
J. E. Gentle
W. Hardie
Y. Mori
(Editors)

Computational
Statistics
Concepts and Methods

~ Springer

Editors
Jamts £. Gtntft

Gffirgt Mason University
Center forComputOllional Stalistics
Fairfn. VA 22Q30-4444
USA
t-mOlil: jgenlle@gmu.edu

Yuichi Mor;
Okayama University of Science
Department ofSocio- Jnformalion
I-I Ridai-cho
Okayama 700-0005
Japan
e-mail: mori@.soci.ous.ac.jp

Wolfgang Hardlt
Humboldt-Universitlil tu Berlin
WirtschaflSwissenschaftliche Fakultlit
InSlilut rur Slatistik und Okonometrie
Spandauer Sir. 1
10178 Berlin
Germany
e- mOl il: haerdle@wiwi.hu-berlin.de

l.ilJrary of Congreu Comrol Number: 2004106523

ISBN 3-540-40464-3 Springer Berlin Heidelberg New York

"0", work il IUbj«1 10 copyngln. All flghtl a re........td. whell>cr the whole or part of Ihe rnatena] i.

concerned. II'« ifoc:a11 y II>c "gh tS of Ira nslal ion, rep" nl,n~ reu'"of ill u51 ral IOn•• rcen .Ioon, broadca.11 ng.
l't'J"rOducl1Ofl on microfilm Or In .nyothery..0<1 .,0..... in dal. b&nks. Duploal 10fI of Ih .. publlClllOn or
partl tbcrcot;1 permltltd onIy ..ndott tbc proVlllOnsoftI>c~.....n Copynghtwof~ple"'bocr'. 1965, In
ns (UHern,;on, and pcrmoss"", for mUll alw.sys be obt.,ned from Sprtn,..,-· Vertac. Viobuon. are
liable for prosec"lion unde. tbc Gee....." Copyrish! law

Spnn.... is. pan orSpr........ Sc..,ncu Business Mcd..

spnnvronlJJIC.com

C Spr...~rr·Verlag ~rlln lleMklbers 2004
P"nttd In Germ.ny

The ulor of lleneTlI dcscripi i"" n.m.....qlistrred name•. tTld.mllko. rlc.;n this publlc",lon dOC'll not imply.
even in the .b...ncc of • spc<:lfic sl.l.rnent. thai .uch nam.. at< u.mpl from Ihe ,elev.m prolcetiv,l.w.

and "gulalion, ond ,herdo« froc for g,ne.al u..,.

TyprU'ltrng "nJ proJurli01l: I.I!·TI;X J~I<)O~k. Schrnit!l S: Vlkkler GbR. l.eip..g
C..""r J~.;gn "ltd produr"'m: deblik. ~rhn
f'rmled "n acid-rr~ paper ~OIll~21YL S ~ l 2 I 0

Table of Contents

I. Computational Statistics

I.1 Computational Statistics: An Introduction
James E. Gentle, Wolfgang Härdle, Yuichi Mori . 3

II. Statistical Computing

II.1 Basic Computational Algorithms
John Monahan . 19
II.2 Random Number Generation
Pierre L’Ecuyer .35
II.3 Markov Chain Monte Carlo Technology
Siddhartha Chib . 71
II.4 Numerical Linear Algebra
Lenka Čížková, Pavel Čížek . 103
II.5 The EM Algorithm
Shu Kay Ng, Thriyambakam Krishnan, Geoffrey J. McLachlan137
II.6 Stochastic Optimization
James C. Spall .169
II.7 Transforms in Statistics
Brani Vidakovic . 199
II.8 Parallel Computing Techniques
Junji Nakano . 237
II.9 Statistical Databases
Claus Boyens, Oliver Günther, Hans-J. Lenz .267
II.10 Interactive and Dynamic Graphics
Jürgen Symanzik . 293

VI Table of Contents

II.11 The Grammar of Graphics
Leland Wilkinson . 337
II.12 Statistical User Interfaces
Sigbert Klinke .379
II.13 Object Oriented Computing
Miroslav Virius . 403

III. Statistical Methodology

III.1 Model Selection
Yuedong Wang . 437
III.2 Bootstrap and Resampling
Enno Mammen, Swagata Nandi . 467
III.3 Design and Analysis of Monte Carlo Experiments
Jack P.C. Kleijnen . 497
III.4 Multivariate Density Estimation and Visualization
David W. Scott . 517
III.5 Smoothing: Local Regression Techniques
Catherine Loader . 539
III.6 Dimension Reduction Methods
Masahiro Mizuta . 565
III.7 Generalized Linear Models
Marlene Müller . 591
III.8 (Non) Linear Regression Modeling
Pavel Čížek . 621
III.9 Robust Statistics
Laurie Davies, Ursula Gather . 655
III.10 Semiparametric Models
Joel L. Horowitz .697
III.11 Bayesian Computational Methods
Christian P. Robert . 719
III.12 Computational Methods in Survival Analysis
Toshinari Kamakura . 767
III.13 Data and Knowledge Mining
Adalbert Wilhelm . 787
III.14 Recursive Partitioning and Tree-based Methods
Heping Zhang .813
III.15 Support Vector Machines
SebastianMika,ChristinSchäfer,PavelLaskov,DavidTax,
Klaus-Robert Müller . 841
III.16 Bagging, Boosting and Ensemble Methods
Peter Bühlmann . 877

Table of Contents VII

IV. Selected Applications

IV.1 Computationally Intensive Value at Risk Calculations
Rafał Weron . 911
IV.2 Econometrics
Luc Bauwens, Jeroen V.K. Rombouts . 951
IV.3 Statistical and Computational Geometry of Biomolecular Structure
Iosif I. Vaisman . 981
IV.4 Functional Magnetic Resonance Imaging
William F. Eddy, Rebecca L. McNamee .1001
IV.5 Network Intrusion Detection
David J. Marchette .1029

Subject Index . 1053

List of Contributors
Luc Bauwens
Université catholique de Louvain
CORE and Department of Economics
Belgium
bauwens@core.ucl.ac.be

Claus Boyens
Humboldt-Universität zu Berlin
Institut für Wirtschaftsinformatik
Wirtschaftswissenschaftliche Fakultät
Germany

Peter Bühlmann
ETH Zürich
Seminar für Statistik
Switzerland
buhlmann@stat.math.ethz.ch

Siddhartha Chib
Washington University in Saint Louis
John M. Olin School of Business
chib@wustl.edu

Pavel Čížek
Tilburg University
Department of Econometrics &
Operations Research
The Netherlands
P.Cizek@uvt.nl

Lenka Čížková
Czech Technical University in Prague
Faculty of Nuclear Sciences
and Physical Engineering
The Czech Republic
lenka_cizkova@web.de

Laurie Davies
University of Essen
Department of Mathematics
Germany
laurie.davies@uni-essen.de

William F. Eddy
Carnegie Mellon University
Department of Statistics
USA
bill@stat.cmu.edu

Ursula Gather
University of Dortmund
Department of Statistics
Germany
gather@statistik.uni-dortmund.de

James E. Gentle
George Mason University
USA
jgentle@gmu.edu

X List of Contributors

Oliver Günther
Humboldt-Universität zu Berlin
Institut für Wirtschaftsinformatik
Wirtschaftswissenschaftliche Fakultät
Germany

Wolfgang Härdle
Humboldt-Universität zu Berlin
Wirtschaftswissenschaftliche Fakultät
Institut für Statistik und Ökonometrie
Germany
haerdle@wiwi.hu-berlin.de

Joel L. Horowitz
Northwestern University
Department of Economics
USA

Toshinari Kamakura
Chuo University
Japan
kamakura@indsys.chuo-u.ac.jp

Jack P.C. Kleijnen
Tilburg University
Department of Information Systems
and Management
Center forEconomicResearch(CentER)
The Netherlands
Kleijnen@uvt.nl

Sigbert Klinke
Humboldt-Universität zu Berlin
Wirtschaftswissenschaftliche Fakultät
Institut für Statistik und Ökonometrie
Germany
sigbert@wiwi.hu-berlin.de

Thriyambakam Krishnan
Systat Software Asia-Pacific Ltd.
Bangalore
India
krishnan@systat.com

Pavel Laskov
Fraunhofer FIRST
Department IDA
Germany
laskov@first.fhg.de

Pierre L’Ecuyer
Université de Montréal
GERAD and
Département d’informatique
et de recherche opérationnelle
Canada

Hans-J. Lenz
Freie Universität Berlin
Fachbereich Wirtschaftswissenschaft
Institut für Produktion,
Wirtschaftsinformatik
und Operations Research und
Institut für Statistik und Ökonometrie
Germany

Catherine Loader
Case Western Reserve University
Department of Statistics
USA
catherine@case.edu

Enno Mammen
University of Mannheim
Department of Economics
Germany
emammen@rumms.uni-mannheim.de

David J. Marchette
John Hopkins University
Whiting School of Engineering
USA
dmarche@nswc.navy.mil

Geoffrey J. McLachlan
University of Queensland

List of Contributors XI

Department of Mathematics
Australia
gjm@maths.uq.edu.au

Rebecca L. McNamee
University of Pittsburgh
USA
rlandes@stat.cmu.edu

Sebastian Mika
idalab GmbH
Germany
mika@idalab.de

and
Fraunhofer FIRST
Department IDA
Germany
mika@first.fhg.de

Masahiro Mizuta
Hokkaido University
Information Initiative Center
Japan
mizuta@cims.hokudai.ac.jp

John Monahan
North Carolina State University
Department of Statistics
USA
monahan@stat.ncsu.edu

Yuichi Mori
Okayama University of Science
Department of Socioinformation
Japan
mori@soci.ous.ac.jp

Klaus-Robert Müller
Fraunhofer FIRST
Department IDA
Germany
klaus@first.fhg.de

and
University Potsdam
Department of Computer Science
Germany

Marlene Müller
Fraunhofer ITWM
Germany
marlene.mueller@gmx.de

Junji Nakano
The Institute
of Statistical Mathematics
Japan
nakanoj@ism.ac.jp

Swagata Nandi
University Heidelberg
Institute of Applied Mathematics
Germany
nandi@statlab.uni-heidelberg.de

Shu Kay Ng
University of Queensland
Department of Mathematics
Australia
skn@maths.uq.edu.au

Christian P. Robert
Université Paris Dauphine
CERMADE
France
christian.robert

@ceremade.dauphine.fr

Jeroen V.K. Rombouts
Université catholique de Louvain
CORE and Department of Economics
Belgium
rombouts@core.ucl.ac.be

XII List of Contributors

Christin Schäfer
Fraunhofer FIRST
Department IDA
Germany
christin@first.fhg.de

David W. Scott
Rice University
Department of Statistics
USA
scottdw@rice.edu

James C. Spall
The Johns Hopkins University
Applied Physics Laboratory
USA
james.spall@jhuapl.edu

Jürgen Symanzik
Utah State University
Department of Mathematics
and Statistics
USA
symanzik@math.usu.edu

David Tax
Delft University of Technology
The Netherlands

Iosif I. Vaisman
George Mason University
School of Computational Sciences
USA
ivaisman@gmu.edu

Brani Vidakovic
School of Industrial
and Systems Engineering
Georgia Institute of Technology

USA
brani@isye.gatech.edu

Miroslav Virius
Czech Technical University in Prague
Faculty of Nuclear Sciences
and Physical Engineering
Czech Republic
virius@km1.fjfi.cvut.cz

Yuedong Wang
University of California
Department of Statistics
and Applied Probability
USA
yuedong@pstat.ucsb.edu

Rafaä Weron
Hugo Steinhaus Center
for Stochastic Methods
Wrocław University of Technology
Poland
rweron@im.pwr.wroc.pl

Adalbert Wilhelm
International University Bremen
School of Humanities
and Social Sciences
Germany
a.wilhelm@iu-bremen.de

Leland Wilkinson
SPSS Inc. and Northwestern University
USA
leland@spss.com

Heping Zhang
Yale University School of Medicine
Department of Epidemiology
and Public Health
USA
heping.zhang@yale.edu

Part I
Computational Statistics

I.1Computational Statistics:
An Introduction

James E. Gentle, Wolfgang Härdle, Yuichi Mori

1.1 Computational Statistics and Data Analysis . 4

1.2 The Emergence of a Field of Computational Statistics. 6

Early Developments in Statistical Computing. 7
Early Conferences and Formation of Learned Societies . 7
The PC . 8
The Cross Currents of Computational Statistics . 9
Literature . 9

1.3 Why This Handbook . 11

Summary and Overview; Part II: Statistical Computing. 11
Summary and Overview; Part III: Statistical Methodology . 13
Summary and Overview; Part IV: Selected Applications . 14
The Ehandbook . 15
Future Handbooks in Computational Statistics . 15

4 James E. Gentle, Wolfgang Härdle, Yuichi Mori

Computational Statistics
and Data Analysis1.1

To do data analysis is to do computing. Statisticians have always been heavy users of
whatever computing facilities areavailable to them.As thecomputing facilitieshave
become more powerful over the years, those facilities have obviously decreased
the amount of effort the statistician must expend to do routine analyses. As the
computing facilities have become more powerful, an opposite result has occurred,
however; the computational aspect of the statistician’s work has increased. This is
because of paradigm shifts in statistical analysis that are enabled by the computer.

Statistical analysis involves use of observational data together with domain
knowledge to develop a model to study and understand a data-generating process.
The data analysis is used to refine the model or possibly to select a different
model, to determine appropriate values for terms in the model, and to use the
model to make inferences concerning the process. This has been the paradigm
followed by statisticians for centuries. The advances in statistical theory over the
past two centuries have not changed the paradigm, but they have improved the
specific methods. The advances in computational power have enabled newer and
more complicated statistical methods. Not only has the exponentially-increasing
computational power allowed use of more detailed and better models, however,
it has shifted the paradigm slightly. Many alternative views of the data can be
examined. Many different models can be explored. Massive amounts of simulated
data can be used to study the model/data possibilities.

When exact models are mathematically intractable, approximate methods,
which are often based on asymptotics, or methods based on estimated quanti-
ties must be employed. Advances in computational power and developments in
theory have made computational inference a viable and useful alternative to the
standard methods of asymptotic inference in traditional statistics. Computational
inference is based on simulation of statistical models.

The ability to perform large numbers of computations almost instantaneously
and to display graphical representations of results immediately has opened many
new possibilities for statistical analysis. The hardware and software to perform
these operations are readily available and are accessible to statisticians with no
special expertise in computer science. This has resulted in a two-way feedback be-
tween statistical theory and statistical computing. The advances in statistical com-
puting suggest new methods and development of supporting theory; conversely,
the advances in theory and methods necessitate new computational methods.

Computing facilitates the development of statistical theory in two ways. One way
is the use of symbolic computational packages to help in mathematical derivations
(particularly in reducing the occurrences of errors in going from one line to the
next!). The other way is in the quick exploration of promising (or unpromising!)
methods by simulations. In a more formal sense also, simulations allow evaluation
and comparison of statistical methods under various alternatives. This is a widely-
used research method. For example, out of 61 articles published in the Theory and

Computational Statistics: An Introduction 5

Methods section of the Journal of the American Statistical Association in 2002,
50 reported on Monte Carlo studies of the performance of statistical methods.
A general outline of many research articles in statistics is
1. state the problem and summarize previous work on it,
2. describe a new approach,
3. work out some asymptotic properties of the new approach,
4. conduct a Monte Carlo study showing the new approach in a favorable light.

Much of the effort in mathematical statistics has been directed toward the easy
problems of exploration of asymptotic properties. The harder problems for finite
samples require different methods. Carefully conducted and reported Monte Carlo
studies often provide more useful information on the relative merits of statistical
methods in finite samples from a range of model scenarios.

While to do data analysis is to compute, we do not identify all data analysis,
which necessarily uses the computer, as “statistical computing” or as “compu-
tational statistics”. By these phrases we mean something more than just using
a statistical software package to do a standard analysis. We use the term “statistical
computing” to refer to the computational methods that enable statistical methods.
Statistical computing includes numerical analysis, database methodology, com-
puter graphics, software engineering, and the computer|human interface. We use
the term “computational statistics” somewhat more broadly to include not only
the methods of statistical computing, but also statistical methods that are com-
putationally intensive. Thus, to some extent, “computational statistics” refers to
a large class of modern statistical methods. Computational statistics is grounded
in mathematical statistics, statistical computing, and applied statistics. While we
distinguish “computational statistics” from “statistical computing”, the emergence
of the field of computational statistics was coincidental with that of statistical com-
puting, and would not have been possible without the developments in statistical
computing.

One of the most significant results of the developments in statistical computing
during the past few decades has been the statistical software package. There are
several of these, but a relatively small number that are in widespread use. While
referees and editors of scholarly journals determine what statistical theory and
methods are published, the developers of the major statistical software packages
determine what statistical methods are used. Computer programs have become
necessary for statistical analysis. The specific methods of a statistical analysis are
often determined by the available software. This, of course, is not a desirable situ-
ation, but, ideally, the two-way feedback between statistical theory and statistical
computing dimishes the effect over time.

The importance of computing in statistics is also indicated by the fact that
there are at least ten major journals with titles that contain some variants of both
“computing” and “statistics”. The journals in the mainstream of statistics without
“computing” in their titles also have a large proportion of articles in the fields
of statistical computing and computational statistics. This is because, to a large
extent, recent developments in statistics and in the computational sciences have

6 James E. Gentle, Wolfgang Härdle, Yuichi Mori

gone hand in hand. There are also two well-known learned societies with a pri-
mary focus in statistical computing: the International Association for Statistical
Computing (IASC), which is an affiliated society of the International Statistical
Institute (ISI), and the Statistical Computing Section of the American Statisti-
cal Association (ASA). There are also a number of other associations focused on
statistical computing and computational statistics, such as the Statistical Com-
puting Section of the Royal Statistical Society (RSS), and the Japanese Society of
Computational Statistics (JSCS).

Developments in computing and the changing role of computations in statis-
tical work have had significant effects on the curricula of statistical education
programs both at the graduate and undergraduate levels. Training in statistical
computing is a major component in some academic programs in statistics (see
Gentle, 2004, Lange, 2004, and Monahan, 2004). In all academic programs, some
amount of computing instruction is necessary if the student is expected to work as
a statistician. The extent and the manner of integration of computing into an aca-
demic statistics program, of course, change with the developments in computing
hardware and software and advances in computational statistics.

We mentioned above the two-way feedback between statistical theory and statis-
tical computing.There is alsoan important two-way feedbackbetweenapplications
and statistical computing, just as there has always been between applications and
any aspect of statistics. Although data scientists seek commonalities among meth-
ods of data analysis, different areas of application often bring slightly different
problems for the data analyst to address. In recent years, an area called “data min-
ing” or “knowledge mining” has received much attention. The techniques used in
data mining are generally the methods of exploratory data analysis, of clustering,
and of statistical learning, applied to very large and, perhaps, diverse datasets. Sci-
entists and corporate managers alike have adopted data mining as a central aspect
of their work. Specific areas of application also present interesting problems to the
computational statistician. Financial applications, particularly risk management
and derivative pricing, have fostered advances in computational statistics. Biolog-
ical applications, such as bioinformatics, microarray analysis, and computational
biology, are fostering increasing levels of interaction with computational statistics.

The hallmarks of computational statistics are the use of more complicated mod-
els, larger datasets with both more observations and more variables, unstructured
and heterogeneous datasets, heavy use of visualization, and often extensive simu-
lations.

The Emergence of a Field
of Computational Statistics1.2

Statistical computing is truly a multidisciplinary field and the diverse problems
have created a yeasty atmosphere for research and development. This has been the

Computational Statistics: An Introduction 7

case from the beginning. The roles of statistical laboratories and the applications
thatdrove earlydevelopments in statistical computingare surveyedbyGrier (1999).
As digital computers began to be used, the field of statistical computing came to
embrace not only numerical methods but also a variety of topics from computer
science.

The development of the field of statistical computing was quite fragmented, with
advances coming from many directions – some by persons with direct interest and
expertise in computations, and others by persons whose research interests were
in the applications, but who needed to solve a computational problem. Through
the 1950s the major facts relevant to statistical computing were scattered through
a variety of journal articles and technical reports. Many results were incorporated
into computer programs by their authors and never appeared in the open literature.
Some persons who contributed to the development of the field of statistical com-
puting were not aware of the work that was beginning to put numerical analysis
on a sound footing. This hampered advances in the field.

Early Developments in Statistical Computing 1.2.1

An early book that assembled much of the extant information on digital compu-
tations in the important area of linear computations was by Dwyer (1951). In the
same year, Von Neumann’s (1951) NBS publication described techniques of random
number generation and applications in Monte Carlo. At the time of these publi-
cations, however, access to digital computers was not widespread. Dwyer (1951)
was also influential in regression computations performed on calculators. Some
techniques, such as use of “machine formulas”, persisted into the age of digital
computers.

Developments in statistical computing intensified in the 1960s, as access to dig-
ital computers became more widespread. Grier (1991) describes some of the effects
on statistical practice by the introduction of digital computers, and how statistical
applications motivated software developments. The problems of rounding errors
in digital computations were discussed very carefully in a pioneering book by
Wilkinson (1963). A number of books on numerical analysis using digital comput-
ers were beginning to appear. The techniques of random number generation and
Monte Carlo were described by Hammersley and Handscomb (1964). In 1967 the
first book specifically on statistical computing appeared, Hemmerle (1967).

Early Conferences and Formation of Learned Societies 1.2.2

The 1960s also saw the beginnings of conferences on statistical computing and
sections on statistical computing within the major statistical societies. The Royal
Statistical Society sponsored a conference on statistical computing in December
1966. The papers from this conference were later published in the RSS’s Applied
Statistics journal. The conference led directly to the formation of a Working Party
on Statistical Computing within the Royal Statistical Society. The first Sympo-
sium on the Interface of Computer Science and Statistics was held February 1,

8 James E. Gentle, Wolfgang Härdle, Yuichi Mori

1967. This conference has continued as an annual event with only a few excep-
tions since that time (see Goodman, 1993, Billard and Gentle, 1993, and Wegman,
1993). The attendance at the Interface Symposia initially grew rapidly year by year
and peaked at over 600 in 1979. In recent years the attendance has been slight-
ly under 300. The proceedings of the Symposium on the Interface have been an
important repository of developments in statistical computing. In April, 1969, an
important conference on statistical computing was held at the University of Wis-
consin. The papers presented at that conference were published in a book edited
by Milton and Nelder (1969), which helped to make statisticians aware of the
useful developments in computing and of their relevance to the work of applied
statisticians.

In the 1970s two more important societies devoted to statistical computing were
formed. The Statistical Computing Section of the ASA was formed in 1971 (see
Chambers and Ryan, 1990). The Statistical Computing Section organizes sessions
at the annual meetings of the ASA, and publishes proceedings of those sessions.
The International Association for Statistical Computing (IASC) was founded in
1977 as a Section of ISI. In the meantime, the first of the biennial COMPSTAT
Conferences on computational statistics was held in Vienna in 1974. Much later,
regional sections of the IASC were formed, one in Europe and one in Asia. The
European Regional Section of the IASC is now responsible for the organization of
the COMPSTAT conferences.

Also, beginning in the late 1960sandearly 1970s,mostmajor academicprograms
in statistics offered one or more courses in statistical computing. More importantly,
perhaps, instruction in computational techniques has permeated many of the
standard courses in applied statistics.

As mentioned above, there are several journals whose titles include some vari-
ants of both “computing” and “statistics”. The first of these, the Journal of Statisti-
cal Computation and Simulation, was begun in 1972. There are dozens of journals
in numerical analysis and in areas such as “computational physics”, “computa-
tional biology”, and so on, that publish articles relevant to the fields of statistical
computing and computational statistics.

By 1980 the field of statistical computing, or computational statistics, was well-
established as a distinct scientific subdiscipline. Since then, there have been regular
conferences in the field, there are scholarly societies devoted to the area, there are
several technical journals in the field, and courses in the field are regularly offered
in universities.

The PC1.2.3

The 1980s was a period of great change in statistical computing. The personal
computer brought computing capabilities to almost everyone. With the PC came
a change not only in the number of participants in statistical computing, but, equal-
ly important, completely different attitudes toward computing emerged. Formerly,
to do computing required an account on a mainframe computer. It required la-
boriously entering arcane computer commands onto punched cards, taking these

Computational Statistics: An Introduction 9

cards to a card reader, and waiting several minutes or perhaps a few hours for
some output – which, quite often, was only a page stating that there was an error
somewhere in the program. With a personal computer for the exclusive use of the
statistician, there was no incremental costs for running programs. The interaction
was personal, and generally much faster than with a mainframe. The software
for PCs was friendlier and easier to use. As might be expected with many non-
experts writing software, however, the general quality of software probably went
down.

The democratization of computing resulted in rapid growth in the field, and
rapid growth in software for statistical computing. It also contributed to the chang-
ing paradigm of the data sciences.

The Cross Currents of Computational Statistics 1.2.4

Computational statistics of course is more closely related to statistics than to
any other discipline, and computationally-intensive methods are becoming more
commonly used in various areas of application of statistics. Developments in other
areas, such as computer science and numerical analsysis, are also often directly
relevant to computational statistics, and the research worker in this field must scan
a wide range of literature.

Numerical methods are often developed in an ad hoc way, and may be reported
in the literature of any of a variety of disciplines. Other developments important
for statistical computing may also be reported in a wide range of journals that
statisticians are unlikely to read. Keeping abreast of relevant developments in sta-
tistical computing is difficult not only because of the diversity of the literature, but
also because of the interrelationships between statistical computing and computer
hardware and software.

An example of an area in computational statistics in which significant devel-
opments are often made by researchers in other fields is Monte Carlo simulation.
This technique is widely used in all areas of science, and researchers in various
areas often contribute to the development of the science and art of Monte Carlo
simulation. Almost any of the methods of Monte Carlo, including random number
generation, are important in computational statistics.

Literature 1.2.5

Some of the major periodicals in statistical computing and computational statistics
are the following. Some of these journals and proceedings are refereed rather
rigorously, some refereed less so, and some are not refereed.

ACM Transactions on Mathematical Software, published quarterly by the ACM
(Association for Computing Machinery), includes algorithms in Fortran and C.
Most of the algorithms are available through netlib. The ACM collection of
algorithms is sometimes called CALGO.
www.acm.org|toms|

10 James E. Gentle, Wolfgang Härdle, Yuichi Mori

ACM Transactions on Modeling and Computer Simulation, published quarter-
ly by the ACM.
www.acm.org|tomacs|
Applied Statistics, published quarterly by the Royal Statistical Society. (Until
1998, it included algorithms in Fortran. Some of these algorithms, with cor-
rections, were collected by Griffiths and Hill, 1985. Most of the algorithms are
available through statlib at Carnegie Mellon University.)
www.rss.org.uk|publications|
Communications in Statistics – Simulation and Computation, published quar-
terly by Marcel Dekker. (Until 1996, it included algorithms in Fortran. Until
1982, this journal was designated as Series B.)
www.dekker.com|servlet|product|productid|SAC|
Computational StatisticspublishedquarterlybyPhysica-Verlag(formerlycalled
Computational Statistics Quarterly).
comst.wiwi.hu-berlin.de|
Computational Statistics. Proceedings of the xx-th Symposium on Computation-
al Statistics (COMPSTAT), published biennially by Physica-Verlag|Springer.
Computational Statistics & Data Analysis, published by Elsevier Science. There
are twelve issues per year. (This is also the official journal of the International
Association for Statistical Computing and as such incorporates the Statistical
Software Newsletter.)
www.cbs.nl|isi|csda.htm
Computing Science and Statistics. This is an annual publication containing
papers presented at the Interface Symposium. Until 1992, these proceedings
were named Computer Science and Statistics: Proceedings of the xx-th Sympo-
sium on the Interface. (The 24th symposium was held in 1992.) In 1997, Volume
29 was published in two issues: Number 1, which contains the papers of the
regular Interface Symposium; and Number 2, which contains papers from an-
other conference. The two numbers are not sequentially paginated. Since 1999,
the proceedings have been published only in CD-ROM form, by the Interface
Foundation of North America.
www.galaxy.gmu.edu|stats|IFNA.html
Journal of Computational and Graphical Statistics, published quarterly as
a joint publication of ASA, the Institute of Mathematical Statistics, and the
Interface Foundation of North America.
www.amstat.org|publications|jcgs|
Journal of the Japanese Society of Computational Statistics, published once
a year by JSCS.
www.jscs.or.jp|oubun|indexE.html
Journal of Statistical Computation and Simulation, published in twelve issues
per year by Taylor & Francis.
www.tandf.co.uk|journals|titles|00949655.asp
Proceedings of the Statistical Computing Section, published annually by ASA.
www.amstat.org|publications|

Computational Statistics: An Introduction 11

SIAM Journal on Scientific Computing, published bimonthly by SIAM. This
journal was formerly SIAM Journal on Scientific and Statistical Computing.
www.siam.org|journals|sisc|sisc.htm
Statistical Computing & Graphics Newsletter, published quarterly by the Sta-
tistical Computing and the Statistical Graphics Sections of ASA.
www.statcomputing.org|
Statistics and Computing, published quarterly by Chapman & Hall.

In addition to literature and learned societies in the traditional forms, an im-
portant source of communication and a repository of information are computer
databases and forums. In some cases, the databases duplicate what is available
in some other form, but often the material and the communications facilities
provided by the computer are not available elsewhere.

Why This Handbook 1.3

The purpose of this handbook is to provide a survey of the basic concepts of com-
putational statistics; that is, Concepts and Fundamentals. A glance at the table of
contents reveals a wide range of articles written by experts in various subfields of
computational statistics. The articles are generally expository, taking the reader
from the basic concepts to the current research trends. The emphasis through-
out, however, is on the concepts and fundamentals. Most chapters have extensive
and up-to-date references to the relevant literature (with, in many cases, perhaps
a perponderance of self-references!)

We have organized the topics into Part II on “statistical computing”, that is, the
computational methodology, and Part III “statistical methodology”, that is, the
techniques of applied statistics that are computer-intensive, or otherwise make use
of the computer as a tool of discovery, rather than as just a large and fast calculator.
The final part of the handbook covers a number of application areas in which
computational statistics plays a major role are surveyed.

Summary and Overview; Part II: Statistical Computing 1.3.1

The thirteen chapters of Part II, Statistical Computing, cover areas of numerical
analysis and computer science or informatics that are relevant for statistics. These
areas include computer arithmetic, algorithms, database methodology, languages
and other aspects of the user interface, and computer graphics.

In the first chapter of this part, Monahan describes how numbers are stored
on the computer, how the computer does arithmetic, and more importantly what
the implications are for statistical (or other) computations. In this relatively short
chapter, he then discusses some of the basic principles of numerical algorithms,
such as divide and conquer. Although many statisticians do not need to know
the details, it is important that all statisticians understand the implications of

12 James E. Gentle, Wolfgang Härdle, Yuichi Mori

computations within a system of numbers and operators that is not the same
system that we are accustomed to in mathematics. Anyone developing computer
algorithms, no matter how trivial the algorithm may appear, must understand the
details of the computer system of numbers and operators.

One of the important uses of computers in statistics, and one that is central to
computational statistics, is the simulation of random processes. This is a theme
we will see in several chapters of this handbook. In Part II, the basic numerical
methods relevant to simulation are discussed. First, L’Ecuyer describes the basics
of random number generation, including assessing the quality of random number
generators, and simulation of random samples from various distributions. Next
Chib describes one special use of computer-generated random numbers in a class
of methods called Markov chain Monte Carlo. These two chapters describe the
basic numerical methods used in computational inference. Statistical methods
using simulated samples are discussed further in Part III.

The next four chapters of Part II address specific numerical methods. The first
of these, methods for linear algebraic computations, are discussed by Čížková
and Čížek. These basic methods are used in almost all statistical computations.
Optimization is another basic method used in many statistical applications. Chap-
ter II.5 on the EM algorithm and its variations by Ng, Krishnan, and McLachlan,
and Chap. II.6 on stochastic optimization by Spall address two specific areas of
optimization. Finally, in Chap. II.7, Vidakovic discusses transforms that effectively
restructure a problem by changing the domain. These transforms are statistical
functionals, the most well-known of which are Fourier transforms and wavelet
transforms.

The next two chapters focus on efficient usage of computing resources. For
numerically-intensive applications, parallel computing is both the most efficient
and the most powerful approach. In Chap. II.8 Nakano describes for us the general
principles, and then some specific techniques for parallel computing. Understand-
ing statistical databases is important not only because of the enhanced efficiency
that appropriate data structures allow in statistical computing, but also because of
the various types of databases the statistician may encounter in data analysis. In
Chap. II.9 on statistical databases, Boyens, Günther, and Lenz give us an overview
of the basic design issues and a description of some specific database management
systems.

The next two chapters are on statistical graphics. The first of these chapters, by
Symanzik, spans our somewhat artificial boundary of Part II (statistical comput-
ing) and Part III (statistical methodology, the real heart and soul of computational
statistics). This chapter covers some of the computational details, but also address-
es the usage of interactive and dynamic graphics in data analysis. Wilkinson, in
Chap. II.11, describes a paradigm, the grammar of graphics, for developing and
using systems for statistical graphics.

In order for statistical software to be usable and useful, it must have a good user
interface. In Chap. II.12 on statistical user interfaces, Klinke discusses some of the
generaldesignprinciplesof agooduser interfaceanddescribes some interfaces that
are implemented in current statistical software packages. In the development and

Computational Statistics: An Introduction 13

use of statistical software, an object oriented approach provides a consistency of
design and allows for easier software maintenance and the integration of software
developed by different people at different times. Virius discusses this approach in
the final chapter of Part II, on object oriented computing.

Summary and Overview; Part III:
Statistical Methodology 1.3.2

Part III covers several aspects of computational statistics. In this part the emphasis
is on the statistical methodology that is enabled by computing. Computers are use-
ful in all aspects of statistical data analysis, of course, but in Part III, and generally
in computational statistics, we focus on statistical methods that are computation-
ally intensive. Although a theoretical justification of these methods often depends
on asymptotic theory, in particular, on the asymptotics of the empirical cumulative
distribution function, asymptotic inference is generally replaced by computational
inference.

The first three chapters of this part deal directly with techniques of computa-
tional inference; that is, the use of cross validation, resampling, and simulation of
data-generating processes to make decisions and to assign a level of confidence
to the decisions. Wang opens Part III with a discussion of model choice. Selec-
tion of a model implies consideration of more than one model. As we suggested
above, this is one of the hallmarks of computational statistics: looking at data
through a variety of models. Wang begins with the familiar problem of variable
selection in regression models, and then moves to more general problems in mod-
el selection. Cross validation and generalizations of that method are important
techniques for addressing the problems. Next, in Chap. III.2 Mammen and Nandi
discuss a class of resampling techniques that have wide applicability in statistics,
from estimating variances and setting confidence regions to larger problems in
statistical data analysis. Computational inference depends on simulation of data-
generating processes. Any such simulation is an experiment. In the third chapter
of Part III, Kleijnen discusses principles for design and analysis of experiments
using computer models.

In Chap. III.4, Scott considers the general problem of estimation of a multi-
variate probability density function. This area is fundamental in statistics, and it
utilizes several of the standard techniques of computational statistics, such as cross
validation and visualization methods.

The next four chapers of Part III address important issues for discovery and
analysis of relationships among variables. First, Loader discusses local smoothing
using a variety of methods, including kernels, splines, and orthogonal series.
Smoothing is fitting of asymmetric models, that is, models for the effects of a given
set of variables (“independent variables”) on another variable or set of variables.
The methods of Chap. III.5 are generally nonparametric, and will be discussed from
a different standpoint in Chap. III.10. Next, in Chap. III.6 Mizuta describes ways
of using the relationships among variables to reduce the effective dimensionality

14 James E. Gentle, Wolfgang Härdle, Yuichi Mori

of a problem. The next two chapters return to the use of asymmetric models:
Müller discusses generalized linear models, and Čížek describes computational
and inferential methods for dealing with nonlinear regression models.

In Chap. III.9, Gather and Davies discuss various issues of robustness in statis-
tics. Robust methods are important in such applications as those in financial
modeling, discussed in Chap. IV.2. One approach to robustness is to reduce the
dependence on parametric assumptions. Horowitz, in Chap. III.10, describes semi-
parametric models that make fewer assumptions about the form.

One area in which computational inference has come to play a major role is in
Bayesian analysis. Computational methods have enabled a Bayesian approach in
practical applications, because no longer is this approach limited to simple prob-
lems or conjugate priors. Robert, in Chap. III.11, describes ways that computational
methods are used in Bayesian analyses.

Survival analysis, with applications in both medicine and product reliability, has
become more important in recent years. Kamakura, in Chap. III.12, describes vari-
ous models used in survival analysis and the computational methods for analyzing
such models.

The final four chapters of Part III address an exciting area of computational
statistics. The general area may be called “data mining”, although this term has
a rather anachronistic flavor because of the hype of the mid-1990s. Other terms
such as “knowledge mining” or “knowledge discovery in databases” (“KDD”) are
also used. To emphasize the roots in artificial intelligence, which is a somewhat
discredited area, the term “computational intelligence” is also used. This is an
area in which machine learning from computer science and statistical learning
have merged. In Chap. III.13 Wilhelm provides an introduction and overview of
data and knowledge mining, as well as a discussion of some of the vagaries of
the terminology as researchers have attempted to carve out a field and to give it
scientific legitimacy. Subsequent chapters describe specific methods for statistical
learning: Zhang discusses recursive partitioning and tree based methods; Mika,
Schäfer, Laskov, Tax, and Müller discuss support vector machines; and Bühlmann
describes various ensemble methods.

Summary and Overview; Part IV:
Selected Applications1.3.3

Finally, in Part IV, there are five chapters on various applications of computational
statistics. The first, by Weron, discusses stochastic modeling of financial data using
heavy-tailed distributions. Next, in Chap. IV.2 Bauwens and Rombouts describe
some problems in economic data analysis and computational statistical methods
to address them. Some of the problems, such as nonconstant variance, discussed
in this chapter on econometrics are also important in finance.

Human biology has become one of the most important areas of application, and
many computationally-intensive statistical methods have been developed, refined,
and brought to bear on problems in this area. First, Vaisman describes approaches

Computational Statistics: An Introduction 15

to understanding the geometrical structure of protein molecules. While much is
known about the order of the components of the molecules, the three-dimensional
structure for most important protein molecules is not known, and the tools for
discovery of this structure need extensive development. Next, Eddy and McNamee
describe some statistical techniques for analysis of MRI data. The important ques-
tions involve the functions of the various areas in the brain. Understanding these
will allow more effective treatment of diseased or injured areas and the resumption
of more normal activities by patients with neurological disorders.

Finally, Marchette discusses statistical methods for computer network intrusion
detection. Because of the importance of computer networks around the world, and
because of their vulnerability to unauthorized or malicious intrusion, detection
has become one of the most important – and interesting – areas for data mining.

The articles in this handbook cover the important subareas of computational
statistics and give some flavor of the wide range of applications. While the articles
emphasize the basic concepts and fundamentals of computational statistics, they
provide the reader with tools and suggestions for current research topics. The
reader may turn to a specific chapter for background reading and references on
a particular topic of interest, but we also suggest that the reader browse and
ultimately peruse articles on unfamiliar topics. Many surprising and interesting
tidbits will be discovered!

The Ehandbook 1.3.4

A unique feature of this handbook is the supplemental ebook format. Our ebook
design offers a HTML file with links to world wide computing servers. This HTML
version can be downloaded onto a local computer via a licence card included in
this handbook.

Future Handbooks in Computational Statistics 1.3.5

This handbook on concepts and fundamentals sets the stage for future handbooks
that go more deeply into the various subfields of computational statistics. These
handbooks will each be organized around either a specific class of theory and
methods, or else around a specific area of application.

The development of the field of computational statistics has been rather frag-
mented. We hope that the articles in this handbook series can provide a more
unified framework for the field.

References
Billard, L. and Gentle, J.E. (1993). The middle years of the Interface, Computing

Science and Statistics, 25:19–26.

16 James E. Gentle, Wolfgang Härdle, Yuichi Mori

Chambers, J.M. and Ryan, B.F. (1990). The ASA Statistical Computing Section, The
American Statistician, 44(2):87–89.

Dwyer, P.S. (1951), Linear Computations, John Wiley and Sons, New York.
Gentle, J.E. (2004). Courses in statistical computing and computational statistics,

The American Statistician, 58:2–5.
Goodman, A. (1993). Interface insights: From birth into the next century, Comput-

ing Science and Statistics, 25:14–18.
Grier, D.A. (1991). Statistics and the introduction of digital computers, Chance,

4(3):30–36.
Grier, D.A. (1999), Statistical laboratories and the origins of statistical computing,

Chance, 4(2):14–20.
Hammersley, J.M. and Handscomb, D.C. (1964). Monte Carlo Methods, Methuen &

Co., London.
Hemmerle, W.J. (1967). Statistical Computations on a Digital Computer. Blaisdell,

Waltham, Massachusetts.
Lange, K. (2004). Computational Statistics and Optimization Theory at UCLA, The

American Statistician, 58:9–11.
Milton, R. and Nelder, J. (eds) (1969). Statistical Computation, Academic Press,

New York.
Monahan, J. (2004). Teaching Statistical Computing at NC State, The American

Statistician, 58:6–8.
Von Neumann, J. (1951). Various Techniques Used in Connection with Random

Digits, National Bureau of Standards Symposium, NBS Applied Mathematics
Series 12, National Bureau of Standards (now National Institute of Standards
and Technology), Washington, DC.

Wegman, E.J. (1993). History of the Interface since 1987: The corporate era, Com-
puting Science and Statistics, 25:27–32.

Wilkinson, J. H. (1963). Rounding Errors in Algebraic Processes, Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey.

Part II
Statistical Computing

II.1Basic Computational
Algorithms

John Monahan

1.1 Computer Arithmetic. 20

Integer Arithmetic . 20
Floating Point Arithmetic . 21
Cancellation . 24
Accumulated Roundoff Error . 27
Interval Arithmetic. 27

1.2 Algorithms. 27

Iterative Algorithms . 30
Iterative Algorithms for Optimization and Nonlinear Equations 31

20 John Monahan

Computer Arithmetic1.1

Numbers are the lifeblood of statistics, and computational statistics relies heavily
on how numbers are represented and manipulated on a computer. Computer
hardware and statistical software handle numbers well, and the methodology of
computer arithmetic is rarely a concern. However, whenever we push hardware and
software to their limits with difficult problems, we can see signs of the mechanics
of floating point arithmetic around the frayed edges. To work on difficult problems
with confidence and explore the frontiers of statistical methods and software, we
need to have a sound understanding of the foundations of computer arithmetic.
We need to know how arithmetic works and why things are designed the way they
are.

As scientific computation began to rely heavily on computers, a monumental
decision was made during the 1960’s to change from base ten arithmetic to base
two. Humans had been doing base ten arithmetic for only a few hundred years,
during which time great advances were possible in science in a short period of
time. Consequently, the resistance to this change was strong and understandable.
The motivation behind the change to base two arithmetic is merely that it is so very
easy to do addition (and subtraction) and multiplication in base two arithmetic.
The steps are easy enough that a machine can be designed – wire a board of
relays – or design a silicon chip – to do base two arithmetic. Base ten arithmetic
is comparatively quite difficult, as its recent mathematical creation would suggest.
However two big problems arise in changing from base ten to base two: (1) we need
to constantly convert numbers written in base ten by humans to base two number
system and then back again to base ten for humans to read the results, and (2) we
need to understand the limits of arithmetic in a different number system.

Integer Arithmetic1.1.1

Computers use two basic ways of writing numbers: fixed point (for integers) and
floating point (for real numbers). Numbers are written on a computer following
base two positional notation. The positional number system is a convention for
expressing a number as a list of integers (digits), representing a number x in base B
by a list of digits am, am−1, … , a1, a0 whose mathematical meaning is

x = am−1Bm−1 + … + a2B2 + a1B + a0 (1.1)

where the digits aj are integers in {0, … , B − 1}. We are accustomed to what is
known in the West as the Arabic numbers, 0, 1, 2, … , 9 representing those digits
for writing for humans to read. For base two arithmetic, only two digits are
needed {0, 1}. For base sixteen, although often viewed as just a collection of four
binary digits (1 byte = 4 bits), the Arabic numbers are augmented with letters, as
{0, 1, 2, … , 9, a, b, c, d, e, f }, so that fsixteen = 15ten.

The system based on (1.1), known as fixed point arithmetic, is useful for writing
integers. The choice of m = 32 dominates current computer hardware, although

Basic Computational Algorithms 21

smaller (m = 16) choices are available via software and larger (m = 48) hardware
had been common in high performance computing. Recent advances in computer
architecture may soon lead to the standard changing to m = 64. While the writing
of a number in base two requires only the listing of its binary digits, a convention
is necessary for expression of negative numbers. The survivor of many years of in-
tellectual competition is the two’s complement convention. Here the first (leftmost)
bit is reserved for the sign, using the convention that 0 means positive and 1 means
negative. Negative numbers are written by complementing each bit (replace 1 with
0, 0 with 1) and adding one to the result. For m = 16 (easier to display), this means
that 22ten and its negative are written as

(0 001 0110) = 22ten

and

(1 110 1010) = −22ten .

Following the two’s complement convention with m bits, the smallest (negative)
number that can be written is −2m−1 and the largest positive number is 2m−1 − 1;
zero has a unique representation of (0 000 · · · 0000). Basic arithmetic (addition
and multiplication) using two’s complement is easy to code, essentially taking the
form of mod 2m−1 arithmetic, with special tools for overflow and sign changes. See,
for example, Knuth (1997) for history and details, as well as algorithms for base
conversions.

Thegreat advantageoffixedpoint (integer) arithmetic is that it is sovery fast. For
many applications, integer arithmetic suffices, and most nonscientific computer
software only uses fixed point arithmetic. Its second advantage is that it does not
suffer from the rounding error inherent in its competitor, floating point arithmetic,
whose discussion follows.

Floating Point Arithmetic 1.1.2

To handle a larger subset of the real numbers, the positional notation system
includes an exponent to express the location of the radix point (generalization of
the decimal point), so that the usual format is a triple (sign, exponent, fraction) to
represent a number as

x = (−1)signBexponent (a1B−1 + a2B−2 + … + adB−d
)

, (1.2)

where the fraction is expressed by its list of base B digits 0.a1a2a3 … ad. To preserve
as much information as possible with the limited d digits to represent the fraction,
normalization is usually enforced, that is, the leading|most significant digit a1 is
nonzero – except for the special case x = 0. The mathematical curiosity of an
infinite series expansion of a number has no place here where only d digits are
available. Moreover, a critical issue is what to do when only d digits are available.
Rounding to the nearest number is preferred to the alternative chopping; in the
case of representing π = 3.14159265 … to d = 5 decimal (B = ten) digits leads
to the more accurate (+, +1, 0.31416) in the case of rounding, rather than (+,+1,

22 John Monahan

0.31415) for the chopping alternative. Notice that normalization and the use of
this positional notation reflects a goal of preserving relative accuracy, or reducing
the relative error in the approximation. The expression of a real number x in
floating point arithmetic can be expressed mathematically in terms of a function
fl : R → F where F is the set of numbers that can be represented using this
notation, the set of floating point numbers. The relative accuracy of this rounding
operation can be expressed as

fl(x) = (1 + u)x , (1.3)

where |u| ≤ U where U is known as the machine unit. Seen in terms of the relative
error of fl(x) in approximating x, the expression above can be rewritten as

|x − fl(x)|||x| ≤ U for x ≠ 0 .

For base B arithmetic with d digits and chopping, U = B1−d; rounding reduces U
by a factor of 2.

An important conceptual leap is the understanding that most numbers are
represented only approximately in floating point arithmetic. This extends beyond
the usual irrational numbers such as π or e that cannot be represented with a finite
number of digits. A novice user may enter a familiar assignment such as x = 8.6
and, observing that the computer prints out 8.6000004, may consider this an error.
When the “8.6” was entered, the computer had to first parse the text “8.6” and
recognize the decimal point and arabic numbers as a representation, for humans,
of a real number with the value 8 + 6× 10−1. The second step is to convert this real
number to a base two floating point number – approximating this base ten number
with the closest base two number – this is the function fl(·). Just as 1|3 produces
the repeating decimal 0.33333 … in base 10, the number 8.6 produces a repeating
binary representation 1000.100110011 …two, and is chopped or rounded to the
nearest floating point number fl(8.6). Later, in printing this same number out,
a second conversion produces the closest base 10 number to fl(8.6) with few digits;
in this case 8.6000004, not an error at all. Common practice is to employ numbers
that are integers divided by powers of two, since they are exactly represented. For
example, distributing 1024 equally spaced points makes more sense than the usual
1000, since j|1024 can be exactly represented for any integer j.

A breakthrough in hardware for scientific computing came with the adoption
and implementation of the IEEE 754 binary floating point arithmetic standard,
which has standards for two levels of precision, single precision and double preci-
sion (IEEE, 1985). The single precision standard uses 32 bits to represent a number:
a single bit for the sign, 8 bits for the exponent and 23 bits for the fraction. The
double precision standard requires 64 bits, using 3 more bits for the exponent and
adds 29 to the fraction for a total of 52. Since the leading digit of a normalized
number is nonzero, in base two the leading digit must be one. As a result, the
floating point form (1.2) above takes a slightly modified form:

x = (−1)signBexponent−excess (1 + a1B−1 + a2B−2 + … + adB−d
)

(1.4)

Basic Computational Algorithms 23

as the fraction is expressed by its list of binary digits 1.a1a2a3 … ad. As a result,
while only 23 bits are stored, it works as if one more bit were stored. The exponent
using 8 bits can range from 0 to 255; however, using an excess of 127, the range of
the difference (exponent − excess) goes from −126 to 127. The finite number of bits
available for storing numbers means that the set of floating point numbers F is
a finite, discrete set. Although well-ordered, it does have a largest number, smallest
number, and smallest positive number. As a result, this IEEE Standard expresses
positive numbers from approximately 1.4×10−45 to 3.4×1038 with a machine unit
U = 2−24 ≈ 10−7 using only 31 bits. The remaining 32nd bit is reserved for the
sign. Double precision expands the range to roughly 10±300 with U = 2−53 ≈ 10−16,
so the number of accurate digits is more than doubled.

The two extreme values of the exponent are employed for special features. At
the high end, the case exponent = 255 signals two infinities (±∞) with the largest
possible fraction. These values arise as the result of an overflow operation. The
most common causes are adding or multiplying two very large numbers, or from
a function call that produces a result that is larger than any floating point number.
For example, the value of exp(x) is larger than any finite number in F for x > 88.73
in single precision. Before adoption of the standard, exp(89.9) would cause the
program to cease operation due to this “exception”. Including±∞ as members of
F permits the computations to continue, since a sensible result is now available.
As a result, further computations involving the value ±∞ can proceed naturally,
such as 1|∞ = 0. Again using the exponent = 255, but with any other fraction
represents not-a-number, usually written as “NaN”, and used to express the result
of invalid operations, such as 0|0, ∞ − ∞, 0 × ∞, and square roots of negative
numbers. For statistical purposes, another important use of NaN is to designate
missing values in data. The use of infinities and NaN permit continued execution
in the case of anomalous arithmetic operations, instead of causing computation
to cease when such anomalies occur. The other extreme exponent = 0 signals
a denormalized number with the net exponent of −126 and an unnormalized
fraction, with the representation following (1.2), rather than the usual (1.4) with the
unstated and unstored 1. The denormalized numbers further expand the available
numbers in F , and permit a soft underflow. Underflow, in contrast to overflow,
arises when the result of an arithmetic operation is smaller in magnitude than
the smallest representable positive number, usually caused by multiplying two
small numbers together. These denormalized numbers begin approximately 10−38

near the reciprocal of the largest positive number. The denormalized numbers
provide even smaller numbers, down to 10−45. Below that, the next number in
F is the floating point zero: the smallest exponent and zero fraction – all bits
zero.

Most statistical software employs only double precision arithmetic, and some
users become familiar with apparent aberrant behavior such as a sum of residuals
of 10−16 instead of zero. While many areas of science function quite well using
single precision, some problems, especially nonlinear optimization, nevertheless
require double precision. The use of single precision requires a sound understand
of rounding error. However, the same rounding effects remain in double precision,

24 John Monahan

but because their effects are so often obscured from view, double precision may
promote a naive view that computers are perfectly accurate.

The machine unit expresses a relative accuracy in storing a real number as
a floating point number. Another similar quantity, the machine epsilon, denoted
by εm, is defined as the smallest positive number than, when added to one, gives
a result that is different from one. Mathematically, this can be written as

fl(1 + x) = 1 for 0 < x < εm . (1.5)

Due to the limited precision in floating point arithmetic, adding a number that is
much smaller in magnitude than the machine epsilon will not change the result.
For example, in single precision, the closest floating point number to 1 + 2−26 is 1.
Typically, both the machine unit and machine epsilon are nearly the same size,
and these terms often used interchangeably without grave consequences.

Cancellation1.1.3

Often one of the more surprising aspects of floating point arithmetic is that some
of the more familiar laws of algebra are occasionally violated: in particular, the
associative and distributive laws. While most occurrences are just disconcerting
to those unfamiliar to computer arithmetic, one serious concern is cancellation.
For a simple example, consider the case of base ten arithmetic with d = 6 digits,
and take x = 123.456 and y = 123.332, and note that both x and y may have been
rounded, perhaps x was 123.456478 or 123.456000 or 123.455998. Now x would be
stored as (+, 3, .123456) and y would be written as (+, 3, .123332), and when these
two numbers are subtracted, we have the unnormalized difference (+, 3, .000124).
Normalization would lead to (+, 0, .124???) where merely “?” represents that some
digits need to take their place. The simplistic option is to put zeros, but .124478
is just as good an estimate of the true difference between x and y as .124000, or
.123998, for that matter. The problem with cancellation is that the relative accuracy
that floating point arithmetic aims to protect has been corrupted by the loss of the
leading significant digits. Instead of a small error in the sixth digit, we now have
that error in the third digit; the relative error has effectively been magnified by
a factor of 1000 due to the cancellation of the first 3 digits.

The best way to deal with the potential problem caused by catastrophic cancella-
tion is to avoid them. In many cases, the cancellation may be avoided by reworking
the computations analytically to handle the cancellation:

1 − (1 − 2t)−1 =
1 − 2t − 1

1 − 2t
=

−2t

1 − 2t
.

In this case, there is significant cancellation when t is small, and catastrophic
cancellation whenever t drops below the machine epsilon. Using six digit decimal
arithmetic to illustrate, at t = 0.001, the left hand expression, 1 − (1 − 2t)−1, gives

1.00000 − 1.00200 = .200000 × 10−2

Basic Computational Algorithms 25

while the right hand expression, −2t|(1 − 2t), gives

.200401 × 10−2 .

The relative error in using the left hand expression is an unacceptable .002. At
t = 10−7, the first expression leads to a complete cancellation yielding zero and
a relative error of one. Just a little algebra here avoids the most of the effect of
cancellation. When the expressions involve functions, cases where cancellation
occurs can often be handled by approximations. In the case of 1 − e−t , serious
cancellation will occur whenever t is very small. The cancellation can be avoided
for this case by using a power series expansion:

1 − e−t = 1 −
(
1 − t + t2|2 − …

) ≈ t − t2|2 = t
(
1 − t|2

)
.

When t = .0001, the expression 1 − e−t leads to the steps

1.00000 − 0.999900 = .100000 × 10−4 ,

while the approximation gives

(.0001)(.999950) = .999950 × 10−4

which properly approximates the result to six decimal digits. At t = 10−5 and 10−6,
similar results occur, with complete cancellation at 10−7. Often the approximation
will be accurate just when cancellation must be avoided.

One application where rounding error must be understood and cancellation
cannot be avoided is numerical differentiation, where calls to a function are used
to approximate a derivative from a first difference:

f ′(x) ≈ [f (x + h) − f (x)] |h . (1.6)

Mathematically, the accuracy of this approximation is improved by taking h very
small; following a quadratic Taylor’s approximation, we can estimate the error as

[f (x + h) − f (x)] |h ≈ f ′(x) +
1

2
hf ′′(x) .

However, when the function calls f (x) and f (x + h) are available only to limited
precision – a relative error of εm, taking h smaller leads to more cancellation. The
cancellation appears as a random rounding error in the numerator of (1.6) which
becomes magnified by dividing by a small h. Taking h larger incurs more bias from
the approximation; taking h smaller incurs larger variance from the rounding
error. Prudence dictates balancing bias and variance. Dennis and Schnabel (1983)
recommend using h ≈ ε1|2

m for first differences, but see also Bodily (2002).
The second approach for avoiding the effects of cancellation is to develop differ-

ent methods. A common cancellation problem in statistics arises from using the
formula

n∑

i=1

y2
i − ny2 (1.7)

26 John Monahan

for computing the sum of squares around the mean. Cancellation can be avoided
by following the more familiar two-pass method

n∑

i=1

(yi − y)2 (1.8)

but this algorithm requires all of the observations to be stored and repeated updates
are difficult. A simple adjustment to avoid cancellation, requiring only a single pass
and little storage, uses the first observation to center:

n∑

i=1

(yi − y)2 =
n∑

i=1

(yi − y1)2 − n(y1 − y)2 . (1.9)

An orthogonalization method from regression using Givens rotations (see Chan
et al., 1983) can do even better:

ti = ti−1 + yi (1.10)

si = si−1 + (iyi − ti)
2|(i(i − 1)) . (1.11)

To illustrate the effect of cancellation, take the simple problem of n = 5 obser-
vations, yi = 4152 + i so that y1 = 4153 through y5 = 4157. Again using six decimal
digits, the computations of the sum and mean encounter no problems, and we
easily get y = 4155 or .415500 × 104, and

∑
yi = 20775 or .207750 × 105. However,

each square loses some precision in rounding:

y1 = 4153 , y2
1 = 41532 = 17,247,409 rounded to .172474 × 108

y2 = 4154 , y2
2 = 41542 = 17,255,716 rounded to .172557 × 108

y3 = 4155 , y2
3 = 41552 = 17,264,025 rounded to .172640 × 108

y4 = 4156 , y2
4 = 41562 = 17,272,336 rounded to .172723 × 108

y5 = 4157 , y2
5 = 41572 = 17,280,649 rounded to .172806 × 108 .

Summing the squares encounters no further rounding on its way to 0.863200×108,
and we compute the corrected sum of squares as

.863200 × 108 − (.207750 × 105) × 4155

.863200 × 108 − .863201 × 108 = −100 .

The other three algorithms, following (1.8), (1.9), (1.10), and (1.11), each give the
perfect result of 28 in this case.

Admittedly, while this example is contrived to show an absurd result, a negative
sum of squares, the equally absurd value of zero is hardly unusual. Similar compu-
tations – differences of sum of squares – are routine, especially in regression and

Basic Computational Algorithms 27

in the computation of eigenvalues and eigenvectors. In regression, the orthogonal-
ization method (1.10) and (1.11) is more commonly seen in its general form. In all
these cases, simply centering can improve the computational difficulty and reduce
the effect of limited precision arithmetic.

Accumulated Roundoff Error 1.1.4

Anotherproblemwithfloatingpoint arithmetic is the sheeraccumulationof round-
ing error. While many applications run well in spite of a large number of calcula-
tions, some approaches encounter surprising problems. An enlightening example
is just to add up many ones: 1 + 1 + 1 + … . Astonishingly, this infinite series
appears to converge – the partial sums stop increasing as soon as the ratio of the
new number to be added, in this case, one, to the current sum (n) drops below the
machine epsilon. Following (1.5), we have fl(n + 1) = fl(n), from which we find

1|n ≈ εm or n ≈ 1|εm .

So you will find the infinite series of ones converging to 1|εm. Moving to double
precision arithmetic pushes this limit of accuracy sufficiently far to avoid most
problems – but it does not eliminate them. A good mnemonic for assessing the
effect of accumulated rounding error is that doing m additions amplifies the round-
ing error by a factor of m. For single precision, adding 1000 numbers would look
like a relative error of 10−4 which is often unacceptable, while moving to double
precision would lead to an error of 10−13. Avoidance strategies, such as adding
smallest to largest and nested partial sums, are discussed in detail in Monahan,
(2001, Chap. 2).

Interval Arithmetic 1.1.5

One of the more interesting methods for dealing with the inaccuracies of float-
ing point arithmetic is interval arithmetic. The key is that a computer can only
do arithmetic operations: addition, subtraction, multiplication, and division. The
novel idea, though, is that instead of storing the number x, its lower and upper
bounds (x, x) are stored, designating an interval for x. Bounds for each of these
arithmetic operations can be then established as functions of the input. For addi-
tion, the relationship can be written as:

x + y < x + y < x + y .

Similar bounds for the other three operations can be established. The propagation
of rounding error through each step is then captured by successive upper and
lower bounds on intermediate quantities. This is especially effective in probability
calculations using series or continued fraction expansions. The final result is an
interval that we can confidently claim contains the desired calculation. The hope
is always that interval is small. Software for performing interval arithmetic has
been implemented in a practical fashion by modifying a Fortran compiler. See, for

28 John Monahan

example, Hayes (2003) for an introductory survey, and Kearfott and Kreinovich
(1996) for articles on applications.

Algorithms1.2

An algorithm is a list of directed actions to accomplish a designated task. Cooking
recipes are the best examples of algorithms in everyday life. The level of a cookbook
reflect the skill of the cook: a gourmet cookbook may include the instruction “saute
the onion until transparent” while a beginner’s cookbook would describe how to
choose and slice the onion, what kind of pan, the level of heat, etc. Since computers
are inanimate objects incapable of thought, instructions for a computer algorithm
must go much, much further to be completely clear and unambiguous, and include
all details.

Most cooking recipes would be called single pass algorithms, since they are
a list of commands to be completed in consecutive order. Repeating the execution
of the same tasks, as in baking batches of cookies, would be described in algo-
rithmic terms as looping. Looping is the most common feature in mathematical
algorithms, where a specific task, or similar tasks, are to be repeated many times.
The computation of an inner product is commonly implemented using a loop:

a�b = a1b1 + a2b2 + … + anbn ,

implemented as

s = 0
do i = 1 to n

s = s + ai × bi

end do

where the range of the loop includes the single statement with a multiplication
and addition. In an iterative algorithm, the number of times the loop is be re-
peated is not known in advance, but determined by some monitoring mechanism.
For mathematical algorithms, the focus is most often monitoring convergence of
a sequence or series. Care must be taken in implementing iterative algorithms to
insure that, at some point, the loop will be terminated, otherwise an improper-
ly coded procedure may proceed indefinitely in an infinite loop. Surprises occur
when the convergence of an algorithm can be proven analytically, but, because
of the discrete nature of floating point arithmetic, the procedure implementing
that algorithm may not converge. For example, in a square-root problem to be
examined further momentarily, we cannot find x ∈ F so that x × x is exactly
equal to 2. The square of one number may be just below two, and the square of the
next largest number in F may be larger than 2. When monitoring convergence,
common practice is to convert any test for equality of two floating point numbers
or expressions to tests of closeness:

if (abs(x∗x − 2) < eps) then exit. (1.12)

Basic Computational Algorithms 29

Most mathematical algorithms have more sophisticated features. Some algorithms
are recursive, employingrelationships suchas thegammafunction: Γ(x+1) = xΓ(x)
so that new values can be computed using previous values. Powerful recursive
algorithms, such as the Fast Fourier Transform (FFT) and sorting algorithms,
follow a divide-and-conquer paradigm: to solve a big problem, break it into little
problems and use the solutions to the little problems to solve the big problem. In
the case of sorting, the algorithm may look something like:

algorithm sort(list)
break list into two pieces: first and second
sort (first)
sort (second)
put sorted lists first and second together to form
one sorted list
end algorithm sort

Implemented recursively, a big problem is quickly broken into tiny pieces and
the key to the performance of divide-and-conquer algorithms is in combining
the solutions to lots of little problems to address the big problem. In cases where
these solutions can be easily combined, these recursive algorithms can achieve
remarkable breakthroughs in performance. In the case of sorting, the standard
algorithm, known as bubblesort, takes O(n2) work to sort a problem of size n – if
the size of the problem is doubled, the work goes up by factor of 4. The Discrete
Fourier Transform, when written as the multiplication of an n × n matrix and
a vector, involves n2 multiplications and additions. In both cases, the problem is
broken into two subproblems, and the mathematics of divide and conquer follows
a simple recursive relationship, that the time|work T(n) to solve a problem of
size n is the twice the time|work to solve two subproblem with half the size, plus
the time|work C(n), to put the solutions together:

T(n) = 2T
(
n|2

)
+ C(n) . (1.13)

In both sorting and the Discrete Fourier Transform, C(n) ≈ cn + d, which leads
to T(n) = cn log(n) + O(n). A function growing at the rate O(n log n) grows so
much slower than O(n2), that the moniker “Fast” in Fast Fourier Transform is
well deserved. While some computer languages preclude the use of recursion,
recursive algorithms can often be implemented without explicit recursion through
clever programming.

The performance of an algorithm may be measured in many ways, depending
on the characteristics of the problems the it may be intended to solve. The sample
variance problem above provides an example. The simple algorithm using (1.7)
requires minimal storage and computation, but may lose accuracy when the vari-
ance is much smaller than the mean: the common test problem for exhibiting
catastrophic cancellation employs yi = 212 + i for single precision. The two-pass
method (1.8) requires all of the observations to be stored, but provides the most
accuracy and least computation. Centering using the first observation (1.9) is near-

30 John Monahan

ly as fast, requires no extra storage, and its accuracy only suffers when the first
observation is unlike the others. The last method, arising from the use of Givens
transformations (1.10) and (1.11), also requires no extra storage, gives sound ac-
curacy, but requires more computation. As commonly seen in the marketplace of
ideas, the inferior methods have not survived, and the remaining competitors all
have tradeoffs with speed, storage, and numerical stability.

Iterative Algorithms1.2.1

The most common difficult numerical problems in statistics involve optimiza-
tion, or root-finding: maximum likelihood, nonlinear least squares, M-estimation,
solving the likelihood equations or generalized estimating equations. And the al-
gorithms for solving these problems are typically iterative algorithms, using the
results from the current step to direct the next step.

To illustrate, consider the problem of computing the square root of a real
number y. Following from the previous discussion of floating point arithmetic,
we can restrict y to the interval (1, 2). One approach is to view the problem as
a root-finding problem, that is, we seek x such that f (x) = x2 − y = 0. The bisection
algorithm is a simple, stable method for finding a root. In this case, we may start
with an interval known to contain the root, say (x1, x2), with x1 = 1 and x2 = 2.
Then bisection tries x3 = 1.5, the midpoint of the current interval. If f (x3) < 0,
then x3 <

√
y < x2, and the root is known to belong in the new interval (x3, x2). The

algorithmcontinuesby testing themidpointof the current interval, andeliminating
half of the interval. The rate of convergence of this algorithm is linear, since the
interval of uncertainty, in this case, is cut by a constant (1|2) with each step. For
other algorithms, we may measure the rate at which the distance from the root
decreases. Adapting Newton’s method to this root-finding problem yields Heron’s
iteration

xn+1 =
1

2
(xn + y|xn) .

Denoting the solution as x∗ = √
y, the error at step n can be defined as εn = xn − x∗,

leading to the relationship

εn+1 =
1

2

ε2
n

xn
. (1.14)

This relationship of the errors is usually called quadratic convergence, since the
new error is proportional to the square of the error at the previous step. The relative
error δn = (xn − x∗)|x∗ follows a similar relationship,

δn =
1

2
δ2

n|(1 + δn) . (1.15)

Here, the number of accurate digits is doubled with each iteration. For the secant
algorithm, analysis of the error often leads to a relationship similar to (1.14),
but |εn+1| ≈ C|εn|p, with 1 < p < 2, achieving a rate of convergence known as

Basic Computational Algorithms 31

superlinear. For some well-defined problems, as the square root problem above,
the number of iterations needed to reduce the error or relative error below some
criterion can be determined in advance.

While we can stop this algorithm when f (xn) = 0, as discussed previously, there
may not be any floating point number that will give a zero to the function, hence the
stopping rule (1.12). Often in root-finding problems, we stop when |f (xn)| is small
enough. In some problems, the appropriate “small enough” quantity to ensure the
desired accuracy may depend on parameters of the problem, as in this case, the
value of y. As a result, termination criterion for the algorithm is changed to: stop
when the relative change in x is small

|xn+1 − xn|||xn| < δ .

While this condition may cause premature stopping in rare cases, it will prevent
infinite looping in other cases. Many optimization algorithms permit the iteration
to be terminated using any combination – and “small enough” is within the user’s
control. Nevertheless, unless the user learns a lot about the nature of the problem
at hand, an unrealistic demand for accuracy can lead to unachievable termination
criteria, and an endless search.

As discussed previously, rounding error with floating point computation affects
the level of accuracy that is possible with iterative algorithms for root-finding. In
general, the relative error in the root is at the same relative level as the computation
of the function.Whileoptimizationproblemshavemanyof thesamecharacteristics
as root-finding problems, the effect of computational error is a bit more substantial:
k digits of accuracy in the function to be optimization can produce but k|2 digits
in the root|solution.

Iterative Algorithms for Optimization
and Nonlinear Equations 1.2.2

In the multidimensional case, the common problems are solving a system of non-
linear equations or optimizing a function of several variables. The most common
tools for these problems are Newton’s method or secant-like variations. Given the
appropriate regularity conditions, again we can achieve quadratic convergence
with Newton’s method, and superlinear convergence with secant-like variations.
In the case of optimization, we seek to minimize f (x), and Newton’s method is
based on minimizing the quadratic approximation:

f (x) ≈ f (x0) + (x − x0)�∇f (x0) + (x − x0)�∇2f (x0)(x − x0) .

This leads to the iteration step

x(n+1) = x(n) −
[∇2f

(
x(n)

)]−1 ∇f
(
x(n)

)
.

In the case of solving a system of nonlinear equations, g(x) = 0, Newton’s method
arises from solving the affine (linear) approximation

g(x) ≈ g
(
x0

)
+ Jg

(
x0

) (
x − x0

)
,

32 John Monahan

leading to a similar iteration step

x(n+1) = x(n) − [Jg(x(n))]−1g(x(n)) .

In both cases, under suitable smoothness conditions, the Newton iteration will
achieve quadratic convergence – using norms to measure the error at each step:

∥∥x(n+1) − x∗
∥∥ ≈ C

∥∥x(n) − x∗
∥∥2

.

For both problems, Newton’s method requires the computation of lots of deriva-
tives, either the gradient ∇f (x0) and Hessian ∇2f (x0), or the Jacobian matrix
Jg(x(n)). In the univariate root-finding problem, the secant method arises by ap-
proximating the derivative with the first difference using the previous evaluation
of the function. Secant analogues can be constructed for both the optimization
and nonlinear equations problems, with similar reduction in the convergence rate:
from quadratic to superlinear.

In both problems, the scaling of the parameters is quite important, as measuring
the error with the Euclidean norm presupposes that errors in each component are
equally weighted. Most software for optimization includes a parameter vector for
suitably scaling the parameters, so that one larger parameter does not dominate
the convergence decision. In solving nonlinear equations, the condition of the
problem is given by

∥∥Jg

(
x(n)

)∥∥
∥∥∥
[
Jg

(
x(n)

)]−1
∥∥∥

(as in solving linear equations) and scaling problem extends to the components of
g(x). In many statistical problems, such as robust regression, the normal param-
eter scaling issues arise with the covariates and their coefficients. However, one
component of g(x), associated with the error scale parameter may be orders of
magnitude larger or smaller than the other equations. As with parameter scaling,
this is often best done by the user and is not easily overcome automatically.

With the optimization problem, there is a natural scaling with∇f (x0) in contrast
with the Jacobian matrix. Here, the eigenvectors of the Hessian matrix ∇2f (x0)
dictate the condition of the problem; see, for example, Gill et al. (1981) and Dennis
and Schnabel (1983). Again, parameter scaling remains one of the most important
tools.

References
Bodily, C.H. (2002). Numerical Differentiation Using Statistical Design. Ph.D. The-

sis, NC State University.
Chan, T.F., Golub, G.H. and LeVeque, R.J. (1983). Algorithms for computing the

sample variance, American Statistician, 37:242–7.
Dennis, J.E. Jr. and Schnabel, R.B. (1983). Numerical Methods for Unconstrained

Optimization. Englewood Cliffs, NJ, Prentice-Hall.

Basic Computational Algorithms 33

Gill, P.E., Murray, W. and Wright, M.H. (1981). Practical Optimisation, London,
Academic Press.

Hayes, B. (2003). A lucid interval, American Scientist, 91:484–488.
Institute of Electrical and Electronics Engineers (1985). A Proposed IEEE-CS Stan-

dard for Binary Floating Point Arithmetic, Standard, 754–1985, IEEE, New York.
Kearfott, R.B. and Kreinovich, V. (eds) (1996). Applications of Interval Computa-

tions, Boston, Kluwer.
Knuth, D.E. (1997). The Art of Computer Programming, (Vol. 2: Seminumerical

Algorithms), Third Edition, Reading MA, Addison-Wesley.
Monahan, J.F. (2001).Numerical Methods of Statistics. CambridgeUniversityPress.
Overton, M.L. (2001). Numerical Computing with IEEE Floating Point Arithmetic.

Philadelphia, SIAM.

II.2Random Number Generation
Pierre L’Ecuyer

2.1 Introduction . 36

2.2 Uniform Random Number Generators. 36

Physical Devices . 37
Generators Based on a Deterministic Recurrence . 37
Quality Criteria . 38
Statistical Testing. 40
Cryptographically Strong Generators . 41

2.3 Linear Recurrences Modulo m . 41

The Multiple Recursive Generator . 41
The Lattice Structure. 42
MRG Implementation Techniques . 45
Combined MRGs and LCGs . 46
Jumping Ahead . 47
Linear Recurrences With Carry . 48

2.4 Generators Based on Recurrences Modulo 2 . 49

A General Framework . 49
Measures of Uniformity . 50
Lattice Structure in Spaces of Polynomials and Formal Series 51
The LFSR Generator . 52
The GFSR and Twisted GFSR . 52
Combined Linear Generators Over F 2 . 53

2.5 Nonlinear RNGs. 54

2.6 Examples of Statistical Tests . 55

2.7 Available Software and Recommendations . 57

2.8 Non-uniform Random Variate Generation . 57

Inversion. 58

The Alias Method . 60
Kernel Density Estimation and Generation. 61
The Rejection Method. 61
Thinning for Point Processes with Time-varying Rates . 62
The Ratio-of-Uniforms Method . 62
Composition and Convolution . 63
Other Special Techniques . 63

Random Number Generation 37

Introduction 2.1

The fields of probability and statistics are built over the abstract concepts of prob-
ability space and random variable. This has given rise to elegant and powerful
mathematical theory, but exact implementation of these concepts on conventional
computers seems impossible. In practice, random variables and other random
objects are simulated by deterministic algorithms. The purpose of these algo-
rithms is to produce sequences of numbers or objects whose behavior is very
hard to distinguish from that of their “truly random” counterparts, at least for
the application of interest. Key requirements may differ depending on the context.
For Monte Carlo methods, the main goal is to reproduce the statistical prop-
erties on which these methods are based, so that the Monte Carlo estimators
behave as expected, whereas for gambling machines and cryptology, observing
the sequence of output values for some time should provide no practical ad-
vantage for predicting the forthcoming numbers better than by just guessing at
random.

In computational statistics, random variate generation is usually made in two
steps: (1) generating imitations of independent and identically distributed (i.i.d.)
random variables having the uniform distribution over the interval (0, 1) and
(2) applying transformations to these i.i.d. U(0, 1) random variates in order to
generate (or imitate) random variates and random vectors from arbitrary distri-
butions. These two steps are essentially independent and the world’s best experts
on them are two different groups of scientists, with little overlap. The expression
(pseudo)random number generator (RNG) usually refers to an algorithm used for
Step (1).

In principle, the simplest way of generating a random variate X with distribution
function F from a U(0, 1) random variate U is to apply the inverse of F to U :

X = F −1(U)
def= min{x | F(x) ≥ U} . (2.1)

This is the inversion method. It is easily seen that X has the desired distribution:
P[X ≤ x] = P[F −1(U) ≤ x] = P[U ≤ F(x)] = F(x). Other methods are sometimes
preferable when F −1 is too difficult or expensive to compute, as will be seen later.

The remainder of this chapter is organized as follows. In the next section, we
give a definition and the main requirements of a uniform RNG. Generators based
on linear recurrences modulo a large integer m, their lattice structure and quality
criteria, and their implementation, are covered in Sect. 2.3. In Sect. 2.4, we have
a similar discussion for RNGs based on linear recurrences modulo 2. Nonlinear
RNGsarebrieflypresented inSect. 2.5. InSect. 2.6,wediscussempirical statististical
testing of RNGs and give some examples. Section 2.7 contains a few pointers to
recommended RNGs and software. In Sect. 2.8, we cover non-uniform random
variate generators. We first discuss inversion and its implementation in various
settings. We then explain the alias, rejection, ratio-of-uniform, composition, and
convolution methods, and provide pointers to the several other methods that apply
in special cases.

38 Pierre L’Ecuyer

Important basic references that we recommend are Knuth (1998), L’Ecuyer
(1994, 1998),Niederreiter (1992), andTezuka (1995) foruniformRNGs, andDevroye
(1986), Gentle (2003), and Hörmann et al. (2004) for non-uniform RNGs.

Uniform Random Number Generators2.2

Physical Devices2.2.1

Random numbers can be generated via physical mechanisms such as the timing
between successive events in atomic decay, thermal noise in semiconductors, and
the like. A key issue when constructing a RNG based on a physical device is that
a “random” or “chaotic” output does not suffice; the numbers produced must
be, at least to a good approximation, realizations of independent and uniformly
distributed random variables. If the device generates a stream of bits, which is
typical, then each bit should be 0 or 1 with equal probability, and be independent
of all the other bits. In general, this cannot be proved, so one must rely on the
results of empirical statistical testing to get convinced that the output values have
the desired statistical behavior. Not all these devices are reliable, but some appar-
ently are. I did test two of them recently and they passed all statistical tests that
I tried.

For computational statistics, physical devices have several disadvantages com-
pared to a good algorithmic RNG that stands in a few lines of code. For example,
(a) they are much more cumbersome to install and run; (b) they are more costly;
(c) they are slower; (d) they cannot reproduce exactly the same sequence twice.
Item (d) is important in several contexts, including program verification and de-
bugging as well as comparison of similar systems by simulation with common
random numbers to reduce the variance (Bratley et al., 1987; Fishman, 1996; Law
and Kelton, 2000). Nevertheless, these physical RNGs can be useful for selecting
the seed of an algorithmic RNG, more particularly for applications in cryptol-
ogy and for gaming machines, where frequent reseeding of the RNG with an
external source of entropy (or randomness) is important. A good algorithmic
RNG whose seed is selected at random can be viewed as an extensor of ran-
domness, stretching a short random seed into a long sequence of pseudorandom
numbers.

Generators Based on a Deterministic Recurrence2.2.2

RNGs used for simulation and other statistical applications are almost always
based on deterministic algorithms that fit the following framework, taken from
L’Ecuyer (1994): a RNG is a structure (S,µ, f , U, g) where S is a finite set of states
(the state space), µ is a probability distribution on S used to select the initial
state (or seed) s0, f : S → S is the transition function, U is the output space,
and g : S → U is the output function. Usually, U = (0, 1), and we shall assume

Random Number Generation 39

henceforth that this is the case. The state of the RNG evolves according to the
recurrence si = f (si−1), for i ≥ 1, and the output at step i is ui = g(si) ∈ U.
The output values u0, u1, u2, … are the so-called random numbers produced by the
RNG.

Because S is finite, there must be some finite l ≥ 0 and j > 0 such that sl+j = sl.
Then, for all i ≥ l, one has si+j = si and ui+j = ui, because both f and g are
deterministic. That is, the state and output sequences are eventually periodic. The
smallest positive j for which this happens is called theperiod length of the RNG, and
is denoted by ρ. When l = 0, the sequence is said to be purely periodic. Obviously,
ρ ≤ |S|, the cardinality of S. If the state has a k-bit representation on the computer,
then ρ ≤ 2k. Good RNGs are designed so that their period length ρ is not far from
that upper bound. In general, the value of ρ may depend on the seed s0, but good
RNGs are normally designed so that the period length is the same for all admissible
seeds.

In practical implementations, it is important that the output be strictly between
0 and 1, because F −1(U) is often infinite when U is 0 or 1. All good implementa-
tions take care of that. However, for the mathematical analysis of RNGs, we often
assume that the output space is [0, 1) (i.e., 0 is admissible), because this simplifies
the analysis considerably without making much difference in the mathematical
structure of the generator.

Quality Criteria 2.2.3

What important quality criteria should we consider when designing RNGs? An
extremely long period is obviously essential, to make sure that no wrap-around
over the cycle can occur in practice. The length of the period must be guaran-
teed by a mathematical proof. The RNG must also be efficient (run fast and use
only a small amount of memory), repeatable (able to reproduce exactly the same
sequence as many times as we want), and portable (work the same way in dif-
ferent software|hardware environments). The availability of efficient jump-ahead
methods that can quickly compute si+ν given si, for any large ν and any i, is al-
so very useful, because it permits one to partition the RNG sequence into long
disjoint streams and substreams of random numbers, in order to create an ar-
bitrary number of virtual generators from a single RNG (Law and Kelton, 2000;
L’Ecuyer et al., 2002a). These virtual generators can be used on parallel processors
or to support different sources of randomness in a large simulation model, for
example.

Consider a RNG with state space S = {1, … , 21000 − 1}, transition function
si+1 = f (si) = (si + 1) mod 21000, and ui = g(si) = si|21000. This RNG has period
length 21000 andenjoysall thenicepropertiesdescribed in theprecedingparagraph,
but is far from imitating “randomness”. In other words, these properties are not
sufficient.

A sequence of real-valued random variables u0, u1, u2, … are i.i.d. U(0, 1) if
and only if for every integers i ≥ 0 and t > 0, the vector ui,t = (ui, … , ui+t−1) is
uniformly distributed over the t-dimensional unit hypercube (0, 1)t . Of course,

40 Pierre L’Ecuyer

this cannot hold for algorithmic RNGs because any vector of t successive values
produced by the generator must belong to the finite set

Ψt = {(u0, … , ut−1) : s0 ∈ S} ,

which is the set of all vectors of t successive output values, from all possible initial
states. Here we interpretΨt as a multiset, which means that the vectors are counted
as many times as they appear, and the cardinality of Ψt is exactly equal to that
of S.

Suppose we select the seed s0 at random, uniformly over S. This can be ap-
proximated by using some physical device, for example. Then, the vector u0,t has
the uniform distribution over the finite set Ψt . And if the sequence is purely pe-
riodic for all s0, ui,t = (ui, … , ui+t−1) is also uniformly distributed over Ψt for
all i ≥ 0. Since the goal is to approximate the uniform distribution over (0, 1)t ,
it immediately becomes apparent that Ψt should be evenly spread over this unit
hypercube. In other words,Ψt approximates (0, 1)t as the sample space from which
the vectors of successive output values are drawn randomly, so it must be a good
approximation of (0, 1)t in some sense. The design of good-quality RNGs must
therefore involve practical ways of measuring the uniformity of the corresponding
sets Ψt even when they have huge cardinalities. In fact, a large state space S is
necessary to obtain a long period, but an even more important reason for having
a huge number of states is to make sure that Ψt can be large enough to pro-
vide a good uniform coverage of the unit hypercube, at least for moderate values
of t.

More generally, we may also want to measure the uniformity of sets of the form

ΨI =
{(

ui1 , … , uit

) | s0 ∈ S
}

,

where I = {i1, · · · , it} is afixed set ofnon-negative integers such that 0 ≤ i1 < · · · < it .
As a special case, we recover Ψt = ΨI when I = {0, … , t − 1}.

The uniformity of a set ΨI is typically assessed by measuring the discrepancy
between the empirical distribution of its points and the uniform distribution over
(0, 1)t (Niederreiter, 1992; Hellekalek and Larcher, 1998; L’Ecuyer and Lemieux,
2002). Discrepancy measures are equivalent to goodness-of-fit test statistics for
the multivariate uniform distribution. They can be defined in many different ways.
In fact, the choice of a specific definition typically depends on the mathematical
structure of the RNG to be studied and the reason for this is very pragmatic:
we must be able to compute these measures quickly even when S has very large
cardinality. This obviously excludes any method that requires explicit generation
of the sequence over its entire period. The selected discrepancy measure is usually
computed for each set I in some predefined class J, these values are weighted or
normalized by factors that depend on I, and the worst-case (or average) over J is
adopted as a figure of merit used to rank RNGs. The choice of J and of the weights
are arbitrary. Typically, J would contain sets I such that t and it − i1 are rather
small. Examples of such figures of merit will be given when we discuss specific
classes of RNGs.

Random Number Generation 41

Statistical Testing 2.2.4

Good RNGs are designed based on mathematical analysis of their properties,
then implemented and submitted to batteries of empirical statistical tests. These
tests try to detect empirical evidence against the null hypothesis H0: “the ui

are realizations of i.i.d. U(0, 1) random variables”. A test can be defined by any
function T that maps a sequence u0, u1, … in (0, 1) to a real number X, and
for which a good approximation is available for the distribution of the random
variable X under H0. For the test to be implementable, X must depend on only
a finite (but perhaps random) number of ui’s. Passing many tests may improve
one’s confidence in the RNG, but never guarantees that the RNG is foolproof for
all kinds of simulations.

Building a RNG that passes all statistical tests is an impossible dream. Consider,
for example, the class of all tests that examine the first (most significant) b bits
of n successive output values, u0, … , un−1, and return a binary value X ∈ {0, 1}.
Select α ∈ (0, 1) so that αbn is an integer and let Tn,b,α be the tests in this class
that return X = 1 for exactly αbn of the bn possible output sequences. We may
say that the sequence fails the test when X = 1. The number of tests in Tn,b,α
is equal to the number of ways of choosing αbn distinct objects among bn. The
chosen objects are the sequences that fail the test. Now, for any given output
sequence, the number of such tests that return 1 for this particular sequence is
equal to the number of ways of choosing the other αbn − 1 sequences that also
fail the test. This is the number of ways of choosing αbn − 1 distinct objects
among bn − 1. In other words, as pointed out by Leeb (1995), every output sequence
fails exactly the same number of tests! This result should not be surprising. Viewed
from a different angle, it is essentially a restatement of the well-known fact that
under H0, each of the bn possible sequences has the same probability of occurring,
so one could argue that none should be considered more random than any other
(Knuth, 1998).

This viewpoint seems to lead into a dead end. For statistical testing to be
meaningful, all tests should not be considered on equal footing. So which ones are
more important? Any answer is certainly tainted with its share of arbitrariness.
However, for large values of n, the number of tests is huge and all but a tiny fraction
are too complicated even to be implemented. So we may say that bad RNGs are
those that fail simple tests, whereas good RNGs fail only complicated tests that are
hard to find and run. This common-sense compromise has been generally adopted
in one way or another.

Experience shows that RNGs with very long periods, good structure of their
set Ψt , and based on recurrences that are not too simplistic, pass most reasonable
tests, whereas RNGs with short periods or bad structures are usually easy to crack
by standard statistical tests. For sensitive applications, it is a good idea, when this
is possible, to apply additional statistical tests designed in close relation with the
random variable of interest (e.g., based on a simplification of the stochastic model
being simulated, and for which the theoretical distribution can be computed).

Our discussion of statistical tests continues in Sect. 2.6.

42 Pierre L’Ecuyer

Cryptographically Strong Generators2.2.5

One way of defining an ideal RNG would be that no statistical test can distinguish
its output sequence from an i.i.d. U(0, 1) sequence. If an unlimited computing time
is available, no finite-state RNG can statisfy this requirement, because by running
it long enough one can eventually figure out its periodicity. But what if we impose
a limit on the computing time? This can be analyzed formally in the framework
of asymptotic computational complexity theory, under the familiar “rough-cut”
assumption that polynomial-time algorithms are practical and others are not.

Consider a family of RNGs {Gk = (Sk,µk, fk, Uk, gk), k = 1, 2, …} where Sk is of
cardinality 2k (i.e., Gk has a k-bit state). Suppose that the transition and output
functions f and g can be computed in time bounded by a polynomial in k. Let T
be the class of statistical tests that run in time bounded by a polynomial in k and
try to differentiate between the output sequence of the RNG and an i.i.d. U(0, 1)
sequence. The RNG family is called polynomial-time perfect if there is a constant
ε > 0 such that for all k, no test in T can differentiate correctly with probabil-
ity larger than 1|2 + e−kε. This is equivalent to asking that no polynomial-time
algorithm can predict any given bit of ui with probability of success larger than
1|2 + e−kε, after observing u0, … , ui−1. This links unpredictability with statistical
uniformity and independence. For the proofs and additional details, see, e.g. Blum
et al. (1986), L’Ecuyer and Proulx (1989), Lagarias (1993), and Luby (1996). This
theoretical framework has been used to define a notion of reliable RNG in the
context of cryptography. But the guarantee is only asymptotic; it does not neces-
sarily tell what value of k is large enough for the RNG to be secure in practice.
Moreover, specific RNG families have been proved to be polynomial-time perfect
only under yet unproven conjectures. So far, no one has been able to prove even
their existence. Most RNGs discussed in the remainder of this chapter are known
not to be polynomial-time perfect. However, they are fast, convenient, and have
good enough statistical properties when their parameters are chosen carefully.

Linear Recurrences Modulo m2.3

The Multiple Recursive Generator2.3.1

The most widely used RNGs are based on the linear recurrence

xi = (a1xi−1 + · · · + akxi−k) mod m , (2.2)

where m and k are positive integers called the modulus and the order, and the
coefficients a1, … , ak are in Zm, interpreted as the set {0, … , m − 1} on which
all operations are performed with reduction modulo m. The state at step i is
si = xi = (xi−k+1, … , xi)T. When m is a prime number, the finite ring Zm is a finite
field and it is possible to choose the coefficients aj so that the period length

Random Number Generation 43

reaches ρ = mk − 1 (the largest possible value) (Knuth, 1998). This maximal period
length is achieved if and only if the characteristic polynomial of the recurrence,
P(z) = zk − a1zk−1 − · · · − ak, is a primitive polynomial over Zm, i.e., if and only if
the smallest positive integer ν such that (zν mod P(z)) mod m = 1 is ν = mk − 1.
Knuth (1998) explains how to verify this for a given P(z). For k > 1, for P(z) to be
a primitive polynomial, it is necessary that ak and at least another coefficient aj

be nonzero. Finding primitive polynomials of this form is generally easy and they
yield the simplified recurrence:

xn = (arxn−r + akxn−k) mod m . (2.3)

A multiple recursive generator (MRG) uses (2.2) with a large value of m and
defines the output as ui = xi|m. For k = 1, this is the classical linear congruential
generator (LCG). In practice, the output function is modified slightly to make sure
that ui never takes the value 0 or 1 (e.g., one may define ui = (xi + 1)|(m + 1), or
ui = xi|(m+1) if xi > 0 and ui = m|(m+1) otherwise) but to simplify the theoretical
analysis, we will follow the common convention of assuming that ui = xi|m (in
which case ui does take the value 0 occasionally).

The Lattice Structure 2.3.2

Let ei denote the ith unit vector in k dimensions, with a 1 in position i and 0’s
elsewhere. Denote by xi,0, xi,1, xi,2, … the values of x0, x1, x2, … produced by the
recurrence (2.2) when the initial state x0 is ei. An arbitrary initial state x0 =
(z1, … , zk)T can be written as the linear combination z1e1 + · · · + zkek and the
corresponding sequence is a linear combination of the sequences (xi,0, xi,1, …), with
reduction of the coordinates modulo m. Reciprocally, any such linear combination
reduced modulo m is a sequence that can be obtained from some initial state
x0 ∈ S = Zk

m. If we divide everything by m we find that for the MRG, for each t ≥ 1,
Ψt = Lt ∩ [0, 1)t where

Lt =

{

v =
t∑

i=1

zivi | zi ∈ Z
}

,

is a t-dimensional lattice in Rt , with basis

v1 = (1, 0, … , 0, x1,k, … , x1,t−1)T|m

...
...

vk = (0, 0, … , 1, xk,k, … , xk,t−1)T|m

vk+1 = (0, 0, … , 0, 1, … , 0)T

...
...

vt = (0, 0, … , 0, 0, … , 1)T .

44 Pierre L’Ecuyer

For t ≤ k, Lt contains all vectors whose coordinates are multiples of 1|m. For t > k,
it contains a fraction mk−t of those vectors.

This lattice structure implies that the points of Ψt are distributed according to
a very regular pattern, in equidistant parallel hyperplanes. Graphical illustrations
of this, usually for LCGs, can be found in a myriad of papers and books; e.g., Gentle
(2003), Knuth (1998), Law and Kelton (2000), and L’Ecuyer (1998). Define the dual
lattice to Lt as

L∗
t = {h ∈ Rt : hTv ∈ Z for all v ∈ Lt} .

Each h ∈ L∗
t is a normal vector that defines a family of equidistant parallel hyper-

planes, at distance 1|‖h‖2 apart, and these hyperplanes cover all the points of Lt

unless h is an integer multiple of some other vector h′ ∈ L∗
t . Therefore, if �t is the

euclidean length of a shortest non-zero vector h in L∗
t , then there is a family of

hyperplanes at distance 1|�t apart that cover all the points of Lt . A small �t means
thick slices of empty space between the hyperplanes and we want to avoid that.
A large �t means a better (more uniform) coverage of the unit hypercube by the
point set Ψt . Computing the value of 1|�t is often called the spectral test (Knuth,
1998; Fishman, 1996).

The lattice property holds as well for the point sets ΨI formed by values at
arbitrary lagsdefinedbyafixedsetof indices I = {i1, · · · , it}.OnehasΨI = LI∩[0, 1)t

for some lattice LI , and the largest distance between successive hyperplanes for
a family of hyperplanes that cover all the points of LI is 1|�I , where �I is the euclidean
length of a shortest nonzero vector in L∗

I , the dual lattice to LI .
The lattice LI and its dual can be constructed as explained in Couture and

L’Ecuyer (1996) and L’Ecuyer and Couture (1997). Finding the shortest nonzero
vector in a lattice with basis v1, … , vt can be formulated as an integer programming
problem with a quadratic objective function:

Minimize ‖v‖2 =
t∑

i=1

t∑

j=1

ziv
T
i vjzj

subject to z1, … , zt integersandnotall zero.Thisproblemcanbesolvedbyabranch-
and-bound algorithm (Fincke and Pohst, 1985; L’Ecuyer and Couture, 1997; Tezuka,
1995).

For any given dimension t and mk points per unit of volume, there is an absolute
upper bound on the best possible value of �I (Conway and Sloane, 1999; Knuth,
1998; L’Ecuyer, 1999b). Let �∗t (mk) denote such an upper bound. To define a figure of
merit that takes into account several sets I, in different numbers of dimensions, it is
common practice to divide �I by an upper bound, in order to obtain a standardized
value between 0 and 1, and then take the worst case over a given class J of sets I.
This gives a figure of merit of the form

MJ = min
I∈J
�I |�∗|I|(mk) .

Random Number Generation 45

A value of MJ too close to zero means that LI has a bad lattice structure for at
least one of the selected sets I. We want a value as close to 1 as possible. Computer
searches for good MRGs with respect to this criterion have been reported by
L’Ecuyer et al. (1993), L’Ecuyer and Andres (1997), L’Ecuyer (1999a), for example.
In most cases, J was simply the sets of the form I = {1, … , t} for t ≤ t1, where t1

was an arbitrary integer ranging from 8 to 45. L’Ecuyer and Lemieux (2000) also
consider the small dimensional sets I with indices not too far apart. They suggest
taking J = {{0, 1, … , i} : i < t1} ∪ {{i1, i2} : 0 = i1 < i2 < t2} ∪ · · · ∪ {{i1, … , id} :
0 = i1 < … < id < td} for some positive integers d, t1, … , td. We could also take
a weighted average instead of the minimum in the definition of MJ .

An important observation is that for t > k, the t-dimensional vector h =
(−1, a1, … , ak, 0, … , 0)T always belongs to L∗

t , because for any vector v ∈ Lt ,
the first k + 1 coordinates of mv must satisfy the recurrence (2.2), which im-
plies that (−1, a1, … , ak, 0, … , 0)v must be an integer. Therefore, one always has
�2t ≤ 1 + a2

1 + · · · + a2
k. Likewise, if I contains 0 and all indices j such that ak−j �= 0,

then �2I ≤ 1 + a2
1 + · · · + a2

k (L’Ecuyer, 1997). This means that the sum of squares
of the coefficients aj must be large if we want to have any chance that the lattice
structure be good.

Contructing MRGs with only two nonzero coefficients and taking these coeffi-
cients small has been a very popular idea, because this makes the implementation
easier and faster (Deng and Lin, 2000; Knuth, 1998). However, MRGs thus obtained
have a bad structure. As a worst-case illustration, consider the widely-available
additive or subtractive lagged-Fibonacci generator, based on the recurrence (2.2)
where the two coefficients ar and ak are both equal to ±1. In this case, whenever
I contains {0, k − r, k}, one has �2I ≤ 3, so the distance between the hyperplanes
is at least 1|

√
3. In particular, for I = {0, k − r, k}, all the points of ΨI (aside from

the zero vector) are contained in only two planes! This type of structure can have
a dramatic effect on certain simulation problems and is a good reason for staying
away from these lagged-Fibonacci generators, regardless of their parameters.

A similar problem occurs for the “fast MRG” proposed by Deng and Lin (2000),
based on the recurrence

xi = (−xi−1 + a xi−k) mod m = ((m − 1)xi−1 + a xi−k) mod m ,

with a2 < m. If a is small, the bound �2I ≤ 1 + a2 implies a bad lattice structure for
I = {0, k − 1, k}. A more detailed analysis by L’Ecuyer and Touzin (2004) shows that
this type of generator cannot have a good lattice structure even if the condition
a2 < m is removed. Another special case proposed by Deng and Xu (2003) has the
form

xi = a
(
xi−j2 + · · · + xi−jt

)
mod m . (2.4)

In this case, for I = {0, k− jt−1, … , k− j2, k}, the vectors (1, a, … , a) and (a∗, 1, … , 1)
both belong to the dual lattice L∗

I , where a∗ is the multiplicative inverse of a mod-
ulo m. So neither a nor a∗ should be small.

46 Pierre L’Ecuyer

To get around this structural problem when I contains certain sets of indices,
Lüscher (1994) and Knuth (1998) recommend to skip some of the output values in
order to break up the bad vectors. For the lagged-Fibonacci generator, for example,
one can output k successive values produced by the recurrence, then skip the next
d values, output the next k, skip the next d, and so on. A large value of d (e.g.,
d = 5k or more) may get rid of the bad structure, but slows down the generator.
See Wegenkittl and Matsumoto (1999) for further discussion.

MRG Implementation Techniques2.3.3

The modulus m is often taken as a large prime number close to the largest integer
directly representable on the computer (e.g., equal or near 231 − 1 for 32-bit com-
puters). Since each xi−j can be as large as m − 1, one must be careful in computing
the right side of (2.2) because the product ajxi−j is typically not representable as
an ordinary integer. Various techniques for computing this product modulo m are
discussed and compared by Fishman (1996), L’Ecuyer and Coté (1991), L’Ecuyer
(1999a), and L’Ecuyer and Simard (1999). Note that if aj = m − a′j > 0, using aj is
equivalent to using the negative coefficient −a′j, which is sometimes more conve-
nient from the implementation viewpoint. In what follows, we assume that aj can
be either positive or negative.

One approach is to perform the arithmetic modulo m in 64-bit (double pre-
cision) floating-point arithmetic (L’Ecuyer, 1999a). Under this representation, as-
suming that the usual IEEE floating-point standard is respected, all positive in-
tegers up to 253 are represented exactly. Then, if each coefficient aj is selected to
satisfy |aj|(m − 1) ≤ 253, the product |aj|xi−j will always be represented exactly and
zj = |aj|xi−j mod m can be computed by the instructions

y = |aj|xi−j ; zj = y − m� y|m� .

Similarly, if (|a1| + · · · + |ak|)(m − 1) ≤ 253, a1xi−1 + · · · + akxi−k will always be
represented exactly.

A second technique, called approximate factoring (L’Ecuyer and Côté, 1991),
uses only the integer representation and works under the condition that |aj| = i
or |aj| = �m|i� for some integer i <

√
m. One precomputes qj = �m||aj|� and

rj = m mod |aj|. Then, zj = |aj|xi−j mod m can be computed by

y = �xi−j|qj� ; z = |aj|(xi−j − yqj) − yrj ;

if z < 0 then zj = z + m else zj = z .

All quantities involved in these computations are integers between −m and m, so
no overflow can occur if m can be represented as an ordinary integer (e.g., m < 231

on a 32-bit computer).
The powers-of-two decomposition approach selects coefficients aj that can be

written as a sum or difference of a small number of powers of 2 (Wu, 1997;
L’Ecuyer and Simard, 1999; L’Ecuyer and Touzin, 2000). For example, one may take

Random Number Generation 47

aj = ±2q ± 2r and m = 2e − h for some positive integers q, r, e, and h. To compute
y = 2qx mod m, decompose x = z0 + 2e−qz1 (where z0 = x mod 2e−q) and observe
that

y = 2q(z0 + 2e−qz1) mod(2e − h) = (2qz0 + hz1) mod(2e − h) .

Suppose now that

h < 2q and h(2q − (h + 1)2−e+q) < m . (2.5)

Then, 2qz0 < m and hz1 < m, so y can be computed by shifts, masks, additions,
subtractions, and a single multiplication by h. Intermediate results never exceed
2m − 1. Things simplify further if q = 0 or q = 1 or h = 1. For h = 1, y is obtained
simply by swapping the blocks of bits z0 and z1 (Wu, 1997). It has been pointed out
by L’Ecuyer and Simard (1999) that LCGs with parameters of the form m = 2e − 1
and a = ±2q ± 2r have bad statistical properties because the recurrence does not
“mix the bits” well enough. However, good and fast MRGs can be obtained via
the power-of-two decomposition method, as explained in L’Ecuyer and Touzin
(2000).

Another interesting idea for improving efficiency is to take all nonzero coeffi-
cients aj equal to the same constant a (Marsaglia, 1996; Deng and Xu, 2003). Then,
computing the right side of (2.2) requires a single multiplication. Deng and Xu
(2003) provide specific parameter sets and concrete implementations for MRGs of
this type, for prime m near 231, and k = 102, 120, and 1511.

One may be tempted to take m equal to a power of two, say m = 2e, because
then the “mod m” operation is much easier: it suffices to keep the e least significant
bits and mask-out all others. However, taking a power-of-two modulus is not
recommended because it has several strong disadvantages in terms of the quality
of the RNG (L’Ecuyer, 1990,1998). In particular, the least significant bits have very
short periodicity and the period length of the recurrence (2.2) cannot exceed
(2k − 1)2e−1 if k > 1, and 2e−2 if k = 1 and e ≥ 4. The maximal period length
achievable with k = 7 and m = 231, for example, is more than 2180 times smaller
than the maximal period length achievable with k = 7 and m = 231 − 1 (a prime
number).

Combined MRGs and LCGs 2.3.4

The conditions that make MRG implementations run faster (e.g., only two nonzero
coefficients both close to zero) are generally in conflict with those required for
having a good lattice structure and statistical robustness. Combined MRGs are one
solution to this problem. Consider J distinct MRGs evolving in parallel, based on
the recurrences

xj,i =
(
aj,1xj,i−1 + · · · + aj,kxj,i−k

)
mod mj ; (2.6)

48 Pierre L’Ecuyer

where aj,k �= 0, for j = 1, … , J. Let δ1, … , δJ be arbitrary integers,

zi =
(
δ1x1,i + · · · + δJxJ,i

)
mod m1 , ui = zi|m1 , (2.7)

and

wi =
(
δ1x1,i|m1 + · · · + δJxJ,i|mJ

)
mod 1 . (2.8)

This defines two RNGs, with output sequences {ui, i ≥ 0} and {wi, i ≥ 0}.
Suppose that the mj are pairwise relatively prime, that δj and mj have no com-

mon factor for each j, and that each recurrence (2.6) is purely periodic with period
length ρj. Let m = m1 · · · mJ and let ρ be the least common multiple of ρ1, … , ρJ .
Under these conditions, the following results have been proved by L’Ecuyer and
Tezuka (1991) and L’Ecuyer (1996a): (a) the sequence (2.8) is exactly equivalent to
the output sequence of a MRG with (composite) modulus m and coefficients aj

that can be computed explicitly as explained in L’Ecuyer (1996a); (b) the two
sequences in (2.7) and (2.8) have period length ρ; and (c) if both sequences
have the same initial state, then ui = wi + εi where maxi≥0 |εi| can be bound-
ed explicitly by a constant ε which is very small when the mj are close to each
other.

Thus, these combined MRGs can be viewed as practical ways of implementing
an MRG with a large m and several large nonzero coefficients. The idea is to cleverly
select the components so that: (1) each one is easy to implement efficiently (e.g.,
has only two small nonzero coefficients) and (2) the MRG that corresponds to the
combinationhasagood lattice structure. If each mj is primeand if eachcomponent j
has maximal period length ρj = mk

j − 1, then each ρj is even and ρ cannot exceed
ρ1 · · · ρJ |2J−1. Tables of good parameters for combined MRGs of different sizes that
reach this upper bound are given in L’Ecuyer (1999a) and L’Ecuyer and Touzin
(2000), together with C implementations.

Jumping Ahead2.3.5

The recurrence (2.2) can be written in matrix form as

xi = Axi−1 mod m =

0 1 · · · 0
...

. . .
...

0 0 · · · 1

ak ak−1 · · · a1

xi−1 mod m .

To jump ahead directly from xi to xi+ν, for an arbitrary integer ν, it suffices to
exploit the relationship

xi+ν = Aνxi mod m = (Aν mod m)xi mod m .

Random Number Generation 49

If this is to be done several times for the same ν, the matrix Aν mod m can be
precomputed once for all. For a large ν, this can be done in O(log2 ν) matrix
multiplications via a standard divide-and-conquer algorithm (Knuth, 1998):

Aν mod m =

(Aν|2 mod m)(Aν|2 mod m) mod m if ν is even ;

A(Aν−1 mod m) mod m if ν is odd .

Linear Recurrences With Carry 2.3.6

These types of recurrences were introduced by Marsaglia and Zaman (1991) to
obtain a large period even when m is a power of two (in which case the imple-
mentation may be faster). They were studied and generalized by Tezuka et al.
(1994), Couture and L’Ecuyer (1994), Couture and L’Ecuyer (1997), and Goresky
and Klapper (2003). The basic idea is to add a carry to the linear recurrence (2.2).
The general form of this RNG, called multiply-with-carry (MWC), can be written
as

xi = (a1xi−1 + · · · + akxi−k + ci−1)d mod b , (2.9)

ci = �(a0xi + a1xi−1 + · · · + akxi−k + ci−1)|b� , (2.10)

ui =
∞∑

�=1

xi+�−1b−� , (2.11)

where b is a positive integer (e.g., a power of two), a0, … , ak are arbitrary integers
such that a0 is relatively prime to b, and d is the multiplicative inverse of −a0

modulo b. The state at step i is si = (xi−k+1, … , xi, ci)T. In practice, the sum in (2.11)
is truncated to a few terms (it could be a single term if b is large), but the theoretical
analysis is much easier for the infinite sum.

Define m =
∑k
�=0 a�b� and let a be the inverse of b in arithmetic modulo m,

assuming for now that m > 0. A major result proved in Tezuka et al. (1994), Couture
and L’Ecuyer (1997), and Goresky and Klapper (2003) is that if the initial states
agree, the output sequence {ui, i ≥ 0} is exactly the same as that produced by the
LCG with modulus m and multiplier a. Therefore, the MWC can be seen as a clever
way of implementing a LCG with very large modulus. It has been shown by Couture
and L’Ecuyer (1997) that the value of �t for this LCG satisfies �2t ≤ a2

0 + · · · + a2
k for

t ≥ k, which means that the lattice structure will be bad unless the sum of squares
of coefficients aj is large.

In the original proposals of Marsaglia and Zaman (1991), called add-with-carry
and subtract-with-borrow, one has −a0 = ±ar = ±ak = 1 for some r < k and the
other coefficients aj are zero, so �2t ≤ 3 for t ≥ k and the generator has essentially
the samestructuraldefect as theadditive lagged-Fibonacci generator. In theversion
studied by Couture and L’Ecuyer (1997), it was assumed that −a0 = d = 1. Then,
the period length cannot exceed (m − 1)|2 if b is a power of two. A concrete

50 Pierre L’Ecuyer

implementation was given in that paper. Goresky and Klapper (2003) pointed out
that the maximal period length of ρ = m − 1 can be achieved by allowing a more
general a0. They provided specific parameters that give a maximal period for b
ranging from 221 to 235 and ρ up to approximately 22521.

Generators Based
on Recurrences Modulo 22.4

A General Framework2.4.1

It seems natural to exploit the fact that computers work in binary arithmetic and
to design RNGs defined directly in terms of bit strings and sequences. We do this
under the following framework, taken from L’Ecuyer and Panneton (2002). Let
F2 denote the finite field with two elements, 0 and 1, in which the operations are
equivalent to addition and multiplication modulo 2. Consider the RNG defined by
a matrix linear recurrence over F2, as follows:

xi = Axi−1 , (2.12)

yi = Bxi , (2.13)

ui =
w∑

�=1

yi,�−12−� = yi,0 yi,1 yi,2 · · · , (2.14)

where xi = (xi,0, … , xi,k−1)T ∈ Fk
2 is the k-bit state vector at step i, yi = (yi,0, … ,

yi,w−1)T ∈ Fw
2 is the w-bit output vector at step i, k and w are positive integers, A is

a k × k transition matrix with elements in F2, B is a w × k output transformation
matrix with elements in F2, and ui ∈ [0, 1) is the output at step i. All operations
in (2.12) and (2.13) are performed in F2.

It iswell-known(Niederreiter, 1992;L’Ecuyer, 1994) thatwhen the xi’s obey (2.12),
for each j, the sequence {xi,j, i ≥ 0} follows the linear recurrence

xi,j =
(
α1xi−1,j + · · · + αkxi−k,j

)
mod 2 , (2.15)

whose characteristic polynomial P(z) is the characteristic polynomial of A, i.e.,

P(z) = det(A − zI) = zk − α1zk−1 − · · · − αk−1z − αk ,

where I is the identity matrix and each αj is in F2. The sequences {yi,j, i ≥ 0}, for
0 ≤ j < w, also obey the same recurrence (although some of them may follow
recurrences of shorter order as well in certain situations, depending on B). We
assume that αk = 1, so that the recurrence (2.15) has order k and is purely periodic.
Its period length is 2k −1 (i.e., maximal) if and only if P(z) is a primitive polynomial
over F2 (Niederreiter, 1992; Knuth, 1998).

Random Number Generation 51

To jump ahead directly from xi to xi+ν with this type of generator, it suffices to
precompute the matrix Aν (in F2) and then multiply xi by this matrix.

Several popular classes of RNGs fit this framework as special cases, by ap-
propriate choices of the matrices A and B. This includes the Tausworthe or LFSR,
polynomial LCG, GFSR, twisted GFSR, Mersenne twister, multiple recursive matrix
generators, and combinations of these (L’Ecuyer and Panneton, 2002; Matsumoto
and Nishimura, 1998; Niederreiter, 1995; Tezuka, 1995). We detail some of them
after discussing measures of their uniformity.

Measures of Uniformity 2.4.2

The uniformity of point sets ΨI produced by RNGs based on linear recurrences
over F2 is usually assessed by measures of equidistribution defined as follows
(L’Ecuyer, 1996b; L’Ecuyer and Panneton, 2002; L’Ecuyer, 2004; Tezuka, 1995).
For an arbitrary vector q = (q1, … , qt) of non-negative integers, partition the
unit hypercube [0, 1)t into 2qj intervals of the same length along axis j, for
each j. This determines a partition of [0, 1)t into 2q1+· · ·+qt rectangular boxes of
the same size and shape. We call this partition the q-equidissection of the unit
hypercube.

For some index set I = {i1, … , it}, if ΨI has 2k points, we say that ΨI is
q-equidistributed in base 2 if there are exactly 2q points in each box of the
q-equidissection, where k − q = q1 + · · · + qt . This means that among the 2k points
(xj1 , … , xjt) ofΨI , if we consider the first q1 bits of xj1 , the first q2 bits of xj2 , …, and
the first qt bits of xjt , each of the 2k−q possibilities occurs exactly the same number
of times. This is possible only if q ≤ k.

The q-equidistribution ofΨI depends only on the first qj bits of xij for 1 ≤ j ≤ t,
for the points (xi1 , … , xit) that belong toΨI . The vector of these q1 + · · · + qt = k − q
bits can always be expressed as a linear function of the k bits of the initial state x0,
i.e., as Mqx0 for some (k − q) × k binary matrix Mq, and it is easily seen that ΨI is
q-equidistributed if and only if Mq has full rank k − q. This provides an easy way
of checking equidistribution (Fushimi, 1983; L’Ecuyer, 1996b; Tezuka, 1995).

If ΨI is (�, … , �)-equidistributed for some � ≥ 1, it is called t-distributed with
� bits of accuracy, or (t, �)-equidistributed (L’Ecuyer, 1996b). The largest value of �
for which this holds is called the resolution of the set ΨI and is denoted by �I . This
value has the upper bound �∗t = min(�k|t�, w). The resolution gap of ΨI is defined
as δI = �∗t − �I . In the same vein as for MRGs, a worst-case figure of merit can be
defined here by

∆J = max
I∈J

δI ,

where J is a preselected class of index sets I.
The point set ΨI is a (q, k, t)-net in base 2 (often called a (t, m, s)-net in the

context of quasi-Monte Carlo methods, where a different notation is used (Nieder-
reiter, 1992)), if it is (q1, … , qt)-equidistributed in base 2 for all non-negative
integers q1, … , qt summing to k − q. We call the smallest such q the q-value of ΨI .

52 Pierre L’Ecuyer

The smaller it is, the better. One candidate for a figure of merit could be the q-value
of Ψt for some large t. A major drawback of this measure is that it is extremely
difficult to compute for good long-period generators (for which k − q is large), be-
cause there are too many vectors q for which equidistribution needs to be checked.
In practice, one must settle for figures of merit that involve a smaller number of
equidissections.

When δI = 0 for all sets I of the form I = {0, … , t − 1}, for 1 ≤ t ≤ k, the RNG
is said to be maximally equidistributed or asymptotically random for the word
size w (L’Ecuyer, 1996b; Tezuka, 1995; Tootill et al., 1973). This property ensures
perfect equidistribution of all sets Ψt , for any partition of the unit hypercube
into subcubes of equal sizes, as long as � ≤ w and the number of subcubes does
not exceed the number of points in Ψt . Large-period maximally equidistribut-
ed generators, together with their implementations, can be found in L’Ecuyer
(1999c), L’Ecuyer and Panneton (2002), and Panneton and L’Ecuyer (2004), for
example.

Lattice Structure in Spaces
of Polynomials and Formal Series2.4.3

The RNGs defined via (2.12)–(2.14) do not have a lattice structure in the real space
like MRGs, but they do have a lattice structure in a space of formal series, as
explained in Couture and L’Ecuyer (2000), L’Ecuyer (2004), Lemieux and L’Ecuyer
(2003), and Tezuka (1995). The real space R is replaced by the space L2 of formal
power series with coefficients in F2, of the form

∑∞
�=ω x�z−� for some integerω. In

that setting, the lattices have the form

Lt =

v(z) =

t∑

j=1

hj(z)vj(z) such that each hj(z) ∈ F2[z]

,

where F2[z] is the ring of polynomials with coefficients in F2, and the basis vec-
tors vj(z) are in Lt

2. The elements of the dual lattice L∗
t are the vectors h(z) in Lt

2
whose scalar product with any vector of Lt is a polynomial (in F2[z]). We define
the mapping ϕ : L2 → R by

ϕ

(∞∑

�=ω

x�z
−�

)

=
∞∑

�=ω

x�2
−� .

Then, it turns out that the point set Ψt produced by the generator is equal to
ϕ(Lt) ∩ [0, 1)t . Moreover, the equidistribution properties examined in Sect. 2.4.2
can be expressed in terms of lengths of shortest vectors in the dual lattice, with
appropriate definitions of the length (or norm). Much of the theory and algorithms
developed for lattices in the real space can be adapted to these new types of lattices
(Couture and L’Ecuyer, 2000; L’Ecuyer, 2004; Lemieux and L’Ecuyer, 2003; Tezuka,
1995).

Random Number Generation 53

The LFSR Generator 2.4.4

The Tausworthe or linear feedback shift register (LFSR) generator (Tausworthe,
1965; L’Ecuyer, 1996b; Tezuka, 1995) is a special case of (2.12)–(2.14) with A = As

0
(in F2) for some positive integer s, where

A0 =

1
. . .

1

ak ak−1…a1

, (2.16)

a1, … , ak are in F2, ak = 1, and all blank entries in the matrix are zeros. We take
w ≤ k and the matrix B contains the first w lines of the k × k identity matrix. The
RNG thus obtained can be defined equivalently by

xi = a1xi−1 + · · · + akxi−k mod 2 , (2.17)

ui =
w∑

�=1

xis+�−12−� . (2.18)

Here, P(z) is the characteristic polynomial of the matrix As
0, not the characteristic

polynomial of the recurrence (2.17), and the choiceof s is important fordetermining
the quality of the generator. A frequently encountered case is when a single aj is
nonzero in addition to ak; then, P(z) is a trinomial and we say that we have
a trinomial-based LFSR generator. These generators are known to have important
statistical deficiencies (Matsumoto and Kurita, 1996; Tezuka, 1995) but they can be
used as components of combined RNGs.

LFSR generators can be expressed as LCGs in a space of polynomials (Tezuka
and L’Ecuyer, 1991; Tezuka, 1995; L’Ecuyer, 1994). With this representation, their
lattice structure as discussed in Sect. 2.4.3 follows immediately.

The GFSR and Twisted GFSR 2.4.5

Here we take A as the pq × pq matrix

A =

Ip S

Ip

Ip

. . .

Ip

for some positive integers p and q, where Ip is the p × p identity matrix, S is
a p × p matrix, and the matrix Ip on the first line is in columns (r − 1)p + 1
to rp for some positive integer r. Often, w = p and B contains the first w lines

54 Pierre L’Ecuyer

of the pq × pq identity matrix. If S is also the identity matrix, the generator
thus obtained is the trinomial-based generalized feedback shift register (GFSR),
for which xi is obtained by a bitwise exclusive-or of xi−r and xi−q. This gives
a very fast RNG, but its period length cannot exceed 2q − 1, because each bit of xi

follows the same binary recurrence of order k = q, with characteristic polynomial
P(z) = zq − zq−r − 1.

More generally, we can define xi as the bitwise exclusive-or of xi−r1 , xi−r2 , … , xi−rd

where rd = q, so that each bit of xi follows a recurrence in F2 whose characteris-
tic polynomial P(z) has d + 1 nonzero terms. However, the period length is still
bounded by 2q − 1, whereas considering the pq-bit state, we should rather expect
a period length close to 2pq. This was the main motivation for the twisted GFSR
(TGFSR) generator. In the original version introduced by Matsumoto and Kurita
(1992), w = p and the matrix S is defined as the transpose of A0 in (2.16), with
k replaced by p. The characteristic polynomial of A is then P(z) = PS(zq + zm),
where PS(z) = zp − apzp−1 − · · · − a1 is the characteristic polynomial of S, and
its degree is k = pq. If the parameters are selected so that P(z) is primitive
over F2, then the TGFSR has period length 2k − 1. Matsumoto and Kurita (1994)
pointed out important weaknesses of the original TGFSR and proposed an im-
proved version that uses a well-chosen matrix B whose lines differ from those
of the identity. The operations implemented by this matrix are called tempering
and their purpose is to improve the uniformity of the points produced by the
RNG. The Mersenne twister (Matsumoto and Nishimura, 1998; Nishimura, 2000)
is a variant of the TGFSR where k is slightly less than pq and can be a prime
number. A specific instance proposed by Matsumoto and Nishimura (1998) is
fast, robust, has the huge period length of 219937 − 1, and has become quite
popular.

In the multiple recursive matrix method of Niederreiter (1995), the first row of
p× p matrices in A contains arbitrary matrices. However, a fast implementation is
possible only when these matrices are sparse and have a special structure.

Combined Linear Generators Over F22.4.6

Many of the best generators based on linear recurrences over F2 are constructed by
combining the outputs of two or more RNGs having a simple structure. The idea
is the same as for MRGs: select simple components that can run fast but such that
their combination has a more complicated structure and highly-uniform sets ΨI

for the sets I considered important.
Consider J distinct recurrencesof the form(2.12)–(2.13),where the jth recurrence

has parameters (k, w, A, B) = (kj, w, Aj, Bj) and state xj,i at step i, for j = 1, … , J.
The output of the combined generator at step i is defined by

yi = B1x1,i ⊕ · · · ⊕ BJxJ,i ,

ui =
w∑

�=1

yi,�−12−� ,

Random Number Generation 55

where ⊕ denotes the bitwise exclusive-or operation. One can show (Tezuka, 1995)
that the period length ρ of this combined generator is the least common multiple
of the period lengths ρj of its components. Moreover, this combined generator is
equivalent to the generator (2.12)–(2.14) with k = k1 + · · · + kJ , A = diag(A1, … , AJ),
and B = (B1, … , BJ).

With this method, by selecting the parameters carefully, the combination of
LFSR generators with characteristic polynomials P1(z), … , PJ(z) gives yet another
LFSR with characteristic polynomial P(z) = P1(z) · · · PJ(z) and period length equal
to the product of the period lengths of the components (Tezuka and L’Ecuyer,
1991; Wang and Compagner, 1993; L’Ecuyer, 1996b; Tezuka, 1995). Tables and fast
implementations of maximally equidistributed combined LFSR generators are
given in L’Ecuyer (1996b).

TheTGFSRandMersenne twister generatorsproposed inMatsumotoandKurita
(1994), Matsumoto and Nishimura (1998) and Nishimura (2000) cannot be maxi-
mally equidistributed. However, concrete examples of maximally equidistributed
combined TGFSR generators with period lengths near 2466 and 21250 are given in
L’Ecuyer and Panneton (2002). These generators have the additional property that
the resolutiongapsδI are zero for a classof small sets I with indicesnot too far apart.

Nonlinear RNGs 2.5

All RNGs discussed so far are based on linear recurrences and their structure
may be deemed too regular. There are at least two ways of getting rid of this
regular linear structure: (1) use a nonlinear transition function f or (2) keep the
transition function linear but use a nonlinear output function g. Several types of
nonlinear RNGs have been proposed over the years; see, e.g., Blum et al. (1986),
Eichenauer-Herrmann (1995), Eichenauer-Herrmann et al. (1997), Hellekalek and
Wegenkittl (2003), Knuth (1998), L’Ecuyer (1994), Niederreiter and Shparlinski
(2002), and Tezuka (1995). Their nonlinear mappings are defined in various ways
by multiplicative inversion in a finite field, quadratic and cubic functions in the
finite ring of integers modulo m, and other more complicated transformations.
Many of them have output sequences that tend to behave much like i.i.d. U(0, 1)
sequences even over their entire period length, in contrast with “good” linear
RNGs, whose point sets Ψt are much more regular than typical random points
(Eichenauer-Herrmann et al., 1997; L’Ecuyer and Hellekalek, 1998; L’Ecuyer and
Granger-Piché, 2003; Niederreiter and Shparlinski, 2002). On the other hand,
their statistical properties have been analyzed only empirically or via asymptotic
theoretical results. For specific nonlinear RNGs, the uniformity of the point sets
Ψt is very difficult to measure theoretically. Moreover, the nonlinear RNGs are
generally significantly slower than the linear ones. The RNGs recommended for
cryptology are all nonlinear.

An interesting idea for addingnonlinearitywithout incurringanexcessive speed
penalty is to combine a small nonlinear generator with a fast long-period linear

56 Pierre L’Ecuyer

one (Aiello et al., 1998; L’Ecuyer and Granger-Piché, 2003). L’Ecuyer and Granger-
Piché (2003) show how to do this while ensuring theoretically the good uniformity
properties of Ψt for the combined generator. A very fast implementation can be
achieved by using precomputed tables for the nonlinear component. Empirical
studies suggest that mixed linear-nonlinear combined generators are more robust
than the linear ones with respect to statistical tests, because of their less regular
structure.

Several authors have proposed various ways of combining RNGs to produce
streams of random numbers with less regularity and better “randomness” proper-
ties; see, e.g., Collings (1987), Knuth (1998), Gentle (2003), Law and Kelton (2000),
L’Ecuyer (1994), Fishman(1996),Marsaglia (1985), andother references given there.
This includes shuffling the output sequence of one generator using another one
(or the same one), alternating between several streams, or just adding them in
different ways. Most of these techniques are heuristics. They usually improve the
uniformity (empirically), but they can also make it worse. For random variables in
the mathematical sense, certain types of combinations (e.g., addition modulo 1)
can provably improve the uniformity, and some authors have used this fact to argue
that combined RNGs are provably better than their components alone (Brown and
Solomon, 1979; Deng and George, 1990; Marsaglia, 1985; Gentle, 2003), but this
argument is faulty because the output sequences of RNGs are deterministic, not
sequences of independent random variables. To assess the quality of a combined
generator, one must analyze the mathematical structure of the combined genera-
tor itself rather than the structure of its components (L’Ecuyer, 1996b, 1996a, 1998;
L’Ecuyer and Granger-Piché, 2003; Tezuka, 1995).

Examples of Statistical Tests2.6

As mentioned earlier, a statistical test for RNGs is defined by a random variable X
whose distribution under H0 can be well approximated. When X takes the value x,
we define the right and left p-values of the test by

pR = P[X ≥ x | H0] and pL = P[X ≤ x | H0] .

When testing RNGs, there is no need to prespecify the level of the test. If any of the
right or left p-value is extremely close to zero, e.g., less than 10−15, then it is clear
that H0 (and the RNG) must be rejected. When a suspicious p-value is obtained,
e.g., near 10−2 or 10−3, one can just repeat this particular test a few more times,
perhaps with a larger sample size. Almost always, things will then clarify.

Most tests are defined by partitioning the possible realizations of (u0, … , uτ−1)
into a finite number of subsets (where the integer τ can be random or determin-
istic), computing the probability pj of each subset j under H0, and measuring the
discrepancy between these probabilities and empirical frequencies from realiza-
tions simulated by the RNG.

Random Number Generation 57

A special case that immediately comes to mind is to take τ = t (a constant)
and cut the interval [0, 1) into d equal segments for some positive integer d, in
order to partition the hypercube [0, 1)t into k = dt subcubes of volume 1|k. We
then generate n points ui = (uti, … , uti+t−1) ∈ [0, 1)t , for i = 0, … , n − 1, and count
the number Nj of points falling in subcube j, for j = 0, … , k − 1. Any measure of
distance (or divergence) between the numbers Nj and their expectations n|k can
define a test statistic X. The tests thus defined are generally called serial tests of
uniformity (Knuth, 1998; L’Ecuyer et al., 2002b). They can be sparse (if n|k << 1), or
dense (if n|k >> 1), or somewhere in between. There are also overlapping versions,
where the points are defined by ui = (ui, … , ui+t−1) for i = 0, … , n − 1 (they have
overlapping coordinates).

Special instances for which the distribution of X under H0 is well-known are
the chi-square, the (negative) empirical entropy, and the number of collisions
(L’Ecuyer and Hellekalek, 1998; L’Ecuyer et al., 2002b; Read and Cressie, 1988). For
the latter, the test statistic X is the number of times a point falls in a subcube that
already had a point in it. Its distribution under H0 is approximately Poisson with
mean λ1 = n2|(2k), if n is large and λ1 is not too large.

Avariant is thebirthday spacings test, definedas follows (Marsaglia, 1985;Knuth,
1998; L’Ecuyer and Simard, 2001). Let I(1) ≤ · · · ≤ I(n) be the numbers of the
subcubes that contain the points, sorted by increasing order. Define the spacings
Sj = I(j+1) − I(j), for j = 1, … , n − 1, and let X be the number of collisions between
these spacings. Under H0, X is approximately Poisson with mean λ2 = n3|(4k), if
n is large and λ2 not too large.

Consider now a MRG, for which Ψt has a regular lattice structure. Because of
this regularity the points of Ψt will tend to be more evenly distributed among the
subcubes than random points. For a well-chosen k and large enough n, we expect
the collision test to detect this: it is likely that there will be too few collisions. In
fact, the same applies to any RNG whose set Ψt is very evenly distributed. When
a birthday spacings test with a very large k is applied to a MRG, the numbers of
the subcubes that contain one point ofΨt tend to be too evenly spaced and the test
detects this by finding too many collisions.

These specific interactions between the test and the structure of the RNG lead
to systematic patterns in the p-values of the tests. To illustrate this, suppose that
we take k slightly larger than the cardinality of Ψt (so k ≈ ρ) and that due to the
excessive regularity, no collision is observed in the collision test. The left p-value
will then be pL ≈ P[X ≤ 0 | X ∼ Poisson (λ1)] = exp[−n2|(2k)]. For this p-value
to be smaller than a given ε, we need a sample size n proportional to the square
root of the period length ρ. And after that, pL decreases exponentially fast in n2.

Extensive experiments with LCGs, MRGs, and LFSR generators confirms that
this is actually what happens with these RNGs (L’Ecuyer and Hellekalek, 1998;
L’Ecuyer, 2001; L’Ecuyer et al., 2002b). For example, if we take ε = 10−15 and define
n0 as the minimal sample size n for which pL < ε, we find that n0 ≈ 16ρ1|2 (plus
some noise) for LCGs that behave well in the spectral test as well as for LFSR
generators. For the birthday spacings test, the rule for LCGs is n0 ≈ 16ρ1|3 instead
(L’Ecuyer and Simard, 2001). So to be safe with respect to these tests, the period

58 Pierre L’Ecuyer

length ρ must be so large that generating more than ρ1|3 numbers is practically
unfeasible. This certainly disqualifies all LCGs with modulus smaller than 2100 or
so.

Other types of tests for RNGs include tests based on the closest pairs of points
among n points generated in the hypercube, tests based on random walks on the
real line or over the integers, tests based on the linear complexity of a binary
sequence, tests based on the simulation of dices or poker hands, and many others
(Gentle, 2003; Knuth, 1998; L’Ecuyer and Simard, 2002; Marsaglia, 1996; Rukhin
et al., 2001; Vattulainen et al., 1995).

When testing RNGs, there is no specific alternative hypothesis to H0. Different
tests are needed to detect different types of departures from H0. Test suites for
RNGs include a selection of tests, with predetermined parameters and sample
sizes. The best known are probably DIEHARD (Marsaglia, 1996) and the NIST
test suite (Rukhin et al., 2001). The library TestU01 (L’Ecuyer and Simard, 2002)
implements a large selection of tests in the C language and provides a variety of
test suites, some designed for i.i.d. U(0, 1) output sequences and others for strings
of bits.

Available Software
and Recommendations2.7

When we apply test suites to RNGs currently found in commercial software (sta-
tistical and simulation software, spreadsheets, etc.), we find that many of them fail
the tests spectacularly (L’Ecuyer, 1997,2001). There is no reason to use these poor
RNGs, because there are also several good ones that are fast, portable, and pass all
these test suites with flying colors. Among them we recommend, for example, the
combined MRGs, combined LFSRs, and Mersenne twisters proposed in L’Ecuyer
(1999c,1999a), L’Ecuyer and Panneton (2002), Matsumoto and Nishimura (1998),
and Nishimura (2000).

A convenient object-oriented software package with multiple streams and sub-
streams of random numbers, is described in L’Ecuyer et al. (2002a) and is available
in Java, C, and C++, at http://www.iro.umontreal.ca/˜lecuyer.

Non-uniform Random Variate Generation2.8

Like for the uniform case, non-uniform variate generation often involves approx-
imations and compromises. The first requirement is, of course, correctness. This
does not mean that the generated random variate X must always have exactly
the required distribution, because this would sometimes be much too costly or
even impossible. But we must have a good approximation and, preferably, some
understanding of the quality of that approximation. Robustness is also important:

Random Number Generation 59

when the accuracy depends on the parameters of the distribution, it must be good
uniformly over the entire range of parameter values that we are interested in.

The method must also be efficient both in terms of speed and memory usage.
Often, it is possible to increase the speed by using more memory (e.g, for larger
precomputed tables) or by relaxing the accuracy requirements. Some methods
need a one-time setup to compute constants and construct tables. The setup time
can be significant but may be well worth spending if it is amortized by a large
number of subsequent calls to the generator. For example, it makes sense to invest
in a more extensive setup if we plan to make a million calls to a given generator than
if we expert to make only a few calls, assuming that this investment can improve
the speed of the generator sufficiently.

In general, compromises must be made between simplicity of the algorithm,
quality of the approximation, robustness with respect to the distribution parame-
ters, and efficiency (generation speed, memory requirements, and setup time).

In many situations, compatibility with variance reduction techniques is another
important issue (Bratley et al., 1987; Law and Kelton, 2000). We may be willing
to sacrifice the speed of the generator to preserve inversion, because the gain in
efficiency obtained via the variance reduction methods may more than compensate
(sometimes by orders of magnitude) for the slightly slower generator.

Inversion 2.8.1

The inversion method, defined in the introduction, should be the method of
choice for generating non-uniform random variates in a majority of situations.
The fact that X = F −1(U) is a monotone (non-decreasing) function of U makes
this method compatible with important variance reduction techniques such as
common random numbers, antithetic variates, latin hypercube sampling, and
randomized quasi-Monte Carlo methods (Bratley et al., 1987; Law and Kelton,
2000; L’Ecuyer and Lemieux, 2000).

For some distributions, an analytic expression can be obtained for the inverse
distribution function F −1 and inversion can be easily implemented. As an example,
consider the Weibull distribution function with parameters α > 0 and β > 0,
defined by F(x) = 1 − exp[−(x|β)α] for x > 0. It is easy to see that F −1(U) =
β[− ln(1−U)]1|α. Forα = 1, we have the special case of the exponential distribution
with mean β.

For an example of a simple discrete distribution, suppose that P[X = i] = pi

where p0 = 0.6, p1 = 0.3, p2 = 0.1, and pi = 0 elsewhere. The inversion method in
this case will return 0 if U < 0.6, 1 if 0.6 ≤ U < 0.9, and 2 if U ≥ 0.9. For the discrete
uniform distribution over {0, … , k − 1}, return X = �kU�. As another example, let
X have the geometric distribution with parameter p, so P[X = x] = p(1 − p)x for
x = 0, 1, 2, …, where 0 < p < 1. Then, F(x) = 1 − (1 − p)�x+1� for x ≥ 0 and one can
show that X = F −1(U) = �ln(1 − U)| ln(1 − p)� − 1.

There are other distributions (e.g., the normal, Student, chi-square) for which
there is no closed-form expression for F −1 but good numerical approximations
are available (Bratley et al., 1987; Gentle, 2003; Marsaglia et al., 1994). When the

60 Pierre L’Ecuyer

distribution has only scale and location parameters, we need to approximate F −1

only for a standardized version of the distribution. For the normal distribution,
for example, it suffices to have an efficient method for evaluating the inverse
distribution function of a N(0, 1) random variable Z, since a normal with mean µ
and variance σ2 can be generated by X = σZ + µ. When shape parameters are
involved (e.g., the gamma and beta distributions), things are more complicated
because F −1 then depends on the parameters in a more fundamental manner.

Hörmann and Leydold (2003) propose a general adaptive and automatic method
that constructs a highly accurate Hermite interpolation method of F −1. In a one-
time setup, their method produces tables for the interpolation points and coeffi-
cients. Random variate generation using these tables is then quite fast.

A less efficient but simpler way of implementing inversion when a method is
available for computing F is via binary search (Cheng, 1998). If the density is also
available and if it is unimodal with known mode, a Newton–Raphson iteration
method can avantageously replace the binary search (Cheng, 1998; Devroye, 1986).

To implement inversion for general discrete distributions, sequential search and
binary search with look-up tables are the standard methods (Bratley et al., 1987;
Cheng, 1998). For a discrete distribution over the values x1 < · · · < xk, one first
tabulates the pairs (xi, F(xi)), where F(xi) = P[X ≤ xi] for i = 1, … , k. To generate
X, it then suffices to generate U ∼ U(0, 1), find I = min{i | F(xi) ≥ U}, and return
X = xI . The following algorithms do that.

Sequential search (needs O(k) iterations in the worst case);
generate U ∼ U(0, 1); let i = 1;
while F(xi) < U do i = i + 1;
return xi.

Binary search (needs O(log k) iterations in the worst case);
generate U ∼ U(0, 1); let L = 0 and R = k;
while L < R − 1 do

m = �(L + R)|2�;
if F(xm) < U then L = m else R = m;
|* Invariant: at this stage, the index I is in {L + 1, … , R}. *|

return xR.

These algorithms can be modified in many different ways. For example, if
k = ∞, in the binary search, one can start with an arbitrary value of R, double it
until F(xR) ≥ U , and start the algorithm with this R and L = R|2. Of course, only
a finite portion of the table (a portion that contains most of the probability mass)
would be precomputed in this case, the other values can be computed only when
needed. This can also be done if k is finite but large.

Another classof techniquesuse indexingorbuckets to speedup the search (Chen
and Asau, 1974; Bratley et al., 1987; Devroye, 1986). For example, one can partition
the interval (0, 1) into c subintervals of equal sizes and use (pre-tabulated) initial
values of (L, R) that depend on the subinterval in which U falls. For the subinterval
[j|c, (j + 1)|c) the values of L and R would be Lj = F −1(j|c) and Rj = F −1((j + 1)|c),

Random Number Generation 61

for j = 0, … , c − 1. The subinterval number that corresponds to a given U is simply
J = �cU�.Onceweknowthat subinterval,we can search it by linearofbinary search.
With a larger value of c the search is faster (on the average) but the setup is more
costly and a larger amount of memory is needed. So a compromise must be made
depending on the situation (e.g., the value of k, the number of variates we expect
to generate, etc.). For c = 1, we recover the basic sequential and binary search
algorithms given above. A well-implemented indexed search with a large enough
c is usually competitive with the alias method (described in the next paragraph).
A combined indexed|binary search algorithm is given below. An easy adaptation
gives the combined indexed|sequential search, which is generally preferable when
k|c is small, because it has smaller overhead.

Indexed search (combined with binary search);
generate U ∼ U(0, 1); let J = �cU�, L = LJ , and R = RJ ;
while L < R − 1 do

m = �(L + R)|2�;
if F(xm) < U then L = m else R = m;

return xR.

These search methods are also useful for piecewise-linear (or piecewise-poly-
nomial) distribution functions. Essentially, it suffices to add an interpolation step
at the end of the algorithm, after the appropriate linear (or polynomial) piece has
been determined (Bratley et al., 1987).

Finally, the stochastic model itself can sometimes be selected in a way that makes
inversion easier. For example, one can fit a parametric, highly-flexible, and easily
computable inverse distribution function F −1 to the data, directly or indirectly
(Nelson and Yamnitsky, 1998; Wagner and Wilson, 1996).

There are situations where speed is important and where non-inversion methods
are appropriate. In forthcoming subsections, we outline the main non-inversion
methods.

The Alias Method 2.8.2

Sequential and binary search require O(k) and O(log k) time, respectively, in
the worst case, to generate a random variate X by inversion over the finite set
{x1, … , xk}. The alias method (Walker, 1974, 1977) can generate such a X in O(1)
time per variate, after a table setup that takes O(k) time and space. On the other
hand, it does not implement inversion, i.e., the transformation from U to X is not
monotone.

To explain the idea, consider a bar diagram of the distribution, where each
index i has a bar of height pi = P[X = xi]. The idea is to “equalize” the bars so
that they all have height 1|k, by cutting-off bar pieces and transfering them to
other bars. This is done in a way that in the new diagram, each bar i contains one
piece of size qi (say) from the original bar i and one piece of size 1|k − qi from
another bar whose index j, denoted A(i), is called the alias value of i. The setup
procedure initializes two tables, A and R, where A(i) is the alias value of i and

62 Pierre L’Ecuyer

R(i) = (i − 1)|k + qi. See Devroye (1986) and Law and Kelton (2000) for the details.
To generate X, we generate U ∼ U[0, 1], define I = �kU�, and return X = xI if
U < R(I) and X = xA(I) otherwise.

There is a version of the alias method for continuous distributions, called
the acceptance-complement method (Kronmal and Peterson, 1984; Devroye, 1986;
Gentle, 2003). The idea is to decompose the density f of the target distribution as
the convex combination of two densities f1 and f2, f = wf1 + (1 − w)f2 for some real
number w ∈ (0, 1), in a way that wf1 ≤ g for some other density g and so that it is
easy to generate from g and f2. The algorithm works as follows: Generate X from
density g and U ∼ U(0, 1); if Ug(X) ≤ wf1(Y) return X, otherwise generate a new
X from density f2 and return it.

Kernel Density Estimation and Generation2.8.3

Instead of selecting a parametric distribution that is hard to invert and estimat-
ing the parameters, one can estimate the density via a kernel density estimation
method for which random variate generation is very easy (Devroye, 1986; Hör-
mann and Leydold, 2000). In the case of a gaussian kernel, for example, one can
generate variates simply by selecting one observation at random from the data
and adding random noise generated form a normal distribution with mean zero.
However, this method is not equivalent to inversion. Because of the added noise,
selecting a larger observation does not necessarily guarantee a larger value for the
generated variate.

The Rejection Method2.8.4

Now suppose we want to generate X from a complicated density f . In fact f may be
known only up to a multiplicative constant κ > 0, i.e., we know only κf . If we know

f , we may just takeκ = 1. We select another density r such thatκf (x) ≤ t(x)
def= ar(x)

for all x for some constant a, and such that generating variates Y from the density r
is easy. The function t is called a hat function or majorizing function. By integrating
this inequality with respect to x on both sides, we find that κ ≤ a. The following
rejection method generates X with density f (von Neumann, 1951; Devroye, 1986;
Evans and Swartz, 2000):

Rejection method;
repeat
generate Y from the density r and U ∼ U(0, 1), independently;

until Ut(Y) ≤ κf (Y);
return X = Y .

The number R of turns into the “repeat” loop is one plus a geometric random
variable with parameter κ|a, so E[R] = a|κ. Thus, we want a|κ ≥ 1 to be as small
as possible, i.e., we want to minimize the area between κf and t. There is generally
a compromise between bringing a|κ close to 1 and keeping r simple.

Random Number Generation 63

When κf is expensive to compute, we can also use squeeze functions q1 and q2

that are faster to evaluate and such that q1(x) ≤ κf (x) ≤ q2(x) ≤ t(x) for all x.
To verify the condition Ut(Y) ≤ κf (Y), we first check if Ut(Y) ≤ q1(Y), in which
case we accept Y immediately, otherwise we check if Ut(Y) ≥ q2(Y), in which case
we reject Y immediately. The value of κf (Y) must be computed only when Ut(Y)
falls between the two squeezes. Sequences of imbedded squeezes can also be used,
where the primary ones are the least expensive to compute, the secondary ones are
a little more expensive but closer to κf , etc.

It is common practice to transform the density f by a smooth increasing func-
tion T (e.g., T(x) = log x or T(x) = −x−1|2) selected so that it is easier to construct
good hat and squeeze functions (often piecewise linear) for the transformed den-
sity T(f (·)). By transforming back to the original scale, we get hat and squeeze
functions for f . This is the transformed density rejection method, which has several
variants and extensions (Devroye, 1986; Evans and Swartz, 2000; Hörmann et al.,
2004).

The rejection method works for discrete distributions as well; it suffices to
replace densities by probability mass functions.

Thinning for Point Processes with Time-varying Rates 2.8.5

Thinning is a cousin of acceptance-rejection, often used for generating events
from a non-homogeneous Poisson process. Suppose the process has rate λ(t) at
time t, with λ(t) ≤ λ̄ for all t, where λ̄ is a finite constant. One can generate
Poisson pseudo-arrivals at constant rate λ̄ by generating interarrival times that
are i.i.d. exponentials of mean 1|λ̄. Then, a pseudo-arrival at time t is accepted
(becomes an arrival) with probability λ(t)|λ̄ (i.e., if U ≤ λ(t)|λ̄, where U is an
independent U[0, 1]), and rejected with probability 1 − λ(t)|λ̄. Non-homogeneous
Poisson processes can also be generated by inversion (Bratley et al., 1987). The
idea is to apply a nonlinear transformation to the time scale to make the process
homogeneous with rate 1 in the new time scale. Arrival times are generated in
this new time scale (which is easy), and then transformed back to the original
time scale. The method can be adapted to other types of point processes with
time-varying rates.

The Ratio-of-Uniforms Method 2.8.6

If f is a density over the real-line, κ an arbitrary positive constant, and the pair
(U, V) has the uniform distribution over the set

C =
{

(u, v) ∈ R2 such that 0 ≤ u ≤ √
κf (v|u)

}
,

then V |U has density f (Kinderman and Monahan, 1977; Devroye, 1986; Gentle,
2003). This interesting property can be exploited to generate X with density f :
generate (U, V) uniformly over C and return X = V |U . This is the ratio-of-
uniforms method. The key issue is how do we generate a point uniformly over C.

64 Pierre L’Ecuyer

In the cases where this can be done efficienly, we immediately have an efficient way
of generating X.

The most frequent approach for generating (U, V) uniformly over C is the
rejection method: Define a region C2 that contains C and in which it is easy to
generate a point uniformly (for example, a rectangular box or a polygonal region).
To generate X, repeat: generate (U, V) uniformly over C2, until it belongs to C.
Then return X = V |U . If there is another region C1 contained in C and for which it
is very fast to check if a point (U, V) is in C1, this C1 can also be used as a squeeze
to accelerate the verification that the point belongs to C. Several special cases and
refinements are described in Devroye (1986), Gentle (2003), Leydold (2000), and
other references given there.

Composition and Convolution2.8.7

Suppose F is a convex combination of several distributions, i.e., F(x) =
∑

j pjFj(x),
or more generally F(x) =

∫
Fy(x)dH(y). To generate from F, one can generate

J = j with probability pj (or Y from H), then generate X from FJ (or FY). This
method, called the composition algorithm, is useful for generating from compound
distributions such as the hyperexponential or from compound Poisson processes.
It is also frequently used to design specialized algorithms for generating from
complicated densities. The idea is to partition the area under the complicated
density into pieces, where piece j has surface pj. To generate X, first select a piece
(choose piece j with probability pj), then draw a random point uniformly over that
piece and project it to the horizontal axis. If the partition is defined so that it is fast
and easy to generate from the large pieces, then X will be returned very quickly
most of the time. The rejection method with a squeeze is often used to generate
from some of the pieces.

A dual method to composition is the convolution method, which can be used
when X = Y1 + Y2 + · · · + Yn, where the Yi’s are independent with specified distri-
butions. With this method, one just generates the Yi’s and sums up. This requires
at least n uniforms. Examples of random variables that can be expressed as sums
like this include the hypoexponential, Erlang, and binomial distributions.

Other Special Techniques2.8.8

Besides the general methods, several specialized and sometimes very elegant tech-
niques have been designed for commonly used distributions such as the Pois-
son distribution with small mean, the normal (e.g., the Box-Muller method), for
generating points uniformly on a k-dimensional sphere, for generating random
permutations, and so on. Details can be found, e.g., in Bratley et al. (1987), Cheng
(1998), Devroye (1986), Fishman (1996),Gentle (2003).

Recently, there has been an effort in developping automatic or black box al-
gorithms for generating variates from an arbitrary (known) density, and reliable
software that implements these methods (Hörmann and Leydold, 2000; Hörmann
et al., 2004; Leydold and Hörmann, 2002; Leydold et al., 2002).

Random Number Generation 65

Acknowledgements. This work has been supported by the Natural Sciences and En-
gineering Research Council of Canada (NSERC) Grant No. ODGP0110050, NATEQ-
Québec grant No. 02ER3218, and a Canada Research Chair to the author. Wolfgang
Hörmann, Josef Leydold, François Panneton, and Richard Simard made helpful
comments and corrections on an earlier draft. The author has been asked to write
chapters on Random Number Generation for several handbooks and encyclo-
pedia recently. Inevitably, there is a large amount of duplication between these
chapters.

References
Aiello, W., Rajagopalan, S., and Venkatesan, R. (1998). Design of practical

and provably good random number generators. Journal of Algorithms, 29(2):
358–389.

Blum, L., Blum, M., and Schub, M. (1986). A simple unpredictable pseudo-random
number generator. SIAM Journal on Computing, 15(2):364–383.

Bratley, P., Fox, B. L., and Schrage, L. E. (1987). A Guide to Simulation. Springer-
Verlag, New York, second edition.

Brown, M. and Solomon, H. (1979). On combining pseudorandom number gener-
ators. Annals of Statistics, 1:691–695.

Chen, H. C. and Asau, Y. (1974). On generating random variates from an empirical
distribution. AIEE Transactions, 6:163–166.

Cheng, R. C. H. (1998). Random variate generation. In Banks, J., editor, Handbook
of Simulation, pages 139–172. Wiley. Chap. 5.

Collings, B. J. (1987). Compound random number generators. Journal of the
American Statistical Association, 82(398):525–527.

Conway, J. H. and Sloane, N. J. A. (1999). Sphere Packings, Lattices and Groups.
Grundlehren der Mathematischen Wissenschaften 290. Springer-Verlag, New
York, 3rd edition.

Couture, R. and L’Ecuyer, P. (1994). On the lattice structure of certain linear
congruential sequences related to AWC|SWB generators. Mathematics of Com-
putation, 62(206):798–808.

Couture, R. and L’Ecuyer, P. (1996). Orbits and lattices for linear random number
generators with composite moduli. Mathematics of Computation, 65(213):189–
201.

Couture, R. and L’Ecuyer, P. (1997). Distribution properties of multiply-with-carry
random number generators. Mathematics of Computation, 66(218):591–607.

Couture, R. and L’Ecuyer, P. (2000). Lattice computations for random numbers.
Mathematics of Computation, 69(230):757–765.

Deng, L.-Y. and George, E. O. (1990). Generation of uniform variates from
several nearly uniformly distributed variables. Communications in Statistics,
B19(1):145–154.

Deng, L.-Y. and Lin, D. K. J. (2000). Random number generation for the new
century. The American Statistician, 54(2):145–150.

66 Pierre L’Ecuyer

Deng, L.-Y. and Xu, H. (2003). A system of high-dimensional, efficient, long-
cycle and portable uniform random number generators. ACM Transactions on
Modeling and Computer Simulation, 13(4):299–309.

Devroye, L. (1986). Non-Uniform Random Variate Generation. Springer-Verlag,
New York.

Eichenauer-Herrmann, J. (1995). Pseudorandom number generation by nonlinear
methods. International Statistical Reviews, 63:247–255.

Eichenauer-Herrmann, J., Herrmann, E., and Wegenkittl, S. (1997). A survey of
quadratic and inversive congruential pseudorandom numbers. In Hellekalek,
P., Larcher, G., Niederreiter, H., and Zinterhof, P., editors, Monte Carlo and
Quasi-Monte Carlo Methods in Scientific Computing, volume 127 of Lecture
Notes in Statistics, pages 66–97, New York. Springer.

Evans, M. and Swartz, T. (2000). Approximating Integrals via Monte Carlo and
Deterministic Methods. Oxford University Press, Oxford, UK.

Fincke, U. and Pohst, M. (1985). Improved methods for calculating vectors of short
length in a lattice, including a complexity analysis. Mathematics of Computa-
tion, 44:463–471.

Fishman, G. S. (1996). Monte Carlo: Concepts, Algorithms, and Applications.
Springer Series in Operations Research. Springer-Verlag, New York.

Fushimi, M. (1983). Increasing the orders of equidistribution of the leading bits of
the Tausworthe sequence. Information Processing Letters, 16:189–192.

Gentle, J. E. (2003). Random Number Generation and Monte Carlo Methods.
Springer, New York, second edition.

Goresky, M. and Klapper, A. (2003). Efficient multiply-with-carry random number
generators with maximal period. ACM Transactions on Modeling and Comput-
er Simulation, 13(4):310–321.

Hellekalek, P. and Larcher, G., editors (1998). Random and Quasi-Random Point
Sets, volume 138 of Lecture Notes in Statistics. Springer, New York.

Hellekalek, P. and Wegenkittl, S. (2003). Empirical evidence concerning AES. ACM
Transactions on Modeling and Computer Simulation, 13(4):322–333.

Hörmann, W. and Leydold, J. (2000). Automatic random variate generation for
simulation input. In Joines, J. A., Barton, R. R., Kang, K., and Fishwick, P. A.,
editors, Proceedings of the 2000 Winter Simulation Conference, pages 675–682,
Pistacaway, NJ. IEEE Press.

Hörmann, W. and Leydold, J. (2003). Continuous random variate generation
by fast numerical inversion. ACM Transactions on Modeling and Computer
Simulation, 13(4):347–362.

Hörmann, W., Leydold, J., and Derflinger, G. (2004). Automatic Nonuniform Ran-
dom Variate Generation. Springer-Verlag, Berlin.

Kinderman, A. J. and Monahan, J. F. (1977). Computer generation of random vari-
ables using the ratio of uniform deviates. ACM Transactions on Mathematical
Software, 3:257–260.

Knuth, D. E. (1998). The Art of Computer Programming, Volume 2: Seminumerical
Algorithms. Addison-Wesley, Reading, Mass., third edition.

Random Number Generation 67

Kronmal, R. A. and Peterson, A. V. (1984). An acceptance-complement analogue
of the mixture-plus-acceptance-rejection method for generating random vari-
ables. ACM Transactions on Mathematical Software, 10:271–281.

Lagarias, J. C. (1993). Pseudorandom numbers. Statistical Science, 8(1):31–39.
Law, A. M. and Kelton, W. D. (2000). Simulation Modeling and Analysis. McGraw-

Hill, New York, third edition.
L’Ecuyer, P. (1990). Random numbers for simulation. Communications of the ACM,

33(10):85–97.
L’Ecuyer, P. (1994). Uniform random number generation. Annals of Operations

Research, 53:77–120.
L’Ecuyer, P. (1996a). Combined multiple recursive random number generators.

Operations Research, 44(5):816–822.
L’Ecuyer, P. (1996b). Maximally equidistributed combined Tausworthe generators.

Mathematics of Computation, 65(213):203–213.
L’Ecuyer, P. (1997). Bad lattice structures for vectors of non-successive values

produced by some linear recurrences. INFORMS Journal on Computing,
9(1):57–60.

L’Ecuyer, P. (1998). Random number generation. In Banks, J., editor, Handbook
of Simulation, pages 93–137. Wiley. Chap. 4.

L’Ecuyer, P. (1999a). Good parameters and implementations for combined multiple
recursive random number generators. Operations Research, 47(1):159–164.

L’Ecuyer, P. (1999b). Tables of linear congruential generators of different sizes and
good lattice structure. Mathematics of Computation, 68(225):249–260.

L’Ecuyer, P. (1999c). Tables of maximally equidistributed combined LFSR
generators. Mathematics of Computation, 68(225):261–269.

L’Ecuyer, P. (2001). Software for uniform random number generation: Distin-
guishing the good and the bad. In Proceedings of the 2001 Winter Simulation
Conference, pages 95–105, Pistacaway, NJ. IEEE Press.

L’Ecuyer, P. (2004). Polynomial integration lattices. In Niederreiter, H., editor,
Monte Carlo and Quasi-Monte Carlo Methods 2002, pages 73–98, Berlin.
Springer-Verlag.

L’Ecuyer, P. and Andres, T. H. (1997). A random number generator based on
the combination of four LCGs. Mathematics and Computers in Simulation,
44:99–107.

L’Ecuyer, P., Blouin, F., and Couture, R. (1993). A search for good multiple recursive
random number generators. ACM Transactions on Modeling and Computer
Simulation, 3(2):87–98.

L’Ecuyer, P. and Côté, S. (1991). Implementing a random number package with
splitting facilities. ACM Transactions on Mathematical Software, 17(1):98–111.

L’Ecuyer, P. and Couture, R. (1997). An implementation of the lattice and spectral
tests for multiple recursive linear random number generators. INFORMS
Journal on Computing, 9(2):206–217.

L’Ecuyer, P. and Granger-Piché, J. (2003). Combined generators with compo-
nents from different families. Mathematics and Computers in Simulation,
62:395–404.

68 Pierre L’Ecuyer

L’Ecuyer, P. and Hellekalek, P. (1998). Random number generators: Selection
criteria and testing. In Hellekalek, P. and Larcher, G., editors, Random and
Quasi-Random Point Sets, volume 138 of Lecture Notes in Statistics, pages
223–265. Springer, New York.

L’Ecuyer, P. and Lemieux, C. (2000). Variance reduction via lattice rules.
Management Science, 46(9):1214–1235.

L’Ecuyer, P. and Lemieux, C. (2002). Recent advances in randomized quasi-Monte
Carlo methods. In Dror, M., L’Ecuyer, P., and Szidarovszki, F., editors,
Modeling Uncertainty: An Examination of Stochastic Theory, Methods, and
Applications, pages 419–474. Kluwer Academic Publishers, Boston.

L’Ecuyer, P. and Panneton, F. (2002). Construction of equidistributed generators
based on linear recurrences modulo 2. In Fang, K.-T., Hickernell, F. J., and
Niederreiter, H., editors, Monte Carlo and Quasi-Monte Carlo Methods 2000,
pages 318–330. Springer-Verlag, Berlin.

L’Ecuyer, P. and Proulx, R. (1989). About polynomial-time “unpredictable”
generators. In Proceedings of the 1989 Winter Simulation Conference, pages
467–476. IEEE Press.

L’Ecuyer, P. and Simard, R. (1999). Beware of linear congruential generators with
multipliers of the form a = ±2q ± 2r. ACM Transactions on Mathematical
Software, 25(3):367–374.

L’Ecuyer, P. and Simard, R. (2001). On the performance of birthday spacings
tests for certain families of random number generators. Mathematics and
Computers in Simulation, 55(1–3):131–137.

L’Ecuyer, P. and Simard, R. (2002). TestU01: A Software Library in ANSI C for
Empirical Testing of Random Number Generators. Software user’s guide.

L’Ecuyer, P., Simard, R., Chen, E. J., and Kelton, W. D. (2002a). An object-oriented
random-number package with many long streams and substreams. Operations
Research, 50(6):1073–1075.

L’Ecuyer, P., Simard, R., and Wegenkittl, S. (2002b). Sparse serial tests of unifor-
mity for random number generators. SIAM Journal on Scientific Computing,
24(2):652–668.

L’Ecuyer, P. and Tezuka, S. (1991). Structural properties for two classes of combined
random number generators. Mathematics of Computation, 57(196):735–746.

L’Ecuyer, P. and Touzin, R. (2000). Fast combined multiple recursive generators
with multipliers of the form a = ±2q ± 2r. In Joines, J. A., Barton, R. R., Kang,
K., and Fishwick, P. A., editors, Proceedings of the 2000 Winter Simulation
Conference, pages 683–689, Pistacaway, NJ. IEEE Press.

L’Ecuyer, P. and Touzin, R. (2004). On the Deng-Lin random number generators
and related methods. Statistics and Computing, 14:5–9.

Leeb, H. (1995). Random numbers for computer simulation. Master’s thesis,
University of Salzburg.

Lemieux, C. and L’Ecuyer, P. (2003). Randomized polynomial lattice rules
for multivariate integration and simulation. SIAM Journal on Scientific
Computing, 24(5):1768–1789.

Random Number Generation 69

Leydold, J. (2000). Automatic sampling with the ratio-of-uniform method. ACM
Transactions on Mathematical Software, 26(1):78–98.

Leydold, J. and Hörmann, W. (2002). UNURAN—A Library for Universal
Non-Uniform Random Number Generators. Available at http://statistik.wu-
wien.ac.at/unuran.

Leydold, J., Janka, E., and Hörmann, W. (2002). Variants of transformed density
rejection and correlation induction. In Fang, K.-T., Hickernell, F. J., and
Niederreiter, H., editors, Monte Carlo and Quasi-Monte Carlo Methods 2000,
pages 345–356, Berlin. Springer-Verlag.

Luby, M. (1996). Pseudorandomness and Cryptographic Applications. Princeton
University Press, Princeton.

Lüscher, M. (1994). A portable high-quality random number generator for lattice
field theory simulations. Computer Physics Communications, 79:100–110.

Marsaglia, G. (1985). A current view of random number generators. In Computer
Science and Statistics, Sixteenth Symposium on the Interface, pages 3–10,
North-Holland, Amsterdam. Elsevier Science Publishers.

Marsaglia, G. (1996). The Marsaglia random number CDROM including the
DIEHARD battery of tests of randomness. See http://stat.fsu.edu/pub/diehard.

Marsaglia, G. and Zaman, A. (1991). A new class of random number generators.
The Annals of Applied Probability, 1:462–480.

Marsaglia, G., Zaman, A., and Marsaglia, J. C. W. (1994). Rapid evaluation of
the inverse normal distribution function. Statistic and Probability Letters,
19:259–266.

Matsumoto, M. and Kurita, Y. (1992). Twisted GFSR generators. ACM Transactions
on Modeling and Computer Simulation, 2(3):179–194.

Matsumoto, M. and Kurita, Y. (1994). Twisted GFSR generators II. ACM
Transactions on Modeling and Computer Simulation, 4(3):254–266.

Matsumoto, M. and Kurita, Y. (1996). Strong deviations from randomness
in m-sequences based on trinomials. ACM Transactions on Modeling and
Computer Simulation, 6(2):99–106.

Matsumoto, M. and Nishimura, T. (1998). Mersenne twister: A 623-dimensionally
equidistributed uniform pseudo-random number generator. ACM Transac-
tions on Modeling and Computer Simulation, 8(1):3–30.

Nelson, B. L. and Yamnitsky, M. (1998). Input modeling tools for complex
problems. In Proceedings of the 1998 Winter Simulation Conference, pages
105–112, Piscataway, NJ. IEEE Press.

Niederreiter, H. (1992). Random Number Generation and Quasi-Monte Carlo
Methods, volume 63 of SIAM CBMS-NSF Regional Conference Series in Applied
Mathematics. SIAM, Philadelphia.

Niederreiter, H. (1995). The multiple-recursive matrix method for pseudorandom
number generation. Finite Fields and their Applications, 1:3–30.

Niederreiter, H. and Shparlinski, I. E. (2002). Recent advances in the theory of
nonlinear pseudorandom number generators. In Fang, K.-T., Hickernell, F. J.,
and Niederreiter, H., editors, Monte Carlo and Quasi-Monte Carlo Methods
2000, pages 86–102, Berlin. Springer-Verlag.

70 Pierre L’Ecuyer

Nishimura, T. (2000). Tables of 64-bit Mersenne twisters. ACM Transactions on
Modeling and Computer Simulation, 10(4):348–357.

Panneton, F. and L’Ecuyer, P. (2004). Random number generators based on linear
recurrences in F2w . In Niederreiter, H., editor, Monte Carlo and Quasi-Monte
Carlo Methods 2002, pages 367–378, Berlin. Springer-Verlag.

Read, T. R. C. and Cressie, N. A. C. (1988). Goodness-of-Fit Statistics for Discrete
Multivariate Data. Springer Series in Statistics. Springer-Verlag, New York.

Rukhin, A., Soto, J., Nechvatal, J., Smid, M., Barker, E., Leigh, S., Levenson, M., Van-
gel,M.,Banks,D.,Heckert,A.,Dray, J., andVo,S. (2001). Astatistical test suite for
randomandpseudorandomnumbergenerators for cryptographicapplications.
NIST special publication 800-22, National Institute of Standards and Technol-
ogy (NIST), Gaithersburg, Maryland, USA. See http://csrc.nist.gov/rng/.

Tausworthe, R. C. (1965). Random numbers generated by linear recurrence
modulo two. Mathematics of Computation, 19:201–209.

Tezuka, S. (1995). Uniform Random Numbers: Theory and Practice. Kluwer
Academic Publishers, Norwell, Mass.

Tezuka, S. and L’Ecuyer, P. (1991). Efficient and portable combined Tausworthe
random number generators. ACM Transactions on Modeling and Computer
Simulation, 1(2):99–112.

Tezuka, S., L’Ecuyer, P., and Couture, R. (1994). On the add-with-carry and
subtract-with-borrow random number generators. ACM Transactions of
Modeling and Computer Simulation, 3(4):315–331.

Tootill, J. P. R., Robinson, W. D., and Eagle, D. J. (1973). An asymptotically random
Tausworthe sequence. Journal of the ACM, 20:469–481.

Vattulainen, I., Ala-Nissila, T., and Kankaala, K. (1995). Physical models as tests
of randomness. Physical Review E, 52(3):3205–3213.

von Neumann, J. (1951). Various techniques used in connection with random
digits. In Householder, A. S. et al., editors, The Monte Carlo Method, number 12
in National Bureau of Standards Applied Mathematics Series, pages 36–38.

Wagner, M. A. F. and Wilson, J. R. (1996). Using univariate Bézier distributions to
model simulation input processes. IIE Transactions, 28:699–711.

Walker, A. J. (1974). New fast method for generating discrete random numbers
with arbitrary frequency distributions. Electronic Letters, 10:127–128.

Walker, A. J. (1977). An efficient method for generating discrete random variables
with general distributions. ACM Transactions on Mathematical Software,
3:253–256.

Wang, D. and Compagner, A. (1993). On the use of reducible polynomials as
random number generators. Mathematics of Computation, 60:363–374.

Wegenkittl, S. and Matsumoto, M. (1999). Getting rid of correlations among
pseudorandom numbers: Discarding versus tempering. ACM Transactions on
Modeling and Computer Simulation, 9(3):282–294.

Wu, P.-C. (1997). Multiplicative, congruential random number generators with
multiplier ±2k1 ± 2k2 and modulus 2p − 1. ACM Transactions on Mathematical
Software, 23(2):255–265.

II.3Markov Chain
Monte Carlo Technology

Siddhartha Chib

3.1 Introduction . 72

Organization . 74

3.2 Markov Chains . 74

Definitions and Results . 75
Computation of Numerical Accuracy and Inefficiency Factor . 78

3.3 Metropolis–Hastings Algorithm .. 79

Convergence Results . 82
Example . 83
Multiple-Block M–H Algorithm . 86

3.4 The Gibbs Sampling Algorithm .. 89

The Algorithm . 89
Invariance of the Gibbs Markov Chain . 91
Sufficient Conditions for Convergence . 91
Example: Simulating a Truncated Multivariate Normal . 92

3.5 MCMC Sampling with Latent Variables . 92

3.6 Estimation of Density Ordinates. 95

3.7 Sampler Performance and Diagnostics . 96

3.8 Strategies for Improving Mixing . 97

Choice of Blocking . 97
Tuning the Proposal Density . 98
Other Strategies . 98

3.9 Concluding Remarks . 98

72 Siddhartha Chib

Introduction3.1

In the past fifteen years computational statistics has been enriched by a power-
ful, somewhat abstract method of generating variates from a target probability
distribution that is based on Markov chains whose stationary distribution is the
probability distribution of interest. This class of methods, popularly referred to as
Markov chain Monte Carlo methods, or simply MCMC methods, have been influ-
ential in the modern practice of Bayesian statistics where these methods are used
to summarize the posterior distributions that arise in the context of the Bayesian
prior-posterior analysis (Tanner and Wong, 1987; Gelfand and Smith, 1990; Smith
and Roberts, 1993; Tierney, 1994; Besag et al., 1995; Chib and Greenberg, 1995, 1996;
Gilks et al., 1996; Tanner, 1996; Gammerman, 1997; Robert and Casella, 1999; Carlin
and Louis, 2000; Chen et al., 2000; Chib, 2001; Congdon, 2001; Liu, 2001; Robert,
2001; Gelman et al., 2003). MCMC methods have proved useful in practically all
aspects of Bayesian inference, for example, in the context of prediction problems
and in the computation of quantities, such as the marginal likelihood, that are used
for comparing competing Bayesian models.

A central reason for the widespread interest in MCMC methods is that these
methods are extremely general and versatile and can be used to sample univariate
and multivariate distributions when other methods (for example classical methods
that produce independent and identically distributed draws) either fail or are
difficult to implement. The fact that MCMC methods produce dependent draws
causes no substantive complications in summarizing the target distribution. For
example, if {ψ(1), … , ψ(M)} are draws from a (say continuous) target distribution
π(ψ), where ψ ∈ �d, then the expectation of h(ψ) under π can be estimated by
the average

M−1
M∑

j=1

h
(
ψ(j)

)
, (3.1)

as in the case of random samples, because suitable laws of large numbers for
Markov chains can be used to show that

M−1
M∑

j=1

h
(
ψ(j)

) →
∫

�d

h(ψ)π(ψ)dψ ,

as the simulation sample size M becomes large.
Another reason for the interest in MCMC methods is that, somewhat surpris-

ingly, it is rather straightforward to construct one or more Markov chains whose
limiting invariant distribution is the desired target distribution. One way to con-
struct the appropriate Markov chain is by a method called the Metropolis method
which was introduced by Metropolis et al. (1953) in connection with work related
to the hydrogen bomb project. In this method, the Markov chain simulation is
constructed by a recursive two step process. Given the current iterate ψ(j), a pro-

Markov Chain Monte Carlo Technology 73

posal value ψ′ is drawn from a distribution q(ψ(j), ·), such that ψ′ is symmetrically
distributed about the current value ψ(j). In the second step, this proposal value is
accepted as the next iterate ψ(j+1) of the Markov chain with probability

α
(
ψ(j), ψ′) = min

{

1,
π(ψ′)
π
(
ψ(j)

)

}

.

If the proposal value is rejected, then ψ(j+1) is taken to be the current value. The
method is simple to implement, even in multivariate settings, and was widely used
by physicists in computational statistical mechanics and quantum field theory
to sample the coordinates of a point in phase space. In those settings, and in
subsequent statistical problems, it is helpful that the method can be implemented
without knowledge of the normalizing constant of π since that constant cancels in
the determination of the probability α(ψ(j), ψ′).

The requirement that the proposal distribution be symmetric about the current
value was relaxed by Hastings (1970). The resulting method, commonly called the
Metropolis–Hastings (M–H) method, relies on the same two steps of the Metropolis
method except that the probability of move is given by

α
(
ψ(j), ψ′) = min

{

1,
π
(
ψ′)

π
(
ψ(j)

)
q
(
ψ′, ψ(j)

)

q
(
ψ(j), ψ′)

}

which clearly reduces to the Metropolis probability of move when the proposal
distribution is symmetric in its arguments. Starting with an arbitrary value ψ(0) in
the support of the target distributions, iterations of this two step process produce
the (correlated) sequence of values

{
ψ(0), ψ(1), ψ(2), …

}
.

Typically, a certain number of values (say n0) at the start of this sequence are
discarded and the subsequent (say) M values are used as variates from the target
distribution.

Inapplicationswhen thedimensionof ψ is large itmaybepreferable to construct
the Markov chain simulation by first grouping the variables ψ into smaller blocks.
For simplicity suppose that two blocks are adequate and that ψ is written as
(ψ1, ψ2), with ψk ∈ Ωk ⊆ �dk . In that case, the M–H chain can be constructed by

updating ψ1 given
(
ψ(j),

1 ψ(j)
2

)
to produce ψ(j)

1 and then

updating ψ2 given
(
ψ(j+1)

1 , ψ(j)
2

)
to produce ψ(j+1)

2 ,

which completes one cycle through twosub-moves. Chib andGreenberg (1995)who
emphasized and highlighted such M–H chains have referred to them as multiple-
block M–H algorithms.

Despite the long vintage of the M–H method, the contemporary interest in
MCMC methods was sparked by work on a related MCMC method, the Gibbs

74 Siddhartha Chib

sampling algorithm. The Gibbs sampling algorithm is one of the simplest Markov
chain Monte Carlo algorithms and has its origins in the work of Besag (1974)
on spatial lattice systems, Geman and Geman (1984) on the problem of image
processing, and Tanner and Wong (1987) on missing data problems. The paper
by Gelfand and Smith (1990) helped to demonstrate the value of the Gibbs al-
gorithm for a range of problems in Bayesian analysis. In the Gibbs sampling
method, the Markov chain is constructed by simulating the conditional distribu-
tions that are implied by π(ψ). In particular, if ψ is split into two components
ψ1 and ψ2, then the Gibbs method proceeds through the recursive sampling of
the conditional distributions π(ψ1|ψ2) and π(ψ2|ψ1), where the most recent val-
ue of ψ2 is used in the first simulation and the most recent value of ψ1 in the
second simulation. This method is most simple to implement when each condi-
tional distribution is a known distribution that is easy to sample. As we show
below, the Gibbs sampling method is a special case of the multiple block M–H
algorithm.

Organization3.1.1

The rest of the chapter is organized as follows. In Sect. 3.2 we summarize the
relevant Markov chain theory that justifies simulation by MCMC methods. In par-
ticular, we provide the conditions under which discrete-time and continuous state
space Markov chains satisfy a law of large numbers and a central limit theorem.
The M–H algorithm is discussed in Sect. 3.3 followed by the Gibbs sampling algo-
rithm in Sect. 3.4. Section 3.5 deals with MCMC methods with latent variables and
Sect. 3.6withwaysof estimating themarginal densities basedon theMCMCoutput.
Issues related to sampler performance are considered in Sect. 3.7 and strategies for
improving the mixing of the Markov chains in Sect. 3.8. Section 3.9 concludes with
brief comments about new and emerging directions in MCMC methods.

Markov Chains3.2

Markov chain Monte Carlo is a method to sample a given multivariate distribu-
tion π∗ by constructing a suitable Markov chain with the property that its limiting,
invariant distribution, is the target distribution π∗. In most problems of interest,
the distribution π∗ is absolutely continuous and, as a result, the theory of MCMC
methods is based on that of Markov chains on continuous state spaces outlined,
for example, in Nummelin (1984) and Meyn and Tweedie (1993). Tierney (1994)
is the fundamental reference for drawing the connections between this elaborate
Markov chain theory and MCMC methods. Basically, the goal of the analysis is
to specify conditions under which the constructed Markov chain converges to the
invariant distribution, and conditions under which sample path averages based on
the output of the Markov chain satisfy a law of large numbers and a central limit
theorem.

Markov Chain Monte Carlo Technology 75

Definitions and Results 3.2.1

A Markov chain is a collection of random variables (or vectors) Φ = {Φi : i ∈ T}
where T = {0, 1, 2, …}. The evolution of the Markov chain on a space Ω ⊆ �p is
governed by the transition kernel

P(x, A) ≡ Pr(Φi+1 ∈ A|Φi = x, Φj, j < i)

= Pr(Φi+1 ∈ A|Φi = x) , x ∈ Ω , A ⊂ Ω ,

where the second line embodies the Markov property that the distribution of each
succeeding state in the sequence, given the current and the past states, depends
only on the current state.

Generally, the transition kernel in Markov chain simulations has both a contin-
uous and discrete component. For some function p(x, y) : Ω×Ω→ �+, the kernel
can be expressed as

P(x, dy) = p(x, y)dy + r(x)δx(dy) , (3.2)

where p(x, x) = 0, δx(dy) = 1 if x ∈ dy and 0 otherwise, r(x) = 1 −
∫
Ω p(x, y) dy.

This transition kernel specifies that transitions from x to y occur according to
p(x, y) and transitions from x to x occur with probability r(x).

The transition kernel is thus the distribution of Φi+1 given that Φi = x. The nth
step ahead transition kernel is given by

P(n)(x, A) =
∫

Ω

P(x, dy) P(n−1)(y, A) ,

where P(1)(x, dy) = P(x, dy) and

P(x, A) =
∫

A

P(x, dy) . (3.3)

The goal is to find conditions under which the nth iterate of the transition kernel
converges to the invariant distribution π∗ as n → ∞. The invariant distribution is
one that satisfies

π∗(dy) =
∫

Ω

P(x, dy)π(x) dx , (3.4)

where π is the density of π∗ with respect to the Lebesgue measure. The invariance
condition states that if Φi is distributed according to π∗, then all subsequent ele-
ments of the chain are also distributed as π∗. Markov chain samplers are invariant
by construction and therefore the existence of the invariant distribution does not
have to be checked.

76 Siddhartha Chib

A Markov chain is reversible if the function p(x, y) in (3.2) satisfies

f (x)p(x, y) = f (y)p(y, x) , (3.5)

for a density f (·). If this condition holds, it can be shown that f (·) = π(·) and has
π∗ as an invariant distribution (Tierney, 1994). To verify this we evaluate the right
hand side of (3.4):

∫
P(x, A)π(x) dx =

∫ {∫

A
p(x, y) dy

}
π(x) dx +

∫
r(x)δx(A)π(x) dx

=
∫

A

{∫
p(x, y)π(x) dx

}
dy +

∫

A
r(x)π(x) dx

=
∫

A

{∫
p(y, x)π(y) dx

}
dy +

∫

A
r(x)π(x) dx

=
∫

A
(1 − r(y))π(y) dy +

∫

A
r(x)π(x) dx

=
∫

A
π(y) dy . (3.6)

A minimal requirement on the Markov chain for it to satisfy a law of large
numbers is the requirement of π∗-irreducibility. This means that the chain is able
to visit all sets with positive probability under π∗ from any starting point in Ω.
Formally, a Markov chain is said to be π∗-irreducible if for every x ∈ Ω,

π∗(A) > 0 ⇒ P(Φi ∈ A|Φ0 = x) > 0

for some i ≥ 1. If the space Ω is connected and the function p(x, y) is positive
and continuous, then the Markov chain with transition kernel given by (3.3) and
invariant distribution π∗ is π∗-irreducible.

Another important property of a chain is aperiodicity, which ensures that the
chain does not cycle through a finite number of sets. A Markov chain is aperiodic
if there exists no partition of Ω = (D0, D1, … , Dp−1) for some p ≥ 2 such that
P(Φi ∈ Di mod (p)|Φ0 ∈ D0) = 1 for all i.

These definitions allow us to state the following results from Tierney (1994)
which form the basis for Markov chain Monte Carlo methods. The first of these
results gives conditions under which a strong law of large numbers holds and the
second gives conditions under which the probability density of the Mth iterate of
the Markov chain converges to its unique, invariant density.

Markov Chain Monte Carlo Technology 77

1Theorem 1 Suppose {Φi} is a π∗-irreducible Markov chain with transition kernel
P(·, ·) and invariant distribution π∗, then π∗ is the unique invariant distribution of
P(·, ·) and for all π∗-integrable real-valued functions h,

1

M

M∑

i=1

h(Φi) →
∫

h(x)π(x)dx as M → ∞ , a.s.

2Theorem 2 Suppose {Φi} is a π∗-irreducible, aperiodic Markov chain with transi-
tion kernel P(·, ·) and invariant distribution π∗. Then for π∗-almost every x ∈ Ω,
and all sets A

‖ PM(x, A) − π∗(A) ‖→ 0 as M → ∞ ,

where ‖ · ‖ denotes the total variation distance.

A further strengthening of the conditions is required to obtain a central lim-
it theorem for sample-path averages. A key requirement is that of an ergodic
chain, i.e., chains that are irreducible, aperiodic and positive Harris-recurrent
(for a definition of the latter, see Tierney (1994). In addition, one needs the no-
tion of geometric ergodicity. An ergodic Markov chain with invariant distribution
π∗ is a geometrically ergodic if there exists a non-negative real-valued function
(bounded in expectation under π∗) and a positive constant r < 1 such that

‖ PM(x, A) − π∗(A) ‖≤ C(x)rn

for all x and all n and sets A. Chan and Ledolter (1995) show that if the Markov
chain is ergodic, has invariant distribution π∗, and is geometrically ergodic, then
for all L2 measurable functions h, taken to be scalar-valued for simplicity, and any
initial distribution, the distribution of

√
M(ĥM −Eh) converges weakly to a normal

distribution with mean zero and variance σ2
h ≥ 0, where

ĥM =
1

M

M∑

i=1

h(Φi)

Eh =
∫

h(Φ)π(Φ)dΦ

and

σ2
h = Var h(Φ0) + 2

∞∑

k=1

Cov [{h(Φ0), h(Φk)}] . (3.7)

78 Siddhartha Chib

Computation of Numerical Accuracy
and Inefficiency Factor3.2.2

The square root of σ2
h is the numerical standard error of ĥM . To describe estimators

of σ2
h that are consistent in M, let Zi = h(Φi) (i ≤ M). Then, due to the fact that

{Zi} is a dependent sequence

Var
(

ĥM

)
= M−2

∑

j,k

Cov (Zj, Zk)

= s2M−2
M∑

j,k=1

ρ|j−k|

= s2M−1

{

1 + 2
M∑

s=1

(
1 −

s

M

)
ρs

}

,

where s2 is the sample variance of {Zi} and ρs is the estimated autocorrelation at
lag s (see Ripley, 1987, Chap. 6). If ρs > 0 for each s, then this variance is larger
than s2|M which is the variance under independence. Another estimate of the
variance can be found by consistently estimating the spectral density f of {Zi} at
frequency zero and using the fact that Var (ĥM) = τ2|M, where τ2 = 2πf (0). Finally,
a traditional approach to finding the variance is by the method of batch means.
In this approach, the data (Z1, … , ZM) is divided into k batches of length m with
means Bi = m−1[Z(i−1)m+1 + … + Zim] and the variance of ĥM estimated as

Var
(

ĥM

)
=

1

k(k − 1)

k∑

i=1

(
Bi − B̄

)2
, (3.8)

where the batch size m is chosen to ensure that the first order serial correlation of
the batch means is less than 0.05.

Given the numerical variance it is common to calculate the inefficiency factor,
which is also called the autocorrelation time, defined as

κĥ =
Var

(
ĥM

)

s2|M
. (3.9)

This quantity is interpreted as the ratio of the numerical variance of ĥM to the
variance of ĥM based on independent draws, and its inverse is the relative numeri-
cal efficiency defined in Geweke (1992). Because independence sampling produces
an autocorrelation time that is theoretically equal to one and Markov chain sam-
pling produces autocorrelation times that are bigger than one, the inefficiency
factor serves to quantify the relative efficiency loss in the computation of ĥM from
correlated versus independent samples.

Markov Chain Monte Carlo Technology 79

Metropolis–Hastings Algorithm 3.3

This powerful algorithm provides a general approach for producing a correlated
sequence of draws from the target density that may be difficult to sample by a clas-
sical independence method. The goal is to simulate the d-dimensional distribution
π∗(ψ), ψ ∈ Ψ ⊆ �d that has density π(ψ) with respect to some dominating mea-
sure. To define the algorithm, let q(ψ, ψ′) denote a source density for a candidate
draw ψ′ given the current valueψ in the sampled sequence. The density q(ψ, ψ′) is
referred to as the proposal or candidate generating density. Then, the M–H algo-
rithm is defined by two steps: a first step in which a proposal value is drawn from
the candidate generating density and a second step in which the proposal value
is accepted as the next iterate in the Markov chain according to the probability
α(ψ, ψ′), where

α(ψ, ψ′) =

min

[
π(ψ′)q(ψ′, ψ)

π(ψ)q(ψ, ψ′)
, 1

]
if π(ψ)q(ψ, ψ′) > 0 ;

1 otherwise .
(3.10)

If the proposal value is rejected, then the next sampled value is taken to be the cur-
rent value. In algorithmic form, the simulated values are obtained by the following
recursive procedure.

Algorithm 1: Metropolis–Hastings
1. Specify an initial value ψ(0):
2. Repeat for j = 1, 2, … , M.

a) Propose

ψ′ ∼ q
(
ψ(j), ·)

b) Let

ψ(j+1) =

ψ′ if Unif (0, 1) ≤ α

(
ψ(j), ψ′) ;

ψ(j) otherwise .

3. Return the values
{
ψ(1), ψ(2), … , ψ(M)

}
.

Typically, a certain number of values (say n0) at the start of this sequence
are discarded after which the chain is assumed to have converged to it invariant
distribution and the subsequent draws are taken as approximate variates from π.
Because theoretical calculation of the burn-in is not easy it is important that the
proposal density is chosen to ensure that the chain makes large moves through
the support of the invariant distribution without staying at one place for many
iterations. Generally, the empirical behavior of the M–H output is monitored by

80 Siddhartha Chib

Figure 3.1. Original Metropolis algorithm: higher density proposal is accepted with probability one

and the lower density proposal with probability α

the autocorrelation time of each component of ψ and by the acceptance rate, which
is the proportion of times a move is made as the sampling proceeds.

One should observe that the target density appears as a ratio in the probability
α(ψ, ψ′) and therefore the algorithm can be implemented without knowledge of
the normalizing constant ofπ(·). Furthermore, if the candidate-generating density
is symmetric, i.e. q(ψ, ψ′) = q(ψ′, ψ), the acceptance probability only contains the
ratio π(ψ′)|π(ψ); hence, if π(ψ′) ≥ π(ψ), the chain moves to ψ′, otherwise it
moves with probability given by π(ψ′)|π(ψ). The latter is the algorithm originally
proposed by Metropolis et al. (1953). This version of the algorithm is illustrated in
Fig. 3.1.

Different proposal densities give rise to specific versions of the M–H algorithm,
each with the correct invariant distribution π. One family of candidate-generating
densities is given by q(ψ, ψ′) = q(ψ′−ψ). The candidate ψ′ is thus drawn according
to the process ψ′ = ψ + z, where z follows the distribution q. Since the candidate
is equal to the current value plus noise, this case is called a random walk M–H
chain. Possible choices for q include the multivariate normal density and the
multivariate-t. The random walk M–H chain is perhaps the simplest version of
the M–H algorithm (and was the one used by Metropolis et al., 1953) and popular
in applications. One has to be careful, however, in setting the variance of z; if it
is too large it is possible that the chain may remain stuck at a particular value
for many iterations while if it is too small the chain will tend to make small
moves and move inefficiently through the support of the target distribution. In
both cases the generated draws that will be highly serially correlated. Note that

Markov Chain Monte Carlo Technology 81

when q is symmetric, q(z) = q(−z) and the probability of move only contains the
ratio π(ψ′)|π(ψ). As mentioned earlier, the same reduction occurs if q(ψ, ψ′) =
q(ψ′, ψ).

Hastings (1970) considers a second family of candidate-generating densities
that are given by the form q(ψ, ψ′) = q(y). Tierney (1994) refers to this as an
independence M–H chain because, in contrast to the random walk chain, the
candidates are drawn independently of the current location ψ. In this case, the
probability of move becomes

α(ψ, ψ′) = min

{
w(ψ′)
w(ψ)

, 1

}
;

where w(ψ) = π(ψ)|q(ψ) is the ratio of the target and proposal densities. For this
method to work and not get stuck in the tails of π, it is important that the proposal
density have thicker tails thanπ. A similar requirement is placed on the importance
sampling function in the method of importance sampling (Geweke, 1989). In fact,
Mengersen and Tweedie (1996) show that if w(ψ) is uniformly bounded then the
resulting Markov chain is ergodic.

Chib and Greenberg (1994, 1995) discuss a way of formulating proposal densi-
ties in the context of time series autoregressive-moving average models that has
a bearing on the choice of proposal density for the independence M–H chain. They
suggest matching the proposal density to the target at the mode by a multivari-
ate normal or multivariate-t distribution with location given by the mode of the
target and the dispersion given by inverse of the Hessian evaluated at the mode.
Specifically, the parameters of the proposal density are taken to be

m = arg max logπ(ψ) and

V = τ
{

−
∂2 logπ(ψ)

∂ψ∂ψ′

}−1

ψ=ψ̂
, (3.11)

where τ is a tuning parameter that is adjusted to control the acceptance rate.
The proposal density is then specified as q(ψ′) = f (ψ′|m, V), where f is some
multivariate density. This may be called a tailored M–H chain.

Another way to generate proposal values is through a Markov chain version of
the accept-reject method. In this version, due to Tierney (1994), and considered in
detail by Chib and Greenberg (1995), a pseudo accept-reject step is used to generate
candidates for an M–H algorithm. Suppose c > 0 is a known constant and h(ψ)
a sourcedensity. Let C = {ψ : π(ψ) ≤ ch(ψ)}denote the setof value forwhich ch(ψ)
dominates the target density and assume that this set has high probability under
π∗. Given ψ(n) = ψ, the next value ψ(n+1) is obtained as follows: First, a candidate
value ψ′ is obtained, independent of the current value ψ, by applying the accept-
reject algorithm with ch(·) as the “pseudo dominating” density. The candidates
ψ′ that are produced under this scheme have density q(ψ′) ∝ min{π(ψ′), ch(ψ′)}.

82 Siddhartha Chib

If we let w(ψ) = c−1π(ψ)|h(ψ) then it can be shown that the M–H probability of
move is given by

α(ψ, ψ′) =

1 if ψ ∈ C

1|w(ψ) if ψ |∈ C , ψ′ ∈ C

min
{

w(ψ′)|w(ψ), 1
}

if ψ |∈ C , ψ′ |∈ C

. (3.12)

Convergence Results3.3.1

In the M–H algorithm the transition kernel of the chain is given by

P(ψ, dψ′) = q(ψ, ψ′)α(ψ, ψ′) dψ′ + r(ψ)δψ(dψ′) , (3.13)

where δψ(dψ′) = 1 if ψ ∈ dψ′ and 0 otherwise and

r(ψ) = 1 −

∫

Ω

q(ψ, ψ′)α(ψ, ψ′) dψ′ .

Thus, transitions from ψ to ψ′ (ψ′ ≠ ψ) are made according to the density

p(ψ, ψ′) ≡ q(ψ, ψ′)α(ψ, ψ′), ψ ≠ ψ′

while transitions from ψ to ψ occur with probability r(ψ). In other words, the
density function implied by this transition kernel is of mixed type,

K(ψ, ψ′) = q(ψ, ψ′)α(ψ, ψ′) + r(ψ)δψ(ψ′) , (3.14)

having both a continuous and discrete component, where now, with change of
notation, δψ(ψ′) is the Dirac delta function defined as δψ(ψ′) = 0 for ψ′ ≠ ψ and∫
Ω δψ(ψ′)dψ′ = 1.

Chib and Greenberg (1995) provide a way to derive and interpret the probability
of moveα(ψ, ψ′). Consider the proposal density q(ψ, ψ′). This proposal density q is
not likely to be reversible forπ (if it were then we would be done and M–H sampling
would not be necessary). Without loss of generality, suppose that π(ψ)q(ψ, ψ′) >
π(ψ′)q(ψ′, ψ) implying that the rate of transitions from ψ to ψ′ exceed those in
the reverse direction. To reduce the transitions from ψ to ψ′ one can introduce
a function 0 ≤ α(ψ, ψ′) ≤ 1 such that π(ψ)q(ψ, ψ′)α(ψ, ψ′) = π(ψ′)q(ψ′, ψ).
Solving for α(ψ, ψ′) yields the probability of move in the M–H algorithm. This cal-
culation reveals the important point that the function p(ψ, ψ′) = q(ψ, ψ′)α(ψ, ψ′)
is reversible by construction, i.e., it satisfies the condition

q(ψ, ψ′)α(ψ, ψ′)π(ψ) = q(ψ′, ψ)α(ψ′, ψ)π(ψ′) . (3.15)

It immediately follows, therefore, from the argument in (3.6) that the M–H kernel
has π(ψ) as its invariant density.

It is not difficult to provide conditions under which the Markov chain generated
by the M–H algorithm satisfies the conditions of Propositions 1–2. The conditions

Markov Chain Monte Carlo Technology 83

of Proposition 1 are satisfied by the M–H chain if q(ψ, ψ′) is positive for (ψ, ψ′) and
continuous and the set ψ is connected. In addition, the conditions of Proposition 2
are satisfied if q is not reversible (which is the usual situation) which leads to
a chain that is aperiodic. Conditions for ergodicity, required for use of the central
limit theorem, are satisfied if in addition π is bounded. Other similar conditions
are provided by Robert and Casella (1999).

Example 3.3.2

To illustrate the M–H algorithm, consider the binary response data in Table 3.1,
taken from Fahrmeir and Tutz (1997), on the occurrence or non-occurrence of
infection following birth by caesarean section. The response variable y is one if the
caesarean birth resulted in an infection, and zero if not. There are three covariates:
x1, an indicator of whether the caesarean was non-planned; x2, an indicator of
whether risk factors were present at the time of birth and x3, an indicator of
whether antibiotics were given as a prophylaxis. The data in the table contains
information from 251 births. Under the column of the response, an entry such
as 11|87 means that there were 98 deliveries with covariates (1, 1, 1) of whom 11
developed an infection and 87 did not.

Table 3.1. Caesarean infection data

Y (1|0) x1 x2 x3

11|87 1 1 1

1|17 0 1 1

0|2 0 0 1

23|3 1 1 0

28|30 0 1 0

0|9 1 0 0

8|32 0 0 0

Suppose that the probability of infection for the ith birth (i ≤ 251) is

Pr(yi = 1|xi, β) = Φ(x′iβ) , (3.16)

β ∼ N4(0, 5I4) , (3.17)

where xi = (1, xi1, xi2, xi3)� is the covariate vector, β = (β0, β1, β2, β3) is the vector
of unknown coefficients, Φ is the cdf of the standard normal random variable and
I4 is the four-dimensional identity matrix. The target posterior density, under the
assumption that the outcomes y = (y1, y2, … , y251) are conditionally independent,
is

π(β|y) ∝ π(β)
251∏

i=1

Φ
(
x�i β

)yi {1 − Φ
(
x�

i β
)}(1−yi) ,

where π(β) is the density of the N(0, 10I4) distribution.

84 Siddhartha Chib

Random Walk Proposal Density
To define the proposal density, let

β̂ = (−1.093022 0.607643 1.197543 − 1.904739)�

be the MLE found using the Newton–Raphson algorithm and let

V =

0.040745 −0.007038 −0.039399 0.004829

0.073101 −0.006940 −0.050162

0.062292 −0.016803

0.080788

be the symmetric matrix obtained by inverting the negative of the Hessian matrix
(the matrix of second derivatives) of the log-likelihood function evaluated at β̂.
Now generate the proposal values by the random walk:

β = β(j−1) + ε(j)

ε(j) ∼ N4(0, V) , (3.18)

which leads to the original Metropolis method. From a run of 5000 iterations of the
algorithm beyond a burn-in of a 100 iterations we get the prior-posterior summary
that is reported in Table 3.2, which contains the first two moments of the prior and
posterior and the 2.5th (lower) and 97.5th (upper) percentiles of the marginal
densities of β.

Table 3.2. Caesarean data: Prior-posterior summary based on 5000 draws (beyond a burn-in of

100 cycles) from the random-walk M–H algorithm

Prior Posterior
Mean Std dev Mean Std dev Lower Upper

β0 0.000 3.162 −1.110 0.224 −1.553 −0.677

β1 0.000 3.162 0.612 0.254 0.116 1.127

β2 0.000 3.162 1.198 0.263 0.689 1.725

β3 0.000 3.162 −1.901 0.275 −2.477 −1.354

As expected, both the first and second covariates increase the probability of
infection while the third covariate (the antibiotics prophylaxis) reduces the prob-
ability of infection.

To get an idea of the form of the posterior density we plot in Fig. 3.1 the four
marginal posterior densities. The density plots are obtained by smoothing the
histogram of the simulated values with a Gaussian kernel. In the same plot we
also report the autocorrelation functions (correlation against lag) for each of the
sampled parameter values. The autocorrelation plots provide information of the

Markov Chain Monte Carlo Technology 85

Figure 3.2. Caesarean data with random-walk M–H algorithm: Marginal posterior densities (top

panel) and autocorrelation plot (bottom panel)

extent of serial dependence in the sampled values. Here we see that the serial
correlations start out high but decline to almost zero by lag twenty.

Tailored Proposal Density
To see the difference in results, the M–H algorithm is next implemented with
a tailored proposal density. In this scheme one utilizes both β̂ and V that were
defined above. We let the proposal density be fT (β|β̂, V , 15), a multivariate-t density
with fifteen degrees of freedom. This proposal density is similar to the random-
walk proposal except that the distribution is centered at the fixed point β̂. The
prior-posterior summary based on 5000 draws of the M–H algorithm with this
proposal density is given in Table 3.3. We see that the marginal posterior moments
are similar to those in Table 3.1. The marginal posterior densities are reported in
the top panel of Fig. 3.2. These are virtually identical to those computed using

Table 3.3. Caesarean data: Prior-posterior summary based on 5000 draws (beyond a burn-in of

100 cycles) from the tailored M–H algorithm

Prior Posterior
Mean Std dev Mean Std dev Lower Upper

β0 0.000 3.162 −1.080 0.220 −1.526 −0.670

β1 0.000 3.162 0.593 0.249 0.116 1.095

β2 0.000 3.162 1.181 0.254 0.680 1.694

β3 0.000 3.162 −1.889 0.266 −2.421 −1.385

86 Siddhartha Chib

the random-walk M–H algorithm. The most notable difference is in the serial
correlation plots which decline much more quickly to zero indicating that the
algorithm is mixing well. The same information is revealed by the inefficiency
factors which are much closer to one than those from the previous algorithm.

The message from this analysis is that the two proposal densities produce
similar results, with the differences appearing only in the autocorrelation plots
(and inefficiency factors) of the sampled draws.

Figure 3.3. Caesarean data with tailored M–H algorithm: Marginal posterior densities (top panel)

and autocorrelation plot (bottom panel)

Multiple-Block M–H Algorithm3.3.3

In applications when the dimension of ψ is large, it can be difficult to construct
a single block M–H algorithm that converges rapidly to the target density. In such
cases, it is helpful to break up the variate space into smaller blocks and to then
construct a Markov chain with these smaller blocks. Suppose, for illustration, that
ψ is split into two vector blocks (ψ1, ψ2). For example, in a regression model, one
block may consist of the regression coefficients and the other block may consist of
the error variance. Next, for each block, let

q1(ψ1, ψ′
1|ψ2) ; q2(ψ2, ψ′

2|ψ1) ,

denote the corresponding proposal density. Here each proposal density qk is al-
lowed to depend on the data and the current value of the remaining block. Also
define (by analogy with the single-block case)

α(ψ1, ψ′
1|ψ2) = min

{
1,
π(ψ′

1|ψ2)q1(ψ′
1, ψ1|ψ2)

π(ψ1|ψ2)q1(ψ1, ψ′
1|ψ2)

}
, (3.19)

Markov Chain Monte Carlo Technology 87

and

α(ψ2, ψ′
2|y, ψ1) = min

{
1,
π(ψ′

2|ψ1)q2(ψ′
2, ψ2|ψ1)

π(ψ2|ψ1)q2(ψ2, ψ′
2|ψ1)

}
, (3.20)

as the probability of move for block ψk (k = 1, 2) conditioned on the other block.
The conditional densities

π(ψ1|ψ2) and π(ψ2|ψ1)

that appear in these functions are called the full conditional densities. By Bayes
theorem each is proportional to the joint density. For example,

π(ψ1|ψ2) ∝ π(ψ1, ψ2) ,

and, therefore, the probabilities of move in (3.19) and (3.20) can be expressed
equivalently in terms of the kernel of the joint posterior density π(ψ1, ψ2) because
the normalizing constant of the full conditional density (the norming constant in
the latter expression) cancels in forming the ratio.

With these inputs, one sweep of the multiple-block M–H algorithm is completed
by updating each block, say sequentially in fixed order, using a M–H step with the
above probabilities of move, given the most current value of the other block.

Algorithm 2: Multiple-Block Metropolis–Hastings

1. Specify an initial value ψ(0) =
(
ψ(0)

1 , ψ(0)
2

)
:

2. Repeat for j = 1, 2, … , n0 + M.
a) Repeat for k = 1, 2

I. Propose a value for the kth block, conditioned on the previous value of
kth block, and the current value of the other block ψ−k:

ψ′
k ∼ qk

(
ψ(j−1)

k , ·|ψ−k

)
.

II. Calculate the probability of move

αk

(
ψ(j−1)

k , ψ′
k|y, ψ−k

)
= min

1,

π
(
ψ′

k|ψ−k

)
qk

(
ψ′

k, ψ(j−1)
k |ψ−k

)

h
(
ψ(j−1)

k |ψ−k

)
qk

(
ψ(j−1)

k , ψ′
k|ψ−k

)

.

III. Update the kth block as

ψ(j)
k =

ψ′
k with prob αk

(
ψ(j−1)

k , ψ′
k|ψ−k

)

ψ(j−1)
k with prob 1 − αk

(
ψ(j−1)

k , ψ′
k|ψ−k

) .

3. Return the values
{
ψ(n0+1), ψ(n0+2), … , ψ(n0+M)

}
.

The extension of this method to more than two blocks is straightforward.

88 Siddhartha Chib

The transition kernel of the resulting Markov chain is given by the product of
transition kernels

P(ψ, dψ′) =
2∏

k=1

Pk

(
ψk, dψ′

k|ψ−k

)
(3.21)

This transitionkernel isnot reversible, as canbeeasily checked,becauseunderfixed
sequential updating of the blocks updating in the reverse order never occurs. The
multiple-block M–H algorithm, however, satisfies the weaker condition of invari-
ance. To show this, we utilize the fact that each sub-move satisfies local reversibility
(Chib and Jeliazkov (2001)) and therefore the transition kernel P1(ψ1, dψ1|ψ2) has
π∗

1|2(·|ψ2) as its local invariant distribution with density π∗
1|2(·|ψ2), i.e.,

π∗
1|2(dψ1|ψ2) =

∫
P1(ψ1, dψ1|ψ2)π1|2(ψ1|ψ2) dψ1 . (3.22)

Similarly, the conditional transition kernel P2(ψ2, dψ2|ψ1) has π∗
2|1(·|ψ1) as its in-

variant distribution, for a given value of ψ1. Then, the kernel formed by multiplying
the conditional kernels is invariant for π∗(·, ·):

∫∫
P1(ψ1, dψ′

1|ψ2)P2(ψ2, dψ′
2|ψ′

1)π(ψ1, ψ2) dψ1 dψ2

=
∫

P2(ψ2, dψ′
2|ψ′

1)

[∫
P1(ψ1, dψ′

1|ψ2)π1|2(ψ1|ψ2) dψ1

]
π2(ψ2) dψ2

=
∫

P2(ψ2, dψ′
2|ψ′

1)π∗
1|2(dψ′

1|ψ2)π2(ψ2) dψ2

=
∫

P2(ψ2, dψ′
2|ψ′

1)
π2|1(ψ2|ψ′

1)π∗
1(dψ′

1)

π2(ψ2)
π2(ψ2) dψ2

= π∗
1(dψ′

1)

∫
P2(ψ2, dψ′

2|ψ′
1)π2|1(ψ2|ψ′

1) dψ2

= π∗
1(dψ′

1)π∗
2|1(dψ′

2|ψ′
1)

= π∗(dψ′
1, dψ′

2) ,

where the third line follows from (3.22), the fourth from Bayes theorem, the sixth
from assumed invariance of P2, and the last from the law of total probability.

The implication of this result is that it allows us to take draws in succession from
each of the kernels, instead of having to run each to convergence for every value
of the conditioning variable.

1 Remark 1 Versions of either random-walk or tailored proposal densities can be
used in this algorithm, analogous to the single-block case. For example, Chib and
Greenberg (1995) determine the proposal densities qk by tailoring to π(ψk, ψ−k)
in which case the proposal density is not fixed but varies across iterations. An

Markov Chain Monte Carlo Technology 89

important special case occurs if each proposal density is taken to be the full
conditional density of that block. Specifically, if we set

q1

(
ψ(j−1)

1 , ψ′
1|ψ2

)
= π(ψ′

1|ψ2) ,

and

q2

(
ψ(j−1)

2 , ψ′
2|ψ1

)
= π(ψ′

2|ψ1) ,

then an interesting simplification occurs. The probability of move (for the first
block) becomes

α1

(
ψ(j−1)

1 , ψ′
1|ψ2

)
= min

1,
π
(
ψ′

1|ψ2

)
π
(
ψ(j−1)

1 |ψ2

)

π
(
ψ(j−1)

1 |ψ2

)
π
(
ψ′

1|ψ2

)

= 1 ,

and similarly for the second block, implying that if proposal values are drawn
from their full conditional densities then the proposal values are accepted with
probability one. This special case of the multiple-block M–H algorithm (in which
each block is proposed using its full conditional distribution) is called the Gibbs
sampling algorithm.

The Gibbs Sampling Algorithm 3.4

The Gibbs sampling algorithm is one of the simplest Markov chain Monte Carlo
algorithms. It was introduced by Geman and Geman (1984) in the context of image
processing and then discussed in the context of missing data problems by Tanner
and Wong (1987). The paper by Gelfand and Smith (1990) helped to demonstrate
the value of the Gibbs algorithm for a range of problems in Bayesian analysis.

The Algorithm 3.4.1

To define the Gibbs sampling algorithm, let the set of full conditional distributions
be

{
π(ψ1|ψ2, … , ψp); π(ψ2|ψ1, ψ3, … , ψp); … ,π(ψp|ψ1, … , ψd−1)

}
.

Now one cycle of the Gibbs sampling algorithm is completed by simulating {ψk}p
k=1

from these distributions, recursively refreshing the conditioning variables. When
d = 2 one obtains the two block Gibbs sampler that appears in Tanner and Wong
(1987). The Gibbs sampler in which each block is revised in fixed order is defined
as follows.

90 Siddhartha Chib

Algorithm 3: Gibbs Sampling

1. Specify an initial value ψ(0) =
(
ψ(0)

1 , … , ψ(0)
p

)
:

2. Repeat for j = 1, 2, … , M.

Generate ψ(j+1)
1 from π

(
ψ1|ψ(j)

2 , ψ(j)
3 , … , ψ(j)

p

)

Generate ψ(j+1)
2 from π

(
ψ2|ψ(j+1)

1 , ψ(j)
3 , … , ψ(j)

p

)

...

Generate ψ(j+1)
p from π

(
ψp|ψ(j+1)

1 , … , ψ(j+1)
p−1

)
.

3. Return the values
{
ψ(1), ψ(2), … , ψ(M)

}
.

It follows that the transition density of moving from ψ(j)
k to ψ(j+1)

k is given by

π
(
ψk|ψ(j+1)

1 , … , ψ(j+1)
k−1 , ψ(j)

k+1, … , ψ(j)
p

)

since when the kth block is reached, the previous (k − 1) blocks have been updated.
Thus, the transition density of the chain, under the maintained assumption that π
is absolutely continuous, is given by the product of transition kernels for each
block:

K(ψ, ψ′) =
p∏

k=1

π
(
ψk|ψ(j+1)

1 , … , ψ(j+1)
k−1 , ψ(j)

k+1, … , ψ(j)
p

)
. (3.23)

To illustrate the manner in which the blocks are revised, we consider a two
block case, each with a single component, and trace out in Fig. 3.4 a possible

Figure 3.4. Gibbs sampling algorithm in two dimensions starting from an initial point and then

completing three iterations

Markov Chain Monte Carlo Technology 91

trajectory of the sampling algorithm. The contours in the plot represent the joint
distribution of ψ and the labels “(0)”, “(1)” etc., denote the simulated values. Note
that one iteration of the algorithm is completed after both components are revised.
Also notice that each component is revised along the direction of the coordinate
axes. This feature can be a source of problems if the two components are highly
correlated because then the contours get compressed and movements along the
coordinate axes tend to produce small moves. We return to this issue below.

Invariance of the Gibbs Markov Chain 3.4.2

The Gibbs transition kernel is invariant by construction. This is a consequence
of the fact that the Gibbs algorithm is a special case of the multiple-block M–H
algorithm which is invariant, as was established in the last section. Invariance
can also be confirmed directly. Consider for simplicity a two block sampler with
transition kernel density

K(ψ, ψ′) = π(ψ′
1|ψ2)π(ψ′

2|ψ′
1) .

To check invariance we have to show that
∫

K(ψ, ψ′)π(ψ1, ψ2)dψ1dψ2

=
∫
π(ψ′

1|ψ2)π(ψ′
2|ψ′

1)π(ψ1, ψ2)dψ1dψ2

is equal to π(ψ′
1, ψ′

2). This holds because π(ψ′
2|ψ′

1) comes out of the integral, and
the integral over ψ1 and ψ2 produces π(ψ′

1). This calculation can be extended
to any number of blocks. It may be noted that the Gibbs Markov chain is not
reversible. Reversible Gibbs samplers are discussed by Liu et al. (1995).

Sufficient Conditions for Convergence 3.4.3

Under rather general conditions, the Markov chain generated by the Gibbs sam-
pling algorithm converges to the target density as the number of iterations become
large. Formally, if we let K(ψ, ψ′) represent the transition density of the Gibbs
algorithm and let K(M)(ψ0, ψ′) be the density of the draw ψ′ after M iterations
given the starting value ψ0, then

∥∥K(M)
(
ψ(0), ψ′) − π(ψ′)

∥∥ → 0 , as M → ∞ . (3.24)

Roberts and Smith (1994) (see also Chan, 1993) have shown that the conditions of
Proposition 2 are satisfied under the following conditions: (1) π(ψ) > 0 implies
there exists an open neighborhood Nψ containing ψ and ε > 0 such that, for all
ψ′ ∈ Nψ, π(ψ′) ≥ ε > 0; (2)

∫
f (ψ) dψk is locally bounded for all k, where ψk is

the kth block of parameters; and (3) the support of ψ is arc connected.
These conditions are satisfied in a wide range of problems.

92 Siddhartha Chib

Example: Simulating a Truncated Multivariate Normal3.4.4

Consider the question of sampling a trivariate normal distribution truncated to
the positive orthant. In particular, suppose that the target distribution is

π(ψ) =
1

Pr(ψ ∈ A)
fN (µ, Σ)I(ψ ∈ A)

∝ fN(µ, Σ)I(ψ ∈ A)

where µ = (0.5, 1, 1.5)′, Σ is in equi-correlated form with units on the diagonal
and 0.7 on the off-diagonal, A = (0,∞) × (0,∞) × (0,∞) and Pr(ψ ∈ A) is the
normalizing constant which is difficult to compute. In this case, the Gibbs sampler
is defined with the blocks ψ1,ψ2,ψ3 and the full conditional distributions

π(ψ1|ψ2,ψ3) ; π(ψ2|ψ1,ψ3) ; π(ψ3|ψ1,ψ2) ,

whereeachof the these full conditionaldistributions isunivariate truncatednormal
restricted to the interval (0,∞):

π(ψk|ψ−k) ∝ fN

(
ψk|µk + C′

kΣ
−1
−k

(
ψ−k − µ−k

)
, Σk − C′

kΣ
−1
−kCk

)
I(ψk ∈ (0,∞)) ,

(3.25)

Ck = Cov(ψk, ψ−k), Σ−k = Var(ψ−k) and µ−k = E(ψ−k). Figure 3.5 gives themarginal
distribution of each component of ψk from a Gibbs sampling run of M = 10,000
iterations with a burn-in of 100 cycles. The figures includes both the histograms of
the sampled values and the Rao–Blackwellized estimates of the marginal densities
(see Sect. 3.6 below) based on the averaging of (3.25) over the simulated values
of ψ−k. The agreement between the two density estimates is close. In the bottom
panel of Fig. 3.5 we plot the autocorrelation function of the sampled draws. The
rapid decline in the autocorrelations for higher lags indicates that the sampler is
mixing well.

MCMC Sampling with Latent Variables3.5

In designing MCMC simulations, it is sometimes helpful to modify the target
distributionby introducing latent variablesor auxiliary variables into the sampling.
This idea was called data augmentation by Tanner and Wong (1987) in the context
of missing data problems. Slice sampling, which we do not discuss in this chapter,
is a particular way of introducing auxiliary variables into the sampling, for example
see Damien et al. (1999).

To fix notations, suppose that z denotes a vector of latent variables and let
the modified target distribution be π(ψ, z). If the latent variables are tactically
introduced, the conditional distribution of ψ (or sub components of ψ) given z

Markov Chain Monte Carlo Technology 93

Figure 3.5. Marginal distributions of ψ in truncated multivariate normal example (top panel).

Histograms of the sampled values and Rao–Blackwellized estimates of the densities are shown.

Autocorrelation plots of the Gibbs MCMC chain are in the bottom panel. Graphs are based on

10,000 iterations following a burn-in of 500 cycles

may be easy to derive. Then, a multiple-block M–H simulation is conducted with
the blocks ψ and z leading to the sample

(
ψ(n0+1), z(n0+1)

)
, … ,

(
ψ(n0+M), z(n0+M)

) ∼ π(ψ, z) ,

where the draws on ψ, ignoring those on the latent data, are fromπ(ψ), as required.
To demonstrate this technique in action, we return to the probit regression

example discussed in Sect. 3.3.2 to show how a MCMC sampler can be developed
with the help of latent variables. The approach, introduced by Albert and Chib
(1993), capitalizes on the simplifications afforded by introducing latent or auxiliary
data into the sampling.

The model is rewritten as

zi|β ∼ N(x′iβ, 1) ,

yi = I[zi > 0] , i ≤ n ,

β ∼ Nk(β0, B0) . (3.26)

This specification is equivalent to the probit regression model since

Pr(yi = 1|xi, β) = Pr(zi > 0|xi, β) = Φ(x′iβ) .

94 Siddhartha Chib

Now the Albert–Chib algorithm proceeds with the sampling of the full conditional
distributions

β|y, {zi} ; {zi}|y, β ,

where both these distributions are tractable (i.e., requiring no M–H steps). In par-
ticular, the distribution of β conditioned on the latent data becomes independent
of the observed data and has the same form as in the Gaussian linear regression
model with the response data given by {zi} and is multivariate normal with mean
β̂ = B(B−1

0 β0 +
∑n

i=1 xizi) and variance matrix B = (B−1
0 +

∑n
i=1 xix′i)−1. Next, the

distribution of the latent data conditioned on the data and the parameters fac-
tor into a set of n independent distributions with each depending on the data
through yi:

{zi}|y, β d=
n∏

i=1

zi|yi, β ,

where the distribution zi|yi, β is the normal distribution zi|β truncated by the
knowledge of yi; if yi = 0, then zi ≤ 0 and if yi = 1, then zi > 0. Thus,
one samples zi from T N (−∞,0)(x′iβ, 1) if yi = 0 and from T N (0,∞)(x′iβ, 1) if
yi = 1, where T N (a,b)(µ,σ2) denotes the N (µ,σ2) distribution truncated to the
region (a, b).

The results, based on 5000 MCMC draws beyond a burn-in of a 100 iterations,
are reported in Fig. 3.4. The results are close to those presented above, especially
to the ones from the tailored M–H chain.

Figure 3.6. Caesarean data with Albert–Chib algorithm: Marginal posterior densities (top panel) and

autocorrelation plot (bottom panel)

Markov Chain Monte Carlo Technology 95

Estimation of Density Ordinates 3.6

We mention that if the full conditional densities are available, whether in the
context of the multiple-block M–H algorithm or that of the Gibbs sampler, then
the MCMC output can be used to estimate posterior marginal density functions
(Tanner and Wong, 1987; Gelfand and Smith, 1990). We exploit the fact that the
marginal density of ψk at the point ψ∗

k is

π(ψ∗
k) =

∫
π(ψ∗

k |ψ−k)π(ψ−k)dψ−k ,

where as before ψ−k = ψ\ψk. Provided the normalizing constant of π
(
ψ∗

k |ψ−k

)
is

known, an estimate of the marginal density is available as an average of the full
conditional density over the simulated values of ψ−k:

π̂(ψ∗
k) = M−1

M∑

j=1

π
(
ψ∗

k |ψ(j)
−k

)
.

Under the assumptions of Proposition 1,

M−1
M∑

j=1

π
(
ψ∗

k |ψ(j)
−k

)
→ π(ψ∗

k) , as M → ∞ .

Gelfand and Smith (1990) refer to this approach as Rao–Blackwellization because
of the connections with the Rao–Blackwell theorem in classical statistics. That
connection is more clearly seen in the context of estimating (say) the mean of ψk,
E(ψk) =

∫
ψkπ(ψk)dψk. By the law of the iterated expectation,

E(ψk) = E
{

E(ψk|ψ−k)
}

and therefore the estimates

M−1
M∑

j=1

ψj
k

and

M−1
M∑

j=1

E
(
ψk|ψ(j)

−k

)

both converge to E(ψk) as M → ∞. Under iid sampling, and under Markov
sampling provided some conditions are satisfied – see Liu et al. (1994), Casella and
Robert (1996) and Robert and Casella (1999), it can be shown that the variance of
the latter estimate is smaller than that of the former. Thus, it can help to average
the conditional mean E(ψk|ψ−k), if that were available, rather than average the
draws directly. Gelfand and Smith (1990) appeal to this analogy to argue that the

96 Siddhartha Chib

Rao–Blackwellized estimate of the density is preferable to that based on the method
of kernel smoothing. Chib (1995) extends the Rao–Blackwellization approach to
estimate reduced conditional ordinates defined as the density of ψk conditioned on
one or more of the remaining blocks. Finally, Chen (1994) provides an importance
weighted estimate of the marginal density for cases where the conditional posterior
density does not have a known normalizing constant. Chen’s estimator is based on
the identity

π(ψ∗
k) =

∫
w(ψk|ψ−k)

π(ψ∗
k , ψ−k)

π(ψk, ψ−k)
π(ψ)dψ ,

where w(ψk|ψ−k) is a completely known conditional density whose support is
equal to the support of the full conditional density π(ψk|ψ−k). In this form, the
normalizing constant of the full conditional density is not required and given
a sample of draws {ψ(1), … , ψ(M)} from π(ψ), a Monte Carlo estimate of the
marginal density is given by

π̂(ψ∗
k) = M−1

M∑

j=1

w
(
ψ(j)

k

∣∣∣ψ(j)
−k

) π
(
ψ∗

k , ψ(j)
−k

)

π
(
ψ(j)

k , ψ(j)
−k

) .

Chen (1994) discusses the choice of the conditional density w. Since it depends on
ψ−k, the choice of w will vary from one sampled draw to the next.

Sampler Performance and Diagnostics3.7

In implementing a MCMC method it is important to assess the performance of
the sampling algorithm to determine the rate of mixing and the size of the burn-
in, both having implications for the number of iterations required to get reliable
answers. A large literature has emerged on these issues, for example, Robert (1995),
Tanner (1996, Sect. 6.3), Cowles and Carlin (1996), Gammermann (1997, Sect. 5.4)
and Robert and Casella (1999), but the ideas, although related in many ways, have
not coalesced into a single prescription.

One approach for determining sampler performance and the size of the burn-
in time is to employ analytical methods to the specified Markov chain, prior to
sampling. This approach is exemplified in the work of, for example, Polson (1996),
Roberts and Tweedie (1996) and Rosenthal (1995). Two factors have inhibited the
growth and application of these methods. The first is that the calculations are
difficult and problem-specific and, second, the upper bounds for the burn-in that
emerge from such calculations are usually conservative.

At this time the more popular approach is to utilize the sampled draws to
assess both the performance of the algorithm and its approach to the invariant
distribution. Several such relatively informal methods are available. Gelfand and
Smith (1990) recommend monitoring the evolution of the quantiles as the sampling

Markov Chain Monte Carlo Technology 97

proceeds. Another useful diagnostic, one that is perhaps the most direct, are
autocorrelation plots (and autocorrelation times) of the sampled output. Slowly
decaying correlations indicate problems with the mixing of the chain. It is also
useful in connection with M–H Markov chains to monitor the acceptance rate of
the proposal values with low rates implying “stickiness” in the sampled values and
thus a slower approach to the invariant distribution.

Somewhat more formal sample-based diagnostics are summarized in the CODA
routines provided by Best et al. (1995). Although these diagnostics often go under
the name “convergence diagnostics” they are in principle approaches that detect
lack of convergence. Detection of convergence based entirely on the sampled
output, without analysis of the target distribution, is perhaps impossible. Cowles
and Carlin (1996) discuss and evaluate thirteen such diagnostics (for example,
those proposed by Geweke, 1992, Raftery and Lewis, 1992, Ritter and Tanner, 1992,
Gelman and Rubin, 1992, Gelman and Rubin, 1992, and Zellner and Min, 1995,
amongst others) without arriving at a consensus. Difficulties in evaluating these
methods stem from the fact that some of these methods apply only to Gibbs Markov
chains (for example, those of Ritter and Tanner, 1992, and Zellner and Min, 1995)
while others are based on the output not just of a single chain but on that of multiple
chains specifically run from “disparate starting values” as in the method of Gelman
and Rubin (1992). Finally, some methods assess the behavior of univariate moment
estimates (as in the approach of Geweke, 1992, and Gelman and Rubin, 1992) while
others are concerned with the behavior of the entire transition kernel (as in Ritter
and Tanner, 1992, and Zellner and Min, 1995).

Strategies for Improving Mixing 3.8

In practice, while implementing MCMC methods it is important to construct
samplers that mix well, where mixing is measured by the autocorrelation time,
because such samplers can be expected to converge more quickly to the invariant
distribution. Over the years a number of different recipes for designing samplers
with low autocorrelation times have been proposed although it may sometimes be
difficult, because of the complexity of the problem, to apply any of these recipes.

Choice of Blocking 3.8.1

As a general rule, sets of parameters that are highly correlated should be treated as
one block when applying the multiple-block M–H algorithm. Otherwise, it would
be difficult to develop proposal densities that lead to large moves through the
support of the target distribution.

Blocks can be combined by the method of composition. For example, suppose
that ψ1, ψ2 and ψ3 denote three blocks and that the distribution ψ1|ψ3 is tractable
(i.e., can be sampled directly). Then, the blocks (ψ1, ψ2) can be collapsed by
first sampling ψ1 from ψ1|ψ3 followed by ψ2 from ψ2|ψ1, ψ3. This amounts to

98 Siddhartha Chib

a two block MCMC algorithm. In addition, if it is possible to sample (ψ1, ψ2)
marginalized over ψ3 then the number of blocks is reduced to one. Liu et al.
(1994) discuss the value of these strategies in the context of a three-block Gibbs
MCMC chains. Roberts and Sahu (1997) provide further discussion of the role of
blocking in the context of Gibbs Markov chains used to sample multivariate normal
target distributions.

Tuning the Proposal Density3.8.2

As mentioned above, the proposal density in a M–H algorithm has an important
bearing on the mixing of the MCMC chain. Fortunately, one has great flexibility
in the choice of candidate generating density and it is possible to adapt the choice
to the given problem. For example, Chib et al. (1998) develop and compare four
different choices in longitudinal random effects models for count data. In this
problem, each cluster (or individual) has its own random effects and each of these
has to be sampled from an intractable target distribution. If one lets n denote the
number of clusters, where n is typically large, say in excess of a thousand, then the
number of blocks in the MCMC implementation is n + 3 (n for each of the random
effect distributions, two for the fixed effects and one for the variance components
matrix). For this problem, the multiple-block M–H algorithm requires n + 1 M–H
stepswithinone iterationof thealgorithm.Tailoredproposaldensities are therefore
computationally expensive but one can use a mixture of proposal densities where
a less demanding proposal, for example a random walk proposal, is combined with
the tailored proposal to sample each of the n random effect target distributions.
Further discussion of mixture proposal densities is contained in Tierney (1994).

Other Strategies3.8.3

Other approaches have also been discussed in the literature. Marinari and Par-
si (1992) develop the simulated tempering method whereas Geyer and Thomp-
son (1995) develop a related technique that they call the Metropolis-coupled
MCMC method. Both these approaches rely on a series of transition kernels
{K1, … , Km} where only K1 has π∗ as the stationary distribution. The other ker-
nels have equilibrium distributions πi, which Geyer and Thompson (1995) take
to be πi(ψ) = π(ψ)1|i, i = 2, … , m. This specification produces a set of tar-
get distributions that have higher variance than π∗. Once the transition kernels
and equilibrium distributions are specified then the Metropolis-coupled MCMC
method requires that each of the m kernels be used in parallel. At each iteration,
after the m draws have been obtained, one randomly selects two chains to see if the
states should be swapped. The probability of swap is based on the M–H acceptance
condition. At the conclusion of the sampling, inference is based on the sequence
of draws that correspond to the distribution π∗. These methods promote rapid
mixing because draws from the various “flatter” target densities have a chance of
being swapped with the draws from the base kernel K1. Thus, variates that are

Markov Chain Monte Carlo Technology 99

unlikely under the transition K1 have a chance of being included in the chain,
leading to more rapid exploration of the parameter space.

Concluding Remarks 3.9

In this survey we have provided an outline of Markov chain Monte Carlo meth-
ods. These methods provide a set of general recipes for sampling intractable
multivariate distributions and have proved vital in the recent virtually revolution-
ary evolution and growth of Bayesian statistics. Refinements and extensions of
these methods continue to occur. Two recent developments are the slice sampling
method discussed by Mira and Tierney (2002), Damien et al. (1999) and Roberts
and Rosenthal (1999) and the perfect sampling method proposed by Propp and
Wilson (1996). The slice sampling method is based on the introduction of auxiliary
uniform random variables to simplify the sampling and improve mixing while the
perfect sampling method uses Markov chain coupling to generate an exact draw
from the target distribution.

References
Albert, J. and Chib, S. (1993). Bayesian analysis of binary and polychotomous

response data. Journal of the American Statistical Association, 88: 669–679.
Besag, J. (1974). Spatial interaction and the statistical analysis of lattice systems

(withdiscussion). Journal of the Royal Statistical Society B, 36: 192–236.
Besag, J., Green, E., Higdon, D. and Mengersen, K.L. (1995). Bayesian Computation

and Stochastic Systems (with discussion). Statistical Science, 10: 3–66.
Best, N.G., Cowles, M.K. and Vines, S.K. (1995). CODA: Convergence diagnostics

and output analysis software for Gibbs sampling. Technical report, Cambridge
MRC Biostatistics Unit.

Carlin, B.P. and Louis, T. (2000). Bayes and Empirical Bayes Methods for Data
Analysis, 2nd ed, Chapman and Hall, London.

Casella, G. and Robert, C.P. (1996). Rao–Blackwellization of sampling schemes.
Biometrika, 83: 81–94.

Chan, K.S. (1993). Asymptotic behavior of the Gibbs sampler. Journal of the Amer-
ican Statistical Association, 88: 320–326.

Chan, K.S. and Ledolter, J. (1995). Monte Carlo EM estimation for time series
models involving counts. Journal of the American Statistical Association, 90:
242–252.

Chen, M-H. (1994). Importance-weighted marginal Bayesian posterior density
estimation. Journal of the American Statistical Association, 89: 818–824.

Chen, M-H., Shao, Qi-M. and Ibrahim, J.G. (2000), Monte Carlo Methods in
Bayesian Computation, Springer Verlag, New York.

Chib, S. (1995). Marginal likelihood from the Gibbs output. Journal of the American
Statistical Association, 90: 1313–1321.

100 Siddhartha Chib

Chib, S. (2001). Markov Chain Monte Carlo Methods: Computation and Inference.
In Heckman, J.J. and Leamer, E. (eds), Handbook of Econometrics, Volume 5,
pp. 3569–3649, North Holland, Amsterdam.

Chib, S. and Greenberg, E. (1994). Bayes inference for regression models with
ARMA(p, q) errors. Journal of Econometrics, 64: 183–206.

Chib, S. and Greenberg, E. (1995). Understanding the Metropolis–Hastings algo-
rithm. American Statistician, 49: 327–335.

Chib, S. and Greenberg, E. (1996). Markov chain Monte Carlo simulation methods
in econometrics. Econometric Theory, 12: 409–431.

Chib, S. Greenberg, E. and Winklemann, R. (1998). Posterior simulation and Bayes
factors in panel count data models. Journal of Econometrics, 86, 33–54.

Chib, S. and Jeliazkov, I. (2001). Marginal likelihood from the Metropolis–Hastings
output. Journal of the American Statistical Association, 96: 270–281.

Congdon, P. (20011). Bayesian Statistical Modeling, John Wiley, Chicester.
Cowles, M.K. and Carlin, B. (1996). Markov chain Monte Carlo convergence diag-

nostics: A comparative review. Journal of the American Statistical Association,
91: 883–904.

Damien, P., Wakefield, J. and Walker, S. (1999). Gibbs Sampling for Bayesian non-
conjugate and hierarchical models using auxiliary variables. Journal of the Roy-
al Statistical Society B, 61, 331–344.

Fahrmeir, L. and Tutz, G. (1997). Multivariate Statistical Modeling Based on Gen-
eralized Linear Models. Springer Verlag, New York.

Gammerman, D. (1997). Markov chain Monte Carlo: Stochastic Simulation for
Bayesian Inference. Chapman and Hall, London.

Gelfand, A.E. and Smith, A.F.M. (1990). Sampling-based approaches to calcu-
lating marginal densities. Journal of the American Statistical Association, 85:
398–409.

Gelman, A. and Rubin, D.B. (1992). Inference from iterative simulation using mul-
tiple sequences. Statistical Science, 4: 457–472.

Gelman, A., Meng, X.L., Stern, H.S. and Rubin, D.B.(2003). Bayesian Data Analysis,
(2nd ed), Chapman and Hall, London.

Geman, S. and Geman, D. (1984). Stochastic relaxation, Gibbs distributions and
the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 12: 609–628.

Geweke, J. (1989). Bayesian inference in econometric models using Monte Carlo
integration. Econometrica, 57: 1317–1340.

Geweke, J. (1992). Evaluating the accuracy of sampling-based approaches to the
calculation of posterior moments. In Bernardo, J.M., Berger, J.O., Dawid, A.P.
and Smith, A.F.M. (eds), Bayesian Statistics, pp. 169–193, Oxford University
Press, New York.

Geyer, C. (1992). Practical Markov chain Monte Carlo. Statistical Science, 4: 473–
482.

Geyer, C. and Thompson, E.A. (1995). Annealing Markov chain Monte Carlo with
Applications to Ancestral Inference. Journal of American Statistical Associa-
tion, 90: 909–920.

Markov Chain Monte Carlo Technology 101

Gilks, W.R., Richardson, S. and Spiegelhalter, D.J. (1996). Markov Chain Monte
Carlo in Practice, Chapman and Hall, London.

Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and
their applications. Biometrika 57: 97–109.

Liu, J.S. (1994). The collapsed Gibbs sampler in Bayesian computations with appli-
cations to a gene regulation problem. Journal of the American Statistical Asso-
ciation, 89: 958–966.

Liu, J. S. (2001), Monte Carlo Strategies in Scientific Computing, Springer Verlag,
New York.

Liu, J.S., Wong, W.H. and Kong, A. (1994). Covariance structure of the Gibbs Sam-
pler with applications to the comparisons of estimators and data augmentation
schemes. Biometrika, 81: 27–40.

Liu, J.S., Wong, W.H. and Kong, A. (1995). Covariance structure and convergence
rate of the Gibbs sampler with various scans. Journal of the Royal Statistical
Society B, 57: 157–169.

Marinari, E. and Parsi, G. (1992). Simulated tempering: A new Monte Carlo scheme.
Europhysics Letters, 19: 451–458.

Mengersen, K.L. and Tweedie, R.L. (1996). Rates of convergence of the Hastings
and Metropolis algorithms. Annals of Statistics, 24: 101–121.

Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H. and Teller, E.
(1953). Equations of state calculations by fast computing machines. Journal of
Chemical Physics, 21: 1087–1092.

Meyn, S.P. and Tweedie, R.L. (1993). Markov chains and stochastic stability.
Springer-Verlag, London.

Mira, A. and Tierney, L. (2002). Efficiency and convergence properties of slice
samplers. Scandinavian Journal Of Statistics, 29: 1–12.

Nummelin, E. (1984). General irreducible Markov chains and non-negative opera-
tors. Cambridge, Cambridge University Press.

Polson, N. G. (1996). Convergence of Markov Chain Monte Carlo algorithms. In
Bernardo, J.M., Berger, J.O., Dawid, A.P. and Smith, A.F.M. (eds), Proceedings
of the Fifth Valencia International Conference on Bayesian Statistics, pp. 297–
323, Oxford University Press, Oxford.

Propp, J.G. and Wilson, D.B. (1996). Exact sampling with coupled Markov chains
and applications to statistical mechanics. Random Structures and Algorithms,
9: 223–252.

Raftery, A. E. and Lewis, S.M. (1992). How many iterations in the Gibbs sampler? In
Bernardo, J.M., Berger, J.O., Dawid, A.P. and Smith, A.F.M. (eds), Proceedings of
the Fourth Valencia International Conference on Bayesian Statistics, pp. 763–
774, Oxford University Press, New York.

Ripley, B. (1987). Stochastic simulation, John Wiley & Sons, New York.
Ritter,C, andTanner,M.A. (1992). Facilitating theGibbsSampler: theGibbsStopper

and the Griddy-Gibbs Sampler. Journal of the American Statistical Association,
87: 861–868.

Robert C.P. (1995). Convergence control methods for Markov chain Monte Carlo
algorithms. Statistical Science, 10: 231–253.

102 Siddhartha Chib

Robert, C.P. (2001). Bayesian Choice, 2nd ed, Springer Verlag, New York.
Robert, C.P. and Casella, G. (1999). Monte Carlo Statistical Methods, Springer Ver-

lag, New York.
Roberts, G.O. and Rosenthal, J.S. (1999). Convergence of slice sampler Markov

chains. Journal of the Royal Statistical Society B, 61: 643–660.
Roberts, G.O. and Sahu, S.K. (1997). Updating schemes, correlation structure,

blocking, andparametization for theGibbs sampler. Journal of the Royal Statis-
tistical Society B, 59: 291–317.

Roberts,G.O.andSmith,A.F.M. (1994). Somesimpleconditions for theconvergence
of the Gibbs sampler and Metropolis–Hastings algorithms. Stochastic Processes
and its Applications, 49: 207–216.

Roberts, G.O. and Tweedie, R.L. (1996). Geometric convergence and central limit
theorems for multidimensional Hastings and Metropolis algorithms. Biometri-
ka, 83: 95–110.

Rosenthal, J.S. (1995). Minorization conditions and convergence rates for Markov
chain Monte Carlo. Journal of the American Statistical Association, 90: 558–
566.

Smith, A.F.M. and Roberts, G.O. (1993). Bayesian computation via the Gibbs sam-
pler and related Markov chain Monte Carlo methods. Journal of the Royal Sta-
tistical Society B, 55: 3–24.

Tanner, M.A. (1996). Tools for Statistical Inference, 3rd ed, Springer-Verlag, New
York.

Tanner, M.A. and Wong, W.H. (1987). The calculation of posterior distributions
by data augmentation. Journal of the American Statistical Association, 82: 528–
549.

Tierney, L. (1994). Markov chains for exploring posterior distributions (with dis-
cussion). Annals of Statistics, 22: 1701–1762.

Zellner, A. and Min, C. (1995). Gibbs sampler convergence criteria. Journal of the
American Statistical Association, 90: 921–927.

II.4Numerical Linear Algebra
Lenka Čížková, Pavel Čížek

4.1 Matrix Decompositions . 104

Cholesky Decomposition . 105
LU Decomposition . 106
QR Decomposition . 108
Singular Value Decomposition. 114
Matrix Inversion. 115

4.2 Direct Methods for Solving Linear Systems. 116

Gauss–Jordan Elimination . 117
Iterative Refinement . 119

4.3 Iterative Methods for Solving Linear Systems . 120

General Principle of Iterative Methods for Linear Systems . 120
Jacobi Method . 122
Gauss–Seidel Method . 122
Successive Overrelaxation Method . 123
Gradient Methods . 124

4.4 Eigenvalues and Eigenvectors . 126

Power Method . 127
Jacobi Method . 127
Givens and Householder Reductions . 128
QR Method . 128
LR Method . 129
Inverse Iterations . 129

4.5 Sparse Matrices . 129

Storage Schemes for Sparse Matrices . 130
Methods for Sparse Matrices . 131

104 Lenka Čížková, Pavel Čížek

Many methods of computational statistics lead to matrix-algebra or numerical-
mathematics problems. For example, the least squares method in linear regression
reduces to solving a system of linear equations, see Chap. III.8. The principal
components method is based on finding eigenvalues and eigenvectors of a matrix,
see Chap. III.6. Nonlinear optimization methods such as Newton’s method often
employ the inversion of a Hessian matrix. In all these cases, we need numerical
linear algebra.

Usually, one has a data matrix X of (explanatory) variables, and in the case
of regression, a data vector y for dependent variable. Then the matrix defining
a system of equations, being inverted or decomposed typically corresponds to
X or X�X. We refer to the matrix being analyzed as A = {Aij}m,n

i=1,j=1 ∈ Rm×n

and to its columns as Ak = {Aik}m
i=1, k = 1, … , n. In the case of linear equations,

b = {bi}n
i=1 ∈ Rn represents the right-hand side throughout this chapter. Further,

the eigenvalues and singular values of A are denoted by λi and σi, respectively, and
the corresponding eigenvectors gi, i = 1, … , n. Finally, we denote the n×n identity
and zero matrices by In and 0n, respectively.

In this chapter, we first study various matrix decompositions (Sect. 4.1), which
facilitate numerically stable algorithms for solving systems of linear equations and
matrix inversions. Next, we discuss specific direct and iterative methods for solving
linear systems (Sects. 4.2 and 4.3). Further, we concentrate on finding eigenvalues
and eigenvectors of a matrix in Sect. 4.4. Finally, we provide an overview of
numerical methods for large problems with sparse matrices (Sect. 4.5).

Let us note that most of the mentioned methods work under specific conditions
given in existence theorems, which we state without proofs. Unless said otherwise,
the proofs can be found in Harville (1997), for instance. Moreover, implementations
of the algorithms described here can be found, for example, in Anderson et al.
(1999) and Press et al. (1992).

Matrix Decompositions4.1

This section covers relevant matrix decompositions and basic numerical methods.
Decompositions provide a numerically stable way to solve a system of linear equa-
tions, as shown already in Wampler (1970), and to invert a matrix. Additionally,
they provide an important tool for analyzing the numerical stability of a system.

Some of most frequently used decompositions are the Cholesky, QR, LU, and
SVD decompositions. We start with the Cholesky and LU decompositions, which
work only with positive definite and nonsingular diagonally dominant square
matrices, respectively (Sects. 4.1.1 and 4.1.2). Later, we explore more general and
in statistics more widely used QR and SVD decompositions, which can be ap-
plied to any matrix (Sects. 4.1.3 and 4.1.4). Finally, we briefly describe the use of
decompositions for matrix inversion, although one rarely needs to invert a ma-
trix (Sect. 4.1.5). Monographs Gentle (1998), Harville (1997), Higham (2002) and
Stewart (1998) include extensive discussions of matrix decompositions.

Numerical Linear Algebra 105

All mentioned decompositions allow us to transform a general system of linear
equations to a system with an upper triangular, a diagonal, or a lower triangular
coefficient matrix: Ux = b, Dx = b, or Lx = b, respectively. Such systems are
easy to solve with a very high accuracy by back substitution, see Higham (1989).
Assuming the respective coefficient matrix A has a full rank, one can find a solution
of Ux = b, where U = {Uij}n

i=1,j=1, by evaluating

xi = U−1
ii

bi −
n∑

j=i+1

Uijxj

 (4.1)

for i = n, … , 1. Analogously for Lx = b, where L = {Lij}n
i=1,j=1, one evaluates for

i = 1, … , n

xi = L−1
ii

bi −
i−1∑

j=1

Lijxj

 . (4.2)

For discussion of systems of equations that do not have a full rank, see for example
Higham (2002).

Cholesky Decomposition 4.1.1

The Cholesky factorization, first published by Benoit (1924), was originally devel-
oped to solve least squares problems in geodesy and topography. This factorization,
in statistics also referred to as “square root method,” is a triangular decomposi-
tion. Providing matrix A is positive definite, the Cholesky decomposition finds
a triangular matrix U that multiplied by its own transpose leads back to matrix A.
That is, U can be thought of as a square root of A.

1Theorem 1 Let matrix A ∈ Rn×n be symmetric and positive definite. Then there
exists a unique upper triangular matrix U with positive diagonal elements such
that A = U�U.

The matrix U is called the Cholesky factor of A and the relation A = U�U is
called the Cholesky factorization.

Obviously, decomposing a system Ax = b to U�Ux = b allows us to solve two
triangular systems: U�z = b for z and then Ux = z for x. This is similar to the
original Gauss approach for solving a positive definite system of normal equations
X�Xx = X�b. Gauss solved the normal equations by a symmetry-preserving
elimination and used the back substitution to solve for x.

Let us now describe the algorithm for finding the Cholesky decomposition,
which is illustrated on Fig. 4.1. One of the interesting features of the algorithm is
that in the ith iteration we obtain the Cholesky decomposition of the ith leading
principal minor of A, {Akl}i,i

k=1,l=1.

106 Lenka Čížková, Pavel Čížek

Figure 4.1. Rowwise Cholesky algorithm

Algorithm 1
for i=1 to n

Uii =
(

Aii −
∑i−1

k=1 U2
ki

)1|2

for j=i+1 to n

Uij =
(

Aij −
∑i−1

k=1 UkiUkj

)/
Uii

end
end

The Cholesky decomposition described in Algorithm 1 is a numerically stable
procedure, see Martin et al. (1965) and Meinguet (1983), which can be at the same
time implemented in a very efficient way. Computed values Uij can be stored in
place of original Aij, and thus, no extra memory is needed. Moreover, let us note
that while Algorithm 1 describes the rowwise decomposition (U is computed row
by row), there are also a columnwise version and a version with diagonal pivoting,
which is also applicable to semidefinite matrices. Finally, there are also modifica-
tions of the algorithm, such as blockwise decomposition, that are suitable for very
large problems and parallelization; see Björck (1996), Gallivan et al. (1990) and
Nool (1995).

LU Decomposition4.1.2

The LU decomposition is another method reducing a square matrix A to a product
of two triangular matrices (lower triangular L and upper triangular U). Contrary
to the Cholesky decomposition, it does not require a positive definite matrix A,
but there is no guarantee that L = U�.

Numerical Linear Algebra 107

2Theorem 2 Let the matrix A ∈ Rn×n satisfy following conditions:

A11 ≠ 0 , det

(
A11 A12

A21 A22

)

≠ 0 , det

A11 A12 A13

A21 A22 A23

A31 A32 A33

 ≠ 0 , … , det A ≠ 0 .

Then there exists a unique lower triangular matrix L with ones on a diagonal,
a unique upper triangular matrix U with ones on a diagonal and a unique diagonal
matrix D such that A = LDU.

Note that for any nonsingular matrix A there is always a row permutation P
such that the permuted matrix PA satisfies the assumptions of Theorem 2. Further,
a more frequently used version of this theorem factorizes A to a lower triangular
matrix L′ = LD and an upper triangular matrix U′ = U. Finally, Zou (1991)
gave alternative conditions for the existence of the LU decomposition: A ∈ Rn×n

is nonsingular and A� is diagonally dominant (i.e., |Aii| ≥ ∑n
i=1,i�=j |Aij| for j =

1, … , n).
Similarly to the Cholesky decomposition, the LU decomposition reduces solving

a system of linear equations Ax = LUx = b to solving two triangular systems:
Lz = b, where z = Ux, and Ux = z.

Finding the LU decomposition of A is described in Algorithm 2. Since it is
equivalent to solving a system of linear equations by the Gauss elimination, which
searches just for U and ignores L, we refer a reader to Sect. 4.2, where its advantages
(e.g., easy implementation, speed) and disadvantages (e.g., numerical instability
without pivoting) are discussed.

Algorithm 2
L = 0n, U = In

for i = 1 to n
for j = i to n

Lji = Aji −
∑i−1

k=1 LjkUki

end
for j = i + 1 to n

Uij =
(

Aij −
∑i−1

k=1 LikUkj

)
|Lii

end
end

Finally, note that there are also generalizations of LU to non-square and singular
matrices, such as rank revealing LU factorization; see Pan (2000) and Miranian
and Gu (2003).

108 Lenka Čížková, Pavel Čížek

QR Decomposition4.1.3

One of the most important matrix transformations is the QR decomposition. It
splits a general matrix A to an orthonormal matrix Q, that is, a matrix with
columns orthogonal to each other and its Euclidian norm equal to 1, and to an
upper triangular matrix R. Thus, a suitably chosen orthogonal matrix Q will
triangularize the given matrix A.

3 Theorem 3 Let matrix A ∈ Rm×n with m ≥ n. Then there exist an orthonormal
matrix Q ∈ Rm×m and an upper triangular matrix R ∈ Rn×n with nonnegative
diagonal elements such that

A = Q

(
R

0

)

(the QR decomposition of the matrix A).

If A is a nonsingular square matrix, an even slightly stronger result can be
obtained: uniqueness of the QR decomposition.

4 Theorem 4 Let matrix A ∈ Rn×n be nonsingular. Then there exist a unique or-
thonormal matrix Q ∈ Rn×n and a unique upper triangular matrix R ∈ Rn×n with
positive diagonal elements such that A = QR.

The use of the QR decomposition for solving a system of equations Ax =
QRx = b consists in multiplying the whole system by the orthonormal matrix Q�,
Q�Q = I, and then solving the remaining upper triangular system Rx = Q�b. This
method guarantees numerical stability by minimizing errors caused by machine
roundoffs (see the end of this section for details).

The QR decomposition is usually constructed by finding one orthonormal vec-
tor (one column of Q) after another. This can be achieved using the so-called
elementary orthogonal transformations such as Householder reflections, House-
holder (1958), or Givens rotations, Givens (1958), that are described in the follow-
ing subsections. These transformations are related to the solution of the following
standard task.

1 Problem 1 Given a vector x ∈ Rm, x ≠ 0, find an orthogonal matrix M ∈ Rm×m

such that M�x = ‖x‖2 · e1, where e1 = (1, 0, … , 0)� denotes the first unit vector.

In the rest of this section, we will first discuss how Householder reflections and
Givens rotations can be used for solving Problem 1. Next, using these elementary

Numerical Linear Algebra 109

results, we show how one can construct the QR decomposition. Finally, we briefly
mention the Gram–Schmidt orthogonalization method, which also provides a way
to find the QR decomposition.

Householder Reflections
The QR decomposition using Householder reflections (HR) was developed by Gol-
ub (1965). Householder reflection (or Householder transformation) is a matrix P,

P = I −
1

c
uu�, c =

1

2
u�u , (4.3)

where u is a Householder vector. By definition, the matrix P is orthonormal and
symmetric. Moreover, for any x ∈ Rm, it holds that

Px = x −
1

c

(
u�x

)
u .

Therefore, to apply HR one does not need to explicitly compute the matrix P itself.
Additionally, it holds Pu = −u and Px ∈ span{x, u}. This means that HR reflects
a vector x with respect to the hyperplane with normal vector u (hence the name
Householder reflection).

Figure 4.2. Reflection with respect to the hyperplane with a normal vector u

To solve Problem 1 using some HR, we search for a vector u such that x will be
reflected to the x-axis. This holds for the following choice of u:

u = x + s1‖x‖2 · e1 , s1 = 2I(x1 ≥ 0) − 1 , (4.4)

where x1 = x�e1 denotes the first element of the vector x and I(·) represents an
indicator. For this reflection, it holds that c from (4.3) equals ‖x‖2(‖x‖2 + |x1|) and
Px = −s1‖x‖2 · e1 as one can verify by substituting (4.4) into (4.3).

110 Lenka Čížková, Pavel Čížek

Givens Rotations
A Givens rotation (GR) in m dimensions (or Givens transformation) is defined by
an orthonormal matrix Rij(α) ∈ Rm×m,

Rij(α) =

1 0 · · · · · · · · · · · · 0

0
. . .

...
... c s

...
...

. . .
...

... −s c
...

...
. . . 0

0 · · · · · · · · · · · · 0 1

i

j

(4.5)

where c = cosα and s = sinα for α ∈ R and 1 ≤ i < j ≤ n. Thus, the rotation
Rij(α) represents a plane rotation in the space spanned by the unit vectors ei and
ej by an angle α. In two dimensions, rotation R12(α),

R12(α) =

(
c s

−s c

)

, c = cosα , s = sinα

represents a clockwise rotation by an angle α; see Fig. 4.3.

Figure 4.3. Rotation of x in a plane by an angle α

Now, let us have a look at how GRs can be used for solving Problem 1. A GR of
a vector x = (x1, … , xm)� ∈ Rm by an angleα results in R ij(α)x = y = (y1, … , ym)�
such that

yk =

xk for k ≠ i, j ,

cxi + sxj for k = i ,

−sxi + cxj for k = j .

Numerical Linear Algebra 111

For a vector x with nonzero elements xi or xj, setting d = (x2
i + x2

j)1|2, c = xi|d,
s = xj|d leads to

(
c s

−s c

)(
xi

xj

)

=

(
d

0

)

.

Thus, using GR with this specific choice of c and s (referred further as R0
ij) implies

that the jth component of the vector x vanishes. Similarly to HRs, it is not necessary
to explicitly construct the whole matrix P to transform x since the rotation is fully
described by only two numbers: c and s. This elementary rotation R0

ij does not
however constitute a solution to Problem 1 yet: we need to combine more of them.

The next step employs a simple fact that the pre- or postmultiplication of
a vector x or a matrix A by any GR Rij(α) affects only the ith and jth rows
and columns, respectively. Hence, one can combine several rotations without one
rotation spoiling the result of another rotation. (Consequently, GRs are more
flexible than HRs). Two typical ways how GRs are used for solving Problem 1
mentioned in Sect. 4.1.3 follow.
1. R0

1nR0
1,n−1 … R0

13R0
12x = de1. Here the kth component of the vector x vanishes

after the Givens rotation R0
1k. The previously zeroed elements x2, … , xk−1 are

not changed because rotation R1k affects only the first and kth component.
2. R0

12R0
23 … R0

n−1,nx = de1. Here the kth component vanishes by the rotation
Rk−1,k.

Finally, there are several algorithms for computing the Givens rotations that im-
prove over the straightforward evaluation of R0

ijx. A robust algorithm minimizing
the loss of precision is given in Björck (1996). An algorithm minimizing memo-
ry requirements was proposed by Stewart (1976). On the other hand, Gentleman
(1973) and Hammarling (1974) proposed modifications aiming to minimize the
number of arithmetic operations.

QR Decomposition by Householder Reflections
or Givens Rotations
An appropriate combination of HRs or GRs, respectively, can be used to compute
the QR decomposition of a given matrix A ∈ Rm×n, m ≥ n, in a following way. Let
Qi, i = 1, … , n − 1, denote an orthonormal matrix in Rm×m such that premultipli-
cation of B = Qi−1 · · · Q1A by Qi can zero all elements in the ith column that are
below the diagonal and such that the previous columns 1, … , i − 1 are not affected
at all. Such a matrix can be a blockwise diagonal matrix with blocks being the
identity matrix Ii−1 and a matrix M solving Problem 1 for the vector composed of
elements in the ith column of B that lie on and below the diagonal. The first part
Ii−1 guarantees that the columns 1, … , i − 1 of matrix B are not affected by multi-
plication, whereas the second block M transforms all elements in the ith column
that are below the diagonal to zero. Naturally, matrix M can be found by means of
HRs or GRs as described in previous paragraphs.

112 Lenka Čížková, Pavel Čížek

This way, we construct a series of matrices Q1, … , Qn such that

Qn · · · Q1A =

(
R

0

)

.

Since all matrices Q1, … , Qn are orthonormal, Qt = Qn · · · Q1 is also orthonormal
and its inverse equals its transpose: Q−1

t = Q�
t . Hence,

A = (Qn · · · Q1)�
(

R

0

)

= Q

(
R

0

)

as described in Theorem 3.
We describe now the QR algorithm using HRs or GRs. Let M(x) denote the

orthonormal matrix from Problem 1 constructed for a vector x by one of the
discussed methods.

Algorithm 3
Q = Im

R = A
for i = 1 to n

x = {Rki}m
k=i

Qi =

(
Ii−1 0

0 M(x)

)

Q = QiQ
R = QiR

end
Q = Q�
R =

{
Rij

}n,n

i=1,j=1

There are also modifications of this basic algorithm employing pivoting for
better numerical performance and even revealing rank of the system, see Hong
and Tan (1992) and Higham (2000) for instance. An error analysis of the QR
decomposition by HRs and GRs are given by Gentleman (1975) and Higham (2000),
respectively.

Gram–Schmidt Orthogonalization
Given a nonsingular matrix A ∈ Rm×n, m ≥ n, the Gram–Schmidt orthogonaliza-
tion constructs a matrix Q such that the columns of Q are orthonormal to each
other and span the same space as the columns of A. Thus, A can be expressed as
Q multiplied by another matrix R, whereby the Gram–Schmidt orthogonalization
process (GS) ensures that R is an upper triangular matrix. Consequently, GS can
be used to construct the QR decomposition of a matrix A. A survey of GS variants
and their properties is given by Björck (1994).

Numerical Linear Algebra 113

The classical Gram–Schmidt (CGS) process constructs the orthonormal basis
stepwise. The first column Q1 of Q is simply normalized A1. Having constructed
a orthonormal base Q1:k = {Q1, … , Qk}, the next column Qk+1 is proportional to
Ak+1 minus its projection to the space span{Q1:k}. Thus, Qk+1 is by its definition
orthogonal to span{Q1:k}, and at the same time, the first k columns of A and Q span
the same linear space. The elements of the triangular matrix R from Theorem 3
are then coordinates of the columns of A given the columns of Q as a basis.

Algorithm 4
for i = 1 to n

for j = 1 to i - 1
Rji = Q�

j Ai

end
Qi = Ai −

∑i−1
j=1 RjiQj

Rii =
(
Q�

i Qi

)1|2

Qi = Qi|Rii

end

Similarly to many decomposition algorithms, also CGS allows a memory effi-
cient implementation since the computed orthonormal columns of Q can rewrite
the original columns of A. Despite this feature and mathematical correctness, the
CGS algorithm does not always behave well numerically because numerical errors
can very quickly accumulate. For example, an error made in computing Q1 affects
Q2, errors in both of these terms (although caused initially just by an error in Q1)
adversely influence Q3 and so on. Fortunately, there is a modified Gram–Schmidt
(MGS) procedure, which prevents such an error accumulation by subtracting linear
combinations of Qk directly from A before constructing following orthonormal
vectors. (Surprisingly, MGS is historically older than CGS.)

Algorithm 5
for i = 1 to n

Qi = Ai

Rii =
(
Q�

i Qi

)1|2

Qi = Qi|Rii

for j = i + 1 to n
Rji = Q�

i Aj

Aj = Aj − RijQi

end
end

Apart from this algorithm (the row version of MGS), there are also a column
version of MGS by Björck (1994) and MGS modifications employing iterative

114 Lenka Čížková, Pavel Čížek

orthogonalization and pivoting by Dax (2000). Numerical superiority of MGS
over CGS was experimentally established already by Rice (1966). This result is also
theoretically supported by the GS error analysis in Björck (1994), who uncovered
numerical equivalence of the QR decompositions done by MGS and HRs.

Singular Value Decomposition4.1.4

The singular value decomposition (SVD) plays an important role in numerical
linear algebra and in many statistical techniques as well. Using two orthonor-
mal matrices, SVD can diagonalize any matrix A and the results of SVD can tell
a lot about (numerical) properties of the matrix. (This is closely related to the
eigenvalue decomposition: any symmetric square matrix A can be diagonalized,
A = VDV�, where D is a diagonal matrix containing the eigenvalues of A and V is
an orthonormal matrix.)

5 Theorem 5 Let A ∈ Rm×n be a matrix of rank r. Then there exist orthonormal
matrices U ∈ Rm×m and V ∈ Rn×n and a diagonal matrix D ∈ Rm×n, with the
diagonal elements σ1 ≥ σ2 ≥ … ≥ σr > σr+1 = … = σmin{m,n} = 0, such that
A = UDV�.

Numbers σ1, … ,σmin{m,n} represent the singular values of A. Columns Ui and Vi

of matrices U and V are called the left and right singular vectors of A associated
with singular value σi, respectively, because AVi = σiUi and U�

i A = σiV�
i , i =

1, … , min{m, n}.
Similarly to the QR decomposition, SVD offers a numerically stable way to solve

a system of linear equations. Given a system Ax = UDV�x = b, one can transform
it to U�Ax = DV�x = U�b and solve it in two trivial steps: first, finding a solution
z of Dz = U�b, and second, setting x = Vz, which is equivalent to V�x = z.

On theotherhand, thepowerof SVDlies in its relation tomany importantmatrix
properties; seeTrefethenandBau (1997), for instance. First of all, the singular values
of a matrix A are equal to the (positive) square roots of the eigenvalues of A�A
and AA�, whereby the associated left and right singular vectors are identical with
the corresponding eigenvectors. Thus, one can compute the eigenvalues of A�A
directly from the original matrix A. Second, the number of nonzero singular values
equals the rank of a matrix. Consequently, SVD can be used to find an effective
rank of a matrix, to check a near singularity and to compute the condition number
of a matrix. That is, it allows to assess conditioning and sensitivity to errors of
a given system of equations. Finally, let us note that there are far more uses of SVD:
identification of the null space of A, null(A) = span{Vk+1, … , Vn}; computation of
the matrix pseudo-inverse, A− = VD−U�; low-rank approximations and so on.
See Björck (1996) and Trefethen and Bau (1997) for details.

Let us now present an overview of algorithms for computing the SVD decom-
position, which are not described in details due to their extent. The first stable

Numerical Linear Algebra 115

algorithm for computing the SVD was suggested by Golub and Kahan (1965). It
involved reduction of a matrix A to its bidiagonal form by HRs, with singular
values and vectors being computed as eigenvalues and eigenvectors of a specific
tridiagonal matrix using a method based on Sturm sequences. The final form of
the QR algorithm for computing SVD, which has been the preferred SVD method
for dense matrices up to now, is due to Golub and Reinsch (1970); see Anderson
et al. (1999), Björck (1996) or Gentle (1998) for the description of the algorithm
and some modifications. An alternative approach based on Jacobi algorithm was
given by Hari and Veselić (1987). Latest contributions to the pool of computational
methods for SVD, including von Matt (1995), Demmel et al. (1999) and Higham
(2000), aim to improve the accuracy of singular values and computational speed
using recent advances in the QR decomposition.

Matrix Inversion 4.1.5

In previous sections, we described how matrix decompositions can be used for
solving systems of linear equations. Let us now discuss the use of matrix decom-
positions for inverting a nonsingular squared matrix A ∈ Rn×n, although matrix
inversion is not needed very often. All discussed matrix decomposition construct
two or more matrices A1, … , Ad such that A = A1 · … · Ad, where matrices
Al, l = 1, … , d, areorthonormal, triangular, ordiagonal.Because A−1 = A−1

d ·…·A−1
1 ,

we just need to be able to invert orthonormal and triangular matrices (a diagonal
matrix is a special case of a triangular matrix).

First, an orthonormal matrix Q satisfies by definition Q�Q = QQ� = In. Thus,
inversion is in this case equivalent to the transposition of a matrix: Q−1 = Q�.

Second, inverting an upper triangular matrix U can be done by solving directly
XU = In, which leads to the backward substitution method. Let X = {Xij}n,n

i=1,j=1

denote the searched for inverse matrix U−1.

Algorithm 6
X = 0n

for i = n to 1
Xii = 1|Uii

for j = i + 1 to n

Xij = −
(∑j

k=i+1 XkjUik

)
|Ujj

end
end

The inversion of a lower triangular matrix L can be done analogously: the
algorithm is applied to L�, that is, Uij is replaced by Lji for i, j = 1, … , n.

There are several other algorithms available such as forward substitution or
blockwise inversion. Designed for a faster and more (time) efficient computation,
theirnumericalbehaviordoesnot significantlydiffer fromthepresentedalgorithm.
See Croz and Higham (1992) for an overview and numerical study.

116 Lenka Čížková, Pavel Čížek

Direct Methods
for Solving Linear Systems4.2

A system of linear equations can be written in the matrix notation as

Ax = b , (4.6)

where A denotes the coefficient matrix, b is the right-hand side, and x represents
the solution vector we search for. The system (4.6) has a solution if and only if b
belongs to the vector space spanned by the columns of A.

If m < n, that is, the number of equations is smaller than the number of
unknown variables, or if m ≥ n but A does not have a full rank (which means
that some equations are linear combinations of the other ones), the system is
underdetermined and there are either no solution at all or infinitely many of
them. In the latter case, any solution can be written as a sum of a particular
solution and a vector from the nullspace of A. Finding the solution space can
involve the SVD decomposition (Sect. 4.1.4).
If m > n and the matrix A has a full rank, that is, if the number of equations is
greater than the number of unknown variables, there is generally no solution
and the system is overdetermined. One can search some x such that the distance
between Ax and b is minimized, which leads to the linear least-squares problem
if distance is measured by L2 norm; see Chap. III.8.
If m = n and the matrix A is nonsingular, the system (4.6) has a unique solution.
Methods suitable for this case will be discussed in the rest of this section as
well as in Sect. 4.3.

From here on, we concentrate on systems of equations with unique solutions.
There are two basic classes of methods for solving system (4.6). The first class

is represented by direct methods. They theoretically give an exact solution in a
(predictable) finite number of steps. Unfortunately, this does not have to be true in
computational praxis due to rounding errors: an error made in one step spreads in
all following steps. Classical direct methods are discussed in this section. Moreover,
solving an equation system by means of matrix decompositions, as discussed in
Sect. 4.1, can be classified as a direct method as well. The second class is called
iterative methods, which construct a series of solution approximations that (under
some assumptions) converges to the solution of the system. Iterative methods
are discussed in Sect. 4.3. Finally, note that some methods are on the borderline
between the two classes; for example, gradient methods (Sect. 4.3.5) and iterative
refinement (Sect. 4.2.2).

Further, the direct methods discussed in this section are not necessarily op-
timal for an arbitrary system (4.6). Let us deal with the main exceptions. First,
even if a unique solution exist, numerical methods can fail to find the solu-
tion: if the number of unknown variables n is large, rounding errors can ac-
cumulate and result in a wrong solution. The same applies very much to sys-

Numerical Linear Algebra 117

tems with a nearly singular coefficient matrix. One alternative is to use iter-
ative methods (Sect. 4.3), which are less sensitive to these problems. Another
approach is to use the QR or SVD decompositions (Sect. 4.1), which can trans-
form some nearly singular problems to nonsingular ones. Second, very large
problems including hundreds or thousands of equations and unknown variables
may be very time demanding to solve by standard direct methods. On the other
hand, their coefficient matrices are often sparse, that is, most of their elements
are zeros. Special strategies to store and solve such problems are discussed in
Sect. 4.5.

To conclude these remarks, let us mention a close relation between solving the
system (4.6) and computing the inverse matrix A−1:

having an algorithm that for a matrix A computes A−1, we can find the solution
to (4.6) as x = A−1b;
an algorithm solving the system (4.6) can be used to compute A−1 as follows.
Solve n linear systems Axi = ei, i = 1, … , n (or the corresponding system
with multiple right-hand sides), where ei denotes the ith unit vector. Then
A−1 = (x1, … , xn).

In the rest of this section, we concentrate on the Gauss–Jordan elimination
(Sect. 4.2.1) and its modifications and extensions, such as iterative refinement
(Sect. 4.2.2). A wealth of information on direct methods can be found in mono-
graphs Axelsson (1994), Gentle (1998) and Golub and van Loan (1996).

Gauss–Jordan Elimination 4.2.1

In this subsection, we will simultaneously solve the linear systems

Ax1 = b1 , Ax2 = b2 , … , Axk = bk

and a matrix equation AX = B, where X, B ∈ Rn×l (its solution is X = A−1B,
yielding the inverse A−1 for a special choice B = In). They can be written as a linear
matrix equation

A[x1|x2|… |xk|X] = [b1|b2|… |bk|B] , (4.7)

where the operator | stands for column augmentation.
The Gauss–Jordan elimination (GJ) is based on elementary operations that do

not affect the solution of an equation system. The solution of (4.7) will not change
if we perform any of the following operations:

interchanging any two rows of A and the corresponding rows of bi’s and B,
i = 1, … , k;
multiplying a row of A and the same row of bi’s and B by a nonzero number,
i = 1, … , k;
adding to a chosen rowof A and the same row of bi’s and B a linear combination
of other rows, i = 1, … , k.

118 Lenka Čížková, Pavel Čížek

Interchanging any two columns of A is possible too, but it has to be followed by
interchanging the corresponding rows of all solutions xi and X as well as of right
sides bi and B, i = 1, … , k. Each row or column operation described above is
equivalent to the pre- or postmultiplication of the system by a certain elementary
matrix R or C, respectively, that are results of the same operation applied to the
identity matrix In.

GJ is a technique that applies one or more of these elementary operations
to (4.7) so that A becomes the identity matrix In. Simultaneously, the right-hand
side becomes the set of solutions. Denoting Ri, i = 1, … , O, the matrices cor-
responding to the ith row operation, the combination of all operations has to
constitute inverse A−1 = RO · … · R3R2R1 and hence x = RO · … · R3R2R1b.
The exact choice of these elementary operation is described in the following
paragraph.

Pivoting in Gauss–Jordan Elimination
Let us now discuss several well-known variants of the Gauss–Jordan elimination.
GJ without pivoting does not interchange any rows or columns; only multiplication
and addition of rows are permitted. First, nonzero nondiagonal elements in the
first column A1 are eliminated: the first row of (4.7) is divided by its diagonal
element A11 and the Ai1-multiple of the modified first row is subtracted from the
ith row, i = 2, … , n. We can proceed the same way for all n columns of A, and thus,
transform A to the identity matrix In. It is easy to see that the method fails if the
diagonal element in a column to be eliminated, the so-called pivot, is zero in some
step. Even if this is not the case, one should be aware that GJ without pivoting is
numerically unstable.

On the other hand, the GJ method becomes stable when using pivoting. This
means that one can interchange rows (partial pivoting) or rows and columns
(full pivoting) to put a suitable matrix element to the position of the current
pivot. Since it is desirable to keep the already constructed part of the iden-
tify matrix, only rows below and columns right to the current pivot are con-
sidered. GJ with full pivoting is numerically stable. From the application point
of view, GJ with partial pivoting is numerically stable too, although there are
artificial examples where it fails. Additionally, the advantage of partial pivot-
ing (compared to full pivoting) is that it does not change the order of solution
components.

There are various strategies to choose a pivot. A very good choice is the largest
available element (in absolute value). This procedure depends however on the
original scaling of the equations. Implicit pivoting takes scaling into account and
chooses a pivot as if the original system were rescaled so that the largest element
of each row would be equal to one.

Finally, let us add several concluding remarks on efficiency of GJ and its rela-
tionship to matrix decompositions. As shown, GJ can efficiently solve problems
with multiple right-hand sides known in advance and compute A−1 at the same
time. On the other hand, if it is necessary to solve later a new system with the

Numerical Linear Algebra 119

same coefficient matrix A but a new right-hand side b, one has to start the
whole elimination process again, which is time demanding, or compute A−1b
using the previously computed inverse matrix A−1, which leads to further er-
ror accumulation. In praxis, one should prefer matrix decompositions, which do
not have this drawback. Specifically, the LU decomposition (Sect. 4.1.2) is equiv-
alent to GJ (with the same kind of pivoting applied in both cases) and allows
us to repeatedly solve systems with the same coefficient matrix in an efficient
way.

Iterative Refinement 4.2.2

In the introduction to Sect. 4.2, we noted that direct methods are rather sensitive to
rounding errors. Iterative refinement offers a way to improve the solution obtained
by any direct method, unless the system matrix A is too ill-conditioned or even
singular.

Let x1 denote an initially computed (approximate) solution of (4.6). Iterative
refinement is a process constructing a series xi, i = 1, 2, … , as described in
Algorithm 7. First, given a solution xi, the residuum ri = Axi − b is computed.
Then, one obtains the correction ∆xi by solving the original system with residuum
ri on the right-hand side.

Algorithm 7
Repeat for i = 1, 2, …

compute ri = b − Axi

solve A∆xi = ri for ∆xi

set xi+1 = xi + ∆xi

until the desired precision is achieved.

It is reasonable to carry out the computation of residuals ri in a higher pre-
cision because a lot of cancellation occurs if xi is a good approximation. Nev-
ertheless, provided that the coefficient matrix A is not too ill-conditioned, Skeel
(1980) proved that GJ with partial pivoting and only one step of iterative re-
finement computed in a fixed precision is stable (it has a relative backward
error proportional to the used precision). In spite of this result, one can rec-
ommend to use iterative refinement repeatedly until the desired precision is
reached.

Additionally, an important feature of iterative refinement is its low computa-
tional costs. Provided that a system is solved by means of decompositions (e.g., GJ
is implemented as the LU decomposition), a factorization of A is available already
after computing the initial solution x1. Subsequently, solving any system with the
same coefficient matrix A, such as A∆xi = ri, can be done fast and efficiently and
the computational costs of iterative refinement are small.

120 Lenka Čížková, Pavel Čížek

Iterative Methods
for Solving Linear Systems4.3

Direct methods for solving linear systems theoretically give the exact solution
in a finite number of steps, see Sect. 4.2. Unfortunately, this is rarely true in
applications because of rounding errors: an error made in one step spreads fur-
ther in all following steps! Contrary to direct methods, iterative methods con-
struct a series of solution approximations such that it converges to the exact
solution of a system. Their main advantage is that they are self-correcting, see
Sect. 4.3.1.

In this section, we first discuss general principles of iterative methods that solve
linear system (4.6), Ax = b, whereby we assume that A ∈ Rn×n and the system
has exactly one solution xe (see Sect. 4.2 for more details on other cases). Later,
we describe most common iterative methods: the Jacobi, Gauss–Seidel, successive
overrelaxation, and gradient methods (Sects. 4.3.2–4.3.5). Monographs containing
detailed discussion of these methods include Björck (1996), Golub and van Loan
(1996) and Hackbusch (1994). Although we treat these methods separately from the
direct methods, let us mention here that iterative methods can usually benefit from
a combination with the Gauss elimination, see Milaszewicz (1987) and Alanelli and
Hadjidimos (2004), for instance.

To unify the presentation of all methods, let D, L, and U denote the diagonal,
lower triangular and upper triangular parts of a matrix A throughout this section:

Dij =

Aij for i = j ,

0 otherwise ;
Lij =

Aij for i > j ,

0 otherwise ;
Uij =

Aij for i < j ,

0 otherwise .

General Principle
of Iterative Methods for Linear Systems4.3.1

Aniterativemethodfor solvinga linear system Ax = b constructsan iterationseries
xi, i = 0, 1, 2, …, that under some conditions converges to the exact solution xe

of the system (Axe = b). Thus, it is necessary to choose a starting point x0 and
iteratively apply a rule that computes xi+1 from an already known xi.

A starting vector x0 is usually chosen as some approximation of x. (Luckily, its
choice cannot cause divergence of a convergent method.) Next, given xi, i ∈ N, the
subsequent element of the series is computed using a rule of the form

xi+1 = Bixi + Cib , i = 0, 1, 2, … , (4.8)

where Bi, Ci ∈ Rn×n, i ∈ N, are matrix series. Different choices of Bi and Ci define
different iterative methods.

Numerical Linear Algebra 121

Letusdiscussnowaminimal setof conditionson Bi and Ci in (4.8) that guarantee
the convergence of an iterative method. First of all, it has to hold that Bi + CiA = In

for all i ∈ N, or equivalently,

xe = Bixe + Cib = (Bi + CiA)xe , i ∈ N . (4.9)

In other words, once the iterative process reaches the exact solution xe, all consec-
utive iterations should stay equal to xe and the method cannot depart from this
solution. Second, starting from a point x0 �= xe, we have to ensure that approxima-
tions xi will converge to xe as i increases.

6Theorem 6 An iteration series xi given by (4.8) converges to the solution of
system (4.6) for any chosen x0 iff

lim
i→∞ BiBi−1 … B0 = 0 .

In praxis, stationary iterative methods are used, that is, methods with constant
Bi = B and Ci = C, i ∈ N. Consequently, an iteration series is then constructed
using

xi+1 = Bxi + Cb , i = 0, 1, 2, … (4.10)

and the convergence condition in Theorem 6 has a simpler form.

7Theorem 7 An iteration series xi given by (4.10) converges to the solution of
system (4.6) for any chosen x0 iff the spectral radius ρ(B) < 1, where ρ(B) =
maxi=1,…,n |λi| and λ1, … , λn represent the eigenvalues of B.

Note that the convergence condition ρ(B) < 1 holds, for example, if ‖B‖ < 1
in any matrix norm. Moreover, Theorem 7 guarantees the self-correcting property
of iterative methods since convergence takes place independent of the starting
value x0. Thus, if computational errors adversely affect xi during the ith iteration,
xi can be considered as a new starting vector and the iterative method will further
converge. Consequently, the iterative methods are in general more robust than the
direct ones.

Apparently, such an iterative process can continue arbitrarily long unless x i = xe

at some point. This is impractical and usually unnecessary. Therefore, one uses
stopping (or convergence) criteria that stop the iterative process when a pre-
specified condition is met. Commonly used stopping criteria are based on the
change of the solution or residual vector achieved during one iteration. Specifically,
given a small ε > 0, the iterative process is stopped after the ith iteration when
‖xi − xi−1‖ ≤ ε, ‖ri − ri−1‖ ≤ ε, or ‖ri‖ ≤ ε, where ri = Axi − b is a residual vector.
Additionally, a maximum acceptable number of iterations is usually specified.

122 Lenka Čížková, Pavel Čížek

Jacobi Method4.3.2

The Jacobi method is motivated by the following observation. Let A have nonzero
diagonal elements (the rows of any nonsingular matrix can be reorganized to
achieve this). Then the diagonal part D of A is nonsingular and the system (4.6)
can be rewritten as Dx + (L + U)x = b. Consequently,

x = D−1[(−L − U)x + b] .

Replacing x on the left-hand side by xi+1 and x on the right-hand side by xi leads
to the iteration formula of the Jacobi method:

xi+1 = −D−1(L + U)xi + D−1b .

Figure 4.4. Scheme of the Jacobi method

The intuition of the Jacobi method is very simple: given an approximation xold

of the solution, let us express the kth component xk of x as a function of the other
components from the kth equation and compute xk given xold:

xnew
k =

1

Akk

bk −

n∑

j=1
j≠k

Akjx
old
j

 , (4.11)

k = 1, … , n (see Fig. 4.4).
The Jacobi method converges for any starting vector x0 as long as ρ(D−1(L +

U)) < 1, see Theorem 7. This condition is satisfied for a relatively big class of matri-
ces including diagonally dominant matrices (matrices A such that

∑n
j=1,j≠i |Aij| ≤

|Aii| for i = 1, … , n), and symmetric matrices A such that D, A = L + D + U, and
−L + D − U are all positive definite. Although there are many improvements to the
basic principle of the Jacobi method in terms of convergence to xe, see Sects. 4.3.3
and 4.3.4, its advantage is an easy and fast implementation (elements of a new
iteration xi can be computed independently of each other).

Gauss–Seidel Method4.3.3

Analogously to the Jacobi method, we can rewrite system (4.6) as (L+D)x+Ux = b,
which further implies x = (L + D)−1[−Ux + b]. This leads to the iteration formula
of the Gauss–Seidel method:

xi+1 = −(L + D)−1Uxi + (L + D)−1b . (4.12)

Numerical Linear Algebra 123

Themaindifference to the Jacobimethods lies in amoreefficientuseof (4.11).When
computing the kth element xnew

k , the first k − 1 elements xnew
1 , … , xnew

k−1 are already
known (and presumably more precise than xold

1 , … , xold
k−1). Thus, it is possible to

use these new values instead of the old ones and speed up the convergence (see
Fig. 4.5 for a scheme). Moreover, using this strategy, the newly computed elements
of xi+1 can directly overwrite the respective elements of xi and save memory this
way.

Figure 4.5. Scheme of the Gauss–Seidel method

Following the Theorem 7, the Gauss–Seidel method converges for any starting
vector x0 if ρ((L + D)−1U) < 1. This condition holds, for example, for diagonally
dominant matrices as well as for positive definite ones.

Successive Overrelaxation Method 4.3.4

The successive overrelaxation (SOR) method aims to further refine the Gauss–
Seidel method. The Gauss–Seidel formula (4.12) can be rewritten as

xi+1 = xi − D−1[{Lxi+1 + (D + U)xi} − b] = xi − ∆i ,

which describes the difference ∆i between xi+1 and xi expressed for the kth element
of xi(+1) from the kth equation, k = 1, … , n. The question SOR poses is whether
the method can converge faster if we “overly” correct xi+1 in each step; that is, if
xi is corrected by a multiple ω of ∆i in each iteration. This idea leads to the SOR
formula:

xi+1 = xi − ωD−1[{Lxi+1 + (D + U)xi} − b] ,

or in the form (4.10),

xi+1 = (D + ωL)−1{(1 − ω)D − ωU}xi + ω(D + ωL)−1b . (4.13)

The parameterω is called the (over)relaxation parameter and it can be shown that
SOR converges only for ω ∈ (0, 2), a result derived by Kahan (1958).

A good choice of parameter ω can speed up convergence, as measured by the
spectral radius of the corresponding iteration matrix B (see Theorem 7; a lower
spectral radius ρ(B) means faster convergence). There is a choice of literature
devoted to the optimal setting of relaxation parameter: see Hadjidimos (2000)
for a recent overview of the main results concerning SOR. We just present one
important result, which is due to Young (1954).

124 Lenka Čížková, Pavel Čížek

1 Definition 1 A matrix A is said to be two-cyclic consistently ordered if the eigen-
values of the matrix M(α) = αD−1L + α−1D−1U, α ≠ 0, are independent of α.

8 Theorem 8 Let the matrix A be two-cyclic consistently ordered. Let the respective
Gauss–Seidel iteration matrix B = −(L + D)−1U have the spectral radius ρ(B) < 1.
Then the optimal relaxation parameter ω in SOR is given by

ωopt =
2

1 +
√

1 − ρ(B)

and for this optimal value it holds ρ(B;ωopt) = ωopt − 1.

Using SOR with the optimal relaxation parameter significantly increases the
rate of convergence. Note however that the convergence acceleration is obtained
only for ω very close to ωopt. If ωopt cannot be computed exactly, it is better to
take ω slightly larger rather than smaller. Golub and van Loan (1996) describe an
approximation algorithm for ρ(B).

On the other hand, if the assumptions of Theorem 8 are not satisfied, one
can employ the symmetric SOR (SSOR), which performs the SOR iteration twice:
once as usual, see (4.13), and once with interchanged L and U. SSOR requires
more computations per iteration and usually converges slower, but it works for any
positive definite matrix and can be combined with various acceleration techniques.
See Björck (1996) and Hadjidimos (2000) for details.

Gradient Methods4.3.5

Gradient iterative methods are based on the assumption that A is a symmetric
positive definite matrix A. They use this assumption to reformulate (4.6) as a min-
imization problem: xe is the only minimum of the quadratic form

Q(x) =
1

2
x�Ax − x�b .

Given this minimization problem, gradient methods construct an iteration se-
ries of vectors converging to xe using the following principle. Having the ith
approximation xi, choose a direction vi and find a number αi such that the new
vector

xi+1 = xi + αivi

is a minimum of Q(x) on the line xi + αvi, α ∈ R. Various choices of directions
vi then render different gradient methods, which are in general nonstationary
(vi changes in each iteration). We discuss here three methods: the Gauss–Seidel
(as a gradient method), steepest descent and conjugate gradients methods.

Numerical Linear Algebra 125

Gauss–Seidel Method as a Gradient Method
Interestingly, the Gauss–Seidel method can be seen as a gradient method for the
choice

vkn+i = ei , k = 0, 1, 2, … , i = 1, … , n ,

where ei denotes the ith unit vector. The kth Gauss–Seidel iteration corresponds
to n subiterations with vkn+i for i = 1, … , n.

Steepest Descent Method
The steepest descent method is based on the direction vi given by the gradient
of Q(x) at xi. Denoting the residuum of the ith approximation ri = b − Axi, the
iteration formula is

xi+1 = xi +
r�i ri

r�i Ari
ri ,

where ri represents the direction vi and its coefficient is the Q(x)-minimizing
choice of αi. By definition, this method reduces Q(xi) at each step, but it is not
very effective. The conjugate gradient method discussed in the next subsection
will usually perform better.

