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Preface

The study of the principles behind information processing in complex
networks of simple interacting decision-making units, be these units cells
(‘neurons’) in brains or in other nervous tissue, or electronic processors
(or even software) in artificial systems inspired by biological neural net-
works, is one of the few truly interdisciplinary scientific enterprises. The
field involves biologists (and psychologists), computer scientists, engin-
eers, physicists, and mathematicians; over the years these have all moved
in and out of the centre stage in various combinations and permutations,
modulated and triggered by advances in experimental, mathematical, or
computational techniques. The reason for its unique interdisciplinary char-
acter is that this multifaceted area of research, which from now on we will
simply denote as the study of ‘neural information processing systems’, is one
of the few which meets the fundamental requirement of fruitful interdiscip-
linary science: all disciplines get something interesting and worthwhile out
of the collaboration. The biologist benefits from tapping into the mathem-
atical techniques offered by the more quantitative sciences, the computer
scientist or engineer who is interested in machine learning finds inspiration
in biology, and the theoretical physicist or applied mathematician finds new
and challenging application domains for newly developed mathematical
techniques.

We owe the knowledge that brain tissue consists of complicated net-
works of interacting brain cells mainly to the work (carried out towards
the end of the nineteenth century) of two individuals, who shared the
1906 Nobel Prize in medicine in recognition of this achievement: Camillo
Golgi, who invented a revolutionary staining method that for the first time
enabled us to actually see neurons and their connections under a micro-
scope, and Santiago Ramón y Cajal, who used this new technique to map
out systematically and draw in meticulous and artful detail the various
cell types and network structures which were now being revealed (in fact
Cajal had originally wanted to be an artist). Initially and for several dec-
ades neural networks continued to be regarded as a branch of medicine
and biology. This situation changed, however, with the birth of program-
mable computing machines around the time of the Second World War,
when the word ‘computer’ was still used to denote a person doing com-
putations. It came to be realized that programmable machines might be
made to ‘think’, and, conversely, that human thinking could perhaps be
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understood in the language of programmable machines. This period also
saw the conception of ‘information theory’, which was largely the brain
child of Claude Shannon. Probably the first to focus systematically on
the information processing capabilities of neural networks were Warren
McCulloch and Walter Pitts, who published in 1943 a paper (‘A Logical
Calculus of the Ideas Immanent in Nervous Activity’) that can safely be
regarded as the starting point of our research field. Looking back, one can-
not help observing that McCulloch and Pitts were surprisingly typical of
the kind of scientist that henceforth would tend to be drawn into this area.
McCulloch had studied philosophy and psychology, then moved into medi-
cine, and ended up in a laboratory of electronic engineering. Pitts, who was
only 20 at the time when ‘A Logical Calculus’ was published, initially stud-
ied mathematics and also ended up in electronic engineering, but he never
received a formal academic degree. It is not unreasonable to take the view
that bringing together these disparate scientific backgrounds and interests
was crucial to the achievement of McCulloch and Pitts.

The field never lost the interdisciplinary flavour with which it was born.
Since the 1940s its popularity peaked at (roughly) 20-year intervals, with
a second wave in the 1960s (the launch of the perceptron, and the explor-
ation of learning rules for individual neurons), and a more recent wave
in the 1980s (which saw the development of learning rules for multilayer
neural networks, and the extensive application of statistical mechanics tech-
niques to recurrent ones). Extrapolation of this trend would suggest that
interesting times might soon be upon us. However, the interdisciplinary
character of neural network research was also found to have drawbacks: it
is neither a trivial matter to keep the disciplines involved connected (due to
language barriers, motivation differences, lack of appropriate journals etc.),
nor to execute effective quality control (which here requires both depth and
unusual breadth). As a result, several important discoveries had to be made
more than once, before they found themselves recognized as such (and hence
credit was not always allocated where in retrospect it should have been).
In this context one may appreciate the special role of textbooks, which allow
those interested in contributing towards this field to avoid first having to
study discipline specific research papers from fields in which they have not
been trained.

Following the most recent wave of activity in the theory of neural
information processing systems, several excellent textbooks intended
specifically for an interdisciplinary audience were published around 1990.
Since then, however, the connectivity between disciplines has again
decreased. Neural network research still continues with energy and passion,
but now mostly according to the individual scientific agendas, the style, and
the notation of the traditional stake-holding disciplines. As a consequence,
those neural network theory textbooks which deal with the progress which
has been achieved since (roughly) 1990, tend to be of a different character.
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They are excellent expositions, but often quite specialized, and focused
primarily on the questions and methods of a single discipline.

The present textbook aims to partly remedy this situation, by giving an
explicit, coherent, and up-to-date account of the modern theory of neural
information processing systems, aimed at students with an undergraduate
degree in any quantitative discipline (e.g. computer science, physics,
engineering, biology, or mathematics). The book tries to cover all the major
theoretical developments from the 1940s right up to the present day, as they
have been contributed over the years by the different disciplines, within a
uniform style of presentation and of mathematical notation. It starts with
simple model neurons in the spirit of McCulloch and Pitts, and includes
not only the mainstream topics of the 1960s and 1980s (perceptrons,
multilayer networks, learning rules and learning dynamics, Boltzmann
machines, statistical mechanics of recurrent networks etc.) but also the more
recent developments of, say, the last 15 years (such as the application
of Bayesian methods, Gaussian processes and support vector machines)
and an introduction to Amari’s information geometry. The text is fully
self-contained, including introductions to the various discipline-specific
mathematical tools (e.g. information theory, or statistical mechanics), and
with multiple exercises on each topic. It does not assume prior familiar-
ity with neural networks; only the basic elements of calculus and linear
algebra, and an open mind. The book is pitched at the typical postgraduate
student: it hopes to bring students with an undergraduate degree to the level
where they can actually contribute to research in an academic or industrial
environment. As such, the book could be used either in the classroom as
a textbook for postgraduate lecture courses, or for the training of indi-
vidual PhD students in the first phase of their studies, or as a reference
text for those who are already involved in neural information processing
research. The material has been developed, used, and tested by the authors
over a period of some 8 years, split into four individual one semester lecture
courses, in the context of a one-year inter-disciplinary Master’s programme
in Information Processing and Neural Networks at King’s College London.

London, January 2005 Ton Coolen, Reimer Kühn, Peter Sollich
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Part

I
Introduction to neural
networks

This first part of the text more or less covers the main principles and
developments in neural information processing theory from its beginnings
in the 1940s up to the mid-1980s (albeit expanded in places with further
calculations, examples, and pointers to later developments, in order to link
the material to that in subsequent chapters). The particular cutoff point
chosen more or less marks the stage where the field became significantly
more mathematical in nature. As a result, this first part is mathematically
less demanding than the others.

We start with an introduction to the basic characteristics and principles
of information processing by networks of interacting nerve cells (neurons),
as observed in biology. The next stage is to use this knowledge to define
simplified versions (mathematical models) of neuron-type information
processing units and their connections, hopefully capturing the essence
of their functioning, followed by a demonstration of the universality
(in information processing terms) of one specific important neuron model:
the McCulloch–Pitts neuron.

We then turn to the so-called perceptrons (McCulloch–Pitts neurons
equipped with clever ‘learning rules’), proving convergence and also
presenting a preliminary analysis of the dynamics of these learning rules,
and to the so-called error backpropagation learning algorithm for mul-
tilayer feed-forward networks of model neurons. In addition we explore
via a number of simple examples the dynamical properties and the possible
use in information processing tasks of recurrent neural networks, including
a brief discussion of the crucial role of synaptic symmetry.
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1
General introduction

1.1 Principles of neural information processing

The brain is a piece of hardware that performs quite sophisticated
information processing tasks, using microscopic elements and operations
which are fundamentally different from the ones on which present-day
computers are based. The microscopic processors in the brain, the nerve
cells or neurons (see Figure 1.1), are excitable brain cells which can
be triggered to produce electrical pulses (spikes), by which they commun-
icate with neighbouring cells. These neurons are rather noisy elements,
which operate in parallel. They do not execute a fixed ‘program’ on a
given set of ‘data’, but they communicate signals through relay stations
(the synapses), located at the junctions where the output channel (axon)
of one neuron meets an input channel (dendrite) or the cell body of
another. The strengths of these relay stations, or synaptic efficacies, are
continuously being updated, albeit slowly. The neurons of each given brain
region are organized and wired in a specific network, the structure of
which can vary from very regular (especially in regions responsible for
pre-processing of sensory data) to almost amorphous (especially in the
‘higher’ regions of the brain, where cognitive functions are performed),
see Figure 1.2. The dynamic relay stations, or synapses, in combination
with some adjustable intrinsic neuron properties, represent both ‘data’ and
‘program’ of the network. Hence program and data change all the time.

We can roughly summarize the main similarities and differences between
conventional computer systems and biological neural networks in the
following table:

Computers (specifications as of 2004) Biological neural networks

Processors Neurons
operation speed ∼ 109 Hz operation speed ∼ 102 Hz
signal/noise� 1 signal/noise ∼ 1
signal velocity ∼ 108 m/s signal velocity ∼ 1 m/s
connections ∼ 10 connections ∼ 104

Sequential operation Parallel operation
Program and data Connections and neuron characteristics
External programming Self-programming and adaptation
Not robust against hardware failure Robust against hardware failure
Cannot deal with unforeseen data Messy, unforeseen, and inconsistent data
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Figure 1.1 Left: a Purkinje neuron in the human cerebellum (a brain region responsible for
smooth movement control). Right: a Pyramidal neuron in the rabbit cortex (the region of
cognitive functions). Both pictures are due to Ramon y Cajal (1880), obtained from a
chemical staining method invented by Golgi. The black blobs are the neuron cell bodies, the
trees of wires fanning out constitute the input channels (or dendrites) through which signals
are received, sent off by other firing neurons. The lines at the bottom of the pictures,
bifurcating only modestly, are the output channels (or axons).

From an engineering point of view the neurons are clearly extremely poor
substitutes for processors; they are slower and less reliable by several orders
of magnitude. In the brain this setback is overcome by redundancy: that is,
by making sure that a very large number of neurons are always involved
in any process, and by having them operate in parallel. This is in contrast
to conventional computers, where individual operations are as a rule per-
formed sequentially, that is, one after the other, so that failure of any part of
this chain of operations is mostly fatal. The other fundamental difference
is that conventional computers can only execute a detailed specification
of orders, the program, requiring the programmer to know exactly which
data can be expected and how to respond. Any subsequent change in the
actual situation, not foreseen by the programmer, leads to trouble. Neural
networks, as we know from everyday experience, can adapt quite well to
changing circumstances. We can recognize objects also if they are deformed
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Figure 1.2 Pyramidal neurons in the visual area of the cortex, taken from Ramon y Cajal
(1880). Golgi’s staining method colours only a fraction of the neurons, so in reality the
network is more dense than the picture suggests.

or only partly visible; our visual system can adapt to the strangest deforma-
tions of the image on our retina (for instance: everything upside down), and
we can even re-wire the nerve fibres coming from arms and legs and again
learn how to control movements. Finally, there is the robustness against
physical hardware failure. In our brain large numbers of neurons end their
careers each day unnoticed. Compare this to what happens if we randomly
cut a few wires in our workstation.

We know what the brain and its neural network building blocks can
do, the question now is: how do they do these things? It was suggested
already in 1957 by von Neumann that, in view of the large number of
interacting neurons, (on the order of 1011, each of which communic-
ating with roughly 104 colleagues) and the stochastic nature of neural
processes, statistical theories might well be the appropriate language for
describing the operation of the brain.1 Later such ideas were given a more
precise meaning in terms of stochastic processes and statistical mechanics.
Roughly speaking, one can distinguish three types of motivation for
studying neural networks. Biologists aim at understanding information pro-
cessing in real biological nervous tissue. Engineers and computer scientists
would like to use the principles behind neural information processing for
designing adaptive software and artificial information processing systems
which can learn and which are structured in such a way that the pro-
cessors can operate efficiently in parallel. Such devices would clearly be

1 The numbers quoted here are estimates and are not to be taken too literally; estimates
vary among sources.
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quite complementary to the conventional types of computers. Theoretical
physicists and mathematicians are challenged by the fundamental new
problems posed by neural network models, which exhibit a rich and highly
non-trivial behaviour. Consequently, the types of model studied and the
language in which they are formulated, as well as the role of experiments
in guiding and constraining research will be different in the different sci-
entific communities. Assumptions and approximations which are fruitful
and natural to the biologist can be useless or even forbidden in the context
of artificial systems, and vice versa. Neural networks are rather complex sys-
tems to analyse, for the following reasons: (i) the large number of interacting
elements, (ii) the non-linear character of the operation of the individual ele-
ments, (iii) the interactions between the elements are not identical, or at
least regular in space, but usually different in strength for each individual
pair of elements, (iv) two given neurons can operate on one another in a
different way (there is not even pairwise symmetry), and (v) the interactions
and firing thresholds change all the time. In response to these hurdles, two
distinct strategies have largely been followed in order to simplify analysis.
The first is to look at layered networks, where no interaction loops are
present, so that the states of the neurons can be calculated iteratively, layer
by layer. The second is to describe the system statistically at a macroscopic
level of global quantities, and to forget about the microscopic details at the
level of the behaviour of individual neurons.

Biological modelling

Here there is still a huge gap between theory and experiment. It is not
yet clear even which are the full microscopic laws. Of those microscopic
processes that have been identified, mostly relating to the operation of indi-
vidual neurons, we do not know which degrees of freedom are relevant and
which are ‘accidental’ (i.e. non-productive artifacts of evolution). Last but
not least, one often does not know how to quantify the macroscopic pro-
cesses, that is, what to look for. In order to arrive nevertheless at a level of
description where mathematical analysis becomes possible, specific choices
of simplifications have been made in model studies of neural networks.
In the typical model, instantaneous neuron states are represented by scalar
variables2 that evolve stochastically in time, driven by so-called postsyn-
aptic potentials, which are usually taken to depend linearly on the states of
the neurons. In recurrent networks there is no simple feedforward-only or
even layered operation, but the neurons drive one another collectively and
repeatedly without particular directionality. In these networks the interest
is in the global behaviour of all the neurons and the associative retrieval

2 Especially among psychologists, the scalar information processing units in idealized
neural network models are assumed not to represent individual neurons, but rather groups
of neurons.
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of memorized states from initializations in noisy versions of these states.
They are often referred to as attractor neural networks.3 They are idealiza-
tions of amorphous parts of the brain, such as cerebral cortex. The study
of this type of model has resulted in a thorough quantitative understand-
ing of the functioning of nervous tissue as associative memories for static
and dynamic patterns, but also led to insight into typically biological phe-
nomena like memory disorders induced by damage, phase-locked neural
oscillations and chemical modulation. The simplifications made in order to
arrive at solvable models are more or less ad hoc, motivated by experience,
intuition, and the desire to quantify the problem. However, the last two dec-
ades have shown that significant progress has been made in incorporating
more biological detail into analytically solvable models.

Artificial neural networks

Here one is not particularly interested in the electro-chemical details of
neural information processing, but rather in understanding the two build-
ing blocks of learning and massive parallellism, on which the remarkable
computational power of the brain is based. Biological experiments are only
relevant in that they may hint at possible mechanisms for achieving the
aim, but they play no role as constraints on model definitions. Rather than
a necessary simplification, to the computer scientists representing neuron
states as binary variables is a welcome translation into familiar language.
The preferred architecture of many artificial neural networks for applica-
tion as expert systems is that of layers. Many input neurons drive various
numbers of hidden units eventually to one or few output neurons, with
signals progressing only forward from layer to layer, never backwards or
sideways. The interest lies in training and operating the networks for the
deduction of appropriate inferences from the simultaneous input of many,
possibly corrupted, pieces of data.

1.2 Biological neurons and model neurons

Some biology

Neurons come in all kinds of shapes and sizes but, roughly speaking, they
all operate more or less in the following way (see Figure 1.3). The lipidic
cell membrane of a neuron maintains concentration differences between the
inside and the outside of the cell, of various ions (the main ones are Na+,
K+, and Cl−), by a combination of the action of active ion pumps and

3 They are often abbreviated as ANN, but we avoid this notation since it is also commonly
used for artificial neural networks.
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Figure 1.3 Schematic drawing of a simple neuron, with its dendritic tree (branching from
the cell body), the incoming axons from other neurons (incoming solid lines) with their
points of contact (synapses; dark blobs), and its own axon (outgoing branch at the right).

controllable ion channels. When the neuron is at rest, these channels are
closed, and due to the activity of the pumps and the resultant concentration
difference the inside of the neuron has a stable net negative electric potential
of around −70 mV, compared to the fluid outside.

Equilibrium concentrations Na+ K+ Cl−
(mmol/l)

Outside the cell 143 5 103
Inside the cell 24 133 7

The occurrence of a sufficiently strong local electric excitation, making the
cell potential temporarily less negative, leads to the opening of specific ion
channels, which in turn causes a chain reaction of other channels open-
ing and/or closing. This results in the generation of an electrical peak of
height+40 mV, with a duration of about 1 ms, which will propagate along
the membrane at a speed of about 5 m/s: the so-called action potential.
After this electro-chemical avalanche it takes a few milliseconds to restore
peace and order. During this period, the so-called refractory period, the
membrane can only be forced to generate an action potential by extremely
strong excitation. The action potential serves as an electrical communica-
tion signal, propagating and bifurcating along the output channel of the
neuron, the axon, to other neurons. Since the propagation of an action
potential along an axon is the result of an active electro-chemical process,
the signal will retain shape and strength, even after bifurcation, much like
a chain of tumbling domino stones.



1.2 Biological neurons and model neurons 9

Figure 1.4 Schematic drawing of a simple synapse. Right
part: terminal of the axon of the sending neuron, left part:
surface of a dendrite of the receiving neuron. The two are
separated by the so-called synaptic cleft. Circles: pockets
of neurotransmitter, to be released into the synaptic cleft
upon the arrival of an action potential along the axon.

The junction between an output channel (axon) of one neuron
and an input channel (dendrite) of another neuron, is called synapse
(see Figure 1.4). The arrival of an action potential at a synapse can trigger
the release of a specific chemical, the neurotransmitter, into the so-called
synaptic cleft which separates the cell membranes of the two neurons. The
neurotransmitter in turn acts to open selectively ion channels in the mem-
brane of the dendrite of the receiving neuron. If these happen to be Na+
channels the result is a local increase of the potential at the receiving end of
the synapse, while if they are Cl− or K+ channels the result is a decrease.
In the first case the arriving signal will thus increase the probability of the
receiving neuron to start firing itself, therefore such a synapse is called excit-
atory. In the second case the arriving signal will decrease the probability of
the receiving neuron being triggered, and the synapse is called inhibitory.
The main neurotransmitters are now believed to be glutamate, operating in
excitatory synapses, and gamma-amino butyric acid (GABA) and glycine,
operating in inhibitory synapses. However, there is also the possibility that
the arriving action potential will not succeed in releasing neurotransmitter;
neurons are not perfect. This introduces an element of uncertainty, or noise,
into the operation of the machinery. A general rule (Dale’s Law) is that every
neuron can have only one type of synapse attached to the branches of its
axon; it either excites all neurons that it sends signals to, in which case it
is called an excitatory neuron, or it inhibits all neurons that it sends signals
to, in which case it is called an inhibitory neuron.

Whether or not the receiving neuron will actually be triggered will
depend on cumulative effect of all excitatory and inhibitory signals arriving,
a detailed analysis of which requires also taking into account the electro-
chemical details of the dendrite. The region of the neuron membrane that
is most sensitive to being triggered into generating an action potential is
the so-called hillock zone, near the root of the axon. If the potential in this
region, the postsynaptic potential exceeds some neuron-specific threshold
(of the order of−30 mV), the neuron will fire an action potential. However,
the firing threshold is not a strict constant, but can vary randomly around
some average value (so that there will always be some nonzero probability
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of a neuron not doing what we would expect it to do with a given postsyn-
aptic potential), which introduces the second main source of uncertainty
into the operation.

Let us inspect some typical numbers to get an idea of dimensions:

Characteristic time-scales Typical sizes

Duration of action potential: ∼1 ms Neuron cell body: ∼50 µm
Refractory period: ∼3 ms Axon diameter: ∼1 µm
Synaptic signal transmission: ∼1 ms Synapse size: ∼1 µm
Axonal signal transport: ∼5 m/s Synaptic cleft: ∼0.05 µm

The key to the adaptive and self-programming properties of neural tissue
and its ability to store information is that the strengths of the synapses and
the levels of the firing thresholds are not fixed, but are being updated all the
time. It is not entirely clear how this is realized at the electro-chemical level.
It appears that both the amount of neurotransmitter in a synapse available
for release and the effective contact surface of a synapse are modified.

Model neurons—common simplifications

Although we can never be sure beforehand to which level of microscopic
detail we will have do descend in order to understand the emergent global
properties of neural networks, there are reasons for not trying to analyse in
all detail all chemical and electrical processes involved in the operation of
a given neural system. First, we would just end up with a huge set of nasty
equations that are impossible to handle, and consequently learn very little.
Second, the experiments involved are so complicated that the details we
would wish to translate into equations are still frequently being updated.
Let us now therefore try to construct a simple mathematical neuron model.
Not all of the simplifications that we will make along the way are strictly
necessary, and some can be removed later. Note that what follows is cer-
tainly not a strict derivation, but rather a rough sketch of how various
neuron models can be related to biological reality. Our neuron is assumed
to be embedded in a network of N neurons, which will be labelled with the
index i = 1, . . . , N . The postsynaptic potential of our neuron at time t will
be called V (t).

First of all, we forget about the details of the avalanche creating an
action potential, and concentrate only on the presence/absence of an action
potential, denoted by the variable S ∈ {0, 1}:

S(t) =
{
1: neuron fires an action potential at time t

0: neuron is at rest at time t
(1.1)
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If we denote the firing threshold potential of our neuron (which may vary)
by V �(t), we can relate the firing state to the postsynaptic potential via

S(t) = θ(V (t)− V �(t)) (1.2)

with the step function: θ(x > 0) = 1, θ(x < 0) = 0 (here we define θ(0) to
be drawn randomly from {0, 1}, with equal probabilities).

The second simplification we make is to forget about the possibility of any
sender having multiple synaptic contacts with any receiver, and to neglect
the microscopic electro-chemical details of the conversion at the synapses of
arriving action potential into electric currents. This allows us to represent
the synaptic interaction between our model neuron (the receiver) and any
(sender) neuron k by a single real number Jk:

Jk > 0: synapse connecting from the axon of k is excitatory
Jk < 0: synapse connecting from the axon of k is inhibitory
|Jk|: proportional to magnitude of resulting electric current

(1.3)

Consequently, Jk = 0 represents the case where a synapse is simply absent.
Taking into account the possibility of an arriving action potential failing to
trigger neurotransmitter release, the electric current Ik(t) injected into our
model neuron, by neuron k at time t , can be written as:

Ik(t) = pk(t)JkSk(t − τk) (1.4)

with

pk(t) ∈ {0, 1}: random variable
τk ∈ [0,∞): transmission delay along axon of neuron k

(1.5)

If pk(t) = 1, an action potential arriving at the synapse at time t is successful
in releasing neurotransmitter. If pk(t) = 0, it is not.4

Our third approximation is to ignore the spatial extension of the dendrite,
assuming all synapses to be located near the cell body, and to treat it as a
simple passive cable-like object, the electric potential of which is reset every
time the neuron fires an action potential. This means that the evolution in
time of the postsynaptic potential V (t) can be written as a linear differential
equation of the form:

d
dt

V (t) = d
dt

V (t)|passive + d
dt

V (t)|reset (1.6)

4 Noise sources other than the dichotomous pk(t) may be considered which could model
fluctuations in the amount of neurotransmitter released, or fluctuations in the fraction of
neurotransmitter actually binding to postsynaptic receptors, without affecting the main line
of reasoning below.
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The first term represents the passive cable-like electric behaviour of the
dendrite:

τ
d
dt

V (t)|passive = 1
ρ

[
Ĩ +

N∑
k=1

Ik(t)− ρV (t)

]
(1.7)

in which the two parameters τ and ρ reflect the electrical properties of the
dendrite (τ being the characteristic time for current changes to affect the
voltage, ρ controlling the stationary ratio between voltage and current),
and Ĩ represents the stationary currents due to the ion pumps. Without any
input from other neurons, that is, for Ik(t) = 0, this latter term would lead
to a simple exponential decay with relaxation time τ of the voltage towards
the stationary value Vrest = Ĩ /ρ. The second term in (1.6), which comes
into play only when the neuron has recently fired, represents a quick reset
(with relaxation time �� τ ) towards this stationary value:

�
d
dt

V (t)|reset = 1
ρ
[Ĩ − ρV (t)]θ

(∫ �

0
ds S(t − s)

)
(1.8)

We may obviously write Ĩ = ρVrest. In combination we obtain:

τ
d
dt

V (t) = 1
ρ

N∑
k=1

Ik(t)− [V (t)− Vrest]
[
1+ τ

�
θ

(∫ �

0
ds S(t − s)

)]

(1.9)

Since only potential differences are important, our equations simplify if,
instead of the potential V (t) itself, we write everything in terms of its value
relative to the rest potential:

V (t) = Vrest + U(t) V �(t) = Vrest + U�(t) (1.10)

This results in

τ
d
dt

U(t) = 1
ρ

N∑
k=1

Ik(t)− U(t)

[
1+ τ

�
θ

(∫ �

0
ds S(t − s)

)]
(1.11)

Putting all our ingredients together, keeping in mind that the above equa-
tions apply to each of the N neurons, and assuming (for simplicity) all
neurons to be identical in their electro-chemical properties {τ , ρ, Vrest}, we
obtain:

τ
d
dt

Ui(t) = 1
ρ

N∑
k=1

Jikpik(t)Sk(t − τik)− Ui(t)

[
1+ τ

�
θ

(∫ �

0
ds Si(t − s)

)]
(1.12)



1.2 Biological neurons and model neurons 13

with

Jik ∈ (−∞,∞): synapse connecting k→ i

τik ∈ [0,∞): time for signals to travel from k→ i

pik(t) ∈ {0, 1}: success/failure of transmitter release at k→ i

Sk(t) = θ(Uk(t)− U�
k (t)): firing state of neuron k

(1.13)

Equation (1.12) would appear to describe many of the neuron character-
istics which seem relevant. However, it contains the synaptic noise and
threshold noise variables {pij (t), U�

i (t)}, and, although sufficiently simple
to simulate on a computer, it is still too complicated to allow us to proceed
analytically.

The next stages in the argument are therefore, first to work out the
effect of the random variables describing transmitter release {pij (t)} and
threshold noise {U�

i (t)} for individual connections and neurons, followed
by estimating their combined effect on the dynamics of large networks:

• At each time and for each synapse the pik(t) are assumed to be completely
independently distributed, without correlations with either potentials,
synaptic strengths, thresholds or transmission delays, according to

Prob[pij (t) = 1] = p

Prob[pij (t) = 0] = 1− p
(1.14)

We thus also take all synapses to be identical in their average fail-
ure/success rate. It now follows, in particular (after writing averages over
the {pij (t)} and, shortly, the {U�

i (t)}, as · · ·), that

pij (t) = p (1.15)

pij (t)pk�(t) = pδikδj� + p2 (1− δikδj�

) = p2 + p(1− p)δikδj�

(1.16)

where we have used the Kronecker symbol δij , defined as

δij =
{

1, if i = j

0, otherwise

• Similarly, at each time and for each neuron the thresholds U�
i (t) are

assumed to be completely independently distributed around some average
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value U�
i , according to a probability density P(u):

Prob
[
U�

i (t)− U�
i ∈ [u, u+ du)

] = P(u) du (0 < du� 1) (1.17)

It then follows that

Si(t) =
∫ ∞
−∞

du P (u)θ(Ui(t)− U�
i − u) =

∫ Ui(t)−U�
i

−∞
du P (u)

(1.18)

Si(t)Sk(t ′) = δikSi(t)Sk(t ′)+ (1− δik)Si(t) Sk(t ′)

= Si(t) Sk(t ′)+ δik

[
Si(t)Sk(t ′)− Si(t) Sk(t ′)

]
(1.19)

Note that dt Si(t) = dt
∫ Ui(t)−U�

i−∞ du P (u) is precisely the probability that
neuron i fires in the infinitesimal time interval [t , t + dt). For situations
where the potential Ui(t) does not vary too much with time (apart from a
regular reset due to neuron i itself firing), this probability can be regarded
as roughly proportional to the firing frequency fi(t) of neuron i:

fi(t) = number of firings in [t − dt , t + dt]
2 dt

∼ Si(t)2 dt/�

2 dt
= 1

�
Si(t)

(1.20)

where we have taken into account the refractory period �.

• For sufficiently large systems, that is, N � 1, the outcome of the summa-
tion over k in equation (1.12) will be described by a Gaussian probability
distribution, due to the central limit theorem (CLT),5 the average and
variance of which are given by:

av =
N∑

k=1

Jikpik(t)Sk(t − τik) =
N∑

k=1

Jikpik(t) Sk(t − τik)

= p

N∑
k=1

JikSk(t − τik) (1.21)

5 For the CLT to apply we would in principle have to check whether a number of specific
technical conditions are met; having a sum of a large number of independent random variables
is in itself not enough. To these technical subtleties we will return later.
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var =
[

N∑
k=1

Jikpik(t)Sk(t − τik)

]2

− av2

=
N∑

k,�=1

JikJi�pik(t)pi�(t) Sk(t − τik)S�(t − τi�)− av2

= p2
N∑

k,�=1

JikJi�

[
Sk(t − τik)S�(t − τi�)− Sk(t − τik) S�(t − τi�)

]

+ p(1− p)

N∑
k=1

J 2
ikS

2
k (t − τik)

= p

N∑
k=1

J 2
ik

[
Sk(t − τik)− pSk(t − τik)

2
]

(1.22)

In going to the last line we have used that S2
k (t) = Sk(t) for all k and t .

• We now use a crude scaling argument to suggest that for densely inter-
acting networks we can ignore the width of the Gaussian distribution
describing the summation over k in equation (1.12). We assume that each
neuron receives input from about N of the N neurons present, where both
N � 1 and N � 1. A measure for the relative uncertainty in the outcome
of the summation, due to the randomness, is given by

Relative uncertainty =
√

variance
average

=

√∑N
k=1 J 2

ikSk(t − τik)
{
1− pSk(t − τik)

}
√

p
∑N

k=1 JikSk(t − τik)
∼ 1√N

If the network is sufficiently densely interacting, that is, N → ∞, this
implies that to a first approximation we can replace the summation in
(1.12) by its average, and forget about the uncertainty; in this case all that
remains of the random variables {pij (t)} describing synaptic operation is
the prefactor p. Note, however, that no such reasoning applies to the
probability of any individual neuron firing.

Replacing the summation in (1.12) by its average over the noise variables,
we now obtain the following simplified dynamic equation:

τ
d
dt

Ui(t) = p

ρ

N∑
k=1

Jikg
(
Uk(t − τik)− U�

k

)
− Ui(t)

[
1+ τ

�
θ

(∫ �

0
ds Si(t − s)

)]
(1.23)
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with

Si(t) = θ(Ui(t)− U�
i ) g(x) =

∫ x

−∞
du P (u) (1.24)

Model neurons—specific examples

From the starting point (1.23) we can obtain directly most of the model
neurons that have been used as starting points of analytical studies, as
specific limits or approximations. We will concentrate on the most common
ones.

Graded response neurons

Here we discard the delays, τij = 0 for all (i, j), and the reset term in
(1.23), assuming that the fluctuations of the neuron potential due to the
reset mechanism are not relevant. Our basic equations now become (after
a redefinition of our variables to get rid of irrelevant prefactors):

τ
d
dt

Ui(t) =
N∑

k=1

Jikg(Uk(t)− U�
k )− Ui(t) (1.25)

g(U − U�) =
∫ U−U�

−∞
du P (u): proportional to firing frequency

(1.26)

We note that the (non-linear) function g(x) has the following properties:

(i) limx→−∞ g(x) = 0 limx→∞ g(x) = 1

(ii) g′(x) ≥ 0 (∀x ∈ IR)
(1.27)

Often one adds to (1.25) a noise term, in order to account for both the pos-
sibility that the randomness in the potentials Ui(t) is not negligible (in cases
where our naïve scaling argument is wrong) and for the fluctuations due to
the reset mechanism. Contrary to what common sense might suggest, we
will find that having some degree of noise will often improve the operation
of neural networks.

McCulloch–Pitts neurons

Here we forget about delays, reset mechanisms, and noise. In the absence
of noise the variables U�

k (t) reduce to fixed numbers U�
k , that is, g(x) =

θ(x). We also neglect the time it takes for electric currents to build up
the postsynaptic potential: we put τ → 0 in equation (1.23) (from which
the reset term has been eliminated and in which all τij = 0). As a result the
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postsynaptic potential becomes, after elimination of distracting prefactors:

Ui(t) =
N∑

k=1

JikSk(t)

Since we have now lost, in a sense, the intrinsic clock of the system because
all time constants have been thrown out, we have to restore the dynamics by
writing the neuron states in terms of the previous value of the postsynaptic
potential, that is,

Sk(t +�) = θ(Uk(t)− U�
k )

Time is now discretized in units of the refractory period �, and we obtain
the so-called McCulloch–Pitts neurons6:

Si(t +�) = θ

(
N∑

k=1

JikSk(t)− U�
i

)
(1.28)

In spite of their simplicity, we will see that networks of McCulloch–Pitts
neurons are already universal in the sense that the operation of any (finite)
digital machine can be emulated by an appropriately constructed network
of such units.

Stochastic binary neurons

In the case where we do wish to take into account noise in systems with
McCulloch–Pitts type neurons, so that the U�

k (t) are truly random, it is often
convenient to choose the latter to all have the same variance and write them
in a form where the average and the variance are explicit:

U�
i (t) = U�

i − 1
2T zi(t)

with

1
4

T 2 = [U�
k (t)− U�

k ]2 =
∫

du u2P(u) zi(t) = 0 z2
i (t) = 1

The reason for this specific notation will become apparent below. The para-
meter T measures the amount of noise in the system; for T = 0 we return to
our previous deterministic laws, while for T →∞ the system behaves in a
completely random manner. A second convenient translation is to redefine
the neuron state variables, such that the two neuron states ‘firing’ and ‘rest’
will be represented by the numbers ‘σ = +1’ and ‘σ = −1’, respectively, as
opposed to ‘S = +1’ and ‘S = 0’. This allows us to make use of symmetry

6 The actual neuron model proposed by McCulloch and Pitts in 1943 was even simpler!
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properties and of a strong similarity between neural dynamics and the phys-
ics of magnetic materials; although we need not make this connection expli-
cit, it has led the way in many analytical studies. The translation is simple
if we also express the U�

i in terms of suitably transformed quantities ϑi :

Si(t) = 1
2 [σi(t)+ 1] U�

i = 1
2

(∑
k

Jik − ϑi

)

The stochastic version of the McCulloch–Pitts recipe (1.28), viz.

Si(t +�) = θ

(
N∑

k=1

JikSk(t)− U�
i +

1
2

T zi(t)

)

thereby becomes

1
2
[σi(t +�)+ 1] = θ

(
1
2

N∑
k=1

Jikσk(t)+ 1
2

ϑi + 1
2

T zi(t)

)

giving

σi(t +�) = sgn(hi(t)+ T zi(t)) hi(t) =
N∑

k=1

Jikσk(t)+ ϑi (1.29)

with the sign function sgn(x) = 2θ(x)−1. So sgn(x > 0) = 1, sgn(x < 0) =
−1; sgn(0) is drawn randomly from {−1, 1}. The quantity hi(t) is called the
‘local field’. The probability to find a neuron state σi(t+�) can be expressed
in terms of the distribution P(z) of the remaining (independent) noise vari-
ables zi(t). For symmetric noise distributions, that is, P(z) = P(−z) ∀z,
this probability can be written in a very compact way:

Prob
[
σi(t +�) = 1

] = Prob [hi(t)+ T zi(t) > 0] =
∫ ∞
−hi(t)/T

dz P (z)

Prob
[
σi(t +�) = −1

] = ∫ −hi(t)/T

−∞
dz P (z) =

∫ ∞
hi(t)/T

dz P (z)

We can now combine the two probabilities into the single expression:

Prob[σi(t +�)] = g(σi(t +�)hi(t)/T ) (1.30)

with

g(x) =
∫ x

−∞
dz P (z) = 1

2
+

∫ x

0
dz P (z)

The function g(x) is seen to have the following properties:

(i) g(x)+ g(−x) = 1
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(ii) lim
x→−∞ g(x) = 0, g(0) = 1

2 , lim
x→∞ g(x) = 1 (1.31)

(iii) g′(x) = P(x): g′(x) ≥ 0 ∀x, g′(−x)=g′(x) ∀x, lim
x→±∞ g′(x)=0

A natural choice for the distribution P(z) of the noise variables zi is the
Gaussian rule

P(z) = (2π)−1/2 e−z2/2 with z = 0, z2 = 1

g(x) = 1
2
+

∫ x

0

dz√
2π

e−z2/2 = 1
2
+

∫ x/
√

2

0

dz√
π

e−z2 = 1
2

[
1+ erf

( x√
2

)]
Here erf(u) denotes the error function, see, for example, [1]. An alternative
choice that will simplify considerably many of our subsequent calcula-
tions, is to replace the above function g(x) by the following (qualitatively
similar) one:

g(x) = 1
2 [1+ tanh(x)] (1.32)

This function satisfies our general requirements (1.31), and corresponds to
the noise distribution

P(z) = 1
2 [1− tanh2

(z)]

In a network of such units, updates can be carried out either synchronously
(in parallel) or randomly asynchronously (one after the other). In the first
case, since all noise variables are independent, the combined probability
to find state σ (t +�) = (σ1(t +�), . . . , σN(t +�)) ∈ {−1, 1}N equals the
product of the individual probabilities, so

parallel: Prob[σ (t +�)] =
N∏

i=1

g(σi(t +�)hi(t)/T ) (1.33)

In the second case we have to take into account that only one neuron changes
its state at a time. The candidate is drawn at random with probability N−1,
resulting in

sequential:

{
choose i randomly from {1, . . . , N}
Prob[σi(t +�)] = g(σi(t +�)hi(t)/T )

(1.34)

Coupled oscillators

One might well speculate that, even though knowledge of the exact details of
the action potentials might not be relevant, going to a description involving
only firing frequencies is too crude an approximation in that the degree
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of synchrony with the neurons fire might be important. This has led to
the proposal to study so-called coupled oscillator models. Essentially one
incorporates the voltage reset mechanism by saying that the potentials are
periodic functions of some underlying phase variables:

Ui(t) = f (φi(t)) f (φ + 2π) = f (φ)

If all phases φi(t) are identical (mod 2π ), the neurons fire action potentials
coherently. In the absence of mutual interaction all neurons are assumed
to oscillate at some neuron-specific basic frequency ωi . Excitatory synapses
are assumed to induce a more coherent firing of the two neurons involved;
inhibitory synapses are assumed to lead to incoherent firing. The simplest
phenomenological model to have such properties is

d
dt

φi(t) = ωi +
N∑

k=1

Jik sin(φk(t)− φi(t)) (1.35)

In order to see that this model indeed has the desired properties, let us
concentrate on the interaction between a given pair of identical oscillators,
say number 1 and number 2 (ω1 = ω2). Here we observe

d
dt
[φ1(t)− φ2(t)] = (J12 + J21) sin(φ2(t)− φ1(t))

The solution of this equation is shown in Figure 1.5, for the two choices
J1 + J2 = 1 and J1 + J2 = −1. In the first case the system always evolves
towards a synchronized situation, with φ1 − φ2 = 2mπ (m integer); in the

Figure 1.5 Evolution in time of the phase difference �φ = φ1 − φ2 for J1 + J2 = 1 (left)
and J1 + J2 = −1 (right). In the first case the two oscillators will always synchronize; their
action potentials will eventually be fired simultaneously. In the second case they will do the
opposite.
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second case towards an anti-synchronized state, with φ1 − φ2 = π + 2mπ

(m integer). Indeed, for small differences between the two phases, φ1(t) −
φ2(t) = 2mπ + ε(t) with |ε(t)| � 1, we can linearize our equation, giving:

d
dt

ε(t) = −(J12 + J21)ε(t)+O(ε3(t))

For J12+J21 > 0 the phase difference ε(t) will decrease further (the coherent
state φ1(t) = φ2(t) is stable), whereas for J12+J21 < 0 the phase difference
will increase (now the coherent state φ1(t) = φ2(t) is unstable). As with
the graded response neurons, one often adds to (1.35) a noise term, to
account for the possibility that the randomness in the potentials Ui(t) is not
negligible.

1.3 Universality of McCulloch–Pitts neurons

The simplest of the neuron models that we described in the previous section
was the McCulloch–Pitts neuron (1.28). Here we will show that networks of
such neurons have universal computational capabilities in the sense that the
operation of any finite deterministic digital information processing machine
can be emulated by a properly constructed network of McCulloch–Pitts
neurons. Since the basic logical units of digital machines can all be built
with McCulloch–Pitts neurons, all theorems of computer science (on com-
putability, Turing machines, etc.) that apply to such digital machines will
apply to networks of McCulloch–Pitts neurons as well. Here we will not
dig too deep, and just prove some simple statements.

Reduction to single-output binary operations

First we demonstrate how any such machine can be reduced to a collection
of simpler single-output binary machines:

• Finite digital machines can by definition only handle finite-precision
representations of real numbers, that is,

π → 3.141592653589793238462643

Every finite-precision representation of a real number can, in turn, be
expressed in terms of integers:

π →
( digits︷ ︸︸ ︷

3141592653589793238462643;

decimal point︷︸︸︷
1

)
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Every integer can, in turn, be expressed as a (so-called Boolean) string of
binary numbers ∈ {0, 1}, for example,

1239 = 1 · 210 + 0 · 29 + 0 · 28 + 1 · 27 + 1 · 26 + 0 · 25 + 1 · 24 + 0 · 23

+ 1 · 22 + 1 · 21 + 1 · 20

= 1024+ 128+ 64+ 16+ 4+ 2+ 1 = (10011010111)

• It follows that every finite digital machine can be regarded as a device
that maps finite-dimensional binary input vectors S ∈ � ⊆ {0, 1}N (rep-
resenting characters, numbers, keys typed on a keyboard, camera images,
etc.) onto finite dimensional binary output vectors S′ ∈ {0, 1}K (charac-
ters, numbers, reply text on a screen, control signals for other equipment,
etc.). Deterministic machines will by definition always reply in exactly the
same manner to identical input data. Therefore every finite deterministic
digital machine can be specified in full by specifying the output vector
S′(S) for every possible input vector S ∈ �, that is, by specifying the
mapping M:

M: �→ {0, 1}K MS = S′(S) ∀S ∈ �

• Finally, we can always construct K independent sub-machines M� (� =
1, . . . , K), each of which takes care of one of the K output bits of the full
mapping M:

M�: �→ {0, 1} M�S = S′�(S) ∀S ∈ �

We conclude that we are allowed to concentrate only on the question of
whether it is possible to perform any single-ouput mapping M : � ⊆
{0, 1}N → {0, 1} with networks of McCulloch–Pitts neurons. This ques-
tion will be answered in the affirmative in two steps: (i) we first show that
any such single-output Boolean function of N variables can be expressed in
terms of combinations of three logical operations performed on the inputs
(these three logical operations can be even further reduced to one), (ii) it
is then demonstrated that all three elementary logical operations can be
performed by McCulloch–Pitts neurons.

Reduction to three elementary operations

For the purpose of achieving the envisaged reduction, we first introduce
a partitioning of the set � of input vectors into two subsets, depending on
the corresponding desired output value:

� = �+ ∪�−
�+ = {S ∈ � | MS = 1}
�− = {S ∈ � | MS = 0} (1.36)
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We now label the elements in �+. The number of elements in �+, denoted
by P , obviously cannot exceed 2N , which is the total number of vectors in
{0, 1}N .

�+ = {S1, S2, . . . , SP−1, SP } Sµ ∈ {0, 1}N

Evaluation of M thus amounts to identifying whether or not an input vector
belongs to �+. This identification can be performed using only the three
logical operators∧ (AND),∨ (OR) and¬ (NOT) which are defined by their
output tables:

∧:{0, 1}2 → {0, 1} ∨ :{0, 1}2 → {0, 1} ¬:{0, 1} → {0, 1}

x y x ∧ y

0 0 0
0 1 0
1 0 0
1 1 1

x y x ∨ y

0 0 0
0 1 1
1 0 1
1 1 1

x ¬x

0 1
1 0

We can use these basic operations to construct the operator SAME(x, y),
which tells us whether two binary variables have the same value:

SAME(x, y) = (x ∧ y) ∨ ((¬x) ∧ (¬y))

The definitions of AND and OR can be extended to cover more than two
argument variables in the usual way:

x1 ∧ x2 ∧ · · · ∧ xL−1 ∧ xL = x1 ∧ (x2 ∧ (· · · ∧ (xL−1 ∧ xL) · · · ))

x1 ∨ x2 ∨ · · · ∨ xL−1 ∨ xL = x1 ∨ (x2 ∨ (· · · ∨ (xL−1 ∨ xL) · · · ))
Checking whether or not the input vector S is identical to any of the vectors
Sµ in the set �+ (defined above) is then performed by evaluation of

MS = (
SAME(S1, S1

1) ∧ SAME(S2, S1
2) ∧ · · · ∧ SAME(SN , S1

N)
)

∨(SAME(S1, S2
1) ∧ SAME(S2, S2

2) ∧ · · · ∧ SAME(SN , S2
N)

)
...

∨(SAME(S1, SP
1 )∧ SAME(S2, SP

2 ) ∧ · · · ∧ SAME(SN , SP
N)

)
and since this latter expression can be constructed entirely with the three
basic operations {∧,∨,¬}, we know that every operation M:� ⊆ {0, 1}N →
{0, 1}, and therefore the operation of every finite deterministic digital
machine, can be reduced to a combination of these three basic operations.
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We can reduce the set of required operations further, since the operation
∨ (OR) can be written in terms of ¬ (NOT) and ∧ (AND), as x ∨ y =
¬((¬x) ∧ (¬y)):

x y x ∨ y ¬x ¬y (¬x) ∧ (¬y)

0 0 0 1 1 1
0 1 1 1 0 0
1 0 1 0 1 0
1 1 1 0 0 0

In fact we can reduce the set of operations yet further, since the
operations {∧,¬} can, in turn, be written in terms of a single opera-
tion NAND (NOT-AND) as ¬x = NAND(x, x) and x ∧ y =
NAND(NAND(x, y), NAND(x, y)):

x y NAND(x, y) NAND((NAND(x, y),NAND(x, y))

0 0 1 0
0 1 1 0
1 0 1 0
1 1 0 1

x NAND(x, x)

0 1
1 0

Elementary operations via McCulloch–Pitts neurons

Finally we have to show that each of the three elementary logical operations
{∧,∨,¬} can be realized with our simple McCulloch–Pitts neurons

Si(t +�) = θ

(
N∑

k=1

JikSk(t)− U�
i

)

provided we choose appropriate values of the parameters {Jik, U�
i }. This

we do by construction. Note that, in order to prove universality, we only
have to construct the operation NAND with McCulloch–Pitts neurons (see
above); however, by way of illustration we also construct the operations
{∧,∨,¬}:
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x y x ∧ y x + y − 3/2 θ [x + y − 3/2]
0 0 0 −3/2 0
0 1 0 −1/2 0
1 0 0 −1/2 0
1 1 1 1/2 1

x y x ∨ y x + y − 1/2 θ [x + y − 1/2]
0 0 0 −1/2 0
0 1 1 1/2 1
1 0 1 1/2 1
1 1 1 3/2 1

x ¬x −x + 1/2 θ [−x + 1/2]
0 1 1/2 1
1 0 −1/2 0

x y NAND(x, y) −x − y + 3/2 θ [−x − y + 3/2]
0 0 1 3/2 1
0 1 1 1/2 1
1 0 1 1/2 1
1 1 0 −1/2 0

1.4 Exercises

Exercise 1.1. (Higher order synapses.) It is known that there also exist
synapses which operate in a more complicated way than the simple ones
discussed so far. We now try to see how our equations would change if
we were to take into account so-called higher-order synapses, like the one
in Figure 1.6. The new type of synapse requires the simultaneous arrival
of two action potentials to release neurotransmitter, so that equation (1.4)
will be replaced by:

Ik(t) = pk(t)JkSk(t − τk)+
N∑

�=1

p̂k�(t)Ĵk�Sk(t − τk)S�(t − τ�)
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Figure 1.6 Schematic drawing of a higher-order
synapse. Right part: terminals of the axons of two
sending neurons, left: surface of a dendrite of the
receiving neuron.

in which the new variables have the following meaning: p̂k�(t) is a random
variable deciding whether two simultaneously arriving action potentials
from neurons k and � are successful in releasing neurotransmitter, Ĵk� defines
the resulting current induced by the second-order synapse, if transmitter
release takes place. Assume Ĵkk = 0 for all k. Which will be the new equation
to replace equation (1.12), if we take into account the existence of the
above type of higher order synapse? Assume (without proof) that the simple
scaling argument again applies that allowed us to replace all summations
over different current contributions by their noise averages. Which equation
do we find to replace (1.23)? Perform the simplifications that led us to
the graded response neurons. What form will these equations now take?
Answer the same question for McCulloch–Pitts neurons.

