

Embedded Systems and
Software Validation

The Morgan Kaufmann Series in Systems on Silicon
Series Editor: Wayne Wolf, Georgia Institute of Technology

The Designer’s Guide to VHDL, Second Edition
Peter J. Ashenden

The System Designer’s Guide to VHDL-AMS
Peter J. Ashenden, Gregory D. Peterson, and Darrell A. Teegarden

Modeling Embedded Systems and SoCs
Axel Jantsch

ASIC and FPGA Verification: A Guide to Component Modeling
Richard Munden

Multiprocessor Systems-on-Chips
Edited by Ahmed Amine Jerraya and Wayne Wolf

Functional Verification
Bruce Wile, John Goss, and Wolfgang Roesner

Customizable and Configurable Embedded Processors
Edited by Paolo Ienne and Rainer Leupers

Networks-on-Chips: Technology and Tools
Edited by Giovanni De Micheli and Luca Benini

VLSI Test Principles & Architectures
Edited by Laung-Terng Wang, Cheng-Wen Wu, and Xiaoqing Wen

Designing SoCs with Configured Processors
Steve Leibson

ESL Design and Verification
Grant Martin, Andrew Piziali, and Brian Bailey

Aspect-Oriented Programming with e
David Robinson

Reconfigurable Computing: The Theory and Practice of FPGA-Based Computation
Edited by Scott Hauck and André DeHon

System-on-Chip Test Architectures
Edited by Laung-Terng Wang, Charles Stroud, and Nur Touba

Verification Techniques for System-Level Design
Masahiro Fujita, Indradeep Ghosh, and Mukul Prasad

VHDL-2008: Just the New Stuff
Peter J. Ashenden and Jim Lewis

On-Chip Communication Architectures: System on Chip Interconnect
Sudeep Pasricha and Nikil Dutt

Embedded DSP Processor Design: Application Specific Instruction Set Processors
Dake Liu

Processor Description Languages: Applications and Methodologies
Edited by Prabhat Mishra and Nikil Dutt

Three-dimensional Integrated Circuit Design
Vasilis F. Pavlidis and Eby G. Friedman

Electronic Design Automation: Synthesis, Verification, and Test
Edited by Laung-Terng Wang, Kwang-Ting (Tim) Cheng, Yao-Wen Chang

Embedded Systems and Software Validation
Abhik Roychoudhury

Embedded Systems and
Software Validation

Abhik Roychoudhury

Department of Computer Science
National University of Singapore

AMSTERDAM • BOSTON • HEIDELBERG • LONDON
NEW YORK • OXFORD • PARIS • SAN DIEGO

SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO

Morgan Kaufmann Publishers is an imprint of Elsevier

Morgan Kaufmann Publishers is an imprint of Elsevier
30 Corporate Drive, Suite 400, Burlington, MA 01803, USA

This book is printed on acid-free paper. �©
Copyright © 2009 by Elsevier Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopy, recording, or any information
storage and retrieval system, without permission in writing from the publisher.

Permissions may be sought directly from Elsevier’s Science & Technology Rights
Department in Oxford, UK: phone: (+44) 1865 843830, fax: (+44) 1865 853333,
E-mail: permissions@elsevier.co.uk. You may also complete your request on-line
via the Elsevier homepage (http://elsevier.com), by selecting “Customer Support” and
then “Obtaining Permissions.”

Library of Congress Cataloging-in-Publication Data
Roychoudhury, Abhik.

Embedded systems and software validation / Abhik Roychoudhury.
p. cm. – (The Morgan Kaufmann series in systems on silicon)

Includes bibliographical references and index.
ISBN 978-0-12-374230-8 (hardcover : alk. paper)

1. Embedded computer systems–Design and construction. 2. Embedded computer
systems–Testing. 3. Computer software–Testing. I. Title.

TK7895.E42R72 2009
004.1–dc22

2009011196

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

ISBN 13: 978-0-12-374230-8

For information on all Morgan Kaufmann publications,
visit our Web site at www.mkp.com or www.elsevierdirect.com

Printed and bound in United States of America
09 10 9 8 7 6 5 4 3 2 1

To Jishnu

This page intentionally left blank

Contents

Acknowledgments . ix

Preface . xi

CHAPTER 1 Introduction 1

CHAPTER 2 Model Validation 7
2.1 Platform versus System Behavior . 8
2.2 Criteria for Design Model . 10
2.3 Informal Requirements: A Case Study . 12

2.3.1 The Requirements Document . 13
2.3.2 Simplification of the Informal Requirements 14

2.4 Common Modeling Notations . 16
2.4.1 Finite-State Machines . 16
2.4.2 Communicating FSMs . 20
2.4.3 Message Sequence Chart–Based Models 27

2.5 Remarks about Modeling Notations . 37
2.6 Model Simulations . 39

2.6.1 FSM Simulations . 41
2.6.2 Simulating MSC-Based System Models 46

2.7 Model-Based Testing . 50
2.8 Model Checking . 58

2.8.1 Property Specification . 58
2.8.2 Checking Procedure . 73

2.9 The SPIN Validation Tool . 82
2.10 The SMV Validation Tool . 86
2.11 Case Study: Air-Traffic Controller . 89
2.12 References . 91
2.13 Exercises . 93

CHAPTER 3 Communication Validation 95
3.1 Common Incompatibilities . 98

3.1.1 Sending/Receiving Signals in Different Order. 99
3.1.2 Handling a Different Signal Alphabet . 100
3.1.3 Mismatch in Data Format . 102
3.1.4 Mismatch in Data Rates . 105

3.2 Converter Synthesis . 106
3.2.1 Representing Native Protocols and Converters 106
3.2.2 Basic Ideas for Converter Synthesis . 108
3.2.3 Various Strategies for Protocol Conversion 115 vii

viii Contents

3.2.4 Avoiding No-Progress Cycles. 116
3.2.5 Speculative Transmission to Avoid Deadlocks. 118

3.3 Changing a Working Design . 121
3.4 References . 122
3.5 Exercises . 123

CHAPTER 4 Performance Validation 125
4.1 The Conventional Abstraction of Time . 126
4.2 Predicting Execution Time of a Program. 131

4.2.1 WCET Calculation . 133
4.2.2 Modeling of Microarchitecture . 145

4.3 Interference within a Processing Element . 154
4.3.1 Interrupts from Environment . 155
4.3.2 Contention and Preemption . 157
4.3.3 Sharing a Processor Cache . 161

4.4 System-Level Communication Analysis . 165
4.5 Designing Systems with Predictable Timing . 169

4.5.1 Scratchpad Memories . 169
4.5.2 Time-Triggered Communication . 174

4.6 Emerging Applications . 176
4.7 References . 177
4.8 Exercises . 177

CHAPTER 5 Functionality Validation 181
5.1 Dynamic or Trace-Based Checking . 184

5.1.1 Dynamic Slicing . 187
5.1.2 Fault Localization . 196
5.1.3 Directed Testing Methods . 203

5.2 Formal Verification . 207
5.2.1 Predicate Abstraction . 211
5.2.2 Software Checking via Predicate Abstraction. 218
5.2.3 Combining Formal Verification with Testing 225

5.3 References . 229
5.4 Exercises . 230

Bibliography 233

Index 241

Acknowledgments

This book owes a lot to all my students, colleagues, and co-workers. It is by working
with them over the past decade that I have discovered the issues and challenges
in the field of embedded systems validation. So, first and foremost, I must thank
them all.

I have written this book off and on, in the course of my teaching and research
work at the National University of Singapore (NUS). Funding from a University
Research Council project at NUS is gratefully acknowledged.

A leave from NUS in 2007 to the Indian Institute of Science (IISc) infused in me
the energy to start writing the book. The calm environs of the IISc campus helped
set the mood for writing this book.

The support of Elsevier staff was instrumental in ensuring that the book has
proceeded on schedule.

Finally, playing with my 5-year-old son Jishnu allowed me to absorb the pressures
of writing the book in the midst of various deadlines and commitments. Thanks,
Jishnu!

Singapore
19 January 2009

ix

This page intentionally left blank

Preface

This book attempts to cover the issues in validation of embedded software and
systems. There are many books on this topic, as a Web search with the appropriate
search terms will reveal. So, why this book?

There are several ways to answer the question. The first, most direct answer is that
the current books mostly deal with the programming and/or co-design of embedded
systems. Validation is often discussed almost as an afterthought. In this book, we
treat validation as a first-class citizen in the design process, weaving it into the design
process itself.

The focus of our book is on validation, but from an embedded software and sys-
tems perspective. The methods we have covered (testing/model-checking) can also
be covered from a completely general perspective, focusing only on the techniques,
rather than on how they fit into the system design process. But we have not done so.
Even though the focus of the book is on validation methods, we clearly show how it
fits into system design. As an example, we present and discuss the model-checking
method twice in two different ways — once at the level of system model (Chapter 2)
and again at the level of system implementation (Chapter 5).

Finally, being rooted in embedded software and systems, the focus of our book
is not restricted to functionality validation. We have covered at least two other
aspects — debugging of performance and communication behavior. As a result, this
book contains analysis methods that are rarely found in a single book — testing
(informal validation), model checking (formal validation), worst-case execution time
analysis (static analysis for program performance), schedulability analysis (system
level performance analysis), and so on — all blended under one cover, with the goal
of reliable embedded system design.

As for the chapters of the book, Chapter 1 gives a general introduction to the issues
in embedded system validation. Differences between functionality and performance
validation are discussed at a general level.

Chapter 2 discusses model-level validation. It starts with generic discussions on
system structure and behavior, and zooms into behavioral modeling notations such
as finite-state machines (FSMs) and message sequence charts (MSCs). Simulation,
testing, and formal verification of these models are discussed. We discuss model-
based testing, where test cases generated from the model are tried out on the system
implementation. We also discuss property verification, and the well-known model-
checking method. The chapter ends with a nice hands-on discussion of practical
validation tools such as SPIN and SMV. Thus, this chapter corresponds to model-level
debugging.

xi

xii Preface

Chapter 3 discusses the issues in resolving communication incompatibilities
between embedded system components. We discuss different strategies for resolving
such incompatibilities, such as endowing the components with appropriate inter-
faces, and/or constructing a centralized communication protocol converter. Thus,
this chapter corresponds to communication debugging.

Chapter 4 discusses system-level performance validation. We start with software
timing analysis, in particular worst-case execution time (WCET) analysis. This is
followed by the estimation of time spent as a result of different interferences in a pro-
gram execution — from the external environment, or from other executing programs
on the same or different processing elements. Suitable analysis methods to estimate
the time due to such interferences are discussed. We then discuss mechanisms to
combat execution-time unpredictability via system-level support. In particular, we
discuss compiler-controlled memories or scratchpad memories. The chapter con-
cludes with a discussion on time predictability issues in emerging applications.
Thus, this chapter corresponds to performance debugging.

Chapter 5 discusses functionality debugging of embedded software. We discuss
both formal and informal approaches, with almost equal emphasis on testing and
formal verification. The first half of the chapter involves validation methods built
on testing or dynamic analysis. The second half of the chapter concentrates on
formal verification, in particular software model checking. The chapter concludes
with a discussion on combining formal verification with testing. Thus, this chapter
corresponds to software debugging.

Apart from some debugging/validation methods being common to Chapters 2
and 5, the readers may try to read the chapters independently. A senior undergraduate
or graduate course on this topic may, however, read the chapters in sequence, that
is, Chapters 2, 3, 4, 5.

ABOUT THE AUTHOR
Abhik Roychoudhury received his M.S. and Ph.D. in Computer Science from the
State University of New York at Stony Brook in 1997 and 2000, respectively. His
research has focused on formal verification and analysis methods for system design,
with focus on embedded software and systems. In these areas, his research group has
been involved in building practical program analysis and software productivity tools
that enhance software quality as well as programmer productivity. Two meaningful
examples of such endeavors are the JSlice dynamic analysis tool for Java program
debugging, and the Chronos static analysis tool for ensuring time-predictable exe-
cution of embedded software. His awards include a 2008 IBM Faculty Award. Since
2001, Abhik has been at the School of Computing in the National University of
Singapore, where he is currently an Associate Professor.

CHAPTER

Introduction 1
Embedded software and systems have come to dominate the way we interact with
computers and computation in our everyday lives. Computers are no longer isolated
entities sitting on our desks. Instead, they are nicely woven and integrated into our
everyday lives via the gadgets we directly or indirectly use — mobile phones, wash-
ing machines, microwaves, automotive control, and flight control. Indeed, embedded
systems are so pervasive, that they perform the bulk of the computation today —
putting forward “embedded computing” as a new paradigm to study. In this book, we
focus on validation of embedded software and systems, for developing embedded
systems with reliable functionality and timing behavior.

Not all embedded systems are safety-critical. One one hand, there are the safety-
critical embedded systems such as automobiles, transportation (train) control, flight
control, nuclear power plants, and medical devices. On the other hand, there are
the more vanilla, or less safety-critical, embedded systems such as mobile phones,
HDTV, controllers for household devices (such as washing machines, microwaves,
and air conditioners), smart shirts, and so on. Irrespective of whether an embedded
system is safety-critical or not, the need for integrating validation into every stage
of the design flow is clearly paramount. Of course, for safety-critical embedded
systems, there is need for more stringent validation — so much so that formal analysis
methods, which give mathematical guarantees about functionality/timing properties
of the system, may be called for at least in certain stages of the design.

Our focus in this book is on validation methods, and how they can be woven into
the embedded system design process. Before proceeding further, let us intuitively
explain some common terminologies that arise in validation — testing, simulation,
verification, and performance analysis.

■ Testing refers to checking that a system behaves as expected for a given input.
Here the system being checked can be the actual system that will be executed.
However, note that it is only being checked for a given input, and not all inputs.

Embedded Systems and Software Validation
Copyright © 2009, Elsevier Inc. All rights reserved. 1

2 CHAPTER 1 Introduction

■ Simulation refers to running a system for a given input. However, simulation
differs from actual system execution in one (or both) of the following ways.
• The system being simulated might only be a model of the actual system

to be executed. This is useful for functionality simulation — check out the
functionality of a system model for selected inputs before constructing the
actual system.

• The execution platform on which the system is being simulated is different
from the actual execution platform. This situation is very common for per-
formance simulations. The execution platform on which the actual system
will be executed may not be available, or it might be getting decided through
the process of performance simulations. Typically, a software model of the
execution platform might be used for performance simulations.

■ Formal verification refers to checking that a system behaves as expected for
all possible inputs. Because exhaustive testing is inefficient or even infeasible,
verification may be achieved by statically analyzing a system model (which
may be represented by a structure such as a finite-state machine).

■ Finally, we note that formal verification methods have conventionally been
used for giving strict mathematical guarantees about the functionality of a
system. However, to give strict guarantees about performance (for example,
to give an upper bound on the execution time of a given software), one needs
to employ mathematical analysis techniques for estimating performance. Such
techniques often go by the name of performance analysis.

In order to see what the possibilities and opportunities are in terms of integrating
validation into embedded system design flows, we can look at the automobile indus-
try. It is widely recognized that automotive electronics is a wide market, with more
and more functionalities in modern-day cars being software-controlled. Indeed, inno-
vations in automotive software can bring about new designs, a point often articulated
by car manufacturers themselves. The by-now famous quotes such as “more than
90% of the innovation in a modern-day car is from the software” stand testimony
to the importance of embedded software/systems in the design of a modern-day
car. Naturally, because of the importance of the various car components (brakes,
airbags, etc.) functioning “correctly” during the driving of a car, rigorous vali-
dation of the hardware/software controlling these components is crucial. In other
words, reliable and robust embedded system design flows that integrate extensive
debugging/validation are a must.

To see further the importance of validation in embedded systems for automo-
biles, we can delve deeper into the various components of a car, which can be
computer-controlled. Roughly speaking, these can be divided into three categories —
engine features, cabin features, and entertainment. Clearly, the engine features are

Introduction 3

the most safety-critical and the features related to in-vehicle entertainment are the
least safety-critical. The engine features include critical features such as the brake
and steering wheel; usually these features involve hard real-time constraints. The
cabin features include less critical (but important) features such as power windows
and air conditioning. The entertainment or infotainment features include control of
in-car devices such as GPS navigation systems, CD player, and in-car television, as
well as communication between these devices. Clearly, the computing component
controlling the engine features (such as brakes) needs very rigorous validation — to
the extent that the behavior of these computing components could be subjected to
formal modeling and verification. For the cabin features, we at least need modeling
and extensive testing of the computing components controlling the cabin features.
For the infotainment features, we need performance analysis methods to ensure that
the soft real-time constraints are satisfied.

Thus, as we can see from the discussion on the specific domain of automotive
software, validation of different kinds are required for a complex embedded system.
For the more safety-critical parts of the system, rigorous modeling and formal veri-
fication may be needed. For the less safety-critical parts, more extensive testing may
be sufficient. Moreover, for the parts of the system controlling or ensuring real-time
responses to/from the environment, detailed performance validation needs to be car-
ried out. Thus, the validation methods we employ can range from formal methods
(such as model checking) to informal ones (such as testing). Moreover, the level of
abstraction at which we employ the validation may vary — model-level validation; or
high-level implementation validation (where we consider only the inter-component
behavior without looking inside the components); or low-level implementation val-
idation (where we also look inside the system components). Finally, the criteria for
validation may also vary — we may perform validation at different levels, to check
for functionality errors, timing errors, and so on.

Figure 1.1 visually depicts the intricacies of embedded system validation. In
particular, Figure 1.1a shows the different levels (model/implementation) and criteria
(performance/functionality) of system validation.

Figure 1.1b illustrates the complications in functionality validation. For an
embedded system that we seek to construct, we may design and elaborate it at
different levels of details (or different levels of abstraction). If we are seeking func-
tionality validation, then the higher the level of detail, the lower the formality of the
validation method. Thus, for system design at higher levels of abstraction, we may
try out fully formal validation methods. On the other hand, as we start fleshing out
the implementation details of the system under construction, we may settle for more
informal validation methods such as extensive testing.

As opposed to functionality validation, the picture appears somewhat different
for timing validation — see Figure 1.1c. As is well understood, embedded systems

4 CHAPTER 1 Introduction

Software

Functionality
&
performance
validation

(a)

Level of details in design

F
or

m
al

ity
 o

f f
un

c.
 v

al
id

at
io

n

(b)

Level of details in design
A

cc
ur

ac
y

of
 ti

m
in

g
es

tim
at

es
(c)

System model

Model validation

Partition
Communication
validation

Hardware

Figure 1.1

Issues in functionality and timing validation of embedded systems.

often incorporate hard or soft real-time constraints on interaction of the system with
its physical environment — or, for that matter, interactions between the different
components of the system. Hence, timing validation involves developing accurate
estimates of the “system response time” (in response to some event from the envi-
ronment). Clearly, as the details of the embedded system are fleshed out, we can
develop more accurate timing estimates and, in that sense, perform more detailed
timing validation.

Thus, Figure 1.1 shows the issues in validating functionality versus validating
timing properties — both of which are of great importance in embedded system
design flows. Two different aspects are being highlighted here:

■ Formal verification of functionality is better conducted at higher levels of
abstraction. As we start considering lower level details, formal approaches do
not scale up, and informal validation methods such as testing come into play.

■ For performance validation, as we consider lower level details, our perfor-
mance estimates are more accurate.

The reader should note that other criteria along which embedded system valida-
tion may proceed, such as estimating the energy or area requirements of a system,

Introduction 5

also have certain basic similarities with timing validation. As the system design is
elaborated in more detail, we can form a better idea about its timing, energy, and
area requirements.

In the following chapters, we study embedded software/systems validation from
various angles:

■ Model-level validation (mostly functionality) — Chapter 2
■ Implementation-level validation

• High-level validation of intercomponent communication — Chapter 3
• Low-level implementation validation

– Performance debugging — Chapter 4
– Functionality debugging — Chapter 5

So, let us get on with the ride — studying various debugging/validation methods for
design of reliable embedded software and systems.

This page intentionally left blank

CHAPTER

Model Validation 2
We now busy ourselves with the first step in the design process — system modeling.
To describe this step, we need to clarify what a model is. Once our understanding of
a system model is clear, we can also describe the role of verification and validation
in the modeling phase (as far as the overall system design life cycle is concerned).
Indeed, what constitutes a system model is often a major source of confusion. One
of the major issues that causes this confusion is the difference between the behavior
and the architecture of the embedded system being designed.

In its simplest form, system architecture (or structure) refers to the interconnec-
tion among the components, whereas system behavior refers to how the components
change state — possibly by communicating among themselves. This understanding,
although commonplace, often raises further questions because we need to clarify
the notion of “components.” In this book, we define the independent entities in a
design as processes or active objects or components. Thus, a process has a control
flow of its own and can change state possibly by executing independent actions
or by communicating with other processes. System architecture then refers to the
structural relationships between the system components, whereas system behavior
captures how the components change state.

Let us now take a concrete example to further clarify the differences between
system architecture and system behavior. Consider an air-traffic controller (ATC)
that communicates with several clients. Each client could represent a tiny controller,
one for each incoming aircraft, which is used to provide inputs to the incoming
aircraft. The centralized controller interacts with the clients to provide important
updates (such as weather information), and these updates are used as inputs by the
incoming aircraft to make decisions (such as calculation of speed and trajectory).
The basic system structure can be visualized as the following diagram (Figure 2.1).

Figure 2.1 shows that there is one ATC and an arbitrary number of clients
(say, N). Furthermore, a subset of the clients are receiving updates from the ATC,

Embedded Systems and Software Validation
Copyright © 2009, Elsevier Inc. All rights reserved. 7

8 CHAPTER 2 Model Validation

ATC

Clients

1

N

1

0...N

connected

Figure 2.1

Basic system structure for an air-traffic control system.

and this is shown in the diagram as the connected relation (whose cardinality is thus
given as 0 . . .N). This is what we mean by system structure. However, Figure 2.1
does not capture the interaction protocol between the ATC and the clients — how
ATC responds to requests from clients, and how the clients make requests. This
comes under system “behavior.”

For readers familiar with the Unified Modeling Language or UML [54], we can
offer the following analogy. System structure is described using UML class dia-
grams — the classes in the system, the number of objects in each class, relations
across the classes, and the cardinality of the relations. On the other hand, system
behavior involves state changes of the system objects due to control flow and inter-
action across objects. This is captured via UML state diagrams and UML sequence
diagrams. Typically for each class, a state diagram will be given — showing the state
changes for objects in the class. Furthermore, interaction across objects will be given
as sequence diagrams.

Readers unfamiliar with UML need not worry. We will elaborate on these terms
soon. But before that, we will pin down the notion of system behavior and the
importance of modeling it by studying our schematic air-traffic control (ATC)
example.

2.1 PLATFORM VERSUS SYSTEM BEHAVIOR
So far, we have defined behavior as the mechanism of state change via the interaction
between stateful objects.1 However, this definition is too general and does not dis-
tinguish between the system being designed and the platform on which the system
is being implemented. It is important to clarify this difference before we proceed
further.

In the case of our schematic air-traffic control application, the “system being
designed” refers to the ATC and the clients. System behavior refers to the interaction

1 A stateful object is an entity with a local state and control flow of its own.

2.1 Platform versus System Behavior 9

protocol between ATC and clients. However, this does not say anything about how
this interaction protocol will be implemented. It is possible that the ATC and the
clients will be implemented in separate electronic control units, or ECUs, and these
ECUs will communicate via a bus. Here, the bus and its access protocols (which
decide who can transmit on the bus and when) form part of the platform description.
Clearly the bus access protocol refers to platform behavior.

When we refer to modeling of behavior, conventionally in the formal methods or
software engineering communities, this refers to behavioral modeling of the system
being designed. The platform plays little or no role in the design, because the first-
cut system description is supposed to be platform independent. However, the same
cannot be claimed for embedded system designs, which are typically platform-aware.
So, the question is how to combine platform modeling with system model when we
capture behavior?

As might be expected, the combination of the platform model with system model
(to form one jumbo unified model) often does not work out for scalability reasons.
Instead the platform model could be validated to provide some guarantees, and these
guarantees could be used in the debugging/validation of the system model.

How does this connection between platform validation and system model vali-
dation work? Suppose the system model captures distributed controllers running on
different processing elements and communicating among themselves via a bus. The
platform model could capture the overall platform architecture (processing elements
connected via bus) and the communication behavior (in the form of the bus protocol
through which the processing elements communicate). In this case, we can validate
the bus protocol to derive guarantees of the following form:

■ Functionality Guarantee:
• The bus access mechanism never deadlocks, or
• Each request for bus access is eventually served.

■ Timing Guarantee: Each request for bus access is served within n time units
(for some constant n).

Subsequently, these guarantees can be used (often implicitly) while debugging or
validating the system model.

A schematic diagram showing the interaction between platform and system
behavior is shown in Figure 2.2. Here the system has four threads of control, marked
as T1, T2, T3, and T4, which are running on three different processing elements. In
particular, T1 and T2 share the same processing element and receive input data from
the environment (via sensors). As far as the communication patterns in the system
model are concerned, the schematic diagram captures the following:

■ T1 and T2 communicate data to T3. Because the data is accumulated from
different sensors, T3 presumably performs some fusion of the data.

■ T3 communicates data to T4.

10 CHAPTER 2 Model Validation

T1 T2 T3

T4

Sensor1 Sensor2

Figure 2.2

Schematic interaction among environment, system, and platform.

However, the foregoing communication behavior is implemented in a complex way.
In particular, we see that T1 and T2 share the same processing element — so there
has to be some decision (possibly taken by the scheduling policy in the processing
element) on who will communicate over the bus. The key issue is that in embedded
system design, the system models cannot be oblivious of such platform-dependent
issues as processor communication and scheduling within a processing element. This
is particularly so because the system models can also be used to give performance
guarantees (apart from guarantees on system functionality).

We will discuss the timing analysis of the platform’s communication mecha-
nisms in Chapter 4. In this chapter, we discuss debugging and validation of the
system models. However, the same (or similar) modeling formalisms can be used
for describing system behavior as well as platform behavior. In particular, we can
certainly use finite-state machines (FSMs) for modeling platform behavior and the
model-checking technique for validating platform behavior.

2.2 CRITERIA FOR DESIGN MODEL
Usually, the formal modeling of behavior starts from informal requirements that are
given as English documents. Requirements documents are varied in nature, differ-
ing from one application domain to another. The behavioral requirements could be
given as rules (written informally in English). Alternatively, the requirements can be

2.2 Criteria for Design Model 11

represented visually in the form of diagrams. One common example of representing
requirements visually is the use of timing diagrams for hardware circuits where the
evolution of various signals is shown in a clock-cycle by clock-cycle fashion.

For systems with a software component (such as most embedded systems
would have!), the use of visual requirements is a bit more elaborate and compli-
cated. In particular, the UML provides various types of diagrams for depicting
behavior — state diagrams, sequence diagrams, and activity diagrams, to name a
few. There is a tremendous amount of research work on the formal semantics of
these individual diagrams. For our purposes, we are willing to accept a design
model if it provides a complete modeling of behavior of the system under con-
struction using notations which are incorporated into an existing well-understood
standard (such as UML). The reason for making this choice is obvious. We do
not want to make the task of modeling behavior so arduously complex that no
design engineer will care to attempt it! Nor do we want design engineers to prove
theorems on formal semantics of the UML diagrams before they can use these
diagrams.

Our view of modeling is a pragmatic one: It is one of clarifying the English
requirements into a description (the model) that can then be analyzed for debug-
ging purposes. Furthermore, because one of the most common analysis methods
involve running simulations on the model (i.e., exploring the possible runs), we
usually require the model to be equipped with an understanding of the execu-
tion semantics. Thus we articulate the following criteria for acceptable design
models.

Definition 1 (Criteria for Design Model) Our view of a design model (of an intended
embedded system) is that it should have the following properties.

■ Complete — The model should be a complete description of system behavior.
■ Based on well-accepted modeling notations/standards —We depend on these

standards for the model’s semantics, rather than dabbling in semantic issues
ourselves.

■ Preferably executable —We prefer that the model be naturally equipped with
an execution semantics, so that simulations can be run on the model itself.

The notion of a model being “complete” (or not) also needs further explanation.
Often the requirements may refer to many system variables which are not crucial
to the logic of the system design. To illustrate this point, let us refer back to our
schematic air-traffic control example (Figure 2.1) where the centralized ATC pro-
vides weather updates to the clients. Now, when we model the system we essentially
model the protocol through which the ATC and the clients interact so that weather
information can be exchanged. Because the purpose of modeling is mainly to debug

12 CHAPTER 2 Model Validation

this interaction protocol, there is no need to model real weather information within
the model — indeed, it would not be of much use! To concretize the issue further, let
us consider a hypothetical session between the centralized ATC and the clients:

■ Client1 sends “connect” request to ATC.
■ Client2 sends “connect” request to ATC.
■ ATC sends weather information to Client1, Client2.
■ ...

If the clients (in this case Client1, Client2) do not make any decisions based on
the weather information, then there is no need to represent the weather information
concretely — just the protocol involving the propagation of the weather information
is modeled. What if the system being modeled does make decisions based on the
weather? Suppose the clients send different signals to the aircraft depending on
whether the ambient temperature is greater than or less than 10◦C. Even then we
do not need to maintain the exact temperature as a system variable. Instead we can
simply maintain a boolean variable Temp10 that is true if the temperature is greater
than 10◦C.

To give the readers another example, this time from platform modeling, let us
consider a bus communication protocol. Processors hooked to the bus need to nego-
tiate bus access by following this protocol. Now, if our aim is to model and debug
the protocol, we do not need to model in detail the actual data that is transmitted on
the bus once a processor is granted bus access. All of these tricks form the various
state abstractions that we will define more formally later in this section.

In summary, while doing behavioral modeling, we may abstract different system
variables that are mentioned in the requirements. Thus, when we say that a model is
“complete,” we mean “complete at the corresponding level of abstraction.” In other
words, whatever processes and system variables are modeled, their complete behav-
ior (and not just behavioral snippets as are captured in UML sequence diagrams) is
described.

Our goal in enunciating the foregoing criteria is to make sure that the task
of modeling does not become burdensome, yet the models are still useful for
debugging/validation in early stages of the system life cycle.

2.3 INFORMAL REQUIREMENTS: A CASE STUDY
At this stage, we have presented the notion of behavior and what we want in a design
model. Soon, we will be introducing the modeling notations, too. But before we do
so, let us get a feel for what real-life informal requirements look like, and how to
grapple with these informal requirements to construct a formal model.

2.3 Informal Requirements: A Case Study 13

ATC

WCP
Clients

1

1
N1

1
1

0...N
connecteditsWCP

Figure 2.3

System structure for CTAS weather-update controller case study.

The case study we have in mind is the air-traffic control system mentioned earlier.
We are going to model a weather-update controller that manages the communication
of weather information between a centralized controller and several clients (where
each client sends input or keeps in touch with an incoming aircraft as already men-
tioned). The weather-update controller is a part of the Center TRACON Automation
System or CTAS [21]. The CTAS is a set of tools developed at NASAto aid air-traffic
controllers in managing high volumes of air-traffic flows at large airports. Various
processes such as TS (Trajectory Synthesizer) and RA (Route Analyzer) that make
up the CTAS system require the latest weather updates for their functioning.

The weather update controller involves three classes of objects — the weather-
aware clients, a centralized air-traffic controller (abbreviated ATC), and a weather
control panel (abbreviated WCP). The system structure is a slight modification of
Figure 2.1 and is given in Figure 2.3. Both WCP and CM are also part of the CTAS
system. We refer to various processes requiring the weather updates simply as clients.
Thus, we consider the CTAS system to be consisting of three classes of processes:
(i) WCP and (ii) ATC classes with one object each, and (iii) a client class consisting
of multiple client objects.

In our system, the latest weather update is presented by the weather control panel
to various connected clients, via the controller. This update may succeed or fail
in different ways; furthermore, clients get connected/disconnected to the ATC by
following an elaborate protocol. It is the formalization of this protocol that we are
concerned about when we talk of behavioral modeling. Our main purpose here is to
illustrate that subtle errors can be easily missed at the level of informal requirements.
In the later sections of this chapter, we show how the same errors can be found by
analyzing the formal model.

2.3.1 The Requirements Document

The requirements document for the CTAS weather controller is available from
http://scesm04.upb.de/case-study-2/requirements.pdf.

14 CHAPTER 2 Model Validation

We encourage the reader to go through the requirements document from this web-
site at this stage. We should remind the reader that in this example, the requirements
document is reasonably well structured as a collection of rules. Each rule essentially
specifies what response is to be provided when a particular action is encountered.

Even then, with these simple well-structured requirement rules, they are too
voluminous to be reproduced here so that we can even try to understand the intrica-
cies in modeling. Our aim here is not to impress upon the reader that informal
requirements of real systems can be huge and can take a human a lot of time
to comprehend — I believe most of us would agree with that statement. Instead,
we want to illustrate at a micro level how subtle errors can be missed even in
simple well-structured requirements. This serves as a motivation for studying and
using all the material we will present on system modeling thereafter. With this
aim, we have simplified the requirements of the CTAS weather controller system.
We produce them as a separate subsection (Section 2.3.2) for the benefit of the
reader. The requirements would appear comprehensible to design engineers even at a
quick glance.

2.3.2 Simplification of the Informal Requirements

■ Initial States
Initially, the WCP is enabled for manually weather updating, the ATC is at its
idle status, and all the clients are disconnected. Two standard behaviors of this
system are as follows.

■ Client Initialization Phase
1. A disconnected weather-aware client can establish a connection by sending

a connection request to the ATC.
2. If the ATC’s status is idle when the connection request is received, it will set

both its own status and the connecting client’s status to preinitializing and
disable the weather control panel so that no manual updates can be made
by the user during the process of client initialization.

Otherwise (ATC’s status is not idle), the ATC will send a message to the
client to refuse the connection, and the client remains disconnected.

3. When the ATC is preinitializing, it will send a message to instruct the newly
connected client to get the new weather information, and then set both its
own status and the client’s status to initializing.

4. If the client reports success for getting the new weather, the ATC will send
another message to inform the client to use the weather information, and
then set both its own status and the client’s status to postinitializing.

Otherwise, if obtaining the new weather information fails, the ATC will
disconnect the client and set its own status back to idle.

2.3 Informal Requirements: A Case Study 15

5. If the client reports success in terms of using the new weather information,
the initialization process is completed. The ATC will set both its own status
and the client’s status to idle and reenable the WCP so that manual weather
update is allowed again.

Otherwise, if using the new weather information fails, the ATC will
disconnect the client, reenable the WCP, and set its own status back to
idle.

■ Communicating Weather Updates
1. Users can manually update new weather information only when the WCP is

enabled. Clicking the update button on the WCP sends an update message
to the ATC.

2. When the ATC is idle and receives update request from the WCP, it will
set its own status and all the connected weather-aware clients’ status to
preupdating and disable the WCP from any further update requests before
the completion of the current update.

3. When the ATC’s status is preupdating, it will send messages to instruct all
connected clients to get the new weather information, and then set its own
status and the clients’ status to updating.

4. If all the clients report success for getting the new weather informa-
tion, the ATC will send messages to inform the clients to use the new
weather information, and then set its own status and the clients’ status to
postupdating.

Otherwise, if any of the connected clients report failure in terms of
getting the new weather information, the ATC will send messages to all
clients to use their old weather information, and then set its own status and
the clients’ status to postreverting.

5. When ATC’s status is postupdating, if all the clients report success in
terms of using the new weather information, the updating is completed.
The ATC will set its own status and the clients’ status to idle and reenable
the WCP.

Otherwise, if any of the connected clients reports failure in terms of
using the new weather information, the ATC will disconnect all connected
clients, reenable the WCP, and set its own status back to idle.

6. When ATC’s status is postreverting, if all the clients report success in
terms of using the old weather information, the reverting is completed.
The ATC will set its own status and the clients’ status to idle and reenable
the WCP.

Otherwise, if any of the connected clients report failure in terms of using
the old weather information, the ATC will disconnect all connected clients,
reenable the WCP, and set its own status back to idle.

16 CHAPTER 2 Model Validation

Comment

The simplified requirements in the preceding give the feel for the requirements
document of a real system, albeit on a very small scale. This specification is cer-
tainly comprehensible, and yet we cannot use it directly to find errors in it. It turns out
that the informal specification just given has a deadlock error — the system can reach
a state from where no action is possible. We now go on to study modeling notations
and checking procedures (working on those notations) that can detect and even help
correct such errors.

2.4 COMMON MODELING NOTATIONS
The most well-known and often the most popular behavioral modeling formalism
is that of a finite-state machine or a finite-state transition system. Throughout this
book, we will use these terms interchangeably, and we will use the abbreviation
FSM for both of these terms.

2.4.1 Finite-State Machines

At the most vanilla level, a finite-state machine can be described as a structure

M � (S, I ,→)

where S is a finite set of states, I ⊆ S is the set of initial states, and →⊆ S � S is
the transition relation. Thus, a finite-state transition system captures a conventional
bubble-and-arrow diagram with the bubbles denoting the states, and the arrows
denoting the transition from one state to another. In Figure 2.4, we show a trivial
finite-state transition system and its states, initial states, and transitions.

s0

s1
s2

S 5 {s0, s1, s2}

I 5 {s0}

5 {(s0, s1), (s1, s2), (s2, s2), (s2, s0)}

Figure 2.4

Example finite-state transition system.

2.4 Common Modeling Notations 17

We now explain some of the important concepts behind system modeling via
finite-state machines, namely:

■ Unit step: How much computation denotes a single transition in the finite-state
machine?

■ Hierarchy: How do we construct or visualize a finite-state machine model at
different levels of granularity?

■ Concurrency: How do we compose the behaviors of concurrently running
subsystems, each of which is modeled as a finite-state machine?

Unit Step

Inherent in the FSM modeling formalism is the notion of a system progressing by
discrete steps. Thus, starting from an initial state, the system moves in steps by
executing transitions. This naturally raises the question: What will the states and
transitions be capturing in the first place? We say:

■ A state denotes a specific valuation of the system variables, and
■ A transition denotes a change in the valuation of system variables.

With this interpretation, it is reasonable to ask whether a transition is simply an
abstraction of a time unit: in other words, when the actual system is implemented,
what time the different transitions in the model take up, and whether they take up
equal amounts of time. We emphasize to our readers that the transition system is
merely a system model, so exactly what the transitions in the model correspond to
in the actual system implementation depends to some extent on what meaning is
ascribed to the transitions during modeling. Typically, when the transition system
serves as a model of a clocked synchronous system (a system driven by a common
clock, say a sequential circuit), then a transition is used to denote a clock-cycle-wise
evolution of the signals in the system. In this case, a transition takes place every
clock cycle (possibly leading back to the same state if none of the system signals
changed its value). Because the system signals cannot change state without a new
clock cycle emerging, it is enough to observe the system state every clock cycle.

However, for asynchronous systems (such as software systems), we can denote
a transition as the execution of a minimal block of code that is atomically
executed — say, a statement or an instruction. In this case, we do not make the
system model platform-dependent, dependent on the platforms on which the system
will be executed. Hence we do not know how much time each statement will take.
But again, it can be argued that because the system state will not change without a
statement/instruction being executed, it is enough to model state change for every
statement/instruction. We also wish to note that whether we choose a statement or an
instruction as the unit step in the modeling also depends on the designer — at what
level (s)he intends the modeling and verification to be carried out. For programming

18 CHAPTER 2 Model Validation

languages endowed with a virtual machine (such as Java), it is also customary to
model/verify a program at the level of bytecodes. Of course, the smaller the unit
step, the more accurate is the model (meaning closer to the implementation). At the
same time, a more accurate FSM model can be more troublesome to verify via search
procedures, because it contains more detail and the size of the model blows up.

Hierarchy

Related to the issue of resolving what is a unit step in an FSM, there are other
issues in using an FSM for system modeling. Intuitively, it is possible to draw each
FSM hierarchically, reducing the visual blow-up. In other words, each state in a
local FSM can denote a complicated FSM, and so on. Such hierarchical modeling
corresponds to understanding the FSM model of a system at different levels of
granularity. Clearly, corresponding to the different levels of hierarchy, the notion of
unit step also changes. We now illustrate this issue with the help of an example.

An example FSM is shown in Figure 2.5. In this diagram we show the FSM for
a light controller. At its most basic level, the FSM has only two states — off and on.
However, when the light is on, this state can be elaborated by the brightness of the
light, shown by the substates, dim and bright. Furthermore, when the light is brightly
lit, it can be “stable” or, depending on some controls, it may turn “flashing.” This is
shown as another hierarchy level in Figure 2.5. Thus, the basic idea in hierarchical

on off

dim bright

stable flashing

Figure 2.5

Hierarchy levels in FSM-based modeling.

2.4 Common Modeling Notations 19

modeling is that different system variables can be modeled at different levels of the
hierarchy. In our example, we may assume at least three internal variables of the
light controller — mode (whether the light is off or on), brightness (whether the light
is dim or bright when it is on), and stability (whether the light is stable or flashing
when it is bright). These three variables are modeled at different levels, allowing us
to visualize the light controller at progressively higher levels of detail.

At the topmost or first level of the hierarchy (Figure 2.5), there are only two
states — “on” and “off.” Transition from the “on” state to the “off” state is an example
of a unit step at this level. However, if we elaborate the “on” state and go to the next
lower level of hierarchy, we see that the “on” state becomes elaborated by the “dim”
and “bright” substates. Thus, a transition from “dim” to “bright” is a unit step at the
second hierarchy level in Figure 2.5, but it does not qualify as a unit step in the first
hierarchy level. This example illustrates how the unit step changes as we consider
different hierarchy levels of a hierarchically modeled FSM.

Concurrency

Apart from resolving what is a unit step in a finite-state transition system, there are
other difficulties in using an FSM for system modeling. Typically the system being
modeled consists of a number of processes running concurrently (and communi-
cating from time to time). For example, the air-traffic control system discussed in
this chapter is a concurrent composition of a centralized air-traffic controller (ATC),
several client processes, and a weather-control panel (WCP) process. So how do
we model all these disparate processes when we try to model the air-traffic control
system? Usually one would construct at least three FSMs, one for each class of
processes — FSMATC , FSMClient , and FSMWCP. Note that the system being modeled
might have many many client processes. However, the behavior of all these clients
might be specified by a single FSM. For a system with three clients, the system
model will be

FSMATC � FSMClient � FSMClient � FSMClient � FSMWCP

where � denotes the concurrent composition of two FSMs. We define the concurrent
composition operation as follows.

Definition 2 (Basic FSM Composition) Given two FSMs M1 � (S1, I1,→1) and
M2 � (S2, I2,→2), we have

M1 � M2 � (S1 � S2, I1 � I2,→)

where for any s,s′ ∈ S1 and t, t′ ∈ S2 we have ((s, t),(s′, t′)) ∈→ iff (s,s′) ∈→1 or
(t, t′) ∈→2. Stated otherwise, we have a transition from state (s, t) to state (s′, t′),
that is, (s, t) → (s′, t′), if and only if either s →1 s′ or t →2 t′.

20 CHAPTER 2 Model Validation

Describing a system model as a concurrent composition of the FSMs of the
participating processes is standard practice. It allows us to avoid constructing the
global state machine corresponding to the concurrent composition. Instead we model
the local FSMs for the individual processes and simply say that the global FSM of
the entire system can be obtained by composing these local FSMs.

Thus, for a system with two processes whose local FSMs each have 20 states, we
draw only 20 � 20 � 40 states, as opposed to a global FSM with up to 20 � 20 � 400
states. The reader should note that we even though we are drawing only 20 � 20 � 40
states, they implicitly represent all the 400 states. We could have also explicitly drawn
these 400 states. However, the notation of describing a global FSM as a composition
of local FSMs allows us to avoid drawing all those 400 states — we draw only
20 � 20 � 40 states to represent all the 20 � 20 � 400 states!

Thus we view a system as a concurrent composition of processes where the
control flow in each process is encoded as an FSM. The overall control flow of the
system is obtained by any arbitrary interleaving of the control flows of the constituent
processes. Interleaving is implicitly integrated into the definition of FSM composi-
tion — a composite state (s, t) makes a transition if and only if either s or t makes
a transition in their local FSMs. In a broad sense, having a notion of interleaving
integrated in the process composition is a useful thing to do. In particular, consider
the system implementation as implementing the local FSMs in a distributed fashion.
In this case, the local FSMs will be running at different speeds depending on the
platform on which they are run. Because we do not want to make any assumptions
about the relative speeds of the platforms on which the FSMs are run, an interleaving
semantics is safe to assume. Note that even if all the local FSMs are implemented
on a single processor, we still cannot assume anything about the scheduling policy
running on the processor. In such cases, the local FSMs will be run as threads on
a single processor, and the scheduling policy will determine which thread will pro-
ceed. Again, without making specific assumptions about the scheduling policy, the
interleaving semantics (which allows any enabled process to proceed) will capture
all possible behaviors. This underscores the purpose of a system model in embedded
system design: It is intended to capture all possible behaviors that may emerge in
system implementations — possibly more behaviors than will be observed in the
actual implementations, but never fewer.

2.4.2 Communicating FSMs

At this stage, we have given the FSM as a basic system model and defined the comp-
osition of FSMs. However, the FSM model we have presented so far is too simplistic
for general usage. Let us examine why. The local FSMs denote individual threads of
control, and their composition is defined by interleaving. However, we have built no
mechanism for the threads of control to communicate. In general, the processes in a

2.4 Common Modeling Notations 21

system design are bound to communicate. Indeed, it is the communication that is the
centerpiece of the process interaction. Without inter-process communication, there
would hardly be any subtle bugs that need to be found by modeling and validating
the system. We have not discussed inter-process communication across FSMs at all,
and we proceed to do now.

How do we add communication to our basic FSM model? The simplest way
is to label the transitions with “action” names. Thus, each FSM is now defined as
M � (S, I ,�,→), where S is a finite set of states, I ⊆ S is the set of initial states, �

is a collection of actions also called the action alphabet, and →⊆ S � � � S is the
transition relation. Composition of FSMs is now defined as follows.

Definition 3 (Composition of Communicating FSMs) Given two FSMs

M1 � (S1, I1,�1,→1) and M2 � (S2, I2,�2,→2)

their composition is defined as

M � (S1 � S2, I1 � I2,�1 ∪ �2,→)

Here S1 � S2 is the set of states, I1 � I2 is the set of initial states, and �1 ∪ �2 is
the action alphabet. The transition relation → is defined as follows. Given action
a ∈ �1 ∪ �2, states s,s′ ∈ S1 and t, t′ ∈ S2, we have ((s, t),a,(s′, t′)) ∈→, also written
as (s, t)

a→ (s′, t′), if and only if any one of the following conditions holds:

■ a ∈ �1 ∩ �2 and (s,a,s′) ∈→1 and (t,a, t′) ∈→2

■ a ∈ �1 � �2 and (s,a,s′) ∈→1

■ a ∈ �2 � �1 and (t,a, t′) ∈→2

Let us now examine the foregoing definition. First of all, we add action labels to
all transitions in our finite-state transition systems or FSMs. Now, when we compose
two FSMs M1 and M2, if their action alphabets are completely disjoint, the compo-
sition will proceed as before, by arbitrarily interleaving transitions from the local
FSMs. However, if the intersection of the action alphabets of M1,M2 is nonempty,
the composition of M1, M2 proceeds differently. For action labels that are common
to M1 and M2, we require both of the FSMs to make a move together on these
common actions. On the other hand, for action labels that are local to M1 (M2), it is
sufficient for only M1 (M2) to make a move. In other words, we make FSMs M1 and
M2 communicate on the common actions.

Let us examine the example in Figure 2.6. We have shown two local FSMs, each
with two states conveniently marked as “idle” and “busy.” If we ignore the action
labels on the transitions and compose the two FSMs as per our earlier definition,
we get a global FSM with four states (idle, idle), (idle, busy), (busy, idle), and

22 CHAPTER 2 Model Validation

idle busy

data
a1

ack

idle busy

data
b1

ack

Figure 2.6

Basic communication across FSMs (common actions marked in italics).

(a) (b)

idle, idle

idle, busy busy, idle

busy, busy busy, busy

idle, idle

data ack

a1

b1

Figure 2.7

Global FSM by composing the local FSMs in Figure 2.6 (a) without considering action labels
and inter-process communication, (b) after considering action labels and communication.

(busy, busy). This FSM is shown in Figure 2.7a. On the other hand, if we consider
the action labels, we require both the local FSMs to make a joint move on the
common actions “data” and “ack” (marked in italics in Figure 2.6). Thus, the action
“data” here summarizes a communication across the two processes. In this case, the
global FSM obtained by composing the two local FSMs has only two states; it is
shown in Figure 2.7b.

One may seriously question the purpose of such a communication — after all,
what do the local FSMs communicate to each other? Usually, while modeling
an embedded system, we expect the various system components to communicate
data among themselves. In this case, our inter-process communication via common
actions simply denotes some sort of a handshake or synchronization. The important
issue here is that this is a mechanism for two or more processes to communicate via
a common action. If we want to model data communication across processes, this

2.4 Common Modeling Notations 23

can be achieved by allowing actions that go beyond simple symbols. Thus, instead
of having simple action symbols a,b,c in our FSM, each action symbol can be a
complex structure with one or more parameters. Once we have a basic mechanism of
communication across FSMs, such extensions to model data communication can be
easily added. Typically, such extensions are achieved by (a) making the occurrence
of any common action a communication between exactly two processes (multiparty
communication is ruled out), and (b) assigning explicit sender and receiver roles for
a common action. The sender role is typically denoted by an exclamation mark or !,
whereas the receiver role is denoted by a question mark or ?. Using these notations
we have modified the diagram of Figure 2.6 into Figure 2.8.

Now, let us examine the local FSMs in Figure 2.8. One of the processes, called
the sender process, executes data(5). The action label data being a common action,
this involves the other process (also called the receiver process) to execute its action
data(X) along with it. Here X is a local variable of the receiver process. As a result
of this joint move, we achieve:

■ Synchronization of the two processes as before, and
■ Passing of the value 5 to variable X (data communication).

Having such value-passing in our models is important for capturing data communi-
cation. However, to capture the directionality of the value passing (i.e., which process
sends the value, and which process receives it), we explicitly mark the sending and
receiving of values via ! and ? symbols.

What if the sender process wants to send the value stored in one of its local
variables (irrespective of what the value is)? If the local variable is Y , this can be
denoted by an action label of the form !data(Y). When this action is executed, Y
should be instantiated to a concrete value that is then propagated to the receiver side.

Note that our communication involves the sender and the receiver to come
together in the form of a handshake. In the concurrency theory literature, this is
often referred to as “blocking send,” because the sender cannot send data unless the
receiver is ready. This corresponds to synchronous communication — because, in a
way, the sender and receiver synchronize.

Sender process

idle busy

!data(5)
a1

?ack

Receiver process

idle busy

?data(X)
b1

!ack

Figure 2.8

Data communication across FSMs: ! denotes send, ? denotes receive.

24 CHAPTER 2 Model Validation

The alternative is to have a nonblocking send, where the sender can proceed even
if the receiver is not ready. This is only possible if there is an underlying message
buffer storing messages that have been sent but have not been received. The presence
of such buffers will no doubt alter the definition of global system state.

Consider a system with two processes p,q with local FSMs FSMp and FSMq.
Let there be two message buffers, Bufp!q for storing messages sent from p to q and
Bufq!p for storing messages sent from q to p. The local FSM of Bufp!q is given by the
schematic in Figure 2.9, where N is the capacity of the buffer. Here we have shown
only the number of filled slots of the buffer, and not the messages stored in the buffer.
In most implementations the message buffers supporting nonblocking sends will be
queues enforcing a first-in-first-out (FIFO) discipline.

For the sake of understanding, Figure 2.9 also shows a sample p and q process.
Here p sends to q infinitely, while q receives from p infinitely. Now, let us examine
Figure 2.9 more closely. The send action p!q is supposed to be a communication
between processes p and q. However, in the presence of the stateful buffer process,
it is a communication involving p and buffer. Similarly, q?p is now a communication
involving the buffer process and q process. Interpreted in this way, we can see that
the composition of p, q and buffer allows p to send messages without q receiving
them, provided there are at most N messages that have been sent but not received.
Here N denotes the capacity of the buffer that is modeled by the buffer process
Bufp!q. The global FSM is then given by composing FSMs of processes with the
FSMs of the buffers. Thus, for a system consisting of two processes p and q, the
global FSM is

FSMp � FSMq � FSMBufp!q � FSMBufq!p

0 ….1 2 N2 1 N

p !q

q?p q?p q?p q?p q?p

p !q p !q p !q p !q

Buffer process

p !q q?p

Sample process p Sample process q

Figure 2.9

FSM of a buffer to store messages from process p to process q. Sample p and q processes are
also shown for the reader’s understanding.

2.4 Common Modeling Notations 25

For systems with more processes, there will be more buffers, and the global state will
be modified accordingly. Referring back to the example in Figure 2.9, we note that
q never sends any messages to p in our example, so we have not shown FSMBufq!p ,
the buffer for storing messages from q to p.

Connection to State and Class Diagrams

The communicating FSMs we have presented capture hierarchy, concurrency, and
communication. Thus, they have all the essential ingredients of the State Diagrams in
the Unified Modeling Language (UML). The Statecharts model, also called the State
Diagrams in the Unified Modeling Language (UML), is based on communicating
FSMs. Statecharts were developed by David Harel [34] for reactive systems and
have subsequently been integrated into UML as one of the major diagram types.
Statecharts build on FSMs by integrating OR-states and AND-states. An OR-state
encodes hierarchy, presenting a FSM at different levels of details. An AND-state
allows us to show the different concurrently running processes in a system as separate
state machines, rather than constructing their concurrent composition. Indeed, this is
what we emphasized while discussing concurrency modeling via FSMs. Statecharts
allow OR- and AND-states to be intermixed arbitrarily. Apart from AND/OR-states,
statecharts allow for communication among processes in a system via broadcast. The
semantics of statecharts’broadcast communication is best described operationally. In
Section 2.6.1, we discuss simulation of state diagrams — where we clarify broadcast
communication in state diagrams.

Regarding system modeling via class and state diagrams, one other point deserves
explicit mention. When we model an embedded system, it is common to have multi-
ple processes with the same behavior. Thus in our running example of the air-traffic
control system, all the clients are behaviorally similar. Following the standard UML-
based object-oriented design methodology, it is common to specify such processes
together as a client class. The behavior of any object of this class will be captured
by a single state diagram. The structural relationship or associations across classes
will be captured by a UML class diagram. The class diagram shows the classes, mul-
tiplicities of objects in each class, relations across classes, and cardinality of these
relations. The class diagram for our air-traffic control case study was earlier given in
Figure 2.3. It shows that there is one centralized controller ATC, one weather control
panel WCP, and N clients. It also shows the relations across these three classes, such
as the connected relation that keeps track of the clients connected to the ATC. As we
can see from this example, the designer can specify names of relations across the
system classes in a class diagram. In addition, the class diagrams allows some spe-
cial relationships across classes such as subclass relationship and part-of relationship
(e.g., in automotive control, a cruise-controller class has a part-of relationship with
the car class).

26 CHAPTER 2 Model Validation

Toward Message Sequence Chart-Based Models

One subtle point needs to be brought out before we wrap up our discussion on FSMs.
For the sake of modeling nontrivial data communication across FSMs, we assigned
explicit sender and receiver roles, making all communication binary. Strictly speak-
ing, this restriction is not necessary. We can have a common action appearing in
several processes’ local FSMs. This common action need not be restricted to two
processes, and it does not need to be an atomic action. Instead it can be a complex
protocol snippet involving several processes. This allows us to dream of a system in
two levels. First we describe the local FSMs of each process at a high level where
we describe the protocols in which the process participates in (and in what order
it does so). Later on, we proceed to describe or elaborate each of these protocols.
As a simple example, in Figure 2.10 we describe a producer-consumer style exam-
ple consisting of three kinds of processes — producer(s), a medium (for passing the
data), and consumer(s). Such systems are common in embedded system design —
for example, consider the producer to be a processor’s bus interface, the medium
to be a bus controller, and the consumer to be a memory unit attached to the bus.
At a high level, we can simply design a producer to (a) produce data, (b) request
bus access until it is granted, and then (c) transfer the data. Similarly, the medium
could simply (a) process requests from producer(s), then (b) allow transfer of data.
The consumer could (a) get data via transfer over medium, and (b) consume the
data. At this high level, we can describe the producer, medium, and consumer as the
simple FSMs in Figure 2.10. The action labels are get_data, request, transfer
and put_data; out of these, get_data and put_data are local actions, request
involves communication of two processes, and transfer involves communica-
tion of three processes. However, the action labels here need not be atomic actions.
Instead they can denote protocol snippets that need to be modeled and presented in
the next level of system modeling.

Medium Consumer

transferrequest transfer put_data

Producer

get_data

request

transfer

Figure 2.10

A high-level FSM where the actions may denote complex protocols.

2.4 Common Modeling Notations 27

There are various ways of describing such protocol snippets. One popular way is
to describe them via Message Sequence Charts, also known as Sequence Diagrams
in UML. Indeed, some recent papers describe system models where the common
actions in communicating FSMs can be described via message sequence charts
[31, 77].

We now proceed to describe message sequence charts (MSCs). We first men-
tion how MSCs can be used to complement an FSM-like system model. We then
describe how, with the help of MSCs, new intercomponent style system models can
be developed.

2.4.3 Message Sequence Chart–Based Models

FSMs highlight intraprocess control flow while suppressing inter-process commu-
nication to send-receive actions. We will now discuss system models that highlight
the inter-process communication while suppressing the intraprocess control flow or
computation. The basic building block of such system models is a message sequence
chart (MSC).

Message sequence charts [102] have traditionally played an important role in soft-
ware development. MSCs describe scenarios for system behaviors. These scenarios
are constructed prior to the development of the system, as part of the requirements
specification phase. MSCs can be used to depict the interaction between different
components (objects) of a system, as well as the interaction of the system with the
external environment (if the system is reactive). Syntactically, an MSC consists of a
set of vertical lines, each vertical line denoting a process (or a system component).
Computations within a process are shown via internal events, and any communica-
tion between processes is denoted by a unidirectional arrow (typically labeled by a
message name). Figure 2.11 shows a simple MSC with two processes; m1 and m2
are messages sent from p to q.

Semantically, a MSC denotes a set of events (message send, message receive,
and internal events corresponding to computation) and prescribes a partial order over
these events. This partial order is the transitive closure of (a) the total order of the

m1

m2

qp

Figure 2.11

A schematic MSC.

