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Preface 

This book is about using graphs to understand how a response variable 
depends on one or more predictors, bringing two new sets of ideas to this 
old problem. First, we now have the potential to learn much more from 
graphs because high-quality computers allow us to draw graphs easily, to 
interact with them, and to use motion to convey information. Second, 
foundational guidance for graphics is available from an emerging theory 
that tells us what to look for in graphs, and how to interpret what we see. 
Combining these two advances gives us a new field of regression graphics. 
We describe in this book how to discover the structure of most regression 
problems, and illustrate how to translate that structure into useful models 
when appropriate. 

We have written this book to be accessible to students who are cur- 
rently learning linear regression for the first time. This is not a research 
monograph, although some of the material contained here cannot be found 
elsewhere. We have taught several times using preliminary versions of 
this book, integrating the material into a single-quarter course that for- 
merly covered just linear regression for upper division undergraduate and 
beginning graduate students in a variety of fields. This new methodology 
complements standard methods and does not replace them. 

The R-code 

Many of the ideas described in this book require an approach to statistical 
computing that is not currently available in standard statistical software, 
so we have included software with this book. The program is called the 
R-code, short for regression code. It is an application written in Luke 
Tierney’s Xlisp-Stat language. The disks included in the back of this book, 
for both Macintosh and Windows computers, contain both the R-code and 

XV 
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Xlisp-Stat. However, programming in Xlisp-Stat or any other language is 
not required to use the R-code. 

The R-code is a nearly complete system for linear regression analysis, 
and could be used as the only program in a linear regression course, even 
without using its graphics capabilities. This book is the manual for the 
R-code, although most of the ideas in the book are independent of the 
program. 

Outline and Summary 

Because much of the material in this book is novel, we present here an 
overview of our general approach and philosophy. This overview is at a 
higher mathematical level than the book itself. 

Statistical graphics can be viewed as consisting of two broad types of 
tasks: construction and interpretation. Construction refers to everything 
involved in the production of a graphical display. In this book we rely 
on histograms, 2D scatterplots, 3D scatterplots and scatterplot matrices, 
along with various interactive graphical enhancements such as smoothing, 
linking, brushing, detrending, projecting and orthogonalizing. The first 
five chapters are devoted to introducing the graphical tools and showing 
how they relate to regression problems. Most plot controls, which are 
plotting tools that allow the user to interact with graphs, are introduced in 
these chapters. Detailed explanation of a few plots controls, such as the 
ability to delete selected points from an analysis interactively, is reserved 
until later chapters. 

In Chapter 6 we begin discussion of interpretation, which refers to the 
way graphical displays are characterized and how those characterizations 
might be used to form conclusions about the regression problem itself or the 
continuation of the analysis. Useful interpretations are possible when the 
graph is fundamentally connected to the underlying regression problem. 

The primary graphical goal of this book is to form displays that can 
provide visual information on how the distribution F(ylx) of a univariate 
response y given a p x 1 predictor x changes with the value of x. We 
emphasize two important characteristics of the conditional distribution, 
the regression function E(y1x) and the variance function var(y(x), but for 
this description the more general goal is useful. When there is only one 
predictor, the conditional distributions F(ylx) can be studied with a 2D 
scatterplot of the data, with the response on the vertical axis and the pre- 
dictor on the horizontal axis. The basic ideas for this are introduced in 
Chapters 2 and 3. Even in this relatively simple setting, unfamiliar though 
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intuitive ideas are required. When p 1 2, we might think in principle of 
drawing a ( p  + 1)-dimensional plot, with the response on the vertical axis, 
and the predictors on p “horizontal” axes. Of course if p 2 3 this plot 
is only theoretical in our three-dimensional world, so we need additional 
structure to guide the construction of practically usable plots. 

A fundamental idea we use is dimension reduction (see Li, 1991 and 
Cook, 1994). We want to replace x with the smallest number d _< p of 
linear combinations ( h y x ,  . . . .h;x) of x without loss of information on 
F(y1x) .  Let q = (h  1, . . . , h d ) .  The condition that x can be replaced by 
q T x  without loss of information is equivalent to the restriction that 

for all values of x in the relevant sample space. If (0.1) holds then it also 
holds with q replaced by q A  where A is any full-rank d x d matrix. Thus 
(0.1) is really a statement about S,,, (q), the d-dimensional subspace of 
MP spanned by the columns of q, rather than about any particular basis q. 
The subspace S,,, is called the minimum dimension-reduction subspace for 
F ( y l x )  in Cook (1994). In this book the dimension d = dim(Sylx) of S,,, 
is called the structural dimension of the regression. We generally restrict 
attention to regression problems with d 5 2. 

If S-,,,, were known and d 5 2, then a plot with y on the vertical axis and 
q T x  on the horizontal axis or axes would contain all sample information 
on F(y1x) .  Such plots are called ideal summary plots. When d = 0, so 
that F ( y l x )  = F ( y ) ,  a histogram of y is an ideal summary plot. If d = 1 
then F ( y J x )  = F ( y l h r x ) ,  and the 2D scatterplot of y versus h y x  is an 
ideal summary plot. A three-dimension ideal summary plot is required if 
d = 2. The estimation of ideal summary plots is a theme of this book. 

As an example, the usual homoscedastic linear regression model with 
independent errors, 

(0.2) 

has structural dimension 1 with S,,, = S@).  This model also restricts the 
regression function to be linear in x and the variance function to be constant. 
For any nonzero constant c, a plot of y versus cPTx is an ideal summary plot. 
In Chapter 6 we restrict attention to model (0.2) with p = 2 and describe 
how to use a 3D plot to obtain a visual estimate of an ideal summary 
plot. We also introduce the notion that the distribution of the predictors is 
central to graphical analyses, a topic that becomes more important as the 
book progresses. Predictors x are called linear predictors if E(x I B T x )  is 
a linear function of the value of B T x  for all conformable matrices B. 

ylx = Po + P T X  + E 
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In the first three sections of Chapter 7 we describe how 3D plots can 
be used to construct visual estimates of S,,, when p = 2, but without 
assuming a particular model. The approach we take stands in contrast 
to the more usual approach of fitting a target model such as (0.2), and then 
using the residuals from the fit to criticize the model with the eventual goal 
of model refinement (see Cook and Weisberg 1982, Sec. 1.2). The dis- 
cussion of many-predictor problems is started in Section 7.4 by restricting 
consideration to regressions without a model but with structural dimen- 
sion 1. There we rely on a key result of Li and Duan (1989) to justify using 
the ordinary least squares estimate of @ from (0.2) as a basis for estimating 
S,,, when the predictors are linear, even though model (0.2) may clearly 
be wrong. In Chapter 8 we use sliced inverse regression (Li, 1991) and a 
related graphical procedure to obtain estimates of S,,, without restriction 
on the number of predictors or the structural dimension, but with linear 
predictors required. 

In Chapter 9 we discuss the use of coordinate-wise predictor transfor- 
mations to simplify a regression problem. Let t ( x )  = (t ,(x,))  denote the 
p x 1 vector of transformed predictors. Often transformations can be found 
so that F(ylx)  = F ( y l t ( x ) )  and dim(Sylt(x)) < dim(S,I,), thereby form- 
ing a related regression with reduced structural dimension. The approach 
of Chapter 9 is restricted to coordinate-wise transformations via general- 
ized additive models and component-plus-residual plots. Transformations 
t, are estimated interactively and graphically using plot controls to extract 
smooths. The discussion ends with one iteration of a basic backfitting 
procedure, which is often adequate with linear predictors. 

Response transformations are useful for inducing a linear regression 
function in problems with structural dimension 1. A graphical method for 
selecting linearizing response transformations is described in Chapter 10. 
Standard Box-Cox methods are discussed as well. 

In Chapter 1 1 we turn to diagnostic residual plots assuming that a target 
linear model has been developed, perhaps using the graphical methods of 
the previous chapters. Let e denote population residuals from the target 
model. The general diagnostic issue is to determine graphically if there 
is information in the data to contradict the conjecture that dim(S,I,) = 0, 
which is equivalent to the conjecture that the target model is adequate. We 
make use of linear predictors to reduce the work involved. The treatment 
of outliers and influential observations in Chapter 13 is fairly standard, and 
this chapter is devoted mainly to showing how unusual observations can 
be addressed in the R-code. 

An adequate linear model (0.2) is assumed in Chapters 12 and 14. 
Graphical methods are suggested for visually assessing the contributions of 
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individual predictors (Chapter 12) and for constructing joint 2D and 3D 
confidence regions for the coefficients (Chapter 14). 

Organization and Style 

When writing this book, we envisioned the reader sitting at a computer and 
reworking the examples in the text. Indeed, some of the text can read as if 
we were next to the reader, suggesting what to do next. To maintain this 
low-key style, we avoided technical discussions and didn’t spend much time 
on numerical results. References and technical comments are collected in 
the Complements section at the end of each chapter. 

Teacher’s Manual 

A teacher’s manual, giving solutions to the exercises, our course outline, 
and other material, is available from the publisher, John Wiley & Sons, Inc. 

R-code Questions 

Questions concerning the R-code and bug reports should be sent via e-mail 
to rcodeC3stat. umn. edu. 
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C H A P T E R  1 

Getting Started 

The primary goal in a regression analysis is to understand how a response 
variable depends on one or morepredictors. With just one predictor, a two- 
dimensional (2D) graph with the predictor on the horizontal axis and the 
response on the vertical axis shows the dependence. With many predictors, 
a fully graphical approach is harder. 

The central theme in this book is that graphs can be used to visualize 
the dependence of a response on predictors, even in high dimensions. For 
this to be feasible, we need to develop a new vocabulary to describe graphs 
and new tools to help extract information from them. The paradigm of 
characterizing the contents of a graph and then using the results to guide 
subsequent analysis recurs in every chapter of this book. 

Many of the graphical tools we use are kinetic or interactive. Kinetic 
plots use motion on the computer screen to convey information. A rotating 
three-dimensional (3D) plot is an example of a kinetic plot because it uses 
motion to create the illusion of a rotating point cloud in 3D. These plots 
have the potential to increase our understanding of a regression problem, 
since we may be able to find dependence that is not visible in a 2D plot. 
The types of dependence that can be found in 3D plots and methods for 
using 3D plots are topics in later chapters. 

Interactive graphics allow the user to change the appearance of a graph, 
by changing its shape or size, marking or coloring points, adding or re- 
moving points, linking a graph with others, or adding additional visual 
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2 GE'ITING STARTED 

0 60 40 20 
x 

Figure 1.1. What do you see in this scatterplot? 

cues. Consider, as an example, the data displayed in Figure 1.1. The best 
graphics let the user discern patterns in a plot. Are any patterns apparent 
here? After studying this plot for a while, turn the page and compare it to 
Figure 1.2. The data are the same in the two plots. The only difference 
is in the aspect ratio, the physical length of the vertical axis divided by 
that of the horizontal axis. A sine curve with a small amount of error is 
plainly evident in the second plot. Few people find this pattern in the first 
plot. While this example is extremely simple, the lesson is very general: to 
find patterns or dependence in a graph, our eye often needs visual aids like 
changing the aspect ratio. We will encounter many examples to reinforce 
this lesson in later chapters. 

This book is about using graphs in regression analysis. It includes an 
associated computer program called the R-code. Readers of the book can, 
and should, reproduce almost all the graphs using the R-code with their 
own computer. Section A.2 in the Appendix gives simple instructions for 
installing the R-code. The R-code is written in the Xlisp-Stat language, 
but you don't need to know anything about Xlisp-Stat or about computer 
programming to use the R-code. 
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1.1 DOING THE EXAMPLES 

Almost all computing with the R-code requires only mouse input and typing 
items in dialogs. The usual procedure is 

1. Load the R-code as described in Section A.2. On the Macintosh, a 
window will be created called Xlisp-Stat. With Windows, two new 
windows are created, one called Xlisp-Stat and one called Listener. 
Listener is the same as the Xlisp-Stat window on the Macintosh. We 
will call this the text window, since all printed input and output appears 
here.' After you get familiar with the program, you may want to move 
the text window to a corner of your screen and perhaps resize it. The 
prompt > will appear in the text window when the program is loaded. 

2. Load a file containing either a data set or a demonstration program. 
This requires selecting "Load" from the "File" menu2 and then choos- 
ing the name of the file you want to load. 

3. If the file is a demonstration, a menu will be created. Activities 
described in this book are obtained by selecting items from the menu. 
If the file is a data file, you will get the regression dialog described in 
Section 1.3. Most features of the program are described in the main 
part of this book, while a few items are discussed in the Appendix. 
Use the index to find the topic you want. 

Using the demonstration and data files, you will be able to draw almost 
every figure in this book, plus a lot more. 

1.2 A VERY BRIEF INTRODUCTION TO Xlisp-Stat 

We begin with a brief introduction to Xlisp-Stat by using an example to 
illustrate some basic numerical and graphical methods. You will be typing 
commands in this example, even though typing plays a minor role in this 
book. Since Xlisp-Stat is a language, you can use it to write programs and 
functions; the R-code was written in this way. Learning to program is not 
necessary to use the R-code, however. 

'On Unix workstations, the text window is the window you used to start Xlisp-Stat .  
*On Unix workstations there is no file menu, so a file is loaded by typing in acommand. For example, to 
loadthefilewool. IspinthedirectoryR-data,typeinthecommand ( l o a d  "R-data/wool" 1 .  
The extension . l s p  need not be specified. There are special functions for loading the data and 
demonsvationsin theR-datadirectory. Toloadadatafile,youcan type ( load-rdata "wool"  ) . 
To load the demonstration demo-2d. lsp,  you can type ( load- rda ta  "demo-2d" ) . 
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I '  

0 20 40 
X 

60 

Figure 1.2. Same data as in Figure I .  I ,  except the aspect ratio is changed from about I :  1 to about 1 5 .  

The data for our example contain two variables: (1) cigarette consump- 
tion per person per year in 1930 and (2) 1950 male lung cancer death rate per 
million males. The variables are measured for the United States, Canada, 
and nine countries in Europe. One possible analysis goal for these data is 
to see if lung cancer death rate is associated with cigarette smoking. The 
smoking data lead the cancer data by 20 years to allow time for cancer to 
develop. 

1.2.1 Entering Data 

Enter the data into your computer as shown below. Duplicate the commands 
on each line following the prompt >. The number of items you put on one 
line is arbitrary. Each command you type ends by hitting the Return key. 
The computer will respond by providing a new prompt when a command 
is finished. 

> (def cancer-rate (list 58 90 115 150 165 170 190 245 250 
350 465) ) 

CANCER- RATE 
(def cig-consumption (list 220 250 310 510 380 455 1280 460 

530 1115 1145)) 
CIG-CONSUMPTION 
> (def country ( l i s t  "Iceland" "Norway" "Sweden" "Canada" 

'I Denmark I' "Austria " "USA" " Ho 1 1 and" 
'' Sw i t z e r 1 and I' 'I Fin 1 and I' '' Great -Br i t a in 'I ) ) 

COUNTRY 

You have now created three lists of data with the names cancer-rate, cig- 
consumption, and country. To understand a little about how this happened, 
it will probably be helpful to know that lisp stands for list processor and, 
as the name implies, the language works by processing lists. A list is just a 
series of items separated by spaces and enclosed in parentheses. The items 
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in a list can themselves be lists, or even more complicated constructions. 
Generally, the first item of a list is an instruction that tells the program what 
to do with the rest of the list. For example, the list ( +  1 2 )  contains 
three items, +, 1, and 2, and it instructs the program to add 1 and 2. 

Let’s now return to the first of the three commands you just typed. The 
mainlistcontains threeitems, d e f ,  c a n c e r - r a t e , a n d  ( l i s t  58  9 0  
1 1 5  1 5 0  1 6 5  1 7 0  190  245 2 5 0  350 465).Thefirst i tem,def,  
is the instruction that tells the program you want to define something. The 
next item, cancer-rate,  is the name to be defined, and the final item is 
the definition. The definition is itself a list consisting of 12 items: 1 i s  t 
and the numbers 58, . . . ,465. The first item is the instruction for forming 
a list. In sum, the first command that you just typed instructs the program 
to define cancer-rate to be a list of 1 1  numbers. After you pressed the 
return key, the computer responded with the name of the list and then the 
next prompt. 

The names of lists or other objects in Xlisp-Stat can be of any length but 
must not contain spaces. A few names like p i ,  t ,  and n i  1 are reserved by 
the system. If you try to use one of these, you will get an error message. 
You will rarely get error messages from the R-code, but some possible 
messages and their likely causes are given in Section A.8. 

Remember these points when typing information into Xlisp-Stat: 

0 The parentheses must match. In both the Macintosh and Windows 
versions, Xlisp-Stat flashes matching parentheses to make this easier. 

0 Quotation marks must match. If they do not match, the program will 
get very confused, and it will never return you to the > prompt or give 
you any printed output. 

0 You can have any number of items on a line. 
0 A command can actually take up several lines on the computer screen. 
0 Each command ends with a Return after the final right parenthesis. 
0 Items in a list are separated by white space, consisting of either blanks 

or tabs. 
0 If the computer does not respond to your typing, you need to escape 

from the current command to start over. On the Macintosh, you can 
select Lhe item “Top Level” from the “Command” menu or press the 
command (cloverleaf) and period keys at the same time. On other 
systems, press Control-C. 

0 If you have an error, you can use standard cut-and-paste methods to 
edit the command for reentry. The way this works is most easily 
learned by experimenting. 
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1.2.2 Working with Lists 

You can do many things with lists. The simplest is just to display them. To 
see the list cig-consumption, type 

> cig-consumption 
(220 250 310 510 380 455 1280 460 530 1115 1145) 

Don’t forget the return after c ig - consump t ion. To get the number of 
items in a list, use the length function: 

> (length cig-consumption) 
11 

If you do not get 11, then you have incorrectly entered the data: try to find 
your error, and then retype or use the cut-and-paste features of the program 
to correct the data before continuing. 

To get the mean and standard deviation of cig-consumption, you can use 
the mean and standard-deviation functions: 

> (def xbar (mean cig-consumption)) 
XBAR 
> xbar 
605 
> (def sdx (standard-deviation cig-consumption)) 
S DX 
> sdx 
384.37 

In each of these statements, a value is computed and stored as a constant 
so it can be used in a later calculation. If you do not plan to use the value 
later, you need not store it. For example, to get the natural logarithm of 
c i g- consump t ion, type 

> (log cig-consumption) 
(5.39363 5.52146 5.73657 6.23441 5.94017 6.1203 7.15462 
6.13123 6.27288 7.01661 7.04316) 

while the expression 

> (exp (log cig-consumption)) 
(220 250 310 510 380 455 1280 460 530 1115 1145) 
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exponentiates the natural log of c ig- consumpt ion, which simply re- 
turns the original values. The function log can take two arguments, a 
value and a base. For example, ( log 4 10 will return the logarithm of 
4 to the base 10, while (log cig-consumption 2 ) will return a list 
of the logarithms to the base 2 of the elements of cig-consumption. 
If the second argument is missing, then natural logarithms are used. The 
R-code uses natural logarithms. 

Xlisp-Stat can be used for simple calculations. For example, 

> ( + 2 4 5 6  
17 
> ( -  17 2 3) 
12 
> ( *  3 xbar 
1815 
> ( /  cig-consumption 12) 
(18.3333 20.8333 25.8333 42.5 31.6667 37.9167 106.667 38.3333 
44.1667 92.9167 95.4167) 

These statements illustrate four basic operations that can be applied to lists 
of numbers. The general form of the operation may seem a bit unnatural: 
after the opening parenthesis comes the instruction and then the numbers. 
For addition and multiplication, this does the obvious thing of adding all 
the numbers and multiplying all the numbers, respectively. For subtraction 
and division, it is not necessarily obvious what happens with more than 
two arguments. As illustrated above, ( - 1 7  2 3 subtracts 2 from 17 
and then subtracts 3 from the result. Similarly, ( / 8 2 4 ) divides 8 by 
2 and then divides the result by 4, giving an answer of 1. 

The four basic arithmetic operations can be applied to pairs of lists 
having the same length: 

> ( *  cancer-rate cig-consumption) 
(12760 22500 35650 76500 62700 77350 243200 112700 132500 
390250 532425) 

The operation is applied to the lists elementwise, resulting in a new list 
having the same length as the original two lists. 

The exponentiation function is illustrated by 

> ( A  3 4) 
81 

which gives the value of 34 = 81. 
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1.2.3 Calculating the Slope and Intercept 

You can also do more complicated computations. Let xi refer to the ith 
value of the predictor cig-consumption and let yi refer to the ith value 
of the response cancer-rate. To get SXY = C(xi - X)(yi - 7)  and 
sxx = C(xj - x)*, you can type: 

> (def ybar (mean cancer-rate)) 
YBAR 
> (def sxy (sum ( *  ( -  cig-consumption xbar) 

SXY 
> sxy 
338495 
> (def sxx (sum ( "  ( -  cig-consumption xbar) 2))) 
sxx 

1.4774e+06 

( -  cancer-rate ybar)))) 

> sxx 

The hard part in this calculation is getting the parentheses to match and 
remembering that functions like + or * or l og  go at the start of an expres- 
sion. Xlisp-Stat allows mixing lists and numbers in one expression. In the 
above example, ( - cig-consumpt ion xbar 1 will subtract xbar, a 
number, from each element of the list cig-consumption. 

To complete the calculations of the slope and intercept obtained by or- 
dinary least squares regression of cancer-rate on cig-consumption, use the 
usual formulae: 

> (def bl ( /  sxy sxx) ) 
B1 
> (def bO ( -  ybar ( *  bl xbar))) 
BO 
> (list bO bl) 
(65.7489 0.229115) 

The estimated intercept is thus about 65.75 and the estimated slope is about 
0.23. We will use these values a bit later to add the fitted line to a scatterplot 
of cancer-rate versus cig-consumption. 

1.2.4 Drawing a Histogram 

We now turn to some simple graphics. The R-code is designed to make 
graphics easy, but for now we will use the built-in functions in Xlisp-Stat. 
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I 0 100 200 300 400 500 

Figure 1.3. Histogram, with five bins. 

To get a histogram of the values of cancer-rate, type the command 

> (histogram cancer-rate) 

The histogram, as shown in Figure 1.3, appears in a separate window on the 
screen called a graphics window. The number of graphics windows opened 
at one time is limited only by computer memory. The graphics window 
can be moved, resized, or dismissed using standard mouse movements: 

0 To move a window, hold down a mouse button in the top margin of 
the plot, called the title bar, and drag the plot around your screen. 
When you let go of the mouse button, the window stays in its new 
location. 

0 To resize a window, hold down the mouse button in the lower right 
comer of the window. As the mouse is moved, the lower right comer 
of the plot is moved as well. 

0 To dismiss a window on the Macintosh, push the mouse button in the 
small square in the upper left comer of the window. With Windows, 
push the mouse button in the upper left comer of the window and then 
select “Close” from the pop-up menu.3 

In Xlisp-Stat, all graphics windows have a menu. Make sure that your 
histogram is the front window by clicking the mouse button anywhere in 
this window or, with Windows, selecting the title of the window from the 
“Windows” menu. You will now have an additional menu called “His- 
togram” in the menu bar. If you have many windows on the screen, only 
the menu for the front window is di~played.~ 

’On Unix systems, push the button marked “Close” on the plot. 
4 0 n  Unix systems, the menu is attached to a button called “Menu” at the upper right of the graph. 
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From the histogram you have just drawn, the data are seen to lie between 
about 0 and 500. A single mode is apparent between 100 and 200, with 
more countries with rates above the mode than below the mode, so the data 
appear to be skewed to the right. The visual impression of a histogram 
depends on the number of bins. Using the “Histogram” menu, select the 
item “Change Bins.” You will then get a dialog. In the text area in the 
middle of this dialog is the number 5, indicating that the plot currently has 
5 bins. 5 p e  the number 10 in place of 5.5 Press the “OK’ button, and 
the number of bins changes. With 10 bins, the pattern that was initially 
clear is now more difficult to see. Of course this small data set has only 11 
observations, so 10 bins is certainly too many. The R-code has an easier 
way of changing the number of bins, to be illustrated later in this chapter. 

1.2.5 Drawing a Scatterplot 

Without dismissing the histogram, create a scatterplot as follows: Click the 
mouse in the text window to make it the front window. A scatterplot with 
cig-consumption on the horizontal axis and cancer-rate on the vertical axis 
is created by typing the command 

> (def p (plot-points cig-consumption cancer-rate)) 

This will draw a graph and name it p. You can modify the plot by sending 
messages to p. After clicking the mouse again in the text window to make 
it the front window, type 

> (send p :add-labels “cig-consumption“ “cancer-rate” ) 

This sends the graph p the : add- labels message, telling the plot to use 
the arguments “cig-consumption” and “cancer-rate” as the labels. If p were 
a histogram, the : add- labels message would use only one argument. 

As a second example of sending messages, recall that the list country 
contains the names of the countries. Type 

> (send p :point-label (iseq 11) country) 

The message :point-label is used to associate labels with points in 
the plot. It has two arguments, a list of case numbers, and a list of labels. 
The function ( iseq 11 ) returns the sequence of integers ( 0 1 2 3 

50n Unix workstations, the cursor may need to be placed in a dialog before you can type in it. 
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Figure 1.4. Scatterplot of 1930 cigarette consumption against 1950 lung cancer death rate for 1 1  
countries. 

4 5 6 7 8 9 1 0  ) , which are the case numbers. This list starts at 
0, since Xlisp-Stat always numbers elements in a list starting with 0. The 
message associates the 11 country names with the 11 points in the plot. 
The plot on the computer screen is not immediately changed after sending 
the : poin t  - label message. To see the consequences of sending this 
message, first make sure your scatterplot is the front window. The name 
of the menu for a scatterplot is “Plot.” Select the “Show Labels” item from 
this menu. Selected points and their labels will be printed on the graph. 
A point can be selected by clicking the mouse button on it. More points 
can be selected by holding down the shift key and clicking on the points. 
Several points can be selected at the same time by enclosing them within 
the selection rectangle that appears while holding down the mouse button 
and dragging. 

Figure 1.4 shows that cancer rate generally increases with cigarette con- 
sumption. The variability of cancer rate seems to increase as well. What 
are the three countries corresponding to the three largest cigarette con- 
sumptions? One of the three points, the one with the highest cancer rate, 
is highlighted in Figure 1.4. What is the country that seems least well fit 
by an increasing relationship between consumption and cancer rate? 

From the scatterplot’s menu, select the item “Link View.” Move the 
scatterplot so both it and the histogram of cig-consumption can be seen at the 
same time. Click on the histogram, and from its menu select “Link View” 
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as well. In the histogram, push down the mouse button slightly above the 
rightmost bar, and while holding the button drag down to select the bar. Let 
go of the mouse button. In the histogram, your selection is highlighted by 
turning black. In the scatterplot, the corresponding points are highlighted 
as well because these plots are now linked. Linking plots can be a powerful 
tool in understanding data by highlighting points corresponding to the same 
cases in several plots. 

You can draw the fitted regression line on your scatterplot by typing the 
message 

> (send p :abline bO bl) 

where bO bl are the names for the estimates that you computed in Section 
1.2.3. This method can be used to add any line to a plot. The two arguments 
to : abline specify the intercept and slope, respectively, of the line to be 
drawn. 

To get a plot of {fitted values, residuals), where the axes are listed in 
the order {horizontal axis, vertical axis], compute the fitted values and the 
residuals, and then draw the plot: 

> (def fit-values ( +  bO ( *  b l  cig-consumption))) 

> (def residuals ( -  cancer-rate fit-values)) 
RESIDUALS 
> (def p l  (plot-points fit-values residuals)) 
P1 

FIT-VALUES 

The : add- labels message can be used to add axis labels to the plot. 

1.2.6 Saving and Printing Text 

Xlisp-stat does not have a built-in method for printing. Output from the pro- 
gram must be saved to a file and ultimately printed by some other program, 
such as a word processor or art program. Two techniques are available for 
saving printed output. The simplest is to cut and paste: select the text you 
want to save by dragging the mouse across it with the button down; copy it 
to the clipboard; switch to another application, such as a word processor, 
and paste the output into the application. In a word processor, you should 
use a fixed-width font like Courier or Monaco, or else columns won’t line 
up properly. 

The second method saves all the results in the text window to a file. 
Saving is started by selecting the item “Dribble” from the “Data” menu on 
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the Macintosh or the “File” menu under Windowx6 Choose a file name 
using a standard dialog. All text will be put in this file until you select 
“Dribble” a second time. The resulting plain text file can then be read by 
any word processor or editor. You cannot toggle the “Dribble” file on and 
off. If you select “Dribble” a third time with the same file name, the file 
will be overwritten without warning. 

1.2.7 Saving and Printing a Graph 

On the Macintosh and Windows versions, a graph is saved by transferring 
it to a document for another application. Make sure the graph you want 
is the front window. Then, select “Copy” from the “Edit” menu. Switch 
to the other application, and paste the graph into a document by selecting 
“Paste” from that program’s “Edit” menu.’ 

1.2.8 Quitting Xlisp-Stat 

To quit from Xlisp-Stat on the Macintosh, select “Quit” from the “File” 
menu. Using Windows, select “Exit” from the “File” menu. When using 
any system, you can also type the command ( e x i t  ) , followed by a return, 
in the text window. On Unix systems, Control-D also quits the program. 

1.3 AN INTRODUCTION TO THE R-code 

So far we have used standard Xlisp-Stat commands to get results. For most 
of the book, we will use the R-code. 

The file cancer. l s p  gives the data used in the cancer rate example. 
This file includes the data and some documentation and code that will start 
the R-code. The file is located in the directory or folder called R-data. 
The file can be loaded by selecting “Load” from the “File” menu, selecting 
the directory R-dat a, scrolling until you see the file name cancer .1 sp, 
and then double clicking on the name.’ This will print the documentation, 
read in the data, and assign names to the data. You will then get a dialog 
similar to Figure 1.5, which is the standard regression dialog. 

60nUnixworkstations,usethecommand (dr ibble  “ f i l e n a m e ” )  ,where f i l e n a m e i s a n y  file 
name you like. 
’On Unix workstations, plots can be saved as a PostScript bitmap by selecting the “Save to File” item 
from the plot’s menu. 
*With Windows, if the list of available files in the file selection dialog does not include the file you 
want, type * . l s p  in the text area at the top of the dialog, and then press Open. This will return you to 
the file selection dialog, but all files on your system that have the . lsp extension will be accessible. 
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R-code Name for 

GETTING STARTED 

LungCancer 

(Tranrform...] 
(Interaction...] 

Response ... 1 cancer-rste 1 (-) 
Weights ... -rn 

cig-consumption 
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m I Case Labels. .. lcountry I -- .. 
I 

I 0 Saue to File 

Figure 1.5. The standard regression dialog. 

Initially, the “Candidates” at the left of the regression dialog include 
all the variables in the data set. As shown in the figure, cancer-rate has 
been specified as the response. This was done by clicking the mouse once 
on the name cancer-rate, then moving the mouse to the empty box for 
“Response,” and clicking once again. Double click on cig-consumption 
and it moves to the “Predictors” window. The variable Country appears in 
the “Case Labels. . . ” box; the R-code will use a list of text for labels if one 
is provided in the data. To move a variable back to the “Candidates” box, 
double click on its name, At the top of the dialog you can specify a name 
for the model; the default name is “Lungcancer,” which can be changed 
by typing a different name. When finished, push the “Done” button. 

Starting from Figure 1.5, double click on cig-consumption and then 
“Done” to finish the dialog. The following will then happen: 

1. The linear regression of cancer-rate on cig-consumption will be cal- 
culated and summary statistics will be printed in the text window. 

2. All the columns of data in the file will become lists of numbers 
that you can use in arithmetic computations. For example, typing 
( /  cancer-rate cig-consumption) will print the ratio of 
these two quantities. 

3. A menu will be created with the name “Lungcancer” or whatever 
you typed in for the name of the regression. 

4. Finally, a regression object will be created with the same name as the 
name on the menu. Messages to regression objects can be sent just 
as we did to plots. 

You can now study the regression further by using the items in the 
regression menu, which is called “Lungcancer” for this example. The 
items in this menu are explained throughout the book. 
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Figure 1.6. The “Plot of. . . ” dialog. 

Let’s reproduce the histogram constructed earlier. The item “Plot of. . . ” 
in the regression menu is used to draw plots. When you select this item, 
you will get a dialog like the one shown in Figure 1.6. The left list gives 
candidates for plotting. The right list gives the selected quantities to be 
plotted. With many variables, you may need to use the scroll bar at the 
right of the candidates list to see all the entries. Double clicking on a 
variable name moves it between the lists. As shown in the figure, cancer- 
rate will be plotted. If you push the “OK’ button, you will get a histogram 
of cancer-rate. Placing two items in the right list gives a scatterplot. The 
first variable in the list is assigned to the horizontal axis, and the second 
item is assigned to the vertical axis. Selecting more than two items gives 
higher dimensional plots discussed in later chapters. 

Use the “Plot of. . . ” item to get a histogram of cancer-rate, as shown 
in Figure 1.7. This plot differs from the one you drew earlier in several 
respects. The most obvious difference is size: the histogram drawn by the 
R-code is larger. Also, the histogram includes several plot controls, which 
are buttons and slide bars that appear to the left, and sometimes below, 
a figure. Plot controls play a central role in the graphical methodology 
developed in this book. A histogram has four plot controls. The first 
control is a slide bar marked “NumBins.” Push the mouse button down in 
the bar. As you hold down the mouse button, the number of bins changes, as 
given by the number above the bar. In the figure shown, the number of bins 
is five. The second slide bar is called “GaussKerDens.” This control fits a 
smooth curve to the histogram. The smoothness of the curve fit depends 
on a window width parameter, and this is chosen in the slide bar. The larger 
the value of the window width, the smoother the curve. The curve shown 
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Figure 1.7. R-code histogram of cancer-rate. 

is very smooth, representing a distribution that is skewed to the right with 
a few large values. 

The next slide bar is used to replace the data in the plot by a power 
transformation of the data, with the power selected in the slide bar; a full 
discussion of this slide bar is deferred to Section 3.2. The “Case Deletions” 
item creates a pop-up menu to delete cases from a data set. The use of this 
plot control is illustrated throughout the book. 

To redraw the residual plot mentioned at the end of Section 1.2.5, select 
“Plot of. . . ” from the regression menu, and then double click first on Fit- 
values and then on Residuals and then push the “OK’ button. In the plot’s 
menu, select the “Show Labels” item, and then select the point in the lower 
right of the graph. The United States had very high cigarette consumption 
but low cancer rate. You might try deleting USA from the fit by pushing and 
holding the box marked “Case Deletions,” still with the USA point selected. 
This will give a pop-up menu; in this menu, select the item “Delete Selection 
from Regression.” This will delete the point and cause the regression to be 
recomputed and the plot to be updated with new residuals and fitted values. 
Select “Display Fit” from the “Lungcancer” menu to get the new fitted 
equation. Another item in the “Case Deletions” pop-up menu can be used 
to return USA to the model. You may need to use the “Rescale Plot” item 
from the plot’s menu to see all the points on the plot at one time. 

1.4 USING YOUR OWN DATA 

The R-code can read data from a plain text file containing only data or from 
a special file that starts the R-code automatically. 

Let’s begin with reading a file containing only data. One file of this 
type is listed in Table 1.1. This file has 13 rows and 5 columns. Each row 



I .4 USING YOUR OWN DATA 

Table 1.1. A Sample Data File 
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7 26 6 60 78.5 
1 29 15 52 74.3 

11 56 8 20 104.3 
11 31 8 47 87.6 
7 52 6 33 95.9 
11 55 9 22 109.2 
3 71 17 6 102.7 
1 31 22 44 72.5 
2 54 18 22 93.1 
21 47 4 26 115.9 
1 4 0  23 34 83.8 
11 66 9 12 113.3 
10 68 8 12 109.4 

in the file gives all the data for one particular case. Each column gives 
the values for one variable. As shown in the table, the data line up one 
beneath the next, but this is not necessary. All that is required is that (1) the 
same number of values appear on each row of the file and (2) the values 
are separated by white space, either blanks or tabs. Columns of text are 
permitted, where text is any collection of nonblank characters that is not 
interpretable as a number. Missing values are not permitted. 

A duplicate of the table is given in the file halddata. l s p  in the 
R-data folder. On the Macintosh, you can view or edit the file using the 
built-in editor in Xlisp-Stat. Select the item “Open Edit” from the “File” 
menu, and then from the resulting dialog open the R-data folder and 
select the file halddata . l sp .  This will open an editable window with 
the data file in it; you will see it is identical to Table 1.1. In the Windows 
version, there is no built-in editor, but there is a separate application called 
LSPEDZT that is similar to the Macintosh editor. You can of course use 
any editor or word processor, but all data files must be saved as plain text 
files. 

A plain data file can be introduced into the R-code by typing 

> (r-code) 

You will then get a dialog to select a file. Choose the file halddat a .1 sp 
in the R-data folder. The program will read the data and determine that 
the file has 5 columns and 13 rows. Further dialogs will be presented so 
you can name the 5 columns. The first dialog is shown in Figure 1.8. The 
first column of the file, column zero in Xlisp-Stat numbering, starts with 
the values 7, 1, 1 1, 1 1,7. You can verify that these are the first five values 
in the first column of the file. Type the name X1 for this variable; do not 
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H1 

Figure 1.8. Choosing names. 

enclose the name in quotation marks. After pushing “OK,” you will be 
prompted for names for the other columns; use X 2 ,  X 3 ,  X 4 ,  and Y .  You 
will then get a standard regression dialog like Figure 1.9. The default name 
of the regression is reg. You might want to change this to something more 
descriptive. 

At this point you can either start regression analysis, save the data and 
labels to a file, or both. Starting from Figure 1.9, just double click on “X4” 
and push “Done” to start analysis. In the illustration, the default name for 
the regression has been changed to the more descriptive “Hald-example.” 
To save the data and labels, push the button “Save to File” in the regression 
dialog. When you push the “Done” button, you will get another dialog 
to choose a name for the data file; the program will automatically add the 
suffix . l s p  to the name you choose. A file created this way can be read 
by the R-code using the load command, but it is not in a form that is 
particularly easy for a human to read. 

All of the data files used with this book include both data and a few 
R-code and Xlisp-Stat commands. The general format we use for these 

R-code Name for I Hald-exampld 
Normal Model ... 

Candidates 

Response ... 
Weights ... 
Case labels... 

Predictors Fit Intercept 

[Transform...] 
(Interaction...] 
(Factors...] 

I Y  
I- - n Saue to  File 

Figure 1.9. The standard regression dialog. 
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Table 1.2. A Data File with Extra Information to Start the R-code 

(defun source ( )  (format t 
"Source: Hald, A. (1960), Statistical Theory with Engineering 
Applications, New York: Wiley, p. 564. 
X1, X2, X3 and X4 are percentages of 4 
chemicals in the composition of samples of Portland cement. 
Y is the heat evolved in calories per gram of cement. -8")) 

(def data (transpose (split-list ' (  

7 26 6 60 78.5 
1 29 15 52 74.3 

11 56 8 20 104.3 
11 31 8 47 87.6 
7 52 6 33 95.9 

11 55 9 22 109.2 
3 71 17 6 102.7 
1 31 22 44 72.5 
2 54 18 22 93.1 

21 47 4 26 115.9 
1 4 0  23 34 83.8 

11 66 9 12 113.3 
10 68 8 12 109.4 
1 5))) 

(def data-names (list "X1" "X2" "X3" "X4" " Y " )  1 
(source) 
(r-code :data data :data-names data-names :name "Hald") 

files is illustrated in Table 1.2, which reproduces the contents of the file 
hald. lsp in the R-data folder. This standard format for a data file 
includes ( I )  a function called source that is used to provide documenta- 
tion for the data; (2) the data itself, or Xlisp-Stat commands that will create 
the data; (3) labels for all the variables; and (4) a command to execute the 
function r-code to start regression analysis. The call to r-code has 
three keywords, which are used to pass information to the program. The 
keyword : data is used to specify the data; : data- names specifies the 
names of the variables, and : name specifies the initial name for the regres- 
sion. The argument passed to the : data keyword is also called data, 
since this is the name used in the file. Unlike many computer languages, 
Xlisp-Stat allows using the same name for several purposes. 

If you want to make your own data file of this format, you can modify 
the file in Table 1.2 using an editor. For the function source, replace 
everything between the first " and the final - %  'I ) ) by text relevant for 
your data. Then, replace the data shown in the table by your own data. 
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If your data has 10 columns, replace the ) 5 ) ) ) by ) 1 0  ) ) ) . Finally, 
replace the names for the Hald data by your own names, each name being 
surrounded by quotation marks. In the call to r -code, change ‘IHald“ to 
a name relevant for your data. Save the file as a plain text file with any legal 
name ending in .1 sp. The resulting file can be loaded into the R-code. 

1.5 GETTING HELP 

Help is available for many of the functions in Xlisp-Stat and for most of the 
methods in the R-code using the functions help and apropos. These 
are described in Section A.7.1. 

1.6 COMPLEMENTS 

The Xlisp-Stat language was written by Luke Tierney and is documented 
in Tierney (1990). Chapter 2 of Tierney’s book gives a much more ex- 
tensive tutorial for Xlisp-Stat, which is a particular implementation of the 
general Lisp-Stat language. Xlisp-Stat uses the Xlisp language written by 
David Betz. The smoking and lung cancer data are originally from Doll 
(1953, and are given by Tufte (1974, p. 82). They are also given in the file 
cancerdt . lsp in the R-data folder. The data for Exercise 1.2 were 
furnished by Mike Camden of Wellington Polytechnic. 

Several good books on linear regression models have been published 
in the last decade, and virtually any of these will provide the necessary 
prerequisite for this book. For fear of leaving one out, we will leave them 
all out, and leave the choice of book up to the reader. 

The slide bar “GaussKerDens” is actually fitting a kernel density estimate 
using a Gaussian kernel. The window width chosen in the slide bar is a 
fraction of the range in the data. Hiirdle (1990) and Scott (1992) provide 
good references for density estimation. 

EXERCISES 

1.1. Work the examples in Sections 1.2 and 1.3. Turn in the following 
items: (1 )  the histogram of cig-consumption, first with eight bins and then 
with four bins; (2) a scatterplot of (cig-consumption, residuals), with the 
case name of the point corresponding to the largest residual indicated on 
the plot; (3) the R-code output from the “Display fit” item in the regression 
menu for the regression of cancer-rate on cig-consumption. 
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1.2. Data on 56 normal births at a Wellington, New Zealand, hospital 
are given in file bi r t h w t  .1 sp  in the R- da t a folder. The four variables 
are Birth Wt, birth weight in grams; Age, the mother’s age; Term, the term 
of the pregnancy in weeks; and Sex, the baby’s sex, 0 for girls and 1 for 
boys. 

Use the data file to examine the relationship between the predictor Age 
and the response BirthWt. Who tends to have larger babies, older mothers 
or younger mothers? Can you think of an easy way to identify the points 
in the plot for girl babies? 
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Simple Regression Plots 

In this chapter we study simple regression problems with response variable 
y and a single univariate predictor variable x. The response variable is 
sometimes called the dependent variable, and the predictor variable may be 
called the independent variable, explanatory variable, carrier, or covariate. 
These names may imply slightly different roles for x, but any distinctions 
between them are not important here. 

A common theme in regression analysis is the characterization of the 
dependence of y on x as far as possible with the available data. Equivalently, 
this goal is to characterize how the distribution of y with x held fixed at 
a particular value, say 2, changes with X.  Since this is a fairly important 
idea in regression graphics, it is helpful to have a convenient way to refer 
to the response variable y when the predictor x is held fixed. We will use 
the notation y ( ( x  = X) to denote the response variable when the predictor 
is held fixed at the value 2. The vertical bar in this notation stands for the 
word “given.” If the particular value i is unimportant for the discussion at 
hand, we will write more simply ylx,  understanding that the predictor is 
held fixed at some value. 

Studying all of the ways that the distribution of ylx could change with 
x can be too unstructured a problem to make much progress. Regression 
analyses usually focus on characterizing how the true mean of ylx,  de- 
noted E(yJx), and the true variance of ylx, denoted var(ylx), depend on x. 
The mean E(y(x) is often of primary interest and is called the regression 
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function. Similarly, var(y1x) is called the variance function. The regres- 
sion function is the true mean of y when x is held fixed at a selected value, 
so it is a function of the value of x.  The dependence of E(y1x) on x and 
to a lesser extent the dependence of var(y1x) on x can often be seen in 
scatterplots. This is the topic of this chapter. 

2.1 THINKING ABOUT SCATTERPLOTS 

A simple scatterplot with the predictor on the horizontal axis and the re- 
sponse on the vertical axis often provides a very good way to understand 
how the distribution of ylx changes with the value of x. Our notation for 
this plot is (x, y) ,  where the quantity on the horizontal axis is given first, 
followed by the quantity on the vertical axis. While this notation is at odds 
with the common expression of “plotting y versus x,” it corresponds to the 
way graphs are constructed in the R-code, by selecting first the quantity to 
plot on the horizontal axis and then the quantity for the vertical axis. 

We begin our discussion of scatterplots with an example. Figure 2.1 
gives a scatterplot (x, y ]  of x = temperature in degrees Fahrenheit and of 
y = daily ozone concentration in parts per million, both measured near 
Upland, in Southern California, for 330 days in 1976. The source of the 
data does not report if the temperature is the maximum daily temperature 
or the average temperature. This figure and the others in this chapter can be 
reproduced by selecting “Load” from the file menu, changing to the folder 
R-data, and then selecting the file demo-2d. l sp .  Figure 2.1 is repro- 
duced by selecting the “Ozone data” item from the resulting “Demo:2D’ 
menu. 

Suppose that we use Figure 2.1 to compare the distribution of yI (x = 40) 
to the distribution of y((x = 80). There will probably be very few values 
in the data at which temperature is exactly 40 or 80°F. Fortunately, having 
exact values of 2 in the data is not necessary to study the distribution of 
yl(x = 2). We can use instead all of the values of y that correspond to 
values of x close to 2, rather than the values of y corresponding to just 
those observations where x equals 2. In graphics terminology this is called 
slicing. 

To compare the distributions of yJ(x = 40) and yl(x = SO), we slice 
the plot in Figure 2.1 about the values 40 and 80 on the horizontal axis, and 
for visual clarity we delete all other points. The resulting plot is shown in 
Figure 2.2. The portion of the horizontal axis covered by a slice is called 
the slice window, and the width of a slice window is called the window 
width. The two slice windows in Figure 2.2 are centered at 40 and 80, and 
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the common window width is about 6. The slices in Figure 2.2 are visual 
aids that enable us to focus on the data in question. Later we will make 
quantitative use of the slices, but for now it seems clear that the mean of 
the response for the slice at x = 40 is less than the mean for the slice at 
x = 80. The same may be true for the variances as well. 

A plot similar to Figure 2.2 can be constructed by first selecting the 
points that roughly correspond to the slice at x = 40 and then, with the 
Shift key depressed, selecting points that correspond to the slice at x = 80. 
Depressing the Shift key will cause the points selected at x = 40 to remain 
selected while the other points are selected. From the plot’s menu choose 
the item “Focus on Selection.” Your plot should now look like Figure 2.2 
except perhaps for minor differences in the slices. To return to the plot of 
Figure 2.1, select the “Show All” item from the plot’s menu. 

The slices in Figure 2.2 serve as graphical enhancements to aid in the 
discussion of the statistical interpretation of a scatterplot. They are usually 
not needed in practice since our eyes provide a smooth transition between 
the distributions of ylx for adjacent values of x. 

2.2 SIMPLE LINEAR REGRESSION 

The simple linear regression model is based on two key assumptions about 
the distribution of y ( x .  To review these assumptions, we begin by writing 
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Figure 2.2. Los Angeles ozone data with slices at x = 40 and x = 80. 

ylx as the sum of the regression function and error term, 

ylx = E(ylx) + [YIX - E(ylx)l 
= E(y(x) + E I X  

where E I X  = [ylx - E(ylx)] is the error at x 

function is linear in x, 
The first key assumption in simple linear regression is that the regression 

where PO and are the unknown intercept and slope that must be estimated 
from the data. The second assumption concerns the error term, . F I X .  Since 
E ( E ( x )  = 0, this term can depend on x only through second or higher 
moments. The usual assumption of simple linear regression is that E ( X  

does not depend on x at all. Under this second assumption we can write 
E = E I X  without confusion since the errors do not depend on x. Under 
this condition the variance function var(y1x) is just a nonnegative constant, 
denoted by the symbol a2. Later in this book, we will allow the variance 
function to depend on x. 

The simple linear regression model for a particular data set can now be 
summarized as 

(2.2) Axi = BO + Blxi  + Ei 
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for i = 1,2,  . . . , n ,  where n is the total number of observations. The 
notation ylxj is shorthand for the response variable when x = xi. We will 
sometimes use yi to denote the response variable when x = xi, but we will 
rely on the fuller notation ylxi when it seems important for emphasis or 
clarity of exposition. The errors E are also assumed to be independent from 
observation to observation. 