Exercise 1.2. (Graded response neurons.) Consider two identical coupled
graded response neurons, without self-interactions, with τ = ρ = 1:

d
dt

U1 = Ja g(U2 − U�)− U1
d
dt

U2 = Jb g(U1 − U�)− U2

Assume that g(x) > 0 ∀x ∈ IR, as for e.g. g(x) = 1
2 [1 + erf(x)]. Show

that:

(a) if Ja = Jb there exists a solution of the form U1(t) = U2(t) ∀t ≥ 0.

(b) if Ja �= Jb there is no solution of the form U1(t) = U2(t) ∀t ≥ 0.

Now choose g(x) = θ(x), that is, no noise, and Ja = Jb = J �= 0. Simplify
the above equations by transforming to new variables:

U1 = Ju1 U2 = Ju2 U� = Ju�
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so that the new equations become

d
dt

u1 = θ(u2 − u�)− u1
d
dt

u2 = θ(u1 − u�)− u2

Solve these equations separately in the four relevant regions of the (u1, u2)

plane, (I) u1 > u�, u2 > u� (II) u1 < u�, u2 > u� (III) u1 < u�, u2 < u�,
and (IV) u1 > u�, u2 < u�, and draw the trajectories in the (u1, u2) plane,
for u� < 1. Do the same for u� > 1. What can you conclude about the
dependence of the system’s behaviour on the height of the neural threshold?

Exercise 1.3. (Coupled oscillators.) Consider three coupled oscillators,
without self-interactions, described by the following equations:

d
dt

φ1 = ω1 + J12 sin(φ2 − φ1)+ J13 sin(φ3 − φ1)

d
dt

φ2 = ω2 + J21 sin(φ1 − φ2)+ J23 sin(φ3 − φ2)

d
dt

φ3 = ω3 + J31 sin(φ1 − φ3)+ J32 sin(φ2 − φ3)

Explain the meaning and relevance of the various quantities which occur in
these equations. Assume from now on that ω1 = ω2 = ω3 = ω. Show that
the above system of equations admits solutions such that

φ3 − φ2 = mπ m = 0,±1,±2, . . .

if and only if J31 = (−1)mJ21. What do these solutions represent in terms
of firing coherence? Assume that the above condition holds for some even
integer m, and that Jik = J for all i, k. Show that

d
dt

(φ1 + 2φ2) = 3ω
d
dt

(φ1 − φ2) = −3J sin(φ1 − φ2)

Finally, suppose that J > 0 and that initially the difference φ1 − φ2 is not
a multiple of π . Show, by considering the phase diagram pertaining to the
above differential equation for φ1 − φ2, or otherwise, that as t → ∞ all
three oscillators will fire coherently, that is, synchronously. What happens
if J < 0?
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2
Layered networks

2.1 Linear separability

All elementary logical operations that we encountered in the previous
chapter could not only be realized with McCulloch–Pitts neurons, but
even with a single, McCulloch–Pitts neuron. The question naturally arises
whether all operations {0, 1}N → {0, 1} can be performed with a single
McCulloch–Pitts neuron. For N = 1, that is, the trivial case of only
one input variable x ∈ {0, 1}, we can simply check all possible opera-
tions M : {0, 1} → {0, 1} (of which there are four, to be denoted by Ma,
Mb, Mc, and Md ), and verify that one can always construct an equivalent
McCulloch–Pitts neuron S(x) = θ(Jx − U):

x Ma(x) θ(−1) Mb(x) θ(−x + 1/2) Mc(x) θ(x − 1/2) Md θ(1)

0 0 0 1 1 0 0 1 1
1 0 0 0 0 1 1 1 1

For N > 1, however, the answer is no. There are several ways of showing
this. The simplest is to give first a counterexample for N = 2, which can
subsequently be used to generate counterexamples for any N ≥ 2, the
so-called XOR operation (exclusive OR):

x y XOR(x, y)

0 0 0
0 1 1
1 0 1
1 1 0

Proposition. No set of real numbers {Jx , Jy , U} exists such that

θ(Jxx + Jyy − U) = XOR(x, y) ∀(x, y) ∈ {0, 1}2
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Proof. By contradiction. Assume the above statement were false, this would
imply:

(x, y) = (0, 0): −U < 0 ⇒ U > 0
(x, y) = (0, 1): Jy − U > 0 ⇒ Jy > U

(x, y) = (1, 0): Jx − U > 0 ⇒ Jx > U

(x, y) = (1, 1): Jy + Jy − U < 0 ⇒ Jx + Jy < U

This contradiction shows that the above statement can never be false, which
completes our proof.

For N > 2 we can construct a similar operation M by just applying the
XOR operation to the first two of the N input variables:

M: {0, 1}N → {0, 1} M(x1, . . . , xN) = XOR(x1, x2)

to which the same proof applies as to the N = 2 case discussed above. As a
result we know that indeed for all N ≥ 2 there exist operations that cannot
be performed by a single McCulloch–Pitts neuron.

We can also give a geometric picture of the situation. The set of all possible
operations M : {0, 1}N → {0, 1} consists of all possible ways to fill the right
column of the corresponding table with ones or zeros:

x1 x2 · · · · · · xN−1 xN M(x)

0 0 · · · · · · 0 0 ∗
1 0 · · · · · · 0 0 ∗
...

...
...

...
...

...
...

...
...

...
...

...
...

...
1 1 · · · · · · 1 0 ∗
1 1 · · · · · · 1 1 ∗

The total number of possible operations M : {0, 1}N → {0, 1} is the number
of possible ways to fill the right column of the above table. There are 2N

entries in this column, with two possible values for each, so

number of operations M: {0, 1}N → {0, 1} = 22N

The set {0, 1}N of possible binary input vectors consists of the corners
of the unit hyper-cube in IRN . A McCulloch–Pitts neuron, performing
the operation

S: {0, 1}N → {0, 1} S(x) = θ

( N∑
k=1

Jkxk − U

)
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can be seen as dividing the space IRN into two subsets which are separated by
the hyper-plane

∑N
k=1 Jkxk = U . The information conveyed by the outcome

of the operation of a McCulloch–Pitts neuron, given an input x ∈ {0, 1}N ,
is simply in which of the two subsets the corner x of the hyper-cube is
located. S(x) = 1 if x is in the subset

∑N
k=1 Jkxk > U , whereas S(x) = 0 if x

is in the subset
∑N

k=1 Jkxk < U ; let us not yet worry about the pathological
case where x is on the separating plane for the moment. Note that this
division of {0, 1}N into subsets, here separated by a plane, is identical to
the division which we already introduced earlier through the subsets �+
and �−. In terms of the above table, �+ is the set of all hyper-cube corners
x ∈ {0, 1}N for which ∗ = 1; �− is the set of corners x ∈ {0, 1}N with
∗ = 0. Since each of these 22N

operations M is characterized uniquely by its
associated set �+, each can be pictured uniquely by drawing the hyper-cube
in IRN in which corners in �+ are coloured black, and corners in �− are
white.

For N = 1 the hyper-cube reduces simply to a line segment with 21 = 2
‘corners’. There are 221 = 4 operations M: {0, 1} → {0, 1}, that is, four ways
of colouring the two corners:

N = 1: x ∈ {0, 1} •: x ∈ �+, M(x) = 1
◦: x ∈ �−, M(x) = 0

� � � � � � � �

For N = 2 the hyper-cube is a square (with 22 = 4 corners). There are
222 = 16 operations M : {0, 1}2 → {0, 1}, that is, sixteen ways of colouring
the four corners:

N = 2: x ∈ {0, 1}2 •: x ∈ �+, M(x) = 1
◦: x ∈ �−, M(x) = 0

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �
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� �
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� �

� �

� �

� �
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� �
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� �

� �

� �

� �

� �
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� �

� �

� �
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For N = 3 the hyper-cube is a cube (with eight corners). There are 223 = 256
operations M: {0, 1}3 → {0, 1}, that is, 256 ways of colouring the eight
corners, etc. Of all these operations, McCulloch–Pitts neurons can only
perform those for which the �+ corners x (the black ones), can be separated
from the �− corners x (the white ones) by one single plane x · J = U . Such
operations are called linearly separable. It is now immediately clear for the
above examples N = 1 and N = 2, simply by looking at the graphs, which
operations are linearly separable:

N = 1:

� � � � � � � �

N = 2:

�
��

� �

� �

�
��

� �

� �

�
��
� �

� �

� �

� �

?
� �

� �

� �

� �

� �

� � �
��

� �

� �

�
��

� �

� �

� �

� �

� �

� �

?
� �

� �

� �

� �

�
��� �

� �

�
��

� �

� �

�
��

� �

� �

For N = 1 we recover our earlier result that all operations are linearly
separable (i.e. can be performed by a suitably constructed McCulloch–Pitts
neuron). For N = 2 we find that of the sixteen possible operations, the
following two are not linearly separable:

x y Ma(x, y) x y Mb(x, y)

0 0 0 0 0 1
0 1 1 0 1 0
1 0 1 1 0 0
1 1 0 1 1 1

in these we recognize the two operations XOR (as expected) and ¬(XOR).



2.2 Multilayer networks 33

2.2 Multilayer networks

Having seen that a single McCulloch–Pitts neuron cannot realize every map-
ping M: {0, 1}N → {0, 1}, we now set out to demonstrate that every such
mapping M can at least be performed by a two-layer feed-forward net-
work of such neurons, with only one neuron in the second layer. This will
in fact be a specific neural realization of the look-up table for elements
of the set �+, as introduced earlier in demonstrating the universality of
McCulloch–Pitts neurons.

As a simple explicit example we will now illustrate how a multilayer
perceptron can be designed to perform a linearly non-separable task such
as XOR. Here the set of vectors �+, for which the XOR operation is to
give as output the value 1, is

�+ = {x1, x2} with x1 = (1, 0), x2 = (0, 1)

x1

x2

��
��

���W11

�������W22

�
�
�
�
���

�
�
�
�
���W12

W21

	
	
	
	
		


�
�
�
�
���

J1=1

J2=1

y1

y2

S(y)
?= XOR(x1, x2)

Our solution is based on a so-called ‘grandmother-cell’ construction for
the neurons of the hidden layer. It uses our knowledge of �+, and
is designed in such a way that for each of the vectors xi in �+ there
is precisely one neuron i in the middle (or ‘hidden’) layer which pro-
duces an output +1 for this (and only for this) input vector, thereby
signaling that the state of the output neuron is to be +1 when xi

occurs as input. The weights Wij and firing thresholds Vi for the hidden
neurons which achieve this follow from the observation that for xi ∈ �+
and x ∈ {0, 1}2 the sum

∑2
j=1(2xi

j − 1)(2xj − 1) =∑2
j=1 2(2xi

j − 1)xj−∑2
j=1(2xi

j − 1) will be +2 if x = xi , and less than or equal to 0 otherwise.
From this one reads off that suitable weights and thresholds of the hidden
neurons to achieve the desired action

yi(x) = θ

( 2∑
j=1

Wijxj − Vi

)
= δx,xi
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are Wij = 2(2xi
j − 1) and Vi = 1 +∑2

j=1(2xi
j − 1). For the two relevant

input vectors in �+ this implies, more specifically

W11 = 2(2x1
1 − 1) = +2 W12 = 2(2x1

2 − 1) = −2

W21 = 2(2x2
1 − 1) = −2 W22 = 2(2x2

2 − 1) = +2
V1 = V2 = 1

Having set the values of our parameters to the above values, one can check
directly that the XOR operation is now indeed implemented correctly:

x = (0, 0): S(y) = θ(y1 + y2 − 1/2) = θ(0+ 0− 1/2) = 0

x = (1, 0): S(y) = θ(y1 + y2 − 1/2) = θ(1+ 0− 1/2) = 1

x = (0, 1): S(y) = θ(y1 + y2 − 1/2) = θ(0+ 1− 1/2) = 1

x = (1, 1): S(y) = θ(y1 + y2 − 1/2) = θ(0+ 0− 1/2) = 0

We now give the general construction, which works for arbitrary input
dimensions N and for arbitrary operations M: {0, 1}N → {0, 1}. We choose
L to be the size of the set �+ = {x ∈ {0, 1}N |M(x) = 1}, and construct the
neurons yi in the hidden layer such that the operation of each of them is
defined as determining whether the input vector x equals a neuron-specific
prototype vector from �+. The construction of the associated grandmother
neurons follows the above pattern used in dealing with XOR. First we define
the building block G:

x, x∗ ∈ {0, 1}N : G(x∗; x) = θ

( N∑
i=1

(2xi − 1)(2x∗i − 1)−N + 1
)

(2.1)

x1

xN

y1

yL

S







�������

��
��

���
�
�
�
�
���

�
�
�
�
���

�
�
�
�
�
�
����

�
�
�
���

�
�
�
�
���

��
��

���

�������
	
	
	
	
		


�
�
�
�
���

��
��

���

�������
	
	
	
	
		


�
�
�
�
���

�
�
�
�
�
�
���

�
�
�
�
�
�
���

�
�
�
�
���

�
�
�
�
���

��
��

���


�������

	
	
	
	
		


�
�
�
�
���

�
�
�
�
�
�
���

yi = θ

( N∑
j=1

Wijxj − Vi

)

S = θ

( L∑
i=1

Jiyi − U

)
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Proposition. G(x∗; x) = 1 if and only if x = x∗.

Proof. We first turn to the trivial ‘if’ part of the proof:

G(x; x) = θ

( N∑
i=1

(2xi − 1)2 −N + 1
)
= θ

( N∑
i=1

1−N + 1
)
= 1

Next we show that G(x∗; x) = 0 as soon as x �= x∗.

∀xi , x∗i ∈ {0, 1}: (2xi − 1)(2x∗i − 1) =
{
1, if xi = x∗i−1, if xi �= x∗i

Consequently:

N∑
i=1

(2xi − 1)(2x∗i − 1) = N − 2× (number of indices i with xi �= x∗i )

so that:

x �= x∗ ⇒
N∑

i=1

(2xi − 1)(2x∗i − 1) ≤ N − 2⇒ G(x∗; x) = 0

which completes the proof.

The expression G(x∗; x), interpreted as an operation performed on the
variable x (for fixed x∗), is clearly of the McCulloch–Pitts form:

G(x∗; x) = θ

(
2

N∑
i=1

(2x∗i − 1)xi − 2
N∑

i=1

x∗i + 1
)

We can now construct our two-layer network from these building blocks,
by assigning to each vector x� ∈ �+ a hidden neuron of the form G(x∗; x):

�+ = {x ∈ {0, 1}N | M(x) = 1} = {x1, x2, . . . , xL−1, xL}
∀i ∈ {1, . . . , L}: yi : {0, 1}N → {0, 1} yi = G(xi ; x)

The required operation of the output neuron S, finally, is to simply detect
whether or not any of the hidden layer neuron states yi equals one. Our final
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result is the following network:

yi(x) = θ

( N∑
j=1

Wijxj − Vi

)
S(y) = θ

( L∑
i=1

yi − 1
2

)
(2.2)

Wij = 2(2xi
j − 1) Vi = 2

N∑
j=1

xi
j − 1 (2.3)

This construction will exactly perform the required operation M. The state
of each hidden neuron indicates whether (yi = 1) or not (yi = 0) element
number i of the set �+ equals the actual input x; output neuron S sub-
sequently tells us whether (S = 1) or not (S = 0) there is a +1 state in
the hidden layer, that is, whether x is in the set �+. Since the size of �+
can scale exponentially in N , this is usually not an efficient way of realizing
an operation M with McCulloch–Pitts neurons, but efficiency was not our
aim. At least we know now that a two-layer feed-forward architecture is
capable of realizing any operation, if properly constructed. It also proves
en passant that any mapping M: {0, 1}N → {0, 1}K can be performed by a
two-layer feed-forward network.

2.3 The perceptron

Here we turn to the question of how to model and understand the process
of learning. In the simple context of a McCulloch–Pitts neuron S(x) =
θ(J · x − U) this means the adaptation of the set of connections {Ji} and
the threshold U , in order to improve the accuracy in the execution of a
given task M: � ⊆ {0, 1}N → {0, 1}. We assume that we do not know M

explicitly; we only have examples provided by some ‘teacher’ of ‘questions’
(input vectors x ∈ {0, 1}N ) with corresponding ‘answers’ (the associated
output values M(x)).

The starting point of the training session is a neuron with, say, randomly
chosen parameters {Ji} and U . A so-called ‘online’ training session consists
of iterating the following procedure:

step 1: Draw at random a question x ∈ �

step 2: Check whether teacher and student agree on the answer:

M(x) = S(x): do nothing, return to 1

M(x) �= S(x): modify parameters, then return to 1
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modify parameters:

J → J +�J (J , U ; x, M(x))

U → U +�U(J , U ; x, M(x))

x1
.
.
.
.
.
.
.
.
.
.
.

xN

Student (neural network)

S(x) = θ
(∑N

i=1 Jixi − U
)  S(x)
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The input vectors x need not all have the same probability of being drawn.
The ultimate goal is to end up with a neuron that has learned to perform the
task M perfectly, that is, to have M(x) = S(x) = θ(J · x − U) ∀x ∈ �

(which, of course, is only possible if the task M is itself linearly separable).
The problem one faces is how to choose an appropriate recipe (�J , �U)

for updating the neuron’s parameters that will achieve this.
A perceptron is defined as a McCulloch–Pitts neuron, learning in an

online fashion, according to the following rule for updating its parameters:

perceptron learning rule:

{
M(x) = 0, S(x) = 1: �J = −x, �U = 1

M(x) = 1, S(x) = 0: �J = x, �U = −1

(2.4)

Upon some reflection, this recipe is rather transparent. If S(x) = 1 but
should have been 0, the effect of the modification is to decrease the local
field h = J · x−U so that the next time question x appears the perceptron
is more likely to give the (correct) answer S(x) = 0. Conversely, if S(x) = 0
but should have been 1, the modification causes an increase of the local field
so that the perceptron is more likely to give the (correct) answer S(x) = 1
in the future.

Perceptron convergence theorem

The nice and powerful property of the specific recipe (2.4) is the existence
of the following associated perceptron convergence theorem.
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Proposition. If the task M is linearly separable, then the above proced-
ure will converge in a finite number of modification steps to a stationary
configuration, where ∀x ∈ �: S(x) = M(x).

Proof.We first simplify our equations by introducing an additional dummy
input variable, which is simply constant: x0 = 1. This allows us, together
with the identification J0 = −U , to write the perceptron and its learning
rule in the compact form

S(x) = θ(J · x)
x = (x0, x1, . . . , xN) ∈ {0, 1}N+1,

J = (J0, J1, . . . , JN) ∈ IRN+1

learning rule:
M(x) = 0, S(x) = 1: �J = −x

M(x) = 1, S(x) = 0: �J = x
⇔ �J = [2M(x)− 1]x

The new set � now consists of all vectors (x0, x1, . . . , xN) with x0 = 1 and
with (x1, . . . , xN) as in the original input set.

• The first step of the proof is to translate the linear separability of the
operation M into the following statement:

∃B ∈ IRN+1 such that ∀x ∈ �: M(x) = θ(B · x)

and, since the argument of the step function θ(· · · ) can here never be zero
(since we know that M(x) ∈ {0, 1}):

∃δ > 0: such that ∀x ∈ �: |B · x| > δ

x0
.
.
.
.
.
.
.
.
.
.
.

xN

Student perceptron

S(x) = θ(J · x)

 S(x)
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Teacher perceptron

M(x) = θ(B · x)

 M(x)
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We may consequently view the task operation M as generated by a
teacher perceptron, equipped with weights/threshold B (which, of course,
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the student perceptron does not know). Since |B| can be rescaled
arbitrarily without affecting the associated operation M, we may choose
|B| = 1.
• Any modification step, where J → J ′ = J + �J , is seen to obey the

following two inequalities:

J ′ · B = J · B + [2M(x)− 1]x · B
= J · B + [2θ(x · B)− 1]x · B
= J · B + |x · B|
≥ J · B + δ (2.5)

and

|J ′|2 = {J + [2M(x)− 1]x}2
= J 2 + 2 sgn(B · x)J · x + x2

≤ J 2 − 2 sgn(J · x)J · x +N + 1

≤ J 2 +N + 1 (2.6)

After n such modification steps, repeated usage of the above inequalities
gives:

J (n) · B ≥ J (0) · B + nδ |J (n)|2 ≤ |J (0)|2 + n(N + 1) (2.7)

• We now define

ω = J · B
|J |

Due to the Schwarz inequality |x · y| ≤ |x||y| we know that always
|ω| ≤ |B| = 1. After n modifications, however, it follows from (2.7) that
we must have

ω(n) = J (n) · B
|J (n)| ≥

J (0) · B + nδ√|J (0)|2 + n(N + 1)
(2.8)

From this we conclude that there can be only a finite number of modi-
fication steps n. The algorithm will have to stop at some stage, since
otherwise we would run into a conflict with |ω(n)| ≤ 1:

lim
n→∞ω(n) ≥ lim

n→∞
J (0) · B + nδ√|J (0)|2 + n(N + 1)

= ∞
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If no more modifications can take place, the system must by definition
be in a configuration where M(x) = S(x) ∀x ∈ �, which completes the
proof. �

The perceptron convergence theorem is a very strong statement, as it
depends only on the linear separability of the task M being learned. In
particular it does not depend on the probability distribution of the input
vectors x. An upper bound nmax for the number n of modification steps
required for convergence can be obtained by checking at what stage (in the
worst case) we actually run into conflict with |ω(n)| ≤ 1:

[J (0) · B + nmaxδ]2
|J (0)|2 + nmax(N + 1)

= 1

For zero initial connections, that is, for J (0) = (0, . . . , 0), we obtain:

nmax = N + 1
δ2

Although this is of limited practical value, as we usually have no information
about δ, it is consistent with our geometrical picture of the linearly separable
operations: the more complicated the operation M, the closer the separating
plane will be to the corners of the hyper-cube, the smaller δ, and therefore
the larger the number of adaptation steps that the perceptron needs to obtain
perfect performance.

Note that the number n is not the same as the number of times we have
to present an example input vector x, but rather the number of actual para-
meter modifications. It could happen that the number of times we need to
draw at random a question x is still very large, simply due to the small
probability of some particular relevant questions to be selected. Alternat-
ively, we could also draw the example vectors x in a fixed order, since the
perceptron convergence theorem does not require them to be drawn at ran-
dom. In the latter case the number of times we present a question x will
also be bounded. However, as we will see later, the number of randomly
drawn questions x ∈ {0, 1}N needed to obtain convergence (for a linearly
separable task) normally scales linearly with N for large N . It is therefore
usually more efficient to draw the examples at random; indeed, making a
single full sweep through the set {0, 1}N of possible questions involves many
more trials, namely 2N .

Ising perceptrons

The only property of the input vector space � ⊆ {0, 1}N that is actually
used in proving convergence of the perceptron learning rule is the existence
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of an upper bound for the norm of x:

∃C > 0: such that ∀x ∈ �: x2 ≤ C

and the constant C will then simply replace the factor N+1 in equation (2.7).
In particular, we can therefore apply the same procedure to x ∈ � ⊆
{−1, 1}N . If we also transform the perceptron output and the task definition
in the familiar way from the {0, 1} representation to the so-called ‘Ising spin’
variables {−1, 1}, we obtain the Ising perceptron:

task: T : � ⊆ {−1, 1}N → {−1, 1}
Ising perceptron: σ : � ⊆ {−1, 1}N → {−1, 1}

σ(x) = sgn(J · x + ϑ)

(2.9)

equipped with the following learning rule:

step 1: Draw at random a question x ∈ �

step 2: Check whether teacher and student agree on the answer:

T (x) = σ(x): do nothing return to step 1
T (x) �= σ(x): �J = T (x)x, �ϑ = T (x) then return to step 1

Note that this learning procedure, like the original {0, 1} version, can be
written in an even more compact way, without the explicit check on whether
or not perceptron and teacher give the same answer to a given question x.
With the convention x0 = 1 ∀x ∈ � and J0 = ϑ (as before, the dummy
variable x0 takes care of the threshold) we may simply write:

draw at random an x ∈ �, �J = 1
2 [T (x)− sgn(J · x)]x (2.10)

We can now run through the perceptron convergence proof, much like
before. We simply replace M(x) → 1

2 [T (x) + 1] and use for the extended
input vector x ∈ {−1, 1}N+1 the inequality x2 ≤ N + 1.

The advantage of the {−1, 1} formulation over the previous {0, 1} one
is a significant simplification of subsequent calculations. For instance, for
randomly and uniformly drawn vectors x = (x1, . . . , xN) we find the
expectation values:

x ∈ {0, 1}N : 〈xi〉 = 1
2 〈xixj 〉 = 1

4 + 1
4δij

x ∈ {−1, 1}N : 〈xi〉 = 0 〈xixj 〉 = δij
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The continuous time limit

With the familiar convention x0 = 1 ∀x ∈ � ⊆ {0, 1}N we can also write
the learning rule of the original {0, 1} representation of the perceptron in
the compact form

draw at random an x ∈ �, �J = εx[M(x)− θ(J · x)] (2.11)

without the need for checking explicitly whether M(x) = θ(J · x). We have
now inserted a prefactor ε, with 0 < ε � 1, which controls the rate at which
the parameters J change. Note that with this modification the perceptron
convergence theorem still applies. We will now derive, in a specific limit, a
differential equation to describe the evolution in time of the parameters J .
A more thorough and general analysis will be given in Part IV of this book;
here we will restrict ourselves to a reasonably simple derivation. The res-
ulting differential equation is considerably more convenient for describing
the learning process than the above original iterative map (2.11).

Let us define a time variable such that each update corresponds to a time
interval of length ε, so

�J = J (t + ε)− J (t)

After a modest number n � ε−1 of iteration steps the vector J will have
changed only a little,

J (t + nε) = J (t)+O(nε)

For intermediate stages � < n we may therefore write:

J (t + �ε + ε)− J (t + �ε) = εx�[M(x�)− θ(J (t) · x� +O(nε))]

in which x� denotes the input vector that is drawn from � at iteration
step �. We now sum the left- and the right-hand side of this equation over
the iteration index � = 0, . . . , n− 1:

n−1∑
�=0

J (t + �ε + ε)−
n−1∑
�=0

J (t + �ε)= ε

n−1∑
�=0

x�[M(x�)− θ(J (t) · x�+O(nε))]

which gives

J (t + nε)− J (t)

nε
= 1

n

n−1∑
�=0

x�[M(x�)− θ(J (t) · x� +O(nε))]
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We now take a limit where nε → 0 and n → ∞ (e.g. n = ε−γ with
0 < γ < 1). As a result, for ε → 0 the left-hand side of the above equation
becomes a time derivative, whereas on the right-hand side we obtain an
average over the input set �:

d
dt

J (t) = 〈x[M(x)− θ(J (t) · x)]〉� (2.12)

with 〈f (x)〉� = ∑
x∈� p(x)f (x) and with p(x) denoting the probability

that input vector x is drawn from � during the learning process. Equation
(2.12) is valid for times measured in units of the learning rate ε, in the limit
ε → 0.

If we apply this derivation to the Ising perceptron (2.9, 2.10), we find the
same continuous time equation for J (t), but now written in the form

d
dt

J (t) = 1
2
〈x[T (x)− sgn(J (t) · x)]〉� (2.13)

At first sight it might seem that the continuous time process (2.12) is
weaker than the discrete time version (2.11), as it is derived in a specific
temporal limit and involves only averages over the distribution �. Never-
theless we can still prove that, provided the task is linearly separable, the
continuous time equation will converge towards the desired state. This can
even be shown to happen in a finite time. We restrict ourselves for simplicity
to discrete and finite input sets.

Proposition. If the task M is linearly separable over a discrete and finite
input set �, then equation (2.12) will converge to a fixed point J such that
θ(J · x) = M(x) ∀x ∈ �.

Proof. First we demonstrate that the dynamical equation (2.12) must lead
to a fixed point. Then we show that this fixed point corresponds to a state
where the perceptron performs the task M perfectly.

• To see that (2.12) must lead to a fixed point, we first note that the differ-
ential equation (2.12) describes a so-called gradient descent dynamics in
an ‘error-landscape’ E(J ),

d
dt

Ji = − ∂

∂Ji

E(J )

with

E(J ) = 〈(J · x)[θ(J · x)−M(x)]〉� (2.14)
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(which can be verified easily by explicit derivation). As a result we know
that during the process (2.12) the quantity E can only decrease:

d
dt

E(J ) =
∑

i

∂E

∂Ji

d
dt

Ji = −
∑

i

(
∂E

∂Ji

)2

≤ 0

• Since M is linearly separable, ∃B (with |B| = 1) such that M(x) = θ(B · x)

∀x ∈ �. We can use this property to show (i) that E(J ) ≥ 0 for all J

and, for finite �, (ii) that there is a positive lower bound for |dE(J )/dt |
as long as E > 0. Together these results imply convergence to a fixed
point in finite time.
(i) To see that E(J ) ≥ 0, we use M(x) = θ(B · x), and θ(x) = 1

2×[sgn(x)+ 1] to rewrite equation (2.14) as

E(J ) = 1
2 〈(J · x)[sgn(J · x)− sgn(B · x)]〉�

= 1
2 〈|J · x|[1− sgn(J · x)sgn(B · x)]〉�

from which the required result E(J ) ≥ 0 follows immediately.

(ii) To establish a positive lower bound for |dE(J )/dt | which holds as
long as E > 0, we use the Schwarz inequality y2 ≥ (B · y)2 (for
|B| = 1). This gives us the inequality

d
dt

E(J ) = −
(

d
dt

J

)2

= −〈x[θ(B · x)− θ(J · x)]〉2�
≤ −〈(B · x)[θ(B · x)− θ(J · x)]〉2�
= −〈|B · x|θ(−(J · x)(B · x))〉2�
≤ −[ min

x∈�∗(J)
p(x)|B · x|]2

in which �∗(J ) = {x ∈ � | (J · x)(B · x) < 0}. This set is not empty
if E > 0. Using the finiteness of � to define the constant7 K > 0 as

K = min
x∈� p(x)|B · x|

we now immediately arrive at

E(J ) > 0:
d
dt

E(J ) ≤ −{min
x∈� p(x)|B · x|}2 = −K2 (2.15)

• This last inequality (2.15) subsequently implies

E(t) = E(J (t)) ≤ 0 for t > E(0)/K2

7 A similar proof can be set up for the case where the input set is not discrete and finite;
there one will need some additional assumptions such as (∃δ > 0): |B · x| > δ|x| for all
x ∈ �.
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As a consequence we know that E(t) = 0 for t ≥ E(0)/K2, which, in
turn, implies that dJi/dt = 0 ∀i as soon as t > E(0)/K2. Therefore the
vector J (t) evolves in a finite time towards a fixed point.8

• Finally we show that any fixed point of (2.12) will have the stated
property, θ(J · x) = M(x) ∀x ∈ �. A fixed point J satisfies

〈x[sgn(B · x)− sgn(J · x)]〉� = 0

Taking the inner product with the teacher vector B gives:

〈(B · x)[sgn(B · x)− sgn(J · x)]〉� = 0

〈|B · x|[1− sgn(B · x)sgn(J · x)]〉� = 0

so, since |B · x| > 0 ∀x ∈ �:

∀x ∈ �: sgn(B · x) = sgn(J · x)

which is equivalent to saying that M(x) = θ(J · x) ∀x ∈ �. This
completes our proof. �

The quantity E(J ) (2.14) that is minimized by the process (2.12) has a
clear interpretation. By using the identity 1

2 [1− sgn(A)sgn(B)] = θ(−AB),
we can write E(J ) as

E(J ) = 〈|J · x|θ(−(J · x)(B · x))〉� (2.16)

This shows that E(J ) measures the average distance to the separating plane
J · x = 0 of all those input vectors x ∈ � that are at the wrong side of this
plane. Minimizing E is therefore equivalent to moving the plane in such
a way that this average distance goes down. At the minimum of E, the
number of vectors at the wrong side of the plane is indeed zero.

Our interpretation of the learning rule as a gradient descent minimization
of some error measure (at least in the continuous time limit (2.12)) is an
important one. First, it allows us to build systematically other learning rules
for our perceptron, by specifying alternative error measures, deriving the
corresponding gradient descent equation, and subsequently performing the
translation from the continuous time formulation back to the original dis-
crete time version. Second, this interpretation also allows us to derive
learning rules for the more complicated layered networks.

8 A function E of a dynamical variable with these properties, bounded from below and
decreasing monotonically with time, is called a Lyapunov function.
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2.4 Learning in layered networks: error
backpropagation

For feed-forward layered networks, where the state of any neuron cannot
feed back to influence its input, the difference between graded response
neurons and McCulloch–Pitts neurons is not too large. Just consider two
subsequent layers of graded response neurons, {Ui} (i = 1, . . . , N) and {U ′j }
(j = 1, . . . , L), respectively. If the states in the first layer {Ui} are stationary,
the equations for the second layer are solved easily:

τ
d
dt

U ′i (t) =
∑

k

Jikg(Uk − U�
k )− U ′i (t)

U ′i (t) = U ′i (0) e−t/τ +
∑

k

Jikg(Uk − U�
k )(1− e−t/τ )

U ′i (∞) =
∑

k

Jikg(Uk − U�
k )

Therefore, if we simply wait until all layers have relaxed towards their
stationary states {U ′i (∞)}, one layer after the other, then for both
McCulloch–Pitts neurons and graded response neurons the effective equa-
tions can eventually be written in the general form

S′i = g

(∑
k

JikSk − U�
i

)
(2.17)

with McCulloch–Pitts neurons corresponding to the special choice
g(x) = θ(x).

Single-output feed-forward two-layer networks

Let us now build a two-layer feed-forward network of such graded response
units:

x1

xN

y1

yL

S
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yi = g

( N∑
j=1

Wijxj − Vi

)

S = g

( L∑
i=1

Jiyi − U

)
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Upon using the by now familiar trick of adding the dummy variables x0 =
y0 = 1 and defining Wi0 = −Vi and J0 = −U , we can write our equations
in their simpler form

yi = g

( N∑
j=0

Wijxj

)
S = g

( L∑
i=0

Jiyi

)
(2.18)

or, in combination:

S(x) = g

(
J0 +

L∑
i=1

Ji g

( N∑
j=0

Wijxj

))
(2.19)

The operation M to be learned need no longer be formulated in terms of
binary variables since our present graded response neurons produce real-
valued outputs, so we write more generally:

M: � ⊆ IRN → [0, 1] (2.20)

We note, however, that the universality proof of two-layer feed-forward
networks was given only for binary input and output variables.

The aim of a learning procedure is to achieve S(x) = M(x) ∀x ∈ �. In the
spirit of the situation we encountered with the continuous time version of
the perceptron learning rule, we now define the dynamics of the weights by
gradient descent on an error surface E(B, J ), for which one usually chooses

E(B, J ) = 1
2 〈[S(x)−M(x)]2〉� (2.21)

Clearly E is bounded from below. Supposing that the operation M can
in principle be realized with the given neurons and network architecture,
the minimum is E = 0 and corresponds to the desired situation where
S(x) = M(x) ∀x ∈ �. The learning rule thereby becomes:

d
dt

Wij = − ∂

∂Wij

E(B, J )
d
dt

Ji = − ∂

∂Ji

E(B, J ) (2.22)

which guarantees, as before, that

d
dt

E =
∑
ij

∂E

∂Wij

d
dt

Wij +
∑

i

∂E

∂Ji

d
dt

Ji = −
∑
ij

(
∂E

∂Wij

)2

−
∑

i

(
∂E

∂Ji

)2

≤ 0

(2.23)
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The overall error E will always go down, however, we have no guar-
antee that we will end up at the absolute minimum E = 0. A simple
one-dimensional example will illustrate what could happen:

x

f (x)

d
dt

x = − ∂
∂x

f (x)

There are three local minima of f (x) (indicated by •), of which one is
the global minimum, and two unstable fixed points (indicated by ◦). The
dynamic equation dx/dt = −∂f (x)/∂x will lead to the desired minimum
only for initial values x(0) in a restricted segment of the x-axis. If x(0)

happens to be close to one of the other two (local) minima, the system will
evolve towards a suboptimal local minimum instead.

We can now simply use the chain rule for differentiation to work out the
learning rules (2.22). We introduce the output error �(x) = M(x) − S(x)

that the network makes upon presentation of input vector x ∈ �, allowing
us to write

d
dt

Ji =
〈
�(x)

∂S(x)

∂Ji

〉
�

=
〈
�(x)g′

( L∑
j=0

Jjyj

)
yi

〉
�

(2.24)

d
dt

Wij =
〈
�(x)

∂S(x)

∂Wij

〉
�

=
〈
�(x)g′

( L∑
k=0

Jkyk

)
Jig
′
( N∑

m=0

Wimxm

)
xj

〉
�

(2.25)

A convenient choice for the non-linear function g(x) is g(x) = 1
2 [1 +

tanh(x)], which has the nice property that the derivative of g(x) is a simple
function of g(x) itself, g′(x) = G(g(x)) = 2g(x)[1 − g(x)]; this property
can be exploited to reduce the number of numerical function evaluations
in applications of the scheme considerably. In that case the learning rule
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simplifies to:

d
dt

Ji = 〈�(x)G(S(x))yi〉� (2.26)

d
dt

Wij = 〈�(x)G(S(x))JiG(yi(x))xj 〉� (2.27)

Returning to the derivation of the continuous time version of the perceptron
learning rule, the evolution equations (2.26, 2.27)—usually referred to as
batch-learning equations as they involve (averaging over) the complete set
� of inputs—can be identified as the continuous-time limit of the online
learning process:

Ji(t + ε) = Ji(t)+ ε�(x)G(S(x))yi (2.28)

Wij (t + ε) = Wij (t)+ ε�(x)G(S(x))JiG(yi(x))xj (2.29)

In the online equations (2.28, 2.29), the vectors x ∈ � are drawn at random
at each iteration step. This discrete formulation, with the understanding that
ε � 1, is called ‘learning by error backpropagation’. In the limit ε → 0 the
online equations become fully equivalent to (2.26, 2.27).

The term error backpropagation stems from the property that, for the
online formulation (2.28, 2.29), by performing the chain rule differenti-
ations we are essentially linking all variations in parameters appearing in
an earlier layer of neurons to the resulting changes in the error �(x) in
the final layer. This will become more transparent in a generalization to
arbitrary feed-forward architectures to which we turn now.

Generalization to arbitrary feed-forward networks

The above construction can be generalized quite easily to an arbitrary
number of output variables and an arbitrary number of hidden layers, as
long as the architecture remains of a strictly feed-forward nature. We ima-
gine a structure with N input variables and L output neurons. In between the
input and output layers one has m hidden layers, labelled by � = 1, . . . , m;
each of these contains N� neurons, the states of which are written as y�

i

(i = 1, . . . , N�). The weight (or synapse) connecting neuron j in layer �− 1
to neuron i in layer � is denoted by J �

ij . The equations giving the neuron
states then become (with the usual convention of the extra dummy neurons
to take care of thresholds):

M: � ⊆ IRN → [0, 1]L S: � ⊆ IRN → [0, 1]L (2.30)

y1
i = g

( N∑
j=0

J 1
ij xj

)
y�
i = g

(N�−1∑
j=0

J �
ij y

�−1
j

)
(� > 1) (2.31)
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Si = g

( Nm∑
j=0

Jm+1
ij ym

j

)
(2.32)

x1

xN

y1
1

y1
N1
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S1

SL

ym
1

· · · · ·

· · · · ·

· · · · ·

ym
Nm
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The overall error measure is now defined as the sum of the squared errors
of the L individual output neurons:

E(J ) = 1
2

L∑
i=1

〈[Si(x)−Mi(x)]2〉� (2.33)

E is bounded from below; its minimum9 E = 0 corresponds to the desired
situation where Si(x) = Mi(x) ∀x ∈ � and ∀i ∈ {1, . . . , L}. The gradient
descent learning rule generalizes to:

d
dt

J �
ij = −

∂

∂J �
ij

E(J ) ∀(i, j , �) (2.34)

which guarantees that

d
dt

E =
∑
ij

∑
�

∂E

∂J �
ij

d
dt

J �
ij = −

∑
ij

∑
�

(
∂E

∂J �
ij

)2

≤ 0 (2.35)

To work out the learning rules (2.34) we again define output errors �i(x) =
Mi(x)− Si(x); there are now L of these. We also simplify our equations by

9 We are once more assuming that the task is realizable by the given architecture.
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writing g′(x) = G(g(x)). This allows us to write for � = m+ 1:

d
dt

Jm+1
ij =

L∑
k=1

〈
�k

∂Sk

∂Jm+1
ij

〉
�

= 〈�iG(Si)y
m
j 〉� (2.36)

whereas for 1 < � ≤ m one finds

d
dt

J �
ij =

L∑
k=1

〈
∂Sk

∂J �
ij

�k

〉
�

=
L∑

k=1

N�∑
i�=0

· · ·
Nm∑

im=0

〈
�k

∂Sk

∂ym
im

∂ym
im

∂ym−1
im−1

· · · ∂y�+1
i�+1

∂y�
i�

∂y�
i�

∂J �
ij

〉
�

=
L∑

k=1

N�+1∑
i�+1=0

· · ·
Nm∑

im=0

〈
�kG(Sk)J

m+1
kim

G(ym
im

)Jm
imim−1

× · · · ×G
(
y�+1
i�+1

)
J �+1

i�+1i�
G(y�

i )y
�−1
j

〉
�

(2.37)

Finally, for � = 1 we only have to change the last derivative in the
previous line:

d
dt

J 1
ij =

L∑
k=1

N2∑
i2=0

· · ·
Nm∑

im=0

〈
�kG(Sk)J

m+1
kim

G(ym
im

)Jm
imim−1

× · · · ×G(y2
i2
)J 2

i2i1
G(y1

i )xj

〉
�

(2.38)

These equations illustrate more clearly than in the two-layer case the inter-
pretation of output-errors propagating backwards through the network to
the parameter that is being modified. We can make this interpretation even
more explicit by introducing ‘scaled’ output errors

δm+1
k = �kG(Sk) 1 ≤ k ≤ L

Using the last layer of connections in a direction opposite to that of the
forward signal propagation as given by (2.31, 2.32), these define scaled
back-propagated errors for the last hidden layer via

δm
im
=

( L∑
k=1

δm+1
k Jm+1

k im

)
G(ym

im
) 1 ≤ im ≤ Nm

This procedure of backpropagating and rescaling errors can be iterated
from layer to layer. Thus for m ≥ � ≥ 1 backpropagation � + 1→ � with
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rescaling reads

δ�
i�
=

( N�+1∑
i�+1=1

δ�+1
i�+1

J �+1
i�+1i�

)
G(y�

i�
), 1 ≤ i� ≤ N�

In terms of these backpropagated and rescaled errors, the dynamic equa-
tions for the connections take a very simple and transparent form, pairing
scaled errors at the output side of a connection with signal at the input side,
namely

d
dt

J �
ij = 〈δ�

i y
�−1
j 〉�, 2 ≤ � ≤ m+ 1 and

d
dt

J 1
ij = 〈δ1

i xj 〉� (2.39)

The discrete-time online version of the above procedure is obtained in
the by now familiar manner. The average over the set � is removed and at
each iteration step an input vector x ∈ � is drawn at random instead:

Jm+1
ij (t + ε) = Jm+1

ij (t)+ ε�iG(Si)y
m
j (2.40)

with for 1 < � ≤ m:

J �
ij (t + ε) = J �

ij (t)+ ε

L∑
k=1

N�+1∑
i�+1=0

· · ·
Nm∑

im=0

�kG(Sk)J
m+1
kim

G(ym
im

)Jm
imim−1

× · · · ×G
(
y�+1
i�+1

)
J �+1

i�+1i�
G(y�

i )y
�−1
j (2.41)

and for � = 1:

J 1
ij (t + ε) = J 1

ij + ε

L∑
k=1

N2∑
i2=0

· · ·
Nm∑

im=0

�kG(Sk)J
m+1
kim

G(ym
im

)Jm
imim−1

× · · · ×G(y2
i2
)J 2

i2i1
G(y1

i )xj (2.42)

with the discretization step ε � 1.

2.5 Learning dynamics in small learning rate
perceptrons

As a prelude to a more general analysis later in this book, we now show
how for large perceptrons with small learning rates (i.e. upon taking the
limit N → ∞ after the limit ε → 0) and simple probability distributions



2.5 Learning dynamics in small learning rate perceptrons 53

for the input vectors x ∈ �, the dynamical equation for the connections
J (t) can be reduced to just two coupled non-linear differential equations,
which contain all the relevant information on the learning process and on
the performance of the perceptron at any time. From these one can calculate
the generalization error of our perceptron as a function of time; conversely,
given the desired reliability of the system’s operation one can then predict
the required duration of the learning process.

Macroscopic observables

Our starting point is the Ising perceptron with infinitesimal learning rates, as
described by the continuous time equation (2.13), with a linearly separable
task T (x) = sgn(B · x). By taking the inner product on both sides with
J and B we obtain from (2.13) the following two equations:

d
dt

J 2 = 2J · d
dt

J (2.43)

= 〈(J · x)[sgn(B · x)− sgn(J · x)]〉� (2.44)

d
dt

(B · J ) = 1
2
〈(B · x)[sgn(B · x)− sgn(J · x)]〉� (2.45)

We now define J = J Ĵ , with |Ĵ | = 1, and ω = B · Ĵ . Using relations
such as d(B · J )/dt = J (dω/dt) + ω(dJ/dt), one immediately obtains
from (2.44, 2.45) the following two equations in terms of the macroscopic
observables (J , ω):

d
dt

J = 1
2
〈(Ĵ · x)[sgn(B · x)− sgn(Ĵ · x)]〉�

J
d
dt

ω = 1
2
〈[(B · x)− ω(Ĵ · x)][sgn(B · x)− sgn(Ĵ · x)]〉�

We note that the statistics of the input vectors x enter into these equations
only through the two quantities u = B · x and v = Ĵ · x, so that we can
write

d
dt

J = 1
2

∫
dudv P (u, v)v[sgn(u)− sgn(v)]

J
d
dt

ω = 1
2

∫
dudv P (u, v)(u− ωv)[sgn(u)− sgn(v)]

in which P(u, v) denotes the joint probability distribution of u and v for ran-
domly drawn input vectors x ∈ � with probabilities p(x). This distribution
depends on time through the evolving vector Ĵ .
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By working out the effect of the sgn() functions for the various integration
regimes, the above differential equations can be written in the simple form

d
dt

J = −
∫ ∞

0

∫ ∞
0

dudv v[P(u,−v)+ P(−u, v)] (2.46)

d
dt

ω = 1
J

∫ ∞
0

∫ ∞
0

dudv (u+ ωv)[P(u,−v)+ P(−u, v)] (2.47)

Clearly dJ/dt ≤ 0 and dω/dt ≥ 0 at all times. In order to quantify the
degree to which the perceptron has learned the task at hand, and to inter-
pret the dynamic equations (2.46, 2.47), we can define and calculate error
measures. The quantity E(J ) from (2.14), for instance, can be rewritten in
terms of the above variables as

E = J

∫ ∞
0

∫ ∞
0

dudv v[P(u,−v)+ P(−u, v)] (2.48)

Another relevant quantity is the so-called generalization error Eg, defined
as the probability of finding an input vector x ∈ � such that sgn(B · x) �=
sgn(J · x). Its definition Eg = 〈θ(−(B · x)(J · x))〉� translates immedi-
ately into

Eg =
∫ ∞

0

∫ ∞
0

dudv [P(u,−v)+ P(−u, v)] (2.49)

The details of the task T , the size N , and the statistics p(x) of input vectors
are all concentrated in the distribution P(u, v). According to (2.46), the
length of the evolving vector J always decreases monotonically. As soon as
J = 0, we will have to define in the original dynamical rules what we want
sgn(0) to be (as also in the original perceptron learning rule); the natural
choice is sgn(0) = 0.