28 CHAPTER 2 Model Validation

events in each process2 and (b) the ordering imposed by the send-receive of each
message.3 The events are described using the following notation. A send of message
m from process p to process q is denoted as 〈p!q,m〉. A receive event by process q to
a message m sent by process p is denoted as 〈q?p,m〉. An internal event x executed
by process p is denoted as 〈p,x〉. As mentioned earlier, the message m as well as the
processes p, q can contain variables. Variables transmitted via messages can appear
in internal events as well.

Consider the chart in Figure 2.11. Using the foregoing notation, the total order
for process p is 〈p!q,m1〉 � 〈p!q,m2〉 � 〈p,a〉 where e1 � e2 denotes that event e1
“happens-before” event e2. Similarly, for process q we have 〈q?p,m1〉 � 〈q?p,m2〉.
For the messages we have 〈p!q,m1〉 � 〈q?p,m1〉 and 〈p!q,m2〉 � 〈q?p,m2〉. The
transitive closure of these four ordering relations defines the partial order of the
chart. Note that it is not a total order because from the transitive closure we can-
not infer that 〈p!q,m2〉 � 〈q?p,m1〉 or 〈q?p,m1〉 � 〈p!q,m2〉. Thus, in this example
chart, the send of m2 and the receive of m1 can occur in any order.

We now formally define an MSC. The vertical lines in an MSC are the concur-
rently running processes whose interaction we capture. In MSC terminology, these
vertical lines are also called lifelines.

Definition 4 (MSC) An MSC m can be viewed as a partially ordered set of events
m � (L, {El}l∈L,�), where L is the set of lifelines in m, El is the set of events lifeline l
takes part in m, and � is the partial ordering relation over the occurrences of events
in {El}l∈L such that

■ �l is the linear ordering of events in El, which are ordered top-down along
the lifeline l,

■ �sm is an ordering on message send/receive events in {El}l∈L. If es � p!q,m
and the corresponding receive event is er � q?p,m, we have es �sm er.

■ � is the transitive closure of �L �
⋃

l∈L �l and �sm, that is, � � (�L ∪
�sm)∗

In our MSC semantics, we consider the send and receive of a message as separate
events. In other words, the sends are “nonblocking”: A send event can proceed
without waiting for the corresponding receive event. As mentioned in Section 2.4.1,
this requires the presence of message buffers. In particular we may assume that for
a MSC with n processes, each process has n � 1 message buffers to store incoming
messages from the other n � 1 processes. However, we may also consider MSCs

2 Time flows from top to bottom in each process.
3 The send event of a message must happen before its receive event.

2.4 Common Modeling Notations 29

where each message passing is a handshake between the sender and the receiver.
In other words, the sends can be blocking. Under the handshaking semantics, the
partial order corresponding to an MSC m will certainly respect the partial order of
m constructed by assuming nonblocking sends. In fact, the partial order under the
handshaking semantics can be obtained by constraining the partial order constructed
by assuming nonblocking sends. We simply require all send events to occur at exactly
the same time as their corresponding receive. As an example, consider the chart in
Figure 2.11. Assuming that the sends are nonblocking, we have

〈p!q,m1〉 � 〈p!q,m2〉 〈q?p,m1〉 � 〈q?p,m2〉
〈p!q,m1〉 � 〈q?p,m1〉 〈p!q,m2〉 � 〈q?p,m2〉

In the case of blocking sends we have only

〈p!q,m1〉 � 〈p!q,m2〉 〈q?p,m1〉 � 〈q?p,m2〉

Furthermore, we know that p!q,m1 and q?p,m1 happen together, as do p!q,m2 and
q?p,m2.

Use of MSCs in System Modeling

At this stage, we have illustrated the basics of MSC syntax and semantics. How-
ever, we have not elaborated the usage of MSCs — how they are actually used in
system modeling. Conventionally, MSCs are used to denote snippets or scenarios of
system behavior. For this reason, in the literature, MSC-based modeling has often
been referred to as “scenario-based modeling.” Depending on whether we view the
system as an open system or a closed system, MSCs are used for depicting snippets
of interaction between system and environment (open-system view) or for depict-
ing snippets of interaction between system components (closed-system view). Let us
elaborate both of these points with the help of our running example from the air-traffic
control domain. With the open-system view, we can simply view the “system” as
the centralized controller ATC, while the clients and weather control panel form the
environment of the system, interacting with the ATC. With the closed system view,
the system consists of ATC, WCP and clients — interacting with each other. What-
ever the view, the MSCs in this case will be used for depicting sample interactions
between the ATC and the Clients/WCP. A sample MSC from our air-traffic control
example is shown in Figure 2.12. It shows a client seeking a connection from theATC.
TheATC updates its internal records, sets the client’s status accordingly, and disables
the WCP.

30 CHAPTER 2 Model Validation

ATC WCP

connect

setStatus_1
disable

Client

Status 5 1

Figure 2.12

An MSC from our air-traffic control system.

The Problem with MSCs

An MSC describes only one scenario that may happen in system execution. It
simply denotes an interesting protocol snippet that may or may not occur during
system execution. In our running example of air-traffic control, we have shown
an MSC showing a client connecting to the MSC in Figure 2.12. But, this by no
means shows the complete behavior of the system — not all execution traces are
required to exhibit the MSC (e.g., consider the pathological case where no client
connects to the ATC). Compared to the model of FSMs that we learned earlier,
this indeed sounds like a very weak form of requirement. While modeling a system
using FSMs, we made the following statement: “A system model should capture
all possible behaviors that may emerge in system implementations, possibly more
behaviors than will observed in the actual implementations, but never fewer.” In
this sense, is MSC is a good system model? The answer is no. An MSC does not
give a complete description of system behavior at any level of abstraction, and
hence it does not meet the very first criterion of design models we had enunciated
in Definition 1. We now proceed to explain how this problem with MSCs can be
alleviated.

MSC-Graphs and HMSC

To alleviate the foregoing problem, the model of MSC-graphs has been proposed.
An MSC-graph is simply an FSM where each state of the FSM denotes an MSC.
The behaviors allowed by an MSC-graph can be obtained by finding the traces of the
MSC-graph starting from an initial state. This leads to traces of infinite length. Some-
times, one or more nodes of the MSC-graph may also be marked as a “final” node.
In such cases, the MSC-graph generates traces, each of which is obtained by con-
catenating finitely many MSCs. An example of an MSC-graph (and its constituent

2.4 Common Modeling Notations 31

request

deny

InterfaceUser

request

Resource

Chart M 1

InterfaceUser

no

Resource

Chart M 2

request

grant

InterfaceUser

yes

Resource

Chart M 3

M 2 M 3

M 1

Figure 2.13

An example MSC-graph.

MSCs) is shown in Figure 2.13. Because this graph has a final state, it can be seen
as a finite-state automaton representing the collection M1 ◦ (M2)

∗ ◦ M3. That is, the
graph represents one execution of chart M1, followed by zero or more (but finitely
many) executions of chart M2, followed by M3 getting executed exactly once.

Let us now study the example of Figure 2.13. It shows interactions among a
user, an interface, and a resource. The user requests resource access via the inter-
face. The interface forwards this request to the resource. Depending on whether the

32 CHAPTER 2 Model Validation

resource is occupied or not, the user’s request is granted/denied and this decision is
communicated to the user via the interface. Here we have

■ Chart M1 denoting a resource access request by the user,
■ Chart M2 denoting resource access being denied to the user, and
■ Chart M3 denoting resource access being granted to the user.

The behaviors of the system, summarized by M1 ◦ (M2)
∗ ◦ M3 thus denotes resource

access request by the user, followed by zero or more failed attempts to get the
resource, followed by an eventual granting of resource access. Thus, any sequence
of MSCs of the form M1 ◦ (M2)

∗ ◦ M3 is a behavior allowed by the MSC-graph.
Now what does it mean for a concrete sequence of MSCs, say M1 ◦ M2 ◦ M3, which
is in fact captured by the expression M1 ◦ (M2)

∗ ◦ M3, to be an allowed behavior of
an MSC-graph? To answer this question, we will need to study the issue of MSC
concatenation.

There are two popular ways of concatenating MSCs. The first one, called syn-
chronous concatenation, stipulates that for a concatenation of two MSCs, say
M2 ◦ M3, all events in M2 must happen before any event in M3. In other words,
it is as if the participating processes synchronize or handshake at the end of an
MSC. On the other hand, asynchronous concatenation performs the concatenation
at the level of lifelines (or processes). Thus, for a concatenation of two MSCs, say
M2 ◦ M3, any participating process (say Interface) must finish all its events in M2

prior to executing any event in M3. The partial orders resulting from synchronous
and asynchronous concatenation will be very different.

As an example, let us try to construct the partial orders for M2 ◦ M3 (where M2

and M3 refer to the MSCs in Figure 2.13) under synchronous and asynchronous
concatenation. In particular, is the receipt of the “no” message by the user (the event
〈user?interface,no〉) required to occur before the send of “request” by interface in
chart M3 (the event 〈interface!resource,request〉 in chart M3)? The reader may refer
to Figure 2.14 for a visual depiction of the MSC concatenation M2 ◦ M3. We see
that under synchronous concatenation M2 ◦ M3, all events in chart M2 take place
before all events in chart M3. Therefore, the receipt of the “no” message by the
user (the event 〈user?interface,no〉 in chart M2) is required to occur before the
send of “request” by interface in chart M3 (the event 〈interface!resource,request〉
in chart M3). However, under asynchronous concatenation M2 ◦ M3, only events of
each process in chart M2 are required to occur before the events of the corresponding
process in chart M3. Therefore, the receipt of the “no” message by the user process
(the event 〈user?interface,no〉) is only required to occur before events of the user
process in chart M3. Therefore, 〈user?interface,no〉 (an event of the user process
in chart M2) can occur after 〈interface!resource,request〉 (an event of a different
process, the interface process, in chart M3). In fact, in the example of Figure 2.14,
under asynchronous concatenation M2 ◦ M3, the interface and resource processes

2.4 Common Modeling Notations 33

Interface ResourceUser

request

deny

no

request

grant

yes

Chart M 2

Chart M 3

Figure 2.14

Concatenation of two MSCs (see Figure 2.11 for the constituent MSCs).

could even complete all their events in chart M3, while the user process might still
not have finished M2. The interested reader might want to double-check this claim.

Given the two notions of concatenation, let us now go back to what an MSC-
graph means in terms of behavior. To do this, we will need the notion of linearization
of an MSC.

Definition 5 (MSC Linearization) A linearization of an MSC m is a sequence of
events � where (a) each event of MSC m appears exactly once, and (b) the order
of occurrence of events in � respects the partial order of the MSC m. The set of all
linearizations of an MSC m will be denoted as Lin(m).

Now, an MSC-graph can be seen as a generator of MSC sequences: That is, given
a sequence of MSCs, we can test whether the MSC-graph allows the sequence or
not. For every allowed sequence of MSCs, if we adopt asynchronous concatenation,
a sequence of MSCs also produces an MSC. Then, any sequence of events obtained
by linearizing the partial order of this resultant MSC is an allowed behavior.

If we adopt synchronous concatenation, for every allowed sequence of MSCs,
we simply linearize the partial order of the individual MSCs and concatenate these
linearizations to get allowed behaviors. Let us take an example (Figure 2.13) to
illustrate this point. Clearly M1 ◦ M2 ◦ M3 is an allowed sequence of MSCs for
this MSC-graph. From the allowed sequence of MSCs of an MSC-graph, which
traces (i.e., sequence of events) can we conclude to be allowed behaviors of the
MSC-graph in Figure 2.13? Under asynchronous concatenation, M1 ◦ M2 ◦ M3 is an

34 CHAPTER 2 Model Validation

MSC, so all traces in Lin(M1 ◦ M2 ◦ M3) are allowed behaviors of the MSC-graph.
Under synchronous concatenation, Lin(M1) ◦ Lin(M2) ◦ Lin(M3) are the allowed
execution traces.

Finally, just as we added hierarchy to FSMs, the model of MSC-graphs can also
be endowed with hierarchy. Such a model is popularly called a high-level MSC or
HMSC. Thus, each node of an HMSC is either an MSC or (recursively) an HMSC.
Clearly, every MSC-graph is an HMSC, but not vice versa.

Before we wrap up our discussion on MSC-graphs, we raise a pragmatic issue.
The schematic in Figure 2.13 is simply capturing the interactions of the interface and
the resource with one sample user. However, in a real system implementation there
could be many users. Can we think of modifying the MSC-graph model so that we
can capture interactions of interface/resource with many users without duplicating
the same MSCs over and over again? This is left as an exercise for our readers.

Executable Models

The model of MSC-graphs and HMSCs that we presented here can be used to provide
a complete system description. However, it still does not meet one of the important
criteria that we had enunciated for design models in Definition 1 — they are not
executable. In other words, we cannot simply synthesize the code4 for each pro-
cess by following through their lifelines in the sequence of MSCs allowed by the
MSC-graph. This is because whether we follow synchronous or asynchronous con-
catenation, moving from one node to another in the MSC-graph involves a decision
about the “next step.” Now if there is a node M1 with two outgoing edges to nodes
M2,M3 (as in the example shown in Figure 2.13), what if some of the processes
participating in MSC M1 move to M2, while some other processes move to M3?
Clearly, this is not a legal behavior allowed by the MSC-graph, yet it is possible
if we generate code in a local, per-process fashion. At this point, our reader may
be wondering why we should care at all about inter-process style notations such as
MSCs, if ultimately we want to generate code in a per-process fashion from the mod-
els? The answer to this question is a pragmatic one — MSCs are extremely popular
among system designers, and they are closer to the informal system requirements.
On the other hand, FSM models are closer to system implementations. Hence FSM
models are more suitable for code generation.

Other MSC-Based Models

The main appeal of MSCs is their simplicity in describing interaction protocols. Yet,
as we can see, building even complete system descriptions from MSCs involves a

4 The term synthesis here refers to generating an implementation from a specification.

2.4 Common Modeling Notations 35

bit of work. One of the reasons for studying MSC-graphs/HMSCs is that often the
requirements document contains sample interactions given as MSCs, and it might be
(relatively) easy for the system designer to build a formal model by combining the
MSCs into a graph structure. This formal model can then be used for simulations,
debugging, and checking early in the system life cycle.

Apart from the model of MSC-graphs, there are other ways of integrating MSCs
to build a complete system model. In the last decade, several system models have
been proposed directly based on MSCs. One prominent attempt in this direction is
the formalism of live sequence charts (LSCs) [22, 36]. Live sequence charts build
on the MSC notation to describe properties of the system behavior. It involves a
different, rather non-operational way of thinking while modeling or dreaming about
the system to be designed. For example, for the system in Figure 2.13, the designer
might start with the following guarantee:

Whenever the user requests the interface, the request is eventually granted.

Note that this property does not require the designer to think about the operational
method for satisfying the user’s request — the interface requesting the resource, and
if the resource says no then requesting again — none of it. The designer only has
in mind the above property from a user’s perspective that (s)he wants the system
to satisfy.

The good thing about the LSC model is that it allows such properties to be spec-
ified, visualized, and even checked. As the user can think of more such properties,
the system behavior becomes more constrained. The LSC formalism provides an
execution engine (called the Play Engine) to check whether a collection of such prop-
erties are “conflicting.” This is to prevent the designer from specifying inconsistent
properties that no system can possibly satisfy.

In the LSC language, there are two kinds of charts — universal and existential.
Existential charts are just like MSCs, so we leave them out of discussion. Any
universal chart is a synchronous concatenation of two MSCs — a pre-chart and a
body-chart. As per the notational convention of LSCs, a pre-chart is always shown
inside a dashed hexagon. Now, consider a universal chart Pre ◦ Body where Pre is
the pre-chart, ◦ denotes synchronous concatenation, and Body is the body-chart.
A system implementation satisfies the universal chart Pre ◦ Body if and only if from
every reachable state a linearization of Pre is executed, it must be eventually fol-
lowed by a linearization of Body. Thus, for any execution trace of the system, if a
linearization of Pre is encountered, it must be eventually followed by a lineariza-
tion of Body. In Figure 2.15a we show the LSC universal chart for the requirement
“Whenever the user requests the interface, the request is eventually granted.” Note
that the chart only constrains the order of messages appearing in the chart; messages
not appearing in the chart can occur in any order. Thus the MSC shown in Figure
2.15b, which indeed is a legal behavior of the original MSC-graph shown in Figure
2.13, is also allowed by the LSC of Figure 2.15a.

36 CHAPTER 2 Model Validation

(a) (b)

request

request

grant

yes

User Interface Resource
User Interface

request

yes

Figure 2.15

(a) An LSC for Figure 2.13, and (b) an MSC run satisfying the LSC property.

ATC Client

setStatus(postInit)

cycleStatus 5
Init

CTAS_GET_NEW_WTHR

yes

cycleStatus 5
postInit

CTAS_USE_NEW_WTHR

The CM should perform the following
actions when the Weather Cycle status is
“initializing” and the newly connected
weather-aware client has responded yes to
CTAS_GET_NEW_WTHR message

• set the Weather Cycle status to “post-
initializing”

• set the weather status of the newly
connected weather-aware client to “post-
initializing”

• it should send a CTAS_USE_NEW_WTHR
message to the newly connected weather-
aware client.

Figure 2.16

LSC encoding a requirement from our air-traffic control system.

In the preceding, we mention a universal LSC as a property or a requirement
against which we can check a system implementation. However, pragmatically
speaking, we can also use LSCs as a system modeling language — if we can
specify enough properties of the system under construction to constrain the sys-
tem behavior. The reader who delves into the official requirements document
of our air-traffic control example in this chapter (see page 14, available at
http://scesm04.upb.de/case-study-2/requirements.pdf) will find that
such requirements are readily expressed as LSC universal charts. In Figure 2.16
we show an actual requirement from the informal requirements document and its

2.5 Remarks about Modeling Notations 37

straightforward LSC translation. The client is enclosed within a dashed box —
indicating this is an interaction of the ATC with any client. A collection of such
requirements becomes a collection of LSC universal charts readily yielding an
executable system model directly from requirements.

2.5 REMARKS ABOUT MODELING NOTATIONS
At this point, we have familiarized ourselves with a host of modeling notations.
The purpose of all these notations is to help us express the system model from
different viewpoints. One may ask why have so many modeling notations — why
not have a unified model? In this context, we would like to remind the reader that
the well-known Unified Modeling Language (UML) also accommodates specifica-
tion of system behavior from different viewpoints — state diagrams (close to FSMs)
supporting the intracomponent view, and sequence diagrams (close to MSCs) sup-
porting the intercomponent view. In some sense, the intra- and intercomponent views
form two dual views of system behavior — each having its distinct advantages.

The intracomponent modeling via FSMs highlights the computation steps inside
each process while suppressing the inter-process communication. It leads more
directly to code generation for the individual processes of the system — bringing
the model closer to implementation. However, when the designer is trying to get a
handle on the system behavior at the very early stages, starting from the informal
requirements written in English, it is easier for the designer to start by drawing some
sample scenarios in the form of MSCs. The MSCs highlight inter-process commu-
nication while suppressing the computation steps inside each process. These MSCs
can then be combined to a MSC-based system model such as HMSC. In other words,
the intercomponent view of modeling is useful for synthesizing system models from
informal requirements, whereas the intracomponent view is useful for synthesizing
system implementations from system models.

A natural question then is whether MSC-based models such as HMSCs can be
translated into FSM-based system models. Thus, say, starting from an HMSC model
of a system, is it possible to straightforwardly synthesize the behavior of each pro-
cess in the system as an FSM? The answer to this question is unfortunately, no.
In Figure 2.17a, we give an MSC-graph (or HMSC, since every MSC-graph is
an HMSC but not vice versa). The MSC-graph has an initial state but no final
states. Now, the most natural way of generating code from this model5 is as fol-
lows — for each process, we simply follow its role in the MSC sequences allowed

5 Generating code from model here refers to generating a mixed hardware/software implmentation from
the model.

38 CHAPTER 2 Model Validation

(b)(a)

Ch1

Ch2 Ch3

m 1
p rq

m 3
p rq

m 2
p rq

p !q, m 2 p !r, m 3

FSM for p
q !r, m 1

q !r, m 1

q ?p, m 2

FSM for q

FSM for r

r ?q, m 1
r ?q, m 1

r ?p, m 3

m3

m2

m1

q r

(c)

Chart Ch1

Chart Ch2

Chart Ch3

p

Figure 2.17

(a) An MSC-graph, (b) local FSMs for the processes participating in the MSC-graph, and (c) an
unintended behavior or “implied” scenario obtained by composing the local FSMs.

by the MSC-graph. This produces the local FSMs of the processes as shown in
Figure 2.17b.

The MSC-graph only allows MSC sequences of the form

(M1 ◦ (M2 � M3))
�

that is, infinitely many executions of “M1 followed by either M2 or M3.”
Clearly, by composing the local FSMs in Figure 2.17b, we will allow the behavior

M1 ◦ M2 ◦ M3, shown in Figure 2.17c. In the modeling literature, these scenarios are
often called as “implied scenarios” [93] — scenarios that were not intended behaviors
in the MSC-based system model, but get included once we construct local FSMs. It

2.6 Model Simulations 39

is the presence of these implied scenarios that makes the automated translation of
MSC-based system models to FSMs hard.

Thus, pragmatically speaking, the embedded system designer often resorts to
UML-based system modeling in two steps. First, aided by the informal requirements
in English, the designer envisions the system model in terms of MSCs. At this point,
the designer may or may not build a complete system model, that is, (s)he might
simply draw a collection of MSCs. Of course, it can be more advantageous to draw
a complete MSC-based system model (e.g., MSC-graphs or HMSCs) because it can
then be used for other purposes, such as test generation from the MSC-graphs. Test
generation from MSC-graph models is typically driven by a test-purpose MSC — we
unroll the MSC-graph to find paths in the graph whose behavior is “similar” to the
given test-purpose MSC.

Once the designer has a better handle on the system (having drawn a complete
or incomplete system specification using MSCs), the designer can then develop an
FSM-style description of the individual processes in the system in the second step of
modeling. Of course, if the system designer can quickly generate the local FSMs of
the processes from the informal requirements (this depends on how the requirements
document is structured), then the step involving MSC construction can be bypassed.

The overall flow in terms on UML-based system modeling is summarized in
Figure 2.18. As we can see, the designer may completely bypass the generation of
an MSC-based system model such as HMSC. However, generating the FSMs directly
from MSCs without constructing an HMSC may involve a leap in understanding of
the intended system behavior. Of course, even if we generate HMSCs and then gener-
ate FSMs, the generation of FSMs from HMSCs is typically not automated because
of the presence of implied scenarios (as articulated by the example of Figure 2.17).
Also, if the MSC-based system model is created, test cases can be directly generated
from the MSCs. These test cases can be tried out on the FSM-based model, or (with
some effort) even on the system implementation.

2.6 MODEL SIMULATIONS
At this point, we have introduced the different modeling notations (mostly UML-
based ones) and discussed the roles they play in system modeling. Let us now step
back and try to recall the original purpose of system modeling. Modeling is pri-
marily meant to clarify the thoughts of the embedded system designer, in terms of
deciding what the intended behaviors of the system under construction are. Certain
design flows for embedded systems assign an ambitious role to the system model —
typically these flows envision that the system implementation will be generated from
the system model semiautomatically with the propagation of the design constraints

40 CHAPTER 2 Model Validation

Informal system requirements (in English)

Sample scenarios (as MSCs)

MSC-based system model (say HMSC)

Local FSMs for the processes in the system

System implementation

Relatively easy

Hard manual step

Relatively easy, but manual

Hard to automate due to implied scenarios

Involves partitioning/scheduling and
some handwritten code creation

Semi-automatic, may introduce errors

Test spec.

Automated

Automatically
generate tests

Generating test spec. in the absence

of a MSC-based system model

Apply

tests
Test suite

Refer back
test results

Figure 2.18

The steps in UML-based modeling of embedded system behavior.

from the system model to the implementation. In reality, we feel that the system
model serves as a useful guideline for designing/constructing the system, but not a
definitive guide from which the system implementation can be automatically gener-
ated. Thus, we do not see the model simply as a documentation (of intended system
behavior) that is completely divorced from the system construction steps. On the
other hand, it might be too much to expect correct-by-construction system design
directly (and automatically) from the model.

Primarily the model’s role is to clarify and understand system behavior in the early
stages of system design.This is not done in one step; rather, it is an iterative process. In
this iterative process, the designer gradually comes to understand the intended system
behaviors. Once an initial model is created, one of the major weapons the system
designer can use for understanding intended system behaviors is model simulations.
Simulating the model can uncover “unexpected” behaviors. This is primarily because
of the heavy usage of concurrency/communication in any embedded system. Even
though the designer may well understand the intended behaviors of the individual
processes, it might be hard to manually find out whether unintended behaviors creep
in when the processes are composed together. Once the designer finds “unexpected”
traces by simulating the system model, (s)he can consult the informal requirements

2.6 Model Simulations 41

document (written in English) to find out whether these traces are indeed unintended.
If they are unintended, the model could be refined to exclude such traces.

It should be noted here that model simulations are typically carried out for
the prominent use cases, that is, the most common ways in which the system-under-
construction could be used. Going back to our air-traffic control example, if we want
to simulate the behaviors of the centralized controller ATC, we may run simulations
for the common ways in which the clients may use the ATC. Note that here the ATC
is the system-under-construction, and the clients are the environment (they use the
system). Thus, the use cases will be defined from the clients’viewpoint, because they
are the users of the system (in this case the ATC), and we seek to model/implement
the ATC in such a way that it faithfully captures the requirements. The common use
cases might be (i) request connection from ATC, (ii) request weather update from
ATC, (iii) attempt to disconnect from ATC, and so on.

By simulating a model for prominent use cases, we are primarily testing out the
common cases in which the system will be used. Sometimes, model simulations
can be used to achieve more ambitious goals. Multiple simulations can be carried
out through a systematic exploration of the model, possibly ensuring some sort of
structural coverage of the model. By such multiple simulations we can generate a
suite of execution runs or test cases that give a clear idea about the set of behaviors
captured by the model.

2.6.1 FSM Simulations

Simulating one single FSM representing global system behavior is not particularly
difficult. After all, an FSM naturally comes equipped with execution semantics, and
we can exploit this execution semantics to guide our simulation. Starting from an
initial state, the simulation simply moves from a state to one of its successor states.
Which successor is chosen may depend on the criterion being used to guide the
simulation.

However, when the system description is given as a composition of local FSMs,
the simulation needs to take into account the communication across the local FSMs.
If the model of communication supports inter-process communication via atomic
action labels (as discussed in Section 2.4.1), we simply need to keep track of the
following during simulation: (a) local states of the individual processes, and (b)
action labels that are common to multiple processes. For example, if the model of
communication is a handshake on common action labels, and one of the processes
is ready to execute an action label a that appears in multiple processes, it will be
blocked until another process is also ready to execute a.

We can of course provide more structure for the action labels. An action label
appearing in the FSM of a process p may be of the form p!q,m — meaning, send

42 CHAPTER 2 Model Validation

message m to process q. This action in process p is targeted toward a specific process.
Thus, it cannot be executed until process q is also ready to execute the corresponding
dual action q?p,m.

Simulating UML State Diagrams

In the case of statecharts (also adopted as UML state diagrams), the communication
mechanism is much more complicated. As mentioned earlier, different processes in
the system (which are running concurrently) may be depicted as AND-states. That
is, we can draw the local FSMs of the processes, and put them in an AND-state to
show that they are running concurrently. However, the method of communication
across these processes is via a complex broadcast mechanism. Each action label in
a local FSM is typically of the form

Trigger/Action

If a process is at state s, which has an outgoing transition with label t/a, this transition
will be activated when trigger t arrives. As a result of taking the transition, instanta-
neously action a will be executed. Because action a can serve as the trigger of some
other action label for another transition (possibly in another FSM), this may cause
further transitions to be executed. Thus, when we model a reactive system (a system
in ongoing interaction with an external environment) using state diagrams, a single
trigger from the external environment will cause a super-step, where a sequence of
transitions are executed. The super-step will terminate when none of the processes
in the system have an enabled transition. A super-step essentially constitutes the
system response to an external trigger. At the conclusion of a super-step, the system
is basically waiting for another trigger from the external environment. Note that a
super-step is executed atomically.

To explain the state management needed for state diagram simulation, let us study
a simple but concrete example. Consider a system consisting of a processor and a bus
controller. Every now and then, the program running on the processor encounters
memory accesses. In our example, for simplicity let us only consider memory write
accesses. Once the program running on the processor encounters a write-memory
access, the processor’s bus interface requests the bus controller for bus access. The
request may be either accepted or denied. If the request is accepted, the processor
sends the relevant information for the memory write (such as the address to which
to write, and the data to be written). If the request is denied, the processor makes
a renewed request for bus access. Here the system model consists of the processor
and the bus controller. The environment is captured by the program running on the
processor.

Sample MSCs showing the response of the system to a write request from the
environment are shown in Figure 2.19a. The state diagram for the system is shown

2.6 Model Simulations 43

(a)

(b)

write()/
BC->req()

accept()/
BC->addr_data()

deny()/
BC->req()

req()/P->deny()

req()/P-> accept()addr_data()

Processor P Bus Controller BC

try busy

addr_data
…
req

write
P BC BCP

write
req

deny

req

accept

wait idle

Figure 2.19

(a) Sample MSCs showing a processor seeking bus access for a memory write. (b) State diagrams
for processor and bus controller.

in Figure 2.19b. It uses an AND-state to show the concurrent composition of the
processor and bus-controller. Each action label on the transitions of the processor and
bus-controller is of the form trigger/action. In Figure 2.19b, message passing across
processes has been implemented via method calls. Thus the sender of a message calls
a method of the receiver, which is immediately executed by the receiver. To avoid
visual clutter, we have not shown the parameters of the methods in Figure 2.19b.

Let us examine the simulation of the state diagram in Figure 2.19b. Initially, the
system is in the state (wait, idle), that is, the processor is in “wait” state and the
bus controller is in “idle” state. If a write request comes from the environment
(the program running on the processor), the processor will execute a transition from
the “wait” state, and thereby invoke the req() method of the bus controller (the
action of the transition). This will trigger one of the two outgoing transitions from
the “idle” state of the bus-controller and so on. As a result of a “write” request from
the environment, the sequence of method calls executed will be of the form

write,req,(deny,req)*,accept,addr_data

Note that all of these method calls will be executed as one atomic step (also called
a super-step), and only then will the system reach a stable state. Thus, whenever a

44 CHAPTER 2 Model Validation

trigger is generated by the external environment, a simulator for state diagrams must
compute a super-step in the manner we just described. The simulator has to check
for termination of the super-step by checking that none of the processes are in such
a state, that the trigger of an outgoing transition is enabled.

The implementation of a single communication across processes (analogous to
the send-receive of a message in MSCs) also deserves mention. In Figure 2.19b,
we have shown implementation via method calls, which essentially results in
synchronous or handshake communication. Considering the processor’s transition
marked write()/BC->req() in Figure 2.19b, we see that this translates to a
method call BC->req() within the code of the processor class.

It is also possible to implement message passing across processes, where the
sender generates an event, the event is put into a system queue, and the receiver
retrieves messages from the system queue. In such an asynchronous implementation,
the state diagram simulator also needs to manage the system queue. There are various
issues here, such as how many queues to maintain in the system (each process might
have its own queue). An even more serious issue is that several processes might be
enabled to receive an event, in which case the simulator has to decide which process
will act as the receiver. This is particularly the case when the state diagram describes
classes of processes, as we now discuss.

Object-Oriented Designs with Classes

In many realistic embedded system designs, it might be convenient to borrow basic
notions of object-oriented programming to specify classes of processes. For example,
consider a multiprocessor system-on-chip with many processors hooked on the bus.
While specifying the design it might be convenient to define a class of processors,
and then describe the behavior of any object in the processor class as a single state
diagram.

Specifying processes with the same behavior via a class is important. We can
avoid repeating the same behavioral specification for every object in the class. This,
of course, leads to concise system specifications. However, during simulation of the
system model (say, given as a state diagram), we will maintain the state of every
process in the system. Thus, in our running example of the air-traffic control system
(Section 2.3), while simulating the centralized controller for finding subtle bugs, we
might simulate it with a large number of clients, say 100. Simulating the system
model will require us to maintain the local states of each of the 100 client objects.
However, this is completely unnecessary. Because the behavior of all 100 client
objects is given by the same FSM, we can simply enumerate the states in that FSM
(say {s1,s2,s3}) and simply maintain in each step of the simulation the number of
client objects in each of these states (say 50 objects in state s1, 20 objects in state
s2, and 30 objects in state s3 — total 100 objects).

2.6 Model Simulations 45

To illustrate in more detail how such an abstract simulation works, we fall back
on our state diagram in Figure 2.19b. Consider a system with n processors and a
single bus controller. Initially, all the processors are idle, so the state of the processor
objects is simply captured via the mapping

wait → n, try → 0

This simply means that n processor objects are in the “wait” state and no processor
object is in the “try” state. Now, if a processor attempts to request bus access (owing
to a “write” trigger from the environment), the state of all the processor objects
simply changes to

wait → n � 1, try → 1

The simulation thus progresses by simply maintaining the number of processor
objects in “wait” and “try” states. This is as opposed to maintaining the local state
of each individual processor object (e.g., processor 1 → wait, processor 2 → try,
. . . , processor n → wait). Performing process abstractions in this manner gives us
many benefits in simulation:

■ First of all, it reduces the time and memory overhead for simulation. In cer-
tain situations, we may have designs with very large number of objects (e.g.,
consider a telecom system with millions of phones and switches).

■ We should also remember that system modeling and simulation is carried out
long before system implementation and deployment. Consequently, during
system modeling/simulation, the designer may not have a clear idea about
the exact number of objects in a class. To understand this point, let us refer
back to our air-traffic control system (Section 2.3), where a centralized con-
troller interacts with many clients; each client corresponds to an incoming
aircraft. Of course, while designing the controller, it is impossible for the
designer to guess the maximum number of clients the controller will ever
be interacting with once it is deployed. Indeed, the number of clients the
controller will interact with in a real-life situation is finite, but unbounded —
we do not know how many aircraft may ever try to arrive at the same time!
By abstracting the states of the individual clients, we can simulate the con-
troller with a very large number of clients without worrying about the costs of
simulation.

■ By abstracting the individual process states, we group together many concrete
system states into one abstract state. Thus, in our processor-bus example of
Figure 2.19, the abstract state

wait → n � 1, try → 1

46 CHAPTER 2 Model Validation

groups together all of the following concrete states:

processor 1 → try, processor 2 → wait, . . . , processor n → wait

processor 1 → wait, processor 2 → try, . . . , processor n → wait

. . .

processor 1 → wait, processor 2 → wait, . . . , processor n → try

Thus by simulating the model along sequences of abstract states, we effectively
simulate many “similar” concrete traces at one go. Hence we are more likely
to encounter unintended and unexpected system behaviors by conducting such
a simulation, as compared to a random simulation of concrete traces.

2.6.2 Simulating MSC-Based System Models

We now briefly discuss the issues in simulating MSC-based system models to
uncover sample system behaviors. In an FSM-based model, the design style is
intraprocess, as mentioned earlier. This means that the computation happening inside
the processes (the intraprocess control flow) is given emphasis. The communication
across processes is suppressed as atomic actions. Thus, the send and receive of a
message may appear as atomic actions inside the sender and receiver processes. On
the other hand, the MSC-based system models emphasize the inter-process commu-
nication while suppressing intraprocess control flow. Thus, the focus here is on the
communication patterns across processes. The MSC notation is a convenient way
of capturing these communication patterns.

Because we have already discussed simulation of FSM-based models, what are
the new issues in simulating MSC-based system models? In simulating an FSM-
based model (such as a UML state diagram), we might monitor the local states of the
processes and update these local states during simulation. We can do so because
the global system state is simply the composition of local states. Thus, by updating
the local states, we update the global system state.

In an MSC-based system model, such a per-process update of the local states will
be difficult. This is exemplified by the difficulty in generating per-process FSM-style
code from MSC-graphs, primarily due to implied scenarios. The reader is referred
back to the discussion in Section 2.5, in particular Figure 2.17.

A model such as the MSC-graph captures the possible sequences of MSCs that
may happen during system execution. Thus, the system execution simply maintains
the sequence of MSCs executed so far, and the progress in the current MSC. The
progress made in the current MSC is captured through the notion of an MSC cut.

2.6 Model Simulations 47

Definition 6 (MSC cut) Consider an MSC m � (L, {El}l∈L,�), where L is the set
of lifelines in m, El is the set of events in which lifeline l takes part in m, and �

is the partial ordering relation over the events in {El}l∈L. A cut in MSC m is a
mapping where each lifeline l is mapped to an element from El ∪ {end}. The symbol
“end” denotes the situation where all events in the corresponding lifeline have been
executed.

For a lifeline l in an MSC, the events El in which the lifeline l takes part occur
in a strict sequence. Thus, by mapping the lifeline l to an event e ∈ El, we simply
denote that all events prior to e have been executed in lifeline l. As mentioned in the
preceding, when all events have been executed in a lifeline l, we map l to a special
symbol “end.” Figure 2.20 shows an MSC cut in a visual manner, for an MSC in
our air-traffic control example. It shows the situation where:

■ Client has sent the connect message, but has not received setStatus_1,
■ ATC has sent setStatus_1, but has not sent disable message, and
■ WCP has not executed any events.

During simulation, maintaining the MSC cut allows the simulator to remember
how much of the current MSC has been executed. The question is how to advance
the cut, that is, given a cut, what constitutes a legal simulation step? To answer this
question, we can define the notion of a minimal event.

Definition 7 (Minimal Event) Given an MSC m = (L, {El}l∈L,�), and cut of this
MSC cm : L → {El}l∈L ∪ {end}, a minimal event of the MSC w.r.t. the cut is an event
e such that e ∈ {El}l∈L, e � cm(l) for some lifeline l, and for all events e′ ∈ {El}l∈L

where e′ � e, event e′ has already occurred according to the cut cm.

connect

ATCClient WCP

setStatus_1

disableStatus � 1

Figure 2.20

An MSC cut, shown via dashed lines.

48 CHAPTER 2 Model Validation

Given an MSC cut, we can have several minimal events. For example, in
Figure 2.20, Client?ATC,setStatus_1 and ATC!WCP,disable are minimal events.
Simulation now progresses by executing any one of the minimal events.

It is worth noting that all events appearing in an MSC cut are not minimal events.
In Figure 2.20, the cut maps the lifeline WCP to the event WCP?ATC, disable.
However, as per the definition of minimal event (Definition 7) we do not allow the
MSC simulation to execute this event in order to progress the cut. This is simply
because there exists at least one event (in this case the send of the disable message)
as per the MSC partial order, which has not been executed yet.

We have now discussed the simulation of a single MSC. We start with a cut
where all processes have not executed any event. At any step the cut progresses by
executing a minimal event, thereby leading to a new MSC cut. This is repeated until
the cut maps all the MSC lifelines to end.

So far, we have discussed the simulation of a single MSC. When we simulate an
MSC-graph, if we follow synchronous concatenation of the nodes in the graph, we
simply simulate one node (and hence one MSC) at a time. If we follow asynchronous
concatenation of the nodes in the MSC-graph, different processes in the system may
be executing in different nodes at some point of time during simulation. Hence we
may need to maintain a cut across MSCs. To illustrate this point, let us refer back
to the MSC-graph shown in Figure 2.13. Consider a simulation run executing the
sequence of MSCs M1,M2,M3. Under asynchronous concatenation of MSCs, the
Interface process can go ahead and execute node M3 after having finished its part
in node M2, even when other processes (such as User) have not finished their part
in node M2. Thus, a cut can span across MSCs, because at a given point in time,
different processes might be executing different MSCs.

Figure 2.21 shows such a cut spanning across two MSCs. Note that in this cut,
the Resource process has finished its part in node M3, while the User process has
not even finished its part in node M2. Thus, there are two issues to be considered
while simulating a sequence of MSCs in an MSC-graph.

■ All the processes should be guided through the same sequence of MSCs. This is
trivial under synchronous concatenation because after each node of the MSC-
graph, processes synchronize. Under asynchronous concatenation, we may
maintain an extra thread that tells any process, when it finishes its part in a
node, which is the next node to visit. Because all processes get their input from
this extra thread, we can make them execute the same sequence of MSCs.

■ Under asynchronous concatenation, we may need to maintain a cut across
MSCs during simulation. Of course this requires the simulator to remember
not just the current MSC, but previous MSCs as well. It is possible that in certain
situations, the simulator may need unbounded memory, because one process
may arbitrarily get ahead of another. Figure 2.22a shows such an example. For

2.6 Model Simulations 49

Interface ResourceUser

request

deny
no

request

grant

yes

Chart M3

Chart M2

Chart M1

request

Figure 2.21

Cut across MSCs, shown via dashed lines.

(a) (b)

ReceiverSender

data

p

m

q r s

m

Figure 2.22

MSC-graphs whose simulation involves unbounded memory under (a) asynchronous message
passing and (b) synchronous message passing.

the sequence M1,M1, . . . ,M1, the sender process may get arbitrarily ahead of the
receiver process because the sender may keep on sending messages without
the receiver ever receiving them. This problem can be dealt with in two ways.
1. Solution 1: During simulation of MSCs, we maintain event queues for the

processes. The length of these event queues place a bound on how much a
process can overtake another. This is because, during sending, the sender
needs to check whether the queue is full.

2. Solution 2: Solution 1 does not take care of all MSC-graphs where
unbounded memory may be required for simulation. Figure 2.22b shows

50 CHAPTER 2 Model Validation

such an example — processes p,q can get arbitrarily ahead of processes
r,s in the sequence of MSCs M1,M1, . . . ,M1. In that case, we can simply
disallow MSC-graphs where such unbounded memory is required for sim-
ulation. Indeed, it is uncommon to have such unbounded MSC-graphs in
real-life situations. Fortunately, a criterion for checking whether an MSC-
graph is “bounded” (that is, requires bounded memory for simulation) also
exists. The interested reader is referred to [3, 78].

This concludes our discussion on model simulations, which help us validate the
system model against requirements. We now discuss model-based testing that can
help us validate the system implementation against the system model.

2.7 MODEL-BASED TESTING
Simulating a model can uncover unexpected behaviors. This is particularly so when
the simulation is not random. In fact, given a system model, we can guide the
simulation along the prominent use-cases and try to find out whether the model
behaves “as expected.” Indeed, this is one of the primary ways in which model
simulation is used. It serves as a validation of the model vis-à-vis the informal
requirements — that is, whether the system requirements (stated in English) have
been faithfully captured in the system model (say, given as UML state diagrams). It
also allows the designer to better understand the English requirements.

Although model simulation helps tighten the link between informal requirements
and the system model, we also need a link between the system model and the mixed
hardware-software implementation of the system. The question is how this link can
be established. We seek to do so by test generation. Basically, we are concerned with
building pragmatic methods to bring the system implementation as close as possi-
ble to the informal requirements. Because it is infeasible to automatically generate
implementations from requirements, we are looking at mechanisms that can at least
tighten this correspondence. The three layers of system description are summarized
in Figure 2.23. We show that the system model is validated against the requirements
via model simulation, whereas the system implementation is validated against the
model via test application. Generating test cases from the model and then trying
the test cases on the implementation often goes under the name of model-based
testing [8].

The key idea in model-based testing is to develop an explicit behavioral model of
the system from informal requirements (using popular design notations such UML
state diagrams). The design model forms a precise specification of intended system
behaviors. The model is searched to generate a test suite or a set of test cases.
These test cases are tried on the system implementation (which might have been

2.7 Model-Based Testing 51

System model
(UML State and class diagrams)

System implementation
(Hardware/C)

Testing

Informal requirements
(in English)

Model simulationModeling

Partitioning, scheduling
and other impl. steps

Figure 2.23

The three main layers in model-based system development.

constructed manually or semiautomatically) to check the system’s behaviors and
match them with the intended behaviors as described by the model. This allows us
to connect up the system implementation with the system model.

There are two popular methods for generating test cases from the system model:
(a) generating a suite of test cases to ensure structural coverage of the model, and
(b) generating test cases from the model based on some test specification. The first
method simply generates a set of test cases such that for each state/transition of a
state diagram model, at least one test case goes through it. In the testing literature,
this often goes by the name of coverage criteria–based test generation.

In the following we concentrate on the second method, which, in the testing liter-
ature, often goes by the name of test purpose–based test generation. These methods
allow a more targeted description of unintended/intended usages of the system-
under-construction. The description of the unintended or intended usage may itself
be the test specification. Often this test specification is described via a message
sequence chart or UML sequence diagram.

The test generation mechanism searches the state diagram model to find trace(s)
satisfying the test specification. The goal is to generate tests that avoid the unintended
behaviors specified and exhibit intended behaviors.

The overall flow for model-based testing as discussed here was summarized
in Figure 2.18. As shown in the figure, if an MSC-based system model (say, an
HMSC) is available, test specifications can be obtained by traversing the HMSC.
Thus, by traversing the HMSC model we synthesize various test specifications, each

52 CHAPTER 2 Model Validation

of which is an MSC. For each test specification, we use the corresponding MSC
to drive the generation of test cases (concrete traces satisfying the partial order of
the test specification MSC) from the state diagram description of the system model.
The test cases are employed on the system implementation, and the test results can
sometimes be referred back to the state diagram model.

At this stage, we need to clarify what a test specification means. Usually test
specifications are grouped into two categories.

■ Positive Test Specifications: These denote desired or intended behaviors that
should be exhibited by the system.

■ Negative Test Specifications: These are undesirable behaviors which should
not be exhibited by the system.

Tests satisfying negative test specifications are typically used to refine the system
model, and thereby enhance our understanding of the system being constructed. Tests
satisfying positive test specifications can be tried out on the system implementation.

Turning to our running example from air-traffic control, we give an example
of a positive and negative test specification. These are shown in Figure 2.24 in
the Message Sequence Chart notation. The positive test specification says that it is
possible for the weather control panel (WCP) to request the centralized controller
(ATC) to initiate an update; if the weather update is successfully completed for all
connected clients, the ATC enables the WCP. The negative specification says that it
is not possible for a client to successfully get a weather update from the centralized
controller (ATC), and yet get disconnected from the ATC.

We have now defined the syntax of a test specification (MSC notation), and
their meaning (positive/negative specification). However, when do we say that an
execution trace of the model satisfies a given a test specification? There are at least
two ways of defining this notion, as shown in the following. The notion of MSC
linearization was introduced earlier; see Definition 5. Basically, a linearization of

(a) (b)

Client ATC

useWthr

yes

close

ATC WCP

enable

update

Figure 2.24

Test specifications from our air-traffic control example. (a) Positive test specification, (b) negative
test specification.

2.7 Model-Based Testing 53

an MSC m represents a total order over the events of m that respects the partial
order of m.

■ A trace � is said to satisfy a positive test specification MSC m, if � contains
at least one linearization of m as a contiguous subsequence; similar definition
for negative test specifications.

■ A trace � is said to satisfy a positive test specification MSC m, if � contains at
least one linearization of m as a subsequence; similar definition for negative
test specifications.

In the preceding, we have used the notion of a subsequence. This is a standard
concept, which we recapitulate for the convenience of the reader.

Definition 8 (Subsequence) A string �′ is a subsequence of � if and only if �′ is
obtained from � simply by deleting a finite number of symbols in �.

Thus, the string bde is a subsequence of the string abcde, but the string bdc is
not a subsequence of string abcde because the order of symbols has been reversed.

Formally, let � be the set of all events appearing in the system model. According
to the first notion in the preceding, we say that an infinite trace � over � in the system
model satisfies a test specification MSC m, if

■ linm ∈ Lin(m) is a linearization of m, and
■ � is of the form �∗linm��.

According to the second notion in the preceding, we say that an infinite trace � over
� in the system model satisfies a test specification MSC m, if

■ linm ∈ Lin(m) is some linearization of m,
■ linm � �m

1 ,�m
2 , . . . ,�m

k that is linm is a sequence of k events and �m
i is the ith

event in linm for all 1 � i � k,
■ � is of the following form, where �\linm denotes the set � � {�m

1 ,�m
2 , . . . ,�m

k }:

(�\linm)∗�m
1 (�\linm)∗�m

2 . . . (�\linm)∗�m
k (�\linm)�

Thus, the events �m
1 ,�m

2 , . . . ,�m
k appear in this order in trace � but possi-

bly interspersed by other events that do not appear in the linearization linm.
Figure 2.25 shows a test trace in a system with two clients satisfying the test
specification of Figure 2.24a. Note that it also contains the Client processes,
which are not mentioned in the test specification.

Whichever notion we employ, we need an underlying search procedure work-
ing on FSMs or state diagrams that seeks to find an execution trace satisfying the
test specification. The simplest such search procedure can be a generate-and-test

54 CHAPTER 2 Model Validation

Client:c1 ATC WCPClient:c2

update
ClientPreUpd

WCPDisable
ClientUpd

CTAS_GET_NEW_WTHR

Yes

ClientPostUpd

CTAS_USE_NEW_WTHR

Yes

enable

Figure 2.25

Test trace satisfying specification in Figure 2.24a.

a

b

c
s1 s2

Figure 2.26

FSM with infinitely many traces.

procedure — generate the traces in the model one by one, and check each generated
trace against the test specification and stop when you find a trace satisfying the test
specification. Such a strategy will not work, simply because the number of traces in
an FSM can be infinite, for example, consider the FSM in Figure 2.26. In this FSM,
one trace is a�, which loops forever in state s1. There are also infinitely many traces
of the form a∗bc�, that is, traces of the form

■ bc� (c� denoting c repeated forever)
■ abc�

■ aabc�

■ . . . , and so on.

2.7 Model-Based Testing 55

The infiniteness here stems from the fact that a trace could loop in state s1 any
number of times before exiting to state s2. Thus, we can see that a simple generate-
and-test search procedure will not work for generating witness traces satisfying a test
specification MSC. In Section 2.8, we will present a well-known search procedure
called model checking that can efficiently generate witness traces corresponding to
a given test specification.

Test Generation versus Test Execution

Let us now step back and recall what we are trying to accomplish via testing. We
are checking the following: When the system-under-test implementation is triggered
by the environment with a particular sequence of inputs, does it respond with the
desired sequence of outputs? In this context, we have the following:

■ The test specification describes for a particular choice of triggering inputs —
(a) what are the desirable outputs, and (b) what are the undesirable outputs.

■ The generated test describes a sequence of input/output actions derived
from the model where on receiving the triggering inputs given in the test
specification, the system-under-test model responds with desirable outputs.

■ Using the test specification and the generated test, we can develop a test harness
that automatically drives the system implementation along a predetermined
sequence of input/output actions, compares the actual outputs with desired
outputs, and automatically delivers a “verdict” about whether the test is passed.
This step corresponds to test execution. Thus, test execution involves running
the generated test on the actual system implementation.

More on Test Execution

Given a test case or a test trace (satisfying a test specification), we now describe how
it can be executed in a distributed control system. We first partition the lifelines in
the test case MSC into two groups — those constituting the implementation-under-
test (IUT) and the remaining processes (which we call the tester processes or tester
components).

To obtain the tester components from a test case MSC, one can follow a distributed
tester synthesis approach (e.g., [41]). The test case MSC is viewed as a partial order
〈E,�〉 over various events E appearing in it. The partial order �≡ (�l ∪ �m)∗ is the
transitive closure of �l and �m, where �l is the linear ordering of events from top to
bottom along all lifelines, and �m represents the ordering between a message send
es and its corresponding receive er , s.t. es �m er . A sample test-case MSC and its
corresponding partial order are shown in Figures 2.27a and 2.27b. Note that a send
(receive) event corresponding to a message m is shown as !m (?m) in Figure 2.27.

56 CHAPTER 2 Model Validation

!m1

!m2

!m4

!s1

!s2

!pass
!pass

?s2

?s1
?m2

!s2

!pass

?s1
!m1

!m4

!s1

!pass

?s2

A B A B

m1

m3

m2

m4

A BIUT

(a) Test-case MSC M

A BIUT

!m2

!m3

!m4

!m1

?m3

?m2

?m4

?m1

(b) Partial order of M

!m1

!m4

?m2

A B

(c) Test graph of
M-Observable and
Controllable events

(d) Test graph of
M-Synchronization events

(e) Local test graphs of
tester lifelines A and B

Figure 2.27

Generation of tester components from a test-case MSC.

For generating the tester components, a reduced partial order 〈ET ,�T 〉, called a
test graph, is obtained from the test-case MSC’s partial order. It contains only control-
lable and observable events ET (⊆ E) with respect to the IUT components in test case
MSC, and a partial ordering �T over them such that, ∀e,e′ ∈ ET ,e �T e′ iff e � e′.
For the test-case example shown in Figure 2.27a, where lifelines6 A and B represent
the tester lifelines, the test graph is shown in Figure 2.27c. In the next step, synchro-
nization messages are introduced in the test graph to preserve the causality constraints
between the events appearing along the distinct tester lifelines. For a direct ordering
between two events appearing along different lifelines, a synchronization send is
introduced after the first event along its lifeline, and the corresponding receive is
added before the second event along its lifeline. Further, after the last event along

6 Recall that the terminology lifeline refers to a vertical line in an MSC. A lifeline denotes an active
process with its own control flow.

2.7 Model-Based Testing 57

each tester lifeline in the test graph, sending of a pass message is also added. These
messages are received by the master tester (not shown here), based on which it
gives test verdicts. The test graph for the foregoing example, with synchronization
messages (s1 and s2), and pass verdicts, appears in Figure 2.27d. From the result-
ing test graph detailed in the preceding, a local test graph for each tester lifeline is
derived by taking a projection over the events appearing along that lifeline (shown
in Figure 2.27e). A tester component is then derived as a sequential automaton from
each local test graph. Further, in these tester components, from each state with an
outgoing transition labeled with a receive event ?er , two outgoing edges labeled with
� and ?¬er respectively, are added. Here � represents a timeout event, which occurs
if no input is received within a given timeout value. It results in the sending of an
inconclusive verdict. On the other hand, ?¬er represents the receipt of a test-case
event other than er and results in the sending of a fail verdict. The tester components
for tester lifelines A, B are shown in Figure 2.28.

Test Verdicts Resulting from Test Execution

The final test verdict is given based on the test verdicts received from various tester-
components during test execution. Possible verdicts are:

■ Pass The pass verdict is given by the master tester if it receives a pass verdict
from all tester components.

■ Fail A fail verdict is given by the master tester if any of the tester components
sends a fail verdict.

■ Inconclusive An inconclusive verdict is given if some tester components reply
with an inconclusive verdict, with none of them sending a fail verdict.

B

?m2

!pass

!s1
?s1

!s2

!fail

?¬m2

?¬s1

!fail!inconc

!inconc

�

�

�

A

?s2

!pass

?¬s2

!fail!inconc

!m1

!m4

Figure 2.28

Generated tester components for test-case MSC shown in Figure 2.27a.

58 CHAPTER 2 Model Validation

2.8 MODEL CHECKING
So far, we have discussed how test specifications will be described and how generated
tests will be executed on the system implementation. However, we have not discussed
the test-generation procedure. Clearly, we cannot simply generate the execution
traces in the system model and check for each one of them whether it satisfies the
test specification. This is because the number of traces in the system model may be
infinite, as shown in the example of Figure 2.26.

In this section, we describe a search procedure that can be used to generate tests
corresponding to a test specification from a system model. In fact, our search proce-
dure is much more general and can be used for property verification of the system
model. In other words, we can state desirable properties in a property specification
language and automatically check (via search) whether the property holds for the
model. Furthermore, if the property does not hold for the model, our search proce-
dure will generate counterexample evidence that tells the designer why the property
does not hold. The counterexample evidence can be used to debug and possibly
rectify the model.

Thus, the search procedure we are going to talk about has applications beyond
test generation. It is a property verification procedure that can be used to debug the
model. The bugs thus found could point to one of the two following possibilities:
Either the model does not faithfully capture the requirements, or the requirements do
not satisfy some desirable property (and hence the requirements should be rectified).

The general formulation of the model checking problem is simple — it seeks to
find whether a given FSM satisfies a property. The question really is what kind of
properties we are talking about, and whether these properties can be automatically
checked. In particular, the property specification language should be general enough
to describe our test specifications. As we will see, linear-time temporal logics (the
property specification language we describe now) can describe test specifications
and much more.

2.8.1 Property Specification

The property specification language in model checking is based on temporal logics.
As the name suggests, temporal logics should have something to do with the evo-
lution of time. In particular, they talk about how the system-being-checked should
evolve over time. Thus, a temporal logic property constrains the order in which events
can happen in the system-being-checked. However, temporal logic properties do not
incorporate an explicit notion of time. Thus, one cannot state properties such as

On June 1, 2007, I am writing a section on temporal logics, after which I shall write
a section on model checking on June 2, 2007.

2.8 Model Checking 59

The foregoing is a temporal constraint on my “behavior.” So if I represent the
system-being-checked, the foregoing puts constraints on my behavior. The verifica-
tion procedure (model checking) is supposed to check that these constraints do indeed
hold, by efficiently checking “all possible behaviors” of the system-being-checked.

The only problem with the foregoing property is that it refers to time in an
explicit fashion — writing about temporal logics occurring on June 1, 2007, and so
on. Temporal logics only describe properties that constrain the ordering of events
in system execution. However, temporal logic properties do not constrain events
to occur at specific time stamps or time intervals. Thus, they may specify the
following:

Writing a chapter on temporal logics occurs before
writing a chapter on model checking.

A property may even specify that “writing a chapter on temporal logics” occurs
immediately before “writing a chapter on model checking.” However it cannot spec-
ify that “writing a chapter on temporal logics” occurs on June 1, whereas “writing
a chapter on model checking” occurs on June 2. Nor can a property specify that
“writing a chapter on temporal logics” occurs one day before “writing a chapter on
model checking.”

In other words, any quantitative notion of time is not supported in our property
specification language. However, properties about relative ordering of events can
be represented.

We assume that the system-being-checked is represented as a finite state machine
M � (S, I ,→), where S is the set of states, I ⊆ S is the set of initial states, and → is the
transition relation. A behavior is simply an execution trace of the FSM, an infinite
sequence of states (and actions) starting from an initial state. With the foregoing
notion of behavior, it is clear what we mean by “all possible behaviors.” It is the set
of all execution traces of the FSM.

