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Preface 

This monograph is about analysis strategies for regression prob­
lems in which predictors are measured with error. These problems 
are commonly known as measurement error modeling or errors-in­
variables. There is an enormous literature on this topic in linear 
regression, as summarized by Fuller (1987). Our interest lies almost 
exclusively in the analysis of nonlinear regression models, defined 
generally enough to include generalized linear models, transform­
both-sides models, and quasilikelihood and variance function prob­
lems. 

The effects of measurement error are well-known, and we basi­
cally assume that the reader understands that measurement error 
in predictors causes biases in estimated regression coefficients, and 
hence that the field is largely about correcting for such effects. 
Chapter 2 summarizes much of what is known about the conse­
quences of measurement error for estimating linear regression pa­
rameters, although the material is not exhaustive. 

Nonlinear errors-in-variables modeling began in earnest in the 
early 1980s with the publication of a series of papers on diverse 
topics: Prentice (1982) on survival analysis, Carroll, Spiegelman, 
Lan, Bailey & Abbott (1984) and Stefanski & Carroll (1985) on 
binary regression, Armstrong (1985) on generalized linear model­
s, Amemiya (1985) on instrumental variables and Stefanski (1985) 
on estimating equations. David Byar and Mitchell Gail organized a 
workshop on the topic in 1987 at the National Institutes of Health, 
which in 1989 was published as a special issue of Statistics in 
Medicine. Since these early papers, the field has grown dramat­
ically, as evidenced by the bibliography at the end of this book. 
Unlike the early 1980s, the literature is now so large that it is diffi­
cult to understand the main ideas from individual papers. Indeed, 
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a first draft of this book, completed in late 1990, consisted only 
of the material in four of the first five chapters. Essentially all the 
rest of the material has been developed since 1990. In a field as 
rapidly evolving as this one, and with the entrance of many new 
researchers into the area, we can present but a snapshot of the 
current state of knowledge. 

This book can be divided broadly into four main parts: Chapters 
1-2,3-6, 7-8, and 9-14. In addition, there is Appendix A, a review 
of relevant fitting methods and statistical models. 

The first part is introductory. Chapter 1 gives a number of ap­
plications where measurement error is of concern, and defines ba­
sic terminology of error structure, data sources and the distinc­
tion between functional and structural models. Chapter 2 gives an 
overview of the important ideas from linear regression, particular­
ly the biases caused by measurement error and some estimation 
techniques. 

The second part gives the basic ideas and techniques of what we 
call functional modeling, where the distribution of the true predic­
tor is not modeled parametrically. In addition, in these chapters it 
is assumed that the true predictor is never observable. The focus is 
on the additive measurement error model, although periodically we 
describe modifications for the multiplicative error model. Chapters 
3 and 4 discuss two broadly applicable functional methods, regres­
sion calibration and simulation-extrapolation (SIMEX), which can 
be thought of as the default approaches. Chapter 5 discusses a 
broadly based approach to the use of instrumental variables. All 
three of these chapters focus on estimators which are easily com­
puted but yield only approximately consistent estimates. Chapter 
6 is still based on the assumption that the true predictor is n­
ever observable, but here we provide functional techniques which 
are fully and not just approximately consistent. This material is 
somewhat more daunting in (algebraic) appearance than the ap­
proximate techniques, but even so the methods themselves are of­
ten easily programmed. Throughout this part of the book, we use 
examples of binary regression modeling. 

The third part of the book concerns structural modeling, mean­
ing that the distribution of the true predictor is parametrically 
modeled. Chapter 7 describes the likelihood approach to estima­
tion and inference in measurement error models, while Chapter 8 
briefly covers Bayesian modeling. Here we become more focused on 
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the distinction between functional and structural modeling, and 
also describe the measurement error problem as a missing data 
problem. We also allow for the possibility that the true predictor 
can be measured in a subset of the study population. The discus­
sion is fully general, and applies to categorical data as well as to 
the additive and multiplicative measurement error models. While 
at this point the use of structural modeling in measurement error 
models is not very popular, we believe it will become more so in 
the very near future. 

The fourth part of the book is devoted to more specialized topic-
s. Chapter 9 takes up the study of functional techniques which are 
applicable when the predictor can be observed in a subset of the 
study. Chapter 10 discusses functional estimation in models with 
generalized linear structure and an unknown link function. Chapter 
11 describes the effects that measurement error has on hypothesis 
testing. Nonparametric regression and density function estimation 
are addressed in Chapter 12. Errors in the response rather than in 
predictors are described in Chapter 13. In Chapter 14, a variety of 
topics are addressed briefly: case-control studies, differential mea­
surement error, functional mixture methods, design of two-stage 
studies and survival analysis. 

We have tried to design the text so that it can be read at t­
wo levels. Many readers will be interested only in the background 
material and in the definition of the specific methods that can be 
employed. These readers will find that the chapters in the middle 
two parts of the text (functional and structural modeling) begin 
with preliminary discussion, move into the definition of the meth­
ods, and are then followed by a worked numerical example. The 
end of the example serves as a flag that the material is about to 
become more detailed, with justifications of the methods, deriva­
tions of estimated standard errors, etc. Those readers who are not 
interested in such details should skip the material following the 
examples at first (and perhaps last) reading. 

It is our intention that the part of the book on functional models 
(Chapters 3-6) can be understood at an overview level without an 
extensive background in theoretical statistics, at least through the 
numerical examples. The structural modeling approach requires 
that one knows about likelihood and Bayesian methods, but with 
this exception the material is not particularly specialized. The 
fourth part of the book (Chapters 9-14) is more technical, and we 
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suggest that those interested mainly in an overview simply read 
the first section of each of those chapters. 

A full appreciation of the text, especially its details, requires 
a strong background in likelihood methods, estimating equations 
and quasilikelihood and variance function models. For inference, we 
typically provide estimated standard errors, as well as suggest use 
of "the" bootstrap. These topics are all covered in Appendix A, al­
beit briefly. For more background on the models used in this mono­
graph, we highly recommend reading Chapter 1 of Fuller (1987) for 
an introduction to linear measurement error models and the first 
four chapters of McCullagh and Neider (1989) for further discus­
sion of generalized linear models, including logistic regression. 

This is a book about general ideas and strategies of estimation 
and inference, and not a book about a specific problem. Our in­
terest in the field started with logistic regression, and many of our 
examples are based upon this problem. However, our philosophy is 
that measurement error occurs in many fields, and in a variety of 
guises, and what is needed is an outline of strategies for handling 
progressively more difficult problems. While logistic regression may 
well be the most important nonlinear measurement error model, 
the strategies here are applied to a hard core nonlinear regression 
bioassay problem (Chapter 3), a changepoint problem (Chapter 7), 
and a 2 x 2 table with misclassification (Chapter 8). Our hope is 
that the strategies will be sufficiently clear that they can be applied 
to new problems as they arise. 

We have tried to represent the main themes in the field, and to 
reference as many research papers as possible. Obviously, as in any 
monograph, the selection of topics and material to be emphasized 
reflects our own interests. We apologize in advance to those workers 
whose work we have neglected to cite, or whose work should have 
been better advertised. 

Carroll's research and the writing of this book were supported 
by grants from the National Cancer Institute (CA-57030 and CA-
61067). After January 1, 1996, Splus and SAS computer programs 
(on SPARC architecture Sun OS versions 4 and 5 and for Windows 
on PC's) which implement (for major generalized linear models) 
many of the functional methods described in this book can be 
obtained by sending a message to qvf@stat.tamu.edu. The body of 
the text should contain only a valid return email address. This will 
generate an automatic reply with instructions on how to get the 
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software. 
Much of Stefanski's research on measurement error problems has 

been supported by grants from the National Science Foundation 
(DMS-8613681 and DMS-9200915) and by funding from the En­
vironmental Monitoring and Assessment Program, U.S. Environ­
mental Protection Agency. 

We want to thank Jim Calvin, Bobby Gutierrez, Stephen Eckert, 
Joey Lin, C. Y. Wang and Naisyin Wang for helpful general com­
ments, Donna Spiegelman for a detailed reading of the manuscript, 
Jeff Buzas, John Cook, Tony Olsen and Scott Overton for ideas and 
comments related to our research, and Viswanath Devanarayan 
for computing assistance and comments. Rob Abbott stimulated 
our initial interest in the field in 1981 with a question concerning 
the effects of measurement error in the Framingham Heart Study; 
this example appears throughout our discussion. Larry Freedman 
and Mitch Gail have commented on much of our work and have 
been instrumental in guiding us to interesting problems. Nancy Po­
tischman introduced us to the world of nutritional epidemiology, 
where measurement error is of fundamental concern. Our friend 
Leon Gieser has been a source of support and inspiration for many 
years, and has been a great influence on our thinking. 

This book uses data supplied by the National Heart, Lung, and 
Blood Institute, NIH, DHHS from the Framingham Heart Study. 
The views expressed in this paper are those of the authors and do 
not necessarily reflect the views of the National Heart, Lung, and 
Blood Institute or of the Framingham Study. 



Guide to Notation 

In this section we give brief explanations and representative exam­
ples of the notation used in this monograph. For precise definitions, 
see the text. 

An,Bn 
ao 
Ctx 

Ctz 

f3o 
f3x 
f3z 
f3lZX 
..6. 

dim(f3) 
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coefficient of W in a regression calibration 
model 
intercept in an error model 
coefficient of X in an error model 
coefficient of W in an error model 
(1 + exp( -v))- 1 , e.g., the logistic function 
bandwidth in nonparametric regression or 
density estimation 
Fisher information 
kernel used in nonparametric regression or 
density estimation 
a2mfa2 
likelihood ratio 
generalized score function 
E(X,Z,W) 
probability of selection into a validation study 
estimating functions 
Y measured with error (S = Y + V) 
score function 
variance of U 
conditional variance of X given Z 

covariance matrix between the random vectors 
Z and X 
observation related to X 
simulated estimator used in SIMEX 
average of the eb(A)s 
observation error in an error model 
pseudo-error in SIMEX 
measurement error in the response 
observation related to X 
covariates measured with error 
response 
covariates measured without error 
average of Yii over j 
density of Y given (Z, X, B) (Bayesian notation) 



CHAPTER 1 

INTRODUCTION 

1.1 Measurement Error Examples 

Nonlinear measurement error models commonly begin with an un­
derlying nonlinear model for the response Y in terms of the predic­
tors. We distinguish between two kinds of predictors: Z represents 
those predictors which for all practical purposes are measured with­
out error, and X those which cannot be observed exactly for all 
study subjects. The distinguishing feature of a measurement error 
problem is that we can observe a variable W which is related to 
X. The parameters in the model relating Y and (Z, X) cannot, of 
course, be estimated directly by fitting Y to (Z, X). The goal of 
measurement error modeling is to obtain nearly unbiased estimates 
of these parameters indirectly by fitting a model for Y in terms of 
(Z, W). Attainment of this goal requires careful analysis. Substi­
tuting W for X, but making no adjustments in the usual fitting 
methods for this substitution, leads to estimates that are biased, 
sometimes seriously. 

In assessing measurement error, careful attention needs to be 
given to the type and nature of the error, and the sources of data 
which allow modeling of this error. The following examples illus­
trate some of the different types of problems that are considered 
in this book. 

1.1.1 Nutrition Studies 

The NHANES-1 Epidemiologic Study Cohort data set (Jones, et 
al., 1987), is a cohort study originally consisting of 8,596 women, 
who were interviewed about their nutrition habits and then later 
examined for evidence of cancer. We restrict attention to a sub­
cohort of 3,145 women aged 25-50 who have no missing data on 
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the variables of interest. 
The response Y indicates the presence of breast cancer. The 

predictor variables Z assumed to be measured without significant 
error include the following: age, poverty index ratio, body mass 
index, alcohol (Yes-No), family history of breast cancer, age at 
menarche, and menopausal status. We are primarily interested in 
the effects of nutrition variables X that are known to be imprecisely 
measured, e.g., "long-term" saturated fat intake. 

If all these underlying variables were observable, then a standard 
logistic regression analysis would be performed. However, it is both 
difficult and expensive to measure long-term diet in a large cohort. 
In the NHANES data, instead of observing X, the measured W 
was a 24 hour recall, i.e., each participant's diet in the previous 
24 hours was recalled and nutrition variables computed. That the 
measurement error is large in 24-hour recalls has been documented 
previously (Beaton, et al., 1979; Wu, et al., 1986). Indeed, there 
is evidence to support the conclusion that more than half of the 
variability in the observed data is due to measurement error. 

There are several sources of the measurement error. First, there 
is the error in the ascertainment of food consumption in the previ­
ous 24-hours, especially amounts. Some of this type of error is pure­
ly random, while another part is due to systematic bias, e.g., some 
people resist giving an accurate description of their consumption 
of snacks. The size of potential systematic bias can be determined 
in some instances (Freedman, et al., 1991), but in the present s­
tudy we have available only the 24-hour recall information, and 
any systematic bias is unidentifiable. 

The major source of "error" is the fact that a single day's diet 
does not serve as an adequate measure of the previous year's diet. 
There are seasonable differences in diet, as well as day-to-day vari­
ations. This points out the fact that measurement error is much 
more than simple recording or instrument error: it encompasses 
many different sources of variability. 

There is insufficient information in the NHANES data to model 
measurement error directly. Instead, the measurement error struc­
ture was modeled using an external data set, the CSFII (Continu­
ing Survey of Food Intakes by Individuals) data (Thompson, et al., 
1992). The CSFII data contain the 24-hour recall measures W, as 
well as 3 additional 24-hour recall phone interviews. Using exter­
nal data, rather than assessing measurement error on an internal 
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subset of the primary study, entails certain risks that we will be dis­
cussing later in this chapter. The basic problem is that parameters 
in the external study may differ from parameters in the primary 
study, leading to bias when external estimates are transported to 
the primary study. 

1.1.2 Nurses' Health Study 

A second nutrition and breast cancer study has been considered 
by Rosner, Willett & Spiegelman (1989) and Rosner, Spiegelman 
& Willett (1990), namely the Nurses' Health Study. The study is 
much larger than the NHANES study, with over 80,000 partici­
pants and over 500 breast cancer cases. The variables are much 
the same, with the exceptions that (1) alcohol is assessed differ­
ently; and (2) a food frequency questionnaire was used instead of 
24-hour recall interviews. The size of the measurement error in the 
nutrition variables is still quite large. Here, X = (alcohol intake, 
nutrient intake). 

The Nurses' Health Study was designed so that a direct as­
sessment of measurement error is possible. Specifically, 173 nurses 
recorded alcohol and nutrient intakes in diary form for four differ­
ent weeks over the course of a year. The average, T, of these diary 
entries is taken to be an unbiased estimate of X. We will call T a 
second measure of X. Thus, in contrast to NHANES, measurement 
error was assessed on data internal to the primary study. 

1.1.3 Bioassay in a Herbicide Study 

Rudemo, et al. (1989) consider a bioassay experiment with plants, 
in which eight herbicides were applied. For each of these eight com­
binations, six (common) nonzero doses were applied and the dry 
weight Y of five plants grown in the same pot was measured. In 
this instance, the predictor variable X of interest is the amount of 
the herbicide actually absorbed by the plant, a quantity which can­
not be measured. Here the response is continuous, and if X were 
observable then a nonlinear regression model would have been fit, 
probably by nonlinear least squares. The four-parameter logistic 
model (not to be confused with logistic regression where the re­
sponse is binary) is commonly used. 

However, X is not observable, but instead we know only the 



4 INTRODUCTION 

nominal concentration W of herbicide applied to the plant. The 
sources of error include not only the error in diluting to the nominal 
concentration, but also the fact that two plants receiving the same 
amount of herbicide may absorb different amounts. 

In this example, the measurement error was not assessed directly. 
Instead, the authors assumed that the true amount X was linearly 
related to the nominal amount W with nonconstant variance. This 
error model, combined with the approach discussed in Chapter 3, 
was used to construct a new model for the observed data. 

1.1.4 Lung Function in Children 

Tosteson, et al. (1989) describe an example in which the response 
was the presence (Y = 1) or absence (Y = 0) of wheeze in children, 
which is an indicator of lung dysfunction. The predictor variable 
of interest is X = personal exposure to N02 • Since Y is a binary 
variable, if X were observable, the authors would have used logistic 
or probit regression to model the relationship of Y and X. How­
ever, X was not available in their study. Instead, the investigators 
were able to measure a bivariate variable W consisting of observed 
kitchen and bedroom concentrations of N02 in the child's home. 
School age children spend only a portion of their time in their 
homes, and only a portion of that time in their kitchens and bed­
rooms. Thus, it is clear that the true N02 concentration is not fully 
explained by what happens in the kitchen and bedroom. 

While X was not measured in the primary data set, two inde­
pendent, i.e., external, studies were available in which both X and 
W were observed. We will describe this example in more detail 
later in this chapter. 

1.1.5 Coronary Heart Disease and Blood Pressure 

The Framingham study (Kannel, et al., 1986) is a large cohort s­
tudy following individuals for the development Y of coronary heart 
disease. The main predictor of interest in the study is systolic blood 
pressure, but other variables include age at first exam, body mass, 
serum cholesterol and whether the person is a smoker or not. In 
principle, at least, Z consists only of age, body mass and smok­
ing status, while the variables X measured with error are serum 
cholesterol and systolic blood pressure. It should be noted that in 



MEASUREMENT ERROR EXAMPLES 5 

a related analysis MacMahon, et al. (1990) consider only the last 
as a variable measured with error. We will follow this convention 
in our discussion. 

Again, it is impossible to measure long-term systolic blood pres­
sure X. Instead, what is available is the blood pressure W ob­
served during a clinic visit. The reason that the long-term X and 
the single-visit W differ is that blood pressure has major daily, as 
well as seasonal, variation. 

In this experiment, we have an extra measurement of blood pres­
sure T from a clinic visit taken 4 years before W was observed. 
Hence, unlike any of the other studies we have discussed, in the 
Framingham study, we have information on measurement error for 
each individual. One can look at T as simply a replicate ofW. How­
ever, T may be a biased measure of X because of secular changes 
in the distribution of blood pressure in the population. Both ways 
of looking at the data are useful, and lead to different methods of 
analysis. 

1.1.6 A-Bomb Survivor Data 

Pierce, et al. (1992) consider analysis of A-bomb survivor data 
from the Hiroshima explosion. They discuss various responses Y, 
including the number of chromosomal aberrations. The true radi­
ation dose X cannot be measured, and instead estimates W are 
available. They adopt a fully parametric approach assuming that 
W is lognormally distributed with median X and coefficient of vari­
ation of 30%. They assumed that if X is positive, it has a Weibull 
distribution. 

1.1. 7 Blood Pressure and Urinary Sodium Chloride 

Liu & Liang (1992) describe a problem of logistic regression where 
the response Y is the presence of high systolic blood pressure 
(greater than 140). In principle the fact that systolic blood pressure 
is measured with error should cause the response to be measured 
with error, i.e., the binary response should be subject to misclassi­
fication. However, in this particular study blood pressure was mea­
sured many times and the average recorded, so that the amount of 
measurement error in the average systolic blood pressure is reason­
ably small. The predictors Z measured without error are age and 
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body mass index. The predictor X subject to measurement error 
is urinary sodium chloride, which is subject to error because of 
intra-individual variation over time and also possibly due to mea­
surement error in the chemical analyses. In order to understand 
the effects of measurement error, 24-hour urinary sodium chloride 
was measured on 6 consecutive days. 

1.2 Functional and Structural Models 

Historically, the taxonomy of measurement error models has been 
based upon two major defining characteristics. The first character­
istic includes both the structure of the error model relating W to 
X and the type and amount of additional data available to assess 
the important features of this error model, e.g., replicate measure­
ments as in the Framingham data, or second measurements as in 
the NHANES study. These two factors (error structure and data 
structure) are clearly related since more sophisticated error models 
can be entertained only if sufficient data are available for estima­
tion. We take up the issue of error models in detail in section 1.3, 
although this is a recurrent theme throughout the book. 

The second defining characteristic is determined by properties of 
the unobserved true values Xi, i = 1, ... , n. The literature tradi­
tionally makes the distinction between classical functional models, 
in which the X's are regarded as a sequence of unknown fixed 
constants, and classical structural models, in which the X's are 
regarded as random variables. We believe that it is more fruitful 
to make a distinction between functional modeling, where the X's 
may be either fixed or random, but in the latter case no or at least 
only minimal assumptions are made about the distribution of the 
X's, and structural modeling, where models, usually parametric, 
are placed on the distribution of the random X's. We discuss this 
issue in more detail in section 7.2, along with the connection of 
measurement error modeling to missing data problems. Here we 
give a brief overview of some of the important issues in functional 
and structural models and modeling. 

Since we believe that the key distinction is between functional 
modeling and structural modeling, we will use that terminology 
throughout. 

Consider modeling the relationship between aquatic species di­
versity Y, and acid neutralizing capacity X, given data consisting 
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of measures on (Y, X) from each of n lakes. If the only lakes of 
interest are those represented in the sample, then it is appropriate 
to treat Xi, i = 1, ... , n as unknown constants. The X's are not 
a random sample from any population, and one might reasonably 
be reluctant to hypothesis a parametric model for their "distribu­
tion". A functional modeling approach would either treat the X's 
as fixed unknown constants to be estimated, or would attempt to 
avoid their consideration entirely. 

Alternatively, if the lakes represented in the data set are a ran­
dom sample from a large population of lakes, then it is appropriate 
to treat xi, i = 1, ... 'n as independent and identically distribut­
ed random variables. We might still adopt a functional modeling 
approach, which is attractive because of the lack of assumptions 
that are made. Here, however, we have the alternative of hypothe­
sizing a parametric model for the X's, and thus adopt a structural 
modeling approach. 

An important fact to keep in mind is that if an estimator can 
be found that is consistent under a functional modeling approach, 
then it is distributional-robust, i.e., it may be used without mak­
ing any assumptions about the distribution of the X's. Functional 
modeling is at the heart of the first part of this book, especially 
in Chapters 3, 4, 6 and in the more advanced (and less developed) 
literature discussed in Chapter 9. The key point is that even when 
the X's form a random sample from a population, functional mod­
eling is useful because it leads to estimation procedures that are 
robust to misspecification of the distribution of X. As described in 
Chapter 7, structural modeling has an important role to play (see 
also Chapter 8) in applications, but a major concern must be the 
appropriateness of any assumptions made about the distribution 
of X. 

Throughout, we will treat Z1 , ... , Zn as fixed constants, and our 
analyses will be conditioned on their values. The practice of con­
ditioning on known covariates is standard in regression analysis. 

1.3 Models for Measurement Error 

1.3.1 General Approaches 

A fundamental prerequisite for analyzing a measurement error 
problem is specification of a model for the measurement error pro-
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cess. There are two general types: 
• Error Models, including Classical Measurement Error models 

and Error Calibration models, where the conditional distribu­
tion of W given (Z, X) is modeled; 

• Regression Calibration models, which are also known as con­
trolled-variable or Berkson error models, where the conditional 
distribution of X given (Z, W) is modeled. 

The classical error model, in its simplest form, is appropriate 
when an attempt is made to determine X directly, but one is unable 
to do so because of various errors in measurement. For example, 
consider systolic blood pressure (SBP), which is known to have 
strong daily and seasonal variations. In trying to measure SBP, 
the various sources of error include simple machine recording error, 
administration error, time of day, season of the year, etc. In such a 
circumstance, it sometimes makes sense to hypothesize an unbiased 
additive error model, which we write as 

W=X+U. (1.1) 

In this model, stating that W is an unbiased measure of X says that 
W has conditional mean, given both X and any covariates mea­
sured without error, equal to X, i.e., in symbols, E(UIX, Z) = 0. 
The error structure of U could be homoscedastic (constant vari­
ance) or heteroscedastic. 

A slightly more general model allows for systematic biases. For 
example, it is common to measure long-term food intake via a 
food frequency questionnaire. There is some evidence in the liter­
ature that these questionnaires have systematic biases (Freedman, 
et al., 1991); in particular, it might be the case that those with the 
largest amounts of intake of something like saturated fat under­
report their true intake more than someone with a standard diet. 
This phenomenon can often be modeled by a regression relation­
ship, 

W = /'o,em +/'~,em X+ 'Y;,emZ + U, E(UIX, Z) = 0. (1.2) 

We use the designation "em" to stand for "~rror model". In either 
case, the basic idea is that we observe truth contaminated by error. 

To distinguish the classical additive error model (1.1) from (1.2), 
we will call the latter an error calibration model. The term cali­
bration means that W is biased for X and has to be calibrated to 
make it unbiased, e.g., by using ('Y!,em)- 1 (W -')'o,em -'Y!,emZ). 
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By a regression calibration model we mean one which focuses on 
the distribution of X given (Z, W). We use the term "regression 
calibration" as opposed to "error calibration" to make it clear that 
while the latter adjusts to a classical additive error model, the 
former involves more complex modeling. The controlled variable 
model as a form of a regression calibration is especially applicable 
to laboratory studies. As an example, consider the herbicide study 
of Rudemo, et al. (1989) (section 1.1.3). In that study, a nominal 
measured amount W of herbicide was applied to a plant. However, 
the actual amount X absorbed by the plant differed from W, both 
because of potential errors in application (the nominal amount was 
not applied) and because of the absorption process itself. In this 
case, the true response should be modeled as a function of W, e.g., 

X= ')'o,cm + l{cm W + l'~,cmZ + U., E(U.IZ, W) = 0. (1.3) 

Here we use the designation "em" to denote a "regression ~al­
ibration model". If true X is unbiased for nominal W, so that 
')'o,cm = 1'2,cm = 0 and /'1,cm = 1. Model (1.3) is usually called 
the Berkson model. 

Determining an appropriate error model to use in the data anal­
ysis depends upon the circumstances and the available data. For 
example, in the herbicide study, the measured concentration W 
is fixed by design and the true concentration X varies due to er­
ror, so that model (1.3) is appropriate. On the other hand, in the 
measurement of long-term systolic blood pressure, it is the true 
long-term blood pressure which is fixed for an individual, and the 
measured value which is perturbed by error, so model (1.2) should 
be used. Estimation and inference procedures have been developed 
both for error and calibration models. While working through this 
monograph, the reader will observe that we provide methods for 
both cases. 

Sometimes it is not obvious whether an error calibration or a 
regression calibration model is most realistic, and in these cases 
the choice between them necessarily is made on the basis of con­
venience. Empirical considerations obviously should determine the 
form of the model. For example, consider the lung function study 
of Tosteson, et al. (1989). In this study, interest was in the relation­
ship of long-term true N02 intake X in children on the eventual 
development of lung disease. In their study, X was not available. 
The vector W consists of bedroom and kitchen N02 levels as mea-
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sured by in situ or stationary recording devices. Certainly, X and 
W are related, but children are exposed to other sources of N02 , 

e.g., in other parts of the house, school, etc. 
The available data consisted of the primary study in which Y 

and W were observed, and two external studies (from different 
locations, study populations and investigators) in which (X, W) 
were observed. In this problem, the regression calibration model 
(1.3) seems physically reasonable, because a child's total exposure 
X can be thought of as a sum of in-home exposure and other 
uncontrolled factors (U*). Tosteson, et al. (1989) fit (1.3) to each of 
the external studies, found remarkable similarities in the estimated 
1's, and concluded that the assumption of a common model for all 
three studies was a reasonable working assumption. 

The error calibration model (1.2) could also have been fit. How­
ever, W here is bivariate, X is univariate, and implementation of 
estimates and inferences is simply less convenient here that it is 
for a regression calibration model. 

1.3.2 Transportability of Models 

In some studies, the measurement error process is not assessed 
directly, but instead data from other independent studies (called 
external data sets) are used. In this section, we discuss the appro­
priateness of using information from independent studies and the 
manner in which this information should be used. 

We say that parameters of a model can be transported from one 
study to another if the model holds with the same parameter val­
ues in both studies. Typically, in applications only a subset of the 
model parameters need be transportable. Transportability means 
that not only the model but also the relevant parameter estimates 
can be transported without bias. 

In many instances, approximately the same classical error model 
holds across different populations. For example, consider systolic 
blood pressure at two different clinical centers. Assuming similar 
levels of training for technicians making the measurements and a 
similar protocol, e.g., sitting after a resting period, it is reasonable 
to expect that the distribution of the error in the recorded measure 
W depends only on (Z, X) and not on the clinical center one enters, 
or on the technician making the measurement, or on the value of 
X being measured (except possibly for heteroscedasticity). Thus, 
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in classical error models it is often reasonable to assume that the 
error distribution of W given (Z, X) is the same across different 
populations. 

Similarly, the same regression calibration or controlled-variable 
model can sometimes be assumed to hold across different studies. 
For example, consider the N02 study described earlier. If we have 
two populations of suburban children, then it may be reasonable to 
assume that the sources of N02 exposure other than the bedroom 
and kitchen will be approximately the same, and the error models 
transportable. However, if one study consists of suburban children 
living in a nonindustrial area, and the second study consists of 
children living in an inner-city near an industrialized area, the 
assumption of transportable error models would be tenuous at best. 

1.3.3 Potential Dangers of Transporting Models 

The use of independent-study data to assess error model structure 
carries with it the danger of introducing estimation bias into the 
primary study analysis. 

First consider the controlled variable model for N02 intake. The 
primary data set of Tosteson, et al. (1989) (section 1.1.4) is a sam­
ple from Watertown, Massachusetts. Two independent data sets 
were used to fit the parameters in (1.3), one from the Netherland­
s and one from Portage, Wisconsin. The parameter estimates for 
this model in the two external data sets were essentially the same. 
Tosteson, et al. used this evidence suggesting that the regression 
relationship from the Dutch and Portage studies was appropriate 
for the Watertown study. However, as these authors note in some 
detail, it is important to remember that this is an assumption, 
plausible in this instance, but still one not to be made lightly. If 
Watertown were to have a much different pattern of N02 exposure 
than Portage or the Netherlands, then the parameters to (1.3) fit 
by the latter two studies, while similar, might be biased for the 
Watertown study, and the results for Watertown hence incorrect. 

The issue of transporting results for error models is critical in the 
classical measurement error model as well. Consider the MRFIT 
study (Kannel, et al., 1986), in which X is long-term systolic blood 
pressure. The external data set is the Framingham data (MacMa­
hon, et al., 1990). Carroll & Stefanski (1994) discuss these studies 
in detail, but here we use the studies only to illustrate the potential 
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pitfalls of extrapolating across studies. It is reasonable to assume 
that model (1.1) holds with the same measurement error variance 
for both studies, which reduces to stating that the distribution 
of W given (Z, X) is the same in the two studies. However, the 
distribution of X appears to differ substantially in the two stud­
ies, with the MRFIT study having smaller variance. Under these 
circumstances, while the error model is probably transportable a 
regression calibration model formed from Framingham would not 
be transportable to MRFIT. The problem is that (by Bayes' the­
orem) the distribution of X given (Z, W) depends both on the 
distribution of W given (Z, X) and on the distribution of X given 
Z, and the later is not transportable. 

1.4 Sources of Data 

In order to perform a measurement error analysis, as seen in (1.2)­
(1.3), one needs information about either W given (X, Z) (classical 
measurement error or error calibration) or about X given (Z, W) 
(regression calibration). 

In this section, we will discuss various data sources that allow 
estimation of the critical distributions. These data sources can be 
broken up into two main categories: 

• Internal subsets of the primary data; 
• External or independent studies. Within each of these broad 

categories, there are three types of data, all of which we as­
sume to be available in a random subsample of the data set in 
question: 

• Validation data in which X is observable directly. 
• Replication data, in which replicates of W are available. 
• Instrumental data, in which another variable T is observable 

in addition toW. 
An internal validation data set is the ideal, because it can be 

used with all known techniques, permits direct examination of the 
error structure, and typically leads to much greater precision of 
estimation and inference. We cannot express too forcefully that 
if it is possible to construct an internal validation data set, one 
should strive to do so. External validation data can be used to 
assess any of the models (1.1)-(1.3) in the external data, but one 
is always making an assumption when transporting such models to 
the primary data. · 
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Usually, one would make replicate measurements if there were 
good reason to believe that the replicated mean is a better estimate 
of X than a single observation, i.e., the classical error model is the 
target. Such data cannot be used to test whether W is unbiased 
for X as in (1.1) or biased as in (1.2). However, if one is willing 
to assume (1.1), then replication data can be used to estimate the 
variance of the measurement error, U. 

Internal instrumental data sets containing a second measure T 
are useful for instrumental variable analysis (Chapter 5). If ex­
ternal, they are only useful if T is unbiased for X, in which case 
they can be used to estimate the 1's in (1.3); regression calibration 
(Chapter 3) is one technique which can be applied in this case. 

1.5 Is There an "Exact" Predictor? 

We have based our discussion on the existence of an exact predic­
tor X, and measurement error models which provide information 
about this predictor. However, in practice, it is often the case that 
the definition of "exact" needs to be carefully defined prior to dis­
cussion of error models. 

For example, consider the NHANES study in which long-term 
intake of saturated fat is of interest. Ideally, one wishes to measure 
the actual long-term average of saturated fat intake, but even here 
we have a definitional problem. If this is long-term average intake 
over a subject's entire life, it is clearly never measurable. Even if 
we define "long-term" as the average intake of saturated fat within 
a year of entry into the study, we still cannot measure this variable 
without error. The problem is that, at the present time, saturat­
ed fat intake can only be assessed in practice through the use of 
a dietary measurement such as a food record, 24-hour recall or 
a food-frequency questionnaire. Such instruments measure actual 
food intake with error. 

In almost all cases, one has to take an operational definition 
for the exact predictor. In the measurement error literature the 
term "gold standard" is often used for the operationally defined 
exact predictor, though sometimes this term is used for an exact 
predictor that cannot be operationally defined, In the NHANES 
study the operational definition is the average saturated food in­
take over a year-long period as measured by the average of 24-hour 
recall instruments. One can think of this as the best measure of 
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exposure that could possibly be determined in practice, and even 
here it is extremely difficult to measure this quantity. Having made 
this operational definition for X, we are in a position to undertake 
an analysis, for clearly the observed measure W is unbiased for 
X when measured on a randomly selected day. In this case, the 
measurement error model (1.1) is reasonable. However, in order to 
ascertain the distributional properties of the measurement error, 
one requires a replication experiment, and even modeling the repli­
cates is somewhat subtle. The simplest way to take replicates is to 
perform 24-hour recalls on a few consecutive days (see also section 
1.1.7), but the problem here is that such replicates are probably not 
conditionally independent given the long-term average. This type 
of replication does not measure the true error, which is highly influ­
enced by intra-individual variation in diet. Hence, with replicates 
on consecutive days, estimating the variance of the measurement 
error by components-of-variance techniques will underestimate the 
measurement error. 

The same problem may occur in the urinary sodium chloride 
example (section 1.1. 7), because the replicates were recorded on 
consecutive days. The authors suggest that intra-individual vari­
ation is an important component of variability, and the design is 
not ideal for measuring this variation. 

If one wants to estimate the measurement error variance consis­
tently, it is much simpler if replicates can be taken far enough apart 
in time that the errors can reasonably be considered independent 
(see Chapter 3 for details). Otherwise, assumptions must be made 
about the form of the correlation structure, see Wang, Carroll & 
Liang (1995) and also the analysis of the CSFII component of the 
NHANES study in section 3.12.1. In the CSFII component of the 
NHANES study, measurements were taken at least two months a­
part, but there was still some small correlation between errors. In 
the Nurses Health Study (section 1.1.2), the exact predictor is the 
long-term average intake as measured by food records. Replicated 
food records were taken at four different points during the year, 
thus properly accounting for intra-individual variation. 

Using an operational definition for an "exact" predictor is often 
reasonable and justifiable on the grounds that it is the best one 
could ever possibly hope to accomplish. However, such definitions 
may be controversial. For example, consider the breast cancer and 
fat controversy. One way to determine whether changing one's fat 
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intake lowers the risk of developing breast cancer is to do a clinical 
trial, where the treatment group is actively encouraged to change 
their dietary behavior. Even this is controversial, because noncom­
pliance can occur in either the treatment or the control arm. If 
instead one uses prospective data, as in the NHANES study, along 
with an operational definition of long-term intake, one should be 
aware that the results of a measurement error analysis could be 
invalid if true long-term intake and operational long-term intake 
differ in subtle ways. Suppose that the operational definition of fat 
and calories could be measured, and call these (Fa to, Calorieso), 
while the actual long-term intake is (FatA, CaloriesA)· If breast 
cancer risk is associated with age and fat intake through the logis­
tic regression model 

Pr(Y = liFatA, CaloriesA, Age) 

= H (f3o + fJ1Age + fJ2CaloriesA + (33FatA), 

then the important parameter is (33, with (33 > 0 corresponding to 
the conclusion that increased fat intake at a given level of calories 
leads to increased cancer risk. 

However, suppose that the observed fat and calories are actually 
biased measures of the long-term average: 

Fa to 

Calorieso 

/l,emFatA + /2,emCaloriesA; 

/3,emFatA + /4,em Calories A. 

Then a little algebra shows that the regression of disease on the 
operationally defined measures has a slope for operationally defined 
fat of 

(!4,emf33 - /3,emf32) / ('Yl,em/4,em - /2,em/3,em) · 

Depending on the parameter configurations, this can take on a sign 
different from (33 . For example, suppose that (33 = 0 and there real­
ly is no fat effect. Using the operational definition, a measurement 
error analysis would lead to a fat effect of -'Y3,emf32/('Yl,em/4,em 
- /2,em/3,em), which may be nonzero. Hence, in this instance, 
there really is no fat effect, but our operational definition would 
lead us to find one. 
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1.6 Differential and Nondifferential Error 

It is important to make a distinction between differential and non­
differential measurement error. Nondifferential measurement error 
occurs when W has no information about Y other than what is 
available in X and Z. The technical definition is that measuremen­
t error is nondifferential if the distribution of Y given (X, Z, W) 
depends only on (X, Z). In this case W is said to be a surrogate. 
In other words, W is a surrogate if it is conditionally independen­
t of the response given the true covariates; measurement error is 
differential otherwise. 

For instance, consider the Framingham example of section 1.1.5. 
The predictor of major interest is long-term systolic blood pres­
sure (X), but we can only observe blood pressure on a single day 
(W). It seems plausible that a single day's blood pressure con­
tributes essentially no information over and above that given by 
true long-term blood pressure, and hence that measurement error is 
nondifferential. The same remarks apply to the nutrition examples 
in sections 1.1.1 and 1.1.2: measuring diet on a single day should 
not contribute information not already available in long-term diet. 

Many problems can plausibly be classified as having nondiffer­
ential measurement error, especially when the true and observed 
covariates occur at a fixed point in time, and the response is mea­
sured at a later time. 

There are two exceptions that need to be kept in mind. First, 
in case-control or choice-based sampling studies (section 14.1), the 
response is obtained first and then subsequent follow-up ascertains 
the covariates. In nutrition studies, this ordering of measurement 
typically causes differential measurement error. For instance, here 
the true predictor would be long-term diet before diagnosis, but 
the nature of case-control studies is that reported diet is obtainable 
only after diagnosis. A woman who develops breast cancer may well 
change her diet, so the reported diet as measured after diagnosis 
is clearly still correlated with cancer outcomes, even after taking 
into account long-term diet before diagnosis. 

A second setting for differential measurement error occurs when 
W is not merely a mismeasured version of X, but is a separate 
variable acting as a type of proxy for X. For example, Satten & 
Kupper (1993) use an example for estimating the risk of coronary 
heart disease where X is an indicator of elevated LDL (low density 
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lippoprotein cholesterol level), taking the values 1 and 0 according 
as the LDL does or does not exceed 160. For their value W they use 
total cholesterol. In their particular data set, both X and W are 
available, and it transpires that the relationship between W and Y 
is differential, i.e., there is still a relationship between the two even 
after accounting for X. While the example is somewhat forced, 
one should be aware that problems in which W is not merely a 
mismeasured version of X may well have differential measurement 
error. 

The reason why nondifferential measurement error is important 
is that, as we will show in subsequent chapters, one can typically 
estimate parameters in models for responses given true covariates 
even when the true covariates (X) are not observable. With differ­
ential measurement error, this is not the case: one must observe the 
true covariate on some study subjects. Most of this book focuses 
on nondifferential measurement error models, although some work 
for differential measurement error is described in section 14.2. 

Here is a little technical argument illustrating why nondifferen­
tial measurement error is so useful. With nondifferential measure­
ment error the relationship between Y and W is greatly simplified 
relative to the case of differential measurement error. In simple 
linear regression, for example, it means that the regression in the 
observed data is a linear regression of Yon E(X\W), because 

E(Y\W) E {E(Y\X, W)\W} 

E {E(Y\X)\W} 

E(f3o + (3,X\W) 

f3o + (3,E(X\W). 

The assumption of nondifferential measurement error is used to 
justify the second equality above. This argument forms the heart 
of the method of regression calibration, see Chapter 3. 

1. 7 True and Approximate Replicates 

In the classical homoscedastic additive error model (1.1), to esti­
mate the measurement error variance it is typical to take replicates, 
i.e., observe W twice on some of the study participants. Estimat­
ing the measurement error variance when there are replicates is 
discussed in detail in section 3.4.2, but here we point out a vexing 
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practical problem with replicates which should be kept in mind for 
any error analysis. 

What often happens is that the replicates are subject to drift, so 
that for example the second time W is observed on a study partic­
ipant, there is a tendency for the mean to decrease (or increase). 
This is a well-known phenomenon in nutrition, where individuals 
tend to report steadily decreasing total calories in diet the more 
they are interviewed. The simplest way to handle such a drift is 
to add a constant to the second measurements so that their sam­
ple mean equals the sample mean of the first measurements. This 
method is very simple, and it often works amazingly well (Landin, 
et al., 1995). 

1.8 Measurement Error as a Missing Data Problem 

In section 7.2, we discuss in detail the relationship between mea­
surement error modeling and the vast literature on missing data 
(Little & Rubin, 1987). We leave the discussion until then, but here 
provide a very brief overview. 

From one perspective, measurement error models are special 
kinds of missing data problems, because the X's, being mostly and 
often entirely unobservable, are obviously missing as well. Readers 
who are already comfortable with linear measurement error mod­
els and functional modeling will be struck by the fact that most 
of the recent missing data literature has pursued likelihood and 
Bayesian methods, i.e., structural modeling approaches. Readers 
familiar with missing data analysis will also be interested to know 
that, in large part, the measurement error model literature has pur­
sued functional modeling approaches. We feel that both functional 
and structural modeling approaches are useful in the measurement 
error context, and this book will pursue both strategies. 

1.9 Prediction 

In Chapter 2 we discuss the biases caused by measurement error 
for estimating regression parameters, and the effects on hypothesis 
testing are described in Chapter 11. Much of the rest of the book 
is taken up with methods for removing the biases caused by mea­
surement error, with brief descriptions of inference at each step. 

Prediction of a response is, however, another matter. If a predic-
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tor X is measured with error, and one wants to predict a response 
based on the error-prone version W of X, then except for a spe­
cial case discussed below, it rarely makes any sense to worry about 
measurement error. The reason for this is quite simple. If one has 
an original set of data (Y, Z, W), one can fit a convenient model 
toY as a function of (Z, W). Predicting Y from (Z, W) is merely 
a matter of using this model for prediction. There is no need then 
for measurement error to play a role in the problem. 

The one situation requiring that we model the measurement er­
ror occurs when we develop a prediction model using data from 
one population but we wish to predict in another population. A 
naive prediction model that ignores measurement error may not 
be transportable. 

1.10 A Brief Tour 

As noted in the preface, this monograph is structured into four 
parts: background material, functional modeling, structural model­
ing, and specialized topics. Here we provide another brief overview 
of where we are going. 

It is commonly thought that the effect of measurement error is 
"bias towards the null" , and hence that one can ignore measure­
ment error for the purpose of testing whether a predictor is "statis­
tically significant". This lovely and appealing folklore is sometimes 
true but unfortunately often wrong. The reader may find Chapters 
2 (especially section 2.5) and 11 instructive, for it is in these chap­
ters that we describe in detail the effects of ignoring measurement 
error. 

With continuously measured variables, the classical error model 
(1.1) is often assumed. The question of how one checks this assump­
tion has not been discussed in the literature. Section 4.4 suggests 
one such method, namely plotting the intra-individual standard de­
viation against the mean, which should show no structure if (1.1) 
holds. This and a simple graphical device to check for normality of 
the errors are described in section 7.6. Often, the measured value 
of W is replicated, and the usual assumption is that the replicates 
are independent. Methods to check this assumption are described 
in section 3.12.1. 

Having specified an error model, one can either use functional 
modeling methods (Chapters 3-6 and 10) or structural modeling 
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methods (Chapters 7-8). If X is observable for a subset of the 
study, then other functional methods are applicable (Chapter 9). 
Density estimation, nonparametric regression, response error and 
other topics are discussed in Chapters 12-14. 



CHAPTER 2 

REGRESSION AND 
ATTENUATION 

2.1 Introduction 

This chapter summarizes some of the known results about the ef­
fects of measurement error in linear regression, and describes some 
of the statistical methods used to correct for those effects. Our dis­
cussion of the linear model is intended only to set the stage for our 
main topic, nonlinear measurement error models, and is far from 
complete. A comprehensive account of linear measurement error 
models can be found in Fuller (1987). 

In addition to the background material on linear models, the 
problem of attenuation in nonlinear models is discussed. 

2.2 Bias Caused by Measurement Error 

Many textbooks contain a brief description of measurement error 
in linear regression, usually focusing on simple linear regression and 
arriving at the conclusion that the effect of measurement error is 
to bias the slope estimate in the direction of 0. Bias of this nature 
is commonly referred to as attenuation or attenuation to the null. 

In fact though, even this simple conclusion has to be qualified, 
because it depends on the relationship between the measurement, 
W, and the true predictor, X, and possibly other variables in the 
regression model as well. In particular, the effect of measurement 
error depends upon the model under consideration and on the joint 
distribution of the measurement error and the other variables. In 
multiple linear regression, the effects of measurement error vary 
depending on: (i) the regression model, be it simple or multiple 
regression; (ii) whether or not the predictor measured with error 
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is univariate or multivariate; and (iii) the presence of bias in the 
measurement. The effects can range from the simple attenuation 
described above to situations where: (i) real effects are hidden; 
(ii) observed data exhibit relationships that are not present in the 
error-free data; and (iii) even the signs of estimated coefficients are 
reversed relative to the case with no measurement error. 

The key point is that the measurement error distribution de­
termines the effects of measurement error, and thus appropriate 
methods for correcting for the effects of measurement error depend 
on the measurement error distribution. 

2.2.1 Simple Linear Regression with Additive Error 

We start with the simple linear regression model Y = (30 + f3xX + 
t:, where X has mean f-lx and variance a;, and t: is independent 
of X, has mean zero and variance a;. The predictor X cannot 
be observed, and instead one observes W = X+ U, where U is 
independent of X, has mean zero, and variance a~. This is the 
classical additive measurement error model, where it is well-known 
that an ordinary least squares regression of Y on W is a consistent 
estimate not of f3x, but instead of f3x* = A.f3x, where 

a2 
A= 2x2<1. 

ax +au 
(2.1) 

Thus ordinary least squares regression of Y on W produces an 
estimator that is attenuated to 0. The attenuating factor, >.., is 
called the reliability ratio (Fuller, 1987). 

One would expect that because W is an error-prone predictor, 
it has a weaker relationship with the response than does X. This 
can be seen both by the attenuation, and also by the fact that the 
residual variance of this regression of Y on W is 

( lw) 2 f3;a~a; 
var Y = a, + 2 2 . 

ax +au 

This facet of the problem is often ignored, but it is important. 
Measurement error causes a double-whammy: not only is the slope 
attenuated, but the data are more noisy, with an increased error 
about the line. 

To illustrate the attenuation associated with the classical addi­
tive measurement error, the results of a small simulation are dis-
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• 0 

0 

0 

0 

0 

Figure 2.1. Illustration of additive measurement error model. The filled 
circles are the true (Y, X) data and the steeper line is the least squares 
fit to these data. The empty circles and attenuated line are the observed 
(Y, W) data and the associated least squares regression line. For these 
data u; = u~ = 1, (f3o,f3,) = (0, 1) and u; = .25. 

played in Figure 2.1. 
Ten observations were generated with u; = u~ = 1, ((30 J3x) = 

(0, 1) and u; = .25. The filled circles and steeper line depict the 
true but unobservable data (Y, X) and the regression line of Y 
on X. The empty circles and attenuated line depict the observed 
(Y, W) data and the linear regression of Y on W. 

2.2.2 Simple Linear Regression, More Complex Error Structure 

Despite admonitions of Fuller (1987) and others to the contrary, 
it is a common perception that the effect of measurement error 
is always to attenuate the line, but in fact attenuation depends 
critically on the classical additive measurement error model. In 
this section, we discuss two deviations from the classical additive 
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error model that do not lead to attenuation. 

We continue with the simple linear regression model, but now 
we make the error structure more complex in two ways. First, we 
will no longer insist that W be unbiased for X. The intent of 
studying this departure from the classical additive error model is 
to study what happens when one pretends that one has an unbiased 
surrogate, but in fact the surrogate is biased. 

A second departure from the additive model is to allow the er­
rors in the linear regression model to be correlated with the errors 
in the predictors. One example where this problem arises naturally 
is in dietary calibration studies (Freedman, Carroll & Wax, 1991). 
In a typical dietary calibration study, one is interested in the rela­
tionship between a self-administered food frequency questionnaire 
(FFQ, the value ofY) and usual (or long-term) dietary intake (the 
value of X) as measures of, for example, the percentage of calo­
ries from fat in a person's diet. FFQ's are thought to be biased 
for usual intake, and in a calibration study researchers will obtain 
a second measure (the value of W), typically either from a food 
diary or from an interview where the study subject reports their 
diet in the previous 24-hours. In this context, it is often assumed 
that the diary or recall is unbiased for usual intake. In principle, 
then, we have simple linear regression with an additive measure­
ment error model, but in practice a complication can arise. It is 
often the case that the FFQ and the diary /recall are given very 
nearly contemporaneously in time, as in the Women's Health Trial 
Vanguard Study (Henderson, et al., 1990). In this case, it makes 
little sense to pretend that the error in the relationship between 
the FFQ (Y) and usual intake (X) is uncorrelated with the error 
in the relationship between a diary /recall (W) and usual intake. 
This correlation has been demonstrated (Freedman, et al., 1991), 
and in this section we will discuss its effects. 

To express the possibility of bias in W, we write the model as 
W = ')'o,em + 'Yl,emX + U, where U is independent of X and has 
mean zero and variance a~. To express the possibility of correlated 
errors, we will write the correlation between E and U as Pw· The 
classical additive measurement error model sets ')'o,em = 0, Pw = 0 
and ')'1,em = 1, so that W =X+ U. 

If (X, E, U) are jointly normally distributed, then the regression 
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of Y on W is linear with intercept 

and slope 

f3o* = f3o + f3xJ.lx- f3x*bo,em + 'Yl,emJ.lx) 

f3 _ f3x'Yl,ema~ + Pw ~ 
X*- 2 2 + 2 'Y1,emax au 

25 

(2.2) 

Examination of (2.2), shows that if W is biased (11,em -::/:- 1) or 
if there is significant correlation between the measurement error 
and the error about the true line (IPwl > 0), it is possible for 
lf3x* I > lf3x I, an effect exactly the opposite of attenuation. Thus, 
correction for bias induced by measurement error clearly depends 
on the nature, as well as the extent of the measurement error. 

For purposes of completeness, we note that the residual variance 
of the linear regression of Y on W is 

2.2.3 Multiple Regression: Single Covariate Measured with Error 

In multiple linear regression the effects of measurement error are 
more complicated, even for the classical additive error model. 

We now consider the case where X is scalar, but there are ad­
ditional covariates Z measured without error. The linear model is 
now 

(2.3) 

where Z and f3z are column vectors, and f3; is a row vector. In 
the appendix it is shown that if W is unbiased for X, and the 
measurement error U is independent of X, Z and E, then the least 
squares regression estimator of the coefficient of W consistently 
estimates >.1 f3x, where 

2 2 
axiz axiz 

Al = -2 - = a2 + a2 ' 
awlz xlz u 

(2.4) 

and a!Lz and a; 1z are the (residual) variances of the regressions of 
W on Z and X on Z, respectively. Note that >.1 is equal to the 
simple linear regression attenuation >. = a~/(a~ +a;) only when 
X and Z are uncorrelated. 
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The problem of measurement error-induced bias is not restricted 
to the regression coefficient of X. The coefficient of Z is also biased 
in general, unless Z is independent of X (Carroll, et al., 1985; 
Gieser, et al., 1987). In the appendix it is shown that for the model 
(2.3), the naive ordinary least squares estimates not f3z but rather 

(2.5) 

where r; is the coefficient of Z in the regression of X on Z, i.e., 
E(X 1 Z) = ro + r;z. 

This result has important consequences when interest centers 
on the effects of covariates measured without error. Carroll, et 
al. (1985) and Carroll (1989) show that in the two-group analysis 
of covariance where Z is a treatment assignment variable, naive 
linear regression produces a consistent estimate of the treatment 
effect only if the design is balanced, i.e., X has the same mean in 
both groups and is independent of treatment. With considerable 
imbalance, the naive analysis may lead to the conclusion that: (i) 
there is a treatment effect when none actually exists; and (ii) the 
effects are negative when they are actually positive, and vice-versa. 

2.2.4 Multiple Covariates Measured with Error 

Now suppose that there are covariates Z measured without error, 
that W is unbiased for X which may consist of multiple predictors, 
and that the linear regression model is Y = f3o+f3~X+(3;Z+t:. If we 
write L:ab to be the covariance matrix between random variables A 
and B, then naive ordinary linear regression consistently estimates 
not (f3x, f3z) but rather 

) 
-1 

L:xz 
L;zz 

{ ( ~:~ ) + ( L:of ) } 

( L:xx + L:uu 
L:zx 

L:xz 
L:zz 

) 
-1 

(2.6) 

{ ( L:xx L:xz) ( f3x ) + ( L:u< ) } . 
L:zx L:zz f3z 0 

Thus, ordinary linear regression is biased. We turn next to bias 
correction. 
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2.3 Correcting for Bias 

As we have just seen, the ordinary least squares estimator is typi­
cally biased under measurement error, and the direction and mag­
nitude of the bias depends on the regression model and the mea­
surement error distribution. In this section, we describe two meth­
ods for eliminating bias that are commonly used. 

2.3.1 Method of Moments 

In simple linear regression with the classical additive error model, 
we have seen in (2.1) that ordinary least squares is an estimate of 
>.f3x; recall that >. is called the reliability ratio. If the reliability ratio 
were known, then one could obtain a proper estimate of f3x simply 
by dividing the ordinary least squares slope f3x* by the reliability 
ratio. 

Of course, the reliability ratio is rarely known in practice, and 
one has to estimate it. If a~ is an estimate of the measurement error 
variance (this is discussed in section 3.4), and if a! is the sample 
variance of the W's, then a consistent estimate of the reliability 
ratio is :X= (a!- a~) fa!. The resulting estimate is f3x*!i 

In small samples the sampling distribution of 1ix* ;:X is highly 
skewed, and in such cases a modified version of the method-of­
moments estimator is recommended (Fuller, 198 7). 

The algorithm described above is called the method-of-moments 
estimator. The terminology is apt, because ordinary least squares 
and the reliability ratio depend only on moments of the observed 
data. 

The method-of-moments estimator can be constructed for the 
general linear model, and not just for simple linear regression. Sup­
pose that W is unbiased for X, and consider the general linear 
regression model with Y = f3o + f3~X + f3!Z + t. The ordinary 
least squares estimator is biased even in large samples because it 
estimates (2.6). 

When ~uu and ~u< are known or can be estimated, (2.6) can 
be used to construct a simple method-of-moments estimator that 
is commonly used to correct for the bias. Let Sab be the sample 
covariance between random variables A and B. The method-of­
moments estimator that corrects for the bias in the case that ~uu 
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and ~u< are known is 

( Sww- ~uu 
Bzw 

Swz) -l ( Swy - ~U<) , 
Bzz Szy 

(2.7) 

In the case that ~uu and ~u< are estimated, the estimates replace 
the known values in (2.7). It is often reasonable to assume that 
~u< = 0. in which case (2. 7) simplifies accordingly. 

In the event that W is biased for X, i.e., W = 1'o,em +rx,emX + 
U, i.e., the error calibration model, the method-of-moments esti­
mator can still be used provided estimates of (1'o,em,1'x,em) are 
available. The strategy is to calculate the estimators above using 
the error-calibrated variate W * = ::Y;,~m (W -1o,em). 

2.3.2 Orthogonal Regression 

Another well publicized method for linear regression in the p­
resence of measurement error is orthogonal regression; see Fuller 
(1987, section 1.3.3). However, for reasons given below, we are 
skeptical about the general utility of orthogonal regression, in large 
part because it is so easily misused. Although not fundamental to 
understanding later material on nonlinear models, we take the op­
portunity to discuss orthogonal regression at length here in order 
to emphasize the potential pitfalls associated with it. This section 
can be skipped by those who are interested only in estimation for 
nonlinear models. 

Let Y = {30 + f3xX +f. and W = X+ U, where f. and U are 
uncorrelated. Whereas the method-of-moments estimator (section 
2.3) requires knowledge or estimability of the measurement error 
variance O";, orthogonal regression requires the same for the ratio 
TJ = 0"; I 0";. 

The orthogonal regression estimator minimizes the orthogonal 
distance of (Y, W) to the line f3o + f3xX, weighted by TJ, i.e., it 
minimizes 

n 

2:: { (Yi - f3o - f3xxi) 2 + TJ (Wi - xi) 2 } (2.8) 
i=l 

in the unknown parameters (f3o,f3x,xl,···,xn)· 
In fact (2.8) is the sum of squared orthogonal distances between 

the points (Yi, Wi)r, and the line y = f3o+f3xx, only in the special 
case that 17 = 1. However, the term orthogonal regression is used 
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wi yil yi2 

-1.8007 -0.5558 -0.9089 
-0.7717 0.2076 0.6499 
-0.4287 -1.7365 -1.8542 
-0.0857 -0.9018 0.2040 

0.2572 -0.2312 -0.3097 
0.6002 0.2967 0.5072 
0.9432 0.5928 1.5381 
1.2862 1.2420 1.2599 

Table 2.1. Orthogonal regression example with replicated response. 

to describe the method regardless of the value of TJ < oo. 
The orthogonal regression estimator is the functional maximum 

likelihood estimator (sections 1.2 and 6.1) assuming that (X1 , ... , 

Xn) are unknown fixed constants, and that the errors (E, U) are 
independent and normally distributed. 

Orthogonal regression has the appearance of greater applicabil­
ity than method-of-moments estimation in that only the ratio, TJ, 
of the error variances need be known or estimated. However, it is 
our experience that in the majority of problems TJ cannot be spec­
ified or estimated correctly, and use of orthogonal regression with 
an improperly specified value of TJ often results in an unacceptably 
large over correction for attenuation due to measurement error. 

We illustrate the problem with some data from a consulting 
problem (Table 2.1). The data include two measurements of a 
response variable, Yil and Yi2, and one predictor variable, Xi, 
i = 1, ... , 8. The data are proprietary and we cannot disclose the 
nature of the application. Accordingly, all of the variables have 
been standardized to have sample means and variances 0 and 1 
respectively. 

We take as the response variable to be used in the regression 
analysis, Yi = (Yil + Yi2)/2, the average of the two response 
measurements. 

From an independent experiment it had been estimated that 
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u~ ~ 0.0424, also after standardization. Because the sample stan­
dard deviation of W is 1.0, measurement error induces very little 
bias here. The estimated reliability ratio is ~ = 1/1.0424 ~ 0.96 
and so attenuation is only about 4%. The ordinary least squares 
estimated slope from regressing the average of the responses on W 
is 0.65, while the method-of-moments slope estimate is ~- 1 0.65 ~ 
0.68. 

In a first analysis of these data, our client thought that or­
thogonal regression was an appropriate method for these data. 
A components-of-variance analysis resulted in the estimate 0.0683 
for the response measurement error variance. If 'T/ is estimated by 
if= 0.0683/0.0424 ~ 1.6118, then the resulting orthogonal regres­
sion slope estimate is 0.88. 

The difference in these two estimates, 10.88-0.681, is larger than 
would be expected from random variation alone. Clearly something 
is amiss. The method-of-moments correction for attenuation is only 
~ - 1 ~ 1.04, whereas orthogonal regression in effect, produces a 
correction for attenuation of approximately 1.35 ~ 0.88/0.65. 

The problem lies in the nature of the regression model error 
E, that is typically the sum of two components: (i) EM, the mea­
surement error in determination of the response; and (ii) EL, the 
equation error, i.e., the variation about the regression line of the 
true response in the absence of measurement error. 

If we have replicated measurements, Y ij, of the true response, 
then Yij = f3o + f3xXi + EL,i + EM,ij, and of course their average 
is Yi. = (30 + f3xXi + EL,i + EM,i·· Here and throughout the book a 
subscript "dot" and over bar means averaging. For example, with 
k replicates, 

k k 

- -1"' . - k-1"' Yi. = k ~ Yij, fM,i· = ~ EM,ij· 

j=1 j=1 

The components of variance analysis estimates only the variance 
of the average measurement error EM,i· in the responses, but com­
pletely ignores the variability, EL,i, about the line. The net effect 
is to under estimate TJ and thus overstate the correction required 
of the ordinary least squares estimate, because var("EM,i·) / u~ is 
used as the estimate of 'T/ instead of the larger, appropriate value 
{var("fM,d + var(EL,i)} /u~. 