Large perceptrons with uniformly distributed input vectors

We now restrict ourselves to large perceptrons (i.e. N →∞) with uniformly
distributed input vectors (i.e. � = {−1, 1}N with p(x) = 2−N ∀x ∈ �). Here
we benefit from the following simplifications: one can calculate P(u, v), the
latter turns out to be a rather simple function, and in addition it depends
on time only through ω. In combination, this means that the two equa-
tions (2.46, 2.47) will close, that is, their right-hand sides can be expressed
solely as functions of (ω, J ). Instead of N coupled non-linear differential
equations (for the N components of the weight vector J ) we will have
reduced the problem of solving the learning dynamics to the analysis of just
two coupled non-linear differential equations, which in fact can be reduced
further to only one. Not all of the properties assumed here to arrive at
this simplification are, strictly speaking, necessary. In fact we only need
N →∞ and p(x) =∏

i pi(xi); here we will only illustrate the ideas for the
simplest case.
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For N → ∞ and � = {−1, 1}N , with p(x) = 2−N ∀x ∈ � (so that
all components of x are distributed independently according to p(xi) = 1

2
for xi = ±1), we may try to apply the central limit theorem (CLT) to
the two stochastic quantities u = B · x and v = Ĵ · x, which suggests
that they will be described by a Gaussian probability distribution P(u, v).
This will usually be true, but not always; one simple counterexample is
the case where B or Ĵ has only a finite number of nonzero components.
The conditions for an inner product B · x of N -component vectors to
acquire a Gaussian probability distribution for N →∞, given statistically
independent random components xi ∈ {−1, 1} (with equal probabilities),
are rather subtle. A sufficient condition is

∀ε > 0: lim
N→∞

N∑
i=1

θ

(
B2

i − ε

N∑
k=1

B2
k

)
= 0 (2.50)

A necessary condition is

lim
N→∞

∑N
i=1 B4

i(∑N
i=1 B2

i

)2 = 0 (2.51)

For a derivation of these conditions see Appendix B. Both conditions state
that for large N the inner product B · x should not be dominated by just a
small number of components of B.

In the generic case, both conditions (2.50, 2.51) will usually be met, and
P(u, v) is indeed a Gaussian distribution. In Appendix D we derive some
general results for Gaussian distributions of more than one variable. For the
present problem we can calculate directly the first few moments of P(u, v),
by noting that 〈xi〉� = 0 and 〈xixj 〉� = δij :

∫
dudv uP (u, v) = 〈u〉� =

N∑
i=1

Bi〈xi〉� = 0

∫
dudv vP (u, v) = 〈v〉� =

N∑
i=1

Ĵi〈xi〉� = 0

∫
dudv u2P(u, v) = 〈u2〉� =

N∑
ij=1

BiBj 〈xixj 〉� =
N∑

i=1

B2
i = 1

∫
dudv v2P(u, v) = 〈v2〉� =

N∑
ij=1

Ĵi Ĵj 〈xixj 〉� =
N∑

i=1

Ĵ 2
i = 1

∫
dudv uvP (u, v) = 〈uv〉� =

N∑
ij=1

BiĴj 〈xixj 〉� =
N∑

i=1

BiĴi = ω

(2.52)
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Using the results of Appendix D, we know that the values of the moments
(2.52) completely determine the distribution P(u, v), so that we may write
directly

P(u, v) =
√

det A

2π
exp

[
−1

2

(
u

v

)
·A

(
u

v

)]

A−1 =
(〈u2〉 〈uv〉
〈uv〉 〈v2〉

)
=

(
1 ω

ω 1

)

All we need to do is to invert the matrix A−1, which gives us the desired
result:

A = 1
1− ω2

(
1 −ω

−ω 1

)
det A = 1

1− ω2

P(u, v) = 1

2π
√

1− ω2
e−(u2+v2−2ωuv)/2(1−ω2) (2.53)

Without even having to calculate any integrals, we can already draw import-
ant conclusions on the solution of the differential equations (2.46, 2.47),
by simply exploiting that (2.53) remains the same if we change the sign
of both u and v or if we interchange u and v. This leads to the identities
P(u,−v) = P(−u, v) and∫ ∞

0

∫ ∞
0

dudv v[P(u,−v)+ P(−u, v)]=
∫ ∞

0

∫ ∞
0

dudv u[P(u,−v)+ P(−u, v)]

In particular, we can simplify (2.46, 2.47) to

d
dt

J = −K(ω)
d
dt

ω = 1+ ω

J
K(ω) (2.54)

K(ω) =
∫ ∞

0

∫ ∞
0

dudv

π
√

1− ω2
v e−(u2+v2+2ωuv)/2(1−ω2) (2.55)

Elimination of K(ω) from the two equations (2.54) gives (1+ω)−1(dω/dt)+
J−1(dJ/dt) = 0, or

d
dt
[ln(1+ ω)+ ln(J )] = 0 ⇒ J (t) = C

1+ ω(t)
(2.56)

in which the constant can be determined by inserting the details of the initial
state: C = J (0)[1 + ω(0)]. The curves (2.56), for various values of C, are
shown in Figure 2.1.

In order to go further, and find the values of the macroscopic observables
explicitly as functions of time, we calculate in Appendix D the integral K(ω)
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Figure 2.1 The relation between J (t) = |J | and ω(t) = B · Ĵ (t) during the training of
large perceptrons with infinitesimal learning rates, on linearly separable tasks. Different
curves refer to different initial conditions (ω(0), J (0)). The flow through these trajectories is
from the left to the right.

defined by (2.55). The result is (see integral I5 of the appendix) K(ω) =
(1− ω)/

√
2π , with which we obtain for (2.54)

d
dt

J = −1− ω√
2π

d
dt

ω = 1− ω2

J
√

2π
(2.57)

Finally we can use the relation between J and ω (2.56) to reduce the set
(2.57) to just a single equation for ω(t). We achieve this simplification by
simply substituting J (t) = J (0)[1 + ω(0)]/[1 + ω(t)] into the differential
equation for ω(t):

d
dt

ω = 1
D

(1+ ω)(1− ω2) D = J (0)[1+ ω(0)]√2π (2.58)

This equation is solved using separation of variables. We get

d
dω

t = D

(1+ ω)(1− ω2)
= D

2(1+ ω)

(
1

1+ ω
+ 1

1− ω

)

= 1
2

D

[
1

(1+ ω)2
+ 1

1− ω2

]

= 1
4

D

[
2

(1+ ω)2
+ 1

1+ ω
+ 1

1− ω

]

= 1
4

D
d

dω

[
− 2

1+ ω
+ ln(1+ ω)− ln(1− ω)

]
(2.59)
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so that

t = J (0)[1+ ω(0)]
√

π

2

[
1
2

ln
(

1+ ω

1− ω

)
− 1

1+ ω
+ A

]
(2.60)

with the constant A determined by initial conditions:

A = 1
1+ ω(0)

− 1
2

ln
[
1+ ω(0)

1− ω(0)

]
(2.61)

In particular, for the simple and common case where the initial student
vector J (0) is drawn at random, we typically have ω(0) = 0. In that case,
the solution (2.60) takes a simple form:

ω(0) = 0: t = J (0)

√
π

2

[
1
2

ln
(

1+ ω

1− ω

)
+ ω

1+ ω

]
(2.62)

For large perceptrons, that is, for N → ∞ as in the above analysis of
the closed dynamical equations for ω and J , we can also work out the
precise relation (2.49) between ω and the generalization error Eg (2.49)
(see integral I3 in Appendix D), which gives us

Eg = 1
π

arccos(ω) ω = cos(πEg) (2.63)

This one-to-one relation enables us to write the equations for ω (2.58, 2.60)
in terms of Eg. For instance, by using standard relations like cos(2α) =
cos2(α)− sin2(α), we can transform the result (2.62) for initial conditions
characterized by ω(0) = 0 (so Eg(0) = 1

2 ) into

t = 1
2

√
π

2
J (0)

[
1− tan2

(
1
2

πEg

)
− 2 ln tan

(
1
2

πEg

)]
(2.64)

This relation is drawn in Figure 2.2, for different values of J (0).

2.6 Numerical simulations

We end this chapter with some numerical simulations of the learning pro-
cedures and network architectures discussed so far. We will illustrate some
general trends and, where possible, make comparisons with our theoretical
results.
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Figure 2.2 The generalization error Eg as a function of time, following a random initial
weight configuration, that is, Eg(0) = 1

2 . The different curves refer to J (0) = 2, 3
2 , 1, 1

2
(from top to bottom).

Figure 2.3 Evolution in time of the macroscopic observable ω = B · Ĵ for numerical
simulations of the standard discrete-time perceptron learning rule, for different system sizes
N , always with a randomly drawn but normalized task vector B and learning rate ε = 1.
For each picture, J was initialized randomly, with four different lengths J (0) ∈ {2, 3

2 , 1, 1
2 }.

Numerical simulations of perceptrons

We first simulate numerically the original discrete perceptron learning
procedure (2.4), for different choices of the input space dimension N and
of the initial length J (0) = |J (0)| of the student vector. For simplicity we
choose � = {−1, 1}N , p(x) = 2−N ∀x ∈ �, and a randomly drawn (but
normalized) teacher vector B. We measure the observable ω = B · Ĵ , where
Ĵ = J/|J |. The results are shown in Figure 2.3. Several conclusions can be



60 2 : Layered networks

drawn from such experiments, while keeping in mind that for specifically
constructed pathological teacher vectors the picture might be different:

• The duration of the learning process scales linearly with N .
• If viewed on the relevant N -dependent timescale (as in the figure), the

fluctuations in ω as caused by the randomness in the selection of input
vectors x become negligible as N → ∞; this is the main property that
enabled the derivation of the deterministic continuous time equation.
• In contrast to the situation with small learning rates, for ε = 1 all differ-

ences in the initial length J (0) which are O(1) are irrelevant. The reason
is clear: they can be wiped out in just a few iteration steps.

Next we show that for N → ∞ and ε → 0 the learning dynamics is
indeed described by equation (2.60). We have to keep in mind that in the
derivation we have taken the two limits in a specific order: limε→0 first,
followed by limN→∞. The required ε needed to find oneself in the scaling
regime described by the earlier dynamical analysis may therefore generally
depend on N : ε = ε(N). Since ε defines the unit of time in the process
J (t + ε) = J (t) + ε�J (. . .), and since the learning time is found to scale
linearly with N , we are led to the scaling relation

ε(N) = η/N η � 1 (2.65)

According to the simulation experiments for small ε, as shown in Figures 2.4
and 2.5, this is indeed the appropriate scaling of the learning rate. Note that
the time can now no longer be identified with the number of iteration steps
(as in the ε = 1 case); for ε < 1 the relation is t = nstepsε. Equivalently,

nsteps = Nt/η

Figure 2.4 Evolution of ω in an Ising perceptron (with N = 1000 and a randomly drawn
but normalized task vector B), for η = εN ∈ {1, 0.1, 0.01}, following random initialization.
Solid lines correspond to numerical simulations, and dashed lines to the theory, with
J (0) ∈ {2, 3

2 , 1, 1
2 }, from top to bottom.
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Figure 2.5 Evolution of ω in an Ising perceptron (with η = εN = 0.01 and a randomly
drawn but normalized task vector B), for N ∈ {10, 100, 1000}, following random
initialization. Solid lines correspond to numerical simulations, and dashed lines to the
theory, with J (0) ∈ {2, 3

2 , 1, 1
2 }, from top to bottom.

Note also that the figures illustrate the different roles played by the two
limits N → ∞ and η → 0. Decreasing η moves the experimental curves
towards the theoretical ones; increasing N reduces the fluctuations (mainly
triggered by initial conditions).

Numerical simulations of error backpropagation

In the case of multilayer networks, trained with the online version of
error backpropagation (i.e. the version where at each iteration step an
input vector is drawn at random), there is as yet little theory to compare
with. The exception are results on the so-called ‘committee machines’;
these are two-layer networks in which only the weights feeding into the
hidden layer evolve in time. Therefore we will just show how the learn-
ing procedure works out in practice, by measuring as a function of time,
for a network with two layers and a single output neuron, the output
error E = 1

2 〈[S(x) −M(x)]2〉�. We consider two simple tasks, the parity
operation (in ±1 representation) and a linearly separable operation (with a
randomly drawn teacher vector):

x ∈ � = {−1, 1}N task I: M(x) =
N∏

i=1

xi ∈ {−1, 1}

task II: M(x) = sgn(B · x) ∈ {−1, 1}
(2.66)

to be learned by the two-layer network

S(x) = g

( L∑
i=0

Jiyi(x)

)
yi(x) = g

( N∑
j=0

Wijxj

)
(2.67)
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Figure 2.6 Evolution of the overall error E in a two-layer feed-forward network trained by
error backpropagation, with N = 15 input neurons, L = 10 hidden neurons, and a single
output neuron. The results refer to independent experiments involving either a linearly
separable task (with random teacher vector, lower curves) or the parity operation (upper
curves), with learning rates η = εN ∈ {1, 0.1, 0.01}, following random initialization.

N = 2 N = 10 N = 15

Figure 2.7 Evolution of the overall error E in a two-layer feed-forward network trained by
error backpropagation, with η = εN = 0.01, L = 10 hidden neurons, and a single output
neuron. The results refer to independent experiments involving either a linearly separable
task (with random teacher vector, lower curves) or the parity operation (upper curves), with
input size N ∈ {2, 10, 15}, following random initialization.

in which the transfer function is chosen to be g(x) = tanh(x) ∈ (−1, 1)

and we use the usual dummy variables x0 = y0 = 1. Perfect performance
would obviously correspond to E = 0. On the other hand, for a task
M(x) ∈ {−1, 1} a trivial multilayer perceptron with all parameters (weights
and thresholds) set to zero would produce E = 1

2 〈M2(x)〉� = 1
2 .

The results of numerical simulations are shown in Figures 2.6, 2.7, and
2.8; we performed four independent trials for each parameter combina-
tion and each task. For the online version of error backpropagation to
approach the desired learning equations involving averages over the input
set (the batch version, corresponding to gradient descent on the error sur-
face), we again have to take the limit ε → 0 for every (N , L) combination,
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Figure 2.8 Evolution of the overall error E in a two-layer feed-forward network trained by
error backpropagation, with η = εN = 0.01, N = 10 inputs, and a single output neuron.
The results refer to independent experiments involving either a linearly separable task (with
random teacher vector, lower curves) or the parity operation (upper curves), with hidden
layer size L ∈ {2, 10, 15}, following random initialization.

Figure 2.9 Evolution of the overall error E in a two-layer feed-forward network, trained
by error backpropagation on the parity operation (with η = εN = 0.01, N = 10 inputs,
L = 10 hidden neurons, and a single output neuron), following random initialization.

so we should expect ε = ε(N , L). The simulation results indicate the
appropriate scaling to be

ε(N , L) = η/N η � 1 (2.68)

We have to be careful, however, in drawing conclusions about whether the
network succeeds in solving the problem from simulations experiments such
as the ones in Figures 2.6, 2.7, and 2.8. A learning session can involve several
distinct stages and timescales, possibly dependent on initial conditions.

For instance, the experiments done in the time window 0 < t < 100 sug-
gest that the network does not succeed in performing the parity operation
for (N , L) ∈ {(10, 10), (10, 15)}, whereas we know it is perfectly capable of
doing so for L ≥ N . However, if we enlarge the time window of our experi-
ments we do find a certain fraction of our trials being successful after all, if
we are prepared to wait longer, as illustrated by Figure 2.9. The system is



64 2 : Layered networks

seen to spend a significant amount of time in a transient so-called ‘plateau’
phase, where the error E does not change much, before it discovers the rule
underlying the training examples.

2.7 Exercises

Exercise 2.1. (Elementary logical operations and model neurons.) Consider
the task f : {0, 1}3 → {0, 1} that is defined by

f (x1, x2, x3) =




1, if (x1, x2, x3) = (1, 0, 1)

1, if (x1, x2, x3) = (1, 1, 1)

0, otherwise

Show, via geometrical considerations or otherwise, that the function f can
be realized by a single McCulloch–Pitts neuron. Give suitable values for
synaptic weights and the threshold. If we take into account higher order
synapses, the operation of a McCulloch–Pitts neuron is known to become
somewhat more sophisticated:

S(x) = θ

(∑
k

Jkxk +
∑
k,�

Ĵk�xkx� − U

)

Can we perform the so-called XOR operation, that is, (x1, x2) →
XOR(x1, x2) with (x1, x2) ∈ {0, 1}2, which a McCulloch–Pitts neuron
cannot realize, with a single neuron like this?

Exercise 2.2. (The parity operation.) Define the so-called parity operation

M: {0, 1}N → {0, 1} M(x) = 1
2 [1+ (−1)

∑N
i=1 xi ]

The function M indicates whether (M = 1) or not (M = 0) the number
of ‘+1’ components of the input vector x is even. Show that for N = 2
one has M(x1, x2) = ¬XOR(x1, x2). Prove that for N ≥ 2 the parity
operation cannot be performed by a single McCulloch–Pitts neuron of the
standard form

S(x) = θ

( N∑
i=1

Jixi − U

)

Exercise 2.3. (Symmetries.) We know that a two-layer feed-forward
network of McCulloch–Pitts neurons, with L = |�+| ≤ 2N neurons in
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the hidden layer can perform any operation M: {0, 1}N → {0, 1}, provided
all connections and thresholds are properly chosen. Here |�+| denotes the
number of input vectors in the set �+. However, in the case where there are
symmetries in the task M, the number L of required hidden neurons can be
considerably smaller. An example of such an operation is the parity opera-
tion (see above). Here M is invariant under all permutations of the indices
{1, . . . , N} of the input vector x. We take N = 2. Now �+ = {(0, 0), (1, 1)},
so the upper bound for L is 2. Construct a two-layer feed-forward network
of McCulloch–Pitts neurons with L = 2 that performs the parity operation,
not as a realization of a look-up table, but by using the fact that, due to the
permutation symmetry, M(x) can be written as a function only of x1 + x2.
Hints: write yi(x) = θ(x1 + x2 − Ui), and use a graphical representation
of what the output neuron S(y1, y2) is required to do in order to find an
appropriate separating plane.

Next choose N = 3. Since here �+ = {(0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0)},
the upper bound for L is 4. Construct a two-layer feed-forward network of
McCulloch–Pitts neurons with L = 3 that performs the parity operation.
Give the network construction for general N ≥ 2 (without proof), by gen-
eralizing the previous results obtained for N ∈ {2, 3}. Show that we need
only N hidden neurons. More demanding: give the proof, for general N ,
that the above construction indeed performs the task M.

Exercise 2.4. (Learning the unlearnable.) We now study what happens
when a perceptron is being trained on a task that is not linearly separable,
such as XOR(x1, x2). In ±1 (i.e. Ising) representation, and with the con-
vention of x0 = 1 as the dummy input, the task T and the Ising perceptron
σ are defined as

T : {−1, 1}3 → {−1, 1} T (x0, x1, x2) = −x1x2

σ : {−1, 1}3 → {−1, 1} σ(x0, x1, x2) = sgn(J · x) J = (J0, J1, J2)

with � = {x ∈ {−1, 1}3 | x0 = 1} and p(x) = 1
4 ∀x ∈ � (note: there are four

input vectors in �). In the limit of small learning rate ε → 0 the learning
process is described by equation (2.13):

d
dt

J = 1
2
〈x[T (x)− sgn(J · x)]〉�

Calculate 〈xT (x)〉�. Prove that |J | decreases monotonically with time.
Show that the dynamic equation (2.13) describes a gradient descent on a
surface E(J ). What is the meaning of E(J )? Prove that limt→∞ |J (t)| = 0.

Exercise 2.5. (Application of the CLT to B · x.) Appendix B gives a discus-
sion of the conditions required for the CLT to apply to the inner product
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u = B · x, with x ∈ {−1, 1}N and p(x) = 2−N ∀x ∈ {−1, 1}N . A sufficient
(although not necessary) condition for u to acquire a Gaussian probability
distribution in the limit N →∞ is Lindeberg’s Condition:

∀ε > 0 : lim
N→∞

N∑
i=1

θ

(
B2

i − ε

N∑
k=1

B2
k

)
= 0

A necessary (although not sufficient) condition for u to acquire a Gaussian
probability distribution in the limit N →∞ is

lim
N→∞

∑N
i=1 B4

i

(
∑N

i=1 B2
i )2
= 0

Here we inspect trivial and non-trivial teacher vectors B = (B1, . . . , BN)

for which the CLT does not apply. Show that both conditions above are
violated if B1 = 1 and Bi = 0 ∀i > 1. Answer the same question for
Bi = 1 for i ≤ n and Bi = 0 ∀i > n, for every fixed n ≥ 1 (i.e. n not
dependent on N ). Similarly for the two cases Bk = e−k and Bk = 1/k. Show
that both conditions above are satisfied for Bk = 1/

√
k. Use the results on

summations given in Appendix C.

Exercise 2.6. (Forgetful perceptrons.) Consider next an Ising perceptron σ

with N ordinary input variables in ±1 representation and with the conven-
tion of the dummy input x0 = 1, so J = (J0, . . . , JN) ∈ IRN+1, learning a
task T :

T : {−1, 1}N+1 → {−1, 1}

σ : {−1, 1}N+1 → {−1, 1} σ(x0, . . . , xN) = sgn(J · x)

Assume � = {x ∈ {−1, 1}N+1| x0 = 1} and p(x) = 2−N ∀x ∈ � (so there
are 2N input vectors in �). In the original perceptron learning rule we now
add a decay term, which tends to erase previously accumulated information:

�J = 1
2x[T (x)− sgn(J · x)] − γJ

Introduce a time discretization ε in the usual way: J (t + ε) = J (t)+ ε�J .
Derive the new continuous-time equation to replace (2.13), by taking the
limit ε → 0. Show that this equation describes gradient descent on a sur-
face E(J ), and prove that E(J ) is bounded from below. Assume that T

is linearly separable, that is, T (x) = sgn(B · x) ∀x ∈ �. Show that
limt→∞B · J (t) ≥ 0. From now on consider only tasks and perceptrons
without thresholds, that is, B0 = J0 = 0, and choose |B| = 1. Define,
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following Section 2.5, the two quantities J = |J | and ω = Ĵ · B, with J =
J Ĵ . Derive the differential equations that replace (2.46) and (2.47). Show
that (2.47) is not affected by the decay term. Assume that the two inner
products u = B · x and v = Ĵ · x have a Gaussian joint probability dis-
tribution, and find the equations that replace (2.54) and (2.55). Show that
(2.56) is replaced by eγ tJ (t)[1 + ω(t)] = J (0)[1 + ω(0)]. Show that the
evolution in time of the macroscopic observable ω, following ω(0) = 0, is
now given by

1
γ

(eγ t − 1) = J (0)

√
π

2

[
1
2

ln
(

1+ ω

1− ω

)
+ ω

1+ ω

]

Use the expansion ex = 1+ x +O(x2) to show how for times t � 1/γ one
recovers the old result (2.62). Show that for any γ > 0: limt→∞ ω(t) = 1
and limt→∞ J (t) = 0. Which are the advantages and disadvantages of
forgetting by weight decay?
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3
Recurrent networks with
binary neurons

We now turn to recurrent networks of binary (Ising) neurons σi ∈ {−1, 1},
with fixed synaptic interactions {Jij } and fixed thresholds {ϑi}. We still have
explicit (stochastic) rules (1.29) that determine the evolution in time of our
system, namely

σi(t +�) = sgn(hi(t)+ T zi(t)) hi(t) =
N∑

k=1

Jikσk(t)+ ϑi (3.1)

with the independent random noise variables zi(t), but in contrast to
the situation with layered networks, we can no longer write down expli-
citly the future states of our neurons in terms of given input signals, due
to the feedback present. Recurrent systems operate and are used in a
manner fundamentally different from layered ones. We really have to solve
the dynamics. Written in terms of probabilities, with P(z) denoting the
distribution of the noise variables, our dynamical rules become

Prob[σi(t +�)] = g(σi(t +�)hi(t)/T ) g(x) =
∫ x

−∞
dz P (z) (3.2)

Here we have assumed that the noise distribution is symmetric, that is,
P(z) = P(−z); see (1.30). For recurrent systems we also have to specify in
which order the neurons states are updated; for layered networks the update
order did not make a difference. We restrict ourselves to two extreme cases
for the update order:

parallel: Prob[σ (t +�)] =
N∏

i=1

g(σi(t +�)hi(t)/T )

sequential:

{
choose i randomly from {1, . . . , N}
Prob[σi(t +�)] = g(σi(t +�)hi(t)/T )

so that after making the simple choice

P(z) = 1
2
[1− tanh2

(z)] ⇒ g(x) = 1
2
[1+ tanh(x)] = ex

2 cosh(x)
(3.3)
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we get, using cosh(−x) = cosh(x):

parallel: Prob[σ (t +�)] = e
∑

i σi (t+�)hi(t)/T∏
i[2 cosh(hi(t)/T )] (3.4)

sequential:

{
choose i randomly from {1, . . . , N}
Prob[σi(t +�)] = 1

2 [1+ σi(t +�) tanh(hi(t)/T )] (3.5)

The particularly simple dependence of the state probabilities in the above
expressions on the state variables σi(t + �), which is a result of the
choice (3.3), will enable a detailed analysis later. In order to obtain an
idea of what to expect for such systems, however, we first turn to the
deterministic (noiseless) case, T = 0.

3.1 Noiseless recurrent networks

Let us forget for the moment about the pathological case where for certain
system states the postsynaptic potentials hi can become zero. In such cases,
hi(t) = 0, we would have to take the limit T → 0 in the stochastic laws,
which means that σi(t + �) is chosen at random from {−1, 1} with equal
probabilities. The dynamical rules now reduce to:

parallel: σi(t +�) = sgn
(∑

j

Jij σj (t)+ ϑi

)
(∀i) (3.6)

sequential:




choose i randomly from {1, . . . , N}
σi(t +�) = sgn

(∑
j

Jij σj (t)+ ϑi

)
(3.7)

For parallel dynamics we now generate a deterministic chain of successive
network states

σ (0)→ σ (�)→ σ (2�)→ σ (3�)→ · · ·

Since the number of different configurations is finite (2N ), at some stage
we must obtain in this chain a configuration σ � that has already appeared
earlier. Because the process is deterministic, the configurations following σ �

will be exactly the same as those that followed σ � after its earlier occurrence.
Thus the deterministic network with parallel dynamics will always evolve
into a limit cycle with period ≤ 2N .

For sequential dynamics with random selection of the neuron to be
updated, the above statement will not be true: a repeated occurrence of
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any state σ � does not permit more than probabilistic statements on the
expected future path of states. However, if we were to choose the neurons
to be sequentially updated in a fixed (as opposed to random) order, the
dynamics once more becomes deterministic, so that the reasoning above
applies and the system must evolve into a limit cycle with period ≤ 2N .

Simple model examples with parallel dynamics

We start by inspecting (and solving) a number of simple recurrent model
examples with parallel dynamics, of increasing complexity. The system
will be prepared in some initial microscopic state σ (0). For simplicity
we choose � = 1 (the duration of the elementary time-steps), so that
t ∈ {0, 1, 2, . . .}.
Example 1. Jij = 0, ϑi �= 0
The dynamics (3.6) now becomes:

σi(t + 1) = sgn(ϑi) (∀i) (∀t ≥ 0)

which gives the trivial solution σi(t) = sgn(ϑi) (∀t > 0). In one time-step
the system moves into a unique fixed point attractor. Associated with an
attractor is an attraction domain D: the set of all initial configurations σ (0)

that are attracted by it. The size |D| is the number of configurations in D.
Here D = {−1, 1}N , so |D| = 2N . The dynamical flow corresponding to
the present example is depicted schematically in the following diagram:

 ��
�

�
���

�
���

�
���

�
���

Example 2. Jij = J/N , ϑi = 0
We choose the system size N to be odd (so that the average activity can
never be zero), and J �= 0. The dynamics (3.6) now becomes:

σi(t + 1) = sgn(J ) sgn
(

1
N

∑
j

σj (t)

)
(∀i) (∀t ≥ 0)

We introduce the average neuronal activity m(t) = N−1 ∑
j σj (t) ∈ [−1, 1],

in terms of which the dynamics simplifies to

m(t + 1) = sgn(J ) sgn(m(t)) (∀i) (∀t ≥ 0)
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We have to distinguish between the two cases J > 0 and J < 0:

J > 0: m(t) = sgn(m(0)) (∀t > 0)

J < 0: m(t) = (−1)t sgn(m(0)) (∀t > 0)

Note that m(t) = 1 implies that σ (t) = (1, . . . , 1), whereas m(t) = −1
implies that σ (t) = (−1, . . . ,−1). Hence, for J > 0 the system moves
in one time-step into one of two fixed point attractors: σ+ = (1, . . . , 1),
with D+ = {σ ∈ {−1, 1}N |N−1 ∑

i σi > 0}, and σ− = (−1, . . . ,−1), with
D− = {σ ∈ {−1, 1}N | N−1 ∑

i σi < 0}, as illustrated in the following
diagram:

J > 0:  ��
�

�
���

�
���

�
���

�
���
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�
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���

�
���

�
���

For J < 0, on the other hand, the system is seen to move in one time-step
into a unique period-2 limit cycle attractor, σ+ → σ− → σ+ → σ− → · · · ,
with D = {−1, 1}N , as depicted below.

J < 0:  �
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Example 3. Jij = J/N , ϑi = ϑ �= 0
In order to make sure that the thresholds ϑi will not completely dominate
the behaviour, we choose |ϑ | < |J |. The dynamics (3.6) now becomes:

σi(t + 1) = sgn
(

J

N

∑
j

σj (t)+ ϑ

)
(∀i) (∀t ≥ 0)

In terms of the average activity m(t) = N−1 ∑
j σj (t) we then find:

m(t + 1) = sgn(Jm(t)+ ϑ) (∀t ≥ 0)

Let us again distinguish between J > 0 and J < 0:

J > 0: m(t + 1) = sgn(m(t)+ ϑ/J )

{
m(0) > −ϑ/J : m(t > 0) = 1
m(0) < −ϑ/J : m(t > 0) = −1
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For J > 0 the system once more moves in one time-step into one of
two fixed point attractors: σ+ = (1, . . . , 1), with attraction domain
D+ = {σ ∈ {−1, 1}N | N−1 ∑

i σi > −ϑ/J }, and σ− = (−1, . . . ,−1),
with D− = {σ ∈ {−1, 1}N |N−1 ∑

i σi < −ϑ/J }. Note, however, that
the boundaries and relative sizes of the two attraction domains are now
controlled by the quantity ϑ/J . Only for ϑ = 0 do we recover the previ-
ous situation, where the two attractors were equally strong. The following
diagram illustrates the situation:

J > 0:  ��
�

�
���

�
���

�
�
�
���

�
�
�
���

��
�

�
���

�
���

For J < 0, on the other hand, we find:

J < 0:

m(t + 1) = −sgn(m(t)− ϑ/|J |)
{

m(0) > ϑ/|J |: m(t > 0) = (−1)t

m(0) < ϑ/|J |: m(t > 0) = (−1)t+1

For J < 0 the system again moves in one time-step into the period-2 limit
cycle attractor σ+ → σ− → σ+ → σ− → · · · , with D = {−1, 1}N . The
only difference with the previous example is that we are now more likely
to enter the attractor in one point than the other, to an extent controlled
by ϑ/J .

J < 0:  �
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Example 4. Jij = J/N , ϑi ∈ {−ϑ , ϑ}, ϑ �= 0
In order to make sure that the thresholds will not completely dominate the
behaviour, we choose |ϑ | < |J |. For simplicity we assume that one half of
the neurons in the system have ϑi = ϑ , and the other half have ϑi = −ϑ .
The dynamics (3.6) now becomes:

σi(t + 1) = sgn
(

J

N

∑
j

σj (t)+ ϑi

)
(∀i) (∀t ≥ 0)



74 3 : Recurrent networks with binary neurons

In terms of the average activity m(t) = N−1 ∑
j σj (t) we then find:

m(t + 1) = 1
2 sgn(Jm(t)+ ϑ)+ 1

2 sgn(Jm(t)− ϑ) (∀t ≥ 0)

As before we distinguish between J > 0 and J < 0:

J > 0: m(t + 1) = 1
2

sgn
(

m(t)+ ϑ

J

)
+ 1

2
sgn

(
m(t)− ϑ

J

)



m(0) > |ϑ/J |: m(t) = 1 (t > 0)

|m(0)| < |ϑ/J |: m(t) = 0 (t > 0)

m(0) < −|ϑ/J |: m(t) = −1 (t > 0)

Note that for the stationary situation m = 0 we find from the dynamic
laws that σi = sgn(ϑi) for all i (a microscopic fixed point, to be denoted
by σ 0). We conclude that for J > 0 the system moves in one time
step into one of three fixed point attractors: σ+ = (1, . . . , 1), with
D+ = {σ ∈ {−1, 1}N |N−1 ∑

i σi > |ϑ/J |}, σ 0, with D0 = {σ ∈
{−1, 1}N | |N−1 ∑

i σi | < |ϑ/J |}, and σ− = (−1, . . . ,−1), with D− = {σ ∈
{−1, 1}N |N−1 ∑

i σi < −|ϑ/J |}. The boundaries and relative sizes of the
three attraction domains are now controlled by the quantity ϑ/J ; the two
m = ±1 attractors are always equally strong. For ϑ → 0 the attractor σ 0

is removed, and we return to the previously studied case with only two
attractors.
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For J < 0, on the other hand, we obtain:

J < 0 : m(t + 1) = −1
2

sgn
(

m(t)+ ϑ

J

)
− 1

2
sgn

(
m(t)− ϑ

J

)



m(0) > |ϑ/J |: m(t) = (−1)t (t > 0)

|m(0)| < |ϑ/J |: m(t) = 0 (t > 0)

m(0) < −|ϑ/J |: m(t) = (−1)t+1 (t > 0)

Here we see that the system moves in one time-step either into the period-2
limit cycle attractor σ+ → σ− → σ+ → σ− → · · · , with D = {σ ∈
{−1, 1}N |N−1 ∑

i σi > |ϑ/J |}, or into the fixed point attractor σ 0, with
D0 = {σ ∈ {−1, 1}N | |N−1 ∑

i σi | < |ϑ/J |}. The boundaries and relative
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sizes of the two attraction domains are again controlled by the quantity ϑ/J .
For ϑ → 0 the attractor σ 0 is removed, and we return to the previously
studied case with only the limit cycle attractor. In a diagram:

J < 0:  �
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Example 5. Jij = 1
N

(ξi − ξj ), ϑi = 0
For simplicity we choose ξi ∈ {−1, 1} for all i such that half of the neurons
in the system will have ξi = 1 and the other half will have ξi = −1. We will
write ξ = (ξ1, . . . , ξN). The dynamics (3.6) now becomes:

σi(t + 1) = sgn
(

ξi

1
N

∑
j

σj (t)− 1
N

∑
j

ξjσj (t)

)
(∀i) (∀t ≥ 0)

The relevant macroscopic quantities to inspect now turn out to be

m1(t) = 1
N

∑
j

σj (t) m2(t) = 1
N

∑
j

ξjσj (t)

in terms of which we can write, for all t ≥ 0:

m1(t + 1) = 1
N

∑
i

sgn(ξim1(t)−m2(t))

= 1
2

sgn(m1(t)−m2(t))− 1
2

sgn(m1(t)+m2(t))

m2(t + 1) = 1
N

∑
i

sgn(m1(t)− ξim2(t))

= 1
2

sgn(m1(t)−m2(t))+ 1
2

sgn(m1(t)+m2(t))

At this stage it is convenient to switch to new variables:

m±(t) = m1(t)±m2(t)

which leads to the simple equations:

m+(t + 1) = sgn(m−(t)) m−(t + 1) = −sgn(m+(t))
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From this it follows, in turn, that:

(
m+(t + 2)

m−(t + 2)

)
= −

(
sgn(m+(t))

sgn(m−(t))

)
⇒

(
m+(t + 4)

m−(t + 4)

)
=

(
sgn(m+(t))

sgn(m−(t))

)

⇒
(

m+(t + 8)

m−(t + 8)

)
=

(
m+(t + 4)

m−(t + 4)

)

In at most four time-steps the system will have entered a period-4 limit cycle
solution. If m+(0) �= 0 and m−(0) �= 0, this solution is

(
m+
m−

)
:

(
1
1

)
→

(
1
−1

)
→

(−1
−1

)
→

(−1
1

)
→

(
1
1

)
→ · · ·

When translated back into m1 and m2, this implies:

(
m1
m2

)
:

(
1
0

)
→

(
0
1

)
→

(−1
0

)
→

(
0
−1

)
→

(
1
0

)
→ · · ·

Note that m1 = ±1 means that σ = σ± = ±(1, . . . , 1), whereas m2 = ±1
means that σ = ±ξ . As a result we find that at the microscopic level we
have the following period-4 limit cycle attractor:

σ+ → ξ → σ− → − ξ → σ+ → · · ·

The remaining periodic solutions, obtained when at least one of the m±(0)

is zero, turn out to be unstable. The resulting picture is therefore as follows:
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Example 6. Jij = δπ(i),j , ϑi = 0
Our final simple example illustrates the occurrence of even larger periods.
Here π is a mapping on the set of neuron indices:

π : {1, . . . , N} → {1, . . . , N}
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The dynamical rules (3.6) reduce to

σi(t + 1) = sgn(σπ(i)(t)) = σπ(i)(t) (∀i) (∀t ≥ 0)

At each time step each neuron i determines its new state by simply copy-
ing the present state of some specific colleague π(i). One can find quite
a wide range of periods, by variation of the index operation π . Some
examples are:

• π(i) = k (∀i): Here all neurons copy their new state from the same
location k. This leads to

σi(t + 1) = σk(t) (∀i) ⇒ σi(t) = σk(0) (∀i) (∀t > 0)

The system thus ends up in one of two fixed point attractors: σ+ =
(1, . . . , 1), with attraction domain D+ = {σ ∈ {−1, 1}N | σk(0) = 1} and
σ− = (−1, . . . ,−1), with D− = {σ ∈ {−1, 1}N | σk(0) = −1}.
• π(i) = N + 1 − i (∀i): Note that the mapping π now obeys π(π(i)) =

π(N + 1− i) = i (∀i). As a result the dynamics is itself 2-periodic, since
for each i we find

σi(t + 1) = σN+1−i (t) ⇒
{

σi(t) = σi(0) (∀t > 0 even)

σi(t) = σN+1−i (0) (∀t > 0 odd)

There are many fixed points (corresponding to those states with
σi = σN+1−i for all i), and period-2 cycles, which together cover the
whole state space {−1, 1}N .
• π(i) = i + 1 (mod N) (∀i): This is just an N -periodic index shift. One

simply finds for all i (where we define indices periodically, that is, i is
taken mod N , for simplicity):

σi(t + 1) = σi+1(t) ⇒ σi(t) = σi+t (0) (∀t > 0)

Here we find many limit cycles with periods up to N . Some have smal-
ler periods, due to periodicities in the initial state σ (0) (for instance,
σ (0) = (1, . . . , 1) gives a period-1 solution).

3.2 Synaptic symmetry and Lyapunov functions

It is clear that the diversity in the possible modes of operation in these
recurrent systems is quite large. If we were to repeat the above exercise
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of solving simple models for the case of sequential dynamics, we would
again find qualitative differences. We clearly need some tools for classifica-
tion. It turns out that a relevant feature for distinguishing between various
systems is whether or not the matrix of synaptic interactions is symmetric,
that is, whether or not Jij = Jji for all (i, j). As always we exclude the
pathological cases where local fields hi(σ ) can be exactly zero.

Proposition. If the synaptic matrix J is symmetric, that is, if Jij = Jji for
all (i, j), then the quantity

L(σ ) = −
∑

i

∣∣∣∑
j

Jij σj + ϑi

∣∣∣−∑
i

σiϑi (3.8)

is a Lyapunov function for the deterministic parallel dynamics

σi(t + 1) = sgn
(∑

j

Jij σj + ϑi

)
(∀i) (3.9)

and the system will evolve either towards a fixed point or into a period-2
limit cycle.

Proof. Clearly L(σ ) is bounded from below: L(σ ) ≥ −∑
ij |Jij |−2

∑
i |ϑi |.

The non-trivial part of the proof is to show that it decreases monoton-
ically with time, and that it implies evolution towards a period-2 limit
cycle (of which a fixed point is a special case). Consider a transition
σ → σ ′, described by the dynamical rules (3.9). The resulting change in L is
given by:

�L = L(σ ′)− L(σ )

= −
∑

i

∣∣∣∑
j

Jij σ
′
j + ϑi

∣∣∣+∑
i

∣∣∣∑
j

Jij σj + ϑi

∣∣∣+∑
i

ϑi(σi − σ ′i )

We first use (3.9) to rewrite the second contribution,

�L = −
∑

i

∣∣∣∑
j

Jij σ
′
j + ϑi

∣∣∣+∑
i

σ ′i
(∑

j

Jij σj + ϑi

)
+

∑
i

ϑi(σi − σ ′i )

= −
∑

i

∣∣∣∑
j

Jij σ
′
j + ϑi

∣∣∣+∑
ij

σ ′i Jij σj +
∑

i

ϑiσi
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and then exploit the interaction symmetry, to obtain

�L = −
∑

i

∣∣∣∑
j

Jij σ
′
j + ϑi

∣∣∣+∑
ij

σiJij σ
′
j +

∑
i

ϑiσi

= −
∑

i

∣∣∣∑
j

Jij σ
′
j + ϑi

∣∣∣+∑
i

σi

(∑
j

Jij σ
′
j + ϑi

)

= −
∑

i

∣∣∣∑
j

Jij σ
′
j + ϑi

∣∣∣[1− σi sgn
(∑

j

Jij σ
′
j + ϑi

)]
≤ 0.

(3.10)

Note that �L �= 0 implies that �L ≤ −κ, where

κ = 2 min
σ

min
i

∣∣∣∑
j

Jij σj + ϑi

∣∣∣ > 0

Since L is bounded from below, the number of iteration steps for which
one observes �L �= 0 must be finite. So L decreases monotonically, until at
some time t� <∞ a stage is reached where L(σ (t + 1)) = L(σ (t)) ∀t > t�.
From then on it follows from (3.10) that

(∀i) (∀t > t�): σi(t) = sgn
(∑

j

Jij σj (t + 1)+ ϑi

)
= σi(t + 2)

a condition characterizing either a fixed point or a period-2 limit cycle. This
completes the proof.

For sequential dynamics we find that, apart from requiring synaptic
symmetry, we need to impose an additional requirement to construct a
Lyapunov function, namely: Jii ≥ 0 (∀i). Under these conditions we can
prove the following:

Proposition. If the synaptic matrix J is symmetric, that is, if Jij = Jji for
all (i, j), and if Jii ≥ 0 for all i, then the quantity

L(σ ) = −1
2

∑
ij

σiJij σj −
∑

i

σiϑi (3.11)

is a Lyapunov function for the sequential dynamics

σi(t + 1) = sgn
(∑

j

Jij σj (t)+ ϑi

)
σk(t + 1) = σk(t) (∀k �= i)

(3.12)



80 3 : Recurrent networks with binary neurons

and the system will evolve into a fixed point. The sites i(t) to be updated at
the various times t can be drawn either at random or in a fixed order; the
order is not relevant for the proof.

Proof. Clearly L(σ ) is bounded from below: L(σ ) ≥ −1
2
∑

ij |Jij |−∑
i |ϑi |.

If the neuron to be updated at a given time step does not change its state,
that is, if σ ′i = σi , then L will obviously remain the same. On the other hand,
consider a transition σ → σ ′, described by the dynamical rules (3.12), in
which σ ′i = −σi , so that

σ ′i = sgn
(∑

j

Jij σj + ϑi

)
= −σi σ ′k = σk for all k �= i (3.13)

The resulting change in L is then given by:

�L = L(σ ′)− L(σ ) = −1
2

∑
k�

Jk�(σ
′
kσ
′
� − σkσ�)−

∑
k

ϑk(σ
′
k − σk)

= σi

∑
�

Ji�σ� + σi

∑
k

Jkiσk − 2Jii + 2ϑiσi

Using both interaction symmetry and the sign restriction on self-interactions
Jii one obtains

�L = 2σi

(∑
j

Jij σj + ϑi

)
− 2Jii = −2

∣∣∣∑
j

Jij σj + ϑi

∣∣∣− 2Jii < 0 (3.14)

Note that �L �= 0 implies that �L ≤ −κ, where

κ = 2 min
σ

min
i

{∣∣∣∑
j

Jij σj + ϑi

∣∣∣+ Jii

}
> 0

Again, due to L being bounded from below, it follows that only a finite
number of iterations can give �L �= 0. So L decreases monotonically until
at some time t� < ∞ a stage is reached where L(σ (t + 1)) = L(σ (t))

∀t > t�. From then on it follows from (3.14) that for every site i to be
updated: σ ′i = σi , which implies

(∀i) (∀t > t�) : σi(t + 1) = sgn
(∑

j

Jij σj (t)+ ϑi

)

This completes the proof.

One might think that the need for excluding negative self-interactions
in the above proof is just an artifact of the particular Lyapunov function
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used, and that one might in principle also be able to prove that sequential
systems with negative self-interactions evolve to a fixed point (by using an
alternative method). This is not the case, as a simple example illustrates.
Consider neurons with negative self-interactions only: Jij = Jδij , J < 0,
ϑi = 0. Here one has, if at time t we update the state of neuron i:

σi(t + 1) = sgn(J )σi(t) = −σi(t)

σk(t + 1) = σk(t) (∀k �= i)

Each update will now result in a state change, for all times. Therefore, the
absence of negative self-interactions is indeed a relevant factor in determ-
ining whether or not the sequential systems will evolve towards a fixed
point.

3.3 Information processing in recurrent networks

Let us now turn to the question of how recurrent neural networks can
actually be used to process information. The basic recipe will be the creation
of attractors in the space {−1, 1}N of network states, through appropriate
modification of synaptic interactions and thresholds (i.e. through learning).
The previous model examples gave us an impression of which types of
dynamical behaviour can be obtained by making specific choices for the
system parameters. Now we are interested in the inverse problem: given a
required operation, how should we choose (or modify) the parameters?

The simplest class of attractors are fixed points. Let us first illustrate
how, through the creation of fixed point attractors, recurrent networks
can be used as so-called ‘associative memories’ for storing patterns (words,
pictures, abstract relations, whatever). The basic ideas will carry over in a
natural way to the more general case of creating limit cycle attractors of
arbitrary length, in order to store pattern sequences.

• Represent each of the p items or patterns to be stored (pictures, words,
etc.) as an N -bit vector ξµ = (ξ

µ

1 , . . . , ξµ
N) ∈ {−1, 1}N , µ = 1, . . . , p.

• Construct synaptic interactions {Jij } and thresholds {ϑi} such that fixed
point attractors are created at the p locations of the pattern vectors ξµ

in state space.
• If now we are given an input to be recognized, we choose this input to be

the initial microscopic network configuration σ (0). From this initial state
the neuron state vector σ (t) is allowed to evolve in time autonomously,
driven by the network dynamics, which will by definition lead to the
nearest attractor (in some topological sense).



82 3 : Recurrent networks with binary neurons

Figure 3.1 Information storage and retrieval in recurrent neural networks through the
creation of attractors in phase space. Patterns ξµ to be retrieved are marked as •. Left
picture: if the interactions Jij are chosen to be symmetric, the attractors will be fixed points
or period-2 limit cycles (the latter for parallel dynamics only). Right picture: in order to
store pattern sequences of length > 2, the interactions Jij will have to be non-symmetric.

• The final state reached σ (∞) can be interpreted as the pattern recognized
by the network from the input σ (0).

The idea is illustrated in Figure 3.1 (left picture). It is, however, far from
clear a priori whether all this can actually be done. For such a programme
to work, we need to be able to create systems with many attractors with
nonzero attraction domains. Furthermore, in biology (and to some degree
also in engineering) we are constrained in our choice of learning rules, in
the sense that only ‘local’ rules will be realizable and/or cost-effective. Local
rules are modification recipes that involve only information available at the
junction or neuron that is updated:

�Jij = F(Jij ; σi ; σj ; hi ; ϑi , ϑj ) �ϑi = G(σi ; hi ; ϑi)

Finally, it is clear that the basic idea will in due course need some refining.
For instance, if only the p patterns to be stored are attractors, each ini-
tial state will eventually lead to pattern recognition (also nonsensical or
random ones), so we will also need an attractor that can act as a rubbish
bin, attracting all initial states that we would not like to see recognized.