Conjugate Gradient Method
In the conjugate gradient (CG) method proposed by Hestenes and Stiefel (1952), the
directions vi are generated by the A-orthogonalization of residuum vectors. Given
a symmetric positive definite matrix A, A-orthogonalization is a procedure that
constructs a series of linearly independent vectors vi such that v�

i Avj = 0 for i ≠ j
(conjugacy or A-orthogonality condition). It can be used to solve the system (4.6)
as follows (ri = b − Axi represents residuals).

Algorithm 8
v0 = r0 = b − Ax0

do
αi =

(
v�

i ri

)
|
(
v�

i Avi

)

xi+1 = xi + αivi

ri+1 = ri − αiAvi

βi = −
(
v�

i Ari+1

)
|
(
v�

i Avi

)

vi+1 = ri+1 + βivi

until a stop criterion holds

An interesting theoretic property of CG is that it reaches the exact solution in at
most n steps because there are not more than n (A-)orthogonal vectors. Thus, CG
is not a truly iterative method. (This does not have to be the case if A is a singular
or non-square matrix, see Kammerer and Nashed, 1972.) On the other hand, it is

126 Lenka Čížková, Pavel Čížek

usually used as an iterative method, because it can give a solution within the given
accuracy much earlier than after n iterations. Moreover, if the approximate solu-
tion xn after n iterations is not accurate enough (due to computational errors), the
algorithm can be restarted with x0 set to xn. Finally, let us note that CG is attractive
for use with large sparse matrices because it addresses A only by its multiplication
by a vector. This operation can be done very efficiently for a properly stored sparse
matrix, see Sect. 4.5.

The principle of CG has many extensions that are applicable also for nonsym-
metric nonsingular matrices: for example, generalized minimal residual, Saad and
Schultz (1986); (stabilized) biconjugate gradients, Vorst (1992); or quasi-minimal
residual, Freund and Nachtigal (1991).

Eigenvalues and Eigenvectors4.4

In this section, we deal with methods for computing eigenvalues and eigenvectors
of a matrix A ∈ Rn×n. First, we discuss a simple power method for computing
one or few eigenvalues (Sect. 4.4.1). Next, we concentrate on methods performing
the complete eigenanalysis, that is, finding all eigenvalues (the Jacobi, QR, and LR
methods in Sects. 4.4.2–4.4.5). Finally, we briefly describe a way to improve already
computed eigenvalues and to find the corresponding eigenvector. Additionally,
note that eigenanalysis can be also done by means of SVD, see Sect. 4.1.4. For
more details on the described as well as some other methods, one can consult
monographs by Gentle (1998), Golub and van Loan (1996), Press et al. (1992) and
Stoer and Bulirsch (2002).

Before discussing specific methods, let us describe the principle common to
most of them. We assume that A ∈ Rn×n has eigenvalues |λ1| ≥ |λ2| ≥ … ≥ |λn|.
To find all eigenvalues, we transform the original matrix A to a simpler ma-
trix B such that it is similar to A (recall that matrices A and B are similar if
there is a matrix T such that B = T−1AT). The similarity of A and B is crucial
since it guarantees that both matrices have the same eigenvalues and their eigen-
vectors follow simple relation: if g is an eigenvector of B corresponding to its
eigenvalue λ, then Tg is an eigenvector of A corresponding to the same eigenval-
ue λ.

There are two basic strategies to construct a similarity transformation B of the
original matrix A. First, one can use a series of simple transformations, such as
GRs, and eliminate elements of A one by one (see the Jacobi method, Sect. 4.4.2).
This approach is often used to transform A to its tridiagonal or upper Hessenberg
forms. (Matrix B has the upper Hessenberg form if it is an upper triangular except
for the first subdiagonal; that is, Aij = 0 for i > j + 1, where i, j = 1, … , n).
Second, one can also factorize A into A = FLFR and switch the order of factors,
B = FRFL (similarity of A and B follows from B = FRFL = F−1

L AFL). This is used
for example by the LR method (Sect. 4.4.5). Finally, there are methods combining
both approaches.

Numerical Linear Algebra 127

Power Method 4.4.1

In its basic form, the power method aims at finding only the largest eigenvalue λ1

of a matrix A and the corresponding eigenvector. Let us assume that the matrix A
has a dominant eigenvalue (|λ1| > |λ2|) and n linearly independent eigenvectors.

The power method constructs two series ci and xi, i ∈ N, that converge to λ1 and
to the corresponding eigenvector g1, respectively. Starting from a vector x0 that
is not orthogonal to g1, one only has to iteratively compute Axi and split it to its
norm ci+1 and the normalized vector xi+1, see Algorithm 9. Usually, the Euclidian
(ci+1 = ‖Axi‖2) and maximum (ci+1 = maxj=1,…,n |(Axi)j|) norms are used.

Algorithm 9
i = 0
do

i = i + 1
xi+1 = Axi

ci+1 = ‖Axi+1‖
xi+1 = xi+1|ci+1

until a stop criterion holds

Although assessing the validity of assumptions is far from trivial, one can
usually easily recognize whether the method converges from the behaviour of the
two constructed series.

Furthermore, the power method can be extended to search also for other eigen-
values; for example, the smallest one and the second largest one. First, if A is
nonsingular, we can apply the power method to A−1 to find the smallest eigen-
value λn because 1|λn is the largest eigenvalue of A−1. Second, if we need more
eigenvalues and λ1 is already known, we can use a reduction method to construct
a matrix B that has the same eigenvalues and eigenvectors as A except for λ1,
which is replaced by zero eigenvalue. To do so, we need to find a (normalized)
eigenvector h1 of A� corresponding to λ1 (A and A� have the same eigenvalues)
and to set B = A −λ1h1h�

1 . Naturally, this process can be repeated to find the third
and further eigenvalues.

Finally, let us mention that the power method can be used also for some matrices
without dominant eigenvalue (e.g., matrices with λ1 = … = λp for some 1 <
p ≤ n). For further extensions of the power method see Sidi (1989), for instance.

Jacobi Method 4.4.2

For a symmetric matrix A, the Jacobi method constructs a series of orthogonal
matrices Ri, i ∈ N, such that the matrix Ti = R�

i … R�
1 AR1 … Ri converges to

a diagonal matrix D. Each matrix Ri is a GR matrix defined in (4.5), whereby the
angleα is chosen so that one nonzero element (Ti)jk becomes zero in Ti+1. Formulas
for computing Ri given theelement (j, k) tobe zeroedaredescribed inGentle (1998),

128 Lenka Čížková, Pavel Čížek

for instance. Once the matrix A is diagonalized this way, the diagonal of D contains
the eigenvalues of A and the columns of matrix R = R1 · … · Ri represent the
associated eigenvectors.

There are various strategies to choose an element (j, k) which will be zeroed in
the next step. The classical Jacobi method chooses the largest off-diagonal element
in absolute value and it is known to converge. (Since searching the maximal
element is time consuming, various systematic schemes were developed, but their
convergence cannot be often guaranteed.) Because the Jacobi method is relatively
slow, other methods are usually preferred (e.g., the QR method). On the other
hand, it has recently become interesting again because of its accuracy and easy
parallelization (Higham, 1997; Zhou and Brent, 2003).

Givens and Householder Reductions4.4.3

The Givens and Householder methods use a similar principle as the Jacobi method.
A series of GRs or HRs, designed such that they form similarity transformations,
is applied to a symmetric matrix A in order to transformed it to a tridiagonal
matrix. (A tridiagonal matrix is the Hessenberg form for symmetric matrices.)
This tridiagonal matrix is then subject to one of the iterative methods, such as the
QR or LR methods discussed in the following paragraphs. Formulas for Givens and
Householder similarity transformations are given inPress et al. (1992), for instance.

QR Method4.4.4

The QR method is one of the most frequently used methods for the complete
eigenanalysis of a nonsymmetric matrix, despite the fact that its convergence is
not ensured. A typical algorithm proceeds as follows. In the first step, the matrix A
is transformed into a Hessenberg matrix using Givens or Householder similarity
transformations (see Sects. 4.1.3 and 4.4.3). In the second step, this Hessenberg
matrix is subject to the iterative process called chasing. In each iteration, similarity
transformations, such as GRs, are first used to create nonzero entries in positions
(i + 2, i), (i + 3, i) and (i + 3, i + 1) for i = 1. Next, similarity transformations are
repeatedly used to zero elements (i+2, i) and (i+3, i) and to move these “nonzeros”
towards the lower right corner of the matrix (i.e., to elements (i + 2, i), (i + 3, i)
and (i + 3, i + 1) for i = i + 1). As a result of chasing, one or two eigenvalues can
be extracted. If An,n−1 becomes zero (or negligible) after chasing, element An,n is
an eigenvalue. Consequently, we can delete the nth row and column of the matrix
and apply chasing to this smaller matrix to find another eigenvalue. Similarly, if
An−1,n−2 becomes zero (or negligible), the two eigenvalues of the 2 × 2 submatrix
in the lower right corner are eigenvalues of A. Subsequently, we can delete last two
rows and columns and continue with the next iteration.

Since a more detailed description of the whole iterative process goes beyond
the extent of this contribution, we refer a reader to Gentle (1998) for a shorter
discussion and to Golub and van Loan (1996) and Press et al. (1992) for a more
detailed discussion of the QR method.

Numerical Linear Algebra 129

LR Method 4.4.5

The LR method is based on a simple observation that decomposing a matrix A
into A = FLFR and multiplying the factors in the inverse order results in a matrix
B = FRFL similar to A. Using the LU decomposing (Sect. 4.1.2), the LR method
constructs a matrix series Ai for i ∈ N, where A1 = A and

Ai = LiUi =⇒ Ai+1 = UiLi ,

where Li is a lower triangular matrix and Ui is an upper triangular matrix with
ones on its diagonal. For a wide class of matrices, including symmetric positive
definite matrices, Ai and Li are proved to converge to the same lower triangular
matrix L, whereby the eigenvalues of A form the diagonal of L and are ordered by
the decreasing absolute value.

Inverse Iterations 4.4.6

The method of inverse iterations can be used to improve an approximation λ∗ of an
eigenvalue λ of a matrix A. The method is based on the fact that the eigenvector g
associated with λ is also an eigenvector of Ã = (A − λ∗I)−1 associated with the
eigenvalue λ̃ = (λ − λ∗)−1. For an initial approximation λ∗ close to λ, λ̃ is the
dominant eigenvalueof Ã. Thus, it canbecomputedby thepowermethoddescribed
in Sect. 4.4.1, whereby λ∗ could be modified in each iteration in order to improve
the approximation of λ.

This method is not very efficient without a good starting approximation, and
therefore, it is not suitable for the complete eigenanalysis. On the other hand, the
use of the power method makes it suitable for searching of the eigenvector g asso-
ciated with λ. Thus, the method of inverse iterations often complements methods
for complete eigenanalysis and serves then as a tool for eigenvector analysis. For
this purpose, one does not have to perform the iterative improvement of initial λ∗:
applying the power method on Ã = (A − λ∗I)−1 suffices. See Ipsen (1997), Press
et al. (1992) and Stoer and Bulirsch (2002) for more details.

Sparse Matrices 4.5

Numerical problems arising in some applications, such as seemingly unrelated
regressions, spatial statistics, or support vector machines (Chap. III.15), are sparse:
they often involve large matrices, which have only a small number of nonzero
elements. (It is difficult to specify what exactly “small number” is.) From the
practical point of view, a matrix is sparse if it has so many zero elements that it is
worth to inspect their structure and use appropriate methods to save storage and
the number of operations. Some sparse matrices show a regular pattern of nonzero
elements (e.g., band matrices), while some exhibit a rather irregular pattern. In
both cases, solving the respective problem efficiently means to store and operate

130 Lenka Čížková, Pavel Čížek

on only nonzero elements and to keep the “fill,” the number of newly generated
nonzero elements, as small as possible.

In this section, we first discuss some of storage schemes for sparse matrices,
which could indicate what types of problems can be effectively treated as sparse
ones (Sect. 4.5.1). Later, we give examples of classical algorithms adopted for sparse
matrices (Sect. 4.5.2). Monographs introducing a range of methods for sparse
matrices include Duff et al. (1989), Hackbusch (1994) and Saad (2003).

Storage Schemes for Sparse Matrices4.5.1

To save storage, only nonzero elements of a sparse vector or matrix should be
stored. There are various storage schemes, which require approximately from
two to five times the number of nonzero elements to store a vector or a matrix.
Unfortunately, there is no standard scheme. We discuss here the widely used
and sufficiently general compressed (row) storage for vectors and for general and
banded matrices.

The compressed form of a vector x consists of a triplet (c, i, n0), where c is
a vector containing nonzero elements of x, i is an integer vector containing the
indices of elements stored in c and n0 specifies the number of nonzero elements.
The stored elements are related to the original vector by formula x{ij} = cj for
j = 1, … , n0. To give an example, the vector x = (0, 0, 3, 0, −8, 1.5, 0, 0, 0, 16, 0)
could be stored as

c = (3, 1.5, −8, 16) , i = (3, 6, 5, 10) , n0 = 4 .

Obviously, there is no need to store the elements in the original order. Therefore,
adding new nonzero elements is easy. Operations involving more sparse vectors
are simpler if we can directly access elements of one vector, that is, if one of the
vectors is “uncompressed.” For example, computing the inner product a = x�y
of a sparse vector x stored in the compressed form with a sparse uncompressed
vector y follows the algorithm

a = 0 ; for j = 1 , … , n0 : a = a + y{ij} · cj .

The compressed row storage for matrices is a generalization of the vector con-
cept. We store the nonzero elements of A as a set of sparse row (or column) vectors
in the compressed form. The main difference is that, instead of a single number n0,
we need to store a whole vector n0 specifying the positions of the first row elements
of A in c. For example, the matrix

A =

A11 A12 0 0 0 0

A21 0 0 A24 0 0

0 0 0 A34 0 0

0 0 A43 0 A45 0

0 A52 0 0 0 A56

Numerical Linear Algebra 131

would be represented rowwise as

c =
(
A11, A12|A21, A24|A34|A43, A45|A52, A56

)
,

i = (1, 2|1, 4|4|3, 5|2, 6) ,

n0 = (1, 3, 5, 6, 8, 10) .

(The sign “|” just emphasizes the end of a row and has no consequence for the
storage itself.) As in the case of vectors, the elements in each row do not have
to be ordered. Consequently, there is no direct access to a particular element Aij

stored in c. Nevertheless, retrieving a row is easy: it suffices to examine the part
of i corresponding to the ith row, which is given by n0. On the contrary, retrieving
a column involves a search through the whole storage scheme. Therefore, if a fast
access to columns is necessary, it is preferable to simultaneously store A rowwise
and columnwise.

A special type of sparse matrices are matrices with a banded structure.

2Definition 2 The row bandwidth of a matrix A ∈ Rm×n is defined as

w(A) = max
1≤i≤m

(
li(A) − fi(A) + 1

)
,

where fi(A) = min{j|Aij ≠ 0} and li(A) = max{j|Aij ≠ 0} are column indices of the
first and last nonzero elements in the ith row of A.

A banded matrix A is considered to be sparse if w(A) << n. Contrary to the
general case, vector c of abandedmatrix typically contains for each rowall elements
between the first and last nonzero ones. Thus, the storage scheme does not have
to include in i all column indices, only one index for the first nonzero element
in a row. On the other hand, zeros within the band have to be stored as well. For
example, the matrix

A =

A11 A12 0 0 0

0 A22 0 A24 0

0 0 0 A34 0

0 0 A43 0 A45

would be represented as

c = (A11, A12|A22, 0, A24|A34|A43, 0, A45) ,

i = (1, 2, 4, 3) ,

n0 = (1, 3, 6, 7, 10) .

An interesting observation is that the row bandwidth w(A) can be influenced
by column permutations. The fill-minimizing column orderings are discussed by
Björck (1996) and George and Ng (1983), for instance.

132 Lenka Čížková, Pavel Čížek

Details on some other storage schemes can be found in Duff et al. (1989) and
Press et al. (1992).

Methods for Sparse Matrices4.5.2

Methods for sparse matrices are still subject to intensive research. Moreover, the
choice of a suitable method for a given problem (and even the choice of an al-
gorithm for elementary operations such as matrix-vector multiplication) depends
on many factors, including dimension, matrix type storage scheme, and compu-
tational environment (e.g., storage in virtual memory vs. auxiliary storage; vector
vs. parallel computing, etc.). Therefore, we provide only a general overview and
references to most general results. More details can be found in Björck (1996),
Dongarra and Eijkhout (2000), Duff et al. (1989), Hackbusch (1994) and Saad
(2003).

First, many discussed algorithms can be relatively easily adopted for banded
matrices. For example, having a row-based storage scheme, one just needs to mod-
ify the summation limits in the row version of Cholesky decomposition. Moreover,
the positions of nonzero elements can be determined in advance (Ng and Peyton,
1993).

Second, the algorithms for general sparse matrices are more complicated.
A graph representation may be used to capture the nonzero pattern of a ma-
trix as well as to predict the pattern of the result (e.g., the nonzero pattern of A�A,
the Cholesky factor U, etc.). To give an overview, methods adopted for sparse ma-
trices include, but are not limited to, usually used decompositions (e.g., Cholesky,
Ng and Peyton, 1993; LU and LDU, Mittal and Al-Kurdi, 2002; QR, George and Liu,
1987, and Heath, 1984), solving systems of equations by direct (Gupta, 2002; Tran
et al., 1996) and iterative methods (Makinson and Shah, 1986; Zlatev and Nielsen,
1988) and searching eigenvalues (Bergamaschi and Putti, 2002; Golub et al., 2000).

References
Alanelli, M. and Hadjidimos, A. (2004). Block Gauss elimination followed by

a classical iterative method for the solution of linear systems. Journal of Com-
putational and Applied Mathematics, 163(2): 381–400

Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J., Croz, J.D.,
Greenbaum, A., Hammarling, S., McKenney, A. and Sorensen, D. (1999). LA-
PACK Users’ Guide, Third Edition. SIAM Press, Philadelphia, USA.

Axelsson, O. (1994). Iterative Solution Methods. Cambridge University Press, Cam-
bridge, UK.

Bergamaschi, L. and Putti, M. (2002). Numerical comparison of iterative eigen-
solvers for large sparse symmetric positive definite matrices. Computer Meth-
ods in Applied Mechanics and Engineering, 191: 5233–5247.

Benoit, C. (1924). Note sur une méthode de résolution des équations normales
provenant de l’application de la méthode des moindres carrés à un système

Numerical Linear Algebra 133

d’équations linéaires en nombre inférieur à celui des inconnues. Application de
la méthode à la résolution d’un système défini d’équations linéaires (Procédé
du Commandant Cholesky). Bulletin géodésique, 2: 5–77.

Björck, A. (1994). Numerics of Gram–Schmidt Orthogonalization. Linear Algebra
and its Applications, 198: 297–316.

Björck, A. (1996). Numerical Methods for Least Squares Problems. SIAM Press,
Philadelphia, USA.

Croz, J.D. and Higham, N.J. (1992). Stability of methods for matrix inversion. IMA
Journal of Numerical Analysis, 12: 1–19.

Dax, A. (2000). A modified Gram–Schmidt algorithm with iterative orthogonal-
ization and column pivoting. Linear Algebra and Its Applications, 310: 25–42.

Demmel, J.W., Gu, M., Eisenstat, S., Slapničar, I., Veselić, K. and Drmač, Z. (1999).
Computing the singular value decomposition with high relative accuracy. Lin-
ear Algebra and its Applications, 299: 21–80.

Dongarra, J.J. and Eijkhout, V. (2000). Numerical linear algebra algorithms and
software. Journal of Computational and Applied Mathematics, 123: 489–514.

Duff, I.S., Erisman, A.M. and Reid, J.K. (1989). Direct Methods for Sparse Matrices.
Oxford University Press, USA.

Freund, R. and Nachtigal, N. (1991). QMR: a quasi-minimal residual method for
non-Hermitian linear systems. Numerical Mathematics, 60: 315–339.

Gallivan, K.A., Plemmons, R.J. and Sameh, A.H. (1990). Parallel algorithms for
dense linear algebra computations. SIAM Review, 32: 54–135.

Gentle, J.E. (1998). Numerical Linear Algebra for Applications in Statistics. Springer,
New York, USA.

Gentleman, W.M. (1973). Least squares computations by Givens transformations
without square roots. Journal of Institute of Mathematics and its Applications,
12: 329–336.

Gentleman, W.M. (1975). Error analysis of QR decomposition by Givens transfor-
mations. Linear Algebra and its Applications, 10: 189–197.

George, A. and Liu, J.W.H. (1987). Householder reflections versus givens rotations
in sparse orthogonal decomposition. Linear Algebra and its Applications, 88:
223–238.

George, J.A. and Ng, E.G. (1983). On row and column orderings for sparse least
squares problems. SIAM Journal of Numerical Analysis, 20: 326–344.

Givens, W. (1958). Computation of Plane Unitary Rotations Transforming a General
Matrix to Triangular Form. Journal of SIAM, 6(1): 26–50.

Golub, G.H. (1965). Numerical methods for solving least squares problems. Nu-
merical Mathematics, 7: 206–216.

Golub, G.H. and Kahan, W. (1965). Calculating the singular values and pseudo-
inverse of a matrix. SIAM Journal on Numerical Analysis B, 2: 205–224.

Golub, G.H. and Reinsch, C. (1970). Singular value decomposition and least squares
solution. Numerical Mathematics, 14: 403–420.

Golub, G.H. and van Loan, C.F. (1996). Matrix Computations. Johns Hopkins Uni-
versity Press, Baltimore, Maryland.

134 Lenka Čížková, Pavel Čížek

Golub, G.H., Zhang, Z. and Zha, H. (2000). Large sparse symmetric eigenval-
ue problems with homogeneous linear constraints: the Lanczos process with
inner-outer iterations. Linear Algebra and its Applications, 309: 289–306.

Gupta, A. (2002). Recent Advances in Direct Methods for Solving Unsymmetric
Sparse Systems of Linear Equations. ACM Transactions on Mathematical Soft-
ware, 28: 301–324.

Hackbusch, W. (1994). Iterative Solution of Large Sparse Systems of Equations.
Springer, New York, USA.

Hadjidimos, A. (2000). Successive Overrelaxation (SOR) and related methods.
Journal of Computational and Applied Mathematics, 123: 177–199.

Hammarling, S. (1974). A note on modifications to the Givens plane rotation.
Journal of Institute of Mathematics and its Applications, 13: 215–218.

Hari, V. and Veselić, K. (1987). On Jacobi methods for singular value decomposi-
tions. SIAM Journal of Scientific and Statistical Computing, 8: 741–754.

Harville, D.A. (1997). Matrix Algebra from a Statistician’s Perspective. Springer,
New York, USA.

Heath, M.T. (1984). Numerical methods for large sparse linear least squares prob-
lems. SIAM Journal of Scientific and Statistical Computing, 26: 497–513.

Hestenes, M.R. and Stiefel, E. (1952). Method of conjugate gradients for solving
linear systems. J. Res. Nat Bur. Standards B, 49: 409–436.

Higham, N.J. (1989). The accuracy of solutions to triangular systems. SIAM Journal
on Numerical Analysis, 26: 1252–1265.

Higham, N.J. (1997). Recent Developments in Dense Numerical Linear Algebra. In
Duff, I.S. andWatson,G.A. (eds),State of the Art in Numerical Analysis,Oxford
University Press, Oxford.

Higham, N.J. (2000). QR factorization with complete pivoting and accurate com-
putation of the SVD. Linear Algebra and its Applications, 309: 153–174.

Higham, N.J. (2002). Accuracy and Stability of Numerical Algorithms, Second edi-
tion. SIAM Press, Philadelphia, USA.

Hong, Y.P. and Tan, C.T. (1992). Rank-revealing QR fatorizations and the singular
value decomposition. Mathematics of Computation, 58: 213–232.

Householder, A.S. (1958). Unitary triangularization of a nonsymmetric matrix.
Journal of the Association of Computing Machinery, 5: 339–342.

Ipsen, I.C.F. (1997). Computing an Eigenvector with Inverse Iteration. SIAM Re-
view, 39: 254–291.

Kahan, W. (1958). Gauss–Seidel methods of solving large systems of linear equa-
tions. Doctoral thesis, University of Toronto, Toronto, Canada.

Kammerer, W.J. and Nashed, M.Z. (1972). On the convergence of the conjugate
gradient method for singular linear operator equations. SIAM Journal on Nu-
merical Analysis, 9: 165–181.

Makinson, G.J. and Shah, A.A. (1986). An iterative solution method for solving
sparse nonsymmetric linear systems. Journal of Computational and Applied
Mathematics, 15: 339–352.

Martin, R.S., Peters, G. and Wilkinson, J.H. (1965). Symmetric decomposition of
a positive definite matrix. In Wilkinson, J.H. and Reinsch, C. (eds), Linear Al-

Numerical Linear Algebra 135

gebra (Handbook for Automation Computation, Vol. II). Springer, Heidelberg,
Germany.

Meinguet, J. (1983). Refined error analysis of cholesky factorization. SIAM Journal
on Numerical Analysis, 20: 1243–1250.

Milaszewicz, J.P. (1987). Improving Jacobi and Gauss–Seidel Iterations. Linear Al-
gebra and Its Applications, 93: 161–170.

Miranian, L. and Gu, M. (2003). Strong rank revealing LU factorizations. Linear
Algebra and its Applications, 367: 1–16.

Mittal, R.C. and Al-Kurdi, A. (2002). LU-decomposition and numerical structure
for solving large sparse nonsymmetric linear systems. Computers & Mathe-
matics with Applications, 43: 131–155.

Ng, E.G. and Peyton, B.W. (1993). Block Sparse Cholesky Algorithm on Advanced
Uniprocessor Computers. SIAM Journal of Scientific Computing, 14: 1034–1056.

Nool, M. (1995). Explicit parallel block Cholesky algorithms on the CRAY APP.
Applied Numerical Mathematics, 19: 91–114.

Pan, C.T. (2000). On the existence and computation of rank revealing LU factor-
izations. Linear Algebra and its Applications, 316: 199–222.

Press, W.H., Teukolsky, S.A., Vetterling, W.T. and Flannery, B.P. (1992). Numerical
Recipes in C: the Art of Scientific Computing, Second Edition. Cambridge Uni-
versity Press, Cambridge, UK.

Rice, J.R. (1966). Experiments on Gram–Schmidt orthogonalization. Mathematics
of Computation, 20: 325–328.

Saad, Y. (2003). Iterative Methods for Sparse Linear Systems. Second Edition. SIAM
Press, USA.

Saad, Y. and Schultz, M.H. (1986). GMRES: a generalized minimal residual algo-
rithm for solving nonsymmetric linear systems. SIAM Journal of Scientific and
Statistical Computing, 7: 856–869.

Sidi, A. (1989). On extensions of the power method for normal operators. Linear
Algebra and Its Applications, 120: 207–224.

Skeel, R.D. (1980). Iterative refinement implies numerical stability for Gaussian
elimination. Mathematics of Computation, 35: 817–832.

Stewart, G.W. (1976). The economical storage of plane rotations. Numerical Math-
ematics, 25: 137–138.

Stewart, G.W. (1998). Matrix Algorithms, Volume I: Basic Decompositions. SIAM
Press, Philadelphia, USA.

Stoer, J. andBulirsch,R. (2002). Introduction to Numerical Analysis, Third Edition.
Springer, New York, USA.

Tran, T.M., Gruber, R., Appert, K. and Wuthrich, S. (1996). A direct parallel sparse
matrix solver. Computer Physics Communications, 96: 118–128.

Trefethen,L.N. andBau,D. (1997).Numerical Linear Algebra. SIAMPress, Philadel-
phia, USA.

von Matt, U. (1995). The Orthogonal QD-Algorithm. In Moonen, M. and De
Moor, B. (eds), SVD and Signal Processing, III: Algorithms, Architectures and
Applications, Elsevier, Amsterdam.

136 Lenka Čížková, Pavel Čížek

Vorst, V.D. (1992). Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG
for the solution of nonsymmetric linear systems. SIAM Journal of Scientific and
Statistical Computing, 13: 631–644.

Wampler, R.H. (1970). A report on the accuracy of some widely used least squares
computer programs. Journal of American Statistical Association, 65: 549–565.

Young, D.M. (1954). Iterative methods for solving partial differential equations of
elliptic type. Transactions of the American Mathematical Society, 76: 92–111.

Zhou, B.B. and Brent, R.P. (2003). An efficient method for computing eigenval-
ues of a real normal matrix. Journal of Parallel and Distributed Computing, 63:
638–648.

Zlatev, Z. and Nielsen, H.B. (1988). Solving large and sparse linear least-squares
problems by conjugate gradient algorithms. Computers & Mathematics with
Applications, 15: 185–202.

Zou,Q. (1991).AnobservationonGauss elimination. Computers and Mathematical
Applications, 22: 69–70.

II.5The EM Algorithm
Shu Kay Ng, Thriyambakam Krishnan, Geoffrey J. McLachlan

5.1 Introduction . 138

Maximum Likelihood Estimation. 138
EM Algorithm: Incomplete-Data Structure . 139
Overview of the Chapter . 140

5.2 Basic Theory of the EM Algorithm .. 140

The E- and M-Steps . 140
Generalized EM Algorithm . 141
Convergence of the EM Algorithm . 142
Rate of Convergence of the EM Algorithm . 144
Properties of the EM Algorithm. 145

5.3 Examples of the EM Algorithm .. 145

Example 1: Normal Mixtures . 145
Example 2: Censored Failure-Time Data . 147
Example 3: Nonapplicability of EM Algorithm . 148
Starting Values for EM Algorithm . 150
Provision of Standard Errors . 151

5.4 Variations on the EM Algorithm .. 154

Complicated E-Step . 154
Complicated M-Step . 156
Speeding up Convergence . 159

5.5 Miscellaneous Topics on the EM Algorithm .. 162

EM Algorithm for MAP Estimation . 162
Iterative Simulation Algorithms . 163
Further Applications of the EM Algorithm. 164

138 Shu Kay Ng, Thriyambakam Krishnan, Geoffrey J. McLachlan

Introduction5.1

Maximum Likelihood Estimation5.1.1

The Expectation-Maximization (EM) algorithm is a broadly applicable approach to
the iterative computation of maximum likelihood (ML) estimates, useful in a vari-
ety of incomplete-data problems. Maximum likelihood estimation and likelihood-
based inference are of central importance in statistical theory and data analysis.
Maximum likelihood estimation is a general-purpose method with attractive prop-
erties. It is the most-often used estimation technique in the frequentist framework;
it is also relevant in the Bayesian framework (Chap. III.11). Often Bayesian solu-
tions are justified with the help of likelihoods and maximum likelihood estimates
(MLE), and Bayesian solutions are similar to penalized likelihood estimates. Max-
imum likelihood estimation is an ubiquitous technique and is used extensively in
every area where statistical techniques are used.

We assume that the observed data y has probability density function (p.d.f.)
g(y; Ψ),whereΨ is thevectorcontaining theunknownparameters in thepostulated
form for the p.d.f. of Y . Our objective is to maximize the likelihood L(Ψ) = g(y; Ψ)
as a function of Ψ, over the parameter space Ω. That is,

∂L(Ψ)|∂Ψ = 0 ,

or equivalently, on the log likelihood,

∂ log L(Ψ)|∂Ψ = 0 . (5.1)

The aim of ML estimation is to determine an estimate Ψ̂, so that it defines
a sequence of roots of (5.1) that is consistent and asymptotically efficient. Such
a sequence is known to exist under suitable regularity conditions (Cramér, 1946).
With probability tending to one, these roots correspond to local maxima in the
interior of Ω. For estimation models in general, the likelihood usually has a global
maximum in the interior of Ω. Then typically a sequence of roots of (5.1) with the
desired asymptotic properties is provided by taking Ψ̂ to be the root that globally
maximizes L(Ψ); in this case, Ψ̂ is the MLE. We shall henceforth refer to Ψ̂ as the
MLE, even in situations where it may not globally maximize the likelihood. Indeed,
in some of the examples on mixture models (McLachlan and Peel, 2000, Chap. 3),
the likelihood is unbounded. However, for these models there may still exist under
the usual regularity conditions a sequence of roots of (5.1) with the properties of
consistency, efficiency, and asymptotic normality (McLachlan and Basford, 1988,
Chap. 12).

When the likelihood or log likelihood is quadratic in the parameters as in
the case of independent normally distributed observations, its maximum can be
obtained by solving a system of linear equations in parameters. However, often
in practice the likelihood function is not quadratic giving rise to nonlinearity
problems in ML estimation. Examples of such situations are: (a) models leading to

The EM Algorithm 139

means which are nonlinear in parameters; (b) despite a possible linear structure,
the likelihood is not quadratic in parameters due to, for instance, non-normal
errors, missing data, or dependence.

Traditionally ML estimation in these situations has been carried out using nu-
merical iterative methods of solution of equations such as the Newton–Raphson
(NR) method and its variants like Fisher’s method of scoring. Under reasonable
assumptions on L(Ψ) and a sufficiently accurate starting value, the sequence of
iterates {Ψ(k)} produced by the NR method enjoys local quadratic convergence to
a solution Ψ∗ of (5.1). Quadratic convergence is regarded as the major strength of
the NR method. But in applications, these methods could be tedious analytically
andcomputationally even in fairly simple cases; seeMcLachlanandKrishnan (1997,
Sect. 1.3) and Meng and van Dyk (1997). The EM algorithm offers an attractive al-
ternative in a variety of settings. It is now a popular tool for iterative ML estimation
in a variety of problems involving missing data or incomplete information.

EM Algorithm: Incomplete-Data Structure 5.1.2

In the application of statistical methods, one is often faced with the problem of
estimation of parameters when the likelihood function is complicated in structure
resulting in difficult-to-compute maximization problems. This difficulty could be
analytical or computational or both. Some examples are grouped, censored or
truncated data, multivariate data with some missing observations, multiway fre-
quency data with a complex cell probability structure, and data from mixtures
of distributions. In many of these problems, it is often possible to formulate an
associated statistical problem with the same parameters with “augmented data”
from which it is possible to work out the MLE in an analytically and computation-
ally simpler manner. The augmented data could be called the “complete data” and
the available data could be called the “incomplete data”, and the corresponding
likelihoods, the “complete-data likelihood” and the “incomplete-data likelihood”,
respectively, and the corresponding ML estimations, the “complete-data problem”
and the “incomplete-data problem”. The EM Algorithm is a generic method for
computing the MLE of an incomplete-data problem by formulating an associat-
ed complete-data problem, and exploiting the simplicity of the MLE of the latter
to compute the MLE of the former. The augmented part of the data could also
be called “missing data”, with respect to the actual incomplete-data problem on
hand. The missing data need not necessarily be missing in the practical sense of the
word. It may just be a conceptually convenient technical device. Thus the phrase
“incomplete data” is used quite broadly to represent a variety of statistical data
models, including mixtures, convolutions, random effects, grouping, censoring,
truncated and missing observations.

The EM algorithm is an iterative algorithm, in each iteration of which there
are two steps, the Expectation Step (E-step) and the Maximization Step (M-step).
A brief history of the EM algorithm can be found in McLachlan and Krishnan (1997,
Sect. 1.8).ThenameEMalgorithmwascoinedbyDempsteret al. (1977),whosynthe-
sized earlier formulations of this algorithm in many particular cases and presented

140 Shu Kay Ng, Thriyambakam Krishnan, Geoffrey J. McLachlan

a general formulation of this method of finding MLE in a variety of problems and
provided an initial catalogue of problems where this method could be profitably
applied. Since then the EM algorithm has been applied in a staggering variety of
general statistical problems such as resolution of mixtures, multiway contingency
tables, variance components estimation, factor analysis, as well as in specialized
applications in such areas as genetics, medical imaging, and neural networks.

Overview of the Chapter5.1.3

In Sect. 5.2, the basic theory of the EM algorithm is presented. In particular, the
monotonicity of the algorithm, convergence, and rate of convergence properties
are systematically examined. In Sect. 5.3, the EM methodology presented in this
chapter is illustrated in some commonly occurring situations such as the fitting of
normal mixtures and missing observations in terms of censored failure times. We
also provide an example in which the EM algorithm may not be applicable. Consid-
eration is given also to the two important issues associated with the use of the EM
algorithm, namely the initialization of the EM and the provision of standard errors.

Wediscuss furthermodificationsandextensions to theEMalgorithminSect. 5.4.
In particular, the extensions of the EM algorithm known as the Monte Carlo EM,
ECM, ECME, AECM, and PX–EM algorithms are considered. With the considerable
attention being given to the analysis of large data sets, as in typical data mining
applications, recent work on speeding up the implementation of the EM algorithm
is discussed. These include the IEM, SPIEM, the scalable EM algorithms, and the
use of multiresolution kd-trees.

In Sect. 5.5, the relationship of the EM algorithm to other data augmentation
techniques, such as the Gibbs sampler and MCMC methods is presented briefly.
The Bayesian perspective is also included by showing how the EM algorithm and its
variants can be adapted to compute the maximum a posteriori (MAP) estimate. We
conclude the chapter with a brief account of the applications of the EM algorithm
in such topical and interesting areas as Bioinformatics and Image Analysis.

Basic Theory of the EM Algorithm5.2

The E- and M-Steps5.2.1

Within the incomplete-data framework of the EM algorithm, we let x denote the
vector containing the complete data and we let z denote the vector containing the
missingdata. Evenwhenaproblemdoesnot atfirst appear tobean incomplete-data
one, computation of the MLE is often greatly facilitated by artificially formulating
it to be as such. This is because the EM algorithm exploits the reduced complexity
of ML estimation given the complete data. For many statistical problems the
complete-data likelihood has a nice form.

The EM Algorithm 141

We let gc(x; Ψ) denote the p.d.f. of the random vector X corresponding to the
complete-data vector x. Then the complete-data log likelihood function that could
be formed for Ψ if x were fully observable is given by

log Lc(Ψ) = log gc(x; Ψ) .

The EM algorithm approaches the problem of solving the incomplete-data likeli-
hood (5.1) indirectly by proceeding iteratively in terms of log Lc(Ψ). As it is unob-
servable, it is replaced by its conditional expectation given y, using the current fit
for Ψ. On the (k + 1)th iteration of the EM algorithm,
E-Step: Compute Q

(
Ψ; Ψ(k)

)
, where

Q
(
Ψ; Ψ(k)

)
= EΨ(k){log Lc(Ψ)|y} . (5.2)

M-Step: Choose Ψ(k+1) to be any value of Ψ ∈ Ω that maximizes Q
(
Ψ; Ψ(k)

)
:

Q
(
Ψ(k+1); Ψ(k)

) ≥ Q
(
Ψ; Ψ(k)

) ∀Ψ ∈ Ω . (5.3)

In (5.2) and elsewhere in this chapter, the operator EΨ(k) denotes expectation using
the parameter vector Ψ(k). The E- and M-steps are alternated repeatedly until
convergence, which may be determined, for instance, by using a suitable stopping
rule like ‖Ψ(k+1) − Ψ(k)‖ < ε for some ε > 0 with some appropriate norm ‖ · ‖ or
the difference L(Ψ(k+1)) − L(Ψ(k)) changes by an arbitrarily small amount in the
case of convergence of the sequence of likelihood values {L(Ψ(k))}.

It can be shown that both the E- and M-steps will have particularly simple forms
when gc(x; Ψ) is from an exponential family:

gc(x; Ψ) = b(x) exp
{

c�(Ψ)t(x)
}
|a(Ψ) , (5.4)

where t(x) is a k × 1 (k ≥ d) vector of complete-data sufficient statistics and c(Ψ)
is a k × 1 vector function of the d × 1 parameter vector Ψ, and a(Ψ) and b(x)
are scalar functions. Members of the exponential family include most common
distributions, such as the multivariate normal, Poisson, multinomial and others.
For exponential families, the E-step can be written as

Q
(
Ψ; Ψ(k)

)
= EΨ(k) (log b(x)|y) + c�(Ψ)t(k) − log a(Ψ) ,

where t(k) = EΨ(k){t(X)|y} is an estimator of the sufficient statistic. The M-step
maximizes the Q-function with respect to Ψ; but EΨ(k) (log b(x)|y) does not depend
on Ψ. Hence it is sufficient to write:
E-Step: Compute

t(k) = EΨ(k){t(X)|y} .

M-Step: Compute

Ψ(k+1) = arg max
Ψ

[
c�(Ψ)t(k) − log a(Ψ)

]
.

142 Shu Kay Ng, Thriyambakam Krishnan, Geoffrey J. McLachlan

In Example 2 of Sect. 5.3.2, the complete-data p.d.f. has an exponential family
representation. We shall show how the implementation of the EM algorithm can
be simplified.

Generalized EM Algorithm5.2.2

Often inpractice, the solution to theM-step exists in closed form. In those instances
where it does not, it may not be feasible to attempt to find the value of Ψ that
globally maximizes the function Q(Ψ; Ψ(k)). For such situations, Dempster et al.
(1977) defined a generalized EM (GEM) algorithm for which the M-Step requires
Ψ(k+1) to be chosen such that

Q
(
Ψ(k+1); Ψ(k)

) ≥ Q(Ψ(k); Ψ(k)) (5.5)

holds. That is, one chooses Ψ(k+1) to increase the Q-function, Q(Ψ; Ψ(k)), over its
value at Ψ = Ψ(k), rather than to maximize it over all Ψ ∈ Ω in (5.3).

It is of interest tonote that theEM(GEM)algorithmasdescribedabove implicitly
defines a mapping Ψ → M(Ψ), from the parameter space Ω to itself such that

Ψ(k+1) = M
(
Ψ(k)

)
(k = 0, 1, 2, …) .

The function M is called the EM mapping. We shall use this function in our
subsequent discussion on the convergence property of the EM algorithm.

Convergence of the EM Algorithm5.2.3

Let k(x|y; Ψ) = gc(x; Ψ)|g(y; Ψ) be the conditional density of X given Y = y. Then
the complete-data log likelihood can be expressed by

log Lc(Ψ) = log gc(x; Ψ) = log L(Ψ) + log k(x|y; Ψ) . (5.6)

Taking expectations on both sides of (5.6) with respect to the conditional distribu-
tion x|y using the fit Ψ(k) for Ψ, we have

Q
(
Ψ; Ψ(k)

)
= log L(Ψ) + H

(
Ψ; Ψ(k)

)
, (5.7)

where H
(
Ψ; Ψ(k)

)
= EΨ(k){log k(X|y; Ψ)|y}. It follows from (5.7) that

log L
(
Ψ(k+1)

)
− log L

(
Ψ(k)

)
=
{

Q
(
Ψ(k+1); Ψ(k)

)
− Q

(
Ψ(k); Ψ(k)

)}

−
{

H
(
Ψ(k+1); Ψ(k)

)
− H

(
Ψ(k); Ψ(k)

)}
. (5.8)

By Jensen’s inequality, we have H(Ψ(k+1); Ψ(k)) ≤ H(Ψ(k); Ψ(k)). From (5.3) or
(5.5), the first difference on the right-hand side of (5.8) is nonnegative. Hence, the
likelihood function is not decreased after an EM or GEM iteration:

L
(
Ψ(k+1)

) ≥ L
(
Ψ(k)

)
(k = 0, 1, 2, …) . (5.9)

The EM Algorithm 143

A consequence of (5.9) is the self-consistency of the EM algorithm. Thus for
a bounded sequence of likelihood values {L(Ψ(k))}, L(Ψ(k)) converges monotoni-
cally to some L∗. Now questions naturally arise as to the conditions under which L∗
corresponds to a stationary value and when this stationary value is at least a local
maximum if not a global maximum. Examples are known where the EM algorithm
converges to a local minimum and to a saddle point of the likelihood (McLachlan
and Krishnan, 1997, Sect. 3.6). There are also questions of convergence of the se-
quenceofEMiterates, that is, of the sequenceofparameter values {Ψ (k)} to theMLE.

Before the general formulation of the EM algorithm in Dempster et al. (1977),
there have been convergence results for special cases, notable among them being
those of Baum et al. (1970) for what is now being called the hidden Markov model.
In the article of Dempster et al. (1977) itself, there are some convergence results.
However, it is Wu (1983) who investigates in detail several convergence issues
of the EM algorithm in its generality. Wu examines these issues through their
relationship to other optimization methods. He shows that when the complete
data are from a curved exponential family with compact parameter space, and
when the Q-function satisfies a certain mild differentiability condition, then any
EM sequence converges to a stationary point (not necessarily a maximum) of the
likelihood function. If L(Ψ) has multiple stationary points, convergence of the
EM sequence to either type (local or global maximizers, saddle points) depends
upon the starting value Ψ(0) for Ψ. If L(Ψ) is unimodal in Ω and satisfies the same
differentiability condition, then any sequence {Ψ(k)} will converge to the unique
MLE of Ψ, irrespective of its starting value.

To be more specific, one of the basic convergence results of the EM algorithm is
the following:

log L(M(Ψ)) ≥ log L(Ψ)

with equality if and only if

Q(M(Ψ); Ψ) = Q(Ψ; Ψ) and k(x|y; M(Ψ)) = k(x|y; Ψ) .

This means that the likelihood function increases at each iteration of the EM
algorithm, until the condition for equality is satisfied and a fixed point of the
iteration is reached. If Ψ̂ is an MLE, so that log L(Ψ̂) ≥ log L(Ψ), ∀ Ψ ∈ Ω, then
log L(M(Ψ̂)) = log L(Ψ̂). Thus MLE are fixed points of the EM algorithm. If we
have the likelihood function bounded (as might happen in many cases of interest),
the EM sequence {Ψ(k)} yields a bounded nondecreasing sequence {log L(Ψ(k))}
which must converge as k → ∞.

The theorem does not quite imply that fixed points of the EM algorithm are
in fact MLEs. This is however true under fairly general conditions. For proofs
and other details, see McLachlan and Krishnan (1997, Sect. 3.5) and Wu (1983).
Furthermore, if a sequence of EM iterates {Ψ(k)} satisfy the conditions
1. [∂Q(Ψ; Ψ(k))|∂Ψ]Ψ=Ψ(k+1) = 0, and
2. the sequence {Ψ(k)} converges to some value Ψ∗ and log k(x|y; Ψ) is sufficiently

smooth,

144 Shu Kay Ng, Thriyambakam Krishnan, Geoffrey J. McLachlan

then we have [∂ log L(Ψ)|∂Ψ]Ψ=Ψ∗ = 0; see Little and Rubin (2002) and Wu (1983).
Thus, despite the earlier convergence results, there is no guarantee that the con-
vergence will be to a global maximum. For likelihood functions with multiple
maxima, convergence will be to a local maximum which depends on the starting
value Ψ(0).

Nettleton (1999) extends Wu’s convergence results to the case of constrained pa-
rameter spaces and establishes some stricter conditions to guarantee convergence
of the EM likelihood sequence to some local maximum and the EM parameter
iterates to converge to the MLE.

Rate of Convergence of the EM Algorithm5.2.4

The rate of convergence of the EM algorithm is also of practical interest. The
convergence rate is usually slower than the quadratic convergence typically avail-
able with Newton-type methods. Dempster et al. (1977) show that the rate of
convergence of the EM algorithm is linear and the rate depends on the propor-
tion of information in the observed data. Thus in comparison to the formulated
complete-data problem, if a large portion of data is missing, convergence can be
quite slow.

Recall the EM mapping M defined in Sect. 5.2.2. If Ψ(k) converges to some
point Ψ∗ and M(Ψ) is continuous, then Ψ∗ is a fixed point of the algorithm; that
is, Ψ∗ must satisfy Ψ∗ = M(Ψ∗). By a Taylor series expansion of Ψ(k+1) = M(Ψ(k))
about the point Ψ(k) = Ψ∗, we have in a neighborhood of Ψ∗ that

Ψ(k+1) − Ψ∗ ≈ J
(
Ψ∗) (Ψ(k) − Ψ∗) ,

where J(Ψ) is the d×d Jacobian matrix for M(Ψ) = (M1(Ψ), … , Md(Ψ))�, having
(i, j)th element rij(Ψ) equal to

rij(Ψ) = ∂Mi(Ψ)|∂Ψj ,

where Ψj = (Ψ)j and d is the dimension of Ψ. Thus, in a neighborhood of Ψ∗, the
EM algorithm is essentially a linear iteration with rate matrix J(Ψ∗), since J(Ψ∗)
is typically nonzero. For this reason, J(Ψ∗) is often referred to as the matrix rate
of convergence. For vector Ψ, a measure of the actual observed convergence rate
is the global rate of convergence, which is defined as

r = lim
k→∞

‖ Ψ(k+1) − Ψ∗ ‖ | ‖ Ψ(k) − Ψ∗ ‖ ,

where ‖ · ‖ is any norm on d-dimensional Euclidean space �d. It is noted that the
observed rate of convergence equals the largest eigenvalue of J(Ψ∗) under certain
regularity conditions (Meng and van Dyk, 1997). As a large value of r implies slow
convergence, the global speed of convergence is defined to be s = 1 − r (Meng,
1994).

The EM Algorithm 145

Properties of the EM Algorithm 5.2.5

The EM algorithm has several appealing properties, some of which are:
1. It is numerically stable with each EM iteration increasing the likelihood.
2. Under fairly general conditions, it has reliable global convergence.
3. It is easily implemented, analytically and computationally. In particular, it is

generally easy to program and requires small storage space. By watching the
monotone increase in likelihood (if evaluated easily) over iterations, it is easy
to monitor convergence and programming errors (McLachlan and Krishnan,
1997, Sect. 1.7).

4. The cost per iteration is generally low, which can offset the larger number of
iterations needed for the EM algorithm compared to other competing proce-
dures.

5. It can be used to provide estimates of missing data.

Some of its drawbacks are:
1. It does not automatically provide an estimate of the covariance matrix of

the parameter estimates. However, this disadvantage can be easily removed by
using appropriate methodology associated with the EM algorithm (McLachlan
and Krishnan, 1997, Chap. 4).

2. It is sometimes very slow to converge.
3. In some problems, the E- or M-steps may be analytically intractable.

We shall briefly address these three issues in Sects. 5.3.5 and 5.4.

Examples of the EM Algorithm 5.3

Example 1: Normal Mixtures 5.3.1

One of the classical formulations of the two-group discriminant analysis or the
statistical pattern recognition problem involves a mixture of two p-dimensional
normaldistributionswitha commoncovariancematrix.Theproblemof two-group
cluster analysis with multiple continuous observations has also been formulated in
this way. Here, we have n independent observations y1, y2, … , yn from the mixture
density

(1 − π)φ(y; µ1, Σ) + πφ(y; µ2, Σ) ,

where φ(y; µi, Σ) denotes the p-dimensional normal density function with mean
vector µi and common covariance matrix Σ, i = 1, 2. The (1 − π) and π denote
the proportions of the two clusters, respectively. The problem of estimating the
parameters Ψ = (π, µ1, µ2, Σ) is an instance of the problem of resolution of mix-
tures or in pattern recognition parlance an “unsupervised learning problem”. The

146 Shu Kay Ng, Thriyambakam Krishnan, Geoffrey J. McLachlan

MLE problem here is quite messy and classical statistical and pattern recognition
literature has struggled with it for a long time.

Consider the corresponding“supervised learningproblem”,whereobservations
on the random vector X = (Z, Y) are x1 = (z1, y1), x2 = (z2, y2), … , xn = (zn, yn).
Here zj is an indicator variable which identifies the jth observation as coming from
the first (z = 0) or the second (z = 1) component (j = 1, … , n). The MLE problem
is far simpler here with easy closed-form MLE. The classificatory variable zj could
be called the “missing variable” and data z = (z1, z2, … , zn)� the missing data. The
unsupervised learning problem could be called the incomplete-data problem and
the supervised learning problem the complete-data problem. A relatively simple
iterative method for computing the MLE for the unsupervised problem could be
given exploiting the simplicity of the MLE for the supervised problem. This is the
essence of the EM algorithm.

The complete-data log likelihood function for Ψ is given by

log Lc(Ψ) =
n∑

j=1

(1 − zj) log φ(y; µ1, Σ) + zj log φ(y; µ2, Σ) . (5.10)

By differentiating (5.10) with respect to Ψ, the MLEs of Ψ are obtained, as if z were
actually observed:

π =
n∑

j=1

zj|n, (5.11)

µ1 =
n∑

j=1

(1 − zj)yj

/

n −
n∑

j=1

zj

 , µ2 =
n∑

j=1

zjyj

/ n∑

j=1

zj , (5.12)

Σ =
n∑

j=1

[
(1 − zj)(yj − µ1)(yj − µ1)� + zj(yj − µ2)(yj − µ2)�

]/
n , (5.13)

Now the EM algorithm for this problem starts with some initial value Ψ(0) for
the parameters. As log Lc(Ψ) in (5.10) is a linear function of the unobservable data z
for this problem, the calculation of Q(Ψ; Ψ(k)) on the E-step is effected simply by
replacing zj by its current conditional expectation given the observed data y, which
is the usual posterior probability of the jth observation arising from component 2

τ(k)
j = EΨ(k) (Zj|y) =

π(k)φ
(

yj; µ(k)
2 , Σ(k)

)

(
1 − π(k)

)
φ
(

yj; µ(k)
1 , Σ(k)

)
+ π(k)φ

(
yj; µ(k)

2 , Σ(k)
) .

The M-step then consists of substituting these τ(k)
j values for zj in (5.11) to (5.13).

The E- and M-steps are then iterated until convergence. Unlike in the MLE for the
supervisedproblem, in theM-stepof theunsupervisedproblem, theposteriorprob-
abilities τj, which are between 0 and 1, are used. The mean vectors µi (i = 1, 2) and
thecovariancematrixΣ arecomputedusing the τ(k)

j asweights inweightedaverages.

The EM Algorithm 147

It is easy to extend the above method to a mixture of g > 2 multinormal mixtures
or even to a mixture of g > 2 distributions from other (identifiable) families. For
a detailed discussion of the applications of the EM algorithm in the resolution
of finite mixtures and other issues of finite mixtures, see McLachlan and Peel
(2000).

Example 2: Censored Failure-Time Data 5.3.2

In survival or reliability analyses, the focus is the distribution of time T to the
occurrence of some event that represents failure (for computational methods in
survival analysis see also Chap. III.12). In many situations, there will be individuals
who do not fail at the end of the study, or individuals who withdraw from the study
before it ends. Such observations are censored, as we know only that their failure
times are greater than particular values. We let y = (c1, δ1, … , cn, δn)� denote the
observed failure-time data, where δj = 0 or 1 according as the jth observation Tj

is censored or uncensored at cj (j = 1, … , n). That is, if Tj is uncensored, tj = cj,
whereas if tj > cj, it is censored at cj.

In the particular case where the p.d.f. for T is exponential with mean µ, we have

f (t;µ) = µ−1 exp
(
−t|µ

)
I(0,∞)(t) (µ > 0) , (5.14)

where the indicator function I(0,∞)(t) = 1 for t > 0 and is zero elsewhere. The
unknown parameter vector Ψ is now a scalar, being equal to µ. Denote by s the
numberofuncensoredobservations.By re-ordering thedata so that theuncensored
observationsprecede censoredobservations. It canbe shown that the log likelihood
function for µ is given by

log L(µ) = −s logµ −
n∑

j=1

cj|µ . (5.15)

By equating the derivative of (5.15) to zero, the MLE of µ is

µ̂ =
n∑

j=1

cj|s . (5.16)

Thus there is no need for the iterative computation of µ̂. But in this simple case,
it is instructive to demonstrate how the EM algorithm would work and how its
implementation could be simplified as the complete-data log likelihood belongs to
the regular exponential family (see Sect. 5.2.1).

The complete-data vector x can be declared to be x = (t1, … , ts, z�)�, where
z = (ts+1, … , tn)� contains the unobservable realizations of the n − s censored
random variables. The complete-data log likelihood is given by

log Lc(µ) = −n logµ −
n∑

j=1

tj|µ . (5.17)

148 Shu Kay Ng, Thriyambakam Krishnan, Geoffrey J. McLachlan

As log Lc(µ) is a linear function of the unobservable data z, the E-step is effected
simply by replacing z by its current conditional expectation given y. By the lack
of memory of the exponential distribution, the conditional distribution of Tj − cj

given that Tj > cj is still exponential with mean µ. So, we have

Eµ(k) (Tj|y) = Eµ(k) (Tj|Tj > cj) = cj + µ(k) (5.18)

for j = s + 1, … , n. Accordingly, the Q-function is given by

Q
(
µ;µ(k)

)
= −n logµ − µ−1

n∑

j=1

cj + (n − s)µ(k)

.

In the M-step, we have

µ(k+1) =

n∑

j=1

cj + (n − s)µ(k)

/

n . (5.19)

On putting µ(k+1) = µ(k) = µ∗ in (5.19) and solving for µ∗, we have for s < n that
µ∗ = µ̂. That is, the EM sequence {µ(k)} has the MLE µ̂ as its unique limit point, as
k → ∞; see McLachlan and Krishnan (1997, Sect. 1.5.2).

From (5.17), it can be seen that log Lc(µ) has the exponential family form (5.4)
with canonical parameter µ−1 and sufficient statistic t(X) =

∑n
j=1 Tj. Hence, from

(5.18), the E-step requires the calculation of t(k) =
∑n

j=1 cj + (n − s)µ(k). The M-step
then yields µ(k+1) as the value of µ that satisfies the equation

t(k) = Eµ{t(X)} = nµ .

This latter equation can be seen to be equivalent to (5.19), as derived by direct
differentiation of the Q-function.

Example 3: Nonapplicability of EM Algorithm5.3.3

Examples 1 and 2 may have given an impression that the E-step consists in re-
placing the missing data by their conditional expectations given the observed data
at current parameter values. Although in many examples this may be the case
as log Lc(Ψ) is a linear function of the missing data z, it is not quite so in gen-
eral. Rather, as should be clear from the general theory described in Sect. 5.2.1,
the E-step consists in replacing log Lc(Ψ) by its conditional expectation given
the observed data at current parameter values. Flury and Zoppé (2000) give the
following interesting example to demonstrate the point that the E-step does not
always consist in plugging in “estimates” for missing data. This is also an example
where the E-step cannot be correctly executed at all since the expected value of the
complete-data log likelihood does not exist, showing thereby that the EM algorithm
is not applicable to this problem, at least for this formulation of the complete-data
problem.

The EM Algorithm 149

Let the lifetimes of electric light bulbs of a certain type have a uniform distri-
bution in the interval (0, θ], θ > 0 and unknown. A total of n + m bulbs are tested
in two independent experiments. The observed data consist of y = (y1, … , yn) and
e = (en+1, … , en+m), where y are exact lifetimes of a random sample of n bulbs
and e are indicator observations on a random sample of m bulbs, taking value 1
if the bulb is still burning at a fixed time point T > 0 and 0 if it is expired. The
missing data is z = (yn+1, … , yn+m)�. Let s be the number of ej’s with value 1 and
ymax = max{y1, … , yn}.

In this example, the unknown parameter vector Ψ is a scalar, being equal to θ.
Let us first work out the MLE of θ directly. The likelihood is

L(θ) = θ−nI[ymax,∞)(θ) ×
(

T

max(T, θ)

)m−s (
1 −

T

max(T, θ)

)s

,

where IA is the notation for the indicator function of set A. For s = 0, L(θ) is
decreasing in θ for θ ≥ ymax and hence the MLE is θ̂ = ymax. For s ≥ 1, we have
max(T, θ) = θ. Here the function L1(θ) = (θ)−(n+m)(θ− T)s has a unique maximum
at θ̃ = n+m

n+m−s T and is monotonically decreasing for θ > θ̃. Hence the MLE of θ is

θ̂ =

{
θ̃ if θ̃ > ymax and s ≥ 1

ymax otherwise .

Now let us try the EM algorithm for the case s ≥ 1. The complete data can be
formulated as y1, … , yn, yn+1, … , yn+m and the complete-data MLE is

max
j=1,…,n+m

yj .

Since s ≥ 1, we have θ ≥ T. Now if we take the approach of replacing the missing
observations, then we compute

Eθ(k)

(
y(k+1)

j |y, e
)

= Eθ(k) (yj|ej) =

1

2
(T + θ) if ej = 1

1

2
T if ej = 0

for j = n + 1, … , n + m. The M-step is

θ(k+1) = max

{
ymax,

1

2

(
T + θ(k)

)}
.

Combining the E- and M-steps, we can write the EM algorithm as a sequence of
iterations of the equation

θ(k+1) = M
(
θk
) ≡ max

{
ymax,

1

2

(
T + θ(k)

)}
.

It is easily seen that if we start with any θ(0), this procedure will converge to
θ̂ = max{ymax, T}, by noting that θ̂ = M(̂θ).

150 Shu Kay Ng, Thriyambakam Krishnan, Geoffrey J. McLachlan

The reason for the apparent EM algorithm not resulting in the MLE is that the
E-step is wrong. In the E-step, we are supposed to find the conditional expectation
of log Lc(θ) given y, e at current parameter values. Now given the data with s ≥ 1,
we have θ ≥ T and hence the conditional distributions of yj are uniform in [T, θ(k)].
Thus for θ < θ(k) the conditional density of missing yj takes value 0 with positive
probability and hence the conditional expected value of the complete-data log
likelihood we are seeking does not exist.

Starting Values for EM Algorithm5.3.4

The EM algorithm will converge very slowly if a poor choice of initial value Ψ(0)

were used. Indeed, in some cases where the likelihood is unbounded on the edge
of the parameter space, the sequence of estimates {Ψ(k)} generated by the EM
algorithm may diverge if Ψ(0) is chosen too close to the boundary. Also, with
applications where the likelihood equation has multiple roots corresponding to
local maxima, the EM algorithm should be applied from a wide choice of starting
values in any search for all local maxima. A variation of the EM algorithm (Wright
and Kennedy, 2000) uses interval analysis methods to locate multiple stationary
points of a log likelihood within any designated region of the parameter space.

Here, we illustrate different ways of specification of initial value within mixture
models framework. For independent data in the case of mixture models of g
components, the effect of the E-step is to update the posterior probabilities of
component membership. Hence the first E-step can be performed by specifying
a value τ(0)

j for each j
(
j = 1, … , n

)
, where τj = (τ1j, … , τgj)� is the vector containing

the g posterior probabilities of component membership for yj. The latter is usually
undertaken by setting τ(0)

j = z(0)
j , where

z(0) =
(

z(0)
1

�
, … , z(0)

n
�)�

defines an initial partition of the data into g components. For example, an ad hoc
way of initially partitioning the data in the case of, say, a mixture of g = 2 normal
components with the same covariance matrices (Example 1, Sect. 5.3.1) would be
to plot the data for selections of two of the p variables, and then draw a line that
divides the bivariate data into two groups that have a scatter that appears normal.
For higher-dimensional data, an initial value z(0) for z might be obtained through
the use of some clustering algorithm, such as k-means or, say, an hierarchical
procedure if n is not too large.

Another way of specifying an initial partition z(0) of the data is to randomly
divide the data into g groups corresponding to the g components of the mixture
model. With random starts, the effect of the central limit theorem tends to have
the component parameters initially being similar at least in large samples. One
way to reduce this effect is to first select a small random subsample from the data,
which is then randomly assigned to the g components. The first M-step is then
performed on the basis of the subsample. The subsample has to be sufficiently

The EM Algorithm 151

large to ensure that the first M-step is able to produce a nondegenerate estimate
of the parameter vector Ψ (McLachlan and Peel, 2000, Sect. 2.12). In the context
of g normal components, a method of specifying a random start is to generate the
means µ(0)

i independently as

µ(0)
1 , … , µ(0)

g
i.i.d.∼ N(ȳ, V) ,

where ȳ is the sample mean and V =
∑n

j=1(yj −ȳ)(yj −ȳ)�|n is the sample covariance
matrix of the observed data. With this method, there is more variation between the
initial values µ(0)

i for the component means µi than with a random partition of the
data into g components. The component-covariance matrices Σi and the mixing
proportions πi can be specified as

Σ(0)
i = V and π(0)

i = 1|g (i = 1, … , g) .

Ueda and Nakano (1998) considered a deterministic annealing EM (DAEM)
algorithm in order for the EM iterative process to be able to recover from a poor
choice of starting value. They proposed using the principle of maximum entropy
and the statistical mechanics analogy, whereby a parameter, say θ, is introduced
with 1|θ corresponding to the “temperature” in an annealing sense. With their
DAEM algorithm, the E-step is effected by averaging log Lc(Ψ) over the distribution
taken to be proportional to that of the current estimate of the conditonal density
of the complete data (given the observed data) raised to the power of θ; see for
example McLachlan and Peel (2000, pp. 58–60).

Provision of Standard Errors 5.3.5

Several methods have been suggested in the EM literature for augmenting the EM
computation with some computation for obtaining an estimate of the covariance
matrix of the computed MLE. Many such methods attempt to exploit the compu-
tations in the EM steps. These methods are based on the observed information
matrix I(Ψ̂; y), the expected information matrix I(Ψ) or on resampling methods.
Baker (1992) reviews such methods and also develops a method for computing the
observed information matrix in the case of categorical data. Jamshidian and Jen-
nrich (2000) review more recent methods including the Supplemented EM (SEM)
algorithm of Meng and Rubin (1991) and suggest some newer methods based on
numerical differentiation.

Theorectically one may compute the asymptotic covariance matrix by inverting
the observed or expected information matrix at the MLE. In practice, however, this
may be tedious analytically or computationally, defeating one of the advantages of
the EM approach. Louis (1982) extracts the observed information matrix in terms
of the conditional moments of the gradient and curvature of the complete-data
log likelihood function introduced within the EM framework. These conditional
moments are generally easier to work out than the corresponding derivatives of the
incomplete-data log likelihood function. An alternative approach is to numerically

152 Shu Kay Ng, Thriyambakam Krishnan, Geoffrey J. McLachlan

differentiate the likelihood function to obtain the Hessian. In a EM-aided differ-
entiation approach, Meilijson (1989) suggests perturbation of the incomplete-data
score vector to compute the observed information matrix. In the SEM algorithm
(Meng and Rubin, 1991), numerical techniques are used to compute the derivative
of the EM operator M to obtain the observed information matrix. The basic idea
is to use the fact that the rate of convergence is governed by the fraction of the
missing information to find the increased variability due to missing information
to add to the assessed complete-data covariance matrix. More specifically, let V
denote the asymptotic covariance matrix of the MLE Ψ̂. Meng and Rubin (1991)
show that

I−1
(
Ψ̂; y

)
= I−1

c

(
Ψ̂; y

)
+ ∆V , (5.20)

where ∆V = {Id − J(Ψ̂)}−1J(Ψ̂)I−1
c (Ψ̂; y) and Ic(Ψ̂; y) is the conditional expected

complete-data information matrix, and where Id denotes the d×d identity matrix.
Thus the diagonal elements of ∆V give the increases in the asymptotic variances
of the components of Ψ̂ due to missing data. For a wide class of problems where
the complete-data density is from the regular exponential family, the evaluation of
Ic(Ψ̂; y) is readily facilitated by standard complete-data computations (McLachlan
and Krishnan, 1997, Sect. 4.5). The calculation of J(Ψ̂) can be readily obtained by
using only EM code via numerically differentiation of M(Ψ). Let Ψ̂ = Ψ(k+1) where
the sequence of EM iterates has been stopped according to a suitable stopping rule.
Let Mi be the ith component of M(Ψ). Let u(j) be a column d-vector with the jth
coordinate 1 and others 0. With a possibly different EM sequence Ψ(k), let rij be the
(i, j)th element of J(Ψ̂), we have

r(k)
ij =

Mi

[
Ψ̂ +

(
Ψ(k)

j − Ψ̂ ju(j)
)]

− Ψ̂ i

Ψ(k)
j − Ψ̂ j

.

Use a suitable stopping rule like |r(k+1)
ij − r(k)

ij | <
√
ε to stop each of the sequences

rij (i, j = 1, 2, … , d) and take r∗ij = r(k+1)
ij ; see McLachlan and Krishnan (1997,

Sect. 4.5).
It is important to emphasize that estimates of the covariance matrix of the MLE

based on the expected or observed information matrices are guaranteed to be
valid inferentially only asymptotically. In particular for mixture models, it is well
known that the sample size n has to be very large before the asymptotic theory of
maximum likelihood applies. A resampling approach, the bootstrap (Efron, 1979;
Efron and Tibshirani, 1993), has been considered to tackle this problem. Basford
et al. (1997) compared the bootstrap and information-based approaches for some
normal mixture models and found that unless the sample size was very large, the
standard errors obtained by an information-based approach were too unstable to
be recommended.

The bootstrap is a powerful technique that permits the variability in a random
quantity to be assessed using just the data at hand. Standard error estimation of Ψ̂

The EM Algorithm 153

may be implemented according to the bootstrap as follows. Further discussion on
bootstrap and resampling methods can be found in Chaps. III.2 and III.3 of this
handbook.
1. A new set of data, y∗, called the bootstrap sample, is generated according

to F̂, an estimate of the distribution function of Y formed from the original
observed data y. That is, in the case where y contains the observed values of
a random sample of size n, y∗ consists of the observed values of the random
sample

Y∗
1, … , Y∗

n
i.i.d.∼ F̂ ,

where the estimate F̂ (now denoting the distribution function of a single
observation Y j) is held fixed at its observed value.

2. The EM algorithm is applied to the bootstrap observed data y∗ to compute the
MLE for this data set, Ψ̂∗

.
3. The bootstrap covariance matrix of Ψ̂∗

is given by

Cov∗(Ψ̂∗
) = E∗

[{
Ψ̂∗

− E∗ (Ψ̂∗)} {Ψ̂∗
− E∗ (Ψ̂∗)}�]

, (5.21)

where E∗ denotes expectation over the bootstrap distribution specified by F̂.

The bootstrap covariance matrix can be approximated by Monte Carlo methods.
Steps 1 and 2 are repeated independently a number of times (say, B) to give B
independent realizations of Ψ̂∗

, denoted by Ψ̂∗
1, … , Ψ̂∗

B. Then (5.21) can be ap-
proximated by the sample covariance matrix of these B bootstrap replications to
give

Cov∗
(
Ψ̂∗) ≈

B∑

b=1

(
Ψ̂∗

b − Ψ̂
∗)(

Ψ̂∗
b − Ψ̂

∗)�
|(B − 1) , (5.22)

where Ψ̂
∗

=
∑B

b=1 Ψ̂∗
b |B. Thestandarderrorof the ith elementof Ψ̂ canbeestimated

by the positive square root of the ith diagonal element of (5.22). It has been shown
that 50 to 100 bootstrap replications are generally sufficient for standard error
estimation (Efron and Tibshirani, 1993).

In Step 1 above, the nonparametric version of the bootstrap would take F̂ to
be the empirical distribution function formed from the observed data y. Sit-
uations where we may wish to use the latter include problems where the ob-
served data are censored or are missing in the conventional sense. In these cases
the use of the nonparametric bootstrap avoids having to postulate a suitable
model for the underlying mechanism that controls the censorship or the ab-
sence of the data. A generalization of the nonparametric version of the boot-
strap, known as the weighted bootstrap, has been studied by Newton and Raftery
(1994).

154 Shu Kay Ng, Thriyambakam Krishnan, Geoffrey J. McLachlan

Variations on the EM Algorithm5.4

In this section, further modifications and extensions to the EM algorithm are
considered. In general, there are extensions of the EM algorithm
1. to produce standard errors of the MLE using the EM;
2. to surmount problems of difficult E-step and|or M-step computations;
3. to tackle problems of slow convergence;
4. in the direction of Bayesian or regularized or penalized ML estimations.

We have already discussed methods like the SEM algorithm for producing standard
errors of EM-computed MLE in Sect. 5.3.5. The modification of the EM algorithm
for Bayesian inference will be discussed in Sect. 5.5.1. In this section, we shall focus
on the problems of complicated E- or M-steps and of slow convergence of the EM
algorithm.

Complicated E-Step5.4.1

In some applications of the EM algorithm, the E-step is complex and does not admit
a close-form solution to the Q-function. In this case, the E-step at the (k + 1)th
iteration may be executed by a Monte Carlo (MC) process:
1. Make M independent draws of the missing values Z, z(1k), … , z(Mk), from the

conditional distribution k(z|y; Ψ(k)).
2. Approximate the Q-function as

Q
(
Ψ; Ψ(k)

) ≈ QM

(
Ψ; Ψ(k)

)
=

1

M

M∑

m=1

log k
(
Ψ|z(mk); y

)
.

In the M-step, the Q-function is maximized over Ψ to obtain Ψ(k+1). The variant is
known as the Monte Carlo EM (MCEM) algorithm (Wei and Tanner, 1990). As MC
error is introduced at the E-step, the monotonicity property is lost. But in certain
cases, the algorithm gets close to a maximizer with a high probability (Booth and
Hobert, 1999). The problems of specifying M and monitoring convergence are of
central importance in the routine use of the algorithm. Wei and Tanner (1990) rec-
ommendsmallvaluesofM beusedininitial stagesandbeincreasedas thealgorithm
moves closer to convergence. As to monitoring convergence, they recommend that
the values of Ψ(k) be plotted against k and when convergence is indicated by the sta-
bilization of the process with random fluctuations about Ψ̂, the process may be ter-
minatedorcontinuedwitha largervalueofM.Alternativeschemes for specifyingM
andstoppingruleareconsideredbyBoothandHobert (1999)andMcCulloch(1997).

Example 4: Generalized Linear Mixed Models
Generalized linear mixed models (GLMM) are extensions of generalized linear
models (GLM) (McCullagh and Nelder, 1989) that incorporate random effects in
the linear predictor of the GLM (more material on the GLM can be found in

The EM Algorithm 155

Chap. III.7). We let y = (y1, … , yn)� denote the observed data vector. Conditional
on theunobservable randomeffectsvector, u = (u1, … , uq)�,weassumethaty arise
fromaGLM.Theconditionalmeanµj = E(yj|u) is related to the linearpredictorηj =
x�j β+z�j u by the link function g(µj) = ηj (j = 1, … , n), where β is a p-vector of fixed
effects and xj and zj are, respectively, p-vector and q-vector of explanatory variables
associated with the fixed and random effects. This formulation encompasses the
modeling of data involving multiple sources of random error, such as repeated
measures within subjects and clustered data collected from some experimental
units (Breslow and Clayton, 1993).

We let the distribution for u be g(u; D) that depends on parameters D. The
observed data y are conditionally independent with density functions of the form

f (yj|u; β, κ) = exp
[
mjκ−1{θjyj − b(θj)} + c(yj; κ)

]
, (5.23)

where θj is the canonical parameter, κ is the dispersion parameter, and mj is the
known prior weight. The conditional mean and canonical parameters are related
through the equation µj = b′(θj), where the prime denotes differentiation with
respect to θj. Let Ψ denotes the vector of unknown parameters within β, κ, and D.
The likelihood function for Ψ is given by

L(Ψ) =
∫ n∏

j=1

f (yj|u; β, κ)g(u; D)du , (5.24)

which cannot usually be evaluated in closed form and has an intractable integral
whose dimension depends on the structure of the random effects.

Within the EM framework, the random effects are considered as missing data.
The complete data is then x = (y�, u�)� and the complete-data log likelihood is
given by

log Lc(Ψ) =
n∑

j=1

log f (yj|u; β, κ) + log g(u; D) . (5.25)

On the (k + 1)th iteration of the EM algorithm, the E-step involves the computation
of the Q-function, Q(Ψ; Ψ(k)) = EΨ(k){log Lc(Ψ)|y}, where the expectation is with
respect to the conditional distribution of u|y with current parameter value Ψ(k).
As this conditional distribution involves the (marginal) likelihood function L(Ψ)
given in (5.24), an analytical evaluation of the Q-function for the model (5.23)
will be impossible outside the normal theory mixed model (Booth and Hobert,
1999). The MCEM algorithm can be adopted to tackle this problem by replacing
the expectation in the E-step with a MC approximation. Let u(1k), … , u(Mk) denote
a random sample from k(u|y; Ψ(k)) at the (k + 1)th iteration. A MC approximation
of the Q-function is given by

QM

(
Ψ; Ψ(k)

)
=

1

M

M∑

m=1

{
log f

(
y|u(mk); β, κ

)
+ log g

(
u(mk); D

)}
. (5.26)

156 Shu Kay Ng, Thriyambakam Krishnan, Geoffrey J. McLachlan

From (5.26), it can be seen that the first term of the approximated Q-function
involves only parameters β and κ, while the second term involves only D. Thus,
the maximization in the MC M-step is usually relatively simple within the GLMM
context (McCulloch, 1997).

Alternative simulation schemes for u can be used for (5.26). For example, Booth
andHobert (1999)proposed the rejection samplingandamultivariate t importance
sampling approximations. McCulloch (1997) considered dependent MC samples
using MC Newton-Raphson (MCNR) algorithm.

Complicated M-Step5.4.2

One of major reasons for the popularity of the EM algorithm is that the M-step
involves only complete-data ML estimation, which is often computationally sim-
ple. But if the complete-data ML estimation is rather complicated, then the EM
algorithm is less attractive. In many cases, however, complete-data ML estima-
tion is relatively simple if maximization process on the M-step is undertaken
conditional on some functions of the parameters under estimation. To this end,
Meng and Rubin (1993) introduce a class of GEM algorithms, which they call the
Expectation–Conditional Maximization (ECM) algorithm.

ECM and Multicycle ECM Algorithms
The ECM algorithm takes advantage of the simplicity of complete-data conditional
maximization by replacing a complicated M-step of the EM algorithm with sev-
eral computationally simpler conditional maximization (CM) steps. Each of these
CM-steps maximizes the Q-function found in the preceding E-step subject to con-
straints on Ψ, where the collection of all constraints is such that the maximization
is over the full parameter space of Ψ.

A CM-step might be in closed form or it might itself require iteration, but
because the CM maximizations are over smaller dimensional spaces, often they
are simpler, faster, and more stable than the corresponding full maximizations
called for on the M-step of the EM algorithm, especially when iteration is required.
The ECM algorithm typically converges more slowly than the EM in terms of
number of iterations, but can be faster in total computer time. More importantly,
the ECM algorithm preserves the appealing convergence properties of the EM
algorithm, such as its monotone convergence.

We suppose that the M-step is replaced by S > 1 steps and let Ψ(k+s|S) denote the
value of Ψ on the sth CM-step of the (k + 1)th iteration. In many applications of the
ECM algorithm, the S CM-steps correspond to the situation where the parameter
vector Ψ is partitioned into S subvectors,

Ψ =
(
Ψ�

1 , … , Ψ�
S

)�
.

The sth CM-step then requires the maximization of the Q-function with respect to
the sth subvector Ψs with the other (S − 1) subvectors held fixed at their current
values. The convergence properties and the rate of convergence of the ECM algo-

The EM Algorithm 157

rithm have been discussed in Meng (1994) and Meng and Rubin (1993); see also
the discussion in Sexton and Swensen (2000). In particular, it can be shown that

Q
(
Ψ(k+1); Ψ(k)

) ≥ Q
(
Ψ(k+(S−1)|S); Ψ(k)

)
≥ … ≥ Q

(
Ψ(k); Ψ(k)

)
. (5.27)

This shows that the ECM algorithm is a GEM algorithm and so possesses its
desirable convergence properties. As noted in Sect. 5.2.3, the inequality (5.27) is
a sufficient condition for

L
(
Ψ(k+1)

) ≥ L
(
Ψ(k)

)
(5.28)

to hold.
In many cases, the computation of an E-step may be much cheaper than the

computation of the CM-steps. Hence one might wish to perform one E-step before
each CM-step. A cycle is defined to be one E-step followed by one CM-step. The cor-
responding algorithm is called the multicycle ECM (Meng and Rubin, 1993). A mul-
ticycle ECM may not necessarily be a GEM algorithm; that is, the inequality (5.27)
may not be hold. However, it is not difficult to show that the multicycle ECM algo-
rithm monotonically increases the likelihood function L(Ψ) after each cycle, and
hence, after each iteration. The convergence results of the ECM algorithm apply to
a multicycle version of it. An obvious disadvantage of using a multicycle ECM algo-
rithm is the extra computation at each iteration. Intuitively, as a tradeoff, one might
expect it to result in larger increases in the log likelihood functionper iterationsince
the Q-function is being updated more often (Meng, 1994; Meng and Rubin, 1993).

Example 5: Single-Factor Analysis Model
Factor analysis is commonly used for explaining data, in particular, correlations
between variables in multivariate observations and for dimensionality reduction.
In a typical factor analysis model, each observation Y j is modeled as

Y j = µ + BU j + ej (j = 1, … , n) , (5.29)

where U j is a q-dimensional (q < p) vector of latent or unobservable variables
called factors and B is a p × q matrix of factor loadings (parameters). The U j

are assumed to be i.i.d. as N(O, Iq), independently of the errors ej, which are
assumed to be i.i.d. as N(O, D), where D = diag(σ2

1, … ,σ2
p), and where Iq denotes

the q × q identity matrix. Thus, conditional on U j = uj, the Yj are independently
distributed as N(µ+Buj, D). Unconditionally, the Y j are i.i.d. according to a normal
distribution with mean µ and covariance matrix

Σ = BB� + D . (5.30)

If q is chosen sufficiently smaller than p, representation (5.30) imposes some
constraints on Σ and thus reduces the number of free parameters to be estimated.
Note that in the case of q > 1, there is an infinity of choices for B, since (5.30) is
still satisfied if B is replaced by BC, where C is any orthogonal matrix of order q.
As 1

2 q(q − 1) constraints are needed for B to be uniquely defined, the number of

158 Shu Kay Ng, Thriyambakam Krishnan, Geoffrey J. McLachlan

free parameters is pq + p − 1
2 q(q − 1); see Lawley and Maxwell (1971, Chap. 1) and

McLachlan et al. (2003).
The factor analysis model (5.29) can be fitted by the EM algorithm and its

variants. The MLE of the mean µ is obviously the sample mean µ of the n observed
values y1, … , yn corresponding to the random sample Y1, … , Yn. Hence in the
sequel, µ can be set equal to µ without loss of generality. The log likelihood for
Ψ that can be formed from the observed data y = (y�1 , … , y�n)� is, apart from an
additive constant,

log L(Ψ) = −
1

2
n

log | BB� + D | +

m∑

j=1

(yj − µ)�(BB� + D)−1(yj − µ)

.

We follow Dempster et al. (1977) and formulate x = (y�, u�
1 , … , u�

n)� as the
complete-data vector, where uj corresponds to U j. Thus, the complete-data log
likelihood is, but for an additive constant,

log Lc(Ψ) = −
1

2
n log | D | −

1

2

n∑

j=1

{
(yj − µ − Buj)

�D−1(yj − µ − Buj) + u�
j uj

}
.

The complete-data density belongs to the exponential family, and the complete-
data sufficient statistics are Cyy, Cyu, and Cuu, where

Cyy =
n∑

j=1

(yj − µ)(yj − µ)�; Cyu =
n∑

j=1

(yj − µ)u�
j ; Cuu =

n∑

j=1

uju
�
j .

On the (k + 1)th iteration of the EM algorithm, we have

E-Step: Compute the conditional expectation of the sufficient statistics given y and
the current fit Ψ(k) for Ψ:

EΨ(k) (Cyy | y) = Cyy, EΨ(k) (Cyu | y) = Cyyγ (k) ,

and

EΨ(k) (Cuu | y) = γ (k)�Cyyγ (k) + nω(k) ,

where

γ (k) =
{

B(k)B(k)� + D(k)
}−1

B(k) and ω(k) = Iq − γ (k)�B(k) .

M-Step: Calculate B(k+1) = Cyyγ (k)
(
γ (k)�Cyyγ (k) + nω(k)

)−1
and

D(k+1) = diag
{

Cyy|n − B(k+1)H(k)B(k+1)�
}

= n−1 diag
{

Cyy − Cyyγ (k)B(k+1)�
}

, (5.31)

The EM Algorithm 159

where

H(k) = EΨ(k) (Cuu | y)|n = γ (k)�Cyyγ (k)|n + ω(k) . (5.32)

It is noted that direct differentiation of log L(Ψ) shows that the ML estimate of
the diagonal matrix D satisfies

D̂ = diag
{

Cyy|n − B̂B̂
�}

. (5.33)

As remarked by Lawley and Maxwell (1971, pp. 30), (5.33) looks temptingly simple
to use to solve for D̂, but was not recommended due to convergence problems.
On comparing (5.33) with (5.31), it can be seen that with the calculation of the ML
estimateof D directly from log L(Ψ), theunconditional expectationof U jU�

j , which
is the identity matrix, is used in place of the conditional expectation in (5.32) on the
E-step. Although the EM algorithm is numerically stable, the rate of convergence is
slow, which can be attributed to the typically large fraction of missing data. Liu and
Rubin (1994, 1998) have considered the application of the ECME algorithm to this
problem; see Sect. 5.4.3 for the description of the algorithm. The M-step is replaced
by two CM-steps. On the first CM-step, B(k+1) is calculated as on the M-step above,
while on the second CM-step the diagonal matrix D(k+1) is obtained by using an
algorithm such as Newton–Raphson to maximize the actual log likelihood with B
fixed at B(k+1).

The single-factor analysis model provides only a global linear model for the
representation of the data in a lower-dimensional subspace, the scope of its ap-
plication is limited. A global nonlinear approach can be obtained by postulating
a mixture of linear submodels for the distribution of the full observation vector Y j

given the (unobservable) factors uj (McLachlan et al., 2003). This mixture of factor
analyzers has been adopted both (a) for model-based density estimation from
high-dimensional data, and hence for the clutering of such data, and (b) for local
dimensionality reduction; see for example McLachlan and Peel (2000, Chap. 8).
Some more material on dimension reduction methods can be found in Chap. III.6
of this handbook.

Speeding up Convergence 5.4.3

Several suggestions are available in the literature for speeding up convergence,
some of a general kind and some problem-specific; see for example McLachlan
and Krishnan (1997, Chap. 4). Most of them are based on standard numerical
analytic methods and suggest a hybrid of EM with methods based on Aitken
acceleration, over-relaxation, line searches, Newton methods, conjugate gradients,
etc. Unfortunately, the general behaviour of these hybrids is not always clear and
they may not yield monotonic increases in the log likelihood over iterations.
There are also methods that approach the problem of speeding up convergence
in terms of “efficient” data augmentation scheme (Meng and van Dyk, 1997).
Since the convergence rate of the EM algorithm increases with the proportion

160 Shu Kay Ng, Thriyambakam Krishnan, Geoffrey J. McLachlan

of observed information in the prescribed EM framework (Sect. 5.2.4), the basic
idea of the scheme is to search for an efficient way of augmenting the observed
data. By efficient, they mean less augmentation of the observed data (greater
speed of convergence) while maintaining the simplicity and stability of the EM
algorithm. A common trade-off is that the resulting E- and|or M-steps may be
made appreciably more difficult to implement. To this end, Meng and van Dyk
(1997) introduce a working parameter in their specification of the complete data
to index a class of possible schemes to facilitate the search.

ECME, AECM, and PX–EM Algorithms
Liu and Rubin (1994, 1998) present an extension of the ECM algorithm called
the ECME (expectation–conditional maximization either) algorithm. Here the
“either” refers to the fact that with this extension, each CM-step either maximizes
the Q-function or the actual (incomplete-data) log likelihood function log L(Ψ),
subject to the same constraints on Ψ. The latter choice should lead to faster
convergence as no augmentation is involved. Typically, the ECME algorithm is
more tedious to code than the ECM algorithm, but the reward of faster convergence
is often worthwhile especially because it allows convergence to be more easily
assessed.

A further extension of the EM algorithm, called the Space-Alternating General-
ized EM (SAGE), has been proposed by Fessler and Hero (1994), where they update
sequentially small subsets of parameters using appropriately smaller complete data
spaces. This approach is eminently suitable for situations like image reconstruction
where the parameters are large in number. Meng and van Dyk (1997) combined the
ECME and SAGE algorithms. The so-called Alternating ECM (AECM) algorithm
allows the data augmentation scheme to vary where necessary over the CM-steps,
within and between iterations. With this flexible data augmentation and model re-
duction schemes, the amount of data augmentation decreases and hence efficient
computations are achieved.

In contrast to the AECM algorithm where the optimal value of the working
parameter is determined before EM iterations, a variant is considered by Liu et al.
(1998) which maximizes the complete-data log likelihood as a function of the
working parameter within each EM iteration. The so-called parameter-expanded
EM (PX–EM) algorithm has been used for fast stable computation of MLE in a wide
range of models. This variant has been further developed, known as the one-
step-late PX–EM algorithm, to compute MAP or maximum penalized likelihood
(MPL) estimates (van Dyk and Tang, 2003). Analogous convergence results hold
for the ECME, AECM, and PX–EM algorithms as for the EM and ECM algorithms.
More importantly, these algorithms preserve the monotone convergence of the EM
algorithm as stated in (5.28).

Extensions to the EM for Data Mining Applications
With the computer revolution, massively huge data sets of millions of multidimen-
sional observations are now commonplace. There is an ever increasing demand

The EM Algorithm 161

on speeding up the convergence of the EM algorithm to large databases. But at the
same time, it is highly desirable if its simplicity and stability can be preserved. In
applications where the M-step is computationally simple, for example, in fitting
mutivariate normal mixtures, the rate of convergence of the EM algorithm depends
mainly on the computation time of an E-step as each data point is visited at each
E-step. There have been some promising developments on modifications to the
EM algorithm for the ML fitting of mixture models to large databases that preserve
the simplicity of implementation of the EM in its standard form.

Neal and Hinton (1998) proposed the incremental EM (IEM) algorithm to im-
prove the convergence rate of the EM algorithm. With this algorithm, the available
n observations are divided into B (B ≤ n) blocks and the E-step is implemented
for only a block of data at a time before performing a M-step. A “scan” of the
IEM algorithm thus consists of B partial E-steps and B M-steps. The argument for
improved rate of convergence is that the algorithm exploits new information more
quickly rather than waiting for a complete scan of the data before parameters are
updated by an M-step. Another method suggested by Neal and Hinton (1998) is
the sparse EM (SPEM) algorithm. In fitting a mixture model to a data set by ML
via the EM algorithm, the current estimates of some posterior probabilities τ(k)

ij

for a given data point yj are often close to zero. For example, if τ(k)
ij < 0.005 for

the first two components of a four-component mixture being fitted, then with the
SPEM algorithm we would fix τ(k)

ij (i = 1, 2) for membership of yj with respect to

the first two components at their current values and only update τ(k)
ij (i = 3, 4)

for the last two components. This sparse E-step will take time proportional to the
number of components that needed to be updated. A sparse version of the IEM
algorithm (SPIEM) can be formulated by combining the partial E-step and the
sparse E-step. With these versions, the likelihood is still increased after each scan.
Ng and McLachlan (2003a) study the relative performances of these algorithms
with various number of blocks B for the fitting of normal mixtures. They propose to
choose B to be that factor of n that is the closest to B∗ = round(n2|5) for unrestricted
component-covariance matrices, where round(r) rounds r to the nearest integer.

Other approaches for speeding up the EM algorithm for mixtures have been
considered in Bradley et al. (1998) and Moore (1999). The former developed a scal-
able version of the EM algorithm to handle very large databases with a limited
memory buffer. It is based on identifying regions of the data that are compressible
and regions that must be maintained in memory. Moore (1999) has made use of
multiresolution kd-trees (mrkd-trees) to speed up the fitting process of the EM
algorithm on normal mixtures. Here kd stands for k-dimensional where, in our
notation, k = p, the dimension of an observation yj. His approach builds a mul-
tiresolution data structure to summarize the database at all resolutions of interest
simultaneously. The mrkd-tree is a binary tree that recursively splits the whole set
of data points into partitions. The contribution of all the data points in a tree node
to the sufficient statistics is simplified by calculating at the mean of these data
points to save time. Ng and McLachlan (2003b) combined the IEM algorithm with
the mrkd-tree approach to further speed up the EM algorithm. They also studied

162 Shu Kay Ng, Thriyambakam Krishnan, Geoffrey J. McLachlan

the convergence properties of this modified version and the relative performance
with some other variants of the EM algorithm for speeding up the convergence for
the fitting of normal mixtures.

Neither the scalable EM algorithm nor the mrkd-tree approach guarantee the de-
sirable reliable convergence properties of the EM algorithm. Moreover, the scalable
EMalgorithmbecomes less efficientwhen thenumberof components g is large, and
the mrkd-trees-based algorithms slow down as the dimension p increases; see for
example Ng and McLachlan (2003b) and the references therein. Further discussion
on data mining applications can be found in Chap. III.13 of this handbook.

Miscellaneous Topics
on the EM Algorithm5.5

EM Algorithm for MAP Estimation5.5.1

Although we have focussed on the application of the EM algorithm for computing
MLEs in a frequentist framework, it can be equally applied to find the mode of
the posterior distribution in a Bayesian framework. This problem is analogous
to MLE and hence the EM algorithm and its variants can be adapted to compute
MAP estimates. The computation of the MAP estimate in a Bayesian framework via
the EM algorithm corresponds to the consideration of some prior density for Ψ.
The E-step is effectively the same as for the computation of the MLE of Ψ in
a frequentist framework, requiring the calculation of the Q-function. The M-step
differs in that the objective function for the maximization process is equal to the
Q-function, augmented by the log prior density. The combination of prior and
sample information provides a posterior distribution of the parameter on which
the estimation is based.

The advent of inexpensive high speed computers and the simultaneous rapid
development in posterior simulation techniques such as Markov chain Monte
Carlo (MCMC) methods (Gelfand and Smith, 1990) enable Bayesian estimation to
be undertaken. In particular, posterior quantities of interest can be approximated
through the use of MCMC methods such as the Gibbs sampler. Such methods allow
the construction of an ergodic Markov chain with stationary distribution equal to
the posterior distribution of the parameter of interest. A detailed description of
the MCMC technology can be found in Chap. II.3.

Although the application of MCMC methods is now routine, there are some
difficulties that have to be addressed with the Bayesian approach, particularly in
the context of mixture models. One main hindrance is that improper priors yield
improper posterior distributions. Another hindrance is that when the number of
components g is unknown, the parameter space is simultaneously ill-defined and
of infinite dimension. This prevents the use of classical testing procedures and
priors (McLachlan and Peel, 2000, Chap. 4). A fully Bayesian approach with g

The EM Algorithm 163

taken to be an unknown parameter has been considered by Richardson and Green
(1997). Their MCMC methods allow jumps to be made for variable dimension
parameters and thus can handle g being unspecified. A further hindrance is the
effect of label switching, which arises when there is no real prior information that
allows one to discriminate between the components of a mixture model belonging
to the same parametric family. This effect is very important when the solution
is being calculated iteratively and there is the possibility that the labels of the
components may be switched on different iterations (McLachlan and Peel, 2000,
Chap. 4).

Iterative Simulation Algorithms 5.5.2

In computing Bayesian solutions to incomplete-data problems, iterative simulation
techniques have been adopted to find the MAP estimates or estimating the entire
posterior density. These iterative simulation techniques are conceptually similar to
the EM algorithm, simply replacing the E- and M-steps by draws from the current
conditional distribution of the missing data and Ψ, respectively. However, in some
methods such as the MCEM algorithm described in Sect. 5.4.1, only the E-step is
so implemented. Many of these methods can be interpreted as iterative simulation
analogs of the various versions of the EM and its extensions. Some examples are
Stochastic EM, Data Augmentation algorithm, and MCMC methods such as the
Gibbs sampler (McLachlan and Krishnan, 1997, Chap. 6). Here, we give a very
brief outline of the Gibbs sampler; see also Chap. II.3 of this handbook and the
references therein.

The Gibbs sampler is extensively used in many Bayesian problems where the
joint distribution is too complicated to handle, but the conditional distributions
are often easy enough to draw from; see Casella and George (1992). On the Gibbs
sampler, an approximate sample from p(Ψ | y) is obtained by simulating di-
rectly from the (full) conditional distribution of a subvector of Ψ given all the
other parameters in Ψ and y. We write Ψ = (Ψ1, … , Ψd) in component form,
a d-dimensional Gibbs sampler makes a Markov transition from Ψ(k) to Ψ(k+1) via
d successive simulations as follows:

(1) Draw Ψ(k+1)
1 from p

(
Ψ1 | y;Ψ(k)

2 , … ,Ψ(k)
d

)
.

(2) Draw Ψ(k+1)
2 from p

(
Ψ2 | y;Ψ(k+1)

1 ,Ψ(k)
3 , … ,Ψ(k)

d

)
.

...
...

...
(d) Draw Ψ(k+1)

d from p
(
Ψd | y;Ψ(k+1)

1 , … ,Ψ(k+1)
d−1

)
.

The vector sequence {Ψ(k)} thus generated is known to be a realization of a homo-
geneous Markov Chain. Many interesting properties of such a Markov sequence
have been established, including geometric convergence, as k → ∞; to a unique
stationary distribution that is the posterior density p(Ψ(k)

1 , … ,Ψ(k)
d | y) under cer-

tain conditions; see Roberts and Polson (1994). Among other sampling methods,
there is the Metropolis-Hastings algorithm (Hastings, 1970), which, in contrast to

164 Shu Kay Ng, Thriyambakam Krishnan, Geoffrey J. McLachlan

the Gibbs sampler, accepts the candidate simulated component in Ψ with some
defined probability (McLachlan and Peel, 2000, Chap. 4).

TheGibbssamplerandother such iterative simulation techniquesbeingBayesian
in their point of view consider both parameters and missing values as random
variables and both are subjected to random draw operations. In the iterative algo-
rithms under a frequentist framework, like the EM-type algorithms, parameters
are subjected to a maximization operation and missing values are subjected to
an averaging operation. Thus the various versions of the Gibbs sampler can be
viewed as stochastic analogs of the EM, ECM, and ECME algorithms. Besides these
connections, the EM-type algorithms also come in useful as starting points for
iterative simulation algorithms where typically regions of high density are not
known a priori (McLachlan and Krishnan, 1997, Sect. 6.7.3). The relationship be-
tween the EM algorithm and the Gibbs sampler and the connection between their
convergence properties have been examined in Sahu and Roberts (1999).

Further Applications of the EM Algorithm5.5.3

Since the publication of Dempster et al. (1977), the number, variety, and range
of applications of the EM algorithm and its extensions have been tremendous.
Applications in many different contexts can be found in monographs Little and
Rubin (2002), McLachlan and Krishnan (1997), and McLachlan and Peel (2000).
We conclude the chapter with a quick summary of some of the more interesting
and topical applications of the EM algorithm.

Bioinformatics: Mixture of Factor Analyzers
The analysis of gene expression microarray data using clustering techniques has
an important role to play in the discovery, validation, and understanding of various
classes of cancer; see for example Alon et al. (1999) and van’t Veer et al. (2002).
Clusteringalgorithmscanbeapplied to theproblemofclusteringgenesand tumour
tissues (McLachlan et al., 2002) and also in the discovery of motif patterns in
DNA sequences (Bailey and Elkan, 1995); see also Chap. IV.3 for the description
of biomolecular sequences and structures. The EM algorithm and its variants
have been applied to tackle some of the problems arisen in such applications.
For example, the clustering of tumour tissues on the basis of genes expression is
a nonstandard cluster analysis problem since the dimension of each tissue sample
is so much greater than the number of tissues. In McLachlan et al. (2002), mixture
of factor analyzers is adopted to reduce effectively the dimension of the feature
space of genes. The AECM algorithm (Meng and van Dyk, 1997) can be used to fit
the mixture of factor analyzers by ML (McLachlan and Peel, 2000, Chap. 8).

Image Analysis: Hidden Markov Models
In image analysis, the observed data yj refers to intensities measured on n pixels in
a scene, the associated component indicator vectors zj will not be independently
distributed as the intensities between neighboring pixels are spatially correlated.

The EM Algorithm 165

The set of hidden states zj is viewed as missing data (McLachlan and Peel, 2000,
Chap. 13; van Dyk and Meng, 2001) and a stationary Markovian model over a finite
state space is generally formulated for the distribution of the hidden variable Z. In
one dimension, this Markovian model is a Markov chain, and in two and higher
dimensions a Markov random field (MRF) (Besag, 1986).

The use of the EM algorithm in a hidden Markov chain, known in the Hidden
Markov model literature as the Baum-Welch algorithm (Baum et al., 1970), has
been formulated long before Dempster et al. (1977). Also, Robert et al. (1993)
consider a stochastic Bayesian approach to parameter estimation for a hidden
Markov chain. Lystig and Hughes (2002) provide a means of implementing a NR
approach to obtain parameter estimates and an exact computation of the observed
information matrix for hidden Markov models.

The EM algorithm for the hidden MRF is considerably more difficult; see
McLachlan (1992, Chap. 13) and the references therein. Even in the exponen-
tial family case (see Sect. 5.2.1) the E- and M-steps are difficult to perform even
by numerical methods, except in some very simple cases like a one-parameter
case; in some cases they may be implemented by suitable Gibbs sampler algo-
rithms. A variety of practical procedures has been considered in the literature.
They are reviewed by Qian and Titterington (1992), who also suggest a Monte
Carlo restoration-estimation algorithm. An approximation to the E-step, based on
a fractional weight version of Besag’s iterated conditional modes (ICM) algorithm
(Besag, 1986), has been adopted for the segmentation of magnetic resonance im-
ages (McLachlan and Peel, 2000, Sect. 13.4). An alternative approach is a Bayesian
one, where the likelihood can be regularized using a prior, resulting in a better-
conditioned log likelihood. This can also be interpreted as a penalized likelihood
approach. Random field models such as Gibbs priors are often used in this context
to capture the local smooth structures of the images (Geman and Geman, 1984).

References
Alon,U.,Barkai,N.,Notterman,D.A. et al. (1999).Broadpatternsof geneexpression

revealed by clustering analysis of tumor and normal colon tissues probed by
oligonucleotide arrays. Proceedings of the National Academy of Sciences USA,
96:6745–6750.

Bailey, T.L. and Elkan, C. (1995). Unsupervised learning of multiple motifs in
biopolymers using expectation maximization. Machine Learning, 21:51–80.

Baker, S.G. (1992). A simple method for computing the observed information
matrix when using the EM algorithm with categorical data. Journal of Compu-
tational and Graphical Statistics, 1:63–76.

Basford, K.E., Greenway, D.R., McLachlan, G.J., and Peel, D. (1997). Standard errors
offittedmeansundernormalmixturemodels.Computational Statistics, 12:1–17.

Baum, L.E., Petrie, T., Soules, G., and Weiss, N. (1970). A maximisation technique
occurring in the statistical analysis of probabilistic functions of Markov pro-
cesses. Annals of Mathematical Statistics, 41:164–171.

166 Shu Kay Ng, Thriyambakam Krishnan, Geoffrey J. McLachlan

Besag, J. (1986). On the statistical analysis of dirty pictures. Journal of the Royal
Statistical Society, Series B, 48:259–302.

Booth, J.G. and Hobert, J.P. (1999). Maximizing generalized linear mixed model
likelihoods with an automated Monte Carlo EM algorithm. Journal of the Royal
Statistical Society, Series B, 61:265–285.

Bradley, P.S., Fayyad, U.M., and Reina, C.A. (1998). Scaling EM (expectation-
maximization) clustering to large databases. Technical Report No. MSR-TR-
98-35 (revised February, 1999), Microsoft Research, Seattle.

Breslow, N.E. and Clayton, D.G. (1993). Approximate inference in generalized linear
mixed models. Journal of the American Statistical Association, 88:9–25.

Casella, G. and George, E.I. (1992). Explaining the Gibbs sampler. American Statis-
tician, 46:167–174.

Cramér, H. (1946). Mathematical Methods of Statistics. Princeton University Press,
Princeton, New Jersey.

Dempster, A.P., Laird, N.M., and Rubin, D.B. (1977). Maximum likelihood from
incomplete data via the EM algorithm. Journal of the Royal Statistical Society,
Series B, 39:1–38.

Efron, B. (1979). Bootstrap methods: another look at the jackknife. Annals of Statis-
tics, 7:1–26.

Efron, B. and Tibshirani, R. (1993). An Introduction to the Bootstrap. Chapman &
Hall, London.

Fessler, J.A. and Hero, A.O. (1994). Space-alternating generalized expectation-
maximization algorithm. IEEE Transactions on Signal Processing, 42:2664–
2677.

Flury, B. and Zoppé, A. (2000). Exercises in EM. American Statistician, 54:207–
209.

Gelfand, A.E. and Smith, A.F.M. (1990). Sampling-based approaches to calculat-
ing marginal densities. Journal of the American Statistical Association, 85:398–
409.

Geman, S. and Geman, D. (1984). Stochastic relaxation, Gibbs distributions, and
the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 6:721–741.

Hastings, W.K. (1970). Monte Carlo sampling methods using Markov chains and
their applications. Biometrika, 57:97–109.

Jamshidian, M. and Jennrich, R.I. (2000). Standard errors for EM estimation.
Journal of the Royal Statistical Society, Series B, 62:257–270.

Lawley, D.N. and Maxwell, A.E. (1971). Factor Analysis as a Statistical Method. But-
terworths, London, second edition.

Little, R.J.A. and Rubin, D.B. (2002). Statistical Analysis with Missing Data. Wiley,
New York, second edition.

Liu, C. and Rubin, D.B. (1994). The ECME algorithm: a simple extension of EM and
ECM with faster monotone convergence. Biometrika, 81:633–648.

Liu, C. and Rubin, D.B. (1998). Maximum likelihood estimation of factor analysis
using theECMEalgorithmwithcompleteand incompletedata.Statistica Sinica,
8:729–747.

The EM Algorithm 167

Liu, C., Rubin, D.B., and Wu, Y.N. (1998). Parameter expansion to accelerate EM:
the PX–EM algorithm. Biometrika, 85:755–770.

Louis, T.A. (1982). Finding the observed information matrix when using the EM
algorithm. Journal of the Royal Statistical Society, Series B, 44:226–233.

Lystig, T.C. andHughes, J.P. (2002). Exact computationof theobserved information
matrix for hidden Markov models. Journal of Computational and Graphical
Statistics, 11:678–689.

McCullagh, P.A. and Nelder, J. (1989). Generalized Linear Models. Chapman & Hall,
London, second edition.

McCulloch, C.E. (1997). Maximum likelihood algorithms for generalized linear
mixed models. Journal of the American Statistical Association, 92:162–170.

McLachlan, G.J. (1992). Discriminant Analysis and Statistical Pattern Recognition.
Wiley, New York.

McLachlan, G.J. and Basford, K.E. (1988). Mixture Models: Inference and Applica-
tions to Clustering. Marcel Dekker, New York.

McLachlan, G.J., Bean, R.W., and Peel, D. (2002). A mixture model-based approach
to the clustering of microarray expression data. Bioinformatics, 18:413–422.

McLachlan, G.J. and Krishnan, T. (1997). The EM Algorithm and Extensions. Wiley,
New York.

McLachlan, G.J. and Peel, D. (2000). Finite Mixture Models. Wiley, New York.
McLachlan, G.J., Peel, D., and Bean, R.W. (2003). Modelling high-dimensional

data by mixtures of factor analyzers. Computational Statistics & Data Analysis,
41:379–388.

Meilijson, I. (1989). A fast improvement of the EM algorithm in its own terms.
Journal of the Royal Statistical Society, Series B, 51:127–138.

Meng, X.L. (1994). On the rate of convergence of the ECM algorithm. Annals of
Statistics, 22:326–339.

Meng, X.L. and Rubin, D.B. (1991). Using EM to obtain asymptotic variance-
covariance matrices: the SEM algorithm. Journal of the American Statistical
Association, 86:899–909.

Meng, X.L. and Rubin, D.B. (1993). Maximum likelihood estimation via the ECM
algorithm: a general framework. Biometrika, 80:267–278.

Meng, X.L. and van Dyk, D. (1997). The EM algorithm – an old folk song sung to
a fast new tune. Journal of the Royal Statistical Society, Series B, 59:511–567.

Moore, A.W. (1999). Very fast EM-based mixture model clustering using multires-
olution kd-trees. In Kearns, M.S., Solla, S.A., and Cohn, D.A., editors, Advances
in Neural Information Processing Systems 11, pages 543–549. MIT Press, MA.

Neal, R.M. and Hinton, G.E. (1998). A view of the EM algorithm that justifies
incremental, sparse, and other variants. In Jordan, M.I., editor, Learning in
Graphical Models, pages 355–368. Kluwer, Dordrecht.

Nettleton, D. (1999). Convergence properties of the EM algorithm in constrained
parameter spaces. Canadian Journal of Statistics, 27:639–648.

Newton, M.A. and Raftery, A.E. (1994). Approximate Bayesian inference with the
weighted likelihood bootstrap. Journal of the Royal Statistical Society, Series B,
56:3–48.

168 Shu Kay Ng, Thriyambakam Krishnan, Geoffrey J. McLachlan

Ng, S.K. and McLachlan, G.J. (2003a). On the choice of the number of blocks with
the incremental EM algorithm for the fitting of normal mixtures. Statistics and
Computing, 13:45–55.

Ng, S.K. and McLachlan, G.J. (2003b). On some variants of the EM algorithm for
the fitting of finite mixture models. Austrian Journal of Statistics, 32:143–161.

Qian, W. and Titterington, D.M. (1992). Stochastic relaxations and EM algorithms
for Markov random fields. Journal of Statistical Computation and Simulation,
40:55–69.

Richardson, S. and Green, P.J. (1997). On Bayesian analysis of mixtures with an
unknown number of components. Journal of the Royal Statistical Society, Se-
ries B, 59:731–792 (correction (1998), pp. 661).

Robert, C.P., Celeux, G., and Diebolt, J. (1993). Bayesian estimation of hidden
Markov chains: A stochastic implementation. Statistics & Probability Letters,
16:77–83.

Roberts, G.O. and Polson, N.G. (1994). On the geometric convergence of the Gibbs
sampler. Journal of the Royal Statistical Society, Series B, 56:377–384.

Sahu, S.K. and Roberts, G.O. (1999). On convergence of the EM algorithm and the
Gibbs sampler. Statistics and Computing, 9:55–64.

Sexton, J. and Swensen, A.R. (2000). ECM algorithms that converge at the rate of
EM. Biometrika, 87:651–662.

Ueda, N. and Nakano, R. (1998). Deterministic annealing EM algorithm. Neural
Networks, 11:271–282.

van Dyk, D.A. and Meng, X.L. (2001). The art of data augmentation. Journal of
Computational and Graphical Statistics, 10:1–111.

van Dyk, D.A. and Tang, R. (2003). The one-step-late PXEM algorithm. Statistics
and Computing, 13:137–152.

van’t Veer, L.J., Dai, H., van de Vijver, M.J. et al. (2002). Gene expression profiling
predicts clinical outcome of breast cancer. Nature, 415:530–536.

Wei, G.C.G. and Tanner, M.A. (1990). A Monte Carlo implementation of the EM
algorithm and the poor man’s data augmentation algorithms. Journal of the
American Statistical Association, 85:699–704.

Wright, K. and Kennedy, W.J. (2000). An interval analysis approach to the EM
algorithm. Journal of Computational and Graphical Statistics, 9:303–318.

Wu, C.F.J. (1983). On the convergence properties of the EM algorithm. Annals of
Statistics, 11:95–103.

II.6Stochastic Optimization
James C. Spall

6.1 Introduction . 170

General Background . 170
Formal Problem Statement. 171
Contrast of Stochastic and Deterministic Optimization . 172
Some Principles of Stochastic Optimization . 174

6.2 Random Search . 176

Some General Properties of Direct Random Search . 176
Two Algorithms for Random Search . 177

6.3 Stochastic Approximation . 180

Introduction. 180
Finite-Difference SA . 181
Simultaneous Perturbation SA . 183

6.4 Genetic Algorithms . 186

Introduction. 186
Chromosome Coding and the Basic GA Operations . 188
The Core Genetic Algorithm . 191
Some Implementation Aspects . 191
Some Comments on the Theory for GAs . 192

6.5 Concluding Remarks . 194

170 James C. Spall

Stochastic optimization algorithms have been growing rapidly in popularity over
the last decade or two, with a number of methods now becoming “industry stan-
dard” approaches for solving challenging optimization problems. This paper pro-
vides a synopsis of some of the critical issues associated with stochastic optimiza-
tion and a gives a summary of several popular algorithms. Much more complete
discussions are available in the indicated references.

To help constrain the scope of this article, we restrict our attention to methods
using only measurements of the criterion (loss function). Hence, we do not cover
the many stochastic methods using information such as gradients of the loss
function. Section 6.1 discusses some general issues in stochastic optimization.
Section 6.2 discusses random search methods, which are simple and surprisingly
powerful in many applications. Section 6.3 discusses stochastic approximation,
which is a foundational approach in stochastic optimization. Section 6.4 discusses
a popular method that is based on connections to natural evolution – genetic
algorithms. Finally, Sect. 6.5 offers some concluding remarks.

Introduction6.1

General Background6.1.1

Stochastic optimization plays a significant role in the analysis, design, and oper-
ation of modern systems. Methods for stochastic optimization provide a means
of coping with inherent system noise and coping with models or systems that are
highly nonlinear, high dimensional, or otherwise inappropriate for classical deter-
ministic methods of optimization. Stochastic optimization algorithms have broad
application to problems in statistics (e.g., design of experiments and response sur-
face modeling), science, engineering, and business. Algorithms that employ some
form of stochastic optimization have become widely available. For example, many
modern data mining packages include methods such as simulated annealing and
genetic algorithms as tools for extracting patterns in data.

Specific applications include business (making short- and long-term investment
decisions in order to increase profit), aerospace engineering (running computer
simulations to refine the design of a missile or aircraft), medicine (designing
laboratory experiments to extract the maximum information about the efficacy of
a new drug), and traffic engineering (setting the timing for the signals in a traffic
network). There are, of course, many other applications.

Let us introduce some concepts and notation. Suppose Θ is the domain of
allowable values for a vector θ. The fundamental problem of interest is to find
the value(s) of a vector θ ∈ Θ that minimize a scalar-valued loss function L(θ).
Other common names for L are performance measure, objective function, measure-
of-effectiveness (MOE), fitness function (or negative fitness function), or criterion.
While this problem refers to minimizing a loss function, a maximization problem
(e.g., maximizing profit) can be trivially converted to a minimization problem by

Stochastic Optimization 171

changing the sign of the criterion. This paper focuses on the problem of mini-
mization. In some cases (i.e., differentiable L), the minimization problem can be
converted to a root-finding problem of finding θ such that g(θ) = ∂L(θ)|∂θ = 0.
Of course, this conversion must be done with care because such a root may not
correspond to a global minimum of L.

The three remaining subsections in this section define some basic quantities,
discuss somecontrasts between (classical) deterministic optimizationandstochas-
tic optimization, and discuss some basic properties and fundamental limits. This
section provides the foundation for interpreting the algorithm presentations in
Sects. 6.2 to 6.4. There are many other references that give general reviews of vari-
ous aspects of stochastic optimization. Among these are Arsham (1998), Fouskakis
and Draper (2002), Fu (2002), Gosavi (2003), Michalewicz and Fogel (2000), and
Spall (2003).

Formal Problem Statement 6.1.2

The problem of minimizing a loss function L = L(θ) can be formally represented
as finding the set:

Θ∗ ≡ arg min
θ∈Θ L(θ) = {θ∗ ∈ Θ : L(θ∗) ≤ L(θ) for all θ ∈ Θ} , (6.1)

where θ is the p-dimensional vector of parameters that are being adjusted and
Θ ⊆ Rp. The “arg minθ∈Θ” statement in (6.1) should be read as: Θ∗ is the set of
values θ = θ∗ (θ the “argument” in “arg min”) that minimize L(θ) subject to θ∗
satisfying the constraints represented in the set Θ. The elements θ∗ ∈ Θ∗ ⊆ Θ
are equivalent solutions in the sense that they yield identical values of the loss
function. The solution set Θ∗ in (6.1) may be a unique point, a countable (finite or
infinite) collection of points, or a set containing an uncountable number of points.

For ease of exposition, this paper generally focuses on continuous optimization
problems, although some of the methods may also be used in discrete problems. In
the continuous case, it is often assumed that L is a “smooth” (perhaps several times
differentiable) function of θ. Continuous problems arise frequently in applications
such as model fitting (parameter estimation), adaptive control, neural network
training, signal processing, and experimental design. Discrete optimization (or
combinatorial optimization) is a large subject unto itself (resource allocation, net-
work routing, policy planning, etc.).

A major issue in optimization is distinguishing between global and local optima.
All other factors being equal, one would always want a globally optimal solution to
the optimization problem (i.e., at least one θ∗ in the set of values Θ∗). In practice,
however, it may not be feasible to find a global solution and one must be satisfied
with obtaining a local solution. For example, L may be shaped such that there is
a clearly defined minimum point over a broad region of the domainΘ, while there
is a very narrow spike at a distant point. If the trough of this spike is lower than any
point in the broad region, the local optimal solution is better than any nearby θ,
but it is not be the best possible θ.

172 James C. Spall

It is usually only possible to ensure that an algorithm will approach a local
minimumwithafiniteamountof resourcesbeingput into theoptimizationprocess.
That is, it is easy to construct functions that will “fool” any known algorithm,
unless the algorithm is given explicit prior information about the location of the
global solution – certainly not a case of practical interest! However, since the
local minimum may still yield a significantly improved solution (relative to no
formal optimization process at all), the local minimum may be a fully acceptable
solution for the resources available (human time, money, computer time, etc.) to
be spent on the optimization. However, we discuss several algorithms (random
search, stochastic approximation, and genetic algorithms) that are sometimes able
to find global solutions from among multiple local solutions.

Contrast of Stochastic and Deterministic Optimization6.1.3

As a paper on stochastic optimization, the algorithms considered here apply where:
I. There is random noise in the measurements of L(θ)

– and|or –
II. There is a random (Monte Carlo) choice made in the search direction as the

algorithm iterates toward a solution.

In contrast, classical deterministic optimization assumes that perfect information
is available about the loss function (and derivatives, if relevant) and that this
information is used to determine the search direction in a deterministic manner
at every step of the algorithm. In many practical problems, such information is not
available. We discuss properties I and II below.

Let θ̂k be the generic notation for the estimate for θ at the kth iteration of
whatever algorithm is being considered, k = 0, 1, 2, … . Throughout this paper, the
specific mathematical form of θ̂k will change as the algorithm being considered
changes. The following notation will be used to represent noisy measurements of L
at a specific θ:

y(θ) ≡ L(θ) + ε(θ) , (6.2)

where ε represents the noise term. Note that the noise terms show dependence on θ.
This dependence is relevant for many applications. It indicates that the common
statistical assumption of independent, identically distributed (i.i.d.) noise does not
necessarily apply since θ will be changing as the search process proceeds.

Relative to property I, noise fundamentally alters the search and optimiza-
tion process because the algorithm is getting potentially misleading information
throughout the search process. For example, as described in Example 1.4 of Spall
(2003), consider the following loss function with a scalar θ: L(θ) = e−0.1θ sin(2θ).
If the domain for optimization is Θ = [0, 7], the (unique) minimum occurs at
θ∗ = 3π|4 ≈ 2.36, as shown in Fig. 6.1. Suppose that the analyst carrying out the
optimization is not able to calculate L(θ), obtaining instead only noisy measure-
ments y(θ) = L(θ) + ε, where the noises ε are i.i.d. with distribution N(0, 0.52)

Stochastic Optimization 173

(a normal distribution with mean zero and variance 0.52). The analyst uses the
y(θ) measurements in conjunction with an algorithm to attempt to find θ∗.

Consider the experiment depicted in Fig. 6.1 (with data generated via MATLAB).
Basedon the simplemethodof collectingonemeasurement at each incrementof 0.1
over the interval defined byΘ (including the endpoints 0 and 7), the analyst would
falsely conclude that the minimum is at θ = 5.9. As shown, this false minimum is
far from the actual θ∗.

Figure 6.1. Simple loss function L(θ) with indicated minimum θ∗. Note how noise causes the

algorithm to be deceived into sensing that the minimum is at the indicated false minimum

(Reprinted from Introduction to Stochastic Search and Optimization with permission of John

Wiley & Sons, Inc.)

Noise in the loss functionmeasurements arises inalmost anycasewherephysical
system measurements or computer simulations are used to approximate a steady-
state criterion. Some specific areas of relevance include real-time estimation and
control problems where data are collected “on the fly” as a system is operating
and problems where large-scale simulations are run as estimates of actual system
behavior.

Let us summarize two distinct problems involving noise in the loss function
measurements: target tracking and simulation-based optimization. In the tracking
problem there is a mean-squared error (MSE) criterion of the form

L(θ) = E
(∥∥actual output − desired output

∥∥2
)

.

The stochastic optimization algorithm uses the actual (observed) squared error
y(θ) = ‖·‖2, which is equivalent to an observation of L embedded in noise. In
the simulation problem, let L(θ) be the loss function representing some type of

174 James C. Spall

“average” performance for the system. A single run of a Monte Carlo simulation at
a specific value of θ provides a noisy measurement: y(θ) = L(θ)+ noise at θ. (Note
that it is rarely desirable to spend computational resources in averaging many
simulation runs at a given value of θ; in optimization, it is typically necessary to
consider many values of θ.) The above problems are described in more detail in
Examples 1.5 and 1.6 in Spall (2003).

Relative to the other defining property of stochastic optimization, property II
(i.e., randomness in the search direction), it is sometimes beneficial to deliberately
introduce randomness into the search process as a means of speeding convergence
and making the algorithm less sensitive to modeling errors. This injected (Monte
Carlo) randomness is usually created via computer-based pseudorandom number
generators. One of the roles of injected randomness in stochastic optimization is
to allow for “surprise” movements to unexplored areas of the search space that
may contain an unexpectedly good θ value. This is especially relevant in seeking
out a global optimum among multiple local solutions. Some algorithms that use
injected randomness are random search (Sect. 6.2), simultaneous perturbation
stochastic approximation (Sect. 6.3), and genetic algorithms (Sect. 6.4).

Some Principles of Stochastic Optimization6.1.4

The discussion above is intended to motivate some of the issues and challenges
in stochastic optimization. Let us now summarize some important issues for the
implementation and interpretation of results in stochastic optimization.

The first issue we mention is the fundamental limits in optimization with only
noisy information about the L function. Foremost, perhaps, is that the statistical
error of the information fed into the algorithm – and the resulting error of the
output of the algorithm – can only be reduced by incurring a significant cost in
number of function evaluations. For the simple case of independent noise, the
error decreases at the rate 1|

√
N, where N represents the number of L measure-

ments fed into the algorithm. This is a classical result in statistics, indicating
that a 25-fold increase in function evaluations reduces the error by a factor of
five.

A further limit for multivariate (p > 1) optimization is that the volume of the
search region generally grows rapidly with dimension. This implies that one must
usually exploit problem structure to have a hope of getting a reasonable solution
in a high-dimensional problem.

All practical problems involve at least some restrictions on θ, although in some
applications it may be possible to effectively ignore the constraints. Constraints
can be encountered in many different ways, as motivated by the specific appli-
cation. Note that the constraint set Θ does not necessarily correspond to the set
of allowable values for θ in the search since some problems allow for the “tri-
al” values of the search to be outside the set of allowable final estimates. Con-
straints are usually handled in practice on an ad hoc basis, especially tuned
to the problem at hand. There are few general, practical methods that apply
broadly in stochastic optimization. Michalewicz and Fogel (2000, Chap. 9), for

Stochastic Optimization 175

example, discuss some of the practical methods by which constraints are han-
dled in evolutionary computation. Similar methods apply in other stochastic
algorithms.

In general search and optimization, it is very difficult (perhaps impossible) to
develop automated methods for indicating when the algorithm is close enough
to the solution that it can be stopped. Without prior knowledge, there is al-
ways the possibility that θ∗ could lie in some unexplored region of the search
space. This applies even when the functions involved are relatively benign; see
Solis and Wets (1981) for mention of this in the context of twice-differentiable
convex L. Difficulties are compounded when the function measurements include
noise.

It is quitenormal for the environment to changeover time. Hence, the solution to
a problem now may not be the best (or even a good) solution to the corresponding
problem in the future. In some search and optimization problems, the algorithm
will be explicitly designed to adapt to a changing environment and automatically
provide a new estimate at the optimal value (e.g., a control system). In other cases,
one needs to restart the process and find a new solution. In either sense, the
problem solving may never stop!

In reading or contributing to the literature on stochastic optimization, it is
important to recognize the limits of numerical comparisons by Monte Carlo. Monte
Carlo studies canbea soundscientific methodof gaining insight andcanbeauseful
supplement to theory, much of which is based on asymptotic (infinite sample)
analysis. In fact, it is especially popular in certain branches of optimization to
create “test suites” of problems, where various algorithms compete against each
other. A danger arises, however, in making broad claims about the performance
of individual algorithms based on the results of numerical studies. Performance
can vary tremendously under even small changes in the form of the functions
involved or the coefficient settings within the algorithms themselves. One must be
careful about drawing conclusions beyond those directly supported by the specific
numerical studies performed. For purposes of drawing objective conclusions about
the relative performance of algorithms, it is preferable to use both theory and
numerical studies.

Some real systems have one (unique) globally “best” operating point (θ∗) in the
domain Θ while others have multiple global solutions (in either case, of course,
there could be many locally optimal solutions). To avoid excessively cumbersome
discussion of algorithms and supporting implementation issues and theory, we
will often refer to “the” solution θ∗ (versus “a” solution θ∗). In practice, an analyst
may be quite satisfied to reach a solution at or close to any one θ∗ ∈ Θ∗.

The so-called no free lunch (NFL) theorems provide a formal basis for the
intuitively appealing idea that there is a fundamental tradeoff between algorithm
efficiency and algorithm robustness (reliability and stability in a broad range of
problems). In essence, algorithms that are very efficient on one type of problem are
not automatically efficient on problems of a different type. Hence, there can never
be a universally best search algorithm just as there is rarely (never?) a universally
best solution to any general problem of society. Wolpert and Macready (1997)

176 James C. Spall

provided a general formal structure for the NFL theorems, although the general
ideas had been around for a long time prior to their paper (Wolpert and Macready
were the ones to coin the expression “no free lunch” in this search and optimization
context). The NFL theorems are established for discrete optimization with a finite
(but arbitrarily large) number of options. However, their applicability includes
most practical continuous problems because virtually all optimization is carried
out on 32- or 64-bit digital computers. The theorems apply to the cases of both
noise-free and noisy loss measurements. NFL states, in essence, that an algorithm
that is effective on one class of problems is guaranteed to be ineffective on another
class. Spall (2003, Sects. 1.2.2 and 10.6) provides more-detailed discussion on the
basis and implications of NFL.

We are now in a position to discuss several popular stochastic optimization
methods. The summaries here are just that – summaries. Much more complete
discussions are available in the indicated references or in Spall (2003). We let θ̂k

represent the estimate for θ at the kth iterationof analgorithmunder consideration.
Section 6.2 discusses random search methods, which are simple and surprisingly
powerful in many applications. Section 6.3 discusses stochastic approximation and
Sect. 6.4 discusses the popular genetic algorithms. Because of the relative brevity
of this review, there are many methods of stochastic optimization not covered
here, including simulated annealing, stochastic programming, evolutionary com-
putation other than genetic algorithms, temporal difference methods, and so on.
Readers with an interest in one of those may consult the references listed at the
end of Sect. 6.1.1.

Random Search6.2

This section describes some simple methods based on the notion of randomly
searching over the domain of interest. Section 6.2.1 gives a short discussion of
general issues in direct random search methods. The algorithms discussed in
Sect. 6.2.2 represent two versions of random search.

Some General Properties of Direct Random Search6.2.1

Consider the problem of trying to find the optimal θ ∈ Θ based on noise-free mea-
surements of L = L(θ). Random search methods are perhaps the simplest methods
of stochastic optimization in such a setting and can be quite effective in many
problems. Their relative simplicity is an appealing feature to both practitioners
and theoreticians. These direct random search methods have a number of advan-
tages relative to most other search methods. The advantages include relative ease
of coding in software, the need to only obtain L measurements (versus gradients or
other ancillary information), reasonable computational efficiency (especially for
those direct search algorithms that make use of some local information in their
search), broad applicability to non-trivial loss functions and|or to θ that may be

Stochastic Optimization 177

continuous, discrete, or some hybrid form, and a strong theoretical foundation.
Some of these attributes were mentioned in the forward-looking paper of Karnopp
(1963). A good recent survey of random search and related methods is Kolda et al.
(2003).

Two Algorithms for Random Search 6.2.2

This section describes two direct random search techniques. These two algorithms
represent only a tiny fraction of available methods. Solis and Wets (1981) and
Zhigljavsky (1991) are among many references discussing these and other random
search methods. The two algorithms here are intended to convey the essential
flavor of most available direct random search algorithms. With the exception of
some discussion at the end of the subsection, the methods here assume perfect
(noise-free) values of L.

The first method we discuss is “blind random search.” This is the simplest
random search method, where the current sampling for θ does not take into
account the previous samples. That is, this blind search approach does not adapt
the current sampling strategy to information that has been garnered in the search
process. The approach can be implemented in batch (non-recursive) form simply
by laying down a number of points in Θ and taking the value of θ yielding the
lowest L value as our estimate of the optimum. The approach can be conveniently
implemented in recursive form as we illustrate below.

Thesimplest setting for conducting the randomsamplingofnew(candidate)val-
ues of θ is whenΘ is a hypercube and we are using uniformly generated values of θ.
The uniform distribution is continuous or discrete for the elements of θ depending
on thedefinitions for these elements. In fact, the blind search form of the algorithm
is unique among all general stochastic optimization algorithms in that it is the
only one without any adjustable algorithm coefficients that need to be “tuned” to
the problem at hand. (Of course, a de facto tuning decision has been made by
choosing the uniform distribution for sampling.)

For a domain Θ that is not a hypercube or for other sampling distributions,
one may use transformations, rejection methods, or Markov chain Monte Carlo
to generate the sample θ values (see, e.g., Gentle, 2003). For example, if Θ is an
irregular shape, one can generate a sample on a hypercube superset containing Θ
and then reject the sample point if it lies outside of Θ.

The steps for a recursive implementation of blind random search are given
below. This method applies when θ has continuous, discrete, or hybrid elements.

Blind Random Search
Step 0 (Initialization) Choose an initial value of θ, say θ̂0 ∈ Θ, either randomly or

deterministically. (If random, usually a uniform distribution on Θ is used.)
Calculate L(θ̂0). Set k = 0.

Step 1 Generate a new independent value θnew(k + 1) ∈ Θ, according to the chosen
probability distribution. If L(θnew(k + 1)) < L(θ̂k), set θ̂k+1 = θnew(k + 1).
Else, take θ̂k+1 = θ̂k.

178 James C. Spall

Step 2 Stop if the maximum number of L evaluations has been reached or the user is
otherwise satisfied with the current estimate for θ via appropriate stopping
criteria; else, return to Step 1 with the new k set to the former k + 1.

The above algorithm converges almost surely (a.s.) to θ∗ under very general
conditions (see, e.g., Spall, 2003, pp. 40–41). Of course, convergence alone is an
incomplete indication of the performance of the algorithm. It is also of interest
to examine the rate of convergence. The rate is intended to tell the analyst how
close θ̂k is likely to be to θ∗ for a given cost of search. While blind random search
is a reasonable algorithm when θ is low dimensional, it can be shown that the
method is generally a very slow algorithm for even moderately dimensioned θ (see,
e.g., Spall, 2003, 42–43). This is a direct consequence of the exponential increase
in the size of the search space as p increases. As an illustration, Spall (2003,
Example 2.2) considers a case where Θ = [0, 1]p (the p-dimensional hypercube
with minimum and maximum values of 0 and 1 for each component of θ) and
where one wishes to guarantee with probability 0.90 that each element of θ is
within 0.04 units of the optimal value. As p increases from one to ten, there is
an approximate 1010-fold increase in the number of loss function evaluations
required.

Blind search is the simplest random search in that the sampling generating
the new θ value does not take account of where the previous estimates of θ have
been. The random search algorithm below is slightly more sophisticated in that the
random sampling is a function of the position of the current best estimate for θ.
In this way, the search is more localized in the neighborhood of that estimate,
allowing for a better exploitation of information that has previously been obtained
about the shape of the loss function.

The localized algorithm is presented below. This algorithm was described in
Matyas (1965). Note that the use of the term “localized” here pertains to the
sampling strategy and does not imply that the algorithm is only useful for local
(versusglobal)optimization in thesensedescribed inSect. 6.1. In fact, thealgorithm
has global convergence properties as described below. As with blind search, the
algorithm may be used for continuous or discrete problems.

Localized Random Search
Step 0 (Initialization) Pick an initial guess θ̂0 ∈ Θ, either randomly or with prior

information. Set k = 0.
Step 1 Generate an independent random vector dk ∈ Rp and add it to the current

θ value, θ̂k. Check if θ̂k + dk ∈ Θ. If θ̂k + dk |∈ Θ, generate a new dk and
repeat or, alternatively, move θ̂k + dk to the nearest valid point withinΘ. Let
θnew(k +1) equal θ̂k + dk ∈ Θ or the aforementioned nearest valid point inΘ.

Step 2 If L(θnew(k + 1)) < L(θ̂k), set θ̂k+1 = θnew(k + 1); else, set θ̂k+1 = θ̂k.
Step 3 Stop if the maximum number of L evaluations has been reached or the user is

otherwise satisfied with the current estimate for θ via appropriate stopping
criteria; else, return to Step 1 with the new k set to the former k + 1.

Stochastic Optimization 179

For continuous problems, Matyas (1965) and others have used the (multivari-
ate) normal distribution for generating dk. However, the user is free to set the
distribution of the deviation vector dk. The distribution should have mean zero
and each component should have a variation (e.g., standard deviation) consistent
with the magnitudes of the corresponding θ elements. This allows the algorithm
to assign roughly equal weight to each of the components of θ as it moves through
the search space. Although not formally allowed in the convergence theory, it is
often advantageous in practice if the variability in dk is reduced as k increases. This
allows one to focus the search more tightly as evidence is accrued on the location
of the solution (as expressed by the location of our current estimate θ̂k).

The convergence theory for the localized algorithms tends to be more restrictive
than the theory for blind search. Solis and Wets (1981) provide a theorem for
global convergence of localized algorithms, but the theorem conditions may not be
verifiable in practice. An earlier theorem from Matyas (1965) (with proof corrected
in Baba et al., 1977) provides for global convergence of the localized search above
if L is a continuous function. The convergence is in the “in probability” sense. The
theorem allows for more than one global minimum to exist in Θ. Therefore, in
general, the result provides no guarantee of θ̂k ever settling near any one value θ∗.
We present the theorem statement below.

Convergence Theorem for Localized Search. Let Θ∗ represent the set of global
minima for L (see Sect. 6.1). Suppose that L is continuous on a bounded domainΘ
and that if θ̂k + dk |∈ Θ at a given iteration, a new dk is randomly generated. For
any η > 0, let Rη =

⋃
θ∗∈Θ∗

{
θ : |L(θ) − L(θ∗)| < η

}
. Then, for dk having an i.i.d.

N(0, Ip) distribution, limk→∞ P(θ̂k ∈ Rη) = 1.
The above algorithm might be considered the most näıve of the localized random
search algorithms. More sophisticated approaches are also easy to implement. For
instance, if a search in one direction increases L, then it is likely to be beneficial
to move in the opposite direction. Further, successive iterations in a direction
that tend to consistently reduce L should encourage further iterations in the same
direction. Many algorithms exploiting these simple properties exist (e.g., Solis and
Wets, 1981, and Zhigljavsky, 1991).

In spite of its simplicity, the localized search algorithm is surprisingly effective
in a wide range of problems. Several demonstrations are given in Sects. 2.2.3 and 2.3
in Spall (2003).

The random search algorithms above are usually based on perfect (noise-free)
measurements of the loss function. This is generally considered a critical part
of such algorithms (Pflug, 1996, p. 25). In contrast to the noise-free case, random
search methods with noisy loss evaluations of the form y(θ) = L(θ)+ε(θ) generally
do not formally converge. However, there are means by which the random search
techniques can be modified to accommodate noisy measurements, at least on
a heuristic basis.

Some of the limited formal convergence theory for random search as applied
to the noisy measurement case includes Yakowitz and Fisher (1973, Sect. 4) and

180 James C. Spall

Zhigljavsky (1991, Chap. 3). Spall (2003, Sect. 2.3) discusses some practical methods
for coping with noise, including simple averaging of the noisy loss function eval-
uations y(θ) at each value of θ generated in the search process and a modification
of the algorithm’s key decision criterion (step 1 of blind random search and step 2
of localized random search) to build in some robustness to the noise. However,
the averaging method can be costly since the error decreases only at the rate of
1|
√

N when averaging N function evaluations with independent noise. Likewise,
the altered threshold may be costly by rejecting too many changes in θ due to the
conservative nature of the modified criterion. The presence of noise in the loss
evaluations makes the optimization problem so much more challenging that there
is little choice but to accept these penalties if one wants to use a simple random
search. We will see in the next section that stochastic approximation tends to be
more adept at coping with noise at the price of a more restrictive problem setting
than the noise-free convergence theorem above.

Stochastic Approximation6.3

Introduction6.3.1

Stochastic approximation (SA) is a cornerstoneof stochastic optimization.Robbins
and Monro (1951) introduced SA as a general root-finding method when only noisy
measurements of the underlying function are available. Let us now discuss some
aspects of SA as applied to the more specific problem of root-finding in the context
of optimization. With a differentiable loss function L(θ), recall the familiar set of
p equations and p unknowns for use in finding a minimum θ∗:

g(θ) =
∂L

∂θ
= 0 . (6.3)

(Of course, side conditions are required to guarantee that a root of (6.3) is a mini-
mum, not a maximum or saddlepoint.) Note that (6.3) is nominally only directed
at local optimization problems, although some extensions to global optimization
are possible, as briefly discussed in Sect. 6.3.3. There are a number of approaches
for solving the problem represented by (6.3) when direct (usually noisy) measure-
ments of the gradient g are available. These typically go by the name of stochastic
gradient methods (e.g., Spall, 2003, Chap. 5). In contrast to the stochastic gradient
approach – but consistent with the emphasis in the random search and genetic
algorithms (Sects. 6.2 and 6.4 here) – let us focus on SA when only measurements
of L are available. However, unlike the emphasis in random search and genetic
algorithms, we consider noisy measurements of L.

To motivate the general SA approach, first recall the familiar form for the
unconstrained deterministic steepest descent algorithm for solving (6.3):

θ̂k+1 = θ̂k − akg(θ̂k) ,

Stochastic Optimization 181

where the gain (or step size) satisfies ak > 0 (see, e.g., Bazaraa et al., 1993,
pp. 300–308 or any other book on mathematical programming; Spall, 2003,
Sect. 1.4). This algorithm requires exact knowledge of g. Steepest descent will
converge to θ∗ under certain fairly general conditions. (A notable variation of
steepest descent is the Newton–Raphson algorithm [sometimes called Newton’s
method; e.g., Bazaraa et al., 1993, pp. 308–312], which has the form θ̂k+1 = θ̂k −
akH(θ̂k)−1g(θ̂k), where H(·) is the Hessian (second derivative) matrix of L. Under
more restrictive conditions, the Newton–Raphson algorithm has a much faster
rate of convergence to θ∗ than steepest descent. However, with its requirement for
a Hessian matrix, it is generally more challenging to implement. An SA version of
Newton–Raphson is discussed briefly at the end of Sect. 6.3.3.)

Unlikewith steepest descent, it is assumedhere that wehavenodirect knowledge
of g. The recursive procedure of interest is in the general SA form

θ̂k+1 = θ̂k − akĝk(θ̂k) , (6.4)

where ĝk(θ̂k) is the estimate of g at the iterate θ̂k based on measurements of the
loss function. Hence, (6.4) is analogous to the steepest descent algorithm, with
the gradient estimate ĝk(θ) replacing the direct gradient g at θ = θ̂k. The gain
ak > 0 here also acts in a way similar to its role in the steepest descent form. Under
appropriate conditions, the iteration in (6.4) converges to θ∗ in some stochastic
sense (usually almost surely, a.s.). (There are constrained forms of SA, but we do
not discuss those here; see, e.g., Spall, 2003, Chaps. 4–7).

Sections6.3.2 and6.3.3discuss twoSAmethods for carryingout theoptimization
task using noisy measurements of the loss function. Section 6.3.2 discusses the
traditional finite-difference SA method and Sect. 6.3.3 discusses the more recent
simultaneous perturbation method.

Finite-Difference SA 6.3.2

The essential part of (6.4) is the gradient approximation ĝk(θ̂k). The tradition-
al means of forming the approximation is the finite-difference method. Expres-
sion (6.4) with this approximation represents the finite-difference SA (FDSA)
algorithm. One-sided gradient approximations involve measurements y(θ̂k) and
y(θ̂k + perturbation), while two-sided approximations involve measurements of
the form y(θ̂k ±perturbation). The two-sided FD approximation for use with (6.4)
is

ĝk(θ̂k) =

y(θ̂k + ckξ1) − y(θ̂k − ckξ1)

2ck
...

y(θ̂k + ckξp) − y(θ̂k − ckξp)

2ck

, (6.5)

where ξi denotes a vector with a 1 in the ith place and 0’s elsewhere and ck > 0
defines the difference magnitude. The pair {ak, ck} are the gains (or gain sequences)

182 James C. Spall

for the FDSA algorithm. The two-sided form in (6.5) is the obvious multivariate
extension of the scalar two-sided form in Kiefer and Wolfowitz (1952). The initial
multivariate method in Blum (1954) used a one-sided approximation.

It is of fundamental importance to determine conditions such that θ̂k as shown
in (6.4) and (6.5) converges to θ∗ in some appropriate stochastic sense. The conver-
gence theory for the FDSA algorithm is similar to “standard” convergence theory
for the root-finding SA algorithm of Robbins and Monro (1951). Additional difficul-
ties, however, arise due to a bias in ĝk(θ̂k) as an estimator of g(θ̂k). That is, standard
conditions for convergence of SA require unbiased estimates of g(·) at all k. On the
other hand, ĝk(θ̂k), as shown in (6.5), is a biased estimator, with the bias having
a magnitude of order c2

k . We will not present the details of the convergence theory
here, as it is available in many other references (e.g., Fabian, 1971; Kushner and Yin,
1997, Sects. 5.3, 8.3, and 10.3; Ruppert, 1991; Spall, 2003, Chap. 6). However, let us
note that the standard conditions on the gain sequences are: ak > 0, ck > 0, ak → 0,
ck → 0,

∑∞
k=0 ak = ∞, and

∑∞
k=0 a2

k|c
2
k < ∞. The choice of these gain sequences is

critical to the performance of the method. Common forms for the sequences are:

ak =
a

(k + 1 + A)α
and ck =

c

(k + 1)γ
,

where the coefficients a, c, α, and γ are strictly positive and A ≥ 0. The user must
choose these coefficients, a process usually based on a combination of the the-
oretical restrictions above, trial-and-error numerical experimentation, and basic
problem knowledge. In some cases, it is possible to partially automate the selection
of the gains (see, e.g., Spall, 2003, Sect. 6.6).

Let us summarize a numerical example based on the following p = 10 loss
function:

L(θ) = θTBTBθ + 0.1
10∑

i=1

(Bθ)3
i + 0.01

10∑

i=1

(Bθ)4
i ,

where (·)i represents the ith component of the argument vector Bθ, and B is such
that 10 B is an upper triangular matrix of 1’s. The minimum occurs at θ∗ = 0 with
L(θ∗) = 0; all runs are initialized at θ̂0 = [1, 1, …, 1]T (so L(θ̂0) = 4.178). Suppose
that the measurement noise ε is independent, identically distributed (i.i.d.) N(0, 1).
All iterates θ̂k are constrained to be inΘ = [−5, 5]10. If an iterate falls outside ofΘ,
each individual component of the candidate θ that violates the interval [−5, 5] is
mapped to it nearest endpoint ±5. The subsequent gradient estimate is formed
at the modified (valid) θ value. (The perturbed values θ̂k ± ckξi are allowed to go
outside of Θ.)

Using n = 1000 loss measurements per run, we compare FDSA with the localized
random search method of Sect. 6.2. Based on principles for gain selection in Spall
(2003, Sect. 6.6) together with some limited trial-and-error experimentation, we
chose a = 0.5, c = 1, A = 5, α = 0.602, and γ = 0.101 for FDSA and an average
of 20 loss measurements per iteration with normally distributed perturbations
having distribution N(0, 0.52I10) for the random search method.

Stochastic Optimization 183

Figure 6.2 summarizes the results. Each curve represents the sample mean of
50 independent replications. An individual replication of one of the two algo-
rithms has much more variation than the corresponding smoothed curve in the
figure.

Figure 6.2. Comparison of FDSA and localized random search. Each curve represents sample mean of

50 independent replications

Figure 6.2 shows that both algorithms produce an overall reduction in the
(true) loss function as the number of measurements approach 1000. The curves
illustrate that FDSA outperforms random search in this case. To make the com-
parison fair, attempts were made to tune each algorithm to provide approxi-
mately the best performance possible. Of course, one must be careful about
using this example to infer that such a result will hold in other problems as
well.

Simultaneous Perturbation SA 6.3.3

The FDSA algorithm of Sect. 6.3.2 is a standard SA method for carrying out opti-
mization with noisy measurement of the loss function. However, as the dimension p
grows large, the number of loss measurements required may become prohibitive.
That is, each two-sided gradient approximation requires 2p loss measurements.
More recently, the simultaneous perturbation SA (SPSA) method was introduced,
requiring only two measurements per iteration to form a gradient approximation
independent of the dimension p. This provides the potential for a large savings in
the overall cost of optimization.

Beginning with the generic SA form in (6.4), we now present the SP form of the
gradient approximation. In this form, all elements of θ̂k are randomly perturbed

184 James C. Spall

together to obtain two loss measurements y(·). For the two-sided SP gradient
approximation, this leads to

ĝk(θ̂k) =

y(θ̂k + ck∆k) − y(θ̂k − ck∆k)

2ck∆k1
...

y(θ̂k + ck∆k) − y(θ̂k − ck∆k)

2ck∆kp

=
y(θ̂k + ck∆k) − y(θ̂k − ck∆k)

2ck

[
∆−1

k1 ,∆−1
k2 , … ,∆−1

kp

]T
, (6.6)

where the mean-zero p-dimensional random perturbation vector, ∆k = [∆k1,∆k2,
… ,∆kp]T , has a user-specified distribution satisfying certain conditions and ck

is a positive scalar (as with FDSA). Because the numerator is the same in all
p components of ĝk(θ̂k), the number of loss measurements needed to estimate the
gradient in SPSA is two, regardless of the dimension p.

Relative to FDSA, the p-fold measurement savings per iteration, of course, pro-
vides only the potential for SPSA to achieve large savings in the total number of
measurements required to estimate θ when p is large. This potential is realized if the
number of iterations required for effective convergence to an optimum θ∗ does not
increase in a way to cancel the measurement savings per gradient approximation.
One can use asymptotic distribution theory to address this issue. In particular,
both FDSA and SPSA are known to be asymptotically normally distributed under
very similar conditions. One can use this asymptotic distribution result to charac-
terize the mean-squared error E

(∥∥θ̂k − θ∗
∥∥2
)

for the two algorithms for large k.
Fortunately, under fairly broad conditions, the p-fold savings at each iteration is
preserved across iterations. In particular, based on asymptotic considerations:

Under reasonably general conditions (see Spall, 1992, or Spall, 2003, Chap. 7),
the SPSA and FDSA algorithms achieve the same level of statistical accuracy
for a given number of iterations even though SPSA uses only 1|p times the
number of function evaluations of FDSA (since each gradient approximation
uses only 1|p the number of function evaluations).

The SPSA Web site (www.jhuapl.edu|SPSA) includes many references on the
theory and application of SPSA. On this Web site, one can find many accounts
of numerical studies that are consistent with the efficiency statement above. (Of
course, given that the statement is based on asymptotic arguments and associ-
ated regularity conditions, one should not assume that the result always holds.)
In addition, there are references describing many applications. These include
queuing systems, pattern recognition, industrial quality improvement, aircraft
design, simulation-based optimization, bioprocess control, neural network train-

Stochastic Optimization 185

ing, chemical process control, fault detection, human-machine interaction, sensor
placement and configuration, and vehicle traffic management.

We will not present the formal conditions for convergence and asymptotic
normalityofSPSA,as suchconditionsareavailable inmanyreferences (e.g.,Dippon
and Renz, 1997; Gerencsér, 1999; Spall, 1992, 2003, Chap. 7). These conditions are
essentially identical to the standard conditions for convergence of SA algorithms,
with the exception of the additional conditions on the user-generated perturbation
vector ∆k.

The choice of the distribution for generating the ∆k is important to the perfor-
mance of the algorithm. The standard conditions for the elements ∆ki of ∆k are
that the {∆ki} are independent for all k, i, identically distributed for all i at each k,
symmetrically distributed about zero and uniformly bounded in magnitude for
all k. In addition, there is an important inverse moments condition:

E

(∣∣∣∣
1

∆ki

∣∣∣∣

2+2τ
)

≤ C

for some τ > 0 and C > 0. The role of this condition is to control the variation
of the elements of ĝk(θ̂k) (which have ∆ki in the denominator). One simple and
popular distribution that satisfies the inverse moments condition is the symmetric
Bernoulli ±1 distribution. (In fact, as discussed in Spall, 2003, Sect. 7.7, this
distribution can be shown to be optimal under general conditions when using
asymptotic considerations.) Two common mean-zero distributions that do not
satisfy the inverse moments condition are symmetric uniform and normal with
mean zero. The failure of both of these distributions is a consequence of the amount
of probability mass near zero. Exercise 7.3 in Spall (2003) illustrates the dramatic
performance degradation that can occur through using distributions that violate
the inverse moments condition.

As with any real-world implementation of stochastic optimization, there are
important practical considerations when using SPSA. One is to attempt to define θ
so that the magnitudes of the θ elements are similar to one another. This desire is
apparent by noting that the magnitudes of all components in the perturbations ck∆k

are identical in the case where identical Bernoulli distributions are used. Although
it is not always possible to choose the definition of the elements in θ, in most
cases an analyst will have the flexibility to specify the units for θ to ensure similar
magnitudes. Another important consideration is the choice of the gains ak, ck. The
principles described for FDSA above apply to SPSA as well. Section 7.5 of Spall
(2003) provides additional practical guidance.

There have been a number of important extensions of the basic SPSA method
represented by the combination of (6.4) and (6.6). Three such extensions are to
the problem of global (versus local) optimization, to discrete (versus continuous)
problems, and to include second-order-type information (Hessian matrix) with
the aim of creating a stochastic analogue to the deterministic Newton–Raphson
method.

186 James C. Spall

The use of SPSA for global minimization among multiple local minima is dis-
cussed in Maryak and Chin (2001). One of their approaches relies on injecting
Monte Carlo noise in the right-hand side of the basic SPSA updating step in (6.4).
This approach is a common way of converting SA algorithms to global optimiz-
ers through the additional “bounce” introduced into the algorithm (Yin, 1999).
Maryak and Chin (2001) also show that basic SPSA without injected noise (i.e.,
(6.4) and (6.6) without modification) may, under certain conditions, be a global
optimizer. Formal justification for this result follows because the random error in
the SP gradient approximation acts in a way that is statistically equivalent to the
injected noise mentioned above.

Discrete optimization problems (where θ may take on discrete or combined
discrete|continuous values) are discussed in Gerencsér et al. (1999). Discrete SPSA
relies on a fixed-gain (constant ak and ck) version of the standard SPSA method.
The parameter estimates produced are constrained to lie on a discrete-valued
grid. Although gradients do not exist in this setting, the approximation in (6.6)
(appropriately modified) is still useful as an efficient measure of slope information.

Finally, using the simultaneous perturbation idea, it is possible to construct
a simple method for estimating the Hessian (or Jacobian) matrix of L while, con-
currently, estimating the primary parameters of interest (θ). This adaptive SPSA
(ASP) approach produces a stochastic analogue to the deterministic Newton–
Raphson algorithm (e.g., Bazaraa et al., 1993, pp. 308–312), leading to a recursion
that is optimal or near-optimal in its rate of convergence and asymptotic error. The
approach applies in both the gradient-free setting emphasized in this section and
in the root-finding|stochastic gradient-based (Robbins–Monro) setting reviewed
in Spall (2003, Chaps. 4 and 5). Like the standard SPSA algorithm, the ASP al-
gorithm requires only a small number of loss function (or gradient, if relevant)
measurementsper iteration– independent of theproblemdimension– toadaptive-
ly estimate the Hessian and parameters of primary interest. Further information
is available at Spall (2000) or Spall (2003, Sect. 7.8).

Genetic Algorithms6.4

Introduction6.4.1

Genetic algorithms (GAs) represent a popular approach to stochastic optimization,
especially as relates to the global optimization problem of finding the best solution
among multiple local mimima. (GAs may be used in general search problems that
are not directly represented as stochastic optimization problems, but we focus
here on their use in optimization.) GAs represent a special case of the more general
class of evolutionary computation algorithms (which also includes methods such
as evolutionary programming and evolution strategies). The GA applies when the
elements of θ are real-, discrete-, or complex-valued. As suggested by the name, the
GA is based loosely on principles of natural evolution and survival of the fittest.

Stochastic Optimization 187

In fact, in GA terminology, an equivalent maximization criterion, such as −L(θ)
(or its analogue based on a bit-string form of θ), is often referred to as the fitness
function to emphasize the evolutionary concept of the fittest of a species.

A fundamental difference between GAs and the random search and SA al-
gorithms considered in Sects. 6.2 and 6.3 is that GAs work with a population
of candidate solutions to the problem. The previous algorithms worked with one
solution and moved toward the optimum by updating this one estimate. GAs simul-
taneously consider multiple candidate solutions to the problem of minimizing L
and iterate by moving this population of solutions toward a global optimum. The
terms generation and iteration are used interchangeably to describe the process
of transforming one population of solutions to another. Figure 6.3 illustrates the
successful operations of a GA for a population of size 12 with problem dimension
p = 2. In this conceptual illustration, the population of solutions eventually come
together at the global optimum.

Figure 6.3. Minimization of multimodal loss function. Successful operations of a GA with

a population of 12 candidate solutions clustering around the global minimum after some number of

iterations (generations) (Reprinted from Introduction to Stochastic Search and Optimization with

permission of John Wiley & Sons, Inc.)

The use of a population versus a single solution affects in a basic way the
range of practical problems that can be considered. In particular, GAs tend to be
best suited to problems where the loss function evaluations are computer-based
calculations such as complex function evaluations or simulations. This contrasts
with the single-solution approaches discussed earlier, where the loss function
evaluations may represent computer-based calculations or physical experiments.
Population-based approaches are not generally feasible when working with real-
time physical experiments. Implementing a GA with physical experiments requires
that either there be multiple identical experimental setups (parallel processing)
or that the single experimental apparatus be set to the same state prior to each
population member’s loss evaluation (serial processing). These situations do not
occur often in practice.

Specific values of θ in the population are referred to as chromosomes. The cen-
tral idea in a GA is to move a set (population) of chromosomes from an initial
collection of values to a point where the fitness function is optimized. We let N
denote the population size (number of chromosomes in the population). Most
of the early work in the field came from those in the fields of computer science
and artificial intelligence. More recently, interest has extended to essentially all

188 James C. Spall

branches of business, engineering, and science where search and optimization are
of interest. The widespread interest in GAs appears to be due to the success in
solving many difficult optimization problems. Unfortunately, to an extent greater
than with other methods, some interest appears also to be due to a regrettable
amount of “salesmanship” and exaggerated claims. (For example, in a recent soft-
ware advertisement, the claim is made that the software “… uses GAs to solve
any optimization problem.” Such statements are provably false.) While GAs are
important tools within stochastic optimization, there is no formal evidence of con-
sistently superior performance – relative to other appropriate types of stochastic
algorithms – in any broad, identifiable class of problems.

Let us now give a very brief historical account. The reader is directed to Goldberg
(1989, Chap. 4), Mitchell (1996, Chap. 1), Michalewicz (1996, pp. 1–10), Fogel (2000,
Chap. 3), and Spall (2003, Sect. 9.2) for more complete historical discussions.
There had been some success in creating mathematical analogues of biological
evolution for purposes of search and optimization since at least the 1950 s (e.g.,
Box, 1957). The cornerstones of modern evolutionary computation – evolution
strategies, evolutionary programming, and GAs – were developed independently
of each other in the 1960 s and 1970 s. John Holland at the University of Michigan
published the seminal monograph Adaptation in Natural and Artificial Systems
(Holland, 1975). There was subsequently a sprinkle of publications, leading to the
first full-fledged textbook Goldberg (1989). Activity in GAs grew rapidly beginning
in the mid-1980 s, roughly coinciding with resurgent activity in other artificial
intelligence-type areas such as neural networks and fuzzy logic. There are now
many conferences and books in the area of evolutionary computation (especially
GAs), together with countless other publications.

Chromosome Coding and the Basic GA Operations6.4.2

This section summarizes some aspects of the encoding process for the popula-
tion chromosomes and discusses the selection, elitism, crossover, and mutation
operations. These operations are combined to produce the steps of the GA.

An essential aspect of GAs is the encoding of the N values of θ appearing in
the population. This encoding is critical to the GA operations and the associated
decoding to return to the natural problem space in θ. Standard binary (0, 1) bit
strings have traditionally been the most common encoding method, but other
methods include gray coding (which also uses (0, 1) strings, but differs in the way
the bits are arranged) and basic computer-based floating-point representation
of the real numbers in θ. This 10-character coding is often referred to as real-
number coding since it operates as if working with θ directly. Based largely on
successful numerical implementations, this natural representation of θ has grown
more popular over time. Details and further references on the above and other
coding schemes are given in Michalewicz (1996, Chap. 5), Mitchell (1996, Sects. 5.2
and 5.3), Fogel (2000, Sects. 3.5 and 4.3), and Spall (2003, Sect. 9.3).

Let us now describe the basic operations mentioned above. For consistency
with standard GA terminology, let us assume that L(θ) has been transformed

Stochastic Optimization 189

to a fitness function with higher values being better. A common transformation
is to simply set the fitness function to −L(θ) + C, where C ≥ 0 is a constant
that ensures that the fitness function is nonnegative on Θ (nonnegativity is only
required in some GA implementations). Hence, the operations below are described
for a maximization problem. It is also assumed here that the fitness evaluations are
noise-free. Unless otherwise noted, the operations below apply with any coding
scheme for the chromosomes.

selection and elitism steps occur after evaluating the fitness function for the
current population of chromosomes. A subset of chromosomes is selected to use
as parents for the succeeding generation. This operation is where the survival of the
fittest principle arises, as the parents are chosen according to their fitness value.
While the aim is to emphasize the fitter chromosomes in the selection process,
it is important that not too much priority is given to the chromosomes with the
highest fitness values early in the optimization process. Too much emphasis of
the fitter chromosomes may tend to reduce the diversity needed for an adequate
search of the domain of interest, possibly causing premature convergence in a local
optimum. Hence methods for selection allow with some nonzero probability the
selection of chromosomes that are suboptimal.

Associated with the selection step is the optional “elitism” strategy, where the
Ne < N best chromosomes (as determined from their fitness evaluations) are
placed directly into the next generation. This guarantees the preservation of the
Ne best chromosomes at each generation. Note that the elitist chromosomes in the
original population are also eligible for selection and subsequent recombination.

As with the coding operation for θ, many schemes have been proposed for the
selection process of choosing parents for subsequent recombination. One of the
most popular methods is roulette wheel selection (also called fitness proportionate
selection). In this selection method, the fitness functions must be nonnegative
on Θ. An individual’s slice of a Monte Carlo-based roulette wheel is an area pro-
portional to its fitness. The “wheel” is spun in a simulated fashion N − Ne times
and the parents are chosen based on where the pointer stops. Another popu-
lar approach is called tournament selection. In this method, chromosomes are
compared in a “tournament,” with the better chromosome being more likely to
win. The tournament process is continued by sampling (with replacement) from
the original population until a full complement of parents has been chosen. The
most common tournament method is the binary approach, where one selects two
pairs of chromosomes and chooses as the two parents the chromosome in each
pair having the higher fitness value. Empirical evidence suggests that the tour-
nament selection method often performs better than roulette selection. (Unlike
tournament selection, roulette selection is very sensitive to the scaling of the fit-
ness function.) Mitchell (1996, Sect. 5.4) provides a good survey of several other
selection methods.

The crossover operation creates offspring of the pairs of parents from the
selection step. A crossover probability Pc is used to determine if the offspring
will represent a blend of the chromosomes of the parents. If no crossover takes
place, then the two offspring are clones of the two parents. If crossover does take

190 James C. Spall

place, then the two offspring are produced according to an interchange of parts
of the chromosome structure of the two parents. Figure 6.4 illustrates this for
the case of a ten-bit binary representation of the chromosomes. This example
shows one-point crossover, where the bits appearing after one randomly cho-
sen dividing (splice) point in the chromosome are interchanged. In general, one
can have a number of splice points up to the number of bits in the chromo-
somes minus one, but one-point crossover appears to be the most commonly
used.

Note that the crossover operator also applies directly with real-number cod-
ing since there is nothing directly connected to binary coding in crossover. All
that is required are two lists of compatible symbols. For example, one-point
crossover applied to the chromosomes (θ values) [6.7, −7.4, 4.0, 3.9|6.2, −1.5] and
[−3.8, 5.3, 9.2, −0.6|8.4, −5.1] yields the two children: [6.7, −7.4, 4.0, 3.9, 8.4, −5.1]
and [−3.8, 5.3, 9.2, −0.6, 6.2, −1.5].

Figure 6.4. Example of crossover operator under binary coding with one splice point

The final operation we discuss is mutation. Because the initial population may
not contain enough variability to find the solution via crossover operations alone,
the GA also uses a mutation operator where the chromosomes are randomly
changed. For the binary coding, the mutation is usually done on a bit-by-bit basis
where a chosen bit is flipped from 0 to 1, or vice versa. Mutation of a given bit
occurs with small probability Pm. Real-number coding requires a different type
of mutation operator. That is, with a (0, 1)-based coding, an opposite is uniquely
defined, but with a real number, there is no clearly defined opposite (e.g., it does
not make sense to “flip” the 2.74 element). Probably the most common type of
mutation operator is simply to add small independent normal (or other) random
vectors to each of the chromosomes (the θ values) in the population.

As discussed in Sect. 6.1.4, there is no easy way to know when a stochastic
optimization algorithm has effectively converged to an optimum. this includes
gas. The one obvious means of stopping a GA is to end the search when a budget
of fitness (equivalently, loss) function evaluations has been spent. Alternatively,
termination may be performed heuristically based on subjective and objective
impressions about convergence. In the case where noise-free fitness measure-
ments are available, criteria based on fitness evaluations may be most useful.
for example, a fairly natural criterion suggested in Schwefel (1995, p. 145) is to
stop when the maximum and minimum fitness values over the N population
values within a generation are sufficiently close to one another. however, this
criterion provides no formal guarantee that the algorithm has found a global
solution.

Stochastic Optimization 191

The Core Genetic Algorithm 6.4.3

The steps of a basic form of the GA are given below. These steps are general enough
to govern many (perhaps most) modern implementations of GAs, including those
in modern commercial software. Of course, the performance of a GA typically
depends greatly on the implementation details, just as with other stochastic opti-
mization algorithms. Some of these practical implementation issues are taken up
in the next section.

Core GA Steps for Noise-Free Fitness Evaluations
Step 0 (Initialization) Randomly generate an initial population of N chromosomes

and evaluate the fitness function (the conversion of L(θ) to a function to be
maximized for the encoded version of θ) for each of the chromosomes.

Step 1 (Parent Selection) Set Ne = 0 if elitism strategy is not used; 0 < Ne < N
otherwise. Select with replacement N − Ne parents from the full population
(including the Ne elitist elements). The parents are selected according to
their fitness, with those chromosomes having a higher fitness value being
selected more often.

Step 2 (Crossover) For each pair of parents identified in Step 1, perform crossover
on the parents at a randomly (perhaps uniformly) chosen splice point (or
points if using multi-point crossover) with probability Pc. If no crossover
takes place (probability 1−Pc), then form two offspring that are exact copies
(clones) of the two parents.

Step 3 (Replacement and Mutation) While retaining the Ne best chromosomes
from the previous generation, replace the remaining N − Ne chromosomes
with the current population of offspring from Step 2. For the bit-based
implementations, mutate the individual bits with probability Pm; for real
coded implementations, use an alternative form of “small” modification (in
either case, one has the option of choosing whether to make the Ne elitist
chromosomes candidates for mutation).

Step 4 (Fitness and End Test) Compute the fitness values for the new population
of N chromosomes. Terminate the algorithm if the stopping criterion is met
or if the budget of fitness function evaluations is exhausted; else return to
Step 1.

Some Implementation Aspects 6.4.4

While the above stepsprovide thebroadoutline formanymodern implementations
of GAs, there are some important implementation aspects that must be decided
before a practical implementation. This section outlines a few of those aspects.
More detailed discussions are given in Mitchell (1996, Chap. 5), Michalewicz (1996,
Chaps. 4–6), Fogel (2000, Chaps. 3 and 4), Goldberg (2002, Chap. 12), and other
references mentioned below. A countless number of numerical studies have been
reported in the literature; we do not add to that list here.

192 James C. Spall

As with other stochastic optimization methods, the choice of algorithm-specific
coefficients has a significant impact on performance. With GAs, there is a relatively
large number of user decisions required. The following must be set: the choice of
chromosome encoding, the population size (N), the probability distribution gen-
erating the initial population, the strategy for parent selection (roulette wheel or
otherwise), the number of splice points in the crossover, the crossover probabil-
ity (Pc), the mutation probability (Pm), the number of retained chromosomes in
elitism (Ne), and some termination criterion. Some typical values for these quan-
tities are discussed, for example, in Mitchell (1996, pp. 175–177) and Spall (2003,
Sect. 9.6).

Constraints on L(θ) (or the equivalent fitness function) and|or θ are of major
importance inpractice.Thebit-based implementationofGAsprovideanaturalway
of implementing component-wise lower and upper bounds on the elements of θ
(i.e., a hypercube constraint). More general approaches to handling constraints are
discussed in Michalewicz (1996, Chap. 7 and Sects. 4.5 and 15.3) and Michalewicz
and Fogel (2000, Chap. 9).

Until now, it has been assumed that the fitness function is observed without
noise. One of the two possible defining characteristics of stochastic optimization,
however, is optimization with noise in the function measurements (Property I
in Sect. 6.1.3). There appears to be relatively little formal analysis of GAs in the
presenceofnoise, although theapplicationand testingofGAs insuchcaseshasbeen
carried out since at least the mid-1970 s (e.g., De Jong, 1975, p. 203). A large number
of numerical studies are in the literature (e.g., the references and studies in Spall,
2003, Sects. 9.6 and 9.7). As with other algorithms, there is a fundamental tradeoff
of more accurate information for each function input (typically, via an averaging
of the inputs) and fewer function inputs versus less accurate (“raw”) information
to the algorithm together with a greater number of inputs to the algorithm. There
appears to be no rigorous comparison of GAs with other algorithms regarding
relative robustness to noise. Regarding noise, Michalewicz and Fogel (2000, p. 325)
state: “There really are no effective heuristics to guide the choices to be made that
will work in general.”

Some Comments on the Theory for GAs6.4.5

One of the key innovations in Holland (1975) was the attempt to put GAs on
a stronger theoretical footing than the previous ad hoc treatments. He did this by
the introduction of schema theory. While many aspects and implications of schema
theory have subsequently been challenged (Reeves and Rowe, 2003, Chap. 3; Spall,
2003, Sect. 10.3), some aspects remain viable. In particular, schema theory itself is
generally correct (subject to a few modifications), although many of the assumed
implications have not been correct. With the appropriate caveats and restrictions,
schema theory provides some intuitive explanation for the good performance that
is frequently observed with GAs.

More recently, Markov chains have been used to provide a formal structure for
analyzing GAs. First, let us mention one negative result. Markov chains can be used

Stochastic Optimization 193

to show that a canonical GA without elitism is (in general) provably nonconvergent
(Rudolph, 1994). That is, with a GA that does not hold onto the best solution at
each generation, there is the possibility (through crossover and mutation) that
a chromosome corresponding to θ∗ will be lost. (Note that the GA without elitism
corresponds to the form in Holland, 1975.)

On theotherhand, conditions for the formal convergenceofGAs toanoptimalθ∗
(or its coded equivalent) are presented in Vose (1999, Chaps. 13 and 14), Fogel
(2000, Chap. 4), Reeves and Rowe (2003, Chap. 6), and Spall (2003, Sect. 10.5),
among other references. Consider a binary bit-coded GA with a population size
of N and a string length of B bits per chromosome. Then the total number of
possible unique populations is:

NP ≡
(

N + 2B − 1

N

)

=
(N + 2B − 1)!

(2B − 1)!N!

(Suzuki, 1995). It is possible to construct an NP × NP Markov transition matrix P,
where the ijth element is the probability of transitioning from the ith population
of N chromosomes to the jth population of the same size. These elements depend
in a nontrivial way on N, the crossover rate, and the mutation rate; the number of
elite chromosomes is assumed to be Ne = 1 (Suzuki, 1995). Let pk be an NP × 1
vector having jth component pk(j) equal to the probability that the kth generation
will result in population j, j = 1, 2, … , NP. From basic Markov chain theory,

pT
k+1 = pT

k P = pT
0 P k+1 ,

where p0 is an initial probability distribution. If the chain is irreducible and ergodic
(see, e.g., Spall, 2003, Appendix E), the limiting distribution of the GA (i.e., p̄T =
limk→∞ pT

k = limk→∞ pT
0 P k) exists andsatisfies the stationarity equation p̄T = p̄TP.

(Recall from basic Markov chain theory that irreducibility indicates that any state
may be reached from any other state after a finite number of steps.)

Suppose that θ∗ is unique (i.e., Θ∗ is the singleton θ∗). Let J ⊆ {1, 2, … , NP}
be the set of indices corresponding to the populations that contain at least one
chromosome representing θ∗. So, for example, if J = {1, 6, NP − 3}, then each of the
three populations indexed by 1, 6 and NP − 3 contains at least one chromosome
that, when decoded, is equal to θ∗. Under the above-mentioned assumptions of
irreducibility and ergodicity,

∑
i∈J p̄i = 1, where p̄i is the ith element of p̄. Hence,

a GA with Ne = 1 and a transition matrix that is irreducible and ergodic converges
in probability to θ∗.

To establish the fact of convergence alone, itmaynotbe necessary to compute the
P matrix. Rather, it suffices to know that the chain is irreducible and ergodic. (For
example, Rudolph, 1997, p. 125, shows that the Markov chain approach yields con-
vergence when 0 < Pm < 1.) However, P must be explicitly computed to get the rate
of convergence information that is available from pk. This is rarely possible in prac-
tice because the number of states in the Markov chain (and hence dimension of the
Markov transition matrix) grows very rapidly with increases in the population size

194 James C. Spall

and|or the number of bits used in coding for the population elements. For example,
in even a trivial problem of N = B = 6, there are ∼ 108 states and ∼ 1016 elements
in the transition matrix; this problem is much smaller than any practical GA, which
can easily have 50 to 100 population elements and 15 to 40 bits per population el-
ement (leading to well over 10100 states, with each element in the corresponding
row and column in the transition matrix requiring significant computation).

Concluding Remarks6.5

Stochastic optimization is a major branch of computational statistics. This paper
has been a whirlwind tour through some important issues and methods in stochas-
tic optimization. Stochastic optimization applies when there are noisy measure-
ments of the criterion being optimized and|or there is an injected Monte Carlo
randomness as part of the algorithm. Of necessity, we cover only a small fraction of
available methods in this relatively brief review, although the methods described
(random search, stochastic approximation, and genetic algorithms) are represen-
tative of a broad range of important and widely used algorithms. Further, the
treatment here on the specific algorithms is relatively brief. In particular, the sub-
jects covered in this paper of approximately 30 pages are treated in over 160 pages
in Spall (2003, Chaps. 1–2, 6–7, and 9–10) and are given an even more detailed
treatment in the many specialized books or other references.

There are many challenges to carrying out real-world optimization, including
the presence of noise in the function evaluations, the difficulties in distinguishing
a globally optimal solution from locally optimal solutions, the “curse of dimen-
sionality,” the difficulties associated with nontrivial constraints, and the lack of
stationarity in the solution as a result of the conditions of the problem changing
over time. Stochastic optimization methods are especially useful in treating some
of these challenges. In particular, by definition, they are designed for noisy func-
tion evaluations. Further, when considering injected (Monte Carlo) randomness
(property II in Sect. 6.1.3), certain stochastic optimization algorithms will (under
conditions, of course) serve as global optimizers. That is, the injected randomness
provides enough “bounce” to the algorithm to allow for escape from local minima
en route to achieving a global minimum.

In summary, while classical deterministic optimization methods (linear and
nonlinear programming) are effective for a range of problems, stochastic methods
are able to handle many of the problems for which deterministic methods are
inappropriate. It is hoped that this summary gives the reader a flavor of the issues,
algorithms, and challenges in carrying out optimization in the face of stochastic
effects.

Acknowledgements. I appreciate the helpful comments of Dr. Stacy Hill on a draft
version of this paper. Funding was provided by the U. S. Navy (contract N00024-
98-D-8124) and the JHU|APL Independent Research and Development (IRAD)

Stochastic Optimization 195

Program. Selected parts of this article have been reprinted, by permission, from J.C.
Spall, Introduction to Stochastic Search and Optimization, c©2003 by John Wiley
and Sons, Inc.

References
Arsham, H. (1998), “Techniques for Monte Carlo Optimizing,” Monte Carlo Meth-

ods and Applications, vol. 4, pp. 181–229.
Baba, N., Shoman, T., and Sawaragi, Y. (1977), “A Modified Convergence Theorem

for a Random Optimization Method,” Information Sciences, vol. 13, pp. 159–166.
Bazaraa, M.S., Sherali, H.D., and Shetty, C.M. (1993), Nonlinear Programming:

Theory and Algorithms (2nd ed.), Wiley, New York.
Blum, J.R. (1954), “Multidimensional Stochastic Approximation Methods,” Annals

of Mathematical Statistics, vol. 25, pp. 737–744.
Box, G.E.P. (1957), “Evolutionary Operation: A Method for Increasing Industrial

Productivity,” Journal of the Royal Statistical Society, Ser. C., vol. 6, pp. 81–101.
De Jong, K.A. (1975), “An Analysis of the Behavior of a Class of Genetic Adaptive

Systems,” Ph.D. dissertation, University of Michigan, Ann Arbor, MI (Univer-
sity Microfilms no. 76–9381).

Dippon, J. and Renz, J. (1997), “Weighted Means in Stochastic Approximation of
Minima,” SIAM Journal of Control and Optimization, vol. 35, pp. 1811–1827.

Fabian, V. (1971), “Stochastic Approximation,” in Optimizing Methods in Statistics
(J.S. Rustigi, ed.), Academic Press, New York, pp. 439–470.

Fogel, D.B. (2000), Evolutionary Computation: Toward a New Philosophy of Ma-
chine Intelligence (2nd ed.), IEEE Press, Piscataway, NJ.

Fouskakis, D. and Draper, D. (2002), “Stochastic Optimization: A Review,” Inter-
national Statistical Review, vol. 70, pp. 315–349.

Fu, M.C. (2002), “Optimization for Simulation: Theory vs. Practice” (with discus-
sion by S. Andradóttir, P. Glynn, and J.P. Kelly), INFORMS Journal on Comput-
ing, vol. 14, pp. 192–227.

Gentle, J.E. (2003), Random Number Generation and Monte Carlo Methods (2nd
ed.), Springer-Verlag, New York.

Gerencsér, L. (1999), “Convergence Rate of Moments in Stochastic Approximation
with Simultaneous Perturbation Gradient Approximation and Resetting,” IEEE
Transactions on Automatic Control, vol. 44, pp. 894–905.

Gerencsér, L., Hill, S.D., and Vágó, Z. (1999), “Fixed Gain SPSA for Discrete Op-
timization,” in Proceedings of the IEEE Conference on Decision and Control,
7–10 December 1999, Phoenix, AZ, pp. 1791–1795.

Goldberg, D.E. (1989), Genetic Algorithms in Search, Optimization, and Machine
Learning, Addison-Wesley, Reading, MA.

Gosavi, A. (2003), Simulation-Based Optimization: Parametric Optimization Tech-
niques and Reinforcement Learning, Kluwer Academic, Boston.

Holland, J.H. (1975), Adaptation in Natural and Artificial Systems, University of
Michigan Press, Ann Arbor, MI.

196 James C. Spall

Karnopp, D.C. (1963), “Random Search Techniques for Optimization Problems,”
Automatica, vol. 1, pp. 111–121.

Kiefer, J. and Wolfowitz, J. (1952), “Stochastic Estimation of a Regression Func-
tion,”Annals of Mathematical Statistics, vol. 23, pp. 462–466.

Kolda, T.G., Lewis, R.M., and Torczon, V. (2003), “Optimization by Direct Search:
New Perspectives on Some Classical and Modern Methods,” SIAM Review,
vol. 45, pp. 385–482.

Kushner, H.J. and Yin, G.G. (1997), Stochastic Approximation Algorithms and Ap-
plications, Springer-Verlag, New York.

Maryak, J.L. and Chin, D.C. (2001), “Global Random Optimization by Simultane-
ous Perturbation Stochastic Approximation,” in Proceedings of the American
Control Conference, 25–27 June 2001, Arlington, VA, pp. 756–762.

Matyas, J. (1965), “Random Optimization,” Automation and Remote Control,
vol. 26, pp. 244–251.

Michalewicz, Z. (1996), Genetic Algorithms + Data Structures = Evolution Pro-
grams (3rd ed.), Springer-Verlag, New York.

Michalewicz, Z. and Fogel, D.B. (2000), How to Solve It: Modern Heuristics,
Springer-Verlag, New York.

Mitchell, M. (1996), An Introduction to Genetic Algorithms, MIT Press, Cambridge,
MA.

Nelder, J.A. and Mead, R. (1965), “A Simplex Method for Function Minimization,”
The Computer Journal, vol. 7, pp. 308–313.

Pflug, G.Ch. (1996), Optimization of Stochastic Models: The Interface Between
Simulation and Optimization, Kluwer Academic, Boston.

Reeves, C.R. and Rowe, J.E. (2003), Genetic Algorithms – Principles and Perspec-
tives: A Guide to GA Theory, Kluwer Academic, Boston.

Robbins, H. and Monro, S. (1951), “A Stochastic Approximation Method,” Annals
of Mathematical Statistics, vol. 22, pp. 400–407.

Rudolph, G. (1994), “Convergence Analysis of Canonical Genetic Algorithms,”
IEEE Transactions on Neural Networks, vol. 5, pp. 96–101.

Rudolph, G. (1997), Convergence Properties of Evolutionary Algorithms, Verlag Ko-
vac, Hamburg.

Ruppert, D. (1991), “Stochastic Approximation,” in Handbook of Sequential Anal-
ysis (B.K. Ghosh and P.K. Sen, eds.), Marcel Dekker, New York, pp. 503–529.

Schwefel, H.-P. (1995), Evolution and Optimum Seeking, Wiley, New York.
Solis, F.J. and Wets, J.B. (1981), “Minimization by Random Search Techniques,”

Mathematics of Operations Research, vol. 6, pp. 19–30.
Spall, J.C. (1992), “Multivariate Stochastic Approximation Using a Simultaneous

Perturbation Gradient Approximation,” IEEE Transactions on Automatic Con-
trol, vol. 37, pp. 332–341.

Spall, J.C. (2000), “Adaptive Stochastic Approximation by the Simultaneous Per-
turbation Method,”IEEE Transactions on Automatic Control, vol. 45, pp. 1839–
1853.

Spall, J.C. (2003), Introduction to Stochastic Search and Optimization: Estimation,
Simulation, and Control, Wiley, Hoboken, NJ.

Stochastic Optimization 197

Suzuki, J. (1995), “A Markov Chain Analysis on Simple Genetic Algorithms,” IEEE
Transactions on Systems, Man, and Cybernetics, vol. 25, pp. 655–659.

Wolpert, D.H. and Macready, W.G. (1997), “No Free Lunch Theorems for Optimiza-
tion,” IEEE Transactions on Evolutionary Computation, vol. 1, pp. 67–82.

Yin, G. (1999), “Rates of Convergence for a Class of Global Stochastic Optimization
Algorithms,” SIAM Journal on Optimization, vol. 10, pp. 99–120.

Zhigljavsky, A.A. (1991), Theory of Global Random Search, Kluwer Academic,
Boston.

II.7Transforms in Statistics
Brani Vidakovic

7.1 Introduction . 200

7.2 Fourier and Related Transforms . 205

Discrete Fourier Transform . 206
Windowed Fourier Transform . 208
Hilbert Transform . 209
Wigner–Ville Transforms . 210

7.3 Wavelets and Other Multiscale Transforms . 212

A Case Study . 213
Continuous Wavelet Transform . 214
Multiresolution Analysis . 217
Haar Wavelets . 223
Daubechies’ Wavelets . 224

7.4 Discrete Wavelet Transforms . 226

The Cascade Algorithm . 229
Matlab Implementation of Cascade Algorithm . 233

7.5 Conclusion. 234

200 Brani Vidakovic

It is not an overstatement to say that statistics is based on various transformations
of data. Basic statistical summaries such as the sample mean, variance, z-scores,
histograms, etc., are all transformed data. Some more advanced summaries, such
as principal components, periodograms, empirical characteristic functions, etc.,
are also examples of transformed data. To give a just coverage of transforms utilized
in statistics will take a size of a monograph. In this chapter we will focus only on
several important transforms with the emphasis on novel multiscale transforms
(wavelet transforms and its relatives).

Transformations in statistics are utilized for several reasons, but unifying argu-
ments are that transformed data
(i) are easier to report, store, and analyze,
(ii) comply better with a particular modeling framework, and
(iii) allowforanadditional insight to thephenomenonnotavailable in thedomain

of non-transformed data.

For example, variance stabilizing transformations, symmetrizing transforma-
tions, transformations to additivity, Laplace, Fourier, Wavelet, Gabor, Wigner–
Ville, Hugh, Mellin, transforms all satisfy one or more of points listed in (i–iii).

We emphasize that words transformation and transform are often used inter-
changeably. However, the semantic meaning of the two words seem to be slightly
different. For the word transformation, the synonyms are alteration, evolution,
change, reconfiguration. On the other hand, the word transform carries the mean-
ingofamoreradical change inwhich thenatureand|orstructureof the transformed
object are altered. In our context, it is natural that processes which alter the data
leaving them unreduced in the same domain should be called transformations
(for example Box–Cox transformation) and the processes that radically change the
nature, structure, domain, and dimension of data should be called transforms (for
example Wigner–Ville transform).

In this chapterwe focusmainlyon transformsprovidinganadditional insight on
data. After the introduction discussing three examples, several important trans-
forms are overviewed. We selected discrete Fourier, Hilbert, and Wigner–Ville
transforms, discussed in Sect. 2, and given their recent popularity, continuous and
discrete wavelet transforms discussed in Sects. 3 and 4.

Introduction7.1

As an “appetizer” we give two simple examples of use of transformations in statis-
tics,Fisher z andBox–Coxtransformationsaswell as theempiricalFourier–Stieltjes
transform.

1 Example 1 Assume that we are looking for variance transformation Y = ϑ(X), in
the case where Var X = σ2

X(µ) is a function of the mean µ = E X. The first order
Taylor expansion of ϑ(X) about mean µ is

ϑ(X) = ϑ(µ) + (X − µ)ϑ′(µ) + O
[
(X − µ)2

]
.

Transforms in Statistics 201

Ignoring quadratic and higher order terms we see that

Eϑ(X) ≈ 0 , Varϑ(X) ≈ E
[
(X − µ)2ϑ′(µ)

]
= [ϑ′(x)]2 σ2

X(µ) .

If Var (ϑ(X)) is to be c2, we obtain

[ϑ′(x)]2 σ2
X(µ) = c2

resulting in

ϑ(x) = c

∫
dx

σX(x)
dx .

This is a theoretical basis for the so-called Fisher z-transformation.
Let (X11, X21), … , (X1n, X2n) be a sample from bivariate normal distribution

N2(µ1,µ2,σ2
1,σ2

2, ρ), and X̄i = 1|n
∑n

j=1 Xij, i = 1, 2.
The Pearson coefficient of linear correlation

r =
∑n

i=1(X1i − X̄1)(X2i − X̄2)
[∑n

i=1

(
X1i − X̄1

)2 ·∑n
i=1

(
X2i − X̄2

)2
]1|2

has a complicated distribution involving special functions, e.g., Anderson (1984,
p. 113). However, it is well known that the asymptotic distribution for r is normal
N(ρ, (1−ρ2)2

n). Since the variance is a function of mean,

ϑ(ρ) =
∫

c
√

n

1 − ρ2
dρ

=
c
√

n

2

∫ (
1

1 − ρ
+

1

1 + ρ

)
dρ

=
c
√

n

2
log

(
1 + ρ
1 − ρ

)
+ k

is known as Fisher z-transformation for the correlation coefficient (usually for
c = 1|

√
n and k = 0). Assume that r and ρ are mapped to z and ζ as

z =
1

2
log

(
1 + r

1 − r

)
= arctanh r , ζ =

1

2
log

(
1 + ρ
1 − ρ

)
= arctanh ρ .

The distribution of z is approximately normal N(ζ, 1|(n − 3)) and this approxima-
tion is quite accurate when ρ2|n2 is small and when n is as low as 20. The use of
Fisher z-transformation is illustrated on finding the confidence intervals for ρ and
testing hypotheses about ρ.

To exemplify the above, we generated n = 30 pairs of normally distributed
random samples with theoretical correlation

√
2|2. This was done by generating

two i.i.d. normal samples a, and b of length 30 and taking the transformation
x1 = a + b, x2 = b. The sample correlation coefficient r is found. This was repeated

202 Brani Vidakovic

(a) (b)
Figure 7.1. (a) Simulational run of 10,000 r’s from the bivariate population having theorethical

ρ =
√

2|2.; (b) The same r’s transformed to z’s with the normal approximation superimposed

M = 10,000 times. The histogram of 10,000 sample correlation coefficients is
shown in Fig. 7.1a. The histogram of z-transformed r’s is shown in Fig. 7.1b with
superimposed normal approximation N(arctanh (

√
2|2), 1|(30 − 3)).

(i) For example, (1 − α)100% confidence interval for ρ is:

[
tanh

(
z −

Φ−1(1 − α|2)√
n − 3

)
, tanh

(
z +

Φ−1(1 − α|2)√
n − 3

)]
,

where z = arctanh (r) and tanh x = (ex − e−x)|(ex + e−x) and Φ stands for the
standard normal cumulative distribution function.

If r = −0.5687 and n = 28 z = −0.6456, zL = −0.6456 − 1.96|5 = −1.0376 and
zU = −0.6456 + 1.96|5 = −0.2536. In terms of ρ the 95% confidence interval is
[−0.7769, −0.2483].

(ii) Assume that two samples of size n1 and n2, respectively, are obtained
form two different bivariate normal populations. We are interested in testing
H0 : ρ1 = ρ2 against the two sided alternative. After observing r1 and r2 and
transforming them to z1 and z2, we conclude that the p-value of the test is
2Φ(−|z1 − z2||

√
1|(n1 − 3) + 1|(n2 − 3)).

2 Example 2 Box and Cox (1964) introduced a family of transformations, indexed
by real parameter λ, applicable to positive data X1, … , Xn,

Yi =

Xλ
i − 1

λ
, λ ≠ 0

log Xi , λ = 0 .
(7.1)

This transformation is mostly applied to responses in linear models exhibiting
non-normality and|or heteroscedasticity. For properly selected λ, transformed

Transforms in Statistics 203

data Y1, … , Yn may look “more normal” and amenable to standard modeling
techniques. The parameter λ is selected by maximizing the log-likelihood,

(λ − 1)
n∑

i=1

log Xi −
n

2
log

[
1

n

n∑

i=1

(
Yi − Ȳi

)2

]

, (7.2)

where Yi are given in (7.1) and Ȳi = 1|n
∑n

i=1 Yi.
As an illustration, we apply the Box–Cox transformation to apparently skewed

data of CEO salaries.
Forbes magazine published data on the best small firms in 1993. These were

firms with annual sales of more than five and less than $350 million. Firms were
ranked by five-year average return on investment. One of the variables extracted is
the annual salary of the chief executive officer for the first 60 ranked firms (since
one datum is missing, the sample size is 59). Figure 7.2a shows the histogram of
row data (salaries). The data show moderate skeweness to the right. Figure 7.2b
gives the values of likelihood in (7.2) for different values of λ. Note that (7.2) is
maximized for λ approximately equal to 0.45. Figure 7.2c gives the transformed
data by Box–Cox transformation with λ = 0.45. The histogram of transformed
salaries is notably symetrized.

(a) (b) (c)
Figure 7.2. (a) Histogram of row data (CEO salaries); (b) Log-likelihood is maximized at λ = 0.45;

and (c) Histogram of Box–Cox-transformed data

3Example 3 As an example of transforms utilized in statistics, we provide an appli-
cation of empirical Fourier–Stieltjes transform (empirical characteristic function)
in testing for the independence.

The characteristic function of a probability distribution F is defined as its
Fourier–Stieltjes transform,

ϕX(t) = E exp(itX) , (7.3)

where E is expectation and random variable X has distribution function F. It is
well known that the correspondence of characteristic functions and distribution
functions is 1–1, and that closeness in the domain of characteristic functions

204 Brani Vidakovic

corresponds to closeness in the domain of distribution functions. In addition
to uniqueness, characteristic functions are bounded. The same does not hold
for moment generating functions which are Laplace transforms of distribution
functions.

For a sample X1, X2, … , Xn one defines empirical characteristic functionϕ∗(t) as

ϕ∗
X(t) =

1

n

n∑

j=1

exp(itXj) .

The result by Feuerverger and Mureika (1977) establishes the large sample proper-
ties of the empirical characteristic function.

1 Theorem 1 For any T < ∞

P

[

lim
n→∞ sup

|t|≤T
|ϕ∗(t) − ϕ(t)| = 0

]

= 1

holds. Moreover, when n → ∞, the stochastic process

Yn(t) =
√

n
(
ϕ∗(t) − ϕ(t)

)
, |t| ≤ T ,

converges in distribution to a complex-valued Gaussian zero-mean process Y(t)
satisfying Y(t) = Y(−t) and

E
(

Y(t)Y(s)
)

= ϕ(t + s) − ϕ(t)ϕ(s) ,

where Y(t) denotes complex conjugate of Y(t).

Following Murata (2001) we describe how the empirical characteristic func-
tion can be used in testing for the independence of two components in bivariate
distributions.

Given the bivariate sample (Xi, Yi), i = 1, … , n, we are interested in testing for
independence of the components X and Y . The test can be based on the following
bivariate process,

Zn(t, s) =
√

n
(
ϕ∗

X,Y (t + s) − ϕ∗
X(t)ϕ∗

Y (s)
)

,

where ϕ∗
X,Y (t + s) = 1|n

∑n
j=1 exp(itXj + isYj).

Murata (2001) shows that Zn(t, s) has Gaussian weak limit and that

Var Zn(t, s) ≈
[
ϕ∗

X(2t) −
(
ϕ∗

X(t)
)2
] [
ϕ∗

Y (2s) −
(
ϕ∗

Y (s)
)2
]

, and

Cov
(

Zn(t, s), Zn(t, s)
)
≈ (

1 − |ϕ∗
X(t)|2) (1 − |ϕ∗

Y (s)|2) ,

The statistics

T(t, s) =
(�Zn(t, s) Im Zn(t, s)

)
Σ−1

(�Zn(t, s) Im Zn(t, s)
)′

Transforms in Statistics 205

has approximately χ2 distribution with 2 degrees of freedom for any t and s finite.
Symbols � and Im stand for the real and imaginary parts of a complex number.
The matrix Σ is 2 × 2 matrix with entries

ς11 =
1

2

[
�Var

(
Zn(t, s)

)
+ Cov

(
Zn(t, s), Zn(t, s)

)]

ς12 = ς21 =
1

2
Im Var (Zn(t, s)) , and

ς22 =
1

2

[
−�Var

(
Zn(t, s)

)
+ Cov

(
Zn(t, s), Zn(t, s)

)]
.

Any fixed pair t, s gives a valid test, and in the numerical example we selected t = 1
and s = 1 for calculational convenience.

(a) (b) (c)
Figure 7.3. (a) Histogram of observed T statistics with theoretical χ2

2 distribution; (b) p-values of the

test when components are independent; and (c) p-values if the test when the second component is

a mixture of an independent sample and 3% of the first component

We generated two independent components from the Beta(1, 2) distribution of
size n = 2000 and found T statistics and corresponding p-values M = 2000 times.
Figure 7.3a,b depicts histograms of T statistics and p values based on 2000 simula-
tions. Since the generated components X and Y are independent, the histogram for
T agrees with asymptotic χ2

2 distribution, and of course, the p-values are uniform
on [0, 1]. In Fig. 7.3c we show the p-values when the components X and Y are not
independent. Using two independent Beta(1, 2) components X and Y ′, the second
component Y is constructed as Y = 0.03X + 0.97Y ′. Notice that for majority of
simulational runs the independence hypothesis is rejected, i.e., the p-values cluster
around 0.

Fourier and Related Transforms 7.2

Functional series have a long history that can be traced back to the early nineteenth
century. French mathematician (and politician) Jean-Baptiste-Joseph Fourier, de-

206 Brani Vidakovic

composed a continuous, periodic on [−π,π] function f (x) into the series od sines
and cosines,

a0

2
+

∞∑

n=1

an cos nx + bn sin nx ,

where the coefficients an and bn are defined as

an =
1

π

∫ π

−π
f (x) cos nx dx , n = 0, 1, 2, …

bn =
1

π

∫ π

−π
f (x) sin nx dx , n = 1, 2, … .

The sequences {an, n = 0, 1, …} and {bn, n = 1, 2, …} can be viewed as a transform
of the original function f . It is interesting that at the time of Fourier’s discovery
the very notion of function was not precisely defined. Fourier methods have long
history in statistics especially in the theory of nonparametric function and density
estimation and characteristic functions.

There are three types of Fourier transforms: integral, serial, and discrete. Next,
we focus on discrete transforms and some modifications of the integral transform.

Discrete Fourier Transform7.2.1

The discrete Fourier transform (DFT) of a sequence f = {fn, n = 0, 1, … , N − 1} is
defined as

F =

{
N−1∑

n=0

fnwnk
N , k = 0, … , N − 1

}

,

where wN = e−i2π|N . The inverse is

f =

{
1

N

N−1∑

k=0

Fkw−nk
N , n = 0, … , N − 1

}

.

The DFT can be interpreted as the multiplication of the input vector by a matrix;
therefore, the discrete Fourier transform is a linear operator. If Q = {Qnk =
e−i2πnk}N×N , then F = Q · f . The matrix Q is unitary (up to a scale factor), i.e.,
Q∗Q = NI, where I is the identity matrix and Q∗ is the conjugate transpose of Q.

There are many uses of discrete Fourier transform in statistics. It turns cyclic
convolutions into component-wise multiplication, and the fast version of DFT
has a low computational complexity of O(n log(n)), meaning that the number of
operations needed to transform an input of size n is proportional to n log(n). For
a theory and various other uses of DFT in various fields reader is directed to
Brigham (1988).

We focus on estimation of a spectral density from the observed data, as an
important statistical task in a variety of applied fields in which the information
about frequency behavior of the phenomena is of interest.

Transforms in Statistics 207

Let {Xt , t ∈ Z} be a a real, weakly stationary time series with zero mean and
autocovariance function γ(h) = EX(t + h)X(t). An absolutely summable complex-
valued function γ(·) defined on integers is the autocovariance function of Xt if and
only if the function

f (ω) =
1

2π

∞∑

h=−∞
γ(h)e−ihω (7.4)

is non-negative for allω ∈ [−π,π]. The function f (ω) is called the spectral density
associated with covariance function γ(h), and is in fact a version of discrete Fourier
transform of the autocovariance function γ(h). The spectral density of a stationary
process is a symmetric and non-negative function. Given the spectral density, the
autocovariance function can uniquely be recovered via inverse Fourier transform,

γ(h) =
∫ π

−π
f (ω)eihωdω , h = 0,±1,±2, … .

A traditional statistic used as an estimator of the spectral density is the peri-
odogram. The periodogram I(ω), based on a sample X0, … , XT−1 is defined as

I(ωj) =
1

2πT

∣∣∣∣∣

T−1∑

t=0

Xt e−itωj

∣∣∣∣∣

2

, (7.5)

whereωj is the Fourier frequencyωj = 2πj|T, j = [−T|2]+1, … , −1, 0, 1, … , [T|2].
By a discrete version of the sampling theorem it holds that I(ω) is uniquely deter-
mined for all ω ∈ [−π,π], given its values at Fourier frequencies.

Calculationally, the periodogram is found by using fast Fourier transform.
A simple matlab m-function calculating the periodogram is

function out = periodogram(ts)
out = abs(fftshift(fft(ts - mean(ts)))).^2/(2*pi*length(ts));

An application of spectral and log-spectral estimation involves famous Wolf ’s
sunspotdata set.Although in this situation the statisticiandoesnotknowthe“true”
signal, the theory developed by solar scientists helps to evaluate performance of
the algorithm.

The Sun’s activity peaks every 11 years, creating storms on the surface of our
star that disrupt the Earth’s magnetic field. These “solar hurricanes” can cause
severe problems for electricity transmission systems. An example of influence of
such periodic activity to everyday life is 1989 power blackout in the American
northeast.

Efforts to monitor the amount and variation of the Sun’s activity by counting
spots on it have a long and rich history. Relatively complete visual estimates of
daily activity date back to 1818, monthly averages can be extrapolated back to
1749, and estimates of annual values can be similarly determined back to 1700.
Although Galileo made observations of sunspot numbers in the early 17th century,
the modern era of sunspot counting began in the mid-1800s with the research

208 Brani Vidakovic

of Bern Observatory director Rudolph Wolf, who introduced what he called the
Universal Sunspot Number as an estimate of the solar activity. The square root of
Wolf ’s yearly sunspot numbers are given in Fig. 7.4a, data from Tong (1996), p. 471.
Because of wavelet data processing we selected a sample of size a power of two,
i.e., only 256 observations from 1733 till 1998. The square root transformation was
applied to symmetrize and de-trend the Wolf ’s counts. Figure 7.4b gives a raw
periodogram, while Fig. 7.4c shows the estimator of log-spectral density (Pensky
and Vidakovic, 2003).

(a) (b) (c)
Figure 7.4. (a) Square roots of Wolf ’s yearly sunspot numbers from 1732–1988 (256 observations);

(b) Raw periodogram; (c) An estimator of the log-spectra. The frequency ω∗ ≈ 0.58 corresponds to

Schwabe’s period of 10.8 (years)

The estimator reveals a peak at frequency ω∗ ≈ 0.58, corresponding to the
Schwabe’s cycle ranging from 9 to 11.5 (years), with an average of 2π|0.58 ≈ 10.8

years. The Schwabe cycle is the period between two subsequent maxima or minima
the solar activity, although the solar physicists often think in terms of a 22-year
magnetic cycle since the sun’s magnetic poles reverse direction every 11 years.

Windowed Fourier Transform7.2.2

Windowed Fourier Transforms are important in providing simultaneous insight
in time and frequency behavior of the functions. Standard Fourier Transforms
describing the data in the “Fourier domain” are precise in frequency, but not
in time. Small changes in the signal (data) at one location cause change in the
Fourier domain globally. It was of interest to have transformed domains that are
simultaneously precise in both time and frequency domains. Unfortunately, the
precision of such an insight is limited by the Heisenberg’s Uncertainty Principle.

Suppose f (t) is a signal of finite energy. In mathematical terms, the integral of
its modulus squared is finite, or shortly, f belongs to L2(R) space.

The integral Fourier transform of the signal

F (f)(ξ) = f̂ (ξ) =
∫

R

f (t)e−ıtξdt , (7.6)

describes the allocation of energy content of a signal at different frequencies, but
the time-related information is lost.

Transforms in Statistics 209

Windowed Fourier transform (also called short time Fourier transform, STFT)
was introduced by Gabor (1946), to measure time-localized frequencies of sound.
An atom in Gabor’s decomposition is defined via:

gu,ξ(t) = eiξtg(t − u) ,

where g is a real, symmetric, andproperlynormalized“window” function. [||g|| = 1
so that ||gu,ξ|| = 1]

If f ∈ L2(R), then windowed Fourier transform is defined as

Sf (u, ξ) = 〈f , gu,ξ〉 =
∫

R

f (t)g(t − u)e−iξtdt . (7.7)

The chief use of windowed Fourier transforms is to analyze time|frequency distri-
bution of signal energy, via a spectrogram.

The spectrogram,

PSf (u, ξ) = |Sf (u, ξ)|2 =
∣∣∣∣

∫ ∞

−∞
f (t)g(t − u)e−iξtdt

∣∣∣∣

2

,

expresses the energy distribution in the signal f , with respect to time and frequency
simultaneously.

The following are some basic properties of STFT. Let f ∈ L2(R2). Then

[Inverse STFT] f (t) =
1

2π

∫

R

∫

R

Sf (u, ξ)g(t − u)eiξtdξdu , (7.8)

and

[Energy Conservation]
∫

R

∣∣f (t)
∣∣2 dt =

1

2π

∫

R

∫

R

∣∣Sf (u, ξ)
∣∣2 dξdu . (7.9)

The following is a characterizing property of STFT:
Let Φ ∈ L2(R2). There exist f ∈ L2(R2) such that Φ(u, ξ) = Sf (u, ξ) if and only

if

Φ
(
u0, ξ0

)
=

1

2π

∫

R

∫

R

Φ(u, ξ)K
(
u0, u, ξ0, ξ

)
dudξ , (7.10)

where

K(u0, u, ξ0, ξ) =
〈
gu,ξ, gu0,ξ0

〉
=
∫

R

g(t − u)g(t − u0)e−i(ξ0−ξ)tdt . (7.11)

Hilbert Transform 7.2.3

We next describe the Hilbert transform and its use in defining instantaneous
frequency, an important measure in statistical analysis of signals.

The Hilbert transform of the function signal g(t) is defined by

Hg(t) =
1

π
(VP)

∫ ∞

−∞
g(τ)
t − τ

dτ . (7.12)

210 Brani Vidakovic

Because of the possible singularity at τ = t, the integral is to be considered as
a Cauchy principal value, (VP). From (7.12) we see that Hg(t) is a convolution,
1|(πt) ∗ g(t).

The spectrum of Hg(t) is related to that of g(t). From the convolution equation,

F (H(t)) = F

(
1

πt

)
F (g(t)) .

where F is the Fourier transform. With a real signal g(t) one can associate a com-
plex function with the real part equal to g(t) and the imaginary part equal to
H(g(t)), h(t) = g(t) − iH(g(t)).

In statistical signal analysis this associated complex function h(t) is known as
analytic signal (or causal signal, since ĥ(ξ) = 0, for ξ < 0). Analytic signals are
important since they possess unique phase φ(t) which leads to the definition of the
instantaneous frequency.

If h(t) is represented as a(t) ·exp{iφ(t)}, then the quantity dφ|dt is instantaneous
frequency of the signal g(t), at time t. For more discussion and use of instantaneous
frequency, the reader is directed to Flandrin (1992, 1999).

Wigner–Ville Transforms7.2.4

Wigner–Ville Transform (or Distribution) is the method to represent data (signals)
in the time|frequency domain. In statistics, Wigner–Ville transform provide a tool
to define localized spectral density for the nonstationary processes.

0.35 0.4 0.45 0.5

30

35

40

45

50

55

[ms]

[k
H

z]

0

0.5

1

1.5

2

2.5

3

3.5

x 10
7

(a) (b)
Figure 7.5. (a) Sonar signal from flying bat; (b) its Wigner–Ville transform

Ville (1948) introduced the quadratic form that measures a local time-frequency
energy:

PV f (u, ξ) =
∫

R

f
(

u +
τ
2

)
f ∗
(

u −
τ
2

)
e−iτξdτ ,

where f ∗ is conjugate of f .
The Wigner–Ville transform is always real since f (u+ τ

2)f ∗(u− τ
2) has Hermitian

symmetry in τ.

Transforms in Statistics 211

Time and frequency are symmetric in PV f (u, ξ), by applying Parseval formula
one gets,

PV f (u, ξ) =
1

2π

∫

R

f̂
(
ξ +

γ
2

)
f̂ ∗
(
ξ −

γ
2

)
e−iγudγ , (7.13)

For any f ∈ L2(R)
∫

R

PV f (u, ξ)du = | f̂ (ξ)|2 , (7.14)

i.e., the time marginalization reproduces power spectrum, and
∫

R

PV f (u, ξ)dξ = 2π|f (u)|2 , (7.15)

i.e, the frequency marginalization is proportional to the squared modulus of the
signal.

Integral (7.13) states that one-dimensional Fourier transform of gξ(u) =
PV f (u, ξ), with respect to u is,

ĝξ(γ) = f̂
(
ξ +

γ
2

)
f̂ ∗
(
ξ −

γ
2

)
.

If γ = 0, ĝξ(0) =
∫
R

gξ(u)du, which proves (7.14). Similarly for (7.15).
For example,

(i) if f (t) = 1(−T ≤ t ≤ T), then

PV f (u, ξ) =
2 sin[2(T − |u|)ξ]

ξ
1(−T ≤ u ≤ T) .

Plot PV f (u, ξ).
(ii) if f (t) = exp{iλ(t + αt2|2)}, then PV (u, ξ) = 2πδ(ξ − λ(1 + αu)).
(iii) a Gaussian f (t) = (σ2π)−1|4 exp(−t2|(2σ2)) is transformed into

PV f (u, ξ) =
1

π
exp

(
−

u2

σ2
− σ2ξ2

)
.

In this case, PV f (u, ξ) = |f (u)|2 · | f̂ (ξ)|2. The Gaussian is the only (up to time and
frequency shifts) distribution for which Wigner–Ville transform remains positive.
Some basic properties of Wigner–Ville transforms are listed in Table 7.1.

Next we show that expected value of Wigner–Ville transform of a random pro-
cess can serve as a definition for generalized spectrum of a non-stationary process.
Let X(t) be real-valued zero-mean random process with covariance function

EX(t)X(s) = R(t, s) = R
(

u +
τ
2

, u −
τ
2

)
= C(u, τ) ,

after substitution τ = t − s and u = (t + s)|2.

212 Brani Vidakovic

Table 7.1. Properties of Wigner–Ville transform

Function Wigner–Ville

f (t) PV f (u, ξ)

eiφf (t) PV f (u, ξ)

f (t − u0) PV f (u − u0, ξ)

eiξ0t f (t) PV f (u, ξ − ξ0)

eiat2
f (t) PV f (u, ξ − 2au)

1√
s
f (t|s) PV f (u|s, sξ)

Now, if the process X(t) is stationary, then C(u, τ) is a function of τ only and

PX(ξ) =
∫ ∞

−∞
C(τ)e−iξτdτ

is its power spectrum.
For arbitrary process Flandrin (1999) defined “power spectrum” as

PX(ξ) =
∫ ∞

−∞
C(u, τ)e−iξτdτ .

Thus, PX(ξ) can be represented as E PV X(u, ξ), where

PV X(u, ξ) =
∫ ∞

−∞
X
(

u +
τ
2

)
X
(

u −
τ
2

)
e−iξτdτ .

For more information on Wigner–Ville transforms and their statistical use
the reader is directed to Baraniuk (1994), Carmona, Hwang and Torresani (1998)
Flandrin (1999), and Mallat (1999), among others.

Wavelets
and Other Multiscale Transforms7.3

Given their recent popularity and clear evidence of wide applicability the most of
the space in this chapter is devoted to Wavelet transforms. Statistical multiscale
modeling has, in recent decade, become a well established area in both theoretical
and applied statistics, with impact to developments in statistical methodology.

Wavelet-based methods are important in statistics in areas such as regression,
density and function estimation, factor analysis, modeling and forecasting in time
series analysis, in assessing self-similarity and fractality in data, in spatial statistics.

The attention of the statistical community was attracted in late 1980’s and early
1990’s, when Donoho, Johnstone, and their coauthors demonstrated that wavelet
thresholding, a simple denoising procedure, had desirable statistical optimality
properties. Since then, wavelets have proved useful in many statistical disciplines,

Transforms in Statistics 213

notably in nonparametric statistics and time series analysis. Bayesian concepts and
modeling approaches have, more recently, been identified as providing promising
contexts for wavelet-based denoising applications.

In addition to replacing traditional orthonormal bases in a variety statistical
problems, wavelets brought novel techniques and invigorated some of the existing
ones.

A Case Study 7.3.1

We start first with a statistical application of wavelet transforms. This example
emphasizes specificity of wavelet-based denoising not shared by standard state-
of-art denoising techniques.

A researcher in geology was interested in predicting earthquakes by the level of
water in nearby wells. She had a large (8192 = 213 measurements) data set of water
levels taken every hour in a period of time of about one year in a California well.
Here is the description of the problem.

The ability of water wells to act as strain meters has been observed for centuries.
The Chinese, for example, have records of water flowing from wells prior to
earthquakes. Lab studies indicate that a seismic slip occurs along a fault prior to
rupture. Recent work has attempted to quantify this response, in an effort to use
water wells as sensitive indicators of volumetric strain. If this is possible, water
wells could aid in earthquake prediction by sensing precursory earthquake
strain.

We have water level records from six wells in southern California, collected
over a six year time span. At least 13 moderate size earthquakes (magnitude 4.0–
6.0) occurred in close proximity to the wells during this time interval. There is
a significant amount of noise in the water level record which must first be filtered
out. Environmental factors such as earth tides and atmospheric pressure create
noise with frequencies ranging from seasonal to semidiurnal. The amount of
rainfall also affects the water level, as do surface loading, pumping, recharge
(such as an increase in water level due to irrigation), and sonic booms, to name
a few. Once the noise is subtracted from the signal, the record can be analyzed
for changes in water level, either an increase or a decrease depending upon
whether the aquifer is experiencing a tensile or compressional volume strain,
just prior to an earthquake.

A plot of the raw data for hourly measurements over one year (8192 = 213

observations) is given in Fig. 7.6a, with a close-up in Fig. 7.6b. After applying
the wavelet transform and further processing the wavelet coefficients (threshold-
ing), we obtained a fairly clean signal with a big jump at the earthquake time.
The wavelet-denoised data are given in Fig. 7.6d. The magnitude of the water
level change at the earthquake time did not get distorted in contrast to tradition-
al smoothing techniques. This local adaptivity is a desirable feature of wavelet
methods.

214 Brani Vidakovic

For example, Fig. 7.6c, is denoised signal after applying supsmo smoothing
procedure. Note that the earthquake jump is smoothed, as well.

(a) (b)

(c) (d)
Figure 7.6. (a) shows n = 8192 hourly measurements of the water level for a well in an earthquake

zone. Notice the wide range of water levels at the time of an earthquake around t = 417. (b) focusses

on the data around the earthquake time. (c) demonstrates action of a standard smoother supsmo,

and (d) gives a wavelet based reconstruction

Continuous Wavelet Transform7.3.2

Thefirst theoretical results inwaveletshadbeenconcernedwithcontinuouswavelet
decompositions of functions and go back to the early 1980s. Papers of Morlet et al.
(1982) and Grossmann and Morlet (1984, 1985) were among the first on this subject.

Transforms in Statistics 215

Let ψa,b(x), a ∈ R\{0}, b ∈ R be a family of functions defined as translations
and re-scales of a single function ψ(x) ∈ L2(R),

ψa,b(x) =
1√|a|ψ

(
x − b

a

)
. (7.16)

Normalization constant 1|
√|a| ensures that the norm ||ψa,b(x)|| is independent

of a and b. The function ψ (called the wavelet function is assumed to satisfy the
admissibility condition,

Cψ =
∫

R

|Ψ(ω)|2
|ω| dω < ∞ , (7.17)

where Ψ(ω) =
∫

R ψ(x)e−ixωdx is the Fourier transform of ψ(x). The admissibility
condition (7.17) implies

0 = Ψ(0) =
∫
ψ(x)dx .

Also, if
∫
ψ(x)dx = 0 and

∫
(1 + |x|α)|ψ(x)|dx < ∞ for some α > 0, then Cψ < ∞.

Wavelet functions are usually normalized to “have unit energy”, i.e.,
||ψa,b(x)|| = 1.

For example, the second derivative of the Gaussian function,

ψ(x) =
d2

dx2

[
−C e−x2|2

]
= C

(
1 − x2

)
e−x2|2 , C =

2
√

3
√
π

,

is an example of an admissible wavelet, called Mexican Hat or Marr’s wavelet, see
Fig. 7.7.

Figure 7.7. Mexican hat wavelet (solid line) and its Fourier transform (dashed line)

216 Brani Vidakovic

For any square integrable function f (x), the continuous wavelet transform is
defined as a function of two variables

CWT f (a, b) = 〈f ,ψa,b〉 =
∫

f (x)ψa,b(x)dx .

Here the dilation and translation parameters, a and b, respectively, vary continu-
ously over R\{0} × R.

Figure 7.8 gives the doppler test function, f = 1|(t + 0.05)
√

t(1 − t) sin(2π ·
1.05), 0 ≤ t ≤ 1, and its continuous wavelet transform. The wavelet used was
Mexican Hat. Notice the distribution of “energy” in the time|frequency plane in
Fig. 7.8b.

(a)

(b)
Figure 7.8. (a) Doppler signal; (b) Continuous wavelet transform of doppler signal by the Mexican

hat wavelet

Transforms in Statistics 217

Resolutionof Identity. When the admissibility condition is satisfied, i.e., Cψ < ∞,
it is possible to find the inverse continuous transform via the relation known as
resolution of identity or Calderón’s reproducing identity,

f (x) =
1

Cψ

∫

R 2
CWT f (a, b)ψa,b(x)

da db

a2
.

The continuous wavelet transform of a function of one variable is a function of
two variables. Clearly, the transform is redundant. To “minimize” the transform
one can select discrete values of a and b and still have a lossless transform. This is
achieved by so called critical sampling.

The critical sampling defined by

a = 2−j , b = k2−j , j, k ∈ Z , (7.18)

will produce the minimal, but complete basis. Any coarser sampling will not pro-
duce a unique inverse transform. Moreover under mild conditions on the wavelet
function ψ, such sampling produces an orthogonal basis {ψjk(x) = 2j|2ψ(2jx − k),
j, k ∈ Z}. To formally describe properties of minimal and orthogonal wavelet bases
a multiresolution formalism is needed.

Multiresolution Analysis 7.3.3

Fundamental for construction of critically sampled orthogonal wavelets is a notion
of multiresolution analysis introduced by Mallat (1989a, 1989b). A multiresolution
analysis (MRA) is a sequence of closed subspaces Vn, n ∈ Z in L2(R) such that
they lie in a containment hierarchy

· · · ⊂ V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ · · · . (7.19)

The nested spaces have an intersection that contains only the zero function and
a union that contains all square integrable functions.

∩nVj = {0} , ∪jVj = L2(R) .

(With A we denoted the closure of a set A). The hierarchy (7.19) is constructed such
that V-spaces are self-similar,

f
(
2jx

) ∈ Vj iff f (x) ∈ V0 . (7.20)

with the requirement that there exists a scaling function φ ∈ V0 whose integer-
translates span the space V0,

V0 =

{

f ∈ L2(R)| f (x) =
∑

k

ckφ(x − k)

}

,

and for which the family {φ(• − k), k ∈ Z} is an orthonormal basis. It can be
assumed that

∫
φ(x)dx ≥ 0. With this assumption this integral is in fact equal to 1.

218 Brani Vidakovic

Because of containment V0 ⊂ V1, the function φ(x) ∈ V0 can be represented as
a linear combination of functions from V1, i.e.,

φ(x) =
∑

k∈Z
hk

√
2φ(2x − k) , (7.21)

for some coefficients hk, k ∈ Z. This equation called the scaling equation (or two-
scale equation) is fundamental in constructing, exploring, and utilizing wavelets.

2 Theorem 2 For the scaling function it holds
∫

R

φ(x)dx = 1 ,

or, equivalently,

Φ(0) = 1 ,

where Φ(ω) is Fourier transform of φ,
∫
R
φ(x)e−iωxdx.

The coefficients hn in (7.21) are important in efficient application of wavelet
transforms. The (possibly infinite) vector h = {hn, n ∈ Z} will be called a wavelet
filter. It is a low-pass (averaging) filter as will become clear later by its analysis in
the Fourier domain.

To further explore properties of multiresolution analysis subspaces and their
bases, we will often work in the Fourier domain.

It will be convenient to use Fourier domain for subsequent analysis of wavelet
paradigm. Define the function m0 as follows:

m0(ω) =
1√
2

∑

k∈Z
hk e−ikω =

1√
2

H(ω) . (7.22)

The function in (7.22) is sometimes called the transfer function and it describes the
behaviorof theassociatedfilter h in theFourierdomain.Notice that the function m0

is 2π-periodic and that filter taps {hn, n ∈ Z} are in fact the Fourier coefficients in
the Fourier serias of H(ω) =

√
2m0(ω).

In the Fourier domain the relation (7.21) becomes

Φ(ω) = m0

(ω
2

)
Φ
(ω

2

)
, (7.23)

where Φ(ω) is the Fourier transform of φ(x). Indeed,

Φ(ω) =
∫ ∞

−∞
φ(x)e−iωxdx

=
∑

k

√
2hk

∫ ∞

−∞
φ(2x − k)e−iωxdx

Transforms in Statistics 219

=
∑

k

hk√
2

e−ikω|2
∫ ∞

−∞
φ(2x − k)e−i(2x−k)ω|2d(2x − k)

=
∑

k

hk√
2

e−ikω|2Φ
(ω

2

)

= m0

(ω
2

)
Φ
(ω

2

)
.

By iterating (7.23), one gets

Φ(ω) =
∞∏

n=1

m0

(ω
2n

)
, (7.24)

which is convergent under very mild conditions concerning the rates of decay of
the scaling function φ.

Next, we prove two important properties of wavelet filters associated with an
orthogonal multiresolution analysis, normalization and orthogonality.

Normalization.
∑

k∈Z
hk =

√
2 . (7.25)

Proof:
∫
φ(x)dx =

√
2
∑

k

hk

∫
φ(2x − k)dx

=
√

2
∑

k

hk
1

2

∫
φ(2x − k)d(2x − k)

=
√

2

2

∑

k

hk

∫
φ(x)dx .

Since
∫
φ(x)dx ≠ 0 by assumption, (7.25) follows.

This result also follows from m0(0) = 1.

Orthogonality. For any l ∈ Z,
∑

k

hkhk−2l = δl . (7.26)

Proof: Notice first that from the scaling equation (7.21) it follows that

φ(x)φ(x − l) =
√

2
∑

k

hkφ(2x − k)φ(x − l) (7.27)

=
√

2
∑

k

hkφ(2x − k)
√

2
∑

m

hmφ(2(x − l) − m) .

220 Brani Vidakovic

By integrating the both sides in (7.27) we obtain

δl = 2
∑

k

hk

[
∑

m

hm
1

2

∫
φ(2x − k)φ(2x − 2l − m) d(2x)

]

=
∑

k

∑

m

hkhmδk,2l+m

=
∑

k

hkhk−2l .

The last line is obtained by taking k = 2l + m.
An important special case is l = 0 for which (7.26) becomes

∑

k

h2
k = 1 . (7.28)

The fact that the system {φ(• − k), k ∈ Z} constitutes an orthonormal basis for
V0 can be expressed in the Fourier domain in terms of either Φ(ω) or m0(ω).

In terms of Φ(ω),
∞∑

l=−∞
|Φ(ω + 2πl)|2 = 1 . (7.29)

From the Plancherel identity and the 2π-periodicity of eiωk it follows

δk =
∫

R

φ(x)φ(x − k)dx

=
1

2π

∫

R

Φ(ω)Φ(ω)eiωkdω

=
1

2π

∫ 2π

0

∞∑

l=−∞
|Φ(ω + 2πl)|2 eiωkdω . (7.30)

The last line in (7.30) is the Fourier coefficient ak in the Fourier series decomposi-
tion of

f (ω) =
∞∑

l=−∞
|Φ(ω + 2πl)|2 .

Due to the uniqueness of Fourier representation, f (ω) = 1. As a side result, we
obtain that Φ(2πn) = 0, n ≠ 0, and

∑
n φ(x − n) = 1. The last result follows from

inspection of coefficients ck in the Fourier decomposition of
∑

n φ(x −n), the series∑
k ck e2πikx. As this function is 1-periodic,

ck =
∫ 1

0

(
∑

n

φ(x − n)

)

e−2πikxdx =
∫ ∞

−∞
φ(x)e−2πikxdx = Φ(2πk) = δ0,k .

Transforms in Statistics 221

1Remark 1 Utilizing the identity (7.29), any set of independent functions spanning
V0, {φ(x−k),k ∈ Z}, canbeorthogonalized in theFourierdomain.Theorthonormal
basis is generated by integer-shifts of the function

F −1

 Φ(ω)
√∑∞

l=−∞ |Φ(ω + 2πl)|2

 . (7.31)

This normalization in the Fourier domain is used in constructing of some wavelet
bases.

Orthogonality condition 7.29 can be expressed in terms of m0 as:

|m0(ω)|2 + |m0(ω + π)|2 = 1 . (7.32)

Since
∑∞

l=−∞ |Φ(2ω + 2lπ)|2 = 1, then by (7.23)

∞∑

l=−∞
|m0(ω + lπ)|2 |Φ(ω + lπ)|2 = 1 . (7.33)

Now split the sum in (7.33) into two sums – one with odd and the other with
even indices, i.e.,

1 =
∞∑

k=−∞
|m0(ω + 2kπ)|2 |Φ(ω + 2kπ)|2 +

∞∑

k=−∞
|m0(ω + (2k + 1)π)|2 |Φ(ω + (2k + 1)π)|2 .

To simplify the above expression, we use (7.29) and the 2π-periodicity of m0(ω).

1 = |m0(ω)|2
∞∑

k=−∞
|Φ(ω + 2kπ)|2 + |m0(ω + π)|2

∞∑

k=−∞
|Φ((ω + π) + 2kπ)|2

= |m0(ω)|2 + |m0(ω + π)|2 .

Wheneverasequenceof subspaces satisfiesMRAproperties, thereexists (though
not unique) an orthonormal basis for L2(R),

{
ψjk(x) = 2j|2ψ

(
2jx − k

)
, j, k ∈ Z

}
(7.34)

such that {ψjk(x), j-fixed, k ∈ Z} is an orthonormal basis of the “difference
space” Wj = Vj+1 � Vj. The function ψ(x) = ψ00(x) is called a wavelet function or
informally the mother wavelet.

222 Brani Vidakovic

Next, we discuss the derivation of a wavelet function from the scaling function.
Since ψ(x) ∈ V1 (because of the containment W0 ⊂ V1), it can be represented as

ψ(x) =
∑

k∈Z
gk

√
2φ(2x − k) , (7.35)

for some coefficients gk, k ∈ Z.
Define

m1(ω) =
1√
2

∑

k

gk e−ikω . (7.36)

By mimicking what was done with m0, we obtain the Fourier counterpart of (7.35),

Ψ(ω) = m1

(ω
2

)
Φ
(ω

2

)
. (7.37)

The spaces W0 and V0 are orthogonal by construction. Therefore,

0 =
∫
ψ(x)φ(x − k)dx =

1

2π

∫
Ψ(ω)Φ(ω)eiωkdω

=
1

2π

∫ 2π

0

∞∑

l=−∞
Ψ(ω + 2lπ)Φ(ω + 2lπ)eiωkdω .

By repeating the Fourier series argument, as in (7.29), we conclude

∞∑

l=−∞
Ψ(ω + 2lπ)Φ(ω + 2lπ) = 0 .

By taking into account the definitions of m0 and m1, and by the derivation as
in (7.32), we find

m1(ω)m0(ω) + m1(ω + π)m0(ω + π) = 0 . (7.38)

From (7.38), we conclude that there exists a function λ(ω) such that

(
m1(ω), m1(ω + π)

)
= λ(ω)

(
m0(ω + π), −m0(ω)

)
. (7.39)

By substituting ξ = ω + π and by using the 2π-periodicity of m0 and m1, we
conclude that

λ(ω) = −λ(ω + π) , and (7.40)

λ(ω) is 2π-periodic .

Any function λ(ω) of the form e±iωS(2ω), where S is an L2([0, 2π]), 2π-periodic
function, will satisfy (7.38); however, only the functions for which |λ(ω)| = 1 will
define an orthogonal basis ψjk of L2(R).

Transforms in Statistics 223

To summarize, we choose λ(ω) such that
(i) λ(ω) is 2π-periodic,
(ii) λ(ω) = −λ(ω + π), and
(iii) |λ(ω)|2 = 1.

Standard choices for λ(ω) are −e−iω, e−iω, and eiω; however, any other function
satisfying (i)–(iii) will generate a valid m1. We choose to define m1(ω) as

m1(ω) = −e−iωm0(ω + π) . (7.41)

since it leads to a convenient and standard connection between the filters h and g.
The form of m1 and (7.29) imply that {ψ(• − k), k ∈ Z} is an orthonormal basis

for W0.
Since |m1(ω)| = |m0(ω+π)|, the orthogonality condition (7.32) can be rewritten

as

|m0(ω)|2 + |m1(ω)|2 = 1 . (7.42)

By comparing the definition of m1 in (7.36) with

m1(ω) = −e−iω 1√
2

∑

k

hk ei(ω+π)k

=
1√
2

∑

k

(−1)1−khk e−iω(1−k)

=
1√
2

∑

n

(−1)nh1−n e−iωn ,

we relate gn and hn as

gn = (−1)n h1−n . (7.43)

In signal processing literature, (7.43) is known as the quadrature mirror relation
and the filters h and g as quadrature mirror filters.

2Remark 2 Choosing λ(ω) = eiω leads to the rarely used high-pass filter gn =
(−1)n−1h−1−n. It is convenient to define gn as (−1)nh1−n+M , where M is a “shift
constant.” Such re-indexing of g affects only the shift-location of the wavelet
function.

Haar Wavelets 7.3.4

In addition to their simplicity and formidable applicability, Haar wavelets have
tremendous educational value. Here we illustrate some of the relations discussed

224 Brani Vidakovic

in the Sect. 7.3.3 using the Haar wavelet. We start with scaling function φ(x) =
1(0 ≤ x ≤ 1) and pretend that everything else is unknown. By inspection of
simple graphs of two scaled Haar wavelets φ(2x) and φ(2x + 1) stuck to each other,
we conclude that the scaling equation (7.21) is

φ(x) = φ(2x) + φ(2x − 1)

=
1√
2

√
2φ(2x) +

1√
2

√
2φ(2x − 1) , (7.44)

which yields the wavelet filter coefficients:

h0 = h1 =
1√
2

.

The transfer functions are

m0(ω) =
1√
2

(
1√
2

e−iω0

)
+

1√
2

(
1√
2

e−iω1

)
=

1 + e−iω

2
.

and

m1(ω) = −e−iωm0(ω + π) = −e−iω
(

1

2
−

1

2
eiω

)
=

1 − e−iω

2
.

Notice that m0(ω) = |m0(ω)|eiϕ(ω) = cos(ω|2) · e−iω|2 (after cos x = (eix + e−ix)|2).
Since ϕ(ω) = −ω

2 , the Haar wavelet has linear phase, i.e., the scaling function is
symmetric in the time domain. The orthogonality condition |m0(ω)|2 +|m1(ω)|2 =
1 is easily verified, as well.

Relation (7.37) becomes

Ψ(ω) =
1 − e−iω|2

2
Φ
(ω

2

)
=

1

2
Φ
(ω

2

)
−

1

2
Φ
(ω

2

)
e−iω|2 ,

and by applying the inverse Fourier transform we obtain

ψ(x) = φ(2x) − φ(2x − 1)

in the time-domain. Therefore we “have found” the Haar wavelet function ψ.
From the expression for m1 or by inspecting the representation of ψ(x) by φ(2x)
and φ(2x − 1), we “conclude” that g0 = −g−1 = 1√

2
.

Although the Haar wavelets are well localized in the time domain, in the fre-
quency domain they decay at the slow rate of O(1|n) and are not effective in
approximating smooth functions.

Daubechies’ Wavelets7.3.5

The most important family of wavelets was discovered by Ingrid Daubechies and
fully described in Daubechies (1992). This family is compactly supported with
various degrees of smoothness.

Transforms in Statistics 225

The formal derivation of Daubechies’ wavelets goes beyond the scope of this
chapter, but the filter coefficients of some of its family members can be found by
following considerations.

For example, to derive the filter taps of a wavelet with N vanishing moments, or
equivalently, 2N filter taps, we use the following equations.

The normalization property of scaling function implies

2N−1∑

i=0

hi =
√

2 ,

requirement for vanishing moments for wavelet function ψ leads to

2N−1∑

i=0

(−1)iikhi = 0 , k = 0, 1, … , N − 1 ,

and, finally, the orthogonality property can be expressed as

2N−1∑

i=0

hihi+2k = δk k = 0, 1, … , N − 1 .

Weobtained 2N+1 equationswith 2N unknowns; however the system is solvable
since the equations are not linearly independent.

4Example 4 For N = 2, we obtain the system:

h0 + h1 + h2 + h3 =
√

2

h2
0 + h2

1 + h2
2 + h2

3 = 1

−h1 + 2h2 − 3h3 = 0,

h0 h2 + h1 h3 = 0

,

which has a solution h0 = 1+
√

3
4
√

2
, h1 = 3+

√
3

4
√

2
, h2 = 3−

√
3

4
√

2
, and h3 = 1−

√
3

4
√

2
.

For N = 4, the system is

h0 + h1 + h2 + h3 + h4 + h5 + h6 + h7 =
√

2

h2
0 + h2

1 + h2
2 + h2

3 + h2
4 + h2

5 + h2
6 + h2

7 = 1

h0 − h1 + h2 − h3 + h4 − h5 + h6 − h7 = 0

h0h2 + h1h3 + h2h4 + h3h5 + h4h6 + h5h7 = 0

h0h4 + h1h5 + h2h6 + h3h7 = 0

h0h6 + h1h7 = 0

0h0 − 1h1 + 2h2 − 3h3 + 4h4 − 5h5 + 6h6 − 7h7 = 0

0h0 − 1h1 + 4h2 − 9h3 + 16h4 − 25h5 + 36h6 − 49h7 = 0

0h0 − 1h1 + 8h2 − 27h3 + 64h4 − 125h5 + 216h6 − 343h7 = 0 .

226 Brani Vidakovic

Figure 7.9 depicts two scaling function and wavelet pairs from the Daubechies
family. Figure 7.9a,b depict the pair with two vanishing moments, while Fig. 7.9c,d
depict the pair with four vanishing moments.

(a) (b)

(c) (d)
Figure 7.9. Wavelet functions from Daubechies family. (a) Daubechies scaling function, 2 vanishing

moments, 4 tap filter (b) Wavelet function corresponding to (a), (c) Daubechies scaling function,

4 vanishing moments, 8 tap filter (d) Wavelet function corresponding to (c)

Discrete Wavelet Transforms7.4

Discrete wavelet transforms (DWT) are applied to discrete data sets and produce
discrete outputs. Transforming signals and data vectors by DWT is a process that
resembles the fast Fourier transform (FFT), the Fourier method applied to a set of
discrete measurements.

The analogy between Fourier and wavelet methods is even more complete
(Table 7.2)whenwe take intoaccount the continuouswavelet transformandwavelet
series expansions.

Discrete wavelet transforms map data from the time domain (the original or
input data vector) to the wavelet domain. The result is a vector of the same size.
Wavelet transforms are linear and they can be defined by matrices of dimension

Transforms in Statistics 227

Table 7.2. The analogy between Fourier and wavelet methods

Fourier Fourier Fourier Discrete
Methods Integrals Series Fourier Transforms

Wavelet Continuous Wavelet Discrete
Methods Wavelet Transforms Series Wavelet Transforms

n × n if they are applied to inputs of size n. Depending on boundary conditions,
such matrices can be either orthogonal or “close” to orthogonal. When the matrix
is orthogonal, the corresponding transform is a rotation in Rn in which the data
(a n-typle) is a point in Rn. The coordinates of the point in the rotated space com-
prise the discrete wavelet transform of the original coordinates. Here we provide
two toy examples.

5Example 5 Let thevectorbe (1, 2) and let M(1, 2) be thepoint inR2 withcoordinates
given by the data vector. The rotation of the coordinate axes by an angle of π|4 can
be interpreted as a DWT in the Haar wavelet basis. The rotation matrix is

W =

(
cos π

4 sin π
4

cos π
4 − sin π

4

)

=

(
1√
2

1√
2

1√
2

− 1√
2

)

,

and the discrete wavelet transform of (1, 2)′ is W · (1, 2)′ = (3|
√

2, −1|
√

2)′. Notice
that the energy (squareddistanceof thepoint fromtheorigin) ispreserved, 12+22 =
(1|2)2 + (

√
3|2)2, since W is a rotation.

6Example 6 Let y = (1, 0, −3, 2, 1, 0, 1, 2). The associated function f is given in
Fig. 7.10. The values f (n) = yn, n = 0, 1, … , 7 are interpolated by a piecewise
constant function. We assume that f belongs to Haar’s multiresolution space V0.

The following matrix equation gives the connection between y and the wavelet
coefficients (data in the wavelet domain).

1

0

−3

2

1

0

1

2

=

1
2
√

2
1

2
√

2
1
2 0 1√

2
0 0 0

1
2
√

2
1

2
√

2
1
2 0 − 1√

2
0 0 0

1
2
√

2
1

2
√

2
− 1

2 0 0 1√
2

0 0
1

2
√

2
1

2
√

2
− 1

2 0 0 − 1√
2

0 0
1

2
√

2
− 1

2
√

2
0 1

2 0 0 1√
2

0
1

2
√

2
− 1

2
√

2
0 1

2 0 0 − 1√
2

0
1

2
√

2
− 1

2
√

2
0 − 1

2 0 0 0 1√
2

1
2
√

2
− 1

2
√

2
0 − 1

2 0 0 0 − 1√
2

·

c00

d00

d10

d11

d20

d21

d22

d23

.

228 Brani Vidakovic

Figure 7.10. A function interpolating y on [0, 8)

The solution is

c00

d00

d10

d11

d20

d21

d22

d23

=

√
2

−
√

2

1

−1
1√
2

− 5√
2

1√
2

− 1√
2

.

Thus,

f =
√

2φ−3,0 −
√

2ψ−3,0 + ψ−2,0 − ψ−2,1

+
1√
2
ψ−1,0 −

5√
2
ψ−1,1 +

1√
2
ψ−1,2 −

1√
2
ψ−1,3 . (7.45)

The solution is easy to verify. For example, when x ∈ [0, 1),

f (x) =
√

2 · 1

2
√

2
−
√

2 · 1

2
√

2
+ 1 · 1

2
+

1√
2
· 1√

2
=

1

2
+

1

2
= 1 (= y0) .

Applyingwavelet transformsbymultiplying the inputvectorwithanappropriate
orthogonal matrix is conceptually straightforward task, but of limited practical
value. Storing and manipulating the transformation matrices for long inputs (n >
2000) may not even be feasible.

This obstacle is solved by the link of discrete wavelet transforms with fast
filtering algorithms from the field of signal and image processing.

Transforms in Statistics 229

The Cascade Algorithm 7.4.1

Mallat (1989a,b) was the first to link wavelets, multiresolution analyses and cascade
algorithms in a formal way. Mallat’s cascade algorithm gives a constructive and
efficient recipe for performing the discrete wavelet transform. It relates the wavelet
coefficients from different levels in the transform by filtering with wavelet filter h
and and its mirror counterpart g.

It is convenient to link the original data with the space VJ , where J is often 0 or
log n, where n is a dyadic size of data. Then, coarser smooth and complementing
detail spaces are (VJ−1, WJ−1), (VJ−2, WJ−2), etc. Decreasing the index in V-spaces
is equivalent to coarsening the approximation to the data.

By a straightforward substitution of indices in the scaling equations (7.21) and
(7.35), one obtains

φj−1,l(x) =
∑

k∈Z
hk−2lφjk(x) and ψj−1,l(x) =

∑

k∈Z
gk−2lφjk(x) . (7.46)

The relations in (7.46) are fundamental in developing the cascade algorithm.
In a multiresolution analysis, … ⊂ Vj−1 ⊂ Vj ⊂ Vj+1 ⊂ …. Since Vj = Vj−1 ⊕

Wj−1, any function vj ∈ Vj can be represented uniquely as vj(x) = vj−1(x) + wj−1(x),
where vj−1 ∈ Vj−1 and wj−1 ∈ Wj−1. It is customary to denote the coefficients
associated with φjk(x) and ψjk(x) by cjk and djk, respectively.

Thus,

vj(x) =
∑

k

cj,kφj,k(x)

=
∑

l

cj−1,lφj−1,l(x) +
∑

l

dj−1,lψj−1,l(x)

= vj−1(x) + wj−1(x) .

By using the general scaling equations (7.46), orthogonality of wj−1(x) and φj−1,l(x)
for any j and l, and additivity of inner products, we obtain

cj−1,l = 〈vj, φj−1,l〉

=

〈

vj,
∑

k

hk−2lφj,k

〉

=
∑

k

hk−2l〈vj, φj,k〉 (7.47)

=
∑

k

hk−2lcj,k .

Similarly dj−1,l =
∑

k gk−2lcj,k.

230 Brani Vidakovic

The cascade algorithm works in the reverse direction as well. Coefficients in
the next finer scale corresponding to Vj can be obtained from the coefficients
corresponding to Vj−1 and Wj−1. The relation

cj,k = 〈vj, φj,k〉
=
∑

l

cj−1,l〈φj−1,l, φj,k〉 +
∑

l

dj−1,l〈ψj−1,l, φj,k〉 (7.48)

=
∑

l

cj−1,lhk−2l +
∑

l

dj−1,lgk−2l ,

describes a single step in the reconstruction algorithm.
The discrete wavelet transform can be described in terms of operators. Let the

operators H and G acting on a sequence a = {an, n ∈ Z}, satisfy the following
coordinate-wise relations:

(Ha)k =
∑

n

hn−2kan (Ga)k =
∑

n

gn−2kan ,

and their adjoint operators H∗ and G∗ satisfy:

(H∗a)n =
∑

k

hn−2kak (G∗a)n =
∑

k

gn−2kak ,

where h = {hn} is wavelet filter and g = {gn} its quadrature-mirror counterpart.
Denote the original signal by c(J) = {c(J)

k }. If the signal is of length 2J , then
c(J) can be interpolated by the function f (x) =

∑
c(J)

k φ(x − k) from VJ . In each
step of the wavelet transform, we move to the next coarser approximation (level)
c(j−1) by applying the operator H , c(j−1) = Hc(j). The “detail information,” lost by
approximating c(j) by the “averaged” c(j−1), is contained in vector d(j−1) = Gc(j).

The discrete wavelet transform of a sequence y = c(J) of length 2J can then be
represented as

(
c(J−k), d(J−k), d(J−k+1), … , d(J−2), d(J−1)

)
. (7.49)

Notice that the lengths of y and its transform in (7.49) coincide. Because of dec-
imation, the length of c(j) is twice the length of c(j−1), and 2J = 2J−k +

∑k
i=1 2J−i,

1 ≤ k ≤ J.
For an illustration of (7.49), see Fig. 7.11. By utilizing the operator notation, it

is possible to summarize the discrete wavelet transform (curtailed at level k) in
a single line:

y → (
H ky, GH k−1y, … , GH2y, GHy, Gy

)
.

The number k can be any arbitrary integer between 1 and J and it is associated
with the coarsest “smooth” space, VJ−k, up to which the transform was curtailed.
In terms of multiresolution spaces, (7.49) corresponds to the multiresolution de-

Transforms in Statistics 231

Figure 7.11. Forward wavelet transform of depth k (DWT is a vector of coefficients connected by

double lines)

composition VJ−k⊕WJ−k⊕WJ−k+1⊕…⊕WJ−1. When k = J the vector c(0) contains
a single element, c(0).

If the wavelet filter length exceeds 2, one needs to define actions of the filter
beyond the boundaries of the sequence to which the filter is applied. Different
policies are possible. The most common is a periodic extension of the original
signal.

The reconstruction formula is also simple in terms of operators H∗ and G∗.
They are applied on c(j−1) and d(j−1), respectively, and the results are added. The
vector c(j) is reconstructed as

c(j) = H∗c(j−1) + G∗d(j−1) , (7.50)

Recursive application of (7.50) leads to
(
H ky, GH k−1y, … , GH2y, GHy, Gy

)

=
(

c(J−k), d(J−k), d(J−k+1), … , d(J−2), d(J−1)
)

 →
k−1∑

i=1

(
H∗)k−1−i

G∗d(J−k+i) +
(
H∗)k

c(J−k) = y .

7Example 7 Let y = (1, 0, −3, 2, 1, 0, 1, 2) be an exemplary set we want to transform
by Haar’s DWT. Let k = J = 3, i.e., the coarsest approximation and detail levels

Figure 7.12. Inverse Transform

232 Brani Vidakovic

Figure 7.13. An illustration of a decomposition procedure

will contain a single point each. The decomposition algorithm applied on y =
(1, 0, −3, 2, 1, 0, 1, 2) is given schematically in Fig. 7.13.

For the Haar wavelet, the operators H and G are given by (Ha)k =
∑

n hn−2kan =∑
m hmam+2k = h0a2k + h1a2k+1 = (a2k + a2k+1)|

√
2. Similarly, (Ga)k =

∑
n gn−2kan =∑

m gmam+2k = g0a2k + g1a2k+1 = (a2k − a2k+1)|
√

2.
The reconstruction algorithm is given in Fig. 7.14. In the process of recon-

struction, (H∗a)n =
∑

k hn−2kak, and (G∗a)n =
∑

k gn−2kak. For instance, the
first line in Fig. 7.14 recovers the object {1, 1} from

√
2 by applying H∗. Indeed,

(H∗{a0})0 = h0

√
2 = 1 and (H∗{a0})1 = h1

√
2 = 1.

We already mentioned that when the length of the filter exceeds 2, boundary
problems occur since the convolution goes outside the range of data.

There are several approaches to resolving the boundary problem. The sig-
nal may be continued in a periodic way (… , yn−1, yn|y1, y2, …), symmetric way
(… , yn−1, yn|yn−1, yn−2, …), padded by a constant, or extrapolated as a polynomi-
al. Wavelet transforms can be confined to an interval (in the sense of Cohen,
Daubechies and Vial (1993) and periodic and symmetric extensions can be viewed
as special cases. Periodized wavelet

transforms are also defined in a simple way.
If the length of the data set is not a power of 2, but of the form M · 2K , for M

odd and K a positive integer, then only K steps in the decomposition algorithm
can be performed. For precise descriptions of conceptual and calculational hurdles

Transforms in Statistics 233

Figure 7.14. An illustration of a reconstruction procedure

caused by boundaries and data sets whose lengths are not a power of 2, we direct
the reader to the monograph by Wickerhauser (1994).

In this section we discussed the most basic wavelet transform. Various general-
izations include biorthogonal wavelets, multiwavelets, nonseparable multidimen-
sional wavelet transforms, complex wavelets, lazy wavelets, and many more.

For various statistical applications of wavelets (nonparametric regression, den-
sity estimation, time series, deconvolutions, etc.) we direct the reader to Antoniadis
(1997), Härdle et al. (1998), Vidakovic (1999). An excellent monograph by Walter
and Shen (2000) discusses statistical applications of wavelets and various other
orthogonal systems.

Matlab Implementation of Cascade Algorithm 7.4.2

The following two matlab m-files implement discrete wavelet transform and its
inverse, with periodic handling of boundaries. The data needs to be of dyadic
size (power of 2). The programs are didactic, rather than efficient. For an excel-
lent and comprehensive wavelet package, we direct the reader to wavelab802
module (http://www-stat.stanford.edu/˜wavelab/) maintained by Donoho and his
coauthors.

234 Brani Vidakovic

function dwtr = dwtr(data, L, filterh)
% function dwtr = dwt(data, filterh, L);
% Calculates the DWT of periodic data set
% with scaling filter filterh and L scales.
%
% Example of Use:
% data = [1 0 -3 2 1 0 1 2]; filter = [sqrt(2)/2 sqrt(2)/2];
% wt = DWTR(data, 3, filter)
%--

n = length(filterh); %Length of wavelet filter
C = data; %Data \qut{live} in V_J
dwtr = []; %At the beginning dwtr empty
H = fliplr(filterh); %Flip because of convolution
G = filterh; %Make quadrature mirror
G(1:2:n) = -G(1:2:n); % counterpart
for j = 1:L %Start cascade
nn = length(C); %Length needed to
C = [C(mod((-(n-1):-1),nn)+1) C]; % make periodic
D = conv(C,G); %Convolve,
D = D([n:2:(n+nn-2)]+1); % keep periodic, decimate
C = conv(C,H); %Convolve,
C = C([n:2:(n+nn-2)]+1); % keep periodic, decimate
dwtr = [D,dwtr]; %Add detail level to dwtr

end; %Back to cascade or end
dwtr = [C, dwtr]; %Add the last \qut{smooth} part
function data = idwtr(wtr, L, filterh)
% function data = idwt(wtr, L, filterh);
% Calculates the IDWT of wavelet
% transform wtr using wavelet filter
% \qut{filterh} and L scales.
% Example:
%>> max(abs(data - IDWTR(DWTR(data,3,filter), 3,filter)))
%ans = 4.4409e-016
%--
nn = length(wtr); n = length(filterh); %Lengths
if nargin==2, L = round(log2(nn)); end; %Depth of transform
H = filterh; %Wavelet H filter
G = fliplr(H); G(2:2:n) = -G(2:2:n); %Wavelet G filter
LL = nn/(2^L); %Number of scaling coeffs
C = wtr(1:LL); %Scaling coeffs
for j = 1:L %Cascade algorithm

w = mod(0:n/2-1,LL)+1; %Make periodic
D = wtr(LL+1:2*LL); %Wavelet coeffs
Cu(1:2:2*LL+n) = [C C(1,w)]; %Upsample & keep periodic
Du(1:2:2*LL+n) = [D D(1,w)]; %Upsample & keep periodic
C = conv(Cu,H) + conv(Du,G); %Convolve & add
C = C([n:n+2*LL-1]-1); %Periodic part
LL = 2*LL; %Double the size of level

end;
data = C; %The inverse DWT

Conclusion7.5

In this chapter we gave an overview of several transforms useful in computational
statistics. We emphasized frequency and scale domain transforms (Fourier and
wavelet) since they provide an insight to the phenomena, not available in the
domain of untransformed data. Moreover, multiscale transforms are relatively
new, and as such deserve more attention. It was pretentious to title this chapter
Transforms in Statistics, since literally several dozens important transforms are not

Transforms in Statistics 235

even mentioned. As it was hinted in the introduction, a just task of overviewing all
important transformations used in statistical practice would take a space of a large
monograph.

Acknowledgements. Work on this chapter was supported by DOD/NSA Grant E-
24-60R at Georgia Institute of Technology. Editor Jim Gentle read early versions
of the chapter and gave many valuable comments. All matlab programs that
produced figures and simulations are available from the author at request.

References
Anderson, T.W. (1984). An Introduction to Multivariate Statistical Analysis, Second

Edition, Wiley, New York.
Antoniadis, A. (1997). Wavelets in statistics: A Review. J. Ital. Statist. Soc., 6: 97–144.
Baraniuk, R.G. (1994). Wigner–Ville spectrum estimation via wavelet soft–

tresholding. In Proc. IEEE-SP Int. Symp. on Time-Frequency and Time-Scale
Analysis, Philadelphia.

Box, G.E.P. and Cox, D.R. (1964). An Analysis of Transformations, Journal of the
Royal Statistical Society, 26: 211–243, discussion 244–252.

Brigham, E.O. (1988). The Fast Fourier Transform and Its Applications, Prentice-
Hall, Englewood Cliffs, NJ.

Carmona, R., Hwang, W-L. and Torrésani, B. (1998). Practical Time–Frequency
Analysis, volume 9 of Wavelet Analysis and its Applications, Academic Press,
San Diego.

Cohen, A, Daubechies, I. and Vial, P. (1993). Wavelets on the interval and fast
wavelet transforms. Appl. Comput. Harmon. Anal., 1(1): 54–81.

Daubechies, I. (1992). Ten Lectures on Wavelets, Number 61 in CBMS-NSF Series
in Applied Mathematics, SIAM, Philadelphia.

Feuerverger, A. and Mureika, R. (1977). The empirical characteristic function and
its applications, The Annals of Statistics, 5: 88–97.

Flandrin, P. (1992). Time-scale analyses and self-similar stochastic processes. In
Byrnes et al. (eds), Wavelets and Their Applications, pp. 121–142, NATO ASI
Series vol. 442.

Flandrin, P. (1999). Time-Frequency/Time-scale Analysis, Academic Press, 386pp.
Gabor, D. (1946). Theory of comunication. J. IEEE, 93: 429–457.
Grossmann,A. andMorlet, J. (1984).DecompositionofHardy functions into square

integrable wavelets of constant shape. SIAM J. Math., 15: 723–736.
Grossmann, A. and Morlet, J. (1985). Decomposition of functions into wavelets

of constant shape and related transforms. In Streit, L. (ed), Mathematics and
physics, lectures on recent results, World Scientific, River Edge, NJ.

Härdle, W., Kerkyacharian, G., Pickard, D. and Tsybakov, A. (1998). Wavelets,
Approximation, and Statistical Applications, Lecture Notes in Statistics 129.
Springer-Verlag, New York.

236 Brani Vidakovic

Mallat, S.G. (1989a). Multiresolution approximations and wavelet orthonormal
bases of L2(R). Trans. Amer. Math. Soc., 315: 69–87.

Mallat, S.G. (1989b). A theory for multiresolution signal decomposition: The
wavelet representation. IEEE Trans. on Patt. Anal. Mach. Intell., 11(7): 674–693.

Mallat, S.G. (1999). A Wavelet Tour of Signal Processing, Second Edition. Academic
Press, San Diego.

Morlet, J., Arens, G., Fourgeau, E. and Giard, D. (1982). Wave propagation and
sampling theory. Geophys., 47: 203–236.

Murata, N. (2001). Properties of the empirical characteristic function and its
application to testing for independence. In Lee, Jung, Makeig, and Se-
jnowski (eds), Proceedings ICA2001, 3rd International Conference on Indepen-
dent Component Analysis, San Diego.

Pensky, M. and Vidakovic, B. (2003) Bayesian decision theoretic scale-adaptive
estimation of log-spectral density. Technical Report 01-2003, ISyE, Georgia
Institute of Technology. http://www.isye.gatech.edu/˜brani/isyestat/.

Tong, H. (1996). Non-Linear Time Series, Clarendon Press, Oxford.
Vidakovic, B. (1999). Statistical Modeling by Wavelets, Wiley, NY.
Ville, J. (1948). Théorie et Applications de la Notion de Signal Analytique, Cables

et Transmission, 2A: 61–74.
Walter, G.G. and Shen, X. (2000). Wavelets and Other Orthogonal Systems, Second

Edition, CRC Press.
Wickerhauser, M. V. (1994). Adapted Wavelet Analysis from Theory to Software,

A K Peters, Ltd., Wellesley, MA.

II.8Parallel Computing Techniques
Junji Nakano

8.1 Introduction . 238

8.2 Basic Ideas . 239

Memory Architectures of Parallel Computers . 239
Costs for Parallel Computing . 242

8.3 Parallel Computing Software. 244

Process Forking . 245
Threading . 247
OpenMP . 251
PVM . 253
MPI. 256
HPF . 260

8.4 Parallel Computing in Statistics. 262

Parallel Applications in Statistical Computing . 262
Parallel Software for Statistics . 263

238 Junji Nakano

Introduction8.1

Parallel computing means to divide a job into several tasks and use more than one
processor simultaneously toperformthese tasks.Assumeyouhavedevelopedanew
estimation method for the parameters of a complicated statistical model. After you
prove the asymptotic characteristics of the method (for instance, asymptotic distri-
bution of the estimator), you wish to perform many simulations to assure the good-
ness of the method for reasonable numbers of data values and for different values of
parameters. You must generate simulated data, for example, 100,000 times for each
length and parameter value. The total simulation work requires a huge number of
random number generations and takes a long time on your PC. If you use 100 PCs
in your institute to run these simulations simultaneously, you may expect that the
total execution time will be 1|100. This is the simple idea of parallel computing.

Computer scientists noticed the importance of parallel computing many years
ago (Flynn, 1966). It is true that the recent development of computer hardware
has been very rapid. Over roughly 40 years from 1961, the so called “Moore’s law”
holds: the number of transistors per silicon chip has doubled approximately ev-
ery 18 months (Tuomi, 2002). This means that the capacity of memory chips and
processor speeds have also increased roughly exponentially. In addition, hard disk
capacity has increased dramatically. Consequently, modern personal computers
are more powerful than “super computers” were a decade ago. Unfortunately, even
such powerful personal computers are not sufficient for our requirements. In sta-
tistical analysis, for example, while computers are becoming more powerful, data
volumes are becoming larger and statistical techniques are becoming more com-
puter intensive. We are continuously forced to realize more powerful computing
environments for statistical analysis. Parallel computing is thought to be the most
promising technique.

However, parallel computing has not been popular among statisticians until
recently (Schervish, 1988). One reason is that parallel computing was available only
on very expensive computers, which were installed at some computer centers in
universities or research institutes. Few statisticians could use these systems easily.
Further, software for parallel computing was not well prepared for general use.

Recently, cheap and powerful personal computers changed this situation. The
Beowulf project (Sterling et al., 1999), which realized a powerful computer system
by using many PCs connected by a network, was a milestone in parallel computer
development. Freely available software products for parallel computing have be-
come more mature. Thus, parallel computing has now become easy for statisticians
to access.

In this chapter, we describe an overview of available technologies for parallel
computing and give examples of their use in statistics. The next section considers
the basic ideas of parallel computing, including memory architectures. Section 8.3
introduces the available software technologies such as process forking, threading,
OpenMP, PVM (Parallel Virtual Machine), MPI (Message Passing Interface) and
HPF (High Performance Fortran). The last section describes some examples of
parallel computing in statistics.

Parallel Computing Techniques 239

Basic Ideas 8.2

Two important parts of computer hardware are the processor, which performs
computations, and memory, in which programs and data are stored. A processor is
also often called a central processing unit (CPU). Modern computer systems adopt
a stored programming architecture: all the program instructions are stored in
memory together with processed data and are executed sequentially by a processor
according to the instructions.

In a traditional single processor computer, a single stream of instructions is
generated from the program, and these instructions operate on a single stream of
data. Flynn (1966) called this arrangement a single instruction stream–single data
stream (SISD) computer.

On the other hand, a parallel computer system uses several processors, and
is realized as a single instruction stream–multiple data stream (SIMD) computer
or a multiple instruction stream–multiple data stream (MIMD) computer. SIMD
refers to a form of parallel execution in which all processors execute the same
operation on different data at the same time, and is often associated with per-
forming the same operation on every element of a vector or array. MIMD refers to
parallel execution in which each processor works independently; for example, one
processor might update a database file while another processor handles a graphic
display.

The fundamental software of a modern computer system is an operating system
such as UNIX or Microsoft Windows. They support multiple users and multiple
tasks, even on single processor systems, by adopting time-slicing mechanisms, in
which a processor executes tasks cyclically. In parallel computer systems, some
tasks are executed on different processors simultaneously.

Memory Architectures of Parallel Computers 8.2.1

The traditional computer system has a single processor (or CPU) that can access
all of the memory (Fig. 8.1). Parallel computers use more than one processor
simultaneously for a single calculation task. There are two simple methods to
increase the number of available processors in a single system. One method is to
add processors to the traditional single processor system without changing other
parts. Because all the memory is shared by all processors, such systems are called
shared memory systems (Fig. 8.2). An example of a shared memory system is a dual
processor personal computer, where the motherboard has two sockets for CPUs.
When we mount one CPU, it works as a traditional single processor system. If
we mount two CPUs, both processors can access all the memory in the PC, and it
works as a shared memory system. A second method is to connect traditional single
processor computers by a network. This is called a distributed memory system,
because the memory is used by a single processor locally and is “distributed”
over the whole system (Fig. 8.3). An example of a distributed memory system is
a network of workstations, in which each node computer works independently and
communicates with the others through a network to solve a single problem.

240 Junji Nakano

Memory

CPU

Figure 8.1. Traditional system

Memory

CPU CPU CPU

Figure 8.2. Shared memory system

Memory

CPU

Memory

CPU

Memory

CPU

Figure 8.3. Distributed memory system

Memory

CPU CPU CPU

Memory

CPU CPU CPU

Memory

CPU CPU CPU

Figure 8.4. Distributed shared memory system

Integration of shared memory and distributed memory is possible (Fig. 8.4).
Network-connected PCs that each have two processors can be considered a dis-
tributed shared memory system.

Shared Memory Systems
In the simple shared memory realization, all the processors can access all the mem-
ory at the same speed by using a common memory bus. This is known as a uniform
memory access (UMA) configuration. Performance in a UMA system is limited by
the memory bus bandwidth; adding processors to the system beyond some point
does not increase performance linearly, because signals from processors flow on
the same memory bus and often cause collisions. Typically, UMA configurations
do not scale well beyond 10 to 20 processors.

To improve communication between processors and memory, a non-uniform
memory access (NUMA) configuration is used. In NUMA systems, all processors
have access to all the memory, but the cost of accessing a specific location in
memory is different for different processors, because different regions of memory
are on physically different buses. Even if we adopt a NUMA configuration, it is not
efficient to use more than 100 processors in a shared memory system.

A shared memory system is also a symmetric multiprocessor (SMP) system, in
which any processor can do equally well any piece of work.

In a shared memory system, a single copy of an operating system is in charge
of all the processors and the memory. It usually uses a programming model called

Parallel Computing Techniques 241

Memory

CPU

Memory

CPU CPU CPU

Memory

CPU

Memory

CPU

Memory

CPU

Time

Serial Section

Parallelizable

Sections

Single Computer Shared Memory Distributed Memory

Figure 8.5. Typical parallel computing execution

“fork–join”. Each program begins by executing just a single task, called the master.
When the first parallel work is reached, the master spawns (or forks) additional
tasks (called slaves or workers), which will “join” to the master when they finish
their work (the middle figure in Fig. 8.5). Such activities can be programmed by
using software technologies such as process, thread or OpenMP, which will be
explained in the next section.

Distributed Memory Systems
In a distributed memory system, each node computer is an independent com-
puter that has, at least, processor and memory, and the nodes are connected
together by a network. This so called “network of workstations” (NOW) is the
cheapest way to construct a distributed memory system, because we can utilize
many different kinds of workstations available, connected by a network, without
adding any new hardware. However, NOW is sometimes ineffective for heavy com-
putation, because, for example, general purpose networks are slow, and nodes
may be unexpectedly used for other work, so that it is difficult to schedule them
efficiently.

Nowadays, “Beowulf class cluster computers” are popular for distributed mem-
ory parallel computing (Sterling et al., 1999). These are a kind of NOW, but there are
slight differences. First, the nodes in the cluster are the same kind of workstation
or PC, and are dedicated to the cluster calculation tasks. Typically, node computers
share the working directory on the hard disk and have no display or keyboard. The
interconnection network is isolated from external networks and is also dedicated
to the cluster, and communication among the nodes can be done without further
authentication. Operating system parameters are tuned to improve the total per-
formance for parallel computing. All these characteristics help the performance
of the parallel computing on the cluster.

242 Junji Nakano

Distributed memory systems have no memory bus problem. Each processor can
use the full bandwidth to its own local memory without interference from other
processors. Thus, there is no inherent limit to the number of processors. The size of
the system is constrained only by the network used to connect the node computers.
Some distributed memory systems consist of several thousand processors.

As nodes in a distributed memory system share no memory at all, exchange of
information among processors is more difficult than in a shared memory system.
We usually adopt a message passing programming model on a distributed memory
system; we organize a program as a set of independent tasks that communicate with
each other via messages. This introduces two sources of overhead: it takes time to
construct and send a message from one processor to another, and the receiving
processor must be interrupted to deal with messages from other processors.

Available message passing libraries are PVM and MPI . The right figure in Fig. 8.5
shows an execution image of MPI. HPF is also mainly used in distributed memory
systems. These libraries are illustrated in the next section.

Costs for Parallel Computing8.2.2

We expect that the calculation speed increases n times if we use n processors in-
stead of one. We also wish to use multiprocessor systems just like an ordinary single
processor system. However, some costs are incurred in realizing parallel comput-
ing. They include the non-parallel characteristics of the problem, communication
costs such as distributing and gathering data and|or programs, the difficulty of
programming for synchronization among executions and unexpected influences
of cache memory. All these factors reduce the effect of parallelization.

Amdahl’s Law
All programming tasks include non-parallelizable or serial parts, which cannot be
executed on several processors, for example, summarizing calculation results and
writing them to the display or file. Assume the ratio of computing time for the
serial parts to the whole task is f (0 < f < 1). If a single processor requires ts time to
complete the task, (1 − f)ts computation time is used for the parallelizable task and
fts computation time is used for the serial task. If we use n processors, the elapsed
time for execution of the parallelizable task will be at least (1 − f)ts|n, while the
execution time of the serial task remains fts. Thus, the ratio of execution time for
n processors to that for one processor, S(n), which is called the speedup factor, is

S(n) =
ts

fts + (1 − f)ts|n
=

n

1 + (n − 1)f
.

This equation is known as “Amdahl’s law” (Amdahl, 1967). When n is large, it
converges to 1|f , that is, the effect of parallel computing is limited. For example, if
f = 5%, the maximum possible speedup is 20, even if we use an infinite number of
processors. This may discourage the use of parallel computing.

Of course, as f goes to zero, S(n) converges to n, which is an ideal situation.

Parallel Computing Techniques 243

Gustafson’s Law
Amdahl’s law considers the situation where the task size is fixed and the number
of processors increases. In real problems, however, we wish to perform larger
tasks when the number of processors increases. For example, assume time s is
required for preparing a task, and time p is required for the (moderate) simulation
task. When a parallel computer is available, we wish to perform more simulations,
typically, n times larger simulations than the original ones by n processors. To
perform this simulation, a single processor system requires s + np time, while the
n-processor system requires s + p time. The speedup factor is

S(n) =
s + np

s + p
.

This equation is called “Gustafson’s law” (Gustafson, 1988). Note that if we define
f = s|(s + np), this is as same as Amdahl’s law. However, when n becomes large, S(n)
becomes large linearly. This means that parallel computing is useful for large-scale
problems in which the serial part does not increase as the problem size increases.
If s approaches zero, S(n) converges to n, the ideal situation.

Other Costs
If we divide one task into several small tasks and execute them in parallel, we must
wait until all the child tasks have been completed: we must synchronize executions.
As the slowest child task determines the total execution time, child tasks should
be designed to have almost the same execution times, otherwise some processors
may be idle while others have tasks queuing for execution. Techniques that aim to
spread tasks among the processors equally are called load balancing and are not
easy.

In a shared memory system, exchange of information among processors is
performed by variables stored in the shared memory. If several tasks use one
variable almost simultaneously, it may cause trouble. Consider two tasks trying to
decrease the value of variable x by one. Assume x = 3; task 1 obtains this value,
decreases it and writes 2 into x. If task 2 tries to do the same task before task 1
finishes its work, task 2 also obtains the value 3, and writes 2 into x. Thus, the final
result is 2, although x should have decreased twice. To avoid such a maloperation,
task 2 must wait until task 1 finishes. All parallel computing software can handle
this synchronization problem, typically by using a lock-unlock mechanism.

An important hardware aspect of shared memory systems is cache memory. As
the advances in main memory technology do not keep up with processor innova-
tions, memory access is very slow compared with processor speed. In order to solve
this problem, another layer of memory has been added between a processor and
main memory, called the cache. It is a small amount of very fast, expensive mem-
ory, that operates close to the speed of the processor. A separate cache controller
monitors memory accesses and loads data and instructions in blocks of contiguous
locations from memory into the cache. Once the content of memory is stored in
the cache, the processor can operate at full speed by using them. Sometimes, the
cache contents are different from the necessary ones. In these cases, the processor

244 Junji Nakano

is stalled and has to wait while the necessary data is newly loaded from memory
into the cache. This mechanism works well in a single processor system.

All processors in a shared memory system have their own caches. Suppose
several processors access the same location of memory and copy them into their
caches. If one processor changes the value of the memory in that location, other
processors should not use the value in their caches. A cache coherence proto-
col is used to notify this information among caches. A common cache coherence
protocol is an invalidate policy; when one copy of memory is altered, the same
data in any other cache is invalidated (by resetting a valid bit in the cache).
In shared memory systems, cache coherence is done in the hardware and the
programmer need not worry about cache coherence. However, it may cause the
slowdown of the calculation speed. Note that caches handle blocks of memo-
ry. If one processor writes to one part of the block, copies of the whole block
in other caches are invalidated though the actual data is not shared. This is
known as false sharing and can damage the performance of the cache in a shared
memory system. We are sometimes required to write programs considering the
amount of the cache memory in a shared memory system to achieve enough
performance.

Distributed memory systems require communication among node computers.
Such communication is affected by several factors, including network bandwidth,
network latency and communication latency. Network bandwidth is the number
of bits that can be transmitted in unit time. Network latency is the time to prepare
a message for sending it through the network. Communication latency is the
total time to send the message, including software overhead and interface delays.
Generally, communication is expensive compared with processor work.

If a problem can be divided into small tasks that are completely independent
and require no or very little synchronization and communication, the problem
is called “embarrassingly parallel”. Clearly, embarrassingly parallel problems are
particularly suitable for parallel computing.

Parallel Computing Software8.3

Several well-designed software technologies are available for utilizing parallel
computing hardware. Note that each of them is suitable for a specific hardware
architecture.

In this section, we use as an example the calculation of the value of π by the
approximation formula

π =
∫ 1

0

4

1 + x2
dx ∼ 1

n

n∑

i=1

4

1 +
(

i−0.5
n

)2 .

The case n = 10 is illustrated in Fig. 8.6.
A C program to calculate the last term is given in Listing 1. The main calculation

is performed in the for statement, which is easily divided into parallel-executed

Parallel Computing Techniques 245

0.0 0.2 0.4 0.6 0.8 1.0
0

1
2

3
4

x

4/
(1

+
x*

x)

Figure 8.6. Calculation of π

parts; this is an example of an embarrassingly parallel problem. We show several
parallel computing techniques by using this example in this section. We choose
this simple example to keep the length of following example source codes as small
as possible and to give a rough idea of parallel computing techniques. Note that this
example is so simple that only the most fundamental parts of each technique will be
used and explained. Many important details of each technique are left to references.

Listing 1
#include <stdio.h>

main(int argc, char **argv)
{
int n, i;
double d, s, x, pi;
n = atoi(argv[1]);
d = 1.0/n;
s = 0.0;
for (i=1; i<=n; i++){
x = (i-0.5)*d;
s += 4.0/(1.0+x*x);

}
pi = d*s;
printf("pi=%.15f\n", pi);

}

Process Forking 8.3.1

Modern operating systems have multi-user and multi-task features even on a sin-
gle processor; many users can use a single processor system and can seemingly
perform many tasks at the same time. This is usually realized by multi-process
mechanisms (Tanenbaum, 2001).

246 Junji Nakano

UNIX-like operating systems are based on the notion of a process. A process
is an entity that executes a given piece of code, has its own execution stack, its
own set of memory pages, its own file descriptors table and a unique process ID.
Multiprocessing is realizedby time-slicing theuseof theprocessor.This technology
repeatedly assigns the processor to each process for a short time. As the processor
is very fast compared with human activities, it looks as though it is working
simultaneously for several users. In shared memory systems, multiprocessing may
be performed simultaneously on several processors. Multiprocessing mechanisms
are a simple tool for realizing parallel computing.

We can use two processes to calculate the for loop in Listing 1, by using the
process-handling functions of UNIX operating systems: fork(), wait() and
exit(). The function fork() creates a new copy process of an existing process.
The new process is called the child process, and the original process is called the
parent. The return value from fork() is used to distinguish the parent from the
child; the parent receives the child’s process id, but the child receives zero. By using
this mechanism, an if statement, for example, can be used to prescribe different
work for the parent and the child. The child process finishes by calling the exit()
function, and the parent process waits for the end of the child process by using
the wait() function. This fork–join mechanism is fundamental to the UNIX
operating system, in which the first process to start invokes another process by
forking. This procedure is repeated until enough processes are invoked. Although
this mechanism was originally developed for one processor and a time-slicing
system, UNIX operating systems that support shared memory can run processes
on different processors simultaneously.

As processes are independent and share only a limited set of common resources
automatically, we must write a program for information exchange among pro-
cesses. In our example, we use functions to handle shared memory segments:
shmget(), shmat() and shmctl(). shmget() allocates a shared memo-
ry segment, shmat() attaches the shared memory segment to the process, and
shmctl() allows the user to set information such as the owner, group and per-
missions on the shared memory segment. When the parent process uses fork(),
the shared memory segment is inherited by the child process and both processes
can access it.

Listing 2 shows a two-process version of Listing 1. In the for statement, the
parent process works for i = 2, 4, 6, …, while the child process works for i =
1, 3, 5, … The child process stores its result to *shared and the parent process
receives the value and adds it to its own result, then prints the final result.

Listing 2
#include <stdio.h>
#include <sys/types.h>
#include <unistd.h>
#include <sys/ipc.h>
#include <sys/shm.h>

Parallel Computing Techniques 247

main(int argc, char **argv)
{
int n, i;
double d, s, x, pi;
int shmid, iproc;
pid_t pid;
double *shared;
n = atoi(argv[1]);
d = 1.0/n;
shmid = shmget(IPC_PRIVATE,

sizeof(double), (IPC_CREAT | 0600));
shared = shmat(shmid, 0, 0);
shmctl(shmid, IPC_RMID, 0);
iproc = 0;
if ((pid = fork()) == -1) {
fprintf(stderr, "The fork failed!\n");
exit(0);

} else {
if (pid != 0) iproc = 1 ;

}
s = 0.0;
for (i=iproc+1; i<=n; i+=2) {
x = (i-0.5)*d;
s += 4.0/(1.0+x*x);

}
pi = d*s;
if (pid == 0) {
*shared = pi;
exit(0);

} else {
wait(0);
pi = pi + *shared;
printf("pi=%.15f\n", pi);

}
}

Forking, however, is not appropriate for parallel computing. Much time and
memory is required to duplicate everything in the parent process. Further, a com-
plete copy is not always required, because, for example, the forked child process
starts execution at the point of the fork.

Threading 8.3.2

As a process created using the UNIX fork() function is expensive in setup
time and memory space, it is sometimes called a “heavyweight” process. Often

248 Junji Nakano

a partial copy of the process is enough and other parts can be shared. Such
copies can be realized by a thread or “lightweight” process. A thread is a stream
of instructions that can be scheduled as an independent unit. It is important to
understand the difference between a thread and a process. A process contains two
kinds of information: resources that are available to the entire process such as
program instructions, global data and working directory, and schedulable entities,
which include program counters and stacks. A thread is an entity within a process
that consists of the schedulable part of the process.

In a single processor system, threads are executed by time-slicing, but shared
memory parallel computers can assign threads to different processors.

Pthread Library
There were many thread libraries in the C language for specific shared memory
systems. Now, however, the Pthread library is a standard thread library for many
systems (Butenhof, 1997). The Pthread API is defined in the ANSI|IEEE POSIX
1003.1-1995 standard, which can be purchased from IEEE.

Listing 3 is an example program to calculate π by using the Pthread library. The
program creates a thread using the function pthread_create(), then assigns
a unique identifier to a variable of typepthread_t. The caller provides a function
that will be executed by the thread. The function pthread_exit() is used to
terminate itself. The function pthread_join() is analogous to wait() for
forking, but any thread may join any other thread in the process, that is, there is
no parent–child relationship.

As multi-threaded applications execute instructions concurrently, access to
process-wide (or interprocess) sharedmemoryrequiresamechanismforcoordina-
tion or synchronization among threads. It is realized by mutual exclusion (mutex)
locks. Mutexes furnish the means to guard data structures from concurrent mod-
ification. When one thread has locked the mutex, this mechanism precludes other
threads from changing the contents of the protected structure until the locker per-
forms the corresponding mutex unlock. Functions pthread_mutex_init(),
pthread_mutex_lock() and pthread_mutex_unlock() are used for
this purpose.

The compiled executable file is invoked from a command line with two ar-
guments: n and the number of threads, which is copied to the global variable
num_threads.The ith thread of the functionPIworker, which receives the val-
ue i from the original process, calculates a summation for aboutn|num_threads
times. Each thread adds its result to a global variable pi. As the variable pi should
not be accessed by more than one thread simultaneously, this operation is locked
and unlocked by the mutex mechanism.

Listing 3
#include <stdio.h>
#include <pthread.h>
int n, num_threads;

Parallel Computing Techniques 249

double d, pi;
pthread_mutex_t reduction_mutex;
pthread_t *tid;

void *PIworker(void *arg)
{
int i, myid;
double s, x, mypi;
myid = *(int *)arg;
s = 0.0;
for (i=myid+1; i<=n; i+=num_threads) {
x = (i-0.5)*d;
s += 4.0/(1.0+x*x);

}
mypi = d*s;
pthread_mutex_lock(&reduction_mutex);
pi += mypi;
pthread_mutex_unlock(&reduction_mutex);
pthread_exit(0);

}

main(int argc, char **argv)
{
int i;
int *id;
n = atoi(argv[1]);
num_threads = atoi(argv[2]);
d = 1.0/n;
pi = 0.0;
id = (int *) calloc(n,sizeof(int));
tid = (pthread_t *) calloc(num_threads,

sizeof(pthread_t));
if(pthread_mutex_init(&reduction_mutex,NULL)) {
fprintf(stderr, "Cannot init lock\n");
exit(0);

};
for (i=0; i<num_threads; i++) {
id[i] = i;
if(pthread_create(&tid[i],NULL,

PIworker,(void *)&id[i])) {
exit(1);

};
};
for (i=0; i<num_threads; i++)
pthread_join(tid[i],NULL);

printf("pi=%.15f\n", pi);
}

250 Junji Nakano

We note that it is not easy to write multi-threaded applications in the C language,
even if we use the Pthread library. As the Pthread library was added to the C lan-
guage later, there are no assurances that original basic libraries are “thread-safe”.
The term thread-safe means that a given library function is implemented in such
a manner that it can be executed correctly by multiple concurrent threads of execu-
tion.Wemustbecareful touse thread-safe functions inmulti-threadprogramming.
The Pthread library is mainly used by professional system programmers to support
advanced parallel computing technologies such as OpenMP.

Java Threads
The Java language supports threads as one of its essential features (Oaks and Wong,
1999). The Java library provides a Thread class that supports a rich collection
of methods: for example, the method start() causes the thread to execute the
method run(), the method join() waits for the thread to finish execution. The
lock–unlock mechanism can be easily realized by the synchronized declara-
tion. All fundamental libraries are thread-safe. These features make Java suitable
for thread programming.

Listing 4
public class PiJavaThread {
int n, numThreads;
double pi = 0.0;
synchronized void addPi(double p) {
pi += p;

}
public PiJavaThread(int nd, int nt) {
n = nd;
numThreads = nt;
Thread threads[] = new Thread[numThreads];
for (int i=0; i<numThreads; i++) {
threads[i] = new Thread(new PIworker(i));
threads[i].start();

}
for (int i=0; i<numThreads; i++) {
try {
threads[i].join();

} catch (InterruptedException e) {
e.printStackTrace();

}
}

}
class PIworker implements Runnable {
int myid;
public PIworker(int id) {

Parallel Computing Techniques 251

myid = id;
}
public void run() {
double d, s, x;
d = 1.0/n;
s = 0.0;
for (int i=myid+1; i<=n; i+=numThreads) {
x = (i-0.5)*d;
s += 4.0/(1.0+x*x);

}
addPi(d*s);

}
}
public static void main(String[] args) {
PiJavaThread piJavaThread

= new PiJavaThread(Integer.parseInt(args[0]),
Integer.parseInt(args[1]));

System.out.println(" pi = " + piJavaThread.pi);
}

}

Listing 4 is an example program to calculate the value of π using the Java lan-
guage. This program is almost the same as the Pthread example. As the method
declaration for addPi() contains the keyword synchronized, it can be per-
formed by only one thread; other threads must wait until the addPi() method
of the currently executing thread finishes.

Although the Java language is designed to be thread-safe and provides several
means for thread programming, it is still difficult to write efficient application
programs in Java. Java’s tools are generally well suited to system programming
applications, such as graphical user interfaces and distributed systems, because
they provide synchronization operations that are detailed and powerful, but un-
structured and complex. They can be considered an assembly language for thread
programming. Thus, it is not easy to use them for statistical programming.

OpenMP 8.3.3

OpenMP is a directive-based parallelization technique (Chandra et al., 2001) that
supports fork–join parallelism and is mainly for shared memory systems. The MP
in OpenMP stands for “Multi Processing”. It supports Fortran (77 and 90), C and
C++, and is suitable for numerical calculation, including statistical computing. It is
standardized for portability by the OpenMP Architecture Review Board (OpenMP
Architecture Review Board, 2004). The first Fortran specification 1.0 was released
in 1997, and was updated as Fortran specification 1.1 in 1999. New features were
added as Fortran specification 2.0 in 2000. Several commercial compilers support
OpenMP.

252 Junji Nakano

We use the Fortran language for our examples in this section, because Fortran
is still mainly used for high-performance computers focused on large numerical
computation. Fortran is one of the oldest computer languages and has many
reliable and efficient numerical libraries and compilers. The Fortran program for
the simple π computation is shown in Listing 5.

We note that C (and C++) are also used for large numerical computations and
are now supported to the same extent as Fortran. The following examples can
easily be replaced by C programs (except the HPF examples) but we omit them for
space reasons.

Listing 5
integer n, i
double precision d, s, x, pi
write(*,*) ’n?’
read(*,*) n
d = 1.0/n
s = 0.0
do i=1, n
x = (i-0.5)*d
s = s+4.0/(1.0+x*x)

enddo
pi = d*s
write(*,100) pi

100 format(’ pi = ’, f20.15)
end

We can parallelize this program simply by using OpenMP directives (Listing 6).

Listing 6
integer n, i
double precision d, s, x, pi
write(*,*) ’n?’
read(*,*) n
d = 1.0/n
s = 0.0

!$OMP PARALLEL PRIVATE(x), SHARED(d)
!$OMP& REDUCTION(+: s)
!$OMP DO

do i = 1, n
x = (i-0.5)*d
s = s+4.0/(1.0+x*x)

end do
!$OMP END DO

Parallel Computing Techniques 253

!$OMP END PARALLEL
pi = d*s
write(*,100) pi

100 format(’ pi = ’, f20.15)
end

Lines started by !$OMP are OpenMP directives to specify parallel computing.
Each OpenMP directive starts with !$OMP, followed by a directive and, optional-
ly, clauses. For example, “!$OMP PARALLEL” and “!$OMP END PARALLEL”
encloses a parallel region and all code lexically enclosed is executed by all threads.
The number of threads is usually specified by an environmental variable
OMP_NUM_THREADS in the shell environment. We also require a process dis-
tribution directive “!$OMP DO” and “!$OMP END DO” to enclose a loop that
is to be executed in parallel. Within a parallel region, data can either be private
to each executing thread, or be shared among threads. By default, all data in
static extents are shared (an exception is the loop variable of the parallel loop,
which is always private). In the example, shared scope is not desirable for x
and s, so we use a suitable clause to make them private: “!$OMP PARALLEL
PRIVATE (x, s)”. By default, data in dynamic extent (subroutine calls) are
private (an exception is data with theSAVE attribute), and data inCOMMON blocks
are shared.

An OpenMP compiler will automatically translate this program into a Pthread
program that can be executed by several processors on shared memory systems.

PVM 8.3.4

PVM (Parallel Virtual Machine) is one of the first widely used message passing
programming systems. It was designed to link separate host machines to form
a virtual machine, which is a single manageable computing resource (Geist et al.,
1994). It is (mainly) suitable for heterogeneous distributed memory systems. The
first version of PVM was written in 1989 at Oak Ridge National Laboratory, but
was not released publicly. Version 2 was written at the University of Tennessee
Knoxville and released in 1991. Version 3 was redesigned and released in 1993.
Version 3.4 was released in 1997. The newest minor version, 3.3.4, was released in
2001 (PVM Project Members, 2004).