Note that an execution trace is potentially infinite in length even when the set
of states in the FSM is finite. In Figure 2.29, the FSM contains only three states
{red, yellow, green} — but the only execution trace (green,yellow,red)� is infinite
in length.

Green Yellow Red

Figure 2.29

A crude FSM-based description of a traffic-light controller.

60 CHAPTER 2 Model Validation

Init Requesting

Granted Release

Denied

Figure 2.30

A crude FSM capturing interactions between a client and a controller.

The reader should recall that the number of execution traces in an FSM can also be
infinite. Consider the schematic FSM in Figure 2.30, which captures the interactions
between a client and a controller. What are the traces of this FSM?

■ init(requesting,denied)�

■ init(requesting,denied)∗granted�

■ . . .

An execution trace of the FSM may visit the denied state 0,1,2, . . . ,� times —
leading to infinitely many execution traces (each of which is of infinite length).

When we want to check a property against a system model (possibly given as
FSM), we check that the property for all the execution traces of the system. If we
find that it does not hold for some execution trace, we report back that trace as
counter-example evidence.

Before proceeding to give a formal definition of our property specification lan-
guage, let us understand it informally via a very simple example. Figure 2.29 shows
a very simple FSM representing a traffic-light controller. It simply shows that the
traffic light changes color from green to yellow to red — repeating forever. It is a
good example of a reactive system, a system in continuous interaction with its envi-
ronment. In this simplified modeling of the controller, we do not show the detailed
interaction between the controller and its environment (the traffic flow, for example)
but only show that the controller shuffles the color of the light forever. Now, given
this FSM model, our property specification language may state properties such as
the following:

■ The light is always green.
■ Whenever the light is red, it eventually becomes green.
■ Whenever the light is yellow, it becomes green immediately after.
■ Whenever the light is green, it remains green until it becomes yellow.

2.8 Model Checking 61

The reader is probably getting a feel for the kind of operators our property spec-
ification language contain. These are marked in italics in the preceding — always,
eventually, immediately after, and so on. These refer to certain “primitive proper-
ties” (such as the light being green) being true/false, and the ordering in which these
properties may become true/false along the execution traces in the system model.
Note that the properties we stated earlier are not necessarily true for our crude traffic-
light controller in Figure 2.29. In fact, the very first property — the light is always
green — is not true. Model checking is simply a checking procedure which automat-
ically (and efficiently) checks such properties against a FSM system model. Thus it
has to check that the given property is true for all the traces in the system model,
without enumerating the traces (because there can be infinitely many traces).

At this stage, let us try to make our traffic-light controller more sensitive to the
flow of traffic. Instead of shuffling between green, yellow, and red, the controller
can stay green for a longer time if traffic is coming. Similarly, if there is no traffic,
the controller can stay red instead of turning back to green. If we want to model the
behavior of the controller for all possible traffic flows, it will be the FSM shown in
Figure 2.31. There are several observations we can make about this controller.

■ First of all, the controller could stay red forever, so properties such as “when-
ever the light is red, it eventually becomes green” are not true for this
controller.

■ Once the light becomes green, it may move from green to yellow after 1
time unit, 2 time units, 3 time units, and so on. This leads to infinitely many
execution traces in the FSM. All of them need to be considered for checking a
given temporal property.

We are now ready to present our property specification language. We need to
remind ourselves of the following key points:

■ Our properties are interpreted over infinite-length execution traces. Given a
property � and an infinite-length execution trace �, we can ask the question
whether � |� �, that is, whether � satisfies �. Of course, we need to use the
semantics of our property specification language to find out whether the answer
to the question is yes or no.

Green Yellow Red

Figure 2.31

Another FSM-based description of a traffic-light controller.

62 CHAPTER 2 Model Validation

■ Even though our properties are interpreted over infinite-length execution
traces, we can also verify terminating programs. In that case, we can con-
vert the finite traces of the program to an infinite one, by simply letting the
program loop at its end state forever.

■ Given an FSM system model M, we say that M satisfies a property � if and
only if all execution traces of M satisfy �.

Our specification language is called linear-time temporal logic, abbreviated as
LTL. It is called temporal logic because it captures properties about how systems
will evolve over time. Once again we remind the reader that temporal logics do not
capture time in an explicit fashion, that is, we cannot state properties of the form
“at time t � 5 seconds, event e will occur” or “whenever event e occurs within 2
seconds, event e′ must occur.” Instead, it is possible to say properties about the
ordering in which states change/events occur. Thus, we can say “eventually event
e occurs” or “whenever event e occurs, it is eventually followed by event e′.” We
note that our property specification language is called linear-time temporal logic,
because the properties are interpreted over execution traces of the system that have
a linear view of how the system progresses over time.

The syntax of our property specification language is defined recursively as
follows. Here Prop denotes the set of atomic propositions (or primitive formulae):

� � true | false | Prop | ¬� | � ∨ � | � ∧ � | X� | G� | F� | �U� | �R�

In the preceding, true and false are two special formulae corresponding to logical
truth and falsehood. The formula true is always true and the formula false is never
true. Further, the atomic propositions form the basic building blocks of the formula.
A formula is constructed using the following:

■ Atomic propositions
■ propositional logic operators ∧ (and), ∨ (or), ¬ (not)
■ temporal logic operators X (next), G (globally), F (finally), U (until), R

(release).

Let us now examine the role of each of these. The set of atomic propositions is a
set of primitive formulae, each of which can be interpreted over a state in an FSM.
Given an atomic proposition p and a state s, we can determine whether p is true in s.
To give a simple example, let us consider our traffic-light controller (Figure 2.31).
Consider an atomic proposition g that stands for “the light is green.” Then, as per the
intended meaning inherent in our FSM modeling, we can say that g is true in the state
marked green in Figure 2.31, whereas it is false in the other two states of Figure 2.31.

The inclusion of the propositional logic operators in our property specification
language means that we are building our specification language on top of proposi-
tional logic. In other words, propositional logic will be used to describe property

2.8 Model Checking 63

about states. Thus, we can state properties such as “the color is green or yellow.”
However, such properties are interpreted over states, that is, given a state in the FSM
being checked, we can determine whether such a property is true or false. Properties
about evolution of states are given by the temporal operators — which constrain the
execution traces of the FSM being checked.

We now clarify the formal semantics of the temporal operators. First let us present
the notion of a suffix.

Definition 9 (Suffix of a String) A suffix of a string � is obtained from � by deleting
the first k symbols of � from � where k is a nonnegative finite integer, that is, k 	 0.

Thus, the suffixes of the string abcde are the strings abcde, bcde, cde, de, e, and
� (the empty string). Because a suffix is obtained by deleting a finite number of
symbols from the beginning of the string, a suffix of an infinite string must also be
an infinite string.

We have five temporal operators in our property specification language: X, F,
G, U, and R. All of them are used to describe properties of infinite-length execution
traces. Unlike propositional logic operators, which can be used to describe properties
of states, these operators are used to describe properties of infinite sequences of states.
Thus, they try to constrain how the states change along any execution trace of the
system being checked.

In Figures 2.32 to 2.36, we pictorially present the semantics of the five temporal
operators in LTL, namely X, F, G, U, and R, respectively. As shown in Figure 2.32,
an execution trace � � 〈s0,s1,s2 . . .〉 satisfies X� (where � is any arbitrary LTL

…..

Satisfies �

Satisfies X�

Figure 2.32

Pictorial description of X (next-state) operator in LTL.

64 CHAPTER 2 Model Validation

….. …..

Satisfies �

Satisfies F�

Figure 2.33

Pictorial description of F (finally or eventually) operator in LTL. A trace � satisfies F� if and only
if some suffix of � satisfies �.

…..

Satisfies �

Satisfies �

Satisfies �

Satisfies G�

…..

Figure 2.34

Pictorial description of G (globally) operator in LTL. A trace � satisfies G� if and only if all suffixes
of � satisfy �.

formula) if and only if the execution trace 〈s1,s2, . . .〉 starting from the next state
satisfies �. Note that this gives the meaning or semantics of the X operator. In other
words — given a trace �, to check whether � satisfies an LTL formula X�, we need
to see whether � holds in the trace starting from the second state of �.

2.8 Model Checking 65

Satisfies �1

Satisfies �1

Satisfies �1

Satisfies �2

Satisfies �1U �2

…..

….. …..

Figure 2.35

Pictorial description of U (until) operator in LTL. A trace � satisfies �1U�2 if and only if some
suffix of � satisfies �2, and all prior suffixes of � satisfy �1.

The pictorial description of the F (finally) operator appears in Figure 2.33. It
shows that an infinite-length trace � � 〈s0,s1,s2 . . .〉 satisfies F� if and only if there
exists some suffix of � which satisfies formula �. Similarly, Figure 2.34 captures the
meaning of the G (globally) operator of LTL. It shows that an infinite-length trace
� satisfies G� if and only if all the suffixes of � satisfy formula �. Clearly, by the
definition of the operators we have

F� ≡ ¬¬F� ≡ ¬G¬�

that is, ¬F� ≡ G¬�. This is not difficult to see, because the fact that a trace �

satisfies ¬F� means that there does not exist any suffix of � that satisfies �. This
means that all suffixes of � satisfy ¬�, that is, � must satisfy G¬�. Note that in a
similar way, we can also derive

G� ≡ ¬F¬�

66 CHAPTER 2 Model Validation

Satisfies �2

Satisfies �2

Satisfies �2

Satisfies �2

Satisfies �2

Satisfies �2

Satisfies �1R�2

Satisfies �1 �2

Satisfies �1R�2

…..

…..

…..

….. …..

OR

Figure 2.36

Pictorial description of R (release) operator in LTL.

2.8 Model Checking 67

Linear-time temporal logic has two other operators — U (until) and R (release).
Intuitively, the formula �1U�2 is satisfied by an infinite trace � if and only if (i) there
exists a suffix �′ that satisfies �2, and (ii) all suffixes of � “prior to” �′ satisfy �1. Note
that the suffix �′ which satisfies �2 need not satisfy �1. The key to understanding this
intuitive definition are the two words “prior to.” The reader can now refer to Figure
2.35 for a pictorial explanation. It shows that an infinite trace � satisfies �1U�2 if
and only if

■ �1 holds for all suffixes of � until �2 holds, and
■ �2 eventually holds for some suffix of �.

We can also rephrase the preceding as �2 holds in some suffix �′ of � and �1 holds
for all suffixes of � which strictly contain �′.

Thus, by definition of the operator U, we have the equivalence

F� ≡ (true U �)

for any LTL formula �. This is because the formula true is satisfied by any trace
(just as the formula false is not satisfied by any trace).

The last operator we discuss is the release operator. Just as the F and G operators
are dual of each other, that is,

F� ≡ ¬G¬� G� ≡ ¬F¬�

the U (until) and R (release) operators are also dual of each other. In other words,

�1R�2 ≡ ¬(¬�1U¬�2) �1U�2 ≡ ¬(¬�1R¬�2)

for any LTL formulae �1,�2. Thus, �1R�2 is true for an execution trace if and only
if � does not satisfy ¬�1U¬�2. Now, let us employ the definition of the U (until)
operator we discussed just now. A trace � satisfies ¬�1U¬�2 if and only if

■ ¬�1 holds for all suffixes of � until ¬�2 holds, and
■ ¬�2 eventually holds for some suffix of �.

Thus, a trace � does not satisfy ¬�1U¬�2 (i.e., it satisfies �1R�2) if and only if

■ ¬�1 does not hold for some suffix �′ of � where ¬�2 only holds in a suffix
after �′ (i.e., in a suffix �′′ of � where �′′ is also a suffix of �′), or

■ ¬�2 never holds for some suffix of �.

In other words, a trace � satisfies �1R�2 if and only if

■ �1 holds for some suffix of �′ of �, and for all suffixes up to and including �′,
the formula �2 also holds, or

■ �2 holds for all suffixes of �.

68 CHAPTER 2 Model Validation

These two cases are pictorially illustrated in Figure 2.36. Thus, a trace � satisfies
�1R�2 if and only if the occurrence of a suffix satisfying �1 releases the requirement
for �2 to hold. Of course, if we never encounter a suffix of � that satisfies �1, the
formula �2 must hold forever (for all the suffixes).

At this stage, we have presented the syntax and semantics of all the operators
of our property specification language. The reader may wonder at the need for five
distinct temporal operators, when they can all be expressed using two operators — X
(next-state) and U (until). In fact, as discussed in the preceding, the until operator
(along with the operators of propositional logic ¬,∨,∧) can represent F (finally), G
(globally) and R (release) as derived operators.

F� ≡ (trueU�)

G� ≡ ¬F¬� ≡ ¬(trueU¬�)

�1R�2 ≡ ¬(¬�1U¬�2)

However, we discuss and present all the operators here for the sake of complete-
ness. The redundancy in the property specification language is intended to help the
designer specify properties more easily.

Interpreting Other Operators and Atomic Propositions

One important issue needs to be mentioned to complete our discussion on LTL
semantics. In the preceding, we described the semantics of LTLin a recursive fashion.
Thus, the semantics of a formula �1U�2 is defined using the semantics of �1,�2 and
so on. This exercise is done for all the temporal operators — X , F, G, U, R. What
about operators that are not temporal, namely the propositional logic operators ∨, ∧,
¬? This issue is easy to solve; we simply say that for an infinite execution trace �,

■ � |� �1 ∨ �2 if and only if � |� �1 or � |� �2,

■ � |� �1 ∧ �2 if and only if � |� �1 and � |� �2,

■ � |� ¬� if and only if ¬(� |� �).

Also, for the two constants true and false, we say that true holds for any execution
trace, whereas false does not hold for any execution trace.

Finally, we need to deal with atomic propositions. Consider any atomic propo-
sition p ∈ Prop (recall that Prop is the set of all atomic propositions). How do we
determine whether � |� p for a given execution trace? The problem here is that an
atomic proposition is inherently a property of a state — it either holds or does not
hold in a state. However, we are trying to find out whether an atomic proposition
holds or not in a trace (a sequence of states). This dilemma is solved by saying that
an execution trace � � 〈s0,s1, . . .〉 satisfies an atomic proposition p, if and only if p

2.8 Model Checking 69

is true in the initial state s0 of the trace. That is,

� � 〈s0,s1, . . .〉 |� p iff s0 |� p

Simple Examples

To get more comfortable with the semantics of LTL, let us work out a few concrete
examples. Consider the traffic-light controller FSM in Figure 2.37. It is the same as
Figure 2.31, except that we have named the three states as s0,s1,s2.

Let us examine the temporal properties we had earlier stated informally:

■ The light is always green.
■ Whenever the light is red, it eventually becomes green.
■ Whenever the light is yellow, it becomes green immediately after.
■ Whenever the light is green, it remains green until it becomes yellow.

To encode these properties, we first decide on the atomic propositions. We choose
three atomic propositions — green, yellow, red — with obvious meanings. In other
words, the proposition green is true in a state if and only if the color of the traffic
light is green, and so on. Thus, green is true only in state s0 and is false in states
s1,s2. Similarly, yellow is true only in state s1 and red is true only in state s2. These
evaluations of the atomic propositions are also shown clearly in Figure 2.37; in each
state we write down only the atomic proposition(s) that are true in that state.

Using these atomic propositions we can now formalize the aforementioned four
properties in LTL:

■ G(green)

■ G(red ⇒ F green)

■ G(yellow ⇒ X green)

■ G(green ⇒ (green U yellow))

At this stage, we have only encoded the properties in LTL; they need not be true
for our traffic-light controller FSM. Note that for a property to be true, it must be
true for all the execution traces of the FSM. Let us take the first property G(green).

Green Yellow Red

s0 s2s1

Figure 2.37

FSM-based description of a traffic-light controller (repeated for convenience of the reader).

70 CHAPTER 2 Model Validation

Is it satisfied by all the execution traces of Figure 2.37? The execution traces of
Figure 2.37 are (i) the trace (s0)�, and (ii) the infinitely many traces (s0)∗ s1 (s2)�.
Clearly the trace (s0)� satisfies G green, because the atomic proposition green is
true in state s0. However, the property does not hold for (s0)∗ s1 (s2)�, simply
because green is not true in state s1. Thus, the property G(green) is not true for the
FSM in Figure 2.37. Note that the manual reasoning we went through to determine
the truth/falsehood of G(green) in Figure 2.37 achieves the same purpose as model
checking — we checked whether a given temporal property holds for a given FSM.
However, we did so by enumerating the traces. Model checking is an algorithmic
verification technique that will precisely avoid such trace enumeration.

The reader may try to determine whether the other three properties hold for the
FSM in Figure 2.37. These are left as an exercise for the reader.

Encoding Test Specifications

We embarked on the discussion on model checking with a specific goal. We intended
to use model checking as an automatic procedure for generating test cases (or wit-
nesses) corresponding to a given test specification. However, apart from this specific
usage of model checking, we should note that it has found acceptance in the industry
as an automated verification procedure. In the electronic design automation (EDA)
industry or in processor design companies, model checking is regularly used for unit
verification — for formally validating parts of the design. In the recent past, model
checking has been extensively used by software giant Microsoft for systematically
debugging device driver software [12]. Thus, model checking should truly be seen as
a general-purpose automated verification procedure for finite-state systems. Given
an LTL property � and a finite-state system M, it checks

M |� �

If � is true for all execution traces of M, the procedure returns true, meaning that
the property � has been verified to be true. If � does not hold for all execution traces
of M, then model checking returns counterexample evidence — an execution trace
of M that does not satisfy �.

Now let us recall our original goal for discussing model checking — using it as a
search procedure for generating test witnesses corresponding to a test specification.
For this purpose, we will need to describe test specifications in our property speci-
fication language. As discussed earlier, the test specification is usually a message
sequence chart — a partial order of events. Given an MSC m, this is how we can
automatically construct an LTL property �m that when model checked will produce
a witness for m.

2.8 Model Checking 71

■ Construct all linearizations (Definition 5) of MSC m. Let this set of all
linearizations be Lin(m).

■ For each linearization � ∈ Lin(m), let � be the finite string 〈e1,e2, . . . ,ek〉.
Because an MSC is a partial order of events, e1, . . . ,ek must be events.
Corresponding to the string �, we construct the LTL property

�� � F(e1 ∧ X(e2 ∧ X(. . .X(ek) . . .))

■ Corresponding to the MSC, we construct the property

�m � ¬
⎛
⎝ ∨

�∈Lin(m)

��

⎞
⎠

Thus, the constructed property �m states that none of the linearizations of MSC m
is witnessed. Model checking will try to prove this property. If a test case satisfying
one of the linearizations of MSC m indeed exists, our checked property will be false,
and the model search will provide this test case as counterexample evidence. Thus,
the counterexample trace returned will be the desired witness test case for our test
specification MSC.

Note that we had earlier outlined two notions of test specification satisfaction, for
a given test specification MSC. In the preceding, we constructed the LTL property
corresponding to the first notion — where we deem a test trace as a witness of
a given test specification MSC if and only if the test trace contains at least one
linearization of the MSC as a contiguous subsequence. The other, weaker notion
of test specification satisfaction we discussed involves generating a test trace that
contains one linearization of the test specification MSC as a subsequence (Definition
8). For this notion we can construct the LTL property from a given test specification
MSC m as follows:

■ Construct all linearizations (Definition 5) of MSC m. Let this set of all
linearizations be Lin(m).

■ For each linearization � ∈ Lin(m), let � be the finite string 〈e1,e2, . . . ,ek〉,
where e1, . . . ,ek are events. Then corresponding to the string �, we construct
the LTL property

�� � (�� U (e1 ∧ X(�� U (e2 ∧ X(�� U . . . (ek�1 ∧ X(�� U ek)) . . .)))))

where �� is true in a state if none of e1, . . . ,ek are enabled, that is,

�� � ¬(e1 ∨ e2 ∨ . . . ∨ ek)

72 CHAPTER 2 Model Validation

■ Corresponding to the MSC we construct the property

�m � ¬
⎛
⎝ ∨

�∈Lin(m)

��

⎞
⎠

Once again, �m represents the property which states that none of the linearizations
of MSC m is witnessed. A counterexample of the property will be a witness test for
MSC m.

The reader is probably intimidated by the LTL formulae we constructed cor-
responding to a test specification. However, note that the LTL formula will be
constructed from the test specification MSC automatically. Thus, the designer only
needs to describe the test specification at the level of MSCs, an intuitive UML-based
notation.

Property Templates and PSL

In general designers may find it hard to write down the properties they have in mind
via LTL. For this reason, there has been a great deal of recent effort in coming
up with common “property templates.” This is to help designers write common
LTL properties. Such templates are useful because model checking has uses beyond
test generation. Indeed, it is a general-purpose automated verification procedure for
finite-state systems.As mentioned earlier, model checking has been extensively used
for processor verification (by companies such as Intel), hardware verification (by
several CAD giants), and embedded software verification (by companies such as
Microsoft).

Given the widespread use of model checking, it is important to develop user-
friendly languages that enable the designer to write LTL properties. One such
industry-adopted language is PSL, an abbreviation for Property Specification Lan-
guage [70]. It was developed by Accellera and can be used to describe properties of
designs written in standard languages such as Verilog, VHDL, and SystemC. PSL has
two distinct layers — the boolean layer and the temporal layer. The boolean layer can
be used to describe propositional logic properties about the design-being-verified.
These properties may contain expressions in the hardware description language
(HDL) in which the design is described.

The temporal layer essentially presents the temporal operators we discussed for
LTL, albeit with syntactic sugar. It essentially gives understandable names to the LTL
operators — for example, G is called as always, X is called as next, and so on. In
addition, it presents several derived operators that the designers can conveniently
use. These operators can also be defined in LTL, albeit in a convoluted fashion. One
example of such an operator is the before operator. Intuitively, the property

�1 before �2

2.8 Model Checking 73

means that if �2 holds in the future, �1 must hold strictly before �2. This is a rather
intuitive description in English, which can be formalized by the LTL formula

F(�2) ⇒ ((¬�1 ∧ ¬�2)U(�1 ∧ XF�2))

Clearly, the designer would like to use the before operator of the industry-adopted
standard PSL rather than writing this complicated LTL formula! PSL is truly an
important development that has enabled more acceptance of formal techniques
such as temporal logics and model checking. Readers interested in this property
specification language may refer to [70].

2.8.2 Checking Procedure

Going back to our air-traffic control case study, recall that the informal require-
ments in Section 2.3.2 allowed a deadlock scenario — where no process can make
progress. We can formalize the absence of deadlocks in LTL as G¬p, where the
atomic proposition p is true only in those states that have no enabled actions. The
informal requirements have to be modeled as FSMs, one for each process — clients,
centralized ATC, and the weather control panel (WCP).

Thus, model checking will check that all execution traces of the system-being-
verified satisfy G¬p. In other words, all reachable states have enabled actions —
thereby proving the absence of deadlocks. If indeed there is a deadlock in the system-
being-verified, model checking will produce counterexample evidence in the form
of an execution trace that does not satisfy G¬p, the property being verified. This
trace will satisfy ¬G¬p, that is, Fp. In this trace, the system reaches a deadlocked
state, thereby showing the presence of deadlocks.

We now describe the checking procedure. Recall that we are trying to check

M |� �

where M is a finite-state transition system and � is a formula written in the linear-time
temporal logic (LTL) specification language.As mentioned earlier, LTL formulae are
constructed out of atomic propositions (the set of all atomic propositions is denoted
as Prop), propositional logic operators (and, or, and not) and temporal operators
(next, until, eventually, globally, and release). To form a connection between the
formula-being-checked and the system-being-checked, we say M is of the form

M � (S, I ,→,L)

where, as before, S is the set of states, I ⊆ S is the set of initial states, and →⊆ S � S
is the transition relation. In addition, we have the labeling function

L : S → 2Prop

74 CHAPTER 2 Model Validation

where 2Prop is the powerset of Prop, that is, the set of all subsets of Prop. If Prop �

{p,q} we have 2Prop � {	, {p}, {q}, {p,q}}. Thus, the labeling function maps each
state s in the FSM to a subset of atomic propositions — the atomic propositions that
are true in state s. Given an FSM and a set of atomic propositions Prop, the labeling
function tells us for each state in the FSM which atomic propositions in Prop are true.

Note that the atomic propositions appearing in � (the LTLformula being checked)
are also drawn from Prop. Thus, the atomic propositions in Prop act as the bridge
between the system-being-checked and the formula-being-checked. Indeed, without
the labeling function for the FSM-being-checked, we would be unable to interpret
an LTL formula over an execution trace of the FSM.

Given that the atomic propositions form the link between the system model M
and the property �, how do we settle the question M |� �? The broad steps in the
checking procedure are as follows.

1. Take the negation of the LTLproperty being verified ¬�; none of the execution
traces of M should satisfy ¬�.

2. Construct a finite-state automaton corresponding to this negated property; call
it A¬�.

3. Compose the system-being-checked M with the automaton A¬�, to produce
a product automaton M � A¬�.

4. Check whether any execution trace � of M is still a legal execution trace of
the product automaton M � A¬�.
■ If yes, it constitutes a violation of � in M; report � as counterexample

evidence.
■ If no, property � holds for all execution traces of M.

We now elaborate each of these steps. In particular, we clarify (i) the association
of LTL properties with finite-state automata, (ii) the notion of composition used
for constructing M � A¬�, and (iii) the check employed on the product automaton
in the last step. We will see that by converting LTL properties to FSMs, we get a
very simple and elegant search procedure for checking LTL properties. Indeed, by
converting LTL properties to FSMs, we will see that model checking of arbitrary
LTL properties will be accomplished via simple depth-first-search!

From LTL Property to Finite-State Automaton

Let us first clarify the notion of finite-state automaton. A finite-state automaton
is defined as A � (Q,�,Q0,→,F), where Q is a finite set of states, � is a finite
collection of symbols (also called the alphabet), Q0 ⊆ Q is the set of initial states,
→⊆ Q � � � Q is the transition relation, and F ⊆ Q the set of final states. The
main change from a transition system to an automaton is this set of final sets that

2.8 Model Checking 75

capture which strings are accepted by the automaton. Thus, each automaton can
be associated with a collection of strings (whose symbols are drawn from �), also
called the language of the automaton.

The foregoing only describes the syntax of a finite-state automaton. What about
its semantics? In other words, how do we define the set of strings that are accepted
by the automaton? Different possible notions of acceptance are possible, giving
different kinds of automaton. Here we present two notions of string acceptance that
are well known and relevant for our discussion.

■ Regular languages:An automaton A � (Q,�,Q0,→,F) accepts a string � with
symbols from � if and only if (i) � is a finite-length string, that is, � ∈ �∗,
and (ii) by running � from some initial state i ∈ I , we end up in some final
state f ∈ F.

■ �-regular languages: An automaton A � (Q,�,Q0,→,F) accepts a string �

with symbols from � if and only if (i) � is an infinite-length string, that is,
� ∈ ��, and (ii) by running � from some initial state i ∈ I , we visit at least one
final state f ∈ F infinitely often.

In both cases, the set of strings accepted by a finite-state automaton A is called
the language of the automaton, denoted L(A). The first notion is very well known
and is useful for representing (a possibly infinite) collection of finite-length strings.
The second notion allows us to use a finite-state automaton to represent (possibly
infinite) collections of infinite-length strings. Such finite-state automata over infinite
strings are also known as Büchi automata.

To illustrate the difference between the two notions, we take a simple example.
Figure 2.38 shows a finite-state automaton where the final states are marked with two
concentric circles. The alphabet of symbols is � � {a,b}. Note that the automaton
is nondeterministic, that is, from a given state there may be several transitions on a
given symbol. Using the first notion of acceptance in the preceding, we say that the
automaton accepts all finite-length strings that end in a nonzero run of bs. However,
using the second notion of acceptance, we deem the automaton to accept all infinite-
length strings with finitely many a symbols. This is because the automaton makes
only moves on b once it reaches the accepting state, and because the accepting state

b

b

b

a

Figure 2.38

An example finite-state automaton over the alphabet � = {a, b}.

76 CHAPTER 2 Model Validation

must appear infinitely often in any accepted string — therefore, there can be only
finitely many occurrences of a.

Now, let us consider the purpose these finite-state automata serve in our model-
checking procedure. We intend to convert the LTL property-being-verified to a
finite-state automaton (and then compose this resultant property automaton with
the FSM being verified). Recall that LTL properties are interpreted over infinite-
length execution traces, because the execution traces of an FSM (the system being
verified) are in general of infinite length. Consequently, the property automaton for
a given LTL property � should represent a collection of infinite-length strings —
precisely those execution traces that satisfy �. In other words, if an LTL property �

is converted to a Büchi automaton A�, we have

L(A�) � {� | � ∈ ��,� |� �}
Thus, any string in the language of A� satisfies � as per LTL semantics, and vice
versa. Formally, a Büchi automaton is defined as follows.

Definition 10 (Büchi Automaton) We define a Büchi automaton as

A � (Q,�,Q0,→,F)

where Q is a finite set of states, � is a finite alphabet, Q0 ⊆ Q is the set of initial
states, →⊆ Q � � � Q is the transition relation, and F ⊆ Q is the set of accepting
states.

The language L(A) of the automaton A just defined is the following set of infinite
strings over the alphabet �:

L(A) � {� | � ∈ ��and � has a run r in A such that in f (r) ∩ F �� �}
A run r of a string � in A is an infinite sequence of states of A obtained by running

� from an initial state. That is, r[0] ∈ Q0 and for all i 	 0, r[i] �[i]→ r[i � 1]. Also, for
a run r, in f (r) is the set of states appearing infinitely often in r.

To summarize, given an LTL property � which we seek to verify for a given
model M, we first construct the Büchi automaton A¬� corresponding to ¬�. The
language of A¬� (the set of strings accepted by A¬�) is the set of execution traces
that satisfy ¬�, that is, the set of execution traces which do not satisfy �.

As an example, suppose we are trying to verify GF p for a given FSM where p
is an atomic proposition. The negation of GF p is FG¬p, the property being true for
all traces where p only occurs finitely many times. The (nondeterministic) Büchi
automaton corresponding to this property is shown in Figure 2.39. We may imagine
this property automaton as an observer that watches every move made by the FSM

2.8 Model Checking 77

True

¬p

¬p

Figure 2.39

Büchi automaton for the LTL property FG¬p.

being verified and makes moves in parallel with the FSM. Note that the automaton
is essentially similar to Figure 2.38 (which accepts all strings with finitely many a
symbols; the reader may wish to compare the two figures) with one important differ-
ence. The annotations on the transitions are formulae over the atomic propositions
appearing in the LTL property. Thus, we read Figure 2.39 as follows. Whenever the
system-being-verified reaches a state where ¬p holds, the transition from the initial
state to the accepting state of the property automaton in Figure 2.39 is enabled.

Indeed, there exists an automatic procedure for translating any LTLproperty � to a
Büchi automaton over an alphabet containing formulae over the atomic propositions
in �. The details of the construction are quite technical and of little consequence to our
understanding of model checking as a verification procedure. The interested reader
is referred to [94]. For our understanding, it suffices to understand the following:
(a) the notion of Büchi automata as a mechanism for accepting a set of infinite
strings, and (b) any LTL property � can be converted to a Büchi automaton that
accepts only those execution traces which satisfy �. Even though we do not discuss
the automatic procedure for converting LTL properties to Büchi automata, we have
discussed here the semantic link between LTL properties and Büchi automata — an
LTL property � is converted to a Büchi automaton that accepts only those traces
which satisfy �. So, even though we have not discussed the automatic procedure for
converting LTL properties to Büchi automata, we know how to manually construct
the Büchi automaton corresponding to a given LTL property.

Composing System with Property

Let us again recall the steps for checking a system model M against an LTL
property �.

■ Construct Büchi automaton A¬� corresponding to the LTL property ¬�.
■ Compose M with A¬� to get a product automaton M � A¬�.
■ Check whether any trace of M is accepted by M � A¬�.

We have already elaborated (a) the notion of Büchi automata and (b) the semantic link
between LTL properties and Büchi automata. For composing the system model with

78 CHAPTER 2 Model Validation

property automata, we adopt synchronous composition — that is, every transition
of the system model is coupled with a corresponding transition in the property
automaton (if one is enabled). Given a system model

M � (S, I ,→M ,L)

where L is a mapping S → 2Prop (Prop is the set of atomic propositions), and the
property automaton A¬�

A¬� � (Q¬�,Bool(Prop),Q0¬�,→¬�,F¬�)

where Bool(Prop) is the set of propositional logic formulae over the set of atomic
propositions Prop, we define

M � A¬� � (S � Q¬�,Bool(Prop), I � Q0¬�, →,S � F¬�)

Thus, the product M � A¬� is also a Büchi automaton. The set of states of the
product automaton is S � Q¬� — the cartesian product of the set of states of the
system model/property automaton. In other words, if the set of states of the system
model is S � {s1,s2} and the set of states of the property automaton is Q¬� �

{q1,q2}; the set of states of the product automaton will be the set of pairs S � Q¬� �

{(s1,q1),(s1,q2),(s2,q1),(s2,q2)}. Similarly, the set of initial states is the cartesian
product of the set of initial states of the system model/property automaton. The
set of final states is S � F¬�. Thus a state in the product automaton is considered
accepting whenever the product automaton reaches a final state. The intuition here
is simple — the product construction enables the property automaton to watch and
record the moves of the system model.We consider a state in the product automaton as
accepting if it contains an accepting state of the property automaton. The alphabet of
the product automaton is the same as that of the property automaton — propositional
logic formulae over a predefined set of atomic propositions Prop. The transition

relation of the product automaton is constructed as follows. We have (s,q)
�→

(s′,q′) if and only if

■ s →M s′, where s,s′ ∈ S, that is, states in the system model M

■ q
�→¬� q′ where q,q′ are states of the property automaton A¬� and � is a

propositional logic formula over a predefined set of atomic propositions Prop.
That is, there should be a transition on formula � from state q to state q′ in the
property automaton A¬�

■ The formula � is true is state s as per the labeling function of the system
model M.

To concretely understand how the composition works, let us take an example.
Figure 2.40 shows a system model M and a property automaton A (corresponding to
the LTL property FG¬p as shown earlier in Figure 2.39). The labeling function of

2.8 Model Checking 79

True

p

(i) System model M

s1 s2
q1 q 2

(ii) Property automaton A

(s1, q1)
(s1, q 2)

(s 2, q1) (s 2, q 2)

(iii) Product automaton M 3 A

¬p
¬p

¬p
¬p

True True

Figure 2.40

Product automaton construction.

the system model is indicated in Figure 2.40. In this case, there is only one atomic
proposition p which is false in state s1 and true in state s2 of system model M.

The product automaton is also shown in Figure 2.40. To understand the product
automaton construction, consider any transition in it, say the transition

(s1,q1)
¬p→ (s2,q2).

This transition appears because s1 → s2 is a transition in the system model, q1
¬p→ q2

is a transition in the property automaton, and ¬p holds in s1 as per the labeling

function of system model M. Similarly, we can argue that (s2,q1)
¬p→ (s1,q2) should

not be a transition in the product automaton because although s2 → s1 in the system

model and q1
¬p→ q2 in the property automaton, we note that ¬p does not hold in s2

as per the labeling function of the system model M.
We see that there cannot be any trace visiting any of the accepting states in the

product automaton of Figure 2.40 infinitely often. Therefore, using the notion of
acceptance in Büchi automata, the language of the product automaton is empty.
In other words, none of the traces of the system model satisfy FG¬p. So, all the
traces in the system model satisfy ¬FG¬p � GFp. This amounts to a verification
of the linear-time temporal logic property GFp against the system model M shown
in Figure 2.40. Indeed, we expect that GFp will hold for the system model in Figure
2.40 because (a) GFp signifies that p holds infinitely often, and (b) for the only trace

80 CHAPTER 2 Model Validation

True

p

(i) System model M

s1 s 2

q1 q 2

(ii) Property automaton A

(iii) Product automaton M 3A

True
¬p

¬p

¬p

¬p

¬p

True

True

(s1, q1)

(s 2, q1)
(s 2, q 2)

(s1, q 2)

Figure 2.41

Another product automaton construction.

in the system model of Figure 2.40, the proposition p is alternately true and false
(and thus holds infinitely often).

In Figure 2.41 we show another product automaton construction. Here the system
model is chosen so that it does not satisfy GFp — there are traces in which proposition
p does not hold infinitely often. The property automaton is as before — it represents
FG¬p, the negation of the LTL property GFp. We see that the product automaton’s
language is nonempty. Thus, there are traces of the system model that satisfy FG¬p,
that is, violate GFp. These traces can be obtained from the strings that are accepted
by the product automaton. In Figure 2.41, the only string accepted by the product
automaton is

(s1,q1),(s1,q2),(s1,q2),(s1,q2), . . .

By projecting this string w.r.t. the states in the system model (that is, leaving out the
property automaton’s states), we get the trace

s1,s1,s1,s1, . . .

that is, the self-loop at state s1 in the system model of Figure 2.41. Indeed, this is a
trace of the system model that does not satisfy GFp, thereby giving us counterex-
ample evidence of why the LTL property GFp is not true in the system model of
Figure 2.41.

2.8 Model Checking 81

Emptiness Check

We again recall the steps for checking a system model M against an LTLproperty �:

■ Construct Büchi automaton A¬� corresponding to the LTL property ¬�.
■ Compose M with A¬� to get a product automaton M � A¬�.
■ Check whether any trace of M is accepted by M � A¬�.

We have described the first two steps so far, and we now proceed to describe the last
step — algorithmically checking whether any trace of M is accepted by M � A¬�.
This amounts to checking whether the language of M � A¬� is empty. If indeed the
language of M � A¬� is empty, we know that no trace of M is accepted by M � A¬�.
Thus, no trace of M satisfies ¬�, and hence � is satisfied by all traces of M — thereby
amounting to a verification of property � on system model M.

How can we check whether the language of M � A¬� is nonempty? As per
the notion of acceptance of Büchi automata, an (infinite) string is accepted by the
automaton if it visits an accepting state infinitely often. Because the number of
states is finite, this is only possible if one or more accepting states are visited within
a loop, as shown in Figure 2.42. Such loops are also called “accepting cycles.” Thus,
to check whether the language of an automaton M � A¬� (i.e., whether it accepts
any string), we only to have to check for the presence of at least one accepting cycle.
As we can see from Figure 2.42, this amounts to answering the following question:
Starting from an initial state s0, is there a path to an accepting state sacc s.t. sacc is
reachable from itself ?

The foregoing question can be answered algorithmically as follows.

1. Perform depth-first search from the initial state(s) until you reach an accepting
state sacc.

2. Whenever you reach an accepting state sacc, remember sacc (in a global
variable) and start a nested depth-first search from sacc. This nested search
will stop whenever sacc (which was remembered in a global variable) is
reached.

3. If no accepting cycles are found in the previous two steps, report “yes” (the
LTL property being checked is true).

saccs0

Figure 2.42

An accepting cycle starts from an initial state and loops in one or more accepting states.

82 CHAPTER 2 Model Validation

Otherwise, if an accepting cycle is found, report “no” (property being checked
is false). Furthermore, concatenate the stacks of the two depth-first searches
to report “counterexample evidence.”

Now, let us walk through each of the steps mentioned in the preceding. The first
step finds a path � from an initial state to an accepting state sacc. Furthermore, this
path is captured in the stack maintained by the depth-first search. The second step
finds another path �′ from state sacc to state sacc; again this path is captured in the
stack of the depth-first search. In the final step, we check whether any accepting
cycles are found, and if one is found, we simply concatenate �, �′ to report the
accepting cycle. This amounts to evidence of why the property being checked is not
true in the system model. The designer can then look through the concatenated path
� ◦ �′ (a path in the system model) to debug the system model. The path � ◦ �′ is a
counterexample trace for the LTL property being verified.

The checking procedure outlined in this section has been implemented inside the
SPIN model checker [37]. We now briefly describe the SPIN toolkit — primarily in
an effort to entice our readers to get hands-on with some of the techniques we are
describing.

2.9 THE SPIN VALIDATION TOOL
For reliable development of embedded systems, model development and debug-
ging serves as a crucial first step. In this chapter, we have so far presented a
variety of modeling and validation approaches along these lines, namely state
machine–based modeling, sequence diagram–based modeling, model-based testing,
and model checking.

We now describe an open-source modeling/validation tool that supports some
of these. Historically, the SPIN tool was developed in Bell Laboratories around the
1980s and has been distributed as open-source software since 1991.7 The SPIN tool
supports state machine–based modeling of concurrent systems and model checking
of linear-time temporal logic properties. If the property is not satisfied (by the system
being checked), the counterexample trace is given. Because the counterexample
trace involves interaction between multiple processes, it is displayed as a message
sequence chart that highlights the interaction across processes.

In addition, SPIN has a number of other nice validation features such as random
simulation and user-guided simulation. Thus, if a counterexample trace is found
by model checking of a given LTL property, the designer can perform user-guided
simulation along the counterexample trace to uncover the error source.

7 http://spinroot.com/spin/whatispin.html.

2.9 The SPIN Validation Tool 83

The modeling language for the SPIN tool is called Promela — an abbreviation for
protocol meta-language. It supports many language features for modeling sequential
or distributed software/protocols, namely:

■ Concurrency, in the form of allowing multiple processes in a system model,
■ Communication across processes, in the form of message passing (synchronous

message passing in the form of handshake or asynchronous message passing
via channels) and/or shared variables,

■ Nondeterminism within a process, to support the situation where all the details
of a process may not be captured in the Promela model, and

■ Standard C-like syntax within a process supporting assignments, switch, while,
and other control constructs.

Details of the Promela modeling language appear in the SPIN manual. Instead of
giving details of Promela, we give in Figure 2.43 a very simple example to illustrate
some of modeling/validation features of SPIN.

In this example, two concurrent processes node1 and node2 are communicating
via two channels data and ack. Because the channels have a nonzero capacity, the
sends can be nonblocking, that is, the sending process can send and continue even
though the message is not received on the other side. However, the channel capacity
is 1, which means that there can only be one outstanding message in each channel. In
Figure 2.44, we illustrate possible behaviors allowed by the system in Figure 2.43.
In particular, Figure 2.44a shows a situation where a message sent is immediately
picked up on the receiving side, whereas Figure 2.44b depicts a situation where the
channels have one outstanding message.

chan data, ack = [1] of bit;

proctype node1() { proctype node2() {
do do
:: data!1; :: ack!1;
:: ack?1; :: data?1;
od od
} }

init{ atomic{
run node1(); run node2();

}
}

Figure 2.43

A trivial communication mechanism modeled in SPIN.

84 CHAPTER 2 Model Validation

…..

data

ack

data

ack

data ack

data ack

Node1 Node2

….

Node1 Node2

(a) (b)

Figure 2.44

Two interleavings, both allowed by the system model in Figure 2.43.

Let us now illustrate a simple bus-based communication in SPIN’s modeling
language Promela. Consider a system with two processors hooked to a bus, each
trying to access a memory unit; access to the bus is controlled by a bus arbiter. We can
model it as per the schematic in Figure 2.45. Here we have three process definitions —
processor (applies to both the processors in the system), memory (applies to the
single memory unit), and arbiter (applies to the bus arbiter). The schematic model
illustrates inter-process communication by shared variables as well as by message
passing. In particular, the bus arbiter conveys its decision on who will access the
bus by setting a shared variable. On the other hand, the processor that accesses
the bus communicates with the memory unit by sending messages over a channel,
the channel resembling the actual system bus.

Note that the do...od denotes an infinite loop where in each iteration any one
of the enabled choices is executed nondeterministically; a choice is considered to be
enabled when its corresponding guard is true. Thus, if both processors request bus
access, our model allows the access to be given to any one of them. This means that
we have not modeled specific bus-scheduling algorithms, and the validation results
are applicable to all bus-scheduling algorithms (provided the algorithm grants bus
access to one of the requesting processes, which is always the case).

To explain the execution semantics in SPIN, we should note that its notion of
time is discrete, that is, the timeline is divided into discrete time units. Overall, the
SPIN tool supports asynchronous composition of processes executing concurrently.
What this means is that, at any time unit, only one of the processes in the system
makes a move. Of course, in any particular time unit, more than one process may be
“enabled” (i.e., ready to make a move). SPIN constructs and explores all possible
behaviors resulting from different interleavings of the processes.

As far as formal verification is concerned, SPIN supports model-checking of LTL
properties. The LTL property is negated and converted into a Büchi automaton that is

2.9 The SPIN Validation Tool 85

bit grant; chan bus = [1] of {byte}; bit request[2];

proctype Processor(bit id){ byte data;
do
:: request[id] = 1->

if
:: grant == id->bus!data;
:: else;
fi;

:: request[id] = 0
od;

}

proctype Arbiter()
{

do
:: request[0] == 1 -> grant = 0;
:: request[1] == 1 -> grant = 1;
od;

}

proctype Memory() {byte data;
do
:: bus?data; /* process the "data" */
od;

}

init{
atomic{ run Processor(0); run Processor(1); run Arbiter(); run Memory(); }

}

FIGURE 2.45

Modeling of bus access mechanism in SPIN.

composed with the transition system being checked. The model-checking problem
is then reduced to checking whether the set of traces accepted by the composed
automaton is empty. This is accomplished by a simple depth-first search procedure.
In other words, the core model-checking algorithm employed in SPIN is similar to
the technique we have elaborated in Section 2.8.2.

One may think that because of its asynchronous composition, SPIN is unsuit-
able for modeling clocked systems — systems that are driven by a common clock.
However, it is possible to describe such systems by modeling the clock as a sep-
arate process and using the clock process’s events (the ticks) to drive/enable the
other processes. The reader may wish to modify Figure 2.45 to achieve bus-based

86 CHAPTER 2 Model Validation

communication in a clocked setting in SPIN. This is left as an exercise for our
readers.

Clearly, instead of trying to program clocked systems within the framework of
asynchronous composition of concurrent processes, it is more convenient to model
systems directly in a synchronous composition framework. We now discuss the
SMV validation tool that supports synchronous concurrent composition and has
been widely used for hardware modeling/validation.

For modeling and validation of clocked systems, SMV might be more suit-
able than SPIN. On the other hand, for modeling and validation of asynchronous
software/protocols, SPIN might be easier to use than SMV.

2.10 THE SMV VALIDATION TOOL
SMV stands for Symbolic Model Verifier. The tool was developed initially in
Carnegie Mellon University in 1980s and 1990s. Currently the tool has sev-
eral versions, such as CMU-SMV, Cadence-SMV, and NuSMV — distributed as
open-source software from various institutions.

The modeling language of the SMV tool is relatively low-level and supports
synchronous concurrent composition of processes. Each process is described as a
module that has its own private signals and also receives signals from other modules
as parameters. Thus, each module is able to read certain signals from other modules
in every time unit. In each time unit, every module will change state (synchronous
composition). The state transition in each module is described on a per-signal basis,
that is, for each signal we describe how its value will change from the current time
unit to the next time unit. In other words, there is no notion of control flow within
each module (as compared to SPIN, which describes each process as a C-style
program).

To illustrate how the modeling works, let us try to describe a simple bus-based
communication in SMV (similar to the exercise we tried out in SPIN). Again, we
consider two processors (contending for bus access), a bus arbiter (deciding which
processor will access the bus), and a memory unit (which the processors access for
read and write operations). The top-level system description in SMV will appear as
follows.

The processor modules each have a REQUEST signal that indicates a request
for bus access. This request has to be conveyed to the arbiter, hence it appears
as a parameter in the arbiter process. What this means is that, in every time unit
(for the case of bus protocol a time unit is a clock cycle), the REQUEST lines of
the processors are accessible to the arbiter; the arbiter reads these REQUESTs and
makes a decision about which processor is granted bus access. This information is

2.10 The SMV Validation Tool 87

MODULE main() {

p1 : processor(a.GRANT1, s.RESP);
p2 : processor(a.GRANT2, s.RESP);
s : slave(a.GRANT1, a.GRANT2);
a : arbiter(p1.REQUEST, p2.REQUEST);

mutex: assert G(˜(a.GRANT1 & a.GRANT2));
nostarve1: assert G(p1.REQUEST -> F a.GRANT1);
nostarve2: assert G(p2.REQUEST -> F a.GRANT2);
using mutex prove nostarve1, nostarve2;
assume mutex;

}

MODULE arbiter(REQUEST1, REQUEST2) {

GRANT1, GRANT2 : boolean;

next(GRANT1) := case{
REQUEST1 : {0,1};
default: 0;

}
next(GRANT2) := case{

REQUEST2 : {0,1};
default: 0;

}

}

... // description of the other modules

Figure 2.46

Modeling of bus access mechanism in SMV.

available via the GRANT1 and GRANT2 signals of the arbiter, which are passed
to the corresponding processors (so that each processor knows whether it has been
granted bus access by the arbiter).

Now, let us study the transition relation of the arbiter in Figure 2.46.As mentioned
earlier, it is given in a per-signal fashion, describing how the grant request is given to
each processor. For GRANT1, the transition relation is very simple — it may or may
not grant bus access when the REQUEST1 signal (request from the corresponding
processor) is set. Note that the arbiter described in the preceding does not encode

88 CHAPTER 2 Model Validation

any particular scheduling policy. This choice is often deliberate — the designer may
model/validate a bus protocol but leave the bus arbitration policy unspecified. The
main advantage gained is that validation results are not tied to any particular bus
arbitration policy.

Thus, we see that by underspecifying certain parts of system behavior, we can
achieve system validation in a more general way. There are, however, caveats in
underspecifying any parts of the system behavior. The resultant system may be so
underspecified that no meaningful validation can be carried out. In Figure 2.46 we
see an example of such a situation. The bus arbitration policy within the arbiter is so
underspecified that it can even grant bus access to both processors in the same clock
cycle; the reader may try to convince himself/herself that this is indeed possible in
the SMV description of Figure 2.46.

Interestingly, SMV provides an elegant feature to deal with such underspecified
systems. The designer can specify certain desired properties of system behavior
expressed in linear-time temporal logic, which need not be satisfied by all traces of
the SMV system description. Thus in our example, even though mutual exclusion of
bus access is not enforced by the described bus arbitration policy, we can specify it as
a desirable property. This is done by the property mutex in Figure 2.46. It denotes the
LTL property G(¬(a.GRANT1 ∧ a.GRANT2) — that is, along all paths globally, the
GRANT1 andGRANT2 signals of the arbiter are never simultaneously set. This property
is then assumed by the SMV checker while trying to prove other properties about the
system description. Thus, in our example, the designer may be interested in verifying
no-starvation properties about the bus protocol; the no-starvation property states that
any particular processor requesting the bus will eventually be granted bus access (see
the nostarve1 and nostarve2 properties in Figure 2.46). For this purpose, the
designer can instruct the SMV checker to explore/examine only those protocol runs
that satisfy mutual exclusion of bus access and then check whether these runs satisfy
the no-starvation property being verified. Indeed, this is what appears in the SMV
description in Figure 2.46 where the designer instructs the SMV checker to verify the
LTL properties nostarve1, nostarve2 by assuming the mutex property. This is
an extremely useful feature for validating system descriptions where certain parts of
the system behavior may not be specified (either deliberately or because those parts
of the system description are not readily available). This feature of SMV has been
successfully used for verification of real-life system protocols, an example being
the verification of the AMBA Advanced High-Performance Bus (AHB) protocol
deployed in ARM’s System-on-Chip designs [75].

In terms of model checking, SMV has been widely used for verifying (parts of)
various industrial hardware/protocol designs, such as the Futurebus protocol [14]
and (parts of) the PowerPC microprocessor [6]. The tool employs sophisticated
data structures for efficient storage of the state space while visiting it. In fact, the
tool does not represent the transition system of the system being verified explicitly

2.11 Case Study: Air-Traffic Controller 89

as a graph. Instead, the states and transitions are implicitly represented as logical
formulae, and these are manipulated efficiently using sophisticated data structures.
This implicit state-space search is often referred to as symbolic model checking in
various books/articles in the area.

A full description of the data structures and algorithms inside the SMV checker
is outside the scope of this book. The interested reader is referred to [18] and similar
texts for a full treatment of this topic.

2.11 CASE STUDY: AIR-TRAFFIC CONTROLLER
We conclude the chapter by reverting back to our running example in this chapter —
the air-traffic controller (ATC). We describe in detail some issues in modeling this
example from the (simplified) informal requirements elaborated in Section 2.3.

We now present a snippet of Promela code for the ATC example. Recall that
Promela is the modeling language of the SPIN validation tool we discussed in
Section 2.9. One of the main activities in such a modeling is to convert the
inter-process style requirements to intraprocess style Promela models. The English
requirements focus on the sample interactions or protocols across the processes.
On the other hand, the Promela models provide the description of each individual
process.

Figures 2.47 and 2.48 visually capture part of the requirements of our air-traffic
control example. The English requirements were given in Section 2.3. In Figure 2.47,
we show that a client may send a connect request to the ATC; following by which
the client receives new weather information from the ATC via the get_new_wthr
message.

In Figure 2.48 we show that the client may succeed or fail in receiving the new
weather information. If it succeeds, it proceeds to use the new weather information
(possibly for computing the desired trajectory of the incoming aircraft). On the other

ATC

c 0

c 1

c 2

c 0

c 1

c 2

WCP

connect

ATCWCP

get_init_wthr

Figure 2.47

Client connection in the ATC example.

90 CHAPTER 2 Model Validation

ATCWCP

succ

ATCWCP

fail

ATCWCP

use_init_wthr

ATCWCP

c 0

c 1

c 2

c 0

c 1

c 2

c 0

c 1

c 2

c 0

c 1

c 2

Figure 2.48

Initialization of a connected client in the ATC example.

hand, if the client fails to receive the new weather information, it will be disconnected
from the ATC.

In the following we show the Promela modeling of a part of the client pro-
cess. In particular, we show the Promela description corresponding to the system
requirements captured by Figures 2.47 and 2.48. In our modeling, the client and ATC
communicate via handshake. This is shown by defining a communication channel
of capacity zero. In the following, the Client_ATC is this channel.

/* Messages exchanged between Client and ATC*/

mtype = {connect,close, ... };

chan Client_ATC = [0] of {mtype};

proctype client() {
/* Non deterministic choice. Client can send connect request */
/* or just stay idle. */

disconnected:
do

:: Client_ATC!connect -> break
:: skip

od;

2.12 References 91

Client_ATC?get_new_wthr; /* Receive new weather from CM */

/* Non-deterministic choice between success/failure
in getting new weather */

if
:: Client_ATC!yes /* New wthr info recv ok */
:: Client_ATC!no -> /* New wthr info recv not ok */

Client_ATC?close;
goto disconnected /* Close connection*/

fi;

Client_ATC?use_new_wthr; /* Use the new weather info */
....

}

As we see in the foregoing, the client process nondeterministically connects, or
does not connect. If it connects, it attempts to receive new weather information.
We also model both the cases — where the client may succeed or fail in receiving
the new weather information. If it succeeds, it proceeds to use the weather infor-
mation. However, if it fails to connect, it goes back to the disconnected state. It is
worthwhile to note that we are again modeling the control logic without the data
transmitted across the processes. Thus, receiving the new weather information is
abstractly denoted by a message of the name get_new_wthr — without actually
representing the weather data. Furthermore, many details of actual implementations
are abstracted away with the help of a nondeterministic choice. For example, the
client receiving or not receiving the initial weather information is simply modeled
via a nondeterministic choice — thereby capturing both the situations which may
arise in a system implementation.

In the preceding, we present only a snippet of the Promela code, in particular for
the client process. Modeling the other processes, namely the central controller (or
ATC) and the weather control panel (WCP), is left to our readers as an exercise.

2.12 REFERENCES
There are many texts in model-driven software engineering and Unified Model-
ing Language. However, they do not focus on the validation aspects — the focus
is only on the modeling. Moreover, there remain important differences between
software modeling and system modeling. Software modeling focuses a lot more on
the architecture — the classes, their relationship being expressed via a class diagram.
Determining the associations between the classes lends the yet-to-be-written (object-
oriented) software quite a bit of structure. In the case of system modeling, the system
architecture is not the main focus. Instead, the behavior of the interacting processes

92 CHAPTER 2 Model Validation

in the system is modeled first (using state diagrams and/or sequence diagrams). Sub-
sequently, during the later steps of embedded system design, the system architecture
is determined so as to meet performance/energy/area/cost requirements. In those
later stages, a process might be partitioned and allocated into several processing
elements, or several processes could be allocated to the same processing element (a
processing element could be a processor running software, or a piece of hardware).
Thus, in summary, system modeling focuses much more on behavioral diagrams.

Among the behavioral diagrams, state diagrams have their origin in the sem-
inal work on Statecharts by David Harel [34]. They extend finite state machines
with hierarchy and concurrency. There exist several tools for developing/using
Statecharts — notably Rhapsody [74] and Stateflow [88]. These tools support code
generation from state diagrams.

Sequence Diagrams have their origins in the Message Sequence Charts [102]
studied in the telecommunication domain. For a more formal treatment on this topic,
the reader may refer to [73].

Model-based testing is a well-known system development activity. The starting
point in model-based testing is the derivation of explicit behavioral models from
informal system requirements. This forms a precise specification of the system’s
intended behaviors. A behavioral model is then searched for generating a set of test
cases (a test suite), guided by a user-provided test purpose. A test purpose aids in
selecting interesting model behaviors against which the user may want to test a
system implementation. A survey of methods for model-based testing can be found
in [8]. Rhapsody [74] allows for test generation from Statecharts. The UBET tool
[92] allows for automatic test generation from high-level message sequence chart
(HMSC) models.

Model checking is an automated method for proving temporal logic properties
of finite-state machines. The idea of using temporal logic to describe properties of
nonterminating reactive systems was first proposed by Pnueli [67]. Model checking is
an algorithmic verification method that takes in a finite-state machine M, a temporal
property �, and checks whether M satisfies �. The initial papers on model checking
are [17, 72], and a text on this topic is [18]. An extension of state-transition graphs
for real-time systems, called timed automaton, has been studied in [1], and model-
checking tools for these formalisms have been developed. UPPAAL [56] is one
such tool.

In terms of tools, there exist several mature model checkers today. The SPIN
checker [38] is an explicit-state checker for asynchronous concurrent systems, often
used for protocol verification. This tool has been used for validation system mod-
els synthesized from informal system requirements. The SMV checker [84, 85]
has a modeling language suitable for synchronous systems and has been widely
used for efficient hardware verification. There exist many different variations of

2.13 Exercises 93

SMV (corresponding to variations in the search algorithms and the data structures
used) such as CMU-SMV, Cadence SMV, and NuSMV. Model checkers for software
verification include BLAST [7], MAGIC [16], and SLAM [12].