To illustrate the fundamental features of the idea, let us first consider
the simplest case and try to store just a single pattern ξ = (ξ1, . . . , ξN) ∈
{−1, 1}N in a noiseless and fully recurrent network with tabula rasa initial
wiring, that is, Jij = 0 for all (i, j), and with uniform thresholds. A biolo-
gically motivated rule for suitable interaction modification is the so-called
Hebbian rule:

�Jij ∼ ξiξj (3.15)
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In other words, if two neurons are required to be in the same state (ξi = ξj )
we increase their mutual interaction strength Jij , otherwise (i.e. when
ξi = −ξj ) we decrease Jij . This rule is also similar to the perceptron learn-
ing rule, the only difference being that in the case of the perceptron we
only modify if the system makes an error. The resulting network is (with
appropriate scaling):

Jij = 1
N

ξiξj ϑi = ϑ (3.16)

with |ϑ | < 1. We introduce new variables τi = ξiσi and vi = ξiϑ , in terms
of which the parallel dynamical laws can be written as

τi(t +�) = sgn
(

1
N

∑
j

τj (t)+ vi

)
(∀i) (3.17)

with vi ∈ {−ϑ , ϑ}. This is precisely Example (4) studied earlier, with J = 1.
If the fraction of neurons with ξi = 1 equals the fraction of neurons with
ξi = −1, we can use the result obtained for Example (4). Translated back
into the original variables σi this leads, with m = N−1 ∑

i ξiσi , to:

m(0) > |ϑ |: m(t) = 1 (t > 0)

|m(0)| < |ϑ |: m(t) = 0 (t > 0)

m(0) < −|ϑ |: m(t) = −1 (t > 0)

For m = ±1 we have a microscopic state where σi = ±ξi (∀i). For m = 0
we have, according to the dynamic laws, σi = sgn(ϑ); if furthermore we
choose ϑ < 0, we get σi = −1 for this latter state. At a microscopic level
the picture thus becomes:

1
N

∑
i

ξiσi(0) > |ϑ |: σ (t) = ξ (t > 0)

−|ϑ | < 1
N

∑
i

ξiσi(0) < |ϑ |: σ (t) = (−1, . . . ,−1) (t > 0)

1
N

∑
i

ξiσi(0) < −|ϑ |: σ (t) = −ξ (t > 0)

We see that this system can indeed reconstruct dynamically and autonom-
ously the original pattern ξ from an input vector σ (0). Note that the
network only reconstructs the pattern if the initial state shows a suffi-
cient resemblance; a random initial state will not evoke pattern recall,
but lead to an attractor with zero activity. We also realize, however, that
en passant we have created an additional attractor: the microscopic state
−ξ = (−ξ1, . . . ,−ξN).
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The boundaries and relative sizes of the three attraction domains are con-
trolled by the threshold ϑ ; the two m = ±1 attractors are always equally
strong (this will be different if the fraction of neurons with ξi = 1 is differ-
ent from the fraction with ξi = −1). For ϑ → 0 the ‘rubbish bin’ attractor
(−1, . . . ,−1) is removed. For sequential dynamics the picture is qualitat-
ively the same, the only difference being that the various attractors are not
reached in a single time-step but are approached gradually.

Finally, let us investigate what happens if we attempt to store more than
just a single pattern and apply the Hebbian learning rule (3.15) to a set of
p patterns {ξµ}, with ξµ = (ξ

µ

1 , . . . , ξµ
N) (µ = 1, . . . , p). Let us, furthermore,

assume for simplicity that these patterns are mutually orthogonal:

1
N

∑
i

ξ
µ
i ξν

i = δµν

This obviously requires p ≤ N . Let us also choose sequential dynamics and
remove the self-interactions (Jii → 0). The resulting neural network model
is the so-called Hopfield model (for simplicity we take ϑi = 0 for all i):

Jij = 1
N

(1− δij )

p∑
µ=1

ξ
µ
i ξ

µ
j ϑi = 0 (3.18)

We can now show that all p patterns must be stationary states of the
dynamics. The Lyapunov function (3.11), which will be our tool, can here
be written as:

L(σ ) = 1
2

p − 1
2

p∑
µ=1

(
1√
N

∑
i

ξ
µ
i σi

)2

We can now choose the normalized pattern vectors êµ = ξµ/
√

N as ortho-
gonal and normalized basis vectors in the space IRN , and then use the
general relation x2 ≥∑

µ(êµ ·x)2 to obtain a lower bound for the Lyapunov
function:

L(σ ) ≥ 1
2p − 1

2σ 2 = 1
2 (p −N)

On the other hand, if we choose the state σ to be exactly one of the patterns,
that is, σ = ξµ for some µ, we see that we satisfy exactly the lower bound:

L(ξµ) = 1
2 (p −N)

Since we know that any state change must decrease the value of L (which
here is clearly impossible), we find that each of the patterns must correspond
to a fixed point of the dynamics. It will turn out that they are also attractors.
However, we will find once more that additional attractors are created by
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the Hopfield recipe (3.18), in addition to the patterns ξµ and their inverses
−ξµ, which correspond to mixtures of the p fundamental patterns. These
mixtures can be eliminated by adding noise to the dynamics, as will be
shown in Chapter 21.

Simulation examples (including neuronal noise)

Here we will only illustrate with numerical simulations the functioning of
the Hopfield model (3.18) as an associative memory, and the quantitative
description of the pattern recall process in terms of so-called overlaps:

mµ(σ ) = 1
N

∑
i

ξ
µ
i σi (3.19)

Clearly, if mµ(σ ) = ±1 one has σ = ±ξµ, whereas randomly drawn
states σ would simply give mµ(σ ) = 0. Our simulated system is an
N = 841 Hopfield model, in which p = 10 patterns have been stored (see
Figure 3.2) according to the prescription (3.18). The state of each neuron
σi is represented by a pixel (e.g. black for σi = 1, white for σi = −1).
The two-dimensional arrangement of the neurons in this example is just a
guide to the eye; since the model is fully connected, the spatial arrangement
of the neurons in the network is irrelevant. The dynamics is taken to be
a sequential stochastic alignment to the postsynaptic potentials hi(σ ), as
defined by the rule (3.5), with noise level T = 0.1.

In Figure 3.3 we show the result of letting the states of the neurons in
the network evolve in time from an initial state, which is chosen to be
a noisy version of one of the stored patterns. Here 40% of the neurons
(or pixels) were ‘flipped’, that is, subjected to σi → −σi . The top row
of graphs shows snapshots of the microscopic configuration as the system
evolves. The bottom row shows the corresponding values of the p = 10
overlaps mµ as defined in (3.19), measured as functions of time; the one

Figure 3.2 Information storage with the Hopfield model: p = 10 patterns represented as
specific microscopic configurations in an N = 841 recurrent neural network.
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Figure 3.3 Dynamic reconstruction (at neuronal noise level T = 0.1) of a stored pattern,
following an initial microscopic network state which is a corrupted version thereof. Top
row: snapshots of the microscopic system state at times t = 0, 1, 2, 3, 4 iterations/neuron.
Bottom: the corresponding values of the p = 10 overlaps mµ as functions of time.

Figure 3.4 Evolution (at neuronal noise level T = 0.1) towards a spurious (mixture) state,
following a randomly drawn initial microscopic network state. Top row: snapshots of the
microscopic system state at times t = 0, 1, 2, 3, 4 iterations/neuron. Bottom: the
corresponding values of the p = 10 overlaps mµ as functions of time.

which evolves towards the value 1 belongs to the pattern that is being
reconstructed. Figure 3.4 shows a similar experiment, in which now the
initial state is drawn at random, rather than as a corrupted version of a
stored pattern. The system subsequently evolves towards some mixture of
the stored patterns. Note that the patterns involved are not uncorrelated;
see Figure 3.2.

The particular way of storing and recalling information described here,
which is based on association and on exploiting the actual content of the
stored patterns rather than on comparing labels (or pointers) which refer to
the physical locations where the patterns are stored in the underlying hard-
ware, is denoted as associative memory or content-addressable memory.
It will be clear from our simple simulation examples above that the idea
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of information storage in recurrent neural networks via the creation of
attractors by modification of local parameters certainly works. More rig-
orous analytical studies of the recall dynamics in these networks will be
described later, in Part IV of this book.

3.4 Exercises

Exercise 3.1. (Examples for noiseless parallel dynamics.) Consider noise-
less recurrent networks with parallel dynamics. Assume that the local
fields (or postsynaptic potentials) hi = ∑

j Jij σj + ϑi are always nonzero.
Consider Example (2) in this chapter, that is, Jij = J/N , ϑi = 0.
Write the Lyapunov function L (3.8) in terms of the average activity
m(σ ) = N−1 ∑

i σi , and verify that L decreases monotonically. Which
values for L are obtained in the different attractors? Same questions for
Example (3): Jij = J/N , ϑi = ϑ �= 0. Now turn to Example (4): Jij =
J/N , ϑi ∈ {−ϑ , ϑ}. Define the two sub-networks I+ = {i | ϑi = ϑ} and
I− = {i | ϑi = −ϑ}, and assume these to be equally large: |I+| = |I−| = 1

2N .
Define also the corresponding average activities

m+(σ ) = 2
N

∑
i∈I+

σi m−(σ ) = 2
N

∑
i∈I−

σi

Calculate m+(t) and m−(t) for t > 0, along the lines of the analysis in the
various examples. Write the Lyapunov function L (3.8) in terms of the two
average activities m±(σ ) in the sub-networks, and verify that L decreases
monotonically. Which values for L are obtained in the different attractors?

Exercise 3.2. (Examples for noiseless sequential dynamics.) Consider
noiseless recurrent networks with sequential dynamics. Choose Jij =
J/N , ϑi = 0 and N odd. The average activity in the system is defined
as usual: m(t) = N−1 ∑

i σi(t). Show that for J > 0: m(∞) =
limt→∞m(t) = sgn(m(0)) (as for parallel dynamics). Show that for J < 0,
on the other hand, the behaviour is completely different from the cor-
responding system with parallel dynamics. Calculate limN→∞m(t → ∞)

for J < 0.

Exercise 3.3. (Lyapunov functions.) Next consider networks with anti-
symmetric synaptic interactions, that is, with Jij = −Jji for all (i, j),
with ϑi = 0 for all i and with parallel deterministic dynamics. Show that
L(σ ) (3.8) is also a Lyapunov function for such networks. Prove that these
networks will always evolve into a period-4 limit cycle.
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Exercise 3.4. (Information storage through the creation of attractors.)
Consider noiseless recurrent networks with parallel dynamics: σi(t + 1) =
sgn(

∑
j Jij σj (t)) for all i. Let the p vectors ξµ = (ξ

µ

1 , . . . , ξµ
N) ∈ {−1, 1}N

(µ = 1, . . . , p) represent patterns (information) to be stored and retrieved.
Assume these patterns to be mutually orthogonal and p to be finite.
We define the p pattern overlaps mµ(σ ) = N−1 ∑

i ξ
µ
i σi ∈ [−1, 1]. Choose

the synaptic interactions corresponding to the Hopfield model:

Jij = 1
N

p∑
µ=1

ξ
µ
i ξ

µ
j

Give a condition on the initial overlaps {mµ(0)} sufficient to guarantee that
σ (1) = ξλ. Show that for N → ∞ all pattern vectors ξµ are fixed point
attractors, by demonstrating that the above condition is fulfilled for a set
of states close to these patterns. Now choose

Jij = 1
N

p−1∑
µ=1

ξ
µ+1
i ξ

µ
j +

1
N

ξ1
i ξ

p
j

Give a condition on the initial overlaps {mµ(0)} sufficient to guarantee that
σ (1) = ξλ. Show that for N →∞ there exists a stable period-p limit cycle
attractor of the form ξ1 → ξ2 → · · · → ξp−1 → ξp → ξ1 → · · ·
Exercise 3.5. (Attractor networks storing patterns with unequal embedding
strengths.) Again we consider noiseless recurrent networks with parallel
dynamics: σi(t + 1) = sgn

(∑
j Jij σj (t)

)
for all i, in which p orthogonal

vectors ξµ = (ξ
µ

1 , . . . , ξµ
N) ∈ {−1, 1}N (µ = 1, . . . , p) are to be stored and

retrieved (with p finite). We now store these patterns according to a Hebbian
rule, but with different (positive) embedding strengths wµ:

Jij = 1
N

p∑
µ=1

wµξ
µ
i ξ

µ
j

Given a condition on the initial overlaps {mµ(0)} sufficient to guarantee
that σ (1) = ξλ. Show that for N → ∞ all pattern vectors ξµ are fixed
point attractors, by demonstrating that the above condition is fulfilled for
a set of states close to these patterns. Describe the effects of having unequal
embedding strengths on the attraction domains of the p stored patterns.



4
Notes and suggestions for
further reading

The idea that brain operation and reasoning can be analysed scientifically,
with mathematical tools, took rather a long time to emerge. Neurons
were only discovered in 1880 by Ramon y Cajal, using a novel staining
method developed by Golgi. Until then there had been two scientific camps:
neuronists believed that the brain consisted of interconnected information
processing cells, whereas reticularists saw the brain as a continuous uninter-
rupted network of fibres only. In 1936, Turing [2] contributed significantly
to the further demystification of the concept of ‘intelligence’ and proved
statements about computability by machines. This more or less marked
the start of the field of ‘artificial intelligence’. McCulloch and Pitts [3]
were the first to introduce a very simple discrete mathematical neuron
model, in 1943, and they subsequently proved its universality. In 1949
the psychologist Hebb [4] introduced the idea that biological neural net-
works store information in the strengths of their interactions (the synapses).
Learning is then by definition the modification of synapses, for which
Hebb made a specific proposal. Rosenblatt [5] defined a learning rule in
1958 according to which a McCulloch–Pitts neuron updates its interaction
strengths on the basis of examples of input–output relations which corres-
pond to a given information processing task that the neuron is to perform.
They called their systems perceptrons, and proved the perceptron conver-
gence theorem [6]. A thorough mathematical analysis of the potential and
restrictions of perceptrons was carried out by Minsky and Papert [7] in
1969. They showed that single perceptrons could unfortunately not perform
all information processing tasks; some tasks require layers of perceptrons,
for which no learning rule was known at that time.

Minsky and Papert’s beautiful book seems to have dampened the existing
enthusiasm for neural network research, and diverted attention tempor-
arily away from the study of natural and synthetic learning machines
towards the rule-based domain of artificial intelligence. Neural computa-
tion ceased to be fashionable, and remained in that state for some 20 years.
Nevertheless, progress continued away from the central stages. In 1974
Little [8] introduced concepts from the statistical physics of magnetic
systems (such as temperature) into the study of recurrent neural networks,
building on earlier work by Cragg and Temperley [9] in 1955. The mech-
anisms underlying neuronal firing and spike transmission in real neurons
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were only firmly established in 1952, through the discovery of the relevant
dynamical equations by Hodgkin and Huxley [10]. In 1972 Kohonen [11]
and Amari [12] introduced the idea of building associative memories with
recurrent neural networks, where one creates specific stable microscopic
network states by manipulation of the interaction strengths, that is, the
synapses. In retrospect this was found to have been proposed already in
1956 by Taylor [13]. Such systems were brought into the domain of statist-
ical mechanics by the work of Hopfield [14] in 1982 (see also [15], written
in that period). More or less in parallel with these developments in the
study of recurrent neural networks, a learning rule for multilayer feed-
forward networks of graded-response neurons was derived by Rumelhart
and McClelland in 1986 [16]. The same rule, it turned out, had already been
proposed by Werbos [17] in 1974. This development coincided with a spec-
tacular increase in the power and availability of computers, which enabled
numerical experimentation on a scale that had not been possible before.
By this time, the study of natural and synthetic neural networks had once
more become very fashionable, also due to additional developments in the
application of techniques from statistical mechanics (to network operation)
and from information theory (to learning), of which more later.

Since the late 1980s, artificial neural information processing systems have
become standard tools in computer science and information engineering,
especially in dealing with real-world (i.e. messy, partly inconsistent, or
incompletely defined) tasks, where deductive logical problem solving is not
an option. Neural network models and principles have diffused across many
discipline boundaries, and the field is now paying the price of its success by
becoming increasingly disconnected. At the computer science and applied
mathematics interface, neural network type methods have merged with
more traditional Bayesian parameter estimation theory (see Chapter 6).
Here the developments have been in the direction of alternative formula-
tions of neural information processing, where the modifiable connections
between elements and specific choices of pre-processing are ‘integrated out’,
in favour of more direct representation in terms of the resulting input–
output operations (leading to the so-called Gaussian processes and support
vector machines, discussed in Chapters 7 and 8). In statistical mechanics,
attention largely shifted towards the analysis of the dynamics of learning
processes (or algorithms). In biology, emphasis now appears to be on the
study of timing aspects of neural communication (e.g. see [18] for coupled
oscillator models as such, or [19] for more recent work on the mathematical
modelling of real spiking neurons) and of synaptic modification rules, the
role of chemical modulators, and on understanding the role of specific
network architectures in specific brain regions.

Some suggestions for further reading on the developments up until,
say, the mid-1980s, are the following books. In the interdisciplinary
compilation [20] one finds reprints of original papers from 1890 to 1987;
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the volume [21] gives introductions to the various aspects of modern day
neural information processing, written by selected experts. The original
book by Minsky and Papert [7] is simply a pleasure to read, and a great
window on the spirit of the period in which it was written. Several excel-
lent textbooks were written around 1990, such as [22–25]. However, the
reader should be aware that they were produced in a period of accelerated
research activity, and that much has happened since then.
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Part

II
Advanced neural
networks

In this second part of the book we expand both in breadth and in depth
the material covered so far. Apart from its first chapter (and in contrast
to most of Part I), the material presented and developed here will involve
rather novel research results, which go back less than around 10 years.

Expansion in breadth refers to the addition of new neural network classes
and new learning rules, such as competitive unsupervised learning processes
(e.g. different versions of Vector Quantization, and Self-Organizing Maps—
this material is still not too mathematical because there is little theory on
these systems), and Support Vector Machines. The latter are part of a wider
family of information processing tools referred to as ‘kernel methods’, and
we only give an introduction here to what is now a research area in its own
right.

Expansion in depth refers to a more solid statistical understanding, inter-
pretation, and also increased potential for analysis and prediction of the
most popular neural network types (e.g. Bayesian techniques in super-
vised learning, and their application to Gaussian processes). These latter
subjects, although more mathematical in nature, have generated the main
progress in industrial and commercial neural network applications over
the last 10 years, since they have removed in a rigorous way the problems
related to data noise and to the quantification of the reliability of neural
network decisions.
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5
Competitive unsupervised
learning processes

In this chapter, we introduce and study two so-called ‘unsupervised’ learn-
ing processes, where the problem is not to learn to associate some correct
response to each possible incoming signal (specified by a teacher or super-
visor signal, as in, for example, feed-forward networks of the perceptron or
multilayer perceptron type), but rather to build some alternative (more effi-
cient, more compact, or more structured) representation of the data vectors
fed into the system. The first two procedures to do this, vector quantization
(VQ) and soft vector quantization (SVQ), aim to achieve data reduction
for initially unknown data distributions. They find typical applications
in communication, where compact representations are obviously cheaper
to transmit than non-compact ones, allowing more signals to be communic-
ated via the same channel. Methods in a third class—self-organizing maps
(SOM), also known as feature maps or Kohonen maps—aim to create a
topologically correct but low-dimensional internal representation of a given
data distribution. This has applications in, for example, biology (the brain is
known to create such maps for sensory signals), data-base mining, medical
diagnostics, etc.

5.1 Vector quantization

Data reduction via code-book vectors

Imagine we have a source of real-valued data vectors x = (x1, . . . , xn) ∈
IRn, with statistics described by some probability density p(x) (with∫
dx p(x) = 1, and with averages given by 〈f (x)〉 = ∫

dx p(x)f (x)). Altern-
atively, if the data can only take values from a discrete set, we would
have p(x) representing probabilities, with

∑
x p(x) = 1 and 〈f (x)〉 =∑

x p(x)f (x); see also Appendix A on elementary probability theory. Espe-
cially if n is very large, we would like to represent the real data x by
alternative (and simpler) signals from which the x can be re-constructed,
with some loss of accuracy, but with a reduction in dimensionality. One
way to achieve this is the following:

• We ‘cover’ the data space by a suitable (small) set of characteristic data
points, the so-called ‘code-book vectors’ mi ∈ IRn. Here i labels the
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individual code-book vectors, that is, if we have N code-book vectors
then i = 1, . . . , N .
• We then approximate (or ‘round off’) each data point x by the nearest

code-book vector, that is, by that particular mi for which |x − mi | is
minimal.

It will be clear why in communication this might be desirable: instead of
the n real numbers (x1, . . . , xn) we would now need to send only a single
integer number: the index i. The price we pay for this is a reduction in
accuracy; after all we have approximated x by mi , and have thereby lost
information. We can no longer be sure of the exact value of x, since many
other data points x would have been replaced by mi (all those which are
close to mi). The amount of information lost will obviously be smaller if
we have a larger number or a more efficiently distributed set of code-book
vectors.

The above procedure gives us what is known as a Voronoi tessalation of
data space. This is a partitioning into convex subsets Vi[{m}], controlled by
the choice {m} made for the N code-book vectors, which are defined as

Vi[{m}] = {x ∈ IRn | ∀j �= i: |x −mi | < |x −mj |} (5.1)

(see Figure 5.1).
A good set of code-book vectors is one with the property that the density

of code-book vectors in a given region of IRn is proportional to the density
of data points in that region. In other words, given the statistics of the
data and given the number N of code-book vectors we are willing to invest,

x2

x1

mi

Figure 5.1 Example of a Voronoi tessalation of data space for n = 2, that is, x = (x1, x2).
The points • represent the code-book vectors. The Voronoi cell associated with code-book
vector mi , Vi [{m}], is the compartment surrounding point mi .
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we aim for a set {m} such that for all i and j :

Prob(x ∈ Vi[{m}]) = Prob(x ∈ Vj [{m}]) (5.2)

In this way all code-book vectors are used equally often, and no resources
are wasted. The problem addressed by the VQ and SVQ algorithms is how
to find a proper set of code-book vectors via an adaptive process, that is,
both are based on gradually learning a proper positioning of the code-book
vectors by observing the data.

The VQ algorithm and its properties

The Vector Quantization (VQ) algorithm is defined as follows. First we
initialize the N code-book vectors mi ∈ IRn (randomly, or according
to a recipe to be given below). Then we iterate the following stochastic
process:

step 1: pick a data point x at random, according to the probability
density p(x)

step 2: find the Voronoi cell containing x, that is, find i such that |x−mi | <
|x −mj | for all j �= i

step 3: move mi towards x: mi → mi + η(x −mi )

step 4: return to 1

The parameter η > 0 is the learning rate and controls the magnitude of
the changes; one takes η � 1 to suppress fluctuations. The uncertainty
(stochasticity) of the process is only in the realization of the sequence of data
points we draw. Note that there would be a problem with data points x

which are exactly on the border of two Voronoi cells. In practice this is
not an issue: first, the probability for this to happen is generally very small
(unless we have a pathological distribution p(x)), and second, one could
simply decide in those instances not to make a change.

The VQ algorithm can be seen to have the following properties:

(i) A code-book vector will only become mobile when we pick a data point
in its Voronoi cell, that is, sufficiently close to it. Hence the process
of moving the mi will proceed slowly in areas where the data density
p(x) is low.

(ii) Unless we reduce η during the process, the code-book vectors will
continue to move stochastically, although the density of code-book
vectors in any given region should become stationary.

(iii) VQ is very simple and (as we will see below) effective, and has just
three tunable parameters: N , η, and the duration of the process.



98 5 : Competitive unsupervised learning processes

As a consequence of (i) we also conclude that it is not necessarily optimal to
initialize the N code-book vectors randomly: those which are initialized in
regions where p(x) is zero are in danger of never being used. Alternatively
one could initialize the mi by putting them at the locations of the first
N observed data points. By construction they can then never be initialized
in regions where there are no data.

Examples of VQ in action

The figures below illustrate the functioning of the VQ algorithm for a
number of simple examples with n = 2 (i.e. where one has data points
x = (x1, x2) in a plane) and N = 100 (i.e. a population of 100 code-book
vectors), but for different choices of the data distribution p(x) and with dif-
ferent initialization strategies. First, Figures 5.2 and 5.3 show examples of
simple data distributions and random initialization, where the process is still
seen to work fine, simply because in this case no code-book vector happens
to have been initialized in data-free regions. Figures 5.4, 5.5, and 5.6 refer to
strongly non-uniform data distributions, but now with non-random initial-
ization (so that the non-uniformities cannot disrupt the functioning of VQ).
The process is again seen to work fine. In contrast, in Figures 5.7, 5.8,
and 5.9 the same three non-uniform distributions are considered, but now
with random (i.e. inappropriate) initialization of the code-book vectors. The
resulting locations of the code-book vectors illustrate quite clearly how for
random initialization and non-uniform data distributions the VQ process
fails to use its resources effectively.

5.2 Soft vector quantization

The SVQ algorithm and its properties

The SVQ algorithm, which can be regarded as a smooth version of VQ,
is defined as follows. First we initialize the N code-book vectors mi ∈ IRn

randomly (in contrast to VQ, random initialization poses no problem for
SVQ, as we will see). Then we iterate the following stochastic process:

step 1: pick a data point x at random, according to the probability
density p(x)

step 2: calculate, for all i:

Fi(x, {m}) = e−β(x−mi )
2∑N

j=1 e−β(x−mj )2
(5.3)
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Figure 5.2 Numerical simulation of VQ, with n = 2, η = 0.5, and N = 100. Top graph:
data distribution p(x), uniform over the square [−1, 1] × [−1, 1]. Bottom six graphs:
locations of the code-book vectors mi during the course of the process (i = 1, . . . , 100), at
times t = 0 (middle row, left), t = 1000 (middle row, centre), t = 2000 (middle row, right),
t = 3000 (bottom row, left), t = 4000 (bottom row, middle), and t = 5000 (bottom row,
right). Times are measured in the number of iterations. Code-book vectors are initially
allocated randomly in the square [− 1

2 , 1
2 ] × [− 1

2 , 1
2 ].

step 3: move all mi towards x: mi → mi + η(x −mi )Fi(x, {m})
step 4: return to 1

The parameter 0 < η � 1 (the learning rate) again controls the overall
magnitude of the changes. Note that, by construction,

∑
i Fi(x, {m}) = 1

and 0 ≤ Fi(x, {m}) ≤ 1.
The SVQ algorithm can be seen to have the following general

properties:

1. All code-book vectors are moved towards x at every iteration step, but
those which are closest to x are moved most.
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Figure 5.3 Numerical simulation of VQ, with n = 2, η = 0.5, and N = 100. Top graph:
data distribution p(x), uniform over the disk |x| < 1. Bottom six graphs: locations of the
code-book vectors mi during the course of the process (i = 1, . . . , 100), at times t = 0
(middle row, left), t = 1000 (middle row, centre), t = 2000 (middle row, right), t = 3000
(bottom row, left), t = 4000 (bottom row, middle), and t = 5000 (bottom row, right).
Code-book vectors are initially allocated randomly in the square [− 1

2 , 1
2 ] × [− 1

2 , 1
2 ].

2. Unless we reduce η during the process, the code-book vectors will con-
tinue to move stochastically, although the density of code-book vectors
in any given region should become stationary.

3. SVQ is still simple, but it has one more parameter than VQ. This extra
parameter, β, defines a characteristic distance in data space: code-book
vectors with |x−mi | > 1/

√
β will move only weakly, in contrast to those

with |x − mi | < 1/
√

β. Hence 1/
√

β defines the distance over which
code-book vectors tend to exert an influence. Since the characteristic
distance between the code-book vectors will also strongly depend on N ,
one should expect the optimal value of β to depend on N .

4. SVQ has an advantage over VQ when data distributions p(x) can
(slowly) change over time. Although we can ensure in VQ, by
appropriate initialization, that the code-book vectors cannot get stuck in
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Figure 5.4 Numerical simulation of VQ, with n = 2, η = 0.5, and N = 100. Top graph:
data distribution p(x), non-uniform over the square [−1, 1] × [−1, 1], with highest data
density near the borders |x1| = 1. Bottom six graphs: locations of the code-book vectors
mi during the course of the process (i = 1, . . . , 100), at times t = 0 (middle row, left),
t = 1000 (middle row, centre), t = 2000 (middle row, right), t = 3000 (bottom row, left),
t = 4000 (bottom row, middle), and t = 5000 (bottom row, right). Code-book vectors are
initially positioned at the locations of the first 100 data points picked by the process.

data-poor regions, this will no longer be guaranteed if p(x) can change
over time: regions which are data-rich now, and which attract code-book
vectors, might become data-poor later. In SVQ the system will always be
able to adapt to the new data environment, since all code-book vectors
are updated all the time.

Let us next investigate the action of the SVQ algorithm for the two
extreme values of the new parameter β: β = ∞ and β = 0.

Proposition 1. limβ→∞ SVQ = VQ.
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Figure 5.5 Numerical simulation of VQ, with n = 2, η = 0.5, and N = 100. Top graph:
data distribution p(x), uniform over the region 1

2 < |x| < 1. Bottom six graphs: locations
of the code-book vectors mi during the course of the process (i = 1, . . . , 100), at times t = 0
(middle row, left), t = 1000 (middle row, centre), t = 2000 (middle row, right), t = 3000
(bottom row, left), t = 4000 (bottom row, middle), and t = 5000 (bottom row, right).
Code-book vectors are initially positioned at the locations of the first 100 data points
picked by the process.

Proof. Define the Voronoi tessalation of data space induced by the
code-book vectors {m}. Consider an SVQ iteration step, where we pick
data point x. Assume x ∈ Vk[{m}], that is, x is found to be in the Voronoi
cell of code-book vector k. We again exclude the pathological cases where
x is at the boundary of Voronoi cells; see the section on VQ. Now mul-
tiply numerator and denominator of (5.3) by exp(β(x −mk)

2), and use the
property that |x −mi | > |x −mk| for all i �= k:

lim
β→∞Fi(x, {m}) = lim

β→∞
e−β[(x−mi )

2−(x−mk)
2]∑N

j=1 e−β[(x−mj )2−(x−mk)
2]

= lim
β→∞

e−β[(x−mi )
2−(x−mk)

2]

1+∑
j �=k e−β[(x−mj )2−(x−mk)

2] =
{
1, for i = k

0, for i �= k
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Figure 5.6 Numerical simulation of VQ, with n = 2, η = 0.5, and N = 100. Top graph:
data distribution p(x), uniform over the circle |x| = 1. Bottom six graphs: locations of the
code-book vectors mi during the course of the process (i = 1, . . . , 100), at times t = 0
(middle row, left), t = 1000 (middle row, centre), t = 2000 (middle row, right), t = 3000
(bottom row, left), t = 4000 (bottom row, middle), and t = 5000 (bottom row, right).
Code-book vectors are initially positioned at the locations of the first 100 data points
picked by the process.

The denominator in the fraction tends to one for β →∞ for any i, because
all exponents in the sum are large and negative; the difference between i = k

and i �= k arises from the numerator, which is one in the former case and
tends to zero in the latter. This result shows that for β → ∞ the SVQ
modification of the code-book vectors in a single iteration reduces to

mk → mk + η(x −mk)

mi → mi for all i �= k

which is identical to that of VQ.



104 5 : Competitive unsupervised learning processes

−1 1
−1

1

−1 1
−1

1

−1 1
−1

1

−1 1
−1

1

−1 1
−1

1

−1 1
−1

1

−1 1
−1

1

x1 x1 x1

x2

x2

Input data:

Figure 5.7 Numerical simulation of VQ, with n = 2, η = 0.5, and N = 100. Top graph:
data distribution p(x), non-uniform across the square [−1, 1] × [−1, 1], with highest data
density near the borders |x1| = 1. Bottom six graphs: locations of the code-book vectors
mi during the course of the process (i = 1, . . . , 100), at times t = 0 (middle row, left),
t = 1000 (middle row, centre), t = 2000 (middle row, right), t = 3000 (bottom row, left),
t = 4000 (bottom row, middle), and t = 5000 (bottom row, right). Code-book vector are
initially allocated randomly in the square [− 1

2 , 1
2 ] × [− 1

2 , 1
2 ]. Comparison with Figure 5.4

shows that code-book vectors initialized in data regions where p(x) is small tend to get
stuck.

Proposition 2. For β → 0 all code-book vectors mi will ultimately collapse
to a single point, which will fluctuate around the average data-point 〈x〉 =∫

dx x p(x).

Proof. For β → 0 we find Fi(x, {m}) = N−1 (for any x, any i and any {m})
and the SVQ modifications simply reduce to

mi → mi + η

N
(x −mi ) for all i
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Figure 5.8 Numerical simulation of VQ, with n = 2, η = 0.5, and N = 100. Top graph:
data distribution p(x), uniform over the region 1

2 < |x| < 1. Bottom six graphs: locations
of the code-book vectors mi during the course of the process (i = 1, . . . , 100), at times t = 0
(middle row, left), t = 1000 (middle row, centre), t = 2000 (middle row, right), t = 3000
(bottom row, left), t = 4000 (bottom row, middle), and t = 5000 (bottom row, right).
Code-book vector are initially allocated randomly in the square [− 1

2 , 1
2 ] × [− 1

2 , 1
2 ].

Comparison with Figure 5.5 shows that code-book vectors initialized in data regions where
p(x) is zero tend to get stuck.

Now consider the difference between any two code-book vectors. If we
label the iterations of the algorithm by � = 0, 1, 2, . . . , we find

mi (�+ 1)−mj (�+ 1) =
(
1− η

N

)
[mi (�)−mj (�)]

hence
mi (�)−mj (�) =

(
1− η

N

)� [mi (0)−mj (0)]
so lim�→∞[mi (�)−mj (�)] = 0, as claimed.

To find out where all the code-book vectors will go collectively, we
only need to inspect the dynamics of the average m = N−1 ∑

i mi (since
lim�→∞[m(�) − mi (�)] = 0). Writing the data point drawn at iteration �

as x(�), we get m(� + 1) = (1 − η/N)m(�) + (η/N)x(�). Hence, upon
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Figure 5.9 Numerical simulation of VQ, with n = 2, η = 0.5, and N = 100. Top graph:
data distribution p(x), uniform over the circle |x| = 1. Bottom six graphs: locations of the
code-book vectors mi during the course of the process (i = 1, . . . , 100), at times t = 0
(middle row, left), t = 1000 (middle row, centre), t = 2000 (middle row, right), t = 3000
(bottom row, left), t = 4000 (bottom row, middle), and t = 5000 (bottom row, right).
Code-book vector are initially allocated randomly in the square [− 1

2 , 1
2 ] × [− 1

2 , 1
2 ].

Comparison with Figure 5.6 shows that code-book vectors initialized in data regions where
p(x) is zero tend to get stuck.

abbreviating the factor 1− η/N as z,

m(1) = z m(0)+ η

N
x(0)

m(2) = z
[
zm(0)+ η

N
x(0)

]
+ η

N
x(1)

= z2m(0)+ η

N
[z x(0)+ x(1)]

m(3) = z

[
z2m(0)+ η

N
z x(0)+ η

N
x(1)

]
+ η

N
x(2)

= z3m(0)+ η

N
[z2x(0)+ z x(1)+ x(2)]

... = ...

m(�) = z�m(0)+ η

N

�−1∑
k=0

z�−1−kx(k)
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We can now average over the possible choices of data, using 〈x(k)〉 = 〈x〉,
the average of the distribution p(x) (assuming this average to be finite).
Together with

∑
k≥0 zk = 1/(1−z), which holds generally whenever |z| < 1,

this gives us

lim
�→∞〈m(�)〉 = lim

�→∞

(
z�m(0)+ η

N
〈x〉

�−1∑
k≥0

zk

)

= η

N
(1− z)−1〈x〉 = 〈x〉

as claimed.

One can show similarly that the fluctuations of m around 〈x〉 remain
finite, provided the width of the data distribution is finite, that is, 〈x2〉 <∞.

Thus VQ can be regarded as a special case of SVQ, obtained by putting
β →∞. Second we infer from inspection of the extreme case β = 0 that one
of the effects of the smoothing of SVQ, relative to VQ, is for code-vectors
to ‘drag one another along’.

A Lyapunov function for small learning rates

Our understanding of SVQ (and thus also of VQ) would greatly improve if
we could recognize the process as the minimization of some error measure.
For finite η this is not possible, but for η → 0 it is. Labelling the different
iterations with � = 0, 1, 2, . . . , and writing the data point drawn at stage �

as x(�), we can cast both VQ and SVQ in the following compact form:

mi (�+ 1) = mi (�)+ η[x(�)−mi (�)]Fi(x(�), {m(�)}) (5.4)

with

F
SVQ
i (x, {m}) = e−β(x−mi )

2∑N
j=1 e−β(x−mj )2

(5.5)

F
VQ
i (x, {m}) =

{
1, if x ∈ Vi[{m}]
0, otherwise

(5.6)

For small learning rates we follow the procedure introduced to derive
deterministic equations for online learning in layered neural networks (see
Section 2.3), and define a new time variable t = η�. We then take the η→ 0
limit and find the stochastic process (5.4) being replaced by the deterministic
equation

d
dt

mi = 〈(x −mi )Fi(x, {m})〉 (5.7)
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with the average 〈· · · 〉 taken over p(x) as before. Let us first look at SVQ,
Fi(x, {m}) = F

SVQ
i (x, {m}). We will show that the small η-limit (5.7) of

the SVQ-algorithm attempts to approximate the data distribution p(x) by
a mixture of Gaussian distributions, each centred at one of the code-book
vectors,

q(x|{m}) = 1
N

∑
i

e−β(x−mi )
2

(π/β)n/2 (5.8)

This is demonstrated by proving the following proposition.

Proposition 3. For Fi(x, {m}) = F
SVQ
i (x, {m}), equation (5.7) describes

a gradient descent dynamics for an error measure E[{m}] given by the
Kullback–Leibler distance between the data distribution p and the Gaussian
mixture (5.8) parametrized by the set {m} of code-book vectors:

d
dt

mi = − 1
2β

∇mi
E[{m}], E[{m}] =

∫
dx p(x) ln

[
p(x)

q(x|{m})
]

(5.9)

Proof. We just work out the relevant partial derivatives of E[{m}]:

− 1
2β

∇mi
E[{m}] = 1

2β

∫
dx p(x)∇mi

ln q(x|{m})

= 1
2β

∫
dx p(x)∇mi

ln
∑
j

e−β(x−mj )2

= 1
2β

∫
dx p(x)

[
∇mi

e−β(x−mi )
2∑

j e−β(x−mj )2

]

=
∫

dx p(x)

[
(x −mi )e

−β(x−mi )
2∑

j e−β(x−mj )2

]

= 〈
(x −mi )F

SVQ
i (x, {m})〉

Comparison with (5.7) gives the desired result.

The error measure E[{m}] in (5.9) is indeed the Kullback–Leibler dis-
tance D(p‖q) between the data distribution p and the Gaussian mixture q

introduced in (5.8). It is an information-theoretic measure of the deviation
between the two distributions. Properties of this measure will be discussed in
greater detail in Part III of this book. What is needed here is that D(p‖q) ≥ 0
for any two distributions p and q, with equality only if p(x) = q(x) (in a
distributional sense). From the inequality D(p‖q) ≥ 0, hence E[{m}] ≥ 0,
in combination with the gradient descent equation in (5.9) which ensures
that dE/dt ≤ 0, we may conclude that D(p‖q) = E[{m}] introduced
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in (5.9) is a Lyapunov function for the SVQ process (5.4). Hence we can
interpret SVQ, at least for small η, as approximating the data distribution
p(x) optimally by a mixture of Gaussians of the form (5.8), via adaptation
of the centres mi of these Gaussians.

Similarly, since limβ→∞ SVQ = VQ and since limβ→∞(β/π)n/2×
e−β(x−mi )

2 = δ(x − mi ) (see Appendix F for definition and properties of
the delta distribution), we may for small η interpret VQ as approximating
the data distribution p(x) optimally by a mixture of delta-distributions, via
adaptation of the centres of these delta-distributions:

η � 1, SVQ : finds {m} such that p(x) ≈ 1
N

∑
i

e−β(x−mi )
2

(π/β)n/2

η � 1, VQ : finds {m} such that p(x) ≈ 1
N

∑
i

δ(x −mi )

The characteristic distance which we already identified above is now
recognized as the width σ = 1/

√
2β of the individual Gaussians with which

SVQ aims to match the data distribution p(x). For finite (but not too large)
η we may regard SVQ and VQ as noisy versions of the above gradient
descent processes.

Finally we note briefly that the stationary state of the η→0
equation (5.7), given by 〈(x −mi )Fi(x, {m})〉 = 0, translates into

mi =
∫

dx xFi(x, {m})p(x)∫
dx Fi(x, {m})p(x)

, so for VQ: mi =
∫
Vi [{m}] dx x p(x)∫
Vi [{m}] dx p(x)

(5.10)

For VQ we thus have the transparent result that, in equilibrium and for η

sufficiently small, the location of code-book vector mi will be the centre of
gravity of the data distribution within its associated Voronoi cell Vi[{m}].

Examples of SVQ in action

The figures on the following two pages illustrate the functioning of the SVQ
algorithm for a number of simple examples with n = 2 (i.e. where one has
data points x = (x1, x2) in a plane) and N = 100 (i.e. a population of 100
code-book vectors), but for different choices of the data distribution p(x).
Figure 5.10 shows the locations of the code-book vectors at different times,
for β = 10, where the characteristic width of the data covering Gaussians is
σ = 1/

√
2β ≈ 0.22. We observe that code-book vectors indeed no longer

get stuck in data-poor regions even if they are initialized randomly, and
that they keep a distance of the order of σ from the boundaries of the data
region. Because the width of the data strip is 1

2 , here this essentially sends all
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Figure 5.10 Numerical simulation of SVQ, with n = 2, η = 0.1, β = 10, and N = 100.
Top graph: data distribution p(x), uniform over the region 1

2 < |x| < 1. Bottom six graphs:
locations of the code-book vectors mi during the course of the process (i = 1, . . . , 100),
at times t = 0 (middle row, left), t = 1000 (middle row, centre), t = 2000 (middle row,
right), t = 3000 (bottom row, left), t = 4000 (bottom row, middle), and t = 5000 (bottom
row, right). Times are measured in the number of iterations. Code-book vector are initially
allocated randomly in the square [− 1

2 , 1
2 ] × [− 1

2 , 1
2 ].

code-book vectors to the circle |x| = 3
4 . Figure 5.11 shows the asymptotic

locations (after 10,000 iterations) of the code-book vectors for four different
values of β. The corresponding values of σ are: σ = 0.1 (β = 50), σ ≈ 0.22
(β = 10), σ ≈ 0.32 (β = 5), and σ ≈ 0.71 (β = 1). With these values one
can understand perfectly the observed clustering properties of the code-
book vectors; this underlines the power of theoretical results such as those
above (i.e. Proposition 3).

5.3 Time-dependent learning rates

We have seen that for finite η the processes of the type (5.4) can be regarded
as noisy versions of the deterministic equation (5.7). For SVQ and VQ the
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Input data:

Figure 5.11 Numerical simulation of SVQ, with n = 2, η = 0.5, and N = 100. Top graph:
data distribution p(x), uniform over the square [−1, 1] × [−1, 1]. Bottom four graphs:
locations of the code-book vectors mi after 10,000 iteration steps (i = 1, . . . , 100),
for different choices of the parameter β: β = 50 (middle row, left), β = 10 (middle row,
middle), β = 5 (middle row, right), and β = 1 (bottom row). Code-book vector are initially
allocated randomly in the square [− 1

2 , 1
2 ] × [− 1

2 , 1
2 ].

latter minimize a transparent and sensible error measure. In the initial stages
of these processes it is then preferable to have a finite η: the added random-
ness may prevent the system from going to a suboptimal local minimum of
the error measure. Asymptotically, on the other hand, one would prefer a
fluctuation-free and unique (reproducible) final state, that is, η → 0. It is
therefore natural to choose a slowly but monotonically decreasing time-
dependent learning rate η(�), where � labels the iterations of the algorithm
(5.4). The question then is how to determine the optimal rate of decay for
η(�). Too fast a reduction of η(�) might cause evolution to local minima, or
might prevent the code-book vectors from travelling over sufficiently large
distances to take up their optimal positions in the data space, whose size
we do not know beforehand. Too slow a decrease in η(�), on the other
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hand, might cause fluctuations and non-uniqueness of the final state to
persist too long for us to achieve the desired stationary state within the
time-scales of our experiments. We will always choose our η(�) such that
0 < η(�+ 1) ≤ η(�) and η(0) < N . Below we show that sensible criteria to
be met by the decay of η(�) are

not too fast:
∞∑

�=0

η(�) = ∞, not too slow:
∞∑

�=0

η2(�) <∞ (5.11)

Proposition 1. The learning rate must obey
∑∞

�=0 η(�) = ∞, otherwise
there will be an undesirable a priori bound on the possible distance to be
covered by the code-book vectors.

Proof. We deduce from the following alternative way of writing
equation (5.4),

mi (�+ 1) = mi (�)[1− ηFi(x(�), {m(�)})] + ηFi(x(�), {m(�)})x(�),

together with the properties Fi(x, {m}) ∈ [0, 1] and 0 ≤ η ≤ 1, that

|mi (�+ 1)| ≤ |mi (�)| + η(�)|x(�)|

Hence, by iteration:

|mi (�)| ≤ |mi (0)| +
�−1∑
k=0

η(k)|x(k)|

so

lim
�→∞〈|mi (�)|〉 ≤ |mi (0)| + 〈|x|〉

∞∑
k=0

η(k)

Thus, unless
∑∞

k=0 η(k) = ∞, we have an a priori bound on the distance
which can be travelled by any code-book vector, which could prevent parts
of the data distribution from being reached.

Proposition 2. If the learning rate obeys
∑∞

�=0 η2(�) < ∞, then we can
at least be sure that for the simplest process of the class (5.4) the uncertainty
in the location of the average code-book vector cannot diverge.

Proof. The simplest process of the class (5.4) is the β → 0 limit of SVQ:
Fi(x, {m}) = 1/N , so m(� + 1) = m(�) + (η(�)/N)[x(�) − m(�)], where
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m(�) = N−1 ∑
i mi (�). We now write m(�) = 〈m(�)〉 + v(�), so that

〈v(�)〉 = 0 and

v(�+ 1) =
(

1− η(�)

N

)
v(�)+ η(�)

N
[x(�)− 〈x〉]

Note that v(�) is statistically independent of all x(�′) with �′ ≥ �. Note also
that, since at � = 0 there are no fluctuations yet, v(0) = 0. Hence

〈v2(�+ 1)〉 =
(

1− η(�)

N

)2

〈v2(�)〉 + η2(�)

N2 〈[x − 〈x〉]2〉

Further iteration gives

〈v2(�+ 2)〉 =
(

1− η(�+ 1)

N

)2 (
1− η(�)

N

)2

〈v2(�)〉 +
(

1− η(�+ 1)

N

)2

× η2(�)

N2 〈(x − 〈x〉)2〉 +
η2(�+ 1)

N2 〈(x − 〈x〉)2〉

We see that this iteration leads us to the following general expression

〈v2(�)〉
〈(x − 〈x〉)2〉 =

�−1∑
k=0

(
1− η(�− 1)

N

)2(
1− η(�− 2)

N

)2

· · ·

×
(

1− η(k + 1)

N

)2
η2(k)

N2 (5.12)

It is clear that 〈v2(�)〉 ≤ N−2〈(x − 〈x〉)2〉∑�−1
k=0 η2(k), from which our

claim follows immediately. One could try to go somewhat further for those
situations where N is large, and use (5.12) to infer

〈v2(�)〉 = N−2〈(x − 〈x〉)2〉
�−1∑
k=0

η2(k)+O(N−3)

Here the above-bound would also be the leading order for large N and �

finite.10

10 For �→ ∞, so that terms of order �/N can no longer be discarded, matters are more
subtle: one would have to check carefully whether the leading order in N remains identical
to the above one. We will not carry out this analysis here.
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Figure 5.12 The time-dependent learning rate defined in (5.13), which meets the
conditions (5.11) on the asymptotic rate of decay to zero. The ‘half-way point’ (τ , 1

2 ) is
marked by dashed lines (here τ = 100).

The most commonly used asymptotic form of decay for η(�) that meets
the above two requirements is η(�) ∼ �−1 as �→∞. For instance:

η(�) = η(0)

1+ �/τ
which obeys

�� τ : η(�) ≈ η(0)[1− �/τ ]
� ≈ τ : η(�) ≈ 1

2η(0)

�� τ : η(�) ≈ η(0)τ/�

(5.13)

This dependence is drawn in Figure 5.12.

5.4 Self-organizing maps

Any flexible and robust autonomous system, whether living or robotic, will
have to be able to create or at least update an internal map or representation
of its environment. Information on the environment, however, is usually
obtained in an indirect manner, through a redundant set of highly non-linear
sensors, each of which provide only partial and indirect information.