PVM is freely available and portable (available on Windows and several UNIX
systems). It is mainly used in Fortran, C and C++, and extended to be used in
many other languages, such as Tcl|Tk, Perl and Python.

The PVM system is composed of two parts: a PVM daemon program (pvmd) and
libraries of PVM interface routines. Pvmd provides communication and process
control between computers. One pvmd runs on each host of a virtual machine.
It serves as a message router and controller, and provides a point of contact,
authentication, process control and fault detection. The first pvmd (which must
be started by the user) is designated the master, while the others (started by the
master) are called slaves or workers.

254 Junji Nakano

PVM libraries such as libpvm3.a and libfpvm3.a allow a task to interface
with the pvmd and other tasks. They contain functions for packing and unpacking
messages, and functions to perform PVM calls by using the message functions to
send service requests to the pvmd.

Example Fortran programs are in Listings 7a and 7b.

Listing 7a
program pimaster
include ’/usr/share/pvm3/include/fpvm3.h’
integer n, i
double precision d, s, pi
integer mytid,numprocs,tids(0:32),status
integer numt,msgtype,info
character*8 arch
write(*,*) ’n, numprocs?’
read(*,*) n, numprocs
call PVMFMYTID(mytid)
arch = ’*’
call PVMFSPAWN(’piworker’,PVMDEFAULT,arch,
$ numprocs,tids,numt)
if(numt .lt. numprocs) then

write(*,*) ’trouble spawning’
call PVMFEXIT(info)
stop

endif
d = 1.0/n
msgtype = 0
do 10 i=0, numprocs-1
call PVMFINITSEND(PVMDEFAULT,info)
call PVMFPACK(INTEGER4, numprocs, 1, 1, info)
call PVMFPACK(INTEGER4, i, 1, 1, info)
call PVMFPACK(INTEGER4, n, 1, 1, info)
call PVMFPACK(REAL8, d, 1, 1, info)
call PVMFSEND(tids(i),msgtype,info)

10 continue
s=0.0
msgtype = 5
do 20 i=0, numprocs-1

call PVMFRECV(-1,msgtype,info)
call PVMFUNPACK(REAL8,x,1,1,info)
s = s+x

20 continue
pi = d*s
write(*,100) pi

Parallel Computing Techniques 255

100 format(’ pi = ’, f20.15)
call PVMFEXIT(info)
end

Listing 7b
program piworker
include ’/usr/share/pvm3/include/fpvm3.h’
integer n, i
double precision s, x, d
integer mytid,myid,numprocs,msgtype,master,info
call PVMFMYTID(mytid)
msgtype = 0
call PVMFRECV(-1,msgtype,info)
call PVMFUNPACK(INTEGER4, numprocs, 1, 1, info)
call PVMFUNPACK(INTEGER4, myid, 1, 1, info)
call PVMFUNPACK(INTEGER4, n, 1, 1, info)
call PVMFUNPACK(REAL8, d, 1, 1, info)
s = 0.0
do 10 i = myid+1, n, numprocs
x = (i-0.5)*d
s = s+4.0/(1.0+x*x)

10 continue
call PVMFINITSEND(PVMDEFAULT,info)
call PVMFPACK(REAL8, s,1,1, info)
call PVMFPARENT(master)
msgtype = 5
call PVMFSEND(master,msgtype,info)
call PVMFEXIT(info)
end

Listing 7a is the master program, and Listing 7b is the slave program, and its
compiled executable file name should be piworker. Both programs include the
Fortran PVM header file fpvm3.h.

The first PVM call PVMFMYTID() in the master program informs the pvmd of
its existence and assigns a task id to the calling task.

After theprogramis enrolled in thevirtualmachine, themasterprogramspawns
slave processes by the routine PVMFSPAWN(). The first argument is a string
containing the name of the executable file that is to be used. The fourth argument
specifies the number of copies of the task to be spawned and the fifth argument
is an integer array that is to contain the task ids of all tasks successfully spawned.
The routine returns the number of tasks that were successfully created via the last
argument.

To send a message from one task to another, a send buffer is created to hold the
data. The routine PVMFINITSEND() creates and clears the buffer and returns

256 Junji Nakano

a buffer identifier. The buffer must be packed with data to be sent by the routine
PVMFPACK(). The first argument specifies the type of data to be packed. The
second argument is the first item to be packed, the third is the total number
of items to be packed and the fourth is the stride to use when packing. A single
message can contain any number of different data types; however, we should ensure
that the received message is unpacked in the same way it was originally packed by
the routine PVMFUNPACK(). The routine PVMFSEND() attaches an integer label
of msgtype and sends the contents of the send buffer to the task specified by the
first argument.

After the required data have been distributed to each worker process, the master
program must receive a partial sum from each of the worker processes by the
PVMFRECV() routine. This receives a message from the task specified by the first
argument with the label of the second argument and places it into the receive
buffer. Note that a value of -1 for an argument will match with any task id and/or
label. The master program expects a label value of 5 on messages from the worker
tasks.

TheunpackingroutinePVMFUNPACK()hasthesameargumentsasPVMFPACK().
The second argument shows where the first item unpacked is to be stored.

After the sum has been computed and printed, the master task informs the PVM
daemon that it is withdrawing from the virtual machine. This is done by calling
the routine PVMFEXIT().

The worker program uses the same PVM routines as the master program. It also
uses PVMFPARENT() routine to find the task id of the master task that spawned
the current task.

When we compile Fortran PVM codes, we must link in both the PVM Fortran
library and the standard PVM library compiled for the target machine architecture.
Before executing the program, the executables of the worker program should be
available in a specific directory on all the slave nodes. The default authentication
is performed by rsh call.

MPI8.3.5

MPI (Message Passing Interface) is the most widely used parallel computing tech-
nique. It specifies a library for adding message passing mechanisms to existing
languages such as Fortran or C. MPI is mainly used for homogeneous distributed
memory systems.

MPI appeared after PVM. PVM was a research effort and did not address the
full spectrum of issues: it lacked vendor support, and was not implemented at the
most efficient level for a particular hardware. The MPI Forum (Message Passing
Interface (MPI) Forum, 2004) was organized in 1992 with broad participation by
vendors (such as IBM, Intel, SGI), portability library writers (including PVM), and
users such as application scientists and library writers. MPI-1.1 was released in
1995, MPI-1.2 was released in 1997, and MPI-2 was released in 1997.

MPI-1has several functions thatwerenot implemented inPVM.Communicators
encapsulate communication spaces for library safety. Data types reduce copying

Parallel Computing Techniques 257

costs and permit heterogeneity. Multiple communication modes allow precise
buffer management. MPI-1 has extensive collective operations for scalable global
communication, and supports process topologies that permit efficient process
placement and user views of process layout (Gropp et al., 1999a).

In MPI-2, other functions were added: extensions to the message passing model,
dynamic process management, one-sided operations (remote memory access),
parallel I|O, thread support, C++ and Fortran 90 bindings, and extended collective
operations (Gropp et al., 1999b).

MPI implementations are released from both vendors and research groups.
MPICH (MPICH Team, 2004) and LAM|MPI (LAM Team, 2004) are widely used
free implementations.

Although MPI has more than 150 routines, many parallel programs can be
written using just six routines, only two of which are non-trivial: MPI_INIT(),
MPI_FINALIZE(),MPI_COMM_SIZE(),MPI_COMM_RANK(),MPI_SEND()
and MPI_RECV(). An example program is shown in Listing 8.

Listing 8
include ’mpif.h’
integer n, i
double precision d, s, x, pi, temp
integer myid, numprocs, ierr, status(3)
integer sumtag, sizetag, master
call MPI_INIT(ierr)
call MPI_COMM_SIZE(MPI_COMM_WORLD,numprocs,ierr)
call MPI_COMM_RANK(MPI_COMM_WORLD,myid,ierr)
sizetag = 10
sumtag = 17
master = 0
if (myid .eq. master) then
write(*,*) ’n?’
read(*,*) n
do i = 1, numprocs-1
call MPI_SEND(n,1,MPI_INTEGER,i,sizetag,

$ MPI_COMM_WORLD,ierr)
enddo

else
call MPI_RECV(n,1,MPI_INTEGER,master,sizetag,

$ MPI_COMM_WORLD,status,ierr)
endif
d = 1.0/n
s = 0.0
do i = myid+1, n, numprocs

x = (i-0.5)*d
s = s+4.0/(1.0+x*x)

258 Junji Nakano

enddo
pi = d*s
if (myid .ne. master) then
call MPI_SEND(pi,1,MPI_DOUBLE_PRECISION,

$ master,sumtag,MPI_COMM_WORLD,ierr)
else
do i = 1, numprocs-1
call MPI_RECV(temp,1,MPI_DOUBLE_PRECISION,

$ i,sumtag,MPI_COMM_WORLD,status,ierr)
pi = pi+temp

enddo
endif
if (myid .eq. master) then
write(*, 100) pi

100 format(’ pi = ’, f20.15)
endif
call MPI_FINALIZE(ierr)
end

MPI follows the single program-multiple data (SPMD) parallel execution model.
SPMD is a restricted version of MIMD in which all processors run the same
programs, but unlike SIMD, each processor may take a different flow path in the
common program.

If the example program is stored in file prog8.f, typical command lines for
executing it are

f77 -o prog8 prog8.f -lmpi
mpirun -np 5 prog8

where the command mpirun starts five copies of process prog8 simultaneously.
All processes communicate via MPI routines.

The first MPI call must be MPI_INIT(), which initializes the message passing
routines. In MPI, we can divide our tasks into groups, called communicators.
MPI_COMM_SIZE() is used to find the number of tasks in a specified MPI
communicator. In the example, we use the communicator MPI_COMM_WORLD,
which includes all MPI processes. MPI_COMM_RANK() finds the rank (the name
or identifier) of the tasks running the code. Each task in a communicator is assigned
an identifying number from 0 to numprocs-1.
MPI_SEND() allows the passing of any kind of variable, even a large array, to

any group of tasks. The first argument is the variable we want to send, the second
argument is the number of elements passed. The third argument is the kind of
variable, the fourth is the id number of the task to which we send the message, and
the fifth is a message tag by which the receiver verifies that it receives the message it
expects. Once a message is sent, we must receive it on another task. The arguments
of the routineMPI_RECV() are similar to those of MPI_SEND(). When we finish

Parallel Computing Techniques 259

with the message passing routines, we must close out the MPI routines by the call
MPI_FINALIZE().

In parallel computing, collective operations often appears. MPI supports use-
ful routines for them. MPI_BCAST distributes data from one process to all
others in a communicator. MPI_REDUCE combines data from all processes in
a communicator and returns it to one process. In many numerical algorithms,
SEND|RECEIVE can be replaced by BCAST|REDUCE, improving both simplicity
and efficiency. Listing 8 can be replaced by Listing 9 (some parts of Listing 8 are
omitted).

Listing 9
...

master = 0
if (myid .eq. master) then
write(*,*) ’n?’
read(*,*) n

endif
call MPI_BCAST(n,1,MPI_INTEGER,master,
$ MPI_COMM_WORLD,ierr)
d = 1.0/n
s = 0.0

...
enddo
pi = d*s
call MPI_REDUCE(pi,temp,1,MPI_DOUBLE_PRECISION,
$ MPI_SUM,master,MPI_COMM_WORLD,ierr)
pi = temp
if (myid .eq. master) then
write(*, 100) pi
...

In distributed shared memory systems, both OpenMP and MPI can be used
together to use all the processors efficiently. Again, Listing 8 can be replaced by
Listing 10 (the same parts of Listing 8 are omitted) to use OpenMP.

Listing 10
...

d = 1.0/n
s = 0.0

!$OMP PARALLEL PRIVATE(x), SHARED(d)
!$OMP& REDUCTION(+: s)
!$OMP DO

do i = myid+1, n, numprocs

260 Junji Nakano

x = (i-0.5)*d
s = s+4.0/(1.0+x*x)

enddo
!$OMP END DO
!$OMP END PARALLEL

pi = d*s
if (myid .ne. master) then

...

HPF8.3.6

HPF (High Performance Fortran) is a Fortran 90 with further data parallel pro-
gramming features (Koelbel et al., 1993). In data parallel programming, we specify
which processor owns what data, and the owner of the data does the computation
on the data (Owner-computes rule).

Fortran 90 provides many features that are well suited to data parallel pro-
gramming, such as array processing syntax, new functions for array calcula-
tions, modular programming constructs and object-oriented programming fea-
tures.

HPF adds additional features to enable data parallel programming. We use
compiler directives to distribute data on the processors, to align arrays and to
declare that a loop can be calculated in parallel without affecting the numerical
results. HPF also has a loop control structure that is more flexible than DO, and
new intrinsic functions for array calculations.

The High Performance Fortran Forum (HPFF) (High Performance Fortran
Forum, 2004) is a coalition of industry, academic and laboratory representa-
tives, and defined HPF 1.0 in 1993. HPF 1.1 was released in 1994 and HPF 2.0
was released in 1997. Several commercial and free HPF compilers are now avail-
able.

Listing 11 is an example program for calculating π in HPF.

Listing 11
integer n, i
double precision d, s, pi
double precision, dimension (:),
$ allocatable :: x, y

!HPF$ PROCESSORS procs(4)
!HPF$ DISTRIBUTE x(CYCLIC) ONTO procs
!HPF$ ALIGN y(i) WITH x(i)

write(*,*) ’n?’
read(*,*) n
allocate(x(n))
allocate(y(n))

Parallel Computing Techniques 261

d = 1.0/n
!HPF$ INDEPENDENT

FORALL (i = 1:n)
x(i) = (i-0.5)*d
y(i) = 4.0/(1.0 + x(i)*x(i))

end FORALL
pi = d*SUM(y)
write (*, 100) pi

100 format(’ pi = ’, f20.15)
deallocate(x)
deallocate(y)
end

!HPF$ is used for all HPF compiler directives. We note that this is a com-
ment to non-HPF compilers and is ignored by them. The PROCESSORS directive
specifies the shape of the grid of abstract processors. Another example “!HPF$
PROCESSORS exprocs(6,2)” specifies a 6× 2 array of 12 abstract processors
labelled exprocs.

The DISTRIBUTE directive partitions an array by specifying a regular distri-
bution pattern for each dimension ONTO the arrangement of abstract processors.
The CYCLIC pattern spreads the elements one per processor, wrapping around
when it runs out of processors, i.e., this pattern distributes the data in the same
way that the program in Listing 8 performs. Another pattern is BLOCK, which
breaks the array into equal-sized blocks, one per processor. The rank of the ab-
stract processor grid must be equal to the number of distributed axes of the
array.

The ALIGN directive is used to specify relationships between data objects. In
the example program, elements of x and y that have the same index are placed on
the same processor.

The INDEPENDENT directive informs the compiler that in the execution of the
FORALL construct or the do loop, no iteration affects any other iteration in any
way.

The FORALL statement is a data parallel construct that defines the assignment
of multiple elements in an array but does not restrict the order of assignment to
individual elements. Note that the do loop executes on each element in a rigidly
defined order.

The SUM intrinsic function performs reduction on whole arrays.
We may compare HPF with OpenMP, because both systems use compiler di-

rectives in a standard language (Fortran) syntax. In OpenMP, the user specifies
the distribution of iterations, while in HPF, the user specifies the distribution
of data. In other words, OpenMP adopts the instruction parallel programming
model while HPF adopts data parallel programming model. OpenMP is suit-
able for shared memory systems whereas HPF is suitable for distributed memory
systems.

262 Junji Nakano

Parallel Computing in Statistics8.4

Parallel Applications in Statistical Computing8.4.1

The most important thing in parallel computing is to divide a job into small
tasks for parallel execution. We call the amount of independent parallel processing
that can occur before requiring some sort of communication or synchronization
the “granularity”. Fine granularity may allow only a few arithmetic operations
between processing one message and the next, whereas coarse granularity may
allow millions. Although the parallel computing techniques described above can
support programming of any granularity, coarse granularity is preferable for many
statistical tasks. Fine granularity requires much information exchange among
processors and it is difficult to write the required programs. Fortunately, many
statistical tasks are easily divided into coarse granular tasks. Some of them are
embarrassingly parallel.

In data analysis, we often wish to perform the same statistical calculations
on many data sets. Each calculation for a data set is performed independently
from other data sets, so the calculations can be performed simultaneously. For
example, Hegland et al. (1999) implemented the backfitting algorithm to estimate
a generalized additive model for a large data set by dividing it into small data sets,
fitting a function in parallel and merging them together. Beddo (2002) performed
parallel multiple correspondence analysis by dividing an original data set and
merging their calculation results.

Another embarrassingly parallel example is a simulation or a resampling com-
putation, which generates new data sets by using a random number generating
mechanism based on a given data set or parameters. We calculate some statistics for
those data sets, repeat such operations many times and summarize their results to
show empirical distribution characteristics of the statistics. In this case, all calcu-
lations are performed simultaneously except the last part. Beddo (2002) provided
an example of bootstrapping from parallel multiple correspondence analysis.

We must be careful that random numbers are appropriately generated in parallel
execution. For example, random seeds for each process should all be different
values, at least. SPRNG (Mascagni, 1999) is a useful random number generator for
parallel programming. It allows for the dynamic creation of independent random
number streams on parallel machines without interprocessor communication.
It is available in the MPI environment and the macro SIMPLE_SPRNG should
be defined to invoke the simple interface. Then the macro USE_MPI is defined
to instruct SPRNG to make MPI calls during initialization. Fortran users should
include the header filesprng_f.h and callsprng() to obtain a double precision
random number in (0, 1). In compiling, the libraries liblcg.a and the MPI
library should be linked.

The maximum likelihood method requires much computation and can be par-
allelized. Jones et al. (1999) describes a parallel implementation of the maximum
likelihood estimation using the EM algorithm for positron emission tomography

Parallel Computing Techniques 263

image reconstruction. Swann (2002) showed maximum likelihood estimation for
a simple econometric problem with Fortran code and a full explanation of MPI.
Malard (2002) solved a restricted maximum likelihood estimation of variance-
covariance matrix by using freely available toolkits: the portable extensible toolkit
for scientific computation (PETSc) and the toolkit for advanced optimazation
(TAO) (Balay et al., 2001) which are built on MPI.

Optimization with dynamic programming requires much computation and is
suitable for parallel computing. Hardwick et al. (1999) used this technique to solve
sequential allocation problems involving three Bernoulli populations. Christofides
et al. (1999) applied it to the problem of discretizing multidimensional probability
functions.

Racine (2002) demonstrated that kernel density estimation is also calculated
efficiently in parallel.

Parallel Software for Statistics 8.4.2

Several commercial and non-commercial parallel linear algebra packages that are
useful for statistical computation are available for Fortran and|or C. We mention
two non-commercial packages with freely available source codes: ScaLAPACK
(Blackford et al., 1997) supports MPI and PVM, and PLAPACK (van de Geijin,
1997) supports MPI. Murphy et al. (1999) described the work to transfer sequential
libraries (Gram-Schmidt orthogonalization and linear least squares with equally
constraints) to parallel systems by using Fortran with MPI.

Although we have many statistical software products, few of them have parallel
features. Parallel statistical systems are still at the research stage. Bull et al. (1999)
ported a multilevel modeling package MLn into a shared memory system by using
C++with threads.YamamotoandNakano (2002) explaineda systemfor time series
analysis that has functions to use several computers via Tkpvm, an implementation
of PVM in the Tcl|Tk language.

The statistical systems R (The R Development Core Team, 2004) and S (Cham-
bers, 1998) have some projects to add parallel computing features. Temple Lang
(1997) added thread functions to S. PVM and MPI are directly available from R via
the rpvm (Li and Rossini, 2001) and Rmpi (Yu, 2002) packages. They are used to
realize the package “snow” (Rossini et al., 2003), which implements simple com-
mands for using a workstation cluster for embarrassingly parallel computations
in R. A simple example session is:

> cl <- makeCluster(2, type = "PVM")
> clusterSetupSPRNG(cl)
> clusterCall(cl, runif, 3)
[[1]]
[1] 0.749391854 0.007316102 0.152742874

[[2]]
[1] 0.8424790 0.8896625 0.2256776

264 Junji Nakano

where a PVM cluster of two computers is started by the first command and the
SPRNG library is prepared by the second command. Three uniform random num-
bers are generated on each computer and the results are printed by the third
command.

The statistical system “Jasp” (Nakano et al., 2000) is implementing experimental
parallel computing functions via network functions of the Java language (see also
http:||jasp.ism.ac.jp|).

References
Amdahl, G. M. (1967). Validity of the single-processor approach to achieving large

scale computing capabilities. In AFIPS Conference Proceedings, volume 30,
pages 483–485.

Balay, S., Buschelman, K., Gropp, W. D., Kaushik, D., Knepley, M., McInnes, L. C.,
Smith, B. F., and Zhang, H. (2001). PETSc home page.
http:||www.mcs.anl.gov|petsc.

Beddo, V. (2002). Applications of parallel programming in Statistics. Ph.D. disser-
tation, University of California, Los Angeles.
http:||theses.stat.ucla.edu|19|parallel_programming_beddo.pdf.

Blackford, L., Choi, J., Cleary, A., D’Azevedo, E., Demmel, J., Dhillon, I., Dongarra,
J., Hammarling, S., Henry, G., Petitet, A., Stanley, K., Walker, D., and Whaley,
R. C. (1997). ScaLAPACK Users’ Guide. SIAM Press.

Bull, J. M., Riley, G. D., Rasbash, J., and Goldstein, H. (1999). Parallel imple-
mentation of a multilevel modelling package. Computational Statistics & Data
Analysis, 31(4):457–474.

Butenhof, D. R. (1997). Programming with POSIX Threads. Addison Wesley.
Chambers, J. M. (1998). Programming with Data: A Guide to the S Language.

Springer-Verlag.
Chandra, R., Dagum, L., Kohr, D., Maydan, D., McDonald, J., and Menon, R. (2001).

Parallel Programming in OpenMP. Morgan Kaufman.
Christofides,A.,Tanyi,B.,Christofides,D.,Whobrey,D., andChristofides,N. (1999).

The optimal discretization of probability density functions. Computational
Statistics & Data Analysis, 31(4):475–486.

Flynn, M. (1966). Very high-speed computing systems. Proc. IEEE, 54(12):1901–
1909.

Geist, A., Beguelin, A., Dongarra, J., Jiang, W., Manchek, R., and Sunderam,
V. S. (1994). PVM: Parallel Virtual Machine: A Users’ Guide and Tutorial for
Networked Parallel Computing. MIT Press.

Gropp, W., Lusk, E., and Skjellum, A. (1999a). Using MPI: Portable Parallel Pro-
gramming with the Message-Passing Interface, 2nd Edition. MIT Press.

Gropp, W., Lusk, E., and Thakur, R. (1999b). Using MPI-2: Advanced Features of
the Message-Passing Interface. MIT Press.

Gustafson, J. L. (1988). Reevaluating amdahl’s law. Comm. ACM, 31(5):532–533.

Parallel Computing Techniques 265

Hardwick, J., Oehmke, R., and Stout, Q. F. (1999). A program for sequential alloca-
tion of three bermoulli populations. Computational Statistics & Data Analysis,
31(4):397–416.

Hegland,M.,McIntosh, I., andTurlach,B.A. (1999).Aparallel solver forgeneralized
additive models. Computational Statistics & Data Analysis, 31(4):377–396.

High Performance Fortran Forum (2004). HPF: The high performance fortran
home page. http:||www.crpc.rice.edu|HPFF|.

Jones, H., Mitra, G., Parkinson, D., and Spinks, T. (1999). A parallel imple-
mentation of the maximum likelihood method in positron emission tomog-
raphy image reconstruction. Computational Statistics & Data Analysis, 31(4):
417–439.

Koelbel, C. H., Loveman, D. B., Schreiber, R. S., Steele, J. G. L., and Zosel, M. E.
(1993). The High Performance Fortran Handbook. MIT Press.

LAM Team (2004). LAM|MPI parallel computing. http:||www.lam-mpi.org|.
Li, N. and Rossini, A. (2001). RPVM: Cluster statistical computing in R. R News,

1(3):4–7. http:||CRAN.R-project.org|doc|Rnews|.
Malard, J. M. (2002). Parallel restricted maximum likelihood estimation for linear

models with a dense exogenous matrix. Parallel Computing, 28(2):343–353.
Mascagni, M. (1999). SPRNG: A scalable library for pseudorandom number gener-

ation. In Spanier, J. et al., editor, Proceedings of the Third International Confer-
ence on Monte Carlo and Quasi Monte Carlo Methods in Scientific Computing.
Springer-Verlag.

Message Passing Interface (MPI) Forum (2004). Message passing interface (MPI)
forum home page. http:||www.mpi-forum.org|.

MPICH Team (2004). MPICH – A portable mpi implementation.
http:||www-unix.mcs.anl.gov|mpi|mpich|.

Murphy, K., Clint, M., and Perrott, R. H. (1999). Re-engineering statistical soft-
ware for efficient parallel execution. Computational Statistics & Data Analysis,
31(4):441–456.

Nakano, J., Fujiwara, T., Yamamoto, Y., and Kobayashi, I. (2000). A statistical
package based on Pnuts. In Bethlehem, J. G. and van der Heijden, P. G. M.,
editors, COMPSTAT 2000 Proceedings in Computational Statistics, pages 361–
366. Physica-Verlag.

Oaks, S. and Wong, H. (1999). Java Threads, 2nd edition. O’Reilly.
OpenMP Architecture Review Board (2004). OpenMP: Simple, portable, scalable

SMP programming. http:||www.openmp.org|.
PVM Project Members (2004). PVM: Parallel virtual machine.

http:||www.csm.ornl.gov|pvm|pvm_home.html.
Racine, J. (2002). Parallel distributed kernel estimation. Computational Statistics

& Data Analysis, 40(2):293–302.
Rossini, A., Tierney, L., and Li, N. (2003). Simple parallel statistical computing in

R. UW Biostatistics working paper series, Paper 193, University of Washington.
http:||www.bepress.com|uwbiostat|paper193.

Schervish, M. J. (1988). Applications of parallel computation to statistical inference.
J. Aner. Statist. Assoc., 83:976–983.

266 Junji Nakano

Sterling, T., Salmon, J., Becker, D. J., and Savarese, D. F. (1999). How to Build a
Beowulf : A Guide to the Implementation and Application of PC Clusters. MIT
Press.

Swann, C. A. (2002). Maximum likelihood estimation using parallel computing:
An introduction to MPI. Computational Economics, 19:145–178.

Tanenbaum, A. S. (2001). Modern Operating Systems, 2nd Edition. Prentice Hall.
Temple Lang, D. (1997). A multi-threaded extension to a high level interactive sta-

tistical computing environment. Ph.D. dissertation, University of California,
Berkeley. http:||cm.bell-labs.com|stat|doc|multi-threaded-S.ps.

The R Development Core Team (2004). The R project for statistical computing.
http:||www.r-project.org|.

Tuomi, I. (2002). The lives and death of moore’s law. First Monday, 7(11).
http:||firstmonday.org|issues|issue7_11|tuomi|index.html.

van de Geijin, R. A. (1997). Using PLAPACK. MIT Press.
Yamamoto, Y. and Nakano, J. (2002). Distributed processing functions of a time

series analysis system. Journal of the Japanese Society of Computational Statis-
tics, 15(1):65–77.

Yu, H. (2002). Rmpi: Parallel statistical computing in R. R News, 2(2):10–14.
http:||CRAN.R-project.org|doc|Rnews|.

II.9Statistical Databases
Claus Boyens, Oliver Günther, Hans-J. Lenz

9.1 Introduction . 269

9.2 Fundamentals of Data Management . 270

File Systems . 270
Relational Database Systems (RDBS) . 271
Data Warehouse Systems (DWS) . 273

9.3 Architectures, Concepts and Operators . 275

Architecture of a Database System for OLTP. 275
Architecture of a Data Warehouse . 276
Concepts (ROLAP, MOLAP, HOLAP, Cube Operators) . 276
Summarizability and Normal Forms . 279
Comparison of Terminologies . 280

9.4 Access Methods. 281

Views (Virtual Tables) . 281
Tree-based Indexing . 281
Bitmap Index Structures . 282

9.5 Extraction, Transformation and Loading (ETL) . 284

9.6 Metadata and XML . 285

9.7 Privacy and Security . 287

Preventing Disclosure of Confidential Information . 287
Query Set Restriction . 287
Data Perturbation . 289
Disclosure Risk versus Data Utility . 289

268 Claus Boyens, Oliver Günther, Hans-J. Lenz

Introduction9.1

Most data collected in statistics and science is still stored in simple flat files,
usually data matrices with rows identified by a case identifier (case_id), columns
corresponding to attributes (variables), and numerical data types for the elements
of each matrix due to coding of all attributes involved. Each row (tuple) carries the
(coded) values of the attributes, besides the case_id. Due to a suitable encoding
that maps a natural domain to numerical ones, all matrix entries have a numeric
data type. The scales of the attributes may of course be quite different.

A simple example is given by census data stored at statistical offices in files
according to a schema like
census_questionnaire (case_id, age-group, gender,
profession,...).

While science gains their data from experiments, statistical agencies collect their
data still mostly off-line from surveys, reports or census. Industry and services
get their data on-line from their business process management, i.e., from their
logistical, production and administrative transactions. A typical example is sales
data, which may be represented by a schema like
sales (transaction_id, customer_id, date,
product_name, quantity, price, amount).

Such data is called microdata, since it is kept in its original form and is not
divisible but atomic. In the business area such data is labeled as on-line transaction
data because it is subject to frequent updates and is the basis for continuous
business transactions. The use of a simple file system to store microdata is rarely
a good choice because of a lack of safety and integrity, and retrieval problems.
Such data should rather be stored as tables of a relational database. A database
management system (DBMS) asserts safety, integrity and retrieval flexibility. For
instance, a query like “Find prices and amount of all sales since year 2001 where
customer 007 with product 4711 is involved” can be simply stated in structured
query language (SQL) as
SELECT price, amount FROM sales
WHERE year >= 2001
AND customer_id = 007
AND product_name = 4711;.

It is interesting to note that SQL provides for a set of query operators that is
relationally complete. One may thus process any reasonable query as long as it
does not involve “transitive closure”, i.e. a potentially infinite loop based on some
logical inference (such as a part-of hierarchy).

Macrodata is derived from microdata by applying statistical functions, aggre-
gation and grouping, and consequently has a larger granularity. For example,
a business analyst might be interested in a three-way table (data cube) of total

Statistical Databases 269

sales classified by month and year, customer_id and product_name. Such
a retrieval can be achieved on sales by the command:
SELECT SUM(sales), date.month, date.year, customer_id,
product_name

FROM sales Group BY date.month, date.year,
customer_id, product_name;.

This type of activities is coined on-line analytical operations (OLAP), which ex-
presses clearly its objective, i.e. a statistical analysis of data for planning, decision
support, and controlling.

As we shall see later there does not exist a clear boundary between retrieval and
statistical modeling. However, a statistical function like sum (or average) must be
selected for a specific query, which does imply modeling. Consequently, there will
not exist a closed set of operators on such multi-way tables. Moreover, there are
two further problems involved. First of all, which data structure of such kind of
data is efficient, and secondly, what kind of background information is needed, to
assist the management and the interpretation of real data? This leads to discuss
metadata as data about real data and functions. Modern database management
systems encapsulate metadata in a repository (integrated metadata database).

In the following we are first concerned with some fundamentals of data manage-
ment. Then we turn to the architecture of a statistical database or a data warehouse
(DW) and some concepts related to it. We pay special attention to conceptual data
structures and related operators involved, the summarizability problem, and hier-
archical attributes. We discuss metadata, access methods and “extraction, trans-
formation and loading” (ETL). We close with metadata and extensible markup
language (XML), and privacy.

Fundamentals of Data Management 9.2

We start our discussion with file systems, have a look at database systems (DBSs)
useful to store transaction or microdata, and finally turn to DWs which host
macrodata either in a real (materialized) or virtual form.

File Systems 9.2.1

Data is classically stored in files. Files can be viewed as a conceptually related
set R of records, which are represented by a given record type, see Wirth (1986),
and an access mode (direct or sequential). If the records have a numeric type for
each of its fields and the mode is sequential, then a data matrix can be stored
in a sequential file. A collection of such files is called a file system (FS), if there
exist logical relations between the files f∈ FS, a set of constraints on FS and ap-
plication software. Typical applications in statistics are simple surveys like price
surveys, where in most cases only one file is needed. A more complex file system

270 Claus Boyens, Oliver Günther, Hans-J. Lenz

is compulsory if, for instance, stratified or panel sampling designs are considered,
where various sampling periods, areas, objects and units (carriers of interest) are
involved. Moreover, relational data mining, as described by Dzeroski and Lavrac
(2001) and Wrobel (2001), is devoted to such data structures.

File systems are appropriate if only single user-access and weakly logically con-
nected files with simple constraints are effective. Note that application programs
must be specially tailored to execute queries, and to achieve data safety and secu-
rity. This implies data dependence between the software and the files referenced,
which reduces the program’s flexibility with respect to structural changes of the
data structure. These pitfalls can be overcome by DBSs.

Relational Database Systems (RDBS)9.2.2

Multi-user access, complex data structures and logical restrictions ask for a rela-
tional database system (RDBS). It consists of a set T of relations (flat tables) to-
gether with a set S of corresponding schemas and a set C of constraints, a database
management system and application software. A database schema describes the at-
tributes (variables) of a specific table, its data types and roles. To avoid redundancy
and anomalies during insert, delete or update transactions, those tables should be
transformed into a “normal form”, see Elmasri and Navathe (1999). As an example,
we take a Census. When we look at the RDBS ‘Census’ from a conceptual point
of view, there are four table schemas involved: Census-questionnaire, household,
dwelling, and employment. We shall consider only the first two in some detail, and
select only some few attributes for the sake of brevity. The first schema is
census_questionnaire(case_id, age-group, gender,
profession, ...).

Its first three attributes are numeric and the fourth one is of type ‘string’. The
attribute case_id acts as a primary key, i.e., the remaining attributes are func-
tionally dependent on it. Because a key attribute uniquely identifies any tuple
(record) of the corresponding table (set of tuples), there is one constraint among
others saying that duplicates in a given table are not allowed. In order to men-
tion just one further constraint, the domain of the identifier case_id may be
restricted to the set of positive integers.

The next schema is

household (household_id, case-id, role,...).

The first two attributes have a numeric domain, while role is of type ‘string’ with
the value set {“member”, “owner”}. Of course, we have again the constraint that
duplicates are not allowed, but we need at least one further restriction to ensure
reference integrity, i.e., whenever there exist entries of people grouped together in
a household, each of their corresponding records in census_questionnaire
has to exist.

Statistical Databases 271

Last but not least, we reconsider our sales example from the introduction. The
schema is

sales (transaction_id, customer_id, date, product_name,
quantity, price, amount)

The primary key is transaction_id, which implies that only one product
can be part of any transaction. Evidently, this scheme is not normalized, be-
cause price depends on product_name besides of transaction_id, and
amount = quantity × price. The relation itself is of degree (number of
attributes) seven. The six attributes customer_id, date, …, amount span
a six-dimensional data space, where each tuple has six data elements, and is identi-
fied by its correspondingtransaction_id. We represent four tuples in Table 9.1
to illustrate the difference between a schema and its corresponding relation (table).
We use abbreviations in the header of the table sales.

Table 9.1. The relational table sales of degree 7 and cardinality 4

Transaction_id customer_id Date Product_name Quantity Price Amount

015 A 4 Jan 97 Tennis Shoes 200 95 19,000.00
018 A 4 Jan 97 Tennis Balls 300 1.50 450.00
004 A 3 Jan 97 Tennis Nets 350 27 9450.00
009 C 3 Jan 97 Tennis Shoes 100 95 9500.00
… … … … … … …

The need of various users for different data can be satisfied by the concept of
virtual relations (views), which can be created on top of an existing DBS.

Note that the term “table” used in a relational database to store such information
is quite different from the tables statisticians use for the same purpose. Table 9.2
shows the representation of the same information in a different table structure
that allows the natural computation of aggregates along rows and columns (“mar-
gin sums” etc.). Note that this table structure cannot be mapped directly into
a relational database context due to the margins (Total or ALL), see Gray et al.
(1996).

Let us close this example with a discussion of the background information need-
ed. We mentioned above metadata like schema names, attribute names, data types,
roles (key versus non key) of attributes, constraints etc. All this can be considered
as technical metadata. Moreover, we need further metadata of a semantic and
statistical type. Take for instance the attributes quantity, price and amount.
What is their definition? As far as amount is concerned we have “amount =
quantity * price”. Furthermore, we need the corresponding measurement
units which may be units, €|unit and €. As far as data collection at Statistical Offices
is concerned, we may need information about the periodicity of data surveys like
‘annual’, ‘quarterly’ or ‘monthly’. With respect to data analysis we may be interest-
ed in the measurement scale. Whileproduct_name has a nominal scale allowing
only operations like ‘equal’ and ‘not equal’, the attributes quantity, price and

272 Claus Boyens, Oliver Günther, Hans-J. Lenz

Table 9.2. sales data in the form of the three-way statistical table total_sales

3 Jan 1997 Tennis shoes Tennis balls Tennis nets

Customer A 0 0 350

Customer B 0 0 0

Customer C 100 0 0

Total 100 0 350

4 Jan 1997 Tennis shoes Tennis balls Tennis nets

Customer A 300 400 450

Customer B 1100 1100 800

Customer C 600 1600 350

Total 2350 3400 1900

amount have a metric scale allowing for all basic numerical operations. There ex-
ist further ambiguities. For example, the generation mode of the attribute sales
may have the categories ‘real’, ‘simulated’ or ‘forecasted’. There may exist further
vagueness about sales of category ‘real’ unless its update state is set to ‘final’,
and not to ‘provisional’.

Data Warehouse Systems (DWS)9.2.3

A data warehouse system (DWS) consists of a (replicated) micro database, a set of
materialized or virtual multi-way tables (data cubes) needed to represent
macro (pre-aggregated and grouped) data, a data warehouse management system
(DWMS), and a repository, which stores all required technical, statistical and se-
mantic metadata.

As an example of a data cube, we remind the reader of the three-way table
presented above:

total_sales (date.month, date.year, customer_id,
product_name, sum(sales)).

This table is represented in a relational form, where date, customer_id and
product_name are concatenated as a primary key. These attributes are called
dimensions. Evidently, the non-key attribute sum(sales) is fully dependent up-
on this key, i.e. given the values of date.month, date.year, customer_id,
product_name there exist one and only one value of sum(sales) if missing
values (null values) are excluded.

Views are useful again and can be provided by joining cubes or sub-cubes in
combination with table projections to lower dimensions. It is worthwhile consider-
ing separately the attributes sum(sales), date and product_name. The first
attribute is sometimes called summary attribute and is composed of the statistical
sum applied to the attributesales, see Shoshani (1997). This operation is feasible

Statistical Databases 273

because the function sum and the attribute sales have an identical data type,
i.e., a metric type. Moreover, the attribute sales is of attribute type flow, but
notstock. While summarizing over flows (rates) is reasonable, such an operation
over stocks like ‘number of customers’ is nonsense. Evidently, such and further
integrity constraints must be effective for a DWS, in order to protect the naive user
from nonsense queries. This is extremely important for data warehousing, because
contrary to database queries, in DWS the application of statistical functions is an
inherent part of any query.

Furthermore, there exists a specific problem related to date. This attribute
can be decomposed into month and year but these components are functionally
dependent, i.e., for a given month of a calendar year the year is fixed. We thus
have (month, year) -> year as a functional dependency. Therefore only
one dimension called date is used for the two attributes month and year in
the data cube above. There may be further temporal levels like hour, day, month,
quarter and year. Such hierarchical attributes are called taxonomies and need
special attention, see Lehner et al. (1998). It is quite remarkable that all dimensions
can be allocated to three principal groups: time, location and subject. This is called
the 3D-principle, see Lenz (1994).

Let us have a further look at taxonomies that are unbalanced and asymmetric.
This may happen in case of a product or regional hierarchy. In our running example
the subgroups tennis shoes and balls may be grouped together as product_group1,
while tennis nets build-up product_group2, but are free of sub-grouping. Both
groups 1 and 2 build the root group product_all. As subgroups exist only for shoes
and balls, subgroups are no longer functionally dependent on product_name,
but only weakly functionally dependent, see Lehner et al. (1998), Fig. 9.1. This
implies that queries, which involve sub-grouping over products, are not feasible
and must be refused. Further pitfalls of operations on a data-cube are given in
Lenz and Shoshani (1997) and Lenz and Thalheim (2001).

Figure 9.1. The product taxonomy with a weak functional dependency

This discussion shows that real data without metadata is more or less useless
especially for on-line analytical processing (OLAP). A repository with metadata
has become a prerequisite of any DBS engineering and sound data analysis.

274 Claus Boyens, Oliver Günther, Hans-J. Lenz

Architectures, Concepts and Operators9.3

Wefirst consider thearchitectureofmicrooroperationaldataused for online trans-
action processing (OLTP), and then illustrate the different architecture of macro
or analytical data used for decision support and its relation to operational data,
see OLAP. We note that the key features of a DBS for OLTP data are: transaction-
oriented, measurement- or record-based, real time processing of inserts, deletes
and updates of records. In contrary, a DWS for OLAP data is characterized by
the features: subject-oriented, integrated and aggregated, calendar or fiscal period
related, and non-volatile, see Inmon (1992).

Architecture of a Database System for OLTP9.3.1

The architecture of DBS can be represented by the quintuple (data sources, ap-
plication server, DB server with a DBMS, application server, DB and repository);
see also Fig. 9.2. As mentioned above, business processes act as data sources in
commercial systems, while at statistical offices data is supplied by surveys, period-
ic reports or a census. Similarly, in science the data is generated by observations
or measurements collected by field or simulation experiments. We represent the
architecture in Fig. 9.2.

Figure 9.2. Architecture of a DBS used to manage and query operational data

As an example from business we consider a company, which manages wages
and salaries of its employees. The data is generated by bookkeeping, the DBMS
administers the real and metadata, processes queries, and controls transactions.
The application server is responsible for running the software for wage and salary
computation, while the client is used as a presentation layer.

Statistical Databases 275

Architecture of a Data Warehouse 9.3.2

The main components of the architecture of any OLAP application are heteroge-
neous data sources S like internal or external databases or files, an OLAP server
with DWMS, DW, Repository and Data Marts, and OLAP clients. The DWMS is re-
sponsible for load management, query management and warehouse management.

Figure 9.3. DW Architecture

The DW (see Fig. 9.3) incorporates data replications, archived data and aggre-
gated data stored as data cubes. The departmental view on the whole data is given
by subsets of the data cube, called data marts.

As can be seen from Fig. 9.3, analytical processing is concerned with data from
various data sources, i.e., external or internal (operational) data. These sources
are integrated by ETL in data marts in an unified manner. The data marts can be
viewed as collections of data cubes.

There exist two types of OLAP clients:
1. stand-alone applications like spreadsheets with a DW interface, and
2. Web clients that use an Internet browser and often applets.

Concepts (ROLAP, MOLAP, HOLAP, Cube Operators) 9.3.3

As we have seen above, the schema of a data cube consists of a cube identifier
(name), a list of identifying attributes called dimensions and a statistical function
likemin,max, count (frequency), sum,avg(arithmeticmean)applied toasummary
attribute. Furthermore, the data types of the attributes and integrity constraints
must be given. As an example we take from above the data cube “sales cross-
classified by (month, year), customer and product”:
total_sales (date.month, date.year, customer_id,
product_name, sum(sales)).

276 Claus Boyens, Oliver Günther, Hans-J. Lenz

Evidently, the dimensions span a three-dimensional space on which the statis-
tical function sum(sales) is defined. The corresponding data types are date
(mm.yyyy), integer, string and decimal.

Relational OLAP (ROLAP)
In the following we turn to the conceptual mapping of a data cube into a relational
database schema. This approach is called ROLAP for Relational OLAP, see Raden
(1996). There exist two schemas, star and snowflake schemas. As illustrated in
Fig. 9.4, the star schema uses two different types of schemas, which refer to two
types of corresponding tables:
1. a fact table with a primary key reference to each dimension and the facts which

are composed of at least a statistical function and a summary attribute.
2. a dimension table for each dimension with a primary key and a level indicator

for each entry of a hierarchical attribute.

Figure 9.4. Star schema of a three-dimensional data cube (one fact table, three dimension tables; the

product hierarchy is assumed to have two levels)

The star schema models all kind of hierarchical attributes including parallel
hierarchies, see Lehner et al. (1997). The schema is not normalized as becomes
obvious, for example, from the dimension table Date. The attributes month and
year are nested, which implies some redundancy. For small or medium-sized
data volumes, such schemas have a sufficient performance because join operations
are only necessary between the fact table and the related dimension tables.

In order to normalize tables by level attributes, the snowflake schema was
introduced. Instead of modelling each dimension by one table, a table is created
for each level of a hierarchical attribute. The schemas involved are related by
identifiers, which play the role either of a primary or a foreign key. In Fig. 9.5
we display only the normalized dimension tables Month and Year and the fact

Statistical Databases 277

Figure 9.5. Data cube Sales represented (fractionally) as a snowflake schema

table Sales. The identifiers are month-no in the fact table and dimension table
Month and year-no in the dimension table Year.

It can be shown that the normalization is lossless by applying an inner join to
the tables of a snowflake schema.

Other Storage Modes (MOLAP, HOLAP)
The above conceptual model of a star or snowflake schema may lead to the wrong
conclusion that data cubes are exclusively represented by a relational data model
approach. There exist further storage modes, which are in use.

The main advantage of ROLAP lies in the reliability, security and ease of loading
of the DW based on Relational DBMS (RDBMS) technology. As was mentioned
above, this is achieved due to the mapping of facts into a normalized relation and
dimension into a mostly non-normalized relation of a relational database. As the
set of statistical functions in SQL is too restrictive, some of the functionality of
OLAP must be added to the application server. An example is to find the top-ten
among all products sold in a given period.

Multi-dimensional OLAP (MOLAP) makes use of specially tailored data struc-
tures like arrays and associated dimension lists or bitmaps. The operational data is
extracted and stored as aggregates in those structures. The performance is accept-
able forup tomedium-sizeddata sets (< 1 Gbyte). There exists amulti-dimensional
query language called MDX (Multidimensional Expressions), see Microsoft (1998).
“XML for Analysis” defines a standardized programming interface for an OLAP
server, see http:||www.xmla.org. An OLAP client encodes a query of a data cube and
inserts it into a XML document, which specifies the method “execute” and the ac-
companying parameters according to the “Simple Object Access Protocol” (SOAP).
This document is transmitted over the Internet based on the “Hypertext Transfer
Protocol” (HTTP). After decoding the OLAP server executes the query, and sends
the data back in a XML document to the client according to SOAP. For further
details see Messerschmidt and Schweinsberg (2003). MOLAP has the disadvantage
of “miss hits” if a data cube cannot be stored fully in-core and an access to a second
storage device is necessary. Moreover, array compression or sparse array handling
is needed because mostly the data cube or, equivalently, the arrays are sparse.

278 Claus Boyens, Oliver Günther, Hans-J. Lenz

Hybrid OLAP (HOLAP) tries to combine the advantages of relational and multi-
dimensional database technology. The relational model is used to store replicated
and low-level aggregates, while the multi-dimensional model is responsible for
high-level aggregates.

Data Cube Operators
Data cubes are used for analytical purposes and not for (simple) transaction
processing.Therefore theredoesnot exist a clearboundarybetweendataextraction
or retrieval and data analysis. Therefore there does not exist a minimal, closed and
complete set of OLAP operators. The mostly built-in operators on data cubes in
commercial DWs are the following, see Shoshani (1997) and Jarke et al. (2000).

Slicing σc(T) is to select data from a cube T according to a fixed condition c.
This operation is called in Statistics conditioning if only frequencies (counts)
applied to multi-way tables are considered. For example, we can retrieve data
from total_sales according to σproduct_id, customer_id, month, year==97

(total_sales).
Dicing πc(T) is table projection on T by selecting a sub-cube T′ of some lower

dimension c than the original cube T has. This operation is equivalent to marginal-
ization in Statistics, i.e. projection of a data space into a lower dimension. For
instance πdate, customer_no(total_sales) retrieves a sub-cube of total sales
cross-classified by date and customer.

Table aggregation (roll-up) and disaggregation (drill-down) are operations
on data cubes if at least on dimension is hierarchical. For example
ρyear, customer_no, product_no(total_sales) is a query for less fine-grained
data, i.e. for years and summarizing over all months per year. This specific
operation is called temporal aggregation. We observe that such an operation is not
allowable if a type conflict happens with respect to the summary attribute. This
is the case if the attribute ‘sales’ is substituted by ‘no of employees’, see Lenz and
Shoshani (1997).

Drill-across δlevel, node, attribute(T) is a navigation on the same level through the
various subtrees of a hierarchical attribute starting at a given node. For example,
retrieving products from level 1 (product_group) with start at product_group1
(shoes and balls) of the taxonomy “Product” delivers data about tennis nets.

Inorder tocomputeratios,productsetc.ofdatacubes the join operatorγ⊗(T1,T2)
is needed. For instance, as sales = turnover * price we have sales:=
γ * (turnover, price).

We note that there exist further operators like pivot (rotation of a cube), see
Jarke et al. (2000), or cube, which was introduced by Gray et al. (1996). It delivers
the margins ALL for any subset of dimensions.

Summarizability and Normal Forms9.3.4

The main objective of summarizability is to guarantee correct results of the cube
operation roll-up and the utilization of statistical (aggregation) functions like min,
max, avg, sum and count under all circumstances, see Lenz and Shoshani (1997).

Statistical Databases 279

The corresponding integrity constraints are non-overlapping levels of dimensions,
completeness and type compatibility. The first condition assures that each node of
a taxonomy has at most one preceding node except for the root node. The second
one ascertains that any node on a low level granularity corresponds to at least one
node of a higher granularity. Type compatibility guarantees that the application of
any statistical function on a summary attribute is sound. In a preceding section we
mentioned the unfeasibility of aggregation of stocks over time. Another example
is the misuse of the sum operator applied to code numbers of professions.

As Lehner et al. (1998) pointed out, the integrity constraint of completeness
may turn out to be too restrictive. This happens if there exist structural missing
values (null values) in taxonomies. For example, the German state Bavaria is
divided into regions called “Kreise”. Berlin is a city as well as an autonomous
German state. It is not divided into regions, but into suburbs called “Bezirke”.
In such cases a context sensitive summarizability constraint is appropriate. The
authors consequently proposed three multi-dimensional normal forms for fact
tables. Lechtenbörger and Vossen (2001) improved the design of these normal
forms.

Comparison of Terminologies 9.3.5

To sum up this chapter, Tables 9.3 and 9.4 compare the terminology of statistical
databases and OLAP, see Shoshani (1997).

Table 9.3. Comparison of concepts

Statistical databases OLAP

Categorical attribute Dimension
Structural attribute Dimension hierarchy
Category Dimension value
Summary attribute Fact
Statistical object, multidimensional table Data cube
Cross product Multidimensionality

Table 9.4. Comparison of operators

Statistical databases OLAP

Table projection Dice
Table selection Slice
Table aggregation Roll-up
Table disaggregation Drill-down
Table join term missing
Term missing Drill across
Viewing pivoting

280 Claus Boyens, Oliver Günther, Hans-J. Lenz

Access Methods9.4

Views (Virtual Tables)9.4.1

Statistical databases are often accessed by different users with different intentions
and different access rights. As already indicated in Sect. 9.2.2, these different
requirements can be accounted for by using views. These views are derived virtual
tables, which are computed from the (actually stored) base tables, see Elmasri and
Navathe (1999). There are two main purposes for the use of views.
1. It makes the use of the DBS or DW more convenient for the user by providing

only customized parts of the whole data cube.
2. It enforces security constraints by restricting operations on the base tables and

by granting users access to their specific views only.

The following SQL statement creates a view for the manager of the product “Tennis
Nets” from our example in Table 9.1. It only permits to look up the revenues for
“Tennis Nets” while for all other products, viewing the sales and modifying the
corresponding base tables is not possible.
CREATE VIEW tennis_nets_manager AS
SELECT date.month, date.year, customer_id,
sum(sales)
FROM total_sales WHERE product_name = "Tennis
Nets";

Views can never contain information that is not present in the base tables as the
DBS translates all view queries into equivalent queries that refer only to base tables.

Base tables of a DW may contain millions of tuples. Scanning these tables can be
time-consuming and may slow down the interaction between the decision support
system and the user significantly. One strategy to speed up the access to aggregated
data is to pre-compute a range of probable queries and to store the results in
materialized views, see Gupta et al. (1997). The access to these materialized views
is then much faster than computing data on demand. Yet there are drawbacks to this
strategy. The pre-computed data need space, the prediction of the users’ queries is
difficult, and each change in the base table requires an update of the materialized
view also. This is known as the view maintenance problem, see Huyn (1997).

Tree-based Indexing9.4.2

The tables of a DW can physically be accessed either by a sequential scan or by
random access. With today’s hard disks, a sequential scan is 10 to 20 times faster
than random access, see Jürgens (2002). That means if more than approximately
5% to 10% of the data has to be accessed in a table, it is faster to scan the entire
table than addressing specific tuples via random access. In order to avoid full table
scans, the number of tuples involved in the result computation has to be reduced.

Statistical Databases 281

This can be achieved via index structures, which permit a fast look-up of specific
tuples.

Thebest-known index structure forone-dimensionaldata (i.e. datawith just one
key such as product_id) is the B-tree, see Bayer and McCreight (1972), Comer
(1979). Pointers to the data items are stored in the leaf nodes of a balanced tree. The
B-tree is a very general and flexible index structure, yet in some specific cases it
may be outperformed by different kinds of hashing, see Gaede and Günther (1998).

The universal B-tree (UB-tree, see Bayer, 1997) is an extension of the B-tree
for indexing multidimensional data such as total_sales (date.month,
date.year, customer_id, product_name, sum(sales)). The ap-
proach partitions the multidimensional data space into squares each of which
is captured by a space-filling Z-curve, see Fig. 9.6. For each record, the Z-address
of the square, which contains the key values is computed. These Z-addresses are
one-dimensional and serve as the new primary keys for the records, which can
then be indexed with a standard B-tree.

Figure 9.6. The UB-tree: partition and capture of multidimensional space with the Z-curve

Another approach for indexingmultidimensionaldata is theR-tree, seeGuttman
(1984). It uses rectangles to represent multidimensional intervals. The leaf rectan-
gles correspond to entries in the database. The parent nodes contain all child nodes
and the minimal bounding rectangle. The root rectangle covers the entire query
space. An example of how to store sales indexes in an R-tree whenproduct_name
and customer_id build the concatenated primary key is shown in Fig. 9.7. The
minimal bounding rectangle of the dashed-line rectangles A, B and C constitutes
the entire search space.

Refinements are the R+-tree of Sellis et al. (1985), the R∗-tree of Beckmann et al.
(1990) and a slightly improved version called R∗

a-tree of Jürgens (2002).

Bitmap Index Structures 9.4.3

An important alternative to tree index structures is bitmap indexing. For each
value of an attribute, a bitmap vector indicates whether or not it is assumed

282 Claus Boyens, Oliver Günther, Hans-J. Lenz

Figure 9.7. An exemplary R-tree

in the records of the table, see Chan and Ioannidis (1998), O’Neil and Quass
(1997), Wu and Buchmann (1998). Table one shows a bitmap index for the attribute
product_name corresponding to the example presented in Table 9.5.

Table 9.5. Bitmap index for the attribute product_name

transaction_id Tennis balls Tennis nets Tennis shoes

015 0 0 1

018 1 0 0

004 0 1 0

009 0 0 1

The bitmap vector for the attribute value “Tennis Balls” is (0, 1, 0, 0)T. Such a set
of bitmap vectors is created for all dimensions. In our total_sales example,
bitmap indexes have to be created further for (date.month, date.year)
and customer_id.

The size of the bitmap index depends on the number of tuples and on the
cardinality of the attribute domain. As the required operations on bitmaps are
simple they are very fast. Thus loading blocks from disc and performing the basic
Boolean operations is efficient, especially if the number of dimension is high, see
Jürgens (2002). As bitmaps are often sparse, they are well suited for compression
techniques. This is the reason why many commercial DBSs are implemented using
bitmaps. However, standard bitmaps indexes become space consuming for high
attribute’s domain cardinality, and they are not very efficient for (low dimensional)
range queries, which are typical for DW systems.

Several approaches have been proposed to overcome these drawbacks like the
multi-component equality encoded bitmap index, see Chan and Ioannidis (1998).
The basic idea is to compress bitmap indexes by encoding all values into a smaller

Statistical Databases 283

number system by applying modular multiplication. This significantly reduces the
space requirements for attributes of high cardinality.

To summarize, bitmaps are more suited for high-dimensional queries with low
attribute cardinality. Tree index structures are better for low-dimensional range
queries with attributes of high cardinality.

Extraction, Transformation
and Loading (ETL) 9.5

ETL is a shorthand notation for a workflow of the initial popularization or a follow-
up update of a DW, a data mart or an OLAP application. In the first step data
must be extracted from the various data sources and temporarily stored in a so-
called staging area of a DWS. Transformation means to modify data, schema and
data quality according to requirement specifications of the DWS. Loading is the
integration of replicated and aggregated data in the DW. As the data volume may
be huge, incremental loading within pre-selected time slots by means of a bulk
loader is appropriate.

Extraction
Extraction can be triggered by events linked to time and state of a DBS in operation
or can be executed under human control. Mostly extraction is deferred according
to an extraction schedule supplied by monitoring of the DWS. However, changes
of data in the source system are tracked in real time, if the actuality of data is
mandatory for some decision makers, see Kimball (1996).

As the data sources are generally heterogeneous, the efforts to wrap single
data sources can be enormous. Therefore software companies defined standard
interfaces, which are supported by almost all DBMS and ETL tools. For example,
the OLE database provider for ODBC, see Microsoft (1998, 2003), Oracle (2003)
and IBM (2003).

Transformation
Transformations are needed to resolve conflicts of schema and data integration
and to improve data quality, see Chap. III.9.

We first turn to the first type of conflicts. Spaccapietra et al. (1992) consider four
classes of conflicts of schema integration, which are to be resolved in each case.
1. Semantic conflicts exist, if two source schemas refer to the same object, but

the corresponding set of attributes is not identical, i.e. the class extensions are
different. As an example take two customer files. One record structure includes
the attribute name gender, while it is missing in the other one.

2. A second kind of conflict of integration happens if synonyms, homonyms,
different data types, domains or measurements units exist. For instance, think
of the synonym part|article, a homonym like water|money pool, string|date

284 Claus Boyens, Oliver Günther, Hans-J. Lenz

as a domain, and Euro|USD. The ambiguity of our natural language becomes
clear when one thinks of the meaning of “name” – family name, nickname,
former family name, artist name, friar name, …

3. Schema heterogeneity conflicts appear if the source schemas differ from the
target schema of the DW. For example, sales and departments can be modeled
as two relations Sales and Department of a relational data model or as
a nested relation Department\Sales as part of an object oriented model.
Another kind of conflict corresponds to the mapping of local source keys to
global surrogates, see Bauer and Günzel (2001). This problem gets tightened
if entity identification is necessary in order decide whether a pair of records
from two data sources refer to same entity or not. Fellegi and Sunter (1969)
were the first to solve this problem by the record-linkage technique, which is
now considered as a special classification method, see Neiling (2003).

4. Structural conflicts are present if the representation of an object is different in
two schemas. There may exist only one customer schema with the attribute
gender in order to discriminate between “males” and “females”. Alterna-
tively, there may be two schemas in use, one linked to “females”, the other one
to “males”.

The second type of conflicts, i.e., conflicts of data integration, happens, if false or
differently represented data are to be integrated. False data are generated by erro-
neousorobsolete entries.Differences in representationare causedbynon- identical
coding like male|female versus 0|1 or by different sizes of rounding-off errors.

Metadata and XML9.6

McCarthy (1982) described metadata as data about data. However, the technical
progress of OLTP and OLAP DBSs, workflow techniques and information dissem-
ination has made it necessary, to use a more general definition of metadata.

Metadata is now interpreted as any kind of integrated data used for the design,
implementation and usage of an information system. This implies that metadata
not only describes real data, but functions or methods, data suppliers or sources
and data receivers or sinks, too. It does not only give background information
about the technology of a DBS or DWS, but about its semantic, structure, statistics
and functionality. Especially, the semantic metadata enable the common user to
retrieve definitions of an attribute, to select and filter values of meta attributes,
and to navigate through taxonomies.

In Fig. 9.8 we present a view of a conceptually designed metadata. Its core is
given by a statistical object, which is either a specialisation of a data matrix or
a data cube. It is uniquely described by a definition, and is related in a many to
many way to validation and processing rules, surveys or reports and attributes. As
we present only a view, no further refinement is given with respect to attributes
like roles (measure, key, property), scales (nominal, ordinal, cardinal), ontologies

Statistical Databases 285

Figure 9.8. Statistical view of metadata

or even domains (natural, coded) etc. Each statistical object is linked to at least
one survey or report. Surveys or reports can be sequenced according to preceding
or succeeding ones, are related to a statistical framework (“statistical documenta-
tion”) giving details about sampling scheme and frame, population and statistical
methods, and are associated to a chronicle as calendar of events. Furthermore
references to the specific literature and law are included. The corresponding sub-
structure is not displayed in Fig. 9.8. For further information about the metadata
structure from the user’s point of view, see Lenz (1994).

As metadata is stored and can be retrieved similar to real data, it is captured in
a repository and is managed by a metadata manager. A repository can be accessed
by users, administrators and software engineers according to their privileges and
read-write rights.

Such repositories are offered from various vendors. Microsoft (2001) labelled its
repository as “metadata services”, and it is integrated in its SQL server. Alliances
were founded to harmonize the metadata models and to standardize the exchange
formats. Leading examples are the Open Information Model of the Metadata Coali-
tion (MDC), see http:||www.mdcinfo.com, and the Common Warehouse Metamod-
el (CWM), which was developed by the Object Management Group (OMG), see
http:||www.omg.org. Since the year 2000 both groups were fused and try to merge
their models. Due to the increasing importance of XML and XML databases, import
and export format of metadata based on XML is becoming an industrial standard.
This happened to OLAP client-server architectures, see “XML for Analysis” as
referred in Sect. 9.3.3.

286 Claus Boyens, Oliver Günther, Hans-J. Lenz

Privacy and Security9.7

Preventing Disclosure of Confidential Information9.7.1

The statistical databases that are built by government agencies and non-profit or-
ganizations often contain confidential information such as income, credit ratings,
type of disease or test scores of individuals. In corporate DWs, some strategic fig-
ures that are not related to individuals like sales for recently launched products may
also be confidential. Whenever sensitive data is exchanged, it must be transmitted
over a secure channel like the Secure Socket Layer (SSL), see Netscape (1996) in
order to prevent unauthorized use of the system. For the purposes of this chapter,
we assume that adequate measures for security and access control are in place, see
Stallings (1999).

However, even if the information in the statistical database safely reaches the
correct addressee, the system has to ensure that the released information does
not compromise the privacy of individuals or other confidential information.
Privacy breaches do not only occur as obvious disclosures of individual values
in single queries. Often, the combination of multiple non-confidential query re-
sults may allow for the inference of new confidential facts that were formerly
unknown.

We give an example. From Table 9.1, we take the total sales for “Tennis Shoes”
(28,500), “Tennis Balls” (450), “Tennis Nets” (9450) and a fourth, new prod-
uct (“Tennis Socks”, 500). We assume that sum queries for groups of products
are allowed but that single, product-specific sales values are confidential. After
querying the sum for balls and shoes (28,950) and for balls and socks (950),
the user can infer an interval of [28,000; 28,950] for the sales of shoes, as sales
cannot be negative. The length of the interval, which is the maximum error of
the user’s estimation of the confidential shoe sales is only 3.3% of the actual
value. This particular case of disclosure is called interval inference, see Li et al.
(2002). Other types of inference include exact inference (concluding the exact
value of 28,500 for shoes sales) and statistical inference (inferring estimates like
mean

x̄Tennis Shoes = 30,000 and standard deviation sTennis Shoes = 5000) .

If a researcher is granted ad-hoc access to a statistical database, there are basically
two different approaches to protect information that is private and confidential
from being revealed by a malevolent snooper, see Adam and Wortmann (1989),
Agrawal and Srikant (2000), Fig. 9.9. In the first approach, the kind and number
of queries that a researcher poses to the statistical database is restricted (query
restriction). In the second approach, the entire database is subject to a manipula-
tion that protects single values but preserves the statistical properties which are of
interest to the user. Then the perturbed database can be accessed by a researcher
without restrictions (data perturbation). In the following, we give an overview of
disclosure protection techniques of this kind.

Statistical Databases 287

Figure 9.9. (a) Query set restriction and (b) data perturbation. Source: Adam and Wortmann (1989)

Query Set Restriction9.7.2

With this approach a query is either denied or responded with an exact answer as
the upper sketch in Fig. 9.9 indicates.

Query Set Size Control. Fellegi (1972) works by setting lower and upper bounds
for the size of the query answer set based on the properties of the database and
on the preferences fixed by the database administrator. If the number of returned
records did not lie within these bounds, the information request would have to be
rejected and the query answer is denied. As queries that are issued sequentially
by one user often have a large numbers of entities in common, an improvement
is the restriction of these entities to a maximum number, see Dobkin et al. (1979).
Although popular, this method is not robust enough as a stand-alone solution, see
Denning (1982).

Auditing. It involves keeping up-to-date logs of all queries made by each user and
constantly checking for possible disclosures whenever a new query is issued. One
major drawback of this method is that it requires huge amounts of storage and
CPU time to keep these logs updated. A well-known implementation of such an
audit system is Audit Expert by Chin and Özsoyoglu (1982). It uses binary matrices,
see bitmap indexes in Sect. 9.4.3, to indicate whether or not a record was involved
in a query.

Cell Suppression. See Cox (1980) is an important method for categorical databas-
es when information is published in tabular form. Especially Census Bureaus
often make use of tabular data and publish counts of individuals based on dif-
ferent categories. One of the main privacy objectives is to avoid answers of
small size. For example, if a snooper knows somebody’s residence, age and em-
ployer, he can issue a query for (ZIP = 10178, Age = 57, Employer
= ’ABC’). If the answer is one entity, the snooper could go on and query
for (ZIP = 10178, Age = 57, Employer = ’ABC’, Diagnosis =

288 Claus Boyens, Oliver Günther, Hans-J. Lenz

’Depression’). If the answer is one again, the database is compromised and
the person with the diagnosis identified. The cells should have to be suppressed.
A common criterion to decide whether or not to suppress a cell is the N-k rule
where a cell is suppressed if the top N respondents contribute at least k % of the
cell total. N and k are parameters that are fixed by the database administrator, i.e.
the Census Bureau. In the exemplary case of N = 2 and k = 10%, a cell which in-
dicates aggregated income ($10M) of 100 individuals would have to be suppressed
if the top two earners’ aggregate income exceeded $1M.

Data Perturbation9.7.3

In the query restriction approach, either exact data is delivered from the original
database or the query is denied. As depicted in the lower sketch of Fig. 9.9, an
alternative is to perturb the original values such that confidential, individual data
become useless for a snooper while the statistical properties of the attribute are
preserved. The manipulated data is stored in a second database and is then freely
accessible for the users.

If in Table 9.1, we permute the sales of tennis balls, tennis nets and tennis shoes,
individual sales data is not correct anymore. But the arithmetic average and the
standard deviation of the attribute sales stay the same. This procedure is called
data swapping, see Denning (1982).

Noise addition for numerical attributes, see Traub et al. (1984), means adding
a disturbing term to each value: Yk = Xk + ek, where Xk is the original value and ek

adheres to a given probability distribution with mean zero. As for every value Xk

value, the perturbation ek is fixed, conducting multiple queries does not refine the
snooper’s search for confidential single values.

A hybrid approach are random-sample queries, Denning (1982), where a sample
is drawn from the query set in such a way that each entity of the complete set is
included in the sample with probability P. If, for example, the sample of a COUNT
query has n entities, then the size of the not perturbed query set can be estimated
as n|P. If P is large, there should be a set-size restriction to avoid small query sets
where all entities are included.

Disclosure Risk versus Data Utility9.7.4

All methods presented in the preceding sections aim at lowering the disclosure
risk for data that is private and confidential. But at the same time, each of these
methods reduces, in some way, the utility of the data for the legitimate data user.
Duncan and Keller-McNulty (2001) present a formal framework to measure this
trade-off between disclosure risk and data utility, the Risk-Utility (R-U) map. There
are numberless measures for disclosure risk, see Domingo-Ferrer et al. (2002) for
an excellent overview. We already gave an intuitive measure for interval inference.
The sales for tennis shoes were predicted with an error of only 3.3%, see Sect. 9.7.1.

However, it is far more difficult to measure data utility because it strongly
depends on the varying preferences of the data user. Especially for this reason,

Statistical Databases 289

classifying statistical disclosure control methods as presented here on an absolute
scale is almost an impossible task.

References
Adam, N. and Wortmann, J. (1989). Security-Control Methods for Statistical

Databases: A Comparative Study. ACM Computing Surveys, 21(4):515–556.
Agrawal, R. and Srikant, R. (2000). Privacy-preserving Data Mining. In

Proceedings of the ACM SIGMOD International Conference on Management of
Data, pp. 439–450.

Bauer, A. and Günzel, H. (eds) (2001). Data Warehouse Systeme. dpunkt.verlag,
Heidelberg.

Bayer, R. (1997). The universal B-Tree for multidimensional Indexing: General Con-
cepts. In World-Wide Computing and Its Applications ‘97 (WWCA ‘97). Tsuku-
ba, Japan, 10–11, Lecture Notes on Computer Science, Springer Verlag.

Bayer, R. and McCreight, E. (1972). Organization and maintenance of large ordered
indexes. Acta Informatica, 1(3):173–189.

Beckmann, N., Kriegel, H.-P., Schneider, R. and Seeger, B. (1990). The R∗-tree: An
efficient and robust access method for points and rectangles. In Proceedings of
the ACM SIGMOD International Conference on Management of Data, pp. 323–
331, New York.

Chan, C.-Y. and Ionanidis, Y.E. (1998). Bitmap index design and evaluation. In
Proceedings of the ACM SIGMOD International Conference on Management of
Data, pp. 355–366.

Chin, F.Y. and Özsoyoglu, G. (1982). Auditing and inference control in statistical
databases. IEEE Transactions on Software Engineering, 8(6):574–582.

Comer, D. (1979). The ubiquitous B-Tree. ACM Computing Surveys, 11(2):121–138.
Cox, L.H. (1980). Suppression methodology and statistical disclosure control. Jour-

nal of the American Statistical Association, 75:377–385.
Denning, D.E. (1982). Cryptography and Data Security. Addison-Wesley.
Dobkin, D., Jones, A.K. and Lipton, R.J. (1979). Secure databases: Protection against

user influence. ACM Transactions on Database Systems, 4(1):97–106.
Domingo-Ferrer, J., Oganian, A. and Torra, V. (2002). Information-Theoretic

Disclosure Risk Measures in Statistical Disclosure Control of Tabular Da-
ta. In Proceedings of the 14th International Conference on Scientific and Statis-
tical Database Management (SSDBM ’02).

Duncan, G. and Keller-McNulty, S. (2001). Disclosure risk vs. data utility: The R-U
confidentiality map. Technical Report. Statistical Sciences Group. Los Alamos
National Laboratory.

Dzeroski, S. and Lavrac, N. (eds) (2001). Relational Data Mining, Springer Verlag,
Heidelberg.

Elmasri, R. and Navathe, S.B. (1999). Fundamentals of Database Systems, 3rd Edi-
tion, Addison Wesley.

290 Claus Boyens, Oliver Günther, Hans-J. Lenz

Fellegi, I.P. (1972). On the question of statistical confidentiality. Journal of the
American Statistical Association, 67(337):7–18.

Fellegi, I.P. and Sunter, A.B. (1969). A Theory of Record Linkage. Journal of the
American Statistical Association, 40, 1183–1210.

Gaede, V. and Günther, O. (1998). Multidimensional Access Methods. ACM Com-
puting Surveys, 30(2):170–231.

Gray, J., Bosworth, A., Layman, A. and Pirahesh, H. (1996). Data Cube: A Re-
lational Aggregation Operator Generalizing Group-By, Cross-Tab, and Sub-
Total. In Proceedings of the 12th International Conference on Data Engineering
(ICDE’96), New Orleans, USA, IEEE Computer Society, pp. 29–53.

Gupta, H., Harinarayan, V., Rajaraman, A.J. and Ullman, D. (1997). Index selection
for OLAP. In Proceedings of the Thirteenth International Conference on Data
Engineering (ICDE ’97), Birmingham U.K., IEEE Computer Society.

Guttman, A. (1984). R-trees: A dynamic index structure for spatial searching. In
Proceedings of the ACM SIGMOD International Conference on Management of
Data, pp. 47–57.

Huyn, N. (1997). Multiple-view self-maintenance in data warehousing environ-
ments. InProceedings of the 23rd Conference on Very Large Databases (VLDB),
pp. 26–35.

IBM (2003). DB2 OLAP Server. http:||www-3.ibm.com|software|data|db2|db2olap|
library.html

Inmon, W.H. (1992). Building the Data Warehouse, Wiley, New York.
Jarke, M. Lenzerini, M. Vassiliou, Y. and Vassiliadis, P. (2003). Fundamentals of

Data Warehouses, 2nd ed., Springer, Berlin et al.
Jürgens, M. (2002). Index Structures for Data Warehouses. Springer Lecture Notes

in Computer Science, Berlin|Heidelberg|New York.
Kimball, R. (1996). The Data Warehouse Toolkit. Wiley, New York.
Lechtenbörger, J. and Vossen, G. (2001). Quality-oriented Data Warehouse Schema

Design. In information technology, vol. 45, 190–195.
Lehner, W., Albrecht, J. and Wedekind, H. (1998). Normal Forms for Multidi-

mensional Databases. In Proceedings of the 10th International Conference on
Scientific and Statistical Data Management (SSDBM’98), Capri, Italia, 63–72.

Lenz, H.-J. (1994). A rigorous treatment of Microdata, Macrodata and Metadata. In
Dutter, R. (ed.), Proceedings in Computational Statistics, Physica, Heidelberg.

Lenz, H.-J. and Shoshani, A. (1997). Summarizability in OLAP and Statisti-
cal Databases, In Proceedings of the 10th International Conference on Scientific
and Statistical Data Management (SSDBM’97), Washington, USA.

Lenz, H.-J. and Thalheim, B. (2001). OLAP Databases and Aggregation Functions.
In Proceedings of the 14th International Conference on Scientific and Statisti-
cal Data Management (SSDBM’01), Washington, USA.

Li, Y., Wang, L., Wang, X. and Jajodia, S. (2002). Auditing interval-based infer-
ence. In Proceedings of the 14th Conference on Advanced Information Systems
Engineering (CAiSE’02), Toronto, Canada.

Statistical Databases 291

McCarthy, J. (1982). Metadata Management for Large Statistical Databases, In Pro-
ceedings of the 8th International Conference on Very Large Data Bases,Mexico
City, Mexico.

Messerschmidt, H. and Schweinsberg, K. (2003). OLAP mit dem SQL-Server,
dpunkt. verlag, Heidelberg.

Microsoft (1998). OLE DB for OLAP Programmer’s Reference.
Microsoft (2003). Microsoft SQL Server: Data Transformation Services (DTS).

http:||www.microsoft.com|sql|evaluation|features|datatran.asp
O’Neil, P. and Quass, D. (1997). Improved query performance with variant indexes.

SIGMOD record, 26(2):38–49.
Oracle (2003). Oracle Warehouse Builder – Product Information. http:||otn.

oracle.com|products|warehouse|index.html
Neiling, M. (2003). Identifizierung von Realwelt-Objekten in multiplen Daten-

banken. PhD dissertation, Univ. of Cottbus, Germany.
Netscape (1996). Secure Socket Layer 3.0 Specification http:||wp.netscape.com|

eng|ssl3|
Raden, N. (1996). Star Schema 101. Archer Decision Sciences, Santa Barbara,

http:||members.aol.com|nraden|str101_e.htm (2000.12.12)
Shoshani, A. (1997). OLAP and Statistical Databases: Similarities and Differ-

ences. In Proceedings of the 16th ACM SIGACT-SIGMOD-SIGART Symposium
on Principles and Database Systems (PODS’97), Tucson, USA, 185–196.

Spaccapietra, S., Parent, C. and Dupont, Y. (1992). Model independent assertions
for integration of heterogeneous schemas. VLDB Journal, 1(1), 81–126.

Stallings, W. (1999). Cryptography and Network Security, Principles and Practice.
Addison Wesley.

Traub, J.F., Yemini, Y. and Wozniakowski H. (1984). The statistical security of
a statistical database. ACM Transactions on Database Systems, 9(4):672–679.

Wirth, N. (1986). Algorithms and data structures, Englewood Cliffs, Prentice Hall.
Wrobel, S. (2001). Inductive Logic Programming for Knowledge Discovery in

Databases. In Dzeroski, S. and Lavrac, N. (eds), Ralational Data Mining,
Springer Verlag, Heidelberg.

Wu, M.-C. and Buchmann, A.P. (1998). Encoded bitmap indexing for data ware-
houses. In Proceedings of the 14th International Conference on Data Engineer-
ing (ICDE), 220–230.

II.10Interactive
and Dynamic Graphics

Jürgen Symanzik

10.1 Introduction . 294

10.2 Early Developments and Software . 295

10.3 Concepts of Interactive and Dynamic Graphics . 297

Scatterplots and Scatterplot Matrices . 297
Brushing and Linked Brushing|Linked Views . 299
Focusing, Zooming, Panning, Slicing, Rescaling, and Reformatting 300
Rotations and Projections . 301
Grand Tour . 302
Parallel Coordinate Plots . 302
Projection Pursuit and Projection Pursuit Guided Tours . 304
Pixel or Image Grand Tours . 304
Andrews Plots . 305
Density Plots, Binning, and Brushing with Hue and Saturation. 305
Interactive and Dynamic Graphics for Categorical Data. 306

10.4 Graphical Software. 306

REGARD, MANET, and Mondrian . 308
HyperVision, ExplorN, and CrystalVision . 309
Data Viewer, XGobi, and GGobi . 310
Other Graphical Software . 312

10.5 Interactive 3D Graphics . 312

Anaglyphs . 312
Virtual Reality . 313

10.6 ApplicationsinGeography,Medicine,andEnvironmentalSciences 316

Geographic Brushing and Exploratory Spatial Data Analysis . 316

Interactive Micromaps . 318
Conditioned Choropleth Maps . 320

10.7 Outlook. 321

Limitations of Graphics . 321
Future Developments . 321

Interactive and Dynamic Graphics 295

Introduction 10.1

Interactive and dynamic statistical graphics enable data analysts in all fields to
carry out visual investigations leading to insights into relationships in complex
data. Interactive and dynamic statistical graphics involve methods for viewing
data in the form of point clouds or modeled surfaces. Higher-dimensional data
can be projected into one-, two- or three-dimensional planes in a set of multiple
views or as a continuous sequence of views which constitutes motion through the
higher-dimensional space containing the data.

Strictly, there is some difference between interactive graphics and dynamic
graphics. When speaking of interactive graphics only, we usually mean that a us-
er actively interacts with, i.e., manipulates, the visible graphics by input devices
such as keyboard, mouse, or others and makes changes based on the visible re-
sult. When speaking of dynamic graphics only, we usually mean that the visible
graphics change on the computer screen without further user interaction. An
example for interactive graphics might be the selection of interval lengths and
starting points when trying to construct an optimal histogram while looking at
previous histograms. An example for dynamic graphics might be an indefinite-
ly long grand tour with no user interaction. Typically, interactive graphics and
dynamic graphics are closely related and we will not make any further distinc-
tion among the two here and just speak of interactive and dynamic statistical
graphics.

Two terms closely related to interactive and dynamic statistical graphics are
exploratory data analysis (EDA) and visual data mining (VDM).

EDA, as defined by Tukey (1977), “is detective work – numerical detective work –
or counting detective work – or graphical detective work.” Modern techniques and
software inEDA,basedon interactiveanddynamicstatistical graphics, areacontin-
uation of Tukey’s idea to use graphics to find structure, general concepts, unexpect-
ed behavior, etc. in data sets by looking at the data. To cite Tukey (1977) again, “to-
day, exploratory and confirmatory can – and should – proceed side by side.” Inter-
active and dynamic statistical graphics should not replace common analytic and
inferential statistical methods – they should rather extend these classical methods
of data analysis.

Data mining (DM) itself (Witten and Frank, 2000; Klösgen and Zytkow, 2002),
see also Chap. III.13, is a field whose scientific basis has only began to be explored
over the last few years. DM exists as a result of the convergence of several fields
including data bases, statistics, and artificial intelligence. Friedman (1998) discuss-
es the connection between DM and statistics in more details and Wegman (2000)
provides adefinitionofDMthat links itwithEDAandgraphics: “Data mining is ex-
ploratory data analysis with little or no human interaction using computationally
feasible techniques, i.e., the attempt to find interesting structure unknown
a priori.” Simultaneously with an increasing interest in DM there has been the
evolution of computer graphics, especially in the area of virtual reality (VR). With-
in the statistics framework, the area of EDA has evolved into a more sophisticated

296 Jürgen Symanzik

area of interactive and dynamic statistical graphics. Recently, DM has been com-
bined with statistical graphics, resulting in VDM (Cox et al., 1997; Inselberg, 1998;
Symanzik et al., 1999a; Macedo et al., 2000; Böhlen et al., 2003). However, there
exist several different definitions of the term VDM. Soukop and Davidson (2002)
dedicate less than one page to “dynamic visualizations that allow user interaction”
in their book on VDM.

In this chapter we will provide a general overview on existing methods and
software for interactive and dynamic graphics. We will also provide a snapshot of
current developments that may become a standard in the near future but may also
be quickly forgotten again. All sections are supported by an extensive list of refer-
ences that will allow every reader from novice to expert to become more familiar
with a particular concept of interactive and dynamic graphics. More specifically,
in Sect. 10.2, we will discuss early developments and software related to interactive
and dynamic graphics. In Sect. 10.3, we will discuss the main concepts and in
Sect. 10.4 some software products related to interactive and dynamic graphics. In-
teractive 3D graphics will be discussed in Sect. 10.5 and applications of interactive
and dynamic graphics in geography, medicine, and environmental sciences will
be discussed in Sect. 10.6. We conclude this chapter with an outlook to possible
future developments in Sect. 10.7.

All graphical displays throughout this chapter are based on the “Places” data set
that was distributed to interested members of the American Statistical Association
(ASA) several years ago so that they could apply contemporary data analytic
methods to describe these data and then present results in a poster session at the
ASA annual conference. The data are taken from the Places Rated Almanac (Boyer
and Savageau, 1981). The data are reproduced on disk by kind permission of the
publisher, and with the request that the copyright notice of Rand McNally, and the
names of the authors appear in any paper or presentation using these data. The data
consist of nine measures of livability for 329 cities in the U.S.: Climate and Terrain,
Housing Cost, Health Care and Environment, Crime, Transportation, Education,
The Arts, Recreation, and Economics. For all but two of the above criteria, the
higher the score, the better. For Housing Cost and Crime, the lower the score the
better. The scores are computed using several statistics for each criterion (see the
Places Rated Almanac for details). Latitude and longitude have been added by Paul
Tukey. Population numbers have been added as well.

Early Developments and Software10.2

There is a strong history of statistical graphics research on developing tools for vi-
sualizing relationships between many variables. Much of this work is documented
in videos available from the ASA Statistical Graphics Section Video Lending Li-
brary at http:||www.bell-labs.com|topic|societies|asagraphics|library|index.html.
Currently, these historical videos are upgraded into a digital format and will be
available on CD or DVD later in 2004.

Interactive and Dynamic Graphics 297

Additional material on statistical graphics can also be found in journals such
as “Journal of Computational and Graphical Statistics”, “Computational Statis-
tics”, and “Computational Statistics & Data Analysis” and in “Computing Sci-
ence and Statistics”, the proceedings of the Interface conferences. The follow-
ing paragraphs only serve as a basic overview for readers unfamiliar with dy-
namic statistical graphics. They are not intended as a full introduction into this
topic.

A video clip of the successive stages in a multidimensional scaling algorithm
(Kruskal, 1970) is one of the first examples how to apply dynamic statistical graph-
ics. A second example by Chang (1970) shows an interactive search for a structured
two-dimensional projection in five dimensions where three of the five dimensions
are noise. PRIM-9 (Picturing, Rotation, Isolation and Masking in up to 9 dimen-
sions), documented in Fisherkeller et al. (1974a) and Fisherkeller et al. (1974b), is
the landmark example of early dynamic statistical graphics. Projections formed
the fundamental part of the visualization system and were complemented with
isolation and masking. A good explanation of the importance of projection as
a tool for visualizing structure in high-dimensional data can be found in Furnas
and Buja (1994).

One major breakthrough in using projections for visualizing higher dimensions
was made by Asimov (1985) in his work on the grand tour. The grand tour, further
exploited in Buja and Asimov (1986a), in an abstract sense shows a viewer all
possible projections in a continuous stream (which could be considered to be
moving planes through p-dimensional space). Several possibilities for “showing
all possible projections” were explored in the original work, but the most successful
method to arise from it is based on interpolating between random planes. Another
common approach to displaying high-dimensional data can be found in Becker
and Cleveland (1988) where data is plotted in a scatterplot matrix, i.e., a matrix
of pairwise scatterplots. Users can do linked brushing among the plots, i.e., mark
pointswithdifferent symbols andcolors,while this information is also immediately
displayed in all related (linked) plots.

The historical development of interactive and dynamic statistical graphics is
well documented in a series of books and articles. Chambers et al. (1983) and
du Toit et al. (1986) can be placed somewhere inbetween Tukey’s original idea of
EDA and the beginning of modern dynamic and interactive statistical graphics.
Wegman and DePriest (1986) is a collection of papers presented at a workshop
sponsored by the Office of Naval Research (ONR), held in Luray, Virginia, from
24 through 27 May, 1983. About half of the papers are related to statistical image
processing while the other half is related to (interactive) statistical graphics. Cleve-
land and McGill (1988) contains a collection of papers about dynamic graphics
for statistics, originally published between 1969 through 1988. This book is a very
good reference to see the progress in dynamic graphics concepts and software
over two decades, starting from the very early stages through the late 1980’s. Buja
and Tukey (1991) is based on the proceedings of the Institute for Mathematics
and its Applications (IMA) 1989 summer program on “Robustness, Diagnostics,
Computing and Graphics in Statistics”. An earlier “Handbook of Statistics, Vol-

298 Jürgen Symanzik

ume 9, Computational Statistics”, edited by Rao (1993), contains several then
state-of-the-art overviews on interactive and dynamic statistical graphics, most
notably the chapters by Wegman and Carr (1993) and Young et al. (1993). Nagel
et al. (1996) dedicate two (out of six) chapters of their book to dynamic graph-
ics – one being an overview and one discussing applications. Theus (1996) is
fully dedicated to the theory and applications of interactive statistical graph-
ics. Wilhelm et al. (1996) contains reviews of software for interactive statistical
graphics.

Major statistical journals often dedicate special issues to interactive and dy-
namic graphics, e.g., “Computational Statistics” (Volume 14, Issue 1, 1999) on “In-
teractive Graphical Data Analysis” and “Computational Statistics & Data Analysis”
(Volume 43, Number 4, 2003) on “Data Visualization”.

Concepts of Interactive
and Dynamic Graphics10.3

This section will provide some deeper insights into concepts of interactive and
dynamic graphics mentioned in the previous sections. Buja et al. (1996) contains
a taxonomy of interactive data visualization based on the notions of focusing,
linking, and arranging views of data. Unwin (1999) discusses some of the main
concepts in the context of interactive graphics software.

Scatterplots and Scatterplot Matrices10.3.1

Perhaps the most basic concepts for statistical graphics are scatterplots (see
Figs. 10.1, 10.2, 10.3, and 10.4). In a simple scatterplot, we place different sym-
bols (sometimes also called glyphs) at x- and y-positions in a two-dimensional
plot area. These positions are determined by two of the variables. The type, size,
and color of the symbols may depend on additional variables. Usually, explanatory
information such as axes, labels, legends, and titles are added to a scatterplot. Ad-
ditional information such as a regression line or a smoothed curve can be added
as well.

If the data consist of more than two variables (e.g., somewhere between three
to ten), the data can be displayed by a scatterplot matrix (see Figs. 10.2 and 10.3)
that shows all pairwise scatterplots of the variables. The essential property of
a scatterplot matrix is that any adjacent pair of plots have one of their axes in
common. When plotting the full array of all n× (n − 1) pairwise scatterplots, each
plot in the upper triangle of plots has a matching plot in the lower triangle of
plots, with the exception that the axes in these pairs of plots have been flipped.
Therefore, sometimes only the upper or lower triangle of scatterplots is displayed;
thus gaining plotting speed and allowing each individual plot to be somewhat
larger. Early examples of scatterplot matrices can be found in Chambers et al.
(1983) and Cleveland (1985) for example. Chambers et al. (1983) initially called

Interactive and Dynamic Graphics 299

Figure 10.1. Screenshot of the “Places” data in ArcView|XGobi. A map view of the 329 spatial

locations is displayed in ArcView at the top. The two XGobi windows at the bottom are showing

scatterplots of Crime (horizontal) vs. Education (vertical) (left) and Recreation (horizontal) vs. Arts

(vertical) (right). Locations of high Crime have been brushed and identified, representing some of

the big cities in the U.S. Also, locations of high Education (above 3500) have been brushed, mostly

representing locations in the northeastern U.S. All displays have been linked

an array of pairwise scatterplots for three variables a draftsman’s display and for
four (or more) variables a generalized draftsman’s display. In their (generalized)
draftsman’s display, each point is plotted with the same symbol. When encoding
additional information through the use of different plotting symbols, Chambers
et al. (1983) speak of symbolic (generalized) draftsman’s displays. Today, we hardly
makeanydistinctionof thesedifferent typesofdisplaysand just speakof scatterplot
matrices.

Murdoch(2002)andUnwin(2002)discuss featuresgoodscatterplotsandrelated
interactive software should provide, e.g., meaningful axes and scales, features for
rescaling and reformatting, good handling of overlapping points and missing data,
panningandzooming,andqueryingofpoints.Carret al. (1987)describe techniques
for scatterplot matrices particularly useful for large numbers of observations.

300 Jürgen Symanzik

Figure 10.2. Screenshot of the “Places” data in GGobi. A scatterplot of Crime (horizontal) vs.

Education (vertical) is displayed at the top right, a scatterplot matrix of five of the variables is

displayed at the bottom right, and a density (1D) plot of Population is displayed at the bottom left.

The data has been brushed with respect to Population: one group for a Population less than 500,000,

one group for a Population between 500,000 and 1,000,000, and one group for a Population above

1,000,000. The scatterplot of Crime and Education seems to reveal that higher Population is

associated with higher Crime and higher Education. The scatterplot matrix seems to reveal that

higher Population is also associated with higher Arts and higher HealthCare. All displays have been

linked

Brushing and Linked Brushing|Linked Views10.3.2

Brushing, as introduced in Becker and Cleveland (1988) and Becker et al. (1988b),
initially was considered as a collection of several dynamic graphical methods for
analyzingdatadisplayed ina scatterplotmatrix.Thecentral ideabehindbrushing is
abrush,usually a rectangular areaon thecomputer screen, that ismovedby thedata
analyst to different positions on the scatterplot or any other graphical display. Four
brushing operations were introduced in Becker and Cleveland (1988): highlight,
shadow highlight, delete, and label. The most commonly used brushing technique
is highlighting – often in the context of linked brushing, i.e., for linked views. All
points that are inside the brush in the currently selected display are highlighted, i.e.,
marked with a different symbol or color. Simultaneously, points that correspond

Interactive and Dynamic Graphics 301

to those points are automatically highlighted with the same symbol|color in all
linked views.

A very useful brushing technique is the transient paint mode. As the brush is
moved, the new points that come inside the brush are highlighted while points that
move outside the brush are no longer highlighted.

While brushing initially was only developed for scatterplot matrices, it quickly
has been adapted to other types of linked graphical displays. Linked brushing
among different displays is one of the most useful techniques used within dynamic
and statistical graphics. Linked brushing can be applied to graphical represen-
tation of continuous data, summary data such as histograms (Stuetzle, 1988), or
even displays of categorical data such as mosaic plots (Hofmann, 2000, 2003). All
dynamic statistical graphics software packages support linked brushing among
different types of graphical displays these days.

When dealing with massive data sets, it is often beneficial to focus on particular
subgroups of the data and also be able to quickly return to a previous stage of the
analysis. Selection sequences (Theus et al., 1998; Hofmann and Theus, 1998) are
an extension of the conventional linked-highlighting paradigm as they store the
whole hierarchical path of a selection and allow an easy editing, redefinition, and
interrogation of each selection in the path of the analysis. In a selection sequence,
we can easily jump from one branch of the hierarchic selection tree to another.

Focusing, Zooming, Panning, Slicing, Rescaling,
and Reformatting 10.3.3

Focusing techniques, as introduced in Buja et al. (1991), are based on the idea
that it often might be easier for a human analyst to understand several individ-
ual displays, each focused on a particular aspect of the underlying data, rather
than looking at the full data set. Focusing techniques include subset selection
techniques, e.g., panning and zooming or slicing, and dimensionality reduc-
tion techniques, e.g., projection. Methods for focusing can be automatic, inter-
active, or a combination of both. While focusing shows only part of the data
at a time, it is important to display multiple linked views of the data, perhaps
each focusing on a different aspect of the data, to maintain the full picture of the
data.

Zooming is a technique that can be used for inspecting details of the data when
overplotting arises. Zooming can be done via some kind of a magnifying glass or
by manually selecting subsections of the visible axes, e.g., via sliders. The main
idea behind zooming is that when several points overplot in the full display, it
may indeed turn out that these points are exactly the same when zooming into
the neighborhood of these points – or, what most frequently happens, that these
points have a particular structure and are not exactly the same.

Panning is closely related to zooming. An analyst should know which subset
of the data is currently visible. Therefore, an information plot should reveal the
current location on which subregion we have zoomed.

302 Jürgen Symanzik

Slicing, as described in Furnas (1988) and Furnas and Buja (1994), is a technique
that takes sections (or slices) of a high-dimensional data set. While slicing (and
projections) are useful means for an exploratory data analysis, these techniques
also have their limitations. However, these limitations may be overcome by com-
bining slicing and projections in so-called prosections (Furnas and Buja, 1994).
An extension of individual prosection views is the prosection matrix (Tweedie
and Spence, 1998), some kind of a density plot summarizing multi-dimensional
volumetric information. The prosection matrix is a useful representation for en-
gineering design, allowing an analyst to interactively find a design that leads to
a maximal manufacturing yield.

Rescaling is a technique that allows a user to quickly change the scale of the
displayed variables, e.g., by taking the log, square root, standardize, or by mapping
to a 0–1 scale. When looking at multiple variables, it might also be beneficial to
have a common scale (from the minimum across all variables to the maximum
across all variables). By interactively rescaling variables, an analyst may identify
useful transformations for a follow-up modeling step of the data.

Reformatting includes features as simpleas swapping x and y axes ina scatterplot
or changing the order of coordinate axes in a parallel coordinate plot.

Unwin (2002) provides more details on several of the techniques described
above.

Rotations and Projections10.3.4

Rotation, as introduced in Fisherkeller et al. (1974b) and later refined in Becker
et al. (1988b), is a very powerful tool for understanding relationships among three
or more variables. The familiar planar scatterplot is enhanced by rotation to give
the illusion of a third dimension. We typically rotate plots in search of some
interesting views that do not align with the plot axes and therefore cannot be seen
in a scatterplot matrix. Usually, a three-dimensional point cloud representing three
of the variables is shown rotating on a computer screen. The rotation shows us
different views of the points and it produces a 3D effect while moving, allowing us
to see depth. Basic rotation controls with a mouse have been introduced in Becker
et al. (1988b).

Mathematically speaking, each rotation within a 3D space onto a 2D computer
screen is based on a projection. Obviously, it is mathematically possible to project
high-dimensional data onto low-dimensional subspaces and gain insights into the
underlying data through dynamic visualizations of such projections. One par-
ticular example of a continuous sequence of projections, the grand tour, will be
discussed in the next section. Cook and Buja (1997) discuss methods how to man-
ually control high-dimensional data projections. Cook (1997) provides a variety
of training data sets that help new users to get a visual feeling of the underly-
ing high-dimensional data set when seen as a projection into low-dimensional
space.

Interactive and Dynamic Graphics 303

Grand Tour 10.3.5

Often, simple plot rotation, as discussed in the previous section, does not suf-
fice to see all interesting views of the data. To produce a plethora of possible
interesting views, the grand tour has been introduced in Asimov (1985) and Bu-
ja and Asimov (1986b). In Asimov (1985), the grand tour has been described as
“a method for viewing multivariate statistical data via orthogonal projections on-
to a sequence of two-dimensional subspaces. The sequence of subspaces is chosen
so that it is dense in the set of all two-dimensional subspaces.” Some of the fea-
tures the grand tour can be used for are examining the overall structure and
finding clusters or outliers in high-dimensional data sets.

In the context of the grand tour, an alternating sequence of brushing, looking
at additional projections from the grand tour, brushing, and so on, is referred to
as the brush-tour strategy in the remainder of this chapter. We can only be sure
that a cluster visible in one projection of the grand tour really is a cluster if its
points remain close to each other in a series of projections and these points move
similarly when the grand tour is activated. If points move apart, we probably found
several subclusters instead of one larger cluster.

Wegman (1992) discusses a form of the grand tour for general d-dimensional
space. The algorithms for computing a grand tour are relatively computation-
ally intensive. Wegman and Shen (1993) discuss an approximate one- and two-
dimensional grand tour algorithm that was much more computationally efficient
than the Asimov winding algorithm. That algorithm was motivated in part by
a discussion of the Andrews (multidimensional data) plot, discussed in Sect. 10.3.9,
which can also be regarded as a highly restricted pseudo tour.

Parallel Coordinate Plots 10.3.6

Parallel coordinate plots (Inselberg, 1985; Wegman, 1990)(see Fig. 10.3) are a ge-
ometric device for displaying points in high-dimensional spaces, in particular,
for dimensions greater than three. The idea is to sacrifice orthogonal axes by
drawing the axes parallel to each other resulting in a planar diagram where each
d-dimensional point (x1, … , xd) is uniquely represented by a continuous line. The
parallel coordinate representation enjoys some elegant duality properties with the
usual Cartesian coordinates and allows interpretations of statistical data in a man-
ner quite analogous to two-dimensional Cartesian scatterplots. This duality of lines
in Cartesian plots and points in parallel coordinates extends to conic sections. This
means that an ellipse in Cartesian coordinates maps into a hyperbola in parallel
coordinates. Similarly, rotations in Cartesian coordinates become translations in
parallel coordinates.

The individual parallel coordinate axes represent one-dimensional projections
of the data. We can isolate clusters by looking for separation between data points
on any axis or between any pair of axes. Because of the connectedness of the
multidimensional parallel coordinate diagram, it is usually easy to see whether or
not this clustering propagates through other dimensions.

304 Jürgen Symanzik

Figure 10.3. Screenshot of the “Places” data in CrystalVision. A parallel coordinate plot of all

variables is shown as the main plot. A scatterplot matrix of all variables with a scatterplot of Crime

(horizontal) vs. Education (vertical) is shown as a popup in the top right. The data has been brushed

according to high and low Population. According to the parallel coordinate plot, higher Population is

associated with higher Arts and HousingCost. The scatterplot of Crime and Education seems to

reveal that higher Population is also associated with higher Crime and higher Education. All displays

have been linked

The use of parallel coordinate plots for a d-dimensional grand tour sequence,
sometimes called a parallel coordinate grand tour, has been described in Wegman
(1992) and Wegman and Carr (1993). By using such a parallel coordinate grand
tour, an analyst can find orientations where one or more clusters are evident. The
general strategy for detecting clusters is the following: We begin with a static plot
of the data in parallel coordinates. If there are any gaps along a horizontal axis
(which incidentally does not need to coincide with the coordinate axes), then we
color the individual clusters with distinct colors. Once all clusters are identified
in the original coordinate system, we run the grand tour until an orientation of
the axes is found in which another gap in one of the horizontal axes is found.
Again we color the individual subclusters with distinct colors. This procedure is
repeated until no further subclusters can be identified. This is another example of
the brush-tour strategy referred to in Sect. 10.3.5. Indeed, when to stop is a matter
of judgement, since the procedure can be repeated until practically every data
point can be individually colored. The crucial issue, which really depends on the
dynamic graphics, is to see that clusters identified in this manner track coherently

Interactive and Dynamic Graphics 305

with the grand tour animation. That is, data points of the same color stay together
as the grand tour rotation proceeds. If they do not, then there are likely to be
substructures that can be identified through further grand tour exploration.

Slopes of parallel coordinate line segments can also be used to distinguish
clusters. That is, if a group of line segments slopes, say, at 45◦ to the horizontal and
another group slopes at, say, at 135◦ to the horizontal, then even though the lines
fully overlap in both adjacent parallel coordinate axes and there is no horizontal
gap, these sets of lines represent two distinct clusters of points. Fortunately, when
such indication of clustering exists, the grand tour will also find an orientation of
axes in which there is a horizontal gap. Thus the general strategy is to alternate
color brushing of newly discovered clusters with grand tour rotations until no
further clusters can be easily identified.

In some software packages, the parallel axes in a parallel coordinate plot are
drawn as horizontal lines (e.g., in ExplorN) while in other software packages
they are drawn as vertical lines (e.g., in XGobi). While it may be argued that this
makes no difference from a mathematical point of view, the wider aspect ratio
in the horizontal mode coupled with a more usual sense of plotting data along
an abscissa rather than along the ordinate tends to allow for an easier human
interpretation. Detailed interpretations are given in Wegman (1990).

Projection Pursuit and Projection Pursuit Guided Tours 10.3.7

While the grand tour, as discussed in Sect. 10.3.5, is a dynamic tool, projection
pursuit (Kruskal, 1969; Friedman and Tukey, 1974; Huber, 1985), see also Chap. III.6,
is a static tool. Projection pursuit results in a series of static plots of projections
that are classified as “interesting” with respect to a particular projection pursuit
index. Many projection pursuit indexes, e.g., the ones discussed in Jones and Sibson
(1987), Friedman (1987), Hall (1989), Morton (1989, 1992), Cook et al. (1993), and
Posse (1995), are based on the idea to search for the most non-normal projections.
Usually, each projection pursuit index, a function of all possible projections of
the data, results in many hills and valleys. Friedman (1987) suggests a projection
pursuit algorithm that initially searches for relatively high values of the function
and then starts derivative-based searches to find the global maximum.

The combination of grand tour and projection pursuit, called projection pursuit
guided tour (Cook et al., 1995), helps to direct the grand tour towards “interesting”
projections. This combination of the two methods into an interactive and dynamic
framework not only shows the “interesting” projections but it maintains the mo-
tion so the user has a feeling how successive “interesting” projections have been
obtained.

Pixel or Image Grand Tours 10.3.8

The idea of the pixel or image grand tour (IGT) evolved from an initial applica-
tion of one-dimensional tours to image data. Multiple registered images can be

306 Jürgen Symanzik

regarded as a multidimensional image in which each pixel location has a vector
attached to it. For example, ordinary red, green, and blue (RGB) color images
are vector-valued images. The basic idea of the image tour is to apply the same
one-dimensional grand tour to each vector for all pixel locations in an image.
This combines the vectors into a scalar function of time which can be rendered
as a time-varying gray-scale image. The Wegman and Shen (1993) algorithm gen-
eralizes easily to two dimensions, so that an alternate approach to the IGT is to
project the multidimensional vector into two dimensions and render the image as
a false color image with two complementary colors such as red and cyan. It should
be noted that red and cyan are complementary colors in the RGB color model used
for most computer monitors whereas red and green are complementary colors
in the conventional color model, introduced by the Commission Internationale
de l’Éclairage (CIE) in 1931. A detailed comparison of these two and other color
models can be found in Foley et al. (1990), Chap. 13. The initial discussion of the
IGT was given by Wegman et al. (1998). Additional examples of the IGT can be
found in Symanzik et al. (2002b).

Currently, the IGT software, written in C++ by Qiang Luo, is available for
Silicon Graphics, Inc., (SGI) workstations. To obtain a fast rendering rate of large
images, the software intensively uses SGI hardware features such as the α-channel
hardware. There exists also a MATLAB version of the IGT written by Wendy
Martinez. Both versions of the IGT software are not accessible through a Web site
but can be obtained from the corresponding software developers.

Andrews Plots10.3.9

The Andrews (multidimensional data) plot, as introduced in Andrews (1972) is
based on a series of Fourier interpolations of the coordinates of multi-dimensional
data points. Points that are close in some metric will tend to have similar Fourier
interpolations and therefore will tend to cluster in the Andrews plot. Thus, the
Andrews plot is an informative graphical tool most useful to detect clustering.

Ideasunderlying theAndrewsplot and thegrand tourarequite similar.However,
in contrast to the grand tour, the Andrews plot is a static plot while the grand
tour is dynamic. Although dynamic renditions of the Andrews plot exist, and
these sometimes also are (incorrectly) referred to as one-dimensional grand tour
(Crawford and Fall, 1990), the Andrews plot is not a grand tour since it cannot
sweep out all possible directions as pointed out in Wegman and Shen (1993). Three-
dimensional generalizations of the Andrews plot and other pseudo grand tours
have been introduced in Wegman and Shen (1993) as well.

Density Plots, Binning, and Brushing
with Hue and Saturation10.3.10

Carr et al. (1987) present techniques for visualizing data in scatterplots and scatter-
plot matrices when the data consists of a large number of observations, i.e., when

Interactive and Dynamic Graphics 307

overplotting of points frequently occurs using standard techniques. A key idea to
address in the visualization of a large number of observations is based on the esti-
mation and representation of densities. For this purpose, the data is often binned
into an n × n matrix for two-dimensional representation (or an n × n × n matrix
for three-dimensional representation). Possibilities to visualize the number of data
points in each bin can be based on gray-scale (or color) density representations or
by symbol area such as using differently sized hexagon symbols, where the area of
the plot symbol is proportional to the count in each bin. Carr (1991) further extends
these ideas and presents additional low-dimensional displays for data that consist
of a large number of observations. Scott (1992) provides a general overview on
techniques for density estimation, including averaged shifted histograms (ASH)
and kernel density estimators, including possible visualization techniques via con-
tour surfaces, (transparent) α-level contours, and contour shells. Further details
on multivariate density estimation and visualization can be found in Chap. III.4.

Wegman and Luo (1997a) use hue and saturation for plotting and brushing. For
each individual point, the hue is almost fully desaturated with black. When points
are overplotted, the hue components are added. The saturation level should be
interactively adjustableby theanalyst. Ifmanypointsoverplot, thepixelwill be fully
saturated. If fewer points overplot, the pixel will be shown in a less saturated color.
Often, computer hardware devices such as theα-channel allow the blending of pixel
intensities with no speed penalties. When using saturation for parallel coordinate
plots and the level of saturation corresponds with the degree of overplotting,
this creates a kind of parallel coordinate density plot (Wegman and Luo, 1997a,
1997b).

Interactive and Dynamic Graphics for Categorical Data 10.3.11

Although categorical data are quite common in the real world, little research has
been done for their analysis and visualization when compared to quantitative data.
However, there exist useful interactive and dynamic graphics for categorical data
(Ostermann and Nagel, 1993; Theus and Wilhelm, 1998). For example, brushing
and linking of categorical data represented via bar charts and pie charts can be
as useful as for quantitative data (Hummel, 1996). Modified bar charts where the
same height is used for each category and the width is varied according to the
number of counts are called spine plots (Hummel, 1996). When interactively high-
lighting a category of interest, spine plots allow the analyst to visually compare the
proportions in the different subcategories by looking at the heights of the high-
lighted areas. Examples of interactive graphics for categorical data such as spine
plots and interactive mosaic plots (see Fig. 10.4) can be found in Hofmann (2000,
2003). Valero-Mora et al. (2003)) discuss spreadplots (and their implementation
in ViSta), a method for laying out and simultaneously controlling graphics for
categorical data.

Blasius and Greenacre (1998) present a collection of papers dealing with the
visualization of categorical data. Main topics include graphics for visualization,
correspondence analysis, multidimensional scaling and biplots, and visualization

308 Jürgen Symanzik

Figure 10.4. Screenshot of the “Places” data in Mondrian. The variables Crime, Education, and

Population have been discretized for this figure. A mosaic plot of Crime (first vertical division,

grouped as below 1000 (left) and above 1000 (right)), Education (first horizontal division, grouped

as 2700 to 3500 (top), below 2700 (middle), and above 3500 (bottom)), and Population (second

vertical division, grouped as 500,000 to 1,000,000 (left), below 500,000 (middle), and above 1,000,000

(right)) is displayed at the top right. A histogram of Transportation is shown at the bottom left,

boxplots of HealthCare and Arts are shown at the bottom middle, and a scatterplot of Climate

(horizontal) vs. HousingCost (vertical) is shown at the bottom right. The mosaic plot shows that

Crime, Education, and Population are not independent. The different displays show how average

Transportation (that has been brushed in the histogram) is related to the other variables. All displays

have been linked

and modeling. Several of these approaches benefit from interactive and dynamic
graphics.

Graphical Software10.4

In this section, we concentrate on three main streams of software for interactive
and dynamic statistical graphics: Software developed by researchers affiliated with
the University of Augsburg, in particular REGARD, MANET, and Mondrian; soft-

Interactive and Dynamic Graphics 309

ware developed by researchers affiliated with George Mason University (GMU),
in particular ExplorN and CrystalVision; and software developed by researchers
affiliated with Bell Labs, AT&T, and Iowa State University (ISU), in particular XGo-
bi and GGobi. Wilhelm et al. (1996) contains an in depth review of software for
interactive statistical graphics. Wilhelm et al. (1999) is one of the few publications
where the different interactive graphical concepts provided by these three main
streams (represented by MANET, ExplorN, and XGobi, respectively) are applied
to the same data set and thus allow a direct comparison of their features and
capabilities in visual clustering and classification.

REGARD, MANET, and Mondrian 10.4.1

In this section we present a series of software developments that was initiated
in the late 1980’s by John Haslett and Antony Unwin at Trinity College, Dublin,
and later was continued by Antony Unwin and his collaborators at the Institut für
Mathematik, University of Augsburg. Other main collaborators that contributed to
the development of these software tools that should be mentioned here are Heike
Hofmann, Martin Theus, Adalbert Wilhelm, and Graham Wills.

Some of the early developments are Diamond Fast (Unwin and Wills, 1988) and
Spider (Craig et al., 1989). Diamond Fast is a software package for the exploration
of multiple time series with interactive graphics. Spider is a software package for
the exploration of spatially referenced data. Among its main features are moving
statistics, an extension of brushing for spatial data (Craig et al., 1989). Spider also
supports histograms, density estimates, scatterplot matrices, and linked brushing.
It runs on Macintosh computers only.

REGARD (Unwin et al., 1990; Unwin, 1994) is a software package that also pro-
vides high interaction graphics tools for spatial data. REGARD stands for “Radical
Effective Graphical Analysis of Regional Data” and runs on Macintosh computers
only. REGARD supports four types of layers of spatial data, i.e., points, regions,
lines, and pictures. The central display in REGARD is the map window that is linked
to statistical displays such as boxplots, scatterplots, and rotating plots. A map may
be loaded as one picture in a picture layer or as several pictures in several layers,
thus allowing to turn on or off different aspects of a map (such as state boundaries
or a road network). Additional interactive features are interrogation, highlighting,
resizing, and rescaling. Advanced features include zooming into submaps, ani-
mation across ordered variables, cross-layer linking, network analysis tools, and
interactive query tools across all graphical displays.

MANET (Unwin et al., 1996) is a statistical graphics research program for EDA
and written in C++. MANET stands for “Missings Are Now Equally Treated” and
runs on Macintosh computers only. It is freely available from the following Web
site: http:||www1.math.uni-augsburg.de|Manet|.

MANET offers all standard one- and two-dimensional graphics for continuous
data as well as for discrete data: dotplots, scatterplots, histograms, boxplots, bar
charts. Some special graphics for discrete and spatial data are integrated: spine
plots, mosaic plots and polygon plots. MANET grew out of a project to keep track

310 Jürgen Symanzik

of missing values in statistical graphics. In MANET all displays are fully linked and
instantaneously updated. Displays are kept as simple as possible so they do not
distract the user.

The standard use of linked views in MANET is to highlight clusters that are
apparent in one dimension and to see these one-dimensional clusters in the
light of other variables. By systematically subsetting the sample points, we can
also detect two- and higher-dimensional clusters. Once a cluster has been de-
tected, a classification rule can be set up by taking the boundary values of the
cluster. In MANET those values can easily be obtained by interrogating the plot
symbols.

One-dimensional views show the one-dimensional clusters directly. Two-di-
mensional clusters become visible by highlighting a subset in one variable and
conditioning another plot on this subset. For three- and higher-dimensional clus-
ters, we have to combine various subsets in different plots into one conditioning
set and then we have to look at the remaining plots to check for clusters. The
generation of such combined selections is not only possible in MANET but it is
also very efficiently implemented through selection sequences.

In MANET, both dotplots and boxplots are drawn in a non-standard way. In dot-
plots the brightness of a point shows the frequency of its occurrence. This method,
called tonal highlighting, is used to visualize overplotting of points. A bright color
represents many points while a dark color represents just a few points. There is no
tonal highlighting for selected points in MANET. The layout of boxplots is changed
so that a standard boxplot can be superimposed for selected points. The inner fifty
percent box is drawn as a dark grey box. The outer regions, usually represented as
whiskers, are drawn as light grey boxes.

A recent new development, Mondrian (Theus, 2002, 2003), is a data visual-
ization system written in JAVA and therefore runs on any hardware platform.
Mondrian is freely available from the following Web site: http:||www.rosuda.org|
Mondrian|.

The main emphasis of Mondrian is on visualization techniques for categorical
and geographical data. All plots in Mondrian (see Fig. 10.4) are fully linked and
offer various interrogations. Any case selected in one plot in Mondrian is high-
lighted in all other linked plots. Currently, implemented plots comprise mosaic
plots, scatterplots, maps, bar charts, boxplots, histograms, and parallel coordinate
plots. Mosaic plots in Mondrian are fully interactive. This includes not only link-
ing, highlighting and interrogations, but also an interactive graphical modeling
technique for loglinear models.

HyperVision, ExplorN, and CrystalVision10.4.2

In this section we present a series of software developments that was initiated in the
late 1980’s by Daniel B. Carr (initially with Battelle Pacific Northwest Laboratories)
and Edward J. Wegman at GMU. Other main collaborators that contributed to the
development of these software tools that should be mentioned here are Qiang Luo
and Wesley L. Nicholson.

Interactive and Dynamic Graphics 311

EXPLOR4 (Carr and Nicholson, 1988) is a research tool, originally implemented
on a VAX 11|780 and written in FORTRAN. Its main features are rotation, masking,
scatterplots and scatterplot matrix, ray glyph plots, and stereo views.

HyperVision, presented in Bolorforoush and Wegman (1988), is a software prod-
uct that has been implemented in PASCAL on an IBM RT under the AIX operating
system as well as for MS-DOS machines. The latter implementation has a mouse-
driven painting capability and can do real-time rotations of 3D scatterplots. Other
displays are parallel coordinate plots, parallel coordinate density plots, relative
slope plots, and color histograms. The main interactive features in HyperVision in
addition to linked brushing are highlighting, zooming, and nonlinear rescaling of
each axis.

ExplorN (Carr et al., 1997) is a more advanced software package than Hyper-
Vision and EXPLOR4, but with similar basic features. It runs on SGI workstations
only, using either the GL or the OpenGL tools. ExplorN is freely available from the
following ftp site: ftp:||www.galaxy.gmu.edu|pub|software|.

ExplorN supports scatterplot matrices, parallel coordinate plots, icon-enhanced
three-dimensional stereoscopicplots, d-dimensional grand tours andpartial grand
tours (i.e., tours based on a subset of the variables with the remaining variables
being held fixed), and saturation brushing all in a high interaction graphics pack-
age.

The ExplorN software is intended to demonstrate principles rather than to
be an operational tool so that some refinements normally found in operational
software are not there. These include history tracking, easy point identification,
identification of mixture weights in the grand tour, relabeling of axes during and
after a grand tour as well as simultaneous multiple window views.

Although ExplorN also supports conventional scatterplots and scatterplot ma-
trices, one of its outstanding features are parallel coordinate displays and partial
grand tours. Since it is easy to see pairwise relationships for adjacent variables in
parallel coordinate plots, but less easy for nonadjacent variables, a complete paral-
lel coordinate investigation would require running through all possible permuta-
tions. Instead of this, we recommend using the d-dimensional parallel coordinate
grand tour that is implemented in ExplorN. An important interactive procedure
for finding clusters using parallel coordinate plots is via the brush-tour.

CrystalVision is a recently developed successor of ExplorN, freely accessible at
ftp:||www.galaxy.gmu.edu|pub|software|. Its main advantage over the older pack-
age is that it is available for PCs. Similar to ExplorN, CrystalVision’s (see Fig. 10.3)
main focus is on parallel coordinate plots, scatterplots, and grand tour animations.
Examples of its use, e.g., its EDA techniques applied to scanner data provided by
the U.S. Bureau of Labor Statistics (BLS), can be found in Wegman and Dorfman
(2003).

Data Viewer, XGobi, and GGobi 10.4.3

In this section we present a series of software developments that was initiated
in the mid 1980’s by Andreas Buja, Deborah F. Swayne, and Dianne Cook at

312 Jürgen Symanzik

the University of Washington, Bellcore, AT&T Bell Labs, and ISU. Other main
collaborators that contributed to the development of these software tools that
should be mentioned here are Catherine Hurley, John A. McDonald, and Duncan
Temple Lang.

The Data Viewer (Buja et al., 1986, 1988; Hurley, 1988, 1989; Hurley and Buja,
1990) is a software package originally developed on a Symbolics Lisp Machine
that supports object-oriented programming. The Data Viewer is a system for the
exploratory analysis of high-dimensional data sets that allows interactive labeling,
identification, brushing, and linked windows. Additional features are viewport
transformations such as expanding or shrinking of the data and shifting of the
data. The Data Viewer supports several types of projections, including simple 3D
rotations, correlation tour (Buja et al., 1988), and grand tour.

Many of the design and layout concepts of the Data Viewer as well as parts of
its functionality provided the basic ideas for the follow-up XGobi (see Fig. 10.1),
first described in Swayne et al. (1991) and Swayne and Cook (1992). Development
on XGobi took place for about a decade; its almost final version is documented
in Swayne et al. (1998). XGobi is implemented in the X Windows System, so it
runs on any UNIX system, and it runs under Microsoft Windows or the Macintosh
operating system if an X emulator is used. XGobi can be freely downloaded from
http:||www.research.att.com|areas|stat|xgobi|.

XGobi is a data visualization system with interactive and dynamic methods for
the manipulation of views of data. It offers 2D displays of projections of points and
lines in high-dimensional spaces, as well as parallel coordinate plots. Projection
tools include dotplots and ASH of single variables, scatterplots of pairs of variables,
3D data rotations, and grand tours. Views of the data can be panned and zoomed.
Points can be labeled and brushed with glyphs and colors. Lines can be edited and
colored. SeveralXGobiprocesses canbe runsimultaneously and linked for labeling,
brushing, and sharing of projections. Missing data are accommodated and their
patterns can be examined; multiple imputations can be given to XGobi for rapid
visual diagnostics (Swayne and Buja, 1998). XGobi can be cloned, i.e., an identical
new XGobi process with exactly the same data and all brushing information can
be invoked.

Rotating plots are nowadays implemented in most statistical packages, but the
implementation in XGobi goes beyond most of the others. In addition to the
standard grand tour, XGobi supports the projection pursuit guided tour. More
details on projection pursuit indices available in XGobi can be found in Cook
(1993, 1995). Additional index functions that result in speed improvements of the
calculations have been presented in Klinke and Cook (1997).

GGobi (Swayne et al., 2003) is a direct descendant of XGobi, but it has been
thoroughly redesigned. GGobi (see Fig. 10.2) can be freely downloaded from
http:||www.ggobi.org|.

At first glance, GGobi looks quite unlike XGobi because GGobi uses a newer
graphical toolkit called GTK+ (http:||www.gtk.org), with a more contemporary
look and feel and a larger set of user interface components. Through the use of

Interactive and Dynamic Graphics 313

GTK+, GGobi can be used directly on Microsoft Windows, without any emulator.
In addition, GGobi can be used on any UNIX and Linux system.

In contrast to XGobi, the plot window in GGobi has been separated from the
control panel. In XGobi, there is in general a single plot per process; to look at
multiple views of the same data, we have to launch multiple XGobi processes. In
contrast, a single GGobi session can support multiple plots of various types: scat-
terplots, parallel coordinate plots, scatterplot matrices, and time series plots have
been implemented so far. Other changes in GGobi’s appearance and repertoire of
tools (when compared to XGobi) include an interactive color lookup table manager,
the ability to add variables “on the fly”, and a new interface for view scaling (pan-
ning and zooming). At this point, some of the advanced grand tour and projection
pursuit guided tour features from XGobi have not been fully reimplemented in
GGobi (but hopefully will be available in the near future).

Other Graphical Software 10.4.4

While the previous sections summarize software that focuses on interactive and
dynamic graphics, there exist several statistical languages that provide a tight
integration of interactive graphics and numerical computations. Examples for such
languages are S|S-PLUS (Becker et al., 1988a; Becker, 1994; Chan, 1997), R (Ihaka
and Gentleman, 1996), and XploRe (Härdle et al., 1995). Other examples of software
that link interactive graphics, computation, and spread sheets, often through the
Web, are the Data Representation System (DRS) by Inoue et al. (2002), DAVIS
by Huh and Song (2002), KyPlot by Yoshioka (2002), and the XploRe Quantlet
Client|Server (XQC|XQS) architecture (Kleinow and Lehmann, 2002).

Interactive 3D Graphics 10.5

A natural extension of 2D interactive and dynamic graphics is the use of anaglyphs
and stereoscopic displays on a computer screen and eventually the use of VR
environments to obtain a 3D representation of statistical data and linked objects
from geography or medicine.

Anaglyphs 10.5.1

A German teacher, Wilhelm Rollmann, initially described the effect of stereoscopic
graphics drawn in red and green colors that are looked at with the naked eye
(Rollmann, 1853a), i.e., what is now called free-viewing stereoscopic images. Later
the same year, Rollmann (1853b) describes the effect of looking at such colored
picturesusingfilter glassesof corresponding complementary colors. As a reminder,
red and green are complementary colors in the conventional color model whereas
red and cyan are complementary colors in the RGB color model used for most
computer monitors. Eventually, the work by Wilhelm Rollmann has been judged

314 Jürgen Symanzik

by Vuibert (1912) and Rösch (1954) as the birth of anaglyphs. The mathematics
underlying anaglyphs and stereoscopic displays can be found in Hodges (1992)
and Wegman and Carr (1993) for example.

Stereoscopic displays and anaglyphs have been used within statistics by Daniel
B. Carr, Richard J. Littlefield, and Wesley L. Nicholson (Carr et al., 1983, 1986;
Carr and Littlefield, 1983; Carr and Nicholson, 1985). In particular anaglyphs can
be considered an important means to represent three-dimensional pictures on
flat surfaces. They have been used in a variety of sciences but found only little
use in statistics. One of the first implementations of red-green anaglyphs was the
“real-time rotation of three-dimensional scatterplots” in the Mason Hypergraphics
software package, described in Bolorforoush and Wegman (1988), page 125. Inde-
pendently from the work on anaglyphs conducted in the U.S., interactive statistical
anaglyph programs also were developed by Franz Hering, Jürgen Symanzik, and
Stephan von der Weydt at the Fachbereich Statistik, University of Dortmund (Her-
ing and von der Weydt, 1989; Hering and Symanzik, 1992; Symanzik, 1992, 1993a,
1993b; Hering, 1994).

Wegman and DePriest (1986) is one of the rare sources in statistics where
anaglyphs are used in the papers of Banchoff (1986), Carr et al. (1986), and Gabriel
and Odoroff (1986). Moreover, Wegman and DePriest (1986) seems to be the first
statistical reference where colored (red-green) anaglyphs have been published in
print.

Virtual Reality10.5.2

Many different definitions of the term VR can be found throughout the litera-
ture. Cruz-Neira (1993) summarizes several possible definitions of VR, including
the following working definition for this chapter: “Virtual reality refers to immer-
sive, interactive, multi-sensory, viewer-centered, three-dimensional computer gen-
erated environments and the combination of technologies required to build these
environments.” A brief chronology of events that influenced the development of
VRcan be found in Cruz-Neira (1993). A more detailed overview on VRcan be
found in Pimentel and Teixeira (1995) or Vince (1995) for example.

Carolina Cruz-Neira and her colleagues developed an ambitious visualization
environment at the Electronic Visualization Lab (EVL) of the University of Illinois
in Chicago, known simply as the CAVE (Cruz-Neira et al., 1992, 1993a, 1993b; Cruz-
Neira, 1995; Roy et al., 1995). The abbreviation CAVE stands for CAVE Audio Visual
Experience Automatic Virtual Environment. Carolina Cruz-Neira moved to ISU in
1995 where she was involved in the development of a second, larger CAVE-like
environment known as the C2. The CAVE, C2, and several other of its successors
belong to immersive projection technology (IPT) systems where the user is visually
immersed within the virtual environment.

The use of ISU’s C2 for statistical visualization is based on the framework of
three-dimensional projections of p-dimensional data, using as a basis the methods
developed and available in XGobi. The implementation of some of the basic XGobi
features in the C2 resulted in VRGobi (see Fig. 10.5). The main difference between

Interactive and Dynamic Graphics 315

Figure 10.5. Screenshots of the “Places” data in VRGobi, previously published in Symanzik et al.

(1996a). A map view (left) and a three-dimensional point cloud displaying HousingCost, Climate,

and Education are shown (right). The control panel, glyph types, and the boundary box that delimits

the plot area are visible (top row). Cities with nice Climate and high HousingCost have been

brushed and happen to fall into California (middle row). Among the brushed points is one city (San

Francisco) with an outstanding value for Education (bottom row). When running VRGobi in the C2

(instead of producing screenshots from one of the control monitors), the rendered arm may be

replaced by a human user who is possibly wearing a data glove

XGobi and VRGobi is that the XGobi user interface is rather like a desktop with
pages of paper whereas VRGobi is more like having the whole room at the user’s
disposal for the data analysis.

316 Jürgen Symanzik

VRGobi and the statistical visualization in the C2 have been extensively ex-
plored and documented in the literature (Symanzik et al., 1996a, 1997; Cook
et al., 1997a, 1998; Nelson et al., 1998, 1999; Cook, 2001). Main developers of
VRGobi, over time, were Dianne Cook and Carolina Cruz-Neira, with major
contributions by Brad Kohlmeyer, Uli Lechner, Nicholas Lewin, Laura Nelson,
and Jürgen Symanzik. Additional information on VRGobi can be found at http:||
www.las.iastate.edu|news|Cook0219.html.

The initial implementation of VRGobi contains a three-dimensional grand tour.
Taking arbitrary three-dimensional projections can expose features of the data not
visible in one-dimensional or two-dimensional marginal plots.

One of the most difficult developments for VRGobi was the user interface (and
not the statistical display components). While it is relatively simple to create popup
menus that allow to select colors and symbols for brushing in a desktop environ-
ment, designing an appealing and operational three-dimensional interface for the
C2 was a real challenge. Eventually, four main components make up VRGobi: the
viewing box, the three-dimensional control panel, the variable spheres (similar to
the variable circles used in XGobi), and possibly a map view.

A three-dimensional map view, if used, allows the user to explore data in its
spatial context within VRGobi, similar to the ArcView|XGobi link (Cook et al.,
1996, 1997b) for the desktop.

IPT environments are remarkably different from display devices that are com-
monly available for data analysis. They extend beyond the small gain of one more
dimension of viewing space, to being a completely defined “real” world space. In
VRGobi, the temptation is to grab the objects or climb a mountain in the map view
and to step aside when a point approaches our face during the grand tour. The
objects surround the viewer and it is possible to walk through the data.

InNelson (1998, 1999), experimentshavebeenconductedonstructuredetection,
visualization, and ease of interaction. Because only 15 human subjects participated
in these experiments, it could not be expected that statistically significant results
were obtained. However, these experiments showed that there was a clear trend
that the test subjects performed considerably better on visualization tasks in the C2
than with XGobi on the workstation display. In contrast, interaction tasks such as
brushing provided better results for the workstation. However, subjects with some
limited VR experiences already performed considerably better on the interaction
tasks in the C2 than subjects with no prior VR experience, suggesting that there is
some learning needed to effectively use the VR hardware.

The high cost factor of the CAVE, C2, and similar IPT environments motivated
the development of the PC-based MiniCAVE environment. The MiniCAVE is an
immersive stereoscopic projection-based VR environment developed at GMU. It is
oriented towardgroup interactions.As such, it isparticularly suited tocollaborative
efforts in scientific visualization, data analysis, and VDM.

Initially researchers began with a 333 megahertz Pentium II machine running
Windows NT. The SGI-based VR applications that make use of the OpenGL stan-
dard could be ported relatively easily to a PC environment. Using the Windows
NT drivers, it was also possible to integrate the Crystal Eyes shutter glasses into

Interactive and Dynamic Graphics 317

the PC environment. The development of the MiniCAVE, now patented (Patent
No. 6,448,965 “Voice-Controlled Immersive Virtual Reality System”) to GMU, has
been documented in Wegman et al. (1999) and Wegman and Symanzik (2002).

The one-wall MiniCAVE with speech recognition has been implemented on
a dual 450 megahertz Pentium III machine at GMU. In addition, a polarized light
LCD projector with both front and rear projection is used. Versions of ExplorN
and CrystalVision have been ported to the MiniCAVE environment.

In addition to the work on VR-based data visualization conducted at ISU and
GMU, independent work also has been conducted elsewhere, e.g., at Georgia Tech
and the Delft Technical University, The Netherlands, resulting in the Virtual Data
Visualizer (van Teylingen et al., 1997), and at the University of South Carolina,
using the Virtual Reality Modeling Language (VRML) for VR applications on the
World Wide Web (Rossini and West, 1998). Böhlen et al. (2003) describe 3DVDM,
a 3D VDM system, that is aimed at the visual exploration of large data bases. More
details are available at http:||www.cs.auc.dk|3DVDM.

Cook (2001) lists three fields, “environmental studies, especially data having
a spatial component; shape statistics; and manufacturing quality control”, that
would benefit most from VR and other IPT environments. Certainly, recent ex-
perimental desktop links of VR and visualization software with spatial statistical
applications such as the links between ViRGIS and RA3DIO with XGobi (Symanzik
et al., 1998b; Schneider et al., 2000) would benefit considerably when being con-
ducted in an IPT environment. In addition to the fields in Cook (2001), we think
that medical, genetic, and biological statistical data would also considerably benefit
when being explored in an IPT environment.

Applications in Geography, Medicine,
and Environmental Sciences 10.6

Geographic Brushing
and Exploratory Spatial Data Analysis 10.6.1

Linking statistical plots with geography for analyzing spatially referenced data has
been discussed widely in recent years. Monmonier (1988, 1989) describe a con-
ceptual framework for geographical representations in statistical graphics and
introduce the term geographic brushing in reference to interacting with the map
view of geographically referenced data. But geographic brushing does not only
mean pure interaction with the map. In addition, this term has a much broader
meaning, e.g., finding neighboring points and spatial structure in a geographic
setting.

The idea to apply interactive and dynamic graphics for EDA in a spatial (ge-
ographic) context resulted in the term exploratory spatial data analysis (ESDA).
However, ESDA is more than just EDA applied to spatial data. Specialized ESDA

318 Jürgen Symanzik

methods have been developed that take the special nature of spatial data explic-
itly into account. ESDA is discussed in more details in Anselin (1998, 1999) and
Fotheringham et al. (2000), Chap. 4. Edsall (2003) provides examples for the use
of dynamic and interactive parallel coordinate plots for the exploration of large
spatial and spatio-temporal data bases.

Many software solutions have been developed that link geographic displays with
interactive statistical software packages. In McDonald and Willis (1987), a grand
tour is linked to an image to assess the clustering of landscape types in the band
space of a LandSat image taken over Manaus, Brazil. In Carr et al. (1987) and
Monmonier (1989), a scatterplot matrix is linked to a map view. In REGARD map
views are linked with histograms and scatterplots and, moreover, diagnostic plots
for assessing spatial dependence are also available. Another exploratory system
that links histograms and scatterplots with latitude and longitude (and depth)
coordinates is discussed in MacDougall (1992). In Carr et al. (1992), (bivariate)
ray-glyph maps have been linked with scatterplots. Nagel (1994) discusses the
interactive analysis of spatial data, mostly environmental and disease data, under
ISP. Klein and Moreira (1994) report on an interface between the image program
MTID and XGobi, used for the exploratory analysis of agricultural images. DiBiase
et al. (1994) provide an overview on existing multivariate (statistical) displays for
geographic data. Other developments are the cartographic data visualizer, cdv
(Dykes, 1996), where a variety of plots are linked with geography, the Space-Time-
Attribute Creature|Movie, STAC|M (Openshaw and Perrée, 1996), that searches for
patterns in Geographic Information System (GIS) data bases under the control
of a Genetic Algorithm, and an exploratory spatial analysis system in XLisp-Stat
(Brunsdon and Charlton, 1996).

In combination with the GIS ArcView, XGobi and XploRe also have been used
to detect structure and abnormalities in geographically referenced data sets such
as satellite imagery, forest health monitoring, and precipitation data (Cook et al.,
1996, 1997b; Symanzik et al., 1996b, 1998a, 2000a) (see Fig. 10.1). In addition to
the ArcView|XGobi|XploRe environment, there are several other examples where
GIS’s and (graphical) statistical packages have been linked. Williams et al. (1990)
demonstrate how S and the GRASS GIS can be jointly used for archaeological site
classification and analysis. Scott (1994) links STATA with ArcView. The spatial
data analysis software SpaceStat has been linked with ARC|INFO (Anselin et al.,
1993) and with ArcView (Anselin and Bao, 1996, 1997). In Haining et al. (1996),
the designing of a software system for interactive exploration of spatial data by
linking to ARC|INFO has been discussed, and in Zhang and Griffith (1997), a spa-
tial statistical analysis module implemented in ArcView using Avenue has been
discussed. MathSoft (1996) describes the S+GISLink, a bidirectional link between
ARC|INFO and S-PLUS, and Bao (1997) describes the S+Grassland link between
S-PLUS and the Grassland GIS. Finally, a comparison of the operational issues of
the SpaceStat|ArcView link and the S+Grassland link has been given in Bao and
Anselin (1997).

Interactive and Dynamic Graphics 319

Interactive Micromaps 10.6.2

Over the last decade, researchers have developed many improvements to make
statistical graphics more accessible to the general public. These improvements
include making statistical summaries more visual and providing more information
at a time. Research in this area involved converting statistical tables into plots (Carr,
1994;Carr andNusser, 1995), newwaysofdisplayinggeographically referenceddata
(Carr et al., 1992), and, in particular, the development of linked micromap (LM)
plots (see Fig. 10.6), often simply called micromaps (Cherry and Phelps, 1996; Carr
et al. 1998, 2000a). LM plots were first presented in a poster session sponsored
by the ASA Section on Statistical Graphics at the 1996 Joint Statistical Meetings
in Chicago (“Presentation of Data in Linked Attribute and Geographic Space” by
Anthony R. Olsen, Daniel B. Carr, Jean-Yves P. Courbois, and Suzanne Pierson).
More details on the history of LM plots and their connection to other research can
be found in these early references on micromaps. Recent references on LM plots
(Carr et al., 2000b; Carr, 2001) focus on their use for communicating summary
data from health and environmental studies. Sample S-PLUS code, data files, and
resulting plots from Daniel B. Carr’s early micromap articles can be accessed at
ftp:||galaxy.gmu.edu|pub|dcarr|newsletter|micromap|.

Linked micromap plots provide a new statistical paradigm for the viewing geo-
graphically referenced statistical summaries in the corresponding spatial context.
The main idea behind LM plots is to focus the viewer’s attention on the statisti-
cal information presented in a graphical display. Multiple small maps are used to
provide the appropriate geographic reference for the statistical data.

Initially, LM plots were only static representations on paper. The next stage of
LM plots was aimed at interactive displays on the Web. Eventually, generalized
maps for all states in the U.S. and several counties were automatically created
for use on the U.S. Environmental Protection Agency (EPA) Cumulative Exposure
Project (CEP) Web site (Symanzik et al., 2000b). Most current applications of
interactive LM plots on the Web make use of these generalized maps.

The idea of using micromaps on the Web was first considered for the EPA
CEP Web site (formerly accessible at http:||www.epa.gov|CumulativeExposure|).
Initially, the EPA wanted to provide fast and convenient Web-based access to
its hazardous air pollutant (HAP) data for 1990. Unfortunately, no part of the
interactive CEP Web site was ever published due to concerns that the 1990 data
was outdated at the intended release date in 1998. Only a static version of the CEP
Web site without tables and micromaps was accessible. More details on the work
related to the planned interactive CEP Web site can be found in Symanzik (1999b,
1999c, 2000b).

The U.S. Department of Agriculture (USDA) – National Agricultural Statis-
tics Service (NASS) Research and Development Division released a Web site
(http:||www.nass.usda.gov|research|sumpant.htm) in September 1999 that uses in-
teractive micromaps to display data from the 1997 Census of Agriculture. While
the end user who accesses this Web site gets the impression of fully interactive
graphics, this is not the case. The 10 micromaps (5 crops× 2 arrangements) plus

320 Jürgen Symanzik

Figure 10.6. Linked micromap plot of the “Places” data, adapted from Daniel B. Carr’s sample S-PLUS

code. The variables Education and Crime have been summarized at the state level for this figure. For

each of the 50 states (plus Washington, D.C.), the minimum, median, and maximum of the

Education and Crime indexes have been obtained for the cities that geographically belong to a state.

It should be noted that for several of the states data exist for only one city. The map and statistical

displays have been sorted with respect to decreasing median Education Index. The zig-zag curve of

the related median Crime Index is an indicator of little correlation between these two variables.

Numerically, the ecological correlation between median Education Index and median Crime Index is

almost equal to zero

Interactive and Dynamic Graphics 321

one overview micromap were precalculated in S-PLUS and were stored as jpg im-
ages. It is not possible to create any new micromap display “on the fly” on this Web
site.

The National Cancer Institute (NCI) released a Web site in April 2003 that
provides interactive access to its cancer data via micromaps. This Web site is
Java-based and creates micromaps “on the fly”. Wang et al. (2002) and Carr et al.
(2002) provide more details on the design of the NCI Web site that is accessible at
http:||www.statecancerprofiles.cancer.gov|micromaps.

nViZn (read envision) is a JAVA-based software development kit (SDK), current-
ly developed and distributed by SPSS (http:||spss.com|nvizn|). It is the follow-up to
the Graphics Production Library (GPL), described in Carr et al. (1996), developed
within the BLS. nViZn (Wilkinson et al., 2000) is based on a formal grammar
for the specification of statistical graphics (Wilkinson, 1999), see also Chap. II.11.
In addition to capabilities already present in the original GPL, nViZn has many
additional features. Most useful for the display of data in a geographic context are
the capabilities that enable a programmer to create interactive tables and linked
micromaps in nViZn. Experiences with nViZn, its advantages and current prob-
lems, and its capabilities for the display of Federal data via LM plots are described
in more detail in Jones and Symanzik (2001), Symanzik and Jones (2001), and
Symanzik et al. (2002a).

Micromap implementations that allow the user to create new LM plots “on the
fly” often provide features to switch from one geographic region or subregion
to another, choose among several variables, resort the data increasingly or de-
creasingly according to different statistics (such as mean, median, minimum, or
maximum of the data values in the underlying geographic region), and display
different graphical summaries of the data (e.g., dotplots, boxplots, confidence in-
tervals, or even time series). So, in an interactive environment, a user might want to
create a LM plot of Education and Arts (sorted by increasing maximum Education)
after having studied the LM plot in Fig. 10.6 – and then immediately resort the
display by decreasing maximum Arts.

Conditioned Choropleth Maps 10.6.3

Conditioned choropleth maps (CCmaps), described in Carr et al. (2000b, 2002),
focus on spatial displays that involve one dependent variable and two indepen-
dent variables. CCmaps promote interactive hypothesis generation, common for
epidemiological and environmental applications. In fact, applications from the
National Center for Health Statistics (NCHS) and the EPA motivated the devel-
opment of CCmaps. CCmaps are written in Java and can be freely obtained from
http:||www.galaxy.gmu.edu|˜dcarr|ccmaps.

The main interactive component of CCmaps are partitioning sliders that allow
the user to dynamically partition the study units into a 3 × 3 layout of maps. The
sliders allow a user to create, examine, and contrast subsets for the purpose of
generating hypotheses about patterns in spatially referenced data. For example,
in a medical application one of the sliders might control the age intervals and

322 Jürgen Symanzik

the second slider might control the years of active smoking in a study on cancer
mortality rates across the U.S. The resulting 9 maps will allow an analyst to de-
velop hypotheses on spatial patterns within panels or among panels. Additional
features of this CCmaps implementation are dynamic quantile-quantile (QQ) plots
and pan and zoom widgets to allow closer inspection of data at the U.S. county
level.

Outlook10.7

Limitations of Graphics10.7.1

Wegman (1995) discusses aspects of data set size, computational feasibility, and in
particular limits of visualization for “large” (about 108 bytes) and “huge” (about
1010 bytes) data sets, where “large” and “huge” are terms introduced in Huber’s
taxonomy of large data sets (Huber, 1992, 1994). As pointed out in Wegman (1995),
even in the most wildly optimistic scenario, i.e., an angular resolution of 4.38
minutes of arc as suggested in Maar (1982), immersion, and a 4:5 aspect-ratio, the
human eye would only be able to distinguish 17,284 × 13,828 = 2.39 ×108 pixels.
Using single-pixel coding, it seems to be impossible to visualize “large” to “huge”
data sets.

Huber (1994) initially suggests to prepare “medium” (about 106 bytes) de-
rived data sets that are easier to visualize and grasp as a whole and can still be
worked with established techniques of high interaction graphics. Unfortunately,
as Wegman (1995) further describes, common ways of parsing data sets down, e.g.,
clustering, discriminant analysis, and principal components, are computationally
complex (often of a magnitude of O(n3|2) or even O(n2)) and therefore are not
valid alternatives. It seems that simple random thinning is the only methodology
of choice, but this may have the side effect of missing some of the tail structure an
analyst may actually be looking for.

Possible solutions are the use of 3D VR techniques that may display up to
1010 voxels (Wegman, 1995), further advances in selection sequences, or new
strategies to increase visual scalability i.e., the capability of visualization tools
to effectively display large data sets (Eick and Karr, 2002). However, the conclusion
in Wegman (1995) that “visualization of data sets say of size 106 or more is clearly
a wide open field” is still valid today.

Future Developments10.7.2

Historically, one of the problems with interactive and dynamic statistical graphics
was to publish visible results. The ASA Statistical Graphics Section Video Lend-
ing Library was one attempt to capture at least some snapshots of software and
applications of interactive and dynamic statistical graphics and preserve them for
the future. Publishing a sequence of screenshots in a written paper clearly has not

Interactive and Dynamic Graphics 323

the same effect as watching the full interaction and being able to manipulate the
graphics.

Recently, many books have been published with accompanying CDs and DVDs
and many conference proceedings have been published on CD. Due to this trend,
it is now possible to immediately publish a movie accompanying a written paper
or integrate interactive graphics within a paper. Examples are Wojciechowski and
Scott (2000) and Symanzik et al. (2002b) where the papers are accompanied by
several movie segments. It is expected that more and more future publications on
interactiveanddynamicgraphicswill beaccompaniedbyan interactiveapplication
or by movies.

To be useful for the future, interactive and dynamic graphics have to adapt to
challenges posed by “large” and “huge” (in terms of Huber’s taxonomy) data sets as
outlined in Sect. 10.7.1. Examples for such data sets are data from earth or planetary
observation systems, real-time stream data (such as from surveillance systems), or
any other type of massive data sets. Wegman (2000) provides a futuristic vision,
indicating that major advancements can be expected in DM, visualization, and
quantization methods.

For smaller data sets (from “tiny” to “medium” in terms of Huber’s taxonomy)
we can expect to see progress in new user paradigms that will allow to interact
with the data through voice or gestures as well as multiple users to manipulate the
visible view simultaneously. It can also be expected that more graphical software
will make use of the Web and mobile data transmission and reception techniques.
The same software may therefore be available for a variety of hardware platforms
with screens as small as a clock or cell phone or as big as a 3D IMAX theatre.

As pointed out in Carr et al. (2002), “there are many barriers to acceptance of
new methodology by federal agencies.” This can be easily extended towards other
users of newly developed interactive and dynamic graphical software. Clearly, just
promoting a new idea or graphical software product is not enough in many cases.
It is likely that more usability tests of new graphical software products as well as
comparative reviews of old and new tools will be conducted in the future.

References
Andrews, D.F. (1972). Plots of High-Dimensional Data. Biometrics, 28:125–136.
Anselin, L. (1998). Exploratory Spatial Data Analysis in a Geocomputational En-

vironment. In Longley, P.A., Brooks, S.M., McDonnell, R., and Macmillan, B.,
editors, Geocomputation – A Primer, pages 77–94. Wiley, Chichester.

Anselin, L. (1999). Interactive Techniques and Exploratory Spatial Data Anal-
ysis. In Longley, P.A., Goodchild, M.F., Maguire, D.J., and Rhind, D.W.,
editors, Geographical Information Systems, Volume 1: Priniciples and Techni-
cal Issues (Second Edition), pages 253–266. Wiley, New York, NY.

Anselin, L. and Bao, S. (1996). Exploratory Spatial Data Analysis Linking SpaceStat
and ArcView. Technical Report 9618, West Virginia University, Morgantown,
WV.

324 Jürgen Symanzik

Anselin, L. and Bao, S. (1997). Exploratory Spatial Data Analysis Linking SpaceStat
and ArcView. In Fischer, M.M. and Getis, A., editors, Recent Developments in
Spatial Analysis, pages 35–59. Springer, Berlin.

Anselin, L., Dodson, R.F., and Hudak, S. (1993). Linking GIS and Spatial Data
Analysis in Practice. Geographical Systems, 1(1):3–23.

Asimov, D. (1985). The Grand Tour: A Tool for Viewing Multidimensional Data.
SIAM Journal on Scientific and Statistical Computing, 6(1):128–143.

Banchoff, T.F. (1986). Visualizing Two-Dimensional Phenomena in Four-
Dimensional Space: A Computer Graphics Approach. In Wegman, E.J. and
DePriest, D.J., editors, Statistical Image Processing and Graphics, pages 187–
202. Marcel Dekker, New York, NY.

Bao, S. (1997). User’s Reference for the S+Grassland Link. Mathsoft, Inc., Seattle,
WA.

Bao, S. andAnselin, L. (1997). LinkingSpatial StatisticswithGIS:Operational Issues
in the SpaceStat-ArcView Link and the S+Grassland Link. In 1997 Proceedings
of the Section on Statistical Graphics, pages 61–66, Alexandria, VA. American
Statistical Association.

Becker, R.A. (1994). A Brief History of S. In Dirschedl, P. and Ostermann, R.,
editors, Computational Statistics, pages 81–110. Physica-Verlag, Heidelberg.

Becker, R.A., Chambers, J.M., and Wilks, A.R. (1988a). The New S Language –
A Programming Environment for Data Analysis and Graphics. Wadsworth and
Brooks|Cole, Pacific Grove, CA.

Becker, R.A. and Cleveland, W.S. (1988). Brushing Scatterplots. In Cleveland, W.S.
and McGill, M.E., editors, Dynamic Graphics for Statistics, pages 201–224.
Wadsworth & Brooks|Cole, Belmont, CA.

Becker, R.A., Cleveland, W.S., and Weil, G. (1988b). The Use of Brushing and Rota-
tion for Data Analysis. In Cleveland, W.S. and McGill, M.E., editors, Dynamic
Graphics for Statistics, pages 247–275. Wadsworth & Brooks|Cole, Belmont, CA.

Blasius, J. and Greenacre, M., editors (1998). Visualization of Categorical Data.
Academic Press, San Diego, CA.

Böhlen, M., Bukauskas, L., Eriksen, P.S., Lauritzen, S.L., Mazeika, A., Musaeus, P.,
and Mylov, P. (2003). 3D Visual Data Mining – Goals and Experi-
ences. Computational Statistics & Data Analysis: Special Issue on Data Visual-
ization, 43(4):445–469.

Bolorforoush, M. and Wegman, E.J. (1988). On Some Graphical Representations
of Multivariate Data. In Wegman, E.J., Gantz, D.T., and Miller, J.J., editors,
Proceedings of the 20th Symposium on the Interface between Computing Science
and Statistics, pages 121–126. American Statistical Association, Alexandria, VA.

Boyer, R. and Savageau, D. (1981). Places Rated Almanac. Rand McNally, Chicago,
IL.

Brunsdon, C. and Charlton, M. (1996). Developing an Exploratory Spatial Analysis
System in XLisp-Stat. In Parker, D., editor, Innovations in GIS 3, pages 135–145.
Taylor & Francis, London, U.K.

Buja, A. and Asimov, D. (1986a). Grand Tour Methods: An Outline. Computing
Science and Statistics, 17:63–67.

Interactive and Dynamic Graphics 325

Buja, A. and Asimov, D. (1986b). Grand Tour Methods: An Outline. In Allen, D.M.,
editor, Proceedings of the 17th Symposium on the Interface between Computer
Science and Statistics, Lexington, KY, pages 63–67. Elsevier.

Buja, A., Asimov, D., Hurley, C., and McDonald, J.A. (1988). Elements of a Viewing
Pipeline for Data Analysis. In Cleveland, W.S. and McGill, M.E., editors,Dynam-
ic Graphics for Statistics, pages 277–308. Wadsworth & Brooks|Cole, Belmont,
CA.

Buja, A., Cook, D., and Swayne, D.F. (1996). Interactive High-Dimensional Data
Visualization. Journal of Computational and Graphical Statistics, 5(1):78–99.

Buja, A., Hurley, C., and McDonald, J.A. (1986). A Data Viewer for Multivariate Da-
ta. In Boardman, T.J. and Stefanski, I.M., editors, Proceedings of the 18th Sym-
posium on the Interface between Computer Science and Statistics, Fort Collins,
CO, pages 171–174. American Statistical Association, Washington, D.C.

Buja, A., McDonald, J.A., Michalak, J., and Stuetzle, W. (1991). Interactive Data Vi-
sualization Using Focusing and Linking. In Nielson, G.M. and Rosenblum, L.J.,
editors, Proceedings of Visualization ’91, Los Alamitos, CA, pages 156–163. IEEE
Computer Society Press.

Buja, A. and Tukey, P.A., editors (1991). Computing and Graphics in Statistics.
Springer, New York, NY.

Carr, D.B. (1991). Looking at Large Data Sets Using Binned Data Plots. In Bu-
ja, A. and Tukey, P.A., editors, Computing and Graphics in Statistics, pages 7–39.
Springer, New York, NY.

Carr, D.B. (1994). Converting Tables to Plots. Technical Report 101, Center for
Computational Statistics, George Mason University, Fairfax, VA.

Carr, D.B. (2001). Designing Linked Micromap Plots for States with Many Counties.
Statistics in Medicine, 20(9–10):1331–1339.

Carr, D.B., Chen, J., Bell, B.S., Pickle, L., and Zhang, Y. (2002). Interac-
tive Linked Micromap Plots and Dynamically Conditioned Choropleth
Maps. In dg.o2002 Proceedings. Digital Government Research Center (DGRC).
http:||www.dgrc.org|conferences|2002_proceedings.jsp.

Carr, D.B. and Littlefield, R.J. (1983). Color Anaglyph Stereo Scatterplots – Con-
struction Details. In Gentle, J.E., editor, Proceedings of the 15th Symposium
on the Interface between Computer Science and Statistics, pages 295–299, New
York, NY. North-Holland Publishing Company.

Carr, D.B., Littlefield, R.J., and Nicholson, W.L. (1983). Color Anaglyph Stereo
Scatterplots – Construction and Application. In 1983 Proceedings of the Section
on Statistical Computing, pages 255–257, Alexandria, VA. American Statistical
Association.

Carr, D.B., Littlefield, R.J., Nicholson, W.L., and Littlefield, J.S. (1987). Scatterplot
MatrixTechniques forLargeN. Journal of the American Statistical Association,
82(398):424–436.

Carr, D.B. and Nicholson, W.L. (1985). Evaluation of Graphical Techniques for
Data in Dimensions 3 to 5: Scatterplot Matrix, Glyph, and Stereo Exam-
ples. In 1985 Proceedings of the Section on Statistical Computing, pages 229–
235, Alexandria, VA. American Statistical Association.

326 Jürgen Symanzik

Carr, D.B. and Nicholson, W.L. (1988). EXPLOR4: A Program for Exploring Four-
Dimensional Data Using Stereo-Ray Glyphs, Dimensional Constraints, Rota-
tion, and Masking. In Cleveland, W.S. and McGill, M.E., editors, Dynamic
Graphics for Statistics, pages 309–329. Wadsworth & Brooks|Cole, Belmont, CA.

Carr, D.B., Nicholson, W.L., Littlefield, R.J., and Hall, D.L. (1986). Interactive Color
Display Methods for Multivariate Data. In Wegman, E.J. and DePriest, D.J.,
editors, Statistical Image Processing and Graphics, pages 215–250. Marcel
Dekker, New York, NY.

Carr, D.B. and Nusser, S.M. (1995). Converting Tables to Plots: A Challenge
from Iowa State. Statistical Computing and Statistical Graphics Newsletter,
6(3):11–18.

Carr, D.B., Olsen, A.R., Courbois, J.P., Pierson, S.M., and Carr, D.A. (1998). Linked
Micromap Plots: Named and Described. Statistical Computing and Statistical
Graphics Newsletter, 9(1):24–32.

Carr, D.B., Olsen, A.R., Pierson, S.M., and Courbois, J.P. (2000a). Using Linked
Micromap Plots to Characterize Omernik Ecoregions. Data Mining and
Knowledge Discovery, 4(1):43–67.

Carr, D.B., Olsen, A.R., and White, D. (1992). Hexagon Mosaic Maps for Displays
of Univariate and Bivariate Geographical Data. Cartography and Geographic
Information Systems, 19(4):228–236, 271.

Carr, D.B. and Pierson, S.M. (1996). Emphasizing Statistical Summaries and Show-
ing Spatial Context with Micromaps. Statistical Computing and Statistical
Graphics Newsletter, 7(3):16–23.

Carr, D.B., Valliant, R., and Rope, D.J. (1996). Plot Interpretation and Information
Webs: A Time-Series Example from the Bureau of Labor Statistics. Statistical
Computing and Statistical Graphics Newsletter, 7(2):19–26.

Carr, D.B., Wallin, J.F., and Carr, D.A. (2000b). Two New Templates for Epidemiol-
ogy Applications: Linked Micromap Plots and Conditioned Choropleth Maps.
Statistics in Medicine, 19(17–18):2521–2538.

Carr, D.B., Wegman, E.J., and Luo, Q. (1997). ExplorN: Design Considerations Past
and Present. Technical Report 137, Center for Computational Statistics, George
Mason University, Fairfax, VA.

Chambers, J.M. (1997). Evolution of the S Language. Computing Science and
Statistics, 28:331–337.

Chambers, J.M., Cleveland, W.S., Kleiner, B., and Tukey, P.A. (1983). Graphical
Methods for Data Analysis. Wadsworth & Brooks|Cole, Pacific Grove, CA.

Chang, J. (1970). Real-Time Rotation. ASA Statistical Graphics Video Lending
Library (contact: dj@research.bell-labs.com).

Cleveland, W.S. (1985). The Elements of Graphing Data. Wadsworth, Monterey, CA.
Cleveland, W.S. and McGill, M.E., editors (1988). Dynamic Graphics for Statistics.

Wadsworth & Brooks|Cole, Belmont, CA.
Cook, D. (1997). Calibrate Your Eyes to Recognize High-Dimensional Shapes

from Their Low-Dimensional Projections. Journal of Statistical Software, 2(6).
http:||www.jstatsoft.org|v02|i06|.

Cook, D. (2001). Virtual Reality: Real Ponderings. Chance, 14(1):47–51.

Interactive and Dynamic Graphics 327

Cook, D. and Buja, A. (1997). Manual Controls for High-Dimensional Data
Projections. Journal of Computational and Graphical Statistics, 6(4):464–480.

Cook, D., Buja, A., and Cabrera, J. (1993). Projection Pursuit Indexes Based on
Orthonormal Function Expansions. Journal of Computational and Graphical
Statistics, 2(3):225–250.

Cook, D., Buja, A., Cabrera, J., and Hurley, C. (1995). Grand Tour and Projection
Pursuit. Journal of Computational and Graphical Statistics, 4(3):155–172.

Cook, D., Cruz-Neira, C., Kohlmeyer, B.D., Lechner, U., Lewin, N., Nelson, L.,
Olsen, A.R., Pierson, S.M., and Symanzik, J. (1998). Exploring Environmental
Data in a Highly Immersive Virtual Reality Environment. Environmental
Monitoring and Assessment, 51(1|2):441–450.

Cook, D., Cruz-Neira, C., Lechner, U., Nelson, L., Olsen, A.R., Pierson, S.M.,
and Symanzik, J. (1997a). Using Dynamic Statistical Graphics in a Highly
Immersive Virtual Reality Environment to Understand Multivariate (Spatial)
Data. In Bulletin of the International Statistical Institute, 51st Session Istanbul
1997, Proceedings Book 2, pages 31–34.

Cook, D., Majure, J.J., Symanzik, J., and Cressie, N. (1996). Dynamic Graphics
in a GIS: Exploring and Analyzing Multivariate Spatial Data Using Linked
Software. Computational Statistics: Special Issue on Computeraided Analysis
of Spatial Data, 11(4):467–480.

Cook, D., Symanzik, J., Majure, J.J., and Cressie, N. (1997b). Dynamic Graphics in a
GIS: More Examples Using Linked Software. Computers and Geosciences: Spe-
cial Issue on Exploratory Cartographic Visualization, 23(4):371–385. Paper, CD,
and http:||www.elsevier.nl|locate|cgvis.

Cox, K.C., Eick, S.G., Wills, G.J., and Brachman, R.J. (1997). Visual Data Mining:
Recognizing Telephone Calling Fraud. Data Mining and Knowledge Discovery,
1:225–231.

Craig, P., Haslett, J., Unwin, A., and Wills, G. (1989). Moving Statistics – An Exten-
sion of “Brushing” for Spatial Data. In Berk, K. and Malone, L., editors, Pro-
ceedings of the 21st Symposium on the Interface between Computing Science
and Statistics, pages 170–174. American Statistical Association, Alexandria, VA.

Crawford, S.L. and Fall, T.C. (1990). Projection Pursuit Techniques for Visualizing
High-Dimensional Data Sets. In Nielson, G.M., Shrivers, B., and Rosen-
blum, L.J., editors, Proceedings of Visualization in Scientific Computing, Los
Alamitos, CA, pages 94–108. IEEE Computer Society Press.

Cruz-Neira, C. (1993). Virtual Reality Overview. SIGGRAPH ’93 Course Notes #23.
pp. 1–18.

Cruz-Neira, C. (1995). Projection-based Virtual Reality: The CAVE and its Appli-
cations to Computational Science. PhD thesis, University of Illinois at Chicago.

Cruz-Neira, C., Leigh, J., Papka, M., Barnes, C., Cohen, S.M., Das, S., Engelmann, R.,
Hudson, R., Roy, T., Siegel, L., Vasilakis, C., DeFanti, T., and Sandin, D.J.
(1993a). Scientists in Wonderland: A Report on Visualization Applications in
the CAVE Virtual Reality Environment. In IEEE 1993 Symposium on Research
Frontiers in Virtual Reality, pages 59–66.

328 Jürgen Symanzik

Cruz-Neira, C., Sandin, D.J., and DeFanti, T.A. (1993b). Surround-Screen
Projection-Based Virtual Reality: The Design and Implementation of the
CAVE. In ACM SIGGRAPH ’93 Proceedings, pages 135–142, Anaheim, CA.

Cruz-Neira, C., Sandin, D.J., DeFanti, T.A., Kenyon, R.V., and Hart, J.C. (1992).
The CAVE: AudioVisual Experience Automatic Virtual Environment.
Communications of the ACM, 35(6):64–72.

DiBiase, D., Reeves, C., MacEachren, A.M., von Wyss, M., Krygier, J.B., Sloan, J.L.,
and Detweiler, M.C. (1994). Multivariate Display of Geographic Data: Applica-
tions in Earth System Science. In MacEachren, A.M. and Taylor, D. R.F., editors,
Visualization in Modern Cartography, pages 287–312. Pergamon (Elsevier),
Oxford, U.K.

du Toit, S. H.C., Steyn, A. G.W., and Stumpf, R.H. (1986). Graphical Exploratory
Data Analysis. Springer, New York, NY.

Dykes, J.A. (1996). Dynamic Maps for Spatial Science: A Unified Approach to
Cartographic Visualization. In Parker, D., editor, Innovations in GIS 3, pages
177–187. Taylor & Francis, London, U.K.

Edsall, R.M. (2003). The Parallel Coordinate Plot in Action: Design and Use for
Geographic Visualization. Computational Statistics & Data Analysis: Special
Issue on Data Visualization, 43(4):605–619.

Eick, S.G. and Karr, A.F. (2002). Visual Scalability. Journal of Computational and
Graphical Statistics, 11(1):22–43.

Fisherkeller, M.A., Friedman, J.H., and Tukey, J.W. (1974a). PRIM-9: An Interactive
Multidimensional Data Display and Analysis System. ASA Statistical Graphics
Video Lending Library (contact: dj@research.bell-labs.com).

Fisherkeller, M.A., Friedman, J.H., and Tukey, J.W. (1974b). PRIM-9: An Interactive
Multidimensional Data Display and Analysis System. Technical Report
SLAC-PUB-1408, Stanford Linear Accelerator Center, Stanford, CA.

Foley, J.D., van Dam, A., Feiner, S.K., and Hughes, J.F. (1990). Computer Graph-
ics – Principles and Practice (Second Edition). Addison-Wesley, Reading, MA.

Fotheringham, A.S., Brunsdon, C., and Charlton, M., editors (2000). Quantitative
Geography: Perspectives on Spatial Data Analysis. Sage, London.

Friedman, J.H. (1987). Exploratory Projection Pursuit. Journal of the American
Statistical Association, 82:249–266.

Friedman, J.H. (1998). Data Mining and Statistics: What’s the Connection?
Computing Science and Statistics, 29(1):3–9.

Friedman, J.H. and Tukey, J.W. (1974). A Projection Pursuit Algorithm for
Exploratory Data Analysis. IEEE Transactions on Computing C, 23:881–889.

Furnas, G.W. (1988). Dimensionality Constraints on Projection and Section Views
of High Dimensional Loci. In Wegman, E.J., Gantz, D.T., and Miller, J.J., editors,
Proceedings of the 20th Symposium on the Interface between Computing Science
and Statistics, pages 99–107. American Statistical Association, Alexandria, VA.

Furnas, G.W. and Buja, A. (1994). Prosection Views: Dimensional Inference
Through Sections and Projections (with Discussion). Journal of Computation-
al and Graphical Statistics, 3(4):323–385.

Interactive and Dynamic Graphics 329

Gabriel, K.R. and Odoroff, C.L. (1986). Illustrations of Model Diagnosis by Means
of Three-Dimensional Biplots. In Wegman, E.J. and DePriest, D.J., editors,
Statistical Image Processing and Graphics, pages 257–274. Marcel Dekker, New
York, NY.

Haining, R., Ma, J., and Wise, S. (1996). Design of a Software System for Interactive
Spatial Statistical Analysis Linked to a GIS. Computational Statistics: Special
Issue on Computeraided Analysis of Spatial Data, 11(4):449–466.

Hall, P. (1989). Polynomial Projection Pursuit. Annals of Statistics, 17:589–605.
Härdle, W., Klinke, S., and Turlach, B.A. (1995). XploRe: An Interactive Statistical

Computing Environment. Springer, New York, NY.
Hering, F. (1994). Anaglyphs in Statistics – A Tool for Interactive Multivariate

Data Analysis. In Faulbaum, F., editor, SoftStat ’93 – Advances in Statistical
Software 4, pages 277–283, Stuttgart, Jena, New York. Gustav Fischer.

Hering, F. and Symanzik, J. (1992). Anaglyphen 3D – Ein Programm zur interak-
tiven Anaglyphendarstellung. Forschungsbericht 92|1, Fachbereich Statistik,
Universität Dortmund, (In German).

Hering, F. and von der Weydt, S. (1989). Interaktive Anaglyphendarstellungen als
Hilfsmittel zur Analyse mehrdimensionaler Daten. Forschungsbericht 89|7,
Fachbereich Statistik, Universität Dortmund, (In German).

Hodges, L.F. (1992). Tutorial: Time-Multiplexed Stereoscopic Computer Graphics.
IEEE Computer Graphics & Applications, 12(2):20–30.

Hofmann, H. (2000). Exploring Categorical Data: Interactive Mosaic Plots.
Metrika, 51(1):11–26.

Hofmann, H. (2003). Constructing and Reading Mosaicplots. Computational
Statistics & Data Analysis: Special Issue on Data Visualization, 43(4):565–580.

Hofmann, H. and Theus, M. (1998). Selection Sequences in MANET. Computa-
tional Statistics: Special Issue on Strategies for Data Analysis, 13(1):77–87.

Huber, P.J. (1985). Projection Pursuit (with Discussion). Annals of Statistics,
13:435–525.

Huber, P.J. (1992). Issues in Computational Data Analysis. In Dodge, Y. and Whit-
taker, J., editors, COMPSTAT 1992: Proceedings in Computational Statistics,
Volume 2, pages 3–13, Heidelberg. Physica-Verlag.

Huber, P.J. (1994). Huge Data Sets. In Dutter, R. and Grossmann, W., edi-
tors, COMPSTAT 1994: Proceedings in Computational Statistics, pages 3–13,
Heidelberg. Physica-Verlag.

Huh, M.Y. and Song, K. (2002). DAVIS: A Java-Based Data Visualization System.
Computational Statistics, 17(3):411–423.

Hummel, J. (1996). Linked Bar Charts: Analysing Categorical Data Graphically.
Computational Statistics, 11:23–33.

Hurley, C. (1988). A Demonstration of the Data Viewer. In Wegman, E.J.,
Gantz, D.T., and Miller, J.J., editors, Proceedings of the 20th Symposium on the
Interface between Computing Science and Statistics, pages 108–114. American
Statistical Association, Alexandria, VA.

Hurley, C. (1989). The Data Viewer: A Program for Graphical Data Analysis. PhD
thesis, Statistics Department, University of Washington, Seattle.

330 Jürgen Symanzik

Hurley, C. and Buja, A. (1990). Analyzing High-Dimensional Data with Motion
Graphics. SIAM Journal on Scientific and Statistical Computing, 11(6):1193–
1211.

Ihaka, R. and Gentleman, R. (1996). R: A Language for Data Analysis and Graphics.
Journal of Computational and Graphical Statistics, 5(3):299–314.

Inoue, T., Asahi, Y., Yadohisa, H., and Yamamoto, Y. (2002). A Statistical Data
Representation System on the Web. Computational Statistics, 17(3):367–378.

Inselberg, A. (1985). The Plane with Parallel Coordinates. The Visual Computer,
1:69–91.

Inselberg, A. (1998). Visual Data Mining with Parallel Coordinates. Computational
Statistics: Special Issue on Strategies for Data Analysis, 13(1):47–63.

Jones, L. and Symanzik, J. (2001). Statistical Visualization of Environmental Data
on the Web using nViZn. Computing Science and Statistics, 33. (CD).

Jones, M.C. and Sibson, R. (1987). What is Projection Pursuit? (with Discussion).
Journal of the Royal Statistical Society, Series A, 150:1–36.

Klein, R. and Moreira, R.I. (1994). Exploratory Analysis of Agricultural Images
via Dynamic Graphics. Technical Report 9|94, Laboratório Nacional de
Computação Cient́ifica, Rio de Janeiro, Brazil.

Kleinow, T. and Lehmann, H. (2002). Client|Server Based Statistical Computing.
Computational Statistics, 17(3):315–328.

Klinke, S. and Cook, D. (1997). Binning of Kernel-based Projection Pursuit Indices
in XGobi. Computational Statistics & Data Analysis, 27(3):363–369.

Klösgen, W. and Zytkow, J.M., editors (2002). Handbook of Data Mining and
Knowledge Discovery. Oxford University Press, New York, NY.

Kruskal, J.B. (1969). Toward a Practical Method Which Helps Uncover the Structure
of a Set of Observations by Finding the Line Transformation Which Optimizes
a New “Index of Condensation”. In Milton, R.C. and Nelder, J.A., editors,
Statistical Computation, pages 427–440. Academic Press, New York, NY.

Kruskal, J.B. (1970). Multidimensional Scaling. ASA Statistical Graphics Video
Lending Library (contact: dj@research.bell-labs.com).

Maar, D. (1982). Vision. Freeman, New York, NY.
MacDougall, E.B. (1992). Exploratory Analysis, Dynamic Statistical Visualiza-

tion, and Geographic Information Systems. Cartography and Geographic
Information Systems, 19(4):237–246.

Macedo, M., Cook, D., and Brown, T.J. (2000). Visual Data Mining in Atmospheric
Science Data. Data Mining and Knowledge Discovery, 4(1):69–80.

MathSoft (1996). S+GISLink. MathSoft, Inc., Seattle, WA.
McDonald, J.A. and Willis, S. (1987). Use of the Grand Tour in Remote Sensing.

ASA Statistical Graphics Video Lending Library (contact: dj@research.bell-
labs.com).

Monmonier, M. (1988). Geographical Representations in Statistical Graphics:
A Conceptual Framework. In 1988 Proceedings of the Section on Statistical
Graphics, pages 1–10, Alexandria, VA. American Statistical Association.

Monmonier, M. (1989). Geographic Brushing: Enhancing Exploratory Analysis of
the Scatterplot Matrix. Geographical Analysis, 21(1):81–84.

Interactive and Dynamic Graphics 331

Morton, S.C. (1989). Interpretable Projection Pursuit. Technical Report 106,
Laboratory for Computational Statistics, Stanford University.

Morton, S.C. (1992). Interpretable Exploratory Projection Pursuit. In Page, C.
and LePage, R., editors, Proceedings of the 22nd Symposium on the Interface
between Computing Science and Statistics, pages 470–474, New York, NY.
Springer.

Murdoch, D.J. (2002). Drawing a Scatterplot. Chance, 13(3):53–55.
Nagel, M. (1994). Interactive Analysis of Spatial Data. In Dirschedl, P. and Os-

termann, R., editors, Computational Statistics, pages 295–314. Physica-Verlag,
Heidelberg.

Nagel, M., Benner, A., Ostermann, R., and Henschke, K. (1996). Grafische Da-
tenanalyse. Gustav Fischer, Stuttgart; in German.

Nelson, L., Cook, D., and Cruz-Neira, C. (1998). XGobi vs the C2: An Experiment
Comparing Data Visualization in an Immersive Virtual Environment with
a Workstation Display. In Cruz-Neira, C. and Riedel, O., editors, 2nd Interna-
tional Immersive Projection Technology Workshop, May 11–12, 1998, Iowa State
University, Ames, IA, (CD).

Nelson, L., Cook, D., and Cruz-Neira, C. (1999). XGobi vs the C2: Results of an
Experiment Comparing Data Visualization in a 3-D Immersive Virtual Reality
Environment with a 2-D Workstation Display. Computational Statistics: Special
Issue on Interactive Graphical Data Analysis, 14(1):39–51.

Openshaw, S. and Perrée, T. (1996). User-Centred Intelligent Spatial Analysis of
Point Data. In Parker, D., editor, Innovations in GIS 3, pages 119–134. Taylor &
Francis, London, U.K.

Ostermann, R. and Nagel, M. (1993). Dynamic Graphics for Discrete Data.
Computational Statistics, 8:197–205.

Pimentel, K. and Teixeira, K. (1995). Virtual Reality through the New Looking
Glass (Second Edition). McGraw-Hill, New York, NY.

Posse, C. (1995). Tools for Two-dimensional Exploratory Projection Pursuit.
Journal of Computational and Graphical Statistics, 4(2):83–100.

Rao, C.R., editor (1993). Handbook of Statistics, Vol. 9: Computational Statistics.
North Holland|Elsevier Science Publishers, Amsterdam.

Rollmann, W. (1853a). Notiz zur Stereoskopie. Annalen der Physik und Chemie,
89:350–351; in German.

Rollmann, W. (1853b). Zwei neue stereoskopische Methoden. Annalen der Physik
und Chemie, 90:186–187; in German.

Rösch, S. (1954). 100 Jahre Anaglyphen. Die Farbe, 3(1|2):1–6; in German.
Rossini, A.J. and West, R.W. (1998). Virtual Reality and Statistical Research.

Computing Science and Statistics, 29(1):215–219.
Roy, T., Cruz-Neira, C., and DeFanti, T.A. (1995). Cosmic Worm in the CAVE: Steer-

ing a High Performance Computing Application from a Virtual Environment.
Presence: Teleoperators and Virtual Environments, 4(2):121–129.

Schneider, M., Stamm, C., Symanzik, J., and Widmayer, P. (2000). Virtual Reality
and Dynamic Statistical Graphics: A Bidirectional Link in a Heterogeneous,
Distributed Computing Environment. In Proceedings of the International

332 Jürgen Symanzik

Conference on Parallel and Distributed Processing Techniques and Applica-
tions (PDPTA’2000), Las Vegas, Nevada, June 26–29, 2000, Volume IV, pages
2345–2351. CSREA Press.

Scott, D.W. (1992). Multivariate Density Estimation: Theory, Practice, and
Visualization. Wiley, New York, NY.

Scott, L.M. (1994). Identification of a GIS Attribute Error Using Exploratory Data
Analysis. The Professional Geographer, 46(3):378–386.

Soukop, T. and Davidson, I. (2002). Visual Data Mining. Wiley, New York, NY.
Stuetzle, W. (1988). Plot Windows. In Cleveland, W.S. and McGill, M.E., editors,

Dynamic Graphics for Statistics, pages 225–245. Wadsworth & Brooks|Cole,
Belmont, CA.

Swayne, D.F. and Buja, A. (1998). Missing Data in Interactive High-Dimensional
Data Visualization. Computational Statistics: Special Issue on Strategies for
Data Analysis, 13(1):15–26.

Swayne, D.F. and Cook, D. (1992). Xgobi: A Dynamic Graphics Program Imple-
mented in X With a Link to S. Computing Science and Statistics, 22:544–547.

Swayne, D.F., Cook, D., and Buja, A. (1991). XGobi: Interactive Dynamic Graphics in
theXWindowSystemwith aLink toS. In 1991 Proceedings of the Section on Sta-
tistical Graphics, pages 1–8, Alexandria, VA. American Statistical Association.

Swayne, D.F., Cook, D., and Buja, A. (1998). XGobi: Interactive Dynamic Graphics
in the X Window System. Journal of Computational and Graphical Statistics,
7(1):113–130.

Swayne, D.F., Temple Lang, D., Buja, A., and Cook, D. (2003). GGobi: Evolving from
XGobi into an Extensible Framework for Interactive Data Visualization. Com-
putational Statistics & Data Analysis: Special Issue on Data Visualization,
43(4):423–444.

Symanzik, J. (1992). Computerdarstellungen von Anaglyphen – Ein Hilfsmittel
der multivariaten Statistik. Diplomarbeit, Fachbereich Informatik, Universität
Dortmund; in German.

Symanzik, J. (1993a). Anaglyphen 3D – A Program for the Interactive Represen-
tation of Three-Dimensional Perspective Plots of Statistical Data. In Opitz, O.,
Lausen, B., and Klar, R., editors, Information and Classification. Concepts,
Methods and Applications. Proceedings of the 16th Annual Conference of the
“Gesellschaft für Klassifikation e. V.”, pages 384–389, Berlin, Heidelberg.
Springer.

Symanzik, J. (1993b). Three-Dimensional Statistical Graphics based on Interac-
tively Animated Anaglyphs. In 1993 Proceedings of the Section on Statistical
Graphics, pages 71–76, Alexandria, VA. American Statistical Association.

Symanzik, J., Ascoli, G.A., Washington, S.S., and Krichmar, J.L. (1999a). Visual
Data Mining of Brain Cells. Computing Science and Statistics, 31:445–449.

Symanzik, J., Axelrad, D.A., Carr, D.B., Wang, J., Wong, D., and Woodruff, T.J.
(1999b). HAPs, Micromaps and GPL – Visualization of Geographically Refer-
enced Statistical Summaries on the World Wide Web. In Annual Proceedings
(ACSM-WFPS-PLSO-LSAW 1999 Conference CD). American Congress on
Surveying and Mapping.

Interactive and Dynamic Graphics 333

Symanzik, J., Carr, D.B., Axelrad, D.A., Wang, J., Wong, D., and Woodruff, T.J.
(1999c). Interactive Tables and Maps – A Glance at EPA’s Cumulative Exposure
Project Web Page. In 1999 Proceedings of the Section on Statistical Graphics,
pages 94–99, Alexandria, VA. American Statistical Association.

Symanzik, J., Cook, D., Klinke, S., and Lewin, N. (1998a). Exploration of Satellite
Images in the Dynamically Linked ArcView|XGobi|XploRe Environment.
In Bodt, B.A., editor, Proceedings of the Third Annual U.S. Army Conference
on Applied Statistics, 22–24 October 1997, pages 23–33, Aberdeen Proving
Ground, MD. Army Research Laboratory ARL-SR-74.

Symanzik, J., Cook, D., Kohlmeyer, B.D., and Cruz-Neira, C. (1996a). Dynamic
Statistical Graphics in the CAVE Virtual Reality Environment. Working
Paper for the Dynamic Statistical Graphics Workshop, Sydney, July 7, 1996.
Department of Statistics, Iowa State University, Ames, IA, Preprint 96–10,
available at http:||www.math.usu.edu|˜symanzik|papers|1996_dsg.pdf.

Symanzik, J., Cook, D., Kohlmeyer, B.D., Lechner, U., and Cruz-Neira, C.
(1997). Dynamic Statistical Graphics in the C2 Virtual Reality Environment.
Computing Science and Statistics, 29(2):41–47.

Symanzik, J., Cook, D., Lewin-Koh, N., Majure, J.J., and Megretskaia, I. (2000a).
Linking ArcView and XGobi: Insight Behind the Front End. Journal of
Computational and Graphical Statistics, 9(3):470–490.

Symanzik, J., Hurst, J., and Gunter, L. (2002a). Recent Developments for Inter-
active Statistical Graphics on the Web Using “nViZn”. In 2002 Proceedings,
Alexandria, VA. American Statistical Association. (CD).

Symanzik, J. and Jones, L. (2001). “nViZn” Federal Statistical Data on the Web. In
2001 Proceedings, Alexandria, VA. American Statistical Association. (CD).

Symanzik, J., Majure, J.J., and Cook, D. (1996b). Dynamic Graphics in a GIS:
A Bidirectional Link between ArcView 2.0 and XGobi. Computing Science and
Statistics, 27:299–303.

Symanzik, J., Pajarola, R., and Widmayer, P. (1998b). XGobi and XploRe Meet
ViRGIS. In 1998 Proceedings of the Section on Statistical Graphics, pages 50–55,
Alexandria, VA. American Statistical Association.

Symanzik, J.,Wegman,E.J., Braverman,A.J., andLuo,Q. (2002b).NewApplications
of the Image Grand Tour. Computing Science and Statistics, 34: (CD).

Symanzik, J., Wong, D., Wang, J., Carr, D.B., Woodruff, T.J., and Axelrad, D.A.
(2000b). Web-based Access and Visualization of Hazardous Air Pollutants.
In Geographic Information Systems in Public Health: Proceedings of the Third
National Conference August 18–20, 1998, San Diego, California. Agency for Toxic
Substances and Disease Registry. http:||www.atsdr.cdc.gov|GIS|conference98|.

Theus, M. (1996). Theorie und Anwendung Interaktiver Statistischer Graphik. Dr.
Bernd Wißner, Augsburg; in German.

Theus, M. (2002). Interactive Data Visualization Using Mondrian. Journal of
Statistical Software, 7(11). http:||www.jstatsoft.org|v07|i11|.

Theus, M. (2003). Abstract: Interactive Data Visualization Using Mondrian.
Journal of Computational and Graphical Statistics, 12(1):243–244.

334 Jürgen Symanzik

Theus, M., Hofmann, H., and Wilhelm, A.F.X. (1998). Selection Sequences – In-
teractive Analysis of Massive Data Sets. Computing Science and Statistics,
29(1):439–444.

Theus, M. and Wilhelm, A.F.X. (1998). Counts, Proportions, Interactions – A View
on Categorical Data. In 1998 Proceedings of the Section on Statistical Graphics,
pages 6–15, Alexandria, VA. American Statistical Association.

Tukey, J.W. (1977). Exploratory Data Analysis. Addison Wesley, Reading, MA.
Tweedie, L. and Spence, R. (1998). The Prosection Matrix: A Tool to Support

the Interactive Exploration of Statistical Models and Data. Computational
Statistics: Special Issue on Strategies for Data Analysis, 13(1):65–76.

Unwin, A. (1994). REGARDing Geographic Data. In Dirschedl, P. and Oster-
mann, R., editors, Computational Statistics, pages 315–326. Physica-Verlag,
Heidelberg.

Unwin, A. (1999). Requirements for Interactive Graphics Software for Exploratory
Data Analysis. Computational Statistics: Special Issue on Interactive Graphical
Data Analysis, 14(1):7–22.

Unwin, A. (2002). Scatterplotting. Chance, 15(2):39–42.
Unwin, A., Hawkins, G., Hofmann, H., and Siegl, B. (1996). Interactive Graphics

for Data Sets with Missing Values – MANET. Journal of Computational and
Graphical Statistics, 5(2):113–122.

Unwin, A. and Wills, G. (1988). Eyeballing Time Series. In 1988 Proceedings of the
Section on Statistical Computing, pages 263–268, Alexandria, VA. American
Statistical Association.

Unwin, A., Wills, G., and Haslett, J. (1990). REGARD – Graphical Analysis of
Regional Data. In 1990 Proceedings of the Section on Statistical Graphics, pages
36–41, Alexandria, VA. American Statistical Association.

Valero-Mora, P.M., Young, F.W., and Friendly, M. (2003). Visualizing Categorical
Data in ViSta. Computational Statistics & Data Analysis: Special Issue on Data
Visualization, 43(4):495–508.

van Teylingen, R., Ribarsky, W., and van der Mast, C. (1997). Virtual Data Visualizer.
IEEE Transactions on Visualization and Computer Graphics, 3(1):65–74.

Vince, J. (1995). Virtual Reality Systems. ACM Press|Addison-Wesley, Wokingham,
UK.

Vuibert, H. (1912). Les Anaglyphes Géométriques. Librairie Vuibert, Paris; in
French.

Wang, X., Chen, J.X., Carr, D.B., Bell, B.S., and Pickle, L.W. (2002). Geographic
Statistics Visualization: Web-based Linked Micromap Plots. Computing in
Science & Engineering, 4(3):90–94.

Wegman, E.J. (1990). Hyperdimensional Data Analysis Using Parallel Coordinates.
Journal of the American Statistical Association, 85:664–675.

Wegman, E.J. (1992). The Grand Tour in k-Dimensions. Computing Science and
Statistics, 22:127–136.

Wegman, E.J. (1995). Huge Data Sets and the Frontiers of Computational
Feasibility. Journal of Computational and Graphical Statistics, 4(4):281–295.

Interactive and Dynamic Graphics 335

Wegman, E.J. (2000). Visions: New Techniques and Technologies in Statistics.
Computational Statistics: Special Issue on New Techniques and Technologies
for Statistics, 15(1):133–144.

Wegman, E.J. and Carr, D.B. (1993). Statistical Graphics and Visualization. In
Rao, C.R., editor, Handbook of Statistics, Vol. 9: Computational Statistics,
pages 857–958. North Holland|Elsevier Science Publishers, Amsterdam.

Wegman, E.J. and DePriest, D.J., editors (1986). Statistical Image Processing and
Graphics. Marcel Dekker, New York, NY.

Wegman, E.J. and Dorfman, A. (2003). Visualizing Cereal World. Computational
Statistics & Data Analysis: Special Issue on Data Visualization, 43(4):633–649.

Wegman, E.J. and Luo, Q. (1997a). High Dimensional Clustering Using Parallel
Coordinates and the Grand Tour. Computing Science and Statistics, 28:361–368.

Wegman, E.J. and Luo, Q. (1997b). High Dimensional Clustering Using Parallel Co-
ordinates and the Grand Tour. In Klar, R. and Opitz, O., editors, Classification
and Knowledge Organization, pages 93–101. Springer.

Wegman, E.J., Poston, W.L., and Solka, J.L. (1998). Image Grand Tour. In Automat-
ic Target Recognition VIII – Proceedings of SPIE, 3371, 286–294; republished
in: Sadjadi, F. (Ed.), Vol. 6: Automatic Target Recognition. The CD-ROM,
Bellingham, WA, 1999. SPIE.

Wegman, E.J. and Shen, J. (1993). Three-Dimensional Andrews Plots and the
Grand Tour. Computing Science and Statistics, 25:284–288.

Wegman, E.J. and Symanzik, J. (2002). Immersive Projection Technology for Visual
Data Mining. Journal of Computational and Graphical Statistics, 11(1):163–188.

Wegman, E.J., Symanzik, J., Vandersluis, J.P., Luo, Q., Camelli, F., Dzubay, A.,
Fu, X., Khumbah, N.-A., Moustafa, R. E.A., Wall, R.L., and Zhu, Y. (1999).
The MiniCAVE – A Voice-Controlled IPT Environment. In Bullinger, H.-J.
and Riedel, O., editors, 3. International Immersive Projection Technology
Workshop, 10.|11. May 1999, Center of the Fraunhofer Society Stuttgart IZS,
pages 179–190, Berlin, Heidelberg. Springer.

Wilhelm, A.F.X., Unwin, A., and Theus, M. (1996). Software for Interactive Statis-
tical Graphics – A Review. In Faulbaum, F. and Bandilla, W., editors, SoftStat
’95 – Advances in Statistical Software 5, pages 3–12, Stuttgart. Lucius & Lucius.

Wilhelm, A.F.X., Wegman, E.J., and Symanzik, J. (1999). Visual Clustering and
Classification: The Oronsay Particle Size Data Set Revisited. Computational
Statistics: Special Issue on Interactive Graphical Data Analysis, 14(1):109–146.

Wilkinson, L. (1999). The Grammar of Graphics. Springer, New York, NY.
Wilkinson, L., Rope, D.J., Carr, D.B., and Rubin, M.A. (2000). The Language of

Graphics. Journal of Computational and Graphical Statistics, 9(3):530–543.
Williams, I., Limp, W.F., and Briuer, F.L. (1990). Using Geographic Information Sys-

tems and Exploratory Data Analysis for Archaeological Site Classification and
Analysis. In Allen, K. M.S., Green, S.W., and Zubrow, E. B.W., editors, Interpret-
ing Space: GIS and Archaeology, pages 239–273. Taylor & Francis, London, U.K.

Witten, I.H. and Frank, E. (2000). Data Mining – Practical Machine Learning
Tools and Techniques with Java Implementations. Morgan Kaufmann|Aca-
demic Press, San Francisco, CA|San Diego, CA.

336 Jürgen Symanzik

Wojciechowski, W.C. and Scott, D.W. (2000). High-Dimensional Visualization
using Continuous Conditioning. Computing Science and Statistics, 32. (CD).

Yoshioka, K. (2002). KyPlot – A User-Oriented Tool for Statistical Data Analysis
and Visualization. Computational Statistics, 17(3):425–437.

Young, F.W., Faldowski, R.A., and McFarlane, M.M. (1993). Multivariate Statistical
Visualization. In Rao, C.R., editor, Handbook of Statistics, Vol. 9: Computa-
tional Statistics, pages 959–998. North Holland|Elsevier Science Publishers,
Amsterdam.

Zhang, Z. and Griffith, D.A. (1997). Developing User-Friendly Spatial Statis-
tical Analysis Modules for GIS: An Example using ArcView. Computers,
Environment and Urban Systems, 21(1):5–29.

II.11The Grammar of Graphics
Leland Wilkinson

11.1 Introduction . 339

Architecture . 339

11.2 Variables . 340

Variable . 341
Varset . 342
Converting a Table of Data to a Varset . 342

11.3 Algebra . 343

Operators . 343
Rules . 351
SQL Equivalences . 351
Related Algebras . 352
Algebra XML . 353

11.4 Scales . 353

Axiomatic Measurement . 354
Unit Measurement. 354
Transformations . 355

11.5 Statistics . 357

11.6 Geometry. 358

11.7 Coordinates . 362

11.8 Aesthetics . 363

11.9 Layout . 366

11.10 Analytics . 367

Statistical Model Equivalents . 367
Subset Model Fitting. 370
Lack of Fit . 370

Scalability . 371
An Example. 371

11.11 Software . 373

11.12 Conclusion. 375

The Grammar of Graphics 339

Introduction 11.1

The Grammar of Graphics, or GOG, denotes a system with seven orthogonal com-
ponents (Wilkinson, 1999). By orthogonal, we mean there are seven graphical
component sets whose elements are aspects of the general system and that every
combination of aspects in the product of all these sets is meaningful. This sense of
the word orthogonality, a term used by computer designers to describe a combi-
natoric system of components or building blocks, is in some sense similar to the
orthogonal factorial analysis of variance (ANOVA), where factors have levels and
all possible combinations of levels exist in the ANOVA design. If we interpret each
combination of features in a GOG system as a point in a network, then the world
described by GOG is represented in a seven-dimensional rectangular lattice.
A consequence of the orthogonality of such a graphic system is a high degree of
expressiveness. That is, it comprises a system that can produce a huge variety of
graphical forms (chart types). In fact, it is claimed that virtually the entire corpus
of known charts can be generated by this relatively parsimonious system, and
perhaps a great number of meaningful but undiscovered chart types as well.

The second principal claim of GOG is that this system describes the meaning
of what we do when we construct statistical graphs or charts. It is more than
a taxonomy. It is a computational system based on the classical mathematics of
representing functions and relations in Cartesian and other spaces. Because of this
mathematical foundation, GOG specifications can serve as parsimonious and nat-
ural descriptions of famous statistical charts devised by Playfair, Minard, Jevons,
Pearson, Bertin, Tukey, and other significant figures in the history of statistical
graphics.

Architecture 11.1.1

Figure 11.1 shows a dataflow diagram that contains the seven GOG components.
This dataflow is a chain that describes the sequence of mappings needed to produce
a statistical graphic from a set of data. The first component (Variables) maps data
to an object called a varset (a set of variables). The next three components (Algebra,
Scales, Statistics) are transformations on varsets. The next component (Geometry)
maps a varset to a graph and the next (Coordinates) embeds a graph in a coordinate
space. The last component (Aesthetics) maps a graph to a visible or perceivable
display called a graphic.

The dataflow architecture implies that the subtasks needed to produce a graph-
ic from data must be done in this specified order. Imposing an order would ap-
pear to be unnecessarily restrictive, but changes of this ordering can produce
meaningless graphics. For example, if we compute certain statistics on vari-
ables (e.g., sums) before scaling them (e.g., log scales), we can produce sta-
tistically questionable results because the log of a sum is not the sum of the
logs.

340 Leland Wilkinson

Statistics

Geometry

Aesthetics

Coordinates

Variables

Scales

Algebra

Varset

Varset

Varset

Varset

Graph

Graphic

Graph

Data

Figure 11.1. Dataflow

The dataflow in Fig. 11.1 has many paths through it. We can choose different de-
signs (factorial, nested,…), scales (log,probability, …), statisticalmethods (means,
medians, modes, smoothers, …), geometric objects (points, lines, bars, …), co-
ordinate systems (rectangular, polar, …), and aesthetics (size, shape, color, …).
These paths reveal the richness of the system. The remainder of this article will
summarize the seven GOG components, delineate these paths, and then briefly
introduce sample applications.

Variables11.2

We begin with data. We assume the data that we wish to graph are organized in
one or more tables. The column(s) of each table represent a set of fields, each field
containing a set of measurements or attributes. The row(s) of this table represent
a set of logical records, each record containing the measurements of an object on
each field. Usually, a relational database management system (RDBMS) produces
such a table from organized queries specified in Structured Query Language (SQL)
or another relational language. When we do not have data stored in a relational
database (e.g., live data feeds), we need custom software to provide such a table
using Extensible Markup Language (XML), Perl scripts, or other languages.

The Grammar of Graphics 341

The first thing we have to do is convert such tables of data to something called
a varset. A varset is a set of one or more variables. While a column of a table
of data might superficially be considered to be a variable, there are differences.
A variable is both more general (in regard to generalizability across samples) and
more specific (in regard to data typing and other constraints) than a column of
data. First, we define a variable, then a varset.

Variable 11.2.1

A statistical variable X is a mapping f : O → V , which we consider as a triple:

X = [O, V , f]

The domain O is a set of objects.
The codomain V is a set of values.
The function f assigns to each element of O an element in V .

The image of O under f contains the values of X. We denote a possible value as
x, where x ∈ V . We denote a value of an object as X(o), where o ∈ O. A variable
is continuous if V is an interval. A variable is categorical if V is a finite subset
of the integers (or there exists an injective map from V to a finite subset of the
integers).

Variables may be multidimensional. X is a p-dimensional variable made up of p
one-dimensional variables:

X = (X1, … , Xp)

= [O, Vi, f] , i = 1, … , p

= [O, V , f]

The element x = (x1, … , xp), x ∈ V , is a p-dimensional value of X. We use
multidimensional variables in multivariate analysis.

A random variable X is a real–valued function defined on a sample space Ω:

X = [Ω,R, f]

Random variables may be multidimensional. In the elementary probability model,
each element ω ∈ Ω is associated with a probability function P. The range of P
is the interval [0, 1], and P(Ω) = 1. Because of the associated probability model,
we can make probability statements about outcomes in the range of the random
variable, such as:

P(X = 2) = P(ω : ω ∈ Ω, X(ω) = 2)

342 Leland Wilkinson

Varset11.2.2

We call the triple

X = [V , Õ, f]

a varset. The word varset stands for variable set. If X is multidimensional, we use
boldface X. A varset inverts the mapping used for variables. That is,

The domain V is a set of values.
The codomain Õ is a set of all possible ordered lists of objects.
The function f assigns to each element of V an element in Õ.

We invert the mapping customarily used for variables in order to simplify the
definitions of graphics algebra operations on varsets. In doing so, we also replace
the variable’s set of objects with the varset’s set of ordered lists. We use lists in the
codomain because it is possible for a value to be mapped to an object more than
once (as in repeated measurements).

Converting a Table of Data to a Varset11.2.3

To convert a table to a varset, we must define the varset’s domain of values and
range of objects and specify a reference function that maps each row in the table
to an element in the varset.

We define the domain of values in each varset by identifying the measurements
its values represent. If our measurements include weight, for example, we need to
record the measurement units and the interval covered by the range of weights. If
the domain is categorical, we need to decide whether there are categories not found
in the data that should be included in the domain (refused to reply, don’t know,
missing, …). And we may need to identify categories found in the data that are not
defined in the domain (mistakes, intransitivities, …). The varset’s domain is a key
component in the GOG system. It is used for axes, legends, and other components
of a graphic. Because the actual data for a chart are only an instance of what we
expect to see in a varset’s domain, we let the domain control the structure of the
chart.

We define the range of potential objects in each varset by identifying the class
they represent. If the rows of our table represent measurements of a group of school
children, for example, we may define the range to be school children, children in
general, people, or (at the most abstract level) objects. Our decision about the level
of generality may affect how a graphic will be titled, how legends are designed,
and so on.

Finally, we devise a reference system by indexing objects in the domain. This is
usually as simple as deriving a caseID from a table row index. Or, as is frequently
done, we may choose the value of a key variable (e.g., Social Security Number) to
create a unique index.

The Grammar of Graphics 343

Algebra 11.3

Given one or more varsets, we now need to operate on them to produce combi-
nations of variables. A typical scatterplot of a variable X against a variable Y, for
example, is built from tuples (xi, yi) that are elements in a set product. We use
graphics algebra on values stored in varsets to make these tuples. There are three
binary operators in this algebra: cross, nest, and blend.

Operators 11.3.1

We will define these operators in set notation and illustrate them by using a table
of real data. Table 11.1 shows 1980 and 2000 populations for selected world cities.
During various periods in US history, it was fashionable to name towns and

Table 11.1. Cities and their Populations

Country City 1980 Population 2000 Population

Japan Tokyo 21,900,000 26,400,000

India Mumbai 8,067,000 18,100,000

USA New York 15,600,000 16,600,000

Nigeria Lagos 4,385,000 13,400,000

USA Los Angeles 9,523,000 13,100,000

Japan Osaka 9,990,000 11,000,000

Philippines Manila 5,955,000 10,900,000

France Paris 8,938,000 9,624,000

Russia Moscow 8,136,000 9,321,000

UK London 7,741,000 7,640,000

Peru Lima 4,401,000 7,443,000

USA Chicago 6,780,000 6,951,000

Iraq Bagdad 3,354,000 4,797,000

Canada Toronto 3,008,000 4,651,000

Spain Madrid 4,296,000 4,072,000

Germany Berlin 3,247,000 3,324,000

Australia Melbourne 2,765,000 3,187,000

USA Melbourne 46,536 71,382

USA Moscow 16,513 21,291

USA Berlin 13,084 10,331

USA Paris 9885 9077

USA London 4002 5692

USA Toronto 6934 5676

USA Manila 2553 3055

USA Lima 2025 2459

USA Madrid 2281 2264

USA Bagdad 2331 1578

344 Leland Wilkinson

cities after their European and Asian counterparts. Sometimes this naming was
driven by immigration, particularly in the colonial era (New Amsterdam, New
York, New London). At other times, exotic names reflected a fascination with
foreign travel and culture, particularly in the Midwest (Paris, Madrid). Using
a dataset containing namesakes will help reveal some of the subtleties of graphics
algebra.

We begin by assuming there are four varsets derived from this table: country,
city, pop1980, and pop2000 (we use lower case for varsets when they are de-
noted by names instead of single letters). Each varset has one column. The varsets
resulting from algebraic operations will have one or more columns.

There is one set of objects for all four varsets: 27 cities. This may or may not be
a subset of the domain for the four associated variables. If we wish to generalize
analyses of this varset to other cities, then the set of possible objects in these
varsets might be a subdomain of the set of all cities existing in 1980 and 2000.
We might even consider this set of objects to be a subset of all possible cities
in all of recorded history. While these issues might seem more the province of
sampling and generalizability theory, they affect the design of a graphics system.
Databases, for example, include facilities for semantic integrity constraints that
ensure domain integrity in data tables. Data-based graphics systems share similar
requirements.

There are sets of values for these varsets. The country varset has country
names in the set of values comprising its domain. The definition of the domain
of the varset depends on how we wish to use it. For example, we might include
spellings of city names in languages other than English. We might also include
country names not contained in this particular varset. Such definitions would
affect whether we could add new cities to a database containing these data. For
pop1980 and pop2000, we would probably make the domain be the set of
positive integers.

Cross (∗)
Cross joins the left argument with the right to produce a set of tuples stored in the
multiple columns of the new varset:

x xa a
aay y

z zb b
=*

The resulting set of tuples is a subset of the product of the domains of the two
varsets. The domain of a varset produced by a cross is the product of the separate
domains.

Onemay thinkofacrossasahorizontal concatenationof the table representation
of two varsets, assuming the rows of each varset are equivalent and in the same
order. The following example shows a crossing of two varsets using set notation
with simple integer keys for the objects:

The Grammar of Graphics 345

A = [{red, blue}, {〈·〉, 〈·, ·〉, …}, {red → 〈1, 4〉, blue → 〈2, 3〉}]
B = [[−10, 10], {〈·〉, 〈·, ·〉, …}, {−10 → 〈1〉, 5 → 〈2, 3〉, 10 → 〈4〉}]

A ∗ B = [{red, blue} × [−10, 10], {〈·〉, 〈·, ·〉, …} ,

{(red, −10) → 〈1〉, (blue, 5) → 〈2, 3〉, (red, 10) → 〈4〉}]
If we plotted A ∗ B in two dimensions with a point graph, we would see n points
between −10 and 10 stacked vertically above one or both of the two color names.

Figure 11.2 shows a graphic based on the algebraic expressioncity∗pop2000.
We choose the convention of representing the first variable in an expression on
the horizontal axis and the second on the vertical. We also restrict the domain of
pop2000 to be [0, 32,000,000].

Although most of the US namesake cities have smaller populations, it is not easy
to discern them in the graphic. We can separate the US from the other cities by
using a variable called group that we derive from the country names. Such a new
variable is created easily in a database or statistical transformation language with
an expression like

if (country == ‘‘USA’’) group = ‘‘USA’’;

else group = ‘‘World’’ ;

Tokyo

Mumbai

NewYork
Lagos

Los Angeles
Osaka

Manila
Paris

Moscow

London
Lim

a

Chicago

Bagdad

Toronto
Madrid

Berlin

Melbourne

City

0

4000000

8000000

12000000

16000000

20000000

24000000

28000000

32000000

P
op

ul
at

io
n

20
00

Figure 11.2. city ∗ pop2000

346 Leland Wilkinson

Figure 11.3 shows a graphic based on the three-dimensional algebraic expres-
sion city ∗ pop2000 ∗ group. This expression produces a varset with three
columns. The first column is assigned to the horizontal axis, the second to the
vertical, and the third to the horizontal axis again, which has the effect of split-
ting the frame into two frames. This general pattern of alternating horizontal
and vertical roles for the columns of a varset provides a simple layout scheme
for complex algebraic expressions. We may think of this as a generalization of
the Trellis layout scheme (Becker et al., 1996). We could, of course, represent this
same varset in a 3D plot projected into 2D, but the default system behavior is
to prefer 2D with recursive partitioning. We will describe this in more detail in
Sect 11.9.

Chicago stands out as an anomaly in Fig. 11.3 because of its relatively large
population. We might want to sort the cities in a different order for the left panel
or eliminate cities not found in the US, but the algebraic expression won’t let us do
that. Because group is crossed with the other variables, there is only one domain
of cities shared by both country groups. If we want to have different domains for
the two panels, we need our next operator, nest.

Tokyo

Mumbai

NewYork
Lagos

Los Angeles
Osaka

Manila
Paris

Moscow

London
Lim

a

Chicago

Bagdad

Toronto
Madrid

Berlin

Melbourne

City

0

4000000

8000000

12000000

16000000

20000000

24000000

28000000

32000000

P
opulation 2000

Tokyo

Mumbai

NewYork
Lagos

Los Angeles
Osaka

Manila
Paris

Moscow

London
Lim

a

Chicago

Bagdad

Toronto
Madrid

Berlin

Melbourne

City

USA World

Figure 11.3. city ∗ pop2000 ∗ group

Nest (|)
Nest partitions the left argument using the values in the right:

x xa a
aay y

z zb b
=/

The Grammar of Graphics 347

Although it is not required in the definition, we assume the nesting varset on the
right is categorical. If it were continuous (having interval domain) there would
be an infinite number of partitions. We do require predefined nested domains. To
construct a nested domain, three options are possible:
1. Data values – identify the minimal domain containing the data by enumerating

unique data tuples.
2. Metadata – define the domain using external rules contained in a metadata

resource or from known principles.
3. Data organization – identify nested domains using the predefined structure of

a hierarchical database or OLAP cube.

The following example shows a nesting of two categorical variables:

A = [{ant, fly, bee}, {〈·〉, 〈·, ·〉, …}, {ant → 〈1〉, fly → 〈2, 3〉, bee → 〈4〉}]
B = [{noun, verb}, {〈·〉, 〈·, ·〉, …}, {noun → 〈1, 2, 4〉, verb → 〈3〉}]

A|B = [{(ant, noun), (fly, noun), (fly, verb), (bee, noun)}, {〈·〉, 〈·, ·〉, …} ,

{(ant, noun) → 〈1〉, (fly, noun) → 〈2〉, (fly, verb) → 〈3〉(bee, noun) → 〈4〉}]
Nesting defines meaning conditionally. In this example, the meaning of fly is
ambiguous unless we know whether it is a noun or a verb. Furthermore, there is no
verb for ant or bee in the English language, so the domain of A|B does not include
this combination.

If A is a continuous variable, then we have something like the following:

A = [[0, 10], {〈·〉, 〈·, ·〉, …}, {0 → 〈1〉, 8 → 〈2〉, 1.4 → 〈3〉, 3 → 〈4〉, 10 → 〈5, 6〉}]
B = [{1, 2}, {〈·〉, 〈·, ·〉, …}, {1 → 〈1, 2, 3〉, 2 → 〈4, 5, 6〉}]

A|B = [{[0, 8] × {1}, [3, 10] × {2}}, {〈·〉, 〈·, ·〉, …} ,

{(0, 1) → 〈1〉, (8, 1) → 〈2〉, (1.4, 1) → 〈3〉, (3, 2) → 〈4〉, (10, 2) → 〈5, 6〉}]
In this example, the elements of the nesting A|B result in intervals conditioned on
the values of B. A represents 6 ratings (ranging from 0 to 10) of the behavior of
patients by two psychiatrists. B represents the identity of the psychiatrist making
each rating. The intervals [0, 8] and [3, 10] imply that psychiatrist 1 will not use
a rating greater than 8 and psychiatrist 2 will not use a rating less than 3. Nesting
in this case is based on the (realistic) assumption that the two psychiatrists assign
numbers to their perceptions in a different manner. A rating of 2 by one psychi-
atrist cannot be compared to the same rating by the other, because of possible
differences in location, scale, and even local nonlinearities. Much of psychomet-
rics is concerned with the problem of equating ratings in this type of example
so that nesting would not be needed, although it is not always possible to do so
plausibly.

348 Leland Wilkinson

The name nest comes from design-of-experiments terminology. We often use
the word within to describe its effect. For example, if we assess schools and teachers
in a district, then teachers within schools specifies that teachers are nested within
schools. Assuming each teacher in the district teaches at only one school, we would
conclude that if our data contain two teachers with the same name at different
schools, they are different people. Those familiar with experimental design may
recognize that the expression A|B is equivalent to the notation A(B) in a design
specification. Both expressions mean A is nested within B. Statisticians’ customary
use of parentheses to denote nesting conceals the fact that nesting involves an
operator, however. Because nesting is distributive over blending, we have made this
operator explicit and retained the conventional mathematical use of parentheses
in an algebra.

Figure 11.4 shows a graphic based on the algebraic expression city|group ∗
pop2000. The horizontal axis in each panel now shows a different set of cities:
one for the USA and one for the rest of the world. This graphic differs from the one
in Fig. 11.3 not only because the axes look different, but also because the meanings
of the cities in each panels are different. For example, the city named Paris appears
twice in both figures. In Fig. 11.3, on the one hand, we assume the name Paris in
the left panel is comparable to the name Paris in the right. That is, it refers to
a common name (Paris) occurring in two different contexts. In Fig. 11.4, on the
other hand, we assume the name Paris references two different cities. They happen
to have the same name, but are not equivalent. Such distinctions are critical, but
often subtle.

NewYork

Los Angeles

Chicago

Melbourne

Moscow
BerlinParis

London

Toronto
Manila

Lim
a

Madrid

Bagdad

City

0

4000000

8000000

12000000

16000000

20000000

24000000

28000000

32000000

P
opulation 2000

Tokyo

Mumbai
Lagos

Osaka
Manila

Paris

Moscow

London
Lim

a

Bagdad

Toronto
Madrid

Berlin

Melbourne

City

USA World

Figure 11.4. city|group ∗ pop2000

The Grammar of Graphics 349

Blend (+)
Blend produces a union of varsets:

x a
ay

z b
=+

x
y
z
a
a
b

Blend is defined only if the order of the tuples (number of columns) in the left
and right varsets is the same. Furthermore, we should restrict blend to varsets
with composable domains, even though we do not need this restriction for the
operation to be defined. It would make little sense to blend Age and Weight, much
less Name and Height.

In vernacular, we often use the conjunction and to signify that two sets are
blended into one (although the word or would be more appropriate technically).
For example, if we measure diastolic and systolic blood pressure among patients
in various treatment conditions and we want to see blood pressure plotted on
a common axis, we can plot diastolic and systolic against treatment. The following
example shows a blending of two varsets, using integers for keys:

A = [[0, 120], {〈·〉, 〈·, ·〉, …}, {0 → 〈1〉, 120 → 〈2〉, 90 → 〈3, 4〉}]
B = [[10, 200], {〈·〉, 〈·, ·〉, …}, {10 → 〈1〉, 200 → 〈2, 3〉, 90 → 〈4〉}]

A + B = [[0, 200], {〈·〉, 〈·, ·〉, …},
{0 → 〈1〉, 10 → 〈1〉, 120 → 〈2〉, 90 → 〈3, 4, 4〉, 200 → 〈2, 3〉}]

Figure 11.5 shows an example of a blend using our cities data. The graphic is
based on the algebraic expression city ∗ (pop1980 + pop2000). The hori-
zontal axis represents the cities and the vertical axis represents the two repeated
population measures. We have included different symbol types and a legend to
distinguish the measures. We will see later how shape aesthetics are used to create
this distinction.

As with the earlier graphics, we see that it is difficult to distinguish US and
world cities. Figure 11.6 makes the distinction clear by splitting the horizontal
axis into two nested subgroups. The graphic is based on the algebraic expression
(city|group)∗ (pop1980+pop2000). Once again, the vertical axis represents
the two repeated population measures blended on a single dimension. We see most
of the cities gaining population between 1980 and 2000.

350 Leland Wilkinson

Tokyo

Mumbai

NewYork
Lagos

Los Angeles
Osaka

Manila
Paris

Moscow

London
Lim

a

Chicago

Bagdad

Toronto
Madrid

Berlin

Melbourne

City

0

4000000

8000000

12000000

16000000

20000000

24000000

28000000

32000000

P
op

ul
at

io
n

2000
1980

Figure 11.5. city ∗ (pop1980 + pop2000)

NewYork

Los Angeles

Chicago

Melbourne

Moscow
BerlinParis

London

Toronto
Manila

Lim
a

Madrid

Bagdad

City

0

4000000

8000000

12000000

16000000

20000000

24000000

28000000

32000000

P
opulation

2000
1980

Tokyo

Mumbai
Lagos

Osaka
Manila

Paris

Moscow

London
Lim

a

Bagdad

Toronto
Madrid

Berlin

Melbourne

City

USA World

Figure 11.6. (city|group) ∗ (pop1980 + pop2000)

The Grammar of Graphics 351

Rules 11.3.2

The following rules are derivable from the definitions of the graphics operators:

Associativity

(X ∗ Y) ∗ Z = X ∗ (Y ∗ Z)

(X|Y)|Z = X|(Y|Z)

(X + Y) + Z = X + (Y + Z)

Distributivity

X ∗ (Y + Z) = X ∗ Y + X ∗ Z

X|(Y + Z) = X|Y + X|Z

(X + Y) ∗ Z = X ∗ Z + Y ∗ Z

(X + Y)|Z = X|Z + Y|Z

Commutativity

X + Y = Y + X

Identity
The identity element for blend is an empty list. Cross and nest have no identity.

Precedence
Nest takes precedence over cross and blend. Cross takes precedence over blend.
This hierarchical order may be altered through the use of parentheses.

SQL Equivalences 11.3.3

Given a table X and a table Y in a database, we can use SQL to perform the
operations in chart algebra. This section outlines how to do this.

Cross
Cross can be accomplished by a cross join:

SELECT a.∗,b.∗
FROM X a,Y b ;

352 Leland Wilkinson

Of course, this operation is inefficient and requires optimization. Alternatively,
one can do a simple join and generate the missing tuples with an iterator when
needed.

Nest
Nest can be accomplished through a nest operation. The nest operator requires
that the database allow tables as primitives, either as relation-valued attributes
(Date and Darwen, 1992) or as nested tables (Makinouchi, 1977), (Abiteboul et al.,
1989).

Alternatively, we can accumulate the subset of tuples in a nest operation with
a simple join:

SELECT a.∗,b.∗
FROM X a,Y b
WHERE a.rowid = b.rowid ;

If we use this latter method, we must distinguish the entries used for tags and
those used for values.

Blend
Blend is performed through UNION. If UNION all is not available, we can con-
catenate key columns to be sure that all rows appear in the result set.

SELECT ∗ from X
UNION all
SELECT ∗ from Y;

Composition and Optimization
SQL statements can be composed by using the grammar for chart algebra. Com-
pound statements can then be submitted for optimization and execution by
a database compiler. Alternatively, pre-optimization can be performed on the
chart algebra parse tree object and the optimized parse tree used to generate SQL.
Secondary optimization can then be performed by the database compiler.

Related Algebras11.3.4

Research on algebras that could be used for displaying data has occurred in many
fields. We will summarize these approaches in separate sections.

Table Algebras
The US Bureau of Labor Statistics pioneered a language for laying out tables
(Mendelssohn, 1974). While not a formal algebra, this Table Production Language
(TPL) contained many of the elements needed to assemble complex tables. Gyssens

The Grammar of Graphics 353

et al. (1996) outlined an algebra for displaying relational data; this algebra closely
followed TPL, although the latter is not referenced. Wilkinson (1996) presented an
algebra for structuring tables and graphics.

Design Algebras
Nelder (1965) and Wilkinson and Rogers (1973) developed a language for imple-
menting factorial and nested experimental designs, following Fisher (1935). The
operators in this language are similar to the cross and nest operators in the present
paper. The algebraic design language was implemented in the GENSTAT statis-
tical computer program for generating and analyzing general linear statistical
models.

Query Algebras
Pedersen et al. (2002) described an algebra for querying OLAP cubes. The result
sets from their algebraic expressions could be used for graphic displays. Agrawal
et al. (1997) used a similar algebra for statistical modeling of data contained in
a cube.

Display Algebras
Mackinlay (1986) developed an algebra for querying relational databases and gen-
erating charts. His general goal was to develop an intelligent system that could
offer graphical responses to verbal or structural queries. Roth et al. (1994) fol-
lowed a similar strategy in developing graphical representations of relational data.
TheyextendedMackinlay’s andothers’ ideasbyusingconcepts fromcomputational
geometry.

Algebra XML 11.3.5

A parse tree for a given algebraic expression maps nicely to XML in a manner
similar to the way MathML (http:||www.w3.org|TR|MathML2|) is defined. We have
developed an implementation, called VizML (http:||xml.spss.com|visualization),
that includes not only the algebraic components of the specification, but also the
aesthetic and geometric aspects. Ultimately, VizML makes it possible to embed
chart algebraic operations in a database.

Scales 11.4

Before we compute summaries (totals, means, smoothers, …) and represent these
summaries using geometric objects (points, lines, …), we must scale our varsets.
In producing most common charts, we do not notice this step. When we implement
log scales, however,wenotice it immediately.Wemust logour databefore averaging
logs. Even if we do not compute nonlinear transformations, however, we need to
specify a measurement model.

354 Leland Wilkinson

The measurement model determines how distance in a frame region relates to
the ranges of the variables defining that region. Measurement models are reflected
in the axes, scales, legends, and other annotations that demarcate a chart’s frame.
Measurement models determine how values are represented (e.g., as categories or
magnitudes) and what the units of measurement are.

Axiomatic Measurement11.4.1

In constructing scales for statistical charts, it helps to know something about the
function used to assign values to objects. Stevens (1946) developed a taxonomy
of such functions based on axioms of measurement. Stevens identified four basic
scale types: nominal, ordinal, interval, and ratio.

To define a nominal scale, we assume there exists at least one equivalence class
together with a binary equivalence relation (∼) that can be applied to objects in
the domain (e.g., the class of this object is the same as the class of that object). For
a domain of objects D and a set of values X(d), d ∈ D, we say that a scale is nominal
if

di ∼ dj ⇐⇒ X(di) = X(dj), ∀ di, dj ∈ D .

To define an ordinal scale, we assume there exists a binary total order relation ($)
that can be applied to objects in the domain (e.g., this stone is heavier than that
stone). We then say that a scale is ordinal if

di $ dj ⇐⇒ X(di) > X(dj), ∀ di, dj ∈ D .

To define an interval scale, we assume there exists a symmetric concatenation
operation (⊕) that can be applied to objects in the domain (e.g., the length of
this stick appended to the length of that stick). We then say that a scale is interval
if

di ⊕ dj ∼ dk ⇐⇒ X(di) + X(dj) = X(dk), ∀ di, dj, dk ∈ D .

To define a ratio scale, we assume there exists a magnitude comparison operation
(%) that can be applied to objects in the domain (e.g., the ratio of the brightness
of this patch to the the brightness of that patch). We then say that a scale is ratio
if

di % dj ∼ dk ⇐⇒ X(di)|X(dj) = X(dk), ∀ di, dj, dk ∈ D .

Axiomatic scale theory is often invoked by practitioners of data mining and
graphics, but it is not sufficient for determining scales on statistical graphics pro-
duced by chart algebra. The blend operation, for example, allows us to union values
on different variables. We can require that blended variables share the same mea-
surement level (e.g., diastolic and systolic blood pressure), but this will not always
produce a meaningful scale. For example, we will have a meaningless composite
scale if we attempt to blend height and weight, both presumably ratio variables.

The Grammar of Graphics 355

We need a different level of detail so that we can restrict the blend operation more
appropriately.

Unit Measurement 11.4.2

An alternative scale classification is based on units of measurement. Unit scales
permit standardization and conversion of metrics. In particular, the Internation-
al System of Units (SI) (Taylor, 1997) unifies measurement under transformation
rules encapsulated in a set of base classes. These classes are length, mass, time,
electric current, temperature, amount of substance, and luminous intensity. With-
in the base classes, there are default metrics (meter, kilogram, second, etc.) and
methods for converting from one metric to another. From these base classes,
a set of derived classes yields measurements such as area, volume, pressure, en-
ergy, capacitance, density, power, and force. Table 11.2 shows some examples of
several SI base classes, derived classes, and an example of an economic base
class that is not in SI. The currency class is time dependent, since daily exchange
rates determine conversion rules and an inflation adjustment method varies with
time.

Most of the measurements in the SI system fit within the interval and ratio levels
of Stevens’ system. There are other scales fitting Stevens’ system that are not clas-
sified within the SI system. These involve units such as category (state, province,
country, color, species), order (rank, index), and measure (probability, proportion,
percent). And there are additional scales that are in neither the Stevens nor the SI
system, such as partial order.

For our purposes, unit measurement gives us the level of detail needed to con-
struct a numerical or categorical scale. We consider unit measurement a form
of strong typing that enables reasonable default behavior. Because of the class
structure and conversion methods, we can handle labels and relations for derived
quantities such as miles-per-gallon, gallons-per-mile, and liters-per-kilometer.
Furthermore, automatic unit conversion within base and derived classes allows

Table 11.2. Typical unit measurements

Length Mass Temperature Time Volume Currency

meter kilogram kelvin second liter dollar

point gram rankine minute teaspoon euro

pica grain celsius hour tablespoon pound

inch slug fahrenheit day cup yen

foot carat week pint rupee

yard month quart dinar

mile quarter gallon

furlong year bushel

fathom century barrel

356 Leland Wilkinson

meaningful blends. As with domain check overrides in a database (Date, 1990), we
allow explicit type overrides for the blend operation.

Transformations11.4.3

We frequently compute transformations of variables in constructing graphics.
Sometimes, we employ statistical transformations to achieve normality so that we
can apply classical statistical methods such as linear regression. Other times, we
transform to reveal local detail in a graphic. It helps to apply a log transform, for
example, to stretch out small data values in a display. We might do this even when
not applying statistical models.

These types of transformations fall within the scale stage of the grammar of
graphics system. Because GOG encapsulates variable transformations within this
stage, it accomplishes two tasks at the same time: 1) the values of the variables are
transformed prior to analysis and display, and 2) nice scale values for axes and
legends are computed based on the transformation. Figure 11.7 shows an example
of this process for the city data. In order to highlight population changes in small
cities, we represent the populations on a log scale. The algebraic expression is the
same as in Fig. 11.5: city ∗ (pop1980 + pop2000). Now we see that most of the
cities gained population between 1980 and 2000 but half the US namesakes lost
population.

Tokyo

Mumbai

NewYork
Lagos

Los Angeles
Osaka

Manila
Paris

Moscow

London
Lim

a

Chicago

Bagdad

Toronto
Madrid

Berlin

Melbourne

City

1000

10000

100000

1000000

10000000

P
op

ul
at

io
n

2000
1980

Figure 11.7. city ∗ (pop1980 + pop2000), ylog

The Grammar of Graphics 357

Statistics 11.5

Visualization and statistics are inseparable. Statisticians have known this for a long
time, but non-statisticians in the visualization field have largely ignored the role
of statistics in charts, maps, and graphics. Non-statisticians often believe that
visualization follows data analysis. We aggregate, summarize, model, and then
display the results. In this view, visualization is the last step in the chain and
statistics is the first.

In GOG, statistics falls in the middle of the chain. The consequence of this
architecture is that statistical methods are an integral part of the system. We can
construct dynamic graphics, in which statistical methods can be changed (for
exploratory purposes) without altering any other part of the specification and
without restructuring the data. By including statistical methods in its architecture,
GOG also makes plain the independence of statistical methods and geometric
displays. There is no necessary connection between regression methods and curves
or between confidence intervals and error bars or between histogram binning and
histograms.

In GOG, the statistics component receives a varset, computes various statistics,
and outputs another varset. In the simplest case, the statistical method is an
identity. We do this for scatterplots. Data points are input and the same data points
are output. In other cases, such as histogram binning, a varset with n rows is input
and and a varset with k rows is output, where k is the number of bins (k < n).
With smoothers (regression or interpolation), a varset with n rows is input and
and a varset with k rows is output, where k is the number of knots in a mesh over
which smoothed values are computed. With point summaries (means, medians,
…), a varset with n rows is input and a varset with one row is output. With regions
(confidence intervals, ranges, …), a varset with n rows is input and and a varset
with two rows is output.

Understanding how the statistics component works reveals an important reason
for mapping values to cases in a varset rather than the other way around. If

A = [R, {〈·〉, 〈·, ·〉, …}, {1.5 → 〈1〉, 2.7 → 〈2〉, 1.8 → 〈3〉}] ,

then

mean(A) = [R, {〈·〉, 〈·, ·〉, …}, {2.0 → 〈1, 2, 3〉}] .
Notice that the list of caseIDs that is produced by mean() is contained in the

one row of the output varset. We do not lose case information in this mapping, the
way we do when we compute results from an ordinary SQL query on a database
or when we compute a data cube for an OLAP or when we pre-summarize data to
produce a simple graphic. This aspect of GOG is important for dynamic graphics
systems that allow drill-down or queries regarding metadata when the user hovers
over a particular graphic element.

Figure 11.8 shows an application of a statistical method to the city data. We
linearly regress 2000 population on 1980 population to see if population growth

358 Leland Wilkinson

1000 10000 100000 1000000 10000000
Population 1980

1000

10000

100000

1000000

10000000

P
op

ul
at

io
n

20
00

Figure 11.8. pop1980 ∗ estimate(pop2000), xlog, ylog

is proportional to city size. On log-log scales, the estimated values fall on a line
whose slope is greater than 1, suggesting that larger cities grow faster than small-
er. Ordinarily, we would draw a line to represent the regression and we would
include the data points as well. We would also note that Lagos grew at an un-
usual rate (with a Studentized residual of 3.4). Nevertheless, our main point is
to show that the statistical regression produces data points that are exchange-
able with the raw data insofar as the entire GOG system is concerned. How we
choose to represent the regressed values graphically is the subject of the next
section.

Geometry11.6

GOG presumes no connection between a statistical method and a geometric
representation. Histogram bins need not be represented by histograms. Tukey
schematic plots (his original word for box plots) need not be represented by boxes
and whiskers. Regressions need not be represented by lines or curves. Separat-
ing geometry from data (and from other graphical aspects such as coordinate
systems) is what gives GOG its expressive power. We choose geometric representa-
tion objects independently of statistical methods, coordinate systems, or aesthetic
attributes.

As Fig. 11.1 indicates, the geometry component of GOG receives a varset and
outputs a geometric graph. A geometric graph is a subset ofRn. For our purposes,

The Grammar of Graphics 359

we will be concerned with geometric graphs for which 1 ≤ n ≤ 3. Geometric
graphs are enclosed in bounded regions:

Bn ⊂ [a1, b1]× … × [an, bn]

These intervals define the edges of a bounding box or region in n-dimensional
space. There are two reasons we need bounded regions. First, in order to define
certain useful geometric graphs, we need concepts like the end of a line or the edge
of a rectangle. Second, we want to save ink and electricity. We don’t want to take
forever to compute and draw a line.

Geometric graphs are produced by graphing functions F : Bn → R
n that have

geometric names like line() or tile(). A geometric graph is the image of F. And
a graphic, as used in the title of this chapter, is the image of a graph under
one or more aesthetic functions. Geometric graphs are not visible. As Bertin
(1967) points out, visible elements have features not present in their geometric
counterparts.

Figures 11.9 and 11.10 illustrate the exchangeability of geometry and statistical
methods. The graphics are based on UN data involving 1990 estimates of female
life expectancy and birth rates for selected world countries. Figure 11.9 shows four
different geometric graphs – point, line, area, and bar – used to represent a confi-
dence interval on a linear regression. Figure 11.10 shows one geometric graph used
to represent four different statistical methods – local mean, local range, quadratic
regression, and linear regression confidence interval.

This exchangeability produces a rich set of graphic forms with a relatively small
number of geometric graphs. Table 11.3 contains these graphing methods. The
point() graphing function produces a geometric point, which is an n-tuple. This
function can also produce a finite set of points, called a multipoint or a point cloud.
The set of points produced by point() is called a point graph.

The line() graphing function function is a bit more complicated. Let Bm be
a bounded region in Rm. Consider the function F : Bm → R

n, where n = m + 1,
with the following additional properties:

1. The image of F is bounded, and
2. F(x) = (v, f (v)), where f : Bm → R and v = (x1, … , xm) ∈ Bm.

If m = 1, this function maps an interval to a functional curve on a bounded plane.
And if m = 2, it maps a bounded region to a functional surface in a bounded 3D
space. The line() graphing function produces these graphs. Like point(), line() can
produceafinite set of lines.Asetof lines is calledamultiline.Weneed this capability
for representing multimodal smoothers, confidence intervals on regression lines,
and other multifunctional lines.

The area() graphing function produces a graph containing all points within
the region under the line graph. The bar() graphing function produces a set of
closed intervals. An interval has two ends. Ordinarily, however, bars are used to
denote a single value through the location of one end. The other end is anchored

360 Leland Wilkinson

40 50 60 70 80 90
Female Life Expectancy

0

10

20

30

40

50

60

70

B
ir

th
 R

at
e

40 50 60 70 80 90
Female Life Expectancy

0

10

20

30

40

50

60

70
B

ir
th

 R
at

e

40 50 60 70 80 90
Female Life Expectancy

0

10

20

30

40

50

60

70

B
ir

th
 R

at
e

40 50 60 70 80 90
Female Life Expectancy

0

10

20

30

40

50

60

70
B

ir
th

 R
at

e

Figure 11.9. Different graph types, same statistical method

Table 11.3. Geometric Graphs

Relations Summaries Partitions Networks

point schema tile path
line (surface) contour link
area (volume)
bar (interval)
histobar

at a common reference point (usually zero). The histobar() graphing function
produces a histogram element. This element behaves like a bar except a value
maps to the area of a histobar rather than to its extent. Also, histobars are glued to
each other. They cover an interval or region, unlike bars.

The Grammar of Graphics 361

40 50 60 70 80 90
Female Life Expectancy

0

10

20

30

40

50

60

70

B
ir

th
 R

at
e

40 50 60 70 80 90
Female Life Expectancy

0

10

20

30

40

50

60

70

B
ir

th
 R

at
e

40 50 60 70 80 90
Female Life Expectancy

0

10

20

30

40

50

60

70

B
ir

th
 R

at
e

40 50 60 70 80 90
Female Life Expectancy

0

10

20

30

40

50

60

70

B
ir

th
 R

at
e

Figure 11.10. Different statistical methods, same graph type

A schema is a diagram that includes both general and particular features in
order to represent a distribution. We have taken this usage from Tukey (1977), who
invented the schematic plot, which has come to be known as the box plot because
of its physical appearance. The schema() graphing function produces a collection
of one or more points and intervals.

The tile() graphing function tiles a surface or space. A tile graph covers and
partitions the bounded region defined by a frame; there can be no gaps or overlaps
between tiles. The Latinate tessellation (for tiling) is often used to describe the
appearance of the tile graphic.

A contour() graphing function produces contours, or level curves. A contour
graph is used frequently in weather and topographic maps. Contours can be used
to delineate any continuous surface.

The network() graphing function joins points with line segments (edges). Net-
works are representations that resemble the edges in diagrams of theoretic graphs.

362 Leland Wilkinson

1000 10000 100000 1000000 10000000
Population 1980

1000

10000

100000

1000000

10000000

P
op

ul
at

io
n

20
00

Figure 11.11. pop1980 ∗ {pop2000, estimate(pop2000)}, xlog, ylog, {point, line}

Although networks join points, a point graph is not needed in a frame in order for
a network graphic to be visible.

Finally, the path() graphing function produces a path that connects points such
that each point touches no more than two line segments. Thus, a path visits every
point in a collection of points only once. If a path is closed (every point touches
two line segments), we call it a circuit. Paths often look like lines. There are several
important differences between the two, however. First, lines are functional; there
can be only one point on a line for any value in the domain. Paths may loop, zigzag,
and even cross themselves inside a frame. Second, paths consist of segments that
correspond to edges, or links between nodes. This means that a variable may be
used to determine an attribute of every segment of a path.

Figure 11.11 contains two geometric objects for representing the regression we
computed in Fig. 11.8. We use a point for representing the data and a line for
representing the regression line.

Coordinates11.7

The most popular types of charts employ Cartesian coordinates. The same real
tuples in the graphs underlying these graphics can be embedded in many other
coordinate systems, however. There are many reasons for displaying graphics in
different coordinate systems. One reason is to simplify. For example, coordinate
transformations can change some curvilinear graphics to linear. Another reason
is to reshape graphics so that important variation or covariation is more salient

The Grammar of Graphics 363

Bagdad

Berlin

Chicago

Lagos

Lima

London

Los Angeles

Madrid

Manila

Melbourne

Moscow

Mumbai

NewYork

Osaka

Paris

Tokyo

Toronto
C

ity

1000 10000 100000 1000000 10000000
Population

2000
1980

Figure 11.12. transpose(city ∗ (pop1980 + pop2000)), ylog

or accurately perceived. For example, a pie chart is generally better for judging
proportions of wholes than is a bar chart (Simkin and Hastie, 1987). Yet another
reason is to match the form of a graphic to theory or reality. For example, we might
map a variable to the left-closed and right-open interval [0, 1) on a line or to the
interval [0, 2π) on the circumference of a circle. If our variable measures defects
within a track of a computer disk drive in terms of rotational angle, it is usually
better to stay within the domain of a circle for our graphic. Another reason is to
make detail visible. For example, we may have a cloud with many points in a local
region. Viewing those points may be facilitated by zooming in (enlarging a region
of the graphic) or smoothly distorting the local area so that the points are more
separated in the local region.

Wilkinson (1999) contains many examples of ordinary charts rendered in dif-
ferent coordinate systems. A simple example suffices for the data in this chapter.
Figure 11.12 shows a transposed version of Fig. 11.7. The result of this coordinate
transformation (a rotation composed with a reflection) is to make the city names
more readable.

Aesthetics 11.8

The term aesthetics derives from a Greek word that means perception. The deriva-
tive modern meanings of beauty, taste, and artistic criteria arose in the 18th cen-

364 Leland Wilkinson

tury. We have chosen the name aesthetics to describe the class of functions that
turn theoretical graphs into perceivable graphics because of its original conno-
tations and because the modern word perception is subjective rather than ob-
jective; perception refers to the perceiver rather than the object. Aesthetics turn
graphs into graphics so that they are perceivable, but they are not the percep-
tions themselves. A modern psychologist would most likely call aesthetics in
this sense stimuli, aspects, or features, but these words are less germane to our
purpose.

Table 11.4 summarizes these aesthetic attributes. We have grouped these at-
tributes in five categories: form, surface, motion, sound, and text. This is not in-
tended to be an exhaustive list; other attributes, such as odor, can be devised. The
color aesthetic has three components: hue, brightness, and saturation (other color
components are possible). The texture aesthetic includes components of pattern,
granularity, and orientation.

Seven of these attributes are derived from the visual variables of Bertin (1967):
position (position), size (taille), shape (forme), orientation (orientation), bright-
ness (valeur), color (couleur), and granularity (grain). Bertin’s grain is often
translated as texture, but he really means granularity (as in the granularity of
a photograph). Granularity in this sense is also related to the spatial frequency of
a texture.

These aesthetic attributes do not represent the aspects of perception investigat-
ed by psychologists. This lack of fit often underlies the difficulty graphic designers
and computer specialists have in understanding psychological research relevant
to graphics and the corresponding difficulty psychologists have with questions
asked by designers. Furthermore, these attributes are not ones customarily used in
computer graphics to create realistic scenes. They are not even sufficient for a sem-
blance of realism. Notice, for example, that pattern, granularity, and orientation
are not sufficient for representing most of the textures needed for representing real
objects. Instead, these attributes are chosen in a tradeoff between the psycholog-
ical dimensions they elicit and the types of routines that can be implemented in
a rendering system. Specifically,

An attribute must be capable of representing both continuous and categorical
variables.
When representing a continuous variable, an attribute must vary primarily
on one psychophysical dimension. In order to use multidimensional attributes
such as color, we must scale them on a single dimension such as hue or bright-

Table 11.4. Aesthetics

Form Surface Motion Sound Text

position color direction tone label
size texture speed volume
shape blur acceleration rhythm
rotation transparency voice

The Grammar of Graphics 365

ness, or compute linear or nonlinear combinations of these components to
create a unidimensional scale.
An attribute does not imply a linear perceptual scale. In fact, few aesthetic
attributes scale linearly. Some attributes such as hue scale along curvilinear
segments in two- or three-dimensional space. All linear scales are unidimen-
sional but not all unidimensional scales are linear.
A perceiver must be able to report a value of a variable relatively accurately
and effortlessly when observing an instance of that attribute representing that
variable.
A perceiver must be able to report values on each of two variables relatively
accurately upon observing a graphic instantiating two attributes. This task
usually, but not necessarily, requires selective attention. This criterion probably
isn’t achievable for all of our attributes and may not even be achievable for any
pair of them. But any attribute that is clearly non-separable with another should
be rejected for our system. It is too much to expect, of course, that higher order
interactions among attributes be non-existent. Much of the skill in graphic
design is knowing what combinations of attributes to avoid.
Each attribute must name a distinct feature in a rendering system. We cannot
implement an attribute that does not uniquely refer to a drawable (or other-
wise perceivable) feature. An attribute cannot be mapped to a miscellaneous
collection of widgets or controls, for example.

We have attempted to classify aesthetics so that they are orthogonal in a design
sense. One must not assume that this implies they are uncorrelated in our per-
ceptual mechanisms, however. Orthogonalization in design means making every
dimension of variation that is available to one object available to another. How
these variations are perceived is another matter. Many aesthetic attributes, even
ones such as size or position that are usually considered visual, need not be per-
ceived visually. There is nothing in the definition of a graphic to limit it to vision.
Provided we use devices other than computer screens and printers, we can develop
graphical environments for non-sighted people or for those unable to attend to
a visual channel because, perhaps, they are busy, restrained, or multiprocessing.
Touch, hearing, even smell can be used to convey information with as much detail
and sensitivity as can vision.

Every one of the figures in this chapter incorporates several aesthetics. Without
aesthetic functions, theywouldnotbevisible.Consequently,wewill not addafigure
to illustrate other aesthetics, particularly since we are constrained in publishing
format. Note, however, that in addition to using the position aesthetic function in
every graphic, we have employed shape to differentiate symbols. Note, also, that
position aesthetics are usually referenced by axes and shape and other aesthetics
are usually referenced by legends.

Our discussion of the seven primary GOG components ends here. But there are
several important topics remaining. We will first examine issues in graphics layout,
and then conclude with a discussion of the relation between graphics algebra and
statistical design models.

366 Leland Wilkinson

Layout11.9

Chart algebra does not determine the physical appearance of charts plotted on
a screen or paper. It simply produces a set of tuples (x1, … , xp) that can be rendered
using geometric primitives and a layout interpreter. If we have 2-tuples, then we can
render them directly on a computer screen or piece of paper. If we have 3-tuples,
then we can use a perspective projection to render them on the plane. Higher-order
tuples require a layout scheme to embed all dimensions in the plane. Various layout
schemes are attempts to solve a graphic representation problem: how to transform
a p-dimensional vector space to a 2-dimensional space so that we can perceive
structures in the higher dimensional space by examining the 2-dimensional space.
We will discuss several approaches in this section.

Projection
One scheme is to employ a linear or nonlinear projection from p-dimensions to
two. This may cause loss of information because a projection onto a subspace
is many-to-one. Also, projection is most suitable for displaying points or {V , E}
graphs. It is less suitable for many geometric chart types such as bars and pies. Nev-
ertheless, some 2D projections have been designed to capture structures contained
in subspaces, such as manifolds, simplices, or clusters (Friedman, 1987). Other pop-
ular projection methods are principal components and multidimensional scaling
(Hastie et al., 2001).

Sets of Functions
A second possibility is to map a set of n points in Rp one-to-one to a set of n
functions in R2. A particularly useful class of functions is formed by taking the
first p terms in a Fourier series as coefficients for (x1, … , xp) (Andrews, 1972).
Another useful class is the set of Chebysheff orthogonal polynomials. A popular
class is the set of p − 1 piecewise linear functions with (x1, … , xp) as knots, often
called parallel coordinates (Inselberg, 1984; Wegman, 1985).

An advantage of function space representations is that there is no loss of in-
formation, since the set of all possible functions for each of these types in R2 is
infinite. Orthogonal functions (such as Fourier and Chebysheff) are useful because
zero inner products are evidence of linear independence. Parallel coordinates are
useful because it is relatively easy to decode values on particular variables. A dis-
advantage of functional representations is that manifolds, solids, and distances are
difficult to discern.

Recursive Partitioning
A third possibility is recursive partitioning. We choose an interval [u1, u2] and
partition the first dimension ofRp into a set of connected intervals of size (u2 −u1),
in the samemanner ashistogrambinning.This yields a set of rectangular subspaces
ofRp.Wethenpartition theseconddimensionofRp similarly.This secondpartition
produces a set of rectangular subspaces within each of the previous subspaces. We

The Grammar of Graphics 367

continue choosing intervals and partitioning until we finish the last dimension. We
then plot each subspace in an ordering that follows the ancestry of the partitioning.
Recursive partitioning layout schemes have appeared in many guises: Rp → R

3

(Feiner and Beshers, 1990), Rp → R
2 (Mihalisin et al., 1991), R4 → R

2 (Becker
et al., 1996).

There are several modifications we may make to this scheme. First, if a di-
mension is based on a categorical variable, then we assume (u2 − u1) = 1, which
assures one partition per category. Second, we need not partition a dimension into
equal intervals; instead, we can make [u1, u2] adaptive to the density of the data
(Wilkinson, 1999, page 186). Third, we can choose a variety of layouts for display-
ing the nodes of the partitioning tree. We can display the cells as an n-ary tree,
which is the method used by popular decision-tree programs. Or, we can alternate
odd|even dimensions by plotting horizontally|vertically. This display produces a
2D nested table, which has been variously named a mosaic (Hartigan and Kleiner,
1981) or treemap (Johnson and Schneiderman, 1991). We use this latter scheme for
the figures in this article.

This rectangular partitioning resembles a 2D rectangular fractal generator. Like
simple projection, this method can cause loss of information because aggregation
occurs within cells. Nevertheless, it yields an interpretable 2D plot that is familiar
to readers of tables.

Because recursive partitioning works with either continuous or categorical vari-
ables, there is no display distinction between a table and a chart. This equivalence
between tables and graphs has been noted in other contexts (Shoshani, 1997; Ped-
ersen et al., 2002). With recursive partitioning, we can display tables of charts and
charts of tables.

Analytics 11.10

If conclusions based on statistical charts are to be useful, we must identify and
interpret the statistical models underlying charts. A statistical model determines
how the location of a representation element (point, line, …) in a frame (a measur-
able region of representation) is computed from the values of a variable. Statistical
models usually (but not necessarily) incorporate error terms and help us to ar-
ticulate the domains of generalizations and inferences we make from examining
a chart. Glymour et al. (1996) summarize these issues from a data mining context.
Because chart algebra is based on statistical design algebras, it can be used to
generate statistical models for visual data mining or predictive analytics.

This section presents the statistical model equivalents of chart algebra expres-
sions. In each subsection, we show the chart algebra notation on the left of each
equivalence expression and the statistical model notation on the right. The terms
on the left comprise varsets and the terms on the right comprise variables. Note
that some symbols (e.g., +) are common to both notations but have different
meanings. The general linear statistical models presented in this section are due to

368 Leland Wilkinson

(Fisher, 1925; Fisher, 1935). More recent introductions to the design notation used
for statistical models are (Heiberger, 1989) and (Kutner et al., 1996).

Statistical Model Equivalents11.10.1

In the following subsections, we assume a functional model Z = f (X, Y), where
Z is a (possibly multivariate) variable. Z corresponds to a varset Z, which it-
self might be produced from a chart algebra expression. In statistical terms, we
sometimes call Z a dependent variable and X and Y independent variables. In
this section, we ignore Z and focus on expressions involving X and Y . These
expressions are used to construct statistical models that help to predict or esti-
mate Z.

Cross

X ∗ Y ∼ C + X + Y + XY

The cross operator corresponds to a fully factorial experimental design specifica-
tion. This design employs a product set that includes every combination of levels of
a set of experimental factors or treatments. The terms on the right of the similarity
represent the linear model for fitting fully factorial designs. The terms in the model
are:

C : constant term (grand mean)

X : levels of factor X (X main effect)

Y : levels of factor Y (Y main effect)

XY : product of factors X and Y(interactions)

We could use boldface for the variables on the right because the most general
form of the model includes factors (multidimensional categorical variables) having
more than one level. These multivariate terms consist of sets of binary categorical
variables whose values denote presence or absence of each level in the factor.
Alternatively, terms based on continuous variables are called covariates.

An example of a two-way factorial design would be the basis for a study of
how teaching method and class size affect the job satisfaction of teachers. In such
a design, each teaching method (factor X) is paired with each class size (factor Y)
and teachers and students in a school are randomly assigned to the combinations.

Nest

X|Y ∼ C + Y + X(Y)

The Grammar of Graphics 369

The terms on the right of the similarity are:

C : constant term

Y : levels of factor Y (Y main effect)

X(Y) : X levels nested within levels of Y

The term X(Y) represents the series X | (Y = Y1) + X | (Y = Y2) + …
Notice that there is no interaction term involving X and Y because X is nested

within Y . Not all combinations of the levels of X and Y are defined. An example
of a nested design would be the basis for a study of the effectiveness of different
teachers and schools in raising reading scores. Teachers are nested within schools
when no teacher in the study can teach at more than one school. With nesting,
two teachers with the same name in different schools are different people. With
crossing, two teachers with the same name in different schools may be the same
person.

Blend

X + Y ∼ C + FXY

The terms on the right of the similarity are:

C : constant term

FXY : function of X and Y (e.g., X − Y)

The blend operator usually corresponds to a time series design. In such a de-
sign, we predict using functions of a time series. When the blend involves de-
pendent variables, this is often called a repeated measures design. The simplest
case is a prediction based on first differences of a series. Time is not the only
possible dimension for ordering variables, of course. Other multivariate function-
al models can be used to analyze the results of blends (Ramsay and Silverman,
1997).

An example of a repeated measures design would be the basis for a study of
improvement in reading scores under different curricula. Students are randomly
assigned tocurriculumand thecomparisonof interest involvesdifferencesbetween
pre-test and post-test reading scores.

It would appear that analytics have little to do with the process of building
a chart. If visualization is at the end of a data-flow pipeline, then statistics is simply
a form of pre-processing. In our model, however, analytics are an intrinsic part
of chart construction. Through chart algebra, the structure of a graph implies
a statistical model. Given this model, we can employ likelihood, information, or
goodness-of-fit measures to identify parsimonious models. We will explore some
graphic uses of statistical models in this section.

370 Leland Wilkinson

C+X+Y+Z+XY+XZ+YZ+XYZ

C+X+Y+Z+XY+XZ+YZ

C+X+Y+Z+XY+XZ C+X+Y+Z+XY+YZ C+X+Y+Z+XZ+YZ

C+X+Y+Z+XZ C+X+Y+Z+YZ

C

C+ZC+X C+Y

C+X+Y C+X+ZC+Y+Z

C+X+Y+Z+XY

Figure 11.13. Model subset tree

Subset Model Fitting11.10.2

The factorial structure of most chart algebra expressions can produce rather com-
plex models. We need to consider strategies for selecting subset models that are
adequate fits to the data. We will discuss one simple approach in this section.
This approach involves eliminating interactions (products of factors) in factorial
designs.

Interactions are often regarded as nuisances because they are difficult to in-
terpret. Comprehending interactions requires thinking about partial derivatives.
A three-way interaction XYZ, for example, means that the relation between X and
Y depends on the level of Z. And the relation between X and Z depends on the level
of Y . And the relation between Y and Z depends on the level of X. Without any
interaction, we can speak about these simple relations unconditionally. Thus, one
strategy for fitting useful subset models is to search for subsets with as few inter-
actions as possible. In this search, we require that any variables in an interaction
be present as a main-effect in the model.

Figure 11.13 shows a submodel tree for the three-way crossing X ∗ Y ∗ Z. Not
all possible submodels are included in the tree, because the convention in mod-
eling factorial designs is to include main effects for every variable appearing in
an interaction. This reduces the search space for plausible submodels. By using
branch-and-bound methods, we can reduce the search even further. Mosteller
and Parunak (1985) and Linhart and Zucchini (1986) cover this area in more
detail.

Lack of Fit11.10.3

Statistical modeling and data mining focus on regularity: averages, summaries,
smooths, and rules that account for the significant variation in a dataset. Often,
however, the main interest of statistical graphics is in locating aspects that are

The Grammar of Graphics 371

discrepant, surprising, or unusual: under-performing sales people, aberrant voting
precincts, defective parts.

An outlier is a case whose data value and fitted value (using some model) are
highly discrepant relative to the other data-fitted discrepancies in the dataset. (Bar-
nett and Lewis, 1994). Casewise discrepancies are called residuals by statisticians.
Outliers can be flagged in a display by highlighting (e.g., coloring) large residuals in
the frame. Outliers are only one of several indicators of a poorly fit model, however.
Relative badness-of-fit can occur in one or more cells of a table, for example. We
can use subset modeling to highlight such cells in a display. Sarawagi et al. (1998) do
this for log-linear models. Also, we can use autocorrelation and cross-correlation
diagnostic methods to identify dependencies in the residuals and highlight areas
in the display where this occurs.

Scalability 11.10.4

Subset design modeling is most suited for deep and narrow (many rows, few
columns) data tables or low-dimensional data cubes. Other data mining meth-
ods are designed for wide data tables or high-dimensional cubes (Hand et al.,
2001; Hastie et al., 2001). Subset design modeling makes sense for visualization
applications because the design space in these applications does not tend to be
high-dimensional. Visual data exploration works best in a few dimensions. Higher-
dimensional applications work best under the guidance of other data mining al-
gorithms.

Estimating design models requires O(n) computations with regard to cases,
because only one pass through the cases is needed to compute the statistics for
estimating the model. Although computing design models can be worse-case O(p2)
in the number of dimensions, sparse matrix methods can be used to reduce this
overhead because many of the covariance terms are usually zero.

An Example 11.10.5

Smoothing data reveals systematic structure. Tukey (1977) used the word in a spe-
cific sense, by pairing the two equations

data = fit + residual

data = smooth + rough

Tukey’s use of the word is different from other mathematical meanings, such as
functions having many derivatives.

We smooth data in graphics to highlight selected patterns in order to make
inferences. We present an example involving injury to the heads of dummies
in government frontal crash tests. Figure 11.14 shows NHTSA crash test results
for selected vehicles tested before 1999. The dependent variable shown on the
horizontal axis of the chart is the Head Injury Index computed by the agency. The

372 Leland Wilkinson

Continental
Escort

Festiva
Mustang

Mustang LX
Probe
Sable

T-Bird
Taurus
Tempo
Topaz
Tracer

Fo
rd

0 1000 2000 3000
HEADIC

P

P

P

P

P

P

P

D

P

P

P

D

D

P

P

PD

D

D

P

P

D

D

D

D
D

D

P

D

D

D

D

200sx
240sx
300zx

Maxima
Maxima SE

Pulsar Nx
Sentra
Stanza

N
is

sa
n

D

P

P

P

D

D

P

P

P

P

D

P

D

PD

D

D

D

D

D

Camry
Celica

Corolla
Corolla Fx

Cressida
LexusES250

Tercel

To
yo

ta

P

P

P

P

D

P

P

P

P

D

D

DP

D

D

DD

D

Acclaim
Colt

Daytona
Fifth Ave
Imperial

Le Baron
Mercedes190E

New Yorker
Shadow

Spirit
Sundance

D
ai

m
le

r
C

hr
ys

le
r

P

D

D

P

P

PD
D

D

P
P

D

P

D

D

D
D

P
P

P

D

D

D

D
D

P P
P

Beretta
Calais

Camaro
Caprice

Cavalier
Century
Corsica

De Ville
Delta 88

Grand Am
Le Mans
Le Sabre
Lumina

Park Avenue
Regal

Sunbird

G
en

er
al

 M
ot

or
s

P
D

P

D

D

P

P

D

D

P

P

PD

P

D

P

D

D

P

P

D

D

P

D

D
D

D

P

P

P

P

D

DP

D

Aerostar
Bronco II 4x
Club Wagon
Explorer 4x4
F-150
Ranger
Ranger 4x4

P

P

P

D

P

D

D

P

D

D

D

P D

0 1000 2000 3000
HEADIC

Axxess

NLXev Pickup

Pickup

Van XeP

P

D

D

P

D

P

P D

D

4-Runner 4x4

Pickup

Pickup 4x4

Previa

VanP

P

P

P

P

P

D

D

D

D

D

D

Cherokee 4x4
Comanche
D-150
Dakota
Dakota 4x4
Voyager
Wrangler YJ

P

P

P

D

P

D

P

D

DD

D

D

D

P

P

P

Astro

C-1500

G-20

S-10 Blazer

S-10 Pickup

Trans Sport

P

P

PD

DD

D

D

D

D P

P

P

D

P

PD

P

Cars Trucks

Figure 11.14. Crash data

The Grammar of Graphics 373

full model is generated by the chart algebra H ∗ T|(M ∗ V) ∗ O. This expression
corresponds to the model:

H = C + M + V + O + T(MV) + MV + MO + VO + OT(MV) + MVO

where the symbols are:

H : Head Injury Index

C : constant term (grand mean)

M : Manufacturer

V : Vehicle (car|truck)

O : Occupant (driver|passenger)

T : Model

This display is difficult to interpret. We need to fit a model and order the display
to reveal the results of the model fit. Fig. 11.15 charts fitted values from the following
subset model:

H = C + V + O + T(MV)

Figure 11.15 has several notable features. First, the models are sorted according to
the estimated Head Injury Index. This makes it easier to compare different cells.
Second, some values have been estimated for vehicles with missing values (e.g.,
GM G-20 driver data). Third, the trends are smoother than the raw data. This is
the result of fitting a subset model. We conclude that passengers receive more head
injuries than drivers, occupants of trucks and SUVs (sports utility vehicles) receive
more head injuries than occupants of cars, and occupants of some models receive
more injuries than occupants of others.

Software 11.11

Four systemshave so far implemented thealgebradescribed in this chapter.Wilkin-
son et al. (2000) developed a system called nViZn, which used the algebra to present
interactive graphics in a Web environment. Norton et al. (2001) used the algebra to
structure and display data in a real-time streaming environment; their system is
called Dancer. Wills (2002) developed a server-based presentation graphics system
with an XML schema for GOG; this system is called. ViZml. Stolte et al. (2002) used
the algebra to develop a visualization front-end for an OLAP; their system is called
Polaris.

374 Leland Wilkinson

Mustang LX
Escort
Taurus
T-Bird
Probe

Mustang
Sable

Tempo
Tracer

Continental
Topaz

Festiva

Fo
rd

0 1000 2000 3000
ESTIMATE

P
PP
PPP

D

P

DD

PP
P

DDD

P
P
P

D
DD

P

D
D

P

D
D
D
D
P D

240sx
300zx

Pulsar Nx
Stanza

Maxima
Maxima SE

Sentra
200sx

N
is

sa
n

PD

P

P

PP

P

D

D

P

PPP

DD

P

D

D

DDD

D

Corolla Fx
Cressida

Celica
LexusES250

Tercel
Corolla
Camry

To
yo

ta

PD

P

P

P

PP

D

PP

P

D

D

DD

DD

D

Daytona
New Yorker

Acclaim
Sundance

Shadow
Fifth Ave

Mercedes190E
Spirit

Le Baron
Imperial

Colt

D
ai

m
le

r
C

hr
ys

le
r

PD
PP
PP
P
PP
P
P

DD
DD
D

P

DD
D

PP

D

P
P

D
DD
D
D

Calais
De Ville
Le Sabre
Sunbird
Beretta

Cavalier
Delta 88
Camaro

Regal
Grand Am

Corsica
Le Mans
Century
Caprice

Park Avenue
Lumina

G
en

er
al

 M
ot

or
s

P
P
D
D
P
P
P

D

P

D

P

D

PP
P
P
PP

D
D
DD
D

P

D
DD

P
PP

D

P
P

D
DD
D
D

Ranger
Explorer 4x4
F-150
Ranger 4x4
Bronco II 4x
Aerostar
Club Wagon

P

P

P

D

P

P

D

D

D

D

P D

P D

0 1000 2000 3000
ESTIMATE

Van Xe

Axxess

Pickup

NLXev Pickup

P

P

D

D

PP DD

P D

Van

Pickup

Pickup 4x4

Previa

4-Runner 4x4

PD

PP

P

P

P

DD

D

D

D

D-150
Voyager
Dakota 4x4
Dakota
Wrangler YJ
Cherokee 4x4
Comanche

P

P

D

P

D

P

P

D

PP

D

D

DD

P D

C-1500

Trans Sport

S-10 Pickup

S-10 Blazer

Astro

G-20

P

P

D

D

PPDD

PPP DDD

PP DD

P D

Cars Trucks

Figure 11.15. Smoothed crash data

The Grammar of Graphics 375

Conclusion 11.12

Many of the pieces that motivate graphics algebra have been lying around for
decades: experimental design algebras, relational algebras, table algebras. These
algebras emerged from separate disciplines, so that in most instances, researchers
have been unaware of developments in the other disciplines. What is new about
chart algebra is the explicit and formal equivalence between the data structures
needed for statistical models and the methods for displaying them in charts. In
a general sense, this equivalence allows us to think about manipulating data by
manipulating statistical representation elements of a chart.

The GOG project has had several purposes. One, of course, is to develop sta-
tistical graphics systems that are exceptionally powerful and flexible. Another is
to understand the steps we all use when we generate charts and graphs. This un-
derstanding leads to a formalization of the problem that helps to integrate the
miscellaneous set of techniques that have comprised the field of statistical graph-
ics over several centuries. Another purpose is to develop, ultimately, intelligent
systems that can 1) graph data without human specification and 2) read already
published statistical graphics to recover data and interpret relationships. Finally,
we hope to define problem specification and user interaction in a way that enables
graphics systems to be understood by ordinary people as well as by statisticians. By
formally relating display structure and statistical models, we can produce environ-
ments in which users interact with data, receive guidance, and draw conclusions
that are based on appropriate statistical inferences.

References

Abiteboul, S., Fischer, P. C. and Schek, H. J. (1989). Nested relations and complex
objects in databases. Springer-Verlag, New York.

Agrawal, R., Gupta, A. and Sarawagi, S. (1997). Modeling multidimensional
databases. In Gray, A. and Larson, P.-Å(eds), Proceedings of 13th International
Conference of Data Engineering (ICDE), IEEE Computer Society, pp. 232–243.

Andrews, D. (1972). Plots of high dimensional data. Biometrics, 28: 125–136.
Barnett, V. and Lewis, T. (1994). Outliers in Statistical Data. John Wiley & Sons,

New York.
Becker, R. A., Cleveland, W. S. and Shyu, M.-J. (1996). The design and control of

trellis display. Journal of Computational and Statistical Graphics, 5: 123–155.
Bertin, J. (1967). Smiologie Graphique. Editions Gauthier-Villars, Paris.
Date, C. (1990). What is a domain? In Date, C. (ed), Relational Database Writings

1985–1989, Addison-Wesley, Reading, MA, pp. 213–313.
Date, C. J. and Darwen, H. (1992). Relation-valued attributes. In Date, C. J. and Dar-

wen, H. (eds), Relational Database: Writings 1989-1991, Addison-Wesley, Read-
ing, MA, pp. 75–98.

376 Leland Wilkinson

Feiner, S. and Beshers, C. (1990). Worlds within worlds: Metaphors for exploring
n-dimensional virtual worlds. In Proceedings of ACM UIST ’90. ACM Press,
pp. 76–83.

Fisher, R. (1925). Statistical Methods for Research Workers. Oliver and Boyd, Edin-
burgh.

Fisher, R. (1935). The Design of Experiments. Oliver and Boyd, Edinburgh.
Friedman, J. (1987). Exploratory projection pursuit. Journal of the American Sta-

tistical Association, 82: 249–266.
Glymour, C., Madigan, D., Pregibon, D. and Smyth, P. (1996). Statistical inference

and data mining. Communications of the ACM, 39, 11: 35–41.
Gyssens, M., Lakshmanan, L. V. S. and Subramanian, I. N. (1996). Tables as a

paradigm for querying and restructuring (extended abstract). In Proceed-
ings of the fifteenth ACM SIGACT-SIGMOD-SIGART symposium on Principles
of database systems, ACM Press, Montreal, Quebec, Canada, pp. 93–103.

Hand, D. J., Mannila, H. and Smyth, P. (2001). Principles of Data Mining: Adaptive
Computation and Machine Learning. MIT Press, Cambridge, MA.

Hartigan, J. and Kleiner, B. (1981). Mosaics for contingency tables. In Computer
Science and Statistics: Proceedings of the 13th Symposium on the Interface,
pp. 268–273.

Hastie, T., Tibshirani, R. and Friedman, J. H. (2001). The Elements of Statistical
Learning: Data Mining, Inference, and Prediction. Springer, New York.

Heiberger, R. M. (1989). Computation for the Analysis of Designed Experiments.
John Wiley & Sons, New York.

Inselberg, A. (1984). The plane with parallel coordinates. The Visual Computer,
1:69–91.

Johnson, B. and Schneiderman, B. (1991). Treemaps: A space-filling app. roach to
the visualization of hierarchical information structures. In Proceedings of the
IEEE Information Visualization ’91, pp. 275–282.

Kutner, M. H., Nachtschiem, C. J., Wasserman, W. and Neter, J. (1996). App. lied
Linear Statistical Models, Richard D. Irwin, Inc., Homewood, IL.

Linhart, H. and Zucchini, W. (1986). Model Selection. John Wiley & Sons, New York.
Mackinlay, J. (1986). Automating the design of graphical presentations of relational

information. ACM Transactions on Graphics (TOG), 5, 2: 110–141.
Makinouchi, A. (1977). A consideration on normal form of not-necessarily-

normalized relation in the relational model. In Proceedings of the Third
International Conference on Very Large Data Bases.

Mendelssohn, R. C. (1974). The bureau of labor statistic’s table producing language
(TPL). In Proceedings of the 1974 annual conference, Bureau of Labor Statistics,
Washington, DC, pp. 116–122.

Mihalisin, T., Timlin, J. and Schwegler, J. (1991). Visualizing multivariate functions,
data, and distributions. IEEE Computer Graphics and Applications, 11, 13: 28–35.

Mosteller, F. and Parunak, A. (1985). Identifying extreme cells in a sizable
contingency table: Probabilistic and exploratory app. roaches. In Hoaglin,
D. C., Mosteller, F. and Tukey, J. W. (eds), Exploring Data Tables, Trends, and
Shapes, John Wiley, New York, pp. 189–224.

The Grammar of Graphics 377

Nelder, J. A. (1965). The analysis of randomised experiments with orthogonal
block structure (Parts I and II). Proceedings of the Royal Society of London,
Series A, 283: 147–178.

Norton, A., Rubin, M. and Wilkinson, L. (2001). Streaming graphics. Statistical
Computing and Graphics Newsletter, 12(1): 11–14.

Pedersen, D., Riis, K. and Pedersen, T. B. (2002). A powerful and SQL-compatible
data model and query language for OLAP. In Proceedings of the thirteenth
Australasian conference on Database technologies, Australian Computer
Society, Inc., Melbourne, Victoria, Australia, pp. 121–130.

Ramsay, J. and Silverman, B. (1997). Functional Data Analysis. Springer-Verlag,
New York.

Roth, S. F., Kolojejchick, J., Mattis, J., Chuah, M. C., Goldstein, J. and Juarez, O.
(1994). SAGE tools: a knowledge-based environment for designing and perus-
ing data visualizations. In Proceedings of the CHI ’94 conference companion
on Human factors in computing systems, ACM Press, Boston, Massachusetts,
United States, pp. 27–28.

Sarawagi, S., Agrawal, R. and Megiddo, N. (1998). Discovery-driven exploration
of OLAP data cubes. In Proceedings of the Sixth International Conference on
Extending Database Technology (EDBT).

Shoshani, A. (1997). OLAP and statistical databases: similarities and differences.
In Proceedings of the sixteenth ACM SIGACT-SIGMOD-SIGART symposium on
Principles of database systems, ACM Press, Tucson, Arizona, United States,
pp. 185–196.

Simkin, D. and Hastie, R. (1987). An information processing analysis of graph
perception. Journal of the American Statistical Association, 82: 454–465.

Stevens, S. S. (1946). On the theory of scales of measurement. Science, 103: 677–680.
Stolte, C., Tang, D. and Hanrahan, P. (2002). Polaris: A system for query, analysis,

and visualization of multidimensional relational databases. IEEE Transactions
on Visualization and Computer Graphics 8, 1: 52–65.

Taylor, B. N. (1997). The international system of units (SI). In Special Publication
330, NIST, Washington, DC, pp. 171–182.

Tukey, J. W. (1977). Exploratory Data Analysis. Addison-Wesley Publishing
Company, Reading, MA.

Wegman, E. J. (1985). Hyperdimensional data analysis using parallel coordinates.
Journal of the American Statistical Association, 85: 664–675.

Wilkinson, G. N. and Rogers, C. E. (1973). Symbolic description of factorial models
for analysis of variance. Journal of the Royal Statistical Society, Series C, 22:
392–399.

Wilkinson, L. (1996). A graph algebra. In Computing Science and Statistics:
Proceedings of the 28th Symposium on the Interface, pp. 341–351.

Wilkinson, L. (1999). The Grammar of Graphics. Springer-Verlag, New York.
Wilkinson, L., Rope, D., Carr, D. and Rubin, M. (2000). The language of graphics.

Journal of Computational and Graphical Statistics, 9: 530–543.
Wills, G. (2002). Using the java 2 platform for advanced information visualization.

Unpublished paper presented at the Annual Java One conference.

II.12Statistical User Interfaces
Sigbert Klinke

12.1 Introduction . 380

12.2 The Golden Rules and the ISO Norm 9241 . 381

12.3 Development of Statistical User Interfaces . 382

Graphical User Interfaces . 383
Toolbars. 385
Menus . 385
Forms and Dialog Boxes . 387
Windows . 387
Response Times . 390
Catching the User Attention . 390
Command Line Interfaces and Programming Languages . 392
Error Messages . 394
Help System . 398

12.4 Outlook. 398

380 Sigbert Klinke

Introduction12.1

A statistical user interface is an interface between a human user and a statistical
software package. Whenever we use a statistical software package we want to solve
a specific statistical problem. But very often at first it is necessary to learn specific
things about the software package.

Everyone of us knows about the “religious wars” concerning the question which
statistical software package|method is the best for a certain task; see Marron
(1996) and Cleveland and Loader (1996) and related internet discussions. Expe-
rienced statisticians use a bunch of different statistical software packages rather
than a single one; although all of the major companies (at least the marketing
departments) tell us that we only need their software package.

Why do these wars, not only concerning statistical software packages, evolve?
One of the reasons is that we need time to learn about the software package besides
learning the statistical methodology. And the more time we need to learn to use
the software package, the more we are defending “our” software package. But if we
need to spend a lot of time for learning to use a statistical software package, then
the question, whether this software package really has a good user interface, arises?

The basic problem is that the development of statistical software is started by
experts of statistical methodology. Since they have to have a deep inside in their
special fields, most of them have a very limited view to problems of other users. We
generally do not consider the sex of the users, the ethnic or cultural background,
the statistical knowledge or other factors when we create a user interface.

Thus the important questions we have to answer when we design a user interface
are: What does the user want to do with this software package? And how can he do
it effectively?

Fortunately, during years of development of software packages, we have collect-
ed a lot of experience about human behavior and specific differences because of sex,
ethnic or cultural background and so on. In the book of Shneiderman (1998) a lot
of rules have been collected which should help the software developers to avoid the
worst problems. But the best way for developing a user interface is a development
cycle of designing, testing, redesigning, testing, redesigning, … This will take a lot
of time and money, but redesigning the basic components of a software package at
late development will be much more expensive or even impossible.

In this chapter only a subset of all statistical software packages, namely Data-
Desk 6.0, GGobi 0.99, R 1.7.1, SPSS 11.0 (English version), SYSTAT 10, XploRe 4.6
and Mathematica 4.3 will be used for illustrating purposes (see also the section
“Web references”). It covers a wide range of different statistical software packages.

In all statistical software packages we can find errors in the user interface design.
User interface design is not a exact science as statistics, but it relies heavily on the
way how we perceive information and how we react to it. That includes that in
every design we will make errors before we can learn to avoid them in future.
Therefore a lot of theories are available, partially explanatory, partially predicting,
which should help us to design user interfaces.

Statistical User Interfaces 381

The Golden Rules and the ISO Norm 9241 12.2

Complex statistical tasks require more and more complex statistical programs. In
consequence more complex user interfaces are needed to be developed. Software
developers recognized that common rules exist in simplifing the use of software
systems. Shneiderman (1998) published a summary of these rules known as the
“golden rules” of user interface design:
1. Achieve consistency

The first rule is the one which is most often violated, especially when teams
of people work together. Users expect that in similar situations the software
behaves similarly and requires the same actions from the user.

2. Use shortcuts
Beginners need a comfortable clear structured way to accomplish their task,
but power users of a software package want to do their work as quickly as
possible.

3. Give informative feedback
Users need to have a feedback on their actions. The amount of the feedback
depends on the action and the user’s experience. Frequent actions require only
short answers whereas rare actions require more extended answers. Beginners
needmore feedbackwhereaspowerusersmay just needacknowlegdement that
the task is finished.

4. Design closed actions
Actions should have a clear structure with a start and a well-defined end. This
holds especially for dialogs and forms.

5. Offer error prevention and easy error handling
Software should not support erroneous input from the user and provide default
values. The user should be able to recover easily from errors. If a user can revert
his actions easily then this will increase his trustworthiness in the software
package.

6. Support user control
Users prefer to initiate actions in a software package. If a user believes that he
only reacts to the system he will experience a control loss.

7. Reduce memorization
Humans can only remember seven plus minus two information bits in their
short term memory Miller, 1956. Extensive memorization to handle a software
package should be avoided.

A formalization of the rules can be found, partially in very detailed instruction,
in the ISO (International Standardization Organization) norm 9241. The norm
itself, which distinguishes between requirements and recommendations, consists
of 17 parts:
1. General introduction
2. Guidance on task requirements
3. Visual display requirements

382 Sigbert Klinke

4. Keyboard requirements
5. Workstation layout and postural requirements
6. Environmental requirements
7. Display requirements with reflections
8. Requirements for displayed colors
9. Requirements for non-keyboard input devices
10. Dialogue principles
11. Usability statements
12. Presentation of information
13. User guidance
14. Menu dialogs
15. Command dialogs
16. Direct manipulation dialogs
17. Form-filling dialogs

Development of Statistical User Interfaces12.3

In the past we have seen the development of software according to new con-
cepts in computer science. From the end of the 1960s|beginning of the 1970s
when computers became available till now, we can distinguish several phases.
In the beginning we had non-interactive, batch oriented software packages, e.g.
SAS and SPSS. The idea of incremental programming and interaction lead to
systems like PRIM-9 (Tukey et al., 1973, 1974) or programming languages like
BASIC. Another paradigm was that the notation used should be compact, like
in languages as in APL or C. The availability of personal computers with win-
dow systems introduced graphical user interface (GUI) in contrast to command
line interfaces (CLI) also to statistical software packages. As mentioned in the
interview with J.E. Gentle (Härdle, 2004) statistical software packages nowadays
should come with both interfaces. During the last fifteen years we saw that team
programming, reusability of software, network|internet computing and access
to databases had their impact on programming languages (ADA, C++, Java,
SQL) as well as on statistical software packages like S|S-Plus, R, XploRe, Jasp,
etc.

Before we start to develop a statistical software package and a user interface
(GUI or CLI), we should think about the kind of problems a user may have:
1. Auser could formulatean inadequategoal, e.g. usingExcel for semi-parametric

modeling.
2. A user could not find the right tool|method, since the developer uses inap-

propriate labels, e.g. the command paf in XploRe should better be named
selectrows.

3. A user could not be able to find or execute a specific method, e.g. in a statistical
programming language with a lot of commands and macros, he could loose

Statistical User Interfaces 383

the overview. For example, languages like XploRe or R consist of a lot of
commands, macros and packages.

4. The feedback fromthe softwarepackage toauser actioncouldbe inappropriate
or misleading, e.g. the error message syntax error.

The first problem can not be solved with a better interface design, but so can
the latter three (Franzke, 1995). We have two ways to solve them: either we make
a better user interface or the user has to spend a lot of time for learning about the
interface. One of the most time consuming design error is a subtle inconsistency,
for example if the parameter orders for nearly identical actions, either in formulas
for GUIs or commands in CLIs, are different. The user will always loose time to
look up these subtle differences.

Obviously we can not develop one user interface for all users. The slogan Know
your user (Hansen, 1971) indetail (statistical backgroundknowledge, cultural back-
ground, etc.) is an important building block to the success of a (statistical) software
package. We can distinguish three types of users: novice users who need to exe-
cute a small set of simple exercises and need an informative feedback from the
software package. Periodic users who need support for forgotten execution se-
quences and need to know how to extend the current software package. But they
usually need only a short feedback to an executed task. A power user is mainly
interested in fast answers and needs only very limited feedback. Some statistical
software packages, XploRe and R offer even multiple GUIs for different types of
users.

However, basic guidelines for all user types are:
1. consistency in the appearance
2. effective information control by the user
3. minimal memorization and minimal data entry by the user
4. flexible adaption of the data display
5. compatibility between data entry and output

Graphical User Interfaces 12.3.1

For novice users it is clear that they prefer software with GUIs (see Temple, Barker
and Sloane, Inc., Temple, Barker and Sloane, Inc., 1990), but for power users this is
not quite clear, see Ulich et al. (1991). There are some general drawbacks of GUIs:
1. They need valuable screen space for menus, icons, windows etc.
2. There is no consistent set of menus, icons and windows. We have to relearn

them for each software package.

A look at Fig. 12.1 shows the entry screens of different statistical software pack-
ages. Here we find all elements forming a modern GUI: menu bar, toolbar(s) and
multiple windows. Note that a statistical user interface is more than a GUI: design
of the programming language, help system, basically every aspect in the interface
between a user and a statistical software package.

384 Sigbert Klinke

Figure 12.1. Entry screens of the statistical software packages, (a) XploRe, (b) SPSS, (c) DataDesk and

(d) SYSTAT

Some packages try to help a novice user with his next task. SPSS opens, after
starting the program, a dialogue box to load a dataset (see Fig. 12.1b). For R, which
can load all data objects from previous sessions automatically, such feature is not
necessary.

Statistical User Interfaces 385

Toolbars 12.3.2

Although toolbars play a more and more important role in software nowadays,
we immediately notice the sparse toolbars (see Fig. 12.2), due to the fact that we
have no common set of icons. For example GGobi and DataDesk do not offer any
toolbar, XploRe, SPSS and R offer only toolbars related to standard tasks, like open-
ing, saving and printing programs, images etc. and specialized software functions.
Among the considered programs only SYSTAT offers toolbars for standard statis-
tical graphics (histogram, pie chart, boxplot, scatterplot and scatterplot matrices)
and tasks (descriptive statistics, two-way-tables, two-sample t-test, ANOVA, cor-
relations, linear regression, clustering and non-linear modeling). But to learn the
meaning of the icons may take some time.

Figure 12.2. Menu bars and toolbars of the main windows of (a) GGobi, (b) SPSS, (c) DataDesk and

(d) SYSTAT

Menus 12.3.3

The first parts of a software package we use are the menu bar, the menus and the
menu items. Menus can give a clear structure to the methods|actions of a software
package. Liebelt et al. (1982) have found that a proper organization of the menu
reduces the error rate to about 50%. Most statistical software packages have a very
clear separation of the tasks in the menu bar (see Fig. 12.2).

It might be distracting if the position of the menu items changes (Mitchell
and Shneiderman, 1989). For unused menu items (not applicable tasks in the

386 Sigbert Klinke

current situation) it is preferable if they are grayed out and do not vanish from
the menu. Statistical software packages behave very differently. The menu bar in
XploRe and R changes heavily depending on the active window which can be very
disturbing to the user. It would have been better to attach an appropriate menu to
each window. Also in GGobi the menu changes depending on the active window:
compare Fig. 12.4a to Fig. 12.2a. Nevertheless this is less disturbing to the user
because additional menus appear only once in the menu bar and heavy changes
take place in the items of the Display menu which are invisible to the user.
The menu Display is empty after starting GGobi, but filled when a dataset is
loaded.

If we create a menu hierarchy we basically have two possibilities to organize
them: a small, deep hierarchy or a broad, flat hierarchy. Norman and Chin (1988)
found that broad, flat hierarchies lead to a better user performance. Most software
packages follow this concept intuitively, none of the software packages has a menu
depth larger than four.

Several orders of menu items within menus are possible: by time, by numbering,
by alphabet, by importance or by function. Card (1982) found that an alphabetical
orderofmenu items isbetter thana functional order.McDonald et al. (1983) showed
that the advantage of the alphabetical order is lost if each menu item consists of
a one line definition rather than of one meaningful known word. Nowadays all
statistical software packages prefer a functional order by separating the menu
items with horizontal lines into menu item groups. But within a menu item group
the order is unclear.

To achieve consistency within a menu system, the same terms should be used.
If we use one word items then they should be clearly separable, like “insert” and
“delete”. The exact difference between “change” and “correct” is unclear. Cyclic
menus, which means we can achieve the same task by different ways through the
menu hierarchy, should be avoided. Users become unsure where to find a specific
action; the same problem is well known from the World Wide Web.

The approach to put the most used menu items at the top and suppress the
others, may irritate the user. The irritation occurs not with the most used items,
but with the items which are used less often. Their position appears to be more or
less randomly. Thus, Sears and Shneiderman (1994) found that bringing only the
most used items to the top of the menu is an effective technique.

For power users shortcuts, e.g. through keyboard sequences or toolbars, are very
important. Often used menu items should get short shortcuts, e.g. Ctrl+O for open
a data set, whereas rarely used shortcuts can have longer keyboard sequences. Most
statistical software packages offer only the standard shortcuts coming from the
Windows operating system; only GGobi offers shortcuts for different view modes.
Unfortunately, we have no common sets of shortcuts for a (statistical) task. We
have not even a common naming convention for menus, e.g. the statistical tasks
are in the Calcmenu in DataDesk, in the Statisticsmenu in SPSS and in the
Analyze menu in SYSTAT.

For an effective menu system design it is helpful to log the user choices and to
analyze them for improvements.

Statistical User Interfaces 387

Forms and Dialog Boxes 12.3.4

The use of menus leads to another form of interaction with the user: forms and
dialog boxes. Basically they should

have a meaningful title
use a consistent and for the user well known terminology
group information in a consistent and meaningful way
minimize mouse movement and jump from one item to another item in a useful
way
support error prevention
allow for fast error correction
provide default values, if possible
indicate optional values clearly
inform when the dialog or form has enough information.

Here, a very good example is SPSS. See as example in Fig. 12.3 four out of six steps
for reading ASCII data into SPSS. The six dialog boxes are grouped in information
about:
1. reuse of old format
2. information about the arrangement of the variables
3. information about the arrangement of the cases
4. separation between single data
5. variable formats and names
6. saving the defined format.

The forms always provide default values, show the consequence of changing
a value in the bottom and allow easy navigation between forms forward and
backward. We can cancel the whole operation or finish it at any time. The last form
gives a clear signal when we are finished. The SPSS developers have designed all
these forms and dialogs very carefully.

However, we have to keep in mind that pure statistical programming languages,
like R or XploRe, will have to incorporate forms and dialog boxes in their pro-
gramming language. This turns out to be a difficult task.

Windows 12.3.5

Usually statistical software packages use different windows to visualize data and
output. Figure 12.4 shows a scatterplot of the variables “percentage of lower status
people” and “median houseprice” of the Boston Housing data (Harrison and
Rubinfeld, 1978). We easily find that the software packages have different methods
to handle output. SPSS and SYSTAT have a special independent output window
for text and graphic output. DataDesk, R (by default) and XploRe use the multiple
document interface (MDI) coming with the Windows operating system. Actually R
allows to switch between different types of handling windows (MDI|SDI). GGobi
creates a complete set of independent windows.

388 Sigbert Klinke

Figure 12.3. Four out of six steps of reading ASCII data in SPSS. They provide a very clear, intuitive

interface even for unexperienced users for reading data

In GGobi and DataDesk the data in the windows is linked (see Fig. 12.5a). Thus
interactive brushing is very easy.

A problem of some statistical software packages is that the user can easily create
a lot of windows, see in Fig. 12.4 and even worse in Fig. 12.5 for DataDesk. But a large
number of windows can easily irritate the user. Statistical software packages have
tried to overcome this problem with different approaches: having separate graphic
types, for example the scatterplotmatrix in SPSS or trellis displays in R; XploRe

Statistical User Interfaces 389

Figure 12.4. Scatterplot of the variables “percentage of lower status people” and “median houseprice”

of the Boston Housing data in (a) R, (b) GGobi, (c) DataDesk and (d) SYSTAT

has a datatype for a graphical display which consists of single plots. The idea is
always the same: statistical information that belongs together should be in one
window. Another strategy is a virtual desktops (see the software package VanGogh
in Keller, 2003) as we find them under Linux GUIs.