The naive use of orthogonal regression on the data in Table 
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Figure 2.2. Illustration of the dangers of orthogonal regression. The filled 
and empty circles represent replicated values of the response. Note the 
evidence of equation error. 

2.1 has assumed that there is no additional variability about the 
line in addition to that due to measurement error in the response, 
i.e., EL,i = 0. To check this, refer to Figure 2.2. Each replicated 
response is indicated by a solid and filled circle. Remember that 
there is little measurement error in W. In addition, the replication 
analysis suggested that the standard deviation of the replicates 
was less than 10% of the variability of the responses. Thus, in the 
absence of equation error we would expect to see the replicated 
pairs falling along a clearly delineated straight line. This is far from 
the case, suggesting that the equation error EL,i is a large part of the 
variability of the responses. Indeed, while the replication analysis 
suggests that var("fM,i·) :::::J 0.0683, a method-of-moments analysis 
suggests var(EL,i) :::::J 0.4860. 

Fuller (1987) was one of the first to emphasize the importance of 
equation error. In our experience, outside of some special laborato­
ry validation studies, equation error is almost always important in 
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linear regression. In this majority of cases, orthogonal regression is 
an inappropriate technique, unless estimation of both the response 
measurement error and the equation error is possible. 

In some cases, Y and W are measured in the same way, e.g., if 
they are both blood pressure measurements. Here, it is often en­
tirely reasonable to assume that the variance of fM equals £T~, and 
then there is a temptation to ignore equation error and hence set 
rJ = 1. This temptation is especially acute when replicates are ab­
sent, so that O"~ cannot be estimated and the method-of-moments 
estimator cannot be used. 

2.4 Bias Versus Variance 

Estimates which do not account for measurement error are typi­
cally biased. Correcting for this bias entails what is often referred 
to as a bias versus variance tradeoff. What this means is that in 
most problems, the very nature of correcting for bias is that the 
resulting corrected estimator will be more variable than the bi­
ased estimator. Of course, when an estimator is more variable, the 
confidence intervals associated with it become longer. 

We will discuss this in detail for linear regression, but the bias 
versus variance tradeoff occurs far more generally. For example, 
Rosner, Willett & Spiegelman (1989) describe a problem in logistic 
regression, where the response is the development of breast can­
cer, and the predictor measured with error is daily saturated fat 
intake (adjusted for caloric intake). Ignoring measurement error, 
they obtained an estimated odds ratio (the exponential function 
of the logistic regression slope) for saturated fat of 0.92, with a 
95% confidence interval from 0.80 to 1.05. Having corrected for 
measurement error, the estimated odds ratio becomes 0.83 with 
a confidence interval from 0.61 to 1.12. Note the key point: by 
correcting for error, the length of the confidence interval was in­
creased (by inference, this means that the corrected estimator is 
more variable). 

In this section, we will illustrate the bias versus variance tradeoff 
theoretically in simple linear regression. This material is somewhat 
technical, and readers may skip it without any loss of understand­
ing of the main points of measurement error models. 

Consider the simple linear regression model, Y = f3o + f3xX + 
t, with additive independent measurement error, W = X + U, 
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under the simplifying assumption of joint normality of X, U and 
E. Further, suppose that the reliability ratio A in (2.1) is known. 
We make this assumption only to simplify the discussion in this 
section. Generally in applications it is seldom the case that this 
parameter is known, although there are exceptions (Fuller, 1987). 

Let 73x* denote the least squares estimate of slope from the re­
gression of Y on W. We know that its mean is E(fix*) = A/3x· 
Denote its variance by O"Z. 

The method-of-moments estimator of f3x, is 7Jx,mm = A -lfjx* 
and has mean E(lJx,mm) = f3x, and variance Var(lJx,mm) = A-2 0"z. 

Because A < 1 it is clear that while the correction-for-attenuation 
in 7Jx,mm reduces its bias to 0, there is an increase in variability 
relative to the variance of the biased estimator "fix*. 

The price for reduced bias is increased variance. This phenome­
non is not restricted to the simple model and estimator in this 
section, but occurs with almost universal generality in the analysis 
of measurement error models. In cases where the absence of bias 
is of paramount importance, then there is usually no escaping the 
increase in variance. In cases where some bias can be tolerated then 
consideration of mean squared error is necessary. 

In the following material, we indicate that there are compromise 
estimators which may outperform both uncorrected and corrected 
estimators, at least in small samples. Surprisingly, outside of the 
work detailed in Fuller (1987), such compromise estimators have 
not been much investigated, especially for nonlinear models. 

Remember that mean squared error (MSE) is the sum of the 
variance plus the square of the bias. This is an interesting criterion 
to use, because uncorrected estimators have more bias but smaller 
variance than corrected estimators, and the bias versus variance 
tradeoff is transparent. Note that 

MSE (7Jx*) 

MSE (7Jx,mm) 

It follows that 

MSE (7Jx,mm) < MSE ("fix*) 

(2.9) 
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if and only if 

2 >.2(1->.)/3; 
cr* < 1+>. . 

Because crz decreases with increasing sample size we can conclude 
that in sufficiently large samples it is always beneficial, in terms of 
mean squared error, to correct for attenuation due to measurement 
error. 

Consider now the alternative estimator !3x,a = af3x* for a fixed 
constant a. The mean squared error of this estimator is a2crz+(a>.­
l)2f3;, which is minimized when a= a*= >.!3;/(crz + >.2/3;). Ignor­
ing the fact that a* depends on unknown parameters we consider 
the "estimator" 7Jx,* = a*f3x*' which has smaller mean squared 
error than either ~x,mm or 7Jx*. Note that as crz --+ 0, a* --+ >. - 1 . 

The estimator !3x,* achieves its mean-squared-error superiority 
by making a partial correction for attenuation in the sense that 
a* < >. - 1 . This simple exercise illustrates that estimators that 
make only partial corrections for attenuation can have good mean­
squared-error performance. 

We make one final use of the simple model and estimator in this 
section. Note that for testing the null hypothesis H 0 : f3x = 0, the 
test statistic obtained by dividing the parameter estimate by its 
standard error is exactly the same regardless of which estimator, 
7Jx* or 7Jx,mm, is used. In other words, the correction for attenua­
tion has no effect on the power to detect the presence of a linear 
relationship. 

Although we have used a simple model and a somewhat artifi­
cial estimator to facilitate the discussion of bias and variance, all 
of the conclusions made above hold, at least to a very good ap­
proximation, in general for both linear and nonlinear regression 
measurement error models. 

2.5 Attenuation in General Problems 

We have already seen that with multiple covariates, even in linear 
regression the effects of measurement error are complex, and not 
easily described. In this section, we provide a brief overview of 
what happens in nonlinear models. 

Consider a scalar covariate X measured with error, and suppose 
that there are no other covariates. In the classical error model 
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for simple linear regression we have seen that the bias caused by 
measurement error is always in the form of attenuation, so that 
ordinary least squares preserves the sign of the regression coeffi­
cient asymptotically, but is biased towards zero. Attenuation is a 
consequence then of (i) the simple linear regression model; and (ii) 
the classical additive error model. Without (i)-(ii), the effects of 
measurement error are more complex; we have already seen that 
attenuation may not hold if (ii) is violated. 

In logistic regression when X is measured with additive error, 
attenuation does not always occur (Stefanski & Carroll, 1985), but 
it is typical. More generally, in most problems with a scalar X 
and no covariates Z, the underlying trend between Y and X is 
preserved under non differential measurement error, in the sense 
that the correlation between Y and W is positive whenever both 
E(YIX) and E(WIX) are increasing functions of X (Weinberg, 
et al., 1993). Technically, this follows because with nondifferential 
measurement error, Y and W are uncorrelated given X, and hence 
the covariance between Y and W is just the covariance between 
E(YIX) and E(WIX). 

Positively, this result says that for the very simplest of problem­
s (scalar X, no covariates Z measured without error) the general 
trend in the data is typically unaffected by nondifferential measure­
ment error. However, the result illustrates only part of a complex 
picture, because it describes only the correlation between Y and 
W, and says nothing about the structure of this relationship. 

For example, one might expect that if the regression E(YIX) 
of Y on X is nondecreasing in X, and if W = X + U where 
U is independent of X and Y, then the regression of Y on W 
would also be nondecreasing. But Hwang & Stefanski (1994) have 
shown that this need not be the case, although it is true in linear 
regression normally distributed measurement error. However, these 
results show that the problem of making inferences about details 
in the relationship of Y and X, based on the observed relationship 
between Y and W, is a difficult problem in general. 

There are other practical reasons why ignoring measurement er­
ror is not acceptable. First, estimating the direction of the rela­
tionship between Y and X correctly is nice, but as emphasized by 
MacMahon, et al. (1990) we can be misled if we severely underesti­
mate its magnitude. Secondly, the result does not apply to multiple 
covariates. Indeed, we have already seen that in multiple linear re-
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gression under the additive measurement error model, the observed 
and underlying trends may be entirely different. Finally, it is also 
the case (section 11.1) that especially with multiple covariates one 
can use error modeling to improve the power of inferences. In large 
classes of problems then, there is simply no alternative to careful 
consideration of the measurement error structure. 

2. 5.1 An fllustration of N ondifferential Measurement Error 

To show that trends are not always preserved under nondifferential 
measurement error, we consider the following theoretical example 
(Dosemeci, Wacholder & Lubin, 1990). Suppose that the 924 sub­
jects are exposed at no (X = 0), low (X = 1) and high (X = 2) 
levels to a harmful substance. Suppose the chance of an adverse 
outcome is 1/2, 2/3 and 6/7 for no, low and high exposures, while 
the chances of the exposures themselves are .0059347, .8902077 and 
.1038576, respectively. If true exposure could be ascertained, the 
expected outcomes would be as in Table 2.2 in the section labeled 
TRUE. If we were to do a regression of Y on the dummy variables 
X 1 indicating low exposure (X1 = 1), and X2 indicating high expo­
sure (X2 = 1), then the true logistic regression parameters for X 1 

and X 2 are log(2) = .69 and log(6) = 1.79, respectively, indicating 
that the two higher exposure levels have response rates higher than 
the response rate associated with the no-exposure level. The true 
data clearly indicate a harmful effect due to exposure. 

Now suppose, however, that measurement error (in this case mis­
classification) occurs, so that 40% of those truly at high exposure 
are misclassified into the no exposure group, and 40% of those truly 
at low exposure are misclassified into the high exposure group. Let 
W be the resulting variable taking on the three observed levels of 
exposure, with corresponding dummy variables W 1 and W 2. This 
is a theoretical example, of course, and one can criticize it for not 
being particularly realistic, but it is an example of nondifferential 
measurement error. The observed data we expect to see using the 
surrogates W 1 and W 2 are also given in Table 2.2. 

The observed logistic regression parameters for W 1 and W 2 are 
log(.46) = -. 78 and log(.53) = -.63, respectively, indicating that 
the two higher exposure levels have response rates lower than the 
response rate associated with the no-exposure level. The observed 
data suggest a beneficial effect due to exposure! 
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Disease Exposure Exposure Exposure 
Status =None =Low =High 

True 
y = 1 4 800 120 
Y=O 4 400 20 

Observed 
y = 1 52 480 392 
Y=O 12 240 172 

Table 2.2. A hypothetical logistic regression example with nondifferential 
measurement error. The entries are the expected counts. The true logistic 
parameters for dummy variables low and high exposure are log(2) and 
log(6), respectively, while the observed coefficients for the error prone 
data are log( .46) and log( .53), respectively. 

For this example the sufficient condition of Weinberg, et al. 
(1993) is violated. We have that E(WIX = 0) = 0, E(WIX = 
1) = 1.4, and E(WIX = 2) = 1.2, which is not increasing in X. 
The results is that the trend in the true data is obscured by the 
nondifferential misclassification. 

2.6 Other References 

The linear regression problem has a long history and continues 
to be the subject of research. Excellent historic background can be 
found in the papers by Lindley (1953), Lord (1960), Cochran (1968) 
and Madansky (1969). Further more technical analyses are given by 
Fuller (1980), Carroll & Gallo (1982, 1984), Carroll, Gallo & Gleser 
(1985). Diagnostics are discussed by Carroll & Spiegelman (1986, 
1992) and Cheng & Tsai (1992). Robustness is discussed by Ketel­
lapper & Ronner (1984), Zamar (1988, 1992), Cheng & van Ness 
(1988) and Carroll, Eltinge & Ruppert (1993). Ganse, Amemiya 
& Fuller (1983) discuss an interesting prediction problem. Hwang 
(1986) and Hasenabeldy, Fuller & Ware (1989) discuss problems 
with unusual error structure. Boggs, et al. (1988) discusses com-
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putational aspects of orthogonal regression in nonlinear models. 

2.7 Appendix 

Here we establish (2.4) and (2.5) under the assumption of multi­
variate normality. 

Taking expectations of both sides of (2.3) conditional on (X, Z) 
leads to the identity 

E(Y I W, Z) = f3o + f3xE(X I W, Z) + fJ!Z. (2.10) 

Under joint normality the regression of X on (W, Z) is linear. To 
facilitate the derivation we parameterize this as 

E(X I W,Z) = /O +!w {W- E(W I Z)} 

+1! {Z- E(Z)}. (2.11) 

Because of the orthogonalization in (2.11) it is immediate that 

/w = 
E (E [X {W - E(W I Z)} I Z]) 

E (E [{w- E(W I Z)}2
1 z]) 

E {E(XW I Z)- E(X I Z)E(W I Z)} 
a2 wiz 

where a!lz = var(W I Z). 

(2.12) 

Now because U is independent of Z, E(W I Z) = E(X I Z), 
E(XW I Z) = E(X2 I Z), and the numerator in (2.12) is just a;

1
z. 

Independence of U and Z also implies that a!1z = a;1z +a~. It 
follows that 

(2.13) 

as claimed. 
Suppose now that E(X I Z) = f 0 + r;z. As noted previously 

E(W I Z) = E(X I Z), and thus E(W I Z) = fo + r;z also. 
Again because of the orthogonalization in (2.11) it is immediate 

that lz = rz. 
If we now replace E(W I Z) with r 0 + r;z in (2.11), and sub­

stitute the right hand side of (2.11) into (2.10), and then collect 
coefficients of Z using the definition of (2.13), we find that the 
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coefficient of Z in (2.10) is 

(3;* = (3; + f3x (1 - .AI)r;. (2.14) 



CHAPTER 3 

REGRESSION CALIBRATION 

3.1 Overview 

In this monograph we will describe two simple, generally applicable 
approaches to measurement error analysis, regression calibration in 
this chapter and simulation extrapolation (SIMEX) in Chapter 4. 

The basis of regression calibration is the replacement of X by 
the regression of X on (Z, W). After this approximation, one per­
forms a standard analysis. This regression calibration algorithm 
was suggested as a general approach by Carroll & Stefanski (1990) 
and Gieser (1990). Prentice (1982) pioneered the idea for the pro­
portional hazard model, where it is still the default option, and 
a modification of it has been suggested for this topic by Clay­
ton (1991); see section 14.6. Armstrong (1985) suggests regression 
calibration for generalized linear models, and Fuller (1987, pp 261-
262) briefly mentions the idea. Rosner, Willett & Spiegelman (1989, 
1990) have developed the idea for logistic regression into a work­
able and popular methodology, complete with a good computer 
program. In some special cases, regression calibration is equivalen­
t to the classical method of moments bias correction; see section 
3.4.2. 

Regression calibration is simple and potentially applicable to any 
regression model, provided the approximation is sufficiently accu­
rate. SIMEX shares these advantages but is more computationally 
intensive. The simplicity of regression calibration is somewhat mit­
igated by the need to develop and fit a calibration model to the 
regression of X on (Z, W). Calibration modeling is discussed in 
section 3.4. 

There are two justifications of the regression calibration approx­
imation: 

• For some models, e.g., loglinear mean models (section 3.9.3) 
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and linear regression when the variance of X given (Z, W) is 
constant (section 3.9.1), the regression calibration approxima­
tion is exact except for a change in the intercept parameter. 
For logistic regression, in many cases the approximation is al­
most exact (section 3.9.2). 

• The approximation can be developed using a Taylor series 
expansion, assuming that the measurement error variance is 
small. By taking extra terms in the Taylor series, refined ap­
proximations, called expanded regression calibration models, 
are possible. See sections 3.8 and 3.6. 

In section 3.2 the basic algorithm is given. We give a first ex­
ample, the NHANES data, in section 3.3. Basic to the algorithm 
is a model for E(XIZ, W) and methods of fitting such models are 
discussed in section 3.4. Section 3.5 provides details of calculat­
ing standard errors. The expanded regression calibration approx­
imation in section 3.6 attempts to improve the basic regression 
calibration approximation; the following section includes a second 
example, the bioassay data. Sections 3.8, 3.9 and 3.10 are devoted 
to theoretical justification of regression calibration and expanded 
regression calibration. Technical details are relegated to the ap­
pendix, section 3.12. 

3.2 The Regression Calibration Algorithm 

The regression calibration algorithm is as follows: 
• Using replication, validation or instrumental data, estimate 

the regression of X on (Z, W), m(Z, W, ')'em), depending on 
parameters ')'em which are estimated by 1'cm· Here "em" s­
tands for "regression calibration model". 

• Replace the unobserved X by its estimate m(Z, W, 1'cm), and 
then run a standard analysis to obtain parameter estimates. 

• Adjust the resulting standard errors to account for the estima­
tion of ')'em, using either the bootstrap or sandwich method, 
consult Appendix A for the definition of these techniques. 

Suppose for example that the mean of Y given (X, Z) can be 
described by f(Z, X, B) for some unknown parameter B. The re­
placement of X by its estimated value in effect proposes a modified 
model for the observed data, namely 

E(YIZ, W) ~ f {Z, m(Z, W, '/'em), B}. (3.1) 
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It is important to emphasize that the regression calibration model 
{3.1) is an approximate, working model for the observed data. It is 
not necessarily the same as the actual mean and variance function 
for the observed data, but in many cases is only modestly different. 
Even as an approximation, the regression calibration model can be 
improved, see section 3.6 for refinements. 

3.2.1 Correction for Attenuation 

The simplest form of regression calibration is the "correction for 
attenuation" used in linear regression. It is easiest to describe in 
the following situation: 
(i) X is a scalar; 

(ii) The measurement error is additive (W = X + U) with error 
variance a~ estimated by a~ (section 3.4); 

(iii) The covariates (X, Z, W) are jointly normally distributed; 
(iv) As in logistic regression and generalized linear models, the 

response is affected only by a linear combination of the pre­
dictors, namely f3o + f3xX + f3!Z. This might be linear, logistic, 
probit or loglinear regression. 

For estimating the effect of X, namely f3x, the regression cali­
bration estimator is formed by three steps: 

• Let $x(naive) be the naive estimator formed by ignoring mea­
surement error; 

• Let a!Jz be the regression mean squared error from a linear 
regression of W on z. This is the sample variance of the W's 
if there are no other covariates Z; 

• The regression calibration estimator is .8x(naive)&!1z/(&!1z-

&~). 
In section 3.4, we discuss how to implement regression calibra­

tion when one wants to estimate f3z, when X is multivariate, for 
nonnormally distributed data, and when the measurement error is 
not additive. 

3.3 NHANES Example 

In this section, we consider the analysis of the NHANES-I Epi­
demiologic Study Cohort data set (Jones, et al., 1987). The pre­
dictor variables Z that are assumed to have been measured without 
appreciable error are age, poverty index ratio, body mass index, use 
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of alcohol (yes-no), family history of breast cancer, age at menar­
che (a dummy variable taking on the value 1 if the age is :S 12) 
and menopausal status (pre or post). The variable measured with 
error, X, is daily intake of saturated fat (in grams). The response 
is breast cancer incidence. The analysis in this section is restricted 
to 3, 145 women aged 25-50 with complete data on all the variables 
listed above; 59 had breast cancer. In general, logistic regression 
analyses with a small number of disease cases are very sensitive to 
misclassification, case deletion, etc. 

Saturated fat was measured via a 24-hour recall, i.e., a partici­
pant's diet in the previous 24 hours was recalled and nutrition vari­
ables computed. It is measured with considerable error (Beaton, et 
al., 1979; Wu, et al., 1986), leading to considerable controversy as 
regards their use to assess breast cancer risk (Prentice, et al., 1989; 
Willett, et al., 1987). 

Our analysis concerns the effect of saturated fat on risk of breast 
cancer, adjusted for the other variables. To give a first indication 
of the effects, we considered the marginal effect of saturated fat. 
Specifically, we considered the variable log(5+saturated fat) and 
computed kernel density estimates (Silverman, 1986) of this vari­
able for the breast cancer cases and for the noncases. The transfor­
mation was chosen for illustrative purposes and because it makes 
the observed values nearly normally distributed. The results are 
given in Figure 3.1. Note that this figure indicates a small marginal 
but protective effect due to higher levels of saturated fat in the diet, 
which is in opposition to one popular hypothesis. Thus we should 
expect the logistic regression coefficient of saturated fat to be neg­
ative (hence, the higher the levels of fat, the lower the estimated 
risk of breast cancer). 

In Table 3.1 we list the result of ignoring measurement error. 
This analysis suggests that transformed saturated fat is a high­
ly significant predictor of risk with a negative logistic regression 
coefficient. From Chapter 11, the p-value is asymptotically valid 
because there are no other covariates measured with error. 

There are at least two problems with these data that suggest 
that the results should be treated with extreme caution. 

The first reason is simple sensitivity analysis, and has nothing 
to do with measurement error in the predictors. If we change the 
three individuals with the highest levels of fat from non-breast can­
cer cases to breast cancer cases, the logistic regression estimates 
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changed from the original -0.97 to -0.53 with nominal p-values 
becoming 0.061. Thus changing only three observations, less than 
0.1% of the total data (alternatively, increasing by only 5% the 
number of breast cancer cases) nearly halved the logistic regression 
parameter estimate and changed the p-value from highly statisti­
cally significant to nonsignificant at the 0.05 level. The point here 
is that misclassification of breast cancer cases, or loss to follow-up 
of breast cancer cases with high fat intakes, can affect the final 
analysis enormously. 

By using data from the Continuing Survey of Food Intake by 
Individuals (CSFII, see Thompson, et al., 1992), we estimate that 
over 75% of the variance of a single 24-hour recall is made up 
of measurement error (this analysis is fairly involved and is dis­
cussed in the appendix, section 3.12.1). In other words, there is 
more noise than signal in a single 24-hour recall. There seems to 
us to be almost no wisdom of putting much trust in such an un­
explained outcome as a negative coefficient for saturated fat when 
the observed predictor is mostly noise. 

In fact, the observed sample variance of W is 0.233, and for the 
additive measurement error model, the measurement error variance 
is estimated as a~ = 0.171. The mean squared error from the 
linear regression of W on Z is a!lz = 0.217. The correction for 
attenuation estimate for the effect of transformed fat is thus 

~ a!lz,Bx(naive) 0.217 X (-0.97) 
f3x = a!lz -a~ = 0.217- 0.171 = - 4.67' 

The "resampling pairs" bootstrap (section A.6.2) gave estimated 
standard error of 2.26, with a percentile 95% confidence interval 
from -10.37 to -1.38. 

As would be typical in a dietary intake analysis, we have also 
examined the effect of adding the variable total caloric intake into 
the regression along with saturated fat. In this case, the predictors 
measured with error are (log-transformed) total caloric intake and 
(transformed) saturated fat. The usual tests of the hypothesis of 
no treatment effect, i.e., that neither caloric intake nor saturated 
fat affect risk, are valid in large samples, and in this case the ef­
fects are highly statistically significantly different from zero. The 
two nutrient intake measures have Pearson correlation of 0.80, and 
as expected with such multicollinearity in the observed data, along 
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Figure 3.1. Density estimates of transformed saturated fat for cases and 
controls: NHANES data. 

Variable Estimate Std. Error p-value 

Age /25 2.09 .53 < .001 
Poverty Index .13 .08 .10 
Body Mass Index / 100 -1.67 2.55 .51 
Alcohol .42 .29 .14 
Family History .63 .44 .16 
Age at Menarche -0.19 .27 .48 
Pre-menopausal? .85 .43 .05 
Race .19 .38 .62 
log( 5 + Saturated Fat) -0.97 .29 < .001 

Table 3.1. Logistic Regression in the NHANES data. 
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with the small number of breast cancer cases, it was impossible to 
distinguish between caloric intake and saturated fat as a statisti­
cally significant predictor of risk. 

3.4 Estimating the Calibration Function Parameters 

3.4.1 Overview and First Methods 

The basic point of using the regression calibration approximation 
is that one runs a favorite analysis with X replaced by the mean 
of X given (Z, W) as an approximation. In this section we will 
discuss methods for estimating this conditional mean. 

With internal validation data, the simplest approach is to regress 
X on the other covariates (Z, W) in the validation data. While 
linear regression will be typical, it is not required. Internal vali­
dation data admit many other structural and functional modeling 
approaches, see Chapters 7 and 8 for the former and Chapters 9 
and 14 for the latter. 

In some problems, an unbiased instrument T is available for a 
subset of the study participants, see section 1.4. Here, by definition 
of "unbiased instrument," the regression ofT on (Z, W) is an un­
biased estimate of m(Z, W, ')'em) since E(T\Z, W) = E(XIZ, W). 
This is the method used by Rosner, Spiegelman & Willett (1990) 
in their analysis of the Nurses' Health Study. 

With validation data or an unbiased instrument, models for 
E(X!Z, W) can be checked by ordinary regression diagnostics such 
as residual plots. 

When one has internal validation, one will of course want to use 
the validation data to improve the estimates of (B, 0); after all, 
one has (Y, Z, X) for these data and it makes sense to use them 
directly. We have already referenced work in other chapters which 
addresses this problem, but regression calibration can be used as a 
simple fallback. One method is to simply run the analysis with X 
estimated in the unvalidated data; in generalized linear models we 
suggest that this procedure include the addition into the regression 
of a dummy variable indicating whether X is or is not observed. 
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3.4.2 Best Linear Approximations Using Replicate Data 

Here we consider the additive error model W = X+ U where 
conditional on (Z, X) the errors have mean zero and constant co­
variance matrix ~uu. We describe an algorithm yielding a linear ap­
proximation to the regression calibration function. The algorithm 
is applicable when ~uu is estimated via external data or via inter­
nal replicates. The method was derived independently by Carroll 
& Stefanski (1990) and Gieser (1990), and used by Liu & Liang 
(1992) and Wang, et al. (1995). 

In this subsection, we will discuss using replicates of X. We re­
peat here the warning made in section 1. 7 about the difference be­
tween a true and approximate replicate. As described there, when 
necessary, the convention made in this book is to adjust the repli­
cates a priori so that they have the same sample means. 

Suppose there are ki replicate measurements of Xi, and Wi. is 
their mean. Replication enables us to estimate the measurement 
error covariance matrix ~uu by the usual components of variance 
analysis, as follows: 

~ L~=l L;~l (Wij - Wi-) (Wij - Wi-) t 
~uu = Ln (k· _ 1) (3.2) 

t=l t 

In (3.2), remember that we are using the "dot and overline" nota­
tion to mean averaging over the indicated subscript. 

Write ~ab as the covariance matrix between two random vari­
ables and let /-La be the mean of a random variable. The best linear 
approximant to X given (Z, W) is 

(3.3) 

~xz] -l ( W - /-lw) . 
~zz Z- /-lz 

Here is how one can operationalize (3.3) based on observations 
(Zi, Wi-), replicate sample sizes ki and estimated error covariance 
matrix f:uu. We use analysis of variance formulae. Let 

n n 

i=l i=l 
n n n 

i=l i=l i=l 
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n 

~ -1""""' ( -) ( - )t ~zz = (n- 1) ~ Zi - Z. Zi - Z. ; 
i=1 

n 

~xz = L ki (Wi.- Jiw) (zi- z/ jv; 
i=1 

The resulting estimated calibration function is 

(3.4) 

~xz Wi. - J!w . ~ ] -1 (- ~ ) 

~zz Zi- Z. 

In linear regression, ifthere are no replicates (ki ::::::: 1) but an exter­
nal estimate ~uu is available, or if there are exactly two replicates 
(ki ::::::: 2) in which case ~uu is half the sample covariance matrix of 
the differences wi1 - wi2, regression calibration reproduces the 
classical method of moments estimates, i.e., the estimators of sec­
tion 2.3 with ~uu estimated from replicates and ~w assumed to 
be 0. 

When the number of replicates is not constant, the algorithm can 
be shown to produce consistent estimates in linear regression, and 
(approximately!) to logistic regression. For loglinear mean model­
s, one should add a dummy variable to the regression indicating 
whether or not an observation is replicated. 

3.4.3 Nonlinear Calibration Function Models 

Schafer (1992) describes ways to approximate E(XJZ, W) via non­
linear models when X and W are scalar variables. If we add a 
quadratic term in W, the model is 

E(XJZ,W) = (1,zt,W,W2 hcm; (3.5) 

If validation data are available, then estimating (3.5) is of course 
a standard regression problem. Partial replicates can be handled in 
a similar way, see section 3.4.4 below. If we let R = (1, zt, W, W 2 )f, 
then /em is defined by the linear regression formula 

/em = { E(RRt)} - 1 E(RX). 
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The first of these terms (ERRt) is estimated by the sample version 
L~ RiRUn. For the second term, note that 

E (RX) = E (RW) - { 0, ot, 0'~, 20"~E(W) + E(U3 )} t. (3.6) 

The first of these terms is estimated by L~ RiWdn, while in the 
second term E(W) is estimated the sample mean of theW's. Esti­
mation in this case requires an estimate of the third moment E(U3 ) 

of the errors. If one is reasonably confident that the measurement 
errors are symmetrically distributed, e.g., under the assumption 
of normal errors, then E(U3 ) = 0. Otherwise, the third moment 
can be estimated from replication data as follows. Let ~>,3 ,j be the 
third central sample moment of the jth replicate and let ~>, 3 be the 
third central moment of the mean of the two replicates. Then a 
consistent estimate of E(U3 ) is ~>,31 + ~>,32- 4~>,3. 

Schafer proposed the following method for the multiplicative er­
ror model W = XU*. For the linear model, he noted that 

If one knows or has estimates of the first two moments of U *, then 
one estimates E(RX) by replacing E(ZW) and E(W2 ) by their 
sample averages. 

For a quadratic model (3.5) and with multiplicative error, 

(3.7) 

Just as before, implementation of this quadratic model requires 
knowledge of the first three moments of U *. In both cases, because 
the errors are multiplicative, it makes sense as a working hypothesis 
to assume that U * has a lognormal distribution. 

There can be some value in the quadratic approximations. Schafer 
presents a simulation in which Y given X is logistic, U * is lognor­
mal and the moments of U * are known. In his simulation, the 
quadratic approximation had about 30% smaller mean squared er­
ror for estimating the logistic slope than did the linear approxima­
tion. 

One potential difficulty with the multiplicative model is that the 
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efficiencies will likely deteriorate when the moments of U * are es­
timated, as they must be in practice. To the best of our knowledge 
this has not been investigated. 

3.4.4 Alternatives When Using Partial Replicates 

The linear and quadratic approximations defined above are only 
approximations, but they can be checked by using the replicates 
themselves. As is typical, if only a partial subset of the study has an 
internal replicate (ki = 2), while most of the data are unreplicated 
( ki = 1), the partial replicates can be used to check the best linear 
and quadratic approximations to E(XIZ, W) defined above, by 
fitting models to the regression of Wi2 on (Zi, Wi1). If necessary, 
the partial replication data can be used in this way to estimate 
E(XIZ,W). 

3.4.5 James-Stein Calibration 

Whittemore (1989) also proposed regression calibration in the case 
that X is scalar, there is no Z, and the additive error model applies. 
If a~ is unknown and there are k replicates at each observation, 
then instead of the method of moments estimate (3.4) of E(XIW) 
she suggested use of the James-Stein estimate, namely 

- { n-1 n(k-1) &';/k}- -
W .. + 1 - n- 3 n(k- 1) + 2 &fu. (Wi.- W .. ), 

where &~ is the usual components of variance estimate of a~ defined 
in (3.2) and &fu. is the sample variance of the terms (Wi-). Typically, 
the James-Stein and moments estimates are nearly the same. 

3.5 Standard Errors 

It is possible to provide asymptotic formulae for standard errors 
(Carroll & Stefanski, 1990), but doing so is extremely tedious be­
cause of the multiplicity of special cases. Some explicit formulae 
are given in the appendix (section 3.12.2) for the case of gener­
alized linear models, and models in which one specifies only the 
mean and variance of the response given the predictors. 

The bootstrap (section A.6) requires less programming (and 
mathematics!!) but takes more computer time. This can be a real 



EXPANDED REGRESSION CALIBRATION MODELS 51 

issue, because as Donna Spiegelman has pointed out, it is not real­
istic to think that in applications investigators will repeatedly use 
the bootstrap while building models for their data. 

In its simplest form, the bootstrap can be used to form stan­
dard error estimates and then t-statistics can be constructed using 
the bootstrap standard errors. The bootstrap percentile method 
can be used for confidence intervals. Approximate bootstrap piv­
ots can be formed by ignoring the variability in the estimation of 
the calibration function. 

3.6 Expanded Regression Calibration Models 

The main purpose of regression calibration is to derive an approxi­
mate model for the observed (Y, Z, W) data in terms of the funda­
mental model parameters. The regression calibration method is one 
means to this end: merely replace X by an estimate of E(XIZ, W). 

Although these techniques apply in general, it is convenient for 
our purposes to cast the problems in the form of what are called 
mean and variance models (often called quasilikelihood and vari­
ance function models), which are described in more generality and 
detail in (A.21)-(A.22). Readers unfamiliar with the ideas of quasi­
likelihood may wish to skip this material at first reading, and con­
tinue into later chapters. 

Mean and variance models specify the mean and variance of a 
response Y as functions of covariates (X, Z) and unknown parame­
ters. For example, in linear regression, the mean is a linear function 
of the covariates, and the variance is constant. In logistic regres­
sion, the "mean" of a binary response Y is just the probability 
that the event occurs, which is described by the logistic function 
evaluated at a linear combination of predictors. 

We write these models in general as 

E(YIZ,X) 

var(YIZ,X) 

j(Z, X, B) 

!72 g2 (Z, X, B, B). 
(3.8) 

(3.9) 

The replacement of X by its estimated value in effect proposes a 
modified model for the observed data, namely 

E(YIZ, W) ~ f {Z, m(Z, W, /'em), B}; 

var(YIZ, W) ~ !72g2 {Z, m(Z, W, /'em), B, 0}. 

(3.10) 

(3.11) 

We have emphasized that this is a model for the data which can be 
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checked via residual plots. In some cases, the model can be modified 
to improve the fit, see section 3. 7 for a striking data application. 

An example will help explain the possible need for refined ap­
proximations. Consider the simple linear homoscedastic regression 
model E(YIX) = f3o + f3xX and var(YIX) = rY2. Suppose the mea­
surement process induces a heteroscedastic Berkson model where 
E(XIW) = W and var(XIW) = rY2m W 2'Y, where "em" stands 
for "calibration model". The regression calibration approximate 
model states that the observed data follow a simple linear ho­
moscedastic regression model with X replaced by E(XIW) = W. 
However, while this gives a correct mean function, the actual vari­
ance function for the observed data is heteroscedastic: var(YIW) = 
rY2 + rY2mf3;W2'Y. Hence the regression calibration model gives a 
consistent estimate of the slope and intercept, but the estimate is 
inefficient because weighted least squares should have been used. 
If important enough to effect the efficiency of the estimates, the 
heteroscedasticity should show up in residual plots. 

The preceding example shows that a refined approximation can 
improve efficiency of estimation, while the next describes a sim­
ple situation where bias can also be corrected; another example is 
discussed in the loglinear mean model case in section 3.9.3. Con­
sider ordinary homoscedastic quadratic regression with E(YIX) = 
(30 + f3x, 1 X + f3x,2X 2. Use the same heteroscedastic Berkson model 
as before. Then the regression calibration approximation suggests 
a homoscedastic model with X replaced by W, while in fact the 
observed data have mean f3o + f3x,l W + f3x,2(W2 + rYfm W 2'Y). If 
the Berkson error model is heteroscedastic, the regression calibra­
tion approximation will lead to a biased estimate of the regression 
parameters. 

It is important to stress that these examples do not invalidate 
regression calibration as a method, because the heteroscedasticity 
in the Berkson error model has to be fairly severe before much 
effect will be noticed. However, there clearly is a need for refined 
approximations which take over when the regression calibration 
approximation breaks down. 

3.6.1 The Expanded Approximation Defined 

We will consider the QVF models (3.8)-(3.9). We will focus entirely 
on the case that X is a scalar. Although the general theory (Carroll 
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& Stefanski, 1990) does allow multiple predictors, the algebraic 
details are unusually complex. The simplest approximate models 
are based upon the mean and variance models 

E(XJZ,W) 

var(XJZ, W) 

m(Z, W,')'cm); 

a~m V2 (Z, W,')'cm). 

(3.12) 

(3.13) 

We wish to construct approximations to the mean and variance 
function of the observed regression of Y on (Z, W). Carroll & 
Stefanski (1990) base such approximations on pretending that a~m 
is "small"; if it equals zero, the resulting approximate model is the 
regression calibration model. 

Here is how the approximation works. Let fx and fxx be the 
first and second derivatives of f(z, x, B) with respect to x, and let 
sx(z, w, B, (),)'em) and sxx(·) be the first and second derivatives 
of g2 (z, x, B, 0) with respect to x and evaluated at x = E(XIZ = 
z, W = w). Defining m(·) = m(Z, W, )'em) and V(·) = V(Z, W, 'Ycm), 
simple Taylor series expansions in section 3.8 with a~m ---+ 0 yield 
the following approximate model, which we call the expanded re­
gression calibration model, 

E(YJZ, W) ~ f {Z,m(·),B} (3.14) 

+(1/2)a~m V 2 (·)fxx {Z, m(·), B}; 

var(YIZ,W) ~ a 2g2 {Z,m(·),B,O} (3.15) 

+a~m V 2 (-) u;o + (1/2)a2Sxx(·)}. 

There are important points to note about the approximate model 
(3.14)-(3.15): 

• By setting a~m = 0, it reduces to the regression calibration 
model, in which we need only estimate E(XJZ, W). 

• It is an approximate model which serves as a guide to final model 
construction in individual cases. We are not assuming that the 
measurement error is small, only pretending that it is in order 
to derive a plausible model for the observed data in terms of 
the regression parameters of interest. In some instances terms 
can be dropped or combined with others to form even simpler 
useful models for the observed data. 

• It is a mean and variance models for the observed data. Hence, 
the techniques of model fitting and model exploration discussed 
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in Carroll & Ruppert (1988) can be applied to nonlinear mea­
surement error model data. 

One potential problem with the model (3.14)-(3.15) is that it 
might not be range preserving. For example, because of the term 
Bxx ( ·), the variance function (3.15) need not necessarily be positive. 
If the original function/(·) is positive, the new approximate mean 
function (3.14) need not be positive because of the term fxx(·). 
A range preserving expanded regression calibration model for the 
observed data is 

E(YJZ,W) (3.16) 

[ ( 1 2 V 2 0fxx(·) ] 
~ f Z, m ·) + 2Ucm fx(-) ,B ; 

var(YJZ, W) ~ uEmfl{Z,m(·),B}V2 (·) (3.17) 

2 2 [ 1 2 V 2 0sxx0 ] 
+u g Z,m(·) + 2ucm sx(·) ,B,O . 

3.6.2 Implementation 

The approximations (3.14)-(3.15) require specification of the mean 
and variance functions. In the Berkson model, the former is just 
w and a flexible model for the latter is O"~m W 2'Y' with 'Y = 0 indi­
cating homoscedasticity. We will see later in a variety of examples 
that for this Berkson class the model parameters (B, 8) are often 
estimable via QVF techniques using the approximate models, with­
out the need for any validation data. The Berkson framework thus 
serves as an ideal environment for expanded regression calibration 
models. 

Outside the Berkson class, validation, replication or instrumental 
data are typically required. We have already discussed in Chapter 
3 methods for estimating the conditional mean of X. If possible, 
one should use such data to estimate the conditional variance func­
tion. For example, if there are k unbiased replicates in an additive 
measurement error model, then the natural counterpart to the best 
linear estimate of the mean function is the usual formula for the 
variance in a regression, namely var(XJZ, W) = UEm, where if u; 
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is the variance of X and u~ is the measurement error variance, 

2 2 ( 2 ) [ u; + u~/ k fYcm = fYx- ux, :Exz r;t 
xz 

] 
-1 

:Exz 2 t 
:E (ux, :Exz) · 

zz 

This can be estimated using the formulae of section 3.4.2. For val­
idation data, one would specify a model for the regression cali­
bration mean and variance functions and estimate the parameters 
using likelihood or QVF techniques. 

3.6.3 Models Without Severe Curvature 

When the models for the mean and variance are are not severely 
curved, fxx and Sxx are small relative to f(-) and g2(·), respec­
tively. In this case, setting J~;cm = u~m/u2 , the mean and variance 
functions of the observed data greatly simplify to 

E(YIZ, W) ~ f {Z,m(·),B} 

var(YIZ, W) ~ u2 [l {Z, m(·), B, 0} +~~;em V2(·)J;(-)]. 

Having estimated the mean function m( ·), this is just a QVF model 
in the parameters (B, 0*), where e* consists of e, ~~;cm and the other 
parameters in the function V2(·). In principle, the QVF fitting 
methods of Chapter A can be used. 

3.7 Bioassay Data 

Rudemo, et al. (1989) describe a bioassay problem following a het­
eroscedastic Berkson error model. In this experiment, four herbi­
cides were applied either as technical grades or as commercial for­
mulations; thus there are eight herbicides, four pairs of two herbi­
cides each. The herbicides were applied at the six different nonzero 
doses 2i-5 for j = 0, 1, ... , 5. There were also two zero dose obser­
vations. The response Y was the dry weight of five plants grown in 
the same pot. There were three complete replicates of this exper­
iment done at three different time periods, so that the replicates 
are a blocking factor. The data are listed in Table 3.2. 

Let Z1 be a vector of size eight with a single nonzero element 
indicating which herbicide was applied, and let Z2 be a vector of 
size four indicating the herbicide pair. Let Z = (Z1 , Z2). For zero 
doses, zl and z2 may be defined arbitrarily as any nonzero value. 
In the absence of measurement error for doses, and if there were 
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no random variation, the relationship between response and dose, 
X, is expected to be 

Y ~ f(Z, X, B) = f3o + { X }.B~. 2 z2 • 
1+ --

/3!,1 Z1 

f3x - f3o 
(3.18) 

Model (3.18) is typically referred to as the four-parameter logistic 
model. Physically, the parameters f3o and f3x should be nonnega­
tive, since they are the approximate dry weight at infinite and zero 
doses, respectively. 

An initial ordinary nonlinear least squares fit to the data with a 
fixed block effect had a negative estimate of f3o. Figure 3.2 displays 
a plot of absolute residuals versus predicted means. Also displayed 
are box plots of the residuals formed by splitting the data into six 
equal-sized groups ordered on the basis of predicted values. Both 
figures show that the residuals are clearly heteroscedastic, with the 
response variance an increasing function of the predicted value. 

This problem is exactly of the type amenable to analysis by 
the transform-both-sides (TBS) methodology of Carroll & Ruppert 
(1988), see also Ruppert, et al. (1989). Specifically, model (3.18) 
is a theoretical model for the data in the absence of any random­
ness, which when fit shows a pattern of heteroscedasticity. The 
TBS methodology suggests controlling for the heteroscedasticity 
by transforming both sides of the equation: 

h(Y,>.) ~ h{f(Z,X,B),>.}, (3.19) 

where the transformation family can be arbitrary but is taken here 
as the power transformation family: 

h(v,>.) = (v.x-1)/>..if>..#O; 

= log(v) if>.= 0. 

Of course, the actual dose applied X may be different from 
the nominal dose applied W. It seems reasonable in this context 
to consider the Berkson error model with mean W and variance 
a~m W 2'Y, the heteroscedasticity basically indicating the perfect­
ly plausible assumption that the size of the error made depends 
on the nominal dose applied. With this specification, the regres­
sion calibration approximation replaces X by W. Letting Y;j be 
the jth replicate at the ith herbicide/dose combination, the TBS-
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Figure 3.2. Bioassay data. Absolute residual analysis for an ordinary 
nonlinear least squares fit. Note the increasing variability for larger pre­
dicted values. 

regression calibration model incorporating randomness is 

(3.20) 

where Eij is the homoscedastic random effect with variance a 2 , and 
'T}j is the fixed block effect. The parameters were fit using maximum 
likelihood assuming that the errors are normally distributed, as 
described by Carroll & Ruppert (1988, Chapter 4). This involves 
maximizing the loglikelihood 

-~ "([h(Yij, -\)- h {f(Zi, Wi, B),-\}- 1Ji]2 

2 LJ a 2 
i,j 

+log(a2)- 2(.\ -l)log(Y;;)). 

The estimated transformation, A = 0.117, is very near the log 
transformation. The residual plots are given in Figure 3.3, where 
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H w y H w y H w y H w y 

0 0 1.51 0 0 1.43 1 1 0.05 1 2 0.06 
1 4 0.15 1 8 0.40 1 16 0.76 1 32 0.95 
2 1 0.04 2 2 0.07 2 4 0.13 2 8 0.52 
2 16 0.79 2 32 1.17 3 1 0.05 3 2 0.26 
3 4 0.28 3 8 0.70 3 16 1.05 3 32 1.30 
4 1 0.11 4 2 0.42 4 4 0.59 4 8 0.90 
4 16 1.08 4 32 1.24 5 1 0.04 5 2 0.06 
5 4 0.19 5 8 0.50 5 16 0.84 5 32 1.17 
6 1 0.04 6 2 0.04 6 4 0.24 6 8 0.70 
6 16 1.21 6 32 1.01 7 1 0.05 7 2 0.08 
7 4 0.14 7 8 0.60 7 16 1.20 7 32 1.30 
8 1 0.38 8 2 0.64 8 4 0.88 8 8 1.09 
8 16 1.50 8 32 1.30 

0 0 1.01 0 0 1.34 1 1 0.05 1 2 0.07 
1 4 0.09 1 8 0.26 1 16 0.55 1 32 1.21 
2 1 0.04 2 2 0.06 2 4 0.19 2 8 1.16 
2 16 0.96 2 32 1.13 3 1 0.04 3 2 0.17 
3 4 0.33 3 8 0.50 3 16 1.11 3 32 1.20 
4 1 0.12 4 2 0.30 4 4 0.41 4 8 1.06 
4 16 1.29 4 32 1.17 5 1 0.04 5 2 0.07 
5 4 0.19 5 8 0.36 5 16 0.88 5 32 1.16 
6 1 0.04 6 2 0.05 6 4 0.22 6 8 0.61 
6 16 1.15 6 32 1.39 7 1 0.04 7 2 0.18 
7 4 0.27 7 8 0.88 7 16 0.97 7 32 1.26 
8 1 0.29 8 2 0.98 8 4 1.12 8 8 1.10 
8 16 1.13 8 32 1.31 

Table 3.2. The Bioassay Data. Here Y is the response and W is the 
nominal dose time 32. The herbicides H are listed as 1-8, and H = 0 
means a zero dose. The replicates R are separated by horizontal lines. 
The herbicide pairs are (1,5}, {2,6}, (3, 7} and (4,8}. Continued on next 
page. 
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H w y H w y H w y H w y 

0 0 1.21 0 0 1.10 1 1 0.04 1 2 0.09 
1 4 0.12 1 8 0.25 1 16 0.56 1 32 1.04 
2 1 0.05 2 2 0.06 2 4 0.14 2 8 0.35 
2 16 0.90 2 32 1.12 3 1 0.06 3 2 0.21 
3 4 0.37 3 8 0.60 3 16 1.01 3 32 0.70 
4 1 0.10 4 2 0.20 4 4 0.47 4 8 0.95 
4 16 1.07 4 32 0.93 5 1 0.05 5 2 0.07 
5 4 0.09 5 8 0.29 5 16 0.78 5 32 1.05 
6 1 0.05 6 2 0.07 6 4 0.16 6 8 0.39 
6 16 0.78 6 32 0.97 7 1 0.04 7 2 0.11 
7 4 0.24 7 8 0.48 7 16 0.94 7 32 1.30 
8 1 0.15 8 2 0.26 8 4 0.60 8 8 0.87 
8 16 0.61 8 32 0.98 

Table 3.2 continued. 

we still see some unexplained structure to the variability, since the 
extremes of the predicted means have smaller variability than the 
centers (even after accounting for leverage). 

To account for the unexplained variability, we now consider high­
er order approximate models. Denoting the left hand side of (3.19) 
by Y * and the right hand side by f * ( ·), and noting that the four­
parameter logistic model is one in which fxx/ f is typically small, 
the approximate model (3.15) says that Y *has mean h {f(Z, W, B)} 

and variance 0'2 + O'fm W 21 {f"-1 (Z, W, B)fx(Z, W, B)} 2 . If we 
define "' = O'fm/ 0'2 , in contrast to (3.20) an approximate model 
for the data is 

h(Yij,>-.) = h{f(·),>-.}+r}j (3.21) 

[ 21 { >.-1 }2] 1/2 +Eij 1 + "'Wi f (·)fx(-) , 

where as before Eij has variance 0'2 . This is a heteroscedastic TBS 
model, all of whose parameters are identifiable and hence estimable 
from the observed data. The identifiability of parameters in the 
Berkson model is a general phenomenon, and it taken up in more 
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Figure 3.3. Bioassay data. Absolute residual analysis for an ordinary 
transform-both-sides fit. Note the unexplained structure of the variability. 

detail in section 3.10. The likelihood of (3.21) is the same as before 
but with a 2 replaced by 

This model was fit to the data, and~ ~ -1/3 with an approximate 
standard error of 0.12. The corresponding residual plots are given 
in Figure 3.4. Here we see no real hint of unexplained variability. 
As a further check, we can contrast the models (3.21) and (3.20) 
by means of a likelihood ratio test, the two extra parameters being 
( a~m, /'i,). The likelihood ratio test for the hypothesis that these 
two parameters equal zero had a chisquared value of over 30, indi­
cating a large improvement in the fit due to allowing for possible 
heteroscedasticity in the Berkson error model. On the other hand, 
after further calculation one finds that adding a correction term to 
f*(·) as in (3.14) or (3.16) offers only a negligible improvement. 
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Figure 3.4. Bioassay data. Absolute residual analysis for a second order 
approximate transform-both-sides fit. 

3.8 Heuristics and Accuracy of the Approximations 

The essential step in regression calibration is the replacement of X 
by E(XjW, Z) = m(Z, W, /'em) in (3.8) and (3.9) leading to the 
model (3.10)-(3.11). This model can be justified by a "small-a" 
argument, i.e., by assuming that the measurement error is small. 
The basic idea is that under small measurement error, X will be 
close to its expectation. However, even with small measurement 
error, X may not be close to W, so naively replacing X by W 
may lead to large bias, hence the need for calibration. For sim­
plicity, assume that X is univariate. Let X = E(XjZ, W) + V, 
where E(VjZ, W) = 0 and var(VjZ, W) = ai

1
z,w· Let m(·) = 

m(Z, W,f'cm)- Let fx and fxx be the first and second partial 
derivatives of f(z, x, B) with respect to x. Assuming that ai1z,w 
is small and hence that V is small with high probability, we have 
the Taylor approximation: 

E(YjZ, W) = E{ E(YjZ, W, X),Z, W} 
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~ E{ f(Z, m(·),B) + fx(Z, m(·), B) V 

+(1/2)fxx(Z, m(·), B) V 2 1Z, W} 
= f {Z, m(·), B} + (1/2)fxx {Z, m(·), B} ai1z,w· 

Model (3.10) results from dropping the term involving ai
1
z,w, 

which can be justified by the small-a assumption. This term is 
retained in the expanded regression calibration model developed 
in section 3.6. 

To derive (3.11), note that 

var(YIZ, W) var{ E(YIZ, W, X)lz, W} (3.22) 

+E{var(YIZ, W,X)Iz, W }· 

The first term on the right hand side of (3.22) is 

var{f(Z, X, B)IZ, W} ~ var{fx(Z, m(·), B)VIZ, W} 

= r; {Z, m(·), B} aiiZ,W' 

which represents variability in Y due to measurement error and is 
set equal to 0 in the regression calibration approximation, but is 
used in the expanded regression calibration approximation of sec­
tion 3.6. Let sx and Bxx be the first and second partial derivatives 
of g2 (z, x, B, B) with respect to x. The second term on the right 
hand side of (3.22) is 

E{ a 2g2 (Z, X, B, B)IZ, W} ~ a 2g2 (Z, m(-), B, B) 

1 2 
+2sxx(z, m(·), B, B)aXIZ,W· 

Setting the term involving ai]z,w equal to 0 gives the regression 
calibration approximation, wh1le both terms are used in expanded 
regression calibration. 

3.9 Examples of the Approximations 

In this section, we investigate the appropriateness of the regression 
calibration algorithm in a variety of settings, paying particular 
attention to the variance function regression models of section A.4. 
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3. 9.1 Linear Regression 

Consider linear regression when the variance of Y given (Z, X) is 
constant, so that the mean and variance of Y when given (Z, X) 
are (30 + f3~X + f3~Z and (]'2 , respectively. As an approximation, 
the regression calibration model says that the observed data al­
so have constant variance but have regression function given by 
E(YIZ, W) = f3o + f3~m(Z, W, /'em) + f3~Z. Because we assume 
nondifferential measurement error (section 1.6), the regression cal­
ibration model accurately reproduces the regression function, but 
the observed data have a different variance, namely 

var(YIZ, W) = (]'2 + /3~var(XIZ, W)f3x· 

Note the difference here: the regression calibration model is a work­
ing model for the observed data, which may differ somewhat from 
the actual or true model for the observed data. In this case, the 
regression calibration approximation gives the correct mean func­
tion, and the variance function is also correct and constant if X 
has a constant covariance matrix given (Z, W). 

If, however, X has nonconstant conditional variance, the regres­
sion calibration approximation would suggest the homoscedastic 
linear model when the variances are heteroscedastic. In this case, 
while the least squares estimates would be consistent, the usual 
standard errors are incorrect. There are two options: (i) use least 
squares but employ the resampling-vectors form of the bootstrap 
(section A.6.2) or the sandwich method for constructing standard 
errors (section A.3); and (ii) expand the model using the methods 
of section 3.6. 

3.9.2 Logistic Regression 

Regression calibration is also well established in logistic regres­
sion, at least as long as the effects of the variable X measured with 
error is not "too large" (Rosner, et al., 1989, 1990; Whittemore, 
1989). Let the binary response Y follow the logistic model Pr(Y = 

1IZ,X) = H(f30 +f3~X+f3;Z), where H(v) = {1 +exp(-v)}- 1 

is the logistic distribution function. The key problem is comput­
ing the probability of a response Y given (Z, W). For example, 
suppose that X given (Z, W) is normally distributed with mean 
m(Z, W,')'cm) and (co)variance function V(Z, W,')'cm). Let p be 
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-4 -2 0 2 4 

Figure 3.5. The standard logistic distribution and density functions com­
pared to the normal distribution and density functions with standard de­
viation 1. 10. 

the number of components of X. As described in more detail in 
Chapter 7, the probability that Y = 1 for values of (Z, W) is 

I H(·)exp [ -(1/2) {x- m(-)}t v-lo {x- m(·)}] dx 

(2n )P/2jV (.) 11/2 
(3.23) 

where H(·) = H((30 + (3~x + (3;z). Formulae (3.23) does not have 
a closed-form solution; Crouch & Spiegelman (1990) develop a fast 
algorithm which they have implemented in FORTRAN. Monahan 
& Stefanski (1991) describe a different method easily applicable 
to all standard computer packages. However, a simple technique 
often works just as well, namely to approximate the logistic by 
the probit. For c ~ 1.70, it is well-known that H(v) ~ if!(vjc), 
where if!(·) is the standard normal distribution function (Johnson 
& Kotz, 1970; Liang & Liu, 1991; Monahan & Stefanski, 1991). 

In Figure 3.5 we plot the density and distribution functions of the 
logistic and normal distributions, and the reader will note that the 
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Figure 3.6. Values of pr(Y = liW) are plotted against W in the solid 
line, while the regression calibration approximation is the dotted line. 
The measurement error is additive on the first row and multiplicative on 
the second row. The fact that the lines are nearly indistinguishable is the 
whole point. See text for more details. 

logistic and normal are very similar. With some standard algebra 
(Carroll, et al. (1984)), one can approximate (3.23) by 

Pr(Y =liZ, W) ~ H [ f3o + (3~m(Z, W,')'cm) + f3!~ 2 ]. (3.24) 
{1 + (3~,V(Z, W,')'cm)f3x/c2 } I 

In most cases, the denominator in (3.24) is very nearly one, and 
regression calibration is a good approximation; the exception is for 
"large" (3~ V ( ·) f3x. 

The approximation (3.24) is often remarkably good, even when 
the true predictor X is rather far from normally distributed. To 
test this, we dropped Z and computed the approximations and ex-
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act forms of pr(Y = 1IW) under the following scenario. For the 
distribution of X, we chose either a standard normal distribution 
or the chi-squared distribution with one degree of freedom. The 
logistic intercept f3o and slope f3x were chosen so that there was 
a 10% positive response rate (Y = 1) on average, and so that 
exp {f3x ( q90 - qw)} = 3, where qa is the ath percentile of the dis­
tribution of X. In the terminology of epidemiology, this means 
that the "relative risk" is 3.0 in moving from the lOth to the 90th 
percentile of the distribution of X, a representative situation. 

In Figure 3.6 we plot values of pr(Y = 1IW) against W in 
the solid line, for the range from the 5th to the 95th percentile of 
the distribution of W. The regression calibration approximation 
is the dotted line. The measurement error is additive on the first 
row and multiplicative on the second row. The top left plot has 
W = X + U where (X, U) follow a bivariate standard normal 
distribution, while the top right plot differs in that both follow a 
chi-squared distribution with one degree of freedom. The bottom 
row has W =XU, where U follows a chi-squared distribution with 
one degree of freedom; on the left, X is standard normal, while on 
the right, X is chi-squared. Note that the solid and dashed lines 
very nearly overlap. In all of these cases, the measurement error is 
very large, so in some sense we are displaying a worst case scenario. 
For these four very different situations, the regression calibration 
approximation works very well indeed. 

3. 9. 3 Loglinear Mean Models 

As might occur for gamma or lognormal data, suppose E(YIZ, X) = 
exp(f3o + (3~X + f3!Z) and var(YIZ,X) = £T2 {E(YIZ,X)} 2 . Sup­
pose that the calibration of X on (Z, W) has mean m(Z, W, 'Ycm), 
and denote the moment generating function of the calibration dis­
tribution by 

E { exp(atX)IZ, W} = exp { atm(Z, W, "(em)+ v(a, Z, W, 'Ycm)}, 

where v(·) is a general function which differs from distribution to 
distribution. If(·) = (Z, W,"(cm), the observed data then follow 
the model 

E(YIZ,W) 

var(YIZ, W) 

exp {f3o + (3;m(·) + (3;z + v(f3x, ·)}; 

exp { 2f3o + 2(3;m( ·) + 2(3;z + v(2f3x, ·)} 
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x [a2 + 1- exp {2v(f3x, ·)- v(2f3x, ·)}]. 

If the calibration distribution for X is normally distributed with 
constant covariance matrix 'Exx, then v(a, ·) = (1/2)at'Exxa. Re­
markably, for /3o* = f3o + (1/2)(3~'Exxjz,wf3x, the observed data also 
follow the loglinear mean model with intercept (30* and a new vari­
ance parameter az. Thus, the regression calibration approximation 
is exactly correct for the slope parameters (f3x, f3z)! The conclusion 
holds more generally, requiring only that X- m(Z, W,')'cm) have 
distribution independent of (Z, W). 

In some instances, the intercept itself is of interest, and the re­
gression calibration approximation must be modified. In loglin­
ear mean models, the regression calibration approximation breaks 
down if the calibration is "badly" heteroscedastic. Both problems 
can be handled by the methods described in section 3.6. 

3.10 Theoretical Examples 

3.10.1 Homoscedastic Regression 

The simple homoscedastic linear regression model is f(z, x, B) = 
(30 + f3xx + f3zz with g2 (·) = V 2 (·) = 1. If the variance function 
(3.13) is homoscedastic, then the approximate model (3.14)-(3.15) 
is exact in this case with E(YIZ, W) = f3o + f3xm(·) + f3zZ and 
var(YIZ, W) = a2+a2m!3;, i.e., a homoscedastic regression model. 
One sees clearly that the effect of measurement error is to inflate 
the error about the observed line. 

In simple linear regression satisfying a Berkson error model with 
possibly heteroscedastic calibration variances a2m W2"~, the ap­
proximations are again exact: E(YIZ, W) = (30 + f3x W + f3zZ and 
var(YIZ, W) = a 2 {1 + !3;(a2m/a2)W2"~}. The reader will rec­
ognize this as a QVF model, where the parameter e = (!',"' = 
a2mfa2 ). As long as 1' -:f. 0, all the parameters are estimable by 
standard QVF techniques, without recourse to validation or repli­
cation data. 