The system responsible for forming this map needs to be adaptive, as both
environment and sensors can change their characteristics during the sys-
tem’s lifetime. Our brain performs re-calibration of sensors all the time.
For example, simply because we grow, the neuronal information about limb
positions, generated by sensors which measure the stretch of muscles, has to
be reinterpreted continually. Anatomical changes, and even acquisition of
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new skills, such as playing an instrument, are found to induce modifications
of internal maps.

At a more abstract level, the neural system responsible for building the
internal representation is confronted with a complicated non-linear map-
ping from a relatively low-dimensional and more or less flat space (the
‘physical world’ W , with D dimensions) into a high-dimensional one (the
space of sensory signals, of which there are n� D), and the aim is to extract
the properties of the original space W from the sensory signals alone, that is,
to ‘invert’ the operation which maps world states to sensory signals.

world coordinates: sensory signals: internal representation:

X = (X1, . . . , XD) ∈W −→ x = (x1, . . . , xn) −→ reconstruction of W?

The definition of the ‘world’ depends on the specific degrees of freedom
of the system at hand, and D, for example, need not be three. The sens-
ory signals are usually non-linear functions of the world coordinates; they
are indirect and noisy, but also highly redundant to compensate for their
individual inadequacies.

The key to achieving the objective of forming an internal representation
of the world is to exploit continuity and correlations in sensory signals,
assuming similar sensory signals to represent similar positions in the envir-
onment, which therefore must correspond to similar positions in the internal
map: if X′ = X+�X for small �X, then also x(X′) ≈ x(X)+A(X) ·�X,
for some A(X) (the Jacobian matrix of the mapping X→ x).

Before turning to the learning process which is to carry out the con-
struction task, we first explain in more detail the type of representation
one aims for, which is inspired by biological systems. Let us give a simple
example (see also Figure 5.13). Imagine a system operating in a simple
two-dimensional world, where positions are represented by Cartesian
coordinates X = (X1, X2), observed by sensors and fed into a neural
network as input signals. For simplicity we will consider trivial sensors,
and just put x1 = X1, x2 = X2. Each neuron i receives information on
the input signals (x1, x2) in the usual way, via modifiable synapses {mij}; its
activity on receiving input x will be yi(x) = g(mi1x1 + mi2x2), for some
monotonically increasing non-linear function g(z).

We denote the physical location of neuron i within the map-forming array
by r i . If this network is to become an internal coordinate system, faith-
fully reflecting the events x = (x1, x2) observed in the outside world—and
therefore, in the present example, with the topology of a two-dimensional
array—the following objectives are to be met:

1. Each neuron yi is more or less ‘tuned’ to a specific type of signal xi ,
that is, yi(x) should be large only when |x − xi | is sufficiently small.
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Figure 5.13 Simple two-dimensional example of the internal representation (‘map’) of the
environment as built in biological systems. The brain has no direct access to the world
coordinates (X1, X2), it is only given sensory signals x1(X1, X2) and x2(X1, X2). Many
different representations of the coordinates (X1, X2) would have been possible; in the
specific one aimed for here, each indirectly observed position (X1, X2) is supposed to give
rise to a specific localized area of firing activity in a sheet of neurons. Compare this to
driving a car with blinded windows, but with electronic sensors observing the environment.
The sensory information is to be converted back into world coordinates, and to make a
light flash up in a road map inside the car, exactly at the car’s current location. This is the
information used by the driver. The question discussed in this section is how to construct
the road map, that is, the conversion of sensory to world coordinates, solely on the basis of
structure in the sensory signals x1(X1, X2) and x2(X1, X2).

2. Neighbouring neurons in the array are tuned to similar signals, that is,
if |r i − rj | is small then |xi − xj | is small.

3. External distance is monotonically related to internal distance, that is,
if |r i − rj | < |r i − rk| then |xi − xj | < |xi − xk|.

How to learn a topologically correct map

It turns out that in order to achieve these objectives one needs learning
rules where neurons effectively compete to have input signals xi ‘allocated’
to them, whereby neighbouring neurons stimulate one another to develop
similar synaptic interactions and distant neurons are prevented from devel-
oping similar interactions. Let us try to construct the simplest such learning
rule (see Figure 5.14).

Initially, before learning has taken place, input signals just evoke random
firing patterns in the neuronal array. After learning we wish to see local-
ized firing patterns, as shown above. Our equations take their simplest
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x = xA :

x = xB :

••◦◦••◦◦•◦••◦◦◦•••◦◦•◦••◦◦••••◦•◦◦◦••◦••••◦◦◦•◦◦◦◦◦◦◦◦◦•••◦◦•••◦••◦•◦◦•••◦••◦••◦•◦•◦••••••••◦••◦◦◦•◦••◦•••••◦•◦•◦••◦◦◦•◦••◦••◦◦◦•◦••◦◦•◦•••◦◦◦•◦•◦•••◦••◦•◦◦•••◦•◦••◦•••◦••◦◦•◦•◦◦◦•••••◦•◦••◦•◦•◦◦•◦•••◦•◦••◦•••◦•••◦•◦•◦•••◦•••
•••◦◦◦◦•◦•◦•◦••••◦•◦•◦◦•••◦◦◦•◦••◦••◦•◦◦◦•◦•••••◦•◦•◦••••◦••◦••••◦◦•••◦◦◦•◦•••••◦•◦•••◦••◦••••••◦•◦◦◦••◦•◦•••••◦•◦•••◦•◦•◦••◦◦•◦•◦◦◦•◦•◦◦◦•◦◦•◦•◦◦•◦◦•◦•◦•◦•◦◦◦•◦•◦◦•◦••◦◦◦•◦•◦•◦◦◦◦•◦•◦•◦◦•◦•◦•◦◦••◦•◦•◦•••◦•◦•◦•◦••••◦◦◦◦•◦•◦◦◦

⇒ training ⇒

x = xA :

x = xB :

◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦•◦◦◦◦◦◦◦◦◦◦◦◦◦•••◦◦◦◦◦◦◦◦◦◦◦◦•••◦◦◦◦◦◦◦◦◦◦◦◦•••◦◦◦◦◦◦◦◦◦◦◦◦◦•◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦
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Figure 5.14 Illustration of the desired outcome of training a topological map. Before
training (left), two distinct input signals elicit random (de-localized) firing patterns. After
training (right), the same input signals produce distinct localized firing patterns in the
map-forming array.

form in the case where the input signals are normalized, so we define

(x1, x2) ∈ [−1/
√

2, 1/
√

2]2 and add a dummy variable x3 =
√

1− x2
1 − x2

2 ,
together with a dummy synaptic interaction mi3 for every neuron. If we
write the synapses of neuron i as mi = (mi1, mi2, mi3), and normalize them
according to |mi | = 1, we simply get

yi(x) = g(mi · x), |mi | = |x| = 1 (5.14)

Learning now implies rotating the vectors mi .
By construction, since g(z) is a monotonically increasing function a given

neuron is triggered most when mi · x is maximal, which is for the input
signal x = mi . This has two important implications: one can now interpret
mi as the input signal to which neuron i is tuned, corresponding to xi in
our earlier notation; and tuning neuron i to a given signal x is found to be
equivalent to rotating mi towards x. As a result one finds that a learning
rule with the desired effect is as follows.

Starting from random (normalized) synaptic vectors mi , iterate the
following recipe until a more or less stable situation is reached:

step 1: pick a data point x with |x| = 1 at random

step 2: find the most active neuron, that is, the i such that |mi ·x| > |mj ·x|
for all j �= i
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step 3: rotate the synaptic vector of neuron i and its neighbours in the array
towards x; rotate the synaptic vector of all other neurons slightly
away from x

step 4: return to 1

The neuron that was already the one most responsive to the signal x will
be made even more so, together with its neighbours; the other neurons are
made less responsive to x. In biology, the above is achieved via Hebbian-
type learning rules, and by having short-range excitatory synapses which
ensure that neighbouring neurons tend to be simultaneously active, and
team up in the synaptic adaptation.

We note that in the above formulation the normalization of synaptic
vectors and input vectors was introduced purely in order to retain the con-
nection with the biological picture of firing neurons, via expressions like
(5.14). For the purpose of computation and learning in synthetic systems,
on the other hand, we can move away from the firing of neurons and work
directly in terms of the {mi} only. Henceforth we will define mi simply as
the signal in input space to which neuron i is tuned; we forget about how
this is actually realized, and also ignore the issue of normalization.

Visualization of the learning process: fishing nets

The above formulation of self-organizing maps (SOMs) in terms of the {mi}
has brought us (deliberately) very close to the VQ and SVQ algorithms.
However, there is an important difference, which is the insistence that the
various code-book vectors mi are no longer interchangeable (in VQ and
SVQ we only cared about the overall distribution of code-book vectors in
input space): now each mi is associated with a specific location r i in an
array, with the condition that those (i, j) which belong to nearby locations
{r i , rj } in the array must have code-book vectors {mi , mj } which are very
similar. Hence, simply drawing the code-book vectors in input space as we
did for VQ and SVQ is no longer adequate, because it will not tell us about
the topological features of the state.

In the case of SOMs the standard visual representation of a state {mi} is
the following:

• Draw each mi as a point (or knot) in input space (as in VQ and SVQ)
• Connect with line segments all those points (i, j) which correspond to

neighbours in the array of the {r i}
We then end up with a graphical representation of the synaptic struc-

ture of a network in the form of a fishing net, with the positions of
the knots representing the signals in the world to which the neurons
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Figure 5.15 Graphical representation of the state of a SOM in the form of a fishing net.
Here r i ∈ [0, 1]2 (i.e. the neurons live in a square 2-dimensional array) and x ∈ IR3, with
|x| = 1 (i.e. the data live on the surface of a sphere). The positions of the knots represent
the signals mi to which the neurons are tuned, and the cords connect the knots of
neighbouring neurons in the array. Left: equilibrium result of the numerical simulation of
a particular version on the SOM algorithm. Right: corresponding theoretical prediction.

are tuned and with the cords indicating neighbourship, see Figures 5.15
and 5.16. The three objectives of map formation set out at the beginning
of this section thereby translate into the following desired properties of the
graph:

(1) all knots in the graph are separated;

(2) all cords of the graph are similarly stretched;

(3) there are no regions with overlapping pieces of graph.

Note that this representation is in practice useful only for one- or two-
dimensional arrays, that is, when creating one- or two-dimensional internal
representations.

The SOM algorithm and its properties

The SOM algorithm is an abstract realization of the processes underlying
the creation of topologically correct internal representations in the higher
brain regions of humans and animals. It is defined in terms of code-book vec-
tors mi , which represent the specific signals in data space to which neurons
are tuned. It aims to create a topologically correct internal representation
of potentially non-linear low-dimensional structure hidden in possibly
high-dimensional data.

Each neuron is located in a physical array, the dimension of which will
become the dimension of the internal map to be created; the vector r i indic-
ates the location of neuron i. We define a neighbourhood function hij as
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Figure 5.16 Example of the fishing net representation of the state of a SOM system. Upper
left: the arrangement of 9 neurons in a physical array (defining the {r i}, and hence the
notion of neighbours). Upper middle: the positioning of the nine code-book vectors mi in
data space, corresponding to the state {m1 = (0, 1), m2 = ( 1

2 , 1), m3 = (1, 1), m4 = (0, 1
2 ),

m5 = ( 1
2 , 1

2 ), m6 = (1, 1
2 ), m7 = (0, 0), m8 = ( 1

2 , 0), m9 = (1, 0)}. Bottom left: the fishing
net graph corresponding to this state. Bottom middle: the fishing net graph corresponding
to the state obtained by exchanging code-book vectors m3 and m8. Bottom right: the fishing
net graph corresponding to the state obtained by exchanging code-book vectors m2 and m8.
Note that all cases give rise to exactly the same distribution of code-book vectors, so that
the incorrect topology of the last two states can indeed only be inferred from the fishing net
graph.

follows:

hij = h

( |r i − rj |
σ

)
, σ > 0 (5.15)

in which h(z) is a monotonically decreasing function, with h(0) = 1,
h(∞) = 0, and with a width of order 1. For example:

h(z) = e−(1/2) z2
: hij = e−(r i−rj )2/2σ2

h(z) = θ(1− z): hij =
{

1, if |r i − rj | < σ

0, if |r i − rj | > σ

in which θ(z) is the step function (θ(z > 0) = 1, θ(z < 0) = 0). The SOM
algorithm can now be defined as follows. First we initialize the N code-
book vectors mi ∈ IRn randomly. Then we iterate the following stochastic
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process:

step 1: pick a data point x at random, according to the probability
density p(x)

step 2: find the Voronoi cell containing x, that is, find i such that |x−mi | <
|x −mj | for all j �= i

step 3: move allmj towards x: mj → mj+η(x−mj )Fj (x, {m(�)}), where
Fj (· · · ) = hij

step 4: return to 1

The learning rate 0 < η � 1 controls, as always, the overall magnitude
of the changes.

The SOM algorithm can be seen to have the following general
properties:

1. All code-book vectors are moved towards x at every iteration step, but
those which are closest to the code-book vector in whose Voronoi cell
the data point is, or in other words the neuron which is triggered most,
are moved the most.

2. Unless we reduce η during the process, the code-book vectors will
continue to move stochastically, although the density of code-book
vectors in any given region should become stationary.

3. The properties of the {hij} guarantee that neighbouring neurons team up,
and develop similar code-book vectors.

4. SOM has one more parameter than VQ. This extra parameter, σ , defines
a characteristic distance in the original physical array of the neurons:
code-book vectors with |r i−rj | < σ will be the ones to feel one another’s
influence.

5. limσ→0 SOM = VQ (the proof is trivial). Hence we can see the SOM as
VQ plus enforced spatial continuity.

We observe that the SOM is again of the general form (5.4), hence we can
apply our results on time-dependent learning rates also to the SOM. The
relation between the three processes discussed so far is

lim
β→∞ SVQ = VQ = lim

σ→0
SOM

It will be clear that the determination of the right value for σ is del-
icate. If σ is too small, the system will behave like VQ, and the correct
topology will not emerge, or be correct only locally. If σ is too large, all
neurons will drag one another along, and all code-book vectors will become
identical; see also the simulation examples below. The new parameter σ
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also introduces boundary effects. Since neurons drag along one another’s
code-book vectors, those neurons which are at the boundary of the array
will feel an effective force dragging their code-book vectors towards the
inner region of the array, simply because there are no neurons pulling from
the outside. This shows itself in a tendency for the boundaries of the fishing
net to keep a certain σ -dependent distance from the boundaries of the data
region. In practice one therefore chooses a time-dependent σ , similar to the
time-dependent learning rate, that is,

η(t) = η(0)

1+ t/τη

, σ(t) = σ(0)

1+ t/τσ

Applications of the SOM include sensor fusion (in robotics), data visual-
ization and data-base mining (finding hidden low-dimensional regularities
in messy or high-dimensional data), data preprocessing, medical diagnostics
(finding causal relationships in medical data), etc.

Examples of SOM in action

Figures 5.17 and 5.18 illustrate the functioning of the SOM algorithm for a
number of simple examples with n = 2 (i.e. where one has data points x =
(x1, x2) in a plane) and a 10×10 array of neurons (i.e. a population of 100
code-book vectors), but for different choices of the distance parameter σ

and of the time-dependence of the learning rate. Figure 5.17 illustrates
the need for having a sufficiently large range σ , in order to capture the
correct topology of the data, but also the σ -dependent boundary effects. In
Figure 5.18 we vary the reduction speed of the learning rate, showing that
suboptimal stationary states may result when the learning rate goes to zero
too quickly.

5.5 Exercises

Exercise 5.1. (Soft SOM.) Define an alternative algorithm SOM2 in the
following way. Each neuron is located in a physical array whose dimension
determines that of the internal map to be created; the vector r i indic-
ates the location of neuron i. Define a neighbourhood function hij =
h(|r i − rj |/σ) as in the standard SOM. First we initialize the N code-
book vectors mi ∈ IRn randomly. Then we iterate the following stochastic
process:

step 1: pick a data point x at random, according to probability
density p(x)
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Figure 5.17 Numerical simulation of a SOM, with n = 2, η = 0.5, and N = 100. Top left
graph: data distribution p(x), uniform over the strip 1

2 < |x| < 1. Other eight graphs:
system state after 20,000 iteration steps, for different values of the range parameter σ

(σ ∈ {0.1, 0.3, 0.5, 0.7, 0.9, 1.1, 1.3, 1.5}, from top middle to bottom right). One clearly
observes the two effects of losing the correct topology for σ too small, with only local
correctness for intermediate σ , and of the code-book vectors of boundary neurons keeping
a σ -dependent distance from the data boundary.

step 2: move all mi according to: mi → mi + η(x − mi )Fi[x, {m(�)}],
where

Fi(x, {m(�)}) = hij� , with j� = argminj

∑
�

hj�(x −m�)
2

step 3: return to 1

Discuss the difference(s) between this new SOM2 algorithm and
the standard SOM. Next define a ‘soft’ version SSOM2 of the above
algorithm, by replacing the SOM2 definition of Fi[x, {m�}] with the
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Figure 5.18 Example: numerical simulation of a SOM, with n = 2, σ = 1.5, η(0) = 0.5,
and N = 100. Top graph: data distribution p(x), uniform over the strip 1

2 < |x| < 1. Other
eight graphs: system state after 20,000 iteration steps, for different choices of the
time-dependence of the learning rate η. Second row left: η = 0.5 (constant). Second row,
middle: η(t) = η(0)/[1+ t/τ ], with τ = 10. Second row, right: η(t) = η(0)/[1+ t2/τ2],
with τ = 10. Bottom: η(t) = η(0) exp[−t/τ ], with τ = 10. One clearly observes that the
system can get stuck in a suboptimal state, where the topology is only locally correct.

following:

Fi(x, {m(�)}) =
∑
j

hij
e−β

∑
k hjk(x−mk)

2∑
� e−β

∑
k h�k(x−mk)

2

Show that limβ→∞ SSOM2 = SOM2, and that limσ→0 SSOM2 = SVQ.

Exercise 5.2. (Lyapunov functions and interpretation of SSOM2 and
SOM2.) Consider the SSOM2 algorithm defined in the previous exercise.
Consider small learning rates in the usual manner, such that in the η → 0
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limit SSOM2 reduces to the following deterministic equation

d
dt

mi = 〈(x −mi )Fi(x, {m})〉

Show that for Fi(x, {m}) = F SSOM2
i (x, {m}), this deterministic equation

describes a gradient descent dynamics for an error measure E[{m}], given
(unlike the case of SVQ) by the sum of the Kullback–Leibler distance
between the data distribution p(x) and a distribution q(x|{m}) parametr-
ized by the set {m} of code-book vectors, and an extra term which does not
involve the data distribution. Find q(x|{m}). What does your result imply
for the interpretation of the SOM2 algorithm?
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6
Bayesian techniques in
supervised learning

In this chapter, we discuss the Bayesian approach to supervised learning
from examples. Its introduction in the 1990s has been a very welcome
development, in that it contributed significantly to converting artificial
neural computation, especially learning in multilayer networks, from a
collection of interesting but ad hoc algorithms (‘invent a rule, play with
parameters, draw performance graphs, and hope for the best’) to a sound,
well grounded, and systematic scientific procedure. It also contributed to
the area becoming more mathematical in nature.

6.1 Preliminaries and introduction

Supervised learning from examples

Let us first set the scene and define our terminology. In supervised learning
from examples we are confronted with a task, defined by a collection of
questions ξµ, drawn randomly from some set � ⊆ IRN (with probabilities,
or probability density, p(ξ)), with corresponding answers tµ:

the task: questions: {ξ1, . . . , ξp}, ξµ ∈ � ⊆ IRN

answers: {t1, . . . , tp}, tµ ∈ IR

This task, assumed to have been generated by a teacher, is to be learned
by a student (the neural network). The student executes a parametrized
operation S: IRN → IR, where S(ξ) = f (ξ ; w). The parameters w determine
the details of the operation, and thus represent the ‘program’; in multi-
layer neural networks they would be the synaptic weights and the neuronal
thresholds.11 If the outputs (or targets) are binary, for example, tµ ∈ {0, 1}
or tµ ∈ {−1, 1}, we would call the task binary classification. If the out-
puts can truly take values from a continuous set, we would speak about
regression.

11 In order not to deviate from established notation in literature we now write input vectors
as ξ rather than x, and adjustable parameters as w rather than J .
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ξ = (ξ1, . . . , ξN)

Student (adaptive)

S(ξ) = f (ξ ; w)
 S(ξ)

�
�
�
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� Teacher (oracle)

?
 T (ξ)
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���
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���

Figure 6.1 The teacher–student scenario of online supervised learning. The student can be
any type of parametrized operation (not necessarily neural or neural-inspired).

It is assumed that the data (or answers) were not assigned randomly by
the teacher—otherwise there would be no point in learning—but that they
were generated according to some function T : IRN → IR. The student has
no direct information on the function T (the teacher is a black box, or
oracle), but has to infer T from the p input–output pairs (ξµ, tµ); this is
the objective of the learning process. See figure 6.1. The problem faced by
the student is made more difficult by the fact—which is rather common
in the real world—that the data are not perfect, that is, the teacher can
make mistakes, or is subject to noise. If for simplicity we assume that the
inaccuracy or noise is independent for the different outputs, that is, that the
teacher is sloppy rather than using a consistently wrong rule, we have:

binary classification: Prob[tµ = T (ξµ)] = 1− ε, 0 ≤ ε ≤ 1

regression: tµ = T (ξµ)+ zµ,
zµ ∈ IR drawn randomly from P(z)

(6.1)

In the case of binary classification, the parameter ε measures the amount
of noise in the data, with ε = 0 corresponding to perfect data. In
the case of regression we may without loss of generality assume that
〈z〉 = ∫

dz zP (z) = 0; a nonzero average would be equivalent to a struc-
tural modification of the underlying rule T , and could be absorbed into its
definition. Hence the amount of noise in the data is here measured by the
variance of P(z), with perfect data given by P(z) = δ(z) (see Appendix F
for details of the δ-distribution).

Due to the possibility of data noise and the difference between our finite
sample {ξ1, . . . , ξp} and the full set of possible questions �, there are several
performance measures one could define. Here we concentrate on two: the
training error Et (measuring how well the student reproduces the given
answers tµ), and the generalization error Eg (measuring how well the
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student has learned the underlying rule T ):

Et = 1
p

p∑
µ=1

E(tµ, S(ξµ)) Eg =
∫

�

dξp(ξ)E(T (ξ), S(ξ))

where E(t , s) is some, as yet unspecified, measure of the difference between
t and s, such as E(t , s) = |t − s|γ (with γ > 0). Given the dependence
of the student’s operation on the parameters w, via S(ξ) = f (ξ ; w), this
becomes

Et(w) = 1
p

p∑
µ=1

E(tµ, f (ξµ; w)) Eg(w) =
∫

�

dξp(ξ)E(T (ξ), f (ξ ; w))

(6.2)

There are three important observations to make at this stage:

• The above two error measures Et(w) and Eg(w) differ in two aspects:
(i) Et is an average only over the p available questions {ξ1, . . . , ξp},
whereas Eg involves all questions in �. (ii) Et checks performance relative
to the noisy answers {tµ} given, whereas Eg checks performance relative to
the correct underlying rule T . However, for Eg the alternative definition
which measures the error relative to the noisy rule can also be found in
the literature, and then this second distinction disappears.
• The real objective of learning is to minimize Eg(w), via suitable modi-

fication of the parameters w, since we ultimately wish to use our system
for predicting the answers to novel questions, rather than just parrot the
answers to those of the training stage.
• In the learning process, however, we have no access to Eg(w), since we

know neither the full set � nor the true rule T ; we only have the data
{(ξ1, t1), . . . , (ξp, tp)}.

Many of the obstacles and problems in neural network learning in the past
(i.e. before, say, 1990) had their origin in the fact that one wished to min-
imize one object (Eg), but one could only measure the other (Et ), and one
tried to get away—out of necessity, it seemed—with pretending that the
differences between the two were not too important.

Conventional network types

Let us next briefly review the most common types of neural network S(ξ) =
f (ξ ; w) which are used in practice for the above purpose. We first consider
regression tasks, where the outputs are supposed to be continuous:
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• Single layer neural networks (perceptrons):
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Their output is of the form

f (ξ , w) = g(w · ξ + w0) (6.3)

with g(z) a monotonically increasing sigmoidal function, which saturates
for z → ±∞. Perceptrons are basically single neurons, carrying out a
(soft) linear separation in the space � of the input vectors ξ , S(ξ) =
g(w · ξ + w0). The modifiable parameters (i.e. the ‘program’) are the
synaptic weights (w1, . . . , wN) and the threshold w0.
• Multilayer neural networks (or multilayer perceptrons, MLPs):
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f (ξ ; w)

These are feed-forward processing networks of neurons of the type
described above (soft linear separators), with monotonically increasing
and saturating sigmoidal functions g(z). The overall output

f (ξ ; w) = g


 NL∑

j=1

wL
j yL

j (ξ)+ wL
0


 (6.4)
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is calculated iteratively from the outputs of the preceding layers, accord-
ing to

y1
i =

N∑
j=1

g(w0
ijξj + w0

0) y�+1
i =

N�∑
j=1

g(w�
ijy

�
j + w�

0) 1 ≤ � < L

(6.5)

and the modifiable parameters (i.e. the program) are the synaptic weights
and thresholds of all L layers, that is, w = {w�

ij, wL
i , w�

0}. Given a suf-
ficient number of layers and units within each layer (dependent on the
problem to be solved), these networks have been proven to be univer-
sal approximators: any sufficiently well-behaved continuous function
f : IRN → IR can be approximated to arbitrary accuracy by MLPs. We
will not discuss the precise conditions or the proof here.
• Radial basis function (RBF) networks:
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The overall output is now a linear combination of a predefined set of
functions {φi} of the input signals,

f (ξ ; w) =
M∑

i=1

wiφi(ξ)+ w0 (6.6)

The motivation behind the construction of these networks is also the
principle underlying the previous multilayer networks: one converts a
problem that is not linearly separable into one that is. In the previous
network the final neuron does the linear separation, and the preceding
L layers do the preprocessing. In radial basis function (RBF) networks
one chooses specific functions φi(ξ) (the ‘radial basis functions’) for the
preprocessing. These are allowed to depend only on the distance |ξ −mi |
between the input vector and a code-book vector mi ,

φi(ξ) = φ(|ξ −mi |) (6.7)
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For the remaining scalar function φ several choices have been proposed;
which one to pick is crucial for performance, but unfortunately highly
dependent on the problem at hand.12 Popular choices are:

localized basis functions: φ(u) = e−u2/2σ2

φ(u) = (u2 + σ 2)−α (α > 0)

non-localized basis functions:
φ(u) = u

φ(u) = (u2 + σ 2)β (0 < β < 1)

The modifiable parameters are the weights w, though sometimes one also
allows the code-book vectors mi to adapt. Note, finally, that in RBF net-
works the output does not undergo a non-linear sigmoidal operation, and
hence depends linearly on the parameters w.

Model complexity and overfitting

Systems such as those discussed above have been used (and are still being
used) as student networks S(ξ) = f (ξ ; w) in the sense of Figure 6.1. The
strategy for finding the best parameters w was in the early stages of neural
computation based on performing gradient descent on the surface defined
by the training error Et(w) as given in (6.2), with a quadratic error measure
E(t , s) = 1

2 (t − s)2:

d
dt

w = −η∇wEt(w) Et (w) = 1
2p

p∑
µ=1

[tµ − f (ξµ; w)]2 (6.8)

with a learning rate η > 0. The objective is to find w� such that
minw Et(w) = Et(w

�); the above process would at least be guaranteed
to lead us to a local minimum of Et(w), since

d
dt

Et (w) = ∇wEt(w) · d
dt

w = −η (∇wEt(w))2 ≤ 0

d
dt

w = 0 ⇐⇒ ∇wEt(w) = 0

12 This illustrates how in RBF networks the learning problem is, in a way, simply swept
under the carpet. For how do we now choose the function φ(u), the code-book vectors xi , or
the number M? And under which conditions can we be sure that the ad hoc restriction to RBF
units does not render the problem unlearnable? At least in image processing, however, one can
set up a rigorous framework, and show that all non-pathological images can be decomposed
in terms of a bundle of local expansions (derivatives of Gaussian functions), which can in
turn be constructed by adding and subtracting Gaussian functions of the type (6.7).
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One problem with this approach has been clear from the beginning: one
can end in a local rather than a global minimum. A second problem was
appreciated only some 10 years later: gradient descent is not the optimal
local process to find minima on an error surface (see the chapter on informa-
tion geometry in Part III of this book). Here we concentrate on a third
problem, called inappropriate model complexity, or ‘overfitting’.

This problem is best explained using a very simple example. Suppose we
have a task T : IR → IR defined by a teacher who calculates some func-
tion g(x). The student S: IR → IR tries to emulate the teacher by some
parametrized function f (x; w), for which we choose a finite polynomial,
that is, a truncated Taylor expansion:

f (x; w) = w0 + w1x + · · · + wMxM or f (x; w) = w ·�(x), φ�(x) = x�

(6.9)

Learning means adapting w = (w0, . . . , wM). The data consist of examples
of p inputs xµ and corresponding outputs tµ (with p ≥ M + 1). However,
the teacher is not perfect—there is a noise source in the data generation—
so tµ = g(xµ) + zµ where the zµ are drawn independently according to a
zero-average distribution P(z). The training error is given by

Et(w) = 1
2p

p∑
µ=1

[tµ − w ·�(xµ)]2

Gradient descent learning then boils down to

p

η

d
dt

wi =
p∑

µ=1

[tµ − w ·�(xµ)]φi(xµ)

=
p∑

µ=1

tµφi(xµ)−
M∑

j=0

[ p∑
µ=1

φi(xµ)φj (xµ)

]
wj

This can be written as pη−1(dw/dt) = u − Aw, with ui = ∑p

µ=1 tµ(xµ)i

and Aij =∑p

µ=1(xµ)i+j , with solution (provided the matrix A is invertible)

w(t) = A−1u+ e−(ηt/p)A[w(0)−A−1u]
The final outcome of the learning process is the weight vector w� = w(∞) =
A−1u. Insertion into (6.9) gives the associated function extracted by the
student from the data. In Figure 6.2 we show the result for the example
g(x) = 1

2 + sin(2πx), with 0 ≤ x ≤ 1. For small M (e.g. M = 1
in the figure), the complexity of the student is insufficient for reducing either
training or generalization error. Increasing the complexity of the student,
that is, M, initially improves both; see, for example, the case M = 3 in the
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Figure 6.2 Example of a simple learning process where a system learns via gradient
descent on a quadratic error measure to approximate a function g(x) = 1

2 + sin(2πx) (solid
line) by an Mth-order polynomial f (x; w) = w0 + w1x + · · · + wMxM , on the basis of nine
noisy sample points of this function (circles). The resulting polynomials are shown for
M = 1 (dashed), M = 3 (dot-dashed), and M = 9 (dotted).
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Figure 6.3 Evolution of training and generalization errors during a learning process
defined as gradient descent on an error surface, with noisy data, in the regime where the
student is too complex and starts overfitting, that is, reproducing also the noise in the data.

figure. However, for large M the system increasingly succeeds in reducing
the training error by reproducing exactly the locations of the data points
including the noise, with the side-effect of a deterioration of generalization;
see the case M = 9 in the figure. Plotting the values of Et and Eg as func-
tions of time for a student with excessive complexity (M too large) would
lead to the behaviour illustrated in Figure 6.3.
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Two commonly used solutions to the overfitting problem are cross-
validation and regularization. In cross-validation, the idea is to split the
p available data points into two subsets: a training set {(ξ1, t1), . . . , (ξ k, tk)}
and a validation set {(ξ k+1, tk+1), . . . , (ξp, tp)}. One then uses the training
set for learning, and the validation set to estimate the generalization error:

Et(w) = 1
k

k∑
µ=1

E(tµ, f (ξµ; w)) Eg(w) ≈ 1
p − k

p∑
µ=k+1

E(tµ, f (ξµ; w))

(6.10)

This latter estimate can be used in two possible ways:

(a) Controlling model complexity (or: finding optimal complexity).
In terms of the example of Figure 6.2: start learning by minimizing the
training error Et with a small value of M, measure the estimate of the gen-
eralization error in (6.10), and repeat this procedure for increased values
of M until Eg is seen to increase.

(b) Controlling learning times (or ‘early stopping’). As suggested by
Figures 6.2 and 6.3, in this approach we minimize the training error Et

with a large value of M (a complex student) but monitor the estimate of
the generalization error in (6.10) as a function of time. We then terminate
learning as soon as Eg is seen to increase.

It should be emphasized that in both cases the value of Eg that one ends
up with is still a biased estimate of the true generalization error. This is
because both procedures actually try to minimize Eg, by choosing either M

or the early stopping time, and so make it atypically small.
Note also that in (a), in order to reduce fluctuations in the estimate of Eg

for any given M, one often considers several splits of the data into training
and validation sets. A standard way of doing this is c-fold cross-validation:
split the data into c equal-sized chunks, then leave out each chunk in turn as
a validation set and use the rest of the data as the training set. This means
running the training procedure c times, training each time on a fraction
(c−1)/c of the data. For each run one estimates Eg from the validation set
as in (6.10) and then averages the c results to get the overall estimate of Eg

for the given M. The extreme version of this with c = p, where the training
algorithm is run p times and only one data point is left out each time, is
also called leave-one-out cross-validation.

The method of regularization is based on the assumption that both the
function to be learned and the basis functions of the student are in principle
smooth, and that any observed irregularity and discontinuity of data must
have been due to noise. Since the only way for the student to reproduce
irregular or discontinuous functions is by having large and possibly diver-
ging components of the parameter vector w, regularization tries to prevent
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Figure 6.4 Regularization with a quadratic penalty term, as in equation (6.11), for the
example of Figure 6.2. Solid line: the function to be learned. Circles: nine noisy sample
points of this function. Dotted line: approximation by a 9th-order polynomial, without
regularization. Other lines: similar, but with regularization coefficient λ = 0.001
(dot-dashed) and λ = 0.1 (dashed), respectively. The λ = 0.001 curve improves
generalization compared to the un-regularized one, that is, it resembles the true function
more closely. However, for λ = 0.1 we observe over-regularization: the approximation
becomes too smooth.

w from becoming too large by adding a suitable penalty term to the function
to be minimized, such as:

d
dt

w = −η∇w

[
Et(w)+ 1

2
λw2

]
Et(w) = 1

p

p∑
µ=1

E(tµ, f (ξµ; w)) (6.11)

Neither cross-validation nor regularization are ideal. In the first case we
waste data and CPU time which could have been used for learning. In the
second we must tune or guess the form of the penalty term and its coeffi-
cient λ; see also Figure 6.4. In either case we cannot be sure that we arrive at
the lowest possible generalization error. The origin of the problem is clear:
we continue to minimize an object which we can easily measure (Et ). This
differs from the object which we would really like to minimize (Eg), but
which we cannot measure.

6.2 Bayesian learning of network weights

Ideas, definitions, and benefits

The Bayesian approach deals in a systematic way with the general prob-
lem of learning in neural networks and other parametrized information
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processing systems of the general form S(ξ) = f (ξ ; w) + noise, given
the observation of generally noisy data D = {(ξ1, t1), . . . , (ξp, tp)}. In its
simplest form, that is, for a given model, it is based on the following three
ideas:

• Consider not just a single parameter vector w, but an ensemble of para-
meter vectors, characterized by a probability distribution p(w) which
evolves during learning.
• Assume that the data D were generated by a system of the form S(ξ) =

f (ξ ; w)+noise. Try to calculate the probability p(w|D) of the parameter
vectors, given the data.
• Use the general Bayesian relation P(A|B)P (B) = P(B|A)P (A) to express

the desired object p(w|D) in terms of p(D|w); the latter can be calculated
quite easily.

Learning is regarded as a process during which the arrival of data reduces
our uncertainty about the ‘right’ parameter vector w from a prior distri-
bution p(w), reflecting prior knowledge or prejudices about the problem,
to a posterior distribution p(w|D) that reflects both prior assumptions and
the evidence provided by the data. Note that we can combine the general
statistical relations p(D|w)p(w) = p(w|D)P (D) and p(D) = ∫

dw p(w, D)

to obtain

p(w|D) = p(D|w)p(w)∫
dw′p(w′)p(D|w′) (6.12)

This is the core identity.
Putting the above ideas into practice, Bayesian learning works as follows:

Stage 1: definitions. Define (i) the parametrized model, assumed respons-
ible for the data, (ii) the prior distribution p(w) of its parameters, and
(iii) the data D = {(ξ1, t1), . . . , (ξp, tp)}.

Stage 2: model translation. Convert the model definition into a standard
probabilistic form, that is, specify the likelihood of finding output t

upon presentation of input ξ , given the parameters w:

model definition in standard form: p(t |ξ , w) (6.13)

Stage 3: the posterior distribution. Calculate the data likelihood
p(D|w) = ∏p

µ=1 p(tµ|ξµ, w), as a function of the parameters w.
From this, together with identity (6.12), follows the desired posterior
parameter distribution

p(w|D) = p(w)
∏p

µ=1 p(tµ|ξµ, w)∫
dw′p(w′)

∏p

µ=1 p(tµ|ξµ, w′)
(6.14)
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Stage 4: prediction. The residual uncertainty in the parameters w gen-
erates uncertainty in subsequent data prediction. Prediction of the
output t corresponding to a new input ξ , given our observation of
the data D and our choice of model, thus takes the probabilistic form:

p(t |ξ , D) =
∫

dw p(t |ξ , w)p(w|D) (6.15)

This concludes the description of Bayesian learning for a single model: the
problem has in principle been reduced to doing integrals, although how
one evaluates these efficiently is quite another matter. Before we move
on to the remainder of this section, which deals with implementation and
understanding, and with the generalization of the ideas to model selection,
two comments on the expression for p(D|w) in Stage 3 are in order. (i) The
fact that we have a product of terms for the individual data points implies
the assumption that the data are independently and identically distributed
(i.i.d.) for a given w. In other words, there is nothing special about any par-
ticular data point; as a counter-example one could think of the noise level
depending on µ. Also, different data points are not correlated with each
other, as could happen if data arrive, for example, in batches, with each
batch having a persistent bias towards low or high values. (ii) Strictly speak-
ing, P(D|w) as written is the probability of the outputs t1, . . . , tp given w

and the inputs ξ1, . . . , ξp. The joint probability of outputs and inputs given
w would be

∏p

µ=1 p(tµ|ξµ, w)p(ξµ) if we make the reasonable assumption
that the input distribution is not influenced by w. Since the extra factor∏p

µ=1 p(ξµ) is independent of w, it cancels from identities such as (6.12)
and would not change any of the results.

The Bayesian approach to learning has become very popular within a
relatively short period of time. The reason for this can be appreciated
by simply listing some of its main appeals and benefits, to be derived
below:

• It provides an interpretation of regularizers and their associated
parameters.
• It provides an interpretation of single-point error measures.
• There is no need for cross-validation, so all data can be used for learning.
• It allows for the selection of the optimal complexity within a given model

class, and for the selection of the optimal model class from a given set of
candidates.
• It provides not only predictions, but also specific estimates of our

confidence in these predictions, that is, error bars.
• Traditional learning via gradient descent training error minimization,

with regularization, is recovered as a particular approximation within
the Bayesian framework.
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Let us gain intuition on how in the Bayesian picture the arrival of data is
converted into probabilistic statements about model parameters, by work-
ing out the steps (6.13, 6.14) for some simple examples. We will write
inputs as ξ ∈ IR or ξ ∈ IRN , adjustable parameters as w ∈ IR or w ∈ IRM ,
outputs as t ∈ IR, and data as D = {(ξ1, t1), . . . , (ξp, tp)}.

Example 1. Our first example describes a deterministic model with one
real-valued input and one real-valued output. Stage one in the process is
the definition of model, prior parameter distribution13 and data, for which
we take:

t(ξ) = tanh(wξ) p(w) = (2π)−1/2e−w2/2 D = {(1,−1
2 )}

(one data point). Next we convert the model into the standard probabilistic
form14 (6.13):

p(t |ξ , w) = δ(t − tanh(wξ))

We can now calculate the posterior distribution (6.14):

p(w|D) = p(w)p(t1|ξ1, w)∫
dw′ p(w′)p(t1|ξ1, w′)

= δ(−(1/2)− tanh(w))e−w2/2∫
dw′ δ(−(1/2)− tanh(w′))e−w′2/2

= δ(w − artanh(−1
2 )) = δ(w + ln

√
3) (6.16)

Here we have used the two identities δ(f (w)) = |f ′(f−1(0))|−1δ(w −
f−1(0)) (see Appendix F) and artanh(z) = 1

2 ln((1+ z)/(1− z)).
Before we had observed any data our uncertainty about the parameter

w was described by the Gaussian prior p(w). The arrival of the data
point (1,−1

2 ) induced a collapse of this prior to the δ-distributed posterior
p(w|D) = δ(w + ln

√
3), without any uncertainty. This is illustrated in

Figure 6.5 (left).

Example 2. Let us now make matters slightly more interesting and replace
the one-parameter function of the first example by a two-parameter
function:

t(ξ) = tanh(w0 + w1ξ) p(w) = (2π)−1e−w2/2 D = {(1,−1
2 )}

13 Note that for any fixed choice of average and variance, the Gaussian distribution is the
maximum entropy (i.e. maximum uncertainty) distribution for real-valued random variables.
See Part III of this book, dealing with applications of information theory.

14 See Appendix F on distributions for the definition and properties of the distribution δ(z).
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The standard probabilistic form becomes

p(t |ξ , w) = δ(t − tanh(w0 + w1ξ))

The posterior distribution becomes:

p(w|D) = p(w)p(t1|ξ1, w)∫
dw′ p(w′)p(t1|ξ1, w′)

= δ(−(1/2)− tanh(w0 + w1))e
−w2/2∫

dw′ δ(−(1/2)− tanh(w′0 + w′1))e−w′2/2

= δ(w0 + w1 + artanh(1/2))e−w2/2∫
dw′ δ(w′0 + w′1 + artanh(1/2))e−w′2/2

= δ(w0 + w1 + ln
√

3)e−w2/2∫
dw′ δ(w′0 + w′1 + ln

√
3)e−w′2/2

(6.17)

using the same identities as in (6.16). Note that the posterior (6.17) is
nonzero only along the line w0+w1 = − ln

√
3 in the parameter plane, and

that along this line it is maximal for the choice w0 = w1 = −1
2 ln
√

3. This
latter result simply follows from calculating the minimum of w2 along the
line w0 + w1 = − ln

√
3, and is illustrated in Figure 6.5 (right).

Before we observed any data our uncertainty about the parameters
w = (w0, w1) was described by the Gaussian prior p(w). The arrival of the
data point (1,−1

2 ) induced a collapse of this prior to an infinitely narrow
distribution along the line w0 + w1 = − ln

√
3, that is, a ‘slice’ of the
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Figure 6.5 Left: reduction of parameter uncertainty due to arrival of data in Example 1,
from a Gaussian prior distribution p(w) to a δ-peaked posterior distribution p(w|D).
Right: reduction of parameter uncertainty in Example 2, from a Gaussian prior
distribution p(w0, w1) (contour lines) to a posterior distribution p(w0, w1|D) with support
only along the line w0 + w1 = − ln

√
3 (with its maximum at the point indicated

by + in the figure).
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two-dimensional Gaussian prior in the parameter plane. The most likely
parameter vector is w0 = w1 = −1

2 ln
√

3, but we note that in (6.17) we also
have exact quantitative information regarding the uncertainty in (w0, w1).

Note, finally, that in contrast to the above two simple examples we will
generally have to allow for data generating models that incorporate noise,
in order to retain a nonzero probability for having generated the—generally
noisy—observed data.

The link between Bayesian learning and traditional learning

At first sight it appears that Bayesian learning is quite remote from
traditional gradient descent learning on an error surface, possibly with
regularization, as in

d
dt

w=−η∇w[Et(w)+ λEw(w)] Et(w)= 1
p

p∑
µ=1

E(tµ − f (ξµ; w)) (6.18)

in which E(u) represents a single-point error measure, the function Ew(w)

represents a regularizer, and with w ∈ IRM . To reveal the link between the
two points of view we must turn to (6.14), which we write as

ln p−1(w|D) =− ln p(w)−
p∑

µ=1

ln p(tµ|ξµ, w)

+ ln
∫

dw′p(w′)
p∏

µ=1

p(tµ|ξµ, w′)

Finding the most probable parameter vector wMP, given the data D, is
equivalent to minimizing ln p−1(w|D), that is, to minimizing the quantity
S(w, D):

S(w, D) = − ln p(w)−
p∑

µ=1

ln p(tµ|ξµ, w) (6.19)

Let us work out this expression for the following simple and natural class
of data-generating models: t = f (ξ ; w)+ z,

ξ f (ξ ; w)  
�

z

f (ξ ; w)+ z
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Here f denotes some parametrized function, as performed, for example,
by the standard neural networks (MLP, RBF) that are traditionally used in
gradient descent learning of the type (6.18). Additive noise in the data is
represented by z, a zero-average random number. If this noise variable is
distributed according to P(z), one has

p(t |ξ ; w) = P(t − f (ξ ; w)) (6.20)

Now the function (6.19), whose minimum gives the most probable
parameters, reduces to

1
p

S(w, D) = −1
p

p∑
µ=1

ln P(tµ − f (ξµ; w))− 1
p

ln p(w)

Comparison with expression (6.18) reveals the following:

• Learning by finding the minimum on a training error surface, with regu-
larizer, as in (6.18), is equivalent to finding themost probable parameter
vector wMP. This is also called the Maximum A Posteriori Probability
(MAP) procedure.
• Choosing a specific single-point error measure E(u) in (6.18) means

making the following assumption on the data noise statistics: P(z) ∼
e−E(z).
• Choosing a specific regularizer λEw(w) in (6.18) means deciding on

the following specific prior distribution for the parameters w: p(w) ∼
e−pλEw(w).

Our previously ad hoc choices of error measure and regularizer are now
replaced by direct interpretations, and hence guides for how to make appro-
priate choices. We also learn en passant that the regularizer strength must
scale with the number of examples as λ ∼ p−1.

For example, learning by minimization of the simplest (quadratic)
training error measure E(u) = 1

2u2 and quadratic regularizer, viz.

d
dt

w = −η∇w

{
1
2p

p∑
µ=1

[tµ − f (ξµ; w)]2 + 1
2

λw2
}

(6.21)

is now recognized as fully equivalent to finding the most probable parameter
vector wMP for the following type of model:

p(t |ξ ; w) =
(

β

2π

)1/2

e−β[t−f (ξ ;w)]2/2 p(w) =
( α

2π

)M/2
e−αw2/2

(6.22)
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For this choice the function (6.19) simplifies, up to an irrelevant constant, to:

S(w, D) = β

2

p∑
µ=1

[tµ − f (ξµ; w)]2 + α

2
w2

= βp

{
1
2p

p∑
µ=1

[tµ − f (ξµ; w)]2 + 1
2

α

βp
w2

}
(6.23)

This is indeed proportional to the function being optimized in (6.21) if we
identify λ = α/βp. We thus need no longer guess the value of λ, but can
relate it to our assumptions about the prior and the noise level

λ = α

βp
α = 1

〈w2
i 〉prior

β = 1

〈t2〉noise − 〈t〉2noise

Quantities such as α or β in (6.22), which are not themselves adjustable
parameters in the sense of w, but are more global parameters which reflect
prior knowledge of the problem and influence the learning process are called
hyperparameters.

Approximation of the posterior parameter distribution

If we were to only calculate the most probable parameter vector wMP
we would gain only interpretations compared to old-fashioned training
error minimization. The power of the Bayesian techniques is that they also
provide information on the reliability of a learning outcome. This informa-
tion is embodied in the full posterior distribution p(w|D), which can be
written in terms of (6.19) as

p(w|D) = e−S(w,D)∫
dw′ e−S(w′,D)

(6.24)

In those cases where S(w, D) has only a single relevant local (and thus also
global) minimum wMP, the reliability of the learning outcome is mainly
coded in the local curvature (i.e. the ‘width’) of S(w, D) around wMP. We
now expand S(w, D) in the vicinity of wMP:

S(w, D) = S(wMP, D)+ 1
2 (w − wMP) ·A(w − wMP)+O(|w − wMP|3)

(6.25)

Aij = ∂2S

∂wi∂wj

∣∣∣∣∣
wMP

(6.26)
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Here A is called the Hessian matrix of S at the point wMP; linear terms are
absent in (6.25) due to wMP being a minimum. Truncation of the expan-
sion (6.25) after the quadratic term leads to a Gaussian approximation of
the posterior p(w|D):

S(w, D)→ S̃(w, D) = S(wMP, D)+ 1
2 (w − wMP) ·A(w − wMP) (6.27)

p(w|D)→ p̃(w|D) =
[

det A

(2π)M

]1/2

e−(w−wMP)·A(w−wMP)/2 (6.28)

Average, variance and covariance matrix of the approximated posterior
distribution p̃(w|D) are given by the following identities (see Appendix D)
involving the inverse of the Hessian (6.26), with the notation 〈f (w)〉 =∫

dw f (w)p̃(w|D):

〈w〉=wMP 〈wiwj 〉 − 〈wi〉〈wj 〉=(A−1)ij (6.29)

6.3 Predictions with error bars: real-valued functions

Learning and predicting the action of continuous real-valued functions from
(noisy) data examples is called regression. As we have seen in the previ-
ous section, a trained network is within the Bayesian framework described
by the posterior distribution p(w|D) for the system parameters, as given
by (6.14). Prediction then proceeds via formula (6.15), which can also be
written in terms of the function S(w, D) from (6.19) as

p(t |ξ , D) =
∫

dw p(t |ξ , w)p(w|D) p(w|D) = e−S(w,D)∫
dw′ e−S(w′,D)

(6.30)

This formally defines the statistics of the output to be associated with
input ξ ; p(t |ξ) is also called the predictive distribution.