390 Sigbert Klinke

Power users prefer full-screen views (see Bury et al., 1985). Note that in Fig. 12.5
we tried to maximize the size of the graphics in R, SPSS and XploRe. SPSS and
SYSTATfollowpartially suchastrategywithseparatingclearlybetweenspreadsheet
presentation of data and variables and output results. But Staggers (1993) has
shown that users work faster with compact information on one screen rather than
to scroll.

The grouping of information in a window plays an important role in GUI design.
Fitts (1954) developed an effective forecasting model for the time T for a movement
over a distance D to an object with width W

T = C1 + C2 log 2(2D|W)

with device dependent constants C1 and C2.
Maybe approaches like “The CAVE” (Cruz-Neira et al., 1993), a virtual reality

environment, will lead to more screen space.
The question of the contents of the windows is related to showing windows. Tufte

(1983, 1990) has shown proper and improper use of statistical graphics (see also
Chap. II.11). Modern statistical techniques, like data mining, but also exploratory
data analysis, has lead to principles of analysis like get an overview, zoom, select
and look to details.

Response Times12.3.6

The productivity of a user depends heavily on the response time of a software
package to a user action. To achieve a good productivity we have to balance
between the speed of working and the error rate. Fast response times (< 1 sec)
lead to faster user work. Fast working increases the error rate because the user
does not think much about the current action since he is concentrated on the
responses from the software package. Slow response times (> 15 sec) lead to
slower user work. Slow working decreases the error rate because the user has
time to think about the next action. But if he makes a mistake he will loose
time.

The right amount of the response time depends also on user experiences, e.g.
if he sees that one software package reads a large dataset in 30 seconds where-
as another software package needs 3 minutes for the same dataset then he will
assume something has gone wrong. A power user is generally more impatient
than a novice user. A partial solution to the problem of slow response times
is a progress bar which shows how much time it will take till the end of the
action.

Generally a user expects that simple actions, e.g. reading a small dataset, are
done fast and complex actions, e.g. building a model from a large dataset, can take
much longer time.The studyofMartinandCorl (1986) found that the response time
for a complex statistical task does not matter much for productivity, whereas the
response time for a simple task (entering data) is linearly related to productivity.
A variation in response times (±50%) does not matter much. In a set of mixed

Statistical User Interfaces 391

Figure 12.5. (a) Linked scatterplot, histograms and barcharts in DataDesk. (b) Scatterplotmatrix of

three variables “average number of rooms”, “percentage of lower status people” and “median

houseprice” in SPSS. (c) Trellis display of the variables “percentage of lower status people” and

“median houseprice” conditioned on the variable “index of accessibility to radial highways” in

XploRe. (d) Trellis display of the same variables in R

392 Sigbert Klinke

tasks the user balances out: he thinks about the task when the response time is
slow and works fast if the response time is fast.

Catching the User Attention12.3.7

In Fig. 12.4d we see that in SYSTAT the data editor stays on top, although we
just created a scatterplot in the underlying output window. But the user attention
is still directed to the data editor. Similar problems can be observed in other
software.

Another point in GUI design we should consider is the way how we catch the
attention of the user. In statistical graphics Tufte (1983, 1990) has shown how the
user’s attention can be redirected from the data. In the same manner a too colorful
GUI may distract the user. Wickens (1992) analyzed how to catch the users attention
and gave some hints:

use 3 different fonts with 4 different sizes in 2 intensities
use up to 4 standard colors, more colors have to be used with care
use soft sounds when everything is okay, use hard sounds for warnings and
errors.

Nowadays operating systems offer a large variety of true-type fonts, nevertheless
most people use only a few fonts in their documents.

Especially the use of colors may create special problems. First, different user may
combine different reactions to the same color (cultural background); second, it is
known that in Europe and North America 8% of the population have problems in
recognizing a color correctly. The largest problem here is the red-green blindness,
both colors appear grey to such people.

The use of sound should only be an additional option. During teaching or when
working in PC-Pools it will distract other users.

Command Line Interfaces and Programming Languages12.3.8

In the beginning of the computer age all programs only had CLIs. One of the
largest statistical software packages which has survived from these times, SPSS,
still has a CLI. But it is hidden by a GUI and we can reach it via SPSS syn-
tax editor. Statistical programming languages, like R and XploRe, are more like
CLIs embedded in a GUI. Only statistical software packages like GGobi and
DataDesk are real GUI software, but even DataDesk has a (visual) programming
language.

In the recent past we observed that statistical packages like R or XploRe have
a tendency to be split up between a GUI and a CLI. In fact on the R-Project page
we find more than one GUI for R.

CLI provides some advantages compared to a pure GUI. Some manipulations,
for example arithmetic transformation of data, can be done much faster with the
keyboard than with the mouse.

Statistical User Interfaces 393

With a programming language we can achieve a precise and compact way to
manipulate and analyze data. We should be able to easily learn, read and write the
programming language. Some problems that can arise are

the design has too many objects and actions. A hierarchical approach like
organizing objects and actions in libraries may help here. However, R and
XploRe suffer both from an overwhelming number of packages, commands
and programs.
sometimes the names chosen for an action are to close to computer science and
not to statistics. Do we load, read, open or get a dataset (see also Table 12.1)?
inconsistent order of parameters for operations.

Modern statistical programming languages implement matrix algebra since we
can easily transfer expressions, e.g. for computing the coefficients of a multiple
linear regression, like (X�X)−1(X�Y) into a program (in XploRe: inv(x’*x)*
(x’*y)). This allows for fast error correction and fast learning.

Table 12.1. Reading ASCII file with the Boston Housing data

Software Reading ASCII data

R x <- read.table("c:/data/bostonh.dat", header=FALSE)

SPSS GET DATA /TYPE = TXT

/FILE = ’c:databostonh.dat’

/DELCASE = LINE

/DELIMITERS = " "

/ARRANGEMENT = DELIMITED

/FIRSTCASE = 1

/IMPORTCASE = ALL

/VARIABLES = CRIM F7.2 ... MEDV F5.2 .

SYSTAT IMPORT "c:/data/bostonh.dat.dat" / TYPE=ASCII

XploRe x = read ("bostonh")

Caroll (1982) found that hierarchical (verb-object-qualifier) and symmetric
command sequences, like in Table 12.3 for linear regression, lead to the best user
performance and can be easily learned and remembered. The reality in software
packages is shown in the Table 12.2.

Again power users prefer rather short names whereas novice users can find
actions with long names more informative. It is the best to have both available,
like DoLinearRegression and DoLinReg or even dlr. Ehrenreich and Por-
cu (1982) suggest rules to make (automatic) abbreviations and Schneider (1984)
proposes possible abbreviation methods:

use a simple rule to create abbreviations
truncation (most preferred by users)
deletion of vocals (DLnrRgrssn)

394 Sigbert Klinke

Table 12.2. Simple linear regression with intercept between the variable “percentage of lower status

people” (lstat) and the dependent variable “median houseprice” (medv) of the Boston Housing data

in different statistical programming languages

Software Linear regression commands

R res <- lm (medv ∼ lstat)

SPSS REGRESSION

/MISSING LISTWISE

/STATISTICS COEFF OUTS R ANOVA

/CRITERIA=PIN(.05) POUT(.10)

/NOORIGIN

/DEPENDENT lstat

/METHOD=ENTER medv .

SYSTAT REGRESS

USE "c:/data/bostonh.dat"

MODEL MEDV = CONSTANT + LSTAT

ESTIMATE

XploRe res = linreg (lstat, medv)

Table 12.3. Example of a hierarchical and symmetric command sequences in the context of linear

regression

do linear regression

do linear regression stepwise

do linear regression forward

do linear regression backward

plot linear regression line

plot linear regression residuals

use last and|or first letter
standard abbreviation, e.g. QTY for Quantity
phonetical abbreviation, e.g. XQT for Execute

use a (simple) second rule for conflicts
apply the second rule very rarely
abbreviations with result from the second rule should have a special symbol
included
user should know both rules
abbreviations should have a fixed length
the software package should always use the long name, e.g. in error messages

Modern editors, e.g. the Visual Basic editor in Microsoft Office, support the
writing of programs with semi-automatic command completion.

Statistical User Interfaces 395

Table 12.4. Error messages in different software packages

Software Example Error message

XploRe proc()=test(x) Syntax Error
if(x=1) in test line: 2
"true" Parse Error

else on position 5 in line 2
"false"

endif

endp

test(0)

R if (x=1) "true" else "false" Error: syntax error

SPSS as in Table 12.2, just /DEPENDENT changed to /INDEPENDENT

Warning

Unrecognized text appears on the REGRESSION command. The only
recognized subcommands are: Global options: DESCRIPTIVES MATRIX
MISSING WIDTH; Case selection|weight: REGWGT SELECT;
Variable list: VARIABLES; Equation options: CRITERIA NOORIGIN
ORIGIN STATISTICS; Dependent variable(s): DEPENDENT;
Equ. methods: METHOD BACKWARD ENTER FORWARD REMOVE
STEPWISE TEST; Residuals: RESIDUAL CASEWISE PARTIALPLOT
SAVE SCATTERPLOT OUTFILE. Text found: INDEPENDENT
This command is not executed
WARNING REGRESSION syntax scan continues. Further
diagnostics from this command may be misleading – interpret
with care Misplaced REGRESSION METHOD subcommand – The
METHOD subcommand must follow a DEPENDENT subcommand
or another METHOD subcommand. It cannot follow any other
subcommand. Check for a missing DEPENDENT subcommand.
Text found: METHOD

A future dream is that (statistical) software understands natural language. What
hasproven tobevaluable to theuser is thegenerationof a report of results innatural
language.

Error Messages 12.3.9

The most crucial response for a user is an error or warning message from the
system. Error messages can be not very helpful, e.g. in XploRe or R syntax
error in Table 12.4. A better solution would be to tell the user what the problem
exactly was (use x==1 instead x=1). But SPSS tells the user too much and the
problem disappears behind the text. However, the ability of SPSS for abbreviating

396 Sigbert Klinke

Figure 12.6. Entry screens of the help systems in (a) XploRe, (b) R, (c) DataDesk and (d) Mathematica

is impressive. From the linear regression example in Table 12.2 the parameter
/NOORIGIN can be shortened to /NOO. Further shortening to /NO produces an
error message.

Statistical User Interfaces 397

Figure 12.7. Help system entry for statistical distributions of statistical software packages, (a) XploRe,

(b) R, (c) DataDesk and (d) Mathematica

The language in an error message and warning should be positive, constructive,
meaningful and precise. Shneiderman (1982) found in a study that the error rate
could be reduced by 28% with well constructed error messages.

398 Sigbert Klinke

Again it is a good idea to log the error message to see which ones are needed to
be improved and which parts of the software package has to be improved.

Help System12.3.10

Nowadays software is always accompanied with online help systems and tuto-
rials, mostly HTML-based. A help system should give the user quick access to
the information he needs. Depending on the type of users, they have different
approaches to use a help system. Reference or alphabetical guides are useful for
power users, but novice users learn most from a lot of examples. Consequently the
help system of modern statistical software is mostly composed of several parts:
reference|alphabetical guide, introductory tutorials, indices and a search engine.

In Fig. 12.6 we see the entry page of help systems. The variation in the software
packages is large, from very sparse help systems upto detailed explanations how
to use the help system.

Finding information in the help system is a crucial task. Thus good navigation,
indices and search are essential for any help system. Help systems based on the
windows help system, e.g. used by DataDesk, bring already the capabilities for an
index and searching. Creating a good index, for a book or a help system is not easy.
Especially since the developers of statistical algorithms mostly do not care much
about the documentation. The quality of the help system depends heavily on the
contributors to it. Maybe automated ways of analyzing tutorials and descriptions
to create a hierarchy and an index can improve the help system quality.

One of useful help systems that we have seen is the help system of Mathematica
which is an inherent part of it. At the top of Fig. 12.7d we see the detailed navigation,
we know always where we are. Mathematica separates the information well: red
background for Mathematica commands and programs and their descriptions,
white background for explanations.

Generally, help systems and tutorials should have a simple language, short
sentences (Roemer and Chapanis, 1982) and a consistent terminology. This has
been proven more helpful to the users and most help systems follow that sugges-
tion. It is even more important since most help systems and tutorials are written
in English and the majority of the statisticians do not speak English as native
language.

Outlook12.4

There is a wishlist for the statistical user interface of a statistical software package:
well-known icons for statistical tasks for useful toolbars
a consistent and unified terminology for menu bars and items
well designed dialog boxes and forms
good editors for statistical programming languages
a well constructed programming language

Statistical User Interfaces 399

a well designed HTML-based help system with clear structures
a unique data format for exchanging data with other (statistical) software
packages.

In the past we have observed that statistical software packages got various GUIs.
Even SPSS offers a web-based interface now, like the R Web server or the XploRe
Java client version. Currently we observe that statistical software packages are
embedded via direct calls (Excel: XploRe with MD*ReX, R in the RDCOM server
or DataDesk |XL) or via CORBA (R: Omega Hat project) in other software. In the
future statistical software packages will use the GUI of the “host” software, but the
problems we will encounter are the same.

Since the user interface design depends heavily on our perception and behavior,
there is still a lot of experimental research necessary tofindanswers to theproblems
that occur.

Web References
DataDesk http:||www.datadesk.com

GGobi http:||www.ggobi.org

Jasp http:||jasp.ism.ac.jp

Mathematica http:||www.wolfram.com

PRIM-9 video http:||cm.bell-labs.com|cm|cms|departments|sia|
video-library|prim9.html

R http:||www.r-project.org

– GUIs http:||www.sciviews.org|_rgui|
– Omega hat|RDCOM http:||www.omegahat.org

– Web http:||www.math.montana.edu|Rweb

S|S-Plus http:||www.insightful.com

SAS http:||www.sas.com

SPSS http:||www.spss.com

SYSTAT http:||www.systat.com

VanGogh http:||stats.math.uni-augsburg.de|VanGogh|
XploRe http:||www.xplore-stat.de

– Java client http:||www.xplore-stat.de|java|java.html

– MD*ReX http:||www.md-rex.com

References
Bury, K., Davies, S., and Darnell, M. (1985). Window management: A review of

issues and some results from user testing. Technical report, IBM Human factors
Center Report HFC-53, San Jose, CA.

400 Sigbert Klinke

Card, S. (1982). User perceptual mechanism in the search of computer command
menus. In Proc. Human Factors in Computer Systems, pages 190–196, Washing-
ton D.C.

Caroll, J. (1982). Learning, using and designing command paradigmas. Human
Learning, 1(1):31–62.

Cleveland, W. and Loader, C. (1996). Smoothing by local regression: Principles
and methods. In Härdle, W. and Schimek, M., editors, Statistical Theory and
Computational Aspects of Smoothing, pages 10–49. Physika Verlag, Heidelberg,
Germany.

Cruz-Neira, C., Sandin, D., and DeFanti, T. (1993). Surround-screen projection-
based virtual reality: the design and implementation of the cave. In Proc SIG-
GRAPH’93 Conference, pages 135–142, New York. ACM.

Ehrenreich, S. and Porcu, T. (1982). Abbreviations for automated systems: teaching
operators and rules. In Badre, A. and Shneiderman, B., editors, Directions in
Human-Computer Interaction, pages 111–136. Ablex, Norwood, NJ.

Fitts, P. (1954). The information capacity of the human motor system in controlling
amplitude of movement. Journal of experimental psychology, 47:381–391.

Franzke, M. (1995). Turning research into practice: Characteristcs of display-
based interaction. In Proc. CHI’95 Conference: Human Factors in Computing
Systems, pages 421–428. ACM.

Hansen, W. (1971). User engineering principles for interactive systems. In Proc.
Fall Joint Computer Conference, volume 39, pages 523–532, Montvale, NJ. AFIPS
Press.

Härdle, W. (2004). Interview with James E. Gentle. Computational Statistics, 19(1):
1–4. Physika Verlag, Heidelberg, Germany.

Harrison, D. and Rubinfeld, D.L. (1978). Hedonic prices and the demand for clean
air. J. Environ. Economics and Management, 5: 81–102.

Keller, R. (2003). Visualizing augsburg traffic data with vangogh. Presentation at
‘Workshop on Statistical Inference, Visualizing for Graphs’ at Stanford Univer-
sity, CA., University of Augsburg, Dept. of Computer Oriented Statistics and
Data Analysis.

Liebelt, L.-S., McDonald, J., Stone, J., and Karat, J. (1982). The effect of organization
on learning menu access. In Proc. Human Factors Society, Twenty-Sixth Annual
Meeting, pages 546–550, CA.

Marron, J. (1996). A personal view of smoothing and statistics. In Härdle, W. and
Schimek, M., editors, Statistical Theory and Computational Aspects of Smooth-
ing, pages 1–9. Physika Verlag, Heidelberg, Germany.

Martin, G. and Corl, K. (1986). System response time effects on user productivity.
Behaviour and Information technology, 5(1):3–13.

McDonald, J., Stone, J., and Liebelt, L. (1983). Searching for items in menus: the
effects of organization and type of target. In Proc. Human Factors Society,
Twenty-Seventh Annual Meeting, pages 834–837, Santa Monica, CA.

Miller, G. (1956). The magical number seven, plus or minus two: some limits on
our capacity for processing information. Psychologocial science, 63:81–97.

Statistical User Interfaces 401

Mitchell, J. andShneiderman,B. (1989).Dynamicvs. staticmenus:Anexperimental
comparison. ACM SIGCHI Bulletin, 20(4):33–36.

Norman, K. and Chin, J. (1988). The effect of tree structure on search in a hierarchi-
calmenuselectionsystem.Behaviour and Information Technology, 8(2):25–134.

Roemer, J. and Chapanis, A. (1982). Learning performance and attitudes as a func-
tion of the reading grade level of a computer-presented tutorial. In Proc. Confer-
ence on Human Factors in Computer Systems, pages 239–244, Washington D.C.
ACM.

Schneider, M. (1984). Ergonomic considerations in the design of text editors. In
Vassiliou, Y., editor, Human Factors and Interactive Computer Systems, pages
141–161. Ablex, Norword, NJ.

Sears, A. and Shneiderman, B. (1994). Split menus: effectively using selection fre-
quency organize menus. ACM Transaction on Computer-Human Interaction,
1(1):27–51.

Shneiderman, B. (1982). System message design: Guidelines and experimental re-
sults. InBadre,A.andShneiderman,B., editors,Directions in Human|Computer
Interactions, pages 55–78. Ablex, Norword, NJ.

Shneiderman, B. (1998). Designing the User Interface. Addison Wesley Longman,
Inc.

Staggers, N. (1993). Impact of screen density on clinical nurses’ computer task
performance and subjective screen statisfaction. International journal of Man-
Machine Studies, 39(5):775–792.

Temple, Barker and Sloane, Inc. (1990). The benefits of the graphical user interface.
Multimedia Review, pages 10–17.

Tufte, E. (1983). The Visual Display of Quantitative Information. Graphics Press,
Cheshire, CT.

Tufte, E. (1990). Envisioning Information. Graphics Press, Cheshire, CT.
Tukey, J., Friedman, J., and Fishkeller, M. (1973). Prim–9: An interactive multidi-

mensional data display and analysis system. Video. ASA Statistical Graphics
Video Lending Library.

Tukey, J., Friedman, J., and Fishkeller, M. (1974). Prim–9: An interactive multidi-
mensional data display and analysis system. Technical Report SLAC-PUB-1408,
Stanford Linear Accelerator Center, Stanford, CA.

Ulich, E., Rautenberg, M., Moll, T., Greutmann, T., and Strohm, O. (1991). Task ori-
entation and user-oriented dialogue design. International journal of human-
computer interaction, 3(2):117–144.

Wickens, C. (1992). Engineering psychology and human performance. Harper-
collins publisher.

II.13Object Oriented Computing
Miroslav Virius

13.1 Introduction . 404

First Approach to Objects . 404
Note on Unified Modelling Language. 405

13.2 Objects and Encapsulation . 405

Benefits of Encapsulation . 405
Objects and Messages . 406
Class . 406
Object Composition . 409
Access Control. 410

13.3 Short Introduction to the UML . 410

13.4 Inheritance . 411

Base Class and Derived Class . 412
Generalization and Specialization . 412
Using Base Class as Common Interface . 414
Inheritance, or Composition? . 417
Multiple Inheritance . 418

13.5 Polymorphism. 418

Early and Late Binding . 419
Implementation of the Late Binding. 419
Abstract Class. 420
Interfaces. 422
Interfaces in C++ . 422

13.6 More about Inheritance . 425

Substitution Principle . 425
Substitution Principle Revised . 427

Inheritance and Encapsulation . 428

13.7 Structure of the Object Oriented Program .. 431

13.8 Conclusion. 433

Object Oriented Computing 405

In this contribution, the basic overview of the Object Oriented Programming
and its usage in computation is given. Concepts of class, encapsulation, inher-
itance, and polymorphism are introduced. Some additional concepts like inter-
face and Design Patterns are briefly discussed. Schematic examples in C++ are
given.

Introduction 13.1

Object Oriented Programming (OOP) is a preferred methodology in contemporary
software development. OOP may be considered as a continuation of the well known
ideas of Structured Programming and Modular Programming. If properly used, it
leads to well structured code which is easy to debug and easy to maintain.

First Approach to Objects 13.1.1

Every computer program may be considered as a software model of a real problem.
It follows, that two basic domains should be taken into account during the analysis
of the problem and design of the program: the problem domain, which is part of
the real world, and the model domain, which is a mapping of the problem domain
to the computer program.

The problem domain consists of a set of interacting objects. Selected objects
of the problem domain must of course correspond to data structures in model
domain and the interactions of objects in the problem domain must correspond
to the operations with these data structures. That is, the interactions of objects in
the problem domain will be represented by procedures and functions dealing with
these data structures.

1Example 1 Consider modelling the interactions of elementary particles in a detec-
tor using the Monte Carlo method. (Design and analysis of Monte Carlo experi-
ments is discussed in depth in Chap. II.3). The problem domain of this experiment
simulation consists of the detector, the particle source, the air surrounding the ex-
perimental apparatus, of many elementary particles and, of course, of a statistical
file containing the simulation results. It follows, that the model of the experiment
should contain a suitable representation of the detector, a suitable representation
of the particle source, statistical file, etc.

The representation of the elementary particle source may consist of the data
representing its coordinates in a given coordinate system, of a description of the
spectrum of the source (i.e. of probability distributions describing the emission
of various types of particles, their direction, energy and other characteristics of
emitted particles) etc.

406 Miroslav Virius

Note on Unified Modelling Language13.1.2

To formalize object-oriented analysis and design, the Unified Modelling Language
(UML) is widely used. UML consists of a set of diagrams that describe various
aspects of the problem solved. We use some UML diagrams in this chapter. A short
introduction to the UML is given in Sect. 13.3; full description of the UML may be
found in Booch (1999).

Objects and Encapsulation13.2

In the model domain, the term object denotes the data representation of the objects
of the problem domain, together with the operations defined on this data.

This means that we define a data structure together with the operations with
it. These operations are usually called methods. The object’s data are denoted as
attributes; the data and methods together are denoted as members of the object.

A basic rule of OOP requires that the methods should be used for all the
manipulations with object’s data. Methods of the object are allowed to access
the data; no other access is permitted. (We shall see that under some circum-
stances it is acceptable to violate this rule). This principle is called encapsulation
and is sometimes presented by the “wall of code around each piece of data”
metaphor.

Note: Methods that return the value of the attribute (data member)X usually have
the identifier GetX(); methods that set the value of the attribute X usually have
the identifierSetX(). In some programming environments, these identifiers may
be required. These methods are called getters and setters, respectively.

Benefits of Encapsulation13.2.1

So far, there is nothing new in encapsulation: This is implementation hiding, well
known from modular programming. The object may be considered as a module
and the set of the methods as its interface.

The main benefit of encapsulation is that the programmer may change the
implementation of the object without affecting the whole program, if he or she
preserves the interface of the object. Any change of the data representation will
affect only the implementation of the methods.

2 Example 2 Let’s continue with the Monte Carlo simulation of the experiment with
elementary particles. The object representing the detector will, of course, contain
the coordinates of some important points of the detector. The first idea could be
to use Cartesian coordinates; in later stage of the program development, it will be
found that the spherical coordinates will suit better – e.g., because of the detector
shape and program performance.

Object Oriented Computing 407

If it were allowed to manipulate the detector data directly by any part of the
program, all the parts of the program that use this data should be changed. But
if the encapsulation is properly applied and the data is manipulated only by the
methods of the detector, all that has to be changed is the implementation of some
detector methods.

Objects and Messages 13.2.2

OOP program is considered as the program consisting only of objects that collab-
orate by means of the messages. This may seem a little strange, but in this con-
text, to send a message to an object means to call a method of this object. A mes-
sage means a request for an operation on the object’s data, i.e., a request to perform
a method.

The object may receive only those messages for which it has corresponding
methods. Sending a message that the object does not recognize causes an error.
It depends on the programming language whether this error is detected in the
compile time or in the run time. (In C++, it is detected in the compile time).

Class 13.2.3

Objects of problem domain may often be grouped into classes; one class contains
objects that differ only in the values of some properties. The same holds for the
objects in the model domain. The classes of objects in the problem domain are rep-
resented by user-defined data types in OOP programs called object types or classes.

The term instance is used to denote a variable, constant, or parameter of an
object type. It is equivalent to the term object.

Class Members
Up to now, we have considered the class as a data type only; it serves as a template
for the creation of instances. But in OOP, the class may have its own data and its
own methods and may receive messages.

Data members that are part of the whole class (not of particular instances) are
called class data members or class attributes and the methods that correspond to
messages sent to the whole class are called class methods. Non-class members,
attributes, as well as methods are, if necessary, denoted instance members.

Class data members contain data shared among all the instances of the class;
class methods operate on class attributes. (From the non-OOP point of view, class
data members are global variables hidden in the class, and class methods are global
functions or procedures hidden in the class.)

Note: Class data members are often called static data members and class methods
are called static methods in C++, Java, and some other programming languages,
because they are declared using the static keyword in these languages.

408 Miroslav Virius

Note: The class in C++, Java and many other OOP languages may contain defini-
tions of other types, including other classes, as class members. Even though the so
called nested classes are sometimes very useful, we will not discuss them in this
article.

Note: The class in the OOP may be considered as an instance of another class; this
leads to the concept of metaclass. Metaclass is a class that has only one instance –
a class. You can find metaclasses in pure OOP languages like Smalltalk. We will not
discuss the concept of metaclass here.

3 Example 3 We may suppose – at some level of abstraction – that the representation
of all the particles in the Monte Carlo simulation of the experiment with the
particles is essentially the same. Thus, every individual particle belongs to the
class of particles. It follows that the model will contain the Particle class, and
the program will contain the definition of the corresponding data type (and of
course some instances of this type).

Because every particle has its own mass and velocity, the Particle class
will contain the declaration of four data items representing particle mass and
three components of the particle velocity vector. The Particle class should also
contain methods to set and to get the values of these data items. (Later on, we will
see that even other methods are necessary – e.g., a method for the interaction with
the detector.)

It is also necessary to know the total number of generated particles and the
actual number of existing particles in the simulation program. These numbers of
the particles do not describe an individual particle and so they cannot be data
members of any Particle instance; it is the task of the whole Particle class
to hold these data. So they will be stored in the class attributes (because we use
the C++, we may say in static attributes) of type int, and they will be accessed by
class methods (static methods).

Definition of the Particle class in C++ will be as follows:

// Particle class definition in C++, first approach
class Particle
{
public:

// Constructor
Particle(double _mass, double vX,

double vY, double vZ);
// Instance methods
~Particle() { --actual; } // Destructor
double GetMass() { return mass; }
void SetMass(double m){ mass = m; }
void SetVelocity(double vX, double vY, double vZ);
double GetVelocityX() { return velocityX; }
// Performs the interaction with the detector

Object Oriented Computing 409

virtual void Interact(Detector *aDetector);
// ... and other methods
// Class methods
static int GetActual() { return actual; }
static int GetTotal() {}

private:
// Instance data members
double mass;
double velocityX, velocityY, velocityZ;
// Class data members
static int actual;
static int total;

}; // End of the class declaration

// Definition of the static attributes
int Particle::actual = 0;
int Particle::total = 0;

// Definition of the constructor
Particle::Particle(double _mass, double vX,

double vY, double vZ)
: mass(_mass), velocityX(vX), velocityY(vY),

velocityZ(vZ)
{
++actual; ++total;
}
// And other method definitions

We will not discuss the syntactic rules of the class declaration in the C++ here –
this can be found in any textbook of this programming language, e.g., in Stroustrup
(1998). We only note a few points.

This class contains the instance attributes mass, velocityX, velocityY,
and velocityZ, and the class attributes actual and total (note the static
keyword in their declarations). It follows that every instance of the Particle
class will have its own data members mass, velocityX, etc. On the other hand,
no instance will contain the data members total or actual. These are global
variables shared by all instances and they exist even before the first instance of the
Particle class is created and after the last one is destroyed.

The Particle() method is a special method called constructor and it serves
the construction of new instances. It is invoked as a response to the message
requesting the creation of a new instance of the class. (Even though it is a class
method, its declaration in C++ does not contain the static keyword.) Its task is
to initialize instance attributes. In our example, it also actualizes the values of the
two class attributes.

410 Miroslav Virius

The ~Particle() method is another special method called destructor that
prepares the instance for decay. In our example, it decreases the number of ex-
isting particles, because the instance for which the destructor is called will be
immediately destroyed. (This is – unlike the constructor – the instance method.
Note, that in garbage collected OOP languages, e.g., in Java, destructors are not
used.)

Object Composition13.2.4

One object in a program may exploit the services of another object. It may call
the methods of any other independent object, or it may contain another object
as a data member. The second approach is usually called object composition, even
though it is typically implemented as composition of the classes.

Note: An object may not contain another object of the same class, of any class
containing an object of the same class or of any derived class as data member. It
may, of course, contain the pointers or the references to objects of any of these
classes.

4 Example 4 Consider the particle source in the Monte Carlo simulation. It will
be an instance of the Source class. For the simulation of the random processes
of the emission of a particle, we will need a random number generator. The
random number generator will be implemented in the program as an instance of
the Generator class and will be based on the theory discussed in Chap. II.2.
(The Generator class is an example of a class that has been found during the
design of the Source class. It does not appear in the original formulation of the
problem.)

This means that the Source class will contain an instance of the Generator
class or a pointer to an instance of that class:

class Source
{
public:

Source();
Particle* Generate(); // Returns pointer to new

particle
// ... and other methods

private:
Generator *gen;
// ... and other private members

};

Object Oriented Computing 411

Access Control 13.2.5

Note the private and public access specifiers in the class declarations above.
The public specifier declares that all the subsequent members of the class are
public, i.e., they are accessible from any part of the program. The public members
of the class constitute the class interface. The class interface usually contains only
some methods and constant attributes. (Constant attributes may be accessed di-
rectly. This does not violate the encapsulation, because constant attributes cannot
be changed.)

The private specifier means that the following members of the class are
private, i.e., accessible only from the methods of the class. In other words, private
members are implementation details of the class that can not be used by other
parts of the program. Changes of private parts of the class do not change the class
interface and do not affect other parts of the program.

Later on, we will see the third access specifier,protected. Protected members
are accessible only from the methods of this class and from all the derived classes.
So, they constitute the class interface for derivation, that may be wider than the
interface of the class for common use. We will discuss the inheritance in Sect. 13.4.

The access specifiers help to implement the encapsulation. Note that in C++, as
well as in many other object oriented languages, the subject of access control is the
class, not the individual objects (instances). So any method called for an instance
of the given class may use all private members of another instance of the same
class.

Short Introduction to the UML 13.3

In Sect. 13.1.2 we have mentioned the UML. This is a modelling language based on
a set of diagrams describing various aspects of the problem solved:

The class diagram describes the classes used in the problem and their mutual
dependencies.
The object diagram describes all objects (instances) in the problem and their
mutual dependencies.
The activity diagram describes activities of the objects.
The state diagram describes the states of objects and their possible changes
and transitions.
etc.

We will use only class diagrams in this article.
The class in the class diagram is presented as a rectangle containing the name

of the class. It usually contains also the names of the methods and the names of the
attributes; both may be prefixed by symbols representing their access specifica-
tion (the + sign for public members, the - sign for private members and the # for
protected ones). The name, the attributes and the methods are in the class icon sep-

412 Miroslav Virius

arated by horizontal lines. If not necessary, attributes and methods may be omitted.
Figure 13.1 shows the icon of theSource class as we have designed it in Sect. 13.2.4.

+Source()
+Generate() : Particle*

-gen

Source

Figure 13.1. The full UML icon of the Source class

Associations (i.e., any relations) among classes in UML class diagrams are
represented by lines connecting the class icons ended by arrows; as a description,
the multiplicity of the relation may be given. For example, the number appended
to the line connecting the Source and the Particle classes in Fig. 13.2 express
the fact that one particle source may emit any number of particles. The number
appended to the line connecting the Source and the Generator class express
the fact that one source uses only one random number generator.

Object composition is expressed by the arrow ending with a filled diamond.
Fig. 13.2 shows relations among the Source, Particle, and Generator class-
es. Simplified class icons are used.

Source Particle

Generator

1

1

-generates

1

-is generated

0..*

Figure 13.2. Relations among the Source, Particle and Generator classes

Inheritance13.4

Inheritance is a very powerful tool used in OOP to derive new classes from existing
ones. First, look at an example.

5 Example 5 Investigatingour MonteCarlo simulationmoredeeply,wefind, that var-
ious types of elementary particles can be involved: photons, neutrons, neutrinos,
etc.

On the one hand, we may conclude that one common data type, the Particle
class, is sufficient for the representation of all the different particles, because they
have many common features:

Every particle has a velocity vector,
every particle has a mass, a spin, and electrical charge,

Object Oriented Computing 413

every particle has its halftime of decay,
every particle may interact with the detector,
etc.

On the other hand, the way of the interaction with the detector is substantially dif-
ferent fordifferent typesof theparticles. In somecases, it isdescribedbymathemat-
ical formulae, in other cases it is described by measured data only. It follows that the
operation representing the interaction of the particle in the detector must be im-
plemented in a different way for different types of the particles, and this leads to the
conclusion that different types of simulated particles have to be represented by dif-
ferent object types in the program; but these types share many common properties.

This situation – closely related, but different classes – can be expressed in the
program model: OOP offers the mechanism of inheritance, which is the way of
deriving one class from some other one (or other ones).

The class a new type is derived from is usually called the base class.

Base Class and Derived Class 13.4.1

The derived class inherits all the public and protected members of its base class
or classes. This means that the derived class contains these members and may
access them without any constrains. Private members are not inherited. They are
not directly accessible in the derived class; they may be accessed only by the access
methods inherited from the base class.

The derived class may add its own data members and methods to the inherited
ones. The derived class may also redefine (override) some of the methods defined
in the base class. (To override a method in a derived class means to implement
a different response to the same message in the derived class.) In this case, the
signature, i.e., the identifier, the return type, the number, and the types of the
parameters of the overriding method in the derived class should be the same as
the signature of the overridden method in the base class.

No members of the base class may be deleted in the inheritance process.
The set of all the classes connected by inheritance is usually called the class

hierarchy.
Note that in someprogramming languages thereareexceptions to theabove rule.

For example, the constructors, destructors, and overloaded assignment operators
are not inherited in C++. Instead, the constructor of the derived class always calls
the base class constructor and the destructor of the derived class always calls the
base class destructor. The same holds for the default assignment operator of the de-
rived class. Of course, this may be considered as a generalized form of inheritance.

Generalization and Specialization 13.4.2

The base class always represents a concept that is more general and more ab-
stract, than the concept represented by the derived class; it follows that the de-

414 Miroslav Virius

rived class represents a more specialized concept than the base class. In oth-
er words, the derived class always represents a subclass – or a subtype – of its
base class. Any instance of the derived class is also considered to be an instance of
the base class.

The interface of the base class is a subset of the interface of the derived class.
Consequently, an instance of the derived class may be used everywhere where

an instance of the base class is expected. This rule may significantly simplify the
operation with instances of many similar classes.

In the UML class diagram, the inheritance is represented by an arrow ending
with triangle (not filled). The arrow leads from the derived class to the base class.

6 Example 6 Consider the Particle class in our Monte Carlo simulation. This is
a general concept that can be used to describe common features of all the particles
involved. But in the simulation, concrete types of particles – e.g., protons, electrons,
etc. – will be used.

Consequently, we will use the Particle class as the base class of the particles
hierarchy that will contain the common data members and the common methods
of all the particles. All the classes representing concrete particle types will be
derived from the Particle class – see Fig. 13.3.

Source Particle

Generator

1

1

-generates

1

-is generated

0..*

Electron

Photon

Neutron

Positron

Figure 13.3. The Particle class as a base class of concrete particle types

We will show here only the declaration of the Electron class.

class Electron: public Particle
{
public:

Electron();
void SetCharge(double _charge) { charge = _charge; }
virtual void Interact(Detector *aDetector);

private:
double charge;

};

Object Oriented Computing 415

The declaration of the Electron class contains only the declaration of the
constructor, two access methods and one data member. Nevertheless, the methods
GetvelocityX(), SetVelocityX(), GetActual() etc., inherited from
the base class, may be called for any instance of this class. This class changes –
overrides – the implementation of the Interact() method.

On the other hand, data members mass, velocityX, actual, etc. are not
directly accessible in the Electron class. These data members are in the base
class declared as private and the derived class must manipulate them only using
the public access methods. So the following fragment of the definition of the
Electron::Interact() method is incorrect:

// Error: velocityX, velocityY and velocityZ
// are inaccessible in the Electron class.
void Electron::Interact(Detector *aDetector)
{

double velocity = sqrt(velocityX*velocityX +
velocityY*velocityY + velocityZ*velocityZ);

// ... and so on ...
}

The correct form uses the access methods inherited from the base class:

// Correct form of the previous code fragment
void Electron::Interact(Detector *aDetector)
{

double velocity = sqrt(GetVelocityX()*GetVelocityX()
+ GetVelocityY()*GetVelocityY()
+ GetVelocityZ()*GetVelocityZ());

// ... and so on ...
}

Of course, this is sometimes inconvenient. If we change the access specifiers of
these data members in the base class to protected,
// Particle class definition revised
class Particle
{
public:

// Public members as before
protected:

// Instance data members
double mass;
double velocityX, velocityY, velocityZ;
// Class data members
static int actual;
static int total;

};

416 Miroslav Virius

the problems with access to data members will not appear. On the other hand, this
violates the encapsulation of the base class and it may have a negative impact on
the clarity and maintainability of the program.

Using Base Class as Common Interface13.4.3

As stated above, instances of derived classes may be used anywhere instances of
the base class are expected. This gives us very powerful tool to deal with the objects
of the classes derived from the same base class in a uniform manner.

7 Example 7 In the Monte Carlo simulation of the particle experiment, we may first
store all the emitted particles in a suitable container, exclude particles, that do
not hit the detector etc., and after that preprocessing, let the remaining particles
interact with the detector. Consider the following fragment of code:
const int N = 1000000;

// Number of particles to emit
vector<Particle*> store;

// Store for particles
Source sce1;

// Particle source
Detector det;

// Detector in the experiment
for(int i = 0; i < N; i++)

store.push_back(sce1.Generate());
// ... some preprocessing of the set of the particles
for(int i = 0; i < store.size(); i++)

store[i] -> Interact(det);

The store variable is a vector (dynamically sized array) of pointers to
Particle, the base class of all the elementary particles involved. This allows
us to store pointers to instances of any class derived from the Particle class in
this container.

The expression

store[i] -> Interact(det);

represents the call of the Interact() method of the particle pointed to by
store[i]. (In fact, this statement calls the method of the Particle class. To
ensure that the method of the actual class of the particle is called, the method
needs to be declared with the virtual specifier. This will be discussed later in
Sect. 13.5, Polymorphism.)

This example demonstrates that the base class defines the common interface for
all the derived classes.

Object Oriented Computing 417

Technical Note
The conversion from the derived class to the base class is automatic, but in some
situations deserve special attention. Consider the following assignment:

Electron e; // Non-dynamical instances
Particle p;
p = e;

After this statement has been executed, the p variable will contain an instance
of the Particle class, not an instance of the Electron class! The reason is
simple: The declaration

Particle p;

reserves store only for the Particle instance, so there is no place for the ad-
ditional data members declared in the Electron class. The only way how to
execute the assignment is to convert the derived class instance e to the base class
first.

The same problem arises in the case of passing function arguments by value.
Having the function

void process(Particle p); // Pass by value

it is possible to write

process(e); // e is Electron

but the instanceeof typeElectronwillbefirst cast (converted) to theParticle
type. This cast leads to the loss of information.

These problems may be avoided if we use dynamical instances only. If we rewrite
the preceding declarations into the form

Electron *ep = new Electron; // Dynamical instances
Particle *pp;
pp = ep; // OK

thepp variable will still contain the pointer to the instance of theElectron class.
(The type of the pointer is converted, not the type of the instance.)

The parameter of the process() function should be passed by the pointer or
by the reference. In both cases, the original instance is accessible in the function
body and no information is lost.

In Java, C# and other OOP languages, that use dynamical instances of the object
types only and manipulate them by references, these problems do not appear.

418 Miroslav Virius

Inheritance, or Composition?13.4.4

In some cases, it is not clear, whether a new class should be derived from some
suitable class by inheritance or whether object composition should be used.

There are two questions that should be answered in this case:
Is the new class a special case of the base class proposed?
Has the new class a data member of the proposed class?

This is known as the IS A – HAS A test. Only if the answer to the first question
is yes, the inheritance may be considered, otherwise the composition should be
used.

8 Example 8 Consider theSource class, representing the source of elementary par-
ticles in the Monte Carlo simulation. It will be based on some generator of random
numbers represented in our program by the Generator class. In other words,
the Source seems to be the Generator class with some added functionality.
Should we derive the Source class from the Generator class?

If we apply the IS A – HAS A test, we find that the particle source is not a special
case – a subclass – of the random number generator. It uses the random number
generator, so it may contain it as a data member, however, the inheritance should
be avoided in this case.

Consider for an instant that we use the inheritance to derive the Source class
from the Generator class,

// Wrong use of the inheritance
class Source: public Generator
{

// Body of the class
}

This would mean that we can use a Source instance everywhere theGenerator
instance is expected. But in the Monte Carlo simulation, the random number
generator is necessary even inotherparts of theprogram, e.g. for thedetermination
of the interaction type, for the determination of the features of the secondary
particles resulting from the interaction (if any) etc. However, in these parts of the
program, the Source class may not serve as the random number generator.

Such a design of the Source class may cause that some typing errors in the
program will not be properly detected and some mysterious error messages during
the compilation will be reported; or even worse – it may lead to runtime errors
hard to discover.

Object Oriented Computing 419

Multiple Inheritance 13.4.5

The class may have more than one base class; this is called multiple inheritance.
The class derived from multiple base classes is considered to be the subclass if all
its base classes.

Multiple inheritance may be used as a means of the class composition.
This feature is supported only in a few programming languages – e.g., in C++

(see Stroustrup, 1998) or in Eiffel (see Meyer, 1997). In Java, C#, Object Pascal
and some other languages it is not supported. Multiple inheritance poses special
problems, that will not be discussed here.

Polymorphism 13.5

At the end of the previous section, we have seen that instances of many different
classes were dealt with in the same way. We did not know the exact type of the
instances stored in the store container; it was sufficient that they were instances
of any class derived from the Particle class.

This feature of the OOP is called polymorphism. Polymorphism means that
instances of various classes may be used in the same way – they accept the same
messages, so their methods may be called without any regard to the exact type
of the instance. In some programming languages (e.g., in Java), this is automatic
behavior of the objects (or of their methods), in some programming languages
(e.g. in C++) this behavior must be explicitly declared.

There are at least two ways to achieve polymorphic behavior: The use of the
inheritance and the use of the interfaces. The interfaces will be discussed in
Sect. 13.5.4.

9Example 9 Let’s consider once again the example given at the end of the Inheritance
section. The expression store[i] is of type “pointer to the Particle class”,
even though it in fact points to an instance of the Electron, Photon, or some
other derived class.

It follows that the statement
store[i] -> Interact(det); // Which method is called?

might be interpreted as the call of the Particle::Interact() method, even
though it should be interpreted as the call of the Interact() method of some
derived class.

420 Miroslav Virius

Early and Late Binding13.5.1

The previous example shows that there are two possible approaches to the resolu-
tion of the type of the instance for which the method is called, if the pointer (or
reference) to the instance is used:

Early binding. The type of the instance is determined in the compile time. It
follows that the static (declared) type of the pointer or reference is used. This
is the default for all methods in C++, C#, or Object Pascal.
Late binding. The type of the instance is determined in the run time. It follows
that the actual type of the instance is used and the method of this type is called.
This is always used for the methods in Java. In C++, the virtual keyword
denotes the methods using the late binding.

Late binding gives the class polymorphic behavior. On the other hand, late
binding is less effective than early binding, even though the difference may be
negligible. (In C++ on PCs, the difference between the late and the early binding
is usually one machine instruction per method call.)

Any method that might be overridden in any of the derived classes should use
the late binding.

Note: In C++ and other OOP languages in which the late binding must be de-
clared, the classes containing at least one virtual method are called polymorphic
classes. Classes without any virtual method are called non-polymorphic classes. In
languages like Java, where all the methods use late binding by default, all the classes
are polymorphic.

Implementation of the Late Binding13.5.2

In this subsection, some low level conceptswill bediscussed.Theyarenotnecessary
for understanding the basic concepts of the OOP, but they can give better insight
in it.

We will explore one the common way of implementation of the late binding,
i.e., of the determination of the actual type of the instance for which the method is
called.

This is based on the so called virtual method tables. The virtual method table
(VMT) is the hidden class data member that is part of any polymorphic class. Any
polymorphic class contains exactly one VMT. (The hidden class member is a class
member the programmer does not declare – the compiler adds it automatical-
ly.)

The VMT is an array containing pointers to all the virtual methods of the
class. Any derived class has its own VMT that contains pointers to all the virtual
methods (even those that are not overridden in this class). The pointers to the
virtual methods in the VMT of the derived class are in the same order as the
pointers to corresponding methods in the base class.

Object Oriented Computing 421

Any instance of the polymorphic class contains another hidden data member –
the pointer to the VMT. This data member is stored in all the instances at the same
place – e.g. at the beginning.

The method call is performed in the following way:
1. The program takes the instance, for which the method is called.
2. In the instance, it finds the pointer to the VMT.
3. In the VMT, it finds the pointer to the method called. In all the VMTs this

pointer is in the same entry; e.g., the pointer to the Interact() method
might be in the VMT of the Particle class and in the VMTs of all the classes
derived from the Particle in the first entry.

4. The program uses this pointer to call the method of the actual class of the
instance.

Figure 13.4 illustrates this process for theParticle base class and two derived
classes. The values stored in the VMT are set usually at the start of the program or
when the class is loaded to the memory. The values of the pointer to the VMT in
the instances are set automatically by the constructor.

Interact()

...

...

The Electron VMT

Interact()

...

...

The Photon VMT

void
Electron::Interact(...)
{ // Code of the method
// in the Electron class

}

void Photon::Interact(...)
{ // Code of the method
// in the Photon class

}

Particle *pp1 = new Electron;

&VMT Instance attributes of the Electron

Particle *pp2 = new Electron;

&VMT Instance attributes of the Electron

&VMT Instance attributes of the Photon

pp2 = new Photon;

Interact()

...

...

The Particle VMT

void
Particle::Interact(...)
{ // Code of the method
// in the Particle class

}

Figure 13.4. Typical implementation of the late binding

Abstract Class 13.5.3

In some cases, the base class represents such an abstract concept that some opera-
tions with instances of this class cannot be implemented. Nevertheless, at least the

422 Miroslav Virius

stub of the corresponding method should be present in the class, because this class
is used as a base class and determines the common interface for all the derived
classes.

In OOP such a class is called the abstract class and such an operation is called the
abstract method. Abstract methods have no implementation (no method body).

It is not allowed to create instances of the abstract classes and it is not allowed
to call the abstract methods. It is of course possible to define pointers or references
to abstract classes.

The abstract classes serve as base classes. If the derived class does not implement
any of the inherited abstract methods, it will be abstract like the base class. The
abstract class

defines the interface of the derived classes,
provides the implementation of non-polymorphic methods for the derived
classes, and
offers a default implementation of non-abstract polymorphic (virtual) meth-
ods.

Note that the abstract classes are italicized in the UML class diagrams – see e.g.
the Particle class in Fig. 13.5.

10 Example 10 Consider the Particle class defined above. How could the
Interact() method be implemented?

For the derived classes, the situation is clear: If it is, e.g., the Photon, the
interaction could be the photoelectric effect, the Compton scattering, or some
other interaction known to particle physicists; probabilities of these phenomena
are determined according to their total effective cross sections. For the other
derived classes, there are other well defined possibilities that can be expressed in
the program code.

However, there is no general interaction, that could be used to implement the
Interact()method of the general Particle. On the other hand, this method
must be declared in the Particle class as the part of the common interface of
derived classes. If we omit it, the statement

store[i] -> Interact(det);

will not compile, because store[i] is the pointer to the Particle class that
does not contain such a method.

So, the Interact() method should be declared as abstract (in C++, the
abstract methods are called pure virtual methods). In the following revision of the
Particle class, we omit all other parts of that class that are unchanged.

// Particle as an abstract class
class Particle
{

Object Oriented Computing 423

public:
// Pure virtual method
virtual void Interact(Detector *aDetector) = 0;
// All other public members as before

protected:
// All data members as before

};

Interfaces 13.5.4

The interface may be defined as a named set of methods and constants. This set
may be empty.

The interface represents a way to achieve the polymorphic behavior; it is an
alternative to inheritance. This concept is relatively new in OOP; it was first widely
used in the Java language.

In languages that support interfaces, any class may declare that it implements
the given interface. This means that the class will supply the implementations
(bodies) of the methods in the interface.

Note the terminological difference: Even though interfaces are syntactically
similar to the classes that contain only public abstract methods, they are not
inherited, but they are implemented. In programming languages, that support
interfaces, any class may implement many interfaces, even if the language does not
support multiple inheritance.

The interface represents the type. If class C implements interfaces I1 and I2,
any instance of this class is an instance of type C and also an instance of type I1
and of type I2.

The interface is usually represented by a small circle connected to the class icon
in the UML class diagrams (see Fig. 13.5). It may also be represented by a class-like
icon marked by the <<interface>> label (“stereotype”). Implementation of the
interface is represented by a dashed arrow pointing to the implementing class (see
Fig. 13.7).

Interfaces in C++ 13.5.5

As we have chosen C++ as the language of examples, it is necessary to cover
briefly the interfaces in this language. C++ does not support interfaces directly;
nevertheless, interfaces may be fully simulated by abstract classes that contain only
public abstract (pure virtual) methods, and the interface implementation may be
substituted by the inheritance. This will be demonstrated by the following example.

11Example 11 The Monte Carlo simulation may be time-consuming and it would be
convenient to have the possibility to store the status of the simulation into a file,
so that the computation might be interrupted and continued later.

424 Miroslav Virius

It is clear that all the generated but not yet processed particles should be stored.
The status of the particle source, and consequently the status of the random num-
bers generator, should be stored, too. This is necessary especially for debugging,
because it ensures that we could get the same sequence of random number in
repeated runs of the program, even if they are interrupted.

It follows that we have at least two different object types belonging to different
class hierarchies that have a common feature – they will be stored in a file and
later will be restored into their original state. It follows that all the classes involved
should have suitable methods, e.g., store() and restore().

The simulated experiment is represented by the Experiment class in the
program and to store the experiment status is the task of this class; so we would
like to implement in this class the storeObject() method to store objects
passed as arguments. It follows that all the parameters – all the objects stored –
should be of the same type.

The solution of this dilemma – the method requires objects of the same type as
parameters, but we have objects of at least two distinct types belonging to different
class hierarchies – is to use a suitable interface that contains the store() and
restore()methods. We will use theStorable identifier for this interface. The
Source, Generator and Particle classes should be modified as follows:

// Interface simulation in C++
class Storable
{
public:

virtual void store(ostream&) = 0;
virtual void restore(istream&) = 0;

};

class Generator: public Storable
// Interface implementation

{
public:

virtual void store(ostream& out)
{/* Store the generator */}
virtual void restore(istream& in)
{/* Read the generator and reconstruct it */}
// ... Other methods and attributes as before

};
class Source: public Storable

// Interface implementation
{
public:

virtual void store(ostream& out)
{/* Store the source */}
virtual void restore(istream& in)

Object Oriented Computing 425

{/* Read the source from the file
and reconstruct it*/}

// ... Other methods and attributes as before
};

class Particle: public Storable
// Interface implementation

{
public:

virtual void store(ostream& out)
{/* Store the particle */}
virtual void restore(istream& in)
{/* Read the particle from the file

and reconstruct it */}
// ... Other methods and attributes as before

};

(ostream andistream are base classes for output and input data streams in the
standard C++ library). Figure 13.5 shows the revised UML class diagram of these
classes.

Source Particle

Generator

1

1

-generates

1

-is generated

0..*

Electron

Photon

Neutron

Positron

Storable
Storable

Storable

Figure 13.5. The classes implementing the Storable interface

Note that the Particle class is abstract, so it need not override the methods
of the Storable interface. The classes representing the concrete particle types,
Electron etc., inherit the implementation of the Storable interface; thus it
is not necessary to declare this fact. Of course, if a derived class is not abstract, it
must override the methods of this interface.

Implementation of the Storable interface allows us to define the method
Experiment::storeObject() as follows:

void Experiment::storeObject(Storable& obj,
ostream& out) {

obj.store(out)
}

426 Miroslav Virius

Storable interface serves as the common type of all the storable objects –
particles as well as random number generators – in the program. This gives us the
possibility to treat all these objects in our program in a uniform way.

More about Inheritance13.6

Inheritance can be easily misused and this is often counterproductive. Poorly
designed inheritance hierarchies lead to programs that are difficult to understand,
contain hard-to-find errors, and are difficult to maintain. In this section, we give
some typical examples.

Substitution Principle13.6.1

In Sect. 13.4, Inheritance, we have seen that any instance of any derived class may
be used where an instance of the base class is expected. This is sometimes called
the substitution principle.

As far as we have seen, this is a syntactic rule: If you follow it, the program
compiles. But we already know that for reasonable use of the inheritance, the
derived class must be a specialization of the base class. Let’s investigate more
deeply, what it means.

“Technical” Inheritance
This problem is similar to the problem we have seen in Sect. 13.4.4. We have two
related classes, say A and B, and class B contains all the members of A and some
additional ones. Is it reasonable to use A as a base class of B?

Of course, this situation indicates, that B might be really derived from A. But
this is indication only that cannot replace the IS A – HAS A test. In Sect. 13.4.4,
we have seen an example that leads to object composition. Here we give another
example that will be solved by inheritance.

12 Example 12 Consider the particles in our Monte Carlo simulation. The interaction
of electrically charged particles in the detector substantially differs form the inter-
action of uncharged particles, so it would be convenient to split the class of all the
particles into two subclasses, one for the uncharged particles and the other for the
charged ones.

The class representing the charged particles contains the same data members
as the class representing the uncharged particles plus the charge attribute and
the methods setCharge() and getCharge() to manipulate the charge. This
might lead to the idea to define the Uncharged class representing the uncharged
particles and use it as a base for the Charged class representing the charged
particles. These two classes will serve as base classes for the classes representing
concrete particle types (Fig. 13.6a).

Object Oriented Computing 427

x

Particle

Charged

Uncharged

Electron

Photon

Particle

Uncharged

Charged

Photon

Electron x

Particle

Uncharged Charged

Photon Electron

(a) (b) (c)

Figure 13.6. Class hierarchies discussed in Sects. 13.6.1 and 13.6.2. Only (c) is correct

This class hierarchy design is incorrect and leads to problems in the program.
Suppose the following two declarations:

list<Uncharged*> ListOfUncharged;
Electron e; // Electron is charged particle

The ListOfUncharged variable is a double-linked list of pointers to the
Uncharged instances. If the Charged class were derived from the Uncharged
class, it would be possible to insert any charged particle into this container of
uncharged ones. The following statement would compile and run (of course, the
results would be unpredictable):

ListOfUncharged.push_back(&e); // It compiles...

The reason of this problem is evident – the charged particle is not a special case of
the uncharged particle (the IS A test), so this inheritance is not applicable.

“Logical” Inheritance
Here we will show that the IS A – HAS A test may be insufficient in some cases.
First, consider the following example.

13Example 13 We will continue with the analysis of the Monte Carlo simulation of
the charged and uncharged particles. The uncharged particles may be considered
as a special case of the charged particles with the electric charge set to zero.
Consequently, it seems to be logical to derive the Uncharged class from the
Charged class (Fig.13.6b).

However, no member of the base class may be excluded from the derived class
in the inheritance process. So the derived class, Uncharged, will contain the
charge attribute and both the access methods. In order to ensure that the charge
is zero, we have to override the setCharge() method so that it always sets the
charge value to zero,

428 Miroslav Virius

void Uncharged::setCharge(double ch) {
charge = 0.0; // Parameter value not used

}

Nevertheless, this construction may fail. Consider the following function:

void process(Charged& cp){
const double chargeValue = 1e-23;
cp.setCharge(chargeValue);
assert(cp.getCharge() == chargeValue);
// And some other code...

}

This is correct behavior of theprocess() function: It expects a charged particle,
changes its charge to some predefined value and tests whether or not this change
succeeded. If the argument is really a charged particle, it works.

However, the classes representing the uncharged particles, e.g., Photon, are
derived from the Uncharged class and this class is derived from the Charged
class, so the following code fragment compiles, but fails during the execution:

Photon p; // Uncharged particle
process(p); // Assertion fails...

This example shows, that even if the IS A test succeeds, it does not mean that
the inheritance is the right choice. In this case, the overridden setCharge()
method violates the contract of the base class method – it does not change the
charge value.

Substitution Principle Revised13.6.2

The preceding example demonstrates that under some circumstances the
Uncharged class has significantly different behavior than the base class, and
this leads to problems – even to run time errors.

This is the rule: Given the pointer or reference to the base class, if it is possible
to distinguish, whether it points to an instance of the base class or of the derived
class, the base class cannot be substituted by the derived class.

The conclusion is, that the substitution principle is more than a syntactic rule.
This is a constraint imposed on derived classes, that requires, that the derived
class instances must be programmatically indistinguishable from the base class
instances, otherwise the derived class does not represent a subtype of the base
class.

This conclusion has been originally formulated by Liskov (Liskov, 1988; Martin,
1996) as follows:

Object Oriented Computing 429

What is wanted here is something like the following substitution property: If
for each object o1 of type S there is an object o2 of type T such that for all
programs P defined in terms of T, the behavior of P is unchanged when o1 is
substituted for o2, then S is subtype of T.

14Example 14 Let’s finish the charged and uncharged particles problem. We have
seen that the Charged and Uncharged classes may not be derived one from the
other. To avoid both kinds of problems, it is necessary to split the hierarchy and to
derive both classes directly from the Particle class:

// Proper Particle hierarchy
class Charged: public Particle { /* ... */ };
class Uncharged: public Particle { /* ... */ };

This class hierarchy is shown in the Fig. 13.6c.

Inheritance and Encapsulation 13.6.3

In this subsection we demonstrate that the inheritance may lead to significant
violation of the encapsulation, which may cause problems in the implementation
of derived classes. We start with an example.

15Example 15 The particles interact in the detector in different ways. Some of the
interaction represent events that are subject to our investigation and need to be
logged in the result file and further processed. (This means to record the particle
type, energy, coordinates of the interaction etc.) But the events may appear in
groups, so the ResultFile class will contain the methods LogEvent() and
LogEventGroup(). The latter will get the vector containing data of several
events as an argument. Suppose that both these methods are polymorphic.

At some later stage of the program development, we find that it is necessary to
be aware of the total count of recorded events. The actual implementation of the
ResultFile class does not support this feature and we cannot change it, e.g.,
because it is part of some program library.

The solution seems to be easy – we derive a new class, CountedResultFile,
based on the ResultFile. The implementation could be as follows:
class CountedResultFile: public ResultFile
{
public:

virtual void LogEvent(Event *e)
{

ResultFile::LogEvent(e);
count++;

430 Miroslav Virius

}
virtual void LogEventGroup(vector<Event*> eg)
{

ResultFile::LogEventGroup(eg);
count += eg.size();

}
private:

int count;
};

The overridden methods simply call the base class methods to log the events and
then increase the count of the recorded events.

It may happen that we find that the LogEventGroup()method increases the
count of recorded events incorrectly: After the call

LogFile *clf = new CountedLogFile;
clf -> LogEventGroup(eg); // (*)

the count value increases by twice the number of the events in eg.
The reason might be that the implementation of the LogEventGroup()

method internally calls the LogEvent()method in a loop. This is what happens:
1. The (*) statement calls the LogEventGroup() method. This is a polymor-

phicmethod, so theCountedResultFile::LogEventGroup()method
is called.

2. This method calls the base class LogEventGroup() method.
3. The base class method calls the LogEvent() method in a loop. But because

these methods are polymorphic, the method of the actual type, i.e., the
ComputedResultFile::LogEvent() method is called.

4. This method calls the base class method to record the event and increases the
count of events. After that it returns to the CountedResultFile::Log-
EventGroup() method. This method increases the event count once again.

To implement the derived class properly, we need to know that the Result-
File::LogEventGroup()method internally calls theResultFile::Log-
Event() method. But this is an implementation detail, not the part of the con-
tract of the methods of the ResultFile class.

Solution
This problem may easily be avoided by using interfaces and object composition (cf.
classdiagram inFig. 13.7); it is necessary touse anotherdesignof theResultFile
class, as well as another design of the CountedResultFile class.

First we design the ResultFileInterface interface as follows:
class ResultFileInterface {

Object Oriented Computing 431

+LogEvent() : void
+LogEventGroup() : void

ResultFile

+LogEvent() : void
+LogEventGroup() : void

-rs : CountedResultFile
-count : int

CountedResultFile
11

+LogEvent() : void
+LogEventGroup() : void

«interface»
ResultFileInterface

Figure 13.7. Class diagram of the correct design. Only interface methods and corresponding attributes

are shown

public:
virtual void LogEvent(Event *e) = 0;
virtual void LogEventGroup(vector<Event*> eg) = 0;

};

The class ResultFile will implement this interface:

class ResultFile: public ResultFileInterface {
// Implementation as before
};

Now,CountedResultFilemaybedesignedasan independent class that imple-
ments the ResultFileInterface and uses the ResultSet as an attribute:

class CountedResultFile: public ResultFileInterface {
public:

virtual void LogEvent(Event *e)
{

rs.LogEvent(e);
count++;

}
virtual void LogEventGroup(vector<Event*> eg)
{

rs.LogEventGroup(eg);
count += eg.size();

}
private:

int count;
ResultSet rs;

};

432 Miroslav Virius

The problem may not appear, because the CountedResultFile is not de-
rived from theResultFile now. Nevertheless, they may be treated polymorphi-
cally, i.e. instances of theCountedResultFilemay be used instead of instances
of the ResultFile, if they are used as instances of the ResultFileInter-
face interface.

Structure of the Object Oriented Program13.7

We conclude this chapter by describing shortly the typical structure of the OOP
program.

As we have seen in previous sections, an OOP program consists of objects
that collaborate by messages. In this structure, one object must play the role of
a starting object. This means that one of the methods of this object will be called
as the program start. The starting object typically creates other objects in the
program and manages the their lifetime.

All the other objects represent various parts of the problem solved and are
responsible for the associated resource management, computation, etc.

yx

Source

Particle
Generator

1

1

-generates

1

-is generated

0..*

Storable

StorableStorable

Uncharged Charged

Photon dzElectron

Detector

-is detected

*

-detects

1

ResultFile

-produces

1..*

-records

1

+Experiment()
+Run() : void

-det : Detector*
-sce : Source*
-rfile : ResultFile*

Experiment

1

1

1

1

1

1..*

Figure 13.8. Basic structure of the simulation program

Object Oriented Computing 433

16Example 16 Here we finish the Monte Carlo simulation of an experiment with
particles. We have already mentioned the Experiment class covering the appli-
cation as a whole. The only instance of this class in the program will be the starting
object. The Experiment class will contain the public method Run() that will
represent the run of the experiment.

As we are in C++, our program must have the main() function where the
program starts. It will create the starting object and let it run:

int main() { // Create the starting object
Experiment().Run(); // and run it

}

The Experiment class could be defined as follows:

class Experiment{
public:

Experiment(); // Constructor
void Run(); // Run the experiment

private:
Detector *det; // Detector in this experiment
Source *sce; // Particle source
ResultFile *rfile; // Result file

};

The Experiment::Experiment() constructor reads the input data (e.g.,
cross sections describing the probabilities of the interactions) and creates and
initializes the attributes (particle source, result file etc.).

The Experiment::run() methods does the work – it starts particle emis-
sion in the source using the appropriate method of the Source class, determines,
whether the given particle hits the detector using the appropriate Detector
method, records the results of the detection into the ResultFile instance and
in the end processes the results using the appropriate ResultFile methods.

Class diagram of the program at the level we have given here is presented in
Fig. 13.8.

Note that this is top-level design only. The extent of this chapter allows us to
demonstrate only the beginning of the object oriented approach to the example.

434 Miroslav Virius

Conclusion13.8

Attempts to formalize the process of object oriented analysis and design have been
made since the beginning of the OOP. A widely used approach is described in
Booch (1993).

In object oriented design some common problems – or tasks – may appear in
many different situations. Reusable solutions of these problems are called Design
Patterns. A well known example of design pattern is Singleton – the class that may
have at most one instance. Another example is Responsibility Chain; this design
pattern solves the problem how to find the proper processing of varying data, even
if the way of processing may dynamically change.

The idea of design patterns and the 23 most common design patterns in OOP
are described in Gamma (1999).

References
Booch,G.:Object-OrientedAnalysisandDesignwithApplications.Addison-Wesley,

New York (1993).
Booch, G., Rumbaugh, J., Jacobson, I.: The Unified Modeling Language User Guide.

Addison-Wesley, New York (1999).
Gamma, E., Helm, R., Johnson R., Vlissides, J.: Design Patterns. Addison-Wesley,

New York (1995).
Liskov, B.: Data Abstraction and Hierarchy. SIGPLAN Notices, 23, 5 (May 1988).
Martin, R. C.: The Liskov Substitution Principle. The C++ Report, (March 1996).
Meyer, B.: Object-Oriented Software Construction. Prentice Hall, New York (1997);

see also http://en.wikipedia.org/wiki/Eiffel_programming_language
Stroustrup, B.: The C++ Programming Language. Third edition. Addison-Wesley,

New York (1998).

Part III
Statistical Methodology

III.1Model Selection
Yuedong Wang

1.1 Introduction . 438

1.2 Basic Concepts – Trade-Offs. 444

1.3 AIC, BIC, Cp and Their Variations . 449

1.4 Cross-Validation and Generalized Cross-Validation . 453

1.5 Bayes Factor . 457

1.6 Impact of Heteroscedasticity and Correlation. 460

1.7 Discussion . 462

438 Yuedong Wang

Introduction1.1

The need for model selection arises when a data-based choice among competing
models has to be made. For example, for fitting parametric regression (linear,
non-linear and generalized linear) models with multiple independent variables,
one needs to decide which variables to include in the model (Chapts. III.7, III.8
and III.12); for fitting non-parametric regression (spline, kernel, local polynomial)
models, one needs to decide the amount of smoothing (Chapts. III.5 and III.10); for
unsupervised learning, one needs to decide the number of clusters (Chapts. III.13
and III.16); and for tree-based regression and classification, one needs to decide
the size of a tree (Chapt. III.14).

Model choice is an integral and critical part of data analysis, an activity which
has become increasingly more important as the ever increasing computing power
makes it possible to fit more realistic, flexible and complex models. There is
a huge literature concerning this subject (Linhart and Zucchini, 1986; Miller, 2002;
Burnham and Anderson, 2002; George, 2000) and we shall restrict this chapter to
basic concepts and principles. We will illustrate these basics using a climate data,
a simulation, and two regression models: parametric trigonometric regression
and non-parametric periodic splines. We will discuss some commonly used model
selection methods such as Akaike’s AIC (Akaike, 1973), Schwarz’s BIC (Schwarz,
1978), Mallow’s Cp (Mallows, 1973), cross-validation (CV) (Stone, 1974), generalized
cross-validation (GCV) (Craven and Wahba, 1979) and Bayes factors (Kass and
Raftery, 1995). We do not intend to provide a comprehensive review. Readers may
find additional model selection methods in the following chapters.

Let M = {Mλ, λ ∈ Λ} be a collection of candidate models from which one will
select a model for the observed data. λ is the model index belonging to a set Λ
which may be finite, countable or uncountable.

Variable selection in multiple regression is perhaps the most common form of
model selection in practice. Consider the following linear model

yi = x�i β + εi, i = 1, 2, · · · , n , (1.1)

where xi are vectors of m independent variables, β is a m-vector of parameters,
and εi are random errors. Often a large number of independent variables are
investigated in the model (1.1) and it is likely that not all m variable are important.
Statistical inferences can be carried out more efficiently with smaller models. The
goal of the variable selection is to find a subset of these m independent variables
which is optimal in a certain sense. In this case,Λ is the collection of all 2m subsets
and λ is any particular subset.

For illustration, we will use part of a climate data set downloaded from the Car-
bon Dioxide Information Analysis Center at http:||cdiac.ornl.gov|ftp|ndp070. The
data consists of daily maximum temperatures and other climatological variables
from 1062 stations across the contiguous United States. We choose daily maximum
temperatures from the station in Charleston, South Carolina, which has the longest
records from 1871 to 1997. We use records in the year 1990 as observations. Records

Model Selection 439

from other years provide information about the population. To avoid correlation
(see Sect. 1.6) and simplify the presentation, we divided 365 days in 1990 into 73
five-day periods. The measurements on the third day in each period is selected
as observations. Thus the data we use in our analyses is a subset consisting of
every fifth day records in 1990 and the total number of observations n = 73. For
simplicity, we transform the time variable t into the interval [0, 1]. The data is
shown in the left panel of Fig. 1.1.

Our goal is to investigate how maximum temperature changes over time in
a year. Consider a regression model

yi = f (ti) + εi, ti = i|n, i = 1, · · · , n , (1.2)

where yi is the observed maximum temperature at time ti in Fahrenheit, f is the
mean temperature function and εi’s are random fluctuations in the year 1990.
We assume that εi’s are independent and identically distributed with mean zero
and variance σ2. Note that even though model (1.2) is very general, certain model
assumptions (choices) have already been made implicitly. For example, the random
fluctuationsareassumed tobeadditive, independentandhomogeneous.Violations
of these assumptions such as independence may have severe impacts on model
selection procedures (Sect. 1.6).

In the middle panel of Fig. 1.1, we plot observations on the same selected 73
days from 1871 to 1997. Assuming model (1.2) is appropriate for all years, the
points represent 127 realizations from model (1.2). The averages reflect the true
mean function f and the ranges reflect fluctuations. In the right panel, a smoothed
version of the averages is shown, together with the observations in 1990. One may
imagine that these observations were generated from the smoothed curve plus
random errors. Our goal is to recover f from the noisy data. Before proceeding
to estimation, one needs to decide a model space for the function f . Intuitively,
a larger space provides greater potential to recover or approximate f . At the same
time,a larger spacemakesmodel identificationandestimationmoredifficult (Yang,
1999). Thus the greater potential provided by the larger space is more difficult to
reach. One should use as much prior knowledge as possible to narrow down the

0.0 0.2 0.4 0.6 0.8 1.0

40
60

80
10

0

0.0 0.2 0.4 0.6 0.8 1.0

40
60

80
10

0

time

te
m

pe
ra

tu
re

 (
Fa

hr
en

he
it)

0.0 0.2 0.4 0.6 0.8 1.0

40
60

80
10

0

Figure 1.1. Left: 73 observations in the year 1990. Middle: observations on the same 73 days from

1871–1997. Averages are marked as the solid line. Right: 73 observations in the year 1990 (points) and

a periodic spline fit (line) to the average temperatures in the middle panel

440 Yuedong Wang

choice of model spaces. Since f represents mean maximum temperature in a year,
we will assume that f is a periodic function.

Trigonometric Regression Model. It is a common practice to fit the periodic
function f using a trigonometric model up to a certain frequency, say λ, where
0 ≤ λ ≤ K and K = (n − 1)|2 = 36. Then the model space is

Mλ = span
{

1,
√

2 sin 2πνt,
√

2 cos 2πνt, ν = 1, · · · , λ
}

. (1.3)

The order λ is unknown in most applications. Thus one needs to select λ among
Λ = {0, 1, · · · , K} where M0 = span{1}. For a fixed λ, we write the model Mλ as

yi = β1 +
λ∑

ν=1

(
β2ν

√
2 sin 2πνt + β2ν+1

√
2 cos 2πνt

)
+ εi, i = 1, · · · , n , (1.4)

or in a matrix form

y = Xλβλ + ε,

where y = (y1, · · · , yn)�,

Xλ =

1
√

2 sin 2πt1

√
2 cos 2πt1 · · ·

√
2 sin 2πλt1

√
2 cos 2πλt1

1
√

2 sin 2πt2

√
2 cos 2πt2 · · ·

√
2 sin 2πλt2

√
2 cos 2πλt2

...
...

... · · ·
...

...

1
√

2 sin 2πtn

√
2 cos 2πtn · · ·

√
2 sin 2πλtn

√
2 cos 2πλtn

is the design matrix, βλ = (β1, · · · , β2λ+1)� and ε = (ε1, · · · , εn)�. The coefficients βλ
are estimated by minimizing the least squares (LS)

min
βλ

1

n

n∑

i=1

(

yi − β1 −
λ∑

ν=1

(
β2ν

√
2 sin 2πνti + β2ν+1

√
2 cos 2πνti

))2

(1.5)

Since design points are equally spaced, we have the following orthogonality
relations:

2

n

n∑

i=1

cos 2πνti cos 2πµti = δν,µ, 1 ≤ ν, µ ≤ K,

2

n

n∑

i=1

sin 2πνti sin 2πµti = δν,µ, 1 ≤ ν, µ ≤ K,

2

n

n∑

i=1

cos 2πνti sin 2πµti = 0, 1 ≤ ν, µ ≤ K, (1.6)

Model Selection 441

where δν,µ is the Kronecker delta. Thus columns of the design matrix are orthog-
onal. That is, X�

λ Xλ = nI2λ+1 where I2λ+1 is an identity matrix of size 2λ + 1. Let
XK be the design matrix of the largest model MK . Then XK |

√
n is an orthonormal

matrix. Define the discrete Fourier transformation ỹ = X�
K y|n. The LS estimate

of βλ is β̂λ = (X�
λ Xλ)−1X�

λ y = X�
λ y|n = ỹλ, where ỹλ consists of the first 2λ + 1

elements of ỹ. More explicitly,

β̂0 =
1

n

n∑

i=1

yi = ỹ1,

β̂2ν =
√

2

n

n∑

i=1

yi sin 2πνti = ỹ2ν, 1 ≤ ν ≤ λ,

β̂2ν+1 =
√

2

n

n∑

i=1

yi cos 2πνti = ỹ2ν+1, 1 ≤ ν ≤ λ. (1.7)

Let f̂λ be the estimate of f where the dependence on λ is expressed explicitly.
Then the fits

f̂ λ
&
=
(

f̂λ(t1), · · · , f̂λ(tn)
)�

= Xλβ̂λ = P(λ)y ,

where

P(λ) = Xλ
(
X�
λ Xλ

)−1
X�
λ = XλX�

λ |n (1.8)

is the projection matrix. Note that P(K) = In. Thus model MK interpolates the
data.

Fits for several λ (labeled as k in strips) are shown in the top two rows of Fig. 1.2.
Obviously as λ increases from zero to K, we have a family of models ranging from
a constant to interpolation. A natural question is that which model (λ) gives the
“best” estimate of f .

Periodic Spline. In addition to the periodicity, it is often reasonable to assume that
f is a smooth function of t ∈ [0, 1]. Specifically, we assume the following infinite
dimensional space (Wahba, 1990; Gu, 2002)

W2(per) =
{

f :f and f ′ are absolutely continuous,

f (0) = f (1), f ′(0) = f ′(1),

∫ 1

0
(f ′′(t))2dt < ∞

}
(1.9)

as the model space for f . A smoothing spline estimate of f is the minimizer of the
following penalized LS (Wahba, 1990; Gu, 2002)

min
f∈W2(per)

{
1

n

n∑

i=1

(yi − f (ti))2 + λ
∫ 1

0
(f ′′(t))2dt

}

, (1.10)

442 Yuedong Wang

time

te
m

pe
ra

tu
re

 (
Fa

hr
en

he
it)

50

60

70

80

90

100

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

50

60

70

80

90

100

50

60

70

80

90

100

0 0.2 0.4 0.6 0.8 1

50

60

70

80

90

100

0 0.2 0.4 0.6 0.8 1

Figure 1.2. Circles are observations. Lines are the estimated functions. Top two rows are fits from

trigonometric models with frequencies indicated in the strips (we used k instead of λ for

distinction). Bottom two rows are fits from the periodic spline with smoothing parameters indicated

in the strips

where the first part (LS) measures the goodness-of-fit, the second part is a penalty
to the roughness of the estimate, and λ (0 ≤ λ ≤ ∞) is the so called smoothing
parameter which controls the trade-off between the goodness-of-fit and the rough-
ness. When λ = 0, there is no penalty to the roughness of the estimate and the
spline estimate interpolates the data. When λ = ∞, the spline estimate is forced to
be a constant. As λ varies from zero to infinity, we have a family of models ranging

Model Selection 443

from interpolation to a constant parametric model. Thus λ can be considered as
a model index inΛ = [0,∞]. Fits with several choices of λ are shown in the bottom
two rows of Fig. 1.2.

The exact solution to (1.10) can be found in Wahba (1990). To simplify the
argument, as in Wahba (1990), we consider the following approximation of the
original problem

min
f∈MK

{
1

n

n∑

i=1

(yi − f (ti))2 + λ
∫ 1

0
(f ′′(t))2dt

}

, (1.11)

where W2(per) in (1.10) is replaced by MK which is defined in (1.3) with λ = K. The
following discussions hold true for the exact solution in the infinite dimensional
spaces (Wahba, 1990; Gu, 2002). The approximation makes the following argument
transparent and provides insights into smoothing.

Let

f̂λ(t) = α̂1 +
K∑

ν=1

(
α̂2ν

√
2 sin 2πνt + α̂2ν+1

√
2 cos 2πνt

)

be the solution to (1.11). Then f̂ λ
&
= (f̂λ(t1), · · · , f̂λ(tn))� = XK α̂, where α̂ =

(α̂1, · · · , α̂2K+1)�. The LS

1

n
||y − f̂ λ||2 =

1

n
|| 1√

n
X�

K (y − f̂ λ)||2 = ||1

n
X�

K y −
1

n
X�

K XK α̂||2 = ||ỹ − α̂||2 .

Thus (1.11) reduces to the following ridge regression problem

(α̂1 − ỹ1)2 +
K∑

ν=1

(
(α̂2ν − ỹ2ν)2 + (α̂2ν+1 − ỹ2ν+1)2

)
+ λ

K∑

ν=1

(2πν)4
(
α̂2

2ν + α̂2
2ν+1

)
.

(1.12)

The solutions to (1.12) are

α̂1 = ỹ1,

α̂2ν = ỹ2ν|
(
1 + λ(2πν)4

)
, ν = 1, · · · , K,

α̂2ν+1 = ỹ2ν+1|
(
1 + λ(2πν)4

)
, ν = 1, · · · , K . (1.13)

Thus the periodic spline with equally spaced design points is essentially a low-pass
filter: components at frequency ν are down-weighted by a factor of 1 + λ(2πν)4.
The right panel of Fig. 1.3 shows how λ controls the nature of the filter: more high
frequencies are filtered out as λ increases. It is clear from (1.7) and (1.13) that se-
lecting an order for the trigonometric model may be viewed as hard thresholding
and selecting the smoothing parameter for the periodic spline may be viewed as
soft thresholding.

444 Yuedong Wang

LetD = diag(1, 1|(1+λ(2π)4), 1|(1+λ(2π)4),· · ·, 1|(1+λ(2πK)4), 1|(1+λ(2πK)4)).
Then α̂ = Dỹ, and the fit

f̂ λ = XK α̂ =
1

n
XKDX�

K y = A(λ)y ,

where

A(λ) = XKDX�
K |n (1.14)

is the hat (smoother) matrix.
We choose the trigonometric regression and periodic spline models for illustra-

tion because of their simple model indexing: the first has a finite set of consecutive
integers Λ = {0, 1, · · · , K} and the second has a continuous interval Λ = [0,∞].

This chapter is organized as follows. In Sect. 1.2, we discuss the trade-offs
between the goodness-of-fit and model complexity, and the trade-offs between
bias and variance. We also introduce mean squared error as a target criterion. In
Sect. 1.3, we introduce some commonly used model selection methods: AIC, BIC,
Cp, AICc and a data-adaptive choice of the penalty. In Sect. 1.4, we discuss the cross-
validation and the generalized cross-validation methods. In Sect. 1.5, we discuss
Bayes factor and its approximations. In Sect. 1.6, we illustrate potential effects of
heteroscedasticity and correlation on model selection methods. The chapter ends
with some general comments in Sect. 1.7.

Basic Concepts – Trade-Offs1.2

We illustrate in this section that model selection boils down to compromises
between different aspects of a model. Occam’s razor has been the guiding principle
for the compromises: the model that fits observations sufficiently well in the least
complex way should be preferred. Formalization of this principle is, however,
nontrivial.

To be precise on fits observations sufficiently well, one needs a quantity that
measures how well a model fits the data. This quantity is often called the goodness-
of-fit (GOF). Itusually is thecriterionused forestimation,afterdecidingonamodel.
For example, we have used the LS as a measure of the GOF for regression models in
Sect. 1.1. Other GOF measures include likelihood for density estimation problems
and classification error for pattern recognition problems.

To be precise on the least complex way, one needs a quantity that measures the
complexity of a model. For a parametric model, a common measure of model
complexity is the number of parameters in the model, often called the degrees
of freedom (df). For a non-parametric regression model like the periodic spline,
trA(λ), a direct extension from its parametric version, is often used as a measure
of model complexity (Hastie and Tibshirani, 1990). trA(λ) will also be refered
to as the degrees of freedom. The middle panel of Fig. 1.3 depicts how trA(λ)

Model Selection 445

0 10 20 30 40 50 60 70

0
2

4
6

8
10

–10 –8 –6 –4 –2 0

0
10

20
30

40
50

60
70

log10(lambda)
de

gr
ee

s
of

 fr
ee

do
m

0 5 10 15 20 25 30 35

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 1.3. Left: square root of RSS from the trigonometric model (circles) and periodic spline (line)

plotted against the degrees of freedom. Middle: degrees of freedom of periodic spline plotted against

the smoothing parameter on the logarithm base 10 scale. Right: weights of the periodic spline filter,

1|(1 + λ(2πν)4), plotted as a function of frequency ν. Six curves from top down corresponds to six

different λ: 0, 10−8, 10−6, 10−4, 10−2 and ∞

for the periodic spline depends on the smoothing parameter λ. Since there is
an one-to-one correspondence between λ and trA(λ), both of them are used as
model index (Hastie and Tibshirani, 1990). See Gu (1998) for discussions on some
subtle issues concerning model index for smoothing spline models. For some
complicated models such as tree-based regression, there may not be an obvious
measure of model complexity (Ye, 1998). In these cases the generalized degrees of
freedom defined in Ye (1998) may be used. Section 1.3 contains more details on the
generalized degrees of freedom.

To illustrate the interplaybetween theGOFandmodel complexity,wefit trigono-
metric regression models from the smallest model with λ = 0 to the largest model
with λ = K. The square root of residual sum of squares (RSS) are plotted against
the degrees of freedom (= 2λ+ 1) as circles in the left panel of Fig. 1.3. Similarly, we
fit the periodic spline with a wide range of values for the smoothing parameter λ.
Again, we plot the square root of RSS against the degrees of freedom (= trA(λ))
as the solid line in the left panel of Fig. 1.3. Obviously, RSS decreases to zero (in-
terpolation) as the degrees of freedom increases to n. RSS keeps declining almost
linearly after the initial big drop. It is quite clear that the constant model does not
fit data well. But it is unclear which model fits observations sufficiently well.

The previous example shows that the GOF and complexity are two opposite
aspects of a model: the approximation error decreases as the model complexity
increases. On the other hand, the Occam’s razor suggests that simple models
should be preferred to more complicated ones, other things being equal. Our goal
is to find the “best” model that strikes a balance between these two conflicting
aspects. To make the word “best” meaningful, one needs a target criterion which
quantifies a model’s performance. It is clear that the GOF cannot be used as
the target because it will lead to the most complex model. Even though there is
no universally accepted measure, some criteria are widely accepted and used in
practice. We now discuss one of them which is commonly used for regression
models.

446 Yuedong Wang

Let f̂λ be an estimate of the function in model (1.2) based on the model space Mλ.
Let f = (f (t1), · · · , f (tn))� and f̂ λ = (f̂λ(t1), · · · , f̂λ(tn))�. Define the mean squared
error (MSE) by

MSE(λ) = E
(

1

n
|| f̂ λ − f ||2

)
.

We want the estimate f̂λ to be as close to the true function f as possible. Obviously
MSE is the expectation of the Euclidean distance between the estimates and the
true values. L2 distance between f̂λ and f may also be used. MSE can be decomposed
into two components:

MSE(λ) =
1

n
E||(Êf λ − f) + (f̂ λ − Êf λ)||2

=
1

n
E||Êf λ − f ||2 +

2

n
E(Êf λ − f)�(f̂ λ − Êf λ) +

1

n
E||̂f λ − Êf λ||2

=
1

n
||Êf λ − f ||2 +

1

n
E||̂f λ − Êf λ||2

&
= Bias2 + Variance . (1.15)

The Bias2 measures how well the model Mλ approximates the true function f , and
the Variance measures how well the function can be estimated in Mλ . Usually larger
model space leads to smaller Bias2 but larger Variance. Thus, the MSE represents
a trade-off between Bias2 and Variance.

Another closely related target criterion is the average predictive squared error
(PSE)

PSE(λ) = E
(

1

n
||y+ − f̂ λ||2

)
, (1.16)

where y+ = f +ε+ are new observations at the same design points, ε+ = (ε+
1 , · · · , ε+

n)�
are independent of ε, and ε+

i ’s are independent and identically distributed with
mean zero and variance σ2. PSE measures the performance of a model’s prediction
for new observations. We have

PSE(λ) = E
(

1

n
||(y+ − f) + (f − f̂ λ)||2

)
= σ2 + MSE(λ) .

Thus PSE differs from MSE only by a constant σ2. When justifying some criteria
including the Cp in Sect. 1.3, we will ignore a constant σ2. Thus the targets of these
criteria are really PSE rather than MSE.

To illustrate the bias-variance trade-off, we now calculate MSE for the trigono-
metric regression and periodic spline models. For notational simplicity, we assume
that f ∈ MK :

f (t) = α1 +
K∑

ν=1

(
α2ν

√
2 sin 2πνt + α2ν+1

√
2 cos 2πνt

)
. (1.17)

Model Selection 447

Then f = XKα where α = (α1, · · · ,αn)�. From the orthogonality relations (1.6), it is
easy to check that α = X�

K f |n, the discrete Fourier transformation
of f .

Bias-Variance Trade-Off for the Trigonometric Regression. Xλ consists of the first
2λ + 1 columns of the orthogonal matrix XK . Thus X�

λ XK = (nI2λ+1, 0). E(β̂λ) =

X�
λ XKα|n = αλ, where αλ consists of the first 2λ + 1 elements in α. Thus β̂λ is

unbiased. Furthermore,

Bias2 =
1

n
||(In − P(λ))f ||2

=
1

n
|| 1√

n
X�

K

(
In −

1

n
XλX�

λ

)
XKα||2

=
1

n2
||
(

nIn −

(
nI2λ+1 0

0 0

))

α||2

=
K∑

ν=λ+1

(
α2

2ν + α2
2ν+1

)
,

Variance =
1

n
E||P(λ)(y − f)||2 =

σ2

n
trP2(λ) =

σ2

n
(2λ + 1) .

Thus

MSE(λ) =
K∑

ν=λ+1

(
α2

2ν + α2
2ν+1

)
+

1

n
σ2(2λ + 1) .

Remarks
1. Adding the λth frequency terms into the model space reduces the Bias2 by the

amount of (α2
2λ + α2

2λ+1) and increases the Variance by 2σ2|n.
2. The optimal model based on the MSE may not be the true model when σ2 > 0.
3. Assuming α2

2λ + α2
2λ+1 decreases with increasing λ, one should keep adding

frequencies until

α2
2λ + α2

2λ+1 ≤ 2σ2|n. (1.18)

4. Bias2 does not depend on the sample size n and the Variance is inversely
proportional to n. Thus as n increases, more frequencies should be included.

Bias-Variance Trade-Off for Periodic Spline. For the approximate periodic spline
estimator, it is easy to check that E(ỹ) = α, Var(ỹ) = σ2I|n, E(α̂) = Dα, Var(α̂) =
σ2D2, E(f̂ λ) = XK Dα, and Var(f̂ λ) = σ2XKD2X�

K |n. Thus all coefficients are shrunk
to zero except α̂1 which is unbiased. The amount of shinkage is controlled by the

448 Yuedong Wang

smoothing parameter λ. It is straightforward to calculate the Bias2 and Variance
in (1.15).

Bias2 =
1

n
||XKα − XKDα||2 =

1

n
|| 1√

n
X�

K

(
XKα − XK Dα

) ||2

= ||(I − D)α||2 =
K∑

ν=1

(
λ(2πν)4

1 + λ(2πν)4

)2 (
α2

2ν + α2
2ν+1

)
,

Variance =
1

n2
σ2tr

(
XKD2X�

K

)
=
σ2

n
tr(D2)=

σ2

n

(

1 + 2
K∑

ν=1

(
1

1 + λ(2πν)4

)2
)

.

Thus

MSE =
K∑

ν=1

(
λ(2πν)4

1 + λ(2πν)4

)2

(α2
2ν + α2

2ν+1) +
σ2

n

(

1 + 2
K∑

ν=1

(
1

1 + λ(2πν)4

)2
)

.

It is easy to see that as λ increases from zero to infinity, the Bias2 increases from
zero to

∑K
ν=1(α2

2ν + α2
2ν+1) and the Variance decreases from σ2 to σ2|n.

To calculate MSE, one needs to know the true function. We use the following
simulation for illustration. We generate responses from model (1.2) with f (t) =
sin(4πt2) and σ = 0.5. The same design points in the climate data is used: ti =
i|n, i = 1, · · · , n and n = 73. The true function and responses are shown in the left
panel of Fig. 1.4. We compute bν = log(a2

2ν + a2
2ν+1), ν = 1, · · · , K. bν represents the

contribution from frequency ν. In the right panel of Fig. 1.4, we plot bν against
frequency ν with the threshold, log(2σ2|n), marked as the dashed line. Except for
ν = 1, bν decreases as ν increases. Values of bν are above the threshold for the first
four frequencies. Thus the optimal choice is ν = 4.

Bias2,VarianceandMSEareplottedagainst frequency (log10(λ)) for trigonomet-
ric regression (periodic spline) in the left (right) panel of Fig. 1.5. Obviously, as the
frequency (λ) increases (decreases), the Bias2 decreases and the Variance increases.

0.0 0.2 0.4 0.6 0.8 1.0

-1
.5

-0
.5

0.
5

1.
5

0 5 10 15 20 25 30 35

–1
2

–8
–6

–4
–2

frequency

lo
g(

sq
ua

re
d

co
ef

fic
ie

nt
)

Figure 1.4. Left: true function for the simulation (line) and observations (circle). Right: plots of bν ,

ν = 1, · · · , K, as circles and the threshold, log(2σ2|n), as the dashed line

Model Selection 449

2 3 4 5 6

0.
00

0.
05

0.
10

0.
15

–12 –10 –8 –6 –4 –2 0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

log10(lambda)

bi
as

,v
ar

ia
nc

e
an

d
M

S
E

Figure 1.5. Bias2 (dashed lines), Variance (dotted lines) and MSE (solid lines) for trigonometric

regression on the left and periodic spline on the right

The MSE represents a balance between Bias2 and Variance. For the trigonometric
regression, the minimum of the MSE is reached at ν = 4, as expected.

After deciding on a target criterion such as the MSE, ideally one would select
the model to minimize this criterion. This is, however, not practical because the
criterion usually involves some unknown quantities. For example, MSE depends
on the unknown true function f which one wants to estimate in the first place.
Thus one needs to estimate this criterion from the data and then minimize the
estimated criterion. We discuss unbiased and cross-validation estimates of MSE in
Sects 1.3 and 1.4 respectively.

AIC, BIC, Cp and Their Variations 1.3

Let GOF(Mλ) and |Mλ| be measures of the GOF and complexity for model Mλ.
A direct compromise between these two conflicting quantities is

GOF(Mλ) + ξ|Mλ| , (1.19)

where the parameter ξ controls how this compromise should be achieved. Note that
the penalized LS (1.10) may be considered as a special case with the LS regarded as
a measure of GOF and the squared integral regarded as a measure of complexity.

To be concrete, let us consider the regression model (1.2). For a fixed λ, the
estimates are linear, f̂ λ = H(λ)y, where H(λ) = P(λ) for the trigonometric model
and H(λ) = A(λ) for the periodic spline. Suppose that LS is used as the measure of
GOF and |Mλ| = tr(H(λ)). Let us first consider the case when the error variance σ2

is known. Then the criterion (1.19) can be re-expressed as

U(λ, θ) =
1

n
||y − f̂ λ||2 +

θ
n
σ2trH(λ) . (1.20)

450 Yuedong Wang

(1.20) is known as the final prediction error (FPE) criterion (Akaike, 1970). Many
existing model selection methods corresponds to special choices of θ: θ = 2 for
Akaike’s AIC and Mallow’s Cp, and θ = log n for Schwarz’s BIC. The Cp method is
also called the unbiased risk method (UBR) in smoothing spline literature (Wahba,
1990).The followingsimpleargumentprovides themotivationbehind theCp (UBR)
method.

E
(

1

n
||y − f̂ λ||2

)
= E

(
1

n
||y − f ||2 +

2

n
(y − f)�(f − f̂ λ) +

1

n
||f − f̂ ||2

)

= σ2 −
2

n
σ2trH(λ) + MSE(λ). (1.21)

Therefore, ignoring the constant σ2, U(λ, 2) is an unbiased estimate of MSE(λ).
Other choices of θ were motivated from different principles: AIC is an estimate

of the expected Kullback-Leibler discrepancy where the second term in (1.20) is
considered as a bias correction (Burnham and Anderson, 2002) and BIC is an
asymptotic Bayes factor (Sect. 1.5). Since each method was derived with different
motivations, it is not surprising that they have quite different theoretical properties
(Shao, 1997). θ in (1.20) can be considered as a penalty to the model complexity.
A larger penalty (θ) leads to a simpler model. As a result, AIC and Cp perform well
for “complex” true models and poorly for “simple” true models, while BIC does
just the opposite. In practice the nature of the true model, “simple” or “complex”, is
neverknown.Thusadatadrivenchoiceofmodel complexitypenaltyθwouldbede-
sirable. Several methods have been proposed to estimate θ (Rao and Wu, 1989; Rao
and Tibshirani, 1997; Bai et al., 1999; Rao, 1999; Shen and Ye, 2002). We now discuss
Shen and Ye (2002)’s method based on the generalized degrees of freedom. We will
discuss the cross-validation method (Rao and Tibshirani, 1997) in the next section.

Now consider both λ and θ in (1.20) as unknown parameters. Denote λ̂(θ) as the
selected model index based on (1.20) for a fixed θ, and f̂ λ̂(θ) as the estimate based
on the selected model. The dependence on θ is made explicit. We now want to find
θ which minimizes the MSE

MSE(θ) = E
(

1

n
||̂f λ̂(θ) − f ||2

)
.

Again, we need to estimate MSE(θ). As (1.21), we have

E
(

1

n
||y − f̂ λ̂(θ)||2

)
= E

(
1

n
||y − f ||2 +

2

n
(y − f)�

(
f − f̂ λ̂(θ)

)
+

1

n
||f − f̂ λ̂(θ)||2

)

= σ2 −
2

n
σ2g0(θ) + MSE(θ),

where

g0(θ) = Eε�
(

f̂ λ̂(θ) − f
)
|σ2

Model Selection 451

is the generalized degrees of freedom (gdf) defined in Ye (1998). Thus, ignoring
a constant σ2,

G(θ) =
1

n
||y − f̂ λ̂(θ)||2 +

2

n
σ2g0(θ) (1.22)

is an unbiased estimate of MSE(θ). More rigorous justification can be found in Shen
and Ye (2002). Note that λ̂(θ) depends on y. Thus f̂ λ̂(θ) = H(λ̂(θ))y is a non-linear
estimator. Usually g0(θ) ≠ trH(λ̂(θ)). We need to estimate the gdf g0(θ). It can be
shown that (Ye, 1998)

ĝ0(θ) =
∫

δ�̂f λ̂(θ)(y + δ)φτ(δ)dδ

is an approximately unbiased estimate of g0(θ), where δ ∼ N(0, τ2I), φτ(δ) is the
n-dimensional density of N(0, τ2I), and f̂ λ̂(θ)(y + δ) is the fit to the perturbed data
y + δ. Ye (1998) suggested the following Monte Carlo approach to compute ĝ0(θ):
for a fixed θ,
1. draw a n-dimensional sample δ ∼ N(0, τ2I), use the perturbed sample y + δ to

select a model based on (1.20) with fixed θ and calculate the fits f̂ λ̂(θ)(y + δ).
2. Repeating above step T times, one has δt = (δt1 · · · , δtn)� and f̂ λ̂(θ)(y +

δt)
&
= (f̂t1, · · · , f̂tn)�, t = 1, · · · , T.

3. For a fixed i, i = 1, · · · , n, calculate the regression slope ĥi of the following linear
model

f̂ti = µ + ĥiδti, t = 1, · · · , T.

4. Estimate g0(θ) by
∑n

i=1 ĥi.

τ ∈ [0.5σ,σ] is generally a good choice and the results are usually insensitive to
the choice of τ when it is in this region (Ye, 1998). A data-driven choice of θ is the
minimum of (1.22) with g0(θ) replaced by its estimate

∑n
i=1 ĥi (Shen and Ye, 2002).

When σ2 is unknown, one may replace σ2 in (1.20) and (1.22) by a consistent
estimate. Many estimators were proposed in literature (Rice, 1984; Gasser et al.,
1986; Dette et al., 1998; Hall et al., 1990; Donoho and Johnston, 1994). The Rice’s
estimator is one of the simplest. For model (1.2), Rice (1984) proposed to estimate
σ2 by

σ̃2 =
1

2(n − 1)

n∑

i=2

(yi − yi−1)2 .

In the remaining of this chapter, σ2 is replaced by σ̃2 whenever necessary.
Anotheroption,assuming thedistributionofyi’s isknown, is to replaceGOF(Mλ)

in (1.19) by −2 log(maximum likelihood). For the regression models with Gaussian
random errors, this leads to

n log(||y − f̂ λ||2) + θtrH(λ) . (1.23)

452 Yuedong Wang

Again, θ = 2 and θ = log n correspond to AIC and BIC criteria respectively.
The same data-driven procedure discussed above may also be used to select θ.

Derived from asymptotic argument, the AIC method may lead to over-fitting
for small samples (Burnham and Anderson, 2002; Hurvich and Tsai, 1989). The fol-
lowing AICc criterion modifies (1.23) with a second order bias adjustment (Hurvich
and Tsai, 1989)

AICc = n log(||y − f̂ λ||2) + 2trH(λ)
n

n − trH(λ) − 1
.

AICc should be used when the ratio between n and the number of parameters
in the largest candidate model is small, say less than 40 (Burnham and Anderson,
2002). In our trigonometric model, the highest dimension may reach n. Thus we
will use AICc in our computations.

Now consider the trigonometric model. It is easy to check that criterion (1.20)
reduces to

K∑

ν=λ+1

(
ỹ2

2ν + ỹ2
2ν+1

)
+
θ
n
σ2(2λ + 1) .

Thus adding the λth frequency reduces RSS by ỹ2
2λ + ỹ2

2λ+1 and increases the
complexity part by 2θσ2|n. When ỹ2

2λ + ỹ2
2λ+1 decreases with increasing λ, one

should keeping adding frequencies until ỹ2
2λ + ỹ2

2λ+1 ≤ 2θσ2|n. It is not difficult to
see that theCp criterioncorresponds toapplying rule (1.18)withα2

2λ+α2
2λ+1 replaced

by its unbiased estimate ỹ2
2λ + ỹ2

2λ+1 − 2σ2|n. Other data-based thresholding can be
found in Donoho and Johnston (1994), Beran (1996), Zhou and Huang (2004) and
Hinkley (2003).

Fitting trigonometric models to the climate data, we plot scores of AICc, BIC
and Cp criteria as functions of the frequency in the left panel of Fig. 1.6. The
AICc and Cp criteria reach minimum at λ = 2 and the BIC criterion reaches
the minimum at λ = 1. For a grid of θ in the interval [0, log n], we calculate
the optimal λ, λ̂(θ), based on (1.20). We also calculate the estimated gdf using
T = 1000 and τ = 0.75σ̃. The middle panel of Fig. 1.6 shows the estimated gdf

0 5 10 15

15
0

25
0

35
0

45
0

0 1 2 3 4

10
20

30
40

50
60

70

theta

df
 a

nd
 g

df

0 1 2 3 4

0
10

00
20

00
30

00
40

00

Figure 1.6. Left: Scores of AICc , BIC and Cp criteria marked as letters “a”, “b” and “c” respectively.

Middle: degrees of freedom (solid line) and estimated gdf (dashed line). Right: RSS (dotted line),

model complexity part (dashed line) and the G score (solid line) in (1.22)

Model Selection 453

–10 –8 –6 –4 –2 0

40
50

60
70

0.0 0.2 0.4 0.6 0.8 1.0

50
60

70
80

90

time

te
m

pe
r a

tu
re

 (
Fa

hr
en

he
it)

Figure 1.7. Left: Scores of the Cp (UBR), GCV and GML criteria plotted as dotted, solid and dashed

lines respectively. Minimum points are marked with vertical bars. Right: Observations (circles) and

fits from the periodic spline with the UBR (dotted line), GCV (solid line) and GML (dashed line)

choices of smoothing parameter

together with the degrees of freedom based on the selected model, 2̂λ(θ) + 1.
The gdf is intended to account for the extra cost for estimating λ. As expected,
the gdf is almost always larger than the degrees of freedom. The gdf is close
to the degrees of freedom when θ is small or large. In the middle, it can have
significant corrections to the degrees of freedom. Overall, the gdf smoothes out
the corners in the discrete degrees of freedom. The RSS, complexity 2̂g0σ̃2 and
G(θ) are plotted in the right panel of Fig. 1.6. The minimum of G(θ) is reached
at θ = 3.68 with λ̂(3.68) = 2. Trigonometric model fits with λ = 1 and λ = 2 are
shown in Fig. 1.2.

Fitting periodic spline models to the climate data, we plot the Cp (UBR) criterion
in the left panel of Fig. 1.7. Fits with the UBR choice of the smoothing parameter
is shown in the right panel of Fig. 1.7.

Cross-Validation
and Generalized Cross-Validation 1.4

The reason one cannot use the GOF for model selection is that it generally under-
estimates the generalization error of a model (Efron, 1986; Hastie et al., 2002).
For example, (1.21) shows that the RSS under-estimates the PSE by 2σ2trH(λ)|n.
Thus, similar to the correction term in the AIC, the second term in the Cp criterion
corrects this bias. The bias in RSS is a result of using the same data for model
fitting and model evaluation. Ideally, these two tasks should be separated using
independent samples. This can be achieved by splitting the whole data into two
subsamples, a training (calibration) sample for model fitting and a test (validation)
sample for model evaluation. This approach, however, is not efficient unless the
sample size is large. The idea behind the cross-validation is to recycle data by
switching the roles of training and test samples.

454 Yuedong Wang

Suppose that one has decided on a measure of discrepancy for model evaluation,
for example the prediction error. A V-fold cross-validation selects a model as
follows.
1. Split the whole data into V disjoint subsamples S1, · · · , SV .
2. For v = 1, · · · , V , fit model Mλ to the training sample ∪i≠vSi, and compute

discrepancy, dv(λ), using the test sample Sv.
3. Find optimal λ as the minimizer of the overall discrepancy d(λ) =

∑V
v=1 dv(λ).

The cross-validation is a general procedure that can be applied to estimate
tuning parameters in a wide variety of problems. To be specific, we now consid-
er the regression model (1.2). For notational simplicity, we consider the delete-1
(leave-one-out) cross-validation with V = n. Suppose our objective is predic-
tion. Let y−i be the n − 1 vector with the ith observation, yi, removed from
the original response vector y. Let f̂ −i

λ be the estimate based on n − 1 observa-
tions y−i. The ordinary cross-validation (OCV) estimate of the prediction error
is

OCV(λ) =
1

n

n∑

i=1

(yi − f̂ −i
λ (ti))2 . (1.24)

A cross-validation estimate of λ is the minimizer of (1.24). The cross-validation
method was introduced by Allen (1974) (also called PRESS) in the context of linear
regression and by Wahba and Wold (1975) in the context of smoothing splines. To
compute the OCV score, one needs to fit model Mλ n times, once for each delete-
one data y−i. This is computationally intensive. Fortunately, a short-cut exists for
many situations. Let

ỹij =

yj, j ≠ i,

f̂ −i
λ (ti), j = i,

and ỹi = (ỹi1, · · · , ỹin)�. ỹi simply replaces the ith element in y, the one deleted to
get y−i, by f̂ −i

λ (ti). Let f̃ −i
λ be the estimate of f with data ỹi. For many methods such

as the trigonometric regression (linear regression in general) and periodic spline
(smoothing spline in general), we have the following

1 Lemma 1: Leaving-Out-One Lemma f̃ −i
λ (ti) = f̂ −i

λ (ti), i = 1, · · · , n.

See Wahba (1990) and Hastie and Tibshirani (1990) for proofs. Note that even
though it is called the leaving-out-one lemma, similar results hold for the leaving-
out-of-cluster cross-validation (Wang et al., 2000). See also Xiang and Wahba
(1996), Zhang et al. (2002) and Ke and Wang (2002) for the leaving-out-one lemma
for more complicated problems.

Model Selection 455

For trigonometric regression and periodic spline models, f̂ λ = H(λ)y for any y.
Thus when y is replaced by ỹi, we have (f̃ −i

λ (t1), · · · , f̃ −i
λ (tn))� = H(λ)ỹi. Denote the

elements of H(λ) as hij, i, j = 1, · · · , n. Then

f̂λ(ti) =
n∑

j=1

hijyj,

f̂ −i
λ (ti) = f̃ −i

λ (ti) =
n∑

j=1

hijỹj =
∑

j≠i

hijyj + hiîf
−i
λ (ti) .

Combined, we have

f̂λ(ti) − f̂ −i
λ (ti) = hii(yi − f̂ −i

λ (ti)) .

Then it is easy to check that

yi − f̂ −i
λ (ti) = (yi − f̂λ(ti))|(1 − hii) ,

and the OCV reduces to

OCV(λ) =
1

n

n∑

i=1

(
yi − f̂λ(ti)

1 − hii

)2

. (1.25)

Thus one only needs to fit the model once with the full data and compute the
diagonal elements of the H(λ) matrix.

Replacing hii in (1.25) by the average of all diagonal elements, Craven and Wahba
(1979) proposed the following generalized cross-validation (GCV) criterion

GCV(λ) =
1
n

∑n
i=1(yi − f̂λ(ti))2

(1 − trH(λ)|n)2
. (1.26)

It is easy to see that the GCV criterion is a weighted version of OCV with weights
(1−hii)2|(1−trH(λ)|n)2. When trH(λ)|n is small, using the approximation (1−x)2 ≈
1 + 2x,

GCV(λ) ≈ 1

n

n∑

i=1

(yi − f̂λ(ti))2 +
2

n
trH(λ)

[
1

n

n∑

i=1

(yi − f̂λ(ti))2

]

.

Regarding 1
n

∑n
i=1(yi − f̂λ(ti))2 in the second part as an estimate of σ2, the GCV is

approximately the same as the Cp (UBR) criterion. Originally proposed to reduce
the computational burden, the GCV criterion has been found to possess several
favorable properties (Golub et al., 1979; Li, 1985, 1986; 1987, Wahba, 1990; Gu,
2002). Sometimes it is difficult to compute each diagonal element in H(λ) directly.
Nevertheless, it is relatively easy to approximate trH(λ) using the randomized
trace method (Zhang et al., 2002). Thus the GCV criterion may be adopted to
many complicated problems (Xiang and Wahba, 1996; Zhang et al., 2002). The

456 Yuedong Wang

GCV criterion has non-zero probability to select λ = 0 (interpolation) which may
cause problems when the sample size is small. Fortunately, this probability tends
to zero exponentially fast as sample size increases (Wahba and Wang, 1993).

For the trigonometric regression,

hii =
1

n

(

1 +
λ∑

ν=1

2(sin2 2πνti + cos2 2πνti)

)

=
1

n
(1 + 2λ) =

trH(λ)

n
.

For the periodic spline,

hii =
1

n
+

1

n

K∑

ν=1

2(sin2 2πνti + cos2 2πνti)|(1 + λ(2πν)4) =
trD

n
=

trH(λ)

n
.

Thus the OCV and GCV are the same for both cases.
Instead of deleting one observation at a time, one may delete d observations

at a time as described in the V-fold cross-validation. We will call such a method
as delete-d CV. Shao (1997) classified various model selection criteria into the
following three classes:
Class 1: AIC, Cp, delete-1 CV and GCV.
Class 2:Criterion (1.20) with θ → ∞ as n → ∞, and delete-d CV with d|n → 1.
Class 3: Criterion (1.20) with a fixed θ > 2, and delete-d CV with d|n → τ ∈ (0, 1).

BIC is a special case of the Class 2. Shao (1997) showed that the criteria in Class 1
are asymptotically valid if there is no fixed-dimensional correct model and the
criteria in Class 2 are asymptotically valid when the opposite is true. Methods in
Class 3 are compromises of those in Classes 1 and 2. Roughly speaking, criteria in
the first class would perform better if the true model is “complex” and the criteria
in the second class would do better if the true model is “simple”. See also Zhang
(1993) and Shao (1993).

The climate data subset was selected by first dividing 365 days in the year 1990
into 73 five-day periods, and then selecting measurements on the third day in
each period as observations. This is our training sample. Measurements excluding
these selected 73 days may be used as the test sample. This test sample consists
365 − 73 = 292 observations. For the trigonometric model with fixed frequency λ,
we calculate the prediction error using the test sample

PE(λ) =
1

292

292∑

i=1

(yi − f̂λ(si))2 , (1.27)

where si are time points for observations in the test sample. The prediction errors
are plotted in the left panel of Fig. 1.8 where the minimum is reached at λ = 1.
The GCV scores for the trigonometric model is also plotted in the left panel of
Fig. 1.8 where the minimum is reached at λ = 2. The GCV score for the periodic
spline and the corresponding fits are plotted in the left and right panels of Fig. 1.7
respectively. As expected, the GCV scores are similar to the UBR scores.

Model Selection 457

0 5 10 15

30
40

50
60

0 20 40 60 80 100 120

8
9

10
11

12
13

theta

lo
g(

C
V

 s
co

re
)

Figure 1.8. Left: prediction errors (1.27) (marked as “v”) and GCV scores (marked as “c”) for the

trigonometric model. Right: the OCV scores in (1.28) on the logarithm scale

As a general methodology, the cross-validation may also be used to select θ
in (1.20) (Rao and Tibshirani, 1997). Let f̂ −i

λ̂−i(θ)
be the estimate based on the delete-

one data y−i where λ̂−i(θ) is selected using (1.20), also based on y−i. Then the OCV
estimate of prediction error is

OCV(θ) =
1

n

n∑

i=1

(
yi − f̂ −i

λ̂−i(θ)
(ti)

)2
. (1.28)

The minimum of (1.28) provides an estimate of θ. The OCV score for the trigono-
metric model is plotted as a function ofθ in the right panel of Fig. 1.8. The minimum
is reached at a wide range of θ values with λ = 1 or λ = 2.

Bayes Factor 1.5

Let P(Mλ) be the prior probability for model Mλ. For any two models Mλ1 and Mλ2 ,
the Bayes factor

B(λ1, λ2) =
P(Mλ1 |y)

P(Mλ2 |y)
÷ P(Mλ1)

P(Mλ2)
(1.29)

is the posterior odds in favor of model Mλ1 divided by the prior odds in favor of
model Mλ1 (Kass and Raftery, 1995). The Bayes factor provides a scale of evidence
in favor of one model versus another. For example, B(λ1, λ2) = 2 indicates that the
data favor model Mλ1 over model Mλ2 at odds of two to one. Table 1.1 lists a possible
interpretation for Bayes factor suggested by Jeffreys (1961).

The Bayes factor is easy to understand and applicable to a wide range of prob-
lems. Methods based on the Bayes factor behave like an Occam’s razor (Jeffreys and
Berger, 1992). Non-Bayesian analysis typically selects a model and then proceeds
as if the data is generated by the chosen model. Ignoring the fact that the model has
been selected from the same data, this approach often leads to under-estimation
of the uncertainty in quantities of interest, a problem know as the model selection

458 Yuedong Wang

Table 1.1. Jeffreys’ scale of evidence for Bayes factors

Bayes factor Interpretation

B(λ1, λ2) < 1|10 Strong evidence for Mλ2

1|10 < B(λ1, λ2) < 1|3 Moderate evidence for Mλ2

1|3 < B(λ1, λ2) < 1 Weak evidence for Mλ2

1 < B(λ1, λ2) < 3 Weak evidence for Mλ1

3 < B(λ1, λ2) < 10 Moderate evidence for Mλ1

B(λ1, λ2) > 10 Strong evidence for Mλ1

bias (Chatfield, 1995). Specifically, the estimates of parameters based on the select-
ed model are biased and their variances are usually too optimistic. The Bayesian
approach accounts for model uncertainty with the posterior probability P(Mλ|y).
For example, to predict a new observation y+, the best prediction under squared
loss is

E(y+|y) =
∑

λ∈Λ
E(y+|Mλ, y)P(Mλ|y) ,

a weighted average of predictions from all models with weights equal to the pos-
terior probabilities. Instead of using a single model, such model averaging incor-
porates model uncertainty. It also indicates that selecting a single model may not
be desirable or necessary for some applications such as prediction (Hoeting et al.,
1999).

The practical implementation of Bayesian model selection is, however, far from
straightforward. In order to compute the Bayes factor (1.29), ones needs to specify
priors P(Mλ) as well as priors for parameters in each model. While providing
a way to incorporating other information into the model and model selection,
these priors may be hard to set in practice, and standard non-informative priors
for parameters cannot be used (Berger and Pericchi, 1996; Gelman et al., 1995). See
Kass and Raftery (1995), Chipman et al. (2001) and Berger and Pericchi (2001) for
more discussions on the choice of priors.

After deciding on priors, one needs to compute (1.29) which can be re-expressed
as

B(λ1, λ2) =
P(y|Mλ1)

P(y|Mλ2)
, (1.30)

where P(y|Mλ) is the marginal likelihood. The marginal likelihood usually in-
volves an integral which can be evaluated analytically only for some special cases.
When the marginal likelihood does not have a closed form, several methods for
approximation are available including Laplace approximation, importance sam-
pling, Gaussian quadrature and Markov chain Monte Carlo (MCMC) simulations.
Details about these methods are out of the scope of this chapter. References can be
found in Kass and Raftery (1995).

Model Selection 459

Under certain conditions, Kass and Wasserman (1995) showed that

−2 log P(y|Mλ) ≈ −2 log(maximum likelihood) + |Mλ| log n .

Thus the BIC is an approximation to the Bayes factor.
In the following we discuss selection of the smoothing parameter λ for the pe-

riodic spline. Based on (1.30), our goal is to find λ which maximizes the marginal
likelihood P(y|Mλ), or equivalently, P(ỹ|Mλ) where ỹ is the discrete Fourier trans-
formation of y. Note that

ỹ = α + ε̃ , (1.31)

where ε̃ = X�
K ε|n ∼ N(0,σ2I|n). Let b = σ2|nλ. Assume the following prior for α:

α1 ∝ 1,

α2ν ∼ N(0, b(2πν)−4), ν = 1, · · · , K ,

α2ν+1 ∼ N(0, b(2πν)−4), ν = 1, · · · , K , (1.32)

where αi are mutually independent and are independent of ε̃. An improper prior
is assumed for α1. It is not difficult to check that E(α|ỹ) = α̂. Thus the posterior
means of the Bayes model (1.31) and (1.32) are the same as the periodic spline
estimates.

Let z = (ỹ2, · · · , ỹn)� and write P(ỹ|Mλ) = P(ỹ1|Mλ)P(z|Mλ). Since P(ỹ1|Mλ) is
independent of λ, we will estimate λ using the marginal likelihood P(z|Mλ). Since
ỹ2ν or ỹ2ν+1 ∼ N(0, b((2πν)−4 + λ)), the log marginal likelihood of z is

l(b, λ)=−
n − 1

2
log 2π −

n − 1

2
log b −

K∑

ν=1

log[(2πν)−4 + λ] −
1

2b

K∑

ν=1

ỹ2
2ν + ỹ2

2ν+1

(2πν)−4 + λ
.

Fixing λ and maximizing with respect to b, we have

b̂ =
1

n − 1

K∑

ν=1

ỹ2
2ν + ỹ2

2ν+1

(2πν)−4 + λ
.

Plugging back, we have

l(b̂, λ) = constant −
n − 1

2
log

K∑

ν=1

ỹ2
2ν + ỹ2

2ν+1

(2πν)−4 + λ
−

K∑

ν=1

log
[
(2πν)−4 + λ

]
.

Thus maximizing the log likelihood is equivalent to minimizing

M(λ) =
∑K

ν=1(ỹ2
2ν + ỹ2

2ν+1)|((2πν)−4 + λ)
(∏K

ν=1((2πν)−4 + λ)
)2|(n−1)

,

460 Yuedong Wang

It is not difficult to check that

M(λ) =
y�(I − A(λ))y

(
det+(I − A(λ))

)1|(n−1)
, (1.33)

where det+ is the product of non-zero eigenvalues. The criterion (1.33) is called the
generalized maximum likelihood method in smoothing spline literature (Wahba,
1990). It is the same as the restricted maximum likelihood (REML) method in
the mixed effects literature (Wang, 1998). Note that the marginal likelihood is
approximated by plugging-in b̂ rather than averaging over a prior distribution for b.

For the climate data, the GML scores for the periodic spline and the correspond-
ing fits are plotted in the left and right panels of Fig. 1.7 respectively. The fits with
three different choices of the smoothing parameter are very similar.

Impact of Heteroscedasticity
and Correlation1.6

In our climate example we used one fifth of all measurements in the year 1990. Fig-
ure 1.9 shows all measurements in 1990 and periodic spline fits using all measure-
ments with GCV, GML and UBR choices of the smoothing parameter. Obviously
the GCV and UBR criteria under-estimate the smoothing parameter which leads
to wiggly fits. What is causing the GCV and UBR methods to breakdown?

In model (1.2) we have assumed that random errors are iid with mean zero and
variance σ2. The middle panel of Fig. 1.1 indicates that variation of the maximum
temperature is larger during the winter. Also, temperatures close in time may be
correlated. Thus the assumption of homoscedasticity and independence may not
hold. What kind of impact, if any, do these potential violations have on the model
selection procedures?

For illustration, we again consider two simulations with heteroscedastic and
auto-correlated random errors respectively. We use the same function and de-

time

te
m

pe
ra

tu
re

 (
Fa

hr
en

he
it)

50

60

70

80

90

100

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1

Figure 1.9. Points are all measurements in 1990. Lines are the periodic spline estimates. The methods

for selecting the smoothing parameter are indicated in strips

Model Selection 461

sign points as the simulation in Sect. 1.2 with the true function shown in the
left panel of Fig. 1.4. For heteroscedasticity, we generate random errors εi ∼
N(0, ((i + 36.5)|147)2), i = 1, · · · , 73 , where the variance increases with i. For corre-
lation, we generate the εi’s as a first-order autoregressive process with mean zero,
standard deviation 0.5 and first-order correlation 0.5. The first and the second rows
in Fig. 1.10 show the fits by the trigonometric model with cross-validation, BIC
and Cp choices of orders under heteroscedastic and auto-correlated random errors
respectively but without adjustment for the heteroscedasticity or correlation. The
third and the fourth rows in Fig. 1.10 show the fits by the periodic spline with

x

tr
ue

 fu
nc

tio
n,

 o
bs

er
va

tio
ns

 a
nd

 fi
ts

–2

–1

0

1

2

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

0

1

2

0

1

2

0 0.2 0.4 0.6 0.8 1

0

1

2

–2

–1

–2

–1

–2

–1

Figure 1.10. Circles are observations. Dotted lines are true functions. Solid lines are the estimated

functions. Simulation settings and model selection criteria are marked in strips

462 Yuedong Wang

GCV, GML and UBR choices of smoothing parameters under heteroscedastic and
auto-correlated random errors respectively but without adjustment for the het-
eroscedasticity or correlation. These kind of fits are typical under two simulation
settings. The heteroscedasticity has some effects on the model selection, but far
less severe than the impact of auto-correlation. It is well-known that positive auto-
correlation leads to under-smoothing for non-parametric models with data-driven
choices of the smoothing parameter (Wang, 1998; Opsomer et al., 2001). Figure 1.10
shows that the same problem exists for parametric regression models as well.

The breakdown of the GCV and UBR criteria for the climate data is likely caused
by the auto-correlation which is higher when daily measurements are used as
observations. Extensions of the GCV, GML and UBR criteria for correlated data
can be found in Wang (1998).

Discussion1.7

There are many fundamental and philosophical issues in model selection. For
example, a model is usually a simplification or approximation of the complicated
reality. “All models are wrong, but some are useful” (Box, 1976). A selected model
tell us what the finite data are likely to support, not the full reality.

Data analysts are constantlymakingmodel selections (assumptions), conscious-
ly or unconsciously. For example, certain choices have to be made for selecting the
candidate models M (Burnham and Anderson, 2002). The selection methods have
been formalized in the current literature represent only a fraction of the whole
selection process in practice. As a consequence, model selection is considered as
both science and art. Scientific knowledge, empirical evidence, common sense, and
good judgment all play an important role in this process. It is rarely the case that
sufficient information is available to fully specify the model. Thus creative, critical
and careful thinking is required. The problem is often so complicated that one
should not expect to achieve the final model in one attempt, regardless of which
model selection method has been used. Instead, an iterative scheme including
diagnostics suggested by Box and Jenkins (1976) should be used.

Some methods such as cross-validation can be applied to a wide variety of
applications, while others are designed for specific applications. Different methods
have been motivated and justified with different target criteria under different
assumptions. Thus it is unrealistic to expect one method to serve all purposes and
perform uniformly better under all circumstances.

We used prediction criteria including MSE and PSE as examples. This, of course,
does not mean model selection is involved in (or for) prediction only. For example,
another important objective of a model is data description. Identifying risk factors
for diabetes is as important as predicting a person’s chance of having this disease.

Wang and Ke (2002) have developed a user-friendly Spackage, ASSIST, which in-
cludes several functions for fitting various spline based models. The ssr function
in thispackage isused tofitperiodic splinemodels in thischapter.TheASSISTpack-

Model Selection 463

age can be downloaded from http:||www.pstat.ucsb.edu| faculty|yuedong|software.
More details and examples can be found in the manual of the ASSIST package
which also is available at this web-site.

Acknowledgments. This work was supported by NIH Grants R01 GM58533.

References

Akaike, H. (1970). Statistical predictor identification. Ann. Inst. Statist. Math., 21:
203–217.

Akaike, H. (1973). Information theory and the maximum likelihood principle.
International Symposium on Information Theory, eds. V. Petrov and F. Csáki,
Budapest: Akademiai Kiádo, pp. 267–281.

Allen, D. M. (1974). The relationship between variable selection and data augmen-
tation and a method for prediction. Technometrics, 16: 125–127.

Bai, Z. D., Rao, C. R. and Wu, Y. (1999). Model selection with data-oriented penalty.
Journal of Statistical Planning and Inference, 77: 103–117.

Beran, R. (1996). Bootstrap variable selection and confidence sets. In Rie-
der, H. (ed), Robust Statistics, Data Analysis and Computer Intensive Methods,
Springer Lecture Notes in Statistics 109.

Berger, J. O. and Pericchi, L. R. (1996). The intrinsic bayes factor for model selec-
tion and prediction. Journal of the American Statistical Association, 91: 109–
122.

Berger, J. O. and Pericchi, L. R. (2001). Objective bayesian methods for model
selection: Introduction and comparison. In Lahiri, P. (ed), Model Selection,
Institute of Mathematical Statistics Lecture Notes – Monograph Series volume
38, pp.135–207, Beachwood Ohio.

Box, G. E. P. (1976). Science and statistics. Journal of the American Statistical As-
sociation, 71: 791–799.

Box, G. E. P. and Jenkins, G. M. (1976). Time Series Analysis, Holden-Day.
Burnham, K. P. and Anderson, D. R. (2002). Model Selection and Multimodel In-

ference, 2nd ed., Springer, New York.
Chatfield, C. (1995). Model uncertainty, data mining and statistical inference (with

discussion). Journal of the Royal Statistical Society B, 158: 419–466.
Chipman, H., George, E. I. and McCulloch, R. E. (2001). The practical implementa-

tion of bayesian model selection. In Lahiri, P. (ed), Model Selection, Institute of
Mathematical Statistics Lecture Notes – Monograph Series volume 38, pp.65–
134, Beachwood Ohio.

Craven, P. and Wahba, G. (1979). Smoothing noisy data with spline functions.
Numer. Math., 31: 377–403.

Dette, H., Munk, A. and Wagner, T. (1998). Estimating the variance in nonpara-
metric regression – what is a reasonable choice? Journal of the Royal Statistical
Society B, 60: 751–764.

464 Yuedong Wang

Donoho, D. L. and Johnston, I. M. (1994). Ideal spatial adaption by wavelet shrink-
age. Biometrika, 81: 425–456.

Efron, B. (1986). How biased is the apparent error rate of a prediction rule. Journal
of the American Statistical Association, 81: 461–470.

Gasser,T., Sroka,L. and Jennen-Steinmetz,C. (1986).Residual varianceandresidual
pattern in nonlinear regression. Biometrika, 73: 625–633.

Gelman, A., Carlin, J. B., Stern, H. S. and Rubin, D. B. (1995). Bayesian Data
Analysis, Chapman & Hall, Boca Raton.

George, E. I. (2000). The variable selection problem. Journal of the American Sta-
tistical Association, 95: 1304–1308.

Golub,G.,Heath,M.andWahba,G. (1979).Generalizedcrossvalidationasamethod
for choosing a good ridge parameter. Technometrics, 21: 215–224.

Gu, C. (1998). Model indexing and smoothing parameter selection in non-
parametric function estimation (with discussion). Statistica Sinica, 8: 632–
638.

Gu, C. (2002). Smoothing Spline ANOVA Models, Springer-Verlag, New York.
Hall, P.,Kay, J.W.andTitterington,D.M. (1990).Asymptoticallyoptimaldifference-

based estimation of variance in nonparametric regression. Biometrika, 77: 521–
528.

Hastie, T. and Tibshirani, R. (1990). Generalized Additive Models, Chapman and
Hall.

Hastie,T.,Tibshirani,R. andFriedman, J. (2002).The Elements of Statistical Learn-
ing, Springer, New York.

Hinkley, D. (2003). Bootstrap methods for variable selection and shrinkage esti-
matior confidence sets, Personal Communication.

Hoeting, J. A., Madigan, D., Raftery, A. E. and Volinsky, C. T. (1999). Bayesian
model averaging: a tutorial (with discussion). Statistical Science, 14: 382–417.
Corrected version available at
http://www.stat.washington.edu/www/research/online/hoeting1999.pdf.

Hurvich, C. M. and Tsai, C. L. (1989). Regression and time series model selection
in small samples. Biometrika, 76: 297–207.

Jeffreys, H. (1961). Theorey of Probability, Oxford: Clarendon Press.
Jeffreys, W. and Berger, J. O. (1992). Ockham’s razor and bayesian analysis. Ameri-

can Scientist, 80: 64–72.
Kass, R. E. and Raftery, A. (1995). Bayesian factors. Journal of the American Statis-

tical Association, 90: 773–795.
Kass, R. E. and Wasserman, L. (1995). A reference bayesian test for nested hy-

potheses and its relationship to the schwarz criterion. Journal of the American
Statistical Association, 90: 982–934.

Ke, C. and Wang, Y. (2002). Nonparametric nonlinear regression models, Technical
Report # 385, Department of Statistics and Applied Probability, University of
California, Santa Barbara.

Li, K. C. (1985). From Stein’s unbaised risk estimates to the method of generalized
cross-validation. Annals of Statistics, 13: 1352–1377.

Model Selection 465

Li, K. C. (1986). Asymptotic optimality of CL and generalized cross-validation in
ridge regression with application to spline smoothing. Annals of Statistics, 14:
1101–1112.

Li, K. C. (1987). Asymptotic optimality of Cp, CL, cross-validation and generalized
cross-validation: Discrete index set. Annals of Statistics, 15: 958–975.

Linhart, H. and Zucchini, W. (1986). Model Selection, Wiley, New York.
Mallows, C. L. (1973). Some comments on Cp. Technometrics, 12: 661–675.
Miller, A. (2002). Subset Selection in Regression, 2nd ed., Chapman & Hall, New

York.
Opsomer, J., Wang, Y. and Yang, Y. (2001). Nonparametric regression with corre-

lated errors. Statistical Science, 16: 134–153.
Rao, C. R. and Wu, Y. (1989). A strongly consistent procedure for model selection

in a regreesion problem. Biometrika, 76: 369–374.
Rao, J. S. (1999). Bootstrap choice of cost complexity for better subset selection.

Statistica Sinica, 9: 273–287.
Rao, J. S. and Tibshirani, R. (1997). Discussion to “an asympototic theory for model

selection” by Jun Shao. Statistica Sinica, 7: 249–252.
Rice, J. A. (1984). Bandwidth choice for nonparametric regression. Annals of Statis-

tics, 12: 1215–1230.
Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 12:

1215–1231.
Shao, J. (1993). Linear model selection by cross-validation. Journal of the American

Statistical Association, 88: 486–494.
Shao, J. (1997). An asymptotic theory for linear model selection (with discussion),

Statistica Sinica, 7: 221–264.
Shen, X. and Ye, J. (2002). Adaptive model selection. Journal of the American Sta-

tistical Association, 97: 210–221.
Stone, M. (1974). Cross-validatory choice and assessment of statistical prediction,

Journal of the Royal Statistical Society B, 36: 111–147.
Wahba, G. (1990). Spline Models for Observational Data, SIAM, Philadelphia.

CBMS-NSF Regional Conference Series in Applied Mathematics, Vol. 59.
Wahba, G. and Wang, Y. (1993). Behavior near zero of the distribution of GCV

smoothing parameter estimates for splines. Statistics and Probability Letters,
25: 105–111.

Wahba, G. and Wold, S. (1975). A completely automatic french curve. Communica-
tions in Statistics, 4: 1–17.

Wang, Y. (1998). Smoothing spline models with correlated random errors. Journal
of the American Statistical Association, 93: 341–348.

Wang, Y. and Ke, C. (2002). ASSIST: A suite of s-plus functions implementing
spline smoothing techniques, Manual for the ASSIST package. Available at
http://www.pstat.ucsb.edu/faculty/yuedong/software.

Wang,Y.,Guo,W.andBrown,M.B. (2000). Spline smoothing forbivariatedatawith
applications to association between hormones. Statistica Sinica, 10: 377–397.

Xiang, D. and Wahba, G. (1996). A genralized approximate cross validation for
smoothing splines with non-gaussian data. Statistica Sinica, 6: 675–692.

466 Yuedong Wang

Yang, Y. (1999). Model selection for nonparametric regression. Statistica Sinica, 9:
475–499.

Ye, J. (1998). On measuring and correcting the effects of data mining and model
selection. Journal of the American Statistical Association, 93: 120–131.

Zhang, H., Wahba, G., Lin, Y., Voelker, M., Ferris, M., Klein, R. and Klein, B. (2002).
Variable selection and model building via likelihood basis pursuit, Technical
Report No. 1059, Department of Statistics, University of Wisconsin.

Zhang, P. (1993).Model selectionviamultifold cross validation.Annals of Statistics,
21: 299–313.

Zhou, H. and Huang, J. T. (2004). Shrinkage estimation toward the data chosen
reduced model with applications to wavelet analysis and principal component
regression analysis. Annals of Statistics, to appear.

III.2Bootstrap and Resampling
Enno Mammen, Swagata Nandi

2.1 Introduction . 469

2.2 Bootstrap as a Data Analytical Tool . 473

2.3 Resampling Tests and Confidence Intervals . 479

2.4 Bootstrap for Dependent Data . 484

The Subsampling. 484
The Block Bootstrap . 485
The Sieve Bootstrap . 486
The Nonparametric Autoregressive Bootstrap. 487
The Regression-type Bootstrap, the Wild Bootstrap
and the Local Bootstrap . 487
The Markov Bootstrap. 489
The Frequency Domain Bootstrap. 490

468 Enno Mammen, Swagata Nandi

Introduction2.1

The bootstrap is by now a standard method in modern statistics. Its roots go back
to a lot of resampling ideas that were around in the seventies. The seminal work
of Efron (1979) synthesized some of the earlier resampling ideas and established
a new framework for simulation based statistical analysis. The idea of the bootstrap
is to develop a setup to generate more (pseudo) data using the information of the
original data. True underlying sample properties are reproduced as closely as
possible and unknown model characteristics are replaced by sample estimates.

In its basic nature the bootstrap is a data analytic tool. It allows to study the
performance of statistical methods by applying them repeatedly to bootstrap pseu-
do data (“resamples”). The inspection of the outcomes for the different bootstrap
resamples allows the statistician to get a good feeling on the performance of the
statistical procedure. In particular, this concerns graphical methods. The random
nature of a statistical plot is very difficult to be summarized by quantitative ap-
proaches. In this respect data analytic methods differ from classical estimation
and testing problems. We will illustrate data analytic uses of the bootstrap in the
next section.

Most of the bootstrap literature is concerned with bootstrap implementations of
tests and confidence intervals and bootstrap applications for estimation problems.
It has been argued that for these problems bootstrap can be better understood if
it is described as a plug-in method. Plug-in method is an approach used for the
estimation of functionals that depend on unknown finite or infinite dimensional
model parameters of the observed data set. The basic idea of plug-in estimates is to
estimate these unknown parameters and to plug them into the functional. A wide
known example is the plug-in bandwidth selector for kernel estimates. Asymptoti-
cal optimalbandwidths typicallydepende.g. onaveragesofderivativesofunknown
curves (e.g. densities, regression functions), residual variances, etc. Plug-in band-
width selectors are constructed by replacing these unknown quantities by finite
sample estimates. We now illustrate why the bootstrap can be understood as a plug-
in approach. We will do this for i.i.d. resampling. This is perhaps the most simple
version of the bootstrap. It is applied to an i.i.d. sample X1, … , Xn with underlying
distribution P. I.i.d. resamples are generated by drawing n times with replacement
from the original sample X1, … , Xn. This gives a resample X∗

1 , … , X∗
n . More for-

mally, the resample is constructed by generating X∗
1 , … , X∗

n that are conditionally
independent (given the original data set) and have conditional distribution P̂n.
Here P̂n denotes the empirical distribution. This is the distribution that puts mass
1|n on each value of X1, … , Xn in case that all observations have different values (or
more generally, mass j|n on points that appear j times in the sample), i.e. for a set A
we have P̂n(A) = n−1

∑n
i=1 I(Xi ∈ A) where I denotes the indicator function. The

bootstrap estimate of a functional T(P) is defined as the plug-in estimate T (̂Pn).
Let us consider the mean µ(P) =

∫
xP(dx) as a simple example. The bootstrap

estimate of µ(P) is given by µ(̂Pn). Clearly, the bootstrap estimate is equal to the
sample mean Xn = n−1

∑n
i=1 Xi. In this simple case, simulations are not needed to

Bootstrap and Resampling 469

calculate the bootstrap estimate. Also in more complicated cases it is very helpful
to distinguish between the statistical performance and the algorithmic calculation
of the bootstrap estimate. In some cases it may be more appropriate to calculate the
bootstrap estimate by Monte-Carlo simulations, in other cases powerful analytic
approaches may be available. The discussion which algorithmic approach is prefer-
able should not be mixed up with the discussion of the statistical properties of the
bootstrap estimate. Perhaps, clarification of this point is one of the major advan-
tages of viewing the bootstrap as a plug-in method. Let us consider now a slightly
more complicated example. Suppose that the distribution of

√
n[Xn − µ(P)] is our

functional Tn(P) = T(P) that we want to estimate. The functional now depends
on the sample size n. The factor

√
n has been introduced to simplify asymptotic

considerations following below. The bootstrap estimate of Tn(P) is equal to Tn(̂Pn).
This is the conditional distribution of

√
n[X

∗
n − µ(̂Pn)] =

√
n(X

∗
n − Xn), given the

original sample X1, … , Xn. In this case the bootstrap estimate could be calculated
by Monte-Carlo simulations. Resamples are generated repeatedly, say m-times, and
for the j-th resample the bootstrap statistic ∆j =

√
n(X

∗
n − Xn) is calculated. This

gives m values ∆1, … ,∆m. Now the bootstrap estimate Tn(̂Pn) is approximated by
the empirical distribution of these m values. E.g. the quantiles of the distribu-
tion Tn(P) of

√
n[Xn − µ(P)] are estimated by the sample quantiles of ∆1, … ,∆m.

The bootstrap quantiles can be used to construct “bootstrap confidence intervals”
for µ(P). We will come back to bootstrap confidence intervals in Sect. 2.3.

There are two other advantages of the plug-in view of the bootstrap. First,
the estimate of P that is plugged into the functional Tn could be replaced by
other estimates. For example if one is willing to assume that the observations have
a symmetricdistributionaround theirmeanonecould replace P̂n bya symmetrized
version. Or if one is using a parametric model {Pθ : θ ∈ Θ} for the observations one
could use Pθ̂ where θ̂ is an estimate of the parameter θ. In the latter case one also
calls the procedure parametric bootstrap. In case that the parametric model holds
one may expect a better accuracy of the parametric bootstrap whereas, naturally,
the “nonparametric” bootstrap is more robust against deviations from the model.
We now come to another advantage of the plug-in view. It gives a good intuitive
explanation when the “bootstrap works”. One says that the bootstrap works or
bootstrap is consistent if the difference between Tn(̃Pn) and Tn(P), measured by
some distance, converges to zero. Here P̃n is some estimate of P. The Bootstrap
will work when two conditions hold:
(1) The estimate P̃n is a consistent estimate of P, i.e. P̃n converges to P, in some

appropriate sense.
(2) The functionals Tn are continuous, uniformly in n.

Consistency of the bootstrap has been proved for a broad variety of models
and for a large class of different bootstrap resampling schemes. Typically for the
proofs another approach has been used than (1) and (2). Using asymptotic theory
often one can verify that Tn(̃Pn) and Tn(P) have the same limiting distribution, see
Bickel and Freedman (1981) for one of the first consistency proofs for the bootstrap.
In our example if the observations have a finite variance σ2(P) then both Tn(̃Pn)

470 Enno Mammen, Swagata Nandi

and Tn(P) have a limiting normal limit N(0,σ2(P)). For a more general discussion
of the approach based on (1) and (2), see also Beran and Ducharme (1991). The
importance of (1) and (2) also lies in the fact that it gives an intuitive reasoning
when the bootstrap works. For a recent discussion if assumption (2) is necessary
see also Inoue and Kilian (2003).

There exist bootstrap methods that cannot be written or interpreted as plug-
in estimates. This concerns different bootstrap methods where random weights
are generated instead of random (pseudo) observations (see Bose and Chatterjee,
2002). Or this may happen in many applications where the data model is not fully
specified. Important examples are models for dependent data. Whereas classical
parametric time series models specify the full dimensional distribution of the
complete data vector, some non- and semi-parametric models only describe the
distribution of neighbored observations. Then the full data generating process is
not specified and a basic problem arises how bootstrap resamples should be gener-
ated. There are some interesting proposals around and the research on bootstrap
for dependent data is still going on. We give a short introduction to this topic in
Sect. 2.4. It is a nice example of an active research field on the bootstrap.

Several reasons have been given why the bootstrap should be applied. The
Bootstrap can be compared with other approaches. In our example the classical
approach would be to use the normal approximation N(0,σ2(̂Pn)). It has been
shown that the bootstrap works if and only if the normal approximation works,
see Mammen (1992a). This even holds if the observations are not identically dis-
tributed. Furthermore, one can show that the rate of convergence of both the
bootstrap and the normal approximation is n−1|2. This result can be shown by
using Edgeworth expansions. We will give a short outline of the argument. The
distribution function F(x) = P(

√
n[Xn − µ(P)] ≤ x) can be approximated by

Φ
(

x

σ(P)

)
−

1

6
√

n

µ3(P)

σ(P)3

[(
x

σ(P)

)2

− 1

]

φ
(

x

σ(P)

)
.

Here, Φ is the distribution function of a standard normal distribution and φ is its
density. µ3(P) = E[Xi −µ(P)]3 is the third centered moment of the observations Xi.
Under regularity conditions this approximation holds with errors of order O(n−1).
For the bootstrap estimate of F a similar expansion can be shown where σ(P) and
µ3(P) are replaced by their sample versions σ(̂Pn) and µ3(̂Pn) = n−1

∑n
i=1(Xi − Xn)3

Φ
(

x

σ(̂Pn)

)
−

1

6
√

n

µ3(̂Pn)

σ(̂Pn)3

[(
x

σ(̂Pn)

)2

− 1

]

φ
(

x

σ(̂Pn)

)
.

The difference between the bootstrap estimate and F is of order n−1|2 because the
first order terms Φ(x|σ(P)) and Φ(x|σ(̂Pn)) differ by a term of order OP(n−1|2)
as the same holds for σ(P) and σ(̂Pn). Thus there seems to be no asymptotic
advantage in using the bootstrap compared to the classical normal approximation
although the skewness of the distribution is accurately mimicked by the bootstrap.
However, if the functional Tn is replaced by the distribution of the studentized

Bootstrap and Resampling 471

statistic
√

nσ(̂Pn)−1(Xn − µ(P)) then the bootstrap achieves a rate of convergence
of order n−1 whereas the normal approximation N(0, 1) still only has a rate of
accuracy of order n−1|2. Again, this can be easily seen by Edgeworth expansions.
For the distribution function of the studentized statistic the following expansion
holds with accuracy O(1|n).

Φ(x) +
1

6
√

n

µ3(P)

σ(P)3

[
2x2 + 1

]
φ(x) .

The normal approximation Φ(x) differs from this expansion by terms of order
O(n−1|2). For the bootstrap estimate one gets the following expansion with error
terms of order O(1|n).

Φ(x) +
1

6
√

n

µ3(̂Pn)

σ(̂Pn)3

[
2x2 + 1

]
φ(x) .

This approximates the distribution function of the studentized statistic with ac-
curacy OP(n−1) because µ3(̂Pn) − µ3(P) = OP(n−1|2) and σ(̂Pn) − σ(P) = OP(n−1|2).
That means in this case the classical normal approximation is outperformed by the
bootstrap. This result for studentized statistics has been used as the main asymp-
totic argument for the bootstrap. It has been verified for a large class of models
and resampling methods. For a rigorous and detailed discussion see Hall (1992).

There also exist some other arguments in favor of the bootstrap. For linear
modelswith increasingdimension it hasbeen shown inBickel andFreedman (1983)
and Mammen (1989,1992b,1993) that the bootstrap works under weaker conditions
than the normal approximation. These results have been extended to more general
sequences of models and resampling schemes, see Bose and Chatterjee (2002) and
references cited therein. These results indicate that the bootstrap still may give
reasonable results even when the normal approximation does not work. For many
applications this type of result may be more important than a comparison of higher
order performances. Higher order Edgeworth expansions only work if the simple
normal approximation is quite reasonable. But then the normal approximation
is already sufficient for most statistical applications because typically not very
accurate approximations are required. For example an actual level .06 instead of
an assumed level .05 may not lead to a misleading statistical analysis. Thus one
may argue that higher order Edgeworth expansions can only be applied when
they are not really needed and for these reasons they are not the appropriate
methods for judging the performance of the bootstrap. On the other hand no
other mathematical technique is available that works for such a large class of
problems as the Edgeworth expansions do. Thus there is no general alternative
way for checking the accuracy of the bootstrap and for comparing it with normal
approximations.

The Bootstrap is a very important tool for statistical models where classical
approximations are not available or where they are not given in a simple form.
Examples arise e.g. in the construction of tests and confidence bands in nonpara-
metric curve estimation. Here approximations using the central limit theorem lead

472 Enno Mammen, Swagata Nandi

to distributions of functionals of Gaussian processes. Often these distributions are
not explicitly given and must be calculated by simulations of Gaussian processes.
We will give an example in the next section (number of modes of a kernel smoother
as a function of the bandwidth). Compared with classical asymptotic methods the
bootstrap offers approaches for a much broader class of statistical problems.

By now, the bootstrap is a standard method of statistics. It has been discussed
in a series of papers, overview articles and books. The books Efron (1982), Efron
and Tibshirani (1993) and Davison and Hinkley (1997) give a very insightful intro-
duction into possible applications of the bootstrap in different fields of statistics.
The books Beran and Ducharme (1991) and Mammen (1992b) contain a more
technical treatment of consistency of the bootstrap, see also Gine (1997). Higher
order performance of the bootstrap is discussed in the book Hall (1992). The book
Shao and Tu (1995) gives a rather complete overview on the theoretical results
on the bootstrap in the mid-nineties. The book Politis, Romano, and Wolf (1999)
gives a complete discussion of the subsampling, a resampling method where the
resample size is smaller than the size of the original sample. The book Lahiri
(2003b) discusses the bootstrap for dependent data. Some overview articles are
contained in Statistical Science (2003), Vol. 18, Number 2. Here, Efron (2003) gives
a short (re)discussion of bootstrap confidence intervals, Davison, Hinkley and
Young (2003) report on recent developments of the bootstrap, in particular in
classification, Hall (2003) discusses the roots of the bootstrap, and Boos (2003)
and Beran (2003) give a short introduction to the bootstrap, and other articles
give an overview over recent developments of bootstrap applications in different
fields of statistics. Overview articles over special bootstrap applications have been
given for sample surveys (Shao, 1996, 2003 and Lahiri, 2003a), for econometrics
(Horowitz, 1997, 2001, 2003a), nonparametric curve estimation (Härdle and Mam-
men, 1991, Mammen, 2000), estimating functions (Lele, 2003) and time series
analysis (Bühlmann, 2002, Härdle, Horowitz and Kreiss, 2003, Politis, 2003).

Bootstrap as a Data Analytical Tool2.2

In a data analysis the statistician wants to get a basic understanding of the stochas-
tic nature of the data. For this purpose he|she applies several data analytic tools
and interprets the results. A basic problem of a data analysis is over-interpretation
of the results after a battery of statistical methods has been applied. A similar
situation occurs in multiple testing but there exist approaches to capture the joint
stochastics of several test procedures. The situation becomes more involved in
modern graphical data analysis. The outcomes of a data analytic tool are plots
and the interpretation of the data analysis relies on the interpretation of these
(random) plots. There is no easy way to have an understanding of the joint dis-
tribution of the inspected graphs. The situation is already complicated if only one
graph is checked. Typically it is not clearly specified for which characteristics the
plot is checked. We will illustrate this by a simple example. We will argue that

Bootstrap and Resampling 473

the bootstrap and other resampling methods offer a simple way to get a basic
understanding for the stochastic nature of plots that depend on random data. In
the next section we will discuss how this more intuitive approach can be trans-
lated into the formal setting of mathematical decision theoretical statistics. Our
example is based on the study of a financial time series. Figure 2.1 shows the
daily values of the German DAX index from end of 1993 until November 2003.
In Fig. 2.2 mean-corrected log returns are shown. Logreturns for a series xt are
defined as log xt − log xt−1. Mean-corrected logreturns rt are defined as this dif-
ference minus its sample average. Under the Black-Sholes model the logreturns
rt are i.i.d. It belongs to folklore in finance that this does not hold. We now il-
lustrate how this could be seen by application of resampling methods. Figure 2.3
shows a plot of the same logreturns as in Fig. 2.2 but with changed order. The
logreturns are plotted against a random permutation of the days. The clusters
appearing in Fig. 2.2 dissappear. Figure 2.3 shows that these clusters could not
be explained by stochastic fluctuations. The same story is told in Fig. 2.4. Here
a bootstrap sample of the logreturns is shown. Logreturns are drawn with replace-
ment from the set of all logreturns (i.i.d. resampling) and they are plotted in the
order as they were drawn. Again the clusters disappear and the same happens
for typical repetitions of random permutation or bootstrap plots. The clusters
in Fig. 2.2 can be interpreted as volatility clusters. The volatility of a logreturn
for a day is defined as the conditional variance of the logreturn given the logre-
turns of all past days. The volatilities of neighbored days are positively correlated.
This results in volatility clusters. A popular approach to model the clusters are

Figure 2.1. Plot of DAX data

Figure 2.2. 1-lag mean-corrected logreturn of the DAX data

474 Enno Mammen, Swagata Nandi

Figure 2.3. Random permutation of the data in Fig. 2.2

Figure 2.4. Nonparametric bootstrap sample of the data in Fig. 2.2

GARCH (Generalized Autoregressive Conditionally Heteroscedastic) models. In
the GARCH(1,1) specification one assumes that rt = σtεt where εt are i.i.d. errors
with mean zero and variance 1 and where σ2

t is a random conditional variance
process fulfilling σ2

t = a0 + a1σ2
t−1 + b1r2

t−1. Here a0, a1 and b1 are unknown pa-
rameters. Figure 2.5 shows a bootstrap realization of a fitted GARCH(1,1) model.
Fitted parameters â0, â1 and b̂1 are calculated by a quasi-likelihood method (i.e.
likelihood method for normal εt). In the bootstrap resampling the errors εt are
generated by i.i.d. resampling from the residuals rt |̂σt where σ̂2

t is the fitted volatil-
ity process σ̂2

t = â0 + â1σ̂2
t−1 + b̂1r2

t−1. An alternative resampling would to generate
normal i.i.d. errors in the resampling. This type of resampling is also called para-
metric bootstrap. At first sight the volatility clusters in the parametric bootstrap
have similar shape as in the plot of the observed logreturns. Figure 2.6 shows local
averages m̂(t) over squared logreturns. We have chosen m̂(t) as Nadaraya–Watson
estimate m̂h(t) = [

∑N
s=1 K{(s − t)|h}r2

t]|[
∑N

s=1 K{(s − t)|h}]. We used a Gaussian
kernel K and bandwidth h = 5 days. Figures 2.7–2.9 show the corresponding plots
for the three resampling methods. Again the plots for random permutation resam-
pling and nonparametric i.i.d. bootstrap qualitatively differ from the plot for the
observed time series (Figs. 2.7 and 2.8). In Fig. 2.9 the GARCH bootstrap shows
a qualitatively similar picture as the original logreturns ruling again not out the
GARCH(1,1) model.

As a last example we consider plots that measure local and global shape charac-
teristics of the time series. We consider the number of local maxima of the kernel
smoother m̂h as a function of the bandwidth h. We compare this function with the
number of local maxima for resamples. Figures 2.10–2.12 show the correspond-

Bootstrap and Resampling 475

Figure 2.5. GARCH(1,1) bootstrap sample of the data in Fig. 2.2

Figure 2.6. Plot of kernel smooth of squared logreturns from the data in Fig. 2.2

Figure 2.7. Plot of kernel smooth of squared logreturns from the data in Fig. 2.3

ing plots for the permutation resampling, the nonparametric bootstrap and the
GARCH(1,1) bootstrap. The plot of the original data set is always compared with
the plots for 10 resamples. Again i.i.d. structures are not supported by the resam-

476 Enno Mammen, Swagata Nandi

Figure 2.8. Plot of kernel smooth of squared logreturns from the data in Fig. 2.4

Figure 2.9. Plot of kernel smooth of squared logreturns from the data in Fig. 2.5

pling methods. GARCH(1,1) bootstrap produces plots that are comparable to the
original plot.

The last approachcouldbe formalized toa testprocedure.This coulde.g. bedone
by constructing uniform resampling confidence bands for the expected number
of local maxima. We will discuss resampling tests in the next section. For our last
example we would like to mention that there seems to be no simple alternative to
resampling. An asymptotic theory for the number of maxima that could be used
for asymptotic confidence bands is not available (to our knowledge) and it would
be rather complicated. Thus, resampling offers an attractive way out. It could be
used for a more data analytic implementation as we have used it here. But it could
also be used for getting a formal test procedure.

The first two problems, discussed in Figs. 2.1–2.9, are too complex to be for-
malized as a testing approach. It is impossible to describe for what differences

Bootstrap and Resampling 477

Figure 2.10. Number of local maxima of kernel smoother m̂h of squared mean-corrected logreturns of

DAX data from Fig. 2.1 (black line) compared with number of local maxima for 10 random

permutation resamples (dashed lines)

Figure 2.11. Number of local maxima of kernel smoother m̂h of squared mean-corrected logreturns of

DAX data from Fig. 2.1 (black line) compared with number of local maxima for 10 nonparametric

bootstrap resamples (dashed lines)

the human eye is looking in the plots and to summarize the differences in one
simple quantity that can be used as a test statistic. The eye is using a bat-
tery of “tests” and it is applying the same or similar checks for the resamples.

478 Enno Mammen, Swagata Nandi

Figure 2.12. Number of local maxima of kernel smoother m̂h of squared mean-corrected logreturns of

DAX data from Fig. 2.1 (black line) compared with number of local maxima for GARCH(1,1)

bootstrap resamples (dashed lines)

Thus, resampling is a good way to judge statistical findings based on the original
plots.

Resampling Tests
and Confidence Intervals2.3

In the last section we have pointed out how resampling can offer additional insights
in a data analysis. We now want to discuss applications of bootstrap that are more
in the tradition of classical statistics. We will introduce resampling approaches for
the construction of confidence intervals and of testing procedures. The majority of
the huge amount of the bootstrap literature is devoted to these topics. There exist
two basic approaches for the construction of confidence regions:

bootstrapping asymptotic pivots, bootstrap-t intervals
confidence intervals based on bootstrap percentiles

We will outline both methods below. There also exist two basic approaches for the
construction of resampling tests:

resampling from the hypothesis
conditional tests

We will discuss testing after confidence intervals.

Bootstrap and Resampling 479

Approaches based on pivot statistics are classical methods for the construction
of confidence sets. In a statistical model {Pθ : θ ∈ Θ} a pivot statistic is a random
quantity Q = Q(θ, X) that depends on the unknown parameter θ and on the
observation (vector) X and that has the following property. The distribution of Q
under Pθ does not depend on θ. Thus the distribution of Q is known and one
can calculate quantiles q1,α, q2,α such that Pθ{q1,α ≤ Q(θ, X) ≤ q2,α} = 1 − α.
Then Cα = {θ ∈ Θ : q1,α ≤ Q(θ, X) ≤ q2,α} is a confidence set of the unknown
parameter θ with coverage probability P(θ ∈ Cα) = 1 − α. Classical examples are
i.i.d. normal observations Xi with mean µ and variance σ2. Then Q = (X − µ)|̂σ is
a pivot statistic. Here X is the sample mean and σ̂2 = (n − 1)−1

∑n
i=1(Xi − X)2 is

the sample variance. Then we get, e.g. Cα = [X − n−1|2k1−α|2σ̂, X + n−1|2k1−α|2σ̂] is
a confidence interval for µ with exact coverage probability 1 − α. Here k1−α|2 is the
1 − α|2 quantile of the t-distribution with n − 1 degrees of freedom.

Pivot statistics only exist in very rare cases. However for a very rich class of
settings one can find statistics Q = Q(θ, X) that have a limiting distribution L(θ)
that smoothly depends on θ. Such statistics are called asymptotic pivot statistics. If
now q1,α, q2,α arechosensuch thatunderL(̂θ) the interval [q1,α, q2,α] hasprobability
1 −α then we get that P(θ ∈ Cα) converges to 1 −α. Here θ̂ is a consistent estimate
of θ and the confidence set Cα is defined as above. A standard example can be easily
given if an estimate τ̂ of a (one-dimensional, say) parameter τ = τ(θ) is given that is
asymptotically normal. Then

√
n(̂τ−τ) converges in distribution towards a normal

limit with mean zero and variance σ2(θ) depending on the unknown parameter θ.
Here Q =

√
n(̂τ−τ) or the studentized version Q =

√
n(̂τ−τ)|σ(̂θ) with a consistent

estimate θ̂ of θ could be used as asymptotic pivot. Asymptotic pivot confidence
intervals are based on the quantiles of the asymptotic distribution L of Q. The
bootstrap idea is to simulate the finite sample distribution Ln(θ) of the pivot
statistic Q instead of using the asymptotic distribution of Q. This distribution
depends on n and on the unknown parameter θ. The bootstrap idea is to estimate
the unknown parameter and to plug it in. Then bootstrap quantiles for Q are
defined as the (random) quantiles of Ln(̂θ). For the unstudentized statistic Q =√

n(̂τ− τ) we get the bootstrap confidence interval [̂τ− n−1|2̂q2,α, τ̂− n−1|2̂q1,α] where
q̂1,α is the α|2 bootstrap quantile and q̂2,α is the 1 − α|2 bootstrap quantile. This
confidence interval has an asymptotic coverage probability equal to 1 −α. We want
to illustrate this approach by the data example of the last section. Suppose we fit
a GARCH(1,1) model to the logreturns and we want to have a confidence interval
for τ = a1 +b1. It is known that a GARCH(1,1) process is covariance stationary if and
only if |τ| < 1. For values of τ that approximate 1, one gets a very high persistency
of shocks on the process. We now construct a bootstrap confidence interval for τ.
We used Q =

√
n(̂τ − τ) as asymptotic pivot statistic. The results are summarized

in Table 2.1.
We also applied the GARCH(1,1) bootstrap to the first half and to the second

half of our data set. The results are summarized in Table 2.2. The value of τ̂ is quite
similar for both halves. The fitted parameter is always contained in the confidence
interval based on the other half of the sample. Both confidence intervals have
a broad overlap. So there seems no reason to expect different values of τ for the

480 Enno Mammen, Swagata Nandi

Table 2.1. Estimate of a1 + b1 and 90% bootstrap confidence interval using GARCH(1,1) bootstrap

(asymptotic pivot method)

â1 + b̂1 Confidence lower bound Upper bound

0.9919 0.9874 0.9960

two halves of the data. The situation becomes a little bit confused if we compare
Table 2.2 with Table 2.1. Both fitted values of τ, the value for the first half and for
the second half, are not contained in the confidence interval that is based on the
whole sample. This suggests that a GARCH(1,1) model with fixed parameters for the
whole sample is not an appropriate model. A model with different values seems to
be more realistic. When for the whole time series a GARCH(1,1) model is fitted the
change of the parameters in time forces the persistency parameter τ closer to 1 and
this effect increases for GARCH fits over longer periods. We do not want to discuss
this point further here and refer to Mikosch and Starica (2002) for more details.

Table 2.2. Estimate of a1 + b1 and 90% bootstrap-t confidence interval using GARCH(1,1) bootstrap

for the first half and for the second half of the DAX returns (asymptotic pivot method)

â1 + b̂1 Confidence lower bound Upper bound

Using Part I 0.9814 0.9590 0.9976

Using Part II 0.9842 0.9732 0.9888

In Efron (1979) another approach for confidence intervals was suggested. It
was supposed to use the bootstrap quantiles of a test statistic directly as bounds
of the bootstrap confidence intervals. In our example then the estimate τ̂ has to
be calculated repeatedly for bootstrap resamples and the 5% and 95% empirical
quantiles are used as lower and upper bound for the bootstrap confidence intervals.
It can be easily checked that we then get [̂τ + n−1|2̂q1,α, τ̂ + n−1|2̂q2,α] as bootstrap
confidence interval where the quantiles q̂1,α and q̂2,α are defined as above, see also
Efron and Tibshirani (1993). Note that the interval is just reflected around τ̂. The
resulting confidence interval for τ is shown in Table 2.3. For asymptotic normal test
statistics both bootstrap confidence intervals are asymptotically equivalent. Using
higher order Edgeworth expansions it was shown that bootstrap pivot intervals
achieve a higher order level accuracy. Modifications of percentile intervals have
beenproposed that achieve level accuracyof the sameorder, seeEfronandTishirani
(1993). For a recent discussion on bootstrap confidence intervals see also Efron
(2003), Davison, Hinkley and Young (2003). In our data example there is only
a minor difference between the two intervals, cf. Tables 2.1 and 2.3. This may be
caused by the very large sample size.

The basic idea of bootstrap tests is rather simple. Suppose that for a statistical
model {Pθ : θ ∈ Θ} a testing hypothesis θ ∈ Θ0 ⊂ Θ and a test statistic T(X) is
given. Then bootstrap is used to calculate critical values for T(X). This can be done
by fitting a model on the hypothesis and by generating bootstrap resamples under
the fitted hypothesis model. The 1 −α quantile of the test statistic in the bootstrap

Bootstrap and Resampling 481

Table 2.3. Estimate of a1 + b1 and 90% bootstrap percentile confidence interval using GARCH(1,1)

bootstrap

â1 + b̂1 Confidence lower bound Upper bound

0.9919 0.9877 0.9963

samples can be used as critical value. The resulting test is called a bootstrap test.
Alternatively, a testing approach can be based on the duality of testing procedures
and confidence regions. Each confidence region defines a testing procedure by
using the following rule. A hypothesis is rejected if no hypothesis parameter lies in
the confidence region. We shortly describe this method for bootstrap confidence
intervals based on an asymptotic pivot statistic, say

√
n(̂θn −θ), and the hypothesis

Θ0 = (−∞, θ0] ⊂ R. Bootstrap resamples are generated (in the unrestricted
model) and are used for estimating the 1−α quantile of

√
n(̂θn −θ) by k̂1−α, say. The

bootstrap test rejects the hypothesis, if
√

n(̂θn −θ0) is larger than k̂1−α. Higher order
performance of bootstrap tests has been discussed in Hall (1992). For a discussion
of bootstrap tests we also refer to Beran (1988), Beran and Ducharme (1991).

We now compare bootstrap testing with a more classical resampling approach
for testing (“conditional tests”). There exist some (important) examples where,
for all test statistics, resampling can be used to achieve a correct level on the
whole hypothesis for finite samples. Such tests are called similar. For some testing
problems resampling tests turn out to be the only way to get similar tests. This
situation arises when a statistic is available that is sufficient on the hypothesis
{Pθ : θ ∈ Θ0}. Then, by definition of sufficiency, the conditional distribution of
the data set given this statistic is fixed on the hypothesis and does not depend
on the parameter of the underlying distribution as long as the parameter lies on
the hypothesis. Furthermore, because this distribution is unique and thus known,
resamples can be drawn from this conditional distribution. The resampling test
then has correct level on the whole hypothesis. We will now give a more formal
description.

A test φ(X) for a vector X of observations is called similar if Eθ φ(X) = α for all
θ ∈ Θ0, whereΘ0 is the set of parameters on the null hypotheses. We suppose that
a statistic S is available that is sufficient on the hypothesis. LetP0 = {Pθ : θ ∈ Θ0}be
the familyofdistributionsof X on thehypothesis.Then the conditionaldistribution
of X given S does not depend on the underlying parameter θ ∈ Θ0 because S
is sufficient. In particular, E(φ(X)|S = s) does not depend on θ. Then any test
satisfying

E [φ(X)|S = s] = α (2.1)

is similar on P0. This immediately follows from

E[φ(X)] = EE[φ(X)|S] = α .

A test satisfying (2.1) is said to have Neyman structure with respect to S.

482 Enno Mammen, Swagata Nandi

For a given test statistic T similar tests can be constructed by choosing kα(S)
such that

P[T > kα(S)|S = s] = α . (2.2)

Here the conditional probability on the left hand side does not depend on θbecause
S is assumed to be sufficient. We now argue that this is the only way to construct
similar tests if the family of distributions of S (for θ ∈ Θ0) is “rich enough”. For
such families Eθu(S) = 0 for all θ ∈ Θ0 for a function u implies u(s) ≡ 0. In
particular, with u(s) = P[T > kα(S)|S = s] − α we get that the test T > kα(S)
is similar if Eθu(S) = 0 for all θ ∈ Θ0. This implies u(s) ≡ 0, i.e. (2.2). Thus,
given a test statistic T, the only way to construct similar tests is by choosing
kα(S) according to (2.2). The relation between similar tests and tests with Neyman
structure belongs to the classical material of mathematical statistics and can be
found in text books, e.g. Lehmann (1986).

We will consider two examples of conditional tests. The first one are permu-
tation tests. For a sample of observations X = (X1, … , Xn) the order statistic S =
(X(1), … , X(n)) containing the ordered sample values X(1) ≤ … ≤ X(n) is sufficient
on the hypothesis of i.i.d. observations. Given S, the conditional distribution of X
is a random permutation of X1, … , Xn. The resampling scheme is very similar to
the nonparametric bootstrap. In the resampling, n pseudo observations are drawn
from the original data sample. Now this is done without replacement whereas in the
bootstrap scheme this is donewith replacement. For a comparisonofbootstrapand
permutation tests see also Janssen and Pauls (2003). Also for the subsampling (i.e.
resampling with a resample size that is smaller than the sample size) both schemes
(with and without replacement) have been considered. For a detailed discussion
of the subsampling without replacement see Politis, Romano and Wolff (1999).

The second example is a popular approach in the physical literature on nonlinear
time series analysis. For odd sample size n a series X1, … , Xn can be written as

Xt = X +

√
2π
n

(n−1)|2∑

j=1

2

√

IX

(
2πj

n

)
cos

(
2πj

n
t + θj

)

with sample mean X, periodogram IX(ω) = 1
2πn

∣∣∑n
t=1 Xt exp(−iωt)

∣∣2 and phas-
es θj. On the hypothesis that X is a circular stationary Gaussian process the statistic
S = (X, IX(2πj|n) : j = 1, … , (n − 1)|2) is sufficient. Conditional on S, the phases θj

are conditional i.i.d. and have a uniform distribution on [0, 2π]. Resamples with
observations

X∗
t = X +

√
2π
n

(n−1)|2∑

j=1

2

√

IX

(
2πj

n

)
cos

(
2πj

n
t + θ∗j

)
,

where θ∗j are i.i.d. with uniform distribution are called “surrogate data”. They can
be used to construct similar tests for the hypothesis of circular stationary Gaussian
processes. In the physics literature these tests are applied for testing the hypothesis
of stationary Gaussian processes. It is argued that for tests that do not heavily

Bootstrap and Resampling 483

depend on boundary observations the difference between stationarity and circular
stationarity becomes negligible for large data sets. Surrogate data tests are used as
first checks if deterministic nonlinear time series models are appropriate for a data
set. The relation of surrogate data tests to conditional tests was first observed in
Chan(1997).Themethodof surrogatedatawasfirstproposed inTheiler et al. (1992).

We would like to highlight a major difference between bootstrap and condition-
al tests. Bootstrap tests work if they are based on resampling of an asymptotic pivot
statistic. Then the bootstrap critical values stabilize asymptotically and converge
against the quantile of the limiting distribution of the test statistic. For conditional
tests the situation is quite different. They work for all test statistics. However, not
for all test statistics it is guaranteed that the critical value kα(S) converges to a de-
terministic limit. In Mammen and Nandi (2004) this is discussed for surrogate data
tests. It is shown that also for very large data sets the surrogate data quantile kα(S)
may have a variance of the same order as the test statistic T. Thus the randomness
of kα(S) may change the nature of a test. This is illustrated by a test statistic for
kurtosis of the observations that is transformed to a test for circular stationarity.

Bootstrap for Dependent Data 2.4

The Bootstrap for dependent data is a lively research area. A lot of ideas are around
and have let to quite different proposals. In this section we do not want to give
a detailed overview and description of the different proposals. We only want to
sketch the main ideas. Models for dependent data may principally differ from
i.i.d. models. For dependent data the data generating process is often not fully
specified. Then there exists no unique natural way for resampling. The resampling
should be carried out in such a way that the dependence structure should be
captured. This can be easily done in case of classical finite-dimensional ARMA
models with i.i.d. residuals. In these models the resamples can be generated by
fitting the parameters and by using i.i.d. residuals in the resampling. We will
discuss the situation when no finite-dimensional model is assumed. For other
overviews on the bootstrap for time series analysis, see Bühlmann (2002), Härdle,
Horowitz and Kreiss (2003), Politis (2003) and the time series chapter in Davison
and Hinkley (1997) and the book Lahiri (2003b). In particular, Härdle, Horowitz
and Kreiss (2003) give an overview over the higher order performance of the
different resampling schemes.

The most popular bootstrap methods for dependent data are block, sieve, lo-
cal, wild and Markov bootstrap and subsampling. They all are nonparametric
procedures.

The Subsampling 2.4.1

The method that works under a minimal amount of assumptions is the subsam-
pling. It is used to approximate the distribution of an estimate θ̂n estimating an

484 Enno Mammen, Swagata Nandi

unknown parameterθ. In the subsampling subsamples of consecutive observations
of length l < n are taken. These subsamples are drawn randomly from the whole
time series. For the subsamples estimates θ̂∗ are calculated. If it is known that for
a sequence an the statistic an(̂θn − θ) has a limiting distribution then under very
weak conditions the conditional distribution of al (̂θ∗ − θ̂n) has the same limiting
distribution. Higher order considerations show that the subsampling has a very
poor rate of convergence, see Hall and Jing (1996). It does not even achieve the
rate of convergence of a normal approximation. It may be argued that this poor
performance is the price for its quite universal applicability. Subsampling has also
been used in i.i.d. settings where classical bootstrap does not work. For a detailed
discussion of the subsampling see Politis, Romano and Wolf (1999).

The Block Bootstrap2.4.2

The basic idea of the block bootstrap is closely related to the i.i.d. nonparametric
bootstrap. Both procedures are based on drawing observations with replacement.
In the block bootstrap however instead of single observations blocks of consec-
utive observations are drawn. This is done to capture the dependence structure
of neighbored observations. Different versions of this idea have been proposed
in Hall (1985), Carlstein (1986), Künsch (1989), Liu and Singh (1992b) and Politis
and Romano (1994). It has been shown that this approach works for a large class
of stationary processes. The blocks of consecutive observations are drawn with
replacement from a set of blocks. In the first proposal this was done for a set of
nonoverlapping blocks of fixed length l: {Xj : j = 1, … , l}, {Xl+j : j = 1, … , l}, …
Later papers proposed to use all (also overlapping) blocks of length l, i.e. the k-th
block consists of the observations {Xk−1+j : j = 1, … , l} (Moving block bootstrap).
The bootstrap resample is obtained by sampling n|l blocks randomly with replace-
ment and putting them together to a time series of length n. By construction, the
bootstrap time series has a nonstationary (conditional) distribution. The resample
becomes stationary if the block length l is random and generated from a geometric
distribution. This version of the block bootstrap is called the stationary boot-
strap and was introduced in Politis and Romano (1994). Recently, Paparoditis and
Politis (2001a,2002a) proposed another modification that uses tapering methods
to smooth the effects of boundaries between neighbored blocks. With respect to
higher order properties the moving block bootstrap outperforms the version with
non overlapping blocks and both achieve a higher order accuracy as the stationary
bootstrap (see Hall, Horowitz and Jing (1995), Lahiri (1999a,b, 2003b)).

The block bootstrap has turned out as a very powerful method for dependent
data. It does not achieve the accuracy of the bootstrap for i.i.d. data but it outper-
forms the subsampling. It works reasonably well under very weak conditions on
the dependency structure. It has been applied to a very broad range of applications.
For the block bootstrap no specific assumption is made on the structure of the
data generating process.

We now describe some methods that use more specific assumptions on the
dependency structure.

Bootstrap and Resampling 485

The Sieve Bootstrap 2.4.3

The i.i.d. resampling can also be applied to models of dependent data where the
stochastics is driven by i.i.d. innovations. The distribution of the innovations can
be estimated by using fitted residuals. In the resampling i.i.d. innovations can
be generated by i.i.d. resampling from this fitted distribution. An example is an
autoregressive linear model:

Xt − µX =
p∑

j=1

ρj

(
Xt−j − µX

)
+ εt , t ∈ Z (2.3)

where µX = E(Xt) is the observation mean and where {εt} is a sequence of i.i.d.
innovations with E(εt) = 0 and εt is independent of {Xs, s < t}. The parameters
ρ1, … , ρp can be estimated by least squares or by using Yule-Walker equations.
Residuals can be fitted by putting

ε̃t = Xt − µ̂X −

p∑

j=1

ρ̂j

(
Xt−j − µ̂X

)
,

where µ̂X = n−1
∑n

t=1 Xt and ρ̂1, … , ρ̂p are the fitted parameters. Bootstrap resam-
ples can be generated by

X∗
t − µ̂X =

p∑

j=1

ρ̂j

(
X∗

t−j − µ̂X

)
+ ε∗t (2.4)

where ε∗t are drawn with replacement from the estimated centered residuals ε̂t =
ε̃t − n−1

∑n
i=1 ε̃i. For a study of this bootstrap procedure in model (2.3), see e.g.

Franke and Kreiss (1992) and references cited therein.
In a series of papers this approach has been studied for the case that model (2.3)

only approximately holds. This is the case if the underlying time series is a station-
ary linear process, i.e. {Xt} has an infinite order autoregressive representation:

Xt − µX =
∞∑

j=1

ρj

(
Xt−j − µX

)
+ εt , t ∈ Z . (2.5)

The bootstrap scheme (2.4) has been proposed for this AR(∞) model. In a first
step a model (2.3) of finite order p is fitted to the time series. Bootstrap resamples
are generated as in (2.4) according to model (2.3). This resampling scheme has
been called the sieve bootstrap because the AR(∞) model (2.5) is approximated by
an AR(p) model, where, in the asymptotics, p converges to infinity for increasing
sample size n. It is argued that this asymptotic approach reflects practical uses of
AR models where the order p is selected data adaptively and one is only thinking
of the finite order AR model as an approximation to the truth. The Sieve boot-
strap and its asymptotic consistency was first considered by Kreiss (1988,1992) and
further analyzed by Bühlmann (1997,1998), Bickel and Bühlmann (1999), Paparo-

486 Enno Mammen, Swagata Nandi

ditis (1996) and Park (2002). Choi and Hall (2000) showed that under appropriate
conditions the sieve bootstrap achieves nearly the rates of convergence of the i.i.d
resampling. In particular, it usually outperforms the block bootstrap. Bühlmann
(1997) studied higher order performance of sieve bootstrap variance estimates for
the sample mean under assumptions on the decay of the coefficients ρj ≤ cj−v for
constants c > 0 and v > 2.

The Nonparametric Autoregressive Bootstrap2.4.4

Another residual based bootstrap scheme has been proposed for a nonparametric
autoregression model:

Xt = m(Xt−1, … , Xt−p) + σ(Xt−1, … , Xt−q)εt t = 1, 2 … (2.6)

where {εt} is a sequence of i.i.d. error variables with zero mean and unit variance
and where m and σ are unknown smooth functions. The functions m and σ can be
estimated by nonparametric smoothing estimates m̂ and σ̂. These estimates can
be used to fit residuals. In the nonparametric autoregressive bootstrap resamples
are generated

X∗
t = m̃

(
X∗

t−1, … , X∗
t−p

)
+ σ̃

(
X∗

t−1, … , X∗
t−q

)
ε∗t t = 1, 2 …

where m̃ and σ̃ are nonparametric smoothing estimates and where ε∗t are drawn
with replacement from the centered fitted residuals. The choice of the bootstrap
autoregression function m̃ and of the bootstrap volatility function σ̃2 is rather
delicate because inappropriate choices can lead to explosive dynamics for the
bootstrap time series. The nonparametric autoregressive bootstrap was discussed
in Franke, Kreiss and Mammen (2002). They give conditions under which this
bootstrap approach is consistent. Franke, Kreiss, Mammen and Neumann (2002)
used this bootstrap approach for the construction of uniform confidence bands
for the regression function m.

The Regression-type Bootstrap, the Wild Bootstrap
and the Local Bootstrap2.4.5

Franke, Kreiss and Mammen (2002) also consider two other bootstrap proce-
dures for the model (2.6): the regression bootstrap and the wild bootstrap. In the
regression bootstrap, a nonparametric regression model is generated with (condi-
tionally) fixed design. We describe this approach for the case of a homoscedasstic
autoregression model:

Xt = m(Xt−1, … , Xt−p) + εt t = 1, 2, … (2.7)

where again {εt} is a sequence of i.i.d. error variables with zero mean and m is an
unknown smooth autoregression function. Bootstrap error variables ε∗t can be gen-
erated by drawing with replacement from centered fitted residuals in model (2.7).

Bootstrap and Resampling 487

In contrast to the autoregression bootstrap the resamples are now generated in
a regression model

X∗
t = m̃(Xt−1, … , Xt−p) + ε∗t t = 1, 2, … , (2.8)

where m̃ is again a nonparametric smoothing estimate of m. The stochastic be-
havior of the autoregression estimates in model (2.7) is fitted by the bootstrap re-
gression estimates in (2.8). Thus regression of Xt onto (Xt−1, … , Xt−p) is mimicked
in the bootstrap by regression of X∗

t onto the same covariable (Xt−1, … , Xt−p). The
regression bootstrap principally differs from the autoregressive bootstrap because
no autoregressive scheme is generated in the resampling. Because the original time
series is used as covariables in a regression problem the regression bootstrap has
the advantage that there is no danger for the bootstrap process to be unstable or
to explode. Thus the choice of the bootstrap error distribution and of the esti-
mate m̃ is not so crucial as for the autoregression bootstrap. On the other hand
the randomness of the covariables is not mimicked in the resampling. This leads
to a poorer finite sample performance, see Franke, et al. (2002).

Modifications of the regression bootstrap are the local bootstrap (Paparoditis
and Politis, 2000) and the wild bootstrap. The wild bootstrap also uses a regression
model with (conditionally) fixed covariables. But it is designed to work also for
heteroscedastic errors. It has been first proposed for regression models with inde-
pendent but not identically distributed error variables, see Wu (1986) and Beran
(1986). For nonparametric models it was first proposed in Härdle and Mammen
(1993). In the nonparametric autoregression model (2.7) wild bootstrap resamples
are generated as in (2.8). But now the error variables ε∗t are generated as ε∗t = ε̂tηt

where ε̂t are centered fitted residuals and where η1, … ,ηn are (conditionally) i.i.d.
variables with conditional zero mean and conditional unit variance (given the
original sample). For achieving higher order accuracy it has also been proposed
to use ηt with conditional third moment equal to 1. One could argue that in this
resampling scheme the distribution of εt is fitted by the conditional distribution
of ηt . Then n different distributions are fitted in a model where only n observations
are available. This is the reason why in Härdle and Mammen (1993) this approach
was called wild bootstrap. For a more detailed discussion of the wild bootstrap,
see Liu (1988), Liu and Singh (1992a) and Mammen (1992a,b,1993). The asymptotic
analysis of the wild bootstrap and other regression type bootstrap methods in
model (2.7) is much simpler than the autoregression bootstrap. In the bootstrap
world it only requires mathematical analysis of a nonparametric regression model.
Only the discussion of uniform nonparametric confidence bands remains rather
complicated because it involves strong approximations of the bootstrap nonpara-
metric regressionestimatesbyGaussianprocesses, seeNeumannandKreiss (1998).
The wild bootstrap works under quite weak model assumptions. Essentially it is
only assumed that the conditional expectation of an observation given the past is
a smooth function of the last p observations (for some finite p). Generality has its
price. Resampling schemes that use more detailed modeling may achieve a better
accuracy. We now consider resampling under the stronger assumption that not on-

488 Enno Mammen, Swagata Nandi

ly the mean but also the whole conditional distribution of an observation smoothly
depends on the last p observations (for some finite p). Resampling schemes that
work under this smooth Markov assumption are the Markov Bootstrap schemes.

The Markov Bootstrap2.4.6

We discuss the Markov bootstrap for a Markov model of order 1. We will describe
two implementations of the Markov bootstrap. For both implementations one
has to assume that the conditional distribution of Xt+1 given X1, … , Xt smoothly
depends on Xt . The first version was introduced by Rajarshi (1990). It is based
on a nonparametric estimate of the transition density f (y|x) of Xt+1 = y given
Xt = x. Using kernel density estimates of the density of Xt and of the joint density
of (Xt , Xt+1) one can estimate f (y|x) by

f̂ (y|x) =
f̂ (x, y)

f̂ (x)
,

where

f̂ (x, y) =
1

n − 1

n−1∑

t=1

Kh(Xt − x)Kg(Xt+1 − y) ,

f̂ (x) =
1

n

n∑

t=1

Kh(Xt − x)

are kernel density estimates with kernel functions Kr(u) = r−1K
(
r−1u

)
for band-

widths r = h, g. In the bootstrap resampling one starts with an observation X∗
1

from the density f̂ (·) and then one iteratively generates X∗
t+1 by sampling from

f̂ (·|X∗
t). Higher order performance of this resampling scheme has been discussed

in Horowitz (2003b). It turns out that it achieves faster rates of convergence com-
pared with the block bootstrap. This is in accordance with intuition because the
Markov bootstrap requires an additional model assumption, namely the Markov
property.

The second version of the Markov bootstrap can be described as a limiting ver-
sion of the latter for g → 0. Then in the limiting case the bootstrap process takes
values only in the set of observations {X1, … , Xn}. Given X∗

t = x, the next observa-
tion X∗

t+1 is equal to Xs (2 ≤ s ≤ n) with probability Kh(Xs−1 − x)|
∑n−1

r=1 Kh(Xr − x).
This resampling scheme was introduced in Paparotidis and Politis (2001b,2002b).
Higher order properties are not yet known. It may be expected that it has similar
asymptotic properties as the smoothed version of the Markov bootstrap. The un-
smoothed version has the advantage that the bootstrap time series is forced to live
on the observed values of the original time series. This leads to a more stable dy-
namic of the bootstrap time series, in particular for smaller sample sizes. Further-
more, for higher dimensional Markov processes the unsmoothed version is based
on only d dimensional kernel density smoothing whereas smoothed bootstrap

Bootstrap and Resampling 489

requires 2d dimensional kernel smoothing. Here, d denotes the dimension of the
Markov process. Again, one can argue that this leads to a more stable finite sample
performance of unsmoothed bootstrap. On the other hand, the smoothed Markov
bootstrap takes advantage of smoothness of f (y|x) with respect to y. For larger
data sets this may lead to improvements, in case of smooth transition densities.

The Frequency Domain Bootstrap 2.4.7

For the periodogram IX(ω) = 1
2πn

∣∣∑n
t=1 Xt exp(−iωt)

∣∣2 it is known that its values
for ωj = 2πj|n, 0 < j < n|2 are asymptotically independent. For the first two
moments one gets that for 0 < j, k < n|2, j �= k

E[IX(ωj)] = f (ωj) + o(n−1|2) , (2.9)

Var[IX(ωj)] = f (ωj)
2 + o(1) , (2.10)

Cov[IX(ωj), IX(ωk)] = n−1f (ωj)f (ωk)

E
[
ε4

j

]

E
[
ε2

j

]2 − 3

 + o(n−1) , (2.11)

where f (ω) = (2π)−1
∑∞

k=−∞Cov(Xt , Xt+k) exp(−ikω) is the spectral density of the
time series Xt and where εj = Xj− E [Xj|Xt : t ≤ j − 1] are the innovations of
the time series. These expansions hold under some regularity conditions on Xt .
In particular, it is needed that Xt is a linear process. Thus approximately, we get
that ηj = IX(ωj)|f (ωj), 0 < j < n|2 is an i.i.d. sequence. This suggests the following
bootstrap scheme, called the frequency domain bootstrap or the periodogram
bootstrap.

In this resampling bootstrap values I∗X(ωj) of the periodogram IX(ωj) are gen-
erated. The resampling uses two estimates f̂ and f̃ of the spectral density. In some
implementations these estimates can be chosen identically. The first estimate is
used for fitting residuals η̂j = IX(ωj)|̂f (ωj). The bootstrap residuals η∗1, … are
drawn with replacement from the centered fitted residuals η̂j |̂η· where η̂· is the
average of η̂j over 0 < j < n|2. The bootstrap periodogram is then calculated by
putting I∗X(ωj) = f̃ (ωj)η∗j .

The frequency domain bootstrap can be used to estimate the distribution of
statistics n−1|2 ∑

0<j<n|2 wjIX(ωj). Then the distribution of n−1|2 ∑
0<j<n|2[wjIX(ωj) −

wjf (ωj)] is estimated by the conditional distribution of n−1|2 ∑
0<j<n|2[wjI∗X(ωj) −

wjf̃ (ωj)]. Unfortunately, in general this approach does not work. This can be easily
seen by a comparison of the asymptotic variances of the statistics. The original
statistic n−1|2 ∑

0<j<n|2 wjIX(ωj) has variance that is asymptotically equivalent to

n−1
∑

w2
j f (ωj)

2 +

E
[
ε4

j

]

E
[
ε2

j

]2 − 3

[

n−1
∑

wjf (ωj)
]2

,

490 Enno Mammen, Swagata Nandi

see (2.9)–(2.11). In the bootstrap world the variance is approximately

n−1
∑

w2
j f̃ (ωj)

2 .

Thus in general there are differences between the variances that do not vanish
asymptotically. The reason is that the term on the right hand side of (2.11) con-
tributes an additional term to the variance for the original time series. This term
does not appear in the bootstrap because an i.i.d. resampling is used that produces
conditionally uncorrelated I∗X(ωj).

Although the frequency domain bootstrap does not work in general, there exist
three important examples where it works. In all three examples the second term in
the asymptotic expansion of the variance vanishes. This happens e.g. if the kurtosis
of the innovations is equal to zero:

E
[
ε4

j

]

E
[
ε2

j

]2 − 3 = 0 .

In particular, this is the case if the innovations have a normal distribution. Another
more general example where the bootstrap works is given by statistics where it
holds that n−1

∑
wjf (ωj) = o(1). A large class of examples for this case are ratio

statistics

n1|2

∑
0<j<n|2 rjIX(ωj)

∑
0<j<n|2 IX(ωj)

.

By some Taylor expansion calculus one can see that

n1|2

[∑
0<j<n|2 rjIX(ωj)

∑
0<j<n|2 IX(ωj)

−

∑
0<j<n|2 rjf (ωj)

∑
0<j<n|2 f (ωj)

]

≈ n−1|2
∑

0<j<n|2

[
wjIX(ωj) − wjf (ωj)

]

with wj proportional to rj −
∑

k rk f (ωk)/
∑

k f (ωk). Then
∑

j wjf (ωj) = 0 and the
bootstrap consistently estimates the variance of the ratio statistic. Consistency of
the frequency domain bootstrap for ratio statistics has been shown in Dahlhaus
and Janas (1996). They also showed that the frequency domain bootstrap achieves
higher order accuracy. But for this it is necessary that the third moment of the
innovations vanishes. This is a rather restrictive assumption. Examples of ratio
statistics are autocorrelation estimates, see Dahlhaus and Janas (1996) where other
examples are also given. Modifications of the frequency domain bootstrap have
been proposed that work for a larger class of statistics. An example is the proposal
of Kreiss and Paparoditis (2003) where ideas of the frequency domain bootstrap
are combined with ideas of the sieve bootstrap.

Bootstrap and Resampling 491

Thereexists alsoanotherexamplewhere the frequencydomainbootstrapworks.
Nonparametric smoothing estimates of the spectral density are linear statistics
where the weights wj are now local. For example for kernel smoothing weights wj =
h−1K[(ωj−x)|h] withbandwidth h andkernel functionK onehasn−1

∑
j w2

j f (ωj)2 =
O(h−1). On the other hand, n−1

∑
j wjf (ωj) = O(1) is of lower order. Now, both the

variance of the original spectral density estimate and the variance of the bootstrap
spectral density estimate have variance that is up to terms of order o(h) is equal
to the same quantity (2π)2n−1

∑
w2

j f (ωj)2. The correlation between IX(ωj) and
IX(ωk) for j �= k (see (2.11)) only contributes to higher order terms. Franke and
Härdle (1992) firstly observed this relation and used this fact to show that the
frequency domain bootstrap works for nonparametric spectral density estimation.
In their approach, both f̂ and f̃ are nonparametric kernel smoothing estimates.
For f̃ a bandwidth has been chosen that is of larger order than the bandwidth h.
Then bootstrap consistently estimates the bias of the spectral density estimate.
Similar approaches have been used in bootstrap schemes for other settings of
nonparametric curve estimation, see Mammen (2000). For the frequency domain
bootstrap for parametric problems one can choose f̂ = f̃ , see Dahlhaus and Janas
(1996).

We now have discussed a large class of resampling schemes for dependent data.
They are designed for different assumptions on the dependency structure rang-
ing fromquitegeneral stationarity assumptions (subsampling),mixture conditions
(block bootstrap), linearity assumptions (sieve bootstrap, frequency domain boot-
strap), conditional mean Markov property (wild bootstrap), Markov properties
(Markov bootstrap) and autoregressive structure (autoregressive bootstrap). It
may be generally conjectured that resampling schemes for more restrictive models
are more accurate as long as these more restrictive assumptions really apply. These
conjectures are supported by asymptotic results based on higher order Edgeworth
expansions. (Although these results should be interpreted with care because of the
poor performance of higher order Edgeworth expansions for finite samples, see
also the discussion in the introduction.) The situation is also complicated by the
fact that in time series analysis typically models are used as approximations to
the truth and they are not interpreted as true models. Thus one has to study the
much more difficult problem how resampling schemes perform if the underlying
assumptions are only approximately fulfilled.

Resampling for dependent data has stimulated very creative ideas and dis-
cussions and it had lead to a large range of different approaches. Partially, the
resampling structure is quite different from the stochastic structure of the original
time series. In the regression bootstrap regression data are used instead of au-
toregression series. In the sieve bootstrap and in the frequency domain bootstrap
models are used that only approximate the original model.

For dependent data the bootstrap has broadened the field of possible statistical
applications. The bootstrap offered new ways of implementing statistical proce-
dures and made it possible to treat new types of applied problems by statistical
inference.

492 Enno Mammen, Swagata Nandi

The discussion of the bootstrap for dependent data is not yet finished. For
the comparison of the proposed resampling schemes a complete understanding
is still missing and theoretical research is still going on. Applications of time
series analysis will also require new approaches. Examples are unit root tests,
cointegration analysis and the modeling of financial time series.

References
Beran, R. (1986). Discussion of Wu, C.F.J.: Jackknife, bootstrap, and other resam-

pling methods in regression analysis (with discussion). Ann. Statist., 14:1295–
1298.

Beran, R. (1988). Prepivoting test statistics: a bootstrap view of asymptotic refine-
ments. J. Amer. Statist. Assoc., 83:687–697.

Beran,R. (2003). The Impact of theBootstraponStatisticalAlgorithmsandTheory.
Statist. Science, 18:175–184.

Beran, R. and Ducharme, G. (1991). Asymptotic theory for bootstrap methods in
statistics, Les Publications CRM, Univ. Montreal.

Bickel, P.J. and Bühlmann, P. (1999). A new Mixing Notion and Functional Central
Limit Theorems for a Sieve Bootstrap in Time Series. Bernoulli, 5:413–446.

Bickel, P. and Freedman, D. (1981). Some asymptotic theory for the bootstrap, Ann.
Statist., 9:1196–1217.

Bickel, P. and Freedman, D. (1983). Bootstrapping regression models with many
parameters. In Bickel, P.J., Doksum, K.A. and Hodges, J.C. (eds), A Festschrift
for Erich L. Lehmann, pp. 28–48, Wadsworth, Belmont.

Boos, D.D. (2003). Introduction to the bootstrap world. Statist. Science, 18:168–174.
Bose, A. and Chatterjee, S. (2002). Dimension asymptotics for generalized boot-

strap in linear regression. Ann. Inst. Statist. Math., 54:367–381.
Bühlmann, P. (1997). Sieve Bootstrap for Time Series. Bernoulli, 3:123–148.
Bühlmann, P. (1998). Sieve bootstrap for smoothing in nonstationary time series.

Ann. Statist., 26:48–83.
Bühlmann, P. (2002). Bootstraps for time series. Statist. Science, 17:52–72.
Carlstein, E. (1986). The use of subseries methods for estimating the variance of

a general statistic from a stationary time series. Ann. Statist., 14:1171–1179.
Chan, K.S. (1997). On the validity of the method of surrogate data. Fields Institute

Communications, 11:77–97.
Choi, E. and Hall, P. (2000). Bootstrap confidence regions computed from auto-

regressions of arbitrary order. J. Royal Statist. Soc., Series B, 62:461–477.
Dahlhaus, R. and Janas, D. (1996). A frequency domain bootstrap for ratio statistics

in time series. Ann. Statist., 24:1934–1963.
Davison, A.C. and Hinkley, D.V. (1997). Bootstrap Methods and their Applications,

Cambridge University Press, Cambridge.
Davison, A.C., Hinkley, D.V. and Young, G.V. (2003). Recent Developments in

Bootstrap Methodology. Statist. Science, 18:141–157.

Bootstrap and Resampling 493

Efron, B. (1979). Bootstrap methods: Another look at jackknife. Ann. Statist., 7:1–
26.

Efron, B. (1982). The Jackknife, the bootstrap, and other Resampling Plans. SIAM,
Philadelphia.

Efron, B. (2003). Second Thoughts on the Bootstrap, Statist. Science, 18:135–140.
Efron, B. and Tibshirani, R.J. (1993) An Introduction to the Bootstrap, Chapman

and Hall, London.
Franke, J. and Härdle, W. (1992). On bootstrapping kernel spectral estimates. Ann.

Statist., 20:121–145.
Franke, J. and Kreiss, J.-P. (1992). Bootstrapping ARMA-models. J. Time Series

Analysis, 13:297–317.
Franke, J., Kreiss, J.-P, and Mammen E. (2002a). Bootstrap of kernel smoothing in

nonlinear time series, Bernoulli, 8:1–37.
Franke, J., Kreiss, J.-P., Mammen, E. and Neumann, M.H. (2002b). Properties of the

Nonparametric Autoregressive Bootstrap. J. Time Series Analysis, 23:555–585.
Gine, E. (1997). Lectures on some aspects of the bootstrap. In Bernard, P. (ed),

Lectures on Probability Theory and Statistics., Berlin: Springer Lecture Notes
Math. 1665, pp. 37–151.

Härdle, W. and Mammen, E. (1991). Bootstrap methods for nonparametric regres-
sion. In Roussas, G. (ed), Nonparametric Functional estimation and Related
Topics, pp. 111–124, Kluwer, Dordrecht.

Härdle, W. and Mammen, E. (1993). Testing parametric versus nonparametric
regression. Ann. Statist., 21:1926–1947.

Härdle, W., Horowitz, J.L. and Kreiss, J.-P. (2003). Bootstrap methods for time
series. International Statist. Review, 71:435–459.

Hall, P. (1985). Resampling a coverage process. Stoch. Proc. Appl., 19:259–269.
Hall, P. (1992). The Bootstrap and Edgeworth Expansions, Springer, New York.
Hall, P. (2003). A Short Prehistory of the Bootstrap. Statist. Science, 18:158–167.
Hall, P., Horowitz, J.L. and Jing, B.-Y. (1995). On blocking rules for the bootstrap

with dependent data. Biometrika, 82:561–574.
Hall, P. and Jing, B.-Y. (1996). On sample reuse methods for dependent data. J. Royal

Statist. Society, Series B, 58:727–737.
Horowitz, J.L. (1997). Bootstrap Methods in Econometrics: Theory and Numeri-

cal Performance. In Kreps, D.M. and Wallis, K.F. (eds), Advances in Economics
and Econometrics: Theory and Applications, pp. 188–222, Cambridge Universi-
ty Press.

Horowitz, J.L. (2001). The Bootstrap. In Heckman, J.J. and Leamer, E.E. (eds),
Handbook of Econometrics, vol. 5, Chap. 52, 3159–3228, Elsevier Science B.V.

Horowitz, J.L. (2003a). The bootstrap in econometrics. Statist. Science, 18:211–218.
Horowitz, J.L. (2003b). Bootstrap Methods for Markov Processes. Econometrica,

71:1049–1082.
Inoue, A. and Kilian, L. (2003). The continuity of the limit distribution in the pa-

rameter of interest is not essential for the validity of the bootstrap. Econometric
Theory, 6:944–961.

494 Enno Mammen, Swagata Nandi

Janssen, A. and Pauls, T. (2003). How do bootstrap and permutation tests work?
Annals of Statistics, 31:768–806.

Kreiss, J.-P. (1988). Asymptotic Inference for a Class of Stochastic Processes, Habil-
itationsschrift. Faculty of Mathematics, University of Hamburg, Germany.

Kreiss, J.-P. (1992). Bootstrap procedures for AR(∞) processes. In Jöckel, K.-H.,
Rothe, G. and Sendler, W. (eds), Bootstrapping and Related Techniques, Lec-
ture Notes in Economics and Mathematical Systems 376, pp. 107–113, Springer,
Berlin-Heidelberg-New York.

Kreiss, J.-P. and Paparoditis, E. (2003). Autoregressive aided periodogram boot-
strap for time series. Ann. Statist., 31:1923–1955.

Künsch, H.R. (1989). The jackknife and the bootstrap for general stationary ob-
servations. Annals of Statistics, 17:1217–1241.

Lahiri, S.N. (1999a). Second order optimality of stationary bootstrap. Statist.
Probab. Letters, 11:335–341.

Lahiri, S.N. (1999b). Theoretical comparison of block bootstrap methods. Ann.
Statist., 27:386–404.

Lahiri, P. (2003a). On the Impact of Bootstrap in Survey Sampling and Small-Area
Estimation. Statist. Science, 18:199–210.

Lahiri, S.N. (2003b). Resampling Methods for Dependent data, Springer, New York.
Lehmann, E.L. (1986). Testing Statistical Hypotheses, Springer, New York.
Lele, S.R. (2003). Impact of Bootstrap on the Estimating Functions. Statist. Science,

18:185–190.
Liu, R.Y. (1988). Bootstrap procedures under some non i.i.d. models. Ann. Statist.,

16:1696–1708.
Liu, R.Y. and Singh, K. (1992a). Efficiency and robustness in resampling. Ann.

Statist., 20:370–384.
Liu, R.Y. and Singh, K. (1992b). Moving blocks jackknife and bootstrap capture

weak dependence. In Lepage, R. and Billard, L. (eds), Exploring the Limits of
the Bootstrap, pp. 225–248, Wiley, New York.

Mammen, E. (1989). Asymptotics with increasing dimension for robust regression
with applications to the bootstrap. Ann. Statist., 17:382–400.

Mammen,E. (1992a).Bootstrap,wildbootstrap, andasymptoticnormality. Probab.
Theory Related Fields, 93:439–455.

Mammen, E. (1992b). When does bootstrap work? Asymptotic results and simula-
tions, Springer Lecture Notes in Statistics 77, Springer, Heidelberg, Berlin.

Mammen, E. (1993). Bootstrap and wild bootstrap for high-dimensional linear
models. Ann. Statist., 21:2555–285.

Mammen, E. (2000). Resampling methods for nonparametric regression. In
Schimek, M.G. (ed), Smoothing and Regression: Approaches, Computation and
Application, Wiley, New York.

Mammen, E. and Nandi, S. (2004). Change of the nature of a test when surrogate
data are applied. (To appear in Physical Review E)

Mikosch, T. and Starica, C. (2002). Nonstationarities in financial time series, the
long range dependence and the IGARCH effects. (Preprint)

Bootstrap and Resampling 495

Neumann, M. and Kreiss, J.-P. (1988). Regression-type inference in nonparametric
autoregression. Ann. Statist., 26:1570–1613.

Paparoditis, E. (1996). Bootstrapping autoregressive and moving average param-
eter estimates of infinite order vector autoregressive processes. J. Multivariate
Anal., 57:277–296.

Paparodtis, E. and Politis, D.N. (2000). The local bootstrap for kernel estimators
under general dependence conditions. Ann. Inst. Statist. Math., 52:139–159.

Paparoditis, E. and Politis, D.N. (2001a). Tapered block bootstrap. Biometrika,
88:1105–1119.

Paparoditis, E. and Politis, D.N. (2001b). A Markovian local resampling scheme for
nonparametric estimators in time series analysis. Econometric Theory, 17:540–
566.

Paparoditis, E. and Politis D.N. (2002a). The tapered block bootstrap for general
statistics from stationary sequences. The Econometrics Journal, 5:131–148.

Paparoditis, E. and Politis, D.N. (2002b). The local bootstrap for Markov processes.
J. Statist. Planning Inference, 108:301–328.

Park, J.Y. (2002). An invariance principle for sieve bootstrap in time series, Econo-
metric Theory, 18:469–490.

Politis, D.N. (2003). The Impact of Bootstrap Methods on Time Series Analysis.
Statist. Science, 18:219–230.

Politis, D.N. and Romano, J.P. (1994). The Stationary Bootstrap. J. Amer. Statist.
Assoc., 89:1303–1313.

Politis, D.N., Romano, J.P. and Wolf, M. (1999). Subsampling, Springer, New York.
Rajarshi, M.B. (1990). Bootstrap in Markovsequences based on estimates of tran-

sition density. Ann. Inst. Staitst. Math., 42:253–268.
Shao, J. (1996). Resampling methods in sample surveys (with discussions). Statis-

tics, 27:203–254.
Shao, J. (2003). Impact of the Bootstrap on Sample Surveys. Statist. Science, 18:191–

198.
Shao, J. and Tu, T. (1995). The Jackknife and Bootstrap, Springer, New York.
Theiler, J., Eubank, S., Longtin, A., Galdrikan, B. and Farmer, J.D. (1992). Testing for

nonlinearity in time series: the method of surrogate data. Physica D, 58:77–94.
Wu, C.F.J. (1986). Jackknife, bootstrap, and other resampling methods in regression

analysis (with discussion). Ann. Statist., 14:1261–1295.

III.3Design and Analysis
of Monte Carlo Experiments

Jack P.C. Kleijnen

3.1 Introduction . 498

3.2 Simulation Techniques in Computational Statistics . 499

3.3 Black-Box Metamodels of Simulation Models . 501

3.4 Designs for Linear Regression Models . 502

Simple Regression Models for Simulations with a Single Factor 502
Simple Regression Models for Simulation Models with Multiple Factors 504
Fractional Factorial Designs and Other Incomplete Designs . 507
Designs for Simulations with Too Many Factors . 509

3.5 Kriging . 510

Kriging Basics . 510
Designs for Kriging . 512

3.6 Conclusions . 513

498 Jack P.C. Kleijnen

Introduction3.1

By definition, computer simulation (or Monte Carlo) models are not solved by
mathematical analysis (for example, differential calculus), but are used for numer-
ical experimentation. These experiments are meant to answer questions of interest
about the real world; i.e., the experimenters may use their simulation model to
answer what if questions – this is also called sensitivity analysis. Sensitivity anal-
ysis – guided by the statistical theory on design of experiments (DOE) – is the
focus of this chapter. Sensitivity analysis may further serve validation, optimiza-
tion, and risk (or uncertainty) analysis for finding robust solutions; see Kleijnen
(1998), Kleijnen et al. (2003a,b). Note that optimization is also discussed at length
in Chap. II.6 by Spall.

Though I assume that the reader is familiar with basic simulation, I shall sum-
marize a simple Monte Carlo example (based on the well-known Student tstatistic)
in Sect. 3.2. This example further illustrates bootstrap and variance reduction tech-
niques

Further, I assume that the reader ’s familiarity with DOE is restricted to ele-
mentary DOE. In this chapter, I summarize classic DOE, and extend it to newer
methods (for example, DOE for interpolation using Kriging; Kriging is named
after the South-African mining engineer D.G. Krige).

Traditionally, ‘the shoemaker’s children go barefoot’; i.e., users of computa-
tional statistics ignore statistical issues – such as sensitivity analysis – of their
simulation results. Nevertheless, they should address tactical issues – the number
of (macro)replicates, variance reduction techniques – and strategic issues – situa-
tions to be simulated and the sensitivity analysis of the resulting data. Both types
of issues are addressed in this chapter.

Note the following terminology. DOE speaks of ‘factors’ with ‘levels’, whereas
simulation analysts may speak of ‘inputs‘ or ‘parameters’ with ‘values’. DOE talks
about ‘design points’ or ‘runs’, whereas simulationists may talk about ‘situations’,
‘cases’, or ‘scenarios’.

Classic DOE methods for real, non-simulated systems were developed for agri-
cultural experiments in the 1930s, and – since the 1950s – for experiments in
engineering, psychology, etc. (Classic designs include fractional factorials, as we
shall see.) In those real systems it is impractical to experiment with ‘many’ factors;
k = 10 factors seems a maximum. Moreover, it is then hard to experiment with
factors that have more than ‘a few’ values; five values per factor seems a maximum.
Finally, these experiments are run in ‘one shot’ – for example, in one growing
season – and not sequentially. In simulation, however, these limitations do not
hold!

Two textbooks on classic DOE for simulation are Kleijnen (1975, 1987). An
update is Kleijnen (1998). A bird-eye’s view of DOE in simulation is Kleijnen et al.
(2003a), which covers a wider area than this review.

Note further the following terminology. I speak of the Monte Carlo method
whenever (pseudo)random numbers are used; for example, I apply the Monte Car-

Design and Analysis of Monte Carlo Experiments 499

lo method to estimate the behavior of the t statistic in case of non-normality, in
Sect. 3.2 (the Monte Carlo method may also be used to estimate multiple integrals,
which is a deterministic problem, outside the scope of this handbook). I use the
term simulation whenever the analysts compute the output of a dynamic model;
i.e., the analysts do not use calculus to find the solution of a set of differential
or difference equations. The dynamic model may be either stochastic or deter-
ministic. Stochastic simulation uses the Monte Carlo method; it is often applied
in telecommunications and logistics. Deterministic simulation is often applied in
computer-aided engineering (CAE). Finally, I use the term metamodel for models
that approximate – or model – the input|output (I|O) behavior of the underlying
simulation model; for example, a polynomial regression model is a popular meta-
model (as we shall see). Metamodels are used – consciously or not – to design
and analyze experiments with simulation models. In the simulation literature,
metamodels are also called response surfaces, emulators, etc.

The remainder of this chapter is organized as follows. Section 3.2 presents
a simpleMonteCarlo experimentwithStudent’s t statistic, includingbootstrapping
and variance reduction techniques. Section 3.3 discusses the black box approach to
simulation experiments, and corresponding metamodels – especially, polynomial
and Kriging models. Section 3.4 starts with simple regression models with a single
factor; proceeds with designs for multiple factors including designs for first-order
and second-order polynomial models, and concludes with screening designs for
hundreds of factors. Section 3.5 introduces Kriging interpolation, which has hardly
been applied in random simulation – but has already established a track record
in deterministic simulation and spatial statistics. Kriging often uses space-filling
designs, such as Latin hypercube sampling (LHS). Section 3.6 gives conclusions
and further research topics.

Simulation Techniques
in Computational Statistics 3.2

Consider the well-known definition of the tstatistic with n − 1 degrees of freedom:

tn−1 =
x̄ − µ
sx|
√

n
, (3.1)

where the xi (i = 1, … , n) are assumed to be normally (Gaussian), independently,
and identically distributed (NIID) with mean µ and variance σ2:

xi ∈ NIID(µ,σ)(i = 1, … , n) . (3.2)

Nearly 100 years ago, Gossett used a kind of Monte Carlo experiment (without
using computers, since they were not yet invented), before he analytically derived
the density function of this statistic (and published his results under the pseudo-

500 Jack P.C. Kleijnen

nym of Student). So, he sampled n values xi (from an urn) satisfying (3.2), and com-
puted the corresponding value for the statistic defined by (3.1). This experiment he
repeated (say) m times, so that he could compute the estimated density function
(EDF) – also called the empirical cumulative distribution function (ECDF) – of the
statistic. (Inspired by these empirical results, he did his famous analysis.)

Let us imitate his experiment, in the following simulation experiment (this
procedure is certainly not the most efficient computer program).
1. Read the simulation inputs: µ (mean), σ2 (variance), n (sample size), m (num-

ber of macro-replicates, used in step 4.
2. Take n samples xi ∈ NIID(µ,σ) (see (3.2)) and Chap. II.2 by L’Ecuyer).
3. Compute the statistic tn−1 (see (3.1)).
4. Repeat steps 2 and 3 m times.
5. Sort the m values of tn−1.
6. Compute the EDF from the results in step 5.

To verify this simulation program, we may compare the result (namely the EDF)
with the results that are tabulated for Student’s density function; for example,
does our EDF give a 90% quantile that is not significantly different from the
tabulatedvalue (say) tn−1;0.90.Nextwemayproceed to the followingmore interesting
application.

We may drop the classic assumption formulated in (3.2), and experiment with
non-normal distributions. It is easy to sample from such distributions (see again
Chap. II.2). However, we are now confronted with several so-called strategic choices
(also see step 1 above): Which type of distribution should be selected (lognormal,
exponential, etc.); which parameter values for that distribution type (mean and
variance for the lognormal, etc.), which sample size (for asymptotic, ‘large’ n, the
t distribution is known to be a good approximation for our EDF).

Besides these choices, we must face some tactical issues: Which number of
macro-replicates m gives a good EDF; can we use special variance reducing tech-
niques (VRTs) – such as common random numbers and importance sampling – to
reduce the variability of the EDF? We explain these techniques briefly, as follows.

Common random numbers (CRN) mean that the analysts use the same
(pseudo)random numbers (PRN) – symbol r – when estimating the effects of
different strategic choices. For example, CRN are used when comparing the es-
timated quantiles t̂n−1;0.90 for various distribution types. Obviously, CRN reduces
the variance of estimated differences, provided CRN creates positive correlations
between the estimators t̂n−1;0.90 being compared.

Antithetic variates (AV) mean that the analysts use the complements (1 − r)
of the PRN (r) in two ‘companion’ macro-replicates. Obviously, AV reduces the
variance of the estimator averaged over these two replicates, provided AV creates
negative correlation between the two estimators resulting from the two replicates.

Importance sampling (IS) is used when the analysts wish to estimate a rare
event, such as the probability of the Student statistic exceeding the 99.999% quan-
tile. IS increases that probability (for example, by sampling from a distribution
with a fatter tail) – and later on, IS corrects for this distortion of the input dis-

Design and Analysis of Monte Carlo Experiments 501

tribution (through the likelihood ratio). IS is not so simple as CRN and AV –
but without IS too much computer time may be needed. See Glasserman et al.
(2000).

There are many more VRTs. Both CRN and AV are intuitively attractive and easy
to implement, but the most popular one is CRN. The most useful VRT may be IS.
In practice, the other VRTs often do not reduce the variance drastically so many
users prefer to spend more computer time instead of applying VRTs. (VRTs are
a great topic for doctoral research!) For more details on VRTs, I refer to Kleijnen
and Rubinstein (2001).

Finally, the density function of the sample data xi may not be an academic
problem: Suppose a very limited set of historical data is given, and we must analyze
these data while we know that these data do not satisfy the classic assumption
formulated in (3.2). Then bootstrapping may help, as follows (also remember the
six steps above).
1. Read the bootstrap sample size B (usual symbol in bootstrapping, comparable

with m – number of macro-replicates – in step 1 above).
2. Take n samples with replacement from the original sample xi; this sampling

gives x∗i (the superscript ∗ denotes bootstrapped values, to be distinguished
from the original values).

3. From these x∗i compute the statistic t∗n−1 (see (3.1)).
4. Repeat steps 2 and 3 B times.
5. Sort the B values of t∗n−1.
6. Compute the EDF from the results in step 5.

In summary, bootstrapping is just a Monte Carlo experiment – using resampling
with replacement of a given data set. (There is also a parametric bootstrap, which
comes even closer to our simulation of Gossett’s original experiment.) Bootstrap-
ping is further discussed in Efron and Tibshirani (1993) and in Chap. III.2 (by
Mammen).

Black-Box Metamodels
of Simulation Models 3.3

DOE treats the simulation model as a black box; i.e., only the inputs and outputs
are observed and analyzed. For example, in the simulation of the t statistic (in
Sect. 3.2) the simulation inputs (listed in Step 1) are µ (mean), σ2 (variance), n
(sample size), and m (number of macro-replicates); this m is probably a tactical
factor that is not of interest to the user. Suppose the user is interested in the 90%
quantile of the distribution function of the statistic in case of nonnormality. A black
box representation of this example is:

tn−1;0.90 = t(µ,σ, n, r0) , (3.3)

502 Jack P.C. Kleijnen

where t(.) denotes the mathematical function implicitly defined by the simulation
program (outlined in steps 1 through 6 in Sect. 3.2); µ and σ now denote the
parameters of the nonnormal distribution of the input xi (for example, µ denotes
how many exponential distributions with parameter σ = λ are summed to form
an Erlang distribution); r0 denotes the seed of the pseudorandom numbers.

One possible metamodel of the black box model in (3.3) is a Taylor series
approximation – cut off after the first-order effects of the three factors, µ,σ, n:

y = β0 + β1µ + β2σ + β3n + e , (3.4)

where y is the metamodel predictor of the simulation output tn−1;0.90 in (3.3);
βT = (β0, β1, β2, β3) denotes the parameters of the metamodel in (3.4), and e is the
noise – which includes both lack of fit of the metamodel and intrinsic noise caused
by the pseudorandom numbers.

Besides the metamodel specified in (3.4), there are many alternative metamod-
els. For example, taking the logarithm of the inputs and outputs in (3.4) makes the
first-order polynomial approximate relative changes; i.e., the parameters β1, β2,
and β3 become elasticity coefficients.

There are many – more complex – types of metamodels. Examples are Kriging
models, neural nets, radial basis functions, splines, support vector regression, and
wavelets; see the various chapters in Part III – especially Chaps. III.5 (by Loader),
III.7 (Müller), III.8 (Cizek), and III.15 (Laskov and Müller) – and also Clarke,
Griebsch, and Simpson (2003) and Antioniadis and Pham (1998). I, however, will
focus on two types that have established a track record in simulation:

linear regression models (see Sect. 3.4)
Kriging (see Sect. 3.5).

To estimate the parameters of whatever metamodel, the analysts must experiment
with the simulation model; i.e., they must change the inputs (or factors) of the
simulation, run the simulation, and analyze the resulting input|output data. This
experimentation is the topic of the next sections.

Designs for Linear Regression Models3.4

Simple Regression Models for Simulations
with a Single Factor3.4.1

I start with the simplest metamodel, namely a first-order polynomial with a single
factor. An example is the ‘Student’ simulation in Sect. 3.2, where I now assume
that we are interested only in the power so y in (3.4) now denotes the type II error
predicted through the regression model. I further assume a single factor (say)
x = σ|n (‘relative’ variability; i.e., absolute variability corrected for sample size);
see (3.4). Elementary mathematics proves that – to fit a straight line – it suffices

Design and Analysis of Monte Carlo Experiments 503

to have two input|output observations; see ‘local area 1’ in Fig. 3.1. It is simple to
prove that the ‘best’ estimators of the regression parameters in (3.4) result if those
two values are as far apart as ‘possible’.

In practice, the analysts do not know over which experimental area a first-order
polynomial is a ‘valid’ model. This validity depends on the goals of the simulation
study; see Kleijnen and Sargent (2000).

So the analystsmay startwith a local area, and simulate the two (locally) extreme
input values. Let’s denote these two extreme values of the ‘coded’ variable x by −1
and +1, which implies the following standardization of the original variable z:

x =
z − z̄

(zmax − zmin)|2
, (3.5)

where z̄ denotes the average value of the relative variability z = σ|n in the (local)
experiment.

The Taylor series argument implies that – as the experimental area gets big-
ger (see ‘local area 2’ in Fig. 3.1) – a better metamodel may be a second-order
polynomial:

y = β0 + β1x + β2x2 + e. (3.6)

Obviously, estimation of the three parameters in (3.6) requires the simulation of at
least three input values. Indeed, DOE provides designs with three values per factor;
for example, 3k designs. However, most publications on the application of DOE in
simulation discuss Central Composite Designs (CCD), which have five values per
factor; see Kleijnen (1975).

I emphasize that the second-order polynomial in (3.6) is nonlinear in x (the
regression variable), but linear in β (the regression parameters or factor effects
to be estimated). Consequently, such a polynomial is a type of linear regression
model (also see Chap. II.8).

Figure 3.1. Two simple polynomial regression models with predictor ŷ for the output of a simulation

with a single factor x

504 Jack P.C. Kleijnen

Finally, when the experimental area covers the whole area in which the simu-
lation model is valid (see again Fig. 3.1), then other global metamodels become
relevant. For example, Kleijnen and Van Beers (2003a) find that Kriging (discussed
in Sect. 3.5) outperforms second-order polynomial fitting.

Note that Zeigler, Praehofer, and Kim (2000) call the experimental area the
‘experimental frame’. I call it the domain of admissible scenarios, given the goals
of the simulation study.

I conclude that lessons learned from the simple example in Fig. 3.1, are:
1. Theanalysts shoulddecidewhether theywant toexperiment locally or globally.
2. Given that decision, they should select a specific metamodel type (low-order

polynomial, Kriging, spline, etc.); also see Chaps. III.5, III.7, and III.8.

Simple Regression Models for Simulation Models
with Multiple Factors3.4.2

Let’s now consider a regression model with k factors; for example, k = 2. The design
that is still most popular – even though it is inferior – changes one factor at a time.
Fork = 2 such a design is shown in Fig. 3.2 and Table 3.1; in this table the factor
values over the various factor combinations are shown in the columns denoted by
x1 and x2; the ‘dummy’ column x0 corresponds with the polynomial intercept β̂0

in (3.4). In this design the analysts usually start with the ‘base’ scenario, denoted

Figure 3.2. One-factor-at-a-time design for two factors x1 and x2, with output w

Table 3.1. A one-factor-at-a-time design for two factors, and possible regression variables

Scenario x0 x1 x2 x1x2

1 1 0 0 0

2 1 1 0 0

3 1 0 1 0

Design and Analysis of Monte Carlo Experiments 505

Table 3.2. The 23 design and possible regression variables

Scenario 0 1 2 3 1.2 1.3 2.3 1.2.3

1 + − − − + + + −

2 + + − − − − + +

3 + − + − − + − +

4 + + + − + − − −

5 + − − + + − − +

6 + + − + − + − −

7 + − + + − − + −

8 + + + + + + + +

by the factor combination (0, 0); see scenario 1 in the table. Next they run the two
scenarios (1, 0) and (0, 1); see the scenarios 2 and 3 in the table..

In a one-factor-at-a-time design, the analysts cannot estimate the interaction
between the two factors. Indeed, Table 3.1 shows that the estimated interaction
(say) β1;2 is confounded with the estimated intercept β̂0; i.e., the columns for the
corresponding regression variables are linearly dependent. (Confounding remains
when the base values are denoted not by zero but by one; then these two columns
become identical.)

Inpractice, analystsoften studyeach factorat three levels (whichmaybedenoted
by −1, 0, +1) in their one-at-a-time design. However, two levels suffice to estimate
the parameters of a first-order polynomial (see again Sect. 3.4.1).

To enable the estimation of interactions, the analysts must change factors si-
multaneously. An interesting problem arises if k increases from two to three. Then
Fig. 3.2 becomes Fig. 3.3, which does not show the output (w), since it would re-
quire a fourth dimension (instead x3 replaces w); the asterisks are explained in

Figure 3.3. The 23 design

506 Jack P.C. Kleijnen

Sect. 3.4.3. And Table 3.1 becomes Table 3.2. The latter table shows the 23 factorial
design; i.e., in the experiment each of the three factors has two values and all their
combinations of values are simulated. To simplify the notation, the table shows
only the signs of the factor values, so − means −1 and + means +1. The table fur-
ther shows possible regression variables, using the symbols ‘0’ through ‘1.2.3’ – to
denote the indexes of the regression variables x0 (the dummy, always equal to 1)
through x1x2x3 (third-order interaction). Further, I point out that each column is
balanced; i.e., each column has four plusses and four minuses – except for the
dummy column.

The 23 design enables the estimation of all eight parameters of the following
regression model, which is a third-order polynomial that is incomplete; i.e., some
parameters are assumed zero:

y = β0 +
3∑

j=1

βjxj +
2∑

j=1

3∑

j′>j

βj;j′xjxj′ + β1;2;3x1x2x3 + e . (3.7)

Indeed, the 23 design implies a matrix of regression variables X that is orthogo-
nal:

XTX = nI , (3.8)

where n denotes the number of scenarios simulated; n = 8 in Table 3.2. Hence the
ordinary least squares (OLS) estimator

β̂ = (XTX)−1XTw (3.9)

simplifies for the 23 design – which is orthogonal so (3.8) holds – to β̂ = XTw|8.
The covariance matrix of the (linear) OLS estimator given by (3.9) is

cov(β̂) =
[(

XTX
)−1

XT
]

cov(w)
[(

XTX
)−1

XT
]T

. (3.10)

In case of white noise; i.e.,

cov(w) = σ2I , (3.11)

(3.10) reduces to the well-known formula

cov
(

β̂
)

= σ2
(
XTX

)−1
. (3.12)

However, I claim that in practice this white noise assumption does not hold:
1. The output variances change as the input changes so the assumed common

variance σ2 in (3.11) does not hold. This is called variance heterogeneity. (Well-
known examples are Monte Carlo studies of the type I and type II errors,
which give binomial variables so the estimated variances are y(1 − y)|m; also
see Sect. 3.2)

2. Often the analysts use common random numbers (see CRN in Sect. 3.2), so the
assumed diagonality of the matrix in (3.11) does not hold.

Design and Analysis of Monte Carlo Experiments 507

Therefore I conclude that the analysts should choose between the following two
options.
1. Continue to apply the OLS point estimator (3.9), but use the covariance formula

(3.10) instead of (3.12)
2. Switch from OLS to Generalized Least Squares (GLS) with cov(w) estimated

from m > n replications (so the estimated covariance matrix is not singular);
for details see Kleijnen (1992, 1998).

The variances of the estimated regression parameters – which are on the main
diagonal of cov(β̂) in (3.10) – can be used to test statistically whether some
factors have zero effects. However, I emphasize that a significant factor may be
unimportant – practically speaking. If the factors are scaled between −1 and +1
(see the transformation in (3.5)), then the estimated effects quantify the order of
importance. For example, in a first-order polynomial regression model the factor
estimated to be the most important factor is the one with the highest absolute value
for its estimated effect. See Bettonvil and Kleijnen (1990).

Fractional Factorial Designs
and Other Incomplete Designs 3.4.3

The incomplete third-orderpolynomial in (3.7) includeda third-ordereffect,name-
ly β1;2;3. Standard DOE textbooks include the definition and estimation of such
high-order interactions. However, the following claims may be made:
1. High-order effects are hard to interpret
2. These effects often have negligible magnitudes.

Claim # 1 seems obvious. If claim #2 holds, then the analysts may simulate fewer
scenarios than specified by a full factorial (such as the 23 design). For example,
if β1;2;3 is indeed zero, then a 23−1 fractional factorial design suffices. A possible
23−1 design is shown in Table 3.2, deleting the four rows (scenarios) that have
a minus sign in the 1.2.3 column (i.e., delete the rows 1, 4, 6, 7). In other words,
only a fraction – namely 2−1 of the 23 full factorial design – is simulated. This
design corresponds with the points denoted by the symbol ∗ in Fig. 3.3. Note that
this figure has the following geometrically property: each scenario corresponds
with a vertex that cannot be reached via a single edge of the cube.

In this 23−1 design two columns are identical, namely the 1.2.3 column (with four
plusses) and the dummy column. Hence, the corresponding two effects are con-
founded – but the high-order interactionβ1;2;3 is assumed zero, so this confounding
can be ignored!

Sometimes a first-order polynomial suffices. For example, in the (sequential)
optimization of black-box simulation models the analysts may use a first-order
polynomial to estimate the local gradient; see Angün et al. (2002). Then it suffices
to take a 2k−p design with the biggest p value that makes the following condition
hold: 2k−p > k. An example is: k = 7 and p = 4 so only 8 scenarios are simulated;

508 Jack P.C. Kleijnen

Table 3.3. A 27−4 design

Scenario 1 2 3 4 = 1.2 5 = 1.3 6 = 2.3 7 = 1.2.3

1 − − − + + + −

2 + − − − − + +

3 − + − − + − +

4 + + − + − − −

5 − − + + − − +

6 + − + − + − −

7 − + + − − + −

8 + + + + + + +

see Table 3.3. This table shows that the first three factors (labeled 1, 2, and 3) form
a full factorial 23 design; the symbol ‘4 = 1.2’ means that the values for factor 4 are
selected by multiplying the elements of the columns for the factors 1 and 2. Note
that the design is still balanced and orthogonal. Because of this orthogonality,
it can be proven that the estimators of the regression parameters have smaller
variances than one-factor-at-a-time designs give. How to select scenarios in 2k−p

designs is discussed in many DOE textbooks, including Kleijnen (1975, 1987).
Actually, these designs – i.e., fractional factorial designs of the 2k−p type with

biggest p value still enabling the estimation of first-order polynomial regression
models – are a subset of Plackett–Burman designs. The latter designs consists of
k + 1 combinations with k + 1 rounded upwards to a multiple of four; for example,
if k = 11, then Table 3.4 applies. If k = 8, then the Plackett–Burman design is a
27−4 fractional factorial design; see Kleijnen (1975, pp. 330-331). Plackett–Burman
designs are tabulated in many DOE textbooks, including Kleijnen (1975). Note
that designs for first-order polynomial regression models are called resolution III
designs.

Table 3.4. The Placket–Burman design for 11 factors

Scenario 1 2 3 4 5 6 7 8 9 10 11

1 + − + − − − + + + − +

2 + + − + − − − + + + −

3 − + + − + − − − + + +

4 + + + − + + − − − + +

5 + − + + − − − − − − +

6 + + − + + + + + − − −

7 − + + + − + + − + − −

8 − − + + + − + + − + −

9 − − − + + + − + + − +

10 + − − − + + + − + + −

11 − + − − − + + + − + +

12 − − − − − − − − − − −

Design and Analysis of Monte Carlo Experiments 509

Resolution IV designs enable unbiased estimators of first-order effects – even if
two-factors interactions are important. These designs require double the number
of scenarios required by resolution III designs; i.e., after simulating the scenarios
of the resolution III design, the analysts simulate the mirror scenarios; i.e., multiply
by −1 the factor values in the original scenarios.

Resolution V designs enable unbiased estimators of first-order effects plus all
two-factor interactions. To this class belong certain 2k−p designs with small enough
p values. These designs often require rather many scenarios to be simulated. For-
tunately, there are also saturated designs; i.e., designs with the minimum number
of scenarios that still allow unbiased estimators of the regression parameters. Satu-
rated designs are attractive for expensive simulations; i.e., simulations that require
relatively much computer time per scenario. Saturated resolution V designs were
developed by Rechtschaffner (1967).

Central composite designs (CCD) are meant for the estimation of second-order
polynomials. These designs augment resolution V designs with the base scenario
and 2k scenarios that change factors one at a time; this changing increases and
decreases each factor in turn. Saturated variants (smaller than CCD) are discussed
in Kleijnen (1987, pp. 314–316).

The main conclusion is that incomplete designs for low-order polynomial regres-
sion are plentiful in both the classic DOE literature and the simulation literature.
(The designs in the remainder of this chapter are more challenging.)

Designs for Simulations with Too Many Factors 3.4.4

Most practical, non-academic simulation models have many factors; for example,
Kleijnen et al. (2003b) experiment with a supply-chain simulation model with
nearly 100 factors. Even a Plackett–Burman design would then take 102 scenarios.
Because each scenario needs to be replicated several times, the total computer
time may then be prohibitive. For that reason, many analysts keep a lot of factors
fixed (at their base values), and experiment with only a few remaining factors. An
example is a military (agent-based) simulation that was run millions of times for
just a few scenarios – changing only a few factors; see Horne and Leonardi (2001).

However, statisticians have developed designs that require fewer than k sce-
narios – called supersaturated designs; see Yamada and Lin (2002). Some designs
aggregate the k individual factors into groups of factors. It may then happen
that the effects of individual factors cancel out, so the analysts would erro-
neously conclude that all factors within that group are unimportant. The so-
lution is to define the −1 and +1 levels of the individual factors such that all
first-order effects βj (j = 1, … , k) are non-negative. My experience is that in
practice the users do know the direction of the first-order effects of individual
factors.

There are several types of group screening designs; for a recent survey including
references, I refer to Kleijnen et al. (2003b). Here I focus on the most efficient type,
namely Sequential Bifurcation designs.

510 Jack P.C. Kleijnen

This design type is so efficient because it proceeds sequentially. It starts with
only two scenarios, namely, one scenario with all individual factors at −1, and
a second scenario with all factors at +1. Comparing the outputs of these two
extreme scenarios requires only two replications because the aggregated effect
of the group factor is huge compared with the intrinsic noise (caused by the
pseudorandom numbers). The next step splits – bifurcates – the factors into two
groups. There are several heuristic rules to decide on how to assign factors to
groups (again see Kleijnen et al. 2003b). Comparing the outputs of the third
scenario with the outputs of the preceding scenarios enables the estimation of
the aggregated effect of the individual factors within a group. Groups – and all
its individual factors – are eliminated from further experimentation as soon as
the group effect is statistically unimportant. Obviously, the groups get smaller as
the analysts proceed sequentially. The analysts stop, once the first-order effects
βj of all the important individual factors are estimated. In their supply-chain
simulation, Kleijnen et al. (2003b) classify only 11 of the 92 factors as important.
(Next, this shortlist of important factors is further investigated to find a robust
solution.)

Kriging3.5

Let’s return to theexample inFig. 3.1. If theanalystsare interested in the input|output
behavior within ‘local area 1’, then a first-order polynomial may be adequate.
Maybe, a second-order polynomial is required to get a valid approximation in ‘local
area 2’, which is larger and shows non-linear behavior of the input/output function.
However, Kleijnen and Van Beers (2003a) present an example illustrating that the
second-order polynomial gives very poor predictions – compared with Kriging.

Kriging has been often applied in deterministic simulation models. Such sim-
ulations are used for the development of airplanes, automobiles, computer chips,
computer monitors, etc.; see Sacks et al. (1989)’s pioneering article, and – for an
update – see Simpson et al. (2001). For Monte Carlo experiments, I do not know
any applications yet. First, I explain the basics of Kriging; then DOE aspects.

Kriging Basics3.5.1

Kriging is an interpolation method that predicts unknown values of a random pro-
cess; see the classic textbook on Kriging in spatial statistics, Cressie (1993). More
precisely, a Kriging prediction is a weighted linear combination of all output values
already observed. These weights depend on the distances between the input for
which the output is to be predicted and the inputs already simulated. Kriging as-
sumes that the closer the inputs are, the more positively correlated the outputs are.
This assumption is modeled through the correlogram or the related variogram,
discussed below.

Design and Analysis of Monte Carlo Experiments 511

Note that in deterministic simulation, Kriging has an important advantage over
regression analysis: Kriging is an exact interpolator; that is, predicted values at
observed input values are exactly equal to the observed (simulated) output values.
In random simulation, however, the observed output values are only estimates
of the true values, so exact interpolation loses its intuitive appeal. Therefore re-
gression uses OLS, which minimizes the residuals – squared and summed over all
observations.

The simplest typeofKriging– towhich I restrict myself in this chapter – assumes
the following metamodel (also see (3.4) with µ = β0 and β1 = β2 = β3 = 0):

y = µ + e with (3.13a)

E(e) = 0, var(e) = σ2 , (3.13b)

where µ is the mean of the stochastic process y(.), and e is the additive noise, which
is assumed to have zero mean and non-constant finite varianceσ2(x) (furthermore,
many authors assume normality). Kriging further assumes a stationary covariance
process; i.e., µ and σ in (3.13a) are constants, and the covariances of y(x + h) and
y(x) depend only on the distance (or ‘lag’) between their inputs, namely |h| = |(x +
h) − (x)|. (In deterministic simulation, the analysts assume that the deterministic
input/output behavior can be adequately approximated by the random model given
in (3.13b).)

The Kriging predictor for the unobserved input x0 – denoted by ŷ(x0) – is
a weighted linear combination of all the n output data already observed – y(xi):

ŷ(x0) =
n∑

i=1

λi · y(xi) = λ′ · y with (3.14a)

n∑

i=1

λi = 1 , (3.14b)

where λ = (λ1, … , λn)T and y = (y1, … , yn)T .
To quantify the weights λ in (3.14), Kriging derives the best linear unbiased esti-

mator (BLUE), which minimizes the Mean Squared Error (MSE) of the predictor:

MSE
(
ŷ(x0)

)
= E

((
y(x0) − ŷ(x0)

)2
)

with respect to λ. Obviously, these weights depend on the covariances mentioned
below (3.13). Cressie (1993) characterizes these covariances through the variogram,
definedas 2γ(h) = var(y(x+h)−y(x)). (I followCressie (1993),whouses variograms
to express covariances, whereas Sacks et al. (1989) use correlation functions.) It
can be proven that the optimal weights in (3.14) are

λT =
(

γ + 1
1 − 1TΓ−1γ

1TΓ−11

)T

Γ−1 (3.15)

with the following symbols:

512 Jack P.C. Kleijnen

γ : vector of the n (co)variances between the output at the new input x0 and the
outputs at the n old inputs, so γ = (γ(x0 − x1), … , γ(x0 − xn))T

Γ: n×n matrix of the covariances between the outputs at the n old inputs – with
element (i, j) equal to γ(xi − xj)

1: vector of n ones.
I point out that the optimal weights defined by (3.15) vary with the input value

for which output is to be predicted (see γ), whereas linear regression uses the same
estimated parameters β̂ for all inputs to be predicted.

Designs for Kriging3.5.2

The most popular design type for Kriging is Latin hypercube sampling (LHS). This
design type was invented by McKay, Beckman, and Conover (1979) for determin-
istic simulation models. Those authors did not analyze the input|output data by
Kriging (but they did assume input|output functions more complicated than the
low-order polynomials in classic DOE). Nevertheless, LHS is much applied in Krig-
ing nowadays, because LHS is a simple technique (it is part of spreadsheet add-ons
such as @Risk).

LHS offers flexible design sizes n (number of scenarios simulated) for any
number of simulation inputs, k. A simplistic example is shown for k = 2 and n = 4
in Table 3.5 and Fig. 3.4, which are constructed as follows.
1. The table illustrates that LHS divides each input range into n intervals of equal

length, numbered from 1 to n (in the example, we have n = 4; see the numbers
in the last two columns); i.e., the number of values per input can be much
larger than in the designs discussed in Sect. 3.4.

2. Next, LHS places these integers 1, … , n such that each integer appears exactly
once in each row and each column of the design. (This explains the term ‘Latin
hypercube’: it resembles Latin squares in classic DOE.)

3. Within each cell of the design in the table, the exact input value may be sampled
uniformly; seeFig. 3.4. (Alternatively, thesevaluesmaybeplacedsystematically
in the middle of each cell. In risk analysis, this uniform sampling may be
replaced by sampling from some other distribution for the input values.)

Because LHS implies randomness, the resulting design may happen to include
outlier scenarios (to be simulated). Furthermore, it might happen – with small
probability – that in Fig. 3.4 all scenarios lie on the main diagonal, so the values of

Table 3.5. A LHS design for two factors and four scenarios

Scenario Interval factor 1 Interval factor 2

1 2 1

2 1 4

3 4 3

4 3 2

Design and Analysis of Monte Carlo Experiments 513

Figure 3.4. A LHS design for two factors and four scenarios

the two inputs have a correlation coefficient of −1. Therefore LHS may be adjusted
to give (nearly) orthogonal designs; see Ye (1998).

Let’s compare classic designs and LHS geometrically. Figure 3.3 illustrates that
many classic designs consists of corners of k-dimensional cubes. These designs
imply simulation of extreme scenarios. LHS, however, has better space filling prop-
erties.

This property has inspired many statisticians to develop other space filling
designs. One type maximizes the minimum Euclidean distance between any two
points in the k-dimensional experimental area. Related designs minimize the max-
imum distance. See Koehler and Owen (1996), Santner et al. (2003), and also
Kleijnen et al. (2003a).

Conclusions 3.6

Because simulation– treatedasablackbox– implies experimentationwithamodel,
design of experiment is essential. In this chapter, I discussed both classic designs
for low-order polynomial regression models and modern designs (including Latin
hypercube sampling) for other metamodels such as Kriging models. The simpler
the metamodel is, the fewer scenarios need to be simulated. (Cross validation of
the metamodel selected, is discussed in Chap. III.1 by Wang.)

I did not discuss so-called optimal designs because these designs use statistical
assumptions (such as white noise) that I find too unrealistic. A recent discussion
of optimal designs including references is Spall (2003).

Neither did I discuss the designs in Taguchi (1987), as I think that the classic
and modern designs (which I did discuss) are superior. Nevertheless, I think that
Taguchi’s concepts – as opposed to his statistical techniques – are important. In
practice, the ‘optimal’ solution may break down because the environment turns
out to differ from the environment that the analysts assumed when deriving the

514 Jack P.C. Kleijnen

optimum. Therefore they should look for a ‘robust’ solution. For further discussion
I refer to Kleijnen et al. (2003a).

Because of space limitations, I did not discuss sequential designs, except for se-
quential bifurcationand two-stage resolution IVdesigns.Nevertheless, the sequen-
tial nature of simulation experiments (caused by the computer architecture) makes
sequential designs very attractive. This is an area of active research nowadays; see
Jin et al. (2002), Kleijnen et al. (2003a), and Kleijnen and Van Beers (2003b).

I mentioned several more research issues; for example, importance sampling.
Another interesting question is: how much computer time should analysts spend
on replication; how much on exploring new scenarios?

Another challenge is to develop designs that explicitly account for multiple
outputs. This may be a challenge indeed in sequential bifurcation (depending
on the output selected to guide the search, different paths lead to the individual
factors identified as being important). In practice, multiple outputs are the rule in
simulation; see Kleijnen et al. (2003a).

The application of Kriging to random simulation models (such models are
a focus of this handbook, including this chapter) seems a challenge. Moreover,
corresponding software needs to be developed. Current software focuses on deter-
ministic simulation; see Lophaven et al. (2002).

Comparison of various metamodel types and their designs remains a major
problem. For example, Meckesheimer et al. (2001) compare radial basis, neural net,
and polynomial metamodels. Clarke et al. (2003) compare low-order polynomials,
radial basis functions, Kriging, splines, and support vector regression. Alam et
al. (2003) found that LHS gives the best neural-net metamodels. Comparison of
screening designs has hardly begun; see Kleijnen et al. (2003 a,b).

References

Alam, F.M., K.R. McNaught, T.J. Ringrose (2003). A comparison of experimen-
tal designs in the development of a neural network simulation metamodel.
Simulation Modelling: Practice and Theory, accepted conditionally.

Angün, E., D. den Hertog, G. Gürkan, J.P.C. Kleijnen (2002). Response surface
methodology revisited. In: Proceedings of the 2002 Winter Simulation Confer-
ence, ed. E. Yücesan, C.H. Chen, J.L. Snowdon, J.M. Charnes, Piscataway, New
Jersey: Institute of Electrical and Electronics Engineers, 377–383.

Antioniadis, A., D.T. Pham (1998). Wavelet regression for random or irregular
design. Computational Statistics and data Analysis 28:353–369.

Bettonvil, B., J.P.C. Kleijnen (1990). Measurement scales and resolution IV de-
signs. American Journal of Mathematical and Management Sciences 10 (3–4):
309–322.

Clarke, S.M., J.H Griebsch, T.W., Simpson (2003). Analysis of support vector regres-
sion for approximation of complex engineering analyses. Proceedings of DETC
‘03, ASME 2003 Design Engineering Technical Conferences and Computers and
Information in Engineering Conference, Chicago.

Design and Analysis of Monte Carlo Experiments 515

Cressie, N.A.C (1993). Statistics for spatial data. New York: Wiley.
Donohue, J. M., E.C. Houck, R.H. Myers (1993). Simulation designs and correla-

tion induction for reducing second-order bias in first-order response surfaces
Operations Research 41 (5):880–902.

Efron, B. and R.J. Tibshirani (1993). An introduction to the bootstrap. New York:
Chapman & Hall.

Glasserman, P., P. Heidelberger, and P. Shahabuddin (2000), Variance reduction
techniques for estimating value-at-risk. Management Science, 46, no. 10, pp.
1349–1364.

Horne, G., M. Leonardi, eds (2001). Maneuver warfare science 2001. Quantico, Vir-
ginia: Defense Automatic Printing Service.

Jin, R, W. Chen, and A. Sudjianto (2002). On sequential sampling for glob-
al metamodeling in engineering design. Proceedings ofD ETC ‘02, ASME 2002
Design Engineering Technical Conferences and Computers and Information in
Engineering Conference, DETC2002|DAC-34092, September 29-October 2,
2002, Montreal, Canada.

Kleijnen, J.P.C (1998). Experimental design for sensitivity analysis, optimization,
and validation of simulation models. In: Handbook of Simulation, ed. J. Banks,
173–223. New York: Wiley.

Kleijnen, J.P.C (1992). Regression metamodels for simulation with common ran-
dom numbers: comparison of validation tests and confidence intervals. Man-
agement Science 38 (8): 1164–1185.

Kleijnen, J.P.C (1987). Statistical tools for simulation practitioners. New York: Mar-
cel Dekker.

Kleijnen, J.P.C (1975). Statistical techniques in simulation, volume II. New York:
Marcel Dekker. (Russian translation, Publishing House “Statistics”, Moscow,
1978).

Kleijnen, J.P.C. S.M. Sanchez, T.W. Lucas, T.M. Cioppa (2003a). A user’s guide to
the brave new world of designing simulation experiments. INFORMS Journal
on Computing (accepted conditionally).

Kleijnen, J.P.C., B. Bettonvil, F. Person (2003b). Finding the important factors in
large discrete-event simulation: sequential bifurcation and its applications. In:
Screening, ed. A.M. Dean, S.M. Lewis, New York: Springer-Verlag (forthcoming;
preprint: http://center.kub.nl/staff/kleijnen/papers.html).

Kleijnen, J.P.C. and R.Y. Rubinstein (2001). Monte Carlo sampling and variance
reduction techniques. Encyclopedia of Operations Research and Management
Science, Second edition, edited by S. Gass and C. Harris, Kluwer Academic
Publishers, Boston, 2001, pp. 524–526.

Kleijnen, J.P.C.,R.G. Sargent (2000).Amethodology for thefitting andvalidationof
metamodels in simulation. European Journal of Operational Research 120 (1):
14–29.

Kleijnen, J.P.C., W.C.M. Van Beers 2003a. Robustness of Kriging when interpolat-
ing in random simulation with heterogeneous variances: some experiments.
European Journal of Operational Research (in press).

516 Jack P.C. Kleijnen

Kleijnen, J.P.C., W.C.M. Van Beers. 2003b.Application-driven sequential designs for
simulation experiments: Kriging metamodeling. Journal Operational Research
Society (in press); preprint: http://center.kub.nl/staff/kleijnen/papers.html).

Koehler, J.R., A.B. Owen (1996). Computer experiments. In: Handbook of Statistics,
Volume 13, Eds. S. Ghosh, C.R. Rao, 261–308. Amsterdam: Elsevier.

Law, A.M., W.D. Kelton (2000). Simulation modeling and analysis. 3rd ed. New
York: McGraw-Hill

Lophaven, S.N., H.B. Nielsen, and J. Sondergaard (2002). DACE: a Matlab Kriging
toolbox, version 2.0. IMM Technical University of Denmark, Lyngby.

McKay, M.D., R.J. Beckman, W.J. Conover (1979). A comparison of three methods
for selecting values of input variables in the analysis of output from a computer
code. Technometrics 21 (2): 239–245 (reprinted in 2000: Technometrics 42 (1):
55–61).

Meckesheimer, M., R.R. Barton, F. Limayem, B. Yannou (2001). Metamodeling of
combined discrete/continuous responses. AIAA Journal 39 1950–1959.

Rechtschaffner, R.L (1967). Saturated fractions of 2n and 3n factorial designs.
Technometrics 9 569575.

Sacks, J., W.J. Welch, T.J. Mitchell, H.P. Wynn (1989). Design and analysis of com-
puter experiments. Statistical Science 4 (4) 409–435.

Santner, T.J., B.J. Williams, and W.I. Notz (2003), The design and analysis of com-
puter experiments. New York: Springer-Verlag.

Simpson, T.W., T.M. Mauery, J.J. Korte, F. Mistree (2001). Kriging metamodels for
global approximation in simulation-based multidisciplinary design optimiza-
tion. AIAA Journal 39 (12) 2233–2241.

Spall, J.C (2003). Introduction to stochastic search and optimization; estimation,
simulation, and control. Hoboken, New Jersey, Wiley.

Taguchi, G. 1987. System of experimental designs, Volumes 1 and 2. White Plains,
NY: UNIPUB/Krauss International.

Yamada, S., Lin, D. K. J. (2002). Construction of mixed-level supersaturated design,
Metrika (56), 205–214.

Ye, K.Q. (1998). Orthogonal column Latin hypercubes and their application in com-
puter experiments. Journal Association Statistical Analysis, Theory and Meth-
ods, (93) 1430–1439.

Zeigler B.P., K. Praehofer, T.G. Kim (2000). Theory of modeling and simulation.
2nd ed. New York: Academic Press.

III.4Multivariate Density
Estimation and Visualization

David W. Scott

4.1 Introduction . 518

4.2 Visualization . 519

Data Visualization . 519

4.3 Density Estimation Algorithms and Theory . 523

A High-Level View of Density Theory. 523
The Theory of Histograms . 526
ASH and Kernel Estimators . 528
Kernel and Other Estimators . 530

4.4 Visualization of Trivariate Functionals. 532

4.5 Conclusions . 534

518 David W. Scott

Introduction4.1

This chapter examines the use of flexible methods to approximate an unknown
density function, and techniques appropriate for visualization of densities in up to
four dimensions. The statistical analysis of data is a multilayered endeavor. Data
must be carefully examined and cleaned to avoid spurious findings. A preliminary
examination of data by graphical means is useful for this purpose. Graphical
explorationofdatawaspopularizedby Tukey (1977) inhis bookonexploratory data
analysis (EDA). Modern data mining packages also include an array of graphical
tools such as the histogram, which is the simplest example of a density estimator.
Exploring data is particularly challenging when the sample size is massive or if the
numberofvariables exceedsahandful. Ineither situation, theuseofnonparametric
density estimation can aid in the fundamental goal of understanding the important
features hidden in the data. In the following sections, the algorithms and theory
of nonparametric density estimation will be described, as well as descriptions
of the visualization of multivariate data and density estimates. For simplicity,
the discussion will assume the data and functions are continuous. Extensions to
discrete and mixed data are straightforward.

Statistical modeling of data has two general purposes: (1) understanding the
shape and features of data through the density function, f (x), and (2) prediction
of y through the joint density function, f (x, y). When the experimental setting is
well-known, parametric models may be formulated. For example, if the data are
multivariate normal, N(µ, Σ), then the features of the density may be extracted
from the maximum likelihood estimates of the parameters µ and Σ. In particular,
such data have one feature, which is a single mode located at µ. The shape of the
data cloud is elliptical, and the eigenvalues and eigenvectors of the covariance
matrix, Σ, indicate the orientation of the data and the spread in those directions.
If the experimental setting is not well-known, or if the data do not appear to
follow a parsimonious parametric form, then nonparametric density estimation
is indicated. The major features of the density may be found by counting and
locating the sample modes. The shape of the density cannot easily be determined
algebraically, but visualization methodology can assist in this task. Similar remarks
apply in the regression setting.

When should parametric methods be used and when should nonparametric
methods be used? A parametric model enjoys the advantages of well-known prop-
erties and parameters which may be interpreted. However, using parametric meth-
ods to explore data makes little sense. The features and shape of a normal fit will
always be the same no matter how far from normal the data may be. Nonpara-
metric approaches can fit an almost limitless number of density functional forms.
However, at the model, parametric methods are always more statistically accurate
than the corresponding nonparametric estimates. This statement can be made
more precise by noting that parametric estimators tend to have lower variance,
but are susceptible to substantial bias when the wrong parametric form is invoked.
Nonparametric methods are not unbiased, but the bias asymptotically vanishes for

Multivariate Density Estimation and Visualization 519

any continuous target function. Nonparametric algorithms generally have greater
variance than a parametric algorithm. Construction of optimal nonparametric
estimates requires a data-based approach in order to balance the variance and the
bias, and the resulting mean squared error generally converges at a rate slower
than the parametric rate of O(n−1). In summary, nonparametric approaches are
always appropriate for exploratory purposes, and should be used if the data do not
follow a simple parametric form.

Visualization 4.2

Data Visualization 4.2.1

Visualization of data is a fundamental task in modern statistical practice. The most
commonfigure for this purpose is thebivariate scatterdiagram.Figure4.1adisplays
the levels of blood fats in a sample of men with heart disease. The data have been
transformed to a logarithm base 10 scale to minimize the effects of skewness. At
a first glance, the data appear to follow a bivariate normal distribution. The sample
correlation is only 0.22. One might examine each of the two variables separately
as a univariate scatter diagram, which is commonly referred to as a “dot plot”, but
such figures are rarely presented. Tukey advocated the histogram-like stem-and-
leaf plot or the box-and-whiskers plot, which displays simple summaries including
the median and quartiles. Figure 4.1b displays box-and-whisker plots for these
variables. Clearly triglyceride values vary more than cholesterol and may still be
right-skewed.

As shown later in Sect. 4.3.3, there may be rather subtle clusters within these
data. The eye can readily detect clusters which are well-separated, but the eye is
not reliable when the clusters are not well-separated, nor when the sample size
is so large that the scatter diagram is too crowded. For example, consider the
Old Faithful Geyser data (Azzalini and Bowman, 1990), (xt , yt), where xt measures
the waiting time between successive eruptions of the geyser, and yt measures the
duration of the subsequent eruption. The data were blurred by adding uniform

Figure 4.1. Cholesterol and triglyceride blood levels for 320 males with heart disease

520 David W. Scott

Figure 4.2. Waiting time and duration of 299 consecutive eruptions of the Old Faithful Geyser

noise to the nearest minute for xt and to the nearest second for yt . Figure 4.2
displays histograms of these two variables. Interestingly, neither appears to follow
the normal distribution. The common feature of interest is the appearance of two
modes. One group of eruptions is only 2 minutes in duration, while the other
averages over 4 minutes in duration. Likewise, the waiting time between eruptions
clusters into two groups, one less than an hour and the other greater than one
hour. The distribution of eruption durations appears to be a mixture of two normal
densities, but the distribution of the waiting times appears more complicated.

Finally, in Fig. 4.3 we examine the scatter diagrams of both (xt , yt) as well as
the lagged values of eruption duration, (yt−1, yt). The common feature in these two
densities is the presence of three modes. As mentioned earlier, the eye is well-suited
to discerning clusters that are well-separated. From Fig. 4.3a, short waiting periods
are associated with long eruption durations. From Fig. 4.3b, all eruptions of short
duration are followed by eruptions of long duration. Missing from Fig. 4.3b are
any examples of eruptions of short duration following eruptions of short duration,
which should be a plus for the disappointed tourist. The observant reader may
notice an odd clustering of points at integer values of the eruption duration.
A quick count shows that 23, 2, and 53 of the original 299 values occur exactly at
y = 2, 3, and4 minutes, respectively.Examining theoriginal timesequencesuggests

Figure 4.3. Two scatter diagrams of the Old Faithful Geyser data

Multivariate Density Estimation and Visualization 521

that these measurements occur in clumps; perhaps accurate measurements were
not taken after dark. Exploration of these data has revealed not only interesting
features but also suggest possible data collection anomalies.

Massive datasets present different challenges. For example, the Landsat IV re-
mote sensing dataset described by Scott (1992) contains information on 22,932
pixels of a scene imaged in 1977 from North Dakota. The variables displayed in
Fig. 4.4 are the time of peak greenness of the crop in each pixel and the derived
value of the maximum greenness, scaled to values 0–255 and blurred with uniform
noise. Overplotting is apparent. Each successive figure drills down into the boxed
region shown. Only 5.6% of the points are eliminated going to the second frame;
35.5% eliminated between the second and third frames; and 38.1% between the
third and final frames, still leaving 8624 points. Overplotting is still apparent in the
final frame.Generally, gleaningdetaileddensity information fromscatterdiagrams
is difficult at best. Nonparametric density estimation solves this problem.

To see the difficulty of gleaning density information from the graphs in Fig. 4.4,
compare the bivariate histogram displayed in Fig. 4.5 for the data in frame (b)
from Fig. 4.4. Using only the scatter diagram, there is no way to know the relative
frequency of data in the two largest clusters except through the histogram.

The bivariate histogram uses rectangular-shaped bins. An interesting hybrid
solution is to use hexagonal-shaped bins and to use a glyph to represent the bin
count. Scott (1988) compared the statistical power of using squares, hexagons,
and equilateral triangles as shapes for bins of bivariate histograms and concluded
that hexagons were the best choice. Carr et al. (1992) examined the use of drawing
aglyph ineachbivariatebin rather than theperspective view.Forgraphical reasons,

(a)

(c)

(b)

(d)

Figure 4.4. Drilling into the Landsat IV data with n = 22932

522 David W. Scott

Carr found hexagonal bins were more effective. The bin count is represented by
a hexagonal glyph whose area is proportional to the bin count. Figure 4.6 displays
the hexagonal mosaic map of the same data as in Fig. 4.5. This representation gives
a quite accurate summary of the density information. No bin counts are obscured
as in the perspective view of the bivariate histogram.

In thenext section, someof thealgorithms fornonparametricdensity estimation
and their theoretical properties are discussed. We then return to the visualization
of data in higher dimensions.

Figure 4.5. Histogram of data in Fig. 4.4b

Figure 4.6. Hexagonal bin glyph of the data in Fig. 4.4b

Multivariate Density Estimation and Visualization 523

Density Estimation Algorithms
and Theory 4.3

This section includes enough algorithms and results to obtain a basic understand-
ing of the opportunities and issues. Fortunately, there have been a number of
readable monographs available for the reader interested in pursuing this subject
in depth. In rough chronological order, excluding books primarily dealing with
nonparametric regression, the list includes Tapia and Thompson (1978), Wertz
(1978), Prakasa Rao (1983), Devroye and Györfi (1985), Silverman (1986), Devroye
(1987), Nadaraya (1989), Härdle (1990), Scott (1992), Tarter and Lock (1993), Wand
and Jones (1995), Simonoff (1996), Bowman and Azzalini (1997), and Tarter (2000).

The purpose of the next section is to provide a survey of important results
without delving into the theoretical underpinnings and details. The references
cited above are well-suited for that purpose.

A High-Level View of Density Theory 4.3.1

Smoothing Parameters
Every algorithm for nonparametric density estimation has one or more design
parameters which are called the smoothing parameter(s) or bandwidth(s) of the
procedure. The smoothing parameter controls the final appearance of the es-
timate. For an equally-spaced histogram, the bin width plays the primary role
of a smoothing parameter. Of course, the bins may be shifted and the location
of the bin edges is controlled by the bin origin, which plays the role of a sec-
ondary smoothing parameter. For a kernel estimator, the scale or width of the
kernel serves as the smoothing parameter. For an orthogonal series estimator, the
number of basis functions serves as the smoothing parameter. The smoothing
parameters of a spline estimator also include the location of the knots. Similarly,
a histogram with completely flexible bin widths has many more than two smooth-
ing parameters.

No Unbiased Density Estimators
As a point estimator of f (x), Rosenblatt (1956) proved that every nonparametric
density estimator, f̂ (x) is biased. However, it is usually true that the integral of all
of the pointwise biases is 0. Thus mean squared error (MSE) and integrated mean
squared error (IMSE) are the appropriate criteria to optimize the tradeoff between
pointwise|integrated variance and squared bias.

Nonparametric density estimators always underestimate peaks and overesti-
mate valleys in the true density function. Intuitively, the bias is driven by the
degree of curvature in the true density. However, since the bias function is contin-
uous and integrates to 0, there must be a few points where the bias does vanish.
In fact, letting the smoothing parameter vary pointwise, there are entire inter-
vals where the bias vanishes, including the difficult-to-estimate tail region. This

524 David W. Scott

fact has been studied by Hazelton (1996) and Sain and Scott (2002). Since the
bias of a kernel estimator does not depend on the sample size, these zero-bias or
bias-annihilating estimates have more than a theoretical interest. However, there
is much more work required for practical application. Alternatively, in higher
dimensions away from peaks and valleys, one can annihilate pointwise bias by bal-
ancing directions of positive curvature against directions of negative curvature;
see Terrell and Scott (1992). An even more intriguing idea literally adjusts the raw
data points towards peaks and away from valleys to reduce bias; see Choi and Hall
(1999).

Rates of Convergence
The rate of convergence of a nonparametric density estimator to the true density
is much slower than in the parametric setting, assuming in the latter case that
the correct parametric model is known. If the correct parametric model is not
known, then the parametric estimates will converge but the bias will not vanish.
The convergence is slower still in high dimensions, a fact which is often referred
to as the curse of dimensionality. Estimating the derivative of a density function is
even harder than coping with an additional dimension of data.

If the k-th derivative of a density is known to be smooth, then it is theoretically
possible to construct an order-k nonparametric density estimation algorithm. The
pointwise bias is driven by the k-th derivative at x, f (k)(x). However, if k > 2, then
the density estimate will take on negative values for some points, x. It is possible
to define higher-order algorithms which are non-negative, but these estimates
do not integrate to 1; see Terrell and Scott (1980). Thus higher-order density
estimation algorithms violate one of the two conditions for a true density: f (x) ≥
0 and

∫∞
−∞ f (x) dx = 1. Of course, there are cases where the first condition is

violated for lower-order estimators. Two such cases include orthogonal series
estimators (Kronmal and Tarter, 1968; Watson, 1969) and boundary-corrected
kernel estimators (Rice, 1984). Note that positive kernel estimators correspond to
k = 2. Wahba (1981) studied the efficacy of higher-order procedures and suggested
k = 3 often provided superior estimates. Scott (1992) also studied this question
and found some improvement when k = 3, which must be traded off against the
disadvantages of negative estimates.

Choosing Bandwidths in Practice
Picking the best smoothing parameter from data is an important task in practice.
If the smoothing parameter is too small, the estimate is too noisy, exhibiting high
various and extraneous wiggles. If the smoothing parameter is too large, then the
estimate may miss key features due to oversmoothing, washing out small details.
Such estimates have low variance but high bias in many regions. In practice,
bandwidths that do not differ by more than 10–15% from the optimal bandwidth
are usually satisfactory.

A statistician experienced in EDA is likely to find all estimates informative for
bandwidths ranging from undersmoothed to oversmoothed. With a complicated

Multivariate Density Estimation and Visualization 525

Figure 4.7. Histograms of x variable in Fig. 4.4b with 15, 35, and 100 bins

Figure 4.8. Histograms of log10-cholesterol variable in Fig. 4.1 with 9, 19, and 39 bins

density function, no single choice for the bandwidth may properly represent the
density for all values of x. Thus the same bandwidth may result in undersmoothing
for some intervals of x, oversmoothing in another interval, and yet near opti-
mal smoothing elsewhere. However, the practical difficulty of constructing locally
adaptive estimators makes the single-bandwidth case of most importance. Simple
transformations of the data scale can often be an effective strategy (Wand et al.,
1991). This strategy was used with the lipid data in Fig. 4.1, which were transformed
to a log10 scale.

Consider the 21,640 x points shown in frame (b) of Fig. 4.4. Histograms of these
data with various numbers of bins are shown in Fig. 4.7. With so much data, the
oversmoothed histogram Fig. 4.7a captures the major features, but seems biased
downwards at the peaks. The final frame shows a histogram that is more useful for
finding data anomalies than as a good density estimate.

The differences are more apparent with a smaller sample size. Consider the
320 log10-cholesterol levels shown in Fig. 4.1. Three histograms are shown in
Fig. 4.8. The extra one or two modes are at least suggested in the middle panel,
while the histogram in the first panel only suggests a rather unusual non-normal
appearance. The third panel has many large spurious peaks. We conclude from
these two figures that while an oversmoothed estimator may have a large error
relative to the optimal estimator, the absolute error may still be reasonably small
for very large data samples.

Oversmoothed Bandwidths
While there is no limit on how complicated a density may be (for which

∫
f (k)(x)2 dx

may grow without bound), the converse is not true. Terrell and Scott (1985) and
Terrell (1990) show that for a particular scale of a density (for example, the range,

526 David W. Scott

standard deviation, or interquartile range), there is in fact a lower bound among
continuous densities for the roughness quantity

R
(
f (k)

)
=
∫ ∞

−∞
f (k)(x)2 dx . (4.1)

In a real sense, such densities are the smoothest possible and are the easiest to
estimate. The optimal bandwidth for these “oversmoothed densities” serves as
an upper bound. Specifically, any other density with the same scale will have
more complicated structure and will require a smaller bandwidth to more ac-
curately estimate those features. Since oversmoothed bandwidths (and reference
bandwidths as well) only use the data to estimate the scale (variance, for exam-
ple), these data-based estimates are quite stable. Obtaining similar highly sta-
ble data-based nearly optimal bandwidth estimators requires very sophisticated
estimates of the roughness function given in 4.1. One algorithm by Hall et al.
(1991) is often highly rated in practice (Jones et al., 1996). seemed closely re-
lated to the oversmoothed bandwidths. These approaches all rely on asymptot-
ic expansions of IMSE rather than an unbiased risk estimate, which underlies
the least-squares or unbiased cross-validation algorithm introduced by Rude-
mo (1982) and Bowman (1984). However, the unbiased risk approach has nu-
merous extensions; see Sain and Scott (1996) and Scott (2001). Another algo-
rithm that should be mentioned is the bootstrap bandwidth. For a Gaussian
kernel, the bootstrap with an infinite number of repetitions has a closed form
expression; see Taylor (1989). Multivariate extensions are discussed by Sain et al.
(1994).

Many details of these ideas may be found in the literature and in the many
textbooks available. The following section provides some indication of this re-
search.

The Theory of Histograms4.3.2

The basic results of density estimation are perhaps most easily understood with
the ordinary histogram. Thus more time will be spent on the histogram with only
an outline of results for more sophisticated and more modern algorithms.

Given an equally spaced mesh {tk} over the entire real line with tk+1 − tk = h, the
density histogram is given by

f̂ (x) =
νk

nh
for tk < x < tk+1 , (4.2)

where νk is the number of data points falling in the k-th bin. Clearly,
∑

k νk = n
andνk is aBinomial randomvariablewith mean pk =

∫ tk+1
tk

f (x) dx; hence, Eνk = npk

and Varνk = npk(1 − pk). Thus the pointwise variance of the histogram (4.2) is
npk(1 − pk)|(nh)2, which is constant for all x in the k-th bin. Thus, the integrated
variance (IV) over (−∞,∞) may be found by integrating the pointwise vari-
ance over the k-th bin (i.e., multiply by the bin width h), and summing over all
bins:

Multivariate Density Estimation and Visualization 527

IV =
∞∑

k=−∞

npk(1 − pk)

(nh)2
× h =

∞∑

k=−∞

pk(1 − pk)

nh
=

1

nh
−
∑

k

pk2

nh
, (4.3)

since
∑

pk =
∫∞

−∞ f (x) dx = 1. The final term may be shown to approximate
n−1

∫
f (x)2 dx, which is asymptotically negligible. Thus the global integrated vari-

ance of the histogram can be controlled by collecting more data or choosing a wider
bin width.

Next consider the bias of f̂ at a fixed point, x, which is located in the k-th bin.
Note that E f̂ (x) = npk|nh = pk|h. A useful approximation to the bin probability is

pk =
∫ tk+1

tk

f (y) dy = h f (x) + h2

(
1

2
−

x − tk

h

)
f ′(x) + … , (4.4)

replacing the integrand f (y) by f (x) + (y − x)f ′(x) + …. Thus the pointwise bias
may be approximated by

Bias f̂ (x) = E f̂ (x) − f (x) =
pk

h
− f (x) = h

(
1

2
−

x − tk

h

)
f ′(x) + … . (4.5)

Therefore, the bias is controlled by the first derivative of the unknown density at x.
Since tk < x < tk+1, then the factor (1|2 − (x − tk)|h) in (4.5) varies from −1|2 to
1|2. Thus the bias is also directly proportional to the bandwidth, h. To control the
bias of the histogram estimate, the bandwidth h should be small. Comparing (4.3)
and (4.5), the global consistency of the histogram can be guaranteed if, as n → ∞,
h → 0 while ensuring that the product nh → ∞ as well, for example, if h = 1|

√
n

(see Duda and Hart, 1973).
A more complete analysis of the bias (Scott, 1979) shows that the integrated

squared bias is approximately h2 R(f ′)|12, where R(f ′) =
∫

f ′(x)2 dx, so that the
IMSE is given by

IMSE
[

f̂k

]
=

1

nh
+

1

12
h2R(f ′) + O(n−1) . (4.6)

From this equation, the optimal bandwidth is seen to be

h∗ =
[

6

nR(f ′)

]1|3

and IMSE∗ =
(

9

16

)1|3

R(f ′)1|3 n−2|3 . (4.7)

Thus the optimal bandwidth approaches zero at the rate O(n−1|3) and not the rate
O(n−1|2) as suggested by Duda and Hart (1973) nor the rate O(1|log n) as suggested
by Sturges (1926). With regards to IMSE, the best rate a histogram can achieve is of
order O(n−2|3), which falls well short of the parametric rate of O(n−1). From (4.7),
the larger the value of the roughness R(f ′) of the true density, the smaller the
optimal bandwidth and the larger the average error.

Finally, the smoothest density with variance σ2 is

g(x) =
15

16
√

7σ

(
1 −

x2

7σ2

)2

−
√

7σ < x <
√

7σ (4.8)

528 David W. Scott

and zero elsewhere, for which R(g′) = 15
√

7|(343σ3). Since R(f ′) ≥ R(g′) for any
other continuous density, f ,

h∗ =
[

6

nR(f ′)

]1|3

≤
[

6

nR(g′)

]1|3

=
[

686σ3

5
√

7n

]1|3

= 3.73 σ n−1|3 , (4.9)

which is the “oversmoothed bandwidth” rule. Consider the normal reference rule,
f = φ = N(µ,σ2), for which R(φ′) = 1|(4

√
πσ3), which when substituted into (4.7)

gives h∗ = 3.49σ n−1|3, a value that is only 6.4% narrower than the oversmoothed
bandwidth.

The oversmoothing rule (4.9) may be inverted when the scale is the range of
the density to obtain a lower bound of 3

√
2n on the number of bins in the opti-

mal histogram. This formula should be compared to Sturges’ rule of 1 + log2 n,
which is in common use in many statistical packages (Sturges, 1926). In fact, the
histograms in the first frames of Figs. 4.7 and 4.8 correspond to Sturges’ rule,
while the second frames of these figures correspond to the oversmoothed band-
widths. Presumably the optimal bandwidth would occur somewhere between the
second and third frames of these figures. Clearly Sturges’ rule results in over-
smoothed graphs since the optimal number of bins is severely underestimat-
ed.

ASH and Kernel Estimators4.3.3

The histogram is an order-one density estimator, since the bias is determined by
the first derivative. The estimators used most in practice are order-two estimators.
(Recall that order-three estimators are not non-negative.) Perhaps the most unex-
pected member of the order-two class is the frequency polygon (FP), which is the
piecewise linear interpolant of the midpoints of a histogram. (Scott, 1985a) showed
that

IMSE
[

f̂FP

]
=

2

3nh
+

49

2880
h4R(f ′′) + O

(
n−1

)
. (4.10)

Compared to Equation (4.6), the integrated variance of a FP is 33% smaller and
the integrated squared bias is two orders of magnitude smaller. Clearly, h∗ =
O(n−1|5) and IMSE∗ = O(n−4|5). Thus the error converges at a faster rate than
the histogram, by using bins which are wider and an estimator which is not
discontinuous. Examples and other results such as oversmoothing may be found
in Scott (1992).

The use of wider bins means that the choice of the bin origin has a larger
impact, at least subjectively. Given a set of m shifted histogram, f̂1(x), … , f̂m(x),
one might use cross-validation to try to pick the best one. Alternatively, Scott
(1985b) suggested the averaged shifted histogram (ASH), which is literally defined:

f̂ASH(x) =
1

m

m∑

k=1

f̂k(x) . (4.11)

Multivariate Density Estimation and Visualization 529

To be specific, suppose the collection of m histograms has meshes shifted by an
amount δ = h|m from each other. Recompute the bin counts, νk, on the finer mesh,
t′k = kδ, −∞ < k < ∞. Then a bin count for one of the histograms with bin width
h may be computed by adding m of the bin counts on the finer mesh. For x in the
�-th (narrow) bin, there are m shifted histograms that include the (narrow) bin
count, ν�. Adding these m shifted histograms together and averaging gives:

ν�+1−m + 2ν�+2−m + … + m ν� + … + 2ν�+m−2 + ν�+m−1

m × nh
, (4.12)

or after re-arranging

f̂ASH(x) =
1

nh

m−1∑

k=1−m

(
1 −

|k|
m

)
ν�+k . (4.13)

As the number of shifted histograms m → ∞, the weights on the bin counts
approaches the triangular kernel given by K(t) = 1 − |t| for |t| < 1 and zero
elsewhere. The ASH may be generalized to handle general weights by sampling
fromanarbitrarykernel function, K(t), which is any symmetric probability density
defined on the interval [−1, 1]. In this case,

f̂ASH(x) =
1

nh

m−1∑

k=1−m

wm(k) ν�+k where wm(k) ∝ K(k|m) . (4.14)

Like the FP, the ASH is an order-two algorithm, but more efficient in the statistical
sense.

In Fig. 4.9, two ASHs of the log10-cholesterol data are shown. The bin edge effects
and discontinuities apparent in the ordinary histogram in Fig. 4.8 are removed.
The extra features in the distribution are hinted at.

The extension of the ASH to bivariate (and multivariate) data is straightfor-
ward. A number of bivariate (multivariate) histograms are constructed with equal
shifts along the coordinate axes and then averaged together. Figure 4.10 displays
a bivariate ASH of the same lipid data displayed in Fig. 4.1. The strong bimodal
and weak trimodal features are evident. The third mode is perhaps more clearly
represented in a perspective plot; see Fig. 4.11. (Note that for convenience, the data
were rescaled to the intervals (0, 1) for these plots, unlike Fig. 4.1.) The precise

Figure 4.9. Averaged shifted histograms of the log10-cholesterol data

530 David W. Scott

Figure 4.10. Bivariate ASH of the log10-cholesterol and log10-triglyceride data

Figure 4.11. Perspective view of the Bivariate ASH in Fig. 4.10

location of the third mode above (and between) the two primary modes results in
the masking of the multiple modes when viewed along the cholesterol axis alone.
This masking feature is commonplace and a primary reason for trying to extend
the dimensions available for visualization of the density function.

Kernel and Other Estimators4.3.4

The ASH is a discretized representation of a kernel estimator. Binned kernel esti-
mators are of great interest to reduce the computational burden. An alternative to
the ASH is the fast Fourier transform approach of Silverman (1982). Kernel meth-
ods were introduced by Rosenblatt (1956) and Parzen (1962) with earlier work by

Multivariate Density Estimation and Visualization 531

Evelyn Fix and Joe Hodges completed by 1951 in San Antonio, Texas (see Silverman
and Jones, 1989).

Given a kernel function, K(t), which is generally taken to be a symmetric
probability density function, the kernel density estimate is defined by

f̂K(x) =
1

nh

n∑

i=1

K
(x − xi

h

)
=

1

n

n∑

i=1

Kh(x − xi) , (4.15)

letting Kh denote the kernel density transformed by the scale factor, h; that is,
Kh(t) = K(t|h)|h. Among kernels with finite support, Beta densities shifted to
the interval (−1, 1) are popular choices. Among kernels with infinite support, the
normaldensity isby far themostcommonchoice.An importantpaperbySilverman
(1981) showed that the normal kernel has the unique property that the number of
modes in the kernel estimate monotonically decreases as the smoothing parameter
increases. For many exploratory purposes, this property alone is reason to use only
the normal kernel. Minnotte and Scott (1993) proposed graphing the locations
of all modes at all bandwidths in the “mode tree.” Minnotte (1997) proposed
an extension of Silverman’s bootstrap test (Silverman, 1981) for the number of
modes to test individual modes. Software for the ASH, kernel estimates, and the
various mode tests may be found on the web; see statlib at www.stat.cmu.edu, for
example.

Multivariate extensions of the kernel approach generally rely upon the prod-
uct kernel. For example, with bivariate data {(xi, yi), i = 1, … , n}, the bivariate
(product) kernel estimator is

f̂K(x, y) =
1

n

n∑

i=1

Khx (x − xi)Khy (y − yi) . (4.16)

A different smoothing parameter for each variable generally gives sufficient con-
trol. A full bivariate normal kernel may be used in special circumstances, effectively
adding one additional smoothing parameter in the form of the correlation coef-
ficient. However, an equivalent estimate may be obtained by rotating the data so
that the correlation in the kernel vanishes, so that the product kernel may be used
on the transformed data.

In higher dimensions, some care must be exercised to minimize the effects of
the curse of dimensionality. First, marginal variable transformations should be
explored to avoid a heavily skewed appearance or heavy tails. Second, a principal
components analysis should be performed to determine if the data are of full rank.
If so, the data should be projected into an appropriate subspace. No nonparametric
procedure works well if the data are not of full rank. Finally, if the data do not have
many significant digits, the data should be carefully blurred. Otherwise the data
may have many repeated values, and cross-validation algorithms may believe the
data are discrete and suggest using h = 0. Next several kernel or ASH estimates may
be calculated and explored to gain an understanding of the data, as a preliminary
step towards further analyses.

532 David W. Scott

An extensive body of work also exists for orthogonal series density estimators.
Originally, the Fourier basis was studied, but more modern choices for the basis
functions include wavelets. These can be re-expressed as kernel estimators, so
we do not pursue these further. In fact, a number of workers have shown how
almost any nonparametric density algorithm can be put into the form of a kernel
estimator; see Walter and Blum (1979) and Terrell and Scott (1992), for example.
More recent work on local likelihood algorithms for density estimation further
shows how closely related parametric and nonparametric thinking really is; see
Loader (1999) for details and literature.

Visualization of Trivariate Functionals4.4

The field of scientific visualization has greatly enhanced the set of tools available
for the statistician interested in exploring the features of a density estimate in more
than two dimensions. In this section, we demonstrate by example the exploration
of trivariate data.

We continue our analysis of the data given by the duration of 299 consecutive
eruptions of the Old Faithful geyser. A graph of the histogram of these data is
displayed in Fig. 4.2b. We further modified the data as follows: the 105 values that
were only recorded to the nearest minute were blurred by adding uniform noise of
30 seconds in duration. (The remaining data points were recorded to the nearest
second). An easy way to generate high-dimensional data from a univariate time
series is to group adjacent values. In Fig. 4.12, ASH’s of the univariate data {yt} and
the laggeddata {(yt−1, yt)}are shown.Theobviousquestion iswhetherknowledgeof
yt−1 is useful for predicting the value of yt . Clearly, the answer is in the affirmative,
but the structure would not be well-represented by an autoregressive model.

Next, we computed the ASH for the trivariate lagged data {(yt−2, yt−1, yt)}. The re-
sulting estimate, f̂ASH(yt−2, yt−1, yt), may be explored in several fashions. The ques-
tion is whether knowing yt−2 can be used to predict the joint behavior of (yt−1, yt).
This may be accomplished, for example, by examining slices of the trivariate densi-

Figure 4.12. Averaged shifted histograms of the Old Faithful geyser duration data

Multivariate Density Estimation and Visualization 533

ty. Since the (univariate) density has two modes at x = 1.88 and x = 4.33 minutes,
we examine the slices f̂ASH(1.88, yt−1, yt) and f̂ASH(4.33, yt−1, yt); see Fig. 4.13. The
297 data points were divided into two groups, depending on whether yt−2 < 3.0 or
not. The first group of points was added to Fig. 4.13a, while the second group was
added to Fig. 4.13b.

Since each axis was divided into 100 bins, there are 98 other views one might
examine like Fig. 4.13. (An animation is actually quite informative.) However, one
may obtain a holistic view by examining level sets of the full trivariate density.
A level set is the set of all points x such that f̂ASH(x) = α̂fmax, where f̂max is the
maximum or modal value of the density estimate, and α ∈ (0, 1) is a constant
that determines the contour level. Such contours are typically smooth surfaces
in �3. When α = 1, then the “contour” is simply the modal location point. In
Fig. 4.14, the contour corresponding toα = 58% is displayed. Clearly these data are
multimodal, as five well-separated high-density regions are apparent. Each cluster
corresponds to a different sequence of eruption durations, such as long-long-long.

Figure 4.13. Slices of the trivariate averaged shifted histogram of lagged values of the Old Faithful

geyser duration data

Figure 4.14. Visualization of the α = 58% contour of the trivariate ASH of the lagged geyser duration

data

534 David W. Scott

Figure 4.15. Visualization of the α = 28% and 58% contours of the trivariate ASH of the lagged geyser

duration data

The five clusters are now also quite apparent in both frames of Fig. 4.13. Of the
eight possible sequences, three are not observed in this sequence of 299 eruptions.

A single contour does not convey as much information as several. Depending
on the display device, one may reasonably view three to five contours, using
transparency to see the higher density contours that are “inside” the lower density
contours. Consider adding a second contour corresponding to α = 28% to that
in Fig. 4.14. Rather than attempt to use transparency, we choose an alternative
representation which emphasizes the underlying algorithms. The software which
produced these figures is called ashn and is available at the author’s website. ASH
values are computed on a three-dimensional lattice. The surfaces are constructed
using the marching cubes algorithm (Lorensen and Cline, 1987), which generates
thousands of triangles that make up each surface. In Fig. 4.15, we choose not
to plot all of the triangles but only every other “row” along the second axis. The
striped effect allows one to interpolate and complete the low-density contour, while
allowing one to look inside and see the high-density contour. Since there are five
clusters, this is repeated five times. A smaller sixth cluster is suggested as well.

Conclusions4.5

Exploring data is an important part of successful statistical model building. Gen-
eral discussions of graphical tools may be found in Tufte (1983), Wainer (1997),
Cleveland (1985, 1993), Wegman and Depriest (1986) and Buja and Tukey (1991),
for example. Advanced exploratory software may be found in many commercial
packages, but of special note is the XGobi (Swayne et al., 1991) system and suc-
cessors. Immersive environments are also of growing interest (Cook et al., 1997).
A general visualization overview may be found in Wolff and Yaeger (1993).

Especially when the data size grows, point-oriented methods should be supple-
mented by indirect visualization techniques based upon nonparametric density
estimation or by parallel coordinates (Inselberg, 1985; Wegman, 1990). Many den-

Multivariate Density Estimation and Visualization 535

sity algorithms are available. The use of order-two algorithms is generally to be
recommended. These should be calibrated by several techniques, starting with an
oversmoothed bandwidth and the normal reference rule.

For data beyond three dimensions, density estimates may be computed and
slices such as f̂ (x, y, z, t = t0) visualized. If advanced hardware is available, the
surfaces can be animated as t varies continuously over an interval (t0, t1); see Scott
(1986; 2000). Obviously, this is most useful for data in four and five dimensions. In
any case, multivariate density estimation and visualization are important modern
tools for EDA.

Acknowledgments. This research was supported in part by the National Sci-
ence Foundation grants NSF EIA-9983459 (digital government) and DMS 02-04723
(non-parametric methodology).