Fitting the simple linear regression model (2.2) means obtaining esti- 
mates of the parameters. The R-code generally does this by using ordinary 
least squares, which we abbreviate as 01s. This leads to a number of quan- 
tities that can be useful in graphical investigations. The 01s estimates of the 
regression coefficients PO and are denoted by &I and f i  1 ,  respectively. 
The fitted values are denoted by 

ji = j o  +$*xi (2.3) 

and the residuals by 
A 

ei = J’i - J’J (2.4) 

One of the fundamental advantages of graphical methods is that they 
allow for an assessment of the assumptions underlying standard regression 
models. We should always ask if there is information in the data to contra- 
dict the linearity assumption or the assumption that errors are independent 
of the predictor. 

2.3 ASSESSING LINEARITY 

2.3.1 Superimposing the Fitted Line 

One simple method for assessing the linearity assumption (2.1) is to super- 
impose the 01s fitted line onto the scatterplot of the data. Clicking anywhere 
on the slide bar titled “OLS-fit” in Figure 2.1 will change the word “NIL” 
above the slide bar to the number 1 and will cause the 01s fitted line to ap- 
pear on the plot of {temperature, ozone}. The result is shown in Figure 2.3. 
Comparing the points in the plot to the 01s line, some curvature may be 
apparent, although this conclusion is far from certain. Clicking anywhere 
to the left of the slider, the filled-in area within the slide bar, will remove 
the 01s line from the plot and return the slide bar to its original state. The 
same effect can be achieved by dragging the slider to the left. 

Clicking more than once on the “OLS-fit” slide bar to the right of the 
slider or dragging the slider to the right will fit higher order polynomials 
to the scatterplot. For example, dragging the slider until a 4 appears fits a 
fourth degree polynomial to the data in the scatterplot. 
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Figure 2.3. Plot of (temperature, ozone) with the 01s fit  superimposed. 

2.3.2 Residual Plots 

Another useful graphical method for checking linearity in simple regression 
is to plot the residuals versus the predictor. This is obtained by clicking 
on the button labelled “Rem Lin Trend,” which stands for remove linear 
trend. The vertical axis variable becomes a set of residuals, and the axis 
label is changed to indicate that the residuals are from the 01s regression 
with ozone as the response and temperature as the predictor. The predictor 
remains on the horizontal axis, as shown in Figure 2.4. The horizontal line 
at zero on the vertical axis is often useful when interpreting residual plots. 
It is obtained by pushing the button “Zero line” on the plot. For now ignore 
the curved line superimposed on the plot; it is discussed in the next section. 

We will use the notation e(x to indicate the residuals given that x is fixed 
at a selected value, just as we used the notation ylx to indicate y given that 
x is fixed at a selected value. If the simple linear regression model (2.2) 
provides a good description of the data, then the distribution of elx should 
not noticeably depend on x. In particular, if we were to examine individual 
slices of a residual plot, then within each slice the mean should be close to 
zero, and the variation should be constant. 

Both the mean and the variance differ between slices in Figure 2.4, 
so the linear regression model is not a good characterization of the ozone 
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Figure 2.4. Residual plot for the ozone data with the zero line and an average smooth. 

data. For example, consider slices around x = 40 and x = 80. A ce 
around x = 40has mostly positive residuals and there is also a hint that 
the distribution of el(x = 40) may be positively skewed. Skewness in a 
residual plot often results when the distribution of y is bounded below and 
there are values near the bound. Since ozone level cannot be negative, the 
sharp lower left boundary of the plotted points in Figure 2.4 is expected. 
In contrast, a slice around x = 80 includes both positive and negative 
residuals, with much less evidence of skewness. Viewed as a whole, the 
plot in Figure 2.4 displays a characteristic U-shaped pattern that indicates 
nonlinearity. Nonconstant variance seems to be indicated as well. 

2.3.3 Average Smoothing 

The plots in the last section give convincing evidence that for the ozone 
data E ( y l x )  is a nonlinear function of x, and the simple linear model (2.2) 
is not a good summary. These graphs do little to suggest just how E(yJx) 
changes with x. Other graphical enhancements are needed to get a better 
feeling for E(ylx)  than is provided by the plot of the raw data in Figure 2.1. 

Consider the slice about x = 80 in Figure 2.2, with window width of 
about 6. From the figure it appears that E(ylx)  is fairly constant within 
the slice and that any change is surely small relative to the within-slice 
standard deviation (SD) in ozone concentration, so 
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within-slice S D  of y 

is small. Without much loss of information about the mean, we can sum- 
marize the data in this slice by using the average of the responses, which 
is about 21 ppm, and the midpoint of the slice window, which is 80. With- 
out the benefit of a model, 21 ppm is a useful estimate of E(ylx = 80), 
the true mean ozone concentration at 80. Now take the summary point 
(80, 21) and think of marking its position on a separate summary graph. 
Keeping the window width fixed, construct a new slice slightly to the left, 
centered at x = 79, summarize the data in the new slice as before, and 
again imagine plotting the summary point on the summary graph. The new 
summary point should be slightly below and to the left of the first point. 
This process can be repeated for every distinct value of x that occurs in 
the plot. The points on the summary graph will trace a curve that can give 
a good indication of just how E(ylx) changes with the value of x. The 
curve may be easier to see after connecting adjacent summary points with 
lines. This process is called smoothing, and we will call the curve in the 
summary graph a smooth of the data. The curve resulting from application 
of the steps described here will be called an average smooth to reflect the 
fact that it is based on within-slice averages. A second type of smoothing 
will be described shortly. 

The average smooth depends on the window width of the slices. Small 
window widths will produce undersmoothed jagged curves, while large 
window widths will produce oversmoothed curves that approach the hor- 
izontal line at the overall average response. A reasonable value for the 
window width that balances between undersmoothing and oversmoothing 
can usually be obtained by interactively changing the window width. 

Average smooths are obtained in the R-code by using the slide bar la- 
belled “Slice Ave,” which is short for slice average smoother. Moving 
the slider to the right results in two actions. First, a standardized window 
width is displayed above the slide bar. The number shown is a fraction 
of the range of the data on the horizontal axis. In Figure 2.4, for exam- 
ple, the range of temperature on the horizontal axis is 93 - 25 = 68. A 
standardized window width of 0.1 translates to an actual window width of 
0.1 x 68 = 6.8. Second, a smooth corresponding to the displayed window 
width is superimposed on the plot. The curved and somewhat jagged line in 
Figure 2.4 is the smooth of the data corresponding to the smallest window 
width allowed by the R-code. Although it is rather rough, it still confirms 
the impression of a U-shaped trend in the residual plot. As the window 
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width is increased, the jagged line in Figure 2.4 becomes smoother and 
gradually flattens, approaching the zero line for relatively large window 
widths. 

2.3.4 Regression Smoothing 

The average smoother uses the within-slice average to summarize the data in 
a slice, but other smoothers are possible as well. Instead of using the average 
response in a slice near x = 80, consider fitting a weighted regression using 
only a fraction f of the data with x-values closest to x = 80. For example, 
if f = 0.25, then the 25% of the data closest to x = 80 would be used. 
Points near x = 80 get higher weight than do distant points. The vertical 
coordinate of the first point in the summary graph is the fitted value for this 
local linear regression at x = 80. This is then repeated for every distinct 
value on the horizontal axis. This smoother is usually called lowess for 
locally weighted scatterplot smoother. 

To obtain the lowess smooth, hold down both the shift key and the mouse 
button while the cursor is on the “Slice Ave” slide bar. Select the item 
“lowess” from the resulting pop-up menu. Selecting this item will change 
the title of the slide bar to “lowess” and will change the smoother. The 
value displayed above the slide bar will now be f ,  the fraction of the data 
used to compute the fitted value at each observed value on the horizontal 
axis. 

The menu obtained by shift-clicking on the smoother slide bar has five 
options: the slice average smoother, lowess, a weighted slice average 
smoother described in Section 2.4, an option to extract the smooth, and 
another option to fit a power curve. The last two options are described later 
in the book. 

A lowess smooth for the ozone data is shown in Figure 2.5. The smooth 
captures the essential behavior of E(y1x). It roughly consists of two linear 
phases with the change point around x = 60. The qualitative behavior of a 
lowess smooth is similar to that for an average smooth. Small values of f 
are likely to produce jagged undersmoothed curves, while relatively large 
values of f can produce oversmoothed curves that are close to the overall 
01s line. 

Both average smooths and lowess smooths can help with the visual 
summarization of a scatterplot. They can be particularly helpful when there 
are many points in the plot, and one plotting location might correspond to 
many points; this is called overplotting. The smoothing process can be 
applied to a scatterplot of the raw data, as illustrated in Figure 2.5, or to a 
residual plot, as illustrated in Figure 2.4, or to any scatterplot where it may 
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Figure 2.5. Plot of the ozone data with a lowess smooth. 

be useful to characterize the regression function of the variable plotted on 
the vertical axis given the variable plotted on the horizontal axis. 

2.4 COMPLEMENTS 

Each of the plot controls introduced in this chapter acts on the points cur- 
rently visible in the plot, without changing the underlying regression model. 
For example, pushing the “Rem Lin Trend” button will compute the 01s 
regression of the vertical axis variable on the horizontal axis variable, us- 
ing only the visible points, and then replace the vertical axis points by the 
residuals from this regression. 

The smoothers described in Sections 2.3.3 and 2.3.4 are kernelsmoothers 
and regression smoothers, respectively. Given a scatterplot (x , y ) ,  a kernel 
smoother estimates a value y* for a given value of x = x *  as a weighted 
average, y* = C WiXi /  C wi. Let r, = max(xi) - min(xi) be the range 
of the xi in the data. For the average smoother, equal weight is assigned 
to all observations such that IXi - x*l/rx 5 d and weight zero to all other 
observations. The weighted average smoother, obtained by shift-clicking 
on the smoother slide bar and then selecting “Slice Wtd Average Smooth,” 
assigns highest weight to an observation with Xj = x*, and then linearly 
decreases the weight to zero for points with [xi - x * l / r x  = d .  The value 
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of the window width d is selected in the slide bar to be a number between 
zero and 1. There are many other kernel smoothers that one can use, some 
with better theoretical properties than the ones used here. Altman ( I  992) 
provides an introduction and Hardle (1990) a more technical discussion 
of kernel smoothers, including their use as an estimation method and the 
difficult technical problem of choosing an “optimal” window width. The 
idea of visually smoothing a scatterplot dates to at least Ezekiel (1930). 

The lowess smoother was proposed by Cleveland (1979). The algorithm 
we use is given by step 1 of algorithm 6.1.1 in Hardle (1990, p. 192). 

The ozone data have been discussed in Breiman and Friedman (1985). 
The air quality data used in Exercise 2.3 are taken from Chambers, Cleve- 
land, Kleiner, and Tukey (1983). The data for Exercise 2.4 were provided 
by Ross Cunningham, Richard Telford and the Australian Institute of Sport. 

EXERCISES 

2.1. Consider adding a linear fit to Figure 2.4 by regressing the residuals 
on the predictor. Why will this result in nothing more than the zero line 
that is already on the plot? 

2.2. Think of smoothing a scatterplot in which all the values of x are 
different. Describe the extreme behavior of an average smooth when the 
window width is chosen so small that each slice contains only one point. 
On every 2D plot produced with the R-code there is a button that can be used 
to superimpose this extreme average smooth on the plot. Which button is 
it? 

2.3. The file air. l s p  in the R-data folder contains data on several 
air quality measurements for 11 1 nearly consecutive days in the spring 
and summer of 1973 in the New York City area. Two of the variables in 
this data set are ozone concentration (Ozone) in parts per billion and the 
maximum daily temperature (Temp) in degrees Fahrenheit. The data on 
ozone concentration used earlier in this chapter were collected over a full 
year in the Los Angeles area in 1976. 

Load the data file, and in the regression dialog specify Ozone as the 
response and Temp as the single predictor, and then push the “Done” but- 
ton. From the resulting “Air” menu, use the “Plot of. . . ” item to draw the 
plot (Temp, Ozone). Use this graph to compare the relationship between 
temperature and ozone level for Los Angeles and New York City. Pay 
careful attention to the scales of the variables. Write a summary of your 
conclusions. 
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2.4. The file ais . l s p  in the R-data folder contains data on 102 
male and 100 female athletes collected at the Australian Institute of Sport. 
Load this data file, and when the regression dialog appears, specify height 
Ht as the single predictor and lean body mass LBM as the response, and 
then click the “Done” button. The resulting regression menu is called 
“BodyMass.” The point labels for these data give the sex and sport of the 
athlete. 

Using the “Plot of. . .” item from the “BodyMass” menu, con- 
struct the plot (Ht ,  LBM), and identify the sport and sex of the tallest athlete. 
Find the sport and sex of the shortest athlete, and the two athletes with the 
highest LBM. 

Using the plot {Ht,  LBM) along with the plot controls dis- 
cussed in this chapter, write a careful qualitative description of how the 
distribution of LBMl H t  changes with the value of Ht .  In particular, how 
do E(LBM1Ht) and var(LBMJHt) change with the value of height? Does 
the simple linear regression model (2.1) appear to provide an adequate 
description? Provide support for your response by using the appropriate 
techniques of this chapter along with the corresponding plots. 

2.4.2. 

2.4.2. 
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Two-Dimensional Plots 

In this chapter, we discuss various plot controls and enhancements that can 
be used to understand 2D plots. 

3.1 ASPECT RATIO AND FOCUSING 

Not all scatterplots are equivalent for the purpose of gaining an understand- 
ing of the regression function, E(y1x). Two scatterplots with the same 
statistical information can appear different because our ability to process 
and recognize patterns depends on how the data are displayed. At times 
the default display produced by a computer package may not be the most 
useful. One important parameter of a scatterplot that can greatly influence 
our ability to recognize patterns is the aspect ratio, the physical length of 
the vertical axis divided by that of the horizontal axis. Most computer 
packages produce plots with an aspect ratio near 1, but this is not always 
the best. The ability to change the aspect ratio interactively is important. 
We have already seen one example of this in Chapter 1. 

As another example, consider Figure 3.1, which is a plot of the monthly 
U.S. births per thousand population for the years 1940-1948. The hori- 
zontal axis is labelled according to the year. The plot indicates that the U.S. 
birth rate was increasing between 1940 and 1943, decreasing between 1943 
and 1946, rapidly increasing during 1946, and then decreasing again dur- 
ing 1947-1948. These trends seem to deliver an interesting history lesson 
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Figure 3.1. Monthly U.S. birth rate per 1000 population for the years 1940-1948. 

since the U.S. involvement in World War I1 started in 1942 and troops began 
returning home during the first part of 1945, about nine months before the 
rapid increase in the birth rate. A duplicate of Figure 3.1 can be drawn with 
the R-code by selecting the “Birth Rates” item from the “Demo:2D” menu 
obtained by selecting demo- 2 d .1 sp from the R-da t a folder. This plot 
is shown without the usual plot controls. They were removed by selecting 
the item “Plot Controls” from the plot’s menu. Selecting this item again 
will restore the plot controls. 

Let’s now see what happens to Figure 3.1 when the aspect ratio is 
changed. Hold down the mouse button in the lower right corner and drag 
up and to the right. One reshaped plot is shown in Figure 3.2, which has 
an aspect ratio of about 1:4. The visual impact of the plot in Figure 3.2 
is quite different than that in Figure 3.1. The global trends apparent in 
Figure 3.1 no longer dominate our visual impression. Also, Figure 3.2 dis- 
plays many peaks and valleys. Is it possible that there are relatively minor 
within-year trends in addition to the global trends described in connection 
with Figure 3.1? 
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Figure 3.2. Monthly U.S. birth rate with a small aspect ratio, 

To answer this question, we canfocus on part of the data. Select the 
points corresponding to the years 1940-1943. Now from the plot’s menu 
select the item “Focus on Selection.” This will remove the points in the plot 
that are not currently selected. The menu item “Remove Selection” would, 
as the name implies, delete the selected points and leave the rest. Return to 
the “Plot” menu and select the item “Rescale Plot,” which will recompute 
the values on the axes so the remaining data fill the plotting area. The result 
is shown in Figure 3.3. A within-year cycle is clearly apparent, with the 
lowest within-year birth rate at the beginning of summer and the highest 
occurring some time in the fall. This pattern can be enhanced by pushing 
the “Join points” button in the plot, causing adjacent points in the plot to be 
connected with a line. This gives the eye a path to follow when traversing 
the plot and can visually enhance the peaks and valleys. 

The aspect ratio for the plot in Figure 3.3 is again about 1:4. To obtain 
this degree of resolution in a plot of all the data would require an aspect 
ratio of around 1:8. To return the plot of Figure 3.3 to its original state, 
choose the “Show All” item from the “Plot” menu and reshape it so that 
the aspect ratio is again about 1 : 1 .  

0 0  

40 41 42 43 
Year 

Figure 3.3. Monthly U.S. birth rate for 1940-1943, 
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Figure 3.4. Plot of BodyWt versus Brain Wt for 62 mammal species. 

Changing the aspect ratio and focusing are useful methods for changing 
the visual impact of a plot, but they will not always work. Figure 3.4 
contains a plot of body weight in kilograms and brain weight in grams 
(BodyWt, BrainWt] for 62 species of mammals. This plot can be obtained 
by selecting the item “Brain Weight Data” from the “Demo:2D’ menu. 
The plot consists of three separated points nd a large cluster of points at 

about the dependence of the distribution of brain weight on body weight. 
Removing the three separated points and rescaling the plot helps a bit, 
but a large cluster near the origin remains. Repeating the procedure does 
not seem to help. The problem in this example is that the measurements 
range over several orders of magnitude. Body weight ranges from 0.01 to 
6654 kg, for example. Transformations are needed to bring the data into 
usable form. 

the lower left of the plot. It contains little \ isually available information 

3.2 POWER TRANSFORMATIONS 

The most common transformations are power transformations. A basic 
power transformation of a variable u is simply u*, where h is the frans- 
formation parameter. For example, the notation (Body Wt)’.’ refers to a 
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variable with values equal to the square root of Body Wr. The transformation 
parameter can take any value, but the most useful values are nearly always 
found in the interval -1 5 h I 2. The variable u must be positive, or we 
will end up with complex numbers when h is not an integer. 

A slight variation of the basic power transformation is called a scaled 
power transformation, for which we use the notation d*). For a given h, 
we define the transformation to be 

(3.1) 

When h # 0, the scaled power transformation differs from the basic power 
transformation only by subtracting 1 and dividing by A. These changes 
have no important effect on the analysis, so when h # 0, the scaled power 
transformations and the basic power transformations are practically equiv- 
alent. When h = 0, the basic power transformation has the value u" = 1, 
but for the scaled power transformation do) = log(u). Using this form 
therefore adds logarithms to the family of power transformations. Also, 
dh) is a continuous function of A, so varying h will not produce jumps 
when using the transformation sliders described next. 

Return to the brain weight data displayed in Figure 3.4. The sliders on 
the plot can be used to choose a scaled power transformation. They are 
labelled according to the variable and the current value of the transformation 
parameter A. Initially h = 1, which means that no transformation has been 
applied. Each time you click on the slide bar the value of h is changed and 
the plot is updated to display u(') in place of u, unless the new value of h 
is 1. For this case, the original data are displayed. The labels on the axes 
are not changed after a transformation; to see the power, you must look 
at the numbers above the slide bars. Here and elsewhere in the R-code, 
h can take the values f l ,  f0.67, f0 .5 ,  f0.33, 0, 1.25, 1.5, 1.75, and 2. 
These values of h should be sufficient for most applications but they can 
be changed as described in Section A.3. 

One possible transformed plot is shown in Figure 3.5, where the scaled 
power transformation with h = 0.33 has been applied to BodyWr while the 
scaled power transformation with h = 0.5 has been applied to BrainWr. 
Figure 3.5 is thus a plot of (B~dyWr(".~') ,  B r ~ i n W r ( ~ . ~ ) ) .  It doesn't give a 
very good representation of the data, although it does seem a little better 
than the plot of the untransformed data. Manipulate the sliders a bit and 
see if you can find a better pair of transformations for the brain weight data. 
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Figure 3.5. Both BodyWr and BrainWr are transformed according to the values given on the slide bar. 

3.3 THINKING ABOUT POWER TRANSFORMATIONS 
There are two simple rules that can make manipulating the power choice 
sliders easier: 

0 To spread the small values of a variable, make the power h smaller. 
0 To spread the large values of a variable, make the power h larger. 

Most of the values of Br~inWt( ' .~)  in Figure 3.5 are clustered close to 
zero, with a few larger values. To improve resolution, we need to spread 
the smaller values of BrainWt, so A should be smaller. The values of 
B ~ d y W t ( ' . ~ ~ )  are also mostly small, so we should spread the small values 
of body weight as well, again requiring a smaller power. 

Decrease the transformation parameter for BruinWt in Figure 3.5 to 
h = 0.33. The resulting plot is an improvement, but we still need to spread 
the small values of both BodyWt and BruinWt, and this indicates that we 
need to make both transformation parameters smaller still. 

Set the transformation parameter for Body Wt to 0.5 and for Brain Wt to 
-0.33, as shown in Figure 3.6. We now need to spread the larger val- 
ues of BrainWt, and thus we should make h larger. At the same time 
we need to spread the small values of BodyWt, and this is accomplished 
by decreasing A. Figure 3.7 shows a plot of the brain data after applying the 
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Figure 3.6. Another transformation of the brain weight data. 
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Figure 3.7. Log transformed brain weight data. 
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log transformation to both variables, 

{BodyWt(’), BruinWt(’)) = {log(BodyWt), log(BruinWt)} 

This plot gives a good depiction of the data and strongly suggests that there 
is a linear relationship in the log-log scale. 

Transformation sliders are not a regular part of the R-code plot controls 
for scatterplots. Instead, they are a part of the R-code plot controls for 
scatterplot matrices, discussed in the next chapter. 

3.4 SHOWING LABELS AND COORDINATES 

Selecting the “Show Labels” item from the plot’s menu will cause point 
labels to be displayed on the plot when points are selected. When the 
“Show Labels” option is on, a check will appear beside the “Show Labels” 
menu item. To turn the option off, select “Show Labels” again. If no labels 
are supplied, the data points will be labelled according to the order in which 
they appear in the data file. Xlisp-Stat always starts numbering at zero, so 
the first case in the file is number 0, and the eleventh case is number 10. 
Labels are assigned to cases in the standard regression dialog in the R-code. 

To find the coordinates of a point, select the item “Mouse Mode. . . ” from 
the plot’s menu. A dialog will appear with three choices. Choose “Show 
Coordinates’’ by pushing the corresponding button and then pushing “OK.” 
The cursor will now change from an arrow to a hand with a pointing finger. 
Pointing at any data point and clicking the mouse button will show the point 
label and the coordinates as long as the mouse button is depressed; holding 
the Shift key while depressing the mouse button will make the coordinates 
remain on the plot. To remove the coordinates, shift-click again on the 
data point. To return to the selecting mode, choose “Selecting” from the 
“Mouse Mode” dialog. 

3.5 LINKING PLOTS 

Linking refers to tying two or more plots together, so that actions such 
as focusing, selecting, and deleting points in one plot are automatically 
applied in the others. The applicability of linking plots in simple regression 
problems is somewhat limited, but the birth rate data provide a convenient 
opportunity to introduce the idea. 



3.5 LINKING PLOTS 43 

55 60 65 70 75 
Year 

00000000000000000000  

55 60 65 70 75 
Year 

a. (Year, Birth Rate). b. [Year, Month]. 

Figure 3.8. U.S. birth rate data. 

We begin by constructing a plot of { Year; BirthRate) for the U.S. birth 
data between 1956 and 1975. The plot is shown in Figure 3.8a, which is 
constructed by plotting each data point against the year in which it was 
obtained, ignoring the month. This plot provides information on the dis- 
tribution of monthly birth rates given the year but not the month. There is 
still one point for each month in the plot, but the correspondence between 
points and months is lost. Additional information might be obtained from 
Figure 3.8a if we could tell which points correspond to each month. There 
are a variety of ways to do this. One is to construct a linked plot of {Year; 
Month}, as shown in Figure 3.8b. This is a singularly uninteresting graph, 
but it is useful because it is linked to the plot in Figure 3.8a. Selecting 
all the points for any month in Figure 3.8b will cause the corresponding 
points in Figure 3.8a to be highlighted, as demonstrated for the month of 
September. 

The plots in Figure 3.8 can be reproduced by selecting the “More Birth 
Rates” option from the “Demo:2D” menu. Choosing this menu item will 
start the R-code by displaying a regression dialog. Choose BirthRate as the 
response, and Year as the predictor; then push “Done.” The variable Names 
is a list with entries like Jun47 for the data point for June 1947. Since the 
items in this list are characters, the program guesses that these are to be 
used as case labels. Use the “Plot of. . . ” item from the regression menu to 
construct the plots. These plots are automatically linked, as are most plots 
produced from a regression menu. To unlink a plot, select the “Unlink 
View” item from the plot’s menu. To save space, the plots in Figure 3.8 
are shown with the plot controls removed. 
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3.6 MARKING AND COLORING POINTS 

The point symbol on a scatterplot can be changed using the symbol palette, 
and if your computer has a color monitor, the color can be changed using 
the color palette. First select the point or points you want to change, and 
then push the mouse button on a color or symbol in a palette. Colors and 
symbols are inherited by all plots linked to the plot you changed. 

3.7 BRUSHING 

An alternative method of selecting points is called brushing. In this method, 
the mouse pointer is changed into a selection rectangle. As the rectangle 
is moved across the screen, all points in the selection rectangle are high- 
lighted, as are the corresponding points in all plots linked to it. As the 
rectangle moves, the selected points change. 

To use brushing, select “Mouse Mode. . . ” from the plot’s menu, and 
select “Brushing” in the resulting dialog. After pushing the “OK’ button, 
the mouse pointer is changed into a paintbrush, with an attached selection 
rectangle. The size and shape of the rectangle can be changed by selecting 
the “Resize Brush” item from the plot’s menu and following the instructions 
given to resize the brush. Long narrow brushes are often the most useful. 

In the plot shown in Figure 3.8b, change the mouse mode to brushing 
and make the brush a narrow horizontal rectangle. Then, brush across the 
plot from bottom to top. As you do so, examine the result in the plot shown 
in Figure 3.8a. The within-year trends are easy to spot as you move the 
brush. In particular, it appears that September always had the highest birth 
rate. 

3.8 NAME LISTS 

A name list is used to keep track of case labels. It is displayed as a separate 
window by selecting the “Show Case Names” item from the regression 
menu. Since this window is linked with all graphics windows, point selec- 
tion, focusing, and coloring will be visible in this window. 

3.9 COMPLEMENTS 

Power transformations can be applied to a variable v that has negative 
values if a sufficiently large constant c is added before taking powers. The 
“Transformations. . . ” dialog obtained from the regression dialog allows 
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choosing a constant c in the text area marked “Center.” The value entered 
must be large enough to make u + c positive. The transformation produced 
is (u  + c)*.  

The definition of do) = log(u) is justified by taking the limit as h 
approaches zero. 

Becker and Cleveland (1987) discuss scatterplot brushing and Stuetzle 
(1987) discusses plot linking. The birth rate data are taken from Velleman 
(1982). The brain weight data are from Weisberg (1985, p. 144). 

The data that are obtained when loading the file demo-2d. lsp can 
also be obtained by loading a file from the R-data folder. The 1940- 
1947 birth rate data are in the file bi r t hrt 1 .1 sp, and the later birth 
rate data are in the file birthrt2 . lsp. The brain weight data are in the 
file brains. l sp .  The ozone example discussed in Chapter 2 is part of a 
much larger set of data in the file ozone .1 sp. 

EXERCISES 

3.1. Take a closer look at the data of Figure 3.8 by using the graphical 
tools discussed in this chapter. Is it really true that the highest birth rate 
always occurred in September? Which month tends to have the lowest 
birth rates? 

Redraw Figure 3.7. Which species has the highest brain weight 
and the highest body weight? Which species has the lowest brain weight 
and body weight? Find the point for humans on the plot and give the 
coordinates for the point. 

3.3. This is a continuation of Exercise 2.4. Load the Australian Institute 
of Sport data, file ais . l sp ,  in the R-data folder. 

3.3.1. Again specify H t  as the single predictor and lean body mass 
(LBM) as the response. It may be possible to explain more of the variation 
in LBM by using sex in addition to height. How does the distribution of 
L BMI ( H t  , Sex) change with the value of Sex and the value of Ht? You can 
gain insight into the answer by considering the plot (Ht ,  LBM} separately 
for males and females. 

One of the variables in the data set is Sex, coded 1 for females and 
0 for males. Using the “Plot of. . . ” item in the regression menu, draw 
a histogram of the variable Sex. While this histogram is not particularly 
interesting on its own, it can be used to select points in the plot of {Ht,  LBM} 
by sex. In the histogram, select all the points with the value of Sex equal to 
1; this corresponds to selecting all the female athletes. The corresponding 

3.2. 
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points are now selected in the scatterplot. Selecting the points with Sex 
equal to 0 selects only the male athletes. You can now use the “Focus on 
Selection,” “Remove Selection,” and “Show All” items in the plot’s menu 
or in the histogram’s menu to study the dependence of LBM on Ht  for males 
and females separately. 

As in Exercise 2.4 provide a report on your study, including the necessary 
graphical support. 

3.3.2. Use the “New Model. . . ” item to set up the regression structure 
with %Bfut, percent body fat, as the single predictor of LBM. Repeat Ex- 
ercise 2.4 for these data. Investigate the distribution of LBM given %Bfat, 
separately for males and females, and summarize your results. 
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Scatterplot Matrices 

We now turn to graphical methods for regression problems with one or more 
predictors. In general, we have a response y and p predictors collected 
into a p x 1 vector x. The individual predictors will be denoted by xj for 
j = 1 ,  . . . , p ,  so x = (XI, . . . , x ~ ) ~ .  The general goal is unchanged: to 
study the conditional distribution of ylx as the value of x changes, often 
concentrating on the regression function E(y1x) and less frequently on the 
variance function var(y1x). These functions now depend on p arguments, 
the values of the individual predictors. We have deliberately used the same 
symbol x to represent a vector of predictors in a p-predictor problem or 
a single predictor in simple regression. We will view regression with one 
predictor as the special case when p = 1. 

When p = I ,  the 2D plot (x, y )  provides a fairly complete summary 
of a regression problem. When p = 2, a 3D plot of the predictors versus 
the response can serve the same purpose. The 3D plot uses motion to view 
the third dimension, as described in the next few chapters. When p =- 2, 
we cannot view the data in total because they are in too many dimensions. 
Consequently, graphical methods have been devised that allow the user to 
see parts of the data. One helpful graphical display is the scatterplot matrix, 
which provides an organized way of looking at many 2D views of higher 
dimensional data. This plot is a very useful starting point for regression 
graphics. 
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BigMac i 
Figure 4.1. Scatterplot matrix of the Big Mac data. 

4.1 USING A SCATTERPLOT MATRIX 

A scatterplot matrix is a 2D array of 2D plots. To introduce the idea, 
load the file big-mac . l s p  from the R-data folder. This file includes 
economic data on 45 world cities. For the purposes of this example, take 
as the response the variable BigMac, which is the number of minutes of 
labor required by an average worker to purchase a Big Mac hamburger and 
French fries. Use four predictors: Bread, the number of minutes of labor 
required to purchase one kilogram of bread; TeachSul, the average annual 
salary of a primary school teacher, in thousands of U.S. dollars; TeachTax, 
the tax rate paid by an average primary teacher; and BusFare, the lowest 
cost of a 10-kilometer bus, tram, or subway ticket, also in U.S. dollars. 
Using the regression dialog, select the response and predictors as specified 
above. The name of the regression will be “Mac” unless you change it. 

Select “Scatterplot Matrix of. . . ” from the “Mac” menu. In the resulting 
dialog, move variable names from the left window to the right in the order 
BigMac, BusFare, TeachTax, TeachSal, and then Bread by double clicking 
on the names; when done, push the “OK’button. The plot on your computer 
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screen should look like Figure 4.1. You may wish to make the plot larger 
by resizing. You can’t change the aspect ratio in scatterplot matrices. 

Except for the diagonal, each frame of the matrix in Figure 4.1 contains a 
scatterplot. The variable names on the diagonal label the axes; the variables 
appear in the order selected beginning in the lower left and proceeding up 
the diagonal. The numbers in the diagonal cells are the maximum and 
minimum of the corresponding variable. TeachTax, for example, ranges 
between 4.3 and 55%, while BusFare varies from $0.09 to $2.66. The plots 
above the diagonal are mirror images of the plots below the diagonal. For 
example, the bottom right plot is {Bread, BigMac} while the top left plot 
is (BigMac, Bread). Variable labels are truncated to fit along the diagonal. 

A scatterplot matrix can be viewed as a graphical equivalent of a cor- 
relation or covariance matrix, as each plot shows the relationship between 
two variables without reference to the other variables. It can be a better 
summary of data than a correlation matrix since the latter gives only a sin- 
gle number summary of the linear relationship between variables, while 
each scatterplot gives a visual summary of linearity, nonlinearity, and sep- 
arated points. For example, the plot of (BusFare, TeachTux} appears to 
be approximately linear, and so the relationship between these can be rea- 
sonably summarized by a correlation coefficient. The plot for { TeachSal, 
TeachTux} may also be approximately linear, but the variability appears to 
increase as TeachTax increases; this cannot be captured by a one-number 
summary. The 2D plots that include Bread appear to be nonlinear, although 
the impression of these plots is strongly influenced by at least one isolated 
point. The plots with BigMac on the vertical axis are curved. 

4.2 IDENTIFYING POINTS 

In several frames of the scatterplot matrix, one point appears to be separated 
from the others. Is it always the same point? To answer this, simply select 
the point and it will be highlighted in all frames of the scatterplot matrix. 
Assuming that you highlighted the point with the extremely high cost of 
bread, you will see that this point is very low on TeachSal and TeachTax, 
moderate on BusFare, and high, but not extreme, on BigMac. Which 
city is this? Select “Show Labels” from the plot’s menu, and then select 
the point again: this city is Lagos, Nigeria. One might wonder if our 
impression of these plots would be altered if Lagos were removed from the 
plot. As with other graphs, a point can be removed by selecting first the 
point and then the menu item “Remove Selection” from the plot’s menu. 
After selecting “Rescale Plot,” the plot is shown in Figure 4.2. Removing 
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BusFare 1 - 
BigMac 1 

Teach% 1 
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Figure 4.2. Rescaled scatterplot matrix of the Big Mac data after removing Lagos. 

Lagos does not change most of the qualitative judgments concerning the 
bivariate relationships between these variables. Also, we see that the next 
largest value of Bread, for Manila, is 86 minutes. 

We are now faced with a common problem in regression analysis: an 
apparently unusual point. A value of 2 16 for Bread means that the average 
worker must work for more than 3.5 hours to buy one loaf of bread. At this 
price, either bread must be a luxury item in the Nigerian diet or the value 
of 216 is in error, in either copying or computing. In any case, we choose 
to continue analysis without Lagos included in the data. 

4.3 TRANSFORMING PREDICTORS TO LINEARITY 

An important part of graphical methodology for regression is understanding 
the statistical relationships between the predictors. Nonlinear relationships 
between predictors make graphical methods difficult to interpret and use, 
an idea that will be developed in later chapters. Graphical methods are 
more effective when all regression functions of the form E(x, Ixk) for all j 
and k are linear functions of X k ,  so all frames (xk, x,} for the predictors in 
a scatterplot matrix show linear regression functions. Predictors can often 
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be transformed to remove gross nonlinearities. The scatterplot matrix pro- 
duced by the R-code can be used to help choose linearizing transformations 
for the predictors. 

The main tools for choosing transformations of the predictors are the 
power transformation slide bars shown in Figure 4.2 and discussed in the 
last chapter. A slide bar is given for each strictly positive variable. Moving 
a slider replaces a variable in all frames of the scatterplot matrix by the 
scaled power transformation with the parameter given above the slide bar. 

In Figure 4.2, each of the plots appears to be monotone, but not necessar- 
ily linear, so power transformations may be effective in achieving linearity. 
Consider first the plot (TeachSul, Bread), near the upper right comer of 
the scatterplot matrix. For both variables, the majority of the observations 
are clustered near the axes. This suggests choosing powers that are small. 
Move the slide bars for Bread and TeachSul to 0.33. As you change the 
powers, every plot involving either of these variables is changed. The re- 
sulting plot [ (TeachSal )(.33), (Bread)(.33)) can now be judged for linearity. 
Because the plots in a scatterplot matrix are rather small, it is helpful to 
zoom in on this one frame by enlarging it in a standard 2D plot. Move the 
mouse over the plot you want enlarged, and while holding down both the 
option and shgt keys,' push the mouse button. The computer will respond 
by beeping and then opening a new window containing an enlargement of 
the frame you chose. If the axes are transformed when you zoom in, they 
will be transformed in the 2D plot as well. If you option-shift-click on a 
variable name, a histogram of that variable or of its transformation will be 
opened in a window. 

Figure 4.3 shows the enlarged 2D plot for TeachSul and Bread in the 
cube root scales. We can now use all the tools developed in the last two 
chapters to decide if this graph is linear or not. By removing the linear trend 
and then fitting a lowess smooth to the plot, it is apparent that this particular 
transformation does not quite achieve linearity. Try using logarithms rather 
than cube roots. The resulting plot is very nearly linear. 

In the Big Mac data, linearity for every pair of predictors can be achieved, 
at least approximately, by replacing the predictors by their logarithms. 
This illustrates a general rule: Positive regression predictors that have the 
ratio between their largest and smallest values equal to at least 10 and 
preferably 100 or more should very likely be transformed to logarithms. In 
this example, TeachTax has maximudminimum equal to about 10, and for 
the others this ratio is considerably more than 10, suggesting logarithms 
from the start. 

'On Unix and Windows systems, hold down the Control and Shift keys. 
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Figure 4.3. One frame from the scatterplot matrix for the Big Mac data without Lagos. 

The transformations of the predictors suggested here are designed to 
remove nonlinear relationships between pairs of the predictors. These 
have been chosen without reference to the response variable, and there is 
no guarantee that a transformation chosen to make the predictors linearly 
related will give a good scaling for the study of ylx.  In any case, these 
linearizing transformations very often provide a good place to start an 
analysis. 

4.4 PARTIAL RESPONSE PLOTS 

Figure 4.4 gives the scatterplot matrix for the Big Mac data, still excluding 
Lagos, with all the predictors transformed to log scale. The last row of 
the figure gives the 2D plots of each of the transformed predictors versus 
the response. We call these partial response plots because they display the 
dependence of the response y on each predictor X j  without regard for any 
of the other predictors. Each of these four plots shows curvature to some 
degree. For example, the partial response plot (log(TeachSal), BigMac} 
suggests that BigMac decreases with log(TeachSul), but the decrease is 
not necessarily linear in log(7"achSal). To say more than this requires 
zooming in on this plot and examining it more closely; this is left to the 
homework problems. Similar statements can be made concerning the other 
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Figure 4.4. Scatterplot matrix for the Big Mac data with the predictors in log scale. 

three partial response plots, and each of these can give useful information, 
particularly if the plot behaves in an unexpected way. For example, the 
cost of a Big Mac is lower in cities with high taxes, a conclusion that might 
not have been anticipated before looking at the plot. 

The partial response plots display information about the partial regres- 
sion of the response on each of the predictors. What can we learn from this 
row about the full p-dimensional regression function E ( y ( x )  ? The partial 
response plots always provide a visual lower bound for the goodness of fit 
that can be achieved with the full regression. If xj  does a good job explain- 
ing the response y, then a set of predictors that includes x, can't do worse 
than x, alone. Without further knowledge of the regression relationships 
among the predictors, the partial response plots tell only about bivariate 
relationships. For example, the partial response plots in Figure 4.4 are all 
curved, indicating that E(ylx,) is nonlinear for each predictor. This cannot 
necessarily be taken as evidence that the full regression function E ( y ( x )  
is curved. Similarly, if each of partial response plots had been linear, we 
could not necessarily have concluded that the regression function E ( y ( x )  
is linear. However, scatterplot matrices can be used to infer about the full 
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regression function E(ylx)  when the predictors are linear, a theme that will 
be developed in later chapters (see Section 6.5). 

4.5 COMPLEMENTS 

Scatterplot matrices can also be used to display diagnostic statistics such 
as residuals and fitted values and other derived statistics like leverages and 
Cook’s distances. For some of these statistics, primary interest is in the 
magnitude of the statistic, not in relationships with other diagnostics. The 
scatterplot matrix is then just a convenient way of displaying many plots 
at once. Adding the Case numbers variable to the plot can be useful. 

Becker and Cleveland (1987) give further discussion of scatterplot ma- 
trices. The Big Mac data are taken from Enz (1991). The empirical rule to 
replace a strictly positive predictor by its logarithm if maximudminimum 
exceeds some threshold like 10 or 100 has appeared in several places in the 
statistics literature, notably in Mosteller andTukey (1977, p. 455). The data 
in Exercise 4.2 are taken from the 1992 World Almanac and Information 
Please Almanac. 

EXERCISES 

4.1. 4.1.1. In the Big Mac data, find the cities with the most expensive 
Big Macs. Find the cities with the least expensive Big Macs. Where are bus 
fares relatively expensive? You might want to use a name list by selecting 
the “Show Case Names” item from the regression menu. 

4.1.2. By zooming in on some of the frames in the scatterplot matrix, 
verify that log transformations are effective in giving linear relationships 
between pairs of predictors. Would including Lagos in the plots have led to 
different conclusions concerning transformations of the predictors? Does 
Lagos still appear to be unusual with all predictors in the log scale? 

4.2. The data file fuel 9 0 . 1 sp in the R-dat a folder includes the 
data on fuel consumption in the 50 U.S. states in 1990-1991. Load this 
file. In the regression dialog choose as the response variable FUEUPOP, 
the per capita motor fuel consumption for the state. As predictors choose 
the number of vehicles per capita, VEH/POP; the tax rate on motor fuel 
per gallon, in cents, TAX the miles travelled per vehicle, VMNEH, and the 
per capita income in the state, INC. 

Obtain a scatterplot matrix of the response and the four predictors. Are 
any unusual points apparent? For which states? Why are they unusual? 
Are transformations of the predictors needed to achieve linearity? How do 
you know? Are the partial response plots linear or nonlinear? 
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Figure 4.5. Scatterplot matrix of the Wellington birth weight data. 

4.3. Data on 56 normal births at a Wellington, New Zealand, hospital are 
given in file b i r t h w t  .1 sp  in the R- da t a folder. The response variable 
for this problem is Birth Wt, birth weight in grams. The three predictors are 
the mother’s age, denoted Age; term in weeks, denoted by Term; and the 
baby’s sex, denoted by Sex, 0 for girls and 1 for boys. 

Load the file and then specify the response and the predictors in the 
regression dialog. Construct a scatterplot matrix of the variables Birth Wt, 
Age, Term, and Sex, specifying the variables in the order given. 

Describe the relationships in each of the partial response plots 
with emphasis on the individual regression functions. Why do the points 
in the scatterplots involving Sex fall in two lines? 

Study the partial response plots {Age, BirthWt] and (Term, 
BirthWt} separately for each sex. This can be done by brushing the lines 
of points in any plot involving sex and observing the corresponding high- 
lighted points in the other scatterplots, as illustrated in Figure 4.5. Is there 
visual evidence to suggest that the relationship between BirthWt and Age 
or Birth Wt and Term depends on the sex of the baby? Describe the visual 
evidence that leads to your conclusion. 

4.3.1. 

4.3.2. 
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Three-Dimensional Plots 

In this chapter you will learn about the basics of 3D plotting. A 3D plot is 
specified by the notation { H ,  V ,  O), which gives the names of the variables 
to be plotted on the three axes in the order {Horizontal axis, Vertical axis, 
Out-of-page axis), as shown in Figure 5.1. Three-dimensional plots are 
difficult to represent accurately on a 2D page, so using the computer while 
reading this chapter is particularly important. 

5.1 VIEWING A THREE-DIMENSIONAL PLOT 

Figure 5.2 is a 3D plot created with the R-code. It can be duplicated by 
loading the file demo - 3 d .1 s p  from the R- da t a directory and then se- 
lecting “View a surface” from the “Demos:3D” menu. The main difference 
between Figure 5.2 and the plot you produce is that the background and 
foreground colors are reversed: the motion of white points on a black back- 
ground is easier to see than the usual black on white. If you want to change 
the background color, first select “Options. . . ” from the plot’s menu and 
then push the “White Background” button and finally push “OK.” On the 
Macintosh and using Windows, the plot’s menu is called “Spinner.” The 
out-of-page dimension is not visible in Figure 5.2 because this dimension is 
perpendicular to the page of this book. To see the out-of-page dimension, 
it is necessary to rotate the plot. 
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THREE-DIMENSIONAL PLOTS 

Figure 5.1. The 3D plotting region. 

In the R-code, the plot’s axes are always labelled with the letters H ,  V ,  
and 0. We will often use these letters as generic names for the variables 
on the axes as well. The names of the variables plotted on the axes are 
printed to the left of the plot; in Figure 5.2, these are A’, Y ,  and Z. 

5.1.1 Rotation Control 

The basic tools for rotation control are three pairs of buttons at the bottom 
of the plot. Pushing any of these buttons will cause the points to appear to 
rotate. The two “Yaw” buttons cause the plot to rotate either to the left or 
right about the vertical axis of the computer screen. The V-axis of the plot 
may not always be the same as the stationary vertical axis of the computer 
screen. The “Roll” buttons cause rotation about the direction perpendicular 
to the computer screen, while “Pitch” rotates about the stationary horizontal 
axis of the computer screen. Holding down the shift key while pushing a 
control button causes the plot to rotate continually until one of the six 
control buttons is pushed again. 

The rate of rotation is changed by selecting the “Faster” or “Slower” 
item in the plot’s menu. These items can be selected more than once, and 
each selection will result in a slightly faster or slower rate of rotation. 

Select the item “Mouse Mode. . . ” from the plot’s menu, and then select 
“Hand Rotate” in the resulting dialog. This changes the pointer into a hand; 
as you hold down the mouse button, you can use the hand to push the point 
cloud in various directions, much like you might push on the surface of a 
basketball to start it rotating. Pushing near the outside of the point cloud 
will result in relatively fast motion, while pushing near the center of the 
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Figure 5.2. The initial view of the “View a surface’’ demonstration. 

point cloud will result in relatively slow motion. Effective pushing takes 
some practice. 

5.1.2 Recalling Views 

The rectangular plot control marked “RecalVExtract” at the left of the plot 
is a button for a pop-up menu. Holding down the mouse button over “Re- 
calVExtract” will produce a menu of options. The first item in this menu is 
“Recall Home,” which will restore the plot to its original orientation. Se- 
lecting “Recall OLS” will rotate so the 2D plot in the plane of the computer 
screen is ( p, V } ,  where ? denotes the fitted values from the 01s regression 
of V on H and 0, including an intercept term. The item “Remember view” 
will put a marker at any selected view. You can recall the view by selecting 
the item “Recall view.” The other items in this menu will be described later 
in this chapter. 

5.1.3 Rocking 

During rotation a striking pattern may be seen, but it may be visible only 
while rotating. The impression of three dimensions can be maintained by 
stopping rotation near the viewing angle where the pattern is visible and 
then holding down the “Rock” button at the bottom left of the plot. As long 
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as the mouse button is down, the plot will rock back and forth, allowing 
an impression of three dimensions to be maintained while staying near the 
interesting view. 

Before rotation in Figure 5.2, the dominant feature is a linear trend; while 
rotating, distinct curvature emerges. These data were generated by setting 
X and 2 each to be 100 uniform random numbers between 0” and 360”and 
computing Y = sin(X) + 2cos(Z) + sin(X) cos(2). From the rotating 
plot, one can clearly recognize shapes. Relating the shapes to a specific 
functional form is quite a different matter, however. Shapes will generally 
be less obvious in data analysis problems, but they can nonetheless be 
discovered. 

5.1.4 Show Axes 

Occasionally the axes in a 3D plot may be distracting. They are removed 
by selecting “Show Axes” from the plot’s menu. Repeating this operation 
will restore the axes to the plot. 

5.1.5 Depth Cuing 

To create an appearance of depth, points in the back of the point cloud are 
plotted with a smaller symbol than are points in the front. As the points 
rotate, the symbol changes from small to large or vice versa. If some of the 
points are marked with a special symbol chosen from the symbol palette 
like an x , then depth cuing is turned off. To turn depth cuing off by hand, 
select “Depth Cuing” from the plot’s menu. Selecting this item again will 
turn depth cuing back on. 

In all the 3D plots shown in this book depth cuing has been turned off. 

