2σ4

n∑

p

(Xj − α− β1Xj−1 − · · · − βpXj−p)
2

(
= − 1

2σ2 + 1
2σ4

∑n
p ε

2
j

)
.

(8.198)

The solutions are given by

⎛

⎜
⎜
⎜
⎝

â

β̂1
...

β̂p

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎝

1 s1s2 . . . sp
s1 s11s12 . . . s1p
s2 s21s22 . . .2p
· · · ·
sp sp1sp2 . . . spp

⎞

⎟
⎟
⎟
⎟
⎠

−1
⎛

⎜
⎜
⎜
⎜
⎜
⎝

s0
s01
s02
...

s0p

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, (8.199)

σ̂2 =

n∑

j=p

(
Xj − â− b̂1Xj−1 − · · · − b̂jXj−p

)2
/(n− p+ 1),

where

sr =
1

n− p+ 1

n∑

j=p

Xj−r (0 ≤ r ≤ p),

srr′ =
1

n− p+ 1

n∑

j=p

Xj−rXj−r′ (0 ≤ r, r′ ≤ p). (8.200)

Write
ε′j = a+ εj , γj(0, 0, . . . , 0, εj)

′ ∈ R
p (j ≥ p), (8.201)

and

Xj =

p∑

r=1

βrXj−r + ε′j,

Yj = (Xj−p+1, Xj−p+2, . . . , Xj)
′

(j ≥ p). (8.202)

Then Yj , j ≥ p, is a Markov process,

Yj = BYj−1 + γj , (8.203)

where B is the p × p matrix (8.168). All eigenvalues of B have magnitude less
than one. Now the eigenvalues of B are the roots of the polynomial equation
det(B − λI) = 0, i.e.,

− λp + β1λ
p−1 + β2λ

p−2 + · · ·+ βp = 0. (8.204)

In the stable case the Markov process converges in distribution to a unique invari-
ant distribution π, whatever the initial state Yj = (X0, X1, . . . , Xp−1)

′. Clearly π
is Normal whose mean vector and dispersion matrix are given in Proposition 8.5.
Then all the conditions (D1)–(D6) hold. For example (see (8.198)),
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(
1√

n− p− 1

n∑

j=p

εj,
1√

n− p+ 1

n∑

j=p

Xj−1εj, . . . ,

1√
n− p+ 1

n∑

j=p

Xj−pεj,
1√

n− p+ 1

n∑

j=p

(ε2j − σ2)

)

is asymptotically Normal, by the martingale central limit theorem. Thus
√
n(α̂−α,

β̂ − β, σ̂2 − σ2) → N(0, I−1(θ)), where I(θ) is the information matrix.

Remark 8.16. Finally, consider a nonlinear autoregressive model of order p, or
NLAR(p),

Xn+1 = f(Xn−p+1, . . . , Xn) + g(Xn−p+1, . . . , Xn)εn+1, (n = p− 1, p, . . . ),
(8.205)

where εn, n ≥ p, are i.i.d. with mean zero and variance σ2 > 0, and independent
of X0, X1, . . . , Xp−1. The unknown real-valued functions f and g on R

p are such
that the Markov process Yn = (Xn−p+1, . . . , Xn)

′, n ≥ p, (on the state space R
p)

is ergodic. For the case p = 1 an asymptotically optimal estimate of f by the
so-called kernel method (See Chap. 10), and a consistent bootstrap estimate of
its distribution, were obtained by Frankel et al. (2002). Independently of this, and
more generally, Hwang (2002) derived an asymptotically optimal estimate of f and
a consistent bootstrap estimate of the distribution of this estimate. She also found
interesting conditions on a misspecified order p′ > p such that the estimate of f is
still consistent. The problem of validity of approximating long memory processes
by short memory ARMA processes are considered in Hosking (1984), Chan and
Palma (1998), and Basak et al. (2001).

8.7 Notes and References

Ferguson (1996) and Serfling (1980) may be used as general references for this
chapter. Pitman asymptotic relative efficiency (ARE) is due to Pitman (1948) and
our treatment follows Serfling (1980), Chap. 10. A broader, more sophisticated and
elegant approach to Pitman ARE is due to LeCam based on his notion of contiguity.
See LeCam and Yang 1990 or van der Vaart 1998). An entirely different notion
of asymptotic relative efficiency is due to Bahadur (1960). Here one looks at the
asymptotic exponential rate at which the p-value under H1 : θ > θ0 goes to zero
in probability (as n → ∞) for a test statistic Tn which rejects H0 : θ = θ0 for

large values of Tn (e.g., Tn =
√
(X − θ0) ). While the Pitman efficiency looks at

alternatives at a distance O(n−1/2) of θ0 and compares the rejection probabilities
of two tests under such alternatives within the range of Normal approximation,
the Bahadur ARE looks at rejection probabilities under fixed alternatives θ in
the large deviation domain. A fine exposition of this is given in Serfling (1980),
Chap. 10.

A standard reference for inference for time series is Brockwell and Davis (2002).
For results and procedures for bootstrapping under dependence and for time series,
see Lahiri (2003). For many econometric time series modeled as AR(1), AR(p)
or ARMA(p, q), an appropriate assumption would be to have eigenvalues of the
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matrixB in (8.168) to be inside the circle, but with some very close to the boundary
of the circle. For example, in AR(1) one may think of scaling β1 as 1 − b/n for
some b > 0. The asymptotic distribution theory of the ordinary least squares
estimate (OLS) then presents challenges. Basic work on this phenomenon under
broad assumptions is due to Chan and Wei (1987, 1988). Also, see Phillips (1987).
This so-called unit root problem is now an important area in econometrics.

Exercises for Chap. 8

Exercises for Sects. 8.1, 8.2

Ex. 8.1. Consider the family of p.d.f.’s {f(x− θ) : θ ∈ R
1} in Example 8.1.

(a) For the one-sided alternative H1 : θ > 0, show that eP (Tn, t) = 4σ2
ff

2(0).
(b) Consider the tests of H0 : θ = 0, H1 : θ �= 0.

δ1,n : Reject H0 iff |t| ≡
∣
∣
∣
∣
X

s

∣
∣
∣
∣ > an,

δ2,n : Reject H0 iff

∣
∣
∣
∣
∣
∣

1

n

n∑

j=1

1{Xj>0} − 1

2

∣
∣
∣
∣
∣
∣
> bn,

having asymptotic size α. Prove that

eP (δ2,n, δ1,n) = 4σ2
ff

2(0).

Ex. 8.2. (a) Show that for every pair of random variablesX,Y , every distribution
function G(x), and every constant ε > 0, one has

sup
x∈R1

|Prob(Y ≤ x)− Prob(X ≤ x)|

≤ P (|X − Y | > ε) + 2 sup
x

|P (X ≤ x)−G(x)| + sup
x

|G(x+ ε)−G(x)|.
(8.206)

(b) Use (8.206), (8.43) and (8.44) to prove (8.45), under the assumptions (B)
and (8.29).

Ex. 8.3. Let ϕ(X) be the symmetrization of T = T (X) as in Remark 8.2, with
X = (X1, . . . , Xn)

′ and Xi’s i.i.d. If E|T |p < ∞ for some p ≥ 1, then show that
E|ϕ(X)−θ|p ≤ E|T−θ|p, where θ = ET . [Hint: ϕ(X) = E(T | F ), where F is the
sigma-field generated by permutations of indices (1, 2, . . . , n) of X1, X2, . . . , Xn.]

Ex. 8.4. Prove Proposition 8.1.

Exercises for Sect. 8.3

Ex. 8.5 (Mendel’s Experiment). In Mendel’s experiment in pea breeding,
possible types of progeny were (1) round-yellow, (2) round green, (3) wrinkled
yellow and (4) wrinkled green. According to Mendel’s theory these were to occur
in respective proportions (H0) p1 = 9/16, p2 = p3 = 3/16, p4 = 1/16. In his
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experiment Mendel observed the respective numbers of progeny (out of a total
n = 556), n1 = 315, n2 = 108, n3 = 101, n4 = 32. Find the p-values using

(a) Pearson’s frequency chi-square test,
(b) Wald’s test,
(c) the likelihood ratio test,
(d) Rao’s scores test.

Ex. 8.6 (Hardy-Weinberg Model). Test the Hardy-Weinberg model for prob-
abilities of the three genotypes of a single gene with two alleles: p1 = θ2,
p2 = 2θ(1 − θ), p3 = (1 − θ)2, 0 < θ < 1, and observed frequencies n1, n2,
n3, using

(a) Pearson’s frequency chi-square test,
(b) Wald’s test,
(c) the likelihood ratio test,
(d) Rao’s scores test.

Ex. 8.7. Test the Fisher linkage model of Example 4.15, using

(a) Pearson’s frequency chi-square test,
(b) Wald’s test,
(c) the likelihood ratio test,
(d) Rao’s scores test.

Ex. 8.8 (Chi-square Test for Independence in Two-Way Contingency
Tables). A population is classified according to two categorical variables A and
B. The variable A has k classes A1, . . . , Ak while B has m classes B1, . . . , Bm.
One wishes to test if the two classifications are independent of each other, namely,
H0 : pij = pi.p.j (1 ≤ i ≤ k, 1 ≤ j ≤ m), where pij is the proportion in the
population belonging to class Ai and class Bj, pi. =

∑
j pij is the proportion

belonging to class Ai of the categorical variable A, p.j =
∑

i pij is the proportion
belonging to class Bj of the categorical variable B.

(a) Write down the frequency chi-square test.
(b) Apply the test (a) to the following data concerning heart disease in male

federal employees. Researchers classified 356 volunteer subjects according to
their socio-economic status (SES)—A and their smoking habits—B.

Smoking habit SES Total
High Middle Low

Current 51 22 43 116

Former 92 21 28 141

Never 68 9 22 99

Total 211 52 93 356

Exercises for Sects. 8.4, 8.5

Ex. 8.9. Verify the expression (8.127) for Dn.
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Ex. 8.10. The numbers k of micro-organisms of a certain type found within each
of n = 60 squares of a hemocytometer are as follows.

k 0 1 2 3 4

Observed frequency 28 20 8 3 1

Test if the data follow a Poisson distribution (Example taken from the website
vassarstats. net).

Ex. 8.11. It is common in insurance to assume that the times of arrival of claims
follow a homogeneous Poisson process. Given n successive arrivals of claims 0 <
t1 < t2 < · · · < tn, derive the following tests for this model.

(a) Kolmogorov-Smirnov
(b) Carmér-von Mises
(c) Anderson-Darling

Ex. 8.12. Suppose the intervals between successive arrivals in the preceding ex-
ercise are i.i.d. Pareto with p.d.f. f(u;α) = α(1 + u)−α−1 (α > 0), α unknown.

(a) Find the MLE of α.
(b) Draw a random sample of size n = 50 from this Pareto distribution with α = 2,

and carry out the goodness-of-fit tests (a)–(c) above for the data to have come
from a Pareto distribution (with α unknown).

(c) Use tests (a)–(c) for the data in (b) to have come from an exponential distri-
bution..

Ex. 8.13. The following data on 32 skulls are taken from the book A Handbook of
Small Data Sets (Hand et al. 1994), which reproduced them from Moran (1923).
The 17 type A skulls came from Sikkim and neighboring areas of Tibet. The
15 type B skulls were picked up on a battlefield in the Lhasa district and were
believed to be those of native soldiers from the eastern province of Khams. It
was thought at the time that the Tibetans from Khams might be survivors of a
particular fundamental human type, unrelated to the Mongolian and Indian types
which surrounded them. The five measurements on each skull are as follows:

X1 = greatest length of skull, X2 = greatest horizontal breadth of skull, X3 =
height of skull, X4 = upper face height, X5 = face breadth, between outermost
points of cheekbones.

Test if the skulls A and Skulls B belonged to the same type of humans. [Hint:
Use Proposition 8.3.]

Exercises for Sect. 8.6

Ex. 8.14. To complete the proof of Theorem 8.8,

(a) prove (8.165) under the hypothesis of Theorem 8.8(b),
(b) prove (8.156) using the martingale CLT as suggested at the end of the proof

of Theorem 8.8.

Ex. 8.15. Under the hypothesis of Theorem 8.8 construct a confidence interval
for β with asymptotic level 1− θ(0 < θ < 1).
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A skulls

X1 X2 X3 X4 X5

190.5 152.5 145.0 73.5 136.5

172.5 132.0 125.5 63.0 121.0

167.0 130.0 125.5 69.5 119.5

169.5 150.5 133.5 64.5 128.0

175.0 138.5 126.0 77.5 135.5

177.5 142.5 142.5 71.5 131.0

179.5 142.5 127.5 70.5 134.5

179.5 138.0 133.5 73.5 132.5

173.5 135.5 130.5 70.0 133.5

162.5 139.0 131.0 62.0 126.0

178.5 135.0 136.0 71.0 124.0

171.5 148.5 132.5 65.0 146.5

180.5 139.0 132.0 74.5 134.5

183.0 149.0 121.5 76.5 142.0

169.5 130.0 131.0 68.0 119.0

172.0 140.0 136.0 70.5 133.5

170.0 126.5 134.5 66.0 118.5

B skulls

X1 X2 X3 X4 X5

182.5 136.0 138.5 76.0 134.0

179.5 135.0 128.5 74.0 132.0

191.0 140.5 140.5 72.5 131.5

184.5 141.5 134.5 76.5 141.5

181.0 142.0 132.5 79.0 136.5

173.5 136.5 126.0 71.5 136.5

188.5 130.0 143.0 79.5 136.0

175.0 153.0 130.0 76.5 142.0

196.0 142.5 123.5 76.0 134.0

200.0 139.5 143.5 82.5 146.0

185.0 134.5 140.0 81.5 137.0

174.5 143.5 132.5 74.0 136.5

195.5 144.0 138.5 78.5 144.0

197.0 131.5 135.0 80.5 139.0

182.5 131.0 135.0 68.5 136.0

Ex. 8.16. Verify Proposition 8.5 using (8.172).

Ex. 8.17. Assume the hypothesis of Theorem 8.9 for the AR(p) model.

(a) Prove that γ̂(r) is a consistent estimate of γ(r) for r = 0, 1, . . . , p.
(b) Prove that σ̂2 in (8.177) is a consistent estimator of σ2.
(c) Prove that Cn converges in probability to σ2V .

Ex. 8.18. In addition to the hypothesis of Theorem 8.9, assume εn are Normal
N(0, σ2), and then prove that Z in (8.173) is Normal.

Ex. 8.19. Construct a confidence region for β of asymptotic level 1 − θ in the
stable AR(p) model.

Ex. 8.20. Assume that the error εn in the AR(p) model (8.166) are i.i.d. N(0, σ2).

Show that the least squares estimates α̂, β̂ are then the MLEs, conditionally given
X0, . . . , Xp−1.

Ex. 8.21. Consider a stable and invertible stationary ARMA(1, 2) model.

(a) Show that γ̂(r) is a consistent estimate of γ(r) for r = 0, 1, . . . , and that (γ̂(0),
γ̂(1), γ̂(2), γ̂(3)) is asymptotically Normal.

(b) Derive the analogs of (8.189) for γ(0), γ(1), γ(2), γ(3), and show that the
Yule-Walker (“method of moments”) estimator of (β1, θ1, θ2)

′ derived using
these equations is asymptotically Normal.

Ex. 8.22 (Trend Removal). Let Xn = f(n) + Zn, where {Zn : n ≥ 0} is a
stationary time series, and f is a deterministic function on the set of integers
Zt = {0, 1, . . .}. Show that if f is linear then ΔXn ≡ Xn − Xn−1, n ≥ 1, is a
stationary time series and, more generally, if f is a polynomial of order k then
ΔkXn, n ≥ k, is stationary.
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Ex. 8.23 (Trend Estimation). Let Xn = f(n) + Zn, as in Exercise 8.22. Use
the Dow Jones Utilities Index for 100 days from the internet, or from August 28
to December 18 of 1972 as given in Brockwell and Davis (1987), p. 499, for the
problems below.

(a) Assuming f is linear, use the method of least squares to estimate f , and plot

Ẑn := Xn − f̂(n) to see if it looks stationary.
(b) Assume f is quadratic, estimate it by the method of least squares, and plot

Ẑn = Xn − f̂(n) to check visually if this “trend-removed” process looks sta-
tionary.

(c) Assuming {Zn, n ≥ 0} is a stable mean zero stationary AR(1) process, show
that the estimated coefficients of f in (a) and (b) are consistent and asymp-
totically Normal.
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Chapter 9

The Nonparametric Bootstrap

Abstract This chapter introduces Efron’s nonparametric bootstrap, with appli-
cations to linear statistics, and semi-linear regression due to Bickel and Freedman.

9.1 What is “Bootstrap”? Why Use it?

We describe in this section an important methodology due to Efron (1979) to
estimate distributions of statistics from data by resampling.

Suppose one needs to construct a confidence interval for a parameter θ based
on an estimator θ̂n constructed from i.i.d. observations X1, X2, . . . , Xn from a

distribution P . (That is, Xi’s have a common distribution P .) If
√
n(θ̂n − θ)

L−→
N(0, σ2) as n → ∞ and σ̂2

n is a consistent estimator of σ2 based on X1, . . . , Xn,
then a confidence interval of approximate size 1− α is given by

[

θ̂n − z1−α
2

σ̂n√
n
, θ̂n + z1−α

2

σ̂n√
n

]

, (9.1)

where zδ is such that Prob(Z ≤ zδ) = δ, Z having the standard normal distribution
N(0, 1). The targeted size, or coverage probability, 1 − α is called the nominal
coverage. Since (9.1) is based on an asymptotic result, the coverage error (=
nominal coverage − true coverage probability) may be significant, especially when
the sample size n in an actual experiment is not very large.

Let Tn(P ) be a function of i.i.d. observationsX1, . . . , Xn (from a distribution P )
and P . For example, in the case of real-valued Xi, Tn(P ) may be

√
n(Xn− θ)/σ̂n,

which not only involves Xi’s (1 ≤ i ≤ n), but also P via θ :=
∫
xP (dx) ≡ mean

of P . First estimate P by its consistent and unbiased estimator P̂n = 1
n

∑n
i=1 δXi ≡

the empirical distribution (based on X1, . . . , Xn). Note that δXi is the point mass

atXi. Hence P̂n(B) = 1
n

∑n
i=1 1B(Xi) ≡ proportion of those observations which lie

in B (for all measurable B): (1) EP̂n(B) = E1B(Xi) = O · (1−P (B))+1 ·P (B) =

P (B) (unbiasedness), (2) P̂n(B) → E1B(Xi) = P (B) a.s. as n → ∞, by the strong
law of large numbers (consistency). We first consider the percentile bootstrap. To
arrive at the bootstrap estimate follow the steps below.

© Springer-Verlag New York 2016
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Step 1: Take a random sample with replacement of size n from the empirical
P̂n. Denote this by X∗

1 , X
∗
2 , . . . , X

∗
n.

Step 2: Calculate T ∗
n(P̂n), substituting X∗

1 , . . . , X
∗
n for X1, . . . , Xn, and P by

P̂n in the functional form Tn(P ). For example, if Tn(P ) = (Xn − θ),

T ∗
n(P̂n) = (X

∗
n − Xn) where X

∗
n = 1

n

∑n
i=1X

∗
i . Note that here θ =

∫
xP (dx), Xn =

∫
xP̂n(dx).

Step 3. Repeat independently Steps 1 and 2 a very large number of times,
say M , obtaining M independent values of the bootstrapped statistic
T ∗
n(P̂n)l. (Typically M is between 500 and 2000).

Step 4. Find the lower and upper α
2 -quantiles of the M values in Step 3. Call

these q∗α
2
, q∗1−α

2
, respectively.

Step 5. The bootstrap confidence interval for θ is

[
q∗α

2
, q∗1−α

2

]
. (9.2)

To see that (9.2) is a confidence interval for θ with an asymptotic level 1 − α
(almost surely, as n → ∞), note that a classical confidence interval is given by the

interval [θ̂n − z1−α/2σ̂n, θ̂n − zα/2σ̂n] = [θ̂n + zα/2σ̂n, θ̂n + z1−α/2σ̂n] = [l, u], say.

Now the bootstrap version θ∗n of θ̂n is, under the empirical P ∗ = P̂n, asymptotically

Normal N(θ̂n, σ̂
2
n), so that the α/2-th and (1 − α/2)-th quantiles of θ∗n, q

∗
α/2 and

q∗1−α/2 say, are asymptotically equal to θ̂n + zα/2σ̂n = l and θ̂n + z1−α/2σ̂n = u,
respectively.

When the standard error σ̂n of θ̂n is known in closed form, one may use the
studentized or pivoted statistic Tn = (θ̂n−θ)/σ̂n, which is asymptotically standard
Normal N(0, 1). The usual CLT-based symmetric confidence interval for θ is given
by

[θ̂n + zα
2
σ̂n, θ̂n + z1−α

2
σ̂n] = [θ̂n − z1−α

2
σ̂n, θ̂n − zα

2
σ̂n], (9.3)

using P (|Tn| ≤ z1−α/2) = 1 − α. The corresponding pivotal bootstrap confidence

interval is based on the resampled values of T ∗
n = (θ̂∗n − θ̂n)/σ̂

∗
n, where σ̂∗

n is the
bootstrap estimate of the standard error obtained by steps analogous to those
described in the preceding paragraph. Let c∗α/2 be such that P ∗(|T ∗

n | ≤ c∗α/2) =
1− α. The bootstrap pivotal confidence interval for θ is then

[
θ̂n − c∗α

2
σ̂∗
n, θ̂n + c∗α

2
σ̂∗
n

]
. (9.4)

Suppose θ̂n is based on i.i.d. observations X1, . . . , Xn, whose common distribution
has a density (or a nonzero density component), and that it is a smooth function
of sample means of a finite number of characteristics of X , or has a stochastic
expansion (Taylor expansion) in terms of these sample means (such as the MLE
in regular cases). It may then be shown that the coverage error of the CLT-based
interval (9.3) is O(n−1), while that based on (9.4) is O(n−3/2), a major advantage
of the bootstrap procedure. The coverage error of the percentile interval (9.2) is
O(n−1/2), irrespective of whether the distribution of X is continuous or discrete.
Chapter 11, Part III provides a rigorous treatment of coverage errors.

One of the compelling arguments in favor of using the percentile bootstrap is
that it does not require an analytical computation of the standard error σ̂n of
the estimator θ̂n. In many problems such analytic computations are complex and
difficult. Moreover, one may obtain a bootstrap estimate of the standard error
simply as the standard deviation of the bootstrap estimates θ̂∗.
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9.2 When Does Bootstrap Work?

9.2.1 Linear Statistics, or Sample Means

Let X1, X2, . . . , Xn be i.i.d. observations from a distribution P . Consider a lin-
ear statistic Tn = 1

n

∑n
i=1 g(Xi) for some real-valued measurable function g,

which is used to estimate Eg(X1) = T (P ). Let P̂n denote the empirical, P̂n =
1
n

∑n
i=1 δXi . Let X

∗
n1, . . . , X

∗
nn be a bootstrap sample, i.e., conditionally given P̂n,

X∗
n1, X

∗
n2, . . . , X

∗
nn are i.i.d. with common distribution P̂n. For simplicity of nota-

tion, we will drop n from the subscript of the bootstrap observations and write
X∗

i in place of X∗
ni. Let L (V ) denote the law, or distribution, of a random vari-

able V . Let d∞(Q1, Q2) denote the Kolmogorov distance between two probability
measures Q1, Q2 on R with distribution functions F1, F2,

d∞(Q1, Q2) = sup
x

|F1(x) − F2(x)|. (9.5)

Theorem 9.1. Assume 0 < σ2 ≡ var g(X1) < ∞. Then, with probability one,

d∞
(
L ∗ (√n(Tn − T (P ))

)
, L

(√
n(T ∗

n − T (P̂n))
))

−→ 0 as n → ∞,

where L ∗ denotes law under P̂n.

Proof. We will prove the result under the additional assumption E|g(X1)|3 < ∞.
(The general case is proved under Remark 9.1.) It is enough to consider the case
g(x) = x. Write μ = EX1, σ

2 = varX1, ρ3 = E|X1 − μ|3. We will show that the

P̂n-distribution of
√
n(X

∗ − X) approximates the P -distribution of
√
n(X − μ)

(almost surely). Since the latter distribution converges to Φσ2 (x), it is enough to

show that the P̂n-distribution of
√
n(X

∗ −X) converges to Φσ2 (almost surely, or
in probability). Now, by the Berry–Esséen Theorem,1

∣
∣
∣P̂n

(√
n(X

∗ −X) ≤ x
)
− Φσ̂2(x)

∣
∣
∣ ≤ ∗n, (9.6)

where σ̂2 = 1
n

∑n
i=1(Xi −X)2, and

∗n =
n− 1

2
1
n

∑n
i=1 |Xi −X|3
σ̂3

−→ 0 a.s. as n → ∞.

To see this note that σ̂2 = 1
n

∑n
i=1[(Xi − μ)2 + (X − μ)2 − 2(Xi − μ)(X − μ)] =

1
n

∑n
i=1(Xi − μ)2 − (X − μ)2 → E(X1 − μ)2 = σ2 a.s. Also, 1

n

∑n
i=1 |Xi −X|3 ≤

1
n

∑n
i=1 2

3−1(|Xi − μ|3 + |X − μ|3) → 4ρ3 a.s., using the elementary inequality

|a+ b|p ≤ 2p−1 (|a|p + |b|p) ∀ p ≥ 1.

Hence ∗n → 0 a.s. Next, 1√
2πσ̂2

e−z2/2σ̂2 −→ 1√
2πσ2

e−z2/2σ2

as n → ∞, (for all ω,

outside a setN of probability zero). Hence, by Scheffé’s Theorem, Φσ̂2(x) → Φσ2 (x)
uniformly for all x, outside N). ��
1 See, e.g., Bhattacharya and Rao (1976, pp. 110).
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Remark 9.1. Write g = 1
n

∑n
i=1 g(Xi), s

2
n = 1

n

∑n
i=1(g(Xi) − g)2. Now, condition-

ally given P̂n, Y
∗
n,i := (g(X∗

ni)− g) is a triangular array of i.i.d. random variables

with mean zero and variance s2n (1 ≤ i ≤ n; n ≥ 1). Also, for each ε > 0,

E∗
n∑

i=1

((
Y ∗
n,i√
n

)2

· 1{∣
∣
∣
∣
Y ∗
n,i√
n

∣
∣
∣
∣>ε

}

)

= E∗Y ∗2

n,11{|Y ∗
n,1|>ε

√
n}

=
1

n

n∑

i=1

(g(Xi)− g)21{|g(Xi)−g|>ε
√
n} (9.7)

whose expectation
E
[
(g(X1)− g)2 · 1{|g(X1)−g|>ε

√
n}
]

goes to zero. This implies that there exists a sequence εn ↓ 0 such that the last
expectation goes to zero with εn in place of ε. One may now apply the Lindeberg–
Feller central limit theorem. Since s2n → σ2 by SLLN, it follows that the Kol-
mogorov distance between the (bootstrap) distribution of T ∗

n = Σn
i=1Y

∗
n,i (under

P̂n) and the distribution (under P ) of Tn = g − Eg(X1) goes to zero, a.s.

Remark 9.2. It may be shown that for linear statistics Tn, the bootstrap approxi-
mation of the distribution is valid (i.e., consistent in the Kolmogorov distance) if
and only if Tn is asymptotically normal. A similar phenomenon holds for more gen-
eral statistics (See Giné and Zinn 1989, 1990). Thus, roughly speaking, bootstrap
works only when classical Gaussian approximation works (with relatively minor
exceptions). Various counterexamples highlight the inconsistency of the bootstrap
estimate when the conditions for the validity of classical asymptotics break down
(See, e.g., Athreya 1987).

9.2.2 Smooth Functions of Sample Averages

Let Zi = (f1(Xi), f2(Xi), . . . , fk(Xi)) be a vector of sample characteristics of the
ith observation (1 ≤ i ≤ n). Here fj are real-valued measurable functions such
that Ef2

j (X1) < ∞ for 1 ≤ j ≤ k. Let

Z =
1

n

n∑

i=1

Zi =

(
1

n

n∑

i=1

f1(Xi), . . . ,
1

n

n∑

i=1

fk(Xi)

)

,

μ := EZi = (Ef1(X1), . . . , Efk(X1)). (9.8)

Consider a statistic Tn = H(Z), where H is a continuously differentiable function
in a neighborhood of μ in R

k. We have seen earlier (using the delta method)

that T̂n − H(μ) equals (Z − μ) · (grad H)(μ) + op(n
− 1

2 ). Therefore, one needs
to look only at the linear statistic (Z − μ) · (grad H)(μ). The same is true for

T ∗
n − Tn = H(Z

∗
) − H(Z), conditionally given the empirical P̂n = 1

n

∑n
i=1 δZi .

Hence, by Remark 9.1 above,

d∞(L ∗(T ∗
n − Tn),L (Tn −H(μ))) −→ 0 in probability. (9.9)
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9.2.3 Linear Regression

Consider the regression model

Y ≡

⎛

⎜
⎜
⎜
⎝

Y1

Y2

...
Yn

⎞

⎟
⎟
⎟
⎠

= Xβ + ε, (9.10)

where X is the known (nonrandom) n× p design matrix,

X =

⎡

⎢
⎢
⎢
⎢
⎣

X11 X12 · · · X1p

X21 X22 · · · X2p

· · ·
· · ·

Xn1 Xn2 · · · Xnp

⎤

⎥
⎥
⎥
⎥
⎦

(9.11)

β = (β1β2 . . . βp)
′ is the p × 1 column vector of unknown parameters to be esti-

mated, and ε = (ε1, ε2, . . . , εn)
′ is the n×1 column vector of i.i.d. random variables

satisfying
Eεi = 0, 0 < σ2 ≡ Eε2i < ∞. (9.12)

We will make the standard assumption that X is of full rank p (n ≥ p). Then the

least square estimator β̂ of β is given by

β̂ = (X ′X)−1X ′Y ≡ (X ′X)−1X ′(Xβ + ε)

= β + (X ′X)−1X ′ε, (9.13)

so that β̂ − β = (X ′X)−1X ′ε, and the covariance matrix of β̂ is given by

cov β̂ = (X ′X)−1X ′σ2IX(X ′X)−1 = σ2(X ′X)−1. (9.14)

The estimated residuals are given by

ε̂is := ε̂i − ε̂, with ε̂i = Yi −Xiβ̂ (1 ≤ i ≤ n) and

ε̂ =
1

n

n∑

i=1

ε̂i, (9.15)

where Xi is the ith row vector of X

Xi = (Xi1, Xi2, . . . , Xip) (1 ≤ i ≤ n). (9.16)

The shifted empirical distribution of the residuals is P̃n := 1
n

∑n
i=1 δε̂is . Let

Tn = (X ′X)
1
2 (β̂ − β) ≡ (X ′X)−

1
2X ′ε

T ∗
n = (X ′X)

1
2 (β∗ − β̂) = (X ′X)−

1
2X ′ε∗, (9.17)

Where ε∗ = (ε∗1, . . . , ε
∗
n)

′ with ε∗i (1 ≤ i ≤ n) i.i.d. with common distribution P̃n

(conditionally given the estimated residuals ε̂i (1 ≤ i ≤ n)), and

β∗ = β̂ + (X ′X)−1X ′ε∗. (9.18)
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We will show that the bootstrapped distribution of T ∗
n is consistent for the distri-

bution of Tn, under an appropriate condition on X .
For this let us introduce the Mallows distance d2 on the space P (Rk) of

probability measures on (the Borel sigma-field of) Rk:

d2(P1, P2) = (inf E‖U − V ‖2) 1
2 (P1, P2 ∈ P(Rk)), (9.19)

where the infimum is over all random vectors U, V (defined on some probabil-
ity space, arbitrary) such that U has distribution P1 and V has distribution P2.
Equivalently, one could define d22(P1, P2) = inf

∫
R2k ‖u − v‖2Q(dudv), where the

infimum is over all distributions Q on R
2k = R

k × R
k, such that the distribution

of the vectors of the first k coordinates u is P1 and that of the last k coordinates
v is P2. It is known (See Bickel and Freedman 1981) that

d2(Pn, P ) −→ 0 ⇐⇒ (i) Pn → P weakly,

and (ii) all first and second order moments of Pn converge

to those of P . (9.20)

For the following results due to Bickel and Freedman (1983), let πn(P ) denote
the distribution of Tn under a common distribution P of the i.i.d. residuals εi, and
πn,c(P ) the corresponding distribution of c′Tn, for c ∈ R

p.

Proposition 9.1. Let X ′X be nonsingular, and P and Q two probability measures
for the residuals εi such that Eεi = 0, Eε2i < ∞ under both P and Q. Then

d2(πn(P ), πn(Q)) ≤ √
p d2(P,Q), (9.21)

and
d2(πn,c(P ), πn,c(Q)) ≤ ‖c‖d2(P,Q).

Proof. Let (Ui, Vi), 1 ≤ i ≤ n, be i.i.d. with L (Ui) = P , L (Vi) = Q. Write

U = (U1, . . . , Un)
′, V = (V1, . . . , Vn)

′, Z = X(X ′X)−
1
2 . Let ‘inf’ below be the

infimum over all such U, V . Then

d22(πn(P ), πn(Q)) ≤ inf E‖Z ′(U − V )‖2

= inf

p∑

r=1

E

(
n∑

i=1

Zir(Ui − Vi)

)2

=

(
p∑

r=1

n∑

i=1

Z2
ir

)

inf E(Ui − Vi)
2

= (Trace of Z ′Z)d22(P,Q) = pd22(P,Q),

since Z ′Z is the p× p identity matrix. This proves (9.21). Similarly,

d22(πn,c(P ), πn,c(Q)) ≤ inf E(c′Z ′(U − V ))2

= inf E(c′Z ′(U − V ) · (U − V )′Zc)
= inf(c′Z ′{E(U − V )(U − V )′}Zc)
= inf c′Z ′E(U1 − V1)

2In×nZc = inf c′Z ′E(U1 − V1)
2Zc

= (c′Z ′Zc)d22(P,Q) = c′cd22(P,Q).

��
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Theorem 9.2. Suppose that X ′X is nonsingular for all sufficiently large n,
Eεi = 0, 0 < σ2 = Eε2i < ∞. Then

d2(πn(P̃n), πn(P )) −→ 0 in probability, if
p+ 1

n
→ 0. (9.22)

Proof. First note that, writing ε = 1
n

∑n
i=1 εi, ε̂ =

1
n

∑n
i=1 ε̂i,

d22(P̃n, P̂n) ≤ n−1
n∑

i=1

[
(ε̂i − ε̂)− εi

]2

= n−1
n∑

i=1

[
ε̂i − εi − (ε̂− ε)

]2
= n−1

n∑

i=1

[
ε̂i − εi − (ε̂− ε)

]2
+ ε2

≤ n−1
n∑

i=1

(ε̂i − εi)
2 + ε2

= n−1
n∑

i=1

(Xi(β̂ − β))2 + ε2

= n−1
n∑

i=1

p∑

r,r′=1

XirXir′(β̂r − βr)(β̂r′ − βr′) + ε2

=

p∑

r,r′=1

(

n−1
n∑

i=1

XirXir′

)

(β̂r − βr)(β̂r′ − βr′) + ε2

=
1

n
(β̂ − β)′X ′X(β̂ − β) + ε2 =

1

n
ε′X(X ′X)−1X ′X(X ′X)−1X ′ε+ ε2

=
1

n
ε′X(X ′X)−1X ′ε+ ε2. (9.23)

Therefore,

Ed22(P̃n, P̂n) ≤ σ2

n
(Trace of X(X ′X)−1X ′) +

σ2

n
=

σ2

n
(p+ 1). (9.24)

To see this, let A = X(X ′X)−1X ′. Then A′ = A and A2 = A. Hence the eigen-
values of A are 0 or 1, and the number of 1’s equals the rank of A. Clearly Rank
A ≤ p. But AX = X , the p column vectors of X are eigenvectors of A with
eigenvalues and X has rank p. Hence Rank A = p.

Using (9.24) and the fact (See (9.20))

d2(P̂n, P ) −→ 0 in probability, (9.25)

one arrives at

d2(P̃n, P ) −→ 0 in probability if
p+ 1

n
−→ 0. (9.26)

Remark 9.3. If one lets p be fixed (as is usually the case), then the bootstrap esti-

mate of the distribution of Tn = (X ′X)
1
2 (θ̂−θ) is consistent if X ′X is nonsingular.

On the other hand, Tn is asymptotically Normal if and only if (i) X ′X is nonsin-
gular and (ii) the maximum diagonal element of A = X(X ′X)−1X ′ goes to zero as
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n → ∞ (See Theorem 6.4, Chap. 6). Thus the bootstrap estimate may be consis-
tent even in the case the CLT does not hold. This is a rather exceptional example
of the consistency of the bootstrap in the absence of a valid Normal approximation
(See Remark 9.2).

9.3 Notes and References

The main sources for this chapter are Efron (1979), who introduced the boot-
strap, and Efron and Tibshirani (1994) where one can find detailed procedures
for various bootstrapping techniques and many applications with real data. Sec-
tion 9.2.3 is due to Bickel and Freedman (1981, 1983). More extensive references
to the bootstrap appear in Chap. 11.

Exercises for Chap. 9

Exercises for Sects. 9.1, 9.2

Ex. 9.1. We reproduce from Diaconis and Efron (1983) the following data of
Y = LSAT (the average score of the entering class of the law school on a national
test), and X = GPA (the average grade-point average for the class), of n = 15
randomly chosen law schools from a population ofN = 82 participating law schools
in the U.S.

School

Y = LSAT 576 635 558 578 666 580 555 661 651 605 653 575 545 572 594

X = GPA 3.39 3.30 2.81 3.03 3.44 3.07 3.00 3.43 3.36 3.13 3.12 2.74 2.76 2.88 2.96

(a) Compute the sample correlation coefficient r = rX,Y .
(b) Take M = 200 (bootstrap) samples of size n = 15 each from the above data

and compute the corresponding 200 bootstrap values r∗j (j = 1, . . . , 200) of the
correlation coefficient.

(c) Construct a 90% percentile bootstrap confidence interval for the population
coefficient of correlation ρ = ρX,Y . [True value of ρ is 0.761.]

(d) Find the bootstrap estimate of the standard error of r.
(e) Construct a classical CLT based confidence interval for ρ based on the above

sample of size n = 15 [Hint: Use (6.67) to estimate the standard error of r].

Ex. 9.2. Consider the data in Exercise 9.1, and assume that the regression of Y
on X is linear: Y = α+ βx+ ε, with ε having mean zero and finite variance.

(a) Find the least squares estimates α̂, β̂.
(b) Find a 90% percentile bootstrap confidence interval for β, and one for α.
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Ex. 9.3. Consider the AR(2) model Xn = 1 + 3
2Xn−1 − 9

16Xn−2 + εn (n ≥ 2),
with εn (n ≥ 2) i.i.d. N(0, 1) and independent of (X0, X1).

(a) Show that the model satisfies the stability condition (8.170) and find the sta-
tionary distribution π of the Markov process Yn = (Xn−1, Xn)

′, n ≥ 1. In
particular, show that π is Gaussian.