References
Azzalini, A. and Bowman, A.W. (1990). A Look at Some Data on the Old Faithful

Geyser. Applied Statistics, 39:357–365.
Bowman, A.W. (1984). An Alternative Method of Cross-Validation for the Smooth-

ing of Density Estimates. Biometrika, 71:353–360.
Bowman, A.W. and Azzalini, A. (1990). Applied Smoothing Techniques For Da-

ta Analysis: The Kernel Approach With S-Plus Illustrations, Oxford University
Press.

Buja, A. and Tukey, P.A., eds. (1991). Computing and Graphics in Statistics,
Springer-Verlag Inc, New York.

Carr, D.B., Olsen, A.R. and White, D. (1992). Hexagon Mosaic Maps for the Display
of Univariate and Bivariate Geographical Data. Cartograph. Geograph. Infor-
mation Systems, 19:228–231.

Choi, E. and Hall, P. (1999). Data Sharpening as a Prelude to Density Estimation.
Biometrika, 86:941–947.

Cleveland, W.S. (1985). The Elements of Graphing Data, Wadsworth, Monterey, CA.
Cleveland, W.S. (1993). Visualizing Data, Hobart Press, Summit, NJ.
Cook, D., Cruz-Neira, C., Kohlmeyer, B.D., Lechner, U., Lewin, N., Elson, L.,

Olsen, A., Pierson, S. and Symanzik, J. (1997). Exploring Environmental Data in
a Highly Immersive Virtual Reality Environment. Inter. J. Environ. Monitoring
and Assessment, 51(1-2):441–450.

Devroye, L. (1987). A Course in Density Estimation, Birkhäuser, Boston.
Devroye, L. and Györfi, L. (1985), Nonparametric Density Estimation: The L1 View,

John Wiley, New York.
Duda, R.O. and Hart, P.E. (1973). Pattern Classification and Scene Analysis, John

Wiley, New York.
Hall, P., Sheather, S.J., Jones, M.C. and Marron, J.S. (1991). On Optimal Data-Based

Bandwidth Selection in Kernel Density Estimation. Biometrika, 78:263–270.
Härdle, W. (1990). Smoothing Techniques With Implementation in S, Springer-

Verlag, New York.

536 David W. Scott

Hazelton, M. (1996). Bandwidth Selection for Local Density Estimation. Scandina-
vian Journal of Statistics, 23:221–232.

Inselberg, A. (1985), The Plane with Parallel Coordinates. The Visual Computer,
1:69–91.

Jones, M.C., Marron, J.S., and Sheather, S.J. (1996). A Brief Survey of Bandwidth Se-
lection for Density Estimation. Journal of the American Statistical Association,
91:401–407.

Kronmal, R.A. and Tarter, M.E. (1968). The Estimation of Probability Densities
and Cumulatives by Fourier Series Methods. J. Amer. Statist. Assoc., 63:925–
952.

Loader, C. (1999). Local Regression and Likelihood, Springer, New York.
Lorensen, W.E. and Cline, H.E. (1987). Marching Cubes: A High Resolution 3D

Surface Construction Algorithm. Computer Graphics, 21:163–169.
Minnotte, M.C. (1997). Nonparametric testing of the existence of modes. The

Annals of Statistics, 25:1646–1660.
Minnotte, M.C. and Scott, D.W. (1993). The mode tree: A tool for visualization

of nonparametric density features. Journal of Computational and Graphical
Statistics, 2:51–68.

Nadaraya, E.A. (Kotz, S. Translator) (1989). Nonparametric Estimation of Proba-
bility Densities and Regression Curves, Kluwer Academic Publishers Group.

Parzen, E. (1962). On Estimation of Probability Density Function and Mode. Annals
Math. Statist., 33:1065–1076.

Prakasa Rao, B.L.S. (1983). Nonparametric Functional Estimation, Academic Press,
Orlando, FL.

Rice, J.A. (1984). Boundary Modification for Kernel Regression. Commun. Statist.,
13:893–900.

Rosenblatt, M. (1956). Remarks on Some Nonparametric Estimates of a Density
Function. Ann. Math. Statist., 27:832–837.

Rudemo, M. (1982). Empirical Choice of Histograms and Kernel Density Estima-
tors. Scandinavian Journal of Statistics, 9:65–78.

Sain, S.R., Baggerly, K.A., and Scott, D.W. (1994). Cross-Validation of Multivariate
Densities. Journal of the American Statistical Association, 89:807–817.

Sain, S.R. and Scott, D.W. (1996), On Locally Adaptive Density Estimation. Journal
of the American Statistical Association, 91:1525–1534.

Sain, S.R. andScott,D.W. (2002).Zero-BiasBandwidths forLocallyAdaptiveKernel
Density Estimation. Scandinavian Journal of Statistics, 29:441–460.

Scott, D.W. (1979). On Optimal and Data-Based Histograms. Biometrika, 66:605–
610.

Scott, D.W. (1985a). On Optimal and Data-Based Frequency Polygons. J. Amer.
Statist. Assoc., 80:348–354.

Scott,D.W. (1985b).AveragedShiftedHistograms:EffectiveNonparametricDensity
Estimators in Several Dimensions. Ann. Statist., 13:1024–1040.

Scott, D.W. (1986). Data Analysis in 3 and 4 Dimensions with Nonparametric
Density Estimation. In Wegman, E.J. and DePriest, D. (eds), Statistical Image
Processing and Graphics, Marcel Dekker, New York:291–305.

Multivariate Density Estimation and Visualization 537

Scott, D.W. (1988). A Note on Choice of Bivariate Histogram Bin Shape. J. of Official
Statistics, 4:47–51.

Scott, D.W. (1992). Multivariate Density Estimation: Theory, Practice, and Visual-
ization. John Wiley, New York.

Scott, D.W. (2000). Multidimensional Smoothing and Visualization. In Schimek,
M.G. (ed), Smoothing and Regression. Approaches, Computation and Applica-
tion, John Wiley, New York:451–470.

Scott, D.W. (2001). Parametric Statistical Modeling by Minimum Integrated Square
Error. Technometrics, 43:274–285.

Silverman, B.W. (1981). Using Kernel Density Estimates to Investigate Multimodal-
ity. Journal of the Royal Statistical Society, Series B 43:97–99.

Silverman, B.W. (1982). Algorithm AS176. Kernel Density Estimation Using the
Fast Fourier Transform, Appl. Statist. 31:93–99.

Silverman, B.W. (1986). Density Estimation for Statistics and Data Analysis, Chap-
man and Hall, London.

Silverman, B.W. and Jones, M.C. (1989). Fix, E. and Hodges, J. L. (1951): An impor-
tant contribution to nonparametric discriminant analysis and density estima-
tion: Commentary on Fix and Hodges (1951). International Statistical Review,
57:233–247.

Simonoff, J.S. (1996). Smoothing Methods in Statistics, Springer-Verlag Inc.
Sturges, H.A. (1926). The Choice of a Class Interval. J. Amer. Statist. Assoc., 21:65–

66.
Swayne, D., Cook, D. and Buja, A. (1991). XGobi: Interactive Dynamic Graphics

in the X Window System with a Link to S. ASA Proceedings of the Section on
Statistical Graphics, pp. 1–8, ASA, Alexandria, VA.

Tapia, R.A. and Thompson, J.R. (1978). Nonparametric Probability Density Esti-
mation John Hopkins University Press, Baltimore.

Tarter, M.E. (2000). Statistical Curves and Parameters, AK Peters, Natick, MA.
Tarter, M.E. and Lock, M.D. (1993). Model-Free Curve Estimation, Chapman & Hall

Ltd.
Taylor,C.C. (1989).BootstrapChoiceof theSmoothingParameter inKernelDensity

Estimation. Biometrika, 76:705–712.
Terrell, G.R. (1990). The Maximal Smoothing Principle in Density Estimation.

Journal of the American Statistical Association, 85:470–477.
Terrell, G.R. and Scott, D.W. (1980). On Improving Convergence Rates for Nonneg-

ative Kernel Density Estimators. Annals of Statistics, 8:1160–1163.
Terrell, G.R. and Scott, D.W. (1985). Oversmoothed Nonparametric Density Esti-

mates. Journal of the American Statistical Association, 80:209–214.
Terrell,G.R. andScott,D.W. (1992).VariableKernelDensityEstimation.The Annals

of Statistics, 20:1236–1265.
Tufte, E.R. (1983). The Visual Display of Quantitative Information, Graphics Press,

Cheshire, CT.
Tukey, J.W. (1977). Exploratory Data Analysis, Addison-Wesley, Reading, MA.
Wahba, G. (1981). Data-Based Optimal Smoothing of Orthogonal Series Density

Estimates. Ann. Statist., 9:146–156.

538 David W. Scott

Wainer, H. (1997). Visual Revelations, Springer-Verlag, New York.
Walter, G. and Blum, J.R. (1979). Probability Density Estimation Using Delta Se-

quences. Ann. Statist., 7:328–340.
Wand, M.P. and Jones, M.C. (1995). Kernel Smoothing, Chapman & Hall Ltd.
Wand, M.P., Marron, J.S. and Ruppert, D. (1991). Transformations in Density Esti-

mation” Journal of the American Statistical Association, 86:343–353.
Watson, G.S. (1969). Density Estimation by Orthogonal Series. Ann. Math. Statist.,

40:1496–1498.
Wegman, E.J. (1990). Hyperdimensional Data Analysis Using Parallel Coordinates.

J. Amer. Statist. Assoc., 85:664–675.
Wegman, E.J. and Depriest, D.J. (1986). Statistical Image Processing and Graphics,

Marcel Dekker Inc, New York.
Wertz, W. (1978). Statistical Density Estimation: A Survey, Vandenhoeck &

Ruprecht, Göttingen.
Wolff, R.S. and Yaeger, L. (1993). Visualization of Natural Phenomena, Springer-

Verlag, New York.

III.5Smoothing:
Local Regression Techniques

Catherine Loader

5.1 Smoothing . 540

5.2 Linear Smoothing . 540

Kernel Smoothers . 541
Local Regression. 542
Penalized Least Squares (Smoothing Splines). 544
Regression Splines . 545
Orthogonal Series . 546

5.3 Statistical Properties of Linear Smoothers . 547

Bias . 547
Variance. 549
Degrees of Freedom . 549

5.4 StatisticsforLinearSmoothers:BandwidthSelectionandInference 551

Choosing Smoothing Parameters. 551
Normal-based Inference. 554
Bootstrapping . 556

5.5 Multivariate Smoothers . 557

Two Predictor Variables . 557
Likelihood Smoothing . 558
Extensions of Local Likelihood . 560

540 Catherine Loader

Smoothing methods attempt to find functional relationships between different
measurements. As in the standard regression setting, the data is assumed to con-
sist of measurements of a response variable, and one or more predictor variables.
Standard regression techniques (Chap. III8.) specify a functional form (such as
a straight line) to describe the relation between the predictor and response vari-
ables. Smoothing methods take a more flexible approach, allowing the data points
themselves to determine the form of the fitted curve.

This article begins by describing several different approaches to smoothing,
including kernel methods, local regression, spline methods and orthogonal series.
A general theory of linear smoothing is presented, which allows us to develop
methods for statistical inference, model diagnostics and choice of smoothing
parameters.

The theory is then extended to more general settings, including multivariate
smoothing and likelihood models.

Smoothing5.1

Given a dataset consisting of several variables and multiple observations, the goal
of smoothing is to construct a functional relationship among the variables.

The most common situation for smoothing is that of a classical regression
setting, where one assumes that observations occur in (predictor, response) pairs.
That is, the available data has the form

{(xi, Yi) ; i = 1, … , n} ,

where xi is a measurement of the predictor (or independent) variable, and Yi is the
corresponding response. A functional model relating the variables takes the form

Yi = µ(xi) + εi , (5.1)

where µ(xi) is the mean function, and εi is a random error term. In classical
regression analysis, one assumes a parametric form for the mean function; for
example, µ(x) = a0 + a1x. The problem of estimating the mean function then
reduces to estimating the coefficients a0 and a1.

The ideaof smoothingmethods isnot to specifyaparametricmodel for themean
function,but toallowthedata todetermineanappropriate functional form.Loosely
stated, one assumes only that the mean function is smooth. Formal mathematical
analysis may state the smoothness condition as a bound on derivatives of µ; for
example, |µ′′(x)| ≤ M for all x and a specified constant M.

Section 5.2 describes some of the most important smoothing methods. These
all fall into a class of linear smoothers, and Sect. 5.3 develops important prop-
erties, including bias and variance. These results are applied to derive statistical
procedures, including bandwidth selection, model diagnostics and goodness-of-fit
testing in Sect. 5.4. Multivariate smoothing, when there are multiple predictor vari-

Smoothing: Local Regression Techniques 541

ables, is discussed in Sect. 5.5. Finally, Sect. 5.5.2 discusses extensions to likelihood
smoothing.

Linear Smoothing 5.2

In this section, some of the most common smoothing methods are introduced and
discussed.

Kernel Smoothers 5.2.1

The simplest of smoothing methods is a kernel smoother. A point x is fixed in the
domain of the mean function µ(·), and a smoothing window is defined around
that point. Most often, the smoothing window is simply an interval (x − h, x + h),
where h is a fixed parameter known as the bandwidth.

The kernel estimate is a weighted average of the observations within the smooth-
ing window:

µ̂(x) =
∑n

i=1 W
(xi−x

h

)
Yi

∑n
j=1 W

(
xj−x

h

) , (5.2)

where W(·) is a weight function. The weight function is chosen so that most weight
is given to those observations close to the fitting point x. One common choice is
the bisquare function,

W(x) =

(
1 − x2

)2
−1 ≤ x ≤ 1

0 x > 1 or x < −1
.

The kernel smoother can be represented as

µ̂(x) =
n∑

i=1

li(x)Yi , (5.3)

where the coefficients li(x) are given by

li(x) =
W

(xi−x
h

)

∑n
j=1 W

(
xj−x

h

) .

A linear smoother is a smoother that can be represented in the form (5.3) for
appropriately defined weights li(x). This linear representation leads to many nice
statistical and computational properties, which will be discussed later.

The kernel estimate (5.2) is sometimes called the Nadaraya–Watson estimate
(Nadaraya, 1964; Watson, 1964). Its simplicity makes it easy to understand and im-
plement, and it is available in many statistical software packages. But its simplicity

542 Catherine Loader

Weight

M
ile

ag
e

2000 2500 3000 3500

20
25

30
35

oo

o

o o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o
o

o

o

o
o

oo

o
o

o

o

o

o
o

o ooo
oo

o
o

o o

oo

o

o

o oo
o

oo
o

Figure 5.1. Kernel smooth of the fuel economy dataset. The bisquare kernel is used, with bandwidth

h = 600 pounds

leads to a number of weaknesses, the most obvious of which is boundary bias. This
can be illustrated through an example.

The fuel economy dataset consists of measurements of fuel usage (in miles per
gallon) for sixty different vehicles. The predictor variable is the weight (in pounds)
of the vehicle. Figure 5.1 shows a scatterplot of the sixty data points, together
with a kernel smooth. The smooth is constructed using the bisquare kernel and
bandwidth h = 600 pounds.

Over much of the domain of Fig. 5.1, the smooth fit captures the main trend
of the data, as required. But consider the left boundary region; in particular,
vehicles weighing less than 2200 pounds. All these data points lie above the fit-
ted curve; the fitted curve will underestimate the economy of vehicles in this
weight range. When the kernel estimate is applied at the left boundary (say, at
Weight = 1800), all the data points used to form the average have Weight > 1800,
and correspondingly slope of the true relation induces boundary bias into the
estimate.

More discussion of this and other weaknesses of the kernel smoother can be
found in Hastie and Loader (1993). Many modified kernel estimates have been
proposed, but one obtains more parsimonious solutions by considering alternative
estimation procedures.

Local Regression5.2.2

Local regression estimation was independently introduced in several different
fields in the late nineteenth and early twentieth century (Henderson, 1916; Schi-
aparelli, 1866). In the statistical literature, the method was independently intro-
duced from different viewpoints in the late 1970’s (Cleveland, 1979; Katkovnik,
1979; Stone, 1977). Books on the topic include Fan and Gijbels (1996) and Loader
(1999b).

Smoothing: Local Regression Techniques 543

The underlying principle is that a smooth function can be well approximated by
a low degree polynomial in the neighborhood of any point x. For example, a local
linear approximation is

µ(xi) ≈ a0 + a1(xi − x) (5.4)

for x − h ≤ xi ≤ x + h. A local quadratic approximation is

µ(xi) ≈ a0 + a1(xi − x) +
a2

2
(xi − x)2 .

The local approximation can be fitted by locally weighted least squares. A weight
function and bandwidth are defined as for kernel regression. In the case of local
linear regression, coefficient estimates â0, â1 are chosen to minimize

n∑

i=1

W
(xi − x

h

) (
Yi − (a0 + a1(xi − x))

)2
. (5.5)

The local linear regression estimate is defined as

µ̂(x) = â0 . (5.6)

Each local least squares problem defines µ̂(x) at one point x; if x is changed, the
smoothing weights W

(xi−x
h

)
change, and so the estimates â0 and â1 change.

Since (5.5) is a weighted least squares problem, one can obtain the coefficient
estimates by solving the normal equations

X�W

(

Y − X

(
â0

â1

))

= 0 , (5.7)

where X is the design matrix:

X =

1 x1 − x
...

...

1 xn − x

for local linear regression, W is a diagonal matrix with entries W
(xi−x

h

)
and

Y =
(

Y1 … Yn

)�
.

When X�WX is invertible, one has the explicit representation
(

â0

â1

)

=
(
X�WX

)−1
X�WY . (5.8)

This shows that the local regression estimate is a linear estimate, as defined by (5.3).
Explicitly, the coefficients li(x) are given by

l(x)� =
(

l1(x) … ln(x)
)

= e�1
(
X�WX

)−1
X�W , (5.9)

where e�1 is the unit vector
(

1 0
)
.

For local quadratic regression and higher order fits, one simply adds additional
columns to the design matrix X and vector e�1 .

544 Catherine Loader

Weight

M
ile

ag
e

2000 2500 3000 3500

20
25

30
35

oo

o

o o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o
o

o

o

o
o

oo

o
o

o

o

o

o
o

o ooo
oo

o
o

o o

oo

o

o

o oo
o

oo
o

Figure 5.2. Local Linear Regression fitted to the fuel economy dataset. A bandwidth h = 1000 pounds

is used

Figure 5.2 shows a local linear regression fit to the fuel economy dataset. This has
clearly fixed the boundary bias problem observed in Fig. 5.1. With the reduction
in boundary bias, it is also possible to substantially increase the bandwidth, from
h = 600 pounds to h = 1000 bounds. As a result, the local linear fit is using much
more data, meaning the estimate has less noise.

Penalized Least Squares (Smoothing Splines)5.2.3

An entirely different approach to smoothing is through optimization of a penalized
least squares criterion, such as

n∑

i=1

(
Yi − µ(xi)

)2
+ λ

∫
µ′′(x)2 dx , (5.10)

whereλ is specified constant. This criterion trades off fidelity to the data (measured
by the residual sum-of-squares) versus roughness of the mean function (measured
by the penalty term). The penalized least squares method chooses µ̂ from the
class of twice differentiable functions to minimize the penalized least squares
criterion.

The solution to this optimization problem is a piecewise polynomial, or spline
function, and so penalized least squares methods are also known as smoothing
splines. The idea was first considered in the early twentieth century (Whitaker,
1923). Modern statistical literature on smoothing splines began with work in-
cluding Wahba and Wold (1975) and Silverman (1985). Books devoted to spline
smoothing include Green and Silverman (1994) and Wahba (1990).

Suppose the data are ordered; xi ≤ xi+1 for all i. Let âi = µ̂(xi), and b̂i = µ̂′(xi),
for i = 1, … , n. Given these values, it is easy to show that between successive data
points, µ̂(x) must be the unique cubic polynomial interpolating these values:

µ̂(x) = aiφ0(u) + bi∆iψ0(u) + ai+1φ1(u) + bi+1∆iψ1(u) ,

Smoothing: Local Regression Techniques 545

where ∆i = xi+1 − xi; u = (x − xi)|∆i and

φ0(u) = 1 − u2(3 − 2u)

ψ0(u) = u(1 − u(2 − u))

φ1(u) = u2(3 − 2u)

ψ1(u) = u2(u − 1) .

Lettingα� =
(

a1 b1 … an bn

)
, the penalty term

∫
µ′′(x)2 dx is a quadratic

function of the parameters, and so (5.10) can be written as

‖Y − Xα‖2 + λα�Mα ,

for appropriate matrices M and X. The parameter estimates are given by

α̂ =
(
X�X + λM

)−1
X�Y .

Figure 5.3 shows a smoothing spline fitted to the fuel economy dataset. Clearly,
the fit is very similar to the local regression fit in Fig. 5.2. This situation is common
for smoothing problems with a single predictor variable; with comparably chosen
smoothing parameters, local regression and smoothing spline methods produce
similar results. On the other hand, kernel methods can struggle to produce accept-
able results, even on relatively simple datasets.

xev

ye
v

2000 2500 3000 3500

20
25

30
35

o

o
o

o
o
o

o
o
o

o

o
o

o

o

o

o
oo

o
o

o

o

o
o

o

oo

o

o

o

o

o

o

o

o
o
o

o

o
o

o

o

o

o
o
o

o
o

o

o

o
o

o o

o
o
o
o

o

o

Figure 5.3. Smoothing Spline fitted to the fuel economy dataset. The penalty is λ = 1.5 ×108 pounds3

Regression Splines 5.2.4

Regression splines begin by choosing a set of knots (typically, much smaller than
the number of data points), and a set of basis functions spanning a set of piecewise
polynomials satisfying continuity and smoothness constraints.

546 Catherine Loader

Let the knots be v1 < … < vk with v1 = min(xi) and vk = max(xi). A linear spline
basis is

fj(x) =

x − vj−1

vj − vj−1
vj−1 ≤ x ≤ vj

vj+1 − x

vj+1 − vj
vj < x ≤ vj+1

0 otherwise

;

note that these functions span the space of piecewise linear functions with knots
at v1, … , vk. The piecewise linear spline function is constructed by regressing the
data onto these basis functions.

The linear spline basis functions have discontinuous derivatives, and so the
resulting fit may have a jagged appearance. It is more common to use piecewise
cubic splines, with the basis functions having two continuous derivatives. See
Chap. 3 of Ruppert et al. (2003) for a more detailed discussion of regression splines
and basis functions.

Orthogonal Series5.2.5

Orthogonal series methods represent the data with respect to a series of orthog-
onal basis functions, such as sines and cosines. Only the low frequency terms
are retained. The book Efromovich (1999) provides a detailed discussion of this
approach to smoothing.

Suppose the xi are equally spaced; xi = i|n. Consider the basis functions

fω(x) = aω cos(2πωx) ; ω = 0, 1, … ,
⌊

n|2
⌋

gω(x) = bω sin(2πωx) ; ω = 1, … ,
⌊

(n − 1)|2
⌋

,

where the constants aω, bω are chosen so that
∑n

i=1 fω(xi)2 =
∑n

i=1 gω(xi)2 = 1.
Then the regression coefficients are

cω =
n∑

i=1

fω(xi)Yi

sω =
n∑

i=1

gω(xi)Yi

and the corresponding smooth estimate is

µ̂(x) =
∑

ω

h(ω)
(
cωfω(x) + sωgω(x)

)
.

Smoothing: Local Regression Techniques 547

Here, h(ω) is chosen to ‘damp’ high frequencies in the observations; for example,

h(ω) =

1 ω ≤ ω0

0 ω > ω0

is a low-pass filter, passing all frequencies less than or equal to ω0.
Orthogonal series are widely used to model time series, where the coefficients

cω and sω may have a physical interpretation: non-zero coefficients indicate the
presence of cycles in the data. A limitation of orthogonal series approaches is that
they are more difficult to apply when the xi are not equally spaced.

Statistical Properties of Linear Smoothers 5.3

Each of the smoothing methods discussed in the previous section has one or more
‘smoothing parameters’ that control the amount of smoothing being performed.
For example, the bandwidth h in the kernel smoother or local regression methods,
and the parameter λ in the penalized likelihood criterion. In implementing the
smoothers, the first question to be asked is how should the smoothing parameters
be chosen? More generally, how can the performance of a smoother with given
smoothing parameters be assessed? A deeper question is in comparing fits from
different smoothers. For example, we have seen for the fuel economy dataset that
a local linear fit with h = 1000 (Fig. 5.2) produces a fit similar to a smoothing
spline with λ = 1.5 × 108 (Fig. 5.3). Somehow, we want to be able to say these two
smoothing parameters are equivalent.

As a prelude to studying methods for bandwidth selection and other statis-
tical inference procedures, we must first study some of the properties of linear
smoothers. We can consider measures of goodness-of-fit, such as the mean squared
error,

MSE(x) = E
(
(µ̂(x) − µ(x))2

)
= var

(
µ̂(x)

)
+ bias

(
µ̂(x)

)2
,

where bias(µ̂(x)) = E(µ̂(x)) − µ(x).
Intuitively, as the bandwidth h increases, more data is used to construct the

estimate µ̂(x), and so the variance var(µ̂(x)) decreases. On the other hand, the
local polynomial approximation is best over small intervals, so we expect the bias
to increase as the bandwidth increases. Choosing h is a tradeoff between small
bias and small variance, but we need more precise characterizations to derive and
study selection procedures.

Bias 5.3.1

The bias of a linear smoother is given by

E(µ̂(x)) − µ(x) =
n∑

i=1

li(x)E(Yi) − µ(x) =
n∑

i=1

li(x)µ(xi) − µ(x) . (5.11)

548 Catherine Loader

As this depends on the unknown mean function µ(x), it is not very useful by
itself, although it may be possible to estimate the bias by substituting an estimate
for µ(x). To gain more insight, approximations to the bias are derived. The basic
tools are
1. A low order Taylor series expansion of µ(·) around the fitting point x.
2. Approximation of the sums by integrals.

For illustration, consider the bias of the local linear regression estimate defined
by (5.6). A three-term Taylor series gives

µ(xi) = µ(x) + (xi − x)µ′(x) +
(xi − x)2

2
µ′′(x) + o

(
h2
)

for |xi − x| ≤ h. Substituting this into (5.11) gives

E(µ̂(x)) − µ(x) = µ(x)
n∑

i=1

li(x) + µ′(x)
n∑

i=1

(xi − x)li(x)

+
µ′′(x)

2

n∑

i=1

(xi − x)2li(x) − µ(x) + o
(
h2
)

.

For local linear regression, it can be shown that

n∑

i=1

li(x) = 1

n∑

i=1

(xi − x)li(x) = 0 .

This is a mathematical statement of the heuristically obvious property of the
local linear regression: if data Yi fall on a straight line, the local linear regression
will reproduce that line. See Loader (1999b), p. 37, for a formal proof. With this
simplification, the bias reduces to

E(µ̂(x)) − µ(x) =
µ′′(x)

2

n∑

i=1

(xi − x)2li(x) + o
(
h2
)

. (5.12)

This expression characterizes the dependence of the bias on the mean function:
the dominant term of the bias is proportional to the second derivative of the mean
function.

The next step is to approximate summations by integrals, both in (5.12) and in
the matrix equation (5.9) defining li(x). This leads to

E(µ̂(x)) − µ(x) ≈ µ′′(x)h2

∫
v2W(v)dv

2
∫

W(v)dv
. (5.13)

Smoothing: Local Regression Techniques 549

In addition to the dependence on µ′′(x), we now see the dependence on h: as the
bandwidth h increases, the bias increases quadratically with the bandwidth.

Bias expansions like (5.13) are derived much more generally by Ruppert and
Wand (1994); their results cover arbitrary degree local polynomials and multi-
dimensional fits also. Their results imply that when p, the degree of the local
polynomial, is odd, the dominant term of the bias is proportional to hp+1µ(p+1)(x).
When p is even, the first-order term can disappear, leading to bias of order hp+2.

Variance 5.3.2

To derive the variance of a linear smoother, we need to make assumptions about
the random errors εi in (5.1). The most common assumption is that the errors are
independent and identically distributed, with variance var(εi) = σ2. The variance
of a linear smoother (5.3) is

var(µ̂(x)) =
n∑

i=1

li(x)2var(Yi) = σ2‖l(x)‖2 . (5.14)

As with bias, informative approximations to the variance can be derived by
replacing sums by integrals. For local linear regression, this leads to

var(µ̂(x)) ≈ σ2

nhf (x)

∫
W(v)2 dv

(∫
W(v)dv

)2 , (5.15)

where f (x) is the density of the design points xi. The dependence on the sample
size, bandwidth and design density through 1|(nhf (x)) is universal, holding for
any degree of local polynomial. The term depending on the weight function varies
according to the degree of local polynomial, but generally increases as the degree
of the polynomials increases. See Ruppert and Wand (1994) for details.

Degrees of Freedom 5.3.3

Under the model (5.1) the observation Yi has variance σ2, while the estimate µ̂(xi)
has variance σ2‖l(xi)‖2. The quantity ‖l(xi)‖2 measures the variance reduction of
the smoother at a data point xi. At one extreme, if the ‘smoother’ interpolates
the data, then µ̂(xi) = Yi and ‖l(xi)‖2 = 1. At the other extreme, if µ̂(xi) = Ȳ ,
‖l(xi)‖2 = 1|n. Under mild conditions on the weight function, a local polynomial
smoother satisfies

1

n
≤ ‖l(xi)‖2 ≤ 1 ,

and ‖l(xi)‖2 is usually a decreasing function of the bandwidth h.
A global measure of the amount of smoothing is provided by

ν2 =
n∑

i=1

‖l(xi)‖2 .

550 Catherine Loader

This is one definition of the ‘degrees of freedom’ or ‘effective number of parameters’
of the smoother. It satisfies the inequalities

1 ≤ ν2 ≤ n .

An alternative representation of ν2 is as follows. Let H be the ‘hat matrix’, which
maps the data to fitted values:

µ̂(x1)
...

µ̂(xn)

 = HY .

For a linear smoother, H has rows l(xi)�, and ν2 = trace(H�H).
The diagonal elements of H, li(xi) provide another measure of the amount of

smoothing at xi. If the smooth interpolates the data, then l(xi) is the corresponding
unit vector with li(xi) = 1. If the smooth is simply the global average, li(xi) = 1|n.
The corresponding definition of degrees of freedom is

ν1 =
n∑

i=1

li(xi) = trace(H) .

For a least-squares fit, the hat matrix is a perpendicular projection operator, which
is symmetric and idempotent. In this case, H = H�H, and ν1 = ν2. For linear
smoothers, the two definitions of degrees-of-freedom are usually not equal, but
they are often of similar magnitude.

For the local linear regression in Fig. 5.2, the degrees of freedom are ν1 = 3.54
and ν2 = 3.09. For the smoothing spline smoother in Fig. 5.3, ν1 = 3.66 and
ν2 = 2.98. By either measure the degrees of freedom are similar for the two fits.
The degrees of freedom provides a mechanism by which different smoothers, with
different smoothing parameters, can be compared: we simply choose smoothing
parameters producing the same number of degrees of freedom. More extensive
discussion of the degrees of freedom of a smoother can be found in Cleveland and
Devlin (1988) and Hastie and Tibshirani (1990).

VarianceEstimation. The final component needed for many statistical procedures
is an estimate of the error variance σ2. One such estimate is

σ̂2 =
1

n − 2ν1 + ν2

n∑

i=1

(Yi − µ̂(xi))2 . (5.16)

The normalizing constant is chosen so that if the bias of µ̂(xi) is neglected, σ̂2 is
unbiased. See Cleveland and Devlin (1988).

Smoothing: Local Regression Techniques 551

Statistics for Linear Smoothers:
Bandwidth Selection and Inference 5.4

We also want to perform statistical inference based on the smoothers. As for
parametric regression, we want to construct confidence bands and prediction
intervals based on the smooth curve. Given a new car that weighs 2800 pounds,
what is its fuel economy? Tests of hypotheses can also be posed: for example,
is the curvature observed in Fig. 5.2 significant, or would a linear regression be
adequate? Given different classifications of car (compact, sporty, minivan etc.) is
there differences among the categories that cannot be explained by weight alone?

Choosing Smoothing Parameters 5.4.1

All smoothing methods have one or more smoothing parameters: parameters that
control the ‘amount’ of smoothing being performed. For example, the bandwidth
h in the kernel and local regression estimates. Typically, bandwidth selection
methods are based on an estimate of some goodness-of-fit criterion. Bandwidth
selection is a special case of model selection, discussed more deeply in Chap. III.1.

How should smoothing parameters be used? At one extreme, there is full au-
tomation: optimization of the goodness-of-fit criterion produces a single ‘best’
bandwidth. At the other extreme is purely exploratory and graphical methods,
using goodness-of-fit as a guide to help choose the best method.

Automationhas the advantage that it requiresmuch lesswork; a computer canbe
programmed to perform the optimization. But the price is a lack of reliability: fits
with very different bandwidths can produce similar values of the goodness-of-fit
criterion. The result is either high variability (producing fits that look under-
smoothed) or high bias (producing fits that miss obvious features in the data).

Cross Validation. Cross validation (CV) focuses on the prediction problem: if
the fitted regression curve is used to predict new observations, how good will the
prediction be? If a new observation is made at x = x0, and the response Y0 is
predicted by Ŷ0 = µ̂(x0), what is the prediction error? One measure is

E((Y0 − Ŷ0)2) .

The method of CV can be used to estimate this quantity. In turn, each observation
(xi, Yi) is omitted from the dataset, and is ‘predicted’ by smoothing the remaining
n − 1 observations. This leads to the CV score

CV(µ̂) =
1

n

n∑

i=1

(Yi − µ̂−i(xi))2 , (5.17)

where µ̂−i(·) denotes the smoothed estimate when the single data point (xi, Yi) are
omitted from the dataset; only the remaining n − 1 data points are used to compute
the estimate.

552 Catherine Loader

Formally computing each of the leave-one-out regression estimates µ̂−i(·) would
be highly computational, and so at a first glance computation of the CV score (5.17)
looks prohibitively expensive. But there is a remarkable simplification, valid for
nearly all common linear smoothers (and all those discussed in Sect. 5.2):

µ̂−i(xi) =
µ̂(xi) − li(xi)Yi

1 − li(xi)
.

With this simplification, the CV criterion becomes

CV(µ̂) =
1

n

n∑

i=1

(Yi − µ̂(xi))2

(1 − li(xi))2
.

Generalized cross validation (GCV) replaces each of the influence values li(xi)
by the average, ν1|n. This leads to

GCV(µ̂) = n

∑n
i=1(Yi − µ̂(xi))2

(n − ν1)2
.

Figure 5.4 shows the GCV scores for the fuel economy dataset, and using kernel
and local linear smoothers with a range of bandwidths. Note the construction of
the plot: the fitted degrees of freedom ν1 are used as the x axis. This allows us to
meaningfully superimpose and compare the GCV curves arising from different
smoothing methods. From right to left, the points marked ‘0’ represent a kernel
smootherwithh = 300, 400, 500, 600, 800and1000, andpointsmarked ‘1’ represent
a local linear smoother with h = 400, 500, 700, 1000, 1500, 2000 and ∞.

The interpretation of Fig. 5.4 is that for any fixed degrees of freedom, the local
linear fit outperforms the kernel fit. The best fits obtained are the local linear, with
3 to 3.5 degrees of freedom, or h between 1000 and 1500.

ooo
o

o

o

Fitted DF

G
C

V

2 3 4 5 6 7

6.
0

7.
0

8.
0

9.
0

11
111

1

1

Figure 5.4. GCV scores for the fuel economy dataset. Points marked 0 are for kernel smoothers with

a range of bandwidths h, and points marked 1 are for a local linear smoother

Smoothing: Local Regression Techniques 553

Unbiased Risk Estimation. A risk function measures the distance between the
true regression function and the estimate; for example,

R(µ, µ̂) =
1

σ2

n∑

i=1

E
(
(µ̂(xi) − µ(xi))2

)
. (5.18)

Ideally, a good estimate would be one with low risk. But sinceµ is unknown, R(µ, µ̂)
cannot be evaluated directly.
Instead, the risk must be estimated. An unbiased estimate is

R̂(µ, µ̂) =
1

σ2

n∑

i=1

(Yi − µ̂(xi))2 − n + 2ν1

(Mallows, 1973; Cleveland and Devlin, 1988). The unbiased risk estimate is equiv-
alent to Akaike’s Information Criterion (Akaike, 1972, 1974). To implement the
unbiased risk estimate one needs to substitute an estimate for σ2; Cleveland and
Devlin recommend using (5.16) with a small bandwidth.

The unbiased risk estimate can be used similarly to GDV. One computes R̂(µ, µ̂)
for a range of different fits µ̂, and plots the resulting risk estimates versus the
degrees of freedom. Fits producing a small risk estimate are considered best.

Bias Estimation and Plug-in Methods. An entirely different class of bandwidth
selection methods, often termed plug-in methods, attempt to directly estimate
a risk measure by estimating the bias and variance. The method has been devel-
oped mostly in the context of kernel density estimation, but adaptations to kernel
regression and local polynomial regression can be found in Fan and Gijbels (1995)
and Ruppert et al. (1995).

Again focusing on the squared-error risk, we have the bias-variance decompo-
sition

σ2R(µ, µ̂) =
n∑

i=1

bias(µ̂(xi))2 +
n∑

i=1

var(µ̂(xi))

=
n∑

i=1

n∑

j=1

lj(xi)µ(xj) − µ(xi)

2

+ σ2
n∑

i=1

‖l(xi)‖2 . (5.19)

A plug-in estimate begins by constructing a preliminary pilot estimate of the mean
function µ(·). This is then substituted into the risk estimate (5.19), which can then
be minimized over the bandwidth h.

There are many variants of the plug-in idea in the statistics literature. Most
simplify the risk function using asymptotic approximations such as (5.13) and (5.15)
for the bias and variance; making these substitutions in (5.19) gives

σ2R(µ, µ̂) ≈ h4

(∫
v2W(v)dv

2
∫

W(v)dv

)2 n∑

i=1

µ′′(xi)
2 +

σ2

nh

∫
W(v)2 dv

(∫
W(v)dv

)2

n∑

i=1

1

f (xi)
.

554 Catherine Loader

If the design points are uniformly distributed on an interval [a, b] say, then ap-
proximating the sums by integrals gives

σ2R(µ, µ̂) ≈ nh4

(∫
v2W(v)dv

2
∫

W(v)dv

)2
1

b − a

∫ b

a
µ′′(x)2 dx +

(b − a)σ2

h

∫
W(v)2 dv

(∫
W(v)dv

)2 .

Minimizing this expression over h yields an asymptotically optimal bandwidth:

h5
opt =

σ2(b − a)2
∫

W(v)2 dv

n
(∫

v2W(v)dv
)2 ∫ b

a µ
′′(x)2 dx

.

Evaluation of hopt requires substitution of estimates for
∫ b

a µ
′′(x)2 dx and of σ2.

The estimate (5.16) can be used to estimate σ2, but estimating
∫ b

a µ
′′(x)2 dx is more

problematic. One technique is to estimate the second derivative using a ‘pilot’
estimate of the smooth, and then use the estimate

∫ b

a
µ̂′′(x)2 dx .

If a local quadratic estimate is used at the pilot stage, the curvature coefficient â2

can be used as an estimate of µ′′(x).
But the use of a pilot estimate to estimate the second derivative is problematic.

The pilot estimate itself has a bandwidth that has to be selected, and the estimated
optimalbandwidth ĥopt ishighly sensitive to thechoiceofpilotbandwidth.Roughly,
if the pilot estimate smooths out important features of µ, so will the estimate µ̂with
bandwidth ĥopt. More discussion of this point may be found in Loader (1999a).

Normal-based Inference5.4.2

Inferential procedures for smoothers include the construction of confidence bands
for the true mean function, and procedures to test the adequacy of simpler models.
In this section, some of the main ideas are briefly introduced; more extensive
discussion can be found in the books Azzalini and Bowman (1997), Härdle (1990),
Hart (1997) and Loader (1999b).

Confidence Intervals. If the errors εi are normally distributed, then confidence
intervals for the true mean can be constructed as

µ̂(x) ± cσ̂‖l(x)‖ .

The constant c can be chosen from the Student’s t distribution with degrees of
freedom equal to n − 2ν1 + ν2 (alternative choices are discussed below in the
context of testing). These confidence intervals are pointwise intervals for E(µ̂(x)):

P
(|µ̂(x) − E(µ̂(x))| < cσ̂‖l(x)‖) = 1 − α .

Smoothing: Local Regression Techniques 555

To construct confidence intervals for µ(x), one must either choose the bandwidth
sufficiently small so that the bias can be ignored, or explicitly estimate the bias. The
latter approach suffers from the same weaknesses observed in plug-in bandwidth
selection.

Tests of Hypothesis. Consider the problem of testing for the adequacy of a linear
model. For example, in the fuel economy dataset of Figs. 5.1 and 5.2, one may
be interested in knowing whether a linear regression, µ(x) = a + bx is adequate,
or alternatively whether the departure from linearity indicated by the smooth is
significant. This hypothesis testing problem can be stated as

H0 : µ(x) = a + bx for some a, b

H1 : otherwise .

In analogy with the theory of linear models, an F ratio can be formed by fitting
both the null and alternative models, and considering the difference between the
fits. Under the null model, parametric least squares is used; the corresponding
fitted values are MY where M is the hat matrix for the least squares fit. Under the
alternative model, the fitted values are HY , where H is the hat matrix for a local
linear regression. An F ratio can then be formed as

F =
‖HY − MY‖2|ν

σ̂2
,

where ν = trace((H − M)�(H − M)).
What is the distribution of F when H0 is true? Since H is not a perpendicular

projection operator, the numerator does not have a χ2 distribution, and F does
not have an exact F distribution. None-the-less, we can use an approximating
F distribution. Based on a one-moment approximation, the degrees of freedom are
ν and n − 2ν1 + ν2.

Better approximations are obtained using the two-moment Satterwaite approx-
imation, as described in Cleveland and Devlin (1988). This method matches both
the mean and variance of chi-square approximations to the numerator and de-
nominator. Letting Λ = (H − M)�(H − M), the numerator degrees of freedom
for the F distribution are given by trace(Λ)2|trace(Λ2). A similar adjustment is
made to the denominator degrees of freedom. Simulations reported in Cleveland
and Devlin (1988) suggest the two-moment approximation is adequate for setting
critical values.

For the fuel economy dataset, we obtain F = 7.247, ν = 1.0866 and n − 2ν1 +ν2 =
55.997. Using the one-moment approximation, the p-value is 0.0079. The two-
moment approximation gives a p-value of 0.0019. Both methods indicate that
the nonlinearity is significant, although there is some discrepancy between the
P-values.

556 Catherine Loader

Bootstrapping5.4.3

The F-tests in the previous section are approximate, even when the errors εi are
normally distributed. Additionally, the degrees-of-freedom computations (partic-
ularly for the two-moment approximation) require O(n3) computations, which is
prohibitively expensive for n more than a few hundred.

An alternative to the F approximations is to simulate the null distribution of
the F ratio. A bootstrap method (Chap. III.2) performs the simulations using the
empirical residuals to approximate the true error distribution:

Let ri = Yi − µ̂(xi).
Resample: Y∗

i = µ̂(xi) + ε∗i , i = 1, … , n, where ε∗i is drawn from r1, … , rn.
Compute the F statistic based on the resampled data:

F∗ =
‖HY∗ − MY∗‖2|ν

(σ̂∗)2
.

Thisprocedure is repeateda largenumberof times (say B = 1000) and tabulation
of the resulting F∗ values provides an estimate of the true distribution of the F ratio.

Remark. Since the degrees of freedom do not change with the replication, there
is no need to actually compute the normalizing constant. Instead, one can simply
work with the modified F ratio,

FB =
‖HY∗ − MY∗‖2

‖(I − H)Y∗‖2
.

Figure 5.5 compares the bootstrap distribution of the F ratio and the 1 and 2
moment F approximations for the fuel economy dataset. The bootstrap method
uses 10,000 bootstrap replications, and the density is estimated using the Local
Likelihoodmethod(Sect. 5.5.2below).Exceptat the left end-point, there is generally
good agreement between the bootstrap density and the two-moment density. The

fb

de
ns

ity

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

Figure 5.5. Estimated density of the F ratio, based on the bootstrap method (solid line); 1-moment F

approximation (short dashed line) and 2-moment F approximation (long dashed line)

Smoothing: Local Regression Techniques 557

upper 5% quantiles are 3.21 based on the two-moment approximation, and 3.30
based on the bootstrap sample. The one-moment approximation has a critical
value of 3.90. Based on the observed F = 7.248, the bootstrap p-value is 0.0023,
again in close agreement with the two-moment method.

Multivariate Smoothers 5.5

When there are multiple predictor variables, the smoothing problem becomes
multivariate: µ(x) is now a surface. The definition of kernel and local regression
smoothers can be extended to estimate a regression surface with any number of
predictor variables, although the methods become less useful for more than 2 or 3
variables. There are several reasons for this:

Data sparsity – the curse of dimensionality.
Visualization issues – how does one view and interpret a high dimensional
smooth regression surface?
Computation is often much more expensive in high dimensions.

For these reasons, use of local polynomials and other smoothers to model high
dimensional surfaces is rarely recommended, and the presentation here is re-
stricted to the two-dimensional case. In higher dimensions, smoothers can be
used in conjunction with dimension reduction procedures (Chap. III.6), which
attempt to model the high-dimensional surface through low-dimensional compo-
nents. Examples of this type of procedure include Projection Pursuit (Friedman
and Stuetzle, 1981), Additive Models (Hastie and Tibshirani, 1990), Semiparamet-
ric Models (Ruppert et al. (2003) and Chap. III.10) and recursive partitioning
(Chap. III.14).

Two Predictor Variables 5.5.1

Suppose the dataset consists of n vectors (ui, vi, Yi), where ui and vi are considered

predictor variables, and Yi is the response. For simplicity, we’ll use xi =
(

ui vi

)�

to denote a vector of the predictor variables. The data are modeled as

Yi = µ(ui, vi) + εi = µ(xi) + εi .

Bivariate smoothers attempt to estimate the surface µ(ui, vi). Kernel and local
regression methods can be extended to the bivariate case, simply by defining
smoothing weights on a plane rather than on a line. Formally, a bivariate local
regression estimate at a point x = (u, v)� can be constructed as follows:
1. Define a distance measure ρ(x, xi) between the data points and fitting point.

A common choice is Euclidean distance,

ρ(x, xi) =
√

(ui − u)2 + (vi − v)2 .

558 Catherine Loader

2. Define the smoothing weights using a kernel function and bandwidth:

wi(x) = W

(
ρ(x, xi)

h

)
.

3. Define a local polynomial approximation, such as a local linear approximation

µ(ui, vi) ≈ a0 + a1(ui − u) + a2(vi − v)

when (ui, vi) is close to (u, v).Moregenerally, a local polynomial approximation
can be written

µ(xi) ≈ 〈a, A(xi − x)〉 ,

where a is a vector of coefficients, and A(·) is a vector of basis polynomials.
4. Estimate the coefficient vector by local least squares. That is, choose â to

minimize
n∑

i=1

wi(x)
(
Yi − 〈a, A(xi − x)〉)2

.

5. The local polynomial estimate is then

µ̂(x) = â0 .

Likelihood Smoothing5.5.2

A likelihood smoother replaces the model (5.1) with a distributional assumption

Yi ∼ f (y,µi) ,

where f (y,µ) is a specified family of densities, parameterized so that E(Yi) = µi.
The family may be chosen depending on the response variable. If Yi is a count,
then the Poisson family is a natural choice:

f (y,µ) =
µy e−µ

y!
; y = 0, 1, 2, … .

If Yi is a 0|1 (or no|yes) response, then the Bernoulli family is appropriate:

f (y,µ) = µy(1 − µ)1−y ; y = 0, 1 .

Given the data, the log-likelihood is

L(µ1, … ,µn) =
n∑

i=1

log f (Yi,µi) .

Smoothing: Local Regression Techniques 559

The goal is to estimate the mean function, µi = µ(xi) for an observed set of
covariates xi. A generalized linear model (Chap. III.7) uses a parametric model for
the mean function. Likelihood smoothers assume only that the mean is a smooth
function of the covariates.

The earliest work on likelihood smoothing is Henderson (1924), who used
a penalized binomial likelihood to estimate mortality rates. The local likelihood
method described below can be viewed as an extension of local polynomial regres-
sion, and was introduced by Tibshirani and Hastie (1987).

Local Likelihood Estimation. Local likelihood estimation is based on a locally
weighted version of the log-likelihood:

Lx(µ1, … ,µn) =
n∑

i=1

wi(x) log f (Yi,µi) .

A local polynomial approximation is then used for a transformation of the mean
function. For example, a local quadratic approximation is

θ(xi) = g(µ(xi))

≈ a0 + a1(xi − x) +
a2

2
(xi − x)2 .

The function g(µ) is the link function. Its primary goal is to remove constraints on
the mean by mapping the parameter space to (−∞,∞). For example, in the Poisson
case, the parameter space is 0 < µ < ∞. If the log transformation θ = log(µ) is
used, then the parameter space becomes −∞ < θ < ∞.
Let l(y, θ) = log f (y,µ) where θ = g(µ), so that the locally weighted log-likelihood
becomes

Lx =
n∑

i=1

wi(x)l
(
Yi, θ(xi)

)
.

The maximizer satisfies the likelihood equations,

n∑

i=1

wi(x)

1

xi − x
1

2
(xi − x)2

 l̇(Yi, θ(xi)) = 0 , (5.20)

where

l̇ =
∂
∂θ

l(y, θ) .

In matrix notation, this system of equations can be written in a form similar to (5.7):

X�W l̇(Y , Xa) = 0 . (5.21)

560 Catherine Loader

This system of equations is solved to find parameter estimates â0, â1 and â2. The
local likelihood estimate is defined as

µ̂(x) = g−1(â0) .

Solving the Local Likelihood Equations. The local likelihood equations (5.20)
are usually non-linear, and so the solution must be obtained through iterative
methods. The Newton–Raphson updating formula is

â(j+1) = â(j) +
(
X�WVX

)−1
X�W l̇

(
Y , Xâ(j)

)
, (5.22)

where V is a diagonal matrix with entries

−
∂2

∂θ2
l(y, θ) .

For many common likelihoods l(Y , θ) is concave. Under mild conditions on the
design points, this implies that the local likelihood is also concave, and has a unique
global maximizer. If the Newton–Raphson algorithm converges, it must converge
to this global maximizer.
The Newton–Raphson algorithm (5.22) cannot be guaranteed to converge from
arbitrary starting values. But for concave likelihoods, â(j+1) − â(j) is guaranteed to
be an ascent direction, and convergence can be ensured by controlling the step
size.

Statistics for the Local Likelihood Estimate. Since the local likelihood estimate
does not have an explicit representation, statistical properties cannot be derived
as easily as in the local regression case. But a Taylor series expansion of the local
likelihood gives an approximate linearization of the estimate, leading to theory
parallel to that developed in Sects. 5.3 and 5.4 for local regression. See Chap. 4 of
Loader (1999b).

Extensions of Local Likelihood5.5.3

The local likelihood method has been formulated for regression models. But vari-
ants of the method have been derived for numerous other settings, including
robust regression, survival models, censored data, proportional hazards models,
and density estimation. References include Tibshirani and Hastie (1987), Hjort and
Jones (1996), Loader (1996, 1999b).

Robust Smoothing. Robust smoothing combines the ideas of robust estimation
(Chap. III.9) with smoothing. One method is local M-estimation: choose â to
minimize

n∑

i=1

wi(x)ρ
(
Yi − 〈a, A(xi − x)〉) ,

Smoothing: Local Regression Techniques 561

and estimate µ̂(x) = â0. If ρ(u) = u2, this corresponds to local least squares
estimation. If ρ(u) is a symmetric function that increases more slowly than u2,
then the resulting estimate is more robust to outliers in the data. One popular
choice of ρ(u) is the Huber function:

ρ(u) =

u2 |u| ≤ c

c(2|u| − c) |u| > c
.

References include Härdle (1990) and Loader (1999b). Another variant of M-
estimation for local regression is the iterative procedure of Cleveland (1979).

Density Estimation. Suppose X1, … , Xn are an independent sample from a den-
sity f (x). The goal is to estimate f (x). The local likelihood for this problem is

Lx(a) =
n∑

i=1

wi(x) 〈a, A(xi − x)〉 − n

∫

X
W

(u − x

h

)
e〈a,A(u−x)〉 du .

Letting â be the maximizer of the local log-likelihood, the local likelihood estimate
is f̂ (x) = exp(â0). See Hjort and Jones (1996) and Loader (1996).
The density estimation problem is discussed in detail, together with graphical
techniques for visualizing densities, in Chap. III.4.

Acknowledgements. This work was supported by National Science Foundation
Grant DMS 0306202.

References
Akaike, H. (1972). Information theory and an extension of the maximum like-

lihood principle. In Petrov, B.N. and Csàki, F., editors, Second International
Symposium on Information Theory, pages 267–281, Budapest.AkademiaKiadó.

Akaike, H. (1974). A new look at the statistical model identification. IEEE Trans-
actions on Automatic Control, 19:716–723.

Azzalini, A. and Bowman, A.W. (1997). Applied Smoothing Techniques for Data
Analysis. Oxford University Press, Oxford.

Cleveland, W.S. (1979). Robust locally weighted regression and smoothing scatter-
plots. Journal of the American Statistical Association, 74:829–836.

Cleveland, W.S. and Devlin, S.J. (1988). Locally weighted regression: An approach
to regression analysis by local fitting. Journal of the American Statistical Asso-
ciation, 83:596–610.

Efromovich, S. (1999). Nonparametric Curve Estimation. Springer, New York.
Fan, J. and Gijbels, I. (1995). Data-driven bandwidth selection in local polyno-

mial fitting: variable bandwidth and spatial adaptation. Journal of the Royal
Statistical Society, Series B, 57:371–394.

562 Catherine Loader

Fan, J. and Gijbels, I. (1996). Local Polynomial Modelling and its Applications.
Chapman and Hall, London.

Friedman, J. and Stuetzle, W. (1981). Projection pursuit regression. Journal of the
American Statistical Association, 76:817–823.

Green, P.J. and Silverman, B. (1994). Nonparametric Regression and Generalized
Linear Models: A roughness penalty approach. Chapman and Hall, London.

Härdle, W. (1990). Applied Nonparametric Regression. Cambridge University
Press, Cambridge.

Hart, J.D. (1997). Nonparametric Smoothing and Lack-of-Fit Tests. Springer, New
York.

Hastie, T.J. and Loader, C.R. (1993). Local regression: Automatic kernel carpentry
(with discussion). Statistical Science, 8:120–143.

Hastie, T.J. and Tibshirani, R.J. (1990). Generalized Additive Models. Chapman
and Hall, London.

Henderson, R. (1916). Note on graduation by adjusted average. Transactions of the
Actuarial Society of America, 17:43–48.

Henderson, R. (1924). A new method of graduation. Transactions of the Actuarial
Society of America, 25:29–40.

Hjort, N.L. and Jones, M.C. (1996). Locally parametric nonparametric density
estimation. The Annals of Statistics, 24:1619–1647.

Katkovnik, V.Y. (1979). Linear and nonlinear methods of nonparametric regression
analysis. Soviet Automatic Control, 5:35–46 (25–34).

Loader, C. (1996). Local likelihood density estimation. The Annals of Statistics,
24:1602–1618.

Loader, C. (1999a). Bandwidth selection: Classical or plug-in? The Annals of
Statistics, 27:415–438.

Loader, C. (1999b). Local Regression and Likelihood. Springer, New York.
Mallows, C.L. (1973). Some comments on cp. Technometrics, 15:661–675.
Nadaraya, E.A. (1964). On estimating regression. Theory of Probability and its

Applications, 9:157–159 (141–142).
Ruppert, D., Sheather, S.J., and Wand, M.P. (1995). An effective bandwidth selector

for local least squares regression. Journal of the American Statistical Associa-
tion, 90:1257–1270.

Ruppert, D. and Wand, M.P. (1994). Multivariate locally weighted least squares
regression. The Annals of Statistics, 22:1346–1370.

Ruppert, D., Wand, M.P., and Carroll, R.J. (2003). Semiparametric Regression.
Cambridge University Press, Cambridge.

Schiaparelli, G.V. (1866). Sul modo di ricavare la vera espressione delle leggi delta
natura dalle curve empiricae. Effemeridi Astronomiche di Milano per l’Arno,
857:3–56.

Silverman, B.W. (1985). Some aspects of the spline smoothing approach to non-
parametric regression curve fitting (with discussion). Journal of the Royal
Statistical Society, Series B, 47:1–52.

Stone, C.J. (1977). Consistent nonparametric regression (with discussion). The
Annals of Statistics, 5:595–645.

Smoothing: Local Regression Techniques 563

Tibshirani, R.J. and Hastie, T.J. (1987). Local likelihood estimation. Journal of the
American Statistical Association, 82:559–567.

Wahba, G. (1990). Spline Models for Observational Data. SIAM, Philadelphia.
Wahba, G. and Wold, S. (1975). A completely automatic French curve: Fitting spline

functions by cross-validation. Communications in Statistics, 4:1–17.
Watson, G.S. (1964). Smooth regression analysis. Sankhya Series A, 26:359–372.
Whitaker, E.T. (1923). On a new method of graduation. Proceedings of the Edin-

burgh Mathematical Society, 41:62–75.

III.6Dimension Reduction Methods
Masahiro Mizuta

6.1 Introduction . 566

6.2 Linear Reduction of High-dimensional Data . 566

Principal Component Analysis . 566
Projection Pursuit . 568

6.3 Nonlinear Reduction of High-dimensional Data . 571

Generalized Principal Component Analysis . 571
Algebraic Curve and Surface Fitting . 575
Principal Curves. 581

6.4 Linear Reduction of Explanatory Variables. 584

6.5 Concluding Remarks . 588

566 Masahiro Mizuta

Introduction6.1

One characteristic of computational statistics is the processing of enormous
amounts of data. It is now possible to analyze large amounts of high-dimensional
data through the use of high-performance contemporary computers. In general,
however, several problems occur when the number of dimensions becomes high.
The first problem is an explosion in execution time. For example, the number of
combinations of subsets taken from p variables is 2p; when p exceeds 20, calcula-
tion becomes difficult pointing terms of computation time. When p exceeds 25,
calculation becomes an impossible no matter what type of computer is used. This
is a fundamental situation that arises in the selection of explanatory variables
during regression analysis. The second problem is the sheer cost of surveys or
experiments. When questionnaire surveys are conducted, burden is placed on the
respondent because there are many questions. And since there are few inspec-
tion items to a patient, there are few the burdens on the body or on cost. The
third problem is the essential restriction of methods. When the number of ex-
planatory variables is greater than the data size, most methods are incapable of
directly dealing with the data; microarray data are typical examples of this type of
data.

For these reasons, methods for dimension reduction without loss of statistical
information are important techniques for data analysis. In this chapter, we will
explain linear and nonlinear methods for dimension reduction; linear methods
reduce dimension through the use of linear combinations of variables, and nonlin-
ear methods do so with nonlinear functions of variables. We will also discuss the
reduction of explanatory variables in regression analysis. Explanatory variables
can be reduced with several linear combinations of explanatory variables.

Linear Reduction
of High-dimensional Data6.2

The p-dimensional data can be reduced into q-dimensional data using q linear
combinations of p variables. The linear combinations can be considered as linear
projection. Most methods for reduction involve the discovery of linear combina-
tions of variables under set criterion. Principal component analysis (PCA) and
projection pursuit are typical methods of this type. These methods will be de-
scribed in the following subsections.

Principal Component Analysis6.2.1

Suppose that we have observations of p variables size n; {xi; i = 1, 2, … , n} (referred
to as X hereafter). PCA is conducted for the purpose of constructing linear com-
binations of variables so that their variances are large under certain conditions.

Dimension Reduction Methods 567

A linear combination of variables is denoted by {a�xi; i = 1, 2, … , n} (simply, a�X),
where a = (a1, a2, … , ap)�.

Then, the sample variance of a�X can be represented by

V
(
a�x

)
= a�Σ̂a ,

where Σ̂ = V(X). a�Σ̂a is regarded as a p variable function of (a1, a2, … , ap):
φ(a1, a2, … , ap) = a�Σ̂a. To consider the optimization problem for φ, a is con-
strained to a�a = 1. This problem is solved using Lagrange multipliers. The
following Lagrange function is defined as

L
(
a1, a2, … , ap

)
= φ

(
a1, a2, … , ap

)
− λ1

(p∑

i=1

a2
i − 1

)

= a�Σ̂a − λ1

(
a�a − 1

)
,

where λ is the Lagrange multiplier. L is partially differentiated with respect to
a = (a1, a2, … , ap)� and λ1, and the derivatives are equated to zero. We therefore
obtain the simultaneous equations:

{
2Σ̂a − 2λ1a = 0

a�a − 1 = 0 .

This is an eigenvector problem; the solution to this problem for a = (a1, a2, … , ap)�
is a unit eigenvector of Σ̂ corresponding to the largest eigenvalue. Let a be an
eigenvector and let λ be an eigenvalue. We then have

φ
(
a1, a2, … , ap

)
= V

(
a�x

)
= a�Σ̂a = λa�a = λ .

The eigenvector is denoted as a1. Then a�
1 xi; i = 1, 2, … , n are referred to as the

first principal components. The first principal components are one-dimensional
data that are the projection of the original data with the maximum variance. If all of
the information for the data can be represented by the first principal components,
further calculation is unnecessary. However, the first principal components usually
exhibit the “size factor” only, whereas we would like to obtain another projection,
namely the second principal components a�

2 xi.
The second principal components serve to explain the maximum variance un-

der the constraint and the fact that they are independent of the first principal
components. In other words, the second principal components a�

2 X take the maxi-
mum variance under the constraints a�

1 a2 = 0 and a�
2 a2 = 1. The second principal

components can also be derived with Lagrange multipliers;

L(a1, a2, … , ap, λ, λ2) = a�Σ̂a − λa�
1 a − λ2(a�a − 1) .

568 Masahiro Mizuta

L is partially differentiated with respect to a = (a1, a2, … , ap)�, λ and λ2, and the
derivatives are equated to zero. The simultaneous equations below are obtained:

2Σ̂a − λa1 − 2λ2a = 0

a�
1 a = 0

a�
2 a2 − 1 = 0 .

We can obtain λ = 0 and λ2 is another eigenvalue (not equal to λ1). Since
the variance of a�

2 X is λ2, the a2 must be the second largest eigenvalue of Σ̂.
{a�

2 xi; i = 1, 2, … , n} are referred to as the second principal components. The third
principal components, fourth principal components, …, and the p-th principal
components can then be derived in the same manner.

Proportion and Accumulated Proportion
The first principal components through the p-th principal components were de-
fined in the discussions above. As previously mentioned, the variance of the k-th
principal components is λk. The sum of variances of p variables is

∑p
j=1 σ̂j =

trace(Σ̂), where Σ̂ = (σ̂ij). It is well known that trace(Σ̂) =
∑p

j=1 λj; the sum of the
variances coincides with the sum of the eigenvalues. The proportion of the k-th
principal components is defined as the proportion of the entire variance to the
variance of the k-th principal components:

λk∑p
j=1 λj

.

The first principal components through the k-th principal components are gen-
erally used consecutively. The total variance of these principal components is
represented by the accumulated proportion:

∑k
j=1 λj

∑p
j=1 λj

.

We have explained PCA as an eigenvalue problem of covariance matrix. How-
ever, the results of this method are affected by units of measurements or scale
transformations of variables. Thus, another method is to employ a correlation
matrix rather than a covariance matrix. This method is invariant under units of
variables, but does not take the variances of the variables into account.

Projection Pursuit6.2.2

PCA searches a lower dimensional space that captures the majority of the vari-
ation within the data and discovers linear structures in the data. This method,
however, is ineffective in analyzing nonlinear structures, i.e. curves, surfaces
or clusters. In 1974, Friedman and Tukey (1974) proposed projection pursuit to
search for linear projection onto the lower dimensional space that robustly reveals

Dimension Reduction Methods 569

structures in the data. After that, many researchers developed new methods for
projection pursuit and evaluated them (e.g. Huber, 1985; Friedman, 1987; Hall,
1989; Iwasaki, 1991; Nason, 1995; Koyama et al., 1998). The fundamental idea be-
hind projection pursuit is to search linear projection of the data onto a lower
dimensional space their distribution is “interesting”; “interesting” is defined as
being “far from the normal distribution”, i.e. the normal distribution is assumed
to be the most uninteresting. The degree of “far from the normal distribution”
is defined as being a projection index, the details of which will be described
later.

Algorithm
The use of a projection index makes it possible to execute projection pursuit
with the projection index. Here is the fundamental algorithm of k-dimensional
projection pursuit.
1. Sphering x: zi = Σ̂−1|2

xx (xi − x̂) (i = 1, 2, … , n), where Σ̂ is the sample covariance
matrix and x̂ is the sample mean of x.

2. Initialize the project direction: α = (α1, α2, … , αk).
3. Search the direction α that maximizes the projection index.
4. Project the data onto the lower dimensional space and display or analyze them.
5. Change the initial direction and repeat Steps 3 and 4, if necessary.

Projection Indexes
The goal of projection pursuit is to find a projection that reveals interesting struc-
tures in the data. There are various standards for interestingness, and it is a very
difficult task to define. Thus, the normal distribution is regarded as uninterest-
ing, and uninterestingness is defined as a degree that is “far from the normal
distribution.”

Projection indexes are defined as of this degree. There are many definitions for
projection indexes. Projection pursuit searches projections based on the projection
index; methods of projection pursuit are defined by the projection indexes.

Herewewillpresent severalprojection indexes. It is assumedthatZ = (z1, … , zn)
is the result of sphering X; the mean vector is a zero vector and the covariance
matrix is an identity matrix.

Friedman’s Index. Friedman (1987) proposed the following projection index:

I =
1

2

J∑

j=1

(2j + 1)

[
1

n

n∑

i=1

Pj

(
2Φ

(
α�Zi

)
− 1

)
]2

,

where Pj(·) are Legendre polynomials of order j andΦ(·) is the cumulative distribu-
tion function of the normal distribution and J is a user-defined constant number,
i.e. the degree of approximation.

570 Masahiro Mizuta

In the case of two-dimensional projection pursuit, the index is represented by

I =
J∑

j=1

(2j + 1)E2[Pj(R1)]|4

+
J∑

k=1

(2k + 1)E2 [Pk(R2)] |4

+
J∑

j=1

J−j∑

k=1

(2j + 1)(2k + 1)E2
[
Pj(R1)Pk(R2)

]
|4 ,

where

X1 = α�
1 Z , X2 = α�

2 Z

R1 = 2Φ
(
X1

)
− 1 , R2 = 2Φ

(
X2

)
− 1 .

MomentIndex. The thirdandhigher cumulantsof thenormaldistributionvanish.
The cumulants are sometimes used for the test of normality, i.e. they can be used
for the projection index. Jones and Sibson (1987) proposed a one-dimensional
projection index named the “moment index,” with the third cumulant k3 = µ3 and
the fourth cumulant k4 = µ4 − 3:

I = k2
3 +

1

4
k2

4 .

For two-dimensional projection pursuit, the moment index can be defined as

I =
(
k2

30 + 3k2
21 + 3k2

12 + k2
03

)
+

1

4

(
k2

40 + 4k2
31 + 6k2

22 + 4k2
13 + k2

04

)
.

Hall’s Index. Hall (1989) proposed the following projection index:

I =
[
θ0(α) − 2−1|2π−1|4

]2
+

J∑

j=1

θ2
j (α) ,

where

θj(α) = n−1
n∑

i=1

Pj

(
α�Zi

)
φ
(
α�Zi

)
,

Pj(z) =
√

2
√

j!
π1|4Hj

(
21|2z

)
,

Dimension Reduction Methods 571

φ(z) is the normal density function and Hj(z) are the Hermite polynomials of
degree j. J is a user-defined constant number. Hall’s index is much more robust for
outliers than Freidman’s index.

Relative Projection Pursuit
The main objective of ordinary projection pursuit is the discovery of non-normal
structures in a dataset. Non-normality is evaluated using the degree of difference
between the distribution of the projected dataset and the normal distribution.

There are times in which it is desired that special structures be discovered using
criterion other than non-normal criterion. For example, if the purpose of analysis
is to investigate a feature of a subset of the entire dataset, the projected direction
should be searched so that the projected distribution of the subset is far from the
distribution of the entire dataset. In sliced inverse regression (please refer to the
final subsection of this chapter), the dataset is divided into several subsets based on
thevaluesof the responsevariable, and the effectivedimension-reductiondirection
is searched for using projection pursuit. In this application of projection pursuit,
projections for which the distributions of the projected subsets are far from those
of the entire dataset are required. Mizuta (2002) proposed the adoption of relative
projection pursuit for these purposes. Relative projection pursuit finds interesting
low-dimensional space that differs from the reference dataset predefined by the
user.

Nonlinear Reduction
of High-dimensional Data 6.3

In the previous section, we discussed linear methods i.e. methods for dimension
reduction through the use of linear projections. We will now move on to nonlinear
methods for dimension reduction. First, we will describe a generalized principal
componentanalysis (GPCA)methodthat isanonlinearextensionofPCA.Algebraic
curve fitting methods will then be mentioned for a further extension of GPCA.
Finally, we will introduce principal curves i.e. the parametric curves that pass
through the middle of the data.

Generalized Principal Component Analysis 6.3.1

As long as data have a near-linear structure, the singularities of the data can be
pointed out using PCA. On the contrary, if data have a nonlinear structure, GPCA
will not be adequate for drawing conclusions regarding the nature of the data.
To overcome this difficulty, GPCA has been proposed by Gnanadesikan and Wilk
(1969), whereby fitting functions to the data points can be discovered.

Suppose that we have observations of p variables x = (x1, x2, … , xp) on each
of n individuals. Let fi(x)(i = 1, 2, … , k) be k real-valued functions of the original
variables.

572 Masahiro Mizuta

The aim of GPCA is to discover a new set of variables (or functions of x), as
denoted by z1, z2, … , zk, which are mutually uncorrelated and whose variances
decrease, from first to last. Each zj(j = 1, 2, … , k) is considered to be a linear
combination of fi(x)(i = 1, 2, … , k), so that

zj =
k∑

i=1

lijfi(x) = l�j f (x) ,

where lj = (l1j, l2j, … , lkj)� are k constant vectors such that l�j lj = 1, and f (x) =
(f1(x), f2(x), … , fk(x))�. The vectors l1, l2, … , lk are the eigenvectors of the covari-
ance matrix of (f1(x), f2(x), … , fk(x)), as in PCA. The function zk defined by the
“smallest” eigenvalue is considered to be one of the fitting functions to the data.

PCA is a special case of GPCA: real-valued functions fi(x) are reduced to xi(i =
1, 2, … , p).

Quadratic principal component analysis (QPCA) is specified by the following
functions:

{
fi(x) = xi (i = 1, 2, … , p)

fi(x) = xjxm

(
i = p + 1, … ,

(
p2 + 3p

)
|2
)

,

where j, m is uniquely determined by

i =
{(

2p − j + 3
)

j|2
}

+ m − 1 ,

1 ≤ j ≤ m ≤ p ,

for i(i = p + 1, … , (p2 + 3p)|2).
QPCA for two dimensional data is defined by

f1(x, y) = x

f2(x, y) = y

f3(x, y) = x2

f4(x, y) = xy

f5(x, y) = y2 .

MostGPCAmethodsarenot invariantunderorthogonal transformationsand|or
the translations (parallel transformations) of a coordinate system, though PCA
is invariant under them. For example, QPCA is not invariant under them. The
expression “the method is invariant” in this subsection means that the results of the
methodarenever changed in theoriginal coordinateby coordinate transformation.
In the following, the determination of the GPCA methods that are invariant under
the orthogonal transformations of a coordinate system will be described in the

Dimension Reduction Methods 573

case of two variables. Translations of a coordinate system are disregarded here
because the data can be standardized to have a zero mean vector.

Hereafter, let us assume the following conditions:

A1 f1(x), f2(x), … , fk(x) are linearly independent as functions of x.

A2 For any orthogonal matrix T, there is a matrix W such that f (Tx) ≡ Wf (x).

A3 fi(x) are continuous functions.

Conditions A1 and A3 may be proper for GPCA, and condition A2 is necessary
for discussing the influence of orthogonal coordinate transformations. PCA and
QPCA clearly satisfy these conditions.

A GPCA method is referred to as “invariant” if its results in the original coor-
dinate system are not changed by the orthogonal transformation of a coordinate
system. It can be mathematically described as follows. For any orthogonal coordi-
nate transformation: x∗ = Tx,

z∗j = l∗�j f (x∗)

= l∗�j f (Tx) (j = 1, 2, … , k)

denote the results of the method for transformed variables x∗, where l∗j are eigen-
vectors of Cov(f (x∗)). The method is “invariant” if it holds that

l�j f (x) ≡ ±l∗�j f (Tx) (j = 1, 2, … , k)

as vector-valued functions of x for any orthogonal matrix T. The plus or minus
sign is indicated only for the orientations of the eigenvectors.

The GPCA method specified by f (x) is invariant under an orthogonal transfor-
mation, if and only if the matrix W is an orthogonal matrix for any orthogonal
matrix T. The proof will be described below. If the method is invariant, W can be
taken as

(
l∗1, l∗2, … , l∗k

) (
l1, l2, … , lk

)�
,

which is an orthogonal matrix. Conversely, if W is an orthogonal matrix, W�l∗j are
eigenvectors of Cov(f (x)). Therefore the following is obtained:

l�j = ±l∗�j W .

Mizuta (1983) derived a theorem on invariant GPCA.

1Theorem 1 GPCAmethods for two-dimensionaldata (x, y)under theconditionsA1,
A2 and A3 that are invariant under rotations can be restricted to those specified
by the following functions.

574 Masahiro Mizuta

(1) s pairs of functions:

f2i−1(x, y) = gi

(√
x2 + y2

)(

xNi −

(
Ni

2

)

y2xNi−2 +

(
Ni

4

)

y4xNi−4 − …

)

−hi

(√
x2 + y2

)(

NiyxNi−1 −

(
Ni

3

)

y3xNi−3 +

(
Ni

5

)

y5xNi−5 − …

)

f2i(x, y) = gi

(√
x2 + y2

)(

NiyxNi−1 −

(
Ni

3

)

y3xNi−3 +

(
Ni

5

)

y5xNi−5 − …

)

+hi

(√
x2 + y2

)(

xNi −

(
Ni

2

)

y2xNi−2 +

(
Ni

4

)

y4xNi−4 − …

)

(i = 1, 2, … , s) ,

where gi, hi are arbitrary continuous functions of
√

x2 + y2 and Ni are arbitrary
positive integers.

(2) Continuous functions of
√

x2 + y2.

The above theorem can be extended for use with GPCA methods for p-dimen-
sional data because invariant GPCA for p-dimensional data methods are invariant
under the rotations of any pair of two variables and the reverse is also true.

We will show some set of functions for invariant GPCA here.
(1) 3 dimensional and degree 1:

x, y, z .

(2) 3 dimensional and degree 2:

x2, y2, z2,
√

2xy,
√

2yz,
√

2zx .

(3) 3 dimensional and degree 3:

x3, y3, z3,
√

3x2y,
√

3y2z,
√

3z2x,
√

3xy2,
√

3yz2,
√

3zx2,
√

6xyz .

(4) 3 dimensional and degree q:

√
q!

i!j!k!
xiyjzk

(i + j + k = q ; 0 ≤ i, j, k) .

Dimension Reduction Methods 575

(5) p dimensional and degree q:
√

q!
∏p

i=1 kt !

p∏

t=1

(xt)
k
t

p∑

t=1

kt = q ; 0 ≤ kt .

Algebraic Curve and Surface Fitting 6.3.2

Next, we will discuss a method involving algebraic curve and surface fitting to
multidimensional data.

The principal component line minimizes the sum of squared deviations in each
of the variables. The PCA cannot find non-linear structures in the data. GPCA is
used to discover an algebraic curve fitted to data; the function zk defined by the
“smallest” eigenvalue is considered to be one of the fitting functions to the data.
However, it is difficult to interpret algebraic curves statistically derived form GPCA.

We will now describe methods for estimating the algebraic curve or surface that
minimizes the sum of squares of perpendicular distances from multidimensional
data.

Taubin (1991) developed an algorithm for discovering the algebraic curve for
which the sum of approximate squares distances between data points and the curve
is minimized. The approximate squares distance does not always agree with the
exact squares distance. Mizuta (1995, 1996) presented an algorithm for evaluating
the exact distance between the data point and the curve, and have presented
a method for algebraic curve fitting with exact distances. In this subsection, we
describe the method of algebraic surface fitting with exact distances. The method
of the algebraic curve fitting is nearly identical to that of surface fitting, and is
therefore omited here.

Algebraic Curve and Surface
A p-dimensional algebraic curve or surface is the set of zeros of k-polynomials
f (x) = (f1(x), … , fk(x)) on Rp,

Z(f) =
{

x : f (x) = 0
}

.

In thecaseof p = 2 and k = 1, Z(f) is a curve in theplane. For example, Z(x2+2y2−1)
is an ellipse and Z(y2 − x2 + 1) is a hyperbola. In the case of p = 3 and k = 2, Z(f)
is a curve in the space.

In the case of p = 3 and k = 1, Z(f) is a surface:

Z(f) =
{

(x, y, z) : f (x, y, z) = 0
}

.

Hereafter, we will primarily discuss this case.

576 Masahiro Mizuta

Approximate Distance
The distance from a point a to the surface Z(f) is usually defined by

dist
(
a, Z(f)

)
= inf

(‖ a − y ‖: y ∈ Z(f)
)

.

It was said that the distance between a point and the algebraic curve or surface
cannot be computed using direct methods. Thus, Taubin proposed an approximate
distance from a to Z(f) (Taubin, 1991). The point ŷ that approximately minimizes
the distance ‖ y − a ‖, is given by

ŷ = a −
(∇f (a)�

)+
f (a) ,

where (∇f (a)�)+ is the pseudoinverse of ∇f (a)�. The distance from a to Z(f) is
approximated to

dist
(
a, Z(f)

)2 ≈ f (a)2

‖ ∇f (a) ‖2
.

Taubin also presented an algorithm to find the algebraic curve for which the sum
of approximate squares distances between data points and the curve is minimized.

Exact Distance
In the following, we present a method for calculating the distance between a point
a = (α, β, γ) and an algebraic surface Z(f).

If (x, y, z) is the nearest point to the point a = (α, β, γ) on Z(f), (x, y, z) satisfies
the following simultaneous equations:

φ1(x, y, z) = 0

φ2(x, y, z) = 0

f (x, y, z) = 0 ,

(6.1)

where φ1(x, y, z) = (x −α)(∂f |∂y) − (y −β)(∂f |∂x), and φ2(x, y, z) = (z −γ)(∂f |∂y) −
(y − β)(∂f |∂z).

Equations (6.1) can be solved using the Newton–Rapson method:
1. Set x0, y0 and z0 (see below).
2. Solve the equations:

h
∂φ1

∂x
+ k

∂φ1

∂y
+ l

∂φ1

∂z
= −φ1(x, y, z)

h
∂φ2

∂x
+ k

∂φ2

∂y
+ l

∂φ2

∂z
= −φ2(x, y, z)

h
∂f

∂x
+ k

∂f

∂y
+ l

∂f

∂z
= −f (x, y, z) .

(6.2)

Dimension Reduction Methods 577

3. Replace x, y:

xi+1 = xi + h

yi+1 = yi + k

zi+1 = zi + l .

4. Stop if h2 + k2 + l2 is below a certain threshold. Otherwise, go to Step 2.

One of the important points to consider when applying the Newton–Rapson
method is to compute an initial point. We have a good initial point: (α, β, γ).

When x0 = α, y0 = β, z0 = γ, (6.2) are

h
∂φ1

∂x
+ k

∂φ1

∂y
+ l

∂φ1

∂z
= 0

h
∂φ2

∂x
+ k

∂φ2

∂y
+ l

∂φ2

∂z
= 0

h
∂f

∂x
+ k

∂f

∂y
+ l

∂f

∂z
= −f (x, y, z) .

It is very simple to show that the distance between (x1, y1, z1) and (α, β, γ) agrees
with Taubin’s approximate distance.

Algebraic Surface Fitting
We have already described the method for calculating the distance between a point
and a surface.

The problem of finding a fitting surface that minimizes the sum of the distances
from data points can therefore be solved by using an optimization method without
derivatives. However, for computing efficiency, the partial derivatives of the sum
of squares of distances from data with the coefficients of an algebraic curve are
derived.

In general, a polynomial f in a set is denoted by

f
(
b1, … , bq; x, y, z

)
,

where b1, … , bq are the parameters of the set.
Let ai = (αi, βi, γi)(i = 1, 2, … , n) be n data points within the space. The point

in Z(f) that minimizes the distance from (αi, βi, γi) is denoted by (xi, yi, zi)(i =
1, 2, … , n).

The sum of squares of distances is

R =
n∑

i=1

(xi − ai)
�(xi − ai) .

578 Masahiro Mizuta

R can be minimized with respect to the parameters of polynomial f with the
Levenberg–Marquardt Method. This method requires partial derivatives of R with
respect to bj:

∂R

∂bj
=

n∑

i=1

∂Ri

∂bj
, (6.3)

where

∂Ri

∂bj
= 2

(
(xi − αi)

∂xi

∂bj
+ (yi − βi)

∂yi

∂bj
+ (zi − γi)

∂zi

∂bj

)
. (6.4)

The only matter left to discuss is a solution for ∂xi|∂bj, ∂yi|∂bj and ∂zi|∂bj.
Hereafter, the subscript i is omitted. By the derivative of both sides of f (b1, … ,
bq, x, y, z) = 0 with respect to bj (j = 1, … , q), we obtain

∂f

∂x

∂x

∂bj
+
∂f

∂y

∂y

∂bj
+
∂f

∂z

∂z

∂bj
+

df

dbj
= 0 , (6.5)

where df |dbj is the differential of f with bj when x and y are fixed.
Since xi is on the normal line from ai,

(
∂f

∂x

∣∣∣∣
xi

,
∂f

∂y

∣∣∣∣
xi

,
∂f

∂z

∣∣∣∣
xi

)�
(xi − ai) = 0 .

By the derivative of

(y − β)(z − γ)
∂f

∂x

∣∣∣∣
x

= t

(x − α)(z − γ)
∂f

∂y

∣∣∣∣
x

= t

(x − α)(y − β)
∂f

∂z

∣∣∣∣
x

= t

with respect to bj, we obtain the linear combinations of ∂x|∂bj, ∂y|∂bj and ∂z|∂bj:

c1m
∂x

∂bj
+ c2m

∂y

∂bj
+ c3m

∂z

∂bj
+ c4m =

∂t

∂bj
, (6.6)

where c1m, … , c4m are constants (m = 1, … , 3).
Equations (6.5) and (6.6) are simultaneous linear equations in four variables

∂x|∂bj, ∂y|∂bj, ∂z|∂bj and∂t|∂bj.We thenobtain∂x|∂bj, ∂y|∂bj and∂z|∂bj at (xi, yi, zi).
By (6.4), we have the partial differentiation of Ri with respect to bj.

Therefore, we can obtain the algebraic curve that minimizes the sum of squares
of distances from data points with the Levenberg–Marquardt method.

Dimension Reduction Methods 579

Bounded and Stably Bounded Algebraic Curve and Surface
Although algebraic curves can fit the data very well, they usually contain points far
remote from the given data set. In 1994, Keren et al. (1994) and Taubin et al. (1994)
independently developed algorithms for a bounded (closed) algebraic curve with
approximate squares distance. We will now introduce the definition and properties
of a bounded algebraic curve.

Z(f) is referred to as bounded if there exists a constant r such that Z(f) ⊂ {x :‖
x ‖< r}. For example, it is clear that Z(x2 + y2 − 1) is bounded, but Z(x2 − y2) is not
bounded.

Keren et al. (1994) defined Z(f) to be stably bounded if a small perturbation of
the coefficients of the polynomial leaves its zero set bounded. An algebraic curve
Z((x − y)4 + x2 + y2 − 1) is bounded but not stably bounded because Z((x − y)4 +
x2 + y2 − 1 + εx3) is not bounded for any ε ≠ 0.

Let fk(x, y) be the form of degree k of a polynomial f (x, y): f (x, y) =
∑d

k=0 fk(x, y).
The leading form of a polynomial f (x, y) of degree d is defined by fd(x, y). For
example, the leading form of f (x, y) = x2 + 2xy − y2 + 5x − y + 3 is f2(x, y) =
x2 + 2xy − y2.

1Lemma 1 Foranevenpositive integer d, any leading form fd(x, y) canberepresented
by x�Ax. Where A is a symmetric matrix and x = (xd|2, xd|2−1y, … , xyd|2−1, yd|2)�.

2Theorem 2 (Keren et al., 1994): The Z(f) is stably bounded if and only if d is even
and there exists a symmetric positive definite matrix A such that

fd(x, y) = x�Ax ,

where x = (xd|2, xd|2−1y, … , xyd|2−1, yd|2)�.

These definitions and theorem for algebraic curves are valid for algebraic sur-
faces. Hereafter, we will restrict our discussion to algebraic surfaces.

Parameterization
We parameterize the set of all polynomials of degree k and the set of polynomials
that induce (stably) bounded algebraic surfaces. In general, a polynomial f of
degree p with q parameters can be denoted by f (b1, … , bq; x, y), where b1, … , bq

are the parameters of the polynomial.
For example, all of the polynomials of degree 2 can be represented by

f
(
b1, b2, … , b10; x, y, z

)
= B�X ,

where X = (1, x, y, z, x2, y2, z2, xy, yz, zx)�, B = (b1, b2, … , b10)�.

580 Masahiro Mizuta

For stably bounded algebraic curves of degree 4,

f
(
b1, … , b41; x, y, z

)

=
(
x2, y2, z2, xy, yz, zx

)
A2

(
x2, y2, z2, xy, yz, zx

)�
+
(
b22, … , b41

) (
1, x, y, z, … , z3

)�
,

where

A =

b1 b2 b3 b4 b5 b6

b2 b7 b8 b9 b10 b11

b3 b8 b12 b13 b14 b15

b4 b9 b13 b16 b17 b18

b5 b10 b14 b17 b19 b20

b6 b11 b15 b18 b20 b21

.

Examples
Here we will show a numerical example of the algebraic surface and bounded
algebraic surface fitting methods.

The data in this example is three-dimensional data of size 210. The 210 points
nearly lie on a closed cylinder (Fig. 6.1). The result of GPCA is set for an initial
surface and the method is used to search for a fitting algebraic surface of degree 4
(Figs. 6.2, 6.3 and 6.4). The value of R is 0.924.

Figure 6.1. Surface fitting for distributed cylinder data (Original Data Points)

Figure 6.5 presents the result of a bounded algebraic surface fitting the same
data. The value of R is 1.239, and is greater than that of unbounded fitting. The
bounded surface, however, directly reveals the outline of the data.

In this subsection, we have discussed algebraic surface fitting to multidimen-
sional data. Two sets of algebraic surfaces were described: an unbounded algebraic

Dimension Reduction Methods 581

Figure 6.2. Surface fitting for distributed cylinder data (Unbounded Fitting Surface)

Figure 6.3. Surface fitting for distributed cylinder data (Global View of 2)

surface and a bounded algebraic surface. This method can be extended for use
with any other family of algebraic surfaces.

Taubin (1994) proposed the approximate distance of order k and presented algo-
rithms for rasterizing algebraic curves. The proposed algorithm for exact distance
can also be used for rasterizing algebraic curves and surfaces. Mizuta (1997) has
successfully developed a program for rasterizing them with exact distances.

Principal Curves 6.3.3

Curve fitting to data is an important method for data analysis. When we obtain
a fitting curve for data, the dimension of the data is nonlinearly reduced to one di-

582 Masahiro Mizuta

Figure 6.4. Surface fitting for distributed cylinder data (Cutting View of 2)

Figure 6.5. Surface fitting for distributed cylinder data (Bounded Fitting Surface)

mension. Hastie and Stuetzle (1989) proposed the concept of a principal curve and
developed a concrete algorithm to find the principal curve, which is represented
by a parametric curve. We can therefore obtain a new nonlinear coordinate for the
data using the principal curve.

Definition of Principal Curve
First, we will define principal curves for a p-dimensional distribution function
h(x)(x ∈ Rp), rather than a dataset.

Dimension Reduction Methods 583

The expectation of X with density function h in Rp is denoted by Eh(X). The
parametric curve within the p-dimensional space is represented by f (λ), where λ
is the parameter.

For each point x in Rp, the parameter λ of the nearest point on the curve f (λ)
is denoted by λf (x), which is referred to as the projection index. The projection
index, which is different from projection index in projection pursuit, is defined as
follows:

λf (x) = sup
λ

{
λ| ‖ x − f (λ) ‖= inf

µ
‖ x − f (µ) ‖

}
.

The curve f (λ) is referred to as the principal curve of density function h, if

Eh

(
x ‖ λf (x) = λ

)
= f (λ) (for a.e. λ)

is satisfied. After all, for any point f (λ) on the curve, the average of the conditional
distribution of x given λf (x) = λ is consistent with f (λ) with the exception of a set
of measure 0.

The principal curves of a given distribution are not always unique. For exam-
ple, two principal components of the two-dimensional normal distribution are
principal curves.

The algorithm for finding the principal curves of a distribution is:
1. Initialization. Put

f (0)(λ) = x̄ + aλ ,

where a is the first principal component of the distribution defined by the
density function h and x̄ is the average of x.

2. Expectation Step (update of f (λ)).

f (j)(λ) = E
(

x|λf (j−1) (x) = λ
)

∀λ

3. Projection Step (update of λ).

λ(j)(x) = λf (j) (x) ∀x ∈ Rp

And transform the λ(j) to be arc length.
4. Evaluation. Calculate

D2
(
h, f (j)

)
= Eλ(j) E

{‖ x − f
(
λ(j)(x)

) ‖2 |λ(j)(x)
}

.

If the value
∣∣D2

(
h, f (j−1)

)
− D2

(
h, f (j)

)∣∣

D2
(
h, f (j−1)

)

is smaller than ε, then stop, otherwise j = j + 1 and go to Step 1.

584 Masahiro Mizuta

In the Expectation Step, calculate the expectation with respect to the distribu-
tion h of the set of x satisfying λf (j−1) (x) = λ and substitute f (j)(λ) for it. In the
Projection Step, project data points in Rp to the curve f (j)(λ) and assign λ(j)(x).

For actual data analysis, only a set of data points is given and the distribu-
tion is unknown. Hastie and Stuetzle (1989) also proposed an algorithm with
which to derive the principal curve for given p-dimensional data of size n: xik(i =
1, 2, … , N; k = 1, 2, … , p). In this case, the principal curves are represented by
lines determined by N points (λi, f i).
1. Initialization.

f (0)(λ) = x̄ + uλ ,

where u is the first principal component of the data and x̄ is the average of x.
2. Expectation Step. Smooth xik (i = 1, 2, … , N) with respect to λ for each k

independently and calculate f (j)(λ).
3. Projection Step. Search for the nearest point on the curve (line curve) of each

data point and assign it to their value of λ.
4. Evaluation. If a terminal condition is satisfied, the algorithm is stopped. If not,

j = j + 1 and go to Step 2.

Linear Reduction
of Explanatory Variables6.4

Thus far, we have described dimension reduction methods for multidimensional
data, where there are no distinctions among variables. However, there are times
when we must analyze multidimensional data in which a variable is a response vari-
able andothers are explanatoryvariables.Regressionanalysis isusuallyused for the
data. Dimension reduction methods of explanatory variables are introduced below.

Sliced Inverse Regression
Regression analysis is one of the fundamental methods used for data analysis.
A response variable y is estimated by a function of explanatory variables x, a p-
dimensional vector. An immediate goal of ordinary regression analysis is to find
the function of x. When there are many explanatory variables in the data set, it is
difficult to stably calculate the regression coefficients. An approach to reducing the
number of explanatory variables is explanatory variable selection, and there are
many studies on variable selection. Another approach is to project the explanatory
variables on a lower dimensional space that nearly estimates the response variable.

Sliced Inverse Regression (SIR), which was proposed by Li (1991), is a method
that can be employed to reduce explanatory variables with linear projection. SIR
finds linear combinations of explanatory variables that are a reduction for non-
linear regression. The original SIR algorithm, however, cannot derive suitable

Dimension Reduction Methods 585

results for some artificial data with trivial structures. Li also developed another
algorithm, SIR2, which uses the conditional estimation E[cov(x|y)]. However, SIR2
is also incapable of finding trivial structures for another type of data.

We hope that projection pursuit can be used for finding linear combinations
of explanatory variables. A new SIR method with projection pursuit (SIRpp) is
described here. We also present a numerical example of the proposed method.

Sliced Inverse Regression Model
SIR is based on the model (SIR model):

y = f
(
β�

1 x, β�
2 x, … , β�

K x
)

+ ε , (6.7)

where x is the vector of p explanatory variables, βk are unknown vectors, ε is
independent of x, and f is an arbitrary unknown function on RK .

The purpose of SIR is to estimate the vectors βk for which this model holds. If we
obtain βk, we can reduce the dimension of x to K. Hereafter, we shall refer to any
linear combination of βk as the effective dimensional reduction (e.d.r.) direction.

Li (1991) proposed an algorithm for finding e.d.r. directions, and it was named
SIR. However, we refer to the algorithm as SIR1 to distinguish it from the SIR
model.

The main idea of SIR1 is to use E[x|y]. E[x|y] is contained in the space spanned
by e.d.r. directions, but there is no guarantee that E[x|y] will span the space. For
example, in Li, if (X1, X2) ∼ N(0, I2), Y = X2

1 then E[X1|y] = E[X2|y] = 0.

SIR Model and Non-Normality
Hereafter, it is assumed that the distribution of x is standard normal distribution:
x ∼ N(0, Ip). If not, standardize x by affine transformation. In addition, β�

i βj =
δij, (i, j = 1, 2, … , K) is presumed without loss of generality. We can choose βi(i =
K + 1, … , p) such that {βi} (i = 1, … , p) is a basis for Rp.

Since the distribution of x is N(0, Ip), the distribution of (β�
1 x, … , β�

p x) is also
N(0, Ip). The density function of (β�

1 x, … , β�
p x, y) is

h
(
β�

1 x, … , β�
p x, y

)

= φ
(
β�

1 x
)

…φ
(
β�

p x
) 1√

2πσ
exp

(

−

(
y − f

(
β�

1 x, … , β�
K x

))2

2σ2

)

,

where φ(x) = 1|
√

2π exp (−x2|2) and we assume ε ∼ N(0,σ2).
The conditional density function is

h
(
β�

1 x, … , β�
p x | y

)
= φ

(
β�

K+1x
)

…φ
(
β�

p x
)

g
(
β�

1 x, … , β�
K x

)
,

where g() is a function of β�
1 x, … , β�

K x, which is not generally the normal density
function.

586 Masahiro Mizuta

Thus,h(β�
1 x, … , β�

p x | y) is separated into thenormaldistributionpartφ(β�
K+1x)

… φ(β�
p x) and the non-normal distribution part g().

Projection Pursuit is an excellent method for finding non-normal parts, so we
adopt it for SIR.

SIRpp Algorithm
Here we show the algorithm for the SIR model with projection pursuit (SIRpp).
The algorithm for the data (yi, xi) (i = 1, 2, … , n) is as follows:
1. Standardize x: x̃i = Σ̂−1|2

xx (xi − x̄)(i = 1, 2, … , n), where Σ̂xx is the sample
covariance matrix and x̄ is the sample mean of x.

2. Divide the range of y into H slices, I1, … , IH .
3. Conduct a projection pursuit in K dimensional space for each slice. The fol-

lowing H projections are obtained: (α(h)
1 , … , α(h)

K), (h = 1, … , H).
4. Let the K largest eigenvectors of V̂ be η̂k(k = 1, … , K). Output β̂k = η̂kΣ

−1|2
xx (k =

1, 2, … , K) for the estimation of e.d.r. directions, where V̂ =
∑H

h=1 w(h)
∑K

k=1 α(h)
k

�
α(h)

k .

Numerical Examples
Two models of the multicomponent are used:

y = x1(x1 + x2 + 1) + σ · ε , (6.8)

y = sin(x1) + cos(x2) + σ · ε (6.9)

to generate n = 400 data, where σ = 0.5. We first generate x1, x2, ε with N(0, 1)
and calculate response variable y using (6.8) or (6.9). Eight variables x3, … , x10

generated by N(0, 1) are added to the explanatory variables. The ideal e.d.r. di-
rections are contained within the space spanned by two vectors (1, 0, … , 0) and
(0, 1, … , 0).

The squared multiple correlation coefficient between the projected variable b�x
and the space B spanned by ideal e.d.r. directions:

R2(b) = max
β∈B

(
b�∑

xx β
)2

b�∑
xx b · β�∑

xx β
(6.10)

is adopted as the criterion for evaluating the effectiveness of estimated e.d.r. direc-
tions.

Table 6.1 shows the mean and the standard deviation (in parentheses) of R2(β̂1)
and R2(β̂2) of four SIR algorithms for H = 5, 10, and 20, after 100 replicates. SIR2
cannot reduce the explanatory variables from the first example. The result of the
second example is very interesting. SIR1 finds the asymmetric e.d.r. direction,
but, does not find the symmetric e.d.r. direction. Conversely, SIR2 finds only the
symmetric e.d.r. direction. SIRpp can detect both of the e.d.r. directions.

Dimension Reduction Methods 587

Table 6.1. Results for SIR1, SIR2, and SIRpp (Example 1)

SIR1 SIR2 SIRpp
H R2

(
β̂1
)

R2
(
β̂2
)

R2
(
β̂1
)

R2
(
β̂2
)

R2
(
β̂1
)

R2
(
β̂2
)

5 0.92 0.77 0.96 0.20 0.97 0.78

(0.04) (0.11) (0.03) (0.21) (0.02) (0.15)
10 0.93 0.81 0.92 0.10 0.95 0.79

(0.03) (0.09) (0.09) (0.12) (0.04) (0.13)
20 0.92 0.76 0.83 0.11 0.95 0.75

(0.04) (0.18) (0.19) (0.13) (0.07) (0.18)

Figure 6.6. Function of the example 1. Asymmetric function y = x1(x1 + x2 + 1) + σ · ε

Table 6.2. Results of SIR1, SIR2, and SIRpp (Example 2)

SIR1 SIR2 SIRpp
H R2

(
β̂1
)

R2
(
β̂2
)

R2
(
β̂1
)

R2
(
β̂2
)

R2
(
β̂1
)

R2
(
β̂2
)

5 0.97 0.12 0.92 0.01 0.92 0.88

(0.02) (0.14) (0.04) (0.10) (0.05) (0.11)
10 0.97 0.12 0.90 0.05 0.88 0.84

(0.02) (0.15) (0.06) (0.07) (0.08) (0.13)
20 0.97 0.12 0.85 0.05 0.84 0.73

(0.02) (0.14) (0.09) (0.06) (0.10) (0.22)

The SIRpp algorithm performs well in finding the e.d.r. directions; however, the
algorithm requires more computing power. This is one part of projection pursuit
for which the algorithm is time consuming.

588 Masahiro Mizuta

Figure 6.7. Function of the example 2. Function of asymmetric with respect to the x1 axis and

symmetric with respect to x2 axis. y = sin(x1) + cos(x2) + σ · ε

Concluding Remarks6.5

In this chapter, we discussed dimension reduction methods for data analysis. First,
PCA methods were explained for the linear method. Then, projection pursuit
methods were described. For nonlinear methods, GPCA algebraic curve fitting
methods and principal curves were introduced. Finally, we explained sliced inverse
regression for the reduction of the dimension of explanatory variable space.

These methods are not only useful for data analysis, but also effective for
preprocessing when carrying out another data analysis. In particular, they are
indispensable for the analysis of enormous amounts of and complex data, e.g.
microarray data, log data on the Internet, etc. Research in this field will continue
to evolve in the future.

References
Friedman, J. (1987). Exploratory projection pursuit. Journal of the American

Statistical Association, 82:249–266.
Friedman, J. and Tukey, J. (1974). A projection pursuit algorithm for exploratory

data analysis. IEEE Transaction on Computer, c-23(9):881–890.
Gnanadesikan, R. and Wilk, M. (1969). Data analytic methods. In Krishnaiah, P.,

editor, Multivariate Analysis II, pages 593–638. Academic Press.
Hall, P. (1989). On polynomial-based projection indices for exploratory projection

pursuit. Annals of Statistics, 17:589–605.
Hastie, T. and Stuetzle, W. (1989). Principal curves. Journal of the American

Statistical Association, 84:502–516.
Huber, P. (1985). Projection pursuit (with discussion). Annals of Statistics, 13:435–

475.

Dimension Reduction Methods 589

Iwasaki, M. (1991). Projection pursuit: the idea and practice (in japanese). Bulletin
of the Computational Statistics of Japan, 4(2):41–56.

Jones, M. C. and Sibson, R. (1987). What is projection pursuit? (with discussion).
Journal of the Royal Statistical Society, Series A, 150:1–36.

Keren, D., Cooper, D., and Subrahmonia, J. (1994). Describing complicated objects
by implicit polynomials. IEEE Transaction on Pattern Analysis and Machine
Intelligence, 16(1):38–53.

Koyama, K., Morita, A., Mizuta, M., and Sato, Y. (1998). Projection pursuit into
threedimensional space (in japanese). The Japanese JournalofBehaviormetrics,
25(1):1–9.

Li, K. (1991). Sliced inverse regression for dimension reduction. Journal of the
American Statistical Association, 86:316–342.

Mizuta, M. (1983). Generalized principal components analysis invariant under
rotations of a coordinate system. Journal of the Japan Statistical Society, 14:1–9.

Mizuta, M. (1995). A derivation of the algebraic curve for two-dimensional da-
ta using the least-squares distance. In Escoufier, Y., Hayashi, C., Fichet, B.,
Ohsumi, N., Diday, E., Baba, Y., and Lebart, L., editors, Data Science and Its
Application, pages 167–176. Academic Press, Tokyo.

Mizuta, M. (1996). Algebraic curve fitting for multidimensional data with exact
squares distance. In Proceedings of IEEE International Conference on Systems,
Man and Cybernetics, pages 516–521.

Mizuta, M. (1997). Rasterizing algebraic curves and surfaces in the space with exact
distances. InProgress inConnectionist-Based InformationSystems–Proceedings
of the 1997 International Conference on Neural Information Processing and
Intelligent Information Systems, pages 551–554.

Mizuta, M. (2002). Relative projection pursuit. In Sokolowski, A. and Jajuga, K.,
editors, Data Analysis, Classification, and Related Methods, page 131. Cracow
University of Economics.

Nason, G. (1995). Three-dimensional projection pursuit (with discussion). Applied
Statistics, 44(4):411–430.

Taubin, G. (1991). Estimation of planar curves, surfaces, and nonplanar space
curves defined by implicit equations with applications to edge and range image
segmentation. IEEE Transaction on Pattern Analysis and Machine Intelligence,
13(11):1115–1138.

Taubin, G. (1994). Distance approximations for rasterizing implicit curves. ACM
Transaction on Graphics, 13:3–42.

Taubin, G., Cukierman, F., Sullivan, S., Ponce, J., and Kriegman, D. (1994). Parame-
terized families of polynomials for bounded algebraic curve and surface fitting.
IEEE Transaction on Pattern Analysis and Machine Intelligence, 16(3):287–303.

III.7Generalized Linear Models
Marlene Müller

7.1 Introduction . 592

7.2 Model Characteristics . 593

Exponential Family . 593
Link Function . 594

7.3 Estimation . 596

Properties of the Exponential Family . 596
Maximum-Likelihood and Deviance Minimization . 597
Iteratively Reweighted Least Squares Algorithm . 598
Remarks on the Algorithm . 600
Model Inference . 602

7.4 Practical Aspects . 603

7.5 Complements and Extensions . 611

Weighted Regression . 611
Overdispersion . 612
Quasi- or Pseudo-Likelihood. 612
Multinomial Responses . 612
Contingency Tables . 613
Survival Analysis . 614
Clustered Data . 614
Semiparametric Generalized Linear Models . 615

592 Marlene Müller

Introduction7.1

Generalized linear models (GLM) extend the concept of the well understood linear
regression model. The linear model assumes that the conditional expectation of Y
(the dependent or response variable) is equal to a linear combination X�β, i.e.

E(Y |X) = X�β.

This could be equivalently written as Y = X�β + ε. Unfortunately, the restriction
to linearity cannot take into account a variety of practical situations. For example,
a continuous distribution of the error ε term implies that the response Y must
have a continuous distribution as well. Hence, the linear regression model may fail
when dealing with binary Y or with counts.

1 Example 1 (Bernoulli responses)
Let us illustrate a binary response model (Bernoulli Y) using a sample on credit
worthiness. For each individual in the sample we know if the granted loan has
defaulted or not. The responses are coded as

Y =
{

1 loan defaults,
0 otherwise.

The term of interest is how credit worthiness depends on observable individual
characteristics X (age, amount and duration of loan, employment, purpose of loan,
etc.). Recall that for a Bernoulli variable P(Y = 1|X) = E(Y |X) holds. Hence, the
default probability P(Y = 1|X) equals a regression of Y on X. A useful approach is
the following logit model:

P(Y = 1|X = x) =
1

1 + exp(−x�β)
.

Here the function of interest E(Y |X) is linked to a linear function of the explanatory
variables by the logistic cumulative distribution function (cdf) F(u) = 1|(1+e−u) =
eu|(1 + eu).

The term generalized linear models (GLM) goes back to Nelder and Wedder-
burn, 1972 and McCullagh and Nelder, 1989 who show that if the distribution of
the dependent variable Y is a member of the exponential family, then the class
of models which connects the expectation of Y to a linear combination of the
variables X�β can be treated in a unified way. In the following sections we denote
the function which relates µ = E(Y |X) and η = X�β by η = G(µ) or

E(Y |X) = G−1(X�β).

This function G is called link function. For all considered distributions of Y there
exists at least one canonical link function and typically a set of frequently used
link functions.

Generalized Linear Models 593

Model Characteristics 7.2

The generalized linear model is determined by two components:
the distribution of Y ,
the link function.

In order to define the GLM methodology as a specific class of nonlinear models
(for a general approach to nonlinear regression see Chap. III.8), we assume that
the distribution of Y is a member of the exponential family. The exponential
family covers a large number of distributions, for example discrete distributions
as the Bernoulli, binomial and Poisson which can handle binary and count data or
continuous distributions as the normal, Gamma or Inverse Gaussian distribution.

Exponential Family 7.2.1

We say that a distribution is a member of the exponential family if its probability
mass function (if Y discrete) or its density function (if Y continuous) has the
following form:

f (y, θ,ψ) = exp

{
yθ − b(θ)

a(ψ)
+ c(y,ψ)

}
. (7.1)

The functions a(•), b(•) and c(•) will vary for different Y distributions. Our
parameter of interest is θ, which is also called the canonical parameter (McCullagh
and Nelder, 1989). The additional parameter ψ, that is only relevant for some of
the distributions, is considered as a nuisance parameter.

2Example 2 (Normal distribution)
Suppose Y is normally distributed with Y ∼ N(µ,σ2). The probability density
function f (y) = exp

{
−(y − µ)2|(2σ2)

}
|(
√

2πσ) can be written as in (7.1) by setting
θ = µ andψ = σ and a(ψ) = ψ2, b(θ) = θ2|2, and c(y,ψ) = −y2|(2ψ2)−log(

√
2πψ).

3Example 3 (Bernoulli distribution)
If Y is Bernoulli distributed its probability mass function is

P(Y = y) = µy(1 − µ)1−y =

{
µ if y = 1,

1 − µ if y = 0.

This can be transformed into P(Y = y) = exp
(
yθ
)
|(1 + eθ) using the logit trans-

formation θ = log
{
µ|(1 − µ)

}
equivalent to µ = eθ|(1 + eθ). Thus we obtain an

exponential family with a(ψ) = 1, b(θ) = − log(1−µ) = log(1+eθ), and c(y,ψ) = 0.

594 Marlene Müller

Table 7.1. GLM distributions

Range Variance terms

of y f (y) µ(θ) V(µ) a(ψ)

Bernoulli
B(µ)

{0, 1} µy(1 − µ)1−y eθ

1 + eθ
µ(1 − µ) 1

Binomial
B(k,µ)

{0, … , k}
(

k

y

)
µy(1 − µ)k−y keθ

1 + eθ
µ
(

1 −
µ
k

)
1

Poisson
P(µ)

{0, 1, 2, …} µy

y! e−µ exp(θ) µ 1

Geometric
Geo(µ)

{0, 1, 2, …}
(µ

1 + µ

)y (1
1 + µ

)
eθ

1 − eθ
µ + µ2 1

Negative
Binomial
NB(µ, k)

{0, 1, 2, …}
(

k + y − 1

y

)(
µ

k + µ

)y (
k

k + µ

)
keθ

1 − eθ
µ +

µ2

k 1

Exponential
Exp(µ)

(0,∞) 1
µ exp

(
− x
µ
)

− 1|θ µ2 1

Gamma
G(µ,ψ)

(0,∞) 1
Γ(ψ)

(ψ
µ
)ψ

exp
(

−
ψy
µ
)

yψ−1 − 1|θ µ2 1
ψ

Normal
N(µ,ψ2)

(−∞,∞)
exp

{
−(y − µ)2|(2ψ2)

}
√

2πψ
θ 1 ψ2

Inverse
Gaussian
IG(µ,ψ2)

(0,∞)
exp

{
−(y − µ)2|(2µ2yψ2)

}
√

2πy3ψ
1√
−2θ

µ3 ψ2

Table 7.1 lists some probability distributions that are typically used for a GLM.
For the binomial and negative binomial distribution the additional parameter k
is assumed to be known. Note also that the Bernoulli, geometric and exponential
distributions are special cases of the binomial, negative binomial and Gamma
distributions, respectively.

Link Function7.2.2

After having specified the distribution of Y , the link function G is the second
component to choose for the GLM. Recall the model notation η = X�β = G(µ). In
the case that the canonical parameter θ equals the linear predictor η, i.e. if

η = θ,

Generalized Linear Models 595

the link function is called the canonical link function. For models with a canonical
link the estimation algorithm simplifies as we will see in Sect. 7.3.3. Table 7.2
shows in its second column the canonical link functions of the exponential family
distributions presented in Table 7.1.

Table 7.2. Characteristics of GLMs

Canonical link Deviance

θ(µ) D(y, µ)

Bernoulli
B(µ)

log
(µ

1 − µ
)

2
∑[

yi log
(

yi
µi

)
+ (1 − yi) log

(
1 − yi
1 − µi

)]

Binomial
B(k,µ)

log

(
µ

k − µ

)
2
∑

[
yi log

(
yi
µi

)
+ (k − yi) log

(
k − yi
k − µi

)]

Poisson
P(µ)

log(µ) 2
∑[

yi log
(

yi
µi

)
− (yi − µi)

]

Geometric
Geo(µ)

log
(µ

1 + µ
)

2
∑[

yi log
(

yi + yiµi
µi + yiµi

)
− log

(
1 + yi
1 + µi

)]

Negative
Binomial
NB(µ, k)

log

(
µ

k + µ

)
2
∑

[
yi log

(
yik + yiµi
µik + yiµi

)
− k log

{
k(k + yi)
k(k + µi)

}]

Exponential
Exp(µ)

1
µ 2

∑[
yi − µi
µi

− log
(

yi
µi

)]

Gamma
G(µ,ψ)

1
µ 2

∑[
yi − µi
µi

− log
(

yi
µi

)]

Normal
N(µ,ψ2)

µ 2
∑[

(yi − µi)2
]

Inverse
Gaussian
IG(µ,ψ2)

1
µ2 2

∑
[

(yi − µi)
2

yiµ2
i

]

4Example 4 (Canonical link for Bernoulli Y)
For Bernoulli Y we have µ = eθ|(1 + eθ), hence the canonical link is given by the
logit transformation η = log{µ|(1 − µ)}.

What link functions could we choose apart from the canonical? For most of the
models exists a number of specific link functions. For Bernoulli Y , for example,
any smooth cdf can be used. Typical links are the logistic and standard normal

596 Marlene Müller

(Gaussian) cdfs which lead to logit and probit models, respectively. A further
alternative for Bernoulli Y is the complementary log–log link η = log{− log(1−µ)}.

A flexible class of link functions for positive Y observations is the class of power
functions. These links are given by the Box–Cox transformation (Box and Cox,
1964), i.e. byη = (µλ−1)|λorη = µλ where we set in both casesη = log(µ) forλ = 0.

Estimation7.3

Recall that the least squares estimator for the ordinary linear regression model
is also the maximum-likelihood estimator in the case of normally distributed
error terms. By assuming that the distribution of Y belongs to the exponential
family it is possible to derive maximum-likelihood estimates for the coefficients of
a GLM. Moreover we will see that even though the estimation needs a numerical
approximation, each step of the iteration can be given by a weighted least squares
fit. Since the weights are varying during the iteration the likelihood is optimized
by an iteratively reweighted least squares algorithm.

Properties of the Exponential Family7.3.1

To derive the details of the maximum-likelihood algorithm we need to discuss
some properties of the probability mass or density function f (•). For the sake of
brevity we consider f to be a density function in the following derivation. However,
the conclusions will hold for a probability mass function as well.

First, we start from the fact that
∫

f (y, θ,ψ) dy = 1. Under suitable regularity
conditions (it is possible to exchange differentiation and integration) this implies

0 =
∂
∂θ

∫
f (y, θ,ψ) dy =

∫
∂
∂θ

f (y, θ,ψ) dy

=
∫ {

∂
∂θ

log f (y, θ,ψ)

}
f (y, θ,ψ) dy = E

{
∂
∂θ
�(y, θ,ψ)

}
,

where �(y, θ,ψ) = log f (y, θ,ψ) denotes the log-likelihood function. The function
derivative of � with respect to θ is typically called the score function for which it is
known that

E

{
∂2

∂θ2
�(y, θ,ψ)

}
= −E

{
∂
∂θ
�(y, θ,ψ)

}2

.

This and taking first and second derivatives of (7.1) results in

0 = E

{
Y − b′(θ)

a(ψ)

}
, and E

{
−b′′(θ)

a(ψ)

}
= −E

{
Y − b′(θ)

a(ψ)

}2

,

such that we can conclude

E(Y) = µ = b′(θ), (7.2)

Var(Y) = V(µ)a(ψ) = b′′(θ)a(ψ). (7.3)

Generalized Linear Models 597

Note that as a consequence from (7.1) the expectation of Y depends only on the
parameter of interest θ. We also assume that the factor a(ψ) is identical over all
observations.

Maximum-Likelihood and Deviance Minimization 7.3.2

Aspointedoutbefore theestimationmethodofchoice forβ ismaximum-likelihood.
As an alternative the literature refers to the minimization of the deviance. We will
see during the following derivation that both approaches are identical.

Suppose that we have observed a sample of independent pairs (Yi, Xi) where
i = 1, … , n. For a more compact notation denote now the vector of all response
observations by Y = (Y1, … , Yn)� and their conditional expectations (given Xi)
by µ = (µ1, … ,µn)�. Recall that we study

E(Yi|Xi) = µi = G(X�
i β) = G(ηi).

The sample log-likelihood of the vector Y is then given by

�(Y , µ,ψ) =
n∑

i=1

�(Yi, θi,ψ). (7.4)

Here θi is a function of ηi = X�
i β and we use �(Yi, θi,ψ) = log f (Yi, θi,ψ) to denote

the individual log-likelihood contributions for all observations i.

5Example 5 (Normal log-likelihood)
For normal responses Yi ∼ N(µi,σ2) we have �(Yi, θi,ψ) = −(Yi − µi)2|(2σ2) −
log

(√
2πσ

)
. This gives the sample log-likelihood

�(Y , µ,σ) = n log

(
1√
2πσ

)
−

1

2σ2

n∑

i=1

(Yi − µi)
2. (7.5)

Obviously, maximizing this log-likelihood is equivalent to minimizing the least
squares criterion.

6Example 6 (Bernoulli log-likelihood)
The calculation in Example 3 shows that the individual log-likelihoods for the
binary responses equal �(Yi, θi,ψ) = Yi log(µi) + (1 − Yi) log(1 − µi). This leads to

�(Y , µ,ψ) =
n∑

i=1

{
Yi log(µi) + (1 − Yi) log(1 − µi)

}
(7.6)

for the sample version.

598 Marlene Müller

The deviance defines an alternative objective function for optimization. Let us
first introduce the scaled deviance which is defined as

D(Y , µ,ψ) = 2
{
�(Y , µmax,ψ) − �(Y , µ,ψ)

}
. (7.7)

Here µmax (which typically equals Y) is the vector that maximizes the saturated
model, i.e. the function �(Y , µ,ψ) without imposing any restriction on µ. Since
the term �(Y , µmax,ψ) does not depend on the parameter β we see that indeed
the minimization of the scaled deviance is equivalent to the maximization of the
sample log-likelihood (7.4).

If we now plug-in the exponential family form (7.1) into (7.4) we obtain

�(Y , µ,ψ) =
n∑

i=1

{
Yiθi − b(θi)

a(ψ)
− c(Yi,ψ)

}
. (7.8)

Obviously, neither a(ψ) nor c(Yi,ψ) depend on the unknown parameter vector β.
Therefore, it is sufficient to consider

n∑

i=1

{Yiθi − b(θi)} (7.9)

for the maximization. The deviance analog of (7.9) is the (non-scaled) deviance
function

D(Y , µ) = D(Y , µ,ψ) a(ψ). (7.10)

The (non-scaled) deviance D(Y , µ) can be seen as the GLM equivalent of the
residual sum of squares (RSS) in linear regression as it compares the log-likelihood
� for the “model” µ with the maximal achievable value of �.

Iteratively Reweighted Least Squares Algorithm7.3.3

We will now minimize the deviance with respect to β. If we denote the gradient of
(7.10) by

∇(β) =
∂
∂β

[

−2
n∑

i=1

{Yiθi − b(θi)}
]

= −2
n∑

i=1

{
Yi − b′(θi)

} ∂
∂β
θi , (7.11)

our optimization problem consists in solving

∇(β) = 0. (7.12)

Note that this is (in general) a nonlinear system of equations in β and an iterative
solution has to be computed. The smoothness of the link function allows us
to compute the Hessian of D(Y , µ), which we denote by H(β). Now a Newton–
Raphson algorithm can be applied which determines the optimal β̂ using the
following iteration steps:

Generalized Linear Models 599

β̂new
= β̂old

−
{
H

(
β̂old

)}−1 ∇
(
β̂old

)
.

A variant of the Newton–Raphson is the Fisher scoring algorithm that replaces the
Hessian by its expectation with respect to the observations Yi:

β̂new
= β̂old

−
{

EH
(
β̂old

)}−1 ∇
(
β̂old

)
.

To find simpler representations for these iterations, recall that we haveµi = G(ηi) =
G(X�

i β) = b′(θi). By taking the derivative of the right hand term with respect to β
this implies

b′(θi)
∂
∂β
θi = G(X�

i β) Xi.

Using that b′′(θi) = V(µi) as established in (7.3) and taking derivatives again, we
finally obtain

∂
∂β
θi =

G′(ηi)

V(µi)
Xi

∂2

∂ββ� θi =
G′′(ηi)V(µi) − G′(ηi)2V ′(µi)

V(µi)2
XiX

�
i .

From this we can express the gradient and the Hessian of the deviance by

∇(β) = −2
n∑

i=1

{
Yi − µi

} G′(ηi)

V(µi)
Xi

H(β) = 2
n∑

i=1

{
G′(ηi)2

V(µi)
− {Yi − µi}G′′(ηi)V(µi) − G′(ηi)2V ′(µi)

V(µi)2

}
XiX

�
i .

The expectation of H(β) in the Fisher scoring algorithm equals

EH(β) = 2
n∑

i=1

{
G′(ηi)2

V(µi)

}
XiX

�
i .

Let us consider only the Fisher scoring algorithm for the moment. We define
the weight matrix

W = diag
(

G′(η1)2

V(µ1)
, … ,

G′(ηn)2

V(µn)

)

and the vectors Ỹ = (Ỹ1, … , Ỹn)�, Z = (Z1, … , Zn)� by

Ỹi =
Yi − µi

G′(ηi)
, Zi = ηi + Ỹi = X�

i βold +
Yi − µi

G′(ηi)
.

600 Marlene Müller

Denote further by X the design matrix given by the rows x�i . Then, the Fisher
scoring iteration step for β can be rewritten as

βnew = βold + (X�WX)−1X�WỸ = (X�WX)−1X�WZ . (7.13)

This immediately shows that each Fisher scoring iteration step is the result of
a weighted least squares regression of the adjusted dependent variables Zi on
the explanatory variables Xi. Since the weights are recalculated in each step we
speak of the iteratively reweighted least squares (IRLS) algorithm. For the Newton–
Raphson algorithm a representation equivalent to (7.13) can be found, only the
weight matrix W differs.

The iteration will be stopped when the parameter estimate and/or the deviance
do not change significantly anymore. We denote the final parameter estimate by β̂.

Remarks on the Algorithm7.3.4

Let us first note two special cases for the algorithm:
In the linear regression model, where we have G′ ≡ 1 and µi = ηi = X�

i β,
no iteration is necessary. Here the ordinary least squares estimator gives the
explicit solution of (7.12).
In the case of a canonical link function we have b′(θi) = G(θi) = G(ηi) and
hence b′′(θi) = G′(ηi) = V(µi). Therefore the Newton–Raphson and the Fisher
scoring algorithms coincide.

There are several further remarks on the algorithm which concern in particular
starting values and the computation of relevant terms for the statistical analy-
sis:

Equation (7.13) implies that in fact we do not need a starting value for β. Indeed
the adjusted dependent variables Zi can be equivalently initialized by using
appropriate values for ηi,0 and µi,0. Typically, the following initialization is used
(McCullagh and Nelder, 1989):
∗ For all but binomial models set µi,0 = Yi and ηi,0 = G(µi,0).
∗ For binomial models set µi,0 = (Yi + 1

2)|(k + 1) and ηi,0 = G(µi,0). (Recall
that this holds with k = 1 in the Bernoulli case.)

The latter definition is based on the observation that G can not be applied to
binary data. Therefore a kind of smoothing is used to obtainµi,0 in the binomial
case.
During the iteration the convergence can be controlled by checking the relative
change in the coefficients

√√√√ (βnew − βold)�(βnew − βold)

βold�βold
< ε

and/or the relative change in the deviance

Generalized Linear Models 601

∣∣∣∣∣
D(Y , µnew) − D(Y , µold)

D(Y , µold)

∣∣∣∣∣
< ε .

An estimate ψ̂ for the dispersion parameter ψ can be obtained from either the
Pearson χ2 statistic

â(ψ) =
1

n − p

n∑

i=1

(Yi − µ̂i)2

V (̂µi)
, (7.14)

or using deviance

â(ψ) =
D(Y , µ)

n − p
. (7.15)

Here we use p for the number of estimated parameters and µ̂i for the estimated
regression function at the ith observation. Similarly, µ̂ is the estimated µ. Both
estimators for a(ψ) coincide for normal linear regression and follow an exact
χ2

n−p distribution then. The number n − p (number of observations minus
number of estimated parameters) is denoted as the degrees of freedom of the
deviance.
Typically, software for GLM allows for offsets and weights in the model. For
detailson the inclusionofweightswerefer toSect. 7.5.1.Offsets aredeterministic
components of ηwhich can vary over the observations i. The model that is then
fitted is

E(Yi|Xi) = G(X�
i β + oi).

Offsets may be used to fit a model where a part of the coefficients is known. The
iteration algorithm stays unchanged except for the fact that the optimization is
only necessary with respect to the remaining unknown coefficients.
Since the variance of Yi will usually depend on Xi we cannot simply analyze
residuals of the form Yi − µ̂i. Instead, appropriate transformations have to be
used. Classical proposals are Pearson residuals

rP
i =

Yi − µ̂i√
V (̂µi)

,

deviance residuals

rD
i = sign(Yi − µ̂i)

√
di ,

wheredi is thecontributionof the ithobservation to thedeviance, andAnscombe
residuals

rA
i =

A(Yi) − A(̂µi)

A′(̂µi)
√

V (̂µi)
,

where A(µ) =
∫ µ V−1|3(u) du.

602 Marlene Müller

Model Inference7.3.5

The resulting estimator β̂ has an asymptotic normal distribution (except of course
for the normal linear regression case when this is an exact normal distribution).

1 Theorem 1
Under regularity conditions we have for the estimated coefficient vector

√
n(̂β − β) → N(0, Σ) as n → ∞ .

As a consequence for the scaled deviance and the log-likelihood approximately
hold D(Y , µ̂,ψ) ∼ χ2

n−p and 2{�(Y , µ̂,ψ) − �(Y , µ,ψ)} ∼ χ2
p .

Fordetailson thenecessaryconditions see forexampleFahrmeirandKaufmann,
1984. Note also that the asymptotic covariance Σ for the coefficient estimator β̂ is
the inverse of the Fisher information matrix, i.e.

I = −E

{
∂2

∂ββT
�(Y ,µ,ψ)

}
.

Since I can be estimated by the negative Hessian of the log-likelihood or its expec-
tation, this suggests the estimator

Σ̂ = a(ψ̂)

[
1

n

n∑

i=1

{
G′(ηi,last)2

V(µi,last)

}
XiX

�
i

]−1

.

Using theestimatedcovarianceweareable to testhypothesesabout thecomponents
of β.

For model choice between two nested models a likelihood ratio test (LR test) is
used.AssumethatM0 (p0 parameters) is a submodelof themodelM (p parameters)
and that we have estimated them as µ̂0 and µ̂. For one-parameter exponential
families (without a nuisance parameter ψ) we use that asymptotically

D(Y , µ0) − D(Y , µ) ∼ χ2
p−p0

. (7.16)

The left hand side of (7.16) is a function of the ratio of the two likelihoods deviance
difference equals minus twice the log-likelihood difference. In a two-parameter
exponential family (ψ is to be estimated) one can approximate the likelihood ratio
test statistic by

(n − p){D(Y , µ0) − D(Y , µ)}
(p − p0)D(Y , µ)

∼ Fp−p0,n−p (7.17)

using the analog to the normal linear regression case (Venables and Ripley, 2002),
Chap. 7.

Model selection procedures for possibly non-nested models can be based on
Akaike’s information criterion (Akaike, 1973)

Generalized Linear Models 603

Table 7.3. Credit data

Variable Yes No (in %)

Y (observed default) 30.0 70.0
PREVIOUS (no problem) 38.1 61.9
EMPLOYED (≥ 1 year) 93.8 6.2
DURATION (9, 12] 21.6 78.4
DURATION (12, 18] 18.7 81.3
DURATION (18, 24] 22.4 77.6
DURATION ≥ 24 23.0 77.0
SAVINGS 18.3 81.7
PURPOSE (buy a car) 28.4 71.6
HOUSE (owner) 15.4 84.6

Min. Max. Mean Std.Dev.

AMOUNT (in DM) 250 18424 3271.248 2822.752
AGE (in years) 19 75 35.542 11.353

AIC = D(Y , µ̂, ψ̂) + 2p,

or Schwarz’ Bayes information criterion (Schwarz, 1978)

BIC = D(Y , µ̂, ψ̂) + log(n)p,

where again p denotes the number of estimated parameters. For a general overview
on model selection techniques see also Chap. III.1 of this handbook.

Practical Aspects 7.4

To illustrate the GLM in practice we recall Example 1 on credit worthiness. The
creditdata set thatweuse (FahrmeirandTutz, 1994) contains n = 1000observations
on consumer credits and a variety of explanatory variables. We have selected
a subset of eight explanatory variables for the following examples.

Themodel for credit worthiness is basedon the idea that default canbepredicted
from the individual and loan characteristics. We consider criteria as age, informa-
tion on previous loans, savings, employment and house ownership to characterize
the credit applicants. Amount and duration of the loan are prominent features of
the granted loans. Some descriptive statistics can be found in Table 7.3. We remark
that we have categorized the durations (months) into intervals since most of the
realizations are multiples of 3 or 6 months.

We are at the first place interested in estimating the probability of credit default
in dependence of the explanatory variables X. Recall that for binary Y it holds

604 Marlene Müller

P(Y = 1|X) = E(Y |X). Our first approach is a GLM with logit link such that
P(Y = 1|X) = exp(X�β)|{1 + exp(X�β)}.

7 Example 7 (Credit default on AGE)
We initially estimate the default probability solely related to age, i.e. the model

P(Y = 1|AGE) =
exp(β0 + β1AGE)

1 + exp(β0 + β1AGE)

or equivalently logit {P(Y = 1|AGE)} = β0 + β1AGE. The resulting estimates of the
constant β0 and the slope parameter β1 are displayed in Table 7.4 together with
summary statistics on the model fit.

From the table we see that the estimated coefficient of AGE has a negative sign.
Since the link function and its inverse are strictly monotone increasing, we can
conclude that the probability of default must thus be decreasing with increasing
AGE. Figure 7.1 shows on the left frequency barplots of AGE separately for Y = 1
and Y = 0. From the observed frequencies we can recognize clearly the decreasing
propensity to default. The right graph in Fig. 7.1 displays the estimated probabilities
P(Y = 1|AGE) using the fitted logit model which are indeed decreasing.

The t-values (
√

n β̂j|
√
Σ̂jj) show that the coefficient of AGE is significantly dif-

ferent from 0 while the estimated constant is not. The test that is used here is an
approximative t-test such that z1−α|2-quantile of the standard normal can be used
as critical value. This implies that at the usual 5% level we compare the absolute
value of the t-value with z0.975 ≈ 1.96.

A more general approach to test for the significance of AGE is to compare
the fitted model with a model that involves only a constant default probability.
Typically software packages report the deviance of this model as null deviance or
similar. In our case we find a null deviance of 1221.7 at 999 degrees of freedom.
If we apply the LR test statistic (7.16) to compare the null deviance to the model
deviance of 1213.1 at 998 degrees of freedom, we find that constant model is clearly
rejected at a significance level of 0.33%.

Table 7.4. Credit default on AGE (logit model)

Variable Coefficient t-value

constant –0.1985 –0.851
AGE –0.0185 –2.873

Deviance 1213.1
df 998
AIC 1217.1
Iterations 4

Generalized Linear Models 605

19 24 29 34 39 44 49 54 59 64 70

AGE

Fr
eq

ue
nc

y|
Y

0
10

20
30

40
50

20 30 40 50 60 70

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

AGE

P
(Y

=1
|A

G
E

)

Figure 7.1. Credit default on AGE, left: frequency barplots of AGE for Y = 1 (light) and Y = 0 (dark),

right: estimated probabilities

Models using different link functions cannot be directly compared as the link
functions might be differently scaled. In our binary response model for example
a logitoraprobit link functionmaybereasonable.However, thevarianceparameter
of the standard logistic distribution is π2|3 whereas that of the standard normal is
1. We therefore need to rescale one of the link functions in order to compare the
resulting model fits. Figure 7.2 shows the standard logistic cdf (the inverse logit
link) against the cdf of N(0,π2|3). The functions in the left graph of Fig. 7.2 are
hardly distinguishable. If we zoom in (right graph) we see that the logistic cdf
vanishes to zero at the left boundary at a lower rate. This holds similarly for the
right boundary and explains the ability of logit models to (slightly) better handle
the case of extremal observations.

-4 -2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

lo
gi

st
ic

/n
or

m
al

 c
df

-5 -4 -3 -2 -1

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

lo
gi

st
ic

/n
or

m
al

 c
df

Figure 7.2. Logit (solid) versus appropriately rescaled probit link (dashed), left: on the range [−5, 5],

right: on the range of [−5, −1]

606 Marlene Müller

8 Example 8 (Probit versus logit)
If we want to compare the estimated coefficients from a probit to that of the logit
model we need to rescale the probit coefficients byπ|

√
3. Table 7.5 shows the results

of a probit for credit default on AGE. The resulting rescaled coefficient for AGE in
is of similar size as that for the logit model (see Table 7.4) while the constant is not
significantly different from 0 in both fits. The deviance and the AIC of the probit
fit are slightly larger.

ANewton–Raphson iteration (insteadof theFisher scoring reported inTable 7.5)
does give somewhat different coefficients but returns nearly the same value of the
deviance (1213.268 for Newton–Raphson versus 1213.265 for Fisher scoring).

Table 7.5. Credit default on AGE (probit model), original and rescaled coefficients for comparison

with logit

Variable Coefficient t-value
(original) (rescaled)

constant –0.1424 –0.2583 –1.022
AGE –0.0109 –0.0197 –2.855

Deviance 1213.3
df 998
AIC 1217.3
Iterations 4 (Fisher Scoring)

The next two examples intend to analyze if the fit could be improved by using
a nonlinear function on AGE instead of η = β0 + β1AGE. Two principally different
approaches are possible:

include higher order terms of AGE into η,
categorize AGE in order to fit a stepwise constant η function.

9 Example 9 (Credit default on polynomial AGE)
We fit two logit models using second and third order terms in AGE. The estimated
coefficients are presented in Table 7.6. A comparison of the quadratic fit and the
linear fit from Example 7 using the LR test statistic (7.16) shows that the linear fit
is rejected at a significance level of 3%. A subsequent comparison of the quadratic
against the cubic fit no significant improvement by the latter model. Thus, the
quadratic term for AGE improves the fit whereas the cubic term does not show
any further statistically significant improvement. This result is confirmed when we
compare the AIC values of both models which are practically identical. Figure 7.3
shows the estimated default probabilities for the quadratic (left) and cubic AGE
fits. We find that the curves are of similar shape.

Generalized Linear Models 607

Table 7.6. Credit default on polynomial AGE (logit model)

Variable Coefficient t-value Coefficient t-value

constant 1.2430 1.799 0.4092 1.909
AGE –0.0966 –2.699 –0.3240 –1.949
AGE**2 9.56 × 10−4 2.234 6.58 × 10−3 1.624
AGE**3 – – –4.33 × 10−5 –1.390

Deviance 1208.3 1206.3
df 997 996
AIC 1214.3 1214.3
Iterations 4 4

20 30 40 50 60 70

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

AGE

P
(Y

=1
|A

G
E

)

20 30 40 50 60 70

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

AGE

P
(Y

=1
|A

G
E

)

Figure 7.3. Credit default on polynomial AGE, left: estimated probabilities from quadratic function,

right: estimated probabilities from cubic function

To incorporate apossiblenonlinear impactof a variable in the index function,we
can alternatively categorize this variable. Another term for this is the construction
of dummy variables. The most classical form of the categorization consists in using
a design matrix that sets a value of 1 in the column corresponding to the category
if the category is true and 0 otherwise. To obtain a full rank design matrix we
omit one column for the reference category. In our example we leave out the first
category which means that all estimated coefficients have to be compared to the
zero coefficient of the reference category. Alternative categorization setups are
given by omitting the constant, the sum coding (restrict the coefficients to sum up
to 0), and the Helmert coding.

10Example 10 (Credit default on categorized AGE)
We have chosen the intervals (18, 23], (23, 28], …, (68, 75] as categories. Except
for the last interval all of them are of the same length. The first interval (18, 23]
is chosen for the reference such that we will estimate coefficients only for the
remaining 10 intervals.

608 Marlene Müller

Frequency barplots for the intervals and estimated default probabilities are
displayed in Fig. 7.4. The resulting coefficients for this model are listed in Table 7.7.
We see here that all coefficient estimates are negative. This means, keeping in mind
that the group of youngest credit applicants is the reference, that all applicants from
other age groups have an (estimated) lower default probability. However, we do not
have a true decrease in the default probabilities with AGE since the coefficients do
not form a decreasing sequence. In the range from age 33 to 63 we find two local
minima and maxima for the estimated default probabilities.

Table 7.7. Credit default on categorized AGE (logit model)

Variable Coefficients t-values

constant –0.4055 –2.036
AGE (23,28] –0.2029 –0.836
AGE (28,33] –0.3292 –1.294
AGE (33,38] –0.9144 –3.320
AGE (38,43] –0.5447 –1.842
AGE (43,48] –0.6763 –2.072
AGE (48,53] –0.8076 –2.035
AGE (53,58] –0.5108 –1.206
AGE (58,63] –0.4055 –0.864
AGE (63,68] –0.7577 –1.379
AGE (68,75] –1.3863 –1.263

Deviance 1203.2
df 989
AIC 1225.2
Iterations 4

(18,23] (33,38] (48,53] (63,68]

0
50

10
0

15
0

20
0

20 30 40 50 60 70

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

AGE

P
(Y

=1
|A

G
E

)

Figure 7.4. Credit default on categorized AGE, left: frequency barplots of categorized AGE for Y = 1

(light) and Y = 0 (dark), right: estimated probabilities

Generalized Linear Models 609

It is interesting to note that the deviance of the categorized AGE fit is the
smallest that we obtained up to now. This is explained by the fact that we have
fitted the most flexible model here. Unfortunately, this flexibility pays with the
number of parameters. The AIC criterion as a compromise between goodness-of-
fit and number of parameters states that all previous fitted models are preferable.
Nevertheless, categorization is a valuable tool to explore if there are nonlinear
effects. A related technique is local regression smoothing which is shortly reviewed
in Sect. 7.5.8.

Theestimationofdefaultprobabilities and thepredictionof creditdefault should
incorporate more than only one explanatory variable. Before fitting the full model
with all available information, we discuss the modeling of interaction effects.

11Example 11 (Credit default on AGE and AMOUNT)
The variable AMOUNT is the second continuous explanatory variable in the
credit data set. (Recall that duration is quantitative as well but quasi-discrete.)
We will therefore use AGE and AMOUNT to illustrate the effects of the si-
multaneous use of two explanatory variables. A very simple model is of course
logit {P(Y = 1|AGE,AMOUNT)} = β0 + β1AGE + β2AMOUNT. This model, how-
ever, separates the impact of AGE and AMOUNT into additive components. The
effect of having both characteristics simultaneously is modeled by adding the
multiplicative interaction term AGE∗AMOUNT. On the other hand we have seen
that at least AGE should be complemented by a quadratic term. For that rea-
son we compare the linear interaction model logit {P(Y = 1|AGE,AMOUNT)} =
β0 +β1AGE+β2AMOUNT+β3AGE∗AMOUNT with a specification using quadratic
terms and a third model specification using both, quadratic and interaction terms.

Table 7.8 shows the results for all three fitted models. The model with quadratic
and interaction terms has the smallest AIC of the three fits. Pairwise LR tests show,

Table 7.8. Credit default on AGE and AMOUNT (logit model)

Variable Coefficient t-value Coefficient t-value Coefficient t-value

constant 0.0159 –0.044 1.1815 1.668 1.4864 2.011

AGE –0.0350 –3.465 –0.1012 –2.768 –0.1083 –2.916

AGE**2 – – 9.86 × 10−4 2.251 9.32 × 10−4 2.100

AMOUNT –2.80 × 10−5 –0.365 –7.29 × 10−6 –0.098 –1.18 × 10−4 –1.118

AMOUNT**2 – – 1.05 × 10−8 1.753 9.51 × 10−9 1.594

AGE*AMOUNT 3.99 × 10−6 1.951 – – 3.37 × 10−6 1.553

Deviance 1185.1 1180.2 1177.7

df 996 995 994

AIC 1193.1 1190.2 1189.7

Iterations 4 4 4

610 Marlene Müller

AGE A
M

O
U

N
T

eta

AGE
A

M
O

U
N

T

20 30 40 50 60 70

0
50

00
10

00
0

15
00

0
Figure 7.5. Credit default on AGE and AMOUNT using quadratic and interaction terms, left: surface

and right: contours of the fitted η function

however, that the largest of the three models is not significantly better than the
model without the interaction term. The obtained surface on AGE and AMOUNT
from the quadratic+interaction fit is displayed in Fig. 7.5.

Let us remark that interaction terms can also be defined for categorical variables.
In this case interaction is modeled by including dummy variables for all possible
combinations of categories. This may largely increase the number of parameters
to estimate.

12 Example 12 (Credit default on the full set of explanatory variables)
In a final analysis we present now the results for the full set of variables from
Table 7.3. We first estimated a logit model using all variables (AGE and AMOUNT
also with quadratic and interaction terms). Most of the estimated coefficients in
the second column of Table 7.9 have the expected sign. For example, the default
probability decreases if previous loan were paid back without problems, the credit
applicant is employed and has some savings, and the loan is used to buy a car
(rather than to invest the loan into goods which cannot serve as a security). A bit
surprising is the fact that house owners seem to have higher default probabilities.
This might be explained by the fact that house owners usually have additional
obligations. The DURATION variable is categorized as described above. Again we
have used the first category (loans up to 9 months) as reference. Since the series
of DURATION coefficients is monotone increasing, we can conclude that longer
duration increases the default probability. This is also plausible.

After fitting the full model we have run an automatic stepwise model selection
based on AIC. This reveals that the insignificant terms AGE∗AMOUNT and EM-
PLOYED should be omitted. The fitted coefficients for this final model are displayed
in the fourth column of Table 7.9.

Generalized Linear Models 611

Table 7.9. Credit default on full set of variables (logit model)

Variable Coefficient t-value Coefficient t-value

constant 1.3345 1.592 0.8992 1.161
AGE –0.0942 –2.359 –0.0942 –2.397
AGE**2 8.33 × 10−4 1.741 9.35 × 10−4 1.991
AMOUNT –2.51 × 10−4 –1.966 –1.67 × 10−4 –1.705
AMOUNT**2 1.73 × 10−8 2.370 1.77 × 10−8 2.429
AGE*AMOUNT 2.36 × 10−6 1.010 – –
PREVIOUS –0.7633 –4.652 –0.7775 –4.652
EMPLOYED –0.3104 –1.015 – –
DURATION (9, 12] 0.5658 1.978 0.5633 1.976
DURATION (12, 18] 0.8979 3.067 0.9127 3.126
DURATION (18, 24] 0.9812 3.346 0.9673 3.308
DURATION ≥ 24 1.5501 4.768 1.5258 4.710
SAVINGS –0.9836 –4.402 –0.9778 –4.388
PURPOSE –0.3629 –2.092 –0.3557 –2.051
HOUSE 0.6603 3.155 0.7014 3.396

Deviance 1091.5 1093.5
df 985 987
AIC 1121.5 1119.5
Iterations 4 4

Complements and Extensions 7.5

For further reading on GLM we refer to the textbooks of Dobson, 2001, McCullagh
and Nelder, 1989 and Hardin and Hilbe, 2001 (the latter with a special focus on
STATA). Venables and Ripley, 2002, Chap. 7 and Gill, 2000 present the topic of
generalized linear models in a very compact form. Collett, 1991, Agresti, 1996,
Cox and Snell, 1989, and Bishop et al., 1975 are standard references for analyzing
categorical responses. We recommend the monographs of Fahrmeir and Tutz, 1994
and Lindsey, 1997 for a detailed introduction to GLM with a focus on multivariate,
longitudinal and spatial data. In the following sections we will shortly review some
specific variants and enhancements of the GLM.

Weighted Regression 7.5.1

Prior weights can be incorporated to the generalized linear model by considering
the exponential density in the form

f (yi, θi,ψ) = exp

[
wi{yθ − b(θ)}

a(ψ)
+ c(y,ψ, wi)

]
.

612 Marlene Müller

This requires to optimize the sample log-likelihood

�(Y , µ,ψ) =
n∑

i=1

wi

{
Yiθi − b(θi)

a(ψ)
− c(Yi,ψ, wi)

}

or its equivalent, the deviance.
The weights wi can be 0 or 1 in the simplest case that one wants to exclude

specific observations from the estimation. The typical case of applying weights is
the case of repeated independent realizations.

Overdispersion7.5.2

Overdispersion may occur in one-parameter exponential families where the vari-
ance is supposed to be a function of the mean. This concerns in particular the
binomial or Poisson families where we have EY = µ and Var(Y) = µ(1 − µ|k) or
Var(Y) = µ, respectively. Overdispersion means that the actually observed vari-
ance from the data is larger than the variance imposed by the model. The source
for this may be a lack of independence in the data or a misspecification of the mod-
el. One possible approach is to use alternative models that allows for a nuisance
parameter in the variance, as an example think of the negative binomial instead
of the Poisson distribution. For detailed discussions on overdispersion see Collett,
1991 and Agresti, 1990.

Quasi- or Pseudo-Likelihood7.5.3

Let us remark that in the case that the distribution of Y itself is unknown but its
two first moments can be specified, the quasi-likelihood function may replace the
log-likelihood function. This means we still assume that

E(Y) = µ,

Var(Y) = a(ψ) V(µ).

The quasi-likelihood function is defined through

�(y, θ,ψ) =
1

a(ψ)

y∫

µ(θ)

(s − y)

V(s)
ds , (7.18)

see Nelder and Wedderburn, 1972. If Y comes from an exponential family then
the derivatives of the log-likelihood and quasi-likelihood function coincide. Thus,
(7.18) establishes in fact a generalization of the likelihood approach.

Multinomial Responses7.5.4

A multinomial model (or nominal logistic regression) is applied if the response
for each observation i is one out of more than two alternatives (categories). For

Generalized Linear Models 613

identification one of the categories has to be chosen as reference category; without
loss of generality we use here the first category. Denote by πj the probability
P(Y = j|X), then we can consider the logits with respect to the first category,
i.e.

logit(πj) = log

(
πj

π1

)
= X�

j βj.

The terms X j and βj indicate that the explanatory variables and their correspond-
ing coefficients may depend on category j. Equivalently we can define the model
by

P(Y = 1|X) =
1

1 +
∑J

k=2 exp(X�
k βk)

P(Y = j|X) =
X�

j β

1 +
∑J

k=2 exp(X�
k βk)

.

It is easy to recognize that the logit model is a special case of the multinomial
model for exactly two alternatives.

If the categories are ordered in some natural way then this additional informa-
tion can be taken into account. A latent variable approach leads to the cumulative
logit model or the ordered probit model. We refer here to Dobson, 2001, Sect. 8.4
and Greene, 2000, Chap. 21 for ordinal logistic regression and ordered probit
analysis, respectively.

Contingency Tables 7.5.5

The simplest form of a contingency table with one factor and a predetermined

Category 1 2 … J
∑

Frequency Y1 Y2 … YJ n

sample size n of observations is appropriately described by a multinomial dis-
tribution and can hence be fitted by the multinomial logit model introduced in
Sect. 7.5.4. We could be for instance be interested in comparing the trivial model
EY1 = … = EYJ = µ to the model EY2 = µ2, … , EYJ = µJ (again we use the first
category as reference). As before further explanatory variables can be included
into the model.

Two-way or higher dimensional contingency tables involve a large variety of
possible models. Let explain this with the help of the following two-way setup:
Here we assume to have two factors, one with realizations 1, … , J, the other with
realizations 1, … , K. If the Yjk are independent Poisson variables with parameters
µjk, then their sum is a Poisson variable with parameter E(n) = µ =

∑
µjk. The

Poissonassumption implies that thenumberofobservationsn is a randomvariable.
Conditional on n, the joint distribution of the Yjk is the multinomial distribution.

614 Marlene Müller

Category 1 2 … J
∑

1 Y11 Y12 … Y1J n1•
2 Y21 Y22 … Y2J n2•
...

...
...

. . .
...

...

K YK1 YK2 … YKJ nK•
∑

n•1 n•2 … n•J n

Without additional explanatory variables, one is typically interested in estimating
models of the type

log(EYjk) = β0 + βj + βk

in order to compare this with the saturated model log(EYjk) = β0 +βj +βk +βjk. If the
former model holds then the two factors are independent. Another hypothetical
model could be of the form log(EYjk) = β0 + βj to check whether the second factor
matters at all. As in the multinomial case, further explanatory variables can be
included. This type of models is consequently termed log-linear model. For more
details see for example Dobson, 2001, Chap. 9 and McCullagh and Nelder, 1989,
Chap. 6.

Survival Analysis7.5.6

Survival data are characterized by non-negative observations which typically have
a skewed distribution. An additional complication arises due to the fact that the
observation period may end before the individual fails such that censored data may
occur. The exponential distribution with density f (y, θ) = θe−θy is a very simple
example for a survival distribution. In this special case the survivor function (the
probability to survive beyond y) is given by S(y) = e−θy and the hazard function
(the probability of death within y and y+dy after survival up to y) equals h(y, θ) = θ.
Given additional explanatory variables this function is typically modeled by

h(y, θ) = exp(X�β).

Extensions of this model are given by using the Weibull distribution leading to
non-constant hazards and Cox’ proportional hazards model (Cox, 1972) which
uses a semiparametric approach. More material on survival analysis can be found
in Chap. III.12.

Clustered Data7.5.7

Clustered data in relation to regression models mean that data from known groups
(“clusters”) are observed. Often these are the result of repeated measurements on
the same individuals at different time points. For example, imagine the analysis
of the effect of a medical treatment on patients or the repeated surveying of

Generalized Linear Models 615

households in socio-economic panel studies. Here, all observations on the same
individual form a cluster. We speak of longitudinal or panel data in that case. The
latter term is typically used in the econometric literature.

When using clustered data we have to take into account that observations from
the same cluster are correlated. Using a model designed for independent data may
lead to biased results or at least significantly reduce the efficiency of the estimates.

A simple individual model equation could be written as follows:

E(Yij|Xij) = G−1(X�
ij βj).

Here i is used to denote the ith individual observation in the jth cluster. Of course
more complex specifications, for example with hierarchical clusters, can be for-
mulated as well.

There is a waste amount of literature which deals with many different possible
model specifications. A comprehensive resource for linear and nonlinear mixed
effect models (LME, NLME) for continuous responses is Pinheiro and Bates, 2000.
The term “mixed” here refers to the fact that these models include additional
random and/or fixed effect components to allow for correlation within and het-
erogeneity between the clusters.

For generalized linear mixed models (GLMM), i.e. clustered observations with
responses from GLM-type distribution, several approaches are possible. For re-
peated observations, Liang and Zeger, 1986 and Zeger and Liang, 1986 propose to
use generalized estimating equations (GEE) which result in a quasi-likelihood esti-
mator. They show that the correlation matrix of Y j, the response observations from
one cluster, can be replaced by a “working correlation” as long as the moments of
Y j are correctly specified. Useful working correlations depend on a small number
of parameters. For longitudinal data an autoregressive working correlation can be
used for example. For more details on GEE see also the monograph by Diggle et al.,
2002. In the econometric literature longitudinal or panel data are analyzed with
a focus on continuous and binary responses. Standard references for econometric
panel data analyses are Hsiao, 1990 and Arellano, 2003. Models for clustered data
with complex hierarchical structure are often denoted as multilevel models. We
refer to the monograph of Goldstein, 2003 for an overview.

Semiparametric Generalized Linear Models 7.5.8

Nonparametric components can be incorporated into the GLM at different places.
For example, it is possible to estimate a single index model

E(Y |X) = g(X�β)

which differs from the GLM by its unknown smooth link function g(•). The
parameter vector β in this model can then be only identified up to scale. The
estimation of such models has been studied e.g. by Ichimura, 1993, Weisberg and
Welsh, 1994 and Gallant and Nychka, 1987.

616 Marlene Müller

Local regression in combination with likelihood-based estimation is introduced
in Loader, 1999. This concerns models of the form

E(Y |X) = G−1 {m(X)} ,

where m is an unknown smooth (possibly multidimensional) function. Further
examples of semiparametric GLM are generalized additive and generalized partial
linear models (GAM, GPLM). These models are able to handle (additional) non-
parametric components in the function η. For example, the GAM is specified in
this simplest form by

E(Y |X) = G−1

β0 +

p∑

j=1

mj(Xj)

.

Here the mj denote univariate (or low dimensional) unknown smooth functions
which have to be estimated. For their identification is should be assumed, that
Em(Xj) = 0. The generalized partial linear model combines a linear and a non-
parametric function in the function η and is specified as

E(Y |X) = G−1
{

X�
1 β + m(X2)

}
.

13 Example 13 (Semiparametric credit model)
We have fitted a generalized partial linear model as a variant of the final model
from Example 12. The continuous variables AGE and AMOUNT were used as ar-
guments for the nonparametric component. All other variables of the final model
have been included to the linear part of the index function η. Figure 7.6 shows the

AGE A
M

O
U

N
T

eta

AGE

A
M

O
U

N
T

20 30 40 50 60 70

0
50

00
10

00
0

15
00

0

Figure 7.6. Credit default on AGE and AMOUNT using a nonparametric function, left: surface and

right: contours of the fitted function on AGE and AMOUNT

Generalized Linear Models 617

estimated nonparametric function of AGE and AMOUNT. Although the stepwise
model selection in Example 12 indicated that there is no interaction between AGE
and AMOUNT, we see now that this interaction could be in fact of some more
sophisticated form. The estimation was performed using a generalization of the
Speckman, 1988 estimator to generalized models. The local kernel weights are
calculated from a Quartic (Biweight) kernel function using bandwidths approxi-
mately equal to 33.3% of the ranges of AGE and AMOUNT, respectively. Details on
the used kernel based estimation can be found in Severini and Staniswalis, 1994
and Müller, 2001.

Some more material on semiparametric regression can be found in Chaps. III.5
and III.10 of this handbook. For a detailed introduction to semiparametric ex-
tensions of GLM we refer to the textbooks by Hastie and Tibshirani, 1990, Härdle
et al., 2004, Ruppert et al., 2003, and Green and Silverman, 1994.

References
Agresti, A. (1990). Categorical Data Analysis. Wiley, New York.
Agresti, A. (1996). An Introduction to Categorical Data Analysis. Wiley, New

York.
Akaike, H. (1973). Information theory and an extension of the maximum likelihood

principle. In Petrov, B. N. and Csàdki, F., editors, Second Internationl Sympo-
sium on Information Theory, pages 267–281. Akademiai Kiadó, Budapest.

Arellano, M. (2003). Panel Data Econometrics. Oxford University Press.
Bishop, Y. M. M., Fienberg, S. E., and Holland, P. W. (1975). Discrete Multivariate

Analysis: Theory and Practice. MIT Press, Cambridge.
Box, G. and Cox, D. (1964). An analysis of transformations. Journal of the Royal

Statistical Society, Series B, 26:211–243.
Collett, D. (1991). Modelling Binary Data. Chapman and Hall, London.
Cox, D. R. (1972). Regression models and life tables (with discussion). Journal of

the Royal Statistical Society, Series B, 74:187–220.
Cox, D. R. and Snell, E. J. (1989). Analysis of Binary Data, volume 32 of Monographs

on Statistics and Applied Probability. Chapman and Hall, London, second edi-
tion.

Diggle, P., Heagerty, P., Liang, K.-L., and Zeger, S. (2002). Analysis of Longitudinal
Date. Oxford University Press, second edition.

Dobson, A. J. (2001). An Introduction to Generalized Linear Models. Chapman
and Hall, London, second edition.

Fahrmeir, L. and Kaufmann, H. (1984). Consistency and asymptotic normality
of the maximum-likelihood estimator in generalized linear models. Annals of
Statistics, 13:342–368.

618 Marlene Müller

Fahrmeir, L. and Tutz, G. (1994). Multivariate Statistical Modelling Based on Gen-
eralized Linear Models. Springer, Heidelberg.

Gallant, A. and Nychka, D. (1987). Semi-nonparametric maximum likelihood
estimation. Econometrica, 55(2):363–390.

Gill, J. (2000). Generalized Linear Models: A Unified Approach. Sage University
Paper Series on Quantitative Applications in the Social Sciences, 07-134, Thou-
sand Oaks, CA.

Goldstein, H. (2003). Multilevel Statistical Models. Hodder Arnold, London.
Green,P. J. andSilverman,B.W. (1994). Nonparametric Regression and Generalized

Linear Models, volume 58 of Monographs on Statistics and Applied Probability.
Chapman and Hall, London.

Greene, W. H. (2000). Econometric Analysis. Prentice Hall, Upper Saddle River,
New Jersey, 4th edition.

Hardin, J. and Hilbe, J. (2001). Generalized Linear Models and Extensions. Stata
Press.

Härdle, W., Müller, M., Sperlich, S., and Werwatz, A. (2004). Nonparametric and
Semiparametric Modeling: An Introduction. Springer, New York.

Hastie, T. J. and Tibshirani, R. J. (1990). Generalized Additive Models, volume 43 of
Monographs on Statistics and Applied Probability. ChapmanandHall,London.

Hsiao, C. (1990). Analysis of Panel Data. Econometric Society Monographs No. 11.
Cambridge University Press.

Ichimura, H. (1993). Semiparametric least squares (SLS) and weighted SLS esti-
mation of single-index models. Journal of Econometrics, 58:71–120.

Liang, K. Y. and Zeger, S. L. (1986). Longitudinal data analysis using generalized
linear models. Biometrika, 73:13–22.

Lindsey, J. K. (1997). Applying Generalized Linear Models. Springer, New York.
Loader, C. (1999). Local Regression and Likelihood. Springer, New York.
McCullagh, P. and Nelder, J. A. (1989). Generalized Linear Models, volume 37 of

Monographs on Statistics and Applied Probability. ChapmanandHall,London,
2 edition.

Müller, M. (2001). Estimation and testing in generalized partial linear models – a
comparative study. Statistics and Computing, 11:299–309.

Nelder, J. A. and Wedderburn, R. W. M. (1972). Generalized linear models. Journal
of the Royal Statistical Society, Series A, 135(3):370–384.

Pinheiro, J. C. and Bates, D. M. (2000). Mixed-Effects Models in S and S-PLUS.
Springer, New York.

Ruppert, D., Wand, M. P., and Carroll, R. J. (1990). Semiparametric Regression.
Cambridge University Press.

Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics,
6:461–464.

Severini, T. A. and Staniswalis, J. G. (1994). Quasi-likelihood estimation in semi-
parametric models. Journal of the American Statistical Association, 89:501–511.

Speckman, P. E. (1988). Regression analysis for partially linear models. Journal of
the Royal Statistical Society, Series B, 50:413–436.

Generalized Linear Models 619

Turlach, B. A. (1994). Computer-aided additive modeling. Doctoral Thesis, Uni-
versité Catholique de Louvain, Belgium.

Venables, W. N. and Ripley, B. (2002). Modern Applied Statistics with S. Springer,
New York, 4th edition.

Weisberg, S. and Welsh, A. H. (1994). Adapting for the missing link. Annals of
Statistics, 22:1674–1700.

Zeger, S. L. and Liang, K. Y. a. (1986). Longitudinal data analysis for discrete and
continuous outcomes. Biometrics, 42:121–130.

III.8(Non) Linear Regression
Modeling

Pavel Čížek

8.1 Linear Regression Modeling. 622

Fitting of Linear Regression . 623
Multicollinearity . 625
Variable Selection . 627
Principle Components Regression. 632
Shrinkage Estimators . 634
Ridge Regression . 634
Continuum Regression. 638
Lasso . 639
Partial Least Squares . 641
Comparison of the Methods . 643

8.2 Nonlinear Regression Modeling . 644

Fitting of Nonlinear Regression . 645
Statistical Inference . 647
Ill-conditioned Nonlinear System . 648

622 Pavel Čížek

We will study causal relationships of a known form between random variables.
Given a model, we distinguish one or more dependent (endogenous) variables Y =
(Y1, … , Yl), l ∈ N, which are explained by a model, and independent (exogenous,
explanatory) variables X = (X1, … , Xp), p ∈ N, which explain or predict the
dependent variables by means of the model. Such relationships and models are
commonly referred to as regression models.

A regression model describes the relationship between the dependent and inde-
pendent variables. In this chapter, we restrict our attention to models with a form
known up to a finite number of unspecified parameters. The model can be either
linear in parameters,

Y = X�β0 + ε ,

or nonlinear,

Y = h(X, β0) + ε ,

where β represents a vector or a matrix of unknown parameters, ε is the error
term (fluctuations caused by unobservable quantities), and h is a known regres-
sion function. The unknown parameters β are to be estimated from observed
realizations {y1i, … , yli}n

i=1 and {x1i, … , xpi}n
i=1 of random variables Y and X.

Here we discuss both kinds of models, primarily from the least-squares esti-
mation point of view, in Sects. 8.1 and 8.2, respectively. Both sections present the
main facts concerning the fitting of these models and relevant inference, whereby
their focus is above all on the estimation of these regression models under near
and exact multicollinearity.

Linear Regression Modeling8.1

Let us first study the linear regression model Y = X�β0 + ε assuming E(ε|X) = 0.
Unless said otherwise, we consider here only one dependent variable Y . The
unknown vector β0 = (β0

1, … , β0
p) is to be estimated given observations y =

(y1, … , yn) ∈ Rn and {xi}n
i=1 = {(x1i, … , xpi)}n

i=1 of random variables Y and X;
let us denote X = (x1, … , xn)� ∈ Rn×p and let x·k be the kth column of X . Thus,
the linear regression model can be written in terms of observations as

y = Xβ0 + ε =
p∑

k=1

x·kβ0
k + ε , (8.1)

where ε = (ε1, … , εn) ∈ Rn.
Section 8.1.1 summarizes how to estimate the model (8.1) by the method of

least squares. Later, we specify what ill-conditioning and multicollinearity are in
Sect. 8.1.2 and discuss methods dealing with it in Sects. 8.1.3–8.1.9.

(Non) Linear Regression Modeling 623

Fitting of Linear Regression 8.1.1

Let us first review the least squares estimation and its main properties to facilitate
easier understanding of the fitting procedures discussed further. For a detailed
overview of linear regression modeling see Rao and Toutenberg (1999).

The least squares (LS) approach to the estimation of (8.1) searches an estimate β̂
of unknown parameters β0 by minimizing the sum of squared differences between
the observed values yi and the predicted ones ŷi(̂β) = x�i β̂.

1Definition 1 The least squares estimate of linear regression model (8.1) is defined
by

β̂LS
= argmin

β∈R p

n∑

i=1

{yi − ŷi(β)}2 = argmin
β∈R p

n∑

i=1

(
yi − x�i β

)2
. (8.2)

This differentiable problem can be expressed as minimization of

(y − Xβ)�(y − Xβ) = y�y − 2β�X�y + β�X�Xβ

with respect to β and the corresponding first-order conditions are

−X�y + X�Xβ = 0 =⇒ X�Xβ = X�y . (8.3)

They are commonly referred to as normal equations and identify the global min-
imum of (8.2) as long as the second order conditions X�X > 0 hold; that is, the
matrix X�X is supposed to be positive definite, or equivalently, non-singular. (This
mirrors an often used assumption specified in terms of the underlying random
variable X: E(XX�) > 0.) Provided that X�X > 0 and E(ε|X) = 0, the LS estimator
is unbiased and can be found as a solution of (8.3)

β̂LS
=
(
X�X

)−1
X�y . (8.4)

Additionally, it is the best linear unbiased estimator of (8.1), see Amemiya (1985).

1Theorem 1 (Gauss–Markov)
Assumethat E(ε|X) = 0, E(ε2|X) = σ2In, and X�X is non-singular. Let β̂ = C�y,
where C is a t × p matrix orthogonal to X , C�X = I . Then Var(̂β) − Var(̂βLS

) > 0
is a positive definite matrix for any β̂ �= β̂LS

.

Finally, the LS estimate actually coincides with the maximum likelihood es-
timates provided that random errors ε are normally distributed (in addition to
the assumptions of Theorem 1) and shares then the asymptotic properties of the
maximum likelihood estimation (see Amemiya, 1985).

Computing LS Estimates
TheLSestimate β̂LS

canbeandoften is foundbydirectly solving the systemof linear
equations (8.3) or evaluating formula (8.4), which involves a matrix inversion. Both

624 Pavel Čížek

direct and iterative methods for solving systems of linear equations are presented
in Chap. II.4. Although this straightforward computation may work well for many
regression problems, it often leads to an unnecessary loss of precision, see Miller
(2002). Additionally, it is not very suitable if the matrix X�X is ill-conditioned
(a regression problem is called ill-conditioned if a small change in data causes
large changes in estimates) or nearly singular (multicollinearity) because it is
not numerically stable. Being concerned mainly about statistical consequences of
multicollinearity, the numerical issues regarding the identification and treatment
of ill-conditioned regression models are beyond the scope of this contribution. Let
us refer an interested reader Barlow (1993), Björck (1996), Miller (2002), Thisted
(1988) and Wang et al. (1990).

Let us now briefly review a class of numerically more stable algorithms for the LS
minimization. They are based on orthogonal transformations. Assuming a matrix
Q ∈ Rn×n is an orthonormal matrix, Q�Q = QQ� = In,

(y − Xβ)�(y − Xβ) = (Qy − QXβ)�(Qy − QXβ) .

Thus, multiplying a regression model by an orthonormal matrix does not change
it from the LS point of view. Since every matrix X can be decomposed into the
product QxRx (the QR decomposition), where Qx is an orthonormal matrix and
Rx is an upper triangular matrix, pre-multiplying (8.1) by Q�

x produces

Q�
x y = Rxβ + Q�

x ε , (8.5)

where Rx = (R1, R2)�, R1 ∈ Rp×p is an upper triangular matrix, and R2 ∈ R(n−p)×p

is a zero matrix. Hence, the sum of squares to minimize can be written as
(
Q�

x y − Rxβ
)� (

Q�
x y − Rxβ

)
=
(
y1 − R1β

)� (
y1 − R1β

)
+ y�2 y2 ,

where y1 ∈ Rp and y2 ∈ Rn−p form Q�
x y = (y�1 , y�2)�. The LS estimate is then

obtained from the upper triangular system R1β = y1, which is trivial to solve
by backward substitution. There are many algorithms for constructing a suitable
QR decomposition for finding LS estimates, such as the Householder or Givens
transformations; see Chap. II.4, more details.

LS Inference
Linear regression modeling does not naturally consist only of obtaining a point
estimate β̂LS

. One needs to measure the variance of the estimates in order to
construct confidence intervals or test hypotheses. Additionally, one should assess
the quality of the regression fit. Most such measures are based on regression
residuals e = y−X β̂.Webriefly review themost important regression statistics, and
next, indicate how it is possible to compute them if the LS regression is estimated by
means of some orthogonalization procedure described in the previous paragraph.

The most important measures used in statistics to assess model fit and infer-
ence are the total sum of squares TSS = (y − ȳ)�(y − ȳ) =

∑n
i=1(yi − ȳ)2, where

ȳ =
∑n

i=1 yi|n, the residual sum of squares RSS = e�e =
∑n

i=1 e2
i , and the comple-

(Non) Linear Regression Modeling 625

mentary regression sum of squares RegSS = (y − ŷ)�(y − ŷ) =
∑n

i=1(yi − ŷi)2 =
TSS − RSS. Using these quantities, the regression fit can be evaluated; for example,
the coefficient of determination R2 = 1 − RSS|TSS as well as many information
criteria (modified R̄2, Mallows and Akaike criteria, etc.; see Sect. 8.1.3). Addition-
ally, they can be used to compute the variance of the estimates in simple cases. The
variance of the estimates can be estimated by

Var
(
β̂LS

)
=
(
X�X

)−1
X�S−1X

(
X�X

)−1
, (8.6)

where S represents an estimate of the covariance matrix Var(ε) = Σ. Provided that
the model is homoscedastic, Σ = σ2In, the residual variance σ2 can be estimated
as an average of squared residuals s2 = e�e|n. Apart from the residual variance,
one needs also an inverse of (X�X)−1, which will often be a by-product of solving
normal equations.

Let us now describe how one computes these quantities if a numerically stable
procedure based on the orthonormalization of normal equations is used. Let us
assume we already constructed a QR decomposition of X = QxRx. Thus, QxQ�

x = I
and Q�

x X = Rx. RSS can be computed as

RSS = e�e =
(
y − X β̂

)� (
y − X β̂

)
=
(
y − X β̂

)�
QxQ�

x

(
y − X β̂

)

=
(
Q�

x y − RxX β̂
)� (

Q�
x y − RxX β̂

)
.

Consequently, RSS is invariant with respect to orthonormal transformations (8.5)
of the regression model (8.1). The same conclusion applies also to TSS and RegSS,
and consequently, to the variance estimation. Thus, it is possible to use the data
in (8.5), transformed toachievebetternumerical stability, for computing regression
statistics of the original model (8.1).

Multicollinearity 8.1.2

Let us assume that the design matrix X fixed. We talk about multicollinearity when
there is a linear dependence among the variables in regression, that is, the columns
of X .

2Definition 2 In model (8.1), the exact multicollinearity exists if there are real
constants a1, … , ap such that

∑p
k=1 |ak| > 0 and

∑p
k=1 akx·k = 0.

The exact multicollinearity (also referred to as reduced-rank data) is relatively
rare in linear regression models unless the number of explanatory variables is very
large or even larger than the number of observations, p ≥ n. This happens often in
agriculture, chemometrics, sociology, and so on. For example, Miller (2002) uses
data on the absorbances of infra-red rays at many different wavelength by chopped

626 Pavel Čížek

meat, whereby the aim is to determine the moisture, fat, and protein content of
the meat as a function of these absorbances. The study employs measurements
at 100 wavelengths from 850 nm to 1050 nm, which gives rise to many possibly
correlated variables.

When the number p of variables is small compared to the sample size n, near
multicollinearity is more likely to occur: there are some real constants a1, … , ap

such that
∑p

k=1 |ak| > 0 and
∑p

k=1 akx·k ≈ 0, where ≈ denotes approximate equal-
ity. The multicollinearity in data does not have to arise only as a result of highly
correlated variables (e.g., more measurements of the same characteristic by dif-
ferent sensors or methods), which by definition occurs in all applications where
there are more variables than observations, but it could also result from the lack
of information and variability in data.

Whereas the exact multicollinearity implies that X�X is singular and the LS
estimator is not identified, the near multicollinearity permits non-singular matrix
X�X . The eigenvalues λ1 ≤ … ≤ λp of matrix X�X can give some indication
concerning multicollinearity: if the smallest eigenvalue λ1 equals zero, the matrix
is singular and data are exactly multicollinear; if λ1 is close to zero, near multi-
collinearity is present in data. Since measures based on eigenvalues depend on the
parametrization of the model, they are not necessarily optimal and it is often easier
to detect multicollinearity by looking at LS estimates and their behavior as dis-
cussed in next paragraph. See Björck (1996) and Leamer (1983) for more details on
detection and treatment of ill-conditioned problems. (Nearly singular matrices are
dealt with also in numerical mathematics. To measure near singularity, numerical
mathematics uses conditioning numbers dk =

√
λk|λ1, which converge to infinity

for singular matrices, that is, as λ1 → 0. Matrices with very large conditioning
numbers are called ill-conditioned.)

The multicollinearity has important implications for LS. In the case of exact
multicollinearity, matrix X�X does not have a full rank, hence the solution of
the normal equations is not unique and the LS estimate β̂LS

is not identified. One
has to introduce additional restrictions to identify the LS estimate. On the other
hand, even though near multicollinearity does not prevent the identification of
LS, it negatively influences estimation results. Since both the estimate β̂LS

and
its variance are proportional to the inverse of X�X , which is nearly singular
under multicollinearity, near multicollinearity inflates β̂LS

, which may become
unrealistically large, and variance Var(̂βLS

). Consequently, the corresponding t-
statistics are typically very low. Moreover, due to the large values of (X�X)−1, the
least squares estimate β̂LS

= (X�X)−1X�y reacts very sensitively to small changes
in data. See Hocking (1996) and Montgomery et al. (2001) for a more detailed
treatment and real-data examples of the effects of multicollinearity.

There are several strategies to limit adverse consequences of multicollinearity
provided that one cannot improve the design of a model or experiment or get
better data. First, one can impose an additional structure on the model. This
strategy cannot be discussed in details since it is model specific, and in principle,
it requires only to test a hypothesis concerning additional restrictions. Second, it

(Non) Linear Regression Modeling 627

is possible to reduce the dimension of the space spanned by X , for example, by
excluding some variables from the regression (Sects. 8.1.3 and 8.1.4). Third, one
can also leave the class of unbiased estimators and try to find a biased estimator
with a smaller variance and mean squared error. Assuming we want to judge the
performance of an estimator β̂ by its mean squared error (MSE), the motivation
follows from

MSE
(̂
β
)

= E
[(̂

β − β0
) (̂

β − β0
)�]

= E
[{̂

β − E
(̂
β
)} {̂

β − E
(̂
β
)}�]

+
[
E
{

E
(̂
β
)

− β0
}] [

E
{

E
(̂
β
)

− β0
}]�

= Var
(̂
β
)

+ Bias
(̂
β
)

Bias
(̂
β
)�

.

Thus, it is possible that introducing a bias into estimation in such a way that
the variance of estimates is significantly reduced can improve the estimator’s MSE.
There are many biased alternatives to the LS estimation as discussed in Sects. 8.1.5–
8.1.9 and some of them even combine biased estimation with variable selection.
In all cases, we present methods usable both in the case of near and exact multi-
collinearity.

Variable Selection 8.1.3

The presence of multicollinearity may indicate that some explanatory variables
are linear combinations of the other ones (note that this is more often a “feature”
of data rather than of the model). Consequently, they do not improve explanatory
power of a model and could be dropped from the model provided there is some
justification for dropping them also on the model level rather than just dropping
them to fix data problems. As a result of removing some variables, the matrix X�X
would not be (nearly) singular anymore.

Eliminating variables from a model is a special case of model selection proce-
dures, which are discussed in details in Chap. III.1. Here we first discuss methods
specific for variable selection within a single regression model, mainly variants of
stepwise regression. Later, we deal with more general model selection methods,
such as cross validation, that are useful both in the context of variable selection and
of biased estimation discussed in Sects. 8.1.5–8.1.9. An overview and comparison
of many classical variable selection is given, for example, in Miller (1984, 2002)
and Montgomery et al. (2001). For discussion of computational issues related to
model selection, see Kennedy and Gentle (1980) and Miller (2002).

Backward Elimination
A simple and often used method to eliminate non-significant variables from re-
gression is backward elimination, a special case of stepwise regression. Backward
elimination starts from the full model y = Xβ + ε and identifies a variable x·k such
that

628 Pavel Čížek

1. its omission results in smallest increase of RSS; or
2. it has the smallest t-statistics tk = bLS

k

/√
s2
k|(n − p), where s2

k is an estimate of

bLS
k variance, or any other test statistics of H0 : β0k = 0; or

3. its removal causes smallest change of prediction or information criteria char-
acterizing fit or prediction power of the model. A well-known examples of
information criteria are modified coefficient of determination R̄2 = 1 −
(n + p)e�e|n(n − p), Akaike information criterion (Akaike, 1974), AIC =
log(e�e|n) + 2p|n, and Schwarz information criterion (Schwarz, 1978), SIC =
log(e�e|n) + p ln n|n, where n and p represents sample size and the number of
regressors, respectively.

Next, the variable x·k is excluded from regression by setting bk = 0 if (1) one did
not reach a pre-specified number of variables yet or (2) the test statistics or change
of the information criterion lies below some selected significance level.

Before discussing properties of backward elimination, let us make several notes
on information criteria used for the elimination and their optimality. There is
a wide range of selection criteria, including classical AIC, SIC, FPEλ by Shibata
(1984), cross validation by Stone (1974), and so on. Despite one can consider the
same measure of the optimality of variable selection, such as the sum of squared
prediction errors Shibata (1981), one can often see contradictory results concerning
the selection criteria (see Li (1987) and Shao (1993); or Shibata (1981) and Rao and
Wu (1989)). This is caused by different underlying assumptions about the true
model Shao (1997). Some criteria, such as AIC and cross validation, are optimal
if one assumes that there is no finite-dimensional true model (i.e., the number of
variables increases with the sample size); see Shibata (1981) and Li (1987). On the
other hand, some criteria, such as SIC, are consistent if one assumes that there
is a true model with a finite number of variables; see Rao and Wu (1989) and
Shao (1997). Finally, note that even though some criteria, being optimal in the
same sense, are asymptotically equivalent, their finite sample properties can differ
substantially. See Chap. III.1 for more details.

Let us now return back to backward elimination, which can be also viewed as
a pre-test estimator Judge and Bock (1983). Although it is often used in practice,
it involves largely arbitrary choice of the significance level. In addition, it has
rather poor statistical properties caused primarily by discontinuity of the selection
decision, see Magnus (1999). Moreover, even if a stepwise procedure is employed,
one should take care of reporting correct variances and confidence intervals valid
for the whole decision sequence. Inference for the finally selected model as if
it were the only model considered leads to significant biases, see Danilov and
Magnus (2004), Weiss (1995) and Zhang (1992). Backward elimination also does
not perform well in the presence of multicollinearity and it cannot be used if p > n.
Finally, let us note that a nearly optimal and admissible alternative is proposed in
Magnus (2002).

(Non) Linear Regression Modeling 629

Forward Selection
Backward elimination cannot be applied if there are more variables than obser-
vations, and additionally, it may be very computationally expensive if there are
many variables. A classical alternative is forward selection, where one starts from
an intercept-only model and adds one after another variables that provide the
largest decrease of RSS. Adding stops when the F-statistics

R =
RSSp − RSSp+1

RSSp+1
(n − p − 2)

lies below a pre-specified critical ‘F-to-enter’ value. The forward selection can
be combined with the backward selection (e.g., after adding a variable, one per-
forms one step of backward elimination), which is known as a stepwise regression
Efroymson (1960). Its computational complexity is discussed in Miller (2002).

Note that most disadvantages of backward elimination apply to forward selec-
tion as well. In particular, correct variances and confidence intervals should be
reported, see Miller (2002) for their approximations. Moreover, forward selection
can be overly aggressive in selection in the respect that if a variable x is already
included in a model, forward selection primarily adds variables orthogonal to x,
thus ignoring possibly useful variables that are correlated with x. To improve upon
this, Efron et al. (2004) proposed least angle regression, considering correlations
of to-be-added variables jointly with respect to all variables already included in
the model.

All-Subsets Regression
Neither forward selection, nor backward elimination guarantee the optimality
of the selected submodel, even when both methods lead to the same results.
This can happen especially when a pair of variables has jointly high predictive
power; for example, if the dependent variable y depends on the difference of two
variables x1 − x2. An alternative approach, which is aiming at optimality of the
selected subset of variables – all-subsets regression – is based on forming a model
for each subset of explanatory variables. Each model is estimated and a selected
prediction or information criterion, which quantifies the unexplained variation of
the dependent variable and the parsimony of the model, is evaluated. Finally, the
model attaining the best value of a criterion is selected and variables missing in
this model are omitted.

This approach deserves several comments. First, one can use many other criteria
insteadofAICorSIC.These couldbebasedon the test statistics of a joint hypothesis
that a group of variables has zero coefficients, extensions or modifications of AIC
or SIC, general Bayesian predictive criteria, criteria using non-sample information,
model selection based on estimated parameter values at each subsample and so
on. See the next subsection, Bedrick and Tsai (1994), Hughes and Maxwell (2003),
Jiang and Liu (2004), Ibrahim and Ming-Hui (1997), Shao (1997), Shi and Tsai
(1998), Zheng and Loh (1995), for instance, and Chap. III.1 for a more detailed
overview.

630 Pavel Čížek

Second, the evaluation and estimation of all submodels of a given regression
model can be very computationally intensive, especially if the number of variables
is large. This motivated tree-like algorithms searching through all submodels, but
once they reject a submodel, they automatically reject all models containing only
a subset of variables of the rejected submodel, see Edwards and Havranek (1987).
These so-called branch-and-bound techniques are discussed in Miller (2002), for
instance.

An alternative computational approach, which is increasingly used in appli-
cations where the number of explanatory variables is very large, is based on
the genetic programming (genetic algorithm, GA) approach, see Wasserman and
Sudjianto (1994). Similarly to branch-and-bound methods, GAs perform an non-
exhaustive search through the space of all submodels. The procedure works as
follows. First, each submodel which is represented by a “chromosome” – a p × 1
vector mj = {Ij

1, … , I
j
p} ∈ {0, 1}p of indicators, where I

j
k indicates whether the kth

variable is included in the submodel defined by mj. Next, to find the best submodel,
one starts with an (initially randomly selected) population P = {mj}J

j=1 of sub-
models that are compared with each other in terms of information or prediction
criteria. Further, this population P is iteratively modified: in each step, pairs of
submodels mj, mj′ ∈ P combine their characteristics (chromosomes) to create
their offsprings m∗

j . This process can have many different forms such as m∗
j =

(mj + mj′ + rm) mod 1 or m∗
j = (1, … , 1, 0, … , 0)�mj + (0, … , 0, 1, … , 1)�mj′ + rm,

where rm is a possibly non-zero random mutation. Whenever an offspring m∗
j

performs better than its “parent” models mj, m∗
j replaces mj in population P .

Performing this action for all j = 1, … , J creates a new population. By repeat-
ing this population-renewal, GAs search through the space of all available sub-
models and keep only the best ones in the population P . Thus, GAs provide
a rather effective way of obtaining the best submodel, especially when the num-
ber of explanatory variables is very high, since the search is not exhaustive.
See Chap. II.6 and Chambers (1998) for a more detailed introduction to genet-
ic programming.

Cross Validation
Cross validation (CV) is a general model-selection principle, proposed already in
Stone (1974), which chooses a specific model in a similar way as the prediction
criteria. CV compares models, which can include all variables or exclude some,
based on their out-of-sample performance, which is measured typically by MSE. To
achieve this, a sample is split to two disjunct parts: one part is used for estimation
and the other part serves for checking the fit of the estimated model on “new”
data (i.e., data which were not used for estimation) by comparing the observed
and predicted values.

Probably the most popular variant is the leave-one-out cross-validation (LOU
CV), which can be used not only for model selection, but also for choosing nuisance
parameters (e.g., in nonparametric regression; see Härdle (1992)). Assume we have
a set of models y = hk(X , β) + ε defined by regression functions hk, k = 1, … , M,

(Non) Linear Regression Modeling 631

that determine variables included or excluded from regression. For model given
by hk, LOU CV evaluates

CVk =
n∑

i=1

(
yi − ŷi,−i

)2
, (8.7)

where ŷi,−i is the prediction at xi based on the model y−i = hk(X−i, β) + ε−i and
y−i, X−i, ε−i are the vectors and matrices y, X , ε without their ith elements and rows,
respectively. Thus, all but the ith observation are used for estimation and the ith
observation is used to check the out-of-sample prediction. Having evaluated CVk

for each model, k = 1, … , M, we select the model commanding the minimum
mink=1,…,M CVk.

Unfortunately, LOU CV is not consistent as far as the linear model selection is
concerned. To make CV a consistent model selection method, it is necessary to omit
nv observations from the sample used for estimation, where limn→∞ nv|n = 1. This
fundamental result derived in Shao (1993) places a heavy computational burden
on the CV model selection. Since our main use of CV in this chapter concerns
nuisance parameter selection, we do not discuss this type of CV any further. See
Miller (2002) and Chap. III.1 for further details.

1Example 1 We compare several mentioned variable selection methods using a clas-
sical data set on air pollution used originally by McDonald and Schwing (1973), who
modeled mortality depending on 15 explanatory variables ranging from climate
and air pollution to socioeconomic characteristics and who additionally demon-
strated instabilities of LS estimates using this data set. We refer to the explanatory
variables of data Pollution simply by numbers 1 to 15.

We applied the forward, backward, and all-subset selection procedures to this
data set. The results reported in Table 8.1 demonstrate that although all three meth-
ods could lead to the same subset of variables (e.g., if we search a model consisting

Table 8.1. Variables selected from Pollution data by different selection procedures. RSS is in brackets

Number of Forward Backward All-subset
variables selection elimination selection

1 9 9 9

(133,695) (133,695) 9 (133,695)
2 6, 9 6, 9 6, 9

(99,841) (99,841) (99,841)
3 2, 6, 9 2, 6, 9 2, 6, 9

(82,389) (82,389) (82,389)
4 2, 6, 9, 14 2, 5, 6, 9 1, 2, 9, 14

(72,250) (74,666) (69,154)
5 1, 2, 6, 9, 14 2, 6, 9, 12, 13 1, 2, 6, 9, 14

(64,634) (69,135) (64,634)

632 Pavel Čížek

of two or three variables), this is not the case in general. For example, searching for
a subset of four variables, the variables selected by backward and forward selection
differ, and in both cases, the selected model is suboptimal (compared to all-subsets
regression) in the sense of the unexplained variance measured by RSS.

Principle Components Regression8.1.4

In some situations, it is not feasible to use variable selection to reduce the number
of explanatory variables or it is not desirable to do so. The first case can occur if the
number of explanatory variables is large compared to the number of observations.
The latter case is typical in situations when we observe many characteristics of
the same type, for example, temperature or electro-impulse measurements from
different sensors on a human body. They could be possibly correlated with each
other and there is no a priori reason why measurements at some points of a skull,
for instance, should be significant while other ones would not be important at all.
Since such data typically exhibit (exact) multicollinearity and we do not want to
exclude some or even majority of variables, we have to reduce the dimension of
the data in another way.

A general method that can be used both under near and exact multicollinearity
is based on the principle components analysis (PCA), see Chap. III.6. Its aim is
to reduce the dimension of explanatory variables by finding a small number of
linear combinations of explanatory variables X that capture most of the variation
in X and to use these linear combinations as new explanatory variables instead the
original one. Suppose that G is an orthonormal matrix that diagonalizes matrix
X�X : G�G = I , X�X = GΛG�, and G�X�XG = Λ, where Λ = diag(λ1, … , λp) is
a diagonal matrix of eigenvalues of X�X .

3 Definition 3 Assume without loss of generality that λ1 ≥ … ≥ λp and g1, … , gp

are the corresponding eigenvectors (columns of matrix G). Vector zi = Xgi for
i = 1, … , p such that λi > 0 is called the ith principle component (PC) of X and gi

represents the corresponding loadings.

PCA tries to approximate the original matrix X by projecting it into the lower-
dimensional space spanned by the first k eigenvectors g1, … , gk. It can be shown
that these projections capture most of the variability in X among all linear combi-
nations of columns of X , see Härdle and Simar (2003).

2 Theorem 2 There is no standardized linear combination Xa, where ‖a‖ = 1, that
has strictly larger variance than z1 = Xg1: Var(Xa) ≤ Var(z1) = λ1. Additionally,
the variance of the linear combination z = Xa, ‖a‖ = 1, that is uncorrelated with
the first k principle components z1, … , zk is maximized by the (k + 1)-st principle
component z = zk+1 and a = gk+1, k = 1, … , p − 1.

(Non) Linear Regression Modeling 633

Consequently, one chooses a number k of PCs that capture a sufficient amount
of data variability. This can be done by looking at the ratio Lk =

∑k
i=1 λi|

∑p
i=1 λi,

which quantifies the fraction of the variance captured by the first k PCs compared
to the total variance of X .

In the regression context, the chosen PCs are used as new explanatory variables,
and consequently, PCs with small eigenvalues can be important too. Therefore, one
canalternatively choose thePCs that exhibit highest correlationwith thedependent
variable y because the aim is to use the selected PCs for regressing the dependent
variable y on them, see Jolliffe (1982). Moreover, for selecting “explanatory” PCs,
it is also possible to use any variable selection method discussed in Sect. 8.1.3.
Recently, Hwang and Nettleton (2003) proposed a new data-driven PC selection
for PCR obtained by minimizing MSE.

Next, let us assume we selected a small number k of PCs Zk = (z1, … , zk)�
by some rule such that matrix Z�

k Zk has a full rank, k ≤ p. Then the principle
components regression (PCR) is performed by regressing the dependent variable
y on the selected PCs Zk, which have a (much) smaller dimension than original
data X , and consequently, multicollinearity is diminished or eliminated, see Gunst
and Mason (1980). We estimate this new model by LS,

y = Zkγ + η = XGkγ + η ,

where Gk = (g1, … , gk)�. Comparing it with the original model (8.1) shows that
β = Gkγ . It is important to realize that in PCR we first fix Gk by means of PCA and
then estimate γ .

Finally, concerning different PC selection criteria, Barros and Rutledge (1998)
demonstrates the superiority of the correlation-based PCR (CPCR) and conver-
gence of many model-selection procedures toward the CPCR results. See also
Depczynski et al. (2000) for a similar comparison of CPRC and PCR based on GA
variable selection.

2Example 2 Let us use data Pollution to demonstrate several important issues con-
cerning PCR. First, we identify PCs of the data. The fraction of variance explained
by the first k PCs as a function of k is depicted on Fig. 8.1 (dashed line). On the
one side, almost all of the X variance is captured by the first PC. On the other side,
the percentage of the y variance explained by the first k PCs (solid line) grows and
reaches its maximum relatively slowly. Thus, the inclusion of about 7 PCs seems to
be necessary when using this strategy.

On the other hand, using some variable selection method or checking the
correlation of PCs with the dependent variable y reveals that PCs 1, 3, 4, 5, 7 exhibit
highest correlations with y (higher than 0.25), and naturally, a model using these
5 PCs has more explanatory power (R̄2 = 0.70) than for example the first 6 PCs
together (R̄2 = 0.65). Thus, considering not only PCs that capture most of the X
variability, but also those having large correlations with the dependent variable
enables building more parsimonious models.

634 Pavel Čížek

2 4 6 8 10 12 14

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of PCs

%
 o

f v
ar

ia
nc

e

Figure 8.1. Fraction of the explained variance of X (dashed line) and y (solid line) by the first k PCs

Shrinkage Estimators8.1.5

We argued in Sect. 8.1.2 that an alternative way of dealing with unpleasant conse-
quences of multicollinearity lies in biased estimation: we can sacrifice a small bias
for a significant reduction in variance of an estimator so that its MSE decreases.
Since it holds for an estimator b and a real constant c ∈ R that Var(ĉβ) = c2Var(̂β),
a bias of the estimator β̂ towards zero, |c| < 1, naturally leads to a reduction in
variance. This observation motivates a whole class of biased estimators – shrinkage
estimators – that are biased towards zero in all or just some of their components.
In other words, they “shrink” the Euclidean norm of estimates compared to that
of the corresponding unbiased estimate. This is perhaps easiest to observe on the
example of the Stein-rule estimator, which can be expressed in linear regression
model (8.1) as

β̂SR
=

(

1 −
ke�e

n̂βLS�
X�X β̂LS

)

β̂LS
, (8.8)

where k > 0 is an arbitrary scalar constant and e�e|n represents an estimate
of the residual variance Gruber (1998). Apparently, the Stein-rule estimator just
multiplies the LS estimator by a constant smaller than one. See Gruber (1998) and
Judge and Bock (1983) for an overview of this and many other biased estimators.

In the following subsections, we discuss various shrinkage estimators that per-
form well under multicollinearity and that can possibly act as variable selection
tools as well: the ridge regression estimator and its modifications (Sect. 8.1.6), con-
tinuumregression (Sect. 8.1.7), theLasso estimator and its variants (Sect. 8.1.8), and
partial least squares (Sect. 8.1.9). Let us note that there are also other shrinkage esti-
mators, which either do not perform well under various forms of multicollinearity

(Non) Linear Regression Modeling 635

(e.g., Stein-rule estimator) or are discussed in other parts of this chapter (e.g.,
pre-test and PCR estimators in Sects. 8.1.3 and 8.1.4, respectively).

Ridge Regression 8.1.6

Probably the best known shrinkage estimator is the ridge estimator proposed and
studied by Hoerl and Kennard (1970). Having a non-orthogonal or even nearly
singular matrix X�X , one can add a positive constant k > 0 to its diagonal to
improve conditioning.

4Definition 4 Ridge regression (RR) estimator is defined for model (8.1) by

β̂RR
=
(
X�X + kI

)−1
X�y (8.9)

for some ridge parameter k > 0.

“Increasing” the diagonal of X�X before inversion shrinks β̂RR
compared to β̂LS

and introduces a bias. Additionally, Hoerl and Kennard (1970) also showed that
the derivative of MSE(̂βRR

) with respect to k is negative at k = 0. This indicates that
the bias

Bias
(
β̂RR

)
= −k

(
X�X + kI

)−1 β

can be smaller than the decrease in variance (here for a homoscedastic linear
model with error variance σ2)

Var
(
β̂RR

)
− Var

(
β̂LS

)
= σ2

(
X�X + kI

)−1
X�X

(
X�X + kI

)−1
− σ2

(
X�X

)−1

caused by shrinking at least for some values of k. The intervals for k where RR
dominates LS are derived, for example, in Chawla (1990), Gruber (1998) and Rao
and Toutenberg (1999). Moreover, the improvement in MSE(̂βRR

) with respect to
MSE(̂βLS

) is significant under multicollinearity while being negligible for nearly
orthogonal systems. A classical result for model (8.1) under ε ∼ N(0,σ2In) states

that MSE(̂βRR
)−MSE(̂βLS

) < 0 is negative definite if k < kmax = 2σ2|β�β, see Vinod
and Ullah (1981), where an operational estimate of kmax is discussed too. Notice
however that the conditions for the dominance of the RR and other some other
shrinkage estimators over LS can look quite differently in the case of non-normal
errors Ullah et al. (1983).

In applications, an important question remains: how to choose the ridge pa-
rameter k? In the original paper by Hoerl and Kennard (1970), the use of the ridge
trace, a plot of the components of the estimated β̂RR

against k, was advocated. If
data exhibit multicollinearity, one usually observes a region of instability for k
close to zero and then stable estimates for large values of ridge parameter k. One
should choose the smallest k lying in the region of stable estimates. Alternatively,

636 Pavel Čížek

one could search for k minimizing MSE(̂βRR
); see the subsection on generalized

RR for more details. Furthermore, many other methods for model selection could
be employed too; for example, LOU CV (Sect. 8.1.3) performed on a grid of k values
is often used in this context.

Statistics important for inference based on RR estimates are discussed in Hoerl
and Kennard (1970) and Vinod and Ullah (1981) both for the case of a fixed k as well
as in the case of some data-driven choices. Moreover, the latter work also describes
algorithms for a fast and efficient RR computation.

To conclude, let us note that the RR estimator β̂RR
in model (8.1) can be also

defined as a solution of a restricted minimization problem

β̂RR
= argmin

β̂:‖̂β‖2
2≤r2

(
y − X β̂

)� (
y − X β̂

)
, (8.10)

or equivalently as

β̂RR
= argmin

β̂

(
y − X β̂

)� (
y − X β̂

)
+ k‖̂β‖2

2 , (8.11)

where r represents a tuning parameter corresponding to k (Swamy et al., 1978). This
formulation was used by Ngo et al. (2003), for instance. Moreover, (8.10) reveals one
controversial issue in RR: rescaling of the original data to make X�X a correlation
matrix. Although there are no requirements of this kind necessary for theoretical
results, standardization is often recommended to make influence of the constraint
‖̂β‖2

2 ≤ r2 same for all variables. There are also studies showing adverse effects of
this standardization on estimation, see Vinod and Ullah (1981) for a discussion.
A possible solution is generalized RR, which assigns to each variable its own ridge
parameter (see the next paragraph).

Generalized Ridge Regression
The RR estimator can be generalized in the sense that each diagonal element
of X�X is modified separately. To achieve that let us recall that this matrix can
be diagonalized: X�X = G�ΛG, where G is an orthonormal matrix and Λ is
a diagonal matrix containing eigenvalues λ1, … , λp.

5 Definition 5 Generalized ridge regression (GRR) estimator is defined for model
(8.1) by

β̂GRR
=
(
X�X + GKG�)−1

X�y (8.12)

for a diagonal matrix K = diag(k1, … , kp) of ridge parameters.

The main advantage of this generalization being ridge coefficients specific to
each variable, it is important to know how to choose the matrix K . In Hoerl and
Kennard (1970) the following result is derived.

(Non) Linear Regression Modeling 637

3Theorem 3 Assume that X in model (8.1) has a full rank, ε ∼ N(0,σ2In), and n > p.
Further, let X = HΛ1|2G� be the singular value decomposition of X and γ = G�β0.
The MSE-minimizing choice of K in (8.12) is K = σ2 diag(γ−2

1 , … , γ−2
p).

An operational version (feasible GRR) is based on an unbiased estimate γ̂i =
G�β̂LS

and s2 = (y − Hγ̂)�(y − Hγ̂). See Hoerl and Kennard (1970) and Vinod
and Ullah (1981), where you also find the bias and MSE of this operational GRR
estimator, and Wang and Chow (1990) for further extensions of this approach.
Let us note that the feasible GRR (FGRR) estimator does not have to possess the
MSE-optimality property of GRR because the optimal choice of K is replaced by an
estimate. Nevertheless, the optimality property of FGRR is preserved if λiγ2

i ≤ 2σ2,
where λi is the (i, i)th-element of Λ (Farebrother, 1976).

Additionally, given an estimate of MSE-minimizing K̂ = diag(̂k1, … , k̂p), many
authors proposed to choose the ridge parameter k in ordinary RR as a harmonic
mean of k̂i, i = 1, … , p; see Hoerl et al. (1975), for instance.

Almost Unbiased Ridge Regression
Motivated by results on GRR, Kadiyala (1984) proposed to correct GRR for its
bias using the first-order bias approximation. This yields almost unbiased GRR
(AUGRR) estimator

β̂AUGRR
=
(
X�X + GKG�)−1 (

X�y + KG�β0

)
.

The true parameter value β0 being unknown, Ohtani (1986) defined a feasible
AUFGRR estimator by replacing the unknown β0 by β̂FGRR

and K by the employed
ridge matrix. Additionally, a comparison of the FGRR and feasible AUGRR esti-
mators with respect to MSE proved that FGRR has a smaller MSE than AUGRR in
a wide range of parameter space. Similar observation was also done under a more
general loss function in Wan (2002). Furthermore, Akdeniz et al. (2004) derived
exact formulas for the moments of the feasible AUGRR estimator.

Further Extensions
RR can be applied also under exact multicollinearity, which arises for example in
data with more variables than observations. Although the theory and application
of RR is the same as in the case of full-rank data, the computational burden
of O(np2 + p3) operations becomes too high for p > n. A faster algorithm with
computational complexity only O(np2) was found by Hawkins and Yin (2002).

Moreover, there are many further extensions of the RR principle that go beyond
the extent of this chapter. To mention at least some of them, let us refer a reader
to works comparing or combining various ridge and shrinkage approaches Kibria
(1996); Shiaishi and Konno (1995); Singh et al. (1994) and to monograph by Gruber
(1998).

638 Pavel Čížek

3 Example 3 Using data Pollution once again, we estimated RR for ridge parame-

ter k ∈ (0, 10) and plotted the estimated coefficients β̂RR
as functions of k (ridge

trace plot), see Fig. 8.2. For the sake of simplicity, we restricted ourselves only
to variables that were selected by some variable selection procedure in Table 8.1
(1, 2, 6, 9, 12, 13, 14). The plot shows the effect of ridge parameter k on slope esti-
mates (k = 0 corresponds to LS). Apparently, slopes of some variables are affected
very little (e.g., variable 1), some significantly (e.g., the magnitude of variable 14
increases more than twice), and some variables shrink extremely (e.g., variables 12
and 13). In all cases, the biggest change occurs between k = 0 and k = 2 and esti-
mates gradually stabilize for k > 2. The vertical dashed line in Fig. 8.2 represents
the CV estimate of k (kCV = 6.87).

0 2 4 6 8 10

-4
0

-2
0

0
20

40

K

E
st

im
at

es

1
2
6
9
12
13
14

Figure 8.2. Ridge trace plot for variables 1, 2, 6, 9, 12, 13, 14 of data Pollution. The vertical line

represents the CV-choice of k

Continuum Regression8.1.7

RR discussed in Sect. 8.1.6 is very closely connected with the continuum regression
proposed by Brooks and Stone (1990) as a unifying approach to the LS, PCR, and
partial least squares (see Sect. 8.1.9) estimation.

6 Definition 6 A continuum regression (CR) estimator β̂CR
(α) of model (8.1) is

a coefficient vector maximizing function

Tα(c) =
(
c�s

)2 (
c�Sc

)α−1 =
(
c�X�y

)2 (
c�X�Xc

)α−1
, (8.13)

(Non) Linear Regression Modeling 639

for a given value of parameter α ≥ 0 and a given length ‖c‖, where S = X�X and
s = X�y.

This definition yields estimates proportional to LS forα = 0, to PCR forα → ∞,
and to yet-to-be-discussed partial least squares for α = 1. Apart from this, the
advantage of CR is that one can adaptively select among the methods by searching
an optimal α. To determine α, Brooks and Stone (1990) used CV.

The relationship between RR and CR was indicated already in Sundberg (1993),
but the most important result came after uncovering possible discontinuities of
CR estimates as a function of data and α by Björkström and Sundberg (1996). In an
attempt to remedy the discontinuity of the original CR, Björkström and Sundberg
(1999) not only proposed to maximize

Tδ(c) =
(
c�s

)2 (
c�Sc

)−1 ∣∣c�Sc + δ
∣∣−1

,

for δ ≥ 0 instead of Tα(c) from Definition 6 (δ can be chosen by CV), but also
proved the following proposition.

4Theorem 4 If a regressor bf is defined according to

bf = argmax
‖c‖=1

f
{

K2(c), V(c)
}

,

where K(c) = y�Xc, V(c) = ‖Xc‖2, f (K2, V) is increasing in K2 for constant V ,
and increasing in V for constant K2, and finally, if X�y is not orthogonal to all
eigenvectors corresponding to the largest eigenvalue λmax of X�X , then there
exists a number k ∈ (−∞, λmax) ∪ [0, +∞] such that bf is proportional to (X�X +
kI)−1X�y, including the limiting cases k → 0, k → ±∞, and k → −λmax.

Thus, the RR estimator fundamentally underlies many methods dealing with
multicollinear and reduced rank data such as mentioned PCR and partial least
squares. Notice however that negative values of the ridge coefficient k have to be
admitted here.

Finally, let us note that CR can be extended to multiple-response-variables
models (Brooks and Stone, 1994).

Lasso 8.1.8

The ridge regression discussed in Sect. 8.1.6 motivates another shrinkage method:
Lasso (least absolute shrinkage and selection operator) by Tibshirani (1996). For-
mulation (8.10) states that RR can be viewed as a minimization with respect to an
upper bound on the L2 norm of estimate ‖̂β‖2. A natural extension is to consider
constraints on the Lq norm ‖̂β‖q, q > 0. Specifically, Tibshirani (1996) studied case
of q = 1, that is L1 norm.

640 Pavel Čížek

7 Definition 7 The Lasso estimator for the regression model (8.1) is defined by

β̂L
= argmin

‖β‖1≤r

(
y − Xβ

)� (
y − Xβ

)
, (8.14)

where r ≥ 0 is a tuning parameter.

Lasso is a shrinkage estimator that has one specific feature compared to ordinary
RR. Because of the geometry of L1-norm restriction, Lasso shrinks the effect of
some variables and eliminates influence of the others, that is, sets their coefficients
to zero. Thus, it combines regression shrinkage with variable selection, and as
Tibshirani (1996) demonstrated also by means of simulation, it compares favorably
to all-subsets regression. In this context, it is interesting that Lasso could be
formulated as a special case of least angle regression by Efron et al. (2004). Finally,
let us note that to achieve the same kind of shrinking and variable-selection effects
for all variables, they should be standardized before used in Lasso; see Miller
(2002) for details.

As far as the inference for the Lasso estimator is concerned, Knight and Fu
(2000) recently studied the asymptotic distribution of Lasso-type estimators using
Lq-norm condition ‖β‖q ≤ r with q ≤ 1, including behavior under nearly-singular
designs.

Now, it remains tofindouthowLassoestimates canbecomputed.Equation(8.14)
indicates that one has to solve a restricted quadratic optimization problem. Setting
β+

j = max{βj, 0} and β−
j = − min{βj, 0}, the restriction ‖β‖ ≤ r can be written as

2p + 1 constraints: β+
j ≥ 0, β−

j ≥ 0, and
∑p

j=1(β+
j − β−

j) ≤ r. Thus, convergence
is assured in 2p + 1 steps. Additionally, the unknown tuning parameter r is to
be selected by means of CV. Further, although solving (8.14) is straightforward in
usual regression problems, it can become very demanding for reduced-rank data,
p > n. Osborne et al. (1999) treated lasso as a convex programming problem, and
by formulating its dual problem, developed an efficient algorithm usable even for
p > n.

4 Example 4 Let us use data Pollution once more to exemplify the use of Lasso.
To summarize the Lasso results, we use the same plot as Tibshirani (1996) and
Efron et al. (2004) used, see Fig. 8.3. It contains standardized slope estimates as
a function of the constraint ‖b‖ ≤ r, which is represented by an index r|max ‖̂β‖ =
‖̂βL‖|‖̂βLS‖ (the LS estimate β̂LS

corresponds to β̂L
under r = ∞, and thus, renders

the maximum of ‖̂βL‖). Moreover, to keep the graph simple, we plotted again
only variables that were selected by variable selection procedures in Table 8.1
(1, 2, 6, 9, 12, 13, 14).

In Fig. 8.3, we can observe which variables are included in the regression (have
a nonzero coefficient) as tuning parameter r increases. Clearly, the order in which
the first of these variables become significant – 9, 6, 14, 1, 2 – closely resembles

(Non) Linear Regression Modeling 641

* * **

*

*
* *

0.0 0.2 0.4 0.6 0.8 1.0

-3
00

–2
00

–1
00

0
10

0
20

0
30

0

||b||/max||b||

S
ta

nd
ar

di
ze

d
C

oe
ffi

ci
en

ts

* * ** *

*
* *

* *

**
* * * *

*

*

**

*

* * *

* * ** * * *

*

* * ** * *
*

*

* * **

*

* *

*

LASSO

12
2

6
14

1

9
13

0 1 2 4 5 6 7

Figure 8.3. Slope coefficients for variables 1, 2, 6, 9, 12, 13, 14 of data Pollution estimated by Lasso at

different constraint levels, r|max ‖̂β‖. The right axis assigns to each line the number of variable it

represents and the top axis indicates the number of variables included in the regression

the results of variable selection procedures in Table 8.1. Thus, Lasso combines
shrinkage estimation and variable selection: at a given constraint level r, it shrinks
coefficients of some variables and removes the others by setting their coefficients
equal to zero.

Partial Least Squares 8.1.9

A general modeling approach to most of the methods covered so far was CR in
Sect. 8.1.7, whereby it has two “extremes”: LS for α = 0 and PCR for α → ∞.
The partial least squares (PLS) regression lies in between – it is a special case
of (8.13) for α = 1, see Brooks and Stone (1990). Originally proposed by Wold
(1966), it was presented as an algorithm that searches for linear combinations of
explanatory variables best explaining the dependent variable. Similarly to PCR,
PLS also aims especially at situations when the number of explanatory variables
is large compared to the number of observations. Here we present the PLS idea
and algorithm themselves as well as the latest results on variable selection and
inference in PLS.

Having many explanatory variables X , the aim of the PLS method is to find
a small number of linear combinations T1 = Xc1, … , Tq = Xcq of these variables,

642 Pavel Čížek

thought about as latent variables, explaining observed responses

ŷ = β̂0 +

q∑

j=1

T ĵβj (8.15)

(see Garthwaite (1994), and Helland (2001)). Thus, similarly to PCR, PLS reduces
the dimension of data, but the criterion for searching linear combinations is dif-
ferent. Most importantly, it does not depend only on X values, but on y too.

Let us now present the PLS algorithm itself, which defines yet another shrinkage
estimator as shown by Coutis (1996) and Jong (1995). (See Rao and Toutenberg,
1999 for more details and Garthwaite, 1994 for an alternative formulation.) The
indices T1, … , Tq are constructed one after another. Estimating the intercept by
b0 = ȳ, let us start with centered variables z0 = y − ȳ and U0 = X − X̄ and set k = 1.
1. Define the index Tk = Uk−1(U�

k−1zk−1). This linear combination is given by
the covariance of the unexplained part of the response variable zk−1 and the
unused part of explanatory variables Uk−1.

2. Regress the current explanatory matrix Uk−1 on index Tk

wk =
(
T�

k Tk

)−1
T�

k Uk−1

and the yet-unexplained part of response zk−1 on index Tk

β̂k =
(
T�

k Tk

)−1
T�

k zk−1 ,

thus obtaining the kth regression coefficient.
3. Compute residuals, that is the remaining parts of explanatory and response

variables: Uk = Uk−1 − Tkwk and zk = zk−1 − Tkbk. This implies that the indices
Tk and T l are not correlated for k < l.

4. Iterate by setting k = k + 1 or stop if k = q is large enough.

This algorithm provides us with indices Tk, which define the analogs of principle
components in PCR, and the corresponding regression coefficients bk in (8.15). The
main open question is how to choose the number of components q. The original
method proposed by Wold (1978) is based on cross validation. Provided that CVk

from (8.7) represents the CV index of PLS estimate with k factors, an additional
index Tk+1 is added if Wold’s R criterion R = CVk+1|CVk is smaller than 1. This
selects the first local minimum of the CV index, which is superior to finding the
global minimum of CVk as shown in Osten (1988). Alternatively, one can stop
already when Wold’s R exceeds 0.90 or 0.95 bound (modified Wold’s R criteria) or
to use other variable selection criteria such as AIC. In a recent simulation study,
Li et al. (2002) showed that modified Wold’s R is preferable to Wold’s R and AIC.
Furthermore, similarly to PCR, there are attempts to use GA for the component
selection, see Leardi and Gonzáles (1998) for instance.

Next, the first results on the asymptotic behavior of PLS appeared only during
last decade. The asymptotic behavior of prediction errors was examined by Helland
and Almoy (1994). The covariance matrix, confidence and prediction intervals
based on PLS estimates were first studied by Denham (1997), but a more compact

(Non) Linear Regression Modeling 643

expression was presented in Phatak et al. (2002). It is omitted here due to many
technicalities required for its presentation.There are also attempts tofinda sample-
specific prediction error of PLS, which were compared by Faber et al. (2003).

Finally, note that there are many extensions of the presented algorithm, which is
usually denoted PLS1. First of all, there are extensions (PLS2, SIMPLS, etc.) of PLS1
to models with multiple dependent variables, see Jong (1993) and Frank et al. (1993)
for instance, which choose linear combinations (latent variables) not only within
explanatory variables, but does the same also in the space spanned by dependent
variables. A recent survey of these and other so-called two-block methods is given
in Wegelin (2000). PLS was also adapted for on-line process modeling, see Qin
(1997) for a recursive PLS algorithm. Additionally, in an attempt to simplify the
interpretation of PLS results, Trygg and Wold (2002) proposed orthogonalized
PLS. See Wold et al (2001) for further details on recent developments.

5Example 5 Let us use again data Pollution, although it is not a typical application
of PLS. As explained in Sects. 8.1.7 and 8.1.9, PLS and PCR are both based on the
same principle (searching for linear combinations of original variables), but use
different objective functions. To demonstrate, we estimated PLS for 1 to 15 latent
variables and plotted the fraction of the X and y variance explained by the PLS
latent variables in the same way as in Fig. 8.1. Both curves are in Fig. 8.4. Almost
all of the variability in X is captured by the first latent variable, although this
percentage is smaller than in the case of PCR. On the other hand, the percentage
of the variance of y explained by the first k latent variables increases faster than in
the case of PCR, see Fig. 8.4 (solid versus dotted line).

Comparison of the Methods 8.1.10

Methods discussed in Sects. 8.1.3–8.1.9 are aiming at the estimation of (nearly)
singular problems and they are often very closely related, see Sect. 8.1.7. Here we
provide several references to studies comparing the discussed methods.

First, an extensive simulation study comparing variable selection, PCR, RR, and
PLS regression methods is presented in Frank et al. (1993). Although the results
are conditional on the simulation design used in the study, they indicate that
PCR, RR, and PLS are, in the case of ill-conditioned problems, highly preferable
to variable selection. The differences between the best methods, RR and PLS, are
rather small and the same holds for comparison of PLS and PCR, which seems to be
slightly worse than RR. An empirical comparison of PCR and PLS was also done by
Wentzell and Montoto (2003) with the same result. Next, the fact that neither PCR,
nor PLS asymptotically dominates the other method was proved in Helland and
Almoy (1994) and further discussed in Helland (2001). A similar asymptotic result
was also given by Stoica and Söderström (1998). Finally, the fact that RR should
not perform worse than PCR and PLS is supported by Theorem 4 in Sect. 8.1.7.

644 Pavel Čížek

2 4 6 8 10 12 14

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of PCs

%
 o

f v
ar

ia
nc

e

Figure 8.4. Fraction of the explained variance of X (dashed line) and y (solid line) by the first k

latent variables in PLS regression and by first k PCs (dotted lines)

Nonlinear Regression Modeling8.2

In this section, we study the nonlinear regression model

yi = h(xi, β0) + εi , (8.16)

i = 1, … , n,whereh : Rp×Rk → R is aknownregression functionandβ0 is avector
of k unknown parameters. Let us note that the methods discussed in this section
are primarily meant for truly nonlinear models rather than intrinsically linear
models. A regression model is called intrinsically linear if it can be unambiguously
transformed to a model linear in parameters. For example, the regression model
y = β1x|(β2 + x) can be expressed as 1|y = 1|β1 + β2|β1x, which is linear in
parameters θ1 = 1|β1 and θ2 = β2|β1. Transforming a model to its linear form can
often provide better inference, such as confidence regions, although one has to be
aware of the effects of the transformation on the error-term distribution.

We first discuss the fitting and inference in the nonlinear regression (Sects. 8.2.1
and 8.2.2), whereby we again concentrate on the least square estimation. For an ex-
tensive discussion of theory and practice of nonlinear least squares regression see
monographs Amemiya (1983), Bates and Watts (1988) and Seber and Wild (2003).
Second, similarly to the linear modeling section, methods for ill-conditioned non-
linear systems are briefly reviewed in Sect. 8.2.3.

(Non) Linear Regression Modeling 645

Fitting of Nonlinear Regression 8.2.1

In this section, we concentrate on estimating the vector β0 of unknown parameters
in (8.16) by nonlinear least squares.

8Definition 8 The nonlinear least squares (NLS) estimator for the regression mod-
el (8.16) is defined by

β̂NLS
= argmin

β∈R p

n∑

i=1

{yi − ŷi(β)}2 = argmin
β∈R p

n∑

i=1

{yi − h(xi, β)}2 . (8.17)

Contrary to the linear model fitting, we cannot express analytically the solution
of this optimization problem for a general function h. On the other hand, we can
try to approximate the nonlinear objective function using the Taylor expansion
because the existence of the first two derivatives of h is an often used condition for
the asymptotic normality of NLS, and thus, could be readily assumed. Denoting
h(̂β) = {h(xi, β̂)}n

i=1 and Sn(̂β) =
∑n

i=1[yi − h(xi, β̂)]2, we can state the following
theorem from Amemiya (1985).

5Theorem 5 Let εi in (8.16) are independent and identically distributed with
E(ε|X) = 0 and Var(ε|X) = σ2In and let B be an open neighborhood of β0.
Further, assume that h(x, β) is continuous on B uniformly with respect to x and
twice continuously differentiable in B and that

1. limn→∞ Sn(β) �= 0 for β �= β0;

2. [∂h(β)|∂β�]�[∂h(β)|∂β�]|n converges uniformly in B to a finite matrix A(β),
such that A(β0) is nonsingular;

3. h(β1)�[∂2h(β2)|∂βj∂βk]|n converges uniformly for β1, β2 ∈ B to a finite matrix
for all j, k = 1, … , k.

Then the NLS estimator β̂NLS
is consistent and asymptotically normal

√
n
(
β̂NLS

− β0

)
→ N

(
0,σ2A(β0)−1

)
. (8.18)

Hence, although there is no general explicit solution to (8.17), we can assume
without loss of much generality that the objective function Sn(̂β) is twice differ-
entiable in order to devise a numerical optimization algorithm. The second-order
Taylor expansion provides then a quadratic approximation of the minimized func-
tion, which can be used for obtaining an approximate minimum of the function,
see Amemiya (1983). As a result, one should search in the direction of the steepest
descent of a function, which is given by its gradient, to get a better approximation

646 Pavel Čížek

of the minimum. We discuss here the incarnations of these methods specifically
for the case of quadratic loss function in (8.17).

Newton’s Method
The classical method based on the gradient approach is Newton’s method, see
Kennedy and Gentle (1980) and Amemiya (1983) for detailed discussion. Starting
from an initial point β̂1

, a better approximation is found by taking

β̂k+1
= β̂k

− H−1
(

r2, β̂k
)

J
(

r , β̂k
)

= (8.19)

= β̂k
−

[

J
(

h, β̂k
)�

J
(

h, β̂k
)

+
n∑

l=1

ri

(̂
β
)

H
(

hi, β̂k
)]−1

J
(

h, β̂k
)�

r
(
β̂k
)

,

where r(β) = {[yi − h(xi, β)]}n
i=1 represents the vector of residuals, J(f , β) =

∂f (β)|∂β� is the Jacobian matrix of a vector function f (β), and H(f , β) =
∂2{∑n

i=1 f i(β)} |∂β∂β� is the Hessian matrix of the sum of f (β).
To find β̂NLS

, (8.19) is iterated until convergence is achieved. This is often verified
by checking whether the relative change from β̂k

to β̂k+1
is sufficiently small. Un-

fortunately, this criterion can indicate a lack of progress rather than convergence.
Instead, Bates and Watts (1988) proposed to check convergence by looking at some
measure of orthogonality of residuals r (̂βk

) towards the regression surface given
by h(̂βk

), since the identification assumption of model (8.16) is E(r(β0)|X) = 0. See
Björck (1996), Kennedy and Gentle (1980) and Thisted (1988) for more details and
further modifications.

To evaluate iteration (8.19), it is necessary to invert the Hessian matrix H(r2, β).
From the computational point of view, all issues discussed in Sect. 8.1 apply here
too and one should use a numerically stable procedure, such as QR or SVD de-
compositions, to perform the inversion. Moreover, to guarantee that (8.19) leads to
a better approximation of the minimum, that is r (̂βk+1

)�r (̂βk+1
) ≤ r (̂βk

)�r (̂βk
), the

Hessian matrix H(r2, β̂k
) needs to be positive definite, which in general holds only

in a neighborhood of β0 (see the Levenberg–Marquardt method for a remedy).
Even if it is so, the step in the gradient direction should not be too long, otherwise
we “overshoot.” Modified Newton’s method addresses this by using some fraction
αk+1 of iteration step β̂k+1

= β̂k
− αk+1H−1(r2, β̂k

)J(r , β̂k
). See Berndt et al. (1974),

Fletcher and Powell (1963) and Kennedy and Gentle (1980) for some choices ofαk+1 .

Gauss–Newton Method
The Gauss–Newton method is designed specifically for NLS by replacing the re-
gression function h(xi, β̂) in (8.17) by its first-order Taylor expansion. The resulting
iteration step is

β̂k+1
= β̂k

−

{
J
(

h, β̂k
)�

J
(

h, β̂k
)}−1

J
(

h, β̂k
)�

r
(
β̂k
)

. (8.20)

(Non) Linear Regression Modeling 647

Being rather similar to Newton’s method, it does not require the Hessian matrix
H(r2, β̂k

), which is “approximated” by J(h, β̂k
)�J(h, β̂k

) (both matrices are equal
in probability for n → ∞ under assumptions of Theorem 5, see Amemiya, 1985).
Because it only approximates the true Hessian matrix, this method belongs to
the class of quasi-Newton methods. The issues discussed in the case of Newton’s
method apply also to the Gauss–Newton method.

Levenberg–Marquardt Method
Depending on data and the current approximation β̂k

of β̂NLS
, the Hessian matrix

H(̂βk
) or its approximations such as J(h, β̂k

)�J(h, β̂k
) can be badly conditioned or

not positive definite, which could even result in divergence of Newton’s method (or
a very slow convergence in the case of modified Newton’s method). The Levenberg–
Marquardt method addresses the ill-conditioning by choosing the search direction
dk = β̂k+1

− β̂k
as a solution of

{
J(h, β̂k

)�J(h, β̂k
) + τIp

}
dk = −J(h, β̂k

)�r (̂βk
) (8.21)

(see Marquardt, 1963). This approach is an analogy of RR used in linear regression
(Sect. 8.1.6). Similarly to RR, the Levenberg–Marquardt method improves condi-
tioning of the Hessian matrix and it limits the length of the innovation vector dk

compared to the (Gauss-)Newton method. See Kennedy and Gentle (1980) and
Björck (1996) for a detailed discussion of this algorithm. There are also algorithms
combining both Newton’s and the Levenberg–Marquardt approaches by using at
each step the method that generates a larger reduction in objective function.

Although Newton’s method and its modifications are most frequently used in
applications, the fact that they find local minima gives rise to various improve-
ments and alternative methods. They range from simple starting the minimization
algorithm from several (randomly chosen) initial points to general global-search
optimization methods such as genetic algorithms mentioned in Sect. 8.1.3 and
discussed in more details in Chaps. II.5 and II.6.

Statistical Inference 8.2.2

Similarly to linearmodeling, the inference innonlinear regressionmodels ismainly
based, besides the estimate β̂NLS

itself, on two quantities: the residual sum of
squares RSS = r (̂βNLS

)�r (̂βNLS
) and the (asymptotic) variance of the estimate

Var(̂βNLS
) = σ2A(β0)−1, see (8.18). Here we discuss how to compute these quantities

for β̂NLS
and its functions.

RSS will be typically a by-product of a numerical computation procedure, since
it constitutes the minimized function. RSS also provides an estimate of σ2: s2 =
RSS|(n − k). The same also holds for the matrix A(β0), which can be consistently
estimated by A(̂βNLS

) = J(h, β̂k
)�J(h, β̂k

), that is, by the asymptotic representation

of the Hessian matrix H(r2, β̂k
). This matrix or its approximations are computed at

every step of (quasi-)Newton methods for NLS, and thus, it will be readily available
after the estimation.

648 Pavel Čížek

Furthermore, the inference in nonlinear regression models may often involve
a nonlinear (vector) function of the estimate f (̂βNLS

); for example, when we test
a hypothesis (see Amemiya, 1983, for a discussion of NLS hypothesis testing).
Contrary to linear functions of estimates, where Var(ÂβNLS

+ a) = A�Var(̂βNLS
)A,

there is no exact expression for Var[f (̂βNLS
)] in a general case. Thus, we usually

assume the first-order differentiability of f (·) and use the Taylor expansion to
approximate this variance. Since

f
(̂
β
)

= f
(
β0

)
+
∂f

(
β0

)

∂β�
(̂
β − β0

)
+ o

(∥∥̂β − β0

∥∥) ,

it follows that the variance can be approximated by

Var
[

f
(
β̂NLS

)] .=
∂f

(
β̂NLS

)

∂β� Var
(
β̂NLS

) ∂f
(
β̂NLS

)

∂β
.

Hence, having an estimate of Var(̂βNLS
), the Jacobian matrix ∂f |∂β� of function f

evaluated at β̂NLS
provides the first-order approximation of the variance of f (̂βNLS

).

Ill-conditioned Nonlinear System8.2.3

Similarly to linearmodeling, thenonlinearmodels canalsobe ill-conditionedwhen
the Hessian matrix H(r2, β̂) is nearly singular or does not even have a full rank, see
Sect. 8.1.2. This can be caused either by the nonlinear regression function h itself
or by too many explanatory variables relative to sample size n. Here we mention
extensions of methods dealing with ill-conditioned problems in the case of linear
models (discussed in Sects. 8.1.5–8.1.9) to nonlinear modeling: ridge regression,
Stein-rule estimator, Lasso, and partial least squares.

First, one of early nonlinear RR was proposed by Dagenais (1983), who simply
added a diagonal matrix to H(r2, β) in (8.19). Since the nonlinear modeling is done
by minimizing of an objective function, a more straightforward way is to use the
alternative formulation (8.11) of RR and to minimize

n∑

i=1

{
yi − h

(
x�i , β

)}2
+ k

p∑

j=1

β2
j = r

(
β
)�

r
(
β
)

+ k‖β‖2
2 , (8.22)

where k represents the ridge coefficient. See Ngo et al. (2003) for an application of
this approach.

Next, equally straightforward is an application of Stein-rule estimator (8.8) in
nonlinear regression, see Kim and Hill (1995) for a recent study of positive-part
Stein-rule estimator within the Box–Cox model. The same could possibly apply
to Lasso-type estimators discussed in Sect. 8.1.8 as well: the Euclidian norm ‖β‖2

2
in (8.22) would just have to be replaced by another Lq norm. Nevertheless, the

(Non) Linear Regression Modeling 649

behavior of Lasso within linear regression has only recently been studied in more
details, and to my best knowledge, there are no results on Lasso in nonlinear
models yet.

Finally, there is a range of modifications of PLS designed for nonlinear regres-
sion modeling, which either try to make the relationship between dependent and
expl variables linear in unknown parameters or deploy an intrinsically nonlinear
model. First, the methods using linearization are typically based on approximating
a nonlinear relationship by higher-order polynomials (see quadratic PLS by Wold
et al. (1989), and INLR approach by Berglund and Wold (1997)) or a piecewise con-
stant approximation (GIFI approach, see Berglund et al., 2001). Wold et al (2001)
present an overview of these methods. Second, several recent works introduced
intrinsic nonlinearity into PLS modeling. Among most important contributions,
there are Qin and McAvoy (1992) and Malthouse et al. (1997) modeling the non-
linear relationship using a forward-feed neural network, Wold (1992) and Durand
and Sabatier (1997) transforming predictors by spline functions, and Bang et al.
(2003) using fuzzy-clustering regression approach.

References
Akaike, H. (1974). A new look at the statistical model identification. IEEE Transac-

tions on Automatic Control, 19: 716–723.
Akdeniz, F., Yüksel, G., and Wan, A.T.K. (2004). The moments of the operational

almost unbiased ridge regression estimator. Applied Mathematics and Compu-
tation: in press.

Amemiya, T. (1983). Non-linear regression models. In Griliches, Z. and Intriliga-
tor,M.D. (eds)Handbook of Econometrics, Volume 1.North-HollandPublishing
Company, Amsterdam.

Amemiya,T. (1985).Advanced Econometrics.HarvardUniversityPress,Cambridge,
USA.

Bang, Y.H., Yoo, C.K. and Lee, I-B. (2003). Nonlinear PLS modeling with
fuzzy inference system. Chemometrics and Intelligent Laboratory Systems, 64:
137–155.

Barlow, J.L. (1993). Numerical aspects of solving linear least squares problems. In
Rao, C.R. (ed), Handbook of Statistics, Volume 9. Elsevier, Amsterdam London
New York Tokyo.

Barros, A.S. and Rutledge, D.N. (1998). Genetic algorithm applied to the selection of
principal components. Chemometrics and Intelligent Laboratory Systems, 40:
65–81.

Bates, D.M. and Watts, D.G. (1988). Nonlinear Regression Analysis and Its Applica-
tions. Wiley, New York, USA.

Bedrick, E.J. and Tsai, C-L. (1994). Model Selection for Multivariate Regression in
Small Samples. Biometrics, 50: 226–231.

Berglund, A. and Wold, S. (1997). INLR, implicit nonlinear latent variable regres-
sion. Journal of Chemometrics, 11: 141–156.

650 Pavel Čížek

Berglund, A., Kettaneh, Wold, S., Bendwell, N. and Cameron, D.R. (2001). The GIFI
approach to non-linear PLS modelling. Journal of Chemometrics, 15: 321–336.

Berndt, E.R., Hall, B.H., Hall, R.E. and Hausman, J.A. (1974). Estimation and
Inference in Nonlinear Structural Models. Annals of Econometric and Social
Measurement, 3: 653–666

Björck, A. (1996). Numerical Methods for Least Squares Problems. SIAM Press,
Philadelphia, USA.

Björkström, A. and Sundberg, R. (1996). Continuum regression is not always
continuous. Journal of Royal Statistical Society B, 58: 703–710.

Björkström, A. and Sundberg, R. (1999). A generalized view on continuum regres-
sion. Scandinavian Journal of Statistics, 26: 17–30.

Brooks, R. and Stone, M. (1990). Continuum regression: cross-validated sequen-
tially constructed prediction embracing ordinary least squares, partial least
squares and principal component regression. Journal of Royal Statistical Soci-
ety B, 52: 237–269.

Brooks, R. and Stone, M. (1994). Joint continuum regression for multiple predi-
cants. Journal of American Statistical Association, 89: 1374–1377.

Chambers, L. (1998). Practical Handbook of Genetic Algorithms: Complex Coding
Systems, Volume III. CRC Press, USA.

Chawla, J.S. (1990). A note on ridge regression. Statistics & Probability Letters, 9:
343–345.

Coutis, C. (1996). Partial least squares algorithm yields shrinkage estimators. The
Annals of Statistics, 24: 816–824.

Dagenais, M.G. (1983). Extension of the ridge regression technique to non-linear
models with additive errors. Economic Letters, 12: 169–174.

Danilov, D. and Magnus, J.R. (2004). On the harm that ignoring pretesting can
cause. Journal of Econometrics, in press.

Denham, M.C. (1997). Prediction intervals in partial least squares. Journal of
Chemometrics, 11: 39–52

Depczynski, U., Frost, V.J. and Molt, K. (2000). Genetic algorithms applied to
the selection of factors in principal component regression. Analytica Chimica
Acta, 420: 217–227.

Durand, J-F. and Sabatier, R. (1997). Additive spline for partial least squares re-
gression. Journal of American Statistical Association, 92: 1546–1554.

Edwards, D. and Havranek, T. (1987). A fast model selection procedure for large
families of models. Journal of American Statistical Association, 82: 205–213.

Efron, B., Hastie, T., Johnstone, I. and Tibshirani, R. (2004). Least Angle Regression.
Annals of Statistics, 32: in press.

Efroymson, M.A. (1960). Multiple regression analysis. In Ralston, A. and Wilf, H.S.
(eds), Mathematical Methods for Digital Computers, Vol. 1, Wiley, New York,
USA.

Faber, N.M., Song, X-H. and Hopke, P.K. (2003). Sample specific standard error of
prediction for partial least squares regression. Trends in Analytical Chemistry,
22: 330–334.

(Non) Linear Regression Modeling 651

Farebrother, R.W. (1976). Further results on the mean square error of ridge esti-
mation. Journal of Royal Statistical Society B, 38: 248–250.

Fletcher, R. and Powell, M.J.D. (1963). A rapidly convergent descent method for
minimization. Computer Journal 6: 163–168.

Frank, I.E., Friedman, J.H., Wold, S., Hastie, T. and Mallows, C. (1993). A statistical
view of some chemometrics regression tools. Technometrics, 35(2): 109–148.

Garthwaite, P.H. (1994). An interpretation of partial least squares. The Journal of
American Statistical Association, 89: 122–127.

Gentle, J.E. (1998). Numerical Linear Algebra for Applications in Statistics.
Springer, New York, USA.

Gruber, M.H.J. (1998). Improving efficiency by shrinkage: the James-Stein and ridge
regression estimators. Marcel Dekker, Inc., New York, USA.

Gunst, R.F. and Mason, R.L. (1980). Regression Analysis and Its Application:
a Data-Oriented Approach. Marcel Dekker, Inc., New York, USA.

Härdle, W. (1992). Applied Nonparametric Regression. Cambridge University Press,
Cambridge, UK.

Härdle,W. andSimar, L. (2003).Applied Multivariate Statistical Analysis. Springer,
Heidelberg, Germany.

Hawkins,D.M.andYin,X. (2002).A faster algorithmfor ridge regressionof reduced
rank data. Computational Statistics & Data analysis, 40: 253–262.

Helland, I.S. (2001). Some theoretical aspects of partial least squares regression.
Chemometrics and Intelligent Laboratory Systems, 58: 97–107.

Helland, I.S. and Almoy, T. (1994). Comparison of Prediction Methods When Only
a Few Components are Relevant. Journal of American Statistical Association,
89: 583–591.

Hocking, R.R. (1996). Methods and Applications of Linear Models: Regression and
the Analysis of Variance, 2nd Edition. Wiley, New York, USA.

Hoerl, A.E. and Kennard, R.W. (1970). Ridge regression: biased estimation of
nonorthogonal problems. Technometrics, 12: 55–67.

Hoerl, A.E., Kennard, R.W. and Baldwin, K.F. (1975). Ridge regression: some sim-
ulations. Communications in Statistics, 4: 105–123.

Hughes, A.W. and Maxwell, L.K. (2003). Model selection using AIC in the pres-
ence of one-sided information. Journal of Statistical Planning and Inference,
115: 379–411.

Hwang, J.T.G. and Nettleton, D. (2003). Principal components regression with
data-chosen components and related methods. Technometrics, 45: 70–79.

Ibrahim, J.G. and Ming-Hui, C. (1997). Predictive Variable Selection for the Multi-
variate Linear Model. Biometrics, 53: 465–478.

Jiang, W. and Liu, X. (2004). Consistent model selection based on parameter
estimates. Journal of Statistical Planning and Inference, 121: 265–283.

Jolliffe, I.T. (1982). A note on the use of the principle components in regression.
Applied Statistics, 31(3): 300–303.

Jong, S. (1993). SIMPLS: An alternative approach to partial least squares regression.
Chemometrics and Intelligent Laboratory Systems, 18: 251–263.

652 Pavel Čížek

Jong, S. (1995). PLS shrinks. Journal of Chemometrics, 9: 323–326.
Judge, G.G. and Bock, M.E. (1983). Biased estimation. In Griliches, Z. and Intriliga-

tor, M.D. (eds), Handbook of Econometrics, Volume 1, North-Holland Publish-
ing Company, Amsterdam.

Kadiyala,K. (1984).Aclassof almostunbiasedandefficient estimatorsof regression
coefficients. Economic Letters, 16: 293–296.

Kennedy, W. J. and Gentle, J.E. (1980). Statistical Computing. Marcel Dekker, Inc.,
New York, USA.

Kibria, G. (1996). On preliminary test ridge regression estimators for linear restric-
tions in a regression model with non-normal disturbances. Communications
in Statistics, Theory and Methods, 25: 2349–2369.

Kim, M. and Hill, R.C. (1995). Shrinkage estimation in nonlinear regression: the
Box-Cox transformation. Journal of Econometrics, 66: 1–33.

Knight, K. and Fu, W. (2000). Asymptotics for Lasso-type estimators. The Annals
of Statistics, 28: 1356–1389.

Leardi,R. andGonzáles,A.L. (1998).Genetic algorithmsapplied to feature selection
in PLS regression: how and when to use them. Chemometrics and Intellingent
Laboratory Systems, 41: 195–207.

Leamer, E.E. (1983). Model choice and specification analysis. In Griliches, Z. and
Intriligator, M.D. (eds), Handbook of Econometrics, Volume 1, North-Holland
Publishing Company, Amsterdam.

Li, K-C. (1987). Asymptotic optimality for Cp, CL, cross-validation and generalized
cross-validation: discrete index set. Annals of Statistics, 15: 958–975.

Li, B., Morris, J. and Martin, E.B. (2002). Model section for partial least squares
regression. Chemometrics and Intelligent Laboratory Systems, 64: 79–89.

Magnus, J.R. (1999). The traditional pretest estimator. Theory of Probability and
Its Applications. 44(2): 293–308.

Magnus, J.R. (2002). Estimation of the mean of a univariate normal distribution
with known variance. The Econometrics Journal, 5, 225–236.

Malthouse, E.C., Tamhane, A.C. and Mah, R.S.H. (1997). Nonlinear partial least
squares. Computers in Chemical Engineering, 21(8): 875–890.

Marquardt, D.W. (1963). An algorithm for least-squares estimation of nonlinear
parameters. Journal of the Society for Industrial and Applied Mathematics, 11:
431–441.

McDonald, G.C. and Schwing, R.C. (1973). Instabilities of regression estimates
relating air pollution to mortality. Technometrics, 15: 463–482.

Miller, A.J. (1984). Selection of Subsets of Regression Variables. Journal of the Royal
Statistical Society A, 147(3): 389–425.

Miller, A. (2002). Subset Selection in Regression, Chapman & Hall|CRC, USA.
Montgomery, D.C., Peck, E.A. and Vining, G.G. (2001). Introduction to Linear Re-

gression Analysis, 3rd Edition, Wiley, New York, USA.
Ngo, S.H., Kemény, S. and Deák, A. (2003). Performance of the ridge regression

methods as applied to complex linear and nonlinear models. Chemometrics
and Intelligent Laboratory Systems, 67: 69-78.

(Non) Linear Regression Modeling 653

Ohtani, K. (1986). On small sample properties of the almost unbiased generalized
ridge estimator. Communications in Statistics, Theory and Methods, 22: 2733–
2746.

Osborne, M.R., Presnell, B. and Turlach, B.A. (1999). On the Lasso and its dual.
Journal of Computational and Graphical Statistics, 9: 319–337.

Osten, D.W. (1988). Selection of optimal regression models via cross-validation.
Journal of Chemometrics, 2: 39–48.

Phatak, A., Reilly, P.M. and Pendilis, A. (2002). The asymptotic variance of the
univariate PLS estimator. Linear Algera and its Applications, 354: 245–253.

Rao, C.R. and Toutenberg, H. (1999). Linear Models, Springer, New York, USA.
Rao, C.R. and Wu, Y. (1989). A strongly consistent procedure for model selection

in a regression problem. Biometrika, 76: 369–374.
Qin, S. and McAvoy, T. (1992). Nonlinear PLS modeling using neural networks.

Computers in Chemical Engineering, 16: 379–391.
Qin, S.J. (1997). Recursive PLS algorithms for adaptive data modeling. Computers

in Chemical Engineering, 22(4): 503–514.
Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics,

6: 461–464.
Seber, G.A.F. and Wild, C.J. (2003). Nonlinear Regression, Wiley, New York, USA.
Shao, J. (1993). Linear model selection by cross-validation. Journal of American

Statistical Association, 88: 486–494.
Shao, J. (1997). An asymptotic theory for linear model selection. Statistica Sinica,

7: 221–264.
Shi, P. and Tsai, C.-L. (1998). A note on the unification of the Akaike information

criterion. Journal of the Royal Statistical Society B, 60: 551–558.
Shiaishi, T. and Konno, Y. (1995). On construction of improved estimators in

multiple-design multivariate linear models under general restrictions. Annals
of Institute of Statistical Mathematics, 46: 665–674.

Shibata, R. (1981). An optimal selection of regression variables. Biometrika, 68:
45–54.

Shibata, R. (1984). Approximate efficiency of a selection procedure for the number
of regression variables. Biometrika, 71: 43–49.

Singh, R.K., Pandey, S. K. and Srivastava, V.K. (1994). A generalized class of shrink-
age estimators in linear regression when disturbances are not normal. Com-
munications in Statistics, Theory and Methods, 23: 2029–2046.

Stoica, P. and Söderström, T. (1998). Partial least squares: a first-order analysis.
Scandinavian Journal of Statistics, 25: 17–26.

Stone, M. (1974). Cross-validatory choice and assessment of statistical predictions.
Journal of Royal Statistical Society B, 36: 111–147.

Sundberg, R. (1993). Continuum regression and ridge regression. Journal of Royal
Statistical Society B, 55: 653–659.

Swamy, P.A.V.B., Mehta, J.S. and Rappoport, P.N. (1978). Two methods of evaluating
Hoerl and Kennard’s ridge regression. Communications in Statistics A, 12: 1133–
1155.

654 Pavel Čížek

Thisted, R.A. (1988). Elements of Statistical Computing. Chapman and Hall, Lon-
don New York.

Tibshirani, R. (1996). Regression shrinkage and selection via Lasso. Journal of
Royal Statistical Society B, 58: 267–288.

Trygg, J. and Wold, S. (2002). Orthogonal projections to latent structures, O-PLS.
Journal of Chemometrics, 16(3): 119–128.

Ullah, A., Sristava, V.K. and Chandra, R. (1983). Properties of shrinkage estimators
in linear regressionwhendisturbancesarenotnormal. Journal of Econometrics,
21: 289–402.

Vinod, H.D. and Ullah, A. (1981). Recent Advances in Regression Methods. Marcel
Dekker Inc., New York, USA.

Wan, A.T.K. (2002). On generalized ridge regression estimators under collinearity
and balanced loss. Applies Mathematics and Computation, 129: 455–467.

Wang, S.G. and Chow, S.C. (1990). A note on adaptive generalized ridge regression
estimator. Statistics & Probability Letters, 10: 17–21.

Wang, S.G., Tse, S.K. and Chow, S.C. (1990). On the measures of multicollinearity
in least squares regression. Statistics & Probability Letters, 9: 347–355.

Wasserman, G.S. and Sudjianto, A. (1994). All subsets regression using a generic
search algorithm. Computers and Industrial Engineering, 27: 489–492.

Wegelin, J.A. (2000). A survey of partial least squares (PLS) methods, with em-
phasis on the two-block case. Technical Report 371, Department of Statistics,
University of Washington, Seattle.

Weiss, R.E. (1995). The influence of variable selection: a bayesian diagnostic per-
spective. Journal of the American Statistical Association, 90: 619–625.

Wentzell, P.D. and Montoto, L.V. (2003). Comparison of principal components
regression and partial least squares regression through generic simulations of
complex mixtures. Chemometrics and Intelligent Laboratory Systems, 65: 257–
279.

Wold, H. (1966). Estimation of principle components and related models by iter-
ative least squares. In Krishnaiaah (ed) Multivariate analysis. Academic Press,
New York.

Wold, S. (1978). Cross-validation estimation of the number of components in factor
and principal components analysis. Technometrics, 24: 397–405.

Wold, S. (1992). Nonlinear partial least squares modelling II. Spline inner relation.
Chemometrics and Intellingent Laboratory Systems, 14: 71–84.

Wold, S., Kettaneh-Wold, N. and Skagerberg, B. (1989). Nonlinear PLS modelling.
Chemometrics and Intelligent Laboratory Systems, 7: 53–65.

Wold, S., Trygg, J., Berglund, A. and Atti, H. (2001). Some recent developments in
PLS modeling. Chemometrics and Intelligent Laboratory Systems, 58: 131–150.

Zhang, P. (1992). Inference after variable selection in linear regression models.
Biometrika, 79(4): 741–746.

Zheng, X. and Loh, W-Y. (1995). Consistent variable selection in linear models.
Journal of the American Statistical Association, 90: 151–156.

III.9Robust Statistics
Laurie Davies, Ursula Gather

9.1 Robust Statistics; Examples and Introduction . 656

Two Examples . 656
General Philosophy . 657
Functional Approach . 660

9.2 Location and Scale inR . 661

Location, Scale and Equivariance . 661
Existence and Uniqueness . 662
M-estimators . 662
Bias and Breakdown . 665
Confidence Intervals and Differentiability . 668
Efficiency and Bias . 669
Outliers in R . 670

9.3 Location and Scale inRk . 672

Equivariance and Metrics . 672
M-estimators of Location and Scale . 674
Bias and Breakdown . 675
High Breakdown Location and Scale Functionals in R

k . 676
Outliers in R . 679

9.4 Linear Regression. 681

Equivariance and Metrics . 681
M-estimators for Regression . 681
Bias and Breakdown . 682
High Breakdown Regression Functionals . 683
Outliers. 684

9.5 Analysis of Variance. 685

One-way Table . 685
Two-way Table . 687

Robust Statistics 657

Robust Statistics;
Examples and Introduction 9.1

Two Examples 9.1.1

The first example involves the real data given in Table 9.1 which are the results of
an interlaboratory test. The boxplots are shown in Fig. 9.1 where the dotted line
denotes the mean of the observations and the solid line the median.

We note that only the results of the Laboratories 1 and 3 lie below the mean
whereas all the remaining laboratories return larger values. In the case of the me-
dian, 7 of the readings coincide with the median, 24 readings are smaller and 24
are larger. A glance at Fig. 9.1 suggests that in the absence of further information
the Laboratories 1 and 3 should be treated as outliers. This is the course which
we recommend although the issues involved require careful thought. For the mo-
ment we note simply that the median is a robust statistic whereas the mean is
not.

The secondexample concernsquantifying the scatter of real valuedobservations
x1, … , xn. This example is partially taken from Huber (1981) and reports a dispute

Table 9.1. The results of an interlaboratory test involving 14 laboratories

1 2 3 4 5 6 7 9 9 10 11 12 13 14

1.4 5.7 2.64 5.5 5.2 5.5 6.1 5.54 6.0 5.1 5.5 5.9 5.5 5.3

1.5 5.8 2.88 5.4 5.7 5.8 6.3 5.47 5.9 5.1 5.5 5.6 5.4 5.3

1.4 5.8 2.42 5.1 5.9 5.3 6.2 5.48 6.1 5.1 5.5 5.7 5.5 5.4

0.9 5.7 2.62 5.3 5.6 5.3 6.1 5.51 5.9 5.3 5.3 5.6 5.6

Figure 9.1. A boxplot of the data of Table 9.1. The dotted line and the solid line denote respectively

the mean and the median of the observations

658 Laurie Davies, Ursula Gather

between Eddington (1914), p. 147 and Fisher (1920), p. 762 about the relative merits
of

sn =
(

1

n

∑
(xi − x̄)2

) 1
2

and dn =
1

n

∑
|xi − x̄| .

Fisher argued that for normal observations the standard deviation sn is about 12%
more efficient than the mean absolute deviation dn. In contrast Eddington claimed
that his experience with real data indicates that dn is better than sn. In Tukey (1960)
and Huber (1977) we find a resolution of this apparent contradiction. Consider the
model

Nε =
(
1 − ε

)
N
(
µ,σ2

)
+ εN

(
µ, 9σ2

)
, (9.1)

where N(µ,σ2) denotes a normal distribution with mean µ and variance σ2 and
0 ≤ ε ≤ 1. For data distributed according to (9.1) one can calculate the asymptotic
relative efficiency ARE of dn with respect to sn,

ARE(ε) = lim
n→∞ REn(ε) = lim

n→∞
Var(sn)|E(sn)2

Var(dn)|E(dn)2
.

As Huber states, the result is disquieting. Already for ε ≥ 0.002 ARE exceeds 1 and
the effect is apparent for samples of size 1000. For ε = 0.05 we have ARE(ε) = 2.035
and simulations show that for samples of size 20 the relative efficiency exceeds
1.5 and increases to 2.0 for samples of size 100. This is a severe deficiency of sn as
models such as Nε with ε between 0.01 and 0.1 often give better descriptions of
real data than the normal distribution itself. We quote Huber (1981)

thus it becomes painfully clear that the naturally occurring deviations from
the idealized model are large enough to render meaningless the traditional
asymptotic optimality theory.

General Philosophy9.1.2

The two examples of the previous section illustrate a general phenomenon. An
optimal statistical procedure based on a particular family of models M1 can differ
considerably from an optimal procedure based on another family M2 even though
the families M1 and M2 are very close. This may be expressed by saying that
optimal procedures are often unstable in that small changes in the data or the
model can lead to large changes in the analysis. The basic philosophy of robust
statistics is to produce statistical procedures which are stable with respect to small
changes in the data or model and even large changes should not cause a complete
breakdown of the procedure.

Any inspection of the data and the removal of aberrant observations may be
regarded as part of robust statistics but it was only with Pearson (1931) that the
consideration of deviations from models commenced. He showed that the ex-

Robust Statistics 659

act theory based on the normal distribution for variances is highly nonrobust.
There were other isolated papers on the problem of robustness (Pearson (1929);
Bartlett (1935); Geary (1936, 1937); Gayen (1950); Box (1953); Box and Andersen
(1955)). Tukey (1960) initiated a wide spread interest in robust statistics which
has continued to this day. The first systematic investigation of robustness is due
to Huber (1964) and was expounded in Huber (1981). Huber’s approach is func-
tional analytic and he was the first to investigate the behaviour of a statistical
functional over a full topological neighbourhood of a model instead of restricting
the investigation to other parametric families as in (9.1). Huber considers three
problems. The first is that of minimizing the bias over certain neighbourhoods
and results in the median as the most robust location functional. For large samples
deviations from the model have consequences which are dominated by the bias
and so this is an important result. The second problem is concerned with what
Tukey calls the statistical version of no free lunches. If we take the simple model
of i.i.d. N(µ, 1) observations then the confidence interval for µ based on the mean
is on average shorter than that based on any other statistic. If short confidence
intervals are of interest then one can not only choose the statistic which gives
the shortest interval but also the model itself. The new model must of course
still be consistent with the data but even with this restriction the confidence in-
terval can be made as small as desired (Davies (1995)). Such a short confidence
interval represents a free lunch and if we do not believe in free lunches then we
must look for that model which maximizes the length of the confidence interval
over a given family of models. If we take all distributions with variance 1 then
the confidence interval for the N(µ, 1) distribution is the longest. Huber consid-
ers the same problem over the family F = {F : dko(F, N(0, 1)) < ε} where dko

denotes the Kolmogoroff metric. Under certain simplifying assumptions Huber
solves this problem and the solution is known as the Huber distribution (see Hu-
ber (1981)). Huber’s third problem is the robustification of the Neyman–Pearson
test theory. Given two distributions P0 and P1 Neyman and Pearson (1933) de-
rive the optimal test for testing P0 against P1. Huber considers full neighbour-
hoods P0 of P0 and P1 of P1 and then derives the form of the minimax test for
the composite hypothesis of P0 against P1. The weakness of Huber’s approach
is that it does not generalize easily to other situations. Nevertheless it is the
spirit of this approach which we adopt here. It involves treating estimators as
functionals on the space of distributions, investigating where possible their be-
haviour over full neighbourhoods and always being aware of the danger of a free
lunch.

Hampel (1968) introduced another approach to robustness, that based on the
influence function I(x, T, F) defined for a statistical functional T as follows

I(x, T, F) = lim
ε→0

T((1 − ε)F + εδx) − T(F)

ε
, (9.2)

where δx denotes the point mass at the point x. The influence function has two
interpretations. On the one hand it measures the infinitesimal influence of an
observation situated at the point x on the value of the functional T. On the oth-

660 Laurie Davies, Ursula Gather

er hand if Pn(F) denotes the empirical measure of a sample of n i.i.d. random
variables with common distribution F then under appropriate regularity condi-
tions

lim
n→∞

√
n(T(Pn(F)) − T(F))

D= N

(
0,

∫
I(x, T, F)2 dF(x)

)
, (9.3)

where
D= denotes equality of distribution. Given a parametric family P ′ = {Pθ :

θ ∈ Θ} of distributions we restrict attention to those functionals which are Fisher
consistent that is

T(Pθ) = θ, θ ∈ Θ . (9.4)

Hampel’s idea was to minimize the asymptotic variance of T as an estimate of
a parameter θ subject to a bound on the influence function

min
T

∫
I(x, T, Pθ)2 dPθ(x) under (9.4) and sup

x
|I(x, T, Pθ)| ≤ k(θ) , (9.5)

where k(θ) is a given function of θ. Hampel complemented the infinitesimal
part of his approach by considering also the global behaviour of the function-
al T. He introduced the concept of breakdown point which has had and con-
tinues to have a major influence on research in robust statistics. The approach
based on the influence function was carried out in Hampel et al. (1986). The
strength of the Hampel approach is that it can be used to robustify in some
sense the estimation of parameters in any parametric model. The weaknesses
are that (9.5) only bounds infinitesimally small deviations from the model and
that the approach does not explicitly take into account the free lunch problem.
Hampel is aware of this and recommends simple models but simplicity is an
addition to and not an integral part of his approach. The influence function
is usually used as a heuristic tool and care must be taken in interpreting the
results. For examples of situations where the heuristics go wrong we refer to
Davies (1993).

Another approach which lies so to speak between that of Huber and Hampel is
the so called shrinking neighbourhood approach. It has been worked out in full
generality by Rieder (1994). Instead of considering neighbourhoods of a fixed size
(Huber) or only infinitesimal neighbourhoods (Hampel) this approach considers
full neighbourhoods of a model but whose size decreases at the rate of n−1|2 as
the sample size n tends to infinity. The size of the neighbourhoods is governed
by the fact that for larger neighbourhoods the bias term is dominant whereas
models in smaller neighbourhoods cannot be distinguished. The shrinking neigh-
bourhoods approach has the advantage that it does not need any assumptions of
symmetry. The disadvantage is that the size of the neighbourhoods goes to zero
so that the resulting theory is only robustness over vanishingly small neighbour-
hoods.

Robust Statistics 661

Functional Approach 9.1.3

Although a statistic based on a data sample may be regarded as a function of the
data a more general approach is often useful. Given a data set (x1, … , xn) we define
the corresponding empirical distribution Pn by

Pn =
1

n

n∑

i=1

δxi , (9.6)

where δx denotes the unit mass in x. Although Pn clearly depends on the sample
(x1, … , xn) we will usually suppress the dependency for the sake of clarity. With
this notation we can now regard the arithmetic mean x̄n =

∑n
i=1 xi|n either as

a function of the data or as a function Tav of the empirical measure Pn,

x̄n =
∫

x dPn(x) = Tav(Pn) .

The function Tav can be extended to all measures P which have a finite mean

Tav(P) =
∫

x dP(x) , (9.7)

and is now a functional defined on a certain subset of the family P of probability
measures on R. This manner of treating statistics is one whose origins go back
to von Mises (1937). In the context of robust statistics it was introduced by Huber
(1964) and has proved very useful (see Fernholz (1983)). Another example is given
by the functional Tsh defined as the length of the shortest interval which carries
a mass of at least 1|2,

Tsh(P) = argmin{|I| : P(I) ≥ 1|2, I ⊂ R} , (9.8)

where |I| denotes the length of the interval I. The idea of using the shortest half
interval goes back to Tukey (see Andrews et al. (1972)) who proposed using the
mean of the observations contained in it as a robust location functional.

The space P may be metricized in many ways but we prefer the Kolmogoroff
metric dko defined by

dko(P, Q) = sup
x∈R

|P((−∞, x]) − Q((−∞, x])| . (9.9)

The Glivenko–Cantelli theorem states

lim
n→∞ dko(Pn(P), P) = 0, a.s. , (9.10)

where Pn(P) denotes the empirical measure of the n random variables X1(P),
… , Xn(P) of the i.i.d. sequence (Xi(P))∞1 . In conjunction with (9.10) the metric dko

makes it possible to connect analytic properties of a functional T and its statistical
properties. As a first step we note that a functional T which is locally bounded in
the Kolmogoroff metric

sup{|T(Q) − T(P)| : dko(P, Q) < ε)} < ∞ , (9.11)

662 Laurie Davies, Ursula Gather

for some ε > 0 offers protection against outliers. On moving from local bounded-
ness to continuity we see that if a functional T is continuous at P then the sequence
T(Pn(P)) is a consistent statistic in that

lim
n→∞ T(Pn(P)) = T(P), a.s.

Finally we consider a functional T which is differentiable at P, that is

T(Q) − T(P) =
∫

I(x, P, T) d(Q − P)(x) + oP(dko(P, Q)) (9.12)

for some bounded function I(·, P, T) : R → R where, without loss of generality,∫
I(x, P, T) dP(x) = 0 (see Clarke (1983)). On putting

Q = Qε = (1 − ε)P + εδx

it is seen that I(x, P, T) is the influence function of (9.2). As

dko(Pn(P), P) = OP(1|
√

n) (9.13)

the central limit theorem (9.3) follows immediately. Textbooks which make use of
this functional analytic approach are as already mentioned Huber (1981), Hampel
et al. (1986), Rieder (1994), and also Staudte and Sheather (1990), a book which
can be strongly recommended to students as a well written and at the same time
deep introductory text.

Location and Scale inR9.2

Location, Scale and Equivariance9.2.1

Changes in measurement units and baseline correspond to affine transformations
on R. We write

A = {A : R→ R with A(x) = ax + b, a ≠ 0, b ∈ R} . (9.14)

For any probability measure P and for any A ∈ A we define

PA(B) = P({x : A(x) ∈ B}), B ∈ B , (9.15)

B denoting all Borel sets on R. Consider a subset P ′ of P which is closed under
affine transformations, that is

P ∈ P ′ ⇒ PA ∈ P ′ for all P ∈ P ′, A ∈ A . (9.16)

A functional Tl : P ′ → R will be called a location functional on P ′ if

Tl(PA) = A(Tl(P)), A ∈ A, P ∈ P ′ . (9.17)

Robust Statistics 663

Similarly we define a functional Ts : P ′ → R+ to be a scale functional if

Ts(PA) = |a|Ts(P), A ∈ A, A(x) = ax + b, P ∈ P ′ . (9.18)

Existence and Uniqueness 9.2.2

The fact that the mean Tav of (9.7) cannot be defined for all distributions is an
indication of its lack of robustness. More precisely the functional Tav is not locally
bounded (9.11) in the metric dko at any distribution P. The median MED(P) can be
defined at any distribution P as the mid-point of the interval of m-values for which

P((−∞, m]) ≥ 1|2 and P([m,∞)) ≥ 1|2 . (9.19)

Similar considerations apply to scale functionals. The standard deviation requires
the existence of the second moment of a distribution. The median absolute devi-
ation MAD (see Andrews et al. (1972)) of a distribution can be well defined at all
distributions as follows. Given P we define P′ by

P′(B) = P({x : |x − MED(P)| ∈ B}), B ∈ B .

and set

MAD(P) = MED(P′) . (9.20)

M-estimators 9.2.3

An important family of statistical functionals is the family of M-functionals intro-
duced by Huber (1964) Let ψ and χ be functions defined on R with values in the
interval [−1, 1]. For a given probability distribution P we consider the following
two equations for m and s

∫
ψ
(x − m

s

)
dP(x) = 0 (9.21)

∫
χ
(x − m

s

)
dP(x) = 0. (9.22)

If the solution exists and is uniquely defined we denote it by

T(P) = (Tl(P), Ts(P)) = (m, s) .

In order to guarantee existence and uniqueness conditions have to be placed on
the functionsψ and χ as well as on the probability measure P. The ones we use are
due to Scholz (1971) (see also Huber (1981)) and are as follows:

(ψ1) ψ(−x) = −ψ(x) for all x ∈ R.
(ψ2) ψ is strictly increasing

664 Laurie Davies, Ursula Gather

(ψ3) limx→∞ψ(x) = 1
(ψ4) ψ is continuously differentiable with derivative ψ(1).

(χ1) χ(−x) = χ(x) for all x ∈ R.
(χ2) χ : R+ → [−1, 1] is strictly increasing
(χ3) χ(0) = −1
(χ4) limx→∞ χ(x) = 1
(χ5) χ is continuously differentiable with derivative χ(1).

(ψχ1) χ(1)|ψ(1) : R+ → R+ is strictly increasing.

If these conditions hold and P satisfies

∆(P) = max
x

P({x}) < 1|2 (9.23)

then (9.21) and (9.22) have precisely one solution. If we set

P ′ = {P : ∆(P) < 1|2}
then P ′ satisfies (9.16) and Tl : P ′ → R and Ts : P ′ → R+ are a location and
a scale functional respectively. Two functions which satisfy the above conditions
are

ψ(x) =
exp(x|c) − 1

exp(x|c) + 1
(9.24)

χ(x) =
x4 − 1

x4 + 1
, (9.25)

where c < 0.39 is a tuning parameter. The restriction on c is to guarantee (ψχ1).
Algorithms for calculating the solution of (9.21) and (9.22) are given in the Fortran
library ROBETH (Marazzi (1992)) which also contains many other algorithms
related to robust statistics.

The main disadvantage of M-functionals defined by (9.21) and (9.22) is (ψχ1)
which links the location and scale parts in a manner which may not be desirable. In
particular there is a conflict between the breakdown behaviour and the efficiency
of the M-functional (see below). There are several ways of overcoming this. One is
to take the scale function Ts and then to calculate a second location functional by
solving

∫
ψ̃
(

x − m

Ts(P)

)
dP(x) = 0 . (9.26)

If now ψ̃ satisfies (ψ1)–(ψ4) then this new functional will exist only under the
assumption that the scale functional exists and is non-zero. Furthermore the
functional can be made as efficient as desired by a suitable choice of ψ̃ removing
the conflict between breakdown and efficiency. One possible choice for Ts(P) is

Robust Statistics 665

the MAD of (9.20) which is simple, highly robust and which performed well in the
Princeton robustness study (Andrews et al. (1972)).

In some situations there is an interest in downweighting outlying observations
completely rather than in just bounding their effect. A downweighting to zero is
not possible for aψ-function which satisfies (ψ2) but can be achieved by using so
called redescending ψ-functions such as Tukey’s biweight

ψ̃(x) = x(1 − x2)2{|x| ≤ 1} . (9.27)

In general there will be many solutions of (9.26) for suchψ-functions and to obtain
a well defined functional some choice must be made. One possibility is to take the
solution closest to the median, another is to take

argminm

∫
ρ
(

x − m

Ts(P)

)
dP(x) (9.28)

where ρ(1) = ψ̃. Both solutions pose algorithmic problems. The effect of down-
weighting outlying observations to zero can be attained by using a so called one-
step functional Tom defined by

Tom(P) = Tm(P) + Ts(P)

∫
ψ̃
(

x−Tm(P)
Ts(P)

)
dP(x)

∫
ψ̃(1)

(
x−Tm(P)

Ts(P)

)
dP(x)

(9.29)

where Tm is as above and ψ̃ is redescending. We refer to Hampel et al. (1986) and
Rousseeuw and Croux (1994) for more details.

So far all scale functionals have been defined in terms of a deviation from
a location functional. This link canbebrokenas follows.Consider the functional Tss

defined to be the solution s of
∫
χ
(x − y

s

)
dP(x) dP(y) = 0 , (9.30)

where χ satisfies the conditions above. It may be shown that the solution is unique
with 0 < s < ∞, if

∑

ai

P({ai})2 < 1|4 , (9.31)

where the ai denote the countably many atoms of P. The main disadvantage of
this method is the computational complexity of (9.30) requiring as it does O(n2)
operations for a sample of size n. If χ is of the form

χ(x) =

{
a > 0, |x| > 1

b < 0, |x| ≤ 1
,

then Tss reduces to a quantile of the |xi − xj| and much more efficient algorithms
exist which allow the functional to be calculated in O(n log n) operations (see Croux
and Rousseeuw (1992), Rousseeuw and Croux (1992, 1993)).

666 Laurie Davies, Ursula Gather

Although we have defined M-functionals as a solution of (9.21) and (9.22)
there are sometimes advantages in defining them as a solution of a minimization
problem. Consider the Cauchy distribution with density

f (x : µ,σ) =
1

π
σ

σ2 + (x − µ)2
. (9.32)

We now define Tc(P) = (Tcm(P), Tcs(P)) by

Tc(P) = argmin(m,s)

(
−

∫
log(f (x : m, s)) dP(x) +

1

2
log(s)

)
. (9.33)

This is simply the standard maximum likelihood estimate for a Cauchy distribution
but there is no suggestion here that the data are so distributed. If ∆(P) < 1|2 it can
be shown that the solution exists and is unique. Moreover there exists a simple
convergent algorithm for calculating (Tcm(P), Tcs(P)) for a data sample. We refer to
Kent and Tyler (1991) for this and the multidimensional case to be studied below.
By differentiating the right hand side of (9.33) it is seen that (Tcm(P), Tcs(P)) may
be viewed as an M-functional with a redescending ψ-function.

Another class of functionals defined by a minimization problem is the class of
S-functionals. Given a function ρ : R→ [0, 1] which is symmetric, continuous on
the right and non-increasing onR+ with ρ(1) = 1 and limx→∞ ρ(x) = 0. We define
(Tsm(P), Tss(P)) by

(Tsm(P), Tss(P)) = argmin(m,s)

{
s :

∫
ρ((x − m)|s) dP(x) ≥ 1|2

}
. (9.34)

A special case is a minor variation of the shortest-half functional of (9.8) which is
obtained by taking ρ to be the indicator function of the interval [0, 1). Although
the existence of solutions of (9.34) is guaranteed if ∆(P) < 1|2 the problem of
uniqueness is not trivial and requires the existence of a density subject to certain
conditions. If ρ is smooth then by differentiation it is seen that (Tsm(P), Tss(P)) may
be regarded as an M-functional with a redescendingψ-function given by ψ̃ = ρ(1).
The minimization problem (9.34) acts as a choice function. We refer to Davies
(1987).

Bias and Breakdown9.2.4

Given a location functional Tl the bias is defined by

b(Tl, P, ε, dko) = sup{|Tl(Q) − Tl(P)| : dko(P, Q) < ε} , (9.35)

where by convention Tl(Q) = ∞ if Tl is not defined at Q. For a scale functional Ts

we set

b(Ts, P, ε, dko) = sup{| log(Ts(Q)|Ts(P))| : dko(P, Q) < ε} , (9.36)

Robust Statistics 667

where again by convention Ts(Q) = ∞ if Ts is not defined at Q. A popular although
weaker form of bias function based on the so called gross error neighbourhood is
given by

b(Tl, P, ε, GE) = sup{|Tl(Q) − Tl(P)| : Q = (1 − ε)P + εH, H ∈ P } (9.37)

with a corresponding definition for b(Ts, P, ε, GE). We have

b(Tl, P, ε, GE) ≤ b(Tl, P, ε, dko) . (9.38)

We refer to Huber (1981) for more details.
The breakdown point ε∗(Tl, P, dko) of Tl at P with respect to dko is defined by

ε∗(Tl, P, dko) = sup{ε : b(Tl, P, ε, dko) < ∞} (9.39)

with the corresponding definitions for scale functionals and the gross error neigh-
bourhood. Corresponding to (9.38) we have

ε∗(Tl, P, dko) ≤ ε∗(Tl, P, GE) . (9.40)

If a functional Tl has a positive breakdown point at a distribution P then it exhibits
a certain degree of stability in a neighbourhood of P as may be seen as follows.
Consider a sample x1, … , xn and add to it k further observations xn+1, … , xn+k. If Pn

and Pn+k denote the empirical measures based on x1, … , xn and x1, … , xn+k respec-
tively then dko(Pn, Pn+k) ≤ k|(n + k). In particular if k|(n + k) < ε∗(Tl, Pn, dko) then
it follows that Tl(Pn+k) remains bounded whatever the added observations . This
finite sample concept of breakdown was introduced by Donoho and Huber (1983).
Another version replaces k observations by other values instead of adding k obser-
vations and is as follows. Let xk

1, … , xk
n denote a sample differing from x1, … , xn in

at most k readings. We denote the empirical distributions by Pk
n and define

ε∗(Tl, Pn, fsbp) = max
{

k|n :
∣∣Tl

(
Pk

n

) ∣∣ < ∞}
, (9.41)

where Pk
n ranges over all possible xk

1, … , xk
n. This version of the finite sample break-

down point is called the replacement version as k of the original observations can
be replaced by arbitrary values. The two breakdown points are related (see Zuo,
2001). There are corresponding versions for scale functionals.

For location and scale functionals there exist upper bounds for the breakdown
points. For location functionals Tl we have

1Theorem 1

ε∗(Tl, P, dko) ≤ 1|2, (9.42)

ε∗(Tl, P, GE) ≤ 1|2, (9.43)

ε∗(Tl, Pn, fsbp) ≤ �n|2�|n. (9.44)

668 Laurie Davies, Ursula Gather

We refer to Huber (1981). It may be shown that all breakdown points of the mean
are zero whereas the median attains the highest possible breakdown point in each
case.The corresponding result for scale functionals is more complicated. Whereas
we know of no reasonable metric in (9.42) of Theorem 1 which leads to a different
upper bound this is not the case for scale functionals. Huber (1981) shows that for
the Kolmogoroff metric dko the corresponding upper bound is 1|4 but is 1|2 for
the gross error neighbourhood. If we replace the Kolmogoroff metric dko by the
standard Kuiper metric dku defined by

dku(P, Q) = sup{|P(I) − Q(I)| : I an interval} (9.45)

then we again obtain an upper bound of 1|2. For scale functionals Ts we have

2 Theorem 2

ε∗(Ts, P, dku) ≤ (1 − ∆(P))|2, (9.46)

ε∗(Ts, P, GE) ≤ (1 − ∆(P))|2, (9.47)

ε∗(Ts, Pn, fsbp) ≤ (1 − ∆(P))|2. (9.48)

Similarly all breakdown points of the standard deviation are zero but, in contrast
to the median, the MAD does not attain the upper bounds of (9.44). We have

ε∗(MAD, Pn, fsbp) = max{0, 1|2 − ∆(Pn)} .

A simple modification of the MAD, namely

MMAD(P) = min{|I| : P̃(I) ≥ (1 + ∆(I))|2} , (9.49)

where P̃(B) = P({x : |x − MED(P)| ∈ B}) and ∆(I) = max{P({x}), x ∈ I} can be
shown to obtain the highest possible finite sample breakdown point of (9.48).

The M-functional defined by (9.21) and (9.22) has a breakdown point ε∗ which
satisfies

ψ−1

(
ε∗

1 − ε∗

)
= χ−1

(
−ε∗

1 − ε∗

)
(9.50)

(see Huber (1981)). For the functions defined by (9.24) and (9.25) the breakdown
point is a decreasing function of c. As c tends to zero the breakdown point tends
to 1|2. Indeed, as c tends to zero the location part of the functional tends to the
median. For c = 0.2 numerical calculations show that the breakdown point is 0.48.
The calculation of breakdown points is not always simple. We refer to Huber (1981)
and Gather and Hilker (1997).

The breakdown point is a simple but often effective measure of the robustness
of a statistical functional. It does not however take into account the size of the bias.
This canbedoneby trying toquantify theminimumbiasover someneighbourhood

Robust Statistics 669

of the distribution P and if possible to identify a functional which attains it. We
formulate this for P = N(0, 1) and consider the Kolmogoroff ball of radius ε. We
have (Huber (1981))

3Theorem 3 For every ε < 1|2 we have

b(MED, P, ε, dko) ≤ b(Tl, P, ε, dko)

for any translation functional Tl.

In other words the median minimizes the bias over any Kolmogoroff neighbour-
hood of the normal distribution. This theorem can be extended to other symmetric
distributions and to other situations (Riedel, 1989a, 1989b). It is more difficult to
obtain such a theorem for scale functionals because of the lack of a property equiv-
alent to symmetry for location. Nevertheless some results in this direction have
been obtained and indicate that the length of the shortest half Tsh of (9.8) has very
good bias properties (Martin and Zamar (1993b)).

Confidence Intervals and Differentiability 9.2.5

Given a sample x1, … , xn with empirical measure Pn we can calculate a location
functional Tl(Pn) which in some sense describes the location of the sample. Such
a point value is rarely sufficient and in general should be supplemented by a confi-
dence interval, that is a rangeof values consistent with thedata. If Tl is differentiable
(9.12) and the data are i.i.d. random variables with distribution P then it follows
from (9.3) (see Sect. 9.1.3) that an asymptotic α-confidence interval for Tl(P) is
given by

[
Tl(Pn(P)) − z((1 + α)|2)Σ(P)|

√
n, Tl(Pn(P)) + z((1 + α)|2)Σ(P)|

√
n
]

. (9.51)

Here z(α) denotes the α-quantile of the standard normal distribution and

Σ(P)2 =
∫

I(x, Tl, P)2 dP(x) . (9.52)

At first glance this cannot lead to a confidence interval as P is unknown. If however
Σ(P) is also Fréchet differentiable at P then we can replace Σ(P) by Σ(Pn(P)) with
an error of order OP(1|

√
n). This leads to the asymptotic α-confidence interval

[
Tl(Pn(P)) − z((1 + α)|2)Σ(Pn(P))|

√
n, Tl(Pn(P)) + z((1 + α)|2)Σ(Pn(P))|

√
n
]

.
(9.53)

A second problem is that (9.53) depends on asymptotic normality and the accuracy
of the interval in turn will depend on the rate of convergence to the normal
distribution which in turn may depend on P. Both problems can be overcome if
Tl is locally uniformly Fréchet differentiable at P. If we consider the M-functionals
of Sect. 9.2.3 then they are locally uniformly Fréchet differentiable if the ψ- and

670 Laurie Davies, Ursula Gather

χ-functions are sufficiently smooth (see Bednarski et al. (1991), Bednarski (1993),
Bednarski and Clarke (1998), and Davies (1998)). The influence function I(·, Tl, P)
is given by

I(x, Tl, P) = Ts(P)
D(P)ψ̃

(
x−Tl(P)

Ts(P)

)
− B(P)χ

(
x−Tl(P)

Ts(P)

)

A(P)D(P) − B(P)C(P)
, (9.54)

where

A(P) =
∫
ψ̃(1)

(
x − Tl(P)

Ts(P)

)
dP(x) (9.55)

B(P) =
∫ (

x − Tl(P)

Ts(P)

)
ψ̃(1)

(
x − Tl(P)

Ts(P)

)
dP(x) (9.56)

C(P) =
∫
χ(1)

(
x − Tl(P)

Ts(P)

)
dP(x) (9.57)

D(P) =
∫ (

x − Tl(P)

Ts(P)

)
χ(1)

(
x − Tl(P)

Ts(P)

)
dP(x). (9.58)

Simulations suggest that the covering probabilities of the confidence interval (9.53)
are good for sample sizes of 20 or more as long as the distribution P is almost
symmetric. For the sample x1, … , xn this leads to the interval

[
Tl(Pn) − z((1 + α)|2)Σ(Pn)|

√
n, Tl(Pn) + z((1 + α)|2)Σ(Pn)|

√
n
]

(9.59)

with Σ(P) given by (9.52) and I(x, Tl, P) by (9.54). Similar intervals can be obtained
for the variations on M-functionals discussed in Sect. 9.2.3.

Efficiency and Bias9.2.6

The precision of the functional T at the distribution P can be quantified by the
length 2z((1 + α)|2)Σ(P)|

√
n of the asymptotic confidence interval (9.51). As the

only quantity which depends on T is Σ(P) we see that an increase in precision is
equivalent to reducing the size of Σ(P). The question which naturally arises is then
that of determining how small Σ(P) can be made. A statistical functional which at-
tains this lower bound is asymptotically optimal and if we denote this lower bound
by Σopt(P), the efficiency of the functional T can be defined as Σopt(P)2|Σ(P)2. The
efficiency depends on P and we must now decide which P or indeed Ps to choose.
The arguments given in Sect. 9.1.2 suggest choosing a P which maximizes Σopt(P)
over a class of models. This holds for the normal distribution which maximizes
Σopt(P) over the class of all distributions with a given variance. For this reason and
for simplicity and familiarity we shall take the normal distribution as the reference
distribution. If a reference distribution is required which also produces outliers
then the slash distribution is to be preferred to the Cauchy distribution. We refer
to Cohen (1991) and the discussion given there.

Robust Statistics 671

If we consider the M-functionals defined by (9.24) and (9.25) the efficiency at
the normal distribution is an increasing function of the tuning parameter c. As
the breakdown point is a decreasing function of c this would seem to indicate that
there is a conflict between efficiency and breakdown point. This is the case for the
M-functional defined by (9.24) and (9.25) and is due to the linking of the location
and scale parts of the functional. If this is severed by, for example, recalculating
a location functional as in (9.26) then there isno longer aconflictbetweenefficiency
and breakdown. As however the efficiency of the location functional increases the
more it behaves like the mean with a corresponding increase in the bias function of
(9.35) and (9.37). The conflict between efficiency and bias is a real one and gives rise
to an optimality criterion, namely that of minimizing the bias subject to a lower
bound on the efficiency. We refer to Martin and Zamar (1993a).

Outliers inR 9.2.7

One of the main uses of robust functionals is the labelling of so called outliers (see
Barnett and Lewis (1994), Hawkins (1980), Atkinson (1994), Gather (1990), Gather
et al. (2003), and Simonoff (1984, 1987)). In the data of Table 9.1 the laboratories
1 and 3 are clearly outliers which should be flagged. The discussion in Sect. 9.1.1
already indicates that the mean and standard deviation are not appropriate tools
for the identification of outliers as they themselves are so strongly influenced by
the very outliers they are intended to identify. We now demonstrate this more
precisely. One simple rule is to classify all observations more than three stan-
dard deviations from the mean as outliers. A simple calculation shows that this
rule will fail to identify 10% arbitrarily large outliers with the same sign. More
generally if all observations more than λ standard deviations from the mean are
classified as outliers then this rule will fail to identify a proportion of 1|(1 + λ2)
outliers with the same sign. This is known as the masking effect (Pearson and
Chandra Sekar (1936)) where the outliers mask their presence by distorting the
mean and, more importantly, the standard deviation to such an extent as to render
them useless for the detection of the outliers. One possibility is to choose a small
value of λ but clearly if λ is too small then some non-outliers will be declared
as outliers. In many cases the main body of the data can be well approximated
by a normal distribution so we now investigate the choice of λ for samples of
i.i.d. normal random variables. One possibility is to choose λ dependent on the
sample size n so that with probability say 0.95 no observation will be flagged
as an outlier. This leads to a value of λ of about

√
2 log(n) (Davies and Gather

(1993)) and the largest proportion of one-sided outliers which can be detected is
approximately 1|(1 + 2 log(n)) which tends to zero with n. It follows that there
is no choice of λ which can detect say 10% outliers and at the same time not
falsely flag non-outliers. In order to achieve this the mean and standard devia-
tion must be replaced by functionals which are less effected by the outliers. In
particular these functionals should be locally bounded (9.11). Considerations of
asymptotic normality or efficiency are of little relevance here. Two obvious can-
didates are the median and MAD and if we use them instead of the mean and

672 Laurie Davies, Ursula Gather

standard deviation we are led to the identification rule (Hampel (1985)) of the
form

|xi − MED(xn)| ≥ λMAD(xn) . (9.60)

Hampel (1975) proposed setting λ = 5.2 as a general all purpose value. The concept
of an outlier cannot in practice be very precise but in order to compare different
identification rules we require a precise definition and a precise measure of per-
formance. To do this we shall restrict attention to the normal model as one which
is often reasonable for the main body of data. In other situations such as wait-
ing times the exponential distribution may be more appropriate. The following is
based on Davies and Gather (1993). To define an outlier we introduce the concept
of an α-outlier. For the normal distribution N(µ,σ2) and α ∈ (0, 1) we define the
α-outlier region by

out(α, N(µ,σ2)) = {x ∈ R : |x − µ| > σ z1−α|2} , (9.61)

which is just the union of the lower and the upper α|2-tail regions. Here z1−α|2 de-
notes the 1 −α|2-quantile of the standard normal distribution. For the exponential
distribution Exp(λ) with parameter λ we set

out(α, Exp(λ)) = {x ∈ R : x > −λ lnα} (9.62)

which is the upper α-tail region (Gather and Schultze (1999)). The extension to
other distributions P is clear. Each point located in the outlier region is called an
α-outlier, otherwise it is called an α-inlier. This definition of an outlier refers only
to its position in relation to the statistical model for the good data. No assumptions
are made concerning the distribution of these outliers or the mechanism by which
they are generated.

We can now formulate the task of outlier identification for the normal distribu-
tion as follows: For a given sample xn = (x1, … , xn) which contains at least [n|2] + 1
i.i.d. observations distributed according to N(µ,σ2), we have to find all those xi

that are located in out(α, N(µ,σ2)). The level α can be chosen to be dependent on
the sample size. If for some α̃ ∈ (0, 1) we set

α = αn = 1 − (1 − α̃)1|n , (9.63)

then the probability of finding at least one observation of a N(µ,σ2)-sample of
size n within out(αn, N(µ,σ2)) is not larger than α̃. Consider now the general
Hampel identifier which classifies all observations xi in

ORH(xn,αn) = {x ∈ R : |x − Med(xn)| > gn(αn) MAD(xn)} (9.64)

as outliers. The region ORH(xn,αn) may be regarded as an empirical version of the
outlier region out(αn, N(µ,σ2)). The constant gn(αn) standardizes the behaviour
of the procedure for i.i.d. normal samples which may be done in several ways. One

Robust Statistics 673

is to determine the constant so that with probability at least 1 − α̃ no observation
Xi is identified as an outlier, that is

P
(
Xi |∈ OR(Xn,αn), i = 1, … , n

) ≥ 1 − α̃. (9.65)

A second possibility is to require that

P
(
OR(Xn,αn) ⊂ out(αn, P)

) ≥ 1 − α̃. (9.66)

If we use (9.65) and set α̃ = 0.05 then for n = 20, 50 and 100 simulations give
gn(αn) = 5.82, 5.53 and 5.52 respectively. For n > 10 the normalizing constants
gn(αn) can also be approximated according to the equations given in Sect. 5 of
Gather (1990).