5.2 SCALING AND CENTERING 

The plotting region shown in Figure 5.1 is the interior of a cube centered 
at the origin, with sides running from - 1 to 1. The data are centered and 
scaled to fit into this region. This can influence the interpretation of a 3D 

Suppose a quantity v is to be plotted on one of the axes. In the R-code 
and in most other computer programs, centering and scaling is based on the 
ranger,, = max(v> -min(v) and the midrangem,, = [max(v)+min(v)]/2. 
The quantity actually plotted is 2(v-mu)/r,,, which has minimum value - 1 
and maximum value 1. The centered and scaled variable fills the plotting 

plot. 
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region along the axis assigned to v. If the program is given an instruction 
to construct the plot { X ,  Y, Z ) ,  what will really be produced is the plot 

where 
a = 2 / r x ,  b = 2 / r y r  and c = 2 / r z  

Centering usually has no effect on the interpretation of the plot. Scaling, 
however, can have an effect, and we refer to the operation leading to (5.1) 
as abc-scaling. Because of the scale factors a, b, and c in (5.1), we will not 
be able to assess relative size in plots produced with abc-scaling: a plot of 
{lox, lOOY, lOOOZ} will be identical to the plot { X ,  Y, 2).  

When relative size is important, it may be better to use aaa-scaling, in 
which the three scale factors in (5.1) are all replaced by the minimum scale 
factor, min(a, b, c) .  With am-scaling, the data on one of the axes will fill 
the plotting region, but the data on the other two axes may not. A plot 
of { l o x ,  lOOY, l000Z) may appear quite different from the plot { X ,  Y, Z ]  
when aaa-scaling is used. When the plotted variables all have the same 
units, aaa-scaling of a plot can give additional useful information about 
the relative size and variation of the three plotted variables. In the R-code, 
aaa-scaling is obtained by pushing the “aaa Scaling” button. Repeating 
this operation will return to abc-scaling. 

5.3 TWO-DIMENSIONAL PLOTS FROM 
THREE-DIMENSIONAL PLOTS 

Use the “RecalVExtract” menu to return Figure 5.2 to the “Home” position 
and then rotate about the vertical axis by using the left “Yaw” button through 
roughly 60”. The plot should now resemble Figure 5.3. The variable on the 
vertical screen axis is still Y, but the variable on the horizontal screen axis 
is some linear combination of X and 2. Which linear combination is it? 
After using the left “Yaw” button to rotate about the vertical axis through 
an angle of 0, the variable on the horizontal axis of the computer screen is 

(5 .2)  
horizontal screen variable = d + h 

= d + a(cos O)X + c(sin O)Z 

Here a and c are the scale factors used in (5 .  I), d is a constant that depends 
on the centering constants m, and rn, and on the scale factors a and c, and 
h is the linear combination of the variables on the horizontal screen axis. 
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Figure 5.3. The same data is in Figure 5.2, rotated about the vertical by 60”. 

Equation (5.2) might be understood by thinking of a circle in the horizontal 
plane. Each point on the circle determines a linear combination of X and 
2 that is h. 

Since horizontal screen variables play an important role in statistical 
applications of 3D plots, the R-code allows you to print the values of d and 
h and also to save h as a variable for future calculations. Select the item 
“Print Screen Coordinates” from the “RecallExtract” pop-up menu. This 
will print the linear combination of the quantities plotted on the horizontal 
and vertical screen axes. For the view in Figure 5.3, the printed output 
looks like this: 

Linear combinations on screen axes in current rotating plot. 
Horizontal: 0.378001 + 0.160653 H + 0 V + -0.28597 0 
Vertical: -0.00883192 + 0 H + 0.32905 V + 0 0 

The H ,  V ,  and 0 refer to the original quantities (X, Y ,  2 in equation 5.1) 
plotted on the horizontal, vertical, and out-of-page axes. The quantity on 
the horizontal axis is h % 0.16X - 0.292 with the constant d % 0.38. 
Apart from a constant, the quantity on the vertical axis is proportional 
to Y .  Your printed output may be slightly different because the rotation 
angle you use is not likely to be exactly 60”. 
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Figure 5.4. A 2D view of the “View a surface” demonstration. The slide bar for 0 adds rotation to a 
2D plot. 

5.3.1 Saving h 
The linear combination h on the horizontal screen axis can be saved for 
future calculations. Rotate a plot to have the horizontal screen axis that 
you want to save. Select the “Extract Horizontal” item from the “Re- 
calVExtract” pop-up menu. You will be presented with a dialog to choose 
a name for this new quantity. The default name is h, and we will generally 
assume that you have used this default name. In practice the name should 
be changed to something meaningful since you may need to extract the 
horizontal screen variable several times in any particular problem. Push 
“OK’ after you have typed a name. Once the horizontal screen variable is 
saved, further rotation of the plot will not change its value. 

5.3.2 Rotation in Two Dimensions 

The static view shown in Figure 5.3 is a projection of the points in the full 
3D plot onto the plane formed by the vertical axis and the horizontal screen 
axis defined by (5.2). Since this is really a 2D plot, it could be viewed in 
a 2D scatterplot, as in Figure 5.4. We can use this figure to explain how 
rotation is done. When rotation is about the fixed vertical axis, we write 

h = h ( 8 )  = a(cosO)X+ c(sin8)Z 
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to recognize the dependence of h on the single angle 8 of rotation. Imagine 
incrementing 8 by a small amount; this will change h(8 )  but will not 
change the variable plotted on the vertical axis. The computer screen 
can be refreshed by deleting the current points and redrawing the new 
points, [h (8 ) ,  Y ) .  Repeating this process over and over gives the illusion 
of rotation. For a full 3D rotating plot, depth cuing and updated axes are 
all that need to be added. 

Select the item “Rotation in 2D’ from the “Demos:3D’ menu to repro- 
duce Figure 5.4, except that the rotation angle is initially set to 8 = 0. 
A slide bar marked “Theta” is added to this plot. As you hold down the 
mouse in this slide bar, 8 and h (8)  are changed, and for each new 8 the plot 
is redrawn. The slide bar changes 8 in 10” increments, which is a much 
larger change than is used in the built-in rotating plot. As you change 8, 
the full 3D plot is visible. If you reverse the colors using the “Options. . . ” 
item in the plot’s menu, the rotation is a bit clearer. 

We now see that 3D rotation about the vertical axis is nothing more 
than rapidly updating the 2D plot (h (8 ) ,  Y }  as 8 is incremented in small 
steps. Rotating a 3D plot once about the vertical axis by using one of 
the “Yaw” buttons corresponds to incrementing 0 between 0” and 360”. 
During rotation, plots of Y versus all possible linear combinations of X 
and 2 are visible. 

5.3.3 Extracting a Two-Dimensional Plot 

Any 2D view of a 3D plot can be put into its own window by selecting the 
“Extract 2D Plot” item from the “RecallExtract” menu. The new 2D plot 
has the usual plot controls, but it will not be updated when the parent 3D 
plot is changed. 

5.3.4 Summary 

The ideas of this section form a basis for viewing regression data in 3D 
plots, and so a brief summary is in order. While rotating a 3D plot ( X ,  Y,  2)  
once about the vertical axis, we will see 2D plots of all possible linear 
combinations of X and Z on the horizontal axis, with Y on the vertical 
axis. When the rotation is stopped, we see a 2D plot. The variable (5.2) on 
the horizontal screen axis can be extracted by using the “Extract Horizontal” 
item in the “Recall/Extract” menu. This variable will correspond to some 
particular linear combination of X and 2. 
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Figure 5.5. A 2D view of the “Detect a small nonlinearity” demonstration. 

features, particularly nonlinearities. This problem can be overcome by 
removing the linear trend, leaving any nonlinear effects behind. In the 
R-code, a plot is detrended by pushing the “Rem Lin Trend” button on a 
3D plot. This will replace the variable V on the vertical axis withe( V I H 0), 
the residuals from the 01s regression of V on H ,  0, and an intercept. A 
detrended 3D plot is thus ( H ,  e(VIHO), 0).  

Figures 5.5 and 5.6 differ only by changing the vertical axis to give 
residuals rather than the original response. The deviations from the linear 
trend are evident in Figure 5.6 but nearly invisible in Figure 5.5, even while 
rotating. These data were generated by taking 100 points on a 10 x 10 
grid for XI and x2 and defining y = u + exp(-u)/(l + exp(-u)), where 
u = 0.909~1-0.416~2 is a linear combination of the predictors. Figure 5.5 
can be reproduced by selecting the “Detect a small nonlinearity” item from 
the “Demos:3D” menu. Figure 5.6 is obtained by pushing the “Rem Lin 
Trend” button. Pushing the button again will restore the plot to its original 
configuration. 
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Figure 5.6. The same 2D view as in Figure 5.5, with the linear trend removed. 

5.5 USING UNCORRELATED PREDICTORS 

Select the item “Colinearity hiding a curve” from the “Demos:3D’ menu 
and rotate the resulting 3D plot. What do you observe? The points in the 
plot appear to fall close to a rotating vertical sheet of paper. One static 
view of this plot is given in Figure 5.7. This figure and the full rotating 
plot are of little help in finding structure because the predictors XI and x 2 ,  

plotted on the H and 0 axes, respectively, are highly correlated. To see 
this clearly, return the plot to the “Home” position and then use the “Pitch” 
control to rotate to the 2D plot ( H ,  0).  The fact that the predictors are 
highly correlated should now be apparent, as all the points fall very close 
to a line. Finding structure in 3D plots is likely to be difficult when the 
predictors on the H and 0 axes are even moderately correlated. 

With highly correlated predictors, some 2D views of the 3D plot lack 
sufficient resolution for any structure to be clearly visible. This is the 
case in Figure 5.7, where the values of the horizontal screen variable are 
tightly clustered about the origin of the plot. To insure good resolution in 
a 3D plot, we would like the values of the horizontal screen variable to be 
well spread in every 2D view. This can be accomplished by replacing the 
current predictors with an equivalent pair of uncorrelated predictors. The 
resulting new plot will be of the generic form ( H ,  V ,  Onew], so we will 
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Figure 5.7. A 2D view of the “Collinearity hiding a curve” demonstration. 

need to change only the variable on the out-of-page axis. The new variable 
One, is the residuals from the 01s simple linear regression of 0 on H ,  
including an intercept, e( 0 I H ) .  Since the sample correlation between the 
residuals One, = e( 0 I H )  and H is zero (recall Exercise 2. l), the variables 
on the horizontal and out-of-page axes of the new plot will be uncorrelated, 
and the values of the horizontal screen variable should be well spread in 
any 2D view. 

Beginning with any 3D plot, a new plot with uncorrelated predictors is 
obtained by pushing the “0 to e(0lH)” button. Pushing the button again 
will restore the plot to its original state. 

Changing to uncorrelated predictors in Figure 5.7 results in Figure 5.8, 
where a curved trend is now visible. In this example, the predictors have 
correlation close to 0.99, and the response y is a function of x1, x2 and xt, 
x i  and ~ 1 x 2 .  

We gain resolution when changing to uncorrelated predictors in a 3D 
plot, but do we lose information? Since the residuals e ( 0 l H )  = One, 
from the regression of 0 on H are computed as a linear combination of 
0 and H ,  rotating the new plot ( H ,  V ,  e( 0 I H ) )  will still display 2D plots 
of all possible linear combinations of 0 and H ,  just as we obtain when 
rotating the original plot ( H ,  V ,  0). No graphical information is lost when 
changing to uncorrelated predictors. 



68 THREE-DIMENSIONAL PLOTS 

[ o m  

0 RemLlnTrend 

B 0 to e(OlH) 

0 aaa Scaling 

IRecall/Extracl I 
H: x1 

W Y  

0: x2 

Figure 5.8. The same demonstration as in Figure 5.7, but with the “0 to e(OlH)” button pushed. 

5.6 COMPLEMENTS 

Plot rotation was introduced in the statistics literature by Fisherkeller, 
Friedman, and Tukey ( 1974). Many early papers on this subject are reprinted 
in Cleveland and McGill(l988). Tierney (1990, Section 9.1.3) provides a 
useful reference for many of the details of plot rotation. The need for un- 
correlated predictors in arotating plot was presented by Cook and Weisberg 
(1989, 1990a). In the latter paper, an optimality property of this procedure 
is derived. The discussion of rotation in Section 5.3 is limited to rotation 
about the vertical axis, but it is easily generalized. 

The RANDU generator discussed in Exercise 5.2 is taken from Tierney 
(1990, p. 41). Exercise 5.3 is based on a demonstration included with 
Xlisp-Stat, also by Luke Tierney. The haystack data in Exercise 5.4 are 
from Ezekiel (194 1). The data for Exercise 5.5 are taken from Tuddenham 
and Snyder (1954). 

EXERCISES 

5.1. In Figure 5.4, the tick-marks on the horizontal axis cover the 
range from - 1.5 to 1.5, even though each of the variables displayed in the 
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plot are scaled to have values between - 1 and 1. Why is this larger range 
necessary? 

5.2. Many statistical methods use a sequence of numbers that behave 
as if they were a random sample from some specified distribution. The 
most important case is generating a sample from the uniform distribution, 
so each draw from the distribution is equally likely to be any number 
between 0 and 1 .  The random-number generators used are deterministic, 
so if you start the generator in the same place, it will always give the same 
sequence of numbers. Consequently, generators must be tested to see if 
the deterministic sequences they produce behave as if they are a random 
sample from a distribution. 

A well-known generator of uniform random numbers in the early days of 
computing is called RANDU. Load the file randu .1 sp from the R-dat a 
folder. This will give you a 3D plot obtained by taking 200 consecutive 
draws (XI, x2, x3) from RANDU and then plotting (XI, ~ 2 ,  x3]. 

5.2.1. As you spin the plot, the points fall in a cube. Is this expected, 
or is it evidence that RANDU is not generating numbers that behave like a 
uniform sample? 

5.2.2. If the numbers all behaved as if they were draws from a uniform 
distribution, what would you expect to see in every 2D view of this plot? 
Spin the plot, and see if you can find a 2D view that is not random. You 
may need to spin slowly to find anything. What do you conclude? 

5.3. Load the file spheres. lsp from the R-data folder. This will 
automatically produce two 3D plots. Move one so both are visible at the 
same time. Start both rotating by pushing the mouse button in the left 
“Yaw” button while pressing down the Shift key. What is the difference 
between these plots? If you are having trouble finding any difference, select 
a vertical strip in each plot by brushing over the strip with the mouse button 
down, and then examine the strips as the plots rotate. 

5.4. In the Great Plains during the 1920s, farmers sold hay unbailed 
and in the stack, requiring estimation of the volume of a stack to insure a 
fair price. Two measurements that could be made easily with a rope were 
usually employed: Circurn, the circumference in feet around the base of 
the stack, and Over, the distance in feet from the ground on one side of a 
stack to the ground on the other side of the stack. Stacks varied in height 
and shape so using a simple computation like the volume of a hemisphere, 
while perhaps a useful first approximation, was not found to be sufficiently 
accurate. 



70 THREE-DIMENSIONAL PLOTS 

The file haystack. lsp in theR-datafoldercontainsmeasurements 
on Circum and Over for 120 haystacks in Nebraska in 1927 and 1928. The 
response variable is VoZ, the true volume of the stack obtained by using 
several careful measurements. The measurement process for obtaining Vol 
was not available for the average Nebraska farmer at the time. 

Load the haystack file, and when the regression dialog appears, specify 
VoZ as the response and Circum and Over as predictors. From the result- 
ing “Haystacks” menu use the item “Plot of.. . ” to construct the 3D plot 
(Circum, Vol, Over]: Move the variables Circum, VoZ, and Over in this 
order from the left “Candidates” window to the “Selected Axes” window 
by double clicking on the variable names. If you make a mistake, dou- 
ble clicking moves the variables back as well. Push “OK’ when you are 
finished. 

5.4.1. Inspect the 3D plot (Circum, VoZ, Over} by using only the rotation 
controls along the bottom of the plot. Write a two- or three-sentence 
description of what you see as the main features of the plot. 

5.4.2. Change to aaa-scaling in the 3D plot ( Circum, VoZ, Over}. Write 
a brief description of the result and why it might have been expected based 
on the nature of the measurements involved. 

Remove the linear trend from the plot (Circum, Vol, Over} by 
clicking the “Rem Lin Trend” button. Describe the quantity on the vertical 
axis of the detrended plot. Write a two- or three-sentence description of 
the main features of the detrended plot. 

5.5. This problem uses data from a study of the growth of children born 
in Berkeley, California, in 1928-1929. We will use only data on girls. 
Load the file BGSgirls. l s p  from the R-data folder, and select the 
age 18 weight, WT18, as the response and the age 2 weight, WT2, and the 
age 9 weight, WT9, as the predictors. All measurements are in kilograms. 

5.5.1. Use the “Plot of. . . ” item in the regression menu to draw the plot 
of (W72, WTl8, WT9). Inspect this plot using only the rotation controls 
along the bottom of the plot. Write a two- or three-sentence description of 
what you see. 

5.5.2. Change to aaa-scaling in this 3D plot. Explain what happened. 
Does the scaling convey additional information? What is the information? 
Remember that all three variables are measured in the same scale. 

5.6. Return to the birthwt . l s p  data described in Problem 4.3 and 
construct the 3D plot (Age, BirrhWt, Term]. Inspect the plot using any of 
the plot controls discussed in this chapter and write a brief description of 
your impressions. 

5.4.3. 
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Visualizing Linear Regression with 
Two Predictors 

In regression problems with one predictor we study how the distribution 
of ylx changes as the value of x changes. We consider two predictors 
in this chapter, studying how the distribution of yI (XI, x2) changes with 
the values of XI and x2. As in the case of a single predictor, the primary 
emphasis will be on the behavior of the regression function E(ylxl, x2). 
The basic graphical construction for this study is a rotating 3D scatterplot, 
{XI ,  y, x2). We first review the linear regression model for two predictors, 
which is assumed to hold throughout this chapter. 

6.1 LINEAR REGRESSION 

The linear regression model with two predictors is an extension of the 
model for a single predictor discussed in Section 2.2, 

(6.1) 

The B ' s  are unknown regression coefficients. The errors E are assumed to 
be independent of x and of each other with mean zero and constant variance 
c2. In vector notation, the model is 

(6.2) 

where we have collected x = (XI, x2) into a vector of length 2 and B T  = 
(PI ,  82).  In the notation we are using here the vector of unknown regression 
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Figure 6.1. In linear regression with two predictors, 
( I ,  2 ) .  

may be any point in the plane. When cp' = 
is constrained to lie along the line shown in the figure. 

coefficients p does not contain the intercept PO, so x and p have the same 
length. 

There are two key implications of the linear model. First, the distribu- 
tion of y J x  depends on x only through the linear combination p T x .  As a 
result, the distribution of ylx is the same as the distribution of y l p T x  for all 
values of x ,  and the regression functions for ylx and must be iden- 
tical, E(y1x)  = E ( y l p T x ) .  The second implication is that these regression 
functions are linear: 

In this equation, p may be any point in the plane in Figure 6.1. 

6.1.1 The Ideal Summary Plot 

Suppose we know the product c/3 for some unknown constant c # 0. This 
supposition is relevant because we will eventually be able to estimate c/3 
graphically, but not p itself. Knowing c/3 restricts the possible values of 
p.  For example, if cpT = (1,2), then the value of /3 must lie on the line 
shown in Figure 6.1. We can now compute a new predictor h * = cpTx for 
each value of x in the data, and rewrite E(y1x)  = E ( y l p T x )  as 
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Knowing cp has allowed us to reduce the original regression to a simple 
linear regression problem without any loss of information. 

The data for regression model (6.3) can be visualized in the 2D plot 
{ h * ,  y )  just as we visualize the data for any regression problem with one 
predictor. We call the plot {h* ,  y }  an ideal summaryplot because it provides 
full information on the original regression problem with two predictors. 
Model (6.3) is a consequence of assuming the linear regression model, but 
summarizing a regression problem with a 2D plot is a general idea that does 
not require a model. In this chapter we study 2D summary plots when a 
linear model holds, allowing us to introduce several new ideas in a familiar 
setting. 

6.1.2 Viewing an Ideal Summary Plot When a2 = 0 

Given a linear model like (6.1), imagine how the rotating 3D plot { X I ,  

E(ylx), x2) would look. In real problems we can never construct this 
plot because E(y1x) is unknown, but to fix ideas, we can generate data 
from such a model and then examine it. We generated a data set with 
100 observations according to the following setup. The predictors X I  and 
x2 were first generated as independent N(0, 1 )  random variables, where 
the notation N(p ,  a2) denotes a normal random variable with mean p and 
variance a2. The response was then constructed as 

~ I x  = 1 + 2x1 + 3x2 + N(0, 1) 

The errors are independent, normal random variables with mean 0 and vari- 
ance 1. The regression function is thus E(yJx) = 1 + 2x1 + 3x2 with = 
(2,3)? The data set can be obtained by loading the file demo-3d. lsp 
from the R-data folder and then selecting the item “Uncorrelated Predic- 
tors, Linear Model” from the menu. You will be presented with a regression 
dialog containing the two predictors, y ,  E(y1x) and the errors. Specify a 
regression with response y and predictors X I  and x2. The name of the 
resulting regression menu will be “Uncorr,” unless you change it. 

Use the “Plot of. . . ” item in the “Uncorr” regression menu to draw the 
3D plot { X I ,  E(ylx), x2). Inspect the rotating plot for a bit by using the 
“Yaw” plot controls to rotate around the vertical axis. What do you see 
as the important characteristics of the plot? Most striking is that all the 
points fall exactly on a plane that is visible while rotating. The plane is 2D 
because there are two predictors; it is p dimensional when the number of 
predictors is p. 

Figure 6.2 shows a particular 2D view with all the points falling exactly 
on a line. For this plot the horizontal screen variable h* = cpTx = 42x1 + 
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Figure 6.2. A 2D view of the “Uncorrelated Predictors, Linear Model” demonstration, with E(y1.x) 
on the vertical axis. 

3x2). Because the linear model holds, the constant c is determined by the 
scaling and centering factors used to map the data into the plotting area. 
This view is an ideal summary plot. 

When rotation is stopped and the horizontal screen variable h is not 
proportional to B T x ,  the points will not fall exactly on a line. This brings 
us to another important characteristic of the example: Each static 2D view 
shows linearity between the response and the horizontal screen variable. 
The strength and slope of the linear relationships vary, but no 2D view shows 
curvature. This is a consequence of both the linear model and the way we 
selected the predictors. Curvature can be obtained for other distributions 
of the predictors, as will be described later in this chapter. 

6.2 FITTING BY EYE 

6.2.1 Fitting by Eye When g2 = 0 

Return to the 3D plot (XI, E(ylx), x2} and rotate it until the static 2D plot 
in the computer screen gives a single straight line, as in Figure 6.2. The 
view can be fine tuned by selecting the item “Slower” from the plot’s menu 
to slow the rate of rotation. You have just fitted a linear regression model 
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by eye; the answer is the 2D plot in Figure 6.2. Fitting by eye is easy in 
this case because there is no error. 

The new predictor is the horizontal screen variable of Figure 6.2, apart 
from the unimportant additive constant. This linear combination of the 
predictors can be determined by using the “Print Screen Coordinates” item 
in the “RecalVExtract” pop-up menu: 

Linear Combinations on screen axes in current rotating plot. 
Horizontal: -0.043509 + 0.199105 H + 0 V + 0.298658 0 
Vertical: -0.0940762 + 0 H + 0.096433 V + 0 0 

Your output will be different if you stopped rotation at a different view. We 
get 

h* = blxl + b2~2 = 0.199105xl + 0.298658~2 

as our single new predictor. Apart from rounding error, all points in Fig- 
ure 6.2 fall exactly on a line and thus equation (6.3) is satisfied. An- 
other check is to compare /31//32 to bl/b2; these ratios will be equal if 
b = cp. In this example, bl/b2 = 0.199105/0.298658 = 0.67, and 

We can use equation (6.3) to recover the exact form of E(y1x) as a linear 
function of XI and x2 by performing the simple linear regression of E(y(x) 
on h*. This regression can be carried out in the R-code as follows. Make 
sure that the 3D plot (XI, E(ylx), x2} is still rotated to display a straight line 
on the computer screen and then select the item “Extract Horizontal” from 
the “RecalVExtract” pop-up menu. Enter the name h-star in the dialog and 
then push “OK.” You have just saved h-star as part of the data file. To carry 
out the regression of E(y1x) on h-star, return to the “Uncorr” menu and 
select “New Model. . . .” Specify h-star as the only predictor and E(y1x) as 
the response and then push “Done.” The output is shown in Table 6.1. 

The standard errors and 3 are not quite zero in this output because of 
rounding errors in the computer; if you chose a different linear combination, 
your estimates and standard errors will be different. The 01s intercept and 
slope are 1 and 10.0449, respectively, and 

81/82 = 2/3 = .67. 

E(ylx) = 1 + 10.0449h* 

From (6.3), we compute c-’ = 10.0449 and thus c = 0.0995035. Finally, 
replacing h* with its representation in terms of the predictors, we recover 
the true regression function: 

E(ylx) = 1 + 10.0449(0.199105xl + 0.298658~2) 

= 1 f 2 X 1  +3X2 
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Table 6.1. Regression of y on h‘ 

Model name = Uncorrl, Response = E[ylxl 
Coefficient Estimates 
Label Estimate Std. Error t -value 
Constant 1 4.82313e-09 2.07334e+08 
h-star 10.0449 1.26497e-08 7.94084e+08 

R Squared: 1 
Sigma hat : 4.81678e-08 
Number of cases: 100 
Degrees of freedom: 98 

In practice we will rarely know c/3 so we cannot usually draw an ideal 
summary plot. But we can graphically determine an estimate h of h* using 
3D plots. 

6.2.2 Fitting by Eye When (r2 > 0 

Return to the “Uncorr” menu and use the “Plot of. . . ” item to get the 3D 
plot {XI, y ,  x2J. How does this plot differ from the plot (XI, E(ylx), xz}? 
The points in the 3D plot (XI, y ,  x2) scatter about a plane, as is evident 
during rotation. They do not fall exactly on a plane because of the errors. 

Rotate the plot using a “Yaw” button to get a good feeling for the point 
cloud, and then stop rotation. The resulting static 2D view shows a linear 
relationship. Some static views show strong linearity and some show only 
weak linearity. Rotate the 3D plot to the 2D view that shows the strongest 
linear trend. Your plot should look like Figure 6.3 or its mirror image. 
Select the item “Remember view” from the “RecalVExtract” pop-up menu; 
this will allow you to return to this view after further rotation by selecting 
the item “Recall view.” The linear combination of the predictors that defines 
the horizontal axis of the 2D plot should be close to h* = 42x1 + 3x2) 
for some constant c, and the ratio of the coefficients should be close to 
2/3. Because there is error, we should not expect these results to be exact, 
as they were in the no-error case discussed previously. Selecting “Print 
Screen Coordinates” from the “RecallExtract” pop-up menu, we get 

Linear Combinations on screen axes in current rotating plot. 
Horizontal: -0.0418409 + 0.204554 H + 0 V + 0.296553 0 
Vertical: -0.0335182 + 0 H + 0.0871291 V + 0 0 

The value of the horizontal screen variable h is almost equal to 0.1 x (2x1 + 
3X2), and the ratio 
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Figure 6.3. Strongest 2D view from the “Uncorrelated Predictors, Linear Model” demonstration, with 
y on the vertical axis. 

0.204554/0.296553 = 0.689772 

is not far from 2/3. We have nearly recovered the true linear combination of 
the predictors that determines the response. In problems with larger errors, 
graphically choosing a best direction can become more difficult; 01s fitting 
becomes more variable as well. 

6.2.3 Fitting by 01s 

The 01s estimates 6 and 80 are obtained by minimizing the sum of squared 
differences between the observed values of the response y and the corre- 
sponding fitted values. The 01s plane includes all the points ( X I ,  j ,  x2} ,  

where f = 80 + 81x1  + 82x2 are the fitted values and 80, 81, 8 2  are 
the 01s estimates. Thus fitting by 01s will determine a linear combination 
hols = S I X I  4- 82x2. Imagine summarizing the 3D plot by using the 2D 
plot [hols, y } ,  or equivalently, [ j ,  y} .  What would this plot look like? If f i  
is a good estimate of B,  then equation (6.3) should be nearly satisfied, with 
hols substituted for h*. 

Select the item “Recall OLS” from the “RecalVExtract” pop-up menu 
in the plot ( X I ,  y, x z } .  The view on the computer screen is now {hols, y } .  
By first selecting “Recall view” and then “Recall OLS,” you can compare 
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a. The summary plot. b. The uncorrelated view. 

Figure 6.4. Assessing the summary plot for Figure 6.3. 

the view ( h ,  y ]  you saved earlier in Section 6.2.2 with the 01s view. If you 
did a good job at choosing the strongest linear trend by eye, the 01s view 
and the view you saved in Section 6.2.2 should be nearly the same, or they 
may be mirror images of each other. 

We can substitute visual fitting in a 3D plot for 01s. As we rotate the 3D 
plot about the vertical axis, we see a sequence of 2D plots ( h ,  y ] ,  where 
h = b l x ~  + b 2 ~ 2  = b'x for some vector b. We hope to find b % cj3 for 
some nonzero constant c, stopping rotation when the strongest linear trend 
is visible on the computer screen. If we do find b M cj3, then (6.3) will be 
approximately satisfied with h substituted for h*. 

6.2.4 Checking a Candidate Summary Plot 

As long as the linear model holds, an ideal summary plot { c sTx ,  y ]  can 
replace the full 3D plot without loss of any statistical information. A 
sumrnuryplot { h ,  y ]  is an estimate of an ideal summary plot, with h chosen 
using the methods described in the last two sections. Since h is determined 
using data, we need a method of checking to see if a particular candidate 
summary plot ( h ,  y ]  is adequate. 

If h is a good approximation to h* = csTx,  then the 2D summary 
plot contains essentially all the information on how the distribution of ylx 
changes with the value of x . This is the same as saying that the distribution 
of ylh is independent of x, which provides the basis for checking to see if a 
candidate summary plot misses important information. Imagine selecting 
points in a vertical slice of { h ,  y ] .  The summary plot shown in Figure 6.3 
is repeated in Figure 6.4a, with a slice selected. If h is all we need to know 
about the predictors, then the selected points within the slice should look 
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like a horizontal band as the plot is rotated. If any other pattern is apparent, 
the candidate summary plot does not contain all the information about 
the distribution of ylx,  implying that h is noticeably different from cBTx. 
For full confidence that the candidate summary plot { h ,  y )  is adequate, 
a horizontal band of points should be observed for a series of slices that 
covers the range of h. 

This basic checking procedure is too time consuming to be of much 
practical value, so we suggest a simpler procedure based on a single 2D 
view. The horizontal axis of this single view is the linear combination of 
the predictors that is uncorrelated with h.  Call this linear combination hu,  
and call the plot { h U ,  y )  an uncorrelated 2 0  view. Figure 6.4b is the uncor- 
related 2D view for the 3D plot in Figure 6.4a. The points corresponding to 
the slice in Figure 6.4a are shown in Figure 6.4b. No within-slice patterns 
are apparent in this slice, or in any other slice, suggesting that { h  , y )  is an 
adequate summary plot for these data. 

Here is how to use the R-code to obtain the uncorrelated 2D view for 
checking a summary plot: 

1. Rotate the 3D plot {XI ,  y ,  x2) about the vertical axis to the 2D view 
{h,  y )  with the strongest linear trend. This view, which is the candi- 
date summary plot, can be remembered for later use by selecting the 
item “Remember view” from the “RecallExtract” menu. This plot 
should be similar to Figure 6.4a. 

2. Select the item “Extract Horizontal” from the “RecalVExtract” menu 
of the candidate summary plot [ h , y )  and give a name to the horizontal 
screen variable. The default name h will be used for the rest of this 
discussion, but meaningful names are always better. 

3. Select “Extract uncorrelated 2D plot” from the “RecallExtract” menu. 
This produces the uncorrelated 2D view { h u ,  y }  in a separate win- 
dow but does not change the current 2D view { h ,  y )  of the 3D plot 

4. Select the item “Slicer. . . ” from the plot menu of the uncorrelated 
2D view. This item produces a dialog that allows you to create a slide 
bar that can be used to view slices in a plot. Type the name for the 
horizontal screen variable that you chose in Step 2 and then chose a 
“Fraction” and a “Slice Type.” In most cases, a fraction of 0.1 or 0.2 
and the “Show Only Slice” option will be good choices. When done 
push “OK.” 

5. You now have two plots, { h ,  y )  and { h u ,  y ) ,  and a slider on the com- 
puter screen. Move them so you can see them all at once; if your 

{XI 1 y ,  x21. 
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a. Summary plot. b. Uncorrelated view. 

Figure 6.5. A poor candidate summary plot for the “Uncorrelated Predictors, Linear Model” demon- 
stration. Selected points in (a) correspond to the visible slice in (b). 

screen is small, you might want to remove the plot controls from the 
plots using the “Plot Controls” item in the plot’s menu. The slider 
allows you to slice on h using overlapping slices that consist of the 
fraction of the data you specified in the dialog of Step 4. As you move 
the slider, the corresponding points will be selected in both plots. 
If the points in the uncorrelated 2D view (h,, y }  appear as a horizon- 
tal band for each slice, then there is no evidence that the candidate 
summary plot is inadequate. A horizontal band is an indication that 
y and h ,  are independent within the slice. The points in {A,,  y )  may 
move up or down as the slider is moved, but if each slider position 
produces a horizontal band, then there is no evidence that the candi- 
date summary plot is inadequate. Otherwise, try rotating the 3D plot 
to obtain another candidate summary plot, and return to Step 1. 

Draw the plots equivalent to Figure 6.4, and verify that within each slice 
in the summary plot the corresponding points in the uncorrelated view form 
a horizontal band of points. 

What happens if h misses important information? Rotate Figure 6.3 
away from the strongest linear trend, and use the resulting 2D view as 
your candidate for the summary plot. One possibility is shown in Fig- 
ure 6.5a. The corresponding uncorrelated 2D view of this plot is shown 
in Figure 6.5b. The linear trend in the highlighted points of Figure 6.5b is 
evidence that the h in Figure 6.5a misses information because the mean of 
y changes as a function of another combination of the predictors. 

To summarize, assume that the linear regression model (6.1) is appro- 
priate. We can obtain a visual fit of the model by rotating the 3D plot 
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(XI,  y ,  x2) to the best static 2D view, the view with the strongest linear 
trend. This 2D summary plot should capture all the information on y that 
is available from x. Inspecting slices of the corresponding uncorrelated 2D 
view can determine if there may be a better 2D summary plot. If no linear 
or nonlinear trends appear within slices of the uncorrelated 2D view, then 
the 3D plot can be abandoned in favor of the summary plot. 

The variable h that determines the horizontal axis of the summary plot 
is a linear combination of the predictors, say h = blxl + b2x2, where bl 
and 6 2  depend on scaling and on the rotation angle. The values of 61 and 
b2 will generally differ from the 01s estimates 6 I and 8 2 ,  but if h is visually 
well determined, the ratio bl/b2 will be close to 8 1 / 6 2 .  In addition, the 
fitted values from the simple linear regression of y on h will be very close 
to the fitted values from the linear regression of y on X I  and x2. 

6.3 CORRELATED PREDICTORS 

Finding the strongest linear trend can be quite hard if the predictors are 
highly correlated. As we have seen in Section 5.5, plots with correlated 
predictors are difficult to study because of the loss of resolution in po- 
tentially important 2D views. A solution once again is to use the “0 to 
e(0IH)” button to make the predictors on the horizontal axes uncorrelated. 
An example of this is given in Exercise 6.6. 

6.4 DISTRIBUTION OF THE PREDICTORS 

6.4.1 Nonlinear Predictors 

In the examples so far, every 2D view of a 3D plot has shown a linear 
relationship, and only the strength of the relationship changed as we al- 
tered the view. Some 2D views of a 3D plot can show clear nonlinear 
relationships, however, even when E(ylx)  is a linear function of x. The 
relationship between the predictors x1 and x2 is the key. If the regression 
functions E(xlIx2) and E(x21xl) are both linear, then all 2D static views 
of [XI, y, x2J will be linear. If either is nonlinear, some static 2D views of 
the 3D plot (XI, y ,  x2) may exhibit a nonlinear trend, even when the linear 
regression model (6.1) holds. 

Select the item “Nonlinear Predictors, Linear Model” from the “De- 
mos:3D” menu, and set up the model with predictors x1 and x2 and re- 
sponse y. This again uses artificial data, with XI standard normal and 
x2 = x: + N(O,O.25). As in the previous examples, y is computed as 
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Figure 6.6. A 3D plot from the “Nonlinear Predictors, Linear Model” demonstration. 

y = 1 + 2x1 + 3x2 + N(0, 1). The linear model holds so all the data points 
scatter about a plane in three dimensions. The only change between this 
and the previous versions is that the relationship between the predictors 
is now nonlinear. The initial 2D view of the plot {XI ,  y ,  x2J is given in 
Figure 6.6. This initial view is the partial response plot (XI,  y }  which can 
be used to estimate the partial regression function E(ylx1). It is clearly 
nonlinear. Nevertheless, while rotating the 3D plot by using one of the 
“Yaw” buttons, the points are seen to lie near a plane, as required by the 
linear model. After returning the plot to the “Home” position, use a “Pitch” 
button to display the plot of (XI, xz}, which is curved. 

We have encountered a curious situation: E(ylx)  = E(ylx1, x2) is a 
linear function of x while E(ylx1) is a nonlinear function of XI. To un- 
derstand this situation, we need the connection between the full regression 
function E(ylx)  and the partial regression function E(y1xl). We can obtain 
E(ylx l )  from E(ylx) by taking the expectation of the latter with respect 
to x2 while holding XI fixed at a value, say 2 1. More carefully, we obtain 
E(ylxl= 21) by averaging E(ylxl= 2 1, x 2 )  over the values of x2 that are 
possible while holding XI = 21. This means that E(ylx1) is the average 
value of 

E(ylx) = Po + P I X I  + P2x2 

obtained while holding XI fixed: 
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This equation shows that E(y1xl) depends on X I  and on E ( x ~ ~ x I ) ,  the 
regression function for x2 on X I .  This should clarify the example: we 
constructed the example to have E(x21x1) = xf ,  and so 

E(ylx1) = Po + B l X l  + B2E(X2IXI)  

= 1 + 2 X 1 + 3 X ?  

The regression curve for y as a function of xl is therefore quadratic, as can 
be observed in Figure 6.6. 

Rotate the 3D plot to display the partial response plot {xz, y ) .  This plot 
is approximately linear. Is this expected? Interchanging the roles of xl and 
x2 in (6.4), we find 

E(ylx2) = Bo + B I E ( X l  1x2) + B2x2 

But E(xlIx2) is zero in this example since for each value of x2, X I  has a 
distribution that is symmetric about zero. Thus, E(yIx2) = BO + B2x2, and 
a linear plot should be expected. 

6.4.2 Linear Relationships between Predictors 

Now suppose that the regression function E(x21xl) is linear in X I ,  so for 
some constants (110 and a ~ ,  

E(X21XI) = a0 + 01x1 

Substituting this into (6.4) gives 

Wylxi) = Bo + BIXI  + BzE(QIxI) 
= Po + P I X I  + Pz(a0 + alxl)  

= (Po + B2uo) + (PI + B2al)xl (6.5) 

The partial regression function E(ylxl) will then be linear, although the 
slope and intercept in the plot of { X I ,  y )  cannot be used to estimate PO or 
Bl * 

= 0, which means that X I  is not needed 
in the regression of y on x. What can we expect to see in the partial response 
plot { X I ,  y)? From (6.5) we see that 

As an example, suppose that 

E(yIx1) = (Po + B2ao) + 82alxl 
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Figure 6.7. Nonconstant variance arising because of nonlinear predictors. 

Although X I  is not needed in the full regression, the partial response plot 
[ X I ,  y )  may show a linear trend if # 0. 

6.4.3 Partial Variance Functions 

So far we have seen how nonlinear relationships between the predictors can 
influence the behavior of partial regression functions. Let’s next consider 
partial variancefunctions. Again rotate the 3D plot in Figure 6.6 to the 
partial response plot for x2, (x2, y ] .  Extract this 2D view by using the item 
“Extract 2D Plot” from the “RecalVExtract” pop-up menu. The extracted 
2D plot shows a linear trend as we saw before, but it seems to exhibit 
nonconstant variance as well, with the points at the right of the plot more 
spread out than the points at the left of the plot. This can be seen a bit 
better by pushing the “Rem Lin Trend” button to remove the linear trend. 
The result is shown in Figure 6.7. The nonlinear relationship between the 
predictors causes the apparent dependence of var(yIx2) on x2. 

To summarize, the behavior of the partial response plot [XI, y )  depends 
on the regression function E(x2 1x1 ), even when the linear model (6.1) holds. 
The regression function for this plot will be linear if E(x2lxl) is linear in 
x I ,  and the linear model holds. Similarly, the regression function for the 
partial response plot ( ~ 2 .  y }  depends on E(xl (x2), which is the regression 
function for the scatterplot ( ~ 2 ,  XI). It is possible for E(x21~1) to be linear 
while E(xllx2) is nonlinear if the relationship between the predictors is 
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Figure 6.8. Scatterplot matrix for the “Nonlinear Predictors, Linear Model” demonstration. 

not monotone, as illustrated by the example of this section. A relationship 
is monotone increasing if an increase in one variable always corresponds 
to an increase in the other and monotone decreasing if an increase in one 
variable implies a decrease in the other. 

6.4.4 Scatterplot Matrices 

Figure 6.8 gives a scatterplot matrix of the response and predictors for 
the “Nonlinear Predictors, Linear Model” demonstration. The bottom row 
of the figure gives the partial response plots. Both partial response plots 
exhibit nonconstant variance, and (XI ,  y }  exhibits nonlinearity. We know, 
however, that E(yJx) is linear in x, but the scatterplot matrix nevertheless 
makes the problem seem much more complicated. As pointed out at the 
end of Section 4.4, this illustrates that nonlinear relationships between the 
predictors makes direct interpretation of partial response plots difficult or 
impossible. 

6.4.5 Multiple Regression 

The discussion has been confined to regression problems with two predic- 
tors, but the conclusions apply equally to regression problems with many 
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predictors. To illustrate, let’s return to the scatterplot matrix of the Big Mac 
data in Figure 4.2. The bottom row of the scatterplot matrix gives the partial 
response plots for each of the four predictors. Two or three of them show 
clear curvature. Does this mean that the regression function for BigMac 
on all four predictors will be nonlinear in the predictors? Several of the 
12 plots in Figure 4.2, not including BigMac, are curved. This means that 
the untransformed predictors in the Big Mac data are not linearly related, 
and so the curved partial response plots could be due to the relationships 
between the predictors, not to the relationship between the response and 
the predictors. 

6.5 LINEAR PREDICTORS 

Using linear predictors is a central theme in this book. A vector x = 
( X I ,  . . . , x ~ ) ~  of p predictors is a set of linear predictors if all regression 
functions of the form 

are linear functions of arx,. . . ,a,Tx, where ao, . . . , ak are any p x 1 vec- 
tors of constants. In other words, the regression function for regressing 
any linear combination of the predictors arx on any other set of linear 
combinations arx,. . . ,a*x must be linear. For any graph (arx ,  a$),  the 

mally distributed, then these conditions are satisfied, although normality is 
a stronger condition than is actually needed. 

Techniques requiring linear predictors can still be applied under modest 
violations of the assumption and may still yield practically useful results. 
The checks for linear predictors using scatterplot matrices and 3D plots of 
predictors described in this book are. adequate for most practical applica- 
tions, although they do not guarantee that the conditions are satisfied. 

We have seen in Section 4.3 that all the bivariate relationships between 
the predictors in the Big Mac data could be approximately linearized by 
replacing the predictors by their logarithms. A further check on the as- 
sumption of linear predictors is to examine 3D plots with predictors on 
all three axes. After removing the linear trend and changing from “0 to 
e(O(H)” these plots should appear as a circular point cloud with no clear 
nonlinear trends. If they do, then the assumption of linear predictors is 
probably reasonable. Try examining 3D plots of predictors in log scale for 
the Big Mac data. Given the small sample size, and possibly excluding 
the point for Lagos, nothing in these plots excludes the possibility of linear 
predictors. 

E(U,TxlaTX,. . 9 akx) T 

regression function E(aox la~x)  5. must be linear. If the predictors are nor- 
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We can now examine the partial response plots in the last row of Fig- 
ure 4.4. These partial response plots are all curved. Assuming the log- 
transformed predictors in the Big Mac data are linear predictors, we will 
eventually be able to conclude that the regression function for BigMac must 
be curved. We will return to this aspect of the Big Mac data in Chapter 10, 
and we will see that the linear model does adequately describe these data 
if we allow transformation of the response as well as of the predictors. 

6.6 COMPLEMENTS 

The material in this chapter is drawn partly from Cook (1 994). Procedures 
for checking summary plots, including the method in Section 6.2.4, are 
investigated by Cook and Wetzel(1993). Eaton (1986) has shown that the 
conditions given in Section 6.5 are satisfied if and only if x follows an 
elliptically contoured distribution. The data for Exercises 6.7 and 6.8 are 
taken from Weisberg (1985). 

EXERCISES 

6.1. Suppose model (6.1) holds. Under what conditions is the partial 
regression E(yJx2)  linear? What plot can help to decide if the required 
condition is satisfied? 

6.2. Select the item “Correlated, X2 not needed, Linear Model” from the 
“Demos:3D’ menu and specify a regression with response y and predictors 
XI and x2. These data were generated with two highly correlated normal 
predictors, corr(x1, x2) = 0.95 and response y = 1 + 2x1 + N(0, I )  so x2 

is not needed. 
Construct a scatterplot matrix of the response and the two 

predictors. That the partial response plot (XI ,  y }  shows a linear trend is 
unsurprising, since x1 is the important predictor. Explain why the partial 
response plot (x2, y )  shows a strong linear trend as well. Describe how you 
might construct an example so that the same model holds but the partial 
response plot (x2, y )  shows a strong nonlinear trend. 

6.2.2. Construct the 3D plot {XI, y, x2) and then push the “0 to e(0lH)” 
button. The resulting plot shows that only XI is relevant, which is the correct 
conclusion in this case. Why does this work? Would it work if you plotted 

6.3. Return to the “Unconelated Predictors, Linear Model” regression 
from the “Demo:3D” menu and construct the plot {XI, y, x2). Use the left 

6.2.1. 

(x2, y1 XI  I? 
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Figure 6.9. The “Uncorrelated predictors, linear mode1”demonstration with a block of points removed. 

“Pitch” button to rotate to the plot (XI, x2}. Select points in the top middle of 
the point cloud, and then remove the points using the “Remove Selection” 
item of the plot’s menu until the pattern remaining is a clear U-shape. 
Your plot should now look like Figure 6.9. Removing the points made the 
relationship between the remaining values of X I  andx2 clearly nonlinear but 
did not change the relationship between y and the two predictors. Suppose 
now that the values of the predictors in this figure are the only ones that we 
observed, along with the corresponding responses. We selected a subset of 
the values of the predictors for analysis, but this does not alter the fact that 
linear model (6.2) with ( P I ,  82) = (2, 3 )  is still the model used to generate 
the reduced data. Only the particular values of x at which ylx has been 
observed have changed. 

Select “Recall Home” from the “RecalVExtract” menu, and explain why 
the initial 2D plot is curved. Is there evidence that the regression function 
is curved? 

6.4. Select the item “Nonlinear Predictors, Linear Model” from the 
“Demos:3D’ menu. Construct the 3D plot { X I ,  y, x2) and then push the 
“Rem Lin Trend” button. Explain the contents of this plot and what it 
means. 

6.5. This problem uses data from a study of the growth of children 
born in Berkeley, California, in 1928-1929 as in Exercise 5.5. We will 
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use data on girls and the three variables HT9, HT18, and W 9 ,  which are, 
respectively, the child’s height at ages 9 and 18 and weight at age 9. 

6.5.1. Load the file BGSgirls. lsp from the R-data folder. Use 
the regression dialog to create a linear model with HTZ8 as the response and 
HT9 and WT9 as predictors. Leave the name of the regression as “BGS- 
girls.” Draw the 3D plot (HT9, HT18, WT9) by selecting the “Plot of. . . ” 
item from the “BGS-girls” menu. After observing the rotating plot, write 
a short description of the plot. 

6.5.2. Obtain a visual fit to this plot by rotating to the 2D view with the 
strongest linear trend. Use the “Print Screen Coordinates” item on the “Re- 
callExtract” menu to find the linear combination of the age 9 variables that 
correspond to the horizontal axis. Compare the ratio bl /b2 from the screen 
coordinates to the estimates b I / b 2  from the printed regression output. 

Rotate the plot to the best view, and again select the “Print 
Screen Coordinates” item. Without rotating the plot, select the “Extract 
Horizontal” item from the “RecalVExtract” menu to create a variable called 
h l .  Now compute the regression with h l  as the response and HT9 and 
WT9 as predictors using the “New model. . . ” item in the regression menu. 
Verify that the fitted regression is the same as given by the “Print Screen 
Coordinates” item. 