This problem is an example of a remarkable fact, namely that 
in Berkson error problems, the approximations (3.14)-(3.15) often 
lead to an identifiable model, so that the parameters can all be 
estimated without recourse to validation data. Of course, if one 
does indeed have validation data, then it can be used to improve 
upon the approximate QVF estimators. 
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3.10.2 Quadratic Regression with Homoscedastic Regression 
Calibration 

Ordinary quadratic regression has mean function E(YIX) = (30 + 
f3x,1X + f3x,2X2. With homoscedastic regression calibration, the 
observed data have mean function 

E(YIW) (/3o + f3za~m) + f3xm(W) + f3zm 2 (W) 
/3~ + f3xm(W) + f3zm 2 (W). 

As we remarked in Chapter 3, the regression calibration model 
accurately reflects the observed data in terms of the slope param­
eters, but it is off by a constant, since its intercept (30 differs from 
(30 • Here, however, the approximate expanded mean model (3.14) 
is exact, and /30 can be estimated as long as one has available an 
estimate of the calibration variance a~m, see the previous section. 

If the error of X about its conditional mean is homoscedastic 
and symmetrically distributed, e.g., normally distributed, then the 
expanded regression calibration model accurately reflects the form 
of the variance function for the observed data. Details are given 
in the appendix, section 3.12.3. If the error is asymmetric, then 
the expanded model (3.15) misses a term involving the third error 
moment. 

3.10.3 Loglinear Mean Model 

The loglinear mean model of section 3.9.3 has E(YIX) = exp(/3o + 
f3xX), and variance proportional to the square of the mean with 
constant of proportionality a 2. If calibration is homoscedastic and 
normally distributed, the actual mean function for the observed 
data is E(YIW) = exp {/3o + (1/2)/3;a~m + f3xm(W)}. The mean 
model of regression calibration is exp {/3o + f3xm(W)}. As discussed 
in Chapter 3, regression calibration yields a consistent estimate of 
the slope f3x but not of the intercept. 

In this problem, the range-preserving expanded regression cali­
bration model (3.16) correctly captures the mean of the observed 
data. Interestingly, it also captures the essential feature of the 
variance function, since both the actual and approximate variance 
functions (3.17) are a constant times exp {2/3o + 2/3xm(W)}. 
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3.10.4 Small Curvature, Heteroscedastic Calibration 

In many nonlinear problems, the second derivative fxx is small rela­
tive to j, so that E(YIZ, W) ~ f {Z, m(·),B} and var(YIZ, W) = 
a 2 + a~mJ;(-)V2 (·). In the Berkson case, this again typically re­
duces to an identified QVF model. Examples of such models in 
bioassay experiments are described by Rudemo, et al. (1989) and 
Racine~Poon, et al. (1991). 

3.11 Other References 

There is a long history of approximately consistent estimates in 
nonlinear problems, of which regression calibration and the SIMEX 
method (Chapter 4) are the most recent such methods. Readers 
should also consult Stefanski & Carroll (1985), Stefanski (1985), 
Amemiya & Fuller (1988), Amemiya (1985, 1990a, 1990b), and 
Whittemore & Keller (1988) for other approaches. 

3.12 Appendix 

3.12.1 Error Variance Estimation in the CSFII 

We now turn to an analysis of measurement error in the NHANES 
study. There is no internal validation or replication of the NHANES­
I data set, so we use the CSFII (Continuing Survey of Food Intakes 
by Individuals) data set, a data set collected in 1985-86 by the US­
DA (Thompson, et al., 1992). The portion of the CSFII data set 
we used was restricted to the 1,722 women aged 25-50, the same 
age range as the group we are investigating. 

The method of replication was as follows. First, a 24-hour recall 
was administered in person by an interviewer, yielding the fallible 
covariate W; this is essentially the same method used in NHANES-
1. Then over the course of a year, the women were reinterviewed by 
phone five additional times, although the computer file available 
contains only three of these follow-up interviews, the saturated fat 
levels from which we call (T1 , T2, T 3 ). The ordering is in time, 
namely T1 is the first measurement recorded, and T 3 the last. 

The means and standard deviations of (W, T 1 , T 2 , T 3 ) in the 
data are ( ~ 1.31,~ 1.43,~ 1.45,~ 1.44) and ( .481,.505,.515,.522) respec­
tively. The T's are very nearly identically distributed. To under­
stand the difference between W and the T's, note that the mean 



70 REGRESSION CALIBRATION 

of W- T 3 is 0.127 with a standard deviation of 0.619, which in­
dicates a small but statistically significant difference in the means 
W and the T's. 

A reasonable model for these data is 

W X+U; 

Tj ')'o,em + /'l,emX + Vj, 

where the errors U and V j are independent of (X, Z) and have 
mean zero and variances a~ and a~, and where "em" stands for 
"error model". If we knew the latter variance, and if we assume 
that the errors in W and T 3 are independent (see below), then 
we can easily estimate the unknown parameters. There are two 
possibilities. The first is to assume that all random variables are 
normally distributed and compute the maximum likelihood esti­
mate of the parameters. This method has the drawback that it 
requires specification of the correlation between W and the T's. 

A second method avoids this issue, as long as W and T 3 are 
uncorrelated (or practically so). If we define a = var(W), b = 
var(T3) -a~ and c = Var(T3 - W), then 

/'1,em = {2b/(b +a- c +a~)}; ')'o,em = E(T3) -')'l,emE(W); 

a~= var(W)- {var(T3)- a~} hi,em = var(W)- b/1'1,em· 

The terms var(W), var(T3) and var(T3 - W) can be estimated 
by the corresponding sample variances of W, T 3 and T 3 - W, 
respectively, while the population means E(W) and E(T3) can 
be estimated by their sample means. It thus remains to estimate 
the intra-individual variance a~ of the errors in the T's. If these 
errors were independent of one another, we would simply use a 
components of variance method, see (3.2). However, there is some 
concern in these data that the V's, which we will call instrumental 
errors, might not be independent. Suppose that the instrumental 
errors have the following covariance matrix: 

The term 80 is the variance of the instrumental errors, while the 
correlation between any two adjacent pairs is 81/80 , and the corre­
lation between the first and last instrument is 82/80 . It is impossible 



APPENDIX 71 

to estimate all of ( (}0 , (}1, (}2 ) without hypothesizing a more specific 
model. To be more precise, with three replicates only two parame­
ters in the covariance matrix of the errors can be estimated. We are 
thus forced to lower the number of parameters by hypothesizing 
reasonable correlation models. 

A natural model in this context is the AR(1) model. If p = fh/Bo 
is the correlation between the errors of two adjacent replicates, 
(}2 = p2B0 . Recall that b is the variance of ')'o,em +'Y1,emX. Let e3,3 
be a 3 x 3 matrix of all ones, and let e3,1 be the 3 x 1 vector of all 
ones. If we let d be the unknown mean of any T, then the vector 
T = (T1, T 2 , T 3)t has mean de3,1 and covariance matrix 

I;(b, p, Bo) = be3,3 + Bo ( ~ p2 
p p2) 
1 p 0 

p 1 

The unknown parameters (d, b, (}0 , p) can be estimated by the method 
of moments. Specifically, we can pretend that all random variables 
are normally distributed, and even without this assumption obtain 
consistent estimates by maximizing 

- (n/2)log (det {I;(b, p, Bo)}] 

-(1/2) t ('1\- de3,1 r {I;(b, p, Bo)} - 1 ('fi- de3,1). 
i=1 

Since the Gaussian MLE's are also method of moments estimates, 
they are consistent when the random variables are non-Gaussian. 
For other applications, see Wang, et al. (1995). 

When we apply the AR(l) error model to the CSFII data, we find 
that the estimated variance of an instrumental error is a:; = 0.188, 
u~ = 0.171, and the correlation between any two adjacent mea­
surements is 0.07, with the correlation between the first and the 
last instrumental error being less than 0.01. Various significance 
tests, including the bootstrap and the methods of Hotelling (1940) 
and Wolfe (1976), suggested a marginally statistically significant 
correlation. In addition, if the intra-individual errors are indepen­
dent or nearly so, then the plot of T 2 - T against T 1 - T and the 
plot of T 3 - T against T 1 - T should have approximately the same 
negative slope, a finding basically confirmed in Figure 3.7 (the s­
light discrepancy in the slopes is reflective of the small amount of 
autocorrelation). In other words, in light of the large sample size 
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Second vs First Replicate 

Third vs First Replicate 

~1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 

Figure 3.7. CSFII Data. The plot of T2 - T against T1 - T and the 
plot of T3 - T against T1 - T, with lowess lines. These should have the 
same negative slope if the intraindividual errors are independent. 

(1, 722 women), there is some but not overwhelming evidence of 
an intra-individual correlation between adjacent recalls. 

One implication of'this analysis is that since the intraindividual 
correlation between adjacent recalls is modest, the amount of corre­
lation between the original interview recall (the surrogate W) and 
the last telephone recall (the instrument T3 ) is likely to be negli­
gible. Hence, in the analysis we assumed that these two recalls are 
independent. 

3.12. 2 Standard Errors and Replication 

As promised in section 3.5, here we provide formulae for asymptotic 
standard errors for generalized linear models, wherein 

E(Y\Z,X) 
var(Y\Z,X) 

J(f3o + (J~X + (J;z); 

a2l(f3o + (J~X + (J;z). 
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Let j(ll(-) be the derivative of the function f(·), and let B 
(f3o ' /3~ ' /3;) t. 

73 

We will use here the best linear approximations of section 3.4.2. 
Let n be the size of the main data set, and N - n the size of any 
independent data set giving information about the measurement 
error variance 2:uu· Let .6. = 1 mean that the main data set is used, 
and .6. = 0 otherwise. Remember that there are ki replicates for 
the ith individual and that v = l::~=l k; - 2::~= 1 k? I L~=l k;. 

Make the definitions o: = (n- 1)lv, ~wz = ~xz, ~zw = ~~z' 
~ww = ~xx + O:~uu, Twi = (Wi. - f..lw), Tzi = (Zi- f..lz) and 

N N N 

liw = L.6.ikiWi·IL.6.iki; liz= n-1 L.6.;Z;; (3.25) 
i=l i=l i=l 

W1i* = [~ (nk;jv~rwirfi 
0 (nk;jv)rz;r wi 

'lili = 'lili* - V;; 

V; = [ ~ b~l b~2] ; 
0 bi2 bi3 

bil = 2:xx n:i { 1 - 2k;/ L .6.j kj + L .6.j k} I (L .6.j kj )2 } 

J J J 

+2:uu(nlv)(1- kilL .6.jkj); 
j 

bi2 = 2:xz(nlv)(k;- kT ().:J .6.jkj); b;3 = 2:zz· 
j 

In what follows, except where explicitly noted, we assume that 
the data have been centered, so that liw = 0 and liz = 0. This is 
accomplished by subtracting the original values of the quantities 
(3.25) from the W's and Z's, and has an effect only on the inter­
cept. Reestimating the intercept after "uncentering" is described 
at the end of this section. 

The analysis requires an estimate of 2:uu· For this we only assume 
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that for some random variables IP 2i and IP 3i, if 

then 

S-S 

0 
~uu (

0 0 
S = 0 ~uu 

0 0 0 

= ( ~ ~uu ~ ~uu ~) 
0 0 0 

N 

~ n- 1 L {~ill12i + (1- ~i)IPsi}. (3.26) 
i=l 

For example, if the estimator comes from an independent data set 
of size N- n, then IP2i = 0 and 

(
0 0 0) 

~Psi = 0 '1/Jsi 0 ; where 
0 0 0 

2::~~ 1 (Wi1 - Wi-) (Wij- Wi-)t- (ki- 1)~uu 
'I/J3i = N 

n-1 I;1=1 (1- ~l)(kl - 1) 

If the estimate of ~uu comes from internal data, then IP Si = 0 
and 

Now 

( 0 0 0) 
IP2i = 0 'I/J2i 0 ; where 

0 0 0 

make the further definitions 

[
1 0 

D = 0 ~ww 
0 ~zw 

~~zl; 
~zz 

{ ~ 1 ~}-1 ci= D-(o:-ki )S . 

Let D and S be the limiting values of i5 and S. Let I be the iden­

tity matrix of the same dimension as B. Define Ri = (1, w!., zDt 
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and Qi = (D - aS)ciRi· Using the fact that the data are cen­
tered, it is an easy but crucial calculation to show that Qi = 
(l,E(X~IZi,Wi.),zDt, i.e., it reproduces the regression calibra­
tion estimates. Now make the following series of definitions: 

i=l 

Ti = {Yi- f(Q~B)} f(l)(Q~B)Qdl(Q~B); 
N 

dinl = n-1 L .6.jsjQjRjcjWli {I- Cj(D- aS)} B; 
j=l 

N 

din2 = n-1 L .6.jsjQjRjc/J!2i {(a- kj 1 )(D- aS)cj - ai} B; 
j=l 

N 

din3 = n-1 L .6.jsjQjRjc/J!3i {(a- kj 1 )(D- aS)cj - ai} B; 
j=l 

ein = .6.i(ri- dinl - din2)- (1- .6.i)din3· 

Here and in what follows, Si, Qi, Ci, A1n, etc. are obtained by 
removing the estimates in each of their terms. Similarly, ri, ~nl, 
(Ln2 , Cin, etc. are obtained by replacing population quantities by 
their estimates. 

We are going to show that 

N 

fj- B ~ A[~n- 1 L ein, 
i=l 

(3.27) 

and hence a consistent asymptotic covariance matrix estimate ob­
tained by using the sandwich method is 

(3.28) 

(3.29) 
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The information-type asymptotic covariance matrix uses 

N 
~ ~ ~ -1"""""" ~ ~ A2n,i = A2n + A1n- n ~ f:l.iriri. 

i=1 

(3.30) 

It is worth noting that deriving (3.28) and (3.30) takes consider­
able effort, and that programming it is not trivial. The bootstrap 
avoids both steps, at the cost of extra computer time. 

To verify (3.27), note by the definition of the quasilikelihood 
estimator and by a Taylor series, we have the expansion 

N 

0 = n-1 / 2 L f:l.i { Yi- J(Q~B)} f(ll(Q~B)Qi/l(Q~B) 
i=1 

N 

~ n-1/ 2 L f:l.i { ri- siQi ( Q~B- Q~B)} 
i=1 

~ n-1/ 2 t f:l.i {ri- s;Q; ( Qi- Q;r B} (3.31) 
•=1 

-A1nn112 (f3- B). 

However, by a standard linear expansion of matrices, 

Q; - Q; { (D - aS)c; - (D - aS)c;} R; 

~ { (D- D)- a(S- S)} ciRi 

{ ~ 1 ~ } -(D- aS)ci (D- D)- (a- ki )(S- S) c;R; 

{I- (D- aS)c;} (D- D)c;R; 
1 } ~ + {(a- ki )(D- aS)c;- a! (S- S)c;R;. 

However, we have the linear expansion 

N 

n 112(D- D)~ n-1/ 2 L f:l.i'lt1i, 

i=1 

and substituting this together with (3.26) means that 
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i=1 
N N 

-n-112 L ~isiQiR~cin- 1 L ~j'l11j {I- c;(D- o:S)} B 
i=1 j=1 
N N 

-n-112 L ~isiQ;Rkin- 1 L {~j'l12j + (1- ~j)'l13j} 
i=1 j=1 

x { (o:- ki 1)(D- o:S)ci- o:I} B. 

If we interchange the roles of i and j in the last expressions and 
inset into (3.31), we obtain (3.27). 

While the standard error formulae have assumed centering, one 
can still make inference about the original intercept that would 
have been obtained had one not centered. Letting the original 
means of the Zi's and Wi. 's be /iz,o and /iw,o, the original in­

tercept is estimated by iio + Jj;,Jiw,o +ii;/iz,o· If one conditions on 
the observed values of /iz,o and /iw,o, then this revised intercept is 
the linear combination at fj = (1, /i~, 0 , /i~, 0 )B, and its variance is 

t . t db - 1 tA~- 1 A~ A~- 1 es 1ma e y n a 1n 2n 1n a. 
If ~uu is k_Eown, or if one is willing to ignore the variation in 

its estimate ~uu, set din2 = din3 = 0. This may be relevant if 
~uu comes from a large, careful independent study, for which only 
summary statistics are available (a common occurrence). 

In other cases, W is a scalar variable, ~uu cannot be treated 
as known and one must rely on an independent experiment which 
reports only an estimate of it. If that experiment reports an asymp­
totic variance [jn based on a sample of size N- n, then 'l!3; is a 
scalar and simplifications result which enable a valid asymptotic 
analysis. Define 

N 

dn4 = n-1 L ~/siJjR}cj {(a- kj 1 )(D- o:S)'Cj- o:I} B. 
j=1 

Then, in (3.29) replace n-1 I::i(1- ~i)~n3d';~3 by dn4d;4n[/(N­
n). 
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3.12.3 Quadratic Regression: Details of The Expanded 
Calibration Model 

Here we show that, as stated in section 3.10.2, in quadratic regres­
sion, if X given W is symmetrically distributed and homoscedas­
tic, the expanded model (3.15) accurately summarizes the variance 
function. Let li = E {(X- m)4IW}, which is constant because of 
the homoscedasticity. Then, if r = X - m, the variance function is 
given by 

var(YIW) = a 2 + /3;,1 var(XIW) + /3;,2var(X2IW) 

+2/3x,1/3x,2COV {(X, X2)IW} 

= a2 + /3;,1aEm + /3;,2E {X4- (m2 + aEm)21W} 

+2/3x,1!3x,2E [r {r2 + 2mr- aEm} IW] 

= a 2 + /3;,1 aEm + /3;,2(1i + 4m2aEm - a~m) + 4f3x,1!3x,2maEm 

=a;+ aEm(!3x,1 + 2/3x,2m)2, 

where az = a 2 + 13; 21i- atm· The approximation (3.15) is of 
exactly the same for~. The only difference is that it replaces the 
correct az by a 2, but this replacement is unimportant since both 
are constant. 



CHAPTER 4 

SIMULATION 
EXTRAPOLATION 

4.1 Overview 

Regression calibration (Chapter 3) is a simple, generally applica­
ble approximate estimation method that is especially well suited 
to problems in which validation or replication data are available 
for modeling the calibration function E(X I W). We now describe 
a complementary approximate method that shares the simplicity 
of regression calibration and is well suited to problems with ad­
ditive measurement error. Simulation extrapolation (SIMEX) is a 
simulation-based method of estimating and reducing bias due to 
measurement error. SIMEX estimates are obtained by adding ad­
ditional measurement error to the data in a resampling-like stage, 
establishing a trend of measurement error-induced bias versus the 
variance of the added measurement error, and extrapolating this 
trend back to the case of no measurement error. The technique 
was proposed by Cook & Stefanski (1995) and further developed 
by Carroll, Kiichenhoff, Lombard & Stefanski (1996) and Stefanski 
& Cook (1996). 

The fact that measurement error in a predictor variable induces 
bias in regression estimates is counter-intuitive to many people. An 
integral component of SIMEX is a self-contained simulation study 
resulting in graphical displays that illustrate the effect of measure­
ment error on parameter estimates and the need for bias correction. 
The graphical displays are especially useful when it is necessary to 
motivate or explain a measurement error model analysis. 

The key features of the SIMEX algorithm are described in the 
context of linear regression in the following section. A detailed de­
scription of the method is then given, followed by an example appli-
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cation to data from the Framingham Heart Study. These sections 
will be sufficient for the reader to understand and implement the 
procedure. Following the example, theoretical aspects of SIMEX 
estimation are described in greater detail. Examples of linear, log­
linear, quadratic and segmented regression are described in detail. 
The chapter ends with a section on asymptotic distribution theory 
and variance estimation for SIMEX estimators. 

4.2 Simulation Extrapolation Heuristics 

This section describes the basic idea of SIMEX, focusing on linear 
regression with additive measurement error. In section 4.4, we show 
how to extend SIMEX to nonadditive models. We assume that 
Y = (31 + f3xX + t:, with additive measurement error W =X+ U, 
where U is independent of (Y, X) and has mean zero and variance 

O"~. The ordinary least squares estimate of f3x, denoted ,Bx,naive, 

consistently estimates not f3x but rather f3xCT;j(CT; + CT~) (Chapter 
2). For this simple model the effect of measurement error on the 
least squares estimator is easily determined mathematically. 

The key idea underlying SIMEX is the fact that the effect of 
measurement error on an estimator can also be determined experi­
mentally via simulation. If we regard measurement error as a factor 
whose influence on an estimator is to be determined, we are nat­
urally led to consider simulation experiments in which the level of 
the measurement error, i.e., its variance, is intentionally varied. 

Suppose that in addition to the original data used to calcu­
late f3x,naive, there are M- 1 additional data sets available, each 
with successively larger measurement error variances, say (1 + 
Am)CT~, where 0 = Al < A2 < · ··,<~AM. The least squares es­
timate of slope from the mth data set, f3x,m, consistently estimates 
f3xO";j{CT; + (1 + Am)O"~}. 

We can think of this :e._roblem as a nonlinear regression model, 
with dependent variable f3x,m and independent variable Am, having 
a mean function of the form 

t'.(A) f3x0"; 
'::1 = 0"; + (1 + A)O";' 

The parameter of interest, f3x, is obtained from Q(A) by extrapo­
lation to A = -1. We describe the process schematically in Figure 
4.1. 
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Figure 4.1. A generic plot of the effect of measurement error of size (1 + 
A)u~ on parameter estimates. The value of A is on the x-axis, while the 
value of the estimated coefficient is on the y-axis. The SIMEX estimate 
is an extrapolation to A= -1. The naive estimate occurs at A = 0. 

SIMEX imitates the procedure just described. In the simula­
tion step additional independent measurement errors with vari­
ance Amu~ are generated and added to the original data, thereby 
creating data sets with successively larger measurement error vari­
ances. For the mth data set, the total measurement error variance 
is u~ + AmO"~ = (1 + Am)u~. Next, estimates are obtained from each 
of the resulting contaminated data sets. The simulation and rees­
timation step is repeated a large number of times and the average 
value of the estimate for each level of contamination is calculat­
ed. These averages are plotted against the A values and regression 
techniques are used to fit an extrapolant function to the averaged, 
error-contaminated estimates. Extrapolation back to the ideal case 
of no measurement error (A= -1) yields the SIMEX estimate. 
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4.3 The SIMEX Algorithm 

In this section, we describe the implementation of the SIMEX al­
gorithm. 

4. 3.1 The Simulation and Extrapolation Steps 

While SIMEX is a general methodology, it is easiest to understand 
when there is only a single, scalar predictor X subject to additive 
error, so that W i = Xi+ U i, where U i is a normal random variable 
with variance IT~, and is independent of Xi, zi and Yi. Typically, 
the assumption of normality is not critical in practice. Initially 
we assume that the measurement error variance, IT~, is known. 
Additivity of errors is not crucial, see section 4.4. 

SIMEX, like regression calibration, is applicable to general es­
timation methods, e.g., least-squares, maximum likelihood, quasi­
likelihood, etc. In this section, we will not distinguish among the 
methods, but instead will refer to "the estimator" to mean the cho­
sen estimation method computed as if there were no measurement 
error. However, we do restrict attention toM-estimators. We let 8 
denote the parameter of interest. 

The first part of the algorithm is the simulation step. As de­
scribed above, this involves using simulation to create additional 
datasets of increasingly large measurement error (1 + A)IT~. For any 
A 2: 0, define 

Wb,i(A)=Wi+J:\Ub,i, i=1, ... ,n, b=1, ... ,B, (4.1) 

where the computer-generated pseudo errors, {Ub,i}j=1 , are mu­
tually independent, independent of all the observed data and i­
dentically distributed, normal random variables with mean 0 and 
variance IT~. 

Having generated the new predictors, we compute the result­
ing naive estimates. Define Sb(A) to be the M-estimator when the 
{W b,i(A)}~ are used, and define the average of these estimators as 

B 

e(A) = B-l L: eb(A). (4.2) 
b=l 

By design, S(A) is the sample mean of {Sb(A)}f, and hence is the 
average of the estimates obtained from a large number of experi­
ments with the same amount of measurement error. It is the points 
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{G(Am), Am}~ that are plotted as filled circles in Figure 4.1. This 
is the simulation component of SIMEX. 

The extrapolation step of the proposal entails modeling each of 
the components of G(A) as functions of A for A ?: 0, and extrap­
olating the fitted models back to A = -1. The vector of extrapo­
lated values yields the simulation extrapolation estimator denoted 
Gsimex· In Figure 4.1 the extrapolation is indicated by the dashed 
line and the SIMEX estimate is plotted as a cross. 

4.3.2 Modifications of the Simulation Step 

There is a simple modification to the simulation step that is some­
times useful. As described above the pseudo errors are generated 
independently of (Yi, Zi, Wi)l' as N(O, a~) random variables. The 
Monte Carlo variance in G(A) can be reduced by the use of pseudo 
errors constrained so that for each fixed b, the sequence (Ub,i)i'=l 
h 1 t . . 2 . "'n u2 2 d as mean zero, popu a 10n vanance au> I.e., L...ti=l b,i = nau, an 
its sample correlations with (Y;, Z;, W;)l' are all zero. We call 
pseudo errors constrained in this manner, non-iid pseudo errors. 
In some simple models such as linear regression, the Monte Carlo 
variance is reduced to zero by the use of non-iid pseudo errors. 

The non-iid pseudo errors are generated by first generating iid 
standard normal pseudo errors (Ui; ;)f. Next fit a linear regression 
model of the iid pseudo errors on (Yi, Zi, Wi)l', including an in­
tercept. The non-iid pseudo errors are obtained by multiplying the 
residuals from this regression by the constant 

c = [na;f{(n- p- 1) MSE }f12 , 

where MSE is the usual linear regression mean squared error, and 
p is the dimension of (Y, zt, wt) t. 

The use of non-iid pseudo errors can be useful with small sample 
sizes. However, both in simulations (Cook & Stefanski, 1995) and 
theory (Carroll, Kiichenhoff, Lombard & Stefanski, 1996) we have 
found that with large sample sizes the use of non-iid pseudo errors 
confers no significant advantage. 

4.3.3 Estimating the Measurement Error Variance 

When the measurement error variance a~ is unknown, it must be 
estimated with auxiliary data as described in Chapter 3, see espe-
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cially (3.2). The estimate is then substituted for O"~ in the SIMEX 
algorithm and standard errors are calculated as described in sec­
tion 4.7.2. 

4.3.4 Extrapolant Function Considerations 

In multiple linear regression with non-iid pseudo errors, use of the 
extrapolant function, 

QRL(A, f)= 1'1 + ~-
'/'3 +A 

(4.3) 

reproduces the usual method-of-moments estimators, see Section 
4.6.1. Since the function QRL(.X, f) may be represented as a ratio 
of two linear functions we call it the rational linear extrapolant. 

SIMEX can be automated in the sense that YRL (.X, f) can be em­
ployed to the exclusion of other functional forms. However, this is 
not recommended, especially in new situations where the effects of 
measurement error are not reasonably well understood. SIMEX is 
a technique for studying the effects of measurement error in statis­
tical models and approximating the bias due to measurement error. 
The extrapolation step should be approached as any other mod­
eling problem, with attention paid to adequacy of the extrapolant 
based on theoretical considerations, residual analysis, and possibly 
the use of linearizing transformations. Of course, extrapolation is 
risky in general even when model diagnostics fail to indicate prob­
lems, and this should be kept in mind. 

In many problems of interest the magnitude of the measurement 
error variance, O"~, is such that the curvature in the best or "true" 
extrapolant function is slight and is adequately modeled by either 
YRL (.X, f) or the simple quadratic extrapolant, 

(4.4) 

An advantage of the quadratic extrapolant is that it is often 
numerically more stable than YRL (.X, f). Instability of the rational 
linear extrapolant can occur when the effects of measurement error 
on a parameter are negligible and a constant, or nearly constant, 
extrapolant function is required. Such situations arise, for example, 
with the coefficient of an error-free covariate Z that is uncorrelated 
with W. In this case ')'2 ~ 0 and ')'3 is nearly unidentifiable. In 
cases where QRL(.X, f) is used to model a nearly horizontal line, 
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::Y1 and ::Y2 are well determined, but ::Y3 is not. Problems arise when 
0 < ::Y3 < 1, for then the fitted model has a singularity in the range 
of extrapolation [ -1, 0). The problem is easily solved by fitting 
9q(A, r) in these cases. The quadratic extrapolant typically results 
in conservative corrections for attenuation; however, the increase 
in bias is often offset by a reduction in variability. 

The instability of YRL (A, f) just described is fundamentally dif­
ferent from the problem that arises when there are manifest effects 
of measurement error, i.e., the plot of e(A) versus A is not close 
to horizontal, and yet ::Y3 < 1. Here it simply may be that B is too 
small, in which case the solution is apparent. However, the problem 
can persist even for B -+ oo. For example, this occurs in the lin­
ear measurement error model when the sample variance of (Wi)! 
is less than a~. As in the linear model, the likelihood that this 
problem will occur in large samples is small. Also, from a practical 
viewpoint the occurrence of this problem suggests reassessment of 
the measurement error model assumptions. 

Simulation evidence and our experience with applications thus 
far suggest that the extrapolant be fit for A in the range [0, Amax] 
where 1 :S Amax :S 2. We denote the grid of A values employed 
by A, i.e., A= (A1, A2, ... , AM) where typically A1 = 0 and AM = 
A max· 

The quadratic extrapolant is a linear model and thus easily fits. 
The rational linear extrapolant generally requires a nonlinear least 
squares program to fit the model. However, it is possible to obtain 
exact analytic fits to three points and this provides a means of 
obtaining good starting values. 

Let A0 < Ai < A2 and define dij = ai - aj, 0 :S i < j :S 2. 
Then fitting YRL (A, r) to the points { ai, Aj }5 results in parameter 
estimates 

1'3 

1'2 

1'1 

d12A2(Ai- A(;)- A0d01(A2- Ai) 

dol(A2- Ai)- d12(Ai- A0) 
d12(::Y3 + Ai)(::Y3 + A2) 

A2- Ai 

1'2 
= ao- ;:y3 +A() 

An algorithm we have employed successfully to obtain starting 
values for fitting QRL(A, r) starts by fitting a quadratic model to 
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~ M 
{B(Am), Am} 1 where the Am are equally spaced over (0, Amax]. 
Initial parameter estimates for fitting QRL(A, r) are obtained from 
a three-point fit to (aj, Aj)~ where A0 = 0, Ar = Amax/2, A2 = 
Amax and aj is the predicted value corresponding to Aj from the 
fitted quadratic model. In our experience initial values obtained in 
this fashion are generally very good and frequently differ insignif­
icantly from the fully iterated, nonlinear least squares parameter 
estimates. 

4.3.5 Inference and Standard Errors 

Inference for SIMEX estimators can be performed either via the 
bootstrap or the theory of M-estimators (Appendix A), in partic­
ular by means of the sandwich estimator. Because of the compu­
tational burden of the SIMEX estimator, the bootstrap requires 
considerably more computing time than do other methods. With­
out efficient implementation of the estimation scheme at each step, 
even with current computing resources the SIMEX bootstrap may 
take an inconveniently long (clock) time to compute. On our com­
puting system for measurement error models, the implementation 
is efficient, and most bootstrap applications take place in a reason­
able (clock) time. 

Asymptotic covariance estimation methods based on the sand­
wich estimator are described in Section 4. 7.2. This is easy to imple­
ment in specific applications. Since the formulae look forbidding, 
we leave their listing until later. 

When a~ is known or nearly so, the SIMEX calculations them­
selves admit a simple standard error estimator. Let rl(A) be any 
variance estimator attached to eb(A), e.g., the sandwich estimator 
or the inverse of the information matrix, and let r 2 (A) be their 
average for b = 1, ... , B. Let s~ (A) be the sample covariance ma­
trix of the terms eb(A) for b = 1, ... , B. Then as shown in Section 
4.7.1, variance estimates for the SIMEX estimator can be obtained 
by extrapolating the components of the differences, 72 (A)- s~ (A), 
toA=-1. 

4.3.6 Relation to the Jackknife 

The SIMEX algorithm resamples pseudo errors from the measure­
ment error distribution and thus is reminiscent of a parametric 
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bootstrap procedure. The extrapolation step is similar to that un­
derlying Quenouille's jackknife estimator (Quenouille, 1956) for re­
ducing finite-sample bias, as described in Efron (1982). The theo­
retical relationship between SIMEX and Quenouille's jackknife is 
such that SIMEX can also be motivated and derived as an adap­
tation of the jackknife to measurement error problems. 

The connection between SIMEX and the jackknife is involved 
and not necessary to understand SIMEX, and we give no fur­
ther details here. The relationship is studied by Stefanski & Cook 
(1996). However, we do note that just as the ordinary jackknife also 
provides a variance estimator (Tukey, 1958), so too does SIMEX. 
The variance estimator mentioned at the end of section 4.3.5 and 
described in section 4.7.1 is related in theory to the usual jackknife 
variance estimator. 

4.4 Nonadditive Measurement Error 

We have described the SIMEX algorithm in terms of the additive 
measurement error model. However, SIMEX applies far more gen­
erally, and is easily extended to other models. 

For example, consider multiplicative error. Taking logarithms 
transforms the multiplicative model to the additive model. In re­
gression calibration, multiplicative error is handled in special ways 
(section 3.4.3). SIMEX works somewhat more naturally, in that 
one performs the simulation step ( 4.1) on the logarithms of the 
W's, and not on the W's themselves. Thus, 

Wb,i(.\) = exp {log(Wi) + v'Xvb,i}. 

In general, suppose we can transform W to an additive model by a 
transformation 1i, so that H(W) = 1i(X) + U. This is an example 
of the transform-both-sides model, see (3.19). If 1i has an inverse 
function Q, then the simulation step generates 

Wb,i(.\) = Q { H(Wi) + v'XVb,i}. 

In the multiplicative model, 1i = log, and Q = exp. A standard 
class of transformation models is the power family discussed in 
section 3.7. 

With replicates, one can also investigate the appropriateness of 
different transformations. For example, after transformation the 
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standard deviation of the intra-individual replicates should be un­
correlated with their mean, and one can find the power transfor­
mation which makes the two uncorrelated. 

4.5 Framingham Heart Study 

We illustrate the methods using data from the Framingham Heart 
Study, correcting for bias due to measurement error in systolic 
blood pressure measurements. The Framingham study consists of 
a series of exams taken two years apart. We use Exam #3 as the 
baseline. There are 1,615 men aged 31-65 in this data set, with 
the outcome, Y, indicating the occurrence of coronary heart dis­
ease (CHD) within an eight-year period following Exam #3; there 
were 128 such cases of CHD. Predictors employed in this example 
are the patient's age at Exam #2, smoking status at Exam #1 
and serum cholesterol at Exam #3, in addition to systolic blood 
pressure (SBP) at Exam #3, the latter being the average of two 
measurements taken by different examiners during the same visit. 
In addition to the measurement error in SBP measurements, there 
also is measurement error in the cholesterol measurements. How­
ever, for this example we ignore the latter source of measurement 
error and illustrate the methods under the assumption that only 
SBP is measured with error. 

The covariates measured without error, Z, are age, smoking s­
tatus and serum cholesterol. For W, we employ a modified version 
of a transformation originally due to Cornfield and discussed by 
Carroll, Spiegelman, Lan, Bailey & Abbott (1984), setting W = 
log(SBP - 50). Implicitly, we are defining X as the long-term av­
erage of W. 

In addition to the variables discussed above, we also have SBP 
measured at Exam #2. The mean transformed SBP at Exams #2 
and #3 are 4.37 and 4.35, respectively. Their difference has mean 
0.02, and standard error 0.0040, so that the large-sample test of 
equality of means has p-value < 0.0001. Thus in fact, the mea­
surement at Exam #2 is not exactly a replicate, but the difference 
in means from Exam #2 to Exam #3 is close to negligible for all 
practical purposes. 

We present two sets of analyses. The first analysis employs the 
full complement of replicate measurements from Exam #2. In the 
second analysis we illustrate the procedures for the case when only 
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a single measurement is employed and a~ is estimated by a small 
replication data set, obtained in this example by randomly select­
ing a subset of the Exam #2 SBP measurements. 

4.5.1 Full Replication 

This analysis uses the replicate SBP measurements from Exams 
#2 and #3 for all study participants. The transformed data are 
Wi,j, where i denotes the individual and j = 1, 2 refers to the 
transformed SBP at Exams #2 and #3, respectively. The overall 
surrogate is Wi,., the sample mean for each individual. The model 
is 

Wi,j =Xi+ Ui,j, 

where the Ui,j have mean zero and variance a~. The components 
of variance estimator (3.2) is a~ = 0.01259. 

We employ SIMEX using Wi = Wi,. and Vi= Ui,·· The sam­
ple variance of (Wi)1 is aw,* = 0.04543, and the estimated mea­
surement error variance is a~,* = a~/2 = 0.00630. Thus the linear 
model correction for attenuation, i.e., inverse of the reliability ra­
tio, for these data is 1.16. There are 1,614 degrees of freedom for 
estimating a~,* and thus for practical purposes the measurement 
error variance is known. 

In Table 4.1, we list the results of the naive analysis that ig­
nores measurement error, the regression calibration analysis, and 
the SIMEX analysis. For the naive analysis, sandwich and infor­
mation refer to the sandwich and information standard errors dis­
cussed in Appendix A; the latter is the output from standard sta­
tistical packages. 

For the regression calibration analysis, the first set of sandwich 
and information standard errors are those obtained from a stan­
dard logistic regression analysis having substituted the calibration 
equation for W, and ignoring the fact that the equation is estimat­
ed. The second set of sandwich standard errors are as described in 
Section 3.12, while the bootstrap analysis uses the methods of Ap­
pendix A. 

For the SIMEX estimator, M-estimator refers to estimates de­
rived from the theory of Section 4.7.2 for the case where a~ is 
estimated from the replicate measurements. Sandwich and Infor­
mation refer to estimates defined in Section 4.3.5 (theory in Section 
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Age Smoke Chol LSBP 

Naive .055 .59 .0078 1.70 
Sand. .010 .24 .0019 .39 
Info. .011 .24 .0021 .41 

Reg. Cal. .053 .60 .0077 2.00 
Sand.1 .010 .24 .0019 .46 
Info. 1 .011 .25 .0021 .49 
Sand.2 .010 .24 .0019 .46 
Bootstrap .010 .25 .0019 .46 

SIMEX .053 .60 .0078 1.93 
Simex, Sand. 3 .010 .24 .0019 .43 
Simex, Info.3 .011 .25 .0021 .47 
M-est. 4 .010 .24 .0019 .44 

Table 4.1. Estimates and standard errors from the Framingham data 
logistic regression analysis. This analysis assumes that all observations 
have replicated SBP. Sand., sandwich; Info., information; 1 , calibration 
function known; 2 , calibration function estimated; 3 , u~ known; 4 , u~ 
estimated. Here "Smoke" is smoking status, "Chol" is cholesterol and 
"LSBP" is log(SBP-50}. 

4.7.1), with 72 (A) derived from the naive sandwich and naive in­
formation estimates, respectively. The M-estimation sandwich and 
SIMEX sandwich standard errors yield nearly identical standard 
errors because a~ is so well estimated. 

Figure 4.2 contains plots of the logistic regression coefficients 
e(A) for eight equally spaced values of A spanning [0, 2] (solid 
circles). For this example B = 2000. The points plotted at A = 0 

are the naive estimates §naive-
The nonlinear least-squares fits of QRL(A, f) to the components 

of {e(Am), AmH (solid curves) are extrapolated to A= -1 (dashed 
curves) resulting in the SIMEX estimators (crosses). The open cir­
cles are the SIMEX estimators that result from fitting quadratic 
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Figure 4.2. Coefficient extrapolation functions for the Framingham lo­
gistic regression modeling. The simulated estimates {S(Am), AmH are 
plotted (solid circles) and the fitted rational linear extrapolant (solid line} 
is extrapolated to A = -1 (dashed line) resulting in the SIMEX esti­
mate {cross}. Open circles indicate SIMEX estimates obtained with the 
quadratic extrapolant. 
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extrapolants. To preserve clarity the quadratic extrapolants were 
not plotted. Note that the quadratic-extrapolant estimates are con­
servative relative to the rationallinear-extrapolant estimates in the 
sense that they fall between the rational linear-extrapolant esti­
mates and the naive estimates. 

We have stated previously that the SIMEX plot displays the 
effect of measurement error on parameter estimates. This is espe­
cially noticeable in Figure 4.2. In each of the four graphs in Figure 
4.2, the range of the ordinate corresponds to a one-standard error 
confidence interval for the naive estimate constructed using the in­
formation standard errors. Thus Figure 4.2 illustrates the effect of 
measurement error relative to the variability in the naive estimate. 
It is apparent that the effect of measurement error is of practical 
importance only on the coefficient of log(SBP- 50). 

The SIMEX sandwich and theM-estimation (with a~ estimated) 
methods of variance estimation yield similar results in this exam­
ple. The difference between the SIMEX sandwich and information 
methods is due to differences in the naive sandwich and informa­
tion methods for these data. 

Figure 4.3 displays the variance extrapolant functions fit to the 
components of 72 (.A) - s~ (.A) used to obtain the SIMEX infor­
mation variances and standard errors. The figure is constructed 
using the same conventions used in the construction of Figure 4.2. 
For these plots the ranges of the ordinates are (1/2)var(naive) to 
(4/3)var(naive), where var(naive) is the information variance esti­
mate of the naive estimator. 

4.5.2 Partial Replication 

We now illustrate the analyses for the case where a~ is estimated 
from a small replication data set. The measured predictor, W, is 
the single SBP measurement from Exam #3. A randomly selected 
subset of 30 replicate measurements from Exams #2 and #3 were 
used to estimate a~. For these data the sample variance of W is 
.05252 and the estimate of a~ is .01306. The estimated linear model 
correction for attenuation, or inverse of the reliability ratio, is 1.33. 

There are two major differences between this set of analyses 
and those from the previous section: (i) the measurement error 
variance is twice as large because we are using only Exam #3 and 
not its average with Exam #2, thus resulting in greater attenuation 
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Figure 4.3. Variance extrapolation functions for the Framingham logis­
tic regression variance estimation. Values of { (72 (Am) - s~ (Am)), Am H 
are plotted (solid circles) and the fitted rational linear extrapolant (solid 
line) is extrapolated to A = -1 (dashed line) resulting in the SIMEX 
variance estimate {cross). Open circles indicate SIMEX variance esti­
mates obtained with the quadratic extrapolant. 
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Age Smoke Chol LSBP 

Naive .056 .573 .0078 1.52 
Sand. .010 .243 .0019 .36 
Info. .011 .249 .0021 .38 

Reg. Cal. .053 .582 .0075 2.07 
Sand.1 .010 .243 .0020 .49 
Infor. 1 .011 .249 .0021 .52 
Sand.2 .010 .243 .0020 .53 

SIMEX .053 .581 .0077 1.94 
Simex, Sand. 3 .011 .261 .0020 .46 
Simex, Info.3 .012 .251 .0021 .49 
M-est.4 .011 .245 .0020 .54 

Table 4.2. Estimates and standard errors from the Framingham data lo­
gistic regression analysis. This analysis is based upon a randomly selected 
replication data set of size 30. Sand., sandwich; Info., information; 1 , 

calibration function known; 2 , calibration function estimated; 3 , 17~ 
known; 4 , 17~ estimated. 

in the naive estimate; and (ii) the measurement error variance is 
estimated with far less precision, 29 degrees offreedom versus 1614, 
resulting in less precise corrected estimates. 

Both of these differences are reflected in the results reported in 
Table 4.2. The standard errors are calculated as in Table 4.1 with 
the exception that bootstrap standard errors were not calculated 
for the regression calibration estimates. 

4.6 SIMEX in Some Important Special Cases 

This section describes the bias-correction properties of SIMEX in 
four important special cases. 
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4.6.1 Multiple Linear Regression 

Consider the multiple linear regression model 

Yi = {31 + {3;zi + f3xXi + Ei· 

In the notation of section 4.3, 8 = ({31, {3;, f3x)t. If non-iid pseudo 
errors are employed in the SIMEX simulation step, it is readily 
seen that 

Solving this system of equations we find that 

/3v(.>..) = (vtv)-1vty (4.5) 
(vtv)-1 vtw (wty- wtv(vtv)-1 yty) 

WtW- WtV(VtV)-1VtW + .>..112 

~ wty - wtv(vtv)-1 yty 
f3x(.>..) = WtW- WtV(VtV)-1VtW + .>..112' (4·6) 

where f3v = ((31,(3;)t, yt = (V1,V2, ... ,Vn) with Vi= (l,zDt. 
Note that all of the components of G(.>..) are functions of).. of the 
form QRL(.>.., r) for suitably defined, component-dependent r = 
( 'Yl , /2, /3) t. 

It follows that if the models fit in the SIMEX extrapolation 
step have the form QRL ().., f), allowing different r for different 
components, then SIMEX results in the usual method-of-moments 
estimator of e. 

4. 6. 2 Loglinear Mean Models 

Suppose that X is a scalar and that E(YIX) = exp(f3o+f3xX), with 
variance function Var(Y I X) = 112exp { () (f3o + f3xX)} for some 
constants 112 and B. It follows from the appendix in Stefanski (1989) 
that if (W, X) has a bivariate normal distribution and generalized 
least squares is the method of estimation, then /30 (.>..) and /3x(.>..) 
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consistently estimate 

(3 (,\) = (3 + (1 + ,\) J-txa~f3x + fJ;a;a~/2 
0 0 a; + (1 + ,\)a~ 

and 
(3 (,\) f3xa; 

x - a~ + (1 +-\)a~ 

respectively, where J-tx = E(X), a; = Var(X) and a~ = Var(W I 
X). 

The rational linear extrapolant is asymptotically exact for esti­
mating both f3o and f3x. 

4. 6. 3 Quadratic Mean Models 

Consider fitting a quadratic regression model using orthogonal 
polynomials and least square estimation. Components of the pa­
rameter vector e = (f3o' f3x,l' f3x,2)t are the coefficients in the linear 
model 

- 2 
Yi = f3o + f3x,l (Xi - X) + f3x,2 (Xi - a - bXi) + Ei, 

where a = a{ (X;)r} and b = b{(X;)r} are the intercept and slope, 
respectively, of the least squares regression line of Xr on Xi. The 
so-called naive estimator for this model is obtained by fitting the 
quadratic regression to (Y;, W;)f noting that Wi replaces Xi, 
i = 1, ... , n, in the definitions of a and b. 

Let J-tx,j = E(XJ), j = 1, ... ,4. We assume for simplicity that 
J-tx,l = 0 and J-tx, 2 = 1. The exact functional form of Gb(,\) is 
known for this model and is used to show that asymptotically, 
G(-\) converges in probability to 8(,\) given by 

f3o (,\) 

f3x,l(,\) 

f3o, 

f3x,w; 
a; +8' 

/-tx,3f3x,18 + (1 + 8)f3x,2(J-tx,4- 1)- J-t;,3fJx,2 

(1 + 8)(J-tx,4 - 1 + 48 + 282) - J-t;,3 

where 8 = (1 +-\)a~. 
Note that both (30(-\) and f3x,l (-\) are functions of,\ of the form 

QRL(-\,r) whereas f3x,2(,\) is not. For arbitrary choices of a~, J-tx,3, 
J-tx,4, f3x,l and fJx,2, the shape of f3x,2(,\) can vary dramatically for 
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-1 :-:::; .A :-:::; 2 thereby invalidating the extrapolation step employing 
an approximate extrapolant. However, in many practical cases the 
quadratic extrapolant corrects for most of the bias, especially for 
u~ sufficiently small. When X is normally distributed, f3x, 2 (>..) = 
f3x,2/ (1 + 8)2 which is monotone for all >.. ~ -1 and reasonably well 
approximated by either a quadratic or QRL(>.., r) for a limited, but 
useful, range of values of u~. 

4.6.4 Segmented Linear Regression Mean Models 

A particularly difficult nonlinear model occurs when two unknown 
regression lines are joined at an unknown change point. We take 
the simplest case where one of the lines is known to have zero slope, 
and the change point is thus a threshold. The model for the mean 
is given by 

where 

(x- !32)+ = { 0 (3 
X- 2 

if X< (32; 
if X ?:_ (32. 

Because (32 is a threshold, it is called the threshold limiting value 
(TLV). 

The effects of measurement error on estimating the TLV cannot 
be easily described mathematically. However, under the assump­
tion that X, U, and the error in the regression of Y on X are in­
dependent and normally distributed, it is possible to compute the 
limiting values of the naive and SIMEX estimators, see Kiichenhoff 
& Carroll (1995). 

The limiting values of the SIMEX TLV estimators are given in 
Figure 4.4. While we have displayed only the quadratic extrapolan­
t, with either the linear, quadratic or rational linear extrapolants, 
the SIMEX estimator provides estimates that are much closer to 
the actual value of (32 in large samples than the naive estimate. The 
quadratic and rational linear extrapolants result in nearly consis­
tent estimates of the change point. 

4.7 Theory and Variance Estimation 

The ease with which estimates can be obtained via SIMEX, even for 
very complicated and nonstandard models, is offset somewhat by 
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Figure 4.4. The segmented regression model. For given amounts of mea­
surement error, the actual limiting value of the naive estimator ("naive") 
and SIMEX estimator with quadratic extrapolant ("simex-q") for esti­
mating the threshold limiting value (TL V) (32 = -1. Deviations from 
the value (32 = -1 on the vertical axis represent large-sample bias. Here 
f3o = 0, (31 = 2 and a; = 1. 

the complexity of the resulting estimates, making the calculation 
of standard errors difficult or at least nonstandard. Except for the 
computational burden of nested resampling schemes, SIMEX is 
a natural candidate for the use of the bootstrap or a standard 
implementation of Tukey's jackknife to calculate standard errors. 

We now describe two methods of estimating the covariance ma­
trix of the asymptotic distribution of esimex that avoid nested 

resampling. The first method uses the pseudo estimates, eb(.X), 
generated during the SIMEX simulation step in a procedure akin 
to Tukey's jackknife variance estimate. Its applicability is limited 
to situations in which £7; is known or estimated well enough to jus­
tify such an assumption. The second method exploits the fact that 
esimex is asymptotically equivalent to an M-estimator and makes 
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use of standard formulae from Appendix A. This method requires 
additional programming, but has the flexibility to accommodate 
situations in which u~ is estimated and the variation in &~ is not 
negligible. 

4. 7.1 Simulation Extrapolation Variance Estimation 

Stefanski & Cook (1996) establish a close relationship between 
SIMEX inference and jackknife inference. In particular they iden­
tify a method of variance estimation applicable when u~ is known 
that closely parallels Tukey's jackknife variance estimation. We 
now describe the implementation of their method of estimating 
var(Gsimex)· 

It is convenient to introduce a function T to denote the estima­
tor under study. For example, T { (Y i, Zi, Xi) 1} is the estimator 
of 8 when X is observable, and T { (Yi, Zi, Wi)l} is the naive 
estimator. 

For theoretical purposes we redefine 

(4.7) 

The expectation in ( 4. 7) is with respect to the distribution of 
(Ub,i)i'=I only, since we condition on the observed data. It can 
be obtained as the limit as B-+ oo of the average {G1 (>.) + · · · + 
eB(>.)} I B. In effect, G(A.) is the estimator obtained when comput­
ing power is unlimited. 

We now introduce a second function, Tvar to denote an associ­
ated variance estimator, i.e., 

Tvar{(Yi, Zi, Xi)l} = var(Gtrue) = var[T{(Yi, Zi, Xi)l}] 

where Gtrue denotes the "estimator" calculated from the "true" 
data (Yi, Zi, Xi)f. 

We allow T to be p-dimensional, in which case Tvar is (p x p)­
matrix valued, and variance refers to the variance-covariance ma­
trix. For example, Tvar could be the inverse of the information 
matrix when Gtrue is a maximum likelihood estimator. Alterna­
tively, Tvar could be a sandwich estimator for either a maximum 
likelihood estimator or a general M-estimator (Appendix A). 

We use r 2 to denote the parameter var(Gtrue), 7£rue to denote 
the true variance estimator Tvar{(Yi, Zi, Xi)!}, and 7~aive to 
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denote the naive variance estimator Tvar{(Yi, Zi, Wi)l}. 
Stefanski & Cook (1996) show that 

E{esimex I (Yi, zi, Xi)?}~ §true' (4.8) 

where the approximation is due to both a large-sample approxima­
tion and to use of an approximate extrapolant function. We will 
make use of such approximations without further explanation; see 
Stefanski & Cook (1996) for additional explanation. 

It follows from Equation ( 4.8) that 

var(esimex) ~ var(etrue) + var(esimex- §true)· (4.9) 

Equation (4.9) decomposes the variance of §simex into a compo­

nent due to sampling variability, var(etrue) = T 2 , and a compo­

nent due to measurement error variability, var(esimex- §true)· 
SIMEX estimation can be used to estimate the first component 

T 2 . That is, 

7;p..) = Tvar[{Yi, zi, wb,i(.X)}?J 

is calculated for b = 1, ... , B, and upon averaging and letting B -+ 
oo, results in 72 (-X). The components of 72 (-X) are then plotted as 
functions of .X, extrapolant models are fit to the components of 
{72 (-Xm), .Xm}]'4 and the modeled values at .X = -1 are estimates 
of the corresponding components of T 2 . 

The basic building blocks required to estimate the second com­
ponent of the variance, var(esimex- §true), are the differences 

~b(.x) = eb(.x)- e(.x), b = 1, ... ,B. (4.10) 

Define 
B 

s~ (.X) = (B- 1)-1 L ~b(.X)~t(.X), (4.11) 
b=l 

i.e., the sample variance matrix of {eb(.x)}r=l· Its significance 
stems from the fact that 

(4.12) 

see Stefanski & Cook (1996). 
The variance matrix s~ (.X) is an unbiased estimator of the condi­

tional variance var{eb(.X)-e(.X) I (Yi, Zi, Wi)f} for all B > 1 and 
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converges in probability to its conditional expectation as B --+ oo. 
Since E{Gb(A)- G(.X) I (Yi, Zi, Wi)l} = 0 it follows that uncon­
ditionally E{s~(.X)} = var{Gb(.X)- G(.X)}. 

Thus the component of variance we want to estimate is given by 
~ ~ . 2 

var(esimex- 8true) =- hm E{s~(.X)} . 
.>.-+-1 

This can be (approximately) estimated by fitting models to the 
components of s~ (.X) as functions of A > 0 and extrapolating the 
component models back to .X= -1. We use s~(-1) to denote the 
estimated variance matrix obtained by this procedure. 

In light of (4.9), the definition of r 2 , and (4.12) the difference, 

:r;imex - s~ ( -1), is an estimator of var{ §simex}. In practice, 
separate extrapolant functions are not fit to the components of 
both 72 (-X) and s~(.X), but rather the components of the differ­
ence, 72 (-X)- s~(.X), are modeled and extrapolated to A= -1. 

In summary, for SIMEX estimation with known a~, the simula­
tion step results in G(.X), 72 (.X) and s~ (.X) for A E A. The model ex­

trapolation of e(.X) to A= -1, esimeX' provides an estimator of e, 
and the model extrapolation of (the components of) the difference, 
72 (-X)- s~(.X) to .X= -1 provides an estimator ofvar(Gsimex)· It 
should be emphasized that the entire procedure is approximate in 
the sense that it is generally valid only in large samples with small 
measurement error. 

There is no guarantee that the estimated covariance matrix so 
obtained is positive definite. This is similar to the nonpositivi­
ty problems that arise in estimating components-of-variance. We 
have not encountered problems of this nature, although there is 
no guarantee that they will not occur. If it transpires that the es­
timated variance of a linear combination, say -yfe, is negative, a 
possible course of action is to plot, model and extrapolate directly 
the points [-yf{T2 (.Xm)- s~(.Xmh, Amlr· 

4. 7.2 Estimating Equation Approach to Variance Estimation 

This section is based on the results in Carroll, Kiichenhoff, Lom­
bard & Stefanski (1996). Assuming iid sampling these authors 

show that esimex is asymptotically normally distributed and pro­
pose an estimator of its asymptotic covariance matrix. We highlight 
the main points of the asymptotic analysis in order to motivate the 
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proposed variance estimator. 
We describe the application of SIMEX in the setting of M­

estimation, i.e., using unbiased estimating equations (Appendix 
A), assuming that in the absence of measurement errors, M-estimation 
produces consistent estimators. 

The estimator obtained in the absence of measurement error is 
denoted §true and solves the system of equations 

n 

0 = n-1 I:w (vi,zi,xi,etrue) 0 (4.13) 
i=1 

This is just a version of (A.5), and is hence applicable to variance 
function and generalized linear models. In multiple linear regres­
sion, "IJ!(·) represents the normal equations for a single observation, 
namely 

W(Y,Z,X, 9) = (Y- flo- ~:z- ~.X) ( ~) . 
In multiple logistic regression, with H ( ·) being the logistic distri­
bution function, 

W(Y,Z,X, 9) = {Y- H (flo H:z +~.X)} (~) . 
The solution to (4.13) cannot be calculated, since it depends on 

the unobserved true predictors. The estimator obtained by ignoring 
measurement error is denoted by §naive and solves the system of 
equations 

n 

o = n-1 I: w (vi, zi, wi, enaive). 
i=1 

For fixed band.\, and large n a standard linearization (Appendix 
A) shows that 

n112 { eb(.\)- 8(.\)} ~ -A- 1 {0"~, .\, 8(.\)} 
n 

X n-1/2 L "IJI{Yi, zi, Wb,i(.\), 8(.\)}, (4.14) 
i=1 
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where 

A{ a~,>., 8(>.)} = E ['lle{Y, Z, Wb,i(>.), 8(>.)}], 

and 

we{Y, z, wb,i(>.), 8} = (aja8t)w{Y, z, wb,i(>.), 8}. 

Averaging (4.14) over b results in the asymptotic approximation 

n1/ 2 { e(>.)- 8(>.)} ~ -A-1(-) 

n 

x n-1/2 LXB,i{a~, >., 8(>.)}, (4.15) 
i=1 

where 
B 

XB,i{a~,>.,8(>.)} = B-1 I:w{Yi, zi, wb,i(>.),8(>.)}, 
b=1 

and A-1(·) = A-1 {a~,A,8(>.)}. The summands XB,i(·) in (4.15) 
are independent and identically distributed with mean zero. 

Let A = { >.1, ... , AM} denote the grid of values used in the 

extrapolation step. Let e*(A) denote the vector of estimators, 

{et(>.I), ... ,§t(>.M)r, which we also denote vec{e(>.),>. E A}. 

The corresponding vector of estimands is denoted by 8 * (A). Define 

\f! B,i(1) {a~, A, e*(A)} = vec[xB,i{ a~,>., e(>.)}, >. E A] 

and 

Au{a~,A,8*(A)} = diag[A{a~, >., 8(>.)},>. E A]. 

Then, using (4.15), the joint limit distribution of n112 {e*(A) -
8* (A)} is seen to be multivariate normally distributed with mean 
zero and covariance ~, where 

~ = A[}(·)Cu {a~,A,8*(A)} {A111(·)}t (4.16) 

Cu {a~,A,8*(A)} = Cov [wB,1(1) {a~,A,8*(A)}]. (4.17) 

Define 

Q*(A,r*) = vec[{9(>.m,rj)}m=1, ... ,M, i=1, ... ,p] 

where r* = (ri, ... , r1)t and rj is the parameter vector esti­

mated in the extrapolation step for the jth component of e(>.), 
j = 1, ... ,p. 
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Define R(f*) = S*(A)- Q*(A,f*). The extrapolation steps re­
sults in f*, obtained by minimizing Rt(f*)R(f*). The estimating 
equation for f* has the form 0 = s(f*)R(f*) where st(f*) = 
{8/8(f*)t}R(f*). With D(f*) = s(f*)st(r*), standard asymptot­
ic results show that 

n-112 (r*- f*) ~ N {0, :E(f*)} 

where 
:E(f*) = D-1 (f*)s(f*):Est(r*)D- 1 (f*) 

and :E is given by (4.16). Now Ssimex = 9*( -1}*) and thus by 
the ~ method, the Vn-normalized SIMEX estimator is asymptot­
ically normal with asymptotic variance, 

9r· ( -1, r*):E(r*) Wr· ( -1, r*n t 

where 9r.(-A,f*) = {8/8(f*)t}Q*(.A,f*). 
Note that the matrix Cu (-) in ( 4.17) is consistently estimated 

by Cu (·),the sample covariance matrix of [w B,i(l) { 0"~, A, e*(A) }]1. 

Also, Au ( ·) is consistently estimated by Au ( ·) = diag {Am ( ·)} for 

m = 1, ... ,M, where 

n B 

Am(·)= (nB)- 1 L L We { Yi, zi, wb,i(Am), S(.Am)}. 
i=l b=l 

The indicated variance estimator is 

where 

n-19r· ( -1, r*)~(r*) { 9r· ( -1, f*)} t' (4.18) 

~(r*) = B- 1 (f*)s(f*)~st(r*)D- 1 (f*); 

v(r*) = s(r*)st(r*); 

~ =Ail (·)Cli1 (·) {A;_-/ 0} t. 