To describe the worst case behaviour of an outlier identifier we can look at the
largest nonidentifiable outlier, which it allows. From Davies and Gather (1993) we
report some values of this quantity for the Hampel identifier (HAMP) and con-
trast them with the corresponding values of a sophisticated high breakdown point
outwards testing identifier (ROS), based on the non-robust mean and standard
deviation (Rosner (1975); Tietjen and Moore (1972)). Both identifiers are standard-
ized by (9.65) with α̃ = 0.05. Outliers are then observations with absolute values
greater than 3.016(n = 20), 3.284(n = 50) and 3.474(n = 100). For k = 2 outliers
and n = 20 the average sizes of the largest non-detected outlier are 6.68 (HAMP)
and 8.77 (ROS), for k = 5 outliers and n = 50 the corresponding values are 4.64
(HAMP) and 5.91 (ROS) and finally for k = 15 outliers and n = 100 the values are
5.07 (HAMP) and 9.29 (ROS).

Location and Scale inRk
9.3

Equivariance and Metrics 9.3.1

In Sect. 9.2.1 we discussed the equivariance of estimators for location and scale
with respect to the affine group of transformations onR. This carries over to higher
dimensions although here the requirement of affine equivariance lacks immediate
plausibility. A change of location and scale for each individual component inRk is
represented by an affine transformation of the formΛ(x) + b whereΛ is a diagonal
matrix.Ageneral affine transformation forms linearcombinationsof the individual
components which goes beyond arguments based on units of measurement. The
use of affine equivariance reduces to the almost empirical question as to whether
the data, regarded as a cloud of points inRk, can be well represented by an ellipsoid.
If this is the case as it often is then consideration of linear combinations of different
components makes data analytical sense. With this proviso in mind we consider
the affine group A of transformations of Rk into itself,

A = {A : A(x) = A(x) + b} , (9.67)

674 Laurie Davies, Ursula Gather

where A is a non-singular k× k-matrix and b is an arbitrary point inRk. Let P ′
k de-

note a family of distributions overRk which is closed under affine transformations

P ∈ P ′
k ⇒ PA ∈ P ′

k , for all A ∈ A . (9.68)

A function Tl : P ′
k → Rk is called a location functional if it is well defined and

Tl(PA) = A(Tl(P)), for all A ∈ A, P ∈ P ′
k . (9.69)

A functional Ts : P ′
k → Σk where Σk denotes the set of all strictly positive definite

symmetric k × k matrices is called a scale or scatter functional if

Ts(PA) = ATl(P)A�, for all A ∈ A, P ∈ P ′
k with A(x) = A(x) + b . (9.70)

The requirement of affine equivariance is a strong one as we now indicate. The
most obvious way of defining the median of a k-dimensional data set is to define
it by the medians of the individual components. With this definition the median is
equivariant with respect to transformations of the formΛ(x) + b withΛ a diagonal
matrix but it is not equivariant for the affine group. A second possibility is to define
the median of a distribution P by

MED(P) = argminµ

∫
(‖x − µ‖ − ‖x‖) dP(x) .

With this definition the median is equivariant with respect to transformations of
the form x → O(x) + b with O an orthogonal matrix but not with respect to the
affine group or the group x → Λ(x) + b with Λ a diagonal matrix. The conclusion
is that there is no canonical extension of the median to higher dimensions which
is equivariant with respect to the affine group.

In Sect. 9.2 use was made of metrics on the space of probability distributions
on R. We extend this to Rk where all metrics we consider are of the form

dC(P, Q) = sup
C∈C

|P(C) − Q(C)| (9.71)

where C is a so called Vapnik–Cervonenkis class (see for example Pollard (1984)).
The class C can be chosen to suit the problem. Examples are the class of all lower
dimensional hyperplanes

H = {H : H lower dimensional hyperplane} (9.72)

and the class of all ellipsoids

E = {E : E an ellipsoid}. (9.73)

These give rise to the metrics dH and dE respectively. Just as inRmetrics dC of the
form (9.71) allow direct comparisons between empirical measures and models. We
have

dC(Pn(P), P) = O(1|
√

n) (9.74)

uniformly in P (see Pollard (1984)).

Robust Statistics 675

M-estimators of Location and Scale 9.3.2

Given the usefulness of M-estimators for one dimensional data it seems natural
to extend the concept to higher dimensions. We follow Maronna (1976). For any
positive definite symmetric k × k-matrix Σ we define the metric d(·, · : Σ) by

d(x, y : Σ)2 = (x − y)�Σ−1(x − y), x, y ∈ Rk.

Further, let u1 and u2 be two non-negative continuous functions defined on R+

and be such that sui(s), s ∈ R+, i = 1, 2 are both bounded. For a given probability
distribution P on the Borel sets of Rk we consider in analogy to (9.21) and (9.22)
the two equations in µ and Σ

∫
(x − µ)u1(d(x,µ; Σ)) dP = 0. (9.75)

∫
u2(d(x,µ; Σ)2)(x − µ)(x − µ)� dP = 0. (9.76)

Assuming that at least one solution (µ, Σ) exists we denote it by TM (P) = (µ, Σ). The
existence of a solution of (9.75) and (9.76) can be shown under weak conditions as
follows. If we define

∆(P) = max{P(H) : H ∈ H} (9.77)

with H as in (9.73) then a solution exists if ∆(P) < 1−δwhere δdepends only on the
functions u1 and u2 (Maronna (1976)). Unfortunately the problem of uniqueness
is much more difficult than in the one-dimensional case. The conditions placed
on P in Maronna (1976) are either that it has a density fP(x) which is a decreasing
function of ‖x‖ or that it is symmetric P(B) = P(−B) for every Borel set B. Such
conditions do not hold for real data sets which puts us in an awkward position. Fur-
thermore without existence and uniqueness there can be no results on asymptotic
normality and consequently no results on confidence intervals. The situation is un-
satisfactory so we now turn to the one class of M-functionals for which existence
and uniqueness can be shown. The following is based on Kent and Tyler (1991) and
is the multidimensional generalization of (9.33). The k-dimensional t-distribution
with density fk,ν(· : µ, Σ) is defined by

fk,ν(x : µ, Σ) =
Γ(1

2

(
ν + k

)
)

(νk)k|2Γ
(

1
2ν
) |Σ|− 1

2

(
1 +

1

ν
(x − µ)topΣ−1(x − µ)

)− 1
2 (ν+k)

(9.78)

and we consider the minimization problem

TM(p) = (Tl(P), Ts(P)) = argminµ, Σ

∫
fk,ν(x : µ, Σ) dP(x) +

1

2
log(|Σ|) (9.79)

where |Σ| denotes the determinant of the positive definite matrix Σ. For any distri-
bution P on the Borel sets ofRk we define ∆(P) which is the k-dimensional version
of (9.23). It can be shown that if ∆(P) < 1|2 then (9.79) has a unique solution. More-

676 Laurie Davies, Ursula Gather

over fordata sets there is a simplealgorithmwhichconverges to thesolution.Ondif-
ferentiating the righthandsideof (9.79) it is seen that the solution is anM-estimator
as in (9.75) and (9.76). Although this has not been proven explicitly it seems clear
that the solution will be locally uniformly Fréchet differentiable, that is, it will satis-
fy (9.12)where the influence function I(x, TM , P) canbeobtainedas in (9.54) and the
metric dko is replaced by the metric dH . This together with (9.74) leads to uniform
asymptotic normality and allows the construction of confidence regions. The only
weakness of the proposal is the low gross error breakdown point ε∗(TM , P, GE)
defined below which is at most 1|(k + 1). This upper bound is shared with the
M-functionals defined by (9.75) and (9.76) (Maronna (1976)). The problem of
constructing high breakdown functionals in k dimensions will be discussed below.

Bias and Breakdown9.3.3

The concepts of bias and breakdown developed in Sect. 9.2.4 carry over to higher
dimensions. Given a metric d on the space of distributions on Rk and a location
functional Tl we follow (9.37) and define

b(Tl, P, ε, d) = sup{‖Tl(Q)‖ : d(P, Q) < ε} (9.80)

and

b(Tl, P, ε, GE) = sup{‖Tl(Q)‖ : Q = (1 − ε)P + εG, G ∈ P } , (9.81)

where by convention ‖Tl(Q)‖ = ∞ if Tl is not defined at Q. The extension to scale
functionals is not so obvious as there is no canonical definition of bias. We require
a measure of difference between two positive definite symmetric matrices. For
reasons of simplicity and because it is sufficient for our purposes the one we take
is | log

(|Σ1|||Σ2|
) |. Corresponding to (9.36) we define

b(Ts, P, ε, d) = sup{| log(|Ts(Q)|||Ts(P)|)| : d(P, Q) < ε} (9.82)

and

b(Ts, P, ε, GE) = sup{| log(|Ts(Q)|||Ts(P)|)| : Q = (1 − ε)P + εG, G ∈ P } . (9.83)

Most work is done using the gross error model (9.81) and (9.83). The breakdown
points of Tl are defined by

ε∗(Tl, P, d) = sup{ε : b(Tl, P, ε, d) < ∞} (9.84)

ε∗(Tl, P, GE) = sup{ε : b(Tl, P, ε, GE) < ∞} (9.85)

ε∗(Tl, Pn, fsbp) = max
{

k|n :
∣∣Tl

(
Pk

n

) ∣∣ < ∞}
, (9.86)

where (9.86) corresponds in the obvious manner to (9.41). The breakdown points
for the scale functional Ts are defined analogously using the bias functional (9.82).
We have

Robust Statistics 677

4Theorem 4 For any translation equivariant functional Tl

ε∗(Tl, P, dH) ≤ 1|2 and ε∗(Tl, Pn, fsbp) ≤ �n|2�|n (9.87)

and for any affine equivariant scale functional

ε∗(Ts, P, dE) ≤ (1 − ∆(P))|2 and ε∗(Ts, Pn, fsbp) ≤ (1 − ∆(Pn))|2 . (9.88)

In Sect. 9.2.4 it was shown that the M-estimators of Sect. 9.2.3 can attain or
almost attain the upper bounds of Theorem 1. Unfortunately this is not the case
in k dimensions where as we have already mentioned the breakdown points of
M-functionals of Sect. 9.3.2 are at most 1|(k + 1). In recent years much research
activity has been directed towards finding high breakdown affinely equivariant
location and scale functionals which attain or nearly attain the upper bounds of
Theorem 4. This is discussed in the next section.

High Breakdown Location and Scale Functionals inRk 9.3.4

The first high breakdown affine equivariant location and scale functionals were
proposed independently of each other by Stahel (1981) and Donoho (1982). They
were defined for empirical data but the construction can be carried over to mea-
sures satisfying a certain weak condition. The idea is to project the data points
onto lines through the origin and then to determine which points are outliers with
respect to this projection using one-dimensional functions with a high breakdown
point. More precisely we set

o(xi, θ) =
∣∣x�i θ − MED

(
x�1 θ, … , x�n θ

) ∣∣/MAD
(
x�1 θ, … , x�n θ

)
(9.89)

and

o(xi) = sup{o(xi, θ) : ‖θ‖ = 1} . (9.90)

This is a measure for the outlyingness of the point xi and it may be checked that it is
affine invariant. Location and scale functionals may now be obtained by taking for
example the mean and the covariance matrix of those �n|2 + 1� observations with
the smallest outlyingness measure. Although (9.90) requires a supremum over all
values of θ this can be reduced for empirical distributions as follows. Choose all
linearly independent subsets xi1 , … , xik of size k and for each such subset determine
a θwhich is orthogonal to their span. If the sup in (9.90) is replaced by a maximum
over all such θ then the location and scale functionals remain affine equivariant
and retain the high breakdown point. Although this requires the consideration of

only a finite number of directions namely at most
(

n
k

)
this number is too large to

make it a practicable possibility even for small values of n and k. The problem of
calculability has remained with high breakdown methods ever since and it is their
main weakness. There are still no high breakdown affine equivariant functionals

678 Laurie Davies, Ursula Gather

which can be calculated exactly except for very small data sets. Huber (1995) goes as
far as to say that the problem of calculability is the breakdown of high breakdown
methods. This is perhaps too pessimistic but the problem remains unsolved.

Rousseeuw (1985) introduced two further high breakdown location and scale
functionals as follows. The first, the so called minimum volume ellipsoid (MVE)
functional, is a multidimensional version of Tukey’s shortest half-sample (9.8) and
is defined as follows. We set

E = argminẼ{|̃E| : |{i : xi ∈ Ẽ}| ≥ �n|2�} , (9.91)

where |E| denotes the volume of E and |{ }| denotes the number of elements of the
set { }. In other words E has the smallest volume of any ellipsoid which contains
more than half the data points. For a general distribution P we define

E(P) = argminẼ

{
|̃E| :

∫

Ẽ
dP ≥ 1|2

}
. (9.92)

Given E the location functional Tl(P) is defined to be the centre µ(E) of E and the
covariance functional Ts(P) is taken to be c(k)Σ(E) where

E =
{

x : (x − µ(E))� Σ−1(x − µ(E)) ≤ 1
}

. (9.93)

The factor c(k) can be chosen so that c(k)Σ(E) = Ik for the standard normal
distribution in k dimensions.

The second functional is based on the so called minimum covariance determi-
nant (MCD) and is as follows. We write

µ(B) =
∫

B
x dP(x)|P(B) (9.94)

Σ(B) =
∫

B
(x − µ(B))(x − µ(B))� dP(x)|P(B) (9.95)

and define

MCD(P) = argminB {|Σ(B)| : P(B) ≥ 1|2} , (9.96)

where |Σ(B)| is defined to be infinite if either of (9.94) or (9.95) does not ex-
ist. The location functional is taken to be µ(MCD(B)) and the scatter functional
c(k)Σ(MCD(B)) where again c(k) is usually chosen so that c(k)Σ(MCD(B)) = Ik for
the standard normal distribution in k-dimensions. It can be shown that both these
functionals are affinely equivariant.

A smoothed version of the minimum volume estimator can be obtained by
considering the minimization problem

minimize |Σ| subject to
∫
ρ
(
(x − µ)�Σ−1(x − µ)

)
dP(x) ≥ 1|2 , (9.97)

Robust Statistics 679

where ρ : R+ → [0, 1] satisfies ρ(0) = 1, limx→∞ ρ(x) = 0 and is continuous on
the right (see Davies (1987)). This gives rise to the class of so called S-functionals.
The minimum volume estimator can be obtained by specializing to the case ρ(x) =
{0 ≤ x < 1}.

On differentiating (9.97) it can be seen that an S-functional can be regarded
as an M-functional but with redescending functions u1 and u2 in contrast to the
conditions placed on u1 and u2 in (9.75) and (9.76) (Lopuhaä (1989)). For such
functions the defining equations for an M-estimator have many solutions and the
minimization problem of (9.97) can be viewed as a choice function. Other choice
functions can be made giving rise to different high breakdown M-estimators. We
refer to Lopuhaä (1991) and Kent and Tyler (1996). A further class of location
and scatter functionals have been developed from Tukey’s concept of depth (Tukey
(1975)). We refer to Donoho and Gasko (1992), Liu at al. (1999) and Zuo and Serfling
(2000a, 2000b). Many of the above functionals have breakdown points close to or
equal to the upper bound of Theorem 4. For the calculation of breakdown points
we refer to Davies (1987, 1993), Lopuhaä and Rousseeuw (1991), Donoho and Gasko
(1992) and Tyler (1994).

The problem of determining a functional which minimizes the bias over a neigh-
bourhood was considered in the one-dimensional case in Sect. 9.2.4. The problem
is much more difficult in Rk but some work in this direction has been done (see
Adrover (1998)). The more tractable problem of determining the size of the bias
function for particular functionals or classes of functionals has also been consid-
ered (Yohai and Maronna (1990); Maronna et al. (1992)).

All the above functionals can be shown to exist but there are problems concern-
ing the uniqueness of the functional. Just as in the case of Tukey’s shortest half (9.8)
restrictions must be placed on the distribution P which generally include the exis-
tence of a density with given properties (see Davies (1987) and Tatsuoka and Tyler
(2000)) and which is therefore at odds with the spirit of robust statistics. Moreover
even uniqueness and asymptotic normality at some small class of models are not
sufficient. Ideally the functional should exist and be uniquely defined and locally
uniformly Fréchet differentiable just as in Sect. 9.2.5. It is not easy to construct
affinely equivariant location and scatter functionals which satisfy the first two
conditions but it has been accomplished by Dietel (1993) using the Stahel–Donoho
idea of projections described above. To go further and define functionals which are
also locally uniformly Fréchet differentiable with respect to some metric dC just
as in the one-dimensional case considered in Sect. 9.2.5 is a very difficult problem.
The only result in this direction is again due to Dietel (1993) who managed to
construct functionals which are locally uniformly Lipschitz. The lack of locally
uniform Fréchet differentiability means that all derived confidence intervals will
exhibit a certain degree of instability. Moreover the problem is compounded by
the inability to calculate the functionals themselves. To some extent it is possi-
ble to reduce the instability by say using the MCD functional in preference to
the MVE functional, by reweighting the observations or by calculating a one-step
M-functional as in (9.29) (see Davies (1992a)). However the problem remains and
for this reason we do not discuss the research which has been carried out on the

680 Laurie Davies, Ursula Gather

efficiency of the location and scatter functionals mentioned above. Their main use
is in data analysis where they are an invaluable tool for detecting outliers. This will
be discussed in the following section.

A scatter matrix plays an important role in many statistical techniques such
as principal component analysis and factor analysis. The use of robust scatter
functionals in some of these areas has been studied by among others Croux and
Haesbroeck (2000), Croux and Dehon (2001) and Willems et al. (2002).

As already mentioned the major weakness of all known high breakdown func-
tionals is their computational complexity. For the MCD functional an exact algo-
rithm of the order of nk(k+3)|2 exists and there are reasons for supposing that this
cannot be reduced to below nk (Bernholt and Fischer (2001)). This means that
in practice for all but very small data sets heuristic algorithms have to be used.
We refer to Rousseeuw and Van Driesen (1999) for a heuristic algorithm for the
MCD-functional.

Outliers inR9.3.5

Whereas for univariate, bivariate and even trivariate data outliers may often be
found by visual inspection, this is not practical in higher dimensions (Caroni and
Prescott (1992); Hadi (1994); Barme-Delcroix and Gather (2000); Gnanadesikan
and Kettenring (1972); Hadi and Simonoff (1997)). This makes it all the more
important to have methods which automatically detect high dimensional outliers.
Much of the analysis of the one-dimensional problem given in Sect. 9.2.7 carries
over to the k-dimensional problem. In particular outlier identification rules based
on the mean and covariance of the data suffer from masking problems and must
be replaced by high breakdown functionals (see also Rocke and Woodruff (1996,
1997)). We restrict attention to affine equivariant functionals so that an affine
transformation of the data will not alter the observations which are identified as
outliers. The identification rules we consider are of the form

(xi − Tl(Pn))�Ts(Pn)−1(xi − Tl(Pn)) ≥ c(k, n) , (9.98)

where Pn is the empirical measure, Tl and Ts are affine equivariant location and
scatter functionals respectively and c(k, n) is a constant to be determined. This rule
is the k-dimensional counterpart of (9.60). In order to specify some reasonable
value for c(k, n) and in order to be able to compare different outlier identifiers we
require, just as in Sect. 9.2.7, a precise definition of an outlier and a basic model
for the majority of the observations. As our basic model we take the k-dimensional
normal distribution N (µ, Σ). The definition of an αn-outlier corresponds to (9.62)
and is

out(αn,µ, Σ) =
{

x ∈ Rk : (x − µ)�Σ−1(x − µ) > χ2
k;1−αn

}
, (9.99)

where αn = 1 − (1 − α̃)1|n for some given value of α̃ ∈ (0, 1). Clearly for an
i.i.d. sample of size n distributed according to N (µ, Σ) the probability that no

Robust Statistics 681

observation lies in the outlier region of (9.99) is just 1 −α. Given location and scale
functionals Tl and Ts and a sample x̃n we write

ORH (̃xn,αn) =
{

x ∈ Rk : (x − Tl(Pn))�Ts(Pn)−1(x − Tl(Pn)) ≥ c(k, n,αn)
}

(9.100)

which corresponds to (9.64). The region ORH (̃xn,αn) is the empirical counterpart
of out(αn,µ, Σ) of (9.99) and any observation lying in ORH (̃xn,αn) will be identified
as an outlier. Just as in the one-dimensional case we determine the c(k, n,αn) by
requiring that with probability 1 − α̃ no observation is identified as an outlier in
i.i.d. N (µ, Σ) samples of size n. This can be done by simulations with appropriate
asymptotic approximations for large n. The simulations will of course be based
on the algorithms used to calculate the functionals and will not be based on the
exact functionals assuming these to be well defined. For the purpose of outlier
identification this will not be of great consequence. We give results for three multi-
variate outlier identifiers based on the MVE- and MCD-functionals of Rousseeuw
(1985) and the S-functional based on Tukey’s biweight function as given in Rocke
(1996). There are good heuristic algorithms for calculating these functionals at
least approximately (Rocke (1996); Rousseeuw and Van Driesen (1999); Rousseeuw
and van Zoomeren (1990)). The following is based on Becker and Gather (2001).
Table 9.2 gives the values of c(k, n,αn) with α = 0.1. The results are based on 10,000
simulations for each combination of k and n.

Becker and Gather (2001) show by simulations that although none of the above
rules fails to detect arbitrarily large outliers it still can happen that very ex-
treme observations are not identified as outliers. To quantify this we consider the
identifier ORMVE and the constellation n = 50, k = 2 with m = 5 observations
replaced by other values. The mean norm of the most extreme nonidentifiable
outlier is 4.17. The situation clearly becomes worse with an increasing propor-
tion of replaced observations and with the dimension k (see Becker and Gather
(1999)). If we use the mean of the norm of the most extreme non-identifiable
outlier as a criterion then none of the three rules dominates the others although
the biweight identifier performs reasonably well in all cases and is our preferred
choice.

Table 9.2. Normalizing constants c(k, n,αn) for ORMVE, ORMCD, ORBW for α = 0.1

n k cMVE cMCD cBW

20 2 19.14222 85.58786 21.35944

20 3 23.47072 167.61310 26.87044

20 4 33.72110 388.84680 33.17018

50 2 17.54896 28.51695 16.93195

50 3 20.61580 41.83594 19.78682

50 4 24.65417 64.18462 23.14061

682 Laurie Davies, Ursula Gather

Linear Regression9.4

Equivariance and Metrics9.4.1

The linear regression model may be written in the form

Yi = x�i β + εi, i = 1, … , n (9.101)

where xi, i = 1 … , n and β ∈ Rk. The assumptions of the standard model are
that the xi are fixed and that the εi are i.i.d. random variables with the default
distributionbeing thenormaldistribution N(0,σ2). Thereareof coursemanyother
models in the literature including random xi-values and a covariance structure
for the errors εi. For the purpose of robust regression we consider probability
distributions P on Rk+1 where the first k components refer to the covariates x and
the last component is the corresponding value of y. We restrict attention to the
family Pk+1 of probability measures given by

Pk+1 = {P : P(H × R) < 1 for all lower dimensional subspaces H ⊂ Rk} .
(9.102)

The metric we use on Pk+1 is dH with H given by (9.73).
Consider the regression group G of transformations g : Rk+1 → R

k+1 of the
form

g(x, y) =
(
A(x), sy + x�γ

)
(9.103)

where A is a non-singular k × k-matrix, s ∈ R, s ≠ 0, and γ ∈ Rk. A functional
T : Pk+1 → Rk ×R+ is called a regression functional if for all g ∈ G and P ∈ Pk+1

T(Pg) = hg(T(P)) , (9.104)

where

hg(β,σ) =
(
s(A−1)�(β + γ), sσ

)
. (9.105)

with A and γ as in (9.103). The first k components of T(P) specify the value of
β ∈ Rk and the last component that of σ. The restriction to models P ∈ Pk+1 of
(9.102) is that without such a restriction there is no uniquely defined value of β.

M-estimators for Regression9.4.2

Given a distribution P ∈ Pk+1 we define an M-functional by T(P) = (β∗,σ∗) where
(β∗,σ∗) is a solution of the equations

∫
φ
(
x,
(
y − x�β

)
|σ
)

x dP(x, y) = 0 , (9.106)

∫
χ
((

y − x�β
)
|σ
)

dP(x, y) = 0 (9.107)

Robust Statistics 683

for given functions φ : Rk+1 → R and χ : R → R. Just as in Sect. 9.3.2 for
M-functionals of location and scatter there are problems concerning the existence
and uniqueness. Maronna and Yohai (1981) give sufficient conditions for existence
which depend only on the properties of φ and χ and the values of supθ{P(θ�x = 0) :
θ ≠ 0} and supα,θ{P(αy +θ�x = 0) : |α|+‖θ‖ ≠ 0}. Uniqueness requires additional
strong assumptions such as either symmetry or the existence of a density for the
conditional distribution of y − θ�0 x for each fixed x. Huber (1981) considers the
minimization problem

(β∗,σ∗) = argmin
(∫

ρ
((

y − x�β
)
|σ
)

dP(x, y) + a

)
σ , (9.108)

whereρ : R→ R+ is convex withρ(0) = 0 and a > 0. Under appropriate conditions
on ρ it can be shown that the solution is unique and that there exists a convergent
algorithm to calculate it. On differentiating (9.108) we obtain (9.106) and (9.107)
with

φ(x, u) = ρ(1)(u) and χ(u) = uρ(1)(u) − ρ(u) − a . (9.109)

Even if the solution of (9.106) and (9.107) exists and is unique it is not necessarily
regression equivariant. To make it so we must introduce a scatter functional TΣ on
the marginal distributions P′, P′(B) = P(B×R) of the covariate x. Such a functional
satisfies TΣ(P′A) = ATΣ(P′)A� for any non-singular k× k-matrix A and is required
not only for equivariance reasons but also to downweight outlying x-values or
so called leverage points. For this latter purpose the functional TΣ must also be
robust. We now replace (9.106) by

∫
φ
(
x�TΣ(P)−1x,

(
y − x�β

)
|σ
)

x dP(x, y) = 0 . (9.110)

The resulting functional is now regression equivariant but its analysis is more
difficult requiring as it does an analysis of the robustness properties of the scatter
functional TΣ.

Finally we note that in the literature most φ functions of (9.106) are of the form

φ(x, u) = π(x)ψ(u) (9.111)

and the resulting functionals are known as GM-functionals. We refer to Hampel
et al. (1986).

Bias and Breakdown 9.4.3

Given a regression functional Tr = (Tb, Ts) where Tb refers to the β-components
and Ts is the scale part it is usual to define breakdown just by the behaviour of Tb

and to neglect Ts. The breakdown point of Tr at the distribution P is defined by

ε∗(Tr, P, dH) = sup{ε : b(Tr, P, ε, dH) < ∞} (9.112)

684 Laurie Davies, Ursula Gather

where

b(Tr, P, ε, dH) = sup{‖Tb(Q) − Tb(P)‖ : dH (P, Q) < ε} (9.113)

withcorrespondingdefinitions for thegrosserrorneighbourhoodε∗(Tr, P, GE) and
for the finite sample breakdown point ε∗(Tr, Pn, fsbp). To state the next theorem we
set

∆(P) = sup{P(H × R) : H a plane in Rk of dimension at most k − 1} ,

which is the regression equivalent of (9.77). We have

5 Theorem 5 For any regression equivariant functional

ε∗(Tr, P, dh) ≤ (1 − ∆(P))|2 and ε∗(Tr, Pn, fsbp) ≤ (1 − ∆(Pn))|2 . (9.114)

If one considers L1-regression

β∗ = argmin
n∑

i=1

∣∣yi − x�i β
∣∣ (9.115)

it can be shown if one xi is sufficiently outlying then the residual at this point will
be zero and hence the finite sample breakdown point is a disappointing 1|n. This
turns out to apply to most M-functionals of the last section whose breakdown
point is at most 1|(k + 1) irrespective of their exact definition. The literature on this
point is unsatisfactory. Although some M-functionals have been shown to have
a positive breakdown point this has only been done under the assumption that
the scale part Ts is known. As obtaining the correct magnitude of the scale of the
errors is in some sense the most difficult problem in robust regression such results
are of limited value. They do not however alter the fact that M-functionals have
a disappointing breakdown point. We now turn to the problem of constructing
high breakdown regression functionals.

High Breakdown Regression Functionals9.4.4

The first high breakdown regression functional was proposed by Hampel (1975)
and is as follows.

Tlms(P) = argmin(β,σ)

{
σ :

∫ {|y − x�β| ≤ σ
}

dP(x, y) ≥ 1|2
}

. (9.116)

The idea goes back to Tukey’s shortest half-sample of which it is the regression
counter part. It can be shown that it has almost the highest finite sample breakdown
point given by Theorem 5. By slightly altering the factor 1|2 in (9.116) to take into
account the dimension k of the x-variables it can attain this bound. Rousseeuw
(1984) propagated its use and gave it the name by which it is now known, the least
median of squares LMS. Rousseeuw calculated the finite sample breakdown point

Robust Statistics 685

and provided a first heuristic algorithm which could be applied to real data sets. He
also defined a second high breakdown functional known as least trimmed squares
LTS defined by

Tlts(P) = argmin(β,σ)

{∫ (
y − x�β

)2 {|y − x�β| ≤ σ
}

dP(x, y) :

∫ {|y − x�β| ≤ σ
}

dP(x, y) ≥ 1|2
}

. (9.117)

There are now many high breakdown regression functionals such as S-functionals
(RousseeuwandYohai (1984)),MM-functionals (Yohai (1987)), τ-functionals (Yohai
and Zamar (1988)), constrained M-functionals (Mendes and Tyler (1996)), rank
regression (Chang et al. (1999)) and regression depth (Rousseeuw and Hubert
(1999)). Just as in the location and scale problem in Rk statistical functionals can
have the same breakdown points but very different bias functions. We refer to
Martin et al. (1989), Maronna and Yohai (1993) and Berrendero and Zamar (2001).
All these high breakdown functionals either attain or by some minor adjustment
can be made to attain the breakdown points of Theorem 5 with the exception of
depth based methods where the maximal breakdown point is 1|3 (see Donoho and
Gasko (1992)).

All the above high breakdown regressional functionals can be shown to exist
under weak assumptions but just as in the case of high breakdown location and
scatter functionals in Rk uniqueness can only be shown under very strong con-
ditions which typically involve the existence of a density function for the errors
(see Davies (1993)). The comments made about high breakdown location and scale
functionals in Rk apply here. Thus even if a regression functional is well defined
at some particular model there will be other models arbitrarily close in the met-
ric dH where a unique solution does not exist. This points to an inherent local
instability of high breakdown regression functionals which has been noted in the
literature (Sheather et al. (1997); Ellis (1998)). Dietel (1993) has constructed regres-
sion functionals which are well defined at all models P with ∆(P) < 1 and which are
locally uniformly Lipschitz, not however locally uniformly Fréchet differentiable.
For this reason all confidence regions and efficiency claims must be treated with
a degree of caution. An increase in stability can however be attained by using the
LTS-functional instead of the LMS-functional, by reweighting the observations or
using some form of one-step M-functional improvement as in (9.29).

Just as with high breakdown location and scatter functionals in Rk the calcula-
tion of high breakdown regression functionals poses considerable difficulties. The
first high breakdown regression functional was Hampel’s least median of squares
and even in the simplest case of a straight line in R2 the computational cost is
of order n2. The algorithm is by no means simple requiring as it does ideas from
computational geometry (see Edelsbrunner and Souvaine (1990)). From this and
the fact that the computational complexity increases with dimension it follows
that one has to fall back on heuristic algorithms. The one recommended for linear
regression is that of Rousseeuw and Van Driesen (1999) for the LTS-functional.

686 Laurie Davies, Ursula Gather

Outliers9.4.5

To apply the concept of α-outlier regions to the linear regression model we have
to specify the distribution PY of the response and the joint distribution PX of the
regressors assuming them to be random. For specificness we consider the model

PY |X=x = N(x�β,σ2), (9.118)

and

PX = N (µ, Σ). (9.119)

Assumption (9.118) states that the conditional distribution of the response given
the regressors is normal and assumption (9.119) means that the joint distribution
of the regressors is a certain p-variate normal distribution. If both assumptions are
fulfilled then the joint distribution of (Y , X) is a multivariate normal distribution.

We can define outlier regions under model (9.101) in several reasonable ways. If
only (9.118) is assumed then a response-α-outlier region could be defined as

out(α, PY |X=x) =
{

y ∈ R : u = |y − x�β| > σ z1−α|2
}

, (9.120)

which is appropriate if the regressors are fixed and only outliers in y-direction are
to be identified. If the regressors are random, which will be the more frequent case
in actuarial or econometric applications, outliers in x-direction are important as
well. Under assumption (9.119) a regressor-α-outlier region is a special case of the
α-outlier region (9.99). This approach leads to a population based version of the
concept of leverage points. These are the points in a sample (yi, xi), i = 1, … , n,
from model (9.101) “for which xi is far away from the bulk of the xi in the data”
(Rousseeuw and van Zoomeren (1990)).

For the identification of regressor-outliers (leverage points) the same identifica-
tion rules can be applied as in the multivariate normal situation. For the detection
of response-outliers by resistant one-step identifiers, one needs robust estimators
of the regression coefficients and the scale σ. Examples of high breakdown esti-
mators that can be used in this context are the Least Trimmed Squares estimator
and the corresponding scale estimator (Rousseeuw (1984); Rousseeuw and Leroy
(1987)), S-estimators (Rousseeuw and Yohai (1984)), MM-estimators (Yohai (1987))
or the REWLS-estimators (Gervini and Yohai (2002)).

Analysis of Variance9.5

One-way Table9.5.1

The one-way analysis of variance is concerned with the comparison of the locations
of k samples xij, j = 1, … , ni, i = 1, … , k. The term “analysis of variance” goes

Robust Statistics 687

back to the pioneering work of Fisher (1935) who decomposed the variance of the
combined samples as follows

∑

ij

(xij − x̄)2 =
∑

i

∑

j

(xij − x̄i)
2 +

∑

i

ni(x̄i − x̄)2 . (9.121)

The first term of (9.121) is the total sum of squares, the second is the sum of squares
within samples and the third is the sum of squares between samples. If the data are
modelled as i.i.d. normal random variables with a common variance σ2 but with
the ith sample mean µi then it is possible to derive a test for the null hypothesis
that the means are equal. The single hypothesis of equal means is rarely of interest
in itself. All pairwise comparisons

µi = µl, 1 ≤ i < l ≤ k ,

aswell as contrasts
∑

i ciµi = 0 mayalsobeof interest andgive rise to theproblemof
multiple testing and the associated difficulties. The use of the L2-norm as in (9.121)
iswidespreadperhapsbecauseof the elegant mathematics. Thepeculiarities of data
analysis must however have priority over mathematical theory and as real data sets
may contain outliers, be skewed to some extent and have different scales it becomes
clear that an L2-norm and Gaussian based theory is of limited applicability. We
sketch a robustified approach to the one-way table (see Davies (2004)).

As a first step gross outliers are eliminated from each sample using a simplified
version of the outlier identification rule based on the median and MAD of the
sample. Using the robust location and scale functionals Tl and Ts an αk confidence
or approximation interval Ii for location for the ith sample is calculated. To control
the error rate for Gaussian and other samples we set αk = α1|k with for example
α = 0.95. This choice guarantees that for Gaussian samples

P(µi ∈ Ii, i = 1, … , k) = α . (9.122)

Simulations show that this holds accurately for other symmetric distributions
such as the slash, Cauchy and the double exponential. All questions relating to the
locations of the samples are now reduced to questions concerning the intervals.
For example, the samples i and l can be approximated by the same location value
if and only if Ii ∩ Il ≠ ∅. Similarly if the samples are in some order derived from
a covariable it may be of interest as to whether the locations can be taken to be
non-decreasing. This will be the case if and only if there exist ai, i = 1, … , k with
a1 ≤ a2 ≤ … ≤ ak and ai ∈ Ii for each i. Because of (9.122) all such questions when
stated in terms of the µi can be tested simultaneously and on Gaussian test beds
the error rate will be 1 − α regardless of the number of tests. Another advantage
of the method is that it allows a graphical representation. Every analysis should
include a plot of the boxplots for the k data sets. This can be augmented by the
corresponding plot of the intervals Ii which will often look like the boxplots but
if the sample sizes differ greatly this will influence the lengths of the intervals but
not the form of the boxplots.

688 Laurie Davies, Ursula Gather

Two-way Table9.5.2

Given IJ samples
(
xijk

)nij

k=1 , i = 1, … , I, j = 1, … , J

the two-way analysis of variance in its simplest version looks for a decomposition
of the data of the form

xijk = m + ai + bj + cij + rijk (9.123)

with the the following interpretation. The overall effect is represented by m, the
row and column effects by the ai and bj respectively and the interactions by the cij.
The residuals rijk take care of the rest. As it stands the decomposition (9.123) is not
unique but can be made so by imposing side conditions on the ai, bj and the cij.
Typically these are of the form

∑

i

ai =
∑

j

bj =
∑

i

cij =
∑

j

cij = 0 , (9.124)

where the latter two hold for all j and i respectively. The conditions (9.124) are
almost always stated as technical conditions required to make the decomposition
(9.123) identifiable. The impression is given that they are neutral with respect to any
form of data analysis. But this is not the case as demonstrated by Tukey (1993) and
as can be seen by considering the restrictions on the interactions cij. The minimum
number of interactions for which the restrictions hold is four which, in particular,
excludes the case of a single interaction in one cell. The restrictions on the row and
column effects can also be criticized but we take this no further than mentioning
that the restrictions

MED(a1, … , aI) = MED(b1, … , bJ) = 0 (9.125)

may be more appropriate. The following robustification of the two-way table is
based on Terbeck and Davies (1998). The idea is to look for a decomposition
which minimizes the number of non-zero interactions. We consider firstly the case
of one observation per cell, nij = 1, for all i and j, and look for a decomposi-
tion

xij = m + ai + bj + cij (9.126)

with the smallest number of cij which are non-zero. We denote the positions of
the cij by a I × J-matrix C with C(i, j) = 1 if and only if cij ≠ 0, the remaining
entries being zero. It can be shown that for certain matrices C the non-zero in-
teractions cij can be recovered whatever their values and, moreover, they are the
unique non-zero residuals of the L1-minimization problem

min
ai,bj

∑

ij

|xij − ai − bj| . (9.127)

Robust Statistics 689

We call matrices C for which this holds unconditionally identifiable. They can be
characterized and two such matrices are

1 0 0

0 0 0

0 0 0

1 1 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

(9.128)

aswell asmatricesobtained fromanypermutationsof rowsandcolumns.Theabove
considerations apply to exact models without noise. It can be shown however that
the results hold true if noise is added in the sense that for unconditionally iden-
tifiable matrices sufficiently large (compared to the noise) interactions cij can be
identified as the large residuals from an L1-fit. Three further comments are in order.
Firstly Tukey’s median polish can often identify interactions in the two-way-table.
This is because it attempts to approximate the L1-solution. At each step the L1-norm
is reduced or at least not increased but unfortunately the median polish may not
converge and, even if it does, it may not reach the L1 solution. Secondly L1 solutions
in the presence of noise are not unique. This can be overcome by approximating the
moduls function |x|byastrictly convex functionalmost linear in the tails.Thirdly, if
there ismore thanoneobservationper cell it is recommended that they are replaced
by the median and the method applied to the medians. Finally we point out that an
interaction can also be an outlier. There is no a priori way of distinguishing the two.

References
Adrover, J. (1998). Minimax bias-robust estimation of the dispersion matrix of

multivariate distributions. Annals of Statistics, 26:2301–2320.
Andrews, D.F., Bickel, P.J., Hampel, F.R., Rogers, W.H., and Tukey, J.W. (1972). Ro-

bust Estimates of Location: Survey and Advances. Princeton University Press,
Princeton, N.J.

Atkinson, A.C. (1994). Fast very robust methods for the detection of multiple
outliers. Journal of the American Statistical Association, 89:1329–1339.

Barme-Delcroix,M.-F. andGather,U. (2000).An isobar-surfacesapproach tomulti-
dimensional outlier-proneness. Technical Report 20, Sonderforschungsbereich
475, University of Dortmund, Dortmund, Germany.

Barnett, V. and Lewis, T. (1994). Outliers in Statistical Data. Wiley, New York, third
edition.

Bartlett, M.S. (1935). The effect of non-normality on the t-distribution. Proceedings
of the Cambridge Philosophical Society, 31:223–231.

Becker, C. and Gather, U. (1999). The masking breakdown point of multivari-
ate outlier identification rules. Journal of the American Statistical Association,
94:947–955.

690 Laurie Davies, Ursula Gather

Becker, C. and Gather, U. (2001). The largest nonidentifiable outlier: a compar-
ison of multivariate simultaneous outlier identification rules. Computational
Statistics and Data Analysis, 36:119–127.

Bednarski, T. (1993). Fréchet differentiability and robust estimation. In Mandl, P.
and Husková, M. (eds), Asymptotic Statistics: Proceedings of the Fifth Prague
Symposium, Springer Lecture Notes, pp. 49–58. Springer.

Bednarski, T. and Clarke, B.R. (1998). On locally uniform expansions of regu-
lar functionals. Discussiones Mathematicae: Algebra and Stochastic Methods,
18:155–165.

Bednarski, T., Clarke, B.R., and Kolkiewicz, W. (1991). Statistical expansions and lo-
cally uniform Fréchet differentiability. Journal of the Australian Mathematical
Society, 50:88–97.

Bernholt,T. andFischer,P. (2001).Thecomplexityof computing themcd-estimator.
Technical Report 45, Sonderforschungsbereich 475, University of Dortmund,
Dortmund, Germany.

Berrendero, J.R. and Zamar, R.H. (2001). Maximum bias curves for robust regres-
sion with non-elliptical regressors. Annals of Statistics, 29:224–251.

Box, G.E.P. (1953). Non-normality and test on variance. Biometrika, 40:318–335.
Box, G.E.P. and Andersen, S.L. (1955). Permutation theory in the derivation of

robust criteria and the study of departures from assumption. Journal of the
Royal Statistical Society Series B, 17:1–34.

Caroni, C. and Prescott, P. (1992). Sequential application of wilk’s multivariate
outlier test. Applied Statistics, 41:355–364.

Chang, H., McKean, J.W., Narjano, J.D., and Sheather, S.J. (1999). High-breakdown
rank regression. Journal of the American Statistical Association, 94(445):205–
219.

Clarke, B.R. (1983). Uniqueness and Fréchet differentiability of functional solutions
to maximum likelihood type equations. Annals of Statistics, 11:1196–1205.

Cohen, M. (1991). The background of configural polysampling: a historical per-
spective. In Morgenthaler, S. and Tukey, J.W. (eds), Configural Polysampling: A
Route to Practical Robustness, Chap. 2. Wiley, New York.

Croux, C. and Dehon, C. (2001). Robust linear discriminant analysis using S-
estimators. Canadian Journal of Statistics, 29:473–492.

Croux, C. and Haesbroeck, G. (2000). Principal components analysis based on
robust estimators of the covariance or correlation matrix: influence functions
and efficiencies. Biometrika, 87:603–618.

Croux, C. and Rousseeuw, P.J. (1992). Time-efficient algorithms for two highly
robust estimatorsof scale. InDodge,Y. andWhittaker, J.C. (eds),Computational
Statistics, volume 1, pp. 411–428, Heidelberg. Physica-Verlag.

Davies, P.L. (1987). Asymptotic behaviour of S-estimates of multivariate location
parameters and dispersion matrices. Annals of Statistics, 15:1269–1292.

Davies, P.L. (1992a). The asymptotics of Rousseeuw’s minimum volume ellipsoid.
Annals of Statistics, 20:1828–1843.

Davies, P.L. (1993). Aspects of robust linear regression. Annals of Statistics, 21:1843–
1899.

Robust Statistics 691

Davies, P.L. (1995). Data features. Statistica Neerlandica, 49:185–245.
Davies, P.L. (1998). On locally uniformly linearizable high breakdown location and

scale functionals. Annals of Statistics, 26:1103–1125.
Davies, P.L. (2004). The one-way table. Journal of Statistical Planning and Infer-

ence, 122:3–13.
Davies, P.L. and Gather, U. (1993). The identification of multiple outliers (with

discussion). Journal of the American Statistical Association, 88:782–801.
Dietel, G. (1993). Global location and dispersion functionals. PhD thesis, University

of Essen.
Donoho, D.L. (1982). Breakdown properties of multivariate location estimators.

PhD thesis, Department of Statistics, Harvard University, Harvard, Mass.
Donoho, D.L. and Gasko, M. (1992). Breakdown properties of location esti-

mates based on halfspace depth and project outlyingness. Annals of Statistics,
20:1803–1827.

Donoho, D.L. and Huber, P.J. (1983). The notion of breakdown point. In Bickel, P.J.,
Doksum, K.A. and Hodges, J.L. Jr. (eds), A Festschrift for Erich L. Lehmann, pp.
157–184, Belmont, California. Wadsworth.

Eddington, A.S. (1914). Stellar Movements and the Structure of the Universe.
Macmillan, New York.

Edelsbrunner, H. and Souvaine, D. (1990). Computing median-of-squares regres-
sion lines and guided topological sweep. Journal of the American Statistical
Association, 85:115–119.

Ellis, S.P. (1998). Instability of least squares, least absolute deviation and least
median of squares linear regression. Statistical Science, 13(4):337–350.

Fernholz, L.T. (1983). Von Mises Calculus for Statistical Functionals. Number 19 in
Lecture Notes in Statistics. Springer-Verlag, New York.

Fisher, R.A. (1920). A mathematical examination of the methods of determining
the accuracy of an observation by the mean error and the mean square error.
Monthly Notices of the Royal Astronomical Society, 80:758–770.

Fisher, R.A. (1935). The Design of Experiments, Oliver and Boyd, Edinburgh and
London.

Gather,U. (1990).Modelling theoccurrenceofmultipleoutliers.Allgemeines Statis-
tisches Archiv, 74:413–428.

Gather, U. and Hilker, T. (1997). A note on tyler’s modification of the MAD for the
stahel-donoho estimator. Annals of Statistics, 25:2024–2026.

Gather, U., Kuhnt, S., and Pawlitschko, J. (2003). Concepts of outlyingness for var-
ious data structures. In Misra, J.C. (ed), Industrial Mathematics and Statistics.
Narosa Publishing House, New Delhi, 545–585.

Gather, U. and Schultze, V. (1999). Robust estimation of scale of an exponential
distribution. Statistica Neerlandica, 53:327–341.

Gayen, A.K. (1950). The distribution of the variance ratio in random samples of
any size drawn from non-normal universe. Biometrika, 37:236–255.

Geary, R.C. (1936). The distribution of ’student’s’ ratio for non-normal samples.
Journal of the Royal Statistical Society Supplement, 3:178–184.

Geary, R.C. (1947). Testing for normality. Biometrika, 34:209–242.

692 Laurie Davies, Ursula Gather

Gervini, D. and Yohai, V.J. (2002). A class of robust and fully efficient regression
estimators. Annals of Statistics, 30(2):583–616.

Gnanadesikan, R. and Kettenring, J.R. (1972). Robust estimates, residuals, and
outlier detection with multiresponse data. Biometrics, 28:81–124.

Hadi, A.S. (1994). A modification of a method for the detection of outliers in
multivariate samples. Journal of the Royal Statistical Society, Series B, 56:393–
396.

Hadi, A.S. and Simonoff, J.S. (1997). Procedures for the identification of multi-
ple outliers in linear models. Journal of the American Statistical Association,
88:1264–1272.

Hampel, F.R. (1968). Contributions to the theory of robust estimation. PhD thesis,
University of California, Berkeley.

Hampel, F.R. (1975). Beyond location parameters: Robust concepts and meth-
ods (with discussion). In Proceedings of the 40th Session of the ISI, volume 46,
Book 1, pp. 375–391.

Hampel, F.R. (1985). The breakdown points of the mean combined with some
rejection rules. Technometrics, 27:95–107.

Hampel, F.R., Ronchetti, E.M., Rousseeuw, P.J., and Stahel, W.A. (1986). Robust
Statistics: The Approach Based on Influence Functions, Wiley, New York.

Hawkins, D.M. (1980). Identification of outliers, Chapman and Hall, London.
Huber, P.J. (1964). Robust estimation of a location parameter. Annals of Mathemat-

ical Statistics, 35:73–101.
Huber, P.J. (1977). Robust statistical procedures. In Regional Conference Series in

Applied Mathematics No. 27, Society for Industrial and Applied Mathematics,
Philadelphia, Penn.

Huber, P.J. (1981). Robust Statistics, Wiley, New York.
Huber, P.J. (1984). Finite sample breakdown points of m- and p-estimators. Annals

of Statistics, 12:119–126.
Huber, P.J. (1995). Robustness: Where are we now? Student, 1:75–86.
Kent, J.T. and Tyler, D.E. (1991). Redescending M-estimates of multivariate location

and scatter. Annals of Statistics, 19:2102–2119.
Kent, J.T. andTyler,D.E. (1996).ConstrainedM-estimation formultivariate location

and scatter. Annals of Statistics, 24:1346–1370.
Liu, R.Y., Parelius, J.M., and Singh, K. (1999). Multivariate analysis by data

depth:descriptive statistics, graphicsand inference.Annals of Statistics, 27:783–
840.

Lopuhaä, H.P. (1989). On the relation between S-estimators and M-estimators of
multivariate location and covariance. Annals of Statistics, 19:229–248.

Lopuhaä, H.P. (1991). Multivariate τ-estimators for location and scatter. Canadian
Journal of Statistics, 19:307–321.

Lopuhaä, H.P. and Rousseeuw, P.J. (1991). Breakdown properties of affine equiv-
ariant estimators of multivariate location and covariance matrices. Annals of
Statistics, 19:229–248.

Marazzi, A. (1992). Algorithms, Routines, and S- Functions for Robust Statistics.
Chapman and Hall, New York.

Robust Statistics 693

Maronna, R.A. (1976). Robust M-estimators of multivariate location and scatter.
Annals of Statistics, 4(1):51–67.

Maronna, R.A., Stahel, W.A., and Yohai, V.J. (1992). Bias-robust estimators of mul-
tivariate scatter based on projections. Journal of Multivariate Analysis, 42:141–
161.

Maronna, R.A. and Yohai, V.J. (1981). Asymptotic behavior of general M-estimates
for regression and scale with random carriers. Zeitschrift für Wahrschein-
lichkeitstheorie und verwandte Gebiete, 58:7–20.

Maronna, R.A. and Yohai, V.J. (1993). Bias-robust estimates of regression based on
projections. Annals of Statistics, 21(2):965–990.

Martin, R.D., Yohai, V.J., and Zamar, R.H. (1989). Min-max bias robust regression.
Annals of Statistics, 17(4):1608–1630.

Martin, R.D. and Zamar, R.H. (1993a). Bias robust estimation of scale. Annals of
Statistics, 21(2):991–1017.

Martin, R.D. and Zamar, R.H. (1993b). Efficiency constrained bias robust estima-
tion of location. Annals of Statistics, 21(1):338-354.

Mendes, B. and Tyler, D.E. (1996). Constrained M-estimates for regression. In
Rieder, H. (ed), Robust Statistics; Data Analysis and Computer Intensive Meth-
ods, number 109 in Lecture Notes in Statistics, pp. 299–320. Springer-Verlag.

Neyman, J. and Pearson, E.S. (1933). On the problem of the most efficient tests
of statistical hypotheses. Philosophical Transactions of the Royal Society (Lon-
don), Series A, 231:289–337.

Pearson, E.S. (1929). The distribution of frequency constants in small samples from
non-normal symmetrical and skew populations. Biometrika, 21:259–286.

Pearson, E.S. (1931). The analysis of variance in cases of non-normal variation.
Biometrika, 23:114–133.

Pearson, E.S. and Chandra Sekar, S. (1936). The efficiency of statistical tools and
a criterion for the rejection of outlying observations. Biometrika, 28:308–320.

Pollard, D. (1984). Convergence of stochastic processes. Springer-Verlag, New York.
Riedel, M. (1989a). On the bias-robustness in the location model i. Statistics, 2:223–

233.
Riedel, M. (1989b). On the bias-robustness in the location model ii. Statistics,

2:235–246.
Rieder, H. (1994). Robust Asymptotic Statistics. Springer, Berlin.
Rocke, D.M. (1996). Robustness properties of S-estimators of multivariate location

and shape in high dimension. Annals of Statistics, 24:1327–1345.
Rocke, D.M. and Woodruff, D.L. (1996). Identification of outliers in multivariate

data. Journal of the American Statistical Association, 91(435):1047–1061.
Rocke, D.M. and Woodruff, D.L. (1997). Robust estimation of multivari-

ate location and shape. Journal of Statistical Planning and Inference, 91:245–
255.

Rosner, B. (1975). On the detection of many outliers. Technometrics, 17:221–
227.

Rousseeuw, P.J. (1984). Least median of squares regression. Journal of the American
Statistical Association, 79:871–880.

694 Laurie Davies, Ursula Gather

Rousseeuw, P.J. (1985). Multivariate estimation with high breakdown point. In
Grossmann,W., Pflug,C.G.,Vincze, I. andWertz,W. (eds),Mathematical Statis-
tics and Applications (Proceedings of the 4th Pannonian Symposium on Math-
ematical Statistics), volume B, Dordrecht. Reidel.

Rousseeuw, P.J. and Croux, C. (1992). Explicit scale estimators with high breakdown
point. In Dodge, Y. (ed), L1-Statistical Analysis and Related Methods, pp. 77–92,
Amsterdam. North Holland.

Rousseeuw, P.J. and Croux, C. (1993). Alternatives to the median absolute deviation.
Journal of the American Statistical Association, 88:1273–1283.

Rousseeuw, P.J. and Croux, C. (1994). The bias of k-step M-estimators. Statistics
and Probability Letters, 20:411–420.

Rousseeuw, P.J. and Hubert, M. (1999). Regression depth. Journal of the American
Statistical Association, 94:388–402.

Rousseeuw, P.J. and Leroy, A.M. (1987). Robust Regression and Outlier Detection,
Wiley, New York.

Rousseeuw, P.J. and Van Driesen, K. (1999). A fast algorithm for the minimum
covariance determinant estimator. Technometrics, 41:212–223.

Rousseeuw, P.J. and Van Driesen, K. (2000). An algorithm for positive-breakdown
methods based on concentration steps. In Gaul, W., Opitz, O., and Schader, M.
(eds), Data Analysis: Scientific modelling and Practical Application, pp. 335–
346. Springer-Verlag, New York.

Rousseeuw, P.J. and van Zoomeren, B.C. (1990). Unmasking multivariate outliers
and leverage points. Journal of the American Statistical Association, 85:633–
639.

Rousseeuw, P.J. and Yohai, V.J. (1984). Robust regression by means of S-estimators.
In Franke, J. e.a. (ed), Robust and Nonlinear Time Series Analysis, pp. 256–272,
New York. Springer.

Scholz, F.W. (1971).Comparison of optimal location estimators. PhD thesis,Depart-
ment of Statistics, University of California, Berkley.

Sheather, S.J., McKean, J.W., and Hettmansperger, T.P. (1997). Finite sample sta-
bility properties of the least median of squares estimator. Journal of Statistical
Computing and Simulation, 58(4):371–383.

Simonoff, J.S. (1984). A comparison of robust methods and detection of outlier
techniques when estimating a location parameter. Communications in Statis-
tics, Series A, 13:813–842.

Simonoff, J.S. (1987). The breakdown and influence properties of outlier rejection-
plus-mean procedures. Communications in Statistics, Series A, 16:1749–
1760.

Stahel, W.A. (1981). Breakdown of covariance estimators. Research Report 31, Fach-
gruppe für Statistik, ETH, Zurich.

Staudte, R.G. and Sheather, S.J. (1990). Robust Estimation and Testing, Wiley, New
York.

Tatsuoka, K.S. and Tyler, D.E. (2000). On the uniqueness of S-functionals and
M-functionals undernon-elliptic distributions. Annals of Statistics, 28(4):1219–
1243.

Robust Statistics 695

Terbeck, W. and Davies, P.L. (1998). Interactions and outliers in the two-way anal-
ysis of variance. Annals of Statistics, 26:1279–1305.

Tietjen, G.L. and Moore, R.H. (1972). Some grubbs-type statistics for the detection
of several outliers. Technometrics, 14:583–597.

Tukey, J.W. (1960). A survey of sampling from contaminated distributions. In
Olkin, I. (ed), Contributions to Probability and Statistics. Stanford University
Press, Stanford, California.

Tukey, J.W. (1975). Mathematics and picturing data. In Proceedings of International
Congress of Mathematicians, Vancouver, volume 2, pp. 523–531.

Tukey, J.W. (1993). Exploratory analysis of variance as providing examples of strate-
gic choices. In Morgenthaler, S., Ronchetti, E., and Stahel, W.A. (eds), New
Directions in Statistical Data Analysis and Robustness, Basel. Birkhäuser.

Tyler, D.E. (1994). Finite sample breakdown points of projection based multivariate
location and scatter statistics. Annals of Statistics, 22:1024–1044.

von Mises, R. (1937). Sur les fonctions statistiques. In Conférence de la Réunion
Internationale des Mathématiciens. Gauthier-Villars.

Willems, S., Pison, G., Rousseeuw, P.J., and Van Aelst, S. (2002). A robust Hotelling
test. Metrika, 55:125–138.

Yohai, V.J. (1987). High breakdown point and high efficiency robust estimates for
regression. Annals of Statistics, 15:642–656.

Yohai, V.J. and Maronna, R.A. (1990). The maximum bias of robust covariances.
Communications in Statistics – Theory and Methods, 19:3925–3933.

Yohai, V.J. and Zamar, R.H. (1988). High breakdown point estimates of regression
by means of the minimization of an efficient scale. Journal of the American
Statistical Association, 83:406–413.

Zuo, Y. (2001). Some quantitative relationships between two types of finite sample
breakdown points. Statistics and Probability letters, 51:369–375.

Zuo, Y. and Serfling, R. (2000a). General notions of statistical depth function.
Annals of Statistics, 28:461–482.

Zuo, Y. and Serfling, R. (2000b). Structural properties and convergence results for
contours of sample statistical depth functions. Annals of Statistics, 28:483–499.

III.10Semiparametric Models
Joel L. Horowitz

10.1 Introduction . 699

10.2 Semiparametric Models for Conditional Mean Functions 701

Single Index Models . 702
Partially Linear Models . 705
Nonparametric Additive Models . 705
Transformation Models . 707

10.3 The Proportional Hazards Model with Unobserved Heterogeneity 711

10.4 A Binary Response Model . 714

698 Joel L. Horowitz

Introduction10.1

Much empirical research is concerned with estimating conditional mean, median,
or hazard functions. For example, labor economists are interested in estimating the
mean wages of employed individuals conditional on characteristics such as years
of work experience and education. The most frequently used estimation methods
assume that the function of interest is known up to a set of constant parameters
that can be estimated from data. Models in which the only unknown quantities are
a finite set of constant parameters are called parametric. The use of a parametric
model greatly simplifies estimation, statistical inference, and interpretation of the
estimation results but is rarely justified by theoretical or other a priori consider-
ations. Estimation and inference based on convenient but incorrect assumptions
about the form of the conditional mean function can be highly misleading.

As an illustration, the solid line in Fig. 10.1 shows an estimate of the mean of
the logarithm of weekly wages, log W , conditional on years of work experience,
EXP, for white males with 12 years of education who work full time and live in
urban areas of the North Central U.S. The estimate was obtained by applying
kernel nonparametric regression (see, e.g., Härdle 1990, Fan and Gijbels 1996) to
data from the 1993 Current Population Survey (CPS). The estimated conditional
mean of log W increases steadily up to approximately 30 years of experience and
is flat thereafter. The dashed and dotted lines in Fig. 10.1 show two parametric
estimates of the mean of the logarithm of weekly wages conditional on years of
work experience. The dashed line is the ordinary least squares (OLS) estimate that
is obtained by assuming that the mean of log W conditional on EXP is the linear
function E(log W |EXP) = β0 + β1EXP. The dotted line is the OLS estimate that is
obtained by assuming that E(log W |EXP) is the quadratic function E(log W |EXP) =
β0+β1EXP+β2EXP2. The nonparametric estimate (solid line) places no restrictions

L
o
g
(W

a
g
e
)

Years of Experience

0 10 20 30 40

5.5

6

6.5

7

Quadratic Model

Linear Model

Nonparametric Model

Figure 10.1. Nonparametric and Parametric Estimates of Mean Log Wages

Semiparametric Models 699

on the shape of E(log W |EXP). The linear and quadratic models give misleading
estimates of E(log W |EXP). The linear model indicates that E(log W |EXP) increases
steadily as experience increases. The quadratic model indicates that E(log W |EXP)
decreases after 32 years of experience. In contrast, the nonparametric estimate of
E(log W |EXP) becomes nearly flat at approximately 30 years of experience. Because
the nonparametric estimate does not restrict the conditional mean function to be
linearorquadratic, it ismore likely to represent the true conditionalmean function.

The opportunities for specification error increase if Y is binary. For example,
consider a model of the choice of travel mode for the trip to work. Suppose that
the available modes are automobile and transit. Let Y = 1 if an individual chooses
automobile and Y = 0 if the individual chooses transit. Let X be a vector of
explanatory variables such as the travel times and costs by automobile and transit.
Then E(Y |x) is the probability that Y = 1 (the probability that the individual
chooses automobile) conditional on X = x. This probability will be denoted P(Y =
1|x). In applications of binary response models, it is often assumed that P(Y |x) =
G(β′x), where β is a vector of constant coefficients and G is a known probability
distribution function. Often, G is assumed to be the cumulative standard normal
distribution function,whichyieldsabinary probitmodel, or thecumulative logistic
distribution function,whichyields abinary logitmodel. Thecoefficientsβ can then
be estimated by the method of maximum likelihood (Amemiya 1985). However,
there are now two potential sources of specification error. First, the dependence
of Y on x may not be through the linear index β′x. Second, even if the index β′x
is correct, the response function G may not be the normal or logistic distribution
function. See Horowitz (1993a, 1998) for examples of specification errors in binary
response models and their consequences.

Many investigators attempt to minimize the risk of specification error by carry-
ing out a specification search in which several different models are estimated and
conclusions are based on the one that appears to fit the data best. Specification
searches may be unavoidable in some applications, but they have many undesir-
able properties and their use should be minimized. There is no guarantee that
a specification search will include the correct model or a good approximation to
it. If the search includes the correct model, there is no guarantee that it will be
selected by the investigator’s model selection criteria. Moreover, the search process
invalidates the statistical theory on which inference is based.

The rest of this chapter describes methods that deal with the problem of speci-
fication error by relaxing the assumptions about functional form that are made by
parametric models. The possibility of specification error can be essentially elimi-
nated through the use of nonparametric estimation methods. They assume that the
function of interest is smooth but make no other assumptions about its shape or
functional form. However, nonparametric methods have important disadvantages
that seriously limit their usefulness in applications. One important problem is that
the precision of a nonparametric estimator decreases rapidly as the dimension
of the explanatory variable X increases. This phenomenon is called the curse of
dimensionality. As a result of it, impracticably large samples are usually needed
to obtain acceptable estimation precision if X is multidimensional, as it often is

700 Joel L. Horowitz

in applications. For example, a labor economist may want to estimate mean log
wages conditional on years of work experience, years of education, and one or
more indicators of skill levels, thus making the dimension of X at least 3.

Another problem is that nonparametric estimates can be difficult to display,
communicate, and interpretwhenX ismultidimensional.Nonparametric estimates
do not have simple analytic forms. If X is one- or two-dimensional, then the
estimate of the function of interest can be displayed graphically as in Fig. 10.1,
but only reduced-dimension projections can be displayed when X has three or
more components. Many such displays and much skill in interpreting them can be
needed to fully convey and comprehend the shape of an estimate.

A further problem with nonparametric estimation is that it does not permit
extrapolation. For example, in the case of a conditional mean function it does not
provide predictions of E(Y |x) at points x that are outside of the support (or range)
of the random variable X. This is a serious drawback in policy analysis and fore-
casting, where it is often important to predict what might happen under conditions
that do not exist in the available data. Finally, in nonparametric estimation, it can
be difficult to impose restrictions suggested by economic or other theory. Matzkin
(1994) discusses this issue.

Semiparametric methods offer a compromise. They make assumptions about
functional form that are stronger than those of a nonparametric model but less
restrictive than the assumptions of a parametric model, thereby reducing (though
not eliminating) the possibility of specification error. Semiparametric methods
permit greater estimation precision than do nonparametric methods when X is
multidimensional. They are easier to display and interpret than nonparametric
ones and provide limited capabilities for extrapolation and imposing restrictions
derived from economic or other theory models. Section 10.2 of this chapter de-
scribes some semiparametric models for conditional mean functions. Section 10.3
describes semiparametric estimators for an important class of hazard models. Sec-
tion 10.4 is concerned with semiparametric estimation of a certain binary response
model.

Semiparametric Models
for Conditional Mean Functions10.2

The term semiparametric refers to models in which there is an unknown function
in addition to an unknown finite dimensional parameter. For example, the binary
response model P(Y = 1|x) = G(β′x) is semiparametric if the function G and
the vector of coefficients β are both treated as unknown quantities. This section
describes two semiparametric models of conditional mean functions that are
important in applications. The section also describes a related class of models that
has no unknown finite-dimensional parameters but, like semiparametric models,
mitigates the disadvantages of fully nonparametric models. Finally, this section

Semiparametric Models 701

describes a class of transformation models that is important in estimation of
hazard functions among other applications. Powell (1994) discusses additional
semiparametric models.

Single Index Models 10.2.1

In a semiparametric single index model, the conditional mean function has the
form

E(Y |x) = G(β′x) , (10.1)

where β is an unknown constant vector and G is an unknown function. The
quantity β′x is called an index. The inferential problem is to estimate G and β from
observations of (Y , X). G in (10.1) is analogous to a link function in a generalized
linear model, except in (10.1) G is unknown and must be estimated.

Model (10.1) contains many widely used parametric models as special cases.
For example, if G is the identity function, then (10.1) is a linear model. If G is the
cumulative normal or logistic distribution function, then (10.1) is a binary probit
or logit model. When G is unknown, (10.1) provides a specification that is more
flexible than a parametric model but retains many of the desirable features of
parametric models, as will now be explained.

One important property of single index models is that they avoid the curse
of dimensionality. This is because the index β′x aggregates the dimensions of x,
thereby achieving dimension reduction. Consequently, the difference between the
estimator of G and the true function can be made to converge to zero at the same
rate that would be achieved if β′x were observable. Moreover, β can be estimated
with the same rate of convergence that is achieved in a parametric model. Thus, in
terms of the rates of convergence of estimators, a single index model is as accurate
as a parametric model for estimating β and as accurate as a one-dimensional
nonparametric model for estimating G. This dimension reduction feature of single
index models gives them a considerable advantage over nonparametric methods
in applications where X is multidimensional and the single index structure is
plausible.

A single-index model permits limited extrapolation. Specifically, it yields pre-
dictions of E(Y |x) at values of x that are not in the support of X but are in the
support of β′X. Of course, there is a price that must be paid for the ability to ex-
trapolate. A single index model makes assumptions that are stronger than those of
a nonparametric model. These assumptions are testable on the support of X but not
outside of it. Thus, extrapolation (unavoidably) relies on untestable assumptions
about the behavior of E(Y |x) beyond the support of X.

Before β and G can be estimated, restrictions must be imposed that insure their
identification. That is, β and G must be uniquely determined by the population
distribution of (Y , X). Identification of single index models has been investigated
by Ichimura (1993) and, for the special case of binary response models, Manski
(1988). It is clear thatβ is not identified if G is a constant function or there is an exact

702 Joel L. Horowitz

linear relation among the components of X (perfect multicollinearity). In addition,
(10.1) is observationally equivalent to the model E(Y |X) = G∗(γ + δβ′x), where γ
and δ ≠ 0 are arbitrary and G∗ is defined by the relation G∗(γ + δv) = G(v) for
all v in the support of β′X. Therefore, β and G are not identified unless restrictions
are imposed that uniquely specify γ and δ. The restriction on γ is called location
normalizationandcanbe imposedbyrequiring X tocontainnoconstant (intercept)
component. The restriction on δ is called scale normalization. Scale normalization
can be achieved by setting the β coefficient of one component of X equal to one.
A further identificationrequirement is thatX must includeat leastonecontinuously
distributed component whose β coefficient is non-zero. Horowitz (1998) gives
an example that illustrates the need for this requirement. Other more technical
identification requirements are discussed by Ichimura (1993) and Manski (1988).

The main estimation challenge in single index models is estimating β. Given
an estimator bn of β, G can be estimated by carrying out the nonparametric
regression of Y on b′nX (e.g, by using kernel estimation). Several estimators of β
are available. Ichimura (1993) describes a nonlinear least squares estimator. Klein
and Spady (1993) describe a semiparametric maximum likelihood estimator for
the case in which Y is binary. These estimators are difficult to compute because
they require solving complicated nonlinear optimization problems. Powell, et al.
(1989) describe a density-weighted average derivative estimator (DWADE) that is
non-iterative and easily computed. The DWADE applies when all components of
X are continuous random variables. It is based on the relation

β ∝ E [p(X)∂G(β′X)|∂X] = −2E [Y∂p(X)|∂X] , (10.2)

where p is the probability density function of X and the second equality follows
fromintegrating thefirstbyparts.Thus,βcanbeestimatedup toscalebyestimating
the expression on the right-hand side of the second equality. Powell, et al. (1989)
show that this can be done by replacing p with a nonparametric estimator and
replacing thepopulationexpectation E witha sample average.Horowitz andHärdle
(1996) extend this method to models in which some components of X are discrete.
Hristache, Juditsky, and Spokoiny (2001) developed an iterated average derivative
estimator that performs well when X is high-dimensional. Ichimura and Lee (1991)
and Hristache, Juditsky, Polzehl and Spokoiny (2001) investigate multiple-index
generalizations of (10.1).

The usefulness of single-index models can be illustrated with an example that
is taken from Horowitz and Härdle (1996). The example consists of estimating
a model of product innovation by German manufacturers of investment goods.
The data, assembled in 1989 by the IFO Institute of Munich, consist of observa-
tions on 1100 manufacturers. The dependent variable is Y = 1 if a manufacturer
realized an innovation during 1989 in a specific product category and 0 otherwise.
The independent variables are the number of employees in the product category
(EMPLP), the number of employees in the entire firm (EMPLF), an indicator of
the firm’s production capacity utilization (CAP), and a variable DEM, which is 1
if a firm expected increasing demand in the product category and 0 otherwise.

Semiparametric Models 703

The first three independent variables are standardized so that they have units of
standard deviations from their means. Scale normalization was achieved by setting
βEMPLP = 1.

Table 10.1 shows the parameter estimates obtained using a binary probit model
and the semiparametric method of Horowitz and Härdle (1996). Figure 10.2 shows
a kernel estimate of G′(ν). There are two important differences between the semi-
parametric and probit estimates. First, the semiparametric estimate of βEMPLF is

Table 10.1. Estimated Coefficients (Standard Errors) for Model of Product Innovation

EMPLP EMPLF CAP DEM

Semiparametric Model

1 0.032 0.346 1.732
(0.023) (0.078) (0.509)

Probit Model

1 0.516 0.520 1.895
(0.024) (0.163) (0.387)

G
´(

v
)

V
-4 0 4 8 12

0

0.05

0.1

0.15

Figure 10.2. Estimate of G′(v) for model of product innovation

small and statistically nonsignificant, whereas the probit estimate is significant at
the 0.05 level and similar in size to βCAP. Second, in the binary probit model, G is
a cumulative normal distribution function, so G′ is a normal density function. Fig-
ure 10.2 reveals, however, that G′ is bimodal. This bimodality suggests that the data
may be a mixture of two populations. An obvious next step in the analysis of the
data would be to search for variables that characterize these populations. Standard
diagnostic techniques for binary probit models would provide no indication that G′
is bimodal. Thus, the semiparametric estimate has revealed an important feature
of the data that could not easily be found using standard parametric methods.

704 Joel L. Horowitz

Partially Linear Models10.2.2

In a partially linear model, X is partitioned into two non-overlapping subvectors,
X1 and X2. The model has the form

E(Y |x1, x2) = β′x1 + G(x2) , (10.3)

where β is an unknown constant vector and G is an unknown function. This
model is distinct from the class of single index models. A single index model is
not partially linear unless G is a linear function. Conversely, a partially linear
model is a single index model only in this case. Stock (1989, 1991) and Engle et al.
(1986) illustrate the use of (10.3) in applications. Identification of β requires the
exclusion restriction that none of the components of X1 are perfectly predictable
by components of X2. When β is identified, it can be estimated with an n−1|2 rate
of convergence regardless of the dimensions of X1 and X2. Thus, the curse of
dimensionality is avoided in estimating β.

An estimator of β can be obtained by observing that (10.3) implies

Y − E(Y |x2) = β′ [X1 − E(X1|x2)] + U , (10.4)

where U is an unobserved random variable satisfying E(U|x1, x2) = 0. Robinson
(1988) shows that under regularity conditions, β can be estimated by applying OLS
to (10.4) after replacing E(Y |x2) and E(X1|x2) with nonparametric estimators. The
estimatorofβ,bn, convergesat rate n−1|2 and isasymptoticallynormallydistributed.
G can be estimated by carrying out the nonparametric regression of Y −b′nX1 on X2.
Unlike bn, the estimator of G suffers from the curse of dimensionality; its rate of
convergence decreases as the dimension of X2 increases.

Nonparametric Additive Models10.2.3

Let X have d continuously distributed components that are denoted X1, … , Xd. In
a nonparametric additive model of the conditional mean function,

E(Y |x) = µ + f1(x1) + … + fd(xd) , (10.5)

where µ is a constant and f1, … , fd are unknown functions that satisfy a location
normalization condition such as

∫
fk(v)wk(v)dv = 0 , k = 1, … , d , (10.6)

where wk is a non-negative weight function. An additive model is distinct from
a single index model unless E(Y |x) is a linear function of x. Additive and partially
linear models are distinct unless E(Y |x) is partially linear and G in (10.3) is additive.

Semiparametric Models 705

An estimator of fk (k = 1, … , d) can be obtained by observing that (10.5) and
(10.6) imply

fk(xk) =
∫

E(Y |x)w−k(x−k)dx−k , (10.7)

where x−k is the vector consisting of all components of x except the k’th and
w−k is a weight function that satisfies

∫
w−k(x−k)dx−k = 1. The estimator of fk is

obtained by replacing E(Y |x) on the right-hand side of (10.7) with nonparamet-
ric estimators. Linton and Nielsen (1995) and Linton (1997) present the details
of the procedure and extensions of it. Under suitable conditions, the estima-
tor of fk converges to the true fk at rate n−2|5 regardless of the dimension of X.
Thus, the additive model provides dimension reduction. It also permits extrap-
olation of E(Y |x) within the rectangle formed by the supports of the individual
components of X. Mammen, Linton, and Nielsen (1999) describe a backfitting
procedure that is likely to be more precise than the estimator based on (10.7)
when d is large. See Hastie and Tibshirani (1990) for an early discussion of
backfitting.

Linton and Härdle (1996) describe a generalized additive model whose form is

E(Y |x) = G [µ + f1(x1) + … + fK(xd)] , (10.8)

where f1, … , fd are unknown functions and G is a known, strictly increasing (or
decreasing) function. Horowitz (2001) describes a version of (10.8) in which G is
unknown. Both forms of (10.8) achieve dimension reduction. When G is unknown,
(10.8) nests additive and single index models and, under certain conditions, par-
tially linear models.

The use of the nonparametric additive specification (10.5) can be illustrated
by estimating the model E(log W |EXP, EDUC) = µ + fEXP(EXP) + fEDUC(EDUC),
where W and EXP are defined as in Sect. 10.1, and EDUC denotes years of ed-
ucation. The data are taken from the 1993 CPS and are for white males with 14
or fewer years of education who work full time and live in urban areas of the
North Central U.S. The results are shown in Fig. 10.3. The unknown functions
fEXP and fEDUC are estimated by the method of Linton and Nielsen (1995) and
are normalized so that fEXP(2) = fEDCU (5) = 0. The estimates of fEXP (Fig. 10.3a)
and fEDUC (Fig. 10.3b) are nonlinear and differently shaped. Functions fEXP and
fEDUC with different shapes cannot be produced by a single index model, and
a lengthy specification search might be needed to find a parametric model that
produces the shapes shown in Fig. 10.3. Some of the fluctuations of the estimates
of fEXP and fEDUC may be artifacts of random sampling error rather than features
of E(log W |EXP, EDUC). However, a more elaborate analysis that takes account of
the effects of random sampling error rejects the hypothesis that either function is
linear.

706 Joel L. Horowitz

R
e
la

ti
v
e

L
o
g

W
a
g
e

Years of Experience

0 10 20 30 40

0

0.5

1

R
e
la

ti
v
e

L
o
g

W
a
g
e

Years of Education

5 10 15

0

0.5

1

1.5

Figure 10.3. Components of nonparametric, additive wage equation

Transformation Models10.2.4

A transformation model has the form

H(Y) = β′X + U , (10.9)

where H is an unknown increasing function, β is an unknown finite dimensional
vector of constants, and U is an unobserved random variable. It is assumed here
that U is statistically independent of X. The aim is to estimate H and β. One
possibility is to assume that H is known up to a finite-dimensional parameter. For

Semiparametric Models 707

example, H could be the Box-Cox transformation

H(y) =

(yτ − 1)|τ if τ > 0

log y if τ = 0

where τ is an unknown parameter. Methods for estimating transformation models
in which H is parametric have been developed by Amemiya and Powell (1981) and
Foster, et al. (2001) among others.

Another possibility is to assume that H is unknown but that the distribution
of U is known. Cheng, Wei, and Ying (1995, 1997) have developed estimators for
this version of (10.9). Consider, first, the problem of estimating β. Let F denote
the (known) cumulative distribution function (CDF) of U . Let (Yi, Xi) and (Yj, Xj)
(i ≠ j) be two distinct, independent observations of (Y , X). Then it follows from
(10.9) that

E
[
I(Yi > Yj)|Xi = xi, Xj = xj

]
= P

[
Ui − Uj > −(xi − xj)

]
. (10.10)

Let G(z) = P(Ui − Uj > z) for any real z. Then

G(z) =

∞∫

−∞
[1 − F(u + z)] dF(u) .

G is a known function because F is assumed known. Substituting G into (10.10)
gives

E
[
I(Yi > Yj)|Xi = xi, Xj = xj

]
= G

[
−β′(xi − xj)

]
.

Define Xij = Xi − Xj. Then it follows that β satisfies the moment condition

E
{

w
(
β′Xij

)
Xij

[
I
(
Yi > Yj

)
− G

(
−β′Xij

)]}
= 0 (10.11)

where w is a weight function. Cheng, Wei, and Ying (1995) propose estimating β
by replacing the population moment condition (10.11) with the sample analog

n∑

i=1

n∑

j=1

{
w
(
b′Xij

)
Xij

[
I
(
Yi > Yj

)
− G

(
−b′Xij

)]}
= 0 . (10.12)

The estimator of β, bn, is the solution to (10.12). Equation (10.12) has a unique
solution if w(z) = 1 for all z and the matrix

∑
i

∑
j X′

ijXij is positive definite. It
also has a unique solution asymptotically if w is positive everywhere (Cheng, Wei,
and Ying 1995). Moreover, bn converges almost surely to β. Cheng, Wei, and Ying
(1995) also give conditions under which n1|2(bn − β) is asymptotically normally
distributed with a mean of 0.

The problem of estimating the transformation function is addressed by Cheng,
Wei, and Ying (1997). Equation (10.11) implies that for any real y and vector x that
is conformable with X, EI[I(Y ≤ y)|X = x] − F[H(y) − β′x] = 0. Cheng, Wei, and

708 Joel L. Horowitz

Ying (1997) propose estimating H(y) by the solution to the sample analog of this
equation. That is, the estimator Hn(y) solves

n−1
n∑

i=1

{
I
(
Yi ≤ y

)
− F [Hn(y) − b′nXi]

}
= 0 ,

where bn is the solution to (10.12). Cheng, Wei, and Ying (1997) show that if F
is strictly increasing on its support, then Hn(y) converges to H(y) almost surely
uniformly over any interval [0, t] such that P(Y > t) > 0. Moreover, n1|2(Hn − H)
converges to a mean-zero Gaussian process over this interval.

A third possibility is to assume that H and F are both nonparametric in (10.9).
In this case, certain normalizations are needed to make identification of (10.9)
possible. First, observe that (10.9) continues to hold if H is replaced by cH, β is
replaced by cβ, and U is replaced by cU for any positive constant c. Therefore,
a scale normalization is needed to make identification possible. This will be done
here by setting |β1| = 1, where β1 is the first component of β. Observe, also, that
when H and F are nonparametric, (10.9) is a semiparametric single-index model.
Therefore, identification of β requires X to have at least one component whose
distribution conditional on the others is continuous and whose β coefficient is
non-zero. Assume without loss of generality that the components of X are ordered
so that the first satisfies this condition.

It can also be seen that (10.9) is unchanged if H is replaced by H + d and U is
replaced by U + d for any positive or negative constant d. Therefore, a location nor-
malization is also needed to achieve identification when and F are nonparametric.
Location normalization will be carried out here by assuming that H(y0) = 0 for
some finite y0 With this location normalization, there is no centering assumption
on U and no intercept term in X.

Now consider the problem of estimating H, β, and F. Because (10.9) is a single-
index model in this case, β can be estimated using the methods described in
Sect. 10.2.1. Let bn denote the estimator of β. One approach to estimating H and
F is given by Horowitz (1996). To describe this approach, define Z = β′X. Let
G(·|z) denote the CDF of Y conditional on Z = z. Set Gy(y|z) = ∂G(y|z)|∂z and
Gz(y|z) = ∂G(y|z)|∂z. Then it follows from (10.9) that H′(y) = −Gy(y|z)|Gz(y|z)
and that

H(y) = −

y∫

y0

[
Gy(v|z)|Gz(v|z)

]
dv (10.13)

for any z such that the denominator of the integrand is non-zero. Now let w(·) be
a scalar-valued, non-negative weight function with compact support Sw such that
the denominator of Gz(v|z) is bounded away from 0 for all v ∈ [y0, y] and z ∈ Sw.
Also assume that

∫

Sw

w(z)dz = 1 .

Semiparametric Models 709

Then

H(y) = −

y∫

y0

∫

Sw

w(z)
[
Gy(v|z)|Gz(v|z)

]
dz dv . (10.14)

Horowitz (1996) obtains an estimator of H from (10.14) by replacing Gy and Gz

by kernel estimators. Specifically, Gy is replaced by a kernel estimator of the
probability density function of Y conditional on b′nX = z, and Gz is replaced by
a kernel estimator of the derivative with respect to z of the CDF of Y conditional
on b′nX = z. Denote these estimators by Gny and Gnz. Then the estimator of H is

Hn(y) = −

y∫

y0

∫

Sw

w(z)
[
Gny(v|z)|Gnz(v|z)

]
dz dv . (10.15)

Horowitz (1996) gives conditions under which Hn is uniformly consistent for H and
n1|2(Hn − H) converges weakly to a mean-zero Gaussian process. Horowitz (1996)
also shows how to estimate F, the CDF of U , and gives conditions under which
n1|2(Fn − F) converges to a mean-zero Gaussian process, where Fn is the estimator.
Gørgens and Horowitz (1999) extend these results to a censored version of (10.9).
Integration over z in (10.14) and (10.15) accelerates the convergence of Hn to H.
Kernel estimators converge in probability at rates slower than n−1|2. Therefore,
Gny(v|z)|Gnz(v|z) is not n−1|2-consistent for Gy(v|z)|Gz(v|z). However, integration
over z and v in (10.15) creates an averaging effect that causes the integral and,
therefore, Hn to converge at the rate n−1|2. This is the reason for basing the estimator
on (10.14) instead of (10.13).

Other estimators of H when and F are both nonparametric have been proposed
by Ye and Duan (1997) and Chen (2002). Chen uses a rank-based approach that is in
some ways simpler than that of Horowitz (1996) and may have better finite-sample
performance.Todescribe this approach,definediy = I(Yi > y) and djy0 = I(Yj > y0).
Let i ≠ j. Then E(diy − djy0|Xi, Xj) ≥ 0 whenever Zi − Zj ≥ H(y). This suggests that
if β were known, then H(y) could be estimated by

Hn(y) = arg max
τ

1

n(n − 1)

n∑

i=1

n∑

j=1
j≠i

(diy − diy0)I(Zi − Zj ≥ τ) .

Since β is unknown, Chen (2002) proposes

Hn(y) = arg max
τ

1

n(n − 1)

n∑

i=1

n∑

j=1
j≠i

(diy − diy0)I(b′nXi − b′nXj ≥ τ) .

Chen (2002) gives conditions under which Hn is uniformly consistent for H and
n1|2(Hn − H) converges to a mean-zero Gaussian process. Chen (2002) also shows
how this method can be extended to a censored version of (10.9).

710 Joel L. Horowitz

The Proportional Hazards Model
with Unobserved Heterogeneity10.3

Let T denote a duration such as that of a spell of employment or unemployment.
Let F(t|x) = P(T ≤ t|X = x) where X is a vector of covariates. Let f (t|x) denote the
corresponding conditional probability density function. The conditional hazard
function is defined as

λ(t|x) =
f (t|x)

1 − F(t|x)
.

This section is concerned with an approach to modeling λ(t|x) that is based on the
proportional hazards model of Cox (1972).

The proportional hazards model is widely used for the analysis of duration data.
Its form is

λ(t|x) = λ0(t)e−x′β , (10.16)

where β is a vector of constant parameters that is conformable with X and λ0 is
a non-negative function that is called the baseline hazard function. The essential
characteristic of (10.16) that distinguishes it from other models is that λ(t|x) is the
product of a function of t alone and a function of x alone. Cox (1972) developed
a partial likelihood estimator of β and a nonparametric estimator of λ0. Tsiatis
(1981) derived the asymptotic properties of these estimators.

In the proportional hazards model with unobserved heterogeneity, the hazard
function is conditioned on the covariates X and an unobserved random variable U
that is assumed to be independent of X. The form of the model is

λ(t|x, u) = λ0(t)e−(β′x+u) , (10.17)

where λ(·|x, u) is the hazard conditional on X = x and U = u. In a model of the
duration of employment U might represent unobserved attributes of an individual
(possibly ability) that affect employment duration. A variety of estimators of λ0

and β have been proposed under the assumption that λ0 or the distribution of U or
both are known up to a finite-dimensional parameter. See, for example, Lancaster
(1979), Heckman and Singer (1984a), Meyer (1990), Nielsen, et al. (1992), and
Murphy (1994, 1995). However, λ0 and the distribution of U are nonparametrically
identified (Elbers and Ridder 1982, Heckman and Singer 1984b), which suggests
that they can be estimated nonparametrically.

Horowitz (1999) describes a nonparametric estimator of λ0 and the density
of U in model (10.17). His estimator is based on expressing (10.17) as a type of
transformation model. To do this, define the integrated baseline hazard funtion,
Λ0 by

Λ0(t) =

t∫

0

λ0(τ)dτ .

Semiparametric Models 711

Then it is not difficult to show that (10.17) is equivalent to the transformation model

logΛ0(T) = X′β + U + ε , (10.18)

where ε is a random variable that is independent of X and U and has the CDF
Fε(y) = 1 − exp(−ey). Now define σ = |β1|, where β1 is the first component of β
and is assumed to be non-zero. Then β|σ and H = σ−1 logΛ0 can be estimated by
using the methods of Sect. 10.2.4. Denote the resulting estimators of β|σ and H
by αn and Hn. If σ were known, then β and Λ0 could be estimated by bn = σαn

and Λn0 = exp(σHn). The baseline hazard function λ0 could be estimated by
differentiating Λn0. Thus, it is necessary only to find an estimator of the scale
parameter σ.

To do this, define Z = β′X, and let G(·|z) denote the CDF of T conditional on
Z = z. It can be shown that

G(t|z) = 1 −

∫
exp

[
−Λ0(t)e−(β′x+u)

]
dF(u) ,

where F is the CDF of U . Let p denote the probability density function of Z. Define
Gz(t|z) = ∂G(t|z)|∂z and

σ(t) =
∫

Gz(t|z)p(z)2 dz
∫

G(t|z)p(z)2 dz
.

Then it can be shown using l’Hospital’s rule that if Λ0(t) > 0 for all t > 0, then

σ = lim
t→0

σ(t) .

To estimate σ, let pn, Gnz and Gn be kernel estimators of p, Gz and G, respectively,
that are based on a simple random sample of (T, X). Define

σn(t) =
∫

Gnz(t|z)pn(z)2 dz
∫

Gn(t|z)pn(z)2 dz
.

Let c, d, and δ be constants satisfying 0 < c < ∞, 1|5 < d < 1|4, and 1|(2d) < δ < 1.
Let {tn1} and {tn2} be sequences of positive numbers such that Λ0(tn1) = cn−d and
Λ0(tn2) = cn−δd. Then σ is estimated consistently by

σn =
σn(tn1) − n−d(1−δ)σn(tn2)

n−d(1−δ)
.

Horowitz (1999) gives conditions under which n(1−d)|2(σn − σ) is asymptotically
normally distributed with a mean of zero. By choosing d to be close to 1|5, the
rate of convergence in probability of σn to σ can be made arbitrarily close to n−2|5,
which is the fastest possible rate (Ishwaran 1996). It follows from an application of
the delta method that the estimators of β, Λ0, and λ0 that are given by bn = σnαn,
Λn0 = exp(σnHn), and λn0 = dΛn0|dt are also asymptotically normally distributed
with means of zero and n−(1−d)|2 rates of convergence. The probability density
function of U can be estimated consistently by solving the deconvolution problem
Wn = U + ε, where Wn = logΛn0(T) − X′βn. Because the distribution of ε is
“supersmooth,” the resulting rate of convergence of the estimator of the density
of U is (log n)−m, where m is the number of times that the density is differentiable.

712 Joel L. Horowitz

This is the fastest possible rate. Horowitz (1999) also shows how to obtain data-
based values for tn1 and tn2 and extends the estimation method to models with
censoring.

If panel data on (T, X) are available, then Λ0 can be estimated with a n−1|2 rate
of convergence, and the assumption of independence of U from X can be dropped.
Suppose that each individual in a random sample of individuals is observed for
exactly two spells. Let (Tj, Xj : j = 1, 2) denote the values of (T, X) in the two spells.
Define Zj = β′Xj. Then the joint survivor function of T1 and T2 conditional on
Z1 = z1 and Z2 = z2 is

S
(
t1, t2|Z1, Z2

) ≡ P
(
T1 > t1, T2 > t2|Z1, Z2

)

=
∫

exp
[
−Λ0

(
t1

)
ez1+u − Λ0

(
t2

)
ez2+u

]
dP

(
u|Z1 = z1, Z2 = z2

)
.

Honoré(1993) showed that

R
(
t1, t2|z1, z2

) ≡ ∂S
(
t1, t2|z1, z2

)
/∂t1

∂S
(
t1, t2|z1, z2

)
/∂t2

=
λ0

(
t1

)

λ0

(
t2

) exp
(
z1 − z2

)
.

Adopt the scale normalization

∫

ST

wt(τ)
λ0(τ)

dτ = 1 ,

where wt is a non-negative weight function and ST is its support. Then

λ0(t) =
∫

ST

wt(τ) exp
(
z2 − z1

)
R
(
t, τ|z2, z1

)
dτ .

Now for a weight function ωz with support SZ , define

w
(
τ, z1, z2

)
= wt(τ)wz

(
z1

)
wz

(
z2

)
.

Then,

λ0(t) =
∫

ST

dτ
∫

SZ

dz1

∫

SZ

dz2w
(
τ, z1, z2

)
exp

(
z2 − z1

)
R
(
t, τ|z1, z2

)
. (10.19)

The baseline hazard function can now be estimated by replacing R with an es-
timator, Rn, in (10.19). This can be done by replacing Z with X′bn, where bn is
a consistent estimator of β such as a marginal likelihood estimator (Chamber-
lain 1985, Kalbfleisch and Prentice 1980, Lancaster 2000, Ridder and Tunali 1999),

Semiparametric Models 713

and replacing S with a kernel estimator of the joint survivor function conditional
X′

1bn = z1 and X′
2bn = z2. The resulting estimator of λ0 is

λn0(t) =
∫

ST

dτ
∫

SZ

dz1

∫

SZ

dz2w
(
τ, z1, z2

)
exp

(
z2 − z1

)
Rn

(
t, τ|z1, z2

)
.

The integrated baseline hazard function is estimated by

Λn0(t) =

t∫

0

λn0(τ)dτ .

Horowitz and Lee (2004) give conditions under which n1|2(Λn0 − Λ0) converges
weakly to a tight, mean-zero Gaussian process. The estimated baseline hazard
function λn0 converges at the rate n−q|(2q+1), where q ≥ 2 is the number of times
that λ0 is continuously differentiable. Horowitz and Lee (2004) also show how to
estimate a censored version of the model.

A Binary Response Model 10.4

The general binary response model has the form

Y = I(β′X + U > 0) , (10.20)

where U is an unobserved random variable. If the distribution of U is unknown but
depends on X only through the index β′X, then (10.20) is a single-index model, and
β can be estimated by the methods described in Sect. 10.2.1. An alternative model
that is non-nested with single-index models can be obtained by assuming that
median(U|X = x) = 0 forallx.Thisassumptionplacesonlyweakrestrictionsonthe
relationbetween X and thedistributionof U .Amongother things, it accommodates
fairly general types of heteroskedasticity of unknown form, including random
coefficients. Under median centering, the inferential problem is to estimate β. The
response function, P(Y = 1|X = x) is not identified without making assumptions
about the distribution of U that are stronger than those needed to identify and
estimate β. Without such assumptions, the only restriction on P(Y = 1|X = x)
under median centering is that

P(Y = 1|X = x)

> 0.5 if β′x > 0

= 0.5 if β′x = 0

< 0.5 if β′x < 0

714 Joel L. Horowitz

Manski (1975, 1985) proposed the first estimator of β under median centering. Let
the data be the simple random sample {Yi, Xi : i = 1, … , n}. The estimator is called
the maximum score estimator and is

bn = arg max
‖b‖=1

n−1
n∑

i=1

(2Yi − 1)I(b′Xi ≥ 0) , (10.21)

where ‖b‖ denotes the Euclidean norm of the vector b. The restriction ‖b‖ = 1
is a scale normalization. Scale normalization is needed for identification because
(10.20) identifies β only up to scale. Manski (1975, 1985) gave conditions under
which bn consistently estimates β. The rate of convergence of bn and its asymptotic
distribution were derived by Cavanagh (1987) and Kim and Pollard (1990). They
showed that the rate of convergence in probability of bn to β is n−1|3 and that
n1|3(bn − β) converges in distribution to the maximum of a complicated multidi-
mensional stochastic process. The complexity of the limiting distribution of the
maximum score estimator limits its usefulness for statistical inference. Delgado,
Rodŕıguez-Póo and Wolf (2001) proposed using subsampling methods to form
confidence intervals for β.

The maximum score estimator has a slow rate of convergence and a complicat-
ed asymptotic distribution because it is obtained by maximizing a step function.
Horowitz (1992) proposed replacing the indicator function in (10.21) by a smooth
function. The resulting estimator of β is called the smoothed maximum score esti-
mator. Specifically, let K be a smooth function, possibly but not necessarily a dis-
tribution function, that satisfies K(−∞) = 0 and K(∞) = 1. Let {hn : n = 1, 2, …}
be a sequence of strictly positive constants (bandwidths) that satisfies hn → 0 as
n → ∞. The smoothed maximum score estimator, bns, is

bns = arg max
b∈B

n∑

i=1

(2Yi − 1)K(X′
ib|hn) ,

where B is a compact parameter set that satisfies the scale normalization |b1| = 1.
Horowitz (1992) shows that under assumptions that are stronger than those of
Manski (1975, 1985) but still quite weak, nr(bns −β) is asymptotically normal, where
2|5 ≤ r < 1|2 and the exact value of r depends on the smoothness of the distribution
of X′β and of P(Y = 1|X = x). Moreover, the smoothed maximum score estimator
has the fastestpossible rateof convergenceunder its assumptions (Horowitz 1993b).
Monte Carlo evidence suggests that the asymptotic normal approximation can be
inaccurate with samples of practical size. However, Horowitz (2002) shows that the
bootstrap, which is implemented by sampling the data randomly with replacement,
provides asymptotic refinements for tests of hypotheses about β and produces low
ERPs for these tests. Thus, the bootstrap provides a practical way to carry out
inference with the smoothed maximum score estimator.

Horowitz (1993c) used the smoothed maximum score method to estimate the
parameters of a model of the choice between automobile and transit for work trips
in the Washington, D.C., area. The explanatory variables are defined in Table 10.2.
Scale normalization is achieved by setting the coefficient of DCOST equal to 1.
The data consist of 842 observations sampled randomly from the Washington,

Semiparametric Models 715

D.C., area transportation study. Each record contains information about a single
trip to work, including the chosen mode (automobile or transit) and the values of
the explanatory variables. Column 2 of Table 10.2 shows the smoothed maximum

Table 10.2. Smoothed Maximum Score Estimates of a Work-Trip Mode-Choice Model

Half-Width of Nominal 90%
Conf. Interval Based on

Estimated Asymp. Normal
Variablea Coefficient Approximation Bootstrap

INTRCPT -1.5761 0.2812 0.7664
AUTOS 2.2418 0.2989 0.7488
DOVTT 0.0269 0.0124 0.0310
DIVTT 0.0143 0.0033 0.0087
DCOST 1.0b

a Definitions of variables: INTRCPT: Intercept term equal to 1; AUTOS: Number of cars
owned by traveler’s household; DOVTT: Transit out-of-vehicle travel time minus automobile
out-of-vehicle travel time (minutes); DIVTT: Transit in-vehicle travel time minus automobile
in-vehicle travel time; DCOST: Transit fare minus automobile travel cost ($).
b Coefficient equal to 1 by scale normalization

score estimates of the model’s parameters. Column 3 shows the half-widths of
nominal 90% symmetrical confidence intervals based on the asymptotic normal
approximation (half width equals 1.67 times the standard error of the estimate).
Column 4 shows half-widths obtained from the bootstrap. The bootstrap confi-
dence intervals are 2.5–3 times wider than the intervals based on the asymptotic
normal approximation. The bootstrap confidence interval for the coefficient of
DOVTT contains 0, but the confidence interval based on the asymptotic normal
approximation does not. Therefore, the hypothesis that the coefficient of DOVTT
is zero is not rejected at the 0.1 level based on the bootstrap but is rejected based
on the asymptotic normal approximation.

Acknowledgements. Research supported in part by NSF Grant SES-9910925.

References
Amemiya, T (1985) Advanced Econometrics. Harvard University Press, Cambridge.
Amemiya, T. and Powell, J.L. (1981). A Comparison of the Box-Cox Maximum

Likelihood Estimator and the Non-Linear Two-Stage Least Squares Estimator,
Journal of Econometrics, 17:351–381.

Cavanagh, C.L. (1987). Limiting Behavior of Estimators Defined by Optimization,
unpublished manuscript.

Chamberlain, G. (1985). Heterogeneity, Omitted Variable Bias, and Duration De-
pendence. In Heckman, J.J. and Singer, B. (eds), Longitudinal Analysis of Labor
Market Data, Cambridge University Press, Cambridge, 3–38.

716 Joel L. Horowitz

Chen, S. (2002). Rank Estimataion of Transformation Models, Econometrica,
70:1683–1697.

Cheng, S.C., Wei, L.J. and Ying, Z. (1995). Analysis of transformation models with
censored data, Biometrika, 82:835–845.

Cheng, S.C., Wei, L.J. and Ying, Z. (1997). Predicting survival probabilities
with semiparametric transformation models, Journal of the American Statis-
tical Association, 92:227–235.

Cox, D.R. (1972). Regression Models and Life tables, Journal of the Royal Statistical
Society, Series B, 34:187–220.

Delgado, M.A., Rodŕıguez-Poo, J.M. and Wolf, M. (2001). Subsampling Inference
in Cube Root Asymptotics with an Application to Manski’s Maximum Score
Estimator, Economics Letters, 73:241–250.

Elbers, C. and Ridder, G. (1982). True and Spurious Duration Dependence: The
Identifiability of the Proportional Hazard Model, Review of Economic Studies,
49:403–409.

Engle, R.F., Granger, C.W.J., Rice, J. and Weiss, A. (1986). Semiparametric esti-
mates of the relationship beteween weather and electricity sales. Journal of the
American Statistical Association, 81:310–320.

Fan, J. and Gijbels, I. (1996). Local Polynomial Modelling and Its Applications.
Chapman & Hall, London.

Foster, A.M., Tian, L. and Wei, L.J. (2001). Estimation for the Box-Cox Transfor-
mation Model without Assuming Prametric Error Distribution, Journal of the
American Statistical Association, 96:1097–1101.

Gørgens, T. and Horowitz, J.L. (1999). Semiparametric Estimation of a Censored
RegressionModelwithanUnknownTransformationof theDependentVariable,
Journal of Econometrics, 90:155–191.

Härdle, W. (1990) Applied Nonparametric Regression. Cambridge University Press,
Cambridge.

Hastie, T.J. and Tibshirani, R.J. (1990). Generalized Additive Models. Chapman and
Hall, London.

Heckman, J. and Singer, B. (1984a). A Method for Minimizing the Impact of Distri-
butionalAssumptions inEconometricModels forDurationData,Econometrica,
52:271–320.

Heckman, J. and Singer, B. (1984a). The Identifiability of the Proportional Hazard
Model, Review of Economics Studies, 51:231–243.

Honoré,B.E. (1993). IdentificationResults forDurationModelswithMultipleSpells,
Review of Economic Studies, 60:241–246.

Horowitz, J.L. (1992). A Smoothed Maximum Score Estimator for the Binary Re-
sponse Model, Econometrica, 60:505–531.

Horowitz, J.L. (1993a). Semiparametric and Nonparametric Estimation of Quantal
Response Models. In Maddala, G.S., Rao, C.R., and Vinod H.D. (eds), Handbook
of Statistics, Vol. 11, Elsevier, Amsterdam, 45–72.

Horowitz, J.L. (1993b). Optimal Rates of Convergence of Parameter Estimators in
the Binary Response Model with Weak Distributional Assumptions, Economet-
ric Theory, 9:1–18.

Semiparametric Models 717

Horowitz, J.L. (1993c). Semiparametric Estimation of a Work-Trip Mode Choice
Model, Journal of Econometrics, 58:49–70.

Horowitz, J.L. (1996). Semiparametric Estimation of a Regression Model with an
Unknown Transformation of the Dependent Variable, Econometrica, 64:103–
137.

Horowitz, J.L. (1998). Semiparametric Methods in Econometrics. Springer-Verlag,
New York.

Horowitz, J.L. (1999). Semiparametric Estimation of a Proportional Hazard Model
with Unobserved Heterogeneity, Econometrica, 67:1001–1028.

Horowitz, J.L. (2001). Nonparametric Estimation of a Generalized Additive Model
with an Unknown Link Function. Econometrica, 69:499–513.

Horowitz, J.L. (2002). Bootstrap Critical Values for Tests Based on the Smoothed
Maximum Score Estimator, Journal of Econometrics, 111:141–167.

Horowitz, J.L. and Hädle, W. (1996). Direct Semiparametric Estimation of Single-
Index Models with Discrete Covariates, Journal of the American Statistical As-
sociation, 91:1632–1640.

Horowitz, J.L. and Lee, S. (2004). Semiparametric Estimation of a Panel Data
Proportional Hazards Model with Fixed Effects, Journal of Econometrics, 119:
155–198.

Hristache, M., Juditsky, A., Polzehl, J. and Spokoiny, V. (2001). Structure Adaptive
Approach for Dimension Reduction, Annals of Statistics, 29:1537–1566.

Hristache, M., Juditsky, A. and Spokoiny, V. (2001). Structure Adaptive Approach
for Dimension Reduction, Annals of Statistics, 29:1–32.

Ichimura, H. (1993). Semiparametric Least Squares (SLS) and Weighted SLS Esti-
mation of Single-Index Models, Journal of Econometrics, 58:71–120.

Ichimura, H. and Lee, L.-F. (1991). Semiparametric Least Squares Estimation of
Multiple Index Models: Single Equation Estimation. In Barnett, W.A., Pow-
ell, J., and Tauchen G. (eds), Nonparametric and Semiparametric Methods in
Econometrics and Statistics. Cambridge University Press, Cambridge, 3–49.

Ishwaran, H. (1996). Identifiability and Rates of Estimation for Scale Parameters
in Location Mixture Models, Annals of Statistics, 24:1560–1571.

Kalbfleisch and Prentice (1980). The Statistical Analysis of Failure Time Data, Wi-
ley, New York.

Kim, J. and Pollard, D. (1990). Cube Root Asymptotics, Annals of Statistics, 15:541–
551.

Klein, R.W. and Spady, R.H. (1993). An efficient semiparametric estimator for
binary response models. Econometrica, 61:387–421.

Lancaster, T. (1979). Econometric Methods for the Duration of Unemployment,
Econometrica, 47:939–956.

Lancaster, T. (2000). The Incidental Parameter Problem Since 1948, Journal of
Econometrics, 95:391–413.

Linton, O.B. (1997). Efficient Estimation of Additive Nonparametric Regression
Models, Biometrika, 84:469–473.

Linton, O.B. and Hädle, W. (1996). Estimating Additive Regression Models with
Known Links, Biometrika, 83:529–540.

718 Joel L. Horowitz

Linton, O.B. and Nielsen J.P. (1995). A Kernel Method of Estimating Structured
Nonparametric Regression Based on Marginal Integration, Biometrika, 82:93–
100.

Mammen, E., Linton, O.B. and Nielsen, J.P. (1999). The Existence and Asymptotic
Properties of Backfitting Projection Algorithm under Weak Conditions, Annals
of Statistics, 27:1443–1490.

Manski, C.F. (1975). Maximum Score Estimation of the Stochastic Utility Model of
Choice, Journal of Econometrics, 3:205–228.

Manski, C.F. (1985). Semiparametric Analysis of Discrete Response: Asymptotic
Properties of the Maximum Score Estimator. Journal of Econometrics, 27:313–
333.

Manski, C.F. (1988). Identification of Binary Response Models, Journal of the Amer-
ican Statistical Association,, 83:729–738.

Matzkin, R.L. (1994). Restrictions of Economic Theory in Nonparametric Methods.
In Engle, R.F. and McFadden, D.L. (eds), Handbook of Econometrics, Vol. 4.
North-Holland, Amsterdam, 2523–2558.

Meyer, B.D. (1990). Unemployment Insurance and Unemployment Spells, Econo-
metrica, 58:757–782.

Murphy, S.A. (1994). Consistency in a Proportional Hazards Model Incorporating
a Random Effect, Annals of Statistics, 22:712–731.

Murphy, S.A. (1995). Asymptotic Theory for the Frailty Model, Annals of Statistics,
23:182–198.

Nielsen, G.G., Gill, R.D., Andersen, P.K. and Søensen, T.I.A. (1992). A Counting
Process Approach to Maximum Likelihood Estimation in Frailty Models, Scan-
dinavian Journal of Statistics, 19:25–43, 1992.

Powell, J.L. (1994).EstimationofSemiparametricModels. InEngle,R.F. andMcFad-
den, D.L. (eds), Handbook of Econometrics, Vol. 4. North-Holland, Amsterdam,
2444–2521.

Powell, J.L., Stock, J.H. and Stoker, T.M. (1989). Semiparametric Estimation of
Index Coefficients, Econometrica, 51:1403–1430.

Ridder, G. and Tunali, I. (1999). Stratified Partial Likelihood Estimation, Journal
of Econometrics, 92:193–232.

Robinson, P.M. (1988). Root-N-Consistent Semiparametric Regression. Economet-
rica, 56:931–954.

Stock, J.H. (1989). Nonparametric Policy Analysis, Journal of the American Statis-
tical Association, 84:567–575.

Stock, J.H. (1991). Nonparametric Policy Analysis: An Application to Estimat-
ing Hazardous Waste Cleanup Benefits. In Barnett, W.A., Powell, J., and
Tauchen, G. (eds), Nonparametric and Semiparametric Methods in Economet-
rics and Statistics. Cambridge University Press, Cambridge, 77–98.

Tsiatis, A.A. (1981). A Large Sample Study of Cox’s Regression Model, Annals of
Statistics, 9:93–108.

Ye, J. and Duan, N. (1997). Nonparametric n−1|2-Consistent Estimation for the
General Transformation Model, Annals of Statistics, 25:2682–2717.

III.11Bayesian
Computational Methods

Christian P. Robert

11.1 Introduction . 721

11.2 Bayesian Computational Challenges . 721

Bayesian Point Estimation . 722
Testing Hypotheses . 725
Model Choice . 727

11.3 Monte Carlo Methods . 730

Preamble: Monte Carlo Importance Sampling . 730
First Illustrations . 732
Approximations of the Bayes Factor . 738

11.4 Markov Chain Monte Carlo Methods . 741

Metropolis–Hastings as Universal Simulator . 741
Gibbs Sampling and Latent Variable Models . 744
Reversible Jump Algorithms for Variable Dimension Models . 748

11.5 More Monte Carlo Methods . 753

Adaptivity for MCMC Algorithms . 753
Population Monte Carlo . 758

11.6 Conclusion. 763

720 Christian P. Robert

Introduction11.1

If, in the mid 1980s, one had asked the average statistician about the difficulties
of using Bayesian Statistics, his|her most likely answer would have been “Well,
there is this problem of selecting a prior distribution and then, even if one agrees
on the prior, the whole Bayesian inference is simply impossible to implement in
practice!” The same question asked in the 21st century does not produce the same
reply, but rather a much less serious complaint about the lack of generic software
(besides winBUGS)! The last 15 years have indeed seen a tremendous change in
the way Bayesian Statistics are perceived, both by mathematical statisticians and
by applied statisticians and the impetus behind this change has been a prodigious
leap-forward in the computational abilities. The availability of very powerful ap-
proximation methods has correlatively freed Bayesian modelling, in terms of both
model scope and prior modelling. As discussed below, a most successful illustra-
tion of this gained freedom can be seen in Bayesian model choice, which was only
emerging at the beginning of the MCMC era, for lack of appropriate computational
tools.

In this chapter, we will first present the most standard computational chal-
lenges met in Bayesian Statistics (Sect. 11.2), and then relate these problems with
computational solutions. Of course, this chapter is only a terse introduction to
the problems and solutions related to Bayesian computations. For more complete
references, see Robert and Casella (1999,2004) and Liu (2001), among others. We
also restrain from providing an introduction to Bayesian Statistics per se and
for comprehensive coverage, address the reader to Robert (2001), (again) among
others.

Bayesian Computational Challenges11.2

Bayesian Statistics being a complete inferential methodology, its scope encom-
passes the whole range of standard statistician inference (and design), from point
estimation to testing, to model selection, and to non-parametrics. In principle,
once a prior distribution has been chosen on the proper space, the whole infer-
ential machinery is set and the computation of estimators is usually automatically
derived from this setup. Obviously, the practical or numerical derivation of these
procedures may be exceedingly difficult or even impossible, as we will see in
a few selected examples. Before, we proceed with an incomplete typology of the
categories and difficulties met by Bayesian inference. First, let us point out that
computational difficulties may originate from one or several of the following items:
(1) use of a complex parameter space, as for instance in constrained parameter sets

like those resulting from imposing stationarity constraints in dynamic models;
(2) use of a complex sampling model with an intractable likelihood, as for instance

in missing data and graphical models;
(3) use of a huge dataset;

Bayesian Computational Methods 721

(4) use of a complex prior distribution (which may be the posterior distribution
associated with an earlier sample);

(5) use of a complex inferential procedure.

Bayesian Point Estimation 11.2.1

In a formalised representation of Bayesian inference, the statistician is given (or
she selects) a triplet

a sampling distribution, f (x|θ), usually associated with an observation (or
a sample) x;
a prior distribution π(θ), defined on the parameter space Θ;
a loss function L(θ, d) that compares the decisions (or estimations) d for the
true value θ of the parameter.

Using (f ,π, L) and an observation x, the Bayesian inference is always given as the
solution to the minimisation programme

min
d

∫

Θ
L(θ, d) f (x|θ)π(θ) dθ ,

equivalent to the minimisation programme

min
d

∫

Θ
L(θ, d)π(θ|x) dθ .

The corresponding procedure is thus associated, for every x, to the solution of the
above programme (see, e.g. Robert, 2001, Chap. 2).

There are therefore two levels of computational difficulties with this resolution:
first the above integral must be computed. Second, it must be minimised in d. For
the most standard losses, like the squared error loss,

L(θ, d) = |θ − d|2 ,

the solution to the minimisation problem is universally1 known. For instance, for
the squared error loss, it is the posterior mean,

∫

Θ
θπ(θ|x) dθ =

∫

Θ
θ f (x|θ)π(θ) dθ

/∫

Θ
f (x|θ)π(θ) dθ ,

which still requires the computation of both integrals and thus whose complexity
depends on the complexity of both f (x|θ) and π(θ).

1 In this chapter, the denomination universal is used in the sense of uniformly over all
distributions.

722 Christian P. Robert

1 Example 1 For a normal distribution N (θ, 1), the use of a so-called conjugate
prior (see, e.g., Robert, 2001, Chap. 3)

θ ∼ N (µ, ε) ,

leads to a closed form expression for the mean, since
∫

Θ
θ f (x|θ)π(θ) dθ

/∫

Θ
f (x|θ)π(θ) dθ =

∫

R

θ exp
1

2

{
−θ2

(
1 + ε−2

)
+ 2θ

(
x + ε−2µ

)}
dθ

/∫

R

exp
1

2

{
−θ2

(
1 + ε−2

)
+ 2θ

(
x + ε−2µ

)}
dθ =

x + ε−2µ
1 + ε−2

.

On the other hand, if we use instead a more involved prior distribution like a poly-t
distribution (Bauwens and Richard, 1985),

π(θ) =
k∏

i=1

[
αi + (θ − βi)

2
]−νi α, ν > 0

the above integrals cannot be computed in closed form anymore. This is not a toy
example in that the problem may occur after a sequence of t observations, or with
a sequence of normal observations whose variance is unknown.

The above example is one-dimensional, but, obviously, bigger challenges await
the Bayesian statistician when she wants to tackle high-dimensional problems.

2 Example 2 In a generalised linear model, a conditional distribution of y ∈ R given
x ∈ Rp is defined via a density from an exponential family

y|x ∼ exp
{

y · θ(x) − ψ(θ(x))
}

whose natural parameter θ(x) depends on the conditioning variable x,

θ(x) = g
(
βTx

)
, β ∈ Rp

that is, linearly modulo the transform g. Obviously, in practical applications like
Econometrics, p can be quite large. Inference on β (which is the true parameter
of the model) proceeds through the posterior distribution (where x = (x1, … , xT)
and y = (y1, … , yT))

π(β|x, y) ∝
T∏

t=1

exp
{

yt · θ(xt) − ψ(θ(xt))
}
π(β)

= exp

{
T∑

t=1

yt · θ(xt) −
T∑

t=1

ψ(θ(xt))

}

π(β) ,

Bayesian Computational Methods 723

which rarely is available in closed form. In addition, in some cases ψ may be
costly simply to compute and in others T may be large or even very large. Take
for instance the case of the dataset processed by Abowd et al. (1999), which covers
twenty years of employment histories for over a million workers, with x including
indicator variables for over one hundred thousand companies.

A related, although conceptually different, inferential issue concentrates upon
prediction, that is, the approximation of a distribution related with the parameter
of interest, say g(y|θ), based on the observation of x ∼ f (x|θ). The predictive
distribution is then defined as

π(y|x) =
∫

Θ
g(y|θ)π(θ|x)dθ .

A first difference with the standard point estimation perspective is obviously that
the parameter θ vanishes through the integration. A second and more profound
difference is that this parameter is not necessarily well-defined anymore. As will
become clearer in a following section, this is a paramount feature in setups where
the model is not well-defined and where the statistician hesitates between several
(or even an infinity of) models. It is also a case where the standard notion of
identifiability is irrelevant, which paradoxically is a “plus” from the computational
point of view, as seen below in, e.g., Example 14.

3Example 3 Recall that an AR(p) model is givenas theauto-regressive representation
of a time series,

xt =
p∑

i=1

θixt−i + σεt .

It is often the case that the order p of the AR model is not fixed a priori, but has to be
determined from the data itself. Several models are then competing for the “best”
fit of the data, but if the prediction of the next value xt+1 is the most important part
of the inference, the order p chosen for the best fit is not really relevant. Therefore,
all models can be considered in parallel and aggregated through the predictive
distribution

π(xt+1|xt , … , x1) ∝
∫

f (xt+1|xt , … , xt−p+1)π(θ, p|xt , … , x1)dp dθ ,

which thus amounts to integrating over the parameters of all models, simultane-
ously:

∞∑

p=0

∫
f
(
xt+1|xt , … , xt−p+1

)
π
(
θ|p, xt , … , x1

)
dθπ

(
p|xt , … , x1

)
.

724 Christian P. Robert

Note the multiple layers of complexity in this case:
(1) if the prior distribution on p has an infinite support, the integral simultaneously

considers an infinity of models, with parameters of unbounded dimensions;
(2) the parameter θ varies from model AR(p) to model AR(p + 1), so must be

evaluateddifferently fromonemodel toanother. Inparticular, if the stationarity
constraint usually imposed in these models is taken into account, the constraint
on (θ1, … , θp) varies2 between model AR(p) and model AR(p + 1);

(3) prediction is usually used sequentially: every tick|second|hour|day, the next
value is predicted based on the past values (xt , … , x1). Therefore when t moves
to t + 1, the entire posterior distribution π(θ, p|xt , … , x1) must be re-evaluated
again, possibly with a very tight time constraint as for instance in financial or
radar applications.

Wewill discuss this importantproblem indeeperdetails after the testing section,
as part of the model selection problematic.

Testing Hypotheses11.2.2

Adomainwhereboth thephilosophyand the implementationofBayesian inference
are at complete odds with the classical approach is the area of testing of hypotheses.
At a primary level, this is obvious when opposing the Bayesian evaluation of an
hypothesis H0 : θ ∈ Θ0

Prπ(θ ∈ Θ0|x)

with a Neyman–Pearson p-value

sup
θ∈Θ0

Prθ(T(X) ≥ T(x)) ,

where T is an appropriate statistic, with observed value T(x). The first quantity
involves an integral over the parameter space, while the second provides an eval-
uation over the observational space. At a secondary level, the two answers may
also strongly disagree even when the number of observations goes to infinity, al-
though there exist cases and priors for which they agree to the order O(n−1) or
even O(n−3|2). (See Robert, 2001, Sect. 3.5.5 and Chap. 5, for more details.)

From a computational point of view, most Bayesian evaluations involve marginal
distributions

∫

Θi

f (x|θi)πi(θi) dθi , (11.1)

2 To impose the stationarity constraint when the order of the AR(p) model varies, it is
necessary to reparameterise this model in terms of either the partial autocorrelations or of
the roots of the associated lag polynomial. (See, e.g., Robert, 2001, Sect. 4.5.)

Bayesian Computational Methods 725

where Θi and πi denote the parameter space and the corresponding prior, respec-
tively, under hypothesis Hi (i = 0, 1). For instance, the Bayes factor is defined as the
ratio of the posterior probabilities of the null and the alternative hypotheses over
the ratio of the prior probabilities of the null and the alternative hypotheses, i.e.,

Bπ01(x) =
P(θ ∈ Θ0 | x)

P(θ ∈ Θ1 | x)

/
π(θ ∈ Θ0)

π(θ ∈ Θ1)
.

This quantity is instrumental in the computation of the posterior probability

P(θ ∈ Θ0 | x) =
1

1 + Bπ10(x)

under equal prior probabilities for both Θ0 and Θ1. It is also the central tool in
practical (as opposed to decisional) Bayesian testing (Jeffreys, 1961) as the Bayesian
equivalent of the likelihood ratio.

The first ratio in Bπ01(x) is then the ratio of integrals of the form (11.1) and it is
rather common to face difficulties in the computation of both integrals.3

4Example 4: Continuation of Example 2 In the case of the generalised linear mod-
el, a standard testing situation is to decide whether or not a factor, x1 say, is influ-
ential on the dependent variable y. This is often translated as testing whether or
not the corresponding component of β, β1, is equal to 0, i.e.Θ0 = {β; β1 = 0}. If we
denote by β−1 the other components of β, the Bayes factor for this hypothesis will
be

∫

R p
exp

{
T∑

t=1

yt · g
(
βTxt

)
−

T∑

t=1

ψ
(
g
(
βTxt

))
}

π(β) dβ
/

∫

R p−1
exp

{
T∑

t=1

yt · g
(
βT

−1(xt)−1

)
−

T∑

t=1

ψ
(
βT

−1(xt)−1

)
}

π−1(β−1) dβ−1 ,

when π−1 is the prior constructed for the null hypothesis and when the prior
weights of H0 and of the alternative are both equal to 1|2. Obviously, besides the
normal conjugate case, both integrals cannot be computed in a closed form.

Ina relatedmanner, confidence regionsare alsomostly intractable, beingdefined
through the solution to an implicit equation. Indeed, the Bayesian confidence
region for a parameter θ is defined as the highest posterior region,

{θ;π(θ|x) ≥ k(x)} , (11.2)

3 In this presentation of Bayes factors, we completely bypass the methodological difficulty
of defining π(θ ∈ Θ0) whenΘ0 is of measure 0 for the original prior π and refer the reader
to Robert (2001, Section 5.2.3) for proper coverage of this issue.

726 Christian P. Robert

where k(x) is determined by the coverage constraint

Prπ(π(θ|x) ≥ k(x)|x) = α ,

α being the confidence level. While the normalising constant is not necessary to
construct a confidence region, the resolution of the implicit equation (11.2) is rarely
straightforward!

5 Example 5 Consider a binomial observation x ∼ B(n, θ) with a conjugate prior
distribution, θ ∼ Be(γ1, γ2). In this case, the posterior distribution is available in
closed form,

θ|x ∼ Be(γ1 + x, γ2 + n − x) .

However, the determination of the θ’s such that

θγ1+x−1(1 − θ)γ2+n−x−1 ≥ k(x)

with

Prπ
(
θγ1+x−1(1 − θ)γ2+n−x−1 ≥ k(x)|x) = α

is not possible analytically. It actually implies two levels of numerical difficulties:
Step 1 find the solution(s) to θγ1+x−1(1 − θ)γ2+n−x−1 = k,
Step 2 find the k corresponding to the right coverage,

and each value of k examined in Step 2. requires a new resolution of Step 1.

The setting is usually much more complex when θ is a multidimensional param-
eter, because the interest is usually in getting marginal confidence sets. Example 2
is an illustration of this setting: deriving a confidence region on one component, β1

say, first involves computing the marginal posterior distribution of this component.
As in Example 4, the integral

∫

R p−1
exp

{
T∑

t=1

yt · g
(
βTxt

)
−

T∑

t=1

ψ
(
βTxt

)
}

π−1(β−1) dβ−1 ,

which is proportional to π(β1|x), is most often intractable.

Model Choice11.2.3

We distinguish model choice from testing, not only because it leads to further
computational difficulties, but also because it encompasses a larger scope of infer-
ential goals than mere testing. Note first that model choice has been the subject of

Bayesian Computational Methods 727

considerable effort in the past years, and has seen many advances, including the
coverage of problems of higher complexity and the introduction of new concepts.
We stress that such advances mostly owe to the introduction of new computational
methods.

As discussed in further details in Robert (2001, Chap. 7), the inferential action
related with model choice does take place on a wider scale: it covers and com-
pares models, rather than parameters, which makes the sampling distribution f (x)
“more unknown” than simply depending on an undetermined parameter. In some
respect, it is thus closer to estimation than to regular testing. In any case, it requires
a more precise evaluation of the consequences of choosing the “wrong” model or,
equivalently of deciding which model is the most appropriate to the data at hand.
It is thus both broader and less definitive as deciding whether H0 : θ1 = 0 is true.
At last, the larger inferential scope mentioned in the first point means that we are
leaving for a while the well-charted domain of solid parametric models.

From a computational point of view, model choice involves more complex struc-
tures that, almost systematically, require advanced tools, like simulation methods
which can handle collections of parameter spaces (also called spaces of varying
dimensions), specially designed for model comparison.

6Example 6 A mixture of distributions is the representation of a distribution
(density) as the weighted sum of standard distributions (densities). For instance,
a mixture of Poisson distributions, denoted as

k∑

i=1

piP (λi)

has the following density:

Pr(X = k) =
k∑

i=1

pi
λk

i

k!
e−λi .

This representation of distributions is multi-faceted and can be used in popula-
tions with known heterogeneities (in which case a component of the mixture cor-
responds to an homogeneous part of the population) as well as a non-parametric
modelling of unknown populations. This means that, in some cases, k is known
and, in others, it is both unknown and part of the inferential problem.

First, consider the setting where several (parametric) models are in competition,

Mi : x ∼ fi(x|θi) , θi ∈ Θi , i ∈ I ,

the index set I being possibly infinite. From a Bayesian point of view, a prior
distribution must be constructed for each modelMi as if it were the only and true
model under consideration since, in most perspectives except model averaging,

728 Christian P. Robert

one of these models will be selected and used as the only and true model. The
parameter space associated with the above set of models can be written as

Θ =
⋃

i∈I

{i} ×Θi , (11.3)

the model indicator µ ∈ I being now part of the parameters. So, if the statistician
allocates probabilities pi to the indicator values, that is, to the modelsMi (i ∈ I),
and if she then defines priors πi(θi) on the parameter subspaces Θi, things fold
over by virtue of Bayes’s theorem, as usual, since she can compute

p(Mi|x) = P(µ = i|x) =
pi

∫

Θi

fi(x|θi)πi(θi)dθi

∑

j

pj

∫

Θj

fj

(
x|θj

)
πj

(
θj

)
dθj

.

While a common solution based on this prior modeling is simply to take the
(marginal) MAP estimator of µ, that is, to determine the model with the largest
p(Mi|x), or even to use directly the average

∑

j

pj

∫

Θj

fj

(
y|θj

)
πj

(
θj|x

)
dθj =

∑

j

p
(
Mj|x

)
mj(y)

as a predictive density in y in model averaging, a deeper-decision theoretic evalu-
ation is often necessary.

7 Example 7: (Continuation of Example 3) In the setting of the AR(p) models,
when the order p of the dependence is unknown, model averaging as presented
in Example 3 is not always a relevant solution when the statistician wants to
estimate this order p for different purposes. Estimation is then a more appropriate
perspective than testing, even though care must be taken because of the discrete
nature of p. (For instance, the posterior expectation of p is not an appropriate
estimator!)

8 Example 8 Spiegelhalter et al. (2002) have developed a Bayesian approach to model
choice that appears like an alternative to both Akaike’s and Schwartz Information
Criterion, called DIC (for Deviance Information Criterion). For a model with
density f (x|θ) and a prior distribution π(θ), the deviance is defined as D(θ) =
−2 log(f (x|θ)) but this is not a good discriminating measure between models
because of its bias toward higher dimensional models. The penalized deviance of
Spiegelhalter et al. (2002) is

DIC = E [D(θ)|x] + {E[D(θ)|x] − D(E[θ|x])} ,

Bayesian Computational Methods 729

with the“best”model associatedwith thesmallestDIC.Obviously, thecomputation
of the posterior expectation E[D(θ)|x] = −2E[log(f (x|θ))|x] is complex outside
exponential families.

As stressed earlier in this section, the computation of predictive densities,
marginals, Bayes factors, and other quantities related to the model choice proce-
dures isgenerallyvery involved,withspecificities that call for tailor-madesolutions:

The computation of integrals is increased by a factor corresponding to the
number of models under consideration.
Some parameter spaces are infinite-dimensional, as in non-parametric settings
and that may cause measure-theoretic complications.
The computation of posterior or predictive quantities involves integration over
different parameter spaces and thus increases the computational burden, since
there is no time savings from one subspace to the next.
In some settings, the size of the collection of models is very large or even
infinite and some models cannot be explored. For instance, in Example 4, the
collection of all submodels is of size 2p and some pruning method must be
found in variable selection to avoid exploring the whole tree of all submodels.

Monte Carlo Methods 11.3

The natural approach to these computational problems is to use computer simula-
tion and Monte Carlo techniques, rather than numerical methods, simply because
there is much more to gain from exploiting the probabilistic properties of the
integrands rather than their analytical properties. In addition, the dimension of
most problems considered in current Bayesian Statistics is such that very involved
numerical methods should be used to provide a satisfactory approximation in such
integration or optimisation problems. Indeed, down-the-shelf numerical methods
cannot handle integrals in dimensions larger than 4 and more advanced numerical
integration methods require analytical studies on the distribution of interest.

Preamble: Monte Carlo Importance Sampling 11.3.1

Given the statistical nature of the problem, the approximation of an integral like

I =
∫

Θ
h(θ)f (x|θ)π(θ) dθ ,

should indeed take advantage of the special nature of I, namely, the fact that π is
a probability density4 or, instead, that f (x|θ)π(θ) is proportional to a density. As de-

4 The prior distribution can be used for importance sampling only if it is a proper prior and
not a σ-finite measure.

730 Christian P. Robert

tailed in Chap. II.2 this volume, or in Robert and Casella (2004, Chap. 3), the Monte
Carlo method was introduced by Metropolis and Ulam (1949) and Von Neumann
(1951) for this purpose. For instance, if it is possible to generate (via a computer)
random variables θ1, … , θm from π(θ), the average

1

m

m∑

i=1

h(θi)f (x|θi)

converges (almost surely) to I when m goes to +∞, according to the Law of Large
Numbers. Obviously, if an i.i.d. sample ofθi’s from the posterior distributionπ(θ|x)
can be produced, the average

1

m

m∑

i=1

h(θi) (11.4)

converges to

E
π[h(θ)|x] =

∫
Θ h(θ)f (x|θ)π(θ) dθ
∫
Θ f (x|θ)π(θ) dθ

and it usually is more interesting to use this approximation, rather than

m∑

i=1

h(θi)f (x|θi)

/ m∑

i=1

f (x|θi)

when the θi’s are generated from π(θ), especially when π(θ) is flat compared with
π(θ|x).

In addition, if the posterior variance var(h(θ)|x) is finite, the Central Limit
Theorem applies to the empirical average (11.4), which is then asymptotically
normal with variance var(h(θ)|x)|m. Confidence regions can then be built from
this normal approximation and, most importantly, the magnitude of the error
remains of order 1|

√
m, whatever the dimension of the problem, in opposition

with numerical methods.5 (See also Robert and Casella, 2004, Chap. 4, for more
details on the convergence assessment based on the CLT.)

The Monte Carlo method actually applies in a much wider generality than the
above simulation from π. For instance, because I can be represented in an infinity
of ways as an expectation, there is no need to simulate from the distributions
π(·|x) or π to get a good approximation of I. Indeed, if g is a probability density

5 The constant order of the Monte Carlo error does not imply that the computational effort
remains the same as the dimension increases, most obviously, but rather that the decrease
(with m) in variation has the rate 1|

√
m.

Bayesian Computational Methods 731

with supp(g) including the support of |h(θ)|f (x|θ)π(θ), the integral I can also be
represented as an expectation against g, namely

∫
h(θ)f (x|θ)π(θ)

g(θ)
g(θ) dθ .

This representation leads to the Monte Carlo method with importance function g:
generate θ1, … , θm according to g and approximate I through

1

m

m∑

i=1

h(θi)ωi(θi) ,

with the weights ω(θi) = f (x|θi)π(θi)|g(θi). Again, by the Law of Large Numbers,
this approximation almost surely converges to I. And this estimator is unbiased.
In addition, an approximation to Eπ[h(θ)|x] is given by

∑m
i=1 h(θi)ω(θi)∑m

i=1 ω(θi)
. (11.5)

since the numerator and denominator converge to
∫

Θ
h(θ)f (x|θ)π(θ) dθ and

∫

Θ
f (x|θ)π(θ) dθ ,

respectively, if supp(g) includes supp(f (x|·)π). Notice that the ratio (11.5) does not
depend on the normalizing constants in either h(θ), f (x|θ) or π(θ). The approx-
imation (11.5) can therefore be used in settings when some of these normalizing
constants are unknown. Notice also that the same sample of θi’s can be used
for the approximation of both the numerator and denominator integrals: even
though using an estimator in the denominator creates a bias, (11.5) does converge
to Eπ[h(θ)|x].

While this convergence is guaranteed for all densities g with wide enough
support, the choice of the importance function is crucial. First, simulation from
g must be easily implemented. Moreover, the function g(θ) must be close enough
to the function h(θ)π(θ|x), in order to reduce the variability of (11.5) as much as
possible; otherwise, most of the weights ω(θi) will be quite small and a few will
be overly influential. In fact, if Eh[h2(θ)ω2(θ)] is not finite, the variance of the
estimator (11.5) is infinite (see Robert and Casella, 2004, Chap. 3). Obviously, the
dependence on g of the importance function h can be avoided by proposing generic
choices such as the posterior distribution π(θ|x).

First Illustrations 11.3.2

In either point estimation or simple testing situations, the computational problem
is often expressed as a ratio of integrals. Let us start with a toy example to set up
the way Monte Carlo methods proceed and highlight the difficulties of applying
a generic approach to the problem.

732 Christian P. Robert

9 Example 9 Consider a t-distribution T (ν, θ, 1) sample (x1, … , xn) with ν known.
Assume in addition a flat prior π(θ) = 1 as in a non-informative environment.
While the posterior distribution on θ can be easily plotted, up to a normalising
constant (Fig. 11.1), because we are in dimension 1, direct simulation and compu-
tation from this posterior is impossible.

Figure 11.1. Posterior density of θ in the setting of Example 9 for n = 10, with a simulated sample

from T (3, 0, 1)

If the inferential problem is to decide about the value of θ, the posterior expec-
tation is

E
π[θ|x1, … , xn] =

∫
θ

n∏

i=1

[
ν + (xi − θ)2

]−(ν+1)|2
dθ

/∫ n∏

i=1

[
ν + (xi − θ)2

]−(ν+1)|2
dθ .

This ratio of integrals is not directly computable. Since (ν + (xi − θ)2)−(ν+1)|2 is
proportional to a t-distribution T (ν, xi, 1) density, a solution to the approximation
of the integrals is to use one of the i’s to “be” the density in both integrals. For
instance, if we generate θ1, … , θm from the T (ν, x1, 1) distribution, the equivalent
of (11.5) is

δπm =
m∑

j=1

θj

n∏

i=2

[
ν + (xi − θj)

2
]−(ν+1)|2

(11.6)

/ m∑

j=1

n∏

i=2

[
ν + (xi − θj)

2
]−(ν+1)|2

Bayesian Computational Methods 733

since the first term in the product has been “used” for the simulation and the
normalisation constants have vanished in the ratio. Figure 11.2 is an illustration
of the speed of convergence of this estimator to the true posterior expectation:
it provides the evolution of δπm as a function of m both on average and on range
(provided by repeated simulations of δπm). As can be seen from the graph, the
average is almost constant from the start, as it should, because of unbiasedness,
while the range decreases very slowly, as it should, because of extreme value theory.
The graph provides in addition the 90% empirical confidence interval built on these
simulations.6 Both the range and the empirical confidence intervals are decreasing
in 1|

√
n, as expected from the theory. (This is further established by regressing

both the log-ranges and the log-lengths of the confidence intervals on log(n), with
slope equal to −0.5 in both cases, as shown by Fig. 11.3.)

Figure 11.2. Evolution of a sequence of 500 estimators (11.6) over 1000 iterations: range (in gray), 0.05

and 0.95 quantiles, and average, obtained on the same sample as in Fig. 11.1 when simulating from

the t distribution with location x1

Now, there is a clear arbitrariness in the choice of x1 in the sample (x1, … , xn) for
the proposal T (ν, x1, 1). While any of the xi’s has the same theoretical validity to
“represent” the integral and the integrating density, the choice of xi’s closer to the
posterior mode (the true value of θ is 0) induces less variability in the estimates,
as shown by a further simulation experiment through Fig. 11.4. It is fairly clear
from this comparison that the choice of extremal values like x(1) = −3.21 and even
more x(10) = 1.72 is detrimental to the quality of the approximation, compared
with the median x(5) = −0.86. The range of the estimators is much wider for both

6 The empirical (Monte Carlo) confidence interval is not to be confused with the asymptotic
confidence interval derived from the normal approximation. As discussed in Robert and
Casella (2004, Chap. 4), these two intervals may differ considerably in width, with the
interval derived from the CLT being much more optimistic!

734 Christian P. Robert

Figure 11.3. Regression of the log-ranges (left) and the log-lengths of the confidence intervals (right)

on log(n), for the output in Fig. 11.2

Figure 11.4. Repetition of the experiment described in Fig. 11.2 for three different choices of xi: min xi,

x(5) and max xi (from left to right)

extremes, but the influence of this choice is also visible for the average which does
not converge so quickly.7

This example thus shows that Monte Carlo methods, while widely available, may
easily face inefficiency problems when the simulated values are not sufficiently
attuned to the distribution of interest. It also shows that, fundamentally, there is
no difference between importance sampling and regular Monte Carlo, in that the
integral I can naturally be represented in many ways.

Although we do not wish to spend too much space on this issue, let us note
that the choice of the importance function gets paramount when the support of
the function of interest is not the whole space. For instance, a tail probability,
associated with h(θ) = Iθ≥θ0 say, should be estimated with an importance function
whose support is [θ0,∞). (See Robert and Casella, 2004, Chap. 3, for details.)

10 Example 10: (Continuation of Example 9) If, instead, we wish to consider the
probability thatθ ≥ 0, using the t-distributionT (ν, xi, 1) is not a good idea because
negative values of θ are somehow simulated “for nothing”. A better proposal (in

7 An alternative to the simulation from one T (ν, xi, 1) distribution that does not require an
extensive study on the most appropriate xi is to use a mixture of the T (ν, xi, 1) distributions.
As seen in Sect. 11.5.2, the weights of this mixture can even be optimised automatically.

Bayesian Computational Methods 735

terms of variance) is to use the “folded” t-distribution T (ν, xi, 1), with density
proportional to

ψi(θ) =
[
ν + (xi − θ)2

]−(ν+1)|2
+
[
ν + (xi + θ)2

]−(ν+1)|2
,

on R+, which can be simulated by taking the absolute value of a T (ν, xi, 1) rv. All
simulated values are then positive and the estimator of the probability is

ρπm =
m∑

j=1

∏

i≠k

[
ν + (xi − |θj|)2

]−(ν+1)|2
/
ψk(|θj|) (11.7)

/ m∑

j=1

∏

i≠k

[
ν + (xi − θj)

2
]−(ν+1)|2

,

where the θj’s are iid T (ν, xk, 1). Note that this is a very special occurrence where
the same sample can be used in both the numerator and the denominator. In
fact, in most cases, two different samples have to be used, if only because the
support of the importance distribution for the numerator is not the whole space,
unless, of course, all normalising constants are known. Figure 11.5 reproduces
earlier figures for this problem, when using x(5) as the parameter of the t distribu-
tion.

Figure 11.5. Evolution of a sequence of 100 estimators (11.7) over 1000 iterations (same legend as

Fig. 11.2)

The above example is one-dimensional (in the parameter) and the problems ex-
hibited there can be found severalfold in multidimensional settings. Indeed, while

736 Christian P. Robert

Figure 11.6. Comparison of the distribution of the largest importance weight based upon 150

replications of an importance sampling experiment with 245 observations and dimensions

p = 1, 2, 5, 10

Monte Carlo methods do not suffer from the “curse of dimension” in the sense that
the error of the corresponding estimators is always decreasing in 1|

√
n, notwith-

standing the dimension, it gets increasingly difficult to come up with satisfactory
importance sampling distributions as the dimension gets higher and higher. As we
will see in Sect. 11.5, the intuition built on MCMC methods has to be exploited to
derive satisfactory importance functions.

11 Example 11: (Continuation of Example 2) A particular case of generalised linear
model is the probit model,

Prθ(Y = 1|x) = 1 − Prθ(Y = 0|x) = Φ
(
xTθ

)
θ ∈ Rp ,

where Φ denotes the normal N (0, 1) cdf. Under a flat prior π(θ) = 1, for a sample
(x1, y1), … , (xn, yn), the corresponding posterior distribution is proportional to

n∏

i=1

Φ
(
xT

i θ
)yi Φ

(
−xT

i θ
)1−yi . (11.8)

Direct simulation from this distribution is obviously impossible since the very
computation of Φ(z) is a difficulty in itself. If we pick an importance function

Bayesian Computational Methods 737

for this problem, the adequation with the posterior distribution will need to
be better and better as the dimension p increases. Otherwise, the repartition
of the weights will get increasingly asymmetric: very few weights will be different
from 0.

Figure 11.6 illustrates this degeneracy of the importance sampling approach
as the dimension increases. We simulate parameters β’s and datasets (xi, yi) (i =
1, … , 245) for dimensions p ranging from 1 to 10, then represented the histograms
of the largest weight for p = 1, 2, 5, 10. The xi’s were simulated from a Np(0, Ip)
distribution, while the importance sampling distribution was a Np(0, Ip|p) distri-
bution.

Approximations of the Bayes Factor 11.3.3

As explained in Sects. 11.2.2 and 11.2.3, the first computational difficulty associated
with Bayesian testing is the derivation of the Bayes factor, of the form

Bπ12 =

∫

Θ1

f1(x|θ1)π1(θ1)dθ1

∫

Θ2

f2(x|θ2)π2(θ2)dθ2

=
m1(x)

m2(x)
,

where, for simplicity’s sake, we have adopted the model choice perspective (that
is, θ1 and θ2 may live in completely different spaces).

Specific Monte Carlo methods for the estimation of ratios of normalizing con-
stants, or, equivalently, of Bayes factors, have been developed in the past five years.
See Chen et al. (2000, Chap. 5) for a complete exposition. In particular, the im-
portance sampling technique is rather well-adapted to the computation of those
Bayes factors: Given a importance distribution, with density proportional to g, and
a sample θ(1), … , θ(T) simulated from g, the marginal density for modelMi, mi(x),
is approximated by

m̂i(x) =
T∑

t=1

fi

(
x|θ(t)

) πi

(
θ(t)

)

g
(
θ(t)

)
/ T∑

t=1

πi

(
θ(t)

)

g
(
θ(t)

) ,

where the denominator takes care of the (possibly) missing normalizing constants.
(Notice that, if g is a density, the expectation of π(θ(t))|g(θ(t)) is 1 and the denom-
inator should be replaced by T to decrease the variance of the estimator of mi(x).)
A compelling incentive, amongothers, forusing importance sampling in the setting
of model choice is that the sample (θ(1), … , θ(T)) can be recycled for all modelsMi

sharing the same parameters (in the sense that the modelsMi are parameterized
in the same way, e.g. by their first moments).

738 Christian P. Robert

12 Example 12: (Continuation of Example 4) In the case the β’s are simulated from
a product instrumental distribution

g(β) =
p∏

i=1

gi(βi) ,

the sample of β’s produced for the general model of Example 2, M1 say, can
also be used for the restricted model,M2, where β1 = 0, simply by deleting the
first component and keeping the following components, with the corresponding
importance density being

g−1(β) =
p∏

i=2

gi(βi) .

Once the β’s have been simulated, the Bayes factor Bπ12 can be approximated by
m̂1(x)|m̂2(x).

However, the variance of m̂(x) may be infinite, depending on the choice of g.
A possible choice is g(θ) = π(θ), with wider tails than π(θ|x), but this is often inef-
ficient if the data is informative because the prior and the posterior distributions
will be quite different and most of the simulated values θ(t) fall outside the modal
region of the likelihood. For the choice g(θ) = f (x|θ)π(θ),

m̂(x) = 1

/
1

T

T∑

t=1

1

f
(
x|θ(t)

) , (11.9)

is the harmonic mean of the likelihoods, but the corresponding variance is infinite
when the likelihood has thinner tails than the prior (which is often the case).
Explicitly oriented towards the computation of ratios of normalising constants,
bridge sampling was introduced in Meng and Wong (1996): if both models M1

andM2 cover the same parameter space Θ, if π1(θ|x) = c1π̃1(θ|x) and π2(θ|x) =
c2π̃2(θ|x), where c1 and c2 are unknown normalising constants, then the equality

c2

c1
=
E
π2 [π̃1(θ|x) h(θ)]

Eπ1 [π̃2(θ|x) h(θ)]

holds for any bridge function h(θ) such that both expectations are finite. The bridge
sampling estimator is then

BS
12 =

1

n1

n1∑

i=1

π̃2(θ1i|x) h(θ1i)

1

n2

n2∑

i=1

π̃1(θ2i|x) h(θ2i)

,

Bayesian Computational Methods 739

where the θji’s are simulated from πj(θ|x) (j = 1, 2, i = 1, … , nj). For instance, if

h(θ) = 1| [π̃1(θ|x)π̃2(θ1i|x)] ,

then BS
12 is a ratio of harmonic means, generalizing (11.9). Meng and Wong (1996)

have derived an (asymptotically) optimal bridge function

h∗(θ) =
n1 + n2

n1π1(θ|x) + n2π2(θ|x)
.

This choice is not of direct use, since the normalizing constants of π1(θ|x) and
π2(θ|x) are unknown (otherwise, we should not need to resort to such techniques!).
Nonetheless, it shows that a good bridge function should cover the support of both
posteriors, with equal weights if n1 = n2.

13Example 13: (Continuation of Example 2) For generalized linear models, the
mean (conditionally on the covariates) satisfies

E[y|θ] = ∇ψ(θ) = Ψ
(
xtβ

)
,

where Ψ is the link function. The choice of the link function Ψ usually is quite
open. For instance, when the y’s take values in {0, 1}, three common choices of Ψ
are (McCullagh and Nelder, 1989)

Ψ1(t) = exp(t)|(1 + exp(t)) , Ψ2(t) = Φ(t) , and Ψ3(t) = 1 − exp(− exp(t)) ,

corresponding to the logit, probit and log–log link functions (where Φ denotes the
c.d.f. of the N (0, 1) distribution). If the prior distribution π on the β’s is a normal
Np(ξ, τ2Ip), and if thebridge function is h(β) = 1|π(β), thebridgesamplingestimate
is then (1 ≤ i < j ≤ 3)

BS
ij =

1

n

n∑

t=1

fj(βit|x)

1

n

n∑

t=1

fi(βjt|x)

,

where the βit are generated from πi(βi|x) ∝ fi(βi|x)π(βi), that is, from the true
posteriors for each link function.

As can be seen from the previous developments, such methods require a rather
careful tuning to be of any use. Therefore, they are rather difficult to employ
outside settings where pairs of models are opposed. In other words, they cannot
be directly used in general model choice settings where the parameter space (and
in particular the parameter dimension) varies across models, like, for instance,
Example 7. To address the computational issues corresponding to these cases
requires more advanced techniques introduced in the next section.

740 Christian P. Robert

Markov Chain Monte Carlo Methods11.4

As described precisely in Chap. III.3 and in Robert and Casella (2004), MCMC
methods try to overcome the limitation of regular Monte Carlo methods by mean
of a Markov chain with stationary distribution the posterior distribution. There
exist rather generic ways of producing such chains, including Metropolis–Hastings
and Gibbs algorithms. Besides the fact that stationarity of the target distribution
is enough to justify a simulation method by Markov chain generation, the idea at
the core of MCMC algorithms is that local exploration, when properly weighted,
can lead to a valid representation of the distribution of interest, as for instance, the
Metropolis–Hastings algorithm.

Metropolis–Hastings as Universal Simulator11.4.1

The Metropolis–Hastings, presented in Robert and Casella (2004) and Chap. II.3,
offers a straightforward solution to the problem of simulating from the posterior
distribution π(θ|x) ∝ f (x|θ)π(θ): starting from an arbitrary point θ0, the cor-
responding Markov chain explores the surface of this posterior distribution by
a random walk proposal q(θ|θ′) that progressively visits the whole range of the
possible values of θ.

Metropolis–Hastings Algorithm

At iteration t
1. Generate ξ ∼ q(ξ|θ(t)), ut ∼ U([0, 1])
2. Take

θ(t+1) =

ξt if ut ≤ π
(
ξt|x

)

π
(
θ(t)|x)

q
(
θ(t)|ξt

)

q
(
ξt|θ(t)

)

θ(t) otherwise

14 Example 14: (Continuation of Example 11) In the case p = 1, the probit model
defined in Example 11 can also be over-parameterised as

P(Yi = 1|xi) = 1 − P(Yi = 0|xi) = Φ
(
xiβ|σ

)
,

since it only depends on β|σ. The Bayesian processing of non-identified models
poses no serious difficulty as long as the posterior distribution is well defined. This
is the case for a proper prior like

π
(
β,σ2

) ∝ σ−4 exp
{

−1|σ2
}

exp
{

−β2|50
}

that corresponds to a normal distribution on β and a gamma distribution on
σ−2. While the posterior distribution on (β,σ) is not a standard distribution, it is
available up to a normalising constant. Therefore, it can be directly processed via

Bayesian Computational Methods 741

an MCMC algorithm. In this case, we chose a Gibbs sampler that simulates β and
σ2 alternatively, from

π(β|x, y,σ) ∝
∏

yi=1

Φ
(
xiβ|σ

)∏

yi=0

Φ
(
−xiβ|σ

)× π(β)

and

π
(
σ2|x, y, β

) ∝
∏

yi=1

Φ
(
xiβ|σ

)∏

yi=0

Φ
(
−xiβ|σ

)× π
(
σ2
)

respectively. Since both of these conditional distributions are also non-standard,
we replace the direct simulation by a one-dimensional Metropolis–Hastings step,
using normal N (β(t), 1) and log-normal LN (logσ(t), 0.04) random walk propos-
als, respectively. For a simulated dataset of 1000 points, the contour plot of the
log-posterior distribution is given in Fig. 11.7, along with the last 1000 points of
a corresponding MCMC sample after 100,000 iterations. This graph shows a very
satisfactory repartition of the simulated parameters over the likelihood surface,
with higher concentrations near the largest posterior regions. For another sim-
ulation, Fig. 11.8 details the first 500 steps, when started at (β,σ2) = (0.1, 4.0).
Although each step contains both a β and a σ proposal, some moves are either hor-
izontal or vertical: this corresponds to cases when either the β or the σ proposals
have been rejected. Note also the fairly rapid convergence to a modal zone of the
posterior distribution in this case.

Obviously, this is only a toy example and more realistic probit models do not
fare so well with down-the-shelf random walk Metropolis–Hastings algorithms, as
shownfor instance inNobile (1998) (seealsoRobert andCasella, 2004, Sect. 10.3.2).8

The difficulty inherent to random walk Metropolis–Hastings algorithms is the
scaling of the proposal distribution: it must be adapted to the shape of the tar-
get distribution so that, in a reasonable number of steps, the whole support of
this distribution can be visited. If the scale of the proposal is too small, this will
not happen as the algorithm stays “too local” and, if there are several modes
on the posterior, the algorithm may get trapped within one modal region be-
cause it cannot reach other modal regions with jumps of too small magnitude.
The larger the dimension p is, the harder it is to set up the right scale, though,
because
(a) the curse of dimension implies that there are more and more empty regions in

the space, that is, regions with zero posterior probability;
(b) the knowledge and intuition about the modal regions get weaker and weaker;
(c) the proper scaling involves a symmetric (p, p) matrix Ξ in the proposal g((θ −

θ′)TΞ(θ− θ′)). Even when the matrix Ξ is diagonal, it gets harder to scale as the

8 Even in the simple case of the probit model, MCMC algorithms do not always converge
very quickly, as shown in Robert and Casella (2004, Chap. 14).

742 Christian P. Robert

Figure 11.7. Contour plot of the log-posterior distribution for a probit sample of 1000 observations,

along with 1000 points of an MCMC sample (Source: Robert and Casella, 2004)

Figure 11.8. First 500 steps of the Metropolis–Hastings algorithm on the probit log-posterior surface,

when started at (β,σ2) = (0.1, 4.0)

dimension increases (unless one resorts to a Gibbs like implementation, where
each direction is scaled separately).

Note also that the on-line scaling of the algorithm against the empirical acceptance
rate is inherently flawed in that the attraction of a modal region may give a false
sense of convergence and lead to a choice of too small a scale, simply because other
modes will not be visited during the scaling experiment.

Bayesian Computational Methods 743

Gibbs Sampling and Latent Variable Models 11.4.2

The Gibbs sampler is a definitely attractive algorithm for Bayesian problems be-
cause it naturally fits the hierarchical structures so often found in such problems.
“Natural” being a rather vague notion from a simulation point of view, it routinely
happens that other algorithms fare better than the Gibbs sampler. Nonetheless,
Gibbs sampler is often worth a try (possibly with other Metropolis–Hastings re-
finements at a later stage) in well-structured objects like Bayesian hierarchical
models and more general graphical models.

A very relevant illustration is made of latent variable models, where the obser-
vational model is itself defined as a mixture model,

f (x|θ) =
∫

Z
f (x|z, θ) g(z|θ) dz .

Such models were instrumental in promoting the Gibbs sampler in the sense that
they have the potential to make Gibbs sampling sound natural very easily. (See
also Chap. II.3.) For instance, Tanner and Wong (1987) wrote a precursor article
to Gelfand and Smith (1990) that designed specific two-stage Gibbs samplers for
a variety of latent variable models. And many of the first applications of Gibbs
sampling in the early 90’s were actually for models of that kind. The usual imple-
mentation of the Gibbs sampler in this case is to simulate the missing variables Z
conditional on the parameters and reciprocally, as follows:

Latent Variable Gibbs Algorithm

At iteration t
1. Generate z(t+1) ∼ g(z|θ(t))
2. Generate θ(t+1) ∼ π(θ|x, z(t+1))

While we could have used the probit case as an illustration (Example 11), as
done in Chap. II.3, we choose to pick the case of mixtures (Example 6) as a better
setting.

15Example 15: (Continuation of Example 6) The natural missing data structure
of a mixture of distribution is historical. In one of the first mixtures to be ever
studied by Bertillon, in 1863, a bimodal structure on the height of conscripts in
south eastern France (Doubs) can be explained by the mixing of two populations
of military conscripts, one from the plains and one from the mountains (or hills).
Therefore, in the analysis of data from distributions of the form

k∑

i=1

pif (x|θi) ,

a common missing data representation is to associate with each observation xj

a missing multinomial variable zj ∼ Mk(1; p1, … , pk) such that xj|zj = i ∼ f (x|θi).

744 Christian P. Robert

In heterogeneous populations made of several homogeneous subgroups or sub-
populations, it makes sense to interpret zj as the index of the population of origin
of xj, which has been lost in the observational process.

However, mixtures are also customarily used for density approximations, as
a limited dimension proxy to non-parametric approaches. In such cases, the com-
ponents of the mixture and even the number k of components in the mixture are
often meaningless for the problem to be analysed. But this distinction between
natural and artificial completion (by the zj’s) is lost to the MCMC sampler, whose
goal is simply to provide a Markov chain that converges to the posterior as station-
ary distribution. Completion is thus, from a simulation point of view, a mean to
generate such a chain.

Themost standardGibbs sampler formixturemodels (Diebolt andRobert, 1994)
is thus based on the successive simulation of the zj’s and of the θi’s, conditional on
one another and on the data:
1. Generate zj|θ, xj (j = 1, … , n)
2. Generate θi|x, z (i = 1, … , k)

Given that the density f is most often from an exponential family, the simulation
of the θi’s is generally straightforward.

As an illustration, consider the case of a normal mixture with two components,
with equal known variance and fixed weights,

p N
(
µ1,σ2

)
+ (1 − p) N

(
µ2,σ2

)
. (11.10)

Assume in addition a normal N (0, 10σ2) prior on both means µ1 and µ2. It is easy
to see that µ1 and µ2 are independent, given (z, x), and the respective conditional
distributions are

N

∑

zi=j

xi|
(
0.1 + nj

)
,σ2|

(
0.1 + nj

)

 ,

where nj denotes the number of zi’s equal to j. Even more easily, it comes that the
conditional posterior distribution of z given (µ1,µ2) is a product of binomials, with

P(Zi = 1|xi,µ1,µ2)

=
p exp

{
−(xi − µ1)2|2σ2

}

p exp
{

−(xi − µ1)2|2σ2
}

+ (1 − p) exp
{

−(xi − µ2)2|2σ2
} .

Figure 11.9 illustrates the behavior of the Gibbs sampler in that setting, with a sim-
ulated dataset of 100 points from the 0.7N (0, 1) + 0.3N (2.7, 1) distribution. The
representation of the MCMC sample after 5000 iterations is quite in agreement
with the posterior surface, represented via a grid on the (µ1,µ2) space and some
contours. The sequence of consecutive steps represented on the left graph also
shows that the mixing behavior is satisfactory, since the jumps are in scale with
the modal region of the posterior.

Bayesian Computational Methods 745

-0.4 -0.2 0.0 0.2 0.4

2.
0

2.
2

2.
4

2.
6

2.
8

3.
0

µ 1

µ
2

-0.4 -0.2 0.0 0.2 0.4

2.
0

2.
2

2.
4

2.
6

2.
8

3.
0

µ 1

µ
2

Figure 11.9. Gibbs sample of 5000 points for the mixture posterior (left) and path of the last

100 consecutive steps (right) against the posterior surface (Source: Robert and Casella, 2004)

This experiment gives a wrong sense of safety, though, because it does not
point out the fairly large dependence of the Gibbs sampler to the initial condi-
tions, already signaled in Diebolt and Robert (1994) under the name of trapping
states. Indeed, the conditioning of (µ1,µ2) on z implies that the new simula-
tions of the means will remain very close to the previous values, especially if
there are many observations, and thus that the new allocations z will not dif-
fer much from the previous allocations. In other words, to see a significant
modification of the allocations (and thus of the means) would require a very
very large number of iterations. Figure 11.10 illustrates this phenomenon for
the same sample as in Fig. 11.9, for a wider scale: there always exists a second
mode in the posterior distribution, which is much lower than the first mode
located around (0, 2.7). Nonetheless, a Gibbs sampler initialized close to the sec-
ond and lower mode will not be able to leave the vicinity of this (irrelevant)
mode, even after a large number of iterations. The reason is as given above:
to jump to the other mode, a majority of zj’s would need to change simulta-
neously and the probability of such a jump is too close to 0 to let the event
occur.9

9 It is quite interesting to see that the mixture Gibbs sampler suffers from the same pathology
as the EM algorithm, although this is not surprising given that it is based on the same
completion scheme.

746 Christian P. Robert

Figure 11.10. Posterior surface and corresponding Gibbs sample for the two mean mixture model,

when initialized close to the second and lower mode, based on 10,000 iterations (Source: Robert and

Casella, 2004)

This example illustrates quite convincingly that, while the completion is natural
from a model point of view (since it is a part of the definition of the model), it
does not necessarily transfer its utility for the simulation of the posterior. Actually,
when the missing variable model allows for a closed form likelihood, as is the case
for mixtures, probit models (Examples 11 and 14) and even hidden Markov models
(see Cappé and Rydén, 2004), the whole range of the MCMC technology can be
used as well. The appeal of alternatives like random walk Metropolis–Hastings
schemes is that they remain in a smaller dimension space, since they avoid the
completion step(s), and that they are not restricted in the range of their moves.10

16 Example 16: (Continuation of Example 15) Given that the likelihood of a sample
(x1, … , xn) from the mixture distribution (11.10) can be computed in O(2n) time,
a regular random walk Metropolis–Hastings algorithm can be used in this setup.
Figure 11.11 shows how quickly this algorithm escapes the attraction of the poor
mode, as opposed to the Gibbs sampler of Fig. 11.10: within a few iterations of the
algorithm, the chain drifts over the poor mode and converges almost determin-
istically to the proper region of the posterior surface. The random walk is based
on N (µ(t)

i , 0.04) proposals, although other scales would work as well but would

10 This wealth of possible alternatives to the completion Gibbs sampler is a mixed blessing
in that their range, for instance the scale of the random walk proposals, needs to be scaled
properly to avoid inefficiencies.

Bayesian Computational Methods 747

require more iterations to reach the proper model regions. For instance, a scale
of 0.005 in the Normal proposal above needs close to 5000 iterations to attain the
main mode.

Figure 11.11. Track of a 1000 iteration random walk Metropolis–Hastings sample on the posterior

surface, the starting point is indicated by a cross. (The scale of the random walk is 0.2.)

The secret of a successful MCMC implementation in such latent variable models
is to maintain the distinction between latency in models and latency in simulation
(the later being often called use of auxiliary variables). When latent variables can
beusedwith adequatemixingof the resulting chain andwhen the likelihoodcannot
be computed in a closed form (as in hidden semi-Markov models, Cappé et al.,
2004), a Gibbs sampler is a still simple solution that is often easy to simulate from.
Adding well-mixing random walk Metropolis–Hastings steps in the simulation
scheme cannot hurt the overall mixing of the chain (Robert and Casella, 2004,
Chap. 13), especially when several scales can be used at once (see Sect. 11.5). A final
word is that the completion can be led in an infinity of ways and that several of
these should be tried or used in parallel to increase the chances of success.

Reversible Jump Algorithms
for Variable Dimension Models 11.4.3

As described in Sect. 11.2.3, model choice is computationally different from testing
in that it considers at once a (much) wider range of models Mi and parameter
spacesΘi. Although early approaches could only go through a pedestrian pairwise

748 Christian P. Robert

comparison, a more adequate perspective is to envision the model index i as part
of the parameter to be estimated, as in (11.3). The (computational) difficulty is that
we are then dealing with a possibly infinite space that is the collection of unrelated
sets: how can we then simulate from the corresponding distribution?11

The MCMC solution proposed by Green (1995) is called reversible jump MCMC,
because it is based on a reversibility constraint on the transitions between the
setsΘi. In fact, the only real difficulty compared with previous developments is to
validate moves (or jumps) between theΘi’s, since proposals restricted to a givenΘi

follow from the usual (fixed-dimensional) theory. Furthermore, reversibility can
be processed at a local level: since the model indicatorµ is a integer-valued random
variable, we can impose reversibility for each pair (k1, k2) of possible values of µ.
The idea at the core of reversible jump MCMC is then to supplement each of the
spaces Θk1 and Θk2 with adequate artificial spaces in order to create a bijection
between them. For instance, if dim(Θk1) > dim(Θk2) and if the move from Θk1 to
Θk2 can be represented by a deterministic transformation of θ(k1)

θ(k2) = Tk1→k2

(
θ(k1)

)
,

Green (1995) imposes a dimension matching condition which is that the opposite
move from Θk2 to Θk1 is concentrated on the curve

{
θ(k1) : θ(k2) = Tk1→k2 (θ(k1))

}
.

In the general case, if θ(k1) is completed by a simulation u1 ∼ g1(u1) into (θ(k1), u1)
and θ(k2) by u2 ∼ g2(u2) into (θ(k2), u2) so that the mapping between (θ(k1), u1) and
(θ(k2), u2) is a bijection,

(
θ(k2), u2

)
= Tk1→k2

(
θ(k1), u1

)
, (11.11)

the probability of acceptance for the move from modelMk1 to modelMk2 is then

min

(
π
(
k2, θ(k2)

)

π
(
k1, θ(k1)

)
π21g2(u2)

π12g1(u1)

∣∣∣∣∣
∂Tk1→k2

(
θ(k1), u1

)

∂
(
θ(k1), u1

)

∣∣∣∣∣
, 1

)

,

involving
the Jacobian of the transform Tk1→k2 ,
the probability πij of choosing a jump to Mkj while in Mki , and
gi, the density of ui.

11 Early proposals to solve the varying dimension problem involved saturation schemes
where all the parameters for all models were updated deterministically (Carlin and Chib,
1995), but they do not apply for an infinite collection of models and they need to be precisely
calibrated to achieve a sufficient amount of moves between models.

Bayesian Computational Methods 749

The acceptance probability for the reverse move is based on the inverse ratio if the
move fromMk2 toMk1 also satisfies (11.11) with u2 ∼ g2(u2).12

The pseudo-code representation of Green’s algorithm is thus as follows:

Green’s Algorithm

At iteration t, if x(t) = (m, θ(m)),
1. Select modelMn with probability πmn

2. Generate umn ∼ ϕmn(u)
3. Set (θ(n), vnm) = Tm→n(θ(m), umn)
4. Take x(t+1) = (n, θ(n)) with probability

min

(
π
(
n, θ(n)

)

π
(
m, θ(m)

)
πnmϕnm(vnm)

πmnϕmn(umn)

∣∣∣∣∣
∂Tm→n

(
θ(m), umn

)

∂
(
θ(m), umn

)

∣∣∣∣∣
, 1

)

,

and take x(t+1) = x(t) otherwise.

As forpreviousmethods, the implementationof this algorithmrequires a certain
skillfulness in picking the right proposals and the appropriate scales. This art of
reversible jump MCMC is illustrated on the two following examples, extracted
from Robert and Casella (2004, Sect. 14.2.3).

17Example 17: (Continuation of Example 6) Ifweconsider formodelMk the k com-
ponent normal mixture distribution,

k∑

j=1

pjkN
(
µjk,σ2

jk

)
,

moves between models involve changing the number of components in the mixture
and thus adding new components or removing older components or yet again
changing several components. As in Richardson and Green (1997), we can restrict
the moves when in model Mk to only models Mk+1 and Mk−1. The simplest
solution is to use a birth-and-death process: The birth step consists in adding
a new normal component in the mixture generated from the prior and the death
step is the opposite, removing one of the k components at random. In this case, the
corresponding birth acceptance probability is

min

(
π(k+1)k

πk(k+1)

(k + 1)!

k!

πk+1(θk+1)

πk(θk) (k + 1)ϕk(k+1)(uk(k+1))
, 1

)

= min

(
π(k+1)k

πk(k+1)

Š(k + 1)

Š(k)

�k+1(θk+1) (1 − pk+1)k−1

�k(θk)
, 1

)
,

12 For a simple proof that the acceptance probability guarantees that the stationary distri-
bution is π(k, θ(k)), see Robert and Casella (2004, Sect. 11.2.2).

750 Christian P. Robert

where �k denotes the likelihood of the k component mixture modelMk and Š(k) is
the prior probability of modelMk.13

While this proposal can work well in some setting, as in Richardson and Green
(1997) when the prior is calibrated against the data, it can also be inefficient, that is,
leading toahigh rejection rate, if theprior is vague, since thebirthproposals are not
tuned properly. A second proposal, central to the solution of Richardson and Green
(1997), is to devise more local jumps between models, called split and combine
moves, since a new component is created by splitting an existing component into
two, under some moment preservation conditions, and the reverse move consists
in combining two existing components into one, with symmetric constraints that
ensure reversibility. (See, e.g., Robert and Casella, 2004, for details.)

Figures 11.12–11.14 illustrate the implementation of this algorithm for the so-
called Galaxy dataset used by Richardson and Green (1997) (see also Roeder, 1992),
which contains 82 observations on the speed of galaxies. On Fig. 11.12, the MCMC
output on the number of components k is represented as a histogram on k, and
the corresponding sequence of k’s. The prior used on k is a uniform distribution
on {1, … , 20}: as shown by the lower plot, most values of k are explored by the
reversible jump algorithm, but the upper bound does not appear to be restrictive
since the k(t)’s hardly ever reach this upper limit. Figure 11.13 illustrates the fact that
conditioning the output on the most likely value of k (3 here) is possible. The nine
graphs in this figure show the joint variation of the three types of parameters, as
well as the stability of the Markov chain over the 1,000,000 iterations: the cumulated
averages are quite stable, almost from the start.

The density plotted on top of the histogram in Fig. 11.14 is another good illustra-
tion of the inferential possibilities offered by reversible jump algorithms, as a case
of model averaging: this density is obtained as the average over iterations t of

k(t)∑

j=1

p(t)
jk N

(
µ(t)

jk ,
(
σ(t)

jk

)2
)

,

which approximates the posterior expectation E[f (y|θ)|x], where x denotes the
data x1, … , x82.

18 Example 18: (Continuation of Example 3) For the AR(p) model of Example 3,
the best way to include the stationarity constraints is to use the lag-polynomial
representation

p∏

i=1

(
1 − λiB

)
Xt = εt , εt ∼ N

(
0,σ2

)
,

13 In the birth acceptance probability, the factorials k! and (k + 1)! appear as the numbers of
ways of ordering the k and k+1 components of the mixtures. The ratio cancels with 1|(k+1),
which is the probability of selecting a particular component for the death step.

Bayesian Computational Methods 751

Figure 11.12. Histogram and raw plot of 100,000 k’s produced by a reversible jump MCMC algorithm

for the Galaxy dataset

of modelMp, and to constrain the inverse roots, λi, to stay within the unit circle if
complex and within [−1, 1] if real (see, e.g. Robert, 2001, Sect. 4.5.2). The associated
uniform priors for the real and complex roots λj is

πp(λ) =
1

⌊
p|2

⌋
+ 1

∏

λi∈R

1

2
I|λi|<1

∏

λi �∈R

1

π
I|λi|<1 ,

where
⌊

p|2
⌋

+1 is the number of different values of rp. This factor must be included
within the posterior distribution when using reversible jump since it does not
vanish in the acceptance probability of a move between models Mp and Mq.
Otherwise, this results in a modification of the prior probability of each model.

Once again, a simple choice is to use a birth-and-death scheme where the birth
moves either create a real or twoconjugate complex roots.As in thebirth-and-death
proposal for Example 17, the acceptance probability simplifies quite dramatically
since it is for instance

min

(
π(p+1)p

πp(p+1)

(rp + 1)!

rp!

⌊
p|2

⌋
+ 1

⌊
(p + 1)|2

⌋
+ 1

�p+1

(
θp+1

)

�p
(
θp

) , 1

)

in the case of a move from Mp to Mp+1. (As for the above mixture example,
the factorials are related to the possible choices of the created and the deleted
roots.)

752 Christian P. Robert

Figure 11.13. Reversible jump MCMC output on the parameters of the model M3 for the Galaxy

dataset, obtained by conditioning on k = 3. The left column gives the histogram of the weights,

means, and variances; the middle column the scatterplot of the pairs weights-means,

means-variances, and variances-weights; the right column plots the cumulated averages (over

iterations) for the weights, means, and variances

Figure 11.15 presents some views of the corresponding reversible jump MCMC
algorithm. Besides the ability of the algorithm to explore a range of values of k, it
also shows that Bayesian inference using these tools is much richer, since it can, for
instance, condition on or average over the order k, mix the parameters of different
models and run various tests on these parameters. A last remark on this graph
is that both the order and the value of the parameters are well estimated, with
a characteristic trimodality on the histograms of the θi’s, even when conditioning
on k different from 3, the value used for the simulation.

More Monte Carlo Methods11.5

While MCMC algorithms considerably expanded the range of applications of
Bayesian analysis, they are not, by any means, the end of the story! Further devel-
opments are taking place, either at the fringe of the MCMC realm or far away from
it. We indicate below a few of the directions in Bayesian computational Statistics,
omitting many more that also are of interest...

Bayesian Computational Methods 753

Figure 11.14. Fit of the dataset by the averaged density, E [f (y|θ)|x]

Figure 11.15. Output of a reversible jump algorithm based on an AR(3) simulated dataset of 530 points

(upper left) with true parameters θi (−0.1, 0.3, −0.4) and σ = 1. The first histogram is associated

with k, the following histograms are associated with the θi’s, for different values of k, and of σ2. The

final graph is a scatterplot of the complex roots (for iterations where there were complex roots). The

one before last graph plots the evolution over the iterations of θ1, θ2, θ3 (Source: Robert 2003)

754 Christian P. Robert

Adaptivity for MCMC Algorithms11.5.1

Given the range of situations where MCMC applies, it is unrealistic to hope for
a generic MCMC sampler that would function in every possible setting. The more
generic proposals like random-walk Metropolis–Hastings algorithms are known
to fail in large dimension and disconnected supports, because they take too long to
explore the space of interest (Neal, 2003). The reason for this impossibility theorem
is that, in realistic problems, the complexity of the distribution to simulation is the
very reason why MCMC is used! So it is difficult to ask for a prior opinion about
this distribution, its support or the parameters of the proposal distribution used
in the MCMC algorithm: intuition is close to void in most of these problems.

However, the performances of off-the-shelve algorithms like the random-walk
Metropolis–Hastings scheme bring information about the distribution of interest
and, as such, should be incorporated in the design of better and more powerful
algorithms. The problem is that we usually miss the time to train the algorithm
on these previous performances and are looking for the Holy Grail of automated
MCMC procedures! While it is natural to think that the information brought by
the first steps of an MCMC algorithm should be used in later steps, there is a severe
catch: using the whole past of the “chain” implies that this is not a Markov chain
any longer. Therefore, usual convergence theorems do not apply and the validity of
the corresponding algorithms is questionable. Further, it may be that, in practice,
such algorithms do degenerate to point masses because of a too rapid decrease in
the variation of their proposal.

19 Example 19: (Continuation of Example 9) For the t-distributionsample,wecould
fit a normal proposal from the empirical mean and variance of the previous values
of the chain,

µt =
1

t

t∑

i=1

θ(i) and σ2
t =

1

t

t∑

i=1

(
θ(i) − µt

)2
.

This leads to a Metropolis–Hastings algorithm with acceptance probability

n∏

j=2

[
ν +

(
xj − θ(t)

)2

ν + (xj − ξ)2

]−(ν+1)|2
exp −

(
µt − θ(t)

)2 |2σ2
t

exp −(µt − ξ)2|2σ2
t

,

where ξ is the proposed value from N (µt ,σ2
t). The invalidity of this scheme (be-

cause of the dependence on the whole sequence of θ(i)’s till iteration t) is illustrated
in Fig. 11.16: when the range of the initial values is too small, the sequence of θ(i)’s
cannot converge to the target distribution and concentrates on too small a support.
But the problem is deeper, because even when the range of the simulated values
is correct, the (long-term) dependence on past values modifies the distribution of
the sequence. Figure 11.17 shows that, for an initial variance of 2.5, there is a bias in
the histogram, even after 25,000 iterations and stabilisation of the empirical mean
and variance.

Bayesian Computational Methods 755

0 1000 2000 3000 4000 5000

-0
.4

-0
.2

0.
0

0.
2

-1.5 -1.0 -0.5 0.0 0.5

0
1

2
3

0 1000 2000 3000 4000 5000

-1
.5

-1
.0

-0
.5

0.
0

0.
5

1.
0

1.
5

θ

-2 -1 0 1 2

0.
0

0.
2

0.
4

0.
6

0 1000 2000 3000 4000 5000

-2
-1

0
1

2

-2 -1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Figure 11.16. Output of the adaptive scheme for the t-distribution posterior with a sample of

10xj ∼ T3 and initial variances of (top) 0.1, (middle) 0.5, and (bottom) 2.5. The left column plots the

sequence of θ(i)’s while the right column compares its histogram against the true posterior

distribution (with a different scale for the upper graph)

756 Christian P. Robert

Figure 11.17. Comparison of the distribution of an adaptive scheme sample of 25,000 points with

initial variance of 2.5 and of the target distribution

Even though the Markov chain is converging in distribution to the target distri-
bution (when using a proper, i.e. time-homogeneous updating scheme), using past
simulations to create a non-parametric approximation to the target distribution
does not work either. Figure 11.18 shows for instance the output of an adaptive
scheme in the setting of Example 19 when the proposal distribution is the Gaus-
sian kernel based on earlier simulations. A very large number of iterations is not
sufficient to reach an acceptable approximation of the target distribution.

The overall message is thus that one should not constantly adapt the proposal
distribution on the past performances of the simulated chain. Either the adap-
tation must cease after a period of burnin (not to be taken into account for the
computations of expectations and quantities related to the target distribution),
or the adaptive scheme must be theoretically assess on its own right. This later
path is not easy and only a few examples can be found (so far) in the literature.
See, e.g., Gilks et al. (1998) who use regeneration to create block independence
and preserve Markovianity on the paths rather than on the values, Haario et al.
(1999,2001) who derive a proper adaptation scheme in the spirit of Example 19 by
using a ridge-like correction to the empirical variance, and Andrieu and Robert
(2001)whoproposeamoregeneral frameworkof validadaptivitybasedonstochas-
tic optimisation and the Robbin-Monro algorithm. (The latter actually embeds the

Bayesian Computational Methods 757

Figure 11.18. Sample produced by 50,000 iterations of a nonparametric adaptive MCMC scheme and

comparison of its distribution with the target distribution

chain of interest θ(t) in a larger chain (θ(t), ξ(t), ∂(t)) that also includes the pa-
rameter of the proposal distribution as well as the gradient of a performance
criterion.)

Population Monte Carlo 11.5.2

To reach acceptable adaptive algorithms, while avoiding an extended study of
their theoretical properties, a better alternative is to leave the structure of Markov
chains and to consider sequential or population Monte Carlo methods (Iba (2000),
Cappé et al. (2004)) that have much more in common with importance sampling
than with MCMC. They are inspired from particle systems that were introduced to
handle rapidly changing target distributions like those found in signal processing
and imaging (Gordon et al., 1993; Shephard and Pitt, 1997; Doucet et al., 2001) but
primarily handle fixed but complex target distributions by building a sequence of
increasingly better proposal distributions.14 Each iteration of the population Monte
Carlo (PMC) algorithm thus produces a sample approximately simulated from the
target distribution but the iterative structure allows for adaptivity toward the target
distribution. Since the validation is based on importance sampling principles,
dependence on the past samples can be arbitrary and the approximation to the
target is valid (unbiased) at each iteration and does not require convergence times
nor stopping rules.

14 The “sequential” denomination in the sequential Monte Carlo methods thus refers to the
algorithmic part, not to the statistical part.

758 Christian P. Robert

If t indexes the iteration and i the sample point, consider proposal distribu-
tions qit that simulate the x(t)

i ’s and associate to each x(t)
i an importance weight

Š(t)
i = π

(
x(t)

i

)
/qit

(
x(t)

i

)
, i = 1, … , n .

Approximations of the form

It =
1

n

n∑

i=1

Š(t)
i h

(
x(t)

i

)

are then unbiased estimators of Eπ[h(X)], even when the importance distribution
qit depends on the entire past of the experiment. Indeed, if ζ denotes the vector of
past random variates that contribute to qit , and g(ζ) its arbitrary distribution, we
have

∫∫
π(x)

qit(x|ζ)
h(x)qit(x)dx g(ζ)dζ =

∫∫
h(x)π(x)dx g(ζ)dζ = Eπ[h(X)] .

Furthermore, assuming that the variances

var
(
Š(t)

i h
(
x(t)

i

))

exist for every 1 ≤ i ≤ n, we have

var
(
It

)
=

1

n2

n∑

i=1

var
(
Š(t)

i h
(
x(t)

i

))
,

due to the canceling effect of the weights Š(t)
i .

Since, usually, the density π is unscaled, we use instead

Š(t)
i ∝ π

(
x(t)

i

)

qit

(
x(t)

i
) , i = 1, … , n ,

scaled so that the Š(t)
i ’s sum up to 1. In this case, the unbiasedness is lost, although

it approximately holds. In fact, the estimation of the normalizing constant of π
improves with each iteration t, since the overall average

ϖt =
1

tn

t∑

τ=1

n∑

i=1

π
(
x(τ)

i

)

qiτ
(
x(τ)

i
)

is convergent. Therefore, as t increases,ϖt contributes less and less to thevariability
of It .

Since the above establishes that an simulation scheme based on sample de-
pendent proposals is fundamentally a specific kind of importance sampling, the

Bayesian Computational Methods 759

following algorithm is validated by the same principles as regular importance
sampling:

Population Monte Carlo Algorithm

For t = 1, … , T
1. For i = 1, … , n,

(1) Select the generating distribution qit(·)
(2) Generate x(t)

i ∼ qit(x)
(3) Compute Š(t)

i = π(x(t)
i)|qit(x(t)

i)

2. Normalize the Š(t)
i ’s to sum up to 1

3. Resample n values from the x(t)
i ’s with replacement, using the weights Š(t)

i ,
to create the sample (x(t)

1 , … , x(t)
n)

Step (1) is singled out because it is the central property of the PMC algo-
rithm, namely that adaptivity can be extended to the individual level and that
the qit ’s can be picked based on the performances of the previous qi(t−1)’s or
even on all the previously simulated samples, if storage allows. For instance,
the qit ’s can include large tails proposals as in the defensive sampling strategy
of Hesterberg (1998), to ensure finite variance. Similarly, Warnes’ (2001) non-
parametric Gaussian kernel approximation can be used as a proposal.15 (See also
Stavropoulos and Titterington, 2001 smooth bootstrap as an earlier example of
PMC algorithm.)

The major difference between the PMC algorithm and earlier proposals in the
particle system literature is that past dependent moves as those of Gilks and
Berzuini (2001) remain within the MCMC framework, with Markov transition
kernels with stationary distribution equal to π.

20Example 20: (Continuation of Example 15) We consider here the implementation
of the PMC algorithm in the case of the normal mixture (11.10). As in Example 16,
a PMC sampler can be efficiently implemented without the (Gibbs) augmenta-
tion step, using normal random walk proposals based on the previous sample
of µ = (µ1,µ2)’s. Moreover, the difficulty inherent to random walks, namely the
selection of a “proper” scale, can be bypassed because of the adaptivity of the PMC
algorithm. Indeed, the proposals can be associated with a range of variances vk

(1 ≤ k ≤ K) ranging from, e.g., 103 down to 10−3. At each step of the algorithm,
the new variances can be selected proportionally to the performances of the scales
vk on the previous iterations. For instance, a scale can be chosen proportionally to
its non-degeneracy rate in the previous iteration, that is, the percentage of points

15 Using a Gaussian non-parametric kernel estimator amounts to (a) sampling from the
x(t)

i ’s with equal weights and (b) using a normal random walk move from the selected x(t)
i ,

with standard deviation equal to the bandwidth of the kernel.

760 Christian P. Robert

generated with the scale vk that survived after resampling.16 The weights are then
of the form

Šj ∝
f
(

x
∣∣∣
(
µ1

)(i)

j
,
(
µ2

)(i)

j

)
π
((
µ1

)(i)

j
,
(
µ2

)(i)

j

)

ϕ
((
µ1

)(i)

j

∣∣∣
(
µ1

)(i−1)

j
, vk

)
ϕ
((
µ2

)(i)

j

∣∣∣
(
µ2

)(i−1)

j
, vk

) ,

where ϕ(q|s, v) is the density of the normal distribution with mean s and variance v
at the point q.

Figure 11.19. Representation of the log-posterior distribution with the PMC weighted sample after

30 iterations (the weights are proportional to the circles at each point) (Source: Cappé et al., 2004)

Compared with an MCMC algorithm in the same setting (see Examples 15
and 16), the main feature of this algorithm is its ability to deal with multiscale
proposals in an unsupervised manner. The upper row of Fig. 11.21 produces the
frequencies of the five variances vk used in the proposals along iterations: The
two largest variances vk most often have a zero survival rate, but sometimes ex-
perience bursts of survival. In fact, too large a variance mostly produces points

16 When the survival rate of a proposal distribution is null, in order to avoid the complete
removal of a given scale vk, the corresponding number rk of proposals with that scale is set
to a positive value, like 1% of the sample size.

Bayesian Computational Methods 761

Figure 11.20. Histograms of the PMC sample: sample at iteration 5 (left) before resampling and (right)

after resampling

that are irrelevant for the posterior distribution, but once in a while a point θ(t)
j

gets close to one of the modes of the posterior. When this occurs, the correspond-
ing Šj is large and θ(t)

j is thus heavily resampled. The upper right graph shows
that the other proposals are rather evenly sampled along iterations. The influ-
ence of the variation in the proposals on the estimation of the means µ1 and µ2

can be seen on the middle and lower panels of Fig. 11.21. First, the cumulative
averages quickly stabilize over iterations, by virtue of the general importance sam-
pling proposal. Second, the corresponding variances take longer to stabilize but
this is to be expected, given the regular reappearance of subsamples with large
variances.

In comparisonwithFigs. 11.10 and 11.11, Fig. 11.19 shows that the sampleproduced
by the PMC algorithm is quite in agreement with the modal zone of the posterior
distribution. The second mode, which is much lower, is not preserved in the sample
after the first iteration. Figure 11.20 also shows that the weights are quite similar,
with no overwhelming weight in the sample.

The generality in the choice of the proposal distributions qit is obviously due
to the abandonment of the MCMC framework. The difference with an MCMC

762 Christian P. Robert

Figure 11.21. Performances of the mixture PMC algorithm for 1000 observations from

a 0.2N (0, 1) + 0.8N (2, 1) distribution, with θ = 1 λ = 0.1, vk = 5, 2, 0.1, 0.05, 0.01, and a population

of 1050 particles: (upper left) Number of resampled points for the variances v1 = 5 (darker) and

v2 = 2; (upper right) Number of resampled points for the other variances, v3 = 0.1 is the darkest

one; (middle left) Variance of the simulated µ1’s along iterations; (middle right) Cumulated average

of the simulated µ1’s over iterations; (lower left) Variance of the simulated µ2’s along iterations;

(lower right) Cumulated average of the simulated µ2’s over iterations (Source: Cappé et al., 2004)

framework is not simply a theoretical advantage: as seen in Sect. 11.5.1, proposals
based on the whole past of the chain do not often work. Even algorithms validated
by MCMC steps may have difficulties: in one example of Cappé et al. (2004),
a Metropolis–Hastings scheme does not work well, while a PMC algorithm based
on the same proposal produces correct answers.

Conclusion11.6

This short overview of the problems and solutions considered for Bayesian Statis-
tics is nothing but an introduction to the game: there are much more complex
problems than those illustrated above and much more advanced techniques than
those presented in these pages. The reader is then encouraged to enter the litera-
ture on the topic, maybe with other introductory surveys like Cappé and Robert

Bayesian Computational Methods 763

(2000) and Andrieu et al. (2004), but mostly through books like Chen et al. (2000),
Doucet et al. (2001), Liu (2001), Green et al. (2003) and Robert and Casella (2004).

We have not mentioned so far entries to Bayesian softwares like winBUGS,
developed by the MRC Unit in Cambridge (Gilks et al., 1994; Spiegelhalter et al.,
1999), Ox (Doornik et al., 2002), BATS (Pole et al., 1994), BACC (Geweke, 1999)
and the Minitab package of Albert (1996), which all cover some aspects of Bayesian
computing. Obviously, these packages require some expertise from the user and
are thus more difficult of use than the classical open source or commercial soft-
wares like R, Splus, Statgraphics, StatXact, SPSS or SAS. In other words, they are
not black boxes that could be used by laymen with no statistical background. But
this entrance fee to the use of Bayesian softwares is inevitable, given the versatile
nature of Bayesian analysis: since it offers much more variability than standard
inferential procedures, through the choice of prior distributions and loss functions
for instance, it also requires more input from the user! And, once these prelim-
inary steps have been overcome, the programming involved in a software like
winBUGS is rather limited and certainly not harder than writing a code in R or
Matlab.

As stressed in this chapter, computational issues are central to the design and
implementation of Bayesian analysis. The new era opened by the MCMC method-
ology has brought much more freedom in the use of Bayesian methods, as reflected
by the increase of Bayesian studies in applied Statistics. As usually the case, a strong
increase in the use of a methodology also sees a corresponding increase in its mis-
use! Inconsistent data-dependent priors and improper posteriors are sometimes
appearing in studies and, more generally, the assessment of prior modelling (or
even of MCMC convergence) are rarely conducted with sufficient care. This is
somehow a price to pay for the wider range of Bayesian studies, while the improve-
ment of corresponding software should bring more guidelines and warnings about
these misuses of Bayesian analysis.

References
Abowd, J., Kramarz, F., and Margolis, D. (1999). High-wage workers and high-wage

firms. Econometrica, 67:251–333.
Albert, J. (1996). Bayesian Computation Using Minitab. Wadsworth Publishing

Company.
Andrieu, C., Doucet, A., and Robert, C. (2004). Computational advances for and

from Bayesian analysis. Statistical Science. (to appear).
Andrieu,C. andRobert,C.P. (2001). ControlledMarkovchainMonteCarlomethods

for optimal sampling. Technical Report 0125, Université Paris Dauphine.
Bauwens, L. and Richard, J.F. (1985). A 1-1 Poly-t random variable generator with

application to Monte Carlo integration. J. Econometrics, 29:19–46.
Cappé, O., Guillin, A., Marin, J.M., and Robert, C.P. (2004). Population Monte

Carlo. J. Comput. Graph. Statist. (to appear).

764 Christian P. Robert

Cappé, O. and Robert, C.P. (2000). MCMC: Ten years and still running! J. American
Statist. Assoc., 95(4):1282–1286.

Cappé, O. and Rydén, T. (2004). Hidden Markov Models. Springer-Verlag.
Carlin, B.P. and Chib, S. (1995). Bayesian model choice through Markov chain

Monte Carlo. J. Roy. Statist. Soc. (Ser. B), 57(3):473–484.
Chen, M.H., Shao, Q.M., and Ibrahim, J.G. (2000). Monte Carlo Methods in

Bayesian Computation. Springer-Verlag.
Diebolt, J. and Robert, C.P. (1994). Estimation of finite mixture distributions by

Bayesian sampling. J. Royal Statist. Soc. Series B, 56:363–375.
Doornik, J.A., Hendry, D.F., and Shephard, N. (2002). Computationally-intensive

econometrics using a distributed matrix-programming language. Philo. Trans.
Royal Society London, 360:1245–1266.

Doucet, A., de Freitas, N., and Gordon, N. (2001). Sequential Monte Carlo Methods
in Practice. Springer-Verlag, New York.

Gelfand, A.E. and Smith, A.F.M. (1990). Sampling based approaches to calculating
marginal densities. J. American Statist. Assoc., 85:398–409.

Geweke, J. (1999). Using simulation methods for Bayesian econometric models:
Inference, development, and communication (with discussion and rejoinder).
Econometric Reviews, 18:1–126.

Gilks, W.R. and Berzuini, C. (2001). Following a moving target–Monte Carlo
inference fordynamicBayesianmodels. J. Royal Statist. Soc. Series B, 63(1):127–
146.

Gilks, W.R., Roberts, G.O., and Sahu, S.K. (1998). Adaptive Markov chain Monte
Carlo. J. American Statist. Assoc., 93:1045–1054.

Gilks, W.R., Thomas, A., and Spiegelhalter, D.J. (1994). A language and program
for complex Bayesian modelling. The Statistician, 43:169–178.

Gordon, N., Salmond, J., and Smith, A.F.M. (1993). A novel approach to non-
linear/non-Gaussian Bayesian state estimation. IEEE Proceedings on Radar
and Signal Processing, 140:107–113.

Green, P.J. (1995). Reversible jump MCMC computation and Bayesian model
determination. Biometrika, 82(4):711–732.

Green, P.J., Hjort, N.L., and Richardson, S. (2003). Highly Structured Stochastic
Systems. Oxford University Press, Oxford, UK.

Haario, H., Saksman, E., and Tamminen, J. (1999). Adaptive proposal distribution
for randomwalk Metropolis algorithm. Computational Statistics, 14(3):375–395.

Haario, H., Saksman, E., and Tamminen, J. (2001). An adaptive Metropolis algo-
rithm. Bernoulli, 7(2):223–242.

Hesterberg, T. (1998). Weighted average importance sampling and defensive mix-
ture distributions. Technometrics, 37:185–194.

Iba, Y. (2000). Population-based Monte Carlo algorithms. Trans. Japanese Soc. Ar-
tificial Intell., 16(2):279–286.

Jeffreys, H. (1961). Theory of Probability (3rd edition). Oxford University Press,
Oxford, 1939 edition.

Liu, J.S. (2001). Monte Carlo Strategies in Scientific Computing. Springer-Verlag,
New York, NY.

Bayesian Computational Methods 765

McCullagh, P. and Nelder, J. (1989). Generalized Linear Models. Chapman and
Hall.

Meng, X.L. and Wong, W.H. (1996). Simulating ratios of normalizing constants via
a simple identity: a theoretical exploration. Statist. Sinica, 6:831–860.

Metropolis, N. and Ulam, S. (1949). The Monte Carlo method. J. American Statist.
Assoc., 44:335–341.

Neal, R.M. (2003). Slice sampling (with discussion). Ann. Statist., 31:705–767.
Nobile, A. (1998). A hybrid Markov chain for the Bayesian analysis of the multino-

mial probit model. Statistics and Computing, 8:229–242.
Pole, A., West, M., and Harrison, P.J. (1994). Applied Bayesian Forecasting and

Time Series Analysis. Chapman-Hall, New York.
Richardson, S. and Green, P.J. (1997). On Bayesian analysis of mixtures with an

unknown number of components (with discussion). J. Royal Statist. Soc. Series
B, 59:731–792.

Robert, C.P. (2001). The Bayesian Choice. Springer-Verlag, second edition.
Robert, C.P. and Casella, G. (1999). Monte Carlo Statistical Methods. Springer-

Verlag, New York, NY.
Robert, C.P. and Casella, G. (2004). Monte Carlo Statistical Methods. Springer-

Verlag, New York, second edition. (to appear).
Roeder, K. (1992). Density estimation with confidence sets exemplified by super-

clusters and voids in galaxies. J. American Statist. Assoc., 85:617–624.
Shephard, N. and Pitt, M.K. (1997). Likelihood analysis of non-Gaussian measure-

ment time series. Biometrika, 84:653–668.
Spiegelhalter, D.J., Best, N.G., Carlin, B.P., and van der Linde, A. (2002). Bayesian

measures of model complexity and fit. J. Royal Statistical Society Series B,
64(3):583–639.

Spiegelhalter, D.J., Thomas, A., and Best, N.G. (1999). WinBUGS Version 1.2 User
Manual. Cambridge.

Stavropoulos, P. and Titterington, D.M. (2001). Improved particle filters and
smoothing. In Doucet, A., deFreitas, N., and Gordon, N., editors, Sequential
MCMC in Practice. Springer-Verlag.

Tanner, M. and Wong, W. (1987). The calculation of posterior distributions by data
augmentation. J. American Statist. Assoc., 82:528–550.

Von Neumann, J. (1951). Various techniques used in connection with random
digits. J. Resources of the National Bureau of Standards – Applied Mathematics
Series, 12:36–38.

III.12Computational Methods
in Survival Analysis

Toshinari Kamakura

12.1 Introduction . 768

Nonparametric Model . 768
Parametric Models . 769

12.2 Estimation of Shape or Power Parameter . 772

12.3 Regression Models . 774

The Score Test . 774
Evaluation of Estimators in the Cox Model . 776
Approximation of Partial Likelihood . 776

12.4 Multiple Failures and Counting Processes . 779

Intensity Function. 779
Multiple Counting Processes . 780
Power Law Model . 782
Models Suitable for Conditional Estimation . 782

768 Toshinari Kamakura

Survival analysis is widely used in the fields of medical science, pharmaceutics,
reliability and financial engineering, and many others to analyze positive random
phenomena defined by event occurrences of particular interest. In the reliabili-
ty field, we are concerned with the time to failure of some physical component
such as an electronic device or a machine part. This article briefly describes sta-
tistical survival techniques developed recently from the standpoint of statistical
computational methods focussing on obtaining the good estimates of distribu-
tion parameters by simple calculations based on the first moment and condi-
tional likelihood for eliminating nuisance parameters and approximation of the
likelihoods. The method of partial likelihood (Cox, 1972, 1975) was originally
proposed from the view point of conditional likelihood for avoiding estimat-
ing the nuisance parameters of the baseline hazards for obtaining simple and
good estimates of the structure parameters. However, in case of heavy ties of
failure times calculating the partial likelihood does not succeed. Then the ap-
proximations of the partial likelihood have been studied, which will be described
in the later section and a good approximation method will be explained. We
believe that the better approximation method and the better statistical mod-
el should play an important role in lessening the computational burdens great-
ly.

Introduction12.1

Let T be a positive random variable with density function f (t) and distribution
function F(t). The survival function S(t) is then defined as

S(t) = 1 − F(t) = Pr{T > t} ,

and the hazard function or hazard rate as

λ(t) = lim
h→0

Pr{t < T ≤ t + h|T > t}
h

.

The hazard function can also be expressed as

λ(t) =
f (t)

S(t)
. (12.1)

The right-hand side (RHS) of (12.1) becomes

f (t)

S(t)
= −

d
dt

log S(t) ,

and inversely

S(t) = exp

{
−

∫ t

0
λ(u)du

}
. (12.2)

Computational Methodsin Survival Analysis 769

Nonparametric Model 12.1.1

We assume that the observed data set consists of failure or death times ti and
censoring indicators δi, i = 1, · · · , n. The indicator δ is unity for the case of failure
and zero for censoring. The censoring scheme is an important concept in survival
analysis in that one can observe partial information associated with the survival
randomvariable. This is due to some limitations suchas loss to follow-up,drop-out,
termination of the study, and others.

TheKaplan–Meiermethod(KaplanandMeier, 1958) is currently the standard for
estimating the nonparametric survival function. For the case of a sample without
any censoring observations, the estimate exactly corresponds to the derivation
from the empirical distribution. The dataset can be arranged in table form, i.e.,

Table 12.1. Failure time data

Failure times t1 t2 · · · ti · · · tk

Number of failures d1 d2 · · · di · · · dk

Number of individuals of risk set n1 n2 · · · ni · · · nk

where, ti is the i-th order statistic when they are arranged in ascending order for
distinct failure times, di is the number of failures at the time of ti, and ni is the
number of survivors at time ti − 0. Under this notation the Kaplan–Meier estimate
becomes

Ŝ(t) =
∏

j:tj<t

(
1 −

dj

nj

)
. (12.3)

The standard error of the Kaplan–Meier estimate is

SE
{

Ŝ(t)
}

= [̂S(t)]

∑

j:tj<t

dj

nj(nj − dj)

1|2

. (12.4)

The above formula is called “Greenwood’s formula” described by Greenwood
(1926).

Parametric Models 12.1.2

The most important and widely-used models in survival analysis are exponential,
Weibull, log-normal, log-logistic, and gamma distributions. The first two models
will be introduced for later consideration.Theexponential distribution is simplistic
and easy to handle, being similar to a standard distribution in some respects, while
the Weibull distribution is a generalization of the exponential distribution and
allows inclusion of many types of shapes. Their density functions are

770 Toshinari Kamakura

f (t; λ) = λe−λt (λ, t > 0) (12.5)

f (t; m,η) =
m

η

(
t

η

)m−1

exp

{
−

(
t

η

)m}
(m,η, t > 0), (12.6)

where theparameterλ is sometimes called the failure rate in reliability engineering.
Two models may include additional threshold parameters, or guarantee times. Let
γ be this threshold parameter. The Weibull density function then becomes

f (t; m,η, γ) =
m

η

(
t − γ
η

)m−1

exp

{
−

(
t − γ
η

)m}
(m,η, γ, t > 0) . (12.7)

Here, note that in the case of m = 1, the Weibull probability density function
is exactly the exponential density function placing λ = 1|η, and that we cannot
observe any failure times before threshold time (t < γ) or an individual cannot die
before this time.

As the Weibull distribution completely includes the exponential distribution,
only the Weibull model will be discussed further. The Weibull distribution is widely
used in reliability and biomedical engineering because of goodness of fit to data
and ease of handling. The main objective in lifetime analysis sometimes involves
(1) estimation of a few parameters which define the Weibull distribution, and
(2) evaluation of the effects of some environmental factors on lifetime distribution
using regression techniques. Inference on the quantiles of the distribution has
been previously studied in detail (Johnson et al., 1994).

The maximum likelihood estimate (MLE) is well known, yet it is not expressed
explicitly in closed form. Accordingly, some iterative computational methods are
used. Menon (Menon (1963)) provided a simple estimator of 1|m, being a consistent
estimate of 1|m, with a bias that tends to vanish as the sample size increases. Later,
Cohen (Cohen, 1965; Cohen and Whitten, 1988) presented a practically useful
chart for obtaining a good first approximation to the shape parameter m using the
property that the coefficient of variation of the Weibull distribution is a function of
the shape parameter m, i.e., it does not depend on η. This is described as follows.

Let T be a random variable with probability density function (12.6), the rth
moment around the origin is then calculated as

E[Tr] = ηrΓ
(

1 +
r

m

)
.

Here Γ(·) is the complete gamma function. From this, the first two moments
obtained are the mean life and variance, i.e.,

E[T] = ηΓ
(

1 +
1

m

)
,

Var[T] = η2

{
Γ
(

1 +
2

m

)
− Γ2

(
1 +

1

m

)}
.

Computational Methodsin Survival Analysis 771

Considering that the coefficient of variation

CV =
√

(Var[T])|E[T]

does not depend on the parameter η allows obtaining simple and robust moment
estimates, which may be the initial values of the maximum likelihood calculations.
Dubey (1967) studied the behavior of the Weibull distribution in detail based on
these moments, concluding that the Weibull distribution with shape parameter
m = 3.6 is relatively similar to the normal distribution.

Regarding the three-parameter Weibull described by (12.7), Cohen and Whitten
(1988) suggested using the method of moments equations, noting that

E[T] = γ + ηΓ1(m),

Var[T] = η2
{
Γ2(m) − Γ2

1(m)
}

,

E[X(1)] = γ +
η

n1|m Γ1(m) ,

and equating them to corresponding samples, where Γr(m) = Γ(1 + r|m).
As for obtaining an inference on the parameter of the mean parameterµ = E(T),

this has not yet been investigated and will now be discussed. When one would like
to estimate µ, use of either the MLE or the standard sample mean is best for
considering the case of an unknown shape parameter. This is true because the
asymptotic relative efficiency of the sample mean to the MLE is calculated as

ARE(T̄) =
nAvar(µ̃)

nAvar(T̄)

=
6

m2π2
· 1

CV2

[
π2

6
+
{

c − 1 + ψ(1 + 1|m)
}2
]

, (12.8)

where c is Euler’s constant,ψ(·) a digamma function, µ̃ the MLE, and T̄ the sample
mean.

Table 12.2 gives the ARE with respect to various values of m. Note the remarkably
high efficiency of the sample mean, especially for m ≥ 0.5, where more than 90%
efficiency is indicated. The behavior of ARE(T̄) form m > 1 is that ARE(X̄) has
a local minimum 0.9979 at m = 1.7884 and a local maximum 0.9986 at m = 3.1298,
and that for the larger m, ARE(T̄) monotonically decreases in m and the infimum
of ARE(T̄) is given in m → ∞;

lim
m→∞ ARE(T̄) =

6(π2 + 6)

π4
∼= 0.9775 . (12.9)

When m is known and tends to infinity, the behavior of ARE(T̄) is as follows:

lim
m→∞

1

(mCV)2
=

6

π2
∼= 0.6079 . (12.10)

772 Toshinari Kamakura

Table 12.2. ARE of the sample mean to the MLE

m eff m eff m eff

0.1 0.0018 1.1 0.9997 2.1 0.9980

0.2 0.1993 1.2 0.9993 2.2 0.9981

0.3 0.5771 1.3 0.9988 2.3 0.9982

0.4 0.8119 1.4 0.9984 2.4 0.9983

0.5 0.9216 1.5 0.9981 2.5 0.9984

0.6 0.9691 1.6 0.9980 2.6 0.9984

0.7 0.9890 1.7 0.9979 2.7 0.9985

0.8 0.9968 1.8 0.9979 2.8 0.9985

0.9 0.9995 1.9 0.9979 2.9 0.9985

1.0 1.0000 2.0 0.9980 3.0 0.9986

A higher relative efficiency of the sample mean for unknown m is shown compared
to known m. From a practical standpoint, the sample mean is easily calculated
for a point estimation of the Weibull mean if no censored data are included.
These results support the benefits of using the sample mean for the complete
sample.

Estimation of Shape or Power Parameter12.2

Let us now consider the class of the lifetime distributions, whose distribution
functions are expressed by

F(t;α, γ,σ) = G

((t − γ
σ

)α)
, (12.11)

where G(·) is also a distribution function. For the Weibull model, G(t) = 1−exp(−t)
is an exponential distribution. Nagatsuka and Kamakura (Nagatsuka and Kamaku-
ra, 2003, 2004) proposed a new method using the location-scale-free transforma-
tion of data set to estimate the power parameter in the Castillo–Hadi model
(Castillo and Hadi, 1995). That is, let T1, … , Tn be independently distributed ac-
cording to the distribution function (12.11). Consider the W-transformation to be
defined as

Wi =
Ti − T(1)

T(n) − T(1)
, (i = 2, … , n − 1), (12.12)

where T(k) is the k-th order statistic of Ti’s. The new random variables Wi’s derived
by this W-transformation are then free from location and scale parameter. The
arithmetic mean of Wi’s gives the approximation to the original distribution of T.
Let Vi, i = 1, … , n be i.i.d. distributed with common distribution function FV (v),

Computational Methodsin Survival Analysis 773

and let the i-th order statistic V(i) have the marginal distribution function FV(i) (v).
Then

Fv(v) =
1

n

n∑

i=1

FV(i) (v) . (12.13)

This equation indicates that the arithmetic mean of the marginal distributions of
n order statistics is exactly the original distribution. In the case of the Castillo–
Hadi Model, Nagatsuka and Kamakura (2004) provided a theorem regarding this
approximation, i.e.,

1Theorem 1 (Nagatsuka and Kamakura, 2004)
The mixture of the marginal distributions of W(i), i = 2, … , n − 1:

F(n)(w) =
1

n − 2

n−1∑

i=2

FW(i) (w) (12.14)

is the approximate distribution of Wi’s and the limiting distribution (12.14) is the
power function distribution with parameter 1|α. That is

lim
n→∞

1

n − 2

n−1∑

i=2

FW(i) (w) = w
1
α , 0 < w < 1.

In the case of the Weibull distribution, the marginal distribution of W(i) is
calculated as

FW(i) (w) = Pr
(
W(i) ≤ w

)

= Pr

(
T(i) − T(1)

T(n) − T(1)
≤ w

)

=
∫ ∞

0

∫ ∞

u
n(n − 1)f (u)f (v)

[n−2∑

k=i−1

(
n − 2

k

)

× {F((1 − w)u + wv) − F(u)}k

× {F(v) − F((1 − w)u + wv)}n−k−2

]
dvdu

=
∫ 1

0

∫ 1

u
n(n − 1)

n−2∑

k=i−1

(
n − 2

k

)
× [1 − exp {−α(w, m, u, v)} − u]k

× [v − (1 − exp {−α(w, m, u, v)})]n−k−2 , (12.15)

774 Toshinari Kamakura

where

α(w, m, u, v) =
[

(1 − w)
{

− log(1 − u)
} 1

m + w
{

− log(1 − v)
} 1

m
]m

.

Calculations show that F(n)(w) has a first moment of

µn(m) =
∫ ∞

0

{
1 − F(n)(w)

}
dw

= −
1

n − 2
+

n(n − 1)

m

∫ 1

0

∫ 1

u
(v − u)n−3

× Γ
(

1
m , − log(1 − u), − log(1 − v)

)

{
− log(1 − v)

} 1
m −

{
− log(1 − u)

} 1
m

dvdu . (12.16)

where Γ(·, ·, ·) is the incomplete generalized gamma function defined by

Γ(a, z0, z1) =
∫ z1

z0

ta−1e−tdt .

Now, an estimating of the shape parameter m is obtained by equating the theoret-
ical population mean with sample mean of W-transformed W ’s. Nagatsuka and
Kamakura (2003) provided a table for obtaining estimates and concluded based
on simulation studies that the robust estimate of m is possible without using any
existing threshold parameter.

Regression Models12.3

Survival analysis is now a standard statistical method for lifetime data. Fundamen-
tal and classical parametric distributions are also very important, but regression
methods are very powerful to analyze the effects of some covariates on life lengths.
Cox (1972) introduced a model for the hazard function λ(t; x) with survival time T
for an individual with possibly time-dependent covariate x, i.e.,

λ(t; x) = λ0(t) exp(β�x) , (12.17)

where λ0(t) is an arbitrary and unspecified base-line hazard function and x� =
(x1, … , xp) and β� = (β1, … , βp). Cox generalized (12.17) this to a discrete logistic
model expressing y as

λ(t; x)

1 − λ(t; x)
=

λ0(t)

1 − λ0(t)
exp(β�x) . (12.18)

Kamakura and Yanagimoto (1983) compared the estimators of regression parame-
ters in the proportional hazards model (12.17) or (12.18) when we take the following
methods; the Breslow–Peto (Breslow, 1974; Peto, 1972) method, the partial likeli-

Computational Methodsin Survival Analysis 775

hood (Cox, 1972, 1975) method and the generalized maximum likelihood method
(Kalbfleish and Prentice, 1980; Miller, 1981).

The Score Test 12.3.1

In many applications it is necessary to test the significance of the estimated value,
using for example the score test or the likelihood ratio test based on asymptotic
results of large sample theory. First we express the three likelihood factors defined
at each failure time as LBP , LPL, LGML corresponding to the Breslow–Peto, the partial
likelihood and the generalized maximum likelihood methods, respectively;

LBP(β) =
∏r

i=1 exp(β�xi){∑n
i=1 exp(β�xi)

}r , (12.19)

LPL(β) =
∏r

i=1 exp(β�xi)∑
Ψ
∏r

i=1 exp
(
β�xψi

) , (12.20)

LGML(β) =
∏r

i=1 λ exp(β�xi)∏n
i=1

{
1 + λ exp(β�xi)

} , (12.21)

where x1, … , xn denote covariate vectors for n individuals at risk at a failure time
and x1, … , xr correspond to the failures, and Ψ denotes the set of all subsets
{ψ1, … ,ψr} of size r from {1, … , n}. The overall likelihood obtained by each
method is the product of these cases of many failure times. It can be shown that the
first derivatives of the three log likelihoods with respect β have the same values,
i.e.,

r∑

i=1

xji −
r

n

n∑

i=1

xji (j = 1, … , p)

at β = 0.
The Hessian matrices of the log likelihoods evaluated at β = 0 are respectively,

−
(r

n

)
S,

−

{
r(n − r)

n(n − 1)

}
S,

−

{
r(n − r)

n2

}
S,

where S is a matrix whose elements sjk are defined by

sjk =
n∑

i=1

(xji − x̄j.)(xki − x̄k.) .

776 Toshinari Kamakura

The first two results were derived by Farewell and Prentice (1980). Maximizing out
λ from LGML gives the last one, which is obtained in an unpublished manuscript.
Since

r

n
≥ r(n − r)

n(n − 1)
>

r(n − r)

n2
,

we conclude that the Breslow–Peto approach is the most conservative one.

Evaluation of Estimators in the Cox Model12.3.2

Farewell and Prentice (1980) pointed out in their simulation study that when the
discrete logistic model is true the Breslow–Peto method causes downward bias
compared to the partial likelihood method. This was proven in Kamakura and
Yanagimoto (1983) for any sample when β is scalar-valued, i.e.,

2 Theorem 2 (Kamakura and Yanagimoto, 1983)
Let β̂BP be the maximum likelihood estimator of LBP(β) and β̂PL be that of LBP(β).
Suppose that all xi’s are not identical. Then both β̂BP and β̂PL are unique, if they
exist, and sgn(̂βBP) = sgn(̂βPL) and

∣∣̂βBP

∣∣ ≤ ∣∣̂βPL

∣∣ . (12.22)

The equality in (12.22) holds when β̂PL is equal to zero or the number of ties r is
equal to one.

1 Corollary 1 (Kamakura and Yanagimoto, 1983)
The likelihood ratio test for β = 0 against β ≠ 0 is also conservative if we use the
Breslow–Peto method. The statement is also valid in the multivariate case.

This theorem and corollary confirm the conservatism of the Breslow–Peto ap-
proximation in relation to Cox’s discrete model (Oaks, 2001).

Approximation of Partial Likelihood12.3.3

Yanagimoto and Kamakura (1984) proposed an approximation method using full
likelihood for the case of Cox’s discrete model. Analytically the same problems
appear invariousfieldsof statistics. Prentice andBreslow(1978) andFarewell (1979)
remarked that the inference procedure using the logistic model contains the same
problems in case-control studies where data are summarized in multiple 2×2 or k×
2 tables. The proportional hazards model provides a type of logistic model for the
contingency table with ordered categories (Pregibon, 1982). As an extension of the
proportional hazards model, the proportional intensity model in the point process
is employed to describe an asthma attack in relation to environmental factors

Computational Methodsin Survival Analysis 777

(Korn and Whittemoore, 1979; Yanagimoto and Kamakura, 1984). For convenience,
although in some cases partial likelihood becomes conditional likelihood, we will
use the term of partial likelihood.

It isworthwhile toexplore thebehaviorof themaximumfull likelihoodestimator
even when the maximum partial likelihood estimator is applicable. Both estimators
obviously behave similarly in a rough sense, yet they are different in details.
Identifying differences between the two estimators should be helpful in choosing
one of the two.

We use the notation described in the previous section for expressing the two
likelihoods. Differentiating log LPL gives

LP(β) =
r∑

i=1

xi −

∑
Ψ
∑

ψ xj exp
(
β�

∑
ψ xj

)

∑
Ψ exp

(
β�

∑
ψ xj

) = 0 .

Differentiating log LGML with respect to β and λ allows obtaining the maximum
full likelihood estimator, i.e.,

r∑

i=1

xi −
n∑

i=1

λxi
exp(β�xi)

1 + λ exp(β�xi)
= 0

and

r

λ
−

n∑

i=1

exp(β�xi)

1 + λ exp(β�xi)
.

From the latter equation λ(β) is uniquely determined for any fixed β. Using λ(β),
we define

LF(β) =
r∑

i=1

xi −
n∑

i=1

λ(β)xi
exp(β�xi)

1 + λ exp(β�xi)
.

The maximum full likelihood estimator, β̂GML, is a root of the equation LF(β) = 0.
We denote λ(β) by λ for simplicity.

Note that the entire likelihoods are the products over all distinct failure times T.
Thus the likelihood equations in a strict sense are

∑
LPt(β) = 0 and

∑
LFt(β) = 0,

where the summations extend over t in T. As far as we are concerned, the results
in a single failure time can be straightforwardly extended to those with multiple
failure times. Let us now focus on likelihood equations of a single failure time and
suppress the suffix t.

1Proposition 1 (Yanagimoto and Kamakura, 1984)
Let K(β) be either of LF(β) or LP(β). Denote

∑n
i=1 xi|n by x̄, and x(1) + · · · + x(r)

and x(n−r+1) + · · · + x(n) by L(x; r) and U(x; r) respectively, where x(1), … , x(n) are
ordered covariates in ascending order. K(β) accordingly has the following four
properties:

778 Toshinari Kamakura

(1) K(0) = x1 + · · · + xr − rx̄.
(2) K ′(β) is negative for any β, that is, K(β) is strictly decreasing.
(3) limβ→−∞ K(β) = U(x; r).
(4) limβ→∞ K(β) = L(x; r).

Extension to the case of vector parameterβ is straightforward. From Proposition
1 it follows that if either of the two estimators exists, then the other also exists and
they are uniquely determined. Furthermore, both the estimators have a common
sign.

3 Theorem 3 (Yanagimoto and Kamakura, 1984)
Suppose that

∑
(xi − x̄)2 ≠ 0. The functions LP(β) and LF(β) then have a unique

intersection at β = 0. It also holds that LP(β) < LF(β) for β > 0. The reverse
inequality is valid for β < 0.

The above theorem proves that β̂GML > β̂PL for the case of LP(0) = LF(0) > 0.
To quantitatively compare the behaviors of LF(β) and LP(β), their their power

expansions are presented near the origin. Since both functions behave similarly,
it is expected that the quantitative difference near the origin is critical over a wide
range of β. Behavior near the origin is of practical importance for studying the
estimator and test procedure.

2 Proposition 2 (Yanagimoto and Kamakura, 1984)
The power expansions of LF(β) and LP(β) near the origin up to the third order are
as follows: for n ≥ 4,
(1)

LF(β) ≈
r∑

i=1

xi −

[
rx̄ +

r(n − r)

n2
s2β +

1

2

r(n − r)(n − 2r)

n3
s3β2

+
1

6

r(n − r)

n5

{
n(n2 − 6rn + 6r2)s4 − 3(n − 2r)2s2

2

}
β3

]
,

(2) (Cox, 1970)

LP(β) ≈
r∑

i=1

xi −

[
rx̄ +

r(n − r)

n(n − 1)
s2β +

1

2

r(n − r)(n − 2r)

n(n − 1)(n − 2)
s3β2

+
1

6

r(n − r)

n2(n − 1)(n − 2)(n − 3)

{
n(n2 − 6rn + 6r2 + n)s4

+3(r − 1)n(n − r − 1)s2
2

}
β3

]
,

where sk =
∑

(xi − x̄)k, k = 2, 3 and 4.

Computational Methodsin Survival Analysis 779

The function LF(β) has a steeper slope near the origin than LP(β). The relative
ratio is n|(n − 1), which indicates that LF(nβ|(n − 1)) is close to LP(β) near the
origin. The power expansion of LA(β) = LF(nβ|(n − 1)) is expressed by

LA(β) ≈
r∑

i=1

xi −

{
rx̄ +

r(n − r)

n(n − 1)
s2β +

(n

n − 1

)2
c3β2 +

(n

n − 1

)3
c4β3

}
, (12.23)

where c3 and c4 are coefficients of order 2 and 3 of LF(β). Although LA(β) is defined
to adjust the coefficient of LF(β) of order 1 to that of LP(β), the coefficient of
order 2 of LA(β) becomes closer to that of LP(β) than that of LF(β). The following
approximations are finally obtained.

LP(β) ≈ LA(β), (12.24)

β̂PL ≈ (n − 1)̂βGML

n
. (12.25)

The proposed approximated estimator and test statistic are quite helpful in cases
of multiple 2 × 2 table when the value of both n and r are large (Yanagimoto and
Kamakura, 1984).

Multiple Failures and Counting Processes 12.4

The standard methods of survival analysis can be generalized to include multiple
failures simply defined as a series of well-defined event occurrences. For example,
in software reliability, engineers are often interested in detecting software bugs.
Inference from a single counting process has been studied in detail (Cox and Lewis,
1966; Musa et al., 1987), with multiple independent processes being considered as
a means to estimate a common cumulative mean function from a nonparametric or
semi-parametric viewpoint (Lawless and Nadeau, 1993; Nelson, 1992). Kamakura
(1996) discussed problems associated with parametric conditional inference in
models with a common trend parameter or possibly different base-line intensity
parameters.

Intensity Function 12.4.1

For multiple failures, intensity functions correspond to hazard functions in that
the intensity function is defined as discussed next.

In time interval [t0, t] we define the number of occurrences of events or failures
as N(t). The Poisson counting process {N(t) : t ≥ t0} is given such that it satisfies
the following three conditions for t ≥ t0.
1. Pr{N(t0) = 0} = 1
2. The increment Ns,t = N(t) − N(s) (t0 ≥ s < t) has a Poisson distribution with

the mean parameter Λt − Λs, for some positive and increasing function in t.

780 Toshinari Kamakura

3. {Nt : t ≥ t0} is a process of independent increments. That is, for any (t0 <)
t1 < t2 < · · · < tn, n increments, N(t1) − N(t0), … , N(tn) − N(tn−1) are mutually
independent.

For this counting process {N(t) : t ≥ t0} we can define the intensity function as

λ(t) = lim
∆→0

1

∆
Pr{N(t + ∆t) − N(t) = 1|H(t)} , (12.26)

where H(t)is the history of the process up to t:

H(t) = {N(u) : t0 ≤ u ≤ t} .

Note that

Λ(t) =
∫ t

t0

λ(t)dt .

Expectation of E[Ns,t] becomes

E[Ns,t] =
∞∑

n=0

n Pr{Nn,s = n} = Λt − Λs , (12.27)

and

λ(t) =
d
dt
Λt =

d
dt

E[N(t)] . (12.28)

The nonparametric estimate of the intensity function is easy to determine and
is quite useful for observing the trend of a series of events. If a data set of failure
times {t1, t2, … , tn} is available, assuming constant intensity in (tk1 , tk], then

λ(t) = λk (tk−1 < t ≤ tk) ,

and the nonparametric ML estimates becomes

λk =
1

tk − tk−1
(k = 1, … , n) , (12.29)

where t0 = 0.

Multiple Counting Processes12.4.2

We assume several independent counting processes {Nk(tk), i.e., 0 < tk ≤ τk, k =
1, … , K}. The cumulative mean function for Nk(t) is expressed by

Mk(t) = E {Nk(t)} . (12.30)

Nelson (1992) described a method for estimating the cumulative mean func-
tion of an identically distributed process without assuming any Poisson process

Computational Methodsin Survival Analysis 781

structure, while Lawless and Nadeau (1993) developed robust variance estimates
based on the Poisson process. All these methods are basically concerned with
nonparametric estimation. Here, parametric models for effectively acquiring in-
formation on the trend of an event occurrence are dealt with. Kamakura (1996)
considered generalized versions of two primal parametric models to multiple inde-
pendent counting processes under the framework of a nonhomogeneous Poisson
process.

Cox and Lewis (Cox and Lewis, 1966) considered a log-linear model for trend
testing a singe counting process, i.e.,

λ(t) = exp(α + βt) , (12.31)

where λ(t) is the intensity function corresponding to the derivative of the mean
function in the continuous case. Note that for a single case the subscript k is omit-
ted. They assumed the above nonhomogeneous Poisson process and gave a simple
test statistic for H0 : β = 0 against HA : β ≠ 0, i.e.,

U =
∑n

i=1 ti − 1
2 τ0

τ0
√

n
12

. (12.32)

The distribution of this statistic steeply converges to the standard normal dis-
tribution when n → ∞. This statistic is sometimes called the U statistic and is
frequently applied to trend testing in reliability engineering.

Kamakura (1996) generalized this log-linear model to the multiple case, with
the log-linear model for k-th individual being

λk(t) = exp
(
αk + βt

)
. (12.33)

In this modeling we assume the common trend parameter β and are mainly
interested in estimating and testing this parameter. The full likelihood for the
model becomes

L(β,α1,α2, … ,αK) =
K∏

k=1

[{ nk∏

i=1

λk(tki)

}

exp

{
−

∫ τk

0
λk(u)du

}]

(12.34)

= exp

{
K∑

k=1

nkαk + β
K∑

k=1

nk∑

i=1

tki −
1

β

K∑

k=1

eαk
(
eβτk − 1

)
}

.

If K is large, it is difficult to compute all parameter estimates based on such full
likelihood.

Given Nk(τk) = nk, k = 1, 2, … , K, conditional likelihood is considered as

CL(β|Nk(τk) = nk, i = 1, … , K) =
∏K

k=1(nk!)β
∑

nk eβ
∑∑

tki

∏K
k=1

(
eβτk − 1

)nk
. (12.35)

Note that the nuisance parameter αk’s do not appear. Fisher information is calcu-

782 Toshinari Kamakura

lated as

I(β) = E

[
−
∂2 log CL

∂β2

]

=

∑K
k=1 nk

{
1
β2 −

τ2
k e−βτk

(
1−e−βτk

)2

}

(β ≠ 0)

1
12

∑K
k=1 nkτ2

k (β = 0)

. (12.36)

The test statistic obtained from the above calculations becomes

Uk =
log CL

∣∣
β=0√

I(0)

=
∑K

k=1

∑nk
i=1 tki − 1

2

∑K
k=1 nkτk

√
1

12

∑K
k=1 nkτ2

k

. (12.37)

To obtain the conditional estimate, numerical calculations are required such as
Newton–Raphson method. However, the log conditional likelihood and its deriva-
tives are not computable at the origin of the parameter β. In such a case, Taylor
series expansions of the log conditional likelihood are used around the origin
(Kamakura, 1996).

Power Law Model12.4.3

Crow (1982) considered the power law model, sometimes called the Weibull pro-
cess model. This model was generalized to the multiple case using the following
intensity for the k-th individual (Kamakura, 1996):

λk(t) = θkmtm−1 . (12.38)

In this case it is easy to calculate the MLE. Direct calculation of the likelihood gives
rise to the MLE m̂ and θ̂k i.e.,

m̂ =
∑K

k=1 nk
∑K

k=1

∑nk
i=1 log

(
τk
tki

) , (12.39)

θ̂k =
nk

τm̂
k

. (12.40)

Putting

Z =
2m

∑K
k=1 nk

m̂
, (12.41)

Computational Methodsin Survival Analysis 783

the distribution of Z becomes a chi-square with 2
∑K

k=1 nk degrees of freedom.
Based on this result we can make an inference of the common parameter m.

Models Suitable for Conditional Estimation 12.4.4

Estimation based on conditional likelihood allows effectively eliminating the nui-
sance parameter and obtaining information on the structure parameter. Let us
now consider the class of nonhomogeneous Poisson process models which are
specified by the intensity parameterized by two parameters. The first parameter α
is concerned with the base line occurrences for the individual, while the second
parameter β is concerned with the trend of intensity. For simplicity, the property
of the intensity for K = 1 is examined. Using conditional likelihood is convenient
because the nuisance parameter α need not be known. This is of great importance
in multiple intensity modeling, i.e.,

4Theorem 4 (Kamakura, 1996)
Conditional likelihood does not include the nuisance parameter α iff the intensity
is factorized as two factors, a function of α and a function of β and the time t,
in the class of nonhomogeneous Poisson process models. That is, the intensity is
expressed as

λ(t;α, β) = h(α)g(β; t) , a.s. (12.42)

Several intensity models for software reliability are described in Musa et al.
(1987): the log-linear model, geometric model, inverse linear model, inverse poly-
nomialmodel, andpower lawmodel, all ofwhichare included in this class satisfying
the condition of the theorem.

Acknowledgements. This work has been partially supported financially by Chuo
University as one of the 2003 Research Projects for Promotion of Advanced Re-
search at Graduate School.

References

Breslow, N. E. (1974). Covariance analysis of censored survival data. Biometrics,
30:89–99.

Castillo, E. and Hadi, A. S. (1995). Modeling lifetime data with application to fatigue
models. Journal of American Statistical Association, 90:1041–1054.

Cohen, A. C. (1965). Maximum likelihood estimation in the Weibull distribution
based on complete and censored samples. Technometrics, 5:579–588.

Cohen, A. C. and Whitten, B. J. (1988). Parameter estimation in reliability and life
span models. Marcel Dekker, New York.

784 Toshinari Kamakura

Cox, D. R. (1970). The analysis of binary data. Methuen, London.
Cox, D. R. (1972). Regression models and life tables (with discussion). Journal of

Royal Statistical Society:B, 34:187–220.
Cox, D. R. (1975). Partial likelihood. Biometrika, 62:269–276.
Cox, D. R. and Lewis, P. A. W. (1966). The statistical analysis of series of events.

Methuen, London.
Crow, L. H. (1982). Confidence interval procedures for the Weibull process with

applications to reliability growth. Technometrics, 24:67–72.
Dubey, S. D. (1967). Normal and Weibull distributions. Naval Research Logistics

Quarterly, 14:69–79.
Farewell, V. T. (1979). Some results on the estimation of logistic models based on

retrospective data. Biometrika, 66:27–32.
Farewell, V. T. and Prentice, R. L. (1980). The approximation of partial likelihood

with emphasis on case-control studies. Biometrika, 67:273–278.
Greenwood, M. (1926). A report on the natural duration of cancer: Appendix I

The ‘Errors of Sampling’ of the survivorshi tables: Reports on Public Health and
Medical Subjects. His Majesty’s Stationery Office, London.

Johnson, N. L., Kotz, S., and Balakrishna, N. (1994). Continuous Univariate Distri-
butions. John Wiley, New York.

Kalbfleish, J. D. and Prentice, R. L. (1980). The statistical analysis of failure time
data. John Wiley, New York.

Kamakura, T. (1996). Trend analysis of multiple counting processes. In Jewell,
N. P., Kimber, A. C., Lee, M.-L. T., and Whitmore, G. A., editors, Lifetime Data:
Models in Reliability and Survival Analysis, pages 149–156. Kluwer Academic
Publishers, Dordrecht.

Kamakura, T. and Yanagimoto, T. (1983). Evaluation of the regression pa-
rameter estimators in the proportional hazard model. Biometrika, 70:530–
533.

Kaplan, E. L. and Meier, P. (1958). Nonparametric estimation from incomplete
observations. Journal of American Statistical Association, 53:457–481.

Korn, E. L. and Whittemoore, A. (1979). Methods for analysing panel studies of
acute health effects of air pollution. Biometrics, 35:795–802.

Lawless, J. F. and Nadeau, J. C. (1993). Some simple robust methods for the analysis
of recurrent events. University of Waterloo IIQP Research Report.

Menon, M. (1963). Estimation of the shape and scale parameters of the Weibull
distributions. Technometrics, 5:175–182.

Miller, R. G. (1981). Survival analysis. John Wiley, New York.
Musa, J. D., Iannino, A., and Okumoto, K. (1987). Software Reliablility. McGraw-

Hill, New York.
Nagatsuka, H. and Kamakura, T. (2003). A new method of inference for Weibull

shape parameter (in Japanese). Journal of Reliability Engineering Association
of Japan, 25:583–593.

Nagatsuka, H. and Kamakura, T. (2004). Parameter estimation of the shape pa-
rameter of the Castillo–Hadi model. Communications in Statistics: Theory and
Methods, 33:15–27.

Computational Methodsin Survival Analysis 785

Nelson, W. B. (1992). Confidence limits for recurrence data – applied to cost or
number of product repairs and of disease episodes. Technometrics, 22:1023–
1031.

Oaks, D. (2001). Biometrika centenary: Survival analysis. Biometrika, 88:99–142.
Peto, R. (1972). Discussion of paper by D. R. Cox. Journal of Royal Statistical

Society:B, 34:205–207.
Pregibon, D. (1982). Resistant fits for some commonly used logistic models with

medical applications. Biometrics, 38:485–498.
Prentice, R. L. and Breslow, N. E. (1978). Restrospective studies and failure time

models. Biometrika, 65:153–158.
Yanagimoto, T. and Kamakura, T. (1984). The maximum full and partial likeli-

hood estimators in the proportional hazard model. Annals of the Institute of
Statistical Mathematics, 36:363–373.

III.13Data and Knowledge Mining
Adalbert Wilhelm

13.1 Data Dredging and Knowledge Discovery. 789

13.2 Knowledge Discovery in Databases . 790

13.3 Supervised and Unsupervised Learning. 792

13.4 Data Mining Tasks . 793

Description and Summarization . 793
Descriptive Modeling. 794
Predictive Modeling. 795
Discovering Patterns and Rules . 795
Retrieving Similar Objects . 796

13.5 Data Mining Computational Methods . 797

Numerical Data Mining . 797
Visual Data Mining . 803

788 Adalbert Wilhelm

Data Dredging and Knowledge Discovery13.1

Data mining was one of the buzz-words at the verge of the third millenni-
um. It was already a multi-million dollar industry in the late 1990s and ex-
perts expected a continuing growth for the first decade of the 21st century. Al-
though this expectation has not quite materialized in recent years, data mining
still is an important field of scientific research with great potential for com-
mercial usage. The ubiquitous computer makes it possible to collect huge da-
ta bases that contain potentially valuable information. Sophisticated analysis
techniques are needed to explore these large, often heterogeneous, data sets
and to extract the small pieces of information that are valuable to the data
owner.

The importance of exploring and analyzing real data sets is not new to statistics.
It has been reinforced in the late 1960s by John W. Tukey who realized that putting
too much emphasis on the mathematical theories of statistics did not help in
solving the real world problems. It was his mantra that statistical work is detective
work (Tukey, 1969) and that one should let the data speak for itself. The branch of
exploratorydata analysis emerged, butwasdismissedbymathematical statisticians
for a long period of time. Many of them proclaimed that proper statistical analysis
must be based on hypothesis and distributional assumptions. Their argument
was that looking at data before formulating a scientific hypothesis will bias the
hypothesis towards what the data might show. The term data mining typically
was used in a derogatory connotation. The argument culminated in the reproach
of improper scientific use, the reproach of torturing the data until it confesses
everything.

The advent of information technology that allowed to easily collect and store
data of previously unimaginable quantities brought a rapid change to the scene
and superseded academic disputes. Once the computer power and technology was
there, that made it easy to collect information of all customers in a super market,
or for all customers of a telephone company, the need arose to make use of these
large information sources.

Now, Data Mining is a thriving field of research and application, to which
both statisticians and computer scientists have contributed new ideas and new
techniques. In this contribution, we will introduce the main components, tasks,
and computational methods for data mining. After an attempt to define data
mining, we relate it to the larger field of knowledge discovery in databases in
Sect. 13.2. Section 13.3 deals with the two flavors of learning from data: supervised
and unsupervised learning. We will then discuss the different data mining tasks in
Sect. 13.4, before we present the computational methods to tackle them in Sect. 13.5.
In the final Sect. 13.5.2, we present some recent trends in visual methods for data
mining.

Data and Knowledge Mining 789

Knowledge Discovery in Databases 13.2

There are almost as many differing definitions of the term “Data Mining” as
there are authors who have written about it. Since Data Mining sits at the in-
terface of a variety of fields, e.g. computer science, statistics, artificial intelli-
gence, business information systems, and machine learning, its definition changes
with the field’s perspective. Computer scientists, typically, refer to Data Mining
as a clearly defined part of the Knowledge Discovery in Databases (KDD) pro-
cess, while many statisticians use Data Mining as a synonym for the whole KDD
process.

To get a flavor of both the variation as well as the common core of data and
knowledge mining, we cite some of the definitions used in the literature.

KDD is the non-trivial process of identifying valid, novel, potentially useful,
and ultimately understandable patterns in data.
(Fayyad et al., 1996)

Knowledge discovery is a knowledge-intensive task consisting of complex inter-
actions, protracted over time, between a human and a (large) database, possibly
supported by a heterogenous suite of tools.
(Brachman and Anand, 1996)

[Data Mining is] a step in the KDD process consisting of particular data mining
algorithms that, under some acceptable computational efficiency limitations,
produce a particular enumeration of patterns.
(Fayyad et al., 1996)

[Data Mining is] a folklore term which indicates application, under human
control, of low-level data mining methods. Large scale automated search and
interpretation of discovered regularities belong to KDD, but are typically not
considered part of data mining.
(Kloesgen and Zytkow, 1996)

[Data Mining is] used to discover patterns and relationships in data, with an
emphasis on large observational data bases. It sits at the common frontiers of
several fields including Data Base Management, Artificial Intelligence, Machine
Learning, Pattern Recognition, and Data Visualization.
(Friedman, 1998)

[Data Mining is] the process of secondary analysis of large databases aimed at
finding unsuspected relationships which are of interest or value to the database
owners.
(Hand, 1998)

790 Adalbert Wilhelm

Data Mining is the analysis of (often large) observational data sets to find
unsuspected relationships and to summarize the data in novel ways that are
both understandable and useful to the data owner.
(Hand et al., 2001)

From these definitions the essence is that we are talking about exploratory
analysis of large data sets. Two further aspects are the use of computer-based
methods and the notion of secondary and observational data. The latter means
that the data do not come from experimental studies and that data was originally
collected for some other purpose, either for a study with different goals or for
record-keeping reasons. These four characteristics in combination distinguish the
field of Data Mining from traditional statistics. The exploratory approach in Data
Mining clearly defines the goal of finding patterns and generating hypothesis,
which might later on be subject of designed experiments and statistical tests. Data
sets can be large at least in two different aspects. The most common one is in form
of a large number of observations (cases). Real world applications usually are also
large in respect of the number of variables (dimensions) that are represented in the
data set. Data Mining is also concerned with this side of largeness. Especially in the
field of bioinformatics, many data sets comprise only a small number of cases but
a large number of variables. Secondary analysis implies that the data can rarely be
regarded as a random sample from the population of interest and may have quite
large selection biases. The primary focus in investigating large data sets tends
not to be the standard statistical approach of inferencing from a small sample to
a large universe, but more likely partitioning the large sample into homogeneous
subsets.

The ultimate goal of Data Mining methods is not to find patterns and relation-
ships as such, but the focus is on extracting knowledge, on making the patterns
understandable and usable for decision purposes. Thus, Data Mining is the com-
ponent in the KDD process that is mainly concerned with extracting patterns,
while Knowledge Mining involves evaluating and interpreting these patterns. This
requires at least that patterns found with Data Mining techniques can be de-
scribed in a way that is meaningful to the data base owner. In many instances,
this description is not enough, instead a sophisticated model of the data has to be
constructed.

Data pre-processing and data cleansing is an essential part in the Data and
Knowledge Mining process. Since data mining means taking data from different
sources, collected at different time points, and at different places, integration
of such data as input for data mining algorithms is an easily recognized task,
but not easily done. Moreover, there will be missing values, changing scales of
measurement, as well as outlying and erroneous observations. To assess the data
quality is a first and important step in any scientific investigation. Simple tables
and statistical graphics give a quick and concise overview on the data, to spot data
errors and inconsistencies as well as to confirm already known features. Besides
the detection of uni- or bivariate outliers graphics and simple statistics help in
assessing the quality of the data in general and to summarize the general behavior.

Data and Knowledge Mining 791

It is worth noting that many organizations still report that as much as 80% of their
effort for Data and Knowledge Mining goes into supporting the data cleansing and
transformation process.

Supervised and Unsupervised Learning 13.3

Data and Knowledge Mining is learning from data. In this context, data are allowed
to speak for themselves and no prior assumptions are made. This learning from
data comes in two flavors: supervised learning and unsupervised learning. In
supervised learning (often also called directed data mining) the variables under
investigation can be split into two groups: explanatory variables and one (or more)
dependent variables. The target of the analysis is to specify a relationship between
the explanatory variables and the dependent variable as it is done in regression
analysis. To apply directed data mining techniques the values of the dependent
variable must be known for a sufficiently large part of the data set.

Unsupervised learning is closer to the exploratory spirit of Data Mining as
stressed in the definitions given above. In unsupervised learning situations all
variables are treated in the same way, there is no distinction between explanatory
and dependent variables. However, in contrast to the name undirected data mining
there is still some target to achieve.This target might be as general asdata reduction
or more specific like clustering. The dividing line between supervised learning and
unsupervised learning is the same that distinguishes discriminant analysis from
cluster analysis. Supervised learning requires that the target variable is well defined
and that a sufficient number of its values are given. For unsupervised learning
typically either the target variable is unknown or has only been recorded for too
small a number of cases.

The large amount of data that is usually present in Data Mining tasks allows to
split the data file in three groups: training cases, validation cases and test cases.
Training cases are used to build a model and estimate the necessary parameters.
The validation data helps to see whether the model obtained with one chosen
sample may be generalizable to other data. In particular, it helps avoiding the
phenomenon of overfitting. Iterative methods incline to result in models that
try to do too well. The data at hand is perfectly described, but generalization to
other data yields unsatisfactory outcomes. Not only different estimates might yield
different models, usually different statistical methods or techniques are available
for a certain statistical task and the choice of a method is open to the user. Test
data can be used to assess the various methods and to pick the one that does the
best job on the long run.

Although we are dealing with large data sets and typically have abundant cases,
partiallymissingvaluesandotherdatapeculiarities canmakedataascarceresource
and it might not be easily achievable to split the data into as many subsets as
there are necessary. Resampling and cross-validation techniques are often used in
combination to data and computer intensive methods in Data Mining.

792 Adalbert Wilhelm

Data Mining Tasks13.4

The cycle of data and knowledge mining comprises various analysis steps, each
step focusing on a different aspect or task. Hand et al. (2001) propose the following
categorization of data mining tasks.

Description and Summarization13.4.1

At the beginning of each data analysis is the wish and the need to get an overview
on the data, to see general trends as well as extreme values rather quickly. It
is important to familiarize with the data, to get an idea what the data might
be able to tell you, where limitations will be, and which further analyses steps
might be suitable. Typically, getting the overview will at the same time point the
analyst towards particular features, data quality problems, and additional required
background information. Summary tables, simple univariate descriptive statistics,
and simple graphics are extremely valuable tools to achieve this task.

Unwin et al. (2002) report from a study of 50,000 car insurance policies during
which the following difficulties emerged amongst others (see Fig. 13.1).
(a) Barcharts of the categorical variables revealed that several had too many cate-

gories. Sex had seven, of which four were so rare as to presumably be unknowns
or errors of some kind. The third large category turned out to be very reason-
able: if a car was insured by a firm, the variable sex was coded as “firm”. This
had not been explained in advance and was obviously useful for a better grasp
of the data.

(b) A histogram of date of birth showed missing values, a fairly large number
(though small percentage) of underage insured persons, and a largish number
born in 1900, who had perhaps been originally coded as “0” or “00” for un-
known. Any analytic method using such a variable could have given misleading
results.

(c) Linking the barchart of gender from (a) and the histogram of age from (b)
showed quite plausibly that many firms had date of birth coded as missing, but
not all. This led to further informative discussions with the data set owners.

Checking data quality is by no means a negative part of the process. It leads
to deeper understanding of the data and to more discussions with the data set
owners. Discussions lead to more information about the data and the goals of the
study.

Speed of the data processing is an important issue at this step. For simple
tasks – and data summary and description are typically considered to be simple
tasks, although it is generally not true – users are not willing to spend much time.
A frequency table or a scatterplot must be visible in the fraction of a second,
even when it comprises a million observations. Only some computer programs
are able to achieve this. Another point is a fast scan through all the variables: if
a program requires an explicit and lengthy specification of the graph or table to

Data and Knowledge Mining 793

Figure 13.1. Linked highlighting reveals structure in the data and explains unusual results of one

variable quite reasonably. Barchart of Sex of car insurance policy holders on the left, Histogram of

year of birth of policy holders on the right. Highlighted are cases with Sex = 4 (firm). The lines

under some of the bins in the histogram indicate small counts of highlighted cases that can’t be

displayed proportionally

be created, a user typically will end this tedious endeavor after a few instances.
Generic functions with context-sensitive and variable-type-dependent responses
provide a viable solution to this task. On the level of standard statistical data sets
this is provided by software like XploRe, S-Plus and R with their generic functions
summary and plot. Generic functions of this kind can be enhanced by a flexible
and interactive user environment which allows to navigate through the mass of
data, to extract the variables that show interesting information on the first glance
and that call for further investigation. Currently, no system comes close to meet
these demands, future systems hopefully will do.

Descriptive Modeling 13.4.2

General descriptions and summaries are an important starting point but more ex-
ploration of the data is usually desired. While the tasks in the previous section have
been guided by the goal of summary and data reduction, descriptive modeling tries
to find models for the data. In contrast to the subsequent section, the aim of these
models is to describe, not to predict models. As a consequence, descriptive models
are used in the setting of unsupervised learning. Typical methods of descriptive
modeling are density estimation, smoothing, data segmentation, and clustering.
There are by now some classics in the literature on density estimation (Scott, 1992)
and smoothing (Härdle, 1991). Clustering is a well-studied and well-known tech-
nique in statistics. Many different approaches and algorithms, distance measures
and clustering schemes have been proposed. With large data sets all hierarchi-
cal methods have extreme difficulties with performance. The most widely used
method of choice is k-means clustering. Although k-means is not particularly tai-
lored for a large number of observations, it is currently the only clustering scheme
that has gained positive reputation in both the computer science and the statistics
community. The reasoning behind cluster analysis is the assumption that the data
set contains natural clusters which, when discovered, can be characterized and

794 Adalbert Wilhelm

labeled. While for some cases it might be difficult to decide to which group they
belong, we assume that the resulting groups are clear-cut and carry an intrinsic
meaning. In segmentation analysis, in contrast, the user typically sets the number
of groups in advance and tries to partition all cases in homogeneous subgroups.

Predictive Modeling13.4.3

Predictive modeling falls into the category of supervised learning, hence, one
variable is clearly labeled as target variable Y and will be explained as a function
of the other variables X. The nature of the target variable determines the type of
model: classification model, if Y is a discrete variable, or regression model, if it is
a continuous one. Many models are typically built to predict the behavior of new
cases and to extend the knowledge to objects that are new or not yet as widely
understood. Predicting the value of the stock market, the outcome of the next
governmental election, or the health status of a person Banks use classification
schemes to group their costumers into different categories of risk.

Classification models follow one of three different approaches: the discrimi-
native approach, the regression approach, or the class-conditional approach. The
discriminative approach aims in directly mapping the explanatory variables X to
one of the k possible target categories y1, … , yk. The input space X is hence par-
titioned into different regions which have a unique class label assigned. Neural
networks and support vector machines are examples for this. The regression ap-
proach (e.g. logistic regression) calculates the posterior class distribution P(Y | x)
for each case and chooses the class for which the maximum probability is reached.
Decision trees (CART, C5.0, CHAID) classify for both the discriminative approach
and the regression approach, because typically the posterior class probabilities
at each leaf are calculated as well as the predicted class. The class-conditional
approach starts with specifying the class-conditional distributions P(X | yi, θi) ex-
plicitly. After estimating themarginal distribution P(Y), Bayes rule is used toderive
the conditional distribution P(Y | x). The name Bayesian classifiers is widely used
for this approach, erroneously pointing to a Bayesian approach versus a frequen-
tist approach. Mostly, plug-in estimates θ̂i are derived via maximum likelihood.
The class-conditional approach is particularly attractive, because they allow for
general forms of the class-conditional distributions. Parametric, semi-parametric,
and non-parametric methods can be used to estimate the class-conditional distri-
bution. The class-conditional approach is the most complex modeling technique
for classification. The regression approach requires fewer parameters to fit, but
still more than a discriminative model. There is no general rule which approach
works best, it is mainly a question of the goal of the researcher whether posterior
probabilities are useful, e.g. to see how likely the “second best” class would be.

Discovering Patterns and Rules13.4.4

The realm of the previous tasks has been much within the statistical tradition
in describing functional relationships between explanatory variables and tar-

Data and Knowledge Mining 795

get variables. There are situations where such a functional relationship is ei-
ther not appropriate or too hard to achieve in a meaningful way. Neverthe-
less, there might be a pattern in the sense that certain items, values or mea-
surements occur frequently together. Association Rules are a method originat-
ing from market basket analysis to elicit patterns of common behavior. Let us
consider an example originating from data that is available as one of the ex-
ample data files for the SAS Enterprise Miner. For this data (in the following
refered to as the SAS Assocs Data) the output for an association query with
minconf = 50 and minsup = 3, limited by a maximum of 4 items per rule gen-
erated by the SAS Enterprise Miner consists of 1000 lines of the form shown in
Table 13.1.

Table 13.1. Examples of association rules as found in the SAS Assocs Data by the SAS Enterprise

Miner Software. 1000 rules have been generated: 47 including 2 items, 394 with 3 items and 559 with

4 items

items conf supp count Rule

2 82.62 25.17 252 artichok → heineken
2 78.93 25.07 251 soda → cracker
2 78.09 22.08 221 turkey → olives

…
3 95.16 5.89 59 soda & artichok → heineken
3 94.31 19.88 199 avocado & artichok → heineken
3 93.23 23.38 234 soda & cracker → heineken

…
4 100.00 3.1 31 ham & corned beef & apples → olives
4 100.00 3.1 31 ham & corned beef & apples → hering
4 100.00 3.8 38 steak & soda & heineken → cracker

…

The practical use of association rules is not restricted to finding the general
trend and the norm behavior, association rules have also been used successfully
for detecting unusual behavior in fraud detection.

Retrieving Similar Objects 13.4.5

The world wide web contains an enormous amount of information in electronic
journal articles, electronic catalogs, and private and commercial homepages. Hav-
ing found an interesting article or picture, it is a common desire to find similar
objects quickly. Based on key words and indexed meta-information search engines
are providing us with this desired information. They can not only work on text
documents, but to a certain extent also on images. Semi-automated picture re-
trieval combines the ability of the human vision system with the search capacities
of the computer to find similar images in a data base.

796 Adalbert Wilhelm

Data Mining Computational Methods13.5

When talking about Data Mining methods people tend to refer to numerical meth-
ods mostly. However, there are many reasons to consider visual approaches to data
mining as equally important. We start with a concise discussion of numerical data
mining methods and expand a little bit more on visual data mining later.

Numerical Data Mining13.5.1

Decision Trees
Decision trees are popular and powerful methods to classify cases as well as to
predict values. Their attractiveness is mainly due to the fact that the basic principle
of tree-based methods as well as their outcome are easy to understand. The basic
principle is the hierarchical division of all observations into subcategories in such
a way that the resulting subcategories differ from each other as much as possible
while the subcategories itself are as homogenous as possible. The outcome of
a decision tree is a rule that can easily be expressed in plain English and as easily
in any data base query language to quickly and repeatedly apply it to new data.

Decision trees are a supervised learning technique and require that we can
extract a target variable. Depending on the scale of the target variable two types
of decision trees are distinguished: classification trees, if the dependent variable
is categorical, and regression trees, if the dependent variable is continuous. A full
analysis with decision trees comprises two steps, growing a tree and pruning a tree.

Let us briefly describe the basic principle of growing a binary tree. Given ob-
servations for n cases on the dependent variable Y and p explanatory variables
X1, … , Xp we first assign all cases into the root node of the tree. The typical algo-
rithms are greedy algorithms that enumerate all possible splits to find the best split
for the current node under investigation. Thus, for each explanatory variable Xi all
possible splits between values are examined. During this examination the cases in
the node are partitioned into two groups (for binary trees) and a diversity measure
is calculated for each potential subnode. Commonly used diversity measures are
deviance, entropy, misclassification rate, and the Gini coefficient. The one split that
yields the largest information gain will be taken. Information gain is measured
here in terms of the decrease of the diversity measure when going from the parent
node to the subnode. The algorithm uses the same process recursively to build
a decision tree for each subnode. A node will not be further split if it is pure or if
one of the subnodes would contain too few cases. There are mainly three families
of tree growing algorithms:

The CART family (CART, IND CART, Splus CART, etc.)
The ML family (ID3, C4.5, C5 and other derivatives, etc.)
The AID family (THAID, CHAID, XAID, TREEDISC, etc.)

These families mainly differ in the type of splitting criterion they use and in the
background of their origin. The AID family grew out of the social sciences and uses

Data and Knowledge Mining 797

active

182/600

active

147/560

active

117/513

not

17/47

active not not

73/403 3/18 14/29

activeactive

activeactive active activeactive

active

active

not

not

59/253 14/150

not

0/8 3/10 1/7

not

8/22

4/15 3/72/5012/10018/103

active not

4/15 11/26 6/12 41/150

active

19/57

active active

0/6 19/51

activeactive active

19/73 22/77

active active

2/27 16/76

active active

6/71 6/29
active active

1/26 1/24

active active active active active active active active

7/289/482/110/168/3414/437/1912/54

Household: not

Household:
working

Household: not Household: not Household: not

Household:
working

Household:
working

Household:
working

not

5/40

Asian: Asian

Husband Employed:
employed

Husband Employed: unemployed
Husband Employed: employed

no

0/1
not

5/26

Child: Child 4<–

Child: not

Child: Child 4<–

active

44/110

Wifes Educ: Olevel +

Wifes Educ: not

active

23/72

not

17/38

Husbands Educ:
Olevel +

Husbands Educ:
Olevel +

Husbands Educ:
Olevel +

Husbands Educ:
not

Husbands Educ:
not

Husbands Educ:
not

Husbands Educ:
not

Husbands Educ:
Olevel +

Wifes Age: >38

Wifes Age: 38<–

Child: not

Husband Employed: unemployed

Child: not

Child: Child 4<–

Husbands Educ:
notHusbands Educ:

not

Husbands Educ:
Olevel +

Husbands Educ:
Olevel +

Asian: not

not not

2/18 3/8

Wifes Age: >38
Wifes Age: 38<–

Wifes Age: >38

Wifes Age: 38<–

Wifes Educ: Olevel +

Wifes Educ: not

Wifes Educ: Olevel +

Wifes Educ: not

Wifes Educ:
Olevel +

Wifes Educ:
not

Wifes Educ:
Olevel +

Wifes Educ:
not

Figure 13.2. An example of a binary classification tree. Goal of the classification was to describe

households, in which the wife was economically active. Each branch is labeled according to the

current splitting rule. The label in each node indicates the classification taken by majority vote. The

numbers below each node give the number of misclassified observations and the total number of

observations present in this node

798 Adalbert Wilhelm

the χ2-statistic for contingency tables. The ML family has its origin in computer
science, while the CART family is more oriented to statistics using the concept of
impurity.Breimanet al. (1984)defined for eachnode ina tree ameasureof impurity.

1 Definition 1 Let c1, … , cK be the values of the target variable and P(ci|n), i =
1, … , K, the (estimated) probability of class ci in node n (then

∑K
i=1 P(ci|n) = 1).

The impurity of a node n is a nonnegative function i(n) such that
1. i(n) has its only maximum for P(c1 | n) = … = P(cK | n) = 1|K, i.e. the node

is as “impure” as possible.
2. i(n) is minimal if ∃i ∈ 1, … , K such that P(ci | n) = 1, i.e. the node contains

only cases, which have the same target value.

Some very common splitting criteria based upon impurity measures are:
Entropy

i(n) = −
K∑

j=1

P(j|n) log P(j|n) .

the Gini index of diversity

i(n) =
∑

i≠j

P(i|n)P(j|n) .

Another splitting rule, which is not based on an impurity measure, is the twoing
rule: A node n is split into a left and a right node nL and nR such that

P(nL)P(nR)

4

K∑

j=1

∣∣P(j | nL) − P(j | nR)
∣∣

2

is maximised. For binary targets this rule coincides with the CHAID criterion,
which calculates the χ2 value of a 2 × 2 table.

As Breiman et al. (1984) point out, the choice of the algorithm used is not as
crucial as is generally thought:

within a wide range of splitting criteria the properties of the final tree selected
are surprisingly insensitive to the choice of splitting rule (p. 38).

Hand (1997), however, mentioned several problems concerning impurity func-
tions for splitting nodes, for instance

It [the Gini index] has a tendency to produce offspring nodes that are of equal
size (p. 69).

Data and Knowledge Mining 799

Unfortunately, there is no such thing as an optimal splitting criterion. “Optimal”
splits very strongly depend on the specific application. When a decision tree is
grown, many of the branches will reflect particularities of the training data at
hand and will not generalize very well to the test data. This phenomenon is called
overfitting, and pruning the tree is a method to address this issue. The prepruning
approach tries to implement the pruning process already in the growing phase.
For this purpose, an additional stopping criterion is built in. At each node, a split
is only performed if the information gain exceeds a certain threshold. Postpruning
reduces the complexity of a tree model by removing the branches of some nodes.
Postpruning is more effective, especially when the decision to remove a branch
is based on a diversity measure that differs from the one used in the growing
phase. Prepruning requires less computation but typically does not avoid the
problem of overfitting and leads to rather unreliable trees. Postpruning is often
a semi-automated process, including manual interactive pruning as well as cross-
validation techniques.

Classification trees have been used as a role model for a predictor in bagging
(Breiman, 1996). Bagging as well as boosting (Freund and Schapire, 1999) are used
to improve the accuracy of a single prediction method by gaining stability and
robustness, see also Chap. III.16.

Neural Networks
Artificial neural networks are one of the most prominent data mining techniques.
Their fame is two-fold: famous for astonishing good prediction results, unfamous
for their black box behavior and lack of reproducibility of achievements. Neural
networks are a classical method for predictive modeling. They have been used for
classification and prediction to a similar extent. The basic idea of neural networks
is the perceptron (see Fig. 13.3), a feedforward neural network with an input layer
and an output layer.

Figure 13.3. Model of a perceptron with n input nodes and n output nodes

The nodes of the input layer serve to introduce the values of the input variables.
In a supervised learning situation with p explanatory variables and n cases, we
hence get a network with np input nodes and n output nodes. For each output

800 Adalbert Wilhelm

node k = 1, … , n the model output is calculated as a weighted sum of transformed
input values

ok = f (ak) = f

np∑

j=1

wjkxj

 .

The transformation function f is usually called the activation function. The basic
principle of learning a perceptron is the iterative adaptation of the weights wjk
in such a way that the error between the observed target values yi and the model
output oi is a s small as possible. The most common delta rule is a gradient
method with a tuning parameter η also known as “learning rate.” The choice of η
compromises between run time and convergence considerations.

The simple perceptron only allows to solve linearly separable problems. To ad-
dress more complex problems a multi-layer perceptron, also called feedforward
network must be used. A multi-layer perceptron (see Fig. 13.4) introduces addi-
tional layers, so-called hidden layers, into the network topology. Each node in
the hidden and output layers operates in the same way as an output node in the
perceptron. The lack of original target values for the nodes in the hidden layers is
remedied by the backpropagation strategy. This means that the present network
topology is used in two ways: as a feedforward network to propagate the observed
values of the explanatory variables to the output layer and in reverse order to
propagate the errors of fitted values back to the input layer.

Figure 13.4. Multi-layer perceptron

A huge variety of different models can now be achieved by using different
activation functions or different network architectures, i.e. by specifying the links
between nodes. Usually, one uses the same activation function for all nodes in
the hidden layers. The standard way of network architecture is to fully connect all
neurons to all of the units in the preceding layer. However, it is possible to define
networks that are partially-connected to only some units in the preceding layer.
Typically, the resulting fitted values will be the same (or at least very similar) for
different network architectures, summarizing in a nutshell the characteristics of
a neural net: often very good in predicting and fitting values but giving very few

Data and Knowledge Mining 801

insight into the functional relationship between explanatory variables and target
variable. Putting it the other way round: neural nets are the method of choice, if you
have no idea about the functional relationship between explanatory variables and
dependent variable. If you have a strong hypothesis on the functional relationship
it is usually preferable to include this knowledge in the modeling process.

Memory Based Reasoning
Memory-Based Reasoning (MBR) tries to mimic human behavior in an automatic
way. Memories of specific events are used directly to make decisions, rather than
indirectly (as in systems which use experience to infer rules). MBR is a two step
procedure: first, identifying similar cases from experience, secondly, applying
the information from these cases to new cases. MBR is specifically well suited
to non-numerical data. MBR needs a distance measure to assign dissimilarity of
two observations and a combination function to combine the results from the
neighboring points to achieve an answer. Generating examples is much easier than
generating rules which makes MBR so attractive. However, applying rules to new
observations is much easier and faster than comparing new cases to a bulk of
memorized objects.

Association Rules
Rule induction methods are widely applied tools for mining large data bases. They
are often used as a starting point in undirected data mining, i.e. when you do not
know what specific patterns to look for. One form of rule induction methods are
association rules well-known in market basket analysis. They were proposed by
Agrawal et al. (1993) with the intention to provide an automated process, which
could find connections among items, that were not known before, especially to
answer questions like: “which items are likely to be bought together?”. Many other
areas of applications have been named from customer-tailored packages in the
telecommunication or insurance business to analyzing web links.

In general, an association rule is an implication of the form X → Y , where X
and Y are mutually exclusive item sets. The quality of an association rule X → Y
is measured by two criteria: confidence and support. A rule holds with confidence
c = c(X → Y), if c% of transactions in D that contain X also contain Y . The rule
X → Y has support s in the database D, if s% of transactions in D contain X ∪ Y .

Most data mining software offers a procedure to generate all association rules
with confidence and support that exceed some user-specified minimum thresholds
for support (minsup) and confidence (minconf). The procedures are typically
based on the a priori algorithm introduced by Agrawal and Srikant (1994).

There are several problems related to this procedure: the setting of the thresh-
olds of minimal support and confidence is crucial; choosing high support and
confidence may lead to “uninteresting” results – insofar as the resulting rules are
often trivial or well known beforehand by domain experts (Weber, 1998). Lowering
the minimal thresholds can lead to a vast increase of the number of results. The
standard approach is hence to use low thresholds for generating a large number

802 Adalbert Wilhelm

of rules and then prune these rules to a manageable number of patterns. Pruning
methods are based on objective or subjective interestingness measures. Confi-
dence, support, information gain, Gini-coefficient, entropy, and lift are some of
the widely used objective measures (Bayardo and Agrawal, 1999). Subjective mea-
sures try to incorporate user and domain knowledge to adapt the resulting rules
to the current situation: a pattern which is if interest to one user may be of no
interest to another user (Silberschatz and Tuzhilin, 1995). However, it is typically
not easy for the user to put his|her expectations and knowledge into automatic pro-
cedures of rule pruning. Klemettinen et al. (1994) use rule templates to model the
user’s knowledge, while Silberschatz and Tuzhilin (1995) introduce belief systems
to describe users’ expectations.

Another source of problems stems from the inability to estimate the quality
of a rule merely from the two keys confidence and support. Graphical solutions
showing a rule in the background of the corresponding contingency table have
been proposed by Hofmann et al. (2000). Interactive methods further enhance
thesedisplays topowerful tools in theexplorationofassociationrules, seeHofmann
and Wilhelm (2001).

Visual Data Mining13.5.2

Data visualization can contribute to the Data Mining process in many different
ways, primarily because the human visual system is excellent in discovering un-
expected patterns. Visual data mining does not replace other methods, but it
complements analytic approaches. Standard numerical methods to detect outliers
and erroneous observations are easier to automate and they may uncover most
of the problems in a data set but graphic displays are excellent at identifying and
understanding new and unusual problems in the quality of the data. Visualization
techniques have met interest in the data base and data mining community since the
early 90s, where they have been extensively used to represent results of dynamic
data base queries (Shneiderman, 1994; Keim, 1995; Rogowitz et al., 1996; Rogowitz
and Treinish, 1996). The parameters of the query are visualized by sliders each
representing the range of one query parameter. The user can change the sliders in-
teractively and the query results are shown in a linked graphic. Different methods
to represent the distances between the query and the data items have been pro-
posed in the literature: pixel-oriented techniques Keim (1997), different intensities
of the highlighting color (Tweedie and Spence, 1998), or the standard linked views
approach using a {0, 1}-distance (Derthick et al., 1997). More recent discussions of
visual approaches to data mining tend to use complex static graphics more suited
for presentation than for analysis. (For examples, take a look at websites concerned
with Data Mining.) This may be for two reasons. Graphics research in computer
science has been concerned with sophisticated, computing-intensive displays (for
instance in scientific visualisation) and so it is natural to develop methods of this
kind. On the statistical side, commercial software lags substantially behind graph-
ical research. Few packages provide the flexibility and interactivity in graphics that
is essential for exploratory work and, of those, even fewer have made provision

Data and Knowledge Mining 803

for the display and graphical investigation of large data sets. Looking at the scat-
terplots produced by software for large numbers of data points can reveal more
about the software than about the data. The capabilities of graphic displays for
initial explorations of a data set are past comparison. Graphic exploration to grasp
the main structural features and to get to know the data before beginning formal
analysis can be carried out swiftly and informatively. It is not just the graphic
displays themselves that are necessary, but the ability to directly work with them:
to query points, symbols or axes; to select and link cases across displays; to sort
and group data; to rescale and zoom. Interactivity not only means that the user can
interact with the data, but also that the results from the changes made by the user
can be seen instantaneously. A rapid and responsive interaction facilitates active
exploration in a manner that is inconceivable with static displays. Users can start to
pose “What if” queries spontaneously as they work through a task. Therefore, in-
teractive displays not only offer the possibility of comparing resulting static views
of different aspects of the data, they even encourage to draw conclusions from
the way things are changing. Visualisation is also valuable for checking, filtering
and comparing results from analytical procedures, and communication of the final
outcome to the data base owner and the decision makers is indispensable without
charts. At all these stages of the knowledge discovery process, at which contact
with domain specialists is important to turn data into knowledge, the advantages
of graphical presentation of ideas to enhance communication are considerable.

Research on interactive principles for statistical graphics can be categorized
into two classes: firstly, development of innovative tools that help making a single
display flexible and dynamic, and secondly, development of tools that operate on
the underlying data and therefore have impacts to all displays showing the same
data. Common tools of the first class are for example interactive modifiers of
the bar width of a histogram, zooming in dot or scatter plots as well as slider-
controlled dynamic changes in a graphic. The core of the second class are selection
mechanisms and linking. Various selection modes that can even be combined to
a sequence help in choosing a specific set of data points to assign interest to them.
Linking is the basic concept giving graphical methods the capability of multivariate
analysis. Linking builds up a relation between different observations and between
different displays. It propagates the changes and selections made in one plot to all
other connected plots that deal with the same database.

Visualising Large Numbers of Cases
Data Mining is statistics at scale and speed. Large data sets can be large in two
different aspects. First, if the size of the sample investigated is fairly large it will
result in a large quantity of observations, the number of data points possibly going
towards the billions. Secondly, a large data set can also arise from investigations
with a large number of variables. For graphical as well as for analytical procedures
both these issues pose problems and require new approaches for solution.

Graphical displays are often used to provide an easy overview of the data from
which the global structure can be rapidly deduced while it is still possible at the

804 Adalbert Wilhelm

same time to spot individual features. For small data sets one can represent each
data point by a single graphical element, as for example in scatter plots in the form
of small circles, to ensure that all the information in the data is also represented
in the display. However, the use of point based displays reaches its limits as the
number of observations increases.Acomputer screenwith about1280×1024 pixels
screen size will possibly offer about one million pixels to be used for displaying
points the others needed for frames, scroll bars, legends, and scales. Assuming that
we need about five pixels to make a point clearly visible a natural limit for point
based displays would lie at about 200,000 observations. This number decreases
even more if we take into account that the more structure a data set shows the less
spread out are the points over the display’s range. Thus, most realistic data sets
will only use about a quarter of the available area in a graphic and thus induce that
we only can show about 50,000 observations in one point-based plot.

Analytical methods reduce the dimensions and in the extreme case condense
the data into one single number, like the mean or a regression coefficient. The
graphical analogue is to use one single graphical element to represent the data.
A single smooth density curve for example can be used to display the univariate
distributional properties of data. Note here, that as in this example, a single graph-
ical element can still convey much more information than a single number. The use
of smooth density curves is not only marked by a reduction in terms of graphical
elements but also by a transition from using position to encode information to
using area instead. Histograms have a long tradition in statistics for being used to
display distributional information. They are computationally simpler than smooth
density curves and indicate their local constructional properties more clearly. So,
for large data sets, area based graphics are to be preferred.

Graphical elements overlap when the values they represent fall too close togeth-
er on the scale used in the current display. Brightness of the graphical elements
can be used to visualize the extent of overplotting. The more graphical elements
overlap the brighter they are drawn. One implementation of this is tonal high-
lighting as provided for dotplots and scatterplots in MANET (Hofmann, 2000).
This procedure can be seen as a special kernel density estimation using a uniform
kernel. Tonal highlighting and its visual effect is based on two parameters that can
be interactively varied: the size of the graphical points used for displaying data and
the maximum brightness parameter that is the number of data points that have to
overlap to yield the maximum brightness.

For sparse plots brightness should change already with little overplotting, for
dense plots a stronger overplotting is needed to cause a change in brightness, see
Fig. 13.5.

In contrast to point oriented displays in which dense areas cause problems due
to overplotting, it is more likely that area based displays run into difficulties when
regions have too few data points. The counts for such regions might be too small
to result in an area that is perceptible to the human eye. Especially, histograms for
highly unequally dense regions will cause representational problems: according
to the scale used either the high density regions are visible or the low density
regions.

Data and Knowledge Mining 805

Figure 13.5. Tonal highlighting is used to show the amount of overplotting. Increasing the brightness

parameter with the overall density of the plot points towards areas with relatively high overplotting.

The left plot shows the default setting. The plot on the right with increased brightness parameter

clearly shows a pencil shape region in the center with a very high density

Linking leads to a technical difficulty associated with large data sets and par-
ticularly relevant to data quality. Even with a high-resolution screen it may be
necessary for each pixel to represent many points. If the number of points to be
drawn or highlighted is too small to be represented, then those points will be
invisible. This can lead to false judgments, for instance in masking unusual cases,
and needs to be avoided. One solution, which works well in practice, has been
implemented in the software MANET. Red-marking is used to indicate that some
information may be hidden. For histograms and barcharts a red line is drawn
under any bar where information may be hidden. It could be that the bar itself
is too small to be drawn (which can happen with extreme values in histogram
displays); it could be that too few are highlighted in a bar for any highlighting to
show; it could be that too few are not highlighted in a bar so that the whole bar
is, misleadingly, completely highlighted. A related problem arises in the display of
spatial data: very small areas (often the most populous!) may not be shown and
special red-marking techniques are needed to take account of this.

Direct manipulation graphics can alleviate this problem further when there is
the possibility of easily changing the scale of a display. Here it is by no means
sufficient to have a parameter tool box in which we can insert our desired scaling.
We must be able to grab the vertical axis in a histogram to shrink or expand a scale
by simply dragging it as well as breaking a scale and using different scalings at
different parts of the range. Such a feature can be thought of as a particular variant
of logical zooming. While standard zooming enlarges the displayed graphical
elements, logical zooming works on the underlying model and changes it to display
more details. Logical zooming is quite natural when working with maps, starting
with a country map, we zoom into a regional map, a city map and finally a street
map that shows us the neighborhood in every detail.

806 Adalbert Wilhelm

Logical zooming for the vertical axis aims at balancing out the needs for a good
overview and the need for focussing on individual features. Area based displays
like histograms aggregate the data and lose the ability to show anomalous behavior
of single points. For large data sets this is not an unwelcome feature since huge
data sets might contain too many features to investigate. So the researcher will
only focus on phenomena that occur frequently enough.

Logical zooming is even more important when used on the x-axis to change the
level of aggregation. Again, there is not only the need to zoom in a homogeneous
way such that all bins of a histogram are treated in the same manner and use
the same scaling for all of them. Rather often, the analyst might be interested in
particular regions, for example in the center of a distribution to see whether there
are any gaps that just might be smoothed away by the graphical representation.
Thus, a very common interest is zooming into one region while still keeping the
general overview.

Logical zooming is valuable for all statistical displays that aggregate the data:
for boxplots, for example, logical zooming should result in displaying the dotplot
for the selected section or a boxplot based on the selected points only. Logical
zooming in mosaic plots would help investigating how additional variables could
split up a large cell. Hot selection as provided in DataDesk (Velleman, 2000) can
be seen as an elementary form of logical zooming.

Visualising Large Numbers of Variables
Common orthogonal coordinate systems have at most three orthogonal axes for
visualization at hand. To display more variables and typically most data sets will
comprise a much larger number of variables projection techniques are widely
used to reduce the dimensionality to a manageable size. Other approaches are
using matrix layouts for scatterplots and providing brushing techniques to visually
connect points that belong together, but this only works for a low number of
dimensions. Another approach is to use parallel coordinate systems that can deal
with a larger number of variables simultaneously. The parallel coordinate display
(Wegman, 1990; Inselberg, 1985) sacrifices orthogonal axes by drawing the axes
parallel to each other resulting in a planar diagram where each d-dimensional
point (x1, … , xd) is uniquely represented by a broken line. Current screens limit
the numbers of variables that can be simultaneously shown in parallel coordinate
plots to about 30 – but, of course, scrolling windows offer in principle unlimited
capabilities.

The individual parallel coordinate axes represent one-dimensional projections
of the data. Usually, different variables will be based on different units of mea-
surement. Using the original scale might make inefficient use of the screen space.
Using standardized variables will ameliorate that. In certain instances the original
scale will, however, display valuable information. An easy interactive change of this
scaling is thus a particularly welcome feature. Pairwise relationships for adjacent
variables are much more easily seen than for nonadjacent variables. Since a com-
plete parallel coordinate investigation would require running through all possible

Data and Knowledge Mining 807

permutations, or interactive facilities for manually or automatically changing the
order of the variables are needed.

Due to the point – line duality between a parallel coordinate system and a carte-
sian coordinate system the correlation of two adjacent variables is depicted by
the mutual position of the line segments: parallel line segments indicate a strong
positive correlation, a line crossing in a single point means strong negative cor-
relation. Since it is much easier to recognize an intersection point than almost
parallel lines, negative correlation is simpler to detect. It is helpful to have an
interactive tool to invert the range of a single variable to turn positive correlation
into a negative one. CASSATT is a JAVA application that offers a wide variety of
interactive features for parallel coordinate plots, see Winkler (2000). Linking and
highlighting interactive statistical graphics increases the dimensionality of data
that can be explored. For highly multivariate data (i.e., more than ten to twenty
variables) insight into the data by linking low-dimensional plots can be limited.
Thus the need for high-dimensional plots arises. These plots – for example, ro-
tating plots (grand tour, projection pursuit, see Chap. II.10), parallel coordinate
plots, or mosaic plots – can incorporate up to ten or more variables in a single plot.
Linked highlighting and alterations inside these plots (e.g., zooming, reordering,
or sorting) offer high-dimensional insights into data sets. Multiple selections via
selection sequences offer a convenient way of interacting with high-dimensional
subsets of the data using low-dimensional plots.

Visualizing Association Rules
Visualizing association rules aims at solving some major problems that come with
association rules. First of all the rules found by automatic procedures must be fil-
tered.Dependingonwhatminimumconfidenceandwhat support is specifiedavast
amount of rules may be generated. Among those, however, not only “interesting
and new” results – according to the principle of KDD – are found. In supermarket
data for instance most purchases will also contain plastic or paper bags. The naive
filtering approach that searches for the rules with highest confidence and|or high-
est support fails because it yields rules that are typically already known before and
are thus not of interest. So, in many cases rules that just do not pass the thresholds
can be economically better exploited and are therefore higher rated. Association
rules tend to prefer frequent events as their response (right hand side of a rule). If
P(Y) is large, then it is very likely for any small event X, that P(Y |X) is higher than
the minimal confidence threshold. The meaning of rules found in this way, on the
other hand, is more than questionable. When dealing with different association
rules which refer to the same response, it is of interest to examine, whether the
populations described by the explanatory variables (left hand side of a rule) differ
from each other. It well could be one and the same population, and different rules
providing only different descriptions for it. – Another goal therefore is, to examine
the impact of rules on one another and to find intersections amongst them. Quite
often, slight variations of items are listed as different association rules: either the
same items alternatively take right and left hand sides of rules or sequences occur.

808 Adalbert Wilhelm

Besides finding new and interesting results, data mining tools are to find expli-
cable results. The interpretation of results therefore should be of great interest – if
one can not explain a rule at first, we could use methods of cross-classification
in the hope of finding clues within the data, which allow us to decide, whether
a result has to be considered as a peculiarity of this particular data set or can be
generalized.

Since support and confidence are equally important for the conclusions drawn
from association rules any approach should visualize support and confidence of
competing rules within one display. Figure 13.6 shows a standard visualization of
association rules as a matrix of all left and right hand sides of rules. Left hand sides
are the rows, right hand sides the columns of the matrix. Each rule, which fulfills
minsup p and mincon f is drawn as a square. The size of which is given by the
actual support of the rule. This approach is rather unsatisfactory since it reaches
the space limits already for a small number of association rules. It also uses two
different visual attributes to encode support and confidence of a rule: color for the
confidence and size for the support. The ordering of colors is difficult and in no
way unambiguous and depends heavily on the used scale of the color scheme. The
encoding of the support by the size of the squares is visually problematic, since
length of the square is used instead of area. For instance the rules

turkey & hering & corned beef → olives

ham & corned beef & apples → olives

have support 11.19% and 3.1%, respectively. The factor is approximately 4, whereas
the areas differ with factor 16 which yields a lie factor as defined by Tufte (1983)
of 400%.

Mosaic plots as introduced by Hartigan and Kleiner (1981) are a graphical ana-
logue to multivariate contingency tables. They show the frequencies in a contin-
gency table as a collection of rectangles whose areas represent the cell frequencies.
Large areas therefore represent large cells. The shape of a tile is calculated during
the (strictly hierarchical) construction. In classical mosaic plots alternately width
and height of each bin is split according to the categories of the next variable
included, in such a way, that the area of each bin is proportional to the number of
cases falling into this specific intersection of variables. Thus, viewed statically the
mosaic plot gives a graphical estimation of the joint distribution of the variables
contained. Interactive features are necessary to turn the mosaic plot into a powerful
exploration tool. In Hofmann (1999) these interactive features have been explained
with an example, the most essentials are linked highlighting, rotating, navigating
through dimensions, grouping categories, and variation of display.

Linked highlighting provides the transition to conditional distributions and
is essential for visualizing association rules. The basic approach is as follows:
Combine all variables involved in the left-hand-side X of a rule as explanatory
variables and draw them within one mosaicplot. Visualize the response Y , the
right-hand-side of the rule, in a bar chart and then by highlighting a category in

Data and Knowledge Mining 809

Figure 13.6. SAS Enterprise Miner: Visualisation of all 15 association rules with a minimum

confidence of 99%

the bar chart every tile in the mosaic plot corresponds to an association rule. The
amount of highlighting in a bin in the mosaic plot gives a visual measure for the
support of a rule, the highlighting heights relative to the bin’s height give the rule’s
confidence.

Figure 13.7 shows an overview of all possible association rules involving three
binary variables X1, X2 and Y . The bin in the bottom right corner (x1 ∩ x2 ∩ x3)
gives an example for a rule that passes most common thresholds. It has very
high confidence (the highlighting almost fills this bin entirely), and also the sup-
port is relatively high (the bin itself, and therefore the amount of highlighting, is

Figure 13.7. Mosaic plot of all possible association rules of X1, X2, X3 and Y . The amount of

highlighting in a bin represents the support of a rule, while its confidence is measured by the

proportion of highlighting within a tile

810 Adalbert Wilhelm

large). The leftmost bin in the upper row, (not x1 ∩ x2 ∩ not x3), represents a rule
with a comparable support (this bin contains approximately the same amount
of highlighting as the bin in the bottom right corner), yet the confidence of the
corresponding rule is rather low (highlighting fills this bin to only one third, ap-
proximately). All the other possible rules have even lower confidence and their
supports are also too small to be of interest.

Rotated Mosaic Plots. To make comparisons of proportions of highlighting
heights more easily, it is much better to align all bins. This yields mosaics of
the following form: Starting from the basic rectangle, the width is divided accord-
ing to the first variable’s categories and their numbers of entries. Each of these
bins is divided again and again horizontally in the same way according to the
other variables. In MANET standard mosaic plots can be interactively rotated in
this form by a simple mouse click and therefore we call these plots rotated mosaic
plots. Highlighting splits the bins still vertically. Thus highlighting heights in a p di-
mensional mosaic plot of variables X1, … , Xp show the conditional probabilities
P(h|X1, … , Xp).

In addition, todeterminemoreeasily the exact combination that abin represents
labels can be added underneath the mosaics (see Fig. 13.8). Each row of the labels
corresponds to one variable, the white rectangles stand for “0”s, the blacks for “1”s.
The first bin in Fig. 13.8 therefore represents the combination of “no item bought”
(all “0”s), the second bin contains all transactions, where only corned beef has
been bought, and so on. This form of diagrams is also known as doubledecker
plots introduced in Hofmann et al. (2000).

Figure 13.8. Doubledecker plot of three variables. The rightmost bin corresponds to the rule heineken

& coke & chicken → sardines

Data and Knowledge Mining 811

References
Agrawal, R., Imielinski, T., and Swami, A. (1993). Mining associations between

sets of items in massive databases. In Proceedings of the ACM-SIGMOD 1993
International Conference on Management of Data, pages 207–216, Washington
D.C.

Agrawal, R. and Srikant, R. (1994). Fast algorithms for mining association rules.
Technical Report RJ9839, IBM. IBM Research Report RJ9839.

Bayardo, R. J. and Agrawal, R. (1999). Mining the most interesting rules. In Pro-
ceedings of the 5th ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, pages 145–154.

Brachman,R. andAnand,T. (1996). Theprocessofknowledgediscovery indatabas-
es. In Advances in Knowledge Discovery and Data Mining, pages 37–57. AAAI
Press/The MIT Press.

Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2):123–140.
Breiman, L., Friedman, J. H., Olshen, R., and Stone, C. (1984). Classification and

Regression Trees. Wadsworth, Belmont, CA.
Derthick, M., Kolojejchick, J., and Roth, S. F. (1997). An interactive visualization en-

vironment for data exploration. Technical report, Carnegie Mellon University,
Pittsburgh, PA.

Fayyad, U., Piatetsky-Shapiro, G., Smyth, P., and Uthurusamy, R., editors (1996).
Advances in Knowledge Discovery and Data Mining. AAAI/MIT Press.

Freund, Y. and Schapire, R. (1999). A short introduction to boosting.
Friedman, J.H. (1998). Data mining and statistics: What’s the connection? In Com-

puting Science and Statistics: Proceedings of the 29th Symposium on the Inter-
face. Interface Foundation of North America.

Hand, D. (1997). Construction and Assessment of Classification Rules. John Wiley
& Sons, Chichester.

Hand, D.J. (1998). Data mining: statistics and more? American Statistician, pages
112–118.

Hand, D.J., Mannila, H., and Smyth, P. (2001). Principles of Data Mining. MIT
Press.