(b) Show that under π, {Xn : n ≥ 0} is a stationary Gaussian process.
(c) Draw a random sample (X0, X1, . . . , X100) of the time series from the above

AR(2) model.
(d) Suppose one is told that the data in (c) came from a stable stationary A(2)

model Xn = α + β1Xn−1 + β2Xn−2 + εn with an i.i.d. Gaussian N(0, σ2).

Compute the maximum likelihood estimators α̂, β̂1, β̂2, σ̂
2 of α, β1, β2, σ

2.
(e) Construct a classical (i.e., CLT based) 95% confidence interval for β2 in (d)

above.
(f) Construct a 95% percentile bootstrap confidence interval for β2, by (i) resam-

pling from the estimated residuals ε̂j (2 ≤ j ≤ 100) given by (8.177), with
sample size 90, (ii) plugging the bootstrap sample ε∗j (2 ≤ n ≤ 100) in the

formula X∗
n = α̂ + β̂1X

∗
n−1 + ε∗n (2 ≤ n ≤ 100), beginning with X∗

0 = X0,
X∗

1 = X1, to obtain a bootstrap sample (X∗
0 , X

∗
1 , . . . , X

∗
100) of the sequence

(X0, X1, . . . , X100), (iii) computing the bootstrap value of β∗
2 of the statistic

β̂2 using (d), and (iv) repeating (i)–(iii) many times (say M = 500 times)
to obtain the quantiles q∗α/2, q

∗
1−α/2 (α = 0.025) of the M values of β∗

2 so
obtained.

References

Athreya, K. B. (1987). Bootstrap of the mean in the infinite variance case. Annals
of Statistics, 15 (2), 724–731.

Bhattacharya, R., & Waymire, E. C. (1990). Stochastic processes with applications.
Philadelphia: SIAM.

Bickel, P. J., & Freedman, D. A. (1981). Some asymptotic theory for the Bootstrap.
Annals of Statistics, 9 (6), 1196–1217.

Bickel, P. J., & Freedman, D. A. (1983). Bootstrapping regression models with
many parameters. In A festschrift for Erich L. Lehmann (pp. 28–48). Belmont:
Wadsworth.

Efron, B. (1979). Bootstrap methods: Another look at the jackknife. Annals of
Statistics, 7, 1–26.

Efron, B., & Tibshirani, T. (1994). An introduction to the bootstrap. New York:
Chapman and Hall.
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Chapter 10

Nonparametric Curve Estimation

Abstract This chapter provides an introduction to nonparametric estimations of
densities and regression functions by the kernel method.

10.1 Nonparametric Density Estimation

Let X1, X2, . . . , Xn be a random sample from a distribution P on the real line.
A consistent estimator of P is the empirical P̂n = 1

n

∑n
i=1 δXi , assigning mass

1
n to each of the points X1, X2, . . . , Xn. By the Strong Law of Large Numbers,

P̂n(B) ≡ 1
n

∑n
i=1 1B(Xi) → E1B(X1) = P (B) almost surely, as n → ∞, for each

Borel set B. With a little effort one can prove (the Glivenko–Cantelli Theorem):

sup
x∈R

∣
∣
∣F̂n(x)− F (x)

∣
∣
∣ −→ 0 as n → ∞, almost surely. (10.1)

Here F̂n(x) ≡ P̂n((−∞, x]) is the cumulative distribution function of P̂n and F (x)
that of P . If F is continuous on R then one can prove, in addition to (10.1), that

sup
x∈R

√
n
∣
∣
∣F̂n(x)− F (x)

∣
∣
∣

L−→ W, (10.2)

where W = max{|B∗
t | : 0 ≤ t ≤ 1}, {B∗

t : 0 ≤ t ≤ 1} being the so-called Brownian
Bridge (See, e.g., Bhattacharya and Waymire 1990, pp. 37–39). One may use (10.2)
to obtain a confidence band for F (·).

Suppose now that F is absolutely continuous with a density f . Since P̂n is dis-
crete, to estimate f one may use the density of the random variable X̂+hZ where
X̂ has the distribution P̂n (conditionally, given X1, . . . , Xn) and Z is independent

of X̂ and has a nice density, say, K, and h is a small positive number, called the
bandwidth satisfying

h ≡ hn −→ 0 as n → ∞. (10.3)

Note that X̂ + hZ has the density

f̂n(x) =
1

n

n∑

i=1

Kh(x−Xi), (10.4)
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where Kh is the density of hZ, namely,

Kh(y) =
1

h
K
(y

h

)
. (10.5)

To see that f̂n is the density of X̂ + hZ, note that the latter has the distribution
function

P̃rob(X̂ + hZ ≤ x) = Ẽ[P̃rob(hZ ≤ x− X̂|X̂)]

=
1

n

n∑

i=1

∫ x−Xi

−∞
Kh(u)du, (10.6)

where the superscript ˜ indicates that the probabilities are computed given
X1, . . . , Xn. Differentiating (10.6) w.r.t. x one arrives at (10.4).

Alternatively, one may think of (10.4) as obtained by spreading out the point
mass δXi with a density centered at Xi and concentrating most of the density near

Xi (1 ≤ i ≤ n). Now we show that the bias Ef̂n(x) − f(x) → 0. For this write

Ef̂n(x) = E
1

n

n∑

i=1

1

h
K

(
x−Xi

h

)

= E
1

h
K

(
x−X1

h

)

=
1

h

∫ ∞

−∞
K

(
x− y

h

)

f(y)dy

=

∫ ∞

−∞
K(v)f(x− vh)dv −→ f(x) as h ↓ 0, (10.7)

if f is bounded and is continuous at x (by the Lebesgue Dominated Convergence
Theorem). Also,

var(f̂n(x)) =
1

n
varKh(x−X1)

=
1

n

{
1

h2
EK2

(
x−X1

h

)

−
(

E
1

h
K

(
x−X1

h

))2
}

=
1

nh

∫ ∞

−∞
K2(v)f(x − vh)dv − 1

n

(∫ ∞

−∞
K(v)f(x− vh)dv

)2

−→ 0,

(10.8)

if (1) f is bounded, (2) f is continuous at x, (3) K2(v) is integrable,

nh −→ ∞ and h −→ 0 (as n → ∞). (10.9)

Thus, under the hypothesis (1)–(3) and (10.9), one has (by (10.7) and (10.8))

E
(
f̂n(x) − f(x)

)2
= var f̂n(x) + (Bias f̂n(x))

2 −→ 0 as n → ∞. (10.10)

In other words, under the above assumptions, f̂n(x) → f(x) in probability as
n → ∞.

Note that the convergences (10.7) and (10.8) do not really require boundedness
of f on all of R. For example, if one takes K to have a compact support then
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it is enough to require that f is continuous at x. We have proved that under
mild assumptions the so-called kernel estimator (with kernel K) is a consistent
estimator of f at every point of continuity of f .

By choosing an appropriately smooth and symmetric kernel K one may make
the error of approximation f̂n(x)− f(x) reasonably small.

A measure of the (squared) error of approximation is provided by the so-called
mean integrated squared error, or MISE, given by

MISE(f̂n) =

∫

R

E[f̂n(x)− f(x)]2dx =

∫

R

[var f̂n(x) + (Bias f̂n(x)]
2dx. (10.11)

Write

c1 =

∫

v2K(v)dv, c2 =

∫

K2(v)dv, c3 =

∫

(f ′′(x))2dx, (10.12)

and assume c1, c2, c3 are finite and that

∫

K(v)dv = 1,

∫

vK(v)dv = 0. (10.13)

Now it follows from (10.7) that

Ef̂n(x) =

∫

R

K(v)

[

f(x)− vhf ′(x) +
v2h2

2
f ′′(x) + o(h2)

]

dv

= f(x) +
c1h

2

2
f ′′(x) + o(h2),

(Bias f̂n)(x) =
c1h

2

2
f ′′(x) + o(h2), (10.14)

if f ′′ is continuous and bounded. Then

∫

R

(Bias f̂n)
2(x)dx =

c3c
2
1h

4

4
+ o(h4). (10.15)

Next, by (10.8) and (10.9),

var f̂n(x) =
c2f(x)

nh
+O

(
1

n

)

,

∫

R

var f̂n(x)dx =
c2
nh

+O

(
1

n

)

, as n → ∞. (10.16)

Hence

MISE(f̂n) =
c21c3
4

h4 +
c2
nh

+ o(h4) +O

(
1

n

)

. (10.17)

Neglecting the two smaller order terms, the asymptotically optimal choice of the
bandwidth h, for a given kernel K as above, is obtained by

hn = argmin
h

{
c21c3
4

h4 +
c2
nh

}

=

(
c2
c21c3

) 1
5

n− 1
5 . (10.18)
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The corresponding asymptotically minimal MISE is

MISE f̂n =
c4
n4/5

+ o
(
n−4/5

)
c4 :=

5

4

(
c
2/5
1 c

4/5
2 c

1/5
3

)
. (10.19)

We have arrived at the following result.

Theorem 10.1. Assume f ′′ is continuous and bounded. Then for any choice of a
symmetric kernel K satisfying (10.13), and 0 < ci < ∞ (i = 1, 2, 3), the asymp-
totically optimal bandwidth h is given by the extreme right side of (10.18), and the
asymptotically minimal MISE is given by (10.19).

From the expression (10.4) it follows that f̂n(x) is, for each n, a sum of i.i.d.
random variables. By the Lindeberg CLT it now follows that, under the hypothesis
of Theorem 10.1 one has (Exercise 10.1)

f̂n(x) − Ef̂n(x)√

varf̂n(x)

L−→ N(0, 1), if f(x) > 0. (10.20)

Also check, using (10.14), (10.15) and (10.18), that

Ef̂n(x)− f(x)
√

varf̂n(x)
−→ c

− 1
2

3

f ′′(x)
√
f(x)

= γ, say, if f(x) > 0. (10.21)

Hence
f̂n(x)− f(x)
√

varf̂n(x)

L−→ N(γ, 1) if f(x) > 0. (10.22)

To remove the asymptotic bias γ, one may choose a slightly sub-optimal bandwidth
hn = o(n− 1

5 ) (Exercise 10.2). Since varf̂n(x) involves f
′′(x), for setting confidence

regions for f(x), one may resort to bootstrapping (See Hall 1992).

Remark 10.1. It has been shown by Epanechnikov (1969) that the constant c4 in
MISE is minimized (under the hypothesis of Theorem 10.1) by the kernel

K(v) =
3

4
√
5

(

1− 1

5
v2
)

1{|v|≤√
5 }. (10.23)

However, the loss of efficiency is rather small if, instead of (10.23), one chooses any
symmetric kernel with high concentration, such as the (standard) Normal density
or the triangular density (See Lehmann 1999, pp. 415, 416).

Remark 10.2 (Optimal Choice of Bandwidth and Cross Validation). The “optimal”
hn given by (10.18) is not usable in practice because it involves the second deriva-
tive of the unknown density f (see (10.12)). Following (Tsybakov 2009, pp. 28,
29), we now describe a practical choice of an optimal bandwidth h(CV ) given by

h(CV ) = argmin
h>0

CV (h),

CV (h) :=

∫

f̂2
n(x)dx − 2

n

n∑

i=1

f̂n,−i(Xi), (10.24)
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where f̂n,−i(x) ≡ ((n− 1)h)−1
∑

j �=i K(
x−Xj

h ) is the kernel estimate of f(x) using
the n − 1 observations {Xj : j �= i} omitting Xi. The quantity CV (h) in (10.24)

is called the cross-validation. To prove this optimality observe that MISE(f̂n) =

E
∫
(f̂n(x) − f(x))2dx = E

∫
f̂2
n(x)dx − 2E

∫
f(x)f̂n(x)dx +

∫
f2(x)dx. Of the

three terms,
∫
f2(x)dx does not involve h, and

∫
f̂2
n(x)dx is an unbiased esti-

mate of its expectation. We now seek an unbiased estimate of the middle term
E
∫
f(x)f̂n(x)dx, and this is provided by Â = n−1

∑n
i=1 f̂n,−i(Xi) (See Exer-

cise 10.4). Thus E(CV (h)) +
∫
f2(x)dx = MISE(f̂n), so that the functions

E(CV (h)) and MISE(f̂n) have the same minimizing h.

The asymptotic theory presented above has extensions to the multidimensional
case. We provide a brief sketch of the arguments here, leaving the details to
Exercise 10.3. Let f be a probability density function on R

d, and let K be a
symmetric kernel density with finite second moments c1,i,j =

∫
vivjK(v)dv, and

with c2 =
∫
K2(v)dv. Then if f ′′ is continuous and bounded, one uses the kernel

estimate

f̂n(x) =
1

nhd

n∑

i=1

K

(
x−Xi

h

)

, (10.25)

based on i.i.d. observations X1, . . . , Xn with p.d.f. f . Then

Ef̂n(x) = E
1

hd
K

(
x−X1

h

)

=
1

hd

∫

Rd

K

(
x− v

h

)

f(v)dv1 . . . dvd

=

∫

Rd

K(u)f(x− hu)du

=

∫

Rd

K(u)

[

f(x)− hu · grad f(x) + h2

2

∑
uiuj

∂2f(x)

∂xi∂xj
+ o(h2)

]

du

= f(x) +
h2

2

∑
c1,i,j

∂2f(x)

∂xi∂xj
+ o(h2),

so that

Bias f̂n(x) = Ef̂n(x)− f(x) =
h2

2

∑
c1,i,j

∂2f(x)

∂xi∂xj
+ o(h2). (10.26)

Also,

E

(
1

hd
K

(
x−X1

h

))2

=
hd

h2d

∫

Rd

K2(u)

[

f(x)− hu · gradf(x)

+
h2

2

∑
uiuj

∂2f(x)

∂xi∂xj
+ o(h2)

]

du

=
1

hd
c2f(x) + o

(
h2

hd

)

,

var

(
1

hd
K

(
x−X1

h

))

=
1

hd
c2f(x) +O(1)

var(f̂n(x)) =
1

nhd
c2f(x) + o

(
1

nhd

)

. (10.27)
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Hence

E(f̂n(x)− f(x))2 = (Bias f̂n(x))
2 + var(f̂n(x))

=
1

nhd
c2f(x) +

h4

4

⎛

⎝
∑

i,j

c1,i,j
∂2f(x)

∂xi∂xj

⎞

⎠

2

+o(h4) + o

(
1

nhd

)

. (10.28)

Therefore,

MISE (f̂n) =

∫

Rd

E(f̂n(x)−f(x))2dx =
c2
nhd

+
h4

4
c̃3+o(h4)+o

(
1

nhd

)

, (10.29)

where

c̃3 =

∫

Rd

⎛

⎝
∑

i,j

c1,i,j
∂2f(x)

∂xi∂xj

⎞

⎠

2

dx.

As before, the asymptotically optimal bandwidth is given by

hn = argmin
h

{
h4

4
c̃3 +

c2
nhd

}

=

(
c2d

c̃3

) 1
d+4

n− 1
d+4 , (10.30)

and the asymptotically minimal MISE is

MISE (f̂n) = C
4

d+4

2 C̃
d

d+4

3

(
1

4
d

4
d+4 + d−

d
d+4

)

n− 4
d+4 + o

(
n− 4

d+4

)
. (10.31)

Multi-dimensional versions of (10.20)–(10.22) may now be derived (Exercise 10.3).

10.2 Nonparametric Regression-Kernel Estimation

We now turn to the problem of nonparametric estimation of a regression function
f(x) = E[Y | X = x], based on observations (Xj , Yj), j = 1, . . . , n. Assume first
that the regressor X is also stochastic and that (Xj , Yj), j = 1, . . . , n, are i.i.d.
with a density g1(x) of X and a conditional distribution G2(dy | x) of Y , given
X = x. Then, with a suitable symmetric kernel K, one has, by the SLLN, the
following convergence almost surely as n → ∞, for every x and every h > 0:

n−1h−1
∑

1≤j≤n

YjK

(
x−Xj

h

)

−→ h−1EYjK

(
x−Xj

h

)

=

∫

yh−1K

(
x− u

h

)

g1(u)G2(dy | u)du. (10.32)

As h ↓ 0, under appropriate continuity conditions the last integral converges to∫
yg1(x)G2(dy | x), since h−1K((x − u)/h)du converges in distribution to the

point mass at x, namely, δx. Thus the left side of (10.32) approximates g1(x)E[Y |
X = x] = g1(x)f(x) for small h and large n. Since, by the preceding section,
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n−1h−1
∑

1≤j≤n K((x − Xj)/h) → g1(x) as n → ∞ and h ↓ 0, one obtains the
Nadaraya-Watson estimator of f(x), namely,

n−1h−1
∑

1≤j≤n

YjK

(
x−Xj

h

)

/n−1h−1
∑

1≤j≤n

K

(
x−Xj

h

)

=
∑

1≤j≤n

YjK

(
x−Xj

h

)

/
∑

1≤j≤n

K

(
x−Xj

h

)

. (10.33)

Note that the argument goes through ifXjs satisfy the convergence of the empirical
measure n−1

∑
δxj to a probability distribution g1(x)dx as n → ∞. This is also

satisfied by a non-stochastic design of X, with the same convergence. For example,
if one takes Xjs to be equidistributed in [0, 1], Xj = j/n (j = 1, . . . , n), then the
denominator on the left in (10.32) converges to g1(x) = 1, while the numerator
converges to f(x)g1(x) = f(x).

We will now derive in detail the properties of a kernel estimator due to Gasser
and Müller (1984) instead of the Nadaraya-Watson estimator. Both kernel esti-
mators are asymptotically optimal among nonparametric estimators in a sense to
be defined later. However, the former seems to perform a little better in simula-
tion studies, and is more suitable with non-equidistant design points of (a non-
stochastic) X . The proof of the asymptotic optimality of the Nadaraya-Watson
estimator is similar, and is left as an exercise (Exercise 10.5).

First consider a non-stochastic X with equidistant design points labeled as
xj = j/n (j = 1,. . . , n). Also denote x0 = 0. The domain over which the function
f is estimated is taken to be [0, 1] without any essential loss of generality. Let K
be a smooth symmetric probability density with support [−1, 1] (e.g., the rescaled
Epanechnikov kernel (see Remark 10.1)). Assume the nonparametric regression
model

Yj = f(xj) + εj (j = 1, . . . , n), (xj = j/n, (j = 1, . . . , n) ∈ [0, 1]), (10.34)

where εj are i.i.d., satisfying

Eεj = 0, 0 < Eε2j = σ2 < ∞. (10.35)

Theorem 10.2. Let f be twice continuously differentiable on [0, 1]. Consider the
estimator of f given by

fh(x) = h−1
∑

1≤j≤n

Yj

∫

(xj−1,xj]

K

(
x− u

h

)

du, (10.36)

where the kernel K is a probability density which is symmetric and twice contin-
uously differentiable with support [−1, 1]. (a) Then, as h ↓ 0 and n → ∞, one
has

(i) Efh(x) = f(x) +
(c1
2

)
h2f ′′(x) + o(h2) +O(n−1), (h < x < 1− h),

(ii) Var(fh(x)) ≤ σ2c4(nh)
−1, (0 < x < 1). (10.37)

Here c1 is as in (10.12), and c4 = 2(max{K2(u) : u ∈ [−1, 1]}).

(b) The expected squared error of fh(x), for h < x < 1 − h, attains its minimal
rate O(n−4/5) with h = b3n

−1/5 for any b3 > 0.
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Proof. (a) By the labeling used, EYj = f(xj), and

Efh(x) = h−1
∑

1≤j≤n

f(xj)

∫

(xj−1,x]

K((x− u)/h)du,

and
∣
∣
∣
∣
∣
Efh(x) − h−1

∫

[0,1]

K((x− u)/h)f(u)du

∣
∣
∣
∣
∣

= h−1

∣
∣
∣
∣
∣
∣

∑

1≤j≤n

∫

(xj−1,xj]

K((x− u)/h)(f(xj)− f(u))du

∣
∣
∣
∣
∣
∣

≤ ch−1n−1

∫

[0,1]

K((x− u)/h)du

= ch−1n−1h

∫

[−1,1]

K(v)dv = cn−1 [c = max{|f ′(u)| : u ∈ [0, 1]}]. (10.38)

Now, as in the calculations (10.14), and (10.15), with c1, c2, c3 as in (10.12),
one has

f(x)− h−1

∫

[0,1]

K((x− u)/h)f(u)du = (c1h
2/2)f ′′(x) + o(h2), (10.39)

which, together with (10.38), yields the first relation in (10.37).
Next, by the mean value theorem, there exist vj ∈ [xj−1, xj ] such that

Var(fh(x)) = h−2σ2
∑

1≤j≤n

[∫

(xj−1,xj]

K((x− u)/h)du

]2

= h−2σ2
∑

1≤j≤n

K2((x− vj)/h)(xj − xj−1)
2

= n−2h−2σ2
∑

1≤j≤n

K2((x− vj)/h).

Since (x− vj)/h ∈ [−1, 1] only if vj ∈ [x−h, x+h], and there are at most 2nh
nonzero summands in the last sum, one derives the desired inequality

Var(fh(x)) ≤ 2n−1h−1σ2 (max{K2(u) : u ∈ [−1, 1]}). (10.40)

(b) It follows from (10.37) that for h < x < 1 − h, if one takes h = b3n
−1/5 for

some b3 > 0, then

Expected squared error of fh(x) = (Bias of fh(x))
2+Var(fh(x)) = O

(
n− 4

5

)
.

(10.41)

With a more precise estimation of Var(fh(x)) one can show that (See Eubank
1999, pp. 165–166) that

Var(fh(x)) = c2h
−1h−1σ2 +O(n−2h−2). (10.42)
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Hence the right side of (10.42) is minimized by h = b(x)n−1/5 for some appro-
priate constant b(x). This completes the proof of (b). ��

Remark 10.3. The proof of Theorem 10.2 is easily extended to the case of arbitrary
design points xj such that a/n < xi+1 − xi < b/n for all i = 0, 1, . . . , n (x0 = 0),
for any pair of positive constants a < b. If the regressor X is stochastic, then
the proof (with X and ε independent) extends to the case where X has a density
which is continuous and strictly positive on (0, 1).

Remark 10.4. The arguments above show that, under the hypothesis of Theo-
rem 10.2, the asymptotic optimal rate is given by O(n−4/5), over the class of
all kernels that may be used. It has actually been proved by Stone (1980), that
nonparametric estimators of the regression function f cannot have an integrated
squared error of smaller rate than O(n−4/5), no matter whether kernel or other
methods are used, provided f is required to be only twice continuously differen-
tiable.

As in the case of density estimation, one can establish the CLT for fh(x),
namely,

[f̂n(x)− Ef̂n(x)]/[Var(f̂n(x)]
1
2 −→ N(0, 1) in distribution as n → ∞, (10.43)

where f̂n(x) := fh(x) with h = b3n
−1/5 for some b3 > 0, and

[f̂n(x)− f(x)]/[Var(f̂n(x)]
1
2 −→ N(γ(x), 1) in distribution as n → ∞, (10.44)

where γ(x) = c′f ′′(x) arises from the bias term (10.37) and the variance
term (10.42). Also, just as in the case of density estimation (See Exercise 10.2),
by choosing the bandwidth to go to zero at a slightly faster rate than the optimal
rate, namely, h = o(n−1/5), one may prove the useful result

[fh(x)− f(x)]/[Var(fh(x)]
1
2 −→ N(0, 1) in distribution if h = o(n−1/5), n → ∞.

(10.45)

Remark 10.5. In the case of multiple regression, i.e., with a d-dimensional covariate
X, one can show in the same manner as in Sect. 10.1, that the optimal rate of the in-
tegrated squared error is O(n−4/(d+4)), attained with bandwidth h = c′′n−1/(d+4).
Simulation studies exhibit dramatic deteriorations in the performance of nonpara-
metric estimators of density and regression as d increases, a phenomenon often
referred to as the curse of dimensionality (See, e.g., Wasserman 2003, p. 319).

Remark 10.6. It may be noted that the bias term in (10.37) is computed only
for h < x < 1 − h. Unfortunately, for x beyond this range one does not get the
expected squared error to be as small as O(n−4/5), but rather O(n−3/4). For a
discussion of this so-called boundary effect, see Eubank (1999, p. 170).

Finally, we turn to the important problem of the data-driven choice of the op-
timal bandwidth h, which is not immediately available from the above discussion.
The most popular procedure for this is known as cross-validation, analogous to
that for density estimation (see Remark 10.2). In this method one seeks h which

minimizes the sum of squares
∑

1≤i≤n[Yi − f
(−i)
h (xi)]

2 = CV (h), where f
(−i)
h is

the kernel estimate of f using n − 1 observation pairs (xj , Yj), omitting the i-th
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one. Note that Yi − f
(−i)
h (xi) is the error of predicting Y by the kernel method at

the design point (or covariate value) xi, using the remaining n − 1 observations.
Also, n−1CV (h) is the estimate of the expected (integrated) prediction error us-
ing bandwidth h. Thus h = hn aims at minimizing this error. In Eubank (1999,
pp. 37–46), one can find a modified version called generalized cross-validation, or
GCV, as well. That this choice is asymptotically optimal is also shown by the
following result of C. Stone for the case of density estimation: If f̂n,h denotes the

estimate (10.4) for a given h, and f̂n,hn that with h = hn, then

MISE(f̂n,hn)/ inf
h

MISE(f̂n,h) −→ 1 in probability as n → ∞. (10.46)

10.3 Notes and References

A very readable text on the subject of this chapter is Eubank (1999). A more
comprehensive account of nonparametric density estimation is given in Silverman
(1986). A precise study of error rates may be found in Tsybakov (2009).

For monotone increasing regression in bioassay, Bhattacharya and Kong (2007)
study the asymptotics of nonparametric quantile estimates using a continuous ex-
tension of the so-called pool adjusted violators algorithm (PAV). Bhattacharya and
Lin (2010, 2011, 2013) improve upon this by providing asymptotically optimal pro-
cedures for bioassay and environmental risk assessment, and also provide extensive
data analysis and simulations for a comparative study of a number of different esti-
mation methods. Lin (2012) develops a general nonparametric theory of regression
in this context under order restrictions. Dette et al. (2005) and Dette and Scheder
(2010) use an inverse kernel method to design an asymptotically optimal procedure
for nonparametric quantile estimation in the order restricted context.

We have not discussed in this chapter the important method of nonparametric
regression using splines, because of some complications involving the statistical
inference involved. See Eubank (1999) for a fine treatment of optimal smoothing
splines, proving in particular the following result. Let the true regression curve
belong to the Sobolev class W 2

2 [0, 1], which is the completion of C2[0, 1] in L2[0, 1].
Then the optimal estimate in W 2

2 [0, 1] is the cubic spline with knots at the data
points (See Wahba 1990). Kong and Eubank (2006) derived the optimal monotone
cubic spline estimate and applied it to the quantal bioassay problem.

Exercises for Chap. 10

Exercises for Sects. 10.1, 10.2

Ex. 10.1. Let the hypothesis of Theorem 10.1 hold.

(a) Derive (10.19) and (10.22).

(b) Show that {(f̂n(x) − f(x))/

√

var f̂n(x) : x such that f(x) > 0} converges in
law to a Gaussian process, and compute the mean and covariance function of
this Gaussian process.
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Ex. 10.2. Assume that h ≡ hn = o(n−1/5) and (10.9) holds, and prove that with
this bandwidth (10.22) holds with γ = 0, under the hypothesis of Theorem 10.1.

Ex. 10.3. Consider a pdf f on R
d, having continuous and bounded second deriva-

tives.

(a) State and prove the analog of Theorem 10.1.
(b) Derive the multidimensional versions of (10.20)–(10.22).

Ex. 10.4. Prove that, in Remark 10.2, EÂ = E
∫
f(x)f̂n(x)dx, where Â =

n−1
∑n

i=1 f̂n,−i(Xi). [Hint: EÂ = Ef̂n,−1(X1) = 1
nEK((X1 − X2)/h) =

1
h

∫
K((x−y)/h)f(x)f(y)dxdy. Also,E

∫
f(x)f̂n(x)dx = 1

h

∫
f(x)EK

(
x−X1

h

)
dx =

1
h

∫
f(x)K

(
x−y
h

)
f(x)f(y)dxdy.]

Ex. 10.5. Extend Theorem 10.2 to the Nadaraya-Watson estimator (10.33).
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Part III

Special Topics



Chapter 11

Edgeworth Expansions and the Bootstrap

Abstract This chapter outlines the proof of the validity of a properly formu-
lated version of the formal Edgeworth expansion, and derives from it the precise
asymptotic rate of the coverage error of Efron’s bootstrap. A number of other
applications of Edgeworth expansions are outlined.

11.1 Cramér Type Expansion for the Multivariate CLT

Let Xj (j ≥ 1) be a sequence of k-dimensional random vectors with (common)
distribution Q, mean (vector) 0 and a nonsingular covariance matrix V. Assume
that ρs := E||X1||s < ∞ for some integer s ≥ 3. The Xj ’s have the common

characteristic function (c.f.) Q̂(ξ) := E(exp{iξ ·Xj}), ξ ∈ R
k. Let Sn = X1+ · · ·+

Xn. Then the c.f. of the distribution Qn of n− 1
2Sn is

Q̂n(ξ) = Q̂n
(
ξ/
√
n
)
, (11.1)

The cumulant generating function (c.g.f.) of Q in a neighborhood of ξ = 0 may be
expressed by a Taylor expansion as

log Q̂(ξ) = −ξ · V ξ/2 +

s∑

r=3

irλr(ξ)/r! + o(|ξ|s), (11.2)

where λr(ξ) is the r-th cumulant of the random variable ξ ·X1. Note that

λr(ξ) =
∑

|β|=r

(λβ/β!)ξ
β . (11.3)

Here β = (β1, . . . , βk) ⊂ Zk
+, |β| = β1 + · · · + βk. Also, λβ is the β-th cu-

mulant of X1 (i.e., λβ = i−|β|(Dβ log Q̂)(0)), β! = β1!β2! . . . βk! and (iξ)β =

(iξ1)
β1 . . . (iξk)

βk . Note that for, |β| = 3, λβ = μβ = EXβ
1 = EXβ1

1 . . . Xβk

k , where

D = (D1, D2, . . . , Dk), Dj = ∂/∂xj , (−D)β = (−1)|β|Dβ1

1 . . . Dβk

k ∀β ∈ Zk
+, and

ϕ
V

is the density of the k-dimensional Normal distribution with mean 0 and co-
variance matrix V.

© Springer-Verlag New York 2016
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The c.g.f. of Qn may then be expressed as

log Q̂n(ξ) = n log Q̂(ξ/
√
n )

= −ξ · V ξ/2 +

s∑

r=3

n−(r−2)/2irλr(ξ)/r! + o
(
n−(s−2)/2

)
,

so that

Q̂n(ξ) = exp{−ξ · Vξ} exp
{

s∑

r=3

n−(γ−2)/2 ir
λr(ξ)

r!

}

+ o
(
n−(s−2)/2

)
. (11.4)

Expanding the second factor on the right in powers of n− 1
2 , one has

Q̂n(ξ) = exp{−ξ · Vξ/2}
[

1 +

s−2∑

r=1

n−r/2P̃r(iξ)

]

+ o
(
n−(s−2)/2

)
, (11.5)

where Pr(iξ) is a polynomial in iξ. For example,

P̃1(iξ) =
i3λ3(ξ)

3!
=

i3

3!
E(ξ ·X1)

3 =
∑

|β|=3

λβ

β!
(iξ)β , (11.6)

The ‘formal’ density of Qn is then, by Fourier inversion,

ψs−2,n(x) =

[

1 +
s−2∑

r=1

n−r/2P̃r(−D)

]

ϕ
V
(x). (11.7)

In particular,

P̃1(−D∼)ϕ
V
(x) = −

∑

|β|=3

μβ

β!
Dβϕ

V
(x). (11.8)

In general, one has the following theorem. Here B(Rk) is the Borel sigma-field of
R

k (See Theorem 19.4 and Corollary 19.6 in Bhattacharya and Rao 1976).

Theorem 11.1. Suppose the p-fold convolution Q∗p (i.e., the distribution of X1+
· · · +Xp) has a nonzero absolutely continuous component for some positive inte-
ger p. Then, if ρs < ∞ for some integer s ≥ 3, one has

sup
B∈B(Rk)

|Qn(B)− Ψs−2,n(B)| = o(n−(s−2)/2), (11.9)

where Ψs−2,n is the finite signed measure whose density is ψs−2,n given by (11.7).

11.2 The Formal Edgeworth Expansion and Its Validity

A crucial factor underlying the expansion of the distribution Qn of the normalized
mean of i.i.d. random variables (or, vectors) is that the r-th cumulant (or v-th
cumulant with |v| = r) of Qn is ◦(n−(r−2)/2). Nearly a hundred years ago, Edge-
worth (1905) proposed an analogous expansion of distributions of more general
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statistics. In this section we sketch the main ideas needed to validate a properly
formulated version of Edgeworth’ s formal expansion. The details may be found
in Bhattacharya (1977), Bhattacharya and Ghosh (1978), or Bhattacharya and
Denker (1990).

Let Xj, 1 ≤ j ≤ n, be i.i.d. observations with values in Rm. Many important
statistics may be expressed as, or approximated adequately by, a smooth function
of a finite number, say, k of averaged sample characteristics (1/n)

∑n
j=1 fi(Xj),

1 ≤ i ≤ k. For simplicity we will consider only real-valued statistics, in which case
fi’ s are real-valued Borel measurable functions on R

m.
As simple examples, one may consider (1) the t-statistic, which is a func-

tion of X and (1/n)
∑

1≤j≤nX
2
j (Here m = 1, k = 2, f1(x) = x, f2(x) = x2),

and (2) the sample correlation coefficient, which is a function of X
(1)

, X
(2)

,

(1/n)
∑

1≤j≤n X
(1)
j X

(2)
j , (1/n)

∑
1≤j≤n(X

(1)
j )2, (1/n)

∑
1≤j≤n(X

(2)
j )2. (Here Xj =

(X
(1)
j , X

(2)
j ), m = 2, k = 5, f1(x) = x(1), f2(x) = x(2), f3(x) = x(1)x(2),

f4(x) = (x(1))2, f5(x) = (x(2))2.) Other important statistics to which the present
theory applies include M -estimators (e.g., maximum likelihood estimators) under
appropriate smoothness conditions. (See Bhattacharya and Ghosh 1978).

In general, define

Z = (1/n)
∑

1≤j≤n

Zj, Zj := (f1(Xj), f2(X2), . . . , fk(Xj),

μ = EZn = EZ = (Ef1(Xj), Ef2(Xj), . . . , Efk(Xj)). (11.10)

We will consider statistics of the formH(Z), whereH is a real-valued, (s−1)-times
continuously differentiable function on a neighborhood of μ ∈ R

k containing a ball
{z ∈ R

k : ||z − μ|| ≤ δ} for some δ > 0. As in the preceding section, s ≥ 3. By a
Taylor expansion around μ,

H(Z)−H(μ) = (gradH)(μ) · (Z − μ)

+

s−1∑

|β|=2

(DβH)(μ)(Z − μ)β/β! +R(Z, μ)

= Hs−1(Z − μ) +R(Z, μ), say, (11.11)

where the remainder satisfies

|R(Z, μ)| ≤ c13||Z − μ||s−1 on {||Z − μ|| ≤ δ},
|R(Z, μ)| = o(||Z − μ||s−1) as ||Z − μ||→0. (11.12)

Consider the normalized statistics

Wn :=
√
n (H(Z)−H(μ)) = W ′

n +
√
nR(Z, μ),

W ′
n :=

√
nHs−1(Z − μ)

= gradH(μ) · √n (Z − μ) +
s−1∑

|β|=2

n−(|β|−2)/2(DβH)(μ)
(
√
n (Z − μ))β

β!
.

(11.13)
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An important fact concerning polynomials in Z−μ is that their cumulants decay at
the same asymptotic rate as those of X−μ (James 1958 and Leonov and Shiryaev
1959). In particular, the r-th cumulant of Hs−1(Z−μ) is O(n−r), and that of W ′

n,
is therefore O(n−r/2), if sufficiently many moments of ||Z−μ|| are finite. Omitting
terms of smaller order than n−(s−2)/2, the “approximate” cumulants Kr,n, say, of
W ′

n may then be expressed as (See Bhattacharya and Ghosh 1978, or Bhattacharya
and Denker 1990)

K1,n =

[(s−3)/2]∑

r′=0

n−(2r′+1)/2b1,r′

K2,n = b2,0 +

[(s−2)/2]∑

r′=1

n−r′b2,r′

Kr,n =

{∑[(s−3)/2]
r′=(r−3)/2 n

(−2r′+1)/2br,r′ if r is odd, 3 ≤ r ≤ s,
∑[(s−2)/2]

r′=(r−2)/2 n
−r′br,r′ if r is even, 4 ≤ r ≤ s.

(11.14)

Here br,r′ are constants involving derivatives ofH at μ and cumulants (or moments)
of Z1−μ. Under the assumptions (gradH)(μ) �= 0 and covariance matrix V of Z1

is nonsingular, one has

σ2 := b2,0 = (grad H)(μ) ·V(grad H)(μ) > 0. (11.15)

The ‘formal’ approximation to the characteristic function of Wn (or of W ′
n) is

then obtained in a manner quite analogous to that for
√
n(X − μ) (See, e.g.,

Bhattacharya and Ranga Rao 1976), keeping only terms up to order n−(s−2)/2.
We write this expansion as

exp{−σ2ξ2/2} exp
⎧
⎨

⎩
K1,n(iξ)− (K2,n − σ2)ξ2/2 +

∑

3≤r≤s

Kr,n

r!
(iξ)r

⎫
⎬

⎭

= exp{−σ2ξ2/2}
[

1 +

s−2∑

r=1

n−r/2πr(iξ)

]

+ o(n−(s−2)/2). (11.16)

The Fourier inversion of the last expansion is the ‘formal’ Edgeworth expansion of
the density of Wn (or W ′

n), which we write as

ψ̃s−2,n(x) =

⎡

⎣1 +
∑

1≤r≤s−2

n−r/2πr(−D)

⎤

⎦ϕ
σ2 (x). (11.17)

We now make the following assumption.

(A) The distribution of the underlying observations Xj has a nonzero abso-
lutely continuous component whose density is positive in a ball B in R

m

such that the functions f1, f2, . . . , fk are continuously differentiable on B and
1, f1, f2, . . . , fk are linearly independent as elements of the vector space of
real-valued continuous functions on B.
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Remark 11.1. Under (A), Q∗k (the distribution of Z1+Z2+ · · ·+Zk) has a nonzero
absolutely continuous component (w.r.t. Lebesgue measure on R

k), so that The-
orem 11.1 applies (See Bhattacharya and Ghosh 1978; Bhattacharya and Denker
1990).

We can now state the main result of this section.

Theorem 11.2. Suppose (1) E|fi(X1)|s < ∞, 1 ≤ i ≤ k, for some integer s ≥ 3,
(2) H is (s − 1)-times continuously differentiable in a neighborhood of μ = EZ1,
(3) gradH(μ) �= 0 and V = CovZ1 is nonsingular, (4) (A) holds. Then

sup
B∈B(R)

|P (Wn ∈ B)−
∫

B

ψ̃s−2,n(x) dx| = o(n−(s−2)/2). (11.18)

Proof (Sketch). We sketch the proof of Theorem 11.2 in a number of steps.