Next, create a regression model with HTZ8 as the response 
and hl as the predictor. (Again, use the “New model. . . ” item from the 
regression menu.) In the standard regression dialog, name this regression 
h-model. How do you think the fitted values from the regression of HT18 
on HT9 and WT9 will compare to the fitted values from the regression of 
HT18 on hl? After thinking about this, draw the plot of one set of fitted 
values versus the other. You can do this by typing 

6.5.3. 

6.5.4. 

(def plot (plot-points (send bgs-girls :fit-values) 
(send h-model :fit-values))) 

In this statement, bgs-girls is the name of the original model, and 
h-model is the name of the model just created. This plot will have the 
original fitted values on the horizontal axis and the h-model fitted values 
on the vertical axis. You can add plot controls to the plot by typing the 
message 

(send plot :plot-controls) 

6.5.5. Obtain the 2D view of (HT9, HT18, W 9 )  with the strongest 
linear trend and follow the steps in Section 6.2.4 to decide if your 2D view 
misses relevant information about the relationship between the response 
and the predictors. 
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6.6. Select the “Correlated Predictors, Linear Model” item from the 
“Demo: 3D” menu. The two predictors in this example are denoted by 
X I  and x2; the response is denoted by y. This example is similar to the 
demonstration in Section 6.1.2, except that the correlation between the 
predictors is 0.99 rather than zero. Use the regression dialog to set up the 
model. 

Verify the correlation between X I  and x2 by drawing the plot of { X I ,  x2J 
and observing that these points fall nearly on a line. Before drawing the 
3D plot {XI, y, x2], how do you think it will look? Now draw and describe 
the plot. 

Try fitting by eye to this plot. Most static 2D views of the 3D plot show 
a linear relationship of about equal strength; all that changes is the slope. 
Why is this? Fitting by eye is highly variable. To improve resolution, use 
the “0 to e(O(H)” plot control. Explain what this control does to the plot, 
and try to fit by eye again. What do you conclude? 

6.7. The data for this problem are from an economic study of the varia- 
tion in rent paid for agricultural land planted with alfalfa in 1977. Alfalfa 
is a high protein crop used to feed dairy cows. The unit of analysis is a 
county in Minnesota, and the data include Y, average rent per acre planted 
to alfalfa; X I ,  average rent paid for all tillable land; X2, density of dairy 
cows, number per square mile; X3, proportion of farmland in the county 
used as pasture; and X4, an indicator with value 1 if liming is required to 
grow alfalfa and 0 otherwise. 

Load the file landrent .1 sp from the R-data folder, and choose Y 
as the response variable and X I  and X2 as the predictors. We will not use 
X4 in this problem. 

6.7.1. Examine the scatterplot matrix of Y ,  X I ,  X2, and X3. Does the 
assumption of linear predictors seem plausible for these data? Why or why 
not? If the assumption of linear predictors does not seem reasonable, use 
the transformation controls on the plot to transform the predictors to a set 
of more nearly linear predictors. 

Use the “New Model.. . ”  item to transform the predictors as 
suggested in the scatterplot matrix, and set up a new model with Y as the 
response and the transformed predictors. Examine the 3D plot of your 
transformed predictors. What do you conclude? 

Draw the 01s summary plot ( j ,  y } .  What would the summary 
plot look like if the linear model were true? What does it look like here? 
What do you conclude? 

6.8. Imagine a problem intended to model salary of faculty members 
given their sex (0 = male and 1 = female) and the number of years in current 

6.7.2. 

6.7.3. 
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rank. Suppose the following two true regression functions hold: 

E(SulurylSex, Year) = 18065 + 201Sex + 759Yeur 

E(Salury1Sex) = 24697 - 3340Sex 

6.8.1. Explain how both of these regression functions could be true at 
the same time. 

6.8.2. Data on salaries from a small Midwestern college are given in 
salary. l s p  in the R-data folder. These data produce nearly the same 
estimated regression functions as the true ones given above. Use the data 
to explain the differences between the estimated regression functions. 
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Visualizing Regression without 
Linearity 

The methods in the last chapter show how to use graphs to view and sum- 
marize data coming from a linear model. In this chapter, we study how to 
view and summarize data without assuming a specific model. The basic 
ideas are nearly the same as those of the last chapter, but the implemen- 
tation will be different because we will no longer have a linear model to 
guide our actions. 

7.1 GENERAL THREE-DIMENSIONAL RESPONSE PLOTS 

Imagine a 3D rotating plot {XI, y ,  x2j for a regression problem with two 
predictors. Without relying on a model, the central theme of this chapter 
is to understand how the distribution of yIx changes with the value of x .  
The dependence can be very simple, or it can be complex. The simplest 
sort of dependence is independence. 

7.1.1 Zero-Dimensional Structure 

If the distribution of yIx does not depend on the value of x, then both 
the regression function E(ylx) and the variance function var(y)x) remain 
constant as x changes. How will this be reflected in the 3D response plot 
{XI, y ,  x2]? As we rotate about the vertical axis, no systematic patterns 
should appear in any 2D view and the points in any slice of any 2D view 
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should be distributed similarly. We will then say that the 3D plot exhibits 
0-dimensional (OD) structure. The dimension refers to the number of 
linear combinations of the predictors required to summarize the dependence 
of ylx on x.  If yIx does not depend on x, we have OD structure because no 
linear combination of x provides information about y. With OD structure, 
the predictors give no information about the response, and an ideal summary 
plot is simply a histogram of the response. 

7.1.2 One-Dimensional Structure 

Suppose there is a systematic pattern in a 3D plot. The pattern could be 
curved, indicating that the regression function is nonlinear in x. The pattern 
could be fan-shaped, indicating that the variance function var(y1x) changes 
with x. Imagine rotating a 3D plot to the most striking version of the pattern, 
the clearest curve or fan shape, and let bTx denote the linear combination 
of the predictors corresponding to the horizontal screen variable of the 
resulting 2D view. The value of b could be recovered by using the “Print 
Screen Coordinates” item on the “Recall/Extract” menu. We now ask if 
the 2D view {bTx, y }  is an adequate summary plot: Does it contain all or 
nearly all of the information on y that is available from x. We studied this 
question in Section 6.2.4, assuming a model that is linear in the predictors. 
We can obtain similar results without any assumptions concerning a model. 

This brings us to the next type of dependence. Suppose there is a coef- 
ficient vector pT = (PI, 82)  for which the distribution of ylx is the same 
as the distribution of y l (pTx)  for all values of x. In other words, the single 
linear combination p Tx gives the same information about the distribution 
of ylx as would the individual components of x. The 3D plot (XI, y ,  x2) and 
the corresponding regression problem will then be said to have 
I-dimensional ( ID)  structure, because only one linear combination of the 
original predictors, namely pTx, is needed to extract all of the information 
from x about the distribution of ylx. Since the distribution of y l (pTx)  is 
the same as the distribution of yl(cpTx) for any nonzero constant c,  the 
magnitudes of the elements of p really don’t matter. Knowing the linear 
combination cp Tx is statistically equivalent to knowing the linear combi- 
nation p T x .  This is just a restatement of an argument used in Section 6.1 
without relying on a specific model. 

Many of the models in regression analysis exhibit 1D structure. One 
model is 

(7.1) 
where f is a function that may be known or unknown, u is the usually 
unknown error standard deviation that is the same for all errors, and E is a 

ylx = f ( p T x )  + CTL? 
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random variable with mean 0 and variance I .  For this model, the regression 
function is E(y1x) = f ( B T x ) ,  and the variance function is constant, 

2 2 var(y1x) = (T var(&) = CT 

The graph ( B T x ,  y }  is an ideal summary plot for this model, because it 
contains all the information about y that is available from x .  The linear re- 
gression model (6.2) is a special case of (7.1) that adds the further condition 
that f is linear, f ( B T x )  = BO + cBTx. 

In most regression models the dependence of the distribution of y l x  on x 
is through the mean, E ( y ( x ) ,  but the dependence on x can be more general. 
Another ID structure is 

In this equation a ( B T x )  is a nonnegative function that may have a different 
value for each value of B T x ,  so each observation can have its own error 
standard deviation. In (7.2) the regression function is constant, E(y1x)  = 0 
for all x ,  but the variance function changes with x .  

y lx  = CT(pTx)& (7.2) 

A more general model with 1 D structure is 

YlX = f ( B %  + a ( B T x ) &  (7.3) 

We will call (7.3) the ZDmodel. It includes models (7.1) and (7.2) as special 
cases, and it is the most general model with ID structure considered in this 
book. 

For the ID model, both the regression function and the variance function 
depend on the single predictor BTx. This model is usually described as 
having a variance function that depends on the mean E ( y l x ) ,  even though 
more accurately both the regression function and the variance function 
depend on the fundamental underlying quantity /3 Tx.  

With 1 D structure, the 2D plot ( B  Tx,  y }  is an ideal summary plot because 
this one plot contains all the available information about y l x .  If we knew 
BTx, we would not need a 3D plot at all; the 2D plot would be enough. 

How can we decide if ID structure is appropriate for a particular 3D 
plot? We encountered this question in Section 6.2, and the solution here 
is almost the same. Rotate the 3D plot to the 2D view with the most 
striking pattern. This pattern can be linear or nonlinear or it may indicate 
changing variance. As before, let bTx be the horizontal screen variable. If 
1D structure is appropriate and bTx % cBTx for some nonzero constant c, 
then the summary plot ( b T x ,  y }  will contain most of the information about 
y in x .  This can be checked by slicing the summary plot and observing the 
corresponding uncorrelated 2D view, as described in Section 6.2.4. The 
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slices should show a horizontal scatter of points in the uncorrelated 2D 
view. If not, either bTx is far from proportional to pTx or the 3D plot is not 
1 D. 

7.1.3 Two-Dimensional Structure 

If the uncorrelated 2D view shows dependence, regardless of the choice of 
b, then we say that the 3D plot exhibits 2 0  structure. This means that we 
need to know the values of both predictors to understand the dependence 
of ylx on x. The ideal summary plot is now a 3D plot, so all 2D views lose 
information. This is the most general type of 3D plot. 

One model with 2D structure is 

ylx = f (BTx )  + 4aTx)E (7.4) 

A linear combination of the predictors BTx is required to specify the re- 
gression function, while a different linear combination a Tx is required 
to specify the variance function; both are needed to understand fully the 
distribution of ylx.  Another model with 2D structure is 

y ( x  = f(pTx, aTx> + cT& (7.5) 

The regression function is now 2D: E(yJx) = f(pTx, aTx) depends on the 
two linear combinations B Tx and a Tx. 

Load the file demo - 3 d .1 sp from the R- da t a directory. From the 
“Demos:3D’ menu, select the item “Interaction” and rotate the resulting 
plot about the vertical axis. Does the plot exhibit OD, lD, or 2D struc- 
ture? There is clearly a relationship between y and the predictors, so the 
plot has either 1D or 2D structure. Rotate the plot to the most striking 2D 
view as a candidate for a summary plot. The view we selected is shown 
in Figure 7.1. Use the procedure outlined in Section 6.2.4 to check for 
a second dimension. First use the “Extract Horizontal” plot control to 
save the horizontal screen variable. Then, use the “Extract uncorrelated 
2D plot” to get the uncorrelated view. Finally, use the “Slicer. . . ” item 
in the plot’s menu to slice the plot on the extracted horizontal variable. 
Figure 7.2a shows the summary plot with a slice selected. The points cor- 
responding to this slice are plotted in the uncorrelated view in Figure 7.2b. 
The points in this slice of the uncorrelated view form a curved pattern, so a 
second linear combination of the predictors is required. Something similar 
happens regardless of the candidate for the 2D summary plot, and so we 
must conclude that the plot has 2D structure. The data for this example 
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Figure 7.1. A 2D view of the “Interaction” demonstration. 

were generated according to the model 

The presence of the interaction term 2 x 1 ~ 2  causes the saddle shape in 
Figure 7.1 and the 2D structure. There is no single linear combination of 
XI and x 2  that can be used in place of x. 

V 

a. Summary plot 

- 
I I 

-0.02 -0.00667 0.00667 0.02 
Uncorrelated Direction 

b. Uncorrelated view. 

Figure 7.2. The uncorrelated view for the “Interaction” demonstration. 
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Figure 7.3. Strongest 2D view of the 3D plot { H f ,  LBM, Wt )  for 202 Australian athletes 

7.2 EXAMPLE: AUSTRALIAN ATHLETES DATA 

This example concerns modeling LBM, lean body mass, as a function of 
Hf, height in centimeters, and Wf, weight in kilograms, for a sample of 202 
elite Australian athletes who trained at the Australian Institute of Sport. 
The members of the sample participate in a number of different sports and 
are about equally split between men and women. Load the file a i s  . l s p  
from the R-data folder. Select Hf and Wf to be predictors and LBM 
to be the response. The variable Labels consists of a combination of the 
individual’s sex and sport. Construct a plot of [Ht ,  LBM, Wf}. 

Use the right “Pitch” button to obtain the 2D plot (Hf, Wt}. Notice the 
relationship between the predictors: the points seem to fall in a fan shape, 
with smallest variation in the lower left and the largest variation in the 
upper right. What does this say about the relationship between height and 
weight for these athletes? Select the “Show Labels” item from the plot’s 
menu, and identify the few most extreme points. 

Select the “Home” item from the “RecalVExtract” menu, and click the 
mouse on the plot to make the labels of identified cases disappear. Rotate 
the plot by holding down the left “Yaw” button. As the plot rotates, choose 
a 2D view that appears to give the strongest relationship. The view that 
we selected is shown in Figure 7.3. Because height and weight are highly 



7.3 EXAMPLE: ETHANOL DATA 99 

correlated, determining a single strongest view may be relatively difficult. 
When you are satisfied, select the “Print Screen Coordinates” item. The 
ratio of the multipliers for Ht and Wt will be about 0.35 if your view is 
close to the 01s view. 

Using your 2D summary plot, examine the 3D plot for ID structure. 
This requires looking at slices in the uncorrelated 2D view as described in 
Section 6.2.4. Little additional structure is apparent in our plot, so the 2D 
view shown in Figure 7.3 is a good summary of the full 3D plot. Further 
analysis of these data need not refer to the 3D plot, as the 2D plot contains 
nearly all the information. 

7.3 EXAMPLE: ETHANOL DATA 

This example uses data from an industrial experiment to study exhaust from 
an experimental one-cylinder engine using ethanol as a fuel. The response 
variable, which we denote by NOx, is the concentration of nitrogen oxide 
plus the concentration of nitrogen dioxide, normalized by the work of the 
engine. The units of the response are micrograms of NOx per joule. The 
two predictor variables are E,  a measure of the richness of the air and fuel 
mixtures at which the engine was run, and C, the compression ratio of the 
engine. There are a total of 88 observations. 

The data can be obtained by loading the file ethanol. lsp from the 
R-data directory. In the regression dialog select C and E to be predictors 
and set NOx to be the response. Construct the plot {C, NOx, E ) .  

Prior to rotation the static 2D plot on the computer screen is the partial 
response plot {C, NOx). This plot shows that five values of C were used 
in the experiment, and it suggests that the distribution of NOxlC is only 
weakly dependent on the value of C, if there is any dependence at all. Now 
rotate the plot by using the left “Yaw” button. A very strong quadratic 
tendency in the data is immediately apparent, so the structure of the plot 
is either ID or 2D. As in the last example, use uncorrelated 2D views to 
assess candidate summary plots. What do you conclude about the structural 
dimension of the regression? 

Return to the plot {C, NOx, E } .  As the plot is rotated, there is one 
particular view where the right half of the quadratic trend is very clearly 
determined but the left half is not as well determined and a different view 
where the left half is clearly determined but the right half is not as well 
determined. Figure 7.4 shows these two views. Two different linear com- 
binations of the predictors are required to describe the data, so the structure 
must be 2D. 
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Figure 7.4. Best half-fits to the ethanol data 

These data can be examined in another way. Begin by rotating to a 2D 
summary plot that compromises between the views in Figure 7.4. You may 
need to select the item “Slower” from the plot’s menu to get more precise 
control over the rotation. The plot that we selected is shown in Figure 7.5. 
The linear combination of C and E on the horizontal axis of the plot in 
Figure 7.5 can be found by printing the screen coordinates: 

Linear Combinations on screen axes in current rotating plot. 
Horizontal: 2.71893 + -0.0146579 H + 0 V + -2.86916 0 
Vertical: -1.23403 + 0 H + 0.565291 V + 0 0 

Thus, h = -0.0147C - 2.869E is the single variable that we have chosen 
visually to explain the variation in the response, NOx. We know from 
Figure 7.4 that the distribution of NOxlh must still depend on the predictors. 
Our job is to construct a better visual characterization of the nature of the 
dependence. 

Focus on the data for the largest and smallest values of C in Figure 7.5. 
Selecting points in a linked plot of { C, E }  can help find these points in the 
3D plot. Use the “Plot of. . . ” item in the regression menu to construct this 
plot. Remove all observations corresponding to the three middle values of 
C by selecting these points and then using the “Remove Selection” item in 
the plot’s menu. The corresponding points in the 3D plot will be removed 
since the two plots are linked. From the remaining observations in the plot 
{ C, E}  select those corresponding to the largest value of C and give them 
a symbol, such as a x. Finally, for visual enhancement select the points 
corresponding to the highest value of C and with the points selected use the 
“Extract 2D Plot” item from the “Recall/Extract” menu. The result should 
look like Figure 7.6. 
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One striking feature of Figure 7.6 is that the curve corresponding to the 
highest value of C lies uniformly above the curve for the lowest value of 
C. This suggests that the distribution of NOxlh still depends on the value 
of C and more precisely that E(NOx1h) is an increasing function of C for 
each fixed value of h .  The variable h accounts for most of the variation in 
the response, but C has an effect as well. 

To gain further information on the conjecture that E(N0xJh) is a de- 
creasing function of C at each fixed value of h, we could add the data for 
the middle value of C to Figure 7.6. If the resulting curve mostly lies be- 
tween those in Figure 7.6 we will have additional graphical support for the 
conjecture. If not, we may have information to disprove the conjecture. 

Add the data for the middle value of C to Figure 7.6. What do you 
conclude? 

7.4 MANY PREDICTORS 

Let x T  = (XI, . . , , x p )  be a vector of p predictors. Just as with two predic- 
tors, the regression problem is said to have OD structure if the distribution 
of ylx does not depend on the value of x. The regression problem is 
said to have 1D structure if there is a p x 1 vector /3 so that the distri- 
bution of ylx depends on x only through the single linear combination 
6 T x .  The usual multiple linear regression model with regression function 
E(ylx)  = /30 + pTx  has 1D structure. The models given in equations (7.1) 
and (7.2) have ID structure when x is p x 1. 

If we need two linear combinations of x to describe the distribution of 
ylx, then we have 2D structure, just as we did in the case of two predictors. 
Models (7.4) and (7.5) are 2D when x is p x 1. 

With two predictors the structure of the regression problem must be 
OD, ID, or 2D. With p predictors, the dimension can be 0, 1 , .  . . , p -  
dimensional. The complexity of the regression problem can increase with 
the number of predictors, but in many practical problems two dimensions 
are enough to describe essential features. In Chapter 8 we discuss estimat- 
ing the structural dimension of a regression problem. 

7.4.1 The One-Dimensional Estimation Result 

In regression problems with two predictors and 1D structure, we are able to 
use the 3D plot [XI, y ,  x2) to construct a summary plot (b'x, y )  that allows 
us to visualize the regression in 2D without important loss of information. 
We are also able to use the 3D plot to estimate the structural dimension in 
cases where dimension is in doubt. This is very useful, but what can be 
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done when we have more than two predictors? The two-predictor meth- 
odology will not extend directly to the many-predictor case because the 
limitations of our 3D world do not allow us to view ( p  + 1)-dimensional 
plots fully. But good summary plots can be constructed when the predictors 
are linear. 

Consider a regression problem with p predictors x = ( X I ,  . . . , x,)? If 
the problem has 1D structure, then for some p x 1 vector j3 = (PI,  . . . , j 3 p ) T  
the distribution of ylx depends on x only through BTx. Suppose we have 
the 1D model specified in (7.3), 

ylx = f < B T X >  + d B T X ) E  

so both the mean and variance can depend on the linear combination j3 Tx.  
An ideal 2D summary plot would be { j3 Tx, y ) ,  but this requires knowing j3. 
We don’t know j3, but it can be estimated up to a proportionality constant. 
Let 

j = 60 + i T X  

denote the fitted values from the 01s regression of y on x .  In performing 
this regression we are not assuming that the linear model holds or even that 
it yields a sensible fit to the data. 

Here is a remarkable result that enables us to construct a good summary 
plot: Assuming linear predictors, 6 is an estimate of cj3 for some constant 
c .  Since the magnitude of j3 doesn’t matter, the 2D summary plot {hTx, y )  
is an estimate of the ideal summary plot { p T x ,  y ) .  Equivalently, we can 
take the plot { j ,  y )  as the summary plot. If the true regression model is 
the 1D model (7.3), then the summary plot enables us to visualize f and 
0. We call this the ID estimation result. 

With many predictors we require two assumptions - linear predictors 
and 1D structure - that are not required in the two-predictor case. These 
assumptions are the price paid for not being able to see in high dimensions. 

7.4.2 An Example with a Nonlinear Response 

Select the item “Linear Predictors, Nonlinear Model” from the “Demos:3D’ 
menu. In the regression dialog, specify x1 and x2 as the predictors and y 
as the response and then click “Done.” A menu titled “Lin/NonLin” will 
appear on the menu bar. These simulated data comprise 100 observations 
on two predictors, XI and x2, along with an error E ,  all generated as inde- 
pendent N(0, 1) random variables. The response y was computed using 

ylx = (2 + 2Xd2 + E 



104 VISUALIZING REGRESSION WITHOUT LINEARITY 

so yIx does not depend on x2, and its dependence on X I  is nonlinear. This 
model is of the form given in equation (7.1) with f (BTx )  = (2 + BTx)2, 

= (2, O)T,  and BTx = 2x1. An ideal summary plot is ( X I ,  y) .  Up to the 
random errors E ,  this plot will recover the quadratic curve, ( X I ,  (2 + 2 x 1 ) ~ ) .  
Equivalent ideal summary plots are of the form ( C X I  , y ) ,  for any nonzero 
value of c, since the graphs will look the same, apart from the labeling of 
the horizontal axis. One choice of c # 0 is as good as any other. 

The ideal summary plot requires that we know B. Since the model in our 
example has linear predictors and ID structure, the summary plot we get 
from the 01s regression of y on x is ( h‘x , y) .  The plot (h‘x , y }  should look 
about the same as the plot (BTx, f (PTx ) ) .  To see if this is in fact the case, 
select the item “Plot of. . . ” from the “Lin/NonLin” menu and construct the 
3D plot ( X I ,  y ,  x2). Before rotation, the 2D view on the computer screen, 
{ X I ,  y } ,  is an ideal summary plot. This view shows a J shape that is part 
of a quadratic curve. The 01s plot {h*x, y )  can be obtained by selecting 
the item “Recall OLS” from the “RecallEixtract” menu. The plot (h‘x, y ]  
looks almost the same as the ideal plot ( X I ,  y ) ,  as expected. 

Let’s now consider a second version of this example where the as- 
sumption of linear predictors fails. Select the item “Nonlinear Predictors, 
Nonlinear Model” from the “Demos:3D” menu and set up a regression 
model as in the first version of this example. The regression menu is 
called “Nonlin/Nonlin.” The data were generated as before, except now 
x2 = x t  + N(0, 1). Because of the strong nonlinear relationship between 
X I  and x2, the assumption of linear predictors is no longer appropriate. To 
see the consequences of this, use the “Plot of. . . ” item in the regression 
menu to construct the 3D plot ( X I ,  y ,  x2). The initial 2D view, shown in 
Figure 7.7a, is again ( X I ,  y ) .  This ideal view shows a J shape, much like 
the corresponding view in the initial version of this example. Select the 
item “Recall OLS” from the “RecalVExtract” menu on the plot. The re- 
sult, shown in Figure 7.7b, is a 2D view with a fairly strong linear trend. 
We now have two 2D views that give quite different impressions about 
the data. The ideal 2D view in Figure 7.7a shows a much smaller scatter 
about its nonlinear trend than does the view in Figure 7.7b. To confirm 
that the plot of Figure 7.7b misses relevant information, examine slices in 
the uncorrelated 2D view corresponding to this plot. Within-slice patterns 
will be visible, confirming that the summary plot suggested by 01s misses 
information. 

Here are the essential points of the discussion so far. The 01s linear 
regression of y on p predictors x finds the 2D view, { j ,  y )  or { i ‘ x ,  y ) ,  
with the strongest linear trend. How we interpret that view depends on the 
structure of the data: 
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Figure 7.7. Two-dimensional views of a 3D plot from the “Nonlinear predictors/Nonlinear model” 
demonstration. 

0 If a linear model y(x = j30 + pTx  + E is appropriate, then the distri- 
bution of the predictors doesn’t matter and {$, y }  is a good summary 
plot. This is the case studied in Chapter 6. 

0 If the regression function is nonlinear in x but has both 1D structure 
and linear predictors, then ($, y }  is again a good summary plot. 

0 If the regression function is nonlinear in x with nonlinear predictors, 
{ .p, y }  should not be trusted as a good summary, even if the true model 
is 1D. 

0 If the model has more than 1D structure, then the plot {$, y }  must 
necessarily miss information that may be relevant. 

7.5 EXAMPLE: BERKELEY GUIDANCE STUDY FOR GIRLS 

The data for this example come from the Berkeley Guidance Study for girls, 
as described in Exercise 5.5. The data are in the file BGSgi rl s .1 sp in the 
R- dat  a folder. The response is HT18, height at age 18. The predictors are 
the height, weight, and strength at age 9, HT9, WT9, and ST9, respectively. 
The goal is to study how the distribution of the response varies with the 
three predictors. 

Let’s first check the assumption of linear predictors. In Section 4.3, this 
is done using a scatterplot matrix, but with three predictors we can use 
a 3D plot. Construct the 3D plot (HT9, WT9, ST9) and push the “Rem 
Lin Trend” and “0 to e(0lH)” buttons. This will remove all linear trends 
from the plot, leaving any nonlinearities behind. If the plot looks like 
a circular point cloud with no clear nonlinearities, then the assumption 
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Figure 7.8. Scatterplot of the response versus fitted values from the 01s linear regression of HT18 on 
H79, W79, and S79, Berkeley Guidance Study for girls. 

of linear predictors is reasonable. We didn’t see anything in this plot to 
question the assumption and so we proceed on that basis. Rotate the 3D 
plot and see if you agree with our conclusion. 

Assuming 1D structure, the plot { j ,  y }  is a good summary plot. Use 
the “Plot of. . . ” item from the regression menu to construct this plot. The 
name “Fit-values” will appear in the list of quantities to be plotted, and 
this item corresponds to j .  The plot shown in Figure 7.8a exhibits strong 
linearity with no clear evidence of nonlinearity, a conclusion that can be 
confirmed by using the lowess smoother. There is no evidence to indicate 
that the regression function f of the ID model (7.3) is not linear. 

Strong linear trends in scatterplots can mask secondary features that 
may be of interest. Remove the linear trend in the plot of { j ,  y )  to get 
Figure 7.8b. This plot gives a slight impression that the variance of the 
response increases with the fitted values. This impression receives some 
support from the score test for nonconstant variance to be discussed in 
Section 1 1.5. 

Starting with linear predictors and assuming 1D structure, we have 
reached the conclusion that a reasonable model for our regression prob- 
lem is 

where a ( p T x )  may be an increasing function. Depending on the goals of 
the study and the type of solution desired, the finding of weak nonconstant 
variance may not be important. 

z m q x  = po + p T x  + a ( p 5 ) ~  

7.6 EXAMPLE: AUSTRALIAN ATHLETES AGAIN 

We modify the previous analysis of the Australian athletes regression de- 
scribed in Section 7.2 by adding the predictor Sex to the problem. Specifi- 
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Figure 7.9. Summary plots for the Australian athletes data 

cally, we are interested in characterizing how the distribution of LBMl (Ht,  
Wt, Sex) changes with the values of the three predictors. Since Sex takes 
only two values, Sex = 0 for males and Sex = 1 for females, this can be 
done by investigating LBM 1 (Ht, Wt, Sex) separately for males and females. 
The separate regression functions can be denoted as E(LBMIHt, Wt,  Sex = 
0) and E(LBMIHr, Wr, Sex = 1) for males and females, respectively. 

Set up the regression with response LBM and predictors Ht and Wt. 
Construct the 3D plot {Ht, LBM, Wt} and a linked histogram of Sex. The 
histogram will serve as a convenient way of focusing on males or females 
in the 3D plot. In the histogram, select the bar at Sex = 0 for males and 
then from the menu for the 3D plot choose “Focus on Selection” and then 
“Rescale Plot.” The 3D plot now consists of just the data for males and 
can be investigated as any 3D plot. 

Investigate the structural dimension of the 3D plot {Ht, LBM, Wt) for 
males. What do you conclude? We decided that the plot is adequately 
characterized by 1D structure; our summary plot is shown in Figure 7.9a. 
The horizontal screen variable of our summary plot is called h,.  The 
summary plot suggests that the regression function for males E(LBMJHt, 
Wt, Sex = 0) is linear in h ,  while the variance function for males increases 
with h ,  . The latter conclusion can be seen more clearly by using the “Rem 
Lin Trend” button on an extracted summary plot. In short, the 1D model 
(7.3) seems to be suitable for males. 

Following the steps for males, investigate next the structural dimension 
of the 3D plot {Ht,  LBM, Wt}  for females. Again, what do you conclude? 
Our solution for females is similar to that for males. The structural di- 
mension is 1 and the variance function increases with h f .  The summary 
plot for females is shown in Figure 7.9b. Figure 7.10 is the same plot as 
Figure 7.9b, after using the “Extract 2D Plot” plot control, removing the 
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Figure 7.10. Extracted and detrended summary plot for females in the Australian athletes data. 

linear trend, and adding a smooth to the graph. Nonconstant variance is 
evident in this plot and the smooth gives a hint of curvature. 

So far we have seen that the data for males and females follow the same 
general structure. We next investigate if the individual regressions depend 
on different linear combinations of Ht and Wt. That is, are h m  and hy 
related? If so, we could conclude that the male and female regressions 
depend on the same linear combination of Ht and Wt. If not, then dif- 
ferent linear combinations are necessary and the problem becomes more 
complicated. The plot [ h m ,  h f }  is shown in Figure 7.1 1. This plot can be 
obtained from the “Plot of.. . ” item in the regression menu if you have 
been following on a computer, and have extracted the horizontal variables 
in Figure 7.9. Clearly, hm and h f  have a very strong linear relationship, 
so we conclude that the regressions for males and females depend on the 
same linear combination h of Ht and Wt. Separate models that reflect our 
findings can be written as 

LBMl(Ht, Wt, Sex = 0) = aOm + almh + am(h)& (7.7) 

and 
LBMI(Ht, Wt, Sex = 1) = aoy + a l ~ h  + a ~ ( h ) ~  (7.8) 

for males and females, respectively. If we assume that a f ( h )  = a, ( h )  = 
a@), then these two equations can be easily combined into one. After a 
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Figure 7.11. Plot of h f  versus h,,, in the Australian athletes data. 

bit of algebra and changing notation (see Exercise 7.6), 

LBMl(Ht, Wt, Sex) = Po + PlHt + 82 Wt + ,&Sex 

+ySex x [P lHt  + P2WtI 

where the B’s and y are unknown parameters. Model (7.9) is a nonstandard 
model because it is nonlinear in the parameters. 

7.7 COMPLEMENTS 

7.7.1 Linearity 

The word linear is used in many different but related contexts in statistics 
and in this book. A parameterized regression function can be characterized 
as linear or nonlinear in the predictors and as linear or nonlinear in the 
parameters. The regression function 

E ( y l x )  = Po + BTx 

is linear in both the parameters /30 and B and in the predictors x. The 
regression function 

E ( y b )  = P O  + P I X I  + B2x2 + 83Xlx2 
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is linear in the parameters but nonlinear in the predictors x T  = (XI, XZ). 

The regression function corresponding to model (7.9) for the Australian 
athletes data is nonlinear in the parameters because of the terms PI y and 
Pzy, but it is linear in the continuous predictors Ht and Wt. 

Statistical software usually distinguishes models based on their param- 
eters. Models that are linear in the parameters can be estimated using 
standard regression software like the R-code. Models that are nonlinear in 
the parameters require other software and cannot be fit with the R-code. 
Fitting a regression function that is nonlinear in the parameters almost al- 
ways requires an iterative numerical procedure, while fitting a regression 
function that is linear in the parameters can be done without iteration. In 
the general statistical literature the phrases linear regression and nonlinear 
regression usually refer to how the parameters enter the regression function. 

Fitting the regression function for the Australian athletes data (7.9) re- 
quires a nonlinear regression program, but the interpretation is straightfor- 
ward because the regression function depends on the continuous predictors 
only through a single linear combination. 

7.7.2 01s Summary Plots 

An important conclusion of this chapter is that the 01s plot (j, y }  is a good 
summary when we have linear predictors and ID structure. Without linear 
predictors there is no guarantee that the 01s summary plot will be a good 
estimate of the ideal summary plot. Good summary plots may sometimes 
be constructed with nonlinear predictors by using weighted least squares. 
The general idea is to choose the weights so that the weighted predictors 
are linear. Methodology for this is developed in Cook and Nachtsheim 
(1994). 

The 01s summary plot can also fail if the regression function is sym- 
metric. In this case, the 01s estimate will estimate zero. For further 
discussion of such occurrences, see Cook and Weisberg (1991a), Cook, 
Hawkins, and Weisberg (1992), and Exercise 7.10. 

7.7.3 References 

The material in this chapter is drawn largely from Cook (1994). The result 
in Section 7.4.1 that 01s estimates can give a consistent estimate of c/? even 
when the model is nonlinear is due to Li and Duan (1989) using earlier 
work by Brillinger (1983). As we will see in Chapter 13, a few unusual 
points can strongly influence 01s estimates. When a few such points are 
observed in the data, the result hTx FZ cPTx need not hold. 

The data for the ethanol example are discussed by Brinkman (1981). 
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EXERCISES 

7.1. From the “Demo:3D” menu, select the item “View a surface.” Is 
the resulting plot OD, 1 D, or 2D? 

7.2. From the “Demo:3D” menu, select “Colinearity hiding a curve.” 
Push the “0 to e(0lH)” button on the plot. What is the dimension of the 
structure in the plot? Now remove the linear trend and answer the same 
question again. 

Repeat the example of Section 7.2, but push the “0 to e(0lH)” 
button before beginning to look at individual slices for 1 D or 2D structure. 
Do your findings change? Also, in the “Slicer. . . ” dialog, try setting the 
fraction to 0.2 rather that 0.1 ; this will put more data in each slice. 

Suppose we have a regression problem with p linear predictors 
and a structure that is at most 1D. Let 5 denote the fitted values from the 
01s regression of y on x. If the plot { j ,  y }  appears as a random scattering 
of points with no clear systematic features, what would you choose as the 
structural dimension of the regression? Why? 

7.5. Return to Figure 7.1 and the model (7.6) used to generate the data. 
We have seen that 2D is needed to describe this figure. Find the two linear 
combinations needed, and justify your choice. Suppose instead we could 
view a 4D plot with y on the vertical axis and the three predictors X I ,  x2, 
and ~ 1 x 2  on the “horizontal” axes. Would this plot continue to show 2D 
structure? Why or why not? 

7.6. 7.6.1. Show the correspondence between the a’s in (7.7) and (7.8) 
and the B ’ s  and y in (7.9). The easy way to do this is to set Sex = 0 to get 
a correspondence to (7.7) and Sex = 1 to get the correspondence to (7.8). 
Why is model (7.9) nonlinear in the parameters? 

7.3. 

7.4. 

7.6.2. How is the regression function in model (7.9) different from 

E(LBMI(Ht, W t ,  Sex)) = 60 + 61Ht + 62Wt + &Sex 

+64Ht x Sex + 65 W t  x Sex 

7.7. Repeat the analysis of Section 7.2 using the sum of skin folds SSF 
as the response variable, giving a graphically determined model. 

7.8. Consider the haystack data introduced in Exercise 5.4. First, ana- 
lyze the structural dimension of the problem. Then conduct your analysis 
under the assumption that the structural dimension is 1. Include a discus- 
sion of your findings on nonlinearity and nonconstant variance. 
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7.9. Consider a regression problem with a response y and three pre- 
dictors x = (XI, x2, ~ 3 ) ~ .  Write regression functions that correspond to 
the following situations. For each, give the structural dimension of the 
regression function: (i) a standard linear model; (ii) a model that is linear 
in the parameters but nonlinear in the predictors; (iii) a model that is lin- 
ear in the predictors but nonlinear in the parameters; (iv) a model that is 
nonlinear in both the predictors and the parameters. 

7.10. In this problem we will construct an example that is almost iden- 
tical to the example given in Section 7.4.2, except that the regression func- 
tion is slightly modified. In the text window, type the following three 
statements: 

(def xl (normal-rand 100)) 
(def x2 (normal-rand 100)) 
(def e (normal-rand 100)) 

This will create three lists of standard normal random numbers, each of 
length 100. For this example, we want the regression function to be 
E(yln) = x:, and we want the variance function to be constant with u = 1. 
We can compute y and start the R-code as follows: 

(def y ( +  ( ”  xl 2) e)) 
(rcode :data (list xl x2 e y )  

:data-names (“Xl” “X2” “e” “ y “ )  :name “reg”) 

Set up the regression with XI  and x2 as predictors and y as the response. 
Every time you do this problem, you will get slightly different answers 
because the data are generated at random each time. In the computer 
demonstrations, the same data values are used each time. 

Compare the data generated here to the data used in Sec- 
tion 7.4.2. How to the regression functions differ? Are the variance func- 
tions the same or different? Is the assumption of linear predictors satisfied 
by the data you generated? 

Examine the 3D plot (XI, y ,  XZ}. What is the structural di- 
mension of this plot? Rotate to the strongest 2D view in the plot. Does it 
correspond to the way you generated the data? How do you know? Mark 
this view by selecting the item “Remember view” from the “RecalVExtract” 
pop-up menu. 

7.10.3. According to the results in Section 7.4.1, the 01s 2D summary 
plot for these data should be similar to the best view you found visually. 
Select the item “Recall OLS” from the “RecalVExtract” pop-up menu, Has 
01s been successful? 

7.10.1. 

7.10.2. 



EXERCISES 113 

7.10.4. Modify the problem so it is similar to the example in Sec- 
tion 7.4.2. The new regression function is E(y1 Ix) = (1 + ~ 1 ) ~  Create a 
new response yl by the commands 

(def yl ( +  ( A  ( +  1 xl) 2) e ) )  
(send reg : add-data yl “yl I’ ) 

From the “reg” menu, select the item “New Model. . . ” and choose XI  

and x2 as predictors and y~ as the response. Draw the plot (X I ,  yl , x2], 
and observe that the best 2D view chosen will be very similar to the view 
chosen by 01s. 

Explain why 01s gave a useful answer with yl as the response but did 
not give a useful answer with y as the response. 
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Finding Dimension 

We saw in the last chapter that if we have linear predictors, and if we have 
1D structure, then the 2D plot [ j ,  y }  summarizes the regression problem. 
As in Sections 4.3 and 7.5, we can check for linear predictors using scat- 
terplot matrices and 3D plots, and transformations can be used to improve 
linearity among the predictors. Up to now the assumption of 1D structure 
has been checked only for two predictor problems. In this chapter, we pro- 
vide two methods for checking the assumption of 1 D structure with many 
predictors. 

8.1 FINDING DIMENSION GRAPHICALLY 

We begin with an example, again using the Australian athletes data. Load 
the file a i  s .1 sp  from the R- da t a folder. We now use the three pre- 
dictors Ht, Wt, and red blood cell count RCC. As before, use LBM as the 
response. In Section 7.6 using only Ht and Wt as predictors, we found that 
LBM depends on the same linear combination of Ht and Wt for males and 
for females. 

Our first task with the enlarged data set is to examine the assumption of 
linear predictors using the scatterplot matrix shown in Figure 8.1. Apart 
from a few straggling points, particularly those with the two lowest values 
of Ht and the four highest values of Wt, the assumption of linear predictors 
seems plausible. The 3D plot (Ht, RCC, Wt} with the linear trend removed 
and the “0 to e(0lH)” option leads to the same conclusion. However, 
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Figure 8.1. Australian athletes data. 

any analysis we do should perhaps be repeated with the straggling points 
removed from the data, as will be illustrated in Section 8.2. A detailed 
discussion of the role of individual points is given in Chapter 13. 

The next question of interest is dimensionality. From the partial response 
plots, we can eliminate OD structure, since LBM is related to at least one of 
the predictors. If the structure is lD, then the plot (j, y )  would be a useful 
summary plot. The problem may become considerably more complicated 
if more than 1D structure is needed. 

8.1.1 The Inverse Regression Curve 

Suppose for a moment that ID structure is in fact appropriate. This means 
that the distribution of yJx depends on x only through a single linear com- 
bination BTx.  To see the dependence and verify that it is indeed lD, we 
would need to draw a ( p  + 1)-dimensional plot of the p predictors and the 
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response, a discouraging prospect if the number of predictors exceeds 2. 
Suppose we could turn the problem around and, rather than study ylx,  we 
could study the inverse regression problem of x I y. The inverse problem has 
much simpler structure, since it is a collection of p simple regression prob- 
lems, XI Iy, x2(y,  . . . , x p ( y ,  and each of these p problems can be studied 
with a simple 2D scatterplot. 

We are again aided by a remarkable result. Assume linear predictors 
and 1D structure. Then the regression and variance functions for each of 
the simple inverse regression problems have the form, for j = 1 ,  . . . , p ,  

where a, is the same in each equation, possibly positive, negative, or zero. 
These equations require some further explanation. Suppose we examine the 
p scatterplots of { y ,  x j } ,  j = 1, . . . , p .  These are inverse partial response 
plots, which are the usual partial response plots but with the axes reversed. 
Equation (8.1) says that for each predictor x, the inverse regression function 
E(xj(y) equals the overall mean E(xj) plus some unknown function m ( y )  
of y ,  multiplied by a scale factor a,. The important point is that the function 
m ( y )  does not depend on j .  All p plots should have the same shape, apart 
from linear rescaling. If one of these plots is linear, then all must be linear. 
If one is J-shaped, then all must be J-shaped, differing only by a constant 
factor that might change the orientation. If this is not the case, then ID 
structure must be abandoned. 

Condition (8.2) requires that the inverse variance function var(x, I y )  be 
approximately the overall variance var(x,) plus a? times an unknown func- 
tion v ( y )  that can depend on y ,  but not on j .  When looking at all p plots, 
the variability must change in the same way in each of the plots, apart from 
a linear rescaling. If the variability does not change in the same way, then 
ID structure must be abandoned. The only exception to this is predictors 
for which aj in (8.1) and (8.2) is zero. To be consistent with 1D struc- 
ture, plots that show no dependence on y in the inverse regression function 
(a, = 0) must show no dependence in the inverse variance function, even 
if the variance is not constant in other plots. We will call (8.1) and (8.2) 
checking conditions for ID structure since they must be satisfied for each 
predictor if 1D structure is to hold. 

8.1.2 Inverse Partial Response Plots 

For the Australian athletes example, p = 3 and the three inverse partial 
response plots are given in the last column of Figure 8.1. To examine these 
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Figure 8.2. Inverse partial response plots for the Australian athletes data. 

three plots more carefully, select the item "Inv Partial Response Plots" 
from the regression menu. This will produce a 2D scatterplot, initially 
showing the 2D plot with the response LBM on the horizontal axis, and 
one of the predictors on the vertical axis. The only nonstandard feature 
of this scatterplot is the addition of an extra slide bar. As you push the 
mouse in this slide bar, the predictor plotted on the vertical axis changes. 
By pushing repeatedly, you can see all p of the inverse partial response 

Fit a smoother to each of the p inverse partial response plots. The 
smooth in the j t h  plot is an estimate of the inverse regression function 
E(Xj 1 y ) ,  which, according to checking condition (8. l), should approxi- 
mate E(x,) + cljm(y) if 1D structure is appropriate. A different smoother 
can be used for each of the plots, with the goal of obtaining a useful esti- 
mate of the inverse regression functions. Any of the methods for simple 
regression problems can be used to help determine a suitable fit for each of 
the inverse partial response plots. The three inverse partial response plots 

plots. 
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are shown in Figure 8.2 with smooths added. The smoother used for H t  in 
Figure 8.2a is a quadratic fit with 01s. This plot shows both curvature and 
variance increasing to the right, but these characteristics are influenced by 
the straggling points mentioned earlier. The inverse partial response plot 
for Wt in Figure 8.2b appears well matched by a linear fit, and the smooth 
shown is the 01s line. The third inverse partial. response plot for RCC is in 
Figure 8 .2~ .  The lowess smooth with parameter 0.6 on this plot suggests a 
nonlinear relationship, with different linear phases for low and high values 
of LBM. The three inverse regression functions are evidently different, so 
1D structure is doubtful. Further evidence for this conclusion comes from 
consideration of variances. The variance of H t  increases with LBM, but 
increasing variance is not clearly evident in the other plots. We are again 
led to the conclusion that 1 D structure cannot be supported. 

We must now face the difficult question of how to proceed. For this 
we have no fixed prescription, but we can give a number of guidelines 
that may help in particular problems. One possibility is to seek additional 
variables that might remove the necessity for 2D structure. This is the 
route that we will follow with this example in the next section. Other 
possibilities include adding cross product or interaction terms to a model, 
transforming predictors, or separately modeling subsets of the data. These 
other approaches will be discussed in later examples. 

8.2 SLICED INVERSE REGRESSION 

One potential problem with the graphical procedure for deciding structural 
dimension is that we rely heavily on visual impressions. How different 
must the inverse partial response plots be for us to diagnose at least 2D 
structure? To answer this question, we turn to a numerical procedure that, 
assuming normally distributed predictors, can give us a test for 1D structure. 
The methodology is called sliced inverse regression, or SIR. 

Returning to the Australian athlete example, SIR provides a test of the 
hypothesis that there is a single function m (LBM) and there are constants 
a1, a2, a3 such that 

If this were so, then we would expect the smooths from the inverse partial 
response plots to be the same, except for a scale factor applied to each. To 
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Table 8.1. Printed Output from SIR 

Sliced Inverse Regression, Number of slices = 2 8 ,  Response is LBM 
Slice sizes are ( I  I I 1 7  7 I I I ?  I I I I I 9  I 7  8 I 8  9 9 7 8 I 1 4 )  
Std. coef. use predictors scaled to have SD equal to one. 
Coefficients Lin Comb 1 Lin Comb 2 
Predictors Raw Std. Raw Std. 
Ht 0.061 0 . 3 0 4  0 . 0 1 6  0 . 2 4 4  

RCC 0 . 9 9 0  0 . 2 3 3  0 . 9 9 9  0 . 1 3 4  
Wt 0 . 1 2 9  0 . 9 2 4  - 0 . 0 2 8  - 0 . 6 3 3  

Eigenvalues 0 . 9 1 9  
RA2 (OLS I SIR lin comb) 0 . 9 9 8  

0 . 2 8 7  
0 . 9 9 8  

Approximate Chi-squared test statistics based on partial sums 
of eigenvalues times 202  

Number of Test 
Components Statistic D.F. p-value 

1 2 1 0 . 6  8 1  0 . 0 0 0  
2 8 5 . 0 5  5 2  0 . 0 0 3  
3 2 1 . 0 4  2 5  0 . 3 5 4  

get the test statistic, SIR uses a smoother based on dividing the data into 
nonoverlapping slices according to the response y ,  and then averaging X j  

in each slice. The number of slices is the tuning constant for this smoother. 
To run SIR in the R-code, select the item “Inverse Regression’’ from the 

regression menu. This will give you a dialog to set a few options. You can 
choose the number of slices; the default is usually an acceptable choice. 
You can choose to use either the response or the 01s residuals to define the 
smoother; we will use only the response here. Finally, you can choose the 
method of analysis. Of the three methods available, only SIR is described 
in this book; references for the other two methods are given in Section 8.5. 
When you push the “OK’ button without changing the default options, after 
a lengthy calculation you will get a 3D plot and the printed output given in 
Table 8.1. 

The 3D plot produced by this item is of the form {h 1 ,  y ,  hz},  where 
h 1 = bTx and h2 = a Tx are linear combinations of the predictors estimated 
by SIR. If a 1D structure is in fact appropriate, then the 2D view on the 
computer screen prior to rotation {h 1, y )  is the summary plot estimated 
by SIR. If a 2D structure is needed, then a second linear combination is 
necessary. This is the linear combination of the predictors h2 on the out-of- 
page axis. Given 2D structure, the full 3D plot { h  1, y ,  h z }  is the summary 
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plot produced by SIR. The sample correlation coefficient between h 1 and 
h 2  is zero by construction. 

The coefficient vectors b and a for the linear combinations hl and h2 
are given in the first part of Table 8.1 in the columns labelled Raw. For the 
athletes data, 

hi = 0.061Ht + 0.129Wt + 0.99ORCC 

and 

Both b and a are normalized to have length 1. The columns marked S t d . 
in Table 8.1 give the coefficients that would have been obtained if each 
of the predictors had been rescaled to have standard deviation 1. In this 
scaling, all the predictors are equally variable, and the coefficients may be 
easier to interpret. The standardized coefficients are also normalized to 
have length 1. 