Härdle, W. (1991). Smoothing Techniques with implementation in S. Springer, New
York.

Hartigan, J. and Kleiner, B. (1981). Mosaics for contingency tables. In Computer Sci-
ence and Statistics: Proceedings of the 13th Symposium on the Interface, pages
268–273, New York. Springer Verlag.

Hofmann, H. (1999). Simpson on board the Titanic? Statistical Computing and
Graphics Newsletter, 9.

Hofmann, H. (2000). MANET. http://stats.math.uni-augsburg.de/manet.
Hofmann,H., Siebes,A., andWilhelm,A. (2000). Visualizing association ruleswith

interactive mosaic plots. In Proceedings of the 6th International Conference on
Knowledge Discovery and Data Mining, pages 227–235, Boston MA.

812 Adalbert Wilhelm

Hofmann, H. and Wilhelm, A. (2001). Visual comparison of association rules.
Computational Statistics, 16:399–415.

Inselberg, A. (1985). The plane with parallel coordinates. The Visual Computer,
1:69–91.

Keim, D.A. (1995). Enhancing the visual clustering of query-dependent data vi-
sualization techniques using screen-filling curves. In Proc. Int. Workshop on
Database Issues in Data Visualization.

Keim, D.A. (1997). Visual techniques for exploring databases. Tutorial Notes: Third
International Conference on Knowledge Discovery and Data Mining, pages 1–
121.

Klemettinen, M., Mannila, H., Ronkainen, P., Toivonen, H., and Verkamo, A. (1994).
Finding interesting rules from large sets of discovered association rules. In Pro-
ceedings of the Third International Conference on Information and Knowledge
Management CIKM-94, pages 401–407.

Kloesgen, W. and Zytkow, J.M. (1996). Knowledge discovery in database terminol-
ogy. In Advances in Knowledge Discovery and Data Mining, pages 573–592.

Rogowitz, B.E., Rabenhorst, D.A., Gerth, J.A., and Kalin, E.B. (1996). Visual cues
for data mining. Technical report, IBM Research Division, Yorktown Heights,
NY.

Rogowitz, B.E. and Treinish, L.A. (1996). How not to lie with visualization. Com-
puters in Physics, 10:268–273.

Scott, D.W. (1992). Multivariate Density Estimation. Wiley, New York.
Shneiderman, B. (1994). Dynamic queries for visual information seeking. IEEE

Software, 11(6):70–77.
Silberschatz, A. and Tuzhilin, A. (1995). On subjective measures of interestingness

in knowledge discovery. In Proceedings of the First International Conference
on Knowledge Discovery and Data Mining, pages 275–281.

Tufte, E.R. (1983). The Visual Display of Quantitative Information. Graphics Press,
Cheshire, CT.

Tukey, J.W. (1969). Analyzing data: Sanctification or detective work? American
Psychologist, 24:83–91.

Tweedie, L. and Spence, R. (1998). The prosection matrix: A tool to support the
interactive exploration of statistcal models and data. Computational Statistics,
13:65–76.

Unwin, A., Hofmann, H., and Wilhelm, A. (2002). Direct manipulation graphics
for data mining. International Journal of Image and Graphics, 2:49–65.

Velleman, P. (2000). DataDesk. http://www.datadesk.com.
Weber, I. (1998). On pruning strategies for discovery of generalized and quantita-

tive association rules. In Proceedings of Knowledge Discovery and Data Mining
Workshop, Singapore.

Wegman, E.J. (1990). Hyperdimensional data analysis using parallel coordinates.
Journal of the American Statistical Association, 85:664–675.

Winkler, S. (2000). Parallele Koordinaten: Entwicklung einer interaktiven Soft-
ware – CASSATT. Technical report, University of Augsburg. in German.

III.14Recursive Partitioning
and Tree-based Methods

Heping Zhang

14.1 Introduction . 814

14.2 Basic Classification Trees . 817

Tree Growing and Recursive Partitioning . 817
Tree Pruning and Cost Complexity . 818

14.3 Computational Issues. 820

Splits Based on an Ordinal Predictor . 820
Splits Based on a Nominal Predictor . 823
Missing Values. 824

14.4 Interpretation. 825

14.5 Survival Trees . 828

Maximizing Difference Between Nodes . 829
Use of Likelihood Functions. 830
A Straightforward Extension . 831
Other Developments . 831

14.6 Tree-based Methods for Multiple Correlated Outcomes 832

14.7 Remarks . 833

814 Heping Zhang

Introduction14.1

Tree-based methods have become one of the most flexible, intuitive, and powerful
data analytic tools for exploring complex data structures. The applications of
these methods are far reaching. They include financial firms (credit cards: Altman,
2002; Frydman et al., 2002, and investments: Pace, 1995; Brennan et al., 2001),
manufacturing and marketing companies (Levin et al., 1995), and pharmaceutical
companies.

The best documented, and arguably most popular uses of tree-based methods
are in biomedical research for which classification is a central issue. For example,
a clinician or health scientist may be very interested in the following question
(Goldman et al., 1996; Goldman et al., 1982; Zhang et al., 2001): Is this patient with
chest pain suffering a heart attack, or does he simply have a strained muscle? To
answer this question, information on this patient must be collected, and a good
diagnostic test utilizing such information must be in place. Tree-based methods
provide one solution for constructing the diagnostic test.

Classification problems also frequently arise from engineering research. Bahl
et al. (1989) introduced a tree-based language model for natural language speech
recognition. Desilva and Hull (1994) used the idea of decision trees to detect
proper nouns in document images. Geman and Jedynak (1996) used a related
idea to form an active testing model for tracking roads in satellite images. In
addition, decision trees have been used in scientific and social studies includ-
ing astronomy (Owens et al., 1996), chemistry (Chen et al., 1998) and politics
(http:||www.dtreg.com|housevotes.htm). We will revisit some of these applications
later in detail.

Most commercial applications of tree-based methods have not been well-
documented through peer reviewed publications. In 1999 the author helped the
CLARITAS, a marketing company, apply a tree-based method as described in
Sect. 14.6 (Zhang, 1998) for marketing segmentation analysis. Tree-based methods
have also been frequently used in the drug development process. The author has
personally provided consultations to Aventis, Inc. for drug approvals.

The purpose of this article is to provide an overview for the construction of
the decision trees, and, particularly, the recursive partitioning technique, which
is the thrust of this methodology. In their early applications, tree-based methods
were developed primarily to facilitate the automation of classifications as an ex-
pert system (Breiman et al., 1984; Friedman, 1977; Wasson et al., 1985), although
Morgan and Sonquist (1963) were motivated by the need to analyze survey data
to identify interactions, particularly in the presence of non-numerical predictors.
More recently, classification trees have not only been used for automated disease
diagnosis, but also for selecting important variables that are associated with a dis-
ease or any response of interest (Zhang and Bracken, 1995; Zhang and Bracken,
1996; Zhang and Singer, 1999; Zhang et al., 2003; Zhang et al., 2001).

There are different approaches to classification. First, it can be done intuitively.
For example, a physician or a group of physicians may use their experience in

Recursive Partitioning and Tree-based Methods 815

caring for patients with chest pain to form a subjective opinion or an empirical
decision as to whether a new patient with chest pain is likely to suffer a heart attack,
andconsequently, decidewhat treatment ismost appropriate. Secondly,methods in
both statistical andmachine learning literaturehavebeendeveloped, suchasFisher
linear discriminant analysis (Fisher, 1936) and support vector machine (Cristianini
and Shawe-Taylor, 2000). These methods have the parametric flavor in the sense
that the classification rule has an explicit form with only a few parameters to be
determined from a given sample that is usually referred to as learning sample.

Classification trees belong to the third type of methods for which we allow a very
general structure, e.g., the binary tree as displayed in Fig. 14.1, but the number of
“parameters” also needs to be determined from the data, and this number varies.
For this reason, classification trees are regarded as nonparametric methods. They
are adaptive to the data and are flexible, although the large number of quantities
(or parameters) to be estimated from the data makes the classification rule more
vulnerable to noise in the data.

Figure 14.1. Classification Tree for Colon Cancer Diagnosis Based on Gene Expression Data. Inside

each node are the number of tumor (C) and normal (N) tissues. See Zhang et al. (2001) for more

details

To be more precise about the statistical problem, let us define the data structure
and introduce some notation. Suppose that we have observed p covariates, denoted
by a p-vector x, and a response y for n individuals. For the ith individual, the
measurements are

xi = (xi1, … , xip)′ and yi, i = 1, … , n .

The objective is to model the probability distribution of P(y |x) or a functional of
this conditional distribution.

To appreciate how these variables are characterized in real applications, let us
examine some of the published applications.

816 Heping Zhang

1 Example 1 Levin et al. (1995) described a probability-driven, customer-oriented
decision support system for the marketing decisions of the Franklin Mint, a leading
Philadelphia-based worldwide direct response marketer of quality collectibles and
luxury home decor products. The purpose of the system is to target the “right”
audience for each promotion from among a very large marketing database, based
on the customers’ attributes and characteristics. In this case, the customers’ at-
tributes and characteristics constitute the x variables. Whether the targeted client
is desirable or not forms the basis for the response y.

2 Example 2 To screen large chemical databases in corporate collections and chem-
ical libraries, Chen et al. (1998) used recursive partitioning to develop three-
dimensional pharmacophores that can guide database screening, chemical library
design, and lead optimization. Their idea was to encode the three-dimensional fea-
tures of chemical compounds into bit strings, and those features are the x variables.
Then, those features are selected in relation to the biological activities (i.e., y) of the
compounds. Here, each compound contributes an observation. Using this idea, the
authors successfully retrieved three-dimensional structure-activity relationships
from a large heterogeneous dataset of 1644 monoamine oxidase inhibitors. We will
revisit this example in detail in Sect. 14.4.

Like any multivariate regression model and as we can see from the above exam-
ples, the covariates or predictors in x may contain variables that can be categorical
(nominal or ordinal) or continuous. For example, ethnicity is usually treated as
categorical data and age as continuous. Some of the covariates may have missing
values, and we will discuss how missing values are handled in the tree framework.
In a nutshell, unlike what is usually done in a simple linear regression, observations
with missing information are not omitted from classification trees.

Not only can we have mixed types of predictors, but also the response variable
can be discrete (binary or multiclass), continuous, and sometimes censored. The
characteristics of the response, y, determines the method for estimating P(y |x). We
will review a variety of tree-based methods that are adaptable to the distribution
of y. In Sect. 14.2, we will introduce the basic idea of classification trees using
a dichotomous response. Section 14.2 is followed by some in-depth discussion of
computational challenges and implementations in Sect. 14.3 and by examples in
Sect. 14.4 to illustrate how we can interpret results from tree-based analyses. One
of the most popular uses of tree-based methods is in the analysis of censored data
in which y is the time to an event and is subject to censoring. As described in
Sect. 14.5, such trees are referred to as survival trees (Bacchetti and Segal, 1995;
Carmelli et al., 1991; Carmelli et al., 1997; Gordon and Olshen, 1985; Zhang, 1995). In
Sect. 14.6, we will present an extension of the tree methodology to the classification

Recursive Partitioning and Tree-based Methods 817

of a response consisting of multiple components such as an array of respiratory
symptoms (Zhang, 1998). Finally, we will conclude in Sect. 14.7 with some remarks
on relatively recent developments such as forests and Bayesian trees. To illustrate
the methods and their applications, some examples will be presented along with
the methods.

Basic Classification Trees 14.2

We have highlighted some applications of decision trees. Here, we will explain how
they are constructed. There has been a surge of interest lately in using decision
trees to identify genes underlying complex diseases. For this reason, we will begin
the explanation of the basic idea with a genomic example, and then will also discuss
other examples.

Zhang et al. (2001) analyzed a data set from the expression profiles of 2000 genes
in 22 normal and 40 colon cancer tissues (Alon et al., 1999). In this data set, the
response y equals 0 or 1 according to whether the tissue is normal or with cancer.
Each element of x is the expression profile for one of the 2000 genes. The objective
is to identify genes and to use them to construct a tree so that we can classify
the tumor type according to the selected gene expression profiles. Figure 14.1 is
a classification tree constructed from this data set. In what follows, we will explain
how such a tree is constructed and how it can be interpreted.

Tree Growing and Recursive Partitioning 14.2.1

Tree construction usually comprises two steps: growing and pruning. The growing
step begins with the root node, which is the entire learning sample. In the present
example, the root node contains the 62 tissues and it is labeled as node 1 on the top
of Fig. 14.1. The most fundamental step in tree growing is to partition the root node
into two subgroups, referred to as daughter nodes, such that one daughter node
contains mostly cancer tissue and the other daughter node mostly normal tissue.
Such a partition is chosen from all possible binary splits based on the 2000 gene
expression profiles via questions like “Is the expression level of gene 1 greater
than 200?” A tissue is assigned to the right or left daughter according to whether
the answer is yes or no. When all of the 62 tissues are assigned to either the left or
right daughter nodes, the distribution in terms of the number of cancer tissues is
assessed for both the left and right nodes using typically a node impurity. One of
such criteria is the entropy function

it = −pt log(pt) − (1 − pt) log(1 − pt) ,

where pt is the proportion of cancer tissue in a specified node t. This function is at
its lowest level when pt = 0 or 1. In other words, there is the least impurity when
the node is perfect. On the other hand, it reaches the maximum when pt = 1|2,
that is, the node is equally mixed with the cancer and normal tissues.

818 Heping Zhang

Let L and R denote the left and right nodes, respectively. The quality of the split s,
resulting from the question “Is the expression level of gene 1 greater than 200?” is
measured by weighing iL and iR as follows:

gs = 1 − Pr(L)iL − Pr(R)iR , (14.1)

where Pr(L) and Pr(R) are probabilities of tissues falling into the left and right
nodes, respectively. The split with the lowest gs is ultimately chosen to split the
root node. This very same procedure can be applied to split the two daughter nodes,
leading to the so-called recursive partitioning process. This process dies out as the
sizes of the offspring nodes become smaller and smaller and the distribution of
the tissue type becomes more and more homogeneous. The splitting stops when
the node contains only one type of tissues.

The objective of the tree growing step is to produce a tree by executing the
recursive partitioning process as far as possible. A natural concern is that such
a saturated tree is generally too big and prone to noise. This calls for the second
step to prune the saturated tree in order to obtain a reasonably sized tree that is
still discriminative of the response whereas parsimonious for interpretation and
robust with respect to the noise.

Tree Pruning and Cost Complexity14.2.2

For the purpose of tree pruning, Breiman et al. (1984) introduced misclassification
cost to penalize the errors of classification such as classifying a cancer tissue as
a normal one, and vice versa. The unit of misclassification cost is chosen to reflect
the seriousness of the errors because the consequence of classifying a cancer tissue
as a normal one is usually more severe than classifying a normal tissue as a cancer
one. A common practice is to assign a unit cost for classifying a normal tissue as
a cancer one and a cost, c, for classifying a cancer tissue as a normal one. Once c
is chosen, the class membership for any node can be determined to minimize the
misclassification cost. For example, the root node of Fig. 14.1 is classified as a cancer
node for any c chosen to be greater than 22|40. While c is usually chosen to be
greater than 1, for the purpose of illustration here, if it is chosen to be 0.5, the root
node is classified as a normal node because it gives rise to a lower misclassification
cost.

When the class memberships and misclassification costs are determined for all
nodes, the misclassification cost for a tree can be computed easily by summing
all costs in the terminal nodes. A node is terminal when it is not further divided,
and other nodes are referred to as internal nodes. Precisely, the quality of a tree,
denoted by T, is reflected by the quality of its terminal nodes as follows:

R(T) =
∑

t∈T̃

Pr(t)R(t) , (14.2)

where T̃ is the set of terminal nodes of tree T and R(t) the within-node misclassi-
fication cost of node t.

Recursive Partitioning and Tree-based Methods 819

The ultimate objective of tree pruning is to select a subtree of the saturated
tree so that the misclassification cost of the selected subtree is the lowest on an
independent, identically distributed sample, called a test sample. In practice, we
rarely have a test sample. Breiman et al. (1984) proposed to use cross validation
based on cost-complexity. They defined the number of the terminal nodes of T,
denoted by |T̃|, as the complexity of T. A penalizing cost, the so-called complexity
parameter, is assigned to one unit increase in complexity, i.e., one extra terminal
node. The sum of all costs becomes the penalty for the tree complexity, and the
cost-complexity of a tree is:

Rα(T) = R(T) + α|T̃| , (14.3)

where α(> 0) is the complexity parameter.
A useful and interesting result from Breiman et al. (1984) is that, for a given

complexity parameter, there is a unique smallest subtree of the saturated tree
that minimizes the cost-complexity measure (14.3). Furthermore, if α1 > α2 the
optimally pruned subtree corresponding toα1 is a subtreeof theone corresponding
toα2. Therefore, increasing the complexity parameter produces a finite sequence of
nested optimally pruned subtrees, which makes the selection of the desirably-sized
subtree feasible.

Although the introductionofmisclassificationcost andcost complexityprovides
a solution to tree pruning, it is usually a subjective and difficult decision to choose
the misclassification costs for different errors. Moreover, the final tree can be
heavily dependent on such a subjective choice. From a methodological point of
view, generalizing the concept of misclassification cost is difficult when we have
to deal with more complicated responses, which we will discuss in detail later. For
these reasons, we prefer a simpler way for pruning as described by Segal (1988)
and Zhang and Singer (1999).

Let us now return to the example. In Fig. 14.1, the 62 tissues are divided into four
terminal nodes 2, 5, 6, and 7. Two of them (Nodes 2 and 7) contain 21 normal tissues
and no cancer tissue. The other two nodes (Node 5 and 6) contain 40 cancer tissues
and 1 normal tissue. Because this tree is relatively small and has nearly perfect
classification, pruning is almost unnecessary. Interestingly, this is not accidental
for analyses of many microarray data for which there are many genes and relatively
few samples.

The construction of Fig. 14.1 follows the growing procedure as described above.
First, node 1 is split into nodes 2 and 3 after examining all allowable splits from
the 2000 gene expression profiles, and the expression level of gene IL-8 and its
threshold at 60 are chosen because they result in the lowest weighted impurity of
nodes 2 and 3. A tissue is sent to the left (node 2) or right (node 3) daughter node
according to whether or not the IL-8 level is below 60. Because node 2 is pure,
no further split is necessary and it becomes a terminal node. Node 3 is split into
nodes 4 and 5 through recursive partitioning and according to whether or not the
expression of gene CANX is greater than 290, while the partition is restricted to
the 40 tissues in node 3 only. Furthermore, node 4 is subsequently partitioned

820 Heping Zhang

into nodes 6 and 7 according to whether or not the expression of gene RAB3B
exceeds 770.

There are also many interesting applications of simple classification trees. For
example,Goldmanetal. (1982)usedclassification trees topredictheart attackbased
on information from 482 patients.After a tree is constructed, theprediction ismade
from a series of questions such as “Is the pain in the neck only?” and|or “Is the pain
in the neck and shoulder?” An appealing feature of tree-based classification is that
the classification rule is based on the answers to simple and intuitive questions as
posed here.

Although we present classification trees for a binary response, the method is
similar for a mult-level response. The impurity function can be defined as

it = −
J∑

j=1

Pr(y = j) log{Pr(y = j)} ,

for a J-level y. Everything else in the tree growing step as described above is appli-
cable. For tree pruning, the only change to be made is to define the misclassification
cost c(j|k) from level k to level j, j, k = 1, … , J.

Computational Issues14.3

In Sects. 14.2.1 and 14.2.2, we have explained the basic steps and concepts for tree
construction. For most users of decision trees, the implementation aspect does
not really affect the application. For methodological and software developments,
however, it is imperative to understand the computational issues. The most critical
issue is to find the optimal split efficiently for any given node. The overall strategy
is to identify the optimal split from each of the predictors and then choose the
overall best one. Choosing the overall best one is straightforward, but identifying
the optimal split from a predictor takes some efforts. The algorithm must take
into account the nature of the predictor. Although we will use a dichotomous
response to explain the ideas, the algorithm is also applicable for the other types
of responses.

Splits Based on an Ordinal Predictor14.3.1

Let us first consider a predictor with an ordinal scale such as gene expression in
Fig. 14.1 or the ratio of cash flow to total debt in Fig. 14.2. Under the tree framework,
as long as a predictor is ordinal, we will soon see that it does not matter whether
the predictor is on a continuous or discrete scale.

Table 14.1 displays the expression levels of gene IL-8 in 22 normal and 40 colon
cancer tissues. Our objective for the time being is to split these 62 tissues into two
subsamples according to whether the expression level of gene IL-8 is greater than
a given threshold. In theory, this threshold can be anything, but practically, there

Recursive Partitioning and Tree-based Methods 821

Table 14.1. Expression level of gene IL-8 in 22 normal and 40 colon cancer tissues used in Fig. 14.1

Expression Colon Expression Colon Expression Colon Expression Colon
level cancer level cancer level cancer level cancer

23.74 N 35.95875 N 33.9725 N 45.1 N
56.91875 N 28.7675 N 28.00875 N 39.7575 N
11.37625 N 31.6975 N 30.57875 N 171.4525 N
36.8675 N 40.33875 N 76.9875 N 97.92 N
55.2 N 238.58625 N 645.99375 N 117.6025 N

113.91375 N 567.13125 N 1528.4062 Y 306.30875 Y
76.125 Y 169.1375 Y 213.6275 Y 326.42625 Y

370.04 Y 114.92375 Y 311.4375 Y 186.2775 Y
131.65875 Y 412.135 Y 284.14625 Y 1178.9188 Y

75.81375 Y 1007.5262 Y 120.72 Y 227.70625 Y
80.73875 Y 2076.9025 Y 93.3575 Y 1813.4562 Y

170.11875 Y 737.695 Y 270.19625 Y 75.95 Y
62.7375 Y 148.04125 Y 599.6975 Y 247.52625 Y

390.31125 Y 222.55875 Y 391.355 Y 249.15125 Y
117.185 Y 104.78125 Y 124.91875 Y 210.90125 Y
519.08125 Y 175.55125 Y

Table 14.2. Sorted expression level of gene IL-8 in 22 normal and 40 colon cancer tissues used in

Fig. 14.1

Expression Colon Expression Colon Expression Colon Expression Colon
level cancer level cancer level cancer level cancer

11.37625 N 23.74 N 28.00875 N 28.7675 N
30.57875 N 31.6975 N 33.9725 N 35.95875 N
36.8675 N 39.7575 N 40.33875 N 45.1 N
55.2 N 56.91875 N 62.7375 Y 75.81375 Y
75.95 Y 76.125 Y 76.9875 N 80.73875 Y
93.3575 Y 97.92 N 104.78125 Y 113.91375 N

114.92375 Y 117.185 Y 117.6025 N 120.72 Y
124.91875 Y 131.65875 Y 148.04125 Y 169.1375 Y
170.11875 Y 171.4525 N 175.55125 Y 186.2775 Y
210.90125 Y 213.6275 Y 222.55875 Y 227.70625 Y
238.58625 N 247.52625 Y 249.15125 Y 270.19625 Y
284.14625 Y 645.99375 N 306.30875 Y 311.4375 Y
326.42625 Y 370.04 Y 390.31125 Y 391.355 Y
412.135 Y 519.08125 Y 567.13125 N 599.6975 Y
737.695 Y 1007.5262 Y 1178.9188 Y 1528.4062 Y

1813.4562 Y 2076.9025 Y

is only a finite number of them that make a difference. In other words, it takes
a finite number of steps to find an optimal threshold, although the solution is not
unique.

The first step in finding an optimal threshold is to sort all expression levels,
say, in an ascending order as displayed in Table 14.2. If the threshold is below the
minimum (11.37625) or above the maximum (2076.9025), it produces an empty

822 Heping Zhang

subsample. Thus, the threshold should be between 11.37625 and 2076.9025. If we
take a look at the two lowest levels, 11.37625 and 23.74, it is clear that any threshold
between these two levels produces the same two subsamples (or daughter nodes).
In this example, there are 62 distinct levels of expression. Thus, we have 62−1 = 61
distinct ways to split the 62 samples into two daughter nodes. It is noteworthy that,
unlike this example, the number of unique levels of a predictor is usually lower
than the number of samples.

The second step in finding an optimal threshold is to move along the intervals
defined by two adjacent, distinct levels of the sorted predictor values. In Table 14.2,
we move along as follows:

[11.37625, 23.74), [23.74, 28.00875), … , [56.91875, 62.7375),

… , [1528.4062, 1813.4562), [1813.4562, 2076.9025) .

For computation, the threshold can be chosen as the middle point of the above
intervals. For interpretation, the threshold can be rounded-off as is done to the
first split in Fig. 14.1.

We have determined the pool of the potential thresholds, which is sometimes
referred to as the allowable splits. Obviously, we can examine each threshold one
at a time and assess its quality according to (14.1).

Table 14.3. Search for the optimal split

Left node Right node Split
No. of No. of Node No. of No. of Node Quality

Interval sample cancer impurity sample cancer impurity gs

[11.37625, 23.74) 1 0 0 61 40 0.6438 0.3666
[23.74, 28.00875) 2 0 0 60 40 0.6365 0.3849
..
.

..

.
..
.

..

.
..
.

..

.
..
.

..

.
[56.91875, 62.7375) 14 0 0 48 40 0.4506 0.6512
[62.7375, 75.81375) 15 1 0.1030 47 39 0.4562 0.6292
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
[1528.4062, 1813.4562) 60 38 0.6572 2 2 0 0.3640
[1813.4562, 2076.9025) 61 39 0.6538 1 1 0 0.3568

For a large data set, this means a lot of wasted computing time. To reduce the
computation to a minimal level, let us take a careful look as to what happens when
we move the threshold from one interval to the next. In Table 14.3, as the threshold
is moved up to the next interval, the samples that were already assigned to the left
daughter stay on the left side because their expression levels are still below the
new threshold. Most of the samples that were assigned to the right daughter stay
on the right side, except those samples whose expression levels are equal to the
lower limit of the new interval. In this particular case, there is only one sample that
we need to move from the right side to the left every time we move the threshold
by one interval. This observation implies that the node impurities and the split

Recursive Partitioning and Tree-based Methods 823

quality can be computed by updating the information slightly for the small set
of the samples that are affected. Every of such a small set of samples is affected
only once in the entire search of the predictor. In summary, after the values of
a predictor are sorted, we can find an optimal threshold to split a node in the
number of steps proportional to the number of distinct values of the predictor,
which is at most the number of samples in the node. For the present example,
any value in [56.91875, 62.7375) is an optimal split. Intuitively from Table 14.3, we
push the threshold as high as possible to maintain the perfect purity of the left
daughter node. In the meantime, if we look bottom-up from the table, we also
push the threshold as low as possible to maximize the purity of the right daughter
node. The interval [56.91875, 62.7375) offers the best balance. In Fig. 14.1, the split
is chosen at 60, although any number in this interval is a legitimate choice.

Overall, if we have n samples in a node and p predictors, excluding the sorting
time, the final threshold for the node can be identified in at most O(np) steps.

Splits Based on a Nominal Predictor 14.3.2

For a nominal variable, we cannot sort the values of the variable as we did in
Table 14.2. For a predictor of k levels, there are a total of 2k−1 − 1 ways to split
a node. To explain the algorithm, let us use an artificial example as summarized in
Table 14.4.

Table 14.4. An artificial data set

Predictor No. of No. of Rate of
value normal cancer cancer

A 5 10 0.67

B 10 5 0.33

C 20 30 0.60

D 35 25 0.42

In Table 14.4, the predictor has 4 levels, giving rise to 7 possible ways to split
a node. A naive way is to assess every allowable split on an individual basis. This
could be an extensive computation when the number of levels is 10 or higher. Thus,
it is important to find a way to compute the quality of all splits in a gradual manner
as in Sect. 14.3.1. If we focus on the levels of the predictor for the left daughter
node, we can travel all 7 possible splits as follows: {A}, {AB}, {B}, {BC}, {C}, {AC},
and {ABC}. The key is that every move requires either the deletion or addition of
a single level, which keeps the computation at the minimal level. Such a path of
traveling through all 2k−1 − 1 splits can be defined for any k.

There is actually a simple and quick solution for a dichotomous response. As
shown in Table 14.4, we can compute the cancer rate for every level of the nominal
predictor. During the splitting, the rates can substitute for the corresponding
nominal levels. Because the rates are ordinal, the method described in Sect. 14.3.1
can be applied. After the optimal split is determined, we can map the rate back

824 Heping Zhang

to the original nominal level. For example, for the data in Table 14.4, the optimal
threshold based on the rate is in the interval [0.42, 0.6), which means that the left
daughter node contains samples with levels B and D, and the right daughter node
with levels A and C. For a multiclass response, there is no apparent way to form an
ordinal surrogate for a nominal predictor.

Missing Values14.3.3

An important feature of decision trees is their ability to deal with missing predictor
values. There are several solutions. Although there have been limited attempts
(Quinlan, 1989) to compare some of them, the performance of the various solutions
is largely unexplored. The choice mostly depends on the objective of the study.

The easiest approach is to treat the missing attribute as a distinct value and to
assign all samples with missing values to the same node (Zhang et al., 1996). This
approach is not only simple, but also provides clear paths as to where the samples
with missing attributes end up in the tree structure.

Breiman et al. (1984) introduced and advocated surrogate splits to deal with
missing attributes. The idea is very intuitive. For example, in Table 14.2, we consid-
ered using expression levels from gene IL-8 to split the 62 samples. What happens
if the expression level from one of the samples, say, the first one, was not recorded?
This happens in microarray experiments. Because IL-8 level is missing for the first
sample, we cannot determine whether the level is below or above 60 and hence can-
not decide whether the first sample should be assigned to the left or right daughter
node. To resolve this ambiguity, Breiman et al. (1984) proposed to seek help from
other genes that act “similarly” to IL-8. Since there are many other genes, we can
use the one that is most similar to IL-8, which leads to a surrogate for IL-8.

What we need to clarify is the meaning of similarity. To illustrate this concept,
let us consider gene CANX. Using the method described in Sect. 14.3.1, we can
find an optimal split from gene CANX. The similarity between CANX and IL-8 is
the probability that the optimal splits from these two genes assign a sample with
complete information in these twogenes into the samenode.This strategy is similar
to replacing a missing value in one variable in linear regression by regressing on
the non-missing value most highly correlated with it. Then, why can’t we use the
same strategy as in the linear regression? According to Breiman et al. (1984), their
strategy is more robust. The main reason is that their strategy is more specific to
the particular sample with missing attributes, and does not result in a potential
catastrophic impact for other samples with missing attributes.

The surrogate splits have some advantages over the simpler approach as de-
scribed earlier. It makes use of other potentially useful information. Breiman et al.
(1984) also proposed to rank the importance of variables through surrogate splits.
The surrogate splits also have some limitations. First, it is uncommon, if at all,
that surrogate splits are provided in published applications. Thus, it is unrealistic
to know what the surrogate splits are and how we assign a sample with a missing
attribute. Second, there is no guarantee in a data set that we can find a satisfactory
surrogate split. Lastly, while it is a sensible idea to rank the variable importance

Recursive Partitioning and Tree-based Methods 825

based on surrogate splits, there is no assurance that a predictor ranked relatively
high is necessarily predictive of the outcome, which can create a dilemma for in-
terpretation. More recently, the importance of a variable tends to be evaluated on
the basis of its performance in forests (Breiman, 1994; Zhang et al., 2003) rather
than on a single tree.

In the construction of random forests, Breiman proposed another way of re-
placing missing values through an iterative process. A similar idea can be applied
for tree construction. To initialize the process, we can fill in the missing values by
the median of an ordered variable or by the category of a nominal variable with
the highest frequency. An initial tree can be constructed once all missing data are
imputed. In the next step, suppose again that in Table 14.2, the expression of gene
IL-8 is missing for the first sample. The unobserved level is estimated by a weighted
average over the samples with observed expressions for gene IL-8. Here, the weight
is the so-called proximity, which is a similarity measure between a pair of samples.
Intuitively, if the second sample is more similar to the first sample than to the third
one, we give more weight to the second sample than to the third one if the first
sample is not observed. How is the proximity defined for a pair of samples? We can
set it to zero before the initial tree is grown. Then, whenever a tree is grown, if two
samples end up in the same terminal nodes, its promixity is increased by one unit.
After the missing data are updated, a new tree is grown. Breiman recommends to
continue this process at most five times in the random forest construction. For
tree construction, it may take longer for the process to “converge”, especially when
the number of predictors is large. Nonetheless, it may still be worthwhile to repeat
a few iterations. In addition to this convergence issue, it is also difficult to track
where the samples with missing values are assigned as with the use of surrogate
splits.

Interpretation 14.4

Interpretation of results from trees is usually straightforward. In Fig. 14.1, we
identified 3 genes IL-8, CANX, and RAB3B whose expression levels are highly
predictive of colon cancer. However, this does not necessarily mean that these genes
cause colon cancer. Such a conclusion requires a thorough search of the literature
and further experiments. For example, after reviewing the literature, Zhang et al.
(2001) found evidence that associates IL-8 with the stage of colon cancer (Fox et al.,
1998), the migration of human clonic epithelial cell lines (Toshina et al., 2000),
and metastasis of bladder cancer (Inoue et al., 2000). In addition, the expression
of the molecular chaperone CANX was found to be down-regulated in HT-29
human colon adenocarcinoma cells (Yeates and Powis, 1997) and to be involved
in apoptosis in human prostate epithelial tumor cells (Nagata et al., 1997). Lastly,
RAB3B is a member of the RAS oncogene family. Therefore, these existing studies
provide independent support that the three genes identified in Fig. 14.1 may be in
the pathways of colon cancer. If this hypothesis could be confirmed from further

826 Heping Zhang

experiments, Fig. 14.1 would have another important implication. Pathologically
speaking, the 40 colon cancer samples are indistinguishable. Figure 14.1 indicates
that those 40 samples are not homogeneous in terms of gene expression levels. If
confirmed, such a finding could be useful in cancer diagnosis and treatment.

Aswestatedearlier, therearenumerousapplicationsofdecision trees inbiomed-
ical research, including the example above. To have a glimpse of the diverse appli-
cations of decision trees, let us review two different examples.

3 Example 3 Frydman and colleagues introduced recursive partitioning for finan-
cial classification (Frydman et al., 2002). They considered a financial dataset of
58 bankrupt (y = 1) industrial companies that failed during 1971–81, and 142 non-
bankrupt (y = 0) manufacturing and retailing companies randomly selected from
COMPUSTAT universe. Each company forms an observational unit or the so-called
sample. Twenty financial variables with prior evidence of predicting business fail-
ure are considered. They include the ratio of cash to total assets, the ratio of cash to
total sales, the ratio of cash flow to total debt, the ratio of current assets to current
liabilities, the ratio of current assets to total assets, the ratio of current assets to
total sales, the ratio of earnings before interest and taxes to total assets, interest
coverage, the ratio of market value of equity to total capitalization, the ratio of
net income to total assets, the ratio of quick assets to current liabilities, the ratio
of quick assets to total assets, the ratio of quick assets to total sales, the ratio of
retained earnings to total assets, the ratio of total debt to total assets, the ratio of
total sales to total assets, and the ratio of working capital to total sales.

We can see from Fig. 14.2 that the risk of bankruptcy is relatively high if the ratio
of cash flow to total debt is below 0.1309, unless both the ratio of retained earnings
to total assets and the ratio of cash to total sales are above certain levels, i.e., 0.1453
and 0.025, respectively. Even if the ratio of cash flow to total debt is above 0.1309,
there can be elevated risk of bankruptcy if the ratio of total debt to total assets is
high (above 0.6975). A tree diagram as in Fig. 14.2 offers a very clear and simple
assessment of the financial state of a company.

2 Example 2: (continued) We indicated earlier what the predictors and response
are for Example 2. Let us revisit this example. Unlike the other examples that we
have introduced so far, this example uses a continuous response y – the compound
potency. Because of this difference, the resulting tree is called a regression tree.
To utilize the information from the 3-dimensional structures of compounds, Chen
et al. (1998) used atom pair descriptors that are composed of the atom types of
the two component atoms and the “binned” Euclidean distance between these two
atoms. The width of each distance bin was chosen as 1.0 Å. To define predictors x
from the atom pair descriptors, the authors characterized the atom pair descriptors
in 17 types including negative charge center (e.g., sulfinic group), positive charge
center (e.g., the nitrogen in primary, secondary, and tertiary amines), hydrogen

Recursive Partitioning and Tree-based Methods 827

Figure 14.2. Classification tree for bankruptcy. B1, B2, and B3 are three groups of relatively high risk

of bankruptcy, and NB1 and NB2 are two groups of likely non-bankrupt companies. Inside the

terminal nodes (boxes) are the numbers of bankrupt and non-bankrupt companies. See Frydman

et al. (2002) for more details

bond acceptor (e.g., oxygen with at least one available lone pair electron), triple
bond center, aromatic ring center, and H-bond donor hydrogen.

Figure 14.3 presents part of the regression tree that is constructed by Chen et al.
(1998). We trimmed the left hand side to fit into the space here; however, we can
get the idea from the right hand side of tree. Generally speaking, a node of size 3 or
6 such as nodes 6 and 8 is too small to be reliable. Since we do not have the data to
re-grow the tree, let us pretend that the node sizes are adequate, and concentrate
on the interpretation instead. Since the main objective of Chen et al. appears to
identify active nodes (i.e., those with high potencies), a small, inactive node is not
of great concern.

First, there is one highly active node (node 7 with potency greater than 2) in
Fig. 14.3. There are also two highly active nodes on the left hand side which are
not shown in Fig. 14.3. Supported by the literature, Chen et al. (1998) postulated
that there might be different mechanisms of action because the active nodes con-
tain compounds of very different characteristics. This is similar to the hypothesis
suggested by Fig. 14.1 that the 40 colon cancer tissues might be biologically het-
erogeneous. Chen et al. concluded further that their tree demonstrates the ability
to detect multiple mechanisms of action coexisting in a large three-dimensional
chemical data set. In addition, the selected atom pair descriptors also reveal in-
teresting features of the monoamine oxidase (MAO) inhibitors. For instance, the

828 Heping Zhang

Figure 14.3. Regression tree for predicting potencies of compounds. Inside each node are the number

of compounds (middle) and the average potency of all compounds within the node (bottom).

Underneath each node is the selected atom pair descriptor. Above the arm is the interval for the

distance between the selected atom pair descriptor that assigns the compounds to the right daughter

node. See Chen et al. (1998) for more details

“aromatic ring center–triple bond center” pair in the first split is the structural
characteristic of pargyline, a well known MAO inhibitor.

We can see from these examples that tree-based methods tend to unravel inte-
grated, intuitive results whose pieces are consistent with prior findings. Not only
can we use trees for prediction, but also we may use them to identify potentially
important mechanisms or pathways for further investigation.

Survival Trees14.5

The most popular use of tree-based methods is arguably in survival analysis
for censored time, particularly in biomedical applications. The general goal of
such applications is to identify prognostic factors that are predictive of survival
outcome and time to an event of interest. For example, Banerjee et al. (2000) re-
ported a tree-based analysis that enables the natural identification of prognostic
groups among patients in the perioperative phase, using information available

Recursive Partitioning and Tree-based Methods 829

regarding several clinicopathologic variables. Such groupings are important be-
cause patients treated with radical prostatectomy for clinically localized prostate
carcinoma present considerable heterogeneity in terms of disease-free survival
outcome, and the groupings allow physicians to make early yet prudent decisions
regarding adjuvant combination therapies. See, e.g., Bacchetti and Segal (1995),
Carmelli et al. (1991), Carmelli et al. (1997) and Kwak et al. (1990) for additional
examples.

Before pointing out the methodological challenge in extending the basic clas-
sification trees to survival trees, let us quickly introduce the censored data. Let z
denote the time to an event, which can be death or the occurrence of a disease. For
a variety of reasons including losts to follow-up and the limited period of a study,
we may not be able to observe z until the event occurs for everyone in the study.
Thus, what we actually observe is a censored time y which is smaller than or equal
to z. When z is observed, y = z. Otherwise, z is censored and y < z. Let δ = 1 or 0
denote whether z is censored or observed.

The question is how to facilitate the censored time y in the tree-based methods.
As in Sect. 14.2, we need to define a splitting criterion to divide a node into two,
and also to find a way to choose a “right-sized” tree. Many authors have proposed
different methods to address these needs. Here, we describe some of the methods.
See Crowley et al. (1995), Intrator and Kooperberg (1995), LeBlanc and Crowley
(1995), Segal (1988), Segal (1995), Zhang et al. (2001) and Zhang and Singer (1999)
for more details.

Maximizing Difference Between Nodes 14.5.1

Gordon and Olshen (1985) are among the earliest to have developed survival trees.
Earlier, we focused on reducing the impurity within a node by splitting. When two
daughter nodes have low impurities, the distributions of the response tend to differ
between the two nodes. In other words, we could have achieved the same goal by
maximizing the difference between the distributions of the response in the two
daughter nodes. There are well established statistics that measure the difference
in distribution. In survival analysis, we can compute the Kaplan–Meier curves
(see, e.g., Miller, 1981) separately for each node. Gordon and Olshen used the so-
called Lp Wasserstein metrics, dp(·, ·), as the measure of discrepancy between the
two survival functions. Specifically, for p = 1, the Wasserstein distance, d1(SL, SR),
between two Kaplan–Meier curves, SL and SR, is illustrated in Fig. 14.4.

A desirable split maximizes the distance, d1(SL, SR), where SL and SR are the Kap-
lan–Meier curves for the left and right daughter nodes, respectively. Replacing gs

in (14.1) with −d1(SL, SR) we can split the root node into two daughter nodes and
use the same recursive partitioning process as before to produce a saturated tree.

To prune a saturated survival tree, T, Gordon and Olshen (1985) generalized
the tree cost-complexity for censored data. The complexity remains the same as
before, but we need to redefine the cost R(t), which now is measured by how far
node t deviates from a desirable node in lieu of a pure node in the binary response
case. In the present situation, a replacement for a pure node is a node τ in which all

830 Heping Zhang

Figure 14.4. The L1 Wasserstein distance between two Kaplan–Meier curves as measured by the area

marked with d1. Note that one curve (SL) is thicker than the other (SR)

observed times are the same, and hence its Kaplan–Meier curve, δτ, is a piecewise
constant survival function that has at most one point of discontinuity. Then, the
within-node cost, R(t), is defined as d1(St , δτ). Combining this newly defined cost-
complexity with the previously described pruning step serves as a method for
pruning survival trees.

Another, perhaps more commonly used way to measure the difference in sur-
vival distributions is to make use of the log-rank statistic. Indeed, the procedures
proposed by Ciampi et al. (1986) and Segal (1988) maximize the log-rank statistic by
comparing the survival distributions between the two daughter nodes. The authors
did not define the cost-complexity using the log-rank statistic. However, LeBlanc
and Crowley (1993) introduced the notion of “goodness-of-split” complexity as
a substitute for cost-complexity in pruning survival trees. Let G(t) be the value of
the log-rank test at node t. Then the split-complexity measure is

G(T) =
∑

t �∈T̃

G(t) − α
(|T̃| − 1

)
.

Therneau et al. (1990) proposed another way to define R(t) that makes use of
the so-called martingale residuals by assuming within-node proportional hazard
models and then the least squares are computed as the cost.

In our experience, we found that Segal’s bottom-up procedure (Segal, 1988) is
practical and easy to use. That is, for each internal node (including the root node)
of a saturated tree, we assign it a value that equals the maximum of the log-rank
statistics over all splits starting from the internal node of interest. Then, we plot
the values for all internal nodes in an increasing order and decide a threshold from
the graph. If an internal node corresponds to a smaller value than the threshold, we
prune all of its offspring. Zhang and Singer (1999) pointed out that this practical
procedure can be modified in a broad context by replacing the log-rank statistic
with a test statistic that is appropriate for comparing two samples with a defined
outcome.

Use of Likelihood Functions14.5.2

Although the concept of node impurity is very useful in the development of tree-
based methodology, that concept is closely related to the concept of likelihood as

Recursive Partitioning and Tree-based Methods 831

pointed out by Zhang et al. (2001). In fact, the adoption of likelihood makes it
much easier to extend the tree-based methodology to analysis of complex depen-
dent variables including censored time. For example, Davis and Anderson (1989)
assume that the survival function within any given node is an exponential func-
tion with a constant hazard. LeBlanc and Crowley (1992) and Ciampi et al. (1988)
assume different within-node hazard functions. Specifically, the hazard functions
in two daughter nodes are assumed proportional, but are unknown. In terms of
estimation, LeBlanc and Crowley (1992) use the full or partial likelihood function
in the Cox proportional hazard model whereas Ciampi et al. (1988) use a partial
likelihood function.

The most critical idea in using the likelihood is that within-node survival func-
tions are temporarily assumed to serve as a vehicle of finding a split instead of
believing them to be the true ones. For example, we cannot have a constant hazard
function in the left daughter node, and then another constant hazard function in
the right daughter node while assuming that the parent node also has a constant
hazard function. Here, the constant hazard function plays the role of the “sample
average”. However, after a tree is constructed, it is both reasonable and possible
that the hazard functions within the terminal nodes may become approximately
constant.

A Straightforward Extension 14.5.3

Zhang (1995) examined a straightforward tree-based approach to censored sur-
vival data by observing the fact that the response variable involves two dimensions:
a binary censoring indicator and the observed time. If we can split a node so that
the node impurity is “minimized” in both dimensions, the within-node survival
distribution is expected to be homogeneous. Based on this intuitive idea, Zhang
(1995) proposed to compute the within-node impurity in terms of both the cen-
soring indicator and the observed time first separately, and then together through
weighting. Empirically, this simple approach tends to produce trees similar to
those produced from using the log-rank test. More interestingly, empirical evi-
dence also suggests that this simple approach outperforms its more sophisticated
counterparts in discovering the underlying structures of data. Unfortunately, there
need to be more comparative studies to scrutinize these different methods, even
though limited simulations comparing some of the methods have been reported
in the literature (Crowley et al., 1995; Crowley et al., 1997; Zhang, 1995).

Other Developments 14.5.4

Themethods thatwedescribedabovearenotdesigned todealwith time-dependent
covariates. Bacchetti and Segal (1995) and Huang et al. (1998) proposed similar
approaches to accommodate the time-dependent covariates in survival trees. The
main concern with these existing approaches is that the same subject can be
assigned to both the left and right daughter nodes, which is distinct from any
other tree-based methods and is potentially confusing in interpretation.

832 Heping Zhang

It is common in survival tree analysis that we want to stratify our sample into
at a few groups that define the grades for the survival. To this end, it is useful to
combine some terminal nodes into one group, which is loosely called “amalga-
mation”. Ciampi et al. (1986) used the log-rank statistic for this purpose. LeBlanc
and Crowley (1993) proposed constructing an ordinal variable that describes the
terminal nodes. Often, we can simply examine the Kaplan–Meier curves for all
terminal nodes to determine the group membership (Carmelli et al., 1997).

Tree-based Methods
for Multiple Correlated Outcomes14.6

As pointed out by Zhang (1998), multiple binary responses arise from many ap-
plications for which an array of health-related symptoms are of primary interest.
Most of the existing methods are parametric; see, e.g., Diggle et al. (1994) for an
excellent overview. In this section, we will describe a tree-based alternative to the
parametric methods.

Motivated by both the broad application as well as by the need to analyze
building-related occupant complaint syndrome (BROCS), Zhang (1998) proposed
a tree-based method to model and classify multiple binary responses. Let us use
the BROCS study to explain the method.

To understand the nature of BROCS, data were collected in 1989 from 6800 em-
ployees of the Library of Congress (LOC) and the headquarters of the Environmen-
tal Protection Agency (EPA) in the United States. The data contain many explana-
tory variables, but Zhang (1998) extracted a subset of 22 putative risk factors, most
of which are answers to “yes or no” or frequency (never, rarely, sometimes, etc.)
questions. For example, is working space an enclosed office with door, a cubicle
without door, stacks, etc? See Table 1 of Zhang (1998) for a detailed list. In this data
set, BROCS is represented by six binary responses that cover respiratory symptoms
in the central nervous system, upper airway, pain, flu-like, eyes, and lower airway.
The primary purpose with this extracted data set is to evaluate the effect of the
important risk factors on the six responses by constructing trees.

In terms of notation, the primary distinction is that the response y for each sub-
ject is a 6-vector. Consequently, we need to generalize the node-splitting criterion
and cost-complexity to this vector-response. As we indicated earlier, one solution
is to assume a certain type of within-node distribution for the vector-response and
then maximize the within-node likelihood for splitting. One such distribution is

f (y;Ψ, θ) = exp
(
Ψ′y + θ′w − A(Ψ, θ)

)
, (14.4)

where Ψ and θ are node-dependent parameters, A(Ψ, θ) is the normalization
function depending on Ψ and θ, and w =

∑
i<j yiyj. Zhang (1998) chose this

distribution because it is commonly used in the parametric models for multiple
binary responses. See, e.g., Cox (1972), Fitzmaurice and Laird (1993) and Zhao and

Recursive Partitioning and Tree-based Methods 833

Prentice (1990). The negative of the likelihood based on (14.4) now serves as the
impurity function, and the rest of the recursive partitioning as described before
applies.

A naive approach is to treat y as a numerical vector and use a function such as
the determinant of the within-node covariance matrix of y as a measure of impu-
rity. If y were continuous, this approach is what Segal (1992) proposed to construct
regression trees for repeatedly measured continuous y. For binary outcomes, how-
ever, this approach appears to suffer the well-known end-cut preference problem
in the sense that it gives preference to the splits that result in two unbalanced
daughter nodes in terms of their sizes.

One advantage of the likelihood based method is that the negative of the within-
node likelihood can also be used as the within-node cost R(t) for tree pruning.
The main difficulty with this method is the computational burden, because every
allowable split calls for a maximization of the likelihood derived from (14.4). Some
strategies for reducing the computational time are discussed in Zhang (1998).

The criterion based on (14.4) ultimately leads to a 9 terminal nodes tree as dis-
played in Fig. 14.5, which suggests that respondents belonging to terminal nodes 7
and 17 have high incidence of respiratory symptoms. This is because the working
area air quality of the people within these terminal nodes was poor, namely, often
too stuffy or sometimes dusty. On the other hand, for example, subjects in terminal
node 14 experienced the least discomfort because they had the best air quality. The
basic message from this example is that tree-based analyses often reveal findings
that are readily interpretable.

Remarks 14.7

In Breiman et al. (1984), tree-based methods are presented primarily as an au-
tomated machine learning technique. There is now growing interest in applying
tree-based methods in biomedical applications, partly due to the rising challenges
in analyzing genomic data in which we have a large number of predictors and a far
smaller number of observations (Zhang et al., 2001). In biomedical applications,
scientific understanding and interpretation of a fitted model are an integral part
of the learning process. In most situations, an automated tree as a whole has char-
acteristics that are difficult or awkward to interpret. Thus, the most effective and
productive way of conducting tree-based analyses is to transform this machine
learning technique into a human learning technology. This requires the users to
review the computer-generated trees carefully and revise the trees using their
knowledge, which not only often simplifies the trees, but also may improve the
predictive precision of the trees, because recursive partitioning is not a forward
looking process and does not guarantee any optimality of the overall tree. Zhang
et al. (1996) called this step tree repairing.

While the full potential of tree-based applications remains to be seen and ex-
ploited, it must be made crystally clear that parametric methods such as logistic

834 Heping Zhang

C U P F E L C U P F E L C U P F E L C U P F E L C U P F E L C U P F E L C U P F E L C U P F E L C U P F E L
0

0.5

1

Node 1

Node 2

Node 4 Node 5 Node 6

Node 3

Node 7

Node 8 Node 9 Node 11
Node 12 Node 13

Node 15

Was air often too stuffy?
Yes

Was air sometimes
too dusty?

YesNo

Was there often

too much air movement?

Yes Are you
allergic to dust?

YesNo

Node 10

6800

3833 2967

Was your
chair comfortable?

2291 1542 1620

What was the
type of your job?

1347

2071
220

Was your area
never too dry?

Node 14
793 1278

828

Node 16 Node 17
136692

1071
714

549

experience a glare?
Did you often YesNo*

*

No*

*

No*

Yes No*

Others Managerial,
Technical

No*Yes

node 14 node 15 node 9 node 16 node 17 node 11 node 12 node 13 node 7

Figure 14.5. Tree structure for the risk factors of BROCS based on (14.4). Inside each node (a circle or

a box) are the node number and the number of subjects. The splitting question is given under the

node. The asterisks indicate where the subjects with missing information are assigned. The pin

diagrams under the tree show the incidence rates of the six clusters (C: CNS; U: upper airway;

P: pain; F: flu-like; E: eyes; and L: lower airway) in the nine terminal nodes. The side bar on the

right end indicates the range of 0 and 1 for the rates of all symptoms

regression and Cox models will continue to be useful statistical tools. We will see
more applications that use tree-based methods together with parametric methods
to take advantages of various types of methods. The main advantage of tree-based
methods is their flexibility and intuitive structures. However, because of their
adaptive nature, statistical inference based on tree-based methodology is gener-
ally difficult. Despite the difficulty, some progress has been made to understand
the asymptotic behavior of tree-based inference (Breiman, 1994; Buhlmann and
Yu, 2003; Donoho, 1997; Gordon and Olshen, 1978; Gordon and Olshen, 1980; Gor-
don and Olshen, 1984; Lugosi and Nobel, 1996; Nobel, 1996; Nobel and Olshen,
1996).

Some attempts have been made to compare the tree-structured methods with
other methods (Long et al., 1993; Segal and Bloch, 1989; Selker et al., 1995). More
comparisonsare stillwarranted, particularly in the context of genomicapplications
where data reduction is necessary and statistical inference is also desirable.

One exciting development in recent years is the expansion of trees into forests.
In a typical application such as Banerjee et al. (2000) and Carmelli et al. (1997),

Recursive Partitioning and Tree-based Methods 835

constructing one or several trees is usually sufficient to unravel relationships
between predictors and a response. Nowadays, many studies produce massive
information such as recognizing spam mail from numerous characteristics and
identifying disease genes. One or even several trees are no longer adequate to
convey all of the critical information in the data. Construction of forests enables
us to discover data structures further and in the meantime improves classifica-
tion and predictive precision (Breiman, 1994; Zhang et al., 2003). So far, most
forests are formed through some random perturbations and are hence referred
to as random forests (Breiman, 1994). For example, we can draw bootstrap sam-
ples (Efron and Tibshirani, 1993) from the original sample and construct a tree as
described above. Every time we draw a bootstrap sample, we produce a tree. Rep-
etition of this process yields a forest. This is commonly called bagging (Breiman,
1994). The emergence of genomic and proteomic data afford us the opportuni-
ty to construct deterministic forest (Zhang et al., 2003) by collecting a series
of trees that have a similarly high predictive quality. Not only do forests reveal
more information from large data sets, but they also outperform single trees
(Breiman, 1994; Buhlmann and Yu, 2002; Buhlmann and Yu, 2003; Zhang et al.,
2003).

A by-product of forests is a collection of variables that are frequently used in the
forests, and the frequent uses are indicative of the importance of those variables.
Zhang et al. (2003) examined the frequencies of the variables in a forest and used
them to rank the variables. It would be even more helpful and informative if
a certain probability measure could be assigned to the ranked the variables.

Bayesian approaches may offer another way to construct forests by includ-
ing trees with a certain level of posterior probability. These approaches may al-
so help us understand the theoretical properties of tree-based methods. How-
ever, the existing Bayesian tree framework focuses on providing an alterna-
tive method to those that exist. We would make an important progress if we
could take full advantage of the Bayesian approach to improve our tree-based
inference.

Classificationandregression trees assigna subject to aparticularnode following
a series of boolean statements. Ciampi et al. (2002) considered a “soft” splitting
algorithm that at each node an individual goes to the right daughter node with
a certain probability, which is a function of a predictor. This approach has the
spirit of random forests. In fact, we can construct a random forest by repeating
this classification scheme.

Several companies including DTREG.com, Insightful, Palisade Corporation,
Salford Systems, and SAS market different variants of decision trees. In addition,
therearemanyversionsof free-ware includingmyownversion,which isdistributed
from my website.

Acknowledgements. This work is supported in part by grants R01DA12468,
R01DA16750 and K02DA017713 from the National Institutes of Health. The au-
thor wishes to thank Norman Silliker, Elizabeth Triche, Yuanqing Ye and Yinghua
Wu for their helpful assistance.

836 Heping Zhang

References
Altman, E.I. (2002). Bankruptcy, Credit Risk and High Yield Junk Bonds. Blackwell

Publishers, Malden, MA.
Alon, U., Barkai, N., Notterman, D.A., Gish, K., Ybarra, S., Mack, D. and Levine,

A.J. (1999). Broad patterns of gene expression revealed by clustering analysis of
tumor and normal colon tissues probed by oligonucleotide arrays. Proceedings
of the National Academy of Sciences, 96: 6745–6750.

Bacchetti, P. and Segal, M.R. (1995). Survival trees with time-dependent covariates:
application to estimating changes in the incubation period of AIDS. Lifetime
Data Analysis, 1: 35–47.

Bahl, L.R., Brown, P.F., de Sousa, P.V., and Mercer R.L. (1989). A tree-based language
model for natural language speech recognition. IEEE Trans. on AS and SP, 37:
1001–1008.

Banerjee, M., Biswas, D., Sakr, W., and Wood, D.P. Jr. (2000). Recursive partitioning
for prognostic grouping of patients with clinically localized prostate carcinoma.
Cancer, 89: 404–411.

Breiman, L., Friedman, J.H., Olshen, R.A. and Stone, C.J. (1984). Classification and
Regression Trees, Wadsworth, Belmont, California.

Breiman, L. (1994). Bagging predictors. Machine Learning, 26: 123–140.
Brennan, N., Parameswaran, P. et al. (2001). A Method for Selecting Stocks within

Sectors, Schroder Salomon Smith Barney.
Buhlmann, P. and Yu, B. (2003). Boosting with the L-2 loss: Regression and classi-

fication. Journal of the American Statistical Association, 98: 324–339.
Buhlmann, P. and Yu, B. (2002). Analyzing bagging. Annals of Statistics, 30: 927–

961.
Buntine, W. and Niblett, T. (1992). A further comparison of splitting rules for

decision-tree induction. Machine Learning, 8: 75–85.
Carmelli, D., Halpern, J., Swan, G.E., Dame, A., McElroy, M., Gelb, A.B., and Rosen-

man, R.H. (1991). 27-year mortality in the western collaborative group study:
construction of risk groups by recursive partitioning. Journal of Clinical Epi-
demiology, 44: 1341–1351.

Carmelli, D., Zhang, H.P. and Swan, G.E. (1997). Obesity and 33 years of coronary
heart disease and cancer mortality in the western collaborative group study.
Epidemiology, 8: 378–383.

Carter, C. and Catlett, J. (1987). Assessing credit card applications using machine
learning. IEEE Expert, 2: 71–79.

Chen, X., Rusinko, A. and Young, S.S. (1998). Recursive partitioning analysis of
a large structure-activity data set using three-dimensional descriptors. Journal
of Chemical Information and Computer Sciences, 38: 1054–1062.

Ciampi, A., Couturier, A. and Li, S.L. (2002). Prediction trees with soft nodes for
binary outcomes. Statistics in Medicine, 21: 1145–1165.

Recursive Partitioning and Tree-based Methods 837

Ciampi, A., Hogg, S., McKinney, S. and Thiffault, J. (1988). A computer program
for recursive partition and amalgamation for censored survival data. Computer
Methods and Programs in Biomedicine, 26: 239–256.

Ciampi, A., Thiffault, J., Nakache J.-P. and Asselain, B. (1986). Stratification by
stepwise regression, correspondence analysis and recursive partition: A com-
parison of three methods of analysis for survival data with covariates. Compu-
tational Statistics and Data Analysis, 4: 185–204.

Cox, D.R. (1972). The analysis of multivariate binary data. Applied Statistics, 21:
113–120.

Cristianini, N. and Shawe-Taylor, J. (2000). An Introduction to Support Vector
Machines and Other Kernel-based Learning Methods, Cambridge University
Press, Cambridge.

Crowley, J., LeBlanc, M., Gentleman, R. and Salmon, S. (1995). Exploratory methods
insurvival analysis. InKoul,H.L. andDeshpande, J.V. (eds), IMS Lecture Notes –
Monograph Series 27, pp.55–77, IMS, Hayward, CA.

Crowley, J., LeBlanc, M., Jacobson, J. and Salmon S. (1997). Some exploratory
methods for survival data. In Lin, D.Y. and Fleming, T.R. (eds), Proceedings of
the First Seattle Symposium in Biostatistics, Springer, New York.

Davis, R. and Anderson, J. (1989). Exponential survival trees.Statistics in Medicine,
8: 947–962.

Desilva, G.L. and Hull, J.J. (1994). Proper noun detection in document images.
Pattern Recognition, 27: 311–320.

Diggle, P.J., Liang, K.Y. and Zeger, S.L. (1994). Analysis of Longitudinal Data, Ox-
ford Science Publications, New York.

Donoho, D.L. (1997). CART and best-ortho-basis: A connection. Annals of Statis-
tics, 25: 1870–1911.

Efron, B. and Tibshirani, R.J. (1993). An Introduction to the Bootstrap, Chapman &
Hall, New York.

Fisher, R.A. (1936). The use of multiple measurements in taxonomic problems.
Annals of Eugenics, 7: 179–188.

Fitzmaurice, G. and Laird, N.M. (1993). A likelihood-based method for analyzing
longitudinal binary responses. Biometrika, 80: 141–151.

Fox, S.H., Whalen, G.F., Sanders, M.M., Burleson, J.A., Jennings, K., Kurtzman, S.
and Kreutzer, D. (1998). Angiogenesis in normal tissue adjacent to colon cancer.
Journal of Surgical Oncology, 69: 230–234.

Friedman, J.H. (1977). A recursive partitioning decision rule for nonparametric
classification. IEEE Trans. Computers., C-26: 404–407.

Frydman, H., Altman, E.I. and Kao, D.-I. (2002). Introducing Recursive Partition-
ing for Financial Classification: The Case of Financial Distress. In Altman ed.
Bankruptcy, Credit Risk and High Yield Junk Bonds, pp.37–59.

Geman, D. and Jedynak, B. (1996). An active testing model for tracking roads
in satellite images. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 18: 1–14.

838 Heping Zhang

Goldman, L., Cook, F., Johnson, P., Brand, D., Rouan, G. and Lee, T. (1996). Pre-
diction of the need for intensive care in patients who come to emergency
departments with acute chest pain. The New England Journal of Medicine, 334:
1498–504.

Goldman, L., Weinberg, M., Olshen, R.A., Cook, F., Sargent, R. et al. (1982). A com-
puter protocol to predict myocardial infarction in emergency department pa-
tients with chest pain. The New England Journal of Medicine, 307: 588–597.

Golub, T.R., Slonim, D.K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J.P.,
Coller, H., Loh, M.L., Downing, J.R., Caligiuri, M.A., Bloomfield, C.D. and
Lander, E.S. (1999). Molecular classification of cancer: Class discovery and
class prediction by gene expression monitoring. Science, 286: 531–537.

Gordon, L. and Olshen, R.A. (1978). Asymptotically efficient solutions to the clas-
sification problem. Annals of Statistics, 6: 515–533.

Gordon, L. and Olshen, R.A. (1980). Consistent nonparametric regression from
recursive partitioning schemes. Journal Multivariate Analysis, 10: 611–627.

Gordon, L. and Olshen, R.A. (1984). Almost surely consistent nonparametric re-
gression from recursive partitioning schemes. Journal Multivariate Analysis,
15: 147–163.

Gordon,L. andOlshen,R.A. (1985).Tree-structuredsurvival analysis.Cancer Treat-
ment Reports, 69: 1065–1069.

Huang, X., Chen, S.D. and Soong, S.J. (1998). Piecewise exponential survival trees
with time-dependent covariates. Biometrics, 54: 1420–14333.

Inoue, K., Slaton, J.W., Karashima, T., Shuin, T., Sweeney, P., Millikan, R. and
Dinney, C.P. (2000). The prognostic value of angiogenesis factor expression
for predicting recurrence and metastasis of bladder cancer after neoadjuvant
chemotherapy and radical cystectomy. Clinical Cancer Research, 6: 4866–4873.

Intrator, O. and Kooperberg, C. (1995). Trees and splines in survival analysis.
Statistical Methods in Medical Research, 4: 237–262.

Kwak, L.W., Halpern, J., Olshen, R.A. and Horning, S.J. (1990). Prognostic sig-
nificance of actual dose intensity in diffuse large-cell lymphoma: results of
a tree-structured survival analysis. Journal of Clinical Oncology, 8: 963–977.

LeBlanc, M. and Crowley, J. (1992). Relative risk trees for censored survival data.
Biometrics, 48: 411–425.

LeBlanc, M. and Crowley, J. (1993). Survival trees by goodness-of-split. Journal of
the American Statistical Association, 88: 457–467.

LeBlanc, M. and Crowley, J. (1995). A review of tree-based prognostic models. In
Thall, P.F. (ed), Recent Advances in Clinical Trial Design and Analysis, pp.113–
124, Kluwer, New York.

Levin, N., Zahavi, J. and Olitsky, M. (1995). Amos – A probability-driven, customer-
oriented decision support system for target marketing of solo mailings. Euro-
pean Journal of Operational Research, 87: 708–721.

Loh, W.Y. and Vanichsetakul, N. (1988). Tree-structured classification via general-
ized discriminant analysis. Journal of the American Statistical Association, 83:
715–725.

Recursive Partitioning and Tree-based Methods 839

Long, W.L., Griffith, J.L., Selker, H.P. and D’Agostino, R.B. (1993). A comparison of
logistic regression to decision tree induction in a medical domain. Computers
and Biomedical Research, 26: 74–97.

Lugosi, G. and Nobel, A.B. (1996). Consistency of data-driven histogram methods
for density estimation and classification. Annals of Statistsics, 24: 687–706.

Miller, R.G. (1981). Survival Analysis, Wiley, New York.
Mingers, J. (1989).Anempirical comparisonof selectionmeasures for decision-tree

induction. Machine Learning, 3: 319–342.
Mingers, J. (1989). An empirical comparison of pruning methods for decision-tree

induction. Machine Learning, 4: 227–243.
Morgan, J.N. and Sonquist, J.A. (1963). Problems in the analysis of survey data and

a proposal. Journal of the American Statistical Association, 58: 415–434.
Nagata, K., Okano, Y. and Nozawa, Y. (1997). Differential expression of low Mr

GTP-binding proteins in human megakaryoblastic leukemia cell line, MEG-01
and their possible involvement in the differentiation process. Thrombosis and
Haemostasis, 77: 368–375.

Nobel, A.B. (1996). Histogram regression estimation using data-dependent parti-
tions. Annals of Statistics, 24: 1084–1105.

Nobel, A.B. and Olshen, R.A. (1996). Termination and continuity of greedy grow-
ing for tree structured vector quantizers. IEEE Transactions on Information
Theory, 42: 191–206.

Owens, E.A., Griffiths, R.E. and Ratnatunga, K.U. (1996). Using oblique decision
trees for the morphological classification of galaxies. Monthly Notices of the
Royal Astronomical Society, 281: 153–157.

Pace, R.K. (1995). Parametric, semiparametric and nonparametric estimation of
characteristic values within mass assessment and hedonic pricing models.
Journal of Real Estate, Finance and Economics, 11: 195–217.

Quinlan, J.R. (1986). Induction of decision trees. Machine Learning, 1: 81–106.
Quinlan, J.R. (1989). Unknown attribute values in induction. In Proceedings of the

Sixth International Machine Learning Workshop, Morgan Kaufmann, Cornell,
New York.

Segal, M.R. (1988). Regression trees for censored data. Biometrics, 44: 35–48.
Segal,M.R. (1992).Tree-structuredmethods for longitudinaldata. Journal of Amer-

ican Statistical Association, 87: 407–418.
Segal, M.R. (1995). Extending the elements of tree-structured regression. Statistical

Methods in Medical Research, 4: 219–236.
Segal, M.R. and Bloch, D.A. (1989). A comparison of estimated proportional haz-

ards models and regression trees. Statistics in Medicine, 8: 539–550.
Selker, H.P., Griffith, J.L., Patil, S., Long, W.L. and D’Agostino, R.B. (1995). A com-

parison of performance of mathematical predictive methods for medical di-
agnosis: Identifying acute cardiac ischemia among emergency department
patients. Journal of Investigative Medicine, 43: 468–476.

Sitaram, V.S., Huang, C.M. and Israelsen, P.D. (1994). Efficient codebooks for vector
quantization image compression with an adaptive tree-search algorithm. IEEE
Transactions on Communications, 42: 3027–3033.

840 Heping Zhang

Therneau, T.M., Grambsch, P.M. and Fleming, T.R. (1990). Martingale-based resid-
uals for survival models. Biometrika, 77: 147–160.

Toshina, K., Hirata, I., Maemura, K., Sasaki, S., Murano, M., Nitta, M., Yamauchi, H.,
Nishikawa, T., Hamamoto, N. and Katsu, K. (2000). Enprostil, a prostaglandin-
E-2 analogue, inhibits interleukin-8 production of human colonic epithelial cell
lines. Scandinavian Journal of Immunology, 52: 570–575.

Wasson, J.H., Sox, H.C., Neff, R.K. and Goldman, L. (1985). Clinical prediction
rules: Applications and methodologic standards. The New England Journal of
Medicine, 313: 793–799.

Yeates, L.C. and Powis, G. (1997). The expression of the molecular chaperone
calnexin is decreased in cancer cells grown as colonies compared to monolayer.
Biochemical and Biophysical Research Communications, 238: 66–70.

Zhang, H.P. (1995). Splitting criteria in survival trees. In Statistical Mod-
elling: Proceedings of the 10th International Workshop on Statistical Modeling,
pp.305–314, Springer.

Zhang, H.P. (1998). Classification trees for multiple binary responses. Journal of
the American Statistical Association, 93: 180–193.

Zhang, H.P. and Bracken, M.B. (1995). Tree-based risk factor analysis of preterm de-
livery and small-for-gestational-age birth. American Journal of Epidemiology,
141: 70–78.

Zhang, H.P. and Bracken, M.B. (1996). Tree-based, two-stage risk factor analysis
for spontaneous abortion. American Journal of Epidemiology, 144: 989–996.

Zhang, H.P., Crowley, J., Sox, H. and Olshen, R.A. (2001). Tree structural statisti-
cal methods. Encyclopedia of Biostatistics, 6: pp.4561–4573, Wiley, Chichester,
England.

Zhang, H.P., Holford, T. and Bracken, M.B. (1996). A tree-based methods of analysis
for prospective studies. Statistics in Medicine, 15: 37–49.

Zhang, H.P. and Singer, B. (1999). Recursive Partitioning in the Health Sciences,
Springer, New York.

Zhang, H.P., Yu, C.Y. and Singer, B. (2003). Cell and tumor classification using gene
expression data: Construction of forests. Proceedings of the National Academy
of Sciences, 100: 4168–4172.

Zhang, H.P., Yu, C.Y., Singer, B. and Xiong, M.M. (2001). Recursive partitioning for
tumor classification with gene expression microarray data. Proceedings of the
National Academy of Sciences, 98: 6730–6735.

Zhao, L.P. and Prentice, R.L. (1990). Correlated binary regression using a quadratic
exponential model. Biometrika, 77: 642–648.

III.15Support Vector
Machines

Sebastian Mika, Christin Schäfer, Pavel Laskov, David Tax,
Klaus-Robert Müller

15.1 Introduction . 843

15.2 Learning from Examples . 843

General Setting of Statistical Learning . 843
Desirable Properties for Induction Principles. 844
Structural Risk Minimization . 847

15.3 Linear SVM: Learning Theory in Practice . 849

Linear Separation Planes . 849
Canonical Hyperplanes and Margins . 849

15.4 Non-linear SVM.. 851

The Kernel Trick . 852
Feature Spaces . 854
Properties of Kernels . 856

15.5 Implementation of SVM .. 857

Basic Formulations . 857
Decomposition . 861
Incremental Support Vector Optimization . 865

15.6 Extensions of SVM.. 867

Regression . 867
One-Class Classification . 868

15.7 Applications . 870

Optical Character Recognition (OCR) . 870
Text Categorization and Text Mining . 870
Active Learning in Drug Design . 871
Other Applications . 871

15.8 Summary and Outlook. 871

Support Vector Machines 843

Introduction 15.1

In this chapter we introduce basic concepts and ideas of the Support Vector Ma-
chines (SVM). In the first section we formulate the learning problem in a statistical
framework. A special focus is put on the concept of consistency, which leads to
the principle of structural risk minimization (SRM). Application of these ideas
to classification problems brings us to the basic, linear formulation of the SVM,
described in Sect. 15.3. We then introduce the so called “kernel trick” as a tool for
building a non-linear SVM (Sect. 15.4). The practical issues of implementation of
the SVM training algorithms and the related optimization problems are the topic
of Sect. 15.5. Extensions of the SVM algorithms for the problems of non-linear
regression and novelty detection are presented in Sect. 15.6. A brief description of
the most successful applications of the SVM is given in Sect. 15.7. Finally, in the last
Sect. 15.8 we summarize the main ideas of the chapter.

Learning from Examples 15.2

General Setting of Statistical Learning 15.2.1

The main objective of statistical learning is to find a description of an unknown
dependency between measurements of objects and certain properties of these
objects. The measurements, to be also called “input variables”, are assumed to
be observable in all objects of interest. On the contrary, the objects’ properties,
or “output variables”, are in general available only for a small subset of objects
known as examples. The purpose of estimating the dependency between the input
and output variables is to be able to determine the values of output variables for
any object of interest.

The problem of estimating an unknown dependency occurs in various practical
applications. For example, the input variables can be the prices for a set of stocks
and the output variable the direction of change in a certain stock price. As another
example, the input can be some medical parameters and the output the probability
of a patient having a certain disease. An essential feature of statistical learning is
that the information is assumed to be contained in a limited set of examples (the
sample), and the estimated dependency should be as accurate as possible for all
objects of interest.

To proceed with a formal description of main properties of statistical learning,
let us fix some notation. Let X denote the space of input variables representing the
objects, and let Y be the space of output variables. The structure of Y defines the
learning task. For example, if Y = R, the learning amounts to a regression problem,
for Y = {1, 2, 3}, the task is a classification problem with three classes, etc.

Let Z = {(xi, yi) ∈ X × Y|i = 1, … , M} be a given sample. We assume that
there exists some unknown but fixed probability distribution P(X, Y) over the

844 Sebastian Mika et al.

space X × Y generating our data; that is, (xi, yi) ∈ Z are drawn identically and
independently from P(X, Y).

The dependency to be estimated takes the form of a function f : X → Y. To
decide which of many possible functions best describes the dependency observed
in the training sample, we introduce the concept of a loss function:

� : Y × Y → R . (15.1)

Such a loss function should be bounded from below and should measure the
cost �(f (x), y) of discrepancy between the predicted value f (x) ∈ Y and the true
value y ∈ Y. Then the risk, i.e. the expected loss incurred from using a particular
prediction function f , can be defined as:

R(f) = EP[�(f (x), y)] , (15.2)

where EP denotes the expectation with respect to the joint distribution P(X, Y) of
input and output variables.

Notice that, if we would know the joint distribution P(X, Y), the learning prob-
lem can be easily solved. For example, in the classification case one could calculate
the conditional probability P(Y |X) and compute the so called “Bayes-optimal so-
lution”:

f ∗(x) = argmax
y1∈Y

∫

y2∈Y
�(y1, y2)P(Y = y2|X = x) . (15.3)

However, in our setup P(X, Y) is unknown, and only a sample Z is available. One
possible solution would be to estimate P(X, Y) or P(Y |X) from the sample Z. In
many theoretical and practical approaches the inference is carried out exactly in
this way (Duda et al., 2001; Bishop, 1995; Devroye et al., 1996). But it is also well
known that estimating a density from empirical data is a hard problem, especially
in the multi-dimensional case. The number of examples one needs in order to
get a reliable estimate of a density in N dimensions grows exponentially with N.
In the approach to be followed in this chapter we shall attempt to estimate the
function f directly from Z without using P(X, Y) or P(Y |X). For this, the following
three steps are necessary. First, a class of functions F needs to be defined. Second,
a suitable loss � is to be fixed. Finally, a method has to be provided to find the
function f which minimizes the risk R(f) among all f ∈ F . Such method is called
an “induction principle”. Desirable properties of such an induction principle are
discussed in the next section.

Desirable Properties for Induction Principles15.2.2

The most commonly used induction principle is the one of minimizing the empir-
ical risk

Remp(f) =
1

M

M∑

i=1

�(f (xi), yi) , (15.4)

Support Vector Machines 845

which is the empirical counterpart of the expected risk (15.2). The goal of learning
in our setup is to find an algorithm that, given a training sample Z, finds a function
f ∈ F that minimizes (15.4). Notice that this will not necessarily result in a unique
solution. As one can see in Fig. 15.1 more than one function can have the same
(e.g. zero) empirical risk on the same data sample. However, these functions can
take arbitrary values at other points in X; hence the solution that minimizes the
empirical risk is not guaranteed to minimize the true risk (15.2).

Figure 15.1. Two functions that separate two classes of data points with zero empirical risk. Without

further information it is impossible to decide for one of them

The other two phenomena arising in relation with the minimization of the
empirical risk (15.4) are over- and under-fittung. An overly complex function f
might describe the training data well but does not generalize to unseen examples.
The converse could also happen. Assume the function class F we can choose
from is very small, e.g. it contains only a single, fixed function. Then our learning
machine would trivially be consistent, since R(f) = const for all f ∈ F . But if this
single f ∈ F is not by accident the rule that generates our data, the decisions are
unrelated to the concept generating our data. This phenomenon is called under-
fitting (cf. Fig. 15.2). Apparently we need some way of controlling how large the
class of functions F is, such that we avoid over- and under-fitting and obtain
solutions that generalize well (i.e. with reasonable complexity). The questions of
consistency, over- and under-fitting are closely related and will lead us to a concept
known as regularization (e.g. Tikhonov and Arsenin, 1977; Morozov, 1984) and to
the principle of structural risk minimization (Vapnik, 1998).

Figure 15.2. An illustration of under- and over-fitting on a small sample. The simple linear function

(solid line) underfits the data and already makes training errors. The complex one (dash-dotted

line) has no training error but may not generalize well on unseen data. The function with

intermediate complexity (dashed line) seems to capture the decision boundary best

846 Sebastian Mika et al.

Regularization
In the previous paragraphs we have shown that for successful learning it is not
enough to find a function with minimal empirical risk. If we are interested in
a good estimation of the true risk on all possible datapoints, we need to introduce
acomplexity control andchooseour solutionbyminimizing the followingobjective
function:

Remp(f , Z) + λΩ(f) . (15.5)

This equation shows a regularization approach. We add a penalty term to make
the trade-off between the complexity of the function class and the empirical error.
Using such a regularization a bound for the true risk can be derived.

There are several possibilities to choose λ and Ω in order to derive a consistent
inductive principle. In the following sections we will describe the choice inspired
by the work of Vapnik. Other possible choices are for example Akaike information
criterion(Akaike, 1974)orMallowsCp(Mallows, 1973),used inclassical statistics, as
well as spline-regularization (Wahba, 1980), wavelet regularization (Donoho et al.,
1996), CART (Breiman et al., 1984) and many other modern approaches. A general
foundation for regularization in model selection is given in (Barron et al., 1999).
Bartlett and Mendelson (2002) investigate regularization in the context of SVM.

Consistency
Let us define more closely what consistency means and how it can be characterized.
Let us denote by f M the function f ∈ F that minimizes (15.4) for a given training
sample Z of size M. The notion of consistency implies that, as M → ∞, |R(f M) −
Remp(f M)| → 0 in probability. We have already seen in a previous example that
such convergence may not be the case in general, the reason being that f M now
depends on the sample Z. One can show that a necessary and sufficient condition
for consistency is uniform convergence, over all functions in F , of the difference
between the expected and the empirical risk to zero. This insight is summarized
in the following theorem:

1 Theorem 1: (Vapnik and Chervonenkis, 1991)
One-sided uniform convergence in probability, i.e.

lim
M→∞P

[

sup
f∈F

(
R(f) − Remp(f)

)
> ε

]

= 0 , (15.6)

for all ε > 0, is a necessary and sufficient condition for (nontrivial) consistency of
empirical risk minimization.

Since the condition in the theorem is not only sufficient but also necessary
it seems reasonable that any “good” learning machine implementing a specific
function class should satisfy condition (15.6).

Support Vector Machines 847

Structural Risk Minimization 15.2.3

Consequently, the question arises how one can choose function classes that satisfy
Theorem 1 in practice? It will turn out that this is possible and it crucially depends
on the question how complex the functions in the class F are, a question we have
already seen to be equally important when talking about over- and under-fitting.
But what does complexity mean and how can one control the size of a function
class?

The complexity of a function class can be measured by the number of different
possible combinations of outcome assignments when choosing functions from this
class. This quantity is usually difficult to obtain theoretically for useful classes of
functions. Popular approximations of this measure are covering numbers (Shawe-
Taylor et al., 1998), annealed entropy and fat-shattering dimension (Bartlett et al.,
1996), VC-entropy and VC dimension (Vapnik, 1998), or Rademacher and Gaussian
complexity (Bartlett and Mendelson, 2002). We will not go into detail about these
quantities here.

A specific way of controlling the complexity of a function class is given by the
VC-theory and the structural risk minimization (SRM) principle (Vapnik, 1998).
Here the concept of complexity is captured by the VC-dimension h of the function
class F . Roughly speaking, the VC-dimension measures how many (training)
points can be shattered (i.e. separated for all possible labellings) using functions
of the class. This quantity can be used to bound the probability that the expected
error deviates much from the empirical error for any function from the class,
i.e. VC-style bounds usually take the form

[

sup
f∈F

(
R(f) − Remp(f , Z)

)
> ε

]

≤ H(F , M, ε) , (15.7)

where H is some function that depends on properties of the function class F ,
e.g. the VC-dimension, the size M of the training set and the desired closeness ε.
By equating the right-hand side of (15.7) to δ > 0 and solving H = δ for ε one can
turn these bounds into expressions of the following form: with probability at least
1 − δ over the random draw of the training sample Z,

R(f) ≤ Remp(f , Z) + H̃(F , M, δ) , (15.8)

where H̃ is the penalty term that measures our degree of uncertainty. If the func-
tion class is simple then H̃ is small. This penalty term usually increases if we
require a higher precision (e.g. with log(1|δ)) and decreases if we observe more
examples (e.g. with 1|M or 1|

√
M). Note that this prototypical bound is structural-

ly identical to the regularized risk functional in (15.5). The practical implication
of bounds like (15.8) is that our learning machine should be constructed such
that
1. it finds a function with a small empirical error, and
2. at the same time keeps the penalty term H̃ small.

848 Sebastian Mika et al.

small large

error

Confidence

Empirical Risk

low

high

Complexity of Function Set

Expected Risk

Figure 15.3. Schematic illustration of (15.8). The dash-dotted line represents the training error

(empirical risk), the dashed line the upper bound on the complexity term (confidence). With higher

complexity the empirical error decreases but the upper bound on the risk uncertainty becomes

worse. For a certain complexity of the function class the best expected risk (solid line) is obtained.

Thus, in practice the goal is to find the best trade-off between empirical error and complexity

Only if our learning principle can control both quantities we have a guarantee that
the expected error of our estimate will be small (cf. Fig. 15.3).

One of the most famous learning bounds is due to Vapnik and Chervonenkis:

2 Theorem 2: (Vapnik and Chervonenkis, 1974)
Let h denote the VC-dimension of the function class F and let Remp be defined
by (15.4) using the 0|1-loss. For all δ > 0 and f ∈ F the inequality bounding the
risk

R(f) ≤ Remp(f , Z) +

√
h
(
ln 2M

h + 1
)

− ln(δ|4)

M
(15.9)

holds with probability of at least 1 − δ for M > h over the random draw of the
training sample Z.

This theorem lays the ground for the Support Vector algorithm that we will
consider in more detail in Sect. 15.3.

As a consequence of Theorem 2 the so called “Structural Risk Minimization
principle” (SRM) is suggested (i.e. Cortes and Vapnik, 1995; Vapnik, 1998). Ac-
cording to this principle a nested family of function classes F1 ⊆ · · · ⊆ Fk with
non-decreasing VC-dimension h1 ≤ · · · ≤ hk, is constructed. After the solutions
f1, … , fk of the empirical risk minimization (15.4) in the function classes F1, … , Fk

have been found, the SRM principle chooses the function class Fi (and the function
fi) such that an upper bound on the generalization error like (15.9) is minimized.

Support Vector Machines 849

Linear SVM: Learning Theory in Practice 15.3

Having summarized the prerequisites from statistical learning theory, we now
give an example of a particular learning machine that builds upon these insights.
The Support Vector Machine algorithm (SVM) developed by Vapnik and others
(e.g. Boser et al., 1992; Cortes and Vapnik, 1995; Vapnik, 1998; Cristianini and
Shawe-Taylor, 2000; Müller et al., 2001; Schölkopf and Smola, 2002, and numerous
others) is one of the most successful classification techniques over the last decade,
especially after being combined with the kernel idea which we shall discuss in
Sect. 15.4.

Linear Separation Planes 15.3.1

We are now going to discuss how one could possibly control the size of a function
class and how to select the empirical risk minimizer in this class.

In the following, let us assume that we are dealing with a two class classification
problem (i.e. Y = {−1, +1}) in a real-valued vector space, e.g. X = RN . Further,
we assume that the distribution of these two classes is such that they are linearly
separable, i.e. one can find a linear function of the inputs x ∈ X such that f (x) < 0
whenever the label y = −1 and f (x) ≥ 0 otherwise. This can be conveniently
expressed by a hyperplane in the space X, i.e. we are looking for a function f of
the form

f (x) =
(
w�x

)
+ b . (15.10)

Assume that the function class F we choose our solution from is the one con-
taining all possible hyperplanes, i.e. F = {f : X → R|f (x) = (w�x) + b}. For
X = RN it is rather straightforward to show that the VC-dimension of this class of
functions will be h = N + 1, i.e. in an N dimensional space the maximal number
of points that can be separated for an arbitrary labelling using a hyperplane is
N + 1.

Canonical Hyperplanes and Margins 15.3.2

Toapply theSRMprinciple inpractice theVC-dimensionof theclassofhyperplanes
must be finite, and a nested structure of function classes must be defined. To this
end we define the function classes

FΛ =
{

f : RN → R|f (x) =
(
w�x

)
+ b, ‖w‖ ≤ Λ

}
. (15.11)

Clearly FΛ1 ⊆ FΛ2 wheneverΛ1 ≤ Λ2. But what effect does constraining the norm
of the weight vector have on the corresponding VC-dimensions of FΛ? It turns out
that we also get h(FΛ1) ≤ h(FΛ2) for Λ1 ≤ Λ2 (see (15.12) below), i.e. the required
structure is present.

850 Sebastian Mika et al.

The crucial ingredient in making the function classes FΛ nested is to define
aunique representation for eachhyperplane.We introduce the conceptof canonical
hyperplanes and the notion of margins. If the data are separable by (w, b) then
they are also separable by any (positive) multiple of (w, b) and hence there exist
an infinite number of representations for the same separating hyperplane. In
particular, all function classes FΛ would have the same VC-dimension as they
would contain the same functions in different representations.

w

Figure 15.4. Linear classifier and margins. A linear classifier is defined by the normal vector w of

a hyperplane and an offset b, i.e. the decision boundary is {x|(w�x) + b = 0} (solid line). Each of the

two half spaces induced by this hyperplane corresponds to one class, i.e. f (x) = sgn((w�x) + b). The

margin of a linear classifier is the minimal distance of any training point to the hyperplane. For the

case shown in the picture it is the distance between the dotted lines and the solid line

A canonical hyperplane with respect to an M-sample Z is defined as a function

f (x) =
(
w�x

)
+ b ,

where w is normalized such that

min
i = 1,…,M

|f (xi)| = 1 .

The notion of a canonical hyperplane is illustrated in Fig. 15.4. Notice that none of
the training examples produces an absolute output that is smaller than one and the
examples closest the hyperplane have exactly an output of one, i.e. (w�x)+b = ±1.
In Sect. 15.5, we will see that the latter objects will be used in the description of the
hyperplane, and they are therefore called the support vectors. In Fig. 15.4 these are
the objects which are connected to the decision boundary (dashed lines). Since we
assumed the sample Z to be linearly separable, we can turn any f that separates
the data into a canonical hyperplane by suitably normalizing the weight vector w
and adjusting the threshold b correspondingly.

Themargin isdefined tobe theminimalEuclideandistancebetweenany training
example xi and the separating hyperplane. Intuitively, the margin measures how
good the separation between the two classes by a hyperplane is. If this hyperplane
is in the canonical form, the margin can be measured by the length of the weight
vector w. Consider two support vectors x1 and x2 from different classes. The margin
is given by the projection of the distance between these two points on the direction

Support Vector Machines 851

perpendicular to the hyperplane. This distance can be computed as (e.g. Vapnik,
1998)

(
w�

‖w‖ (x1 − x2)

)
=

2

‖w‖ .

The smaller the norm of the weight vector w in the canonical representation, the
larger the margin.

More generally, it was shown (e.g. Vapnik, 1998) that if the hyperplane is con-
structed under the constraint ‖w‖2 ≤ Λ then the VC-dimension of the class FΛ is
bounded by

h ≤ min
(
Λ2R2 + 1, N + 1

)
, (15.12)

where R is the radius of the smallest sphere around the data. Thus, if we bound the
margin of a function class from below, say by 2|Λ, we can control its VC-dimension
and hence apply the SRM principle as shown in Fig. 15.5.

LAM1

LAM2

Figure 15.5. Illustration of why a large margin reduces the complexity of a linear hyperplane classifier.

If we choose hyperplanes with a large margin, there is only a small number of possibilities to

separate the data, i.e. the VC-dimension of FΛ1 is small (left panel). On the contrary, if we allow

smaller margins there are more separating hyperplanes, i.e. the VC-dimension of FΛ2 is large (right

panel)

A particularly important insight is that the complexity only indirectly depends
on the dimensionality of the data. This is very much in contrast to e.g. density
estimation, where the problems become more difficult as the dimensionality of
the data increases. For SVM classification, if we can achieve a large margin the
problem remains simple.

Non-linear SVM 15.4

In the previous section we have seen that by restricting ourselves to linear functions
one can control the complexity of a learning machine. We have thus avoided the

852 Sebastian Mika et al.

input
space

feature
spaceinput

space

Φ

(a) (b) (c)

Figure 15.6. Three different views on the same two class separation problem. (a) A linear separation

of the input points is not possible without errors. Even allowing misclassification of one data point

results in a small margin. (b) A better separation is provided by a non-linear surface in the input

space. (c) This non-linear surface corresponds to a linear surface in a feature space. Data points are

mapped from input space to feature space by the function Φ induced by the kernel function k

problem of dealing with too complex functions at the price of being able to solve
only linearly separable problems. In the following we will show how to extend the
linear SVM for constructing a very rich set of non-linear decision functions while
at the same time controlling their complexity.

Central to the success of support vector machines was the re-discovery of the
so called Reproducing Kernel Hilbert Spaces (RKHS) and Mercer’s Theorem (Boser
et al., 1992). There is a large body of literature dealing with kernel functions, their
theory and applicability, see e.g. Kolmogorov (1941), Aronszajn (1950), Aizerman
et al. (1964), Boser et al. (1992) or Schölkopf and Smola (2002) for an overview. We
only recall the basic definitions and properties necessary for turning our linear,
hyperplane based learning technique into a very powerful algorithm capable of
finding non-linear decision functions with controllable complexity.

The Kernel Trick15.4.1

The basic idea of the so called kernel-methods is to first preprocess the data by
some non-linear mappingΦ and then to apply the same linear algorithm as before
but in the image space of Φ. (cf. Fig. 15.6 for an illustration). More formally we
apply the mapping

Φ : RN → E ,

x → Φ(x)

to the data x1, … , xM ∈ X and consider our algorithm in E instead of X, i.e. the
sample is preprocessed as

{
(Φ(x1), y1), … , (Φ(xM), yM)

} ⊆ (E × Y)M .

In certain applications we might have sufficient knowledge about our prob-
lem such that we can design an appropriate Φ by hand (e.g. Zien et al., 2000;

Support Vector Machines 853

Blankertz et al., 2002). If this mapping is not too complex to compute and the
space E is not too high-dimensional, we might just explicitly apply this mapping
to our data. Something similar is done for (single hidden layer) neural networks
(Bishop, 1995), radial basis networks (e.g Moody and Darken, 1989) or Boosting
algorithms (Freund and Schapire, 1997), where the input data are mapped to some
representation given by the hidden layer, the RBF bumps or the hypotheses space,
respectively (Rätsch et al., 2002). The difference with kernel-methods is that for
a suitably chosen Φ we get an algorithm that has powerful non-linearities but is
still very intuitive and retains most of the favorable properties of its linear input
space version.

The problem with explicitly using the mapping Φ to contruct a feature space
is that the resulting space can be extremely high-dimensional. As an example
consider the case when the input space X consists of images of 16 × 16 pixels,
i.e. 256 dimensional vectors, and we choose 5th order monomials as non-linear
features. The dimensionality of such space would be

(
5 + 256 − 1

5

)

≈ 1010 .

Such a mapping would clearly be intractable to carry out explicitly. We are not only
facing the technical problem of storing the data and doing the computations, but
we are also introducing problems due to the fact that we are now working in an
extremely sparse sampled space. By the use of the SRM principle, we can be less
sensitive to the dimensionality of the space and achieve good generalization.

The problems concerning the storage and the manipulation of the high dimen-
sional data can be avoided. It turns out that for a certain class of mappings we are
well able to compute scalar products in this new space even if it is extremely high
dimensional. Simplifying the above example of computing all 5th order products
of 256 pixels to that of computing all 2nd order products of two “pixels”, i.e.

x = (x1, x2) and Φ(x) =
(

x2
1,
√

2x1x2, x2
2

)
,

the computation of a scalar product between two such feature space vectors can
be readily reformulated in terms of a kernel function k:

(
Φ(x)�Φ(z)

)
=
(

x2
1,
√

2 x1x2, x2
2

)(
z2

1,
√

2 z1z2, z2
2

)�

=
(
(x1, x2)(z1, z2)�

)2

=
(
x�z

)2

=: k(x, z) .

854 Sebastian Mika et al.

This finding generalizes: For x, z ∈ RN , and d ∈ N the kernel function

k(x, z) =
(
x�z

)d

computes a scalar product in the space of all products of d vector entries (mono-
mials) of x and z (Vapnik, 1998; Schölkopf et al., 1998b).

The kernel trick (Aizerman et al., 1964; Boser et al., 1992; Vapnik, 1998) is to
take the original algorithm and formulate it such, that we only use Φ(x) in scalar
products. Then, if we can efficiently evaluate these scalar products, we do not need
to carry out the mapping Φ explicitly and can still solve the problem in the huge
feature space E . Furthermore, we do not need to know the mappingΦ but only the
kernel function.

Now we can ask two questions:
1. For which mappings Φ does there exist a simple way to evaluate the scalar

product?
2. Under which conditions does a function k : X×X → R correspond to a scalar

product?

The first question is difficult to answer in general. But for the second question
there exists an answer which we present in the following.

Feature Spaces15.4.2

To address the question whether a kernel function k : X×X → R is a dot-product
let us first introduce some more notation and definitions. Given a training sample
{x1, … , xM} ⊆ X, the M × M matrix K with elements Kij = k(xi, xj) is called the
kernel matrix or the Gram matrix. An M ×M matrix K (and any other symmetric
matrix) is said to be positive definite if any quadratic form over K is positive, i.e. for
all ri ∈ R, i = 1, … , M, we have

M∑

i, j = 1

rirjKij ≥ 0 . (15.13)

Positive definite kernels are exactly those giving rise to a positive definite kernel
matrix k for all M and all sets {x1, … , xM} ⊆ X. Note, that for a kernel (and
a matrix) to be positive definite, it is necessary to be symmetric and non-negative
on the diagonal.

For any positive definite kernel k we can construct a mapping Φ into a feature
space E , such that k acts as a dot-product over Φ. As a matter of fact, it is possible
to construct more than one of these spaces. We will omit many crucial details and
only present the central results. For more details see e.g. Schölkopf and Smola,
2002.

The Feature Map
Given a real-valued, positive definite kernel function k, defined over a non-empty
set X, we define the feature space E as the space of all functions mapping from

Support Vector Machines 855

X to R, i.e. as E = RX = {f |f : X → R}. Notice that, unlike the example in
Fig. 15.6, this feature space is not a usual Euclidean space but rather a vector space
of functions. The mapping Φ is now defined as

Φ : X → RX,Φ(x) = k(·, x) , (15.14)

i.e.Φmaps each x to the function k(·, x), i.e. the kernel k where the first argument is
free and the second is fixed to x. One can show that the set of all linear combinations
of the form

f (·) =
M∑

i=1

αik(·, xi) , (15.15)

for arbitrary M, αi ∈ R, and x1, … , xM forms a vector space. Especially, for all
functions of the form (15.15) one gets

〈
k(·, x), f

〉
H

= f (x) ,

where 〈·, ·〉H denotes the scalar product in some Hilbert space that will become
clearer below. In particular we have

〈k(·, x), k(·, z)〉H = 〈Φ(x),Φ(z)〉E
= k(x, z) .

The last property is the reason why positive definite kernels are also called re-
producing kernels: they reproduce the evaluation of f on x. It also shows that k
indeed computes, as desired, the dot-product in E for Φ(x) defined as in (15.14).
Hence (15.14) is one possible realization of the mapping associated with a kernel
and is called the feature map (for its empirical counterpart see e.g. (Mika, 2002)).
The following is a formal definition of a Reproducing Kernel Hilbert Space (cf.
Schölkopf and Smola, 2002).

1Definition 1: Reproducing Kernel Hilbert Space (RKHS)
Let X be a nonempty set and H a Hilbert space of functions f : X → R. Then H
is called a reproducing kernel Hilbert space endowed with the dot product 〈·, ·〉 if
there exists a function k : X × X → R with the properties that
1. k has the reproducing property 〈f , k(·, x)〉 = f (x) for all f ∈ H , in particular

〈k(·, x), k(·, z)〉 = k(x, z), and
2. k spans H , i.e. H = span{k(·, x)|x ∈ X}, where A denotes the completion of

the set A.

One can show, that the kernel k for such a RKHS is uniquely determined.

Mercer Kernels
As a second way to identify a feature space associated with a kernel k one can use
a technique derived from Mercer’s Theorem.

The Mercer’s Theorem, which we will reproduce in the following, states that if
the function k (the kernel) gives rise to a positive integral operator, the evaluation

856 Sebastian Mika et al.

of k(x, z) can be expressed as a finite or infinite, absolute and uniformly convergent
series, almost everywhere. This series then defines in another way a feature space
and an associated mapping connected to the kernel k.

Let X be a finite measure space, i.e. a space with a σ-algebra and a measure µ
satisfying µ(X) ≤ ∞.

3 Theorem 3: (Mercer, 1909)
Suppose k ∈ L∞(X2,µ) is a symmetric real-valued function such that the integral
operator

Tk : L2(X,µ) → L2(X,µ) , (Tkf)(x) :=
∫

X
k(x, z)f (z)dµ(z)

is positive definite, i.e. for all f ∈ L2(X,µ)
∫

X2
k(x, z)f (x)f (z)dµ(x)dµ(z) ≥ 0 .

Let ϕj ∈ L2(X,µ) be the normalized orthogonal eigenfunctions of Tk associated
with the eigenvalues λj ≥ 0, sorted in non-increasing order. Then
1. (λj)j ∈ l1
2. k(x, z) =

∑NE
j=1 λjϕj(x)ϕj(z) holds for almost all x, z. Either NE ∈ N or NE = ∞;

in the latter case, the series converges absolutely and uniformly for almost all
x, z.

If we choose as feature space E = lNE
2 and the mapping Φ as

Φ : X → lNE
2 , Φ(x) =

(√
λjϕj(x)

)

j=1,…,NE

,

we see from the second statement in Theorem 3 that the kernel k corresponds to
the dot product in lNE

2 , i.e. k(x, z) = 〈Φ(x),Φ(z)〉.
The kernels satisfying the Mercer’s Theorem are called Mercer kernels. It can

be shown that, if the set X on which the kernel is defined, is compact, a kernel is
a Mercer kernel if and only if it is a positive definite kernel (cf. Smola et al., 1998).

Table 15.1 lists some of the most widely used kernel functions. More sophisti-
cated kernels (e.g. kernels generating splines or Fourier expansions) and kernels
designed for special applications like DNA analysis can be found in Vapnik (1998),
Stitson et al. (1997), Smola et al. (1998), Haussler (1999), Jaakkola et al. (2000), Zien
et al. (2000), Tsuda et al. (2002) and numerous others.

Properties of Kernels15.4.3

Besides being useful tools for the computation of dot-products in high- or infinite-
dimensional spaces, kernels possess some additional properties that make them an
interesting choice in algorithms. It was shown (Girosi et al., 1993) that using a par-
ticular positive definite kernel corresponds to an implicit choice of a regularization

Support Vector Machines 857

Table 15.1. Common kernel functions

Gaussian RBF

k(x, z) = exp

(
−‖x − z‖2

c

)
(15.16)

Polynomial

k(x, z) =
((

x�z
)

+ θ
)d

(15.17)

Sigmoidal

k(x, z) = tanh
(
κ
(
x�z

)
+ θ

)

Inverse multi-quadric

k(x, z) =
1

√‖x − z‖2 + c2

operator. For translation-invariant kernels, the regularization properties can be ex-
pressedconveniently inFourier space in termsof the frequencies (Smola et al., 1998;
Girosi, 1998). For example, Gaussian kernels (cf. (15.16)) correspond to a general
smoothness assumption in all k-th order derivatives (Smola et al., 1998). Vice versa,
using this correspondence, kernels matching a certain prior about the frequency
content of the data can be constructed so as to reflect our prior problem knowledge.

Another particularly useful feature of kernel functions is that we are not re-
stricted to kernels that operate on vectorial data, e.g. X = RN . In principle, it
is also possible to define positive kernels for e.g. strings or graphs, i.e. making
it possible to embed discrete objects into a metric space and apply metric-based
algorithms (e.g. Haussler, 1999; Watkins, 2000; Zien et al., 2000).

Furthermore, many algorithms can be formulated using so called conditionally
positive definite kernels (cf. Smola et al., 1998; Schölkopf, 2001) which are a super-
class of the positive definite kernels considered so far. They can be interpreted as
generalized non-linear dissimilarity measures (opposed to just the scalar product)
and are applicable e.g. in SVM and kernel PCA.

Implementation of SVM 15.5

Basic Formulations 15.5.1

We are now at the point to merge the ideas of statistical learning, Structural Risk
Minimization and reproducing kernels into a single algorithm, Support Vector

858 Sebastian Mika et al.

Machines, suitable for a wide range of practical application. The main goal of
this algorithm is to find a weight vector w separating the data Z with the largest
possible margin.

Separable Data
Assume that the data are separable. Our goal is to find the smallest possible w
without committing any error. This can be expressed by the following quadratic
optimization problem:

min
w,b

1

2
‖w‖2, (15.18)

subject to yi

(
(w�xi) + b

) ≥ 1 , ∀i = 1, … , M .

The constraints in (15.18) assure that w and b are chosen such that no example
has a distance to the hyperplane smaller than one. The problem can be solved
directly by using a quadratic optimizer. Notice that the optimal solution renders
a canonical hyperplane. In contrast to many neural networks (e.g. Bishop, 1995)
one can always find the global minimum. In fact, all minima of (15.18) are global
minima, although they might not be unique as e.g. in the case when M < N,
where N is the dimensionality of the data.

In the formulation (15.18), refered to as the primal formulation, we are bound to
use the original data x. In order to apply the kernel trick (cf. Sect. 15.4.1) we need to
transform the problem such that the only operation involving the original data x is
an innerproductbetweencertaindatapoints.This canbeachievedby transforming
the problem to the dual formulation. The notion of duality is an essential part of
non-linear optimization theory, for details one can refer to any standard textbook
on mathematical programming (e.g. Luenberger, 1973; Bertsekas, 1995). For our
purposes it is important that for every quadratic optimization problem there exists
a dual problem which is also a quadratic problem. If both the primal and the dual
problems have an optimal solution then the values of the objective function at the
optimal solutions coincide. This implies that by solving the dual problem – which
uses the orginal data x only through inner products – the solution to the primal
problem can be reconstructed.

To derive the dual of (15.18), we introduce Lagrange multipliers αi ≥ 0 with
i = 1, … , M, one for each of the constraints in (15.18). We obtain the following
Lagrangian:

L(w, b, α) =
1

2
‖w‖2 −

M∑

i=1

αi

(
yi

((
w�xi

)
+ b

)
− 1

)
. (15.19)

The task is to minimize (15.19) with respect to w, b and to maximize it with respect
to αi. At the optimal point, we have the following saddle point equations:

∂L

∂b
= 0 and

∂L

∂w
= 0 ,

Support Vector Machines 859

which translate into

M∑

i=1

αiyi = 0 and w =
M∑

i=1

αiyixi . (15.20)

From the right equation of (15.20), we find that w is contained in the subspace
spanned by the xi in the training set. By substituting (15.20) into (15.19), we get the
dual quadratic optimization problem:

max
α

M∑

i = 1

αi −
1

2

M∑

i, j = 1

αiαjyiyj

(
x�i xj

)
, (15.21)

subject to αi ≥ 0 , i = 1, … , M , (15.22)

M∑

i=1

αiyi = 0 . (15.23)

Thus, by solving the dual optimization problem, one obtains the coefficients αi,
i = 1, … , M, which one needs to express the solution w. This leads to the decision
function:

f (x) = sgn
((

w�xi

)
+ b

)

= sgn

(
M∑

i=1

yiαi

(
x�i x

)
+ b

)

. (15.24)

Note that the scalar product in this dual formulation can be directly replaced by
the kernel mapping k(xi, x), opening the possibility for the non-linear classifiers.
This expression does not directly depend on the dimensionality N of the data but
on the number of training examples M. As long as we are able to evaluate the scalar
product (x�i x) the dimensionality could be arbitrary, even infinite.

Non-separable Data
So far we have only considered the separable case which corresponds to an em-
pirical error of zero (cf. Theorem 2). However for many practical applications this
assumption is violated. If the data are not linearly separable then problem (15.18)
has no feasible solution. By allowing for some errors we might get better results
and avoid over-fitting effects (cf. Fig. 15.2).

Therefore a “good” trade-off between the empirical risk and the complexity
term in (15.9) needs to be found. Using a technique which was first proposed in
(Bennett and Mangasarian, 1992) and later used for SVMs in (Cortes and Vapnik,
1995), one introduces slack-variables to relax the hard-margin constraints:

yi

((
w�xi

)
+ b

) ≥ 1 − ξi , ξi ≥ 0 , i = 1, … , M , (15.25)

860 Sebastian Mika et al.

additionally allowing for some classification errors. The SVM solution can then
be found by (a) keeping the upper bound on the VC-dimension small and (b) by
minimizing an upper bound

∑M
i=1 ξi on the empirical risk, i.e. the number of

training errors. Thus, one minimizes

min
w,b,ξ

1

2
‖w‖2 + C

M∑

i=1

ξi ,

where the regularization constant C > 0 determines the trade-off between the
empirical error and the complexity term. This leads to the dual problem:

max
α

M∑

i=1

αi −
1

2

M∑

i,j=1

αiαjyiyj

(
x�i xj

)
, (15.26)

subject to 0 ≤ αi ≤ C , i = 1, … , M , (15.27)

M∑

i=1

αiyi = 0 . (15.28)

From introducing the slack-variables ξi, one gets the box constraints that limit the
size of the Lagrange multipliers: αi ≤ C, i = 1, … , M.

The threshold b can be computed by exploiting the fact that for all support
vectors xi with 0 < αi < C, the slack variable ξi is zero. This follows from the
Karush–Kuhn–Tucker (KKT) conditions (cf. (15.29) below). Thus, for any support
vector xi with αi < C holds:

yi

b +
M∑

j=1

yjαj

(
x�i xj

)

 = 1 .

Averaging over these patterns yields a numerically stable solution:

b =
1

|I|
∑

i∈I

yi −
M∑

j=1

yjαj

(
x�i xj

)

 ,

where I denotes the identity matrix.

Sparsity
The Karush–Kuhn–Tucker (KKT) conditions are the necessary conditions for an
optimal solution of a non-linear programming problem (e.g. Bertsekas, 1995; Luen-
berger, 1973). The conditions are particularly simple for the dual SVM problem (??)
(Vapnik, 1982):

αi = 0 ⇒ yif (xi) ≥ 1 and ξi = 0 ,

0 < αi < C ⇒ yif (xi) = 1 and ξi = 0 ,

αi = C ⇒ yif (xi) ≤ 1 and ξi ≥ 0 .

(15.29)

They reveal one of the most important properties of SVMs: the solution is sparse
in α. For all examples outside the margin area the optimalαi’s are zero. Specifically,

Support Vector Machines 861

the KKT conditions show that only suchαi connected to a training pattern xi, which
is either on the edge of (i.e. 0 < αi < C and yif (xi) = 1) or inside the margin area
(i.e. αi = C and yif (xi) < 1) are non-zero. These are exactly the support vectors as
mentioned in Sect. 15.3.2. This sparsity property makes SVM learning practical for
large data sets.

Decomposition 15.5.2

The practical usefulness of SVM stems from their ability to provide arbitrary
non-linear separation boundaries and at the same time to control generalization
ability through the parameter C and the kernel parameters. In order to utilize
these features it is necessary to work with the dual formulation (15.26)–(15.28) of
the SVM training problem. This can be difficult from the computational point of
view, for two reasons:
1. Oneneeds to solve thequadraticprogrammingproblemwithasmanyvariables

as thenumber M of availabledatapoints (this canbequite large, up to105–106).
2. Merely to define the quadratic problem formally, one needs to store the M×M

kernel matrix, which poses an unsurmountable storage problem for large
datasets.

Because of these implications, it is usually impossible to use the standard optimiza-
tion tools (e.g. MINOS, CPLEX, LOQO) for solving the SVM training problems on
datasets containing larger than 1000 examples. In the following sections the de-
composition techniques are presented, which use the special structure of the SVM
problem to provide efficient SVM training algorithms.

Basic Principles
The key idea of decomposition is to freeze all but a small number of optimization
variables and to solve a sequence of constant-size problems. The set of variables
optimized at a current iteration is referred to as the working set. Because the
working set is re-optimized, the value of the objective function is improved at each
iteration, provided the working set is not optimal before re-optimization.

The mathematics of the decomposition technique can be best seen in the matrix
notation. Let α = (α1, …αM)�, let y = (y1, … , yM)�, let H be the matrix with
the entries Hij = yiyjk(xi, xj), and let 1 denote the vector of length M consisting
of all 1s. Then the dual SVM problem (15.26)–(15.28) can be written in the matrix
form as:

max
α

1�α −
1

2
α�Hα , (15.30)

subject to y�α = 0 , (15.31)

α − C1 ≤ 0 , (15.32)

α ≥ 0 . (15.33)

862 Sebastian Mika et al.

Let us partition the vector α into αB of the variables to be included in the working
set at a current iteration and the vector αN of the remaining variables. The matrix H
is partitioned as

H =

[
HBB HBN

HNB HNN

]

,

with the corresponding parts determined by the index sets B and N. By re-writing
the problem (15.30)–(15.33) using the partitioned matrix notation, and observing
that only the free variables αB are to be considered as variables, the following
sub-problem, to be solved at each iteration, is obtained:

max
α

(
1�B − α�

N HNB

)
αB −

1

2
α�

B HBBαB , (15.34)

subject to y�B αB = −yNαN , (15.35)

αB − C1B ≤ 0 , (15.36)

αB ≥ 0 . (15.37)

By choosing the size q of the working set B relatively small (usually q ≤ 100) one
can ensure that the sub-problem (15.34)–(15.37) is easily solved by any optimization
tool.

Iteration is carried out until the following termination criteria, derived from
Karush–Kuhn–Tucker conditions (15.29), are satisfied to the required precision ε:

b − ε ≤ yi −
∑M

j=1 yjαjK
(
xi, xj

) ≤ b + ε , ∀i : 0 < αi < C , (15.38)

yi

(∑M
j=1 yjαjK

(
xi, xj

)
+ b

)
≥ 1 − ε , ∀i : αi = 0 , (15.39)

yi

(∑M
j=1 yjαjK

(
xi, xj

)
+ b

)
≤ 1 + ε , ∀i : αi = C . (15.40)

Working Set Selection: Feasible Direction Algorithms
The crucial issue in the decomposition technique presented above is the selection
of working sets. First, the provision that a working set must be sub-optimal before
re-optimization is essential to prevent the algorithm from cycling. Second, the
working set selection affects the speed of the algorithm: if sub-optimal working sets
are selected more or less at random, the algorithm converges very slowly. Finally,
the working set selection is important in theoretical analysis of decomposition
algorithms; in particular in the convergence proofs and in the analysis of the
convergence rate.

Two main approaches exist to the working set selection in the SVM decom-
position algorithms: the heuristic approach and the feasible direction approach.
The former has been used in the original paper of Osuna et al. (1997a) on SVM

Support Vector Machines 863

decomposition and has been mainly used in the specific flavor of decomposition
algorithms called Sequential Minimal Optimization (SMO), presented in the next
section. The feasible direction decomposition algorithms root in the original al-
gorithm of Joachims (1999) for pattern recognition (SVMlight), with the formal
connection to the feasible direction methods of nonlinear programming estab-
lished by Laskov (2002).

The notion of a “feasible direction” stems from the classical techniques of
nonlinear programming subject to linear constraints (Zoutendijk, 1960; Bertsekas,
1995). It refers to the direction along which any step of the magnitude δ satisfying
0 < δ ≤ δ0, for somefixedδ0, results in a feasible solution to thenonlinearprogram.
For any nonlinear program, finding the feasible direction amounts to a solution of
a linear programming problem. In particular, for the dual SVM training problem
(15.26)–(15.28) the following problem must be solved:

max
d

g�d , (15.41)

subject to y�d = 0 , (15.42)

di ≥ 0, for all αi = 0 , (15.43)

di ≤ 0, for all αi = C , (15.44)

||d||2 ≤ 1 , (15.45)

where g is the gradient of the objective function (15.26). To solve the feasible
direction problem exactly at each iteration is inefficient because the linear pro-
gram (15.41)–(15.45) has all M variables. However, an approximate solution to
the feasible direction problem can be efficiently found by using the normaliza-
tion di ∈ {−1, 0, 1} and requiring that the number of positive direction com-
ponents is equal to the number of the negative components. In this case, the
solution is obtained by sorting all examples by the quantity giyi, and select-
ing q|2 examples with the largest and q|2 examples with the smallest values. In
fact, by using the heap operations, sorting can be avoided, and the entire selec-
tion can be executed in O(q log M) time. The motivation behind the quantity giyi

can be traced back to the first-order Karush–Kuhn–Tucker conditions (Laskov,
2002), which provides the solid formal background for the feasible direction SVM
decomposition.

Convergence of the feasible direction SVM decomposition has been proved
by Lin (2001), and the linear convergence rate has been observed experimentally
(Laskov, 2002).

Sequential Minimal Optimization
The Sequential Minimal Optimization (SMO) algorithm proposed by Platt (1999)
is another popular and efficient algorithm for the SVM training. In this algorithm
the idea of decomposition is taken to its extreme by reducing the working sets

864 Sebastian Mika et al.

to two points – the smallest size for which it is possible to maintain the equality
constraint (15.28). With two points in the working set, the optimal solution can be
computed analytically without calling an optimization tool.

The analytical computation of the optimal solution is based on the following
idea: given the solution (αold

1 ,αold
2), the optimal update is computed to obtain the

solution (αnew
1 ,αnew

2). To carry out the update, first the constraints (15.27)–(15.28)
have to be obeyed. The geometry of these constraints depends on whether the
labels y1 and y2 are equal or not. The two possible configurations are shown in
Fig. 15.7. If y1 ≠ y2 (left picture) the solution should be sought along the line
α1 −α2 = γ, where γ = αold

1 + y1y2αold
2 . If y1 = y2 (right picture) the solution should

be sought along the line α1 + α2 = γ. If the solution transgresses the bound of the
box, it should be clipped at the bound.

y1 ≠ y2 y1 = y2
Figure 15.7. Constraints of the SVM training problem with two examples

The optimal values of the variables along the line are computed by eliminating
one of the variables through the equality constraint and finding the unconstrained
minimum of the objective function. Thus eliminating α1 one obtains the following
update rule for α2:

αnew
2 = αold

2 −
y2(E1 − E2)

η
, (15.46)

where

E1 =
∑M

j=1 yjαjk
(
x1, xj

)
+ b − y1 , (15.47)

E2 =
∑M

j=1 yjαjk
(
x2, xj

)
+ b − y2 , (15.48)

η = 2k(x1, x2) − k(x1, x1) − k
(
x2, x2

)
. (15.49)

Support Vector Machines 865

Next, the bound constraints should be taken care of. Depending on the geometry,
one computes the following lower and upper bounds on the value of the variableα2:

L =

max

(
0,αold

2 − αold
1

)
, if y1 ≠ y2 ,

max
(
0,αold

2 + αold
1 − C

)
, if y1 = y2 ,

H =

min

(
C, C + αold

2 − αold
1

)
, if y1 ≠ y2 ,

min
(
C,αold

2 + αold
1

)
, if y1 = y2 .

The constrained optimum is then found by clipping the unconstrained optimum
to the ends of the line segment:

αnew
2 :=

H , if αnew
2 ≥ H ,

L , if αnew
2 ≤ L ,

αnew
2 , otherwise .

Finally, the value of αnew
1 is computed:

αnew
1 = αold

1 + y1y2

(
αold

2 − αnew
2

)
. (15.50)

The working set selection in the SMO algorithm is carried out by means of two
heuristics. The “first choice” heuristic is responsible for the choice of the first
example in each pair. Following this heuristic, all examples that violate the KKT
condition (15.29) are used in turns as the first example in the pair. More precisely,
the algorithm makes repeated passes only through the examples whoseαi is strictly
between then bounds, and only when all such examples satisfy the KKT conditions,
the sweep over the entire data is done to bring in new examples. The “second
choice” heuristic is responsible for the selection of the second example in the pair.
It is intended to bring in such an example that results in the largest step taken
during the joint optimization (15.46). As a cheap approximation of this step the
numerator |E1 −E2| is taken (the denominator, which involves evaluation of kernels,
can be expensive to compute). Following the strategy to maximize |E1 − E2|, the
SMO algorithm chooses the example with the largest E2 if E1 is negative and the
example with the smallest E2 if E1 is positive. Under unusual circumstances, when
no progress can be made using the second choice heuristic above a hierarchy of
weaker heuristics is applied, the details of which can be found in (Platt, 1999).

Incremental Support Vector Optimization 15.5.3

Many real-life machine learning problems can be more naturally viewed as online
rather than batch learning problems. Indeed, the data are often collected continu-
ously in time, and, more importantly, the concepts to be learned may also evolve in
time. Significant effort has been spent in recent years on the development of the on-
line SVM learning algorithms (e.g. Rüping, 2002; Kivinen et al., 2001; Ralaivola and

866 Sebastian Mika et al.

d’Alché Buc, 2001). An elegant solution to online SVM learning is the incremental
SVM proposed by Cauwenberghs and Poggio (2001) which provides a framework
for exact online learning.

To present the online SVM learning we first need an abstract formulation of the
SVM optimization problem and a brief overview of the incremental SVM. We start
with the following abstract form of the SVM optimization problem:

max
µ

min
0≤α≤C

a�α + b = 0

: W = −c�α +
1

2
α�Kα + µ

(
a�α + b

)
, (15.51)

where c and a are M × 1 vectors, K is the M × M kernel matrix and b is a scalar.
By defining the meaning of the abstract parameters a, b and c for the particular
SVM problem at hand, one can use the same algorithmic structure for different
SVM algorithms. In particular, for the standard support vector classifiers (Vapnik,
1998), take c = 1, a = y, b = 0 and the given regularization constant C; the same
definition applies to the ν-SVM (Schölkopf et al., 2000) except that C = 1|(Nν); for
the one-class classifier (Schölkopf et al., 2001; Tax and Duin, 2001), the parameters
are defined as: c = diag(K), a = y and b = −1.

Incremental SVM provides a procedure for adding one example to an existing
optimal solution. When a new point k is added, its weight αk is initially assigned
to 0. Then the weights of other points and µ should be updated, in order to
obtain the optimal solution for the enlarged dataset. Likewise, when a point k
is to be removed from the dataset, its weight is forced to 0, while updating the
weights of the remaining points and µ so that the solution obtained with αk = 0
is optimal for the reduced dataset. The online learning follows naturally from
the incremental|decremental learning: the new example is added while some old
example is removed from the working set.

The basic principle of the incremental SVM (Cauwenberghs and Poggio, 2001)
is thatupdates to the state of the example k should keep the remaining examples in
their optimal state. In other words, the KKT conditions (15.29) expressed for the
gradients gi:

gi = −ci + Ki,:α + µai

≥ 0 , if αi = 0 ,

= 0 , if 0 < αi < C ,

≤ 0 , if αi = C ,

(15.52)

∂W

∂µ
= a�α + b = 0 , (15.53)

must be maintained for all the examples, except possibly for the current example k.
Let S denote the set of unbounded support vectors and R the set of other examples.
In order to maintain the KKT conditions (15.52), one can express increments to the
weights of the unbounded support vectors and to the gradients of other examples
as a linear function of the increment of the current example’s weight ∆αk:

∆αS = β∆αk, ∆gR = γ∆αk . (15.54)

Support Vector Machines 867

The sensitivity relations (15.54) only make sense for the fixed composition of
sets S and R. To proceed with learning, we need to detect the largest increment
∆αmax

k such that the sets S and R remain intact. After changing the SVM state
according to the relations (15.54) evaluated for the increment ∆αmax

k , the sensi-
tivity vectors β and γ must be recomputed accordingly (depending of whether
an example enters or leaves the set S). For the details of accounting the reader
should refer to (Cauwenberghs and Poggio, 2001; Tax and Laskov, 2003). The iter-
ation terminates when the current element satisfies the KKT conditions (15.52) as
well.

Extensions of SVM 15.6

Regression 15.6.1

One extension of the SVM is that for the regression task. In this subsection we will
give a short overview of the idea of Support Vector Regression (SVR). A regression
problem is given whenever Y = R for the training data setZ = {(xi, yi) ∈ X×Y|i =
1, … , M} (cf. Sect. 15.2.1) andour interest is tofinda functionof the form f : X → R
(or more generally RD).

Inourdiscussionof the theoretical foundationsof learningwehavenotyet talked
about loss functions except for saying that they should be non-negative functions
of the form (15.1). In the following we will discuss an interesting alternative for the
problem of regression. There are two loss functions commonly used: the simple
squared loss

�(f (x), y) = (f (x) − y)2 , (15.55)

and the ε-insensitive loss

�(f (x), y) =

|f (x) − y| − ε , if |f (x) − y| > ε ,

0 , otherwise .
(15.56)

For ε = 0 the ε-insensitive loss equals the �1-norm, otherwise it linearly penalizes
deviations from the correct predictions by more than ε.

In the left subplot of Fig. 15.8 the two error functions are shown. In the right
subplot a regression function using the ε-insensitive loss function is shown for
some artificial data. The dashed lines indicate the boundaries of the area where
the loss is zero (the “tube”). Clearly most of the data are within the tube.

Similarly to the classification task, one is looking for the function that best
describes the values yi. In classification one is interested in the function that
separates two classes; in contrast, in regression one looks for such a function that
contains the given dataset in its ε-tube. Some data points can be allowed to lie
outside the ε-tube by introducing the slack-variables.

868 Sebastian Mika et al.

0

l

squared loss

ε

ε-insensitive loss

0 0.1 0.2 0.3 0.4 10.90.80.70.60.5

1.5

1

0.5

0

0.5

1

1.5

−

−

−

2 ε.

ξi

Figure 15.8. The left subplot shows the two different loss functions for the regression problem. The

right subplot gives a regression function derived with an ε-insensitive loss function. The solid line

indicates the function, the dashed lines indicate the ε-tube around this function

The primal formulation for the SVR is then given by:

min
w,b,ξ,ξ∗

1

2
‖w‖2 + C

M∑

i=1

(
ξi + ξ∗i

)
,

subject to
((

w�xi

)
+ b

)
− yi ≤ ε + ξi ,

yi −
((

w�xi

)
+ b

) ≤ ε + ξ∗i ,

ξi, ξ∗i ≥ 0 , i = 1, … , M .

In contrast to the primal formulation for the classification task, we have to in-
troduce two types of slack-variables ξi and ξ∗i , one to control the error induced
by observations that are larger than the upper bound of the ε-tube, and the oth-
er – for the observations smaller than the lower bound. To enable the construction
of a non-linear regression function, a dual formulation is obtained in the similar
way to the classification SVM, and the kernel trick is applied. For an extensive
description of SVR we recommend the book of Schölkopf and Smola (2002).

One-Class Classification15.6.2

Another common problem of statistical learning is one-class classification (novelty
detection). Its fundamental difference from the standard classification problem is
that the training data is not identically distributed to the test data. The dataset
contains two classes: one of them, the target class, is well sampled, while the other
class it absent or sampled very sparsely. Schölkopf et al. (2001) have proposed an
approach in which the target class is separated from the origin by a hyperplane.
Alternatively (Tax and Duin, 2001), the target class can be modeled by fitting a hy-
persphere with minimal radius around it. We present this approach, schematically
shown in Fig. 15.9, in more detail below.

Support Vector Machines 869

a

R

xi

ξi

Figure 15.9. Schematic illustration of the hypersphere model for describing a target class of data. The

center a and the radius R should be optimized to minimize the volume of the captured space

Mathematically the problem of fitting a hypersphere around the data is formal-
ized as:

min
R,a,ξ

R2 + C
M∑

i=0

ξi , (15.57)

subject to ||xi − a||2 ≤ R2 + ξi , i = 1, … , M ,

ξi ≥ 0 ,

where a is the center of the sphere, and R is the radius. Similarly to the SVM we
make a “soft” fit by allowing non-negative slacks ξi. One can likewise apply the
kernel trick by deriving the dual formulation of (15.57):

max
α

M∑

i=1

αik(xi, xi) −
M∑

i,j=1

αiαjk
(
xi, xj

)
, (15.58)

subject to 0 ≤ αi ≤ C , i = 1, … , M ,

M∑

i=1

αi = 1 .

The parameter C can be interpreted (Schölkopf et al., 2001) as the reciprocal of
the quantity 1

Mν
, where ν is an upper bound for the fraction of objects outside the

boundary.
To decide whether a new object belongs to the target class one should determine

its position with respect to the sphere using the formula

f (x) = sign

R2 − k(x, x) + 2
∑

i

αik(x, xi) −
∑

i,j

αiαjk
(
xi, xj

)

 . (15.59)

An object with positive sign belongs to the target class and vice versa.

870 Sebastian Mika et al.

Applications15.7

Optical Character Recognition (OCR)15.7.1

One of the first real-world experiments carried out with SVM was done at AT&T
Bell Labs using optical character recognition (OCR) data (Cortes and Vapnik, 1995;
Schölkopf et al., 1995). These early experiments already showed the astonishingly
high accuracies for SVMs which was on a par with convolutive multi-layer percep-
trons. Below we record the classification performance of SVM, some variants not
discussed in this chapter, and other classifiers on the USPS (US-Postal Service)
benchmark (parts from Simard et al., 1998). The task is to classify handwritten
digits into one of ten classes. Standard SVMs as presented here already exhibit
a performance similar to other methods.

Table 15.2. Classification results on the USPS data set

Linear PCA & Linear SVM (Schölkopf et al., 1998b) 8.7%
k-Nearest Neighbor 5.7%
LeNet1 (Bottou et al., 1994) 4.2%
Regularised RBF Networks (Rätsch, 1998) 4.1%
Kernel-PCA & linear SVM (Schölkopf et al., 1998b) 4.0%
SVM (Schölkopf et al., 1995) 4.0%
Invariant SVM (Schölkopf et al., 1998a) 3.0%
Boosting (Drucker et al., 1993) 2.6%
Tangent Distance (Simard et al., 1998) 2.5%
Human error rate 2.5%

A benchmark problem larger than the USPS data set (7291 patterns) was col-
lected by NIST and contains 120,000 handwritten digits. Invariant SVMs achieve
an error rate of 0.7% (DeCoste and Schölkopf, 2002) on this challenging and more
realistic data set, slightly better than the tangent distance method (1.1%) or sin-
gle neural networks (LeNet 5: 0.9%). An ensemble of LeNet 4 networks that was
trained on a vast number of artificially generated patterns (using invariance trans-
formations) is on a par with the best SVM and also achieved 0.7% (LeCun et al.,
1995).

Text Categorization and Text Mining15.7.2

The high dimensional problem of text categorization seems to be an applica-
tion for which SVMs have performed particularly well. A popular benchmark is
the Reuters-22,173 text corpus, where Reuters collected 21,450 news stories from
1997, and partitioned and indexed them into 135 different categories to simplify
the access. The feature typically used to classify Reuters documents are 10,000-
dimensional vectors containing word frequencies within a document. With such
a coding SVMs have achieved excellent results (see e.g. Joachims, 1997).

Support Vector Machines 871

Active Learning in Drug Design 15.7.3

A challenging problem of computational chemistry is the discovery of active chem-
ical compounds.Thegoal is to found the compounds that bind toa certainmolecule
in as few iterations of biological testing as possible. An astonishingly effective ap-
plication of SVM to this problem has been recently proposed by Warmuth et al.
(2003).

Other Applications 15.7.4

There are numerous other applications to which SVM were successfully applied.
Examples are object and face recognition tasks (Osuna et al., 1997b), inverse prob-
lems (Vapnik, 1998; Weston et al., 1999), gene array expression monitoring (Brown
et al., 2000), remote protein homology detection (Jaakkola et al., 2000), or splice
site detection (Zien et al., 2000; Sonnenburg et al., 2002). This list can be extended.

Summary and Outlook 15.8

We have seen how the problem of learning from data can be cast formally into
the problem of estimating functions from given observations. We reviewed some
basic notation and concepts from statistics and especially from statistical learning
theory. The latter provides us with two extremely important insights: (1) what
matter the most is not the dimensionality of the data but the complexity of the
function class we choose our estimate from, (2) consistency is desirable for suc-
cessful learning. Closely related to these two insights is the issue of regularization.
Regularization allows us to control the complexity of our learning machine and
often suffices to achieve consistency.

As an application of statistical learning theory we reviewed maximum margin
hyperplanes. Whilst it is satisfactory to have a technique at hand that implements
(at least partially) what the theory justifies, the algorithm is only capable of finding
(linear) hyperplanes. To circumvent this restriction we introduced kernel func-
tions yielding SVMs. Kernel functions allow us to reformulate many algorithms in
some kernel feature space that is non-linearly related to the input space and yield
powerful, non-linear techniques. This non-linearization using the kernel trick is
possible whenever we are able to express an algorithm such that it only uses the
data in the form of scalar products. However, since the algorithms are still linear in
the feature space we can use the same theory and optimization strategies as before.

Kernel algorithms have seen an extensive development over the past years,
starting with the SVM. Among many theoretical (Williamson et al., 1998; Graepel
et al., 2000; Bartlett et al., 2002) and algorithmic (Platt, 1999; Joachims, 1999)
results on SVM itself, new algorithms using the kernel trick have been proposed
(e.g. Kernel PCA (Schölkopf et al., 1998b) or Bayes–Point machines (Herbrich et al.,
2001)). This development is still an ongoing and exciting field of study.

872 Sebastian Mika et al.

To conclude, we would like to encourage the reader to follow the presented
methodology of (re-)formulating linear algorithms based on scalar product into
nonlinear algorithms using the powerful kernel trick, to further develop statistical
learning techniques. Information on recent developments in kernel methods can
be found at http:||www.kernel-machines.org|.

References
Aizerman, M., Braverman, E. and Rozonoer, L. (1964). Theoretical foundations

of the potential function method in pattern recognition learning. Automation
and Remote Control, 25: 821–837.

Akaike,H. (1974).Anew lookat the statisticalmodel identification. IEEE Trans. Au-
tomat. Control, 19(6): 716–723.

Aronszajn, N. (1950). Theory of reproducing kernels. Transactions of the American
Mathematical Society, 68: 337–404.

Barron, A., Birgé, L. and Massart, P. (1999). Risk bounds for model selection via
penalization. Probability Theory and Related Fields, 113: 301–415.

Bartlett, P., Bousquet, O. and Mendelson, S. (2002). Localized rademacher com-
plexities. In Kivinen, J. and Sloan, R.H., (eds), Proceedings COLT, volume 2375
of Lecture Notes in Computer Science, pages 44–58. Springer, Heidelberg.

Bartlett, P.L., Long, P.M. and Williamson, R.C. (1996). Fat-shattering and the
learnability of real-valued functions. Journal of Computer and System Sciences,
52(3): 434–452.

Bartlett, P.L. and Mendelson, S. (2002). Rademacher and gaussian complexities:
Risk bounds and structural results. Journal of Machine Learning Research, 3:
463–482.

Bennett, K.P. and Mangasarian, O.L. (1992). Robust linear programming discrimi-
nation of two linearly inseparable sets. Optimization Methods and Software, 1:
23–34.

Bertsekas, D.P. (1995). Nonlinear Programming. Athena Scientific, Belmont, MA.
Bishop, C.M. (1995). Neural Networks for Pattern Recognition. Oxford University

Press.
Blankertz, B., Curio, G. and Müller, K-R. (2002). Classifying single trial EEG:

Towards brain computer interfacing. In Diettrich, T.G., Becker, S., and Ghahra-
mani, Z., (eds), Advances in Neural Information Proccessing Systems, 14: 157–
164.

Boser, B.E., Guyon, I.M. and Vapnik, V.N. (1992). A training algorithm for opti-
mal margin classifiers. In Haussler, D. (ed), Proceedings of the 5th Annual ACM
Workshop on Computational Learning Theory, pp.144–152.

Bottou, L., Cortes, C., Denker, J.S., Drucker, H., Guyon, I., Jackel, L.D., LeCun, Y.A.,
Müller, U.A., Säckinger, E., Simard, P.Y. and Vapnik, V.N. (1994). Comparison
of classifier methods: a case study in handwritten digit recognition. In Pro-
ceedings of the 12th International Conference on Pattern Recognition and Neu-
ral Networks, Jerusalem, pp.77–87, IEEE Computer Society Press.

Support Vector Machines 873

Breiman, L., Friedman, J., Olshen, J. and Stone, C. (1984). Classification and Re-
gression Trees, Wadsworth.

Brown, M.P.S., Grundy, W.N., Lin, D., Cristianini, N., Sugnet, C., Furey, T.S., Ares,
M. and Haussler, D. (2000). Knowledge-based analysis of microarray gene
expression data using support vector machines. Proceedings of the National
Academy of Sciences, 97(1): 262–267.

Cauwenberghs, G. and Poggio, T. (2001). Incremental and decremental support
vector machine learning. In Leen, T.K., Dietterich, T.G. and Tresp, V. (eds),
Advances in Neural Information Processing Systems, 13: 409–415, MIT Press.

Cortes, C. and Vapnik, V.N. (1995). Support vector networks. Machine Learning,
20: 273–297.

Cristianini, N. and Shawe-Taylor, J. (2000) An Introduction to Support Vector Ma-
chines, Cambridge University Press, Cambridge, UK.

DeCoste, D. and Schölkopf, B. (2002) Training invariant support vector ma-
chines. Machine Learning, 46: 161–190. Also: Technical report JPL-MLTR-00-1,
Jet Propulsion Laboratory, Pasadena.

Devroye, L., Györfi, L. and Lugosi, G. (1996). A Probabilistic Theory of Pattern
Recognition. Number 31 in Applications of Mathematics. Springer, New York.

Donoho, D., Johnstone, I., Kerkyacharian, G. and Picard, D. (1996). Density esti-
mation by wavelet thresholding. Annals of Statistics, 24: 508–539.

Drucker, H., Schapire, R. and Simard, P.Y. (1993). Boosting performance in neu-
ral networks. International Journal of Pattern Recognition and Artificial Intel-
ligence, 7: 705–719.

Duda, R.O., Hart, P.E. and Stork, D.G. (2001). Pattern classification, John Wiley &
Sons, second edition.

Freund, Y. and Schapire, R.E. (1997). A decision-theoretic generalization of on-
line learning and an application to boosting. Journal of Computer and System
Sciences, 55(1): 119–139.

Girosi, F. (1998). An equivalence between sparse approximation and support vector
machines. Neural Computation, 10: 1455–1480.

Girosi, F., Jones, M. and Poggio, T. (1993). Priors, stabilizers and basis functions:
From regularization to radial, tensor and additive splines. Technical Report
A.I. Memo No. 1430, Massachusetts Institute of Technology.

Graepel, T., Herbrich, R. and Shawe-Taylor, J. (2000). Generalization error bounds
for sparse linear classifiers. In Proc. COLT, pp. 298–303, Morgan Kaufmann, San
Francisco.

Haussler, D. (1999). Convolution kernels on discrete structures. Technical Report
UCSC-CRL-99-10, UC Santa Cruz.

Herbrich, R., Graepel, T. and Campbell, C. (2001). Bayes point machines. Journal
of Machine Learning Research, 1: 245–279.

Jaakkola, T.S., Diekhans, M. and Haussler, D. (2000). A discriminative framework
for detecting remote protein homologies. J. Comp. Biol., 7: 95–114.

Joachims, T. (1997). Text categorization with support vector machines: Learning
with many relevant features. Technical Report 23, LS VIII, University of
Dortmund.

874 Sebastian Mika et al.

Joachims, T. (1999). Making large-scale SVM learning practical. In Schölkopf, B.,
Burges, C.J.C. and Smola, A.J. (eds), Advances in Kernel Methods – Support
Vector Learning, pp. 169–184, Cambridge, MA, MIT Press.

Kivinen, J., Smola, A.J. and Williamson, R.C. (2001). Online learning with kernels.
In Diettrich, T.G., Becker, S. and Ghahramani, Z. (eds), Advances in Neural
Inf. Proc. Systems (NIPS 01), pp. 785–792.

Kolmogorov, A.N. (1941). Stationary sequences in hilbert spaces. Moscow
University Mathematics, 2: 1–40.

Laskov, P. (2002). Feasible direction decomposition algorithms for training
support vector machines. Machine Learning, 46: 315–349.

LeCun, Y.A., Jackel, L.D., Bottou, L., Brunot, A., Cortes, C., Denker,
J.S., Drucker, H., Guyon, I., Müller, U.A., Säckinger, E., Simard,
P.Y. and Vapnik, V.N. (1995). Comparison of learning algo-
rithms for handwritten digit recognition. In Fogelman-Soulié, F.
and Gallinari, P. (eds), Proceedings ICANN’95 – International Con-
ference on Artificial Neural Networks, II: 53–60, Nanterre, France,
EC2.

Lin, C.-J. (2001). On the convergence of the decomposition method for support
vector machines. IEEE Trans. on Neural Networks, 12(6): 1288–1298.

Luenberger, D.G. (1973). Introduction to Linear and Nonlinear Programming.
Addison-Wesley, Reading, MA.

Mallows, C.L. (1973). Some comments on cp. Technometrics, 15: 661–675.
Mercer, J. (1909). Functions of positive and negative type and their connection

with the theory of integral equations. Philos. Trans. Roy. Soc. London, A 209:
415–446.

Mika, S. (2002). Kernel Fisher Discriminants. PhD thesis, University of Technology,
Berlin, Germany.

Moody, J. and Darken, C. (1989). Fast learning in networks of locally-tuned
processing units. Neural Computation, 1(2): 281–294.

Morozov, V.A. (1984). Methods for Solving Incorrectly Posed Problems. Springer.
Müller, K.-R., Mika, S., Rätsch, G., Tsuda, K. and Schölkopf, B. (2001). An

introduction to kernel-based learning algorithms. IEEE Transactions on
Neural Networks, 12(2): 181–201.

Osuna, E., Freund, R. and Girosi, F. (1997a). An improved training algorithm
for support vector machines. In Principe, J., Gile, L., Morgan, N. and Wilson,
E. (eds), Neural Networks for Signal Processing VII – Proceedings of the 1997
IEEE Workshop, pp. 276–285, New York, IEEE.

Osuna, E., Freund, R. and Girosi, F. (1997b). Training support vector machines:
An application to face detection. In Proceedings CVPR’97.

Parzen, E. (1962). On estimation of probability density function and mode. Annals
of Mathematical Statistics, 33: 1065–1076.

Platt, J. (1999). Fast training of support vector machines using sequential
minimal optimization. In Schölkopf, B., Burges, C.J.C. and Smola, A.J. (eds),
Advances in Kernel Methods – Support Vector Learning, pp. 185–208, MIT
Press, Cambridge, MA.

Support Vector Machines 875

Ralaivola, L. and d’Alché Buc, F. (2001). Incremental support vector machine
learning: A local approach. Lecture Notes in Computer Science, 2130: 322–329,
URL citeseer.nj.nec.com/ralaivola01incremental.html.

Rätsch, G. (1998). Ensemble learning methods for classification. Master’s thesis,
Dep. of Computer Science, University of Potsdam, Germany.

Rätsch, G. (2001). Robust Boosting via Convex Optimization. PhD thesis, Univer-
sity of Potsdam, Neues Palais 10, 14469 Potsdam, Germany.

Rätsch, G., Mika, S., Schölkopf, B. and Müller, K.-R. (2002). Constructing boosting
algorithms from SVMs: an application to one-class classification. IEEE PAMI,
24(9): 1184–1199. Earlier version is GMD TechReport No. 119 (2000).

Rüping, S. (2002). Incremental learning with support vector machines. Technical
Report TR-18, Universität Dortmund, SFB475.

Schölkopf, B., Burges, C.J.C. and Vapnik, V.N. (1995). Extracting support data
for a given task. In Fayyad, U.M. and Uthurusamy, R. (eds), Proceedings,
First International Conference on Knowledge Discovery & Data Mining, AAAI
Press, Menlo Park, CA.

Schölkopf, B. (2001). The kernel trick for distances. In Leen, T.K., Diettrich, T.G.
and Tresp, V. (eds), Advances in Neural Information Processing Systems 13.
MIT Press.

Schölkopf, B., Platt, J., Shawe-Taylor, J., Smola, A.J. and Williamson, R.C.
(2001). Estimating the support of a high-dimensional distribution. Neural
Computation, 13(7): 1443–1471.

Schölkopf, B., Simard, P.Y., Smola, A.J. and Vapnik, V.N. (1998a). Prior knowledge
in support vector kernels. In Jordan, M., Kearns, M. and Solla, S. (eds),
Advances in Neural Information Processing Systems, 10: 640–646, MIT Press,
Cambridge, MA.

Schölkopf, B., Smola, A., Williamson, R.C. and Bartlett, P.L. (2000). New support
vector algorithms. Neural Computation, 12: 1207–1245. also NeuroCOLT
Technical Report NC-TR-1998-031.

Schölkopf, B. and Smola, A.J (2002). Learning with Kernels. MIT Press, Cambridge,
MA.

Schölkopf, B., Smola, A.J. and Müller, K.-R. (1998b). Nonlinear component
analysis as a kernel eigenvalue problem. Neural Computation, 10: 1299–1319.

Shawe-Taylor, J., Bartlett, P.L. and Williamson, R.C. (1998) Structural risk min-
imization over data-dependent hierachies. IEEE Transactions on Information
Theory, 44(5): 1926–1940.

Simard, P.Y., LeCun, Y.A., Denker, J.S. and Victorri, B. (1998). Transformation
invariance in pattern recognition – tangent distance and tangent propagation.
In Orr, G. and Müller, K.-R. (eds), Neural Networks: Tricks of the Trade, LNCS
1524: 239–274. Springer.

Smola, A.J., Schölkopf, B. and Müller, K.-R. (1998). The connection between regu-
larization operators and support vector kernels. Neural Networks, 11: 637–649.

Sonnenburg, S., Rätsch, G., Jagota, A. and Müller, K.-R. (2002). New methods for
splice-site recognition. In Dorronsoro, J.R. (ed), Proc. International conference

876 Sebastian Mika et al.

on artificial Neural Networks – ICANN’02, pp. 329–336, LNCS 2415, Springer,
Berlin.

Stitson, M., Gammerman, A., Vapnik, V.N., Vovk, V., Watkins, C. and Weston,
J. (1997). Support vector regression with ANOVA decomposition kernels.
Technical Report CSD-97-22, Royal Holloway, University of London.

Tax, D. and Laskov, P. (2003). Online SVM learning: from classification to data
description and back. In Molina, C. et al. (ed), Proc. NNSP, pp.499–508.

Tax, D.M.J. and Duin, R.P.W. (2001). Uniform object generation for optimizing
one-class classifiers. Journal for Machine Learning Research, pp. 155–173.

Tikhonov, A.N. and Arsenin, V.Y. (1977). Solutions of Ill-posed Problems.
W.H. Winston, Washington, D.C.

Tsuda, K., Kawanabe, M., Rätsch, G., Sonnenburg, S. and Müller, K.R. (2002).
A new discriminative kernel from probabilistic models. Neural Computation,
14: 2397–2414.

Vapnik, V.N. (1982). Estimation of Dependences Based on Empirical Data.
Springer, Berlin.

Vapnik, V.N. (1998). Statistical Learning Theory. Wiley, New York.
Vapnik, V.N. and Chervonenkis, A.Y. (1974). Theory of Pattern Recognition.

Nauka, Moskow, Russian.
Vapnik, V.N. and Chervonenkis, A.Y. (1991). The necessary and sufficient

conditions for consistency in the empirical risk minimization method. Pattern
Recognition and Image Analysis, 1(3): 283–305.

Wahba, G. (1980). Spline bases, regularization, and generalized cross-validation
for solving approximation problems with large quantities of noisy data.
In Proceedings of the International Conference on Approximation theory.
Academic Press, Austin, Texas.

Warmuth, M.K, Liao, J., Rätsch, G., Mathieson. M., Putta, S. and Lemmem, C.
(2003). Support Vector Machines for active learning in the drug discovery
process. Journal of Chemical Information Sciences, 43(2): 667–673.

Watkins, C. (2000). Dynamic alignment kernels. In Smola, A.J., Bartlett, P.L.,
Schölkopf, B. and Schuurmans, D. (eds), Advances in Large Margin Classifiers,
pp.39–50, MIT Press, Cambridge, MA.

Weston, J., Gammerman, A., Stitson, M., Vapnik, V.N., Vovk, V. and Watkins, C.
(1999). Support vector density estimation. In Schölkopf, B., Burges, C.J.C. and
Smola, A.J. (eds), Advances in Kernel Methods – Support Vector Learning, pp.
293–305, MIT Press, Cambridge, MA.

Williamson, R.C., Smola, A.J. and Schölkopf, B. (1998). Generalization perfor-
mance of regularization networks and support vector machines via entropy
numbers of compact operators. NeuroCOLT Technical Report NC-TR-98-019,
Royal Holloway College, University of London, UK.

Zien, A., Rätsch, G., Mika, S., Schölkopf, B., Lengauer, T. and Müller, K.-R. (2000).
Engineering Support Vector Machine Kernels That Recognize Translation
Initiation Sites. BioInformatics, 16(9): 799–807.

Zoutendijk, G. (1960). Methods of feasible directions, Elsevier.

III.16Bagging, Boosting
and Ensemble Methods

Peter Bühlmann

16.1 An Introduction to Ensemble Methods . 878

16.2 Bagging and Related Methods . 878

Bagging . 879
Unstable Estimators with Hard Decision Indicator . 881
Subagging . 884
Bagging More “Smooth” Base Procedures and Bragging . 885
Bragging. 886
Out-of-Bag Error Estimation . 886
Disadvantages . 886
Other References . 887

16.3 Boosting . 887

Boosting as Functional Gradient Descent . 888
The Generic Boosting Algorithm . 890
Small Step Size . 894
The Bias-variance Trade-off for L2Boost . 894
L2Boost with Smoothing Spline Base Procedure
for One-dimensional Curve Estimation . 895
L2Boost for Additive and Interaction Regression Models . 896
Linear Modeling . 903
Boosting Trees. 903
Boosting and �1-penalized Methods (Lasso). 904
Other References . 904

878 Peter Bühlmann

An Introduction to Ensemble Methods16.1

Ensemble methods aim at improving the predictive performance of a given statisti-
cal learning or model fitting technique. The general principle of ensemble methods
is to construct a linear combination of some model fitting method, instead of using
a single fit of the method.

More precisely, consider for simplicity the framework of function estimation.
We are interested in estimating a real-valued function

g : Rd → R

based on data (X1, Y1), … , (Xn, Yn) where X is a d-dimensional predictor variable
and Y a univariate response. Generalizations to other functions g(·) and other
data-types are possible. We assume to have specified a base procedure which,
given some input data (as above), yields an estimated function ĝ(·). For example,
the base procedure could be a nonparametric kernel estimator (if d is small) or
a nonparametric statistical method with some structural restrictions (for d ≥ 2)
such as a regression tree (or class-probability estimates from a classification tree).
We can run a base procedure many times when changing the input data: the
original idea of ensemble methods is to use reweighted original data to obtain
different estimates ĝ1(·), ĝ2(·), ĝ3(·), … based on different reweighted input data.
We can then construct an ensemble-based function estimate gens(·) by taking linear
combinations of the individual function estimates ĝk(·):

ĝens(·) =
M∑

k=1

ckĝk(·) , (16.1)

where the ĝk(·) are obtained from the base procedure based on the kth reweighted
data-set. For some ensemble methods, e.g. for bagging (see Sect. 16.2), the linear
combination coefficients ck ≡ 1|M are averaging weights; for other methods, e.g.
for boosting (see Sect. 16.3),

∑M
k=1 ck increases as M gets larger.

Ensemble methods became popular as a relatively simple device to improve
the predictive performance of a base procedure. There are different reasons for
this: the bagging procedure turns out to be a variance reduction scheme, at least
for some base procedures. On the other hand, boosting methods are primarily
reducing the (model) biasof thebaseprocedure.This already indicates thatbagging
and boosting are very different ensemble methods. We will argue in Sects. 16.3.1
and 16.3.6 that boosting may be even viewed as a non-ensemble method which has
tremendous advantages over ensemble (or multiple prediction) methods in terms
of interpretation.

Random forests (Bre99b) is a very different ensemble method than bagging or
boosting. The earliest random forest proposal is from Amit and Geman (AG97).
From the perspective of prediction, random forests is about as good as boosting,
and often better than bagging. For further details about random forests we refer
to (Bre99b).

Bagging, Boostingand Ensemble Methods 879

Some rather different exposition about bagging and boosting which describes
these methods in the much broader context of many other modern statistical
methods can be found in (HTF01).

Bagging and Related Methods 16.2

Bagging (Bre96a), a sobriquet for bootstrap aggregating, is an ensemble method
for improving unstable estimation or classification schemes. Breiman (Bre96a)
motivated bagging as a variance reduction technique for a given base procedure,
such as decision trees or methods that do variable selection and fitting in a lin-
ear model. It has attracted much attention, probably due to its implementational
simplicity and the popularity of the bootstrap methodology. At the time of its in-
vention, only heuristic arguments were presented why bagging would work. Later,
it has been shown in (BY02) that bagging is a smoothing operation which turns out
to be advantageous when aiming to improve the predictive performance of regres-
sion or classification trees. In case of decision trees, the theory in (BY02) confirms
Breiman’s intuition that bagging is a variance reduction technique, reducing also
the mean squared error (MSE). The same also holds for subagging (subsample
aggregating), defined in Sect. 16.2.3, which is a computationally cheaper version
than bagging. However, for other (even “complex”) base procedures, the variance
and MSE reduction effect of bagging is not necessarily true; this has also been
shown in (BS02) for the simple case where the estimator is a U-statistics.

Bagging 16.2.1

Consider the regression or classification setting. The data is given as in Sect. 16.1:
we have pairs (Xi, Yi) (i = 1, … , n), where Xi ∈ Rd denotes the d-dimensional
predictor variable and the response Yi ∈ R (regression) or Yi ∈ {0, 1, … , J − 1}
(classification with J classes). The target function of interest is usually E[Y |X = x]
for regression or the multivariate function P[Y = j|X = x] (j = 0, … , J − 1)
for classification. The function estimator, which is the result from a given base
procedure, is

ĝ(·) = hn((X1, Y1), … , (Xn, Yn))(·) : Rd → R ,

where the function hn(·) defines the estimator as a function of the data.
Bagging is defined as follows.

Bagging algorithm
Step 1. Construct a bootstrap sample (X∗

1 , Y∗
1), … , (X∗

n , Y∗
n) by randomly drawing

n times with replacement from the data (X1, Y1), … , (Xn, Yn).

Step 2. Compute the bootstrapped estimator ĝ∗(·) by the plug-in principle: ĝ∗(·) =
hn((X∗

1 , Y∗
1), … , (X∗

n , Y∗
n))(·).

880 Peter Bühlmann

Step 3. Repeat steps 1 and 2 M times, where M is often chosen as 50 or 100, yielding
ĝ∗k(·) (k = 1, … , M). The bagged estimator is ĝBag(·) = M−1

∑M
k=1 ĝ∗k(·).

In theory, the bagged estimator is

ĝBag(·) = E∗ [ĝ∗(·)] . (16.2)

The theoretical quantity in (16.2) corresponds to M = ∞: the finite number M in
practice governs the accuracy of the Monte Carlo approximation but otherwise,
it shouldn’t be viewed as a tuning parameter for bagging. Whenever we discuss
properties of bagging, we think about the theoretical version in (16.2).

This is exactly Breiman’s (Bre96a) definition for bagging regression estimators.
For classification, we propose to average the bootstrapped probabilities ĝ∗k

j (·) =
P̂
∗[Y∗k = j|X∗k = ·] (j = 0, … , J − 1) yielding an estimator for P[Y = j|X = ·] ,

whereas Breiman (Bre96a) proposed to vote among classifiers for constructing the
bagged classifier.

The empirical fact that bagging improves the predictive performance of re-
gression and classification trees is nowadays widely documented (Bre96a, Bre96b,
BY02, BD02, BS02), HL02). To give an idea about the gain in performance, we cite
some of the results of Breiman’s pioneering paper (Bre96a): for 7 classification
problems, bagging a classification tree improved over a single classification tree
(in terms of cross-validated misclassification error) by

33%, 47%, 30%, 23%, 20%, 22%, 27% ;

in case of 5 regression data sets, bagging regression trees improved over a single
regression tree (in terms of cross-validated squared error) by

39%, 22%, 46%, 30%, 38% .

In both cases, the size of the single decision tree and of the bootstrapped trees was
chosen by optimizing a 10-fold cross-validated error, i.e. using the “usual” kind
of tree procedure. Besides that the reported improvement in percentages is quite
impressive, it is worth pointing out that bagging a decision tree is almost never
worse (in terms of predictive power) than a single tree.

A trivial equality indicates the somewhat unusual approach of using the boot-
strap methodology:

ĝBag(·) = ĝ(·) + (E∗[ĝ∗(·)] − ĝ(·)) = ĝ(·) + Bias∗(·) ,

where Bias∗(·) is the bootstrap bias estimate of ĝ(·). Instead of the usual bias
correction hwith a negative sign, bagging comes along with the wrong sign and
adds the bootstrap bias estimate. Thus, we would expect that bagging has a higher
bias than ĝ(·), which we will argue to be true in some sense, see Sect. 16.2.2.
But according to the usual interplay between bias and variance in nonparametric
statistics, the hope is to gain more by reducing the variance than increasing the
bias, so that overall, bagging would pay-off in terms of the MSE. Again, this hope

Bagging, Boostingand Ensemble Methods 881

turns out to be true for some base procedures. In fact, Breiman (Bre96a) described
heuristically the performance of bagging as follows: the variance of the bagged
estimator ĝBag(·) should be equal or smaller than that for the original estimator
ĝ(·); and there can be a drastic variance reduction if the original estimator is
“unstable”.

Unstable Estimators with Hard Decision Indicator 16.2.2

Instability often occurs when hard decisions with indicator functions are involved
as in regression or classification trees. One of the main underlying ideas why
bagging works can be demonstrated by a simple example.

1Example 1: Toy Example: A Simple, Instructive Analysis
Consider the estimator

ĝ(x) = 1[Yn≤x] , x ∈ R , (16.3)

where Yn = n−1
∑n

i=1 Yi with Y1, … , Yn i.i.d. (no predictor variables Xi are used for
this example). The target we have in mind is g(x) = limn→∞ E[ĝ(x)]. A simple yet
precise analysis below shows that bagging is a smoothing operation. Due to the
central limit theorem we have

n1|2(Yn − µ) →D N (0,σ2) (n → ∞) (16.4)

with µ = E[Y1] and σ2 = Var(Y1). Then, for x in a n−1|2-neighborhood of µ,

x = xn(c) = µ + cσn−1|2 , (16.5)

we have the distributional approximation

ĝ(xn(c)) →D L(Z) = 1[Z≤c] (n → ∞), Z ∼ N (0, 1) . (16.6)

Obviously, for a fixed c, this is a hard decision function of Z. On the other hand,
averaging for the bagged estimator looks as follows. Denote by Φ(·) the c.d.f. of
a standard normal distribution:

ĝBag(xn(c)) = E∗
[

1[Y∗
n≤xn(c)]

]
= E∗

[
1[n1|2(Y∗

n−Yn
)
|σ≤n1|2(xn(c)−Yn

)
|σ]

]

= Φ
(

n1|2(xn(c) − Yn)|σ
)

+ oP(1)

→D LBag(Z) = Φ(c − Z) (n → ∞) , Z ∼ N (0, 1) , (16.7)

where the first approximation (second line) follows because the bootstrap works
for the arithmetic mean Yn, i.e.,

sup
x∈R

∣∣∣P∗
[

n1|2(Y
∗
n − Yn)|σ ≤ x

]
− Φ(x)

∣∣∣ = oP(1) (n → ∞) , (16.8)

882 Peter Bühlmann

and the second approximation (third line in (16.7) holds, because of (16.4) and
the definition of xn(c) in (16.5). Comparing with (16.6), bagging produces a soft
decision function LBag(·) of Z: it is a shifted inverse probit, similar to a sigmoid-
type function. Figure 16.1 illustrates the two functions L(·) and LBag(·). We see
that bagging is a smoothing operation. The amount of smoothing is determined
“automatically” and turns out to be very reasonable (we are not claiming any
optimality here). The effect of smoothing is that bagging reduces variance due to
a soft-instead of a hard-thresholding operation.

plug-in with indicator

z
-4 -2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 16.1. Indicator estimator from (16.3) at x = xn(0) as in (16.5). Function L(z) = 1[z≤0] (solid line)

and LBag(z) (dotted line) defining the asymptotics of the estimator in (16.6) and its bagged version

in (16.7)

squared bias

c
-4 -2 0 2 4

0.
0

0.
00

2
0.

00
4

0.
00

6

Figure 16.2. Indicator estimator from (16.3) at x = xn(c) as in (16.5). Asymptotic variance, squared bias

and mean squared error (AMSE) (the target is limn→∞ E [ĝ(x)]) for the estimator ĝ(xn(c)) from

(16.3) (solid line) and for the bagged estimator ĝBag(xn(c)) (dotted line) as a function of c

Bagging, Boostingand Ensemble Methods 883

We can compute the first two asymptotic moments in the unstable region with
x = xn(c). Numerical evaluations of these first two moments and the mean squared
error (MSE) are given in Fig. 16.2. We see that in the approximate range where
|c| ≤ 2.3, bagging improves the asymptotic MSE. The biggest gain, by a factor 3, is
at the most unstable point x = µ = E[Y1], corresponding to c = 0. The squared bias
with bagging has only a negligible effect on the MSE (note the different scales in
Fig. 16.2). Note that we always give an a-priori advantage to the original estimator
which is asymptotically unbiased for the target as defined.

In (BY02), this kind of analysis has been given for more general estimators than
Yn in (16.3) and also for estimation in linear models after testing. Hard decision
indicator functions are involved there as well and bagging reduces variance due
to its smoothing effect. The key to derive this property is always the fact that the
bootstrap is asymptotically consistent as in (16.8).

Regression Trees
We address here the effect of bagging in the case of decision trees which are
most often used in practice in conjunction with bagging. Decision trees consist of
piecewise constant fitted functions whose supports (for the piecewise constants)
are given by indicator functions similar to (16.3). Hence we expect bagging to bring
a significant variance reduction as in the toy example above.

For simplicity of exposition, we consider first a one-dimensional predictor space
and a so-called regression stump which is a regression tree with one split and two
terminal nodes. The stump estimator (or algorithm) is then defined as the decision
tree,

ĝ(x) = β̂�1[x<d̂] + β̂u1[x≥d̂] = β̂� + (β̂u − β̂�)1[d̂≤x] , (16.9)

where the estimates are obtained by least squares as

(β̂�, β̂u, d̂) = arg minβ�,βu,d

n∑

i=1

(
Yi − β�1[Xi<d] − βu1[Xi≥d]

)2
.

These values are estimates for the best projected parameters defined by

(β0
�, β

0
u, d0) = arg minβ�,βu,d E

[
(Y − β�1[X<d] − βu1[X≥d])

2
]

. (16.10)

The main mathematical difference of the stump in (16.9) to the toy estima-
tor in (16.3) is the behavior of d̂ in comparison to the behavior of Yn (and not
the constants β̂� and β̂u involved in the stump). It is shown in (BY02) that d̂ has
convergence rate n−1|3 (in case of a smooth regression function) and a limiting
distribution which is non-Gaussian. This also explains that the bootstrap is not
consistent, but consistency as in (16.8) turned out to be crucial in our analysis
above. Bagging is still doing some kind of smoothing, but it is not known how this
behaves quantitatively. However, a computationally attractive version of bagging,
which has been found to perform often as good as bagging, turns out to be more
tractable from a theoretical point of view.

884 Peter Bühlmann

Subagging16.2.3

Subagging is a sobriquet for subsample aggregating where subsampling is used
instead of the bootstrap for the aggregation. An estimator ĝ(·) = hn((X1, Y1), … ,
(Xn, Yn))(·) is aggregated as follows:

ĝSB(m)(·) =

(
n

m

)−1 ∑

(i1,…,im)∈I
hm((Xi1 , Yi1), … , (Xim , Yim))(·) ,

where I is the set of m-tuples (m < n) whose elements in {1, … , n} are all distinct.
This aggregation can be approximated by a stochastic computation. The subagging
algorithm is as follows.

Subagging Algorithm
Step 1. For k = 1, … , M (e.g. M = 50 or 100) do:
(i) Generate a random subsample (X∗k

1 , Y∗k
1), … , (X∗k

m , Y∗k
m) by randomly drawing

m times without replacement from the data (X1, Y1), … , (Xn, Yn) (instead of
resampling with replacement in bagging).

(ii) Compute the subsampled estimator

ĝ∗k
(m)(·) = hm

(
(X∗k

1 , Y∗k
1), … , (X∗k

m , Y∗k
m)

)
(·) ; .

Step 2. Average the subsampled estimators to approximate

ĝSB(m)(·) ≈ M−1
M∑

k=1

ĝ∗k
(m)(·) .

As indicated in the notation, subagging depends on the subsample size m which
is a tuning parameter (in contrast to M).

An interesting case is half subagging with m = [n|2]. More generally, we could
also use m = [an] with 0 < a < 1 (i.e. m a fraction of n) and we will argue why
the usual choice m = o(n) in subsampling for distribution estimation (PRW99) is
a bad choice. Half subagging with m = [n|2] has been studied also in (BS02): in
case where ĝ is a U-statistic, half subagging is exactly equivalent to bagging, and
subagging yields very similar empirical results to bagging when the estimator ĝ(·)
is a decision tree. Thus, if we don’t want to optimize over the tuning parameter
m, a good choice in practice is very often m = [n|2]. Consequently, half subagging
typically saves more than half of the computing time because the computational
order of an estimator ĝ = ĝ(n) is usually at least linear in n.

Subagging Regression Trees
We describe here in a non-technical way the main mathematical result from (BY02)
about subagging regression trees.

Bagging, Boostingand Ensemble Methods 885

The underlying assumptions for some mathematical theory are as follows. The
data generating regression model is

Yi = g(Xi) + εi , i = 1, … , n ,

where X1, … , Xn and ε1, … , εn are i.i.d. variables, independent from each other,
and E[ε1] = 0, E|ε1|2 < ∞. The regression function g(·) is assumed to be smooth
and the distribution of Xi and εi are assumed to have suitably regular densities.

It is then shown in (BY02) that for m = [an] (0 < a < 1),

lim sup
n→∞

E [(ĝSB(m)(x) − g(x))2]

E [(ĝn(x) − g(x))2]
< 1 ,

for x in suitable neighborhoods (depending on the fraction a) around the best
projected split points of a regression tree (e.g. the parameter d0 in (16.10) for
a stump), and where g(x) = limn→∞ E[ĝ(x)]. That is, subagging asymptotically
reduces the MSE for x in neighborhoods around the unstable split points, a fact
which we may also compare with Fig. 16.2. Moreover, one can argue that globally,

E
[
(ĝSB(m)(X) − g(X))2

] approx.
< E

[
(ĝ(X) − g(X))2

]

for n large, and where the expectations are taken also over (new) predictors X.
For subagging with small order m = o(n), such a result is no longer true: the

reason is that small order subagging will then be dominated by a large bias (while
variance reduction is even better than for fraction subagging with m = [an], 0 <
a < 1).

Similarly as for the toy example in Sect. 16.2.2, subagging smoothes the hard
decisions in a regression tree resulting in reduced variance and MSE.

Bagging More “Smooth” Base Procedures and Bragging 16.2.4

As discussed in Sects. 16.2.2 and 16.2.3, (su-)bagging smoothes out indicator func-
tions which are inherent in some base procedures such as decision trees. For
base procedures which are “smoother”, e.g. which do not involve hard decision
indicators, the smoothing effect of bagging is expected to cause only small effects.

For example, in (BS02) it is proved that the effect of bagging on the MSE is only in
the secondorder term if thebaseprocedure is aU-statistic. Similarly, citing (CH03):
“… when bagging is applied to relatively conventional statistical problems, it
cannot reliably be expected to improve performance”. On the other hand, we
routinely use nowadays “non-conventional” methods: a simple example is variable
selection and fitting in a linear model where bagging has been demonstrated to
improve predictive performance (Bre96a).

In (BD02), the performance of bagging has been studied for MARS, projection
pursuit regression and regression tree base procedures: most improvements of
bagging are reported for decision trees. In (BY02), it is shown that bagging the basis
function in MARS essentially doesn’t change the asymptotic MSE. In (Buh03) it is

886 Peter Bühlmann

empirically demonstrated in greater detail that for finite samples, bagging MARS
is by far less effective – and sometimes very destructive – than bagging decision
trees.

(Su-)bagging may also have a positive effect due to averaging over different
selected predictor variables; this is an additional effect besides smoothing out
indicator functions. In case of MARS, we could also envision that such an averaging
over different selected predictor variables would have a positive effect: in the
empirical analysis in (Buh03), this has been found to be only true when using
a robust version of aggregation, see below.

Bragging16.2.5

Bragging stands for bootstrap robust aggregating (Buh03): it uses the sample
median over the M bootstrap estimates ĝ∗k(·), instead of the sample mean in Step 3
of the bagging algorithm.

While bragging regression trees was often found to be slightly less improving
than bagging, bragging MARS seems better than the original MARS and much
better than bagging MARS.

Out-of-Bag Error Estimation16.2.6

Bagging “automatically” yields an estimate of the out-of-sample error, sometimes
referred to as the generalization error. Consider a loss �(Y , ĝ(X)), measuring the
discrepancy between an estimated function ĝ, evaluated at X, and the correspond-
ing response Y , e.g. �(Y , ĝ(X)) = |Y − ĝ(X)|2. The generalization error is then

err = E [�(Y , ĝ(X))] ,

where the expectation E is over the training data (X1, Y1), … , (Xn, Yn) (i.i.d. or
stationary pairs), ĝ(·) a function of the training data, and (X, Y) is a new test
observation, independent from the training data but having the same distribution
as one training sample point (Xi, Yi).

In a bootstrap sample (in the bagging procedure), roughly exp(−1) ≈ 37%
of the original observations are left out: they are called “out-of-bag” observa-
tions (Bre96b). Denote by Bootk the original sample indices which were resampled
in the kth bootstrap sample; note that the out-of-bag sample observations (in the
kth bootstrap resampling stage) are then given by {1, … , n} \ Bootk which can be
used as test sets. The out-of-bag error estimate of bagging is then defined as

êrrOB = n−1
n∑

i=1

N−1
M

M∑

k=1

1[(Xi,Yi) |∈Bootk]�
(
Yi, ĝ∗k(Xi)

)
,

NM =
M∑

k=1

1[(Xi,Yi) |∈Bootk] .

Bagging, Boostingand Ensemble Methods 887

In (Byl02), a correction of the out-of-bag error estimate is proposed. Out-of-bag
estimation can also be used for other tasks, e.g. for more honest class probability
estimates in classification when bagging trees (Bre96b).

Disadvantages 16.2.7

The main disadvantage of bagging, and other ensemble algorithms, is the lack of
interpretation. A linear combination of decision trees is much harder to interpret
than a single tree. Likewise: bagging a variable selection – fitting algorithm for
linear models (e.g. selecting the variables using the AIC criterion within the least-
squares estimation framework) gives little clues which of the predictor variables
are actually important.

One way out of this lack of interpretation is sometimes given within the frame-
workofbagging. In (ET98), thebootstraphasbeen justified to judge the importance
of automatically selected variables by looking at relative appearance-frequencies
in the bootstrap runs. The bagging estimator is the average of the fitted bootstrap
functions, while the appearance frequencies of selected variables or interactions
may serve for interpretation.

Other References 16.2.8

Bagging may also be useful as a “module” in other algorithms: BagBoosting (BY00)
is a boosting algorithm (see Sect. 16.3) with a bagged base-procedure, often
a bagged regression tree. The theory about bagging supports the finding that
BagBoosting using bagged regression trees, which have smaller asymptotic MSEs
than trees, is often better than boosting with regression trees. This is empirical-
ly demonstrated for a problem about tumor classification using microarray gene
expression predictors (Det04).

Bundling classifiers (HL02), which is a more complicated aggregation algorithm
but related to bagging, seems to perform better than bagging for classification.
In (Rid02), bagging is used in conjunction with boosting (namely for stopping
boosting iterations) for density estimation. In (DF03), bagging is used in the
unsupervised context of cluster analysis, reporting improvements when using
bagged clusters instead of original cluster-outputs.

Boosting 16.3

Boosting algorithms have been prpoposed in the machine learning literature by
Schapire (Sch90) and Freund (Fre95, FS96), see also (Sch02). These first algorithms
have been developed as ensemble methods. Unlike bagging which is a parallel en-
semble method, boosting methods are sequential ensemble algorithms where the
weights ck in (16.1) are depending on the previous fitted functions ĝ1, … , ĝk−1.

888 Peter Bühlmann

Boosting has been empirically demonstrated to be very accurate in terms of clas-
sification, notably the so-called AdaBoost algorithm (FS96).

We will explain below that boosting can be viewed as a nonparametric optimiza-
tion algorithm in function space, as first pointed out by Breiman (Bre98, Bre99a).
This view turns out to be very fruitful to adapt boosting for other problems than
classification, including regression and survival analysis.

Maybe it is worth mentioning here that boosting algorithms have often better
predictive power than bagging, (cf. (Bre98)); of course, such a statement has to
be read with caution, and methods should be tried out on individual data-sets,
including e.g. cross-validation, before selecting one among a few methods.

To give an idea, we report here some empirical results from (Bre98) for classi-
fication: we show below the gains (in percentage) of boosting trees over bagging
trees:

“normal” size data-sets: 64.3%, 10.8%, 20.3%, −4.6%, 6.9%, 16.2% ,

large data-sets: 37.5%, 12.6%, −50.0%, 4.0%, 28.6% .

For all data-sets, boosting trees was better than a single classification tree. The
biggest loss of 50% for boosting in comparison with bagging is for a data-set with
very low misclassification error, where bagging achieves 0.014% and boosting
0.021%.

Boosting as Functional Gradient Descent16.3.1

Rather than looking through the lenses of ensemble methods, boosting algorithms
can be seen as functional gradient descent techniques (Bre98, Bre99a). The goal is
to estimate a function g : Rd → R, minimizing an expected loss

E [�(Y , g(X))] , �(·, ·) : R× R→ R+ , (16.11)

based on data (Xi, Yi) (i = 1, … n) as in Sect. 16.2.1. The loss function � is typi-
cally assumed to be convex in the second argument. We consider here both cases
where the univariate response Y is continuous (regression problem) or discrete
(classification problem), since boosting is potentially useful in both cases.

As we will see in Sect. 16.3.2, boosting algorithms are pursuing a “small” empir-
ical risk

n−1
n∑

i=1

�
(
Yi, g(Xi)

)

by selecting a g in the linear hull of some function class, i.e. g(·) =
∑

k ckgk(·) with
gk(·)’s from a function class such as trees.

The most popular loss functions, for regression and binary classification, are
given in Table 16.1.

Bagging, Boostingand Ensemble Methods 889

Table 16.1. The squared error, binomial negative log-likelihood and exponential loss functions and

their population minimizers; logit(p) = log(p|(1 − p))

Boosting Loss function Population minimizer for (16.11)

L2Boost �(y, g) = (y − g)2 g(x) = E [Y |X = x]

LogitBoost �(y, g) = log2(1 + exp(−2(y − 1)g)) g(x) = 0.5 · logit(P[Y = 1|X = x])

AdaBoost �(y, g) = exp(−(2y − 1)g) g(x) = 0.5 · logit(P[Y = 1|X = x])

While the squared error loss is mainly used for regression (see (BY03) for
classification with the squared error loss), the log-likelihood and the exponential
loss are for binary classification only.

The Margin for Classification
The form of the log-likelihood loss may be somewhat unusual: we norm it, by
using the base 2 so that it “touches” the misclassification error as an upper bound
(see Fig. 16.3), and we write it as a function of the so-called margin ỹg, where
ỹ = 2y − 1 ∈ {−1, 1} is the usual labeling from the machine learning community.
Thus, the loss is a function of the margin ỹg only; and the same is true with the
exponential loss and also the squared error loss for classification since

(ỹ − g)2 = ỹ2 − 2ỹg + g2 = 1 − 2ỹg + (ỹg)2 ,

using ỹ2 = 1.
The misclassification loss, or zero-one loss, is 1[ỹg<0], again a function of the

margin, whose population minimizer is g(x) = 1[P[Y=1|X=x]>1|2] . For readers less

Loss functions for binary classification

Margin

Figure 16.3. Loss functions of the margin for binary classification. Zero-one misclassification loss

(solid line), log-likelihood loss (dashed line), exponential loss (dotted line), squared error loss

(dashed|dotted). The loss-functions are described in Table 16.1

890 Peter Bühlmann

familiar with the concept of the margin, this can also be understood as follows: the
Bayes-classifier which minimizes the misclassification risk is

gBayes(x) = 1[P[Y=1|X=x]>1|2] .

We can now see that a misclassification occurs, if y = 0, gBayes(x) = 1 or y = 1,
gBayes(x) = 0, which is equivalent to 2(y − 1)gBayes(x) < 0 or ỹgBayes(x) < 0.

The (surrogate) loss functions given in Table 16.1 are all convex functions of
the margin ỹg which bound the zero-one misclassification loss from above, see
Fig. 16.3. The convexity of these surrogate loss functions is computationally im-
portant for empirical risk minimization; minimizing the empirical zero-one loss
is computationally intractable.

The Generic Boosting Algorithm16.3.2

Estimation of the function g(·), which minimizes an expected loss in (16.11), is
pursued by a constrained minimization of the empirical risk n−1

∑n
i=1 �(Yi, g(Xi)).

The constraint comes in algorithmically (and not explicitly), by the way we are
attempting to minimize the empirical risk, with a so-called functional gradient
descent. This gradient descent view has been recognized and refined by various
authors (cf. (Bre98, Bre99a, MBBF00, FHT00, Fri01, BY03)). In summary, the
minimizer of the empirical risk is imposed to satisfy a “smoothness” constraint in
terms of a linear expansion of (“simple”) fits from a real-valued base procedure
function estimate.

Generic Functional Gradient Descent
Step 1 (initialization). Given data {(Xi, Yi); i = 1, … , n}, apply the base procedure
yielding the function estimate

F̂1(·) = ĝ(·) ,

where ĝ = ĝX,Y = hn((X1, Y1), … , (Xn, Yn)) is a function of the original data. Set
m = 1.

Step 2 (projecting gradient to learner). Compute the negative gradient vector

Ui = −
∂�(Yi, g)

∂g
|g=F̂m(Xi) , i = 1, … , n ,

evaluated at the current F̂m(·). Then, apply the base procedure to the gradient
vector

ĝm+1(·) ,

Bagging, Boostingand Ensemble Methods 891

where ĝm+1 = ĝX,U = hn((X1, U1), … , (Xn, Un)) is a function of the original predic-
tor variables and the current negative gradient vector as pseudo-response.

Step 3 (line search). Do a one-dimensional numerical search for the best step-size

ŝm+1 = arg mins

n∑

i=1

�
(
Yi, F̂m(Xi) + sĝm+1(Xi)

)
.

Update,

F̂m+1(·) = F̂m(·) + ŝm+1ĝm+1(·) .

Step 4 (iteration). Increase m by one and repeat Steps 2 and 3 until a stopping
iteration M is achieved.

The number of iterations M is the tuning parameter of boosting. The larger it
is, the more complex the estimator. But the complexity, for example the variance
of the estimator, is not linearly increasing in M: instead, it increases very slowly as
M gets larger, see also Fig. 16.4 in Sect. 16.3.5.

Obviously, the choice of the base procedure influences the boosting estimate.
Originally, boostinghasbeenmainlyusedwith tree-typebaseprocedures, typically
with small trees such as stumps (two terminal nodes) or trees having say 8 terminal
nodes (cf. (Bre98, Bre04, BK99, FHT00, DB03)); see also Sect. 16.3.8. But we will
demonstrate in Sect. 16.3.6 that boosting may be very worthwhile within the class
of linear, additive or interaction models, allowing for good model interpretation.

The function estimate ĝm+1 in Step 2 can be viewed as an estimate ofE[Ui|X = x],
the expected negative gradient given the predictor X, and takes values in R, even
in case of a classification problem with Yi in a finite set (this is different from the
AdaBoost algorithm, see below).

We call F̂M(·) the L2Boost-, LogitBoost- or AdaBoost-estimate, according to
the implementing loss function (y − g)2, log2(1 + exp(−2(y − 1)g)) or �(y, g) =
exp(−(2y − 1)g), respectively; see Table 16.1.

The original AdaBoost algorithm for classification is actually a bit different:
the base procedure fit is a classifier, and not a real-valued estimator for the con-
ditional probability of Y given X; and Steps 2 and 3 are also somewhat different.
Since AdaBoost’s implementing exponential loss function is not well established in
statistics, we refer for a detailed discussion to (FHT00). From a statistical perspec-
tive, the squared error loss and log-likelihood loss functions are most prominent
and we describe below the corresponding boosting algorithms in detail.

L2Boost
Boosting using the squared error loss, L2Boost, has a simple structure: the negative
gradient in Step 2 is the classical residual vector and the line search in Step 3 is
trivial when using a base procedure which does least squares fitting.

892 Peter Bühlmann

L2Boost Algorithm
Step 1 (initialization). As in Step 1 of generic functional gradient descent.

Step 2. Compute residuals Ui = Yi − F̂m(Xi) (i = 1, … , n) and fit the real-valued
base procedure to the current residuals (typically by (penalized) least squares) as
in Step 2 of the generic functional gradient descent; the fit is denoted by ĝm+1(·).

Update

F̂m+1(·) = F̂m(·) + ĝm+1(·) .

We remark here that, assuming the base procedure does some (potentially penal-
ized) least squares fitting of the residuals, the line search in Step 3 of the generic
algorithm becomes trivial with ŝm+1 = 1.

Step 3 (iteration). Increase iteration index m by one and repeat Step 2 until a stop-
ping iteration M is achieved.

The estimate F̂M(·) is an estimator of the regression function E[Y |X = ·].
L2Boosting is nothing else than repeated least squares fitting of residuals (cf. (Fri01,
BY03)). With m = 2 (one boosting step), it has already been proposed by Tukey
(Tuk77) under the name “twicing”. In the non-stochastic context, the L2Boosting
algorithm is known as “Matching Pursuit” (MZ93) which is popular in signal
processing for fitting overcomplete dictionaries.

LogitBoost
Boosting using the log-likelihood loss for binary classification (and more generally
for multi-class problems) is known as LogitBoost (FHT00). LogitBoost uses some
Newton-stepping with the Hessian, rather than the line search in Step 3 of the
generic boosting algorithm:

LogitBoost Algorithm
Step 1 (initialization). Start with conditional probability estimates p̂1(Xi) = 1|2 (i =
1, … , n) (for P[Y = 1|X = Xi]). Set m = 1.

Step 2. Compute the pseudo-response (negative gradient)

Ui =
Yi − p̂m(Xi)

p̂m(Xi)(1 − p̂m(Xi))
,

and the weights

wi = p̂m(Xi)
(
1 − p̂m(Xi)

)
.

Bagging, Boostingand Ensemble Methods 893

Fit the real-valued base procedure to the current pseudo-response Ui (i = 1, … , n)
by weighted least squares, using the current weights wi (i = 1, … n); the fit is
denoted by ĝm+1(·). Update

F̂m+1(·) = F̂m(·) + 0.5 · ĝm+1(·)
and

p̂m+1(Xi) =
exp

(
F̂m+1(Xi)

)

exp
(
F̂m+1(Xi)

)
+ exp

(
−F̂m+1(Xi)

) .

Step 3 (iteration). Increase iteration index m by one and repeat Step 2 until a stop-
ping iteration M is achieved.

The estimate F̂M(·) is an estimator for half of the log-odds ratio 0.5 · logit(P[Y =
1|X = ·] (see Table 16.1). Thus, a classifier (under equal misclassification loss for
the labels Y = 0 and Y = 1) is

sign
(
F̂M(·)) ,

and an estimate for the conditional probability P[Y = 1|X = ·] is

p̂M(·) =
exp

(
F̂M(·))

exp
(
F̂M(·)) + exp

(
−F̂M(·)) .

A requirement for LogitBoost is that the base procedure has the option to be fitted
by weighted least squares.

Multi-class Problems
The LogitBoost algorithm described above can be modified for multi-class prob-
lems where the response variable takes values in a finite set {0, 1, … , J − 1} with
J > 2 by using the multinomial log-likelihood loss (FHT00). But sometimes it can
be advantageous to run instead a binary classifier (e.g. with boosting) for many
binary problems. The most common approach is to code for J binary problems
where the jth problem assigns the response

Y (j) =

1 , if Y = j ,

0 , if Y ≠ j .

i.e. the so-called “one versus all” approach. For example, if single class-label can be
distinguished well from all others, the “one versus all” approach seems adequate:
empirically, this has been reported for classifying tumor types based on microarray
gene expressions when using a LogitBoost algorithm (DB03).

Other codings of a multi-class into into multiple binary problems are discussed
in (ASS01).

894 Peter Bühlmann

Small Step Size16.3.3

It is often better to use small step sizes instead of using the full line search step-
length ŝm+1 from Step 3 in the generic boosting algorithm (or ŝm+1 ≡ 1 for L2Boost
or ŝm+1 ≡ 0.5 for LogitBoost). We advocate here to use the step-size

νŝm+1 , 0 < ν ≤ 1 ,

where ν is constant during boosting iterations and small, e.g. ν = 0.1. The param-
eter ν can be seen as a simple shrinkage parameter, where we use the shrunken
νĝm+1(·) instead of the unshrunken ĝm+1(·). Small step-sizes (or shrinkage) make
the boosting algorithm slower and require a larger number M of iterations. How-
ever, the computational slow-down often turns out to be advantageous for better
out-of-sample prediction performance, (cf. (Fri01, BY03)). There are also some
theoretical reasons to use boosting with ν (infinitesimally) small (EHJT03).

The Bias-variance Trade-off for L2Boost16.3.4

We discuss here the behavior of boosting in terms of model-complexity and esti-
mation error when the number of iterations increase. This is best understood in
the framework of squared error loss and L2Boosting.

We represent the base procedure as an operator

S : Rn → R
n , (U1, … , Un)T → (

Û1, … , Ûn

)T

which maps a (pseudo-)response vector (U1, … , Un)T to its fitted values; the pre-
dictor variables X are absorbed here into the operator notation. That is,

S(U1, … , Un)T =
(
ĝ(X1), … , ĝ(Xn)

)T
,

where ĝ(·) = ĝX,U(·) is the estimate from the base procedure based on data
(Xi, Ui), i = 1, … , n. Then, the boosting operator in iteration m equals

Bm = I − (I − S)m

and the fitted values of boosting after m iterations are

BmY = Y − (I − S)mY , Y =
(
Y1, … , Yn

)T
.

Heuristically, if the base procedure satisfies‖I−S‖ < 1 for a suitable norm, i.e. has a
“learning capacity” such that the residual vector is shorter than the input-response
vector, we see that Bm converges to the identity I as m → ∞, and BmY converges
to the fully saturated model Y as m → ∞, interpolating the response data exactly.
Thus, we have to stop the boosting algorithm at some suitable iteration number
m = M, and we see that a bias-variance trade-off is involved when varying the
iteration number M.

Bagging, Boostingand Ensemble Methods 895

L2Boost with Smoothing Spline Base Procedure
for One-dimensional Curve Estimation 16.3.5

The case where the base procedure is a smoothing spline for a one-dimensional
predictor X ∈ R1 is instructive, although being only a toy example within the
range of potential applications of boosting algorithms.

In our notation from above, S denotes a smoothing spline operator which
is the solution (SY = g(X1), … , f (Xn)) of the following optimization problem
(cf. (Wah90))

arg ming n−1
n∑

i=1

(
Yi − g(Xi)

)2
+ λ

∫
g′′(x)2 dx .

The smoothing parameter λ controls the bias-variance trade-off, and tuning the
smoothing spline estimator usually boils down to estimating a good value of λ.
Alternatively, the L2Boosting approach for curve-estimation with a smoothing
spline base procedure is as follows.

Choosing the Base Procedure
Within the class of smoothing spline base procedures, we choose a spline by fixing
a smoothing parameter λ. This should be done such that the base procedure has
low variance but potentially high bias: for example, we may choose λ such that
the degrees of freedom df = trace(S) is low, e.g. df = 2.5. Although the base
procedure has typically high bias, we will reduce it by pursuing suitably many
boosting iterations. Choosing the df is not really a tuning parameter: we only
have to make sure that df is small enough, so that the initial estimate (or first few
boosting estimates) are not already overfitting. This is easy to achieve in practice
and a theoretical characterization is described in (BY03).

Related aspects of choosing the base procedure are described in Sects. 16.3.6
and 16.3.8. The general “principle” is to choose a base procedure which has low
variance and having the property that when taking linear combinations thereof,
we obtain a model-class which is rich enough for the application at hand.

MSE Trace and Stopping
As boosting iterations proceed, the bias of the estimator will go down and the
variance will increase. However, this bias-variance exhibits a very different behav-
ior as when classically varying the smoothing parameter (the parameter λ). It can
be shown that the variance increases with exponentially small increments of the
order exp(−Cm), C > 0, while the bias decays quickly: the optimal mean squared
error for the best boosting iteration m is (essentially) the same as for the optimally
selected tuning parameter λ (BY03), but the trace of the mean squared error is very
different, see Fig. 16.4. The L2Boosting method is much less sensitive to overfitting
and hence often easier to tune. The mentioned insensitivity about overfitting al-
so applies to higher-dimensional problems, implying potential advantages about
tuning.

896 Peter Bühlmann

varying df

degrees of freedom

m
ea

n
sq

ua
re

d
er

ro
r

0 10 20 30 40

0.
2

0.
4

0.
6

0.
8

Figure 16.4. Mean squared error E
[
(g(X) − ĝ(X))2

]
for new predictor X (solid line) and

n−1 ∑n
i=1 E

[
(F̂m(Xi) − g(Xi))2

]
(dotted line) from 100 simulations of a nonparametric regression

model with smooth regression function and Unif.[−1|2, 1|2]-distributed design points. Sample size is

n = 100. Left: L2Boost with cubic smoothing spline having df = 3, as a function of boosting itera-

tions m. Right: Cubic smoothing spline for various degrees of freedom (various amount of

smoothing)

Asymptotic Optimality
Such L2Boosting with smoothing splines achieves the asymptotically optimal min-
imax MSE rates, and the method can even adapt to higher order smoothness of
the true underlying function, without knowledge of the true degree of smoothness
(BY03).

L2Boost for Additive and Interaction Regression Models16.3.6

InSect. 16.3.4,wealreadypointedout that L2Boostingyields anotherwayof regular-
ization by seeking for a compromise between bias and variance. This regularization
turns out to be particularly powerful in the context with many predictor variables.

Additive Modeling
Consider the component-wise smoothing spline which is defined as a smoothing
spline with one selected predictor variable X(ι̂) (ι̂ ∈ {1, … , d}), where

ι̂ = arg minι
n∑

i=1

(Yi − ĝι(X(ι)
i))2 ,

and ĝι are smoothing splines with single predictors X(j) , all having the same low
degrees of freedom df , e.g. df = 2.5.

L2Boost with component-wise smoothing splines yields an additive model,
since in every boosting iteration, a function of one selected predictor variable is

Bagging, Boostingand Ensemble Methods 897

linearly added to the current fit and hence, we can always rearrange the sum-
mands to represent the boosting estimator as an additive function in the orig-
inal variables,

∑d
j=1 m̂j(xj), x ∈ Rd. The estimated functions m̂j(·) are fitted in

a stage-wise fashion and they are different from the backfitting estimates in ad-
ditive models (cf. (HT90)). Boosting has much greater flexibility to add com-
plexity, in a stage-wise fashion: in particular, boosting does variable selection,
since some of the predictors will never be chosen, and it assigns variable amount
of degrees of freedom to the selected components (or function estimates); the
degrees of freedom are defined below. An illustration of this interesting way
to fit additive regression models with high-dimensional predictors is given in
Figs. 16.5 and 16.6 (actually, a penalized version of L2Boosting, as described below,
is shown).

When using regression stumps (decision trees having two terminal nodes) as
the base procedure, we also get an additive model fit (by the same argument as
with component-wise smoothing splines). If the additive terms mj(·) are smooth
functions of the predictor variables, the component-wise smoothing spline is of-
ten a better base procedure than stumps (BY03). For the purpose of classification,
e.g. with LogitBoost, stumps often seem to do a decent job; also, if the predic-
tor variables are non-continuous, component-wise smoothing splines are often
inadequate.

Finally, if the number d of predictors is “reasonable” in relation to sample size n,
boosting techniques are not necessarily better than more classical estimation
methods (BY03). It seems that boosting has most potential when the predictor
dimension is very high (BY03). Presumably, more classical methods become then
very difficult to tune while boosting seems to produce a set of solutions (for every
boosting iteration another solution) whose best member, chosen e.g. via cross-
validation, has often very good predictive performance. A reason for the efficiency
of the trace of boosting solutions is given in Sect. 16.3.9.

Degrees of Freedom and AICc-stopping Estimates
For component-wise base procedures, which pick one or also a pair of variables at
the time, all the component-wise fitting operators are involved: for simplicity, we
focus on additive modeling with component-wise fitting operators Sj, j = 1, … , d,
e.g. the component-wise smoothing spline.

The boosting operator, when using the step size 0 < ν ≤ 1, is then of the form

Bm = I −
(
I − νSι̂1

) (
I − νSι̂2

)
…

(
I − νSι̂m

)
,

where ι̂i ∈ {1, … , d}denotes the component which is picked in the component-wise
smoothing spline in the ith boosting iteration.

If the Sj’s are all linear operators, and ignoring the effect of selecting the com-
ponents, it is reasonable to define the degrees of boosting as

df (Bm) = trace(Bm) .

898 Peter Bühlmann

We can represent

Bm =
d∑

j=1

Mj ,

where Mj = Mj,m is the linear operator which yields the fitted values for the jth
additive term, e.g. MjY = (m̂j(X1), … , m̂j(Xn))T . Note that the Mj’s can be easily
computed in an iterative way by up-dating in the ith boosting iteration as follows:

Mι̂i,new ← Mι̂i,old + νSι̂i (I − Bi−1)

and all other Mj, j ≠ ι̂i do not change. Thus, we have a decomposition of the total
degrees of freedom into the d additive terms:

df (Bm) =
d∑

j=1

dfj,m ,

dfj,m = trace(Mj) .

The individual degrees of freedom dfj,m are a useful measure to quantify the
complexity of the jth additive function estimate m̂j(·) in boosting iteration m. Note
that dfj,m will increase very sub-linearly as a function of boosting iterations m, see
also Fig. 16.4.

Having some degrees of freedom at hand, we can now use the AIC, or some
corrected version thereof, to define a stopping rule of boosting without doing some
sort of cross-validation: the corrected AIC statistic (HST98) for boosting in the
mth iteration is

AICc = log
(
σ̂2
)

+
1 + trace(Bm)|n

1 −
(
trace(Bm) + 2

)
|n

, (16.12)

σ̂2 = n−1
n∑

i=1

(
Yi − (BmY)i

)2
. (16.13)

Alternatively, we could use generalized cross-validation (cf. (HTF01)), which
involvesdegreesof freedom.Thiswouldexhibit the samecomputational advantage,
as AICc, over cross-validation: instead of running boosting multiple times, AICc

and generalized cross-validation need only one run of boosting (over a suitable
number of iterations).

Penalized L2 Boosting
When viewing the AICc criterion in (16.12) as a reasonable estimate of the true un-
derlying mean squared error (ignoring uninteresting constants), we may attempt
to construct a boosting algorithm which reduces in every step the AICc statistic
(an estimate of the out-sample MSE) most, instead of maximally reducing the
in-sample residual sum of squares.

Bagging, Boostingand Ensemble Methods 899

We describe here penalized boosting for additive model fitting using individual
smoothing splines:

Penalized L2Boost with Additive Smoothing Splines
Step 1 (initialization). As in Step 1 of L2Boost by fitting a component-wise smooth-
ing spline.

Step 2. Compute residuals Ui = Yi − F̂m(Xi) (i = 1, … , n). Choose the individual
smoothing spline which reduces AICc most: denote the selected component by ι̂m+1

and the fitted function, using the selected component ι̂m+1 by ĝm+1(·).
Update

F̂m+1(·) = F̂m(·) + νĝm+1(·) .

for some step size 0 < ν ≤ 1.

Step 3 (iteration). Increase iteration index m by one and repeat Step 2 until the AICc

criterion in (16.12) cannot be improved anymore.

This algorithm cannot be written in terms of fitting a base procedure multiple
times since selecting the component ι̂ in Step 2 not only depends on the residuals
U1, … , Un, but also on the degrees of boosting, i.e. trace(Bm+1); the latter is a com-
plicated, although linear function, of the boosting iterations m′ ∈ {1, 2, … , m}.
Penalized L2Boost yields more sparse solutions than the corresponding L2Boost
(with component-wise smoothing splines as corresponding base procedure). The
reason is that dfj,m increases only little in iteration m + 1, if the jth selected predic-
tor variables has already been selected many times in previous iterations; this is
directly connected to the slow increase in variance and overfitting as exemplified
in Fig. 16.4.

An illustration of penalized L2Boosting with individual smoothing splines is
shown in Figs. 16.5 and 16.6, based on simulated data. The simulation model is

X1, … , Xn i.i.d. ∼ Unif.[0, 1]100 ,

Yi =
10∑

j=1

mj

(
X(j)

)
+ εi (i = 1, … , n) ,

ε1, … , εn i.i.d. ∼ N (0, 0.5) , (16.14)

where the mj’s are smooth curves having varying curve complexities, as illustrated
in Fig. 16.6. Sample size is n = 200 which is small in comparison to d = 100 (but
the effective number of predictors is only 10).

In terms of prediction performance, penalized L2Boosting is not always bet-
ter than L2Boosting; Fig. 16.7 illustrates an advantage of penalized L2Boosting.

900 Peter Bühlmann

0 20 40 60 80 100

0
2

4
6

8

0 20 40 60 80 100

0
2

4
6

8

100 iterations

predictors

df

0 20 40 60 80 100

0
2

4
6

8

0 20 40 60 80 100

0
2

4
6

8

Figure 16.5. Degrees of freedom (df) in additive model fitting for all 100 predictor variables (from

model (16.14)) during the process of penalized L2Boosting with individual smoothing splines

(having df = trace(Sj) = 2.5 for each spline). The first ten predictor variables (separated by the

dashed line) are effective. The result is based on one realization from model (16.14) with sample size

n = 200. The plot on the lower right corresponds to the estimated optimal number of boosting

iterations using the AICc criterion in (16.12). Only three non-effective predictors have been selected

(and assigned small amount of df), and one effective predictor has not been selected (but whose

true underlying function is close to the zero-line, see Fig. 16.6)

But penalized L2Boosting is always sparser (or at least not less sparse) than the
corresponding L2Boosting.

Obviously, penalized L2Boosting can be used for other than additive smoothing
splinemodelfitting.Themodificationsare straightforwardas longas the individual
base procedures are linear operators.

Bagging, Boostingand Ensemble Methods 901

0.0 0.4 0.8

-4
-2

0
2

4

0.0 0.4 0.8

-4
-2

0
2

4

0.0 0.4 0.8

-4
-2

0
2

4

0.0 0.4 0.8

-4
-2

0
2

4

0.0 0.4 0.8

-4
-2

0
2

4

0.0 0.4 0.8

-4
-2

0
2

4

0.0 0.4 0.8

-4
-2

0
2

4

df=6.9

predictor

0.0 0.4 0.8

-4
-2

0
2

4

0.0 0.4 0.8

-4
-2

0
2

4

0.0 0.4 0.8

-4
-2

0
2

4

0.0 0.4 0.8

-4
-2

0
2

4

0.0 0.4 0.8

-4
-2

0
2

4

Figure 16.6. True underlying additive regression curves (dashed lines) and estimates (solid lines)

from penalized L2Boosting as described in Fig. 16.5 (using 436 iterations, estimated from (16.12)).

The last two plots correspond to non-effective predictors (the true functions are the zero-line),

where L2Boosting assigned most df among non-effective predictors

Interaction Modeling
L2Boosting for additive modeling can be easily extended to interaction modeling
(having low degree of interaction). Among the most prominent case is the second
order interaction model

∑d
j,k=1 m̂j,k(xj, xk), where m̂j,k : R2 → R.

Boostingwithapairwise thinplate spline,which selects thebest pair ofpredictor
variables yielding lowest residual sum of squares (when having the same degrees of
freedom for every thin plate spline), yields a second-order interaction model. We
demonstrate in Fig. 16.7 the effectiveness of this procedure in comparison with the
second-order MARS fit (Fri91). The underlying model is the Friedman #1 model:

902 Peter Bühlmann

0 100 200 300 400 500

2
3

4
5

6
7

boosting iterations

M
S

E

0 100 200 300 400 500

2
3

4
5

6
7

Figure 16.7. Mean squared errors for L2Boost with pairwise thin-plate splines (of two predictor

variables, having df = trace(Sj,k) = 2.5) (solid lines), its penalized version (dashed lines) and MARS

restricted to the (correct) second order interactions (dashed|dotted lines). The point with abscissa

x = 501 for the boosting methods corresponds to the performance when estimating the number of

iterations using (16.12). Based on simulated data from model (16.15) with n = 50

X1, … , Xn i.i.d. ∼ Unif.
(
[0, 1]d

)
, d ∈ {10, 20} ,

Yi = 10 sin
(
πX(1)X(2)

)
+ 20

(
X(3) − 0.5

)2
+ 10X(4) + 5X(5) + εi

(i = 1, … , n) ,

ε1, … , εn i.i.d ∼ N (0, 1) . (16.15)

The sample size is chosen as n = 50 which is small in comparison to d = 20.
Inhigh-dimensional settings, it seems that such interaction L2Boosting is clearly

better than the more classical MARS fit, while both of them share the same superb
simplicity of interpretation.

Bagging, Boostingand Ensemble Methods 903

Linear Modeling 16.3.7

L2Boosting turns out to be also very useful for linear models when there are
many predictor variables. An attractive base procedure is component-wise linear
least squares regression, using the one selected predictor variables which reduces
residual sum of squares most.

This method does variable selection, since some of the predictors will never
be picked during boosting iterations; and it assigns variable amount of degrees
of freedom (or shrinkage), as discussed for additive models above. Recent theory
shows that this method is consistent for very high-dimensional problems where
the number of predictors d = dn is allowed to grow like exp(Cn) (C > 0), but
the true underlying regression coefficients are sparse in terms of their �1-norm,
i.e. supn ‖β‖1 = supn

∑dn
j=1 |βj| < ∞, where β is the vector of regression coeffi-

cients (Buh04).

Boosting Trees 16.3.8

The most popular base procedures for boosting, at least in the machine learning
community, are trees. This may be adequate for classification, but when it comes
to regression, or also estimation of conditional probabilities P[Y = 1|X = x]
in classification, smoother base procedures often perform better if the underly-
ing regression or probability curve is a smooth function of continuous predictor
variables (BY03).

Even when using trees, the question remains about the size of the tree. A guiding
principle is as follows: take the smallest trees, i.e. trees with the smallest number k
of terminal nodes, such that the class of linear combinations of k-node trees is
sufficiently rich for the phenomenon to be modeled; of course, there is also here
a trade-off between sample size and the complexity of the function class.

For example, when taking stumps with k = 2, the set of linear combinations of
stumps is dense in (or “yields” the) set of additive functions (Bre04). In (FHT00),
this is demonstrated from a more practical point of view. When taking trees with
three terminalnodes (k = 3), the set of linear combinationsof 3-node trees yields all
second-order interaction functions. Thus, when aiming for consistent estimation
of the full regression (or conditional class-probability) function, we should choose
trees with k = d+1 terminal nodes (in practice only if the sample size is “sufficiently
large” in relation to d), (cf. (Bre04)).

Consistency of the AdaBoost algorithm is proved in (Jia04), for example when
using trees having d + 1 terminal nodes. More refined results are given in (MMZ02,
ZY03) for modified boosting procedures with more general loss functions.

Interpretation
The main disadvantage from a statistical perspective is the lack of interpretation
when boosting trees. This is in sharp contrast to boosting for linear, additive or in-
teraction modeling. An approach to enhance interpretation is described in (Fri01).

904 Peter Bühlmann

Boosting and �1-penalized Methods (Lasso)16.3.9

Another method which does variable selection and variable amount of shrinkage
is basis pursuit (CDS99) or Lasso (Tib96) which employs an �1-penalty for the
coefficients in the log-likelihood.

Interestingly, in case of linear least squares regression with a “positive cone
condition” on the design matrix, an approximate equivalence of (a version of)
L2BoostingandLassohasbeendemonstrated in(EHJT03).Moreprecisely, thesetof
boosting solutions, when using an (infinitesimally) small step size (see Sect. 16.3.3),
over all the different boosting iterations, equals approximately the set of Lasso
solutions when varying the �1-penalty parameter. Moreover, the approximate set
of boosting solutions can be computed very efficiently by the so-called least angle
regression algorithm (EHJT03).

It is not clear to what extent this approximate equivalence between boosting
and Lasso carries over to more general design matrices in linear regression or to
other problems than regression with other loss functions. But the approximate
equivalence in the above mentioned special case may help to understand boosting
from a different perspective.

In the machine learning community, there has been a substantial focus on
consistent estimation in the convex hull of function classes (cf. (Bar03, BJM03,
LV04)). For example, one may want to estimate a regression or probability function
which can be written as

∞∑

k=1

wkgk(·) , wk ≥ 0 ,
∞∑

k=1

wk = 1 ,

where the gk(·)’s belong to a function class such as stumps or trees with a fixed num-
ber of terminal nodes. The quantity above is a convex combination of individual
functions, in contrast to boosting which pursues linear combination of individual
functions. By scaling, which is necessary in practice and theory (cf. (LV04)), one
can actually look at this as a linear combination of functions whose coefficients
satisfy

∑
k wk = λ. This then represents an �1-constraint as in Lasso, a relation

which we have already outlined above.

Other References16.3.10

Boosting, or functional gradient descent, has also been proposed for other set-
tings than regression or classification, including survival analysis (Ben02), ordinal
response problems (TH03) and high-multivariate financial time series (ABu03,
ABa03).

Support vector machines (cf. (Vap98, HTF01, SS02) have become very popular
in classification due to their good performance in a variety of data sets, similarly as
boosting methods for classification. A connection between boosting and support
vector machines has been made in (RZH03), suggesting also a modification of
support vector machines to more sparse solutions (ZRHT03).

Bagging, Boostingand Ensemble Methods 905

Acknowledgements. I would like to thank Marcel Dettling for some constructive
comments.

References
Allwein, E., Schapire, R., Singer, Y.: Reducing multiclass to binary: a unifying

approach for margin classifiers. J. Machine Learning Research 1, 113–141 (2001).
Amit, Y., Geman, D.: Shape quantization and recognition with randomized trees.

Neural Computation 9, 1545–1588 (1997).
Audrino F., Barone-Adesi G.: A multivariate FGD technique to improve VaR com-

putation in equity markets. To appear in Computational Management Science.
Audrino, F., Bühlmann, P.: Volatility estimation with functional gradient descent

for very high-dimensional financial time series. J. Computational Finance 6(3),
65–89 (2003).

Bartlett, P.L.: Prediction algorithms: complexity, concentration and convexity. In:
Proceedingsof the 13th IFACSymposiumonSystemIdentification, pp. 1507–1517
(2003).

Bartlett, P.L., Jordan, M.I., McAuliffe, J.D.: Convexity, classification, and risk
bounds.TechnicalReport 638,Dept. of Statistics,Univ. ofCalif. (2003).Available
from http://www.stat.berkeley.edu/tech-reports/index.html

Bauer, E., Kohavi, R.: An empirical comparison of voting classification algorithms:
bagging, boosting and variants. Machine Learning, 36, 1545–1588 (1999).

Benner, A.: Application of “aggregated classifiers” in survival time studies. In:
COMPSTAT 2002 - Proceedings in Computational Statistics - 15th Symposium
held inBerlin (Eds.Härdle,W.andRönz,B.), PhysikaVerlag,Heidelberg (2002).

Breiman, L.: Bagging predictors. Machine Learning, 24, 123–140 (1996)
Breiman, L.: Out-of-bag estimation. Technical Report (1996). Available from

ftp://ftp.stat.berkeley.edu/pub/users/breiman/
Breiman, L.: Arcing classifiers. Annals of Statistics 26, 801–824 (1998).
Breiman, L.: Prediction games & arcing algorithms. Neural Computation 11, 1493–

1517 (1999).
Breiman, L.: Random Forests. Preprint. Available from

http://stat-www.berkeley.edu/users/breiman/rf.html
Breiman, L.: Population theory for boosting ensembles. To appear in Annals of

Statistics, 32(1) (2004).
Bühlmann, P.: Bagging, subagging and bragging for improving some prediction

algorithms. In: Recent Advances and Trends in Nonparametric Statistics (Eds.
Akritas, M.G., Politis, D.N.), Elsevier (2003).

Bühlmann,P.: Boosting forhigh-dimensional linearmodels. Preprint (2004).Avail-
able from http:||www.stat.math.ethz.ch|˜buhlmann|bibliog.html

Bühlmann, P., Yu, B: Discussion on Additive logistic regression: a statistical view
of boosting (Auths. Friedman,J., Hastie, T., Tibshirani,R.) Annals of Statistics
28, 377–386 (2000).

906 Peter Bühlmann

Bühlmann, P., Yu, B.: Analyzing bagging. Annals of Statistics 30, 927–961 (2002).
Bühlmann, P., Yu, B.: Boosting with the L2loss: regression and classification. J.

American Statistical Association 98, 324–339 (2003).
Buja, A., Stuetzle, W.: Observations on bagging. Preprint (2002). Available from

http://ljsavage.wharton.upenn.edu/∼buja/
Bylander, T.:Estimating generalization error on two-class datasets using out-of-bag

estimates. Machine Learning 48, 287–297 (2002).
Chen, S.S., Donoho, D.L., Saunders, M.A.: Atomic decomposition by basis pursuit.

SIAM J. Scientific Computing 20(1), 33–61 (1999).
Chen, S.X., Hall, P.: Effects of bagging and bias correction on estimators defined

by estimating equations. Statistica Sinica 13, 97–109 (2003).
Dettling, M.: Bag-Boosting for tumor classification. In preparation (2004).
Dettling, M., Bühlmann, P. Boosting for tumor classification with gene expression

data. Bioinformatics 19(9), 1061–1069 (2003).
Borra, S., Di Ciaccio, A.: Improving nonparametric regression methods by bagging

and boosting. Computational Statistics & Data Analysis 38, 407–420 (2002).
Dudoit, S., Fridlyand, J.: Bagging to improve the accuracy of a clustering procedure.

Bioinformatics 19(9), 1090–1099 (2003).
Efron, B., Tibshirani, R.: The problem of regions. Annals of Statistics 26, 1687–1718

(1998).
Efron, B., Hastie, T., Johnstone, I., Tibshirani, R.: Least angle regression. To appear

in Annals of Statistics, 32(2) (2004).
Freund, Y. (1995): Boosting a weak learning algorithm by majority. Information

and Computation 121, 256–285 (1995).
Freund, Y., Schapire, R.E.: Experiments with a new boosting algorithm. In Ma-

chine Learning: Proc. Thirteenth International Conference, pp. 148–156. Mor-
gan Kauffman, San Francisco (1996).

Friedman, J.H.: Multivariate adaptive regression splines. Annals of Statistics 19,
1–141 (with discussion) (1991).

Friedman, J.H.: Greedy function approximation: a gradient boosting machine.
Annals of Statistics 29, 1189–1232 (2001).

Friedman, J.H., Hastie, T., Tibshirani, R.: Additive logistic regression: a statistical
view of boosting. Annals of Statistics 28, 337–407 (with discussion) (2000).

Hastie, T.J., Tibshirani, R.J.: Generalized Additive Models. Chapman & Hall, Lon-
don (1990).

Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning. Data
Mining, Inference and Prediction. Springer, New York (2001).

Hothorn, T., Lausen, B.: Bundling classifiers by bagging trees. Preprint
(2002). Available from http://www.mathpreprints.com/math/Preprint/blausen/
20021016/1/

Hurvich, C.M., Simonoff, J.S., Tsai, C.-L.: Smoothing parameter selection in non-
parametric regression using an improved Akaike information criterion. J. Royal
Statistical Society, Series B, 60, 271–293 (1998).

Jiang, W.: process consistency for AdaBoost. To appear in Annals of Statistics, 32(1)
(2004).

Bagging, Boostingand Ensemble Methods 907

Lugosi, G., Vayatis, N. On the Bayes-risk consistency of regularized boosting meth-
ods. To appear in Annals of Statistics, 32(1) (2004).

Mallat, S., Zhang, Z. (1993). Matching pursuits with time-frequency dictionaries.
IEEE Transactions Signal Processing 41, 3397–3415 (1993).

Mannor, S., Meir, R., Zhang, T.: The consistency of greedy algorithms for classifi-
cation. Proceedings COLT02, Vol. 2375 of LNAI, pp. 319–333, Sydney, Springer
(2002).

Mason, L., Baxter, J. Bartlett, P., Frean, M.: Functional gradient techniques for
combining hypotheses. In: advances in Large Margin Classifiers (Eds. Smola,
A.J., Bartlett, P.J., Schölkopf, B., Schuurmans, D.). MIT Press, Cambridge, MA
(2000).

Politis, D.N., Romano, J.P., Wolf, M.: Subsampling. Springer, New York (1999).
Ridgeway, G.: Looking for lumps: boosting and bagging for density estimation.

Computational Statistics and Data Analysis 38(4), 379–392 (2002).
Rosset, S., Zhu, J., Hastie, T. Margin maximizing loss functions. Accepted poster

for NIPS (2003). Available from
http://www-stat.stanford.edu/∼hastie/pub.htm

Schapire, R.E.: The strength of weak learnability. Machine Learning 5, 197–227
(1990).

Schapire, R.E.: The boosting approach to machine learning: an overview. In: MSRI
Workshop on Nonlinear Estimation and Classification (Eds. Denison, D.D.,
Hansen, M.H., Holmes, C.C., Mallick, B., Yu, B). Springer, New York (2002).

Schölkopf, B., Smola, A.J.: Learning with Kernels. MIT Press, Cambridge (2002).
Tibshirani, R.: Regression shrinkage and selection via the lasso. J. Royal Statistical

Society, Series B, 58, 267–288 (1996).
Tukey, J.W.: Exploratory data analysis. Addison-Wesley, Reading, MA (1977).
Tutz, G., Hechenbichler, K.: Aggregating Classifiers With Ordinal Response

Structure, SFB 386 Discussion Paper No. 359 (2003). Available from
http://www.stat.uni-muenchen.de/sfb386/

Vapnik, V.N.: Statistical Learning Theory. Wiley, New York (1998).
Wahba, G.: Spline Models for Observational Data. Society for Industrial and Ap-

plied Mathematics (1990).
Zhang, T., Yu, B.: Boosting with early stopping: convergence and consistency. Tech-

nical Report 635, Dept. of Statistics, Univ. of Calif., Berkeley (2003). Available
from
http://www.stat.berkeley.edu/users/binyu/publications.html

Zhu, J., Rosset, S., Hastie, T., Tibshirani, R.: 1-norm support vector ma-
chines. Accepted spotlight poster for NIPS (2003). Available from http://www-
stat.stanford.edu/∼hastie/pub.htm

Part IV
Selected Applications

IV.1Computationally Intensive
Value at Risk Calculations

Rafał Weron

1.1 Introduction . 912

1.2 Stable Distributions . 915

Characteristic Function Representation . 917
Computation of Stable Density and Distribution Functions . 917
Simulation of α-stable Variables. 921
Estimation of Parameters . 922
Are Asset Returns α-stable? . 928
Truncated Stable Distributions . 930

1.3 Hyperbolic Distributions . 932

Simulation of Generalized Hyperbolic Variables . 936
Estimation of Parameters . 938
Are Asset Returns NIG Distributed? . 940

1.4 Value at Risk, Portfolios and Heavy Tails . 942

912 Rafał Weron

Introduction1.1

Market risks are the prospect of financial losses – or gains – due to unexpect-
ed changes in market prices and rates. Evaluating the exposure to such risks is
nowadays of primary concern to risk managers in financial and non-financial
institutions alike. Until late 1980s market risks were estimated through gap and
duration analysis (interest rates), portfolio theory (securities), sensitivity analysis
(derivatives) or “what-if” scenarios. However, all these methods either could be
applied only to very specific assets or relied on subjective reasoning.

Since the early 1990s a commonly used market risk estimation methodology
has been the Value at Risk (VaR). A VaR measure is the highest possible loss L
incurred from holding the current portfolio over a certain period of time at a given
confidence level (Dowd, 2002; Franke, Härdle and Stahl, 2000; Jorion, 2000):

P(L > VaR) ≤ 1 − c ,

where c is the confidence level, typically 95%, 97.5% or 99%. By convention,
L = −∆X(τ), where ∆X(τ) is the relative change (return) in portfolio value over
the time horizon τ. Hence, large values of L correspond to large losses (or large
negative returns).

The VaR figure has two important characteristics: (1) it provides a common
consistent measure of risk across different positions and risk factors and (2) it
takes into account the correlations or dependencies between different risk factors.
Because of its intuitive appeal and simplicity, it is no surprise that in a few years
Value at Risk has become the standard risk measure used around the world. How-
ever, VaR has a number deficiencies, among them the non-subadditivity – a sum of
VaR’s of two portfolios can be smaller than the VaR of the combined portfolio. To
cope with these shortcomings, Artzner et al. (1999) proposed an alternative mea-
sure that satisfies the assumptions of a coherent, i.e. an adequate, risk measure.
The Expected Shortfall (ES), also called Expected Tail Loss or Conditional VaR, is
the expected value of the losses in excess of VaR:

ES = E(L|L > VaR) .

It is interesting to note, that – although new to the finance industry – Expect-
ed Shortfall has been familiar to insurance practitioners for a long time. It is
very similar to the mean excess function which is used to characterize claim size
distributions (Burnecki et al., 2004).

The essence of the VaR and ES computations is estimation of low quantiles in
the portfolio return distributions. Hence, the performance of market risk mea-
surement methods depends on the quality of distributional assumptions on the
underlying risk factors. Many of the concepts in theoretical and empirical finance
developed over the past decades – including the classical portfolio theory, the
Black–Scholes–Merton option pricing model and even the RiskMetrics variance-
covariance approach to VaR – rest upon the assumption that asset returns follow
a normal distribution. But is this assumption justified by empirical data?

Computationally Intensive Value at Risk Calculations 913

Figure 1.1. DJIA daily closing values Xt (left panel) and daily returns log(Xt+1|Xt) (right panel) from

the period January 2, 1985 – November 30, 1992. Note, that this period includes Black Monday, the

worst stock market crash in Wall Street history. On October 19, 1987 DJIA lost 508 points or 22.6% of

its value (Q: CSAfin01)

No, it is not! It has been long known that asset returns are not normally dis-
tributed. Rather, the empirical observations exhibit excess kurtosis (fat tails). The
Dow Jones Industrial Average (DJIA) index is a prominent example, see Fig. 1.1
where the index itself and its returns (or log-returns) are depicted. In Fig. 1.2 we
plotted the empirical distribution of the DJIA index. The contrast with the Gaus-
sian law is striking. This heavy tailed or leptokurtic character of the distribution of
price changes has been repeatedly observed in various markets and may be quan-
titatively measured by the kurtosis in excess of 3, a value obtained for the normal
distribution (Bouchaud and Potters, 2000; Carr et al., 2002; Guillaume et al., 1997;
Mantegna and Stanley, 1995; Rachev and Mittnik, 2000). In Fig. 1.2 we also plotted
vertical lines representing the Gaussian and empirical daily VaR estimates at the
c = 95% and 99% confidence levels. They depict a typical situation encountered in
financial markets. The Gaussian model overestimates the VaR number at the 95%
confidence level and underestimates it at the 99% confidence level.

These VaR estimates are used here only for illustrative purposes and correspond
to a one day VaR of a virtual portfolio consisting of one long position in the DJIA
index. Note, that they are equal to the absolute value of the 5% and 1% quantiles,
respectively. Hence, calculating the VaR number reduces to finding the (1 − c)
quantile. The empirical (1 − c) quantile is obtained by taking the kth smallest value
of the sample, where k is the smallest integer greater or equal to the lenght of the
sample times (1 − c). The Gaussian (1 − c) quantile is equal to F−1(1 − c), where F
is the normal distribution function. Since algorithms for evaluating the inverse of
the Gaussian distribution function are implemented in practically any computing
environment, calculating the quantile is straightforward.

914 Rafał Weron

Gaussian fit to DJIA returns

-0.04 -0.02 0 0.02

x

0
0.

5
1

C
D

F(
x)

Gaussian and empirical left tails

-4.5 -4 -3.5 -3 -2.5

log(x)
-1

0
-5

lo
g(

C
D

F(
x)

)

Figure 1.2. Gaussian (dashed line) fit to the DJIA daily returns (circles) empirical cumulative

distribution function from the period January 2, 1985 – November 30, 1992. For better exposition of

the fit in the central part of the distribution ten largest and ten smallest returns are not illustrated in

the left panel. The right panel is a magnification of the left tail fit on a double logarithmic scale

clearly showing the discrepancy between the data and the normal distribution. Vertical lines

represent the Gaussian (dashed line) and empirical (solid line) VaR estimates at the 95% (filled

triangles and squares) and 99% (hollow triangles and squares) confidence levels (Q: CSAfin02)

Interestingly, the problem of the underestimation of risk by the Gaussian distri-
bution has been dealt with by the regulators in an ad hoc way. The Basle Committee
on Banking Supervision (1995) suggested that for the purpose of determining min-
imum capital reserves financial institutions use a ten day VaR at the c = 99%
confidence level multiplied by a safety factor s ∈ [3, 4], with the exact value of s
depending on the past performance of the model. It has been argued by Stahl
(1997) and Danielsson, Hartmann and De Vries (1998) that the range of the safety
factor comes from the heavy-tailed nature of the returns distribution. Indeed, if
we assume that the asset returns distribution is symmetric and has finite vari-
ance σ2 then from Chebyshev’s inequality (Laha and Rohatgi, 1979) we obtain
P(L ≥ ε) ≤ σ2|2ε2, where L represents the random loss over the specified time hori-
zon. So if we want to calculate the upper bound for a 99% VaR, setting σ2|2ε2 = 1%
yields ε = 7.07σ, which in turn implies that VaR99% ≤ 7.07σ. However, if we as-
sumed a Gaussian distribution of returns then we would have VaR99% ≤ 2.33σ,
which is roughly three times lower than the bound obtained for a heavy-tailed,
finite variance distribution.

Having said this much about the inadequacy of the Gaussian distribution for
financial modeling and risk management we have no other choice but offer some
heavy-tailedalternatives.Wehave tomention, though, that all distributional classes
described in this chapter present computational challenge. Large parts of the text

Computationally Intensive Value at Risk Calculations 915

are thusdevoted tonumerical issues. InSect. 1.2wedealwith thehistorically earliest
alternative – the stable laws and briefly characterize their recent generalizations –
the so-called truncated stable distributions. In Sect. 1.3 we study the class of
generalized hyperbolic laws. Finally, in Sect. 1.4 we introduce the notion of copulas
and discuss the relation between VaR, asset portfolios and heavy tails.

All theoretical results are illustrated by empirical examples which utilize the
quantlets (i.e. functions) of the XploRe computing environment (Härdle, Klinke
and Müller, 2000). For reference, figure captions include names of the correspond-
ing quantlets (Q). The reader of this chapter may therefore repeat and modify at
will all the presented examples via the local XploRe Quantlet Server (XQS) without
having to buy additional software. Such XQ Servers may be downloaded freely
from the XploRe website http:||www.xplore-stat.de. Currently, no other statistical
computing environment offers a complete coverage of the issues discussed in this
chapter. However, when available links to third-party libraries and specialized
software are also provided.

Stable Distributions 1.2

It is often argued that financial asset returns are the cumulative outcome of a vast
number of pieces of information and individual decisions arriving almost con-
tinuously in time (McCulloch, 1996; Rachev and Mittnik, 2000). As such, since
the pioneering work of Louis Bachelier in 1900, they have been modeled by the
Gaussian distribution. The strongest statistical argument for it is based on the
Central Limit Theorem, which states that the sum of a large number of indepen-
dent, identically distributed variables from a finite-variance distribution will tend
to be normally distributed. However, financial asset returns usually have heavier
tails.

In response to the empirical evidence Mandelbrot (1963) and Fama (1965) pro-
posed the stable distribution as an alternative model. There are at least two good
reasons for modeling financial variables using stable distributions. Firstly, they
are supported by the generalized Central Limit Theorem, which states that stable
laws are the only possible limit distributions for properly normalized and centered
sums of independent, identically distributed random variables (Laha and Rohatgi,
1979). Secondly, stable distributions are leptokurtic. Since they can accommodate
the fat tails and asymmetry, they fit empirical distributions much better.

Stable laws–alsocalledα-stable, stableParetianorLévy stable–were introduced
by Lévy (1925) during his investigations of the behavior of sums of independent
random variables. A sum of two independent random variables having anα-stable
distribution with index α is again α-stable with the same index α. This invariance
property, however, does not hold for different α’s.

The α-stable distribution requires four parameters for complete description:
an index of stability α ∈ (0, 2] also called the tail index, tail exponent or char-
acteristic exponent, a skewness parameter β ∈ [−1, 1], a scale parameter σ > 0

916 Rafał Weron

Dependence on alpha

-10 -5 0 5 10

x

-1
0

-8
-6

-4
-2

lo
g(

PD
F(

x)
)

Dependence on beta

-5 0 5

x
0.

05
0.

1
0.

15
0.

2
0.

25
0.

3

PD
F(

x)

Figure 1.3. A semilog plot of symmetric (β = µ = 0) α-stable probability density functions for α = 2

(solid), 1.8 (dotted), 1.5 (dashed) and 1 (long-dashed) showing the dependence on the tail exponent

(left panel). The Gaussian (α = 2) density forms a parabola and is the only α-stable density with

exponential tails. A plot of α-stable probability density functions for α = 1.2 and β = 0 (solid), 0.5

(dotted), 0.8 (dashed) and 1 (long-dashed) showing the dependence on the skewness parameter

(right panel) (Q: STFstab01, STFstab02)

and a location parameter µ ∈ R. The tail exponent α determines the rate at which
the tails of the distribution taper off, see the left panel of Fig. 1.3. When α = 2,
a Gaussian distribution results. When α < 2, the variance is infinite and the tails
are asymptotically equivalent to a Pareto law, i.e. they exhibit a power-law behavior.
More precisely, using a central limit theorem type argument it can be shown that
(Janicki and Weron, 1994a; Samorodnitsky and Taqqu, 1994):

limx→∞ xαP(X > x) = Cα(1 + β)σα ,

limx→∞ xαP(X < −x) = Cα(1 + β)σα ,
(1.1)

where:

Cα =
(

2

∫ ∞

0
x−α sin(x)dx

)−1

=
1

π
Γ(α) sin

πα
2

.

When α > 1, the mean of the distribution exists and is equal to µ. In general,
the pth moment of a stable random variable is finite if and only if p < α. When
the skewness parameter β is positive, the distribution is skewed to the right, i.e.
the right tail is thicker, see the right panel of Fig. 1.3. When it is negative, it
is skewed to the left. When β = 0, the distribution is symmetric about µ. As
α approaches 2, β loses its effect and the distribution approaches the Gaussian

Computationally Intensive Value at Risk Calculations 917

distribution regardless of β. The last two parameters, σ and µ, are the usual scale
and location parameters, i.e. σ determines the width and µ the shift of the mode
(the peak) of the distribution.

Characteristic Function Representation 1.2.1

From a practitioner’s point of view the crucial drawback of the stable distribution is
that,with the exceptionof three special cases, its probabilitydensity function (PDF)
and cumulative distribution function (CDF) do not have closed form expressions.
These exceptions include the well known Gaussian (α = 2) law, whose density
function is given by:

fG(x) =
1√
2πσ

exp

{
−

(x − µ)2

2σ2

}
, (1.2)

and the lesser known Cauchy (α = 1, β = 0) and Lévy (α = 0.5, β = 1) laws.
Hence, the α-stable distribution can be most conveniently described by its

characteristic function φ(t) – the inverse Fourier transform of the PDF. However,
there are multiple parameterizations for α-stable laws and much confusion has
been caused by these different representations. The variety of formulas is caused by
a combination of historical evolution and the numerous problems that have been
analyzed using specialized forms of the stable distributions. The most popular
parameterization of the characteristic function of X ∼ Sα(σ, β,µ), i.e. an α-stable
random variable with parameters α, σ, β and µ, is given by (Samorodnitsky and
Taqqu, 1994; Weron, 1996):

logφ(t) =

−σα|t|α
{

1 − iβsign(t) tan
πα
2

}
+ iµt , α ≠ 1 ,

−σ|t|
{

1 + iβsign(t)
2

π
log |t|

}
+ iµt , α = 1 .

(1.3)

Note, that the traditional scale parameter σ of the Gaussian distribution is not the
same as σ in the above representation. A comparison of formulas (1.2) and (1.3)
yields the relation: σGaussian =

√
2σ.

For numerical purposes, it is often useful to use Nolan’s (1997) parameterization:

logφ0(t) =

−σα|t|α
{

1 + iβsign(t) tan
πα
2

[(σ|t|)1−α − 1]
}

+ iµ0t , α ≠ 1 ,

−σ|t|
{

1 + iβsign(t)
2

π
log(σ|t|)

}
+ iµ0t , α = 1 .

(1.4)

The S0
α(σ, β,µ0) representation is a variant of Zolotarev’s 1986 (M)-parameteriza-

tion, with the characteristic function and hence the density and the distribution
function jointly continuous in all four parameters, see Fig. 1.4. In particular, per-
centiles and convergence to the power-law tail vary in a continuous way as α

918 Rafał Weron

Figure 1.4. Comparison of S and S0 parameterizations: α-stable probability density functions for

β = 0.5 and α = 0.5 (solid), 0.75 (dotted), 1 (short-dashed), 1.25 (dashed) and 1.5 (long-dashed)

(Q: STFstab04)

and β vary. The location parameters of the two representations are related by
µ = µ0 − βσ tan(πα|2) for α ≠ 1 and µ = µ0 − βσ(2|π) logσ for α = 1.

Computation of Stable Density
and Distribution Functions1.2.2

The lack of closed form formulas for most stable densities and distribution func-
tions has negative consequences. Numerical approximation or direct numerical
integration have to be used, leading to a drastic increase in computational time
and loss of accuracy. Of all the attempts to be found in the literature a few are worth
mentioning. DuMouchel (1971) developed a procedure for approximating the sta-
ble distribution function using Bergström’s (1952) series expansion. Depending
on the particular range of α and β, Holt and Crow (1973) combined four alter-
native approximations to compute the stable density function. Both algorithms
are computationally intensive and time consuming, making maximum likelihood
estimation a nontrivial task, even for modern computers. Recently, two other
techniques have been proposed.

Mittnik, Doganoglu and Chenyao (1999) exploited the density function – char-
acteristic function relationship and applied the fast Fourier transform (FFT).
However, for data points falling between the equally spaced FFT grid nodes an
interpolation technique has to be used. The authors suggested that linear interpo-
lation suffices in most practical applications, see also Rachev and Mittnik (2000).
Taking a larger number of grid points increases accuracy, however, at the expense
of higher computational burden. Setting the number of grid points to N = 213

Computationally Intensive Value at Risk Calculations 919

and the grid spacing to h = 0.01 allows to achieve comparable accuracy to the
direct integration method (see below), at least for a range of α’s typically found
for financial data (1.6 < α < 1.9). As for the computational speed, the FFT based
approach is faster for large samples, whereas the direct integration method favors
small data sets since it can be computed at any arbitrarily chosen point. Mittnik,
Doganoglu and Chenyao (1999) report that for N = 213 the FFT based method is
faster for samples exceeding 100 observations and slower for smaller data sets.

We must stress, however, that the FFT based approach is not as universal as the
direct integration method – it is efficient only for large alpha’s and only as far as
the probability density function calculations are concerned. When computing the
cumulative distribution function the former method must numerically integrate
the density, whereas the latter takes the same amount of time in both cases.

The direct integration method, proposed by Nolan (1997, 1999) consists of a nu-
merical integration of Zolotarev’s (1986) formulas for the density or the distribu-
tion function. To save space we state only the formulas for the probability density
function. Complete formulas can be also found in Borak, Härdle and Weron (2004).

Set ζ = −β tan πα
2 . Then the density f (x;α, β) of a standard α-stable random

variable in representation S0, i.e. X ∼ S0
α(1, β, 0), can be expressed as (note, that

Zolotarev (1986, Sect. 2.2) used yet another parametrization):
when α ≠ 1 and x > ζ:

f (x;α, β) =
α(x − ζ)

1
α−1

π | α − 1 |
∫ π

2

−θ0

V(θ;α, β) exp
{

−(x − ζ)
α
α−1 V(θ;α, β)

}
dθ ,

when α ≠ 1 and x = ζ:

f (x;α, β) =
Γ
(
1 + 1

α

)
cos(ξ)

π(1 + ζ2)
1

2α
,

when α ≠ 1 and x < ζ:

f (x;α, β) = f (−x;α, −β) ,

when α = 1:

f (x; 1, β) =

1

2 | β | e
πx
2β

∫ π
2

− π
2

V(θ; 1, β) exp
{

−e
πx
2β V(θ; 1, β)

}
dθ , β ≠ 0 ,

1

π(1 + x2)
, β = 0 ,

where

ξ =

1

α
arctan(−ζ) , α ≠ 1 ,

π
2

, α = 1 ,

(1.5)

920 Rafał Weron

and

V(θ;α, β) =

(cosαξ)
1

α−1

(
cos θ

sinα(ξ + θ)

) α
α−1 cos

{
αξ+(α−1)θ

}

cos θ
, α ≠ 1 ,

2

π

(π
2 + βθ
cos θ

)
exp

{
1

β

(π
2

+ βθ
)

tan θ
}

, α = 1, β ≠ 0 .

XploRe offers the direct integration method through the cdfstab and pdfstab
quantlets, see Cizek, Härdle and Weron (2004) for a thorough exposition of
quantlets related to stable distributions. On a PC equipped with a Centrino
1.6 GHz processor the calculation of the stable distribution or density function
at 1000 points takes about 1.2 seconds. As default, the integrals found in the
above formulas are numerically integrated using 2000 subintervals. These com-
putational times can be improved when using a numerically more efficient en-
vironment. For example, the program STABLE (downloadable from John Nolan’s
webpage:http:||academic2.american.edu|˜jpnolan|stable|stable.html)needsabout
0.9 seconds for performing corresponding calculations. It was written in Fortran
and calls several external IMSL routines, see Nolan (1997) for details. Apart from
speed, the STABLE program also exhibits higher relative accuracy (for default tol-
erance settings in both programs): about 10−13 compared to 10−10 for values used in
typical financial applications (like approximating asset return distributions). Nat-
urally, the accuracy of both programs can be increased at the cost of computational
time.

It is interesting to note, that currently no other statistical computing environ-
ment offers the computation of stable density and distribution functions in its
standard release. Users have to rely on third-party libraries or commercial prod-
ucts. A few are worth mentioning. John Nolan offers the STABLE program in library
formthroughRobustAnalysis Inc., seehttp:||www.robustanalysis.com.This library
(in C, Visual Basic or Fortran) provides interfaces to Matlab, S-plus (or its GNU
version – R) and Mathematica. Diethelm Würtz has developed Rmetrics, an open
source collection of software packages for S-plus|R, which may be useful for teach-
ing computational finance, see http:||www.itp.phys.ethz.ch|econophysics|R|. Stable
PDF and CDF calculations are performed using the direct integration method, with
the integrals being computed by R’s function integrate. Interestingly, for sym-
metric stable distributions Rmetrics utilizes McCulloch’s (1998) approximation,
which was obtained by interpolating between the complements of the Cauchy and
Gaussian CDFs in a transformed space. For α > 0.92 the absolute precision of the
stable PDF and CDF approximation is 10−4. The FFT based approach is utilized in
Cognity, a commercial risk management platform that offers derivatives pricing
and portfolio optimization based on the assumption of stably distributed returns,
see http:||www.finanalytica.com.

Computationally Intensive Value at Risk Calculations 921

Simulation of α-stable Variables 1.2.3

The complexity of the problem of simulating sequences of α-stable random vari-
ables stems from the fact that there are no analytic expressions for the inverse
F−1(x) nor the cumulative distribution function F(x). All standard approaches like
the rejection or the inversion methods would require tedious computations. See
Chap. II.2 for a review of non-uniform random number generation techniques.

A much more elegant and efficient solution was proposed by Chambers, Mallows
and Stuck (1976). They noticed that a certain integral formula derived by Zolotarev
(1964) yielded the following algorithm:

generate a random variable U uniformly distributed on
(
−π

2 , π2
)

and an inde-
pendent exponential random variable W with mean 1;
for α ≠ 1 compute:

X = (1 + ζ2)
1

2α
sin{α(U + ξ)}
{cos(U)}1|α

[
cos{U − α(U + ξ)}

W

] 1−α
α

, (1.6)

for α = 1 compute:

X =
1

ξ

{(π
2

+ βU
)

tan U − β log

(π
2 W cos U
π
2 + βU

)}
, (1.7)

where ξ is given by (1.5). This algorithm yields a random variable X ∼ Sα(1, β, 0),
in representation (1.3). For a detailed proof see Weron (1996).

Given the formulas for simulation of a standard α-stable random variable,
we can easily simulate a stable random variable for all admissible values of the
parameters α, σ, β and µ using the following property: if X ∼ Sα(1, β, 0) then

Y =

σX + µ , α ≠ 1 ,

σX +
2

π
βσ logσ + µ , α = 1 ,

is Sα(σ, β,µ). It is interesting to note that for α = 2 (and β = 0) the Chambers–
Mallows–Stuck method reduces to the well known Box–Muller (1958) algorithm
for generating Gaussian random variables (Janicki and Weron, 1994b).

Many other approaches have been proposed in the literature, including appli-
cation of Bergström (1952) and LePage (LePage, Woodroofe and Zinn, 1981) series
expansions, see Mantegna (1994) and Janicki and Kokoszka (1992), respectively.
However, thismethod is regardedas the fastest and themost accurate. InXploRe the
algorithm is implemented in therndstab quantlet. On a PC equipped with a Cen-
trino 1.6 GHz processor one million variables are generated in about 3 seconds,
compared to about 0.4 seconds for one million standard normal random variables
obtained via the Box–Muller algorithm (normal2). Because of its unquestioned
superiority and relative simplicity, theChambers–Mallows–Stuckmethod is imple-
mented in some statistical computing environments (e.g. the rstable function
in S-plus|R) even if no other routines related to stable distributions are provided.

922 Rafał Weron

Estimation of Parameters1.2.4

The estimation of stable law parameters is in general severely hampered by the
lack of known closed–form density functions for all but a few members of the
stable family. Numerical approximation or direct numerical integration are non-
trivial and burdensome from a computational point of view. As a consequence, the
maximum likelihood (ML) estimation algorithm based on such approximations is
difficult to implement and time consuming for samples encountered in modern
finance. However, there are also other numerical methods that have been found
useful in practice and are discussed in this section.

All presented methods work quite well assuming that the sample under con-
sideration is indeed α-stable. Since there are no formal tests for assessing the
α-stability of a data set we suggest to first apply the “visual inspection” and tail ex-
ponent estimators to see whether the empirical densities resemble those ofα-stable
laws (Borak, Härdle and Weron, 2004; Weron, 2001).

Given a sample x1, … , xn of independent and identically distributed (i.i.d.)
Sα(σ, β,µ) observations, in what follows, we provide estimates α̂, σ̂, β̂ and µ̂ of
all four stable law parameters. We start the discussion with the simplest, fastest
and … least accurate quantile methods, then develop the slower, yet much more
accurate sample characteristic function methods and, finally, conclude with the
slowest but most accurate maximum likelihood approach.

Sample Quantile Methods
Fama and Roll (1971) provided very simple estimates for parameters of symmetric
(β = 0,µ = 0) stable laws with α > 1. They proposed to estimate σ by:

σ̂ =
x̂0.72 − x̂0.28

1.654
, (1.8)

where xf denotes the f -th population quantile, so that Sα(σ, β,µ)(xf) = f . As Mc-
Culloch (1986) noticed, Fama and Roll based their estimator of σ on the fortuitous
observation that (x0.72 − x0.28)|σ lies within 0.4% of 1.654 for all 1 < α ≤ 2, when
β = 0. This enabled them to estimate σ by (1.8) with less than 0.4% asymptotic bias
without first knowing α. However, when β ≠ 0, the search for an invariant range
such as the one they found becomes futile.

The characteristic exponent α, on the other hand, can be estimated from the
tail behavior of the distribution. Fama and Roll suggested to take α̂ satisfying:

Sα̂

(
x̂f − x̂1−f

2σ̂

)
= f . (1.9)

They found that f = 0.95, 0.96, 0.97 worked best for estimating α. This method
unnecessarily compounds the small asymptotic bias in the estimator of σ into the
estimator of α.

For 1 < α ≤ 2, the stable distribution has finite mean. Hence, the sample mean is
a consistent estimate of the location parameter µ. However, a more robust estimate

Computationally Intensive Value at Risk Calculations 923

is the p% truncated sample mean – the arithmetic mean of the middle p percent
of the ranked observations. The 50% truncated mean is often suggested in the
literature when the range of α is unknown.

Fama and Roll’s (1971) method is simple but suffers from a small asymptotic
bias in α̂ and σ̂ and restrictions on α and β. McCulloch (1986) generalized and
improved the quantile method. He analyzed stable law quantiles and provided
consistent estimators of all four stable parameters, with the restriction α ≥ 0.6,
while retaining the computational simplicity of Fama and Roll’s method. After
McCulloch define:

vα =
x0.95 − x0.05

x0.75 − x0.25
and vβ =

x0.95 + x0.05 − 2x0.50

x0.95 − x0.05
. (1.10)

Statistics vα and vβ are functions of α and β only, i.e. they are independent of
both σ and µ. This relationship may be inverted and the parameters α and β
may be viewed as functions of vα and vβ. Substituting vα and vβ by their sample
values and applying linear interpolation between values found in tables given in
McCulloch (1986) yields estimators α̂ and β̂.

Scale and location parameters, σ and µ, can be estimated in a similar way.
However, due to the discontinuity of the characteristic function forα = 1 andβ ≠ 0
in representation (1.3), this procedure is more complicated. We refer the interested
reader to the original work of McCulloch (1986). This estimation technique is
implemented in XploRe in the stabcull quantlet.

Sample Characteristic Function Methods
Given an i.i.d. random sample x1, … , xn of size n, define the sample characteristic
function by:

φ̂(t) =
1

n

n∑

j=1

exp(itxj) .

Since |φ̂(t)| is bounded by unity all moments of φ̂(t) are finite and, for any fixed t,
it is the sample average of i.i.d. random variables exp(itxj). Hence, by the law of
large numbers, φ̂(t) is a consistent estimator of the characteristic function φ(t).

Press (1972) proposed a simple estimation method, called the method of mo-
ments, based on transformations of the characteristic function. From (1.3) we have
for all α:

|φ(t)| = exp(−σα|t|α) . (1.11)

Hence, − log |φ(t)| = σα|t|α. Now, assuming α ≠ 1, choose two nonzero values of t,
say t1 ≠ t2. Then for k = 1, 2 we have:

− log |φ(tk)| = σα|tk|α . (1.12)

924 Rafał Weron

Solving these two equations for α and σ, and substituting φ̂(t) for φ(t) yields:

α̂ =
log log |φ̂(t1)|

log |φ̂(t2)|
log

∣∣∣ t1
t2

∣∣∣
, (1.13)

and

log σ̂ =
log |t1| log(− log |φ̂(t2)|) − log |t2| log(− log |φ̂(t1)|)

log
∣∣∣ t1

t2

∣∣∣
. (1.14)

In order to estimate β and µ we have to choose two nonzero values of t, say t3 ≠ t4,
and apply a similar trick to Im{logφ(t)}. The estimators are consistent since they
are based upon estimators of φ(t), Im{φ(t)} and Re{φ(t)}, which are known to be
consistent. However, convergence to the population values depends on the choice
of t1, … , t4. The optimal selection of these values is problematic and still is an open
question. The XploRe implementation of the method of moments (the stabmom
quantlet) uses t1 = 0.2, t2 = 0.8, t3 = 0.1, and t4 = 0.4 as proposed by Koutrouvelis
(1980) in his simulation study.

In the same paper Koutrouvelis presented a much more accurate regression-
type method which starts with an initial estimate of the parameters and proceeds
iteratively until some prespecified convergence criterion is satisfied. Each iteration
consists of two weighted regression runs. The number of points to be used in these
regressions depends on the sample size and starting values of α. Typically no more
than two or three iterations are needed. The speed of the convergence, however,
depends on the initial estimates and the convergence criterion.

The regression method is based on the following observations concerning the
characteristic function φ(t). First, from (1.3) we can easily derive:

log
(
− log |φ(t)|2) = log

(
2σα

)
+ α log |t| . (1.15)

The real and imaginary parts of φ(t) are for α ≠ 1 given by:

Re{φ(t)} = exp(−|σt|α) cos
[
µt + |σt|αβsign(t) tan

πα
2

]
,

and

Im{φ(t)} = exp(−|σt|α) sin
[
µt + |σt|αβsign(t) tan

πα
2

]
.

The last two equations lead, apart from considerations of principal values, to:

arctan

(
Im{φ(t)}
Re{φ(t)}

)
= µt + βσα tan

πα
2

sign(t)|t|α . (1.16)

Computationally Intensive Value at Risk Calculations 925

Equation (1.15) depends only on α and σ and suggests that we estimate these
parameters by regressing yk = log(− log |φ̂(tk)|2) on wk = log |tk| in the model:

yk = m + αwk + εk , (1.17)

where tk is an appropriate set of real numbers, m = log(2σα), and εk denotes an
error term. Koutrouvelis (1980) proposed to use tk = πk

25 , k = 1, 2, … , K; with K
ranging between 9 and 134 for different values of α and sample sizes.

Once α̂ and σ̂ have been obtained and α and σ have been fixed at these val-
ues, estimates of β and µ can be obtained using (1.16). Next, the regressions are
repeated with α̂, σ̂, β̂ and µ̂ as the initial parameters. The iterations continue until
a prespecified convergence criterion is satisfied. Koutrouvelis proposed to use the
Fama–Roll estimator (1.8) and the 25% truncated mean for initial estimates of σ
and µ, respectively.

Kogon and Williams (1998) eliminated this iteration procedure and simplified
the regression method. For initial estimation they applied McCulloch’s method,
worked with the continuous representation (1.4) of the characteristic function
instead of the classical one (1.3) and used a fixed set of only 10 equally spaced
frequency points tk. In terms of computational speed their method compares fa-
vorably to the original method of Koutrouvelis, see Table 1.1. It has a significantly
better performance near α = 1 and β ≠ 0 due to the elimination of discon-
tinuity of the characteristic function. However, it returns slightly worse results
for other values of α. In XploRe both regression algorithms are implemented in
the stabreg quantlet. An optional parameter lets the user choose between the
original Koutrouvelis code and the Kogon–Williams modification.

Table 1.1. Comparison of McCulloch’s quantile technique, the method of moments, the regression

approach of Koutrouvelis and the method of Kogon and Williams for 100 simulated samples of two

thousand S1.7(0.005, 0.1, 0.001) random numbers each. Parameter estimates are mean values over

100 samples. Values of the Mean Absolute Percentage Error (MAPEθ = 1
n

∑n
i=1 |θ̂ − θ||θ) are given in

parentheses. In the last column average computational times for one sample of 2000 random

variables are provided (on a PC equipped with a Centrino 1.6 GHz processor and running

XploRe 4.6) (Q: CSAfin03)

Method α̂ σ̂ β̂ µ̂ CPU time

McCulloch 1.7005 0.0050 0.1045 0.0010 0.025 s

(2.60%) (2.16%) (110.72%) (22.01%)

Moments 1.9895 0.0104 0.0712 0.0010 0.015 s

(17.03%) (107.64%) (969.57%) (33.56%)

Koutrouvelis 1.6988 0.0050 0.0989 0.0010 0.300 s

(1.66%) (1.69%) (108.21%) (21.01%)

Kogon–Williams 1.6994 0.0050 0.0957 0.0010 0.085 s

(1.95%) (1.77%) (110.59%) (21.14%)

926 Rafał Weron

A typical performance of the described estimators is summarized in Table 1.1,
see also Fig. 1.5. McCulloch’s quantile technique, the method of moments, the re-
gression approach of Koutrouvelis and the method of Kogon and Williams were
applied to 100 simulated samples of two thousand S1.7(0.005, 0.1, 0.001) random
numbers each. The method of moments yielded the worst estimates, clearly out-
side any admissible error range. McCulloch’s method came in next with acceptable
results and computational time significantly lower than the regression approaches.
On the other hand, both the Koutrouvelis and the Kogon–Williams implementa-
tions yielded good estimators with the latter performing considerably faster, but
slightly less accurate. We have to say, though, that all methods had problems with
estimating β. Like it or not, our search for the optimal estimation technique is
not over yet. We have no other choice but turn to the last resort – the maximum
likelihood method.

Figure 1.5. Regression fit (dashed), using Koutrouvelis’ regression method, to 2000 simulated

S1.7(0.005, 0.1, 0.001) random variables (circles). For comparison, the CDF of the original

distribution is also plotted (solid). The right panel is a magnification of the left tail fit on a double

logarithmic scale (Q: CSAfin04)

Maximum Likelihood Method
The maximum likelihood (ML) estimation scheme for α-stable distributions does
not differ from that for other laws, at least as far as the theory is concerned. For
a vector of observations x = (x1, … , xn), the ML estimate of the parameter vector
θ = (α,σ, β,µ) is obtained by maximizing the log-likelihood function:

Lθ(x) =
n∑

i=1

log f̃ (xi; θ) , (1.18)

Computationally Intensive Value at Risk Calculations 927

where f̃ (·; θ) is the stabledensity function.The tildedenotes the fact that, ingeneral,
we do not know the explicit form of the stable PDF and have to approximate it
numerically. The ML methods proposed in the literature differ in the choice of
the approximating algorithm. However, all of them have an appealing common
feature – under certain regularity conditions the maximum likelihood estimator
is asymptotically normal with the variance specified by the Fischer information
matrix (DuMouchel, 1973). The latter can be approximated either by using the
Hessian matrix arising in maximization or, as in Nolan (2001), by numerical
integration.

Because of computational complexity there are only a few documented attempts
of estimating stable law parameters via maximum likelihood. DuMouchel (1971)
developed an approximate ML method, which was based on grouping the data set
into bins and using a combination of means to compute the density (FFT for the
central values of x and series expansions for the tails) to compute an approximate
log-likelihood function. This function was then numerically maximized.

Applying Zolotarev’s (1964) integral formulas, Brorsen and Yang (1990) for-
mulated another approximate ML method, however, only for symmetric stable
random variables. To avoid the discontinuity and nondifferentiability of the sym-
metric stable density function at α = 1, the tail index αwas restricted to be greater
than one.

Much better, in terms of accuracy and computational time, are more recent
maximum likelihood estimation techniques. Mittnik et al. (1999) utilized the FFT
approach for approximating the stable density function, whereas Nolan (2001)
used the direct integration method. Both approaches are comparable in terms of
efficiency. The differences in performance are the result of different approximation
algorithms, see Sect. 1.2.2.

As Ojeda (2001) observes, the ML estimates are almost always the most ac-
curate, closely followed by the regression-type estimates, McCulloch’s quantile
method, and finally the method of moments. However, as we have already said in
the introduction to this section, maximum likelihood estimation techniques are
certainly the slowest of all the discussed methods. For example, ML estimation
for a sample of 2000 observations using a gradient search routine which utilizes
the direct integration method needs 221 seconds or about 3.7 minutes! The cal-
culations were performed on a PC equipped with a Centrino 1.6 GHz processor
and running STABLE ver. 3.13 (see also Sect. 1.2.2 where the program was briefly
described). For comparison, the STABLE implementation of the Kogon–Williams
algorithm performs the same calculations in only 0.02 seconds (the XploRe quant-
letstabregneeds roughly four times more time, see Table 1.1). Clearly, the higher
accuracy does not justify the application of ML estimation in many real life prob-
lems, especially when calculations are to be performed on-line. For this reason the
program STABLE also offers an alternative – a fast quasi ML technique. It quickly
approximates stable densities using a 3-dimensional spline interpolation based on
pre-computed values of the standardized stable density on a grid of (x,α, β) values.
At the cost of a large array of coefficients, the interpolation is highly accurate over

928 Rafał Weron

Table 1.2. α-stable and Gaussian fits to 2000 returns of the Dow Jones Industrial Average (DJIA) index

from the period January 2, 1985 – November 30, 1992. Values of the Anderson-Darling and

Kolmogorov goodness-of-fit statistics suggest a much better fit of the 1.66-stable law. Empirical and

model based (α-stable and Gaussian) VaR numbers at the 95% and 99% confidence levels are also

given. The values in parentheses are the relative differences between model and empirical VaR

estimates (Q: CSAfin05)

Parameters α σ β µ

α-stable fit 1.6596 0.0053 0.0823 0.0009

Gaussian fit 0.0115 0.0006

Test values Anderson–Darling Kolmogorov

α-stable fit 1.0044 0.8641

Gaussian fit + INF 4.5121

VaR estimates (×10−2) 95% 99%

Empirical 1.5242 2.8922

α-stable fit 1.3296 (12.77%) 2.7480 (4.98%)
Gaussian fit 1.8350 (20.39%) 2.6191 (9.44%)

most values of the parameter space and relatively fast – 0.26 seconds for a sample
of 2000 observations.

Are Asset Returns α-stable?1.2.5

In this paragraph we want to apply the discussed techniques to financial data. Due
to limited space we have chosen only one estimation method – the regression ap-
proach of Koutrouvelis (1980), as it offers high accuracy at moderate computational
time. We start the empirical analysis with the most prominent example – the Dow
Jones Industrial Average (DJIA) index. The data set covers the period January 2,
1985 – November 30, 1992 and comprises 2000 returns. Recall, that this period
includes the largest crash in Wall Street history – the Black Monday of October 19,
1987. Clearly the 1.66-stable law offers a much better fit to the DJIA returns than
the Gaussian distribution, see Table 1.2. Its superiority, especially in the tails of the
distribution, is even better visible in Fig. 1.6. In this figure we also plotted vertical
lines representing the 1.66-stable, Gaussian and empirical daily VaR estimates at
the c = 95% and 99% confidence levels. These estimates correspond to a one day
VaR of a virtual portfolio consiting of one long position in the DJIA index. The
stable VaR estimates are almost twice closer to the empirical estimates than the
Gaussian ones, see Table 1.2.

Recall that calculating the VaR number reduces to finding the (1 − c) quantile of
a given distribution or equivalently to evaluating the inverse F−1 of the distribution
function at (1 − c). Unfortunately no simple algorithms for inverting the stable
CDF are known. The qfstab quantlet of XploRe utilizes a simple binary search

Computationally Intensive Value at Risk Calculations 929

Stable and Gaussian fit to DJIA returns

-0.04 -0.02 0 0.02

x

0
0.

5
1

C
D

F(
x)

Stable, Gaussian and empirical left tails

-4.5 -4 -3.5 -3 -2.5

log(x)

-1
0

-5

lo
g(

C
D

F(
x)

)

Figure 1.6. 1.66-stable (solid grey line) and Gaussian (dashed line) fits to the DJIA returns (circles)

empirical cumulative distribution function from the period January 2, 1985 – November 30, 1992. For

better exposition of the fit in the central part of the distribution ten largest and ten smallest returns

are not illustrated in the left panel. The right panel is a magnification of the left tail fit on a double

logarithmic scale. Vertical lines represent the 1.66-stable (solid grey line), Gaussian (dashed line)

and empirical (solid line) VaR estimates at the 95% (filled circles, triangles and squares) and 99%

(hollow circles, triangles and squares) confidence levels (Q: CSAfin05)

routine for large α’s and values near the mode of the distribution. In the extreme
tails the approximate range of the quantile values is first estimated via the power
law formula (1.1), then a binary search is conducted.

To make our statistical analysis more sound, we also compare both fits through
Anderson–DarlingandKolmogorov test statistics (D’AgostinoandStephens, 1986).
The former may be treated as a weighted Kolmogorov statistics which puts more
weight to the differences in the tails of the distributions. Although no asymp-
totic results are known for the stable laws, approximate critical values for these
goodness-of-fit tests can be obtained via the bootstrap technique (Borak, Härdle
and Weron, 2004; Stute, Manteiga and Quindimil, 1993). In this chapter, though,
we will not perform hypothesis testing and just compare the test values. Naturally,
the lower the values the better the fit. The stable law seems to be tailor-cut for the
DJIA index returns. But does it fit other asset returns as well?

The second analyzed data set comprises 2000 returns of the Deutsche Aktienin-
dex (DAX) index from the period January 2, 1995 – December 5, 2002. Also in
this case the α-stable law offers a much better fit than the Gaussian, see Table 1.3.
However, the test statistics suggest that the fit is not as good as for the DJIA returns
(observe that both data sets are of the same size and the test values in both cases
can be compared). This can be also seen in Fig. 1.7. The left tail seems to drop off
at some point and the very tail is largely overestimated by the stable distribution.
At the same time it is better approximated by the Gaussian law. This results in

930 Rafał Weron

a surprisingly good fit of the daily 95% VaR by the Gaussian distribtion, see Ta-
ble 1.3, and an overestimation of the daily VaR estimate at the c = 99% confidence
level by the 1.7-stable distribtion. In fact, the latter is a rather typical situation. For
a risk manager who likes to play safe this may not be a bad idea, as the stable law
overestimates the risks and thus provides an upper limit of losses.

Table 1.3. α-stable and Gaussian fits to 2000 returns of the Deutsche Aktienindex (DAX) index from

the period January 2, 1995 – December 5, 2002. Empirical and model based (α-stable and Gaussian)

VaR numbers at the 95% and 99% confidence levels are also given (Q: CSAfin06)

Parameters α σ β µ

α-stable fit 1.7003 0.0088 −0.3179 −0.0002

Gaussian fit 0.0157 0.0004

Test values Anderson–Darling Kolmogorov

α-stable fit 1.9149 1.1798

Gaussian fit 16.4119 2.8197

VaR estimates (×10−2) 95% 99%

Empirical 2.5731 4.5963

α-stable fit 2.4296 (5.58%) 5.0982 (10.92%)
Gaussian fit 2.5533 (0.77%) 3.6260 (21.11%)

This example clearly shows that the α-stable distribution is not a panacea.
Although it gives a very good fit to a number of empirical data sets, there surely are
distributions that recover the characteristics of other data sets better. We devote
the rest of this chapter to such alternative heavy tailed distributions. We start
with a modification of the stable law and in Sect. 1.3 concentrate on the class of
generalized hyperbolic distributions.

Truncated Stable Distributions1.2.6

Mandelbrot’s (1963) pioneering work on applyingα-stable distributions to asset re-
turns gained support in the first few years after its publication (Fama, 1965; Officer,
1972; Teichmoeller, 1971). Subsequent works, however, have questioned the stable
distribution hypothesis (Akgiray and Booth, 1988; Blattberg and Gonedes, 1974).
By the definition of the stability property, the sum of i.i.d. stable random variables
is also stable. Thus, if short term asset returns are distributed according to a stable
law, longer term returns should retain the same functional form. However, from
the empirical data it is evident that as the time interval between price observations
grows longer, the distribution of returns deviates from the short term heavy tailed
distribution, and converges to the Gaussian law. This indicates that the returns
probably are not α-stable (but it could mean as well that the returns are just not in-
dependent). Over the next few years, the stable distribution temporarily lost favor
and alternative processes were suggested as mechanisms generating stock returns.

Computationally Intensive Value at Risk Calculations 931

Stable and Gaussian fit to DAX returns

-0.05 0 0.05

x

0
0.

5
1

C
D

F(
x)

Stable, Gaussian and empirical left tails

-4.5 -4 -3.5 -3 -2.5

log(x)

-1
0

-8
-6

-4
-2

lo
g(

C
D

F(
x)

)

Figure 1.7. 1.7-stable (solid grey line) and Gaussian (dashed line) fits to the DAX returns (black

circles) empirical cumulative distribution function from the period January 2, 1995 – December 5,

2002. For better exposition of the fit in the central part of the distribution ten largest and ten

smallest returns are not illustrated in the left panel. The right panel is a magnification of the left tail

fit on a double logarithmic scale. Vertical lines represent the 1.7-stable (solid grey line), Gaussian

(dashed line) and empirical (solid black line) VaR estimates at the 95% (filled circles, triangles and

squares) and 99% (hollow circles, triangles and squares) confidence levels. This time the stable law

overestimates the tails of the empirical distribution (Q: CSAfin06)

In mid 1990s the stable distribution hypothesis has made a dramatic comeback.
Several authors have found a very good agreement of high-frequency returns with
a stable distribution up to six standard deviations away from the mean (Cont,
Potters and Bouchaud, 1997; Mantegna and Stanley, 1995). For more extreme
observations, however, the distribution they have found falls off approximately
exponentially. To cope with such observations the truncated Lévy distributions
(TLD) were introduced by Mantegna and Stanley (1994). The original definition
postulated a sharp truncation of the α-stable probability density function at some
arbitrary point. However, later an exponential smoothing was proposed by Kopo-
nen (1995).

For α ≠ 1 the characteristic function of a symmetric TLD random variable is
given by:

logφ(t) = −
σα

cos πα
2

[
(t2 + λ2)α|2 cos

{
α arctan

|t|
λ

}
− λα

]
,

where α is the tail exponent, σ is the scale parameter and λ is the truncation coeffi-
cient. Clearly the TLD reduces to the symmetric α-stable distribution (β = µ = 0)
when λ = 0. The TLD distribution exhibits the following behavior: for small and
intermediate returns it behaves like a stable distribution, but for extreme returns
the truncation causes the distribution to converge to a Gaussian distribution. Thus

932 Rafał Weron

the observation that the asset returns distribution is a TLD explains both the short-
term α-stable behavior and the long run convergence to the normal distribution.

Despite these interesting features the truncated Lévy distributions have not
been applied extensively to date. The most probable reason for this being the
complicated definition of the TLD law. Like for α-stable distributions, only the
characteristic function is known. No closed form formulas exist for the density
or the distribution function. Since no integral formulas, like Zolotarev’s (1986) for
the α-stable laws, have been discovered as yet, statistical inference is, in gener-
al, limited to maximum likelihood utilizing the FFT technique for approximating
the PDF. Moreover, compared to the stable distribution, the TLD introduces one
more parameter (asymmetric TLD laws have also been considered in the literature,
see e.g. Boyarchenko and Levendorskii (2000) and Koponen (1995)) making the
estimation procedure even more complicated. Other parameter fitting techniques
proposed so far comprise a combination of ad hoc approaches and moment match-
ing (Boyarchenko and Levendorskii, 2000; Matacz, 2000). Better techniques have
to be discovered before TLDs become a common tool in finance.

Hyperbolic Distributions1.3

In response to remarkable regularities discovered by geomorphologists in the
1940s, Barndorff-Nielsen (1977) introduced the hyperbolic law for modeling the
grain size distribution of windblown sand. Excellent fits were also obtained for
the log-size distribution of diamonds from a large mining area in South West
Africa. Almost twenty years later the hyperbolic law was found to provide a very
good model for the distributions of daily stock returns from a number of leading
German enterprises (Eberlein and Keller, 1995; Küchler et al., 1999), giving way to
its today’s use in stock price modeling (Bibby and Sørensen, 1997) and market risk
measurement (Eberlein, Keller and Prause, 1998). The name of the distribution is
derived from the fact that its log-density forms a hyperbola, see Fig. 1.8. Recall
that the log-density of the normal distribution is a parabola. Hence the hyperbolic
distribution provides the possibility of modeling heavier tails.

The hyperbolic distribution is defined as a normal variance-mean mixture
where the mixing distribution is the generalized inverse Gaussian (GIG) law with
parameter λ = 1, i.e. it is conditionally Gaussian, see Barndorff-Nielsen (1977) and
Barndorff-Nielsen and Blaesild (1981). More precisely, a random variable Z has the
hyperbolic distribution if:

(Z|Y) ∼ N
(
µ + βY , Y

)
, (1.19)

where Y is a generalized inverse Gaussian GIG(λ = 1, χ,ψ) random variable and
N(m, s2) denotes the Gaussian distribution with mean m and variance s2. The GIG
law is a very versatile positive domain three parameter distribution. It arises in
the context of the first passage time of a diffusion process, when the drift and

Computationally Intensive Value at Risk Calculations 933

Figure 1.8. Densities and log-densities of hyperbolic (dotted line), NIG (dashed line) and Gaussian

(solid line) distributions having the same variance, see (1.32). The name of the hyperbolic

distribution is derived from the fact that its log-density forms a hyperbola, which is clearly visible in

the right panel (Q: CSAfin07)

variance of displacement per unit time are dependent upon the current position
of the particle. The probability density function of a GIG variable is given by:

fGIG(x) =
(ψ|χ)λ|2

2Kλ(
√χψ)

xλ−1 e− 1
2

(
χx−1+ψx

)
, x > 0 , (1.20)

with the parameters taking values in one of the ranges: (1) χ > 0,ψ ≥ 0 if λ < 0,
(2) χ > 0,ψ > 0 if λ = 0 or (3) χ ≥ 0,ψ = 0 if λ > 0. The generalized inverse
Gaussian law has a number of interesting properties that we will use later in this
section. The distribution of the inverse of a GIG variable is again GIG but with
a different λ, namely if:

Y ∼ GIG(λ, χ,ψ) then Y−1 ∼ GIG(−λ, χ,ψ) . (1.21)

A GIG variable can be also reparameterized by setting a =
√
χ|ψ and b = √χψ,

and defining Y = aỸ , where:

Ỹ ∼ GIG(λ, b, b) . (1.22)

The normalizing constant Kλ(t) in formula (1.20) is the modified Bessel function
of the third kind with index λ, also known as the MacDonald function. It is defined
as:

Kλ(t) =
1

2

∫ ∞

0
x λ−1 e− 1

2 t
(
x+x−1)

dx , t > 0 . (1.23)

934 Rafał Weron

In the context of hyperbolic distributions, the Bessel functions are thoroughly
discussed in Barndorff-Nielsen and Blaesild (1981). Here we recall only two prop-
erties that will be used later. Namely, (1) Kλ(t) is symmetric with respect to λ, i.e.
Kλ(t) = K−λ(t), and (2) for λ = ± 1

2 it can be written in a simpler form:

K± 1
2
(t) =

√
π
2

t− 1
2 e−t . (1.24)

For other values of λ numerical approximations of the integral in (1.23) have to be
used, see e.g. Campbell (1980), Press et al. (1992) or Temme (1975).

Relation (1.19) implies that a hyperbolic random variable Z ∼ H(ψ, β, χ,µ) can
be represented in the form:

Z ∼ µ + βY +
√

YN(0, 1) ,

with the characteristic function:

φZ(u) = eiuµ
∫ ∞

0
eiβzu− 1

2 zu2
dFY (z) . (1.25)

Here FY (z) denotes the distribution function of a generalized inverse Gaussian
random variable Y with parameter λ = 1, see (1.20). Hence, the hyperbolic PDF is
given by:

fH(x) =

√
ψ|χ

2
√
ψ + β2K1(

√ψχ)
e−
√

{ψ+β2}{χ+(x−µ)2}+β(x−µ) . (1.26)

Sometimes another parameterization of the hyperbolic distribution with δ =√χ and α =
√
ψ + β2 is used. Then the probability density function of the hyper-

bolic H(α, β, δ,µ) law can be written as:

fH(x) =

√
α2 − β2

2αδK1

(
δ
√
α2 − β2

) e−α
√

δ2+(x−µ)2+β(x−µ) , (1.27)

where δ > 0 is the scale parameter,µ ∈ R is the location parameter and 0 ≤ |β| < α.
The latter twoparameters–αandβ–determine the shape,withαbeing responsible
for the steepness and β for the skewness. In XploRe the hyperbolic density and
distribution functions are implemented in the pdfhyp and cdfhyp quantlets,
respectively. The calculation of the PDF is straightforward, however, the CDF has
to be numerically integrated from (1.27).

Thehyperbolic law is amemberof amoregeneral classof generalizedhyperbolic
distributions. The generalized hyperbolic law can be represented as a normal
variance-mean mixture where the mixing distribution is the generalized inverse
Gaussian (GIG) law with anyλ ∈ R. Hence, the generalized hyperbolic distribution

Computationally Intensive Value at Risk Calculations 935

is described by five parameters θ = (λ,α, β, δ,µ). Its probability density function
is given by:

fGH(x) = κ
{
δ2 + (x − µ)2

} 1
2

(
λ− 1

2

)

Kλ− 1
2

(
α
√
δ2 + (x − µ)2

)
e β(x−µ) , (1.28)

where:

κ =
(α2 − β2)

λ
2

√
2πα λ− 1

2 δ λKλ

(
δ
√
α2 − β2

) . (1.29)

For |β + z| < α its moment generating function takes the form:

M(z) = eµz

{
α2 − β2

α2 − (β + z)2

} λ
2 Kλ

(
δ
√
α2 − (β + z)2

)

Kλ

(
δ
√
α2 − β2

) . (1.30)

Note, that M(z) is smooth, i.e. infinitely many times differentiable, near 0 and
hence every moment exists. If we set ζ = δ

√
α2 − β2 = √ψχ then the first two

moments lead to the following formulas for the mean and variance of a generalized
hyperbolic random variable:

EX = µ +
βδ2

ζ
Kλ+1(ζ)

Kλ(ζ)
, (1.31)

VarX = δ2

[
Kλ+1(ζ)

ζKλ(ζ)
+
β2δ2

ζ2

{
Kλ+2(ζ)

Kλ(ζ)
−

(
Kλ+1(ζ)

ζKλ(ζ)

)2
}]

. (1.32)

Thenormal-inverseGaussian(NIG)distributionswere introducedbyBarndorff-
Nielsen (1995) as a subclass of the generalized hyperbolic laws obtained for λ = − 1

2 .
The density of the normal-inverse Gaussian distribution is given by:

fNIG(x) =
αδ
π

eδ
√

α2−β2+β(x−µ)
K1

(
α
√
δ2 + (x − µ)2

)

√
δ2 + (x − µ)2

. (1.33)

In XploRe the NIG density and distribution functions are implemented in the
pdfnig and cdfnig quantlets, respectively. Like for the hyperbolic distribution
the calculation of the PDF is straightforward, but the CDF has to be numerically
integrated from (1.33).

At the “expense” of four parameters, the NIG distribution is able to model sym-
metric and asymmetric distributions with possibly long tails in both directions. Its
tail behavior is often classified as “semi-heavy”, i.e. the tails are lighter than those
of non-Gaussian stable laws, but much heavier than Gaussian. Interestingly, if we
let α tend to zero the NIG distribution converges to the Cauchy distribution (with
location parameter µ and scale parameter δ), which exhibits extremely heavy tails.

936 Rafał Weron

The tail behavior of the NIG density is characterized by the following asymptotic
relation:

fNIG(x) ≈ |x|−3|2 e(∓α+β)x for x → ±∞ . (1.34)

In fact, this is a special case of a more general relation with the exponent of |x|being
equal to λ − 1 (instead of −3|2), which is valid for all generalized hyperbolic laws
(Barndorff-Nielsen and Blaesild, 1981). Obviously, the NIG distribution may not
be adequate to deal with cases of extremely heavy tails such as those of Pareto or
non-Gaussian stable laws. However, empirical experience suggests an excellent fit
of the NIG law to financial data (Karlis, 2002; Lillestöl, 2001; Rydberg, 1997; Venter
and de Jongh, 2002). Moreover, the class of normal-inverse Gaussian distributions
possesses an appealing feature that the class of hyperbolic laws does not have.
Namely, it is closed under convolution, i.e. a sum of two independent NIG random
variables is again NIG (Barndorff-Nielsen, 1995). In particular, if X1 and X2 are in-
dependent normal inverse Gaussian random variables with common parameters α
and β but having different scale and location parameters δ1,2 and µ1,2, respectively,
then X = X1 + X2 is NIG(α, β, δ1 + δ1,µ1 + µ2). This feature is especially useful in
time scaling of risks, e.g. in deriving 10-day risks from daily risks. Only two sub-
classes of the generalized hyperbolic distributions are closed under convolution.
The other class with this important property is the class of variance-gamma (VG)
distributions, which is a limiting case obtained for δ → 0. The variance-gamma
distributions (with β = 0) were introduced to the financial literature by Madan
and Seneta (1990).

Simulation of Generalized Hyperbolic Variables1.3.1

The most natural way of simulating generalized hyperbolic variables stems from
the fact that they can be represented as normal variance-mean mixtures. Since the
mixing distribution is the generalized inverse Gaussian law, the resulting algorithm
reads as follows:
1. simulate a random variable Y ∼ GIG(λ, χ,ψ) = GIG(λ, δ2,α2 − β2);
2. simulate a standard normal random variable N, e.g. using the Box–Muller

algorithm, see Sect. 1.2.3;
3. return X = µ + βY +

√
YN.

The algorithm is fast and efficient if we have a handy way of simulating generalized
inverse Gaussian variates. For λ = − 1

2 , i.e. when sampling from the so-called
inverse Gaussian (IG) distribution, there exists an efficient procedure that utilizes
a transformation yielding two roots. It starts with the observation that if we let
ϑ =

√
χ|ψ then the GIG(− 1

2 , χ,ψ) = IG(χ,ψ) density, see (1.20), of Y can be written
as:

fY (x) =
√

χ
2πx3

exp

{
−χ(x − ϑ)2

2xϑ2

}
.

Computationally Intensive Value at Risk Calculations 937

Now, following Shuster (1968) we may write:

V =
χ(Y − ϑ)2

Yϑ2
∼ χ2

(1) , (1.35)

i.e. V is distributed as a chi-square random variable with one degree of freedom.
As such it can be simply generated by taking a square of a standard normal random
number. Unfortunately, the value of Y is not uniquely determined by (1.35). Solving
this equation for Y yields two roots:

y1 = ϑ +
ϑ
2χ

(
ϑV −

√
4ϑχV + ϑ2V2

)
and y2 =

ϑ2

y1
.

The difficulty in generating observations with the desired distribution now lies in
choosing between the two roots. Michael, Schucany and Haas (1976) showed that Y
can be simulated by choosing y1 with probability ϑ|(ϑ + y1). So for each random
observation V from a χ2

(1) distribution the smaller root y1 has to be calculated.
Then an auxiliary Bernoulli trial is performed with probability p = ϑ|(ϑ + y1). If
the trial results in a “success”, y1 is chosen; otherwise, the larger root y2 is selected.
The rndnig quantlet of XploRe, as well as the rnig function of the Rmetrics
collection of software packages for S-plus|R (see also Sect. 1.2.2 where Rmetrics
was briefly described), utilize this routine.

In the general case, the GIG distribution – as well as the (generalized) hyper-
bolic law – can be simulated via the rejection algorithm. An adaptive version of
this technique is used to obtain hyperbolic random numbers in the rhyp func-
tion of Rmetrics. Rejection is also implemented in the HyperbolicDist package
for S-plus|R developed by David Scott, see the R-project home page http:||cran.r-
project.org|. The package utilizes a version of the algorithm proposed by Atkinson
(1982), i.e. rejection coupled either with a two (“GIG algorithm” for any admissible
value of λ) or a three part envelope (“GIGLT1 algorithm” for 0 ≤ λ < 1). Envelopes,
also called hat or majorizing functions, provide an upper limit for the PDF of
the sampled distribution. The proper choice of such functions can substantially
increase the speed of computations, see Chap. II.2. As Atkinson (1982) shows, once
the parameter values for these envelopes have been determined, the algorithm
efficiency is reasonable for most values of the parameter space. However, find-
ing the appropriate parameters requires optimization and makes the technique
burdensome.

This difficulty led to a search for a short algorithm which would give comparable
efficiencies but without the drawback of extensive numerical optimizations. A so-
lution, based on the “ratio-of-uniforms” method, was provided a few years later by
Dagpunar (1989). First, recalling properties (1.21) and (1.22), observe that we only
need to find a method to simulate Ỹ ∼ GIG(λ, b, b) variables and only for λ ≥ 0.
Next, define the relocated variable Ỹm = Ỹ −m, where m = 1

b (λ−1+
√

(λ − 1)2 + b2)
is the mode of the density of Ỹ . Then the relocated variable can be generated by

938 Rafał Weron

taking Ỹm = V
U , where the pair (U, V) is uniformly distributed over the region

{(u, v) : 0 ≤ u ≤ √
h(v

u)} with:

h(t) = (t + m)λ−1 exp

(
−

b

2

t + m + 1

t + m

)
, for t ≥ −m .

Since this region is irregularly shaped, it is more convenient to generate the pair
(U, V) uniformly over a minimal enclosing rectangle {(u, v) : 0 ≤ u ≤ u+,
v− ≤ v ≤ v+}. Finally, the variate V

U is accepted if U2 ≤ h(V
U). The efficiency

of the algorithm depends on the method of deriving and the actual choice of u+

and v±. Further, for λ ≤ 1 and b ≤ 1 there is no need for the shift at mode m.
Such a version of the algorithm is implemented in the *gigru* functions of
UNU.RAN, a library of C functions for non-uniform random number generation
developed at the Department for Statistics, Vienna University of Economics, see
http:||statistik.wu-wien.ac.at|unuran|. It is also implemented in the gigru func-
tion of the SSC library (a Stochastic Simulation library in C developed originally
by Pierre L’Ecuyer, see http:||www.iro.umontreal.ca|˜lecuyer and Chap. II.2) and
in the rndghd quantlet of XploRe.

Estimation of Parameters1.3.2

Maximum Likelihood Method
The parameter estimation of generalized hyperbolic distributions can be per-
formed by the maximum likelihood method, since there exist closed-form for-
mulas (although, involving special functions) for the densities of these laws. The
computational burden is not as heavy as forα-stable laws, but it still is considerable.

In general, the maximum likelihood estimation algorithm is as follows. For
a vector of observations x = (x1, … , xn), the ML estimate of the parameter vector
θ = (λ,α, β, δ,µ) is obtained by maximizing the log-likelihood function:

L(x; θ) = log κ +
λ − 1

2

2

n∑

i=1

log(δ2 + (xi − µ)2) +

+
n∑

i=1

log Kλ− 1
2

(
α
√
δ2 + (xi − µ)2

)
+

n∑

i=1

β(xi − µ) , (1.36)

where κ is defined by (1.29). Obviously, for hyperbolic (λ = 1) distributions the
algorithm uses simpler expressions of the log-likelihood function due to rela-
tion (1.24).

The routines proposed in the literature differ in the choice of the optimization
scheme. The first software product that allowed statistical inference with hyper-
bolic distributions – the HYP program – used a gradient search technique, see
Blaesild and Sorensen (1992). In a large simulation study Prause (1999) utilized the
bracketing method. The XploRe quantlets mlehyp and mlenig use yet another
technique – the downhill simplex method of Nelder and Mead (1965), with slight
modifications due to parameter restrictions.

Computationally Intensive Value at Risk Calculations 939

The main factor for the speed of the estimation is the number of modified Bessel
functions to compute. Note, that for λ = 1 (i.e. the hyperbolic distribution) this
function appears only in the constant κ. For a data set with n independent obser-
vations we need to evaluate n and n + 1 Bessel functions for NIG and generalized
hyperbolic distributions, respectively, whereas only one for the hyperbolic. This
leads to a considerable reduction in the time necessary to calculate the likelihood
function in the hyperbolic case. Prause (1999) reported a reduction of ca. 33%,
however, the efficiency results are highly sample and implementation dependent.
For example, limited simulation studies performed in XploRe revealed a 25%, 55%
and 85% reduction in CPU time for samples of size 500, 1000 and 2000, respectively.

We also have to say that the optimization is challenging. Some of the parame-
ters are hard to separate since a flat-tailed generalized hyperbolic distribution with
a large scale parameter is hard to distinguish from a fat-tailed distribution with
a small scale parameter, see Barndorff-Nielsen and Blaesild (1981) who observed
such a behavior already for the hyperbolic law. The likelihood function with re-
spect to these parameters then becomes very flat, and may have local mimima. In
the case of NIG distributions Venter and de Jongh (2002) proposed simple esti-
mates of α and β that can be used as staring values for the ML scheme. Starting
from relation (1.34) for the tails of the NIG density they derived the following
approximation:

α − β ∼ 1

2

x1−f + E(X|X > x1−f)

E(X2|X > x1−f) − x1−fE(X|X > x1−f)
,

α + β ∼ −
1

2

xf + E(X|X < xf)

E(X2|X < xf) − xfE(X|X < xf)
,

where xf is the f -th population quantile, see Sect. 1.2.4. After the choice of a suitable
value for f , Venter and de Jongh (2002) used f = 5%, the “tail estimates” of α and β
are obtained by replacing the quantiles and expectations by their sample values in
the above relations.

Another method of providing the starting values for the ML scheme was sug-
gested by Prause (1999). He estimated the parameters of a symmetric (β = µ = 0)
generalized hyperbolic law with a reasonable kurtosis (i.e. with δα ≈ 1.04) that
had the variance equal to that of the empirical distribution.