Step 1. First, P (||Z − μ|| > δ) ≡ P (||√n (Z − μ)|| > δ
√
n)), is easily shown

to be o(n−(s−2)/2). One may then restrict attention to the set Bn := {z ∈
R

k : ||z|| ≤ δ
√
n} to integrate ψs−2,n(z) in (11.7) over the two sets {gn(z) ∈

B} ∩ Bn and {hn(z) ∈ B} ∩ Bn, where gn(z) =
√
n (H(μ + n−1/2z) −H(μ)),

hn(z) =
√
nHs−1(n

−1/2z) so that {Wn ∈ B} = {gn(√n(Z − μ)) ∈ B} and
{W ′

n ∈ B} = {hn(
√
n(Z −μ)) ∈ B}. From multivariate calculus, using (11.11)–

(11.13), it then follows that

sup
B∈B(R)

|P (Wn ∈ B)− P (W ′
n ∈ B)| = o(n−(s−2)/2) (11.19)

Step 2. In view of (11.19), it is enough to consider W ′
n instead of Wn in (11.13).

To apply Theorem 11.1, consider the class A (which depends on n) ⊂ B(Rk)
comprising sets of the form A := {z ∈ R

k : hn(z) ∈ B}, B ∈ B( R). By a
change of variables z→y = (y1, . . . , yk) where y1 = hn(z) and integrating out
y2, . . . , yk one obtains (See Remark 11.1).

sup
B∈B(R)

∣
∣
∣
∣
∣
P (W ′

n ∈ B)−
∫

{z∈Rk:hn(z)∈B}
ψs−2,n(z) dz

∣
∣
∣
∣
∣

≤ sup
A∈B(Rk)

∣
∣
∣
∣Qn(A)−

∫

A

ψs−2,n(z) dz

∣
∣
∣
∣ = o(n−(s−2)/2). (11.20)

Step 3. In view of (11.20), in order to prove (11.18) it remains to show that
(uniformly ∀ B ∈ B(R))

∫

A

ψs−2,n(z) dz =

∫

B

ψ̃s−2,n(x) dx + o(n−(s−2)/2), (11.21)

where A = {z ∈ R
k : hn(z) ∈ B}. By a change of variables z→T (z) := y as

before, with y1 ≡ T1(z) = hn(z), the density of y1, induced from ψs−2,n(z) dz,
is given in powers of n−1/2 by ψs−2,n(x) + o(n−(s−2)/2),

ψs−2,n(x) :=

[

1 +
s−2∑

r=1

n−r/2qr(x)

]

ϕ
σ2 (x), (11.22)
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where qr(x), 1 ≤ r ≤ s − 2, are certain polynomials in x. Note that since the
dominant term in ψs−2,n(z) is ϕV

(z) and the dominant term in T1(z) ≡ hn(z)
is z · (grad H)(μ), the density ϕ

σ2 of Z · (grad H)(μ) (under ϕ
V
(z) dz) is the

dominant term in (11.22). More generally, since ψs−2,n and ψs−2,n both have
Gaussian decays at the tails, one has (by the same transformation argument),

∫

R

xrψs−2,n(x) dx =

∫

Rk

hr
n(z)ψs−2,n(z) dz + o(n−(s−2)/2) ∀ r = 0, 1, 2, . . . .

(11.23)
Assume for the moment that Zj has finite moments of all orders. Then, by con-

struction, the β-th cumulant of ψt−2,n(z) dz (namely, i−|β|(Dβ log ψ̃t−2,n)(0))
matches the β-th cumulant of Qn (i.e., of

√
n(Z − μ)) up to order n−(t−2)/2,

|β| ≤ t. This implies

∫

Rk

zβψt−2,n(z) dz =

∫

Rk

zβQn(dz) + o(n−(t−2)/2), ∀ |β| ≤ t. (11.24)

Letting t = s, and t > s, in turn, (11.24) leads to

∫

zβψs−2,n(z) dz =

∫

zβQn(dz) + o(n−(s−2)/2) ∀ β, (11.25)

since ψt−2,n equals ψs−2,n up to a polynomial multiple of ϕ
V

of order

0(n−(s−1)/2), if t > s. Using (11.25) in (11.23), and noting that hr
n(z) is a

polynomial in z, one then has

∫

R

xrψs−2,n(x) dx =

∫

Rk

hr
n(z)Qn(dz) + o(n−(s−2)/2)

≡ EW ′
n + o(n−(s−2)/2) ∀ r = 0, 1, 2, . . . . (11.26)

By construction of ψ̃s−2,n on the other hand,

∫

R

xrψ̃s−2,n(x) dx = EW ′r
n + o(n−(s−2)/2) ∀ r = 0, 1, 2, . . . , (11.27)

using the same argument as above, namely, the r-th cumulant of ψ̃t−2,n(z) dz
matches that ofW ′

n up to order n−(t−2)/2 for all r, 0 ≤ r ≤ t. Comparing (11.26)
and (11.27), and noting that the left sides have no terms which are o(n−(s−2)/2),
we have

∫

R

xrψ̃s−2,n(x) dx =

∫

R

xrψs−2,n(x) dx ∀ r = 0, 1, 2, . . . , (11.28)

which yields ψ̃s−2,n ≡ ψs−2,n and implies, in particular, (11.21). ��
In order to apply Theorem 11.2, one needs first to compute the “approximate”

cumulants of W ′
n =

√
nHs−1(Z − μ). In the Appendix we carry this out for

approximations with errors of the order O(n−3/2). Here we consider two simple
examples.

Example 11.1 (The Sample Mean). Here m = 1, k = 1, f1(x) = x,H(z) =
z,Wn =

√
n (X − μ) = W ′

n. In this case the r-th cumulant of Wn = W ′
n is
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Kr,n = n−(r−2)/2Kr (r ≥ 2), where Kr is the r-th cumulant of Xj;K1,n =
0, K2,n = σ2 = EX2

j , K3,n = n−1/2μ3, K4,n = n−1(μ4 − 3σ2), etc., with
μr := E(Xj − μ)r. The Edgeworth expansion in this case is the same as the
Cramér expansion (11.7) (with k = 1) and Theorem 11.2 is valid.

Example 11.2 (Student’s t). Here m = 1, k = 2, f1(x) = x, f2(x) = x2, EXj = 0,

EX2
j = σ2, and H(z(1), z(2)) = z(1)/

√
z(2) − (z(1))2. Then (See, e.g., Hall 1983, or

Qumsiyeh 1989),K1,n = (−1/2μ3)n
−1/2+O(n−3/2),K2,n = 1+((7/4)μ2

3+3)n−1+
O(n−2), K3,n = (−2μ3)n

−1/2 +O(n−3/2), K4,n = −2(μ4− 6μ2
3− 6)n−1+O(n−2),

with μr := E(Xj/σ)
r. The expansion (11.17) up to order n−1 (and errorO(n−3/2))

is

ψ̃2,n(x) = ϕ(x) + n−1/2
(μ3

6

) d

dx
[(2x2 + 1)ϕ(x)]

+ n−1 d

dx

{[
(−3− 2μ2

3)x+ (6 − μ4 + 8μ2
3)(3x− x3)

+
μ2
3

18
(−15x+ 10x3 − x5)

]
ϕ(x)

}
. (11.29)

The expansion of the distribution function of t =
√
nX/s, with s2 = 1

n

∑
X2

j −X
2
,

is obtained by removing the d/dx symbol from (11.29) and replacing the standard
normal density ϕ(x) ≡ ϕ1(x) by its distribution function Φ(x). Note that the usual

t-statistic is
√

n−1
n t, for which the expansion (with error O(n−3/2)) is obtained

by a simple change of variables.

The final result of this section applies to statistics such as (H(Z) −H(μ))2 =
G(Z), say, for which (gradH)(μ) �= 0, but (gradG)(μ) = 0. More generally, con-
sider the statistic

Un := 2nG(Z) ≡ 2n(H(Z)−H(μ))2

=
∑

1≤r,r′≤k

(DrDr′G)(μ)(
√
n (Z − μ))(r)(

√
n (Z − μ))(r

′)

+

s∑

|β|=3

n−(|β|−2)/2(DβG)(μ)
(
√
n (Z − μ))β

β!
+ 2nR′(Z, μ)

= U′
n + 2nR′(Z, μ), say, (11.30)

where |R′(z, μ)| = o(||z−μ||s) as ||z−μ||→0, so that 2nR′(Z, μ) = op(n
−(s−2)/2),

and Z(r) is the r-th coordinate of Z. Here we assume G(μ) = 0 and (gradG)(μ) =
0, G is s-times continuously differentiable and E||Zj ||s < ∞ for some integer
s ≥ 3. It is important to note that the moments and, therefore, cumulants
of U′

n involve only powers of n−1. If the Hessian matrix of H at μ, namely,
(((DrDr′H)(μ)))1≤r,r′≤k is nonzero, then the limiting distribution of Un (or U′

n)
is that of

U :=
∑

1≤r,r′≤k

(DrDr′G)(μ)Y (r)Y (r)′

where Y is k-dimensional normal with mean zero and covariance V ≡ CovZj. For
likelihood ratio tests, Wald’ s tests and Rao’ s score tests, etc., the asymptotic
distribution of Un is the chi-square distribution with d degrees of freedom (d.f.),
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1 ≤ d ≤ k. In such cases, one may proceed as in the case of Wn,W
′
n to derive a

formal Edgeworth expansion

ηr,n(u) := fχ2
d
(u)[1 +

r∑

r′=1

n−r′gr′(u)],

r := [(s− 2)/2] (integer part of (s− 2)/2). (11.31)

where fχ2
d
is the density of the chi-square distribution with d degrees of freedom,

and gr′ , 1 ≤ r′ ≤ r, are polynomials. The following result is due to Chandra and
Ghosh (1979). Let B(R+) denote the Borel sigma-field on R

+ := {u ∈ R : u ≥ 0}.
Theorem 11.3. Let E||Zj ||s < ∞ for some integer s ≥ 3, and let V := CovZj

be nonsingular. Suppose G is s-times continuously differentiable in a neighborhood
of μ = EZj, G(μ) = 0, gradG(μ) = 0, and the limiting distribution of Un is
fχ2

d
(u) du. (a) If, in addition, the hypothesis (A) stated before Remark 11.1 holds,

then

sup
B∈B(R+)

∣
∣
∣
∣P (Un ∈ B)−

∫

B

η[(s−2)/2],n(u) du

∣
∣
∣
∣ = o(n−(s−2)/2). (11.32)

The proof of Theorem 11.3 follows the line of proof of Theorem 11.2, noting
that the “approximate” cumulants of Un and (U ′

n) only involve powers of n−1

(See Chandra and Ghosh 1979 and Bhattacharya and Denker 1990).

Remark 11.2. For many purposes, if not most, the asymptotic expansions in The-
orems 11.2 and 11.3, are needed only for distribution functions of Wn and Un,
which hold under Cramér’s condition:

lim sup
|ξ|→∞

∣
∣Eeiξ·Z1

∣
∣ < 1. (11.33)

More generally, we have the following version of Theorem 11.2 (See Bhattacharya
and Rao 1976; Bhattacharya 1987).

Theorem 11.4. Suppose (1) E|fi(X1)|s < ∞, 1 ≤ i ≤ k, for some integer s ≥ 3,
(2) H is (s − 1)-times continuously differentiable in a neighborhood of μ = EZ1,
(3) grad H(μ) �= 0 and V = CovZ1 is nonsingular, (4) the distribution Q of Z1

satisfies Cramér’s condition (11.33). Then

sup
B∈C

|P (Wn ∈ B)−
∫

B

ψ̃s−2,n(x) dx| = o(n−(s−2)/2). (11.34)

for every class C ⊂ B(R) such that, for some a > 0,

sup
B∈C

∫

(∂B)ε
ϕσ2(x)dx = 0(εα) as ε ↓ 0. (11.35)

Remark 11.3. Consider the problem of constructing a symmetric confidence inter-
val for a real valued parameter θ, of the form |θ̂n − θ| ≤ n−1/2c (for some c > 0),

where θ̂n is of the form H(Z), or adequately approximated by such, one may use
Theorem 11.4 to show that

P (|θ̂n − θ| ≤ n−1/2c) ≡ P ((
√
n (θ̂n − θ))2 ≤ c2) = P (Y 2 ≤ c2) +O(n−1)

≡ P (|Y | ≤ c) +O(n−1), (11.36)



11.3 Bootstrap and Edgeworth Expansion 289

where Y is a standard normal random variable. Thus with c = zγ/2 (the upper
γ/2-point of the standard normal distribution), the coverage error of a nominal
(1− γ)-confidence interval is O(n−1), provided s ≥ 4, and the other hypotheses of
Theorem 11.3 are satisfied.

The theory presented in this section applies to the estimation and testing in
parametric families under appropriate regularity conditions (Bhattacharya and
Ghosh 1978; Bhattacharya and Denker 1990; Chandra and Ghosh 1979), in pro-
viding more accurate coverage probabilities of confidence regions and levels of
significance of tests. If one desires to adjust the confidence bounds or the critical
points of tests so as to have specified levels, (up to an error O(n−1), O(n−3/2),
etc.) one may resort to the inversion of the expansions leading to the so-called
Cornish–Fisher expansions (See Hall 1983, or Bhattacharya and Denker 1990).
See Sect. 8.5 for nonparametric two-sample tests based on sample mean vectors
and an asymptotic chi-square statistic.

Expansions for regression statistics based on independent observations are given
in Qumsiyeh (1989) and Ivanov and Zwanzig (1983).

In conclusion, we remark that Chibishov (1973) also obtained asymptotic ex-
pansions such as ψ (See (11.22)), but not the validity of the formal Edgeworth
expansion.

11.3 Bootstrap and Edgeworth Expansion

The nonparametric bootstrap due to Efron (1979) is now an essential tool in sta-
tistical applications. Its two most important impacts have been (1) in the setting
of confidence bounds and critical levels for estimation and testing in nonparamet-
ric models, even in the absence of an estimate of the standard deviation of the
statistic, and (2) in the estimation of the above standard deviation. In both cases
the computer based procedures are simple and automatic. It was first pointed out
by Singh (1981) that, in addition to the simplicity of the procedure, bootstrap
provides an asymptotically better estimate of the distribution of the standard-
ized mean than its classical normal approximation, provided the observations are
from a nonlattice distribution. Later authors have shown that bootstrap performs
better in estimating the distribution of more general studentized, or pivotal, statis-
tics, if the observations come from a distribution with some smoothness satisfying
Cramér’s condition, or having a density (Beran 1987; Bhattacharya 1987; Hall
1988). In this section we present a precise analysis of the efficacy of the bootstrap
estimation of distributions of pivotal statistics.

Consider statistics H(Z) as in the preceding section, with Z as given in (11.10).
Let Fn = (1/n)

∑
1≤j≤n δZj denote the empirical distribution of the random vector

Z, given {Zj : 1 ≤ j ≤ n}, while F = Q denotes its true distribution. The
bootstrap distribution of the statistic Wn =

√
n (H(Z)−H(μ)) is the distribution

(conditionally given Zj, 1 ≤ j ≤ n) of W ∗
n :=

√
n (H(Z

∗
) − H(Z)) where Z

∗
=

(1/n)
∑

1≤j≤n Z
∗
j , {Z∗

j ; 1 ≤ j ≤ n} being a random sample from the empirical Fn.
We will write P and P ∗ for probabilities under F and Fn, respectively. We will
consider studentized or pivotal statistics, i.e., assume

σ2 := (gradH)(μ) · V (gradH)(μ) = 1. (11.37)
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The densities of the (formal) empirical Edgeworth expansions of the distributions
of

√
n (Z − μ) and Wn =

√
n (H(Z) − H(μ)) are denoted by ψs−2,n and ψ̃s−2,n,

respectively (See (11.7), (11.17)), while we define

ψ∗
s−2,n(z) =

[

1 +
s−2∑

r=1

n−r/2P∗
r(−D)

]

ϕ
V∗ (z)

ψ̃s−2,n(x) =

[

1 +
s−2∑

r=1

n−r/2π∗
r (−D)

]

ϕ(x), (11.38)

where the superscript ∗ indicates that all population moments are replaced by
corresponding sample moments.

Theorem 11.5. Under the hypothesis of Theorem 11.2, almost surely,

sup
B∈C

|P ∗(W ∗
n ∈ B)−

∫

B

ψ̃∗
s−2,n(x) dx| = o(n−(s−2)/2), (11.39)

where C satisfies (11.19) (with σ2 = 1).

Proof (Sketch). The main difference between the proof of this theorem and that of

Theorem 11.2 lies in deriving an expansion of the distribution Q∗
n of

√
n (Z

∗ −Z)
under Fn. The rest of the proof showing the validity of the formal Edgeworth
expansion for the distribution of W ∗

n is entirely analogous to the corresponding
proof for Theorem 11.2. Now because Fn is discrete, lim||ξ||→∞ |F̂n(ξ)| = 1, and

Cramer’s condition does not hold for Fn. But as we show now (See (11.43)), |F̂n(ξ)|
is bounded away from one on [c, enδ] for every c > 0 and δ > 0 depending on c.
For this, first one may use Bernstein’ s inequality (See Serfling 1980, p. 95) to get

P (|F̂n(ξ)− F̂ (ξ)| ≥ a) ≤ 4 exp{−na2/10}. (11.40)

By approximating points in the set An = {||ξ|| ≤ enδ} by the set Bn of lattice
points in An of the form ξ = γm for some m ∈ Zk and some γ > 0, one has for
every δ > 0,

P

(

sup
ξ∈Bn

|F̂n(ξ) − F̂ (ξ)| ≥ a

)

≤
{
enδ

γ
+ 2

}k

4 exp{−na2/10}

≤ c18(k, γ) exp

{

−n

(
a2

10
− kδ

)}

,

sup
||ξ||≤exp{nδ}

∣
∣
∣F̂n(ξ)− F̂ (ξ)

∣
∣
∣ ≤ sup

ξ∈Bn

|F̂n(ξ)− F̂ (ξ)|

+
√
k γ

(

E||Z1||+ 1

n

n∑

1

||Zj ||
)

. (11.41)

For 0 < δ < a2/10k, using the Borel-Cantelli Lemma it follows from the first
inequality that with probability one, sup{|F̂n(ξ) − F̂ (ξ)| := ξ ∈ Bn} < a for all
sufficiently large n. From the second inequality in (11.41) it now follows that

lim sup
n→0

sup
||ξ||≤enδ

|F̂n(ξ)− F̂ (ξ)| ≤ a+ 2
√
k γE||Z1|| a.s. (11.42)
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Let now a := (1/4)(1− sup{|F̂ (ξ)| : ||ξ|| ≥ c}), γ = a/(2
√
k E||Z1||), to get

lim sup
n→∞

sup
c≤||ξ||≤exp{nδ}

|F̂n(ξ)| ≤ a+ 2
√
kγE||Z1||+ sup

||ξ||≥c

|F̂ (ξ)|

=
1

2
(1− sup{|F̂ (ξ)| : ||ξ|| ≥ c}) + sup

||ξ||≥c

|F̂ (ξ)| = δ′, say, a.s. (11.43)

Since δ′ < 1, this estimate of Babu and Signh (1984) enables one to proceed as in
the proof of Cramér’s Theorem 11.4 (See Remark 11.2), replacing Q̂ by F̂n, Q̂n

by the c.f. of
√
n (Z

∗−Z) under Fn, and population moments by sample moments
throughout. Since the estimate (11.43) holds only up to the upper bound enδ for
||ξ||, one needs to show that

∫

||ξ||>exp{nδ}
|K̂(εξ)| dξ = ε−k

∫

||ξ||>εenδ

|K̂(ξ)| dξ = o(n−(s−2)/2) (11.44)

by choosing a kernelK (with support in the unit ball) such that K̂(ξ) decays fast as
||ξ||→∞. For example, one may have |K̂(ξ)| ≤ c exp{−c′||ξ||1/2} (See Bhattacharya
and Rao 1976, Corollary 10.4). For a detailed proof see Bhattacharya (1987) or
Bhattacharya and Denker (1990).

Theorem 11.5 allows us to determine the precise asymptotic accuracy of the
bootstrap estimate of the distribution of Wn. To see this, write the formal Edge-
worth expansion ψ̃s−2,n of the ‘density’ of Wn and the corresponding expansion

ψ̃∗ for W ∗
n as

ψ̃s−2,n(x) =

[

1 +

s−2∑

r=1

n−r/2qr(x)

]

ϕ(x)

ψ̃∗
s−2,n(x) =

[

1 +

s−2∑

r=1

n−r/2q∗r (x)

]

ϕ(x). (11.45)

Then, by Theorems 11.2, 11.5, and noting that sample moments converge to pop-
ulation moments a.s.,

P∗(W ∗
n ≤ x)−P(Wn ≤ x) =

1√
n

∫ x

−∞
(q∗1(y)− q1(y))ϕ(y) dy

+
1

n

∫ ∞

−∞
(q∗2(y)− q2(y))ϕ(y) dy + o(n−1) a.s.

=
1√
n
(p1(x)− p∗1(x))ϕ(x) + o(n−1) a.s. (11.46)

where p1(x) is a polynomial (in x) whose coefficients are polynomials in the mo-
ments of Z1, while p∗1(x) is obtained on replacing population moments by corre-
sponding sample moments. Hence p∗1(x) − p1(x) is of the form H(Y ;x)−H(v;x)
where v is the vector of population moments of Z1 and Y is the corresponding vec-
tor of sample moments. By Theorem 11.2 (or, just the delta method), if sufficiently
many moments of Z1 are finite,

√
n[p∗1(x) − p1(x)]ϕ(x)

L→N(0, σ2
b (x)) as n→∞ (11.47)
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where σ2
b (x) ≥ 0 decays to zero fast as x→∞, in view of the presence of the

exponential factor ϕ2(x). Hence we have

n(P∗(W ∗
n ≤ x) −P(Wn ≤ x))

L→N(0, σ2
b (x)) (11.48)

uniformly for all x. We have then proved the following result.

Theorem 11.6. Assume the hypothesis of Theorem 11.2 with s = 4. Also assume
that Wn is pivotal, i.e., (11.37) holds, and that E||Z1||8 < ∞. Then (11.48) holds.

Remark 11.4. The relation (11.48) implies that the error of bootstrap approxima-
tion is O(n−1) a.s. In the same manner, one can show that

n3/2(P ∗(U∗
n ≤ u)− P (Un ≤ u))

L→N(0, θ2b (u)) (11.49)

for some θ2b (u) which decay fast to zero as u→∞. For this one uses Theorem 11.3
and the corresponding version for the expansion η∗r,n for U∗

n, with s = 5, to get
(See (11.31), (11.32))

P ∗(U∗
n ≤ u)− P (Un ≤ u) = n−1(g1(u)− g∗1(u))fχ2

d
(u) +Op(n

−3/2). (11.50)

Hence (11.49) holds, arguing as in the case of (11.48). In particular, we have the
following result.

Corollary 11.1. (a) Under the hypothesis of Theorem 11.6, the coverage error
of the bootstrap for symmetric confidence intervals is Op(n

−3/2). (b) Assume the
hypothesis of Theorem 11.3 with s = 5, and also assume E||Z1||10 < ∞. Then the
coverage error of the bootstrap with test statistics Un is Op(n

−3/2).

A similar analysis shows that for nonpivotal statistics Wn =
√
n (H(Z)−H(μ))

having a normal asymptotic distribution with mean 0 and variance σ2 > 0,

n1/2(P ∗(W ∗
n ≤ x)− P (Wn ≤ x))

L→N(0, δ2(x)) (11.51)

for an appropriate δ2(x). For this, one assumes the hypothesis of Theorem 11.2
with s = 3, so that

P (Wn ≤ x) = Φσ2 (x) + n−1/2p1(x)ϕ
σ2 (x) + o(n−1/2)

P ∗(W ∗
n ≤ x) = Φσ̂2 (x) + n−1/2p∗1(x)ϕσ̂2 (x) + op(n

−1/2). (11.52)

If z∗λ is the λ-th quantile of the bootstrap distribution of W ∗
n then, by (11.51),

1− λ = P ∗(z∗λ/2 ≤ W ∗
n ≤ z∗1−λ/2)

= P (z∗λ/2 ≤ Wn ≤ z∗1−λ/2) + op(n
−1/2), (11.53)

i.e.,

P (H(z)− n−1/2z∗1−λ/2, ≤ H(μ) ≤ H(Z)− n−1/2z∗λ/2)

= 1− λ+ op(n
−1/2). (11.54)

In other words, [H(Z)− n−1/2z∗1−λ/2, H(Z)− n−1/2z∗λ/2] is a confidence interval

for H(μ) with a coverage error op(n
−1/2). Note that, without the knowledge of

the asymptotic variance σ2 and studentization, one can not use H(Z) to obtain a
valid classical confidence interval for H(μ).
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11.4 Miscellaneous Applications

In this section we briefly touch upon a number of applications of the theory, in
addition to applications already discussed.

11.4.1 Cornish-Fisher Expansions

By inverting the expansions of the distribution function

Ψ̃s−2,n(x) :=

∫ x

−∞
ψ̃s−2,n(y) dy

of Wn, and of
∫ u

−∞ ηr,n(u) du of Un, one may refine critical points for tests and
confidence regions to provide a desired level (of significance or confidence) up to an
error O(n−r) for r = 1, 3/2, etc. This idea goes back to Cornish and Fisher (1937).
See Hall (1983) and Bhattacharya and Denker (1990) for general derivations. As
an example, consider the t-statistic of Example 11.1 in Sect. 3. Write Gn for its
distribution function and Φ for that of the standard normal, and let zp,n and
zp be their respective p-th quantities, Gn(zp,n) = p, Φ(zp) = p. Then zp,n =

z
(1)
p,n +O(n−1), and zp,n = z

(2)
p,n +O(n−3/2), where (See Bhattacharya and Denker

1990, p. 46)

z(1)p,n = zp − n−1/2μ3

6
(2z2p + 1),

z(2)p,n = z(1)p,n + n−1μ
2
3

18
z5p −

(
μ4

12
+

μ2
3

9
+

1

2

)

z3p

−
(
μ3
3

6
+

μ4

4

)

zp +
7μ2

3

72
(2z3p + zp),

μr := E

(
X1 − μ

σ

)r

.

Now write, μ̂r for the sample moment 1/n
∑

j=1(Xj −X)r/sr, and

y(1)p,n := zp − n−1/2 μ̂3

6
(2z2p + 1) = ẑ(1)p,n, say,

P (Wn ≤ y(1)p,n) = p+O(n−1).

Next let ẑ
(2)
p,n denote z

(2)
p,n with μr replaced by μ̂r (2 ≤ r ≤ 4). Then define

y(2)p,n := y(1)p,n − n−1(ẑ(2)p,n − ẑ(1)p,n),

to get
P(Wn ≤ y(2)p,n) = p+O(n−3/2).

In this manner one can approximate the p-th quantile by a sample estimate to
provide any level of accuracy desired, if sufficiently many moments of Xj are
finite.
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11.4.2 Higher Order Efficiency

In regular parametric models, the MLE (maximum likelihood estimator) of a pa-
rameter θ attains the Cramér-Rao lower bound for variance of unbiased estimators
in an asymptotic sense, and is therefore called efficient, a terminology due to R.A.
Fisher. There are, however, other estimators of θ which are also efficient in this
sense. To discriminate among all such estimators, a notion of second order effi-
ciency was introduced by Fisher (1925) and further developed by Rao (1961, 1962,
1963) and other later authors. See Ghosh (1994), and Bhattacharya and Denker
(1990) for a detailed account. Using Edgeworth expansions it may be shown that
a bias correction of order n−1/2 makes a first order efficient estimator second or-
der efficient, and a bias correction of order n−1 of the latter yields a third order
efficient estimator, and so on (Pfanzagl 1980, 1985). Similar results for tests are
provided in Bickel et al. (1981).

11.4.3 Computation of Power in Parametric Models

Asymptotic expansions of power under contiguous alternatives, similar to the ex-
pansion in Theorem 11.3 but with the chi-square density term replaced by the
density of a noncentral chi-square distribution, was derived in Chandra and Ghosh
(1980). Also see Groeneboom and Oosterhoff (1981).

11.4.4 Convergence of Markov Processes to Diffusions

Konakov and Mammen (2005) have obtained an asymptotic expansion of the den-
sity of a Markov chain converging to a diffusion on R

k, with an error O(n−1−δ) for
some δ > 0. Here a version of Theorem 11.1 which holds for independent but non
i.i.d. summands is needed, as given in Bhattacharya and Rao (1976, Theorem 19.3).

11.4.5 Asymptotic Expansions in Analytic Number Theory

A famous classical problem in number theory considered by Gauss and Landau is
to provide precise asymptotic rates of the errors in estimating by the volume of a
ball (or, ellipsoid) in R

k the number of lattice points (in Zk) lying in the ball as the
radius increases to infinity (k > 1). Esseen (1945) showed that Landau’ s estimates
may be derived by using Cramér type expansions for lattice random vectors. See,
e.g., Bhattacharya and Rao (1976, Chap. 5), for expansions in the lattice case, and
Bhattacharya (1977) for a simple exposition of Landau’s estimates. Important
progress has been recently made by Bentkus and Götze (1999) in this problem
using a combination of probabilistic and analytic techniques.
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In a different direction, Kubilius (1964) derived an asymptotic expansion, simi-
lar to Cramér’ s of the number of prime factors (counting multiplicity) of an integer
m, as m→∞.

11.4.6 Asymptotic Expansions for Time Series

Cramér-type expansions have been extended to the case of dependent sequences,
with an exponentially decaying dependence over time, by Götze and Hipp (1983).
The Edgeworth expansions for smooth statistics based on such time series follow
more or less the same way as in the independent case considered in Sect. 11.2 (See,
e.g., Götze and Hipp 1994; Bose 1988). An excellent exposition of the Götze–Hipp
theory, with complete but simplified proofs, is given in Jensen (1986). It should be
mentioned that for Markovian sequences a fairly complete extension of Cramér-
type expansions was given earlier by Nagaev (1957) (Also see Jensen 1989). An
extension of the Götze–Hipp results under less restrictive polynomial decay rates
of dependence was obtained by Lahiri (1996). Second order accuracy of general
pivotal bootstrap estimates have been derived by Götze and Kunsch (1996) and
others (See Lahiri 1996 for an up to date account).

11.5 Notes and References

Asymptotic expansions for distributions of normalized sums
√
n(X−μ)/σ of i.i.d.

random variables were stated formally without proof by Chebyshev (1890). Cramér
(1928), (1937) provided the first rigorous derivation of Chebyshev type expansions
under the so-called Cramér’s condition. One dimensional expansions for the lattice
case were obtained by Esseen (1945). A fine account of these may be found in the
monograph by Guedenko and Kolmogorov (1954). Multidimensional expansions of
this theory and later developments are detailed in Bhattacharya and Ranga Rao
(1976).

Independently of Chebyshev, Edgeworth (1905) proposed asymptotic expan-
sions for distribution functions of general statistics. Edgeworth’s innovative idea
and corresponding expansions were validated in Bhattacharya and Ghosh (1978).

Efron (1979) provided his novel simulation methodology termed the (nonpara-
metric) bootstrap, originally conceived as a convenient way in the computer age for
the construction of critical points of tests and confidence intervals. His percentile
bootstrap does not require the computation of the standard error of the statistic,
often an onerous task for applied statisticians. But the bootstrap may be used
separately to compute the standard error, and when used to pivot the statistic
it yielded a more accurate estimate of the distribution. It was shown by Singh
(1981) that in the non-lattice case the bootstrap approximation of the distribu-
tion function of

√
n(X − μ)/σ had an error op(n

−1/2) as opposed to the O(n−1/2)
error of the classical CLT-based approximation. Since σ is generally unknown,
for statistical purposes one needs to estimate the distribution of the studentized
statistic

√
n(X−μ)/s. Babu and Signh (1984) extended Singh’s result to this case.

That bootstrap approximation of distributions of general smooth pivotal statis-
tics for continuous data improve upon the CLT-based approximation was proved
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independently, using the expansions in Bhattacharya and Ghosh (1978), by Beran
(1987), Bhattacharya (1987), Hall (1988) and Bhattacharya and Qumsiyeh (1989).
There does not seem to be much evidence, theoretical or otherwise, that the boot-
strap does better than the classical procedure if the underlying distribution is
lattice. For precise comparisons for the standardized sample mean in the lattice
case, one may compare the relation (23.12) in Bhattacharya and Ranga Rao (1976)
and the asymptotic limit in the lattice case in Singh (1981). See Bhattacharya and
Chan (1996) for some numerical results in the lattice case; the Appendix in the
present chapter is also due to them. Hall (1992) is a good source for the math-
ematical theory of Edgeworth expansions in relation to the bootstrap. Athreya
(1987) showed that the usual bootstrap estimate of the distribution function of a
properly normalized X−μ is not consistent unless the i.i.d. observations belonged
to the domain of Normal attraction, a result extended further by Gine and Zinn
(1989). This may be contrasted with the result of Bickel and Freedman (1981) in
Chap. 9, Remark 9.3, showing that in the linear multiple regression problem there
are cases where the bootstrap estimate of the distribution of the vector of regres-
sion coefficients is consistent although the latter is not asymptotically Normal.

Efron and Tibshirani (1994) present a readable and very useful account of the
bootstrap with diverse applications illustrated by data analyses. Theoretical ex-
tensions of the methodology to dependent data and time series are given in Lahiri
(1996). Finally, we mention Yoshida (1997) for a novel asymptotic expansion for
martingales using Malliavin calculus.

Appendix: Approximate Moments and Cumulants of Wn

Write H(Z)−H(μ) = G(Z) +Op(n
−3/2), where

G(Z) =(Z − μ) · gradH(μ) +
1

2!

∑

1≤i1,i2≤k

Di1i2(Z
(i1) − μ(i1))(Z

(i2) − μ(i2))

+
1

3!

∑

1≤i1,i2,i3≤k

Di1i2i3(Z
(i1) − μ(i1))(Z

(i2) − μ(i2))(Z
(i3) − μ(i3)).

[(Z − μ) · gradH(μ) =
∑

i

(DiH)(μ)(Z
(i) − μ(i))].

Notation (DiH)(z) = (∂H/∂z(i))(z), (Di1i2H)(z) = (Di1Di2H)(z), Di =

(DiH)(μ), Di1i2 = (Di1i2H)(μ), Di1i2i3 = (Di1i2i3H)(μ), etc., σi1i2 = E(Z
(i1)
j −

μ(i1))(Z
(i2)
j −μ(i2)) = μi1i2 , μi1i2i3 = E(Z

(i1)
j −μ(i1)) · (Z(i2)

j −μ(i2))(Z
(i3)
n −μ(i3)),

etc., mr,n := EG(Z)r, μr,n = E(
√
nG(Z))r = nr/2mr,n. We will compute μr,n up

to O(n−3/2) (1 ≤ r ≤ 6).

m1,n =
a1
n

+O(n−2), a1 =
1

2!

∑

i1,i2

Di1i2σi1i2 , (11.55)

m2,n =
b1
n

+
b2
n2

+O(n−3),

b1 =
∑

i1,i2

Di1 ·Di2σi1i2 = E((Zj − μ)gradH(μ))2,
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b2 =
∑

i1,i2,i3

Di1Di2i3μi1i2i3

+
1

3

∑

i1,i2,i3,i4

Di1Di2i3i4(σi1i2σi3i4 + σi1i3σi2i4 + σi1i4σi2i3)

+
1

4

∑

i1,i2,i3,i4

Di1i2Di3i4(σi1i2σi3i4 + σi1i3σi2i4 + σi1i4σi2i3), (11.56)

m3,n =
c1
n2

+O(n−3),

c1 =
∑

i1,i2,i3

Di1Di2Di3μi1i2i3

+
3

2

∑

i1,i2,i3,i4

Di1Di2Di3i4(σi1i2σi3i4 + σi1i3σi2i4 + σi1i4σi2i3), (11.57)

m4,n =
d1
n2

+
d2
n3

+O(n−4), where

d1 = 3b21, and

d2 = E[(Z1 − μ) · gradH(μ)]4 − 3b21

+ 2
∑

i1,i2

Di1i2

[

E((Z1 − μ) · gradH(μ))3σi1i2

+ 3E((Z1 − μ) · gradH(μ))2

·E{(Z(i1)
1 − μ(i1))(Z

(i2)
1 − μ(i2))((Z1 − μ) · gradH(μ))}

+ 3E{(gradH(μ) · (Z1 − μ))(Z
(i)
1 − μ(i1))}

· E{(gradH(μ) · (Z1 − μ))2 · (Z(i2)
1 − μ(i2))}

+ 3E{(gradH(μ) · (Z1 − μ))(Z
(i2)
1 − μ(i2))}

·E{(gradH(μ) · (Z1 − μ))2(Z
(i1)
1 − μ(i1))}

]

+
2

3

∑

i1,i2,i3

Di1i2i3

[

3E((Z1 − μ) · gradH(μ))2

·
{

E((Z
(i1)
1 − μ(i1))(Z1 − μ) · gradH(μ)))σi2i3

+ E((Z
(i2)
1 − μ(i2))((Z1 − μ) · gradH(μ)))σi1i3

+ E((Z
(i3)
1 − μ(i3))((Z1 − μ) · gradH(μ)))σi1i2

}

+ 6E((Z
(i1)
1 − μ(i1))((Z1 − μ) · gradH(μ)))

· E((Z1 − μ) · gradH(μ))(Z
(i2)
1 − μ(i2))

·E((Z1 − μ) · gradH(μ))(Z
(i3)
1 − μ(i3))

]

+
3

2

∑

i1,i2,i3,i4

Di1i2Di3i4

[

E(gradH(μ) · (Z1 − μ))2

· {σi1i2σi3i4 + σi1i3σi2i4 + σi1i4σi2i3}
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+ E((gradH(μ) · (Z1 − μ))(Z
(i1)
1 − μ(i1)))

·
{

E((gradH(μ) · (Z1 − μ))(Z
(i2)
1 − μ(i2)))σi3i4

+ E((gradH(μ) · (Z1 − μ))(Z
(i3)
1 − μ(i3)))σi2i4

+ E((gradH(μ) · (Z1 − μ))(Z
(i4)
1 − μ(i4))σi2i3

}

+ E((gradH(μ) · (Z1 − μ))(Z
(i2)
1 − μ(i2)))

·
{

E((gradH(μ) · (Z1 − μ))(Z
(i1)
1 − μ(i1)))σi3i4

+ E((gradH(μ) · (Z1 − μ))(Z
(i3)
1 − μ(i3)))σi1i4

+ E((gradH(μ) · (Z(i4)
1 − μ(i4)))σi1i3

}

+ E((gradH(μ) · (Z1 − μ))(Z
(i3)
1 − μ(i3)))

·
{

E((gradH(μ) · (Z1 − μ))(Z
(i1)
1 − μ(i1)))σi2i4

+ E((gradH(μ) · (Z1 − μ))(Z
(i2)
1 − μ(i2)))σi1i4

+ E((gradH(μ) · (Z1 − μ))(Z
(i4)
1 − μ(i4)))σi1i2

}

+ E((gradH(μ) · Z1 − μ))(Z
(i4)
1 − μ(i4)))

·
{

E((gradH(μ) · Z1 − μ))(Z
(i1)
1 − μ(i1)))σi2i3

+ E((gradH(μ) · (Z1 − μ))(Z
(i2)
1 − μ(i2)))σi1i3

+ E((gradH(μ) · (Z(i3)
1 − μ(i3)))σi1i2

}]

, (11.58)

m5,n =
e1
n3

+O(n−4),

e1 = 10E((Z1 − μ) · gradH(μ))3 · E((Z1 − μ) · gradH(μ))2

+
5

2

∑

i1,i2

Di1i2E(Z1 − μ) · gradH(μ))2

·
{

3σi1i2(E(Z1 − μ) · gradH(μ))2

+ 12E((Z1 − μ) · gradH(μ))(Z
(i1)
1 − μ(i1)))

·E((Z1 − μ) · gradH(μ))(Z
(i2)
1 − μ(i2)))

}

, (11.59)

m6,n =
f1
n3

+O(n−4),

f1 = 15[E(Z1 − μ) · gradH(μ))2]3. (11.60)

“Approximate” cumulants of Wn are then given by

k1,n = μ1,n =
√
nm1,n = n−1/2a1 +O(n−3/2)
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=
n−1/2

2

∑

i1,i2

Di1i2σi1i2 +O(n−3/2)

k2,n = μ2,n − μ2
1,n = n(m2,n −m2

1,n)

= b1 +
b2 − a21

n
+O(n−2),

k3,n = μ3,n − 3μ2,nμ1,n + 2μ3
1,n = n−1/2(c1 − 3b1a1) +O(n−3/2),

k4,n = μ4,n − 4μ3,nμ1,n − 3μ2
2,n + 12μ2,nμ

2
1,n − 6μ4

1,n

= d1 +
d2
n

− 4a1c1
n

− 3

(

b21 +
2b1b2
n

)

+ 12
a21b1
n

+O(n−2)

= n−1(d2 − 4a1c1 − 6b1b2 + 12a21b1) +O(n−2). (11.61)

As an example for Student’s t,

k1,n = −1

2
μ3n

−1/2 +O(n−3/2),

k2,n = 1 + n−1(2μ2
3 + 3)− n−1

(
1

4
μ2
3

)

+O(n−2)

= 1 + n−1

(
7

4
μ2
3 + 3

)

+O(n−2)

k3,n = n−1/2

(

−7

2
μ3 +

3

2
μ3

)

+O(n−3/2) = −2n−1/2μ3 +O(n−3/2)

k4,n = n−1[−2μ4 + 28μ2
3 + 30− 7μ2

3 − 6(2μ2
3 + 3) + 3μ2

3] +O(n−2)

= n−1(−2μ4 + 12μ2
3 + 12) +O(n−2)

= −2n−1(μ4 − 6μ2
3 − 6) +O(n−2). (11.62)

Exercises for Chap. 11

Ex. 11.1. Derive (a) the Edgeworth expansion for the distribution function of the
(nonparametric) Student’s t, using (11.62), and under appropriate conditions, and
(b) prove the analog of (11.49) for the coverage error of the bootstrap approxima-
tion for a symmetric confidence interval for the mean based on t.
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Chapter 12

Fréchet Means and Nonparametric
Inference on Non-Euclidean Geometric
Spaces

Abstract Fréchet means as minimizers of expected squared distances are used
for nonparametric inference on geometric spaces M . Applications are provided to
paleomagnetism (M = S2 or spheres) and landmarks based image analysis (M =
Kendall’s planar shape space).