Below the table of coefficients in the printed output are two lines la- 
belled Eigenvalues and R"2 (OLS I SIR lin comb), The first lin- 
ear combination always has the largest eigenvalue; the test for the number 
of dimensions to be described shortly is a function of the eigenvalues. The 
R2 measures give a summary of the agreement between the linear com- 
binations hl and h 2  chosen by SIR and the 01s fitted values j .  They are 
computed as the R2 in the regression of on the first SIR direction h 1 and 
on the first two SIR directions h 1 and h2.  In the example, R2 with h 1 is 
0.998, indicating that the first SIR direction and j are almost the same. 
SIR provides a series of test statistics to help decide on the structural 

dimension of the regression. Three test statistics are listed in Table 8.1 
at the end of the text output. Each statistic should be compared to the 
percentage points of a chi-squared distribution with the indicated degrees 
of freedom. The degrees of freedom depends on the number of slices used 
in getting the smooths for the scatterplots. The resulting p-values are given 
in the final column of Table 8.1. The first test statistic, 270.6, is used to test 
the hypothesis that the regression has OD structure versus the alternative 
that the structural dimension is at least I.  Since the p-value for this test is 0 
to three decimals, we conclude that the dimension is 1 or more. The second 
statistic, 85.05, is used to test the hypothesis that the regression has at most 
1D structure versus the alternative that the structural dimension is at least 
2. The p-value for this test is 0.003, so we conclude that the dimension is 
at least 2. The final statistic 27.04 is used to test the hypothesis that the 
regression has at most 2D structure versus the alternative that the structural 

h2 = 0.016Ht - 0.028Wt + 0.999RCC 
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dimension is at least 3. In view of the p-value, it is reasonable to conclude 
that the regression is at most 2D. All three tests together indicate that the 
structural dimension of the regression is 2, which is in agreement with the 
graphical analysis done earlier in this chapter. This means that the 3D SIR 
summary plot { h  I ,  y ,  h2)  should have 2D structure. Can you find it? 

The 3D SIR summary plot is dominated by a strong linear trend in ( h  1, y ) ,  
nearly obscuring all other information. However, return the plot to the 
“Home” position, and then use one of the “Yaw” buttons to rotate the plot 
a few degrees until the 2D view shown in Figure 8.3 or its mirror image is 
obtained. The points can be seen to fall nearly on two planes. Figure 8.4 
is the view of the 3D SIR plot { h  1 ,  h z ) ,  looking down from the vertical 
axis. This plot shows that the the planes have little overlap. The second 
direction is needed to capture this difference between the two planes. The 
two directions that describe the data appear to be h 1 and a second direction 
that is a linear combination of h 1 and h2. SIR always chooses uncorrelated 
directions, but the meaningful directions may be linear combinations of 
these. 

As a next step, we need to understand the two planes. Referring back 
to the inverse partial response plots in Figure 8.2, a similar jump between 
two linear trends is apparent in the plot for RCC, so perhaps RCC alone 
can be used to explain the differences between the two planes. Brush a 
linked histogram of RCC, and see what happens in Figures 8.3 and 8.4. 
The marked points in the figures correspond to cases with RCC larger than 
4.72, the sample mean of RCC, and so the difference between the two planes 
can possibly be modelled as a function of RCC. This suggests creating a 
new variable variable, say RCCI = 1 if RCC > 4.72, and 0 otherwise, 
and fitting a model with LBM as the response, and with predictors Ht, Wt, 
RCC, RCCI, Ht x RCCI, Wt x RCCI, and RCC x RCCI. The interactions 
are required to model 2D structure. The variable RCCI can be created by 
using the cut function described in Section A.7.2. 

In this particular example, we have additional information that might 
be relevant; in particular, we know that the sample consists of about half 
females and half males. Because Sex and RCC are related, it is possible that 
RCCZ is serving as a surrogate for Sex and that the 2D structure is explained 
better by sex differences. Fit the interaction model described earlier with 
RCCI and then with RCCI replaced by Sex. What do you conclude? 

If the 2D structure is due to Sex, then we could expect ID structure 
when analyzing each sex separately. To see if that is the case, let’s con- 
sider the females only. Draw a histogram of Sex, and select all the males, 
Sex = 0, and use the “Case Deletions” plot control to delete all the males 
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from the analysis. Using just the females, examine the three inverse partial 
response plots and compare them to the plots in Figure 8.2. The biggest 
difference is in the plot for RCC. Since the females have nearly uniformly 
smaller LBM than the males, the points for the females are to the left of the 
points for males. For females alone, RCC is nearly independent of LBM, 
and we estimate the inverse regression function for RCC using an 01s linear 
fit. This accounts for one of the nonlinearities discovered in the analysis 
with the two sexes combined. However, the inverse partial response plot for 
Wt is linear and the plot for Ht still appears to be quadratic. To investigate 
E(Ht)LBM) further, we constructed the 01s regression of Ht  on LBM and 
LBM2. The coefficient for the quadratic term is large relative to its standard 
error, supporting the visual assessment of the plot (LBM, H t ) .  Since the 
shapes are different, 2D structure may well remain, even for females only. 

Apply SIR to the data for females only by selecting “Inverse Regression” 
from the regression menu and using all the defaults. We get a p-value for 
2D structure of about 0.03, confirming the results from the inverse partial 
response plots. Your answer may differ slightly because SIR depends on 
the number of slices and the observations put into each slice. This data 
set has ties among the responses, and the handling of ties affects the slice 
definitions and hence the answers. 

How do we proceed now? From the inverse partial response plots, the 
2D structure is due to the curvature in the plot of Ht, shown in Figure 8.5. If 
this plot were straight, then the checking condition (8.1) would be satisfied, 
and we would have 1D structure. Careful examination of Figure 8.5 draws 
attention to a few extreme points that contribute substantially to the curva- 
ture. Five points are marked with a x on the plot. Much of the need for a 
curve, rather than a straight line, is contained in these five points. Select 
these points and delete them using the “Case Deletions” plot control. The 
smooth fit to the plot becomes nearly straight, the coefficient of LBM2 is no 
longer relatively large, and the second p-value in the SIR output increases 
to about 0.6, suggesting that ID structure may be adequate except for a few 
isolated points. 

In summary, the decision between 1D and 2D structure for the females 
in the Australian athletes data is strongly influenced by a few outlying 
points. Further progress may require additional data to confirm structural 
dimension. The 2D summary plots {F, y )  or { h l ,  y }  may well lead to 
adequate models for many goals, regardless of the structural dimension. 

The SIR tests require normally distributed predictors. This is more re- 
strictive than the assumption of linear predictors, and the results of the tests 
can be sensitive to nonnormality. Consequently, the tests should be used 
only as rough guides to be confirmed by use of the inverse partial response 
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Figure 8.5. Inverse partial response plot for Hr for females in the Australian athletes data. 

plots. In particular, if the tests indicate a 2D structure that is not evident in 
the 3D SIR plot, it may be best to believe your eyes. No test results will be 
printed if the number of slices is less than or equal to p + 1, although the 
SIR coefficients may still be useful. 

8.3 EXAMPLE: ETHANOL DATA REVISITED 

Load the file ethanol. l s p  from the R-data folder, which was last 
analyzed in Section 7.3. In that section, we determined visually that there 
was a strong, mostly quadratic effect due to E;  that C had a small, linear 
effect; and that 2D structure was necessary to describe the data. 

Shown in Figure 8.6 is the scatterplot matrix for the two predictors and 
the response, NOx. Examine first the plots (E,  C] and (C, E )  for linear- 
ity. Focus on these plots by option-shift-clicking the mouse on each of 
them. Use the smoother and the “OLS-fit” plot controls to decide if these 
graphs can be summarized by linear functions or if curves are required. 
The plot ( E ,  C} shows recognizable curvature that may have a little im- 
pact on methods requiring linear predictors, but it is unimportant for this 
example. 

Next, turn to the inverse partial response plot (NOx, E } .  This plot is very 
clearly patterned, but the inverse regression function E(E1NOx) is nearly 
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Figure 8.6. Scatterplot matrix for the ethanol data. 

a constant function of NOx; you can verify this by extracting the plot and 
adding a smooth. What changes in this plot is the variance: the variability 
is much larger at the left of the plot than it is at the right. Comparing 
our summaries of these two plots with the checking conditions (8.1) and 
(8.2), we can only conclude that this problem has 2D structure, because 
the variance functions in the two plots are of different shapes. This agrees 
with our finding from the 3D plot when we analyzed these data before. 

Let’s turn now to SIR by selecting the item “Inverse Regression,” again 
using the defaults. The printed output suggests only 1D structure because 
the p-value for two components is large, equal to 0.345. Next examine the 
initial view of the 3D plot produced by SIR, as shown in Figure 8.7. The 
plot has completely missed the quadratic dependence of NOx on E and has 
only recovered the relatively minor linear dependence of NOx on C. 
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Figure 8.7. Best 2D plot produced by SIR for the ethanol data. 

The SIR methodology only uses the mean checking condition (8.1), not 
the variance checking condition (8.2). It does not respond to plots with 
nonconstant variance, and in particular it may miss quadratic dependence 
like the dependence of NOx on E,  even when the dependence is visually 
obvious. 

8.4 EXAMPLE: AIR QUALITY DATA 

The file air. lsp in the folder R-data gives air quality readings taken 
on I 1  1 nearly consecutive days in the New York City area in 1973. The 
response is the Ozone concentration in parts per billion. There are three 
predictors: SolR, solar radiation in Langleys; Wind, the wind speed in 
miles per hour; and Temp, the temperature in degrees Fahrenheit. These 
are not the same data used in Chapter 2 but are from a separate study from 
a different part of the United States. This fairly complicated example is 
included to illustrate some of the issues that can arise in an analysis of 
dimension. 

We begin by setting up the regression with Ozone as the response and the 
other variables as the predictors and examining the scatterplot matrix of all 
four variables, as shown in Figure 8.8. Our first interest is in determining 
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Figure 8.8. Scatterplot matrix for the air quality data. 

if the assumption of linear predictors is reasonable or not, and for this we 
examine all the plots not including the response. The plots (SolR, Temp} 
and (So& Wind) suggest that the regression functions E(7‘emplSofR) and 
E(Wind1SofR) are not monotone. If the true regression functions were not 
monotone, then power transformations of the predictors will not be effective 
in achieving linearity. Let’s examine these two plots more carefully in their 
own 2D windows, as in Figure 8.9. As expected, both plots suggest some 
curvature, but the curvature is not very large relative to the variability in 
the data. Since this problem has only three predictors, we can examine the 
predictors further by viewing them in a 3D plot, after applying both the 
“Rem Lin Trend” and “0 to e(0IH)” plot controls. No dependence in this 
plot would imply linear predictors. As we rotate the plot, we see that the 
2D view in Figure 8.9a is possibly the worst case of any 2D view, the one 
with the strongest nonlinearity. Since this nonlinearity is not very strong 



8.1’ EXAMPLE: AIR QUALITY DATA 129 

0 
Iz 
0 0 

f 0  
r- 

0 
W 

0 ul 

I 

0 100 200 300 400 
SolR I 

0- 

0 100 200 300 400 
SolR 

a. Temp. b. Wind. 

Figure 8.9. Extraction from the scatterplot matrix. In each plot, a lowrss smooth with parameter 
f = 0.6 and the 01s line have been added. 

relative to the variation in the data, we proceed with analysis based on the 
tools of this chapter. Section 8.5 has more on predictor nonlinearities. 

We now turn to the question of structural dimension by examining the 
three plots in the last column of Figure 8.8 with the “Inv Partial Response 
Plots” item in the regression menu. We added a lowess smooth with fraction 
f = 0.6 for each plot. The inverse partial response plots for SolR and Temp 
with the smooths superimposed are shown in Figure 8.10; the marked points 
in these plots will be discussed shortly. The smooths in these plots are both 
curved and of different shapes. According to the mean checking condition 
(8.1), we can eliminate 1D structure. 

Table 8.2 shows the numerical summary of applying SIR with the default 
number (22) of slices; because of ties in the response, the actual number 
of slices used is only 19. The p-values given at the end of the SIR output 
in Table 8.2 indicate ID structure, which is in conflict with the conclusion 
from the purely graphical analysis. To resolve the situation, we return to 
the lowess smooths in Figure 8.10. The smooths may not be well supported 
by the data. This suggests comparing the fit of the lowess curve to the fit 
that would be obtained assuming that the regression functions are straight 
lines. We can do this approximately by fitting a high degree polynomial 
to approximate the lowess fit. We used a fifth degree polynomial, which 
was reasonably similar to lowess. Standard tests of significance suggest 
that the polynomial fits are better than fitting a straight line to each of the 
plots. We conclude that the smooths in Figure 8.10 are reasonable. 

After further inspecting Figure 8.10, we conjectured that the few points 
with the largest and smallest values of Ozone may substantially account for 
the curvature in the smooths. The. points with the largest seven and smallest 
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Table 8.2. Printed Output from SIR Applied to Air Quality Data with 22 Slices 
Specified in Dialog 

Sliced Inverse Regression, Number of slices = 1 9 ,  Response is Ozone 
Slice sizes are (6 7 6 8 5 8 7 5 7 6 7 5 5 5 5 5 5 5 4 )  
Std. coef. use predictors scaled to have SD equal to one. 
Coefficients Lin Comb 1 Lin Comb 2 
Predictors Raw Std. Raw Std. 
SolR 0.023 0 . 3 0 4  -0.200 - 0 . 9 0 2  
Wind - 0 . 7 7 7  - 0 . 4 0 0  - 0 . 3 7 9  - 0 . 0 6 7  
Temp 0 . 6 2 8  0 . 8 6 5  0 . 9 0 4  0 . 4 2 7  

Eigenvalues 0.751 
RA2(0LSISIR lin comb) 0 . 9 8 4  

0 . 1 6 7  
0 . 9 8 5  

Approximate Chi-squared test statistics based on partial sums 
of eigenvalues times 111 

Number of Test 
Components Statistic D.F. p-value 

1 1 1 7 . 4  54 0 . 0 0 0  
2 3 3 . 9 6  34 0 . 4 7 0  
3 1 5 . 4  16 0 . 4 9 5  

nine values of Ozone are marked with special symbols in Figure 8.10. We 
deleted these 16 points and recomputed the Zowess smooths using the same 
fraction. The new smooths show relatively little curvature. Without the 
16 extreme values of Ozone, the structural dimension appears to be 1, in 
agreement with the results of SIR. 

0 
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0 

0 66.7 133 200 
Ozone 

0 66.7 133 200 
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a. SolR. b. Temp. 

Figure 8.10. Inverse partial response plots for the air quality data with lowess smooths and 16 marked 
points. 



8.4 EXAMPLE: AIR QUALITY DATA 131 

Table 8.3. Printed Output from SIR Applied to Air Quality Data with 28 Slices 
Specified in the Dialog 

Sliced Inverse Regression, Number of slices = 25, Response is Ozone 
Slice sizes are (5 4 4 6 4 4 4 5 4 7 5 4 4 5 4 5 4 4 4 4 4 5 5 4 3) 
Std. coef. use predictors scaled to have SD equal to one. 
Coefficients Lin Comb 1 Lin Comb 2 
Predictors Raw Std. Raw Std. 
SolR 0.020 0.296 -0.149 -0.927 
Wind -0.853 -0.497 -0.866 -0.211 
Temp 0.522 0.815 0.477 0.311 

Eigenvalues 0.755 0.312 
RA2(0LSISIR lin comb) 0.996 0.997 

Approximate Chi-squared test statistics based on partial sums 
of eigenvalues times 111 

Number of Test 
Components Statistic D . F .  p-value 

1 147.6 72 0.000 
2 63.81 46 0.042 
3 29.2 22 0.139 

Why did SIR miss the extra dimensions due to the extreme values of 
Ozone? The answer seems to be that the slices were too large and the 16 
extreme points were not in slices by themselves. We can achieve this by 
increasing the number of slices. Choosing 28 slices in the SIR dialog gives 
the numerical results shown in Table 8.3. The first two slice sizes are 5 
and 4, which account exactly for the nine observations with the smallest 
values of Ozone. The last two slice sizes are 4 and 3, which account for 
the seven observations with the largest values of Ozone. With this slice 
configuration, SIR indicates 2D structure and the p-value for 3D structure 
has decreased noticeably. 

We can see what happens in SIR if we delete the 16 extreme cases by 
selecting these points in a graph and then using the item “Delete Selec- 
tion from Regression” from the “Case Deletions” pop-up menu. If the 3D 
SIR plot is still on the screen, then the printed output will be automati- 
cally updated; it should be similar to Table 8.4. Without the 16 cases, the 
p-value for at least one component is very small, while the p-value for at 
least two components is large. Without the 16 extreme cases SIR gives a 
strong indication of 1D structure. Changing the number of slices in SZR 
will not change this conclusion. 
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Table 8.4. Printed Output from SIR Derived from Table 8.3 after Removing Sixteen 
Cases 

Sliced Inverse Regression, Number of slices = 22, Response is Ozone 
Slice sizes are (4 6 4 4 4 5 4 7 5 4 4 5 4 5 4 4 4 4 4 5 3 2) 
Std. coef. use predictors scaled to have SD equal to one. 
Coefficients Lin Comb 1 Lin Comb 2 
Predictors Raw Std. Raw Std. 
SolR -0.009 -0.120 0.026 0.514 
Wind 0.794 0.435 0.980 0.753 
Temp -0.608 -0.892 0.199 0.411 

Eigenvalues 0.732 0.260 
R^2 (OLS I SIR lin comb) 0.994 1.000 

Approximate Chi-squared test statistics based on partial sums 
of eigenvalues times 95 

Number of Test 
Components Statistic D . F .  p-value 

1 107.4 63 0.000 
2 37.87 40 0.567 
3 13.15 19 0.831 

Our conclusions are as follows: The structural dimension is at least 1. 
The linear combination of the predictors associated with the ID structure 
remained reasonably stable throughout our analysis. This can be seen in 
part by inspecting the coefficients of the first linear combination hl in 
Tables 8.2, 8.3, and 8.4. Inspecting the R2 values, we see that this linear 
combination is essentially the same as that given by 01s. 

The primary evidence for 2D or 3D structure rests with the 16 cases 
having extreme values of Ozone. This is not much information to make a 
dimension decision, so we cannot expect to resolve the question of dimen- 
sion with these data alone. From Tables 8.2, 8.3, and 8.4 we see that the 
second linear combination is not stable. Other predictors not available in 
the current data might be more effective at explaining the variation at the 
extremes of the Ozone range. 

How can we summarize what we have found? We know that the plot 
( j ,  y )  will provide a good summary plot with 1D structure, but we have 
some evidence that the structure is greater than 1D. Regardless, the analysis 
suggests that the linear combination selected by 01s defines one of the 
dimensions needed. Based on the data at hand, the plot [ j ,  y ]  may be a 
reasonable summary of what we have learned. 
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8.5 COMPLEMENTS 

Duan and Li (1991) initially suggested that the inverse regression x 1 y can 
be informative about yIx with ID structure and proposed SIR. Li (1991) 
showed that inverse regression can be used more generally and provided 
the test for dimension. Li (1992) provides another method called pHd 
to find inverse structure and a corresponding test for dimension. Cook 
and Weisberg (1991) suggested a method called SAVE that uses the vari- 
ance checking condition (8.2) to find inverse structure; SIR uses the mean 
checking condition (8.1). All three methods are implemented in the R-code. 
Schott (1994) presents a general method of testing for dimension. 

Suppose 1D structure is appropriate. We then know that y depends on x 
only through a single linear combination fi  Tx.  If in addition we have linear 
predictors, we know that the checking conditions (8.1) and (8.2) hold for 
some a = (a1 , . . . , a,)? In fact a and fi  are related. If S is the covariance 
matrix of the predictors, then a = Sfi (Li, 1991). SIR uses this result to 
determine the linear combinations that it obtains. 

The assumption of linear predictors is stronger than is really needed for 
the results of this chapter to hold. The minimal condition is that regres- 
sion functions E(brxlfiTx) must be linear in fiTx for all 6. Although this 
condition is weaker, it cannot be checked with data because it depends on 
the unknown f i .  Minor nonlinearities may be unimportant because of this 
weaker condition. Hall and Li (1993) have shown that for problems with a 
large number of predictors the weaker condition will generally be satisfied. 

The checking condition (8.2) becomes an equality if the predictors are 
normally distributed. If they are not normally distributed, this checking 
condition is not exact, but the approximation is generally quite good. 

The air quality data used in Section 8.4 is taken from Chambers, Cleve- 
land, Kleiner, and Tukey (1983). The evaporation data in Exercise 8.4 is 
taken from Freund (1 979). 

EXERCISES 

8.1. Analyze the males separately in the Australian athletes data, as 
was done for the females. Qualitatively compare the analyses for the two 
groups of athletes. 

8.2. 8.2.1. Investigate the regression problem from the Australian ath- 
lete data with response LBM and predictors Ht, Wt and a different predictor, 
BMZ. Your analysis should include (i) a discussion of the appropriateness 
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of the linear predictor assumption; (ii) application of the general graphi- 
cal procedure described in Section 8.1.2; (iii) an interpretation of the SIR 
output, including the 3D plot and the test results; and (iv) a summary plot 
that you think is adequate for the regression, including your rationale. The 
assumption of linear predictors may or may not be appropriate here. Your 
discussion should address this issue. 

In the first part of this problem, SIR leads to 2D structure that 
may not be apparent in graphs. Here is a simulation method that can help 
explain SIR in a particular problem. 

From previous work, we have decided that the two predictors Ht and Wt 
can be treated as linear predictors. First set up a regression with LBM as 
the response and Ht and Wt as the predictors; name this regression HtWt. 
Next, type the following in the text window: 

8.2.2. 

(def y-sim ( +  (send htwt :fit-values) 

(send htwt :add-data y-sim ”Y-sim”) 
( *  (send htwt :sigma-hat) (normal-rand 202)))) 

The first of these two commands simulates a new response vector called 
Y-sim, which is equal to the fitted values from the linear regression of LBM 
on Ht  and Wt plus a normally distributed random error with standard devi- 
ation equal to the estimated standard deviation from the linear regression; 
the statement (normal -rand 2 0 2 1 gives a list of 202 standard normal 
random numbers, and 202 is the sample size in this problem. The next line 
adds this new variable to the data set. Next, from the “HtWt” menu, select 
the item “New Model. . . ” and set up the model with Y-sim as the response 
and Ht, Wt, and BMI as the predictors. For this model we know the truth: 
we have 1D structure and BMZ is irrelevant. Run SIR on these simulated 
data by selecting “Inverse Regression’’ from the new model’s menu. If 
SIR fails to indicate 1D structure, then we must have a problem with the 
assumptions that must be satisfied for SIR to work. What happens here? 
Can you explain why SIR continues to give 2D structure? Repeating this 
simulation more than once may be helpful. 

This simulation method can be used in any problem as a check on SIR. 

8.3. Return to the Big Mac data first encountered in Section 4. I. We 
have previously determined that Bread, BusFare, TeachSal, and TeachTm 
can be made approximately linear predictors by replacing them by their 
logarithms. You should also use log(BigMac) as the response. Although 
monotonic transformation of the response does not affect the structural 
dimension of a problem, using logarithms can make the graphs easier to 
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understand. Fit and extract a smooth for each of the inverse partial regres- 
sion plots, and then examine them in a scatterplot matrix. What do you 
conclude about dimensionality? Now apply SIR. Does SIR agree with your 
graphical solution? 

The file evaporat . l s p  in the R-data folder contains data 
on daily soil evaporation, Evap, for a period of 46 days. There are 10 
possible predictors that characterize the air temperature, soil temperature, 
humidity, and wind speed during a day; use the minimum and maximum of 
the daily air temperature, soil temperature, and humidity, for a total of six 
predictors. Load the file and specify the response Evap and the predictors 
Maxat, Minat, M a s t ,  Minst, Maxh, and Minh. 
8.4. I .  Check the assumption of linear predictors. Explain how you do 

this and your conclusions for these data. 
8.4.2. Use both the inverse partial response plots and SIR to explore 

the dimension of this regression. What do you conclude? What is the 
evidence? 

8.4.3. Verify numerically that the linear combinations h I and h2 pro- 
duced by SIR are uncorrelated. This can be done by using the “Extract 
Horizontal” command on the “Evaporation:SIR’ plot to extract the vari- 
ables on the horizontal and out-of-page axes. Next, type the command 
(covariance-matrix h l  h2)  to compute the covariance matrix 
for h I and h2, the variables on the horizontal and out-of-page axes. Verify 
numerically the relationship between the raw and standardized SIR coeffi- 
cients of m a s t  in h 1. 

Repeat the first two parts of this problem after removing the 
predictor minat. Compare the results of your analysis to those in the first 
two parts of this problem for the full data. 

8.5. In the air quality example discussed in Section 8.4, begin by setting 
up the regression with Ozone as the response and the other three variables 
as predictors. 

8.5. I. Fit a fifth degree polynomial to the regression of SolR on Ozone. 
Show that the fitted fifth degree polynomial is similar to the lowess fit 
shown in Figure 8.10a. Does the fifth degree polynomial do a better job of 
fitting than fitting a straight line? How do you know? 

Draw a summary plot for these data, and describe its features. 
In particular, where are the 16 identified points in this plot? 

8.4. 

8.4.4. 

8.5.2. 
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Predictor Transformations 

The graphical tools presented so far work best with linear predictors. Trans- 
forming predictors to achieve linearity is generally a good way to start an 
analysis, but this will not necessarily produce a simple model for the data. 
Graphical methods can be used to tell us if linear predictors need to be 
transformed to achieve a simple model. In particular, we want to pick 
transformations of the linear predictors so that the regression function is 
linear in the transformed predictors. Devising a graph that will display the 
required transformation is the first step. 

9.1 COMPONENT-PLUS-RESIDUAL PLOTS 

Think of a regression problem with response y and p linear predictors x. 
Let x2 be one of the predictors. Collect all remaining predictors from x into 
a (p - 1) x 1 vector XI. We need to decide if x2 should be transformed, and 
if it needs transformation, we need to find the transformation. Let t(x2) 
denote the appropriate transformation for x2. We assume that a linear 
model is correct in the transformed scale, 

The errors are assumed to be independent with mean zero and constant 
variance. 

137 

An Introduction to Regression Graphic? 
R. Dennis Cook and Sanford Weisberc 

Copvriqht 0 1994 bv John Wilev & Sons, InE 



138 PREDICTOR TRANSFORMATIONS 

Suppose we could draw the graph { x z ,  t ( ~ 2 ) ) .  If this graph is linear, then 
t (x2)  = ~ 2 x 2 ,  and substituting fort (x2)  in equation (9.1) leads to the linear 
model, and transformation is not required. If the graph is quadratic, then 
t ( X Z )  = ~ 2 x 2  + ~22x22, and we can simply add the quadratic term y22x; to 
the usual linear model. Similarly, if t is a higher order polynomial, then 
we can add the corresponding polynomial terms in x2 to the model. If x2 is 
positive and t (x2) = y2x$, then replacing xz with the power transformation 
x$ gives us a linear model. If none of these alternatives is appropriate, we 
can approximate t using a smoother. 

When we do not know t ( x 2 ) ,  model (9.1) has 2D structure because two 
linear combinations, aTxl and x2, are needed to describe the regression 
function. By transforming x2 we can possibly reduce dimensionality. Sup- 
pose we can find a new predictor z that is a good estimate of t ( x 2 ) .  We can 
then replace t (x2)  by z in (9.1) and obtain the new model 

ylx = a0 + a r x ,  + z + E 

This model has 1D structure because it depends only on the single linear 
combination aTx + z. A plot that can be used to estimate t (x2 )  is called a 
component-plus-residual plot .  

We will use the acronym C+R plot to designate a component-plus- 
residual plot. A C+R plot is constructed by first getting the 01s fit of 
the linear model, 

We have written the error term on this model as a reminder that it is a 
working model and is not necessarily an adequate description of the data. 
From the 01s fit of this model we need the ordinary residuals e and the 
estimate 8 2  of the coefficient of the variable x2 that we are considering for 
transformation. A C+R plot for x2 is the 2D plot 

The name component-plus-residual plot comes from the quantity on the 
vertical axis, which is the sum of 82x2, the component of the linear model 
corresponding to the variable in question, and the residuals. 

Both the C+R plot and the plot {x2 ,  t ( Q ) }  have the same horizontal axis 
and differ only on the vertical axis. Let 

i (x2 )  = 82x2 + e 
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In large samples we will have 

where E is the error in model (9.1). This result holds as long as E(xlIx2) 
is linear in x2, which is a weaker condition than linear predictors. In large 
samples a C+R plot is essentially {x2, t(x2) + E ) .  This enables us to think 
of a C+R plot as the response plot in a simple regression problem with an 
unknown regression function. The unknown transformation t (x2) is the 
regression function for a C+R plot. The key point is that we can now apply 
all that we know about studying simple regression functions to C+R plots. 

The C+R plot for x2 will display a good estimate of t(x2) as long as the 
errors are not too large and E(xlIx2) is linear in x2. When the predictors 
are highly nonlinearly related, the C+R plot may not accurately reflect t .  

9.2 PUTTING C+R PLOTS TO USE 

Load the file demo-prd. l s p  from the R-data folder. To illustrate the 
use and limitations of C+R plots, three items in the “TranPred” menu create 
artificial data sets. In each, the sample size is 100 with three predictors, 
X I  1, x12, and x2. For all three demonstrations, the response y is generated 
from the model 

-0.67 ylx = 1 + X l l  +x12+x2 + E  

so t (x2) = ( x ~ ) - O . ~ ~ .  The E are independent N(O,O.25). To connect with 
the preceding discussion, x = ( X I  I ,  x12, ~ 2 ) ~  and X I  = ( X I  I ,  ~ 1 2 1 ~ .  Only 
the distribution of the predictors changes between examples. 

9.2.1 Uncorrelated Predictors 

Select the item “Predictors Uncorrelated” from the “TranPred” menu. In 
the standard regression dialog select X I  1 ,  ~ 1 2 ,  and x2 as predictors and y 
as the response. In this example, X I  1 and x12 are independent N(0, 1) and 
x2 has an independent uniform distribution on the interval (0.05, 1). Also 
included in the data file are the actual values of E ,  the values of t (Q), and 
the values of E(y1x); of course in a real data problem these would not be 
available. Construct the plot {xz, t (x2)) ,  as shown in Figure 9.1. This plot 
displays the true transformation evaluated at the data points and represents 
the function of x2 that we would like to recover. 

Now select the item “C+R Plots-All 2D’ from the regression menu. 
This will produce a 2D plot with an extra slide bar. The initial view in this 
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Figure 9.1. The true function of x2 in the “Predictors Uncorrelated” demonstration. 

plot is the C+R plot for one of the predictors; pushing the mouse in the 
slide bar will cycle through all the predictors. 

If you entered the predictors into the regression in the order x1 1, x12, and 
then x2, the initial C+R plot will be for x1 1 ,  as shown in Figure 9.2. This 
plot shows a dominant linear trend with no curvature but with nonconstant 
variance, since variability is larger at the right of the graph than it is at 
the left. A few points seem to be above the main data cloud. Mark these 
points with a symbol, as we have done in Figure 9.2. Since the regression 
function for the plot is linear, there is no evidence of the need to trans- 
f0rmXll. 

The C+R plot for x12 is qualitatively similar to the one for x11, as should 
be expected since both were generated in the same way. The C+R plot for 
x2, shown in Figure 9.3, is strongly nonlinear; indeed it nearly matches the 
shape of Figure 9.1. This suggests transforming x2. The points marked 
earlier as separate from the main point cloud are at the extremes in this 
plot, so those extreme points were caused by the need to transform x2. 

9.2.2 Choosing a Transformation 
The next task is to estimate t(x2) using the C+R plot in Figure 9.3. First, 
use the “OLS-fit” plot control to see if the data can be matched by fit- 
ting a polynomial. If a polynomial of degree 2 matches the data, then one 
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Figure 9.2. C+R plot for XI 1 in the "Predictors Uncorrelated demonstration. 
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can simply add the quadratic predictor x i  to the model and refit. For this 
example, some exploration suggests that fitting a polynomial of degree 5 
will be necessary to match the data, and even then the fit is wiggly for 
larger values of x2. Using high degree polynomials in regression models 
is generally not very effective. Another technique may provide a simpler 
model and a better transformation. 

Since x2 is strictly positive, we can try fitting a power curve. Shift-click 
on the smoother slide bar, and select the item “Power Curve” from the pop- 
up menu. The slider can be used to choose a power h in the range from -2 
to 2. The curve (x2, a0 + alxf)} is then superimposed on the plot, where 
a0 and a1 are the 01s coefficients from the regression of the vertical axis 
variable on xf)  for the selected value of A. Using this slide bar, one is led 
to choose h close to -0.67, reproducing the transformation that generated 
the data. The curve is shown in Figure 9.3. 

Since the predictors are uncorrelated, one might wonder if a partial 
response plot of (x2, y }  could have been used to recover t(x2). Draw the 
plot and see for yourself t(x2) is nearly invisible in this plot because of 
the extra variation in y caused by the contributions of the other predictors. 

9.2.3 Correlated Predictors 

The item “Predictors Linearly Related” in the “TranPred” menu repeats 
this last example, except now x l j  = 3x2 + 0.57N(O, l ) ,  for j = I ,  2. 
As before, x2 is uniformly distributed on the interval (0.05, 1) .  The only 
change from the last example is that x1 and x2 are linearly related. This 
means that E(xl I 1x2) and E(x121x2) are linear in x2, and these are precisely 
the conditions that allow C+R plots to be effective. Analysis of this example 
is left to Exercise 9.1. 

9.2.4 C+R Plots with Nonlinear Predictors 

For the C+R plot to fail, we need at least one of the regression functions 
E(xl I 1x2) or E (x~Ix2)  to be nonlinear. As an example of this, we choose 
x2 as before, but now we set x11 = 1x2 - . 5 )  and x12 = N(0, 1). These pre- 
dictors can be obtained by selecting “Predictors Nonlinearly Related” from 
the demonstration menu. After setting up the regression, select the “C+R 
Plots-All 2D’ item. The initial frame of this plot is shown in Figure 9.4. 

The C+R plot for X I  1 is somewhat curved, suggesting that x1 I may need 
to be transformed. Removing the linear trend in the plot and then using 
a smoother may make the curvature more apparent. Change to the C+R 
plot for x2, as shown in Figure 9.5. Curvature is more apparent, but the 
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Figure 9.5. C+R plot for x2 in the "Predictors Nonlinearly Related demonstration. 
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correct transformation, superimposed on Figure 9.5, does not match the 
points in the plot. The C+R plot for x12, not shown here, is linear because 
we constructed x12 to be independent of the other predictors and x2 enters 
the model linearly. 

Because E(xl1Ixz) is a nonlinear function of x2, and x2 needs to be 
transformed, the C+R plots give incorrect information. One might be led 
incorrectly to transform x1 1, Although the need to transform x2 is apparent 
from the curvature in the graph, the appropriate transformation to use cannot 
be determined from the plot. The C+R plot can provide a powerful tool 
for uncovering appropriate transformations of the predictors, but not if the 
predictors themselves are highly nonlinearly related. 

9.3 EXAMPLE: ETHANOL DATA 

Return to the ethanol data described in Section 7.3 and last discussed in 
Section 8.3. Load the data file ethanol. l s p  from the R-data folder 
and specify NOx as the response and C and E as the predictors. 

Since the predictors are nearly linearly related (see Section 8.3), C+R 
plots can be used to help choose transformations. Select “C+R Plots-All 
2D” from the “Ethanol” menu. The C+R plot for E is shown in Figure 9.6. 
From this plot, t ( E )  is surely not a linear function of E. Might a quadratic 

0 RemLinTrend N 

0 zero line 

0 Join points 

OLS-lit 2 

D -  
I O W S S  0.3 

0.4 0.6 0.8 1 1.2 1.4 
E 

Figure9.6. C+Rplot forthe predictor Ein theethanol data with lowessandquadratic fits superimposed. 
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be appropriate? Use the “OLS-fit” slide bar to superimpose a quadratic on 
the plot, as shown in Figure 9.6. A quadratic doesn’t do a very good job of 
describing t ( E ) .  

A power function won’t work here because the t ( E )  is not monotonic, 
but a smoother can be used to estimate t ( E ) .  A lowess smooth is shown 
in Figure 9.6. Let’s agree that the lowess smooth is a reasonable estimate 
of t ( E )  and call the smoothed transformation test ( E ) .  We don’t have an 
analytic form for t e s t (E) ,  but its values at the data points, teSt(Ei) ,  can 
be obtained by using the “Extract Curve” plot control, obtained by shift- 
clicking on the lowess slide bar. Name the extracted variable TE. The 
transformed variable TE can be used in plots or in new models, just like 
any other variable. To see the transformed variable, construct the plot {E,  
TE]. The points are just values along the lowess smooth in Figure 9.6. 

This is the most general method of estimating t from a C+R plot. We 
could now refit the model with NOx as the response and C and TE as the 
predictors and continue the analysis. 

9.4 TRANSFORMING TWO PREDICTORS 

The same ideas can be used to transform two predictors simultaneously. 
Let x2 and x3 denote the predictors that may require transformation and 
collect the remaining predictors from x into the ( p  - 2)-dimensional vec- 
tor X I .  The required transformation will be denoted by t (x2, xg). 

9.4.1 

When considering the possibility of transforming two predictors, we need 
to distinguish between two general types of transformations: additive 
and nonadditive. An additive transformation is of the form t(x2, x3) = 
tz(x2) + t 3  (x3) so the predictors are transformed individually and then the 
transformed values are added to get the joint transformation t .  A nonad- 
ditive transformation is any transformation that is not additive. For exam- 
ple, t(x2, x3) = ~ 2 x 3  is a nonadditive transformation while t(x2, x3) = 
x i  + log(x3) is an additive transformation. 

The model we assume for transforming two predictors is a straightfor- 
ward extension of the model for transforming a single predictor: 

Models for Transforming Two Predictors 

ylx = (Yo + G q X l  + t(x2, x3) + E 

A C+R plot for x2 and x3 is constructed by getting the 01s fit of the working 
model 

ylx = BO + B T X ~  + ~ 2 x 2  + ~ 3 x 3  + error 
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and then drawing the 3D plot 

As in the case of transforming a single predictor, this plot will look like the 
plot {xz, t (x2, x ~ ) + E ,  x3) in large samples as long as E(xllx2, x3) is a linear 
function of x2 and x3. The distinction between additive and nonadditive 
transformations is not important for constructing the plot but may be useful 
for interpretation and for constructing transformations. 

9.4.2 Example: Plant Height 

One use for examining two predictors at once is to check for spatial trends. 
For example, agricultural field trials are often done on a rectangular field 
that is divided into a number of plots. Even if all the plots were treated 
identically, the expected responses may differ. Often these differences are 
systematic; for example, the expected response may decrease from north 
to south. The 3D C+R plot provides a method of studying this sort of 
variation after the experiment is done. 

Consider an experiment done in the spring of 1951 to investigate the 
effects of varying dosages of cathode rays on the growth of tobacco seeds. 
Seven levels of dosage were used, one of which was a control of dose zero. 
The experimental area was divided into 56 plots laid out in a grid with eight 
rows and seven columns. As is common in an experiment of this type, the 
experimenters believed that spatial trends might be possible, so they laid 
out the experiment as a randomized complete block design using the rows 
as blocks. This means that within each row, each of the seven treatments 
appears exactly once, allocated to plots within the row at random. Because 
of the blocking, any systematic effects due to rows should affect each treat- 
ment equally, and they should therefore be eliminated from comparisons 
between treatments. Any spatial trends due to columns, however, have not 
been eliminated from comparisons. 

For each of the field plots we know the row number Row, the column 
number Col, the treatment number Trt, and the response Ht,  the total height 
in centimeters of twenty plants. 

If all plots are treated alike, we can imagine a response suguce over 
the experimental area that reflects the spatial trends. We investigate this 
surface using a 3D C+R plot. The Row and Col indices of a plot are 
coordinates of points on the surface. The original source of the paper 
did not give the quantitative values for the treatment levels so we will 
regard Trt as a qualitativefactor, using indicator variables to represent the 
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individual treatments. Specifically, let the indicator variable u, = 1 if the 
j th treatment level is applied on the plot and 0 otherwise. We get the 
following general model for the experiment: 

where t (Row, Col) is the value of the response surface for a particular value 
of Row and Col. Although the experiment had seven treatment levels, only 
six indicator variables are needed because the seventh is redundant in a 
model that includes an intercept. To construct a 3D C+R plot, we need to 
fit the working model, 

The file plant-ht . l s p  in the R-data folder contains the data for 
this experiment. Load the file, and when the regression dialog appears, push 
the “Factors. . . ” button to create the indicator variables associated with the 
treatments. In the factors dialog double-click on “Trt” to move it from the 
left list to the right and then click “OK.” This creates the indicator variables 
associated with the treatments. They are represented collectively by the 
single symbol {F}Trt in the new regression dialog. The “{F}” reminds us 
that this is a factor. Adding a factor to a model adds the set of indicator 
variables. The names of the indicators are of the form Trt[4], which would 
be the indicator variable that has the value I whenever Trt = 4 and is zero 
otherwise. The function c u t  described in Appendix A.7.2 can be useful 
in defining factors. 

We are now ready to specify the working model: Designate Row, Col, 
and (F)Trt as predictors and Ht as the response. This is not the usual 
model for a randomized complete block design, which would use (FJTrt 
and (F}Row as predictors, where {F}Row is a factor for rows to represent the 
blocking effects. Col would not appear in the usual randomized complete 
block analysis, The analysis here could be used in any problem in which the 
units have coordinates in the plane, regardless of the experimental design. 

Part of the point of this example is to introduce how factors are created 
in the R-code. Now we can get back to C+R plots. From the regression 
menu called “Plant-Ht” select the item “C+R plot-3D’ and in the next 
dialog move Col and Row to the right selection box and then click “OK.” 
The plot on the screen is the 3D C+R plot for Col and Row. It should give 
us information on the underlying surface t (Row, Coo. 

Use the “Pitch” control to rotate the 3D C+R plot to the 2D view 
{Row, Col). The points fall on a regular 8 x 7 grid corresponding to the 
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a. 01s view. 

.. 

b. A second view. 

Figure 9.7. ’hvo views of the 3D C+R plot for the plant-height data. 

field layout. Now return the plot to the “Home” position and rotate the 
plot by using one of the “Yaw” buttons to gain a feeling for the function 
t(Row, Col). What do you see? Is the structure of the plot 1D or 2D? 
Two 2D views of the plot are shown in Figure 9.7. Substantial spatial 
differences across the field are evident. The plot seems to be composed of 
a linear trend, visible in the 01s view in Figure 9.7a, and a quadratic trend, 
shown in Figure 9.7b. Because two views are required, the structure must be 
2D. This is useful information, particularly for future experimental designs 
in the same area, but it would be a help in the analysis of this particular 
experiment if we could characterize the surface more specifically. 

Recall the 01s view and then print the screen coordinates: 

Linear Combinations on screen axes in current rotating plot. 
Horizontal: 0.481996 + 0.160968 H + 0 V + -0.250193 0 
Vertical: 0.0133144 + 0 H + 0.00252048 V + 0 0 

Since both Col and Row contribute about equally to the horizontal screen 
variable, the strongest linear trend runs diagonally across the field and thus 
does not align with blocks, which were rows. Next, remove the linear trend 
and view the resulting plot while rotating. Is the detrended plot 1D or 2D? 
One view of the detrended plot is shown in Figure 9.8. The detrended 
plot seems to be dominated by 1D structure, although relatively minor 
deviations are apparent as well. This suggests using the nonadditive form 

 ROW, Col) = blRow + b2Cd + ti(alRow + ~2Col)  

where b~Row+b2Col represents the Combination giving the strongest linear 
trend and tl (alRow + a2Col) is the 1D structure in the detrended plot. The 
strongest 2D view of the detrended C+R plot seems to be the view with Col 
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Figure 9.8. Detrended 3D C+R plot for the plant-height data. 

on the horizontal screen axis, which implies that al = 0. This simplifies 
the nonadditive transformation to an additive form 

t (Row, Col) = bl Row + bzCol+ t2(C01) 

The punch line for our graphical analysis of the 3D C+R plot is that we 
can reduce the problem to a transformation of Col alone, leading to the 
simplified model 

(9.5) 

To determine the transformation to use in (9.5) we can use the 2D C+R 
plot for Col, as shown in Figure 9.9. Neither the quadratic nor the lowess 
fit shown on the plot provides a fully satisfactory approximation to t .  The 
quadratic fails to capture the points at Col = 3. Because of the few discrete 
values of Col, the lowess smooth just connects the averages of each group 
of points. If the primary goal is reducing variation to allow more powerful 
treatment comparisons, then using the quadratic may be sufficient. At the 
other extreme, Col could be included as a factor, which is essentially the 
solution suggested by the lowess curve. The form o f t  in this case is 

where the Ck are the indicator variables for columns. 

Ht = a0 + U I  -k . * . + + a7RoW + t (COf) + E 

t(Col) = ylcl f f y6C6 (9.6) 

The analysis of the plant-height data continues in Exercise 9.4. 
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Figure 9.9. C+R plot for Cof in the plant-height data. 

9.5 TRANSFORMING MANY PREDICTORS 

A restriction so far in this chapter is that only one or two of the predictors 
might need to be transformed, while the others enter the model linearly. 
When more than two of the predictors may need to be transformed, an 
adaptation of the basic methodology presented here may yield useful re- 
sults. 

After fitting the linear working model, inspect the 2D C+R plots for 
convincing nonlinear trends. If none are found, there is no evidence that any 
predictors should be transformed. Otherwise, identify the predictor with the 
smallest variation about a nonlinear trend and then choose a transformation 
of that predictor. In a generic model, this means first obtaining an estimate 
t e S t ( ~ 2 )  of the transformation as a curve on a C+R plot and then extracting 
the estimate by using the “Extract Curve” plot control. The estimate could 
be a polynomial, a power, or a smooth. 

Next, subtract teSt(x2) from the response and construct the new working 
model: 

(9.7) 

This is a linear model with response y - t e S t ( ~ 2 )  and linear predictors XI, 

so we can use C+R plots to explore the need to transform the components 
of X I .  

.Y - t e s t ( ~ 2 )  = BO + B ~ X I  + error 
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Figure 9.10. The interactions dialog. 

In the ethanol data, we can examine the need to transform C, given 
that E has been replaced by TE. Fit a working model with NOx-TE as the 
response and single predictor C. To obtain this response variable, assuming 
that TE has already been extracted, select the item “New Model. . . ” from 
the regression menu. This will give you a standard regression dialog. To 
create the new variable, NOx-TE, push the “Interactions. . . ” button in the 
dialog. You will then get a dialog similar to Figure 9.10. Select the two 
variable names and the operation “-” as shown and then push “Done.” 
This will return you to the main regression dialog; choose NOx-TE as the 
response and C as the predictor. 

With a single predictor, the C+R plot is equivalent to a standard plot of the 
predictor versus the response, as shown in Figure 9.1 1. This plot contains 
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Figure 9.11. Plot to choose a transformation of C in the ethanol data 
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a slight hint of a nonlinear trend that may be modeled by a quadratic, as 
shown on the plot. 

Suppose we decide that a quadratic transformation of C is worth con- 
sidering. Combining the transformations, we then have the new working 
model 

(9.8) 

There is no guarantee that this model gives a good description of the data, 
although models constructed in this way are often adequate. One potential 
problem is that transforming predictors individually permits only additive 
transformations and does not allow for interaction terms like E x C. In 
any event, the model should always be checked by using residual plots, as 
to be discussed in Chapter 1 1. 

The ethanol data have only two predictors, but the same ideas apply for 
any number of predictors. After transforming q predictors, x 2 1 ,  . . . , x 2 q ,  

the working model is of the form 

NOX = BO + c + ~1 1 c2 + B ~ T E  + error 

y* = PO + + ~ 2 x 2  + error 

where 

y* is the original response minus all of the extracted transformation curves 
to date and x 2  is the next variable to be transformed. The transformation 
of x 2  is determined as usual, and the extracted transformation curve is then 
subtracted from y*. The process continues until all relevant predictors have 
been considered. 

As a final check on the transformations, inspect the C+R plots for the 
working model 

Y* = Y -  t e s t : 1 ( ~ 2 1 )  - * .  . - test:q ( x 2 q  1 

y* = BO + Blxl + . . - + Bpxp + error 

where the working response y* is the original response minus all of the ex- 
tracted transformation curves and XI ,  . . . , x p  are all the original predictors. 
If all the C+R plots are linear, then no further transformations are required. 
If some are nonlinear, then further transformations may be useful. Details 
of this iterative fitting method are available in the references given in the 
next section. 