When u~ is estimated, the estimating equation approach is mod­
ified by the inclusion of additional estimating equations employed 
in the estimation of&~. We illustrate the case in which each Wi 
is the mean of two replicate measurements, Wij, j = 1, 2 where 

j = 1, 2, i = 1, ... , n. 



THEORY AND VARIANCE ESTIMATION 105 

With replicates, Wi is replaced by Wi = Wi,. and <1~ by <1~ * = 
0'~/2. , 

Let 

. 2 _ { (Di - t.t) 2 - <~~,* } W(t)2(<~u,*'"")- Di _ /1- , 

where Di = (Wil- Wi2)/2. Then solving 2::W"i(2J(<~;,*,IJ) = 0, 
results in the estimators 'ji = D and a;,* = (n- l)s~/n where s~ 
is the sample variance of (Di)r and consistently estimates <~;,*. 

By combining W B,i(l) and W i(2) into a single estimating equation 
and applying standard theory, the covariance matrix of the joint 
distribution of e*(A), a;,* and 'ji is 

(4.19) 

{ An(·) 
X 0 

where 

A12{ <~~,*'A, e*(A)} 

= n-1 t E [o(<~:*' t.t) W' B,i(l) { 0'~•*' A, 8*(A)}] ; 

and 

Estimating these quantities via the sandwich method is straight 
forward. For A12 ( ·) remove the expectation symbol and replace 

{ <~~,*' e*(A), J.l} by the estimates {a;,*, e*(A), 'ji}. The covariance 

matrix C* ( ·) can be estimated by the sample covariance matrix of 
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the vectors 

SIMULATION EXTRAPOLATION 

[
WB,i(l) {&~,*'A,G*(A) }j. 

w i(2) (&~,*' ji) 
These estimates are substituted into (4.19) thereby obtaining an 
estimate of the joint covariance matrix of G*(A), &~,* and ji. The 

submatrix corresponding to the components of e* (A) is now em­
ployed in (4.18) in place of~-



CHAPTER 5 

INSTRUMENTAL VARIABLES 

5.1 Overview 

In previous chapters we assumed that it was possible to estimate 
the measurement error variance, say with replicate measurements 
or validation data. However, it is not always possible to obtain 
replicates or validation data and thus direct estimation of the mea­
surement error variance is sometimes impossible. In the absence of 
information about the measurement error variance, estimation of 
the regression model parameters is still possible provided the data 
contain an instrumental variable T, in addition to the unbiased 
measurement W = X + U. 

There are three basic requirements that an instrumental variable 
(IV) must satisfy: (i) it must be correlated with X; (ii) it must be 
independent ofW -X; (iii) it must be a surrogate, i.e., independent 
of Y given (Z, X). 

One possible source of an instrumental variable is a second mea­
surement of X obtained by an independent method. This second 
measurement need not be unbiased for X. Thus the assumption 
that a variable is an instrument is weaker than the assumption 
that it is a replicate measurement. 

In the example of Chapter 4 it was explicitly assumed that trans­
formed blood pressure measurements from successive exam periods 
were replicate measurements, even though a test of the replicate 
measurements assumption was found to be statistically (although 
not practically) significant. The same data can also be analyzed 
under the weaker assumption that the Exam #2 blood pressure 
measurements are instrumental variables. We do this in section 5.3 
to illustrate the instrumental variable methods. 

In this chapter we restrict attention to the important and com­
mon case in which there is a generalized linear model relating Y 
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to (Z, X), i.e., the mean and variance functions depend on a lin­
ear function of the covariates and predictors, and there is a linear 
regression of X on ( Z, T, W). 

Instrumental variable estimation in linear models is covered in 
depth Fuller (1987). There are a number of approaches to instru­
mental variable estimation in nonlinear models. In this chapter we 
describe an approach that is closely related to the regression cal­
ibration method of Chapter 3. It summarizes the work of Carroll 
& Stefanski (1994) and Stefanski & Buzas (1995). The methods 
in this chapter can also be viewed as extensions of the results for 
probit regression with multivariate normal predictors and covari­
ates by Buzas & Stefanski (1996a). Other work on instrumental 
variable estimation not described in this chapter includes the gen­
eral nonlinear model methods of Amemiya (1985, 1990a,b), and 
the methods of Buzas & Stefanski (1996b) for generalized linear 
models in canonical form. 

We introduce the estimators in section 5.2, and apply them to 
the Framingham data in section 5.3. In sections 5.4 and 5.5 we 
derive the estimators and obtain their asymptotic distributions. 

5.2 Approximate Instrumental Variable Estimation 

In this chapter it is necessary to indicate numerous regression pa­
rameters and we adopt the notation employed by Stefanski and 
Buzas (1995). For example, ,BYI!ZX is the coefficient of 1, i.e., the 
intercept, in the generalized linear regression of Y on 1, Z and 
X; ,B~II£.X is the coefficient of Z in the regression of Y on 1, 
Z and X. This notation allows representation of subsets of coef­

ficient vectors, e.g., ,B~IlZX = (,BYI!ZX, ,B~Il£.X) and ,B~IlZT = 
(,BXI!ZT, ,B~Il£.T' ,B~I1Z1:). 

Our analysis is based upon generalized linear models, or more 
generally on mean/variance models. Examples of these models are 
linear, logistic and Poisson regression. As described more fully in 
sections A.4 and A.5, such models depend on a linear combination 
of the predictors plus possibly a parameter (} that describes the 
variability in the response. The sections listed above give details 
for model fitting when there is no measurement error. It might be 
useful upon first reading to simply think of this chapter as dealing 
with a class of important models, the details of fitting of which are 
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standard in many computer programs. 
These models can be written in general form as 

E(YIZ, X) = f(f3YilZX + {3~l 1z:xZ + {3~IIZKX), (5.1) 

var(YIZ, X) = a 2g2 (f3YilZX + {3~ll£:Xz + {3~IIZKX, 0). (5.2) 

Those unfamiliar with generalized linear models might wish to fo­
cus on linear regression, where f ( v) = v and g = 1. In logis­
tic regression, f is the logistic distribution function and g2 is the 
Bernoulli variance /(1- f). The only notational change with other 
parts of the book is that the parameters {30 , f3z and f3x have been 
replaced by f3YilZX, f3Yil£:X and f3YilZ_K, respectively. 

The approximate models and estimation algorithms are best de­
scribed in terms of the composite vectors 

X = (1 zt xt)t w = (1 zt wt)t and T = (1 zt Tt)t 
' ' ' ' ' ' ' . 

If we define {3y 1g_ = (f3YilZx,f3~ll£X'{3~IlZK)t, the basic model 
(5.1)-(5.2) becomes 

E(YIX) = J(f3t X) YIK , 

var(YIX) 

The goal is to estimate {3y IK, (} and a 2 . 

(5.3) 

(5.4) 

The assumptions that are necessary for our methods are stated 
more precisely in section 5.4, but we note here that in addition to 
the conditions stated in section 5.1, we will also assume that the 
regression of X on (Z, T, W) is approximately linear. This restricts 
the applicability of our methods somewhat, but is sufficiently gen­
eral to encompass many potential applications. 

5.2.1 First Regression Calibration Instrumental Variable 
Algorithm 

In section 5.4.1 it is shown that approximately 

E(YIT) = f{{3~1KE(X IT)}= f({3~1.Kf3ittT), 

and under the crucial assumption that f3u,Tt = f3xlt it follows that 
(approximately) 

(5.5) 
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That is, the coefficient of T in the generalized linear regression of 
Yon Tis the product of f3h,g_ and (J~I.t· Starting with this basic 
approximation there are two ways to derive estimates of (JYLK. 

The first and simplest starts with a multivariate regression of 
WonT to obtain fiwl.t· Then the generalized linear regression of 

Y on the predicted values fi~l.t T results in an estimator of .Bn,g_ 
h. h d t f.iiVl,RC w 1c we eno e ~-'YIK . 
This estimator is easily computed as it requires only linear re­

gressions of the components of W on T, and then quasilikelihood 
and variance function estimation of Y on the "predictors" $~ 1 1: T. 

The second means of exploiting the basic regression calibration 
approximation works directly from the identity (5.5). For a fixed 

nonsingular matrix M1, let fi·;;)(f..t) = ($~ 1.f:Mlfiwl.t)- 1 $~ 1.f:Ml. 
The second estimator is 

f.iiVl,(Mt) _ (.i-(Mt) f.i _ 
~-'YIK - ~-'wl.t ~-'YII:' (5.6) 

where fivr.t is the estimated regression coefficient when the gen­

eralized model is fit to the (Y, T) data. Note that (5.6) makes 
evident the requirement that fiwr.t be of full rank. 

When T and W are the same dimension, this estimator does not 
depend on M1 and is identical to the first estimator, but not oth­
erwise. When there are more instruments than variables measured 
with error the choice of M1 matters. In section 5.5.1 we derive an 
estimate M1 that minimizes the asymptotic variance of fi~~l,(Mt) 

5.2.2 Second Regression Calibration Instrumental Variable 
Algorithm 

The second algorithm exploits the fact that both W and T are sur­
rogates. The derivation of the estimator is involved (section 5.4.2), 
but the estimator is not difficult to compute. 

Let dim(Z) be the number of components of Z. Define 

,Byl.f:W 

(JYITW 

,8YilZTW, 

(01 xd, fJ~IlZTW )t, 

where d = 1 + dim(Z). Then, for a given matrix M2, the second 
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instrumental variables estimator is 
~IV2,(M2) ~-(M2) ~ ~ ~ 

,BYIK = .Bwl.t (.Bntw + .Bwlt.BYrtw ). (5. 7) 

When T and Ware the same dimension, ,B~~l,(M2 )~oes not de­

pend on M2. In section 5.5.1 we derive an estimate, M2, that min­
imizes the asymptotic variance of ,B~~l(M2 ) for the case dim(T) > 
dim(W). 

5.3 An Example 

We now illustrate the methods presented in this chapter. We em­
ploy the same data from the Framingham heart study used in the 
example of section 4.5, wherein two systolic blood pressure mea­
surements from each of two exams were employed. It was assumed 
that the two transformed variates 

W1 = log{(SBP3,1 + SBP3,2)/2- 50} 

and 
W2 = log{(SBP2,1 + SBP2,2)/2- 50}, 

where SBPi,j is the jth measurement of SBP from the ith exam, 
j = 1, 2, i = 2, 3, were replicate measurements of the long-term 
average transformed SBP. 

Table 5.1 displays estimates of the same logistic regression model 
fit in section 4.5.2 with the difference that W 2 was employed as 
an instrumental variable, not as a replicate measurement, i.e., in 
the notation of this section, W = W 1 and T = W 2 , and no 
subsampling was done. 

Because T has the same dimension as W, the estimate ,8~~l,(Mt) 

does not depend on M1 and is equivalent to ,B~~J:'RC. This co;;;mon 

estimate is listed under IV1 in Table 5.1. Also ,B~~l(M2 ) does not 

depend on M2 and is listed under IV2 in the table. 
Table 5.2 displays estimates of the same logistic regression model 

with the difference that the instrumental variable T was taken to 
be the two-dimensional variate 

T = {log(SBP2,1), log(SBP2,2)}. 

The purpose of this analysis is to illustrate the differences between 
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Age Smoke Chol LSBP 

Naive .056 .573 .0078 1.524 
Std. Err. .010 .243 .0019 .364 

IV1 .054 .577 .0076 2.002 
Std. Err. .011 .244 .0020 .517 

IV2 .054 .579 .0077 1.935 
Std. Err. .011 .244 .0020 .513 

Table 5.1. Estimates and standard errors from the Framingham da­
ta instrumental variable logistic regression analysis. This analysis 
used the one-dimensio.nal instrumental variable LSBP = log{ {SBP2,1 + 
SBP2 ,2)/2- 50}. "Smoke" is smoking status and "Chol" is cholesterol 
level. Standard errors calculated using the sandwich method. 

the estimators when dim(T) > dim(X), and to emphasize that T 
need only be correlated with X, and not a second measurement, 
for the methods to be applicable. 

5.4 Derivation of the Estimators 

In this section, we derive the estimators presented in section 5.2. 
We start with the following assumptions: 

E(X I z, T, W) = !3illZTW + !3ill.£TWZ + 
!3ii1Z1:W T + !3ii1ZTW w; 

E(X - w I z, X, T) = 0; 

E(Y I Z, T, W) = E{E(Y I z, X) I z, T, W}. 

(5.8) 

(5.9) 

(5.10) 

We have discussed each of these previously. Note that (5.8) and 
(5.9) imply that E(X I Z, T) = E(W I Z, T) and also that 
f3WilZT = f3XIlZT, f3Wil.£T = f3XIl.£.T and ,8WI1ZI:. = ,8XI1ZI:.· 

When validation data are available, i.e., complete data on Z, X 
and T for some units in either the primary sample or an external 
sample, it is possible to check some or all of (5.8)-(5.10) depending 
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Age Smoke Chol LSBP 

Naive .056 .573 .0078 1.524 
Std. Err. .010 .243 .0019 .364 

IV1,RC .054 .577 .0076 1.877 
Std. Err. .011 .244 .0020 .481 

IV1,(Ml) .054 .577 .0076 1.884 
Std Err. .011 .244 .0020 .483 

IV2,(Mz) .054 .579 .0077 1.860 
Std. Err. .011 .244 .0020 .484 

Table 5.2. Estimates and standard errors from the Framingham da­
ta instrumental variable logistic regression analysis. This analysis used 
the two-dimensional instrumental variable {log(SBP2,!), log(SBP2,2)}. 
"Smoke" is smoking status and "Chol" is cholesterol level. Standard er­
rors calculated using the sandwich method. 

on the nature and extent of the validation data. Furthermore, with 
validation data it is sometimes possible to determine transforma­
tions so that (5.8)-(5.10) hold approximately. 

5.4.1 First Regression Calibration Instrumental Variable 
Algorithm 

The first algorithms are simple to describe once (5.5) is justified, 
which we do now. Making use of the fact that T is a surrogate, 
(5.10) and the standard regression calibration approximation re­
sults in the approximate model 

E(YIT) 

var(YIT) 

!{!3hg_E(X IT)}= !(!3h,r_!3hti'), (5.11) 

a2l{!3h,x.E(X IT), B} (5.12) 

= az gz (!3h,x.!3itt T, B). 
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It follows from (5.11)-(5.12) that the coefficient ofT in the gen­
eralized linear regression of Y on T is !3ht = !3h,t_!3~1.t· By (5.9) 

f3wlt = !3.x1t, and (5.5) follows. 

5.4.2 Second Regression Calibration Instrumental Variable 
Algorithm 

The derivation of the second algorithm is somewhat involved, but 
the estimator is relatively easy to compute. Remember that the 
strategy is to exploit the fact that both W and T are surrogates. 

Making use of the fact that both T and W are surrogates, ap­
plication of the standard regression calibration approximation pro­
duces the approximate model 

E(YIT,W) 

var(YIT, W) 

f{!3hg_E(X IT, W)}, (5.13) 

u 2g2 {!3h,rE(X IT, W), 0}. (5.14) 

Under the linear regression assumption (5.8), there exist coeffi­
cient matrices j3~ltw and !3~rrw such that 

E(X IT, W) = ,Bi-ltw T + !3htw w. (5.15) 

Taking conditional expectations of both sides of (5.15) with respect 
to T and using the fact that E(X I T) = j3~lt T results in the 

identity 
t- t- t t-

!3.xltT = !3.xltw T + !3.xrrw!3wltT. 
Equating coefficients ofT and using the fact that !3wlt = !3x 1t we 
find that 

(5.16) 

Solving (5.16) for !3htw and then substitution into (5.15) shows 

that 

E(X IT, W) =(I- !3htw)!3~ 1t'i' + !3htw w. (5.17) 

By convention !3htw is the regression coefficient of (Tt' wt)t in 

the generalized linear regression of Y on T and W. The indicated 
model is over-parameterized and thus the components of j3~ITW are 

not uniquely determined. Although other specifications are possible 
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we define the components of ,BYITW uniquely as 

,Bylf.W 

,BYI'i'W 

,BYilZTW> 

(01 xd, ,B~IlZTW )t, 
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where d = 1 + dim(Z). Let H1 and H2 be the matrices that de­
fine ,Bylf.W and ,BYITW in terms of ,BYilZTw, so that ,Bylf.W = 
H1,BYilZTW and ,BYITW = H2,8YilZTW· Also note that because 

T = (1, zt' Tt)t' our notation allows us to write ,B~IlZTW = 

,B~Itw· 
Substitution of (5.17) into (5.13) and equating coefficients ofT 

and W results in the two equations, 

,B~If.W 
,B~ITW 

.Bhx_ (I - ,B~ITW ),B~If.' 

.Bh,r_,B~Itw· 

(5.18) 

(5.19) 

Post-multiplying (5.19) by ,B~If. and adding the resulting equation 

to (5.18) results in the single equation, 

,Bylf.W + ,B_xlf.,BYITW = ,B_xlf.,BYLK' 

which upon using the definitions of H1 and H2 and the identity 
.Bxlf. = .Bw 1t, is shown to be equivalent to 

H1,BYITW + .8wlf.H2,Byl'i'W = ,BWif.,BYL~.' 

Let ,BYITW be the estimated regression parameter from the gen­

eralized linear regression of Yon (1, Z, T, W), and let fiwlf. be as 
before. Under the identifiability assumption that for a given matrix 
M2, (,8~ 1f.M2,8w 1t_) is asymptotically nonsingular, it follows that 

the estimator (5.7), namely 

is approximately consistent for ,BYIK: 

When T and Ware the same dimension, ,B~~l'(M2 ) does not de­

pend on M2. In section 5.5.1 we derive an estimate M2 that mini­
mizes the asymptotic variance of ,B~~l'(M2 ) for the case dim(T) > 
dim(W). 
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5.5 Asymptotic Distribution Approximations 

We first derive the asymptotic distributions assuming that M 1 and 
M2 are fixed and that M-estimation is used in the generalized linear 
and linear regression modeling steps. We then show how to estimate 
M1 and M2 for efficient asymptotic inference. 

Let 'ljJ denote the score function for the generalized linear model 
under consideration (5.3)-(5.4). This score function has as many 
as three components, the first corresponding to the unknown re­
gression parameter, the second and third to the parameters in the 
variance function. All of the components are functions of the un­
known parameters, the response variable and the vector of covari­
ate/predictor variables. For example, with logistic regression there 
are no variance parameters and '1/J(y, x, {3) = {y- H(f3tx)} x where 
H(t) = 1/ {1 + exp( -t)}. 

Let 
'1/Jli = 'ljJ { Yi, i\, f3Yit' ai, th} 

denote the ith score function employed in fitting the approximate 
model (5.11)-(5.12) to (Yi, 'i\)f. 

Let 
¢2i = '1/J { Yi, ('i'!, WDt, f3YITW' a~' 02} 

denote the ith score function employed in fitting the approximate 

model (5.13)-(5.14) to { Yi, (TL wnt} ~· Note that each fit of 

the generalized linear model produces estimates of the variance 
parameters as well as the regression coefficients. These are denoted 
with subscripts as above, e.g.' ar' (}1' etc. 

Let ¢ 3i denote the ith score function used to estimate vec(f3w1t), 
e.g., for least squares estimation 

'I/J3i = (wi- f3iv 1t±i) ®'i'i, 

and let 
¢4i = '1/J { Yi, (f3iv 1t Ti), f3~~k,RC, a~, 03}. 

Finally, define 'I/J5i and 'I/J6i as 

(f3t M f3 ) f3/V1,(MI) f3t M f3 
'I/J5i = Wit 1 Wit YIK - Wit 1 Ylt' 

and 
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-(3~1.f:M2(H1(3yli'W + f3wl.f:H2(3yli'W ). 

Note that neither 'ljJ5; nor 'I/J6i depends on i. 
Define the composite parameter 

8 = {(J~I.t'ai,OLfJ~Ii'W'a~,O~,vect (!3~ 1.t), (5.20) 

((3/V~,RC)t 2 ot (fJIV~,(M1))t (f3IV:,(M2 ))t }t 
YIK ,a3 , 3 ' YIK ' YIK ' 

and the ith composite score function 

'1/J;(e) = ('1/JL,'I/J~;,'I/J~;,'I/Jt,'I/J~;,'I/J~;)t. (5.21) 

It follows that e solves 
n 

L '1/Ji(e) = Odim(e)x1' 
i=1 

showing that e is an M-estimator. Thus under fairly general con­
ditions e is approximately normally distributed in large samples 
and the theory of Chapter A applies. 

An estimate of the asymptotic covariance matrix of e is given 
by the sandwich formula A;;:-1 En(A;;:- 1 )t where An= L:::~= 1 '1/Jie(e) 

with 'I/J;e(8) = 8'1jJ;(8)/88t, and En = L:::~=1 '1/Ji(e)'ljJf(e). Note 
that because we are fitting approximate (or misspecified) models, 
information-based standard errors, i.e., standard errors obtained 
by replacing An and En by model-based estimates exploiting the 
information identity, are generally not appropriate. 

~ ~ -1 ~ ~ -1 t ~ . . -
Let n =An Bn(An ) and let O;,j, Z,J - 1, ... '12 denote the 

( i, j)th sub matrix of fi corresponding to the natural partitioning 
induced by the components of 8 in (5.20). It follows that 08 ,8 , 

fiu 11 and fi12 12 are estimates of the variance matrices of the 
, t t" d" t, "b t" f (3~IV1,RC (3~IV1,(Ml) d (3~IV2,(M2 ) 

asymp o 1c IS n u tons o YIK , YIK an YIK , re-
spectively. 

5.5.1 Two-Stage Estimation 

When T and W have the same dimension the estimators (5.6) 
and (5.7) do not depend on M1 and M2. However, when there are 
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more instruments than predictors measured with error it is possi­
ble to identify and consistently estimate matrices M1 and M 2 that 
minimize the asymptotic variance matrix of the corresponding esti­
mators. We give the results first and then sketch their derivations. 

For an asymptotically efficient estimator (5.6) replace M1 with 

1111,opt = (n1,1- n1,1ct- cn7,1 + cn7,7ct) -l 

where C = hr ® (i3~~l'(I)) t, ht is the identity matrix of dimen­

sion dt = dim(T), and i}~~l'(I) is the estimator obtained by setting 

M1 equal to hr 
For an asymptotically efficient estimator (5. 7) replace M 2 with 

Mz,opt = { (Hl + i3wrt)fi4,4(Hl + i3wrtY + 

(H, + ilw1:r)fi,,,D' + Dfi,,,(H, + ilw 1:r)' + Dfi,,,D'} ~' 
~ ( ~ ) t (~IV2,(I)) t ~IV2,(I) . 

where D = ht ® Hz/3yrtw - ht ® (3YLK , and f3YLK 1s 
the estimator obtained by setting Mz equal to ht. 

We now describe the E.:ain steps ~the demonstrations of the 
asymptotic efficiency of M1,opt and M2 ,opt· 

The argument for M1,opt and the estimator (5.6) is simpler and 
is given first. We start with a heuristic derivation of the efficient 
estimator. 

Consider the basic identity in (5.5), ,BYif = .Bwrt.Bn~.: Replac-

ing ,Bylf with i}Yif- (i}ylf- ,BY If) and .Bwtf with i3wtf- (i}Wif­
.Bwrt) and rearranging terms shows that this equation is equivalent 
to 

i3Yt1: = i3wrt.Bnt + 
(i}Yif- .BYtf) - (i3wrt- .Bwrt).BYtK 

This equation has the structure of a linear model with response 
vector ,BYif' design matrix i3wtf' regression parameter ,BYIK' and 

equation error, (i}ylf- ,By1f) - (i3wrt- .Bw1t).By1g_. Let I: de­
note the covariance matrix of this equation error. The best linear 
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unbiased estimator of !3ng_ in this pseudolinear model is 

~t -1 ~ -1 ~t -1 ~ 
(f3wlt~ f3wlt) f3wlt~ f3Yit' 

which is exactly (5.6) with M1 = ~- 1 . Note that the estimator 
M1 ,opt is a consistent estimator of ~-1 . 

Showing that the heuristic derivation is correct and that there 
is no penalty for using an estimated covariance matrix is some­
what more involved, but entails nothing more than linearization 
via Taylor series approximations and ~-method arguments. 

Let M1 be a consistent estimator of the matrix M1 . Expanding 

the estimating equation for ,B~~l(Mt) around the true parameters 

results in the approximation 

c:- {(3~IV1,(Ml) (3 } (3-(Mt) ( C ) 
V n YIK - YIK ~ Wit f2 - €3 ' 

where 

€2 Vn (.BYit - (3Yit) ' 

E3 Vn {vee (.Bw
1
t) -vee (!3w1t)} , 

c ht 0 (3~1k" 
This Taylor series approximation is noteworthy for the fact that it 
is the same for M1 known as it is for M1 estimated. Consequently, 
there is no penalty asymptotically for estimating M1 . 

Thus, with AVAR deflating asymptotic variance, we have that 

AVAR { t:n:(3~1v~,(Mt)} = (3-:(fl!tl {AVAR (t: - Ct: )} (!3-:(fl!tl) t 
yn YIK WII: 2 3 WII: 

That this asymptotic variance is minimized when 

M1 = {AVAR (t:2- Ct:3 )} - 1 , 

is a consequence of the optimality of weighted-least squares linear 
regression. 

Let M 2 be a consistent estimator of the matrix M 2 . Expanding 

the estimating equation for ,B~~k(M2 ) around the true parameters 

results in the approximation 

c:- {(3~IV2,(M2) (3 _} ~ (3-(M2) { (H (3 _ -H ) D } 
V n YIK - YIK ~ Wit 1 + WII: 2 f1 + €3 ' 
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where 

€1 = Vn (,6Y!TW - ,8Y!TW) ' 

D = hr ® ( H2,8YITW) t - hr ® .Bh,g_-
As before, estimating M2 does not affect the asymptotic distribu­
tion of the parameter estimates. 

From the approximation we find that 

AVAR ( ..;n,6~~k,(M2 )) = 

.B·~)tt) [AVAR { ( H1 + .8itTfH2) €1 + D€3}] (.8w(l~2 )) t, 
which is minimized when 

M2 = [AVAR { ( H1 + .8it'I'J:.H2) €1 + D€3}] - 1 

5.5.2 Computing Estimates and Standard Errors 

The two-stage estimates are only slightly more difficult to compute 
than the first-stage estimates. Here we describe an algorithm that 
results in both estimates. 

Note that for fixed matrices M1 and M2 all of the components 
of e in (5.20) are calculated either directly as linear regression or 
generalized linear regression estimates, or are simple transforma­
tions of such estimates. So for fixed M1 and M 2 obtaining e is 
straightforward. 

Asymptotic variance estimation is most easily accomplished by 
first programming the two functions 

n 

G1 (e) = L '1/Ji(e), 
i=1 

n 

L: '1/Ji(e)'l/Ji(e)t, 
i=1 

where '1/Ji(e) is the ith composite score function from (5.21). Al­
though we do not actually solve G1 (8) = 0 to find e, it should be 
true that G1 (G) = 0. This provides a check on the programming 
of G1. 



ASYMPTOTIC DISTRIBUTION APPROXIMATIONS 121 

Numerical differentiation of G1 at 8 = e results in the matrix 
An. Alternatively, analytical derivatives of ~i(8) can be used, but 
these are complicated and tedious to program. Evaluation of G2 at 
e = e is the matrix Bn. The covariance matrix of e is then found 
as fi = A;-1 Bn(A;- 1 )t. 

The algorithm described above is first used with M 1 and M2 set 
to the identity matrix of dimension dim(T) resulting in the first­
stage estimates and e~mated asy~ptotic covariance matrix. Next 
M1 and M2 are set to M1,opt and M2,opt• respectively, as described 
in section 5.5.1. A second implementation of the algorithm results 
in the second-stage estimates and estimated asymptotic covariance 
matrix. 



CHAPTER 6 

FUNCTIONAL METHODS 

6.1 Overview 

Regression calibration (Chapter 3) and SIMEX (Chapter 4) are 
easily applied general methods. Although the resulting estimators 
are consistent in important special cases such as linear regression 
and loglinear mean models, they are only approximately consistent 
in general. 

For certain generalized linear models and measurement error dis­
tributions there are easily applied methods that are fully and not 
just approximately consistent, without making assumptions about 
the distribution of X. This is an example of functional modeling. 
We describe such methods in this chapter. 

We focus on the case of additive normally distributed measure­
ment error, so that W = X+ U with U distributed as a normal 
random vector with mean zero and covariance matrix ~uu· Al­
though the problem has this parametric error assumption, it also 
has a nonparametric component, in that no assumptions are made 
about the true predictors, (X;)r, which can be random, as in a 
structural model, or fixed unknown constants, as in a functional 
model. 

Suppose for the sake of discussion that the measurement er­
ror covariance matrix ~uu is known. In the functional model, the 
unobservable X's are fixed constants, and hence the unknown pa­
rameters include the X's. With additive normally distributed mea­
surement error, one strategy is to maximize the joint density of the 
observed data with respect to all of the unknown parameters in­
cluding (X;)r. While this works for linear regression (Gieser, 1981), 
it fails for more complex models such as logistic regression. Indeed, 
the logistic regression functional maximum likelihood estimator is 
both inconsistent and difficult to compute (Stefanski & Carroll, 
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1985). An alternative approach is to change to the structural mod­
el and apply likelihood techniques (Chapter 7), although this is not 
always appropriate. 

In this chapter, we consider two functional methods referred to 
here as the conditional-score and corrected-score methods. 

We start with linear, logistic and gamma-loglinear modeling as 
important examples for which the techniques of this chapter apply. 
In section 6.2 we show how one can compute estimators in these ex­
amples without making assumptions about the X's. The methods 
are illustrated with a logistic regression example in section 6.3. The 
remainder of the chapter shows how to obtain estimators for other 
problems, and goes into detail about the methods of derivation. 

Outside of the previously mentioned examples and Poisson log­
linear models, the estimators have an appearance of being more in­
volved than the regression calibration or SIMEX estimators. This is 
really only a matter of algebra (they are algebraically more com­
plex, to be sure), but the conditional-score and corrected-score 
methods have a general theoretical basis. The conditional methods 
exploit special structures in important models such as linear, logis­
tic, Poisson loglinear and gamma-inverse, and then use a tradition­
al statistical device, conditioning on sufficient statistics, to obtain 
estimators. The corrected-score method effectively estimates the 
estimator one would use if there were no measurement error. 

The conditional-score method is presented in section 6.4, and 
the corrected-score method is introduced in section 6.5, for a class 
of problems which lead to easy computation. Inference for the pa­
rameters when 'Euu is estimated are described in section 6.6. In 
section 6. 7 we describe a broad class of infinite series corrected­
score estimators. 

6.2 Linear, Logistic and Gamma-Loglinear Models 

Three models of wide interest are the linear, logistic and loglinear 
(especially the gamma-loglinear) models, the latter for responses 
following the gamma distribution. The methods described below 
for these three models share the property that the resulting esti­
mators do not depend on the distribution of X. 

First consider the multiple linear regression model with mean 
(30 + (3~X + 13;z, and write the unknown regression parameter as 
8 = ((30 , f3x, f3z). When the measurement error is additive with 
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non differential measurement error variance I:uu, the usual method­
of-moments regression estimator (2. 7) can be derived as the solu­
tion to the equation 

where 

n 

L '1/J*(Yi, zi, wi, e, I:uu) = 0, 
i=l 

(6.1) 

is the corrected score for linear regression. In linear regression, the 
corrected-score method results in the usual method-of-moments 
estimator. If :Euu is unknown, one substitutes an estimate of it 
(section 3.4) into (6.1) and solves for the regression parameters. 

The key point to note here is that in solving (6.1), we need know 
nothing about the X's. This feature is common to all the methods 
in this chapter. 

Equation (6.1) is an example of an estimating equation approach 
for estimating a set of unknown parameters. The reader can consult 
section A.3 for an overview of estimating equations, although this 
is unnecessary for the purpose of using the methods. Asymptotic 
standard errors for the estimators can be derived using either the 
bootstrap or the sandwich formula as described in Appendix A. 

For linear regression, solving (6.1) instead of simply writing down 
the method-of-moments estimate may appear purely algebraic, but 
the approach can be derived (and is derived in subsequent section­
s) from general principles. The general principles allow us to han­
dle other problems, for example gamma regression with loglinear 
mean. 

When Y has a gamma distribution with loglinear mean exp(,80 + 
,a;x + ,a;z), it has variance which is rjJ times the square of the 
mean. For this important example, the corrected-score estimator 
is obtained from the corrected score 

¢.(Y,Z,W,9,E,,) ~ ( i) (6.2) 
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-exp { ~(Z, W, 8, ~uu)} ( Z~ ) , 
Y(W + .5~uu,Bx) 

where ~(Z, W, 8, ~uu) = -,Bo- ,B!W- ,a;z- .5,B!~uu,Bx. 
Logistic regression is best handled using the conditional-score 

method, although under certain conditions it is also amenable to 
the corrected-score method, see section 6.7. For example, consider 
the usual linear-logistic model, where Y is binary and has success 
probability following the logistic model H(,B0 + ,B~X + ,a;z). The 
conditional score is 

where 

¢*(Y,Z,W,8,~uu) (6.3) 

= [Y- H {,Bo - ,8~~(·) - .5,B~~uu,Bx - ,a;z}] [ ~ ] , 
~(·) 

~(·) = ~(Y, W,,Bx, ~uu) = W + Y~uu,Bx. 
Equation (6.3) is substituted into (6.1), and the resulting equation 
is solved numerically (section 6.4.3). 

6.3 Framingham Data 

We fit a logistic regression model to the Framingham data used 
in the examples of sections 3.3 and 4.5. All of the replicate mea­
surements were used, and thus our variance estimate is based on 
1614 degrees of freedom and we proceeded under the assumption 
that the sampling variability in the estimate was negligible, i.e., 
the known measurement error case. 

Previously, we have fit logistic regression models to these data, 
and here we use the conditional estimator based on (6.3). The 
estimates and standard errors are in Table 6.1, compare with Table 
4.1. In this example, there is little difference among the regression 
calibration, SIMEX and conditional estimators. 

6.4 Unbiased Score Functions via Conditioning 

In this section, we describe the conditional estimators of Stefanski 
& Carroll (1987), which apply to an important class of generalized 
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Age Smoke Chol LSBP 

Naive .055 .59 .0078 1.70 
Std. Err. .010 .24 .0019 .39 

Conditional .053 .58 .0078 1.93 
Std. Err. .011 .25 .0020 .46 

Table 6.1. Estimates and sandwich standard errors from the Framingham 
data logistic regression analysis. Here "Smoke" is smoking status, "Chol" 
is cholesterol and "LSBP" is log{SBP-50}. 

linear models. The logistic regression conditional score presented 
in section 6.2 is the most noteworthy example. Here we extend the 
methods to Poisson-loglinear, gamma-inverse and other models. 

Canonical generalized linear models (McCullagh & Neider, 1989) 
for Y given (Z, X) have density or mass function 

{ YTJ- V(ry) } f(yiz, x, 8) = exp ¢ + c(y, ¢) , (6.4) 

where 17 = (30 + f3;z + f3~x is called the natural parameter, and 
8 = (/30 , 13;, /3~, ¢) is the unknown parameter to be estimated. The 
mean and variance of Yare V(l) (TJ) and ¢V(2) (ry), respectively (the 
first and second derivatives). This class of models includes: 

• linear regression: mean = TJ, variance = ¢, V(ry) = ry2 /2, 
c(y, ¢) = -y2 /(2¢) -log( y'21r¢ ); 

• logistic regression: mean = H(ry), variance = H'(ry), ¢ = 1, 
V(ry) = -log {1- H(ry)}, c(y, ¢) = 0; 

• Poisson loglinear regression: mean= variance= exp(ry), ¢ = 1, 
V(ry) = exp(ry), c(y, ¢) = -log(y!); 

• Gamma inverse regression: mean = -1/ry, variance= -¢/TJ, 
V(ry) =-log( -ry), c(y, ¢) = ¢-1Iog(y/¢) -log {yf(1/¢)}. 
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If X were observed, then 8 is estimated by solving 

t, { v,- v('l(",)} (i:) = o (6.5) 

~ [(n- p) ¢- {Yi -7J(1)(1Ji)} 2] 0, (6.6) 
~ n D(2l(1Ji) 

where 1Ji = f3o + f3!Zi + (3;xi. 
For certain models equations (6.5)-(6.6) result in maximum like­

lihood estimators (when n-pis replaced by n), although in general 
they result in quasilikelihood estimators, see Appendix A. 

Assume now that the measurement error is additive and nor­
mally distributed, with error covariance matrix ~uu. If X is re­
garded as an unknown parameter and all other parameters are 
assumed known, then it transpires that ~ = W + Y~uuf3x/¢ is 
a sufficient statistic for X (Stefanski & Carroll, 1987). Further­
more, the conditional distribution of Y given (Z, ~) = (z, 8) is 
also a canonical generalized linear model in exactly the same for­
m as (6.4), except that we make the following substitutions when 
(Y, Z, ~) = (y, z, 8), namely to replace x by 8, and set 

7h = f3o + (3;z + (3~8; 
c*(y, ¢, (3;~uuf3x) = c(y, ¢)- (1/2)(y/¢) 2 (3;~uuf3x; 

1) * ( 1]*, ¢, (3; ~uuf3x) 

= ¢log [! exp { Y1J* /¢ + c* (y, ¢, (3; ~uuf3x)} d~-t(Y)] , 

where as before the notation means that the last term is a sum 
if Y is discrete and an integral otherwise. This means that the 
conditional density or mass function is 

where "'* = f3o + f3!z + (3;8. 
The obvious correspondence between (6.4) and (6. 7) suggests 

that one simply substitutes V*("'*' ¢, f3;~uuf3x) for V(ry) into (6.5)­
(6.6), and then solves the resulting equations replacing 'f/i by 'fJ*,i = 
(30 + (3;~i + (3;zi, noting that ~i depends on f3x and ¢. 
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Here are the details of how to implement this procedure. The 
conditional mean and variance of Y given (Z, ~) are determined 
by the derivatives of v. with respect to 17•, i.e., 

a 
m(ry., ¢, f3;'Euuf3x) -a B.; 

17· a2 
¢v(ry.,¢,(3;Euuf3x) <Pa 2 B.. (6.8) 

17. 

The estimates of 8 = (f3o, f3x, f3z, ¢) are obtained by solving 

t, {Y; - m(,.,;, M:E.,fi,l) (i:) ~ 0 

t [(n-p)¢- {Yi-m(ry.,i,¢,(3;Euuf3x)}2
] =O (6_9) 

i=l n v(ry.,i, ¢, f3~'Euuf3x) 

where 77•,i = f3o + f3!Zi + f3;~i, with ~i = Wi + Yi'Euuf3xf¢· 
Solving (6.9) is generally more difficult than solving (6.5)-(6.6). 

Stefanski & Carroll (1987) discuss a number of ways of deriving 
unbiased estimating equations from (6.7) and (6.8). The approach 
described here is the simplest to implement. 

6.4.1 Linear and Logistic Regression 

The functions m( ·) and v( ·) are easily obtained in linear and logistic 
regression. In linear regression, when (6.4) is a normal density, 

t ) _ a _ 77• . 
m(ry.,¢,f3x'Euuf3x - ary. B.- 1+¢-If3i'Euuf3x' 

t a ( f3t ) ¢ 
v( 17•, ¢, f3x Euuf3x) = ¢ ary. m 17·, ¢, X 'Euuf3x = 1 + ¢-1 (3~Euuf3x . 

For logistic regression (where¢= 1), V. is a function of only 77• 
and f3;Euuf3x· The conditional mean and variance functions are 

a 
m(ry.,(3;'Euuf3x) =-a B.= H(ry*- (3;'Euuf3x/2); 

17· 

v(ry.,(3;'Euuf3x) = aa m(ry.,(3;Euuf3x) = H<1l(ry.- (3;'Euuf3x/2), 
17· 

where H(1) = H(1- H) is the logistic density function. 
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6.4.2 Other Canonical Models 

Linear and logistic regression are the only common canonical mod­
els for which Vi1) and vi2) have closed-form expressions. In general 
either numerical integration or summation is required to determine 
the moments (6.8). For example, for Poisson regression (for which 
¢ = 1), 

V.(~., ¢,~;-;; •• ~.)~log {t,(y!)-1 exp(y~.- y'~!E •• ~./2)}, 
and the mean and variance m(·) and v(·) are the first and second 
derivatives of V* with respect to 17*. In fact, m = s1 and v = s2 -si, 
where 

Sj = E(Yi I z = z, A = 8) = 

L~o yi(y!)-lexp{y(7J*)- y2(3;~uuf3,)2} (6 10) 

L~o (y!)-lexp{y(1J*)- y2(3t~uuf3,)2} . . 

Computation of both the mean and variance functions for the 
Poisson model entails summing infinite series. The series can be 
summed analytically when f3!~uuf3x = 0; however, for f3;~uuf3x > 
0 numerical summation is required. 

6.4.3 Computation 

Define 

"'1 (Y;, Z;, W;, e, E •• ) ~ {Y; - m(,.,;, M:E •• ~.)} G:) 
and 

( n- P) ¢ _ {Yi - m(1J*,i' ¢; (3;~uuf3x)} 2 , 

n v(1J*,i' ¢, f3x~uuf3x) 

where 1J*,i = f3o + f3!Zi + f3!Ai, with Ai = Wi + Yi~uuf3xf¢· 
For linear regression and other models with variance parameter 

¢,define 1/lc(Yi,Zi,Wi,e,~uu) = (1/IL 1/ld. For logistic regres­
sion and other models with¢=: 1, define 1/lc(Yi, Zi, Wi, e, ~uu) = 
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'l/J1. We call 'l/Jc a conditional score, and estimators derived from it, 
conditional-score estimators, are denoted Gc. 

With these definitions Gc is obtained by solving 
n 

'L::'l/Jc(Yi,Zi,Wi,ec,~uu) = 0 (6.11) 
i=l 

Define 

1n,l (8, ~uu) 

= 

where Th,i = f3o + (3;zi + (3~Lli, with ,;li = wi + yi~uuf3xfcP· Note 
that the derivatives in the definitions of 1n,j (8, ~uu), j = 1, 2 are 
full derivatives with respect to 8, and not with Th,i Or fli held 
fixed. Also note that in the case ¢ = 1, the second term of 1n,l is 
omitted. 

Estimates are calculated iteratively. Starting with an initial es­
timate §~l, either the so-called naive estimate or the SIMEX or 
regression calibration estimates, successive estimates are obtained 
from the iteration 

e~(k+l}­c -
n 

~(k) ~-1 (~(k} ) ~ ( ~(k) ) 8 0 - An,j 8 0 , ~uu L.....t 'l/Jc Yi, Zi, Wi, 8 0 , ~uu . 
i=l 

Use of 1;:;-~ in the iteration corresponds to the method of scor­

ing, wher~as use of 1;:;-1 results in a standard Newton-Raphson , 
iteration. 

6.4.4 Inference 

As usual, the bootstrap (section A.6) can be used for inference. 
However, conditional-score estimators admit analytical formulae 
for standard errors, as we now show. Define 
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n 

Bn,l (e, I:uu) n-1 2: b {Zi, 6.i(e, I;uu), e, I;uu} 
i=l 

n 

n-1 2: 1/Jh (·) 1/Jc (-). (6.13) 
i=l 

Note that b(·) can in theory be computed from the conditional 
distribution in (6.7). Except for linear and logistic regression this 
usually entails numerical summation or integration. 

The asymptotic covariance matrix of e for the case that I:uu is 
known is consistently estimated by 

j = 1,2. 

When j = 1 the covariance matrix estimator is a (conditional) 
inverse information matrix-type estimator, whereas j = 2 is a s­
tandard sandwich estimator. 

6.5 Exact Corrected Estimating Equations 

The method of section (6.4) is limited in application to generalized 
linear models in canonical form. For example, the methods do not 
apply to gamma-loglinear regression with mean exp(,80 + ,a;x + 
,a;z), which is not a canonical generalized linear model. We now 
describe a second approach that is applicable to a general class of 
generalized linear regression models including the gamma loglinear 
regression model. This corrected-score method yields the normal 
and gamma-loglinear examples in section 6.2. 

The method of corrected score functions has been studied by 
Nakamura (1990) and Stefanski (1989). Suppose that in the ab­
sence of measurement error, one would estimate e by solving 

n 

o =I: 1/J(Yi, zi, xi, e). 
i=l 

Typically 1/J is a likelihood score from the model for the data with­
out error. Now suppose that it is possible to find a function of the 
data, say 1/J* (Y, Z, W, e), having the property that 

E {1/J*(Y, Z, W, e) I Y, Z, X}= 1/J(Y, Z, X, e), (6.14) 

for allY, Z, X and e. Upon taking expectations in (6.14) it fol­
lows that 1/J*(Y, Z, W, e) is a Fisher-consistent score function. In 
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general, 1/J* depends on :E,.,. and we will indicate this by writ­
ing 1/J*(Y, Z, W, 8, :E,.,.) when necessary to emphasize this depen­
dence. 

Corrected score functions satisfying (6.14) do not always exist 
and finding them when they do is not always easy. This problem 
is studied in detail in Stefanski (1989), where corrected function­
s are derived for some common models, and generally applicable 
approximate corrected score functions are given. 

6.5.1 Likelihoods With Exponentials and Powers 

One useful class of models that admit corrected functions contains 
those models with log-likelihoods of the form 

log {f(ylz, x, 8)} = 
2 

2:: { ck(y, z, e)(,B!x)k} + cg(y, z, e)exp(,B!x), (6.15) 
k=O 

see the examples given below. Then, using normal distribution mo­
ment generating function identities, the required function is 

1/J*(y,z,w,e,:E,.,.) = 
8 [ 

2 
aet ~ { ck(y, z, e)(,B!w)k}- c2(y, z, e),B!:E,.,.,B., 

+c3 (y, z, 9)exp(P!w - .5P!E •• P.) ]· 

Regression models in this class include: 
• Normal linear with mean= TJ, variance=¢, co = -(y- ,Bo­

,a;z)2 /(2¢) -log( ..j(f}), c1 = (y- ,Bo- ,a;z)/¢, c2 = -(2¢)-1, 
C3 = 0; 

• Poisson with mean= exp(TJ), variance= exp(TJ), Co = y(,Bo + 
,B!z) -log(y!), c1 = y, c2 = 0, Cg = -exp(,Bo + ,a;z); 

• Gamma with mean = exp(TJ), variance = ¢exp(2TJ), eo = 
-¢-1 (,80 +,B;z)+( ¢-1-1)log(y )+¢-1log( ¢-1) -log {r( ¢-1)}, 
c1 = ¢-1, c2 = 0, c3 = -¢-1yexp( -,Bo - ,a;z). 
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6.5.2 Asymptotic Distribution Approximation 

Let '1/J*(Y, Z, W, 8) denote a corrected score and suppose that e is 
a solution to the corrected-score estimating equations 

n 

L '1/J*(Yi, zi, wi, e)= 0. 
i=1 

Then e is asymptotically normally distributed with mean e and 
covariance matrix n-1 A-1 B(A-1 )t where A and Bare consistently 
estimated by 

n 

A = n-1 L '1/J*e(Yi, zi, wi, e) (6.16) 
i=1 

(6.17) 

6.6 Estimated ~"'"' 

When ~"'"' is unknown, additional data are required to consistently 
estimate it and the asymptotic variance-covariance matrix of the 
estimators is altered. The bootstrap handles this issue directly, but 
analytical standard errors can also be obtained. 

Let '1/Jcs(Y, Z, W, e, ~uu) denote either a conditional score or a 
corrected score and ecs the corresponding estimator. Define 'Y = 
vech(~uu), where "vech" is the vector-half of a symmetric matrix, 
i.e., its distinct elements. 

If an independent estimate of the error covariance matrix is avail­
able the following method may be used. Let 9 be an estimate of 
'Y which is assumed to be independent of ecs, with asymptotic 
covariance matrix Cn(~uu)· If we define 

n a 
Dn(e, ~uu) = L {it'l/Jcs (Yi, zi, wi, e, ~uu)' 

i=1 'Y 

then a consistent estimate of the covariance matrix of ecs is 

n-1 A~1 (ecs, ~"'"') { Bn (ecs, ~"'"') + 
Dn(ecs, ~uu)Cn(~uu)D~(ecs, ~uu)} A~t (ecs, ~"'"'), 
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where An and En are from either (6.16)-(6.17), or (6.12)-(6.13), 
depending on the score function employed and, in the case of the 
conditional score, on the type of covariance matrix estimator. 

Finally, a problem of considerable importance occurs when for 
each of the i = 1, · · ·, n observations in the data set, there are ki 
independent replicated W's: Wii = Xi+ Uii, j = 1, ... , ki. The 
most common situation is that much of the data is unreplicated 
(ki = 1), but some of the data have a single replicate (ki = 2). 
Constructing estimated standard errors for this problem has not 
been done previously, and the justification for our results is given in 
the appendix. The necessary changes are as follows. In computing 
the estimates, in the previous definitions, replace ~uu by ~uu/ki 
and Wi by Wi., the sample mean of the replicates. The estimate 
of ~uu is the usual components of variance estimator, 

While the components of variance estimator has a known asymp­
totic distribution (based on the Wishart distribution), it is easier 
in practice to use the sandwich estimator of its variance, 

c (~ ) - 2::~=1 did~ 
n uu - {2::~=1 (ki- 1)}2' 

where 

di = vech { (Wii- Wi-) (Wii- Wi-)t}- (ki- 1)vech (~uu). 

6. 7 Infinite Series Corrected Estimating Equations 

Many models of interest do not have the form (6.15). For example, 
the canonical gamma regression model is not of the form (6.15), 
nor is the logistic regression model. Thus there is no easy method of 
deriving a corrected score for these models. In fact a corrected score 
function satisfying (6.14) for logistic regression does not exist in 
general (Stefanski, 1989). However, under certain restrictions it is 
possible to obtain a corrected score function for logistic regression 
and for many other models as well. 

In this section we briefly describe extensions of the corrected­
score method to certain generalized linear models whose mean and 
variance functions depend on X only through exp(,B~X). This sec-
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tion summarizes the results in Buzas & Stefanski (1995), using 
examples to illustrate the basic idea. 

6. 7.1 Rare-Event Logistic Regression 

If Y = 1 is a rare event, by which is meant that supPr(Yi 
1 I Zi, Xi) < 1/2 where the supremum is taken over all members 
of the population, then a corrected-score function exists. There 
is a corresponding method for frequent events, sup Pr(Yi = 1 I 
Zi, Xi) > 1/2, obtained by considering Y* = 1 - Y, so that we 
consider only the rare-event case. 

Let 'f/x = f3o + f3!Z + (3;x, and similarly define 'T/w = f3o + f3!Z + 
(3; W. Note that 8 = ((30 , (3;, (3;) t. In terms of the logistic regres­
sion model, the rare-event assumption implies that H(ryx) < 1/2, 
which in turn means that the parameter space can be restricted 
to the set of parameters such that 'T/x,i < 0 for all members in 
the population. This restriction makes it possible to obtain the 
corrected-score function. We take 'ljJ to be the logistic regression 
likelihood score, 

Define the two functions 
00 

fL(x) = L(-1)k+le(kx-k2
u

2
/ 2), and fl~1 )(x) = d~H-(x). 

k=l 

Buzas & Stefanski (1995) show that if W,..., N(J.L, a 2 ) and J.l < 0, 

then E { fl_ (W)} = H(J.L) and 

E { WH_(W)- a 2 fl~1\W)} = J.LH(J.L). 

Now let fl_ and fi~l} be defined as above with a 2 replaced 
by (3;"£.uuf3x· Under the assumed measurement error model 'Tiw ,..., 
N('TJx, f3;"£.uuf3x), and the rare-event assumption implies that 'Tix < 
0. It follows that E { fl_('TJw)} = H(ryx) and 
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Using these identities it can be shown that 

E { 7Pmi,*(Y, z, w, e) I Y, z,x} = 1Pmi(Y, z, X, e), 

where 7/'ml,*(Y, Z, W, e)= 

Y ( i) -{ ( i) iL(~.)- (~.~PJ H91(~.)}. (6.18) 

That is, 7/'ml,* is a corrected score for 7Pmi· A corrected-score esti­

mator eml,* is obtained by solving 

(6.19) 
i=l 

When used to estimate the parameters of the logistic regression 
model for the Framingham data, the corrected-score method yields 
results very similar to the conditional-score method. 

6. 7.2 Extensions to Mean and Variance Function Models 

Buzas & Stefanski (1995) describe extensions of the method in the 
previous subsection to mean and mean/variance function models of 
the type described by Carroll & Ruppert (1988) and McCullagh & 
Neider (1989). The extensions are mathematically involved. Here 
we describe only a simple special case for a mean function model 
and a method-of-moments type score function. 

We assume that E(Y I Z, X) = G(TJx) where as before TJx = 
{30 + 13; Z + /3! X, e = (f3o, 13;, /3!) t, G is a function of the form 
G(J.L) = g(e~-'), and g has the absolutely convergent series expansion 

00 

g(x) = L akxk, 0 ~ lxl < r 9 • 

k=O 

In this case define G(x) = I:~o ake(kx-k2
""

2 12) and let (j(l) 

denote its derivative. Then, provided e~-' < r 9 , expectation and 
summation can be interchanged, and with W ....., N(J.L, a 2 ) as before, 

00 00 

E { G(W)} =LakE { e(kW-k2
""

2 
/ 2)} = L akekJ.L = G(J.L). 

k=O k=O 
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Define 

.Prnm(Y,Z,X,8) ~ {Y -G(,,)} (~). 
The score 1/Jmm is a type of method-of-moments score for 0. Define 
¢mm,*(Y,Z,W,0) = 

Y ( i)-{ ( i) G(,w)- (E.~J G('l(•w+ (6.20) 

where as before f3~"£-uuf3x replaces u 2 in G and {;(l). 

It can be shown that 

E{¢mm,*(Y, Z, W, 0) I Y, Z, X}= 1/Jmm(Y, Z, X, 0) 

for exp(ryx) < r 9 . Thus 1/Jmm,* is a corrected version of 1/Jmm and 
can be used to obtain consistent estimators of 0. 

Derivations of the identities used above and further extensions 
of the method, including an application to extreme-value binary 
regression can be found in Buzas & Stefanski (1995). 

6.8 Comparison of Methods 

Poisson regression is amenable to both conditional- and corrected­
score methods. For Poisson regression the corrected estimating e­
quations are more convenient because they are explicit, whereas the 
conditional estimator involves numerical summation, see (6.10). 
For Poisson regression the conditional-score estimator is more ef­
ficient than the corrected-score estimator in some practical cases 
(Stefanski, 1989). 

The corrected-score estimators have, in theory, a distribution­
al robustness property not enjoyed by the conditional estimators. 
Ideally, a measurement error analysis should provide consistent 
estimators of the same parameters that would be consistently es­
timated in the absence of measurement error. The corrected-score 
estimator accomplishes this when the mean model is misspecified, 
whereas the conditional-score estimator in theory does not. Of 
course, this theoretical advantage of the corrected-score method 
depends critically on the assumed normality of the measurement 
error. 
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The conditional-score method and certain extensions thereof have 
a theoretical advantage in terms of efficiency. For the canonical 
generalized linear models of section 6.4, Stefanski & Carroll (1987) 
show that any unbiased estimating equation for (,B0 ,!3!,(3~)t must 
be conditionally unbiased given (Z, ~), and from this they deduce 
that the asymptotically efficient estimating equations for structural 
models are based on score functions of the form 

This result shows that, in general, none of the methods we have 
proposed previously are asymptotically efficient in structural mod­
els, except when E(XIZ, ~) is linear in (Z, ~). This is the case in 
linear regression with (Z, X) marginally normally distributed, and 
in logistic regression when (Z, X) given Y is normally distributed, 
i.e., the linear discriminant model. 

The problem of constructing fully efficient conditional-score es­
timators based on simultaneous estimation of E(Xi I Zi, ~i) has 
been studied (Lindsay, 1985; Bickel & Ritov, 1987; van der Vaart, 
1988), although the methods are generally too specialized or too 
difficult to implement in practice routinely. 

Both methods have further extensions not mentioned previously. 
The conditional-score method is easily extended to the case that 
the model for W given X is a canonical generalized linear model 
with natural parameter X. 

Buzas & Stefanski (1995) describe a simple extension of the 
methods in sections 6.5.1, 6.7.1, and 6.7.2 to additive non-normal 
error models. Suppose that W = X+ U, and that mu(t) = 
E {exp(ttU)}, exists for some t and is known. For normal errors 
the corrected score is a function of terms of the form exp(j ,B~ W -
j 2 ,B~'L.uu,Bxl2). When U is normally distributed 

( . t ·2at a I) exp(j,B~W) 
exp J,Bx w- J fJx'L.uu,Ux 2 = (·,a ) , 

mu J x 

showing that for general error distributions it is sufficient to replace 
all terms of the form exp(j,B~W- P,B~'L.uu,Bxl2) by terms of the 
form exp(j ,8~ W) I mu (j ,Bx). 

Extensions to nonadditive models are also possible in some cases. 
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Nakamura (1990) shows how to construct a corrected estimating 
equation for linear regression with multiplicative lognormal errors. 
He also suggests different methods of estimating standard errors. 

6.9 Appendix 

6.9.1 Technical Complements to Conditional Score Theory 

We first justify (6. 7). The joint density of Y and W is the product 
of (6.4) and the normal density, and hence is proportional to 

{ Y'TJ- V(ry) } rvexp ¢ +c(y,¢)-(1/2)(w-x)t~;;-~(w-x) 

"'exp {y(,Bo + ,B;z)/¢ + c(y, ¢) -
(1/2)wt~;;-~w + xt~;;-~(w + Y~uuf3x/¢}, 

where by "' we mean terms that do not depend on y or w. Now 
set 8 = w + Y~uuf3x/¢ and make a change of variables (which has 
Jacobian 1). The joint density of (Y,~) given (Z,X) is thus seen 
to be proportional to 

"'exp {y(,Bo + ,8~8 + ,B;z)/¢+ 
c(y,rjJ)- (1/2)(y/¢) 2,8~~uuf3x} 

= exp {yry*/¢ + c*(y, ¢, ,8~~uuf3x)}, (6.22) 

The conditional density of Y given (Z, X,~) is (6.22) divided by 
its integral with respect toy, which is necessarily in the form (6.7) 
as claimed, with 

V*('f}*,¢,,8;~uuf3x) = 

¢log[! exp{yry*/¢+c*(y,¢,,8;~uuf3x)} d11(y)], (6.23) 

where as before the notation means that (6.23) is a sum if Y is 
discrete and an integral otherwise. 

6.9.2 Technical Complements to Distribution Theory for 
Estimated ~uu 

Next we justify the estimated standard errors for e when there 
is partial replication. Recall that with normally distributed ob­
servations, the sample mean and the sample covariance matrix are 
independent. Hence, f;uu and :Y = vech(f;uu) are independent of all 
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the terms (Y i, Zi, Xi, U i·), and also independent of (Y i, Zi, W i·). 
By a Taylor series expansion, 

An(-) ( e - e) ~ 
n 

L {1/;c(Yi, zi, wi, e, ~uu)} + Dn(e, ~uu) (9- 'Y). 
i=l 

Because the two terms in the last sum are independent, the to­
tal covariance is the sum of the two covariances, namely Bn(·) = 
Dn(-)Cn(·)D~(-) as claimed. 



CHAPTER 7 

LIKELIHOOD AND 
QU ASILIKELIHOOD 

7.1 Introduction 

This chapter describes the use of likelihood methods in nonlinear 
measurement error models. There have been only a few examples 
in the literature based on likelihood, see Carroll, et al. (1984) and 
Schafer (1988, 1993) for probit regression, Whittemore & Gong 
(1991) in a Poisson model, Crouch & Spiegelman (1990) and Wang, 
Carroll & Liang(1995) in logistic regression, and Kuchenhoff & 
Carroll (1995) in a change point problem. The relatively small lit­
erature belies the importance of the topic and the potential for 
further applications. 

Except where noted, we assume nondifferential measurement er­
ror (section 1.6). For a review of maximum likelihood methods in 
general see Appendix A. 

Fully specified likelihood problems, including problems where X 
is not observable or is observable for only a subset of the data are 
discussed in sections 7.3, 7.4, and 7.5. The use of likelihood ideas in 
quasilikelihood and variance function models (QVF) (section A.4) 
is covered in section 7.8. 

In section 7.2, we point out the relationships and differences be­
tween nonlinear measurement error models and missing data prob­
lems. 

There are number of important differences between the likeli­
hood methods in this chapter and the methods described in previ­
ous chapters. 

• The previous methods are based on additive or multiplicative 
measurement error models, possibly after a transformation. 
Typically, few if any distributional assumptions are required. 
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Likelihood methods require stronger distributional assump­
tions, but they can be applied to more general problems, in­
cluding those with discrete covariates subject to misclassifica­
tion. 

• The likelihood for a fully specified parametric model can be 
used to obtain likelihood ratio confidence intervals. In methods 
not based on likelihoods, inference is based on bootstrapping 
or on normal approximations. In highly nonlinear problems, 
likelihood-based confidence intervals are generally more reli­
able than those derived from normal approximations. 

• Likelihood methods are often computationally more demand­
ing, whereas the previous methods require little more than the 
use of standard statistical packages. 