12.1 Introduction

Among statistical analysis on non-Euclidean spaces, statistics on spheres Sd =
{x ∈ R

d+1 : |x|2 = 1}, d ≥ 1, has a long history (See, e.g., Watson 1983 and
Mardia and Jupp 2000). Its growth was especially spurred on by the seminal 1953
paper of R.A. Fisher providing conclusive statistical evidence that the earth’s mag-
netic poles had dramatically shifted positions over geological time scales. This was
a fundamental contribution to paleomagnetism—a field of earth science devoted
to the study of fossil magnetism (See Irving 1964). This theory also has impor-
tant consequences in the field of tectonics, especially to the older theory that the
continents had changed their relative positions over a period of several hundred
millions of years. If rock samples in different continents dating back to the same
period exhibit different magnetic polarities, that would be a confirmation of the
theory of continental drift. See Fisher et al. (1987) for examples of data on so-
called remanent magnetism in fossilized rock samples. In Sect. 12.3 we discuss the
parametric theory of R.A. Fisher (1953) and compare that with the nonparametric
theory based on Fréchet means developed in Sect. 12.2.

Due to advances in modern technology in recent decades, digital images are now
available and extensively used in biology, medicine and many other areas of science
and technology. An important class of examples are landmarks based images whose
analysis was pioneered by D.G. Kendall (1977, 1984) and F. Bookstein (1978). As
described in Sect. 12.2, such an image on the plane may be viewed as an orbit
under rotation of a point on a sphere of high dimension known as the preshape
sphere. The present chapter is devoted to the nonparametric statistical analysis of
data on such non-Euclidean spaces M by means of Fréchet means of the samples,
whose asymptotic distribution theory is described in the next section.

© Springer-Verlag New York 2016
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12.2 Fréchet Means on Metric Spaces

Let (M,ρ) be a metric space and Q a probability measure on the Borel sigma-field
of M . Consider a Fréchet function of Q defined by

F (x) =

∫

ρα(x, y)Q(dy), x ∈ M. (12.1)

for some α ≥ 1. We will be mostly concerned with the case α = 2. Assume
that F is finite. A minimizer of F , if unique, serves as a measure of location of
Q. In general, the set CQ of minimizers of F is called the Fréchet mean set of
Q. In the case the minimizer is unique, one says that the Fréchet mean exists
and refers to it as the Fréchet mean of Q. If X1, . . . , Xn are i.i.d. observations
with common distribution Q, the Fréchet mean set and the Fréchet mean of the
empirical Qn = 1/n

∑
1≤j≤n δXj are named the sample Fréchet mean set and the

sample Fréchet mean, respectively. For a reason which will be clear from the result
below, in the case the Fréchet mean of Q exists, a (every) measurable selection
from CQn is taken to be a sample Fréchet mean.

Remark 12.1. For M = R
m with the Euclidean norm | · | and distance ρ(x, y) =

|x−y|, the Fréchet mean for the case α = 2 is the same as the usual mean
∫
yQ(dy),

provided
∫ |y|2Q(dy) < ∞. The generalization considered here is due to Fréchet

(1948).

The following is a general result on Fréchet mean sets CQ and CQn of Q and
Qn and consistency of the sample Fréchet mean. It is due to Ziezold (1977) and
Bhattacharya and Patrangenaru (2003).

Theorem 12.1. Let M be a metric space such that every closed and bounded sub-
set of M is compact. Suppose α ≥ 1 in (12.1) and F (x) is finite. Then (a) the
Fréchet mean set CQ is nonempty and compact, and (b) given any ε > 0, there
exists a positive integer valued random variable N = N(ω, ε) and a P -null set Ω(ε)
such that

CQn ⊆ CQc = {x ∈ M : ρ(x,CQ) < ε}∀n ≥ N, ∀ω ∈ (Ω(ε))c. (12.2)

(c) In particular, if the Fréchet mean of Q exists then the sample Fréchet mean,
taken as a measurable selection from CQn , converges almost surely to it.

Proof. We give a proof of Theorem 12.1 for a compact metric M , which is the
case in many of the applications of interest here. Part (a) is then trivially true.
For part (b), for each ε > 0, write

η = inf{F (x) : x ∈ M} ≡ F (q)∀ q ∈ CQ,

η + δ(ε) = inf{F (x) : x ∈ M\CQε}. (12.3)

If Cε
Q = M , then (12.2) trivially holds. Consider the case Cε

Q �= M , so that
δ(ε) > 0. Let Fn(x) be the Fréchet function of Qn, namely,

Fn(x) =
1

n

∑

1≤j≤n

ρα(x,Xj).
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Now use the elementary inequality,

|ρα(x, y) − ρα(x′, y)| ≤ αρ(x, x′)
[
ρα−1(x, y) + ρα−1(x′, y)

] ≤ cαρ(x, x′),

with c = 2max{ρα−1(x, y), x, y ∈ M}, to obtain

|F (x) − F (x′)| ≤ cαρ(x, x′), |Fn(x) − Fn(x
′)| ≤ cαρ(x, x′), ∀x, x′. (12.4)

For each x ∈ M\CQε find r = r(x, ε) > 0 such that cαρ(x, x′) < δ(ε)/4 ∀x′ within
a distance r from x. Let m = m(ε) of balls with centers x1, · · · , xm and radii
r(x1), . . . , r(xm) (in M\CQε) cover M\CQε . By the SLLN, there exist integers
Ni = Ni(ω) such that, outside a P -null set Ωi(ε), |Fn(xi)−F (xi)| < δ(ε)/4 ∀n ≥
Ni (i = 1, . . . ,m). Let N ′ = max{Ni : i = 1, . . . ,m}. If n > N ′, then for every i
and all x in the ball with center xi and radius r(xi, ε),

Fn(x) > Fn(xi)− δ(ε)/4 > F (xi)− δ(ε)/4− δ(ε)/4

≥ η + δ(ε)− δ(ε)/2 = η + δ(ε)/2.

Next choose a point q ∈ CQ and find N ′′ = N ′′(ω), again by the SLLN, such
that, if n ≥ N ′′ then |Fn(q)−F (q)| < δ(ε)/4 and, consequently, Fn(q) < η+δ(ε)/4,
outside of a P -null set Ω′′(ε). Hence (12.2) follows with N = max{N ′, N ′′} and
Ω(ε) = {∪Ωi(ε) : i = 1, . . . ,m} ∪Ω′′(ε). Part (c) is an immediate consequence of
part (b).

For noncompact M , the proof of Theorem 12.1 is a little more elaborate and
may be found in Bhattacharya and Bhattacharya (2012) or, for the case α = 2, in
Bhattacharya and Patrangenaru (2003).

In the applications considered here, the space M of observations is a mani-
fold, i.e., a space which is locally like an Euclidean space of dimension d with a
differentiable structure. Here is the formal definition.

Definition 12.1. A d-dimensional differentiable manifold M is a separable metric
space with the following properties:

(i) Every point p ∈ M has an open neighborhood Up with a homeomorphism
ψp : Up −→ Bp, where Bp is an open subset of Rd.

(ii) The maps ψp are smoothly compatible; that is, if Up∩Uq �= ∅, then ψp ◦ψ−1
q is

an infinitely differentiable diffeomorphism on ψq(Up ∩Uq) ⊂ Bq onto ψp(Up ∩
Uq) ⊂ Bp.

The pair (Up, ψp) is called a coordinate neighborhood of p and ψp(p
′) = (p′1, p

′
2,

. . . , p′d) are the local coordinates of p′ ∈ Up, and the collection of all coordinate
neighborhoods is an atlas for M .

Example 12.1 (The Sphere Sd). Consider the sphereM = Sd = {p ∈ R
d+1| : |p|2 =

1}. For p ∈ Sd, the tangent space at p is Tp = Tp(S
d) = {x ∈ R

d+1 : p.x = 0},
where p.x = 〈p, x〉 is the Euclidean inner product. Note that Tp is isomorphic
to R

d, with y = (y1, y2, . . . , yd) ∈ R
d corresponding to

∑
yiei where e1, . . . , ed

comprise an orthonormal basis of Tp. Let Up = {q ∈ Sd : |q−p| < 1/2} and ψp the
projection of Up into Tp : q → q−(q.p)p =

∑
yiei, so that Bp = ψp(Up) considered

as a subset of Rd.
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An important task in the use of Fréchet means for inference is to choose a
proper distance ρ for M . If M is a submanifold of an Euclidean space EN (of
dimension N > d) such as a (hyper-)surface, then one may just use the distance
inherited from EN . For example, the sphere M = Sd = {p ∈ R

d+1| : |p|2 = 1}
is a submanifold of Ed+1 = R

d+1, and a natural distance on it may be the chord
distance inherited from R

d+1 as a subset. One may, alternatively, use the geodesic
distance on Sd. The geodesic distance ρ = dg between two points p and q is the
arc length (of the smaller of the two arcs) along the big circle connecting p and q.
For general manifolds the notion of the geodesic distance depends on endowing M
with a Riemannian structure, i.e., a metric tensor, which is not considered here.
Instead, we will consider the following analog of the chord distance.

Definition 12.2. An embedding J of a d-dimensional manifold M is a map of M
into an Euclidean space EN which is (i) a homeomorphism of M onto its image
J(M) which is given the relative topology of EN , and (ii) in local coordinates,
infinitely differentiable with the Jacobian (of J) of rank d at every point of M .
The extrinsic distance ρ = ρJ on M under J is the (Euclidean) distance on EN

restricted to J(M); that is, ρ(p, q) = |J(p)− J(q)| ∀ p, q ∈ M , where |x|2 = 〈x, x〉
is the squared norm of x in EN with inner product 〈 , 〉. The Fréchet mean μE ,
say, if it exists as the unique minimizer under the extrinsic distance is called the
extrinsic mean of Q. In order that the extrinsic mean be well defined we assume
that J(M) is closed, which is automatic if M is compact.

Consider the case α = 2. Letting QJ = Q◦J−1 denote the distribution induced
on EN from Q by J , and μJ the usual (Euclidean) mean

∫
yQJ(dy) of QJ , the

Fréchet function F J under the extrinsic distance under the embedding J may be
expressed at a point p = J−1(x), x ∈ J(M), as

F J(p) =

∫

EN

|x− y|2QJ(dy) =

∫

EN

|x− μJ + μJ − y|2QJ(dy)

= |x− μJ |2 +
∫

EN

|y − μJ |2QJ(dy) (x = J(p)). (12.5)

The following is a simple but very useful result concerning the Fréchet mean
under the extrinsic distance. Let P = P J denote the orthogonal projection on
EN onto J(M). That is, P (x) = P J(x) is the point of J(M) closest to x in the
Euclidean distance, provided there is a unique such point of J(M). From (12.5)
it immediately follows that the minimum of F J(p) is attained at p whose image
x, if unique, minimizes |x − μJ |2 over J(M). We have then proved the following
result (Bhattacharya and Patrangenaru 2003). In particular, the uniqueness of the
projection is the necessary and sufficient condition for the existence of the extrinsic
mean.

Proposition 12.1. Assume that
∫
EN |y|2QJ(dy) < ∞ and there is a unique point

in J(M) closest to μJ , namely, P (μJ). Then P (μJ) is the image of the Fréchet
mean μE in J(M); that is, μE = J−1(P (μJ )).

The next task is to find the asymptotic distribution of the sample extrinsic
Fréchet mean μnE , whose image J(μnE) under J is P (μJ

n) with μJ
n = Y as the

mean of the empirical QJ
n of Yi = J(Xi) based on i.i.d. observations Xi on M with

common distribution Q (1 ≤ i ≤ n). Denote by dμJP the N ×N Jacobian matrix
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at μJ of the projection P on a neighborhood of μJ ∈ EN ≈ RN into J(M) ⊂ EN

considered as a map on EN into EN . Since J(M) is of dimension d < N , dμJP
is singular and has rank d. Indeed, dμJP maps the tangent space TμJ (EN ) ≈ RN

onto the tangent space of J(M) at the point P (μJ), namely, TP (μJ )(J(M)). Let
F1, . . . , Fd be an orthonormal basis of the latter tangent space. Then one has

P (μJ
n)− P (μJ ) = (dμJP )(Y − μJ ) + o

(|Y − μJ |)

=
∑

1≤i≤d

〈(dμJP )(Y − μJ), Fi〉Fi + o(|Y − μJ |), (12.6)

where 〈 , 〉 is the inner product in EN . The asymptotic distribution of the image
(under J) of the sample extrinsic mean P (Y ) on the tangent space of J(M) at
P (μJ), given in terns of its coordinates (with respect to the basis {F1, F2, . . . , Fd}),
now follows from (12.6) using the classical CLT for

√
n(Y −μJ) (See Bhattacharya

and Patrangenaru 2003 and Bhattacharya and Bhattacharya 2012, pp. 38, 39).

Theorem 12.2. Suppose that the projection P is uniquely defined and continu-
ously differentiable in a neighborhood of μJ , and that the N×N covariance matrix
V of Yi is nonsingular. Then

(〈√n(dμJP )(Y − μJ ), Fi〉 : i = 1, . . . , d
) L−→ N(0, Γ ), (12.7)

where Γ is the nonsingular d × d covariance matrix given by Γ = F (dμJP )
V (dμJP )′F ′, with the rows of the d×N matrix F being F1, . . . , Fd.

This theorem then has the following corollary, using a Slutsky type argument
in replacing dμJP by dY P and Γ by Γ̂ = [F̂ (dY P )]′V̂ [F̂ (dY P )], where the rows

of F̂ are the orthonormal basis {F̂1, F̂2, . . . , F̂d} of the tangent space of J(M) at

P (Y ) corresponding smoothly to {F1, F2, · · · , Fd}, and V̂ is the sample covariance
matrix of Yi (i = 1, . . . , n).

Corollary 12.1. Under the hypothesis of Theorem 12.2, one has

n
[
(dY P )(Y − μJ)

]′
Γ̂−1

[
(dY P )(Y − μJ)

] L−→ χ2(d) as n → ∞, (12.8)

and a confidence region for the extrinsic mean μE of asymptotic confidence level
1− α is given by

{
μE = J−1P (μJ ) : n

[
(dμJP )(Y − μJ )

]′
Γ̂−1

[
(dμJP )(Y − μJ )

] ≤ χ2
1−α(d)

}
,

(12.9)
where one may replace dμJ by dY .

We next consider the two-sample problem of distinguishing two distributions Q1

and Q2 on M , based on two independent samples of sizes n1 and n2, respectively:
{Yj1 = J(Xj1) : j = 1, . . . , n1}, {Yj2 = J(Xj2) : j = 1, . . . , n2}. Hence the proper
null hypothesis is H0 : Q1 = Q2. For high dimensional M it is often sufficient to
test if the two Fréchet means are equal. For the extrinsic procedure, again consider
an embedding J into EN . Write μi for μJ

i for the population means and Y i for
the corresponding sample means on EN (i = 1, 2). Let n = n1 + n2, and assume
n1/n → p1, n2/n → p2 = 1− p1, 0 < pi < 1 (i = 1, 2), as n → ∞. If μ1 �= μ2 then
Q1 �= Q2. One may then test H0 : μ1 = μ2 (= μ, say). Since N is generally quite
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large compared to d, the direct test for H0 : μ1 = μ2 based on Y 1−Y 2 is generally
not a good test. Instead, we compare the two extrinsic means μE1 and μE2 of Q1

and Q2 and test for their equality. This is equivalent to testing if P (μ1) = P (μ2).
Then, assuming H0,

n
1
2 dY P (Y 1 − Y 2) −→ N(0, B(p1V1 + p2V2)B

′) (12.10)

in distribution, as n → ∞. Here Y = n1

n Y 1 + n2

n Y 2 is the pooled estimate of
the common mean μ1 = μ2 = μ, say, B = B(μ) = F (dμP ) and V1, V2 are the
covariance matrices of Yj1 and Yj2 . This leads to the asymptotic chi-square statistic
below:

n
[
dY P (Y 1 − Y 2)

]′ [
B̂(p̂1V̂1 + p̂2V̂2)B̂

t
]−1 [

dY P (Y 1 − Y 2)
] −→ χ2(d) (12.11)

in distribution, as n → ∞. Here B̂ = B(Y ), V̂i is the sample covariance matrix
of Yji, and p̂i = ni/n (i = 1, 2). One rejects the null hypothesis H0 at a level of
significance 1−α if and only if the observed value of the left side of (12.11) exceeds
χ2
1−α(d).

Example 12.2. Consider again the sphere Sd of Example 12.1, and let J be the
inclusion map. Then P (x) = x/|x| (x �= 0). It is not difficult to check that the
Jacobian matrix dxP is given by

dxP = |x|−1
[
Id+1 − |x|−2(xxt)

]
, x �= 0. (12.12)

Let F (x) be a d×(d+1) matrix whose rows form an orthonormal basis of Tx(S
d) =

{q ∈ Rd+1 : x · q = 0}. One may apply Theorem 12.2 and Corollary 12.1. For
d = 2, and x = (x1, x2, x3)

′ �= (0, 0,±1)′ and x3 �= 0, one may choose the two
rows of F (x) as (−x2, x1, 0)/

√
x21 + x22 and (x1, x2,−(x21 + x22)/x3)c with c =

[x21 + x22 + (x21 + x22)
2/x23]

1/2. For x = (0, 0, 1) one may simply take the two rows
of F (x) as (1, 0, 0) and (0, 1, 0). If x3 = 0 and x1 �= 0, x2 �= 0, then take the two
rows as (−x2, x1, 0) and (0, 0, 1). Permuting the indices all cases are now covered.

Example 12.3 (Kendall’s Planar Shape Space Σk
2 ). In landmarks based image

analysis on the plane one chooses, with expert help, k > 2 points or land-
scapes, not all the same, on an image in the plane R

2. The ordered set of k
points—a k-ad—((x1, y1), . . . , (xk, yk)) is more conveniently viewed as a k-tuple
z = (z1, . . . , zk) in the complex plane C, zj = xj + iyj (j = 1, . . . , k). The shape
σ(z) of a k-ad is defined to be z modulo translation, scaling and rotation, in
order that images of the same object taken from different locations, different dis-
tances and different angles are not distinguished. To rid the k-ad of the effects
of location and distance, or scale, one considers u = (z − 〈z〉)/|(z − 〈z〉)|, where
〈z〉 = ( 1k

∑k
j=1 zj)(1, 1, . . . , 1) and the norm |(c1, c2, . . . , ck)| of a k-tuple of complex

numbers cj = aj+ibj (j = 1, . . . , k) is given by (
∑1

j=1 |cj |2)1/2 with |cj |2 = a2j+b2j .
Note that this would be the same as the Euclidean norm of the k-tuple of points
((a1, b1), . . . , (ak, bk))

′ in R
2. The normed k-tuple u lies in the complex (k − 1)-

dimensional hyperplane L in C
k defined by

∑k
j=1 uj = 0, which is also the real

2(k − 1)-dimensional subspace of (R2)k defined by
∑k

1 vj = 0,
∑k

1 wj = 0 where
uj = vj+iwj . Due to norming, |u| = 1 so that u lies on the unit sphere in L ≈ C

k−1

(or, ≈ R
2(k−1)), called the preshape sphere denoted CSk−1 ≈ S2k−3. In order to
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rid the k-ad of the angle of observation as well, one considers the shape σ(z) of
a k-ad z to be its preshape u modulo rotations in the plane. This is conveniently
expressed as the orbit of u under rotations, i.e.,

σ(z) =
{
eiθu : −π < θ ≤ π

}
. (12.13)

Since the preshape sphere has (real) dimension 2k − 3, and {eiθ : −π < θ ≤ π}
is one-dimensional, Kendall’s planar shape space denoted Σk

2 is a manifold which
has dimension 2k − 4 (k > 2) (See, e.g., Bhattacharya and Bhattacharya 2012,
Lemma A3, p. 214). It is preferable to represent the preshape u as a point
(u1, u2, . . . , uk−1) ∈ C

k−1 (or R2k−2). This may be achieved by premultiplying the
k-ad by a k× (k− 1) Helmert matrix H comprising k− 1 column vectors forming
an orthonormal basis of the subspace 1⊥ of Rk orthogonal to (1, 1, . . . , 1). For ex-
ample, one may take the j-th column of H to be (a(j), . . . , a(j)), −ja(j), 0, . . . , 0)
where a(j) = [j(j + 1)]−1/2 (j = 1, . . . , k − 1). That is, x = (x1, . . . , xk) is
changed to xH = (x01, . . . , x

0
k−1), say, and, similarly, y = (y1, . . . , yk) is changed to

yH = (y01 , . . . , y
0
k−1). This translated k-ad ((x01, y

0
1), . . . , (x

0
k−1, y

0
k−1)) then has the

complex representation z0 = (z01 , . . . , z
0
k−1) with z0j = x0j + iy0j , and the preshape

is then u0 = z0/|z0|. Note that we only consider k-ads whose k points are not all
the same, so that z0 �= 0. To avoid excessive notation we will drop the superscript
0 from z0 and u0 and write (k − 1)-tuples as z and u, respectively.

A good embedding of the shape space Σk
2 is the so-called Veronese–Whitney

embedding J into the (real) vector space S(k−1,C) of all (k−1)×(k−1) Hermitian
matrices B = B∗ (B∗ is the transpose of the matrix B of complex conjugates of
elements of B), given by

Jσ(z) = u∗u. (12.14)

Note that (eiθu)∗(eiθu) = u∗u ∀ θ ∈ (−π, π], so that J is a one-to-one map of
Σk

2 into S(k − 1,C). The space S(k − 1,C) is a vector space with respect to
real scalars and with the inner product given by 〈B,C〉 = Re(Trace BC∗). If B =
((αjj′+iβjj′ )) and C = ((δjj′+iγjj′ )), then 〈B,C〉 =∑

j,j′ (αjj′δjj′+βjj′γjj′ ). One
may think of an element B of S(k−1,C) to be represented by a real 2(k−1)×(k−1)
matrix with the first k− 1 rows {αjj′ : 1 ≤ j′ ≤ k− 1, 1 ≤ j ≤ k− 1} comprising a
symmetric (k− 1)× (k− 1) matrix, and the last k− 1 rows {βjj′ : 1 ≤ j′ ≤ k− 1,
1 ≤ j ≤ k − 1} comprising a (k − 1) × (k − 1) skew symmetric matrix. The
inner product 〈B,C〉 is then simply the Euclidean inner product on this space of
2(k − 1) × (k − 1) real matrices considered as a 2(k − 1) × (k − 1)-dimensional
vector. Note that the dimension of S(k − 1,C) (or of its representation as real
2(k− 1)× (k− 1) matrices as described) is k(k− 1). Hence S(k− 1,C) ≈ EN with
N = k(k − 1).

We next turn to extrinsic analysis on Σk
2 , using the embedding (12.14). Let μJ

be the mean of Q ◦ J−1 on S(k − 1,C). Denote by SU(k − 1) the special unitary
group of (k−1)×(k−1) complex matrices T such that TT ∗ = Ik−1 and det(T ) = 1.
To compute the projection P (μJ ), let T be a unitary matrix, T ∈ SU(k− 1) such
that TμJT ∗ = D = diag(λ1, . . . , λk−1), λ1 ≤ · · · ≤ λk−2 ≤ λk−1. For u ∈ CSk−1,
u∗u ∈ J(Σk

2 ), write v = Tu∗. Then Tu∗uT ∗ = vv∗, and
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‖u∗u− μJ‖2 = ‖vv∗ −D‖2 =
∑

i,j

|vivj − λjδij |2 (12.15)

=
∑

j

(|vj |2 + λ2
j − 2λ|vj |2)

=
∑

j

λ2
j + 1− 2

∑

j

λj |vj |2,

which is minimized on J(Σk
2 ) by v = (v1, . . . , vk−1) for which vj = 0 for

j = 1, . . . , k − 2, and |vk−1| = 1. That is, the minimizing u∗ in (12.15) is a unit
eigenvector of μJ with the largest eigenvalue λk−1, and P (μJ) = u∗u. This projec-
tion is unique if and only if the largest eigenvalue of μJ is simple, i.e., λk−2 < λk−1.

Assuming that the largest eigenvalue of μJ is simple, one may now obtain
the asymptotic distribution of the sample extrinsic mean μn,E , namely, that of

J(μn,E) = v∗nvn, where vn is a unit eigenvector of X̃ =
∑

X̃j/n corresponding

to its largest eigenvalue. Here X̃j = J(Xj), for i.i.d. observations X1, . . . , Xn on
Σk

2 . For this purpose, a convenient orthonormal basis (frame) of TpS(k − 1,C) ≈
S(k − 1,C) is the following

va,b = 2−
1
2 (eae

′
b + ebe

′
a) for a < b, va,a = eae

′
a; (12.16)

wa,b = i2−
1
2 (eae

′
b − ebe

′
a) for b < a (a, b = 1, . . . , k − 1),

where ea is the column vector with all entries zero other than the a-th, and the
a-th entry is 1. Let U1, . . . , Uk−1 be orthonormal unit eigenvectors corresponding
to the eigenvalues λ1 ≤ · · · ≤ λk−2 < λk−1. Then choosing T = (U1, . . . , Uk−1) ∈
SU(k−1), TμJT ∗ = D = diag(λ1, . . . , λk−1), the columns of Tva,bT

∗ and Twa,bT
∗

together constitute an orthonormal basis of S(k− 1,C). It is not difficult to check
that the differential of the projection operator P satisfies

(dμJP )Tva,bT
∗ =

⎧
⎨

⎩

0 if 1 ≤ a ≤ b < k − 1,
or a = b = k − 1,

(λk−1 − λa)
−1Tva,k−1T

∗ if 1 ≤ a < k − 1, b = k − 1;

(12.17)

(dμJP )Twa,bT
∗ =

{
0 if 1 ≤ a ≤ b < k − 1,
(λk−1 − λa)

−1Twa,k−1T
∗ if 1 ≤ a < k − 1.

To check these, take the projection of a linear curve c(s) in S(k−1,C) such that
ċ(0) is one of the basis elements va,b, or wa,b, and differentiate the projected curve
with respect to s. It follows that {Tva,k−1T

∗, Twa,k−1T
∗ : a = 1, . . . , k− 2} form

an orthonormal basis of TP (μJ )J(Σ
k
2 ). Expressing X̃−μJ in the orthonormal basis

of S(k− 1,C), and dμJP (X̃−μJ) with respect to the above basis of TP (μJ )J(Σ
k
2 ),

one may now apply Theorem 12.2 and Corollary 12.1.
For a two-sample test for H0 : Q1 = Q2, one may use (12.11).
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12.3 Data Examples

In this section we apply the theory to a number of data sets available in the
literature.

Example 12.4 (Paleomagnetism). The first statistical confirmation of the shifting
of the earth’s magnetic poles over geological times, theorized by paleontologists
based on observed fossilised magnetic rock samples, came in a seminal paper by
R.A. Fisher (1953). Fisher analyzed two sets of data—one recent (1947–1948) and
another old (Quaternary period), using the so-called von Mises–Fisher model

f(x;μ, τ) = c(τ) exp{τx.μ} (x ∈ S2), (12.18)

Here μ(∈ S2), is the extrinsic mean direction, under the inclusion map J (Exer-
cise 12.1) (μ = μE), and τ > 0 is the concentration parameter. The maximum
likelihood estimate of μ is μ̂ = X/|X|, which is also our sample extrinsic mean
(Exercise 12.1). The value of the MLE for the first data set of n = 9 observations
turned out to be μ̂−μ̂E = (0.2984, 0.1346, 0.9449), where (0, 0, 1) is the geographic
north pole. Fisher’s 95% confidence region for μ is {μ ∈ S2 : dg(μ̂, μ) ≤ 0.1536)},
where dg is the geodesic distance on S2. The nonparametric confidence region
based on μ̂E , is given by (12.9) and is about 10% smaller in area than Fisher’s
region (See Bhattacharya and Bhattacharya 2012, Chap. 2).

The second data set based on n = 29 observations from the Quaternary period
that Fisher analyzed, using the same parametric model as above, had the MLE
μ̂E = X/|X| = (0.0172, −0.2978, −0.9545), almost antipodal of that for the first
data set, and with a confidence region of geodesic radius 0.1475 around the MLE.
Note that the two confidence regions are not only disjoint, they also lie far away
from each other. This provided the first statistical confirmation of the hypothesis
of shifts in the earth’s magnetic poles, a result hailed by paleontologists (See Irving
1964). Because of the difficulty in accessing the second data set, the nonparametric
procedures could not be applied to it. But the analysis of another data set dating
from the Jurassic period, with n = 33, once again yielded a nonparametric extrinsic
confidence region, and about 10% smaller than the region obtained by Fisher’s
parametric method (See Bhattacharya and Bhattacharya, Chap. 5, for details).

Example 12.5 (Brain Scan of Schizophrenic and Normal Patients). We consider
an example from Bookstein (1991) in which 13 landmarks were recorded on a mid-
sagittal two-dimensional slice frommagnetic brain scans of each of 14 schizophrenic
patients and 14 normal patients. The object is to detect the deformation, if any,
in the shape of the k-ad due to the disease, and to use it for diagnostic purposes.
The shape space is Σ13

2 . The extrinsic test based on (12.11) has an observed value
95.5476 of the chi-square statistic and a p-value 3.8×10−11. The calculations made
use of the analytical computations carried out in Example 12.3. For details of these
calculations and others we refer to Bhattacharya and Bhattacharya (2012). This
may also be contrasted with the results of parametric inference in the literature for
the same data, as may be found in (Dryden and Mardia, 1998, pp. 146, 162–165).
Using a isotropic Normal model for the original landmarks data, and after removal
of “nuisance” parameters for translation, size and rotation, an F -test known as
Goodall’s F -test (See Goodall 1991) gives a p-value 0.01. A Monte Carlo test based
permutation test obtained by 999 random assignments of the data into two groups
and computing Goodall’s F -statistic, gave a p-value 0.04. A Hotellings’s T 2 test
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in the tangent space of the pooled sample mean had a p-value 0.834. A likelihood
ratio test based on the isotropic offset Normal distribution on the shape space
has the value 43.124 of the chi-square statistic with 22 degrees of freedom, and a
p-value 0.005.

Example 12.6 (Corpus Callosum Shapes of Normal and ADHD Children). We con-
sider a planar shape data set, which gives measurements on a group of typi-
cally developing children and a group of children suffering the ADHD (Atten-
tion deficit hyperactivity disorder). ADHD is one of the most common psychi-
atric disorders for children that can continue through adolescence and adult-
hood. Symptoms include difficulty staying focused and paying attention, diffi-
culty controlling behavior, and hyperactivity (over-activity). ADHD in general has
three subtypes: (1) ADHD hyperactive-impulsive, (2) ADHD-inattentive; (3) Com-
bined hyperactive-impulsive and inattentive (ADHD-combined) (Ramsay 2007).
ADHD-200 Dataset (http://fcon_1000.projects.nitrc.org/indi/adhd200/)
is a data set that records both anatomical and resting-state functional MRI data
of 776 labeled subjects across 8 independent imaging sites, 491 of which were ob-
tained from typically developing individuals and 285 in children and adolescents
with ADHD (ages: 7–21 years old). The data was further processed by UNC BIAS
lab (see Huang et al. 2015) to extract the planar Corpus Callosum shape data,
which contains 50 landmarks on the contour of the Corpus Callosum of each sub-
ject (see Fig. 12.1 for a plot of the raw landmarks of a normal developing child and
a ADHD child). After quality control, 647 CC shape data out of 776 subjects were
obtained, which included 404 (n1) typically developing children, 150 (n2) diagnosed
with ADHD-Combined, 8 (n3) diagnosed with ADHD-Hyperactive-Impulsive, and
85 (n4) diagnosed with ADHD-Inattentive. Therefore, the data lie in the space
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raw landmarks for a normal & a ADHD child
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ADHD

Fig. 12.1 Raw landmarks from the contour of the Corpus Callosum of a typically developing
child and an ADHD child

http://fcon_1000.projects.nitrc.org/indi/adhd200/
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Σ50
2 , which has a high dimension of 2 × 50 − 4 = 96. We carry out extrinsic two

sample testings based on (12.11) between the group of typically developing children
and the group of children diagnosed with ADHD-Combined, and also between the
group of typically developing children and ADHD-Inattentive children. We con-
struct testing statistics that base on the asymptotic distribution of the extrinsic
mean for the planar shapes.

The p-value of the two-sample test between the group of typically developing
children and the group of children diagnosed with ADHD-Combined is 5.1988 ×
10−11, which is based on the asymptotic chi-squared distribution given in (12.11).
The p-value of the test between the group of typically developing children and the
group ADHD-Inattentive children is smaller than 10−50.

More details of the above two examples can be found in https://stat.duke.

edu/~ll162/research/.

12.4 Notes and References

In addition to the early seminal work of R.A. Fisher (1953) and books by Watson
(1983) and N. Fisher et al. (1987) on directional statistics on spheres Sd and axial

spaces Rpd

mentioned in this chapter, Dryden and Mardia (1998) give a compre-
hensive account of parametric inference on shape manifolds of D.G. Kendall (See
Kendall et al. 1999 for a detailed account of these manifolds). Nonparametric infer-
ence based on Fréchet means on general manifolds was introduced in the Indiana
University Ph.D. dissertation of Vic Patrangenaru (1998), and further developed
in Bhattacharya and Patrangenaru (2003, 2005). This theory is much more gen-
eral than, and was done independently of, the work of Hendriks and Landsman
(1996, 1998) on Euclidean submanifolds such as spheres and hypersurfaces of an
Euclidean space with the inclusion map as the embedding. The Fréchet mean on a
non-Euclidean space depends on the distance chosen. The role of a proper choice
of the distance in analyzing complex data was recently emphasized by Holmes
(2015).

The data analysis on S2 in Sect. 12.3 follows Bhattacharya and Bhattacharya
(2012), and that on the planar shape space may be found in Bhattacharya and
Lin (2016). Earlier, nonparametric tests for uniformity on compact Riemannian
manifolds were developed by Beran (1968) and Giné (1975). For certain functional
data analysis on manifolds, especially projective shape spaces, one may refer to
Musse et al. (2008).

A very recent source on the subject matter of this chapter is the book by
Ellingson and Patrangenaru (2015).

Exercises for Chap. 12

Ex. 12.1. (a) Prove that the extrinsic mean of the von Mises–Fisher distribu-
tion (12.18) is μ.

(b) Prove that the MLE of μ in (12.18) is the sample extrinsic mean X/|X|.
(c) Using the first data set of 9 observations in Fisher (1953) construct the asymp-

totic 95% confidence region for μ = μE using (12.9).

https://stat.duke.edu/~ll162/research/
https://stat.duke.edu/~ll162/research/
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Chapter 13

Multiple Testing and the False
Discovery Rate

Abstract Here is an introduction to the theory of the false discovery rates (FDR)
developed by Benjamini and Hochberg (Journal of the Royal Statistical Society,
Series B, 57, 289–300, 1995), Benjamini and Yekatieli (Annals of Statistics, 29(4),
1165–1188, 2001) and others, dealing with the problem of testing a large number
of hypotheses often based on relatively small or moderate sample sizes.

13.1 Introduction

Statisticians are often confronted with the problem of testing simultaneously m
null hypotheses H01, H02, . . . ,H0m, m > 1, based on some data. If the goal is to
determine if all these hypotheses are right, one may take the global null hypothesis
to be H0 = ∩1≤i≤mH0i. This may be the case in a two-sample problem in which
the only objective is to see if the two underlying distributions are the same. For
a test with a level of significance α, the classical Bonferroni procedure is to reject
H0 if and only if at least one of the m p-values p1, . . . , pm is smaller than α/m.
This, of course, is a very conservative test in protecting H0, i.e., the actual level
of significance of the test is probably far smaller than α. For a test of size α, the
Bonferroni test has then a small power. A much improved procedure was suggested
by Simes (1986), in which the p-values are ordered as p(1) ≤ p(2) ≤ · · · ≤ p(m) and
H0 is rejected if and only if p(i) ≤ (i/m)α for at least one i. He proved that this test
is conservative (i.e., it has size ≤ α) if the test statistics are i.i.d. and their common
distribution (function) is continuous, and he conjectured that this is true more
generally. Sarkar (1998) proved the conjecture for a class of positively dependent
joint, or multivariate, distributions of the test statistics, with common marginals.
Also see Sen (1999a,b) for additional facts and some history on multiple testing.
From results due to Benjamini and Yekutieli (2001) derived in Sect. 13.2, Simes’
conjectured inequality follows for test statistics T = (T1, T2, . . . , Tm), whose joint
distribution has the property of positive regression dependency on each element
of a subset of these tests, or PRDS, defined as follows. A set D of m-tuples t =
(t1, t2, . . . , tm) of values of the test statistics is said to be increasing, provided
t ∈ D and t ≤ s (i.e., ti ≤ si for all i) implies s ∈ D.