9.6 COMPLEMENTS 

The component-plus-residual plot was first suggested by Ezekiel (1924); 
Wood (1973) is responsible for the name. The C+R plots are sometimes 
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called partial residual plots. As described here, the C+R plots start with 
the 01s fit of a working model, but the role of 01s is not crucial, and it 
could be replaced by many other estimation methods. The treatment of 
C+R plots in this chapter is based on the recent work of Cook (1993), who 
describes a larger class of plots called CERES plots that do not require the 
assumption of linear predictors to determine appropriate transformations. 

A formal iterative process of model building that uses C+R plots is called 
generalized additive modeling and was developed by Hastie and Tibshirani 
(1990). The general idea, which originated with Ezekiel (1924), is to cycle 
through all relevant predictors until the transformations no longer change. 
One cycle through the relevant predictors is usually sufficient with linear 
predictors. 

The plant-height data are from Federer and Schlottfeldt (1954). The 
data for Exercise 9.5 are from Federer ( I  955). 

EXERCISES 

9.1. 9.1.1. Analyze the data from the item “Predictors Linearly Re- 
lated” in the “TranPred” menu following the steps in the text for the “Pre- 
dictors Uncorrelated” demonstration in Section 9.2.1. Compare the results 
of these two demonstrations. 

What is the structural dimension of the model used to gener- 
ate these two demonstrations? Without transforming x 2 ,  analyze the data 
for the “Predictors Linearly Related” demonstration using inverse partial 
response plots and SIR. Do these methods find the structure? 

9.2. A C+R plot, defined by (9.2), is a plot of ( x 2 ,  6 2 ~ i 2  + ei} .  Suppose 

9.1.2. 

we use 01s to fit the equation 

Verify that f o  = 0 and that f = 6 2 ,  where 8 2  is the 01s estimate of 8 2  in 
the working model 

Y I X  = BO + ~ l r , i  + ~ 2 x 2  +error 

that is used as the basis for constructing C+R plots. This can be done 
by algebraically manipulating the usual formula for the slope in a simple 
linear regression or by using a numerical example to illustrate that = 8 2  

apart from rounding error. 
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Using these results, explain why a detrended C+R obtained by using 
the “Rem Lin Trend” plot control, is just the plot (x2 ,  e } .  

9.3. In the Big Mac data in the file big-mac . lsp in the R-data 
folder, investigate the need to transform the predictors in the working model 

log(BigMuc) = Po + /31 TeachTax + f32TeachSulf /&Service + error 

Inspect the C+R plots for the three predictors in the working model. Which 
predictor x2 is the most likely to need a transformation? Determine an 
appropriate transformation by superimposing a curve on the plot. The 
curve could be based on fitting a polynomial using the 01s slide bar, or it 
could be a power curve or a smoother. Follow the steps in Section 9.5 to 
see if another predictor needs to be transformed. If so, repeat the entire 
procedure to see if the remaining predictor requires transformation. State 
your final transformations. 

9.4. Complete the analysis of the plant-height data in Section 9.4.2 by 
comparing conclusions on treatment effects under three versions of model 
(9.5). In the first, set t (c) = age. In the second, set t (c) = agC + a9c2. 
Finally, set t ( C )  to be as given in equation (9.6). 

9.5. The file rubber, lsp in the R-data folder contains the results 
of an experiment to compare the rubber yield of seven varieties of guayule. 
The experimental area consisted of 35 plots arranged in a 5 x 7 grid, the 
rows of the grid forming five randomized complete blocks. The response 
for this problem is the total grams PI + P2 of rubber for the two selected 
plants on each plot. 

Aside from needing to add the variables PI and P2 to obtain the response, 
the structure of these data is the same as those in Section 9.4.2. Conduct 
a graphical analysis of these data following the rationale and general steps 
of Section 9.4.2. Were the blocks selected to be in the best direction? 
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Response Transformations 

The predictor transformations discussed in Chapter 9 are used to simplify 
a problem by reducing dimensionality. Response transformations are used 
to linearize the regression function in problems with 1D structure and to 
get a constant variance function. 

10.1 REGRESSIONS WITH ONE PREDICTOR 

Suppose we have a simple regression problem with response y and single 
predictor u. If the response plot { u ,  y )  is clearly curved, then we will know 
that the regression function 

is a nonlinear function f of u. Sometimes a nonlinear relationship can be 
turned into a linear one by a suitable monotonic transformation t ( y )  of y. 
The regression model is then linear in the transformed scale, 

Analyzing a model that is linear in u on a transformed scale is often much 
easier than analyzing a model that is nonlinear in v in the original scale. 

Consider the response plot {v, y }  shown in Figure 1O.la. You can re- 
produce this figure by loading the file re sp t ran .1 sp from the R- da t a 
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Figure 10.1. The regression function for the summary plot (a) is curved. In (b), y has been replaced 
by y ' I3 ,  and the regression function is linear. The variance function is also different in the two plots. 

folder. Since this plot is nonlinear, we should not use a linear regression 
function to model the data. Figure 10.lb is obtained from Figure 10.la by 
replacing y with t (y) = y' I3.  No curvature is apparent in this plot, and 
so we could proceed by fitting the linear model (10.1) with t ( y )  = 
The plot in Figure 10. lb  provides a visualization of the regression function 
E(t ( y )  Iv) . Transforming the response in this example has linearized the 
regression function and changed the variance function. In Figure 10. la, 
the variance appears to increase with u, while in Figure 10.lb the variance 
function appears to be constant. The transformation thus achieved a linear 
regression function and a constant variance function. Achieving both of 
these goals by a single transformation is often possible. 

In the example we knew the appropriate transformation t ( y )  = y'I3, but 
we will not normally have such information. How can we determine a suit- 
able response transformation graphically in real problems? The plot in Fig- 
ure 10.la does not help because the regression function is E(ylv) = f ( v ) ,  
not t (y) .  However, the inverse response plot ( y ,  v )  can help us choose a 
suitable transformation when the untransformed regression function E(yl v) 
is monotonic, as in Figure 10.la. If E(ylv) is not monotonic, then a re- 
sponse transformation may not be appropriate. 

An inverse response plot is useful for choosing a transformation t ( y )  
when E(ylv) is monotonic because then 

This equation tells us that the regression function for the inverse response 
plot { y ,  v )  is approximately the required transformation. The transfor- 



10. I REGRESSIONS WITH ONE PREDICTOR 

0 RemLinTrend - 
0 zero line 

0 Join points 

OLS-fit Ni L 

- 2  
Power 0.33 

111 
\Case bietions J * 

0 

0 0.5 1 1 5  2 2 5  

Y 

157 

Figure 10.2. Inverse response plot corresponding to Figure 10. la. The power curve added suggests 
transforming y to y’I3.  

mation itself can be estimated by fitting a curve to the plot, much like 
transformations of predictors were selected by fitting curves to C+R plots 
in the last chapter. The most useful method is to use a power transforma- 
tion, but other choices such as fitting a polynomial or a smoother can be 
used. Once an appropriate estimate is determined, the transformed values 
can be extracted and then used as the response in further analysis. If a 
power curve is used giving a power A, then the transformed response y”) 
can be created from the “Transform. . . ” dialog. 

For the example in Figure lO.la, the inverse response plot ( y ,  u }  is 
shown in Figure 10.2. The plot contains a power curve obtained by using 
the “Power Curve” option from the smoother slide bar, with power 0.33. 
Since the curve matches the data, the cube-root transformation is suggested. 
Figure 10.1 b shows the response plot in the cube-root scale. 

Equation (10.2) will hold exactly when the predictor u and the errors E 

in (10.1) have the same properties as a pair of linear predictors. Since the 
errors are unknown, we cannot draw a plot to check this property. Equation 
(10.2) will be a good approximation if t ( y )  is quite a bit bigger than E so the 
signal dominates the noise. The bottom line is this: If the plot { y ,  u )  shows 
a well-determined curve, then (10.2) is a good approximation and the curve 
can be used to guide the selection of a transformation. If the plot ( y ,  v }  
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does not show a well-determined curve, then a response transformation 
will probably not aid the analysis by linearizing the regression function. 

10.2 MANY LINEAR PREDICTORS 

The ideas discussed in the previous section can be extended to regression 
problems with many predictors and ID structure. Under this assumption 
the regression function is 

E(ylx)  = f ( B %  (10.3) 

where f is unknown. As with one predictor, we want a monotonic trans- 
formation t ( y )  that gives a linear regression function 

E(t (y) lx)  = Po + BTx (10.4) 

If we knew c/3 for some nonzero constant c, then we could set v = cpTx 
and use the inverse plot ( y ,  v )  as described in the last section. Since the 
parameter ,8 is not known, the plot { y ,  cpTx} cannot be drawn. We can 
make progress only if we can get an estimate of cp. Can this be done 
when we don’t know f ?  From the 1D estimation result in Section 7.4.1, 
the 01s coefficients 6 from the regression of y on x provide an estimate of 
cp without knowing f as long as we have linear predictors. This means 
that, given linear predictors, the plot { y ,  hTx}  or equivalently the plot { y ,  ,?} 
may show an appropriate transformation t ,  up to the random errors in the 
data and unimportant multiplication by a constant. We will call the plot 
( y ,  $1 an inversefitted-value plot. 

As an example, we use data from a designed experiment on the strength 
of worsted yarn. The response variable y is the number of loading cycles 
to failure. There are three predictors: the length of test specimen X I ,  the 
amplitude of loading cycle x2, and the load x3 .  The response was measured 
at all possible combinations of three settings for each predictor, resulting 
in 33 = 27 observations. Load the file wool. l sp  from the R-data 
folder, and specify y as the response and XI, x2, and x3 as predictors. The 
fitted values j from this regression will be used to study the need for a 
transformation of the response. 

Draw the plot ( y ,  $1 as shown in Figure 10.3. If the regression function 
for Figure 10.3 were a straight line, no transformation would be indicated. 
Since the plot is curved and the regression relationship is monotonic, a 
transformation is needed. All of this is under the assumption of 1D struc- 
ture. 
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Figure 10.3. Inverse fitted value plot for the wool data. 

The next question is the choice of the transformation, and this can be 
determined visually by adding a fitted curve to the plot. Except for the 
monotonicity requirement, this is exactly as was done for choosing predic- 
tor transformations in Section 9.2.2. Since the response is strictly positive, 
we can try power curves. Shift-click on the “Slice Ave” slide bar, and from 
the pop-up menu select “Power Curve.” Shown in Figure 10.3 is the curve 
for log(y), which seems to match the data quite well, suggesting that log(y) 
is appropriate. 

10.3 NUMERICAL CHOICE OF TRANSFORMATION 

The inverse fitted-value plot for choosing a response transformation can be 
augmented by a numerical method, often called the Box-Cox method. The 
two methods are complementary and will often give the same result. The 
inverse fitted-value plot requires linear predictors and 1 D structure, while 
the Box-Cox method requires ID structure, specification of a family of 
transformations indexed by one parameter, and approximate normality of 
the errors with the transformed response. With the numerical procedure we 
will obtain both a point estimate and an interval estimate of a transformation 
parameter. 
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We now assume that there is a scaled power transformation y(*) of the 
response so that the linear model holds in the transformed scale, 

y(*)lx = po + p T x  + E (10.5) 

where the errors are normally distributed with mean zero and constant 
variance. Given this model, we might estimate A by choosing the value 
that minimizes the residual sum of squares RSS(A) from the 01s regression 
of y(*) on x. This general idea is right, but the details are wrong because 
the units of RSS(h) are different for every value of A. Consequently, we 
can’t compare values of RSS(A) for different values of A. A way out of 
this problem is to adjust the transformation so that the units are always the 
same. Define a modified power transformation z(h) by 

Z(A) = y(*)gm(y) I-* 

where gm(y) is the geometric mean of the observed values of y.  The 
estimate of A minimizes RSS,(A), the residual sum of squares from the 
regression of z(A) on x. 

Finding the value of A that minimizes RSS,(A) can be done graphically 
using confidence curves as displayed in the plot 

{[n(log(RSSz(A)) - log(RSS,(h:)))l”*, A] 

For the wool data, the confidence curves are given in Figure 10.4. The value 
A: that minimizes RSS,(A) is the point where the curves meet the vertical 
axis, which is h: = -0.05 for the wool data. The confidence curves can be 
used to get an interval estimate for A. The horizontal axis of Figure 10.4 is 
labelled z -value. Values on this axis correspond to the standard normal 
distribution. For example, the interval between the two curves at 1.96 
on the horizontal axis, which is approximately -0.18 to +0.06, is a 95% 
confidence interval for A because the area under a standard normal curve 
between - 1.96 and + 1.96 is 95%. As with the graphical procedure in the 
last section, the log transformation is suggested because h: is close to zero. 

To draw Figure 10.4, select the item “Choose Response Transform” from 
the regression menu. You will get a dialog to choose the transformation 
family and whether or not a constant is to be added to the response before 
transformation. The defaults are appropriate here, so just push the “OK’ 
button. The other choices are discussed in Section 10.5. This plot requires 
a lengthy calculation. 

We now have two methods for choosing a response transformation, the 
inverse fitted-value plot described in Section 10.2 and the Box-Cox method. 
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Figure 10.4. Confidence curves for choosing a transformation in the wool data. 

For the wool data, these two gave the same transformation, but they need 
not always agree. The inverse fitted-value plot chooses transformations to 
linearize the regression function, while the Box-Cox method tries to make 
the residuals in the transformed scale as close to normally distributed as 
possible. For example, suppose that E ( y ( x )  were independent of x but 
with errors that have a skewed distribution. The inverse fitted-value plot 
will suggest no transformation, while the Box-Cox method will choose a 
transformation to make y more nearly normally distributed. 

10.4 EXAMPLE: MUSSELS’ MUSCLES 

In this section we consider an example to bring together some of the ideas 
in the past few chapters. The data come from a study of Horse mussels 
sampled from the Marlborough Sounds, which are located off the North- 
east coast of New Zealand’s South Island. The response variable is the 
muscle mass M ,  the edible portion of the mussel, in grams. There are four 
predictors all relating to characteristics of mussel shells: shell width W, 
height H ,  and length L each in millimeters and shell mass S in grams. The 
goal of the example is to develop an understanding of how the distribution 
of muscle mass depends on the four predictors. We expect that the regres- 
sion function E(MI L , W, H ,  S )  increases with the values of the predictors. 
Quantifying just how such increase takes place is part of this study. The 
data are contained in the file muss e 1 s .1 sp  in the R- dat a folder. 
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Figure 10.5. Scatterplot matrix for the mussels data. 

We begin by constructing a scatterplot matrix of all the variables, as 
shown in Figure 10.5. The partial response plots in the top row of the 
scatterplot matrix show the expected increasing relationship. The partial 
response plots for length, height, and width show similar curvature, while 
the plot for shell mass appears linear. All partial response plots suggest that 
the variability of muscle mass increases with the predictors. The inverse 
partial response plots in the last column of the scatterplot matrix exhibit the 
same general relationships as the partial response plots. If the predictors 
were linear, this would be enough to suggest that the structural dimension 
of the problem is probably 2, as two linear combinations of the predictors 
are needed. (Why is this so?) The pairwise relationships between length, 
width, and height all appear linear, but the pairwise relationships involving 
shell mass are nonlinear. Thus the scatterplot matrix does not sustain the 
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Figure 10.6. Most curved 2D views of two 3D plots of predictors in the mussels data. In each plot the 
“Rem Lin Trend” and the “0 to e(O1H)” buttons have been pushed. 

assumption of linear predictors, and using the inverse response plots or SIR 
to infer about structural dimension may be premature. 

To get a closer look at the linearity of the predictors, inspect the rotating 
plot { H ,  W ,  L )  while using the “Rem Lin Trend” and “0 to e(O1H)” op- 
tions. Were these three predictors all linearly related, then this plot should 
approximate a spherical swarm of points. The 2D view of this plot with the 
strongest pattern we could find visually is shown in Figure 10.6a. Some 
curvature is apparent but not enough to question seriously the applicability 
of methods based on linear predictors. One relatively large and negative 
outlying point is visible in the figure. The four points with relatively large, 
positive values of e( V I H O )  are probably consequences of nonconstant 
variance; to check this, you might select these points and note their loca- 
tion in the partial response plots in the scatterplot matrix. 

In contrast to this 3D plot, a relatively curved view of the 3D plot 
( L ,  S, H }  is shown in Figure 10.6b. The curvature here is quite strong 
and certainly enough to rule out the assumption of linear predictors. 

Using the transformation slide bars on the scatterplot matrix, we examine 
power transformations of S to make its transformed value linearly related 
to the other predictors. The cube root of S appears to achieve linearity. 
The adjacent transformations, log and square root, are ruled out because 
the corresponding plots are curved. 

Since only one of the predictors needs to be linearized, we can use a 
complementary approach. Of interest is to make the regression function 
E(SI L , W ,  H )  linear. We can do this by examining the regression problem 
with S as a response variable and L ,  W, and H as predictors. The method- 
ology of Section 10.3 can be used to choose a transformation of S that gives 
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Figure 10.7. Confidence curves for a power transformation of S in the regression on H .  W ,  and L for 
the mussels data. 

approximate linearity. Use the “New Model. . . ” item from the “Mussels” 
menu to set up a regression of S on the other three predictors ( H ,  W ,  L) .  
From the resulting “Mussels 1 ” menu select “Choose Response Transform” 
and use the default options in the dialog. The confidence curves for the 
power of S are shown in Figure 10.7. They indicate that the 0.2 power is 
a somewhat better transformation than the cube root. Inspect the 3D plot 
[ L , H } .  To get this plot, select “New Model. . . ” from the regression 
menu, and in the regression dialog, push the “Transform. . . ” button. In 
the transformation dialog, select S, type “2’ in the “Power” box, and then 
push “Done.” When you return to the regression dialog, you can either cre- 
ate a new model or just push the “Cancel” button. In either case, the new 
variable So.* will appear whenever you choose the “Plot of. . . ” or “New 
Model. . . ” items. Did the power transformation successfully remove the 
curvature of Figure 10.6b? 

To continue the analysis, construct a scatterplot matrix of the response 
and the new set of predictors, as shown in Figure 10.8. The predictors 
now appear linear, and the inverse partial response plots all have the same 
shape, suggesting ID structure. Results from SIR support this conclusion. 
This is a very nice outcome since 2D structure was indicated for the original 
problem in the scatterplot matrix of Figure 10.5. Response transformations 
may simplify the analysis further by linearizing the regression function. 

Set up the regression with M as the response and L ,  W, H ,  and So.2 as 
the predictors, and then draw the inverse fitted-value plot [ M ,  k}, as 
shown in Figure 10.9. This plot supports the conclusion that h values 
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Figure 10.8. Scatterplot matrix for the mussels data with S transformed. 

of 0,0.25, or 0.33 may work, as all of these power curves fit about equally 
well. 

The Box-Cox procedure indicates using the cube-root transformation. 
However, this may be due in part to case 47, which is in the lower left of 
Figure 10.9 and is relatively far from the fitted power curve when the log 
transformation is used. 

We have now arrived at the following model: 

M'% = B o + B i L  +BzW + / 3 3 H + B 4 S 0 . 2 + ~  (10.6) 

The next step in the analysis is to apply various graphical diagnostics as 
checks on the model to see if refinement is necessary. We begin our dis- 
cussion of model checking in the next chapter. In the meantime, a C+R 
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plot for based on model (10.6) is shown in Figure 10.10. It shows 
a strong linear trend and three relatively remote points, outliers that may 
have unduly influenced our conclusions. Inspect the C+R plots for the 
other predictors. What do you conclude? 

10.5 COMPLEMENTS 

10.5.1 Profile Log-likelihoods and Confidence Curves 

The confidences curves derived in Section 10.3 are a rescaling of a plot of 
the profile log-likelihood, which is defined by 

n 
2 

L ( h )  = -- log(RSS,(h)) 

The value of h that maximizes L ( h )  is the same as the value that mini- 
mizes RSS,(h). The usual plot of the profile log-likelihood is of 
(1, L ( h ) } ,  as shown in the upper left of Figure 10.1 1. The value maxi- 
mizes this curve. The second frame of Figure 10.1 1 is {A, 2(L(h^) - L ( h ) ) } ,  
obtained from the first frame by flipping the curve and changing the values 
on the vertical axis. In the third frame, the values on the vertical axis are 
replaced by their square roots. This results in a sharp point at i. The final 
frame interchanges the axes, giving the confidence curves. 

10.5.2 Dynamic Probability Plot 

As a complement to the Box-Cox method, one could choose h to make 
a normal probability plot of residuals as straight as possible; readers un- 
familiar with probability plots may want to read Section 13.4. A set of 
probability plots can be viewed using a slide bar, each time plotting the 
residuals for the regression of z(h)  on x, as h ranges between -2 to 2 for 
the power family. One would seek a h that gives a straight plot without 
outliers. In addition, by marking points in the plot and following them 
as h is varied, we can assess the effects of individual observations on the 
choice of a transformation. This plot is also produced by the “Choose 
Response Transform” item in the regression menu. The type of residual 
to use is selected in the dialog; the default is to use Studentized residuals. 
The different types of residuals are discussed in Section 13.5.1. 

10.5.3 lkansformation Families 

Other families of transformations have been suggested in place of the power 
family, particularly for cases in which the response either is not strictly 
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Figure 10.11. Derivation of confidence curve. 

positive or is bounded on the interval 0 to 1. In the R-code, we include.two 
additional families. The modulus family can be used when the response is 
not strictly positive. It was defined by John and Draper (1980) to be 

The folded power family (Mosteller and Tukey, 1977) is defined for data 
bounded on the interval from 0 to 1 to be 

Either of these families can be selected in the “Choose Response Trans- 
form” dialog. 
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10.5.4 References 

The inverse fitted-value plot discussed in Section 10.2 for visualizing a 
response transformation was proposed by Cook and Weisberg (submitted 
for publication). Box and Cox (1964) first proposed the use of families to 
find a transformation of the response. They also give the wool data and 
various technical details concerning the derivation of the modified family; 
see also Cook and Weisberg (1982) and Atkinson ( 1985). Hernandez and 
Johnson (1980) showed that the Box-Cox procedure chooses transforma- 
tions to make the residuals as normal as possible. The dynamic probability 
plot was suggested by Cook and Weisberg (1989). Confidence curves were 
proposed by Cook and Weisberg (1990b). They are generally useful for dis- 
playing the uncertainty in the estimates of parameters in nonlinear models 
where the issue of approximate normality can be more important. 

The mussels data were furnished by Mike Camden, Wellington Poly- 
technic, Wellington, New Zealand. 

EXERCISES 

10.1. Beginning with the variables as transformed for model (10.6), 
investigate the structural dimension of the mussels regression problem. 
Does the structural dimension appear to be one as suggested by the analysis 
in Section 10.4 or is there evidence that the dimension is 2 or more? 

10.2. Repeat the analysis of the mussels data in Section 10.4 after 
deleting cases 7, 24, and 47 from the data. These are the cases that stand 
out in the C+R plot given in Figure 10.10. 

10.3. In the wool data, we did not mention dimensionality prior to 
considering response transformations. Does 1 D structure seem appropriate 
for these data? Justify your response. Continue the analysis of the wool 
data by replacing the response with its logarithm. Construct the inverse 
fitted-value plot based on the regression with log(y) as the response. Does 
the log transformation appear to be effective? 

10.4. Investigate transforming the response in the BigMac data after 
replacing the four predictors Bread, BusFare, TeachSal, and TeachTax by 
their logarithms. Changing to logarithms achieves at least pairwise linear 
predictors. 

10.41. Set up the regression using the four predictors in log scale and 
the response, BigMac. Draw the inverse fitted-value plot of {BigMac, y}. 
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Does this plot suggest that transformation of BigMac may be necessary? 
Estimate the power transformation. Check on the adequacy of your estimate 
by using the method indicated in Exercise 10.3. 

10.4.2. Construct confidence curves for the best power transformation 
parameter and read an approximate 95% confidence interval from the graph. 
Do these results agree generally with the graphical results? 

10.4.3. The inverse fitted-value plot {BigMac, j }  contains four cities 
with the largest values of BigMac that are likely to be very important in 
determining the transformation. Identify these cities. The “Case Dele- 
tions” plot control can be used to see how deleting these cities will change 
the information concerning a transformation. Does deleting these cities 
change your view of the need to transform BigMac? 
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Checking Models 

In the last few chapters we studied methods for understanding regression 
problems and building models. In this chapter, we assume that we have built 
a model, and our goal is to decide if the model is recognizably deficient. 
The methods described in this chapter all depend on the residuals, which 
are the differences between the observed values of the response and the 
fitted values obtained from the model. 

11.1 THE TARGET MODEL 

Throughout this chapter we assume the target model 

ylx = Po + PTx + E (11.1) 

This model may have been obtained using the methods described in earlier 
chapters or in any other way. On one extreme, we may have decided to 
fit the target model without any prior data analysis because it is easy and 
we have no contradictory information. Alternatively, we may have used 
the methods described in this book to arrive at a model. In either case, our 
goal is to check for deficiencies. 

The target model has a linear regression function and a constant variance 
function. The errors E are independent of the predictors x. The target model 
has 1D structure because the distribution of y depends on x only through the 
single linear combination BTx. All of these conditions should be checked. 
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11.2 THE RESIDUALS 

When we fit the target model (1 1.1) via ols, we obtain parameter estimates 
BO and and a set of fitted values, j = BO + B'x. From the fitted values 
and the responses we can compute the residuals, 

A 

e = y - y  

Under the target model, the 01s estimates BO and are consistent estimates 
of PO and p ,  meaning that we expect the differences between the estimates 
and the parameters to decrease as the sample size increases. How does this 
affect the residuals? In large samples, 

T e = y - j = PO + x + E  - j o  - j'x M E 

and the residuals approximate the unobservable errors. Let elx denote 
the residuals given that the predictors are held fixed at selected values. 
Under the target model the distribution of elx is essentially independent 
of x because the distribution of E does not depend on x .  How will this be 
reflected in a plot with residuals on the vertical axis and a linear combination 
aTx of the predictors on the horizontal axis? Regardless of the specific 
choice for arx, no systematic nonrandom patterns should be seen in a 
residual plot if the target model holds. 

Analysis of residuals in small samples has two complicating factors. 
First, the distribution of the residuals is not completely independent of 
x ,  even under the target model, because the substitution of estimates for 
parameters introduces some dependence. Second, a few points that are 
separated from the bulk of the data can essentially determine estimates, 
residuals, and inferences. This problem of injuential data is discussed in 
Chapter 13. 

Now suppose the target model is deficient. For example, the regression 
function may be nonlinear when we assumed it to be linear or the variance 
function may not be constantwhen we assumed it to be so. Can we always 
find a residual plot that will show a clear pattern? If a pattern is found, can 
it be used to suggest a way to improve the model? Useful answers to both 
of these questions depend on the distribution of the predictors. We can say 
much more with linear predictors than we can for general predictors. 

11.3 SELECTING RESIDUAL PLOTS 

Under the target model, a 2D residual plot (a T x ,  e }  should have no system- 
atic trends. If it does have trends, then we have evidence that some aspect 
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of the target model is questionable. If the plot (a',, e )  has no systematic 
trends, then we have some support for the current model. The support 
grows as this finding is repeated for many different linear combinations 
aTx. Checking for model deficiencies when p = 1 or p = 2 can be done 
by inspecting the 2D or 3D plot with residuals on the vertical axis and 
the predictors on the other axes. Failing to find a systematic relationship 
between the residuals and the predictors supports the target model. 

2 because we cannot inspect the full 
( p  + 1)-dimensional plot of residuals versus predictors. We can inspect 2D 
and 3D residual plots of the form {a',, e )  and {a',, e ,  c'x) where a'x and 
cTx are linear combinations of the predictors. If we find a systematic pattern 
in any of these plots, we have evidence of model deficiency. Inspecting 
residual plots for all possible choices of a and c cannot be done in practice. 
The hard part is knowing which plots to choose and when to stop. We now 
describe a rationale for choosing a few residual plots that can provide good 
support for the target model when no systematic patterns are present. 

Model checking is harder when p 

11.3.1 The Setup 

Think of the process that led to the target model. Through the modeling 
procedure, we obtain the following classification of predictors: 

0 A set w of linear predictors. In the Big Mac data, for example, 
approximately linear predictors are obtained by taking logs of the four 
predictors. In the mussels data, only one of the original predictors 
needed to be transformed. Getting exactly linear predictors is not 
very important, but removing strong nonlinear trends is important. 

of p predictors produced by modeling. The 
key assumption is that each of the predictors in x can be written as 
a function of one or more of the linear predictors in w. These could 
include derived variables such as quadratics and cross products that 
are functions of other predictors. Predictors could also be empirically 
defined transformations based on smoothers, as was done in Section 
9.3. 

0 A set x = (XI, . . . , 

The target model (1 1.1) uses the variables in x as predictors, so the model 
need not be restricted to linear predictors. 

11.3.2 Linear Predictors 

Let's consider first the case x = w, so all the predictors in the model are 
linear predictors. Suppose in addition the assumption of 1 D structure in the 
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target model holds. The 1D estimation result of Section 7.4.1 tells us that 
the plot {$, y }  provides a summary, without loss of essential information. 
The summary plot can be used to visualize the regression function and the 
variance function from the general ID model given by (7.3). Under the 
target model, the regression function is linear and the variance function is 
constant. 

Removing the linear trend from {E, y )  gives the residual plot { j ,  e ) .  
Under the target model this plot will have no systematic features. If it 
is curved, then the regression function E(ylx) is nonlinear. If the plot is 
fan-shaped or otherwise shows systematic changes in variation across the 
plot, then var(y1x) is not constant. 

Curvature in the plot { j ,  e }  may indicate the need to transform either the 
response or the predictors. Response transformations are consistent with 
ID structure, but predictor transformations are not. A diagnostic graph for 
transforming the response is just the plot { y ,  $1, as described in Section 
10.2. To study predictor transformations, use the C+R plots discussed in 
Section 9.1. 

In summary, with linear predictors and 1D structure, the single 2D resid- 
ual plot {$, e }  is usually enough to check on the adequacy of the target 
model (1 1.1) against the general 1D model (7.3). If the model is found to 
be lacking, other plots may be needed to decide what to do next. If the 
structural dimension of the regression problem is greater than 1, this plot 
will not be adequate because the summary plot { y ,  j }  can miss essential 
information. Plots that can be used to detect incorrect structural dimension 
are discussed in Section 1 1.4. 

As an example, the plot {$, e )  for the Big Mac data with BigMac as the 
response and the four predictors in log scale is shown in Figure 1 1 . 1 .  This 
plot has three primary features. First, Mexico City is poorly fit. Second, 
the plot appears curved. This is confirmed by the lowess smooth, which 
was drawn after using the “Remove Selection” item to remove the point 
for Mexico City. The item “Show All” was then used to restore Mexico 
City to the plot. Finally, variability seems to increase as we move to the 
right. These features indicate a problem with the target model. The most 
likely remedy is to transform the response; see Exercise 10.4. 

As another example, return to the New Zealand birth data described 
in Exercise 4.3. Choose Term, the length of pregnancy in weeks, as the 
response. The other three variables, Birth Wt, Age of mother, and Sex, are 
the predictors. The summary residual plot { j ,  e )  is shown in Figure 11.2. 
The striking feature in this plot is a set of parallel stripes with negative 
slopes. Are the stripes a cause for concern? 
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Figure 11.1. Residuals versus fitted values for the Big Mac data, with the response untransformed. 
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Figure 11.2. Residual plot with Term as the response for the Wellington birth data. 
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In general, striped patterns in residual plots are caused by discreteness 
in the response. Term is an integer between 36 and 43 weeks; for example, 
the selected points in the plot all have Term equal to 40 weeks. Since all the 
cases with Term equal to 40 weeks have different values of the predictors, 
they have different fitted values, and so the residuals vary along a line. 
We have previously seen a similar phenomenon in Figure 2.4, where many 
values of the response close to zero were observed, leading to a sharp edge 
at the lower left of that plot. 

To evaluate a plot for lack of fit of a model, stripes are generally not 
important, since they are due to discreteness, not to lack of fit. There is 
little evidence in the residual plot against the target model. 

11.3.3 General Predictors 

With linear predictors and 1D structure, the single residual plot (f, e} is 
usually all that is needed to check the adequacy of the target model (1 1.1) 
against the general ID model (7.3). Without linear predictors, this plot may 
miss dependence of the residuals on x because the 1D estimation result of 
Section 7.4.1 does not apply. 

This can be demonstrated by using one of the items from the 
demo - 3 d .1 sp  demonstration in the R - d a  t a folder. Load this file, and 
select the item “Nonlinear Predictors, Nonlinear Model” from the menu. 
Set the predictors to be x1 and x2 and set the response to be y .  This example 
has a nonlinear response function and nonlinear predictors, as discussed 
in Section 7.4.2. Draw the plot {f, e), as shown in Figure 11.3. The plot 
gives hints that something may be wrong. The bulk of the data on the 
left exhibits a negative linear trend. This may be a distortion caused by 
influential points on the right of the plot. Nothing in the plot suggests that 
a better model is quadratic rather than linear in the predictors. 

We have only two predictors in this example so a 3D plot with residuals 
on the vertical axis is the only residual plot that is needed to check the 
model. One particular view of this 3D plot is the same as Figure 11.3. 
While rotating the 3D plot, a strong pattern is visible. The 2D residual plot 
{ j ,  e )  missed key information about the dependence of e on x because of 
the nonlinear dependence between the predictors. 

11.3.4 Restricting to Linear Predictors 

Suppose w is the set of linear predictors in a regression problem and x 
consists of transformations of w. If the distribution of elw does not depend 
on the value of w,  then the distribution of elx cannot depend on the value 
of x. If the distribution of e ( w  does depend on the value of w ,  then there 
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Figure 11.3. Plot of 01s residuals versus fitted values for the “Nonlinear PredictorsNonlinear Model” 
demonstration. 

is a model deficiency by definition. Thus, we only examine residual plots 
with linear combinations of the linear predictors w on the horizontal axes. 
This can reduce the number of residual plots we need to check. 

Return to the ethanol data discussed in Sections 7.3 and 9.3. We started 
with two predictors C and E which we found to be approximately linear 
predictors, so w = (C, E)? In Section 7.3 we decided that NOxlw exhib- 
ited 2D structure. In Section 9.3 we used C+R plots to choose predictor 
transformations. This led to the target model (9.8), 

where TE is the transformation of E chosen via the Zowess smooth in Figure 
9.6. The model has three predictors x = (C, C2, T m T  and is linear in x .  
Predictor transformations may have reduced the structural dimension to 1, 
but since x is not a set of linear predictors and has more than two elements, 
we do not have a direct check on dimension. 

To study lack of fit, we need only a single 3D residual plot { E ,  e ,  C] 
of the linear predictors. To draw this plot, you must first reconstruct the 
predictors in x :  Fit the regression of NOx on C and E, and use the C+R 
plot for E and the Zowess smoother to extract TE. Then use the “New 
Model. . . ’’ item to fit the model with NOx as the response and C, C2, and 
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Figure 11.4. Ethanol data residual plot. 

TE as predictors, creating C2 by using the “Transform. . . ” button. The plot 
can now be drawn by using the “Plot of. . . ” item. After rotating the plot, 
what do you conclude about the adequacy of the model? Strong nonlinear 
trends are visible in the residuals, so systematic variation in the response 
remains unexplained by the predictors. In particular the distribution of e (w 
depends on the value of C. One extracted 2D view from the 3D plot is 
shown in Figure 11.4 with a quadratic trend superimposed. The model 
does not fully explain all the systematic variation in NOx. The most likely 
problem is with the assumption of 1D structure. 

Rotate ( E ,  e, C). Since C consists of only five values, the plot consists 
of five separate plots, one for each value of C. A helpful way to view these 
five curves is to draw the plot { E ,  e }  and use the “Slicer. , . ” control from 
the plot’s menu to slice the plot on C. All five plots are reasonably linear 
with slope changing from negative for small values of C to positive for 
large values of C. This behavior is characteristic of an interaction between 
C and E and suggests that adding a term of the form C x TE may improve 
the current model. 

The C+R plots took us a long way toward a useful analysis of the ethanol 
data, but systematic features remain because the procedure does not allow 
for transformations that depend on more than one predictor. The elabo- 
ration of the model suggested here is relatively minor and will result in 
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only relatively small changes in predictions. The simpler model without 
an interaction may be completely adequate for many purposes. 

11.4 ALP RESIDUAL PLOTS 

With more than two linear predictors in w ,  the residuals cannot be plotted 
against all elements of w at once. We are again faced with the problem of 
deciding which residual plots to view. Fortunately, there is a useful strategy 
based on one 2D residual plot for each linear predictor in w .  

11.4.1 ALP Residual Plots in Two Dimensions 

Let w2 denote a single linear predictor and collect the remaining linear 
predictors into a vector w 1 .  The usual 01s residuals from the regression of 
w2 on w 1 will be denoted by e(  w2 I w I ). We still use the notation e to denote 
the residuals from the target model (1 1.1). The plot (e(w2 I w I ) ,  e }  is used 
to determine if the distribution of el w depends on the single predictor w2 
in the same way that any residual plot is used to assess model adequacy. A 
systematic pattern is an indication of a model deficiency, while a random 
pattern supports the current model. 

We will refer to plots of the form (e(w2 I w I ) ,  e )  as adjusted linearpredic- 
tor residual plots, or ALP residual plots for short. The adjustment indicates 
that the predictor 202 has been adjusted for the remaining predictors w 1 by 
using the residuals e(w2lwl) rather than w2 itself. This avoids confusing 
the effects of w2 with the effects of the other linear predictors. The term 
linear predictors in the name refers to using only the linear predictors w in 
the plots, rather than the predictors x that may be derived from them. 

We have one ALP residual plot for each linear predictor. If the ALP plot 
for w2 does not show a systematic pattern, then we have an indication that 
the distribution of elw does not depend on the value of  w2. If none of the 
ALP plots show a systematic pattern, then we have an indication that the 
distribution of el w does not depend on the value of w ,  which translates 
into support for the current model. Any systematic pattern in an ALP plot 
indicates a model deficiency. 

We use the mussels data to illustrate 2D ALP plots. Our analysis in 
Section 10.4 led to the target model 

M 1 ~ 3  = Bo + B1L + B2W + B3H + B 4 s o . 2  + ( 1  1.2) 

with w T  = ( L ,  W ,  H ,  forming a set of linear predictors. In this 
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Figure 11.5. ALP plots for the four predictors in ( I  1.2) for the mussels data. 

example the linear predictors w and the model predictors x are the same, 
w = x.  There are four 2D ALP plots, one for each linear predictor. 

To construct the ALP plots, load the file mussels. l s p  from the 
R-data folder, transform M and S as used in the model, and set up 
the regression. Select the item “ALP Res Plots-All 2D’ from the “Mus- 
sels” menu. You will then be presented with a dialog to select the linear 
predictors. After selecting the linear predictors in wT = ( L ,  W ,  H, 
a 2D plot will appear on the screen with an extra slide bar that is used to 
choose the linear predictor on the horizontal axis. The four ALP plots for 
the mussels data are shown in Figure 11.5, each with a horizontal line at 
zero and a Zowess smooth added. Aside from a few outlying points, none 
of the ALP plots indicates a model deficiency, lending support to (1 1.2). 

11.4.2 ALP Residual Plots in Three Dimensions 

Variation in the data can mask systematic features in an ALP plot, even if 
smoothers and other plot enhancements are used. A way to gain resolution 
is to use a 3D ALP plot, {e(w2lwl), e ,  e(wslwl)}. Here w2 and w3 are in- 
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dividual linear predictors, and the remaining linear predictors are collected 
into the vector W I  . A 3D ALP plot is interpreted like a 2D ALP plot. For 
example, if (e(w2lwl),  e, e(w3lwl)) appears as a random point cloud with 
OD structure, then we have an indication that the distribution of elw does 
not depend on the values of w2 and w3. Three-dimensional ALP plots are 
more powerful than 2D ALP plots because they allow detection of 2D struc- 
ture, and variation around any systematic trends will be smaller. As with all 
3D plots, 3D ALP plots should be used sparingly because inspecting a 3D 
plot can take considerably longer than inspecting a 2D plot. Considering 
all possible 3D ALP plots is certainly not something that would normally 
be done in practice. A good use of 3D ALP plots is to study pairs of linear 
predictors that have suggestive or nonrandom 2DALP plots. A series of 3D 
ALP plots might be used routinely as a further diagnostic check provided 
each linear predictor is constrained to appear in only one 3D plot. The 
total number of 3D plots needed is then about half the number of linear 
predictors, which may be manageable with many predictors. 

Continuing with the mussels data, select the item “ALP Res Plot-3D” 
from the regression menu and specify the linear predictors in the next di- 
alog, just as for a 2D ALP plot. An initial 3D plot is drawn using the first 
two of the linear predictors as w2 and w3; the linear predictors used in the 
plot can be changed by pushing the “Change Predictors’’ button on the 3D 
ALP plot. Figure 11.6 shows one 2D view of the 3D ALP plot for H and 
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Figure 11.6. 3D ALP plot for H and in ( I  1.2) for the mussels data. 
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Aside from a few remote points that require further study, this plot 
supports the target model. 

11.5 NONCONSTANT VARIANCE 

The target model (1 1.1) has a constant variance function. The residuals 
can be used both to test for nonconstant variance and to help decide on the 
form of the variance function. One general model for nonconstant variance 
is 

var(ylx) = ci2 e x p ( a 5 )  (11.3) 

where a! is a vector of parameters and c2 is an unknown positive constant 
that gives the variance of the response when x = 0. When a! = 0, the 
variance function is constant. The exponential function is used to insure 
that the variance function is always positive, but the exact functional form 
is not very important. If the target model (1 1.1) holds but with variance 
function given by (11.3), we will have 2D structure because two linear 
combinations are required to model the dependence of y on x :  BTx for the 
regression function and a'x for the variance function. 

An important special case of (1 1.3) is 

var(ylx) = ci2 exp(yBTx) (1 1.4) 

We now have 1D structure because both the regression function and the 
variance function depend on the same linear combination B 'x. Many real- 
world phenomena exhibit variance that changes with the mean response, as 
modeled by (1 1.4). The variance function (1 1.4) is constant when y = 0. 

If we knew a!, we could visualize nonconstant variance in a plot of 
(a!%, e), because variability would change systematically with aTx. Per- 
ception of nonconstant variance can be improved by replacing e with )el ''2. 

We would expect to see a linear trend in the plot (aTx, lel'/2) if a! # 0. 
For (1 1.3) a test of a = 0 is a test for constant variance against an al- 

ternative of nonconstant variance. The test we use is called a score test. 
To compute the score test, fit the target model (1 1.1) under the assumption 
of constant variance and use this regression to compute the squared resid- 
uals e2 .  Each e* is an estimate of the variance for that case, and so the 
squared residuals contain information about the variance function. Should 
the variance function depend on x,  the regression of e2 on x would account 
for much of the variability in e2. The test statistic is just the 01s regres- 
sion sum of squares for the regression of e2 on x divided by a scale factor, 
2(C e2/n)2 .  To get a p-value, this statistic should be compared to the x 2  
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distribution with degrees of freedom equal to the number of components 
in a. 

To test y = 0 in model (1 1.4), fit the 01s regression of e2 on j ,  the fitted 
values from the fit of the target model, and then compute the statistic in the 
same way. The resulting statistic has one degree of freedom. 

11.6 EXAMPLE: CASUARINA DATA 

Seeds from a tropical tree called Casuarina cunninghamii were collected 
from two seed sources. Six plants from each seed source were grown with 
fertilizer and the other six without. After four years, the diameter was 
measured at 65 cm above ground. The trees were then cut and weighed. 
The goal for this example is to study the relationship between the response 
weight W and the three predictors: diameter D, the use of fertilizer F ,  and 
seed source S. 

Load the file casuarin. lsp from the R-data folder and set W to 
be the response and D, S, and F as predictors. The latter two are indicator 
variables, with Staking the values 0 and 1 to indicate the seed sources and 
F taking the value 0 to indicate no fertilizer and 1 to indicate that fertilizer 
was used. 

How might we expect W to vary as a function of D? Elementary geL 
ometric considerations suggest that W should equal volume of wood x 
wood density per unit volume. Further, if a tree were a cylinder, volume = 
(lr/4) x height x D2. Putting these two together, we get 

E( W I D, height, density) % 1r/4 x density x height x D2 (1 1.5) 

This relationship depends on height and density, which are unknown, 
and it does not depend on F or S. Nevertheless, it suggests that we might 
need to use D2 as a predictor, not just D. We can explore the need to 
transform D by using the C+R plot for D from the regression of W on D, 
S, and F ,  as shown in Figure 11.7. This plot is curved and the curve is 
closely matched by fitting a quadratic. This suggests fitting a model with 
D2 added to the original three predictors. Our initial working model is thus 

w IX = ~o + ~1 D + ~ 1 1  o2 + B ~ S  + 83 F + error 

Draw the plot of { j ,  e )  based on the working model. The points with the 
five largest absolute residuals correspond to larger fitted values and to the 
five heaviest trees. Increasing variance as a function of D is also apparent 
in Figure 11.7. This might lead one to suspect that larger trees are more 
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Figure 11.7. C+R plot for D in the Casuarina data. 

variable. To explore this further, select the item “Nonconstant Variance 
Plot” from the regression menu for the working model. This will produce 
the plot shown in Figure 11.8. The vertical axis in this plot is [el’’*. The 
plot is initially based on model (1 1.4) with the variance a function of the 
mean, and so the initial horizontal axis is just E. The general trend in the 
plot is increasing to the right, suggesting that variance increases with the 
mean. This is confirmed by the score test, given at the top of the plot. The 
value of the statistic is 9.23, with one degree of freedom, giving a p-value 
of 0.002. 

Individual points separated from the main trend may determine the value 
of the score statistic. These can be identified in the graph and deleted with 
the “Case Deletions” item. The plot will then be automatically updated. 
In Figure 11.8,5 of the 24 points are generally to the right and above the 
rest of the points. Deletion of all five of these cases makes the evidence 
for nonconstant variance disappear. In such a small data set deleting the 
five largest trees is undesirable because it limits inference to smaller trees. 
Restore all the data using the “Restore All” item from the “Case Deletions” 
pop-up menu to continue analysis. 

An additional plot control called “Change Model” appears on the 
nonconstant variance plot. This control is used to change the predictors 
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Figure 11.8. Nonconstant variance plot for the Casuarina data. 

in the variance function. If you push the mouse button in this control, a 
dialog appears that allows choice between modeling variance as a function 
of the mean or of one or more of the predictors. To specify a variance 
model that is a function of D only, double click on D, and then push “OK.” 
To return to model ( 1  1.4), push the button for the mean. To get the most 
general model, select all four predictors. The result of this last selection 
is shown in Figure 11.9. The horizontal axis in this plot is an estimate of 
( r T X .  

The score test shown in Figure 11.9 is equal to 10.24, compared to 
9.23 for variance as a function of the mean. Since modeling variance as a 
function of the mean is a submodel of modeling variance as a function of 
all the predictors, we can subtract the two score tests, 10.24 - 9.23 = 1.01 
with 4 - 1 = 3 degrees of freedom, to get an approximate x2 test for 
comparing the two models. The p-value for this test is computed by typing 

> ( -  1 (chisq-cdf 1.01 3 ) )  
0 . 7 9 8 8 3 2  

This subtracts the area under the x2(3) density to the left of 1.01 from 1 ,  
giving the p-value close to 0.8. The large p-value suggests that variance 
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Figure 11.9. Nonconstant variance plot as a function of the predictors for the Casuarina data. 

can be modeled as a function of the mean only and that 1D structure is 
adequate. 

An informative exercise is to associate the points in Figure 11.8 with 
the levels of S and F.  An easy way to do this is to draw a plot of { S ,  F ) .  
This plot consists of only four points (why?); as you select the points in 
this graph, the corresponding points in the nonconstant variance plot will 
be highlighted. What do you learn from this? 

We have discovered that the variability in weight appears to be an in- 
creasing function of the mean. What shall we do next? Let's fix S and 
F and consider only D. One possible remedy for nonconstant variance 
is transforming the response and possibly the predictors. Returning to 
equation (1  1.5) and taking logarithms, we get 

The right side of this equation includes three predictors, density, height, 
and diameter D, but of these only D is recorded in the data. To make 
any progress, we need to average over the predictors we have not observed 
to get a regression function for D only. We did a similar calculation in 
equation (6.4), but for a different purpose. We find 
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E(log(W)ID) log(rr/4) + E(log(density)ID) 
+ 2log(D) 

+ E(log(height) I D )  

This equation has only one predictor on the right, namely log(D), but it 
also depends on the regression functions for the logarithms of density and 
height given D. We have no data to estimate these regression functions, so 
we must make an informed guess about them. Suppose that wood density 
is independent of the diameter of the tree, so E(log(density)lD) is constant 
for all trees in a seed source-fertilizer combination. Call this constant d.  
This leaves height. We can hypothesize about the regression function for 
height on diameter. Suppose 

E(heightJD) = rnODm' 

If rn 1 = 1, then the regression function is linear. If rn 1 = 0, then the 
regression function is constant. Other values of rn I provide nonlinear rela- 
tionships between height and diameter. We can write E(log(height) I D) FZ 

log(rn0) + m 1 log(D). Combining all these, we get a regression function 
for log( W ) :  

The intercept is a function of d, rno, and constants, so neither d nor rno is 
estimable. The slope is a function of rn 1 alone, so m 1 is estimable. 