2.13 EXERCISES
Here we present a host of exercises, primarily based on the air-traffic control system
we discussed earlier in the chapter (see Section 2.3.2).

2.1. Explain your understanding of platform modeling, and its differences from
system behavior modeling. Are the system modeling approaches described
in this chapter applicable to platform modeling — theoretically and pragmat-
ically speaking?

2.2. Model the air-traffic control system’s informal requirements given in Section
2.3.2 as a collection of finite-state machines (FSMs) — one for client pro-
cesses, one for the communications manager, and one for the weather control
panel.

2.3. Using the FSM model of the air-traffic control system as a guide, generate
C/Java code for each of the three classes — client, weather control panel, and
communications manager.

2.4. Model the air-traffic control system’s informal requirements given in Section
2.3.2 as an HMSC. Clearly describe what fragments of the requirements
correspond to which MSCs in the HMSC model.

2.5. Propose a methodology for generating candidate positive test specifications
from an HMSC model of a system. What about negative test specifications?

2.6. Given the HMSC model of the air-traffic control system, synthesize a
set of positive test specifications as per your test specification synthesis
methodology (developed in the previous question).

2.7. For each test specification obtained in the previous question, manually gen-
erate a trace in the FSM model of the air-traffic control system (Exercise 2)
that satisfies the test specification. How can you automate this test-generation
process?

2.8. Try to convert the FSM or the HMSC model of the air-traffic control sys-
tem into a Promela description in SPIN. Comment on the relative ease and
difficulties of the two modeling exercises.

94 CHAPTER 2 Model Validation

2.9. Using SPIN’s simulation and/or model-checking feature, try to verify the
absence of deadlocks in your constructed Promela model. If you had modeled
the informal requirements correctly, this should produce a bug, that is, a
deadlock situation in the design.

2.10. Modify the Promela description to remove the deadlock situation identified
in Exercise 9. Try to trace back your fix to the FSM/HMSC model, and then
try to trace it back further to the informal requirements. Comment on what
links need to maintained across requirements, FSM/HMSC models, and the
Promela code to enable such reverse translation of code fixes.

2.11. Try to model theATC example in SMV. Compare and contrast the SMV/SPIN
modeling styles. In particular, discuss whether you face any difficulties in
modeling the ATC in SMV, owing to the absence of an explicit program
counter in SMV’s modeling language.

2.12. Consider the following program fragment. Can we use the model-checking
technique covered in this chapter to show that x == 2 holds at the end of the
program? Note that x is an integer variable.

int x;

x = 0;

x = x + 1; x = x + 1;

CHAPTER

Communication Validation 3
In this chapter, we discuss the issue of correctly handling the communication
between different components of an embedded system. During system design, there
is increased emphasis on interface-based design, where the core behavior of a system
component is separated from its interface. Unfortunately for us, the word “interface”
is overloaded and is often used in the electrical engineering and computer science
areas to capture very many different concepts. For this reason, it is important to
precisely define what we mean by interface.

We define the interface of a system component as a behavioral entity. Thus, an
interface is not necessarily just a syntactic entity providing mapping of an output
from a component to an input of another component. Instead, we view an interface
as a process with internal states — it contains a portion of the component’s behav-
ior. In particular, a component interface embodies the services provided/received
by the component in question to/from other system components (or the external
environment). We could think of an interface as a program with control flow of
its own.

Thus, the interfaces of the embedded system components capture the part of the
component behavior responsible for communication. In this chapter we are con-
cerned with the problem of correct design, refinement, and validation of interfaces.
We want to clarify here that the system components cannot communicate with each
other without their interfaces. Although the interfaces enable communication, the
designer may have flexibility about where to place them. In particular, there can be
three different situations — (i) the individual components are endowed with inter-
faces that communicate with each other, (ii) there is a central protocol converter that
enables communication, and (iii) the individual components have interfaces and
there is also a central protocol converter. These three situations are shown schemati-
cally in Figure 3.1. We can view the component interfaces as well as the centralized
protocol converter as processes with states, in general.

Embedded Systems and Software Validation
Copyright © 2009, Elsevier Inc. All rights reserved. 95

96 CHAPTER 3 Communication Validation

Cannot
 talk

C1 C2

C1 C2

C1 C2

C1 C2

Converter

Interfaces

Interfaces & Converter

Figure 3.1

Converters and/or interfaces for enabling communication.

One may wonder why both component interfaces and a centralized converter may
ever be necessary. It may seem that to make several incompatible components talk
to each other, we can either design a centralized protocol converter or distribute the
converter’s logic into the individual components (which then become the interfaces).
However, this view does not consider the reality of various bus-based system-on-chip
designs where each component hooked to the bus is endowed with a bus interface.
Furthermore, we need a bus controller that coordinates the communication between
these component interfaces.Thus, the bus controller essentially acts as the centralized
protocol converter.

To illustrate the difference between a component’s core behavior and component
interfaces, we consider a multiprocessor system-on-chip where several processors
and memory units are hooked to a system bus. The processors act as the “masters”
that request read/write services via bus access, whereas the memory units possibly
act as “slaves” providing services. So, let us explain each of the terms we discussed
in this setting.

■ Components: Bus masters (processors), bus slaves (memory units).
■ Interfaces: The bus interface for masters/slaves. These are the processes that

participate in the bus protocol.
■ Centralized converter: The bus controller or the arbiter is the centralized

converter that snoops on the bus.

The overall communication mechanism is shown in Figure 3.2. Behavior of the
processors connected to the bus can be subdivided into three different parts:

■ External environment: The programs executing on a processor serve as its
external environment. Execution of the programs generate memory read/
write requests. As a result of these read/write requests, the processor requests

CHAPTER 3 Communication Validation 97

Processor 1

Interface

Environment

Processor 2

Interface

Environment

Arbiter

Address/Data
signals

Bus-requests

Memory 1

Control signals
Address/Data
signals

Decoder

Multiplexer

Centralized Converter
Interface Interface

Memory 2

Bus

Figure 3.2

Converters and interfaces in bus-based communication.

bus access. When bus access is granted, the processor transmits address/data
signals over the bus.

■ Core behavior: This is the behavioral core of the processor with implementa-
tion of microarchitectural features such as pipelines and cache.

■ Bus interface: This portion manages the communication of the processor with
the bus. Its state remembers entities such as:
– Pending requests of bus access from the processor, and
– The current status of the processor in terms of bus access — idle/transmitting

data and so on.

The processors request bus access, which is granted by a bus arbiter or bus
controller. Based on the bus arbiter’s output, a multiplexer could be triggered that
then drives the appropriate address/data signals on the bus. Once these are sent, the
address could be decoded so that the read/write request can be sent to the appro-
priate memory unit (bus slave). Thus, the bus arbiter acts a centralized converter or
coordinator enabling the processors to communicate with the memory units. This is
shown clearly in Figure 3.2. In particular, the figure shows that bus arbiter along with
the multiplexer/decoder coordinate the communication between the bus interfaces
of the processors (masters) and memory units (slaves).

Given the foregoing role of interface and converters in enabling communication
across embedded system components, there is an issue about correct design of these
interfaces and converters. However, more often than not, the system components are
built out of predefined, readily available components such as Intellectual Property

98 CHAPTER 3 Communication Validation

(IP) cores. It is worthwhile to mention here that for well-known bus protocols such
as PCI or AMBA, the IP core providers usually endow their components with bus
wrappers.

Hence the designer’s job includes communication debugging/validation apart
from communication design. Usually the problem faced by the designer is as follows:
given a set of components, possibly supplied by different vendors and having incom-
patible protocols, how to weave together an interconnect fabric that will allow them
to communicate in prespecified interaction patterns. Thus, these “prespecified inter-
action patterns” give the desired protocol with which the predesigned components
or IP cores should communicate.

Given such a desired interaction protocol and a set of components with incom-
patible native protocols, the designer thus needs to generate suitable component
interfaces and/or a centralized converter. The interfaces and converter not only enable
communication but also ensure that the communication conforms to the desired pro-
tocol. The issue of how much functionality with which to endow the component
interfaces and how much functionality should be left to the centralized converter is
a matter of design choice.

3.1 COMMON INCOMPATIBILITIES
Before proceeding further, we need to be clear about the representation of interfaces
and converters. As already mentioned, we can view the component interfaces and
the centralized converter as processes with states. However, this is a very general
view and does not pinpoint the exact capabilities an embedded system designer
may expect from the interfaces/converters. Hence, we present a series of illustrative
examples here to capture the common protocol incompatibilities that may arise. For
each of these incompatibilities we try to offer customized solutions, generating an
interconnect fabric that can allow the incompatible components to communicate. In
the next section, we will present a general method where the incompatible proto-
cols are modeled as finite-state machines (FSMs) and a protocol converter can be
automatically synthesized.

To show the common incompatibilities that arise, we need a notation for spec-
ifying the incompatible protocols. In this section, we adopt the sequence diagram
notation for describing simple incompatible protocols. Recall that a sequence dia-
gram represents an interaction pattern across processes; the processes appear as
vertical lines, also called lifelines. So, to capture incompatible native protocols of n
communicating components, we may use n different sequence diagrams, one from
the viewpoint of each component. Each sequence diagram describes the native pro-
tocol of a component and the communication it expects from the other components.

3.1 Common Incompatibilities 99

Because these “expectations” are incompatible, the components cannot communi-
cate. By designing suitable component interfaces and protocol converters, one can
enable communication across these components.

In the following, we distinguish between control and data signals. The control
signals enable data communication between the components; the actual data being
transferred is captured in the data signals. Each component has a set of control/data
signals it sends/receives; this set is called the signal alphabet of the component. Com-
mon incompatibilities across the components arise from differing signal alphabets
and/or differing order of signals exchanged across components.

3.1.1 Sending/Receiving Signals in Different Order

In this situation, the components have the same signal alphabet. However, in the
native protocols the signals may be exchanged in different order leading to incom-
patibility. In Figure 3.3, we see a simple example of this situation. There are two
processes here — sender and receiver. The sender communicates the beginning of a
data transfer with a start signal, and the receiver communicates the end of the trans-
fer with a stop signal. The sender in this case can be a processor, and the receiver can
be a memory unit, for example. The data transfer consists of communication of an
addr and data signal. This could be the instruction of the sender (say, a processor)
to the receiver (say, a memory unit) to perform a memory write; addr is the memory
address to which the given data is to be written.

Figure 3.3a, b shows that the sender and receiver expect the addr, data signals
in different order. This minor incompatibility of native protocols can be solved in
many different ways:

■ An interface is attached to either the sender or the receiver. If the interface
is attached to the sender for example, it should store the addr, receive data,
forward data to receiver, and then forward the addr to receiver. This requires
the interface to have a register that can store the addr signal. This solution

(a)

start

addr

data

stop

Sender Receiver

start

data

addr
stop

Sender Receiver

(b)

Figure 3.3

Different signal ordering: (a) sender’s viewpoint, (b) receiver’s viewpoint.

100 CHAPTER 3 Communication Validation

start

addr

data

stop

Sender ReceiverS-Interface

store
addr

data

addr

stop

Figure 3.4

Using a sender interface to enable communication in Figure 3.3.

is shown schematically via a sequence diagram in Figure 3.4. The sender
interface is shown via the lifeline marked S-Interface.

■ We could also have a central converter that sits in between the sender and the
receiver, rather than being attached to any of them as an interface. However, in
terms of functionality, the difference between having a converter and having
an interface for one of the processes is rather minimal.

■ Finally, in the depiction of the protocols in Figure 3.3, the addr and data signals
are sent one after another by the sender. Usually, this will happen when the
addr and data signals share a resource — say, they are transmitted over the
same bus but in different clock cycles. So, one way to get past the protocol
incompatibility is to have separate address and data buses. The addr and data
signals could be driven over separate buses in the same clock cycle. Of course,
the receiver also needs to have separate address and data ports in this case.

3.1.2 Handling a Different Signal Alphabet

In this situation, the various interacting components communicate using different
sets of signals. Usually, the sets of signals is not disjoint, but certain signals are
sent/received by one component but not received/sent by others.

We show a simple example of such a protocol incompatibility in Figure 3.5. In this
case, the sender generates the request signal, which is not expected by the receiver.
Similarly, the receiver generates a ready signal, which is not expected by the sender.
Both of these signals need to be consumed by the interfaces/converter to maintain
protocol compatibility. On the other hand, the receiver expects the stop signal, which
is not provided by the sender. Therefore, this signal needs to be generated by the
interfaces/converter.

What are the solutions we can propose to resolve this protocol incompatibility?
Basically, the extra logic we add should be able to generate/swallow signals that

3.1 Common Incompatibilities 101

(a)

request

data

ack

Sender Receiver

ready

data

stop
ack

Sender Receiver

(b)

Figure 3.5

Differing signal alphabets: (a) sender’s viewpoint, (b) receiver’s viewpoint.

request

data

ack

Sender ReceiverS-Interface R-Interface

ready

data
data

stop

ack
ack

Figure 3.6

Using sender and receiver interfaces to remove incompatibilities in Figure 3.5.

appear in the signal alphabet of one component but not in another. The question is
where we add the logic — as a central protocol converter or as two separate interfaces
(one for the sender, one for the receiver).

Figure 3.6 illustrates a solution where both the sender and the receiver are
endowed with separate interfaces. The sender interface swallows up the request
signal from the sender, because it is not expected by the receiver. Likewise, the
receiver interface swallows up the ready signal from the receiver, because it is not
expected by the sender. The stop signal is expected by the receiver, but is not gen-
erated by the sender. Hence the receiver interface steps in to generate this signal at
the “appropriate point” in the protocol. Finally, the data and ack signals appear in
the signal alphabet of both the sender and the receiver; the interfaces only forward
these signals.

Instead of having sender and receiver interfaces, we could also have a centralized
converter that performs the functionality of both the interfaces. All control/data
signals from the components flow to the converter. Similarly, all control/data signals
to the components are generated by the converter.

In this example, the converter will be a process that performs the actions of
both the sender and receiver interfaces. We cannot show the converter simply as a

102 CHAPTER 3 Communication Validation

request

data

ack

Sender ReceiverS-Interface R-Interface

ready

data
data

stop

ack
ack

?request

?request

?ready?ready

?data !data !stop ?ack
!ack

Converter

Figure 3.7

Using a centralized converter to remove incompatibilities in Figure 3.5.

vertical line in a message sequence chart (MSC), because a vertical line in an MSC
represents a sequence of events. In this case, there might not be a strict ordering on
the signals arriving/leaving the converter. For example, in Figure 3.7, the arrival of
the request and ready signals to the converter are not strictly ordered. For this reason,
we can present the centralized converter in a state machine format. The state machine
captures the various possible interleavings of signal arrival/departure into/from the
converter. In particular:

■ Arrival of a signal into the converter is shown as a receive event, marked by
the symbol ?.

■ Departure of a signal from the converter is shown as a send event, marked by
the symbol !.

To remove the incompatibilities in Figure 3.5, we can use the finite-state machine
shown in Figure 3.7 as a centralized protocol converter.

3.1.3 Mismatch in Data Format

This situation happens when the “type” of data sent by one component is different
from the data type expected by the receiving component. Because we are discussing

3.1 Common Incompatibilities 103

embedded system component communication at a fairly low level, the common types
will of course be bits, bytes, and collections of bytes.

To see a simple example, consider two components: a sender and a receiver. The
sender sends the data through a serial port, one bit per clock cycle. The receiver
receives the data through an 8-bit parallel port — getting a byte at a time. To solve
this data-width mismatch, we need a sender interface that will collect 8 bits at a time
and transmit them to the receiver side. Thus, the interface should be endowed with
at least 1 byte of storage capability.

Moreover, how the 8 bits are collected at the sender side also depends on the
receiver’s expectations about the byte it receives.

■ If the receiver wants the last 8 bits sent out by the sender, the sender interface
can simply contain a 8-bit shift register. In every clock cycle, the bit from the
sender is shifted in and the oldest bit in the register is shifted out. The contents
of the shift register can be propagated to the receiver side in every clock
cycle.

■ If the receiver expect to read the sender data one fresh byte at a time, we need
a different arrangement. The sender interface then contains an 8-bit buffer that
stores the latest 8 bits. Once 8 bits are collected, the contents are propagated to
the receiver side. Thus, the receiver gets data from the sender in every 8 clock
cycles in this case.

The two situations are illustrated in Figure 3.8.

Sender 1
0
1
1
0
0
0
1
0
0
1
0
.
.

00000001
00000010
00000101
00001011
00010110
00101100
01011000
10110001

Bits sent

01100010

Shift register
(send every cycle)

10110001

Buffer
(group and send
every 8 cycles)

OR

Receiver

Figure 3.8

Sender sending bits, receiver expecting bytes.

104 CHAPTER 3 Communication Validation

Another common data type mismatch may result from the inability of embedded
system components to synchronize while transferring several chunks (or packets) of
data. A concrete realization of such a situation can again be shown with two compo-
nents — a sender (possibly denoting a processor) and a receiver (possibly denoting
a memory unit). The processor may send a sequence of read/write requests to the
memory unit. When the memory unit is not ready to serve a particular request,
this needs to be conveyed to the processor so that it does not send any more
requests.

Suppose the processor is sending the address and data of a burst of write requests
to the memory unit in consecutive cycles, that is:

■ Cycle 1: Addr1 sent — the first address in the burst
■ Cycle 2: Data1 sent — the data to be written to Addr1
■ Cycle 3: Addr2 sent — the second address in the burst
■ Cycle 4: Data2 sent — the data to be written to Addr2, and so on.

Suppose that when Addr2 is sent, the memory unit conveys the information that
it cannot service the write request in one clock cycle. So, in the next clock cycle
also, the memory unit is expecting the address Addr2 to be re-sent. On the other
hand, if this is not conveyed to the sender (in this case, the processor), it will send
Data2, which will be mistaken as an address by the receiver (the memory unit). As
a result, the address-data correspondence maintained at the sender and receiver side
is completely lost.

One solution to the problem is to have a centralized converter, as well as individual
interfaces. The sender/receiver interfaces communicate only with the converter but
not with each other. When the components are communicating over a bus, this forms
a good depiction of the bus architecture (see Figure 3.9).

In particular, when the receiver is unable to service a request, it could assert,
say, a WAIT signal that is conveyed to the sender interface via the converter. The
sender interface then holds the current address/data in the next clock cycle instead
of putting in a fresh address/data. This behavior is repeated by the sender interface
until the WAIT signal is deasserted by the receiver.

Converter

wait
address

data

wait

data
address

Buffer to store
addr/data when
wait is high

Sender Receiver

Figure 3.9

Maintaining address-data correspondence within a burst.

106 CHAPTER 3 Communication Validation

3.2 CONVERTER SYNTHESIS
We now proceed to describe the task of generating a protocol converter given the
representation of communicating incompatible protocols. As we will see, depending
on the aggressiveness in converter synthesis, we can enable communication among
more and more incompatible system components.

In the following, we assume a set of system components, each with their
own native protocol. The concurrent composition of the native protocols “does
not work,” and hence we need a protocol converter to enable communication
between these incompatible components. We discuss strategies to synthesize the
converter. One important issue needs to be emphasized at this stage. We always
generate a centralized converter that sits in the midst of all the components and
enables their communication. However, often it is possible to distribute some of
the functionality of this centralized converter into individual component interfaces.
Toward the end of this chapter we also discuss certain heuristic strategies for
doing so.

3.2.1 Representing Native Protocols and Converters

The native protocols of the system components can be described or represented in
very many different ways. These range from informal English descriptions to more
formal descriptions in the form of finite-state machines. We note here that the “native
protocol” of a component refers to the portion of the component’s behavior which
is responsible for communication.

In order to talk about mechanisms to resolve protocol incompatibilities, we
first need a mechanism for describing the native protocols of the components.
The description should be general enough to capture various possible native
protocols — not just those appearing in specific application domains.

Our description of native protocols will use labeled FSMs. Thus, a protocol is
described using an FSM where each transition is labeled with action names. A native
protocol of a component is the component’s view of how its communication with
other components should proceed. It captures the possible sequences of communica-
tion actions that the component goes through. These communication actions appear
as the labels of the transitions in the protocol FSM.

Thus, given a set of n system components their native protocols are described
as FSMs M1, . . . ,Mn. Each FSM Mi is described as Mi � (Si, Ii,�i,→i), where Si is
the set of states, Ii ⊆ Si is the set of initial states, �i is the set of labels appearing on
the transitions, and →i⊆ Si � �i � Si is the transition relation. The question now is
what the action labels in the set �i look like. The action labels in �i denote either
internal actions (internal to component i) or communication actions.

3.2 Converter Synthesis 107

Any communication action label in the set �i is either of the form i! j,m or of the
form i? j,m where

■ ! denotes sending of a message, and ? denotes receipt of a message,
■ j �� i is a component different from the ith component — thus !j,m as an action

label in the protocol for component i simply means the sending of message m
by component i to component j, and

■ m is a message name. We can assume a universe of message names M from
which all names appearing in the individual native protocols are drawn.

Let us now illustrate the description of incompatible native protocols, first via
a simple example. There are two components — a sender S and a receiver R. The
native protocols of S and R are shown in Figure 3.11. Because there are only two
components, the communication action labels do not need to explicitly contain a
component name. This is because if the action labels in the native protocol of S
contain a send/receive communication action, we know it is a communication to
R (because R is the only other component). Similarly, if the action labels in the
native protocol of R contain a send/receive communication action, we know it is a
communication to S.

Why are the native protocols in Figure 3.11 incompatible? This can be explained
at several levels of detail. Syntactically, we see that the signal alphabets of the two
protocols are not the same. For example, the sender S sends the req signal, but the
signal alphabet of the receiver R is {ready,data,stop,ack}, which does not contain
the req signal. At a less syntactic level, we can say that the sender S sends the
req signal, which the receiver R cannot receive. The solution to such incompati-
bility is to synthesize a converter that will receive the req signal. We now present

!ready

?data

!ack

?stop

!req

!data

?ack

Figure 3.11

Incompatible native protocol FSMs.

108 CHAPTER 3 Communication Validation

the basic mechanism of converter synthesis. The converter will also be another
labeled FSM.

3.2.2 Basic Ideas for Converter Synthesis

Let us see how the converter synthesis works with the example in Figure 3.11. All
the communication actions from the sender S and the receiver R are now directed to
the converter. The converter is a labeled FSM, which can then generate the matching
communication actions if necessary.

We now elaborate the construction of the converter by traversing the FSMs of
the incompatible protocol FSMs. The converter will be constructed in a manner
similar to constructing product FSMs. While constructing the converter, we traverse
the protocol FSMs and keep track of our “current state” in these protocol FSMs. In
the figures, we do so by placing a black token in the “current state” of the protocol
FSMs. Initially, the sender S and the receiver R in Figure 3.11 can send the req and
ready signals. So, we let the converter execute the matching actions by receiving
these signals. This is shown in Figure 3.12.

Once the converter executes a matching action, say, ?req (receiving the req signal
from sender S), we need to ascertain what the enabled actions in the resultant state
can be. This is shown in Figure 3.13. Based on the local states in the protocol FSMs
(shown via black tokens in Figure 3.13), we can decide what actions the converter
can execute. In particular, the converter will try to match communication actions, so
that either of the protocol FSMs can progress. As shown in Figure 3.13, the enabled

!req

!data

?ack

!ready

?data

!ack

?stop

?req ?ready

Converter under construction

Sender S Receiver R

Figure 3.12

Converter FSM construction for Figure 3.11 — Step 1.

3.2 Converter Synthesis 109

!req

!data

?ack

Sender S

Converter under construction

?data ?ready

?req ?ready

!ready

?data

!ack

?stop

Receiver R

Figure 3.13

Converter FSM construction for Figure 3.11 — Step 2.

actions at the current local states of the two protocol FSMs are !data and !ready
(meaning the send of data or the send of ready). Accordingly, the enabled actions of
the converter are the matching communication actions ?data, ?ready (the receipt of
data, ready).

Proceeding in this manner, we can construct the converter FSM shown in
Figure 3.14. For clarity, we have marked the action labels of the converter to indicate
whether they involve a communication with the sender S or the receiver R. Thus,
the action label R?ready means the converter receiving the ready message from the
receiver R. We have also summarized the input and output signals of the sender,
receiver, and converter in Figure 3.14.

The mechanism for converter synthesis can now be described as follows. Given a
set of incompatible protocol FSMs, we first find the communication action labels of
these protocol FSMs. Let the protocol FSMs be M1, . . . ,Mn and their communication
action labels be �cm

1 , . . . ,�cm
n . For each of these sets of action labels, we can define

the set of matching labels as follows:

�cm
i � {converter?i,m | i!j,m ∈ �cm

i } ∪ {converter!i,m | i?j,m ∈ �cm
i } (3.1)

Thus, a send action i!j,m from component i to component j is matched by a
receive action from the converter denoted as converter?i,m. Similarly, a receive
action i?j,m involving receipt of message m by component i from component j is
matched by the converter via the send action converter!i,m. To see why we need
this concept of matching actions, consider the transfer of the data signal from the
sender S to receiver R in Figure 3.14. This corresponds to two action labels in the
protocol FSMs:

■ S!R, data — the sending of data from S to R
■ R?S, data — the receipt of data by R from S

110 CHAPTER 3 Communication Validation

req

data

ack

Sender
S

Converter Receiver
R

!req

!data

?ack

!ready

?data

!ack

?stop

?S,req ?R,ready

?S,data

?R,ready

?S,req

!R,data

?S,data

!R,stop

?R,ack

!S,ack

ready
data
stop
ack

?R,ready

Figure 3.14

Converter FSM for Figure 3.11.

In Figure 3.14, the action S!R, data is simply shown as !data in the sender’s FSM,
because S and R are obvious from the context. Similarly, the action R?S, data is
simply shown as ?data in the receiver’s FSM.

These are matched by two actions on the part of the converter:

■ converter?S, data — the receipt of data by the converter from S, and
■ converter!R, data — the sending of data by the converter to R.

In other words, the converter receives the data via the action converter?S, data when
the data signal is sent by the sender. Thus, even though the sender S intends to
send the data signal to the receiver R, it flows to the converter. The converter
then forwards the data signal to its intended recipient process R via the action
converter!R, data. In Figure 3.14, the action label converter?S, data is simply shown
as ?S, data as a notational shorthand; similarly, the action label converter!R, data is
simply shown as !R, data.

The preceding explains the notion of “matching actions.” Given protocol FSMs
M1, . . . ,Mn, corresponding to the communication action labels of each protocol
FSM we can draw up a matching action by the converter. If the communication
action labels of the protocol FSMs are �cm

1 , . . . ,�cm
n , the corresponding matching

action label sets �cm
1 , . . . ,�cm

n are as defined in Equation 3.1. In the same way, for

3.2 Converter Synthesis 111

each action label � ∈ �cm
i we can define the matching action � executed by the

converter. Thus

�cm
i � {� | � ∈ �cm

i }
The converter is then given by an FSM whose action labels are drawn from the set
�cm

1 ∪ . . . ∪ �cm
n .

We have now elaborated the action labels of the converter FSM. However, how
do we construct the converter FSM itself? This can be done essentially via a product
construction of the various protocol FSMs. In particular, let the incompatible protocol
FSMs M1, . . . ,Mn be of the form

Mi � (Si, Ii,→i,�i)

where Si is the set of states in the protocol FSM Mi, Ii ⊆ Si is the set of initial states,
�i is the set of action labels (including internal actions as well as communication
actions), and →i⊆ Si � �i � Si is the transition relation.

Then, the set of states of the converter FSM is given by S1 � S2 . . . � Sn while the
set of initial states is given by I1 � I2 . . . � In. We have already clarified what the set
of action labels for the converter FSM looks like. So, the only thing we need to clarify
is the transition relation or the set of transitions in the converter FSM. Consider a
state of the converter FSM (s1,s2, . . . ,sn), that is, s1 ∈ S1,s2 ∈ S2, . . . ,sn ∈ Sn. Then
any transition from one of the local states can lead to a transition of the converter as
follows.

■ If si
�→i ti is a transition in the protocol FSM Mi, we have

(s1, . . . ,si, . . . ,sn)
�→ (s1, . . . , ti, . . . ,sn)

as a transition in the converter FSM (here � is the matching action for action
label � as discussed in the preceding), provided:
– For shared signals (which are sent from one component and received by

another component), we do not allow the receipt of a message before it
is sent.

To illustrate the converter FSM construction, we now refer back to our example in
Figure 3.14. This example has an incompatible sender and receiver protocol FSM,
and we are trying to construct a protocol converter as an FSM. In particular, we
number the local states of the protocol FSMs, and we show the states of the converter
FSM as compositions of the protocol FSM states. This appears in Figure 3.15.

We can discuss the functionality of the converter in another fashion. Suppose
we split the space of communication signals into shared signals, input signals, and
output signals. Shared signals are signals that are sent by one protocol FSM and
received by another protocol FSM. These signals are received by the converter
(from the sender of the signal) and forwarded by the converter (to the receiver of

112 CHAPTER 3 Communication Validation

!req

!data

?ack

?S,req ?R,ready

?S,data

?R,ready

?R,ready

?S,req

!R,data

?S,data

!R,stop

?stop

?R,ack

!S,ack

Converter

1

2

3

1,A

2,A

3,A

3,B

1,B

2,B

3,C 3,D4

4,D

4,E

!ack

E

!ready

?data

A

B

C

D

req

data

ack

Sender
S

Receiver
R

ready
data
stop
ack

Figure 3.15

Converter FSM construction for Figure 3.11 — the converter FSM as a product of the
incompatible protocol FSMs.

the signal). Input signals are sent by one protocol FSM and received by none. These
signals are simply gobbled up by the converter. Similarly, output signals are received
by one protocol FSM and sent by none. These signals are generated by the converter.

For input and output signals, the converter’s task is rather well defined — the
converter needs to consume or produce these signals to smoothe out protocol incom-
patibilities. However, for shared signals, we have quite a bit of leeway in deciding
how the converter should behave. In the preceding, we have put up only a sim-
ple common-sense restriction that the converter cannot send a shared signal to its
receiver protocol until it receives it from the signal’s sender protocol. This amounts
to an asynchronous transfer of the shared signals (be it control or data signals) from
the sender protocol to the receiver protocol.

However, there can be other restrictions leading to different implementations of
the converter. For example, we might require that the transfer of the shared signals
occur in a single step. This means that for any shared signal x, the converter receiving
the signal x from the sender protocol and the converter forwarding x to the receiver
protocol must happen in one step. In such a situation, the converter does not need
to store the shared signals — this is particularly important for data signals (where

3.2 Converter Synthesis 113

the converter would have to store the data content otherwise). This also means that
the sender protocol of a shared signal x cannot send the signal to the converter until
and unless the receiver protocol for x is ready to receive the signal. Thus, effectively
the sender protocol is blocked. Now if x is a data signal, while the sender protocol
is blocked trying to send x, new data may arrive and overwrite the data content
that was never sent (to the receiver protocol via the converter). Consequently, in
such situations, apart from having a centralized converter, the protocols will also
need individual interfaces. In particular, for any protocol FSM that sends shared
data signal(s) (possibly to other protocol FSMs), the protocol interface can contain
buffers to store data content that is ready to be sent but has not been sent (because
the receiver is not ready).

In Figure 3.16, we show the converter FSM where any shared signals involve
a synchronization between the sender and receiver of the signal. Consequently,
the send and receive of these shared signals are not shown as separate actions.
In particular, in the converter FSM certain transitions are marked with the name of
a shared action label, such as the transition with action label data in Figure 3.16.
Such a transition denotes the receiving and the forwarding of the data signal by

!req

!data

?ack

?S,req ?R,ready

?R,ready ?S,req

data

!R,stop

Converter

1

2

3

1,A

2,A 1,B

2,B

3,C

4,E

3,D

4

!ack

E

!ready

?data

?stop

A

B

C

D

req

data

ack

Sender
S

Receiver
R

ready
data
stop
ack

ack

Figure 3.16

Converter FSM construction for Figure 3.11 — all shared signal transfer is done by synchroniza-
tion.

114 CHAPTER 3 Communication Validation

!req

!data

?ack

?S,req ?R,ready

?S,req

data

!R,stop

ack

1

2

3 3,C

2,B

1,B

1,A

2,A
3,D !ack

?R,ready

!ready

?data

?stop

A

B

C

D

Converter

req

data

ack

Sender
S

Receiver
R

ready
data
stop
ack

Figure 3.17

Converter FSM construction — all shared signal transfer is done by synchronization, and the
protocols/converter capture infinite-length execution traces.

the converter (thereby resulting in a three-way synchronization between sender,
converter, and receiver).

We also note that in the running example in this chapter, we have considered
protocol FSMs that are acyclic. Consequently, the converter is also acyclic. This
essentially corresponds to a “session” of the protocols, and the converter resolves
protocol incompatibilities within that session. Clearly, we could have protocol FSMs
that execute repeated “sessions,” with the converter smoothing out incompatibilities
in each session. In Figure 3.17, we show such an example — a minor modification
of Figure 3.16 where the protocol FSMs and converter FSM repeatedly execute the
same behavior.

When the protocol and the converter FSMs capture infinite-length execution
traces (by having repeated “sessions” of interaction), a clean design of the converter
would however avoid mixing up signals across different sessions. That is, the con-
verter and the various protocol FSMs should preferably synchronize at the end of
each session. In Figure 3.17 a “session” of data exchange refers to:

■ The sender going through the states 1 → 2 → 3 → 1, and
■ The receiver going through the states A → B → C → D → A.

In this example we did not add an explicit synchronization, because the last message
exchange in a session (an ack message being sent from sender S to converter and

3.2 Converter Synthesis 115

forwarded from converter to receiver R) in any case involves a three-way synchro-
nization between the two protocol FSMs and the converter FSM. Here we have made
the receipt of ack by the converter (from the receiver R) and the forwarding of ack by
the converter (to the sender S) into one single atomic action, marked simply as ack
in the converter transition from state (3, D) to state (1, A). This ensures that actions
across sessions are not mixed up.

3.2.3 Various Strategies for Protocol Conversion

So far, we have outlined one strategy for letting incompatible system components
communicate. Our strategy is based on synthesizing a central converter such that all
the system components talk only to the converter, and not to each other. This allows
us to smoothe out common communication incompatibilities such as:

■ Component C is sending signal m to component C′, but component C′ never
receives m, OR

■ Component C is sending signal m to component C′, but component C′ is not
ready to receive m in its current state.

In the first case, the converter can simply receive m from C and never transmit m.
In the second case, the converter can receive m from C and then drive C′ such that
it comes to a state where it is ready to receive m (from the converter).

We first note that even this simple converter-generation strategy is a power-
ful one for solving protocol incompatibilities. In the past quarter-century, much
research effort has been directed toward enabling communication among software
components. Some of these approaches simply synthesize a converter that drives
the components C and C′ in such a way that whenever component C is sending
a message m to component C′, the component C′ is ready to receive it. If it turns
out that component C′ can never receive message m, the converter will try to drive
component C in such a way that it never sends message m in the first place.

Let us examine this approach with the help of an example. Let us again consider
the example of Figure 3.11. Here we have two components — the sender and the
receiver. The sender sends req to the receiver at the beginning, but the receiver can
never receive req (i.e., req is outside the signal alphabet of the receiver). Similarly,
the receiver sends a ready signal at the beginning, but the sender can never receive
ready. Clearly, the converter cannot hope to drive the sender and receiver so that a
message outside the signal alphabet of the sender (receiver) is never transmitted by
the receiver (sender). With such a converter generation method, we cannot generate
any converter to smoothe out the protocol incompatibilities. However, using our
approach we synthesized a converter FSM as shown in Figure 3.15. This was possible
because when the sender (receiver) transmits a signal outside the signal alphabet of
the receiver (sender) — we simply let the converter consume such a signal.

116 CHAPTER 3 Communication Validation

The foregoing discussion clarifies some of the power of the simple and elegant
converter-generation mechanism we have discussed. However, it can be improved
in many ways, namely:

■ Avoiding no-progress cycles: Our simple converter generation method can
produce converters that livelock the communicating components (whose
protocol incompatibilities we are resolving).

A livelock results from a no-progress cycle where the components commu-
nicate but no progress (in terms of data transmission) is achieved.

■ Speculative signal transmission to avoid deadlocks: In the converter-
generation policy we have presented, all signals sent/received by the system
components flow to/from the converter. Consequently, if a signal x is sent by
component C and received by component C′:
– The converter receives x from component C, and then
– The converter sends x to component C′.
However if x is a control signal, the converter could also send x to C′
even before receiving it from C. We call this “speculative signal transmis-
sion.” We will see how this feature can help avoid deadlocks in component
communication.

Note that the converter cannot transmit data signals speculatively, because
the content of the data being transmitted cannot be speculated!

We now discuss some of these improvements.

3.2.4 Avoiding No-Progress Cycles

To see how no-progress cycles can be introduced by protocol converters, we consider
the example in Figure 3.18. We have two processes, one of them a master (M)
and the other a slave (S). The master process sends a msg and waits for an ok.
Thus the master process could depict the behavior of a processing element that is
trying to access memory units; the msg could signify the data being written to the
memory units. The slave process, on the other hand, receives the msg and forwards
the request via a fwd signal. In our processing element–memory unit analogy, the
forwarding could denote the detection of the appropriate memory unit (possibly via
address decoding) to service the request. Now, when an appropriate memory unit is
detected, it may or may not service the request based on whether it is busy. This is
denoted via the yes/no signals received by the slave. Once the slave receives a yes
(no) signal from the environment, it sends an ok (not_ok) signal to the master. The
state machines of the master, slave, and converter appear in Figure 3.18.

First of all, let us understand what the converter captures vis-à-vis the physical
world. In the physical world, the master M and slave S function as an open system.
In particular, the slave S communicates with the external environment while sending

3.2 Converter Synthesis 117

Master M Synthesized converter Slave S

1

2

!msg ?ok

A

B

C

D E

!not_ok

?msg

!fwd

?yes ?no

!ok

1,A

2,A

2,B

2,C

2,D 2,E

?M,msg

!S,msg

?S,fwd

!S,yes !S,no

ok

?S,not_ok

Figure 3.18

Converter FSM construction — synthesized converter can lead to no-progress cycles. The cycle
marked in bold (2,A) → (2,B) → (2,C) → (2,E) → (2,A) is a no-progress cycle.

the fwd signal; this action stands for forwarding the message msg received from the
master M. Subsequently, the slave receives a yes or no answer from the environment.
The converter synthesized in Figure 3.18 closes this open system. In other words,
the master M, the slave S, and the synthesized converter are intended to work as a
closed system. Consequently, the converter captures the functionality of the mas-
ter/slave’s external environment. The slave’s fwd signal is received by the converter,
and the converter makes a decision about whether to send a yes/no signal to the
slave.

Referring to Figure 3.18, we see that the converter FSM has a cycle (2,A) →
(2,B) → (2,C) → (2,E) → (2,A) where the communication of msg from the master
fails to evoke an ok response from the slave. Therefore, the converter and the slave
could loop along this cycle forever, while the master is waiting for an ok response.
This constitutes a no-progress cycle.

Conceptually, what the converter of Figure 3.18 achieves is not small. It receives
the msg from the master and then evokes either an ok response or a not_ok response.
Further, if it evokes a not_ok response the converter makes another attempt to
make an ok response. This is what we would expect the converter to do, unless
we explicitly instruct our converter generation method to avoid generating a not_ok
response.

To avoid generating converters that can lead to no-progress cycles, we need
to identify the “livelock states” — states that lead to themselves without making

118 CHAPTER 3 Communication Validation

progress in data transmission. Of course, for defining these livelock states, the notion
of “progress” in terms of data transmission needs to be clarified by the designer. Once
the livelock states are identified, we identify the minimum set of transitions that can
be removed so as to make any livelock state unreachable from itself. In other words,
we modify the converter so that livelock states are simply not reached via no-progress
cycles.

3.2.5 Speculative Transmission to Avoid Deadlocks

In Figure 3.19, we show an example involving two communicating components —
a sender S and a receiver R. The signal alphabets of the two components are the
same, {req,ok,data}. Thus, the incompatibility arises only from the order in which
the components expect the signals to be sent/received. We have shown our normal
converter construction using the product of the sender and receiver’s protocol FSMs.
All the signals exchanged here are shared signals — req, ok are shared control signals,
whereas data is a shared data signal (involving data transmission). First of all, we
can see from this example that shared signals exchanged may not always be achieved
via synchronization. In the initial configuration, even though the sender S sends the

?ok

!req

!data

?S,req ?R,ok

?S,req

req

data

ok

data

req

ok
Converter Receiver

R

1

2

3

1,A

2,A 1,B

2,B

4

?req

!ok

?data

A

B

C

D

?R,ok

3,B 2,C

3,C

4,D

!S,ok !R,req

!R,req !S,ok

data

Sender
S

Figure 3.19

Converter FSM construction — speculative transmission is not allowed.

3.2 Converter Synthesis 119

req signal, the receiver R is not ready to receive it. Therefore, the converter has to
receive the req signal from the sender S (via the transition ?S,req) and then forward
it to the receiver R later (via the transition !R,req).

Second, we notice that for shared control signals the protocol converter can be
more aggressive and send the control signal speculatively to its intended recipient.
In other words, the protocol converter need not wait for the signal to be sent by
its sender; it can forward the signal even before receiving it! In Figure 3.20, we
show a slight modification of Figure 3.19. The only difference here is that the sender
(receiver) waits for the ok (req) signal before sending the req (ok) signal. Because
both the components are waiting for a signal, this creates a problem. As per our
converter generation strategy, the converter does not forward a shared signal before
receiving it from its sender. However, none of the communicating components send
anything in their initial states. Consequently, the converter will be blocked in its
initial configuration waiting for a component to send some signal. The components
also do not send any signals, and they are waiting to receive signals. This results
in a deadlock scenario — something our converter generation strategy is unable to
overcome. It is, however, worthwhile to note that the converter here is not introducing
a deadlock. Clearly, there exists a circular wait situation in Figure 3.20 — the sender
S is waiting for an ok from the receiver R, and the receiver R is waiting for an
req from the sender S. This deadlock needs to be resolved for the components to
communicate. However, our converter generation strategy is unable to do so.

To allow communication among the deadlocked components in Figure 3.20,
the converter needs to break the circular wait. This is possible if the converter

!req

?ok

!data

1

2

3

4

!ok

?req

?data

A

B

C

D

Sender S Converter Receiver R

1,A 1,B 1,C

2,A 2,B 2,C

3,A 3,B 3,C

4,D

!R,req

!S,ok

!R,req

!S,ok

?R,ok

?R,ok

!S,ok

?S,req ?S,req ?S,req

!R,req ?R,ok

data

Figure 3.20

A situation where speculative transmission must be allowed to avoid deadlocks. A converter
allowing such speculative transmission is also shown.

120 CHAPTER 3 Communication Validation

speculatively sends ok or req signal on behalf of the receiver or sender. Such
a converter is also shown in Figure 3.20. As we can see, this converter is also
obtained via a product FSM construction — we take the product of the protocol
FSMs of the communicating components (in this case sender S and receiver R).
However, the product FSM construction is less constrained than before — we also
allow transitions where a signal is sent out by the converter before being received
from another component. For example, in the converter of Figure 3.20, we allow
the transition

(1,A)
!S,ok→ (2,A)

where (1,A) is the initial configuration of the converter and it sends an ok signal to
the sender S even before receiving it.

The preceding situation also points to us to certain limits in terms of converter
synthesis. So far, we have seen a wide variety of incompatible communicating com-
ponents where converters can be synthesized to enable their communication. This
includes (a) components with differing signal alphabets, (b) components with the
same signal alphabet but exchanging the signals in different order, and (c) compo-
nents with same signal alphabet where all components wait to receive control signals
(speculative transmission is required for breaking deadlocks). However, if all the
components are initially waiting for the receipt of different data signals, we cannot
synthesize any converter that will enable them to communicate. This will require the
converter to speculatively transmit data signals. Because the sending of a data signal
also involves sending the data content that comes along with it, this would require the
converter to speculate on the data content — an impossible task. It is important for
us to understand that the converters/interfaces only serve to smoothe the protocol
incompatibilities across communicating system components. The converter/inter-
face clearly cannot change/speculate the content of the data being communicated
via the protocols between different system components. It is of course possible for
the converter to do data formatting where it splits/merges data packets to suit the
data format expected by another component. But the converter cannot change or
guess the data itself!

Asimple example requiring speculation of data content is shown in Figure 3.21 —
addr, rd_value can be two different signals through which the address and value-read
for some read request is being communicated. Because both of them involve some
data content, a converter cannot speculatively transmit either of them. Consequently,
the master and slave cannot communicate in this situation. Clearly, there is a bug
in the master/slave communication protocol here — no reasonable master will expect
the read value from a memory location even before passing the memory location’s
address to the slave. This bug is being manifested in the inherent incompatibility of
the protocols, where we fail to synthesize a converter.

3.3 Changing a Working Design 121

?rd_value

!addr

?addr

!rd_value ?rd_value

!addr ?addr

!rd_value

(Cannot communicate)

Master Slave
(Correct design)

Master Slave

Figure 3.21

A situation where speculation of data content is required and hence protocol conversion is not
possible. The correct design is also shown.

The correct design would require the master to pass the address and then expect
the value read from the address. This correct design is also shown in Figure 3.21.
The correct design of the master and slave would not even need any converter — the
master and slave will simply synchronize on the addr signal (where the address is
communicated to the slave by the master), and then they will synchronize on the
rd_value signal (where the value read from the memory location is communicated
to the master by the slave).

3.3 CHANGING A WORKING DESIGN
So far, we have discussed the issues in developing and validating the functionality
of a working design — one in which system components are able to communicate.

However, as a design evolves, new features and functionality may be added. As
a result, the native protocols of the individual components may also be changed (or
rather, they may be enriched with new functionality). Once the native protocols of
the system components change, designs that were “working” previously may again
become unworkable. This means that enriching the behaviors of some of system
components may mean that they are no longer able to communicate.

To elaborate the foregoing point, we need to first clarify what we mean by “enrich-
ing behavior.” Our notion of behavior enrichment simply means more behaviors.
Thus, if the behavior of a system component is captured by a state machine M and
it is enriched to M ′, then the set of execution traces of M is included in the set
of execution traces of M ′. This means that all execution traces of M are execution
traces of M ′, but not vice versa. As mentioned earlier, the execution traces of a state

122 CHAPTER 3 Communication Validation

!req

!data

?ack

ack

?S,req ?R,ready

?S,req

data

!R,stop
ack

1

2

3

1,A

2,A

3,C

1,B

2,B

3,D

4
4,E

!ready

?data

!ack

?stop

A

B

C

D

E

?R,ready

!ack

Sender S Converter Receiver R

Figure 3.22

A change in one of the system component’s behavior from Figure 3.16. The additional behaviors
are marked in bold.

machine are obtained by unrolling the paths through the state machine starting from
the initial state(s).

Let us take an example to illustrate our point. Consider the components shown
in Figure 3.22, which is a modification of Figure 3.16. The only change is in the
receiver, which can simply issue an acknowledgment ack after receiving the data.
If we do not change the converter, it will simply wait for a stop signal from the
receiver, which may never come. For this reason, we have changed the converter to
allow for a synchronization on ack immediately after the transmission of data.

In this case, we have considered a simple example where only one transition is
added to one system component, and this leads to a transition being added to the
converter. In general, changes to system-component behavior may involve addition
of states and transitions. However, the changes should be such that trace inclusion is
preserved. That is, the traces of the old component are traces of the new component,
but not vice versa. Subsequently we also add states/transitions to the converter’s state
machine. Again, the old and new converter will satisfy the trace inclusion property,
that is, the traces of the old converter will be included in the set of traces of the new
converter.

3.4 REFERENCES
Synthesizing protocol converters has been a topic of active research in the embedded
systems community. Initially, the work was studied more for hardware, with the focus

3.5 Exercises 123

being on synthesizing glue logic between circuit blocks. The PhD thesis of Borriello
[10] discusses this problem, with component interfaces being modeled as timing
diagrams. Along similar lines, the work of [62] develops protocol interfaces from
HDL descriptions.

In later works, developing converters to enable communication between system
components has been studied in a generic setting. Here the components’communica-
tion behavior is modeled by generic formalisms such as finite-state machines. Hence
such techniques may be applicable for enabling hardware-hardware and hardware-
software as well as software-software communication. The work of [2] describes
protocols as finite-state machines; the protocol converter is synthesized from the
product of these finite-state machines. The works of [23, 64, 68] solve a related prob-
lem — determining whether several given components can be made to interact in a
compatible way (without necessarily synthesizing a converter to resolve incompat-
ibilities). Finally, the work of [78] studies the problem of resolving communication
incompatibilities using a scenario-based description of the component behaviors.

Side Remark In terms of literature on enriching a working design by inserting behav-
iors (Chapter 3.3), the reader may want to refer to fundamental papers on behavioral
inheritance. These papers study what it means for a finite-state machine to “inherit”
the behaviors of another finite-state machine. The work of [35] may serve as a useful
guidepost.

3.5 EXERCISES
3.1. Suppose multiple processors are requesting bus access to read/write to sev-

eral memory/peripheral modules. We want to model the communication
between the different components in this system using the Unified Modeling
Language (UML).
■ What will be the classes in the system, and what will be the associations?

Also, list some use cases from the point of view of a processor that is trying
to access the bus. You may list the use cases in English or elaborate them
using message sequence charts.

■ Now, elaborate the design by filling in the state diagrams of each class you
identified. Your design must satisfy the following criteria: (a) At most one
processor must access the bus at any time; (b) if there are one or more pro-
cessors requesting the bus, the bus should not be idle; and (c) any processor
requesting the bus should eventually get access to the bus. Clearly state what
parts of your statechart design are ensuring each of these three properties. If
you make any assumptions for ensuring these properties, you should clearly
state all your assumptions.

124 CHAPTER 3 Communication Validation

3.2. Figure 3.3, 3.5, and 3.8 show protocol incompatibilities that can be handled
via component interfaces only (no centralized converter is necessary). Develop
executable descriptions of these interfaces.

3.3. Figure 3.9 shows the difficulties that may arise from maintaining address-
data correspondence in a burst while communicating over a bus. Elaborate on
the converter design in Figure 3.9 — what are the storage capabilities of the
converter and the sender interface? Also, can we have a solution that avoids a
centralized converter and manages the address-data correspondence only via
sender/receiver interfaces?

3.4. Section 3.2.2 presented the basic scheme for converter synthesis. As pointed
out, the synthesized converter may contain no-progress cycles. Formalize the
algorithm for the modified converter generation, that is, where the generated
converter will avoid no-progress cycles. This can be done in two steps, by
generating a converter and then removing transitions. Alternatively, the reader
can try to generate the livelock free converter in one pass. Comment on the
merits and drawbacks of the two approaches.

CHAPTER

Performance Validation 4
Validation of embedded systems is invariably, and inextricably, linked to satisfying
constraints on time. The correctness of embedded systems depends not only on the
functionality being implemented, but also on the timeliness of the computation.

Most embedded control systems repeatedly acquire data from the environment
(through radars/sensors), process the data, and output (via actuators). Thus, there is
a response-time calculation involved — we want to find out the maximum response
time in processing a data item. The response time of a data item is the total time to
process it since its arrival. Thus, it includes (a) the waiting time when the data item
waits for processing and (b) the actual processing time. If the processing element that
processes a data item d also has other running tasks, these tasks may also delay the
processing of d. Now, suppose a control system acquires data from the environment
at the rate of n samples per second. Thus, if the maximum response time of any
individual data item is less than 1/n seconds, we can infer that any data item is
processed before the next data item arrives. Thus, there is no need to buffer or store
data (in particular data that has been acquired but has not been processed).

Because data is coming in from the environment in an infinite stream, we may
need to buffer or store the data if the processing time of a data item is too high. On
the other hand, on-chip buffer space may be scarce, and hence it is not realistic to
allow a large buffer of stored data items waiting to be processed. For this reason, we
need to accurately estimate the response time in processing a data item.

An overall picture of the complexities in timing validation appears in Figure 4.1.
Some of these issues arise in the system-level analysis. In particular, the system-level
timing analysis deals with the overall system architecture rather than the software
running on individual processing elements. Timing behavior due to

■ Varying communication times over a bus or interconnection network on chip
(as the case may be), and

■ Scheduling of several tasks on a single processing element

Embedded Systems and Software Validation
Copyright © 2009, Elsevier Inc. All rights reserved. 125

126 CHAPTER 4 Performance Validation

Communication network

DSP

Incoming data

Subsys. BSubsys. A

Co-Proc.CPU

Task2

Task5

Task1 Task4

I/O

Complex Interaction
With environment

Communication
Scheduling

Many possible inputs
- Complex application programs

Task
Scheduling

Complex processors
Cache, Pipeline

Task3

Figure 4.1

Issues in timing validation of complex embedded systems.

needs to be taken into account by the system-level timing analysis. The system-
level scheduling should also consider the system’s interaction with the external
environment. A common case here is the input data (detected via sensors) coming
in a periodic stream — say, one data item every 2 milliseconds.

The other factors come under the purview of software timing validation. In par-
ticular, classical results on system scheduling treat the tasks as abstract quantities
whose computation time and deadlines are required for the system-level analy-
sis. However, in reality, the tasks are programs written in standard programming
languages (such as C) and executed on standard processors (with more and more
complex processors being used in the embedded domain). Thus, timing validation
of a piece of software is not a simple task — we need to develop methods to guaran-
tee that a piece of software will terminate within a given deadline regardless of the
program input. Moreover, our analysis cannot consider only the software — we also
need to consider the microarchitecture of the underlying software to tightly estimate
the maximum possible execution time of the program.

4.1 THE CONVENTIONAL ABSTRACTION OF TIME
Modeling timing constraints and developing validation methods for guaranteeing
these timing constraints are essential in embedded system design. However, the pro-
gramming languages and tools available for designing embedded systems are often
drawn from what is on offer for general system design. In practice, we can expect

4.1 The Conventional Abstraction of Time 127

most embedded system designers to write up the software in the C programming
language, or even parts of it in assembly code! However, conventional mainstream
programming languages such as C have steadfastly abstracted time. This has been
observed and discussed at length recently by embedded systems researchers (e.g.,
see [49]).

Let us now examine the programming models of conventional imperative pro-
gramming languages such as C. The individual operations (simple or compound
statements) are not annotated with any timing constraints — the time within which
these operations should be completed. Furthermore, conventionally it has been con-
sidered a virtue that the programmer will not be aware of the actual time that a
program operation takes. Modern processors employ many many performance-
enhancing optimizations such as pipeline, instruction and data cache, and branch
prediction. These microarchitectural features makes the execution time of an
operation variable. An instruction’s execution time depends on:

■ Whether it is hit or miss in the instruction cache,
■ Whether its operands are hit/miss in the data cache (for load/store instructions),
■ Whether it faces pipeline stalls due to data dependencies or resource con-

tentions from other instructions,
■ Whether it is correctly or wrongly predicted by the branch predictor (only for

branch instructions), and so on.

Given such numerous sources of indeterminacy in the execution of a single
instruction, we can only imagine the possible execution times of a coarser-grained
operation — such as an operation in the source code level. Consequently, it is impos-
sible to ascribe a single execution time to the operations at the C program level. Given
this dilemma, we have come to accept the removal of time from our programming
world. When we program, we do not worry about the time our program operations
take. Timing is introduced as an afterthought, something to be worried about after
the program(s) are written.

The need for timing analysis is particularly evident for embedded computing.
Here, the computing component will typically require timely interactions with the
enclosing physical world. However, analysis methods for real-time systems typically
proceed at the system level — analyzing the time delay due to possible contention
or preemption across tasks. So one question is, what is a task? Conventionally, real-
time systems literature consider a task as a computation that is executed by the CPU
in a sequential fashion. In other words, a task is a sequential program. To assign
execution times to tasks, we need a mechanism to analyze the software of a task for
finding its execution time. This goes beyond simulating/executing the task, because

■ The program may have infinitely many inputs (say consider an image com-
pression program which takes images as input), and

128 CHAPTER 4 Performance Validation

■ We are often trying to decide on what is a suitable platform to execute the task
(i.e., task allocation is not predecided). Consequently, we cannot simulate/
execute the task on a given platform.

The difficulty in timing validation does not stem only from the issues in analyzing
within a task. For communicating tasks executing in a multiprocessor environment
(say, communication occurring over a bus), the communication patterns dictate the
amount of contention over the bus. To illustrate this point, we show a schematic
interaction in a bus-based electronic control unit network drawn from the automotive
electronics domain. The communicating components include a wheel sensor, an
antilock brake system (ABS), adaptive cruise control, and a brake control. We note
that the traffic on the bus depends on the following:

■ The communication pattern, which may often be captured by a sequence dia-
gram. From the visual order of Figure 4.2, we can see that message m2 is
transmitted before message m4 — thus they do not contend with each other for
bus access.

■ The timing of the events: For messages that are concurrent (i.e., not ordered as
per the partial order prescribed by the communication pattern), whether they
overlap and contend for bus access depends on their bus arrival times (which
depends on prior computation/communication events). From Figure 4.2, we
can see that messages m2 and m3 execute concurrently. Thus, depending on
when they arrive at the bus, they can contend for bus access (or not).

To further elaborate the complexities arising in time estimation for bus-based
communication, we show a schematic multiprocessor architecture in Figure 4.3.
Here we have four processes P1, P2, P3, P4, each running on a separate processing
element. We assume that the processing elements are connected to a bus, that is,

Env. Wheel sensor ABS ACC Brake control

Path
estimation

m1

m2 m3

m4

Data

Throttle
control

Figure 4.2

Schematic communication pattern among ECUs in automotive control.

4.1 The Conventional Abstraction of Time 129

P1 P3P2

c1[3, 4]

[2, 2][1, 1]

c2

c3

[3, 3]

P1

P2

P3

Bus

c1

m1

m3

c1

0 4 6 7

c4

m2

P4

P4 c2

c3

c4

c2

c4

c3

m3

P1

P2

P3

P4

Busm3 m1m2m1 m2

0 3 5 7 8

Figure 4.3

Anomalous timing behavior in bus-based communication.

any communication is bus-based communication. The sample bus interactions are
shown in Figure 4.3 via a message sequence chart. It captures the computation within
the processes as well as the communication across them (via bus). The bus is not
explicitly shown as a process, but it is understood that any message transmission is
over a bus and hence may need to wait if several processes are contending for bus
access. We assume that the priority of the processes for bus access is P1, P2, P3,
P4 — that is, P1 has the highest priority.