© Springer-Verlag New York 2016
R. Bhattacharya et al., A Course in Mathematical Statistics and Large Sample
Theory, Springer Texts in Statistics, DOI 10.1007/978-1-4939-4032-5 13

317



318 13 Multiple Testing and the False Discovery Rate

PRDS holds for a given subset I0 of {1, . . . ,m}
if for every measurable increasing set D,

Prob(T ∈ D | Ti = ti) is increasing in ti for every i ∈ I0. (13.1)

This includes the case of independent test statistics Ti, i = 1, . . . ,m, as well as
many other positively dependent ones.

Of greater interest in this chapter is the determination, with a limited statistical
error rate, of those among the m null hypotheses which are false. For example,
in microarray experiments a single observation records gene expression levels of
thousands of genes for the purpose of locating those genes which may contribute
to a certain disease. The experiments are generally expensive and the number of
observations made is not large. Here m is of the order of several thousands, and
the Bonferroni procedure is obviously inadequate for this purpose only pointing to
those genes for which the p-values are less than α/m. In contrast, the procedure for
independent test statistics due to Benjamini and Hochberg (1995) and, more gen-
eral procedures due to Benjamini and Yekutieli (2001) discussed in the next section
are more effective. For an example, one may look at the article of Reiner et al.
(2003), Identifying differentially expressed genes using false discovery rate control-
ling procedures, Bioinformatics 19:368–375. The Benjamini–Hochberg procedure
looks somewhat analogous to that of Simes, but it rejects all k null hypotheses
with the smallest p-values, where k = max{i : p(i) ≤ (i/m)α} (See Theorem 13.1
in the next section), whereas the Benjamini–Yekutieli procedure, valid without
any restriction on the nature of the joint distribution of the test statistics, rejects
the k null hypotheses with the lowest p-values with k = max{i : p(i) ≤ (i/cmm)α},
where cm =

∑
1≤j≤m(1/j) is, for large m, approximately logm (Theorem 13.2).

In Sect. 13.3, the theory is applied to a set of real data for m = 75 two-sample
tests with 28 HIV+ patients and 18 controls.

13.2 False Discovery Rate

As mentioned above, in many problems involving multiple tests it is important
to identify, within a small statistical error, those hypotheses H0i which are false
among the m null hypotheses that are presented (i = 1, 2, . . . ,m). As a measure
of the effectiveness of such multiple testing the following notion was introduced
by Benjamini–Hochberg. Denote by m0 the number of true hypotheses among the
m null hypotheses H0i (1 ≤ i ≤ m). Let the true null hypotheses be labeled as
H0i (1 ≤ i ≤ m0), unless this set is empty.

Definition 13.1. Suppose that of the m null hypotheses tested, V true null hyp-
otheses and S false null hypotheses are rejected, with a proportion Q = V/(V +S)
of true hypotheses among all hypotheses rejected. The quantity E(Q) is called the
false discovery rate.

Remark 13.1. If m0 = m, then Q = 1, provided V > 0. If V = 0, then Q = 0.
Hence in the case all null hypotheses are true, the false discovery rate is the same
as the type 1 error, i.e., it is the probability of rejection under the global null
hypothesis H0 = ∩1≤i≤mH0i.
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Recall the Benjamini–Hochberg procedure:

Reject only the k null hypotheses with the smallest p-values,

where k = max{i : p(i) ≤
(

i
m

)
α}. (13.2)

The proofs below are along the lines of those in Benjamini and Yekutieli (2001).

Theorem 13.1. (a) (Benjamini–Hochberg) Assume that the m test statistics Ti,
i = 1, . . . ,m, are independent. Then the false discovery rate E(Q) for the proce-
dure (13.2) is no more than αm0/m. (b) (Benjamini–Yekutieli) if the PDRS (13.1)
holds with I0 indexing the set of all true null hypotheses, then also the proce-
dure (13.2) has a false discovery rate no more than αm0/m.

Proof. We only give the proof of (a). For part (b), See Benjamini and Yekutieli
(2001).

Step 1. Consider the distribution of the p-values, P1, P2, . . . , Pm, on the prob-
ability space [0, 1]m. Let A(v, s) denote the event that v of the true null hy-
potheses and s false null hypotheses are rejected by the procedure (13.2), and
A(v, s; J) the subset of A(v, s) with a specific set of v true null hypotheses
indexed by J ⊂ {1, . . . ,m0}. Writing qi = (i/m)α, note that on A(v, s) the
p-values of only the v + s hypotheses rejected are less than, or equal to, qv+s.
Then on the set A(v, s; J), and for 1 ≤ i ≤ m0, {Pi ≤ qv+s} holds if and only if
i ∈ J . That is, {Pi ≤ qv+s} ∩ A(v, s; J) = A(v, s; J) or ∅ according as i ∈ J or
i /∈ J (1 ≤ i ≤ m0). Hence

∑

1≤i≤m0

Prob({Pi ≤ qv+s} ∩A(v, s))

=
∑

1≤i≤m0

∑

J

Prob({Pi ≤ qv+s} ∩ A(v, s; J))

=
∑

J

∑

i∈J

Prob(A(v, s; J)) =
∑

J

vProb(A(v, s; J)) = vProb(A(v, s)). (13.3)

Writing m̃ = m−m0, it follows from (13.3) that

E(Q) =
∑

0≤s≤m̃

∑

1≤v≤m0

v

v + s
Prob(A(v, s))

=
∑

0≤s≤m̃

∑

1≤v≤m0

∑

1≤i≤m0

Prob({Pi ≤ qv+s} ∩A(v, s))/(v + s)

=
∑

1≤i≤m0

⎡

⎣
∑

0≤s≤m̃

∑

1≤v≤m0

∑

(v + s)−1Prob({Pi ≤ qv+s} ∩A(v, s))

⎤

⎦ . (13.4)

Step 2. The event {Pi ≤ qv+s} ∩ A(v, s) may be expressed as {Pi ≤ qv+s} ∩
Ci(v, s), where Ci(v, s) is the event that s false null hypotheses and v − 1 true
null hypotheses H0j with j ∈ {1, . . . ,m0}\{i} are rejected. For each k, the m0

sets C(i|k) = ∪{Ci(v, s): all v, s such that v + s = k} are disjoint. Now (13.4)
may be expressed as

E(Q) =
∑

1≤i≤m0

⎡

⎣
∑

1≤k≤m

k−1Prob({Pi ≤ qk} ∩ C(i|k))
⎤

⎦ . (13.5)
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Step 3. By the hypothesis of independence of Ti (i = 1, . . . ,m), the proba-
bility within square brackets on the right side of (13.5) equals the product
Prob(Pi ≤ qk)Prob(C(i|k)). For i = 1, . . . ,m0, Prob(Pi ≤ qk) ≤ qk = (k/m)α
(Exercise 13.1)). Therefore, the right side of (13.5) is no more than (α/m) times∑

1≤i≤m0
[
∑

1≤k≤m Prob(C(i|k))]. By disjointness of the m events C(i|k), for
each i, the inner sum (of the double sum) equals the probability of the union
of the sets over k and is, therefore, no more than one. Hence the double sum is
no more than m0, and we arrive at the desired result. ��
Observe that the proof above does not make use of the hypothesis of inde-

pendence of the Ti’s for Steps 1 and 2. In particular, (13.5) holds generally,
without any dependency restriction on the distribution of T = (T1, T2, . . . , Tm).
To bound the right side properly, split the event {Pi ≤ qk} as the union
∪{Pi ∈ (α(j − 1)/m, αj/m] : j = 1, . . . , k}, and note that, if the Ti have con-
tinuous distribution functions, then

∑

1≤k≤m

Prob({Pi ∈ (α(j − 1)/m, αj/m]} ∩ C(i, k))

= Prob({Pi ∈ (α(j − 1)/m, αj/m]} ∩ {∪C(i, k) : k = 1, . . . ,m})
≤ Prob({Pi ∈ (α(j − 1)/m, αj/m]}) = α/m. (13.6)

The equality in (13.6) is a consequence of the disjointness of the sets C(i, k),
k = 1, . . . ,m. The inequality follows from the fact that for each i = 1, . . . ,m0,
Prob({Pi ∈ (α(j − 1)/m, αj/m]}) = α/m. The relations (13.5), (13.6) then lead
to

E(Q) =
∑

1≤i≤m0

⎡

⎣
∑

1≤k≤m

k−1Prob({Pi ≤ qk} ∩C(i, k))

⎤

⎦

=
∑

1≤i≤m0

∑

1≤k≤m

∑

1≤j≤k

k−1Prob({Pi ∈ (α(j − 1)/m, αj/m} ∩C(i, k))

≤
∑

1≤i≤m0

∑

1≤k≤m

∑

1≤j≤k

j−1Prob({Pi ∈ (α(j − 1)/m, αj/m} ∩ C(i, k))

=
∑

1≤i≤m0

∑

1≤j≤m

j−1
∑

j≤k≤m

Prob({Pi ∈ (α(j − 1)/m, αj/m} ∩C(i, k))

≤
∑

1≤i≤m0

∑

1≤j≤m

j−1α/m = m0cmα/m. (13.7)

Since this holds for arbitrary α, replacing α by α/cm, one arrives at the following
result, under an additional assumption of continuity of the test statistics.

Theorem 13.2 (Benjamini–Yekutieli). Consider the procedure: Reject all null
hypotheses H0i with the smallest k p-values where k = max{i : p(i) ≤ iα/(cmm)},
and cm =

∑
1≤j≤m(1/j). The false discovery rate of this procedure is no more than

(m0/m)α ≤ α.
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13.3 An Application to a Diffusion Tensor Imaging Data Set

In this section, we consider an application of multiple testing to a diffusion tensor
imaging (DTI) data set from a HIV study. The DTI data set consist of 46 subjects
with 28 HIV+ subjects and 18 healthy controls. Diffusion tensors were extracted
along the fiber tract of the splenium of the corpus callosum of each subject. The
DTI for all the subjects are registered in the same atlas space based on arc lengths,
with tensors extracted from 75 locations along the fiber tract of each subject. This
data set have been studied in a regression setting in Yuan et al. (2012). We instead
consider the problem of multiple testing with m = 75 null hypotheses in testing
whether there is a difference between control group and the HIV+ group at each
of the 75 locations where the DTI are extracted. We carry out the tests using the
two procedures introduced in the previous section.

The DTI data are represented by the diffusion matrices which are 3 by 3 posi-
tive definite matrices. At each location, a nonparametric testing statistics is con-
structed. Let Xi1, . . . , Xin1 be the sample of DTI data from control group at lo-
cation i (i = 1, . . . , 75) and Yi1, . . . , Yin2 be an i.i.d. sample from the HIV positive
group at location i, with X i and Y i their corresponding sample means. That is,
Xi and Y i are the sample mean vectors of dimension 6 for the 6 distinct values
of the vectorized data. Let ΣXi and ΣYi be the corresponding sample covariance
matrices at location i. Then, for testing the two-sample hypothesis H0i we use the
test statistic (X i−Y i)Σ

−1(X i−Y i)
T with Σ = (1/n1ΣXi +1/n2ΣYi), which has

the asymptotic chi-square distribution χ2(6).
Set the significant level α = 0.05. We first carry out the test using the

Benjamini-Hochberg procedure. That is, reject only the k null hypothesis with the
smallest p-values, where k = max{i : p(i) ≤ 1

mα}. We first order the 75 p-values
corresponding to the tests carried out at all the locations (see Fig. 13.1 for a plot
of the p-values as a function of the arc length (location) before the ordering). The
ordered p-values are compared with the vector {0.05/75, 0.1/75, . . . , 0.05}, which
gives the result k = 58. Therefore we reject the 58 null hypotheses corresponding
to the first 58 ordered p-values.

We now carry out the tests using the Benjamini–Yekutieli procedure. The ord-
ered vector of p-values are compared with the vector {iα/(cmm), i = 1, . . . ,m},
where α = 0.05, m = 75, and cm =

∑
1≤j≤m 1/j = 4.0021. With k = max{i :

p(i) ≤ iα/(cmm)}. The procedure yields k = 50. Thus we reject the 50 null hyp-
otheses corresponding to the first 50 ordered p-values.

13.4 Notes and References

The presentation in this chapter depends much on the article by Benjamini and
Yekutieli (2001). For a history of multiple testing we refer to this article, and to
Sarkar (1998), and Sen (1999a,b). In Sen (1999a,b) one may also find the history
of earlier procedures suited especially in clinical trials and their connections with
the classic work of Scheffe (1959) on Normal models and the early work of S.N.
Roy detailed in Roy et al. (1971). The data example in Sect. 13.3 is taken from
Bhattacharya and Lin (2016).
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Exercises for Chap. 13

Ex. 13.1. Let P denote the p-value of a test of a null hypothesis H0 of size no
more than α.

(a) Show that Prob(P ≤ α|H0) ≤ α, with equality if the test is of exact size α,
i.e., Prob(Reject H0 | H0) = α.

(b) Prove that, if the test statistic T which rejects H0 if T > c (for c depending on
α) has a continuous distribution under H0, then the p-value has the uniform
distribution on [0, 1].
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Chapter 14

Markov Chain Monte Carlo (MCMC)
Simulation and Bayes Theory

Abstract Markov Chain Monte Carlo is an innovative and widely used computa-
tional methodology for an accurate estimation of a distribution, whose direct nu-
merical evaluation is intractable. The main idea is to construct an ergodic Markov
chain which is simple to simulate and has the target distribution as its invariant
probability. This technique has been indispensable in the estimation of posterior
distribution in Bayesian inference.

14.1 Metropolis–Hastings Algorithm

The topic of this chapter is the use of Markov chain theory in the computation of
posterior distributions in Bayes theory. First consider the problem of computing
the expectation Eg(Z) when Z has a pdf f with respect to a sigma-finite measure
μ on a state space (S,S ), and g is a measurable function with a finite expectation,

Eg(Z) =

∫

g(y)f(y)μ(dy). (14.1)

Suppose f is not explicitly known, but the ratio f(x)/f(y) is tractable. This occurs
in mathematical physics where Z has the Gibbs distributions and f is given as
f(y) = r exp{h(x)}, with h known explicitly (for example, as the Hamiltonian
of a system of a large number of particles), but the normalizing constant r, the
so-called partition function, is not known analytically in computable form, being
simply given as the reciprocal of the multiple integral of f over a very large number
of coordinates. Here f(x)/f(y) = exp{h(x)}/ exp{h(y)} is known explicitly and it
is computable. Another example occurs in Bayes theory, where f(θ) = π(θ | X) is
the posterior density of θ, i.e., the conditional density of θ, given the observationX.
Given a parametric family g(x | θ), θ ∈ Θ (= S), of densities of X with respect to
some sigma-finite measure v (e.g.,X = (X1, . . . , Xn)—a random sample from some
distribution parametrized by θ), the Bayesian views g(x | θ) as the conditional
density of X (at x), given the value of the random variable θ which has a density
π(θ), say, with respect to Lebesgue measure μ on the p-dimensional parameter
space Θ ⊂ R

p. One calls πdμ the prior distribution of the random variable θ.
In this formulation, the joint density of (θ,X) is given by π(θ)g(x | θ), and the
posterior density of θ is π(θ | x) := π(θ)g(x | θ)/c(x), c(x) being the marginal
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density of X. That is, c(x) =
∫
π(θ)g(x | θ)μ(dθ) which is usually very difficult to

compute. On the other hand, π(θ1 | x)/π(θ2 | x) = π(θ1)g(x | θ1)/π(θ2)g(x | θ2)
is explicitly given in an analytical and easily computable form.

For an introduction to Markov chains, also referred to as Markov processes in
discrete time, see Chap. 8, Sect. 8.6. While this is enough for an understanding
of the results in this chapter, for proofs and a more detailed account, especially
suited for the present topic, see Robert and Casella (2004, Chap. 6), which is also
a standard reference for MCMC as a whole. Our presentation is also influenced by
an exposition given in Wasserman (2003, Chap. 24).
In general for the computation of (14.1), the Metropolis–Hastings algorithm con-
structs a Markov chain {Xj : j = 0, 1, 2, . . .} with a transition probability density
function p(x, y) which satisfies the following detailed balance condition:

f(x)p(x, y) = f(y)p(y, x) for all x, y. (14.2)

On integrating both sides with respect to x, one gets

∫

f(x)p(x, y)μ(dx) = f(y) for all y, (14.3)

which implies that f is an invariant density for the Markov process. By ensuring
that the choice of p(x, y) is such that this invariant probability is unique and the
strong law of large numbers (ergodic theorem) for Markov processes holds, one
gets

N−1
∑

1≤j≤N

g(Xj) −→
∫

g(y)f(y)μ(dy) with probability one, as N → ∞.

(14.4)
Since the number N of realizations of successive states of the Markov chain can
be taken to be as large as needed by the simulation procedure, the objective of
computing the desired expectation is achieved. We now describe the method for
constructing p(x, y). For simplicity, take S to be an open subset of R

d, and μ
Lebesgue measure.

Metropolis–Hastings Algorithm

Step 1: Choose a transition probability density q(x, y) (with respect to μ) of a
Markov process on S, i.e., (i) for each x ∈ S, y → q(x, y) is a probability
density and (ii) for each y ∈ S, x → q(x, y) is measurable.

Step 2: Starting with some initial state X0 = x0, pick Y0 with density q(x0, ·)
and choose X1 according to the rule

X1 =

{
Y0 with probability a(x0, Y0),
X0 with probability 1− a(x0, Y0),

(14.5)

where the acceptance ratio a(x, y) is defined by

a(x, y) = min

{
f(y)

f(x)
· q(y, x)
q(x, y)

, 1

}

. (14.6)

Step 3: In general, after Xn is chosen, pick Yn
L∼ q(Xn, y)μ(dy) and pick Xn+1

according to (14.5), (14.6), with Xn in places of X0 and Yn in place of
Y0 (n = 1, 2, . . . ).
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Theorem 14.1. Assume q(x, y) > 0 for all x, y ∈ S. Then (a) the transition
probability density p(x, y) of the Markov chain {Xj : j = 0, 1, . . .} has f as its
invariant probability density, and (b) the convergence (14.4) holds for every g
such that

∫ |g(y)|f(y)μ(dy) < ∞.

Proof. (a). We only need to establish the detailed balance relation (14.2). For this
fix x, y ∈ S (x �= y), and suppose that f(x)q(x, y) < f(y)q(y, x), so that
a(x, y) = 1 and a(y, x) = f(x)q(x, y)/f(y)q(y, x). Therefore, the transition
probability density p(x, y) of the Markov chain {Xj : j = 0, 1, . . . } is given by

p(x, y) = q(x, y)a(x, y) = q(x, y),

p(y, x) = q(y, x)a(y, x) = q(y, x)f(x)q(x, y)/(f(y)q(y, x))

=
f(x)

f(y)
q(x, y).

Therefore, f(x)p(x, y) = f(y)p(y, x). The case f(x)q(x, y) > f(y)q(y, x) is
treated similarly. In the case of equality, (14.2) holds trivially.

(b) This is a standard result for positive Harris recurrent Markov chains, for which
we refer to Robert and Casella (2004, Theorems 6.63, 7.4).

Remark 14.1. To facilitate numerical simulation it is important to choose the pro-
posal density q(x, y) well, as well as a good initial state x0 = X0. One choice is
q(x, y) = g(y) where g(y) is a positive density on S. This is referred to as indepen-
dent Metropolis–Hastings algorithm. One assumes here that it is simple to draw
observations from the distribution g(y)μ(dy). This method leads to fast conver-
gence to the limit (14.4) if there is a constant M such that f(x) ≤ Mg(x) for
all x. Another choice is to have a symmetric proposal density q(x, y) = q(y, x),
so that it is simple to draw from q(x, y)μ(dy). In this case the acceptance ratio

takes the simpler form a(x, y) = min
{

f(y)
f(x) , 1

}
. For example, if S = R

d one may

choose q(x, y) = ϕ(x − y : c) where ϕ(z : c) is the d-dimensional Normal density
with mean zero and dispersion matrix cId for some properly chosen c > 0. This
is referred to as the random walk Metropolis–Hastings algorithm. If S is an open
interval (or an open rectangle) one may make a transformation of it diffeomorphic
to R

d and apply the algorithm. For these we refer to Robert and Casella (2004,
Chap. 7).

14.2 Gibbs Sampler

The Metropolis–Hastings algorithm is difficult to apply directly to S of dimension
d > 1, partly because of the problem with directly generating random vectors
and partly because of the slow rate of convergence to stationarity of multidi-
mensional chains. The Gibbs sampler alleviates these problems by using several
one-dimensional problems to deal with a multidimensional problem. To illustrate
this, consider the two-dimensional problem with f(x, y) as the density of (X,Y ) on
S ⊂ R

2. Let fY |X(y | x) denote the conditional density of Y (at y), given X = x.
Similarly define fX|Y (x | y).
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Suppose it is possible to simulate from the one-dimensional, conditional distri-
butions fX|Y (· | y) and fY |X(· | x). The following algorithm for simulating (Xn, Yn)
converging to the distribution f(x, y) is then used in the two-dimensional case, and
it can be generalized in an obvious way to higher dimensions.

Two-Stage Gibbs Sampling Algorithm

Step 1. Begin with a suitable initial state (x0, y0) and generate X1 with density
fX|Y (· | y0).

Step 2. Generate Y1 with density fY |X(· | X1).
Step 3. Given (Xn, Yn), generate Xn+1 with density fX|Y (· | Yn), and generate

Yn+1 with density fY |X(· | Xn+1) (n = 1, 2, . . . ).

Theorem 14.2. Assume f(x, y) > 0 ∀ (x, y) belonging to an open rectangle
S ⊂ R

2. Then (a) the Markov chain (Xn, Yn), n ≥ 0, has the invariant density
f(x, y) and (b) the two-dimensional analog of (14.4) holds.

Proof. (a) The transition probability density of the Markov chain (Xn, Yn), n ≥ 0,
is given by

q(x1, y1 | x0, y0) = fX|Y (x1 | y0)fY |X(y1 | x1) = f(x1, y0)

fY (y0)
· f(x1, y1)
fX(x1)

so that
∫

S

q(x1, y1 | x0, y0)f(x0, y0)μ(dx0)μ(dy0)

=

∫

S

f(x1, y0)f(x1, y1)f(x0, y0)

fY (y0)fX(x1)
μ(dx0)μ(dy0)

=

∫ (∫

f(x0, y0)μ(dx0)

)

{f(x1, y0)f(x1, y1)/fY (y0)fX(x1)}μ(dy0)

=

∫
fY (y0)f(x1, y0)f(x1, y1)

fY (y0)fX(x1)
μ(dy0) = f(x1, y1),

establishing the claim.
(b) The proof of convergence again follows from Theorem 6.63 in Robert and

Casella (2004). ��
An efficient way of implementing the Gibbs sampler is to use the following

simulation procedure.

Metropolis–Hastings with Gibbs Sampling

Step 1. Choose symmetric proposal distributions q and q̃ for drawing from fX|Y
and fY |X , respectively: q(x, x′) = q(x′, x), q̃(y, y′) = q̃(y′, y).

Step 2. Choose some initial X0 = x0, Y0 = y0. Draw W0 from q(·, X0), and let

X1 =

{
W0 with probability a(X0,W0 | Y0)
X0 with probability 1− a(X0,W0 | Y0),

and draw Z0 from q̃(·, Y0) and let

Y1 =

{
Z0 with probability ã(Y0, Z0 | X1)
Y0 with probability 1− ã(Y0, Z0 | X1),
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where

a(x, x′ | y) = min

{
fX|Y (x′ | y)
fX|Y (x | y) , 1

}

= min

{
f(x′, y)
f(x, y)

, 1

}

,

ã(y, y′ | x) = min

{
fY |X(y′ | x)
fY |X(y | x) , 1

}

= min

{
f(x, y′)
f(x, y)

, 1

}

.

Step 3. Having drawn (Xn, Yn), draw (Xn+1, Yn+1) following the procedure in
Step 2, but with X0 replaced by Xn and Y0 by Yn, and with W0 replaced
by Wn and Z0 by Zn. Here Wn is drawn afresh from q(·, Xn) and Zn

from q̃(· | Yn) (n ≥ 1).

The above procedure extends to higher dimensional problems. The following
section is devoted to an application.

14.3 Bayes Estimation in the Challenger Disaster Problem:
A Project for Students

Consider the space shuttle disaster problem described in Chap. 4, pp. 58–60.
Assume the same logistic regression model.

Suggested Model Let Y denote the failure status (response variable), and X the
temperature in degrees F at launch time (explanatory variable). Use the logistic
regression model,

P (Y = 1 | X = x) =
exp{α+ βx}

[1 + exp{α+ βx}] = p(x), say, and

P (Y = 0 | X = x) = 1− p(x).

Note that one may express the model as

log

[
p(x)

(1− p(x))

]

= α+ βx.

Hence the name logistic regression.
Assume that the regressor x is stochastic and (Xi, Yi) are i.i.d. random vectors.
For 23 independent Y observations (y1, . . . , y23) the conditional likelihood func-

tion (i.e., the conditional p.d.f. of Yi, given Xi = xi (i = 1, . . . , 23)), is

(y | x;α, β) =
∏

i=1,...,23

[
p(xi)

yi(1− p(xi))
1−yi

]
,

and the (conditional) log likelihood is

log  =
∑

i

[yi(α+ βxi)]−
∑

i

log[1 + exp{α+ βxi}].

Assume that the distribution of Xi does not involve α, β.
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(a) Use a suitable prior distribution of (α, β) to compute the posterior distribution
of (α, β) on a sufficiently fine grid of points. Do this numerically, by MCMC.
For example, you may assume α and β to be independent random variables
with α having the Normal distribution N(α0, σ

2
0) and −β having a log-normal

distribution, i.e., ξ ≡ log(−β) has the distribution N(ξ0, η
2
0). Observe that

in the present context β < 0. For this prior, you may choose the parameters
α0 = 10, σ2

0 = 20, ξ0 = 1, η20 = 1, or use the MLEs from Chap. 4, pp. 65, 66.
[Hint: First compute the posterior distribution of (α, ξ) and then obtain

that of (α, β) by simply noting that ξ = log(−β). Denoting by π1(α)π2(ξ) the
prior density of (α, ξ), its posterior density is

π(α, ξ | x,y) = π1(α)π2(ξ)/(y | x;α, β)
∫
(y | x;α, β)π1(α)π2(ξ)dαdξ =

(y | x;α, β)π1(α)π2(ξ)
h(x,y)

[Recall (y | x;α, β) =∏
i=1,...,23[p(xi)

yi(1− p(xi))
1−yi ; p(x) = exp{α+ βx},

β = −eξ.]
Hence π(α1, ξ1 | x,y)/π(α2, ξ2 | x,y) = π1(α1)π2(ξ1)(y | x;α1, β1)/(y |

x;α2, β2) is computable for all (αiξi) (i = 1, 2).
Now the conditional (posterior) densities are denoted fα|ξ and fξ|α, and

one has

fα|ξ(α1 | ξ)
fα|ξ(α2 | ξ) =

(y | x;α1, β)π1(α1)

(y | x;α2, β)π1(α2)
,

fξ|α(ξ1 | α)
fξ|α(ξ2 | α) =

(y | x;α, β1)π2(ξ1)
(y | x;α, β2)π2(ξ2) . (14.7)

Use the random walk Metropolis–Hastings algorithm with the proposal density
for α, namely q(α1, α2), as the Normal density (for α1) with mean α2, and
some variance, say σ2

0 = 20. Similarly, let the proposal density for ξ = log(−β),
q∼(ξ1, ξ2) as the Normal density (for ξ1) with mean ξ2 and variance η20 = 1
(You may, of course, choose different variances for these if you like). Now follow
the steps of the Metropolis–Hastings with Gibbs Sampling steps.]

(b) (i) Use the posterior distribution of (α, β) in (a) to find the (histograms of the)
posterior distributions of the failure probabilities p(x) at launch time temper-
atures x = 31 ◦F, and x = 65 ◦F. (ii) Locate the tenth percentile δ0.10, say, of
the histogram for the posterior distribution in (i) for the failure probability at
x = 31 ◦F (i.e., 10% of the points of the histogram lie below δ0.10 while 90%
lie above it). Observe that, in the Bayesian paradigm, the statistician has a
90% faith (or confidence) that the probability of failure at 31 ◦F is at least
δ0.10.

A Project for Students

Project: Space Shuttle Disaster In 1986, the space shuttle Challenger ex-
ploded during take off, killing the seven astronauts aboard. It was determined
that the explosion was the result of an O-ring failure, a splitting of a ring of rub-
ber that seals different parts of the ship together. The flight accident was believed
to be caused by the unusually cold weather (31 ◦F) at the time of the launch.
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The past O-ring failure data along with temperature at launch time are given be-
low (in increasing order of temperature) for 23 prior flights. The flight numbers
denote the (unimportant) time order of launch. The numbers 0 and 1 indicate “no
O-ring failure” and “O-ring failure”, respectively.

Project Objective Estimate the probability of O-ring failure at temperature
31 ◦F and at 65 ◦F.

Flight# 14 9 23 10 1 5 13 15 4 3 8 17 2

Failure 1 1 1 1 0 0 0 0 0 0 0 0 1

Temp. in Degrees F 53 57 58 63 66 67 67 67 68 69 70 70 70

Flight# 11 6 7 16 21 19 22 12 20 18

Failure 1 0 0 0 1 0 0 0 0 0

Temp. in Degrees F 70 72 73 75 75 76 76 78 79 81

14.4 Notes and References

Original sources for the material of this chapter may be traced to Metropolis et al.
(1953), Hastings (1970), Geman and Geman (1984) and Gelfand and Smith (1990).
A standard reference for the subject is Robert and Casella (2004), where one also
finds a detailed history of the development of the subject and extensive references.
Our presentation is much influenced by Wasserman (2003, Chap. 24), which gives
a very readable introduction. For the Challenger disaster problem in Sect. 14.3 we
refer to Robert and Casella (2004, pp. 15–19, 281, 282).

For a modern and exciting perspective of the Metropolis–Hastings algorithm,
including a dramatic application to cryptography, we refer to Diaconis (2009).

Exercises for Chap. 14

Ex. 14.1. Do the Project.
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Chapter 15

Miscellaneous Topics

Abstract This chapter provides brief introductions to a number of important
topics which have not been touched upon in the rest of the book, namely, (1) clas-
sification of an observation in one of several groups, (2) principal components
analysis which splits the data into orthogonal linear components in the order of
the magnitudes of their variances, and (3) sequential analysis in which observations
are taken one-by-one until the accumulated evidence becomes decisive.

15.1 Classification/Machine Learning

The problem of classification is that of assigning an observation X ∈ X (observa-
tion space) to one of a finite number of distributions indexed as Y ∈ Y (finite set
of classes) from which it came. In the computer science literature X is referred
to as the input and Y the output and an algorithm h : X → Y that assigns an
observation to a class is sometimes described as machine learning. One may think
of diagnosing a patient based on her symptoms X [e.g., X may be a vector of
measurements of her systolic pressure, cholesterol level (LDL), heart rate, etc.] as
having one, say Y , of a set Y of possible ailments. Assume first that the distribu-
tions indexed by Y = {1, . . . ,K} have known densities fi, (i ∈ Y ), and that in
the general population the proportion of the ith class is πi. An optimal procedure
which minimizes the probability of misclassification is the following h∗ called the
Bayes classifier

h∗(x) = argmax
j

πjfj(x). (15.1)

If the set on the right has more than one element, choose any element from it.
To prove optimality of h∗, note that the probability of misclassification for any
classifier h is

K∑

j=1

πj

∫

H

1{h(x) �=j}fj(x)dx = 1−
K∑

j=1

∫

H

1{h(x)=j}πjfj(x)dx

= 1−
K∑

i=1

K∑

j=1

∫

H

1{h(x)=j,h∗(x)=i}πjfj(x)dx
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≤ 1−
K∑

i=1

K∑

j=1

∫

H

1{h(x)=i}πifi(x)dx

= 1−
K∑

i=1

∫

H

1{h∗(x)=i}πifi(x)dx

=

K∑

i=1

πi

∫

H

1{h∗(x) �=i}πifi(x)dx

= Probability of misclassification for h∗.

Usually one does not know πj , fj (1 ≤ j ≤ K) and estimates them from a random
sample, called training data in the computer science literature.

As an example, suppose that X is d-dimensional Normal N(μj , Σj), 1 ≤ j ≤ K.
Then a straightforward calculation shows (Exercise 15.1)

h∗(x) = argmax
j

{

−1

2
log |Σj | − 1

2
(x− μj)

′Σ−1
j (x− μj) + log πj

}

, (15.2)

where |Σj | is the determinant of Σj . This quadratic classifier is known as Fisher’s
quadratic discriminant originally due to R.A. Fisher. The distance d(x, μ) = [(x−
μ)′Σ−1(x− μ)]

1
2 is known as the Mahalanobis distance. In the case the dispersion

matrices Σj, are all the same, namely Σ, it is simple to check that

h∗(x) = argmax
j

{
x′Σ−1

j μj − 1
2μ

′
jΣ

−1
j μj + log πj

}
. (15.3)

The function within curly brackets is linear (in x) and is called the linear discrim-
inant and the Bayes procedure is referred to as the linear discriminant analysis,
or LDA.

A more widely used classifier is based on the regression function (x) = E(Y |
X = x). Although (x) generally does not lie in the finite set Y , it is still used for its
simplicity. Indeed, one often assumes (x) to be linear in x : Y = β0+

∑p
j=1 βjXj+ε

with the usual assumptions (See Sect. 6.8, Theorem 6.4, Corollary 6.5). We will
consider the case Y = {0, 1}, i.e., K = 2 and write (x) = P (Y = 1 | X = x),
x = (x1, . . . , xp)

′. Given a training sample(Yi, Xi1, . . . , Xip)
′, 1 ≤ i ≤ n, the least

squares estimate of β = (β0, β1, . . . , βp)
′ is β̂ = (X′X)−1X′Y where

X =

⎡

⎢
⎢
⎢
⎣

1 X11 . . . X1p

1
...

...
1 Xn1 . . . Xnp

⎤

⎥
⎥
⎥
⎦
, Y = (Y1, . . . , Yn)

′. (15.4)

The classification rule for an observation X = (X1, . . . , Xp)
′ is

ĥ(x) =

{
1 if ̂(x) := X ′β̂ > 1

2 ,
0 otherwise.

(15.5)

The rationale behind the rule is that P (Y = 1 | X = x) + P (Y = 0 | X = x) = 1.
For much more on this issue refer to Hastie et al. (2001, Chap. 4).
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A more appropriate model, compared to the classical linear model, is perhaps
logistic regression: (x) ≡ P (Y = 1 | X = x) = exp{β0+β′x}/[1+exp{β0+β′x}].
For estimation of the parameters of the model we refer to Chap. 4 (Project) and
Chap. 14, Sect. 14.3. The classifier is then the analog of (15.5), namely:

ĥ(x) =

{
1 if ̂(x) > 1

2 ,
0 otherwise.

(15.6)

See Hastie et al. (2001, Chap. 4, Sect. 4).
For general parametric models with densities fj, 1 ≤ j ≤ K, governing the

K classes one may use the MLE for estimating the parameters from sufficiently
large random samples, or training data, in order to compute a classifier ĥ. If
parametric models are not particularly reliable, one may resort to nonparametric
density estimation by the kernel method described in Chap. 10. If the observationX
is high-dimensional then the convergence to the true density is generally very slow.
In many data examples and simulations the nonparametric Bayes estimation of
the density, following Ferguson (1973, 1974), and using appropriate MCMC, seem
to yield substantially better approximations. One may also use nonparametric
regression for classification (See Ghosh and Ramamoorthi (2002), Chaps. 5, 7,
Hjort et al. 2010, and Bhattacharya and Bhattacharya 2012, Chaps. 13, 14).

Finally, we mention the linear classifier known as the support vector machines
introduced by Vapnik and his co-authors (See Vapnik 1998). This theory provides
the precise criterion for separating the training data by a hyperplane, and provides
optimal separating hyperplane maximizing its distance from the data. One then
uses this to classify an observation into one of two classes (K = 2).

15.2 Principal Component Analysis (PCA)

Let X be a d-dimensional random vector with distribution Q, mean μ =
(μ1, . . . , μd)

′ and covariance matrix Σ (d > 1). Let u1, u2, . . . , ud be unit length
(orthonormal) eigenvectors of Σ with eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λd. One may
express X as

X =

d∑

i=1

〈X, ui〉ui = μ+

d∑

i=1

〈X− μ, ui〉ui, (15.7)

where 〈 , 〉 denotes Euclidean inner product (and ‖v‖ = 〈v, v〉 is the Euclidean
norm). The quantities 〈X−μ, ui〉ui are called principal components of X−μ, or
of X. Note that var〈X, ui〉 = var〈X − μ, ui〉 = λi (i = 1, . . . , d). The coefficient
〈X−μ, u1〉 of the first principal component has the largest variance λ1. The first
principal component is considered to be the most important, followed by the next
important component, namely the second principal component, and so on.

The most important use of PCA is in dimension reduction especially when
d is large. The following result says that the r-dimensional hyperplane passing
through μ and generated by the first r principal components provides the best r-
dimensional subspace approximation forX for the criterion of minimizing expected
squared distance.

Theorem 15.1. Consider the orthogonal projection of X onto an r-dimensional
hyperplane passing through μ. The expected squared distance between X and such a
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projection is minimized over the class of all such hyperplanes when the hyperplane
is the translation by μ of the r-dimensional subspace spanned by u1, u2, . . . , ur. In
particular, the optimal projection is

∑r
i=1〈X− μ, ui〉ui + μ.

Proof. An r-dimensional hyperplane passing through μmay be expressed as μ+H ,
where H is spanned by r orthonormal vectors v1, v2, . . . , vr. The projection of X
on this hyperplane is μ+

∑r
i=1〈X−μ, vi〉vi whose expected squared distance from

X is

E‖X− μ−
r∑

i=1

〈X− μ, vi〉vi‖2

= E‖X− μ‖2 +
r∑

i=1

E〈X− μ, vi〉2 − 2
r∑

i=1

E〈X− μ, vi〉2

= E‖X− μ‖2 −
r∑

i=1

E〈X− μ, vi〉2

= E‖X− μ‖2 −
r∑

i=1

v′iΣvi. (15.8)

The minimizer of this over all orthonormal r-tuples {v1, v2, . . . , vr} is the maxi-
mizer

argmax
{v1,v2,...,vr}

orthonormal

r∑

i=1

v′iΣvi. (15.9)

First choose v1 to maximize v′1Σv1 over the class of all vectors of norm 1. The
maximum value is λ1 attained by u1. Next choose v2 to minimize v′2Σv2 over the
class of all vectors of norm 1 orthogonal to u1; this maximum is λ2 attained by
v2 = u2. In this manner we arrive at {u1, u2, . . . , ur} as the maximizer of (15.9),
and the minimizer of (15.8). ��
Remark 15.1. One estimates μ and Σ and, consequently, eigenvalues and eigenvec-
tors from random samples taken from underlying distributions Q. These estimates
are then used for constructing principal components and dimension reduction.