Mean and variance for Gaussian output noise and Gaussian priors

We now work out output average and variance of (6.30) for the simplest
class of systems (6.22), that is, a parametrized function f (ξ ; w) with additive
zero-average Gaussian data noise:

ξ f (ξ ; w)  
�

z

f (ξ ; w)+ z
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The moments 〈t〉 = ∫
dt t p(t |ξ , D) and 〈t2〉 = ∫

dt t2 p(t |ξ , D) become,
if we transform the integration variable by putting t = f (ξ ; w)+ z/

√
β:

〈t〉 =
(

β

2π

)1/2 ∫
dt t

∫
dw e−β[t−f (ξ ;w)]2/2p(w|D) (6.31)

=
∫

dw

∫
dz√
2π

e−z2/2[f (ξ ; w)+ z/
√

β]p(w|D)

=
∫

dw f (ξ ; w)p(w|D) (6.32)

〈t2〉 =
(

β

2π

)1/2 ∫
dt t2

∫
dw e−β[t−f (ξ ;w)]2/2p(w|D)

=
∫

dw

∫
dz√
2π

e−z2/2[f (ξ ; w)+ z/
√

β]2p(w|D)

= 1
β
+

∫
dw f 2(ξ ; w)p(w|D) (6.33)

The prediction variance σ 2 = 〈t2〉 − 〈t〉2 now follows as

σ 2 = 1
β
+

∫
dw f 2(ξ ; w)p(w|D)−

[∫
dw f (ξ ; w)p(w|D)

]2

︸ ︷︷ ︸
variance due to uncertainty about system parameters

(6.34)

The first term, β−1, represents the intrinsic uncertainty in the data gen-
eration model; the remainder in (6.34) reflects our uncertainty about the
right parameters after having learned the data. The Bayesian predicted out-
put t�(ξ) for the input ξ , and its associated error margin �t�(ξ), are now
defined as 〈t〉 and σ , respectively15:

t�(ξ) =
∫

dw f (ξ ; w)p(w|D) (6.35)

[�t�(ξ)]2 = 1
β
+

∫
dw f 2(ξ ; w)p(w|D)−

[∫
dw f (ξ ; w)p(w|D)

]2

(6.36)

15 Note: t�(ξ) need not be identical to f (ξ ; wMP), where wMP denotes the most probable
parameters.



146 6 : Bayesian techniques in supervised learning

We note briefly that the above results for 〈t〉 and 〈t2〉 can also be derived
by writing

〈tn〉 =
∫

dw p(w|D)

∫
dt tnp(t |ξ , w)

Because p(t |ξ , w) is a Gaussian distribution with mean f (ξ ; w) and variance
1/β, the integral—or average—over t gives f (ξ ; w) for n = 1 and f 2(ξ ; w)+
1/β for n = 2, respectively. This leads directly to (6.32, 6.33).

We assume in the following that the prior on w is Gaussian. The function
S(w, D) is then given by (6.23) and p(w|D) has the form

p(w|D) = e−S(w,D)∫
dw′ e−S(w′,D)

S(w, D) = β

2

p∑
µ=1

[tµ − f (ξµ; w)]2 + α

2
w2

In the pair (6.35, 6.36) we now have proper predictions with error bars.

Simplification for approximated posterior distribution

The above exact result (6.35, 6.36) can be simplified using the approximated
posterior distribution p̃(w|D) of (6.28). To get the (approximate) predicted
outputs and error bars, we need the averages 〈f n(ξ ; w)〉 taken over p̃(w|D),
a Gaussian distribution with mean 〈w〉 = wMP and, from (6.29), covariance
matrix A−1. We isolate the mean by writing w = wMP + u, so that u is a
Gaussian random vector with zero mean and covariance matrix 〈uiuj 〉 =
(A−1)ij. Even so, we cannot in general evaluate the averages 〈f n(ξ ; wMP +
u)〉 exactly. We therefore make one further and final approximation: if the
width of the distribution of u is small, that is, if A is large, then we can
expand

f (ξ ; wMP + u) = f (ξ ; wMP)+ u · x(ξ)+ 1
2u · B(ξ)u+O(u3) (6.37)

where xi(ξ) = ∂f (ξ ; w)/∂wi |wMP and Bij(ξ) = ∂2f (ξ ; w)/∂wi∂wj |wMP.
We now systematically neglect all terms of order u3 and higher. The average
over the zero-mean Gaussian vector u kills the third-order terms anyway,
so the first terms that we are genuinely neglecting are those of order u4,
whose averages would scale16 as A−2. We thus get

t�(ξ) = 〈f (ξ ; wMP + u)〉
= f (ξ ; wMP)+ 〈u〉 · x(ξ)+ 1

2

∑
ij

Bij(ξ)〈uiuj 〉 +O(A−2)

= f (ξ ; wMP)+ 1
2 tr[B(ξ)A−1] +O(A−2) (6.38)

16 We symbolically write A−2 here to refer to terms which are quadratic or of higher order
in the elements of the matrix A−1.



6.3 Predictions with error bars: real-valued functions 147

where the trace of a matrix is defined as usual, tr C = ∑
i Cii. For the

calculation of the error bars, squaring (6.37) and retaining only terms up
to quadratic order in u gives

f 2(ξ ; wMP + u) = [f (ξ ; wMP)+ u · x(ξ)+ 1
2u · B(ξ)u]2 +O(u3)

= f 2(ξ ; wMP)+ 2f (ξ ; wMP)u · x(ξ)

+ f (ξ ; wMP)u · B(ξ)u+ [u · x(ξ)]2 +O(u3)

Averaging over u then leads to

〈f 2(ξ ; wMP + u)〉 = f 2(ξ ; wMP)+ f (ξ ; wMP)tr[B(ξ)A−1]
+ x(ξ) ·A−1x(ξ)+O(A−2)

For the error bars (6.36) we need the difference between this and [t�(ξ)]2.
The latter is, from (6.38),

[t�(ξ)]2 = f 2(ξ ; wMP)+ f (ξ ; wMP)tr[B(ξ)A−1] +O(A−2) (6.39)

and so the approximate error bars follow as

[�t�(ξ)]2 = 1
β
+ 〈f 2(ξ ; wMP + u)〉 − 〈f (ξ ; wMP + u)〉2

= 1
β
+ x(ξ) ·A−1x(ξ)+O(A−2) (6.40)

For expressions (6.38, 6.40) to be accurate17 and useful—given our earlier
assumptions of Gaussian additive data noise and a Gaussian prior—we need
p(w|D) to be (i) approximately Gaussian, and (ii) sufficiently narrow. The
latter condition means, in view of (6.29), that (the elements of) A−1 can
indeed be treated as small.

Models for which the above truncation is exact

In order to appreciate the nature of the approximations one would arrive
at by simply neglecting the O(A−2) terms in (6.38, 6.40), it is instructive to
determine the conditions under which they become exact. Given Gaussian
data output noise and a Gaussian prior

p(w) =
( α

2π

)M/2
e−αw2/2

17 In many textbooks one finds that the second term in t�(ξ) is also neglected; this is
equivalent to retaining only the first two terms in the expansion (6.37).
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the approximation (6.28) is exact only if S(w, D) (6.19) depends quad-
ratically on w, that is, if f (ξ ; w) depends linearly on w,

p(t |ξ ; w) =
(

β

2π

)1/2

e−β[t−f (ξ ;w)]2/2, f (ξ ; w) =
M∑

i=1

wiφi(ξ) (6.41)

Here {φi(ξ)} is a set of in principle arbitrary functions; RBF networks con-
stitute a concrete example. Because of the linear dependence of f (ξ ; w) on
w, models of the form (6.41) are also known as generalized linear models.
For them, also (6.37) is exact when truncated after the term linear in z,
so B(ξ) = 0 and the O(A−2) terms in (6.38, 6.40) are absent. Further-
more, since S(w, D) is now truly quadratic, we can calculate x(ξ) and wMP
explicitly. We define �(ξ) = (φ1(ξ), . . . , φM(ξ)), and get

S(w, D) = 1
2

β

p∑
µ=1

[tµ − w ·�(ξµ)]2 + 1
2

αw2

= 1
2

β

p∑
µ=1

t2µ − βw ·
p∑

µ=1

tµ�(ξµ)+ 1
2

w ·Aw (6.42)

Aij = αδij + β

p∑
µ=1

φi(ξ
µ)φj (ξ

µ) (6.43)

Since the Hessian matrix A is positive definite (provided α > 0), the
surface S(w, D) is convex and has a unique minimum, which is cal-
culated simply by putting ∂S(w, D)/∂wi = 0 for all i. This reveals
AwMP = β

∑p

µ=1 tµ�(ξµ), or

wMP = βA−1
p∑

µ=1

tµ�(ξµ) (6.44)

One also has, from (6.37), xi(ξ) = φi(ξ). Insertion into (6.38, 6.40) then
gives, for models of the form (6.41), the fully exact result

t�(ξ) = β�(ξ) ·A−1
p∑

µ=1

tµ�(ξµ), [�t�(ξ)]2 = 1
β
+�(ξ) ·A−1�(ξ)

(6.45)

Estimation of hyperparameters

The predictions and error margins in (6.38, 6.40) and (6.45) obviously
depend on the choices made for the hyperparameters α and β. We will
discuss a proper procedure for this later. A simpler and sometimes quicker
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Figure 6.6 Bayesian prediction on the basis of a 9th-order polynomial with assumed
Gaussian data noise of variance β−1, and a Gaussian prior of variance α−1 = (0.005β)−1.
Solid line: the target function g(x) = 1

2 + sin(2πx) to be learned. Circles: nine noisy sample
points of this function. Dashed line: predicted function t�(x) after learning. Dotted lines:
t�(x)±�t�(x), where �t�(x) denotes the Bayesian prediction uncertainty. Note: the actual
noise variance corresponds to β = 12.

method for estimating α and β is the following. Provided the number
of data points p is not too small, it makes sense to require that the
trained system will on average (i) predict correctly the outputs for the
data points used in training, and (ii) make errors on these training data
whose magnitude is of the order of the uncertainty it associates with its
own predictions:

1
p

p∑
µ=1

[tµ − t�(ξµ)] = 0
1
p

p∑
µ=1

{[tµ − t�(ξµ)]2 − [�t�(ξµ)]2} = 0

(6.46)

These two equations can be used to determine α and β.

Example 1. Let us illustrate the above procedures using the example prob-
lem of (6.9), which involves a parametrized function of the form (6.41),
with a quadratic regularizer term 1

2λw2. The non-Bayesian solution to this
simple problem—that is, minimize the training error plus regularizer—is
easily calculated and found to be

t�(x) =
∑
ij

φi(x)(B−1)ij
∑
µ

tµφj (xµ), Bij = λpδij +
p∑

µ=1

φi(xµ)φj (xµ)

(6.47)
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The Bayesian answer (6.45), assuming Gaussian output noise and a
Gaussian prior, would be exactly the same18 as (6.47), with λ = α/βp

and A = βB, but it would also equip this answer with the following error
estimate:

�t�(x) = β−1/2

√√√√√1+
M∑
ij=0

φi(x)(B−1)ijφj (x) (6.48)

The result is shown in Figure 6.6 for α/β = 0.005, φ�(x) = x� for 0 ≤
� < M = 9, and β ∈ {10, 20}. The actual value of the variance of the noise
on the training outputs in this example, which is unknown to the network,
corresponds to β = 12. As expected, we see again in the above graphs
that it will be very important to have a tool with which to calculate the
hyperparameters α and β.

Example 2. Our second example is also a simple linear system as in (6.41),
but now the input vectors are two-dimensional, and we will focus on finding
the hyperparameters via the conditions (6.46):

p(t |ξ ; w) =
(

β

2π

)1/2

e−β[t−f (ξ ;w)]2/2, f (ξ ; w) = w · ξ (6.49)

with ξ , w ∈ IR2, and prior

p(w) = α

2π
e−αw2/2

In the notation of (6.41) we here have φi(ξ) = ξi and M = N = 2.
The data points to be learned from, four in number, are taken to be the
following:

(ξ1, t1) = ((1, 0), 3
4 ) (ξ2, t2) = ((0, 1), 1

4 )

(ξ3, t3) = ((−1, 0),−1
4 ) (ξ4, t4) = ((0,−1),−3

4 )

For this choice of data the matrix A (6.43) becomes

A = α

(
1 0
0 1

)
+ β

{(
1 0
0 0

)
+

(
0 0
0 1

)
+

(
1 0
0 0

)
+

(
0 0
0 1

)}
= (α + 2β)1I

18 This is, of course, a direct consequence of our choice of a simple linear example.
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Its inversion is trivial, and hence the predictions and error bars (6.45) can be
worked out explicitly. Using A−1 = (α + 2β)−11I and

∑4
µ=1 tµξµ = (1, 1)

one arrives at

t�(ξ) = β(ξ1 + ξ2)

α + 2β
[�t�(ξ)]2 = β−1 + ξ2

1 + ξ2
2

α + 2β
(6.50)

In order to work out the relations (6.46) for the present example we next
calculate the system’s output predictions for the four data points:

t�(ξ1) = t�(ξ2) = β

α + 2β
t�(ξ3) = t�(ξ4) = −β

α + 2β

�t�(ξ1) = �t�(ξ2) = �t�(ξ3) = �t�(ξ4) =
√

α + 3β

β(α + 2β)

Since also
∑4

µ=1 tµ = 0, the first condition of (6.46) now reduces to the
trivial identity 0 = 0. The second condition of (6.46), however, gives us

α + 3β

β(α + 2β)
= 1

4

[(
3
4
− β

α + 2β

)2

+
(

1
4
− β

α + 2β

)2

+
(
−1

4
+ β

α + 2β

)2

+
(
−3

4
+ β

α + 2β

)2
]

= 1
32

[(
3α + 2β

α + 2β

)2

+
(

α − 2β

α + 2β

)2
]

Working out this expression and putting α = λβp = 4λβ leads to

β = 24
1+ (10/3)λ+ (8/3)λ2

1+ 4λ+ 20λ2 (6.51)

We thus have only one free hyperparameter left. Putting α → 0 (since
p = 4 and we have just two adjustable parameters there should in principle
be little need for regularization via a prior) gives, via (6.51), the prescription
β = 24, and hence the final predictions

t�(ξ) = 1
2 (ξ1 + ξ2) �t�(ξ) = 1

4

√
1
3 (2+ ξ2

1 + ξ2
2 ) (6.52)
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This result is indeed perfectly consistent with the statistics of the train-
ing data:

actual data t�(ξµ)±�t�(ξµ)

t1: 3/4 1/2± 1/4

t2: 1/4 1/2± 1/4

t3: −1/4 −1/2± 1/4

t4: −3/4 −1/2± 1/4

From (6.50), the model is also seen to take the sensible decision to assign
increasing error bars when predictions are requested on input vectors which
are further away from the origin (around which the training data are
located).

6.4 Predictions with error bars: binary classification

Predicting binary classifications on the basis of (noisy) data examples pro-
ceeds in a way similar to regression. A trained network is in the Bayesian
picture given by the posterior distribution p(w|D) (6.14) for the system
parameters, and prediction is again based on (6.15):

p(t |ξ , D) =
∫

dw p(t |ξ , w)p(w|D)

p(w|D) = p(w)
∏p

µ=1 p(tµ|ξµ, w)∫
dw′ p(w′)

∏p

µ=1 p(tµ|ξµ, w′)
(6.53)

The only difference with regression is that, in view of the requirement to
extract binary outputs from continuous parametrized functions, the output
noise can never be Gaussian.

ξ f (ξ ; w)  
�

z

Threshold
function

 t ∈ {−1,+1}

Without output noise we could define the deterministic binary operation
t(ξ) = sgn(f (ξ ; w)), with the usual sign function. Adding noise implies
allowing (occasionally) for the output t = −1 even when f (ξ ; w) > 0
and for t = 1 even when f (ξ ; w) < 0. So p(1|ξ , w) must be a
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monotonically increasing function of f (ξ ; w), such that p(1|ξ , w) → 0
when f (ξ ; w)→−∞ and p(1|ξ , w)→ 1 when19 f (ξ ; w)→∞. A common
choice is:

p(1|ξ , w) = 1
2 + 1

2 tanh(f (ξ ; w))

p(−1|ξ , w) = 1
2 − 1

2 tanh(f (ξ ; w))

(6.54)

Decision boundary and measure of uncertainty

Our objective is to classify new inputs ξ into one of two categories. Hence
learning from data is here equivalent to deciding on the decision boundary
in input space, and to quantify the uncertainty of this decision. If we simply
combine (6.53, 6.54) we arrive at (with t = ±1)

p(t |ξ , D) = 1
2 + 1

2 t I (ξ , D) (6.55)

I (ξ , D) =
∫

dw tanh(f (ξ ; w))p(w)
∏p

µ=1 p(tµ|ξµ, w)∫
dw p(w)

∏p

µ=1 p(tµ|ξµ, w)
(6.56)

We classify t�(ξ) = 1 if p(1|ξ , D) > p(−1|ξ , D), and t�(ξ) = −1 if
p(1|ξ , D) < p(−1|ξ , D). Hence the decision boundary in ξ -space is defined
by I (ξ , D) = 0. Our uncertainty is measured by

�t�(ξ) = Prob[incorrect classification] =
{

p(1|ξ , D), when t�(ξ) = −1

p(−1|ξ , D), when t�(ξ) = 1

Using the definition (6.56) these statements can be summarized as

t�(ξ) = sgn(I (ξ , D)) �t�(ξ) = 1
2 − 1

2 |I (ξ , D)| (6.57)

At the decision boundary I (ξ , D) = 0 we have �t�(ξ) = 1
2 , that is,

a misclassification probability equivalent to random guessing, as it
should be.

19 An implicit requirement is that the selected parametrized function f (ξ ; w) can actually
be made to approach ±∞ by suitably boosting the parameters w. This, however, can always
be achieved. For example, if we initially have a bounded function g(ξ ; w), we can add an
extra adjustable parameter w0 and define f (x; w) = w0g(ξ ; w).
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Example. Let us consider a simple task involving the binary classifica-
tion of two-dimensional vectors, with a linear parametrized function and a
Gaussian prior:

ξ , w ∈ IR2 f (ξ ; w) = w · ξ p(w) = α

2π
e−αw2/2 (6.58)

and with the following two data points

D = {((0,−1), 1), ((0, 1),−1)} (6.59)

Working out the key function I (ξ , D) of (6.56) for this example gives

I (ξ , D) =
∫

dw tanh(w · ξ)e−αw2/2 ∏2
µ=1 p(tµ|ξµ, w)∫

dw e−αw2/2
∏2

µ=1 p(tµ|ξµ, w)

=
∫

dw tanh(w1ξ1 + w2ξ2)e
−αw2/2[1− tanh(w2)]2∫

dw e−αw2/2[1− tanh(w2)]2
(6.60)

The decision boundary in input space is found to be given by the line ξ2 = 0:
if we substitute this into (6.60) we indeed find I ((ξ1, 0), D) = 0. Verification
of the behaviour of (6.60) for ξ2 → ±∞ further shows that I (ξ , D) > 0
(and hence t�(ξ) = 1) for ξ2 < 0, and I (ξ , D) < 0 (and hence t�(ξ) = −1)
for ξ2 > 0.

The more interesting and less trivial results concern the dependence of
the error measure �t�(ξ) in (6.57) on ξ . In Figure 6.7 (left panel) we show
a contour plot of the misclassification probability �t�(ξ) in the input plane,
for α = 1. The model (6.58) assumes for any given w a linear separation,
plus data noise, along a line perpendicular to w. Clearly, the further away
from the data points, the larger the possible impact of an uncertainty in
the direction of this linear boundary, and this is seen to be reflected in the
contours of �t�(ξ).

We continue with the example model (6.58), but now we add one more
data point, namely (ξ3, t3) = ((1, 1

2 ),−1) and study its effect on the decision
boundary and the misclassification probability:

D = {((0,−1), 1), ((0, 1),−1), ((1, 1
2 ),−1)} (6.61)
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Figure 6.7 Bayesian binary classification of two-dimensional input vectors ξ = (ξ1, ξ2),
using linear classifiers with non-Gaussian data noise and a Gaussian prior on w of variance
α−1 = 1. Thick solid line: the decision boundary, where p(1|ξ , D) = p(−1|ξ , D) = 1

2 ; here
the prediction uncertainty �t�(ξ) = 1

2 is maximal. Below this line all points are classified as
t�(ξ) = 1, above it as t�(ξ) = −1. Circles: data points ξµ (filled: tµ = 1, open: tµ = −1).
Thin continuous curves: contour lines of the error probability �t�(ξ). Left panel: p = 2.
Right panel: p = 3, that is, one further data point has been added to those of the left panel;
see the main text for details.

Working out I (ξ , D) of (6.56) now gives

I (ξ , D)

=
∫

dw tanh(w · ξ)e−αw2/2 ∏3
µ=1 p(tµ|ξµ, w)∫

dw e−αw2/2
∏3

µ=1 p(tµ|ξµ, w)

=
∫
dw tanh(w1ξ1+w2ξ2)e

−αw2/2[1− tanh(w2)]2[1− tanh(w1 + w2/2)]∫
dw e−αw2/2[1− tanh(w2)]2[1− tanh(w1 + w2/2)]

The decision boundary is now no longer given by ξ2 = 0; the balance of
evidence has changed. In Figure 6.7 (right panel) we show a contour plot
of the misclassification probability �t�(ξ) in the input plane for the new
situation. Compared to the previous p = 2 case we observe both a change
in the location of the decision boundary (which also is no longer a straight
line, though numerically it is very close to one) and an overall reduction of
the misclassification probability. Note that, had the new data point been
less compatible with the first two, one could also have found an increase in
the misclassification probability.
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6.5 Bayesian model selection

Bayesian model comparison

In the formalism described so far one chooses beforehand a model assumed
responsible for having generated the data, followed by an analysis of the
likelihood of parameters for this model. This picture can be generalized
to include multiple candidate models. Instead of working with the joint
distribution p(D, w) of data and model parameters, we must switch to the
joint distribution p(D, w, H) to find data D, model H , and parameters20

w for model H . The generalized picture then becomes

• Consider an ensemble of models H with associated parameter vectors w,
characterized by a probability distribution p(H , w) which evolves during
learning.
• Assume that the data D were generated by a system of a form contained

in our ensemble of models. Calculate the likelihood p(w, H |D) of models
and their parameters, given the data.
• Express the desired objects p(w|D, H) in terms of p(D|w, H) (as before)

and p(H |D) in terms of p(D|H), where p(D|H) = ∫
dw p(D|w, H)×

p(w|H).

Learning is a process during which the arrival of data reduces our uncer-
tainty about the ‘right’ model H and its ‘right’ parameters w from the prior
distributions p(H) and p(w|H) to the posterior distributions p(H |D) and
p(w|D, H). Note that

p(w|D, H) = p(D|w, H)p(w|H)∫
dw′ p(w′|H)p(D|w′, H)

(6.62)

p(H |D) = p(D|H)p(H)∑
H ′ p(D|H ′)p(H ′)

(6.63)

Generalized Bayesian learning, with multiple models, now works like this:

Stage 1: definitions. Define (i) the parametrized models H , assumed
responsible for the data, (ii) the prior distribution p(H) for these
models, (iii) the prior distributions p(w|H) of their parameters, and
(iv) the data D = {(ξ1, t1), . . . , (ξp, tp)}.

Stage 2: model translation. Convert the model definition into a stand-
ard probabilistic form: specify the likelihood of finding output t on

20 Note that different models will generally have parameter vectors w with different
dimensionality.
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presentation of input ξ , given model H and parameters w:

model definition in standard form p(t |ξ , w, H) (6.64)

Stage 3: the posterior distribution. Calculate the data likelihood, given
model H and model parameters w,

p(D|w, H) =
p∏

µ=1

p(tµ|ξµ, w, H)

From this follow the desired posterior parameter and model distribu-
tions

p(w|D, H) = p(w|H)
∏p

µ=1 p(tµ|ξµ, w, H)∫
dw′ p(w′|H)

∏p

µ=1 p(tµ|ξµ, w′, H)
(6.65)

p(H |D) = p(H)
∫

dw
∏p

µ=1 p(tµ|ξµ, w, H)p(w|H)∑
H ′ p(H ′)

∫
dw

∏p

µ=1 p(tµ|ξµ, w, H ′)p(w|H ′) (6.66)

Stage 4: prediction. The residual uncertainty in the choice of model H

and parameters w generates the uncertainty in predictions. Prediction
of the output t corresponding to input ξ , given our observation of the
data D and our choice of model set, takes the probabilistic form:

p(t |ξ , D) =
∑
H

p(H |D)

∫
dw p(t |ξ , w, H)p(w|D, H) (6.67)

As an alternative to Stage 4, which describes the final output statistics as a
weighted average over all models under consideration, one could also simply
select the most probable model H�, defined as p(H�|D) = maxH p(H |D).
This boils down to finding

maxH [p(H)p(D|H)] = maxH

[
p(H)

∫
dw

p∏
µ=1

p(tµ|ξµ, w, H)p(w|H)

]
(6.68)

or, equivalently, can be done by comparing models pairwise via the ratios

p(H |D)

p(H ′|D)
= p(D|H)

p(D|H ′)
p(H)

p(H ′)
(6.69)

This can then be followed by the ordinary Bayesian parameter analysis for
a single model H�, as described in the previous sections.
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Application to hyperparameter selection

We note that the above reasoning can also be applied to the hyperparameter
selection problem, as systems which differ in the choice of hyperparameters
(rather than in architecture) can be regarded as different candidate models
in the sense above. For instance, to describe the family of systems (6.22)

p(t |ξ , w, β) =
(

β

2π

)1/2

e−β[t−f (ξ ;w)]2/2 p(w|α) =
( α

2π

)M/2
e−αw2/2

(6.70)

with two hyperparameters (α, β), we can simply make the replacement
H → (α, β) in our above formulae. The specific form of (6.70), for which,
for instance p(t |ξ , w, α, β) is independent of α, and p(w|α, β) is independent
of β, also generates slight simplifications:

• Consider an ensemble of models of the form (6.70), characterized by a
probability distribution p(α, β, w) which evolves during learning.
• Assume that the data D were generated by a system of the form

(6.70). Calculate the likelihood p(w, α, β|D) of its parameters and
hyperparameters, given the data.
• Express the desired objects p(w|D, α, β) in terms of p(D|w, α, β),

and p(α, β|D) in terms of p(D|α, β), where p(D|α, β) = ∫
dw×

p(D|w, β)p(w|α).

Learning is a process during which the arrival of data reduces our uncer-
tainty about the hyperparameters (α, β) and the parameters w from the prior
distributions p(α, β) and p(w|α, β) to the posterior distributions p(α, β|D)

and p(w|D, α, β), according to

p(w|D, α, β) = p(D|w, β)p(w|α)∫
dw′ p(D|w′, β)p(w′|α)

(6.71)

p(α, β|D) = p(D|α, β)p(α, β)∫
dα′dβ ′ p(D|α′, β ′)p(α′, β ′)

(6.72)

Generalized Bayesian learning, including learning of hyperparameters, now
works like this:

Stage 1: definitions. Define (i) the function f (ξ ; w) in the parametrized
model (6.70), (ii) the prior distribution p(α, β) for its hyperparameters,
and (iii) the data D = {(ξ1, t1), . . . , (ξp, tp)}.
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Stage 2: the posterior distribution. Calculate the data likelihood, given
(α, β) and w:

p(D|w, β) =
p∏

µ=1

p(tµ|ξµ, w, β)

From this follow the desired posterior distributions

p(w|D, α, β) = e
−αw2/2−β

∑p

µ=1[tµ−f (ξµ;w)]2/2∫
dw′ e−αw′2/2−β

∑p

µ=1[tµ−f (ξµ;w′)]2/2
(6.73)

p(α, β|D)= p(α, β)
√

αMβp
∫

dw e
−αw2/2−β

∑p

µ=1[tµ−f (ξµ;w)]2/2∫
dα′dβ ′ p(α′, β ′)

√
α′Mβ ′p

∫
dw e

−α′w2/2−β ′
∑p

µ=1[tµ−f (ξµ;w)]2/2

(6.74)

Stage 3: prediction. Prediction of the output t corresponding to a new
input ξ , given our observation of the data D and our choice of model
family (6.70), takes the probabilistic form:

p(t |ξ , D) =
∫

dαdβ p(α, β|D)

[
αMβ

(2π)M+1

]1/2

×
∫

dw p(w|D, α, β)e−αw2/2−β[t−f (ξ ;w)]2/2 (6.75)

Again the learning problem has in principle been reduced to calculating
integrals. However, one will now have to think about how to choose the
hyperparameter prior p(α, β).

Model selection—Occam’s razor

The Bayesian model comparison procedure, followed by model selection
according to (6.68) or (6.69), will automatically lead to the selection of the
simplest possible model H� which can account for the data D, subject to
prejudices embodied in the prior p(H). This desirable action is referred to
as implementing ‘Occam’s razor’. 21 To see how it comes about we return
to (6.69), and remove the effect of prejudice by putting p(H) = p(H ′) for

21 After a monk, William of Occam, who is claimed to have first proposed the general
philosophical principle that one should always select the simplest possible explanation for an
observed phenomenon.
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all models {H , H ′} under consideration. This gives

p(H |D)

p(H ′|D)
= p(D|H)

p(D|H ′) (6.76)

To simplify the argument we will take the collection of possible data
sets D to be discrete and countable. Let us compare the following three
models:

model H1: p(D|H1) = 0

model H2: p(D|H2) > 0 p(D′|H2) = 0 for all D′ �= D

model H3: p(D|H3) > 0 p(D′|H3) > 0 for some D′ �= D

Model 1 cannot explain the data D. Models 2 and 3 can explain the data,
but 3 is more complex than 2 because it can explain, by a suitable choice of
parameters, a greater variety of possible data other than D. Hence Model 2
is the simplest model which can account for data D. Insertion into (6.76)
reveals

p(H1|D)

p(H2|D)
= p(H1|D)

p(H3|D)
= 0

p(H2|D)

p(H3|D)
= p(D|H2)

p(D|H3)
(6.77)

One now always has
∑

D′ p(D′|H) = 1 because conditional distributions
are normalized, for any model H . From this it follows for the above
examples that p(D|H2) = 1 − ∑

D′ �=D p(D′|H2) = 1 and p(D|H3) =
1 − ∑

D′ �=D p(D′|H3) < 1. Hence we find in (6.77) that p(H2|D) >

p(H3|D) > p(H1|D), and that the Bayesian procedure instructs us to select
Model 2.

Example. We close with a simple example, to illustrate the action of
Occam’s razor. The task is to learn a binary classification of the inputs
ξ ∈ {0, 1} to the targets t ∈ {−1, 1}. There are four such classifications
possible, that is, four possible data sets with p = 2:

DA = {(0, 1), (1,−1)} DB = {(0,−1), (1,−1)}
DC = {(0, 1), (1, 1)} DD = {(0,−1), (1, 1)}

Given one of these data sets, we have to choose between two deterministic
parametrized candidate models H1 and H2, without initial prejudice, that is,
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p(H1) = p(H2) = 1
2 :

H1: t(ξ) = sgn(w1) (6.78)

H2: t(ξ) = sgn(w1 + w2ξ) (6.79)

with w = (w1, w2) ∈ IR2. As a prior parameter distribution we take
p(w) = (2π)−1e−w2/2. Clearly Model 2 is more complex than 1. We will
select our model by working out the ratio (6.69). This requires cal-
culating p(D|H1) =

∫
dw1 p(w1)p(D|w1, H1) and p(D|H2) =

∫
dw×

p(w)p(D|w, H2).
First consider model H1. Here we have t(ξ) = 1 for all ξ if w1 > 0, and

t(ξ) = −1 for all ξ if w1 < 0. Hence we simply find

p(DA|w1, H1) = p(DD|w1, H1) = 0

p(DB |w1, H1) = θ(−w1) p(DC |w1, H1) = θ(w1)

with θ being the step function, θ(z) = 1 for z > 0, θ(z) = 0 for z < 0. This
gives

p(DA|H1) = 0

p(DB |H1) =
∫ 0

−∞
dw1 p(w1) = 1

2

p(DC |H1) =
∫ ∞

0
dw1 p(w1) = 1

2

p(DD|H1) = 0

(6.80)

Next we turn to the two-parameter model H2. Here we have t(0) = sgn(w1)

and t(1) = sgn(w1 + w2). Hence we find

p(DA|w, H2) = θ(w1)θ(−(w1 + w2))

p(DB |w, H2) = θ(−w1)θ(−(w1 + w2))

p(DC |w, H2) = θ(w1)θ(w1 + w2)

p(DD|w, H2) = θ(−w1)θ(w1 + w2)
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With the shorthand χ = (2π)−1 ∫∞
0 dw1e

−w2
1/2 ∫∞

w1
dw2 e−w2

2/2 > 0 and
using the symmetries of the prior p(w), this leads to:

p(DA|H2) =
∫ ∞

0
dw1

∫ −w1

−∞
dw2 p(w) = χ (6.81)

p(DB |H2) =
∫ 0

−∞
dw1

∫ −w1

−∞
dw2 p(w) =

∫ ∞
0

dw1

∫ w1

−∞
dw2 p(w) = 1

2
− χ

(6.82)

p(DC |H2) =
∫ ∞

0
dw1

∫ ∞
−w1

dw2 p(w) = 1
2
− χ (6.83)

p(DD|H2) =
∫ 0

−∞
dw1

∫ ∞
−w1

dw2 p(w) =
∫ ∞

0
dw1

∫ ∞
w1

dw2 p(w) = χ

(6.84)

Finally we combine the results (6.80) and (6.81–6.84) into the following
picture:

p(D|H1) 1
2

1
2

DA DB DC DD

p(D|H2)

DA DB DC DD

χ

1
2 − χ 1

2 − χ

χ

It follows from (6.69) that

p(H1|DA)

p(H2|DA)
= p(H1|DD)

p(H2|DD)
= 0

p(H1|DB)

p(H2|DB)
= p(H1|DC)

p(H2|DC)
= 1/2

1/2− χ
> 1

We conclude that when observing data DA or DD we must select
model H2, which is the only candidate model to explain these data, but
that when observing data DB or DC we must select model H1: both
models can explain these data, but H1 wins simply because it is the simpler
explanation.
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6.6 Practicalities: measuring curvature

When learning by gradient descent on the surface S(w, D), (6.19), and using
simple expressions such as (6.40) to assign error bars to neural network pre-
dictions, one needs to know the curvature matrix A as given in (6.26) at
the minimum wMP of S(w, D). In principle this matrix can be calculated
directly from the model definitions, but for many-parameter and/or multi-
layer networks this is difficult. Here we discuss an alternative, based on the
idea that the degree of curvature around the minimum will have a direct
effect on the gradient descent dynamics at the minimum when such dynam-
ics is equipped with additive noise. As a result the curvature matrix can be
extracted from a measurement of the fluctuations.

Let us assume we have arrived by gradient descent at the minimum wMP
of S(w, D). We now replace the (discretized) gradient descent dynamics by
the following noisy version:

wi(t + ε) = wi(t)− ε
∂S(w, D)

∂wi

+√2ε ηi(t) (6.85)

where the ηi(t) are independently distributed zero-average Gaussian ran-
dom variables, with 〈η2

i (t)〉 = 1, and with 0 < ε � 1. The parameter
dynamics is now a stochastic process. Let us define averages and covariances
of this process as

wi(t) = 〈wi(t)〉 Cij(t) = 〈[wi(t)− wi(t)][wj(t)− wj(t)]〉 (6.86)

Their dynamics follow directly from (6.85):

wi(t + ε) = wi(t)− ε

〈
∂S(w, D)

∂wi

〉
Cij(t + ε) = 〈wi(t + ε)wj (t + ε)〉 − wi(t + ε)wj (t + ε)

=
〈[

wi(t)− ε
∂S(w, D)

∂wi

] [
wj(t)− ε

∂S(w, D)

∂wj

]〉
+ 2ε δij − wi(t + ε)wj (t + ε)

= Cij(t)+ ε

{
2δij −

〈
wi(t)

∂S(w, D)

∂wj

〉
+ wi(t)

〈
∂S(w, D)

∂wj

〉

−
〈
wj(t)

∂S(w, D)

∂wi

〉
+ wj(t)

〈
∂S(w, D)

∂wi

〉}
+O(ε2)

Since ε � 1, the system can only make infinitesimal excursions w = wMP+
O(
√

ε) away from the minimum wMP, hence we may safely replace S(w, D)
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by the quadratic approximation (6.25)

S(w, D) = S(wMP, D)+ 1
2 (w − wMP) ·A(w − wMP)+O(ε3/2)

This implies that

∂S(w, D)

∂wi

=
∑
j

Aij(wj − wMP,j )+O(ε3/2)

Thus:

w(t + ε) = w(t)− ε A(w − wMP)+O(ε3/2)

Cij(t + ε) = Cij(t)+ ε

{
2δij −

〈
wi(t)

∑
k

Ajk(wk(t)− wMP,k)

〉

+ wi(t)
∑

k

Ajk(wk − wMP,k)−
〈
wj(t)

∑
k

Aik(wk(t)− wMP,k)

〉

+ wj(t)
∑

k

Aik(wk − wMP,k)

}
+O(ε3/2)

We now arrive at the simple result (using the symmetry of both A and C):

C(t + ε) = C(t)+ ε[21I− CA−AC] +O(ε3/2) (6.87)

One can show that, provided ε � 1 (more specifically: provided ε < 2/ai

for all eigenvalues ai of the matrix A), the leading order of (6.87) will evolve
towards the stationary state C = A−1+O(

√
ε), and the vector w will evolve

towards wMP. Hence the desired curvature matrix A can be measured in
equilibrium, by choosing ε sufficiently small, according to

ε → 0 : A = C−1 Cij = lim
t→∞〈[wi − wMP,i][wj − wMP,j ]〉 (6.88)

6.7 Exercises

Exercise 6.1. (Reduction of uncertainty due to data.) For Example 1 in
Section 6.2, consider the more general case where the outputs are cor-
rupted by additive Gaussian noise, which corresponds to p(t |ξ , w) =
(β/2π)1/2 exp[−β(t − tanh(wξ))2/2]. The normalization of the posterior
p(w|D) ∼ p(w)p(t1|ξ1, w) is not easy to work out, but for getting the shape
of p(w|D) this is unimportant. Plot the unnormalized p(w|D) for a range
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of values of β and try to get an intuitive understanding of the effects of β.
In particular, for large β you should see a very peaked posterior—why,
and how does this relate to the case covered in the notes? Also consider the
opposite limit of small β—how does the posterior peak move as β decreases
and why, and what happens for β → 0?

Exercise 6.2. (Reduction of uncertainty due to data.) Consider, similarly,
the generalization of the next Example 2 to noisy outputs. Make contour
plots of the unnormalized posterior, and study the effect of β. Also consider
what happens if a second training example (ξ2, t2) is added to D, and play
with the values of ξ2 and t2. For generic values (with |t2| < 1) you should
see the posterior becoming concentrated on a point in the (w1, w2)-plane as
β →∞. What happens for ξ2 = 1, t2 �= −1

2 , and why is this case special?

Exercise 6.3. (Bayesian regression.) Explore Bayesian regression with gen-
eralized linear models, as defined by (6.41), for inputs in one dimension,
that is, for x ∈ IR. Choose, for example, a sample of input points xµ, either
regularly spaced or random. Define corresponding training outputs tµ by
adding noise to some target function which you choose. Choose a set of basis
functions φi—powers of x are a natural choice to start with—and hyper-
parameters α and β. Then evaluate the prediction and error bars (6.45). Play
with: α, β, the size of the training set, the complexity of the target function
(e.g. try polynomials of various order), the complexity of the model used
for learning (e.g. by varying the number of basis functions, which corres-
ponds to fitting polynomials of different orders) and the level of noise on
the training outputs. Compare also with the case of RBFs, for example,
with φi(x) = exp[−(x − ri)

2/2�2] where the ri are the centres of the RBF
and � is their width.

Exercise 6.4. (Bayesian regression.) Continuing with the case of generalized
linear models of the previous exercise, consider the probability of the data D

given the model specified by α and β, p(D|α, β) = ∫
dw p(D|w, β)p(w|α).

The integral over w can be done explicitly because it is Gaussian; you
should find

2 ln p(D|α, β) = M ln α + p ln (β/2π)− β
∑
µ

t2µ − ln det(A)+ c ·A−1c

with A defined in (6.43) and c = β
∑

µ tµ�(ξµ) = AwMP. All sums over µ

run from 1 to p as usual. Verify that for p = 0, where all these sums are 0,
this expression reduces to p(D|α, β) = 1, and explain from the definition
of p(D|α, β) why this result must hold quite generally.

Exercise 6.5. (Bayesian regression.) Consider a linear neural network which
produces an output t ∈ IR for every input vector (or question) ξ ∈ IRN ,
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subject to output noise whose strength is measured by σ > 0, such that

p(t |ξ , w) = σ−1W
( t − w · ξ

σ

) ∫
dz z2W(z) = 1, W(z) = W(−z)

for some noise distribution W(z). The data used in training consist of p pairs
of questions and corresponding answers: D = {(ξ1, t1), . . . , (ξp, tp)}, with
all tµ ∈ {−1, 1}. Choose the Gaussian prior p(w) = (α/2π)N/2e−αw2/2,
and consider data sets with orthogonal and normalized input vectors:
ξµ · ξ ν = δµν . Show that

〈wi〉D = K1
∑
µ

tµξ
µ
i

〈wiwj 〉D = 1
α

δij +K2
∑
µ

ξ
µ
i ξ

µ
j +K2

1

∑
µ�=ν

tµξ
µ
i ξν

j tν

where

Kn =
∫

dz (1+ σz)n e−α(1+σz)2/2 W(z)∫
dz e−α(1+σz)2/2 W(z)

Hint: in doing w integrations it might be helpful to use input vectors as basis
vectors, by putting w =∑p

µ=1 uµtµξµ+v, with v·ξµ = 0 for all µ. Calculate
the prediction t�(ξ) and its uncertainty �t�(ξ) for the case of Gaussian
output noise: Wg(z) = (2π)−1/2e−z2/2. Also calculate the prediction t�(ξ)

and its uncertainty �t�(ξ) for the case of binary output noise: Wb(z) =
1
2δ(z− 1)+ 1

2δ(z+ 1).

Exercise 6.6. (Bayesian hyperparameter selection.) Apply the result of
Exercise 6.4 to the problem of selecting the best values of the hyper-
parameters α and β. Ignoring the hyperprior factor p(α, β) in (6.72), we
need to maximize p(D|α, β), or equivalently 2 ln p(D|α, β). Show that the
extremum condition for α is

0 = 2
∂ ln p(D|α, β)

∂α
= M

α
− tr A−1 − c ·A−2c

Hint: You will need the identities (∂/∂α) ln det(α1I+M) = tr(α1I+M)−1 and
(∂/∂α)(α1I+M)−1 = −(α1I+M)−2, which hold for symmetric matrices M.

Using the properties of the Gaussian posterior, show that this extremum
condition can be written in the intuitively appealing form 〈w2〉p(w) =
〈w2〉p(w|D): the mean-squared length of w must be the same over the prior
and the posterior. Also try to derive the extremum condition for β. This
is somewhat easier if you first rewrite 2 ln p(D|α, β) in terms of β and
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λ = α/pβ; the vanishing of the λ-derivative gives you back the condition
on α found above.

Exercise 6.7. (Bayesian model selection) For the model selection example
at the end of Section 6.5, show that χ = 1/8. This can be seen as follows:
in the (w1, w2)-plane, sketch the integration domain which defines χ . Then
exploit the fact that the integrand p(w) = (2π)−1 exp[−1

2 (w2
1 + w2

2)] is
isotropic, with integral across the whole plane equal to unity. Alternatively,
transform the integral defining χ to polar coordinates in the (w1, w2)-plane.

Exercise 6.8. (Bayesian model selection) Consider linear neural networks
H that produce outputs t ∈ IR for every input vector ξ ∈ IRN , subject
to Gaussian output noise, and with the usual Gaussian priors for their
weights. The data used in training consist of p pairs of questions and
corresponding answers: D = {(ξ1, t1), . . . , (ξp, tp)}. Choose N = 2 and
compare two models H1 and H2 of this type, both with α = 1 but with
different hyperparameters β:

H1: p(t |ξ , w) =
(

β1

2π

)1/2

e−β1(t−w·ξ)2/2 p(w) = (2π)−N/2e−w2/2

H2: p(t |ξ , w) =
(

β2

2π

)1/2

e−β2(t−w·ξ)2/2 p(w) = (2π)−N/2e−w2/2

Assume the a priori odds to be unbiased, that is, P(H1) = P(H2). Evaluate
the ratio P(H1|D)/P (H2|D) for the data D = {((1, 0), 1), ((0, 1),−2)}, and
find the most likely model for these data if β1 = 2/3 and β2 = 1. Hint: study
the properties of the function f (x) = x exp(−Kx) for x > 0.
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7 Gaussian processes

We return in this chapter to the general Bayesian formalism for a single
model. So far we have worked out everything in terms of the posterior
distribution p(w|D) of the model parameters w, given the data D; to get
predictions, we need to integrate over this distribution. Often the model
parameters w are not easy to interpret, so knowing their distribution is
in itself not particularly desirable. Also, it is not easy to see exactly what
prior assumptions on the input–output relation are implicit in choosing,
for example, a Gaussian prior on w. One may therefore ask oneself whether
it is possible to eliminate the parameters w and such model-specific details
as network architectures from the formalism, and recast everything directly
in terms of the relation between inputs and outputs that we are really
concerned with. We show in this chapter that the answer is yes. In fact,
it will turn out that for a large class of models such an approach leads to
easily interpretable priors, and simple explicit predictions and error bars.