We now study the bus traffic arising from these computation and communication
tasks. In particular, the bus traffic may vary depending on the exact execution time
taken up by the computation tasks, because that may determine the timing of arrival
of the messages. To concretely study this variation in bus traffic, we annotate each
computation with execution times, given as an interval [l,u] with l (u) denoting a
lower (upper) bound on its execution time. Moreover, we make the execution time of
all computations constant (i.e., l � u) except one; computation c1’s execution time
is set to vary between 3 and 4 time units. We assume that each message transmission
takes 1 time unit (i.e., only the time to transmit; this does not include the time to
wait for bus access).

130 CHAPTER 4 Performance Validation

In Figure 4.3 we show the execution sequence corresponding to both the pos-
sibilities — c1 executing for 3 time units, and c1 executing for 4 time units. When
c1 executes for 3 time units, the computations c1, c2 are executed in parallel in
two different processing elements. At time � 3, both the processes P1 and P4 try
to transmit messages m1 and m2 over the bus. However, bus access needs to be
serialized, so P1 gets access first (based on its higher priority) and then P4. Once
P1 transmits (to P2 over the bus), process P2 goes ahead and performs computation
c3. Similarly, once P4 transmits (to process P3 over the bus), process P3 goes ahead
and performs computation c4. Finally, P3 transmits message m3 over the bus. The
total time taken is 8 time units.

However, if computation c1 takes more time (4 time units), the schedule of
execution is different. In this case, while c1 is executing, process P4 executes
computation c2 and transmits m2 over the bus. Thus, bus contention between P1
and P4 is avoided. The reduced bus contention allows computations c3 and c4
to finish earlier, following which the message m3 gets transmitted. The overall
execution time is 7 time units! Thus, when c1 takes less time, the overall execu-
tion time is increased, and when c1 takes more time, the overall execution time is
reduced!

The given example illustrates some of the subtleties in timing behavior of
distributed embedded systems. Because computation may drive communication,
increase in computation times may decrease resource contention (e.g., bus con-
tention) for communication. The resultant decreased bus contention may result in
an overall reduction in execution time of a distributed application running on a
multiprocessor system-on-chip.

We call this phenomenon anomalous timing behavior or timing anomaly [58, 59].
We will need to grapple with such anomalous behavior for performance validation of
embedded systems. This simple example illustrates some of the difficulties in perfor-
mance validation, which we now proceed to address. Our discussion on performance
analysis is chiefly presented over the next three sections. In Section 4.2, we discuss
execution time estimation of a single program. In the embedded systems literature,
these works are often referred under worst-case execution time (WCET) analysis.
In Section 4.3, we broaden the scope of our timing analysis to capture intertask
interference or interference from the environment. Then, in Section 4.4, we dis-
cuss some system-level communication methods. In the later parts of this chapter
(Section 4.5), we discuss system-level solutions for building embedded systems with
predictable performance. Here we do not try to estimate execution times; instead
we adapt small changes in the system development to make its execution times
more predictable. We conclude the chapter with a discussion of emerging application
domains where some of our performance-based analysis/design methods can be used
(Section 4.6).

4.2 Predicting Execution Time of a Program 131

4.2 PREDICTING EXECUTION TIME OF A PROGRAM
We now concentrate on the issue of predicting or conservatively estimating the
execution time of a program. Clearly, we are only talking of terminating programs —
it would make no sense to estimate the execution time of a nonterminating program.
In other words, all loops and recursion depths in our programs have to be bounded.
In fact, our analysis will take these bounds as input and estimate the execution time
of a program.

What does it mean to conservatively estimate the execution time of a program?
It means that one tries to find an upper bound or a lower bound on the execution
time of a program. We will typically be interested in finding an upper bound on the
execution time of a program. We call it the worst-case execution time or WCET.
Similarly, a lower bound on the execution time of the program will be referred to as
the best-case execution time or BCET.

Why do we need estimation of WCET (and BCET)? Clearly, we could find the
maximum execution time of a program by running it against all possible inputs,
measuring the execution time, and taking the maximum. The first difficulty in doing
so is the large number of inputs that we need to try out. In fact, there can be infinitely
many inputs — consider an image compression program that takes an image as input.
Clearly we cannot try out all possible images in the world on this program and mea-
sure the execution time! The second difficulty in finding the WCET by measurement
is that the execution time of a program for even a given input depends on the proces-
sor on which the software is run. Usually, in embedded system design, we are given
the application and we are trying to design the platform (in this case a processor)
that is suitable for running the application. We do not have access to all the possible
processor choices for us to try and run our program, because this may be expensive.

The preceding explains why a simple solution like measuring a program’s exe-
cution time against selected inputs does not allow us to safely estimate WCET. For
same or similar reasons, we also cannot use architectural simulation (e.g., using tools
such as SimpleScalar [5]) for estimating WCET of a program. This takes us beyond
simulation/execution-based approaches — we need a static analysis of the program.
In other words, we do not gain information about the program’s execution time by
executing it for selected inputs. Instead, we analyze the program’s code and give an
overestimate of the program’s maximum execution time by considering all possible
execution paths in the program.

Figure 4.4 shows the relationship between the estimated WCET and the actual
WCET. Because we do not know the actual WCET of a program, we estimate to find
an upper bound, which we call the estimated WCET. Furthermore, we can also find
a lower bound on the actual WCET by running the program against selected inputs.
To illustrate the point, consider a program P with only one integer input variable v,

132 CHAPTER 4 Performance Validation

Estimated
WCET

D
is

tr
ib

ut
io

n
of

 e
xe

cu
tio

n
tim

e

Execution time

Actual
BCET

Actual
WCET

Observed
WCET

Observed
BCET

Estimated
BCET

Actual

Observed

Over-estimation

Figure 4.4

Estimated, actual, and observed WCET/BCET.

which takes in values in the range 1...100. Let TP(i) be the execution time of program
P with input v � i. Then, we have

Actual WCET � max1�i�100 TP(i)

Now, suppose we run the program P against some “selected” inputs, say, i ∈
{1,50,100}, and measure the execution times. We call the maximum of these
observed execution times the observed WCET. Thus, if we run the program against
inputs i ∈ {1,50,100}, we have

Observed WCET � maxi∈{1,50,100} TP(i)

Clearly, because the observed WCET is the maximum execution time among a subset
of possible inputs, we always have

Observed WCET � Actual WCET

Our estimated WCET is obtained by analyzing the program code. The estimated
WCET is not obtained by running the program against any input. To clarify the
concept of “static analysis” to readers who may be new to the topic, I quote the
following from the Wikipedia entry for static analysis.1

Static code analysis is the analysis of computer software that is performed without
actually executing programs built from that software (analysis performed on executing
programs is known as dynamic analysis). In most cases the analysis is performed on
some version of the source code and in the other cases some form of the object code.
The term is usually applied to the analysis performed by an automated tool, with
human analysis being called program understanding or program comprehension.

1 See http://en.wikipedia.org/wiki/Static_code_analysis.

4.2 Predicting Execution Time of a Program 133

Our static analysis method for estimating execution time may be performed on the
object code (actually the assembly code that can be obtained via disassembly of the
object code). By construction, our static analysis will produce a safe overestimate —
that is, it will produce an estimate that is greater than the actual WCET, but never
lesser. Furthermore, we will try to design the static analysis in such a way that the
estimate is also tight — that is, it is as close to the actual WCET as possible. In
summary, we have

Observed WCET � Actual WCET � Estimated WCET

Figure 4.4 shows this relationship between the three quantities. In a similar fashion,
we can say the following about BCET:

Observed BCET 	 Actual BCET 	 Estimated BCET

Usually, we will be more interested in the WCET. The motivation for the WCET
estimate comes from various domains, but the most conventional usage has been in
schedulability analysis of hard real-time systems. Let us look at the popular rate-
monotonic schedulability analysis. It takes as input periodic task sets {T1, . . . ,Tn}
where for each task Ti in the task set, the computation time, period, and deadline
are given. For safe decisions to be made by schedulability analysis, the computation
time taken as input should be an upper bound on the task’s execution time. Thus, for
each task (which is actually a program), the WCET estimate will be obtained offline
(by static analysis) and provided to schedulability analysis as input.

4.2.1 WCET Calculation

So far, we have motivated the importance of estimating the WCET. However, we
have not discussed how the estimation will proceed, and what are the main steps in
the time estimation.

The obvious and common-sense fashion to proceed with the estimation is to
break up the given program into fragments. The WCET estimate of each fragment is
then composed to give the overall WCET estimate of the program. So, the questions
we face are:

■ How to systematically cut up a program into fragments,
■ How to estimate WCET of the program fragments (it should consider all

“contexts” in which the fragment may be executed), and
■ How to compose the WCET estimates of the program fragments to get the

program’s WCET.

We postpone the discussion on finding the WCET of program fragments to a
later stage. This will take us into the full details of time estimation, considering the
underlying hardware microarchitecture on which the program is executing. Instead,

134 CHAPTER 4 Performance Validation

at this point, we only concentrate on how to subdivide a program into pieces and
how to compose the WCET estimates of the pieces (to get the WCET estimate of
the whole program). Conventionally, this step is called the WCET calculation.

How do we cut up a program systematically into pieces? This truly depends on
the program representation we use. Conventionally, (at least) two kinds of program
representation have been considered/used in programming languages and compiler
literature. These are control flow graphs and syntax tree. The syntax tree is a tree
structure where each node of the tree corresponds to a programming language con-
struct — the common constructs being if, while, assignment, procedure call, and so
forth. Depending on the construct represented by a node u, it has nu 	 0 children.
Thus, if a node u represents an if-then-else statement, it will have three children
corresponding to the guard, the code for the “then” part and the code for the “else”
part. Figure 4.5 shows the syntax tree for an example code fragment. We can see that
it captures the hierarchical structure implicit in the compound control constructs of
a program. If we use the syntax tree representation for WCET estimation, it is clear
how the program will be cut up into pieces. Basically, the estimation method will try
to assign WCET estimates to each node of the syntax tree (starting from the leaves).
We elaborate how this is done through an approach called the timing schema [81].

For the syntax tree representation, the WCET estimation proceeds by a bottom-
up pass of the syntax tree. Essentially, for every programming language construct

sum=0;

for (i=0; i<10; i++){

if (i%2==0)

sum+=i;

if (sum<0)

break;

}

return sum;

SEQUENCE

sum=0; i=0 FOR

i<10 i++

return sum

SEQUENCE

IF IF

i%2==0

sum+=i

sum<0

break

Figure 4.5

A program and its associated syntax tree.

4.2 Predicting Execution Time of a Program 135

(if, while, assignment etc), a rule is given which dictates how to estimate the WCET
of a statement with that construct. Some of the prominent rules for sequential
composition, if-statement and while-statement are as follows:

■ Time(S1; S2)
� Time(S1) � Time(S2)

■ Time(if B {S1} else {S2})
� Time(B) � max(Time(S1), Time(S2))

■ Time(while B {S})
� (n � 1)*Time(B) � n*Time(S)

where n is the loop bound (maximum number of loop iterations). The loop bound
needs to be estimated by a separate analysis; it may also be given by the programmer.
Clearly, the timing schema rules always try to consider the most time-consuming
execution of a statement. In particular, for the if-then-else statement it considers
the option that takes more time. For the while-loop, it considers maximum possible
number of iterations of the loop.

In the preceding, we have not given the rules for estimating the WCET of an
assignment or of a condition evaluation or of control transfer statements such as
break/continue/procedure-call/procedure-return. We can do this by considering the
schematic assembly code to which these statements are compiled. Indeed, instead of
defining the timing schema rules at the source-code level (for if/while statements), we
could define it for different instructions at the assembly-code level. The advantage
of such an approach is that we can then take into account the effect of compiler
optimizations. However, here, for simplicity of exposition, we define the timing
schema rules at the source-code level. Also, for simplicity, let us assume for now
that every assignment, condition, and control transfer statement is constant and takes
one time unit. As we will see later, this assumption is not true owing to timing effects
of microarchitectural features such as cache.

Using the rule for the while-loop, we can derive a rule corresponding to for-loop
as follows:

■ Time(for(Init; B; Inc){ S})
� Time(Init) � (n � 1)*Time(B) � n*(Time(S) � Time(Inc))

In the foregoing, Init is the initialization condition of the for-loop, B is the guard
of the for-loop, and Inc is the counterincrement code for the for-loop; S constitutes
the body of the for-loop; and n is the loop bound (which is estimated separately).
Similarly, we can slightly modify the rule for the if-then-else statement to get a
timing schema rule for the if-then statement.

■ Time(if B {S}) � Time(B) � Time(S)

136 CHAPTER 4 Performance Validation

Now, let us estimate the WCET of the program fragment given in Figure 4.5. For
convenience we refer to the first if-statement if (i % 2 == 0)... as if1 and
the second if-statement if (sum < 0)... as if2. We also call the for-loop in the
code-fragment as for1.

In the following, for simplicity, we assign one time unit to each conditional and
assignment. Thus, the assumption is that the time taken to execute an assignment
statement or a branch condition is 1 time unit. In reality, this is not true. The time
taken to execute a statement depends on the context in which it is executed.As we will
see in our subsequent discussions on microarchitectural modeling (Section 4.2.2),
the time taken to execute an instruction depends on the microarchitectural state in
which the instruction is executed.

■ Time(if1)
� Time(if (sum < 0) break)
� Time(sum < 0) � Time(break)
� 1 � 1 � 2 time units.

■ Time(if2)
� Time(if (i % 2 == 0) sum+=i)
� Time(i % 2 == 0) � Time(sum+=i)
� 1 � 1 � 2 time units.

■ Time(for1)
� Time(i=0) � 11*Time(i < 10) � 10*(Time(if1;if2) � Time(i++))
� 1 � 11*1 � 10(Time(if1) � Time(if2) � 1)
� 1 � 11 � 10 ∗ (2 � 2 � 1)

� 12 � 10 ∗ 5 � 12 � 50 � 62 time units.
■ Time(Program of Figure 4.5)

� Time(sum=0) � Time(for1) � Time(return sum)
� 1 � 62 � 1 � 64 time units.

Now, let us understand what contributes to the foregoing WCET estimate. The
number of loop iterations in Figure 4.5 is 10, and this is used by the WCET estimation.
In each iteration, it considers the most time-consuming execution of both the if-
statements. However, the first if-statement’s then-part is executed only when the
variable i is even (refer to Figure 4.5). When i ranges from 0 to 10, we know that
i cannot be even in every loop iteration. Similarly, since the variable sum starts
with a value 0 and always increases, we know that sum < 0 is never possible. In
other words, the then-part of the second if-statement (refer to Figure 4.5) is never
executed. However, the timing schema approach does not take into account such
information, leading to overestimation of WCET. At this point, we introduce the
notion of an infeasible path.

4.2 Predicting Execution Time of a Program 137

Definition 11 (Infeasible Program Path) An infeasible path in a program P is
a sequence of program statements that does not appear in the execution trace
corresponding to any input of P.

Revisiting Figure 4.5, we see that the statement break itself constitutes an infea-
sible path because the condition sum < 0 guarding this statement is never true. The
general problem of detecting all infeasible paths in a program is intractable. As far
as WCET estimation is concerned, we need to separate two issues:

■ Automated detection of infeasible paths, and
■ Even if the infeasible path information is available, taking it into account during

the WCET estimation.

Because detecting all infeasible paths is undecidable, any automated infeasible path
detection method is sound but incomplete. In other words, any path detected as infea-
sible is indeed infeasible, but not all infeasible paths may be detected by an automated
method. The second issue involves integrating infeasible path information with our
WCET calculation procedure. This is difficult to do in the timing schema approach,
because this approach assigns the costs to a program fragment without considering
the control flow with which the program fragment was arrived at. Let us demonstrate
this with examples. As a trivial example, we again refer to Figure 4.5. We said earlier
that the statement break itself constitutes an infeasible path because it is never exe-
cuted. How will we take this information into account in our timing schema approach?
Well, this appears to be easy! We can simply assign Time(break) as zero — that
is, the time to execute the break statement is zero. Let us now consider a slightly
more difficult (and more realistic) situation. Suppose we have an infeasible path

stmt1; ... ; stmt2

where stmt1, stmt2 are statements. Thus, stmt1, stmt2 may appear in execution
traces, but they cannot appear together. Because the timing schema approach assigns
the costs of stmt1 and stmt2 separately, it cannot consider this information in the
WCET calculation. We will now see how this problem can be alleviated in WCET
calculation methods based on a different program representation — the control-flow
graph.

Apart from the syntax tree, another popular program representation that is most
commonly used in compilers is the control-flow graph (abbreviated CFG). The
control-flow graph is a directed graph whose nodes denote basic blocks and edges
denote control transfer across basic blocks. Now, what is a basic block?

Definition 12 (Basic Block) A basic block is a maximal code fragment executed
without branching of control flow.

138 CHAPTER 4 Performance Validation

sum=0; i=0

i<10

i % 2==0

sum+=i

sum<0

i++

return sum

1

2

3

4

5

6

7

Yes No

No

No Yes

Yes

break8

sum=0;

for (i=0; i<10; i++){

if (i % 2==0)

sum+=i;

if (sum<0)

break;

}

return sum;

Figure 4.6

A program and its associated control-flow graph (CFG).

Figure 4.6 shows an example program and its associated control-flow graph. We
have chosen the same program as the one used to explain syntax trees in Figure 4.5.
For convenience, the basic blocks are numbered in Figure 4.6. For each basic block
ending in a branch, there are two outgoing edges; we mark these two outgoing edges
with “yes”/“no.” When a branch is true, the outgoing edge marked with “yes” is
taken. Similarly, when a branch is false, the outgoing edge marked with “no” is
taken.

Superficially, both the program representations seem to capture the program
structure, but there are key differences. Suppose the break statement in the example
program of Figures 4.5 and 4.6 is replaced with a vacuous statement sum = sum.
Note that this change does not impact the hierarchical structure of the program in any
way. Thus, the syntax tree structure is not affected at all; only the node where break
appeared now contains the statement sum = sum. However, since the control flow
potentially changes (i.e., if sum < 0 is ever encountered we no longer break out of
the loop), the edges of the control-flow graph must change. The changed control-
flow graph appears in Figure 4.7. It is worth noting that this simple change in the
program actually did not change the semantics of the program, because sum < 0 is
never true during the execution of the program. However, still we had to change the
control-flow graph, because it captures all possible execution paths, some of which
may never be encountered for any input.

4.2 Predicting Execution Time of a Program 139

sum=0; i=0

i<10

i % 2==0

sum+=i

sum<0

i++

return sum

1

2

3

4

5

7

Yes No

Yes No

sum=sum

YesNo

6

8

SEQUENCE

sum=0; i=0 FOR

i<10 i++

return sum

SEQUENCE

IF IF

i % 2==0

sum+=i

sum<0

sum=sum

sum=0;

for (i=0; i<10; i++){

if (i % 2==0)

sum += i;

if (sum<0)

sum = sum;

}

return sum;

Figure 4.7

Change in the control-flow graph and syntax tree corresponding to a small change in the program
(compare the program and control-flow graph with Figure 4.6).

140 CHAPTER 4 Performance Validation

If the control-flow graph (CFG) is used as program representation, WCET esti-
mation will involve finding the WCET of the basic blocks — the nodes of the CFG.
These estimates will then be composed according to the edges in the CFG to calculate
the WCET estimate of the whole program. Indeed, this is how most state-of-the-art
WCET tools proceed. To compose the WCET estimates of the basic blocks, these
tools use a linear equation-solving method called integer linear programming. We
discuss this method through an example later in this section.

We now show WCET calculation on the control-flow graph representation. As
we will see, this approach allows us to effectively integrate many kinds of infeasible
path information. Recall that a control-flow graph is a directed graph whose nodes are
basic blocks and whose edges denote control transfer. The basic blocks are maximal
fragments of code executed without encountering branching of control flow. To show
the details of WCET calculation, we work out the example of Figure 4.6. This is the
same example program as Figure 4.5.

The basic idea is to reduce WCET estimation to an optimization. Clearly, in
estimating WCET we are trying to find a path through the program that will maximize
the execution time. The idea here is to maximize the execution time without having
to enumerate the execution traces of the program. For this reason, the approach is
also known as implicit path enumeration (IPET). Moreover, since the technology
employed is linear constraint solving over integer domain variables, it is also called
as integer linear programming or ILP.

Now, how does the ILP approach proceed? It first defines certain variables cor-
responding to the execution counts of the nodes and edges in the control-flow graph.
Let us refer to our example in Figure 4.6. For convenience, we have numbered the
nodes of the control-flow graph 1...8. For every node i in the control flow graph, we
introduce a variable Ni denoting the number of times node i is executed. Once again,
we assume for simplicity that every assignment/condition/control transfer takes 1
time unit. With this simplifying assumption, the time for one execution of a node
can be obtained as follows:

■ c1 � time to execute node 1 once
� time to execute (sum = 0; i = 0) � 2 time units.

■ c2 � time to execute node 2 once
� time to evaluate (i < 10) � 1 time unit.

■ c3 � time to execute node 3 once
� time to evaluate (i % 2 == 0) � 1 time unit.

■ c4 � time to evaluate node 4 once
� time to execute (sum += i) � 1 time unit.

■ c5 � time to execute node 5 once
� time to evaluate (sum < 0) � 1 time unit.

4.2 Predicting Execution Time of a Program 141

■ c6 � time to execute node 6 once
� time to execute (i++) � 1 time unit.

■ c7 � time to execute node 7 once
� time to execute (return sum) � 1 time unit.

■ c8 � time to execute node 8 once
� time to execute (break) � 1 time unit.

Clearly, in deriving the foregoing values, we have used the simplifying assumption
that each assignment/condition/control transfer takes one time unit. As mentioned
earlier, this assumption is not true. So, in general we need to have accurate estimation
methods that (a) work on the assembly code, and (b) consider the timing effects of
the underlying microarchitectural features (such as cache). However, the key point
is that these accurate estimation methods will work on a basic block to produce the
values of ci for each basic block i. The constants ci are pieced together by the integer
linear programming method described here.

Given the constants ci (the time to execute basic block i once) and variables
Ni (number of executions of basic block i) we can define the execution time of a
program as

Time �
∑

i

ci ∗ Ni

For our example program of Figure 4.6, taking the simplifying assumption that each
assignment/condition/control-transfer takes one time unit, we have

Time � c1 ∗ N1 � c2 ∗ N2 � c3 ∗ N3 � c4 ∗ N4

� c5 ∗ N5 � c6 ∗ N6 � c7 ∗ N7 � c8 ∗ N8

� 2N1 � N2 � N3 � N4 � N5 � N6 � N7 � N8

In other words, irrespective of whether we employ the simplifying assumption
of each assignment/condition/control transfer taking one time unit, the program’s
execution time is a linear function of the Ni variables. To find the WCET estimate
we need to maximize this function, subject to constraints on the Ni variables. If
the constraints on the Ni variables are also linear equality/inequality constraints,
maximization of the objective function amounts to a linear programming problem.
Furthermore, since the Ni variables denote execution count of a basic block, they are
integer variables (and not real numbers). Hence our problem is one of integer linear
programming. For solving ILP problems, we can use linear programming solvers
(such as the freely available lp_solve) as long as the solution produced gives integer
values to all the variables. Alternatively, one can use more efficient commercial
solvers such as the CPLEX ILP solver [19].

142 CHAPTER 4 Performance Validation

How do we define the constraints on the execution count variables Ni? We can
say the execution count of a basic block is equal to the number of times control flows
into the block — the inflow. Similarly, the execution count of a basic block is equal
to the number of times control flows out of the block — the outflow. Let us now
define variables corresponding to the edges of the control-flow graph as well. For
every edge i → j in the control-flow graph, we introduce a variable Ei→j denoting
the number of times control flows from node i to node j (i.e., the number of times
the edge i → j is executed). Then, we can define the following constraint for the
execution count of basic block i:∑

j s.t. j→i

Ej→i � Ni �
∑

j s.t. i→j

Ei→j

The inflow into basic block i is the sum of the execution counts of the edges coming
into basic block i. Similarly, the outflow from basic block i is the sum of the exe-
cution counts of the edges going out of basic block i. For our example program of
Figure 4.6, this produces an ILP problem of the following form:

Maximize 2N1 � N2 � N3 � N4 � N5 � N6 � N7 � N8

Flow constraints

1 � N1 � E1→2
E6→2 � E1→2 � N2 � E2→3 � E2→7

E2→3 � N3 � E3→4 � E3→5
E3→4 � N4 � E4→5

E3→5 � E4→5 � N5 � E5→6 � E5→8
E5→6 � N6 � E6→2

E8→7 � E2→7 � N7 � 1
E5→8 � N8 � E8→7

The preceding constraints bound N1 and N7 (execution counts of basic blocks 1
and 7) but do not sufficiently bound the execution counts of the other basic blocks.
Trying to maximize our objective function will drive it to infinity. This is because
a crucial constraint is missing — the loop bound(s). In this case, because Figure 4.6
contains only one loop, there is one loop-bound constraint. We have

E6→2 � 10

This loop-bound constraint can be estimated separately or user-provided. For our
example program, deriving this loop-bound information is trivial; most automated
analyses will suffice. Of course, in general the loop-bound inferencing problem is
also undecidable. So, any WCET estimation tool contains a feature where the user is
asked to input certain loop bounds. Even if the user has to provide all the loop bounds,
the tool still has the arduous task of mapping these loop-bound constraints (at the

4.2 Predicting Execution Time of a Program 143

source-code level) to the assembly-code level — because the WCET estimation is
often performed on the control-flow graph at the assembly code level.

Using the loop-bound information, the constraint system for our example
program gets simplified to the following:

Maximize Time � 2N1 � N2 � N3 � N4 � N5 � N6 � N7 � N8

Constraints

E6→2 � 10
1 � N1 � E1→2

E6→2 � E1→2 � N2 � N3 � E2→7 � 11
N3 � N5 � 10

N4 � 10 N5 � N6 � E5→8 � 11
N6 � E6→2 � 10

N8 � E2→7 � N7 � 1
N8 � 1

A possible solution to the above system of equalities and inequalities is

■ N1 � 1, N2 � 11, N3 � 10, N4 � 10, N5 � 10, N6 � 10, N7 � 1, N8 � 0
■ Time � 2N1 � N2 � N3 � N4 � N5 � N6 � N7 � N8 � 54 time units

Clearly, we can see that the ILP-based approach leads to a tighter estimate. One
reason here is that the syntax tree data structure does not properly capture control
transfer because of the break statement. Thus, the timing schema considers the
situation where the break statement is executed at every loop iteration — which is
impossible, because it causes the control to flow out of the loop.

Exercise: The reader is encouraged to work out the WCET estimate of the program
in Figure 4.7 using both the approaches — timing schema and ILP. In this case, the
two estimates should be the same.

Infeasible Path Exploitation

The timing schema and the ILP approach for WCET calculation differ primarily
in their ability to exploit infeasible path information. We now illustrate this with
an example. Again, consider the program in Figures 4.5 and 4.6. Clearly, the guard
(i % 2 == 0) of the first if-statement cannot be true in consecutive loop iterations.
Because the loop bound is 10, this means that the then-part of the if-statement
cannot be executed more than 10/2 � 5 times. In the ILP approach this can easily
be expressed as the linear constraint

N4 � 5

144 CHAPTER 4 Performance Validation

leading to a tighter WCET estimate. However, in the timing schema approach we sim-
ply estimate the maximum execution time of a fragment of code without considering
the control-flow context. So, it is not straightforward to integrate this information.

Indeed, the ILP approach’s ability to integrate infeasible path information has
made it the chosen method for WCET calculation in all state-of-the-art tools. As
an example, consider the control-flow graph schematic denoting two if-then-else
statements within a loop shown in Figure 4.8. In this program fragment, if i > 0
evaluates to true, the branch j < 0 cannot evaluate to true. Hence, the sequence of
basic blocks 2 → 3 → 5 → 6 denotes an infeasible program path. This information
can be encoded in the ILP formulation of the WCET analysis problem in several
different ways. Again, recall that the ILP variable Ni denotes the execution count
of basic block i and the ILP variable Ei→j denotes the execution count of the edge
i → j between basic blocks i and j. So, we may encode the information that blocks
3 and 6 are never executed in the same loop iteration as

N3 � N6 � LB

1

while (…){ 2
if (i>0){

j=i;

} else {

j

i>0

j=1–i;

}

if (j<0){

k=i; 5
} else {

k=j;

}

i=i+1;

j<0

k=i
}

k=j

j=i j=1–i

6

3 4

7

i=i+18

Figure 4.8

A control-flow graph fragment for illustrating infeasible paths; an infeasible path is marked
in bold.

4.2 Predicting Execution Time of a Program 145

where LB is a constant denoting the loop bound (for the loop in Figure 4.8).
We can also encode this infeasible path information in a different way. Note that
2 → 3 → 5 → 6 is an infeasible path because whenever the branch in block 2 eval-
uates along the outgoing edge 2 → 3, the branch in block 5 evaluates along the
outgoing edge 5 → 7. Therefore we have

E2→3 � E5→7

The interested reader is referred to [25, 69] for a more detailed treatment of infeasible
path information exploitation in WCET analysis.

Infeasible Path Detection

Integrating an infeasible path pattern into the WCET estimation is possible only if
the infeasible path patterns are known. As mentioned earlier, the general problem
of infeasible path detection is undecidable. However, we can develop automated
methods for infeasible path detection that are sound (any path found as infeasible
is indeed so) and incomplete (not all infeasible paths may be found). There exist
several infeasible path detection approaches based on data flow analysis, constraint
solving, or heuristic methods. [40, 83] should give the interested reader some idea
about state-of-the-art techniques.

4.2.2 Modeling of Microarchitecture

The overall WCET of a program is obtained by maximizing the function

Time �
∑

i

ci ∗ Ni

where i ranges over the basic blocks in the program’s control-flow graph. In the
foregoing function, ci is a constant denoting the maximum execution time of basic
block i, and Ni is a variable denoting the number of times basic block i is exe-
cuted. We have already seen how equalities and inequalities on Ni can determine
the maximum value of Time. However, this assumes the availability of the constants
ci — the maximum execution time of a basic block. We now discuss how to tightly
estimate ci.

Can the constant ci be found by executing/simulating basic block i in isolation?
Unfortunately, the answer is no. Executing a fragment of code in isolation does not
identify the “context” in that it is executed. Let us now see what sort of “context”
we need to take into account. A basic block is a straight-line fragment of code that
gets compiled to a sequence of instructions (with at most one branch instruction). If
the execution time of each instruction is fixed, the execution time of a basic block
will be fixed.

146 CHAPTER 4 Performance Validation

Herein lies the problem — the execution time of an instruction depends on the
microarchitectural state in which the instruction is executed. Of course, this depends
on the processor on which the program is being executed. If the program is executed
on a simple microcontroller, the execution time of any given instruction can be
constant (i.e., independent of the microcontroller state). However, most processors
employ popular performance-enhancing features such as pipeline, cache, and branch
prediction. Even in the embedded domain, it is common for processors to have at
least cache and in-order pipelined execution.

In the presence of any meaningful processor microarchitecture, the execution
time of an instruction is no longer constant. Let us consider the impact of cache
on the execution time of an instruction. A cache is a small on-chip memory that
remembers recently accessed code and/or data, over and above the main memory.
Often, separate caches are maintained for code and data. Any instruction/data is first
searched in the corresponding cache, and only then is the main memory accessed.
The main purpose of having a cache is, of course, faster program execution. Most
processors at least have an instruction cache, because it is very common for programs
to execute the same instructions repeatedly; consider the statements in a program
loop that are iterated several times.

Now, imagine anADD instruction that is executed twice — the first time it misses
in the cache, and the second time it hits in the cache (because it is already there).
We consider in-order execution: That is, the instructions in a program are fetched,
decoded, executed, and committed according to their order in the program. Note that
whether the execution is pipelined or not (i.e., whether there can be any overlap in the
execution time of two instructions) is irrelevant here — we only show the execution
times of two instances of the same instruction. Assuming a 10-cycle cache miss
penalty (which is very modest; typically the time to go to main memory is much
higher), following is the breakup for the two executions.

Execution with miss Execution with hit

Fetch 1�10 cycles 1 cycle
Decode 1 cycle 1 cycle
Execute (in ALU) 1 cycle 1 cycle
Commit 1 cycle 1 cycle

Total 14 cycles 4 cycles

The table shows the importance of modeling the timing effects of cache for WCET
estimation. Indeed, modeling the timing effects of processor microarchitecture is
crucial for tightly estimating the WCET of basic blocks. Because the basic-block
WCETs are fed as constants to an ILP problem solving the WCET of a program,
modeling the timing effects of microarchitecture becomes very important for tightly
estimating a program’s WCET. In this book, we primarily discuss the modeling

4.2 Predicting Execution Time of a Program 147

of cache. The main reason for covering cache modeling is twofold: (a) It gives us
a sense of the issues in microarchitectural modeling, and (b) the issues in cache
modeling are relatively simpler compared to modeling of other features such as
out-of-order pipelines. The interested reader is referred to the survey article [61]
for a more detailed treatment on microarchitecture modeling, such as modeling of
pipelines and branch prediction.

Cache Modeling via Integer Linear Programming

We assume here a direct-mapped instruction cache. What this means is that the cache
is divided into a finite number of cache lines, such as 64 cache lines with 64 bytes
each for a 4KB cache. Any given memory address is thus mapped to exactly one
line in the cache. The modeling discussed here is based on the work of [55].

A basic block Bi is partitioned into ni memory blocks, denoted as

Bi.1,Bi.2, . . . ,Bi.ni

A memory block is a sequence of instructions in a basic block that belongs to the
same instruction cache line. In Figure 4.9, we show the control-flow graph schematic
for an if-then-else statement within a loop. The memory blocks within each basic
block are also shown. All basic blocks in our Figure 4.9 contain only one memory
block, excepting basic block 4, which has two memory blocks. In principle, it is also

i=0

i<100

i++

Condition

S1 S2

…

Line 0

Line 1

for (i=0; i<100; i++){

if (condition) {

S1;

} else {

S2;

}

}

…

Cache

Figure 4.9

Control-flow graph fragment, and the l -blocks showing which (parts) of which basic block
correspond to which cache line. A simple direct-mapped cache with only two cache lines is
assumed.

148 CHAPTER 4 Performance Validation

possible for memory blocks to span across basic blocks — but, for simplicity, we do
not show this situation in our example.

Let CMi.j be the total cache misses for memory block Bi.j and cmp be the constant
denoting the cache-miss penalty. Then, the total execution time is

Time �
∑

i

(ci � Ni �

ni∑
j�1

cmp � CMi.j) (4.1)

The index i ranges over the basic blocks in the program’s control-flow graph. As
before, the constant ci is the WCET of basic block i, and the variable Ni denotes
the execution count of basic block i. Note how the ILP objective function has been
modified with the additional CMi.j variables. We now need to find constraints on
these new variables.

For each cache line c, we construct a cache-conflict graph (CCG) Gc. The nodes
of Gc are the l-blocks mapped to c. An l-block is a line block corresponding to a
chunk of memory mapped to a cache line. An edge Bi.j → Bu.v exists in Gc if and
only if there exists a path in the CFG s.t. control flows from Bi.j to Bu.v without going
through any other l-block mapped to c. In other words, there is an edge between

B1,1

B2,1

B3,1

B4,2

B4,1

B6,1

B5,1

B1,1

...

B3,1

B4,2 B5,1

B4,1

B6,1

B2,1

(a) (c)

(b)

Figure 4.10

(a) Control-flow graph fragment from Figure 4.9. (b) Cache-conflict graph for cache line 0,
assuming direct-mapped cache with only two cache lines. (c) Cache-conflict graph for cache
line 1. The memory blocks for cache line 0 are white and those for cache line 1 are shaded.

4.2 Predicting Execution Time of a Program 149

l-blocks Bi.j to Bu.v if Bi.j can be present in the cache when control reaches Bu.v. The
cache-conflict graphs for the two cache lines in Figure 4.9 are shown in Figure 4.10.

Let Ri.j→u.v be the execution count of the edge between memory blocks Bi.j and
Bu.v in a cache-conflict graph. Now, the execution count of memory block Bi.j equals
the execution count of basic block Bi.Also, at each node of the CCG, the inflow equals
the outflow and both equal the execution count of the node. Therefore,

Ni �
∑
u.v

Ri.j→u.v �
∑
u.v

Ru.v→i.j (4.2)

The cache-miss count CMi.j equals the inflow from conflicting memory blocks in
the CCG (whether two memory blocks are conflicting or nonconflicting is statically
determined by portions of their instruction addresses, which are used as tags in cache
lines). Thus, we have

CMi.j �
∑
u.v

Bu.v conflicts Bi.j

Ru.v→i.j (4.3)

This concludes the overall discussion on cache modeling via ILP. Basically, we
have modified the ILP problem for program-level WCET analysis to integrate the
cache modeling. The overall technology for WCET estimation is still ILP solving.
The objective function is now

Time �
∑

i

(ci � Ni �

ni∑
j�1

cmp � CMi.j)

The variables Ni denote the execution counts of basic blocks. The constraints
on these variables are as before, derived from the flow equations in the control-
flow graph, the loop bounds, and the user-provided additional constraints (typically
capturing infeasible path information). The new variables CMi.j denote the cache-
miss counts of individual memory blocks lying inside basic blocks. The constraints
on these variables are obtained via the cache-conflict graph construction elaborated
in the preceding. All of these constraints together form a jumbo ILP problem that
then needs to be submitted to an ILP solver (such as CPLEX) for WCET estimation.
We should, however, mention that scalability is a concern with ILP solvers; hence,
microarchitectural modeling via ILP suffers from such scalability issues as well. In
the following, we discuss an alternative way of modeling cache’s timing behavior
via abstract interpretation.

Cache Modeling via Abstract Interpretation

In the ILP-based approach, we modified the objective function from

Time �
∑

i

(ci � Ni)

150 CHAPTER 4 Performance Validation

to

Time �
∑

i

(ci � Ni �

ni∑
j�1

cmp � CMi.j)

when we integrated cache modeling. Consequently, we also defined constraints to
bound the new CMi.j variables. We now discuss an approach where integration of
cache modeling does not require any new ILP variables. Thus, by performing cache
modeling over and above the program flow analysis, we do not increase the size of
the ILP problem. Indeed, we solve the same ILP problem as the one resulting only
from program flow analysis — our objective function will be

Time �
∑

i

(ci � Ni)

However, the WCET estimation of the basic blocks, that is, the estimation of the
constants ci, is done differently.

Recall that a basic block is divided into memory blocks, where a memory block
is a sequence of instructions that fit into the same cache line of the instruction cache.
Given any memory block m, suppose we try to find all the possible cache contents
with which m will be reached during program execution. If in all these possible
cache contents, block m is already in the cache, the access of m is guaranteed to be a
cache hit. The abstract interpretation approach finds such guaranteed cache hits and
computes the WCET estimates of the basic blocks tightly (instead of pessimistically
considering all possible cache accesses as misses).

Now, how do we analyze the program to find the guaranteed cache hits? This
requires us to find all the possible cache contents with which a program point can
be reached. However, clearly we do not want an exhaustive program execution on
different inputs to find what are the cache contents with which a given program point
is reached. Herein lies the trick — abstract interpretation can approximate the set of
cache states with which a particular program point is reached. So, if the set of cache
states with which a program point loc in program P is reached is given as SP(loc),
abstract interpretation will try to compute the set⋂

s∈SP(loc)

s

If, indeed, one could compute this set, we could say that the intersection contains
all those memory blocks that must be in the cache whenever program point loc is
reached. The trouble, of course, is that we do not precisely know the set SP(loc)
and we cannot compute the aforementioned intersection. For this purpose, abstract
interpretation will compute ⋂

s∈S′
P(loc)

s

4.2 Predicting Execution Time of a Program 151

where S′
P(loc) ⊇ SP(loc) is an overapproximation of the actual set of cache states

with which program point loc is reached. If by examining the intersection of states
in S′

P(loc) our analysis can infer that a certain memory block in program point loc
will be a cache hit, clearly the same inference would have been obtained by exam-
ining SP(loc). This is the main power of abstract interpretation — by approximating
important metrics (in this case cache states) at program points, it allows for sound
inferencing of program behavior.

We now describe the abstract interpretation (AI)-based cache modeling more
formally. We start with a general discussion on abstract interpretation and then
clarify the technical details of the cache modeling.

Abstract interpretation [15] is a theory for formally constructing conservative
approximations of the semantics of a programming language. A concrete application
of abstract interpretation is in static program analysis, where a program’s compu-
tations are performed using abstract values in place of concrete values. Abstract
interpretation is used in WCET analysis to approximate the “collecting semantics”
at a program point. The collecting semantics gives the set of all program states
(cache, pipeline etc.) for a given program point. In general, the collecting semantics
is not computable. In abstract interpretation, the goal is to produce an abstract seman-
tics that is less precise but effectively computable. The computation of the abstract
semantics involves solving a system of recursive equations/constraints. Given a
program, we can associate a variable �p� to denote the abstract semantics at pro-
gram point p. Clearly, �p� will depend on the abstract semantics of program points
preceding p. Because programs have loops, this will lead to a system of recur-
sive constraints. The system of recursive constraints can be iteratively solved via
fixed-point computation. Termination of the fixed-point computation is guaranteed
only if (a) the iterative estimates of �p� grow monotonically, and (b) the domain
of abstract values (which is used to define the abstract program semantics) is free
from infinite ascending chains.2 The latter is ensured if the semantic functions in the
abstract domain, which show the effect of the programming language constructs in
the abstract domain and are used to iteratively estimate �p�, are monotonic.

Once the fixed-point computation terminates, for every program point p, we
obtain a stable estimate for �p�— the abstract semantics at p. This is an overap-
proximation of all the concrete states with which p could be reached in program
executions. Thus, for cache behavior modeling, �p� could be used to denote an
overapproximation of the set of concrete cache states with which program point
p could be reached in program executions. This abstract semantics is then used to
conservatively derive the WCET bounds for the individual basic blocks. Finally,
the WCET estimates of basic blocks are combined with ILP-based path analysis to
estimate the WCET of the entire program.

2 Hence the estimates cannot grow forever.

152 CHAPTER 4 Performance Validation

To illustrate AI-based cache modeling, we will assume a fully associative cache
with a set of cache lines L � {l1, . . . , ln} and least recently used (LRU) replacement
policy. Because the cache is fully associative, a memory block, once brought into the
cache, can be placed anywhere within it. Also, the LRU replacement policy implies
that when a memory block needs to be evicted from the cache (because a new memory
block needs to be brought in), the least recently used block is evicted from the cache.
Let {s1, . . . ,sm} denote the set of memory blocks. The absence of any memory block
in a cache line is indicated by a new element I; thus S � {s1, . . . ,sm} ∪ {I}.

Let us first define the concrete semantics.

Definition 13 A concrete cache state is a function c : L → S.

If c(lx) � s for a concrete cache state c, then there are x � 1 elements (c(l1), . . . ,
c(lx�1)) that are more recently used than s. In other words, x is the relative age of s.
Cc denotes the set of all concrete cache states.

Definition 14 A cache update function U : Cc � S → Cc describes the new cache
state for a given cache state and a referenced memory block.

Let s � c(lx) be the referenced memory block. The cache update function shifts the
memory blocks c(l1), . . . ,c(lx�1), which have been more recently used than s, by one
position to the next cache line. If s was not in the cache, then all the memory blocks
are shifted by one position and the least recently used memory block is evicted from
the cache state (if the cache was full). Finally, the update function puts the referenced
memory block s in the first position l1.

The abstract semantics defines the abstract cache states, the abstract cache update
function, and the join function.

Definition 15 An abstract cache state ĉ : L → 2S maps cache lines to sets of memory
blocks.

Let Ĉ denote the set of all abstract cache states. The abstract cache update function
Û : Ĉ � S �→ Ĉ is a straightforward extension of the function U (which works on
concrete cache states) to abstract cache states.

Furthermore, at control-flow merge points, join functions are used to combine
the abstract cache states. That is, join functions approximate the collecting semantics
depending on program analysis.

Definition 16 A join function Ĵ : Ĉ � Ĉ �→ Ĉ combines two abstract cache states.

4.2 Predicting Execution Time of a Program 153

Because L is finite and S is finite, clearly the domain of abstract cache states is
finite, and hence free from any infinite ascending chains. Furthermore, the update and
join functions Û, Ĵ are monotonic. This ensures termination of a fixed-point com-
putation based analysis over the aforementioned abstract domain. We now mention
two such analysis methods.

The program analysis mainly consists of must analysis and may analysis. The
must analysis determines the set of memory blocks that are always in the cache at a
given program point. The may analysis determines the memory blocks that may be
in the cache at a given program point. The may analysis can be used to determine
the memory blocks that are guaranteed to be absent in the cache at a given program
point.

The must analysis uses abstract cache states with upper bounds on the ages of the
memory blocks in the concrete cache states. That is, if s ∈ ĉ(lx), then s is guaranteed
to be in the cache for at least the next n � x memory references (n is the number of
cache lines). Therefore, the join function of two abstract cache states ĉ1, ĉ2 puts a
memory block s in the new cache state if and only if s is present in both ĉ1 and ĉ2.
The new age of s is the maximal of its ages in ĉ1, ĉ2. Figure 4.11 shows an example
of the join function for must and may analysis.

The may analysis uses abstract cache states with lower bounds on the ages of the
memory blocks. Therefore, the join function of two abstract cache states ĉ1, ĉ2 puts
a memory block s in the new cache state if s is present in either ĉ1 or ĉ2 or both. The
new age of s is the minimal of its ages in ĉ1, ĉ2.

At a program point, if a memory block s is present in the abstract cache state
after must analysis, then a memory reference to s will result in cache hit (always
hit). Similarly, if a memory block s is absent in the abstract cache state after may
analysis, then a memory reference to s will result in cache miss (always miss).

Join for must analysis Join for may analysis

{a}

{a}
{b}
{c}

{a, b}
{b} {c}

{c, d}

{ }

{ }

{ }

{ }
Young

Age

Old Old

Young
{a}

{b}
{c, d}

{ }

{b}
{c}
{d}

{a}

{a, b}
{c}
{d}

{ }

Figure 4.11

Join for must and may analysis.

154 CHAPTER 4 Performance Validation

The other memory references cannot be classified as hit or miss. To improve the
accuracy, a further “persistence analysis” can identify memory blocks for which the
first reference may result in either hit or miss; but the remaining references will be
hits. These categorization of memory references is used to define the WCET for
each basic block as a constant. Once the WCETs of basic blocks are found, these
estimates are combined to get the WCET of the whole program using integer linear
programming as before.

A thorough discussion on abstract interpretation–based WCET analysis can be
found in [96]. Details about the abstract interpretation–based cache modeling can
be obtained from [90].

Remarks about the Two Approaches

In studying the two approaches toward microarchitecture modeling, we see that the
ILP-only approach combines path analysis and microarchitecture modeling into one
single ILP problem. On the other hand, in the abstract interpretation–based approach,
only the path analysis is done by integer linear programming; the microarchitecture
modeling is done separately (via abstract interpretation) for estimating the WCET of
basic blocks. It is worthwhile to note that most state-of-the-art WCET analysis tools
current employ such a separated approach, where only the program path analysis is
accomplished by integer linear programming.

WCET Analysis Tools

Finally, we wish to inform the readers of the availability of several mature WCET
analysis tools, such as aiT [30] and Chronos [53]. A summary of existing WCET
analysis tools is presented in the survey article [61].

4.3 INTERFERENCE WITHIN A PROCESSING ELEMENT
Worst-case execution time (WCET) analysis is useful for estimating the execution
time of a program fragment, assuming uninterrupted execution. In reality, programs
do not execute uninterrupted. During the execution of embedded software, we have
to consider at least two kinds of interference:

■ Interference from peripheral devices, typically via interrupts, and
■ Interference from other programs executing on the same processor.

Clearly, in a multiprocessor system-on-chip, there can be interference from programs
executing on other processing elements. This is because the processing elements are

4.3 Interference within a Processing Element 155

connected via a bus on which all interprocessor communication takes place. We
discuss such communication time analysis in the next section under “system-level
performance analysis.”

4.3.1 Interrupts from Environment

It is common for embedded software (particularly driver software) to communicate
with peripheral devices. There are two alternative strategies that the software can
use to manage such communication. The software can busy-wait in a loop and poll
for signals from the peripheral device. This is an extremely time-expensive method
of managing peripheral communication. Alternatively, the peripherals can asyn-
chronously generate “interrupts” that are serviced by special-purpose code called
interrupt handlers. An interrupt handler may be thought of as a procedure that is
invoked when an interrupt arrives. Thus, there is no explicit procedure call to these
handlers, but they are invoked by the system on the arrival of the interrupt. It is
important to note that interrupts do not get serviced immediately on arrival. The
processor needs to save important state information before transferring control to
the appropriate interrupt handler. One of the issues in performance validation of
embedded software is whether all interrupts are handled within a “deadline.”

For example, consider an automotive controller software where the pressing of
the brake pedal by the driver generates an interrupt. To determine whether the braking
action indeed takes effect within a given time t, we need to estimate

■ The time between the arrival of the interrupt and the servicing via the interrupt
handler, and

■ The WCET of the interrupt handler that actually does the necessary computa-
tions for the braking action to take effect.

The difficulty in analyzing the time interference owing to interrupts is that inter-
rupts can arrive asynchronously at any program point. Consequently, from any
control location in the program, one would have to assume a potential nonlocal
transfer of control to the interrupt handler(s). This makes it difficult to estimate the
maximum time between the arrival of the interrupt and the servicing of the interrupt
(because we have to consider all possible locations in which a program can be when
an interrupt arrives).

Usually, interrupts are controlled by an interrupt mask register (IMR). The IMR
contains a bitvector where each bit states whether a particular interrupt is currently
enabled/disabled. A disabled interrupt is, of course, not serviced. To find the maxi-
mum time to service an interrupt, one can construct an extended control-flow graph,
where apart from the control location we also model the contents of the IMR. In
this extended graph, given a control location l and an interrupt i that is enabled
as per the current contents of the IMR, we can compute the weighted longest path

156 CHAPTER 4 Performance Validation

from control location l to the start of the interrupt handler for interrupt i. This will
give the maximum time to service an interrupt i, if one arrives while the program
is at control location l. The same task has to be repeated for all other control loca-
tions. Thus, the maximum time to service a given interrupt can be formulated as a
multisource-weighted longest-path calculation problem.

Brylow and Palsberg [11] report methods for finding the maximum time to service
an interrupt via modeling an extended control-flow graph. Their approach is to
model both the control location and the interrupt mask register, as mentioned earlier.
Moreover, they show that an analysis of the extended control-flow graph may reveal
interesting insights, such as interrupt servicing not being guaranteed within any
bounded time at certain control locations in the program. This may happen, for
example, if in a control location l several interrupts are enabled and one of them
has higher priority than the others. Thus, if in a location l, two interrupts i1, i2 are
enabled and i1 has higher priority than i2, we cannot guarantee that repeated arrival of
i1 interrupts will not starve out the servicing of i2, unless something is known about
the interrupt sources. The analysis of [11] allows the user to input such information,
and this is taken into account while computing the maximum time to service an
interrupt.

Figure 4.12 shows an example user annotation that can be taken into account
in timing analysis. The figure shows a fragment of the extended control-flow
graph where each node denotes a control location (i.e., program counter value)
and IMR value. In this extended graph, there could be an unbounded loop involving
communication of the embedded software with a peripheral device. However, in real-
ity the loop may be bounded because of the user’s knowledge about the peripheral.

Control location l1 IMR value 1

Control location l2 IMR value 2

Control location l3 IMR value 3

Control location l1 IMR value 1

Control location l2 IMR value 2

Control location l3 IMR value 3

Time 5 x cycles
(user provided)

Figure 4.12

Taking into account user annotations for timing analysis of interrupt-driven software.

4.3 Interference within a Processing Element 157

This may bound the maximum amount of time spent in the loop (as denoted by the
dashed edge in Figure 4.12).

4.3.2 Contention and Preemption

In Section 4.2, we discussed WCET analysis methods that estimate the uninterrupted
execution time of a program. However, in reality, a program is subject to interruptions
owing to several reasons such as:

■ Asynchronously coming interrupts from peripheral devices (i.e., the “environ-
ment” of the program),

■ Resource contention with other programs running on the same processing
element, and

■ Resource contention due to other programs running on other processing
elements.

Estimating the time required to process an interrupt allows us to capture the
time involved in a program’s interaction with the environment. However, several
programs could be executing on the same processing element, sharing hardware data
structures such as the processor cache. This may create interference in a program’s
execution time — which we seek to estimate here. Of course, programs running on
different processing elements could also interfere with each other’s execution time,
because they share communication resources such as the system bus. We will discuss
communication timing analysis in Section 4.4.

Resource contention within a processor by many programs is conventionally
studied under the name of schedulability analysis. The primary resource here is the
CPU on which the various programs are run. In the last section, we presented the
methods for worst-case execution time analysis, which estimate the uninterrupted
execution time of a program on a processor. Clearly, these estimates do not consider
a multitasking environment where several programs share a CPU. In general, we
consider programs P1, . . . ,Pn executing on a processor where for each program Pi

there is a period pi. In other words, every pi time units, an instance of program Pi is
released. In this situation, for any instance of program Pi, suppose we monitor the
time when it is released to the time when it is completed. In schedulability literature,
this time is referred to as the response time. The response time can be attributed to
the following:

■ Waiting time: Once an instance (say, the jth instance) of a program Pi is ready,
it may not start immediately. The CPU may be occupied by other programs
when the jth instance of Pi is ready.

■ Own Execution time: The execution time of program Pi is part of the response
time of the jth instance of program Pi. WCET estimates can potentially be
used here.

158 CHAPTER 4 Performance Validation

■ Execution time of preempting programs: While the jth instance of program Pi

is running, it may be preempted because of the arrival of instances of other pro-
grams (which may be deemed to be higher priority than Pi as per the scheduling
policy of the CPU). Because of such preemption, (parts of) the execution
time of certain higher priority processes will also be part of the response time
for Pi.

In Figure 4.13, we show a sample preemptive execution of three periodically
invoked programs. For each of the programs Pi, we provide the arrival time ai,
execution time (say, the WCET estimate) ci, and the period pi. Thus, ai is the time
at which the first instance of program Pi arrives, ci is the WCET estimate of one
execution of Pi, and pi is the time interval between the arrival of two instances of Pi.

Now let us observe the response time of the first instance of program P2 in Figure
4.13. It arrives at time � 0 and immediately starts executing, because there are no
other competing programs. Thus, there is no waiting time. After executing for one
time unit, the first instance of program P1 also arrives. At this point, there are two
program instances contending for the CPU — the first instance of program P1, and
the first instance of program P2. Which one should be allowed to run first? This is
decided by the scheduling policy of the CPU. There is a vast literature on scheduling
algorithms (e.g., see the book [13]) that decide which program to allocate the CPU
when several programs are contending for the CPU. Thus, a scheduling algorithm can
be seen as a prioritization mechanism — from among several contending program
instances, it decides which program instance will run first on the CPU. To prioritize
program instances, we need to prioritize the programs that are periodically invoked.

P1: Arrival time a1 5 1, Execution time c1 5 1, Period p1 5 4
P2: Arrival time a2 5 0, Execution time c2 5 2, Period p2 5 5
P3: Arrival time a3 5 2, Execution time c3 5 2, Period p3 5 20

5

10 15 200

P1

P2

P3

1

5

9 17

2 22

2113

Figure 4.13

Preemptive execution of periodically invoked programs.

4.3 Interference within a Processing Element 159

Thus, in Figure 4.13, we will need to assign priorities to P1,P2,P3. A common
scheme is to assign priorities to programs based on periods — the smaller the period,
the higher the priority. The intuition here is that any instance of a program Pi should
complete prior to the arrival of the next instance of Pi. Thus, the period of a program
Pi also serves as a deadline for its instances. The scheduling algorithm that prioritizes
program instances based on the periods of the corresponding programs is commonly
known as rate monotonic scheduling (RMS) [52]. Thus, in the example of Figure
4.13, the periods of P1, P2, P3 are 4, 5, and 20, respectively — P1 has the highest
priority, followed by P2, and then by P3. In fact, Figure 4.13 shows the rate monotonic
scheduling of the three periodically invoked programs P1,P2,P3.

In RMS, the Worst-case Response Time (WCRT) of a program instance can be
formulated as follows. Let the programs P1,P2, . . . ,Pn be invoked periodically with
periods p1 � p2 � . . . � pn. Thus P1 has the lowest period (and highest priority) and
Pn has the largest period (and lowest priority). The WCRT of any instance of program
Pi is given by the following recursive equation:

wi � ci �

i�1∑
j�1

cj ∗ �wi

pj
� (4.4)

Here ci is the execution time of any instance of Pi (the WCET estimate) and pj is
the period of program Pj. The above equation (proposed by Lehoczky et al. in [60])
can be explained as follows. The WCRT of an instance of program Pi includes (a) the
execution time of Pi and (b) execution times of higher-priority programs. Because
in RMS the priorities of programs are given by their periods and we assume that the
programs are ordered according to their periods (with the program with the lowest
period appearing first), the higher-priority programs for an instance of program Pi are
P1,P2, . . . ,Pi�1. This explains the summation on the right-hand side of the equation.
Moreover, for each higher-priority program Pj we conservatively add up

(Execution time of Pj) ∗ (# of times Pj can preempt one instance of Pi)

The execution time of program Pj is cj. The number of times the program Pj can
preempt one instance of program Pi is given by �wi

pj
� where wi is the WCRT of

program Pi and pj is the period of program Pj.
Equation 4.4 is solved iteratively via a fixed-point computation. For every pro-

gram Pi, the WCRT wi is initialized to ci, and then Equation 4.4 is iteratively applied
until the wi values become stable. These stable values form the WCRT estimates
of the programs. It can be shown that this iterative fixed-point computation is guar-
anteed to terminate (see [13, 87] for details). If the WCRT of each program is less
than its deadline (in RMS often the deadline � period), then RMS deems the set of
programs as schedulable.

160 CHAPTER 4 Performance Validation

RMS is only one possible scheduling policy. The various scheduling policies
studied in literature differ from each other in the following issues.

■ Task Model:
• Whether the programs executing are invoked periodically (at regular inter-

vals), sporadically (at irregular intervals with a minimum time interval
between two consecutive instances of a program), or completely aperiodi-
cally (no guarantees about the time between two instances of a program so
each program instance can be treated as a separate program).