The model so far is for fixed values of S and F .  These can be included in 
the model in many ways. A simple model would include S and F linearly. 
This is equivalent to assuming that rnl is the same for all combinations 
of S and F.  We could allow rnl to vary with S and F by including the 
interaction terms S x log(D) and F x log(D) in the model. 

This suggests fitting a model with log(W) as the response and with 
predictors S,  F ,  and log(D). When this model is fit, the 01s coefficient 
estimate for log(D) is 2.155 with a standard error of 0.095, and the t 
statistic for testing in 1 = 0 is (2.155 - 2)/0.095 = 1.63. Comparing this 
to the t (20) distribution gives a two-tailed p-value of about 0.1 1, so these 
results are reasonably consistent with rn 1 = 0. At least for these four-year- 
old trees, E(height1D) appears to be independent of diameter D. Has the 
change to the log scale corrected the problem with nonconstant variance? 
Shown in Figure 1 1.10 is the nonconstant variance plot as a function of 
seed source S .  Modest evidence of nonconstant variance remains, with 
trees from seed source 0 more variable than those from seed source 1 .  
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Figure 11.10. Nonconstant variance plot for seed source for the Casuarina data. 

Inspect the ALP residual plots, specifying all three predictors as linear 
predictors. Does the ALP plot for S support the finding of nonconstant 
variance as a function of S? 

Although nonconstant variance has not completely disappeared, mod- 
eling variance as a function of seed source only is considerably simpler 
than modeling it as a function of several predictors or of the mean. Indeed, 
the data suggest that trees from seed source 1 are both heavier and more 
variable than are trees from seed source 0. 

11.7 COMPLEMENTS 

11.7.1 Residuals 

A few of the residuals may not behave like the corresponding errors E ,  even 
when sample size is large and the target model holds. Consider simple 
linear regression with n - 1 observations taken at x = 0 and only one 
observation taken at x = 1. No matter how large the value of n,  the 
residual for the observation at x = 1 will always be equal to zero, regardless 
of the value of E I ( X  = 1). The condition needed to guarantee that e 
behaves like the corresponding error is that as the sample size increases, 
the maximum value of the leverages, which we will define in Section 13.5.1, 
must approach zero. This condition is usually, but not always, satisfied. 
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Huber (1981, Section 7.2) provides a technical discussion. Searle (1988) 
provides additional discussion of stripes in residual plots. 

11.7.2 Regression Functions and Linear Predictors 

Even with linear predictors and 1D structure, the residual plot {i, e )  may 
miss relevant information. This will occur, for example, if the regression 
function is a symmetric quadratic because then the constant c in the 1D 
estimation result of Section 7.4.1 is equal to 0. A discussion of this in the 
context of SIR is given in Cook and Weisberg (1991a). Further discussion 
of this issue, and much of the theory used in this chapter, is given by Cook 
(1994) and Cook and Wetzel(l993). 

11.7.3 Nonconstant Variance 

The score test for nonconstant variance was given by Breusch and Pagan 
(1979) and by Cook and Weisberg (1983). The results of Chen (1983) 
suggest that the form of the variance function is not very important. Hinkley 
(1985) states that the difference of score tests can be compared to a x 2  to 
compare nested models. The use of in the nonconstant variance plots 
is based on results given by Hinkley (1 975). Other relevant references on 
variance modeling and diagnostics for variance problems include Carroll 
and Ruppert (1988) and Verbyla (1993). 

The Cusuarina data were provided by Ross Cunningham.The lettuce 
data in Exercise 1 1.5 are taken from Cochran and Cox ( 1  957, p. 348). 

EXERCISES 

11.1. 11.1.1. Conduct an analysis of the residuals from the model 
proposed for the Australian athletes data in Section 8.2. The response is 
LBM and the predictors are Sex, Wt, Ht ,  RCC, Sex x Wt, Sex x Ht ,  and 
Sex x RCC. Include an analysis of nonconstant variance as described in 
Section 11.5, and use 2D and 3D ALP plots. 

Apply SIR to the regression of e on Sex, Wt,  Ht and RCC, 
where e denotes the 01s residuals from the model of the last section of this 
exercise. Suppose the BodyMass is the name of the regression you fit in 
the last part of this exercise. First, enter the command 

11.1.2. 

(send BodyMass :add-data (send BodyMass :residuals) "e") 
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This will add the residuals to the data set. Use the “New Model. . . ” item 
from the regression menu to set up the model you need, and then use the 
“Inverse Regression” item from the new model’s menu to compute SIR. 
Compare the results you get from SIR to the results you obtained in the last 
section of this exercise. 

The predictor Sex is an indicator variable. Does this cause 
problems for the assumption of linear predictors needed for SIR, both in 
general and in specific for this exercise? 

11.2. Conduct a residual analysis of the model you obtained for the 
haystack data in Exercise 7.8. Improve the model if necessary. 

11.3. Conduct a residual analysis of the model you obtained for the land 
rent data in Exercise 6.7. Improve the model if necessary. 

11.4. Complete the analysis of the Casuarina data. What do the ALP 
plots suggested at the end of Section 11.6 show? Fit a model you might 
use that allows for the relationship between density and height to depend 
on seed source S. What is the effect of F? 

11.5. The data in file lettuce. l s p  in the R-data folder are the 
results of a central composite design on the effects of the log concentration 
of the minor elements copper Cu, molybdenum Mo, and iron Fe on the 
growth of lettuce in water culture. The response is lettuce yield, y.  The 
sample size is only 20, so seeing trends in graphs may be a bit difficult. 

Set up the regression with y as the response and the other three variables 
as the predictors. Examine the scatterplot matrix of the four variables. 
From the scatterplot matrix, describe the design. Use the methods described 
in this book to model y as a function of the predictors, and then use the 
appropriate graphical method to assess the lack of fit. Summarize your 
results. Hint: Central composite designs are used to find the maximum or 
the minimum value of a response surface, so it is likely that E(yl Cu, Mo, Fe) 
is not a monotonic function of the predictors. 

11.6. Try adding the TE x C interaction to the model for the ethanol 
data, as discussed at the end of Section 1 1.3.4. Does this completely remove 
all lack of fit of the model? If not, what problems remain? What might 
you try to do next to improve the model? 

11.1.3. 
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Assessing Predictors 

In this chapter, we present two graphical methods for visualizing the contri- 
bution of each predictor in turn to the fit of an adequate target model. The 
graphs are called added-variable plots and ARES plots. Added-variable 
plots require linear predictors, but ARES plots do not. 

12.1 ADDED-VARIABLE PLOTS 

We begin again with an adequate target model, 

YIX = Po + P T X l  + P2x2 + E (12.1) 

with a constant variance function. The predictors x have been partitioned 
into two parts, a vector XI of p - 1 predictors and a single predictor x2. We 
seek a plot that shows the contribution of x2 to this model. We could try the 
partial response plot (x2, y } ,  but we know from Section 6.4.1 that a partial 
response plot may show no systematic patterns when x2 does contribute 
significantly to the regression, or it may show a relationship when x2 is not 
needed once XI is included. The problem is that the partial response plot 
does not adjust for the contributions of x I .  A plot that does the appropriate 
adjustment is the added-variable plot. 

Let e ( y ) x l )  denote the residuals from the 01s regression of y on XI and 
let e(x2lxl)  denote the residuals from the 01s regression of x2 on x i .  An 
added-variable plot is defined as (e (x2lx1>,  e (y lx1) ) .  Beginning with the 
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Figure 12.1. Added-variable plot for HT9 from the Berkeley Guidance Study for girls. 

partial response plot {xz, y ) ,  an added-variable plot is obtained by replacing 
each variable by its residuals from the 01s regression on XI .  This process 
removes the contribution of XI to the fit of the target model. 

As an example we return to the Berkeley Guidance Study for girls as 
described in Section 7.5. The response is HT18, the height of a girl at age 
18, and the predictors are the height, weight, and strength at age 9, HT9, 
wT9, and ST9, respectively. We previously concluded that the target model 
(12.1) with x = ( H T 9 ,  W T 9 ,  ST9)Tis reasonable for these data. In the 
R-code, select the item “AVP-All2D” from the regression menu. The 2D 
plot that results is the added-variable plot for one of the predictors in the 
model. An additional slide bar and two additional buttons appear on the 
plot. CLicking in the slide bar changes the predictor in x that is to be the 
added variable. Discussion of the buttons is deferred to Section 13.5.2. 
The added-variable plot for HT9 is shown in Figure 12.1 along with the 01s 
line for the plot. 

Use the slide bar to cycle through the three added-variable plots for 
the example. Each plot enables us to visualize the contribution of the 
corresponding predictor to the regression after the other two predictors. 
The plots can be interpreted like response plots in simple linear regres- 
sion. In particular, if the target model holds, then each added-variable 
plot must exhibit linearity. Nonlinearities mean that the target model is 
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deficient in some way. Nonlinearities also imply that it is premature to use 
added-variable plots to visualize the contributions of predictors since this 
technique is restricted to situations where the target model is adequate and 
the predictors are linear. There are no obvious nonlinear trends in any of 
the added-variable plots for the Berkeley Guidance Study, supporting the 
idea that the target model may be reasonable for these data. 

The strength of a linear trend in an added-variable plot for x2 is an 
indication of the strength of the contribution of x2 after the other predictors 
in XI. The added-variable plot for HT9 in Figure 12.1 shows a fairly strong 
linear trend, indicating that this variable contributes substantial information 
to the regression beyond that contributed by the other two variables. 

Lack of a systematic relationship in an added-variable plot means that 
x2 provides no additional explanatory power after the other variables, but it 
does not mean that y and x2 are independent. Indeed, the partial response 
plot {xz, y} can show a strong linear trend even if x2 provides no additional 
explanatory power after XI. When this happens, XI will be a good predictor 
of x2. 

12.1.1 Properties of Added-Variable Plots 

Added-variable plots are closely related to some regression calculations. 
Consider fitting a line by 01s to the points in an added-variable plot, as 
shown in Figure 12.1. As long as the intercept is in the target model, the 
estimated intercept in the plot will be zero. The estimated slope in the 
added-variable plot will always be the same as the estimated coefficient 
8 2  in the 01s fit of the target model. The t-statistic for the hypothesis 
8 2  = 0 in the original regression is a constant times the t-statistic for 
testing the slope to be zero in the added-variable plot regression. Because 
of this relationship, an added-variable plot provides a visualization of the 
corresponding t-test. 

Finally, the residuals in an added-variable plot are identical to the resid- 
uals e from the fit of the target model, so we can write 

e = e(vlxt) - 8 2  x 021x1) (12.2) 

These results are pursued in Exercise 12.1. 

12.1.2 Some Extreme Added-Variable Plots 

In this section we discuss three extreme cases of added-variable plots. 
While these cases may rarely occur in practice, they provide additional 
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Figure 12.2. Three extreme added-variable plots. 

understanding of added-variable plots. The three cases are depicted in 
Figure 12.2. 

In the left frame of this plot, all the points lie exactly on a straight 
line with nonzero slope. What does this tell us about the fit of the tar- 
get model (12. I)? Since the points fall exactly on a line, the residuals 
from the added-variable plot regression are all zero. Using this fact with 
equation (12.2) tells us that the residuals from the target model (12.1) 
must all be zero and all the data fall exactly on a plane in p dimen- 
sions. Adding x2 to the model gives a perfect fit, so x2 is useful even 
after the contributions of the variables in X I .  In less extreme cases, x2 
is important if its added-variable plot is strongly linear, with small 
residuals. 

Suppose next that the points in an added-variable plot lie exactly on 
a straight line with zero slope, as in the second frame of the plot. In 
this case we must have e(ylx1) = 0 for every case in the data. There 
is no reason to consider adding x2 because the regression of y on XI 

explains all the variation in the response. In less extreme cases, only 
the slope in the plot needs to be zero for the predictor to be 
unimportant. 

The third frame illustrates the extreme case with e(x2lxl) = 0 for all 
cases in the data. This means that x2 is an exact linear combination of the 
other predictors. We need not include x:! in the model because any infor- 
mation that x2 may contain about y is already accounted for by XI. The 
R-code would print the word aliased in place of an estimated coefficient 
for x2.  This situation is often identified by the term colinearity. Exact 
colinearity is rarely observed because of the finite arithmetic used on com- 
puters. Approximate colinearity, where one of the predictors is almost a 
linear combination of the others, is quite common in some areas of appli- 
cation. It can be diagnosed if the range of the values of e(x2lxl) is tiny 
relative to the range of the values of x2. 
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12.1.3 Three-Dimensional Added-Variable Plots 

An added-variable plot can be generalized to three dimensions. Let x2 
and x3 be individual predictors, collecting the remaining predictors into 
X I .  The3Dadded-variableplot is then(e(x2lxl), e(y(xl), e(x3lxl)], where 
e(x3lxl) are the residuals in the 01s regression of x3 on X I .  As with the 
ALP plot, the 3D added-variable plot gains resolution over its 2D cousin 
by reducing background variation. They can be interpreted in much the 
same way as 3D response plots. Nonlinearities, fan shapes, and evidence 
of 2D structure all indicate that the target model may be inappropriate. 

12.2 ARES PLOTS 

Like the added-variable plot, the ARES plot provides a method of visual- 
izing the importance of a predictor in the fit of a target model. The new 
ingredient is the method of visualization: The ARES plot uses animation 
to convey information. Suppose the importance of x2 in the target model 
is at issue, where x T  = ( X I ,  x2). We have two models to compare, the 
target model (12.1) with predictors x and a subset model with predictors 
X I .  Imagine a plot that provides a smooth transition from the subset model 
to the target model. By varying the “fraction” of x2 added while viewing 
an appropriate plot, we may get useful insights into the difference between 
the two models. The name of the plot is ARES, which is an acronym for 
Adding REgressors Smoothly. 

12.2.1 ARES Plots for a Single Predictor 

Return to the Berkeley Guidance Study for girls, and set up the regression 
with WTI 8 as the response and all the age 9 and the remaining age 18 vari- 
ables as predictors. Select the item “ARES Plot” from the regression menu. 
In the resulting dialog, double click on LG18 to select this predictor and then 
push “OK.” The graphical display will provide a visualization of the effects 
of adding LG18 to a model that contains all remaining predictors. In the 
generic notation, x2 =LGl8, and x 1 is the vector of all remaining predictors. 

The initial view of this plot is (fitted values, residuals] computed from 
the 01s fit of the subset model with predictors X I ,  as shown in Figure 12.3. 
The usual R-code plot controls appear on this plot, with an additional slide 
bar labelled “lambda.” Informally, h can be thought of as the fraction of 
the distance from the subset model with predictors X I  to the target model 
with predictors XI and x2. In the initial plot shown in Figure 12.3, h = 0, 
which indicates the subset model. 
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Figure 12.3. Initial ARES plot for adding LG18 in the Berkeley Guidance Study for girls. 

Pushing the cursor in the slide bar will increase h toward its maximum 
value of 1.  When h = 1, the plot consists of (fitted values, residuals} 
computed from the fit of the target model, as shown in Figure 12.4. A 
generic plot in the sequence can be represented as residuals versus fitted 
values ( j ( h ) ,  e (h) ]  depending on the value of A. As h is changed, the 
plot is rapidly updated and the points appear to move continuously. The 
movement gives the information about relative merits of the target and 
subset models. 

Repeat the animation several times, moving the slider from the right to 
the left and back again. Moving the slider from the right to the left corre- 
sponds to removing LG18 from the target model, just as moving it from the 
left to the right corresponds to adding LG18 to the subset model. Study the 
movement of points while repeating the animation. What are your general 
impressions? Most of the residuals move closer to zero. The movement is 
not parallel to the vertical axis since the fitted values are changing along 
with the residuals. The overall impression of decreasing residual magni- 
tude provides a visualization of the usual t-test of the hypothesis that the 
coefficient of LG18 is zero, given that the other predictors are in the target 
model. The ARES plot indicates that LG18 is providing useful additional 
predictive power. 

Study the behavior of the three marked points, with identification num- 
bers 310, 357, and 383. Case number 383 is very poorly fit under both 
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Figure 12.4. Final ARES plot for adding LG18 in the Berkeley Guidance Study for girls. 

models. Case number 310 is reasonably well fit under both models, but the 
fitted value changes enough for this case to reverse the sign of its residual. 
Case number 357 is poorly fit initially, but better fit when LGI8 is added to 
the model. Some points stay relatively stationary in the animation; others 
actually have residuals that increase as the variable is added. 

Draw the ARES plot for HTZ8. How does your impression compare to 
the ARES plot for LG18? A recognizable decrease in the overall magnitude 
of the residuals is again apparent, but not nearly as great as for LGZ8. The 
t-values for HT18 and LG18 are 2.01 and 7.41, respectively. Does your 
visual impression reflect these t-values? Study the ARES plot for ST18. 
How does your impression compare to the other two? The points bounce 
around a bit, but nothing really changes. Does this impression agree with 
the t-value for ST18? In all three plots, also compare the behavior of the 
three cases marked in Figure 12.3. 

Change now to another data set. Load the data in file rat . lsp in the 
R- da t a folder. These data are from an experiment on 19 rats that were 
given a dose of a drug, the dose being roughly in proportion to the body 
weight of the animal. At the end of the experiment, each rat was sacrificed, 
its liver was weighed, and the amount of drug in the liver was determined. 
The experimenters believed that the amount recovered, y ,  should be inde- 
pendent of the three predictors, Dose, BodyWt, and LiverWt; that is, the 
experimenters expected to see OD structure. Set up the regression with y 
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Figure 12.5. ARES plot for Dose in the rat data. 

as the response and the other three variables as predictors. Examination 
of the printed output in the text window gives an unexpected finding: two 
of the three predictors have moderately large coefficients relative to their 
standard errors, and the overall F-test for all coefficients has a small p -  
value, suggesting that the coefficients may not all be zero. 

Look at the ARES plot for the predictor Dose. The plots for h = 0 and 
h = 1 are shown in Figure 12.5. The ARES plot for Dose has two distinct 
features. The configuration of the main point cloud is fairly stable as h 
changes. The exception to this is case 2, which brings us to the second 
feature. Case 2 starts in the subset model with the largest residual and ends 
in the target model with a residual near zero. The relative change in its 
fitted value is equally large. The ARES plot provides a visualization of the 
effects of a highly influential case, as will be discussed in Chapter 13. In 
effect, Dose is needed to model case 2 only. The t-value for Dose in the 
target model is 2.74, but it is only 0.4 after case 2 is deleted. The ARES 
plot for Dose shows no notable reduction in the magnitude of the residuals 
after deleting case 2. 

12.2.2 ARES Plots for Groups of Predictors 

The examples of ARES plots so far are all for adding a single predictor, but 
this is not a restriction on the methodology. Constructing an ARES plot for 
groups of predictors is easy. 

Return to the Berkeley Guidance Study, with WTI8 as the response. 
Again select “ARES Plot” from the model’s menu. Construct an ARES 
plot for the age 18 predictors by double clicking on them to move them to 
the right list. The ARES dialog has two options: the default “Sequential” 
and “As a group.” Click on the “As a group” option and then push “OK.” 
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The ARES plot is now viewed and interpreted just as an ARES plot for a 
single predictor; h is still the fraction of the distance between the subset and 
target models. This ARES plot is a visualization of the F-test for comparing 
the subset model and the target model. View the two ARES plots for the 
age 18 predictors and for the age 9 predictors. What differences do you no- 
tice? Do the visualizations agree with the indications of the corresponding 
F-tests? 

12.2.3 Sequential ARES Plots 

In an ARES plot with sequential addition, the predictors in the group will 
be added one at a time in the order they were chosen in the dialog. The 
number to the right of the slide bar is in the structural form “k.h.” For 
example, the number “2.5” indicates that two predictors have already been 
added and the third predictor is currently being added with h = 0.5. 

If you choose to add all the predictors, the initial subset model consists 
only of an intercept. The sequential ARES plot is then a visualization of 
the sequential analysis-of-variance (ANOVA) table that results from the 
regression menu item “Sequential ANOVA” provided that the ordering of 
the variables is the same. 

12.3 COMPLEMENTS 

12.3.1 Added-Variable Plots 

The added-variable plot first appeared in Cox (1958, p. 58); the name 
was coined by Cook and Weisberg (1982). Atkinson (1985) uses added- 
variable plots in many diagnostic methods. The 3D added-variable plot 
was proposed by Cook and Weisberg (1989). McCulloch (1993) gives an 
extension to four dimensions. 

If the predictors are not linear, the residuals e(x2lxl) do not appropri- 
ately adjust x2 for its relationship with XI,  and an added-variable plot will 
overstate the contribution of x2. 

Removing the linear trend from an added-variable plot replaces the ver- 
tical axis of a plot by the residuals e, and hence they become residual plots. 
If all the predictors are linear predictors, then detrended added-variable 
plots, in 2D and 3D, are the same as ALP residual plots. 

12.3.2 Constructing ARES Plots 

A frame of an ARES plot is of the form {-?(A), e(h)}.  ARES plots are easy 
to construct because 
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and 
e(h)  = y - j ( h )  = e(0)  - h( j (1 )  - j ( 0 ) )  

where j ( 0 )  and e(0) are the fitted values and residuals for the subset model 
and j( 1) designates the fitted values for the target models. 

These expressions provide an operational meaning to the interpretation 
of h as the fractional distance between the subset and target models since 
j ( h )  is indeed located between j (y lx1)  and j ( y l x l ,  x2) as indicated by 
the fraction A. The value h = 0.5, for example, means that j (0 .5)  is the 
average of j ( y ( x1 ,  x2) and j ( y ( x1 ) .  

The ARES plot was proposed by Cook and Weisberg (1989). They are 
also discussed in Cook and Weisberg (1994) for generalized linear models. 
The rat data are from Weisberg ( 1985, p. 122). 

EXERCISES 

12.1. In this exercise, we verify the construction of the added-variable 
plot by constructing the plot for HT9 in the Berkeley Guidance Study for 
girls. This plot is shown in Figure 12.1. Load the BGSgi r 1 s .1 sp  from 
the R-data folder, and construct the model as suggested in Section 12.1. 
Do not change the name of this model, BGS-girls. To get the added- 
variable plot, we need the residuals from the regression of HTZ8 on ST9 
and WT9 and also the residuals from the regression of HT9 on ST9 and 
WT9. Using the "New Model.. ." item in the regression menu twice, 
create these two regression models and name them hZ8-model and h9- 
model, respectively. The added-variable plot is just the residuals from one 
model versus the residuals from the other model. The two sets of residuals 
can be viewed by typing the following commands: 

(send h18-model :residuals) 
(send h9-model :residuals) 

Next, type in the following command: 

(rcode :data (list (send hl8-model :residuals) 
(send h9-model :residuals)) 

: da t a-names ( 1 is t I' H18 -residua 1 s " I' H9 - res idual s 'I ) 

:name " AVP-demo" ) 

This will give a standard regression dialog. Choose HZ8-residuals as the 
response and H9-residuals as the single predictor, and push "OK." 
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The added-variable plot is given by the 2D plot 

{ HPresiduals, HI 8-residuals) 

Use the regression to verify numerically th? following general facts about 
added-variable plots: 

1. The intercept estimated from the added-variable plot is zero. This 
result requires that the intercept be included in the target model. 

2. The slope in the added-variable plot is the same as the slope for HT9 
in the original regression. 

3. The residuals from the regression of HI8-residuals on HPresiduals 
are the same as the residuals from the fit of the target model. 

4. Since the residuals are the same, estimates of variance are the same 
except that the regression of HI 8-residuals on H9-residuals ignores 
the adjustment needed for the other predictors and therefore gets the 
degrees of freedom wrong. 

5. Suppose t2 is the usual t-statistic for testing 8 2  = 0 in the origi- 
nal regression model, where 8 2  corresponds to the single predictor 
HT9. Similarly, let t* be the t-statistic for testing the hypothesis 
that the slope in the regression of H18-residuals on H9-residuals 
is zero. These two statistics are slightly different. Show that t2 = 
[(n - p - l ) / (n  - 2)]t*. The constant corrects the degrees of freedom 
in the estimates of variance. 

12.2. Consider again the birth weight data in the file birthwt . lsp in 
the R-data folder. First set up the regression with Term as the response 
and the other three variables as predictors. Verify that the target model 
(2.1) is reasonable for these data. Use added-variable plots to assess the 
importance of each of the variables in the model. Use a sequential ARES 
plot, adding all three predictors. Describe what you see in these plots, and 
summarize results. 

12.3. Use added-variable plots and ARES plots to study the predictor 
contributions to your final model for the land rent data discussed in Exer- 
cise 6.7. 
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Influence and Outliers 

In almost any plot of real data, a few points will be separated from the 
central trend. Our main focus has been on understanding the relationship 
between the response and the predictors that is appropriate for most of the 
data without in-depth study of separated points, but such points can merit 
special attention. They may cause visual problems with plots: Outlying 
points can cause us to miss important trends by reducing resolution. Out- 
lying points can also have a large influence on conclusions. Were these 
points deleted, conclusions may be quite different. Cases corresponding 
to unusual points may present new and unexpected information when they 
are studied individually. 

The main tool for examining the effects of individual points on an anal- 
ysis is the “Case Deletions’’ plot control. This control allows us to discover 
how an analysis changes when points are deleted. This general idea was 
illustrated several times in previous chapters. 

Much more can be said about the detection of influential cases and 
outliers when the target model ( 1 1.1) is used. In this chapter we give an 
overview of methods available in the R-code that can be used to understand 
the influence of unusual points on the fit of model (1 1.1). We include in 
the last section of this chapter a discussion of probability plots. 

Linear predictors are not required in this chapter. 

203 

An Introduction to Regression Graphic? 
R. Dennis Cook and Sanford Weisberc 

Copvriqht 0 1994 bv John Wilev & Sons, InE 



204 INFLUENCE AND OUTLIERS 

0 RemLinTrend 0 
9 0 a r o  line 

0 Join points 

OLS-lit 1 

- I  
SliceAve NIL - 

0 
E 

0 

18 . 
0 

. 

0 10 20 30 40 50 

Age 

Figure 13.1. The adaptive score data. 

13.1 INFLUENCE 

Load the file adscore. lsp from the R-data folder. This is a small 
data set with observations on 21 children, giving their AGE in months at 
first spoken word, and a SCORE, which is a measure of the development 
of the child. The goal is to study the conditional distributions of SCORE 
given AGE. Construct the plot {AGE, SCORE) as shown in Figure 13.1. 
The 01s linear fit and three separated points are labelled on the plot. SCORE 
appears to decrease with AGE and case 18 seems to be poorly fit by the 
linear trend, relative to the other data. Cases 1 and 17, while not poorly fit, 
are interesting by virtue of their relatively large values of AGE. 

Suppose we fit a target model 

ylx = Bo + BTx + E (13.1) 

with var(y1x) = a2 to these data. How do you think the fit of the target 
model will change when cases marked 1 and 17 are deleted? What will 
happen to the estimates of PO, B ,  and a2? Select those two points and use 
the “Case Deletions” pop-up menu to delete them. This will not change 
the remaining points, but the fitted line does change. Use the “Display fit” 
item in the regression menu to see the new fitted model. 



13.2 MEAN-SHIFT OUTLIERS 205 

Table 13.1. Adaptive Score Data Estimates with Cases Removed 

Intercept Slope SE(s1ope) G R2 

All Data 110 -1.1 .3 1 11.0 .4 1 
Not I ,  17 98 -0.1 .62 10.5 .oo 
Not 1 109 -1.0 .35 11.1 .35 
Not 17 106 -0.8 .52 11.1 . I 1  
Not 18 I09 -1.2 .57 8.6 .57 

Selected summaries from regressions with a few cases deleted are given 
in Table 13.1. Without cases 1 and 17, the relationship between AGE 
and SCORE almost completely disappears: A small fraction of the data 
effectively determines the fitted model. Such cases are called injhentiul. 
In this example, the two cases with large values of AGE are influencing the 
fit. 

When we have more than two predictors, finding influential points may 
not be so easy. However, given a target model like (1 3. I), we can compute 
a diagnostic statistic called Cook’s distance that summarizes some of the 
information about the influence of each case. Suppose we wanted to know 
if the ith case is influential for estimating p.  We could imagine computing 
B(i,, the estimate of B computed without case i, and then computing the 
difference between the estimates. If the difference f i ( i )  - /? is large, then 
we could declare case i to be influential because its deletion gives a new 
estimate of ,6 that is very different from the estimate that uses all the data. 
Cook’s distance combines this vector difference into a summary number 
D that is a squared distance between B ( i )  and b. A useful property of D is 
that it can be computed without refitting the regression. Cases for which D 
is the largest are candidates for influential cases. A formula for computing 
D is given in Section 13.5.1. 

Return to the adaptive score data and restore any deleted cases. Draw a 
plot of {case numbers, Cook’s distances). Case 17 has the largest value of 
D = 0.68. Deletion of case 17 will cause the largest change in estimated 
coefficients, in agreement with what we found graphically. Case 1 does not 
have a particularly large value of D when all the data are used. However, 
try deleting case 17 from the regression and see how D for case I changes. 
You will need to rescale the plot {case numbers, Cook’s distances} by using 
the item “Rescale Plot” from the plot’s menu. 

13.2 MEAN-SHIFT OUTLIERS 

We can expand the target model (13.1) to allow for a specific type of outlier, 
and this will lead to an outlier test. Suppose the target model holds for all 
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Figure 13.2. Externally Studentized residuals for the adaptive score data. The “Show Coordinates” 
mouse mode was used to print the coordinates of point I8 on the plot. 

cases except the ith case, and for this one case E(ylxj) = Po + P T X j  + 6, so 
the regression function for the i th case is shifted by an amount 6. If 6 = 0, 
then the target model holds for all the data. A test of 6 = 0 is therefore a 
test for the ith case to be a mean-shijit outlier. 

A single model for all the cases can be written as 

yl(x, u)  = Po + PTx + su + E (13.2) 

where u = 1 for the ith case and u = 0 for all others. This is just a linear 
model with one additional predictor u, so a test of 6 = 0 can be obtained 
as a usual t-statistic for 6 = 0 in the fit of (13.2). This statistic will have 
n - p - 2 degrees of freedom and is equal to the ith externally Studentized 
residual. 

The plot of {fitted values, externally Studentized residuals] given in 
Figure 13.2 displays all n externally Studentized residuals. Unless the 
location of an outlier is known in advance, outlier testing is usually based 
on the largest in absolute value of the externally Studentized residuals; in 
Figure 13.2, the largest value is about 3.61 for case 18. To get a significance 
level for the test, we need to adjust for the multiple testing that is inherent 
in using the largest of n statistics. Using the Bonferroni inequality, an 
upper bound on the p-value can be obtained by multiplying the standard 
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t ( n  - p - 2) significance level by n. The function outlier-pvalue 
can be used to calculate this value: 

> (outlier-pvalue 3 . 6 0 6 9 8  18 21) 
0 . 0 4 2 0 4 5 3  

suggesting that case 18 may be a mean-shift outlier. 
Often outliers will be influential, but this need not be so. For example, 

in Table 13.1 we see that deleting the suspected outlier case 18 has almost 
no effect on the coefficient estimates, but its deletion reduces the estimate 
of a* from 11 to 8.6. This case is influential for estimating a2, but not for 
estimating coefficients. 

13.3 EXAMPLE: FUEL DATA 

Load the file f ue 1 9  0 .1 sp  from the R - da t a folder. These data consist 
of several measurements on the U.S. states and the District of Columbia. 
Treat the per person fuel consumption (FUEUPOP) as the response and 
use income (ZNC), vehicles per person (VEH/POP), TAX rate, and average 
miles per vehicle (VMNEH) as predictors. Examine the scatterplot matrix 
of the predictors and the response. Because of the relatively narrow range 
for each of the predictors, transformations will not be very effective in 
improving linearity between them. Fortunately the relationships between 
the predictors appear to be fairly linear, although there are a few separated 
points in most of the plots. The inverse partial response plots are difficult 
to interpret because of one outlying point for Wyoming (WY), a large state 
with a small population. Apart from this one point, the inverse partial 
response plots for ZNC and VEH/POP are reasonably linear, while the 
remaining two plots show no trends at all. Taken together, these plots give 
no information to contradict 1D structure. 

Focus on the partial response plot for VEH/POP. Five points appear 
separated from the main body of the plot, as shown in Figure 13.3. Three 
of these states have the lowest per capita fuel consumption, one has the 
highest fuel consumption, and one state has high fuel consumption given 
its value of VEH/POP. Mark these points with a color or symbol for future 
reference. 

Next, select the item “AVP-A112D” from the regression menu. As you 
cycle through the added-variable plots, note the locations of the points you 
have marked. The most outlying single point is consistently for Wyoming. 
In most of the added-variable plots, Wyoming is separated from the bulk 
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Figure 13.3. Partial response plot for VEH/POP for the fuel data. 

of the data both vertically, suggesting this state might be an outlier, and 
horizontally, suggesting that this state has values for the predictors that are 
different from most states. Cases separated horizontally in added-variable 
plots are leverage cases. Combining vertical and horizontal separation, 
Wyoming is probably influential, and its deletion may change conclusions. 
Delete Wyoming and see what happens to the added-variable plots. The 
most striking change is for ZNC, which changes from a plot with little evi- 
dence of a linear trend to one that has a negative trend. This is confirmed 
by using the “Display fit” item in the regresison menu and comparing coef- 
ficient estimates with and without Wyoming. Virtually all the coefficients 
show large changes when Wyoming is deleted. Since only one of the cases 
is influential, Cook’s distance would be very effective in locating this case, 
as its value is about 1.33, while the second largest value is only 0.18. 

13.4 PROBABILITY PLOTS 

A 2D probability plot is used to study the distribution of a random sam- 
ple. Suppose we have n observations 211, . . . , vn, and we want to examine 
the hypothesis that these are a sample from a specific distribution, such 
as a normal distribution. Let u[11 5 - < qn] be the vj’s reordered 
from smallest to largest. Let u[11 5 . - - 5 qn] be the expected values of 



13.4 PROBABILITY PLOTS 209 

Probability Plot Slmulator.. . 
Sample Slze 

Sampling Distribution @ Normal 

0 Uniform 
0 Chi-squared 

0 1-distribution 

a 

0. F. = 

Hypothesized Oistributlon @ Normal 

0 Uniform 
0 Chi-squared 
0 1-distribution 

0. F. - 

Figure 13.4. Dialog for the probability plot demonstration. 

an ordered sample of size n from the hypothesized distribution. That is, 
~[jl = E(z[j]) where z1, . . . , z,, is a sample from the hypothesized distribu- 
tion. 

If the true sampling distribution of the u’s is in fact the same as the 
hypothesized distribution, we would expect the ordered u’s to be linearly 
related to the u’s. Aprobabilityplot is given by ( u [ i ] ,  u [ j ] ) .  If the sampling 
distribution of the u’s is the same as the hypothesized distribution, then the 
plot should be approximately straight; if the plot is curved, then we have 
evidence that the u’s are not from the hypothesized distribution. 

Judging if a probability plot is straight requires practice. To help gain ex- 
perience, load the demonstration file demo - i n  f .1 sp  from the R - data 
folder, and select the item “Probability Plots” from the “Demo:Inf’ menu. 
You will get the dialog shown in Figure 13.4. You can specify the sample 
size, the true sampling distribution the computer will use to generate the 
data, and the hypothesized distribution the computer will use to compute 
the up] .  

For the first try, set both distributions to be normal, leave the sample size 
at 50, and then push “OK.” A probability plot similar to Figure 13.5 will 
result. The points in this plot should be approximately straight because 
the sampling and hypothesized distributions are the same. A new sample 
from the sampling distribution can be obtained by pushing on the “New 
Sample” button on the plot; this can be repeated many times. 

After looking at several plots with sample size 50, start the demonstration 
over by again selecting “Probability Plots” from the menu, but this time 
set the sample size to 10. Can you judge normality as easily for a sample 
of size 10 as you could for a sample of size 50? 
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Figure 13.5. A sample probability plot. 

Nonnull shapes of probability plots can be studied by setting the sam- 
pling distribution and the hypothesized distribution to be different in the 
dialog; this will require selecting the “Probability Plots” item again. Rel- 
ative to the normal, the uniform distribution has short tails, or few large 
values. The t distributions, for which you must specify the degrees of free- 
dom, have long tails for small degrees of freedom. The x2 distributions 
are skewed; the smaller the degrees of freedom, the greater the skewness. 

Probability plots are obtained in the R-code by selecting the item “Prob- 
ability Plot of. . . ” from the regression menu. Selecting this item will 
produce the dialog shown in Figure 13.6. From this dialog, click on the 
quantity to be plotted and the target distribution to get the up] .  If the dis- 
tribution chosen is x 2  or t ,  then the number of degrees of freedom must be 
specified as well. 

13.5 COMPLEMENTS 

13.5.1 Residuals and Leverages 

Many books on regression suggest using rescaled versions of residuals 
in plots. Given a target model like (13.1), the residuals have unequal 
variances, 

(13.3) var(elx) = a2(1 - /I) 
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Figure 13.6. Probability plot dialog. 

where h is usually called the leverage. The value of the leverage is always 
between 0 and 1 and depends only on the predictors in the model, not 
the response. The leverage is largest for cases with x farthest from X and 
smallest for cases with x close to X. The sum of the h is equal to p + 1, 
the number of coefficients in model (1 3.1) including the intercept, so the 
average value of h is ( p +  1 ) / n .  If n is large compared to p ,  then the average 
leverage (p+ l ) /n  is small and the individual leverages will usually deviate 
little from the average. 

Residuals can be Studentized to correct for unequal variance. This is 
usually done in one of two ways, depending on the method of estimating 
02.  The Studentized residuals are given by 

e 
r =  

3 J i - z  
(13.4) 

where 3 is the square root of the usual estimate of o2 computed using 
all n cases in the computations. If 3 is replaced in (13.4) with 3(i), the 
usual estimate found without using case i in the computations, the resulting 
residual is an externally Studentized residual. If the target model holds, then 
both types of Studentized residuals have mean zero and constant variance. 
For the target model (13.1), the two types of Studentized residuals are 
related by a simple nonlinear equation, so they are practically equivalent. 

Cook’s distance is a function of the Studentized residual, the leverage, 
and the number of predictors. The explicit formula is 

r2 h D = -  
p + l  1 - h  

13.5.2 Local Influence 

The use of added-variable plots to identify influential cases described at the 
end of Section 13.3 is based in part on a generalized method of influence 
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Figure 13.7. Case weight perturbation contours for the coefficient of VEH/POP in the fuel data. 

assessment. The basic idea behind influence analysis is that a regression 
solution should be stable: Small changes in the data should not produce 
large changes in the results. Deleting cases is one way of introducing small 
changes in the data, but there are others as well. 

We might assume that the variance function is not quite constant. Sup- 
pose we set var(~1x) = a 2 / w ,  where w is positive. We can study the change 
in a single coefficient estimate, say /? 1, as w changes. Let 1 (w)  denote 
the weighted least squares estimate of j31 with weights w. If w = 1 for 
all cases, then b 1 (w)  = b 1 ,  the 01s estimate, but for other values of w we 
can get a different value. We can get a worst case by solving the following 
problem: Find w not too far from 1 for every case such that b 1 ( w )  is as 
far from b 1 as possible. Cases whose values for w are most different from 
1 are potentially influential cases. Finding the worst case is the same as 
the mathematical problem of maximizing the rate of change in b 1 ( w )  as w 
is varied. This maximization problem can be solved, and the potentially 
influential cases can be identified in the added-variable plot for X I .  

Construct the added-variable plot for VEH/POP in the fuel data. In 
the plot controls push the button “CaseWt Perturb.” A contour with four 
segments will appear on the plot, as shown in Figure 13.7. This is a typical 
contour showing relative impact when case weights are perturbed. All 
cases falling on the contour lines will have the same local influence. The 
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farther the contour from the center of the plot, the greater the influence. 
From the plot, modifying the case weight for Wyoming will result in the 
greatest rate of change in the estimate of the coefficient of VEH/POP. 

The plot control “Pred Perturb” is used just like the previous control 
except it is the values of the predictor rather that the case weight that are 
perturbed. Pushing this control on the plot in Figure 13.7 will show which 
cases have the greatest impact on the 01s estimate of the coefficient of 
VEH/POP when the corresponding values of VEH/POP are changed. The 
contours in this case will always be straight lines. 

13.5.3 Simulated Envelopes 

A visual aid can be constructed via simulation to help judge whether or not 
a probability plot is straight. Assume the target model (13.1) holds. 

1. Let j be the fitted values from the target model, and let 8 be the 
estimate of 0. Compute a simulated response ys = j + $2, where z 
is an n x 1 vector of standard normal random deviates. 

2. Fit the target model, but with ys as the response, and then compute 
the probability plot for the residuals. 

3. Repeat steps 1 and 2 m times; the R-code uses m = 19. 

4. We now have m simulated residuals for each plotting location on the 
horizontal axis of a probability plot. Add the smallest and the largest 
of these m values to the plot at each plotting location on the horizontal 
axis. 

5. Join all the smallest values and all the largest values. This will give a 
simulated envelope. If the assumed population distribution is correct, 
one would expect that all the points in the observed probability plot 
will fall within the envelope a fraction m / ( m  + 1) of the time; if 
m = 19, this is 95% of the time. 

In the R-code a simulated envelope is obtained by pushing the “Simulated 
Env” button on a probability plot and waiting for the lengthy calculation 
to be completed. If the observed plot falls within the simulated envelope, 
then the assumed null distribution for the residuals is supported; otherwise, 
it is not supported. 

For the target model (1  1.6) fit to the Casuarina data discussed in Section 
1 1.6, the probability plot of Studentized residuals is shown as Figure 13.8. 
Although the plot is not particularly straight, it does fall entirely within 
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Figure 13.8. Probability plot for the Casuarina data. 

the simulated envelope, so a hypothesis of normality of the errors is not 
contradicted. 

The simulated envelope assumes that the model used is correct, and all 
that is at issue is the distribution of the errors. In realistic problems, normal- 
ity or any other modeling assumptions such as linearity, 1D structure, and 
constant variance may in fact not hold, and many incorrect assumptions can 
result in a curved probability plot. In particular, outliers will often appear 
in probability plots as isolated points in the left or right tail of the plot. To 
illustrate this, construct the probability plot of the Studentized residuals in 
the adaptive score data. Case 18 falls well above the main trend in the plot. 

13.5.4 References 

A good elementary introduction to residuals, leverages, outliers, and influ- 
ence measures is given by Fox (1991). More advanced treatments are given 
by Cook and Weisberg (1 982) and by Atkinson (1 985). Leverages are dis- 
cussed in Hoaglin and Welsch (1980). Deletion influence measures were 
introduced by Cook (1977). The use of added-variable plots for studying 
local influence is developed in Cook (1986a). Many other influence mea- 
sures have been suggested; see Cook, Peiia, and Weisberg (1988) and Cook 
(1986b) for comparisons. 
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The probability plot described here is often called a QQ-plot, as it is a 
plot of the quantiles of the hypothesized distribution against the observed 
quantiles of the sample. Gnanadesikan (1977) is a standard reference on 
these plots. The simulated envelopes for probability plots were suggested 
by Atkinson (1981). 

The adaptive score data first appeared in Mickey, Dunn, and Clark 
(1967). The muscles data used in Exercise 13.6 are from Cochran and 
Cox (1957, p. 176). 

EXERCISES 

13.1. Complete the analysis of the mussels data, paying careful attention 
to the effect of individual cases on the regression. This analysis was begun 
in Exercise 10.2. 

13.2. Use the adaptive score data to verify certain properties of the 
residuals and fitted values. First, verify that the residuals add to zero, apart 
from rounding error. This can be done using the : residuals method 
and typing 

(sum (send adscore :residuals)) 

Similarly, using the : leverages method, verify that the sum of the 
leverages is equal to the number of coefficients in the model, including the 
intercept, which is 2 for these data. Next, verify that y = e + j using the 
:y, :residuals and : fit-values commands by typing 

(plot-points (send adscore : y )  

( +  (send adscore :residuals) (send adscore :fit-values))) 

Next, verify that the regression of e on 9 has slope equal to zero. Finally, 
show that the square of the correlation between y and e is equal to 1 - R2. 
These results hold for any 01s fit of a linear model with an intercept. 

13.3. Compute confidence curves for the Box-Cox power transforma- 
tion of the response for the fuel data discussed in Section 13.3. Delete 
Wyoming and recompute the confidence curves. Does Wyoming influence 
the choice of a response transformation? Could the influence of Wyoming 
have been anticipated using the inverse fitted-value plot { y ,  j }  described 
in Section 10.2? 
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13.4. Analyze the Berkeley Guidance study for boys using the same 
variables as were used in Section 7.5 for girls. The data are in the file 
BGSboys. lsp in the R-data folder. 

13.5. Examine the Big Mac data for influential cases and for outliers. 
Which cities seem to be different from the rest? How are they different? 
Do they strongly influence any conclusions? 

13.6. The data in file mus c 1 e s .1 sp  in the R- da t a folder comprise 
two replications of a 4 x 4 x 3 factorial experiment on rats to investigate the 
use of electrical stimulation to prevent deterioration of denervated muscles. 
The response y is the weight ( 1  unit = 0.01g) of the denervated muscle at 
the end of the experiment. Since larger animals tend to have larger muscles, 
the weight x of the untreated bilateral muscle was used as a covariate. The 
other factors in the experiment were Rep, the replication number, either 0 
or 1;  TrtTime, the length of stimulation in minutes, 1 ,  2, 3 ,  or 5 ;  T r t h y ,  
the number of treatments per day, 1 ,  3, or 6; and Trt, a qualitative factor 
for the type of current used, 1 = galvanic, 2 = faradic, 3 = 60 cycle, or 4 = 
25 cycle. 

Provide a complete analysis of these data, and summarize your findings. 
Once you obtain a target model, be sure to analyze the data for outliers and 
influential points. 
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Confidence Regions 

This chapter is about confidence regions for two or three coefficients in a 
linear model, including their implementation in the R-code. Linear predic- 
tors are not required in this chapter. 

14.1 CONFIDENCE REGIONS IN THE R-code 

Load the file BGSboys . l s p  in the R-data folder. This file contains data 
on boys from the Berkeley Guidance Study, similar to the data on girls used 
elsewhere in this book. We assume that weight at age 18, WT18, depends 
on measurements of height, weight, leg circumference, and strength at age 
9, via the model 

with constant variance o2 and normally distributed errors. 
To construct a joint 95% confidence region for 8 2  and 84 in model (14. I), 

select “Confidence Regions” from the regression menu. In the resulting 
dialog, double click on WT9 and ST9 to move them from the left list to the 
right list and push “OK.” The result is shown in Figure 14.la. The cross 
hairs mark off marginal 95% confidence intervals on the coordinate axes 
for 82 and 84.  For example, the 95% confidence interval for 82 runs from 
about -0.6 to 1.4. 
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Figure 14.1. Joint and marginal 95% confidence regions of the Berkeley Guidance Study for boys. 

The elliptical region in Figure 14.la is a joint 95% confidence region 
for 8 2  and 84. Confidence regions for two coefficients in a normal linear 
regression model are always elliptical. The ellipse in Figure 14.la is nearly 
a circle, but this characteristic of the shape depends on the aspect ratio in 
the plot. The cross hairs in Figure 14. l a  sit well within the joint confidence 
region so the range allowed for either coefficient in the joint region is larger 
than the corresponding range of either marginal confidence interval. 

Construct a joint confidence region for the coefficients for WT9 and LG9, 
as shown in Figure 14.lb. Figures 14.la and b are qualitatively different. 
The major axis of the ellipse in Figure 14.lb has a negative slope, so 
8 2  and 8 3  are negatively correlated. When the scaling in the plot is the 
default scaling as in these figures, elongation of the ellipse indicates large 
correlation. The cross hairs in Figure 14.lb extend outside of the joint 
confidence region because of the high correlation. In Figure 14.1 a the near 
circularity suggests that the correlation between the coefficients of WT9 
and ST9 is small. 

14.2 CONFIDENCE REGIONS IN TWO-PREDICTOR MODELS 

Let's now consider a joint confidence region for the regression coefficients 
(81, p 2 )  in a two-predictor model, 

YlX = 8 0  + 81x1 + 8 2 x 2  + & 

with independent normal errors having mean 0 and constant variance cr2. 
The estimated 2 x 2 covariance matrix Gr(r(B) of the 01s estimates 
jT = (81, 8 2 )  is 
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- I  
SII s12  

= b2 ( SI2 s22 ) 
where 

n 
and 

~ 1 2  = C(xiI - ~ 1 ) ( x i 2  - 22)  
i=I 

A joint (1  -a) x 100% confidence region for (PI,  8 2 )  is the set of all values 
of the 2 x 1 vector B that satisfies the inequality 

(B  - j ) T [ ~ r ( j ) ~ - l ( ~  - j) i ~ ( 1 -  a, 2, n - 3) (14.2) 

where F(  1 -a, 2, n - 3) is the percentage point of the F-distribution with 
2 and n - 3 degrees of freedom that leaves an area of a under the right tail. 
The points satisfying this inequality fall inside an ellipse. The center of the 
ellipse is at b. The size of the ellipse is partially controlled by the choice 
of the level 1 - a. As we require more confidence, 1 - (Y becomes bigger, 
F(  1 - a, 2, n - 3) becomes bigger, and the area of the ellipse increases. 