Remark 15.2. A word of caution in the use of PCA for purposes of inference such
as classification and two-sample tests with high-dimensional data. The idea of
dimension reduction via PCA is not that one ignores data pertaining to those
principal components with small variances. It simply means that those components
may simply be represented by their means. Notice that the optimal r-dimensional
hyperplane in Theorem 15.1 passes through μ, which is the mean vector of all the
coordinates. Indeed, if one wishes to discriminate one distributionQ1 from another,
Q2, based on a few principal components estimated from random samples from
the two distributions, it would be prudent to compare the means of the lowest
principal components. For even small differences in means of these components
are more likely to be detected, because of small variances, than similar differences
in higher level principal components. See Bhattacharya and Bhattacharya (2012,
pp. 16, 17).

For applications of PCA in image analysis and pattern recognition we refer to
Bishop (2006, Chap. 4) and Hastie et al. (2001, Chap. 4).
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15.3 Sequential Probability Ratio Test (SPRT)

The sequential probability ratio test, or SPRT, was introduced by Wald (1947). We
provide here a brief outline of the procedure and its properties.

Usual statistical inference procedures, such as considered in this book so far,
are based on fixed sample sizes, which may be either too small or inadequate or
too large and wasteful for the specific goals one has. A sequential procedure tries
to achieve the desired goals with the smallest possible sample sizes by drawing
observations one at a time until the accumulated evidence becomes sufficient for
the desired level of accuracy. To illustrate Wald’s SPRT in this context we consider
the problem of testing a simple null hypothesis H0 against a simple alternative
H1 with prescribed probabilities α, β of Type 1 and Type 2 errors.

Let U1, U2, . . . , be i.i.d. observations with values in some measurable space
(S,S ). Assume that their common distribution has a probability density f(u; θ)
(with respect to some measure ν(du)). There are two hypotheses concerning the
value of θ, namely, H0 : θ = θ0, H

1 : θ = θ1, (θ0 �= θ1). Assume for simplicity that
f(u; θ0), f(u; θ1) are both strictly positive for all u (outside perhaps a set of zero
v-measure). Let Xn be the likelihood ratio: Xn :=

∏n
1 (f(Uj ; θ1)/f(Uj; θ0)), then,

under H0, {Xn}∞n=1 is a {Fn}∞n=1-martingale with Fn := σ{U1, · · · , Un}. The
sequential probability ratio test (SPRT) of A. Wald may be described as follows.
Let 0 < A < 1 < B be two positive numbers, and let τ be the first time {Xn}∞n=1

escapes from the interval (A,B)

τ := inf {n ≥ 1 : Xn ≤ A or Xn ≥ B} . (15.10)

Then accept H0 if Xτ ≤ A, and accept H1 if Xτ ≥ B. Assuming a parameter
identifiability condition ν({u : f(u; θ0) �= f(u; θ1)}) > 0, one may check that
E
0τ < ∞ and E

1τ < ∞, where P i denotes probability, and E
i expectation, under

Hi (i = 0, 1).1 Now

E
iXm1[τ>m] ≤ BP i(τ > m) −→ 0 as m → ∞ (i = 0, 1). (15.11)

It follows from the Optional Stopping Theorem2 that

1 = E
0X1 = E

0Xτ = E
0Xτ1[Xτ≥B] + E

0Xτ1[Xτ≤A]. (15.12)

Now, expressing 1[τ=n] as a function gn(U1, . . . , Un), one has

E
0Xτ1[Xτ≤A]1[τ=n] = E

0Xn1[Xn≤A]1[τ=n] = E
11[Xn≤A]1[τ=n]

= E
11[Xτ≤A]1[τ=n]. (15.13)

The second equality in (15.13) holds as a special case of the general equality
E
0Xnf(U1, · · · , Un) = E

1f(U1, · · · , Un) for every nonnegative (or bounded) mea-
surable f on Sn. Summing (15.13) over n = 1, 2, . . . , we get

1 = E
0Xτ ≥ BP 0(Xτ ≥ B) + P 1(Xτ ≤ A). (15.14)

1 See Proposition 3.7 in Bhattacharya and Waymire (2007), noting that logXn is a sum of i.i.d.
random variables under both H0 and H1.
2 Theorem 3.6 in Bhattacharya and Waymire (2007).
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Writing α := P 0(Xτ ≥ B) as the probability of accepting H1 when H0 is true,
and β := P 1(Xτ ≤ A) as the probability of accepting H0 when H1 is true, we get

Bα+ β ≤ 1. (15.15)

Similarly, {1/Xn}∞n=1 is a {Fn}∞n=1-martingale under P 1, and the same argument
as above yields

1 = E
1X−1

τ = E
1X−1

τ 1[Xτ≤A] + E
1X−1

τ 1[Xτ≥B]

≥ A−1P 1(Xτ ≤ A) + P 0(Xτ ≥ B), (15.16)

leading to the inequality
(A−1)β + α ≤ 1. (15.17)

For small values of α and β (i.e., for large B and small A), (15.15) and (15.17)
are often treated as (approximate) equalities, and then one has

B � 1− β

α
, A � β

1− α
; α � 1−A

B −A
, β � A

(
B − 1

B −A

)

. (15.18)

This approximation is often applied, but is not always good.
It may be shown that the SPRT is optimal. This means that in the class of all

tests whose error probabilities are no more than the corresponding probabilities of
the SPRT, the expected sample sizes Eiτ (i = 0, 1) are the smallest for the SPRT.
See Ferguson (1967, Sect. 7.6, Theorem 2), for a detailed proof of this result. Note
that the fixed sample size procedure of finding the smallest n such that the Type
1 and Type 2 errors are no more than α and β, respectively, is also a stopping
rule. In order to obtain an approximate value of Eiτ (i = 0, 1) we consider the
{Fn}∞n=1-martingale {Sn − nμi}, where

Sn :=

n∑

j=1

(log f(Uj ; θ1)− log f(Uj; θ0)) =

n∑

j=1

log (f(Uj; θ1)/f(Uj ; θ0)) ,

μi := E
i log (f(Uj ; θ1)/f(Uj; θ0)) , (i = 0, 1). (15.19)

Since x → log x is strictly concave on (0,∞), it follows from Jensen’s inequality
that

μi < logEi (f(Uj; θ1)/f(Uj ; θ0))

=

{
0 if i = 0,

log
{∫ f2(u;θ1)

f(u;θ0)
ν(du)

}
> 0 if i = 1,

(15.20)

since

∫
f2(u; θ1)

f(u; θ0)
ν(du) =

∫ (
f(u; θ1)

f(u; θ0)

)2

f(u; θ0)ν(du)

>

(∫
f(u; θ1)

f(u; θ0)
f(u; θ0)ν(du)

)2

= 1. (15.21)

The last inequality follows from the inequality EY 2 ≥ (EY )2, with strict inequality
unless Y has all its mass at one point. To rule out the possibility μ0 = −∞ and/or
μ1 = ∞, assume μ0, μ1 to be finite.
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The SPRT may be expressed as

Accept H0 if Sτ ≤ −a, Accept H1 if Sτ ≥ b, (15.22)

a := − logA, b := logB.

We have already checked that Eiτ < ∞ (i = 0, 1). Further,

∣
∣Ei

(
Sm1[τ>m]

)∣
∣ ≤ max{a, b}P i(τ > m) −→ 0 as m → ∞. (15.23)

Therefore, it follows from Wald’s identity,3 applied to the sequence {Sn − nμi},
that

E
iSτ = μiE

iτ (i = 0, 1). (15.24)

Hence

E
iτ =

E
iSτ

μi
(i = 0, 1). (15.25)

Again one may ‘approximately’ calculate EiSτ as follows:

E
iSτ � bP i(Sτ ≥ b)− aP i(Sτ ≤ −a)

= bP i(Xτ ≥ B)− aP i(Xτ ≤ A),

E
0Sτ � bα− a(1− α), E

1Sτ � b(1− β)− aβ. (15.26)

The values of a, b, α, β are then substituted from (15.18), (15.22).

Remark 15.3. Let A < 1 < B. The approximations α′ = 1−A
B−A , β′ = A

(
B−1
B−A

)
of

α, β are, in most applications conservative, i.e., α′ < α, β′ < β. In general, one
can show that α′ + β′ ≤ α+ β (See Rao, 1965, pp. 401, 402).

Remark 15.4. Sequential procedures for estimation may be derived using the du-
ality between tests and confidence regions (See Sect. 5.9).

Remark 15.5. When the density f( ; θ) has a monotone likelihood ratio the SPRT
is effective under composite hypotheses H0 : θ ≤ θ0, H

1 : θ > θ1 (θ0 ≤ θ1)
(See Remarks 5.2–5.4 in Chap. 5). See (Siegmund, 1985, pp. 14–19), for a detailed
discussion.

Sequential procedures such as the SPRT are especially important in clinical
trials with patients for drug testing, and for those cases where sampling is ex-
tremely expensive as in the case of car crash safety experiments and in other
destructive testing. In such cases the optimality criterion should involve the cost
c per item as well as the Type 1, Type 2 errors. An appropriate objective func-
tion to minimize in such cases is the Bayes risk δ{Prob(Reject H0 | θ0) + cE(τ |
θ0)}+(1− δ){Prob(Reject H1 | θ1)+ cE(τ | θ1)} (0 < δ < 1). A sequential proba-
bility ratio test with appropriate boundary points A, B, minimizes the Bayes risk.
See (Lehmann, 1959, pp. 104–110). Both the SPRT minimizing expected sample
size for given levels of α, β and the SPRT minimizing appropriate Bayes risks yield
substantial reduction in sample sizes and costs.

3 See (Bhattacharya and Waymire, 2007, p. 47).
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15.4 Notes and References

Our main sources for Sect. 15.1 on classification are an exposition in Wasserman
(2003, Chap. 22), and the book by Hastie et al. (2001). For a theoretical overview
of Bayesian nonparametrics we refer to Ghosal (2010). The original basic the-
ory of nonparametric Bayes inference is due to Ferguson (1973, 1974). A useful
construction of Ferguson’s Dirichlet priors is by the so-called stick breaking of
Sethuraman (1994). For extensions of nonparametric Bayes theory to manifolds,
see Bhattacharya and Dunson (2010, 2012), and Bhattacharya and Bhattacharya
(2012, Chaps. 13, 14).

For applications of principal components analysis (Sect. 15.2) to image analysis,
see Hastie et al. (2001, Chap. 4), and Bishop (2006, Chap. 4).

Standard texts on sequential analysis (Sect. 15.3) include Wald (1947), Sieg-
mund (1992), and Chernoff (1972). The last two books also provide continuous
time versions of the SPRT and Brownian motion approximations of the discrete
time SPRT considered here. Nonparametric sequential analysis is considered in
the monograph by Sen (1981).

Exercises for Chap. 15

Exercises for Sect. 15.1

Ex. 15.1. (a) Check (15.2) and (15.3).
(b) Refer to the data on skulls in Chap. 8, Exercise 8.13. Assume that the distri-

butions are five-dimensional Normal N(μA, ΣA), N(μB , ΣB). Use the first 15
A skulls and the first 13 B skulls to estimate the unknown parameters (with
πA = 15/28, πB = 13/28). Then apply the quadratic classifier (15.2) to classify
the remaining 4 skulls.

(c) Carry out the classification in (b) assuming ΣA = ΣB and using the linear
classifier (15.3).

Ex. 15.2. Compute the Bayes classifier (15.1) for K Bernoulli populations with
parameters p1, p2, . . . , pK .

Exercises for Sect. 15.2

Ex. 15.3. Refer to the data on skulls in Chap. 8, Exercise 8.13.

(a) Assume ΣA = ΣB. From the pooled estimate of the common covariance matrix
calculate the eigenvalues and the principal components.

(b) For each of the five principal components in (a) carry out the two-sample t-test
for the equality of the means in the population, and list the p-values.

Exercises for Sect. 15.3

Ex. 15.4. Let Uj ’s be i.i.d. Bernoulli taking values +1 and −1 with probabilities
p and q = 1− p, respectively.

(a) Compute the sequential probability ratio test for H0 : p = 1
2 against H1 : p =

2/3, with the nominal probabilities of error α = .1, β = .2. [i.e., with A and B
given by equalities in (15.18)].
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(b) Calculate approximate values of Eiτ (i = 0, 1) using (15.25), (15.26).
(c) Given successive sample observations −1, 1, 1,−1,−1, 1, 1, 1,−1, 1, 1, 1,−1, 1,

−1, 1, 1, 1, 1, decide when to stop and what action to take.
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Appendix A

Standard Distributions

A.1 Standard Univariate Discrete Distributions

I. Binomial Distribution B(n, p) has the probability mass function

f(x) =

(
n

x

)

px (x = 0, 1, . . . , n).

The mean is np and variance np(1− p).

II. The Negative Binomial Distribution N B(r, p) arises as the distribution of
X ≡ {number of failures until the r-th success} in independent trials each with
probability of success p. Thus its probability mass function is

fr(x) =

(
r + x− 1

x

)

pr(1− p)x (x = 0, 1, · · · , · · · ).

Let Xi denote the number of failures between the (i − 1)-th and i-th successes
(i = 2, 3, . . . , r), and let X1 be the number of failures before the first success. Then
X1, X2, . . . , Xr and r independent random variables each having the distribution
N B(1, p) with probability mass function

f1(x) = p(1− p)x (x = 0, 1, 2, . . . ).

Also,
X = X1 +X2 + · · ·+Xr.

Hence

E(X) = rEX1 = r

(

p
∞∑

x=0

x(1 − p)x

)

= rp(1 − p)
∞∑

x=1

x(1 − p)x−1

= rp(1 − p)

∞∑

x=1

(

− d

dp
(1− p)x

)

= −rp(1− p)
d

dp

∞∑

x=1

(1− p)x
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= −rp(1− p)
d

dp

∞∑

x=0

(1 − p)x = −rp(1 − p)
d

dp

1

1− (1 − p)
︸ ︷︷ ︸

=p

=
r(1 − p)

p
. (A.1)

Also, one may calculate var(X) using (Exercise A.1)

var(X) = rvar(X1). (A.2)

III. The Poisson Distribution P(λ) has probability mass function

f(x) = e−λλ
x

x!
(x = 0, 1, 2, . . . ),

where λ > 0 is the mean. To see this let X be a random variable with this
distribution. Then

E(X) =

∞∑

x=0

xe−λλ
x

x!
= e−λ

∞∑

x=1

λx

(x− 1)!
= λe−λ

∞∑

y=0

λy

y!

= λe−λ · eλ = λ. (y = x− 1)

Also,

E(X(X − 1)) =

∞∑

x=0

x(x − 1)e−λλ
x

x!
= e−λ

∞∑

x=2

x(x− 1)
λx

x!

= e−λλ2
∞∑

x=2

λx−2

(x− 2)!
= e−λλ2 · eλ = λ2,

so that

E(X2) = λ2 + E(X) = λ2 + λ,

var(X) = E(X2)− (E(X))2 = λ2 + λ− λ2 = λ. (A.3)

IV. The Beta-Binomial Distribution BB(α, β, n) is the marginal distribution of
X when the conditional distribution of X given (another random variable) Y = y
(with values in [0, 1]) is B(n, y), where Y has the beta distribution Be(α, β) (see
Sect. A.2). Hence the probability mass function of X is

f(x) =

∫ 1

0

(
n

x

)

yx(1− y)n−x 1

B(α, β)
yα−1(1 − y)β−1dy

=

(
n
x

)

B(α, β)

∫ 1

0

yx+α−1(1 − y)n−x+β−1dy =

(
n
x

)
B(x+ α, n− x+ β)

B(α, β)

=

(
n

x

)
Γ (x+ α)Γ (n− x+ β)Γ (α + β)

Γ (n+ α+ β)Γ (α)Γ (β)
(x = 0, 1, . . . , n)
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[See below for the relation B(α, β) = Γ (α)Γ (β)/Γ (α + β).] Here if X ∼
BB(α, β, n),

E(X) = EE(X | Y ) = EnY = nEY =
nα

α+ β
,

E(X2) = EE(X2 | Y ) = E[nY (1− Y ) + n2Y 2]

= (n2 − 1)EY 2 + nEY = (n2 − 1)
α(α+ 1)

(α+ β)(α + β + 1)
+ n

α

α+ β
,

var (X) = E(X2)− (E(X))2.

(See below for the computation of the moments of the beta distribution.)

A.2 Some Absolutely Continuous Distributions

I. The Uniform Distribution U (α, β) on [α, β] has the probability density function
(p.d.f.)

f(x) =
1

β − α
for α ≤ x ≤ β,

= 0 elsewhere.

II. The Beta Distribution Be(α, β) has p.d.f.

f(x) =
1

B(α, β)
xα−1(1− x)β−1, 0 < x < 1,

= 0 elsewhere.

Here α > 0, β > 0 and B(α, β) is the normalizing constant (beta function)

B(α, β) =

∫ 1

0

xα−1(1− x)β−1dx.

Clearly, if X ∼ Be(α, β), then

E(X) =
1

B(α, β)

∫ 1

0

xα(1− x)β−1dx =
B(α+ 1, β)

B(α, β)
,

E(X2) =
B(α+ 2, β)

B(α, β)
, . . . , E(Xk) =

B(α + k, β)

B(α, β)
. (A.4)

Recall that the gamma function Γ (α) is defined by

Gamma(α) =

∫ ∞

0

e−xxα−1dx (α > 0).

On integration by parts one gets

Γ (α+1) =

∫ ∞

0

e−xxαdx = −e−xxα
∣
∣
∣
∞

0
+

∫ ∞

0

αxα−1e−xdx = 0+αΓ (α) = αΓ (α).

(A.5)
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We now prove

B(α, β) =
Γ (α)Γ (β)

Γ (α+ β)
, ∀ α > 0, β > 0. (A.6)

Now

Γ (α)Γ (β) =

∫ ∞

0

e−xxα−1dx

∫ ∞

0

e−yyβ−1dy

=

∫ ∞

0

∫ ∞

0

e−(x+y)xα−1yβ−1dxdy.

Change variables: z = x+ y, y = y, to get

{
x = z − y
y = y

, with

Jacobian =

∣
∣
∣
∣
∣
det

[
∂x
∂t

∂x
∂y

∂y
∂z

∂y
∂y

] ∣
∣
∣
∣
∣
= 1

Γ (α)Γ (β) =

∫ ∞

0

e−z

(∫ z

0

(z − y)α−1yβ−1dy

)

dz

=

∫ ∞

0

e−zzα−1zβ−1

(∫ z

0

(
1− y

z

)α−1 (y

z

)β−1

dy

)

dz

=

∫ ∞

0

e−zzα+β−2

(

z

∫ 1

0

(1 − u)α−1uβ−1du

)

dz
[
u = y

z , du = 1
z dy

]

=

∫ ∞

0

e−zzα+β−1B(β, α)dz = Γ (α+ β)B(β, α). (A.7)

But

B(β, α) =

∫ 1

0

uβ−1(1− u)α−1du =

∫ 1

0

xα−1(1− x)β−1dx

= B(α, β), (x = 1− u). (A.8)

Hence (A.7) and (A.6). Using (A.4)–(A.6), one gets the k-th moment of a beta
(Be(α, β)) random variable X as

E(Xk) =
Γ (α+ k)Γ (β) · Γ (α+ β)

Γ (α+ β + k) · Γ (α)Γ (β)
=

(α + k − 1) · · · (α+ 1)α

(α+ β + k − 1) · · · (α + β + 1)(α+ β)
.

In particular,

E(X)=
α

α+β
, E(X2) =

(α+ 1)α

(α+ β + 1)(α+ β)
, var(X)=

αβ

(α+β)2(α+β+1)
.

III. The Gamma Distribution G (α, β) has the p.d.f.

f(x) =
1

Γ (β)αβ
e−x/αxβ−1, 0 < x < ∞

= 0 elsewhere, (A.9)
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where α > 0, β > 0. Here α is a scale parameter, i.e., if X is ∼ G (α, β), then X/α
is G (1, β), Note that

E

(
X

α

)k

=
1

Γ (β)

∫ ∞

0

zke−zzβ−1dz

=
Γ (β + k)

Γ (β)
= (β + k − 1) · · · (β + 1)β,

so that
E(Xk) = αk(β + k − 1) · · · (β + 1)β. (A.10)

Hence EX = αβ, var(X) = α2β.

A.2.1 The Normal Distribution N(μ, σ2)

has p.d.f.

fμ,σ2(x) =
1√
2πσ2

e−(x−μ)2/2σ2

, −∞ < x < ∞, (A.11)

where μ ∈ (−∞,∞), σ2 > 0. The standard normal distribution N(0, 1) has p.d.f.

f(x) =
1√
2π

e−x2/2, −∞ < x < ∞. (A.12)

To show that (A.12) (and hence (A.11), by transformation y = x−μ
σ ) is a p.d.f.,

one needs to show that ∫ ∞

0

e−x2/2dx =

√
π

2
(A.13)

For this use the transformation z = x2/2 to get

∫ ∞

0

e−x2/2dx =

∫ ∞

0

e−z
√
2

(
1

2

)

z−
1
2 dz =

1√
2
Γ

(
1

2

)

. (A.14)

Now, by (A.7) (with α = β = 1
2 )

Γ 2

(
1

2

)

= Γ (1)B

(
1

2
,
1

2

)

=B

(
1

2
,
1

2

)

(since Γ (1)=
∫∞
0

e−xdx=− e−x|∞0 = 1, )

=

∫ 1

0

x−1/2(1− x)−1/2dx =

∫ 1

0

z−1(1− z2)−1/22zdz (z = x1/2, dx = 2zdz)

= 2

∫ 1

0

(1− z2)−1/2dz = 2

∫ π/2

0

cos θdθ

cos θ
(z = sin θ, dz = cos θdθ)

= 2
(π

2

)

= π.

Hence

Γ

(
1

2

)

=
√
π , (A.15)

which when used in (A.14) yields (A.13).
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If X is N(μ, σ2), then Z = X−μ
σ has the p.d.f. (A.12) (by change of variables).

Therefore,

E

(
X − μ

σ

)

= E(Z) =
1√
2π

∫ ∞

−∞
xe−x2/2dx = 0 (since xe−x2/2 is odd),

E

(
X − μ

σ

)2

= E(Z2) =
1√
2π

∫ ∞

−∞
x2e−x2/2dx =

2√
2π

∫ ∞

0

x2e−x2/2dx

=

√

2

π

∫ ∞

0

(2z)
1
2 e−zdz (z = x2

2
, dz = xdx)

=
2√
π

∫ ∞

0

e−zz1/2dz =
2√
π
Γ

(
3

2

)

=
2√
π

(
1

2

)

Γ

(
1

2

)

=
2√
π

(
1

2

)√
π

= 1.

Hence
E(X − μ) = 0, or E(X) = μ,

E

((
X−μ
σ

)2
)

= 1, or, var(X) = σ2.
(A.16)

V. The Chi-Square Distribution χ2
k with k Degrees of Freedom is defined to be

the distribution of the sum of squares of k independent standard normal random
variables. To derive its p.d.f. let X1, X2, . . . , Xk be k independent N(0, 1) random
variables. Then define the chi-square random variable

Z = X2
1 +X2

2 + · · ·+X2
k ,

and note that, as Δz ↓ 0,

P (z < Z ≤ z +Δz) =

∫

· · ·
∫ (

1√
2π

)k

e−(x2
1+···+x2

k)/2dx1 · · · dxk

{(x1, . . . , xk) : z <

k∑

1

x2i ≤ z +Δz}

=

(
1√
2π

)k (
e−z/2 +O(Δz)

)

×volume of the annulus {(x1, . . . , xk) : z <
∑

x2i < z +Δz}

=

(
1√
2π

)k (
e−z/2 +O(Δz)

)(

ck

(√
z +Δz

)k
− ck

(√
z
)k
)

,

writing the volume of a ball of radius r in k-dimension as ckr
k. [Note that∫

{∑x2
i≤r} · · ·

∫
dx1 . . . dxk = rk

∫
{∑x2

i≤1} · · ·
∫
dx1 . . . dxk, by change of variables

zi = xi/r (1 ≤ i ≤ k).] Since (
√
z +Δz )k − (

√
z )k = d

dz (
√
z )k ·Δz + O(Δz)2 =

k
2 z

k
2−1Δz + (Δz)2, one has

P (z < Z ≤ z +Δz) = ck

(
1√
2π

)k
k

2
e−

z
2 z

k
2−1Δz +O(Δz)2. (A.17)



A Standard Distributions 349

Hence the p.d.f. of Z is

f(z) = c′kz
k
2−1e−

z
2 , 0 < z < ∞,

= 0 elsewhere (A.18)

where c′k is the normalized constant,

c′k =

(∫ ∞

0

z
k
2−1e−

z
2 dz

)−1

=

(∫ ∞

0

u
k
2−1e−udu

(
2

k
2

))−1 (
u = z

2

)

=
1

2k/2Γ
(
k
2

) . (A.19)

Since c′k may be directly calculated from (A.17), one has

c′k = ck

(
1√
2π

)k
k

2
. (A.20)

Comparing (A.19), (A.20) the constant ck (= volume of the unit ball in R
k) may

also be obtained (ck = 2πk/2

kΓ (k/2) ). Note also that χ2
k is G (2, k/2) and hence Z/2 ∼

G (1, k2 ). In particular, ifX ∼ N(0, 1),X2 ∼ χ2
1,

X2

2 ∼ G (1, 12 ). This also shows that
the sum of independent chi-square random variables Z1, Z2, . . . , Zm with degrees of
freedom k1, k2, . . . , km, respectively, is a chi-square random variable with degrees
of freedom k = k1 + · · · + km (Exercise A.2). Also, if Z ∼ χ2

k then using (A.10)
[with α = 1, k = 1, β = k/2 or the fact that EX2 = 1 if X ∼ N(0, 1)],

EZ = 2E
Z

2
= 2

k

2
= k.

VI. The Student’s t-Distribution tk with k Degrees of Freedom is defined to be
the distribution of T = X/

√
Z/k, where X ∼ N(0, 1), Z ∼ χ2

k, and X and Z are
independent. The (cumulative) distribution function of T is given by

P (T ≤ t) = P
(
X ≤ t

√
Z/k

)
= EP

(

X ≤ t
√
Z/k

∣
∣
∣
∣Z

)

=

∫ ∞

0

P

(

X ≤ t√
k

√
z

∣
∣
∣
∣Z = z

)

· 1

2k/2Γ (k/2)
zk/2−1e−z/2dz

=
1

2k/2Γ (k/2)

∫ ∞

0

[∫ √
z/k t 1√

2π
ex

2/2dx

]

zk/2−1e−z/2dz

Differentiating w.r.t. t under the integral sign one gets the p.d.f. of T as

f(t) =
1

2k/2Γ
(
k
2

)

∫ ∞

0

(
1√
2π

e−
zt2

wk z
k
2−1e−

z
2

)√
z

k
dz

=
1√

k 2
k+1
2
√
πΓ

(
k
2

)

∫ ∞

0

e
− z

2

(
1+ t2

k

)

z
k
2 − 1

2 dz
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=
2

k+1
2

(
1 + t2

k

)− k+1
2

√
k 2

k+1
2
√
πΓ

(
k
2

) Γ

(
k + 1

2

)

=
Γ
(
k+1
2

)

√
kπ Γ

(
k
2

)

(

1 +
t2

k

)−k+1
2

, −∞ < t < ∞. (A.21)

VII. The Cauchy Distribution C (α, β) has p.d.f.

f(x) =
β

π
· 1

β2 + (x− α)2
=

1

β
· 1

π

(

1 +
(

x−α
β

)2
) , −∞ < x < ∞,

where β > 0, α ∈ R
1 are parameters. Note that if X ∼ C (α, β) then (X − α)/β

has the standard Cauchy distribution C (0, 1) with p.d.f.

f(x) =
1

π(1 + x2)
, −∞ < x < ∞,

which is the p.d.f. of a Student’s t with k = 1 d.f. Note that the first moment of
the Cauchy distribution does not exist (and, therefore, no higher moment exists).

The final example in this section is important in the theory of testing hypotheses
considered in Chap. 5.

VIII. Fisher’s F Distribution Let U and V be independent chi-square random
variables with degrees of freedom r, s, respectively. (That is, U and V are in-
dependent gamma random variables G ( r2 , 2) and G ( s2 , 2).) The F -statistic with
degrees of freedom (r, s) is then defined by

F =
U/r

V/s
. (A.22)

Its distribution Fr,s, say, is called the F -distribution after R.A. Fisher. Its distri-
bution function is computed as follows:

G(x) := P (F ≤ x) = P
(
U ≤ r

s
xV

)

= E

(
1

Γ
(
r
2

)
2

r
2

∫ r
sxV

u
r
2−1e−

u
2 du

)

=
1

Γ
(
r
2

)
2

r
ν

∫ ∞

0

1

2
s
2Γ

(
s
2

) v
s
2−1e−

v
2

{∫ r
sxv

0

u
r
2−1e−

u
2 du

}

dv.

Hence the density of Fr,s is given by

fr,s(x) = G′(x) =
1

Γ
(
r
2

)
Γ
(
s
2

)
2

r+s
2

∫ ∞

0

v
s
2−1e−

v
2

(rv

s

)(r

s
xv
) r

2−1

e−
r
sx

v
2 dv

=

(
r
s

) r
2 x

r
2−1

Γ
(
r
2

)
Γ
(
s
2

)
2

r+s
2

∫ ∞

0

v
r+s
2 −1e−

v
2 (1+

r
sx)dv

=

(
r
s

) r
2 Γ

(
r+s
2

)

Γ
(
r
2

)
Γ
(
s
2

) (
1 + r

s x
) r+s

2

. (A.23)
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IX. Logistic Distribution The distribution function of a standard logistic random
variable X is given by

F (x) =
ex

1 + ex
, −∞ < x < ∞,

with density

f(x) =
ex

(1 + ex)2
, −∞ < x < ∞.

It is easy to check that the density is symmetric about x = 0, i.e., f(x) = f(−x)
for all x. Hence all odd order moments are zero. The even order moments are given
as follows.1 First note that, for y > 0,

(1 + y)−2 =
∞∑

n=0

(−2

n

)

yn =
∞∑

n=0

(−1)n(n+ 1)y
n

.

Using this one obtains

EX2m = 2

∫

[0,∞)

x2m
e−x

(1 + e−x)2
dx

= 2

∞∑

n=0

(−1)n(n+ 1)

∫

[0,∞)

x2me−(n+1)xdx

= 2Γ (2m+ 1)
∞∑

n=0

(−1)n

(n+ 1)2m

= 2(2m)!

∞∑

n=1

(−1)n−1

n2m
= 2(2m)!

{ ∞∑

r=1

(−1)2r−2

(2r − 1)2m
+

∞∑

r=1

(−1)2r−1

(2r)2m

}

= 2(2m)!

{ ∞∑

r=1

(2r − 1)−2m −
∞∑

r=1

(2γ)−2m

}

= 2(2m)!

{ ∞∑

r=1

γ−2m − 2

∞∑

r=1

(2γ)−2m

}

= 2(2m)!
(
1− 2−(2m−1)

) ∞∑

r=1

γ−2m

= 2(2m)
(
1− 2−(2m−1)

)
ζ(2m),

where ζ(r) =
∑∞

r=1 r
−2 is the Riemann zeta function. In particular, EX2 =

var(X) = 2ζ(2) = π2/3, since2
∑∞

r=1 r
−2 = π2/6.

Next, if X has the standard logistic distribution, then for any real μ and h > 0,
the pdf of Z = hX + μ is

fZ(z) = hfX

(
z − μ

h

)

= h−1 exp
{
z−μ
h

}

(
1 + exp

{
z−μ
h

})2 , −∞ < z < ∞.

1 See Balakrishnan, N. and Nevzorov, V.B. (2003). A Primer on Statistical Distributions,
Chap. 22. Wiley, New York.
2 See Titchmarsh, E.C. (1939). The Theory of Functions, 2nd ed., p. 35. Oxford University Press,
London.
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The mean of Z is μ and its variance is h2 π2/3. The logistic regression in its
simplest form used in the student projects in Chaps. 4 and 14, has a binary response
variable, say Y , with values 0, 1, and a continuous regressor Z. When Z = z,
then Y = 1 with probability FZ(z) = Prob(Z ≤ z) and Y = 0 with probability
1 − FZ(z). One may also apply this in the case of a non-stochastic Z using the
same relations formally. For many applications other than logistic regression see,
e.g., Balakrishnan and Nevzorov (2003).

A.3 The Multivariate Normal Distribution

(Notation: 〈x, y〉 = x′y =
∑k

j=1 x
(j)y(j)∀x, y ∈ R

k.)

Definition A.1. A random vector X = (X(1), X(2), . . . , X(k))′ with values in R
k

has the k-dimensional normal distribution N(μ, Σ) with mean (vector) μ = (μ(1),
μ(2), . . . , μ(k))′ and nonsingular dispersion matrix Σ if it has the probability
density function

f(x) =
1

(2π)k/2(det Σ)1/2
e−

1
2 〈x−μ, Σ−1(x−μ)〉

=
1

(2π)k/2(detΣ)1/2
e−

1
2Σ

∑k
i,j=1 σij(x(i)−μ(i))(x(j)−μ(j)). (A.24)

Here σij is the (i, j) element of Σ−1.

Remark A.1. To show that f is a p.d.f., make the change of variables:
y = B−1(x− μ), where B is a symmetric positive definite matrix satisfying
B2 = Σ. Then x − μ = By, Σ−1 = B−1B−1 (since (BB)−1 = B−1B−1), and
〈x − μ, Σ−1(x − μ)〉 = 〈By, B−1B−1By〉 = 〈By, B−1y〉 = 〈y, BB−1y〉 (since

B′ = B) = 〈y,y〉 = ‖y‖2 =
∑k

1(y
(j))2. Thus,

∫

Rk

f(x)dx =
detB

(2π)k/2(detΣ)1/2

∫

Rk

e−
1
2

∑k
j=1 y2

j dy1 . . . dyk,

since the Jacobian matrix is

J

(
x

y

)

=

⎡

⎢
⎢
⎣

∂x(1)

∂y(1) · · · ∂x(1)

∂y(k)

...
...

∂x(k)

∂y(1) · · · ∂x(k)

∂y(k)

⎤

⎥
⎥
⎦ = B,

one gets the change of volume elements

dx1dx2 . . . dxk = detB dy1dy2 . . . dyk.

Also, detΣ = detBB = detB · detB (since det(AB) = detA · detB for k × k
matrices A, B). Hence detB =

√
detΣ. One has the positive square root, since B

is positive definite. Hence
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∫

Rk

f(x)dx =
1

(2π)k/2

∫

Rk

e−
1
2

∑k
j=1(y

(j))2dy1dy2 . . . dyk

=
k∏

j=1

(
1√
2π

∫

Rk

e−
y2j
2 dyj

)

=
k∏

j=1

1 = 1.

This proof also shows that if X is distributed as N(μ, Σ), then Y ≡ B−1(X−μ) is
distributed as N(0, I) where I is the k×k identity matrix (having 1’s on the diago-
nal, an zero’s off the diagonal). The distributionN(0, I) is called the k-dimensional
standard normal distribution. Notice thatY = (Y (1), Y (2), . . . , Y (k))′ is distributed
asN(0, I), if and only if Y (1), Y (2), . . . , Y (k) are k independent 1-dimensional stan-
dard normal random variables.

Conversely, given any positive definite matrix Σ (k×k), and any vector μ ∈ R
k,

the random vector X = (X(1), X(2), . . . , X(k))′ defined by

X = BY + μ (A.25)

is distributed as N(μ, Σ), if Y is k-dimensional standard normal. Here B is a
symmetric positive definite matrix satisfying B2 = Σ. If Σ is merely nonnega-
tive definite, then also the definition (A.25) makes sense and defines a random
vector X whose distribution is denoted by N(μ, Σ). If Σ is nonnegative definite
and of rank less than k (i.e., at least one eigenvalue of Σ is zero), then N(μ, Σ)
defined above via (A.25) is called a singular k-dimensional normal distribution.
The representation (A.25) yields

E(X) = BEY + μ = B0+ μ = μ,

cov(X(i), X(j)) = cov

(
k∑

r=1

birY
(r) + μ(i),

k∑

r′=1

bjr′Y
(r′) + μ(j)

)

= cov

(
k∑

r=1

birY
(r),

k∑

r′=1

bjr′Y
(r′)

)

=

k∑

r,r′=1

birbjr′cov(Y
(r), Y (r′)) =

k∑

r=1

birbjr

= (i, j) element of BB = (i, j) element of Σ = σij . (A.26)

This justifies the name mean vector for μ and dispersion (i.e., covariance matrix )
for Σ.

In general, if X is a k-variate Normal random vector (singular, or non-singular),
distributed as N(μ, Σ), and if Y = ν + CX, where ν ∈ R

d and C is a d × k
matrix, thenY has the Normal distributionN(β, Γ ), whose mean β and covariance
(or, dispersion) matrix are given by

β = EY = ν + CEX = ν + Cμ,

Γ = covY = cov(CX) = CΣC′. (A.27)

Note that if the d × d matrix CΣC′ is of rank k0 (≤ min{k, d}), then Y may
be represented as Y = BZ + β, where B is the non-negative definite symmetric
matrix satisfying B2 = CΣC′, and Z is a d-dimensional standard Normal N(O, I).
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One may prove this directly using (A.25), or using moment generating functions
that we discuss in Appendix B.

Let now X be N(μ, Σ), a k-dimensional Normal distribution with Σ non-
singular. Then, for any given m, 1 < m ≤ k, Y = (Xm, . . . , Xk)

′ has the Normal
distribution N(μk

m, Σk
m), where

μk
m = (μm, . . . , μk)

′, Σk
m = ((σij))m≤i, j≤k. (A.28)

This follows as a special case of the transformation in the preceding paragraph,

with d = k−m+1, ν = 0, C =

[
0 0
0 Id

]

(Id is the d×d identity matrix). Indeed, since

Y is a linear transformation of X and, hence, Normal, its mean and covariance are
easily seen to be given by (A.28). The (marginal) density of Y = (Xm, . . . , Xk)

′

is given by

fY(xm, . . . , xk) = 2π−d/2
(
detΣk

m

)−1/2
exp

⎧
⎨

⎩
−1

2

k∑

i,j=m

γij(xi − μi)(xj − μj)

⎫
⎬

⎭

(A.29)

where ((γij))m≤i,j≤k = Γ−1. Hence the conditional density of W = (X1, . . . ,
Xm−1)

′, given Xm = xm, . . . , Xk = xk, is

fW |xm,...,xk
(x1, . . . , xm−1) =

fX(x1, . . . , xk)

fY(xm, . . . , xk)

= c exp

{

−1

2

∑

1≤i,j≤m−1

σij(xi − μi)(xj − μj)

−
m−1∑

i=1

(
k∑

j=m

σij((xj − μj))(xi − μi)

)

+
1

2

∑

m≤i,j≤k

γij(xi−μi)(xj−μj)

}

(A.30)

= c1(xm, . . . , xk) exp

⎧

⎨

⎩
−1

2

∑

1≤i,j≤m−1

σij(xi − �i(xm, . . . , xk))(xj − �j(xm, . . . , xk))

⎫

⎬

⎭
,

where c1(xm, . . . , xk) depends (possibly) on xm, . . . , xk and μ and Σ, and
i(xm, . . . , xk) is the affine linear function of xm, . . . , xk, given by

i(xm, . . . , xk) = μi −Ai

(
Σ−1

)k−m+1

m−1

⎛

⎜
⎝

xm − μm

...
xk − μk

⎞

⎟
⎠ . (A.31)

Here
(
Σ−1

)k−m+1

m−1
is the (m−1)×(k−m+1) matrix comprising the firstm−1 rows

and the last k−m+1 columns of Σ−1, and Ai is the i-th row of the (m−1)×(m−1)
matrix

A =
(
((σij))1≤i,j≤m−1

)−1
. (A.32)
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Thus the conditional distribution of W = (X1, . . . , Xm−1)
′, given Xm =

xm, . . . , Xk = xk, is an (m − 1)-dimensional Normal distribution
N((xm, . . . , xk),A), with the mean vector , and covariance (or, dispersion)
matrix A.