• Whether a program instance can be preempted by another program instance;
or whether a program instance, once scheduled on the CPU, runs to
completion.

■ Priorities:
• Static/Dynamic: Whether the priorities of all program instances are tied to

the corresponding program. If yes, the priority scheme is static (priorities
known at compile time); otherwise it is dynamic (priorities computed during
run time).

• Prioritization: Based on certain characteristics of the programs or pro-
gram instances, the priorities are computed. The RMS algorithm assigns
the priorities to be inversely proportional to the period.

Given the various choices of task model and the priority scheme, the wide array
of existing scheduling algorithms is not surprising. For a set of independent periodic
programs (i.e., no data dependencies across the programs), if the priorities are fixed
statically, it can be shown that RMS is an optimal scheduling scheme. In other words,
if a set of periodic programs is deemed to be not schedulable (i.e., not meeting
deadlines) under RMS, it cannot be scheduled using any other scheduling policy
using static priorities. RMS is a widely used scheduling algorithm that has been
implemented inside many real-life system, including various real-time operating
systems. It can also be extended to sets of programs where there exist dependencies
across programs.

RMS uses static priorities — that is, the priority of the program instances are
derived from the priorities of the programs. It is not possible to vary the priorities
at run time — that is, different instances of the same program cannot have different
priorities. If we allow this flexibility we have a dynamic priority scheme, where the
priorities of the currently contending program instances (contending for the CPU)
are updated at run time. Naturally, there arise pragmatic issues in implementing
dynamic priority schemes — how frequently the priorities need to updated and how
efficiently they can be updated.

Earliest deadline first (EDF) is one of the best-known dynamic priority scheduling
algorithms. It prioritizes the contending program instances based on their deadlines.
The program instance that is closest to its deadline is allowed to run. Naturally, when

4.3 Interference within a Processing Element 161

P1 5 (2, 4, 4) P 2 5 (5, 10, 10)

P 1 period

P 2 period

P 1 P 1 P 1 P 1 P 1

P 2 P 2 P 2P 2

Time0 2 4 6 8 10 12 14 16 18 20

Figure 4.14

Preemptive execution of periodically invoked programs — EDF scheduling.

a new program instance arrives, an interrupt needs to be generated. This results in a
reevaluation of the priorities of the contending program instances, based on which
one is closest to its deadline.

Figure 4.14 shows the EDF scheduling of two periodically invoked programs.
The programs are P1 � (2,4,4) and P2 � (5,10,10), where for P1 the computation
time is 2 and the period/deadline is 4. Similarly, for P2 the computation time is 5
and the period/deadline is 10. Suppose an instance each of P1 and P2 is ready to
execute initially at time � 0. P1 is allowed to execute because it is closest to its
deadline. After P1 stops, P2 executes from time � 2 to time � 4. However, when
a new instance of P1 arrives at time � 4, the program instance of P2 is preempted.
This is because the time to next deadline of P2 is 10 � 4 � 6, whereas the time to
next deadline of P1 is 4. However, at time � 8, when another instance of P1 arrives,
program P2 continues executing. This is because now the the time to next deadline
of P2 is 10 � 8 � 2, whereas the time to next deadline of P1 is 4.

For a detailed understanding of scheduling algorithms and their usage, the reader
is referred to [13].

4.3.3 Sharing a Processor Cache

So far, we have seen two possible ways in which uninterrupted execution of a
program on a processor may be prevented:

■ Interrupts from the external environment, and
■ Preemption by other programs executing on the same processor.

Both of these make it difficult to estimate the finish time of a program once it starts,
because the finish time is not merely the execution time of the program.

In reality, there are (at least) two other factors affecting the finish time of a
program:

■ The impact of several programs running on a processor sharing resources (such
as the processor cache), and

162 CHAPTER 4 Performance Validation

■ Communication between programs running on different processors (possibly
connected via a bus).

We now discuss the first of these two — the impact of shared resources, in particular
a shared processor cache.

When a program P1 is running, by default it is eligible to use the entire processor
cache. Now, P1 might be preempted by the arrival of a higher-priority process P2

that runs to completion. Clearly, when P2 executes it will also be eligible to use the
processor cache. Suppose P2 finishes execution, and P1 resumes. Clearly, some of
the contents of P1 that were cached earlier would have been replaced by contents
of P2. This will lead to additional cache misses when P1 resumes. How to take into
account these additional cache misses in the performance estimation/validation of
programs P1, P2? There could be several solutions to this problem.

■ Conservative estimate: The easiest solution might be to conservatively assume
that the entire cache needs to be refilled when a preempted program resumes
execution. This might cause a gross overestimation in execution time.

■ Cache partitioning:Alternatively, we can partition the cache among the several
programs running on a processor. A program now uses only the portion of the
cache allocated to its partition. The trouble with this approach is that it leads
to an inefficient use of the cache. Consequently, the actual performance of the
programs may suffer quite a lot, even though we can now obtain tight estimates
of this degraded performance.

■ Cache analysis: We can analyze the cache behavior of the different application
programs running on a processor, and tightly estimate their cache behavior
interference. This approach does not require us to partition the cache among
the applications.At the same time, we do not need to assume that all cache lines
are affected by preemption. We now illustrate this approach. Overall, we devise
a method to summarize the cache behavior of a program. By comparing the
cache behavior summary of two programs executing on the same processor, we
can find their relative interference in execution times due to the shared cache.

Cache Behavior Summarization

We now formally describe our static analysis method for computing cache behavior
summary for a given application program. To model cache behavior, we first need
the notion of a cache state. For simplicity of notation, let us assume a direct-mapped
cache; the analysis can be straightforwardly extended for set-associative caches.
For a direct-mapped cache with n blocks, a cache state cs is simply a mapping
{1, . . . ,n} → M ∪ {⊥}, where M is the set of code memory blocks being mapped to
cache, and ⊥ indicates the situation where a cache block is empty.

4.3 Interference within a Processing Element 163

We use cs[i] to denote the content of the ith cache block in cache state cs. Also,
for convenience, we describe the analysis for instruction cache. The method can be
straightforwardly used, with little conceptual change, for summarizing data cache
behavior of an application.

In order to statically summarize the overall cache behavior, we associate program
points or control locations in the program with sets of cache states. We develop and
use two quantities: reaching cache states (RCS) and live cache states (LCS).

Definition 17 (Reaching Cache States) Given a program point p of a program Prog,
the set of reaching cache states RCS(p) is defined as the set of cache states with
which p can be reached (via any incoming path to p in Prog).

Definition 18 (Live Cache States) Given a program point p of a program Prog, the
set of live cache states LCS(p) is the set of possible first references to cache blocks
via any outgoing path from p in Prog.

Given a program point p in program Prog, the quantities LCS(p)/RCS(p) are
computed by exploring the paths to/from p in the control-flow graph of Prog. This is
done efficiently (without path enumeration) by (a) associating each program point
with an LCS/RCS, (b) defining the RCS of a program point using the RCS of its prede-
cessors, and (c) defining the LCS of a program point using the LCS of its successors.
Because a program contains loops, the foregoing will produce a set of recursive equa-
tions on LCS/RCS that needs to be solved iteratively.Assuming an empty cache at the
beginning of the program, we can iteratively solve the recursive equations for LCS
and RCS separately. This is done until the LCS and RCS estimates at each program
point are stable — that is, until the iterative computation reaches a fixed point.

The resultant RCS estimate for the exit point of the program is denoted as
RCS(Prog); these are the possible cache states at the end of the program. Simi-
larly, the LCS estimate at the entry point of the program is denoted as LCS(Prog);
these are the possible first references to cache blocks during the program’s execution.
Given a program Prog, the quantities RCS(Prog) and LCS(Prog) form the summary
of the cache behavior for Prog. For details of the iterative computation of LCS and
RCS, the reader is referred to [63]. We now show how the LCS/RCS quantities, once
computed, can be used for estimating cache interference across programs.

Utilizing Cache Summaries

We can utilize the cache behavior summary for different purposes. In a preemptive
multitasking system where several programs (with deadlines) are running on the
same processor, we can use the cache summaries to tightly estimate the additional

164 CHAPTER 4 Performance Validation

m1 m3
m4

m1
m 2

m1

m2

m2

m3

m4

m 4

Executing task

Cache contents

1
2
1

Memory space of
1 5 {m1, m2}

Memory space of
2 5 {m3, m4}

1
preempted

1 resumes

Figure 4.15

Cache-related preemption delay calculation — example 1.

cache misses owing to preemption. In the absence of the cache summaries, we
would have to assume that every cache line’s contents should be changed because
of preemption.

Figure 4.15 illustrates this usage. For simplicity, we have depicted a direct-
mapped cache with two cache lines. The ⊥ symbol denotes an empty cache line.
Here, task (or program)
1 executes initially but is preempted by a higher priority
task
2, which then runs to completion. When
1 resumes execution, both the cache
lines are replaced by contents of
2. However, there is only one additional cache miss
encountered by
1, because only the first cache line contained a useful memory block
required in
1’s resumed execution. As a result, the cache effects of preemption on

1’s execution time is the time for resolving one cache miss. Note that irrespective
of the path executed in
1 (there are two paths in this program), we encounter one
additional cache miss when
1 resumes.

In Figure 4.16 we show a slightly different situation. Suppose
1 is preempted
while it is executing the first iteration of the loop. Again, assume that
2 preempts

1 and then runs to completion. How many additional cache misses are encountered
when
1 resumes? This, of course, depends on the cache contents at the preemption
point of
1. The cache content at the preemption point, again, depends on which
path is taken in
1 prior it being preempted by
2. Thus, to find the additional cache
misses owing to preemption we need:

■ The possible cache contents of the preempted program at the different possible
preemption points (this is given by the reaching cache states or RCS at the
different control locations of the preempted program),

4.4 System-Level Communication Analysis 165

2
1
1

Memory space of
1 5 {m1, m2}

Memory space of
2 5 {m3, m 4}

m1 m3
m4

m1
m2

m1

m2

m2

m3

m4

m4

 1
preempted

1 resumes

Executing task

Cache contents

m2

Figure 4.16

Cache-related preemption delay calculation — example 2.

■ The possible cache contents at the end of the preempting program (again, this
is given by the RCS at the termination point of the preempting program), and

■ The possible first use of cache lines by the preempted program once it resumes
(this is given by the live cache states or LCS of the different control locations
of the preempted program).

The foregoing gives an idea about how the cache behavior summaries can be used
to find the maximum cache interference across programs. The interested reader is
referred to [42, 48, 63] for the details of the method, and its integration to system-level
schedulability analysis.

4.4 SYSTEM-LEVEL COMMUNICATION ANALYSIS
So far, we have discussed how the finish time of a program P can be impacted by
(a) interrupts from external environment and (b) execution of other programs on
the same processor. Other programs executing on the same processor can affect the
finish time of P either directly (by preempting the execution of P) or indirectly (via
shared resources such as processor cache).

In a multiprocessor system-on-chip (SoC) platform, we have multiple processing
elements on the same chip. How the communication across the processing ele-
ments is supported is a question. There are several possibilities — a bus, on-chip
interconnects, and communication via FIFO buffers. Here we discuss some of the
intricacies in estimating the times for bus communication.

166 CHAPTER 4 Performance Validation

Having several processing elements hooked up via a common bus is the most
common communication topology. The difficulties in analyzing the timing properties
of bus-based communication can be illustrated via the following example. Consider
the following schematic code executing on a processing element PE.

if (b > 0){
... // costly computation, computing a variable x

} else{
... // light computation, computing a variable x

}
send x // sending to a different processor via bus ...

Clearly, the value of variable b impacts the subsequent computation of x, and
hence the time at which the processing element PE tries to send x over the bus. If the
send of x conflicts with another processing element PE′ attempting bus access, the
send of x may be delayed. This will affect the future computation on PE, and hence
the future bus traffic. Thus, since computation and communication go hand-in-hand,
timing analysis to find the worst-case communication behavior will involve unrolling
the sequence of computation and communication for all possible bus schedules (i.e.,
all possible serializations generated by the bus arbiter for all possible bus traffic).
Naturally, this is not practically feasible.

We also cannot simplify our communication timing analysis by assuming the
worst-case execution time of each computation fragment in each program. This
is because the worst-case execution time of the computation fragments need not
produce the worst-case contention for bus access (i.e., the maximum bus traffic).
In the preceding schematic code fragment, the costly computation for variable x in
processing element PE can conceivably avoid bus access contention with another
processing element PE′ (depending when the bus access request from PE′ arrives),
whereas the light computation for x can contend with a bus access request from
PE′. This was earlier elaborated in Figure 4.3, reproduced here as Figure 4.17 for
the reader’s convenience. The computations c1,c2,c3,c4 are program fragments
not involving any send/receive; the send/recieve events are shown explicitly via
arrows. Because the computation c1,c2,c3,c4 may involve conditional branches,
their execution time may be variable. In particular we show in Figure 4.17 that the
execution time of c1 may vary between 3 and 4 time units. Further, it is shown that if
c1 executes for 3 time units, the overall execution time is more than if c1 executes for
4 time units. In the literature on timing analysis, such phenomena are often referred to
as “timing anomaly.” It makes the estimation of worst-case communication behavior
particularly difficult.

Let us consider a set of programs P1, . . . ,Pn executing on processing elements
PE1, . . . ,PEm (m � n) hooked on a bus. Furthermore, each program Pi may be
visualized as a task graph — a directed acyclic graph of “tasks.” The nodes of the

4.4 System-Level Communication Analysis 167

P1 P3P2

c 1[3, 4]

[2, 2][1, 1]

c 2

c 3

[3, 3]

P1

P2

P3

Bus

c1

m 1

m 3

8

c 1

0

c 4

m 2

P4

P4 c 2

m1m2

c 3

0

c 4

5

m3

c 2

m2 m1

c 4

c 3

m3

4 7

P1

P2

P3

P4

Bus

73 6

Figure 4.17

Anomalous timing behavior in bus-based communication — Figure 4.3 reproduced for conve-
nience.

graph are program fragments, and the edges denote precedence and (possibly) data
communication. Thus, a program Pi is seen as a directed acyclic graph (Vi,Ei) where
Vi denotes a set of “task” or program fragments and Ei denotes the edges between
the program fragments. Let (u → v) be an edge from Ei where u,v ∈ Vi; this means
v cannot start before u completes and the output data of u (if any) is passed as input
to v. We can also assume a mapping of the tasks to the processing elements, given as

(⋃
1�i�n

Vi

)
→ {PE1, . . . ,PEm}

Because the tasks are mapped to processing elements, we can have two tasks u,v
from program Pi where u → v in the task graph of Pi and u,v are mapped to
different processing elements. Because the end of u and the start of v involve data
communication, the end of u will generate a request for bus access.

Clearly, for estimating or validating timing properties of bus-based communi-
cation, we cannot afford to enumerate all possible bus schedules. So, what are the
options? There are several techniques in this regard, which differ in the accuracy

168 CHAPTER 4 Performance Validation

and guarantees resulting from their estimates. Primarily, the methods can be divided
into two categories:

■ Dynamic analysis: Here a sample bus trace is collected, and the trace is used
to extract various information (such as information about precedences among
events). Thus, from the trace (which denotes a total order of computation and
communication events), we first extract a partial order (captured via a directed
acyclic graph). The timing analysis then explores this acyclic graph to find the
communication times. Note that this approach is different from simulating a
trace for performance numbers. A sample technique in this category can be
found in [57].

■ Static analysis: These methods work directly on the programs whose commu-
nication time we are analyzing. No trace is collected. Furthermore, the time
estimates obtained are guaranteed upper bounds. Sample techniques in this
category can be found in [44, 101].

We now describe the key ingredients of a static analysis approach — the ones
outlined in [44, 101]. Let us discuss the inherent difficulties in finding the end-to-end
delay of applications running on different processing elements and communicating
via bus in a multiprocessor SoC. Apart from the usual contention among different
tasks mapped to the same processing element, we need to consider the following
factors:

■ Bus contention: Execution of a program may be delayed because it is waiting
to communicate over the bus, but the bus is currently being accessed by another
application.

■ Data dependencies: Execution of a task in a program may have to wait for other
tasks to complete. This is conventionally taken into account in uniprocessor
scheduling methods as well.

■ Conditional execution: The execution of a task in an application may depend
on some condition that is set either by other applications (via communication)
or by the external environment.

As observed earlier, the combination of these factors leads to the timing anomaly
phenomenon — where the overall worst-case delay cannot be obtained by assuming
the worst-case execution time of the individual tasks. To get past this problem, we
can represent the start and finish times for each task as an interval. Thus, the start
time of a task i is represented as an interval [si1,si2], where si1 (si2) is the earliest
(latest) time in which task i can start. The end-to-end delay of the applications is
then the maximum of the latest finish times of all the tasks. The estimation of the
end-to-end delay now involves an iterative estimation of the intervals for the start
and finish times. The estimation starts by assuming very relaxed intervals for the
start and finish times of tasks, and gradually tightening them. The estimation stops

4.5 Designing Systems with Predictable Timing 169

when we reach a fixed point, that is, the interval estimates of the start/finish times
no longer change.

4.5 DESIGNING SYSTEMS WITH PREDICTABLE TIMING
So far, we have invested our energies in discussing methods for timing analysis and
validation. Such analysis proceeds at different levels — software analysis for WCET,
analysis of multiple tasks within a processor, and system-level analysis across pro-
cessors (for a multiprocessor system-on-chip platform). However, as systems get
increasingly complex, enriching the analysis to estimate timing behavior becomes
harder. An alternative strategy is to design systems with timing validation in mind.
In other words, time-unpredictable system features are replaced in favor of features
whose timing behavior is easy to estimate and predict. In the following, we discuss
two important design innovations that allow more predictable timing behavior. The
first of these is scratchpad memory, which alleviates the timing unpredictability of
a processor cache. The second one is time-triggered communication over a bus,
which alleviates the unpredictability in bus communication times owing to varying
bus traffic.

4.5.1 Scratchpad Memories

Let us examine the major source(s) of timing unpredictability during the execution
of a program on a processor. In particular, we examine the difficulties in assigning
the execution time of an instruction to be a constant. The variation in the execution
time of an instruction of course comes from the performance-enhancing microarchi-
tectural features of the underlying processor, such as pipeline, cache, and branch
prediction.

The processor cache is an important source of timing unpredictability. One of
the reasons for this is the high penalty incurred as a result of a cache miss. So, even
if we consider only instruction cache, a difference of a hit/miss during the fetch
of an instruction from the code memory causes a huge variation in the instructions
execution time. To concretize our discussion, let us consider a standard five-stage
pipeline with stages: Instruction Fetch (IF), Instruction Decode (ID), Execute (EX),
Write Back (WB), and Commit (CM). Now let us see the impact of instruction/data
cache on the execution time of these individual stages.

IF Instr. cache hit � 1 cycle, Instr. cache miss � 50 cycles
ID 1 cycle
EX Data cache hit � 1 cycle, Data cache miss � 50 or 100 cycles
WB 1 cycle
CM 1 cycle

170 CHAPTER 4 Performance Validation

In the IF stage, depending whether the fetched instruction is a hit or miss in the
instruction cache, the time taken is 1 clock cycle or 50 clock cycle (assuming a
cache-miss penalty, that is, the time for retrieving the corresponding memory block,
to be 50 clock cycles). In the EX stage, the operands of an instruction are needed,
and typically an instruction has up to two operands. If the operands are not available
in the data cache, this results in a cache miss, and they have to be fetched from the
data memory. If both the operands do not appear in the cache and the memory has
only one port (allowing one memory block to be accessed at a time), this will result
in a delay of two cache-miss penalties (100 clock cycles). If only one operand misses
in the cache, or both operands miss but can be retrieved from the data memory in
parallel, this incurs a delay of one cache-miss penalty (50 clock cycles).

In the preceding, we have shown, in terms of concrete numbers, the wide variation
in the execution time of an instruction owing to processor cache. The processor cache
constitutes an additional layer in the memory hierarchy that causes unpredictability
of execution time, but greatly reduces the average execution time of a program. Con-
ventionally, researchers in computer systems have been concerned about the overall
average-case performance of a program, leading to the widespread popularity of
caches in processor design. However, for designing predictable embedded systems,
the wide variation in execution times caused by caches is a huge concern. A naive
solution would be to completely remove the caches. However, this is not feasible
because it will greatly undermine the performance of the application program being
executed. In this context, researchers have proposed the use of compiler-controlled
memories or scratchpad memories (e.g., see [65]).

We now explain the concept of a scratchpad memory in stages. We start with
the concept of a cache and gradually develop the notion of scratchpad memory. For
simplicity, we consider a direct-mapped cache. A direct-mapped cache is a mapping
from the address space to the cache lines. The content of each cache line changes
dynamically during execution, and the programmer has no direct control over the
cache contents. Instead of letting the cache contents change dynamically, we can
fix the cache contents statically. This brings us to the concept of cache locking.
In a statically locked cache, the content of each cache line is fixed statically prior
to program execution (typically by static analysis to find the maximally accessed
memory blocks along various execution paths). However, in a locked cache there is
still some restriction (based on the cache line mapping) on what we can lock in the
cache. In Figure 4.18 we show a simple example where a memory space with eight
memory blocks is mapped to a direct-mapped cache with two lines. Clearly, memory
blocks 1,3,5,7 map to the first cache line and blocks 2,4,6,8 map to the second cache
line. If we statically lock the cache (based on an analysis of which memory blocks
are most accessed across various execution paths), we must lock one of the memory
blocks 1,3,5,7 (2,4,6,8) into the first (second) cache line. However, the scratchpad

4.5 Designing Systems with Predictable Timing 171

memory has no such restrictions based on cache line mapping (see Figure 4.18). We
find the frequently accessed memory blocks, and these are allocated to the scratchpad
memory based on the total available space.

In the presence of a scratchpad memory, we can assume the address space to be
viewed as shown in Figure 4.19. What we show in the figure could denote either
the instruction or the data address space, meaning both code and data scratchpad are
possible. A portion of the address space is mapped to scratchpad memory, meaning
content of addresses in this range will be retrieved from the on-chip scratchpad
memory. Content of the other addresses is retrieved from the main memory. The
important point here is that, given a memory address, the time for accessing its
contents is fixed. Note that this is not the case in the presence of a conventional cache
memory — the time to retrieve the content for a given address may vary depending
on whether the address leads to a hit/miss in the cache. Clearly, scratchpad memory

1
2
3
4
5
6
7
8

3
8

Memory

Locked cache

3
7

Scratchpad

Figure 4.18

Differences between cache-locking and scratchpad memory.

Scratchpad

On-chip

Main Mem.
(Off-chip)

Predictable: 1 cycle

C
P
U

Predictable: N cycles

Mem.
address
space

Figure 4.19

Mapping of address space to scratchpad memory.

172 CHAPTER 4 Performance Validation

Scratchpad
On-chip

Main Mem.
(Off-chip)

Predictable: 1 cycle

C
P
U

1 cycle

Mem.
address
space

Cache
N cycles

Figure 4.20

Memory architecture combining scratchpad and cache memory — [65].

may also be combined with cache. In this situation, the address space can be viewed
as in Figure 4.20. In this situation, a portion of the address space is mapped to
scratchpad memory. Content of addresses in this range is directly retrieved from the
scratchpad memory. For other addresses, first the cache is looked up; if the address
is absent in the cache, its contents are retrieved from the main memory.

We now discuss various scratchpad memory allocation strategies. Let us con-
sider the simplest architectural setup — the presence of a scratchpad memory, but
no cache (Figure 4.19). Further, the scratchpad memory is statically allocated —
it is loaded with chosen memory blocks prior to program execution, and this set
of memory blocks is never changed during program execution. The aim of the
scratchpad allocation is to reduce the “execution time” of the application program.
In this context, we are faced with the issue of whether the scratchpad allocation
should aim to reduce the average-case execution time of an application, or the
worst-case execution (say for real-time applications). In the following, we discuss
profile-based scratchpad allocation strategies that reduce the average-case execution
time. For worst-case execution time (WCET)-driven scratchpad allocation methods,
the interested reader is referred to [82].

To concretize our discussion, let us consider scratchpad allocation for data
memory. Suppose the candidate program variables to be allocated to scratchpad
are v1, . . . ,vn. The list of candidate program variables is constructed with obvious
restrictions — for example, an array is treated as one variable, meaning either all
elements in the array are allocated to the scratchpad or no element is allocated.
Depending on the type of a variable vi, we know how much scratchpad area will be
taken up if vi is allocated to scratchpad; let this quantity be areai. Finally, we assume
that a profile of the program is available — say, an execution path, or a count of how
many times each basic block is executed. From this execution profile, we can find

4.5 Designing Systems with Predictable Timing 173

the number of times variable vi is accessed — let this number be ni. We can now
estimate the gain accrued (in terms of execution time) if a variable vi is allocated to
the scratchpad. This gain is, in fact, a constant, given as

gaini � ni ∗ (N � 1)

where N is the number of cycles required to access any location from the main
memory. Thus, the gain in execution time due to each access of vi is N � 1 (as
compared to the situation where vi is allocated to scratchpad — accessing a memory
location from scratchpad takes only 1 clock cycle). Because vi is accessed ni times in
the profile, the overall gain in execution time by allocating variable vi to scratchpad
is ni ∗ (N � 1).

By assuming an execution profile of the program, the gain accrued by allocating
a given variable can be treated as an integer constant. The problem of deciding the
scratchpad allocation can now be solved via the well-known knapsack problem. In
the knapsack problem we have n items that we are trying to put in a knapsack. The
knapsack can carry a total weight of C. For each item i, the weight of the item wi

is a given positive integer constant. Each item also comes with a “value” vali — a
positive integer constant. The knapsack problem tries to choose items such that (a)
the value of the included items is maximized, and (b) the weight constraint of the
knapsack is respected. In other words,

maximize
∑

1�i�n

choicei ∗ vali subject to
∑

1�i�n

choicei ∗ wi � C

where choicei is 0 or 1 (it is 1 if item i is included in the knapsack and 0 otherwise).
The scratchpad memory allocation problem can be formulated as a knapsack

problem as follows. The knapsack to be filled is the scratchpad memory. The items
to be placed in the knapsack are the program variables v1, . . . ,vn. The weight of the
knapsack C is the total scratchpad capacity, and the weight wi of each variable vi is
the area occupied by variable vi. The value vali of variable vi is the gain in execution
time accrued by allocating vi to the scratchpad. Thus

vali � gaini � ni ∗ (N � 1)

where ni is the number of times variable vi is accessed in the execution profile and N
is the number of cycles required to access any location from the main memory (we
assume only 1 cycle is needed to access a variable from the scratchpad). Thus, for
reducing average case execution time of a program, we can solve the well-known
knapsack problem to derive the scratchpad memory allocation.

If we want to drive our scratchpad allocation to reduce the WCET of a program, a
knapsack formulation is no longer applicable. This is because the gain gaini accrued
in allocating a variable vi to the scratchpad is no longer a constant — because there

174 CHAPTER 4 Performance Validation

is no execution profile we can use for finding the number of times vi is accessed.
The interested reader may refer to [82] for discussion on WCET-based scratchpad
memory allocation.

4.5.2 Time-Triggered Communication

One of the major sources of timing unpredictability in a distributed embedded system
is the communication time. It is common for various subsystems or processing
elements to be connected via a system bus. The exact time taken by a communication
depends on the bus traffic, and this in turn determines the timing of the future
computation/communication steps. We have seen earlier that developing analysis
methods to bound communication times are extremely difficult. This is because we
need to take into account the dependencies between the computation/communication
steps, as well as the contention across them (for resources such as the system bus).

Conventionally, we consider event-triggered communication where communi-
cation is initiated by the occurrence of specific “events.” For example, when a
processing element encounters a LOAD instruction and the corresponding data is
not present locally, a communication over the bus is initiated to retrieve the data. The
time taken by such a communication request is unpredictable, because it depends
on how many other nodes are trying to transfer data over the bus at that time.
For safety-critical distributed embedded systems (which are common in application
domains such as automotive electronics), this is unacceptable. The time-triggered
communication protocols fill this gap.

The time-triggered communication architecture [45] is based on a global time
being established across communicating nodes. This is an important abstraction,
which needs to be implemented in reality by synchronizing the local clocks of the
communicating nodes. The time-triggered architecture holds a discrete view of time,
where the timeline is cut up into discrete time steps. As long as these time steps are
less than the precision of clock synchronization, we can argue that any two timings
within a time step refer to the same discrete time. Hence, all events that happen
within the same time step can be considered to happen at the same time. In fact, in
a time-triggered architecture, the time steps are marked as “activity time step” or
“inactivity time step.”Any activity time step is usually followed by several inactivity
time steps.

Once a global timeline is established across processing elements in a dis-
tributed embedded system, a time-triggered architecture ensures predictability of
timing behavior as follows. Assume that the communicating processing elements
are connected via a bus. The bus access during the activity time steps is stati-
cally predetermined. Here, the communication takes place in a round-robin fashion.

4.5 Designing Systems with Predictable Timing 175

In each round, each processing element gets a chance to send one message. This
communication mechanism is popularly known as time-division multiple access or
TDMA. Clearly, for such a communication mechanism to work, a global timeline
needs to exist across processing elements, as mentioned earlier.

In recent years, several automotive manufacturers (such as BMW, Volkswagen,
and General Motors) have formed a consortium to develop an automotive net-
work communications protocol standard called Flexray [27]. The Flexray protocol is
designed to be time-triggered in nature and follows variants of the TDMA commu-
nication scheme discussed in the preceding. The Flexray protocol assumes a simple
architecture — several electronic control units (ECUs) connected to a bus. Each ECU
is endowed with a communication controller. Several tasks may be allocated to an
ECU, and the tasks running on an ECU can be assigned priorities.

The Flexray protocol is an adaptation of the TDMA communication scheme. The
protocol proceeds by repeating “bus cycles.” Each cycle has a complex structure
and is divided into static and dynamic segments. The static segment is divided into
equal-length slots, and each slot is preassigned to a specific ECU. The dynamic seg-
ment is divided into variable-length slots, and again each slot is assigned to a specific
ECU. However, the lengths of these slots are adjusted based on the communication
requirements of the ECUs. This is usually done by dividing the whole dynamic
segment into fixed-length mini-slots, and then adjusting the number of mini-slots
corresponding to a given slot. In Figure 4.21, we show one single bus cycle for a

Static segment Dynamic segment

Slot 1 of static segment: Assigned to ECU1

Slot 2 of static segment: Assigned to ECU2

Slot 3 of static segment: Assigned to ECU3

Slot 1 of dynamic segment: Assigned to ECU1

Slot 2 of dynamic segment: Assigned to ECU2

Slot 3 of dynamic segment: Assigned to ECU3

Slot 4 of dynamic segment: Assigned to ECU2

Controller Controller Controller

ECU1 ECU3ECU2

Figure 4.21

A bus cycle in a Flexray bus with three ECUs.

176 CHAPTER 4 Performance Validation

bus with three ECUs. The static segment is divided into equal-length slots — one
for each ECU. In the dynamic segment, one ECU may be allocated several slots
(e.g., ECU2 in Figure 4.21). Moreover, the number of mini-slots in a slot varies
from one slot to another (e.g., slot 4 has only two mini-slots) and also from one
bus cycle to another. The Flexray protocol thus provides almost entirely predictable
communication timings. Timing unpredictability, however, comes from the fact that
a message to be transmitted by an ECU may be postponed to the next bus cycle, if
the number of mini-slots left in the current bus cycle is not enough to transmit the
message.

4.6 EMERGING APPLICATIONS
In this chapter, we have primarily discussed issues in embedded systems performance
analysis, estimation, and validation. These methods are of use both in soft real-time
embedded systems (such as media processing) and in hard real-time embedded
systems (such as automotive electronics). Apart from these well-studied applica-
tion domains, newer emerging domains may see the use of performance validation
methods. In particular, the performance validation methods mentioned in this chap-
ter can be used or adapted for successful deployment of wireless sensor networks (or
networks of sensor nodes). Often such sensor networks are deployed for mission-
critical defense applications (e.g., spying on enemy territory), and must satisfy tight
timing and power budgets. For such applications, the worst-case execution time
analysis methods (and their adaptation for analyzing energy [43]) can be useful.

Wireless body-area sensor networks (or BANs) and related wearable comput-
ing technologies have also lately become very popular [26, 47, 66]. Growth in this
area has been largely fueled by the recent technological advancements in embedded
processors, availability of lightweight and small-factor sensor nodes, and advances
in wireless networking. As a result, BAN-based health monitoring is increasingly
becoming a viable alternative to traditional wired biomonitoring techniques, which
require a patient to be hospitalized and hooked up to large monitoring equipment.
However, most biomonitoring applications require continuous processing of large
volumes of data streams arriving through multiple sensors. As a result, both compu-
tation time and power consumption turn out to be serious constraints while designing
sensor network–based computing platforms for high-end biomonitoring applications
[51]. Both the software and system-level performance validation methods discussed
in this chapter are useful in this regard.

As newer application domains continue to develop, there is increased possibility
of employing performance analysis methods in novel settings.

4.8 Exercises 177

4.7 REFERENCES
The abstraction of time in modern-day programming languages has been articulated
and elucidated in position papers by Edward Lee [49]. Issues in designing concurrent
systems with predictable execution timings have been discussed in [50]. With regard
to works on static timing analysis of embedded software, a comprehensive survey
of worst-case execution time analysis methods and tools appears in [61]. Another
recent survey with focus on specific WCET analysis tools appear in [95].

Among the works on timing analysis of interrupt-driven programs, the work of
[11] deserves mention. For system-level timing analysis, the works on worst-case
response time analysis are worth mentioning. The works of Lehoczky et al. [60] are
among the first in this direction. Extension of worst-case response time analysis in
the presence of shared resources such as a processor cache has been discussed in
[42, 48, 63].

System-level communication analysis is still a developing area, and currently
there are lot of research efforts with this goal. Formal communication analysis of
multiprocessor Digital Signal Processors (DSPs) has been studied in [91]. This work
uses a formal event model for capturing the arrival/service of event streams in stream-
processing applications. The work of [44] presents a formal performance analysis
framework for distributed real-time systems. The framework can be applied for
estimating communication times in a setup where several processing elements are
communicating via a shared bus. The work of [79] studies formal performance
analysis of Multi-processor system-on-chips (MpSoCs) with detailed modeling of
the processor-memory traffic.

System-level support for predictable software execution timings also has been
studied in the embedded systems community. These works typically attack one of
the two major unpredictabilities — unpredictable execution times due to the memory
subsystem, and those due to bus communication. For the former, works on compiler-
controlled memories or scratchpad memories are worth mentioning [65, 82]. For the
latter, works on time-triggered architectures and protocols [45, 46] form an important
guidepost.

4.8 EXERCISES
4.1. Consider the following program fragment that computes in z the product of

x and y. Thus, x and y serve as inputs to the program fragment, and z serves
as the output of the program fragment. Both the inputs are positive integers,
given as unsigned 8-bit numbers (when represented in binary). Using the timing
schema WCET analysis method, derive the maximum execution time of the

178 CHAPTER 4 Performance Validation

program fragment. You may assume that each assignment/return/condition-
evaluation takes 1 time unit.

z = 0;
while (x !=0){

if (x %2 != 0){ z = z +y; }
y = 2 * y; x = x/2;

}
return z;

4.2. Formulate the maximum execution time estimation of the program fragment in
Question 1 using integer linear programming (ILP). Clearly show the objective
function and all constraints. Your ILP problem should perform only program
path analysis and not microarchitectural modeling. The estimate produced by
your ILP problem should be as tight as possible. Also, comment on how the
estimate from your ILP problem will compare with the estimate you produced
using timing schema.

4.3. Consider the following program fragment:

sum = 0; i = 1;
while (i < 101){ if (i % 2 == 0) sum += i ; i++; }
return sum;

Try to find as many infeasible paths as possible in the control-flow graph of the
program. Try to encode them as ILP constraints if possible (and if not possible,
give proper explanations).

4.4. Deadline monotonic scheduling (DMS) is a fixed-priority preemptive sched-
uling algorithm that is similar to rate monotonic scheduling (RMS). In this
case, priorities assigned to tasks are inversely proportional to the length of
the deadline. Thus the task with the shortest deadline is assigned the highest
priority, and the longest-deadline task is assigned the lowest priority. For a set
of tasks, is it possible that RMS does not meet all the deadlines, but DMS can
meet all the deadlines? If your answer is no, then you should give a formal
proof of your claim. If your answer is yes, you should give an example.

4.5. Suppose several periodic processes are running on a processor (with a cache)
that employs a preemptive scheduling policy. Thus, the processes share the
processor cache. Now, when a process is preempted by another process, the
preempting process pollutes the processor cache, which can affect the execution
time of the preempted process once it resumes execution. In this chapter, when
we presented preemptive scheduling policies such as rate monotonic schedul-
ing (RMS), we always assumed a zero context-switch overhead. However, in

4.8 Exercises 179

reality, it is not so, and the shared cache is one reason contributing to a nonzero
context-switch overhead. How can we make our discussion on preemptive
scheduling fit the reality of nonzero context-switch overheads due to cache
effects? There is no unique solution to this question, so you are encouraged to
propose several solutions and compare their relative merits/demerits.

4.6. Consider three processors P1, P2, and P3. Processor P1 has only a data cache
and no scratchpad memory. Processor P2 has only scratchpad memory (for
data variables) but no data cache. Finally, processor P3 has both scratchpad
memory and a data cache. Now, consider three applications A1, A2, and A3. Of
these, A1 is a brake controller program (running in your car) that runs under
strict performance constraints. A2 is an application that repeatedly traverses a
large array; this program has no performance constraints. A3 is a video decoder
application where the decoding should be done in a time bound almost always
(although it is permissible for it to miss the time bound once in a while).
You have to decide which processor on which to run each of A1, A2, and A3.
You may assume that multiple copies of the same processor configuration are
available (i.e., you can even decide to run two applications on P1, say). Explain
how your decision is made.

4.7. Suppose we have two processors connected via a bus. The data dependencies
between programs P1 . . .P5 appear as edges in Figure 4.22. The computa-
tion and bus communication times are shown along the nodes and edges of
Figure 4.22. Communication within a processor, of course, costs zero time.
Suggest a partitioning of programs P1 . . .P5 to the two processors, so that the
overall execution time is minimized.

P 1
3

P 3
3

P 4
3

P 5
1

P 2
5

1

11

1

2

Figure 4.22

Diagram for Question 4.7.

This page intentionally left blank

CHAPTER

Functionality Validation 5
So far, we have discussed various aspects of validation, namely, (a) system modeling
from informal requirements and validating the model, (b) validating the communi-
cation across system components, and (c) validating timing properties of embedded
software. In this chapter, we discuss the functionality validation of embedded soft-
ware. Some of the techniques we discuss here are generic to software validation
and can be integrated with any software development life cycle. However, some
of the methods are specifically useful for classes of software. For example, the
software model checking method is particularly useful for control-intensive (and
less data operation–dominated) programs that are common in controllers or device
drivers.

In discussing software validation methods, we need to clarify what we precisely
mean by “validation” here. A loose definition of validation will be checking whether
the software behaves as expected. However, such a definition also implies that the
“expectation” from the software is properly documented. So, the first question we
face is how to document or describe the “expected” behavior of embedded soft-
ware. There are several ways to answer this question, and indeed the answer to the
question depends on what kind of validation methods we are resorting to. If our
validation method is software testing, the description of expected behavior consists
of the expected program output for selected test cases. If our validation method is
software model checking, the description of expected program behavior will consist
of the temporal properties being verified.

Having clarified the issue of expected behavior, we ought to differentiate soft-
ware validation from model validation. After all, our discussion on model validation
(Chapter 2) covered how to check properties of the models via model checking. In
principle, one could validate the model and generate the implementation software
from the models, automatically or semiautomatically. However, in practice, this is

Embedded Systems and Software Validation
Copyright © 2009, Elsevier Inc. All rights reserved. 181

182 CHAPTER 5 Functionality Validation

rarely done. The modeling mostly serves the purpose of design documentation and
comprehension. The modeling activity gives the system designer a methodical way
of eliciting the requirements and putting them together in the form of an initial
design. Validating the model clarifies the designer’s understanding of what the sys-
tem ought to be. On the other hand, software validation is a much more downstream
activity where the actual implementation to be deployed is validated.

Depending on whether the software being validated is constructed from a design
model (or not), the flow of software validation can be different. Figure 5.1 shows
the overall software validation flow in the case where the software is written with a
design model as a guide. Here we could first employ static checking on the design
model to ensure that it satisfies certain important properties. Subsequently, we write
code using the design model as a guidepost (certain parts of the code could even be
automatically generated). This code can be subjected to dynamic checking such as
testing/debugging for specific program inputs.

Figure 5.2 shows the overall software validation flow, where the software is
written directly by the programmer. In this case, the software is hand-written and
not generated automatically or semiautomatically from a design model. This is often
the situation in industrial practice where the design model, even if one exists, is
primarily used for the purposes of documentation. We note that in this case, the code
is potentially subjected to three kinds of validation:

■ Dynamic checking,
■ Static checking, and
■ Static analysis.

Dynamic checking corresponds to software debugging via software testing —
we run test cases, check whether the observed behavior is the same as the expected
behavior, and if not, analyze the execution trace(s) for possible reasons. Static check-
ing corresponds to checking predefined properties against a given program — a prime
example of static checking methods being model checking (Section 2.8). Recall
that model checking verifies a temporal property (a property about the sequence of
events in system execution) against a finite-state model of the implementation. In
this case, because we wrote the software without any model, the model needs to
be extracted from the software, as shown in Figure 5.2. The final kind of validation
illustrated in Figure 5.2 is static analysis. Unlike static checking, here we do not have
a property to verify — instead we attempt to infer program properties by analyzing
it. Typically, we may use static analysis to infer invariants about specific program
locations; for example, whenever control flow reaches line 70, the variable v must
be 0. These properties can then be exploited in static checking methods such as model
checking. In other words, the role of the static analysis methods here is primarily to
help methods such as model checking.

CHAPTER 5 Functionality Validation 183

Requirements (English)
Desirable
properties

User

Manual stepManual step

Design model (State diagrams?)
Alternate models?
Sequence diag.

Static checking
tools

Code

Tests

Semi-automated

Dynamic
checking tools

Testing

Validation output

Figure 5.1

Validation in model-driven software engineering.

Programmer

CodeTest suite
Coverage Static

analyzer

Static
checker

Properties

Testing

Dynamic
checker

Model

Abstract

Validation output

Figure 5.2

Software engineering without a model: possible validation mechanisms.

In the rest of this chapter, we elaborate on static and dynamic checking methods
with illustrative examples. In the later part of the chapter, we present some hybrid
methods that combine static and dynamic checking.

184 CHAPTER 5 Functionality Validation

5.1 DYNAMIC OR TRACE-BASED CHECKING
Dynamic checking of software corresponds to checking its behavior for specific
test cases. Dynamic checking goes by many other (similar-sounding) names such
as run-time monitoring, dynamic analysis, or software debugging. The basic idea in
these methods is to run the program against specific tests and compare the observed
program behavior against expected program behavior. The tests may have been
generated during model validation (Section 2.7), or they could be generated from
the program itself through some coverage criterion (such as covering all statements
in the program).

If the observed program behavior is different from the expected behavior, the
corresponding test case is considered as failed, and the execution trace for the test
case is examined automatically/manually to find the cause of failure. It is important
to note here that the “observed” and “expected” behavior may not necessarily be
given by output variable values. For example, the observed behavior of a program
for a given test case may be that the program crashes, and the expected behavior
may be the absence of a crash.

Economic importance

Let us illustrate the economic issues that drive interest in software testing and debug-
ging. A report on the “Economic Impacts of Inadequate Infrastructure for Software
Testing” published in 2002 by the Research Triangle Institute and the National Insti-
tute of Standards and Technology (USA) estimates that the annual cost incurred as
a result of an inadequate software testing infrastructure all over the United States
amounts to $59.5 billion — 0.6% of the $10 trillion U.S. GDP.

Industrial studies on quality control of software have indicated high defect den-
sities. Ebnau in an ACM Crosstalk article1 reports case studies where on an average
13 major errors per 1000 lines of code were reported. These errors are observed via
slow code inspection (at 195 lines per hour) by humans. So, in reality, we can expect
many more major errors. Nevertheless, conservatively let us fix the defect density at
13 major errors per 1000 lines of code. Now consider a software project with 5 mil-
lion lines of code (the Windows Vista operating system is 50 million lines of code, so
5 million lines of code is by no means an astronomical figure). Even assuming a linear
scaling up of defect counts, this amounts to at least (13 � 5000,000/1000) � 65,000
major errors. Even if we assume that the average time saved to fix one error using

1 See http://www.stsc.hill.af.mil/crosstalk/1994/06/xt94d06e.asp.

5.1 Dynamic or Trace-Based Checking 185

an automated debugging tool as opposed to manual debugging is 1 hour (this is
a very modest estimate; often, fixing a bug takes a day or two), the time saved is
65,000 man-hours � 65,000/44 � 1477 work weeks � 1477/50 � 30 man-years.
Clearly, this is a huge amount of time that a company can save, leading to more
productive usage of its manpower and saving of precious dollar value. Assuming an
employee salary of $ 40,000 per year, the foregoing translates to $ 1.2 million savings
in employee salary simply by using better debugging tools. A much bigger savings,
moreover, comes from customer satisfaction. By using automated debugging tools, a
software development team can find more bugs than via manual debugging, leading
to increased customer confidence and enhanced reputation of the company’s prod-
ucts. Finally, manual approaches are error-prone, and the chances of leaving bugs
can have catastrophic effects in safety-critical systems.

Related Terminology

To clarify the terminology related to dynamic checking methods, let us start with
the “folklore” definition of software bug in Wikipedia:

A software bug (or just “bug”) is an error, flaw, mistake, “undocumented feature,”
failure, or fault in a computer program that prevents it from behaving as intended
(e.g., producing an incorrect result). Most bugs arise from mistakes and errors made
by people in either a program’s source code or its design, and a few are caused by
compilers producing incorrect code. A program that contains a large number of bugs,
and/or bugs that seriously interfere with its functionality, is said to be buggy. Reports
detailing bugs in a program are commonly known as bug reports, fault reports, problem
reports, trouble reports, change requests, and so forth.

The conventional notion of a software bug is an error in the program that gets
introduced during the software construction. It is worthwhile to note that the mani-
festation of a bug may be very different from the bug itself. Thus, the main task in
software debugging is to trace back to the software bug from the manifestation of it.
A good bug report will be able to take in a manifestation of a bug and locate the bug.
In case this sounds unclear, let us consider the following program fragment marked
with line numbers, written in Java style:

1. void setRunningVersion(boolean runningVersion)
2. if(runningVersion) {
3. savedValue = value;

}
else{

4. savedValue = "";
}

186 CHAPTER 5 Functionality Validation

5 this.runningVersion = runningVersion;
6. System.out.println(savedValue);
}

Suppose this program is “buggy,” the bug being that the variable savedValue is
set to a wrong value in line 4. However, the manifestation of the bug is different —
the variable savedValue is printed in line 6, and that is where the bug is indeed
manifested. So, naturally there is a “distance” between where the software error is,
and where it is observed (possibly via an output or a program crash). As another
example, consider the following program fragment, written in C style:

1. a = 1;
2. b = a;
3. c = b;
4. if (c){

v = 10;}
5. else { v = 20;}
6. println("%d", v);

Suppose the bug is in line 1, where variable a is set to a wrong value. Let us see
how this bug will be manifested. The wrong value of variable a will be propagated
to variable b— thereby “infecting” variable b. This wrong value will then be passed
from variable b to variable c. Based on the wrong value passed to variable c, a
branch or a decision will be made in line 4 and, in this case, the decision for the
branch evaluation is wrong as a result. Because of the wrong branch evaluation, the
variable v is set wrong, and this wrong value is printed in line 6 — the manifestation
of the “bug” in line 1! So, as we can see, the bug in a program is usually quite
different from its manifestation during program execution.

Now, what should a debugging method do? Of course, while testing the software,
that is, running it against selected test cases, the programmer can see only the mani-
festation of the bug and not the bug itself! The task of a debugging method is to start
from the manifestation the bug, and trace back to the bug itself. So, in the preceding
C program fragment, the observable error will be an unexpected value of variable v
being printed. From here, the debugging method has to reason that (i) variable vwas
set in lines 4 or 5, (ii) the setting of variable v depends on a branch that is evaluated
based on the value of c, (iii) the value of c depends on the value of b, and (iv) the
value of b depends on the value of a. Thus, the reasoning here uncovers a chain of
dependencies starting from the observable error (line 6), in order to locate the error
cause (in line 1). We now discuss the dynamic slicing method, which traverses an
execution trace to uncover the program dependency chains of an observable error.
The lines of program captured in these program dependency chains are highlighted
in a bug report, which is also called the “slice.” The programmer can then inspect
the bug report to locate the probable error causes.

5.1 Dynamic or Trace-Based Checking 187

Manual versus Automated

Before describing the dynamic slicing method in details, let us ponder a bit and
explain its difference from conventional software debugging tools such as the gdb
for C, jdb for Java, or VBwatch for Visual Basic. All of these tools essentially track
the program execution for a given input. The programmer can set “breakpoints,”
guiding the tool to freeze the program execution at specific control locations, and then
observe values of specific variables at these locations. However, note that the entire
debugging process is still manual. The programmer has to instruct the debugging
tool about where to stop (i.e., where to set the breakpoint), and then manually observe
selected variables at these breakpoints. The tool is only keeping track of the program
execution, but not analyzing the program execution in any way! Thus, existing
debugging tools do not employ any analysis of the execution trace — they only record
or profile the execution trace and display the trace information. The real issue at hand
is not the visualization of the trace information — many of the existing debuggers
have detailed graphical user interfaces (GUIs) for this purpose. Figure 5.3 shows
a snapshot of a conventional debugger — actually the well-known gdb debugger
for C. It collects and lets the user visualize relevant information about the program
execution — the figure shows the user inquiring about the value of a program variable
h at a specific control location of the program. What is missing is an analysis of the
execution trace to explain a possibly unexpected value of the variable h— this has
to be done manually by the user. The dynamic slicing method provides such an
analysis.

5.1.1 Dynamic Slicing

Dynamic slicing is a generic method for program debugging and comprehension.
The method takes in the following: (a) a program P, (b) an input I of the program
P, and (c) a description of the error observed during the execution of P for input I .
The output of the method is a fragment of P that is likely to be responsible for the
observed error. Thus, the output of the method is essentially a “bug report” of sorts,
an explanation of the cause of the observed error.

To discuss the method, we first need to understand how the observed error is
described. Usually, the observed error is presented as a pair (l,v), where l is a line
in the program P being debugged and v is a program variable. This usually means
that the programmer is unhappy about the value of v observed in line l of a given
program for a given input. That is, when a given program P is executed with a given
input I , the user is unhappy about the value of v observed in line l of the program
and would like to seek an explanation for it. The explanation will be provided by
dynamic slicing, which acts as a debugging method. One issue needs to clarified in
this regard. A line l may be executed several times during the execution of program

188 CHAPTER 5 Functionality Validation

Display value

GDB environment

Break point Source code

Figure 5.3

Snapshot of a conventional debugger (gdb for C).

P with input I . Therefore, when the programmer seeks an explanation of the value of
v in line l, he or she could be interested in the value of v in the last execution of l, or
the value of v in some specific execution of l, or the value of v in all executions of l.
Note that whichever executions of l we are interested in, it makes little difference to
the dynamic slicing method itself; it only makes a difference to the initialization of
the dynamic slicing method.

Having explained the notion of observed error, we need to discuss the notion
of dynamic slice and what it stands for. The dynamic slice stands for a detailed
explanation of the observed error. In other words, the dynamic slice can be thought
of as a “bug report,” and the task of dynamic slicing as “debugging” — finding the
source of a bug that is observed elsewhere. How is the bug report constructed? Let
us say we are performing dynamic slicing of a program P with input I , where the

5.1 Dynamic or Trace-Based Checking 189

slicing criterion is the value of variable v in the last occurrence of line l. Slicing can
now proceed in one of two ways:

■ Via a backwards traversal of the execution trace of program P for input I; the
traversal starts from the last occurrence of line l in the execution trace.

■ Via a forward execution of the program P for input I .

The first possibility involves storing the execution trace in some form and hence
leads to space overheads. However, the computation in this case is goal-directed
(i.e., redundancy free), because we compute the slice of only the slicing criterion
we are interested in — the value of variable v in the last occurrence of l. In the
second option, we do not encounter any space overheads owing to storing of the
program execution trace. We do, however, have to compute and store many slices
during the execution. For each executed statement, we compute and store the slices
of the variables used in the statement; these slices are used for computing slices of
the subsequent variable usages. Thus, even though the program execution trace does
not need to be stored, there is a time and space overhead in computing many dynamic
slices (many of which are unrelated to the actual slicing criterion the programmer is
interested in). In other words, the dynamic slice computation is not goal-directed in
this situation.

Whether a dynamic slice is computed by forward or backward traversal of pro-
gram execution, it is computing chains of data and control dependencies. To explain
these concepts, let us first consider a simple program fragment, written in C-style
(see Figure 5.4). The program constructs the sum of all even numbers from 1 to N
and the product of all odd numbers from 1 to N , where N is a given integer. We will
use this example program to define the necessary concepts — (static and dynamic)
control dependencies, (static and dynamic) data dependencies, dynamic dependence
graphs, and dynamic program slices.

1 scanf("%d", &N);
2 i = 1;
3 sum = 0;
4 prod = 1;
5 while (i < N)}{
6 if (i % 2 == 0){
7 sum = sum + i;}
8 else { prod = prod * i;}
9 i = i + 1; }
10 printf("%d%d", sum, prod);

Figure 5.4

An example program to explain the concepts behind dynamic slicing.

190 CHAPTER 5 Functionality Validation

Consider an execution of the program for N � 3. The execution trace is as
follows:

〈 1,2,3,4, // initialization
5,6,8,9, // first iteration, i = 1
5,6,7,9, // second iteration, i = 2
5,10〉 // i = 3, end of execution

Suppose the programmer wants an explanation of the value of sum printed in
line 10; thus the slicing criterion is (10,sum). We seek an automated method that
can find the fragment of the program which influences the value of sum at line 10;
this fragment will be treated as the explanation of the value of sum in line 10. In
constructing the explanation, we try to answer the following questions:

■ Dynamic data dependence: Which variable assignment was propagated to the
value of sum printed in line 10?

■ Dynamic control dependence: What is the nearest conditional branch statement
that enables line 10 to be executed, in the execution trace under consideration?

These questions can be answered by a backwards traversal of the execution trace
starting from line 10, the slicing criterion. In particular, the value of sum in line
10 contains the value set in the last execution of line 7. As far as dynamic control
dependencies go, we observe that the execution of line 10 is unconditional, it does
not depend on any conditional branch statement evaluating in a certain direction. In
case the reader is reasoning that line 10 got executed only because the while-loop
(line 5) terminated and hence line 5 and line 10 are control dependent, here is the
way to think about this matter. Any program execution from line 5 to the end of
the program will pass through line 10. Hence line 5 does not enable line 10 to be
executed.

The dynamic control and data dependencies in an execution trace are typically
summarized in a dynamic dependency graph. Because one statement may be exe-
cuted several time in an execution trace, we distinguish between the different occur-
rences of the same statement — each occurrence is a separate statement instance.
The nodes of a dynamic dependency graph are the statement instances, and the edges
are dynamic dependencies (both data and control dependencies). Part of the dynamic
dependency graph for the example program of Figure 5.4 with input N � 3 is given
in Figure 5.5; dashed edges denote control dependencies, and solid edges denote
data dependencies. We show only the part of the dynamic dependency graph that is
relevant to our slicing criterion — the value of sum in line 10 of the program.

Each node in the dynamic dependency graph in Figure 5.5 is of the form i j denot-
ing the jth occurrence of line i in the execution trace of the program in Figure 5.4 with
input N � 3. Let us now explain the dependencies shown in Figure 5.5. Statement
instance 101 is dynamically data dependent on 71, because the definition of sum in

5.1 Dynamic or Trace-Based Checking 191

11 51 52 53

21 61 62 101

8131 71

41 91 92

Data dependence

Control dependence

Figure 5.5

Portion of dynamic dependency graph that is relevant to the slicing criterion — the variable sum
in line 10 of Figure 5.4. We consider an input N � 3.

71 is used in 101. Also, statement instance 71 is dynamically control dependent on
statement instance 62; 62 is the nearest enclosing branch statement instance s.t. the
evaluation of the corresponding branch, which allows 71 to be executed. Figure 5.5
shows only a fragment of the dynamic dependency graph — the fragment that is
reachable from our slicing criterion, the value of sum in line 10. The slice consists
of the following statement instances from which statement instances

101,71,62,52,91,31,51,21,11

that is, instances of the following statements:

{1,2,3,5,6,7,9,10}
Lines 4 and 8, which manipulate the variable prod, are not in the slice.

Method

We now formally describe the dynamic slicing method for software debugging. Tra-
ditionally, dynamic slicing is performed w.r.t. a slicing criterion (H, l,v), where H
represents an execution trace of the program being debugged, l represents a control

192 CHAPTER 5 Functionality Validation

location in the program, and v is a program variable. A dynamic slice contains
all statement instances (or statements) that have affected the value of variable v
referenced at l in the trace H. A dynamic slicing algorithm can proceed by forward
or backward exploration of an execution trace. Here we summarize a backwards
slicing algorithm that is goal-directed (w.r.t. the slicing criterion), but requires effi-
cient storage/traversal of the trace. During the trace traversal that starts from the
statement in the slicing criterion, a dynamic slicing algorithm maintains the follow-
ing quantities: (a) the dynamic slice �, (b) a set of variables � whose dynamic data
dependencies need to be explained, and (c) a set of statement instances � whose
dynamic control dependencies need to be explained. Initially, we set the following:
(a) � = � = last instance2 of location l in trace H, and (b) � � {v}.

For each statement instance stmt encountered during the backward traversal, the
algorithm performs the following two checks. The algorithm terminates when we
reach the beginning of the trace.

■ Check dynamic data dependencies. Let vstmt
def be the variable defined by stmt.

If vstmt
def ∈ �, it means that we have found the definition of vstmt

def which the slicing
algorithm was looking for. So, vstmt

def is removed from �, and variables used by
stmt are inserted into �. In addition, stmt is inserted into � and �.

■ Check dynamic control dependencies. If any statement instance in � is dynami-
cally control dependent on stmt, all statement instances which are dynamically
control dependent on stmt are removed from �. Variables used by stmt are
inserted into �, and stmt is inserted into � and �.