After a bit of algebra, the element of i%(/?) that corresponds to Gr(b1) 
is - -  

(14.3) 

where ~ 1 2  = SIZ/(SI 1S22) is the sample correlation coefficient between 
XI and x2. The standard errors of the coefficient estimates determine the 
lengths of marginal intervals. Expression (14.3) tells us that the length of a 
confidence interval increases as t-;2 increases, so high correlation between 
the predictors gives relatively long confidence intervals. 

The shape of a joint confidence interval depends on corr(b 1, &), the 
correlation between and 8 2 ,  and on scale factors. If all scale factors 
are fixed, the joint confidence region becomes elongated as Icorr(8 I ,  8 2 )  I 
increases. What will make Icorr(B 1 ,  8 2 )  I large? There is a close connection 
between this correlation and r12: 

corr(b I ,  8 2 )  = -r12 (14.4) 

The correlation between the 01s estimates of and 8 2  in a regression model 
with just two predictors is the negative of the sample correlation between 
the predictors. 
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Figure 14.2. Confidence region demonstration. 

Load the demonstration demo- c r  .1 sp  from the R-dat a directory. 
A brief description of the demonstration will be printed and a 2D plot with 
a slider labelled “r12” will appear on the computer screen: “r12” is the 
sample correlation 1-12 between x1 and x 2 .  

This demonstration is for a regression problem with two predictors scaled 
to have mean 0 and SI 1 = $2 = 1. In this scaling and with an aspect ratio 
of 1, the shape of a confidence region depends only on the correlation 1-12. 

The initial plot shown in Figure 14.2a is the joint 95% confidence region for 
(PI, 8 2 )  when 1-12 = 0. The cross hairs on the plot give marginal intervals, 
assuming that j r  = (0,O) and that &2 = 1. The slide bar controls the 
sample correlation 1-12 between XI and x 2 .  As the slide bar is moved, the 
confidence regions are redrawn, 

Figure 14.2a with 1-12 = 0 is similar to Figure 14.la. Before moving 
the slider, consider what will happen as it is moved to the right. What will 
happen to the cross hairs? The demonstration has been constructed to keep 
the center at the origin, so only lengths and orientation can change. What 
will happen to the ellipse? How will its orientation change? 

As the slider is moved to the right, the marginal intervals depicted by 
the cross hairs get longer. Was this predicted by the previous discussion? 
Also, the slope of the major axis of the ellipse is now negative when 1-12 

is positive. Was this predicted by the previous discussion? The plot when 
the sample correlation 1-12 = -0.95 is shown in Figure 14.2b. 

14.3 CONFIDENCE REGIONS IN MODELS WITH MANY 
PREDICTORS 

With minor modifications, we can apply our understanding of confidence 
regions for two-predictor regression to the more general model, 
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YlZ = Bo + BIZ1 + 8222 + B3Tz3 + 6 (14.5) 

where z1 and z2 are single predictors and all remaining predictors are col- 
lected in the vector z3. We have changed the generic designation of a 
predictor from x to z to help avoid confusing these predictors with those 
of the two-predictor case in Section 14.2. 

How do we construct a joint confidence region for (61,82)? Aside from 
the presence of z3, this is the same problem considered in Section 14.2. 
The required confidence region can be constructed by first getting e(zl I z ~ ) ,  
the residuals from the regression of ZI on z3, and e(z2Iz3), the residuals 
from the regression of z2 on z3. Both of these regressions should include 
an intercept term because there is an intercept term in (14.5). Now go back 
to Section 14.2 and replace XI with e(zl Jz3) and x2 with e(z2lz3). Except 
for a change in degrees of freedom, the discussion of the previous section 
now applies verbatim to a confidence region for (PI ,  82) in (14.5). To apply 
equation (14.2), replace F(1 - a, 2, n - 3) with F(1 - a, 2, n - p - 1). 

The shape of the confidence region in two-predictor regression is deter- 
mined by the sample correlation rl2. In the many-predictor generalization, 
this is replaced by the sample correlation between e(z1 Iz3) and e(zz(z3). 
This correlation is called the sample partial correlation between ZI and 
z2 adjusted for z3. It gives the sample correlation between z1 and z2 after 
removing any linear association with z3. The sample partial correlation be- 
tween ZI and z2 controls the behavior of joint confidence regions in multiple 
regression problems. 

The residuals e(zlIz3) and e(z2lz3) are two of the variables needed 
to get a 3D added-variable plot for adding ZI and z2 after accounting 
for the effects of z3. We thus have another role for 3D added-variable 
plots, but now linear predictors are not required. If we begin with the 3D 
added-variable plot (e(zl I z ~ ) ,  e(yJz3), e(z2lz3)} in the “Home” position and 
then use the “Pitch” control to rotate to the 2D plot [e(zl I z ~ ) ,  e(z2lz3)}, 
we can gain a visual impression of the size of the sample partial corre- 
lation. This in turn may provide a qualitative impression about the joint 
confidence region. In particular, if replacing the out-of-page variable 0 
by e( 0 I H) is needed for adequate resolution of a 3D added-variable plot, 
then the corresponding joint confidence region will probably be long and 
thin. 

Figure 14.3a gives a view of the 3D added-variable plot for WT9 and 
ST9 in the Berkeley Guidance Study, rotated to display the static 2D plot 
(e(zl I z ~ ) ,  e(zzlz3)). This figure provides a visual impression of the sample 
partial correlation that enters into the construction of Figure 14.la. Sim- 
ilarly, Figure 14.3b gives a visual impression of the large positive sample 
partial correlation for Figure 14.lb. 
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Figure 14.3. Three-dimensional added-variable plots for the Berkeley Guidance Study for boys, rotated 
to display sample partial correlations. 

14.4 GENERAL CONFIDENCE REGIONS 

Joint confidence regions for more than two coefficients follow the same 
general ideas. In particular, letting /3s denote an arbitrary subset of the 
coefficients in a multiple regression model, a (1 - a) x 100% confidence 
region for Bs is the set of all values of Bs that satisfy the following inequal- 
ity: 

(14.6) 

where q is the number of coefficients in Bs and 6 s  is the 01s estimate of /Is. 
This specifies a q-dimensional ellipsoid. To get a 3D ellipsoid using the 
R-code, select the “Confidence Regions’’ item from the regression menu, 
and select three predictors. All the points in this plot will be on the surface 
of a 3D ellipsoid giving a confidence region. A view of this plot for the 
three variables WT9, LG9, and ST9 is shown in Figure 14.4. Since the 
3D plot is automatically centered and scaled, about all the user can see 
in this plot is orientation and elongation. When rotating this plot, one 
learns that the coefficient estimates for WT9 and LG9 are strongly and 
negatively correlated; the coefficient estimates for LG9 and ST9 are nearly 
uncorrelated, as are the coefficient estimates for WT9 and ST9. 

(Bs - BS)~[G~(BS)I-I(BS - B s )  I q F ( a ,  4, n - p - 1) 

EXERCISES 

14.1. Run the demo-cr . lsp demonstration as described in Sec- 
tion 14.2. Then, change the aspect ratio in the plot by making the window 
twice as long as it is high, and run the demonstration again. Describe 
any qualitative differences. Since the data have not changed, there are no 
quantitative differences, but perception of the plot can change. 
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Figure 14.4. A 3D joint confidence region for the Berkeley Guidance Study for boys 

14.2. The file rat. l s p  in the R-data folder contains the rat data 
described in Section 12.2.1. 

14.2.1. Fit the regression as discussed in Section 12.2.1. Two of the 
predictors have relatively large t-values. What does this indicate? Get 
the correlation between these two estimated coefficients by selecting “Dis- 
play Summaries” from the regression menu. Guess the shape of the joint 
confidence region for these two coefficients. 

14.2.2. Draw the joint confidence region for the two coefficients studied 
in Exercise 14.2.1. Is the shape as you expected it to be? 

14.2.3. Without removing the plot of the confidence region, draw a 
3D added-variable plot for the two predictors identified. As you rotate this 
plot, examine it for any features that may help to understand the plot of the 
confidence region. Using the “0 to e(0lH)” plot control may be helpful. 

In the 3D added-variable plot, one point should have been 
identified as different from the others. How is it different? Select this 
point, and only this point, and then delete it by using the “Case Deletions” 
plot control. Not only is this plot updated, but the plot of the confidence 
region is updated as well. On the confidence region plot, the new ellipsoid 
and cross hairs are drawn in a different color, but the old ones are not 
removed. How does the confidence region change? What does this tell 
you about the case that was deleted? 

14.2.4. 
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The R-code 

A.l WHAT IS THE R-code? 

The R-code is a computer program written in the Xlisp-Stat language. The 
computer code for Xlisp-Stat is required to run the R-code, and both are 
provided on the disks that come with this book. Users of the R-code can 
also use the language Xlisp-Stat. 

The R-code is described in this book. The Xlisp-Stat language is a 
very powerful environment for statistical programming and is described 
in Tierney (1990). To use the R-code, you do not need to know how to 
program in Xlisp-Stat or any other language. 

A.2 GETTING STARTED 

This section describes how to get started using the R-code, depending on 
the type of computer you plan to use. 

A.2.1 Macintosh Version 

You will need at least 6 megabytes (mb) of memory (4 mb with System 
6), and about 2 mb of free space on a hard disk. The R-code will not run 
acceptably on slower machines like the Mac Plus, Mac SE or PowerBook 
100. Put the Macintosh disk in your floppy drive, double click on the icon 
called Double c l i c k  on m e ,  and follow the directions in the installer 
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program. Running the installer program will create a folder or directory 
called R-code Folder and, if you use System 7 or later, an item called 
Launch R-code will be added to your Apple Menu. You can choose in 
the installer to use a version of Xlisp-Stat that uses a math coprocessor. 

To start the R-code, if you are using System 7 or later, select 
Launch R-code from the Apple menu. With any system, you can open 
the R-code Folder and double-click on the icon Xlisp-Stat 2 . 1 
or X1 i sp - Stat 2 . 1 8 8 1 if you are using the coprocessor version. 

To remove the R-code from your disk, drag the R-Code Folder and 
the Launch R-Code file to the trash. 

A.2.2 Windows Version 

You will need Microsoft Windows 3.1 or newer, at least 4 mb of RAM, 
2 mb of hard disk space, and VGA. Put the Windows disk into your disk 
drive. In the Windows Program Manager, select the item “Run. . . ” from 
the “File” menu. In the text area of the resulting dialog, type a : \setup 
or b: \setup, as appropriate on your system, and then follow the di- 
rections in the setup program. This will create a directory with a name 
you specify, and put the program and data into it. The setup program 
will also create a group in the Program Manager called R- code, and an 
icon Launch R-code that will start the Xlisp-Stat program and load the 
R-code, and a second icon called Lspedi t for a simple text editor. 

No separate coprocessor version is available for Windows. 
To remove the R-code, delete the R-Code directory from your disk and 

the group R-code from the Program Manager. 

A.2.3 Unix Version 
A separate Unix version is not distributed with this book. The R-code and 
Xlisp-Stat can be obtained electronically over the Internet by anonymous 
ftp to the machine stat.umn.edu, as follows: 

% ftp stat.umn.edu 
Connected to umnstat.stat.umn.edu. 
Name (stat .umn.edu:) : anonymous 
Password: (type your email address) 
ftp> cd pub/rcode 
ftp> get rcode.readme.unix 
ftp> quit 

The file rcode . readme. unix gives further instructions. 
If you already have Xlisp-Stat on your system, you can transfer the 

R-code from either the Macintosh or Windows version. You will need 
the files statinit. lsp, rcode. lsp, and the folders R-code and 
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R-data. Put all these in the directory from which you plan to start 
Xlisp-Stat. 

On most Unix systems, Xlisp-Stat is started by typing xl ispstat. 

A.2.4 Contents of the Disks 

Both the Windows and Macintosh disks contain the following: 

A.3 

A complete copy of the R-code, consisting of the files 
statinit. lsp, rcode. lsp, and the contents of the directory 
or folder R-code. 
A folder R-data containing all the data files and demonstration 
programs used in this book. 
A folder called ALR that includes all the data sets discussed in Weis- 
berg (1985) in a format suitable for use with the R-code. 
All the files, examples, and data usually distributed with Xlisp-Stat. 
The files in the folders called Data, Examples are discussed in 
Tierney (1990). The folder G1 im includes Tierney's code and docu- 
mentation for fitting generalized linear models with Xlisp-Stat. 

CUSTOMIZING THE R-code 

When Xlisp-Stat starts, it loads a file called stat ini t .1 sp in the direc- 
tory or folder from which it is started. The stat ini t . lsp file included 
on the disks consists of the line ( load I' rcode 'I ) to load the R-code. If 
you already have a stat ini t .1 sp file of your own, add this line to it. 

Several constants are set in the file rcode .1 sp and they can be changed 
by the user. For example, color rotating plots are not used with Macintoshes 
or PCs because color can significantly reduce performance. If you have a 
very fast processor or a fast graphics board, you might want to use color in 
rotating plots. Using an editor with the file rcode .1 sp, change the value 
of *use-color-in-3d-plots* from nil to t. The file contains 
comments on other constants and how to change them. Remember to save 
the changed file without changing the name as a plain text file, not as a 
word processor file. 

A.4 DATA FILES 

A data file for use with the R-code can consist of data or both data and 
Xlisp-Stat commands, as illustrated in Section 1.4. Data can also be created 
in Xlisp-Stat and then a command can be typed to start the R-code. This 
is illustrated in Exercise 12.1. 
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Figure A.l. The standard regression dialog. 

A S  THE REGRESSION DIALOG 

The regression dialog, like the one in Figure A.l, is used to set up a re- 
gression. Double clicking on a name in the “Candidates” list moves the 
name to the list of predictors. Clicking once on a name and then on an 
empty box for the response, weights, or case labels moves the name to that 
box. Double clicking on any of these boxes moves the name to the end of 
the list of candidates. The regression dialog has eight other items. At the 
top, you can type a name for the regression. This name will appear as the 
name of the regression menu. The program will always supply a default 
name. An intercept will be included unless “Fit Intercept” is unselected 
(the box is empty). Pushing any of the three buttons below the intercept 
control will give a dialog that can be used to modify data and then return 
to the regression dialog. The “Save to File” item, when checked, is used 
to create new data files. Push the “Done” button to create a model or the 
“Cancel” button to save any changes to the data but not create a model. 

A.5.1 Transform Dialog 

This dialog is used to create basic power transformations of existing vari- 
ables. An example is shown in Figure A.2. If the “Done” button were now 
pushed, a new variable with values given by (X2 + l)0.5 and a descriptive 
name would be created. If the “Log transform” button is pushed, then the 
value in the “Power” text area is ignored; a power of 0 is the same as the log 
transform. Press “Again” to transform another variable, “Done” to return 
to the regression dialog, or “Cancel” to return to the regression dialog with- 
out calculating a transformation. A more general transformation method 
is described in Section A.7.2. 
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Figure A,2. The transformation dialog. 

A.5.2 Interactions Dialog 

This dialog is used to create interactions, which are elementary combi- 
nations of two predictors. It is selected by pushing the “Interactions. . . ” 
button on the main regression dialog. An example of the interactions dialog 
is given in Figure 9. LO. Select one item from each list in the dialog and an 
operation, either *, /, +, or -. A new variable will be created by applying 
the operation to the two variables selected. This is a slight generalization 
of the usual notion of interactions, where only the multiplication operation 
is used. 

If either or both of the selected items are factors, then the only operation 
permitted is multiplication, *. 

A.5.3 Factors Dialog 

A factor is a collection of indicator variables that are used when a cate- 
gorical predictor is to be included in a regression. Suppose, for example, 
that one predictor in a regression is “EyeColor.” The variable in the data 
file could consist of the names of colors, such as “blue,” “brown,” “hazel,” 
and “other,” or it could consist of numbers to represent these categories. 
Since “EyeColor” has four unique values (levels), we could create up to 
four indicator variables. For example, one of the indicators would have the 
value 1 for every case with “blue” eyes and 0 for all other cases. In fitting 
a model with an intercept, the number of indicators required to fit a factor 
is 1 less than the number of levels. 

In the “Factors. . . ” dialog, double click on the names of all variables that 
you want to be factors to move them to the right list of selected variables. 
You can choose to have the factor consist of one indicator for each level or 
drop one level; either choice contains the same essential information. For 
example, you can choose “EyeColor” to be a factor with either three or four 
indicator variables. In the regression dialog you will see a name “EyeColor” 
and another name, “(F)EyeColor.” “EyeColor” is the original, unchanged, 
variable, and “(FjEyeColor” is the factor created from “EyeColor.” If you 
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add “{FjEyeColor” to a model, then all the indicator variables in the factor 
are added to the model, and meaningful labels for them are created. 

A.5.4 Save to File 

If the “Save to File” item is selected, when you push the “Done” button 
you will get a dialog to specify a file name for saving the current set of 
variables and labels. The file can be read back into the R-code using the 
load command. The R-code will provide the . lsp suffix automatically. 

A.5.5 Weighted Least Squares 

To use weighted least squares, you must specify one of the variables to be 
case weights. If this variable is called w ,  then fitting will be done with the 
variance function a 2 / w .  Each value of w must be positive. Weights are 
not used when superimposing fits or smooths, or removing linear trends 
from plots. 

A.6 THE REGRESSION MENU 

When a regression is specified in the R-code, a menu is added to the menu 
bar. The name of the menu and the name of the regression are the same. We 
call the menu the regression menu. Items in this menu that create graphs 
are discussed elsewhere in the book; look in the index under “Regression 
menu” for items not described here. 

A.6.1 Display Fit 

This produces the printed output obtained whenever you create a new re- 
gression. The first part of the output lists coefficient estimates, standard 
errors, and t-values. The second part lists several summary statistics in- 
cluding the estimated residual standard deviation. The last part of the 
output gives a summary analysis-of-variance table, with a line in the table 
for regression and a line for the residual. These are all standard calculations 
based on least squares or weighted least squares as discussed in any text 
on regression. 

A.6.2 Display Summaries 

This item prints univariate summary statistics for the predictors and the 
response and the sample correlation matrix. Also printed is the correlation 
matrix between the parameter estimates. 
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A.6.3 Sequential ANOVA 

Selecting this item produces a sequential analysis-of-variance table. The 
predictors are added in the order they were chosen in the dialog. 

A.6.4 Backward Elimination 

Selecting this item fits a sequence of regressions obtained from the current 
regression by deleting at each step the current predictor with the smallest 
It-value(, as long as this exceeds the cutoff chosen via a dialog. 

A.6.5 New Model.. , 

Selecting this item allows creation of a new regression using the standard 
regression dialog. The new regression will have its own menu and name. 

A.6.6 Print.. . 
Select this item to print data and derived case statistics in the text window. 
A dialog is used to select the quantities to print. 

A.6.7 Remove Menu 

Selecting this item removes the menu from the menu bar as well as any 
plots associated with the regression. 

A.7 TYPING COMMANDS 

Communication between the user and the R-code is done mostly by using 
the mouse and dialogs. There are some features of the R-code, and many 
features of Xlisp-Stat, that require typing. 

The R-code creates the regression menu and a regression object that has 
the same name as the regression menu. For example, if the name of the 
menu is Hald, then the name of the regression object is also Hald. The 
name of the regression object is needed to extract information from the 
regression by sending the object messages, expressions that begin with a 
: , like : y. To print the values of the response variable, type 

> (send hald : y )  
( 7 8 . 5  7 4 . 3  1 0 4 . 3  8 7 . 6  9 5 . 9  1 0 9 . 2  1 0 2 . 7  7 2 . 5  9 3 . 1  1 1 5 . 9  8 3 . 8  
1 1 3 . 3  1 0 9 . 4 )  

To get the squared multiple correlation coefficient R2, type 

> (send hald :r-squared) 
0 . 9 8 2 3 7 6  
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This executes the code that computes R2 for the model, and returns its 
value. If you enter the command 

( /  (send hald :r-squared) ( -  1 (send hald :r-squared))) 

the value of R 2 / (  1 - R2) will be returned. 
Table A.l  lists several useful messages that return values. 

A.7.1 Getting Help 

On-line help is available for most of the messages and functions. To get 
information about the : r-squared message, type 

> (r-code :help : r-squared) 

Message args: ( ) 
Returns the sample squared multiple correlation coefficient, R 
squared, for the regression. 

:R-SQUARED 

To get help for the iseq function, for example, type 

> (help ‘iseq) 
ISEQ [function-doc] 
Args: (n &optional m) 
With one argument returns a list of consecutive integers from 0 
to N - 1. With two returns a list of consecutive integers from 
N to M. Examples: (iseq 4) returns (0 1 2 3 )  

(iseq 3 7) returns (3 4 5 6 7) 
(iseq 3 -3) returns (3 2 1 0 -1 -2 - 3 )  

The command (apropos ’key) will print a list of all functions, 
messages, and objects that have the characters key in their names. For 
example, to get a list of all the cumulative distribution functions available 
in Xlisp-Stat, type 

> (apropos ‘cdf) 
BINOMIAL-CDF 
CHI SQ-CDF 
CAUCHY-CDF 
GAMMA-CDF 
BETA-CDF 
NORMAL-CDF 
BIVNORM-CDF 
POISSON-CDF 
F-CDF 
T-CDF 
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Table A.l. Some Messages That Return Values 

Message Returns 

:X 

:Y 
:residual-sum-of-squares 
: num-cases 
:num-included 

:num-coefs 

: df 
:sigma-hat 

: r-squared 
:coef-estimates 
: xtxinv 

:coef-standard-errors 
:leverages 
:fit-values 
:raw-residuals 
:residuals 

:studentized-residuals 

:ext-stud-res 

:cooks-distances 
:local-influence 

X, the n x p matrix of predictors. 

The response. 
The residual sum of squares, RSS. 
The number of cases. 
The number of included cases. An included 
case is used in regression calculations. A case 
usually becomes not included using the “Case 
Deletions” plot control. 
The number of predictors fit, including the 
intercept. 
The degrees of freedom for error. 
The estimated residual standard deviation, C? = 
(RS Sdf)  I 12. 
The squared multiple correlation R 2 .  
The coefficient estimates. 
( X T  m-’.  To print a matrix in a readable form, 
you can use the command (print-matrix 
(send reg : xtxinv) ) , where reg is the 
name of the regression. 
The standard errors of the coefficient estimates. 
Leverage values h , , .  
Fitted values j , .  
e; = y; - y,.  
w;”(yj - j , )  if weights are set and returns raw 
residuals otherwise. 
Studentized residuals, which are defined for in- 
cludedcases by r, = ef/6(l  - hi , ) ’ ’ ’ .  For not 
included cases, r, = e l / & ( ]  + h , , ) ” * .  
Externally Studentized residuals, defined by 
e;/C?(,)(I - hi i ) I l2 .  

Cook’s distances. 
The direction of maximum curvature in the 
likelihood displacement for the coefficient vec- 
tor when case weights are perturbed and the 
statistic C,,, (Cook, 1986a). 
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To get help with the CDF of a t-distribution, type (help ’ t-cdf) . 
To find the names of all functions based on the normal distribution, type 
(apropos ’norm) or (apropos ’normal). 

A.7.2 General Transformations 

The R-code allows limited transformation of variables using the transfor- 
mation and interaction dialogs. The Xlisp-Stat language can be used to 
compute other transformations. Suppose we have defined a regression 
called reg with three variables named A ,  B,  and C and we wanted to use 
the variable exp((A - B ) / C ) .  We can create a new variable, 

> (def relvar (exp ( /  ( -  a b) c ) ) )  

and then add it to the data available in the R-code using the : add-data 
message: 

(send reg : add-data relvar “relvar” ) 

This message requires two arguments, a list of numbers, and a name for 
the new variable. This variable is added to the list of candidates for reg 
and all its ancestors and descendants. 

To add to an existing model to perform Tukey’s test of nonadditivity, 
first type 

(send reg :add-data ( ”  (send reg :fit-values) 2) “Tukey”) 

and then use the “New Model. . . ” item in the regression menu to create a 
model including Tukey. The t-value for this variable is the nonadditivity 
test. 

As another example, suppose we have a variable height giving the height 
of corn plants and we want to convert this to categories so it could be used 
to define a factor. Suppose the categories of interest are short, less than 
130 cm; average, between 130 cm and 160 cm; and tall, more than 160 
cm. The typed command 

(def cheight (cut height (list 130 160) 
:values (list “short” “average” “tall”) ) ) 

will create a new predictor cheight that consists of the values “short” for 
height 5 130, “average” for 130 < height 5 160, and “tall” for height 
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> 160. This can be added to the regression problem using the : add-data 
message, converted to a factor using the “Factors. . . ” dialog, and then used 
in a regression model. 

This last transformation made use of the cut function. The documen- 
tation for this function is 

> (help ’cut) 
CUT [function-doc] 
Message args: x cutpoints &key (values (iseq 0 (length cut- 
points))) Returns a list of the same length as x by discretiz- 
ing x into l+(length cutpoints) categories. Cutpoints must 
be ordered from smallest to largest. The keyword :values, if 
present, gives the labels for the categories. 

A.7.3 Renaming or Deleting Variables 

Variables can be renamed or deleted. Assuming you have a regression 
object named reg, type the command 

(send reg :change-data) 

In the resulting dialog, select the old name from the list, and either type the 
new name or push the “Delete from dataset” button. The new names will 
appear immediately in the “Plot of. . . ” and “New Model. . . ” dialogs, but 
they will not appear in any existing model. The new names will be saved 
if you use the “Save to File” option in the regression menu. 

A.7.4 Linear Combinations 

The : lin-combination message is used to compute an estimate of 
a linear combination of parameters and its standard error. This message 
requires p +  1 arguments xo, XI ,  . . . , x p  for a linear model with p predictors 
and an intercept. The function returns a list of two elements, the linear 
combination box0 + b 1x1 +. . . + b p x p  and the standard error of this linear 
combination of the coefficient estimates. For example, in the Hald data in 
Table 1.2 of Chapter 1, type 

> (send hald :lin-combination 1 2 0  20 20 4 0 )  
( 9 9 . 9 0 6 5  4 . 9 0 0 0 3 )  

The fitted value at x1 = x2 = x3 = 20 and x4 = 40 is 99.9065, and its 
standard error is about 4.9. 
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As a second example, suppose the contrast /31- 8 2  were of interest. One 
could compute 

> (send hald :lin-combination 0 1 -1 0 0 )  
( 1 . 0 4 0 9 4  0 . 2 3 0 7 3 3 )  

so the estimate is 1.04 with standard error 0.23. If the intercept is not 
included in the model, then a multiplier for it should not be supplied to this 
message. 

A.7.5 The Plot Message 
The : p l o t  message is used to draw plots of quantities that do not appear 
in the “Plot of. . . ” list. Suppose we have two regression models called 
reg and regl. To plot the residuals from the fit in reg on the horizontal 
axis against the fitted values from the fit in regl on the vertical axis, type 

(send reg :plot :residuals (send regl :fit-values)) 

The : p l o t  message requires at least one argument. Each argument can 
be either a list of n numbers, such as (send regl : f i t-values) , 
or the name of one of the messages in Table A. 1 or any other message that 
returns a list of n numbers, where n is the number of cases. Specifying 
one argument produces a histogram, two a scatterplot, three a rotating plot, 
and more than three a scatterplot matrix. All arguments that are names 
of messages will be updated when the data are changed by deleting a 
case. In the last example a message was used to compute one axis, but the 
command ( send regl : fit -values ) produced alist of numbers, so 
the horizontal axis will be updated but the vertical axis will not be updated. 

Suppose you wanted a plot of { (1 - h ) j ,  lel ‘’2}, a plot for nonconstant 
variance. This can be done in two ways. Typing 

(send reg :plot 
( *  ( -  1 (send reg :leverages)) (send reg :fit-values)) 
(sqrt (abs (send reg :residuals)))) 

will work, but the plot will not be updated if cases are deleted. This can be 
overcome by defining messages that compute these values, as follows: 

(defmeth regression-model-proto :lev-hat ( )  

(defmeth regression-model-proto :sqrtres ( )  

(send reg :plot :lev-hat :sqrtres) 

( *  ( -  1 (send self :leverages)) (send self :fit-values))) 

(sqrt (abs (send self :residuals)))) 

and this plot will be updated. 
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Suppose you wanted to use the : lev-hat message regularly. Here 
are two steps that can make Lev-hat appear in the list of candidates for 
plots. First, append the code for this message to the file updates . l s p  in 
the R-code folder. This message will then be defined every time you 
start the R-code. Then, in the file rcode. lsp, modify the constant 
*default-plotof-list* to include the value : lev-hat. That’s 
all there is to it. 

A.7.6 Naming Plots Produced by the R-code 

Every plot created by the R-code is an object. If you know the plot’s name, 
you can send it messages to add lines or curves, add text, change labels 
and tick marks, and so on. The messages for these changes are described 
in Tierney (1990). If you have a regression object called hald, then the 
message 

(def p (send hald :last-graph)) 

will assign the name p to the last graph created using the hald menu. You 
could add a line to p, with intercept 1 and slope 3, by sending the message 

(send p :abline 1 3 )  

A.8 ERROR MESSAGES 

The R-code occasionally produces error messages in dialogs and in the 
text window. Error messages in dialogs are for specific problems and are 
self-explanatory. Error messages in the text window are for more generic 
problems, like dividing by zero or attempting to use a nonnumeric quantity 
in arithmetic. This section provides a brief listing of some error messages. 

error: misplaced right paren A typed expression has an 
extra right parenthesis. 

error: can‘t assign to a constant Xlisp-Stutusesafew 
names like pi, e, and t. You cannot use these names for your own 
variables. 

error : not a number - ABC The characters ABC were used in 
a place where the program was expecting a number. 

error: unbound variable - ABC ThevariableABCisnotde- 
fined. 
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error: sequences of different lengths Listsofincom- 
patible lengths were specified in some operation. This can occur if 
you try to plot a list of five elements against a list of six elements or 
if the number of cases for the predictor differs from the number for 
the response. 

error: illegal zero argument Xlisp-Stat detected an at- 
tempt to divide by zero. 

error: too few arguments or error: too many argu- 
ments Function or message was called with the wrong number of 
arguments. 

error : not a list - NIL A function or message expected a 
list of values as an argument, but the value it was passed is NIL. 

error: dimensions do not match Youhaveattemptedtodo 
arithmetic with lists or matrices of incompatible lengths. This will 
occur in the ( rcode ) function if the number of cases for the predictor 
does not equal the number for the response. It will also occur in matrix 
multiplication if the matrices are of the wrong sizes. 

error: arguments not all the same length An argu- 
ment to a function or message is of the wrong length. 

error: not a valid graph address - try reallo- 
cating the object A message was sent to a graph that no 
longer exists. If you get this message while trying to draw a graph 
using a menu item in the R-code, use the “New Model. . . ” item to 
create a new copy of the regression and draw the plot from the new 
menu. 

error: not enough memory to allocated to color 
port This probably indicates that your computer has insufficient 
memory to use color in plots. You can try setting the constant 
*use-color-in-3d-plots* to nil in the file rcode. lsp. 

error: insufficient node space The program has insuf- 
ficient memory. Closing plots may help. On the Macintosh, you 
can change the memory allocation using the “Get Info” item about 
Xlisp-Stat in the finder. 
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Copyrights 

Copyright law protects the rights of the creators of intellectual material. 
The copyright for this book is held by the publisher, John Wiley & Sons, 
Inc. The rights retained by the publisher are outlined on the copyright page. 

Like a book, computer programs are also protected by copyright. The 
R-code is written in the Xlisp-Stat language, defined by Tierney (1990). 
Xlisp-Stat in turn is based on Xlisp. The copyright for Xlisp-Stat is held 
by its author, Luke Tierney, while the copyright for Xlisp is held by its 
author, David Betz. While retaining the copyright, these authors have 
granted permission to “copy, modify, distribute, and sell this software and 
its documentation for any purpose.” The complete license statement is given 
in the file COPYING on both the disks included with this book. 

The copyright to the R-code is held by its authors, R. Dennis Cook and 
Sanford Weisberg. The R-code consists of all the files distributed in the 
directories R-code and R-data that include a copyright notice. License 
to use the R-code is granted as follows: 

0 If the purchaser of this book is an individual, then that person may 
use Version 1 of the R-code on any computer system. 

0 If the purchaser of this book is a library, then any person who checks 
out this book may use Version 1 of the R-code while in possession of 
the book. 
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0 If the purchaser of this book is any other entity, then one user at a 
time affiliated with that entity may use Version 1 of the R-code. For 
several simultaneous users (e.g., in a computer laboratory), multiple 
copies of this book must be purchased. 

In particular, this license does not grant permission to give copies of the 
R-code to anyone. If you sell this book, then you also sell your right to use 
the R-code. 

Except when otherwise stated in writing, the copyright holders and/or 
other parties provide the program “as is” without warranty of any kind, 
either expressed or implied, including, but not limited to, the implied war- 
ranties of merchantability and fitness for a particular purpose. The entire 
risk as to the quality and performance of the program is with you. Should 
the program prove defective, you assume the cost of all necessary servicing, 
repair, or correction. 
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aaa-scaling, 6 1 
abc-scaling, 6 1 
:abline, 12 
: add-data, 112, 134, 189,234 
: add-labels, 10,12 
Added-variable plots, 191-195, 199 

and influence, 2 12 
properties, 193 
3D, 195,221,223 

Adjusted linear predictor residual plots, 

Aliased, 194 
ALPresidualplot, 178-182,195,199 

see ALP residual plot 

and added-variable plots, 199 
3D, 180-1 82 

ALR folder, 227 
Altman, N. S., 32,241 
Animation, 195 
apropos, 20,232 
ARES plots, I9 1, 195-200,242 
Aspect ratio, 2,49 

changing, 37 
confidence regions, 2 18 

Atkinson, A. C., 169, 199,214,241 

Background color, 57 
Becker, R. A., 45,54,241 
Berk, K., 242 
Betz, D., 20, 239 
Bonferroni inequality, 206 
Box, G. E. P., 169,24 1 
Box-Cox method, 159-161,214 
Breiman, L., 33, 241 
Breusch, T. S., 189,241 
Brillinger, D., 110, 241 

Brinkman, N. D., 110,241 
Brushing, 44 

Camden, M., 20, 169 
Carroll, R. J. ,  189, 241 
Case numbering, 42 
CERES plots, 153 
Chambers, J . ,  33, 133, 241 
: change-data, 235 
Checking conditions for ID 

structure, 1 17 
Chen, C. F., 189,241 
chisq-cdf, 185 
Clark, V., 214,244 
Cleveland, W., 33, 45, 54, 68, 133, 

Cochran, W. G., 189,214,241 
: coef estimates, 233 
:coef-standard-errors,233 
Colinearity, 66, 194 
Coloring points, 44 
Component-plus-residual plot, 

241,243,244 

137-143, 146151, 165, 
169, 174, 177, 178, 183 

Conditional distributions, 23 
Confidence curves, 160, 167, 169, 

Confidence regions, 2 17-224 
2 I4 

3D, 222 
two-predictor model, 2 18 

Contents of the disks, 227 
Control-C, 5 
Cook, R. D., 68, 87, 110, 133, 153, 

169, 189, 199, 214, 233, 
239,242 
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Cook’s distance, 54, 205,2 1 I 
: cooks-distances, 233 
Copyrights, 239 
Correlation, 49 
covariance-matrix, 135 
Cox, D. R., 169, 199,241,242 
Cox, G., 189,214,241 
C+R plot, see Component-plus- 

residual plot 
Cunningham, R., 33, 189 
cut, 122,147,234-235 

Data 
entering, 3 
loading, 3 

:data, 19 
Data files 

adscore. lsp, 204,214 
air. lsp, 33, 127-132 
ais. lsp,34,45,98,106-109, 

115-1 17, 121-125, 
133-1 34,1894 90 

BGSbOyS . ISP, 88-89,214,217 
BGSgirls. lsp,  70, 88-89, 

105, 192, 195,200 
big-mac. l s p ,  48,8687, 

134-135, 154, 169, 
173-174,214 

birthrtl. lsp, 45 
birthrt2. lsp, 45 
birthwt . lsp, 21,55,70, 

174-176,201 
brains. lsp, 45 
cancer. lsp, 4,13 
casuarin. lsp,  183-188,190, 

ethanol. lsp, 99-102, 
213 

125-127, 144, 151-152, 
177-179 

evaporat . lsp, 135 
fuel90. lsp, 54,207,214 
hald. lsp, 19 
halddata. lsp, 17 

haystack. lsp, 69, 190 
landrent. lsp, 90,190,201 
lettuce. lsp, 190 
muscles. lsp, 214 
mussels. lsp, 161-167,169, 

ozone. l sp ,  24,45 
plant-ht. lsp, 146-149 
randu. lsp,  69 
rat. lsp, 197,223 
resptran. lsp, 155 
rubber. l s p ,  154 
salary. lsp, 91 
spheres. lsp, 69 
wool. lsp, 160 

179-181,214 

:data-names, 19 
Demonstration files 

demo-2d. lsp, 3,24,36,45 
demo-3d. lsp,57,64-66,73, 

81, 87,96, 103, 176 
demo - cr .1 sp, 220,223 
demo-inf . lsp, 209 
demo-prd. lsp, 139, 153 
loading, 3 

Dependent variable, 23 
Depth cuing, 60 
Detrending, 64,65 
: df ,  233 
Dimension 

OD, 94, 102, 181 

2D, 96-98, 102, 138, 182 
checking conditions, 117 
checking for ID, 95 
more than I-dimensional, 116 

Macintosh, 225 
Windows, 226 

Distribution functions, 233 
Doll, R., 20, 242 
Draper, N. R., 168,243 
Dribble, 12-13 
Duan, N., 110, 133,242,243 
Dunn, 0. J., 214,244 

ID, 94-96, 102, 117,171 

Disks 



INDEX 247 

Eaton, M. L., 87,243 
Entering data, 3 
Enz, R., 54,243 
Error messages, 237-238 
Examples 

adaptive score data, 204, 2 14 
Australian athletes data, 34,45, 

98, 106-109, 115-1 17, 
12 1-1 25, 1 33-1 34, 
189-190 

Berkeley Guidance Study, 70, 
88-89,105,192,195,200, 
214,217,221 

Big Mac data, 48,86, 134-135, 

birth rate data, 35,45 
brain weight data, 3842,45 
cancer data, 4, 13,20 
Cusuurina data, 183-188, 190, 

ethanol data, 99-102, 125-127, 

evaporation data, 135 
fuel consumption, 54 
fuel data, 207-208,2 14 
Hald data, 19 
haystack data, 69, 190 
land rent data, 90, 190, 201 
lettuce data, 190 
mussels’ musclesdata, 161-167, 

New York air quality, 33, 

New Zealand birth data, 2 1,55, 
70, 174-176,201 

ozone data, 24,45 
plant-height data, 146-149 
RANDU, 69 
rat data, 197, 223 
rat muscles data, 214 
rubber data, 154 
salary data, 91 
spheres, 69 
wool data, 158, 169 

154, 169, 173-174,214 

213 

144, 151-152, 177-179 

169,179-181,214 

127-1 32 

exit, 13 
e m  6 
Exponentiation, 7 
: ext-stud-res, 233 
Ezekiel, M., 33, 68, 152, 153, 243 

Factors 
creating from continuous 

variables, 234 
dialog, 147, 229-230 

Federer, W. T., 153, 243 
File dialog with Windows, 13 
Fisherkeller, M. A., 68, 243 
: fit-values, 89, 106, 134, 214, 

233,234 
Fitting by eye, 74-77 
Focussing, 37 
Fox, J . ,  214, 243 
Freund, R. J.,  133, 243 
Friedman, J., 33, 68, 241, 243 
Front window, 9 

Generalized additive model, 153 
Generating normal random data, 1 12 
Getting started, 3, 225-227 
Gnanadesikan, R., 214,243 
Graphical regression, summary, 

xvi-xix 
Graphics window, 9 
Graphs 

naming, 237 
printing, 13 
Unix, 13 

Hall, P., 133, 243 
Hardle, W., 20, 32, 33, 243 
Hastie, T., 153,243 
Hawkins, D., 110,242 
Help, 20, 232 
:help, 232 
Hernandez, F., 169,243 
Heteroscedasticity, see Nonconstant 

Hinkley, D., 189, 243 
variance 
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Histogram, 8-10, 15 
linked, 107 
number of bins, 10 
plot controls, 15 
from scatterplot matrix, 5 1 

Hoaglin, D., 2 14,243 
Horizontal screen variable, 6 1,75 

naming, 63 
Huber, P., 189, 243 

Identifying points, 49-50 
Independence, 93 
Independent variable, 23 
Indicator variables, 147, 183 

creating, 229 
Influence, 172, 176, 198,203-205 

Cook’s distance, 54, 205, 21 1 
local, 21 1 

Inheritance, 44 
Interaction dialog, 229 

using factors, 229 
Interactive graphics, 1 
Intercept, 228 

Inverse 
not included in ,8, 71 

fitted-value plot, 158-159, 164, 

partial response plot, 117-1 19, 

regression, 1 16-1 33 
response plot, 156 

169,214 

162 

iseq, 10,232 

John, J. A., 168,243 
Johnson, R. A., 169,243 

Keywords, 19 
Kinetic graphics, 1 
Kleiner, B., 33, 133, 241 

: last-graph, 237 
Leinhardt, S., 244 
length, 6 
Leverage, 54,208,2 10-2 1 1 
: leverages, 214,233 

Li,K.C., 110, 131, 133,243 
: lin-combination, 235 
Linear, 109-1 10 

in the parameters, 109-1 10 
in the predictors, 109-1 10 

Linear combinations, 235 
Linear model, 109 
Linear predictors, 86-87, 103-105, 

checking for, 86-87, 115-1 16, 

checking with a 3D plot, 

definition, 86-87 

158-159, 176-179, 189 

125, 127-132 

105-106 

Linear regression model, 7 1-72 
Linearity 

assessing, 27 
in 3D plots, 76 

Linking, 42 
Lisp-Stat, 20 
Listener, 3 
load, 3, 18,230 
load-rdata, 3 
Local influence, 2 1 1 
: local-influence, 233 
log, 7 
Log-likelihood profile, 167 
Lowess, 3 1,33 
Lspedit, 17 

Macintosh, 225 
Malone, L., 242 
Marking points, 44 
McCulloch, R., 199, 244 
McGill, M., 68,241, 243,244 
mean, 6 ,8  
Messages, 10 

to graphs, 237 
Mickey, R., 214, 244 
Microsoft Windows, 226 
Missing values, 17 
Monotone, 85 
Mosteller, F., 54, 168, 244 
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Mouse modes 
brushing, 44 
Hand Rotate, 58 
selecting, 42 
Show Coordinates, 42 

Nachtsheim, C., 110,242 
Name list, 44 
Names 

length, 5 
reserved, 5 

Naming graphs, 237 
Nonconstant variance, 29, 84, 103, 

score test, 106, 182-185 
107, 163, 182-189 

Nonlinear regression, 110 
Nonlinearity, 29 
normal - rand ,  112, 134 
Notation 

E(ylx), 23 

e(OIH>, 67 
e, residuals, 27 

e(V(HO), 65 
elx, 28 
{F}, 147,229 
( H ,  v, 01,57 
{horizontal axis, vertical axis), 

N(P, a2), 73 
12 

vaOlx), 23 
j ,  fitted values, 27 
Y((X = i), 23 

: num-cases,  233 
: num-coefs,  233 
:num-included,  233 

O~S ,  27, 77-78 
1D estimation result, 103 
summary plot, 110 

ID estimation result, 102-105, 158, 
174, 176 

ID model, 95, 174, 176 
outlier -pva lue ,  207 

Outliers, 203 

Overplotting, 3 I 
mean-shift model, 205-207 

Pagan, A. R., 189,241 
Parentheses matching, 5 
Partial correlation, 22 I 
Partial regression function, 82-83 
Partial residual plot, 153 
Partial response plot, 52-53 
Partial variance function, 84 
Peiia, D., 2 14,242 
pHd, 133 
: p l o t ,  236-237 
Plot controls, 15 

aaa scaling, 61 
adding plot controls to a plot, 

89 
Case Deletions, 16, 122, 124, 

131, 170, 184, 203, 204, 
223,233 

CaseWt Perturb, 2 12 
Change Model, I84 
Change Predictors, I8 1 
color palette, 44 
delete selection from 

Extract Curve, 145 
Extract Horizontal, 63, 64, 75, 

79,96, 135 
Extract 2D Plot, 64, 84, 100, 

107 
Extract uncorrelated 2D plot, 79, 

96 
focus on a frame in a scatterplot 

matrix, 125 
GaussKerDens, 15,20 
Home, 61,66,82,98, 148,221 
Join points, 37 
NumBins, 15 
Otoe(OlH),67,81,86,87,105, 

regression, 16, 13 1 

1 1  1, 128, 163,223 
OLS-fit, 27, 125, 140, 145 
Pitch, 58 
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pop-up menus, 59 
Power Curve, 142, 157, 159 
Pred Perturb, 2 13 
Print Screen Coordinates, 62,75, 

94,99 
Recall Home, 59 
Recall OLS, 59, 77, 104 
Recall view, 59, 76,77 
Recall/Extract, 59,61-64, 

75-77,79,84,94,98, 100, 
104 

Rem Lin Trend, 28,32,65, 84, 
105, 107, 128, 163 

Remember view, 59,76,79 
removing plot controls, 36 
Rock, 59-60 
Roll, 58 
Simulated Env, 2 13 
Slice Ave, 30, 3 1, 159 
smoothers, 29-32 
symbol palette, 44 
transformation slide bars, 39,50- 

52 
Yaw, 58 
Zero line, 28 

Plot linking, 100 
Plot menu, 9 

Depth cuing, 60 
Faster, 58 
Focus on Selection, 25,37 
Link View, 1 1,43 
Mouse Mode.. . ,42,44,58 
Options.. . ,57 
Plot Controls, 36, 79 
Remove Selection, 37, 100, 174 
Rescale Plot, 16, 37 
Resize Brush, 44 
Save to File, 13 
Show All, 25,37, 174 
Show Axes, 60 
Show Coordinates, 42 
Show Labels, 1 1,42,44,98 
Slicer. . . ,79,96, 178 
Slower, 58,74, 100 

Spinner, 57 
Unlink View, 43 

plot-points, 10,89,214 
Plots 

aspect ratio, 35-36 
bounded quantities, 29 
focusing, 35 
linked, 12 
naming, 237 
plotting region, 60 
removing a linear trend, 65 
with nonlinearly related 

predictors, 8 1 
:point-label, 10 
Points 

coloring in a plot, 44 
marking in a plot, 44 

Pop-up menu, 16 
Predictors, 1, 23 

distribution of, 8 1 
linear, see Linear predictors 
transformations, 137-1 54 
uncorrelated, 65-66 

print-matrix, 233 
Printing 

graphs, 13 
results, 12 

dynamic, 169 
simulated envelope, 2 13-2 14 

Probability plot, 167, 208-2 10 

Projections, 63 

QQ-plot, 2 15 
Quadratic, adding to a model, 138 
Quitting, 13 
Quotation marks, 5 

R-code, xv, 2-20,225-239 
bug reports, xix 
copyright, 239 
customizing, 227 
quitting, 13 
starting, 11 1 
typed commands, 23 1 
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r-code, 17-19, 11 1 
help, 232 

rcode. lsp, 227 
R-data folder, 13, 227 
: r-squared, 232,233 
Randomized complete block design, 

RANDU, 68 
: raw-residuals, 233 
Regression 

147, 154 

analysis, I 
simple linear, 23-34 

Regression dialog, 13-14, 228-230 
Done, 18 
Factors.. . , 147,229, 235 
Fit Intercept, 228 
Interactions.. . , 151 
Save to File, 18,228, 230 
Transform.. . ,44,157,164,178 

Regression function, 23, 155, 165, 
174, 187 

Regression menu, 14,230-23 1 
ALP Res Plot-3D, 18 1 
ALP Res Plots-All2D. 180 
ARES plot, 195, 198 
AVP-AIl2D, 192,207 
AVP-3D, 195 
backward elimination, 23 1 
C+R plot-3D, 147 
C+R Plots-All 2D, 139, 142, 

144 

164, 167, 168 
Choose Response Transform, 160, 

confidence regions, 2 17,222 
Display Fit, 16,204, 208, 230 
Display Summaries, 223,230 
Inv Partial Response Plots, 1 18, 

Inverse Regression, 120, 124, 
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