As a special case, with m = 2, the conditional distribution of X1, given X2 =
x2, . . . , Xk = xk, is Normal N(1, 1/σ

11), where (Exercise A.3)

1 = 1(x2, . . . , xk) = μ1 − 1

σ11

k∑

j=2

σ1j(xj − μj). (A.33)

A Useful Property of the Multivariate Normal
Distribution N(μ,Σ)

Consider all vectors x in the following as column vectors, with x′ as the transpose
of x, a row vector.

Proposition A.1. Let X be a k-dimensional Normal random vector N(μ, Σ),
where Σ is positive definite. Then (X−μ)′Σ−1(X−μ) has the chi-square distri-
bution with k degrees of freedom.

Proof. Let Y = X − μ. Then Y is N(0, Σ). Let B be a k × k matrix such that
BB′ = Σ−1. (See the Lemma below.) Then Σ = (B′)−1B−1. Now the random
vector Z = B′Y is N(0, B′ΣB). But B′ΣB = B′(B′)−1B−1B = Ik, where Ik is
the k × k identity matrix. Thus Z is a standard k-dimensional Normal random
vector whose coordinates Z1, . . . , Zk are one-dimensional independent standard
Normal random variables. Hence (X−μ)′Σ−1(X−μ) = Y′Σ−1Y = Y′BB′Y =
Z′Z = Z2

1 + · · · + Z2
k has the chi-square distribution with k degrees of freedom.

Q.E.D. ��
Note If Y is a k-dimensional random vector with covariance matrix Σ = ((σij)),
and Z = cY for some m × k matrix C, then the m × m covariance ma-
trix of Z is CΣC′. For, the covariance between the i-th and j-th components
of Z is cov(Zi, Zj) = cov(

∑
1≤r≤k CirYr,

∑
1≤s≤k CjsYs) =

∑
r,sCirCjsσrs =∑

s(
∑

r Cirσrs)Cjs =
∑

s(CΣ)isCjs, which is the (i, j) element of the matrix
CΣC′.

Lemma A.1. Let Γ be a k×k symmetric and positive definite matrix. Then there
exists a k × k nonsingular matrix B such that Γ = BB′.

Proof. Let λ1, . . . , λk be the (positive) eigenvalues of Γ , counting multiplicities,
and let a1, . . . , ak be corresponding eigenvectors of unit length each. Then Γ ai =
λiai (i = 1, . . . , k), and the matrix A comprising the k (column) vectors a1, . . . , ak
is orthonormal, i.e., AA′ = Ik, and satisfies ΓA = A(Diag(λ1, . . . λk)). Define
B = A(Diag(

√
λ1, . . . ,

√
λk)). Then BB′ = A(Diag(λ1, . . . , λk))A

′ = ΓAA′ = Γ .
Q.E.D ��
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Exercises for Appendix A

Ex. A.1. Calculate var(X1) and var(X) in (A.2).

Ex. A.2. Show that the sum of independent chi-square random variables
Z1, Z2, . . . , Zm with degrees of freedom k1, k2, . . . , km, respectively, is a chi-square
random variable with degrees of freedom k1 + k2 + · · ·+ km.

Ex. A.3. For the case of the Normal distribution (A.24), with k = 2, show that

σ11 = σ22

σ11σ22−σ2
12

= 1
σ11(1−ρ2) , σ

12 = σ21 = − σ12

σ11σ22−σ2
12

= − 1√
σ11σ22

(
ρ

1−ρ2

)
, so

that the conditional distribution of X1, given X2 = x2, is Normal with mean

1(x2) = μ1 +
√

σ11

σ22
ρ(x2 − μ2) and variance σ11(1− ρ2).



Appendix B

Moment Generating Functions (M.G.F.)

Definition B.1. The m.g.f. of a random variable X (or of its distribution) is
defined as

ϕ(z) = EezX z ∈ R
1.

Theorem B.1. Suppose the m.g.f. ϕ(ξ) (or, ϕ(ξ)) of a random variable (vector) X
is finite in a neighborhood of zero (origin = 0). Then ϕ determines the distribution
of X.

Proof. See Proposition 4.2 in Chap. 4.

Theorem B.2. Suppose the m.g.f. ϕ of a random variable X is finite in an interval
nondegenerate) around zero. (a) Then all moments of X are finite and

EXk =
dkϕ(z)

dzk

∣
∣
∣
∣
∣
z=0

.

(b) ϕ(z) =
∑∞

0 μk

(
zk

k!

)
, where μk = EXk.

Proof. Follows from the proof of Proposition 4.2 in Chap. 4. ��
Theorem B.3. If X1, X2, . . . , Xn are independent with finite m.g.f.’s
ϕ1, ϕ2, . . . , ϕn in a neighborhood of zero, then the m.g.f. ϕ of X1 +X2 + · · ·+Xn

is
ϕ(z) = ϕ1(z)ϕ2(z) . . . ϕn(z),

in a neighborhood of zero.

Proof.

ϕ(z) = Eez(X1+X2+···+Xn) = (EezX1)(EezX2 ) · · · (EezXn)

= ϕ1(z)ϕ2(z) · · ·ϕn(z).

��
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Example B.1. X is P(λ). Then

ϕ(z) =

∞∑

x=0

ezxe−λλx/x! = e−λ
∞∑

x=0

(λez)x/x!

= e−λeλe
z

= eλ(e
z−1) < ∞, −∞ < z < ∞.

Example B.2. X is B(n, p):

ϕ(z) =

n∑

x=0

ezx
(
n

x

)

pxqn−x =

n∑

x=0

(
n

x

)

(pez)xqn−x

= (pez + q)n < ∞, −∞ < z < ∞.

Example B.3. X is N B(r, p):

ϕ(z) =
∞∑

x=0

ezx
(
r + x− 1

r − 1

)

prqx.

Alternatively, ϕ(z) = Eez(X1+X2+···+Xr), where Xi is the number of failures
between the (i − 1)-th and i-th successes. Because X1, X2, . . . , Xr are i.i.d., one
has

ϕ(z) = EezX1ezX2 . . . ezXr = (EezX1)(EezX2) · · · (EezXr )

= ϕ1(z)ϕ1(z) · · ·ϕ1(z) = (ϕ1(z))
r,

where

ϕ1(z) = EezX1 =

∞∑

x=0

ezxpqx = p

∞∑

x=0

(qez)x =
p

1− qez
< ∞

if ez <
1

q
, i.e., z < ln

1

q
.

(ln
1

q
> 0).

Therefore,

ϕ(z) =

(
p

1− qez

)r

.

Example B.4. Let X be gamma G (α, β) with p.d.f.

f(x) =
1

Γ (β)αβ
e−x/αxβ−1, 0 < x < ∞

= 0, elsewhere.

Its m.g.f. is

ϕ(z) = EezX =

∫ ∞

0

ezxf(x)dx =
1

Γ (β)αβ
e−(

1
α−z)xxβ−1dx

= ∞ if z ≥ 1

α
.
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For z < 1
α , change variables y =

(
1
α − z

)
x, to get

ϕ(z) =
1

Γ (β)αβ

∫ ∞

0

e−yyβ−1dy

/(
1

α
− z

)β

=
αβ

Γ (β)αβ(1 − αz)β
· Γ (β) =

1

(1 − αz)β
, −∞ < z <

1

α
.

Example B.5. Let X1, X2, . . . , Xn be i.i.d. gamma G (α, β). Then Y = X1 +X2 +
· · ·+Xn is gamma G (α, nβ). For the m.g.f. of Y is, by Theorem B.3,

ϕY (z) =
1

(1 − αz)nβ

which is the m.g.f. of a gamma G (α, nβ).

Example B.6. X ∼ N(μ, σ2). First let μ = 0, σ2 = 1. Then

ϕ(z) = EezX =
1√
2π

∫ ∞

−∞
ezxe−x2/2dx =

1√
2π

∫ ∞

−∞
e−

1
2 (x−z)2+ z2

2 dx

=
1√
2π

ez
2/2

∫ ∞

−∞
e−

1
2y

2

dy (y = x− z)

= ez
2/2.

Now consider the general caseX ∼ N(μ, σ2), and let Y = X−μ
σ . Then Y ∼ N(0, 1)

and

EezX = Eez(σY+μ) = Eezμ+σzY = eμzEeσzY

= eμZeσ
2z2/2 = eμz+σ2z2/2.

Example B.7. Consider X ∼ N(μ, σ2). By Example B.6 above, for the case μ = 0,
σ2 = 1, expanding the m.g.f. ϕ of X in a power series,

ϕ(z) = ez
2/2 = 1 +

z2

2
+

1

2!

(
z2

2

)2

+
1

3!

(
z2

2

)3

+
1

4!

(
z2

2

)4

+ · · · ,

one has EXk = 0 for all odd integers k, and

EX2 = ϕ′′(0) = 1, EX4 = ϕ(iv)(0) =
1

8

(
d

dz4
z4
)

z=0

=
4!

8
= 3.

In general, the term-by-term differentiation of the power series for ϕ(z), evaluated
at z = 0, yields

EX2k =

⎡

⎢
⎣

d

dzzk
·
(

z2

2

)k

k!

⎤

⎥
⎦

z=0

=
(2k)!

k!2k
= (2k − 1)(2k − 3) · · · 3.1. (B.1)

A Normal random variable N(μ, σ2), say X , may be expressed as X = μ + σY
where Y is N(0, 1). Hence, the raw moments of X are
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μ′
1 = EX = μ, μ′

2 = EX2 = μ2 + σ2, μ′
3 = EX3 = μ3 + 3μσ2,

μ′
4 = EX4 = μ4 + 6μ2σ2 + 3σ4,

and the centered moments of X , μk ≡ E(X − μ)k, are given by

μk = 0 ∀ odd integers k,

μ2k = E(X − μ)2k = σ2kEY 2k = (2k − 1)(2k − 3) · · · 3.1.σ2k, (k = 1, 2, . . . ). (B.2)

II. Multivariate M.G.F. Let X = (X(1), X(2), . . . , X(k))′ be a k-dimensional ran-
dom vector. Then the m.g.f. of X is

ϕ(ξ) = Ee〈ξ,X〉 = Eeξ,X = Ee
∑k

j=1 −ξ(j)X(j)

for ξ = (ξ(1), . . . , ξ(k))′ ∈ R
k.

Theorem B.4. Suppose that the m.g.f. ϕ(ξ) of a random vector X = (X(1), . . . ,
X(k)) is finite in a neighborhood of ξ = 0 (i.e., for |ξ| < δ, for some δ > 0).
(a) Then all moments of X are finite and, using multi-indices ν,

μν ≡ EXν ≡ E
[
(X(1))ν

(1)

(X(2))ν
(2) · · · (X(k))ν

(k)
]

= [Dνϕ(ξ)]ξ=0 ≡
[(

∂

∂ξ(1)

)ν(1) (
∂

∂ξ(2)

)ν(2)

· · ·
(

∂

∂ξ(k)

)ν(k)

ϕ(ξ)

]

ξ=0

for all ν = (ν(1), . . . , ν(k)) ∈ (Z+)k (= the set of all k-tuples of nonnegative inte-
gers).

(b) ϕ(ξ) =
∑

ν

μν

ν!
ξν |ξ| < δ,

where ξν = (ξ(1))ν
(1)

(ξ(2))ν
(2) · · · (ξ(k))ν(k)

, ν! = ν(1)!ν(2)! · · · ν(k)!.
(c) If X1,X2, . . . ,Xn are independent k-dimensional random vectors whose

m.g.f.’s ϕ1(ξ), ϕ2(ξ), . . . , ϕk(ξ) are finite for |ξ| < δ, for some δ > 0, then the
m.g.f. ϕ(ξ) of X = X1 +X2 + · · ·+Xn is finite for |ξ| < δ and is given by

ϕ(ξ) = ϕ1(ξ)ϕ2(ξ) · · ·ϕn(ξ).

Proof. The term-by-term differentiation below is justified by the proof of Propo-
sition 4.2 in Chap. 4. (a) Note that, if Q is the distribution of X,

∂

∂ξ(1)
ϕ(ξ) =

∂

∂ξ(1)

∫

Rk

eξ
′xdQ(x)

=

∫

Rk

∂

∂ξ(1)
eξ

(1)x(1)+···+ξ(i)x(i)+···+ξ(k)x(k)

dQ(x)

=

∫

Rk

x(1)eξ
(1)x(1)+···+ξ(i)x(i)+···+ξ(k)x(k)

dQ(x).

Continuing in this manner

(
∂

∂ξ(1)

)ν(1)

ϕ(ξ) =

∫
R

k

(x(1))ν
(1)

eξ
(1)x(1)+···+ξ(i)x(i)+···+ξ(k)x(k)

dQ(x).
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Differentiating w.r.t. ξ(2), ν(2)-times, one gets

(
∂

∂ξ(1)

)ν(2) (
∂

∂ξ(1)

)ν(1)

ϕ(ξ)

=

∫

Rk

(
∂

∂ξ(2)

)ν(2) [(
x(1)

)ν(1)

eξ
′x
]

dQ(x)

=

∫

Rk

(
x(1)

)ν(1) (
x(2)

)ν(2)

eξ
′xdQ(x).

Continuing in this manner one has

Dνϕ(ξ)

∣
∣
∣
∣ ≡

(
∂

∂ξ(1)

)ν(1) (
∂

∂ξ(2)

)ν(2)

· · ·
(

∂

∂ξ(k)

)ν(k)

ϕ(ξ)

=

∫

Rk

(x(1))ν
(1)

(x(2))ν
(2) · · · (x(k))ν(k) · eξ′xdQ(x).

Hence

Dνϕ(ξ)

∣
∣
∣
∣
ξ=0

=

∫

Rk

(x(1))ν
(1) · · · (x(k))ν(k)

dQ(x) = μν = EX(ν).

(b)

ϕ(ξ) = Eeξ
′X = Ee

∑k
i=1 ξ(i)X(i)

=

∞∑

r=0

1

r!
E

(
k∑

i=1

ξ(i)X(i)

)r

=
∞∑

r=0

1

r!
E

(
∑

|ν|=r

(
r

ν(1)

)(
r − ν(1)

ν(2)

)

· · ·
(
ν(k)

ν(k)

)

×

×
(
ξ(1)X(1)

)ν(1) (
ξ(2)X(2)

)ν(2)

· · ·
(
ξ(k)X(k)

)ν(k)
)

,

where |ν| = ν(1) + · · · + ν(k) and the second sum is over all ν ∈ (Z+)k such
that |ν| = r.

(
r

ν(1)

)(
r − ν(1)

ν(2)

)

· · ·
(
ν(k)

ν(k)

)

=
r!

ν(1)!ν(2)! · · · ν(k)! .

Hence, writing ν! = ν(1)! · · · ν(k)!, one has

ϕ(ξ) =

∞∑

r=0

∑

|ν|=r

ξν

ν!
E
[
(X(1))ν

(1)

(X(2))ν
(2) · · · (X(k))ν

(k)
]

=

∞∑

r=0

∑

|ν|=r

μν

ν!
ξν =

∑

ν∈(Z+)k

μν

ν!
ξν .

(c) Essentially the same proof as that of Theorem B.3. ��
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Example B.8. X ∼ (N(μ, Σ)). Assume Σ is k × k symmetric positive definite.
Let B be a symmetric positive definite matrix such that BB = Σ. Then define
Y = B−1(X − μ). We have seen that Y ∼ N(0, I), i.e., the coordinates of Y are k
independent standard normal random variables. The m.g.f. of Y is

ψ(ξ) ≡ Eeξ
′Y = Ee

∑k
i=1 ξ(i)Y (i)

=
k∏

i=1

Eeξ
(i)Y (i)

=

k∏

i=1

e(ξ
(i))2/2 = e|ξ|

2/2.

Thus the m.g.f. of X is

ϕ(ξ) = Eeξ
′X = Eeξ

′(BY+μ) = eξ
′μEeξ

′BY

= eξ
′μEe(Bξ)′Y = eξ

′μψ(Bξ) = eξ
′μe|Bξ|2/2

= eξ
′μ+(Bξ)′(Bξ)/2 = eξ

′μ+ξ′B′Bξ/2 = eξ
′μ+ξ′BBξ/2

= eξ
′μ+ 1

2ξ
′Σξ.



Appendix C

Computation of Power of Some Optimal
Tests: Non-central t, χ2 and F

Example C.1. Consider the UMP test ϕ∗ of size α ∈ (0, 1) for H0 : μ ≤ μ0 against
H1 : μ > μ0 based on X = (X1, . . . , Xn) where Xi’s are i.i.d. N(μ, σ2

0), with
σ2
0 > 0 known and μ ∈ R = Θ : ϕ∗(x) = 1 if

√
n(x − μ0)/σ0 > zα and ϕ∗(x) = 0

otherwise. The power function is

γ(u) ≡ γϕ∗(μ) = Pμ(
√
n(X − μ0)/σ0 > zα)

= Pμ

(√
n(X − μ)/σ0 > zα −

√
n(μ− μ0)

σ0

)

= 1− Φ

(

zα −
√
n(μ− μ0)

σ0

)

(μ ∈ Θ1 = (μ0,∞)), (C.1)

where Φ is the (cumulative) distribution function of a standard normal random
variable.

Similarly, the power function of the UMP unbiased test for H0 : μ = μ0 against
H1 : μ �= μ0 is

γ(u) = Pμ

(∣
∣
∣
∣

√
n(X − μ0)

σ0

∣
∣
∣
∣
>

zα
2

)

= 1− Pμ

(

−zα
2

≤
√
n(X − μ0)

σ0
≤ zα

2

)

= 1− Pμ

(

−zα
2

−
√
n(μ− μ0)

σ0
≤

√
n(X − μ)

σ0
≤ zα/2 −

√
n(μ− μ0)

σ0

)

= 1−
{

Φ

(

zα/2 −
√
n(μ− μ0)

σ0

)

− Φ

(

−zα/2 −
√
n(μ− μ0)

σ0

)}

(μ 
= μ0).

(C.2)

Example C.2. The UMP test for H0 : σ2 ≤ σ2
0 against H1 : σ2 > σ2

0 based on i.i.d.
N(μ0, σ

2) random variablesXi (1 ≤ i ≤ n) is to reject H0 iff
∑n

i=1(Xi−μ0)
2/σ2

0 >
χ2
1−α(n) [upper α-point of chi-square distribution with n d.f.]. Its power is

© Springer-Verlag New York 2016
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γ(σ2) = Pσ2

(
n∑

i=1

(Xi − μ0)
2
/
σ2
0 > χ2

1−α(n)

)

≡ Pσ2

(
n∑

i=1

(Xi − μ0)
2
/
σ2 >

σ2
0

σ2
χ2
1−α(n)

)

=

∫ ∞

σ2
0

σ2 χ2
1−α(n)

kn(u)du

= 1−Kn

(
σ2
0

σ2
χ2
1−α(n)

)

(σ2 > σ2
0), (C.3)

where kn is the p.d.f., and Kn the cumulative distribution function of the chi-
square distribution with n d.f.

Example C.3. Consider now the test for H0 : μ ≤ μ0 against H1 : μ > μ0 based
on i.i.d. Xi (1 ≤ i ≤ n) which are N(μ, σ2) with σ2 unknown. The UMP unbiased
test of size α rejects H0 iff

√
n(X − μ0)/s > t1−α(n − 1) [the upper α-point of

Student’s t with n − 1 d.f.]. Here s2 =
∑

(Xi − X)2/(n − 1); and (n−1)s2

σ2 has a

chi-square distribution with n− 1 d.f. and is independent of
√
n(X − μ)/σ which

is N(0, 1) under Pμ,σ2 . Thus the power of the test is

γ(μ;σ2) = Pμ,σ2

(√
n(X − μ0)

s
> t1−α(n− 1)

)

= Eμ,σ2

[

Pμ,σ2

(√
n(X − μ0)

σ
>

s

σ
t1−α(n− 1)

∣
∣
∣
∣s

)]

= Eμ,σ2

[

Pμ,σ2

(√
n(X − μ)

σ
>

√
n(μ− μ0)

σ
+

s

σ
t1−α(n− 1)

∣
∣
∣
∣s

)]

= 1−
∫ ∞

0

Φ

(

−
√
n(μ− μ0)

σ
+

(t1−α(n− 1))√
n− 1

√
u

)

kn−1(u)du. (C.4)

In obtaining (C.4) we used (i) the independence of X and s and (ii) the fact that

U ≡ (n− 1)
(
s
σ

)2
is a chi-square random variable with n− 1 d.f. (As before, kν is

the p.d.f. of a chi-square with ν d.f.)
Replacing t1−α(n − 1) by a general argument t > 0, and differentiating (C.4)

w.r.t. t (and changing the sign of the derivative) one arrives at the p.d.f. of the

so-called non-central t-distribution with the noncentrality parameter Δ =
√
n(μ−μ0)

σ
and d.f. ν = n− 1, as

fν,Δ(t) ≡ f(t) =

∫ ∞

0

ϕ

(

−Δ+
t√
ν

√
u

)

·
√
u√
ν
kν(u)du (C.5)

where ϕ is the standard normal density. Simplifying a little, this density is (Recall:
kν(u) =

1

2ν/2Γ( v
2 )

e−
u
2 u

ν
2 −1)

f(t) =
1√

2π 2ν/2Γ
(
ν
2

)√
ν

∫ ∞

0

u
ν−1
2 exp

⎧
⎨

⎩
−
u
(
1 + t2

ν

)
+Δ2 − 2Δt√

ν

√
u

2

⎫
⎬

⎭
du

=
e
− νΔ2

2(ν+t2)

√
ν
√
2π 2ν/2Γ

(
v
2

)

∫ ∞

0

u
ν−1
2 exp

⎧
⎨

⎩
−1

2

(
√
u

√
ν + t2

ν
− Δt√

ν + t2

)2
⎫
⎬

⎭
du.
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So, one has the non-central t p.d.f.

f(t) = cν(t
2 + ν)−(ν+1)/2 exp

{

− νΔ2

2(ν+t2)

}∫ ∞

0

exp

{

−1

2

(

x− Δt√
ν+t2

)}2

dx,

(C.6)

with a change of variables u → x =
√

ν+t2

ν x. Here

cν =
νν/2√

πΓ
(
ν
2

)
2(ν−1)/2

.

The power function (C.4) may now be simply expressed as

γ(μ;σ2) =

∫ ∞

t1−α(n−1)

fν,Δ(t)dt with ν = n− 1, Δ =

√
n(μ− μ0)

σ
, (C.7)

(μ > μ0, σ
2 > 0).

Example C.4. To test H0 : σ2 ≤ σ2
0 against H1 : σ2 > σ2

0 based on i.i.d. N(μ, σ2)
random variables Xi (μ not known), the UMP unbiased test is to reject H0 iff
∑

(Xi−X)2

σ2
0

≡ (n−1)s2

σ2
0

> χ2
1−α(n− 1). Its power is

Pμ,σ2

(
(n− 1)s2

σ2
0

> χ2
1−α(n− 1)

)

≡ Pμ,σ2

(
(n− 1)s2

σ2
>

σ2
0

σ2
χ2
1−α(n− 1)

)

=

∫

σ2
0

σ2 χ2
1−α(n−1)

kn−1(u)du (σ2 > σ2
0).

Example C.5 (The Non-Central Chi-Square Distribution). Finally, we consider the
noncentral chi-square distribution. If Y is N(μ, 1) then the distribution of Y 2 is
said to be a noncentral chi-square distribution with 1 d.f. The sum of squares∑

Y 2
i of n independent N(μi, 1) normal random variables Yi s said to have the

noncentral chi-square distribution with d.f. n and noncentrality parameter
∑n

1 μ
2
i .

Proposition C.1. Let Yi be N(μi, 1), 1 ≤ i ≤ n, and Y1, Y2, . . . , Yn independent.
Then the p.d.f. of V :=

∑n
1 Y

2
i is given by the noncentral chi-square p.d.f. with

d.f. n and noncentrality parameter Δ =
∑n

1 μ
2
i , namely,

f(v) ≡ f(v;n,Δ) =

∞∑

j=0

p

(

j;
Δ

2

)

kn+2j(v) (C.8)

where

p

(

j;
Δ

2

)

= e−
Δ
2

(
Δ

2

)j
1

j!
(j = 0, 1, 2, . . . ) (C.9)

is the probability (mass) function of a Poisson random variable with mean (pa-
rameter) Δ

2 , and kn+2j is the chi-square p.d.f. with d.f. n+ 2j.

Proof. The p.d.f. of Vi := Y 2
i is (use a two-to-one change of variables {y,−y} →

v = y2, or differentiate (w.r.t. ν) the cumulative distribution function of Vi, namely,
∫√

v

−√
v

1√
2π

e−
(y−μi)

2

2 dy)
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fi(v) =
1

2
√
2π

v−
1
2

(
e−

1
2v− 1

2μ
2
i

){
e−μi

√
v + eμi

√
v
}

=
1

2
√
2π

v−
1
2

(
e−

1
2v · e− 1

2μ
2
i

)
⎧
⎨

⎩

∞∑

j=0

2(μ2
i v)

j

(2j)!

⎫
⎬

⎭

=
∞∑

j=0

1

j!
e−

μ2
i
2

(
μ2
i

2

)j

· 1√
2π

j!

(2j)!
2j · 2j− 1

2

(v

2

)j− 1
2

e−
v
2

=

∞∑

j=0

p

(

j;
μ2
i

2

)

· 1√
2π

2j−
1
2

(2j − 1)(2j − 3) · · · 3.1 e−
v
2

(v

2

)j− 1
2

=

∞∑

j=0

p

(

j;
μ2
i

2

)
1

2Γ
(
j + 1

2

)
(v

2

) 2j−1
2

e−
v
2

=

∞∑

j=0

p

(

j;
μ2
i

2

)

k2j+1(v).

The p.d.f. of Y 2
1 + Y 2

2 is the convolution of f1(v) := f(v; 1, μ2
1) and f2(v) :=

f(v; 1, μ2
2), namely,

(f1 ∗ f2)(v) =
∞∑

j=0

∞∑

j′=0

p

(

j;
μ2
1

2

)

p

(

j′;
μ2
2

2

)

(k1+2j ∗ k1+2j′) (v)

=

∞∑

j=0

∞∑

j′=0

e−(μ2
1+μ2

2)/2

j!j′!

(
μ2
1

2

)j (
μ2
2

2

)j′

k2+2(j+j′)(v).

For the convolution of two (central) chi-square p.d.f. s is a chi-square p.d.f. whose
d.f. is the sum of the d.f.’s of its two components. This equals

∞∑

s=0

⎧
⎨

⎩

∑

(j,j′):j+j′=s

e−(μ2
1+μ2

2)/2 · 1

j!j′!

(
μ2
1

2

)(
μ2
2

2

)j′
⎫
⎬

⎭
k2+2s(v)

=

∞∑

s=0

e−(μ2
1+μ2

2)/2
(μ2

1 + μ2
2)

s

2ss!
k2+2s(v) = f(v; 2, μ2

1 + μ2
2). (C.10)

For the last step in (C.10), one uses the combinatorial identity:
∑

{(j,j′)∈(Z+)2:j+j′=s} a
j bj

′
/j!j′! = (a+b)s

s! . (Binomial expansion of (a+ b)s).
The general result follows by induction. ��

Remark C.1. The non-central chi-square appears in the power function of F -tests
in linear models.

The final example in this section enables one to compute the power of F tests
in linear models.

Example C.6 (The Non-Central F Distribution Fr,s(Δ)). Recall the F -distribution
Fr,s in A.2, VIII. This is the distribution of the F -statistic

F =
U/r

V/s
, (C.11)
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where U and V are independent chi-square random variables with degrees of free-
dom r, s, respectively. If we let U be a noncentral chi-square distribution with d.f.
r and noncentrality parameter Δ, then the Proposition above (Proposition C.1)
says that U may be thought of as a chi-square random variable with a random
degree of freedom r + 2γ, γ having the Poisson distribution P(Δ/2) (with mean
Δ/2). Therefore, conditionally given γ = j, the distribution of (U/(r+2j))/(V/s)
is the (central) F -distribution Fr+2j,s, with p.d.f. fr+2j,s (see Sect. A.2). Hence
the p.d.f. of (U/r)/(V/s) =

(
r+2j
r

)
[(U/(r+2j))/(V/s)], conditionally given γ = j,

is

fr+2j,s

(
r

r + 2j
x

)(
r

r + 2j

)

(j = 0, 1, . . . ). (C.12)

Therefore, the density of the non-central F -statistic (C.11) is

fr,s,Δ(x) =

∞∑

j=0

e−Δ/2

(
Δ

2

)j
1

j!

(
r

r + 2j

)

fr+2j,s

(
r

r + 2j
x

)

, 0 < x < ∞.

(C.13)
By using the formula for fr+2j,s one gets

fr,s,Δ(x) = e−Δ/2
∞∑

j=0

(
Δ

2

)j
1

j!

r
r
2+js

s
2Γ

(
r+s
2 + j

)

Γ
(
r
2 + j

)
Γ
(
s
2

) · x
r
2+j−1

(s+ rx)
r+s
2 +j

. (C.14)

For the use of the N–P Lemma to an observed random variable X given
by (C.11), one considers the ratio

fr,s,Δ(x)

fr,s(x)
= e−

Δ
2

∞∑

j=0

(
Δ

2

)j
1

j!

Γ
(
r+s
2 + j

)
Γ
(
r
2

)

Γ
(
r
2 + j

)
Γ
(
r+s
2

)

(
rx

s+ rx

)j

. (C.15)

Each summand is an increasing function of x and, hence, so is the sum.



Appendix D

Liapounov’s, Lindeberg’s and Polya’s
Theorems

Liapounov’s Central Limit Theorem Let Xj,n (1 ≤ j ≤ kn; n = 1, 2, . . . ) be
a triangular array of independent random variables each with zero mean. Write
s2n = Σkn

j=1var(Xj,n), ρ3,n = Σkn

j=1E|Xj,n|3. If ρ3,n/s3n → 0 as n → ∞, then

kn∑

j=1

Xj,n

sn

L−→ N(0, 1). (D.1)

Liapounov’s Theorem follows from a more general theorem due to Lindeberg:

Lindeberg’s Central Limit Theorem 1 Let the triangular arrayXj,n (1 ≤ j ≤
kn; n = 1, 2, . . . ) have mean zero and finite variance. Write s2n =

∑kn

j=1 varXj,n,
εj,n = Xj,n/sn. If the Lindeberg condition

kn∑

j=1

Eε2j,n1[|εj,n|>η] −→ 0 as n → ∞ (D.2)

holds for every constant η > 0, then

kn∑

j=1

εj,n
L−→ N(0, 1). (D.3)

Polya’s Theorem Suppose Fn
L−→ F , and F (x) is continuous on (−∞,∞).

Then supx |Fn(x)− F (x)| → 0 as n → ∞.

Proof. We need to show that, under the given hypotheses, given any ε > 0 there
exists an integer n(ε) such that

sup
x

|Fn(x)− F (x)| < ε for all n > n(ε).

1 For proof of Lindeberg’s and Liapounov’s CLTs, see Bhattacharya and Waymire (2007),
pp. 99–103.
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Find Aε > 0 such that F (−Aε) < ε/4, 1−F (Aε) < ε/4. Since Fn(−Aε) → F (−Aε)
and Fn(Aε) → F (Aε), there exists a positive integer N1 such that ∀ n > N1,
|Fn(−Aε)−F (−Aε)| < ε/4, |1−Fn(Aε)−{1−F (Aε)}| = |Fn(Aε)−F (Aε)| < ε/4.
This implies,

Fn(−Aε) <
ε

4
+

ε

4
=

ε

2
, 1− Fn(+Aε) <

ε

4
+

ε

4
=

ε

2
∀ n > N1. (D.4)

Since F is continuous, it follows that it is uniformly continuous on [−Aε, Aε].
Hence there exists δ > 0 such that |F (x)−F (y)| < ε/2, whenever x, y ∈ [−Aε, Aε]
and |x − y| < δ. Choose points x0 = −Aε < x1 < x2 < · · · < xk = Aε such that
|xj+1−xj | < δ. There exists, for each j, an integerMj such that |Fn(xj)−F (xj)| <
ε/2 for all n > Mj (j = 0, 1, . . . , k). Now let

n(ε) = max{N1,M0,M1, . . . ,Mk}. (D.5)

Then if x ∈ [xj , xj+1], one has ∀ n > Mj+1

Fn(x)− F (x) ≤ Fn(xj+1)− F (xj)

= Fn(xj+1)− F (xj+1) + F (xj+1)− F (xj) <
ε

2
+

ε

2
= ε,

and ∀ n > Mj one has

F (x)−Fn(x) ≤ F (xj+1)−Fn(xj) = F (xj+1)−F (xj)+F (xj)−Fn(xj) <
ε

2
+
ε

2
= ε,

i.e.
|Fn(x)− F (x)| < ε, ∀ n > n(ε), if x ∈ [−Aε, Aε]. (D.6)

On the other hand, if x < −Aε, then ∀ n > N1

|Fn(x)− F (x)| ≤ Fn(x) + F (x) ≤ Fn(−Aε) + F (−Aε) <
ε

2
+

ε

4
< ε, (D.7)

while if x > Aε, then for all n > N1

|Fn(x) − F (x)| = |1− Fn(x)− {1− F (x)}| ≤ 1− Fn(x) + 1− F (x)

≤ 1− Fn(Aε) + 1− F (Aε) <
ε

2
+

ε

4
< ε. (D.8)

Combining (D.6)–(D.8) one has

|Fn(x) − F (x)| < ε ∀ x ∈ (−∞,∞) if n > n(ε).

��



Solutions of Selected Exercises in Part I

Chapter 1

1.2 Let us index the Ni members of the ith stratum as {xij : 1 ≤ j ≤ Ni},
i = 1, 2, . . . , k. Also, let Xij (j = 1, . . . , ni) denote a random sample of size ni

(with replacement) from the ith stratum (i = 1, . . . , k). Then, E(Xi) = mi ≡
1
Ni

∑Ni

j=1 xij = mean of the ith stratum, var(Xi) =
vi
ni

where vi =
1
Ni

∑Ni

j=1(xij −
mi)

2 = variance of the ith stratum.

(a) Let Y =
∑k

i=1 wiXi (wi = Ni

N ). Then (i) EY =
∑k

i=1 wiE(X i) =
∑k

i=1 wimi =
∑k

i=1
Ni

N

(
1
Ni

∑Ni

j=1 xij

)
= 1

N

∑k
i=1

∑Ni

j=1 xij = x1+x2+···+xN

N =

m and
(ii)

var(Y ) =

k∑

i=1

w2
i var(X i) =

k∑

i=1

w2
i

vi
ni

. (S.1)

(b) One may express the population variance as

v =
1

N

N∑

i=1

(xi −m)2 =
1

N

k∑

i=1

Ni∑

j=1

(xij −m)2

=
1

N

k∑

i=1

Ni∑

j=1

(xij −mi +mi −m)2

=
1

N

k∑

i=1

ξ

Ni∑

j=1

(xij −mi)
2 +

Ni∑

j=1

(mi −m)2 + 2(mi −m)

Ni∑

j=1

(xij −mi)

=
1

N

k∑

i=1

{
Ni, vi +Ni(mi −m)2 + 0

}
=

k∑

i=1

Ni

N
vi +

k∑

i=1

Ni

N
(mi −m)2

=

k∑

i=1

wivi +

k∑

i=1

wi(mi −m)2. (S.2)
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(c) Let ni = nwi ∀ i = 1, . . . , k. Then, using (S.1) and (S.2).

E(Y −m)2 =

k∑

i=1

w2
i.

vi
nwi

=
1

n

k∑

i=1

wivi,

E(X −m)2 =
v

n
=

1

m

k∑

i=1

wivi +
1

n

k∑

i=1

wi(mi −m)2

> E(Y −m)2,

unless mi = m ∀ i = 1, . . . , k. Only in the latter case E(Y −m)2 = E(X−m)2.
(d) Suppose vi’s are known. Then E(Y −m)2 is minimized (with respect to ni’s)

by solving the equations [see (S.1)]

∂

∂ni

{
k∑

i=1

w2
i

vi
ni

+ λ

(
k∑

i′=1

ni′

)}

= 0 (i = 1, . . . , k),

where λ is the so-called Lagrange multiplier. That is, −w2
i
vi
n2
i
+ λ = 0, or

w2
i
vi
n2
i
= λ, or, n2

i =
w2

i vi
λ , or, ni =

wi
√
vi√
x

(i = 1, 2, . . . , k).

Summing over i, one gets n =
∑k

i=1 wi
√
vi√

λ
, or,

√
λ =

∑k
i=1 wi

√
vi

n . Hence the

optimal choice for ni is

ni =
nwi

√
vi

∑k
i=1 wi

√
vi

(i = 1, 2, . . . , k).

Thus, ni is proportional to the size of the stratum and to the standard devia-
tion of the stratum. ��

Chapter 2

2.1 In Example 2.1, p. 12, prove (2.4) and (2.6).

Proof of (2.4). Recall that one can express (n−1)s2

σ2 as

(n− 1)s2

σ2
=

n∑

i=2

Y 2
i (Yi i.i.d. N(0, 1)).

Then

E

(
(n− 1)s2

σ2

)2

= E
(n− 1)2s4

σ4
=

(n− 1)2

σ4
Es4 = E

(
n∑

i=2

Y 2
i

)2

. (S.3)
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But the best expectation equals (using EY 4
1 = 3),

E

(
n∑

i=2

Y 2
i

)2

= E

(
n∑

i=2

Y 4
i

)

+ E

⎛

⎝
∑

2≤i�=j≤n

Y 2
i Y

2
j

⎞

⎠

=

n∑

i=2

EY 4
i +

∑

2≤i�=j≤n

(EY 2
i )(EY 2

j ) = 3(n− 1) + (n− 1)(n− 2)

= (n− 1)(3 + n− 2) = (n− 1)(n+ 1).

Hence the last equality in (S.3) yields

Es4 =
σ4

(n− 1)2
(n− 1)(n+ 1) =

n+ 1

n− 1
σ4,

so that

Eθ(s
2 − σ2) = Eθs

4 = σ4 − 2σ2Eθs
2 = Eθs

4 − σ4 =
2σ4

n− 1
.