When the dynamic slicing algorithm terminates, the resultant dynamic slice, (i.e.,
the set �) is reported back to the programmer for inspection.

Figure 5.6 describes how slicing can be made to fit in with software testing and
debugging. Usually a program is tested against inputs from a test suite. If the pro-
gram outputs are as “expected,” the tests are said to pass. For a failed test (i.e., where
the output is “unexpected”), the programmer needs to find the cause of unexpected
program behavior. This brings us to debugging, and dynamic slicing is one debug-
ging method. The slicing criterion comes from the failed test case itself; the slicing
criterion is (I , l,v), where I is the input for the failed test case, l is the line num-
ber where the “unexpected” output is observed, and v is the output variable whose
observed value is “unexpected.” For dynamic slicing, the program is run against
the same input (the one leading to a failed test case) in an instrumented fashion —
that is, (part of) the execution trace is collected. The execution trace is analyzed
via dynamic slicing as mentioned in the preceding. The constructed dynamic slice
acts as the bug report. The programmer can use it for program comprehension and

2 We could also consider any other instance, or even all instances.

5.1 Dynamic or Trace-Based Checking 193

Input

Program
Instrument

Output

Pass

Failed, debug it

Slicing
criterion

Dynamic slice 5
Bug report

Exec. trace

Testing

Debugging

Figure 5.6

Software testing and debugging with slicing as the debugging method.

debugging, thereby locating the source of error. Needless to say, only the computa-
tion of the slice is automatic. Comprehension and debugging of programs using the
slice is a fully manual activity.

Time and Space Complexity

Note that dynamic slicing is an algorithmic framework, and it can be adapted for
different programming languages. The complexity of dynamic slicing algorithm for
modern programming languages such as Java is as follows:

■ Worst-case space complexity is linear in the length of the execution trace, and
■ Worst-case time complexity is quadratic in the length of the execution trace.

The quadratic time complexity is owing to the dependence computation, which
involves checking pairs of operations in the trace. We note that state-of-the-art slicing
tools (such as the JSlice tool for Java [97, 98]) employ online compression of the
execution trace — where the execution trace is compacted as it is collected, achieving
compaction ratios (memory taken up by original trace versus memory taken up by
compact trace) of 10 to 1000 [100].

Dealing with Large Slices

The reader may be concerned that the dynamic slice of real-life programs may be
too large for human comprehension. Here we would like to point out that dynamic

194 CHAPTER 5 Functionality Validation

slicing is a core method of program understanding, debugging, and validation. There
exist very many different improvements to the dynamic slicing method to reduce
the slice size, such as not computing the full slice (e.g., certain programmers may
inspect only the chains of data dependencies). A most recently proposed method
called hierarchical dynamic slicing [99] addresses this problem as follows. It builds
a dynamic slicing method where the human programmer is gradually exposed to a
slice in a hierarchical fashion, rather than having to inspect a very large slice after it
is computed. The key idea is simple — we systematically interleave the slice compu-
tation and comprehension steps. Conventional works on slicing have concentrated
only on the computation of the slice, comprehension of the slice being left as a post-
mortem activity. In hierarchical dynamic slicing, the two activities are integrated in
a synergistic fashion as follows:

■ Computation of the slice is guided (to a limited extent) by the human pro-
grammer so that very few control/data dependencies in a large slice need to be
explored and inspected.

■ The programmer’s comprehension of the slice is greatly enhanced by the nature
of our slice computation, which proceeds hierarchically. Thus, for programs
with long dependence chains, this allows the programmer to gradually zoom
in to selected dynamic dependencies.

To understand the potential benefits one can gain from the method, let us examine
the factors that make the comprehension of dynamic slices difficult.

■ Many programs have long dependence chains spanning across loops and
function boundaries. These dependence chains are captured in the slice. How-
ever, the slice being a (flat) set of statements, much of the program structure
(loops/functions) is lost. This makes the slice hard to comprehend.

■ Programs often also have a great deal of inherent parallelism. So, a slice may
capture many different dependence chains.

Let us now discuss how hierarchical computation/exploration of slices can help
programmers to comprehend large slices containing these two features: (a) long
dependence chains, and (b) many different dependence chains. Figure 5.7a shows
an example program with a long dependence chain. Consider an execution trace of
the program ...3, 4, 5, 6 — where lines 3,4,5,6 of Figure 5.7a are executed. Slicing
this execution trace w.r.t. the criterion (line6,y) (i.e., the value of y at line 6) yields
a slice that contains lines 3,4,5,6 as well as lines inside the body of the functions
f 1, f 2, f 3. In other words, because the slice is a (flat) set of statements, the program
structure is lost in the slice. This structure is explicitly manifested in Figure 5.7b,
where we show the dependence chain in a hierarchical fashion. In other words,
the dependencies inside the functions f 1, f 2, f 3 are not shown. Here, a hierarchi-
cal exploration of the dependence chains will clearly be less burdensome to the

5.1 Dynamic or Trace-Based Checking 195

1 void main(){

x1=f1();3
x2=f2(x1);4
x3=f3(x2);5
y=x3;6

(a)

(b)

main()

f1() f 2() f 3() Line 6

yx 2 x 3

7 }

2 ...

y

x1

Figure 5.7

(a) A program with a long dynamic dependence chain. (b) The corresponding phases. Dashed
arrows represent dynamic dependencies that a programmer needs to follow for debugging.

programmer. Thus, in Figure 5.7b, by inspecting the dependencies hierarchically,
the programmer may find it necessary to inspect the dependencies inside a specific
function (say, f 2). As a result, we can avoid inspecting the dependence chain(s)
inside the other functions (in this case f 1, f 3).

Now, let us consider programs with many different dependence chains.
Figure 5.8a shows a schematic program with several dependence chains, and hence
substantial inherent parallelism. If the slicing criterion involves the value of y in line
6, we need to consider the dependencies between y and x3 and those between y and
x2, as well as y and x1. These three dependencies are shown via broken arrows in
Figure 5.8b. Again, with the programmer’s intervention, we can rule out some of
these dependencies for exploration and inspection.

In summary, the hierarchical dynamic slicing method works as follows. Given
an execution trace (corresponding to a program input) containing an observable
behavior that is deemed an “error” by the programmer, we divide the trace into
phases. This division is typically done along loop/procedure/loop-iteration bound-
aries so that each phase corresponds to a logical unit of program behavior. Only
the interphase data and control dependencies are presented to the programmer; the
intraphase dependencies are completely suppressed. The programmer then identifies
a likely suspicious phase, which is then subjected to further investigation in a similar
manner (dividing the phase into subphases, computing dependencies across these

196 CHAPTER 5 Functionality Validation

(a)

(b)

main()

f 1()

x1

f 2() f 3() Line 6

yx 2 x 3

y

1 void main(){

x1=f1();3
x2=f2();4
x3=f3();5
y=x1+x2+x3;6

7 }

2 ...

Figure 5.8

(a) A program with inherent parallelism (several dynamic dependence chains). (b) The corre-
sponding phases. Dashed arrows represent dynamic dependencies that a programmer needs
to follow for debugging.

subphases, and so on). This process continues until the error is identified. Of course,
an underlying assumption here is that the programmer will be able to identify the
erroneous statement once it is pointed out to him or her.

One may comment that such a hierarchical exploration of dynamic dependencies
involves programmer’s intervention, whereas conventional dynamic slicing is fully
automatic. Here we should note that the process of error detection by using/explor-
ing a dynamic slice involves a huge manual effort; the manual effort in exploring/
comprehending the slice simply happens after the computation of the slice. In the
hierarchical method, we are interleaving the computation and comprehension of
dynamic dependencies. As in dynamic slicing, the computation of the dynamic
dependencies is automatic in our method; only the comprehension involves the pro-
grammer. Moreover, the programmer is exposed to the complex chain(s) of program
dependencies gradually, rather than all at once, thereby allowing better program
comprehension.

5.1.2 Fault Localization

So far, we have presented the dynamic slicing method. This method is fully formal
and requires examination of the control/data dependencies in an execution trace. The

5.1 Dynamic or Trace-Based Checking 197

difficulties in using it include (a) time and space overheads for storing/analyzing
program traces and (b) potentially large slice sizes. In the preceding, we exam-
ined methods to deal with the second problem — comprehension of large slices.
However, we still have to grapple with the time and space overheads of dynamic
slicing. As observed earlier, state-of-the-art dynamic slicing tools (such as [97])
employ various tricks such as online compaction of the execution trace and program
dependence analysis on the compact trace (without decompressing it). Neverthe-
less, the time and space overheads for large real-life programs is still substantial,
and the quest for lightweight methods remains. We discuss a class of such lightweight
methods here. In the following we use the terms execution trace and execution run
interchangeably. Indeed, the existing literature on software debugging also uses
these two terms interchangeably. Before proceeding any further, let us first give an
illustrative example.

Illustrative Example

Our example is a fragment of the TCAS program from the Siemens benchmark
suite [33], which has been extensively used in the software engineering community
for research in testing/debugging. The TCAS program is an embedded software for
altitude control. In Figure 5.9, we show a fragment of the program. Note that Climb
and Up are input variables of the program. There is a bug in the following program
fragment, namely, lines 2 and 4 are reversed in order. In other words, line 2 should
be separation = Up + 100 and line 4 should be separation = Up.

1. if (Climb)
2. separation = Up;
3. else
4. separation = Up + 100;
5. if (separation > 150)
6. upward = 1;
7. else
8. upward = 0;
9. if (upward > 0)
10. ...
11. printf("Upward");
12. else
13. ...
14. printf("Downward");

Figure 5.9

Example program fragment from Siemens benchmark suite.

198 CHAPTER 5 Functionality Validation

Now, consider an execution of the some program fragment with the inputs Climb
= 1 and Up = 100. The execution will lead to “Downward” being printed. Clearly,
this is unexpected, because the developer would expect “Upward” to be printed for
these inputs. Thus, the trace for the inputs Climb = 1, Up = 100 is a failing run
that needs to be debugged.

We now have an example of a failing run, but what is a successful run? A success-
ful run is simply one where the program output is as expected. So, if the programmer
expects the output to be “Upward,” the program should print “Upward,” and if
the programmer expects the output to be “Downward,” the program should print
“Downward.” Consider the program execution with the inputs Climb = 0 and
Up = 0. The output in this case is “Downward,” and this matches the developer’s
expectations. Hence we deem this as a successful run. Usually, the process of deter-
mining whether a given run is failed or successful cannot be fully automated. This
involves matching the program output with the developer’s expectation, so the task
of articulating the developer’s expectation remains manual.

We have now explained what we mean by failing run and successful run. Our
task is to debug a given “failed” run — to explain why it failed, that is, why the
program output was not as expected. We are trying to do so by comparing it with a
successful run (where the program output was as expected) in order to gain insights
about what went wrong in the failed run. The computed “difference” between the
failed run and the chosen successful run is reported to the programmer as the bug
report. The key questions now are:

■ Given a failed run, how do we choose a successful run?
■ Given a failed and a successful run, how do we compute their difference?

Both the questions have their answers in a evaluation metric for execution runs.
A common (and very rough) metric is the set of statements executed in an execution
run. If we have a successful run and a failed run, we can compute their difference
by computing the difference of the set of statements executed. The question now
is how to get a successful run? In other words, how do we choose a successful run
corresponding to a given failed run �f ? We will choose a successful run �s such
that the set of statements executed in �s is “close” to the set of statements executed
in �f . In fact, given a program P and failed execution run �f in P, we can do the
following:

■ Typically the program P will be endowed with a test suite (set of test cases)
based on some coverage criteria (covering all statements or all branches in the
program). We construct the execution runs for the test cases from the test suite.
Let this set of execution runs be Runsall(P).

■ From among the execution runs in Runsall(P), we chose those that are suc-
cessful, that is, runs where the program output meets the programmer’s

5.1 Dynamic or Trace-Based Checking 199

expectations. Let this set be SuccRunsall(P); clearly SuccRunsall(P) ⊆
Runsall(P).

■ We choose an execution run �s ∈ SuccRunsall(P) such that the quantity
|stmt(�f) � stmt(�s)| is minimized. Here stmt(�) is the set of statements in
an execution run �, and |S| is the cardinality or the number of elements in a
set S. Note that for two sets S1 and S2, the quantity S1 � S2 denotes the set
difference, that is, elements appearing in S1 but not in S2.

Thus, we choose a successful execution run �s, such that there are only a few
statements appearing in the failed run �f , but not in �s. The idea here is that if a
statement appears only in the failed run but not in the successful run, it is a likely
error cause.

In our running example, the inputs Climb = 1 and Up = 100 lead to an
unexpected output. The set of statements executed in this failed execution run is
{1,2,5,7,8,9,13,14}. Furthermore, the inputs Climb = 0 and Up = 0 lead to an
expected output. The set of statements executed in this successful execution run is
{1,3,4,5,7,8,9,13,14}. So, the bug report is the difference between these two sets:

{1,2,5,7,8,9,13,14} � {1,3,4,5,7,8,9,13,14} � {2}
Once this line is pointed out to the developer, he or she should be able to locate the
error in line 2.

Note here that the choice of successful execution run is crucial. Consider an
execution of the program in Figure 5.9 with the inputs Climb = 1 and Up = 200.
When executed with these inputs, the program will print “Upward,” which is what the
developer expects. So, the execution run for these inputs is deemed as a successful
run. What would have happened if we chose this execution run to compare with
our failed execution run (the one resulting from the inputs Climb = 1 and Up =
100)? The set of statements executed for the inputs Climb = 1 and Up = 200
is {1,2,5,6,9,10,11}. So, in this case the bug report (the difference in executed
statements between the failed run and the chosen successful run) would have been

{1,2,5,7,8,9,13,14} � {1,2,5,6,9,10,11} � {7,8,13,14}
The bug report in this case consists of more statements. Moreover, the statements do
not pinpoint to the actual error cause in the program; they are only manifestations
of the error cause. This simple example should demonstrate to the reader that the
choice of successful run is crucial for the usefulness of the bug report generated by
fault localization methods.

Figure 5.10 summarizes the class of trace-based debugging methods we are
presenting here — commonly called fault localization. The aim of these methods is
to find the error cause in a failed execution run (a run with unexpected behavior) in a
given program. This is done by comparing the failed execution run with a successful

200 CHAPTER 5 Functionality Validation

Successful run pool Testing

Difference metric

As bug reportDifference

Compare execution

Failing run Successful run

Choose

Figure 5.10

Fault localization methods.

execution run. The successful execution run is chosen from a test pool, possibly
constructed by coverage-based testing. The chosen successful run is then compared
with the failed execution run, and the difference is reported back to the developer as
a bug report. Of course, there are many metrics by which to compare the execution
traces, such as:

■ Sets of statements executed,
■ Sequence of branch statements executed,
■ Sequence of statements executed,
■ Sequence of variable values taken (for selected variables), and so on.

Trace Comparison Metric Based on Statement Sets

The simplest trace comparison metric (which is very efficient to compute) is simply:
Set of statements executed in failed run � Set of statements executed in successful
run. Given a failed run, we choose a successful run that minimizes this quantity.
However, this trace comparison metric does not distinguish between runs that exe-
cute exactly the same statements but in a different order. Consider the schematic
program fragment in the following, consisting of an if-then-else within a loop:

for (...) {
if (...) S1 else S2;

}

Consider two runs of the program 〈S1,S2,S1,S2〉 and 〈S2,S1,S2,S1〉. These
two runs execute the conditional branch in the if-then-else statement differently in

5.1 Dynamic or Trace-Based Checking 201

every iteration of the loop. Yet a trace comparison metric based on sets of state-
ments executed cannot distinguish between these two runs. Given a failed run, say,
〈S1,S2,S1,S2〉, suppose we choose 〈S2,S1,S2,S1〉 as the successful run with
which we compare our failed run. The result is a null bug report, which is not only
useless for debugging, but also misleading to the developer.

Trace Comparison Metric Based on Branch Alignments

For the reasons mentioned in the preceding, the software debugging community has
studied trace comparison metrics that compare traces of a program by finding out
which branches are evaluated differently. Such a difference metric measures the dif-
ference between two execution runs � and �′ of a program, by comparing behaviors
of “corresponding” branch statement instances from � and �′. The branch state-
ment instances with differing outcomes in �,�′ are captured in diff (�,�′) — the
difference between execution run � and execution run �′. In order to find out “cor-
responding” branch instances, a notion of alignment is defined, to relate statement
instances of two execution runs. Typically, such a branch alignment can be based on
dynamic control dependence. Here we illustrate the distance metric with an example.
The reader can refer to related literature [32] for an in-depth understanding of the
topic.

Consider the program fragment in Figure 5.11, taken from the Siemens bench-
mark suite [33]. This piece of code changes all substrings s1 in string lin matching

1. while (lin[i] != ENDSTR) {
2. m= ...
3. if (m >= 0) {
4. ...
5. lastm = m;
6. }
7. if ((m == –1) || (m == i)) {
8. ...
9. i = i + 1;
10. }
11. else
12. i = m;
13. }
14. ...

Figure 5.11

An example program fragment from the Siemens benchmark suite. We use the example to
illustrate trace comparison metrics.

202 CHAPTER 5 Functionality Validation

a pattern to another substring s2. Here variable i represents the index to the first
unprocessed character in string lin, variable m represents the index to the end of a
matched substring s1 in string lin, and variable lastm records variable m in the last
loop iteration. The bug in the code lies in the fact that the branch condition in line 3
should be if (m >= 0) && (lastm != m). At the ith iteration, if variable m is
not changed at line 2, line 3 is wrongly evaluated to true, and substring s2 is wrongly
returned as output, deemed by programmer as an observable “error.”

In Figure 5.12, we show some traces from the program in Figure 5.11. The
difference between execution runs � and �′ is: diff (�,�′) � 〈33,714〉, as indicated
in Figure 5.12. This is because branch instances 33,714 are aligned in runs � and �′
and their outcomes are different in �,�′. If the branches at lines 33,714 are evaluated
differently, we get �′ from �. Similarly, the difference between execution runs �

and �′′ is diff (�,�′′) � 〈76,714〉.
Why do we capture branch event occurrences of � that evaluate differently in

�′ in the difference diff (�,�′)? Recall that we want to choose a successful run for
purposes of fault localization. If � is the failing run and �′ is a successful run, then
diff (�,�′) tells us which branches in the failing run � need to be evaluated differently

� �

11 11 11

22 22 22

33 33 33

44 44

55 55

76

87

98

19

210

311

412

513

714

815

916

1417

�9 �9 �

74

85

96

17

28

39

410

511

712

1213

1414

�0 �0

76

18

29

310

411

512

713

1214

1415

127

Execution run Alignment
diff (�, �9) diff (�, �0)

•

•

•

•

Difference

Figure 5.12

Example to illustrate alignments and difference metrics. The first three columns show the event
sequences of three execution runs �, �′, and �′′ of the program fragment in Figure 5.11
(page 201). The next two columns show alignments of (�, �′) and (�, �′′), where solid lines
indicate aligned statement instances and dashed lines indicate unaligned statement instances.
The last two columns show the difference between execution runs — [32].

5.1 Dynamic or Trace-Based Checking 203

to produce the successful run �′. Clearly, if we have a choice of successful runs, we
would like to make minimal changes to the failing run to produce a successful run.
Thus, given a failing run � and two successful runs �′,�′′, we choose �′ over �′′ if
diff (�,�′) < diff (�,�′′). This requires us to compare differences. How we do so
is elaborated in the following. Given a failing run � and two successful runs �′,�′′
we can say that diff (�,�′) < diff (�,�′′) based on a combination of the following
criteria:

■ Fewer branches of � need to be evaluated differently to get �′ as compared to
the number of branches of � that need to be evaluated differently to get �′′.

■ The branches of � that need to be evaluated differently to get �′ appear closer
to the end of � (where the error is observed), as compared to the branches of
� that need to be evaluated differently to get �′′.

To illustrate our comparison of differences, consider the example in Figure 5.12.
Recall that diff (�,�′) � 〈33,714〉, and diff (�,�′′) � 〈76,714〉, as illustrated by the
“•” in the last two columns of Figure 5.12. Comparing 〈33,714〉 with 〈76,714〉, we
see that 〈76,714〉 < 〈33,714〉 because statement instance 76 occurs after statement
instance 33 in execution run �.

Summary of Trace Comparison Methods

In summary, which trace comparison metric is chosen and how the traces are com-
pared is a matter of choice. However, based on the metric, we can choose the
successful run from a pool of successful runs (say, the test suite of a program).
In particular, suppose we have an execution trace �f that is failed, meaning it shows
an unexpected behavior. We want to compare it with another execution trace �s such
that:

■ �s does not show any unexpected behavior, that is, the program outputs in run
�s are as per the developer’s expectations, and

■ �s is the closest to �f in terms of the comparison metric being used.

Thus, based on the trace comparison metric being used, we choose the successful
run against which we compare a given failed execution run, and report the difference
between the two runs as a bug report.

5.1.3 Directed Testing Methods

So far, we have studied different debugging methods which either (a) analyze the
dependencies in a failed trace or (b) compare a failed trace with a “chosen” successful
trace. These methods can be combined with testing techniques in a postmortem

204 CHAPTER 5 Functionality Validation

fashion. In other words, given a program P, we generate a test suite (set of test
inputs) for P, and the traces for the test inputs in the test suite are subjected to
analysis.

On the other hand, one could envision testing methods that are more directed
to exposing errors. Conventional software testing methods are often driven with
the sole goal of coverage. What do we mean by coverage in the context of test
generation? Let us take the statement coverage criteria. We say that a set of test
inputs S achieves statement coverage if each statement in the program appears in the
trace for at least one test input in S. Similarly, one can define other coverage criteria
such as branch edge coverage. The reader can refer to standard texts on software
engineering [86] for details of test coverage.

Standard test coverage criteria such as statement coverage provide very weak
guarantees about the software’s reliability. Statement coverage merely says that each
statement in the program is executed for some test input in the test suite. However,
this does not mean that executing the tests in the test suite will expose the bug in
a buggy statement. If a statement is buggy, its execution does not guarantee the
manifestation of the bug in the statement. Of course, if a statement in the program
is buggy and it is executed for some input, there is more chance of the bug in the
statement being manifested in the form of an unexpected output.

Ideally, what we would like to do via systematic program testing is to expose
the different paths in a program. However, enumerating all paths in a program and
finding inputs that exercise these paths is not easy. The number of program paths is
exponential on the number of branch instances, and the number of branch instances
(individual executions of a branch statement) itself can be very large. Exhaustive
testing by trying out all inputs is simply not an option with real-life embedded
software, because there are too many inputs to test. Often, there are even infinitely
many inputs — consider an image compression program; we cannot test it with all
possible input images.

So, we are stuck between the frying pan and the fire! We cannot employ brute-
force methods such as exhaustive testing of all inputs, because these methods do not
scale up for real-world programs. We also cannot hope to cover all program paths by
lightweight methods such as random testing; successive experimental studies have
shown that random testing leads to poor coverage of program paths. Nor can we
expect to cover all paths (or even a large fraction of them) simply by covering some
other code artifact such as statement coverage. How do we proceed?

One answer to this problem seems to be systematic path exploration via directed
testing. In this approach, we start testing our program P with a random input i.
Suppose executing the program with input i goes along program path �. During the
execution of program P with input i, we collect the condition under which path � is
executed. This is the path condition of � and captures the set of inputs (one of which

5.1 Dynamic or Trace-Based Checking 205

1. if (Climb)
2. separation = Up;
3. else
4. separation = Up + 100;
5. if (separation > 150)
6. upward = 1;
7. else
8. upward = 0;
9. if (upward > 0)
10. ...
11. printf("Upward");
12. else
13. ...
14. printf("Downward");

Figure 5.13

Example program fragment from Siemens benchmark suite.

is, of course, i) whose executions go along path �. We then slightly modify the path
condition � to produce another path condition �′, which is solved to produce another
test input. This process goes on, every time modifying the current path condition,
thereby getting a new path and then finding a test input that exercises this new path.
This is essentially a method of systematic exploration of program paths by finding
suitable inputs to exercise the paths. The hope is that, by exploring more program
paths, we have a better chance of encountering errors in the program.

We now illustrate this method with an example. Consider the program fragment
in Figure 5.9, reproduced here as Figure 5.13 for convenience. The inputs to this
program fragment are Climb (boolean variable) and Up (integer variable). Suppose
we start with a random input Climb == 0 and Up == 457. This produces the
following path:

1. if (Climb)

3. else
4. separation = Up + 100;
5. if (separation > 150)
6. upward = 1;

9. if (upward > 0)
10. ...
11. printf("Upward");

206 CHAPTER 5 Functionality Validation

The path condition (i.e., the conditions on the input on which the foregoing path is
executed) is

Climb �� 0 ∧ Up � 100 > 150 ∧ upward > 0

The preceding is a conjunction of three primitive constraints. To systematically
explore other paths, we can negate the last primitive constraint to get

Climb �� 0 ∧ Up � 100 > 150 ∧ upward � 0

This path turns out to be infeasible — no program input exercising this path. So, we
negate the next primitive constraint and get

Climb �� 0 ∧ Up � 100 � 150

Solving this constraint we can get a sample inputClimb == 0, Up == 0, allowing
us to explore a new path given as follows.

1. if (Climb)

3. else
4. separation = Up + 100;
5. if (separation > 150)

7. else
8. upward = 0;
9. if (upward > 0)

12. else
13. ...
14. printf("Downward");

Continuing further in this fashion, we can explore the different paths in the
program and get concrete inputs that exercise these program paths. This method is
called directed testing, because we modify the path constraint of the current path
being explored to explore a new path. Thus, the method is directed toward exploring
more paths in the program. It will achieve significantly more coverage than random
testing, where several randomly generated inputs may exercise the same program
path. One can employ such a directed testing approach for exposing more program
behaviors in a systematic way, thereby hoping to encounter corner cases leading to
exceptions/crashes during the testing phase.

Before concluding our discussion on directed testing, we should mention that
several subtle issues in a directed testing algorithm have not been discussed here. In
our example, the first path we obtained in the preceding had a path constraint

Climb �� 0 ∧ Up � 100 > 150 ∧ upward > 0

5.2 Formal Verification 207

Here Climb and Up are input variables. However, upward is a program variable
whose value is related to the value of the input variable Up. In fact, the (boolean)
value of upward is directly correlated to the condition Up + 100 > 150. Directed
testing methods/tools will usually try to detect such correlations. As a result, they
can avoid exploring infeasible paths, such as the path with constraint

Climb �� 0 ∧ Up � 100 > 150 ∧ upward � 0

in our example.
Other issues in directed testing methods include search strategies for exploring

paths. The method we outlined here via an example essentially employs depth-first
search to explore paths. New paths are obtained from the current path being explored
by backtracking (where we negate the condition corresponding to the last branch
encountered). Other search strategies such as breadth-first or best-first have also
been explored in various tools. The interested reader may refer to related articles
such as [29] for details.

5.2 FORMAL VERIFICATION
Dynamic or trace-based checking methods are very useful for testing-oriented debug-
ging. In other words, the software validation flow here revolves around program
testing — we test a program against selected test cases, and for the failed test cases
(the ones for which the program output does not match the programmer’s “expecta-
tions”), we analyze the traces for these test cases using dynamic checking methods.
However, program testing, by its very nature, is nonexhaustive. It is not feasible to
test a program against all possible inputs.

As a result, for safety-critical software it is crucial to employ checking meth-
ods that go beyond testing-oriented debugging. Currently, many functionalities in
our daily lives are software controlled — functionalities that earlier used to be con-
trolled by electrical/mechanical devices. Two specific application domains where
software is increasingly being used to control critical functionalities are automotive
and avionics. Naturally, for such software it is critical to give certain guarantees
about the software. Unfortunately, testing cannot deliver any guarantees about soft-
ware behavior. Testing can only be used to show the presence of bugs; it cannot be
used to guarantee the absence of bugs.

For safety-critical software, it is necessary to formally check properties of the
software and provide guarantees about its behavior. However, this is a tall order.
How do we specify the guarantees that we need? And, how do we formally check
programs for such guarantees? Our first thought is to employ automated checking
methods such as model checking, which we discussed earlier (Chapter 2). Recall that

208 CHAPTER 5 Functionality Validation

model checking checks a temporal logic property (a property constraining the order
in which events can occur) against a finite-state transition system. Model checking
is not directly applicable for software verification, because any program in a modern
programming language (such as C or Java) contains variables from infinite domains
(integers, floating-point numbers). The presence of a single integer variable in the
program makes it infinite-state, because the variable may take up infinitely many
values. The solution to the problem is to come up with abstractions of the variable
values. That is, instead of maintaining the exact values of the program variables, we
maintain only a finite abstraction of the variable values. We first give an example of
the abstract representation of variable values, and then explain how the abstraction
is achieved.

Consider the program fragment in Figure 5.14. This program contains only one
integer variable x. Suppose we want to prove that x == 0 at the end of the program.
One possibility is to exactly maintain the control flow and data variable values,
and check that x is indeed zero at the end of the program. The problem with this
approach is that x can, in general, acquire infinitely many values — in other words,
the amount of memory required to store the value of x is unbounded. Indeed, in any
implementation of integer data types, a finite number of bits (say 32 or 64 bits) will
be allocated to represent an integer. In our reasoning, we do not want to be restricted
by the exact implementation of integer data types, nor do we need to be. Instead, we
can abstract the value of the program variables by maintaining the true/false values
of certain propositions about the program variables. Simply put, we do not maintain
the exact values of the program variables; instead we only maintain the true/false
answers to certain questions on the program variable values. Thus, in the preceding
example, instead of maintaining the exact value ofx, we might only maintain whether
x == 0. This may be denoted by a boolean variable [x == 0], which is true if x
== 0 and false otherwise. With such an abstraction, building a finite-state transition
system is easy. It is a graph whose nodes are the (abstracted) program states, and
each edge denotes a transition between two states via the execution of a program
statement. The finite-state transition system for the following program will be as
shown in Figure 5.15.

int x;
1 x = 0;
2 x = x + 1;
3 x = x – 1;
4 ...

Figure 5.14

Program fragment for showing data abstraction.

5.2 Formal Verification 209

1, [x==0]= true 1, [x==0]= false

2, [x==0]= true

3, [x==0]= false

4, [x==0]= false 4, [x==0]= false

1
2
3
4 ...

x=0;
x=x+1;
x=x–1;

Figure 5.15

A program fragment and its abstracted transition system.

In the finite-state transition system shown in Figure 5.15, each program state
(i.e., each node in the graph) corresponds to:

■ The value of the program counter (i.e., where the control flow is), and
■ The value of the boolean variable [x == 0].

In other words, the control flow in the program is represented exactly — we do not
employ any abstraction there. On the other hand, while representing the value of
the data variables, we do not maintain the exact values — we only maintain the
true/false answers to certain questions on the program variables. In this case, the
only program variable is x, whose exact value is not maintained — instead we only
maintain whether x is equal to 0. In other words, we abstract a program P with
another program P′ such that

■ The control flow in P and P′ are identical, and
■ The only data type in program P′ is boolean, that is, all variables in program

P′ are boolean variables.

The boolean variables in program P′ are, of course, related to the data variables
in program P. Indeed, each boolean variable in P′ denotes a true/false question

210 CHAPTER 5 Functionality Validation

about the variable values in program P. Given a set of true/false questions about
the variables in P, deriving program P′ from program P is automatic. Program P′
really represents a finite-state transition system that can be subjected to state space
exploration via model checking. The states of the transition system correspond to
(a) the value of the program counter, and (b) the value of the boolean variables.
Assuming that the number of possible program counter values (roughly correspond-
ing to the number of lines in the program) is finite, and the number of boolean
variables is finite, the number of states in the transition system is indeed finite.

Figure 5.16 shows the overall role a method such as software model checking
can play in software validation. Here we assume that only the software is available
for validation — we do not have a finite-state machine–like model of the software
available for model checking. Naturally, this means we need to synthesize a finite-
state transition system out of the software itself. This finite-state transition system
is used for model checking. Given a program P, we abstract it to another program
P′ where all data variables in P′ have the type boolean. We call P′ a boolean pro-
gram, and it implicitly represents a finite-state transition system whose states can be
explored via model checking. The temporal logic properties verified through model
checking may be provided by the programmer (where they typically denote desirable

Programmer

Tests Coverage Code

Testing
Desirable
properties

Pred.
Abst.

Finite state TS
(Boolean pgm.)Debug

Counter-
examples

Model check

Figure 5.16

Validation flow with software model checking.

5.2 Formal Verification 211

properties of the software — typically invariant properties), or they may be found
by “specification mining” from the test cases. Specification mining involves finding
a software specification (such as invariant properties) by running the software for
different test cases and documenting the observed behavior. The Daikon tool [24],
in particular, is useful for mining invariant properties from observed behavior of a
program on test cases.

5.2.1 Predicate Abstraction

We now formally describe predicate abstraction — the task of generating a boolean
program from an arbitrary imperative program with infinite domain variables (e.g.,
integers), complex data structures, and pointers to heap locations. As mentioned
earlier, a boolean program is a program with all the standard control-flow constructs,
but only one datatype (boolean). Thus, all variables in a boolean program are boolean
variables. Thus, the main task of predicate abstraction is to abstract away the data
variables in a program — the control flow is maintained exactly.

Now the question is, what do the boolean variables in the abstracted program
denote? Clearly, these boolean variables need to have some connection with the
variables in the original program (with complex data structures). In general, given
an arbitrary C program P, the boolean variables of its corresponding boolean program
P′ can denote any boolean expression containing variables in P that is expressible in
the C programming language. There is one important point that needs to be clarified
here. The boolean program P′ will not be executed. Instead, from P′, we construct
a finite-state transition system that represents all the behaviors of P′. Thus, while
assigning a boolean variable v in P′, we may assign v to true, false or unknown.
If v is assigned unknown, this means that v can be either true or false. Note that
if we were executing P′, strictly speaking, we will be in a dilemma — is v true or
false after executing the assignment v = unknown? However, if we are simply
interested in constructing a finite-state transition system out of program P′, there is
no problem — we can simply allow two possible program states after the execution
of v = unknown, one with v == true and the other with v == false.

We now explain predicate abstraction with some simple example programs.
In order to simplify our presentation, we only discuss the abstraction of a single
procedure. We first discuss the abstraction of assignment statements and then the
abstraction of conditional branches. Note that the code for any procedure can be
expressed in terms of assignments and conditional branches.

Assignment Statement

We are now talking of abstracting a statement x = e in the original program into one
or more assignments in the abstracted program. Here x is a variable in the original

212 CHAPTER 5 Functionality Validation

program (whose domain is possibly infinite, say an integer variable). x could even
involve pointers.Also,e is an expression involving program variables (each of which
can again involve pointers, or variables over infinite domains). Thus, we might be
abstracting an assignment statement *p = *p + 1. Moreover, we are abstracting
it with respect to a set of predicates. Each of these predicates may again involve
pointers, or variables over infinite domains. So, we might be abstracting *p = *p
+ 1 with respect to the single predicate *p > 0. We can abstract it as follows:

if ([*p>0] == true){ [*p>0] = true; } else{ [*p>0] = unknown; }

This is indeed what we expect: If [*p > 0] is true, by incrementing *p by 1, it
continues to be true. On the other hand, if [*p > 0] is false, by incrementing *p
by 1, we get *p to be 0 or greater than 0. Hence we set the predicate [*p > 0] to
be unknown — meaning it can be true or false.

As another example, consider the abstraction of the assignment statement
x = yw.r.t. the predicates [x == 0] and [y == 0]. In the abstracted program we
can simply replace x = y with [x == 0] = [y == 0]. In effect, the abstracted
assignment is saying that x is equal to zero if and only if y is equal to zero.

Now suppose we abstract *p = *q w.r.t. the predicates [*p == 0] and
[*q == 0]. We want the abstracted code to say that if p and q do not point to
the same memory location, the predicate [*p == 0] is true if and only if [*q ==
0] is true. Otherwise, the predicate [*p == 0] is unchanged.

if (&p == & q) [*p == 0] = [*q == 0];

Note that the foregoing statement cannot be included in the abstract program,
because its only data type is boolean. Thus, [*p == 0] and [*q == 0] can appear
as variables in the abstract program, but not p, q. To address this issue, predicate
abstraction makes use of an offline static analysis called “alias analysis.” Alias anal-
ysis analyzes the program code and finds out pairs that can never alias to the same
memory location (never ever during the execution of the given program!). So, if
the output of such an analysis tells us that the pair p, q may never be aliases, we
abstract *p = *q as [*p == 0] = [*q == 0]; otherwise *p := *q is simply
abstracted as a skip statement.

In general, the method for abstracting assignment statements works as follows.
Consider the abstraction of an assignment statementx = x + 1w.r.t. two predicates
[x == 2], and [x < 5] (where x is an integer variable). We find the impact of
the assignment statement on each of the two predicates we are maintaining in the
abstract program — [x == 2] and [x < 5]. So, we might be tempted to write the
abstract program as

if (x == 1){[x == 2] = true;} else{[x == 2]= false;}

5.2 Formal Verification 213

and

if (x < 4){ [x < 5] = true;} else{[x < 5] = false;}

The trouble with this code is simple — it still contains the variable x, which is an
integer variable. We want the abstracted program to contain only boolean variables
so that we can synthesize a finite-state transition system out of the program. In this
example, instead of maintaining the exact value of x (which is an integer), we are
keen to maintain only the true/false values for the two boolean variables [x ==
2] and [x < 5]. So, to achieve this effect we must replace conditions such as
x == 1 in the foregoing code with boolean expressions over [x ==2] and [x <
5]. Here we show one (inefficient) method of computing these boolean expressions
(the reader may refer to [9] for more details). We first consider the four possible
valuations of the predicates [x == 2] and [x < 5] and check which of them
imply x == 1:

[x ==2] ∧ [x < 5] ⇒ x ==1 NO

[x==2] ∧ ¬[x < 5] ⇒ x == 1 YES

¬[x ==2] ∧ [x < 5] ⇒ x == 1 NO

¬[x == 2] ∧ ¬[x < 5] ⇒ x == 1 NO

Thus, we infer that in the domain of the boolean variables [x ==2] and [x < 5],
we can be sure that x ==1 only if [x ==2] is true and [x < 5] is false, that is, if
[x ==2] ∧ ¬ [x < 5] holds.

Similarly, let us do the same exercise for the dual condition x �� 1:

[x ==2] ∧ [x < 5] ⇒ x �� 1 YES

[x==2] ∧ ¬ [x < 5] ⇒ x �� 1 YES

¬ [x ==2] ∧ [x < 5] ⇒ x �� 1 NO

¬ [x == 2] ∧ ¬ [x < 5] ⇒ x �� 1 YES

Here we infer that in the domain of the boolean variables [x ==2] and [x < 5],
we can be sure that x �� 1 if [x == 2] ∨¬ [x < 5] holds. Now instead of writing
the statement

if (x == 1){[x == 2] = true;} else{[x == 2]= false;}

in the abstracted program, we may write the following:

if([x ==2] && ![x < 5]){ [x == 2] = true;}
else if ([x ==2] || ![x < 5]){ [x ==2] = false;}
else { [x ==2] = unknown;}

This code captures the effect of the assignment x = x +1 on the predicate [x
== 2]. Note that we conservatively assigned the “unknown” value to the boolean

214 CHAPTER 5 Functionality Validation

variable [x ==2] unless we could reason (in the abstract domain) that x == 2
will hold or not hold after the assignment. In other words, if we could reason (in
the abstract domain involving the boolean variables [x ==2] and [x < 5]) that
x == 2 will certainly hold after the assignment, we assigned [x == 2] to true;
if we could reason (in the abstract domain involving the boolean variables [x
==2] and [x < 5]) that x ==2 will certainly not hold after the assignment, we
assigned x == 2 to false; in all other cases we conservatively set the boolean vari-
able [x == 2] to unknown, meaning it can be true or false. What this means is
that at this control location in the abstract program, the value of the boolean variable
[x == 2] can be nondeterministically true or false — and both possibilities will be
considered while constructing the finite-state transition system from the abstracted
program. Once again we must clarify for the reader that the abstracted program is
being used only for synthesizing a finite-state transition system out of it, and this
finite-state transition system will be subjected to search-based property checking
procedures such as model checking (which we described earlier in Chapter 2). In
other words, the synthesized abstract program will not be executed; instead, it is
searched for allowed behaviors.

Now, the manner in which we constructed the effect of the assignment x =
x +1 on the predicate [x ==2], we can also do the same for the predicate [x
< 5]. After all, our abstract domain consists of these two predicates (or boolean
variables; we use the terms predicates and boolean variables rather interchange-
ably here) [x == 2] and [x < 5]. So, let us do it here. Recall that we want
to represent the following statement as accurately as possible in the abstracted
program:

if (x < 4){ [x < 5] = true;} else{[x < 5] = false;}

So, again the trouble is that we are not allowed to write boolean expressions such
as x < 4 in the abstracted program, because x is not a variable in the abstracted
program, whereas [x == 2] and x < 5] are variables in the abstracted program.
Again, we look at the four possible true/false valuations of [x == 2], [x < 5]
and see which of them imply x < 4:

[x ==2] ∧ [x < 5] ⇒ x < 4 YES

[x==2] ∧ ¬[x < 5] ⇒ x < 4 YES

¬[x ==2] ∧ [x < 5] ⇒ x < 4 NO

¬[x == 2] ∧ ¬[x < 5] ⇒ x < 4 NO

So, we infer that in the domain of the boolean variables [x ==2] and [x < 5], we
can be sure that x < 4 only if [x == 2] is true. Similarly, we also look at the four
possible true/false valuations of [x == 2], [x < 5] and see which of them imply
the dual condition ¬ x < 4:

5.2 Formal Verification 215

[x ==2] ∧ [x < 5] ⇒ ¬x < 4 NO

[x==2] ∧ ¬[x < 5] ⇒ ¬x < 4 NO

¬[x ==2] ∧ [x < 5] ⇒ ¬x < 4 NO

¬[x == 2] ∧ ¬[x < 5] ⇒ ¬x < 4 YES

So, we infer that in the domain of the boolean variables [x ==2] and [x < 5], we
can be sure that x < 4 only if ¬[x == 2] ∧ ¬[x < 5] is true. Now, instead of
writing the statement

if (x < 4){ [x < 5] = true;} else{[x < 5] = false;}

we can write the following to capture the effect of x = x + 1 on the predicate
[x < 5]:

if ([x == 2]) { [x < 5] = true;}
else if (! [x == 2] && ![x < 5]) { [x < 5] = false;}
else {[x < 5] = unknown;}

In summary, if we have a C program with an integer variable x and an assignment
statement x = x+1, and the value of x is being abstracted with only two boolean
variables [x == 2], [x < 5] (i.e., we just keep track of whether x is equal to 2,
and x is less than 5, rather than maintaining the exact value of x), we can replace the
assignment x = x +1 by the following block of code in the abstracted program.
Note that in the abstracted program x is not a variable, but [x==2], [x < 5] are.
Our code block tries to decide the value (true/false/unknown) for the two variables
[x == 2], [x < 5]. The processing code for [x == 2] and [x < 5] was dis-
cussed in the preceding. However, we cannot simply put these codes in sequence,
because essentially we want to capture a “parallel” execution of these codes — given
a value of [x == 2] and [x < 5] prior to the assignment x = x + 1, we want
to find the value of [x == 2] and [x < 5] after the assignment.

tmp1 = [x == 2]; tmp2 = [x < 5];
if(tmp1 && !tmp2){ [x == 2] = true;}
else if (tmp1 || !tmp2){ [x ==2] = false;}
else { [x ==2] = unknown;}
if (tmp1) { [x < 5] = true;}
else if (!tmp1 && !tmp2) { [x < 5] = false;}
else {[x < 5] = unknown;}

One important point needs to be clarified here. In the unabstracted program,
if a statement is an execution step, the statement x = x + 1 represents a step
of execution. In that case, in the abstracted program, we treat the code block in the
preceding as an execution step. Although we know that the abstracted program is not
executed, but analyzed. Still it is important to clarify the execution steps, since it tells

216 CHAPTER 5 Functionality Validation

us at which program points we observe the program states. So, while constructing
a finite-state transition system from the abstracted boolean program, the code block
mentioned in the preceding will correspond to a single transition.

It might appear as if we are replacing a simple assignment x = x + 1 with a lot
of complex code! However, note that the foregoing piece of code in the abstracted
program will be generated automatically, given the C program.And, given a program
with only boolean variables (which refer to conditions on the values of variables in
the original C program), we can synthesize a finite-state transition system that is
subject to formal validation via automated checking procedures (such as model
checking).

Conditional Branches

Having described the abstraction of assignment statements in a C program into
a fragment of boolean program (a C program whose only datatype is boolean),
we now look at conditional branches. Conditional branches appear in if-then-else
statements as well as loops. In fact, using conditional branches and assignments, we
can capture the effect of any code within a single procedure of a standard imperative
programming language such as C. In the following, we consider conditional branches
as they appear in if-then-else statements. Loops can then be considered as conditional
branch statements with one of the branches executing a go-to statement. Thus, a
while-loop statement of the form

L: while (cond){
... /* Loop Body *

}

can be seen as

L: if (cond){
... /* Loop Body */
go to L;

}

Our abstraction could work on the foregoing if-then statement, rather than the while
loop.

Now, let us consider a conditional branch in the form of an if-then-else statement;
if-then statements are simply treated as special cases of if-then-else statements. An
if-then-else statement

if (cond) { S1 } else { S2 }

can also be seen as

if (*) { assume(cond); S1 }
else { assume(!cond); S2 }

5.2 Formal Verification 217

The (*) denotes a nondeterministic choice. Again, the reader need not worry about
the execution of such nondeterministic choices. We recall here that we are interested
in synthesizing a finite-state transition system out of our abstracted programs, rather
than executing those programs.

The semantics of the assume statement is defined as follows. For any condition
�, assume(�) behaves like a skip statement (i.e., a statement with no effect) if �

is true. Otherwise, if � is false, the statement results in a termination of execution
(without raising any exception or error). Given such a semantics of the assume
statement, it is clear that the encoding given in the preceding is equivalent to an if-
then-else statement. The question really is, why we should choose to work with such
an encoding rather than directly working with an if-then-else statement. The answer
to this question lies the abstraction we perform. Note that cond represents a boolean
expression over the variables in an arbitrary C program. However, in the abstracted
program, we can refer only to selected boolean variables that capture relationships
among the variables in the C program. Thus, we will not be able to capture cond
exactly in the abstracted program. In fact, our abstracted if-then-else statement will
be of the following form:

if (*) { assume abstract(cond); abstract(S1) } else
{ assume abstract(!cond); abstract(S2) }

Clearly S1 and S2 will again contain assignment/conditional branch statements —
so their abstraction will proceed based on our abstraction scheme for assign-
ment and conditional branch statements. We need to explain how to compute
abstract(cond) and abstract(!cond).

Whichever way we abstract the conditions, we want to preserve the property that
whenever a condition is true, its abstraction must be true. Thus, in the template code
discussed before, we will have

cond ⇒ abstract(cond)
!cond ⇒ abstract(!cond)

If that is the case, for an if-then-else statement if(cond) { S1 } else { S2 }:

■ Whenever cond holds, the then-part (in this case S1) is guaranteed to be
executed in the abstracted boolean program, and

■ Whenever cond does not hold, the else-part (in this case S2) is guaranteed to
be executed in the abstracted boolean program.

Because of the information lost in abstraction, the reverses of the foregoing state-
ments are not true. Thus, whenever the then-part (in this case S1) is executed in the
abstracted boolean program, it is not guaranteed that cond holds. Similarly, when-
ever the else-part (in this case S2) is executed in the abstracted boolean program,
we cannot guarantee that cond does not hold.

218 CHAPTER 5 Functionality Validation

Other Control Constructs

In the preceding, we have left out the full details of the abstraction of conditions —
that is, given a condition cond, the algorithm for computing abstract(cond) is
not presented here in detail. However, whatever abstract(cond)we compute will
satisfy the property cond ⇒ abstract(cond). The interested reader can refer to
[9] for details.

Similarly, abstracting assignments and conditional branches tells us only how
to abstract the code for a single procedure. For a program involving multiple pro-
cedures, we will abstract each procedure in the C program to a procedure in the
boolean program. However, for procedure calls and returns, we need to ensure that
procedures in the boolean program take parameters and return only boolean variables
(the predicates w.r.t. which we are abstracting the C program). Again, the interested
reader can refer to [9] for details.

5.2.2 Software Checking via Predicate Abstraction

Predicate abstraction is simply a tool, a means to an end. It is not an end in itself.
Given an arbitrary program P, predicate abstraction allows us to generate a boolean
program Pbool out of P. Pbool has the same control flow as that of P, the difference
between the two programs being that the only datatype in Pbool is boolean; the
boolean variables in Pbool refer to relationships among the variables in P. Because the
number of control locations of a program is finite, this enables us to easily construct
a finite-state transition system TSP from the boolean program Pbool. The finite-state
transition system TSP can then be subjected to automated checking methods such as
model checking.

However, because of abstraction, Pbool and TSP contain more behaviors (i.e.,
more execution traces) than the program P. In other words, Pbool and TSP contain
execution traces that are not traversed by any input in P. These correspond to paths
in the control flow graph of P, which are not exercised by any input — commonly
called, in literature, “infeasible program paths.” Let us illustrate the phenomenon via
a simple example. Consider the abstraction of the program in Figure 5.17 w.r.t. the
predicate [x == 0]. We have numbered the lines in the program for convenience.
Thus, the program we are considering is

1 x = 0;
2 x = x + 1;
3 x = x – 1;
4 if (x == 1) {
5 ... /* error */}

We can clearly see that the error location is never reached in any concrete exe-
cution of the program. However, if we abstract the program w.r.t. the predicate

5.2 Formal Verification 219

1, [x==0]

x=0;

x=x+1;

x=x–1;

if (x==1){ …

1 x=0;
2 x=x+1;
3 x=x–1;
4 if (x==1) {
5 ... /* error */}

2, [x==0]

4, [x==0] 4, ![x==0]

5, ![x==0]

1, ![x==0]

3, ![x==0]

Figure 5.17

A program fragment and the finite-state transition system obtained by predicate abstraction
w.r.t. the predicate [x == 0]. A path to the error location (a counterexample trace) is marked
in bold.

[x == 0], we will get the finite-state transition system (via a boolean program that
is automatically derived by predicate abstraction) shown in Figure 5.17. Here, line
5 (the error location) can be reached.

The results seem puzzling. What went wrong? In essence, nothing! Our abstrac-
tion is indeed intended to capture an overapproximation of the set of behaviors of
the original program. Let us follow how the abstract program behaves, line by line.
Before the execution of line 1 of our program (i.e., in the initial state), the vari-
able x can be anything. Hence we allow for [x == 0] to be true or false in the
initial state (refer Figure 5.17). Next we execute the assignment x = 0 and go to
line 2. At this stage, the predicate [x == 0] must be true. Then we execute x =
x + 1 and go to line 3. At this stage, in line 3 we know only that [x == 0] must
be false. Notice the subtle loss of information we have suffered! If we were follow-
ing a concrete execution, we would have known that x is equal to 1 at this stage.
However, because of our abstraction, we only know that [x == 0] is false, that is,
x is not equal to zero. As a result, when we go from line 3 to line 4 (by executing
x = x – 1), we can only conclude that [x == 0] can be both true/false in line 4.
This makes us conclude that the error location in line 5 is reachable.

The preceding explanation certainly looks like bad news! Let us take stock of
the situation. Given an arbitrary C program P, and a set of predicates to track, we

220 CHAPTER 5 Functionality Validation

can automatically obtain a finite-state transition system TSP that can be subjected
to model checking. However, there is a small catch here. The finite-state transition
system TSP that we construct is not exactly equivalent to the original program P.
Rather, the set of execution traces in the constructed transition system TSP is a super-
set of the execution traces of the program P . Now, suppose the finite-state transition
system is subjected to model checking of a linear-time temporal logic (LTL) prop-
erty (refer to Chapter 2). Recall that a finite-state transition system satisfies an LTL
property � if and only if all its execution traces satisfy �. Thus, on model checking
an LTL property � against TSP, if we observe that TSP satisfies �, we can be certain
that program P also satisfies �. However, if TSP does not satisfy � and returns a
counterexample trace violating �, we cannot be certain that TSP does not satisfy �.
Because TSP has more execution traces than the program P, the counterexample
trace may come from these additional spurious traces, as in the case of Figure 5.17.

Figure 5.18 summarizes the basic design flow in software model checking. Given
a program P and a LTL property �, we first convert P into a finite-state transition
system TSP via predicate abstraction. We then check TSP against � using a model-
checking tool. If TSP satisifies �, because of the nature of our predicate abstraction,
we know that program P satisifies �. However, if TSP does not satisfy � and a
counterexample trace is produced by the model-checking tool, we cannot be sure
whether the counterexample trace results from a real error in P, or it is an additional

Program P LTL property
�

Finite-state
transition system
TSP

Predicate
abstraction

Model
checker

Counterexample trace
(Needs further processing)

PASS
(Done, program P satisfies �)

Figure 5.18

Overall flow in software model checking.

5.2 Formal Verification 221

spurious behavior that is introduced owing to the overapproximation of behavior
in predicate abstraction. In other words, the counterexample trace requires further
processing.

Let us now revisit the example of Figure 5.17. Here the counterexample trace (a
path to the error location) that we obtained is as follows:

(1, [x �� 0]) x�0→ (2, [x �� 0]) x�x�1→ (3, ![x �� 0])
x�x�1→ (4, ![x �� 0]) if (x��1)→ (5, ![x �� 0])

Now, let us try to check whether this path can be exercised by any concrete input. In
trying to do so, we calculate a constraint representing the conditions under this path
can be executed. If such a constraint is found to have no solutions, we can infer that
the path is infeasible. The constraint accumulated for the foregoing path will be

x0 �� 0∧ // from the initial state

x1 �� 0∧ // from the assignment x = 0

x2 �� x1 � 1∧ // from the assignment x=x+1

x3 �� x2 � 1∧ // from the assignment x=x–1

x3 �� 1 // from the condition (x == 1)

This constraint, when simplified, leads to x0 �� x1 �� 0 ∧ x2 �� 1 ∧ x3 �� 0 ∧
x3 �� 1, which is unsatisfiable. In other words, the constraint is saying that the value
of variable x at some point has to be both 0 and 1, which is impossible. Hence the
constraint is unsatisfiable and the counterexample trace we found out is spurious or
infeasible (i.e., not exercised by any concrete input).

Having found out that the counterexample trace is infeasible, what should we do?
Recall that we abstracted the program in Figure 5.17 w.r.t. the predicate [x == 0].
On model checking the resultant finite-state transition system against the property
that an error location cannot be reached, we found a counterexample trace (a path
to an error location). When we tried to find out the set of inputs that can exercise
the given counterexample trace, it was found that no concrete input can exercise
the counterexample trace, that is, it is infeasible. So, our counterexample trace is an
additional spurious behavior that is introduced owing to the overapproximation of
behavior in predicate abstraction.

How do we proceed now? It seems that the only way out is to refine our abstrac-
tion. By abstracting our program w.r.t. only the predicate [x == 0], in effect, we
are only keeping track of whether x is equal to zero. No other information about the
value of variable x is kept track of in the abstracted program. This is what is causing
the additional, spurious traces, one of which is our counterexample trace. So, we
need to keep track of more information about the variable values. In effect, we need
to abstract our program w.r.t. a bigger set of predicates. This is what constitutes

222 CHAPTER 5 Functionality Validation

the refinement step. Before proceeding further, let us clarify why abstraction w.r.t.
a bigger set of predicates should be seen as a refinement. If we abstract a program
w.r.t. a null set of predicates, we deem every path in the program’s control flow
graph as feasible. This is the coarsest possible abstraction. If we now abstract the
program w.r.t. some predicate [x == 0], where x is a program variable, we are
refining the abstraction, because we at least keep track of whether x is zero. Then, if
we abstract the program w.r.t. a bigger set — say, [x == 0] and [x == 1]— our
abstraction becomes more fine-grained, because we now keep track of whether x is
0, and whether it is 1.

So, in predicate abstraction, we maintain an abstract view of the memory state of
a program. Instead of maintaining the exact values of the program variables, we are
only allowed to ask true/false questions about the program variable values — these
questions are the predicates w.r.t. which we abstract the program. Naturally, the
more questions we allow ourselves to ask, the more refined is our abstraction of the
memory state!

It is clear now, that the way to refine our abstractions is to add to the set of
predicates. The issue now is, which predicates to add? We can try to find the addi-
tional predicates from the spurious counterexample trace we found. For this reason,
software model-checking approaches often go by the acronym CEGAR — counter-
example guided abstraction refinement. In particular, given a spurious counterexam-
ple trace, we inspect the reason why it is infeasible, and add predicates based on this
intuition. It should be noted that this process of refinement via adding predicates is a
collection of heuristics and thus can be tackled in many ways. Thus, in our example
in Figure 5.17, we can find the reason for our counterexample trace being infeasible
by analyzing its path constraint (note that the variables x0,x1,x2,x3 in the constraint
refer to values of the varible x at different points in the program execution):

x0 �� 0 ∧ x1 �� 0 ∧ x2 �� x1 � 1 ∧ x3 �� x2 � 1 ∧ x3 �� 1

which is simplified to

x0 �� 0 ∧ x1 �� 0 ∧ x2 �� 1 ∧ x3 �� 0 ∧ x3 �� 1

The “unsatisfiable core” of this constraint (the minimal part of the constraint which
is still unsatisfiable) is

x3 �� 0 ∧ x3 �� 1

Thus, we can observe from the preceding that it is important to keep track of
whether x is 0 and whether x is 1. Because we previously abstracted the program
w.r.t. the predicate [x == 0], we can now refine our abstraction as abstracting
w.r.t the predicate set { [x == 0], [x ==1] }. In other words, we add the predicate
[x == 1]— instead of simply monitoring whetherx == 0, our abstracted program
will now also monitor whether x == 1. The resultant finite-state transition system

5.2 Formal Verification 223

1, [x==0],![x==1] 1,![x==0],![x==1]

2, [x==0],![x==1]

3, ![x==0],![x==1]

4, [x==0],![x==1]

x=0;

x=x+1;

x=x+1;

if (x==1){ ...