• Robustness to modeling assumptions is a concern for both 
approaches, but generally more difficult to understand with 
likelihood methods. 

• Traditional folklore suggests that in many statistical models, 
especially for the most common generalized linear models, the 
simpler methods described previously perform just as well in 
practice as likelihood methods. Somewhat amazingly, there is 
little documentation as to whether the folklore is realistic. The 
only evidence for this folklore that we know of is given for lo­
gistic regression by Stefanski & Carroll (1990b), who contrast 
the maximum likelihood estimate and the conditional scores 
estimate of Chapter 6. They find that the conditional score 
estimates are usually fairly efficient relative to the maximum 
likelihood estimate unless the measurement error is "large" or 
the logistic coefficient is "large," where the definition of large 
is somewhat vague. One should be aware though that their 
calculations indicate that there are situations where properly 
parameterized maximum likelihood estimates are considerably 
more efficient than estimates derived from functional modeling 
considerations (see also section 7.7). 

We organize our discussion of likelihood methods based on the 
type and extent of data that are available. Although a simplifi­
cation, in practice it is useful to think of three cases. In the first 
X is not observable, but there are sufficient data, either internal 
or external, to characterize the distribution of W given (X, Z). In 
the second case X is unobservable and it is known that the Berk­
son model holds. The third case we consider is that where X is 
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observable for a subset of the data. 
The benefit of this trichotomy is that it depends on the data that 

are available, as well as any subject-matter information at hand. 
Like any simplification, there are exceptions, but the reader can 
understand the main ideas simply by focusing on these cases. 

To perform a likelihood analysis, one must specify a paramet­
ric model for every component the data. Likelihood analysis starts 
with a model for the distribution of the response given the true 
predictors. The likelihood (density or mass) function of Y given 
(Z, X) will be called fYJZ,x (yiz, x, B) here, and interest lies in es­
timating B. 

The form of the likelihood function can generally be specified 
by reference to any standard statistics text. For example, if Y is 
normally distributed with mean {30 + f3;X + f3!Z and variance a 2 , 

then B = (f3o,f3x,f3z,a2 ) and 

fYJz,x(Yiz, x, B)= a-1¢ { (y- f3o + f3!x + f3!z)ja}, 

where ¢(v) = (27r)- 112exp( -.5v2 ) is the standard normal density 
function. If Y follows a logistic regression model with mean H ({30 + 
f3;X + f3!Z), then B = (f3o,f3x,f3z) and 

fYJZ,X (yiz, x, B) HY (f3o + f3!x + {3;z) 

x {1- H (f3o + f3!x + f3;z)} 1-y. 

7.1.1 Identifiable Models 

In some problems, the parameters are identifiable without any ex­
tra information other than measures of (Y, Z, W), i.e., without 
validation or replications. Brown (1992) discusses this issue, con­
sidering both likelihood and quasilikelihood techniques. 

One should not be overly impressed by all claims of identifiabili­
ty. Many problems of practical importance actually are identifiable, 
but only barely so, and estimation without additional data is not 
practical. For instance, in linear regression it is known that the 
regression parameters can be identified without validation or repli­
cation as long as X is not normally distributed (Fuller, 1987, pp. 
72-73). However, this means that the parameter estimates will be 
very unstable if X is at all close to being normally distributed. 
In binary regression with a normally distributed calibration, it is 
known that the probit model is not identified (Carroll, et al., 1984) 
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but that the logistic model is (Kiichenhoff, 1990). The difference 
between these two models is so slight (Figure 3.5) that there is 
really no useful information about the parameters without some 
additional validation or replication data. But there are exceptions, 
e.g., Rudemo, et al. (1989) describe a highly nonlinear model that 
is both identifiable and informative, see section 3.7. 

7.2 Measurement Error Models and Missing Data 

The usual interpretation of the classical missing data problem (Lit­
tle & Rubin, 1987) is that the values of some of the variables of 
interest may not be observable for all study participants. For ex­
ample, a variable may be observed for 80% of the study, but unob­
served for the other 20%. The techniques for analyzing missing data 
are continually evolving, but it is fair to say that most of the re­
cent advances (multiple imputation, data augmentation, etc.) have 
been based on likelihood (and Bayesian) methods. 

The classical measurement error problem discussed to this point 
is one in which one set of variables, which we call X, is never 
observable, i.e., always missing. As such, the classical measurement 
error model is an extreme form of a missing data problem, but 
with supplemental information about X in the form of a surrogate, 
which we call W, and possibly a second measure, which we call T. 
Part of the art in measurement error modeling concerns how the 
supplemental information is related to the unobservable covariate. 

Because there is a formal connection between the two fields, and 
because missing data analysis has become increasingly parametric, 
it is important to consider likelihood analysis of measurement error 
models, and this is the subject of this chapter. 

At this point the reader should be struck by a seeming contradic­
tion. Missing data analyses are becoming increasingly likelihood­
based, but none of the measurement error techniques described 
in earlier chapters are based upon likelihood analysis. The sep­
arate development of two formally connected fields is intriguing 
historically, but has its roots in the distinction between functional 
statistical modeling and structural statistical modeling. 

As we will indicate in this chapter, likelihood methods require 
statistical models for the distribution of X, sometimes condition­
al on the observed covariates. Because these models describe the 
structure of X, then are called structural models. There has tradi-
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tionally been considerable concern in the measurement error liter­
ature about the robustness of estimation and inferences based up­
on structural models for unobservable variates. Fuller (1987, page 
263) discusses this issue briefly in the classical nonlinear regres­
sion problem, and basically concludes that the results of structural 
modeling "may depend heavily on the (assumed) form of the X dis­
tribution". In probit regression, Carroll, et al. (1984) report that 
if one assumes that X is normally distributed, and it really fol­
lows a chi-squared distribution with one degree of freedom, then 
the effect on the likelihood estimate is "markedly negative". Essen­
tially all research workers in the measurement error field come to 
a common conclusion: likelihood methods can be of considerable 
value, but the possible nonrobustness of inference due to model 
misspecification is a vexing and difficult problem. 

The issue of model robustness is hardly limited to measurement 
error modeling. Indeed, it pervades statistics, and has led to the rise 
of a variety of semi parametric and non parametric techniques. From 
this general point of view, functional modeling may be thought of 
as a group of semiparametric techniques. Functional modeling uses 
parametric models for the response, but makes no assumptions 
about the distribution of the unobserved covariate. In previous 
chapters, we have reviewed these functional techniques. 

There is simply no agreement in the statistical literature as to 
whether functional or structural modeling is more appropriate. 
Many researchers strongly believe that one should make as few 
model assumptions as possible, and in our context would thus favor 
functional modeling. The argument here is that any extra efficien­
cy gained by structural modeling is more than offset by the need 
to perform careful and often time-consuming sensitivity analyses. 
Other researchers believe that appropriate statistical analysis re­
quires one to do one's best to model every feature of the data, and 
thus favor structural modeling. 

We take a somewhat more relaxed view of these issues. There 
are many problems, e.g., linear and logistic regression with ad­
ditive measurement error, where functional techniques are easily 
computed and fairly efficient, and we have a strong bias in such 
circumstances towards functional modeling. In other problems, for 
example the segmented regression problem in section 7. 7, struc­
tural modeling clearly has an important role to play, and should 
not be neglected. 



146 LIKELIHOOD AND QUASILIKELIHOOD 

This and the next chapter can be thought of as presenting the 
basic ideas for structural modeling. In Chapter 9, we describe func­
tional (semiparametric) methods when X is observed in an internal 
validation study. 

7.3 Likelihood Methods when X is Unobserved 

Often, X is unobservable even for a subset of the data. For exam­
ple, it is practically impossible to observe a person's yearly dietary 
intake, long-term blood pressure, etc. These are the types of prob­
lems which earlier chapters have studied, through the additive and 
multiplicative error models. In this section, we allow for general 
error models, and for the possibility that a second measure T is 
available. 

A likelihood analysis starts with determination of the joint distri­
bution of Y, Wand T given Z, as these are the observed variates. 
We condition on Z throughout, because its distribution does not 
depend on the unknown parameters. We first consider a simple 
problem wherein Y, W and X are discrete random variables, no 
second measure T is observed, and there are no other covariates 
Z. From basic probability, we know that 

pr(Y = y, W = w) = L pr(Y = y, W = w, X= x) 
X 

= LPr(Y = yiW = w,X = x)pr(W = w,X = x). (7.1) 
X 

When W is a surrogate (nondifferential measurement error, see 
section 1.6), it provides no additional information about Y when 
X is known, so that (7.1) is 

pr (Y = y, W = w) 

= LPr(Y = yiX = x,B)pr(W = w,X = x), (7.2) 
X 

where we have now indicated the unknown parameter B in the 
underlying model. Thus, in addition to the underlying model, we 
must specify a model for the joint distribution of W and X. How 
we do this depends on the model relating W and X. 
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7. 3.1 Error Models 

For additive and multiplicative error models, it is natural to specify 
the the joint distribution of W and X in terms of the conditional 
distribution of W given X. Using the result from elementary prob­
ability that pr(W = w, X= x) = pr(W = wiX = x)pr(X = x), 
(7.2) becomes 

LPr(Y = yiX = x,B)pr(W = wiX = x)pr(X = x). (7.3) 
X 

Equation (7.3) has three components: (a) the underlying model 
of primary interest; (b) the error model for W given the true co­
variates; and (c) the distribution of the true covariates. Both (a) 
and (b) are expected; almost all the methods we have discussed 
so far require an underlying model and an error model. However, 
(c) is unexpected, in fact a bit disconcerting, because it requires 
a model for the distribution of the unobservable X. It is (c) that 
causes almost all the practical problems of implementation and 
model selection with maximum likelihood methods. 

When there are covariates Z measured without error, or when 
there are second measures T, (7.3) changes in two ways. The second 
measure is appended to W, and all probabilities are conditional on 
Z. In general, in problems where X is not observed but there is a 
natural error model, then in addition to specifying the underlying 
model and the error model, we must hypothesize a distribution for 
X given z. 

The error model has a density or mass function which we will 
denote by fw,TIZ,x(w, tiz, x, ell}. The density or mass function of 
X given Z will be denoted by fxlz(xiz, el2). These densities depend 
on the unknown parameter vectors el1 and el2. 

In many applications, the error model does not depend on z. 
For example, in the classical additive measurement error mod­
el (1.1) with normally distributed measurement error, a; is the 
only component of el1, there is no second measure T, and the 
error model density is a;1¢{(w- x)fau}, where ¢(-) is the s­
tandard normal density function. If W is binary, a natural error 
model is the logistic where, for example, ell= (au,a12,a13) and 
pr(W = liX = x, Z = z) = H(au + a12x + ai3z). Multiplicative 
models occur when W = XU, where typically U has a lognormal 
or gamma distribution with E(U) = 1. 
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As seen in previous chapters, often the surrogate is replicated 
k times. In the classical error model with independent replicates, 
W consists of the k replicates, and fwtz,x is the k-variate normal 
density function with mean zero, common variance a~, and zero 
correlation. A generalization of this error model that allows for 
correlations among the replicates has been studied (Wang, Carroll 
& Liang, 1995). 

Statisticians are trained in the area of error modeling and thus 
specifying a sensible error model is often relatively easy. When pa­
rameters of the error model are estimated from external data the 
issue of transportability (Chapter 1), by which we mean that error 
models apply across different populations, is important. In some 
application areas, error model structures are studied independent­
ly of their role in measurement error modeling, and one can use 
this research to identify candidate error models for the problem at 
hand. 

Specifying a model for the distribution of the true covariate X 
given all the other covariates Z is more difficult. Difficulties arise 
due to: (a) the distribution is usually not transportable, so that 
different studies yield very different models; and (b) X is not ob­
served. 

Nevertheless there are some obvious candidates for modeling X 
given z. When X is univariate, generalized linear models (section 
A.5) are natural and useful. More complex models are easily gen­
erated. For example, in many applications the distribution of X or 
log(X) appears to come from two populations. This can be mod­
eled by the mixture of normals density function, as follows. Let 
&2 = (an, /1x,l, /1x,2, ax,l, ax,2 ,p). Then 

!xrz(x, z) 

The density has mean (1- p)J1x,l + P/1x,2 + a~ 1 Z. The major prob­
lem in working with mixtures of normals is computational, as the 
parameters can be extraordinarily difficult to estimate. Because of 
this, Davidian & Gallant (1993, page 478) suggest another way of 
generating mixture distributions, see their Figure 3(d). 

When X is multivariate, models for the true covariates become 
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more complex. Davidian & Gallant's mixture model generalizes 
easily to the case that all components of X are continuous. For 
mixtures of discrete and continuous variables, the models of Zhao, 
Prentice & Self (1992) hold considerable promise. Otherwise, one 
can proceed on a case-by-case basis. For example, one can split 
X into discrete and continuous components. The distribution of 
the continuous component given the discrete components might 
be modeled by multivariate normal linear regression, while that of 
the discrete component given Z could be any multivariate discrete 
random variable. We would be remiss in not pointing out that 
multivariate discrete models can be difficult to specify. 

Having hypothesized the various models, the likelihood that (Y = 
y, W = w,T = t) given that Z = z is then 

!Y,w,Tjz(y, w, tiz, B, 6:1, 6:2) (7.4) 

= J fYIZ,X,W,T(Yiz,x,w,t,B)fw,TjZ,X(w,tiz,x,a1) 

x fxjz(xlz, 0:2)df.L(x) 

= j fylz,x(Yiz, x, B)Jw,Tjz,x(w, tiz, x, 6:1) 

xfxjz(xlz, 0:2)df.L(x). (7.5) 

The notation df.L(x) indicates that the integrals are sums if X is 
discrete and integrals if X is continuous. The assumption of non­
differential measurement error (section 1.6), which is equivalent to 
assuming that W and T are surrogates for X, was used in going 
from (7.4) to (7.5), and will be used without mention elsewhere 
in this chapter. The likelihood for the problem is just the product 
over the sample of the terms (7.5) evaluated at the data. 

Of interest in applications is the density or mass function of Y 
given (Z, W, T), which is (7.5) divided by its integral or sum over y. 
This density is an important tool in the process of model criticism, 
because it allows us to compute such diagnostics as the conditional 
mean and variance of Y given (Z, W, T), so that standard model 
verification techniques from regression analysis can be used. 

7.3.2 Likelihood and External Second Measures 

If the second measure comes from an external data set for which 
the response is not observed, one can often estimate 0:1 from the ex-
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ternal data, substitute the estimate of in a1 in (7.5), and maximize 
this (pseudo) likelihood with respect to the remaining parameters. 
We have emphasized the need for caution in assuming transporta­
bility. This requires that we allow for a possibly different value of 
the parameter a~ that determines the distribution of the true pre­
dictor given the other covariates. The likelihood for such external 
data is 

fW,Tiz(w, tiz, a1, a~) 

= J fw,TIZ,x(w, tiz, X, al)fxlz(xiz, a;)dJ.L(x). (7.6) 

7.3.3 The Berkson Model 

In the Berkson model, a univariate X is not observed but it is 
related to a univariate W by X = W + U, perhaps after a trans­
formation. There are no other covariates. Usually, U is taken to be 
independent of W and normally distributed with mean zero and 
variance a~, but more complex models are possible. For example, 
in the bioassay data of Chapter 3, the variance might be a~W211 • 

The additive model is not a requirement. In some cases, it might 
be more reasonable to assume that X= WU, where U has mean 
1.0 and is either lognormal or gamma. 

The Berkson additive model has an unusual feature, in that for 
linear regression the naive analysis ignoring measurement error 
gives correct inference about the regression parameters (Berkson, 
1950). The reason for this is quite simple, namely that E(XIW) = 
W. This means that in the Berkson context, the naive analysis is 
the same as the regression calibration analysis of Chapter 3. Thus, 
as in regression calibration, the additive Berkson model with ho­
moscedastic errors leads to consistent estimates of nonintercept pa­
rameters in loglinear models, and often nearly consistent estimates 
in logistic regression. In the latter case, the exceptions occur with 
severe measurement error and a strong predictive effect, see Burr 
(1988). 

The likelihood of the observed data is (7.2) because W is a 
surrogate. At this point, however, the analysis changes. When the 
Berkson model holds, it should not be forced into an additive error 
model, and so in place of (7.3) we write 

pr(Y = y, W = w) (7.7) 



LIKELIHOOD METHODS WHEN X IS UNOBSERVED 151 

= LPr(Y = y\X = x,B)pr(X = x!W = w)pr(W = w). 
X 

The third component of (7.7) is the distribution of W, and con­
veys no information about the critical parameter B. Thus, we will 
divide both sides of (7.7) by pr(W = w) to get likelihoods con­
ditional on W. In general problems, we must specify the condi­
tional density or mass function of X given W, which we denote by 
fxJw(x\w, ')'). In the usual Berkson model, i is a~, and the density 
is a;;1¢ {(x- w)/au}· In a Berkson model where the variance is 
proportional to w2(}' the density is (w0 O'u)-1¢ { (x - w)/(w0 O'u) }. 
The likelihood function then becomes 

fYJz,w(Yiz, w, B, i) 

= J fYJz,x(y\z,x,B)fxJw(x\z,i)dJ-L(x). (7.8) 

The likelihood for the problem is the product over the sample of 
the terms (7.8) evaluated at the data. 

As a practical matter, there is rarely a direct "second mea­
sure" in the Berkson additive or multiplicative models. This means 
that the parameters in the Berkson model can be estimated only 
through the likelihood (7.8). In some cases, such as linear regres­
sion, not all of the parameters can be identified (estimated). For 
nonlinear models, identification usually is possible. 

In classical generalized linear models, a likelihood analysis of a 
homoscedastic, additive Berkson model can be shown to be equiv­
alent to a random coefficients analysis with random intercept for 
each study participant. 

7.3.4 Error Model Choice 

Modeling always has options. Even when X is unobserved, one can 
use either the error model likelihood (7.5), or the Berkson likeli­
hood (7.8) and its extension (7.9) described below. With additive 
or multiplicative measurement error, the former seems to us the 
most natural. The reasons are twofold: (i) the error model can be 
checked by replicates (section 7.6) or external data; and (ii) the 
error model focuses the indeterminacy of the likelihood on the dis­
tribution of X. 

There is, however, nothing illegal in simply specifying a mod-
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el for X given W, as in equation (7.8), or a model for X given 
(Z, W), as in equation (7.9). One can even specify reasonably flex­
ible models for such distributions, as in section 7.3.1 or using the 
Davidian & Gallant models. There is effectively no literature on 
whether such an approach can yield sensible answers when addi­
tive/multiplicative error models hold. 

7.4 Likelihood When X is Partly Observed 

For problems in which X is observed for some study participants, 
i.e., internal validation, a modification of the Berkson model is 
required. Because X is sometimes observed, one has data to model 
its distribution given the observed covariates. Let fx!z,w(xiz, w, i) 
be the appropriate model, in which case (7.8) becomes 

h!z,w(Yiz, w, B, i) 

= j fy!z,x(Yiz, x, B)fx!z,w(xiz, w, i)dtL(x). (7.9) 

We assume that in a sample of size n, we observe (Y, Z, W). For 
a (usually small) subset of the data, X is also observed (~ = 1), 
while in all other cases X is not observed (~ = 0). 

As we have pointed out in section 7.2, when X is partially ob­
served we are in the context of a classical missing data problem, 
with supplementary information coming from W. As is discussed 
by Little & Rubin (1987, Chapter 5), the mechanism for observing 
X is critical to the validity of likelihood inferences. As they discuss, 
X must be missing at random, i.e., whether or not X is observed 
depends only on the values of (Y, Z, W), and not otherwise on 
the value of X itself. Somewhat more formally, we must assume 
that the probability that X is observed is 1r(Y, Z, W) (there is al­
so a technical matter called "parameter distinctness" which holds 
almost universally in our context, and will be ignored). 

With the proviso that X is missing at random, the likelihood of 
the observed data is proportional to 

(7.10) 



NUMERICAL COMPUTATION OF LIKELIHOODS 153 

The actual likelihood is (7.10) multiplied by the likelihood of all 
the observable covariates, but since this latter likelihood contains 
no information about B, it can be ignored. 

Satten & Kupper (1993) describe a likelihood method for logistic 
regression when X is observed only when Y = 0. 

7.5 Numerical Computation of Likelihoods 

The overall likelihood based on a sample of size n is the product 
over the sample of (7.4) when X is unobserved, the product over 
the sample of (7.8) in the Berkson model, or (7.10). Typically one 
maximizes the logarithm of the overall likelihood in the unknown 
parameters. There are two ways one can maximize the likelihood 
function. The most direct is to compute the likelihood function 
itself, and then use numerical optimization techniques to maximize 
the likelihood. Below we provide a few details about computing 
the likelihood function. The second general approach is to view 
the problem as a missing data problem (section 7.2), and then use 
missing data techniques, see for example Little & Rubin (1987), 
Tanner (1993) and Geyer & Thompson (1992). 

Computing the likelihoods (7.5)-(7.9) analytically is easy if X is 
discrete, as the conditional expectations are simply sums of terms. 
For example, consider (7.9), and suppose that X has possible values 
(x1 , ... ,xK) with probabilities p(xklz,w,"f). Then (7.9) is given by 

K 

LP(xklz, w, i')fylz,x(Yiz, XkJ B). 
k=l 

Likelihoods in which X has some continuous components can be 
computed using a number of different approaches. In some prob­
lems the loglikelihood can be computed or very well approximated 
analytically, e.g., linear, probit and logistic regression with (W, X) 
normally distributed, see section 7.9.2. In most problems that we 
have encountered, X is a scalar or a 2 x 1 vector. In these cases, 
standard numerical methods such as Gaussian quadrature can be 
applied, although they are not always very good. When sufficient 
computing resources are available, the likelihood can be computed 
using Monte-Carlo techniques (section 7.9.1). 
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7.6 Framingham Data 

The Framingham heart study was described in section 4.5. Here 
X is not observable, and the likelihoods of section 7.3.1 are appro­
priate. The sample size is n = 1,615. As before, Z includes age, 
smoking status, and serum cholesterol. Transformed systolic blood 
pressure (SBP) is log(SBP-50). 

At Exam #2, the mean and standard deviation of transformed 
systolic blood pressure are 4.374 and .226, respectively, while the 
corresponding figures at Exam #3 are 4.355 and .229. The dif­
ference between measurements at Exam #2 and Exam #3 has 
mean 0.019 and standard deviation .159, indicating a statistical­
ly significantly difference in means due largely to the sample size 
(n = 1, 615). However, the following analysis will allow for differ­
ences in the means. The standard deviations are sufficiently similar 
that we will assume that the two exams have the same variability. 

We write Wand T for the transformed SBP at Exams 3 and 2, 
respectively. Since Exam #2 is not a true replicate, we are treating 
it as a second measure, differing from Exam #3 only in the mean. 
Thus, W =X+ U and T = a 11 +X+ V, where U and V have 
common measurement error variance a-~, and a 11 represents the 
(small) difference between the two exams. 

There is justification for the assumption that transformed sys­
tolic blood pressure can be modeled reasonably by an additive 
model with normally distributed, homoscedastic measurement er­
ror. For example, if the additive normal error model holds, the dif­
ferences in the systolic blood pressures at Exams #2 and #3 should 
be approximately normally distributed. In Figure 7.1, we provide 
the normal quantile-quantile plot of these differences in the origi­
nal (left plot) and transformed (right plot) scales. The former plot 
indicates some skewness, suggesting the need for a transformation, 
while the latter plot is nearly linear (except for a small number 
of observations in the tails). In addition, the intra-individual stan­
dard deviation is plotted against the mean in Figure 7.2, with a 
lowess line. The lack of pattern is further confirmation that the 
transformation is a reasonable one. 

Since the transformed systolic blood pressures are themselves 
approximately normally distributed, we will also assume that X 
given Z is normally distributed with mean a~1 Z and variance a-;. 

Using the probit approximation to the logistic (section 3.9.2), it 



FRAMINGHAM DATA 155 

I 
j 

J 
: 
J 

Figure 7.1. Framingham data. Normal q-q plot of the difference between 
the second and third exams. Plot on left is in the original SBP scale, 
plot on right uses the transformation log{SBP-50}. 

is possible to compute (7.5) analytically, see section 7.9.2 in the 
appendix. We used this analytical calculation, rather than numer­
ical integration. When using all the data, the likelihood estimate 
for systolic blood pressure had a logistic coefficient of 2.013 with 
an (information) estimated standard error of 0.496, which is essen­
tially the same as the regression calibration analysis, compare with 
Table 4.1. 

We repeated the likelihood analysis but with the partially repli­
cated data, where Exam #2 was used for only 30 randomly select­
ed individuals The logistic coefficient for SBP is now 2.146, with 
(information) standard error 0.604. For comparison, regression cal­
ibration gives similar answers; coefficient estimate 2.074, sandwich 
standard error 0.533 and bootstrap standard error 0.566, see Table 
4.2. 
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Mean 

Figure 7.2. Framingham data. Plot of intra-individual standard deviation 
versus mean, with lowess line. Lack of pattern indicates proper transfor­
mation to additivity. Variable is log(SBP-50}. 

7. 7 Bronchitis Example 

In occupational medicine an important problem is the assessment 
of the health hazard of specific harmful substances in a working 
area. One approach to modeling assumes that there is a thresh­
old concentration, called the threshold limiting value (TLV) under 
which there is no risk due the substance. Estimating the TLV is of 
particular interest in the industrial workplace. We consider here the 
specific problem of estimating the TLV in a dust-laden mechanical 
engineering plant in Munich. 

The regressor variable X is the logarithm of 1.0 plus the average 
dust concentration in the working area over the period of time in 
question. In addition, the duration of exposure Z1 and smoking 
status Z2 are also measured. Following Ulm (1991), we based our 
analysis upon the segmented logistic model 

pr(Y = 1IX, Z) 
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Figure 7.3. The Munich plant. Top figure shows binary regression mod­
els of bronchitis incidence on log(1 + dust concentration) using (i) gam 
(generalized additive model), (ii) segmented logistic regression and ordi­
nary logistic regression. The bottom figure is a kernel density estimate 
of the observed concentrations. 

= H {,Bo + ,Bx,l(X- ,Bx,2)+ + ,Bz,1Z1 + ,Bz,2Z2}. (7.11) 

where (a)+ = a if a > 0 and = 0 if a :S 0. The parameter of 
primary interest is ,Bx,2 , the TLV. 

It is impossible to measure X exactly, and instead sample dust 
concentrations were obtained several times between 1960 and 1977. 
The resulting measurements are W. There were 1,246 observation­
s: 23% of the workers reported chronic bronchitis, and 74% were 
smokers. Measured dust concentration had a mean of 1.07 and a 
standard deviation of 0. 72. The durations were effectively indepen­
dent of concentrations, with correlation 0.093, compare with Ulm's 
(1991) Figure 3. Smoking status is also effectively independent of 
dust concentration, with the smokers having mean concentration 
1.068, and the nonsmokers having mean 1.083. Thus, in this exam­
ple, for likelihood calculations we will treat the Z's as if they were 
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independent of X. 
A preliminary segmented regression analysis ignoring measure­

ment error suggested an estimated TLV 73x,2 = 1.27. We will call 
this the naive TLV. In Figure 7.3 we show the results of such an 
analysis when regressing bronchitis only on dust concentration. A 
generalized additive model fit using S-plus suggests a threshold in 
the neighborhood of the estimated value. Note also that an ordi­
nary logistic regression is sufficiently different from the generalized 
additive model fit to suggest the need for a changepoint. 

In Figure 7.3 we also plot a kernel density estimate of the ob­
served dust concentrations, with a Gaussian kernel and bandwidth 
equal to 0.25. The dust concentrations appear strongly bimodal, 
with almost no observations in the vicinity of the naive TLV. With 
such a clear indication of two subpopulations, one would expect a 
naive TLV of between 1.0 and 1.5, the range that separates the two 
subpopulations. We fit a two-population mixture normal model to 
the data, i.e., one having density function 

fw ( w) = .!!_ ¢ ( w - J.L1 ) + 1 - p ¢ ( w - J.L2 ) . 
a1 a1 a2 a2 

(7.12) 

A similar model in which dust concentration is not assumed in­
dependent of smoking and duration is discussed in section 7.3.1. 
The maximum likelihood estimate of p is 0.607, the means are 
(0.520, 1.927) and the variance are (0.2362 , 0.2152). 

We computed the bias of the naive TLV estimator and that 
of the SIMEX estimators with linear and quadratic extrapolant 
functions, for a simulated data set designed to approximate the 
Munich data. For the distribution of X, we used a mixture normal 
distribution with (J.L1 ,J.L2,ai,a~,p) = (0.45, 1.90,0.03,0.03,0.60), 
which has mean 1.03 and variance 0.524. We added small amounts 
of measurement error with variance a; ranging from 0.0 to 0.04; 
at the extreme end of the scale, we have a situation that X comes 
from two subpopulations, both of which are estimated with large 
measurement error. 

The biases are exhibited in Figure 7.4. The naive estimator and 
the SIMEX estimator with linear extrapolant are both considerably 
more biased than the SIMEX estimator with quadratic extrapolan­
t. Note that the SIMEX estimator with rational linear extrapolant 
has very poor bias behavior. In this example, the regression cali­
bration estimator is very badly biased (not shown). 
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Figure 7.4. Limit of estimated TLV in a mixture normal model for the 
naive estimator and various SIMEX estimators. See text for details. 

As far as we can ascertain, there are no data available to fit an 
error model relating W to X. In the absence of such information, 
for illustration we used an additive error model W = X + U, 
and we assumed that O"~ = 0.035, making cr; = 0.489. While the 
error variance O"~ is rather small relative to the marginal variance 
of X (£T;), it is fairly large relative to the variance of each of the 
components of the mixture. 

The likelihood estimator was computed assuming that X has a 
mixture normal distribution, and making the pro bit approximation 
to the logistic. We used the quadratic extrapolant for SIMEX. 

Our theoretical bias calculations suggest a substantial downward 
bias in the naive estimator, and so, as expected, the maximum 
likelihood estimator taking measurement error into account gives 
a substantial correction to the naive estimator. The maximum like­
lihood estimate is 73x, 2 = 1.76, with a bootstrap standard error of 
0.21 and a profile likelihood 95% confidence interval from 0.50 to 
2.00. Somewhat surprisingly, the SIMEX estimator is 1.40, with 
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bootstrap estimated standard error 0.34. It is possible that the 
lack of a substantial correction in the SIMEX estimated value is 
due to its variability. 

In section 7.1, we raised the issue of the efficiency of functional 
versus structural modeling using maximum likelihood estimation. 
Kiichenhoff & Carroll (1995) investigated this issue in the contex­
t of segmented linear regression. In simulations with X and W 
normally distributed, they found that the maximum likelihood es­
timated was typically far more efficient than the SIMEX estimate 
with linear, quadratic or rational linear extrapolants. By assum­
ing that the X's follow a mixture of normals distribution, we have 
thus added considerable information to the problem, and likelihood 
takes advantage of this information. The smaller variance of the 
maximum likelihood estimator is essentially the result of modeling 
assumptions. 

7.8 Quasilikelihood and Variance Function Models 

In a quasilikelihood and variance function (QVF) model, recall 
that we model only the mean and variance functions of the re­
sponse, and not its entire distribution. As before, we write the 
mean and variances as E(YIZ, X) = f(Z, X, B) and var(YIZ, X) = 
a 2 g2 (Z, X, B, 0). 

We are concerned here particularly with the case when X is 
unobservable, and that only a surrogate can be observed. The sur­
rogate of course is W, and one should remember that the surrogate 
might have more than one component if there are replicates. 

Quasilikelihood and variance function techniques require that 
we compute the mean and variance functions of the observed data 
(and not the unobservable data). As we have seen before, these are 

E(YIZ, W) = E {1(-)IZ, W}. (7.13) 

var(YIZ, W) = a 2 E {g2 (-)IZ, W} + var {1(-)IZ, W}. (7.14) 

Equations (7.13)-(7.14) define a variance function model. If we 
knew the functional forms of the mean and variance functions, then 
we could apply the fitting and model criticism techniques discussed 
in section A.4. Note how both (7.13) and (7.14) require an estimate 
of a model for the distribution of the unobserved covariate given 
the observed covariates and the surrogate. 
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Even if X is unobserved, one can estimate the QVF parameters. 
This is possible provided, as in section 7.3.1, one has a model for W 
given (Z, X), and a model for X given Z. The (reduced) likelihood 
for a single observation based upon only the observed covariates is 

where again the integral is replaced by a sum if X is discrete. The 
(W,Z) data are used to estimate (a1 ,a2 ) by multiplying this re­
duced likelihood over the observations, and maximizing. The den­
sity or mass function of X given (Z, W) is then given by 

f ( I ) - fwlz,x(wiz, x, al)fxlz(xiz, a2) 
XIZ,w x z,w - J fwlz,x(wiz,v,ai)fxlz(vlz,a2)dJ.L(v) · 

From this, one can obtain (7.13)-(7.14) by integration either an­
alytically or numerically. The sandwich method or the bootstrap 
can be used for inference, although of course one must take into 
account the estimation of a1 and a2. 

When there is internal validation, there are functional modeling 
(semiparametric) techniques for QVF estimation. The basic esti­
mating functions for QVF estimation are given in section A.4, and 
they can be applied to the semiparametric methods of Chapter 9. 

7.9 Appendix 

7.9.1 Monte-Carlo Computation of Integrals 

If one .can easily generate observations from the conditional dis­
tribution of X given Z (error model) or given (Z, W) (calibra­
tion model), an appealing and easily programmed Monte-Carlo 
approximation due to McFadden (1989) can be used to compute 
likelihoods. The error model likelihood (7.5) can be approximated 
as follows. Generate on a computer a sample (Xf, · · · , X 'N) of size 
N from the density f(xiz, a2) of X given Z = z. Then for large 
enough N, 

(7.15) 
N 

~ N-1 LiYiz,x(Yiz,Xf,B)fwlz,x(wiz,Xf,ai). 
i=l 
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The dependence of (7.15) on liz comes from the fact that the dis­
tribution of X given Z depends on liz. 

We approximate (7.9) by generating a sample (X!,· · ·, Xiv) of 
size N from the distribution f(xlz, w, i) of X given (Z = z, W = 
w). Then for large enough N, 

N 

fylz,w(Yiz,w,B,,:Y) ~ N-1 LfYIZ,x(Yiz,Xf,B). 
i=l 

This "brute force" Monte-Carlo integration method is comput­
ing intensive. There are two reasons for this. First, one has to gen­
erate random observations for each value of (Yi, Zi, Wi), which 
may be a formidable task if the sample size is large. Second, and 
somewhat less important, maximum likelihood is an iterative al­
gorithm, and one must generate simulated X's at each iteration. 
Brown (1992) suggests that N must be fairly large compared to 
n 1fz in order to eliminate the effects of Monte-Carlo variance. He 
also suggests a modification which will be less computing intensive. 

7.9.2 Linear, Probit and Logistic Regression 

In some cases, the required likelihoods can be computed exactly 
or very nearly so. Suppose that W and T are each normally dis­
tributed unbiased replicates of X, being independent given X, and 
each having covariance matrix ~uu (= li1 in our general notation). 
Suppose also that X itself is normally distributed with mean a~ 1 Z 
and covariance matrix ~xx ( = O:zz in our general notation). As 
elsewhere, all distributions are conditioned on Z. 

In normal linear regression where the response has mean f3o + 
f3~X + 13;z and variance az, the joint distribution of (Y, W, T) 
given Z is multivariate normal with means f3o + f3~'Y~m,1 Z + 13;z, 
'Y~m,l Z and 'Y~m,l Z, and covariance matrix 

f3~~xx 
~xx + ~uu 

~XX 

For probit and logistic regression, we compute the joint den­
sity using the formulas !Y,WIZ = fYIZ,W fw1z and !Y,W,TIZ = 
Jylz,w,Tfw,TIZ· This requires a few preliminary calculations. 

First consider W alone. Our model says that W given Z is nor-
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mally distributed with mean a:~ 1 Z and covariance matrix :Exx + 
:Euu· Define Aw = :Exx(:Exx + :Euu)-1, m(Z, W) =(I- Aw)a:~ 1 Z + 
Aw W and :Exlz,w = (I- Aw):Exx· From linear regression theory, 
X given (Z, W) is normally distributed with mean m(Z, W) and 
covariance matrix :Exlz,w· 

Next consider W and T together. Our model says that given Z 
they are jointly normally distributed with common mean 'Y~m 1 Z, 
common individual covariances (:Exx + :Euu) and cross-covari~nce 
matrix :Exx. If we define 

Aw,t = (:Exx, :Exx) [ :Exx:E:x:Euu :Exx:E~x:Euu r1 
= (:Exx, :Exx)r;;;~t, 

then X given (Z, W, T) is normally distributed with mean and 
covariance matrix given by 

m(Z, W, T) = 'Y~m,1 Z 

+Aw,t {(W- 'Y~m,1 Z)t, (T- 'Y~m, 1 Z)t}t; 
:Exlz,w,t = :Exx- Aw,t(:Exx, :Exx)t, 

respectively. 
Now we return to probit and logistic regression. In probit re­

gression, exact statements are possible. We have indicated that 
given either (Z, W) or (Z, W, T), X is normally distributed with 
mean m(·) and covariance matrix :Exl·, where :Exl.is either :Exiz,w 
or :Exiz,w,t, and similarly for m(·). From the calculations in the 
appendix to Chapter 3, it follows that 

[fJo + fJ;m(·) + fJ!Z] 
pr(Y =liZ, W, T) =<I> (l + fJi:Exl·fJx)l/2 . 

For logistic regression (section 3.9.2), a good approximation is 

[ fJo + fJ;m(·) + fJ!Z ] 
pr(Y =liZ, W, T) ~ H (1 + fJi:Exl-f3xfc2)1/2 ' (7.16) 

where c = l57r/(311216); see also Monahan & Stefanski (1992). 
Write e = (B,:Euu,a:21,:Exx), and r(W) = r(W,a:21) = (W­

a:~ 1 Z). Using (7.16), except for a constant in logistic regression the 
logarithm of the approximate likelihood for (Y, W, T) given Z is 

f(Y, Z, W, T, 8) = -(1/2)log{det (r w,t)} 

+Ylog{H(·)} + (1- Y)log{l- H(·)} 

(7.17) 
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-(1/2) {rt(W), rt(T)} r;;;~t {rt(W), rt(T)} t. 

A similar result applies if only W is measured, namely 

C(Y, Z, W, 8) = -(1/2)1og{det (~xx + ~uu)} 

+Ylog{H(·)} + (1- Y)log{1- H(·)} 

-(1/2)rt(W, 'Yem,l) (~uu + ~xx)- 1 r(W, 'Yem,l)· 



CHAPTER 8 

BAYESIAN METHODS 

8.1 Overview 

The Bayesian approach to statistics treats all parameters as ran­
dom variables, with the randomness of a parameter representing 
uncertainty about its value. In this section, we give a quick intro­
duction to the Bayesian paradigm. The reader is referred to Box 
& Tiao (1973) or Berger (1985) for a thorough introduction. 

Bayesian analysis of parametric models requires specifying a 
likelihood (Chapter 7) that is then interpreted as the condition­
al density of the data given the parameters. It also requires a prior 
distribution for the parameters, representing knowledge about the 
parameters prior to data collection. The product of the prior and 
likelihood is the joint density of the data and the parameters. Of­
ten, one uses noninformative priors, meaning that the prior tells us 
extremely little about the parameters, relative to what is learned 
from the sample. However, if there is substantial prior knowledge 
about some parameters, then using informative priors for them 
leads to a more effective analysis. 

Given the joint density of the data and parameters, one can 
integrate out the parameters to get the marginal density of the 
data. One can then divide the joint density by this marginal density 
to get the posterior density, i.e., the conditional density of the 
parameters given the data. The posterior summarizes all of the 
information about the values of the parameters and is the basis for 
all Bayesian inference. For example, the mean, median, or mode 
of the posterior density are all suitable point estimators. A region 
with probability (1 -a) under the posterior is called a "credible 
set," and is a Bayesian analog to a confidence region. 

Computing the posterior distribution is often a non-trivial prob­
lem, because it usually requires high-dimensional numerical inte-
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gration. This computational problem is the subject of much recent 
research, with many major advances. The method currently re­
ceiving the most attention in the literature is the Gibbs sampler 
(Hastings, 1970; Geman & Geman, 1984; Gelfand & Smith, 1990), 
good introductions to which are given by Smith & Gelfand (1992) 
and Casella & George (1992). Also, see Tanner (1993) for a book­
length introduction to modern methods for computing posteriors, 
including the Gibbs sampler. 

The Gibbs sampler generates a Markov chain whose stationary 
distribution is the posterior distribution. The key feature of the 
Gibbs sampler is that this chain can be simulated using only the 
joint density of the parameters and the data, e.g., the product 
of the likelihood and the prior, and not the unknown posterior 
density. If the chain is run long enough, then the observations in 
a sample from the chain are approximately identically distributed 
with common distribution equal to the posterior. Thus posterior 
moments, the posterior density, and other posterior quantities can 
be estimated from a sample from the chain. 

Because of its current popularity we use the Gibbs sampler in 
the examples of this section. The examples are chosen to illustrate 
two general approaches to the Bayesian analysis of measurement 
error models. Data from a study of cervical cancer are used to 
illustrate an analysis based on "filling in" the missing X's. The 
Framingham data are used to illustrate a more standard Bayesian 
analysis based on approximate calculation of the likelihood of the 
observed data exploiting the regression calibration approximation 
(3.1). In both examples we use the Gibbs sampler with the intent of 
illustrating its application in the Bayesian analysis of measurement 
error models, and not specifically to promote or endorse its use to 
the exclusion of other computational methods. 

The usual distinction between classical structural and function­
al models, namely whether unknown covariates (Xi's) are random 
variables or fixed parameters, is blurred in the Bayesian framework, 
where all parameters are random. Instead, the Bayesian distinction 
between functional and structural models is that under the latter 
the Xi's have a common parametric distribution. This agrees with 
our more modern contrast between functional modeling and struc­
tural modeling discussed in section 1.2. 

As usual Z and X are the error-free covariate and the covariate 
measured with error, respectively. For most of this chapter we use 
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Gibbs notation to indicate density functions, so that for example 
[WI X, Z, a 1] denotes the density of W given (Z, X) and the pa­
rameter a 1, while [XIZ,0:2] denotes the density of X given Z and 
the parameter a2. 

With this notation a Bayesian structural model has [XIZ, a 2] 
independent of i, that is, of the same form for all i and with a com­
mon parameter a 2. We use such structural models in this chapter. 
Examples of this approach are given by Schmid & Rosner (1993), 
Richardson & Gilks (1993) and Stephens & Dellaportas (1992). 

There are at least several ways to formulate a Bayesian func­
tional model. One way would allow [XIZ, a 2] to depend on the 
observation number, i; a possible approach to this would be a 
"hierarchical" model, where the form of [XIZ, a 2] is independen­
t of i and the observation-specific a 2 's are identically distribut­
ed. Muller & Roeder (1995) use this idea for the case that X is 
partially observed. They assume that the (Xi, Zi, Wi) are joint­
ly normally distributed with mean J.li and covariance matrix ~i, 
where (}i = (J.Li, ~i) is modeled by a Dirichlet process distribution 
which itself has unknown hyperparameters. Lindley and El Sayyad 
(1968) is the first Bayesian paper on functional models, covering 
the linear regression case. Because of their complexity, we do not 
consider Bayesian functional models here. 

A second possibility intermediate between functional and struc­
tural approaches is to specify a flexible distributions, much as we 
suggested in sections 7.3.1 and 7.7. For instance, Mallick & Gelfand 
(1995) work with the likelihood (7.9), which is still a conditional 
likelihood even though X is unobserved. When X is scalar, they 
construct a model assuming that X given (Z, W) follows a gen­
eralized linear model with 0:2 = (a2,o, a2,1, a2,2), mean function 
g-1 (a2,0 + ab Z + a~,2 W) and a scale parameter a 2, where g(·) is 
a monotone function. If g( ·) is fully specified, this would be a stan­
dard structural modeling situation. Their compromise between the 
structural and functional models is to let g( ·) be of a flexible for­
m, namely a mixture of beta distribution functions with unknown 
parameters. 

In this chapter, the Zi 's are treated as fixed constants, as before. 
This makes perfect sense, since Bayesians only treat unknowns as 
random variables. Thus, the likelihood is the conditional density 
of the Yi's, W/s, and any Xi's that are observed, given the pa­
rameters and the Zi 's. The posterior is the conditional density of 
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the parameters given all data, i.e., the Z;'s, Y;'s, W;'s, and any 
observed X; 's. 

8.2 The Gibbs Sampler 

8.2.1 Direct Sampling without Measurement Error 

The Gibbs sampler is most easily understood when there is no 
measurement error. In this case the likelihood is 

n 

II fylz,x(Y;IZ;, X;, B). 
i=l 

Letting (Y, Z, X) refer to the ensemble of complete data, we can 

write this likelihood in Gibbs sampling notation as [ Y I Z, X, B). If 

[B] denotes a prior distribution for B, then the density of (Y, B) 
given (Z, X) is 

The posterior distribution of B is then 

_ _ _ _ [Y"iz,x,B] [BJ 
[BIY,z,x]- [ I ) , J Y Z,X,v [v]dv 

(8.1) 

The practical problem is that the denominator of (8.1) may be 
very difficult to compute. Numerical integration typically fails to 
provide an adequate approximation even when there are as few as 
three or four components to B. 

The Gibbs sampler is one solution to the dilemma, although 
other methods are possible. The Gibbs sampler is an iterative, 
Monte-Carlo method consisting of two main steps: 

• Form a sequence of computer-generated observations B1 , B2 , ... 

from the posterior distribution of [BIY, Z, X]; 
• Quantities such as the posterior mean are estimated by the 

sample mean of B1 , B2 , ... , while kernel density estimates are 
used to approximate the entire posterior density or the margin­
al posterior density of a single parameter or subset of param­
eters. 
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Here is how the iteration works. Start the iteration at any val­
ue of B, and suppose that the current value in the iteration is 
B = (j30 ,{31 , ... ,f3M) In the Gibbs sampler, one generates an updat­
ed random variable j30 from its conditional posterior distribution 
given (Y, Z, X, j31 , ... , f3M ); see subsection 8.2.2. Then one gener­
ates an updated random variable f3i from its posterior distribution 
given (Y,Z,X,j30,j32 , ••• , f3M)· Continue until f3'M has been gen­
erated. One then repeats this process a "large" number of times, 
see subsection 8.2.2. After discarding the first "few" observation­
s in order to eliminate the influence of the starting value, one is 
left with a sequence of observations (B1 , B2 , .•• ,) from the posterior 
distribution. 

The mechanics of each step work as follows. The posterior dis­
tribution of /3j given (Y, Z, X) and the other components of B is 

where 

[!3j ly, Z, X, f3k for k # j J = (8.2) 

["Yiz, X, f3o, ... , f3M] [f3o, ... , f3M] 

f ["Yiz,X,gj(u,B)] [gj(u,B)]du' 

gj(u,B) = (f3o, ... ,f3j-l,u,j3j+l,···f3M)· 

Generating pseudo random observations from (8.2) is the first 
step of the Gibbs sampler. Smith & Gelfand (1992) discuss there­
jection method and the weighted bootstrap method. Ritter & Tan­
ner (1992) and references therein discuss ways of drawing samples 
from (8.2), including the griddy Gibbs sampler, which effectively 
discretizes the components of B in a clever way; this can be useful 
since sampling from a multinomial distribution is trivial. 

The mechanics of stopping the Gibbs sampler, and whether one 
should use one long sequence as described here or a number of 
shorter sequences, are currently a matter of controversy and is not 
discussed here; however, we note that Gelman & Rubin (1992) and 
Geyer (1992) give exactly opposite recommendations. 

8.2.2 The Weighted Bootstrap 

In our nondiscrete example we use the weighted bootstrap, and for 
the sake of completeness we now provide an explanation of this 
method. Suppose we want to sample from a density f(O) that is 
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represented as the ratio h(O)j f h(v)dv. Examination of (8.1) and 
(8.2) indicates that this is the relevant problem to consider. Let 
g(O) be another distribution from which it is easy to generate da­
ta, and let 01 , ... , (} N be a computer-generated sam~le from g. Now 
calculate Wi = h(Oi)/g(Oi) and then qi = wd Lj=1 Wj· Draw ()* 

from the discrete distribution that has probability qi at (}i· As N 
becomes large, the distribution of()* approaches f. This method is 
easy to program when, as is typical in practice, h is easy to com­
pute. The closer g resembles the shape of h, the smaller the value 
of N that is needed. The weighted bootstrap is also called "sam­
pling/importance resampling" and is sometimes given the same 
acronym, SIR, as the totally unrelated method of "sliced inversion 
regression" discussed in Chapter 10. 

8.2.3 Forming Complete Data 

Now suppose that X cannot be observed, and that instead the 
surrogate W has an independent replicate T at every observation. 
The likelihood for an individual observation is given by (7.5). If this 
likelihood is computable or very nearly so as in logistic regression 
(section 7.9.2), then the Gibbs sampler can be implemented as 
described above. The ensemble of data is (Y, Z, W, T) and the 
parameters are [B, 0:1 , 0:2], and with these substitutions the same 
idea as in section 8.2.1 applies. 

However, as we know, computing (7.9) (either analytically or 
exactly) can sometimes be difficult, and in this case a missing­
data technique may be helpful. The device is to treat the unob­
served X's as unobserved random effects (parameters) with distri­
bution [XIZ, tl:2] where 0:2 has a prior distribution [a2]. Treating 
the X's just like any other unobserved parameter, the joint density 
of (Y, X, W, T, B, 0:2 , 0:1 ) given Z becomes 

Note that (8.3) is computable. One applies the Gibbs sampler to all 
the unknown parameters, namely B, tl:1, 0:2 and the X's. The major 
burden lies in generating samples from the posterior distribution 
of the unobserved X's. If the sample size is large, then this might 
require much computer time. 
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8.3 Importance Sampling 

Although high-dimensional integrals are difficult to compute accu­
rately by quadrature and other deterministic numerical methods, 
they can often be computed quite accurately by Monte Carlo sim­
ulation. In fact, a Monte Carlo study of a statistical method on 
samples of size n amounts to estimating n-dimensional integrals. 
Importance sampling is a widely applicable method for numeri­
cal integration by simulation. It can, for example, be used to find 
posterior moments and to estimate posterior densities. 

Let f(B) be the product of the prior and the likelihood, e.g., in 
the case of no measurement error, the numerator of (8.1). Although 
f(B) depends on the data, this dependence will be suppressed in 
the notation since the data are fixed. Let h(B) be any function of 
the parameter, and suppose that we need to find the expected value 
of h(B) with respect to the posterior distribution. This quantity is 

J h(v)f(v) dv 
J f(v) dv 

(8.4) 

Importance sampling allows us to estimate both the numerator and 
the denominator of (8.4) with one simulation. Let g be a density 
somewhat similar to the posterior, but easy to sample from, e.g., 
a normal density. We discuss the choice of g below. Let Vi, ... , VN 
be an iid Monte Carlo sample from g. Define wi = f(~)/g(~), 
i = 1, ... , N. The wi's are called the importance sampling weights. 
For models considered in this book, the prior and the likelihood 
and, hence, f are easy to evaluate; it is only J f(v) dv that is 
difficult to determine. Thus, computing the ~ 's and the wi 's is 
not a problem. Then, E(Bithe data) is estimated by a weighted 
average of the h(Vj) 's using the importance sampling weights: 

N-1 I:f=1 h(Vj )wj 

N -1 "N 
L...,j=1 Wj 

(8.5) 

The numerator and denominator of (8.5) estimate the correspond­
ing quantities is (8.4). To see this, note that 

f f(v) f E{h(Vj)wj} = h(v) g(v)g(v)dv = h(v)f(v)dv, (8.6) 

which shows the correspondence both between the numerators and 
(using h(v) = 1) between the denominators. 
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Let wj = Wj/ 2::=1 Wk. Then the vector of posterior means of 
B is estimated by 

N 

E(B) = :LwjVj, 
j=l 

and the posterior variance-covariance matrix is estimated by 

N 

L w; (VJ- E(B) (VJ- E(B)r. 
j=l 

(8.7) 

(8.8) 

One can estimate posterior densities by weighted kernel estimators, 
using the importance sampling weights. Let V},k and Bk be the kth 
components of Vj and B, respectively. Then, the posterior density 
of Bk evaluated at Bk is estimated by 

LN w~ { V k - Bk } _J K _.::.:.J, __ _ 

b b ' 
j=l 

(8.9) 

where K is a kernel and b is a bandwidth. As in ordinary kernel 
density estimation (see Silverman (1986)), a "kernel" can be any 
function that integrates to 1, and typically K is chosen to be a 
symmetric probability density function. 

Now we address the choice of g. Importance sampling gives unbi­
ased estimates of posterior expectations, provided that the support 
off is a subset of the support of g, so g should be positive on the 
entire parameter space. This positivity can be achieved by repa­
rameterizing so that all components of B range from -oo to oo, 
e.g., logging variances, and then letting g be Gaussian, or at least 
have a Gaussian component. The accuracy of the importance sam­
pling increases as the variance of the importance sampling weights 
decreases. Therefore, we want g to be close to f, and it is especially 
important that g have tails as least as heavy as f. In our applica­
tions, we approximate f by a Gaussian density with mean equal to 
the MLE and variance-covariance matrix equal to f;; 1 , where In 
is the observed Fisher information matrix defined in section A.2.2. 
This approximation of f is used only for guidance in choosing g. 
To ensure sufficiently heavy tails, we let g be the mixture of this 
density and the Gaussian density with the same mean but with 
variance-covariance matrix equal to azi- 1 where a* > 1, with 
mixing probabilities-of (1 -a) and o:, respectively. In the Fram-
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ingham study, we found after some experimenting that o: = .1 and 
u* = 2 roughly minimized the coefficient of variation of the wj's. 

The use of importance sampling for Bayesian inference is dis­
cussed in more detail by Geweke (1989). 

8.4 Cervical Cancer 

The cervical cancer data are listed in Carroll, Gail, and Lubin 
(1993). The response Y is the indicator of invasive cervical cancer, 
X is exposure to herpes simplex virus, type 2 (HSV-2) measured 
by a refined western blot procedure, and W is exposure to HSV-
2 measured by the western blot procedure. See Hildesheim et al. 
(1991) for biological background to this problem. There are 115 
complete observations where (Y, X, W) is observed and 1929 in­
complete observations where only (Y, W) is observed. There are 
39 cases (Y = 1) among the complete data and 693 cases among 
the incomplete data. Among the complete data, there is substan­
tial misclassification, i.e., observations where X ¥- W. Also, there 
is evidence of differential error. 

We now describe a Bayesian analysis of the cervical cancer data 
using the Gibbs sampler with the strategy of filling in missing data. 

In this example, (W, Y, X) are all binary, there is no variable 
Z, and the prospective model is 

Pr(Y = 1IX) = H(f3~ + f3xX). (8.10) 

This problem is particularly easy to parameterize retrospectively 
in terms of the distributions of X given Y, and W given (X, Y), 
and we show how to implement the Gibbs sampler here. 

With differential measurement error, the six free parameters are 
o:xd = Pr(W = 1IX = x, Y = d) and 'Yd = Pr(X = 1IY = d), 
x = 0,1 and d = 0, 1. We use beta priors with parameters (axd, bxd) 
for the o:'s and (a:J, b:J) for the 'Y's, with the o:'s and 'Y's being mu­
tually independent. If we impose the constraints, O:xo = o:x1 for 
x = 0, 1, then we have a four-parameter, nondifferential measure­
ment error model. Following the usual odds-ratio formulation, the 
logistic slope is related to the 'Y's by 

f3x =log [{'YI/(1- 'Y1)} / bo/(1- 'Yo)}]. 

Thus, the posterior distribution of f3x can be found via transfor­
mation from the posterior distribution of the 'Y's. 
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If we could observe all the X's, the joint density of the parame­
ters and all the data would be proportional to 

1 1 [ n g a~~/-1 (1- O!xd)b~d-1 (8.11) 

Iln { W; 1-W; }I(X;=x,Y;=d)l 
X axd (1 - O!xd) 

i=1 

1 [ • 1 b* n { X X }I(Y;=d)l 
X I! 1'~r (1 -1'd) d-1 g 1'd ; (1 -1'd)1- ; . 

We can use (8.2) and (8.11) to note that the posterior distribution 
of '/'dis a beta distribution with parameters I:~1 XiJ(Yi = d) +a;t 
and L~=1 (1- Xi)J(Yi =d)+ b;t. The posterior distribution of axd 
is also a beta distribution but with parameters L~=1 Wil(Xi = 
x, Yi =d) + axd and L~=1 (1- Wi)I(Xi = x, Yi = d) + bxd· The 
conditional distribution of a missing Xi, given the (Wi, Yi) and 
the parameters, is Bernoulli with success probability pu/(Poi+Pu), 
where 

Pxi = 1'y; ( 1 -1'Y;) 1-x a~; ( 1- ax Y;) 1-W, 

Thus, in order to implement the Gibbs sampler, we need to simu­
late observations from the Bernoulli and beta distributions, both 
of which are easy to do using standard programs, so the weighted 
bootstrap was not needed. 

For non differential measurement error, the only difference in 
these calculations is that O:xo = ax1 = ax, which have a beta pri­
or with parameters (ax, bx) and a beta posterior with parameters 
L~=1 wa(xi = x) +ax and L~=1 (1- Wi)I(Xi = x) + bd. 

Using the retrospective formulation of section 14.1, maximum 
likelihood analysis yielded iJ1 = .609 (std. error= .350), and, under 
the nondifferential error model iJ1 = .958 (std. error= .237). 

In Figure 8.1 we plot kernel density estimates of the posterior 
distribution of (31 for both differential and nondifferential measure­
ment errors. We used uniform priors throughout, so that axd = 
b.,d = a~ = b~ = 1. We ran the Gibbs sampling with an initial 

burn-in period of 2, 000 simulations, and then recorded every 50th 
simulation thereafter. The posterior modes were 0.623 and 0.927, 
respectively, these being very close to the maximum likelihood es-
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Figure 8.1. Kernel posterior density estimates of /31 for differential (sol­
id} and nondifferential (dashed} measurement error in the cervical cancer 
data. 

timates. Note the large difference between the estimates for d = 1 
and for d = 0, indicating the critical nature of assuming whether 
the error is differential or not. 

In Figure 8.2 we plot kernel density estimates of the posterior 
of o:od = Pr(W = 1jX = x, Y = d) for d = 1 and d = 0 with 
differential measurement error, the upper plot for x = 0 and the 
lower for x = L For each x, the posteriors for d = 1 and for d = 0 
are clearly different, lending added strength to our earlier asser­
tion that the assumption of nondifferential measurement error is 
problematic. We have found Figures 8.1-8.2 useful graphical diag­
nostics for detecting differential measurement error in the 2 x 2 x 2 
problem. 

8.5 Framingham Data 

The Framingham data also may be analyzed using the Gibbs sam­
pler. We use the strategy here of approximately calculating the 
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Figure 8.2. Kernel posterior density estimates of Pr(W = liX, D =d) 
for d = 1 (dashed) and d = 0 (solid} in the cervical cancer data with 
differential measurement error. 

likelihood, without filling in the missing X's. As an illustration, 
we consider only those males ages 45+ whose cholesterol values at 
Exam #3 ranged from 200 to 300, giving a data set of n = 641 
observations. Recall that Y is the indicator of coronary heart dis­
ease. Initial frequentist analysis of this data set showed no evidence 
of age or cholesterol effects, so we work only with two covariates, 
smoking status (Z) and X = log(SBP-50), where SBP is long­
term average systolic blood pressure. The main surrogate W is 
the measurement of log(SBP-50) at Exam #3, while the replicate 
T is log(SBP-50) measured at Exam #2. Given (Z, X), W and 
T are assumed independent and normally distributed with mean 
X and variance O"~; O"~ = i:h in the general notation of Chapter 
7. The distribution of X given Z is assumed to be normal with 
mean a2,o + a2,1Z and variance O";lz (0:2 in the general notation). 

We also assume that O";lz is constant, i.e., independent of Z. Let 
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e = (a~, a2,o, a2,1, a;
1
z). Then the mean of X given (Z, W, T) is 

m(Z, W, T, e)= a2,o + a2,1Z (8.12) 
2 

+ a 2 a~ 1:2 12 { W; T- (a2,o + a2,1z)}. 
xlz u 

Marginally, (W, T) given Z has a bivariate normal distribution 
with means a 2,0 +a2,1Z, variances a~+ a;lz' and covariance a;

1
z. 

We use the regression calibration approximation (3.1) so that Y 
given (W, T) is treated as being logistic with mean 

Previous analysis suggested that the measurement error variance 
is less than 50% of the variance of the true long-term SBP given 
smoking status. It makes some sense to use this prior information, 
so we define A= a~/a; 1 z to be the ratio of these variances. 

The unknown parameters are (f3o,f3,,f3z,a2,o,a2,1,a2,2 = a;lz' 
.A). The first five of these are given diffuse (noninformative) locally 
uniform priors, the next-to-last has a diffuse inverse Gamma prior, 
the density functions being proportional to 1/ a; z, and A has a 
uniform prior on the interval between zero and one ~alf. Restricting 
the range here makes sense, and we would not credit an analysis 
that suggested that the measurement error variance is larger than 
the variance of true long-term SBP given smoking status. 