Proof of (2.6). Here θ = (μ, σ2), d(X) = (X, s2). Therefore, R(θ, d) = Eθ|θ −
d(X)|2 = Eθ[(X − μ)2 + (s2 − σ2)2] = σ2

n + 2σ4

n−1 .

Chapter 3

3.6 X1, . . . , Xn i.i.d. Bernoulli, Pθ(Xi = 1) = θ, Pθ(Xi = 0) = 1−θ, θ ∈ [0, 1] = Θ.
the (joint) distribution of X = (X1, . . . , Xn) is

Pθ(X = x) = θr(1− θ)n−r (r =
∑n

j=1 xj , x = (x1, . . . , xn) ∈ {0, 1}n).

By Example 3.5, the Bayes estimator for the beta prior Be(α, β) under loss
L(θ, a) = C(θ − a)2 (c > 0 does not depend on θ) is given by

do(x) =
r + α

n+ α+ β
.

Its risk function is

R(θ, d0) = cEθ

(

ε−
∑n

1 Xj + α

n+ α+ β

)2

= c
[
varθ(d0(X)) + (Eθd0(X)− θ)2

]

= c

[
nθ(1− θ)

n+ α+ β2
+

(
nθ + α

n+ α+ β
− θ

)2
]

= c

[
nθ(1 − θ)

(n+ α+ β)2
+

α+ θ(α + β)2

(n+ α+ β)2

]

=
c

(n+ α+ β)2
[nθ(1 − θ) + (α− θ(α + β))2]
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For α = β =
√
n
2 , this simplifies to

R(θ, d0) =
cn4

(n+
√
n)2

=
c

4(
√
n+ 1)2

,

a Bayes rule which is an equalizer rule. Hence it is minimax (Theorem 3.7). Also,

the property P1 (p. 29) holds with Θ̃ = (0, 1). Hence d0 is admissible,

d0(X) =

(
.∑

1

Xj0 +

√
n

2
/(n+

√
n)

)

=
X + 1

2
√
n

1 + 1√
n

.

3.7 X1, . . . , Xn i.i.d. Poisson, with common pmf Pθ(Xi = x) = e−θθx/x!, x ∈
{0, 1, 2, . . .} = Z+, θ ∈ (0,∞) = Θ. The (joint) pmf of X = (X1, . . . , Xn) is

f(x | θ) = e−nθθ
∑n

1 xj/

n∏

j=1

xj! (x = (x1, . . . , xn) ∈ Z
n
+ = H ).

(a) Let L(θ, a) = eθ

θ (θ − a)2. For the gamma prior τ = G (α, β), the Bayes risk of
an estimator d is

r(τ, d) =
∑

x∈X

1
∏

xj!

∫ ∞

0

eθ

θ
(θ − d(x))2e−nθθ

∑
xj

=
∑

x∈X

1
∏

xj !

∫ ∞

0

1

Γ (β)αβ
(θ2 − 2θd(x) + d2(x))e

−θ/ α
(n−1)α+1 · θ

∑
xj+β−2dθ.

If x = (0, . . . , θ) then the integral diverges (at 0) if β ≤ 1 (β > 0), unless one
sets d((0, . . . , 0)) = 0. For all other x (and for x = (0, . . . , 0) if β > 1), one has
the integral equal to

1

Γ (β)αβ
· Γ (Σxj + β − 1)α′β′ ·

∫ ∞

0

(θ − d(x))2g(θ | α′, β′)dθ,

where g(θ | α′, β′) is the pdf of the gamma distribution G (α′, β′), with α′ =
α

(n−1)α+1 , β
′ =

∑n
1 xj + β − 1. This is minimized by the mean of this gamma

distribution (for each x, if β > 1), i.e., the Bayes estimator is given by

d0(x) = α′β′ =
α

(n− 1)α+ 1

(
n∑

1

xj + β − 1

)

.

(b) For the case β = 1, this becomes

d0(x) =
α

(n− 1)α+ 1

n∑

1

xj , x ∈ X = Z
n
+, (S.4)

which automatically satisfies the restriction d0((0, . . . , 0)) = 0 imposed earlier.
If one takes α = 1, β = 1, then (S.4) becomes

d0(x) = x.
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Hence x is admissible under the loss function L(θ, a) = eθ

θ (θ − a)2. [Note that

P1 holds with Θ̃ = Θ, since Pθ(x) > 0 ∀ x, and Pθ0(A) = 0 implies A is empty,
whatever be θ0 ∈ Θ.]

(c) We now show that d0 = X is admissible under squared error loss

L(θ, a)=(θ−a)2. Let L̃(θ, a) = eθ

θ (θ − a)2 ≡ eθ

θ L(θ, a). Suppose d0 = X
is not admissible under L. Then there exists an estimator d1 such that

R(θ, d1) ≤ R(θ, d0) ∀ θ, R(θ0, d1) < R(θ0, d0)

for some θ0 > 0. Multiplying both sides of the inequalities by eθ

θ , one obtains

the risk function R̃(θ, d1), R̃(θ, d0) under L̃ satisfying the inequalities

R̃(θ, d1) ≤ R̃(θ, d0) ∀ θ, R̃(θ0, d1) < R̃(θ0, d0).

But this implies d0 is inadmissible under loss L̃—a contradiction.
(d) We now show that X is minimax under the loss function L(θ, a) = (θ− a)2/θ.

The risk function of X is

R(θ,X) = Eθ(θ −X)2/θ =
1

θ
varθ(X) =

1

θ
nθ =

1

θ
∀ θ ∈ Θ = (0,∞).

[Note that the variance of X1 is θ.] Thus X is an equalizer rule. We will now
apply Theorem 3.6 to find a sequence of priors τN such that the Bayes risks
of the corresponding Bayes estimators dN , say, satisfy

lim
N→∞

r(τN , dN ) =
1

n
. (S.5)

Now for the gamma prior G (α, β), the Bayes estimator is obtained by mini-
mizing the Bayes risk r(τ, d) over the class of all estimators d:

r(τ, d) =
∑

x∈X

1
∏n

1 xj!

∫ ∞

0

(θ − d(x))2

θ
e−nθθ

∑n
i xj

θβ−1e−θ/d

Γ (β)αβ
dθ

=
1

Γ (β)αβ

∑

x∈X

1
∏n

1 xj!

∫ ∞

0

(θ − d(x))2e−θ/ α
nα+1 θ

∑
xj+β−2dθ

=
1

Γ (β)αβ
· Γ (β′)α′β′ ∑

x∈X

1
∏n

1 xj!

∫ ∞

0

(θ − d(x))2g(θ | α′, β′)dθ,

where g(θ | α′, β′) is the pdf of the gamma distribution G (α′, β′), and α′ =
α

nα+1 , β
′ =

∑n
1 xj + β − 1.

Let us choose β > 1. Then, as in (b), the last integral is minimized (for each

x ∈ X ) by α′β′ = α(
∑n

1 xj+β−1)

nα+1 . Hence the Bayes estimator for the prior G (α, β),
β > 1, is

d0(x) =
α(
∑n

j=1 xj + β − 1)

nα+ 1
.

We now show that for α = αN , β = βN with αN ↑ ∞ and βN ↓ 1 as N ↑ ∞,
the Bayes estimator dN for the prior τN = G (αN , βN ) has Bayes risks r(τN , dN )
satisfying (S.5). Now for the prior G (α, β), β > 1, the Bayes risk is
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r(τ, d0) = E

[(
α(
∑n

1 Xj + β − 1)

nα+ 1
− O

)2

/O

]

= E

[

O − 2d0(X) +
d20(X)

O

]

= αβ − 2E

[
α(nθ + β − 1)

nα+ 1

]

+ E

[
varO(d0(X)) + (EOd0(X))2

O

]

= αβ − 2

[
α(nα+ 1β − 1)

nα+ 1

]

+E

[(
α

nα+ 1

)2
nO

O
+

(
α

nα+ 1

)2
(nO + β − 1)2

O

]

= αβ − 2α[(nα+ 1)β − 1]

nα+ 1

+n

(
α

nα+ 1

)2

+

(
α

nα+ 1

)2 [

n2E(O) + 2(β − 1) +
(β − 1)2

O

]

= αβ − 2αβ +
2α

nα+ 1
+ n

(
α

nα+ 1

)2

+

(
α

nα+ 1

)2 [

n2αβ + 2(β − 1) +
β − 1

α

]

.

Note that, for β > 1, E(1/O) = 1
Γ (β)αβ

∫∞
0

1
θ e

−θ/αθβ−1dθ = Γ (β−1)αβ−1

Γ (β)αβ = 1
α(β−1) .

Also use (1 + 1
nα )

−2 = 1− 2
n−α + θ( 1

α2 ) as α → ∞ to get

r(τ, d0) = αβ−2αβ+
2α

nα+1
+n

(
1

n+ 1
α

)2

+

(

1+
1

nα

)2 [

αβ+
2(β−1)

n2
+
β−1

n2α

]

= αβ − 2αβ +
2

n
(1 + o(1)) + n

(
1

n2
+ o(1)

)

+αβ − 2β

n
+

2(β − 1)

n2
+ o(1) (as α → ∞)

=
2

n
+

1

n
− 2β

n
+

2(β − 1)

n2
+ o(1) as α → ∞.

−→ 1

n
as α → ∞, β ↓ 1.

��

Chapter 4

4.3

(a) Find the UMVU estimator of θi in Example 4.5 (k = 1, 2, . . . , n).

Solution. The complete sufficient statistic for θ is T =
∑

1≤j≤n Xj. A simple

unbiased estimator of θk is d(X) = X1X2, . . . , Xk, which takes the value 1 with
probability θk (when = X1 = 1, X2 = 1, . . . , Xk = 1), and 0 with probability
1− θk. The UMVU estimate is then
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d∗(X) = E(X1, X2, . . . , Xk | T ) = P (X1, X2, . . . , Xk = 1 | T ).
The last probability is zero if T < k, and, for T = r ≥ k, it equals

P (X1, X2, . . . , Xk=1, T=r)

P (T=r)
= θk n−kCr−kθ

r−k(1−θ)n−k−(r−k)
/ [

nCrθ
r(1− θ)n−r

]

=
n−kCr−k

nCr
.

Hence, d∗(X) = 0 for T =
∑

1≤j≤n Xj = 0, 1, . . . , k − 1, and it equals r(r −
1) . . . (r − k + 1)/[n(n − 1) . . . (n − k + 1)], for T = r where r = k, k + 1, . . . , n.
This can be succinctly expressed as

d∗(X) =
T (T − 1) . . . (T − k + 1)

[n(n− 1) . . . (n− k + 1)]
.

(b) (i) For X1, . . . , Xn i.i.d. uniform on (0, θ), it is shown in Example 4.6 that
M = max{X1, . . . , Xn} is a complete sufficient statistic. Hence to find the
UMVU estimator g(M) of sin θ, we may solve for g satisfying the following.
(Note that the pdf of M is (n/θn)tn−1.1{0<t<θ}.)

sin θ = Eθg(M) =
n

θn

∫

(0,θ)

g(t)tn−1dt, or,

(
θn

n

)

sin θ =

∫

(0,θ)

g(t)tn−1dt.

Differentiation with respect to θ leads to the equation θn−1 sin θ +
(θn/n) cos θ = g(θ)θn−1. Hence g(θ) = sin θ + (θ/n) cos θ. That is, the
UMVU estimator of sin θ is sin M + (M/n) cos M .

(ii) In the same manner the UMVU estimator g(M) of eθ satisfies the equation
θneθ/n =

∫
(0,θ)

g(t)tn−1dt, and differentiation leads to θn−1eθ + θneθ/n =

g(θ)θn−1, i.e., g(θ) = eθ + θeθ/n. Therefore, the UMVU estimator of eθ is
eM (1 +M/n).

4.7 Let X = (X)ij : 1 ≤ i ≤ m, 1 ≤ j ≤ n) = (Xj , 1 ≤ j ≤ n) be n ≥ 2 i.i.d.
random vectors Xj = (X1j , X2j , . . . , Xmj), 1 ≤ j ≤ n, from the m-dimensional
Normal distribution N(μ, Σ| ) where μ = (μ1, . . . , μm) is the mean vector, and Σ|
is the m×m symmetric positive definite covariance matrix of Xj (j = 1, . . . , n).
From Example 4.12 it follows that T ≡ [(Xi. =

1
n

∑n
j=1 Xij , 1 ≤ i ≤ m), (mii =

1
n

∑n
j=1 X

2
ij , 1 ≤ i ≤ m), (mii′ =

1
n

∑n
j=1 XijXi′j , 1 ≤ i < i′ ≤ m)] is a complete

sufficient statistic for (μ, Σ| ).

(a) Since EθXi. = μi, 1 ≤ i ≤ m, the UMVU estimator of μi is X i. (a function of
T ). Hence the UMVU estimator of μ is m = (X1., . . . , Xm.).

(b) One has Eθ(
∑n

j=1 X
2
ij − nX

2

i.) = (n − 1)σii.. For Xij , 1 ≤ j ≤ n), are i.i.d.
Normal N(μi, σii), so that it follows from Example 1.1 in Chap. 1 that the
sample variance Sii =

∑n
j=1(Xij − Xi.)

2/(n − 1) is an unbiased estimator

of the population variance σii. Hence
∑n

j=1(
∑n

j=1 X2
ij−nX

2
ij)

n−1 = Sii, a function
gi(T ), say, is the UMVU estimator of σii.. Similarly, for i < i′, writing μii′ =
EXijXi′j ,



378 Solutions of Selected Exercises in Part I

Eθ

⎡

⎣
n∑

j=1

XijXi′j − nXi.Xi′.

⎤

⎦ = Eθ

⎡

⎣nμii′ −
n∑

j=1

Xij

λ∑

j′=1

Xi′j′/n

⎤

⎦

= nμii′ − 1

n
Eθ

n∑

j=1

XijXi′j −
n∑

j = 1
j′ �= j

(EθXij)(EθXi′j′)/n

= nμii′ − μii′ − (n− 1)μiμi′

= (n− 1)(μii′ − μiμi′) = (n− 1)E(Xij − μi)(Xi′j − μi′)

= (n− 1)σii′ .

[Note: E(Xij − μi)(Xi′j − μi′) = EXijXi′j − μiμi′ − μiμi′ − μiμi′ + μiμi′ =
μii′ − μiμi′ .] Hence the sample covariance

sii′ ≡ 1

n− 1

n∑

j=1

(Xij −X i.)(Xi′j −Xi′.)

=
1

n− 1

⎡

⎣
n∑

j=1

XijXij′ − nXi.Xi′.

⎤

⎦

=
n

n− 1

[
mii′ −Xi.Xi′.

]
= g(T ), say,

is the UMVU estimator of the population covariance σii′ . It follows that

S = ((rii′ ))1≤i,i′≤m is the UMVU estimator of Σ| .

[Here var(S) ≡∑
1≤i,i′≤m E(sii′ − σii′ )

2.]

4.8 Let X1, . . . , Xn be i.i.d. N(μ, σ2), θ = (μ, σ2) ∈ R× (0,∞). Find the UMVU
estimator of μ/σ.

Solution. Since X and s2 are independent, one has

Eθ
X

s
= (EθX)(Eθ(1/s)) = μ/Eθ(1/s).

Now one may write

1

s
=

[
(n− 1)/σ2

(n− 1)s2/σ2

] 1
2

=
(n− 1)

1
2

σ
· 1

U1/2
,

where U has the chisquare distribution with n−1 degrees of freedom, i.e., a gamma
a distribution G (2, n−1

2 ). Hence

Eθ
1

s
=

(n− 1)
1
2

σ
Eθ

1

U
1
2

=
(n− 1)

1
2

σ

∫ ∞

0

u− 1
2

1

Γ (n−1
2 )2(n−1)/2

e−u/2u
n−1
2 −1du

=
(n− 1)

1
2

σΓ (n−1
2 )2

n−1
2

∫ ∞

0

e−u/2u
n−2
2 −1du



Solutions of Selected Exercises in Part I 379

=
(n− 1)

1
2Γ (n−2

2 )2
n−2
2

σΓ (n−1
2 )2

(n−1)
2

=
(n− 1)

1
2Γ (n−2

2 )

σ
√
2Γ (n−1

2 )
=

dn
σ
, dn =

(n− 1)
1
2Γ (n−2

2 )√
2Γ (n−1

2 )
.

Hence Eθ
1

dns
= 1

σ , and
1
dn

(X/s) is the UMVU estimator of μ/σ. This requires
n > 2.]

4.11 Let X1, . . . , Xn be i.i.d. beta random variables Be(θ, 1), with common p.d.f.

f(x | θ) = θxθ−1, 0 < x < 1, θ ∈ (0,∞).

Find the UMVU estimators of (a) θ, (b) 1
θ .

Solution. (a) f(x | θ) = θ · 1
x · eθ ln x, belongs to the 1-parameter exponential

family with natural parameter θ ∈ (0,∞). The complete sufficient statistic for
θ is T =

∑n
j=1 lnXj .

(b) We need to find a function g(T ) such that Eθg(T ) = θ. Now consider the
random variable Yj = − lnXj, then the p.d.f. of Yj is (Note: x = e−y.)

fY (y | θ) = θeye−θye−y = θe−θy, y ∈ (0,∞).

That is, Yj is gamma Γ (1θ ), and (with

EYj =
1

θ
.

Hence
∑n

j=1 Yj/n ≡ −∑n
j=1 lnXj/n is the UMVU estimator of 1

θ . ��

Chapter 5

5.6 Let Xj , 1 ≤ j ≤ n, be i.i.d. with density

f(x | θ) = θxθ−1, 0 < x < 1 (θ ∈ Θ = (0,∞)).

Find the UMPU test of size α ∈ (0, 1) for H0 : θ = 1 against H1 : θ �= 1.

Solution. The joint density is

fn(x | θ) = θn
n∏

j=1

xθ−1
j = θn

⎛

⎝
n∏

j=1

xj

⎞

⎠

−1

eθ
∑n

j=1 ln xj

which is a one-parameter exponential family with natural parameter π = θ and
a complete sufficient statistic T = −∑n

j=1 lnxj . From HW Set 4 (Problem #4),

we know that T has the gamma distribution G (1θ , n). By Example 5.4, the UMPU
test for N0 : θ = 1 against H1 : θ �= 1, (or, H0 : π = −1, H1 : π �= −1) is given by

ϕ∗(x) =
{
1 if T < t1 or T > t2
0 otherwise,
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where t1 < t2 are determined by

∫ t2

t1

1

Γ (n)
e−ttn−1dt = 1− α,

(
t2
t1

)n

= et2−t1 .

5.9 LetX1, . . . , Xm and Y1, . . . , Yn be independent random samples from exponen-
tial distributions with means θ1, θ2, respectively [i.e., from G (θ1, 1) and G (θ2, 1)].
Find the UMPU test of size α for H0 : θ1 ≤ θ2 against H1 : θ1 > θ2.

Solutions. The (joint) pdf of the observation vector (X1, . . . , Xm, Y1, . . . , Yn) is

fn(x,y | θ1, θ2) = 1

θm1 θn2
e−

∑m
1 xi/θ1−

∑1
n yj/θ2

=
1

θm1 θn2
e
−
(

1
θ1

− 1
θ2

)∑m
1 xi − 1

θ2

(
m∑

1

xi +

n∑

1

yj

)

which is a 2-parameter exponential family with natural parameter π1 = 1
θ2

− 1
θ1
,

π2 = − 1
θ2
, and complete sufficient statistic T = (T1, T2), where T1 =

∑m
i=1Xi,

T2 =
∑m

1 xi +
∑n

1 yj . The null hypothesis is H0 : π1 ≤ 0 and the alternative is
H1 : π1 > 0. Here the natural parameter space is Π = (−∞,∞) × (−∞, 0), and
the boundary is ΠB ≡ {(0, π2), π2 ∈ (−∞, 0)} = {0} × (−∞, 0). The UMPU test
of size α is given by

ϕ∗(t) =
{
1 if T1 > t1(t2)
0 if T1 ≤ t1(t2),

where t2 is determined by

P(0,π2)(T1 > t1(t2) | T2 = t2) = α ∀ π2 ∈ (−∞, 0),

i.e.,

P(0,π2)

(
T1

T2
> η(t2) | T2 = t2

)

= α ∀ π2 ∈ (−∞, 0),

where η(t2) = t1(t2)/t2. Now the distribution of U ≡ T1

T2
under ΠB , i.e., under

π1 = 0 (or, θ1 = θ2) is that of a ratio U = V1

V1+V2
where V1 =

∑m
1 Xi/θ1 is G (1,m),

V2 =
∑n

1 Yj/θ1 is G (1, n), with V1 and V2 independent. This distribution of U does
not depend on π2 (i.e., it is the same for all π = (0, π2) ∈ ΠB). Hence, by Basu’s
Theorem, T1/T2 is independent of T2 under ΠB . Therefore, the UMPU test is to
reject H0 iff

T1

T2
> η,

where T1/T2 = V1/(V1+V2) has the beta distribution function Beta (m,n). (See the
next Exercise.) Hence η is the (1− α)th quantile of this Beta (m,n) distribution.

5.10 Let U1 and U2 be independent gamma random variables G (θ,m) and G (θ, n).
Prove that Z1 ≡ U1/(U1 + U2) and Z2 ≡ U1 + U2 are independent random vari-
ables with Z1 having the beta distribution Beta(m,n) and Z2 have the gamma
distribution G (θ,m+ n).
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Solution. The joint density of (U1, U2) is

f(U1,U2)(u1, u2)=
1

Γ (m)Γ (n)θm+n
e−(u1+u2)/θum−1

1 un−1
2 (0 < u1 < ∞, 0 < u2 < ∞).

The Jacobian of the transformation (u1, u2) → ( u1

u1+u2
) = z1, u1 + u2 = z2, is

J

(
z1, z2
u1, u2

)

=

⎡

⎣

∂z1
∂u1

∂t1
∂u2

∂z2
∂u1

∂z2
∂u2

⎤

⎦ =

⎡

⎣

u2

(u1+u2)2
−u

(u1+u2)2

1 1

⎤

⎦ ,

whose determinant is 1/(u1 + u2) = 1/z2. Hence the joint density of Z1 and Z2 is
given by [Note: u1 = z1z2, u2 = z2(1− z1).]

g(Z1,Z2)(z1, z2) = f(U1,U2)(u1, u2) · z2 |z1,z2=
e−z2/θ(z1z2)

m−1

Γ (m)Γ (n)θm+1
[z2(1 − z1)]

n−1z2

=
1

Γ (m)Γ (n)
zm−1
1 (1− z1)

n−1 · e
−z2/θ

θm+n
zm+n−1
2

=
Γ (mn)

Γ (m)Γ (n)
zm−1
1 (1− z1)

n−1 · 1

Γ (m+ n)θm+n
e−z2/θzm+n−1

2 ,

(0 < z1 < 1, 0 < z2 < ∞).

5.18 In this two-way layout with one observation per cell, the model is given
by (5.147) and (5.148), but with ηij = 0 ∀ i, j, i.e.,

Xij = μ+ δi + γj + εij (εij ’s are i.i.d. N(0, σ2)), 1 ≤ i ≤ I, 1 ≤ j ≤ J, (S.6)

where μ ∈ R,
∑I

i=1 δi = 0,
∑J

j=1 γj = 0. Hence

EX = μ+ δi + γj lies in (and spans) an Euclidean space

of dimension 1 + I − 1 + J − 1 = I + J − 1 = k. (S.7)

Note that in this model, if one writes θij = EXij then μ = θ.. = 1
IJ

∑
i,j θij ,

δi = θi. − θ.., γj = θ.j − θ.., where a dot (·) indicates averaging over the corre-
sponding (missing) index. To find the minimum of ‖X−EX‖2 in this model, it is
algebraically convenient to write

Xij − EXij = Xij − μ− δi − γj = (X .. − μ) + (X i. −X .. − δi)

+(X .j −X .. − γj) + (Xij −Xi. −X .j +X ..), (S.8)

and check, as in Example 5.19, that the sum over i, j of the products of the
(
4
2

)
= 6

pairs of the four terms on the right are all zero. Thus

‖X− EX‖2 = IJ(X .. − μ)2 + J

I∑

i=1

(X i. −X .. − δi)
2 + I

J∑

j=1

(X .j −X .. − γj)

+

I∑

i=1

J∑

j=1

(Xij −Xi. −X .j +X ..)
2, (S.9)
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so that the minimum of (S.9) over EX is attained by taking μ = X .., δi = X i. −
X .., γj = X .j −X .., which are the least squares estimators of the corresponding
parameters. One then has

min
EX

‖X− EX‖2 =

I∑

i=1

J∑

j=1

(Xij −Xi. −X .j +X ..)
2, (S.10)

and the IJ = n coordinates m̂ij of m̂ are given by

m̂ij = X .. + (Xi. −X ..) + (X .j −X ..) = X i. +X .j −X .. (1 ≤ i ≤ I, 1 ≤ j ≤ J).
(S.11)

(a) To test H0 : All the IJ means θij ≡ EXij are equal, that is, δi = 0 ∀ i and
ηj = 0 ∀ j one has [see (S.8)]

Xij − EXij = Xij − μ = (X .. − μ) + (Xij −X ..). (S.12)

The sum over i, j of the product of the two terms on the right vanishes, so
that the minimum of

‖X− EX‖2 = IJ(X .. − μ)2 +

I∑

i=1

J∑

j=1

(Xij −X ..)
2, (S.13)

is attained by setting μ = X .., and then

min
EX under H0

‖X− EX‖2 =
I∑

i=1

J∑

j=1

(Xij −X ..)
2. (S.14)

The least squares estimator of the mean vector m = EX is given by

ˆ̂mij = μ̂ = X .. ∀ i, j. (S.15)

Hence, by (S.11) and (S.15),

‖ ˆ̂m−m̂‖2=
∑

i,j

{

(Xi.−X..)+(X .j −X..)
}2

=J

I∑

i=1

(Xi. −X..)
2 + I

J∑

j=1

(X .j −X..)
2.

From (S.10), (S.15), the UMP unbiased and invariant test is to

reject H0 iff
{J∑I

i=1(Xi. −X ..)
2 + I

∑J
j=1(X .j −X ..)

2}/(I + J − 2)
∑I

i=1

∑J
j=1(Xij −X i. −X .j +X ..)2/(I − 1)(J − 1)

> F1−α(I + J − 1, (I − 1)(J − 1)), (S.16)

for k = 1+I−1+J−1 = I+J−1, and n = IJ , so that n−k = (I−1)(J−1),
and the number of linearly independent constraints under H0 is I−1+J−1 =
I + J − 2 = 4.

(b) To test H0 : δi = 0 ∀ i, [i.e., the θi. = · · · = θI. under the model (S.6)] note
that, under H0, EXij = μ+ γj , so that [see (S.8)]
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Xij−EXij = (X ..−μ)+(Xi.1−X..)+(X .j−X..−γj)+(Xij−Xi.−X.j+X ..),
(S.17)

and

‖X− EX‖2 = IJ(X .. − μ)2 + J

I∑

i=1

(X i. −X ..)
2 + I

J∑

j=1

(X .j −X .. − γj)
2

+
I∑

i=1

J∑

j=1

(Xij −Xi. −X .j +X ..)
2, (S.18)

which is minimized by taking μ = X .., γj = X .j −X .., to yield

min
EX under H0

‖X−EX‖2 − J

I∑

i=1

(X i. −X ..)
2+

I∑

i=1

J∑

j=1

(Xij−X.i −X .j+X..).

(S.19)

Hence the numerator sum of squares of the F -statistic is the difference be-
tween (S.19) and (S.18), namely,

J

I∑

i=1

(Xi. −X ..)
2. (S.20)

One may obtain (S.20) also as ‖ ˆ̂m − m̂‖2, where m̂ij ’s are given by (S.11),

and ˆ̂mij = X .. +X .j −X .. = X .j , (1 ≤ i ≤ I, 1 ≤ j ≤ J). Hence the UMPU
invariant test for H0 : δi = 0 ∀ i is

Reject H0 iff
J
∑I

i=1(X i. −X ..)
2/(I − 1)

∑I
i=1

∑J
j=1(Xij −Xi. −X .j +X ..)2/(I − 1)(J − 1)

> F1−α(I − 1, (I − 1)(J − 1)). (S.21)

For there are r = I − 1 linearly independent constraints under H0.
(c) The UMPU invariant test for H0 : γj = 0 ∀ j is entirely analogous to the

case (b):

Reject H0 iff
I
∑J

j=1(X .j −X ..)
2/(J − 1)

∑I
i=1

∑J
j=1(Xij −Xi. −X .j +X ..)2/(I − 1)(J − 1)

> F1−α(J − 1, (I − 1)(J − 1)). (S.22)
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Symbols
F -distribution, 350
M -estimator, 191
p-th quantile, 126
t-statistic, 131
t-test, 205

A
absence of interactions, 105
acceptance region, 68
action space, 12
admissible, 16
Anderson’s inequality, 176
ANOVA, 108
AR(p) model, 240, 248
AR(1) model, 235
ARE, 151
ARMA(1, 1), 245
ARMA(p, q) model, 242
asymptotic relative efficiency, 151, 203, 204
asymptotic unbiasedness, 204
asymptotically efficient, 176, 247
asymptotically normal, 131
autocovariance function, 243
autoregressive model, 123
autoregressive process, 248

B
bandwidth, 267
Basu’s Theorem, 84
Bayes classifier, 333
Bayes estimator, 22
Bayes risk, 22
Bayes rule, 22

generalized, 32
unique, 28
unique up to equivalence, 27

Behrens-Fisher problem, 87
Benjamini-Hochberg procedure, 319

Berry-Esséen Theorem, 210
best linear unbiased estimator, 98
beta distribution, 25
bias, 268
Bickel and Freedman

proposition, 262
theorem, 262

binomial expansion, 366
BLUE, 98
Blyth’s method, 32
Bonferroni method, 232
Bootstrap, 289
bootstrap, 281

approximation, 260
percentile, 257

bootstrap confidence interval, 258
bootstrapped statistic, 258
Bootstrapping, 63
boundedly complete, 44
Brownian Bridge, 226, 267
Brownian motion

with zero mean, 224

C
canonical model, 102
Cauchy distribution, 350

median, 151
centered moments, 360
Central Limit Theorem, 128

Liapounov, 369
Lindeberg, 134, 369

central limit theorem
functional, 225

Chebyshev’s Inequality, 118
chi-square

frequency, 223
chi-square distribution, 216
chi-square test, 220
classical density, 19
classification, 6
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CLT, 128
for U -statistics, 215
for the MLE, 168

composite alternative hypothesis, 69
composite null hypothesis, 69
conditional density, 23, 26
conditional distribution, 189, 355
conditional p.d.f., 189
confidence interval, 153
confidence level, 89
confidence region, 89

Bonferroni, 136
regression lines, 142
UMA, 91

confidence regions, 153
consistency, 117

of a test, 204
of sample mean, 119

of sample moments, 120
consistent, 172, 216
contaminated normal, 152
Control group, 88
converge in distribution, 128
convergence

almost sure, 119
convergence in law, 128
convex set, 176
Cornish-Fisher expansions, 293
correlation model, 143, 151
coverage error, 64, 257
Cramér-Rao bound, 165
Cramér-Rao Inequality, 55
Cramér-Rao Information Inequality, 56, 166

multiparameter, 174
critical region, 68
cross-validation, 275

generalized, 276
cumulant generating function, 281
curse of dimensionality, 275

D
decision rule, 11, 12
deductive inference, 3
delta method, 131
design matrix, 146, 261
differentiable manifold, 305
dimension reduction, 335
dispersion matrix, 352
distribution

F , 350
beta, 25
Cauchy, 350
empirical, 257

logistic, 351
multivariate normal, 352
negative binomial, 61
normal, 347
shifted empirical, 261
standard normal, 347

distribution function, 126
distributions

absolutely continuous, 345
duality

between confidence regions, 90

E
Edgeworth expansion, 290

Edgeworth expansions, 281
efficient

asymptotically, 168
error

coverage, 257
Type I, 14
Type II, 14

Errors in variables models, 154
estimable, 45, 98
estimate

pooled, 86
estimation, 6
estimator

asymptotically efficient, 176
best linear unbiased, 98
consistent, 118
least squares, 99
Maximum Likelihood, 19
unbiased, 45
uniformly minimum variance unbiased, 45

expectation, 118
explanatory variable, 121
exponential families, 47
exponential family

one-parameter, 50, 51
two-parameter, 50, 51

Exponential family: one-parameter, 47

F
false discovery rate, 318
Fieller’s method, 160
Fisher information, 58
Fisher Linkage Model, 59

Fisher-Yates test, 97, 209, 214
Fréchet function, 304
Fréchet mean, 304
frequency chi-square test, 220
function

estimable, 98
maximal invariant, 100
moment generating, 357

functional model, 155

G
gamma

density, 21
distribution, 346
function, 345

Gauss-Markov Theorem, 98
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Gibbs sampler, 327
Glivenko-Cantelli Theorem, 267
goodness-of-fit, 222
group of transformations, 92

H
heteroscedastic linear regression model, 138
Hotelling’s T 2 test, 94
hypotheses

testing, 6
hypothesis

alternative, 14
null, 14

I
i.i.d., 4
identifiability, 92
identity map, 12, 39
inadmissible, 16
independent and identically distributed, 4
indicator, 144
inductive inference, 3
information, 167
invariance, 92
invariant, 214

maximal, 93
under g, 92

invariant probability, 234

J
James–Stein estimator, 33
Jensen’s Inequality, 42

K
Kendall’s planar shape space, 309
kernel estimator, 269
Kolmogorov distance, 259
Kolmogorov-Smirnov

one-sample statistic, 225
Kolmogorov-Smirnov Goodness-of-Fit Test,

226
Kolmogorov-Smirnov two-sample statistic,

231

L
law, 259
least squares estimates

weighted, 142
least squares estimator, 99, 146
Lebesgue-Stieltjes measure, 60
Lehmann–Scheffé Theorem, 45
level of significance, 68
Liapounov’s Central Limit Theorem, 369
likelihood equations, 20
Likelihood function, 20

likelihood function, 19

likelihood ratio statistic, 218

likelihood ratio test, 218

Lindeberg Central Limit Theorem, 134, 369

linear regression, 121, 134

parametric, 138

linear regression model

known error variances, 138

linear statistic, 259

log-likelihood function, 20

loss function, 12, 14

M

Mahalanobis distance, 334

main effects, 104

Mallows distance, 262

Mann-Whitney test, 97

marginal distribution, 23

marginal p.d.f., 189

Markov process, 233

stationary ergodic, 248

Markov property, 233

martingale difference sequence, 248

matrix

nonsingular dispersion, 352

maximal invariant, 92

maximal invariant function, 100

maximum likelihood estimator, 19, 189, 191

maximum value

smallest, 30

mean test, 203

mean vector, 353

mean vs. median, 151

median, 24, 127

method of moments, 193

Metropolis-Hastings algorithm, 326

mgf, 54

minimal sufficient, 44

minimax, 30

MISE, 269

MLE, 19, 189

model

canonical, 102

correlation, 143

moment generating function, 54

moment generating functions, 357

monotone increasing, 73

multinomial distribution, 184

multinomial model, 53, 220

multiparameter exponential family, 180

multiparametric case, 174

multiple regression, 146

multivariate

normal distribution, 352

normal model, 52

multivariate m.g.f., 360

multivariate normal, 182
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N
Nadaraya-Watson estimator, 273
natural parameter, 49
natural parameter space, 47
negative binomial distribution, 61
negative unimodal, 176
Neyman structure, 80
Neyman-Pearson Lemma, 69
nominal coverage, 257
non-uniqueness, 24
nonparametric, 3
normal

asymptotically, 131
normal correlation model, 161
normal distribution, 347
normal equations, 146
normal scores test, 209
nuisance parameters, 3

O
observation, 12
observation space, 12, 95
odd function, 77
One-Way Layout, 103
orbit

constant on the, 92
order statistic, 209
ordinary least squares estimators, 122
Ornstein-Uhlenbeck process, 60

P
p.d.f., 165
p.m.f., 165
Parameter identifiability condition, 337
parameter space, 12
parameter vector, 146
parametric, 3
parametric statistical inference, 3
partition function, 325
Pearson’s chi-square statistic, 223
Pitman ARE, 203, 204
Polya’s Theorem, 369
pooled estimate, 86
population, 3

distribution, 3
posterior density, 26, 325
posterior distribution, 189
power, 214
power of the test, 68
PRDS, 317
preshape sphere, 308

Principal Component Analysis, 335
prior

distribution, 22
improper, 32

probability density function, 165
probability mass function, 19, 165
problem

Behrens-Fisher, 87
two-sample, 84

problems, 371

R
random, 4
random sample, 6

simple, 4
stratified, 5

rank test, 214
Rao’s scores test, 222
Rao–Blackwell, 44

Theorem, 42
raw moments, 359
rejection region, 68
response variable, 121
risk function, 11, 12, 68

S
sample, 4
sample correlation coefficient, 132
sample mean, 286
sample quantiles, 126
semi-parametric, 3
sequential probability ratio test, 337
Shapiro and Wilk test, 228
sign test, 204
simple alternative hypothesis, 69
simple null hypothesis, 69
simple random sample, 4

with replacement, 4
without replacement, 4

size of the test, 68
SLLN, 119
Slutsky Theorem, 130
solutions, 371
space

observation, 95
SPRT, 338
squared error

mean integrated, 269
stability conditions, 241
standard normal distribution, 347
statistic, 39

Anderson-Darling, 227
Cramér-von Mises, 227

statistical decision problem, 6
steady state distribution, 234
strata, 5
stratified random sample, 5
Strong Law of Large Numbers, 119

strongly consistent estimator, 119
Student t test, 213, 287
sufficient, 39

minimal, 44
superefficient, 195
symmetric convex sets, 176
symmetric difference, 44
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T
test

α-similar, 80
Fisher-Yates, 97
goodness-of-fit, 222
Kolmogorov-Smirnov, 231
level of significance, 68
Mann-Whitney, 97, 208
most powerful of size α, 73
nonrandomized, 67, 68
randomized, 68
size of the, 68
UMP unbiased, 91
uniformly least powerful, 74
uniformly most powerful, 73
uniformly most powerful of size α, 73
Wilcoxon, 97, 208

Test of Absence of Variety Main Effect, 104
Test of Equality, 104
theorem

asymptotic joint distribution of regression
coefficients, 136

Basu’s, 84
Central Limit, 128
Gauss-Markov, 98
Glivenko-Cantelli, 267
Polya’s, 369
Rao–Blackwell, 42

time series, 295
transformation, 92
Treatment group, 88
Tukey Model, 152
two-sample

multi-dimensional problem, 230
two-sample problem, 84, 94

two-sided alternative, 74
Two-Way Layout, 104

one observation per cell, 112

Type I Error, 14, 68
Type II Error, 14, 68

U
UMA, 89

confidence region, 91

UMP, 68, 73
invariant test, 102

unbiased test, 91

UMPU, 75
UMVU, 45

unbiasedness, 73, 75

of test, 204

uniform distribution, 46
uniformly most accurate, 89

uniformly most powerful, 68

tests, 73
uniformly most powerful unbiased, 75

univariate normal, 181

unobservable errors, 97

W

Wilcoxon
rank test, 7

test, 97, 214

Y
Yule-Walker method, 244
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