1 x=0;
2 x=x+1;
3 x=x–1;
4 if (x==1) {
5 ... /* error */}

Figure 5.19

A program fragment and the finite-state transition system obtained by predicate abstraction
w.r.t. the predicates [x == 0] and [x==1]. No paths to the error location exist in the
abstracted program.

is shown in Figure 5.19. From Figure 5.19, we can see that no path to the error
location exists. In other words, by refinining the abstraction, we have been able to
prove the following property: The error location is not reachable from initial state. In
LTL, this property would be stated as G¬error, where the proposition error is true
only in the error location of the program (refer to Figure 5.19) and is false otherwise.

In summary, software model checking via predicate abstraction involves choos-
ing an initial set of predicates and then refining this set based on the counterexample
traces obtained. The flow of the entire procedure appears in Figure 5.20. If the user
does not have a good idea about what the initial set of predicates may be, he or she
can start with the null set of predicates. This the coarsest possible abstraction. We can
subject the resultant finite-state transition system (which captures only the control
flow of the program, and no data flow) to model checking. If no counterexamples are
found, the program already satisfies the property being verified. If a counterexample
trace � is found, we subject it to a spuriousness check. This is done by constructing
a constraint representing the set of inputs which can execute �, and then solving this
constraint. If the constraint is satisfiable, then � points to a real error in the program;
if the constraint is unsatisfiable, this means that � is a spurious counterexample, an
additional behavior resulting from the coarse nature of our abstraction. In this case,
we inspect the unsatisfiable path constraint corresponding to � to get a refinement —
additional predicates that need to kept track of. In this way, starting from a possibly

224 CHAPTER 5 Functionality Validation

Program P
LTL property

�

Finite-state transition
system TSP

Predicate
abstraction

Model checker Counterexample trace

PASS
(Done, program P satisfies �)

Spuriousness check

YES, Spurious NOT Spurious
(P does not satisfy �)

Refine predicate abstraction

Figure 5.20

Detailed flow of software model checking.

null set of predicates, we can build up a set of predicates w.r.t. which we abstract
the program being verified. In effect, we are running a loop involving the following
steps:

Abstract → Model Check → Refine

At any iteration of this loop, we have can three possible outcomes from a model
checking run.

1. Model checking produces no counterexamples.
2. Model checking produces a counterexample that is found to be not spurious.
3. Model checking produces a counterexample that is found to be spurious.

In the case of outcome (1), we stop, because our property has been proved. In
case of outcome (2), we again stop, because our property has been disproved — the
counterexample points to a real property violation in the program. However, in the
case of outcome (3), our property has been neither proved nor disproved. So, in this
case we refine our abstraction and model check the refined transition system with
the hope of proving or disproving the property being verified.

5.2 Formal Verification 225

What the framework of Figure 5.19 does is to provide a pragmatic handle on a
very hard problem, namely software verification. The general problem is undecid-
able, so fully automated verification is out of the question. The usual solution then is
to abstract the program behaviors and employ automated checking methods on the
abstracted program. However, the task of abstraction involves tremendous human
ingenuity. How do we abstract the program? Which variables do we keep track of ?
If we are keeping track of a variable x with an unbounded domain (say, an integer
variable), how do we develop a finite abstraction of the unbounded domain?

Predicate abstraction and abstraction refinement provide pragmatic answers to
such questions. They free the user from having to construct a difficult abstraction
for the sake of formally verifying his or her program.

Instead the user may start with a null abstraction, and then gradually refine
the abstraction based on the counterexamples encountered in successive runs of
model checking. In other words, abstraction refinement is a verification methodol-
ogy or verification framework, rather than a verification technique. By employing
this methodology, the user is freed from the burden of having to invent abstractions
for verifying his or her program.

It should be noted that verifying temporal properties of arbitrary programs is
an undecidable problem. So, clearly the Abstract → Model Check → Refine loop
in Figure 5.19 cannot be guaranteed to terminate. The user can employ such an
abstraction refinement framework with a possible bound on the maximum number
of refinement steps. In practice, lot of experimental studies on real-life embedded
software show very promising results with abstraction refinement based verification.
Here, the abstraction refinement methodology allows the user to gradually build
an abstraction (based on the counterexamples encountered), rather than having to
guess it. Moreover, the verification is found to terminate within a few iterations of
abstraction refinement in these case studies. The interested reader may refer to [4]
for reports on real-life case studies with Windows device drivers.

5.2.3 Combining Formal Verification with Testing

Testing and formal verification are two complementary techniques for validating
functionality. Testing exposes few program behaviors, but any wrong behavior
thereby exposed is truly a wrong behavior — there are no false alarms reported
by testing. On the other hand, formal verification exposes all program behaviors,
albeit at an abstract level. However, because of the abstractions involved, “bugs”
reported by formal verification can be false alarms. In other words, testing and formal
verification have complementary strengths and weaknesses.

Testing methods work at the concrete level: They execute the program with
concrete inputs. Naturally, they cannot cover all program behaviors — exhaustively

226 CHAPTER 5 Functionality Validation

covering all concrete inputs of any real-life program is an impossibility! Directed
testing methods (Chapter 5.1.3) alleviate this concern somewhat — they are trying
to cover all program paths, rather than all concrete inputs. Thus, one may say that
directed testing methods partition the input space of a program, such that two inputs
i, i′ are in the same partition if and only if inputs i, i′ exercise the same program path.
Given such a partitioning of the input space, directed testing methods are trying to
expose one concrete input per partition. However, the number of program paths in
any real-life program is also huge — even for a program without loops, b branches
can lead to anywhere between b � 1 to 2b paths depending on the control flow (see
Figure 5.21). Clearly, if we have b branches containing 2b acyclic paths within a
loop with L iterations (where L is large), we will have (2b)L paths — a huge number!
Hence, covering all program paths simply via testing is also not feasible for much
real-life software.

Formal verification methods, on the other hand, abstract the behaviors of a pro-
gram. One example of such an abstraction is predicate abstraction (Section 5.2.1)
where we abstract the memory store of a program while leaving the control flow
unabstracted. Formal verification methods achieve full coverage of program behav-
iors in the abstract state space. However, because of the information (about program

(a) (b)

Figure 5.21

An acyclic program with 3 branches having (a) 23 program paths and (b) 3 � 1 program paths.

5.2 Formal Verification 227

variable values) lost in the abstraction, the errors reported by covering the abstract
state space might not correspond to actual errors in a concrete program. We saw an
example in Section 5.2.2, reproduced here for convenience:

1 x = 0;
2 x = x + 1;
3 x = x – 1;
4 if (x == 1) {
5 ... /* error */}

Here, by abstracting the program only w.r.t. the predicate [x == 0] and model
checking the abstracted program, we are unable to infer that the error location is
unreachable. Thus, we report a false bug, a path to the error location as follows:

(1,[x == 0]), 2,[x==0]), (3, ![x==0]), (4,![x==0]), (5, ...)

This is what we mean by a false positive or a false alarm: a reported bug that
does not correspond to any program error. Such a false alarm appears because of
the information loss in abstraction and will show up during model checking of the
abstract state space.

Because formal verification (such as model checking) and testing methods have
complementary strengths and weaknesses, there have been attempts to combine them
and reap the benefits of both. One possibility that has been studied is to use model
checking for systematic generation of tests. Yet another possibility is to use tests (and
the observations resulting from running these tests) for learning about the program
model, when the program is a black box [71]. Usually these methods can be thought
of as model checking helping testing, or vice versa.

In the recent past, software validation methods where testing and model checking
simultaneously help each other have also been studied. To discuss the inner workings
of such methods, we modify the example program in the preceding and introduce a
program loop that does not modify variable x:

1 x = 0;
2 x = x + 1;
3 x = x – 1;
4 for (i=0; i<100; i++){
5 ... /* x is not modified in the loop */
6 }
7 if (x == 0) {
8 ... /* error */ }
9 ... /* end of program */

Suppose we want to check whether the error location is reachable. How do we
start? We can perform predicate abstraction of the program and perform model
checking of the abstracted program. The property we want to verify states that the

228 CHAPTER 5 Functionality Validation

error location is never reached — specified as

G(pc �� 8)

in linear-time temporal logic (LTL). The foregoing property states that the program
counter (pc) never goes to line 8 (the error location). A violation of the property will
be a counterexample trace that reaches line 8.

To perform predicate abstraction, we need a set of predicates w.r.t. which we
abstract. What set of predicates do we choose? As discussed earlier, we can simply
start with the null set of predicates. This the coarsest possible predicate abstrac-
tion, which treats each path in a program’s control-flow graph as feasible (i.e., the
abstraction assumes that for each path � in the control flow graph of a program, there
is some program input exercising the path �). Model checking finds the shortest
counterexample trace:

1,2,3,4,7,8

Because we did predicate abstraction w.r.t. a null set of predicates, we are not keeping
track of the program variable values at all in the abstracted finite-state transition
system. We only keep track of the program-counter value (also called the control
location). We can now analyze this counterexample trace by collecting its path
constraint, as mentioned in Section 5.2.2. This will show that the foregoing is a
spurious counterexample, because there is no concrete execution 1,2,3,4,7,8—
the loop needs to be iterated 100 times!!

According to the abstraction refinement methodology, we need to abstract our
program w.r.t. a new predicate and run model checking again. The trouble with this
approach is that whatever predicates we abstract our program with, model checking
will successively uncover longer and longer paths to line 8 (all of which are spu-
rious, that is, do not correspond to any concrete program execution). These paths
correspond to the number of times we iterate through the loop.

1, 2, 3, 4, 7, 8

1, 2, 3, 4, 5, 6, 4, 7, 8

1, 2, 3, 4, 5, 6, 4, 5, 6, 4, 7, 8
. . .

This is clearly inefficient. In our program, we will then need 100 refinement steps
to show that the error location is indeed not reachable. If we had a loop iterating 1
million times, we would have required 1 million refinement steps!

Fortunately, testing methods can be combined with model checking to solve our
problem. Here, we first abstract the program w.r.t. the null set of predicates and run
model checking. This produces (as before), the counterexample trace:

1,2,3,4,7,8

5.3 References 229

We can now use directed testing to attempt a concrete test trace that goes through
this path (or as long a prefix of the path as possible). We find a concrete trace that
visits lines 1, 2, 3, but not line 8. The trace is

1,2,3,(4,5,6)100,4,7,8

Note that this is a concrete path which can be exercised by executing the program.
Thus, our concrete test trace straightaway shows that the error location is reachable,
because it visits the error location (line 8). So, we completely avoided the 100
refinement steps necessary to show this error via pure abstraction refinement-oriented
verification.

In summary, testing methods try to find witnesses of errors, whereas formal
verification methods prove the absence of errors. Both have their unique plus and
minus points. By judiciously combining them, we can develop powerful software
validation methods that rely on testing to show presence of bugs, and on verification
to show absence of them. The interested reader is referred to [28] for an advanced
treatment of this topic.

5.3 REFERENCES
The area of software debugging has seen substantial growth in the past 10 to 15 years.
Some of the works are based on static analysis to locate common bug patterns in code
(e.g., [39]), whereas others espouse a combination of static and dynamic analysis
to find test cases that expose errors (e.g., [20]). Another section of works addresses
the problem of software fault localization (typically via dynamic analysis) — given a
program and an observable error for a given failing program input, these works try to
find the root cause of the observable error. The works on software fault localization
proceed by either (a) dynamic dependence analysis of the failing program execution
(e.g., [80, 99, 100, 104, 105]), or (b) comparison of the failing program execution
with one chosen program execution that does not manifest the observable error in
question (e.g., [32, 76, 103]). These works go hand-in-hand with testing, because
testing locates observable errors, and debugging seeks to explain them. There are
also related efforts on directed software testing [29], where paths of the program are
systematically explored to find offending test cases. The PEX tool [89] uses similar
techniques for unit test generation of Java programs.

Application of formal verification methods such as model checking has also
been a topic of intense research over the past two decades. One of the first points
of reference in this area is the SPIN model checker [38], which we discussed in
Chapter 2. The SPIN checker was originally used for protocol modeling and verifi-
cation. Subsequently, it was adapted for software verification via added features, such

230 CHAPTER 5 Functionality Validation

as embedding C code into a modeling language description. Around 2000–01, the
idea of abstraction refinement–based checking of software was developed. Checkers
built around this philosophy include SLAM [12], BLAST [7], and Magic [16]. A
recent work [28] discusses the combination of abstraction refinement based checking
with testing.

5.4 EXERCISES
5.1. Suppose you want to use a model checker (such as the SPIN tool discussed in

Section 2.9) to generate test cases of a terminating sequential program written
in a C-style imperative language. What are the temporal properties you can
feed in to meet the statement coverage criterion for test generation (a test suite
such that all program statements are covered)?

5.2. In this chapter, we discussed the role of dynamic slices for program debug-
ging. Based on slices, we can define the notion of a “dice” where dice(x,y) �

slice(x) � slice(y) for two slicing criterion x,y. Comment on the role of dices
in software debugging: Under what circumstances might you use them for
debugging?

5.3. One method of software testing for inputs with large domains is called
“equivalence partitioning.” In this method, the domain of an input variable
is partitioned into equivalence classes, so that from each equivalence class
only one test input will be tried out. Now, there is a wide choice of when we
define two test inputs to be “equivalent” and put them into an equivalence
class. Suppose we define two test inputs to be equivalent when they produce
the same path in the program.
■ Give an example program where such an equivalence partitioning will lead

to efficient testing, that is, only a few test cases to try.
■ Give an example program where such an equivalence partitioning will lead

to inefficient testing, that is, too many test cases to try.

5.4. Consider the following program:

if (x > 2) {y = x + z;} else {y = x – z;}
if (y > 0) {return 0;} else {return 1;}

■ Give one sample test input for which the foregoing code will return the
value 0.

■ Characterize the set of all test inputs that cause the foregoing code to return
the value 0. Explain your answer.

5.4 Exercises 231

5.5. Consider the following program with two threads, which are composed asyn-
chronously. Assume that initially A = 0, and each assignment is executed
atomically. What are the possible contents of the array X when the program
terminates? Explain your answer, without constructing the finite-state machine
corresponding to the asynchronous composition.

Thread 1: (A := 1; A := 2; A := 3; A:= 4;) composed with
Thread 2: (X[1] := A; X[2] := A; X[3] := A; X[4] := A;)

5.6. Consider the program fragment

x = 5; x = x +1; x = x – 1; y = x

Suppose we want to prove that y �� 5 at the end of the program. Show that
the predicate abstraction {y==5} is insufficient to prove this property. Also
construct a predicate abstraction that is sufficient to prove the property. You
are only allowed to abstract the data store of the program via predicates, but
the control flow should not be abstracted.

5.7. Consider the following program fragment:

x = 0; while (x < 100){ x = x + 1 }

Suppose we want to prove that (x == 100) at the end of the program. What
is the initial abstract transition system we start with if we follow the abstract
model-check refine methodology? What are the abstractions of the memory
store (predicate abstractions) that we will encounter if we prove the property
by abstraction refinement? Justify your answer in detail.

5.8. Consider a multithreaded program where n threads running on a single pro-
cessor are trying to access a shared object using a round-robin scheme. We
want to prove mutual exclusion of access of the shared object for any n. Can
we employ the abstraction refinement based software verification discussed in
this chapter? Justify your answer. If your answer is yes, explain how. If your
answer is no, can you suggest any alternative verification methods?

This page intentionally left blank

Bibliography

[1] R. Alur and D. L. Dill. A theory of timed automata. Theoretical Computer Science,
126:183–235, 1994.

[2] J. Akella and K. McMillan. Synthesizing converters between finite state protocols. In
International Conference on Computer Design, 1991.

[3] R. Alur and M. Yannakakis. Model checking of message sequence charts. In
International Conference on Concurrency Theory (CONCUR), 1999.

[4] T. Ball, et al. Thorough static analysis of device drivers. In EuroSys, 2006.

[5] D. Burger and T. Austin. The SimpleScalar Tool Set, Version 2.0. Technical Report
CS-TR-1997-1342, University of Wisconsin, Madison, June 1997.

[6] A. Biere, E. M. Clarke, R. Raimi, and Y. Zhu. Verifying properties of a PowerPC
microprocessor using symbolic model checking without BDDs. In Computer Aided
Verification (CAV), 1999.

[7] D. Beyer, T. A. Henzinger, R. Jhala, and R. Majumdar. The Software Model Checker
BLAST: Applications to Software Engineering. International Journal on Software
Tools for Technology Transfer, 2007.

[8] M. Broy, B. Jonsson, J.-P. Katoen, M. Leucker, and A. Prestchner. Model-Based
Testing of Reactive Systems. Springer, 2005.

[9] T. Ball, R. Majumdar, T. Millstein, and S. K. Rajamani.Automatic predicate abstraction
of C programs. In International Conference on Programming Language Design and
Implementation (PLDI), 2001.

[10] G. Borriello. A New Interface Specification Methodology and its Applications to
Transducer Synthesis. PhD thesis, University of California, Berkeley, 1988.

[11] D. Brylow and J. Palsberg. Deadline analysis of interrupt-driven software. In ACM
SIGSOFT Symposium on the Foundations of Software Engineering (FSE), held jointly
with European Software Engineering Conference (ESEC-FSE), 2003.

[12] T. Ball and S. K. Rajamani. The SLAM project: Debugging system software via static
analysis. In ACM Symposium on Principles of Programming Languages (POPL), 2002.

[13] G. Buttazzo. Hard Real-time Computing Systems: Predictable Scheduling Algorithms
and Applications, 2nd ed. Springer, 2005.

[14] E. M. Clarke et al. Verification of the futurebus+ cache coherence protocol. Formal
Methods in System Design, 6, 1995.

[15] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Proceedings
of the Fourth Annual ACM Symposium on Principles of Programming Languages
(POPL), pp. 238–252, January 1977.

[16] S. Chaki, E. Clarke, A. Groce, S. Jha, and H. Veith. Modular verification of software
components in C. In International Conference on Software Engineering (ICSE), 2003.

233

234 Bibliography

[17] E. M. Clarke and E. A. Emerson. Synthesis of synchronization skeletons for branch-
ing time temporal logic. In Logic of Programs: Workshop, Yorktown Heights, LNCS
Vol. 131, 1981.

[18] E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.

[19] CPLEX. The ILOG CPLEX Optimizer v7.5, 2002. Commercial software, http://
www.ilog.com.

[20] C. Csallner and Y. Smaragdakis. DSD-Crasher: A hybrid analysis tool for bug finding.
In ISSTA, 2006.

[21] CTAS. Center TRACON automation system. NASA, http://www.ctas.arc
.nasa.gov.

[22] W. Damm and D. Harel. LSCs: Breathing life into message sequence charts. Formal
Methods in System Design, 19(1), 2001.

[23] L. de Alfaro and T. A. Henzinger. Interface automata. In Joint 8th European Software
Engineering Conference and 9th ACM SIGSOFT International Symposium on the
Foundations of Software Engineering (ESEC-FSE), 2001.

[24] Michael D. Ernst, Jake Cockrell, William G. Griswold, and David Notkin. Dynam-
ically discovering likely program invariants to support program evolution. IEEE
Transactions on Software Engineering, 27, 2001.

[25] J. Engblom and A. Ermedahl. Modeling complex flows for worst-case execution time
analysis. In Proceedings of IEEE Real-time Systems Symposium (RTSS), December
2000.

[26] J. Edmison, D. I. Lehn, M. Jones, and T. Martin. E-textile based automatic activity
diary for medical annotation and analysis. In International Workshop on Wearable and
Implantable Body Sensor Networks (BSN), 2006.

[27] The FlexRay Communications System Specifications, ver. 2.1, 2005. www
.flexray.com.

[28] B. S. Gulavani, T. A. Henzinger, Y. Kannan, A. V. Nori, and S. K. Rajamani.
SYNERGY: A new algorithm for property checking. In ACM SIGSOFT Symposium
on the Foundations of Software Engineering (FSE), 2006.

[29] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed automated random testing.
In ACM SIGPLAN International Conference on Programming Language Design and
Implementation (PLDI), 2005.

[30] AbsInt Angewandte Informatik GmbH. aiT: Worst case execution time analyzer, 2005.
http://www.absint.com/ait/.

[31] A. Goel, S. Meng,A. Roychoudhury, and P. S. Thiagarajan. Interacting process classes.
In International Conference on Software Engineering (ICSE), 2006.

[32] L. Guo, A. Roychoudhury, and T. Wang. Accurately choosing execution runs for soft-
ware fault localization. In International Conference on Compiler Construction (CC),
2006.

Bibliography 235

[33] M. Hutchins et al. Experiments on the effectiveness of dataflow- and controlflow-
based test adequacy criteria. In ACM/IEEE International Conference on Software
Engineering (ICSE), 1994.

[34] D. Harel. Statecharts: A visual formalism for complex systems. Science of Computrer
Programming, 8(3):231–274, 1987.

[35] D. Harel and O. Kupferman. On object systems and behavioral inheritance. IEEE
Transactions on Software Engineering, 2002.

[36] D. Harel and R. Marelly. Come, Let’s Play: Scenario-Based Programming Using LSCs
and the Play-Engine. Springer-Verlag, 2003.

[37] G. Holzmann. SPIN Model Checker, Bell Laboratories, 1991.

[38] G. Holzmann. The SPIN Model Checker. Addison-Wesley, 2004.

[39] D. Hovemeyer and W. Pugh. Finding bugs is easy. In OOPSLA Onward Session, 2004.

[40] C. Healy and D. Whalley. Automatic detection and exploitation of branch constraints
for timing analysis. IEEE Transactions on Software Engineering, 28(8), 2002.

[41] C. Jard. Synthesis of distributed testers from true-concurrency models of reactive
systems. Information and Software Technology, 45(12):805–814, 2003.

[42] L. Ju, S. Chakraborty, and A. Roychoudhury. Accounting for cache-related preemption
delay in dynamic priority schedulability analysis. In Design Automation and Test in
Europe (DATE), 2007.

[43] R. Jayaseelan, T. Mitra, and X. Li. Estimating the worst-case energy consumption of
embedded software. In IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS), 2006.

[44] L. Ju, A. Roychoudhury, and S. Chakraborty. Schedulability analysis of MSC-based
system models. In IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS), 2008.

[45] H. Kopetz and G. Bauer. The time-triggered architecture. Proceedings of IEEE, Special
Issue on Modeling and Design of Embedded Software, 91(1):112–126, 2003.

[46] H. Kopetz and G. Grunsteidl. TTP — a protocol for fault-tolerant real-time systems.
IEEE Computer, 27(1), 1994.

[47] J.-C. Kao and R. Marculescu. On optimization of e-textile systems using redundancy
and energy-aware routing. IEEE Transactions on Computers, 55(6):745–756, 2006.

[48] C.-G. Lee et al. Analysis of cache-related preemption delay in fixed-priority preemtive
scheduling. IEEE Transactions on Computers, 47(6), 1998.

[49] E. A. Lee. Building unreliable systems out of reliable components: The real time story.
Technical Report UCB/EECS-2005-5, University of California at Berkeley, 2005.

[50] Edward A. Lee. The problem with threads. Technical Report UCB/EECS-2006-1,
EECS Department, University of California, Berkeley, Jan. 2006; IEEE Computer
39(5):33–42, May 2006.

236 Bibliography

[51] Y. Liang, L. Ju, S. Chakraborty, T. Mitra, and A. Roychoudhury. Cache-aware opti-
mization of BAN applications. In International Conference on Hardware-Software
Codesign and System Synthesis (CODES+ISSS), 2008.

[52] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogramming in a hard-
real-time environment. Journal of the ACM, 20(1):46–61, 1973.

[53] X. Li, Y. Liang, T. Mitra, and A. Roychoudhury. Chronos: A Timing Analyzer
for Embedded Software, 2005.http://www.comp.nus.edu.sg/∼rpembed/
chronos/.

[54] L. Lavagno, G. Martin, and B. Selic. UML for Real: Design of Embedded Real-time
Systems. Kluwer Academic Publishers, 2003.

[55] Y.-T. S. Li, S. Malik, andA. Wolfe. Performance estimation of embedded software with
instruction cache modeling. ACM Transactions on Design Automation of Electronic
Systems, 4(3):257–279, 1999.

[56] K. G. Larsen, P. Pettersson, and W. Yi. UPPAAL in a nutshell. International Journal
on Software Tools for Technology Transfer, 1, 1997.

[57] K. Lahiri, A. Raghunathan, and S. Dey. Fast performance analysis of bus-based
system-on-chip communication architectures. In IEEE/ACM International Conference
on Computer-aided Design (ICCAD), 1999.

[58] X. Li, A. Roychoudhury, and T. Mitra. Modeling out-of-order processors for soft-
ware timing analysis. In IEEE Real-Time Systems Symposium (RTSS), pp. 92–103,
December 2004.

[59] T. Lundqvist and P. Stenström. Timing anomalies in dynamically scheduled micro-
processors. In Proceedings of the 20th IEEE Real-Time Systems Symposium (RTSS),
pp. 12–21, December 1999.

[60] J. Lehoczky, L. Sha, and Y. Ding. The rate monotonic scheduling algorithm: Exact
characterization and average case behavior. In IEEE Real-time Systems Symposium,
1989.

[61] T. Mitra and A. Roychoudhury. Worst-case execution time and energy analysis. In The
Compiler Design Handbook: Optimizations and Machine Code Generation, 2nd ed.
CRC Press, 2007.

[62] S. Narayan and D. D. Gajski. Interfacing incompatible protocols using interface
process generation. In Design Automation Conference (DAC), 1995.

[63] H. S. Negi, T. Mitra, and A. Roychoudhury. Accurate estimation of cache-related
preemption delay. In International Conference on Hardware-Software Codesign and
System Synthesis (CODES+ISSS), 2003.

[64] R. Passerone, L. de Alfaro, T. A. Henzinger, and A. Sangiovanni-Vincentelli. Convert-
ibility verification and converter synthesis: Two faces of the same coin. In Interna-
tional Conference on Computer Aided Design (ICCAD), 2002.

[65] P. R. Panda, N. D. Dutt, and A. Nicolau. On-chip vs. off-chip memory: The data
partitioning problem in embedded processor-based systems. ACM Transactions on
Design Automation of Electronic Systems (TODAES), 5(3), 2000.

Bibliography 237

[66] S. Park, K. Mackenzie, and S. Jayaraman. The wearable motherboard: A framework
for personalized mobile information processing (PMIP). In DAC, 2002.

[67] A. Pnueli. The temporal logic of programs. In IEEE Symposium on Foundations of
Computer Science (FOCS), 1977.

[68] R. Passerone, J. A. Rowson, and A. Sangiovanni-Vincentelli. Automatic synthesis of
interfaces between incompatible protocols. In Design Automation Conference (DAC),
1998.

[69] P. Puschner and A. Schedl. Computing maximum task execution times — a graph
based approach. Real-Time Systems, 13(1), 1997.

[70] PSL. Property Specification Language. Accellera, http://www.eda.org/vfv/
docs/PSL-v1.1.pdf.

[71] D. Peled, M. Y. Vardi, and M. Yannakakis. Black box checking. In FORTE/PSTV,
1999.

[72] J. P. Queille and J. Sifakis. Specification and verification of concurrent systems in
CESAR. In International Symposium on Programming, LNCS. Vol. 137, 1982.

[73] M. A. Reniers. Message Sequence Chart: Syntax and Semantics. PhD Thesis, TU/e,
1999.

[74] Rhapsody. I-logix, inc. website: http://www.ilogix.com.

[75] A. Roychoudhury, T. Mitra, and S. R. Karri. Using formal techniques to debug
the AMBA system-on-chip bus protocol. In Design Automation and Test in Europe
(DATE), 2003.

[76] M. Renieris and S. P. Reiss. Fault localization with nearest neighbor queries. In
Automated Software Engineering (ASE), 2003.

[77] A. Roychoudhury and P. S. Thiagarajan. Communicating transaction processes.
In IEEE Intl. Conf. on Applications of Concurrency in System Design (ACSD),
2003.

[78] A. Roychoudhury, P. S. Thiagarajan, T.-A. Tran, and V. Zvereva. Automatic generation
of protocol converters from scenario-based specifications. In IEEE Real-time Systems
Symposium (RTSS), 2004.

[79] S. Schliecker et al. Reliable performance analysis of a multicore multithreaded system-
on-chip. In International Conference on Hardware Software Codesign and System
Synthesis (CODES-ISSS), 2008.

[80] M. Sridharan, S. J. Fink, and R. Bodik. Thin slicing. In PLDI, 2007.

[81] A. C. Shaw. Reasoning about time in higher-level language software. IEEE Transac-
tions on Software Engineering, 1(2):875–889, July 1989.

[82] V. Suhendra, T. Mitra, A. Roychoudhury, and T. Chen. WCET centric data allocation
to scratchpad memory. In IEEE Real-time Systems Symposium (RTSS), 2005.

[83] V. Suhendra, T. Mitra,A. Roychoudhury, and T. Chen. Efficient detection and exploita-
tion of infeasible paths for software timing analysis. In Proceedings of the 43rd
ACM/IEEE Design Automation Conference (DAC), pp. 358–363, July 2006.

238 Bibliography

[84] Carnegie Mellon University, http://www.cs.cmu.edu/∼modelcheck/
smv.html. The CMU SMV Model Checker, 1998.

[85] Cadence Berkeley Laboratories, Free download from http://www-cad.eecs
.berkeley.edu/∼kenmcmil/smv/, California, USA. The Cadence SMV
Model Checker, 1999.

[86] I. Sommerville. Software Engineering, seventh ed. Addison-Wesley, 2004.

[87] L. Sha, R. Rajkumar, and S. S. Sathaye. Generalized rate-monotonic scheduling theory:
A framework for developing real-time systems. Proceedings of IEEE, 82(1), 1994.

[88] Stateflow. The MathWorks, inc. website: http://www.mathworks.com.

[89] N. Tillman and J. de Halleux. Pexwhite box test generation for .NET. In Tests and
Proofs, LNCS 4966, Springer, 2008.

[90] H. Theiling, C. Ferdinand, and R. Wilhelm. Fast and precise WCET prediction by
separated cache and path analyses. Real-Time Systems, 18(2/3):157–179, May 2000.

[91] L. Thiele, E. Wandeler, and S. Chakraborty. A stream-oriented component model
for performance analysis of multiprocessor dsps. IEEE Signal Processing Magazine,
22(3), 2005.

[92] UBET. Ubet. http://cm.bell-labs.com/cm/cs/what/ubet/.

[93] S. Uchitel, J. Kramer, and J. Magee. Synthesis of behavioral models from scenarios.
IEEE Transactions on Software Engineering, 29, 2003.

[94] M.Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program ver-
ification. In IEEE International Symposium on Logic in Computer Science (LICS),
1986.

[95] R. Wilhelm et al. The worst-case execution-time problem — overview of methods and
survey of tools. ACM Transactions on Embedded Computing Systems (TECS), 7(3),
2008.

[96] R. Wilhelm. Determing bounds on execution times. In Handbook on Embedded
Systems. CRC Press, 2005.

[97] T. Wang and A. Roychoudhury. Jslice: A dynamic slicing tool for Java programs.
National University of Singapore, http://jslice.sourceforge.net.

[98] T. Wang and A. Roychoudhury. Using compressed bytecode traces for slicing Java
programs. In ACM/IEEE International Conference on Software Engineering (ICSE),
2004.

[99] T. Wang and A. Roychoudhury. Hierarchical dynamic slicing. In International
Symposium on Software Testing and Analysis (ISSTA), 2007.

[100] T. Wang and A. Roychoudhury. Dynamic slicing on Java byte-code traces. ACM
Transactions on Programming Languages and Systems (TOPLAS), 30(2), 2008.

[101] T.-Y. Yen and W. Wolf. Performance estimation for real-time distributed embedded
systems. IEEE Transactions on Parallel and Distributed Systems, 9(11), 1998.

[102] Z.120. Message Sequence Charts (MSC’96), 1996.

Bibliography 239

[103] A. Zeller. Isolating cause-effect chains from computer programs. In ACM SIGSOFT
Symposium on the Foundations of Software Engineering (FSE), 2002.

[104] X. Zhang, N. Gupta, and R. Gupta. Pruning dynamic slices with confidence. In PLDI,
2006.

[105] X. Zhang, S. Tallam, N. Gupta, and R. Gupta. Towards locating execution omission
errors. In PLDI, 2007.

This page intentionally left blank

Index

A
ABS. See Antilock brake system
Abstract cache state, 152
Abstract interpretation, 149–154
Abstract values, 151
Abstracted transition systems,

209f
Abstraction refinement, 225, 228
Accepting cycle, 81f
Ack, 22, 101, 114, 122
Actions

alphabet, 21
communication, 106
internal, 106
matching, 110
names, 21
receive, 109
send, 109
trigger, 43

Activity time step, 174
Actual BCET, 132
Actual WCET, 132
Actuators, 125
Acyclic programs, 226f
Adaptive cruise control, 128
Addr signal, 121
AHB. See AMBA Advanced

High-Performance Bus
Air-traffic controllers (ATC), 7, 8, 9

case study, 89–91
client connection in, 89f, 90f
concurrency, 19
connect requests, 12
LSCs and, 36f
in model simulations, 41
MSCs and, 29, 30f
Promela, 89
test specification, 52
weather updates and, 15

Alias analysis, 212

Alphabet, 82
action, 21
signal, 99, 100–102

Always hit, 153
Always miss, 153
AMBA Advanced High-Performance

Bus (AHB), 88
Analysis

alias, 212
cache, 162
dynamic, 168
execution trace, 187, 192
may, 153
must, 153
performance, 1–2
schedulability, 157
static, 131, 132, 168, 182
timing, 10

Anomalous timing behavior, 167f
Antilock brake system (ABS), 128
Appropriate points, 101
Approximate sets, 150
Arbiters, 84
Arbitrary programs, 225
Architecture, 7

system, 7
Area, 172
ARM’s System-on-Chip, 88
Assembly-code level, 135, 141
Assignment statement, 211–216
Asynchronous composition, 84
Asynchronous concatenation,

32, 48
Asynchronous systems, 17
ATC. See Air-traffic controllers
Atomic execution, 42
Atomic propositions, 62, 69

interpreting, 68
states and, 68
traces and, 68 241

242 Index

Atomic steps, 43
Automation

acceptance by, 75
finite-state, 74
language of, 75

Automotive control, 128f

B
Backwards slicing algorithm, 192
BANs. See Body-area sensor
Basic blocks, 137–138

inflow into, 142
outflow, 142
sequence of, 144
WCET of, 140

BCET. See Best-case execution time
Behavior

anomalous timing, 167f
component, 123
core, 95, 97
enriching, 121
expected, 184
explicit models, 50
observed, 184
in predicate abstraction, 221
system, 7–10
unexpected, 40

Bell Laboratories, 82
Best-case execution time (BCET),

131
actual, 132
estimated, 132
observed, 132–133

BLAST, 93, 230
Blocking sends, 23
Blow up, 18
Body-area sensor (BANs), 176
Body-charts, LSC, 35
Boolean expressions, 214
Boolean variables, 12, 205, 208, 211,

213–215
Brake control, 128
Branch alignments, 201–203

difference metrics, 202
event occurrences, 202

Brightness, light controllers, 19
Büchi automaton, 74, 76–77, 81

for LTL property, 77f, 84–85
nondeterministic, 76

Buffers, 24
8-bit, 103
FSM of, 24
smoothing data rates with, 105f

Bug report, 198
Bus access mechanism, 85f
Bus arbiters, 84
Bus communication protocol, 12
Bus contention, 168
Bus controllers, 42–43
Bus cycles, 175
Bus interface, 97
Bus masters, 96
Bus slaves, 96
Bus-based communication, 84, 97f,

129, 167f
converters in, 97f
interface in, 97f
Promela in, 84

C
C programming language, 127, 215,

216, 219
Cabin features, 2–3
Cache, 141

4KB, 147
abstract states, 152
analysis, 162
concrete states, 152
hit, 150
live, 163
locking, 169, 171f
miss penalties, 170
modeling, 147–154
partitioning, 162
processor, 161–165
reaching, 163

Index 243

summaries, 163–165
update function, 152
WCET, 146

Cache conflict graph (CCG), 148
Cadence SMV, 93
Carnegie Mellon University, 86
Case studies, 89–91
CCG. See Cache conflict graph
Center TRACON Automation System

(CTAS), 13, 14
Centralized converter, 96

incompatibilities and, 102f
Channel capacity, 83
Checking procedure, 72–82. See also

Model checking; Software
checking

dynamic, 182, 184–207
static, 182
trace-based, 184–207

Choice, 173
Class diagrams, communicating

FSMs, 25
Classes, object-oriented designs with,

44–46
Client

connection, 89f, 90f
FSM, 60f

Climbs, 206
Clock cycles, 104
Clock-cycle-wise evolution, 17
Closed-system view, 29
CM. See Commit
CMU-SMV, 93
Collecting semantics, 151
Commit (CM), 169
Communicating FSMs, 20–27

composition of, 21–25
message sequence chart-based

models, 26–27
purpose, 22

Communication
actions, 106
bus protocol, 12
bus-based, 84, 97f, 129, 167f

channel, 90
converters, 96f
interfaces, 96f
in Promela, 83, 84
schematic, 128f
synchronous, 23
system-level, 165–169
time-triggered, 174–176

Complete models, 11
Component behaviors, 123
Composing system with property,

77–80
Compression, 193
Concatenation

asynchronous, 32, 48
MSCs, 30, 33f
synchronous, 32

Concrete path, 229
Concrete states, 46

cache, 152
Concrete test, 229
Concurrency

ATC, 19
in FSM, 17, 19–20
in Promela, 83
WCP, 19

Conditional branches, 216–217
Conditional execution, 168
Conflicting memory blocks, 149
Connect messages, 47
Connected relations, 8
Conservative estimate, 162
Contention, 157–161
Contiguous subsequence, 53, 71
Control constructs, 218
Control flow, 86

graph, 137–140, 144f, 147, 148f,
156, 228

Control location, 228
Control signals, 99
Controller, FSM, 60f
Conventional abstraction of time,

126–130
Conventional debugger, 188f

244 Index

Converter synthesis, 106–121
basic ideas for, 108–115
mechanism for, 109

Converters
in bus-based communication, 97f
for FSM, 109f, 113f, 117f
generation, 115
receive actions from, 109
representing, 106–108
send actions from, 109

Core behavior, 95, 97
Correct-by-construction system

design, 40
Counterexample evidence, 70, 73

model checking and, 224
Counterexample guided abstraction

refinement, 222
Counterexample trace, 82, 219f,

220–222
model checking, 228

Coverage, 204
CPLEX, 149
C-style program, 86
CTAS. See Center TRACON

Automation System

D
Daikon tool, 211
Data, 22, 23, 101

abstraction, 208f
dependencies, 168
mismatch in, 102–104
transmission, 122

Data rates
buffers smoothing, 105f
mismatch in, 105

Data signals, 99
Deadlines, 155
Deadlocks, 116, 119

breaking, 120
speculative transmission to avoid,

118–121
Debugging, 2

conventional, 188f
guarantees in, 9
software, 185
system modeling, 82

Denied state, 60
Dependencies, 186

chains, 194, 195f
dynamic, 190, 191f, 196f

Design model
complete, 11
criteria for, 10–12
executable, 11
standards, 11

Diagrams
class, 25
sequence, 92
state, 25, 42–44, 50
timing, 11

Directed testing methods, 203–207
Disable messages, 47, 48
Downward, 198
Dynamic analysis, 168
Dynamic checking, 182, 184–207

automated, 187
control, 192
data, 192
directed testing methods, 203–207
economic importance, 184–185
large slices, 193–196
manual, 187
related terminology, 185–186
space complexity, 193
time complexity, 193

Dynamic control dependence, 190, 201
checking, 192

Dynamic data dependence, 190
checking, 192

Dynamic dependencies, 190, 196f
control, 190, 192, 201
graph, 191f

Dynamic slicing, 187–196
concepts behind, 189f
conventional, 196
exploration of, 194

Index 245

hierarchical, 194
large, 193–196
method, 191–193

E
Earliest deadline first (EDF), 160–161
Economic importance, 184–185
ECUs. See Electronic control units
EDA. See Electronic design

automation
EDF. See Earliest deadline first
8-bit buffers, 103
8-bit parallel port, 103
8-bit shift register, 103
Electronic control units (ECUs), 175
Electronic design automation

(EDA), 70
Embedded computing, 1
Embedded systems

architecture of, 7
functionality validation, 4f
performance analysis, 1
safety-critical, 1
simulation, 1–2
testing, 1–2
timing validation, 4f
verification, 1–2

Emerging applications, 176
Emptiness check, 81–82
Encoding test specifications, 70–72
Engine features, 2–3
Enriching behavior, 121
Entertainment, 2–3
Environment

external, 96
interrupts from, 155–157
schematic interaction, 10f

Equal-length slots, 175
Error, 223

cause, 186
location, 219f

Estimated BCET, 132
Estimated WCET, 132

Evidence, 82
Evolution of time, 58
Evolution properties, 63
EX. See Execute
Execute (EX), 169
Execution paths, 138
Execution run, 197
Execution sequence, 130
Execution time

best-case, 131–133
predicting, 131–154
of preempting programs, 158–159
worst-case, 131–133

Execution trace, 67, 121–122, 220
analysis, 187, 192
compression, 193
execution run and, 197
FSM, 59–60
infinite-length, 61

Existential charts, LSC, 35
Expected behavior, 184
Explanation, 190
Explicit behavioral models, 50
External environment, 96

F
Fail verdict, 57
Failing run, 198, 200
False, 62

alarms, 227
positives, 227

Fault localization, 196–203
illustrative example, 197–200
methods, 201f

FIFO. See First-in-first-out
Finite-state automation, 74

syntax of, 75
Finite-state machines (FSM), 10, 98,

231
basic composition, 19–20
of buffers, 24
client in, 60f
common modeling notations,

16–20

246 Index

Finite-state machines (continued)
communicating, 20–27
composite state, 20
composition of communicating,

21–25
concurrency, 17, 19–20
construction, 108f
controller in, 60f
converters for, 109f, 113f, 117f
execution trace of, 59–60
flashing, 18
global, 22f
hierarchy, 17, 18–19
high-level, 26f
with infinitely many traces, 54f
intracomponent modeling via, 37
local, 38f
models, 210
per-process, 46
representation of states, 20
simulations, 41–46
stable, 18
states, 17
system models, 61
traffic light controller, 69
transitions, 17
UML and, 25
unit step, 17

Finite-state transition systems, 16f, 73,
208–209, 210, 222–223

linear-time temporal logic, 220
program fragment, 219f, 223f

First-in-first-out (FIFO), 24, 166
Fixed-point computation, 151
Flexray bus, 175f
Formal verification, 207–229

predicate abstraction, 211–218
software checking via predicate

abstraction, 218–225
testing and, 225–229

FSM. See Finite-state machines
Functionality guarantee, 9
Functionality validation, 3, 4f

software engineering, 183f

Futurebus protocol, 88
fwd signal, 117

G
Gain, 173
Generate-and-test procedure, 53–54
Generated test, 55
G-error, 223
Global FSM, 22f
GRANT1 signal, 87, 88
GRANT2 signal, 87, 88
Graphical user interface (GUIs), 187
Graphs

cache conflict, 148
control flow, 137–140, 144f, 147,

148f, 156, 228
dynamic dependencies, 191f
MSC, 30–33, 38f, 49f
task, 167
test, 56

Guarantee
in debugging, 9
functionality, 9
software, 207
timing, 9

Guaranteed upper bounds, 168
GUIs. See Graphical user interface

H
Handshakes, 22, 41
Hardware description language

(HDL), 72
Harel, David, 25
HDL. See Hardware description

language
Hierarchy

in dynamic slicing, 194
in FSM, 17, 18–19

High-level MSC, 30–34, 92
executable, 34
model-based testing, 51–52

Hits
always, 153
cache, 150

Index 247

I
ID. See Instruction Decode
Idle states, 43
IF. See Instruction fetch
If-then statement, 136
If-then-else statement, 135, 147
ILP. See Integer linear programming
Implementation-under-test (IUT), 55
Implicit path enumeration (IPET),

140
IMR. See Interrupt mask register
Inactivity time step, 174
Incompatibilities, 98–105
Inconclusive verdict, 57
Infeasible path, 136–137, 206, 218

detection, 145
exploitation, 143–145

Infinite domains, 208, 212
Infinite sequences of states, 63
Infinite traces, 53

FSM with, 54f
Infinite-length execution trace, 61
Infinite-length strings, 76
Informal requirements, 12–16

client initialization phase, 14
explicit behavioral models and, 50
initial states, 14
simplification, 14–16
weather updates, 15

Input signals, 111, 112
Instruction Decode (ID), 169
Instruction fetch (IF), 169
Integer linear programming (ILP)

cache modeling via, 147–149
variables, 150

Integer variables, 205, 212, 213
Interface, 95

in bus-based communication, 97f
sender, 100
signal, 100

Interleaving, 20
system model, 84f

Internal actions, 106
Interrupt mask register (IMR),

155–156
Interrupt-drive software, 156f
Interrupts, 155–157
Intracomponent modeling, FSM, 37
Intraprocess control flow, 46
Invariant properties, 211
IPET. See Implicit path enumeration
IUT. See Implementation-under-test

J
Java, 18, 185
JSlice tool, 193

K
Knapsack problem, 173

L
Large slices, 193–196
l�block, 148
Least recently used (LRU), 152
Lifelines, 28, 56–57
Light controller, 19

brightness, 19
mode, 19
stability, 19
variables, 19

Limits, 120
Linearization

MSCs, 33–34
of pre-charts, 35

Linear-time temporal logic (LTL), 62,
72, 228

Büchi automaton for, 77f, 84–85
finite-state automation and, 74–82
finite-state transition system and,

220
formula, 64
operators, 67
simple examples, 69–70
verification of, 78

Live cache states, 163

248 Index

Live sequence charts (LSCs), 35
ATC and, 36f
body-charts, 35
existential, 35
pre-charts, 35
universal, 35

Livelock, 116
states, 117

LOAD instruction, 174
Loop bound, 135, 143
Lower bounds, 153
LRU. See Least recently used
LSCs. See Live sequence charts
LTL. See Linear-time temporal logic

M
MAGIC, 93, 230
Matching actions, 110
May analysis, 153
Media processor, 105
Memory, 84

conflicting blocks, 149
on-chip, 146
overheads, 45
scratchpad, 169–174
write, 43f

Message sequence chart-based models
(MSC), 27–37, 92, 102

ATC and, 29, 30f
communicating FSMs, 26–27
concatenating finitely, 30, 33f
cut, 47
cut across, 49f
definition, 28–29
executable models, 34
graphs, 30–33, 38f, 49f
high-level, 30–34, 51–52, 92
lifelines in, 28
linearization, 33–34
problems with, 30
schematic, 27f
simulating, 46–50
single, 48

subsequence and, 71
in system modeling, 29
test-case, 56f
WCP and, 29
write requests and, 42–43

Messages
connect, 47
disable, 47, 48

Microarchitecture, modeling of,
145–154

Microsoft, 70
Minimal events, 47–48
Mode, light controllers, 19
Model checking, 58–82, 92

counterexample trace, 228
counterexamples, 224
detailed flow of, 224
emptiness, 81–82
procedure, 73–82
search procedure, 58
software, 209f, 220f, 227
validation flow with, 210f

Model simulations, 39–50
ATC, 41

Model-based testing, 50–57
HMSC, 51–52
subsequences, 53–55

Modeling notations, 16–39
FSM, 16–20
UML and, 37

Model-level validation, 5
MPEG encoders, 105
MSC. See Message sequence

chart-based models
Multisource-weighted longest-path

calculation problem, 156
Must analysis, 153
Mutex property, 88

N
National Institute of Standards and

Technology, 184
Native protocols, 106–108

incompatible, 107

Index 249

Negative test specification, 52
node1, 83
node2, 83
Nonblocking sends, 24, 28
Nondeterminism, in Promela, 83
No-progress cycles, 116–118
not_ok response, 117
Null abstraction, 225
Null sets, 228
NuSMV, 93

O
Object-oriented designs, with classes,

44–46
Observable error, 186
Observed BCET, 132–133
Observed behavior, 184
Observed WCET, 132–133
ok signal, 120
Open-system view, 29, 116
Operators

interpreting, 68
linear-time temporal logic, 67
propositional logic, 62
temporal, 63
temporal logic, 62

Ordering of events, 59
Outgoing edges, 138
Out-of-order pipelines, 147
Output signals, 111, 112
Overheads

memory, 45
time, 45

Own execution time, 157

P
Parallel execution, 215
Parallel port, 103
Parallelism, 194

inherent, 196f
Partitioning, 230

cache, 162
Pass verdict, 57

Performance analysis, 1–2
Performance validation, 4
Per-process updates, 46
Phase, 195

corresponding, 196f
Pictorial descriptions, 64f, 65f, 66f
Platform

schematic interaction, 10f
system behavior v., 8–10

Points
appropriate, 101
preemption, 164

Positive test specification, 52
PowerPC, 88
Pre-charts

linearization of, 35
LSC, 35

Predicate abstraction, 211–218, 220,
222

assignment statement, 211–216
conditional branches, 216–217
control constructs, 218
null sets in, 228
overapproximation of behavior in,

221
software checking via, 218–225

Predicates, 214
Predictable timing, 169–176
Preempting programs, 158–159
Preemption, 157–161

point, 164
Preemptive execution, 161f
Prespecified action patterns, 98
Prespecified interaction patterns, 98
Primitive constraints, 206
Priorities, static/dynamic, 160
Problems

knapsack, 173
message sequence chart-based

models, 30
multisource-weighted longest-path

calculation, 156
Processing element, 167

interference within, 154–165

250 Index

Processors, 42–43, 84
caches, 161–165
classes of, 44
media, 105
resource, 48
user, 48
verification, 72

Product automaton construction, 9–80
Prog, 163
Program fragments, 209f, 231

finite-state transition system, 219f,
223f

Programs
acyclic, 226f
arbitrary, 225
counter value, 156, 228
C-style, 86
paths, 226
real-life, 226
schedulable, 159
TCAS, 197
terminating, 62
unabstracted program, 215–216

Promela
for ATC, 89
bus-based communication in, 84
communication in, 83
concurrency in, 83
nondeterminism in, 83
standard C-like syntax, 83

Prominent use cases, 41
Prop, 68, 73–74, 78
Property specification, 58–63
Property specification language (PSL),

60–61, 72
Property templates, 72–73
Propositional logic operators, 62
Propositions, 208
Protocols

bus communication, 12
conversion, 115–116
Futurebus, 88
meta-language, 83
native, 106–108

receiver, 113
sender, 113
session, 114

PSL. See Property specification
language

Purpose-based test generation, 51

Q
Queues, 24

R
Radars, 125
Rate monotonic scheduling (RMS),

159
Reaching cache states, 163
Ready signal, 100, 101
Real-life programs, 226
Real-time systems, 133
Receive actions, 109
Receiver protocol, 113
Receiver’s viewpoint, 101f
Receiving signals, 99–100
Refined transition system, 224
Refinement, 221, 222, 223

abstraction, 225, 228
counterexample guided abstraction,

222
Regular language, 75
req signal, 120
Request signal, 86, 100, 101
Requirements document, 13–14
Research Triangle Institution, 184
Resource process, 48
Response time, 157
Rhapsody, 92
RMS. See Rate monotonic scheduling
Runs

failing, 198
successful, 198

S
Safety critical parts, 3
Scenario-based modeling, 29
Schedulability analysis, 157

Index 251

Schedulable programs, 159
Scheduling policy, 158
Schematic communication, 128f
Schematic interaction

environment and, 10f
platform and, 10f
system behavior and, 10f

Scratchpad memories, 169–174
cache-locking and, 171f
mapping address space to, 171f
in stages, 170
statistically allocated, 172

Search procedure, 58
Send actions, 109
Sender interface, 100
Sender protocol, 113
Sender’s viewpoint, 101f
Sending signals, 99–100
Send-receive, 44
Sends

blocking, 23
nonblocking, 23, 28

Sensors, 125
body-area, 176
wheel, 128

Separate processing, 128
Separated approach, 154
Sequence Diagrams. See Message

sequence chart-based models
Serial port, 103
setStatus_1, 47–48
Shared signals, 111
Shift registers, 103
Siemens benchmark suite, 205
Signal alphabet, 99

handling, 100–102
Signals

addr, 121
fwd, 117
input, 111, 112
ok, 120
output, 111, 112
ready, 100, 101
req, 120

request, 86, 100, 101
shared, 111
stop, 100, 101, 122
wait, 104
yes/no, 117

Simulation, 1–2
Single instructions, 127
Single transition, 216
S-interface, 100
SLAM, 93, 230
SMV validation tool, 86–89, 92

bus access mechanism in, 87f
Software checking, 209f, 218–225,

227
detailed flow of, 224
overall flow in, 220f

Software engineering, 183f
buggy, 186
debugging, 185
guarantees, 207

Software validation, 227
Source-code level, 135, 142–143
Space complexity, 193
Specification mining, 211
Speculative signal transmission, 116,

119f
SPIN validation tool, 82–84, 92, 230.

See also Validation
bus access mechanism in, 85f

Stability
FSM, 18
light controllers, 19

Standard C-like syntax, 83
State diagrams

communicating FSMs, 25
UML, 42–44, 50

State management, 42
Statecharts, 25
Stateflow, 92
Statements

assignment, 211–216
coverage, 230
if-then, 136
if-then-else, 135, 147

252 Index

Statements (continued)
instance, 190
sets, 200–201

States
abstract cache, 152
atomic propositions and, 68
concrete, 46
concrete cache, 152
denied, 60
in FSM, 17
idle, 43
infinite sequences of, 63
live cache, 163
livelock, 117
reaching cache, 163
try, 45
wait, 43, 45

Static analysis, 131, 132, 168, 182
Static checking, 182
Static/dynamic priorities, 160
Steps

activity time, 174
atomic, 43
inactivity time, 174
super, 42–43
time, 174
unit, 17

Stop signal, 100, 101, 122
Structure, 7
Subsequence, 53

contiguous, 53, 71
MSC and, 71

Successful run, 198
Suffix of a string, 63–68
Super steps, 42, 43

atomic execution, 42
Symbolic models, 89
Synchronization messages, 56
Synchronous communication, 23, 44
Synchronous composition, 78
Synchronous concatenation, 32
Syntax tree

associated, 134f
control flow graph and, 139f

representation, 134
structure, 138

System architecture, 7
System behavior, 7

platform v., 8–10
schematic interaction, 10f

System modeling, 92
debugging, 82
interleavings, 84f
MSCs in, 29
UML-based, 39, 40f

System response time, 4
System structure, 8
SystemC, 72
System-level communication analysis,

165–169
System-on-chip, 44, 88, 154, 166

T
Task graph, 167
Task model, 160
Tasks, 127
TCAS program, 197
TDMA. See Time division multiple

access
Temp10, 12
Temporal logics, 58, 62

linear-time, 62
operators, 62
proving, 92

Temporal operators, 63
Temporal properties, 225
Terminating programs, 62
Test execution, 55–57

test generation v., 55
test verdicts from, 57

Test generation, test execution v., 55
Test graph, 56
Test specification, 55

ATC, 52
negative, 52
positive, 52
WCP, 52

Test trace, 54f

Index 253

Test verdicts
fail, 57
inconclusive, 57
pass, 57
from test execution, 57

Tester components, 55
generation of, 56f

Tester processes, 55
Testing, 1–2
Time

complexity, 193
conventional abstraction of,

126–130
evolution of, 58
explicit, 59
overheads, 45
own execution, 157
response, 157
waiting, 157

Time division multiple access
(TDMA), 175

Time step
activity, 174
inactivity, 174

Time-triggered communication,
174–176

Timing analysis, 10
Timing anomaly, 130
Timing diagrams, 11
Timing effects, 146
Timing guarantee, 9
Timing schema, 134, 143
Timing validation, 4f, 125

issues in, 126f
Trace-based checking, 184–207

automated, 187
directed testing methods, 203–207
economic importance, 184–185
manual, 187
related terminology, 185–186

Traces. See also Execution trace
atomic propositions and, 68
comparison, 200–203

counterexample, 82, 219f,
220–222, 228

infinite, 53, 54f
phases, 195
unexpected, 40

Trajectory Synthesizer, 13
Transitions

in FSM, 17
refined systems, 224

Trigger/action, 43
Triggers

communication and, 174–176
write, 45

True, 62
Try state, 45
Type, 172

U
UML. See Unified Modeling Language
Unabstracted program, 215–216
Unbounded, 45
Unexpected behaviors, 40
Unexpected output, 192
Unexpected traces, 40
Unified Modeling Language (UML),

8, 11, 27, 91, 123
FSMs, 25
modeling notations and, 37
sequence diagram, 51
state diagrams, 42–44, 50
system modeling, 39, 40f

Unit step, 17
Universal charts, LSC, 35
Unsatisfiable core, 222
Upper bounds, 131, 153

guaranteed, 168
Upward, 198
User process, 48
User-guided simulation, 82

V
Validation. See also SPIN validation

tool
flow, 210f

254 Index

Validation (continued)
functionality, 3, 4f, 183f
model-level, 5
performance, 4
software, 227
timing, 4f, 125, 126f

Value-passing, 23
Variable-length slots, 175
Variables

Boolean, 12, 205, 208, 211,
213–215

ILP, 150
integer, 205, 212, 213
light controller, 19

VBwatch, 187
Verification

of embedded systems, 1–2
formal, 207–229
linear-time temporal logic, 78
processors, 72

Verilog, 72
Vertical lines, 28
VHDL, 72
Video decoder, 105
Viewpoints

receivers, 101f
sender’s, 101f

Visual Basic, 187

W
Wait signal, 104
Wait state, 43, 45

Waiting time, 157
WB. See Write Back
WCET. See Worst-case execution time
WCP. See Weather control panel
Wearable computing technologies,

176
Weather control panel (WCP), 13, 15,

91
concurrency, 19
MSCs and, 29
test specification, 52

Weather updates, 15
Wheel sensors, 128
Windows device drivers, 225
Working designs, 121–122
Worst-case execution time (WCET),

130, 159, 172
actual, 132
basic blocks, 150
of basic blocks, 140
cache for, 146
calculation, 133–145
estimated, 132
observed, 132–133

w-regular language, 75
Write Back (WB), 169
Write requests, 42–43
Write triggers, 45

Y
Yes/no signal, 117

	Cover
	Contents
	Acknowledgments
	Preface
	Introduction
	Model Validation
	Communication Validation
	Performance Validation
	Functionality Validation
	Bibliography
	Index