Then, the joint density of the parameters and the observed data, 
conditional on Z, is 

[YIZ, w, T, B, e][w, TIZ, e][B, e] (8.13) 

- I(O <.A< 1/2) lin (! (W· T·IZ· 8) - 2 2 ., t ., 

axlz i=l 

xH Y, {f3o + {3,m(Zi, Wi, Ti, 8) + f3zZi} 

X [1- H {f3o + {3,m(Zi, wi, Ti, e)+ f3zZi}] 1- Y,)' 
where fz(w, tlz, e) is the bivariate normal density with common 
means a2,o + a2,1Z, common variances a~+ a;lz' and covariance 

2 
a xjz" 

A frequentist analysis of these data yields the parameter esti-
mates and bootstrap standard errors as given in Table 8.1. 
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In the Gibbs sampler, we used a weighted bootstrap (Smith & 
Gelfand, 1992) to generate observations from the univariate con­
ditional posterior distributions given by (8.2). The variance pa­
rameters, u; and u;lz' were log transformed to avoid positivity 
constraints. When generating observations by the weighted boot­
strap, values of>. exceeding 1/2 cannot occur, since they have prior 
probabilities of 0. 

The weighted bootstrap was applied to each of the seven pa­
rameters in turn, which we call one cycle. The estimated posterior 
means and standard deviations from the Gibbs sampler are given 
in Table 8.1. 

In Table 8.1, the frequentist estimates of {30 , {3,, and f3z and 
their bootstrap standard errors differ substantially from the pos­
terior means and variances by the Gibbs sampler. We feel that 
this is due to inaccuracy of the Gibbs output; see subsection 8.5.1. 
Therefore, we recomputed the posterior means and variances by 
importance sampling, using N = 10,000, a = .1, and u* = 2 in 
the notation of section 8.3. The results are in Table 8.1. In Fig­
ure 8.3, weighted kernel estimates using importance sampling of 
some posterior distributions are plotted. In this example, we found 
little difference between the frequentist and Bayes analyses using 
importance sampling, an exception being that the bootstrap stan­
dard errors of jj0 and jj, are smaller than the posterior standard 
deviations of these parameters. 

The maximum likelihood and importance sampling results in 
Table 8.1 are similar to the likelihood and regression calibration 
results given in section 7.6, and the differences are easily due to our 
use here of only 641 out of the 1,615 subjects analyzed in section 
7.6. 

8.5.1 Details of the Gibbs Sampler and Weighted Bootstrap 

When implementing the Gibbs sampler on the Framingham data, 
we used three independent sequences through the seven parameter­
s, each of 4000 cycles and each started at the MLE. We sampled 
every lOth cycle, for a total of 1200 observations of the seven­
parameter posterior distribution. When sampling from (8.2) using 
the weighted bootstrap, g was the normal distribution with mean 
equal to the current value of /3j and standard deviation from the 
observed Fisher information matrix. Also, N = 20 O's were gener-
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EffectofSBP Effect of smoking 
0.6.-----~-----. 1.5.-----------. 

0.4 

0.2 0.5 

1.6 

Var(XIZ) lambda 
150,----------, 16,----------, 

12 

4 

0.3 0.41 

Figure 8.3. Framingham data. The top left plot is the estimated posterior 
density of the effect of SBP, while the top right is for the effect of smok­
ing. The bottom left is the posterior density of the variance of X given 
Z, while the bottom right is the ratio of the measurement error variance 
to the variance of X given Z. The bandwidth of each kernel density esti­
mate was 0.4 times the sample standard deviation. The central tick mark 
on the x-axis is at the sample median. 

ated in the weighted bootstrap. The Gibbs sampler algorithm was 
implemented in MATLAB and the computations took about one 
day on a SPARC 20. 

We used autocorrelations to check for dependence among the 
1200 observations. For f3x, there was strong dependence, with au­
tocorrelation coefficients of .96, .92, .89, .86, and .82 at lags of 1, 
2, 3, 4, and 5, respectively. A lag of i in the sample corresponds, 
of course, to a lag of 10i in the original Markov chain. The pa­
rameter f3o exhibited similar dependence. For /3z, 0:2,0, and 0:2,1 , 

respectively, there were autocorrelations of .28, .25, and .25 at lag 
1, but small autocorrelations at lags of 2 and higher. For O";lz and 
.A, all autocorrelations were small, suggesting independence. 

The strong dependence exhibited by f3x and (30 means that their 
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Parameter ML. Boot. Posterior Posterior 
est. se mean std. dev. 

IS GS IS GS 

f3o -10.10 2.400 -10.10 -13.60 4.100 7.100 
f3x 1.76 0.540 1.76 2.49 0.870 1.570 
f3z 0.38 0.310 0.38 0.61 0.340 0.520 
a2,em 4.42 0.019 4.43 4.42 0.021 0.019 
10 x a2,em -0.19 0.210 -0.20 -0.20 0.240 0.222 
10 X a;lz 0.47 0.033 0.47 0.47 0.036 0.031 
10 x a~ 0.14 0.011 0.14 0.14 0.009 0.008 
.Aem 0.30 0.031 0.30 0.30 0.032 0.028 

Table 8.1. Framingham data. The effects of SBP and smoking are given 
by f3x and f3z, respectively. The measurement error variance is a~. The 
mean of long-term SBP given smoking status is linear with intercept 

l d . 2 Al ' 2 / 2 "ML" . a2,o, s ope a2,1 an vanance axlz. so,"= au axlz. = max~mum 
likelihood, "se" = standard error, "Boot." = bootstrap, "GS" = Gibbs 
sampling, and "IS" = importance sampling. 

posteriors are not accurately estimated by the Gibbs sampler with 
the amount of sampling we have used. For example, the sample 
means of the f3x 's in the three sequences, 3.04, 2.25, and 2.96, vary 
among themselves far more than we would expect under indepen­
dence within the sequences. Using the posterior standard devia­
tion from Table 8.1, the standard error of each mean would be 
1.09/ J460 = .055, if the observations in the sample were indepen­
dent. 

Far more and far longer sequences might be contemplated, with 
sampling of only every 50th or perhaps every 100th cycle. Howev~ 
er, that would require considerable computation, certainly on the 
order of a week on a SUN SPARC 20 with our MATLAB imple­
mentation. In comparison, the bootstrap took about two hours for 
very high accuracy (1000 independent replicates). The slowness of 
the Gibbs sampler is caused primarily by the weighted bootstrap, 
which requires 20 evaluations of the likelihood to obtain a single 
sample from (8.2). Thus, a single cycle takes 140 evaluations ofthe 
likelihood, so 1400 evaluations are needed to get a single observa-
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tion when we sample every lOth cycle. 
We note that the computing times reported above are specific 

to our implementation in MATLAB. Greater speed could likely be 
achieved with other languages, e.g., Cor FORTRAN. 



CHAPTER 9 

SEMIPARAMETRIC 
METHODS 

In Chapter 7 we described likelihood methods of inference for mea­
surement error models. Especially in sections 7.1 and 7.2, we noted 
a formal relationship between measurement error models and miss­
ing data problems, and that when X is observed on a subset of the 
study participants, the measurement error problem is a missing 
data problem with supplementary information. 

An important distinction was made in section 7.2 between func­
tional modeling, which makes no assumptions about the distribu­
tion of X, and structural modeling, in which this distribution is 
given a parametric form. While much of the missing data litera­
ture takes the form of structural modeling, there are important 
functional (semiparametric) techniques that have been develope­
d recently. This chapter describes some of these functional tech­
niques. 

The focus of this chapter is on methods for problems with in­
ternal validation or replication data, in which no parametric as­
sumptions are made about the calibration distribution. With the 
exception of the material in section 9.6, the techniques discussed 
in this section are relevant to the missing data problem, where 
X is observable in a subset of the study participants. Some of the 
methods have been developed only recently, especially those in sec­
tion 9.5, and there is little in the way of studies documenting their 
performance in applications. 

We focus on two-stage validation designs in which (Y, Z, W) are 
measured for all study participants at the first stage of the study. 
In the second stage, X is also observed for a subset of the study 
participants. These are the complete data, which we identify with 
the indicator variable .6., i.e., .6. = 1 if X is observed, otherwise 
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~ = 0. Admission into the second stage is assumed to depend only 
on the values of (Y, Z, W) observed at the first stage, and not on 
the value of X itself. In the terminology explained in Chapter 7, 
X is missing at random. 

9.1 Using Only Complete Data 

The simplest functional approach is to use standard methods, but 
analyze only the complete data, i.e., the data for which (Y, Z, X) 
are all observed. This is a functional analysis because no assump­
tions about the distribution of X are invoked. The main drawback 
is that an analysis of only the complete data disregards information 
in the incomplete observations. 

A second problem is that naive use of the complete data can 
lead to biases in parameter estimates, under the circumstance that 
selection into the second stage depends on the response. This may 
seem contradictory, in that the data are missing at random, but a 
complete case analysis can be invalid. The reason for this is fairly 
technical, as indicated in (9.1) below. The reader should keep in 
mind, however, that the assumption that X is missing at random 
implies that we can ignore the pattern of missing data only for a 
full likelihood analysis (Chapter 7); using the complete data only 
is not a full likelihood analysis, and hence one needs to take into 
account the pattern of missing data. 

There are two simple ways to correct this problem. Let L = 
(Y, Z, W) denote the combined response and the observed covari­
ates. Suppose that one selects a participant into the second stage 
with probability 7r(L), where 7r(·) is a known function. One way 
to obtain consistent estimation is to perform a weighted, complete 
data analysis, with the weights inversely proportional to the se­
lection probabilities, see Little & Rubin (1987, p. 55) and Zhao & 
Lipsitz (1992). This is the so-called Horvitz-Thompson approach 
from survey sampling. A second approach is to compute the actual 
density or mass function of the complete data and then maximize 
the complete data likelihood. The density or mass function of the 
complete data is 

/y 1 z,X,W,Ll(YIZ,X,W,~ = l,B) = 



184 SEMIPARAMETRIC METHODS 

I rr(y, z, W)Jy,z,x (yiZ, X, B)dJ.L(y). 

rr(Y, Z, W)Jy1z,X (YIZ, X, B) 
(9.1) 

The complete data likelihood is the product over the complete da­
ta of the terms (9.1). This can be treated as any likelihood, and 
inference is standard, see Appendix A. 

Equation (9.1) takes a very simple form in logistic regression, 
namely that of a logistic regression model but with an additional 
known "offset" term, log {rr(Y = 1, Z, W)/rr(Y = 0, Z, W)}, added 
to the intercept. The likelihood can be maximized treating this off­
set as a new variable in the logistic regression whose parameter is 
constrained to equal 1.0. 

In the usual context of measurement error models, selection into 
the second stage is under the control of the investigator. This need 
not always be the case, especially in classical missing data problem­
s where the data are observational, and the selection mechanism 
can only be estimated. Because it is more technical, this material 
is discussed in the appendix, section 9.8.1. One of the more inter­
esting features of this problem is that (asymptotically) it is better 
to estimate the selection probabilities even when they are known. 

9.2 Special Two-Stage Designs for Binary Responses 

While designing two-stage studies is reviewed briefly in Chapter 14, 
at this point is it useful to mention a particularly important class 
of two-stage designs. Recall that in a two-stage design, (Y, Z, W) 
are observed for all study participants, and then X is observed for 
a subset of the study participants. When Y is binary (or more 
generally categorical), it can be particularly convenient to select 
an observation for admission into the second stage of the study 
(at which point X is observed) on the basis of the response and a 
categorical covariate, the latter usually being a function of (W, Z). 
For purposes of this section, label this covariate as Z*, in which case 
selection into the second stage depends only upon (Y, Z*). The 
convenience here is that the (Y, Z*) data form a cross-classified 
table, from each cell of which one can select a predetermined or 
random number into the second stage of the study. 

Such designs are particularly important in practice, although not 
a particularly important form of measurement error modeling per 
se. There is a large literature on analyzing such designs, both in 
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the context discussed here and also in case-control studies. Hsieh, 
Manski & McFadden (1985), Breslow & Cain (1988), Flanders & 
Greenland (1991), Scott & Wild (1991), Wild (1991), Zhao & Lip­
sitz (1992), and Breslow & Holubkov(1995) should be consulted 
for details of the analysis. Flanders & Greenland suggest weight­
ing inversely with the selection probabilities. Zhao & Lipsitz, Scott 
& Wild, Wild, and Breslow & Holubkov discuss efficient estima­
tion methods which are closely connected to the efficient methods 
outlined in section 9.5. 

9.3 Pseudolikelihood 

In functional modeling, we avoid parametric formulation of the 
distribution of X. One way to do this is to use nonparametric 
techniques to estimate the distribution in question. We call such 
techniques pseudolikelihood, because they retain a likelihood and 
quasilikelihood flavor. 

The key to these ideas is to remind oneself that in likelihood, and 
in quasilikelihood & variance function (QVF) models (Appendix 
A), the distribution of Y given (Z, W), and the moments of Y 
given (Z, W), can be written as regression functions. For example, 
from (7.9), the likelihood of Y given (Z, W) is just 

fylz,w(YJz, w, B) = E {Jylz,x(yJz, X, B)JZ = z, W = w}. (9.2) 

The mean and variance functions in a QVF model are explicitly 
written as regressions as follows: 

E(YJZ,W) 

var(YJZ, W) 

E {f(Z, X, B)JZ, W}. 

a 2 E {l(Z,X,B,O)JZ, W} 

+E {J2 (Z, X, B)JZ, W} 

- [E {f(Z, X, B)JZ, W}] 2 . 

(9.3) 

(9.4) 

The pseudolikelihood algorithm estimates the quantities in e­
quations (9.2)-(9.4) nonparametrically, but otherwise employs the 
standard estimation scheme, i.e., maximizing likelihoods or solving 
QVF estimating equations. It applies as long as selection into the 
second stage of the study depends only on (Z, W) but not on the 
response (a special case of missing at random). 

For example, suppose that we can estimate the loglikelihood, i.e., 
the logarithm of (9.2) as a function of (y,z,w,B), by i(y,z,w,B). 
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Then, following (7.10), the pseudo-maximum likelihood estimator 
of l3 maximizes 

n 

L [ Llilog {Jylz,x(YiiZi, xi, !3)} 
i=l 

+ (1- Lli)i(Yi, zi, wi, B)]. 

In effect, we substitute an estimated likelihood for the density of 
Y given (Z, W), and then proceed as if this were the actual like­
lihood. Similarly, in QVF models, pseudolikelihood replaces the 
moment functions for Y given (Z, W) by their estimated values. 
Pseudolikelihood was introduced independently by Pepe & Flem­
ing (1991) when (Z, W) are discrete, and by Carroll & Wand (1991) 
when (Z, W) are continuous. 

This method requires estimation of functions like those in (9.2)­
(9.4), i.e., functions like 

1-l(y, z, w, !3) = E {g(y, z, X, B)IZ = z, W = w}. 

When (Z, W) are discrete, the obvious estimate is 

~( !3)- L~-1 Llil(Zi = z, wi = w)Q(y, z, xi, !3) 
Hy,z,w, - "'n AJ( W ) L,.i=l Ll.i zi = z, i = w 

When (Z, W) is not discrete, the function H can be estimat­
ed by nonparametric regression techniques, regressing the function 
Q(y, z, X, !3) on (Z, W). There are several ways to do this regres­
sion, ranging from kernel methods to generalized additive mod­
els (Hastie & Tibshirani, 1990). The major practical difficulty in 
implementation is the well-known curse of dimensionality in high­
dimensional nonparametric regression. Generalized additive mod­
els address this problem directly. Carroll, Knickerbocker & Wang 
(1995) perform a direct dimension reduction of X predicted by 
(Z, W) using sliced inverse regression (Li, 1991; Duan & Li, 1991). 

Standard error formulae are given by Pepe & Fleming for the 
discrete case, and by Sepanski & Carroll (1993) for QVF models. 
The bootstrap is asymptotically justified in the discrete case. We 
conjecture that it will give acceptable results for the other methods, 
although this has not been investigated. 

There is one somewhat paradoxical point about pseudolikeli­
hood. In theory it is possible for the pseudolikelihood method to 
yield less efficient estimates when compared to using the complete 



MEAN SCORE METHOD 187 

data only (Pepe, 1992; Robins, Hsieh & Newey, 1995). This prob­
lem can be avoided by weighting the validation and nonvalidation 
terms in the estimating equation, or by computing the pseudolike­
lihood and complete data estimates, and taking a weighted average 
of the two. These modifications are seldom necessary in applica­
tions. 

9.4 Mean Score Method 

When selection into a validation study ( ~ = 1) depends on the 
response, pseudolikelihood no longer applies. The distributions of 
X given (Z, W), and X given (Z, W, ~) are not the same, and 
hence naive use of pseudolikelihood leads to inconsistent estimates. 

Reilly & Pepe (1994) describe a modified pseudolikelihood ap­
proach for the case that (Y, Z, W) are all discrete, called the mean 
score method. No results are yet available in the continuous case. 
Suppose for the moment that we have a parametric calibration 
model and define the complete-data likelihood, 

l(Y,Z,X,W,B,'Ycm) = 

fylz,x(YIZ,X,B)fxlz,w(XIZ, W,'Ycm). 

The EM algorithm (Little & Rubin, 1987, p. 130) for this para­
metric problem involves the iterative maximization of 

t ( ~ilog { £(Li, Xi, B, 'Ycm)} 

+ (1- ~i)E [log {l(Li, X, B, 'Ycm)} 'Li, B*, '~'*]), 
where (B*,'Y*) are the current values in the iteration. If we make 
no assumptions about the distribution of X given the other co­
variates, then in order to implement the EM algorithm we need 
the expectation of the loglikelihood given the observed incomplete 
data Li = (Yi, Zi, Wi)· This expectation can be estimated using 
pseudolikelihood techniques, leading to the iterative maximization 
of 

t [~,log {hlz,x (Y,IZ,, x,, B)} 
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2:7=1 6-il(Li = Li)log{fylz,x(YdZi,Xi,B)}l 
+ (1- 6-i) 2:7=1 6-jl(Lj = Li) . 

The resulting estimate is asymptotically normally distributed, and 
its covariance may be estimated by n-1 A-1 .BA-1 , where A and .B 
are defined as follows. First let the derivative of the loglikelihood 
of Y given (Z, X) be 'ljJ(Y, Z, X, B). Then define 

n n 

n(L) = L I(Li = L); nv(L) = L 6-il(Li = L); 
i=1 i=1 

) ~ 6-i t U(L = ~ -I(Li = L)'¢(Yi, Zi, Xi, B)¢ (Yi, Zi, Xi, B); 
i=1 nv 

n n 

A= n-1 L U(Li); np(L) = I:(l- 6-i)I(Li = L); 
i=1 i=1 

n 

i=1 

9.5 General Unbiased Estimating Functions 

Robins, et al. (1995) describe yet another method of functional es­
timation. Their method differs from pseudolikelihood and its vari­
ants as it is not based on nonparametric regression. 

The material discussed in this section has potential importance 
in practice, but it is complex and requires a good understanding 
of unbiased estimating equations (Appendix A). The intent of the 
material is to improve upon complete data analyses without mak­
ing any assumptions about the joint distribution of (W, X) given 
z. The methods are thus intermediate in efficiency between likeli­
hood and complete data analyses. 

Remember that 6. = 1 means that X has been observed. Let 
'ljJ(Y, Z, X, B) be any unbiased estimating function (section A.3) 
for B in an ordinary study with X observed everywhere, e.g., a 
likelihood score or quasilikelihood and variance function (QVF) es­
timating function. Let L = (Y, Z, W) and let f!(L) = f!(Y, Z, W) 
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be any function of the same dimension as '1/J(·). From Robins, et al. 
(1995), the following are unbiased estimating functions forB given 
(Z,W): 

\11 1 (L, X,~' B) = ~ [ 'lj;(Y, Z, X, B) (9.5) 

'II2(L, X,~' B) 

_ E {'lj;(Y, Z, X, B)1r(L) jZ, X, W}]. 
E {1r(L)jZ,X, W} ' 

~r(L) _ ~ E {1r(L)r(L)jX, Z, W} 
E {1r(L)jX, Z, W} 

- ~- 1r(L) r(L) (9.6) 
1 - 1r(L) ' 

where r(L) = {1- 1r(L)} O(L)j1r(L). The simplest choice for 0 is 
just the naive score 'lj;(Y, Z, W, B). That (9.5)-(9.6) are unbiased 
estimating functions is shown in the appendix, as are the other 
theoretical claims of this section. 

It is not obvious that these estimating functions depend on all 
the data, so some explanation is required. The function \11 1 uses 
only the validation data. The first two terms in \11 2 also use only 
the validation data. However, since L = (Y, Z, W), the third term 
in \11 2 uses all the data. 

It is also not obvious which terms depend on B. In \11 2 , only the 
second does, because for any function g(·), 

E {g(Y, Z,X, W)jX, Z, W} 

= J g(y, z, x, W)Jy1z,x(Y!Z, x, B)d11(y). 

For any given function 0(·), an unbiased estimating equation is 

n 2 

o =I: I: '~~i(Li, xi, ~i, B). (9.7) 
i=l j=l 

Because (9.7) is an unbiased estimating equation, the asymptotic 
theory of section A.3 applies. Because w1 (·) and w2 (·) are uncor­
related, the covariance matrix of f3 can be estimated by 
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where 
n a 

Anj(B) = n-1 L f)Bt Wj(Yi, zi, wi, xi, ~i, B); 
i=1 

Bnj(B) = C0V {wj(Yi, zi, wi, xi, ~i, B)}7=1 . (9.8) 

In (9.8), cov is the sample covariance matrix of the indicated terms. 
The key question is how to choose n(-). We address this issue 

briefly below. 

9. 5.1 Using Polynomials 

Let ~(Y, Z, W) = ~(L) be a vector of size k whose elements include 
the arguments plus polynomial functions of them. In principle, this 
could be anything, but we use L itselffor simplicity. Let w2*(·) be 
defined exactly as (9.6) but using~(·) instead of n(-). Define 

C = E { (8/8B)w~*(L)} [E { W2*(L)W'~*(L)} J - 1; (9.9) 

V = E { (8j8Bt)"W1(Y, Z, X, B)}; (9.10) 

F = V- CE { (8/8B)w~*(L)} t. 
We show the following in the appendix. With w2*(-) fixed, suppose 
we use w2 = Aw2* for some matrix A. Then the asymptotically ef­
ficient choice of A is A = -C. The resulting estimate of B would be 
asymptotically normally distributed with mean B and covariance 
matrix 

~F-1 [Ew1(L)wi(L)+CE{(8/8B)w~*(L)}t] (F-1)t. (9.11) 

Note that if w 1 (-) is a likelihood score, then V = - Ew 1 wi and the 
asymptotic covariance is just -n-1 ;:-1 . 

The following steps are used to implement this algorithm. 
(i) Use the complete data only to obtain an estimate f3 of B. 

(ii) Estimate C, V and F by replacing B by its estimate andre­
placing the expectations in (9.9)-(9.10) by averages over the 
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data. 
(iii) Define '!12(·) = -C'll2*(·). 
(iv) Reestimate B by solving (9.7) with '!12 as in step (iii). 

A consistent estimate of the asymptotic covariance matrix of fj 
is 

see (9.8). For a likelihood score, one can also use n-1 f:- 1 . 

9.5.2 Optimal Moment-Based Estimators 

Robins, et al. (1995) show that there is a globally optimal choice of 
f!(L), defined as follows. Refer to (9.5) and define '!11 (-) = A 'llh(·). 
Then the optimal choice is the solution f!(L) to the functional 
equation 

f!(L,B) E {'llh(Y, Z, X, W, B)jL} (9.12) 

-E (E [{1- 1r(L)} f!(L, B) IX, Z, W] L) 
E {1r(L)jX, Z, W} . 

The proof of this result is a nice example of semiparametric 
theory, but the technical details are beyond the scope of this book. 
The practical hurdle is to find the function f!(-) that solves (9.12). 
Robins, et al. (1995) show how to do this when L is discrete, but 
effectively it remains an open problem otherwise. More work on 
this topic is needed. 

9.5.3 Mean Based Moment-Based Estimators 

Robins, Rotnitzky & Zhao (1994) addressed estimation of regres­
sion parameters when only the mean function is specified, although 
the methods apply also to the quasilikelihood and variance func­
tion (QVF) models described in Appendix A when the variance 
function parameters are known. The estimating function (A.23) 
for such a QVF model is of the form 

~(Y, Z,X) = h(Z,X,B) {Y- f(Z,X,B)}. 
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A set of unbiased estimating functions indexed by function ¢ which 
use all the data are 

!:l'ljJ(Y, Z, X) + { !:l - 1r(Y, Z, W)} ¢(Y, Z, W) 
1r(Y,Z, W) 

The optimal choice for ¢ is E {'1/J(·)IY, Z, W}. This is obviously 
not a known function, and instead has to be estimated from the 
observed data. Zhao, Lipsitz & Lew (1994) describe methods for es­
timating¢. One method, also mentioned by Robins, et al., is to fit 
a flexible regression model for the regression of '1/J(-) on (Y, Z, W). 
Another is to hypothesize a distribution for X given (Y, Z, W). In 
both cases, the resulting estimates of B are consistent and asymp­
totically normal, and we may proceed as if ¢( ·) were known. This 
is a promising approach which deserves further investigation. 

9.6 Semiparametric Regression Calibration 

To this point, the techniques of this section have assumed that 
X is observable in a subset of the study design, a situation that 
is not always possible. We have already described three general 
methods for handling this problem, regression calibration (Chapter 
3), SIMEX (Chapter 4), and likelihood (Chapter 7). 

For regression calibration, the basic idea is to replace X by an 
estimate of m(Z, W) = E(XIZ, W) and then proceed as if the ap­
proximation were exact. Parametric linear and quadratic regression 
methods for estimating the calibration function were described in 
section 3.4. 

Instead of estimating the calibration function using paramet­
ric models, one can use nonparametric regression (Sepanski, et al. 
1994, Carroll, Knickerbocker & Wang, 1995). The techniques to be 
used depend on the available data. 

When there is an unbiased instrument T for X measured either 
externally or internally in a subset of the data, one can regress T 
on (Z, W) nonparametrically. Remembering, however, that non­
parametric regression with multivariate predictors is difficult, we 
again suggest the use of dimension reduction (section 9.3). 

For these algorithms, the previously cited authors construct an 
asymptotic distribution theory and estimated standard errors. Al­
though the use of the bootstrap has not been investigated in this 
context, we conjecture that it will yield asymptotically correct in-
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ference. 

9. 7 Comparison of the Methods 

The area is one of much promise but little in the way of numerical 
results and programs. It is difficult at this moment to recommend 
one method over the others. 

Reilly & Pepe (1994) compared the pseudolikelihood method 
of section 9.3 and the mean score method of section 9.4. When 
selection into the second stage of the study is independent of the 
response, they concluded that, asymptotically, the former was more 
efficient for a "spectrum of reasonable models". 

The optimal semiparametric method of Robins, et al. outlined 
in this chapter is asymptotically more efficient than either pseu­
dolikelihood or the mean score method. They performed a small 
simulation of simple logistic regression with intercept (30 = -1 and 
slope f3x = 1 or 2. They set X to have a standard normal distri­
bution, and the surrogate W as a binary variable taking on the 
value 1 with probability <P(X), where <P is the standard normal 
distribution function. They used a sample of size n = 2, 000, with 
validation sample sizes of 100, 200 and 400. When f3x = 1, both 
methods had coverage probabilities near the nominal 95%, with 
the optimal semiparametric method being about 10% less variable. 
When f3x = 2, the pseudolikelihood coverage probabilities deterio­
rated somewhat from the nominal, and pseudolikelihood was about 
1/3 more variable. 

In a Texas A&M Ph.D. thesis, Knickerbocker (1993) reported 
on a logistic regression model with continuous covariates. He set 
Z to be a three-dimensional standard normal random variable, W 
to be standard normal, and X= "/(zt, W)t + U (additive model) 
or log(X) = "hzt, W)t + U (multiplicative model), where 'Y = 
( .5, .5, .5, .5)t, and where U is normally distributed with mean zero 
and variance a~ = 0.25 and 1.0. He set /3z = 0 and (/30 , f3x) as in 
section 3.9.2, namely a 10% overall response rate and a relative risk 
of 3.0. The total sample size was n = 150, of which 50 were selected 
at random into the validation study; simulations were performed 
also when these sample sizes were 300 and 100, respectively. 

Knickerbocker compared: (i) pseudolikelihood (section 9.3) with 
dimension reduction using sliced inverse regression; (ii) semipara­
metric regression calibration (section 9.6) with dimension reduc-
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tion using sliced inverse regression; and (iii) the polynomial unbi­
ased estimating function method (section 9.5.1). 

The first two methods used kernel regression with a Gaussian 
kernel and bandwidth an;;1/ 3 , where a is the sample standard de­
viation of the reduced-dimension variable outputted from sliced 
inverse regression, and nv is the validation sample size. A striking 
feature of these simulations was the extraordinarily poor perfor­
mance of the polynomial method, and so a modification was used, 
namely to take only one step in the method of scoring towards 
solving (9.7). 

In this simulation, semiparametric regression calibration and the 
polynomial method were roughly comparable, although the former 
often had about 1/3less variability. The pseudolikelihood estimate 
was clearly more variable than either of its competitors 

When L = (Y, Z, W) is discrete, all the methods are fairly s­
traightforward to program. As we have indicated, by using dimen­
sion reduction, pseudolikelihood has been worked out for contin­
uous covariates or response. Dimension reduction will presumably 
be a useful idea in extending the other methods to multiple con­
tinuous covariates. 

Reilly & Pepe also discuss the use of their method in designing 
studies, see also Tosteson & Ware (1990). 

9.8 Appendix 

9.8.1 Use of Complete Data Only 

In two-stage sampling, one uses only the complete data to estimate 
B. We suppose that selection into the validation study (~ = 1) 
occurs with probability n(Y,Z,W,o:) = n(L,o:), where o: is an 
unknown parameter. As discussed in section 9.1, such selection 
occurs in missing data problems from observational studies. The 
complete data likelihood (9.1) must be modified to include the 
parameter o:. 

Let 'lj;(Y, Z, X, B) be any estimating equation that would be ap­
propriate if X could have been observed for all the data, e.g., a 
likelihood score, or the unbiased estimating functions for quasi­
likelihood & variance function models (section A.4). 

An unbiased estimating function for B which uses only the vali-
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dation data is the same as (9.5), namely 

W"(L,X,~,B,a) = ~[1/i(Y,Z,X,B) (9.13) 

E {1/!(·, B)1r(L,a)IZ, X, W}] 
E{7r(L,a)IZ,X,W} . 

The maximum likelihood estimate for the parameter a has the 
estimating function 

C(L,~,a) = {(8/8a)7r(L,a)}{~-?T(L,a)} (9.14) 

x [1r(L, a) {1- 1r(L, a)} ]-1 . 

Equation (9.14) is a special case of binary regression. 
Let ?Ta(L, a) be the derivative of 1r(L, a) with respect to a. Cal­

culations outlined at the end of this subsection and based on the 
work in Robins, et al. (1995) show that f3 is asymptotically nor­
mally distributed with mean B and covariance matrix 

cov(B) ~ 

A 

c 

s 

n-1 A-1 [E {w(-)wt(-)}- cs-lct] A-t; (9.15) 

E { (8/8Bt)w(L, X,~' B, a)}; 

E { W"(L, X,~' B, a)Ct(L, ~'a)}; 

E [ ?Ta(L,a)?T~(L,a) ] 
1r(L, a){1 - 1r(L, a)} · 

There are two ways to estimate this asymptotic covariance ma­
trix. The usual approach is to estimate each of the terms in (9.15), 
as follows: 

Sometimes the resulting estimate is not positive semidefinite and 
an alternative estimator is required. Note that (9.13)-(9.14) form 



196 SEMIPARAMETRIC METHODS 

a set of unbiased estimating functions for the parameters. Thus, 
the sandwich method (section A.3) of covariance estimation can 
be employed to obtain a consistent estimate of the joint covariance 
matrix of (B,a), from which the covariance matrix of B can be 
extracted. 

The result (9.15) leads to an unusual fact. If a were known and 
not estimated, then the asymptotic covariance matrix of B would 
equal (9.15) except that one would set C = 0. The net effect then of 
estimating a is to make the asymptotic covariance matrix smaller! 
Typically, C = 0 only if selection into the second stage of the study 
does not depend on Y. 

9.8.2 Theory for Complete Data Only 

Refer to (9.14) and the definitions after (9.15). By properties of 
the information matrix, 

S = cov {f(L, ~' o:)} E [{.e(L,~,o:)}{£(L,~,o:)}t] 

-E { (8/8o:t)£(L, ~' o:)}. 

From the theory of unbiased estimating function (section A.3), we 
have the asymptotic expansions 

n 

n 112 (a- o:) ~ n-1/ 2 L s-le(Li, ~i, o:); 
i=l 

n 112 (8 -!3) ~ -A- 1n-1 / 2 ~( 1J!(Li,Xi,~i,l3,o:) 

+ [E { (8/8o:)IJ!(L, X,~' !3, o:)}] s-1£(Li, ~i, a)). 
We will show later that 

E {(8f8a)IJ!(·)} = -C = -E { IJ!(·)£t(L, ~,a)}. (9.16) 

Making the substitution, we find that 

n 112 (.B-B) (9.17) 

A-l n { } 
=- Vn ~ 1J!(Li,Xi,~i,l3,o:)- cs- 1 £(Li,~i,o:) . 
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The covariance matrix of the term on the right hand side of (9.17) 
is easily seen to equal (9.15), completing the argument. 

It thus suffices to prove (9.16). First note that since the estimat­
ing equation is unbiased, 

0 = E\J!(·) = J \J!(l, x, o, B, a)h1L(oll, a)JL(liB)dJL(l, o). 

Since this holds as a function of a, differentiate to find that 

0 = E { (8j8at)\J!(·)} 

+ j \J!(l, x, o, B, a) { (8j8a)h1L(oll, a)} fL(liB)dJL(l, o). 

Since (8j8a)h1L(oll, a) = f(l, o, a)h1L(oll, a), this means that 

0 = E { (8j8at)\J!(·)} + E {\J!(·)f(L, ~,a)}, 

which verifies (9.16). 

9.8.3 Theory of Moment-Estimating Functions 

We first show that (9.5) is an unbiased estimating function. Sim­
ilar calculations show that (9.6) is also unbiased. Dropping the 
arguments where it should cause no confusion, we have that 

E\J! 1 (L,X,~,B) = E[E{\J! 1 (L,X,~,B)IL,X}] 

= E (7r(L) [~(·)- E N(·)7r(L)IZ, X, W}]) . 
E {1r(L)IZ, X, W} 

Writing this last term as Ex(L, X), we note that 

Ex(L, X)= E [E {x(L, X)IZ, X, W}] = 0, 

because the inner conditional expectation identically equals zero, 
i.e., if we write 

then 

R1(Z,X,W) 

Rz(Z,X,W) 

E { ~(·)1r(L)iZ, X, W}. 
E{1r(L)!Z,X,W} ' 

E {r(·)1r(L)IZ, X, W} 
E{1r(L)IZ,X,W} ' 

0 = E [7r(L) NO- Rl(Z, X, W)} IZ, X, W]. (9.18) 
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We next show that W1 and W2 are uncorrelated. Because they 
are both unbiased estimating functions, their covariance is 

E [1r(L){'I/J(·)- R1(Z,X, W)} {r(·)- R2(Z,X, W)}t] 

-E [1r(L){ '1/J(·)- R1 (Z, X, W)} rt(L)] 

= -E [1r(L){'I/J(·) -R1(Z,X,W)}{R2(Z,X,W)}t] 

= -E( E [1r(L){'IjJ(·)- R1(Z,X, W)} IZ,X, W] 

x{R2(Z,X,W)}t) =0, 

by (9.18). 
Because \]i 1 and \]i2 are uncorrelated, for any w2 it follows from 

section A.3 that n 112 (B- B) is asymptotically normally distributed 
with mean zero and covariance matrix 

E { ( 8~t) (wl + w2)} -l E (w1 wi + w2w~) (9.19) 

xE { (a~t) (wl + w2)} -t 

Equation (9.11) now follows from (9.19) and simple algebra. 



CHAPTER 10 

UNKNOWN LINK 
FUNCTIONS 

10.1 Overview 

Generalized linear models for a response Y as a function of a pre­
dictor (Z, X) are a special case of the general model 

Y = :F(,a;x + ,a;z, E), (10.1) 

where :F(·) is a "link" function and E is a random variable inde­
pendent of (Z, X). Here, E can have any convenient distribution, 
say uniform (0, 1), by suitable definition of :F. 

In the current chapter, we will explore the question: are there 
circumstances under which it is it possible to estimate and make 
inferences about (,8x, ,8z) in the presence of measurement error even 
if the link function :F(·) is completely unknown? Perhaps surprise­
ly, the basic answer is "yes." In other words, if we assume that the 
response depends only on a linear combination of the basic predic­
tors (Z, X), then we need not assume a fully specified model for 
the relationship between Y and (Z, X). 

When there is no measurement error, there are a variety of meth­
ods for solving this problem. For binary outcomes, the maximum 
score estimator (Manski, 1985; Manski & ~hompson, 1986) is a 
well-established technique. For other problems, such techniques as 
projection pursuit (Friedman & Stuetzle , 1981; Hall, 1989), aver­
age derivative estimation (Hardle & Stoker, 1989) and sliced inverse 
regression (Li, 1991; Duan & Li, 1991) have been proposed. 

The primary reason to seek link-free solutions in measurement 
error models is the issue of model robustness. How do we know that 
a hypothesized model is correct, especially since many different 
link functions :F(·) for Y given (Z, X) lead to models for Y given 
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(Z, W) which fit the observed data? How do we know that our 
estimates and inferences about (f3x, f3z) are insensitive to whether 
we correctly specify the underlying link function? 

One way to answer such model robustness questions is to postu­
late different link functions, and then see if the resulting inferences 
about (f3x, f3z) change very much. While this technique is the most 
used in practice, there is a need for easily implementable methods 
which estimate (f3x, f3z) with a minimum of assumptions. 

The work proceeds under two basic assumptions. First, we will 
assume the classical form of the measurement error model, namely 

W = 'Yo,em + 'Yl,emX + U, E(UIZ, X, E)= 0. (10.2) 

Here, 'Yl,em is a square matrix and we require that it be invertible. 
The second assumption is the one that replaces knowledge of the 

link function. We assume that for every (b1 , b2 ), there are scalar 
constants ( c1, c2) such that 

(10.3) 

Assumption (10.3) holds if (Z, X) has a multivariate normal distri­
bution, but as pointed out by Li (1991), it holds under much more 
general circumstances than the normal. However, it is important 
to note that (10.3) does not always hold, e.g., when (Z, X) has 
discrete components. 

10.1.1 Constants of Proportionality 

Because the link function :F in (10.1) is unspecified, the best one 
can hope for is to estimate (f3x, f3z) up to an unknown global con­
stant of proportionality. For example, if we had written (10.1) as 
:F { c(f3~X + f3!Z), E} for an arbitrary constant of proportionality c, 
since :F is completely unknown this new specification is no different 
from (10.1). 

Even more vexing, one cannot even directly estimate the sign 
of this constant! However, in many problems the sign can be as­
certained from outside considerations, say knowledge that Y is an 
increasing function of one of the covariates. (One needs to add the 
constraint that :F is an increasing function of its first argument in 
order to make the sign well defined.) 
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10.2 Estimation Methods 

Fori = 1, ... , n, suppose that there are ki independent replicates of 
the surrogate with sample mean W i·, which has covariance matrix 
~ww,i = /I,em~xxr'Lem + ~uu/ki. 

10.2.1 Some Basic Facts 

The theory, due to Li (1991) and Carroll & Li (1992), is sketched 
in the appendix. Here we state the main results, and then show 
how they lead to easily implemented methods. There are two main 
theoretical results: 

1 The slope (f3x ,{32 ) is estimated (consistently) up to a constant 
of proportionality by ordinary linear regression of Y i on Qi 
fori= 1, ... ,n, where Qi = Li(W~.,zDt and 

2 Up to a constant of proportionality, ((3~, f3;)t is the eigenvector 
corresponding to the sole nonzero eigenvalue of cov { E(~iiYi)}, 
where 

cov(Qi) = Li ( ~i;'tw,i 
xz 

~i ~~q~i {Qi- E(Qi)}. 

10.2.2 Least Squares and Sliced Inverse Regression 

Of course, Li is unknown, and in practice we have to estimate 
it. This requires estimating (/I,em, ~xx, ~uu, ~xz, ~zz), a topic we 
take up below. For the n;_oment, suppose that such estimators have 
been constructed, with Li the estimate of Li. 

Result 1 says that ordinary least squares regression of Y i on 

Qi = Ei (W~.' znt consistently estimates (Bx' f3z) up to a constant 
of proportionality: note the simplicity of the method! Even more is 
true. If (Z, W) is unbiased for (Z, X) b1,em =I), the estimate is 
the usual method of moments correction for attenuation in linear 
regression. Put differently, under the design condition (10.3), the 
usual correction for attenuation estimates (f3x,f3z) up to a global 
constant of proportionality for all generalized linear models! 
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For the second result, we use the ideas of sliced inverse regression 
(Li, 1991; Carroll & Li, 1992). Let 

~i = ~-1 ( -) ~qq,i Qi - Q. j where 

~qq,i L· ( ~ww,i • ~t 

~xz 
~xz) L~. 
~zz 

Divide the range of Y into H intervals (slices in the usual jargon), 
say !1, ... , ly. Let~ be the sample mean of the terms[;. Then use 
the following algorithm to estimate cov{E(~IY)}: 

• Let Ph be the observed proportion of Yi's falling into the hth 
slice h. 

• Within each slice compute the mean ~h = (nph)- 1 LYiEh f;, 
h= 1, ... ,H. 

~ H - -- -
• Form the covariance matrix ~€ = Lh=1 Ph(~h- ~)(~h- ~)t. 
• Compute the eigenvector associated with the largest eigenval­

ue of ~€· 

10.2.3 Details of Implementation 

In order to implement the methods, one needs estimates (91,em, 
~ww,i, ~zz, ~xx, ~xz). The sample covariance matrix of the Z's 
serves as the estimate ~zz, while the sample covariance matrix 
between the Wi.'s and the Z's serves as the estimate ~xz· 

Estimation of ~uu has already been described in section 3.4. If 
it cannot be assumed that (Z, W) is unbiased, then estimation of 
'Y1,em requires additional data, usually an external validation data 
set. Freedman, et al. (1991) describe a method which does not 
require validation, but does require replicated unbiased measures 
of (Z,X). 

Finally, we turn to constructing the estimate ~xx and ~ww,i· 
First, ~uu can be estimated by the methods of section 3.4. If we 
denote the estimate of ~xx from that section as ~xx*, then a con­
sistent estimate of ~xx in our context is 

~ -1 ~ -t 
LJxx = 'Y1,emLJxx*'Y!,em· 

Finally, ~ww,i = ~xx + ~uu/ki. 
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10.3 Framingham Heart Study 

This is a continuation of the example in section 4.5. Since for a 
binary regression ordinary least squares regression of Y on Q and 
sliced inverse regression are the same, we used the former. 

Figure 10.1 shows estimated densities of transformed saturated 
fat for the cases of CHD and the non-cases (the "controls"). One 
can see in Figure 10.1 the small but clear effect that those suffering 
from CHD have larger systolic blood pressures than those without 
CHD. 

We repeated the analysis of section 4.5.1 using all the data 
and with the two exams treated as replicates of one another. The 
method of this chapter only estimates the regression parameter up 
to an unknown constant of proportionality. Thus, we suggest the 
following strategy. First, standardize all numerical random vari­
ables to have sample mean zero and sample variance 1.0. After 
producing the estimates, normalize them by dividing each by the 
square root of the sum of the squares of the estimated regression 
coefficients. When we did this to the method of this chapter and to 
the regression calibration estimator, we obtained similar parameter 
estimates. For example, regression calibration's parameter estimate 
for systolic blood pressure was 0.84 with a bootstrap standard error 
of 0.09, while the sliced inverse regression method has a parameter 
estimate of 0.89 with a bootstrap standard error of 0.07. 

10.4 Appendix 

10.4.1 Basic Theory 

For ease of notation, in discussing the theory it will not be useful 
to make a distinction between covariates measured exactly and 
covariates measured with error. Hence, we will combine Z and X 
into X, and also combine Z and W into W. 

The classical error model (10.2) assumes that W is a surrogate, 
and that in particular U is independent of the response given the 
underlying true predictors. 

The theory is based on the fact that there is a scalar function 
c( ·) such that 

E(WIY) = E(W) + c(Y)'Yl,emi;xx!3x· (10.4) 

We first prove (10.4). Assume without loss of generality that E(X) = 
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Figure 10.1. Density estimates for transformed systolic blood pressure 
in the Framingham Heart Study. "Cases" are those with CHD, while 
"Controls" do not have CHD. 

0 and cov(X) = I, the identity matrix. Because of the form of 
model (10.2), it suffices to to show that E(X/Y) = c(Y)~xxt3x­
However, Li (1991) shows that for any vector b such that btt3x = 0, 
bt E(X/Y = y) = 0 (with probability 1). The result thus follows 
from the fact that bt E (X/ Y = y) = 0 for all b such that bt t3x = 0 
implies that E(X/Y = y) = c(y)f3x for some scalar function c(y). 

We next prove the first theoretical result in section 10.2. The 
ordinary least squares slope is 

{ n-' t, (Q;- Q.) (Q;- Q )'} _, n-' t, (Q;- Q) Y;. 

The term in brackets is asymptotically the same as 

n n 

i=l i=l 
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n 

"' t -1 """' "' - 1 "' = L.Jxx'h,emn L....t L.Jww,i'Y1,emL.Jxx· 
i=1 

Using (10.4), the second term is asymptotically the same as 

n 

n-1 L {Qi- E(Qi)} Yi 
i=1 

n 

= n-1 LLiE [Yi {E (Wi.- Mw) IYi}] 
i=1 

n 

i=1 
n n 

-1 """' "' t -1 """' "'-1 "' (3 = n L....t C*L.Jxx'h,emn L....t L.Jww/Y1,emL.Jxx x, 
i=1 i=1 

where c* = E {Yic(Yi)}. Thus, the OLS slope estimate converges 
to c*f3x as claimed. 

Now consider the second result. We have that E(~i) = 0 and, 
using (10.4), 

E(~iiYi) = "E;q~iLi'Y1,em'Exxf3xc(Yi) = f3xc(Yi), 

say. Thus, the terms E(~iiYi) form a set of (marginally) indepen­
dent and identically distributed random variables, and 

cov {E(~iiYi)} = c**f3xf3~, 

where c** = E { c2 (Yi)}. The eigenvector of this matrix associated 
with the nonzero eigenvalue is proportional to f3x, as claimed. 



CHAPTER 11 

HYPOTHESIS TESTING 

11.1 Overview 

In this chapter, we discuss hypothesis tests concerning regression 
parameters. To keep the exposition simple, we will focus on linear 
regression. However, the results of sections 11.2.1, 11.2.3 and 11.4 
hold in general, and the results of sections 11.2.2 and 11.3 hold at 
an approximate level for all generalized linear models, including 
logistic regression, under the regression calibration approximation. 
More generally, the same can be said of any problem for which the 
mean and variance of the response depends only upon a linear com­
bination of the predictors. We assume nondifferential measurement 
error, W =X+ U, throughout the chapter. 

Assuming that one or more of the estimation methods described 
in the previous chapters is applicable, the simplest approach to hy­
pothesis testing forms the required test statistic from the param­
eter estimates and their estimated standard errors. Such tests are 
justified whenever the estimators themselves are justified. However, 
this approach to testing is only possible when the indicated meth­
ods of estimation are possible, and thus require either knowledge 
of the measurement error variance, or the presence of validation 
data, or replicate measurements, or instrumental variables, etc. 

There are certain situations in which naive hypothesis tests are 
justified and thus can be performed without additional data or 
information of any kind. Here "naive" means that we ignore mea­
surement error and substitute W for X in a test that is valid when 
X is observed. This chapter studies naive tests, describing when 
they are and are not acceptable, and indicates how supplementary 
data, when available, can be used to improve the efficiency of naive 
tests. 

We use the criterion of asymptotic validity to distinguish be-
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tween acceptable and nonacceptable tests. We say a test is asymp­
totically valid if its Type I error rate approaches its nominal level 
as the sample size increases. Asymptotic validity, which we shorten 
to validity, of a test is a minimal requirement for acceptability. 

The main results on the validity of naive tests under nondif­
ferential measurement error are as follows. The naive test of no 
effects due to X is valid, as is the naive test for no effects due to 
(zt, xt)t, i.e., that none of the covariates affect Y. The naive test 
of no effects due to Z is not valid in general, but is valid under 
some restrictive assumptions, and the same is true for the naive 
test of no effects due to a specified subvector of X, e.g., the first 
component of X. These results are obtained using the regression 
calibration approximation, which takes the regression model for Y 
given Z and X and replaces X by E(XIZ, W). 

When Y follows a generalized linear model (section A.5) in Z 
and X, then we show that the efficient score test of no effects due 
to X is easily obtained: one takes the efficient score test when X is 
observed and replaces X by a parametric estimate of E(XIZ, W). 
Put another way, a null hypothesis test based on regression cali­
bration is (asymptotically) efficient. 

11.2 The Regression Calibration Approximation 

In linear regression, the mean of the response given the true co­
variates is (30 + (3;z + (3~X. Under the additional assumption that 
the possibly multivariate regression of X on Z and W is linear, 
i.e., 

E(X I Z, W) = ao + a;z +a~ W, 

we have that the observed data also have a linear mean, namely 

E(Y I Z, W) = f3o + (3;ao + (f3! + (3;a;)z + (3;a~ W. (11.1) 

Equation ( 11.1) is the starting point for our discussion of testing. 
One of the assumptions of our measurement error model will be 
that a~ is an invertible matrix. 

A naive analysis of the data fits a linear model as well. We will 
write this model as 

E(Y I Z,W) =ro+r!Z+r~W. (11.2) 

It is the correspondence between the naive model (11.2) and the 
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actual model (11.1) which is of interest here. 

11.2.1 Testing Ho : f3x = 0 

Here we show that the naive test of no effect due to any of the 
predictors measured with error is asymptotically valid. The result 
holds in general, and not just for linear regression. 

A comparison of (11.1) and (11.2) shows that f3x = 0 implies 
that awf3x = 0 which in turn implies that '"'fw = 0. The converse is 
also true, namely that '"'fw = 0 implies that f3x = 0 because aw is 
invertible. 

Because '"'/w = 0 if f3x = 0, it follows that the naive test, i.e., the 
test of Ho : '"'/w = 0, is a valid test of Ho : f3x = 0. 

Although '"'fw = 0 only if f3x = 0, this reverse implication, though 
perhaps interesting, is not necessary for the validity of the naive 
test. 

11.2.2 Testing Ho : f3z = 0 

Here we show that in linear regression, the naive tests for effects 
due to Z is typically invalid, except under special circumstances. 

Further comparison of (11.1) and (11.2) shows that f3z = 0 im­
plies that '"'/z = 0, only if azf3x = 0. It follows that the naive test 
of H0 : f3z = 0 is valid if X is unrelated toY in the model (11.6), 
i.e., f3x = 0, or if Z is unrelated to X, i.e., CXz = 0. 

In generalized linear models, the naive test is valid when Z and X 
are independent, at least approximately at the level of the regres­
sion calibration approximation. Gail, Wieand & Piantadosi (1984) 
and Gail, Tan & Piantadosi (1988) show that when the regres­
sion calibration approximation fails for logistic regression, then the 
naive test is no longer even approximately valid. 

The general conclusion is that the test of Ho : f3z = 0 is invalid, 
although there are certain situations in which it is valid. 

11.2.3 Testing H0 : ((3~,(3;)t = 0 

A final comparison of (11.1) and (11.2) shows that ((3~,(3;)t = 0 
if and only if ('"Y;,'"'f~)t = 0, so the naive test that none of the 
covariates affect Y is valid in general. 
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11.3 Hypotheses about Subvectors of f3x and f3z 

There are situations in which interest focuses on testing for effects 
due to some subset of the predictors measured with error, or due to 
some subset of the error-free covariates. That is if X= (Xi, X~)t, 
f3x = (!3~, 1 , f3~,2 )t, and Z = (Zi, Z~)t, f3z = (!3;,1, f3;, 2)t, then we 
may be interested in testing Ho : f3x,1 = 0 or Ho : f3z,1 = 0. 

We have already seen that for testing H0 : f3z = 0, the naive test 
is not valid in general, and it follows from similar reasoning that 
the same is true of naive tests of Ho : f3z, 1 = 0. Therefore we will 
restrict attention to naive tests of Ho : f3x, 1 = 0. 

Suppose now that {3~X = !3~, 1 X1 + f3~, 2X2 and that 

a1,o +aLzZ + 
ai,W1 w1 + ai,W2 Wz; 

a2,o +aLZ + 
a~,W1 w1 + atw2 Wz, (11.3) 

where W = (Wi, W~)t is partitioned as is X. 
With these changes (11.1) becomes 

E(Y I Z, W) = f3o + !3!,1 a1,o + f3!,2a2,o 
+({3; + f3!,1ai.z + f3!,2a~,z)Z + (f3!,1ai,w1 + f3!,2atwJW1 

+(f3!,1ai,w2 + f3!,2atw2)W2, (11.4) 

and in a naive analysis of the data the mean model 

E(Y I Z, W) = 'Yo + ')'; Z + ')'~1 W 1 + ')'~1 W 2 (11.5) 

is fit to the observed data. 
Comparing (11.4) and (11.5) shows that f3x, 1 = 0 implies that 

')'w1 = 0 only if a2,w1f3x,2 = 0. It follows that the naive test of 
Ho : f3x,1 = 0 is valid only if a2,w1 f3x,2 = 0. If x2 is related to y, 
then f3x, 2 will be nonzero. If X2 is related to W 1 in (11.3) then 
a 2 ,w1 will be nonzero. This will be the case if some components of 
x1 are correlated with some components of x2. 

For example, consider the NHANES study briefly introduced in 
Chapter 1 and discussed in more detail in Chapter 3. Let X be the 
vector of true total caloric intake (TC = XI) and saturated fat (SF 
= X 2), and and let Z denote nondietary variables. The naive test 
for a SF effect simply substitutes observed TC and SF intake for 
true TC and SF intake, and it will be a valid test if there is no risk 
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of breast cancer due to TC (f3x,l = 0) or if the regression of true 
SF intake on observed SF, observed TC and nondietary variables 
has no component due to TC (a2,w1 = 0). 

In general the conclusion is that the test of H0 : f3x,l = 0 is 
invalid, although there are certain situations in which it is valid. 

11.4 Efficient Score Tests of H0 : f3x = 0 

In this section, we assume that Y given Z and X follows a gen­
eralized linear model (section A.5). In particular, the mean and 
variance functions for these models are in the form 

E(YJZ,X) 

var(YJZ,X) 

j(Z, X, B) = f(f3o + f3!Z + (3;X); (11.6) 

a2l(Z, X, B, 0) 

a2l(f3o + f3!Z + (3;,e). (11.7) 

We show that the naive score test of Ho : f3x = 0, while asymp­
totically valid in general, is not generally an efficient score test. 
However, we do find a test that is asymptotically equivalent to the 
efficient score test and show that under certain conditions this test 
is equal to the naive score test. 

Recall that the naive test simply substitutes W for X. We show 
that if a parametric model for E(XJZ, W) is appropriate, say 
E(XJZ, W) = m(Z, W, a), and if a is a n112-consistent estimator 
of a, then the test that substitutes m(Z, W, a) for X is asymptot­
ically an efficient score test. It must be emphasized that this result 
about substituting m(Z, W, a) for X requires the assumption of a 
generalized linear model. 

The validity of naive null tests for predictors measured with 
error, and the efficiency for generalized linear models of tests which 
replace X by E(XJZ, W), was shown by Tosteson & Tsiatis (1988). 
For the special case of models with canonical link functions, the 
efficiency of tests that replace X by E(XJZ, W), follows from the 
form of the efficient score for generalized linear measurement error 
models given in Stefanski & Carroll (1987). 

It follows from these results that the only time that the naive 
test of H0 : f3x = 0 in generalized linear models is equivalent to the 
efficient score test occurs when E(XJZ, W) is independent of Z and 
linear in W. Moreover, Tosteson and Tsiatis (1988) show that the 
asymptotic relative efficiency (ARE) of the naive test to the effi-



EFFICIENT SCORE TESTS OF Ho: fJx = 0 211 

cient score test is always less than 1, unless the two tests are equiv­
alent. They also show that for the special case where X is univari­
ate and Z is not present, that this ARE is { corr (E(X!W), W)} 2 . 

Thus, the naive test can be arbitrarily inefficient if E(XIW) is 
sufficiently nonlinear in W. 

The mathematical arguments supporting these statements are 
given in the following subsection. This subsection is fairly technical 
and can be omitted on first reading. 

11.4.1 Generalized Score Tests 

To define a generalized score test of Ho : f3x = 0, let Hi(o:) be 
any random vector depending on (Zi, Xi, Wi) and the parameter 
o: and having the same dimension as Xi. Possible choices of Hi(o:) 
will be discussed later. Define 

.C(f3o, /3z, o:, 8) = 
1 n 

Vn ~ Hi(o:)di(/3o, /3z, 8) {Yi- f(f3o + {3;zi)}, (11.8) 

where di used here and Ci used below are defined by 

di (f3o, f3z' 8) = f(l) (f3o + {3; Zi) I g2 (f3o + {3; zi' 8) 

Ci(f3o,/3z,8) = di(/3o,/3z,8)f(l)(f3o + {3;zi)· 

Our test statistics will be .C with the parameters {30 , f3z, o:, and () 
replaced by estimators. Also define 

n 

i=l 
n 

n-l L Hi(o:)(1, zDtci(/3o, /3z, 8); 
i=l 

n 

n-l 2)1, zDt(1, ZDci(/3o,f3z,(1); 
i=l 

D(f3o, /3z, o:, 8) 

where in the last equation the dependence of cl' c2 and c3 on 
(f3o, f3z, o:, 8) has been suppressed for brevity. 

Let (j be any n 112 -consistent estimate of the variance parameter 
8; see section A.4 or Carroll & Ruppert (1988, Chapter 3) for some 
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methods of estimating 0. If a is unknown, e.g., when 

HiCa) = ECXIZ, W) = mCZ, W, a), 

then we assume a n 112-consistent estimator of a. Methods of es­
timating a are discussed in Chapter 3. The quasilikelihood and 
variance function CQVF) estimates of Cf3o, f3z), Clio, liz), satisfy 

With dimCZ) denoting the dimension of Z, define 

{ ~ ~ }2 
n Yi - fCf3o + f3;Zi) 

&2 = { n - 1 - dimCZ)} -l L ~ ~ ~ 
i=1 92 Cf3o + f3~Zi, 0) 

We consider the test statistics of the form 

&- 2 _ct Clio, liz, a, B)D- 1 Clio, liz, a, B).ct Clio, liz, a, B). C11.9) 

When X is observable, then setting HiCa) = Xi in C11.8) re­
sults in (11.9) being the usual score test statistic of H0 : f3x 
0. The naive score test statistic is obtained by setting HiCa) = 
Wi in C11.8). We show is this section that when E(XIZ, W) = 
mCZ, W, a), then setting Hi(a) = mCZi, Wi, a) in (11.8) results 
in a test statistic that is asymptotically equivalent to the efficient 
score test statistic. 

We now show that under the hypothesis Ho : f3x = 0, the test 
statistic in C11.9) is asymptotically chi-square with degrees of free­
dom equal to the common dimension of Hi (a), Xi and f3x. It follows 
from Carroll & Ruppert (1988, Chapter 7) that to order op(1), 

f3o - f3o c:; 1 t ( ~ ) 1 n ( ) Vn liz _ f3z ~ Vn ~ zi di {Yi - f(f3o + f3zZi)}. 

where the dependence of c3 and di on the parameters has been 
suppressed. Since E(YiiZi, Wi) = E(YiiZi, Xi) = f(f3o + f3;Zi) 
under the null hypothesis, it is straightforward to show that to 
order op(1), 

t~~~~ 1~ 
.C (f3o,f3z,a,O) ~ Vn ~di 
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and ,et(iJo, fiz, a, e) is hence asymptotically multivariate normal 
with mean zero and covariance matrix u2 D(/30, f3z, a, B). In (11.10) 
di = di (f3o, f3z, B). It follows that (11.9) has the indicated chi-square 
distribution. 

It remains to show that for generalized linear models, substi­
tuting E(XIZ, W) for Hi( a) in (11.9) results in a test that is 
asymptotically equivalent to the efficient score test. The argument 
is adapted from Tosteson & Tsiatis (1988). 

The density or mass function of generalized linear models is giv­
en by (A.27). Write ~ = g('f!) with 'f/ = /30 + f3~x + f3;z. Using 
the assumption of non differential measurement error (conditional 
independence so that Y and Ware independent given X and Z), 
the density or mass function of the observed data is 

/ylz,W(Yiz, w) = J Jy 1z,x(Yiz, x)Jx 1z,w(xiz, w)d11(x) 

J [yg('f!) - c {g('f!)} ] 
= exp ¢ + c(y, ¢) Jx

1
z,w(xiz, w)d11(x). 