Other Methods
Besides the ML approach other estimation methods have been proposed in the
literature. Prause (1999) tested different estimation techniques by replacing the
log-likelihood function with other score functions, like the Anderson–Darling and
Kolmogorov statistics or Lp-norms. But the results were disappointing. Lillestöl
(2001) made use of the Markov chain Monte Carlo technique (see Chap. II.3),
however, again the results obtained were not impressive. Karlis (2002) described
an EM type algorithm (see Chap. II.5) for maximum likelihood estimation of the
normal inverse Gaussian distribution. The algorithm can be programmed in any

940 Rafał Weron

statistical package supporting Bessel functions and it has all the properties of
the standard EM algorithm, like sure, but slow, convergence, parameters in the
admissible range, etc. The EM scheme can be also generalized to the family of
generalized hyperbolic distributions.

Are Asset Returns NIG Distributed?1.3.3

It is always necessary to find a reasonable tradeoff between the introduction of
additional parameters and the possible improvement of the fit. Barndorff-Nielsen
and Blaesild (1981) mentioned the flatness of the likelihood function for the hy-
perbolic distribution. The variation in the likelihood function of the generalized
hyperbolic distribution is even smaller for a wide range of parameters. Conse-
quently, the generalized hyperbolic distribution applied as a model for financial
data leads to overfitting (Prause, 1999). In the empirical analysis that follows we will
thus concentrate only on NIG distributions. They possess nice analytic properties
and have been reported to fit financial data better than hyperbolic laws (Karlis,
2002; Lillestöl, 2001; Venter and de Jongh, 2002).

Now, we can return to the empirical analysis. This time we want to check whether
DJIA and|or DAX returns can be approximated by the NIG distribution. We esti-
mate the parameters using the maximum likelihood approach. As can be seen in
Fig. 1.9 the fitted NIG distribution “misses” the very extreme DJIA returns. How-
ever, it seems to give a better fit to the central part of the empirical distribution
than the α-stable law. This is confirmed by a lower value of the Kolmogorov statis-
tics, compare Tables 1.2 and 1.4. Surprisingly, also the Anderson–Darling statistics
returns a lower value, implying a better fit in the tails of the distribution as well.

Table 1.4. NIG and Gaussian fits to 2000 returns of the Dow Jones Industrial Average (DJIA) index

from the period January 2, 1985 – November 30, 1992. Empirical and model based (NIG and

Gaussian) VaR numbers at the 95% and 99% confidence levels are also given. The values in

parentheses are the relative differences between model and empirical VaR estimates.

(Q: CSAfin08)

Parameters α δ or σ β µ

NIG fit (δ) 79.1786 0.0080 −0.3131 0.0007

Gaussian fit (σ) 0.0115 0.0006

Test values Anderson–Darling Kolmogorov

NIG fit 0.3928 0.5695

Gaussian fit + INF 4.5121

VaR estimates (×10−2) 95% 99%

Empirical 1.5242 2.8922

NIG fit 1.5194 (0.31%) 2.7855 (3.69%)
Gaussian fit 1.8350 (20.39%) 2.6191 (9.44%)

Computationally Intensive Value at Risk Calculations 941

Figure 1.9. NIG (solid grey line) and Gaussian (dashed line) fits to the DJIA returns (black circles)

empirical cumulative distribution function from the period January 2, 1985 – November 30, 1992.

The right panel is a magnification of the left tail fit on a double logarithmic scale. Vertical lines

represent the NIG (solid grey line), Gaussian (dashed line) and empirical (solid line) VaR estimates

at the 95% (filled circles, triangles and squares) and 99% (hollow circles, triangles and squares)

confidence levels. The NIG law slightly underfits the tails of the empirical distribution. Compare

with Fig. 1.5 where the stable law is shown to fit the DJIA returns very well (Q: CSAfin08)

In the right panel of Fig. 1.9 we also plotted vertical lines representing the NIG,
Gaussian and empirical daily VaR estimates at the c = 95% and 99% confidence
levels. These estimates correspond to a one day VaR of a virtual portfolio consiting
of one long position in the DJIA index. The NIG 95% VaR estimate matches
the empirical VaR almost perfectly and the NIG 99% VaR estimate also yields
a smaller difference than the stable estimate, compare Tables 1.2 and 1.4. However,
if we were interested in very high confidence levels (i.e. very low quantiles) then
the NIG fit would be less favorable than the stable one. Like in the stable case,
no simple algorithms for inverting the NIG CDF are known but finding the right
quantile could be performed through a binary search routine. For some members
of the generalized hyperbolic family specialized inversion techniques have been
developed. For example, Leobacher and Pillichshammer (2002) showed that the
approximate inverse of the hyperbolic CDF can be computed as the solution of
a first-order differential equation.

The second analyzed data set comprises 2000 returns of the Deutsche Aktienin-
dex (DAX) index. In this case the NIG distribution offers an indisputably better fit
than the Gaussian or even theα-stable law, see Table 1.5 and compare with Table 1.3.
This can be also seen in Fig. 1.10. The “drop off” in the left tail of the empirical
distribution is nicely caught by the NIG distribution. The empirical VaR estimates
are also “caught” almost perfectly.

942 Rafał Weron

Table 1.5. NIG and Gaussian fits to 2000 returns of the Deutsche Aktienindex (DAX) index from the

period January 2, 1995 – December 5, 2002. Empirical and model based (NIG and Gaussian) VaR

numbers at the 95% and 99% confidence levels are also given. The values in parentheses are the

relative differences between model and empirical VaR estimates (Q: CSAfin09)

Parameters α δ or σ β µ

NIG fit (δ) 55.4413 0.0138 −4.8692 0.0016

Gaussian fit (σ) 0.0157 0.0004

Test values Anderson–Darling Kolmogorov

NIG fit 0.3604 0.8149

Gaussian fit 16.4119 2.8197

VaR estimates (×10−2) 95% 99%

Empirical 2.5731 4.5963

NIG fit 2.5601 (0.51%) 4.5944 (0.04%)
Gaussian fit 2.5533 (0.77%) 3.6260 (21.11%)

Value at Risk, Portfolios and Heavy Tails1.4

Thepresentedexamples clearly showthatwenotonly can, butmustuseheavy tailed
alternatives to the Gaussian law in order to obtain acceptable estimates of market
losses. But can we substitute the Gaussian distribution with other distributions
in Value at Risk (Expected Shortfall) calculations for whole portfolios of assets?
Recall, that the definition of VaR utilizes the quantiles of the portfolio returns
distribution and not the returns distribution of individual assets in the portfolio.
If all asset return distributions are assumed to be Gaussian then the portfolio
distribution is multivariate normal and well known statistical tools can be applied
(Härdle and Simar, 2003). However, when asset returns are distributed according
to a different law (or different laws!) then the multivariate distribution may be hard
to tackle. In particular, linear correlation may no longer be a meaningful measure
of dependence.

Luckily for us multivariate statistics offers the concept of copulas, for a review
see Embrechts, Lindskog and McNeil (2003) and Nelsen (1999). In rough terms,
a copula is a function C : [0, 1]n → [0, 1] with certain special properties. Alterna-
tively we can say that it is a multivariate distribution function defined on the unit
cube [0, 1]n. The technical definitions of copulas that can be found in the literature
often look more complicated, but to a financial modeler, this definition is enough
to build an intuition from. What is important for VaR calculations is that a copula
enables us to construct a multivariate distribution function from the marginal
(possibly different) distribution functions of n individual asset returns in a way
that takes their dependence structure into account. This dependence structure
may be no longer measured by correlation, but by other adequate functions like
rank correlation, comonotonicity and, especially, tail dependence (Schmidt, 2004).

Computationally Intensive Value at Risk Calculations 943

NIG and Gaussian fit to DAX returns

-0.05 0 0.05

x

0
0.

5
1

C
D

F(
x)

NIG, Gaussian and empirical left tails

-4.5 -4 -3.5 -3 -2.5

log(x)

-1
0

-8
-6

-4
-2

lo
g(

C
D

F(
x)

)

Figure 1.10. NIG (solid grey line) and Gaussian (dashed line) fits to the DAX returns (black circles)

empirical cumulative distribution function from the period January 2, 1995 – December 5, 2002. The

right panel is a magnification of the left tail fit on a double logarithmic scale clearly showing the

superiority of the NIG distribution. Compare with Fig. 1.6 where the stable law is shown to overfit

the DJIA returns. Vertical lines represent the NIG (solid grey line), Gaussian (dashed line) and

empirical (solid line) VaR estimates at the 95% (filled circles, triangles and squares) and 99%

(hollow circles, triangles and squares) confidence levels (Q: CSAfin09)

Moreover, it can be shown that for every multivariate distribution function there
exists a copula which contains all information on dependence. For example, if the
random variables are independent, then the independence copula (also known as
the product copula) is just the product of n variables: C(u1, … , un) = u1 ·… · un. If
the random variables have a multivariate normal distribution with a given covari-
ance matrix then the Gaussian copula is obtained.

Copula functions do not impose any restrictions on the model, so in order to
reach a model that is to be useful in a given risk management problem, a particular
specification of the copula must be chosen. From the wide variety of copulas
that exist probably the elliptical and Archimedean copulas are the ones most
often used in applications. Elliptical copulas are simply the copulas of elliptically
contoured (or elliptical) distributions, e.g. (multivariate) normal, t, symmetric
stable and symmetric generalized hyperbolic (Fang, Kotz and Ng, 1987). Rank
correlation and tail dependence coefficients can be easily calculated for elliptical
copulas. There are, however, drawbacks – elliptical copulas do not have closed
form expressions, are restricted to have radial symmetry and have all marginal
distributions of the same type. These restrictions may disqualify elliptical copulas
from being used in some risk management problems. In particular, there is usually
a stronger dependence between big losses (e.g. market crashes) than between big
gains. Clearly, such asymmetries cannot be modeled with elliptical copulas. In
contrast to elliptical copulas, all commonly encountered Archimedean copulas

944 Rafał Weron

have closed form expressions. Their popularity also stems from the fact that they
allow for a great variety of different dependence structures (Genest and MacKay,
1986; Joe, 1997). Many interesting parametric families of copulas are Archimedean,
including the well known Clayton, Frank and Gumbel copulas.

After the marginal distributions of asset returns are estimated and a particular
copula type is selected, the copula parameters have to be estimated. The fit can
be performed by least squares or maximum likelihood. Note, however, that for
some copula types it may not be possible to maximize the likelihood function. In
such cases the least squares technique should be used. A review of the estimation
methods – including a description of the relevant XploRe quantlets – can be found
in Rank and Siegl (2002).

For risk management purposes, we are interested in the Value at Risk of a port-
folio of assets. While analytical methods for the computation of VaR exist for
the multivariate normal distribution (i.e. for the Gaussian copula), in most other
cases we have to use Monte Carlo simulations. A general technique for random
variate generation from copulas is the conditional distributions method (Nelsen,
1999). A random vector (u1, … , un)T having a joint distribution function C can be
generated by the following algorithm:
1. simulate u1 ∼ U(0, 1),
2. for k = 2, … , n simulate uk ∼ Ck(·|u1, … , uk−1).

The function Ck(·|u1, … , uk−1) is the conditional distribution of the variable Uk

given the values of U1, … , Uk−1, i.e.:

Ck(uk|u1, … , uk−1)
def= P(Uk ≤ uk|U1 = u1, … , Uk−1 = uk−1)

=
∂k−1ck(u1, … , uk)

∂u1 … ∂uk−1

/∂k−1ck−1(u1, … , uk−1)

∂u1 … ∂uk−1
,

where ck’s are k-dimensional margins of the n-dimensional copula C, i.e.:

c1(u1) = u1 ,

ck(u1, … , uk) = C(u1, … , uk, 1, … , 1) for k = 2, 3, … , n − 1 ,

cn(u1, … , un) = C(u1, … , un) .

The main drawback of this method is the fact that it involves a differentiation
step for each dimension of the problem. Also simulation of a Ck(·|u1, … , uk−1) dis-
tributed random variable may be non-trivial. Hence, the conditional distributions
technique is typically not practical in higher dimensions. For this reason, alter-
native methods have been developed for specific types of copulas. For example,
random variables distributed according to Archimedean copula functions can be
generatedby themethodofMarshall andOlkin (1988),whichutilizesLaplace trans-
forms. A comprehensive list of algorithms can be found in Embrechts, Lindskog
and McNeil (2003). For a treatment of VaR calculations, heavy tails and copulas

Computationally Intensive Value at Risk Calculations 945

consult also Bradley and Taqqu (2003), Duffie and Pan (1997) and Embrechts,
McNeil and Straumann (2002).

Copulas allow us to construct models which go beyond the standard notions
of correlation and multivariate Gaussian distributions. As such, in conjunction
with alternative asset returns distributions discussed earlier in this chapter, they
yield an ideal tool to model a wide variety of financial portfolios and products.
No wonder they are gradually becoming an element of good risk management
practice.

References
Akgiray, V. and Booth, G.G. (1988). The Stable-law Model of Stock Returns, Journal

of Business & Economic Statistics 6: 51–57.
Artzner, P., Delbaen, F., Eber, J.-M. and Heath, D. (1999). Coherent measures of

risk, Mathematical Finance 9: 203–228.
Atkinson, A.C. (1982). The simulation of generalized inverse Gaussian and hyper-

bolic random variables, SIAM Journal of Scientific & Statistical Computing 3:
502–515.

Barndorff-Nielsen, O.E. (1977). Exponentially decreasing distributions for the log-
arithm of particle size, Proceedings of the Royal Society London A 353: 401–419.

Barndorff-Nielsen, O.E. (1995). Normal\\Inverse Gaussian Processes and the Mod-
elling of Stock Returns, Research Report 300, Department of Theoretical Statis-
tics, University of Aarhus.

Barndorff-Nielsen, O.E. and Blaesild, P. (1981). Hyperbolic distributions and ram-
ifications: Contributions to theory and applications, in C. Taillie, G. Patil,
B. Baldessari (eds.) Statistical Distributions in Scientific Work, Volume 4, Rei-
del, Dordrecht, pp. 19–44.

Basle Committee on Banking Supervision (1995). An internal model-based ap-
proach to market risk capital requirements, http:||www.bis.org.

Bergström, H. (1952). On some expansions of stable distributions, Arkiv for Math-
ematik II: 375–378.

Bibby, B.M. and Sørensen, M. (1997). A hyperbolic diffusion model for stock prices,
Finance & Stochastics 1: 25–41.

Blaesild,P. andSorensen,M. (1992).HYP – a Computer Program for Analyzing Da-
ta by Means of the Hyperbolic Distribution, Research Report 248, Department
of Theoretical Statistics, Aarhus University.

Blattberg, R.C. and Gonedes, N.J. (1974). A Comparison of the Stable and Student
Distributions as Statistical Models of Stock Prices, Journal of Business 47: 244–
280.

Borak, Sz., Härdle, W. and Weron, R. (2004). Stable Distributions, in P. Ci-
zek, W. Härdle, R. Weron (eds.) Statistical Tools for Finance and Insurance,
Springer.

Bouchaud, J.-P. and Potters, M. (2000). Theory of Financial Risk, Cambridge Uni-
versity Press, Cambridge.

946 Rafał Weron

Box, G.E.P. and Muller, M.E. (1958). A note on the generation of random normal
deviates, Annals of Mathematical Statistics 29: 610–611.

Boyarchenko, S.I. and Levendorskii, S.Z. (2000). Option pricing for truncated Lévy
processes, International Journal of Theoretical and Applied Finance 3: 549–552.

Bradley, B.O. and Taqqu, M.S. (2003). Financial Risk and Heavy Tails, in S.T. Rachev
(ed.) Handbook of Heavy-tailed Distributions in Finance, North Holland.

Brorsen, B.W. and Yang, S.R. (1990). Maximum Likelihood Estimates of Symmet-
ric Stable Distribution Parameters, Communications in Statistics – Simulations
19(4): 1459–1464.

Burnecki, K., Kukla, G., Misiorek, A. and Weron, R. (2004). Loss distributions, in P.
Cizek, W. Härdle, R. Weron (eds.) Statistical Tools for Finance and Insurance,
Springer.

Campbell, J.B. (1980). A FORTRAN IV subroutine for the modified Bessel functions
of the third kind of real order and real argument, Report NRC|ERB-925, Na-
tional Research Council, Canada.

Carr, P., Geman, H., Madan, D.B. and Yor, M. (2002). The fine structure of asset
returns: an empirical investigation, Journal of Business 75: 305–332.

Chambers, J.M., Mallows, C.L. and Stuck, B.W. (1976). A Method for Simulating
Stable Random Variables, Journal of the American Statistical Association 71:
340–344.

Cizek, P., Härdle, W. and Weron, R. (2004). Statistical Tools for Finance and Insur-
ance, Springer. See also: http:||www.xplore-stat.de|ebooks|ebooks.html.

Cont, R., Potters, M. and Bouchaud, J.-P. (1997). Scaling in stock market data: Stable
laws and beyond, in B. Dubrulle, F. Graner, D. Sornette (eds.) Scale Invariance
and Beyond, Proceedings of the CNRS Workshop on Scale Invariance, Springer,
Berlin.

D’Agostino, R.B. and Stephens, M.A. (1986). Goodness-of-Fit Techniques, Marcel
Dekker, New York.

Dagpunar, J.S. (1989). An Easily Implemented Generalized Inverse Gaussian Gen-
erator, Communications in Statistics – Simulations 18: 703–710.

Danielsson, J., Hartmann, P. and De Vries, C.G. (1998). The cost of conservatism:
Extreme returns, value at risk and the Basle multiplication factor, Risk 11: 101–
103.

Dowd, K. (2002). Measuring Market Risk, Wiley.
Duffie, D. and Pan, J. (1997). An overview of value at risk, Journal of Derivatives 4:

7–49.
DuMouchel, W.H. (1971). Stable Distributions in Statistical Inference, Ph.D. Thesis,

Department of Statistics, Yale University.
DuMouchel, W.H. (1973). On the Asymptotic Normality of the Maximum–

Likelihood Estimate when Sampling from a Stable Distribution, Annals of
Statistics 1(5): 948–957.

Eberlein, E. and Keller, U. (1995). Hyperbolic distributions in finance, Bernoulli 1:
281–299.

Eberlein, E., Keller, U. and Prause, K. (1998). New insights into the smile, mispricing
and Value at Risk: The hyperbolic model, Journal of Business 71: 371–406.

Computationally Intensive Value at Risk Calculations 947

Embrechts, P., Kluppelberg, C. and Mikosch, T. (1997). Modelling Extremal Events
for Insurance and Finance, Springer.

Embrechts, P., Lindskog, F. and McNeil, A.J. (2003). Modelling Dependence with
Copulas and Applications to Risk Management, in S.T. Rachev (ed.) Handbook
of Heavy-tailed Distributions in Finance, North Holland.

Embrechts, P., McNeil, A.J. and Straumann, D. (2002). Correlation and Depend-
ence in Risk Management: Properties and Pitfalls, in M.A.H. Dempster (ed.)
Risk Management: Value at Risk and Beyond, Cambridge Univ. Press, Cam-
bridge.

Fama, E.F. (1965). The behavior of stock market prices, Journal of Business 38:
34–105.

Fama, E.F. and Roll, R. (1971). Parameter Estimates for Symmetric Stable Distribu-
tions, Journal of the American Statistical Association 66: 331–338.

Fang, K.-T., Kotz, S. and Ng, K.-W. (1987). Symmetric Multivariate and Related
Distributions, Chapman & Hall, London.

Fofack, H. and Nolan, J.P. (1999). Tail Behavior, Modes and Other Characteristics
of Stable Distributions, Extremes 2: 39–58.

Franke, J., Härdle, W. and Stahl, G. (2000). Measuring Risk in Complex Stochastic
Systems, Springer. See also: http:||www.xplore-stat.de|ebooks|ebooks.html.

Genest, C. and MacKay, J. (1986). The Joy of Copulas: Bivariate Distributions with
Uniform Marginals, The American Statistician 40: 280–283.

Guillaume, D.M., Dacorogna, M.M., Dave, R.R., Müller, U.A., Olsen, R.B. and
Pictet, O.V. (1997). From the birds eye to the microscope: A survey of new
stylized facts of the intra-daily foreign exchange markets, Finance & Stochas-
tics 1: 95–129.

Härdle, W., Klinke, S. and Müller, M. (2000). XploRe Learning Guide, Springer. See
also: http:||www.xplore-stat.de|ebooks|ebooks.html.

Härdle, W., Kleinow, T. and Stahl, G. (2002). Applied Quantitative Finance,
Springer. See also: http:||www.xplore-stat.de|ebooks|ebooks.html.

Härdle,W. andSimar, L. (2003).Applied Multivariate Statistical Analysis, Springer.
See also: http:||www.xplore-stat.de|ebooks|ebooks.html.

Holt, D.R. and Crow, E.L. (1973). Tables and graphs of the stable probability density
functions, Journal of Research of the National Bureau of Standards B 77B: 143–
198.

Janicki, A. and Kokoszka, P. (1992). Computer investigation of the rate of con-
vergence of LePage type series to alpha-stable random variables, Statistica 23:
365–373.

Janicki, A. and Weron, A. (1994a). Can one see α-stable variables and processes,
Statistical Science 9: 109–126.

Janicki, A. and Weron, A. (1994b). Simulation and Chaotic Behavior of α-Stable
Stochastic Processes, Marcel Dekker.

Joe, H. (1997). Multivariate Models and Dependence Concepts, Chapman & Hall,
London.

Jorion, P. (2000). Value at Risk: The New Benchmark for Managing Financial Risk,
McGraw-Hill.

948 Rafał Weron

Karlis, D. (2002). An EM type algorithm for maximum likelihood estimation for
the Normal Inverse Gaussian distribution, Statistics and Probability Letters 57:
43–52.

Khindarova, I., Rachev, S. and Schwartz, E. (2001). Stable Modeling of Value at
Risk, Mathematical and Computer Modelling 34: 1223–1259.

Kogon, S.M. and Williams, D.B. (1998). Characteristic function based estimation of
stable parameters, in R. Adler, R. Feldman, M. Taqqu (eds.), A Practical Guide
to Heavy Tails, Birkhauser, pp. 311–335.

Koponen, I. (1995). Analytic approach to the problem of convergence of truncated
Levy flights towards the Gaussian stochastic process, Physical Review E 52:
1197–1199.

Koutrouvelis, I.A. (1980). Regression–Type Estimation of the Parameters of Stable
Laws, Journal of the American Statistical Association 75: 918–928.

Küchler, U., Neumann, K., Sørensen, M. and Streller, A. (1999). Stock returns and
hyperbolic distributions, Mathematical and Computer Modelling 29: 1–15.

Laha, R.G. and Rohatgi, V.K. (1979). Probability Theory, Wiley.
Leobacher, G. and Pillichshammer, F. (2002). A Method for Approximate Inversion

of the Hyperbolic CDF, Computing 69: 291–303.
LePage, R., Woodroofe, M. and Zinn, J. (1981). Convergence to a stable distribution

via order statistics, Annals of Probability 9: 624–632.
Lévy, P. (1925). Calcul des Probabilites, Gauthier Villars.
Lillestöl, J. (2001). Bayesian Estimation of NIG-parameters by Markov chain Mon-

te Carlo Methods, Discussion paper 2001|3, Department of Finance and Man-
agement Science, The Norwegian School of Economics and Business Adminis-
tration.

Madan, D.B. and Seneta, E. (1990). The variance gamma (V.G.) model for share
market returns, Journal of Business 63: 511–524.

Mandelbrot, B.B. (1963). The variation of certain speculative prices, Journal of
Business 36: 394–419.

Mantegna, R.N. (1994). Fast, accurate algorithm for numerical simulation of Levy
stable stochastic processes, Physical Review E 49: 4677–4683.

Mantegna, R.N. and Stanley, H.E. (1994). Stochastic processes with ultraslow con-
vergence to a Gaussian: The truncated Lévy flight, Physical Review Letters 73:
2946–2949.

Mantegna, R.N. and Stanley, H.E. (1995). Scaling behavior in the dynamics of an
economic index, Nature 376: 46–49.

Marshall, A.W. and Olkin, I. (1988). Families of Multivariate Distributions, Journal
of the American Statistical Association 83: 834–841.

Matacz, A. (2000). Financial Modeling and Option Theory with the Truncat-
ed Lévy Process, International Journal of Theoretical and Applied Finance 3(1):
143–160.

McCulloch, J.H. (1986). Simple Consistent Estimators of Stable Distribution Pa-
rameters, Communications in Statistics – Simulations 15: 1109–1136.

McCulloch, J.H. (1996). Financial Applications of Stable Distributions, in G.S.
Maddala, C.R. Rao (eds.), Handbook of Statistics, Vol. 14, Elsevier, pp. 393–425.

Computationally Intensive Value at Risk Calculations 949

McCulloch, J.H. (1997). Measuring Tail Thickness to Estimate the Stable Index α:
A Critique, Journal of Business & Economic Statistics 15: 74–81.

McCulloch, J.H. (1998). Numerical Approximation of the Symmetric Stable Distri-
bution and Density, in R. Adler, R. Feldman, M. Taqqu (eds.), A Practical Guide
to Heavy Tails, Birkhauser, pp. 489–500.

Michael, J.R., Schucany, W.R. and Haas, R.W. (1976). Generating Random Variates
Using Transformations with Multiple Roots, The American Statistician 30: 88–
90.

Mittnik, S., Doganoglu, T. and Chenyao, D. (1999). Computing the Probability Den-
sity Function of the Stable Paretian Distribution, Mathematical and Computer
Modelling 29: 235–240.

Mittnik, S., Rachev, S.T., Doganoglu, T. and Chenyao, D. (1999). Maximum Likeli-
hood Estimation of Stable Paretian Models, Mathematical and Computer Mod-
elling 29: 275–293.

Nelder, J.A. and Mead, R. (1965). A Simplex Method for Function Minimization,
The Computer Journal 7: 308–313.

Nelsen, R.B. (1999). An Introduction to Copulas, Springer, New York.
Nolan, J.P. (1997). Numerical Calculation of Stable Densities and Distribution

Functions, Communications in Statistics – Stochastic Models 13: 759–774.
Nolan, J.P. (1999). An Algorithm for Evaluating Stable Densities in Zolotarev’s (M)

Parametrization, Mathematical and Computer Modelling 29: 229–233.
Nolan, J.P. (2001). Maximum Likelihood Estimation and Diagnostics for Stable

Distributions, in O.E. Barndorff-Nielsen, T. Mikosch, S. Resnick (eds.), Lévy
Processes, Brikhäuser, Boston.

Officer, R.R. (1972). The Distribution of Stock Returns, Journal of the American
Statistical Association 67: 807–812.

Ojeda, D. (2001). Comparison of stable estimators, Ph.D. Thesis, Department of
Mathematics and Statistics, American University.

Prause, K. (1999). The Generalized Hyperbolic Model: Estimation, Financial De-
rivatives, and Risk Measures, Ph.D. Thesis, Freiburg University, http:||www.
freidok.uni-freiburg.de|volltexte|15.

Press, S.J. (1972). Estimation in Univariate and Multivariate Stable Distribution,
Journal of the American Statistical Association 67: 842–846.

Press, W., Teukolsky, S., Vetterling, W. and Flannery, B. (1992). Numerical Recipes
in C, Cambridge University Press. See also: http:||www.nr.com.

Rachev, S. and Mittnik, S. (2000). Stable Paretian Models in Finance, Wiley.
Rank, J. andSiegl, T. (2002).ApplicationsofCopulas for theCalculationofValue-at-

Risk, in W. Härdle, T. Kleinow, G.P. Stahl (eds.) Applied Quantitative Finance,
Springer.

Rydberg, T.H. (1997). The Normal Inverse Gaussian Lévy Process: Simulation and
Approximation, Communications in Statistics – Simulations 13(4): 887–910.

Samorodnitsky, G. and Taqqu, M.S. (1994). Stable Non–Gaussian Random Process-
es, Chapman & Hall.

Schmidt, R. (2004). Tail dependence, in P. Cizek, W. Härdle, R. Weron (eds.)
Statistical Tools for Finance and Insurance, Springer.

950 Rafał Weron

Shuster, J. (1968). On the Inverse Gaussian Distribution Function, Journal of the
American Statistical Association 63: 1514–1516.

Stahl, G. (1997). Three cheers, Risk 10: 67–69.
Stute, W., Manteiga, W.G. and Quindimil, M.P. (1993). Bootstrap Based Goodness-

Of-Fit-Tests, Metrika 40: 243–256.
Teichmoeller, J. (1971). A Note on the Distribution of Stock Price Changes, Journal

of the American Statistical Association 66: 282–284.
Temme, N.M. (1975). On the numerical evaluation of the modified Bessel function

of the third kind, Journal of Computational Physics 19: 324–337.
Venter, J.H. and de Jongh, P.J. (2002). Risk estimation using the Normal Inverse

Gaussian distribution, The Journal of Risk 4: 1–23.
Weron,R. (1996).On theChambers–Mallows–StuckMethod forSimulatingSkewed

Stable Random Variables, Statistics and Probability Letters 28: 165–171. See al-
so R. Weron (1996) Correction to: On the Chambers–Mallows–Stuck Method
for Simulating Skewed Stable Random Variables, Research Report HSC|96|1,
http:||www.im.pwr.wroc.pl|˜hugo|Publications.html.

Weron, R. (2001). Levy–Stable Distributions Revisited: Tail Index > 2 Does Not
Exclude the Levy–Stable Regime, International Journal of Modern Physics C 12:
209–223.

Zolotarev,V.M. (1964).On representationof stable lawsby integrals, Selected Trans-
lations in Mathematical Statistics and Probability 4: 84–88.

Zolotarev, V.M. (1986). One–Dimensional Stable Distributions, American Mathe-
matical Society.

IV.2Econometrics
Luc Bauwens, Jeroen V.K. Rombouts

2.1 Introduction . 952

2.2 Limited Dependent Variable Models . 952

Multinomial Multiperiod Probit . 953
Multivariate Probit . 958
Mixed Multinomial Logit . 958

2.3 Stochastic Volatility and Duration Models . 961

Canonical SV Model . 961
Estimation . 962
Application . 967
Extensions of the Canonical SV Model . 968
Stochastic Duration and Intensity Models . 969

2.4 Finite Mixture Models . 971

Inference and Identification. 972
Examples . 973

952 Luc Bauwens, Jeroen V.K. Rombouts

Introduction2.1

Since the last decade we live in a digitalized world where many actions in human
and economic life are monitored. This produces a continuous stream of new, rich
and high quality data in the form of panels, repeated cross-sections and long time
series. These data resources are available to many researchers at a low cost. This
new era is fascinating for econometricians who can address many open economic
questions. To do so, new models are developed that call for elaborate estimation
techniques. Fast personal computers play an integral part in making it possible to
deal with this increased complexity.

This chapter reviews econometric models for which statistical inference re-
quires intensive numerical computations. A common feature of such models is
that they incorporate unobserved (or latent) variables, in addition to observed
ones. This often implies that the latent variables have to be integrated from the
joint distribution of latent and observed variables. The implied integral is typically
of high dimension and not available analytically. Simulation methods are almost
always required to solve the computational issue, but they bring new problems.
A general introduction on simulation based inference can be found in Gourieroux
and Monfort (1997) and Mariano et al. (2000).

The organisation of this chapter is as follows. The first section deals with lim-
ited dependent variable models, with a focus on multi-period discrete choice
dynamic models. The second section treats the stochastic volatility (SV) mod-
el, used in finance and financial econometrics to calibrate the volatility of asset
returns, as an alternative to the class of generalized autoregressive conditional
heteroskedastic (GARCH) models. It also reviews related dynamic duration mod-
els. The last section deals with finite mixture models. Illustrative applications
drawn from the recent literature are used. Programs and data are on the web site
www.core.ucl.ac.be/econometrics/Bauwens/HBCS/HBCS.htm.

All the models discussed in this chapter are parametric. Nonparametric and
semiparametric models may induce additional computational complexity. We refer
to Pagan and Ullah (1999), Horowitz (1998) and Chap. III.10 of this volume for
examples on these methods.

Limited Dependent Variable Models2.2

This section deals with models in which the dependent variable is discrete. Many
interesting problems like labour force participation, presidential voting, transport
mode choice and brand choice are discrete in nature. In particular, we consider
discrete choice models in the case where panel data are available. This allows,
for example, to follow individuals with their choices over time, so that richer
behavioural models can be constructed. Although the number of parameters in
these models does not necessarily increase, the likelihood function, and therefore
estimation, becomes more complex. In this section we describe the multinomial

Econometrics 953

multiperiod probit, the multivariate probit and the mixed multinomial logit model.
Examples are given.

We refer to Maddala (1983) for a general introduction to limited dependent and
qualitative variables in econometrics and to Franses and Paap (2001) for a basic
introduction motivating such models in relation to marketing.

Multinomial Multiperiod Probit 2.2.1

Definition
Denote by Uijt the unobserved utility perceived by individual i who chooses alter-
native j at time t. This utility may be modelled as follows

Uijt = XT
ijtβ + εijt , (2.1)

where i = 1, … , I, j = 1, … , J, t = 1, … , Ti, Xijt is a k-dimensional vector of
explanatory variables, β is a k-dimensional parameter vector and εijt is a random
shock known to individual i. This individual chooses alternative j in period t if

Uijt > Uimt ∀j ≠ m . (2.2)

We observe di = (di1, … , diTi)
T where dit = j if individual i chooses alternative j at

time t. We suppose that there is always only one choice by each individual at each
period, i.e. choices are mutually exclusive. The multinomial multiperiod probit
model is obtained by assuming

εi = (εi11, … , εiJ1, … , εi1Ti , … , εiJTi)
T ∼ IIDN(0, Σ) . (2.3)

Consequently,

Pi = P(di) = P

⋂

m≠dit

Ti⋂

t=1

Ui,dit ,t > Uimt

= P

⋂

m≠dit

Ti⋂

t=1

εi,dit ,t − εimt > (Ximt − Xi,dit ,t)
Tβ

 , (2.4)

which is a (Ti × J)-variate integral. However, since individual choices are based
on utility comparisons, it is conventional to work in utility differences relative
to alternative J. If we multiply the utilities in (2.1) by a constant, we see that the
probability event in (2.4) is invariant, thus a different scaling of the utilities does
not alter the choices of the individuals. The rescaled relative utility is then defined
as

Ũijt = (Uijt − UiJt)(σ11 + σJJ − 2σ1J)
−1|2

=
(
(Xijt − XiJt)

Tβ + εijt − εiJt

)
(σ11 + σJJ − 2σ1J)

−1|2

= X̃
T
ijtβ + ε̃ijt . (2.5)

954 Luc Bauwens, Jeroen V.K. Rombouts

An individual chooses alternative j in period t if

Ũijt > Ũimt ∀j ≠ m . (2.6)

As an identification restriction, one usually imposes a unit variance for the last
alternative expressed in utility differences. Define

ε̃i = (̃εi11, … , ε̃i,J−1,1, … , ε̃i1Ti , … , ε̃i,J−1,Ti)
T ∼ IIDN(0, Σ̃) , (2.7)

where Σ̃ is the transformed Σ with σ̃J−1,J−1 = 1, so that (2.4) becomes

Pi = P

⋂

m≠dit

Ti⋂

t=1

ε̃i,dit ,t − ε̃imt > (X̃imt − X̃i,dit ,t)
Tβ

 , (2.8)

which isaTi(J−1)-variate integral.Note thatwhen the ε̃ijt ’s are seriallyuncorrelated,
this probability event can be calculated by the product of Ti integrals of dimension
J − 1, which is easier to compute but this rules out interesting cases, see the
applications below.

Estimation
This section briefly explains how the multinomial multiperiod probit model can
be estimated in the classical or Bayesian framework. More details can be found in
Geweke et al. (1997).

Classical Estimation. Since we assume independent observations on individuals
the likelihood is

Pr(d | X, β, Σ̃) =
I∏

i=1

Pi , (2.9)

where d = (d1, … , dI) and X denotes all the observations on the explanatory
variables. Evaluation of this likelihood is infeasible for reasonable values of Ti

and J. Classical maximum likelihood estimation methods are usually, except
in some trivial cases, based on numerical search algorithms that require many
times the evaluation of the likelihood function and are therefore not suitable for
this model. For more information on classical estimation, see Hajivassiliou and
Ruud (1994), Gourieroux and Monfort (1997) and Hajivassiliou and Mc Fadden
(1998).
Alternative estimation methods are based on simulations of the choice probabili-
ties. The simulated maximum likelihood (SML) method maximizes the simulated
likelihood which is obtained by substituting the simulated choice probabilities
in (2.9). The method of simulated moments is a simulation based substitute for
the generalized method of moments. For further information on these estimation
methods we refer to Gourieroux and Monfort (1997).

Econometrics 955

Bayesian Inference. The posterior density is

ϕ(β, Σ̃ | d, X) ∝ Pr(d | X, β, Σ̃)ϕ(β, Σ̃) , (2.10)

where ϕ(β, Σ̃) is the prior density. This does not solve the problem of evaluating
a high dimensional integral in the likelihood and it remains hard to compute
posterior means for example. Data augmentation, see for example Tanner and
Wong (1987), provides a solution because this technique allows to set up a Gibbs
sampling scheme using distributions that are easy to draw from. The idea is to
augment the parameter vector with Ũ , the latent utilities, so that the posterior
density in (2.10) changes to

ϕ(β, Σ̃, Ũ | d, X) ∝ Pr(d | X, β, Σ̃, Ũ) f (Ũ | β, Σ̃)ϕ(β, Σ̃) (2.11)

implying three blocks in the Gibbs sampler: ϕ(β | Σ̃, Ũ , d, X), ϕ(̃Σ | β, Ũ , d, X) and
ϕ(Ũ | β, Σ̃, d, X). For more details on the Gibbs sampler we refer to Chaps. II.3
and III.11. For the first two blocks, the model in (2.5) is the conventional regression
model since the utilities, once simulated, are observed. For the last block, remark
that Pr(d | X, β, Σ̃, Ũ) is an indicator function since Ũ is consistent with d or not.

Applications
It is possible to extend the model in (2.5) in various ways, such as alternative
specific β’s, individual heterogeneity or a dynamic specification.

Paap and Franses (2000) propose a dynamic specification

∆Ũ it = ∆X̃it(α + αi) + (Π − IJ−1)
(
Ũ i,t−1 − X̃i,t−1(β + βi)

)
+ ηit , (2.12)

where Ũ it is the (J − 1)-dimensional vector of utilities of individual i, ∆Ũ it =
Ũ it −Ũ i,t−1, X̃i,t−1 and ∆X̃it are matrices of dimension (J −1)×k for the explanatory
variables, α and β are k-dimensional parameter vectors, Π is a (J − 1) × (J − 1)
parameter matrix with eigenvalues inside the unit circle, ηit ∼ N(0, Σ̃), and αi

and βi are random individual effects with the same dimension as α and β. These
individual heterogeneity effects are assumed to be normally distributed: αi ∼
N(0, Σα) and βi ∼ N(0, Σβ). The specification in (2.12) is a vector error-correction
model where the parameters α + αi and β + βi measure respectively the short-run
and long-run effects. The parameters in Π determine the speed at which deviations
from the long-run relationship are adjusted.

The model parameters are β, α, Σ̃, αi, βi, Σβ, Σα and Π and are augmented by the
latent utilities Ũit . Bayesian inference may be done by Gibbs sampling as described
in the estimation part above. Table 2.1 describes for each of the nine blocks which
posterior distribution is used. For example, β has a conditional (on all other
parameters) posterior density that is normal.
As an illustration we reproduce the results of Paap and Franses (2000), who pro-
vided their Gauss code (which we slightly modified). They use optical scanner data
on purchases of four brands of saltine crackers. Chintagunta and Honore (1996)
use the same data set to estimate a static multinomial probit model. The data set

956 Luc Bauwens, Jeroen V.K. Rombouts

Table 2.1. Summary of conditional posteriors for (2.12)

Parameter Conditional posterior

β, βi, α, αi Multivariate normal distributions
Σ̃, Σα, Σβ Inverted Wishart distributions
Π Matrix normal distribution
Ũ it Truncated multivariate normal

contains all purchases (choices) of crackers of 136 households over a period of
two years, yielding 3292 observations. Variables such as prices of the brands and
whether there was a display and|or newspaper feature of the considered brands
at the time of purchase are also observed and used as the explanatory variables
forming Xijt (and then transformed into X̃ijt). Table 2.2 gives the means of these
variables. Display and Feature are dummy variables, e.g. Sunshine was displayed
13% and was featured 4% of the purchase occasions. The average market shares
reflect the observed individual choices, with e.g. 7% of the choices on Sunshine.

Table 2.2. Means of Xit variables in (2.12)

Sunshine Keebler Nabisco Private Label

Market share 0.07 0.07 0.54 0.32

Display 0.13 0.11 0.34 0.10

Feature 0.04 0.04 0.09 0.05

Price 0.96 1.13 1.08 0.68

Table 2.3 shows posterior means and standard deviations for the α and β param-
eters. They are computed from 50,000 draws after dropping 20,000 initial draws.
The prior on Σ̃ is inverted Wishart, denoted by IW(S, ν), with ν = 10 and S chosen
such that E(̃Σ) = I3. Note that Paap and Franses (2000) use a prior such that
E(̃Σ−1

) = I3. For the other parameters we put uninformative priors. As expected,
Display and Feature have positive effects on the choice probabilities and price has
a negative effect. This holds both in the short run and the long run. With respect
to the private label (which serves as reference category), the posterior means of
the intercepts are positive except for the first label whose intercept is imprecisely
estimated.

Table 2.3. Posterior moments of β and α in (2.12)

β parameter α parameter Intercepts
mean st. dev. mean st. dev. mean st. dev.

Display 0.307 (0.136) 0.102 (0.076) Sunshine −0.071 (0.253)
Feature 0.353 (0.244) 0.234 (0.090) Keebler 0.512 (0.212)
Price −1.711 (0.426) −2.226 (0.344) Nabisco 1.579 (0.354)

Econometrics 957

Table 2.4 gives the posterior means and standard deviations of Σ̃, Π, Σ̃β and Σ̃α.
Note that the reported last element of Σ̃ is equal to 1 in order to identify the model.
This is done, after running the Gibbs sampler with Σ̃ unrestricted, by dividing
the variance related parameter draws by σ̃J−1,J−1. The other parameter draws are
divided by the square root of the same quantity. McCulloch et al. (2000) propose
an alternative approach where Σ̃J−1,J−1 is fixed to 1 by construction, i.e. a fully
identified parameter approach. They write

Σ̃ =

(
Φ + γγT γ

γT 1

)

(2.13)

and show that the conditional posterior of γ is normal and that of Φ is Wishart,
so that draws of Σ̃ are easily obtained. This approach is of particular interest when
a sufficiently informative prior on Σ̃ is used. A drawback of this approach is that
the Gibbs sampler has higher autocorrelation and that it is more sensitive to initial
conditions.

The relatively large posterior means of the diagonal elements of Π show that
there is persistence in brand choice. The matrices Σ̃β and Σ̃α measure the un-
observed heterogeneity. There seems to be substantial heterogeneity across the

Table 2.4. Posterior means and standard deviations of Σ̃, Π, Σ̃β and Σ̃α in (2.12)

Σ̃ Π

0.563 −0.102 0.433

(0.179) (0.096) (0.087)

0.241 0.293

(0.119) (0.069)

1

0.474 0.213 0.054

(0.103) (0.134) (0.066)

0.440 0.685 −0.196

(0.067) (0.081) (0.049)

−0.099 −0.161 0.421

(0.091) (0.138) (0.087)

Σ̃β Σ̃α

0.431 −0.267 0.335 −0.176 −0.100 0.087

(0.201) (0.250) (0.463) (0.247) (0.209) (0.401)

1.053 0.281 0.412 0.306 0.721

(0.603) (0.774) (0.352) (0.372) (0.719)

5.445 −1.310 −1.010 0.539

(2.268) (0.999) (0.853) (1.120)

1.919 1.225 1.950

(0.672) (0.560) (0.664)

1.496 1.564

(0.879) (0.816)

4.915

(1.319)

0.207 −0.023 −0.004

(0.091) (0.075) (0.220)

0.382 0.217

(0.144) (0.366)

6.672

(2.453)

958 Luc Bauwens, Jeroen V.K. Rombouts

individuals, especially for the price of the products (see the third diagonal ele-
ments of both matrices). The last three elements in Σ̃β are related to the intercepts.

The multinomial probit model is frequently used for marketing purposes. For
example, Allenby and Rossi (1999) use ketchup purchase data to emphasize the
importance of a detailed understanding of the distribution of consumer hetero-
geneity and identification of preferences at the customer level. In fact, the disaggre-
gate nature of many marketing decisions creates the need for models of consumer
heterogeneity which pool data across individuals while allowing for the analysis
of individual model parameters. The Bayesian approach is particularly suited for
that, contrary to classical approaches that yields only aggregate summaries of
heterogeneity.

Multivariate Probit2.2.2

The multivariate probit model relaxes the assumption that choices are mutually
exclusive, as in themultinomialmodel discussedbefore. In that case, di maycontain
several 1’s. Chib and Greenberg (1998) discuss classical and Bayesian inference for
this model. They also provide examples on voting behavior, on health effects of air
pollution and on labour force participation.

Mixed Multinomial Logit2.2.3

Definition
The multinomial logit model is defined as in (2.1), except that the random shock εijt

is extreme value (or Gumbel) distributed. This gives rise to the independence from
irrelevant alternatives (IIA)propertywhichessentiallymeans thatCov (Uijt , Uikt) =
0 ∀j, ∀k. Like the probit model, the mixed multinomial logit (MMNL) model
alleviates this restrictive IIA property by treating the β parameter as a random
vector with density fθ(β). The latter density is called the mixing density and is
usually assumed to be a normal, lognormal, triangular or uniform distribution.
To make clear why this model does not suffer from the IIA property, consider
the following example. Suppose that there is only explanatory variable and that
β ∼ N(β̄, σ̄2). We can then write (2.1) as

Uijt = Xijt β̄ + Xijt σ̄z + εijt (2.14)

= Xijt β̄ + ε∗ijt ,

where z ∼ N(0, 1), implying that the variance of ε∗ijt depends on the explanato-
ry variable and that there is nonzero covariance between utilities for different
alternatives.

The mixed logit probability is given by

Pi =
∫ Ti∏

t=1

 eXT
ijtβ

∑J
j=1 eXT

ijtβ

 fθ(β) dβ , (2.15)

Econometrics 959

where the term between brackets is the logistic distribution arising from the
difference between two extreme value distributions. The model parameter is θ.
Note that one may want to keep elements of β fixed as in the usual logit model. One
usually keeps random the elements of β corresponding to the variables that are
believed to create correlation between alternatives. The mixed logit model is quite
general. McFadden and Train (2000) demonstrate that any random utility model
can be approximated to any degree of accuracy by a mixed logit with appropriate
choice of variables and mixing distribution.

Estimation

Classical Estimation. Estimation of the MMNL model can be done by SML or the
method of simulated moments or simulated scores. To do this, the logit probability
in (2.15) is replaced by its simulated counterpart

SPi =
1

R

R∑

r=1

Ti∏

t=1

 eXT
ijtβ

r

∑J
j=1 eXT

ijtβ
r

 , (2.16)

where the {βr}R
r=1 are i.i.d. draws of fθ(β). The simulated likelihood is the product

of all the individual SPi’s. The simulated log-likelihood can be maximized with
respect to θ using numerical optimization techniques like the Newton–Raphson
algorithm. To avoid an erratic behaviour of the simulated objective function for
different values of θ, the same sequences of basic random numbers is used to
generate the sequence {βr} used during all the iterations of the optimizer (this is
referred to as the technique of ‘common random numbers’).
According to Gourieroux and Monfort (1997) the SML estimator is asymptotically
equivalent to the ML estimator if T (the total number of observations) and R both
tend to infinity and

√
T|R → 0. In practice, it is sufficient to fix R at a moderate

value.
The approximation of an integral like in (2.15) by the use of pseudo-random

numbers may be questioned. Bhat (2001) implements an alternative quasi-random
SML method which uses quasi-random numbers. Like pseudo-random sequences,
quasi-random sequences, such as Halton sequences, are deterministic, but they
are more uniformly distributed in the domain of integration than pseudo-random
ones. The numerical experiments indicate that the quasi-random method provides
considerably better accuracy with much fewer draws and computational time than
does the usual random method.

Bayesian Inference. Let us suppose that the mixing distribution is Gaussian, that
is, the vector β is normally distributed with mean b and variance matrix W . The
posterior density for I individuals can be written as

ϕ(b, W | d, X) ∝ Pr(d | X, b, W)ϕ(b, W) , (2.17)

960 Luc Bauwens, Jeroen V.K. Rombouts

where Pr(d | X, b, W) =
∏I

i=1 Pi and ϕ(b, W) is the prior density on b and W .
Sampling from (2.17) is difficult because Pi is an integral without a closed form as
discussed above. We would like to condition on β such that the choice probabilities
are easy to calculate. For this purpose we augment the model parameter vector
with β. It is convenient to write βi instead of β to interpret the random coefficients
as representing heterogeneity among individuals. The βi’s are independent and
identically distributed with mixing distribution f (· | b, W). The posterior can then
be written as

ϕ(b, W , βI | d, X) ∝ Pr(d | X, βI) f (βI | b, W)ϕ(b, W) , (2.18)

where βI collects the βi’s for all the I individuals. Draws from this posterior density
can be obtained by using the Gibbs sampler. Table 2.5 summarizes the three blocks
of the sampler.

Table 2.5. Summary of conditional posteriors for MMNL model

Parameter Conditional posterior or sampling method

b Multivariate normal distribution
W Inverted Wishart distribution
βI Metropolis Hastings algortihm

For the first two blocks the conditional posterior densities are known and are
easy to sample from. The last block is more difficult. To sample from this density,
a Metropolis Hastings (MH) algorithm is set up. Note that only one iteration is
necessary such that simulation within the Gibbs sampler is avoided. See Train
(2003), Chap. 12, for a detailed description of the MH algorithm for the mixed logit
model and for guidelines about how to deal with other mixing densities. More
general information on the MH algorithm can be found in Chap. II.3.

Bayesian inference in the mixed logit model is called hierarchical Bayes because
of the hierarchy of parameters. At the first level, there are the individual parame-
ters βi which are distributed with mean β and variance matrix W . The latter are
called hyper-parameters, on which we have also prior densities. They form the
second level of the hierarchy.

Application
We reproduce the results of McFadden and Train (2000) using their Gauss code
available on the web site elsa.berkeley.edu/∼train/software.html. They analyse the
demand for alternative vehicles. There are 4654 respondents who choose among
six alternatives (two alternatives run on electricity only). There are 21 explanatory
variables among which 4 are considered to have a random effect. The mixing distri-
butions for these random coefficients are independent normal distributions. The
model is estimated by SML and uses R = 250 replications per observation. Table 2.6
includes partly the estimation results of the MMNL model. We report the estimates
and standard errors of the parameters of the normal mixing distributions, but we

Econometrics 961

do not report the estimates of the fixed effect parameters corresponding to the
17 other explanatory variables. For example, the luggage space error component
induces greater covariance in the stochastic part of utility for pairs of vehicles with
greater luggage space. We refer to McFadden and Train (2000) or Brownstone and
Train (1999) for more interpretations of the results.

Train (2003) providesmore informationandpedagogical exampleson themixed
multinomial model.

Table 2.6. SML estimates of MMNL random effect parameters

Variable Mean Standard deviation

Electric vehicle (EV) dummy −1.032 (0.503) 2.466 (0.720)
Compressed natural gass (CNG) dummy 0.626 (0.167) 1.072 (0.411)
Size 1.435 (0.499) 7.457 (2.043)
Luggage space 1.702 (0.586) 5.998 (1.664)

Robust standard errors within parentheses

Stochastic Volatility and Duration Models 2.3

Stochastic volatility (SV) models may be used as an alternative to generalized au-
toregressive conditonal heteroskedastic (GARCH) models as a way to model the
time-varying volatility of asset returns. Time series of asset returns feature stylized
facts, the most important being volatility clustering, which produces a slowly de-
creasing positive autocorrelation function of the squared returns, starting at a low
value (about 0.15). Another stylized fact is excess kurtosis of the distribution (with
respect to the Gaussian distribution). See Bollerslev et al. (1994) for a detailed list
of the stylized facts and a survey of GARCH models, Shephard (1996) for a com-
parative survey of GARCH and SV models, and Ghysels et al. (1996) for a survey
of SV models focused on their theoretical foundations and their applications in
finance. The first four parts of this section deal with SV models while in Sect. 2.3.5
we survey similar models for dynamic duration analysis.

Canonical SV Model 2.3.1

The simplest version of a SV model is given by

yt = exp(ht |2) ut , ut ∼ N(0, 1) , t = 1, … , n ,

ht = ω + βht−1 + σvt , vt ∼ N(0, 1) ,
(2.19)

where yt is a return measured at t, ht is the unobserved log-volatility of yt , {ut} and
{vt} are mutually independent sequences, (ω, β, σ) are parameters to be estimat-
ed, jointly denoted θ. The parameter space is R × (−1, 1) × R+. The restriction
on β ensures the strict stationarity of yt . Estimates of β are typically quite close

962 Luc Bauwens, Jeroen V.K. Rombouts

to 1 (in agreement with the first stylized fact), thus β is a ‘persistence’ parameter
of the volatility. The unconditonal mean of ht is µ = ω|(1 − β) and the second
equation may be parametrized using µ by writing ht = µ + β(ht−1 − µ) + σvt .
Another parametrization removes ω from the second equation while writing the
first as yt = τ exp(ht |2) ut where τ = exp(ω|2). These different parametrizations
are in one-to-one correspondance. Which one to choose is mainly a matter of
convenience and numerical efficiency of estimation algorithms.

For further use, let y and h denote the n × 1 vectors of observed returns and
unobserved log-volatilities, respectively.

Estimation2.3.2

Estimation of the parameters of the canonical SV model may be done by the
maximum likelihood (ML) method or by Bayesian inference. Other methods have
been used but they will not be considered here. We refer to Ghysels et al. (1996),
Sect. 5, for a review. ML and, in principle, Bayesian estimation require to compute
the likelihood function of an observed sample, which is a difficult task. Indeed,
the density of y given θ and an initial condition h0 (not explicitly written in
the following expressions) requires to compute a multiple integral which has
a dimension equal to the sample size:

f (y|θ) =
∫

f (y, h|θ) dh (2.20)

=
∫

f (y|h, θ)f (h|θ) dh (2.21)

=
∫ n∏

t=1

f (yt , ht|Y t−1, Ht−1, θ) dh , (2.22)

where Y t = {yi}t
i=1 and Ht = {hi}t

i=0. For model (2.19), this is

∫ n∏

t=1

fN

(
yt |0, eht

)
fN

(
ht|ω + βht−1,σ2

)
dh , (2.23)

where fN(x|µ,σ2) denotes the normal density function of x, with parameters µ
and σ2. An analytical solution to the integration problem is not available. Even
a term by term numerical approximation by a quadrature rule is precluded: the
integral of N(0, exp(hn)) × N(ω + βhn−1,σ2) with respect to hn depends on hn−1,
and has to be carried over in the previous product, and so on until h1. This would
result in an explosion of the number of function evaluations. Simulation methods
are therefore used.

Two methods directly approximate (2.22): efficient importance sampling (EIS),
and Monte Carlo maximum likelihood (MCML). Another approach, which can
only be used for Bayesian inference, works with f (y, h|θ) as data density, and pro-
duces a posterior joint density for θ, h given y. The posterior density is simulated

Econometrics 963

by a Monte Carlo Markov chain (MCMC) algorithm, which produces simulated
values of θ and h. Posterior moments and marginal densities of θ are then es-
timated by their simulated sample counterparts. We pursue by describing each
method.

EIS (Liesenfeld and Richard (2003))
A look at (2.23) suggests to sample R sequences {hr

t ∼ N(ω + βht−1,σ2)}n
t=1, r =

1 … R, and to approximate it by (1|R)
∑R

r=1

∏n
t=1 N(0, exp(hr

t)). This direct method
proves to be inefficient. Intuitively, the sampled sequences of ht are not linked to the
observations yt . To improve upon this, the integral (2.22), which is the convenient
expression to present EIS, is expressed as

∫ n∏

t=1

f (yt , ht|Y t−1, Ht−1, θ)

m(ht|Ht−1, φt)
m(ht|Ht−1, φt) dh , (2.24)

where {m(ht|Ht−1, φt)}n
t=1 is a sequence of importance density functions, indexed

by parameters {φt}. These importance functions serve to generate R random draws
{h1

t , h2
t … hR

t }n
t=1, such that the integral is approximated by the sample mean

1

R

R∑

r=1

n∏

t=1

f (yt , hr
t |Y t−1, Hr

t−1, θ)

m(hr
t |Hr

t−1, φt)
. (2.25)

The essential point is to choose the form of m() and its auxiliary parameters φt so
as to secure a good match between the product of m(ht |Ht−1, φt) and the product
of f (yt , ht|Y t−1, Ht−1, θ) viewed as a function of h. A relevant good match criterion
is provided by a choice of {φt}, for a given family of densities for m(), based on the
minimization of the Monte Carlo variance of the mean (2.25). The choice of {φt} is
explained below, after the choice of m().

A convenient choice for m() is the Gaussian family of distributions. A Gaussian
approximation to f (), as a function of ht , given yt and ht−1, turns out to be efficient.
It can be expressed as proportional to exp(φ1,tht + φ2,th2

t), where (φ1,t , φ2,t) = φt ,
the auxiliary parameters. It is convenient to multiply it with exp[−0.5σ−2(−2mtht +
h2

t + m2
t)], where mt = ω + βht−1, which comes from the N(mt ,σ2) term included

in f (yt , ht|Y t−1, Ht−1, θ). The product of these two exponential functions can be
expressed as a Gaussian density N(µt ,σ2

t), where

µt = σ2
t (mt |σ2 + φ1,t) , σ2

t = σ2|(1 − 2σ2φ2,t) . (2.26)

The choice of the auxiliary parameters can be split into n separate problems,
one for each t. It amounts to minimize the sum of squared deviations between
ln f (yt|Y t−1, Hr

t , θ) plus a correction term, see (2.27), and φ0,t + φ1,thr
t + φ2,t(hr

t)
2

where φ0,t is an auxiliary intercept term. This problem is easily solved by ordinary
least squares. See Liesenfeld and Richard (2003) for a detailed explanation.

964 Luc Bauwens, Jeroen V.K. Rombouts

Let us summarize the core of the EIS algorithm in three steps (for given θ and y):
Step 1: Generate R trajectories {hr

t} using the ‘natural’ samplers {N(mt ,σ2)}.
Step 2: For each t (starting from t = n and ending at t = 1), using the R observations
generated in the previous step, estimate by OLS the regression

−
1

2

[

hr
t + y2

t e−hr
t +

(
µr

t+1

σr
t+1

)2

−

(
mr

t+1

σ

)2
]

= φ0,t + φ1,th
r
t + φ2,t(hr

t)
2 + εr

t , (2.27)

where εr
t is an error term. For t = n, the dependent variable does not include the

last two terms in the square brackets. The superscript r on µt+1, σt+1 and mt+1

indicates that these quantities are evaluated using the r-th trajectory.
Step 3: Generate R trajectories {hr

t} using the efficient samplers {N(µt ,σ2
t)} and

finally compute (2.25).
Steps 1 to 3 should be iterated about five times to improve the efficiency of the

approximations. This is done by replacing the natural sampler in Step 1 by the
importance functions built in the previous iteration. It is also possible to start
Step 1 of the first iteration with a more efficient sampler than the natural one.
This is achieved by multiplying the natural sampler by a normal approximation to
f (yt |ht , ht−1, θ) ∝ exp{−0.5[y2

t exp(−ht) + ht]}. The normal approximation is based
on a second-order Taylor series expansion of the argument of the exponential in
the previous expression around ht = 0. In this way, the initial importance sampler
links yt and ht . This enables one to reduce to three (instead of five) the number of
iterations over the three steps. In practical implementations, R can be fixed to 50.
When computing (2.25) for different values ofθ, such as in a numerical optimizer, it
is important to use common random numbers to generate the set of R trajectories
{hr

t} that serve in the computations.
It is also easy to compute by EIS filtered estimates of functions of ht , such as

the conditional standard deviation exp(ht |2), conditional on the past returns (but
not on the lagged unobserved ht), given a value of θ (such as the ML estimate).
Diagnostics on the model specification are then obtained as a byproduct: if the
model is correctly specified, yt divided by the filtered estimates of exp(ht |2) is
a residual that has zero mean, unit variance, and is serially uncorrelated (this also
holds for the squared residual).

Richard (1998) contains a general presentation of EIS and its properties.

MCML (Durbin and Koopman (1997))
The likelihood tobecomputedat y (thedata) andanygiven θ is equal to f (y|θ) and is
conveniently expressed as (2.21) for this method. This quantity is approximated by
importance sampling with an importance function defined from an approximating
model.The latter isobtainedbyusing thestate space representationof thecanonical
SV model (parametrized with τ):

ln y2
t = ln τ2 + ht + εt , (2.28)

ht = βht−1 + σvt . (2.29)

Econometrics 965

In the canonical SV model, εt = ln u2
t is distributed as the logarithm of a χ2(1)

random variable. However the approximating model replaces this with a Gaussian
distribution (defined below), keeping the state equation unchanged. Therefore,
the whole machinery of the Kalman filter is applicable to the approximating mod-
el, which is a Gaussian linear state space model. If we denote by g(h|y, θ) the
importance function that serves to simulate h (see below), we have

f (y|θ) =
∫

f (y|h, θ)f (h|θ)

g(h|y, θ)
g(h|y, θ) dh (2.30)

= g(y|θ)

∫
f (y|h, θ)

g(y|h, θ)
g(h|y, θ) dh , (2.31)

where the second equality results from g(h|y, θ)g(y|θ) = g(y|h, θ)g(h|θ) and
g(h|θ) = f (h|θ). All the densities g(.) and g(.|.) are defined from the approximating
Gaussian model. In particular, g(y|θ) is the likelihood function of the Gaussian
linear state space model and is easy to compute by the Kalman filter (see the ap-
pendix to Sandman and Koopman (1998) for all details). Likewise, g(y|h, θ) obtains
from the Gaussian densities g(ln y2

t |ht , θ) resulting from (2.28) with εt ∼ N(at , s2
t)

where at and s2
t are chosen so that g(y|h, θ) is as close as possible to f (y|h, θ). The

parameters at and s2
t are chosen so that ln g(ln y2

t |̂ht , θ) and ln f (ln y2
t |̂ht , θ) have

equal first and second derivatives, where ĥt is the smoothed value of ht provided
by the Kalman filter applied to the approximating model. Remark that this is a dif-
ferent criterion from that used in EIS. Finally, g(h|y, θ) can be simulated with the
Gaussian simulation smoother of de Jong and Shephard (1995).

In brief, the likelihood function is approximated by

g(y|θ)
1

R

R∑

r=1

f (y|hr, θ)

g(y|hr, θ)
, (2.32)

where hr = {hr
t}T

t=1 is simulated independently R times with the importance sampler
and g(y|θ) is computed by the Kalman filter. Equations (2.31) and (2.32) show that
importance sampling serves to evaluate the departure of the actual likelihood from
the likelihood of the approximating model. R is fixed to 250 in practice.

For SML estimation, the approximation in (2.32) is transformed in logarithm.
This induces a bias since the expectation of the log of the sample mean is not
the log of the corresponding integral in (2.31). The bias is corrected by adding
s2
w|(2Rw̄) to the log of (2.32), where s2

w is the sample variance of the ratios wr =
f (y|hr, θ)|g(y|hr, θ) and w̄ is the sample mean of the same ratios, i.e. w̄ is the sample
mean appearing in (2.32). Moreover, Durbin and Koopman (1997) use antithetic
and control variables to improve the efficiency of the estimator of the log-likelihood
function.

Durbin and Koopman (2000) present several generalizations of MCML (e.g. the
case where the state variable in non-Gaussian) and develop analogous methods
for Bayesian inference.

966 Luc Bauwens, Jeroen V.K. Rombouts

MCMC (Kim et al. (1998))
We present briefly the ‘Mixture Sampler’, one of the three algorithms added by
Kim et al. (1998) to the six algorithms already in the literature at that time (see
their paper for references). They approximate the density of εt = ln u2

t by a finite
mixture of seven Gaussian densities, such that in particular the first four moments
of both densities are equal. The approximating density can be written as

fa(εt) =
7∑

i=1

Pr[st = i]f (εt|st = i) =
7∑

i=1

Pr[st = i]fN

(
εt|bi − 1.2704, c2

i

)
, (2.33)

where st is adiscrete randomvariable,while Pr[st = i], bi and ci areknownconstants
(independent of t). The constant −1.2704 is the expected value of a ln χ2(1) variable.

The crux of the algorithm is to add s = {st}n
t=1 to θ and h in the MCMC sampling

space. This makes it possible to sample h|s, θ, y, s|h, y and θ|h, y within a Gibbs
sampling algorithm. Remark that s and θ are independent given h and y. Moreover,
h canbe sampledentirely as avector.The intuitionbehind thisproperty is that, once
s is known, the relevant term of the mixture (2.33) is known for each observation,
and since this is a Gaussian density, the whole apparatus of the Kalman filter can be
used. Actually, this a bit more involved since the relevant Gaussian density depends
on t, but an augmented Kalman filter is available for this case.

Sampling h as one block is a big progress over previous algorithms, such as
in Jacquier et al. (1994), where each element ht is sampled individually given the
other elements of h (plus θ and y). The slow convergence of such algorithms is due
to the high correlations between the elements of h.

Kim et al. (1998) write the model in state space form, using µ rather than ω or
τ as a parameter, i.e.

ln y2
t = ht + εt , (2.34)

ht − µ = β(ht−1 − µ) + σvt . (2.35)

The ‘Mixture Sampler’ algorithm is summarized in Table 2.7. Notice that once θ
has been sampled, it is easy to transform the draws of µ into equivalent draws
of ω or τ by using the relationships between these parameters. Since inference
is Bayesian, prior densities must be specified. For σ2, an inverted gamma prior
density is convenient since the conditional posterior is in the same class and

Table 2.7. Summary of ‘Mixture Sampler’ algorithm

Parameter Conditional posterior or sampling method

h Gaussian simulation smoother
s Univariate discrete distribution for each st

σ2 Inverted gamma distribution
β Rejection or Metropolis-Hastings sampler
µ Normal distribution

Econometrics 967

easy to simulate. For β, any prior can be used since the conditional posterior is
approximated and rejection sampling is used. A beta prior density is advocated by
Kim et al. (1998). For µ, a Gaussian or uninformative prior results in a Gaussian
conditional posterior.

Kim et al. (1998) also propose an algorithm to compute filtered estimates of ht ,
from which model diagnostics can be obtained as described above for EIS.

Application 2.3.3

For illustration, estimates of the canonical SV model parameters are reported in
Table 2.8 for a series of 6107 centred daily returns of the Standard and Poor’s 500
(SP500) composite price index (period: 02|01|80–30|05|03, source: Datastream).
Returns are computed as 100 times the log of the price ratios. The sample mean
and standard deviation are equal to 0.03618 and 1.0603, respectively.

Table 2.8. ML and Bayesian estimates of SV model (2.19)

EIS (ω) MCML (τ) MCMC (τ)

ω|τ −0.00524 (0.00227) 0.863 (0.0469) 0.864 (0.0494)
β 0.982 (0.00385) 0.982 (0.00389) 0.983 (0.00382)
σ 0.149 (0.0138) 0.147 (0.0135) 0.143 (0.0139)
llf −8023.98 −8023.80

Time 2.36 min 7.56 min 6.23 min

Code Gauss Ox Ox

llf: value of log-likelihood function at the reported estimate;
EIS, MCML, and MCMC are defined in Sect. 2.3.2

We used computer codes provided by the authors cited above. For EIS, we
received the code from R. Liesenfeld, for MCML and MCMC we downloaded them
from the web site staff.feweb.vu.nl|koopman|sv.

For SML estimation by EIS or MCML, identical initial values (β = 0.96, σ = 0.15,
ω = 0.02 or τ = 0.01) and optimization algorithms (BFGS) are used, but in dif-
ferent programming environments. Therefore, the computing times are not fully
comparable, although a careful rule of thumb is that Ox is two to three times faster
than Gauss (see Cribari-Neto (1997)). Reported execution times imply that EIS
appears to be at least six times faster than MCML. This is a reversal of a result
reported by Sandman and Koopman (1998, p. 289), but they compared MCML with
a precursor of EIS implemented by Danielson (1994). More importantly, the two
methods deliver quasi-identical results.

MCMC results are based on 18,000 draws after dropping 2000 initial draws. The
posterior means and standard deviations are also quite close to the ML results. The
posterior density ofσ (computed by kernel estimation) is shown in Fig. 2.1 together
with the large sample normal approximation to the density of the ML estimator
using the EIS results. The execution time for MCMC is difficult to compare with

968 Luc Bauwens, Jeroen V.K. Rombouts

the other methods since it depends on the number of Monte Carlo draws. It is
however quite competitive since reliable results are obtained in no more time than
MCML in this example.

0.10 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.20

5

10

15

20

25

30

MCMC EIS

Figure 2.1. Posterior density of σ and normal density of the MLE

Extensions of the Canonical SV Model2.3.4

The canonical model presented in (2.19) is too restrictive to fit the excess kurtosis of
many return series. Typically, the residuals of the model reveal that the distribution
of ut has fatter tails than the Gaussian distribution. The assumption of normality
is most often replaced by the assumption that ut ∼ t(0, 1, ν), which denotes
Student-t distribution with zero mean, unit variance, and degrees of freedom
parameter ν > 2. SML estimates of ν are usually between 5 and 15 for stock and
foreign currency returns using daily data. Posterior means are larger because the
posterior density of has a long tail to the right.

Several other extensions of the simple SV model presented in (2.19) exist in the
literature. The mean of yt need not be zero and may be a function of explanatory
variables xt (often a lag of yt and an intercept term). Similarly ht may be a function
of observable variables (zt) in addition to its own lags. An extended model along
these lines is

yt = xT
t γ + exp(ht |2) ut ,

ht = ω + zT
t α + βht−1 + σvt .

(2.36)

It should be obvious that all these extensions are very easy to incorporate in
EIS (see Liesenfeld and Richard (2003)) and MCML (see Sandman and Koopman
(1998)). Bayesian estimation by MCMC remains quite usable but becomes more
demanding in research time to tailor the algorithm for achieving a good level of
efficiency of the Markov chain (see Chib et al. (2002), in particular p 301–302, for
such comments).

Chib et al. (2002) also include a jump component term ktqt in the conditional
mean part to allow for irregular, transient movements in returns. The random

Econometrics 969

variable qt is equal to 1 with unknown probablity κ and zero with probability 1 −κ,
whereas kt is the size of the jump when it occurs. These time-varying jump sizes
are assumed independent draws of ln(1+kt) ∼ N(−0.5δ2, δ2), δ being an unknown
parameter representing the standard deviation of the jump size. For daily SP500
returns (period: 03|07|1962–26|08|1997) and a Student-t density for ut , Chib et al.
(2002) report posterior means of 0.002 for κ, and 0.034 for δ (for prior means
of 0.02 and 0.05, respectively). This implies that a jump occurs on average every
500 days, and that the variability of the jump size is on average 3.4%. They also
find that the removal of the jump component from the model reduces the posterior
mean of ν from 15 to 12, which corresponds to the fact that the jumps capture
some outliers.

Another extension consists of relaxing the restriction of zero correlation (ρ)
between ut and vt . This may be useful for stock returns for which a negative
correlation corresponds to the leverage effect of the financial literature. If the
correlation is negative, a drop of ut , interpreted as a negative shock on the return,
tends to increase vt and therefore ht .Hencevolatility increasesmoreafter anegative
shock than after a positive shock of the same absolute value, which is a well-known
stylized fact. Sandman and Koopman (1998) estimate such a model by MCML,
and report ρ̂ = −0.38 for daily returns of the SP500 index (period: 02|01|80–
30|12|87), while Jacquier et al. (2004) do it by Bayesian inference using MCMC
and report a posterior mean of ρ equal to −0.20 on the same data. They use the
same reparametrization as in (2.13) to impose that the first diagonal element of the
covariance matrix of ut and σvt must be equal to 1. This covariance matrix is given
by

Σ =

(
1 ρσ
ρσ σ2

)

=

(
1 ψ
ψ φ2 + ψ2

)

, (2.37)

where the last matrix is a reparametrization. This enables to use a normal prior
on the covariance ψ and an inverted gamma prior on φ2, the conditional variance
of σvt given ut . The corresponding conditional posteriors are of the same type, so
that simulating these parameters in the MCMC algorithm is easy. This approach
can also be used if ut has a Student-t distribution.

Multivariate SV models are also on the agenda of researchers. Liesenfeld and
Richard (2003) estimate by EIS a one-factor model introduced by Shephard (1996),
using return series of four currencies. Kim et al. (1998), Sect. 6.6, explain how to
deal with the multi-factor model case by extending the MCMC algorithm reviewed
in Sect. 2.3.2.

Stochastic Duration and Intensity Models 2.3.5

Models akin to the SV model have been used for dynamic duration analysis by
Bauwens and Veredas (2004) and Bauwens and Hautsch (2003). The context of
application is the analysis of a sequence of time spells between events (also called

970 Luc Bauwens, Jeroen V.K. Rombouts

durations) occurring on stock trading systems like the New York Stock Exchange
(NYSE). Time stamps of trades are recorded for each stock on the market during
trading hours every day, resulting in an ordered series of durations. Marks, such
as the price, the exchanged quantity, the prevailing bid and ask prices, and other
observed features may also be available, enabling to relate the durations to the
marks in a statistical model. See Bauwens and Giot (2001) for a presentation of the
issues.

Let 0 = t0 < t1 < t2 < … < tn denote the arrival times and d1, d2 … dn denote
the corresponding durations, i.e. di = ti − ti−1. The stochastic conditional duration
(SCD) model of Bauwens and Veredas (2004) is defined as

di = exp(ψi) ui , ui ∼ D(γ) , t = 1, … , n ,

ψi = ω + βψi−1 + σvi , vi ∼ N(0, 1) ,
(2.38)

where D(γ) denotes some distribution on the positive real line, possibly depending
on a parameter γ. For example, Bauwens and Veredas use the Weibull distribution
and the gamma distribution (both with shape parapeter denoted by γ). Assuming
that the distribution of ui is parameterized so that E(ui) = 1,ψi is the logarithm of
the unobserved mean of di, and is modelled by a Gaussian autoregressive process of
order one. It is also assumed that {ui} and {vi} are mutually independent sequences.
The parameters to be estimated are (ω, β, σ, γ), jointly denoted θ. The parameter
space is R× (−1, 1) × R+ × R+.

The similarity with the canonical SV model (2.19) is striking. A major dif-
ference is the non-normality of ui since this is by definition a positive random
variable. This feature makes it possible to identify γ. Therefore, the estimation
methods available for the SV model can be adapted to the estimation of SCD
models. Bauwens and Veredas (2004) have estimated the SCD model by the quasi-
maximum likelihood (QML) method, since the first equation of the model may
be expressed as ln di = ψi + ln ui. If ln ui were Gaussian, the model would be
a Gaussian linear state space model and the Kalman filter could be directly ap-
plied. QML relies on maximizing the likelihood function as if ln ui were Gaussian.
The QML estimator is known to be consistent but inefficient relative to the ML
estimator which would obtain if the correct distribution of ln ui were used to
define the likelihood function. Galli (2003), Chap. 3, has studied by simulation
the loss of efficiency of QML relative to ML. ML estimation assuming a Weibull
distribution is done by applying the EIS algorithm. For a sample size of 500 obser-
vations, the efficiency loss ranges from 20 to 50%, except for the parameter ω, for
which it is very small. He also applied the EIS method using the same data as in
Bauwens and Veredas (2004). For example, for a dataset of 1576 volume durations
of the Boeing stock (period: September–November 1996; source: TAQ database
of NYSE), the ML estimates are: ω̂ = −0.028, β̂ = 0.94, σ̂2 = 0.0159, γ̂ = 1.73.
They imply a high persistence in the conditional mean process (corresponding
to duration clustering), a Weibull distribution with an increasing concave hazard
function, and substantial heterogeneity. Notice that an interesting feature of the

Econometrics 971

SCD model is that the distribution of ui conditional to the past information, but
marginalized with respect to the latent process, is a Weibull mixed by a lognormal
distribution.

Strickland et al. (2003) have designed a MCMC algorithm for the SCD mod-
el (2.38) assuming a standard exponential distribution for ui. The design of their
MCMC algorithm borrows features from Koopman and Durbin’s MCML approach
and one of the MCMC algorithms used for the SV model.

As an alternative to modelling the sequence of durations, Bauwens and Hautsch
(2003) model directly the arrival times through the intensity function of the point
process. Their model specifies a dynamic intensity function, where the intensity
function is the product of two intensity components: an observable component
that depends on past arrival times, and a latent component. The logarithm of
the latter is a Gaussian autoregressive process similar to the second equation
in (2.19) and (2.38). The observable component may be a Hawkes process (Hawkes
(1971)) or an autoregressive intensity model (Russell (1999)). When the model is
multivariate, there is an observable intensity component specific to each particular
point process, while the latent component is common to all particular processes.
Interactions between the processes occur through the observable components
and through the common component. The latter induces similar dynamics in
the particular processes, reflecting the impact of a common factor influencing all
processes. Bauwens and Hautsch use intensity-based likelihood inference, with the
EIS algorithm to deal with the latent component.

Finite Mixture Models 2.4

Many econometric isuues require models that are richer or more flexible than the
conventional regression type models. Several possibilities exist. For example, as
explained in Sect. 2.2.3, the logit model is made more realistic by generalizing it to
a mixed logit. Many models currently used in econometrics can be generalized in
such a way.

In this section, we assume that the univariate or multivariate observations yj

are considered as draws of

f̃ (yj) =
G∑

g=1

ηg f (yj|θg) (2.39)

with η1 + … + ηG = 1. The densities f (·|θg) are called component distributions.
The observation yj comes from one of these component distributions but we do
not observe to which component it belongs. The mixture problem involves making
inference about the ηg ’s and the parameters of the component distributions given
only a sample from the mixture. The closer the component distributions are to
each other, the more difficult this is because of problems of identifiability and
computational instability.

972 Luc Bauwens, Jeroen V.K. Rombouts

Inference and Identification2.4.1

The structure of (2.39) implies that the likelihood for all the J observations contains
GJ terms

L(η, θ|y) ∝
J∏

j=1

G∑

g=1

ηg f
(
yj|θg

)

 , (2.40)

where η = (η1, … ,ηG)T and θ = (θ1, … , θG)T contain all the parameters and y
denotes all the data. Maximum likelihood estimation using numerical optimiza-
tion techniques, requiring many evaluations of the likelihood function, becomes
cumbersome, if not unfeasible, for large G and J. This is even worse for multivariate
observations.

Bayesian inference on finite mixture distributions by MCMC sampling is ex-
plained in Diebolt and Robert (1994). Gibbs sampling on (η, θ) is difficult since the
posterior distributions of η|θ, y and θ|η, y are generally unknown. For the same
reason as for the probit model in Sect. 2.2.1 and the stochastic volatility model in
Sect. 2.3, inference on the finite mixture model is straightforward once the state
or group of an observation is known. Data augmentation is therefore an appropri-
ate way to render inference easier. Define the state indicator Sj which takes value
sj = g when yj belongs to state or group g where g ∈ {1, … , G}. Denote by S the
J-dimensional discrete vector containing all the state indicators. To facilitate the
inference, prior independence, that is ϕ(η, θ, S) = ϕ(η)ϕ(θ)ϕ(S), is usually im-
posed. As shown in the next examples, the posterior distributions S|η, θ, y, θ|η, S, y
and η|θ, S, y are either known distributions easy to sample from or they are distri-
butions for which a second, but simpler, MCMC sampler is set up. A Gibbs sampler
with three main blocks may therefore be used.

The complete data likelihood of the finite mixture is invariant to a relabeling of
the states. This means that we can take the labeling {1, 2, … , G} and do a permuta-
tion {ρ(1), ρ(2), … , ρ(G)}without changing the value of the likelihood function. If
the prior is also invariant to relabeling then the posterior has this property also. As
a result, the posterior has potentially G! different modes. To solve this identification
or label switching problem, identification restrictions have to be imposed.

Note that the inference described here is conditional on G, the number of
components. There are two modelling approaches to take care of G. First, one can
treat G as an extra parameter in the model as is done in Richardson and Green
(1997) who make use of the reversible jump MCMC methods. In this way, the prior
information on the number of components can be taken explicitly into account
by specifying for example a Poisson distribution on G in such a way that it favors
a small number of components. A second approach is to treat the choice of G as
a problem of model selection. By so-doing one separates the issue of the choice of
G from estimation with G fixed. For example, one can take G = 2 and G = 3 and do
the estimation separately for the two models. Then Bayesian model comparison
techniques (see Chap. III.11) can be applied, for instance by the calculation of the
Bayes factor, see Cowles and Carlin (1996) and Chib (1995) for more details.

Econometrics 973

Examples 2.4.2

We review two examples. The first example fits US quarterly GNP data using
a Markov switching autoregressive model. The second example is about the clus-
tering of many GARCH models.

Markov Switching Autoregressive Model
Frühwirth-Schnatter (2001) uses US quarterly real GNP growth data from 1951:2
to 1984:4. This series was initially used by Hamilton (1989) and is displayed in
Fig. 2.2. The argument is that contracting and expanding periods are generated by
the same model but with different parameters. These models are called state- (or
regime-) switching models.

50 55 60 65 70 75 80 85

-2

-1

0

1

2

3

Figure 2.2. US real GNP growth data in percentages (1951:2 to 1984:4)

After some investigation using Bayesian model selection techniques, the ade-
quate specification for the US growth data is found to be the two-state switching
AR(2) model

yt = βi,1yt−1 + βi,2yt−2 + βi,3 + εt,i εt,i ∼ N
(
0,σ2

i

)
i = 1, 2 . (2.41)

The idea behind the choice of two states is motivated by the contracting (negative
growth) and expanding periods (positive growth) in an economy. The condi-
tional posteriors for the σ2

i ’s are independent inverted gamma distributions. For
the βi’s, the conditional posteriors are independent normal distributions. Infer-
ence for the switching model in (2.41) is done in two steps. The first step is to
construct an MCMC sample by running the random permutation sampler. Gen-
erally speaking, a draw from the random permutation sampler is obtained as
follows:
(1) Draw from the model by use of the Gibbs sampler for example.
(2) Relabel the states randomly.

974 Luc Bauwens, Jeroen V.K. Rombouts

By so-doing, one samples from the unconstrained parameter space with balanced
label switching. Note that in (2), there are G! possibilities to relabel when there are
G possible states.

In the second step, this sample is used to identify the model. This is done by
visual inspection of the posterior marginal and bivariate densities. Identification
restrictions need to be imposed to avoid multimodality of the posterior densities.
Once suitable restrictions are found, a final MCMC sample is constructed to obtain
the moments of the constrained posterior density. The latter sample is constructed
by permutation sampling under the restrictions, which means that (2) is replaced
by one permutation defining the constrained parameter space.

In the GNP growth data example, two identification restrictions seem possible,
namely β1,1 < β2,1 and β1,3 < β2,3, see Frühwirth-Schnatter (2001) for details.
Table 2.9 provides the posterior means and standard deviations of the βi,j’s for
both identification restrictions.

Table 2.9. Posterior means and standard deviations

β1,1 < β2,1 β1,3 < β2,3

Contraction Expansion Contraction Expansion

βi,1 0.166 (0.125) 0.33 (0.101) 0.249 (0.164) 0.295 (0.116)
βi,2 0.469 (0.156) −0.129 (0.093) 0.462 (0.164) −0.114 (0.098)
βi,3 −0.479 (0.299) 1.07 (0.163) −0.557 (0.322) 1.06 (0.175)

The GNP growth in contraction and expansion periods not only have different
unconditional means, they are also driven by different dynamics. Both identifica-
tion restrictions result in similar posterior moments.

Clustering of Many GARCH Models
BauwensandRombouts (2003) focuson thedifferentiationbetween thecomponent
distributions via different conditional heteroskedasticity structures by the use of
GARCH models. In this framework, the observation yj is multivariate and the θg ’s
are the parameters of GARCH(1,1) models. The purpose is to estimate many, of
the order of several hundreds, GARCH models. Each financial time series belongs
to one of the G groups but it is not known a priori which series belongs to which
cluster.

An additional identification problem arises due to the possibility of empty
groups. If a group is empty then the posterior of θg is equal to the prior of θg .
Therefore an improper prior is not allowed for θg . The identification problems
are solved by using an informative prior on each θg . The identification restric-
tions use the fact that we work with GARCH models: we select rather non-
overlapping supports for the parameters, such that the prior ϕ(θ) =

∏G
g=1 ϕ(θg)

depends on a labeling choice. Uniform prior densities on each parameter, on fi-
nite intervals, possibly subject to stationarity restrictions, are relatively easy to
specify.

Econometrics 975

Bayesian inference is done by use of the Gibbs sampler and data augmentation.
Table 2.10 summarizes the three blocks of the sampler.

Table 2.10. Summary of conditional posteriors

Parameter Conditional posterior
or sampling method

S Multinomial distribution
η Dirichlet distribution
θ Griddy-Gibbs sampler

Because of the prior independence of the θg ’s, the griddy-Gibbs sampler is
applied separately G times.

As an illustration we show the posterior marginals of the following model

f̃ (yj) =
3∑

g=1

ηg f (yj|θg) (2.42)

with η1 = 0.25, η2 = 0.5, J = 100 and Tj = 1000. The components are defined more
precisely as

f (yj|θg) =
Tj∏

t=1

f (yj,t|θg , Ij,t) (2.43)

yj,t|θg , Ij,t ∼ N(0, hj,t) (2.44)

hj,t = (1 − αg − βg)ω̃j + αg(yj,t−1)2 + βghj,t−1 , (2.45)

where Ij,t is the information set until t − 1 containing (at least) yj,1, … , yj,t−1 and
initial conditions which are assumed to be known. For the simulation of the data
ω̃j is fixed equal to one which implies that the unconditional variance for every
generated data series is equal to one. However, the constant ω̃j in the conditional
variance is not subject to inference, rather it is fixed at the empirical variance of
the data. Table 2.11 presents the true values, the prior intervals on the θg ’s and
posterior results on η and θ.

Bauwens and Rombouts (2003) succesfully apply this model to return series of
131 US stocks. Comparing the marginal likelihoods for different models, they find
that G = 3 is the appropriate choice for the number of component distributions.

Other interesting examples of finite mixture modelling exist in the literature.
Frühwirth-Schnatter and Kaufmann (2002) develop a regime switching panel data
model. Their purpose is to cluster many short time series to capture asymmetric
effects of monetary policy on bank lending. Deb and Trivedi (1997) develop a fi-
nite mixture negative binomial count model to estimate six measures of medical
care demand by the elderly. Chib and Hamilton (2000) offer a flexible Bayesian

976 Luc Bauwens, Jeroen V.K. Rombouts

Table 2.11. Posterior results on η and θ (G = 3)

η1 η2 η3

True value 0.25 0.50 0.25

Mean 0.2166 0.4981 0.2853

Standard deviation 0.0555 0.0763 0.0692

Correlation matrix 1 −0.4851 −0.2677

−0.4851 1 −0.7127

−0.2677 −0.7127 1

g = 1 g = 2 g = 3

True value αg 0.04 0.12 0.20

βg 0.90 0.60 0.40

Prior interval αg 0.001,0.07 0.07,0.15 0.15,0.25

βg 0.65,0.97 0.45,0.75 0.20,0.60

Mean αg 0.0435 0.1041 0.1975

βg 0.8758 0.5917 0.4369

Standard deviation αg 0.0060 0.0092 0.0132

βg 0.0238 0.0306 0.0350

Correlation αg , βg −0.7849 −0.71409 −0.7184

analysis of the problem of causal inference in models with non-randomly assigned
treatments. Their approach is illustrated using hospice data and hip fracture data.

References
Allenby, G. and Rossi, P. (1999). Marketing models of consumer heterogeneity.

Journal of Econometrics, 89:57–78.
Bauwens, L. and Giot, P. (2001). Econometric Modelling of Stock Market Intraday

Activity. Kluwer.
Bauwens, L. and Hautsch, N. (2003). Dynamic latent factor models for intensity

processes. CORE DP 2003/103.
Bauwens, L. and Rombouts, J. (2003). Bayesian clustering of many GARCH models.

CORE DP 2003/87.
Bauwens, L. and Veredas, D. (2004). The stochastic conditional duration model:

a latent factor model for the analysis of financial durations. Forthcoming in
Journal of Econometrics.

Bhat, C. (2001). Quasi-random maximum simulated likelihood estimation of the
mixed multinomial logit model. Transportation Research Part B, 35:677–693.

Bollerslev, T., Engle, R., and Nelson, D. (1994). ARCH models. In Engle, R. and
McFadden, D., editors, Handbook of Econometrics, Chap. 4, pages 2959–3038.
North Holland Press, Amsterdam.

Econometrics 977

Brownstone, D. and Train, K. (1999). Forecasting new product penetration with
flexible substitution patterns. Journal of Econometrics, 89:109–129.

Chib, S. (1995). Marginal likelihood fromtheGibbsoutput. Journal of the American
Statistical Association, 90:1313–1321.

Chib, S. and Greenberg, E. (1998). Analysis of multivariate probit models. Biometri-
ka, 85:347–361.

Chib, S. and Hamilton, B. (2000). Bayesian analysis of cross-section and clustered
data treatment models. Journal of Econometrics, 97:25–50.

Chib, S., Nardari, F., and Shephard, N. (2002). Markov chain Monte Carlo methods
for stochastic volatility models. Journal of Econometrics, 108:291–316.

Chintagunta, P. and Honore, B. (1996). Investigating the effects of marketing
variables and unobserved heterogeneity in a multinomial probit model. Inter-
national Journal of Research in Marketing, 13:1–15.

Cowles, M. and Carlin, B. (1996). Markov chain Monte Carlo convergence diag-
nostics: A comparative review. Journal of the American Statistical Association,
91:883–904.

Cribari-Neto, F. (1997). Econometric programming environnments: Gauss, Ox and
S-plus. Journal of Applied Econometrics, 12:77–89.

Danielson, J. (1994). Stochastic volatility in asset prices: estimation with simulated
maximum likelihood. Journal of Econometrics, 61:375–400.

de Jong, P. and Shephard, N. (1995). The simulation smoother for time series
models. Biometrika, 82:339–350.

Deb, P. and Trivedi, P. (1997). Demand for medical care by the elderly: A finite
mixture approach. Journal of Applied Econometrics, 12:313–336.

Diebolt, J. and Robert, C. (1994). Estimation of finite mixture distributions through
Bayesiansampling. Journal of the Royal Statistical Society, Series B, 56:363–375.

Durbin, J. and Koopman, S. (1997). Monte Carlo maximum likelihood estimation
for non-Gaussian state space models. Biometrika, 84:669–684.

Durbin, J. and Koopman, S. (2000). Time series analysis of non-Gaussian observa-
tionsbasedonstate spacemodels frombothclassical andBayesianperspectives.
Journal of the Royal Statistical Society B, 62:3–56.

Franses, P. and Paap, R. (2001). Quantitative Models in Marketing Research. Cam-
bridge University Press, Cambridge.

Frühwirth-Schnatter, S. (2001). Markov chain Monte Carlo estimation of classical
and dynamic switching and mixture models. Journal of the American Statisti-
cal Association, 96:194–209.

Frühwirth-Schnatter, S. and Kaufmann, S. (2002). Bayesian clustering of many
short time series. Working Paper, Vienna University of Economics and Business
Administration.

Galli, F. (2003). EconometriadeiDatiFinanzari adAltaFrequenza. TesidiDottorato
in Economia Politica, Bologna.

Geweke, J.,Keane,M., andRunkle,D. (1997). Statistical inference in themultinomial
multiperiod probit model. Journal of Econometrics, 80:125–165.

978 Luc Bauwens, Jeroen V.K. Rombouts

Ghysels, E., Harvey, A., and Renault, E. (1996). Stochastic volatility. In Maddala,
G. and Rao, C., editors, Handbook of Statistics, pages 119–191. Elsevier Science,
Amsterdam.

Gourieroux, C. and Monfort, A. (1997). Simulation-based Econometric Methods.
Oxford University Press, Oxford.

Hajivassiliou, V. and Mc Fadden, D. (1998). The method of simulated scores for the
estimation of LDV models. Econometrica, 66:863–896.

Hajivassiliou, V. and Ruud, P. (1994). Classical estimation methods for LDV models
using simulation. In: Handbook of Econometrics, Vol. 4, Chap. 40, North
Holland, Amsterdam.

Hamilton, J. (1989). A new approach to the economic analysis of nonstationary
time series and the business cycle. Econometrica, 57:357–384.

Hawkes, A. G. (1971). Spectra of some self-exciting and mutually exciting point
processes. Biometrika, 58:83–90.

Horowitz, J. (1998). Semiparametric Methods in Econometrics. Springer Verlag,
Berlin.

Jacquier, E., Polson, N., and Rossi, P. (1994). Bayesian analysis of stochastic volatil-
ity models (with discussion). Journal of Business and Economic Statistics,
12:371–417.

Jacquier, E., Polson, N., and Rossi, P. (2004). Bayesian analysis of stochastic
volatility models with fat-tails and correlated errors. Forthcoming in Journal
of Econometrics.

Kim, S., Shephard, N., and Chib, S. (1998). Stochastic volatility: likelihood inference
and comparison with ARCH models. Review of Economic Studies, 65:361–393.

Liesenfeld, R. and Richard, J.-F. (2003). Univariate and multivariate stochastic
volatility models: estimation and diagnostics. Journal of Empirical Finance,
10:505–531.

Maddala, G. (1983). Limited-dependent and Qualitative Variables in Econometrics.
Cambridge University Press, Cambridge.

Mariano, R., Schuermann, T., and Weeks, M. (2000). Simulation-based Inference
in Econometrics. Cambridge University Press, Cambridge.

McCulloch, R., Polson, N., and Rossi, P. (2000). A Bayesian analysis of the
multinomial probit model with fully identified parameters. Journal of
Econometrics, 99:173–193.

McFadden, D. and Train, K. (2000). Mixed MNL models for discrete response.
Journal of Applied Econometrics, 15:447–470.

Paap, R. and Franses, P. (2000). A dynamic multinomial probit model for
brand choice with different long-run and short-run effects of marketing-mix
variables. Journal of Applied Econometrics, 15:717–744.

Pagan, A. and Ullah, A. (1999). Nonparametric Econometrics. Cambridge
University Press, Cambridge.

Richard, J.-F. (1998). Efficient high-dimensional Monte Carlo importance
sampling. Manuscript, University of Pittsburgh.

Econometrics 979

Richardson, S. and Green, P. (1997). On Bayesian analysis of mixtures with an
unknown number of components. Journal of the Royal Statistical Society,
Series B, 59:731–792.

Russell, J. (1999). Econometric modeling of multivariate irregularly-spaced
high-frequency data. Manuscript, University of Chicago.

Sandman, G. and Koopman, S. (1998). Estimation of stochastic volatility models
via Monte Carlo maximum likelihood. Journal of Econometrics, 67:271–301.

Shephard, N. (1996). Statistical aspects of ARCH and stochastic volatility, Chap. 1,
pages 1–67. Time Series Models: In Econometrics, Finance and Other Fields.
Chapman & Hall, in D. R. Cox, D. V. Hinkley, and O. E. Barndorff-Nielsen
(eds.), London.

Strickland, C., Forbes, C., and Martin, G. (2003). Bayesian analysis of the
stochastic conditional duration model. Manuscript, Monash University.

Tanner, M. and Wong, W. (1987). The calculation of posterior distributions by data
augmentation. Journal of the American Statistical Association, 82:528–540.

Train, K. (2003). Discrete Choice Methods with Simulation. Cambridge University
Press, Cambridge.

IV.3Statistical and Computational
Geometry of Biomolecular
Structure

Iosif I. Vaisman

3.1 Introduction . 982

3.2 Statistical Geometry of Molecular Systems . 983

3.3 Tetrahedrality of Delaunay Simplices as a Structural Descriptor
in Water . 986

3.4 Spatial and Compositional Three-dimensional Patterns
in Proteins. 987

3.5 Protein Structure Comparison and Classification . 993

3.6 Conclusions . 996

982 Iosif I. Vaisman

Introduction3.1

Recent revolutionary developments in genomics and computational structural bi-
ology lead to the rapidly increasing amount of data on biomolecular sequences
and structures. The deposition rate for both sequence and structure databases
continues to grow exponentially. The efficient utilization of this data depends on
the availability of methods and tools for biomolecular data analysis. Significant
achievements have been made in DNA and protein sequence analysis, now the
focus in bioinformatics research is shifting from sequence to structural and func-
tional data. Accurate prediction of protein three-dimensional structure from its
primary sequence represents one of the greatest challenges of modern theoretical
biology. Detailed knowledge of protein structure is essential for understanding
the mechanisms of biological processes at molecular, cellular, and evolutionary
levels. The structures of only a fraction of all known primary sequences have been
determined experimentally. Several approaches to protein structure prediction
have been developed in recent years. Many of these approaches rely on the knowl-
edge derived from the analysis of significant spatial and compositional patterns
in known protein structures and understanding of the role these patterns play in
the extremely complex processes, like protein folding or protein function. Such an
analysis requires an objective definition of nearest neighbor residues that can be
provided by the statistical geometry methods.

In the statistical geometry methods the nearest neighbor atoms or groups of
atoms are identified by statistical analysis of irregular polyhedra obtained as a re-
sult of a specific tessellation in three-dimensional space. Voronoi tessellation par-
titions the space into convex polytopes called Voronoi polyhedra (Voronoi, 1908).
For a molecular system the Voronoi polyhedron is the region of space around an
atom, such that each point of this region is closer to the atom than to any oth-
er atom of the system. A group of four atoms whose Voronoi polyhedra meet at
a common vertex forms another basic topological object called a Delaunay simplex
(Delaunay, 1934). The results of the procedure for constructing Voronoi polyhedra
and Delaunay simplices in two dimensions are illustrated in Fig. 3.1. The topo-
logical difference between these objects is that the Voronoi polyhedron represents
the environment of individual atoms whereas the Delaunay simplex represents the
ensemble of neighboring atoms. The Voronoi polyhedra and the Delaunay sim-
plices are topological duals and they are completely determined by each other.
However the Voronoi polyhedra may have different numbers of faces and edges,
while the Delaunay simplices are always tetrahedra in three-dimensional space.
These tetrahedra can be used to define objectively the nearest neighbor entities in
molecular systems.

Delaunay tessellation is a canonical tessellation of space based on nearest neigh-
bors (Aurenhammer, 1991; Sugihara, 1995). A Delaunay tessellation of a set of points
is equivalent to a convex hull of the set in one higher dimension, it can be performed
using the Quickhull algorithm developed by Barber et al. (1996). The Quickhull
algorithm is a variation of the randomized, incremental algorithm of Clarkson

Statistical and Computational Geometry of Biomolecular Structure 983

Figure 3.1. Voronoi|Delaunay tessellation in 2D space; Voronoi tessellation – dashed line, Delaunay

tessellation – solid line

and Shor. The algorithm produces the Delaunay tessellation by computing the
convex-hull of this set of points in four dimensions and is shown to be space and
time efficient.

Statistical Geometry
of Molecular Systems 3.2

A statistical geometry approach to study structure of molecular systems was pio-
neered by John Bernal, who in the late 1950 s suggested that “many of the properties
of liquids can be most readily appreciated in terms of the packing of irregular poly-
hedra” (Bernal, 1959). Bernal pointed out that “it would be most desirable to find
the true minimum number of parameters or parametral functions defining the
statistical structure of any homogenous irregular assemblage in the way that the
lattice vectors define a regular one” (Bernal, 1959). Methods of computational ge-
ometry, Voronoi and Delaunay tessellations in particular, may be used to address
this problem. This approach, based on the Voronoi partitioning of space (Voronoi,
1908) occupied by the molecule, was further developed by Finney for liquid and
glass studies (Finney, 1970). Finney proposed a set of “descriptive parameters” for
packing of polyhedra in simple liquids. In the mid-1970 s the statistical geometry
approach was first applied to study packing and volume distributions in proteins
by Richards (1974), Chothia (1975) and Finney (1975).

Richards applied Voronoi tessellation to calculate atomic volumes in the ex-
perimentally solved crystallographic structures of ribonulease C and lysozyme
(Richards, 1974) and Chothia extended the calculations to a larger set of proteins

984 Iosif I. Vaisman

(Chothia, 1975). Standard Voronoi tessellation algorithm treats all atoms as points
and allocates volume to each atom regardless of the atom size, which leads to the
volume overestimate for the small atoms and underestimate for the large ones.
Richards introduced changes in the algorithm (Richards, 1974) that made Voronoi
volumes proportional to the atom sizes, creating chemically more relevant parti-
tioning, however it has been done at the expense of the robustness of the algorithm.
The Voronoi polyhedra in this case do not fill all available space. In addition to
polyhedra around the atoms Richards’ method produces so called vertex polyhe-
dra in the unallocated volumes in the neighborhood of each vertex. As a result
the accuracy of the tessellation is reduced. An alternative procedure, the “radical
plane” partitioning, which is both chemically appropriate and completely rigorous
was designed by Gellatly and Finney (1982) and applied to the calculation of protein
volumes. The radical plane of two spheres is the locus of points from which the
tangent lengths to both spheres are equal. Using the three-dimensional structure
of RNAase-C as an example, they have shown that the differences between the
results from the radical plane and Richards’ methods are generally smaller than
the difference between either of those and Voronoi’s method. Both radical plane
and Richards’ methods are relatively insensitive to the treatment of surface, which
makes them preferential to other techniques (Gellatly and Finney, 1982). Volume
calculation remains one of the most popular applications of Voronoi tessellation to
protein structure analysis. It has been used to evaluate the differences in amino acid
residue volumes in solution and in the interior of folded proteins (Harpaz et al.,
1994), to monitor the atomic volumes in the course of molecular dynamics simu-
lation of a protein (Gerstein et al., 1995), to compare the sizes of atomic groups in
proteins and organic compounds (Tsai et al., 1999), to calculate the atomic volumes
on protein-protein interfaces (Lo Conte et al., 1999), and to measure sensitivity of
residue volumes to the selection of tessellation parameters and protein training set
(Tsai and Gerstein, 2002). Deviations from standard atomic volumes in proteins
determined through Voronoi tessellation correlate with crystallographic resolu-
tion and can be used as a quality measure for crystal structures (Pontius et al.,
1996). A modified Voronoi algorithm, where dividing planes between the atoms
were replaced by curved surfaces, defined as the set of geometrical loci with equal
orthogonal distance to the surfaces of the respective van der Waals spheres, was
proposed by Goede et al. (1997). Voronoi cells with hyperbolic surface construct-
ed by this algorithm improve the accuracy of volume and density calculations in
proteins (Rother et al., 2003). Another extension of the Voronoi algorithm, the
Laguerre polyhedral decomposition was applied to the analysis of the residue
packing geometry (Sadoc et al., 2003).

One of the problems in constructing Voronoi diagram for the molecular systems
is related to the difficulty of defining a closed polyhedron around the surface atoms,
which leads to ambiguities in determining their volumes and densities (a recent
example in Quillin and Matthews, 2000). This problem can be addressed by the
“solvation” of the tessellated molecule in the at least one layer of solvent or by using
computedsolvent-accessible surface for theexternal closuresofVoronoipolyhedra.
The analysis of atomic volumes on the protein surface can be used to adjust param-

Statistical and Computational Geometry of Biomolecular Structure 985

eters of the force field for implicit solvent models, where the solvent is represented
by the generalized Born model of electrostatic salvation which require knowledge
of the volume of individual solute atoms (Schaefer et al., 2001). Interactions be-
tween residues in proteins can be measured using the contact area between atoms
defined as the area of intersection of the van der Waals sphere and the Voronoi
polyhedron of an atom (Wernisch et al., 1999). Examining the packing of residues
in proteins by Voronoi tessellation revealed a strong fivefold local symmetry simi-
lar to random packing of hard spheres, suggesting a condensed matter character of
folded proteins (Soyer et al., 2000). Correlations between the geometrical param-
eters of Voronoi cells around residues and residue conformations were discovered
by Angelov et al. (2002). Another recent study described application of Voronoi
procedure to study atom-atom contacts in proteins (McConkey et al., 2002).

A topological dual to Voronoi partitioning, the Delaunay tessellation (Delaunay,
1934)has anadditional utility as amethod fornon-arbitrary identificationofneigh-
boring points in the molecular systems represented by the extended sets of points
in space. Originally the Delaunay tessellation has been applied to study model
(Voloshin et al., 1989) and simple (Medvedev and Naberukhin, 1987) liquids, as well
aswater (Vaismanetal., 1993)andaqueoussolutions (VaismanandBerkowitz, 1992;
Vaisman et al., 1994). The Delaunay tessellation proved to be a particularly con-
venient and efficient descriptor of water structure, where a natural tetrahedral ar-
rangement of molecules is present in the first hydration shell (Vaisman et al., 1993).

The first application of the Delaunay tessellation for identification of nearest
neighbor residues in proteins and derivation of a four-body statistical potential was
developed in the mid-1990 s (Singh et al., 1996). This potential has been successful-
ly tested for inverse protein folding (Tropsha et al., 1996), fold recognition (Zheng
et al., 1997), decoy structure discrimination (Munson et al., 1997; Krishnamoorthy
and Tropsha, 2003), protein design (Weberndorfer et al., 1999), protein folding
on a lattice (Gan et al., 2001), mutant stability studies (Carter et al., 2001), com-
putational mutagenesis (Masso and Vaisman, 2003), protein structure similarity
comparison (Bostick and Vaisman, 2003), and protein structure classification (Bo-
stick et al., 2004). Statistical compositional analysis of Delaunay simplices revealed
highly nonrandom clustering of amino acid residues in folded proteins when all
residues were treated separately as well as when they were grouped according to
their chemical, structural, or genetic properties (Vaisman et al., 1998). A Delaunay
tessellation based alpha-shape procedure for protein structure analysis was devel-
oped by Liang et al. (Liang et al., 1998a). Alpha shapes are polytopes that represent
generalizations of the convex hull. A real parameter alpha defines the “resolution”
of the shape of a point set (Edelsbrunner et al., 1983). Alpha shapes proved to be
useful for the detection of cavities and pockets in protein structures (Liang et al.,
1998b; 1998c). Several alternative Delaunay and Voronoi based techniques for cav-
ity identification were described by Richards (1985), Bakowies and van Gunsteren
(2002) and Chakravarty et al. (2002). Delaunay tessellation has been also applied
to compare similarity of protein local substructures (Kobayashi and Go, 1997) and
to study the mechanical response of a protein under applied pressure (Kobayashi
et al., 1997).

986 Iosif I. Vaisman

Tetrahedrality of Delaunay Simplices
as a Structural Descriptor in Water3.3

Quantitative measurement of local structural order in the computational models
of liquid water (and other associated liquids) is an intrinsically difficult problem.
Conventional structure descriptors, such as radial distribution functions cannot
be used to adequately evaluate structure in the specific regions of complex model
systems like multicomponent solutions or solutions of large biological molecules
(Vaisman and Berkowitz, 1992). Another set of structural descriptors, the geo-
metric and thermodynamic parameters of hydrogen bond network depend on
arbitrary values in the hydrogen bond definition (Vaisman et al., 1994). Statistical
geometry enables a robust and accurate approach to addressing the problem of
structure characterization in water. The snapshot conformations from the molec-
ular simulation of water or aqueous solution by molecular dynamics, Monte Carlo,
or other method can be easily tessellated and geometrical parameters of the result-
ing Delaunay simplices can be measured. Tetrahedrality is a quantitative measure
of the degree of distortion of the Delaunay simplices from the regular tetrahedra,
that was introduced by Medvedev and Naberukhin (1987) for simple liquids, but
can be easily extended to water and other systems. Tetrahedrality is calculated as:

T =
∑

i>j

(
li − lj

)2 |15l̄
2

, (3.1)

where li is the length of the i-th edge, and l is the mean length of the edges of
the given simplex. For a regular tetrahedron with four equilateral triangular faces,
T = 0. For any irregular tetrahedron, T > 0. In case of a simulated molecular
system the tessellation produces a large number of Delaunay simplices for each
snapshot conformation, and a number of such conformations can be very large as
well. If the simulated system is at equilibrium, the ergodic theorem applies, and
time averages along a system trajectory can be combined with ensemble averages
over the phase space. Such a combination increases the number of simplices for
the analysis by several orders of magnitude (103–104 simplices in a conformation
multiplied by 103–104 conformations), which affords high statistical reliability
of the results. The nature of this descriptor allows to calculate it separately in
confined or limited regions of the simulation system, e.g., in concentric spherical
layers around a solute.

The distribution of water tetrahedrality in different layers around solutes de-
pend on the nature of the solute. In the case of charged ions, like ammonium,
the difference between tetrahedrality of bulk water and the ammonium hydration
water is particularly strong due to the strong hydrogen bonding between water
and solute. The peak of the distribution of the tetrahedrality of the ammonium
hydration water is shifted to the right which indicates that the hydration water
is less tetrahedral than bulk water (Fig. 3.2). Conversely, water in the first hydra-
tion shell of methane is just slightly more tetrahedral than the bulk water. Thus,

Statistical and Computational Geometry of Biomolecular Structure 987

Figure 3.2. Distribution of tetrahedrality of water around solutes; solid line – first hydration shell,

dotted line – bulk water

the hydration water around ammonium is significantly more distorted than that
around methane as one could expect in the case of hydrophilic and hydrophobic
hydration, respectively (Vaisman et al., 1994).

It is worth to note that the presence of hydrophobic solute changes the distribu-
tion of water tetrahedrality in the same way as the decrease of temperature. This
observation is consistent with the concept of the decrease of ‘structural tempera-
ture’ of water, surrounding hydrophobic particles, that has been discussed in the
literature for a long time. The decrease in the structural temperature corresponds
to the increased structural order of water, because any structural characteristic of
liquid must be a monotonically decreasing function of temperature. Distribution
of tetrahedrality entirely complies with this requirement.

The influence of both solutes on the water tetrahedrality is almost unobservable
beyond the first hydration shell. The distribution of tetrahedrality for both solu-
tions is similar at both cutoff radii (Vaisman et al., 1994). This result indicates that
the distribution of tetrahedrality is not sensitive to the treatment of long-range in-
teractions. Distribution of tetrahedrality beyond the first hydration shell is similar
to that in pure water.

Spatial and Compositional
Three-dimensional Patterns in Proteins 3.4

Delaunay simplices obtained as a result of the tessellation can be used to de-
fine objectively the nearest neighbor residues in 3D protein structures. The most
significant feature of Delaunay tessellation, as compared with other methods of
nearest neighbor identification, is that the number of nearest neighbors in three
dimensions is always four, which represents a fundamental topological property
of 3D space. Statistical analysis of the amino acid composition of Delaunay sim-

988 Iosif I. Vaisman

plices provides information about spatial propensities of all quadruplets of amino
acid residues clustered together in folded protein structures. The compositional
statistics can be also used to construct four-body empirical contact potentials,
which may provide improvement over traditional pairwise statistical potentials
(e.g., Miyazawa and Jernigan, 2000) for protein structure analysis and prediction.

To perform the tessellation protein residues should be represented by single
points located, for example, in the positions of the Cα atoms or the centers of the
side chains. Tessellation training set includes high-quality representative protein
structures with low primary-sequence identity (Wang and Dunbrack, 2003). The
tessellated proteins are analyzed by computing various geometrical properties and
compositional statistics of Delaunay simplices.

An example of Delaunay tessellation of a folded protein is illustrated on Fig. 3.3
for crambin (1 crn). The tessellation of this 46-residue protein generates an aggre-
gateof192nonoverlapping, space-filling irregular tetrahedra (Delaunaysimplices).
Each Delaunay simplex uniquely defines four nearest neighbor Cα atoms and thus
four nearest neighbor amino acid residues.

For the analysis of correlations between the structure and sequence of proteins,
we introduced a classification of simplices based on the relative positions of vertex
residues in the primary sequence (Singh et al., 1996). Two residues were defined
as distant if they were separated by one or more residues in the protein primary
sequence. Simplicesweredivided intofivenonredundant classes: class {4},whereall
four residues in the simplex are consecutive in the protein primary sequence; class
{3, 1}, where three residues are consecutive and the fourth is a distant one; class
{2, 2}, where two pairs of consecutive residues are separated in the sequence; class
{2, 1, 1},where tworesiduesare consecutive, and theother twoaredistantboth from
the first two and from each other; and class {1, 1, 1, 1} where all four residues are
distant from each other (Fig. 3.4). All five classes usually occur in any given protein.

The differences between classes of simplices can be evaluated using geometrical
parameters of tetrahedra such as volume and tetrahedrality (3.1). Distributions of

Figure 3.3. Delaunay tessellation of Crambin

Statistical and Computational Geometry of Biomolecular Structure 989

Figure 3.4. Five classes of Delaunay simplices

volume and tetrahedrality for all five classes of simplices is shown in Fig. 3.5. The
sharp narrow peaks correspond to the simplices of classes {4} and {2, 2}. They tend
to have well defined distributions of volume and distortion of tetrahedrality. These
results suggest that tetrahedra of these two classes may occur in regular protein
conformations such as α-helices and may be indicative of a protein fold family.
We have calculated the relative frequency of occurrence of tetrahedra of each class
in each protein in a small dataset of hundred proteins from different families and
plotted the results in Fig. 3.6. The proteins were sorted in the ascending order
of fraction of tetrahedra of class {4}. Noticeably, the content of simplices of class
{3, 1} decreases with the increase of the content of class {4} simplices. According
to common classifications of protein fold families (Orengo et al., 1997), at the
top level of hierarchy most proteins can be characterized as all-alpha, all-beta,
or alpha/beta. The fold families for the proteins in the dataset are also shown in
Fig. 3.6. These results suggest that proteins having a high content of tetrahedra
of classes {4} and {2, 2} (i.e., proteins in the right part of the plot in Fig. 3.6)
belong to the family of all-alpha proteins. Similarly, proteins having a low content
of tetrahedra of classes {4} and {2, 2} but a high content of tetrahedra of classes
{2, 2} and {3, 1} (i.e., proteins in the left part of the plot in Fig. 3.6) belong to the
all-beta protein fold family. Finally, proteins in the middle of the plot belong to
the alpha|beta fold family. Thus, the results of this analysis show that the ratio of
tetrahedra of different classes is indicative of the protein fold family.

Identification of significant patterns in biomolecular objects depends on the
possibility to distinguish what is likely from what is unlikely to occur by chance
(Karlin et al., 1991). Statistical analysis of amino acid composition of the De-
launay simplices provides information about spatial propensities of all quadru-
plets of amino acid residues to be clustered together in folded protein struc-
tures. We analyzed the results of the Delaunay tessellation of these proteins in
terms of statistical likelihood of occurrence of four nearest neighbor amino acid
residues for all observed quadruplet combinations of 20 natural amino acids. The
log-likelihood factor, q, for each quadruplet was calculated using the following
equation:

qijkl = log
fijkl

pijkl
(3.2)

990 Iosif I. Vaisman

Figure 3.5. Distribution of tetrahedrality and volume (in Å3) of Delaunay simplices in proteins

where i, j, k, l are any of the 20 natural amino acid residues, fijkl is the observed nor-
malized frequency of occurrence of a given quadruplet, and pijkl is the randomly ex-
pected frequency of occurrence of a given quadruplet. The qijkl shows the likelihood
of finding four particular residues in one simplex. The fijkl is calculated by dividing
the total number of occurrence of each quadruplet type by the total number of ob-
servedquadruplets of all types.The pijkl wascalculated fromthe followingequation:

pijkl = Caiajakal (3.3)

where ai, aj, ak, and al are the observed frequencies of occurrence of individual
amino acid residue (i.e. total number of occurrences of each residue type divided
by the total number of amino acid residues in the dataset), and C is the permutation
factor, defined as

C =
4!

n∏

i
(ti!)

(3.4)

Statistical and Computational Geometry of Biomolecular Structure 991

Figure 3.6. Classes of Delaunay simplices and protein fold families. Contents of simplices of class {4}
(solid line), class {3, 1} (dashed line), class {2, 1} (dotted line), class {2, 1} (dash-dotted line), class

{1, 1, 1, 1} (dash-dot-dotted line). Upper part of the figure displays fold family assignment: all-alpha

(circles), all-beta (squares), and alpha-beta (triangles)

where n is the number of distinct residue types in a quadruplet and ti is the number
of amino acids of type i. The factor C accounts for the permutability of replicated
residue types.

Theoretically, the maximum number of all possible quadruplets of 20 natural
amino acid residues is 8855 (C4

20 + 3C3
20 + 2C2

20 + C2
20 + C1

20). The first term accounts
for simplices with four distinct residue types, the second – three types in 1 − 1 − 2
distribution, the third – two types in 1 − 3 distribution, the fourth – two types in
2−2 distribution, and the fifth – four identical residues. The log-likelihood factor q
is plotted in Fig. 3.7 for all observed quadruplets of natural amino acids. Each
quadruplet is thus characterized by a certain value of the q factor which describes
the nonrandom bias for the four amino acid residues to be found in the same
Delaunay simplex. This value can be interpreted as a four-body statistical potential
energy function. The statistical potential can be used in a variety of structure
prediction, protein modeling, and computational mutagenesis applications.

Computational mutagenesis is based on the analysis of a protein potential pro-
file, which is constructed by summing the log-likelihood scores from (3.2) for all
simplices in which a particular residue participates. A plot of the potential profile
for a small protein, HIV-1 protease, is shown in Fig. 3.8. The shape of the poten-
tial profile frequently reflects important features of the protein, for example, the
residues in local maxima values of the profile are usually located in the hydropho-
bic core of the protein and these residues play an important role in maintaining
protein stability.

A potential profile can be easily calculated for both wild type and mutant
proteins, assuming that the structural differences between them are small and
that their tessellation results are similar. In this case the difference between the

992 Iosif I. Vaisman

profiles is defined only by the change in composition of the simplices involving the
substitution site. The resulting difference profile provides important insights into
the changes in protein energetics due to the mutation.

Figure 3.7. Log-likelihood ratio for the Delaunay simplices

Figure 3.8. Potential profile of HIV-1 protease

Statistical and Computational Geometry of Biomolecular Structure 993

Protein Structure Comparison
and Classification 3.5

Using the information from the Delaunay tessellation of a protein’s backbone, it
is possible to build a statistical representation of that protein, which takes into
account the way its sequence must “twist and turn” in order to bring each four-
body residue cluster into contact. Each residue – i, j, k, and l of a four-body cluster
comprising a simplex are nearest neighbors in Euclidean space as defined by the
tessellation, but are separated by the three distances – dij, djk, and dkl in sequence
space. Based on this idea, we build a 1000-tuple representation of a single protein
by making use of two metrics: (1) the Euclidean metric used to define the Delaunay
tessellation of the protein’s Cα atomic coordinates and (2) the distance between
residues in sequence space.

If we consider a tessellated protein with N residues integrally enumerated ac-
cording to their position along the primary sequence, the length of a simplex edge
in sequence space can be defined as dij = j − i − 1, where dij is the length of the
simplex edge, ij, corresponding to the ith and jth α-carbons along the sequence. If
one considers the graph formed by the union of the simplex edge between the two
points i and j and the set of edges between all dij points along the sequence between
i and j, it is seen that the Euclidean simplex edge, ij, can generally be classified as
a far edge (Pandit and Amritkar, 1999). Every simplex in the protein’s tessellation
will have three such edges associated with its vertices: i, j, k, and l where i, j, k, and
l are integers corresponding to Cα atoms enumerated according to their position
along the primary sequence. Thus, we proceed to quantify the degree of “farness”
in an intuitive way, by applying a transformation, T, which maps the length, d, of
each edge to an integer value according to

T : d →

1 if d = 0
2 if d = 1
3 if d = 2
4 if d = 3
5 if 4 ≤ d ≤ 6
6 if 7 ≤ d ≤ 11
7 if 12 ≤ d ≤ 20
8 if 21 ≤ d ≤ 49
9 if 50 ≤ d ≤ 100
10 if d ≥ 101

(3.5)

The reasoning behind the design of the transformation is described by Bostick
and Vaisman (2003). This transformation is used to construct an array that is
representative of the distribution of combinations of segment lengths along the
protein backbone forming four-residue clusters within the protein’s structure as
definedby the tessellationof itsCα atomiccoordinates.Eachsimplex in theprotein’s

994 Iosif I. Vaisman

tessellation contributes to a 3D array, M, where Mnpr is the number of simplices
whose edges satisfy the following conditions:
1. The Euclidean length of any one simplex edge is not greater than 10 Å.
2. dij = n
3. djk = p
4. dkl = r

Condition 1 is provided because simplices with a Euclidean edge length above
10 Å are generally a result of the positions of α-carbons on the exterior of the
protein. We filter out contributions from these simplices to M, because they do
not represent physical interactions between the participating residues. The sim-
plices with the long edges are formed due to the absence of solvent and oth-
er molecules around the protein in the tessellation, they would not have exist-
ed if the protein was solvated. The data structure, M, contains 1000 elements.
The number of elements is invariant with respect to the number of residues
of the protein. In order to more easily conceptualize the mapping of the pro-
tein topology to the data structure, M, we rewrite it as a 1000-tuple vector−→
M = {M000, M001, … , M010, M011, … , M999}.

Given that each element of this vector represents a statistical contribution to
the global topology, a comparison of two proteins making use of this mapping
must involve the evaluation of the differences in single corresponding elements
of the proteins’ 1000-tuples. We define, therefore, a raw topological score, Q,
representative of the topological distance between any two proteins represented by
data structures, −→M and

−→
M′ , as the supremum norm,

Q ≡
∥∥∥−→M −

−→
M

′∥∥∥
sup

≡
999∑

i=0

∣∣Mi − M′
i

∣∣ . (3.6)

This norm is topologically equivalent to the Euclidean norm and has the added
advantage that it is less computationally expensive to calculate.

This topological score has an obvious dependence on the sequence length dif-
ference between the two proteins being compared due to the following implicit
relation for a single protein representation,

Ns =
999∑

i=0

Mi , (3.7)

where i is the number of simplices with no edge having a Euclidian length greater
than 10 Å, and the Mi are theelementsof theprotein representation. Inotherwords,
since Ns is proportional to the number of residues in the protein, the difference in
the length between two compared proteins might provide a systematic extraneous
contribution to their score, Q, in (3.6). This is not to say that the sequence length
of a protein does not play a role in its topology. In fact, the length should be quite
crucial (Bostick et al, 2004). However, the length dependence of our score implied
by (3.7) is endemic to our protein representation (derived from its tessellation),

Statistical and Computational Geometry of Biomolecular Structure 995

and not due to protein topology itself. This length dependence may be removed by
first normalizing the vector representation as follows:

M−→ =
−→
M

∥∥∥−→M
∥∥∥

(3.8)

resulting in the unit-vector representation, M−→. The corresponding normalized
topological score,

Q ≡ ∥∥M−→ − M−→
∥∥

sup
(3.9)

can be expected to be less sensitive to the chain length difference between the
two proteins being compared. Despite normalization, however, this score should
still have an inherent dependence on the length difference between the compared
proteins. A protein’s structure must be dependent on the length of its sequence,
because the number of configurational degrees of freedom in a polymer’s structure
is proportional to the number of residues it possesses. Such a dependence on the
size of compared proteins is present in geometric methods of comparison such as
structural alignment as well, and in some cases, has been accounted for (Carugo
and Pongor, 2001).

Figure 3.9. Topological and geometric comparison within 6 protein families

996 Iosif I. Vaisman

The results of topological protein structure comparison can be illustrated using
an example of proteins that belong to the same family. Six protein families were
selected from the FSSP (Families of Structurally Similar Proteins) database for
topological evaluation. We selected families that span various levels of secondary
structural content. The representatives of these families are as follows: 1alv and
1avm (having greater than 50% α-helical content), 2bbk and 2bpa (having greater
than 50% β-sheet content), and 1hfc and 1plc (having at least 50% content that is
classified as neither α-helical nor β-sheet). The FSSP database contains the results
of the alignments of the extended family of each of these representative chains.
Each family in the database consists of all structural neighbors excluding very close
homologs (proteins having a sequence identity greater than 70%). The topological
score was calculated for each representative in a one-against-all comparison with
its neighbors. All of the scores are plotted against RMSD for each of the families in
Fig. 3.9. A strong correlation between the topological score and structure similarity
and the power-law trend can be seen for all families.

Conclusions3.6

Methods of statistical and computational geometry, Voronoi and Delaunay tessel-
lation in particular, play an increasingly important role in exploration of complex
nature of molecular and biomolecular structure. The range of applications of sta-
tistical geometry for biomolecular structural studies has grown significantly in
the past decade. As the new experimental structural information on biomolecules
becomes available, the need for sophisticated and robust tools for its interpretation
will further increase. At the same time more known structure will enable the cre-
ation of larger and better training sets for pattern identification. Existing and new
statistical geometry algorithms may prove instrumental in future developments of
methods for protein structure analysis, ab initio structure prediction, and protein
engineering.

References
Angelov, B., Sadoc, J.F., Jullien, R., Soyer, A., Mornon, J.P. and Chomilier, J. (2002).

Nonatomic solvent-driven Voronoi tessellation of proteins: an open tool to
analyze protein folds. Proteins, 49(4)446–456.

Aurenhammer, F. (1991). Voronoi diagrams – a survey of a fundamental geometric
data structure. ACM Computing Surveys, 23: 345–405.

Bakowies,D. andvanGunsteren,W.F. (2002).Water inprotein cavities:Aprocedure
to identify internal water and exchange pathways and application to fatty acid-
binding protein. Proteins, 47(4)534–545.

Barber, C.B., Dobkin, D.P. and Huhdanpaa, H.T. (1996). The Quickhull algorithm
for convex hulls. ACM Trans on Mathematical Software, 22(4)469–483.

Statistical and Computational Geometry of Biomolecular Structure 997

Bernal, J.D. (1959). A geometrical approach to the structure of liquids. Nature,
183(4655)141–147.

Bostick D. and Vaisman, I.I. (2003). A new topological method to measure protein
structure similarity. Biochem Biophys Res Commun, 304(2)320–325.

Bostick, D., Shen, M. and Vaisman, I.I. (2004). A simple topological represen-
tation of protein structure: Implications for new, fast, and robust structural
classification. Proteins, 55.

Carter, C.W. Jr, LeFebvre, B.C., Cammer, S.A., Tropsha, A. and Edgell, M.H. (2001).
Four-body potentials reveal protein-specific correlations to stability changes
caused by hydrophobic core mutations. J Mol Biol, 311(4)625–638.

Carugo, O. and Pongor, S. (2001). A normalized root-mean-square distance for
comparing protein three-dimensional structures. Protein Sci, 10(7)1470–1473.

Chakravarty, S., Bhinge, A. and Varadarajan, R. (2002). A procedure for de-
tection and quantitation of cavity volumes proteins. Application to measure
the strength of the hydrophobic driving force in protein folding. J Biol Chem,
277(35)31345–31353.

Chothia, C. (1975). Structural invariants in protein folding. Nature 1975,
254(5498)304–308.

Delaunay, B. N. (1934). Sur la sphere vide, Izv Akad Nauk SSSR, Otd Mat Est Nauk,
7:793–800.

Edelsbrunner, H., Kirkpatrick, D.G. and Seidel, R. (1983). On the shape of a set
of points in the plane. IEEE Transactions on Information Theory, IT-29(4)551–
559.

Finney, J.L. (1970). Random packing and the structure of simple liquids. I. The
geometry of random close packing. Proc Roy Soc Lond, A319479–493 and 495–
507.

Finney, J.L. (1975). Volume occupation, environment and accessibility in proteins.
The problem of the protein surface. J Mol Biol, 96(4)721–732.

Gan, H.H., Tropsha, A and Schlick, T. (2001) Lattice protein folding with two and
four-body statistical potentials. Proteins, 43(2)161–174.

Gellatly, B.J. and Finney, J.L. (1982). Calculation of protein volumes: an alternative
to the Voronoi procedure. J Mol Biol, 161(2)305–322.

Gerstein, M., Tsai, J. and Levitt, M. (1995). The volume of atoms on the pro-
tein surface: calculated from simulation, using Voronoi polyhedra. J Mol Biol,
249(5)955–966.

Goede, A., Preissner, R. and Frömmel, C. (1997). Voronoi cell: New method for
allocation of space among atoms: Elimination of avoidable errors in calculation
of atomic volume and density. J Comput Chem, 18(9)1113–1123.

Harpaz, Y., Gerstein, M. and Chothia, C. (1994). Volume changes on protein folding.
Structure, 2(7)641–649.

Karlin, S., Bucher, P. and Brendel, V. (1991). Altschul S.F., Statistical methods
and insights for protein and DNA sequences. Annu Rev Biophys Biophys Chem,
20:175–203.

998 Iosif I. Vaisman

Kobayashi, N. and Go N. (1997). A method to search for similar protein local
structures at ligand binding sites and its application to adenine recognition.
Eur Biophys J, 26(2)135–144.

Kobayashi, N., Yamato, T. and Go N. (1997). Mechanical property of a TIM-barrel
protein. Proteins, 28(1)109–116.

Krishnamoorthy, B. and Tropsha, A. (2003). Development of a four-body statistical
pseudo-potential to discriminate native from non-native protein conforma-
tions. Bioinformatics, 19(12)1540–1548.

Liang, J., Edelsbrunner, H., Fu, P., Sudhakar, P.V. and Subramaniam, S. (1998a).
Analytical shapecomputationofmacromolecules: I.Molecular areaandvolume
through alpha shape. Proteins, 33(1)1–17.

Liang, J., Edelsbrunner, H., Fu, P., Sudhakar, P.V. and Subramaniam, S. (1998b).
Analytical shape computation of macromolecules: II. Inaccessible cavities in
proteins. Proteins, 33(1)18–29.

Liang, J., Edelsbrunner, H., Woodward, C. (1998c). Anatomy of protein pockets and
cavities: measurement of binding site geometry and implications for ligand
design. Protein Sci, 7(9)1884–1897.

Lo Conte, L., Chothia, C. and Janin, J. (1999). The atomic structure of protein-
protein recognition sites. J Mol Biol, 285(5)2177–2198.

Masso, M. and Vaisman, I.I. (2003). Comprehensive mutagenesis of HIV-1 pro-
tease: a computational geometry approach. Biochem Biophys Res Commun,
305(2)322–326.

Medvedev, N.N. and Naberukhin, Yu.I. (1987). Analysis of structure of simple
liquids and amophous solids by statistical geometry method. Zh Strukt Khimii,
28(3)117–132.

Miyazawa, S. and Jernigan, R.L. (2000). Identifying sequence-structure pairs un-
detected by sequence alignments. Protein Eng,13(7)459–475.

McConkey, B.J., Sobolev, V. and Edelman, M. (2002). Quantification of protein sur-
faces, volumes and atom-atom contacts using a constrained Voronoi procedure.
Bioinformatics, 18(10)1365–1373.

Munson, P.J. and Singh, R.K. (1997). Statistical significance of hierarchical multi-
body potentials based on Delaunay tessellation and their application in
sequence-structure alignment. Protein Sci, 6(7)1467–1481.

Orengo, C.A., Michie, A.D., Jones, S., Jones, D.T., Swindells, M.B. and Thornton,
J.M. (1997). CATH – a hierarchic classification of protein domain structures.
Structure, 5(8)1093–1108.

Pandit, S. A. and Amritkar, R. E. (1999). Characterization and control of small-
world networks. Phys Rev E, 60:1119–1122.

Pontius, J., Richelle, J. and Wodak, S.J. (1996). Deviations from standard atom-
ic volumes as a quality measure for protein crystal structures. J. Mol. Biol.,
264(1)121–136.

Quillin, M.L. and Matthews, B.W. (2000). Accurate calculation of the density of
proteins. Acta Crystallogr D Biol Crystallogr, 56(Pt 7)791–794.

Richards, F.M. (1974). The interpretation of protein structures: total volume, group
volume distributions and packing density. J Mol Biol, 82(1)1–14.

Statistical and Computational Geometry of Biomolecular Structure 999

Richards, F.M. (1985). Calculation of molecular volumes and areas for structures
of known geometry. Methods Enzymol, 115:440–464.

Rother, K, Preissner, R, Goede, A and Frömmel, C. (2003). Inhomogeneous molec-
ular density: reference packing densities and distribution of cavities within
proteins. Bioinformatics, 19(16)2112–2121.

Sadoc, J.F., Jullien, R. and Rivier, N. (2003). The Laguerre polyhedral decomposi-
tion: application to protein folds. Eur Phys J B, 33(3)355–363.

Schaefer, M., Bartels, C., Leclerc, F. and Karplus M. (2001). Effective atom vol-
umes for implicit solvent models: comparison between Voronoi volumes and
minimum fluctuation volumes. J Comput Chem, 22(15)1857–1879.

Singh, R.K., Tropsha, A. and Vaisman, I.I. (1996). Delaunay tessellation of proteins:
four body nearest-neighbor propensities of amino acid residues. J Comput Biol,
3(2)213–222.

Soyer, A., Chomilier, J., Mornon, J.P., Jullien, R. and Sadoc, J.F. (2000). Voronoi
tessellation reveals the condensed matter character of folded proteins. Phys
Rev Lett, 85(16)3532–3535.

Sugihara, K. and Inagaki, H. (1995). Why is the 3D Delaunay triangulation difficult
to construct? Information Processing Letters, 54:275–280.

Tropsha, A., Singh, R.K., Vaisman, I.I. and Zheng, W. (1996). Statistical geometry
analysis of proteins: implications for inverted structure prediction. Pac Symp
Biocomput, 614–623.

Tropsha, A., Carter, C.W. Jr, Cammer, S. and Vaisman, I.I. (2003). Simplicial neigh-
borhood analysis of protein packing (SNAPP): a computational geometry ap-
proach to studying proteins. Methods Enzymol, 374:509–544.

Tsai, J., Taylor, R., Chothia, C. and Gerstein, M. (1999). The packing density in
proteins: standard radii and volumes. J Mol Biol, 290(1)253–266.

Tsai, J. andGerstein,M. (2002).Calculationsofproteinvolumes: sensitivity analysis
and parameter database. Bioinformatics, 18(7)985–995.

Naberukhin, Y.I., Voloshin, V.P. and Medvedev, N.N. (1991). Geometrical analysis of
the structure of simple liquids: percolation approach. Mol Physics, 73:917–936.

Vaisman, I.I., Perera, L. and Berkowitz, M.L. (1993). Mobility of stretched water.
J Chem Phys, 98(12)9859–9862.

Vaisman, I.I. and Berkowitz, M.L. (1992). Local structural order and molecular
associations in water-DMSO mixtures. Molecular dynamics study. J Am Chem
Soc, 114(20)7889–7896.

Vaisman, I.I., Brown, F.K. and Tropsha, A. (1994). Distance Dependence of Water
Structure Around Model Solutes. J Phys Chem, 98(21)5559–5564.

Vaisman, I.I., Tropsha, A. and Zheng W. (1998). Compositional preferences in
quadruplets of nearest neighbor residues in protein structures: Statistical ge-
ometry analysis. Proc. of the IEEE Symposia on Intelligence and Systems, 163–
168.

Voloshin, V.P., Naberukhin, Y.I. and Medvedev, N.N. (1989). Can various classes of
atomic configurations (Delaunay simplices) be distinguished in random close
packing of spherical particles?, Molec Simulation, 4:209–227.

1000 Iosif I. Vaisman

Voronoi, G.F. (1908). Nouvelles applications des paramètres continus à la théorie
des formes quadratiques. Deuxième Mémorie: Recherches sur les paralléloè-
dres primitifs. J Reine Angew Math, 134:198–287.

Wang, G. and Dunbrack, R.L. Jr. (2003). PISCES: a protein sequence culling server.
Bioinformatics, 19(12)1589–1591.

Weberndorfer, G., Hofacker, I.L. and Stadler, P.F. (1999). An efficient potential for
protein sequence design. Proc German Conf Bioinformatics, 107–112.

Wernisch, L., Hunting, M. and Wodak, S.J. (1999). Identification of structural
domains in proteins by a graph heuristic. Proteins, 35(3)338–352.

Zheng, W., Cho, S.J., Vaisman, I.I. and Tropsha, A. (1997). A new approach to
protein fold recognition based on Delaunay tessellation of protein structure.
Pac Symp Biocomput, 486–497.

IV.4Functional Magnetic
Resonance Imaging

William F. Eddy, Rebecca L. McNamee

4.1 Introduction: Overview and Purpose of fMRI. 1002

4.2 Background. 1003

Magnetic Resonance (MR) . 1003
Magnetic Resonance Imaging (MRI) . 1004
Functional MRI . 1006

4.3 fMRI Data . 1008

Design of an fMRI Experiment . 1008
Data Collection. 1010
Sources of Bias and Variance in the Data . 1011

4.4 Modeling and Analysis . 1013

An Ideal Model . 1013
A Practical Approach. 1014

4.5 Computational Issues. 1020

Software Packages for fMRI Data Analysis . 1021
Other Computational Issues . 1023

4.6 Conclusions . 1023

1002 William F. Eddy, Rebecca L. McNamee

Introduction: Overview and Purpose
of fMRI4.1

The 2003 Nobel Prize in Medicine went to Paul Lauterbur and Sir Peter Mansfield
for the invention of magnetic resonance imaging (MRI) in the 1970 s. Since its
invention MRI has rapidly changed the world of medicine; there are currently
more than 20,000 MRI scanners in the world and many millions of images are
generated by them each year. In the early 1990 s, Ogawa et al. (1992), Belliveau et al.
(1991) and Kwong et al. (1992) showed that MRI could be used for the detection
of brain function. Because the technique is non-invasive and does not require the
injection of dyes or radioactive tracers, functional MRI (fMRI), has opened up
opportunities that were never before possible for studying the living human brain
in its working state.

One of the primary uses for fMRI is the mapping of brain function onto brain
structure. This is done by engaging a subject in a specific motor, sensory, or
cognitive task while collecting MR images of the brain. The regions of increased
activity are presumed to be those which perform the task. A particular example is
given in Fig. 4.1.

Although mapping of function to structure is an important use of fMRI, the
possibilities of its application for investigating the dynamics of brain function are
many. Researchers have recently begun using fMRI to study brain development in

Figure 4.1. Brain activity while performing a short term memory task, in a high school athlete with mild

traumatic brain injury. This single slice shows only a portion of the activity in the entire brain. Because

it was derived by thresholding a test statistic there may be both false positive and false negative pixels.

The physical contiguity of the regions of activity suggests that there are not any false positives

Functional Magnetic Resonance Imaging 1003

both normal and pathological situations (Gaillard et al., 2001). The method can
also be used to examine the aging brain (Rosen et al., 2002), as well as to study the
brain under situations of learning (Poldrack, 2000) and injury (McAllister et al.,
1999).

Scientific fields other than psychology and neuroscience are also developing
an interest in fMRI research. For example, pharmaceutical applications may use
fMRI to investigate the brain before and after the administration of a drug, and
geneticistsmaybe interested inhowtheexpressionof similarordifferentgenotypes
may alter brain functioning in one individual versus another.

As the field of fMRI grows, the problems that it presents for statisticians and
other quantitative scientists are also growing. There are several reviews of fMRI
work in the statistical literature; see, e.g., Eddy et al. (1999), Lange (1996) and
Lazar et al. (2001). While collecting the data from subjects has become easier,
the data sets are usually very large (100 MB or more) and are especially variable,
containing both systematic and random noise. Storage, processing, and analysis
of fMRI data are complicated, and the computational problems are legion. In this
chapter a brief background of fMRI is first given from a physics and psycholo-
gy point of view. A full description of the fMRI data as well as the challenges
that it presents from a computational statistics viewpoint are then discussed in
detail.

Background 4.2

Magnetic Resonance (MR) 4.2.1

Atomic nuclei spin like gyroscopes. When placed into a magnetic field, atomic
nuclei that are affected by magnetism (those having an odd number of protons
or neutrons or both) align their axis of rotation with the magnetic field. Like
a gyroscope the axis of rotation itself rotates; this rotation is called precession.
Each nucleus precesses within the magnetic field. The frequency of this precession,
the Larmor frequency, is proportional to the strength of the magnetic field, with
the constant of proportionality being determined by the gyromagnetic ratio of the
atomic species. The relationship can be described by the Larmor equation

ω0 = γB0

where ω0 is the Larmor frequency, γ is the gyromagnetic ratio, and B0 is the
strength of the applied magnetic field.

Hydrogen is currently the most widely used element for MR imaging because of
its abundance in biological tissue and the strength of the emitted signal. Hydrogen
atoms have a gyromagnetic ratio of approximately 42 MHz per Tesla. A Tesla
is a measure of the strength of the magnetic field (B0) with one Tesla equal to
10,000 gauss. For reference, one-half gauss is roughly the strength of the earth’s

1004 William F. Eddy, Rebecca L. McNamee

magnetic field. An MR scanner that is used for functional imaging has a typical
field strength of 3 Tesla. The resulting Larmor frequency is about 126 MHz; for
comparison a kitchen microwave oven operates at about 2450 MHz.

Some values of the constants γ for other atomic species can be found at
http:||www.stat.cmu.edu|∼fiasco|index.php?ref=reference|ref_constants.shtml

As the nuclei of the hydrogen atoms precess within the magnetic field, the atoms
will either line up along the field or against it (that is, the atoms will line up at
either 0 or 180 degrees). The strength of the magnetic field and the energy state of
the system affect the number of atoms that line up accordingly. Then, while the
atoms precess in a steady-state fashion within the magnetic field, a pulse of energy
is injected into the system in the form of a transient radio-frequency (rf) pulse
perpendicular to the B0 field at the Larmor frequency (ω0). This rf pulse excites
the atoms at their resonant frequency, causing them to tilt out of alignment with
the magnetic field.

As these excited atoms return to equilibrium within the magnetic field they emit
rf energy which is collected by an antenna and receiver. Their return to steady-state
is known as relaxation, and the signal that the atoms emit is known as the free-
induction decay (FID) signal. The FID signal reflects the distribution of hydrogen
atoms in the tissue and is used to construct images (see, e.g., Buxton, 2002).

Magnetic Resonance Imaging (MRI)4.2.2

As described, the basic theory of MR can be used to create images based on the
distribution of hydrogen atoms or protons in the tissue sample. Other types of
atoms can also be imaged. In these cases, the applied rf pulse must be applied at
the Larmor frequency of the atoms of interest in the tissue sample.

In order to create images using MR, an FID signal must be encoded for each
tissue dimension, and certain considerations must be made to recognize spatial
information in the tissue sample from which the FID signals are being record-
ed. As outlined above, the resonant frequency at which the atoms must be ex-
cited to flip them is dependent on the magnetic field strength. Thus, by ad-
justing the magnetic field strength at certain locations in the tissue and send-
ing rf pulses at the corresponding resonant frequency, only atoms at the loca-
tion of interest will be excited. In this manner, spatial information can be re-
solved.

To aid in the understanding of this principle, consider slice selection through
a sample of tissue. As shown in Fig. 4.2, the object under consideration (in this
case a person) is placed with the xy-slice axis perpendicular to the magnetic field.
A linear magnetic field gradient is then applied in a direction parallel to the bore
of the magnet (z-direction). In this manner, each xy-slice of the tissue is subjected
to a slightly different magnetic field strength. If the linear gradient at z is equal to
azB1 + B0, then the Larmor frequency at z = 1 becomes ω1, where:

ω1 = γ(aB1 + B0) .

Functional Magnetic Resonance Imaging 1005

Figure 4.2. This figure (redrawn from Lazar et al., 2001) is a schematic showing how slice selection

takes place

The magnetic field strength along each slice of the tissue is now slightly different,
so the resonant frequency for each slice of the tissue will be slightly different. By
adjusting the rf pulse to correspond to ω1, only slices of interest will be excited
and imaged. This same principle can be used to define spatial locations in the
xy plane as well. The interested reader should refer, for example, to Buxton’s
2002 book Introduction to Functional Magnetic Resonance Imaging: Principles &
Techniques.

The signal intensity from the tissue is a function of the density of hydrogen
atoms or protons in the tissue. The more protons in the tissue, the greater the FID
signal, and the higher the intensity value. Because different types of tissues vary in
their proton density, tissue contrast can be achieved in the images. Contrast also
depends on the tissue specific parameters, longitudinal relaxation time (T1), and
transverse relaxation time (T2).Theamountof time that it takes for the longitudinal
magnetization of the tissue to return to 63% of its original value after an rf pulse is
applied is denoted T1, and the time that it takes for the transverse magnetization
to return to 37% of its original value after the applied rf pulse is denoted T2.

The imaging parameters of TR (time of repetition of the rf pulse) and TE (time of
echo before FIDsignal is measured) can be varied to achieve the maximum contrast
for the tissues of interest by considering their T1 and T2 properties. This process
is also known as weighting or contrasting, and images are usually T1-weighted,
T2-weighted, or proton density weighted. For example, short TRs and TEs lead
to T1 weighted images, because at this time the differences due to the T1 tissue
properties will be the most apparent. In T1 weighted images, the intensity of bone
tissue is typically bright while fluids are dark.

On the other hand, to achieve the best contrast using T2 properties, a long TR and
a long TE are used. In T2 weighted images, bone tissue is dark and fluid areas are
light. Proton density weighting is achieved by using a long TR and a short TE. With
this type of weighting, areas that have the highest proton density are the brightest.

1006 William F. Eddy, Rebecca L. McNamee

These areas would include the cerebral spinal fluid (CSF) and gray matter. Again,
see Buxton (2002) for details; a statistical approach is given in Glad and Sebastiani
(1995).

Functional MRI4.2.3

Early Brain Research
The mysteries of the human brain have perplexed researchers for many centuries.
Early ideas about brain functioning date at least as far back as the second century
to Galen (and even earlier), who associated imagination, intellect, and memory
with brain substance. The notion that the brain consisted of functionally dis-
crete areas did not become an accepted idea until the nineteenth century with
the work of Franz Joseph Gall (Finger, 1994). Ensuing research involved exam-
ining the relationships between the location of brain lesions and deficits and|or
changes in behavior as a way to attribute brain function to structure. Although
the technique was effective, this method for studying the brain was not without
limitations. Since that time, however, the field of neuroscience has grown because
of the development of new methods to explore the human brain in its living
working state. These new techniques have been given the general term functional
neuroimaging.

Functional Neuroimaging
Functional neuroimaging is the term applied to techniques that can map the
activity of the living working brain in space and time. Non-invasive approaches
to this mapping have included electrophysiological measurements and metabolic
measurements. Techniques to measure the electrophysiological signals include the
electroencephalogram (EEG) and the magnetoencephalogram (MEG) (National
Research Council, 1992). These methods are thought to record (a weighted integral
of) the actual neural activity that is taking place in the brain. Although both
EEG and MEG have excellent temporal resolution, in their most common form
the measured output signals are an integration of activity from many possible
unknown sources. Furthermore, for EEGs these integrated signals are only realized
after being filtered through layers of blood vessels, fat, and bone. On the other
hand, MEG generally only measures the component of the magnetic field which is
perpendicular to the surface of the skull. Both methods typically record only a few
hundred different locations; a typical functional MRI study measures the signal at
100,000 locations or so. Thus, the spatial resolution of both EEG and MEG is quite
poor. Source localization is a research area devoted to trying to map the locations
at which these signals originate, but this has proven to be a very difficult task.

Functional neuroimaging measurements also include Positron Emission To-
mography (PET) and fMRI. Both of these techniques have good spatial resolution,
but unlike EEG and MEG they record responses to changes in blood flow rather
than the direct neural activity. Because of this, these techniques have relatively
poor temporal resolution.

Functional Magnetic Resonance Imaging 1007

PET imaging is carried out by labeling molecules of compounds of interest
with positron-emitting isotopes. Isotopes that are often used include Carbon-11,
Nitrogen-13, or Oxygen-15. These labeled modules are termed “probes” or “trac-
ers”. The tracers are distributed in the brain according to their delivery, uptake,
metabolism, and excretion properties. As these isotopes decay they emit a positron
and a neutrino. The neutrino cannot be detected, but each positron collides with
an electron and is annihilated. The annihilation converts the electron and positron
from mass into energy in the form of gamma rays. These gamma rays are then
detected by the scanner. PET can provide excellent measures of metabolic activ-
ity of the brain under conditions of normal and abnormal functioning and has
therefore been a highly useful tool in studying brain activity. However, one of
the main disadvantages of PET is that it requires the injection of ionizing radia-
tion thereby limiting its use for human subject populations (Cherry and Phelps,
1996).

Functional MRI
Functional MRI uses the same principles as MRI, but it is based on the idea that
the magnetic state of the hemoglobin in the bloodstream is dependent on whether
or not oxygen is bound to it. Deoxygenated blood is paramagnetic, meaning
that the unpaired heme groups cause it to have more magnetic susceptibility
than it does when oxygen is attached to the heme groups. In fact, the magnetic
susceptibility of blood has been shown to vary linearly with blood oxygenation;
see, Thulborn et al. (1982), Buxton (2002), Turner (1995), or Weisskoff and Kiihne
(1992).

When neurons in the brain are used, their metabolic demands increase. This
begins with an increase in local glucose consumption and leads to an increase
in local cerebral blood flow. However, for reasons that are unclear, the increase in
cerebral blood flow exceeds the increase in metabolic consumption of local oxygen.
Therefore the ratio of oxygenated blood to deoxygenated blood increases in the
local blood vessels. The change in this ratio of oxygenated blood to deoxygenated
blood leads to changes in the local MR signal. Modulations in the MR signal due to
this phenomenon can be detected by the scanner and are known as Blood Oxygen
Level Dependent (BOLD) contrast. BOLD contrast is currently the main basis of
fMRI; see, e.g., Villringer (2000), Logothetis (2002), Ogawa et al. (1990), Buxton
(2002), or Turner (1995).

Several informational limitations are imposed by fMRI that should be consid-
ered when carrying out a neuroimaging study. Leading these is the fact that fMRI
is an indirect measure of brain activity, and its exact physiological mechanism is
not known. A model of the interface between actual brain activity and the fMRI
signal is shown in Fig. 4.3. Also, the measured activity obtained with fMRI can
include many types of local brain cells because the activation that is measured is
essentially a combination of all the “brain activity” in the area. Information is thus
blurred during fMRI, since the resolution is based on the “smallest measurable
vascular unit.” Finally, as mentioned earlier, fMRI has poor temporal resolution;
see, e.g., Villringer (2000).

1008 William F. Eddy, Rebecca L. McNamee

Figure 4.3. Model of brain activity and fMRI data

In spite of these limitations, fMRI has many advantages over previously used
methods for studying the brain. fMRI has much better spatial resolution than
EEG or MEG. In fact, although the activity is lumped into small regions, these
regions can provide accuracy in the range of 1 mm or so. Next, and perhaps most
importantly, fMRI does not require the use of ionizing radiation. This allows it to
be used experimentally for many different subject types and under many different
types of situations. Other benefits include the fact that the data can be collected
fairly easily, and analysis tools are becoming more readily available as the field
grows.

fMRI Data4.3

Design of an fMRI Experiment4.3.1

There are at least three aspects to the design of an fMRI experiment: (1) the under-
lying psychological question, (2) the MR physics that will drive the data collection,
and (3) traditional statistical design issues. These factors are not exclusive of each
other and must be carefully considered prior to the initiation of the study.

The psychological component of design depends on the type of experimental
subjects in question as well as the nature and location of the expected response.
For example, regions of brain activity could be explored for a single group of
subjects, or the location and extent of brain activation could be compared in two
different subject groups. The experimental task must also be designed in order to
elicit a functional response specific to the area of interest in the brain. A control
state (such as a fixation in a visually guided saccade task) is typically alternated
with a functional state (the saccade) in order to compare the two states and find
the differentially active brain areas.

The MR physics component depends on the nature of the psychological stimuli,
the particular MR scanner being used, and the location of the expected response.
Several scanning parameters, such as the number and orientation of slices to
be collected, the echo time, TE, the time of repetition, TR, the flip angle, and
others, must be first chosen. The physics of the scan will depend on these chosen
parameters. The physical method for collecting each slice of data, termed the pulse
sequence, must also be selected. The pulse sequence is a small program run in the

Functional Magnetic Resonance Imaging 1009

scanner to manipulate the magnetic and rf fields, and is thus dependent on the
type of MR scanner and the pulse sequences available for use.

The statistical aspects of design will help to determine how the data will
be analyzed after collection. For example, as mentioned above, the experimen-
tal design is often set so that the task state is alternated with a control state.
The two conditions can then be statistically compared using methods which re-
ly on hypothesis testing (such as t-tests). This type of experimental design is
called a block design. The block design is robust in that many repetitions of
the two conditions can be carried out, and the experimenter can then aver-
age all trials for each voxel. Although this technique can find spatial areas of
activation, it has the disadvantage of losing most temporal aspects of the da-
ta.

In order to capture the time-dependent features of the data as well as the
spatial aspects, single trial fMRI experiments have recently become popular. These
experiments examine fMRI signal changes over time as the task is being performed
(on a voxel-by-voxel basis) rather than relying on the averaging of large time
blocks. The results from these single trial experiments are generally not as robust
as those for block designs. Furthermore, since fMRI data is typically very noisy,
the data must be pre-processed prior to analysis. The techniques for analyzing
single trial fMRI data often model those used for processing evoked potentials
EEG data (such as filtering or time-averaging of trials). Because of this, single trial
fMRI experiments have often been mislabeled as “event-related” fMRI experiment.
Figure 4.4 shows the temporal BOLD response that is generally expected from these
types of experiments.

Figure 4.4. BOLD hemodynamic response curve showing the expected contrast changes elicited from

a single event. Because the contrast changes are actually due to blood flow changes rather than

a direct measure of neural activity, the time scale over which they occur is relatively slow

1010 William F. Eddy, Rebecca L. McNamee

Data Collection4.3.2

The raw data from an MR scanner is spatial frequency data. That is, the data are the
coefficients of the Fourier representation of the object being imaged. Alternatively
we can say that the data are the inverse Fourier transform of the object. The
spatial frequency domain has been called “Fourier Space”, “frequency space”, or
most popularly “k-space”. The process of taking the inverse Fourier transform to
obtain the image has been termed “data reconstruction”. Letting F be the Fourier
transform, we have for an n × m pixel image I,

F (I) = Î
(
kx, ky

)
= n−1m−1

n∑

x

m∑

y

I(x, y) exp(−i2π(xkx + yky))

In k-space, the low frequencies are located in the center of the image with the
frequencies increasing outward with distance from the origin. In a typical k-space
plot (see Fig. 4.5), the bulky features of the image lie in the lower frequencies of
k-space while the higher frequencies contain the details of the image. In fMRI both
the low and high frequency information are important, and the pulse sequence
should be designed accordingly.

A typical fMRI data set might consist of a 128 by 128 array of 16 bit complex
values recorded for each of 32 two-dimensional slices at each of 450 time points
spacedabout 1.5 seconds apart.This yieldsadata setof 2×2×128×128×32×450 =
943,718,400 bytes, that is approximately 1 gigabyte of data collected in less than
12 minutes. If many experiments are performed on a single subject within the
period of an hour or so, and several subjects are examined over time, the necessary
storage requirements can become quite extensive. In one of our current studies, we

Figure 4.5. Collected fMRI data. The plot on the left shows the modulus of the k-space data, and the

plot on the right shows the modulus of the image. Darker pixels indicate larger values (the opposite

of the “radiological convention” derived from X-ray images on photographic film)

Functional Magnetic Resonance Imaging 1011

anticipate collecting a total of about 700 GB of data. To help deal with this quantity,
offline data storage systems are useful. For example, optical disks, CDs, or DVDs
can be used to store large amounts of data with minimal effort.

Sources of Bias and Variance in the Data 4.3.3

Areas of brain activity that are found due to specific tasks are dependent on
the image to image changes in the measurements within a voxel. Therefore, to
produce valid results these changes must be specifically attributable to functional
differences in the brain elicited by the performed tasks. Unfortunately, fMRI data is
beset with many sources of bias and variability, which can lead to erroneous regions
of brain activity and false conclusions about the study. Problems in the data can
arise from many sources including the MR scanner itself, the experimental subject,
and external interference. Each of these will be discussed with a brief description
of the errors that they introduce into the data. The sources of noise in fMRI data
can be quite extensive. Although many are covered here, this summary is not
exhaustive.

Noise from the Equipment
One main source of bias and systematic variation in fMRI data arises from the
MR scanner. The performance of an MR scanner can vary, which can introduce
fluctuations in the data, even when the stability measures are well within the
instrumental norms (Weisskoff, 1996). Noise from the equipment can occur as
systematic or random errors.

Sources of systematic error in the data from the equipment include DC shifts
and Nyquist ghosts. DC shifts are also known as baseline errors. This source of
data bias is caused by the miscalibration of the analog-to-digital (A|D) converter;
the baseline value is not reported as zero. Nyquist ghosts, which are present only
in echo-planar imaging, also produce systematic bias in the data. Echo-planar
pulse sequences traverse k-space on a boustrophedonic path (back-and-forth as
the ox plows the field). Nyquist ghosts are introduced through the mistiming of
the oscillating magnetic gradients. The exact time at which the gradient crosses
zero is incorrect. This timing error causes an aliasing effect in the reconstructed
image and is most prominent in the phase-encode or y direction of the fMRI scan
(leading to a ghost of the image repeated at the top and bottom of the true image).
Both DC shift errors and Nyquist ghosts that are present in the fMRI data can be
corrected to a reasonable extent.

Random errors from the equipment can also cause introduce problems in the
fMRI data. One source of unpredictable instability results from inhomogeneities
in the static magnetic field of the equipment. Magnetic field inhomogeneities have
been reported as one of the most prominent sources of distortion in fMRI studies
(Jezzard, 1999). Local variations in the static magnetic field during fMRI will lead
to blurring and pixel shifts, which can introduce gross geometric distortions in
the images. This problem is especially prominent at regional boundaries in the

1012 William F. Eddy, Rebecca L. McNamee

sample containing different magnetic susceptibility properties, for example, air-
tissue interfaces around the frontal lobes and bone-tissue interfaces (Jezzard, 1999;
Eden and Zeffiro, 1997).

Additionally, random instability in the MR machine can result from imperfec-
tions in the B1 field. The B1 field is ideally a linear magnetic gradient that selects
certain regions of tissue to be excited, thereby leading to the collection of single
slices. Again, problems with this linear magnetic field can lead to blurring and
geometric distortions in the data.

Noise from the Experimental Subject
As with other types of human studies, the experimental subjects can lead to large
amounts of bias and variability in the data. While the subjects themselves have
a great deal of intrinsic variability due to differences in brain sizes, shapes, and
functionality in general, the subjects can also introduce additional variability that
will “drown out” the desired results from brain activity if the investigator is not
careful.

One important source of noise from the experimental subject is due to head
motion. As previously described, BOLD fMRI studies compare very small regions
of brain tissue across a sequence of images that are taken over the course of several
minutes. While BOLD has the advantage that it requires no exogenous contrast
agents, its measurable effects are very small. Typical changes in the MR signal due
to BOLD are on the order of 1–5%, making this technique highly susceptible to
noise. If the subject makes a small movement during the scan, adjacent voxels,
which can vary in signal value by more than 10%, cause distortions in the recorded
signal information and can lead to false negative and false positive regions of
activation (Eddy and Young, 2000; Eddy et al., 1996b).

Thus, to obtain valid fMRI data, the subject must remain motionless throughout
the scanning period. Motion has been shown to be correlated with stimulus related
eventsduringvisual andmotion stimulation, thereby contributing to the likelihood
that thecomputedregionsofactivationaredue tomotionartifact rather thanneural
activity (Hajnal et al., 1994). The amount of subject motion has also been shown
to increase over time during the course of a scanning session (Green et al., 1994).
Additionally, children, elderly subjects, and subjects with mental disorders tend to
move more than healthy young adults, thereby increasing the difficulty of studying
these subjects using fMRI.

A second source of error from the experimental subject is due to “physiological
noise”, which is noise that results from the subject’s heart beat and respiration.
This type of complex noise is thought to interfere with the MR data through various
mechanisms. For example, the pulsatile motions of the brain and cerebral spinal
fluid (CSF) induced from pressure changes during both the cardiac and respiratory
cycle lead to volume changes within the head which cause displacement of tissue;
see Dagli et al. (1999). Large organ movements due to respiration are also thought
to cause fluctuations in the magnetic field, and effects of the oscillating cardiac
cycle on the BOLD signal response are unknown; see, e.g., Hu et al. (1995), Stenger
et al. (1999), Dagli et al. (1999).

Functional Magnetic Resonance Imaging 1013

There are many sources of noise associated with the experimental subject.
Thermal noise is caused by atomic vibration that occurs at any temperature above
absolute zero. Susceptibility artifacts arise from local sharp changes in magnetic
susceptibility; these occur at the boundaries of tissue types and are typically
greatest at air|tissue boundaries. Chemical shift artifacts arise from small changes
in the Larmor frequency caused by the local chemical environment. For example,
hydrogen as a component of water has a resonant frequency at 3 Tesla that is
about 200 Hz higher than hydrogen as a component of fat. Typical pulse sequences
include a “fat saturation pulse” to eliminate this effect.

External Noise
Interference from outside sources can also lead to distortions and artifacts in the
data. Examples of interference sources include mechanical vibrations from other
equipment in the building or passing vehicles, and 60 (or 50) Hertz RF noise from
other nearby electrical equipment. These sources are usually considered before
installing the MR machines, and precautions are normally taken. For example, an
isolated foundation will reduce the effect of external sources of vibration; copper
shielding will reduce the effect of nearby sources of microwave radiation, and iron
shielding will reduce the effect of nearby electrical equipment (and help contain
the magnetic field itself).

Modeling and Analysis 4.4

An Ideal Model 4.4.1

From a simple statistical perspective, fMRI data can be considered as a large
number of individual voxel time series. If these individual times series were in-
dependent, one could use any of the models from traditional time series analysis.
For example, one could treat the brain as a linear system modulating the stimulus
as its input. A model for this system would simply estimate the coefficients of the
transfer function. Of course, there are other inputs such as heartbeat and respi-
ration as well as other sources of data interference which would also need to be
included. Thus, an ideal model would consist of an equation for each voxel that
accounts for the true brain signal as well as all sources of systematic and random
noise. By estimating all sources of noise and removing them appropriately for each
voxel, an accurate estimate of brain activity could be found.

As can be imagined, an ideal model for fMRI data activation is highly imprac-
tical. A typical fMRI experiment may consist of 128 × 128 × 32 voxels; therefore,
a model that consists of a separate equation for each voxel would be quite cum-
bersome. Furthermore, the mere identification of each and every noise source in
an fMRI experiment alone is a difficult task. Thereby a precise quantification of
the effects of each noise source would be nearly impossible. In order to model
and analyze fMRI data in a practical manner, researchers often take an approach

1014 William F. Eddy, Rebecca L. McNamee

that is similar to that of solving any giant problem; that is, by breaking it down
into piece-wise, practical steps. This approach allows for easier understanding of
each step that is carried out (since they are performed one at a time) while also
making the analysis computationally manageable. The piece-wise analysis steps
involve first modeling and removing identifiable noise sources, then statistically
evaluating the corrected data to estimate the amount of brain activation.

A Practical Approach4.4.2

Preprocessing of the Data: Removal of Bias and Variance
Basically, two approaches can be employed to correct for known sources of bias and
variance in fMRI data. These are correction of the data at the time of collection
(proprocessing) and correction after data collection (post-processing). We use
both approaches, often in tandem. For example, we use various forms of head
restraint to (partially) eliminate head motion (proprocessing) and in addition we
use post-processing to correct the data for head motion in addition.

We now give several examples of how data correction can be done in a post-pro-
cessing manner. Some of these examples outline how many fMRI data processing
stepsarecurrentlycarriedoutusingFIASCO(Functional ImageAnalysisSoftware–
Computational Olio), which is a software collection that has been developed by the
authorsof thispaper togetherwithothersand iscurrentlyusedbynumerousgroups
who analyze fMRI data. Details can be found at http:||www.stat.cmu.edu|∼fiasco.

These examples also demonstrate that large amounts of computation are often
needed to remove bias and variance in fMRI data.

Noise from the equipment will first be addressed. Baseline noise or DC-shift
noise can be corrected fairly easily, as it is a well understood source of noise
in the data. To adjust for baseline noise, the idea that the k-space data should
(approximately) be oscillating around 0 at the highest spatial frequencies is taken
into account. If this is not the case in the true data, the mean value at which the
high frequency data is oscillating is computed, and the k-space data is shifted by
a constant prior to correct for this source of noise (see Eddy et al., 1996a).

Nyquist ghosts are also well understood and can therefore be corrected fairly
easily. These ghosts arise from small mistimings in the gradients with respect to
the data collection. To correct for these ghosts, a phase shift is applied to each
line (the same shift for each line in the x-direction) of the complex-valued k-space
data in order to move the data back into its correct location. The best phase shift
for correction is estimated from the data by finding a value which minimizes the
magnitude of the ghosts. Typically, the center portion of the top and bottom few
lines is chosen as the target (see Eddy et al., 1996a).

Magnetic field inhomogeneities may or may not vary with time. Those which do
not vary with time can be corrected by “shimming” the magnet. Small magnetic
objects are placed around the magnet in such a way as to reduce the inhomogeneity.
Inhomogeneities associated with the subject being scanned can be corrected by
dynamic shimming of the field. This is a procedure performed by the technologist

Functional Magnetic Resonance Imaging 1015

at the time of the experiment. For further details see, e.g., Jezzard (1999) or Eden
and Zeffiro (1997).

To reduce the effects of magnetic field distortions in a post-processing manner,
the following procedure can be carried out. First a phase map can be computed
from the image information in the fMRI data. This map is thought to give an
estimate of regions of inhomogeneities in the data. Next, a 2-D polynomial can
be fit to the field map, which is then converted into a pixel shift map. The shifted
pixels are moved back to their proper locations in order to correct for the magnetic
field inhomogeneities; further details may be found in Jezzard and Balaban (1995).

Noise from the experimental subject should also be corrected to improve data
quality. As mentioned in the previous section, head motion is major problem in
fMRI, since even relatively small amounts of head motion can lead to false positive
and false negative regions of activation. Many techniques have been considered to
reduce the amount of head motion in fMRI data. These (again) can be classified
into the categories of proprocessing and post-processing.

To reduce the amount of head motion that occurs at the time of the fMRI scan,
external restraining devices are often used. These devices range from pillows and
straps to dental bite bars and even thermoplastic face masks; see Green et al. (1994).
Head restraints can greatly reduce the amount of head motion but unfortunately
cannot alleviate head motion (or at least brain motion) altogether; see Friston
et al. (1996). In fact, Zeffiro (1996) have suggested that some types of restraints
can paradoxically increase head motion because of the discomfort they cause at
pressure points. Furthermore, some types of restraints may not be appropriate for
certain subject types such as small children and mentally disturbed subjects.

Also experimental design can be used to reduce the amount of apparent head
motion. Often head motion is associated with presentation of a stimulus or with
physical response to the stimulus. Careful experimental design can eliminate or
largely alleviate such effects.

Asecondway toreduce theeffectofheadmotionat the timeof the scan is through
theuseofnavigator echos.Navigator echosareusedbefore sliceacquisition inorder
to detect displacements of the head. These displacements are then used to adjust
the plane of excitation of the collected image accordingly. Examples include the
use of navigator echos to correct for displacements in the z-direction (see Lee et al.,
1996), and the use of navigator echos to correct for inter-image head rotation (see
Lee et al., 1998).

A final example of a prospective method to reduce head motion is a visual
feedback system that was developed by Thulborn (1999). This system provides
a subject with information about their head location through a visual feedback
system. By using this device the subject can tell if their head has moved during the
scan and can immediately correct for it.

Proprocessing techniques have many benefits. For example, the collected fMRI
data presumably has less head motion than it would have without the adaptation
to reduce for head motion. Therefore, there is less need for post-processing of the
data and less need to resample or interpolate the fMRI data; interpolation of fMRI
data can introduce additional errors. On the other hand, these techniques often

1016 William F. Eddy, Rebecca L. McNamee

require specialized collection sequences or hardware, which can further necessitate
specialized analysis software. These techniques can also lead to the need for longer
data collection times.

Post-processing techniques are often more feasible for fMRI researchers because
they do not require specialized collection sequences or hardware. Post-processing
is mainly carried out through image registration, which involves two main steps.
The first is estimation of how much motion has occurred in the collected data,
and the second is correction of the estimated motion through resampling (or
interpolation). This process can be carried out in two dimensions for estimation
and correction of in-plane motion or three dimensions for whole head motion.

To estimate how much head motion has occurred in an fMRI data set, a reference
image must first be chosen. Any image can be chosen for this purpose (typically,
the first or middle image in the series), but a composite image such as the mean
can also be used. Next, each image in the series is compared to the reference image
using a chosen feature of the images. Image intensity is often the chosen feature, but
anatomical landmarks can also be used. Mathematically, the comparison process
finds the geometrical shift required between the reference image and the target
image to minimize an optimization criteria. The shift that minimizes this criteria
is considered to be the amount of motion that has occurred.

For two dimensional rigid motion between the current image and the reference
image we consider translations in x and y, and in-plane rotations of α. In three
dimensions rigid motion is even more complicated because translations can occur
in x, y, and z, and rotations can occur in the α, θ, or γ directions. Criteria to
be minimized between the reference image and the current image have included
weighted mean square error (see Eddy et al., 1996b). variance of the image ratios
(Woods et al., 1992), and mutual information (Kim et al., 1999).

Once the motion estimates are computed, the data are moved back to their
appropriate locations. This is carried out by resampling or interpolation. If data
relocation is not performed in the best possible way, false correlations between
image voxels can be introduced. Eddy et al. (1996b) developed a Fourier inter-
polation method to prevent introduction of these errors. Fourier interpolation is
based on the Fourier shift theorem and uses the fact that a phase shift in k-space
is equal to a voxel shift in image space. By this property, translations are corrected
using phase shifts, and analogously rotations are corrected by k-space rotations.
Rotations in k-space are implemented by factoring the two-dimensional rotation
into a product of three shearing matrices. A two-dimensional rotation matrix

(
cosα − sinα
sinα cosα

)

can be written as

1 − tan

α
2

0 1

1 0

sinα 1

1 − tan

α
2

0 1

Functional Magnetic Resonance Imaging 1017

Once the rotations are represented by three shearing steps, these too can be
corrected using phase shifts in Fourier space; for details see Eddy et al. (1996b).
In a comparison of different types of fMRI data interpolation algorithms, Eddy
and Young (2000) found that full Fourier interpolation was the only method
which completely preserved the original data properties. Table 4.1 is taken from
that paper and shows the error introduced by each method in performing the
following motion. Each image was rotated by π|64 radians, translated 1|4 pixel on
the diagonal, translated back 1|4 pixel, and rotated back π|64 radians. Many of the
algorithms had major errors at the edges of the image so the statistics were only
computed over a central portion where no edge effects occurred.

Although three dimensional head motion seems more realistic for correction
of subject movements in fMRI research, the process of estimating the six motion
parameters that jointly minimize the optimization criteria can be computationally
expensive. Also note that these six parameters only account for rigid body head
motion. Data is actually collected one slice at a time; each slice is collected at
a slightly different time. Consequently, there is no three-dimensional image of the
head which can be used as a target for three dimensional registration. In spite
of these considerations, the use of post-processing motion correction techniques
does not necessitate specialized collection equipment, and if done correctly, can be
quite accurate for small motions of the head. Large head movements, greater than
say a millimeter or two, usually affect the data so much that it cannot reasonably
be used.

A second significant noise source from the experimental subject is physiological
noise, which is mainly attributed to the subject’s heart beat and respiration. Many
methods have been introduced to reduce the noise and variability caused by phys-
iological noise. These again have included techniques that address the problem
in a proprocessing manner, and techniques that reduce this noise during post-

Table 4.1. Mean Square Difference between original brain image and “motion-corrected” image

averaged over the central 40 by 40 pixel sub-image of the original 64 by 64 pixel image. The image

was rotated π|64 radians, shifted 1|4 pixel diagonally and then translated back and rotated back to

its original position; both motions were performed by the same algorithm so any differences from

the original are due to the algorithm

Method MSD

Fourier 0.00

WS16 742.86

WS8 1452.98

WS4 3136.68

NN 3830.08

Quintic 8906.20

Cubic 13,864.46

WS2 28,455.73

Linear 28,949.22

1018 William F. Eddy, Rebecca L. McNamee

processing of the data by various modeling and subtraction techniques (Biswal
et al., 1996; Chuang and Chen, 2001; Hu et al., 1995; Glover et al., 2000).

Acquisition gating is most commonly used for the collection of cardiac MRI
data, but it can also be used for fMRI. This proprocessing technique only collects
the MRI data at certain points of the cardiac cycle so that noise effects due to cycle
variations canbe reduced (Guimaraes et al., 1996).Althoughuseful for cardiacMRI,
it is not as practical for fMRI research because it does not allow for continuous and
rapid data collection, which is usually desirable for fMRI research.

Post-processing techniques to correct for physiological noise have included ret-
rospective image sorting according to the phase of the cardiac cycle (Dagli et al.,
1999), phase correction through the assumption that the phase is uniform for
each point in k-space over many images (Wowk et al., 1997), and digital filtering
(Biswal et al., 1996). Each of these techniques have certain benefits in physiological

Figure 4.6. Cardiac data shown in relation to the correlation coefficients computed between k-space

phase and cardiac data as a function of time lag for a spatial frequency point in k-space. To

demonstrate that the time lag is slice dependent, slices are shown in the order of collection rather

than in anatomical order. Each tick-mark on the y-axis represents a unit value of 0.5. It can be

clearly noted that the correlations between the phase and cardiac data are cyclic with a period equal

to the TR (1.5 seconds in this case) of the study. Thus the parallel diagonal lines in the plot have

a slope of (1.5|7 = 0.214 seconds/slice).

Functional Magnetic Resonance Imaging 1019

noise correction; however, each can also compromise the fMRI data. For example,
image reordering results in loss of temporal resolution, and digital filtering re-
quires the ability to acquire images rapidly as compared to the physiological noise
signals.

Other approaches to physiological noise correction have included modeling of
the physiological data signals in the fMRI data and subtracting out their effects. For
example, Hu modeled respiration with a truncated Fourier Series and subtracted
this curve from the magnitude and phase components of the k-space data (Hu et al.,
1995). Glover et al. (2000) carried out a similar Fourier modeling and subtraction
procedure in image space. Alternatively, Mitra and Pesaran modeled cardiac and
respiratory effects as slow amplitude, frequency-modulated sinusoids and have
removed these components from an fMRI principal component time series, which
was obtained using a spatial frequency singular value decomposition Mitra and
Pesaran (1999).

In a more recent study carried out by the authors, cardiac data and respiratory
data were found to be significantly correlated with the k-space fMRI data. These
correlations are a function of both time and spatial frequency (McNamee and
Eddy, 2003). Because of these correlations, the physiological effects can simply
be reduced by first collecting the physiological data along with the fMRI data,
regressing the fMRIdataonto thephysiologicaldata (with theappropriate temporal
considerations), and subtracting out the fitted effects (McNamee and Eddy, 2004).
Figure 4.6 shows the cross-correlations between the k-space phase at one spatial
frequency point and the cardiac data for one experiment.

In addition to direct modeling of known sources of noise, we also attempt to
reduce the effect of unknown sources of noise. For example, we routinely replace
outliers with less extreme values. As another example we currently remove a linear
temporal trend from each voxel times series, although we have no explanation for
the source of this linear trend.

Modeling and Analysis of the Data
The very first fMRI experiments claimed to have discovered brain activation based
on simply taking the difference between the average image in one experimental
condition from the average in an alternate experimental condition. There was no
notion of variability. It quickly became apparent that accounting for the variability
was very important and fMRI analyses started using t-tests, independently on each
voxel. It then became clear that multiple testing was a very serious problem; we will
discuss this in more detail below. The t-test (and for experiments with more than
two levels, F-test) became the standard analysis method. However, it is clear that
although the stimulus switches instantaneously between experimental conditions,
the brain response (presumably being continuous) must transition to the new state
and there will be some time lag before the transition is complete. This has led to
a variety of ad hoc “models” for the shape and lag of this transition (Gamma
functions, Poissons, etc.) (see, for example, Lange and Zeger, 1997).

There has been some work developing reasonable non-parametric models for
the voxel time courses (Genovese, 2000) and there have been a number of “time

1020 William F. Eddy, Rebecca L. McNamee

series” modeling approaches, using spectral analysis (Lange and Zeger, 1997) and
AR models (Harrison et al., 2003).

Because a typical brain image contains more than 100,000 voxels, it is clear
that choosing a significance level of 0.05 will, even under the null hypothesis of
no difference in brain activity, lead to 5000 or more voxels being declared active.
The earliest attempt to deal with this problem in fMRI was the split t-test, wherein
the data were divided into two (or more) temporal subsets. T-tests were calculated
separately within each subset and a voxel was declared active only if it was active
in all subsets (Schneider et al., 1993). This certainly reduced the number of false
positives, but obviously caused considerable loss of power.

Researchers quickly converged on the Bonferonni correction where one simply
divides the significance level by the number of tests as a safe way of dealing with
the problem. The loss of power is huge and some researchers started developing
methods to compensate. Forman et al. (1995) proposed the contiguity threshold
method, which relies on the presumption that if one voxel is active then adjacent
voxels are likely to be active.

The false discovery rate (FDR) controlling procedure was then introduced as an
alternate method for thresholding in the presence of multiple comparison testing.
The FDR procedure allows the user to select the maximum tolerable FDR, and the
procedures guarantees that on average the FDR will be no larger than this value.
Details of the application of FDR to fMRI data can be found in Genovese et al.
(2002).

As researchers in fMRI have discovered various general classes of statistical
models, they have been applied to these data sets. They have had varying degrees
of success and it is still the case that a linear model, often with both fixed and
random effects, is the model of choice. It is reasonably well-understood and is not
too far from what is actually believed. One critical problem is that as experimental
designs have become more complex analyses have too; often researchers are fitting
models blindly without fully understanding some of the underlying statistical
issues. The more cautious return to their linear models.

Computational Issues4.5

As mentioned previously, a typical fMRI data set might be about 1 GB in size
and would take less than 15 minutes to collect. Four or more such data sets may
be collected in a single experimental session with a single subject. An entire
experiment might include 20 or more subjects, and each subject might be tested
twice or more. Thus there would be 160 1 GB datasets to be analyzed. (We are
currently running an experiment with 300 subjects and each will be tested at least
twice; one has already been tested four times.)

With such large amounts of data, storage and analysis becomes an important
issue. Standard analysis of the data can take many hours, and an organized storage
system is recommended. Our recent experience is that we can process the data

Functional Magnetic Resonance Imaging 1021

at the rate of 2–3 MB per minute which implies that the entire experiment just
described would require on the order of 1000 hours of processing time.

Several packages are available for analysis of fMRI data. A few of these will
be discussed in the following section. An important point to mention before dis-
cussing these packages is that users of fMRI software should spend some time
getting to know and understand the package they are using before carrying out
their data processing. Questions that are important to consider, for example, may
be the following. Are bias and variance in the data corrected as a routine part
of data processing? If motion correction is carried out, how is this implemented?
Is any additional error being introduced into the data as a result of this rou-
tine processing? What kind of modeling and comparisons of the data are being
carried out, and what sort of thresholding is applied? We feel that these issues
should be understood before drawing conclusions about the fMRI data, as vari-
ations in the processing and analysis may lead to variations in the results of the
study.

Software Packages for fMRI Data Analysis 4.5.1

The large degree of complexity of fMRI data necessitates the use of pre-packaged
software tools (unless, of course, one is an extremely ambitious programmer).
Several packaged tools are described briefly below. Each software package has its
benefits and limitations; we do not provide a detailed comparison here. We will
focus a bit more on FIASCO, as we are part of the team that has developed and
maintained this package; it is in wide use and we describe several of its unique
tools.

One such software program for fMRI data processing is AFNI (Analysis of
Functional NeuroImages). This software was developed by Robert Cox, formerly of
theMedicalCollegeofWisconsin, nowat theNational Institutes ofHealth; it is a free
to all users. The software consists of a set of C programs for processing, analyzing,
and displaying fMRI data. Currently, AFNI will run on most operating systems
excluding Windows-based platforms. The program is interactive, and several of
its benefits include its ability to read and switch between several different data
formats, 3Dviewingofdata, theability to transformdata intoTalairachcoordinates,
interactive thresholding of functional overlays onto structural images, and finally,
a new feature entitled SUMA (Surface Mapping with AFNI) that adds the ability
to perform cortical surface based functional imaging analysis using AFNI. The
homepage for AFNI is located at http:||afni.nimh.nih.gov|afni|.

Brain Voyager is a commercially available tool developed by Brain Innovation
that can analyze and visualize both functional and structural MRI datasets. Brain
Voyager can run on all major computer platforms including all current versions
of Windows, as well as Linux|Unix and Macintosh systems. A user-interface is
provided, and the program boasts several up-to-date features such as the ability
to perform thresholding using the FDR technique, the ability to perform auto-
matic brain segmentation, brain surface reconstruction, and cortex inflation and

1022 William F. Eddy, Rebecca L. McNamee

flattening, and the ability to analyze and integrate diffusion tensor imaging da-
ta with other data types. More information about this product can be found at
http:||www.brainvoyager.com|.

The Statistical Parametric Mapping (SPM) software package is a suite of pro-
grams, originally developed by Karl Friston, to analyze SPECT|PET and fMRI data
using a voxel-based approach. The SPM program is also free but requires Matlab,
a licensed Mathworks product, to run. Typical analysis steps performed by SPM
include spatial normalization and smoothing of the images, parametric statistical
modeling at each voxel through the use of a general linear model, and assessment
of the computed statistical images. New functionality of SPM (released in SPM2)
can take into account more complex issues in fMRI research such as non-sphericity,
which does not restrict the user to the assumption of identically and independent-
ly distributed errors in the selected data models. For more details about this and
other SPM specifics, the reader should refer to http://www.fil.ion.ucl.ac.uk/spm/.

The VoxBo package advertises itself as “the software behind the brains”. The
VoxBo software is free and was developed at the University of Pennsylvania through
funding from NIDA and NIMH via a Human Brain Project|Neuroinformatics grant.
A Unix-based platform is currently required to run VoxBo, and a unique feature of
this software includesa job scheduling systemfororganizationalpurposes.Benefits
of VoxBo also include the ability carry out several data pre-processing steps such as
three dimensional motion correction as well as the ability to manipulate and model
the data in its time-series form. A web page is available at http:||www.voxbo.org|.

A group including the current authors developed an fMRI analysis package
named FIASCO. This is a collection of software tools written primarily in C, de-
signed to analyze fMRI data using a series of processing steps. Originally, FIASCO’s
main purpose was to read the raw fMRI data, process it in a series of steps to reduce
sources of systematic error in the data, carry out statistical analysis, and create final
brain maps showing regions of neural activation. While users still run their fMRI
data through the standard FIASCO pipeline, FIASCO has expanded into a complex
set of software tools in order to accommodate many other issues and problems
that have come up during the past decade as the field of fMRI has grown.

One unique feature of FIASCO is that several of the data-processing steps for
the purpose of reducing bias and noise are carried out in k-space. As mentioned
previously, k-space is essentially a frequency space and is the domain in which
the raw data is collected. Carrying out data correction in k-space can be beneficial
for many reasons. For example, certain types of noise in the data (such as Nyquist
ghosts, phase drifts, and physiological noise) can be more accurately modeled and
removed in k-space than in image space (McNamee and Eddy, 2004). Also, images
can be resampled in k-space without the need for interpolation or smoothing, both
of which can introduce additional problems into the images (Eddy and Young,
2000).

If users elect to the use the typical FIASCO pipeline for fMRI data analysis, tools
that implement k-space correction are first carried out prior to performing the
Fourier Transform. Both EPI and spiral data can be analyzed, and since both have
different types of noise, unique pipelines are used for each. For example, typical

Functional Magnetic Resonance Imaging 1023

FIASCO steps for processing EPI data include baseline correction (aka. correction
of DC shift), removal of Nyquist ghosts, motion correction, physiological noise
correction, removal of outliers and removal of unexplained data trends. All of
these correction steps with the exception of the last two are carried out in k-space.
The final steps are to perform statistical analysis and create brain maps showing
the activated areas. Users can elect to skip any of the steps of the FIASCO process.
And, they have the opportunity to add their own unique steps to the process.

As the field of fMRI grows, so does the desire to be able to perform more complex
analysis procedures on the data. The FIASCO programmers have accommodated
these needs with the creation of several unique general purpose tools. For example,
certain tools allow the user to easily manipulate fMRI data sets by cutting, pasting,
permuting, or sorting the data. More complex general purpose tools include an
rpn-math feature with built-in functions; this is essentially a calculator which
allows the user to perform arithmetic calculations using Reverse Polish Notation
looping over all the voxels in a data set. Another tool allows users to perform
matrix multiplication on fMRI data sets, and a third tool can compute eigenvalues
and eigenvectors of real symmetric matrices.

In addition to general purpose tools, FIASCO also has many special purpose
tools that can perform very specific tasks in relation to the fMRI data. Some of these
include tools that can convert between different data formats, tools that perform
specific noise reduction steps, and tools that can compute summary statistics or
perform different types of hypothesis tests on the data. A complete list of FIASCO’s
tools can be found on the web page at http:||www.stat.cmu.edu|∼fiasco.

The features and tools of FIASCO have allowed its users to manipulate and
experiment with fMRI data sets in unique and interesting ways. Recently, FIASCO
has been applied to many other kinds of data: genetic microarrays, protein gels,
video, PET, CT, etc.

Other Computational Issues 4.5.2

Aside from fMRI analysis software, other types of useful computational packages
in fMRI may include software that allows the researcher to easily design and
implement a desired experimental tasks for subjects to carry out while in the MRI
scanner. For example, an fMRI study may focus on activation patterns during
a short-term memory task. Thus an experiment engaging short-term memory
would need to be carefully designed and projected into the small space of the MRI
machine. The scientist would also need some sort of feedback from the subject to
ensure that the task was being performed properly.

Conclusions 4.6

Functional MRI is a new and exciting method for studying the human brain as
it functions in its living, natural state. As the field grows and the methodology

1024 William F. Eddy, Rebecca L. McNamee

improves, so do the many computational and statistical problems that accompany
the storage, processing, analysis, and interpretation of the data. In this chapter we
have briefly summarized some of the complexities and limitations of the method
as well as describing some of the approaches available for addressing these com-
plexities and limitations. The field of fMRI will, no doubt, continue to broaden and
expand. As it does so, the continued integration of scientists and researcher from
many disciplines will be necessary for fMRI to reach its full potential and to help
to uncover one of the greatest mysteries of humankind.

References
Belliveau, J.W., Kennedy, D.N., McKinstry, R.C., Buchbinder, B.R., Weisskoff, R.M.,

Cohen, M.S., Vevea, J.M., Brady, T.J. and Rosen, B.R. (1991). Functional mapping
ofthehumanvisualcortexbymagneticresonanceimaging.Science,254:716–719.

Biswal,B.,DeYoe,E.A.andHyde, J.S. (1996).Reductionofphysiologicalfluctuations
in fMRI using digital filters. Magn. Reson. Med., 35: 107–113.

Buxton, R.B. (2002). Introduction to Functional Magnetic Resonance Imaging:
Principles and Techniques, Cambridge University Press, Cambridge.

Cherry, S.R. and Phelps, M.E. (1996). Imaging brain function with positron emis-
sion tomography. In Toga, A.W. and Mazziotta, J.C. (eds), Brain Mapping: The
Methods. Academic Press, New York.

Chuang, K.H. and Chen, J.H. (2001). IMPACT: Image-based physiological artifacts
estimation and correction technique for functional MRI. Magn. Reson. Med.,
46: 344–353.

Dagli, M.S., Ingeholm, J.E. and Haxby, J.V. (1999). Localization of cardiac-induced
signal change in fMRI. NeuroImage, 9: 407–415

Eddy, W.F., Fitzgerald, M., Genovese, C.R., Mockus, A. and Noll, D.C. (1996a).
Functional imaging analysis software – computational olio. In Prat, A. (ed),
Proceedings in Computational Statistics, Physica-Verlag, Heidelberg.

Eddy, W.F., Fitzgerald, M. and Noll, D.C. (1996b) Improved image registration by
using Fourier interpolation. Magn. Reson. Med., 36: 923–931.

Eddy, W.F., Fitzgerald, M., Genovese, C., Lazar, N., Mockus, A. and Welling, J.
(1999). The challenge of functional magnetic resonance imaging. J. Comp. and
Graph. Stat., 8(3), 545–558. Adapted from: The challenge of functional magnetic
resonance imaging. In Massive Data Sets, Proceedings of a Workshop, National
Academy Press, Washington, D.C., pp. 39–45, 1996.

Eddy, W.F. and Young, T.K. (2000). Optimizing the resampling of registered images.
InBankman, I.N. (ed),Handbook of Medical Imaging: Processing and Analysis.
Academic Press, New York.

Eden, G.F. and Zeffiro, T.A. (1997). PET and fMRI in the detection of task-related
brain activity: Implications for the study of brain development. In Thacher,
R.W., Lyon, G.R., Rumsey, J. and Krasnegor, N.K. (eds), Developmental Neu-
roImaging: Mapping the Development of Brain and Behavior, Academic Press,
San Diego.

Functional Magnetic Resonance Imaging 1025

Finger, S. (1994). Origins of Neuroscience: A History of Explorations Into Brain
Function, Oxford University Press, Oxford.

Forman, S.D., Cohen, J.D., Fitzgerald, M., Eddy, W.F., Mintun, M.A. and Noll,
D.C. (1995). Improved assessment of significant change in functional magnetic
resonance imaging (fMRI): Use of a cluster size threshold. Magn. Reson. Med.,
33: 636–647.

Friston, K.J., Williams, S., Howard, R., Frackowiak, R.S.J. and Turner, R. (1996).
Movement-related effects in fMRI time-series. Magn. Reson. Med., 35: 346–
355.

Gaillard, W.D., Grandin, C.B. and Xu, B. (2001). Developmental aspects of pedi-
atric fMRI: Considerations for image acquisition, analysis, and interpretation.
NeuroImage, 13, 239–249.

Genovese, C.R. (2000). A Bayesian time-course model for functional mag-
netic resonance imaging (with discussion). J. Amer. Statist. Assoc., 95: 691–
703.

Genovese, C.R., Lazar, N.A. and Nichols, T.E. (2002). Thresholding of statistical
maps in neuroimaging using the false discovery rate. NeuroImage, 15: 870–878.

Glad, I. and Sebastiani, G. (1995). A Bayesian approach to synthetic magnetic
resonance imaging. Biometrika, 82: 237–250.

Glover, G.H., Li, T.Q. and Ress, D. (2000). Image-based method for retrospective
correction of physiological motion effects in fMRI: RETROICOR. Magn. Reson.
Med., 44: 162–167.

Green, M.V., Seidel, J., Stein, S.D., Tedder, T.E., Kempner, K.M., Kertzman, C. and
Zeffiro, T.A. (1994). Head movement in normal subjects during simulated PET
brain imaging with and without head restraint. J. Nucl. Med., 35: 9, 1538–1546.

Guimaraes, A.R., Melcher, J.R., Talavage, T.M., Baker, A.J., Rosen, B.R. and
Weisskoff, R.M. (1996). Detection of inferior colliculus activity during au-
ditory stimulation using cardiac-gated functional MRI with T1 correction.
In NeuroImage, 2nd International Conference on Functional Mapping of the
Human Brain.

Hajnal, J.V., Myers,R., Oatridge, A., Schwieso, J.E., Young, I.R. and Bydder, G.M.
(1994). Artifacts due to stimulus correlated motion in functional imaging of
the brain. Magn. Reson. Med. 31: 283–291.

Harrison, L., Penny, W.D. and Friston, K. (2003). Multivariate Autoregressive Mod-
eling of fMRI time series. NeuroImage, 19(4): 1477–1491.

Hu, X., Le, T.H., Parrish, R. and Erhard, P. (1995). Retrospective estimation and
correction of physiological fluctuation in functional MRI. Magn. Reson. Med.,
34: 201–212.

Jezzard, P. (1999). Sources of distortion in functional MRI data. Hum. Brain Map.,
8: 80–85.

Jezzard, P. and Balaban, R.S. (1995). Correction for geometric distortions in echo
planar images from B0 field variations. Magn. Reson. Med., 34: 65–73.

Kim, B., Boes, J.L., Bland, P.H., Chenevert, T.L. and Meyer, C.R. (1999). Motion
correction in fMRI via registration of individual slices into an anatomical
volume. Magn. Reson. Med., 41: 964–972.

1026 William F. Eddy, Rebecca L. McNamee

Kwong, K.K., Belliveau, J.W., Chesler, D.A., Goldberg, I.E., Weisskoff, R.M., Pon-
celet, B.P., Kennedy, D.N., Hoppel, B.E., Cohen, M.S., Turner, R., Cheng, H.,
Brady, T.J. and Rosen, B.R. (1992). Dynamic magnetic resonance imaging of
human brain activity during primary sensory stimulation. Proc. Natl. Acad.
Sci. U.S.A., 89: 5675.

Lange, N. (1996). Statistical approaches to human brain mapping by functional
magnetic resonance imaging. Statist. Med., 15: 389–428.

Lange, N. and Zeger, S.L. (1997). Non-linear Fourier time series analysis for human
brain mapping by functional magnetic resonance imaging (with discussion).
Appl. Stat., 46: 1–29.

Lazar, N.A., Genovese, C.R., Eddy, W.F. and Welling, J. (2001). Statistical issues in
fMRI for brain imaging. Int. Stat. Rev., 69: 105–127.

Lee, C.C., Jack, C.R., Grimm, R.C., Rossman, P.J., Felmlee, J.P., Ehman, R.L. and
Riederer, S.J. (1996). Real-time adaptive motion correction in functional MRI.
Magn. Reson. Med., 36: 436–444.

Lee, C.C., Grimm, R.C., Manduca, A., Felmlee, J.P., Ehman, R.L., Riederer, S.J.
and Jack, C.R. (1998). A prospective approach to correct for inter-image head
rotation in FMRI. Magn. Reson. Med., 39: 234–243.

Logothetis, N.K. (2002). The neural basis of the blood-oxygen level dependent
functional magnetic resonance imaging signal. Philos. Trans. R. Soc. Lond. B.
Biol. Sci., 357(1424): 1003–1037.

McAllister, T.W., Saykin, A.J., Flashman, L.A., Sparling, M.B., Johnson, S.C., Guerin,
S.J., Mamourian, A.C., Weaver, J.B. and Yanofsky, N. (1999). Brain activation
during working memory 1 month after mild traumatic brain injury: A func-
tional MRI study. Neurol., 53: 1300–1308.

McNamee, R.L. and Eddy, W.F. (2003). Correlations between cardiac data and
fMRI data as a function of spatial frequency and time. In Proceedings of the
2003 25th Annual International Conference of the IEEE-EMBS Society. Can-
cun, Mexico.

McNamee, R.L. and Eddy, W.F. (2004). Examination and removal of the spatial and
time-related effects of physiological noise in fMRI data. (in preparation)

Mitra, P.P. and Pesaran, B. (1999). Analysis of dynamic brain imaging data. Biophys.
J., 78: 691–708.

Ogawa, S., Lee T.-M., Nayak, A.S. and Glynn, P. (1990). Oxygenation-sensitive
contrast in magnetic resonance image of rodent brain at high magnetic fields.
Magn. Reson. Med., 14: 680–78.

Ogawa, S., Tank, D.W., Menon, D.W., Ellermann, J.M., Kim, S., Merkle, H. and
Ugurbil, K. (1992). Intrinsic signal changes accompanying sensory stimulation:
Functional brain mapping using MRI. Proc. Natl. Acad. Sci. U.S.A., 89: 5951–
5955.

Poldrack, R.A. (2000). Imaging brain plasticity: Conceptual and methodological
issues – A theoretical review. NeuroImage, 12: 1–13.

Rosen, A.C., Prull, M.W., O’Hara, R., Race, E.A., Desmond, J.E., Glover, G.H.,
Yesavage, J.A. and Gabrieli, J.D. (2002). Variable effects of aging on frontal lobe
contributions to memory. NeuroReport, 3(8): 2425–2428.

Functional Magnetic Resonance Imaging 1027

Schneider, W., Noll, D.C. and Cohen, J.D. (1993). Functional topographic mapping
of the cortical ribbon in human vision with conventional MRI scanners. Nature,
365: 150–153.

Stenger, V.A., Peltier, S., Boada, F.E. and Noll, D.C. (1999). 3D spiral
cardiac|respiratory ordered fMRI data acquisition at 3 Tesla. Magn. Reson.
Med., 41: 983–991.

Thulborn, K.R., Waterton, J.C., Matthews, P.M. and Radda, G.K. (1982). Oxygena-
tion dependence of the transverse relaxation time of water protons in whole
blood at high field. Biochem. Biophys. Acta., 714: 265–270.

Thulborn, K.R. (1999). Visual feedback to stabilize head position for fMRI. Magn.
Reson. Med., 41: 1039–1043.

Turner,R. (1995). Functionalmappingof thehumanbrainwithmagnetic resonance
imaging. Sem. in the Neurosci., 7: 179–194.

Villringer, A. (2000). Physiological Changes During Brain Activation. In Moonen,
C.T.W. and Bandettini, P.A. (eds), Functional MRI, Springer-Verlag, Berlin.

Weisskoff, R.M. (1996). Simple measurement of scanner stability for functional
NMR imaging of activation in the brain. Magnetic Resonance in Medicine, 36:
643–645.

Weisskoff, R.M. and Kiihne, S. (1992). MRI susceptometry: Image-based measure-
ment of absolute susceptibility of MR contrast agents and human blood. Magn.
Reson. Med., 24: 375–83.

Woods, R., Cherry, S. and Mazziotta, J. (1992). Rapid automated algorithm for
aligning and reslicing PET images. J. Comp. Ass. Tomog., 16: 620–633.

Wowk, B., McIntyre, M.C. and Saunders, J.K. (1997). k-space detection and correc-
tion of physiological artifacts in fMRI. Magn. Reson. Med., 38: 1029–1034

Zeffiro, T. (1996). Clinical functional image analysis: Artifact detection and reduc-
tion. NeuroImage, 4: S95–S100.

IV.5Network Intrusion Detection
David J. Marchette

5.1 Introduction . 1030

5.2 Basic TCP|IP . 1030

5.3 Passive Sensing of Denial of Service Attacks . 1032

5.4 Streaming Data . 1033

5.5 Visualization . 1037

5.6 Profiling and Anomaly Detection . 1042

5.7 Discussion . 1048

1030 David J. Marchette

Introduction5.1

Attacks against computers and the Internet are in the news every week. These
primarily take the form of malicious code such as viruses and worms, or denial
of service attacks. Less commonly reported are attacks which gain access to com-
puters, either for the purpose of producing damage (such as defacing web sites or
deleting data) or for the opportunities such access provides to the attacker, such
as access to bank accounts or control systems of power stations. This chapter will
discuss some of the areas in which computational statistics can be applied to these
and related problems.

Several books are available that describe the basic ideas in intrusion detection.
These include (Amoroso, 1999, anonymous, 1997, Bace, 2000, Escamilla, 1998,
Marchette, 2001, Northcutt et al., 2001, Proctor, 2001). Intrusion detection is typi-
cally split into two separate problems. Network intrusion detection typically looks
at traffic on the network, while host based intrusion detection involves collecting
data on a single host. Both involve very large and complex data sets, and both have
aspects that lend themselves to statistical solutions. We will only touch on a few
such; the reader is encouraged to investigate the references.

There are two basic approaches to network intrusion detection. Most existing
systems rely on signatures of attacks. This approach relies on some set of features
that can be extracted from the data that indicate the existence of an attack. This
is analogous to the virus scanners, which look for a sequence of bytes that are
indicative of a virus. In the network realm, this could be attempts to access services
that are denied, malformed packets, too many failed attempts to log in, et cetera.
The second approach is anomaly detection. The “normal” activity of the network
is modeled, and outliers are indicative of attacks. The definition of “normal” is
dependent on the type of attacks that one is interested in, and requires statistical
models.

This chapter will first describe the basics of the TCP|IP protocol, sufficient
to understand the data and the examples given. Then we will look at detecting
denial of service attacks, and estimating the number of attacks on the Internet.
Network data is streaming data, and we will discuss this and some areas in which
computational statistics can play a part. This will lead to a discussion of simple
visualization techniques applied to network data, with some discussion of the types
of insights that can be gained from this. We will then take a detour from network
data and consider profiling. This will illustrate a type of anomaly detection, which
will then be discussed within a network context.

Basic TCP|IP5.2

When you visit a web site, your request and the response data are sent as a series
of packets, each consisting of a header containing addressing and sequencing
information, and a payload or data section in which the information resides.

Network Intrusion Detection 1031

Packets are typically relatively small (less than 1500 bytes). In order to analyze the
traffic and detect attacks, one needs to collect the packets, and may need to process
either the header or the payload. We will (somewhat arbitrarily) denote an attack
that can be detected by investigating the header only a “network attack” while
leaving those that require investigation of the payload in the “host attack” realm.

One reason for this distinction is encryption. If the data are encrypted (for
example, data from a secure web site), the header remains in the clear, and so
this information is still available for analysis by the statistician. The payload is
inaccessible (assuming a sufficiently strong encryption scheme) and so cannot be
used to detect attacks until it is decrypted at the destination host. For this reason
(and others), we consider any attack that requires investigation of the data in
a packet to be better detected at the host than on the network.

There are several protocols used on the Internet to ensure a level of performance
or reliability in the communication. We will briefly discuss TCP (the Transmission
Control Protocol), since it is one of the most important ones, and will allow us to
discuss a class of denial of service attacks. For more information about the various
protocols, see (Stevens, 1994).

First, however, it is necessary that we discuss the Internet Protocol (IP). This
protocol is not reliable, in the sense that there is no mechanism in place to ensure
that packets are received. The IP header contains the source and destination IP
addresses,whichare32-bit integers identifying thesendingandreceivingcomputer
for the packet. There are other fields in the packet that are used to control the
routing of the packet, et cetera, but we will not dwell on these here. As always,
interested readers should investigate (Stevens, 1994) or any of the many books on
the TCP|IP protocol suite.

Since IP is unreliable, a packet sent may or may not reach its destination, and
if it does not, there is no guarantee that anyone will notice. Thus, a more reliable
protocol is required. TCP implements a reliable two way communication channel,
and is used for web, email, and many other user applications. The TCP header is
shown in Fig. 5.1. The important fields, for this discussion, are the ports, sequence
numbers and flags.

The ports are a method for identifying a specific session, and can be thought of
as a 16-bit addition to the IP address that uniquely determines the session. Ports
are also used to identify the application requested. For example, port 80 is the
standard web port, and web browsers know that in order to obtain a web page
from a server they need to make a connection on this port.

To initiate and maintain a connection, the flags and sequence numbers are used.
The TCP protocol requires a three-way handshake to initiate a connection. First
the client sends a SYN packet (in this manner we will denote a packet with only
the SYN flag set; similarly with other flag combinations) to the server. The server
responds with a SYN|ACK packet, acknowledging the connection. The client then
finalizes the connection with an ACK packet. Sequence numbers are also passed,
and tracked to ensure that all sent packets are received and acknowledged, and to
allow the reconstruction of the session in the correct order. Packets that are not
acknowledged are resent, to ensure that they are ultimately received and processed.

1032 David J. Marchette

Source Port Destination Port

Sequence Number

Acknowledgment Number

Length Reserved Flags Window Size

Checksum Urgent Pointer

Options (if any)

Figure 5.1. The TCP header. The header is to be read left to right, top to bottom. A row corresponds to

32 bits

Once a session has been instantiated through the three-way handshake, packets
are acknowledged with packets in which the ACK flag is set. In this manner the
protocol can determine which packets have been received and which need to be
resent. If a packet has not been acknowledged within a given time, the packet
is resent, and this can happen several times before the system determines that
something has gone wrong and the session is dropped (usually by sending a reset
(RST) packet). Note that this means that if there is no response to the SYN|ACK
packet acknowledging the initiation of the session there will be a period (of several
seconds) in which the session is kept open by the destination host as it tries
resending the SYN|ACK hoping for a response. This is the basis of some denial of
service attacks, which we will discuss in the next section.

Passive Sensing of Denial
of Service Attacks5.3

The TCP protocol provides a simple (and popular) method for denial of service
attacks. The server has a finite number of connections that it can handle at a time,
and will refuse connections when its table is full. Thus, if an attacker can fill the
table with bogus connections, legitimate users will be locked out.

This attack relies on two fundamental flaws in the protocols. The first is that
the source IP address is never checked, and thus can be “spoofed” by putting an
arbitrary 32 bit number in its place. Second, the three-way handshake requires the
third (acknowledgment) packet, and the server will wait several seconds before
timing out a connection. With each requested connection, the server allocates
a space in its table and waits for the final acknowledgment (or for the connection
to time out). The attacker can easily fill the table and keep it filled by sending
spoofed SYN packets to the server.

Thus, the attacker sends many SYN packets to the server, spoofed to appear to
come from a large number of different hosts. The server responds with SYN|ACK

Network Intrusion Detection 1033

packets to these hosts, and puts the connection in its table to await the final ACK, or
a time-out (usually several seconds). Since the ACK packets are not forthcoming,
the table quickly fills up, and stays full for as long as the attacker continues to send
packets.

There are clever ways to mitigate this problem, which can keep the table from
filling up. One, the “SYN-cookie” involves encoding the sequence number of the
SYN|ACK in a way that allows the server to recognize legitimate ACK packets
without needing to save a spot in the table for the connection. However, even these
can be defeated through a sufficiently high volume attack.

These unsolicited SYN|ACK packets can be observed by any network sensor,
and thus provide a method for estimating the number and severity of such attacks
throughout the Internet. These unsolicited packets are referred to as backscatter.
They may take other forms than SYN|ACK packets, depending on the type of packet
sent in the attack. See (Moore et al., 2001, Marchette, 2002, Marchette,) for more
information.

Typically, the attacker first compromises a large number of computers, using
special distributed attack software, and it is these computers that launch the attack.
This makes it very difficult to block the attack, and essentially impossible to track
down the attacker, at least through information available to the victim.

Backscatter packets provide several opportunities for statistical analysis. They
allow the estimation of the number of attacks on the Internet in real time. One may
be able to estimate the severity of the attacks and number of attackers. Finally, it
may be possible to characterize different types of attacks or different attack tools
and identify them from the pattern of the packets. Some initial work describing
some of these ideas is found in (Giles et al., 2003).

A network sensor is a computer that captures packets (usually just the packet
headers) as they traverse the network. These are usually placed either just before
or just after a firewall to collect all the packets coming into a network. Through
such a system, one can observe all the unsolicited SYN|ACK packets addressed to
one of the IP addresses owned by the network.

Note that thismeans thatonlya fractionof thebackscatterpackets resulting from
theattackare seenbyany sensor. Ifweassume that the sensor ismonitoringa classB
network (an address space of 65,536 IP addresses), then we observe a random
sample of 1|65,536 of the packets, assuming the attack selects randomly from all
232 possible IP addresses. This points to several areas of interest to statisticians: we
observe a subset of the packets sent to a subset of the victims, and wish to estimate
the number of victims, the number of packets sent to any given victim, and the
number of attackers for any given victim.

Streaming Data 5.4

Network packets are streaming data. Standard statistical and data mining methods
deal with a fixed data set. There is a concept of the size of the data set (usually

1034 David J. Marchette

denoted n) and algorithms are chosen based in part on their performance as
a function of n. In streaming data there is no n: the data are continually captured
and must be processed as they arrive. While one may collect a set of data to use
to develop algorithms, the nonstationarity of the data requires methods that can
handle the streaming data directly, and update their models on the fly.

Consider the problem of estimating the average amount of data transfered in
a session for a web server. This is not stationary: there are diurnal effects; there
may be seasonal effects (for example at a university); there may be changes in
the content at the server. We’d like a number calculated on a window of time that
allows us to track (and account for) the normal trends and detect changes from
this normal activity.

This requires some type of windowing or recursive technique. The recursive
version of the sample mean is well known:

X̄n =
n − 1

n
X̄n−1 +

1

n
Xn .

Replacing n on the right hand side with a fixed constant N implements an expo-
nential window on the mean. This was exploited in the NIDES intrusion detection
system (Anderson et al., 1995). Similar techniques can be used to compute other
moments. An alternative formulation is:

X̂n = (1 − θ)Xn+1 + θx̂n−1 ,

for 0 < θ < 1. θ may be fixed or may itself change based on some statistic of the
data.

In fact, the kernel density estimator has a simple recursive version, that allows
the recursive estimate of the kernel density estimator at a fixed grid of points.
(Yamato, 1971, Wegman and Davies, 1979) give two versions of this:

f̂n(x) =
n − 1

n
f̂n−1(x) +

1

nhn
K

(
x − Xn

hn

)

f̌n(x) =
n − 1

n

(
hn−1

hn

)1|2

f̌n−1(x) +
1

nhn
K

(
x − Xn

hn

)
.

In either case, fixing n at a constant and hn either at a constant or a recursively
estimated value implements an exponentially windowed version of the kernel es-
timator. (Similarly, one can phrase this in terms of θ as was done with the mean;
see (Wegman and Marchette, 2003). These can in turn be used to estimate the
“normal” activity of various measurements on the network, and provide a mecha-
nism for detecting changes from normal, which in turn may indicate attacks. More
information on these issues can be found in (Wegman and Marchette, 2003).

Similarapproachescanbe implemented forotherdensity estimation techniques.
In particular, the adaptive mixtures approach of (Priebe, 1994) has a simple recur-
sive formulation that can be adapted to streaming data.

Network Intrusion Detection 1035

There are several applications of density estimation to intrusion detection that
one might consider. It is obvious that unusually large downloads (or uploads) may
be suspicious in some environments. While it is not clear that density estimation
is needed for this application, there might be some value in detecting changes
in upload|download behavior. This can be detected through the tracking of the
number of bytes transfered per session.

Perhaps a more compelling application is the detection of trojan programs.
A trojan is a program that appears to be a legitimate program (such as a tel-
net server) but acts maliciously, for example to allow access to the computer by
unauthorized users. Obviously the detection of trojans is an important aspect of
computer security.

Most applications (web, email, ftp, et cetera) have assigned ports on which they
operate. Other applications may choose to use fixed ports, or may choose any
available port. Detecting new activity on a given port is a simple way to detect
a trojan program. More sophisticated trojans will replace a legitimate application,
such as a web server. It is thus desirable to determine when a legitimate application
is acting in a manner that is unusual.

Consider Fig. 5.2. We have collected data for two applications (web and secure
shell) over a period of 1 hour, and estimated the densities of the packet length
and inter arrival times. As can be seen, the two applications have very different
patterns for these two measures. This is because they have different purposes:
secure shell is a terminal servicewhichessentially sendsapacket for everycharacter
typed (there is also a data transfer mode to secure shell, but this mode was not
present in these data); web has a data transfer component with a terminal-like user
interaction.

By monitoring these and other parameters, it is possible to distinguish between
many of the common applications. This can then be used to detect when an
application is acting in an unusual manner, such as when a web server is being
used to provide telnet services. See (Early and Brodley, 2003) for a more extensive
discussion of this.

Note that web traffic has two main peaks at either end of the extremes in packet
size. These are the requests, which are typically small, and the responses, which
are pages or images and are broken up into the largest packets possible. The mass
between the peaks mostly represent the last packets of transfers which are not
a multiple of the maximum packet size, and small transfers that fit within a single
packet.

The inter packet arrival times for secure shell also have two peaks. The short
times correspond to responses (such as the response to a directory list command)
and tocharacters typedquickly.The laterbumpprobably corresponds to thepauses
between commands, as the user processes the response. These arrival times are
very heavy tailed because of the nature of secure shell. Sessions can be left open
indefinitely, and if no activity occurs for a sufficiently long time, “keep alive”
packets are sent to ensure that the session is still valid.

1036 David J. Marchette

0 500 1000 1500

0.
00

00
0.

00
10

0.
00

20
0.

00
30

30 40 50 60 70 80 90

0.
00

0.
02

0.
04

0.
06

Secure Shell

Packet Length

D
en

si
ty

0.00 0.05 0.10 0.15 0.20

0
50

10
0

15
0

0 2 4 6 8 10

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

Figure 5.2. Packet length in bytes (top) and packet inter arrival times in seconds (bottom) for web

(left) and secure shell (right) sessions. Kernel estimators were used to estimate the densities. The

inter arrival times were truncated to show the bulk of the data

In (Early and Brodley, 2003) it is shown, in fact, that differences in the counts
for the TCP flags can be used to differentiate applications. These, combined with
mean inter packet arrival times and packet lengths (all computed on a window
of n packets for various values of n), do a very creditable job of distinguish-
ing applications. This is clearly an area in which recursive methods like those
mentioned above would be of value. It also is reasonable to hypothesize that
estimating densities, rather then only computing the mean, would improve the
performance.

By detecting changes in the densities of applications it may be possible to detect
when they have been compromised (or replaced) by a trojan program. It may also
be possible to detect programs that are not performing as advertised (web servers
acting like telnet servers, for example).

Network Intrusion Detection 1037

Visualization 5.5

Visualization of complex data is important but difficult. This is especially true
of streaming data. While many complex techniques for visualization have been
developed, simple scatter plots can be used effectively, and should not be shunned.

Figure 5.3 shows a scatter plot of source port against time for an 8 hour period
of time. These are all the SYN packets coming in to a class B network (an address
space of 65,536 possible IP addresses). This graphic, while simple, provides quite
a few interesting insights.

Note that there are a number of curves in the plot. These are a result of the fact
that each time a client initiates a session with a server, it chooses a new source port,
and this corresponds to the previous source port used by the client incremented by
one. Contiguous curves correspond to connections by a single source IP. Vertical
gaps in the curves indicate that the IP visited other servers between visits to the
network. It is also easy to see the start of the work day in this plot, indicated by the
heavy over plotting on the right hand side.

The sourceports range from 1024 to 65,536.Different applications andoperating
systems select ports from different ranges, so one can learn quite a bit from
investigating plots like this.

The plot of Fig. 5.3 is static. Figure 5.4 is meant to illustrate a dynamic plot. This
is analogous to the waterfall plots used in signal processing. It displays a snapshot
in time that is continuously updated. As new observations are obtained they are
plotted on the right, with the rest of the data shifting left, dropping the left most
column. Plots like this are required for streaming data.

0 2 4 6 8

10
00

20
00

30
00

40
00

50
00

Time (hours)

S
ou

rc
e

P
or

t

Figure 5.3. Source port versus time for all the incoming SYN packets for an 8 hour period

1038 David J. Marchette

Figure 5.4. Source port versus time for a short time period, the last two hours from Fig. 5.3. As time

progresses, the plot shifts from right to left, dropping the left most column and adding a new

column on the right

Simple plots can also be used to investigate various types of attacks. In Fig. 5.5
is plotted spoofed IP address against time for a denial of service attack against
a single server. Each point corresponds to a single unsolicited SYN/ACK packet
received at the sensor from a single source. This plot provides evidence that there
where actually two distinct attacks against this server. The left side of the plot
shows a distinctive stripped pattern, indicating that the spoofed IP addresses have
been selected in a systematic manner. On the right, the pattern appears to be gone,
and we observe what looks like a random pattern, giving evidence that the spoofed
addresses are selected at random (a common practice for distributed denial of ser-
vice tools). Between about 0.03 and 0.06 there is evidence of overlap of the attacks,
indicating that this server was under attack from at least two distinct programs
simultaneously.

Another use of scatter plots for analysis of network data is depicted in Fig. 5.6.
These data were collected on completed sessions. The number of packets is plotted
against the number of bytes. Clearly there should be a (linear) relationship between
these. The interesting observation is that there are several linear relationships.
This is similar to the observations made about Fig. 5.2, in which it was noted that
different applications use different packet lengths.

Network Intrusion Detection 1039

0.00 0.05 0.10 0.15 0.20

0
10

00
0

20
00

0
30

00
0

40
00

0
50

00
0

60
00

0

Time (hours)

S
po

of
ed

 IP

Figure 5.5. Plot of spoofed IP address against time for backscatter packets from a denial of service

attack against a single server. The IP addresses have been converted to 16-bit numbers, since in this

case they correspond to the final two octets of the IP address

Figure 5.7 shows the number of bytes transfered within a session plotted against
the start time of the session. There is a lot of horizontal banding in this plot, corre-
sponding mostly to email traffic. It is unknown whether the distinctive repetitive
patterns are a result of spam (many email messages all the same size) or whether
there are other explanations for this. Since these data are constructed from packet
headers only, we do not have access to the payload and cannot check this hy-
pothesis for these data. Figure 5.8 shows a zoom of the data. The band just below
400 bytes correspond to telnet sessions. These are most likely failed login attempts.
This is the kind of thing that one would like to detect. The ability to drill down the
plots, zooming and selecting observations to examine the original data, is critical
to intrusion detection.

High dimensional visualization techniques are clearly needed. Parallel coordi-
nates is one solution to this. In Fig. 5.9 we see session statistics for four different
applications plotted using parallel coordinates.

One problem with plots like this is that of over plotting. Wegman solves this
via the use of color saturation (see (Wegman and Dorfman, 2001, Wilhelm et al.,
1999)). Without techniques such as this it is extremely difficult to display large
amounts of data. Figure 5.9 illustrates this problem in two ways. First, consider the
secure shell data in the upper left corner. It would be reasonable to conclude from
this plot that secure shell sessions are of short duration, as compared with other

1040 David J. Marchette

0 1000 2000 3000 4000 5000

0e
+

00
1e

+
06

2e
+

06
3e

+
06

4e
+

06
5e

+
06

6e
+

06
7e

+
06

Packets

B

yt
es

Figure 5.6. Number of bytes transfered within a completed session plotted against the number of

packets within the session. Solid dots correspond to email sessions, circles correspond to all other

applications

sessions. This is an artifact of the data. For these data there are only 10 secure shell
sessions, and they all happen to be of short duration. Thus, we really need to look
at a lot of data to see the true distribution for this applications. Next, look at the
email plot in the upper right. Most of the plot is black, showing extensive over
plotting. Beyond the observation that these email sessions have heavy tails in the
size and duration of the sessions, little can be gleaned from this plot.

A further point should be made about the web sessions. Some of the sessions
which are relatively small in terms of number of packets and bytes transfered have
relatively long durations. This is a result of the fact that often web sessions will not
be closed off at the end of a transfer. They are only closed when the browser goes
to another web server, or a time-out occurs. This is an interesting fact about the
web application which is easy to see in these plots.

Network Intrusion Detection 1041

0 5 10 15 20

0
50

00
10

00
0

15
00

0
20

00
0

25
00

0
30

00
0

Time (hours)

B

yt
es

Figure 5.7. Number of bytes transfered for each session plotted against the starting time of the

session for a single day

0 5 10 15 20

0
20

0
40

0
60

0
80

0
10

00

Time (hours)

B

yt
es

Figure 5.8. The portion of the sessions in Fig. 5.7 which were less than 1000 bytes

1042 David J. Marchette

T #P #B D

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Secure Shell

T #P #B D

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Email

T #P #B D

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Web

T #P #B D

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Secure Web

Figure 5.9. Parallel coordinates plots of session statistics for four different applications. From left to

right, top to bottom they are: secure shell, email, web and secure web. The coordinates are the time

of the initiating SYN packet, the total number of packets, the total number of bytes sent and the

duration of the session. The axes are all scaled the same among the plots

Profiling and Anomaly Detection5.6

We will now briefly consider host based intrusion detection. While the data consid-
ered is not network data, the statistical techniques used are applicable to network
problems, as will be discussed.

One of the important problems of computer security is user authentication.
This is usually performed by requiring the user to type a password at the initial
login. Once a user is logged in, there are generally no checks to ensure that the
person using the terminal is still the authorized person. User profiling seeks to

Network Intrusion Detection 1043

address this by extracting “person specific” information as the user interacts with
the computer. By comparing the user’s activity with a profile of the user, it is hoped
that masqueraders can be detected and locked out before they are able to do any
damage.

We will discuss the usual host-based user profiling problem first, and then
discuss a network based profiling application that has a similar flavor. The mathe-
matics and statistics used for the two problems are very similar, only the data are
different.

Several attempts have been made on this problem. Early work focused on
utilizing keystroke timings. It was hoped that people had characteristic patterns
of typing that could be discovered through measurement of the time between
keystrokes for words or phrases. See for example (Bleha et al., 1990, Obaidat and
Sadoun, 1997, Lin, 1997, Robinson et al., 1998).

This type of approach has been applied at the network level to crack passwords.
(Song et al., 2001) describes using simple statistical techniques applied to packet
arrival timings to determine the length of passwords in secure shell, and even
to allow for the cracking of passwords. Secure shell is an application that allows
remote login via an encrypted pathway. It sends a packet for each character typed,
to minimize the delay for the user. Thus, by timing the packets, one can get an idea
of what key combinations are being sent (it takes longer to type two characters
with the same finger than it does if the characters are typed by fingers on different
hands, for example). By utilizing statistics such as these, the authors were able to
show that they could dramatically reduce the search space needed to crack the
passwords.

Other work focuses on tracking user commands. The idea is that the command
streams that users type (ignoring the arguments to the commands) could be used
to authenticate the user in much the same way that keystroke timings could.
A good discussion of this for statisticians can be found in (Schonlau et al., 2001).
See also (Maxion, 2003, Maxion and Townsend, 2002) for some critiques of this
work and extensions. The former paper considers arguments to the commands as
well.

For Microsoft Windows operating systems, user command sequences are gener-
ally not applicable. Instead, window titles may be used. These correspond roughly
to the same information that is contained in the Unix command lines. They typi-
cally contain the application name and the arguments to the applications such as
the file open, the email subject, the web page visited, et cetera.

To illustrate this,we consider a set of data taken fromsixusers on sevenWindows
NT machines over a period of several months. All window titles generated from the
login to the logout were retained for each user|host pair (only one of the users was
observed on a second host). Each time a window became active it was recorded.
These data are a subset of a larger set. More information on these data, with some
analysis of the data and performance of various classifiers can be found in (DeVault
et al., 2003).

Table 5.1 shows some statistics on these data. Three sessions are shown for each
user|host pair. The length of the login session (in seconds), the name of the first

1044 David J. Marchette

Table 5.1. Session statistics for three login sessions for each user|host pair

User Session Login Length 1st App Last App #Apps #Wins #Titles

user1-host19 3 30,794 msoffice msoffice 6 13 134

user1-host19 5 28,788 msoffice msoffice 8 15 194

user1-host19 6 19,902 msoffice msoffice 10 25 267

user1-host5 1 3472.47 explorer explorer 3 6 34

user1-host5 2 142.98 explorer explorer 2 3 6

user1-host5 40 21,912.79 explorer explorer 7 25 187

user19-host10 5 31,432.5 msoffice msoffice 7 8 133

user19-host10 6 16,886.3 msoffice msoffice 6 7 75

user19-host10 11 2615.55 msoffice acrord32 6 8 45

user25-host4 2 28,362.82 explorer explorer 4 19 382

user25-host4 3 45,578.82 explorer explorer 5 16 316

user25-host4 12 6788.44 explorer explorer 4 11 102

user4-host17 10 19,445.96 wscript explorer 8 21 452

user4-host17 30 6310.72 explorer explorer 3 5 60

user4-host17 44 17,326.21 explorer winword 8 10 138

user7-host20 10 23,163.6 outlook outlook 5 7 51

user7-host20 11 44,004.11 wscript mapisp32 5 5 72

user7-host20 12 33,125.27 wscript outlook 5 7 166

user8-host6 1 31,395.08 wscript explorer 7 14 116

user8-host6 4 1207.84 outlook explorer 4 4 14

user8-host6 21 134.01 cmd explorer 3 4 13

and last applications used within the session, and the number of distinct applica-
tions, windows and window titles are shown. The task is to extract statistics from
a completed login session that allow one to determine whether the user was the au-
thorized user indicated by the userid. This is an easier problem than masquerader
detection, in which one tries to detect the masquerader (or authenticate the user)
as the session progresses, and it is not assumed that the entire session corresponds
to a single user (or masquerader).

The table indicates that there is some variability among the sessions of indi-
vidual users, and this is born out by further analysis. Table 5.2 shows the most
common window titles. The number of times the title occurs in the data set, the
number of login sessions in which the title occurs, and the title itself are shown.
Some words in the titles have been obfuscated by replacement with numbers in
double brackets, to protect the privacy of the users. All common application and
operating system words were left alone. The obfuscation is consistent across all
sessions: there is a bijection between numbers and words that holds throughout
the data.

Figure 5.10 shows part of a single login session. The rows and columns corre-
spond to the list of words (as they appear in the titles) and a dot is placed where
the word appears in both the row and column. The blocks of diagonal lines are
characteristic of a single window in session. The “plus” in the lower left corner

Network Intrusion Detection 1045

Table 5.2. Window title usage

#Sessions Window Title

7002 425 Inbox - Microsoft Outlook
2525 411 Program Manager
2188 215 Microsoft Word

792 126 Netscape
704 156 Print
672 213 Microsoft Outlook
639 156 << 12761 >> << 9227 >>

592 170 << 16193 >> - Message (<< 16184 >> << 5748 >>)
555 174 << 6893 >> << 13916 >>

414 297 Microsoft(<< 3142 >>) Outlook(<< 3142 >>) << 7469 >>

413 36 << 13683 >> << 3653 >> - Microsoft Internet Explorer
403 33 << 13683 >> << 10676 >> - Microsoft Internet Explorer
402 309 - Microsoft Outlook
401 61 Microsoft PowerPoint
198 84 http:|| << 1718 >>.<< 7267 >>.<< 4601 >> | << 16345 >>

shows a case of the user switching windows, then switching back. This type of
behavior is seen throughout the data.

Many features were extracted from the data, and several feature selection and
dimensionality reduction techniques were tried. The results for these approaches
were not impressive. See (DeVault et al., 2003) for more discussion.

The classifiers that worked best with these data were simple intersection classi-
fiers. For each session, the total set of window titles used (without regard to order)
was collected. Then to classify a new session, the intersection of its title set with
those from user sessions was computed, and the user with the largest intersec-
tion was deemed to be the user of the session. Various variations on this theme
were tried, all of which performed in the mid to high 90 percent range for correct
classification.

Much more needs to be done to produce a usable system. Most importantly,
the approach must move from the session level to within-session calculations.
Further, it is not important to classify the user as one of a list of users, but to simply
state whether the user’s activity matches that of the userid. It may be straight
forward to modify the intersection classifier (for example, set a threshold and if
the intersection is below the threshold, raise an alarm) but it is not clear how well
this will work.

We can state a few generalities about user profiling systems. Users are quite
variable, and such systems tend to have an unacceptably high false alarm rate.
Keystroke timings tend to be much more useful when used with a password or
pass phrase than in free typing. No single technique exists which can be used
reliably to authenticate users as they work.

1046 David J. Marchette

Figure 5.10. First 500 words from a single session. The rows and columns correspond to words in the

order in which they appear (with duplicates). A dot is plotted in (i, j) if the same word is in row i and

column j

The intersection classifier leads to interesting statistics. We can construct graphs
using these intersections, each node of the graph corresponding to a session,
with an edge between two nodes if their sets intersect nontrivially (or have an
intersection of size at least T).

In another context (profiling the web server usage of users) (Marchette, 2003)
discusses various analyses that can be done on these graphs. This uses network
data, extracting the source and destination IP addresses from the sessions. In these
data there is a one-to-one correspondence between source IP address and user,
since all the machines considered were single user machines.

In this case the nodes correspond to users and the sets consist of the web
servers visited by the user within a period of a week. A random graph model,
first described in (Karonski et al., 1999) is used as the null hypothesis corre-
sponding to random selection of servers. The model assumes a set S of servers
from which the users draw. To define the set of servers for a given user, each
server is drawn with probability p. Thus, given the observations of the sets Si

drawn by the users, we must estimate the two parameters of the model: m = |S|
and p. These can be estimated using maximum likelihood (see also (Marchette,
2004) for discussion of this and other types of intersection graphs). With the

Network Intrusion Detection 1047

A B C

HDE

F

G

Figure 5.11. A graph of the users with significantly large intersections. The edges for which the

intersection size was statistically significant for 95% of the weeks are shown

notation

ki = |Si|

Mi = |
i⋃

j=1

Sj|

ui = Mi − Mi−1 ,

the likelihood is easily shown to be

L =
n∏

j=1

(
Mj−1

kj − uj

)(
m − Mj−1

uj

)
pkj

(
1 − p

)m−kj .

Using data collected for several months, (Marchette, 2003) computed the prob-
ability of any given edge, under the null hypothesis, and retained those that had
a significantly large intersection (after correcting for the multiple hypotheses test-
ed). The most common of these were retained, and the resulting graph is shown in
Fig. 5.11.

There are two triangles in Fig. 5.11, and it turns out that the users in these
correspond to physicists working on fluid dynamics problems. Users A, D and E are
system administrators. Thus, there is some reason to believe that the relationships
we have discovered are interesting.

The model is simplistic, perhaps overly so. It is reasonable to assume that
users have different values of p, and some preliminary investigation (described
in (Marchette, 2003)) bears this out. This is an easy modification to make. Further,
intuition tells us that perhaps all web servers should not have the same probabilities
either. This is more problematic, since we cannot have a separate probability for
each server and hope to be able to estimate them all. A reasonable compromise
might be to group servers into common|rare groups or something similar.

The above discussion illustrates one of the methodologies used for anomaly
detection. For determining when a service, server, or user is acting in an unusual

1048 David J. Marchette

manner, one first groups the entities using some model, then raises an alert when
an entity appears to leave the group. Alternatively, one can have a single entity,
for example “the network” or a given server, and build a model of the behavior
of that entity under normal conditions. When the behavior deviates from these
conditions by a significant amount, an alert is raised.

Other researchers have investigated the profiling of program execution, for the
purpose of detecting attacks such as buffer overflows which can cause the program
to act in an unusual way. See for example (Forrest et al., 1994, Forrest et al., 1997,
Forrest and Hofmeyr, ress, Tan and Maxion, 2002). Programs execute sequences of
system calls, and the patterns of system calls that occur under normal conditions
are used to detect abnormal execution.

Discussion5.7

There are many areas in which computational statistics can play a part in net-
work intrusion detection and other security arenas. We have seen a few in this
chapter, including modeling denial of service attacks, visualization, the analysis of
streaming data applied to network data and profiling and anomaly detection.

The biggest problems for intrusion detection systems are the false alarm rates
and the detection of novel attacks. The enormous amount of data that must be
processed requires that false alarm rates must be extremely low. Typical network
data consists of millions of packets an hour, and system administrators generally
do not have time to track down more than a few false alarms a day. Signature based
systems have the advantage that they rarely false alarm (assuming the signature is
properly defined), but they tend to have poor performance on novel attacks. Thus
it is essential that techniques be found that detect novelty that is “bad” without
alarming on novelty that is benign.

One area we have not discussed is modeling attack propagation. Early work
on this can be found in (Kephart and White, 1991, Kephart and White, 1993). See
also (Wierman and Marchette, 2004) for a related model. For a discussion of the
slammer worm, see http:||www.cs.berkeley.edu| nweaver|sapphire|. The slammer
worm was interesting because the spread was self-limiting: the worm spread so
fast that the available bandwidth was reduced to the point that the worm as unable
to continue to spread at its initial rate. Models for these types of worms is an
interesting area of study.

References
Amoroso, E. (1999). Intrusion Detection: An Introduction to Internet Surveillance,

Correlation, Trace Back, Traps, and Response. Intrusion.net Books, Sparta,
New Jersey.

Anderson, D., Lunt, T. F., Javitz, H., Tamaru, A., and Valdes, A. (1995). Detecting un-
usual program behavior using the statistical component of the next-generation

Network Intrusion Detection 1049

intrusion detection expert system (nides). Technical Report SRI-CSL-95-06,
SRI International.

anonymous (1997). Maximum Security. Sams.net Publishing, Indianapolis, IN.
Bace, R. G. (2000). Intrusion Detection. MacMillan Technical Publishing, Indi-

anapolis.
Bleha, S., Slivinsky, C., and Hussien, B. (1990). Computer-access security sys-

tems using keystroke dynamics. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 12(12):1217–1222.

DeVault, K., Tucey, N., and Marchette, D. (2003). Analyzing process table and
window title data for user identification in a windows environment. Technical
Report NSWCDD/TR-03/122, Naval Surface Warfare Center.

Early, J. P. and Brodley, C. E. (2003). Behavioral authentication of server flows. In
The 19th Annual Computer Security Applications Conference. to appear.

Escamilla, T. (1998). Intrusion Detection: Network Security Beyond the Firewall.
John Wiley & Sons, Inc., New York.

Forrest, S. and Hofmeyr, S. A. (In press). Immunology as information processing.
In Segel, L. A. and Cohen, I., editors, Design Prinicples for the Immune System
and Other Distributed Autonomous Systems, Santa Fe Institute Studies in the
Sciences of Complexity. Oxford University Press, Oxford, UK. Also available at
www.cs.unm.edu/∼forrest/ism_papers.htm.

Forrest, S., Hofmeyr, S. A., and Somayaji, A. (1997). Computer immunology.
Communications of the ACM, 40:88–96.

Forrest, S., Perelson, A. S., Allen, L., and Cherukuri, R. (1994). Self-nonself dis-
crimination in a computer. In 1994 IEEE Symposium on Research in Security
and Privacy. Also available at www.cs.unm.edu/∼forrest/isa_papers.htm.

Giles, K., Marchette, D. J., and Priebe, C. E. (2003). A backscatter characterization
of denial-of-service attacks. In Proceedings of the Joint Statistical Meetings. to
appear.

Karonski, M., Singer, K., and Scheinerman, E. (1999). Random intersection graphs:
the subgraph problem. Combinatorics, Probability and Computing, 8:131–159.

Kephart, J. O. and White, S. R. (1991). Directed-graph epidemiological models of
computer viruses. In Proceedings of the IEEE Computer Society Symposium on
Research in Security and Privacy, pages 343–359.

Kephart, J. O. and White, S. R. (1993). Measuring and modeling computer virus
prevalence. In Proceedings of the IEEE Computer Society Symposium on Re-
search in Security and Privacy, pages 2–15.

Lin, D.-T. (1997). Computer-access authentication with neural network based
keystroke identity verification. In International Conference on Neural Net-
works, pages 174–178.

Marchette, D. J. Passive detection of denial of service attacks on the internet. In
Chen, W., editor, Statistical Methods in Computer Security. Marcel Dekker. to
appear.

Marchette, D. J. (2001). Computer Intrusion Detection and Network Monitoring: A
Statistical Viewpoint. Springer, New York.

1050 David J. Marchette

Marchette, D. J. (2002). A study of denial of service attacks on the internet. In
Proceedings of the Army Conference on Applied Statistics, pages 41–60.

Marchette, D. J. (2003). Profiling users by their network activity. In Proceedings of
the Joint Statistical Meetings. to appear.

Marchette, D. J. (2004). Random Graphs for Statistical Pattern Recognition. John
Wiley & Sons, New York.

Maxion, R. A. (2003). Masquerade detection using enriched command lines. In
International conference on dependable systems and networks(DNS-03). IEEE
Computer Society Press.

Maxion, R. A. and Townsend, T. N. (2002). Masquerade detection using trun-
cated command lines. In International conference on dependable systems and
networks(DNS-02). IEEE Computer Society Press.

Moore, D., Voelker, G. M., and Savage, S. (2001). Infering Internet denial-of-
service activity. Available on the web at www.usenix.org/publications/library/
proceedings/sec01/moore.html. USENIX Security ’01.

Northcutt, S., Novak, J., and McLaclan, D. (2001). Network Intrusion Detection. An
Analyst’s Handbook. New Riders, Indianapolis.

Obaidat,M.S. andSadoun,B. (1997). Verificationof computerusersusingkeystroke
dynamics. IEEE Transactions on Systems, Man, and Cybernetics, 27(2):261–
269.

Priebe, C. E. (1994). Adaptive mixture density estimation. Journal of the American
Statistical Association, 89:796–806.

Proctor, P. E. (2001). The Practical Intrusion Detection Handbook. Prentice-Hall,
Englewood Cliffs, NJ.

Robinson, J. A., Liang, V. M., Chambers, J. A. M., and MacKenzie, C. L. (1998).
Computer user verification using login string keystroke dynamics. IEEE Trans-
actions on Systems, Man, and Cybernetics, 28(2):236–241.

Schonlau, M., DuMouchel, W., Ju, W.-H., Karr, A. F., Theus, M., and Vardi, Y. (2001).
Computer intrusion: Detecting masquerades. Statistical Science, 16:58–74.

Song, D. X., Wagner, D., and Tian, X. (2001). Timing analysis of keystrokes and
timing attacks on SSH. In Proceedings of the 10th USENIX Security Symposium.
http://www.usenix.org/publications/library/proceedings/sec01/song.html.

Stevens,W.R. (1994). TCP/IP Illustrated, Volume 1: The Protocols. Addison-Wesley,
Reading.

Tan, K. M. C. and Maxion, R. A. (2002). “why 6?” defining the operational limits
of stide, an anomaly-based intrusion detector. In IEEE Symposium on Security
and Privacy. IEEE Computer Society Press.

Wegman, E. J. and Davies, H. I. (1979). Remarks on some recursive estimators of a
probability density. Annals of Statistics, 7:316–327.

Wegman, E. J. and Dorfman, A. (2001). Visualizing cereal world. Technical Report
TR 178, George Mason University, Center for Computational Statistics.

Wegman, E. J. and Marchette, D. J. (2003). On some techniques for streaming data:
a case study of Internet packet headers. JCGS, 12(4):893–914.

Network Intrusion Detection 1051

Wierman, J. C. and Marchette, D. J. (2004). Modeling computer virus prevalence
with a susceptible-infected-susceptible model with reintroduction. Computa-
tional Statistics and Data Analysis, 45(1):3–23.

Wilhelm, A. F. X., Wegman, E. J., and Symanzik, J. (1999). Visual clustering
and classification: The oronsay particle size data set revisited. Computational
Statistics, pages 109–146.

Yamato, H. (1971). Sequential estimation of a continuous probability density func-
tion and the mode. Bulletin of Mathematical Statistics, 14:1–12.

Index
(t, m, s)-net, 51
2 × 2 table, 779
L1-fit, 689
L1-minimization, 688
L1-regression, 684
Q-function, 142, 143, 148
− complicated E-step, 154
− generalized EM (GEM) algorithm, 142
− MC approximation, 155
α-channel, 307
α-level contour, 307
α-outlier, 672
α-outlier region, 672, 686
α-quantile, 669
π∗-irreducibile, 76
3DVisual Data Mining (3DVDM) System, 317

abbreviation method, 393
acceptance rate, 80
− empirical, 742
acceptance-complement method, 62
access specifier, 411
accumulated proportion, 568
adaptive mixtures, 1034
adaptive SPSA, 186
adaptivity, 754, 757
− invalid, 754
add-with-carry, 49
additive models, 557, 704
address spoofing, 1032
adjusted dependent variable, 600
aesthetics, 363

affine equivariance, 673, 680
affine transformation, 662
AICc, 444, 452
aircraft design, 184
Akaike’s information criterion (AIC), 438,

444, 449, 450, 452, 453, 456, 602, 628, 728,
846

algebra, 343
algebraic curve fitting, 575
algebraic surface fitting, 575
alias method, 61
allowable splits, 822
alterningexpectation-conditionalmaximiza-

tion (AECM) algorithm, 160, 164
Amdahl’s law, 242
anaglyphs, 313, 314
AnalysisofFunctionalNeuroimages (AFNI),

1021
analysis of variance, 686
Andrews plot, 306
annealed entropy, 847
anomaly detection, 1030
antithetic variables, 965
antithetic variates, 500
aperiodic, 76
applications, 870
approximate distance, 576
approximations, 779
AR model, 723, 728, 751
− order, 723
ArcView|XGobi, 316
ArcView|XGobi|XploRe, 318

1054 Index

arithmetic mean, 661
artificial intelligence, 187
asset returns, 952, 961
association rules, 795
asymptotic α-confidence interval, 669
asymptotic bias, 548
asymptotic distribution, 184
asymptotic normality, 675
asymptotic relative efficiency, 658, 771
asymptotic variance, 549, 660
asymptotically random, 52
attack propagation, 1048
autocorrelation plots, 84
autocorrelation time, 78
automatic methods, 60, 64
auxiliary variables, 92
averaged shifted histogram (ASH), 307, 312,

528

backscatter, 1033, 1039
bandwidth, 524, 541, 543, 547
bar chart, 307
base class, 413
base-line intensity, 779
batch means, 78
Bayes
− optimal, 844
− theorem, 728
Bayes factor, 438, 444, 450, 457–459, 725, 972
− approximation, 737, 739
− computation, 729
Bayesian
− hierarchical structures, 743
− software, 763
Bayesian classifiers, 794
Bayesian framework, 138
− Gibbs sampler, 162–165
− MAP estimate, 162, 163
− MCMC, 162, 163
Bayesian inference, 955, 958–960, 962, 965,

969, 972, 975
Bayesian information criterion (BIC), 438,

444, 449, 450, 452, 456, 459, 603
Bayesian statistics, 72, 720
Beowulf class cluster, 241

Bernoulli data, 592
Bertillon, Alphonse, 743
BFGS algorithm, 967
bias, 547, 659, 666, 668, 671, 676, 679
− function, 679
− functional, 676
bias estimation, 553
bias-variance tradeoff, 444, 446, 447, 547
binary data, 592
binary representation, 190
binary response data, 83
Binary Response Model, 713
binary search, 60
binary tree, 815
binomial distribution, 594, 726
bioinformatics, 164
bioprocess control, 184
birth-and-death process, 749
birthday spacings test, 57
bisquare function, 541
bivariate histogram, 521
blind random search, 177
block bootstrap, 484, 486, 488, 491
block design, 1009
blocks, 73
blood oxygen level dependent (BOLD) con-

trast, 1007
Bonferonni correction, 1020
boosting, 853
bootstrap, 152, 468–492, 501, 556, 835
− nonparametric, 153
− smooth, 759
bootstrap for dependent data, 470, 472, 483,

492
Boston Housing data, 387, 393, 394
boundary bias, 542
bounded algebraic curve, 579
boxplot, 657
brain activation, 1008
Brain Voyager, 1021
breakdown, 658, 664, 676
breakdown point, 660, 667, 668, 671, 676,

683, 684
breakdown point of M-functional, 677
Breslow–Peto method, 775, 776

Index 1055

bridge estimator, 739
bridge sampling, 738, 739
brush-tour, 303
brushing, 300, 388
brushing with hue and saturation, 307
burn-in, 79

candidate generating density, 79
canonical link, 595, 600
cascade algorithm, 229
Castillo–Hadi model, 772
categorization, 607
Cauchy distribution, 666
CAVE Audio Visual Experience Automatic

Virtual Environment (CAVE), 314
censored data, 560, 829
central limit theorem, 662, 730
characteristic polynomial, 50, 53–55
chi-squared-test, 602
choice
− brand, 952, 957
− discrete, 952
− probabilities, 954, 956, 960
− transport mode, 952
Cholesky decomposition, 105
chromosome, 187, 188
class, 407
class diagram, 411
class hierarchy, 413
class interface, 411
classification, 814, 843
clustered data, 614
clustering, 793, 973, 974
− duration, 970
− volatility, 961
coefficient of determination, 628
coefficient of variation, 770, 771
collision test, 57
color, 392
color model, 306, 313
combined generators, 47, 54
command streams, 1043
common cumulative mean function, 779
common parameter, 783
common random numbers, 500

common trend parameter, 779
complete-data
− information matrix, 152
− likelihood, 139, 140
− log likelihood, 141, 142, 146–148, 150, 155,

158
− problem, 139, 146, 148
− sufficient statistics, 158
completion, 744
complexity, 847
complexity parameter, 819
composition method, 64
COMPSTAT Conferences, 8
computational effort, 730
computational inference, 4, 12–14
computational statistics, 5
conditional likelihood, 777, 781, 783
conditional tests, 478, 481–483
Conditional VaR, 912
conditioned choropleth maps (CCmaps), 321
confidence, 801
confidence interval, 468, 469, 472, 478–481,

554, 659, 669, 675
confidence level, 726
confidence regions, 725
conjugate gradient method, 125
consistency, 844–846
− uniform convergence, 846
consistent, 662
constraints, 174, 192
constructor, 409
contingency table, 613
continuum regression, 638
− ridge regression, 639
contour shell, 307
contour surface, 307
control variables, 965
convergence, 141–143, 145, 156–158, 160
− monotonicity property, 143, 154, 156, 160
− speeding up, 159–162
convergence assessment, 730
convergence theory, 179, 182
convolution method, 64
coordinates, 362
copula

1056 Index

− Archimedean, 943
− elliptical, 943
− estimation, 944
− simulation
− − conditional distributions method, 944
cost-complexity, 819
count data, 98, 592
count model, 975
counting process, 779, 780
covariance functional, 678
covariate, 682, 774
covering numbers, 847
Cox model, 774, 776
Cox’s discrete model, 776
critical sampling, 217
cross, 344, 351, 368
cross validation, 438, 444, 450, 453, 454, 456,

551, 630, 819
crossover, 188, 189
CrystalVision, 309–311, 317
cumulative logit model, 613
cumulative mean function, 780
curse of dimension, 524, 557, 736, 741
cyclic menu, 386

data augmentation, 92, 955, 972, 975
data mining (DM), 160, 295
Data Viewer, 311, 312
data visualization, 519
DataDesk, 399
dataflow, 339
daughter node, 817
DC shifts, 1011
Decision theory, 721
decision trees, 794, 796, 814
decomposition algorithm, 232
defensive sampling, 759
degrees of freedom, 444, 453, 549
denial of service attack, 1030, 1032, 1038, 1039
density estimation, 560, 561
dependent data, 470, 472, 483–485, 491, 492
descriptive modeling, 793
design matrix, 543
design of experiments, 498
destructor, 410

deterministic annealing EM (DAEM) algo-
rithm, 151

deterministic simulation, 499, 511
Deutscher Aktienindex (DAX), 929, 941
deviance, 597
− penalized, 728
deviance information criterion (DIC), 728
Diamond Fast, 309
differentiable, 662, 669
digamma function, 771
dimension
− high, 722, 754
− matching, 748
− unbounded, 724, 729
− unknown, 748
dimension reduction, 157, 159, 557
Dimension reduction methods of explana-

tory variables, 584
Dirichlet distribution, 975
discrepancy, 40
discrete logistic model, 774
discrete optimization, 171, 186
dispersion parameter, 601
distributed memory, 239
distribution
− α-stable, 915, 916
− − S parametrization, 917
− − S0 parametrization, 917
− − characteristic function, 917
− − density function, 918
− − direct integration method, 919
− − distribution function, 918
− − Fama–Roll method, 922
− − maximum likelihood estimation, 926
− − method of moments, 923
− − regression method, 924, 925
− − simulation, 921
− − STABLE program, 920, 927
− binomial, 593, 726
− Cauchy, 917
− folded t, 735
− Gaussian, 917
− generalized hyperbolic
− − density function, 935

Index 1057

− − maximum likelihood estimation, 938,
939

− − mean, 935
− − simulation, 936
− − variance, 935
− generalized inverse Gaussian (GIG), 933
− − simulation, 936, 937
− hyperbolic, 932
− − density function, 934
− − inverse, 941
− inverse Gaussian (IG)
− − simulation, 937
− Lévy, 917
− Lévy stable, 915
− mixture, 743, 749
− normal inverse Gaussian (NIG)
− − density function, 935
− − simulation, 937
− − tail estimates, 939
− − tails, 936
− predictive, 723
− proposal, 733
− stable Paretian, 915
− t, 732
− target, 740
− truncated stable (TLD), 930
− − characteristic function, 931
dot plot, 519
doubledecker plot, 810
Dow Jones Industrial Average (DJIA), 913,

914, 928, 940
downweighting outlying observations, 665
dual lattice, 44, 52
dynamic duration model|analysis, 952, 961,

969

E-step (Expectation step), 139, 141, 583
− exponential family, 141
− factor analysis model, 158
− failure-time data, 148
− generalized linearmixedmodels (GLMM),

155
− Monte Carlo, 154, 155
− nonapplicability, 148
− normal mixtures, 146

early binding, 420
effective number of parameters, 550
efficiency, 664, 670
efficiency of the sample mean, 771
eigenvalues, 126
− inverse iterations, 129
− Jacobi method, 127
− LR method, 129
− power method, 127
− QR method, 128
eigenvectors, 126
electroencephalogram (EEG), 1006
elitism, 188, 189
EM algorithm, 745
− extensions, 140, 160, 154
EM mapping, 142, 144
embarrassingly parallel, 244
empirical measure, 661
encapsulation, 406
encoding, 188
entropy, 57, 817
equidissection, 51
equidistribution, 51
equivariance, 662, 673
ergodic chain, 77
estimation vs. testing, 728
estimator
− harmonic mean, 739
− maximum a posteriori (MAP), 728
Euler’s constant, 771
evolution strategies, 186
evolutionary computation, 186
exact distance, 576
excess kurtosis, 961, 968
expectation-conditionalmaximization(ECM)

algorithm, 156, 164
− multicycle ECM, 156, 157
expectation-conditionalmaximizationeither

(ECME) algorithm, 159, 160, 164
expected shortfall (ES), 912
expected tail loss (ETL), 912
EXPLOR4, 311
exploratory data analysis (EDA), 295, 788
exploratory spatial data analysis (ESDA), 317
ExplorN, 305, 309–311, 317

1058 Index

exponential density function, 770
exponential distribution, 672, 769, 770
exponential family, 141, 147, 148, 592, 593, 596,

722
− sufficient statistics, 141, 158
Extensible Markup Language (XML), 340
extreme value distribution, 959

factor analysis model, 157
failure-time data
− censored, 140, 147
− exponential distribution, 148
false discovery rate (FDR), 1020
fat-shattering dimension, 847
fault detection, 185
feedforward network, 800
filter
− high-pass, 223
− quadrature mirror, 223
final prediction error (FPE), 450
finite mixture, 972
− model, 952, 971, 972, 975
− of Gaussian densities, 966
finite-difference SA (FDSA), 181
Fisher consistent, 660
Fisher information, 781
− generalized linear model (GLM), 602
Fisher scoring algorithm, 599
fitness function, 187, 189
fitness proportionate selection, 189
Fitts forecasting model, 390
floating-point, 188
focusing, 301
font, 392
fork–join, 241
Fourier plot, 366
Fourier space, 1010
Fourier transform, 1010
Fréchet differentiable, 669, 676, 679
free-induction decay (FID) signal, 1004
frequency domain bootstrap, 489–491
frequency polygon, 528
Friedman’s index, 569
full conditional distributions, 89
full likelihood, 776

full-screen view, 390
Functional Image Analysis Software – Com-

putational Olio (FIASCO), 1014, 1022
functional model, 540
functional neuroimaging, 1006

gain sequences, 182
gamma distribution, 594, 769, 970
GARCH, 474–476, 478–481, 952, 961, 973, 974
Gauss–Jordan elimination, 117
Gauss–Newton method, 646
Gauss–Seidel method, 122, 125
Gaussian quadrature, 458
Gaussian simulation smoother, 965, 966
Gaussian|normaldistribution,955–963,965–

970, 973
− Matrix, 956
− truncated, 956
gene expression data, 164
generalized additive model, 616
generalized cross validation, 438, 444, 453,

455, 456, 460, 552
generalized degrees of freedom, 445, 450–

452
generalized EM (GEM) algorithm, 142, 156,

157
generalized estimating equations (GEE), 615
generalized feedback shift register (GFSR),

51, 54
generalized linear mixed models (GLMM),

154
generalized linear model (GLM), 592
generalized maximum likelihood method,

453, 460, 775
generalized method of moments, 954
generalized partial linear model, 616
generalized principal components, 571
generalized principal components analysis

(GPCA), 571
genetic algorithm, 186, 191
geographic brushing, 317
Geometric distribution, 594
geometrically ergodic, 77
getter, 406
GGobi, 309, 311–313, 399

Index 1059

Gibbs sampling algorithm, 73
Gibbs sampling|sampler, 162–165, 743, 747,

955, 957, 960, 966, 972, 973, 975
− griddy-, 975
− mixing of, 744
Givens rotations, 110
Glivenko–Cantelli theorem, 661
global optimization, 180, 186
global solutions, 175
goodness of fit, 40, 444, 547, 555
gradient approximation, 181, 183
Gram–Schmidt orthogonalization, 112
grand tour, 303, 305, 306
graphics algebra, 343
Green’s algorithm, 748
Greenwood’s formula, 769
gross error model, 676
gross error neighbourhood, 667, 684
Gumbel distribution, 958
Gustafson’s law, 243

Hall’s index, 570
Halton sequences, 959
Hampel identifier, 672
hard thresholding, 443
harmonic mean, 738
hat function, 62
hat matrix, 550
Hawkes process, 971
hazard function, 768, 779, 970
hazard rate, 768
head motion, 1015–1017
Heisenberg’s uncertainty principle, 208
Hessian (or Jacobian) matrix, 186
Hessian (second derivative) matrix, 181
heterogeneity, 955, 957, 958, 960, 970
heterogeneous populations, 727, 744
heteroscedasticity, 460
hexagonal bins, 522
hidden Markov model, 143, 164, 165
hierarchical Bayes, 960
hierarchical command sequence, 393
high breakdown affine equivariant location

and scale functionals, 677
high breakdown regression functional, 685

higher-order kernels, 524
highest possible breakdown point, 668
highest posterior region, 725
Householder reflections, 109
HPF (High Performance Fortran), 260
Huber distribution, 659
hue brushing, 307
human-machine interaction, 185
HyperVision, 310, 311
hypotheses, 724
hypothesis testing, 555

i.i.d. resampling, 468, 473, 474, 485, 490
identifiability, 723
identification, 958, 972
− problem, 972, 974
− restrictions, 954, 972, 974
Image Analysis, 164
image grand tour (IGT), 305
image registration, 1016
immersive projection technology (IPT), 314,

316, 317
importance function, 731, 963–965
− choice of, 731
− with finite variance, 731
importance sampling, 81, 458, 500, 964, 965
− and regular Monte Carlo, 734
− degeneracy of, 737, 760
− efficient (EIS), 962–965, 967–971
− for model choice, 737
incomplete-data
− likelihood, 139, 141
− missing data, 139, 140, 146, 148, 152, 155,

165
− problem, 138, 139, 146, 163
incremental EM (IEM) algorithm, 161
independence M–H, 81
independenceof irrelevantalternatives (IIA),

958
independent increments, 780
indexed search, 61
inefficiency factor, 78
infinite collection of models, 729
influence function, 659
information criterion

1060 Index

− Akaike, 438, 444, 449, 450, 452, 453, 456,
602, 628, 728, 846

− Bayesian, 438, 444, 449, 450, 452, 456, 459,
603

− Schwarz, 628
information matrix
− complete-data, 152
− expected, 151, 152
− observed, 151, 152
inheritance, 413, 418
injected randomness, 174
instance, 407
integral, 952–954, 959, 960, 962, 963, 965
− approximation, 729
− high dimensional, 955
− multiple, 962
− ratio, 725
integrated mean square error, 523
intensity
− function, 971
− model, 969, 971
intensity functions, 779
inter arrival time, 1035, 1036
interaction term, 609
interface, 406, 419, 423
interface for derivation, 411
Interface Symposia, 8
InternationalAssociation forStatisticalCom-

puting (IASC), 8
internet protocol, 1031
intersection classifier, 1045, 1046
intersection graph, 1046
invariant, 74
Inverse Gaussian distribution, 594
inverse iterations, 129
inverse moments, 185
inversion method, 37, 59
inverted gamma density|prior, 966, 969, 973
inverted Wishart distribution, 956, 960
iterative refinement, 119
iterative simulation algorithms, 163
iteratively reweighted least squares, 596, 598

Jacobi method, 122, 127
Jasp, 399

Java threads, 250

k-space, 1010, 1022
Kalman filter, 965, 966, 970
− augmented, 966
Kaplan–Meier curves, 829
Kaplan–Meier method, 769
Karush–Kuhn–Tucker (KKT) condition, 860
kernel
− function, 851
− kernel trick, 852
− matrix, 854
− mercer, 856
kernel density, 1034, 1036
kernel density estimation, 62, 307
kernel estimation, 531, 967
kernel smoother, 541
keystroke timings, 1043, 1045
knowledge discovery, 788
Kolmogoroff metric, 659, 661, 668
kriging, 498, 504, 510
Kuiper metric, 668
Kullback-Leibler discrepancy, 450

lagged-Fibonacci generator, 45
Lagrange multipliers, 567
Laplace approximation, 458
largest nonidentifiable outlier, 673
Larmor frequency, 1003
lasso, 639
− computation, 640
late binding, 420
latent variables, 74
Latin hypercube sampling, 512
lattice, 43, 52, 57
Law of Large Numbers, 730
learning, 843
least median of squares LMS, 684
least squares, 623
− computation, 623
− explicit form, 623
− Gauss–Markov theorem, 623
− inference, 624
− orthogonal transformations, 624
least trimmed squares, 685, 686

Index 1061

length of the shortest half, 669
Levenberg–Marquardt method, 647
leverage effect, 969
leverage point, 686
library, 393
likelihood, 954, 955, 964, 965, 972
− function, 952, 962, 965, 967, 970, 972
− intensity-based, 971
− intractable, 720
− marginal, 975
− maximum, 954, 962, 972
− simulated, 954, 959
likelihood ratio test
− generalized linear model (GLM), 602
likelihood smoothing, 558
limited dependent variable, 952
linear congruential generator (LCG), 43, 49,

57
linear discriminant analysis, 815
linear feedback shift register (LFSR), 51, 53,

55, 57
linear recurrence, 42
linear recurrence modulo 2, 50
linear recurrence with carry, 49
linear reduction, 566
linear regression, 592, 622, 682
linear smoother, 541, 547
linear system
− direct methods, 116
− − Gauss–Jordan elimination, 117
− − iterative refinement, 119
− gradient methods, 124
− − conjugate gradient method, 125
− − Gauss–Seidel method, 125
− − steepest descent method, 125
− iterative methods, 120
− − Gauss–Seidel method, 122
− − general principle, 120
− − Jacobi method, 122
− − successiveoverrelaxation(SOR)method,

123
link function, 559, 592, 594, 739
− canonical, 595
linked brushing, 300
linked highlighting, 808

linked views, 300
linking, 388
local bootstrap, 486, 487
local likelihood, 559
local likelihood equations, 559
local linear estimate, 543, 544
local optimization, 180
local polynomial, 547, 559
local regression, 542, 616
local reversibility, 88
localized random search, 178, 182
location functional, 659, 662, 667, 669, 674,

678
location-scale-free transformation, 772
log-likelihood, 84
− generalized linear model (GLM), 596
log-linear model, 614, 781
log-logistic distribution, 769
log-normal distribution, 769, 958, 971
log-rank statistic, 830
logistic distribution, 959
logit, 593
− mixed, 959, 960, 971
− mixed multinomial (MMNL), 953, 958–

960
− model, 959, 971
− multinomial, 958
− probability, 958, 959
logit model, 592, 596, 604
longitudinal, 98
longitudinal data, 614
loss function, 170, 844
low pass filter, 443
LR method, 129
LU decomposition, 106

M-estimation, 560
M-functional, 663, 664, 668, 669, 671, 675,

676, 682, 684
− with a redescending ψ-function, 666
M-step (Maximization step), 139, 141
− exponential family, 141, 148
− factor analysis model, 158
− failure-time data, 148
− generalized EM (GEM) algorithm, 142

1062 Index

− normal mixtures, 146
magnetic field inhomogeneities, 1011, 1014
magnetic resonance, 1003
magnetic resonance imaging, 1004
magnetism, 1003
magnetoencephalogram (MEG), 1006
Mallow Cp, 438, 444, 450, 452, 453, 456
MANET, 308–310
margin, 850
marginal distribution function, 773
marginal likelihood, 72
market risk, 912
marketing, 953, 958
Markov bootstrap, 483, 488, 489, 491
Markov chain, 73, 75, 192
Markov chain Monte Carlo (MCMC), 72, 162,

163, 458, 963, 966–969, 971–974
Markov chain Monte Carlo (MCMC) algo-

rithm, 720, 740
− automated, 754
Markov random field, 165
Markov switching autoregressive model, 973
masking effect, 671
Mason Hypergraphics, 314
Mathematica, 399
mathematical programming, 181
matrix decompositions, 104
− Cholesky decomposition, 105
− Givens rotations, 110
− Gram–Schmidt orthogonalization, 112
− Householder reflections, 109
− LU decomposition, 106
− QR decomposition, 108
− SVD decomposition, 114
matrix inversion, 115
matrix linear recurrence, 50
maximally equidistributed, 52, 55
maximum full likelihood, 777
maximum likelihood, 596, 597, 954, 962, 972
− Monte Carlo (MCML), 962, 964, 965, 967–

969, 971
− quasi- (QML), 970
− simulated, 954
maximum likelihood estimate, 666, 770
maximum likelihood estimation, 138

− global maximum, 138, 143, 144
− local maxima, 138, 143, 144, 150
maximum partial likelihood, 777
maximum score method, 714
mean squared error, 184, 446, 523, 547
measurement noise, 182
median, 657, 659, 663, 668, 671, 674, 687, 689
median absolute deviation MAD, 658, 663,

668, 671, 687
median polish, 689
menu hierarchy, 386
Mersenne twister, 51, 54, 55, 58
message, 407
metaclass, 408
metamodel, 499, 501, 502, 511
method of composition, 97
method of moments, 771
Metropolis method, 72
Metropolis–Hastings algorithm (MH), 163,

740, 741, 960
Metropolis–Hastings method, 73
micromaps, 319
military conscripts, 743
MIMD(multiple instructionstream–multiple

data stream), 239
MiniCAVE, 316
minimum covariance determinant (MCD),

678
minimum volume ellipsoid (MVE), 678
mirror filter, 229
misclassification cost, 818
missing variables
− simulation of, 743
mixed model, 614
mixed multinomial logit (MMNL), 953, 958–

960
mixing, 74
mixing density|distribution, 958–960
mixture
− Poisson distributions, 727
mixture models, 138, 150, 162
− mixture of factor analyzers, 159, 164
− normal mixtures, 145, 152, 160–162
Mixture Sampler algorithm, 966
mode

Index 1063

− attraction, 742
mode tree, 531
model
− AR, 723, 728, 751
− averaging, 728, 750
− binomial, 726
− choice, 747
− generalised linear, 722
− generalized linear, 739
− index, 748
− mixture, 744
− probit, 736, 740
model averaging, 728
model choice, 726
− and testing, 727
− parameter space, 728
model complexity, 444
model domain, 405
model selection, 438, 972, 973
− generalized linear model (GLM), 602
modified Bessel function, 933
moment generating function, 204
moment index, 570
Mondrian, 308–310
Monte Carlo, 172
− confidence interval, 733
− Markovchain (MCMC),963,966–969,971–

974
− maximum likelihood (MCML), 962
− with importance function, 731
Monte Carlo EM, 154, 155, 163
Monte Carlo maximum likelihood (MCML),

962, 964, 965, 967–969, 971
Monte Carlo method, 37, 405, 498, 499, 730
− and the curse of dimension, 736
Monte Carlo techniques, 729
− efficiency of, 734
− population, 757
− sequential, 757
Moore’s law, 238
mosaic map, 522
mosaic plot, 307, 808
mother wavelet, 221
MPI (Message Passing Interface), 256
multicollinearity, 625, 626

− exact, 625, 626
− near, 626
multilevel model, 615
multimodality, 974
multinomial distribution, 975
multinomial responses, 612
multiple binary responses, 832
multiple counting processes, 780
multiple document interface, 387
multiple failures, 779
multiple recursive generator (MRG), 42
multiple recursive matrix generator, 54
multiple-block M–H algorithms, 73
multiply-with-carry generator, 49
multiresolution analysis (MRA), 217
multiresolution kd-trees, 161
multivariate smoothing, 557
multivariate-t density, 85
mutation, 188, 190

Nadaraya–Watson estimate, 474, 541
negative binomial distribution, 594
nested models, 602
network sensor, 1033
neural network, 184, 799, 853
New York Stock Exchange (NYSE), 970
Newton’s method, 181, 646
Newton–Raphson algorithm, 181, 186, 598,

959
Newton–Raphson method, 560, 782
Neyman–Pearson theory, 724
no free lunch (NFL) theorems, 175
node impurity, 817
noisy measurement, 179, 180
nominal logistic regression, 612
non-nested models, 602
nonhomogeneous Poisson process, 781, 783
nonlinear least squares, 645
− asymptotic normality, 645
− inference, 647
nonlinear regression, 622, 644
nonparametricautoregressivebootstrap,486
nonparametric curve estimation, 471, 472,

491
nonparametric density estimation, 518

1064 Index

normal approximation, 733
normal distribution, 658, 670
normal equations, 543, 623
normalization property, 219, 225
normalizing constant, 731, 737
− ratios of, 737
novelty detection, 843, 868
NOW (network of workstations), 241
nuisance parameter, 781, 783
null deviance, 604
NUMA (non-uniform memory access), 240
numerical standard error, 78
nViZn, 321
Nyquist ghosts, 1011, 1014

object, 406
object composition, 410, 418
Object oriented programming (OOP), 405
object, starting, 432
Occam’s razor, 444, 457
offset, 601
Old Faithful geyser data, 519, 520
one-way analysis of variance, 686
one-way table, 686
OpenMP, 251
optimization|optimizer, 959, 964, 967, 972
order of menu items, 386
ordered probit model, 613
ordinal logistic regression, 613
ordinary least squares (OLS), 963, 964
orthogonal series, 546
orthogonality property, 219, 225
outlier, 657, 665, 670, 671, 680, 684, 689, 969
outlier detection, 843, 868
outlier identification, 681, 687
outlier region, 672
outwards testing, 673
overdispersion, 612
overfitting, 799
oversmoothing, 524, 528

panel data, 615, 952, 975
panning, 301
parallel computing, 238
parallel coordinate display, 303

parallel coordinate plot, 303, 366
parallel coordinates, 806, 1039, 1042
parameter
− of interest, 723
parameter space
− constrained, 720
parameter–expandedEM(PX–EM)algorithm,

160
Parseval formula, 211
partial autocorrelation, 724
partial least squares, 641
− algorithm, 642
− extensions, 643
− latent variables, 642
− modified Wold’s R, 642
− nonlinear regression, 649
− Wold’s R, 642
partial likelihood, 775, 777
partially linear models, 704
particle systems, 757
password cracking, 1043
pattern recognition, 184
Pearson statistic, 601
penalized least squares, 441, 544
penalized likelihood, 138, 160, 165, 559
perfect sampling method, 99
periodogram, 207
permutation tests, 482
physiological noise, 1012, 1017
pie chart, 307
piecewise polynomial, 545
pilot estimate, 554
pixel grand tour, 305
plug-in, 468–470
plug-in bandwidth selection, 553
PMC vs. MCMC, 761
point process, 971
Poisson data, 593
Poisson distribution, 57, 779, 972
Poisson process, 63
poly-t distribution, 722
polymorphic class, 420
polymorphism, 419
polynomial lattice, 52
polynomial LCG, 53

Index 1065

polynomial regression, 499, 508, 513
polynomial terms, 606
population, 187
population Monte Carlo (PMC) techniques,

757
positron emission tomography (PET), 1006
posterior density, 83, 955, 959, 960, 962, 967,

968, 974
posterior distribution, 722
posterior mean, 955–957, 967–969, 974
posterior probability, 146, 150, 161
power expansions, 778
power method, 127
power parameter, 772
prediction, 551, 723
− sequential, 724
predictive modeling, 794
predictive squared error, 446
PRESS, 454
primitive polynomial, 43, 50
principal components analysis (PCA), 566,

632
principal components regression, 632, 633
− choice of principle components, 633
principal curve, 582
prior
− proper, 730
prior (density), 955–957, 960, 966, 967, 969,

972, 974
− informative, 974
− uninformative, 956, 967
prior distribution, 720
− conjugate, 722
− selection of a, 721
prior-posterior summary, 84
probability of move, 73
probit
− model, 958, 972
− multinomial, 958
− multinomial multiperiod, 952–954
− multivariate, 953, 958
− static multinomial, 955
probit model, 596, 605
probit regression, 93
problem domain, 405

process control, 185
process forking, 245
productivity, 390
program execution profiling, 1048
progress bar, 390
projection, 302
projection index, 569
projection pursuit, 305, 557, 568
projection pursuit guided tour, 305
projection pursuit index, 305
projection step, 583
proportion, 568
proportional hazard, 830
proportional hazards model, 710, 776
proposal
− adaptive, 761
− multiscale, 759
proposal distribution, 73
prosection matrix, 302
prosections, 302
proximity, 825
pruning, 799
pseudo data, 468
pseudo-likelihood, 612
pseudorandom number generator, 37
Pthread library, 248
pulse sequence, 1008
PVM (Parallel Virtual Machine), 253

QR decomposition, 108
QR method, 128
quadraticprincipal componentsanalysis (QP-

CA), 572
quality improvement, 184
quasi-likelihood, 612
quasi-maximum likelihood (QML), 970
queuing systems, 184

R, 399, 763
radial basis networks, 853
random effects, 98, 154, 155
random forests, 825
random graph, 1046
random noise, 172
random number generator, 37, 410

1066 Index

− approximate factoring, 46
− combined generators, 47, 54, 56, 58
− definition, 38
− figure of merit, 44, 51
− floating-point implementation, 46
− implementation, 46, 56
− jumping ahead, 39, 48, 51
− non-uniform, 58
− nonlinear, 55
− period length, 39, 50, 54
− physical device, 38
− power-of-two modulus, 47
− powers-of-two-decomposition, 46
− purely periodic, 39
− quality criteria, 39, 59
− seed, 38
− state, 38
− statistical tests, 41, 56
− streams and substreams, 39, 58
random numbers, 410
− common, 959, 964
− pseudo-, 959
− quasi-, 959
random permutation, 473, 474, 477, 482
random permutation sampler, 973
random perturbation vector, 184
random search, 176
random walk M–H, 80
Rao–Blackwellization, 95
rate of convergence, 144, 152, 156, 159–161
− rate matrix, 144
ratio
− and normalizing constants, 731
− importance sampling for, 737
− of integrals, 731
− of posterior probabilities, 725
ratio-of-uniforms method, 63
real-number coding, 190
recursive partitioning, 366
recursive sample mean, 1034
red-green blindness, 392
redescending ψ-function, 665
reduced conditional ordinates, 96
reformatting, 302
REGARD, 308, 309, 318

regression depth, 685
regression equivariant, 683
regression functional, 682
regression splines, 545
regression trees, 835
regression-type bootstrap, 486, 487
regressor-outlier, 686
regularization, 846
rejection method, 62, 64
rejection sampling, 967
relative projection Pursuit, 571
remote sensing data, 521
resampling, 468, 469, 471–476, 478, 481–483,

485–492, 556
resampling tests, 476, 478
rescaling, 302
residual, 688
residual sum of squares, 598
residuals
− generalized linear model (GLM), 601
resistant one-step identifier, 686
resolution of identity, 217
response-outlier, 686
restricted maximum likelihood, 460
reverse move,
− probability, 749
reversible, 76
reversible jump MCMC, 748, 752
ridge regression, 340, 635
− almost unbiased, 637
− almost unbiased feasible, 637
− bias, 635
− choice of ridge parameter, 635–637
− feasible generalized, 637
− generalized, 636
− minimization formulation, 636
− nonlinear regression, 648
− reduced-rank data, 637
risk, 844
− empirical, 844
− expected, 845
− regularized, 846
− structural minimization, 847
risk measure, 912
Robbin–Monro algorithm, 757

Index 1067

robust, 683
robust functional, 671
robust location functional, 661
robust regression, 560, 682, 684
robust scatter functional, 680
robust statistic, 657, 659, 661
robustness, 659, 663, 668
root node, 817
root-finding, 171, 182
rotation, 302
roulette wheel selection, 189

S-functional, 666, 679, 681, 685, 686
S-Plus, 399
sample mean, 771
sampler performance, 74
SAS, 399
Satterwaite approximation, 555
saturated model, 598
saturation brushing, 307
scalable EM algorithm, 161
scale functional, 663, 669
scales, 353
scaling algorithm, 742
scaling equation, 218
scaling function, 217
scanner data, 955
scatter diagram, 519, 521
scatterplot, 298, 387
scatterplot matrix, 298, 391
schema theory, 192
search direction, 172
secondary data analysis, 790
selection, 188, 189
selection sequences, 301
self-consistency, 143
semiparametric models, 557, 700
semiparametric regression, 615
sensitivity analysis, 498
sensor placement, 185
serial test, 57
setter, 406
shape parameter, 770
shared memory, 239
shortcut, 386

shortest half, 661, 666, 678, 684
shrinkage estimation, 634
shrinking neighbourhood, 660
sieve bootstrap, 485, 486, 490, 491
SIMD (single instruction stream–multiple

data stream), 239
simulated maximum likelihood (SML), 954,

959–961, 965, 967, 968
− quasi-random, 959
simulated moments, 954, 959
simulated scores, 959
simulated tempering, 98
simulation, 498, 499, 504, 509, 513, 729, 952,

954, 960, 962, 965, 966, 970, 975
simulation-based optimization, 173, 184
simultaneous perturbation SA (SPSA), 183
single index model, 615, 701
single trial fMRI, 1009
SISD (single instruction stream–single data

stream), 239
slammer worm, 1048
slash distribution, 670
slice sampling, 92
sliced inverse regression, 584
slicing, 302
smooth bootstrap, 759
smoothed maximum score, 714
smoothing, 540
smoothingparameter, 442, 453, 459, 460, 523,

547
SMP (symmetric multiprocessor), 240
soft thresholding, 443
software reliability, 779
sparse matrices, 129
sparsity, 860
specification search, 699
spectral density, 207
spectral test, 44
spectrogram, 209
speech recognition, 814
Spider, 309
SPIEM algorithm, 161
spine plot, 307
spline, 438, 441, 447, 455, 456
spline smoother, 544, 545

1068 Index

spreadplots, 307
SPSA Web site, 184
SPSS, 399
SQL, 340
squeeze function, 63
SRM, see structural risk minimization
stably bounded algebraic curve, 579
standard deviation, 658, 663, 668, 671
standard errors, 151–153
starting (initial) value, 143, 144, 150, 151
state space, 964, 966
state space model
− Gaussian linear, 965, 970
stationarity, 724, 961, 974
statistical computing, 5
statistical functional, 659
Statistical Parametric Mapping (SPM), 1022
steepest descent, 180
steepest descent method, 125
Stein-rule estimator, 634
stereoscopic display, 313
stereoscopic graphic, 313
stochastic approximation, 180
stochastic conditional duration (SCD) mod-

el, 970, 971
stochastic gradient, 180
Stochastic optimization, 170
stock trading system, 970
stopping rule, 757
streaming data, 1033
structural riskminimization(SRM),847, 849
structure parameter, 783
Structured Query Language, 340
Student-t distribution, 968, 969
subsampling, 472, 482–484
subtract-with-borrow, 49
successiveoverrelaxation (SOR)method, 123
supervised learning, 791
supplemented EM (SEM) algorithm, 151, 154
support, 801
support vector machine, 843
− decomposition, 861
− linear, 849
− optimization, 857

− sequential minimal optimization (SMO),
863

− sparsity, 860
support vector novelty detection, 868
support vector regression, 867
surrogate data tests, 483
surrogate splits, 824
survival analysis, 147
survival function, 768
survival model, 560, 614
survival rate
− variance, 760
survival trees, 829
susceptibility artifacts, 1013
SV model, 952, 961, 971
− canonical, 961, 962, 964, 965, 967, 968, 970
− multivariate, 969
SVD decomposition, 114
symmetric command sequence, 393
syn cookie, 1033
SYSTAT, 399
systems of linear equations
− direct methods, 116
− − Gauss–Jordan elimination, 117
− − iterative refinement, 119
− gradient methods, 124
− − conjugate gradient method, 125
− − Gauss–Seidel method, 125
− − steepest descent method, 125
− iterative methods, 120
− − Gauss–Seidel method, 122
− − general principle, 120
− − Jacobi method, 122
− − SOR method, 123

Table Production Language (TPL), 352
tailored M–H, 81
tailoring, 88
TAQ database, 970
target tracking, 173
Tausworthe generator, 51, 53
Taylor series, 548
Taylor series expansions, 782
TCP three-way handshake, 1032
t-distribution, folded, 735

Index 1069

tempering, 54
terminal nodes, 819
termination criterion, 192
Tesla, 1003
thinning, 63
threading, 247
threshold parameters, 770
thresholding, 213
time series, 470, 472–474, 480, 482–492, 952,

961, 974, 975
tissue contrast, 1005
tournament selection, 189
traffic management, 185
training data, 791
transform
− continuous wavelet, 215
− discrete Fourier, 206
− discrete wavelet, 226
− empirical Fourier–Stieltjes, 204
− fast Fourier, 226
− Fourier–Stieltjes, 203
− Hilbert, 209
− integral Fourier, 208
− Laplace, 204
− short time Fourier, 209
− Wigner–Ville, 210
− windowed Fourier, 209
transformation
− Box–Cox, 203
− Fisher z, 201
transformation models, 706
transformed density rejection, 63
transition kernel, 75
transition matrix, 193
translation equivariant functional, 677
transmission control protocol, 1031
transparent α-level contour, 307
trapping state, 745
tree growing, 817
tree pruning, 818
tree repairing, 833
Trellis display, 391
triangular distribution, 958
trigonometric regression, 438, 440, 447, 455,

456

trojan program, 1035, 1036
Tukey’s biweight function, 665, 681
twisted generalized feedback shift register

(GFSR), 51, 54, 55
two-way analysis of variance, 688

UMA (uniform memory access), 240
unbiased risk, 450, 453, 460
unbiased risk estimation, 553
under-fitting, 845
UnifiedModellingLanguage (UML),406,411
uniform distribution, 37, 958, 974
uniformity measure, 40, 51
unit measurement, 355
unobserved (or latent) variables, 952
unobserved heterogeneity, 710
unpredictability, 42
unsupervised learning, 791
user profiling, 1043
utility|utilities, 953–955, 958, 959, 961

validation data, 791
Value at Risk (VaR), 912, 914
− copulas, 942
vanGogh, 399
vanishing moments, 225
Vapnik–Cervonenkis class, 674
variable
− auxiliary, 747
variable selection, 438, 627
− all-subsets regression, 629
− − branch and bound, 630
− − genetic algorithms, 630
− backward elimination, 627
− cross validation, 630
− forward selection, 629
− least angle regression, 629
− stepwise regression, 627
variance estimation, 550
variance reduction, 59
variance reduction technique, 500
varset, 341, 342
VC-bound, 848
VC-dimension, 847
VC-theory, 847

1070 Index

vector error-correction model, 955
Virtual Data Visualizer, 317
virtual desktop, 389
virtual reality (VR), 295, 313, 314, 316, 317, 322
VirtualRealityModelingLanguage (VRML),

317
visual data mining (VDM), 295
volatility of asset returns, 952, 961
voting, 952, 958
VoxBo, 1022
VRGobi, 314–316

W-transformation, 772
Wasserstein metrics, 829
waterfall plot, 1037
wavelet domain, 226
wavelet regularization, 846
wavelets, 212
− Daubechies, 224
− Haar, 223

− Mexican hat, 215
− periodized, 232
− sombrero, 215
Weibull density function, 770
Weibull distribution, 769, 770, 970, 971
Weibull process model, 782
weight function, 541
weights
− generalized linear model (GLM), 601, 611
wild bootstrap, 486, 487, 491
winBUGS, 720, 763
window titles, 1043
Wishart distribution, 957
working correlation, 615

XGobi, 305, 309, 311–318
XML, 340
XploRe, 399, 915, 920, 935

zooming, 301