7.1 The underlying idea

From model parameter statistics to input–output statistics

We begin by showing that the predictive distribution p(t |ξ , D) for the
output t corresponding to some test input ξ can be written as a ratio of prior
probabilities. The data are, as before, given by pairs of example inputs ξµ

with corresponding noisy outputs tµ:

D = {(ξ1, t1), . . . , (ξp, tp)}
Writing this out in full, the predictive distribution p(t |ξ , D) =∫
dw p(t |ξ , w)p(w|D) becomes

p(t |ξ , ξ1, . . . , ξp, t1, . . . , tp) =
∫

dw p(t |ξ , w)p(w|ξ1, . . . , ξp, t1, . . . , tp)

(7.1)

Using the core identity (6.14) for the posterior distribution p(w|D) =
p(w|ξ1, . . . , ξp, t1, . . . , tp) gives

p(t |ξ , ξ1, . . . , ξp, t1, . . . , tp) =
∫
dw p(t |ξ , w) p(w)

∏p

µ=1 p(tµ|ξµ, w)∫
dw p(w)

∏p

µ=1 p(tµ|ξµ, w)
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The expression in the denominator is recognized as

p(t1, . . . , tp|ξ1, . . . , ξp) =
∫

dw p(w)

p∏
µ=1

p(tµ|ξµ, w) (7.2)

that is, the joint probability of the training outputs t1, . . . , tp given the
training inputs ξ1, . . . , ξp, under the prior p(w). The numerator has a
similar form except that the test input and output are included. We thus
arrive at the simple and transparent expression

p(t |ξ , ξ1, . . . , ξp, t1 . . . , tp) = p(t , t1, . . . , tp|ξ , ξ1, . . . , ξp)

p(t1, . . . , tp|ξ1, . . . , ξp)
(7.3)

This is of course just Bayes’ theorem: conditioned overall on ξ , ξ1, . . . , ξp,
the conditional probability of t given t1, . . . , tp equals the joint probability
of t and t1, . . . , tp, divided by the probability of t1, . . . , tp. To get (7.3) one
then only needs to realize that the latter probability is independent of ξ .
This is clear intuitively, or can be shown formally by integrating over t :

p(t1, . . . , tp|ξ , ξ1, . . . , ξp) =
∫

dt p(t , t1, . . . , tp|ξ , ξ1, . . . , ξp)

=
∫

dt

∫
dw p(t |ξ , w)

( p∏
µ=1

p(tµ|ξµ, w)

)
p(w)

=
∫

dw

( p∏
µ=1

p(tµ|ξµ, w)

)
p(w)

= p(t1, . . . , tp|ξ1, . . . , ξp) (7.4)

Here we have used the normalization of p(t |ξ , w) to do the t-integral.
The summary so far is that knowledge of joint output probabilities of the

type p(t1, . . . , tp|ξ1, . . . , ξp)—for arbitary p, {ξ1, . . . , ξp} and {t1, . . . , tp}—
is enough to let us make predictions within a Bayesian framework. Gaussian
processes are a simple way of specifying these probabilities without needing
to refer to the prior over weights as in (7.2). Before we define them, it is
useful to separate off the effects of the noise on the data. We do this by
writing tµ = yµ + zµ, where yµ = f (ξµ, w) is the ‘clean’ output corres-
ponding to ξµ and zµ is the noise, distributed according to some zero-mean
distribution P(z). We can then write (see Appendix F for information on
the δ-distribution)

p(tµ|ξµ, w) =
∫

dyµ p(tµ|yµ)δ(yµ − f (ξµ, w)) (7.5)

Here the conditional probability of the noisy output given the clean one is
p(tµ|yµ) = P(tµ − yµ) and is, as indicated by the notation, independent of
ξµ and w. Inserting these identities, one for each of µ = 1, . . . , p, into (7.2)
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we have

p(t1, . . . , tp|ξ1, . . . , ξp) =
∫ ( p∏

µ=1

dyµ p(tµ|yµ)

)

×
∫

dw

p∏
µ=1

δ(yµ − f (ξµ, w)) p(w)

=
∫ ( p∏

µ=1

dyµ p(tµ|yµ)

)
p(y1, . . . , yp|ξ1, . . . , ξp)

(7.6)

As could have been expected, this expresses the joint prior distribution of
the noisy tµ in terms of the joint prior distribution of the clean outputs yµ,

p(y1, . . . , yp|ξ1, . . . , ξp) =
∫

dw

p∏
µ=1

δ(yµ − f (ξµ, w)) p(w) (7.7)

by adding independent noise to each yµ.

Definition of Gaussian processes

The defining property of a Gaussian process is now that the distribution
(7.7) is a multivariate Gaussian distribution, for any p and any choice of
the inputs {ξ1, . . . , ξp}. Note that this definition refers to the prior dis-
tribution of the yµ, so Gaussian processes are one way of specifying our
prior knowledge about a problem; the noise distribution can be chosen
independently. The joint distribution of the {y1, . . . , yp} is fully specified
by its means and covariances. Let us work out how these will depend on
the inputs {ξ1, . . . , ξp}. If we denote averages over the distribution (7.7)
by 〈· · · 〉, we have for the means

〈yµ〉 =
∫ ( p∏

ρ=1

dyρ

)
yµ p(y1, . . . , yp|ξ1, . . . , ξp)

=
∫

dyµ yµ p(yµ|ξ1, . . . , ξp)

=
∫

dyµ yµ p(yµ|ξµ)

This shows that 〈yµ〉 is dependent only on ξµ and can be written as
some function a(ξµ) which defines the input-dependence of the mean of
the Gaussian process. In deriving this result we have used the fact that
the distribution of yµ is independent of all the inputs ξ1, . . . , ξp except
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for ξµ. This follows in a manner analogous to (7.4), by integrating (7.7)
over all the yρ with ρ �= µ. Similarly, the average of a product yµyν ,

〈yµyν〉 =
∫ ( p∏

ρ=1

dyρ

)
yµyν p(y1, . . . , yp|ξ1, . . . , ξp)

=
∫

dyµdyν yµyν p(yµ, yν |ξ1, . . . , ξp)

=
∫

dyµdyν yµyν p(yµ, yν |ξµ, ξ ν)

depends only on ξµ and ξ ν . The same is therefore also true of the covariance
〈yµyν〉 − 〈yµ〉〈yν〉, so we can write the latter as a function C(ξµ, ξ ν).
This is known as the covariance function of a Gaussian process. Overall,
a Gaussian process is thus fully specified by the mean function a(ξ) and
the covariance function C(ξ , ξ ′). It is common to work with zero-mean
Gaussian processes (i.e. a(ξ) = 0), for which only the covariance function
needs to be specified.

7.2 Examples of networks reducing to Gaussian
processes

Before considering the general implications of using Gaussian process
priors, we discuss two example scenarios which naturally lead to Gaussian
processes. Both have a Gaussian prior on the model parameters w and the
clean outputs are, as before, given in terms of some deterministic function
f (ξ ; w) parametrized by w:

yµ = f (ξµ, w) p(w) =
( α

2π

)M/2
e−αw2/2 (7.8)

Radial basis function networks

RBF (radial basis function) networks with Gaussian priors are members of
the class (7.8), with f of the form f (w; ξ) = w · �(ξ). Here w ∈ IRM and
�(ξ) is a vector of M functions φi(ξ). It turns out that we do not in fact need
to put RBF-type restrictions on the φi , so our discussion here will apply to
all generalized linear models.

The joint distribution (7.7) can be worked out formally by using a Fourier
representation of the δ-functions (see Exercise 7.1). However, it is easier
to note that the components wi of the parameter vector w have a prior
distribution (7.8) with means and covariances

〈wi〉 = 0 〈wiwj 〉 = α−1δij (7.9)
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Now writing the yµ explicitly,

yµ = w ·�(ξµ) =
M∑

i=1

wiφi(ξ
µ) (7.10)

we see that each is a linear combination of the wi , with coefficients φi(ξ
µ)

depending on the corresponding inputs (which we can regard as fixed, since
we are considering the distribution of the yµ given the ξµ). Since any set of
linear combinations of Gaussian random variables is again a set of jointly
Gaussian variables (see Appendix D), it follows directly that RBF networks
with Gaussian priors define Gaussian processes. The means and covariances
of the joint distribution of the yµ are, using (7.9),

〈yµ〉 =
M∑

i=1

〈wi〉φi(ξ
µ) = 0

〈yµyν〉 =
M∑

i,j=1

〈wiwj 〉φi(ξ
µ)φj (ξ

ν)

= α−1
M∑

i=1

φi(ξ
µ)φi(ξ

ν) = α−1�(ξµ) ·�(ξ ν)

This shows that the covariance function of the Gaussian process prior
defined by RBF networks with Gaussian parameter priors has zero mean
and covariance function

C(ξ , ξ ′) = α−1�(ξ) ·�(ξ ′) (7.11)

Linear-output two-layer perceptrons

Let us next turn to a less trivial model example, still of the form (7.8),
which is also found to reduce to a Gaussian process in a specific limit.
We take a two-layer network with sigmoidal transfer functions g(u) in the
hidden layer (of size L) and a linear output neuron, that is, f (ξ ; w, J ) =∑L

i=1 wi g(
∑N

j=1 Jij ξj ). The prior distributions over the parameters w and
J are assumed to be Gaussian, and independent of each other:

p(w) =
(

αwL

2π

)L/2

e−αwLw2/2 p(J ) =
( αJ

2π

)NL/2
e−αJ

∑L
i=1 j2

i /2

(7.12)

Here we have organized the input-to-hidden layer weights {Jij } into L

vectors j i of dimension N each, j i = (Ji1, Ji2, . . . , JiN); this allows us
to write the overall output as

f (ξ ; w, J ) =
L∑

i=1

wi g(j i · ξ)
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The width of the prior for the L hidden-to-output weights {wi} has been
rescaled by a factor 1/

√
L, in order to find a well-defined limit L → ∞

(corresponding to an infinitely large hidden layer) later. This prior has two
hyperparameters: αw and αJ .

Before we start the calculation, let us get some intuition why a Gaussian
process might result from these assumptions for L→∞. The j i are inde-
pendent of each other under the Gaussian prior (7.12). So for a given ξ ,
the outputs g(j i · ξ) of the hidden units are independently distributed, and
the same is true of the weighted outputs wig(j i · ξ) because the wi are
likewise independent of each other under the prior. The overall output
f (ξ ; w, J ) is just the sum of these L weighted outputs. As such, we expect
it to acquire a Gaussian distribution for L→∞, on the basis of the central
limit theorem, and it is not too surprising that this argument generalizes to
joint distributions of outputs for different ξµ.

To calculate the prior distribution (7.7) of a set of outputs y1, . . . , yp

explicitly, we replace each δ-function by its Fourier representation
(see Appendix F),

δ(yµ − f (ξµ; w, J )) =
∫

dkµ

2π
e−ikµ[yµ−f (ξµ;w,J )]

=
∫

dkµ

2π
e−ikµyµ+ikµ

∑L
i=1 wig(j i ·ξµ) (7.13)

to get (with µ, ν = 1, . . . , p and i = 1, . . . , L throughout)

p(y1, . . . , yp|ξ1, . . . , ξp) =
∫

dw dJp(w)p(J )
∏
µ

dkµ

2π

e
−i

∑
µ kµ[yµ−∑i wig(j i ·ξµ)] (7.14)

As expected (see Appendix D), this is just the Fourier transform of the
characteristic function of the yµ =∑

i wig(j i · ξµ),

φ(k) = 〈
e
i
∑

µ kµyµ
〉 = ∫

dw dJ e
i
∑

µ kµ

∑
i wig(j i ·ξµ)

p(w)p(J ) (7.15)

The integral over the Gaussian prior on w is easily done (see Appendix D):

φ(k) =
∫

dJ e
−∑

i

[∑
µ kµg(j i ·ξµ)

]2
/2αwL

p(J ) (7.16)

Inserting p(J ) = ∏L
i=1 ρ(j i ) with ρ(j i ) = (αJ /2π)1/2e−αJ j2

i /2, one sees
that this integral factorizes into L integrals over the individual j i , each one
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giving the same contribution:

φ(k) =
{∫

dje
−[∑µ kµg(j ·ξµ)]2/2αwL

ρ(j)

}L

(7.17)

For large L the exponent is small and we can expand the exponential and
then use that [1+ a/L+O(1/L2)]L → exp(a) for L→∞, yielding

φ(k) =
{∫

dj

(
1− 1

2αwL

[∑
µ

kµg(j · ξµ)

]2

+O(L−2)

)
ρ(j)

}L

→ exp
(
− 1

2αw

∫
dj

[∑
µ

kµg(j · ξµ)

]2

ρ(j)

)

= exp
(
− 1

2

∑
µν

kµkνDµν

)
(7.18)

with

Dµν = 1
αw

∫
dj g(j · ξµ)g(j · ξ ν) ρ(j) (7.19)

The form of the characteristic function (7.18) tells us that the distribution
of the yµ is Gaussian with zero means and with covariances 〈yµyν〉 = Dµν

(see Appendix D). Formally, this follows by carrying out the Gaussian
integral in (7.14):

p(y1, . . . , yp|ξ1, . . . , ξp) =
∫ ∏

µ

dkµ

2π
e
−i

∑
µ kµyµφ(k)

=
∫ ∏

µ

dkµ

2π
e
−i

∑
µ kµyµ−∑µν kµkνDµν/2

= [(2π)pdet D]−1/2e
−∑

µν yµyν(D−1)µν/2

(7.20)

In summary, we have shown that linear-output MLPs with Gaussian
weight priors correspond, in the limit of an infinitely large hidden layer,
to Gaussian processes with zero mean. The covariance function can be read
off from (7.19):

C(ξ , ξ ′) = 1
αw

∫
djg(j · ξ)g(j · ξ ′)ρ(j) (7.21)
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In the derivation above, an alternative argument for the step from (7.16)
to (7.18) would have been as follows. Because of the independence of the
j i , the exponent in (7.16) is an average of L independent and identically
distributed random terms. For L → ∞, this average must approach the
mean of any one of these terms over its distribution, giving (7.18).

Working out the covariance matrix (7.21) of this example is hard for
arbitrary g(u). However, for data vectors ξ close to the origin (alternatively:
for large values of the hyperparameter αJ , which force j to be small) we
may expand typical choices such as g(u) = tanh(u) as g(u) = u + O(u3)

and find

C(ξ , ξ ′) = 1
αw

∫
dj(j · ξ)(j · ξ ′)ρ(j)+O(|ξ ||ξ ′|3, |ξ |3|ξ ′|)

= ξ · ξ ′
αwαJ

+O(|ξ ||ξ ′|3, |ξ |3|ξ ′|) (7.22)

Truncation after the first term is obviously exact only for g(u) = u. In this
case our MLP degenerates into a simple linear function of the inputs, and
accordingly (7.22) is of the same form as the RBF result (7.11) with the
choice �(ξ) = ξ .

7.3 The ‘priors over functions’ point of view

So far we have shown how some of the models we are already familiar
with actually lead to Gaussian process priors once we eliminate the model
parameters w. It would also be useful to have some intuitive understanding
of the meaning of a Gaussian process in cases where we only have the mean
and covariance functions a(ξ) and C(ξ , ξ ′) but no parametrization of the
input–output relation f (ξ) in terms of an underlying w.

This is achieved by regarding the Gaussian process as a prior over
functions. To see how this works, consider a simple case, where the inputs
ξ come from a discrete set ξ1, . . . ξK . This is not as exceptional a scenario
as it may appear: in practice, even real-valued inputs are known only to
some finite accuracy, so that we are effectively dealing with a discrete set of
possible input values on a (normally finely spaced) grid. Now, with there
being only K different inputs, a function f (ξ) can equivalently be thought
of as theK-dimensional vector (f (ξ1), . . . , f (ξK)). A prior over functions is
then just a probability distribution over K-dimensional vectors, an object
we are quite familiar with. We have a Gaussian process prior if this dis-
tribution is a K-dimensional Gaussian distribution, with means 〈f (ξα)〉 =
a(ξα) and covariances 〈f (ξα)f (ξβ)〉 − 〈f (ξα)〉〈f (ξβ)〉 = C(ξα, ξβ) (where
α, β = 1, . . . , K).
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Figure 7.1 Left: sketch of a sample ‘function’ from a Gaussian process prior, for the case
of discrete one-dimensional inputs. Right: The associated values of the covariance function
C(ξ4, ξ) with the function value f (ξ4) at point ξ4.

A pictorial representation of this view is shown in Figure 7.1 for a one-
dimensional input space and K = 7. A ‘function’ drawn at random from
a Gaussian process prior is just a list of seven numbers f (ξ1), . . . , f (ξ7).
Considering for simplicity the zero-mean case, we can now see the intuitive
meaning of the covariance function. C(ξ4, ξ4), for example, is the vari-
ance of f (ξ4) under the prior: a typical function will have f (ξ4) of order
±[C(ξ4, ξ4)]1/2. C(ξ4, ξ5), on the other hand, gives us the covariance of the
function values at ξ4 and ξ5. If this is similar to C(ξ4, ξ4) and C(ξ5, ξ5)—
assuming for simplicity that these are the same—then these function values
are strongly correlated: typical functions from the prior will change little
between ξ4 and ξ5. If C(ξ4, ξ5) is small, on the other hand, then the func-
tion typically changes significantly. Generalizing this argument, we could
imagine plotting C(ξ4, ξ) as a function of ξ (see Figure 7.1); in the present
case there are only seven values of this. Then the range of ξ where C(ξ4, ξ)

is close to C(ξ4, ξ4) tells us where functions from the prior will be roughly
constant and equal to their value at ξ4; their values outside this range will
be almost uncorrelated with that at ξ4.

7.4 Stationary covariance functions

To reinforce the intuition gained in the last section and introduce a useful
class of covariance functions, let us work out explicitly the covariance
function (7.11) of RBF networks, for the example of Gaussian basis
functions of width σ , that is, φi(ξ) = (2πσ 2)−N/2 exp[−1

2 (ξ − xi )
2/σ 2].

This gives the following covariance function:

C(ξ , ξ ′) = 1
α(2πσ 2)N

M∑
i=1

e−[(ξ−xi )
2+(ξ ′−xi )

2]/2σ2
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We now imagine having a very large number M → ∞ of basis functions
which become distributed uniformly over IRN in this limit, and we rescale
our hyperparameter α accordingly as α = α̃/�M . Here �M denotes a small
volume element in IRN such that limM→∞

∑M
i=1 �Mf (xi ) =

∫
dxf (x) for

any sufficiently ‘nice’ function f . We then find

lim
M→∞C(ξ , ξ ′) = 1

α̃(2πσ 2)N

∫
dxe−[(ξ−x)2+(ξ ′−x)2]/2σ2

= e−[ξ2+(ξ ′)2]/2σ2

α̃(2πσ 2)N

∫
dxe−[x2−x·(ξ+ξ ′)]/σ2

= e−(ξ−ξ ′)2/4σ2

α̃(4πσ 2)N/2 (7.23)

This is an example of a stationary covariance function: C(ξ , ξ ′) depends
only on ξ − ξ ′, that is, on the distance vector between the points ξ and ξ ′
but not otherwise on their actual location. In fact, the covariance function
(7.23) has the further property that it depends only the modulus |ξ−ξ ′|, that
is, on the distance between the two points. Here the covariance structure
is fully isotropic in input space (i.e. invariant under arbitrary translations
and/or rotations applied jointly to ξ and ξ ′). Within this subclass of isotropic
stationary covariance functions, the only remaining freedom is in the choice
of the function c(·) in C(ξ , ξ ′) = c(|ξ − ξ ′|). Even so, however, we can
get quite a range of different Gaussian process priors. Figure 7.2 shows
examples of functions on the unit square ξ , ξ ′ ∈ [0, 1]2, sampled from
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Figure 7.2 Examples of functions on the unit square ξ , ξ ′ ∈ [0, 1]2, sampled from
zero-mean Gaussian process priors with stationary covariance functions. Left:
C(ξ , ξ ′) = K0e−|ξ−ξ ′ |2/2σ2

, with K0 = 10 and σ = 0.1. Right: C(ξ , ξ ′) = K0e−|ξ−ξ ′ |/σ , with
K0 = 10 and σ = 0.1.
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Gaussian process priors with the following covariance functions:

Squared exponential (SE): C(ξ , ξ ′) = K0e
−|ξ−ξ ′|2/2σ2

Ornstein–Uhlenbeck (OU): C(ξ , ξ ′) = K0e
−|ξ−ξ ′|/σ

(the SE covariance function is essentially the one derived above for RBFs,
except that we have replaced 4σ 2 → 2σ 2 to match standard conventions
in the literature). In both cases the values for the constants were chosen
as K0 = 10, σ = 0.1. From the intuition developed in the previous
section, we deduce that the typical values of functions from these priors
will be of order K

1/2
0 = √10, and this is consistent with the examples in

the figure. The parameter σ tells us in both cases over which typical dis-
tance |ξ−ξ ′| the covariance function is roughly constant before decaying to
zero. Correspondingly, the functions sampled from these priors are roughly
constant over regions of this size.

There is a further qualitative difference between the two cases: clearly
the function on the right of Figure 7.2 is ‘rough’ whereas the one on the
left is rather smooth. This arises from the different behaviour of the two
covariance functions for ξ ′ → ξ . Writing ξ ′ − ξ = ε, with |ε| � 1, we have
for our two examples:

e−(1/2)|ξ−ξ ′|2/σ2 = 1− ε2

2σ 2 +O(|ε|4) e−|ξ−ξ ′|/σ = 1− |ε|
σ
+O(|ε|2)

Hence the OU covariance function indeed describes much faster decorrela-
tion of outputs for small differences in the inputs. More generally, one can
show that the differentiability of C(ξ , ξ ′) at the point ξ ′ = ξ determines
how many smooth derivatives functions from the corresponding Gaussian
process priors will have. The OU covariance function is not differentiable
at ξ ′ = ξ , due to the appearance of the |ε| in the expansion above; this leads
to rough sample functions which are continuous but not differentiable. The
SE or RBF covariance function, on the other hand, is infinitely often dif-
ferentiable at ξ ′ = ξ . The corresponding sample functions can then also be
shown to have this property, consistent with the smooth appearance of the
left part of Figure 7.2.

One can construct intermediate priors where the sample functions have
derivatives up to some finite order: for example, for one-dimensional inputs,
C(ξ , ξ ′) = c(|ξ − ξ ′|), c(u) = (1 + u/σ) exp(−u/σ) produces sample func-
tions that are once but not twice differentiable. Note that not all functions
c(u) lead to valid Gaussian process priors though: one has to ensure that all
covariance matrices C(ξµ, ξ ν) (µ, ν = 1, . . . , p) of p outputs corresponding
to p inputs ξ1, . . . , ξp are positive (or at least non-negative) definite. For
stationary covariance functions, one can show that the criterion for this is
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that the Fourier transform of C(ξ , ξ ′) with respect to ξ ′ − ξ is everywhere
non-negative.

7.5 Learning and prediction with Gaussian processes

Having clarified the definition and meaning of Gaussian process priors,
we now proceed to discuss how they are put to work for learning and
prediction. Recall the definition: a prior is a Gaussian process if the joint
distribution (7.7) of the clean outputs y1, . . . , yp is Gaussian, for any p and
any set of inputs ξ1, . . . , ξp. The means and covariances of this distribution
are a(ξµ) and C(ξµ, ξ ν), where a(ξ) is the mean function of the Gaussian
process and C(ξ , ξ ′) its covariance function. We mostly restrict ourselves
to the much more commonly used zero-mean case and only briefly indicate
the appropriate generalizations. The reason for this is that using Gaussian
process priors with nonzero mean only makes sense if—unusually—we have
quite specific prior information about the problem to be learned. Consistent
with this, all the specific examples discussed above (e.g. RBF and MLP)
indeed gave zero-mean Gaussian processes.

As we have stressed, the definition of a Gaussian process prior is inde-
pendent of that of the noise model, that is, of the distribution P(z) of the
noise variables zµ which relate noisy and clean outputs via tµ = yµ + zµ.
We assume in this section that the zµ are Gaussian with variance 1/β,
P(z) = (β/2π)1/2 exp(−βz2/2). The advantage of this choice is that, with
the yµ and zµ being Gaussian, also the tµ = yµ+ zµ are Gaussian. This can
be formally derived from (7.6)—see Exercises 7.2 and 7.3. We therefore
only need to work out their means and covariances

〈tµ〉 = 〈yµ〉 + 〈zµ〉 = 0+ 0 = 0 (7.24)

〈tµtν〉 = 〈(yµ + zµ)(yν + zν)〉 = 〈yµyν〉 + 〈yµ〉〈zν〉 + 〈zµ〉〈yν〉 + 〈zµzν〉
= C(ξµ, ξ ν)+ β−1δµν ≡ Kµν (7.25)

Here we have used the fact that the noise variables zµ are independent of
the clean outputs yµ and of each other; the last equality defines the p × p

matrix K.
We now want to predict the output t corresponding to a test input ξ ,

given the data set D = {(ξ1, t1), . . . , (ξp, tp)}. The distribution of t is given
by (7.3). One can formally work out the ratio of the two probability distri-
butions involved, both of which are Gaussian (see Exercise 7.4). It is easier,
however, to use general relations for the properties of conditional Gaus-
sian distributions: given the ξ , ξ1, . . . , ξp, the predictive distribution (7.3)
is the conditional distribution of t given t1, . . . , tp. The joint distribution of
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these p+1 variables is, from (7.24) and (7.25), a zero mean Gaussian with
covariances (µ, ν = 1, . . . , p):

〈tµtν〉 = Kµν (7.26)

〈tµt〉 = C(ξµ, ξ) ≡ kµ(ξ) (7.27)

〈t2〉 = C(ξ , ξ)+ 1/β (7.28)

The second equality defines the vector k(ξ). From (D.22) in Appendix D we
can thus write down directly that the predictive distribution of t is Gaussian
with mean

t�(ξ) = 〈t〉{t1, ..., tp} =
∑
µν

kµ(ξ)(K−1)µνtν = k(ξ) ·K−1t (7.29)

and variance

[�t�(ξ)]2 = 〈t2〉{t1,..., tp} − 〈t〉2{t1,..., tp}

= β−1 + C(ξ , ξ)−
∑
µν

kµ(ξ)(K−1)µνkν(ξ)

= β−1 + C(ξ , ξ)− k(ξ) ·K−1k(ξ) (7.30)

In these expressions, the subscript on 〈· · · 〉{t1,...,tp} indicates the conditioning
on t1, . . . , tp. We see that prediction with Gaussian process is a good
deal simpler than using, for example, MLPs: there is no iterative learning
procedure, and equations (7.29, 7.30) give explicit expressions for the pre-
diction t�(ξ) and the associated error bar �t�(ξ). The computational effort
is reduced to the inversion of the symmetric and positive definite p × p

matrix K; this only needs to be done once, even if we want to make predic-
tions at a number of test inputs. That such simplifications occur is all the
more striking given the fact that Gaussian processes can capture the proper-
ties of functions that would otherwise be described with an infinite number
of parameters w—recall our discussion of MLPs with infinite hidden layers
and RBF networks with infinitely many basis functions.

To generalize the above results to nonzero mean Gaussian processes, it
is sufficient to note that we can reduce everything back to the case of zero-
mean variables by replacing tµ → tµ − a(ξµ) and yµ → yµ − a(ξµ). This
leaves the error bar (7.30) unaffected, but gives for the prediction

t�(ξ) = a(ξ)+
∑
µν

kµ(ξ)(K−1)µν[tν − a(ξ ν)]

as the generalization of (7.29).
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We conclude by briefly commenting on the problem of evaluating the
matrix inverse K−1. The CPU time for a matrix inversion scales with the
matrix size p as O(p3), which for large datasets quickly becomes prohib-
itive. The search for efficient algorithms to overcome this problem is an
active area of research. We mention here only one basic idea which is help-
ful for online learning, where data points arrive sequentially. Rather than
inverting the matrix K afresh every time, one can build it up iteratively.
Denote the analogue of the matrix K for the enlarged set of training inputs
ξ1, . . . , ξp+1 by K+. Then K+ has the block form

K+ =




k1
K k2

...
kp

k1 k2 · · · α




where α ≡ K+
p+1,p+1 = C(ξp+1, ξp+1) + 1/β and we have abbreviated

k(ξp+1) to k. The result (E.6) from Appendix E for inverses of block
matrices then shows that the inverse of K+ has the form

(K+)−1 =




v1

K−1 − bvvT v2
...

vp

v1 v2 · · · 1/b




v = −1
b

K−1k b = α − kTK−1k

If we know the inverse K−1 already, we can therefore calculate the inverse
(K+)−1 of the enlarged matrix K+ quite efficiently, in O(p2) operations.

7.6 Exercises

Exercise 7.1. (RBF networks and Gaussian processes.) Show that RBFs
with Gaussian weight priors generate Gaussian processes. Start from (7.8)
and apply the Fourier transform method illustrated in (7.13) to derive expli-
citly the joint distribution p(y1, . . . , yp|ξ1, . . . , ξp). You should find that this
is a zero-mean Gaussian with covariances C(ξµ, ξ ν), where C(ξ , ξ ′) is the
covariance function (7.11). Make sure you understand how this proves that
we have a Gaussian process prior.
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Exercise 7.2. (GPs with Gaussian noise.) Prove explicitly the statement
before (7.24): for a Gaussian process prior combined with Gaussian noise,
the noisy outputs t1, . . . , tp are jointly Gaussian distributed. Do this by
using equation (7.6), inserting p(tµ|yµ) = (β/2π)1/2 exp[−1

2β(tµ−yµ)2] for
Gaussian noise together with the Gaussian form of p(y1, . . . , yp|ξ1, . . . , ξp),
and performing the Gaussian integrals over the yµ. To get to a Gaussian
distribution for the tµ with covariance matrix Kµν needs a bit of shuffling
around of the matrix inverses and determinants.

Exercise 7.3. (GPs with Gaussian noise.) Surprisingly, the last exer-
cise is easier if you first introduce an extra Fourier transform to
represent the Gaussian noise distributions, by writing p(tµ|yµ) =
(2π)−1 ∫ dkµ exp[ikµ(tµ − yµ)− 1

2k2
µ/β]. If you then do the integrals over

the yµ, followed by those over the kµ, you should get the desired Gaussian
form of the distribution of the tµ rather more easily.

Exercise 7.4. (The predictive output distribution.) For the case of a
Gaussian process prior and Gaussian output noise, derive the predictive dis-
tribution for a new output t corresponding to input ξ by explicitly evaluating
the ratio (7.3). Exploit the fact that the numerator and the denominator are
Gaussian distributions; see also Appendix D. You should find that t has a
Gaussian distribution with mean (7.29) and variance (7.30).

Exercise 7.5. (GP prediction for RBF networks.) In (7.29, 7.30) we worked
out the general formulas for the prediction and error bars in Gaussian
process regression. We know also that RBFs with Gaussian weight priors
define Gaussian processes. So (7.29, 7.30), when applied to the RBF case,
should agree with (6.45) from the previous chapter. Verify that this is
indeed the case. Suggested route: Define the matrix � by �µi = φi(ξ

µ).
Show that K = β−11I + α−1��†, where (�†)ij = (�)ji , and therefore
that (7.29) can be written as t∗(ξ) = α−1�(ξ) · �†[β−11I + α−1��†]−1t .
For (6.45), on the other hand, show that A = α1I + β�†� and hence
t∗(ξ) = β�(ξ) · [α1I+β�†�]−1�†t . Now use, for example, the Woodbury
formula from Appendix E to show that these two expressions for t∗(ξ) give
the same result. Proceed similarly for the error bar.
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8
Support vector machines
for binary classification

Support vector machines (SVMs) carry out binary classifications. They
involve a preprocessing stage which aims to transform data sets that are
not linearly separable into ones that are. First, however, we will have to
return to the properties of linearly separable problems, for reasons which
will become clear. The preprocessing will be introduced afterwards.

8.1 Optimal separating plane for linearly separable
tasks

Linear separations and stability parameters

Consider a linearly separable binary classification task, with a set of data of
the usual form D = {(ξ1, t1), . . . , (ξp, tp)}, where ξµ ∈ IRN and tµ ∈ {−1, 1}.
If this problem is linearly separable, we know that

∃w ∈ IRN , w0 ∈ IR: tµ = sgn(w · ξµ + w0) for all (ξµ, tµ) ∈ D (8.1)

We even have algorithms which are guaranteed to converge towards a
solution (w, w0) (a ‘separating plane’) of the type (8.1), for example, the
so-called perceptron or AdaTron rules. However, it is clear that in gen-
eral there are an infinite number of separating planes (w, w0) that meet the
requirements (8.1). See, for example, Figure 8.1 (left panel) for the case
N = 2; here a separating plane is any line separating all points ξµ with
tµ = 1 (marked +) from those with tµ = −1 (marked ×).

A natural question to ask is whether one can quantify the quality of the
various solutions of (8.1). This can be done on the basis of generalization
performance: a good plane (w, w0) is one which where possible keeps a safe
distance from the data points, so that detrimental effects of noise (which
might change the locations of these points slightly) are minimal. Hence
we wish to measure not only whether points are correctly classified by a
candidate separating plane, but also the distance of such a plane to the data
points. Both are given by the so-called stability parameters γµ, one for every
data point:

γµ(w, w0) = tµ(w · ξµ + w0)/|w| (8.2)
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Figure 8.1 Left: illustration of a linearly separable task for (N = 2)-dimensional inputs.
A linear separation is here performed by any line w · ξ +w0 = 0 that separates all points ξµ

with tµ = 1 (marked +) from those with tµ = −1 (marked ×). Note that there will generally
be infinitely many such lines. Right: measuring separation quality on the basis of the
distance of data points ξµ from the separating plane as calculated via projection; see the
main text.

These stability parameters have the following properties:

• The plane (w, w0) correctly classifies point ξµ if and only if γµ(w, w0) > 0.
• The distance of the plane (w, w0) to point ξµ is |γµ(w, w0)|.
The first property is immediately obvious from (8.1). Demonstrating the
second property requires only simple geometry. We first construct a para-
metrization of the line in IRN which goes through ξµ and is orthogonal to our
plane (see Figure 8.1, right panel): ξ(ρ) = ξµ + ρw (ρ ∈ IR). Insertion into
the plane’s equation w ·ξ+w0 = 0 gives the solution ρ = −(w ·ξµ+w0)/w

2.
Hence the projection P ξµ of ξµ onto the plane (w, w0) is given by

P ξµ = ξµ − w

(
w · ξµ + w0

w2

)

Thus the desired distance |ξµ − P ξµ| indeed equals

|ξµ − P ξµ| =
∣∣∣∣w

(
w · ξµ + w0

w2

)∣∣∣∣ = |γµ(w, w0)|

as claimed, using that |tµ| = 1 for all µ. As a consequence of the proper-
ties of the stability parameters we may now sharpen our requirements of
a separating plane:

all data points separated correctly and
all data points at distance ≥ κ from
the plane

⇐⇒ γµ(w, w0) ≥ κ > 0 ∀µ
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There will be an upper limit to the values of the distance κ > 0 which are
compatible with correct separation, since clearly 2κ cannot be larger than
the minimum distance22 between data points ξµ with tµ = 1 and data points
ξ ν with tν = −1. However, if we choose a value of κ such that a solution
(w, w0) of (8.1) exists, then there is an algorithm which is guaranteed to
achieve the objective. This is a straightforward generalization of the classic
perceptron learning rule, which is indeed recovered for κ → 0:

(1) draw at random a µ ∈ {1, . . . , p};
(2) calculate γµ(w, w0) as given in (8.2);

(3) if γµ(w, w0) < κ, modify parameters: w→ w + tµξµ, w0 → w0 + tµ;

(4) return to 1.

The generalized perceptron convergence theorem, which was proved by
E. Gardner, states that if ∃w� ∈ IRN , w�

0 ∈ IR: γµ(w�, w�
0) > κ for all

µ ∈ {1, . . . , p}, then the above algorithm will converge towards a solution
(w, w0) with γµ(w, w0) ≥ κ in a finite number of iteration steps.

The proof will not be given here. For w0 = 0 it is a simple generalization
of the original perceptron convergence proof. For w0 �= 0, however, the
situation is more complicated; the reason is that the threshold w0 does
not occur in the denominator of the stability parameters (8.2), so that it
cannot simply be absorbed into the classic proof by adding a ‘dummy’
extra component ξ

µ

0 = 1 to all input vectors ξµ.
Figure 8.2 illustrates perceptron learning with stability for a perceptron

having N = 500 input nodes. A set of p = 750 input patterns ξµ, with
zero-mean unit-variance Gaussian random components ξ

µ
i , half of them

classified as tµ = 1, the other half as tµ = −1, is generated and the per-
ceptron is trained to separate them according to their classification, with
stability κ = 0.125. The figure shows the projections of the input patterns
onto a two-dimensional space spanned by the weight vector w and a fixed
random vector orthogonal to w as learning proceeds. Before learning, no
structure is visible in this projection. After 30 complete sweeps through
the pattern set, the system has picked up the direction in which linear
separation is possible but misclassifications still occur. After 60 sweeps
the number of outright misclassifications is down to 4, but the desired
stability has not yet been reached for several more of the correctly classified
patterns.

22 We assume implicitly here and in the following that the data set does contain points
from both classes; otherwise the separation task is clearly trivial.
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Figure 8.2 Illustration of perceptron learning with stability as described in the main text.
Before learning (upper left panel) the perceptron misclassifies approximately 50% of the
patterns; no structure is visible in the projection onto a plane spanned by the weight vector
and a random vector orthogonal to it. The following panels (upper right, middle left) show
the situation after 30 and 60 complete learning sweeps through the pattern set, while the
middle right panel depicts the situation when linear separation with the desired stability is
completed after 358 sweeps. The lower two panels show enlarged central regions of the two
middle ones above them.

The optimal separating plane

We are now in a position to define the optimal separating plane (w�, w�
0) as

the one having the largest κ. Equivalently, the smallest of the {γµ(w, w0)}
(i.e. the stability parameter of the data point which is most in danger of
being misclassified when data are subject to noise) should be as large as
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possible:

Optimal separating plane (w�, w�
0) = arg max

(w,w0)
[min

µ
γµ(w, w0)] (8.3)

Note that:

• If the problem is linearly separable, then definition (8.3) will produce
a separating plane with the largest distance to the closest data point.
If the problem is not linearly separable, definition (8.3) will produce a
plane which does not separate the data (since that is impossible), but for
which the largest distance from the plane among misclassified points is
minimal.
• By construction, there must be at least two µ such that γµ(w�, w�

0) =
minρ γρ(w�, w�

0) for the optimal separating plane (8.3) (see, for example,
Figure 8.1 and Figure 8.4).

Finding the optimal plane has now been reduced to a well-defined optimiz-
ation problem (8.3). The only remaining issue is that its solution (w�, w�

0)

is still not unique, since there remains the trivial degree of freedom relating
to overall scaling: if we multiply (w, w0) → (ρw, ρw0) with ρ > 0 we
simply get the same plane. To eliminate this freedom we nail down ρ by
insisting that

min
µ

tµ(w · ξµ + w0) = 1

which, given the assumption of linear separability, is always possible. This
implies that minµ γµ(w, w0) = 1/|w|, and that

max
(w,w0)

[min
µ

γµ(w, w0)] = 1/ min
(w,w0)

|w|

Hence we have now converted the initial optimization problem (8.3) into

find: min
(w,w0)

1
2w2 subject to tµ(w · ξµ + w0) ≥ 1 ∀µ (8.4)

8.2 Representation in terms of support vectors

Background: optimization theory

The optimization problem (8.4) is of the following general form. If we set
x = (w, w0) and define

f (x) ≡ f (w, w0) = 1
2w2 cµ(x) = tµ(w · ξµ + w0)− 1 (8.5)
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we have

find: min
x

f (x) subject to cµ(x) ≥ 0 ∀µ (8.6)

A direct (say numerical) attack on this problem may be possible for small
N , but becomes difficult for large N . This issue becomes even more severe
after the preprocessing considered below, where the dimensionality of the
vector w can be much larger than N (and in fact effectively infinite). It is
therefore useful to transform our problem to a version written in terms
of Lagrange multipliers; there are only p of those, one for each of the
constraints. To achieve this transformation, we need a little background
on optimization problems with inequality constraints of the type (8.6). We
assume that the functions f and cµ are all ‘nice’, that is, at least have smooth
first derivatives.

Suppose we have found a local minimum x of (8.6). (We dispense with the
superscript ‘∗’ for optimal quantities in the following when no confusion
can arise.) Then the value of f at a nearby point x + � is f (x + �) =
f (x)+� · g for small �, where g = ∇f (x). In an unconstrained problem,
this gives us the familiar condition g = 0 for a minimum; otherwise we
could reduce the value of f by choosing � along −g. For a constrained
problem we can argue similarly, but have to consider that not all changes
� are necessarily feasible, that is, compatible with the constraints cµ ≥ 0.
Constraints with cµ(x) > 0 are called inactive at x because they do not
restrict �: for small enough �, we will still have cµ(x + �) > 0. We can
therefore focus on the set of active constraints, A = {µ|cµ(x) = 0}. For
every µ ∈ A, cµ(x + �) = cµ(x) + � · aµ = � · aµ for small �, where
aµ = ∇cµ(x). Thus, a small enough change � is feasible if � · aµ ≥ 0
for all µ ∈ A. At a local minimum we must not have any such � which
simultaneously reduces the value of f , that is, which has � · g < 0. This
is the case exactly if we can write g = ∑

µ∈A λµaµ with λµ ≥ 0, a result
known as Farkas’ lemma. One direction of the proof is easy: if indeed
g =∑

µ∈A λµaµ, then � · g =∑
µ∈A λµ� · aµ ≥ 0 for any feasible �, since

λµ ≥ 0 and � ·aµ ≥ 0. The reverse direction can be seen geometrically. The
set of vectors {v =∑

µ∈A λµaµ|λµ ≥ 0∀µ} is a cone. If g is not contained in
this cone, there is a hyperplane which separates g and the cone. By choosing
� proportional to the normal vector of this plane, we can thus ensure that
� · g < 0 while simultaneously � · v > 0 for all v in the cone (and thus in
particular for all aµ), so that � is a feasible step which reduces f .

So far, we have established that at a local minimum x of the optimization
problem (8.6) we must have ∇f (x) =∑

µ∈A λµ∇cµ(x) with λµ ≥ 0. We can
extend the sum to include also the inactive constraints if we require the
associated λµ to be zero. This condition can be written as λµcµ(x) = 0
since cµ(x) > 0 for inactive constraints, and then in fact applies to all
µ because for active constraints cµ(x) itself is zero. Altogether, a local
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minimum x of (8.6) together with the associated λµ must satisfy

∇f (x)−
∑
µ

λµ∇cµ(x) = 0 and

cµ(x) ≥ 0, λµ ≥ 0, λµcµ(x) = 0 ∀µ (8.7)

with the sum now running over all constraints, µ = 1, . . . , p. The condi-
tions (8.7) are known as the Karush–Kuhn–Tucker (KKT) conditions; the
λµ are called Lagrange multipliers. They are familiar from the solution of
optimization problems with equality constraints cµ(x) = 0, where condi-
tions similar to (8.7) apply but the λµ can be both positive and negative.
Also as in the case of equality constraints, one notes that the first condition
in (8.7) can be written as ∇xL(x, λ) = 0, where λ = (λ1, . . . , λp) and the
function

L(x, λ) = f (x)−
∑
µ

λµcµ(x) (8.8)

is known as the Lagrangian.

The Wolfe dual

Based on the KKT conditions we can further transform the optimization
problem into a maximization problem. This is possible if—as it turns out
to be in our case—the Lagrangian is convex in x for any fixed λ with λµ ≥ 0
for all µ; we write the latter condition as λ ≥ 0 for short. The condition
for a function F(x) to be convex (see Appendix G) is that, for arbitrary x

and x′,

F((1− θ)x + θx′) ≤ (1− θ)F (x)+ θF (x′) for 0 < θ < 1 (8.9)

As Figure 8.3 illustrates, a convex function thus always curves upward
rather than downward. From this it also follows that it lies above any
tangent: (8.9) can be written as F(x+ θ(x′ −x))−F(x) ≤ θ [F(x′)−F(x)].
Dividing by θ and taking θ → 0 thus gives (x′−x)·∇F(x) ≤ F(x′)−F(x) or

F(x′) ≥ F(x)+ (x′ − x) ·∇F(x) (8.10)

which means that F(x′) is above the tangent plane at the point x

(see Figure 8.3).
Under the assumption of a convex Lagrangian, the Wolfe dual can now be

stated as follows. A localminimum x of our original optimization problem
(8.6) together with the associated Lagrange multipliers λ also solves the
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Figure 8.3 Illustration of convexity for a function F(x). The convexity criterion (8.9) says
that the linear interpolation (dashed line) between two function values, (1− θ)F (x)+ θF (x′)
must always lie above the function value F((1− θ)x + θx′) at the corresponding argument;
an example is shown by the open and filled circles. Alternatively, from (8.10), the function
must lie above any tangent to it, as illustrated here for the tangent at x (dotted line).

following maximization problem:

find: max
x,λ

L(x, λ) subject to ∇xL(x, λ) = 0, λ ≥ 0 (8.11)

To prove this statement, assume that x∗ is a local minimum of (8.6); together
with the corresponding Lagrange multipliers λ∗ it therefore obeys (8.7).
Now consider any other point x, λ which obeys the constraints in (8.11),
that is, ∇xL(x, λ) = 0 and λ ≥ 0. Then

L(x∗, λ∗) = f (x∗)−
∑
µ

λ∗µcµ(x∗)

= f (x∗) (KKT conditions)

≥ f (x∗)−
∑
µ

λµcµ(x∗) (λµ ≥ 0, cµ(x∗) ≥ 0)

= L(x∗, λ)

≥ L(x, λ)+ (x∗ − x) ·∇xL(x, λ) (convexity of L, (8.10))

= L(x, λ) (∇xL(x, λ) = 0)
(8.12)

This shows that x∗, λ∗ solves the maximization problem (8.11). The first
step in the proof shows in addition that the maximal value of L equals the
minimum value of f , that is, f (x∗). In fact, convexity of L implies that all
local minima of (8.6) are also global minima and have the same value of f .
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Figure 8.4 Illustration of SVM classification of (N = 2)-dimensional inputs (ξ1, ξ2). Points
with tµ = 1 and tµ = −1 are marked by + and ×, respectively. The solid line is the optimal
separating plane (which in two dimensions becomes a line). The dashed lines correspond to
w · ξ + w0 = ±1, respectively. The support vectors, marked by �, lie on these lines as they
must; they have the minimal distance from the separating plane.

Application to SVMs

We now apply these tools to our SVM optimization problem (8.4). The
Lagrangian is, from (8.5),

L = 1
2

w2 −
∑
µ

λµ[tµ(w · ξµ + w0)− 1] (8.13)

The first part ∇xL = 0 of the KKT conditions (8.7) becomes ∇wL = 0 and
∂L/∂w0 = 0, that is,

w =
∑
µ

λµtµξµ
∑
µ

λµtµ = 0 (8.14)

This needs to be solved together with cµ = tµ(w · ξµ + w0) − 1 ≥ 0,
λµ ≥ 0 and λµcµ = 0 for all µ. From (8.14) we see that the optimal w

is a superposition of those input vectors ξµ with λµ > 0. These are called
the support vectors and we denote the relevant set of data point indices by
S = {µ|λµ > 0}. Note that from the KKT condition λµcµ = 0, we have
cµ = 0 for all µ ∈ S so that the support vector set S is a subset of the set A

of active constraints. The two sets differ only in those exceptional µ for
which the constraint is active (cµ = 0) but which nevertheless have λµ = 0.
Geometrically, the situation is as follows (see Figure 8.4):

• All support vectors have the minimal distance from the separating plane,
since the distance for pattern µ equals γµ = tµ(w·ξµ+w0)/|w| and cµ = 0



194 8 : Support vector machines for binary classification

is equivalent to tµ(w · ξµ+w0) = 1, hence γµ = 1/|w|. There can be non-
support vectors at the same, minimal, distance from the separating plane;
these are the exceptional ξµ with µ ∈ A but µ �∈ S.
• Only support vectors occur in the construction of the optimal separating

plane. All other inputs, having at least the minimal distance from the
separating plane, are classified correctly once the support vectors are.

Once we know the set of support vectors, we can in fact write down
explicit expressions for w and w0. We will need the following (symmetric
and non-negative definite) |S| × |S| matrix C:

Cµν = tµtν(ξ
µ · ξ ν) for µ, ν ∈ S (8.15)

Using the expression for w from (8.14), the condition that cµ = 0 for all
µ ∈ S can be written as

tµ

[∑
ν∈S

λνtν(ξ
µ · ξ ν)+ w0

]
= 1 (8.16)

and this system of linear equations is solved by

λµ =
∑
ν∈S

(C−1)µν(1− w0tν) for µ ∈ S (8.17)

Inserting into the second part of (8.14) then gives us the threshold w0 as

w0 =
∑

µν∈S tµ(C−1)µν∑
µν∈S tµ(C−1)µνtν

(8.18)

Note that the last two identities also hold if instead of the set of support
vectors µ ∈ S we consider the larger active set µ ∈ A, and a correspondingly
enlarged matrix C. This is because we only exploited the support vector
assumption through the condition cµ = 0, which also holds for µ ∈ A.

If we already know the optimal normal vector w of the hyperplane, we can
of course deduce w0 by a simpler method than (8.18). Consider any support
vector ξµ. This has cµ = 0 and hence (using t2µ = 1) w · ξµ+w0 = tµ. Thus

w0 = tµ − w · ξµ for any µ ∈ S (8.19)

Alternatively, adding two identities of this type for two support vectors
(µ, ν) with opposite outputs, that is, tµ = −tν , we could write w0 = −1

2w ·
(ξµ + ξ ν).

Next we consider the Wolfe dual form of the SVM optimization prob-
lem; the Lagrangian (8.13) is clearly convex in (w, w0) (see Exercise 8.1).
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From (8.11), we need to maximize this Lagrangian over w0, w, and λ,
subject to the conditions (8.14) and λ ≥ 0. But the expression for w in
(8.14) in fact lets us eliminate w directly, and the second part of (8.14) also
removes the term involving w0, giving

L = 1
2

(∑
µ

λµtµξµ

)2

−
∑
µ

λµtµ

(∑
ν

λνtνξ
ν

)
· ξµ −

∑
µ

λµtµw0 +
∑
µ

λµ

= −1
2

∑
µν

λµλνtµtνξ
µ · ξ ν +

∑
µ

λµ

Our Wolfe dual therefore becomes

find:

max
λ

(
− 1

2

∑
µν

λµλνtµtνξ
µ · ξ ν +

∑
µ

λµ

)

subject to
∑
µ

λµtµ = 0, λ ≥ 0
(8.20)

This achieves our original aim of having an optimization problem
containing only the p Lagrange multipliers λµ, independently of the dimen-
sion of the space in which w ‘lives’ (which so far is identical to the input
space dimension N but can be much larger after preprocessing as shown
below).