Write h(y, z) = exp ([yg(f3o + f3;z)- C {g(f3o + f3;z)}] /¢). Since 
c(y, ¢) does not depend on f3x, the likelihood score used in con­
struction of the efficient score statistic is 

8~x log { /ylz,w(Yiz, w)} ~f3~=o 

= h(:,z) a~x J fylz,x(Yiz,x)fxiZ,W(xiz,w)d!l(x)lf3~=o 
= h(:,z) [j fxlz,w(xiz,w)fy 1z,x(Yiz,x) 

X a~x log{fylz,x(ylz,x)} d!l(x)L~=O 

= J fxlz,w(xiz,w) a~x log {!ylz,x(yiz, x)} 1!3~=0 d!l(x) 

= g(ll(f3o + f3;z) [Y- C(l) {g(f3o + f3;z)}] 
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x j (xj¢)Jx1z,w(x!z, w)d~-t(x) 

= ~ [Y- C(ll {g2 (/3o + (3;z)}] 

g(ll(f30 + (3;z)E(XIZ = z, W = w). (11.11) 

If X were observable, the only difference in these calculations 
would be that X would replace E(XjZ, W) in (11.11). Hence, the 
efficient score tests for the observed data is obtained by substitut­
ing E(XIZ, W) for X. 

For the case studied above there is a parametric model, E(XIZ, 
W) = m(Z, W, o:). As mentioned before, n 112-consistent estima­
tion of o: is possible by the methods in Chapter 3. It is also possible 
to construct asymptotically efficient or nearly efficient score tests 
based on nonparametric estimates of E(XIZ, W). Stefanski & Car­
roll (1990a, 1991) construct semiparametric tests that achieve full 
or nearly full efficiency when W is unbiased for X and its measure­
ment error variance is known or independently estimated. Sepanski 
(1992) uses nonparametric regression techniques to construct effi­
cient tests when there exists an independent validation data set 
or an independent data set containing an unbiased instrumental 
variable. 



CHAPTER 12 

DENSITY ESTIMATION AND 
NONPARAMETRIC 

REGRESSION 

In this chapter we give an overview of two nonparametric esti­
mation problems that are of interest in their own right, and also 
arise as secondary problems in regression calibration and hypoth­
esis testing. The first problem is the estimation of the density of a 
random variable X, while the second is the nonparametric estima­
tion of a regression, both when X is measured with error. 

12.1 Deconvolution 

The fundamental problem is that of estimating the density of X 
when W = X+ U is observed and the density of U is known. 
Closely related is the problem of estimating the regression func­
tion, m(w) = E(X I W = w), when only W =X+ U is observed 
and the density of U is known. The latter estimation problem is 
encountered in both regression calibration (Chapter 3) and hypoth­
esis testing (Chapter 11). 

Suppose that X is a continuous, scalar random variable, and 
that there are no covariates Z measured without error. When X 
is unobservable, likelihood methods (Chapter 7) require a model 
for the density of X. Regression calibration (Chapter 3) consists of 
the usual analysis but with X replaced by 

m(W) E(XjW) = fw(~) J xfx(x)fwix(Wjx)dx 

= fw(~) J xfx(x)fu(W- x)dx. (12.1) 
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In Chapter 11, it was shown that when testing for the effect 
of the covariate measured with error, replacing X by an estimate 
of its regression m(W) on W yields the hypothesis test with the 
highest local power (asymptotically). 

Estimating the density function, fx, of X is thus critical. The 
density function fw is the convolution of fx and fu, 

fw(w) = J fx(x)fu(w- x)dx, 

and we refer to the problem of estimating fx in the absence of 
parametric assumptions as deconvolution. 

When both fw and fu are known, fx is recovered by Fouri­
er inversion. Letting ¢a denote the characteristic function of the 
random variable A, e.g., ¢w(t) = J eitw fw(w)dw, we have that 
¢x(t) = ¢w(t)/¢u(t). Then by Fourier inversion, 

fx(x) = 2_je-itx¢x(t)dt= 2_je-itx¢w(t)dt. 
211" 211" l/Ju(t) 

Even if, as we will now suppose, the density function fu of U 
is known, the problem is complicated by the fact that the density 
of W is unknown and must be estimated. For the deconvolution 
problem under these assumptions, estimators with known rates 
of convergence were first obtained by Stefanski & Carroll (1986, 
1990c) and Liu & Taylor (1989). Their research has since spawned 
a considerable literature, see for example Carroll & Hall (1988), 
Liu & Taylor (1990), Zhang (1990), Fan (1991a,b,c; 1992a), Fan, 
et al. (1991), Masry & Rice (1992), Fan & Truong (1993), Fan & 
Masry (1993) and Stefanski (1989,1990). An interesting economet­
ric application using a modification of these methods is discussed 
by Horowitz & Markatou (1993). 

We now describe the solution. Statisticians have studied kernel 
density estimates of fw of the form 

~ 1 n 

fw(w) = nh LK {(Wj- w)/h}, 
J=l 

where K(·) is a density function ~d h is the bandwidth, both 
chosen by the user. The function fw is itself a density function, 
with characteristic function $w. It has long been known that for 
estimation of fw(w) the choice of kernel is relatively unimportant, 
and commonly ease of use dictates the choice of K(-), e.g., the 
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standard normal density or a density with bounded support. 
It transpires that for commonly used kernels, the estimated den­

sity fx(x) cannot be deconvolved, in that the integral encoun­
tered in Fourier inversion is not defined. Stefanski & Carroll (1987, 
1990c) showed that for certain smooth kernels, Fourier inversion of 
fx(x) is possible, see also Stefanski (1989). With an appropriately 
smooth kernel, the estimator, 

!~ ( ) = 2_ J -itx '¢w(t) dt 
x X 211" e cPu(t) ' 

exists, and for suitable choice of bandwidth is consistent for fx(x). 
The deconvoluting kernel density estimator, fx ( x), integrates to one 
but is not always positive. It has the alternative representation 

~ 1 ~ (W·-x ) fx(x) = nh ~K. Jh ,h , 

where 

K (t h) _ 1 J ity cP K (y) d 
* ' - 271" e cPu(yjh) y 

is called the deconvoluting kernel. 
The deconvoluting kernel density estimator has pointwise mean 

squared error 

MSE = E {fx(x)- fx(x)} 2 

h4 ( h )-lj{ cPK(t) }2 
"'c + 271" n lc/Ju(tjh)l dt; 

where c = (1/4) J x 2 K(x)dx J { 1: (x) r dx. 

The best bandwidth, in the sense of minimizing MSE asymptot­
ically, and the best MSE, depends on the error density through its 
characteristic function cPu. It is well known that in the absence of 
measurement error (U = 0), when fx has two continuous deriva­
tives the best MSE converges to 0 at the rate n - 415 . However, 
for nondegenerate U convergence rates are much slower in gener­
al. The best rate of convergence depends on the tail behavior of 
l¢u(t)1, with lighter tails resulting in slower rates of convergence. 
The tail behavior of l¢u(t)1 is in turn related to the smoothness 
of fu(u) at u = 0, with smoother densities having characteristic 
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functions with lighter tails. 
For example, if U is normally distributed, then 

l4>u(t)1 = exp( -a~t2 /2) 

is extremely light tailed, and the mean squared error converges to 
0 at a rate no faster than the exceedingly slow rate of {log( n)} - 2 . 

The implication is that with normally distributed errors, it is not 
possible to estimate the actual value of fx(x) well. 

If U has a more peaked density function than the normal, then 
l4>u(t)1 does not diminish to 0 as rapidly, and the deconvoluting 
kernel density estimator has better asymptotic performance. For 
example, consider the Laplace distribution with density function 
fu(u) = (1/auv'2)exp( -v'21ul/au)· In this case 4>u(t) = 2/(2 + 
a~t2 ), and the optimal mean squared error converges to zero at 
the rate n - 419 , tolerably close to the rate in the absence of mea­
surement error, i.e., n - 4/5. 

The fact that smoothness of the error density determines how 
well fx can be estimated is a disconcerting nonrobustness result. 

We note that the slow rate of convergence of h(x) is intrinsic to 
the deconvolution problem, and not specific to the deconvoluting 
kernel density estimator, which is known to achieve the best rate of 
convergence in general (Carroll & Hall, 1988; Stefanski & Carroll, 
1990c). 

However, rates of convergence are not always fully informative 
with regard to the adequacy of h(x) for estimating the basic shape 
of fx(x). As shown in the examples below, despite the slow point­
wise rate, the estimator itself can provide useful information about 
shape. 

In applications, calculation of h(x) requires specification ores­
timation of a bandwidth h. Stefanski & Carroll (1990c) describe 
a bandwidth estimator when the improper sine kernel, K(t) = 
(7rt)- 1sin(t), is used. Stefanski (1990) shows that for a large class 
of kernels and a large class of error densities that includes the 
normal densities, the mean squared error is minimized asymptot­
ically by a known sequence of bandwidths - the optimal band­
width is h = ha = au {log( n)} -l / 2 for normal (Gaussian) error. 
For Laplace measurement error and the kernel with characteristic 
function ¢K(t) = (1- t2 ) 3 when ltl ::; 1 and zero otherwise, Fan, et 
al. (1991) suggest taking hL = (1/2)aun-119 . The examples below 
used ha and hL according to the assumed form of the error density. 
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12.1.1 Parametric Deconvolution via Moments 

Nonparametric deconvolution is not the only way to estimate the 
density of X in an additive model. Instead, one can estimate the 
first four moments of the distribution of X making minimal distri­
butional assumptions about U, and then fit a parametric distribu­
tion for X via method of moments. 

To be specific, suppose that in a sample of size n, one observes 
replicate observations Wi,j = Xi + Ui,j (i = 1, ... , n and j = 
1, 2), where it is assumed only that the distribution of the errors is 
symmetrically distributed about zero, something which can often 
be achieved by transformation. 

Let f1w = W .. (the mean), and for k = 2, 3, 4 define Kw,k to be 

the sample mean of the terms (W i,. - ilw) k. For k = 2, 4 define 

Ku,k to be the sample mean of the terms { (U i,l - U i,2 ) /2} k. The 
term Kw,k is an estimate of the kth central moment of the Wi,. 's, 
while under symmetry Ku,k is an estimate of the kth moment of 
(Ui,l- Ui, 2 )/2, which because of symmetry is the same as the kth 
moment of (Uil + Ui2)/2 = Wi.- Xi. 

By equating moments we find the following consistent estimates 
of the moments of the distribution of X, 

E(X) = J.Lx ~ J.Lwi 

E(X- t-tx) 2 ~ 'Kw,2 - 'Ku,2i 

E(X- J.Lx) 3 ~ l\;w,3i 

E(X- J.Lx) 4 ~ Kw,4- Ku,4- 6('Kw,2- Ku,2)Ku,2· 

12.1.2 Estimating Distribution Functions 

The pessimistic nature of the results for density estimation with 
normally distributed error extends to estimating quantiles of the 
distribution of X, e.g., pr(X ~ x). Here the optimal achievable 
rate of convergence is of the order {log( n)} - 3 , hardly much of 
an improvement! This casts doubt on the feasibility of estimat­
ing quantiles of the distribution of X without making parametric 
assumptions. 

There are at least two alternatives to a full-blown likelihood 
analysis. The moment matching method described previously s­
tarts from a model for the density function of X, but makes no 
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assumptions about the density of U. Its output is an estimated 
density function which yields estimated quantiles. 

Alternatively, with no model for the density of X but a good 
model for the error density of U, the SIMEX method can be 
applied. Previous applications of SIMEX have been to estimat­
ed parameters and nonparametric regression estimates, but here 
the basic input is an empirical distribution function (possibly pre­
smoothed). 

12.1.3 Optimal Score Tests 

While estimating a density function nonparametrically is difficult 
in the presence of measurement error, estimating smooth function­
als of the unknown density, e.g., m(w) = E(XIW = w), is often 
not as difficult. 

For estimating m(w), we can simply replace fx and fw in (12.1) 
by their estimators. Stefanski & Carroll (1991) showed that this 
substitution works, in the sense that the resulting estimate of m( w) 
when substituted into the score test typically achieves the same 
local power as if m(w) were a known function. 

The reason for this is that m( w) is much easier to estimate than 
fx, because of the extra integration in (12.1). In fact, with nor­
mally distributed measurement errors, the rate of convergence for 
estimating m( w) is of order n - 417 , while for Laplace error the rate 
is the usual nonparametric one, i.e., n-415 (Stefanski and Carroll, 
1991). 

12.1.4 Framingham Data 

We applied deconvoluting kernel density estimation techniques to 
the Framingham data, for both SBP and transformed SBP, log(SBP-
50). We used SBP at Exam #2 only to estimate the measurement 
error variance, but deconvolved SBP measured at Exam #3 (W). 
In the original scale, observed SBP had mean 130.01, variance 
395.65 and the estimated measurement error variance was 83.69. 
This leads to an estimate of the variance for long-term SBP (X) of 
311.96, with the ratio of the measurement error variance to that of 
the underlying variability of long-term SBP estimated as 0.27. In 
the transformed scale, the corresponding numbers are 4.35, 0.053, 
0.013, 0.040 and 0.32, respectively. 
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Figure 12.1. Density estimates of transformed systolic blood pressure 
(top) and systolic blood pressure (bottom) for Framingham data. Solid 
line is best-fitting normal, short dashed line is deconvolution with normal 
errors, and long dashed line is deconvolution with Laplace errors. 

Figure 12.1 shows the two deconvoluting kernel density esti­
mators, one assuming normally distributed errors and the other 
assuming Laplace errors. Also plotted is the normal distribution 
with means and variances for X as estimated above. The two de­
convoluting density estimators are similar for the transformed (top 
plot) and untransformed (bottom plot) data. In the untransformed 
data, the deconvoluting density estimators differ noticeably from 
the best-fitting normal density, perhaps because the untransformed 
data have some skewness. In this case, the deconvoluting kernel 
density estimators correctly suggest that the data should be trans­
formed. 
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Figure 12.2. Density estimates of transformed saturated fat for NHANES 
data. Top uses the estimated measurement error variance, bottom plot 
sets this variance equal to the variance of X. Solid line is best-fitting 
normal, short dashed line is deconvolution with normal errors and long 
dashed line is deconvolution with Laplace errors. 

12.1. 5 NHANES Data 

The NHANES data (Chapter 3) exhibit considerably more mea­
surement error, and consequently deconvolution is much harder. 
For these data we have earlier derived the variances &! = .223, 
a; = .171 and &! = .052. We used the same methods as for the 
Framingham data. The top plot of Figure 12.2 gives the best-fitting 
normal density, along with the deconvolution density estimates for 
normal and Laplace errors. The reader will note that the deconvo­
lution densities suggest that the underlying density for X is much 
heavier tailed than a normal density. This can be confirmed by an 
analysis of moments, as follows. The sample skewness of W is near­
ly zero (-0.05) and is ignored. The sample kurtosis is 3.32, where a 
kurtosis of 3 applies for the normal distribution. If the kurtosis of 
X is denoted by "'x, then in the additive error model with normally 
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distributed errors the kurtosis for W is 

Kw = { a!(Kx + 3) + 6a;a~ + 3a!} fa!. 

Substituting sample estimates of (~~;w, a~, a~, a!) and solving for 
~~;x, the kurtosis for X is estimated to be approximately 8.8, indi­
cating very heavy tails consistent with Figure 12.2. 

Also in Figure 12.2, we plot deconvoluting kernel density esti­
mators under the assumption that the measurement error variance 
is the same as the variance of X. Here ~~;x ~ 4.28, a diminished 
kurtosis reflected in Figure 12.2. 

12.2 Nonparametric Regression 

Nonparametric regression has become a rapidly developing field as 
researchers have realized that parametric regression is not suitable 
for adequately fitting curves to all data sets that arise in practice. 
There have been several recent monographs on the topic (Muller, 
1988; Hardle,1990; Hastie & Tibshirani, 1990), where it is shown 
that nonparametric regression techniques have much to offer in 
applications. 

Nonparametric regression entails estimating the mean of Y as a 
function of X, 

E(YJX = xo) = f(xo), (12.2) 

without the imposition of f belonging to a parametric family of 
functions. 

We focus on the local-polynomial, least squares, kernel-regression 
estimator of f. When X is observable, the local, order-p polyno­
mial estimator is ,80 (x), the solution for (30 to the weighted least 
squares problem minimizing, 

I:~=l {Yi- f3o- f31(Xi- x)- ... - /3p(Xi- x)P}2 Kh(Xi- x). 

(12.3) 

Here h is called the bandwidth, K is a kernel function such that 
J K(u) du = 1, and Kh(u) = h-1 K(ujh). The function K(·) and 
the bandwidth h are under the control of the investigator, and in 
practice it is the latter that is the more important. 

Problem (12.3) is a straightforward weighted least squares prob­
lem, and hence is easily solved numerically. The local least squares 
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estimator of f(x) is then 

[(x, h) = h(x), (12.4) 

while for j < p, the estimator of the jth derivative of f(x) is 
j!fji(x). Estimator (12.4) has had long use in time series analy­
sis, and is a special case of the robust, local regression estimators 
in Cleveland (1979). Cleveland & Devlin (1988) discuss practical 
implementation and present several interesting case studies where 
local regression data analysis is considerably more insightful than 
classic linear regression analysis. Ruppert & Wand (1994) describe 
the asymptotic theory of these estimators. 

As in parametric problems, ignoring measurement error caus­
es inconsistent estimation of f(x). The regression calibration and 
SIMEX methods of Chapters 3 and 4 provide simple means for 
constructing approximately consistent estimators of f ( x) in the 
case that W = X + U, where U has mean zero. Hastie & Stuetzle 
(1989) describe an alternative method for an orthogonal regression 
problem wherein it is assumed that the conditional variances of Y 
and W given X are equal; we have already commented (section 
2.3.2) on the general applicability of such an assumption. 

In this section, we describe algorithms for nonparametric regres­
sion taking measurement error into account. Asymptotic theory is 
beyond the scope of this book and will be described elsewhere in 
research papers. 

12.2.1 SIMEX 

Use of SIMEX in nonparametric regression follows the same ideas 
as in parametric problems. We require an additive error model 
W = X + U where U is independent of X with variance a~. 
Sometimes, a transformation of the original surrogate is required 
to achieve additivity and homoscedasticity. The SIMEX algorithm 
for nonparametric regression is as follows. 
(a) Fix values for .A E A= (0 < .A1 < ... <.AM)· 
(b) Forb= 1, ... , B, let Eib be the non-iid pseudo errors. 
(c) Define Wib(.A) = Wi + au.A112Eib· 
(d) For b = 1, ... , B and .A E A, compute the nonparametric re­

gression estimate (12.4) by regressing Yi on Wib(.A). Call the 
resulting estimate f(x, b, .A). 
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(e) Let i(x, >..) be the sample mean of the terms i(x, b, >..). 
(f) For each x, extrapolate the values i(x, >..) as a function of >.. 

back to>..= -1, resulting in the SIMEX estimator i(x). 
For speed of computation in (d), we used a fixed bandwidth h 

corresponding to naive regression with >.. = 0, although further 
research will likely suggest better methods. 

12.2.2 Regression Calibration 

The regression calibration approximation states that E(YIW) ~ 
f {m(W)}, where m(W) = E(XIW). Thus, the algorithm has 
only two steps. 
(a) Estimate m(w) by some estimate m(w), see below. 
(b) Estimate/(·) by a local linear regression of Yon m(W). 

Typically, if h* is the bandwidth used in naive local linear re­
gression ignoring measurement error, the bandwidth for regression 
calibration can be taken as h* times the ratio of the sample stan­
dard deviation of m(W) to the sample standard deviation of W 
itself. We used this simple algorithm in our calculations. 

Because of systematic biases in quadratic and exponential mod­
els (section 3.10), use ofthe expanded approximations of Chapter 3 
can be valuable. With additive homoscedastic measurement errors, 
in the normal case (3.14) becomes 

E(YIW) ~ !(·) + (1/2)(a-;a-~fo-!)fxx(·). 
This suggests the corrected estimator 

h = J- (1/2)(&;&~/&!)hx, (12.5) 

where hx = 2jj2 in the local, cubic regression of Yon m(W). This 
estimator does correct for bias, but it adds variability, because it is 
more difficult to estimate the second derivative of a function then 
to estimate the function itself. 

The expanded regression calibration algorithm has the drawback 
that it requires two different bandwidths, one to estimate f and 
the other to estimate fxx· The latter can be particularly difficult 
in practice. The extra variability and the problems of selecting two 
bandwidths gives SIMEX an advantage here. 

If the error model is that of classical additive measurement error, 
perhaps after transformation, then the simplest estimates of m(w) 
are the linear and quadratic regressions described in section 3.4. 
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These are global calibration methods, in the sense that E(XJW) is 
estimated parametrically. The obvious potential drawback of this 
approach is that one assumes a linear or quadratic model adequate­
ly describes m(w). In defense of the approach we believe that in 
many if not most additive error models this is the case, at least for 
most of the range of W. The quadratic regression was used in the 
example. 

12.2.3 QVF and Likelihood Models 

Local linear nonparametric regression is easily extended to like­
lihood and quasilikelihood and variance function (QVF) models. 
The reason is that local linear regression can be looked at in two 
ways that permit immediate generalization. First, as seen in (12.3), 
local linear regression estimation of f(x0 ) at a value x0 is equiv­
alent to a weighted maximum likelihood estimate of the intercept 
in the model assuming that Y is normally distributed with mean 
,6o + ,61 (X-xo), constant variance and with the weights K h (X-x0 ). 

Thus, in other generalized linear models (logistic, Poisson, gamma, 
etc.), the suggestion is to perform a weighted likelihood analysis 
with a mean of the form h {,60 + ,61 (X - xo)} for some function 
h(·). 

Extending local linear nonparametric regression to QVF models 
is also routine. As seen in (12.4), local linear regression is a weight­
ed QVF estimate based on a model with mean ,60 + ,61 (X- x0 ) 

and constant variance, and with extra weighting Kh(X- x0 ). The 
suggestion in general problems is to do the QVF analysis with 
argument ,60 + ;31(X- xo) and extra weighting Kh(X- x0 ). 

12.2.4 Framingham Data 

We applied measurement error corrections for nonparametric re­
gression to the Framingham data to estimate coronary heart dis­
ease ( CHD) incidence from systolic blood pressure. We used lo­
cal linear logistic regression as described above, with the kernel 
K(t) = (3/4)(1 - t2 ) for JtJ < 1. Because regression calibration 
is often remarkably accurate in logistic regression, we use it here 
without using the expanded model. 

In Chapter 7 we indicated that the classical error model hold­
s reasonably well if the transformation log(SBP - 50) is used. In 
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4.0 4.2 4.4 4.6 4.8 5.0 

Figure 12.3. Framingham data. In the transformed log{SBP-50} scale, 
this is a plot of the logits of the nonparametric regressions of CHD inci­
dence against SBP. The solid line is the naive plot ignoring measurement 
errors. The dashed lines are the best linear fit regression calibration and 
SIMEX estimators. 

order to illustrate the behavior of the various estimators, we used 
transformed SBP at Exam #3 as the surrogate W. We used trans­
formed SBP at Exam #2 only to estimate the measurement error 
variance 0";, obtaining the estimate a; = 0.01259. 

The bandwidth we used for naive local linear regression wash= 
1.2, chosen to represent about 60% of the range of Win the data. 
This may represent oversmoothing, but the choice of bandwidth 
selection even for the naive local linear regression remains an area 
of active research development, and beyond the scope of this book. 
For the SIMEX with rational linear extrapolant and regression 
calibration estimators, we used bandwidths as described in the 
definition of the respective techniques. 

The results are displayed in the logit scale, log{p/(1- p)}, see 
Figure 12.3 where we plotted the regression estimates on the in­
terval [4, 5], representing SBP ranging from 100 to 200. 
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At least in this particular example, the SIMEX and regression 
calibration methods gave about the same answers, and provided 
a moderate correction to the naive estimator, in keeping with the 
moderate amount of measurement error in these data. 

12. 2. 5 Other Methods 

A globally consistent deconvoluting kernel regression function es­
timate can be obtained by replacing the kernel in (12.3) with a 
deconvoluting kernel (Fan & Truong, 1993), resulting in what we 
refer to as a deconvoluting kernel, local regression estimator. 

However, the bandwidth selection problem associated with this 
approach is by no means trivial, and the rates of convergence for 
the resulting estimators are the same as for the density estimation 
problem. In our experience, the deconvoluting kernel, local regres­
sion estimators are typically inferior to the regression calibration 
and SIMEX methods. 

A promising alternative approach is to apply regression calibra­
tion or SIMEX to generalized additive models (Hastie & Tibshi­
rani, 1990) or roughness penalty estimators (Green & Silverman, 
1994). 



CHAPTER 13 

RESPONSE VARIABLE 
ERROR 

In preceding chapters we have focused exclusively on problems 
associated with measurement error in predictor variables. In this 
chapter we consider problems that arise when a true response is 
measured with error. For example, in a study of factors affect­
ing dietary intake of fat, e.g., sex, race, age, socioeconomic status, 
etc., true long-term dietary intake is impossible to determine and 
instead it is necessary to use error-prone measures of long-term 
dietary intake. Wittes, et al. (1989) describe another example in 
which damage to the heart muscle caused by a myocardial infarc­
tion can be assessed accurately, but the procedure is expensive and 
invasive, and instead it is common practice to use peak cardiac en­
zyme level in the bloodstream as a proxy for the true response. 

The exclusive attention paid to predictor measurement error in 
preceding chapters is explained by the fact that predictor measure­
ment error is seldom ignorable, by which is meant that the usual 
method of analysis is statistically valid, whereas response mea­
surement error is often ignorable. Here "ignorable" means that the 
model holding for the true response holds also for the proxy re­
sponse with parameters unchanged, except that a measurement 
error variance component is added to the response variance. For 
example, in linear regression models with simple types of response 
measurement error, the response measurement error is confounded 
with equation error and the effect is simply to increase the vari­
ability of parameter estimates. Thus, response error is ignorable in 
these cases. However, in more complicated regression models, cer­
tain types of response error are not ignorable and it is important 
to explicitly account for the response error in the regression analy­
sis. This chapter distinguishes between ignorable and nonignorable 
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cases and describes methods of analysis for the latter. 
Although the details differ between methods for predictor error 

and response error, many of the basic ideas are similar. The main 
methods for the analysis of response error models are quasilikeli­
hood and variance functions (QVF) and likelihood techniques. For 
QVF models (section A.4.1), the objective is still to model and 
estimate the mean and variance functions of the observed data. 
Likelihood methods for response error models are similar to those 
of Chapter 7, and there are close analogs to the pseudolikelihood 
and modified pseudolikelihood methods of Chapter 9. 

Throughout this chapter, the response proxy is denoted by S, the 
true response by Y and the predictors by (Z, X). We consider only 
the case of measurement error in the response, and not the more 
complex problem where both the response and some of the predic­
tors are measured with error (although the complexity is largely 
notational). 'We start with a discussion of QVF models with simple 
measurement error models. Then parametric and semiparametric 
likelihood methods are discussed. The chapter concludes with an 
example application of some of the methods. 

13.1 Additive/Multiplicative Error and QVF Models 

In this section we consider the model (3.8)-(3.9), which is also 
called a quasilikelihood and variance function model (QVF mod­
el), see (A.21)-(A.22) in section A.4.1. We discuss the analysis of 
the observed data when the response is subject to independent ad­
ditive or multiplicative measurement error. The basic conclusion 
is that if S is unbiased for Y, then for either error model a stan­
dard QVF analysis is appropriate after modification of the variance 
function model. If S is not unbiased for Y, then a validation study 
is required to understand the nature of the bias and to correct for 
it. 

13.1.1 Unbiased Measures of True Response 

The simplest case to handle is independent additive measurement 
error in the response. In this case a QVF analysis with the same 
mean function and a slightly modified variance function is appro­
priate, and there is no need to obtain replication or validation data. 

Suppose that S = Y + V, where V is independent of (Y, Z, X) 
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with mean zero and variance u~. Then the mean and variance of S 
is given by 

E(SIZ,X) 
var(SIZ,X) 

f(Z, X, B); 
u; + u 2l(Z, X, B, B). (13.1) 

The addition of u~ to the variance function indicates that measure­
ment error in the response increases the variability of the observed 
data, and consequently decreases the precision of parameter esti­
mates. 

The case of homoscedastic regression variance, g = 1, provides 
an example in which response measurement error is ignorable. For 
then the variance function in (13.1) is again constant, u~ + u 2 , 

and ordinary nonlinear least squares is an appropriate method of 
estimation. The only effect of the measurement error is that the 
residual mean square is estimating uz = u~ + u2 and not u2 • Thus 
unless the separate variance components, u~ and u2 , are of inde­
pendent interest, the response error can be ignored and replication 
or validation data are not needed. 

For heteroscedastic variance functions, g =f 1, identifiability of 
the parameters in (13.1) depends on the form of g. For example, if 
g2 is a constant plus some function of the mean, i.e., g2 (Z, X, B, B) = 
T 2 + h {f(Z, X, B), B}, then the variance function (13.1) is u2(T; + 
h {f(Z, X, B), B} ), where T; = u~fu2 + T 2 . In this case neither T 2 

nor u~ are identifiable without replication or validation data, but 
all of the other parameters in (13.1) are. This is another exam­
ple in which response measurement error is ignorable provided the 
variance components T 2 and u~ are not of independent interest. 

If g2 (Z,X,B,B) = {f(Z,X,B)}20 , i.e., the power-of-the-mean 
variance model, then the appropriate variance function given by 
(13.1) is u~ + u2 {f(Z, X, B)} 20 , and all of the parameters in (13.1) 
are identifiable given sufficient data. It is worth noting that the ad­
ditive variance component lends a certain robustness to the power­
of-the-mean variance model. Without this component, use of the 
power-of-the-mean model can be dangerous, since the estimated 
variance of some observations may be near zero. In this case, these 
few observations are given near infinite weight and the other ob­
servations are essentially ignored when B is estimated. 

A cautionary remark is in order here. Although for certain vari­
ance function models all of the parameters in (13.1) are formally 
identified, it should be remembered that identification does not 
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guarantee precise estimation. Since variance function parameter 
estimates are generally less precise than regression parameter es­
timates, the ability to isolate variance components, in this case 
IT~, is limited by small to moderate sample sizes, as well as by the 
correctness of the assumed model for g. 

Now consider the multiplicative measurement error model with 
S = YV, where V has mean 1 and variance IT~, so that S is still 
an unbiased measure of the true response. In this case, the data 
follow the QVF model 

E(SIZ,X) 
var(SIZ,X) 

f(Z,X,B); 
= IT;/2(Z, X, B)+ (1 + IT;)IT2g2(Z, X, B, B) 

IT;/2(Z, X, B)+ IT:l(Z, X, B, B), (13.2) 

where IT; = (1 +IT~)IT2 . The parameters (B, B, IT~, IT;), and hence IT2' 
in this QVF model are also formally identifiable in general without 
replication or validation data. 

However, note that for the power-of-the-mean variance function 
model, g2 (Z, X, B, B) = {f(Z, X, B)}20 , and the variance model 
(13.2) is IT~p (Z, X, B)+ ITZ {!(Z, X, B)} 20 . Thus, when B = 1 it is 
only possible to estimate the sum IT~ +ITZ. Furthermore it is evident 
that for B near 1, estimation of both IT~ and IT; will be difficult. 
Thus for this model if it is expected that B is near 1, then it may be 
necessary to use an approximate variance function model, in this 
case the power-of-the-mean model, recognizing its limitations. 

We have seen that even when the error model for S given Y is 
fully specified, there will often be indeterminacy in the parameter­
s of the variance function, and it may be necessary to settle for 
getting the variance function only approximately correct. In addi­
tion, in some instances, it may only be reliably assumed that S is 
unbiased for the true response, without specification of the error 
structure, i.e., multiplicative, additive, or other. 

In such cases where the variance function is only approximate, 
it is still possible to estimate B. In these situations, QVF esti­
mation is still appropriate, but care must be taken with standard 
error estimation. The QVF-sandwich method of variance estima­
tion provides asymptotically correct inferences, see section A.4. 
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13.1. 2 Recommendations 

There are two strategies that one can follow for additive or multi­
plicative response error. The first is basically what has been sug­
gested here, namely to model the variance function as best one 
can, such as we have done in (13.1) and (13.2). One would then 
use the standard error and inference techniques as described in sec­
tion A.4.2, working as if the variance function had been essentially 
correctly specified. 

A second approach to modeling and estimation when the true 
variance function is unknown or only approximately known is to 
use the naive variance model, i.e., the variance function model that 
ignores measurement error, or postulate an additive or multiplica­
tive error to develop a working or preliminary variance function 
model and then collapse the model with respect to parameters 
that are not identifiable or are nearly nonidentifiable. Then pro­
ceed with QVF estimation, with QVF-sandwich-based standard 
error estimation (section A.4.2). 

13.1. 3 Biased Responses 

If S is not unbiased for Y, then regression of it on the observed 
predictors leads to biased estimates of the main regression param­
eters. For example, suppose Y given (Z, X) follows a normal linear 
model with mean {30 + f3~X + f3!Z and variance u2 , while S giv­
en (Y, Z, X) follows a normal linear model with mean ')'o + ')'1 Y 
and variance u~. Here S is biased, and the observed data follow a 
normal linear model with mean ')'o + f3o'/'1 +1'1f1iX + '/'1f3!Z and 
variance u~ + 'T'f u2 . Thus instead of estimating f3x, naive regression 
ignoring measurement error in the response estimates ')'1 f3x. 

13.1.4 Calibration 

In a series of papers, Buonaccorsi (1991, 1993) and Buonaccorsi & 
Tosteson (1993) discuss the use of adjustments for a biased surro­
gate. We describe a modified version of their approach in the sim­
plest possible case, namely that S is a linearly biased surrogate with 
mean ')'o + 1'1 Y. If ')' = ( ')'o, '/'1) were known, then the recommended 
procedure is to replaceS by its adjusted value Q('!') = (S- ')'o)h1, 
and then proceed as in section 13.1.1. 
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When 1 is unknown, it has to be estimated and appropriate 
methods of analysis depend on the data available for estimation 
of 1· For example, suppose that validation data are available on 
a simple random subsample of the primary data. The validation 
subsample data can be used to obtain estimates of Band 7, denoted 
B1 and ;:y. A second estimate of B, Bz, can be obtained via a QVF 
analysis of Q(9) on (Z, X) using all of the data. 

The two estimates of B can then be combined to obtain a final 
and more efficient estimate~ Suppose that the two estimators have 
a joint asymptotic covariance matrix I:: estimated by ~. The best 
weighted combination of the two estimates is 

(Jt1:;-1 J)-1 1t1:;-1 (Bf, B~)t, 
where J = (I, I) and I is the identity matrix with the same number 
of rows as there are elements in B. This best weighted combination 
is estimated by replacing I:: with ~' resulting in 

8 = (.r~-1 J)-1 Jt~-1(fiL 8~( 

An estimate of the asymptotic covariance matrix of B is given by 
(Jt~-1 J)-1. 

The estimate of I:: required for this procedure can be obtained by 
application of delta-method techniques, but the resulting estimate 
is somewhat complicated. The bootstrap is ideally suited to the 
task of estimating I:: and is recommended on the basis of simplicity. 

The method described above can be extended to the case where 
validation data on Y are impossible to obtain, but it is possi­
ble to obtain independent replicate unbiased measurements of Y, 
(Sh, 8 2,*) on a simple random subsample of the primary data. 
Note that these unbiased replicates are in addition to the biased 
surrogate S measured on the complete sample. 

In this case, B1 is obtained by a QVF analysis of (S1,* + 8 2,.)/2 
on (Z, X), while 1 can be estimated using appropriate linear mea­
surement error model techniques described in Chapter 2, because 
the replication data follow the model, 

S 'Yo +11Y + V; 

Si,* Y + Ui,* for j = 1, 2, 

where U 1 ,* and U 2 ,* are independent with mean zero. This is a 
linear regression measurement error model with response S and 
"true covariate" Y and with replicate measurements S1,* and S2,* 
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of Y. The methods reviewed in Chapter 2 are used to estimate 'Y. 
Then Q(::Y) is constructed and B2 employed as described previously. 

13.2 Likelihood Methods 

13. 2.1 General Likelihood Theory and Surrogates 

Let Js1Y,Z,x(sly, z, x, "f) denote the density or mass function for 
S given (Y, Z, X). We will call S a surrogate response if its distribu­
tion depends only on the true response, i.e., Js1Y,Z,X (sly, z, x, "f) 
= Js1y(sly, "f). In both the additive and multiplicative error mod­
els, S is a surrogate. This definition of a surrogate response is the 
natural counterpart to a surrogate predictor, because it implies 
that all the information in the relationship between S and the pre­
dictors is explained by the underlying response. 

In general, i.e., for a possibly nonsurrogate response, the likeli­
hood function for the observed response is 

fsiZ,X (slz, x, B, 'Y) = 
j !y 1z,x (ylz, x, B)Js1v,z,x(sly, z, x, "f)dJ-L(y). (13.3) 

If Sis a surrogate, then Js1y(sly, 'Y) replaces Js1Y,Z,X (sly, z, x, "f) 
in (13.3) showing that if there is no relationship between the true 
response and the predictors, then neither is there one between 
the observed response and the predictors. The reason for this is 
that under the stated conditions, neither term inside the integral 
depends on the predictors, the first because Y is not related to 
(Z, X), and the second because S is a surrogate. However, if S is 
not a surrogate, then there may be no relationship between the 
true response and the covariates, but the observed response may 
be related to the predictors. 

It follows that if interest lies in determining whether the pre­
dictors contain any information about the response, one can use 
naive hypothesis tests and ignore response error only if S is a sur­
rogate. The resulting tests have asymptotically correct level, but 
decreased power relative to tests derived from true response da­
ta. This property of a surrogate is important in clinical trials, see 
Prentice (1989). 

Note that one implication of (13.3) is that a likelihood analysis 
with mismeasured responses requires a model for the distribution 
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of response error. 
Just as in the predictor-error problem, it is sometimes, but not 

always, the case that the parameters (B, 7) are identifiable, i.e., 
can be estimated from data on (S, Z, X) alone. An example of the 
latter is the linear regression example of section 13.1, where the 
observed responses have mean 'Yo + f3o'"Yl +71f3;X + 71 f3~Z and 
variance O"~ + '"Yf0"2 • As described above, because S is assumed to 
be a surrogate in this example, if there is no effect of predictors 
in the underlying true-data model (f3x = f3z = 0), then there is no 
effect of predictors in the observed-data model. 

This example also shows that because S is a biased surrogate, 
only the product '"Y1 f3x, and not f3x, can be estimated from the 
observed data. Thus estimation of f3x requires either knowledge of 
71 or sufficient data to estimate this parameter. 

We now suppose that there is a validation subsample obtained 
by measuring Y on units in the primary sample selected with prob­
ability 1r(S, Z, X). The presence (absence) of validation data on a 
primary-sample unit is indicated by ~ = 1 (0). Then, based on a 
primary sample of size n, the likelihood of the observed data for a 
general proxy S is 

n 

II [ {f(SiiYi, zi, xi, '"Y)f(YiiZi, xi, B)} 6., x 
i=l 

(13.4) 

where we have dropped the subscripts on the density functions for 
brevity. 

The model for the distribution of S given (Y, Z, X) is a critical 
component of (13.4). If Sis discrete, then one approach is to model 
this conditional distribution by a polytomous logistic model. For 
example, suppose the levels of S are (0, 1, ... , S). A standard logistic 
model is 

pr(S ~ siY,Z,X) = H('"Yos +71Y +7~X+'"Y~Z), s = 1, ... ,S. 

When S is not discrete, a simple strategy is to categorize it into S 
levels, and then use the logistic model above. 

As described above, likelihood analysis is in principle straight­
forward. However, there are two drawbacks to this approach. First 
is the obvious one of requiring a model for the distribution of 
S given (Y, Z, X) and the attendant robustness issues. Second 
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is the numerical integration or summation required to compute 
f(Si\Zi, Xi, B, 'I') from (13.3). 

13.2.2 Use of Complete Data Only 

Section 9.1 describes methods for using only the complete (or vali­
dation) data when predictors are subject to error. As stated there, 
use of only validation data means that one need not worry about 
robustness issues arising from the modeling of the distribution of S 
given (Y, Z, X), but at the cost of reduced efficiency for estimating 
the regression parameters. With response error, the analog to (9.1) 
is the likelihood of the validation data, given by 

f(Y,S\Z,X,~ = 1) = 
n(S, Z, X)f(S\Y, Z, X, 1')/(Y\Z, X, B) 

(13.5) f n(s, Z, X)f(s\y, Z, X, 'l')f(y\Z, X, B)dp,(s)dp,(y). 

If selection into the second stage of the study depends only on the 
predictors and not on S, then the joint likelihood has the following 
properties: (i) the denominator of (13.5) equals n(Z, X) which can­
cels the same term in the numerator; (ii) the likelihood factors into 
a product of terms involving ')' only and terms involving B only; 
and (iii) valid estimates of B can be obtained from the complete 
(Y, Z, X) data only. 

In particular, if selection into the validation study is by simple 
random sampling, i.e., n(S, Z, X) is a constant, use of only the 
completed data is valid. 

In general, (13.5) cannot be simplified, and in particular, re­
gression of Y on (Z, X) is not valid if selection into the second 
stage depends on S. Tosteson & Ware (1990) note an important 
exception, namely when: (a) S is a surrogate; (b) Y given (Z, X) 
follows a logistic regression model; and (c) selection into the second 
stage depends only on S. It can be shown that when (a)-(c) hold, 
regression of Y on (Z, X) in the validation data alone is valid. 

Especially for discrete responses, it is sometimes useful to con­
sider the likelihood conditioned also on the value of S, 

f(Y\S,Z,X,~ = 1) = 
f(S\Y, Z, X, 1')/(Y\Z, X, B) 

f f(S\Y = y, Z, X, 'l')f(Y = y\Z, X, B)dp,(y). 
(13.6) 

In the appendix it is shown that this does not depend on the selec-



238 RESPONSE VARIABLE ERROR 

tion probabilities. An important special case is logistic regression, 
where (13.6) takes the interesting form of a logistic regression with 
"offsets," 

pr(Y = ljS, Z, X,~= 1) = H { q(S, Z, X)+ f3!X + j3;z}, 

where 

q(S, Z, X)= !3o +log {!(SlY= 1, Z, X)/ f(SIY = 0, Z, X)}. 

For the case that S is a discrete surrogate taking on the values S = 
O,l, ... ,S, Tosteson & Ware (1990) suggest estimating q(s,z,x) = 
q(s) by logistic regression with dummy variables for each of the 
values of S. Of course, if S is discrete, as described previously an 
alternative approach is to construct a model for S given (Y, Z, X) 
and maximize the likelihood (13.4). 

13.2.3 Other Methods 

In some problems, it can occur that there are two data sets, a 
primary one in which (S, Z, X) are observed (~ = 0), and an in­
dependent data set in which (Y, Z, X) are observed (~ = 1). This 
may occur when Y is a sensitive endpoint such as income, and S 
is reported income. Because of confidentiality concerns, it might 
be impossible to measure Y and S together. In such problems, the 
likelihood is 

n 

II {f(YiiZi, xi, B)}~' {f(SiiZi, xi, B, 1')} 1 -~'. 
i=l 

13.3 Semiparametric Methods 

13.3.1 Pseudolikelihood-Simple Random Subsampling 

Suppose that selection into the second stage validation study is by 
simple random sampling. The similarity between (13.3) and (13.4) 
with the likelihood functions (7.10) and (7.9) for error-prone pre­
dictors led Pepe (1992) to construct a pseudolikelihood similar in 
spirit to that of Carroll & Wand (1991) and Pepe & Fleming (1991). 
The basic idea is to use the validation data to form a nonparamet­
ric estimator fs 1Y,Z,X of Js 1Y,Z,X· One then substitutes this 

estimator into (13.3) to obtain an estimator fs 1z,x(sjz, x, B) and 
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then maximizes 

fr {j(YiiZi,Xi,B)}~' {f(siiZi,Xi,B) r-~, 
i=l 

This approach requires an estimator of Js1Y,Z,X. If all the ran­
dom variables are discrete, the nonparametric estimator of the 
probability that S = s given (Y,Z,X) = (y,z,x) is the frac­
tion in the validation study which have S = s among those with 
(Y,Z,X) = (y,z,x), although as previously stated we prefer flex­
ible parametric models in this case. Problems which have continu­
ous components of (S, Y, Z, X) are more complicated. For example, 
suppose that S is continuous, but the other random variables are 
discrete. Then the density function of S in each of the cells formed 
by the various combinations of (Y, Z, X) must be estimated. Even 
in the simplest case that there is no Z and (Y, X) are binary, this 
means estimating four density functions using validation data only. 
While the asymptotic theory of such a procedure has been inves­
tigated (Pepe, 1992), we know of no numerical evidence indicating 
that the density estimation methods will work adequately in finite 
samples, nor is there any guidance on the practical problems of 
bandwidth selection and dimension reduction when two or more 
components of (S, Y, Z, X) are continuous. 

In practice, if S is not already naturally categorical, then an 
alternative strategy is to perform such categorization, fit a flexible 
logistic model to the distribution of S given the other variables, 
and maximize the resulting likelihood (13.4). 

13.3.2 Modified Pseudolikelihood-Other Types of Subsampling 

Just as in section 9.4, pseudolikelihood can be modified when se­
lection into the second stage of the study is not by simple random 
sampling. As in section 9.4, the estimating equations for the EM­
algorithm maximizing (13.4) are 

n 

o L ~i {w1 (Yi, zi, xi, B)+ w2(Si, Yi, zi, xi, 'Y)} 
i=l 

n 

i=l 
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where 

'll1 ((8/8B)log(fy
1
z,x)t, ot)t, 

'liz (ot, (8/8'Y)log(JSIY,z,x)t)t. 

The idea is to use the validation data to estimate 

E {'ll1 (Yi, Zi, Xi, B) lSi, Zi, Xi} 

and then solve 
n 

o = l::[~;wl(Yi,zi,xi,B)+ 
i=l 

(1- ~i)E{'lll(Yi,Zi,X;,B)IS;,Z;,Xi}]. 

For example, suppose that (S, Z, X) are all discrete. Now define 
Iij to equal one when (Sj,Zj,Xj) = (Si,zi,Xi) and zero other­
wise. Then 

~ "~ ~ ·'ll1(Y · Z · X· B)J. · 
E{'ll (Y· Z· X· B)IS· Z· X·}= WJ=l 1 1 ' 1 ' 1 ' ' 1 

1 '' " " " '' • "n ~-J.· wj=l J •J 

In other cases, nonparametric regression can be used. In the dis­
crete case, Pepe, et al. (1994) derive an estimate of the asymptotic 
covariance matrix of Bas A-1 (A + B)A-t, where 

i=l 
n n T ~ 

"" L:i=l ~i(8j8B )'lll(Yj,Zj,Xj,B)Iij 
- L.)1- ~-) . 

i=l • L:~l ~jiij ' 

B __ ""n(s,z,x)nz(s,z,x) ( 8~) L.J ( ) rs,z,x, , n1 s,z,x 
s,z,x 

n1 (s, z, x), nz(s, z, x), and n(s, z, x) are the number of validation, 
nonvalidation and total cases with (S,Z,X) = (s,z,x), and where 
r(s, z, x, B) is the sample covariance matrix of 'll1 (Y, Z, X, B) com­
puted from observations with (~, S, Z, X) = (1, s, z, x). 

13.4 Example 

In this section, we present an example where selection into the 
validation study depends on the proxy, S. We compare the valid 
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Validation Data 
z s y Count 
0 0 0 19 
0 0 1 5 
0 1 0 7 
0 1 1 14 
1 0 0 28 
1 0 1 27 
1 1 0 8 
1 1 1 24 

Nonvalidation Data 
0 0 - 47 

Table 13.1. GVHD data set. Here Y = 1 if the patient develops chronic 
GVHD and = 0 otherwise, while S = 1 if the patient develops acute 
GVHD. The predictor Z = 1 if the patient is aged 20 or greater, and 
zero otherwise. 

modified pseudolikelihood estimate with the naive use of the com­
plete data. The later is not valid and appears to be seriously biased 
in this case. 

Pepe (1992) and Pepe, et al. (1994) describe a study of 179 aplas­
tic anemia patients given bone marrow transplants. The objective 
of the analysis is to relate patient age to incidence of chronic graft 
versus host disease (GVHD). Patients who develop acute GVHD, 
which manifests itself early in the post-transplant period are at 
high risk of developing chronic GVHD. Thus, in this example Y 
is chronic GVHD, S is acute GVHD, and Z = 0,1 depending on 
whether a patient is less than 20 years of age or not. The data are 
given in Table 13.1. A logistic regression model for Y given Z is 
assumed. 

The selection process as described by Pepe, et al. (1994) is to 
select only 1/3 of low risk patients (less than 20 years old and no 
acute GVHD) into the validation study, while following all other 
patients. Thus, 1r(S, Z) = 1/3 if S = 0 and Z = 0, otherwise 
1r(S, Z) = 1. Note that here selection into the validation study 
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CDO MP 

fJx 0.66 1.13 
Std. Err. 0.37 0.39 
p-value 0.078 0.004 

Table 13.2. Analysis of GVHD data set. CDO, complete data only; MP, 
modified pseudolikelihood. 

depends on both S and Z, so that an ordinary logistic regression 
analysis on the completed data (~ = 1) will be invalid. 

We performed the following analyses: (i) use of complete data 
only, which is not valid in this problem because of the nature of the 
selection process, but is included for comparison, and (ii) modified 
pseudolikelihood. 

The results of various analyses are listed in Table 13.2. We see 
that the complete-data analysis is badly biased relative to the valid, 
modified pseudolikelihood analysis, with markedly different signif­
icant levels. 



CHAPTER 14 

OTHER TOPICS 

This chapter gives an overview of some topics which have not been 
covered, namely case-control studies, mixture methods for func­
tional models, differential measurement error, design of two-stage 
studies, misclassification when all variables are discrete, and sur­
vival analysis. 

14.1 Logistic Case-Control Studies 

A prospective study is the usual kind, where subjects are randomly 
selected from the population. Selection may or may not depend 
on the covariates, but is independent of the response, and often 
selection occurs before the response is even observable, e.g., before 
a disease develops. A retrospective study is one in which sampling is 
conditioned on the response; it is useful to think that the response 
is first observed and only later are the predictors observed. These 
are called case-control studies in epidemiology and choice-based 
samples in econometrics; we will use the former terminology and 
concentrate on logistic regression models. 

A distinguishing feature of case-control studies is that the mea­
surement error may be differential; see section 1.6 for a definition. 
With the exception of the linear regression model in which the er­
rors were correlated (section 2.3), this book has concentrated on 
nondifferential measurement error. Differential measurement error 
is discussed in section 14.2. 

14 .1.1 The Case that X is Observed 

In a classical case-control study, Y = 1 is called a "case", and 
Y = 0 is a "control". Having observed case or control status, one 
observes (Z, X) in a random sample of controls and a random sam-
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ple of cases. 
Throughout, we will assume that if the data could be observed 

prospectively, then it would follow a logistic model: 

Pr(Y = 1/Z,X) = H {,B~ + R(X, Z,,Bx,,Bz)}. (14.1) 

The linear logistic model is the special case R(X, Z, ,Bx, ,Bz) = 
,a;x + ,a;z. Weinberg & Wacholder (1993) introduce the gener­
al model and discuss its importance. 

Starting from (14.1), Prentice & Pyke (1979) and Weinberg & 
Wacholder (1993) show that when analyzing a classical case-control 
study one can ignore the case-control sampling scheme entirely. 
The one exception is that the intercept ,80 cannot be estimated, 
because it depends on the underlying rate pr(Y = 1) in the source 
population, which is often unavailable. Furthermore, these authors 
show that if one ignores the case-control sampling scheme and runs 
an ordinary logistic regression, then the estimates (!Jx, lJz) that 
result are consistent and the standard errors are asymptotically 
correct. 

14.1.2 Measurement Error 

The effect of measurement error in logistic case-control studies is 
to bias (asymptotically) the estimates of the slopes (,Bx, ,Bz). The 
question is how to correct for this bias. 

In one sense, the problem of correcting for the bias is easily 
solved. Carroll, Wang & Wang (1995) show that for many prob­
lems, one can ignore the case-control study design and proceed as 
if one were analyzing a random sample from a population. This 
result can be stated (fairly loosely) as follows: 

"Theorem" In most problems, a prospective analysis which ig­
nores the case-control study design leads to consistent estimates 
of (,Bx, ,Bz). When it does, the standard errors derived from the 
prospective analysis are usually asymptotically correct, and they 

are at worst conservative (too large). Thus, in general, no new 
software is required to analyze case-control studies in the presence 
of measurement error or missing data. 

With non differential measurement error, this result applies to 
the conditional score methods of section 6.4, the likelihood method 
of section 7.4, the SIMEX method, and even a slight modification 
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of regression calibration, see Carroll, Gail & Lubin (1993). 

14.1.3 Normal Discriminant Model 

Michalek & Tripathi (1980), Armstrong, et al. (1989) and Buonac­
corsi (1990b) consider the normal discriminant model. The latter's 
treatment is comprehensive, based on the model that given Y = y, 
(Z, X, W) has a multivariate normal distribution with mean J.ly 
and constant covariance matrix. Prospectively, such data lead to 
a logistic regression model, although prospective logistic models 
may hold even when the normal discriminant model fails. Buonac­
corsi shows how differential and nondifferential measurement error 
models can be obtained as special cases of his discriminant model. 
He also shows how to compute maximum likelihood estimates for 
the parameters using all the data, and not just the complete data, 
and he describes an asymptotic theory. 

14.2 Differential Measurement Error 

Differential measurement error (section 1.6) means that W is no 
longer a surrogate. Differential measurement error poses special d­
ifficulties, both in technical details and in problem formulation. We 
know of no methods for differential measurement error in nonlinear 
models which do not require that X be observable in some subset 
of the study data. In linear models, differential measurement error 
can be overcome by method of moments techniques (section 2.3). 

To appreciate the technical issues, remember that even in linear 
regression, differential measurement error means that regression 
calibration yields inconsistent estimates of the regression parame­
ters. 

14.2.1 Likelihood Formulation 

The likelihood for differential measurement error differs slightly 
from (7.5), because the error density depends on the values of the 
response. Using the same notation as section 7.3, namely that we 
have measures W and T, we will write the error model to have a 
density or mass function which we will denote by fw,rw,z,x(w, ti 
y, z, x, a1). The density or mass function of X given Z will be 
denoted by fxlz(xiz, ii2). These densities depend on the unknown 
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parameter vectors 0:1 and 0:2. The joint density of (Y, X, W, T) 
given Z is 

!Y,X,W,TIZ(Y, x, w, tjz, B, 6:1, 6:2) 

= fYIZ,x(YIZ, x, B)Jw,TIY,z,x(w, tjy, z, x, a1)fxlz(xjz, 0:2)· 

The density or mass function of (Y, W, T) given Z is thus 

IY,W,TIZ(Y, w, tjz, B, 6:1, 6:2) 

= J IY,x,W,TIZ(Y, x, w, tjz, B, 0:1, a2)dJ.t(x), (14.2) 

where, as before, the notation dJ.t(x) indicates that the integrals 
are sums if X is discrete and integrals if X is continuous. In a two­
stage study, where X is observed with probability depending only 
on (Y, Z, W, T), the overall likelihood is proportional to 

n 

II {IY,x,w,rlz(Yi, xi, wi, TiiZi, B, 6:1, 6:2)} 6.• 

i=1 
n 

x II {IY,w,r1z(Yi,wi,Ti1Zi,B,a1,a:2)} 1-6.•. 

i=1 

14.2.2 Functional Methods in Two-Stage Studies 

In a two-stage study, one observes X in a randomly chosen sub­
sample; see section 9.5. Several methods have been proposed for 
applying functional methods to two-stage studies, and we discuss 
them in this section. Although classical functional models treat the 
Xi's as fixed, in section 1.2 we define a functional model as one 
where the Xi's are iid from a distribution Fx that is not paramet­
rically modeled. However, methods designed for this situation are 
also appropriate when the xi's are fixed parameters. 

Carroll, Wang & Wang (1995) modify the general unbiased es­
timating equation methods discussed in section 9.5, based on spec­
ifying a parametric form for the error distribution of (W, T) given 
(Y, X, Z). Robins, Rotnitzky & Zhao (1994) also modify the esti­
mating equation methods, but they do so in such a way that the 
error distribution need not be parameterized; loss of efficiency may 
occur because of this. Implementation of these methods requires 
one to specify a function which is called no in section 9.5. 

For illustration, we consider the second method. Define L = 
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(Y, Z, W, T), and suppose the data are obtained in a two-stages­
tudy in which X is observed with probability 1r(L). Let 1P(Y, Z, X, B) 
be an estimating function for the parameter B. Then the functional 
estimating equation taking into account the two stage study is 

D.1P(·) +{D.- 1r(L)} E {1P(-)IL} 
7r(L) 

(14.3) 

Implementation of this estimating function requires that one esti­
mates functionals of X given L. Robins, et al. (1994) and Zhao, 
Lipsitz & Lew (1994) propose different nonparametric ways to do 
this. Note that to even talk about such functionals, we need the 
assumption that X is random, not a fixed parameter. 

14.2.3 Comparison of Functional and Likelihood Approaches 

The essential differences between the likelihood and functional ap­
proaches in this missing data context can be seen by studying 
(14.2) and (14.3). The likelihood approach requires one to spec­
ify parametric models for the distribution of the errors and the 
distribution of X given Z. However, once this is done, nothing 
need be known about the missing data mechanism. In contrast, 
the functional modeling approaches need not specify the indicat­
ed distributions, but they do require a model for the missing data 
mechanism. Depending on the context, one (distributions) or the 
other (missing data mechanism) may be more convenient to model. 

14.3 Mixture Methods as Functional Modeling 

14.3.1 Overview 

When there are no covariates measured without error, the nonlin­
ear measurement error problem can be viewed as a special case of 
what are called mixture problems; see Kiefer & Wolfowitz (1956), 
Laird (1978), Lindsay (1983), and Titterington, Smith & Makov 
(1985). Applications of nonparametric mixture methods to nonlin­
ear measurement error models have only recently been described 
by Thomas, Gauderman & Kerber (1993) and Roeder, Carroll & 
Lindsay (1996); see also Thomas, Stram & Dwyer (1993). 

The basic idea behind these methods is simple, but so far has 
only been worked out in detail when there are no covariates which 
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are measured exactly (although see Roeder, et al. for a sugges­
tion when there such covariates). What is done is to approximate 
the distribution of the unknown X by a discrete distribution with 
m :::; n points of positive probability (these are called the support 
points). Both the location of the support points and the probabil­
ities attached to them are estimated. One possibility is to use the 
EM-algorithm (Titterington, et al., 1985), but when estimating the 
locations of support points and the values of the distribution the 
EM algorithm can be very slow. In this instance, gradient methods 
are often useful, see Lesperance & Kalbfleisch (1992) for a recent 
example. Lesperance (1989) discusses inference. The following ma­
terial is fairly technical and can be skipped at first reading. 

14.3.2 Nonparametric Mixture Likelihoods 

First consider the case that X is not observed, but that one has 
a model for the error distribution. There is no specific restriction 
that the error be additive, multiplicative, etc., but a model is neces­
sary. We have already covered a variety of functional and structural 
modeling techniques for this problem, including regression calibra­
tion (Chapter 3), SIMEX (Chapter 4), conditional and corrected 
scores (Chapter 6), likelihood and quasilikelihood (Chapter 7) and 
Bayesian methods (Chapter 8). The following methods appear to 
have some promise for situations where functional modeling is de­
sired but the error model is not of a simple form. 

In parametric models, the density or mass function for (Y, W) 
is given by (7.5), which in the special case considered here can be 
written as 

!Y,w(y, w, B, a1, a2) 

= j iYix(Yix,B)fwlx(wlx,al)fx(xla2)dtL(x). (14.4) 

This is parametric structural modeling because the distribution 
of X has been parameterized. We have already discussed flexible 
parametric modeling of the distribution of X (section 7.3). 

If we take a functional modeling approach and do not specify 
a parametric model for the distribution of X, we can write the 
likelihood in general form as 

h,w(y, w,B,a1,Fx) 
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= j !Ytx(yiv, B)fwtx(wlv, ai)dFx(v), (14.5) 

where Fx(v) is the distribution function of X. Equation (14.5) is 
called a mixture model because the the density or mass function of 
(Y, X, W) is mixed across the unknown distribution of X. 

When X is observed on a subset of the study participants, the 
density of (Y, X, W) can be written in mixture form as 

!Y,x,w(y, x, w, B, a1, Fx) 

= j !Ytx(yiv,B)I(x = v)fwtx(wlv,ai)dFx(v), (14.6) 

where I(x = v) is the indicator function. 
It thus follows that in a sample of size n, with A; = 1 meaning 

that X; has been observed, the likelihood function in the unknowns 
(B,a1,Fx) is 

n 

.C(B,a1,Fx) =II {!Y,x,w(Y;,X;,W;,B,a1,Fx)}6.• 
i=1 

n 

x II {!Y,w(Y;,W;,B,a1 ,Fx)}1-6.•. (14.7) 
i=1 

The other functional modeling techniques we have discussed have 
tried to avoid consideration of Fx entirely. The mixing literature 
takes a different approach and tries to estimate this distribution 
nonparametrically. The basic result is that with n independent 
observations, the maximum likelihood estimate of Fx is ~screte 
and has at most n support points, i.e., points at which Fx has 
jumps. The distribution function Fx can be estimated by the EM­
algorithm (Titterington, et al., 1985), or by gradient methods, see 
Lesperance & Kalbfleisch (1992) for a recent example. 

Lesperance (1989) and Lesperance & Kalbfleisch (1992) discuss 
inference. They suggest that if B = (/31, /32) and one wants to make 
inference about a scalar /31, then one should invert the semi para­
metric generalized likelihood ratio test statistic 

A(/31) = 2 log{suph,,e2 ,,'>!,Fx .C(b1,/32,_a1,Fx)}. 
SUP,e2 ,<'>J,Fx .C(/31, /32, Ci1, Fx) 

A (1-a)100% profile confidence interval are all/31's such that A(/31) 
is less than the (1- a)th percentile of the chi-squared distribution 
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with one degree of freedom. This is a semi parametric analog of the 
parametric profile likelihood interval discussed in section A.2.4. 

Roeder, et al. (1996) provide a small simulation study for the 
multiplicative error model in logistic regression. 

14.3.3 A Cholesterol Example 

In this example we analyze a data set concerning the risk of coro­
nary heart disease ( CHD) as a function of blood cholesterol level. 
This data was extracted from the Lipids Research Clinics study 
which was previously discussed by Satten & Kupper (1993). We use 
a portion of these data involving men aged 60-70 who do not smoke 
(256 records: four outliers were removed). A subject is recorded as 
having CHD (Y = 1) if they have had a previous heart attack, an 
abnormal exercise electrocardiogram, history of angina pectoris, 
and so forth. The measured covariables are low density lipopro­
tein (LDL) cholesterol level and total cholesterol (TC) level. Direct 
measurements of LDL levels is time-consuming and require costly 
special equipment. For this reason we are interested in whether TC 
serves as a useful surrogate for LDL. Note that the measurement 
error of TC is not the source of error which is of primary interest; 
rather, it is the unknown quantity of the other components of TC 
(triglycerides and high density lipoproteins) that lead to the "mea­
surement error". Henceforth CHD, LDL/100 and TC/100 play the 
roles of Y, X and W, respectively. 

We will treat this study as if it were a case-control study. We 
already know (section 14.1) that this has no effect on the estimate 
of the slope f3x. 

In this data set both X and W have been recorded for each sub­
ject. In the full data set there are 113 cases, of which 47 had LDL 
levels higher than 160. Among the 143 controls, 43 had elevated 
LDL levels. Using X as the predictor, the prospective logistic re­
gression estimate for f3x was .656 with a standard error of .336. 
Contrast this with the attenuated estimate (.540) obtained when 
measurement error was ignored and W was used as the predictor. 

We fit a 5-parameter lognormal measurement error model where 

log(W) = ao + a1 log(X) + U, 

where U is N(O, u~), and a 7-parameter differential measurement 
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error model where 

log(W) = eto + a1 Y + etzlog(X) + U. 

Here UIY is N(O,a~,y), with a~,y depending on the binary Y and 
therefore representing two parameters. In both models, f3o and f3x 
are the extra two parameters. A 5-parameter model provided a 
good fit to the data with the exception of a slight increase in the 
variance of WIX for small values of X. The 7-parameter model fit 
significantly better, but did not change the parameters enough to 
have a practical impact on the estimation procedure. Consequently, 
the measurement error was modeled using a nondifferential error 
model. 

To illustrate a two-stage validation study design, from the 113 
cases and 143 controls, 32 cases and 40 controls were randomly 
selected to serve as complete data. The remaining observations 
were treated as reduced observations. Using the complete data only, 
f3x = .943 with a standard error of 0.62. Te profile likelihood for the 
5-parameter model when both complete and reduced data are used 
yields an estimate f3x = .765. Using one-fourth the length of the 
profile confidence interval, the standard error is is approximately 
0.5, clearly smaller than when using only the complete data. 

14.3.4 Covariates Measured Without Error 

The mixture methods do not apply immediately when there are 
covariates measured without error. Carroll (1993) and Roeder, et 
al. (1996) both face this problem. With X partially observed, they 
suggest techniques based upon a dimension reduction scheme. This 
is a problem of clear long-term interest. 

14.4 Design of Two-Stage Validation and Replication 
Studies 

This book, and almost all the literature, focuses on the analysis of 
data in the presence of errors of measurement, There is, however, 
an emerging literature on the design of studies whose goal is the 
efficient estimation of parameters. 

A good reference to this literature is in the review paper of 
Spiegelman (1994). Here we give only a brief overview of the main 
ideas, leaving the details to the cited literature. 
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Combining the ideas of Greenland (1988b) and Spiegelman & 
Gray (1991), the goal is to find the most cost-efficient study design 
which, for a fixed level-a two-sided test of the hypothesis that 
f3x = f3x, 1, has power at least 1r at a prespecified alternative f3x, 2, 
and vice-versa for f3x,2 and f3x,l· 

For instance, consider regression models where the covariate X 
is measured subject to additive measurement error. All the meth­
ods we have discussed, including regression calibration, SIMEX or 
conditional scores, require an estimate of the measurement error 
variance a~ in order to make inference about the slope f3x for X. 
Typically, this will be done via an internal replication substudy: 
using the replicated observations the components of variance esti­
mate (3.2) of a~ is computed. 

Any replication study will consist of n1 observations at which 
only (Y, W) is observed, and nz observations at which a replicate 
for W will also be observed. If the unit cost of obtaining the first 
(Y, W) is C1 , and the unit cost of obtaining the replicate is C2 , 

then the total cost ofthe study is C1n1 +Cznz. One sees here that, 
for a fixed cost, the greater the number of replicates nz, the smaller 
the available number of responses n 1 . 

Spiegelman & Gray (1991) note that if V1 (n1 , n2 ) and V2 (n 1 , n2 ) 

are the large sample variance of !Jx when the actual values are f3x,l 
and f3x, 2, respectively, then the problem reduces to minimizing the 
cost C1 n 1 + C2n2 subject to the constraints 

> 7f" 
' 

> 7r, 

and z1_a./Z = il>-1 (1 - o:/2). As Spiegelman (1994) notes, "Within 
this framework, it is simply a matter of supplying the necessary 
design specifications ... and of substituting the appropriate formula 
for V1 and V2 to obtain the optimal values of n 1 and n 2". 

Spiegelman & Gray (1991) have worked out the details in logistic 
regression when (W, X) are jointly normally distributed. Buonac­
corsi (1990b) did the same for the normal discriminant model. Both 
also have extensions to the case that X can be measured in a val­
idation substudy. 
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When X is a binary variable subject to misclassification, Palm­
gren (1987) and Greenland (1988a) compute the necessary vari­
ances in different cases. 

Two-stage validation studies, in which X is observed on a subset 
of the study design, have been investigated intensively. Breslow & 
Cain (1988) and Cain & Breslow (1988) discuss particular two­
stage designs where selection into the second stage depends on 
results of the first stage. Zhao & Lipsitz (1992) provide a unification 
of possible first- and second-stage study designs. Tosteson & Ware 
(1990) investigate different second-stage designs in detail. 

14.5 Misclassification 

Situations in which discrete variables are measured with error are 
called misclassification. When all the variables are discrete, the 
data form a misclassified contingency table. 

In principle, misclassified contingency tables can be handled by 
the method of maximum likelihood, which we have reviewed for 
misclassified covariates in Chapter 7 and for misclassified respons­
es in Chapter 13. There is nothing new conceptually, and the main 
issues involve computation. Various papers along these lines in­
clude those by Espeland & Odoroff (1985), Ekholm, Green & Palm­
gren (1986), Espeland & Hui (1987), Palmgren (1987), Ekholm & 
Palmgren (1987), Chen (1989), Ekholm (1991, 1992), Baker (1991, 
1992, 1994a, 1994b) and Baker, Wax & Patterson (1993). Comput­
ing the maximum likelihood estimates is discussed by Ekholm, et 
al. (1986), Clayton (1991), Baker (1992) and Baker, et al. (1993), 
among others. 

When X is misclassified into W, but X can be observed on a 
partial subset of the data, then the likelihood function is (7.10) 
when W is a surrogate; see section 14.2 for differential measure­
ment error. When X cannot be observed but the misclassification 
probabilities are known, the appropriate likelihood function is the 
product over the observed data of the terms (7.4) (there is no sec­
ond measure T in this context). 

When the response Y is misclassified but also partially observed, 
the likelihood function is ( 13.4) . 
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14.6 Survival Analysis 

14.6.1 General Considerations 

OTHER TOPICS 

One of the earliest applications of the regression calibration method 
was discussed by Prentice (1982) in the context of survival analysis. 
Further results in survival analysis were obtained by Pepe, Self, & 
Prentice (1989) and Clayton (1991), Nakamura (1993) and Hughes 
(1993). While the details differ in substantive ways, the ideas are 
the same as put forward in the rest of this mongraph, and here 
we provide only a very brief overview of the proportional hazards 
model, in the case of covariates which do not depend on time. 

Suppose that the instantaneous risk that the time T of an event 
equals t conditional on no events prior to time t and conditional 
on the true covariate X is denoted by 

1/J (t, X) = 1/Jo(t)exp (,a;x) , (14.8) 

where 1/Jo(t) is the baseline hazard function. When the baseline haz­
ard is not specified, (14.8) is commonly called the Cox proportional 
hazards model (Cox, 1972). When X is observable, it is well-known 
that estimation of ,Bx is possible without specifying the form of the 
baseline hazard function. 

If X is unobservable and instead we observe a surrogate W, the 
induced hazard function is 

1/J* (t, W, ,Bx) = 1/Jo(t)E { exp (,a;x) IT~ t, W}. (14.9) 

As shown by Prentice (1982) and by Pepe, et al. (1989), the difficul­
ty is that the expectation in (14.9) for the observed data depends 
upon the unknown baseline hazard function 'ljJ0 • Thus, the hazard 
function does not factor into a product of an arbitrary baseline 
hazard times a term which depends only on observed data and an 
unknown parameter, and the technology for proportional hazards 
regression cannot be applied without modification. 

14.6.2 Rare Events 

As indicated above, the hazard function for the observed data does 
not factor nicely. The easiest route around this problem occurs 
when the event is rare, so that T ~ t occurs with high probabil­
ity for all t under consideration. As we now show, under certain 
circumstances this leads to the regression calibration algorithm. 
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Following section 3.2, if we write the distribution of X given W to 
depend on the parameter 'Ycm, then for all practical purposes the 
rare event assumption means that the hazard of the observed data 
is approximated by 

V;* (t, W, f3x, "(cm) = V;o(t)E { exp (/3;X) IW}. (14.10) 

The hazard function (14.10) requires a regression calibration for­
mulation! If one specifies a model for the distribution of X given 
W, then (14.10) is in the form of a proportional hazards model 
(14.8), but with 13;x replaced by 

log (E { exp (f3;x) IW}). 

Such models are easily fit if the regression calibration parameters 
'Ycm are known. 

An important special case leads directly to the regression cali­
bration model, namely when X given W is normally distributed 
with mean m (W, 'Ycm) and with constant covariance matrix I:cm. 
To see this, note that the hazard function is, from (14.10), 

V;* (t, W,f3x,'Ycm) = V;~(t)exp {f3;m (W,'Ycm)}, 

where V;0(t) = V;o(t)exp(.5 f3;I:cmf3x), which is still arbitrary since 
V;o is arbitrary. 

As another application of the rare event assumption, Prentice 
(1982) considers an example in which he assumes a heteroscedastic 
Berkson model, namely that X given W is normally distributed 
with mean W and variance 172m W 2 . This leads to the relative risk 
model 

V;o(t)exp {f3x W + .517~m/3;W2 }, 

which is just a quadratic proportional hazards model and thus 
easily fit using standard software if one combines .5172mf3; into a 
separate unknown parameter. One does not even need replication 
to estimate 17~m! 

14.6.3 Risk Set Calibration 

Clayton (1991) proposed a modification of regression calibration 
which does not require events to be rare. At each time ti, i = 
1, ... , k, for which an event occurs, define the risk set Ri ~ {1, ... , n} 
as the case numbers of those members of the study cohort for whom 
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an event has not occurred and who were still under study just prior 
to ti. If the X's were observable, and if Xi is the covariate associat­
ed with the ith event, in the absence of ties the usual proportional 
hazards regression would maximize 

IT exp(fJ!Xi} . 
i=l EjER; exp(f3xXi) 

Clayton basically suggests using regression calibration within each 
risk set. He assumes that the true values X within the ith risk set 
are normally distributed with mean f.Li and variance 11;, and that 
within this risk set W =X+ U, where U is normally distributed 
with mean zero and variance 11~. Neither 11; nor 11~ depend upon 
the risk set in his formulation. 

Given an estimate a~, one can construct an estimate of a; just 
as in the equations following (3.3). 

Clayton modifies regression calibration by using it within each 
risk set. Within each risk set, he applies the formula (3.4) for the 
best unbiased estimate of the X's. Specifically, in the absence of 
replication, for any member of the ith risk set, the estimate of the 
true covariate X is 

where Mi is the sample mean of theW's in the ith risk set. 
As with regression calibration in general, the advantage of Clay­

ton's method is that no new software need be developed, other than 
calculating the means within risk sets. Formula (3.4) shows how 
to generalize this method to multivariate covariates and covariates 
measured without error. 



APPENDIX A 

FITTING METHODS AND 
MODELS 

A.l Overview 

This chapter collects some of the basic technical tools that are 
required for understanding the theory employed in this monograph. 
Section A.4 explains the general class of models upon which the 
monograph focuses. 

Section A.2 reviews likelihood methods which will be familiar to 
most readers. Section A.3 is a brief introduction to the method of 
estimating equations, a widely applicable tool that is the basis of 
all estimators in this book. Section A.5 defines generalized linear 
models. The bootstrap is explained in section A.6, but one need 
only note while reading the text that the bootstrap is a computer­
intensive method for performing inference. 

A.2 Likelihood Methods 

A.2.1 Notation 

Denote the unknown parameter by e. The vector of observations, 
including response, covariates, surrogates, etc. is denoted by (Yi, 
Zi) for i = 1, ... , n, where, as before, Zi is the vector of covariates 
that is observable without error and Yi collects all the other ran­
dom variables into one vector. The data set (Yi, Zi), i = 1, ... , n, 
is the aggregation of all data sets, primary and external, includ­
ing replication and validation data. Thus, the composition of Yi 
will depend on i, e.g., whether the ith case is a validation case, a 
replication case, etc. We emphasize that Yi is different from the 
response Yi used throughout the book, and hence the use of tildes. 
The Yi are assumed independent with the density of Yi depend-
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ing both on Z; and on the type of data set the ith case came from 
and denoted by fi(yiG). We assume that /i has two continuous 
derivatives with respect to e. The loglikelihood is 

n 

L(G) = Llogf;(Y;IG). 
i=l 

A.2.2 Maximum likelihood Estimation 

In practice, maximum likelihood is probably the most widely used 
method of estimation. It is reasonably easy to implement, efficien­
t, and the basis of readily available inferential methods, such as 
standard errors by Fisher information and likelihood ratio tests. 
Also, many other common estimators are closely related to maxi­
mum likelihood estimators, e.g., the least squares estimator which 
is the maximum likelihood estimator under certain circumstances 
and quasilikelihood estimators. In this section, we quickly review 
some of these topics. 

The maximum likelihood estimator (MLE) maximizes L(G). Un­
der some regularity conditions, for example in Serfling (1980), the 
MLE has a simple asymptotic distribution. The "likelihood score" 
or "score function" is s;(yiG) = (8j8G)logfi(yiG). The Fisher in­
formation matrix, or expected information, is 

n 

- L E{(ajaet)s;(Y;IG)} (A.1) 
i=l 

n 

L E{s;(Y;IG)s~(Y;, 18)}. (A.2) 
i=l 

In large samples, the MLE is approximately normally distributed 
with mean e and covariance matrix I;;- 1 (8), whose entries converge 
to 0 as n--+ oo. There are several methods of estimating In(G). The 
most obvious is In(G). Efron & Hinkley (1978) present arguments 
in favor of using instead the observed Fisher information matrix, 
defined as 

n 

In=- L ajaets;("Y;IG), (A.3) 
i=l 

which is an empirical version of (A.1). The empirical version of 
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(A.2) is 
n 

En = L s;(Y;I6)s~("Y;I6), 
i=1 

which is not used directly to estimate In, but is part of the so­
called "sandwich formula," f;; 1 B;;1 f;;l, used to estimate I;; 1 (e). 
As discussed in section A.3, the sandwich formula has certain "ro­
bustness" properties, but can be subject to high sampling variabil­
ity. 

A.2.3 Likelihood Ratio Tests 

Suppose that dim { e} = p, that c.p is a known function of e such 
that dim{ c.p(6)} = p1 < p, and that we wish to test H 0 : c.p(6) = 0 
against the general alternative that c.p(6) f. 0. We suppose that 
rank{(8j8et) c.p(6)} = p1 so that the constraints imposed by the 
null hypothesis are linearly independent; otherwise P1 is not well 
defined, i.e., we can add redundant constraints and increase p1 

without changing H 0 , and the following result is invalid. 
Let Go maximize L(e) subject to c.p(e) = 0, and define LR = 

2{ L(G)- L(G0 ) }, the log likelihood ratio. Under H 0 , LR converges 
in distribution to the chi-squared distribution with p1 degrees of 
freedom. Thus, an asymptotically valid test rejects the null hypoth­
esis if LR exceeds X~1 (a), the (1 -a) quantile of the chi-squared 
distribution with p1 degrees of freedom. 

A.2.4 Profile Likelihood and Likelihood Ratio Confidence 
Intervals 

Profile likelihood is used to draw inferences about a single compo­
nent of the parameter vector. Suppose that e = ((h, 6 2) where 81 is 
univariate. Let c be a hypothesized value of 81 . To test H 0 : 81 = c 
using the theory of section A.2.3, we use c.p(e) = 81 - c and find 
e2(c) so that (c, Gz(c)) maximizes L subject to Ho. Lmax(81) = 
L( 81 , G2 ( 81 )) is called the profile likelihood function for 81-it does 
not involve e2 since the log likelihood has been maximized over 
6 2 • Then, LR = L(G)- Lmax(c) where, as before, G is the MLE. 
One rejects the null hypothesis if LR exceeds xi (a). 

Inference for 81 is typically based on the profile likelihood. In 
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particular, the likelihood ratio confidence region for fh is 

~ xr(a) 
{lh: Lmax(lh) > £(8)- - 2-}. 

This region is also the set of all c such that we accept H0 : 01 = c. 
The confidence region is typically an interval, but there can be 
exceptions. An alternative large-sample interval is 

~ 1 a ~ 
01 ±<I>- (1 - 2 )se(OI), (A.4) 

where se(01) is the standard error of 01 , say from the Fisher infor­
mation matrix or from bootstrapping as in section A.6. For non­
linear models, the accuracy of (A.4) is questionable, i.e., the true 
coverage probability is likely to be somewhat different than (1-a), 
and the likelihood ratio interval is preferred. 

A.2.5 Efficient Score Tests 

The efficient score test or simply the "score test," is due to Rao 
(1947). Under the null hypothesis, the efficient score test is asymp­
totically equivalent to the likelihood ratio test, e.g., the difference 
between the two test statistics converges to 0 in probability. The 
advantage of the efficient score test is that the MLE needs to be 
computed only under the null hypothesis, not under the alternative 
as for the likelihood ratio test. This can be very convenient when 
testing the null hypothesis of no effects for covariates measured 
with error, since these covariates, and hence measurement error, 
can be ignored when fitting under H 0 . 

To define the score test, start by partitioning e as (8L e~)t 
where dim(8I) = p1, 1 ::; p1 ::; p. We will test the null hypothesis 
that H 0 : 8 1 = 0. Many hypotheses can be put into this form, 
possibly after reparametrization. Let S(8) = 2:::7=1 si(Yil8) and 
partition s into sl and s2 with dimensions PI and (p - pi)' re­
spectively. Let eo = (Ot, e&,2)t be the MLE of 8 under H 0 . Notice 

that s2 (eo) = 0 since eo,2 maximizes the likelihood over e2 when 
8 1 = 0. The basic idea behind the efficient score test is that under 
H 0 we expect S1 (eo) to be close to 0, since the expectation of 
8(8) is 0 and G0 is consistent for e. 

Let I;-,1 be the upper left corner of (In)- 1 evaluated at e0 . The 
efficient score test statistic measures the departure of S1 (eo) from 
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0 and is defined as 

Rn = sl(eo)ti,l;1Sl(eo) = s(eo)I~ 1 S(eo). 

The equality holds because S2 (e0 ) = 0. 
Under H0 , Rn asymptotically has a chi-squared distribution with 

p1 degrees of freedom, so we reject Ho is Rn exceeds (1 - o:) chi­
squared quantile, X~1 (o:). See Cox and Hinkley (1974, section 9.3) 
for a proof of the asymptotic distribution. 

A.3 Unbiased Estimating Equations 

All of the estimators described in this book, including the MLE, 
can be characterized as solutions to unbiased estimating equations. 
Understanding the relationship between estimators and estimating 
equations is useful because it permits easy and routine calculation 
of estimated standard errors. The theory of estimating equation­
s arose from two distinct lines of research, in Godambe's (1960) 
study of efficiency and Huber's (1964, 1967) work on robust s­
tatistics. Huber's (1967) seminal paper used estimating equations 
to understand the behavior of the MLE under model misspecifi­
cation, but his work also applies to estimators that are not the 
MLE under any model. Over time, estimating equations became 
established as a highly effective, unified approach for studying wide 
classes of estimators; see, e.g., Carroll and Ruppert (1988) who use 
estimating equation theory to analyze a variety of transformation 
and weighting methods in regression. 

This section reviews the basic ideas of estimating equations: see 
Huber (1967), Ruppert (1985), Carroll & Ruppert (1988), McLeish 
& Small (1988), Desmond (1989) or Godambe (1991) for more 
extensive discussion. 

A.3.1 Introduction and Basic Large Sample Theory 

As in section A.2, the unknown parameter is e, and the vector 
of observations, including response, covariates, surrogates, etc. is 
denoted by C'Yi, Zi) fori= 1, ... ,n. For each i, let \Iii be a func­
tion of CYi, 8) taking values in p-dimensional space (p = dim(8)). 
Typically, \li i depends on i through Zi and the type of data set the 
ith case belongs to, e.g., whether that case is validation data, etc. 
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An estimating equation for e has the form 

n 

0 = n-1 L::wi (vi, e). (A.5) 
i=1 

The solution, e, to (A.5) as e ranges across the set of possible pa­
rameter values is called an M-estimator of e, a term due to Huber 
(1964). In practice, one obtains an estimator by some principle, 
e.g., maximum likelihood, least squares, generalized least squares, 
etc. Then, one shows that the estimator satisfies an equation of for­
m (A.5) and Wi is identified. The point is that one doesn't choose 
the Wi's directly, but rather that they are defined through the 
choice of an estimator. 

In (A.5), the function Wi is called an estimating function and 
depends on i through Zi. The estimating function (and hence the 
estimating equation) is said to be conditionally unbiased if it has 
mean zero when evaluated at the true parameter, i.e., 

(A.6) 

As elsewhere in this book, expectations and covariances are always 
conditional upon {Zi}l'· 

If the estimating equations are unbiased, then under certain reg­
ularity conditions e is a consistent estimator of e. See Huber 
(1967) for the regularity conditions and proof in the iid case. The 
basic idea is that for each value of e the right hand side of (A.5) 
converges to its expectation by the law of large numbers, and the 
true e is a zero of the expectation of (A.5). One of the regular­
ity conditions is that the true e is the only zero, so that e will 
converge to e under some additional conditions. 

Moreover, if e is consistent then by a Taylor series approxima­
tion 

where e now is the true parameter value. Applying the law of large 
numbers to the term in curly brackets, we have 

n 

e- e ~ -An(e)-1n-1 L wi(Yi, e), (A.7) 
i=1 
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where An(6) is given by (A.9) below. If follows that e is asymp­
totically normally distributed with mean 6 and covariance matrix 
n- 1A~1 (6)Bn(6)A~t(e), where A~t(e) = {A~ 1 (6)}t and 

n-1 t cov { \]!i (vi, e)}; (A.8) 
i=l 

(A.9) 

See Huber (1967) for a proof. There are two ways to estimate this 
covariance matrix. The first uses empirical expectation and is often 
called the sandwich estimator or a robust covariance estimator (a 
term we do not like-see below); in the former terminology, Bn 
is sandwiched between the inverse of An. The sandwich estimator 
uses 

(A.lO) 

(A.ll) 

The second method, called the model-based expectation method, 
uses an underlying model to evaluate (A.8)-(A.9) exactly, and then 
substitutes the estimated value e for 6, i.e., uses A;-1 BnA;-t. 

If \l!i is the likelihood score, i.e., \l!i = si, where si is defined in 
section A.2.2, then e is the MLE. In this case, both Bn(6) and 
An(6) equal the Fisher information matrix, In(6). However, An 
and En are generally different, so the sandwich method differs from 
using the observed Fisher information. 

As a general rule, the sandwich method provides a consistent 
estimate of the covariance matrix of e' without the need to make 
any distribution assumptions. In this sense it is robust. However, in 
comparison with the model-based expectation method, when a dis­
tributional model is reasonable the sandwich estimator is typically 
inefficient, which can unnecessarily inflate the length of confidence 
intervals. This inefficiency is why we don't like to call the sand­
wich method "robust." Robustness usually means insensitivity to 
assumptions at the price of a small loss of efficiency, whereas the 
sandwich formula can lose a great deal of efficiency. 
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A.3.2 Sandwich Formula Example: Linear Regression Without 
Measurement Error 

As an example, consider ordinary multiple regression without mea­
surement errors so that Yi = (30 + 13;zi + Ei, where the f.'s are 
independent, mean-zero random variables. Let Zi = (1, zDt and 
e = ((30 , 13;) t. Then the ordinary least squares estimator is an M­
estimator with W'i(Yi, 8) = (Yi- f3o- f3;Zi)Zi. Also, 

= -Z~(Z~)t 
t t ' 

n 

= -n-1 L:zi(zi)t, (A.12) 
i=l 

and if one assumes that the variance of f.i is a constant a 2 for all 
i, then 

(A.l3) 

Notice that An and Bn do not depend one so they are known ex­
actly except for the factor a2 in Bn. The model-based expectation 
method gives covariance matrix -a2 A;;:- 1, the well-known variance 
of the least squares estimator. Generally, a 2 is estimated by the 
residual mean square. 

The sandwich formula uses An = An and 

(A.l4) 

We have not made distributional assumptions about fi, but we 
have assumed homoscedasticity, i.e., that var(Ei) = a2 . To illustrate 
the "robustness" of the sandwich formula, consider the heterosce­
datic model where the variance of f.i is at depending on Zi. Then 
Bn is no longer given by (A.l3) but rather by 

n 

Bn = n-1 L:a;z;(zi)t, 
i=l 

which is consistently estimated by (A.l4). Thus, the sandwich for­
mula is heteroscedasticity consistent. In contrast, the model-based 
estimator of Bn, which is &2 An with An given by (A.l2), is inconsis­
tent for Bn. This makes model-based estimation of the covariance 
matrix of e inconsistent. 
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The inefficiency of the sandwich estimator can also be seen in 
this example. Suppose that there is a high leverage point, that is an 
observation with an outlying value of Zi. Then as seen in (A.14), 
the value of Bn is highly dep~ndent upon the squared residual of 
this observation. This ma!es Bn highly variable, and indicates the 
additional problem that Bn very sensitive to outliers. 

A.3.3 Sandwich Method and Likelihood-type Inference 

Likelihood ratio-type extensions of sandwich standard errors are 
also available, but not well known, see Huber (1967), Schrader 
& Hettmansperger (1980), Kent (1982), Ronchetti (1982) and Li 
& McCullagh (1994). This theory is essentially an extension of 
the theory of estimating equations, where the estimating equation 
is assumed to correspond to a criterion function, i.e., solving the 
estimating equation minimizes the criterion function. 

In the general theory we consider inferences about a parame­
ter vector e' and we assume that the estimate e maximizes an 
estimating criterion, £(8), which is effectively the working log like­
lihood, although it need not be the logarithm of an actual densi­
ty function. Following Li & McCullagh (1994), we refer to exp(£) 
= exp(l:: £i) as the quasilikelihood function. (Here, £i is the log 
quasilikelihood for the ith case and £ is the log quasilikelihood for 
the entire data set.) Define the score function, a type of estimating 
function, as 

[) -
U·(8) = -£·(8IY·) • ae ' ' ' 

the score covariance, 
n 

.Jn = L E{Ui(e) Ui(e)t}, (A.15) 
i=l 

and the negative expected hessian, 

Hn =-~ E { [)~tUi(e)}. (A.16) 

If £ were the true log likelihood, then we would have Hn = .Jn, 
but this equality usually fails for quasilikelihood. As in the the­
ory of estimating equations, the parameter e is determined by 
the equation E{Ui(e)} = 0 for all i (conditionally unbiased), or 
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possibly through the weaker constraint that I:~=l E{Ui(e)} = 0 
(unbiased). 

We partition e = ( 'l, r/)t, where 'Y is the p-dimensional param­
eter vector of interest, and 'T/ is the vector of nuisance parameters. 
Partition 1-l, omitting the subscript n for ease of notation, similarly 
as 

1-l = ( 1-ln 1-l'Y'I) ' 
1-l'I'Y 1-l'l'l 

and define 1-ln·'l = 1-ln -1-£7 '1 1-l;;J1-l'17 . 

Let e0 = ( 'Y5, if6) t denote the maximum quasilikelihood estimate 
subject to 'Y ='Yo· We need the large sample distribution of the log 
quasilikelihood ratio, 

£('Yo)= 2{£(e)- £(eo)}. 

The following result is well-known under various regularity con­
ditions. For the basic idea of the proof see Kent (1982). 

Theorem: If 'Y = 'Yo, then, as the number of independent obser­
vations increases, .C('Y0 ) converges in distribution to 2:~=1 >.k Wk, 
where W1, ... , Wp are independently distributed as xi, and >.1, ... , >.P 
are the eigenvalues of 1in·'1(1i-1 .:JH- 1 )n· 

To use this result in practice, either to perform a quasilikelihood 
ratio test of H 0 : 'Y = "(o, or to compute a quasilikelihood confidence 
set for 'Yo, we need to estimate the matrices 1-l and J. If all data 
are independent, an obvious approach is to replace the theoreti­
cal expectations in (A.15) and (A.16) by the analogous empirical 
averages. 

We also need to compute quantiles of the distribution of Lk xk wk 0 

Observe that if p = 1 the appropriate distribution is simply a s­
caled xi distribution. If p > 1, then algorithms given by Marazzi 
(1980) and Griffiths & Hill (1985) may be used. A quick and simple 
way to do the computation is to simulate from the distribution of 
L:k Xk wk, since chi-squared random variables are easy to generate. 

A.3.4 Unbiased, But Conditionally Biased, Estimating Equations 

It is possible to relax (A.6) to 

o = tE{ wi (Yi,e) }, 
i=l 
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and then the estimating function and estimating equation are not 
conditionally unbiased, but are still said to be unbiased. The theory 
of conditionally unbiased estimating equations carries over almost 
without change to estimating equations that are merely unbiased. 
The only difficulty is that if E{wi(Yi, en i= 0 then E{wi(Yi, e) 
wi(Yi, e)t} does not equal cov{wi(Yi, en and (A.ll) does not 
estimate Bn. Therefore, the sandwich formula does not lead to 
consistent standard errors unless modified appropriately, i.e., by 
computing the sample covariance matrix of the terms wi(Yi, e). 

A. 3. 5 Biased Estimating Equations 

The estimation methods described in Chapters 3, 4, and 5 and 
later used in Chapters 14 and 9 are approximately consistent, in 
the sense that they consistently estimate a value that closely ap­
proximates the true parameter. These estimators are formed by 
estimating equations such as (A.5), but the estimating functions 
are not unbiased for the true parameter e. Usually there exists e* 
which is close to e and which solves 

n 

o =I: E { wi (vi, e*)}. (A.l7) 
i=l 

In such cases, e is still asymptotically normally distributed but 
with mean e* instead of mean e. In fact, the theory of section 
A.3.4 is applicable since the equations are unbiased for e*. If 

then the the estimating functions are conditionally unbiased for e* 
and the sandwich method yields asymptotically correct standard 
error estimators. 

A.3.6 Stacking Estimating Equations: Using Prior Estimates of 
Some Parameters 

To estimate the regression parameter, B, in a measurement error 
model, one often uses the estimates of the measurement error pa­
rameters, a, obtained from another data set. How does uncertainty 
about the measurement error parameters affect the accuracy of the 
estimated regression parameter? In this subsection, we develop the 
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theory to answer this question. The fact that such complicated esti­
mating schemes can be easily analyzed by the theory of estimating 
equations further illustrates the power of this theory. 

We work generally in that a and f3 can be any parameter vectors 
in a statistical model, and we assume that both a and B are M­
estimators. Suppose that that a solves the estimating equation 

n 

0 = L ¢i(Yi, a), (A.l8) 
i=1 

and fJ solves 
n 

o =I: 'lli(Yi, B, a), (A.l9) 
i=1 

with a in (A.l9) fixed at the solution to (A.l8). The estimating 
functions in (A.l8) and (A.l9) are assumed to be conditionally 
unbiased. Since (a, B) solves (A.18) and (A.l9) simultaneously, the 
asymptotic distribution of (a, B) can be found by stacking (A.18) 
and (A.l9) into a single estimating equation 

(A.20) 

One then applies the usual theory to (A.20). Partition An= An(e), 
En= Bn(e), and A;:;,- 1 BnA;:;,-t according to the dimensions of a and 
B. Then the asymptotic variance of B is n-1 times the lower right 
submatrix of A;:;,- 1 BnA;:;,-t. After some algebra, one gets 

var(B) ~ n-1 A;;-,12{ Bn,22- An,21A;;-}1Bn,12 

B t A-t At A A- 1 B A-t At }A-t 
- n,12 n,ll n,21 + n,21 n,ll n,ll n,ll n,21 n,22 

where 

n a -L E{ aat <Pi(Yi, a)}, 
•=1 

An,21 

An,22 
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n 

Bn,ll L ¢i(Yi, a)¢hYi, a), 
i=l 

n 

Bn,12 L ¢i(Yi, a)w~(Yi, a, B), and 
i=l 

n 

Bn,22 L wi(Yi, a, B)w~(Yi, a, B). 
i=l 

As usual, the components of An and Bn can be estimated by model­
based expectations or by the sandwich method. 

A.4 Quasilikelihood and Variance Function (QVF) 
Models 

A.4.1 General Ideas 

In the case of no measurement error, Carroll & Ruppert (1988) de­
scribe estimation based upon the mean and variance functions of 
the observed data, i.e., the conditional mean and variance of Y as 
functions of (Z, X). We will call these QVF methods, for Quasilike­
lihood and Variance Functions. The models include the important 
class of generalized linear models (McCullagh & Nelder, 1989 and 
section A.5 of this monograph), and in particular linear, logistic, 
Poisson, and gamma regression. QVF estimation is an important 
special case of estimating equations. 

The typical regression model is a specification of the relationship 
between the mean of a response Y and the predictors (Z, X): 

E(YfZ, X) = f(Z, X, B), (A.21) 

where f(-) is the mean function and B is the regression parame­
ter. Generally, specification of the model is incomplete without an 
accompanying model for the variances, 

(A.22) 

where g( ·) is called the variance function and 8 is called the vari­
ance function parameter. We find it convenient in (A.22) to sepa­
rate the variance parameters into the scale factor (72 and e, which 
determines the possible heteroscedasticity. 

The combination of (A.21) and (A.22) includes many important 
special cases, among them: 
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• Homoscedastic linear and nonlinear regression, with g(z, x, B, 
B) = 1. For linear regression, f(z, x, B) = (30 + (3~x + f3;z. 

• Generalized linear models, including Poisson and gamma re­
gression, with 

g(z,x,B,B) = f 9 (z,x,B) 

for some parameter B. For example, () = 1/2 for Poisson re­
gression, while () = 1 for gamma and lognormal models. 

• Logistic regression, where f(z, x, B) = H((30 + (3~x + f3;z), 
H ( v) = 1/ { 1 + exp( -v)}, and since Y is Bernoulli distributed, 
g2 = !(1- f), a 2 = 1 and there is no parameter e. 

Model (A.21)-(A.22) includes examples from fields including epi­
demiology, econometrics, fisheries research, quality control, phar­
macokinetics, assay development, etc. See Carroll & Ruppert (1988, 
Chapters 2-4) for more details. 

A.4.2 Estimation and Inference for QVF Models 

Specification of only the mean and variance models (A.21)-(A.22) 
allows one to construct estimates of the parameters (B, B). No fur­
ther detailed distributional assumptions are necessary. Given (), B 
can be estimated by generalized (weighted) least squares (GLS) a 
term often now referred to as quasilikelihood estimation. The con­
ditionally unbiased estimating function for estimating B by GLS 
is 

where 

Y-f(Z,X,B) ( B) 
2 2(Z X B B)fa Z,X, ' 

a g ' ' ' 

a 
fa(Z,X,B) = aBf(Z,X,B) 

(A.23) 

is the vector of partial derivatives of the mean function. The con­
ditionally unbiased estimating equation for B is the sum of (A.23) 
over the observed data. 

To understand why (A.23) is the GLS estimating function, note 
that the nonlinear least squares (LS) estimator, which minimizes 

n 

2)Y- J(Z,X,B)}2 , 

i=l 
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solves 
n 

L)Y- f(Z,X,B)}JB(Z,X,B) = 0. (A.24) 
i=l 

The LS estimator is inefficient and can be improved by weight­
ing the summands in (A.24) by reciprocal variances; the result is 
(A.23). 

There are many methods for estimating B. These may be based 
on true replicates if they exist, or on functions of squared residuals. 
These methods are reviewed in Chapters 3 and 6 of Carroll & 
Ruppert (1988), see also Davidian & Carroll (1987) and Rudemo, 
et al. (1989). Let (·) stand for the argument (Z, X, B). If we define 

R(Y, ·, B, a) = {Y- /(·)} / {ag(·, B)}, (A.25) 

then one such (approximately) conditionally unbiased score func­
tion forB (and a) given B is 

{ 
2 n - dim(B) } a 

R (Y,·,B,a)- tlog{ag(·,B)}, 
n 8(a,B) 

(A.26) 

where dim(B) is the number of components of the vector B. The 
(approximately) conditionally unbiased estimating equation for B 
and a is the sum of (A.26) over the observed data. The resulting M­
estimator is closely related to the REML estimator used in variance 
components modeling; see Searle, Casella, & McCulloch (1992). 

As described by Carroll & Ruppert (1988), (A.23)-(A.26) are 
weighted least squares estimating equations, and nonlinear regres­
sion algorithms can be used to estimate the parameters. 

There are two specific types of covariance estimates, depending 
on whether or not one believes that the variance model has been 
approximately correctly specified. We concentrate here on infer­
ence for the regression parameter B, referring the reader to Chap­
ter 3 of Carroll & Ruppert (1988) for variance parameter inference. 
Based on a sample of size n, f3 is generally asymptotically normal­
ly distributed with mean Band covariance matrix n-1 A;:;- 1 BnA;:;- 1 , 

where if ( ·) stands for (Zi, Xi, B), 

n 

An n-l L {/B(·)} {/B(·)}t { a 2g2 (·, B)} -l; 
i=l 
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The matrix Bn in this expression is the same as (A.8) in the 
general theory of unbiased estimating equations. The matrix An is 
the same as (A.9), but it is simplified somewhat by using the fact 
that E(YJZ, X) = f(Z, X, !3). 

If the variance model is correct, then E {Yi - f(Zi, Xi, !3)} 2 = 
u2 g2 (Zi, Xi, l3, B), An = Bn and an asymptotically correct covari­
ance matrix is n- 1A~ 1 , where(·) stands for (Zi,Xi,B) and 

An = n -1 t {/B(·)} {/B(.)} t { (J2 g2 (·,B)} -1 
i=1 

If one has severe doubts about the variance model, one can use 
the sandwich method to estimate E{Yi- /(·)} 2 , leading to the 
covariance matrix estimate A~ 1 BnA~ 1 , where 

In some situations, the method of section A.3.3 can be used in 
place of the sandwich method. 

With a flexible variance model which seems to fit the data fairly 
well, we prefer the covariance matrix estimate n - 1 A~ 1 , because it 
can be much less variable than the sandwich estimator. Drum & 
McCullagh (1993) basically come to the same conclusion, stating 
that "unless there is good reason to believe that the assumed vari­
ance function is substantially incorrect, the model-based estimator 
seems to be preferable in applied work." Moreover, if the assumed 
variance function is clearly inadequate, most statisticians would 
find a better variance model and then use n-1 A~ 1 with the better 
fitting model. 

In addition to formal fitting methods, simple graphical displays 
exist to evaluate the models (A.21)-(A.22). Ordinary and weight­
ed residual plots with smoothing can be used to understand de­
partures from the assumed mean function, while absolute residual 
plots can be used to detect deviations from the assumed variance 
function. These graphical techniques are discussed in Chapter 2, 
section 7 of Carroll & Ruppert (1988). 
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A.5 Generalized Linear Models 

Exponential families have density or mass function 

{ y~- C(~) } 
f(yj~) = exp ¢ + c(y, ¢) . (A.27) 

With superscripted (j) referring to the jth derivative, the mean 
and variance of Yare f-l = C( 1l(~) and ¢C(2l(~), respectively. See, 
for example, McCullagh & Neider (1989). 

If ~ is a function of a linear combination of predictors, say 
~ = 3 (TJ) where TJ = (f3o + (3~X + f3;Z), then we have a generalized 
linear model. Generalized linear models include many of the com­
mon regression models, e.g., normal, logistic, Poisson and gamma. 
Consideration of specific models is discussed in detail in Chapter 
6. Generalized linear models are mean and variance models in the 
observed data, and can be fit using QVF methods. 

If we define L = (C(1) o :=:)-1 , then L(f-l) = T}; L is called the 
link function since it links the mean of the response and the linear 
predictor, "'· If 3 is the identity function, when we say that the 
model is canonical; this implies that L = (C(ll)- 1 , which is called 
the canonical link function. The link function L, or equivalently 3, 
should be chosen so that the model fits the data as well as possible. 
However, if the canonical link function fits reasonably well, then it 
is typically used, because doing so simplifies the analysis. 

A.6 Bootstrap Methods 

A.6.1 Introduction 

The bootstrap is a widely used tool for analyzing the sampling 
variability of complex statistical methods. The basic idea is quite 
simple. One creates simulated data sets, called bootstrap data sets, 
whose distribution is equal to an estimate of the probability distri­
bution of the actual data. Any statistical method that is applied 
to the actual data can also be applied to the bootstrap data sets. 
Thus, the empirical distribution of an estimator or test statistic 
across the bootstrap data sets can be used to estimate the actual 
sampling distribution of that statistic. 

For example, suppose that e is obtained by applying some es­
timator to the actual data, and §(m) is obtained by applying the 
same estimator to the mth bootstrap data set, m = 1, ... , M, where 
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¥ is the number of ~ootstra_E data sets that we generate, and let 
0 be the average of 0(1), ... , e(m). Then, the covariance matrix of 
e can be estimated by 

M t 

Vai"(e) = (M -1)-1 L (e(m)- e) (e(m)- e). (A.28) 
m=1 

Despite this underlying simplicity, implementation of the boot­
strap can be a complex, albeit fascinating, subject. There are many 
ways to estimate the probability distribution of the data, and it is 
not always obvious which way is most appropriate. Bootstrap stan­
dard errors are easily found from (A.28), and these can be plugged 
into (A.4) to get "normal theory" confidence intervals. However, 
these simple confidence intervals are not particularly accurate, and 
several improved bootstrap intervals have been developed. Com­
paring bootstrap standard errors and confidence intervals with 
traditional methods and comparing the various bootstrap inter­
vals with each other requires the powerful methodology of Edge­
worth expansions. Efron & Tibshirani (1993) give an excellent, 
comprehensive account of bootstrapping theory and applications. 
For more mathematical theory, including Edgeworth expansions, 
see Hall (1992). Here we give enough background so that the read­
er can understand how the bootstrap is applied to obtain standard 
errors in the examples. 

A. 6. 2 Nonlinear Regression Without Measurement Error 

To illustrate the basic principles of bootstrapping, we start with 
nonlinear regression without measurement error. Suppose that Yi 
= f(Zi, B) + Ei where the Zi are, as usual, covariates measured 
without error, and the E/s are independent with the density of Ei 
possibly depending on Zi. There are at least three distinct methods 
for creating the bootstrap data sets. Efron & Tibshirani (1993) call 
the first two methods resampling pairs and resampling residuals. 
The third method is a form of the parametric bootstrap. 

Resampling pairs 

Resampling pairs means forming a bootstrap data set by sampling 
at random with replacement from {(Yi, Zi)}f. The advantage of 
this method is that it requires minimal assumptions. If Ei has a dis-
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tribution depending on zi in the real data, then this dependence 
is captured by the resampling since the (Yi, Zi) pairs are never 
broken during the resampling. Therefore, standard errors and con­
fidence intervals produced by this type of bootstrapping will be 
asymptotically valid in the presence of heteroscedasticity or other 
forms on nonhomogeneity. Besides this type of robustness, another 
advantage of resampling pairs is that it is easy to extend to more 
complex situations, such as measurement error models. 

The disadvantage of resampling pairs is that the bootstrap data 
sets will have different sets of Zi 's than the original data. For ex­
ample, if there is a high leverage point in the original data, it may 
appear several times or not at all in a given bootstrap data set. 
Therefore, this form of the bootstrapping estimates unconditional 
sampling distributions, not sampling distributions conditional on 
the Zi's. Some statisticians will object to this, asking "even if the 
Zi 's are random, why should I care that I might have gotten d­
ifferent Zi 's than I did? I know the values of the Zi 's that I got, 
and I want to condition upon them." We feel that this objection 
is valid. However, as Efron & Tibshirani (1993) point out, often 
conditional and unconditional standard errors are nearly equal. In 
addition, unconditional variances are conservative in the sense of 
being larger than conditional variances. 

Resampling residuals 

The purpose behind resampling residuals is to condition upon the 
Zi's. The ith residual is ei = Yi - f(Zi, B) where fj is, say, the 
nonlinear least squares estimate. To create the mth bootstrap da­
ta set we first center the residuals by subtracting their sample 
mean, e, and then draw {e~m)}f=1 randomly, with replacement, 

from {(ei- e)}f. Then we let Y;(m) = f(Zi,B) + e~m)_ The mth 

bootstrap data set is {(~(m), Zi)}f=1 . Notice that the bootstrap 
data sets have the same set of Zi 's as the original data, so that 
bootstrap sampling distributions are conditional on the Zi 's. By 
design, the distribution of the ith "error" in a bootstrap data set is 
independent of Zi. Therefore, resampling residuals is only appro­
priate when the Ei's in the actual data are identically distributed, 
and is particularly sensitive to the homoscedasticity assumption. 
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The parametric bootstrap 

The parametric bootstrap can be used when we assume a para­
metric model for the fi 's. Let f be a known mean-zero density, 
say the standard normal density, ¢. Assume that the density of fi 
is in the scale family f(-/a)ja, a > 0, and let a be a consisten­
t estimator of a, say the residual root-mean square iff is equal 
to ¢. Then, as when resampling residuals, the bootstrap data sets 
are {(Yim), Zi)}f, where Yi = f(Zi,f]) + eim), but now the fim)s 
are, conditional on the observed data, iid from f(-ja)ja. Like re­
sampling residuals, the parametric bootstrap estimates sampling 
distributions that are conditional on the Zi 's and requires that the 
fi 's be independent of the Zi 's. In addition, like other parametric s­
tatistical methods, the parametric bootstrap is more efficient when 
the parametric assumptions are met, but possibly biased otherwise. 

A. 6. 3 Bootstrapping H eteroscedastic Regression Models 

Consider the QVF model 

Yi = f(Zi, B)+ ag(Zi, B, fJ)Ei, 

where the f/S are iid. The assumption of iid errors holds when Yi 
given Zi is normal, but this assumption precludes logistic, Poisson, 
and gamma regression, for example. This model can be fit by the 
methods of section A.4.2. To estimate the sampling distribution of 
the QVF estimators, bootstrap data sets can be formed by resam­
pling from the set of pairs {(Yi, Zi)}f as discussed for nonlinear 
regression models in section A.6.2. 

Resampling residual requires some reasonably obvious changes 
from section A.6.2. First, define the ith residual to be 

yi - f(Zi, B) -
ei = ~ ~ - e, 

ag(Zi, B, fJ) 

where e is defined so that the ei's sum to 0. To form mth boot­
strap data set, let { eim) }f=1 be sampled with replacement from the 
residuals and then let 

(m) ~ ~ ~ ~ (m) 
Yi = f(Zi, B) + ag(Zi, B, fJ)ei . 

Note that eim) is not the residual from the ith of the original 
observations, but rather is equally likely to be any of the n residuals 
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from the original observations. See Carroll and Ruppert (1991) 
for further discussion of bootstrapping heteroscedastic regression 
models, with application to prediction and tolerance intervals for 
the response. 

A. 6.4 Bootstrapping Logistic Regression Models 

Consider the logistic regression model without measurement error, 

pr(Y; =liZ;)= H(f3o + f3'IZ;), 

where as elsewhere in this book, H(v) = {l+exp( -v)} -l. The gen­
eral purpose technique of resampling pairs works here, of course. 
Resampling residuals is not applicable, since the residuals will 
have skewness depending on Z; so are not homogeneous even after 
weighting as in section A.6.3. The parametric bootstrap, however, 
is easy to implement. To form the mth data set, fix the Z;'s equal 
to their values in the real data and let Yjml be Bernoulli with 

(m) ~ ~t 
pr(Y; = liZ;) = H(f3o + f3zZ;). 

A.6.5 Bootstrapping Measurement Error Models 

In a measurement error problem, a typical data vector consists of 
Z; and a subset of the following data: the response Y;, the true 
covariates X;, {W;,j : j = 1, ... , k;} which are replicate surrogates 
for X;, and a second surrogate T;. We divide the total collection 
of data into homogeneous data sets which have the same variables 
measured on each observation and are from a common source, e.g., 
primary data, internal replication data, external replication data, 
and internal validation data. 

The method of "resampling pairs" ignores the various data sub­
sets, and can often be successful (Efron, 1994). Taking into account 
the data subsets is better called "resampling vectors," and consists 
of resampling, with replacement, independently from each of the 
homogeneous data sets. This ensures that each bootstrap data set 
has the same amount of validation data, data with two replicates 
of W, data with three replications, etc. as the actual data set. Al­
though in principle we wish to condition on the Z; 's and resampling 
vectors does not do this, resampling vectors is a useful expedient 
and allows us to bootstrap any collection of data sets with minimal 



278 FITTING METHODS AND MODELS 

assumptions. In the examples in this monograph, we have report­
ed the "resampling pairs" bootstrap analyses, but because of the 
large sample sizes the reported results do not differ substantially 
from the "resampling vectors" bootstrap. 

Resampling residuals is applicable to validation data when there 
are two regression models, one for Yi given (Zi, Xi) and another 
for Wi given (Zi, Xi)· One fits both models and resamples resid­
uals from the first to create the bootstrap Yim) 's and from the 

second to create the wim) 's. This method generates sampling dis­
tributions that are conditional on the observed (Zi, Xi)'s. 

The parametric bootstrap can be used when the response, given 
the observed covariates, has a distribution in a known parametric 
family. For example, suppose one has a logistic regression model 
with internal validation data. One can fix the (Zi, Xi, Wi) vectors 
of the validation data and create bootstrap responses as in section 
A.6.4 using (Zi, Xi) in place of Zi. Because Wi is a surrogate it 
is not used to create the bootstrap responses of validation data. 
For the nonvalidation data, one fixes the (Zi, Wi) vectors. Using 
regression calibration as described in Chapter 3, one fits an ap­
proximate logistic model for Yi given (Zi, Wi) and again creates 
bootstrap responses distributed according to the fitted model. The 
bootstrap sampling distributions generated in this way are condi­
tional on all observed covariates. 

A. 6. 6 Bootstrap Confidence Intervals 

As in section A.2.4, let et = (fh, 8~) where fh is univariate, and 
suppose that we want a confidence interval for 81 . The simplest 
bootstrap confidence interval is "normal based." The bootstrap 
covariance matrix in (A.28) is used for a standard error 

se(OI) = VVai:(e)n. 

This standard error is then plugged into (A.4) giving 

~ 1 a V ~ e1 ±<I>- (1 - 2) Vai:(8n). (A.29) 

The so-called "percentile" methods replace the normal approx­
imation in (A.29) by percentiles of the empirical distribution of 

{(Oim) - 01)}]'1. The best of these percentile methods are the so-
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called BCa and ABC intervals and they are generally more accurate 
than (A.29) in the sense of having a true coverage probability clos­
er to the nominal (1- a); see Efron and Tibshirani (1993) for a 
full description of these intervals. 

Hall (1992) has stressed the advantages of bootstrapping an 
asymptotically pivotal quantity, that is, a quantity whose asymp­
totic distribution is independent of unknown parameters. The per­
centile-t methods used the "studentized" quantity 

(jl - (}l 
t= --~-, 

se( 01) 
(A.30) 

which is an asymptotic pivot with an large-sample standard normal 
distribution for all values of B. Let se(m)(B1) be the standard error 
of B1 computed from the mth bootstrap data set and let 

li'(m) ~ 
(m) _ (}l - (}l 

t - ~ . 
se(m)(Ol) 

Typically, se(m)(B1 ) will come from an expression for the asymp­
totic variance matrix of§ (e.g., the inverse of the observed Fisher 
information matrix given by (A.3)) rather than bootstrapping, s­
ince the latter would require two levels of bootstrapping, an outer 
level for { t( m)} r and for each m an inner level for calculating 
the denominator of t(m). This would be very computationally ex­
pensive, especially for the nonlinear estimators in this monograph. 
Let h-'a be the (1- a) quantile of {Jt(m) J}j'f. Then the symmetric 
percentile-t confidence interval is 

(A.31) 

Note that se(BI) is calculated from the original data in the same 
way that se(m) (B1 ) is calculated from the mth bootstrap data set. 
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Gamma model, 124, 126, 131, 270 
Generalized linear models, 50, 

72-77, 102, 108, 116, 126, 167, 
206, 257, 269-273 
see also Variance function 

models 
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Heteroscedastic regression: see 
Variance function models 

Hypothesis testing, 18, 43, 
206-220, 259 

Identifiability, 143, 151, 231-236 
Ignorable measurement error, 229 
Importance sampling, 171-173 

see also Bayesian methods 
Instrumental variables 

Estimation, 12-13, 46, 54, 70, 
107-115 

Inference, 116-120 
Large sample theory, 50, 72-77, 

97-106, 116-121, 193-196, 
203-205, 262-271 

Latent variables: see Maximum 
likelihood 

Likelihood, 18, 57, 60, 123, 
141-160, 235, 257-260 
see also Maximum likelihood 

Linear regression, 17-32, 41, 
51-52, 62-67, 80, 95, 102, 
122-126, 130, 143-145, 160-162, 
245, 264, 270 
see also Method of moments 

Logistic model: polytomous, 236 
Logistic-normal integrals, 64 
Logistic regression, 5, 41, 51, 

63-66, 102, 125, 128, 135, 
142-143, 153, 163, 184, 226-228, 
236-238, 242-245, 270, 277 

Loglinear mean models 40, 52, 
66-68, 95, 123-124, 131 

Maximum likelihood, 
Comparison with functional 

methods, 141-142, 144-146 
Computation, 142, 153, 161-162 
Contingency tables, 253 
Identifiability, 143, 151 
Inference, 142, 259 
Likelihood functions, 57, 60, 

71, 123, 141-160, 182-188, 
215, 244-248, 257-259 
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Response error, 235-238 
Use in measurement error 

models, 141-143 
When X is partially observed, 

152 
When X is unobserved, 

146-151, 156-160 
Measurement error models, 

Additive, 8, 22, 27, 47, 69-71, 
80-82, 87, 122-127, 133, 138, 
141, 147, 154-159, 230, 233 

Berkson, 3, 9, 52-56, 67, 143, 
150-151, 255 

Differential, 16-17, 245-247 
General, 2, 87-89, 147 
Multiplicative, 48-49, 80, 87, 

141, 147, 150, 230, 233 
Nondifferential, 16-17, 35 
Random coefficient models, 151 
Variance estimation, 47-49, 

69-71, 84, 133-134 
see also Correlated errors, 

Replicates in additive error 
models, Response error 

Method of moments, 27-30, 40, 
124, 245 
see also Correction for 

attenuation, Regression 
calibration 

Misclassification, 44, 142, 253 
Missing data, 18, 141, 144-145, 

152, 182-185 
Mixture methods, 247-251 

see also Semiparametric 
methods 

Model robustness, see Functional 
modeling, Unknown link 
functions 

Naive test, see Hypothesis Testing 
Nonignorable measurement error, 

299 
Nonparametric mixture modeling, 

247-251 

Nonparametric regression, 215, 
223-228 

Offset, 238 
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Optimal estimators, 138 
Orthogonal regression, 28-31 
Poisson model, 123, 129, 137, 141, 

270 
Power transformation models: see 

Transform-Both-Sides model 
Prediction in the presence of 

measurement error, 18 
Probit regression, 141, 145, 163 
Projection pursuit, see Unknown 

link functions 
Quadratic regression, 52, 68, 78, 

96 
Quasilikelihood, see Variance 

function models 
Regression calibration, 

Accuracy, 61-69 
Best linear approximations, 47 
Estimation, 41-50, 87, 158, 203 
Expanded models, 41, 51-62, 

67-68 
Inferences, 50-51, 72-77 
James-Stein methods, 50 
Models, 8-9, 40-44, 53, 61-68, 

79, 89, 122, 192, 207, 215, 
225, 245, 248, 254-256 

Nonparametric regression, 
225-228 

Regression models: see linear, 
logistic, loglinear, Poisson, 
quadratic, segmented models 

Regression: nonparametric, 
223-228, 240 

Regression to the mean, see 
Attenuation 

Reliability ratio, 22, 27 
Replicates in additive error 

models, 5, 17, 47, 70, 87-88 
Response error, 229-242 

Additive, 230-235 
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Biased, 233, 236 
Likelihoods, 235-238 
Semiparametrics 238-240 

Robust covariance estimator: see 
Sandwich method 

Sandwich method for standard 
errors, 41, 72-77, 86, 89, 101, 
124, 142, 232-233, 259-265 

Segmented regression, 97, 145, 
156-160 

Semiparametric methods, 
As functional methods, 182 
Efficient methods, see moments 

methods 
Mean score method, 187-188 
Modified pseudolikelihood, 

241-242 
Moments methods, 188-198 
Pseudolikelihood, 185-187, 

193-194, 238 
Regression calibration, 192-194 
Using complete data only, 

183-184, 188, 193-196 
see also Functional modeling, 

SIMEX, Conditional scores, 
Corrected scores, Unknown 
link functions 

SIMEX, 
Basic idea, 79-80 
Biases, 95-97 
Extrapolation step, 83-85 
Method, 82, 244 
Nonadditive errors, 87-88 
Nonparametric regression, 

224-228 
Relation to the jackknife, 

86-87, 98-99 
Simulation step, 82-83 
Standard errors, 86, 89-105, 

122 
Sliced inverse regression, 201-202 

see also Unknown link 
functions 

SUBJECT INDEX 

Small error approximations, 6, 18, 
69, 123, 144-145, 182 

Structural modeling, 6, 18, 46, 
123, 144-145, 182 
see also Bayesian methods, 

Maximum likelihood 
Surrogate, 16 

response, 235 
See also Measurement error 

models: nondifferential 
Survival analysis, 40, 254-256 
Testing, see Hypothesis testing 
Transform-Both-Sides regression 

model, 56, 87, 154-156 
Transportability, 10, 148 

Transportability: dangers of, 11 
Two-stage studies, 246 

See also Design, Types of data 
Types of data, 

External data, 12, 150 
Instrumental data, 107-108 
Internal data, 12, 46, 182 
Predictors without error, 1, 

147, 251 
Replication data, 12-13, 50-54, 

143, 182, 251 
True but fallible predictors, 14 
Validation data, 12, 46, 54, 143, 

182, 236, 238, 240-241, 251 
Unbiased estimating equations, 

101-102, 124, 261-268 
Stacking method, 268-269 

Unknown link functions, 199-202 
see also Functional modeling 

Validation studies, see Design of 
validation studies, Maximum 
likelihood, Types of data, 
Semiparametric methods 

Variance function models, 50-56, 
62, 67, 72-77, 102, 108, 116, 
128, 136, 141, 160, 167, 
185-188, 206-207, 226, 230-234, 
269-276 
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Power-of-mean, 231-232 
see also Generalized linear 

models 
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