A simple example

Let us assume, for simplicity, that the input vectors in our data set D are
orthogonal and normalized, that is, ξµ · ξ ν = δµν (which implies also that
p ≤ N ). In this case the function to be maximized in the Wolfe dual (8.20)
becomes simply−1

2
∑

µ λ2
µ+

∑
µ λµ, a sum of p identical terms. If we ignore

the inequality constraints in (8.20) for now and take the equality constraint
into account via a Lagrange multiplier a, we get as the necessary condition
for a maximum

∂

∂λν

∑
µ

(
− 1

2
λ2

µ + λµ − aλµtµ

)
= 0

and hence λν = 1 − atν . Inserting into the constraint
∑

µ λµtµ = 0 gives∑
µ(tµ − a) = 0, that is,

λµ = 1− atµ a = 1
p

∑
µ

tµ
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If there are training outputs from both classes as assumed, then−1 < a < 1
and so λµ > 0. Our solution thus automatically satisfies the inequality
constraints of the Wolfe dual and is therefore the optimal solution. Because
of the very simple structure of our example, all inputs are support vectors.
To find w0, we can apply (8.19), w =∑

ν λνtνξ
ν and ξµ · ξ ν = δµν to get

w0 = tµ − w · ξµ = tµ − tµλµ = tµ[1− (1− atµ)] = a

Our final solution for the separating hyperplane is therefore

w =
∑
µ

(tµ − w0)ξ
µ w0 = 1

p

∑
µ

tµ

This is also known as the ‘biased Hebb rule’. The corresponding stability
parameters γµ = |w|−1 are all equal since µ ∈ S for all µ, and explicitly
given by

γµ =
[∑

µ

(tµ − w0)
2
]−1/2

= [p − 2pw2
0 + pw2

0]−1/2 = [p(1− w2
0)]−1/2

For the sake of illustration, let us show how to retrieve this solution
from (8.17, 8.18), in their versions extended to all µ ∈ A. In the present
example Cµν = δµν , so that (8.17) becomes λµ = 1 − w0tµ for all µ ∈ A.
Equation (8.18) for w0 also simplifies to

w0 = 1
|A|

∑
µ∈A

tµ

which implies in particular −1 ≤ w0 ≤ 1. To show that this is the same
solution as before, it remains to establish that all µ are in A. This is easily
shown by contradiction. Any µ �∈ A would have, by definition, cµ > 0 and
thus λµ = 0 from the KKT conditions (8.7). But then cµ = tµ(w ·ξµ+w0)−
1 = tµ(tµλµ + w0) − 1 = tµw0 − 1, which clearly cannot be positive for
−1 ≤ w0 ≤ 1 and tµ = ±1.

The above example was chosen for ease of calculation. It is atypical
in the sense that all training inputs turned out to be support vectors.
In many applications on real-world data, it turns out that the SVM solu-
tion is sparse, that is, only a small fraction of the λµ are nonzero. This is
obviously a desirable feature; it means, for example, that evaluating pre-
dictions on new data points (see (8.25)) can be relatively fast even for large
data sets.
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8.3 Preprocessing and SVM kernels

Preprocessing

Let us now turn to problems which are not linearly separable, but could
possibly be made so via suitable preprocessing. This implies that we will
no longer view the ξ as the input vectors, but regard them as the outcome
of some preprocessing of true input vectors x ∈ IRN , according to ξ =
�(x) ∈ IRM . Here �(x) = (φ1(x), . . . , φM(x)) and usually M > N , so that
the preprocessing maps the data into a higher-dimensional space where one
expects linear separation to be easier to achieve. If we write the overall
action of our classification machine as S(x) ∈ {−1, 1} we thus have

S(x) = sgn(w ·�(x)+ w0) (8.21)

The set of preprocessing operations φi(x) is typically chosen to contain
non-linear functions (otherwise there would be no point in preprocessing),
such as

φi(x) = xi for i = 1, . . . , N

φN+i (x) = x2
i for i = 1, . . . , N

φ2N+1(x) = x1x2 φ2N+2(x) = x1x3 φ2N+3(x) = x2x3 etc.

Our previous results regarding the optimal separating plane can now be
applied directly by making the replacement ξµ → �(xµ) everywhere,
leading to the following representations of the optimal w and w0

w =
∑
µ

λµtµ�(xµ) (8.22)

w0 = tµ − w ·�(xµ)

= tµ −
∑
ν

λνtν�(xµ) ·�(xν) for any µ ∈ S (8.23)

The support vectors are now those xµ for which λµ > 0, and the {λµ} are
determined by solving the Wolfe dual,

find:

max
λ

[
− 1

2

∑
µν

λµλνtµtν�(xµ) ·�(xν)+
∑
µ

λµ

]

subject to
∑
µ

λµtµ = 0, λ ≥ 0
(8.24)
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Insertion of the above expressions (8.22, 8.23) into the machine’s operation
rule (8.21) gives the final classification recipe

S(x) = sgn
(∑

µ

λµtµ�(xµ) ·�(x)+ w0

)
(8.25)

The decision boundary in input space of our machine is then defined as the
set of all x ∈ IRN for which S(x) = 0.

At this stage one makes the important observation that neither in (8.25),
nor in the result for w0 in (8.23), nor in the equations (8.24) from which
to extract λ, is any ‘bare’ occurrence of the preprocessing functions φi(x)

retained. Instead we consistently encounter only the dot product

K(x, y) = �(x) ·�(y) =
M∑

i=1

φi(x)φi(y) (8.26)

We therefore never need to refer to or construct the �(x) explicitly, and
can work exclusively with K(x, y), which is called the SVM kernel.

SVM kernels—properties and examples

We have seen above how a choice of preprocessing via �(x) leads to a
specific SVM kernel (8.26). Conversely, it turns out that ‘most’ positive
definite and symmetric kernels K(x, y) can be written in the form (8.26).
The specific conditions for this are given in Mercer’s theorem, which we will
not prove here: a symmetric kernel K(x, y) has an expansion of the form

K(x, y) =
∞∑

i=1

φi(x)φi(y) (8.27)

in the function space L2(IRN) if and only if

0 <

∫
dxdy g(x)K(x, y)g(y) <∞ for all functions g ∈ L2(IRN)

The first inequality here is clearly analogous to the requirement of posit-
ive definiteness for a matrix. Mercer’s theorem shows that in general, by
choosing a kernel directly rather than constructing it from (8.26), we are
effectively using an infinite number M of preprocessing functions φi(x). The
recognition of the crucial role of the kernel thus allows us to treat sets of
preprocessing functions which could not be tackled by working directly in
the space of hyperplane weight vectors w. It should also be noted that the
decomposition (8.27) is not unique; for example, making a second copy of
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each function φi(x) and rescaling both copies by 1/
√

2 would lead to the
same kernel.

To see the link between kernels and preprocessing functions more
explicitly, we consider some examples.

• Kernels generating preprocessing via polynomials:

K(x, y) = (1+ x · y)d

Expansion of this type of kernel gives:

K(x, y) = 1+ d(x · y)+ 1
2

d(d − 1)(x · y)2

+ 1
6

d(d − 1)(d − 2)(x · y)3 + · · ·

= 1+ d
∑

i

xiyi + 1
2

d(d − 1)
∑
ij

(xixj )(yiyj )

+ 1
6

d(d − 1)(d − 2)
∑
ijk

(xixj xk)(yiyj yk)+ · · ·

This expression is indeed seen to be of the form (8.27), with polynomial
preprocessing functions. The expansion truncates if d is chosen to be a
positive integer; otherwise one has effectively M = ∞.
• Kernels generating preprocessing via radial basis functions:

K(x, y) = K(|x − y|)

Let us consider positive definite kernels of the form K(x − y), such that
the Fourier transform K̂(k) of the function K(z) exists:

K̂(k) =
∫

dx eik·xK(x) K(x) =
∫

dk

(2π)N
e−ik·xK̂(k)

The symmetry of the kernel K(x, y) = K(y, x) implies K(x) = K(−x)

and thus also K̂(k) = K̂(−k). We can also argue that K̂(k) ≥ 0 for all
k ∈ IRN . This follows from working out

∫
dy K(x, y)eik·y =

∫
dy K(x − y)eik·y = K̂(k)eik·x

Thus the K̂(k) are seen to be eigenvalues of the positive definite kernel K,
and therefore themselves positive. To construct a set of preprocessing
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functions generating the kernel K, define

φz(x) = L(x − z) L(x) =
∫

dk

(2π)N
e−ik·x

√
K̂(k)

We work out the product

∫
dz φz(x)φz(y) =

∫
dudv

(2π)2N

√
K̂(u)K̂(v)

∫
dz e−iu·(x−z)−iv·(y−z)

=
∫

dudv

(2π)2N

√
K̂(u)K̂(v) e−iu·x−iv·y

∫
dz eiz·(u+v)

=
∫

du

(2π)N
K̂(u)e−iu·(x−y) = K(x − y)

(making use of the identity (2π)−N
∫

dz eiz·(u+v) = δ(u + v), see also
Appendix F). We can therefore view the kernel K as generated by prepro-
cessing functions φz(x), with the ‘locations’ z of these functions uniformly
spread across IRN .

If, in addition, K(x) has the isotropic form K(|x|), then also K̂(k) =
K̂(|k|) and L(x) = L(|x|), so that φz(x) = L(|x − z|) and we have
preprocessing by radial basis functions.
• Kernels generating preprocessing via sigmoidal neurons:

K(x, y) = g(x · y)

Here we choose g(u) to be a sigmoidal function, such as g(u) =
tanh(au + b) with constants a, b ∈ IR. It turns out that this kernel
cannot always be written in the form (8.27). Nevertheless, simply from
equation (8.25)—with �(x)·�(y) replaced by K(x, y)—it is clear that we
effectively have preprocessing via a ‘hidden’ layer of sigmoidal neurons:

S(x) = sgn
(∑

µ

λµtµg(xµ · x)+ w0

)

The number of support vectors then corresponds to the number of hidden
neurons in the neural network, and the input-to-hidden weights are given
by the support vectors ξµ themselves.

A toy example

We close this section with an example of the application of SVMs to a
binary classification task which is not linearly separable. We generated a
data set D with p = 30 and with data points ξµ ∈ IR2; around half of
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Figure 8.5 Binary classification of p = 30 training examples, with two-dimensional input
vectors xµ = (x

µ

1 , xµ

2 ). The data points further from the origin have tµ = 1 (marked by +),
the others have tµ = −1 (crosses). The data are clearly not linearly separable. Classification
is by an SVM with kernel K(x, y) = (1+ x · y)d . From top left to bottom right:
d = 2, 3, 4, 5. The thick lines represent the decision boundaries. The support vectors of the
solution are marked in each case by �. They lie on the curves w ·�(x)+ w0 = ±1
(thin lines) as they must.

these points—those located further from the origin—have tµ = 1, the other
half have tµ = −1. We tried to separate the two classes with an SVM
using the polynomial kernel K(x, y) = (1 + x · y)d and solved the Wolfe
dual (8.24) numerically. Figure 8.5 shows the resulting decision boundaries,
together with the training examples, for different values of the parameter
d = 2, 3, 4, 5. Note that for the kernel used here, the parameter d controls
the number M of underlying preprocessing functions. As d (and thus the
complexity of the SVM) is increased, we observe decision boundaries with
increasingly detailed class separation.
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There are clearly open issues here on how to control overfitting in SVMs,
and how to predict, for example, misclassification probabilities. Progress
can be made by integrating SVMs into a Bayesian framework; it then
turns out, for example, that the SVM kernel corresponds essentially to the
covariance function of an underlying Gaussian process prior. We also have
not discussed how to extend the SVM method to noisy data. It turns out that
this can be done relatively simply, and in fact only ends up adding the addi-
tional constraint λµ ≤ C to the Wolfe dual (8.24); see Exercise 8.5. Here C

is a parameter that broadly defines the penalty for misclassified examples, or
more precisely those that violate the condition tµ(w ·ξµ+w0) ≥ 1; the limit
C → ∞ then recovers the ‘hard’ SVM classification discussed throughout
this chapter.

8.4 Exercises

Exercise 8.1. (Completion of proof.) Prove that the Lagrangian (8.13) for
the SVM optimization problem is convex in (w, w0).

Exercise 8.2. (Binary classification with SVMs.) An SVM produces a binary
output t ∈ {−1, 1} for every input vector (or question) ξ ∈ IRN . The system
is parametrized by a weight vector w ∈ IRN and a threshold w0, such that

t(ξ) = sgn(w · ξ + w0)

The data used in training the SVM consists of a set of questions and
corresponding answers: D = {(ξ1, t1), . . . , (ξp, tp)}, where ξµ ∈ IRN and
tµ ∈ {−1, 1}, and with p ≤ N . Show that, for the case where ξµ ·ξ ν = a2

µδµν

(with aµ ∈ IR) the SVM solution (the optimal separating plane) is given by

w =
p∑

µ=1

1
a2
µ

(tµ − w0)ξ
µ w0 =

∑p

µ=1 tµ/a2
µ∑p

µ=1 1/a2
µ

Exercise 8.3. (Support vectors versus active constraints.) Consider binary
classification of two-dimensional inputs ξ , and in particular a data set D

consisting of p = 2 examples, with ξ1 = (0, 1), t1 = 1 and ξ2 = (1, 0),
t2 = −1. For an SVM without preprocessing, use the equality constraint
in the Wolfe dual (8.20) to show that the latter reduces to maximizing
2λ1 − λ2

1 over λ1 ≥ 0. Hence show that both training inputs are SVs, with
λ1 = λ2 = 1, and that the optimal weight vector and offset are w = (−1, 1)

and w0 = 0. Sketch the position of the training points, of the optimal
separating plane and the minimal-distance planes either side of it, as in
Figure 8.4.
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Now consider adding a third data point to D, with ξ3 = (−1, 0) and
t3 = 1. Use the equality constraint to show that the Wolfe dual reduces
to maximization of 1 − (λ1 − 1)2/2 − (λ1 + 2λ3 − 1)2/2 over λ1, λ3 ≥ 0.
Hence show that the optimal values are λ1 = 1, λ3 = 0, and that the
optimal w and w0 are as before. Add the third data point to your earlier
diagram: you should see that it has the minimal distance from the separating
hyperplane. It thus corresponds to an active constraint. Nevertheless, its
Lagrange multiplier λ3 vanishes, so it is not an SV.

Exercise 8.4. (Preprocessing with Gaussian RBFs.) A very common choice
for preprocessing with RBFs is the Gaussian kernel K(x, y) = exp(−|x −
y|2/2σ 2). This exercise shows that the width parameter σ controls the
complexity of the SVM classifier: for large σ , one essentially retrieves the
linear kernel Klin(x, y) = x · y, which corresponds to SVM classification
without preprocessing. For σ → 0, on the other hand, the SVM classifier
can fit arbitrary data sets, and as a consequence may overfit and generalize
poorly.

Consider the case of large σ first. In the objective function of the Wolfe
dual (8.24), expand K(xµ, xν) = exp(−(xµ − xν)2/2σ 2) to linear order
in 1/σ 2, discarding quadratic and higher order terms in 1/σ 2. Taking
into account the equality constraint

∑
µ λµtµ = 0, rearrange the dual

objective function into the form σ 2(
∑

µ λ̃µ − 1
2
∑

µν λ̃µλ̃νtµtνx
µ · xν), with

λ̃µ = λµ/σ 2. Thus the rescaled Lagrange multipliers λ̃µ will be the same as
for SVM classification with a linear kernel. Show further that the decision
function (8.25) can be written as S(x) = w̃ · x + w̃0 with w̃ =∑

µ λ̃µtµxµ;
this is again of the same form as for a linear kernel. Give an expression
for w̃0. How would you show that the optimal value of w̃0 is the same as
the optimal value of w0 for classification with a linear kernel? (Hint: use
that S(xµ) = tµ for SVs xµ.)

In the opposite limit σ → 0, and excluding the pathological case where
two input vectors xµ coincide, show that the dual objective becomes∑

µ(λµ − λ2
µ/2). Hence show that at optimality all λµ = 1. This means

that all training inputs are SVs, and that all training points are correctly
classified whatever the training outputs tµ. Write down the decision func-
tion (8.25) and show that for σ → 0 it vanishes if x is not contained in the
training set. Would you expect the resulting classifier to generalize well?

Exercise 8.5. (Soft SVM classification.) Here one allows violations of the
margin constraint by writing tµ(w ·ξµ+w0) ≥ 1−ηµ. The ηµ ≥ 0 are slack
variables and measure by how much the constraint is violated. To pre-
vent large violations, one adds a term C

∑
µ ηµ to the objective function

w2/2. The coefficient C determines how strongly violations of the margin
constraint—and the resulting misclassifications, if ηµ > 1—are penalized;
C →∞ recovers hard SVM classification.
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The Lagrangian for this problem is

L = 1
2

w2 + C
∑
µ

ηµ −
∑
µ

λµ[tµ(w · ξµ + w0)− 1+ ηµ] −
∑
µ

βµηµ

The ‘primal’ variables, denoted x in Section 8.2, are w, w0, and {ηµ}, while
the Lagrange multipliers are the λµ and βµ. The latter serve to enforce the
constraint ηµ ≥ 0.

Derive the Wolfe dual of this soft SVM optimization problem, following
the same steps as in the derivation of (8.20). You should find that the dual
objective is the same as in (8.20), but that the constraints are now λµ ≥ 0,
βµ ≥ 0, λµ−C+βµ = 0 (for all µ), and

∑
µ λµtµ = 0. Eliminate the βµ from

the constraints to show that the only difference to hard SVM classification
is that the λµ must now be in the range 0 ≤ λµ ≤ C.



9
Notes and suggestions for
further reading

In Chapter 5 we dealt with some unsupervised learning techniques, namely
vector quantization and self-organized maps. The books by Kohonen [26]
and by Ritter et al. [27] are good sources of further information on these;
much of the early work on self-organizing maps was done in particular by
Amari [28] and Kohonen [29]. We saw for vector quantization that this can
be thought as learning a probability distribution from data. This point of
view is rather powerful, and in fact lets one integrate unsupervised learning
with Bayesian techniques: different probability models for the data can be
given prior probabilities and these are combined with likelihood factors to
determine how likely a given model is once the data have arrived. A survey of
this approach has recently been given by Ghahramani [30]. The probability
models one might consider here can be a good deal more complicated than
the Gaussian mixture distributions which we recognized at the root of vector
quantization. To model time series data, for example, where each data point
corresponds to a segment of the series over some time interval, one needs
to account properly for temporal correlations; so-called hidden Markov
models, also described briefly in the review [30], are often used for this
purpose. Alternatively each data point could consist of answers to a set
of questions—for example ‘is the grass wet?’, ‘is the neighbour’s sprinkler
switched on?’ and ‘has it rained recently?’—and we might have to model
how these facts are related to each other. It is then often useful to constrain
the possible ways in which dependencies between the facts can arise. Such
constraints can be represented compactly in so-called graphical models; see,
for example, [31–33]. The parameters to be learned then quantify those
dependencies that are allowed by the graph. Sometimes prior knowledge
is not sufficient to determine the graph structure completely, and the latter
then needs to be learnt as well. There is much ongoing research in this area
of learning in graphical models.

The self-organizing map is a particular instance of a model which assumes
some underlying low-dimensional structure in the data. It can be gener-
alized to a so-called generative topographic mapping [34] which has the
advantage of a natural interpretation as a probabilistic data model. The
roots of such dimensionality-reduction techniques go back at least to prin-
cipal components analysis (e.g. see [35]), which finds the linear subspace
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across which the data have maximal variance. How one best finds non-
linear low-dimensional structure in data remains of significant interest, and
many different approaches have been and continue to be proposed.

The Bayesian techniques for regression and classification described in
Chapter 6 have a very long history in statistics, with a correspondingly
large amount of literature which we will not attempt to review here; see,
for example, the books by Bishop [35] and by Ripley [36]. Papers by
MacKay [37–40] contributed significantly to the recognition of the value of
these tools within the neural networks community. By now they are entirely
mainstream, with hundreds of papers on Bayesian learning methods pub-
lished every year. For numerical approaches to Bayesian inference, the book
by Neal [41] has become a standard reference; a recent and very compre-
hensive treatment of Bayesian learning within the framework of information
theory is [42].

The history of Gaussian processes also goes a long way back, at least
to the 1960s, as described, for example, in the review article [43]; the
latter also contains a very illuminating explanation of the various ways
in which Gaussian processes can be understood. Key early papers that
brought the methodology to the attention of neural networks researchers
were [44,45]; a more recent and rather more technical overview is given
in [46]. This reference also covers applications of Gaussian process prior
to other problems such as classification, which we have not discussed in
this book.

Support vector machines were proposed by Vapnik and co-workers, and
the books [47,48] provide useful and comprehensive background material;
a more recent overview is [49]. As explained in these references, the ori-
ginal motivation for SVMs came from the worst-case analysis of learning.
This approach is known variously as computational or statistical learn-
ing theory, or probably approximately correct (PAC) learning; see, for
example, [50–53]. The distinction to the statistical mechanics analysis of
learning presented in this book is that one tries to remove assumptions on,
for example, the distribution of training inputs. One then derives bounds
on quantities such as the generalization error which hold with probabil-
ity close to one even for the worst input distribution. Following work by
McAllester [54], this approach has recently also been merged with concepts
from Bayesian learning, and much research continues to be done in this
direction.

Finally, the idea underlying the preprocessing in SVMs, that is, the
replacement of dot products by kernels to allow for non-linearities, has
seen fruitful application in many other problem domains. The development
of such ‘kernel methods’ remains a very active area; recent overviews can
be found in [55,56].



Part

III
Information theory and
neural networks

Neural networks are information processing systems, so it is hardly a
surprise that, if we aim to quantify the operation of neural networks or to
systematically design appropriate architectures and learning rules, we can
use many of the tools that have already been developed for the more conven-
tional information processing systems in engineering and computer science.
Information theory is a very elegant, well founded and rigorous framework
to quantify information and information processing. It is remarkable that
this framework was to a large extent the sole project of Claude Shannon,
who more or less launched information theory with a publication in 1948,
building on work he did during the war on radar communication and on
fruitful suggestions and preparatory work of others.

In this part of the book we first explain and derive the basic ideas and
mathematical tools of conventional information theory, such as entropy,
conditional entropy, and mutual information. We include the relevant
proofs, wherever possible. This is then followed by an exposé of various dif-
ferent applications of information theory to inference problems in general,
and to the derivation and optimization of learning rules for neural informa-
tion processing systems in particular. These applications include layered
networks (e.g. unsupervised learning on the basis of information preserva-
tion criteria), recurrent networks (e.g. learning input–output relationships
in so-called Boltzmann machines), but also more fundamental issues such
as learning via ‘natural gradient descent’. The latter generalizes the more
conventional gradient descent and gives us the opportunity to explore the
basics of information geometry.
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10
Measuring information

Measuring information at first sight appears to be a somewhat vague
and strange concept. Although especially those of us who are reasonably
familiar with using computers will be used to thinking about information
content (in terms of bits), we will find out that measuring information is
not simply counting the number of bits in a data file but involves, somewhat
surprisingly, concepts from probability. Therefore we will start with an
introduction aimed at developing some intuition for what the relevant issues
are and why probablities enter the game. We also play with a number of
simple examples before diving into formal definitions and proofs.

One best thinks about information in a down-to-earth manner, in terms
of messages communicated between a sender and a receiver. Before mean-
ingful communication can take place, sender and receiver need to agree on
the format of these messages. This could be lines of text, numbers, bleeps
representing morse-code, smoke-signals, electric pulses, etc. We write the
set of possible messages, agreed upon by sender and receiver, as

A = {a1, a2, . . .} with |A| elements (10.1)

Consider the example of a horse race, with five competitors. Sending
a message to reveal the outcome of the race just means sending the
number of the winning horse, so the set of possible messages is A =
{1, 2, 3, 4, 5}, with |A| = 5. Another example: sending a message con-
sisting of a single word with up to three ordinary characters from the
alphabet. Here A = {a, b, . . . , z, aa, ab, ac, . . . , aaa, aab, aac, . . . , zzz}, with
|A| = 26+262+263 = 18, 278. The set A could also have an infinite num-
ber of elements. If we put no a priori limit on the number of bleeps used in a
telegraphic message, the set A, being the set of all such possible telegraphic
messages, will be infinitely large. Now suppose I am sent a message a ∈ A:
I receive a card with something written on it, or I am told the number of
the winning horse in a race. How much information have I received? Is it
at all possible to give a sensible unambiguous meaning to such a question?

10.1 Brute force: counting messages

Information content based on naive enumeration

The first approach we can take is to label all elements in A with binary
numbers (strings of bits). Let us, for simplicity, assume that the number of
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possible messages is some integer power of two, that is, |A| = 2n and so
A = {a1, . . . , a2n}:

message: n− bit string: corresponding number:

a1 0 . . . 000 0
a2 0 . . . 001 1
a3 0 . . . 010 2
a4 0 . . . 011 3
...

...
...

a2n 1 . . . 111 2n − 1

The correspondence between the elements of A and the integer numbers
{0, 1, . . . , 2n − 1} is one-to-one; in other words:

n bits are sufficient to uniquely describe each a ∈ A

n bits are necessary to uniquely describe each a ∈ A

It appears that a measure of the amount of information communicated by
a message can be obtained by simply counting the number of bits n needed
to specify the label. In terms of the number of elements |A| = 2n in the set A

this gives the tentative expression

information content of a single message a ∈ A = log2|A| (10.2)

This simple result has a nice self-consistency property, which any candidate
definition of information content must have. Consider the example of
having two sets of messages A and B:

A = {a1, a2, . . .} with |A| elements

B = {b1, b2, . . .} with |B| elements

Now imagine that the message being communicated is a pair of variables
(a, b), with a ∈ A and b ∈ B (like giving both the name of a winning horse
and the current price of your favourite CD). If the two individual variables a

and b are completely independent we must require the information content
of the pair (a, b) to be the sum of the two individual information contents
of a and b, giving the value log2|A| + log2|B|. On the other hand we can
also apply the above method of labelling messages with bit-strings to the
set C of all pairs (a, b):

C = {(a, b)| a ∈ A, b ∈ B}
C = {c1, c2, . . .} with |C| = |A||B| elements
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The information content in the latter case would come out as log2|C|.
We see that the two outcomes are indeed identical, since log2|C| =
log2|A| + log2|B|.

Problems with naive enumeration

However, this cannot be the end of the story. There are several ways to
show that the above definition of information content, although correct in
the case where we just communicate one single message a from a specified
set A, is not sufficiently powerful to deal with all relevant situations. First,
let us go back to the example of communicating a message pair (a, b), where
we assumed independence of a and b (without as yet specifying precisely
what this means) and subsequently found

a and b independent: information in message pair (a, b)= log2|A|+log2|B|

Alternatively we can choose messages which are clearly related. To consider
an extreme choice: suppose a represents the number of a winning horse and
b the name of its jockey. In this case knowledge of a implies knowledge of
b, and vice versa. We gain nothing by knowing both, so in this case

a and b strongly dependent: information in message pair (a, b) = log2|A|

In general one will have a situation in between, with messages relating
to data which are correlated to some degree, for example, with a ∈ A

representing the name of the winning horse and b ∈ B representing its age
(assuming old horses to have on average a reduced chance of winning). Such
situations can only be dealt with properly by using probability theory.

Another way to see how probabilities come in is to compare the simple
situation of a single set of messages a ∈ A, where we found

A = {a1, a2, a3, . . .} information in message a ∈ A = log2|A|

with the situation we get when one of the messages, say a1, never occurs,
giving

A′ = {a2, a3, . . .} information in message a ∈ A′ = log2|A′|
= log2(|A| − 1)

So far no problem. However, what happens if we have a situation in
between, where element a1 does occur but rather infrequently? If a1 can be
expected to occur on average only once every 1,000,000,000 times (e.g. a1
happens to be the name of a racing horse with three legs), we would be
inclined to say that the information content of a message a ∈ A is closer
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to log2(|A| − 1) (corresponding to a1 simply being absent) than to log2|A|.
Again we need statistical tools to deal with real-world situations, where not
all messages are equally likely to occur.

The solution of these problems lies in realizing that communicating
information is equivalent to reducing uncertainty. Before we actually open
the envelope and read the message inside, as far as we know the envelope
could contain any of the messages of the set A. By reading the message,
however, our uncertainty is reduced to zero. In the case of the combined
message (a, b) where we have already been told what a is, it is clear that our
reduction in uncertainty on hearing the value of b is less in the case where a

and b are strongly correlated than in the case where they are independent.
Similarly, knowing that in a race with two horses the four-legged horse has
won (at the expense of the three-legged one) does not reduce our uncertainty
about the outcome very much, whereas it does in the case of two equally
fast contenders.

10.2 Exploiting message likelihood differences via
coding

Bit-count reduction due to coding

We will now demonstrate that the average information content of mes-
sages from a message set A can indeed be less than log2|A|, as soon as not
all messages are equally likely to occur, by looking at various methods of
coding these messages. We will give formal and precise definitions later,
but for now it will be sufficient to define binary coding of messages simply
as associating with each message a ∈ A a unique string of binary num-
bers (the ‘codewords’). We have already played with an example of this
procedure; we will now call the bit-string associated with each element its
codeword, and the full table linking messages to their codewords simply a
‘code’:

message: code word:
a1 0 . . . 000
a2 0 . . . 001
a3 0 . . . 010
a4 0 . . . 011
...

...
a2n 1 . . . 111

This particular code, where the elements of the set A are enumerated and
where the codeword of each element is simply the binary representation of
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its rank in the list is called an ‘enumerative code’. All codewords are of the
same length. Clearly, enumerative coding can be used only if |A| is finite.

The key idea now is to realize that one is not forced to use a set of code-
words which are all of the same length. In the case where some messages
will occur more frequently then others, it might make sense to use shorter
codewords for frequent messages, and to accept longer codewords for the
infrequent messages. For instance, in Morse code the number of symbols
used for infrequent characters such as Q (represented by ‘−− · −’) is delib-
erately chosen larger than that of frequent characters, such as E (represented
by ‘ · ’). The fact that this alternative way of coding can indeed on average
reduce the number of bits needed for communicating messages which are
not all equally frequent is easily demonstrated via explicit construction. Let
us enumerate the messages in a given finite set A as A = {a1, a2, . . .} and let
us write the probability that message a occurs as p(a); if all messages are
equally likely then p(a) = |A|−1 for all a. Finally, the length of the binary
codeword used for element a (the number of bits) will be denoted by �(a).
Note that for enumerative codes all �(a) are the same, by construction.
For example:

A = {a1, a2, a3, a4} p(a1) = 1
2 p(a2) = 1

4 p(a3) = 1
8 p(a4) = 1

8

Let us now compare the performance of enumerative coding to that of an
alternative coding recipe, a so-called ‘prefix code’, where the lengths of
the codewords are adapted to the probabilities of occurrence of the four
messages:

message: enumerative code: prefix code:
a1 00 �(a1) = 2 1 �(a1) = 1
a2 01 �(a2) = 2 01 �(a2) = 2
a3 10 �(a3) = 2 001 �(a3) = 3
a4 11 �(a4) = 2 000 �(a4) = 3

The name prefix code indicates that it is constructed in such a way that no
codeword occurs as the prefix of another codeword. Since codewords are
no longer guaranteed to have a uniform length, this property is needed in
order to ensure that the receiver knows when one codeword ends and the
next codeword begins. In the present example we can always be sure that
a codeword ends precisely when we either receive a ‘1’ or when we receive
the third ‘0’ in a row.

Clearly, if we communicate just one individual message it could be that
we use more bits in the prefix code (a3 → 001, a4 → 000) than in the
enumerative code (a3 → 10, a4 → 11) to do so. However, if we calculate
the average number of bits used, then the picture is interestingly different.
If we send m messages {a(1), a(2), . . . , a(m)}, where the message a(t) com-
municated at ‘time’ t is at each instance drawn at random from A according
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to the above probabilities, then the average number of bits is by definition

average number of bits = 1
m

m∑
t=1

�(a(t))

We can now define the code length L as the average number of bits used
in the limit m → ∞, that is, L = limm→∞m−1 ∑m

t=1 �(a(t)). Since all
individual messages a(t) have been drawn at random from the set A, with the
specified probabilities, we can use the property that in the limit m→∞ any
average over m independent trials becomes an average over the underlying
probability distribution (this is in fact one way of defining probabilities), so:

code length: L = lim
m→∞

1
m

m∑
t=1

�(a(t)) =
4∑

i=1

p(ai)�(ai)

which for the present example gives:

enumerative code: L = 1
2 × 2+ 1

4 × 2+ 1
8 × 2+ 1

8 × 2 = 2 bits

prefix code: L = 1
2 × 1+ 1

4 × 2+ 1
8 × 3+ 1

8 × 3 = 1.75 bits

We see explicitly in this example that the average information content of
messages must be smaller than log2|A| = 2, since simply by coding mes-
sages cleverly one can on average communicate the messages a ∈ A using
less than two bits each.

One can easily generalize the construction of the above simple version of
a prefix-code to message sets A of arbitrary size. First we order the messages
a ∈ A according to decreasing probability of occurrence, that is,

A = {a1, a2, . . . , an} p(a1) ≥ p(a2) ≥ · · · ≥ p(an)

We now assign to each element a ∈ A a binary codeword C(a) ∈⋃
K≥1{0, 1}K (the latter set is the union of all binary strings with one or

more symbols) in the following manner:

message: prefix code:
a1 1 �(a1) = 1
a2 01 �(a2) = 2
a3 001 �(a3) = 3
...

...
...

an−1 00 . . . 01 �(an−1) = n− 1
an 00 . . . 00 �(an) = n− 1

The idea is simple. For i < n we take i − 1 zeros, followed by a one. For
i = n we choose n−1 zeros. Note that the code is again of the prefix type: no
codeword occurs as the prefix of another codeword, so the receiver always
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knows when one message ends and the next message begins: a message
terminates either when one occurs, or when n − 1 zeros have occurred in
a row. In a formula, which is more suitable for further analysis, we would
write:

i < n: C(ai) =
i−1 times︷ ︸︸ ︷
00 . . . 01 �(ai) = i

i = n: C(an) = 00 . . . 00︸ ︷︷ ︸
n−1 times

�(an) = n− 1

An alternative way of viewing this particular code, and a simple way to
decode a message received, is obtained by interpreting the bits in each code-
word as representing successive answers in a decision tree. The following
tree gives the codeword C(a) for each given message a:

a

�
�

���

�
�
���

yes(1) no(0)

�
�

���

�
�
���

yes(1) no(0)

�
�

���

�
�
���

yes(1) no(0)

. . .

�
�

���

�
�
���

yes(1) no(0)

a = a1?

a = a2?

a = a3?

a = an−1?

1

01

001

0 . . . 01 0 . . . 00

Conversely, the following tree gives the message a for each given code-
word C(a):

C(a)

�
�

���

�
�
���

yes(1) no(0)

�
�

���

�
�
���

yes(1) no(0)

�
�

���

�
�
���

yes(1) no(0)

. . .

�
�

���

�
�
���

yes(1) no(0)

1st bit = 1?

2nd bit = 1?

3rd bit = 1?

n− 1th bit = 1?

a1

a2

a3

an−1 an

We can now very easily calculate the code length L, that is, the average
number of bits needed to communicate a message, for arbitrary ordered
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message sets A = {a1, a2, · · · } with occurrence probabilities p(a1) ≥
p(a2) ≥ p(a3) ≥ . . . . Let us for now restrict ourselves to finite message
sets, so |A| <∞:

L =
∑
k≥1

p(ak)�(ak) =



|A|∑
k=1

p(ak)k − p(a|A|) (prefix code)

log2|A| (enumerative code)

(10.3)

The value given for the code length L of the enumerative code, as before,
refers to the case where |A| is some integer power of 2. If this is not true,
its code length will be given by the smallest integer following log2|A|. Note
also that, while the enumerative code can only be used for finite message
sets, that is, |A| <∞, the prefix code has no such restriction.

Let us now turn to a couple of examples to illustrate the above ideas.
To simplify the notation we shall put |A| = n. The calculations involve
some simple mathematical tools which can be found in Appendix C.

Example 1. The first example is a message set A in which all messages are
equally likely to occur:

A = {a1, . . . , an} p(ak) = 1/n

Working out the expression in (10.3) for the prefix code gives:

Lpref = 1
n

n∑
k=1

k − 1
n
= 1

2
(n+ 1)− 1

n

For message sets with size equal to some power of two, for simplicity of
comparison with the enumerative code, this gives the following results:

n 2 4 8 16 32 · · · n→∞

Lenu 1 2 3 4 5 · · · ∼log2n

Lpref 1 21
4 43

8 8 7
16 1615

32 · · · ∼1
2n

It is clear that for this example the prefix code is definitely less efficient,
which could have been expected since the prefix code is based on exploiting
likelihood differences. In the present example there are no such differences;
each message is equally likely to occur.

Example 2. As a second example we will choose a message set A in which
the messages are not equally likely to occur, but the likelihood differences
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are not yet too large. Specifically it is assumed that the p(ak) decrease
linearly with message index k:

A = {a1, . . . , an} p(ak) = 2
n

(
1− k

n+ 1

)

The elements of the set A are ordered according to decreasing probability
of occurrence; that is, the message probabilities obey p(a1) ≥ p(a2) ≥
· · · ≥ p(an), and they decrease linearly, from p(a1) = 2/(n+ 1) to p(an) =
2/n(n+ 1), such that

∑n
k=1 p(ak) = 1.

Working out the expression in (10.3) for the prefix code now gives

Lpref = 2
n

n∑
k=1

(
1− k

n+ 1

)
k − 2

n(n+ 1)

= 1
3

n+ 2
3
− 2

n(n+ 1)

For message sets with size equal to some power of two this gives the
following results:

n 2 4 8 16 · · · n→∞

Lenu 1 2 3 4 · · · ∼log2n

Lpref 1 1 9
10 311

36 5405
409 · · · ∼1

3n

Again the prefix code is generally less efficient, although to a somewhat
lesser extent. Apparently for the prefix code to beat the enumerative code
the likelihood differences to be exploited need to be significantly larger.

Example 3. As a third example we will inspect a message set A =
{a1, . . . , an} in which the message probabilities decrease exponentially:

A = {a1, . . . , an} p(ak) = 1
Bn

e−λk (λ > 0)

in which the constant Bn follows from the normalization requirement (using
the tools in Appendix A to deal with the summations):

Bn =
n∑

k=1

e−λk = e−λ 1− e−nλ

1− e−λ
= 1− e−λn

eλ − 1



218 10 : Measuring information

Working out expression (10.3), using the result for Bn, now leads to

Lpref = 1
Bn

n∑
k=1

e−λkk − e−λn

Bn

= 1
1− e−λ

− n+ eλ − 1
eλn − 1

∼ 1
1− e−λ

− ne−λn as n→∞

Here we see a dramatic difference between enumerative coding and our
prefix code. At the same time this demonstrates convincingly that for
message sets where the messages are not all equally likely the appropriate
measure of information content cannot be log2n. Even in the limit of an
infinite number of messages, n → ∞, we can still communicate them by
using on average only a finite number of bits:

lim
n→∞Lpref = 1

1− e−λ

The dependence on λ of this result is consistent with the picture sketched
so far. For λ → 0, where the messages again tend to become equally
likely, we indeed find that the average number of bits needed diverges,
limn→∞ Lpref = ∞. For λ → ∞, where p(a1) → 1 and p(ak) → 0
for k > 1 so that just one message will be communicated, we find that
limn→∞ Lpref = 1: we just communicate a single bit for messages with zero
information content.

Figure 10.1 compares enumerative with prefix codes for different message
statistics. Note that for the exponential decay, the prefix code is superior
to the enumerative code only for n > O(103). The location of the
crossing point depends of course on the value of λ. For the power-law
statistics p(ak) ∼ k−α to give a finite value Lpref in the n → ∞-limit one
requires α > 2.

10.3 Proposal for a measure of information

We have seen, by investigating examples of message sets and coding
schemes, that the information content of messages must be dependent on
the probabilities of the various messages that can occur in a given setting.
However, we have not given the precise recipe yet to express the informa-
tion content in terms of these probabilities. The hypothesis emerging from
our investigations is that the measure of information should indeed depend
on these probabilities and only on these probabilities.
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Figure 10.1 Codelengths L of enumerative code (circles) and prefix codes for 4 different
message statistics, as functions of |A| = n. (i) p(ak) = const. as in Example 1 (squares),
(ii) p(ak) linearly decreasing as in Example 2 (diamonds), (iii) p(ak) decreasing
exponentially as in Example 3, with z = e−λ = 0.9 (left pointing triangles), and (iv)
p(ak) ∼ k−α for α = 2.5 (triangles). The three panels cover the regions of small,
intermediate, and large n, respectively. The lines connecting the markers are just guides to
the eye.

A sensible, unique and—as shown in the following chapter—workable
measure of the information content of a set A of messages in terms of codes
is then obtained by defining information content as the average number
of bits needed to communicate the messages from set A when using the
optimal, that is, shortest possible, code. The examples above have shown
that this optimal code will be different for different message sets. Needless
to say it is anything but straightforward to infer from this definition the
resulting expression for the measure of information in terms of the set of
probabilities {p(ak)} involved; the bulk of Chapter 11 will be devoted to its
derivation. Here we only quote the result, and briefly explore its properties
for the examples that we inspected above.

Proposition. The information content of a set A = {a1, a2, . . . , an} of
messages, occurring with probabilities p(ak), is given by the entropy
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H = H [p]
H [p] = −

n∑
k=1

p(ak) log2 p(ak) (10.4)

associated with the probabilities.

This is Shannon’s celebrated source coding theorem. Entropy as defined
by equation (10.4) is one of the key concepts of information theory.
We shall establish its relation to optimal codes in Chapter 11. Thereafter,
in Chapter 12, we go on to explore its properties along with those of a num-
ber of useful related concepts, and finally in Chapters 13 and 14 we apply
these concepts to problems in statistical inference and neural networks,
respectively.

For the remainder of this introduction, however, we will restrict ourselves
to briefly showing what (10.4) predicts as the value for the entropy of the
specific examples we discussed earlier.

Our first example had uniform message probabilities: p(ak) = 1/n for
k = 1, . . . , n. Here we get

H = −
n∑

k=1

1
n
log2

1
n
= log2 n (10.5)

which is precisely the length of the enumerative code.
Our second example was the message set with linearly decreasing

probabilities, p(ak) = (2/n)(1− (k/n+ 1)). In this case the entropy is

H = −2
n

n∑
k=1

(
1− k

n+ 1

)
log2

[
2
n

(
1− k

n+ 1

)]
(10.6)

Asymptotically, that is, for n� 1, we can replace the sum in this expression
by an integral, by putting xk = k/(n+ 1) and �xk = 1/(n+ 1)→ dx; with
log2z = ln z/ ln 2 one gets for n� 1:

H � −2
∫ 1

0
dx (1− x)

[
1− log2n+

1
ln 2

ln(1− x)

]

= −1+ log2n+
1

2 ln 2
∼ log2 n as n→∞

For our third example, with message probabilities decreasing exponentially,
that is, p(ak) = e−λk/Bn, one finds

H = − 1
Bn

n∑
k=1

e−λk

[
log2

(
1
Bn

)
− λk

ln 2

]
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Asymptotically this gives:

H = −log2(e
λ − 1)+ λ

ln 2
eλ

eλ − 1
as n→∞

This result is shown in Figure 10.2, together with the limit n → ∞ of the
code length of the simple prefix code, Lpref = 1/(1− e−λ), for comparison.
We observe that always Lpref ≥ H (as it should). The two graphs appear to
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Figure 10.2 Code length Lpref of simple prefix code (dashed curve) versus information
content H (solid curve) of infinitely large message set (i.e. n = ∞) with exponentially
decaying message probabilities p(a�) ∼ e−λ�, as a function of the decay rate λ.
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Figure 10.3 Shannon entropies for four different message statistics, as functions of |A| = n.
(i) p(ak) = const. as in Example 1 (squares), (ii) p(ak) linearly decreasing as in Example 2
(diamonds), (iii) p(ak) decreasing exponentially as in Example 3, with z = e−λ = 0.9 (left
pointing triangles), and (iv) p(ak) ∼ k−α for α = 2.5 (triangles). The two panels cover the
regimes of small and intermediate n, respectively. The lines are only guides to the eye.
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touch at λ = ln 2 = 0.693 . . ., which is indeed true since

λ = ln 2: Lpref = 1
1− 1/2

= 2 H = −log2(2− 1)+ ln 2
ln 2

2
2− 1

= 2

This shows that the prefix code is optimal for λ = ln 2.
Finally, Figure 10.3 compares the values of Shannon’s entropy (10.4) for

four different types of message statistics (the examples studied earlier), as
functions of the size n of the message sets.



11 Identification of entropy
as an information measure

In this chapter, we will use coding theory to prove that the entropy does
indeed represent the information content of a set of messages generated
according to a set of prescribed probabilities. We will first do this by
showing that the average number of bits used per message is equal to the
entropy H , if we use the optimal code to represent the possible values of the
messages (i.e. the one with the smallest average length of codewords). There-
after, we shall also present the main line of reasoning of Shannon’s elegant
original proof, which is based on a few basic assumption about properties
of a sensible measure of information, and does not refer to optimal codes.

11.1 Coding theory and the Kraft inequality

For simplicity we will restrict ourselves to binary codes, that is, to those that
use only symbols from the set {0, 1}. Generalization of the theory to families
of codes which employ a larger alphabet of symbols is straightforward.

Definitions

To get our vocabulary in place, we begin with a number of definitions about
codes and their properties:

• A binary code C : A → ⋃
L≥1{0, 1}L is a mapping from the set A of all

messages to the set of all binary strings of nonzero length. It associates
a codeword C(x) ∈⋃

L≥1{0, 1}L to each message x ∈ A.
• A non-singular binary code C is a binary code with the property that

if x, x′ ∈ A, with x �= x′, then C(x) �= C(x′). Different messages
are always given different codewords, so each individual codeword is
uniquely decodable.
• The length �(x) of codeword C(x) is defined as the number of symbols

in the string C(x), that is, �(x) = � if and only if C(x) ∈ {0, 1}�.
• The code-length L[C] of a binary code C is the average length of its

codewords: L[C] =∑
x∈A p(x)�(x).

• A prefix code is a non-singular binary code C with the property that no
codeword C(x) is the prefix of another codeword C(x′), where x, x′ ∈ A

and x �= x′.
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• The extension C� : An → ⋃
L≥1{0, 1}L of a binary code C : A →⋃

L≥1{0, 1}L is a mapping from the set An of all groups (x1, . . . , xn)

of n messages to the set of all binary strings of nonzero length. The
codeword C�(x1, . . . , xn) which C� assigns to a group of n mess-
ages (x1, . . . , xn) ∈ An is defined simply as the concatenation of the
codewords C(xi) of the n individual messages: C�(x1, x2, . . . , xn) =
C(x1)C(x2), . . . , C(xn).
• A uniquely decodable binary code C is one with the property that its

extension C� is non-singular for any n. Note that this also implies that
C must be a prefix code.

Note that the definition of the extended code C� precisely covers the situ-
ation where one sends several codewords C(x), one after the other. C� being
non-singular then means that (i) the original code C is non-singular (so the
individual codewords C(x) are uniquely decodable), and in addition (ii) the
receiver of a string of codewords C(x) can always tell when one codeword
ends and the next codeword begins.

To give an example, let A = {x1, x2, x3}, and

C(x1) = 00, C(x2) = 01, C(x3) = 1

Then:
C�(x1, x1) = 0000
C�(x1, x2) = 0001
C�(x1, x3) = 001
C�(x2, x1) = 0100

...
C�(x1, x2, x3) = 00011

...

After these preliminaries, we are in a position to state in informal terms
how entropy H will be established as the proper measure of information.

First, it is clear that a proper measure of information ought to constitute
a lower bound for the length L[C] of any (binary) code C: H ≤ L[C].
In fact it is suggested to define the measure of information precisely as the
length of the optimal code, given the statistics of the message set. Our next
steps then will be (i) to prove the so-called Kraft inequality, which states
that every binary prefix code C satisfies

∑
x∈A

(1
2

)�(x) ≤ 1, (ii) to show that
H ≤ L[C] for any prefix code, and (iii) that, given a message set A with
probability assignment p(x) for x ∈ A, there exists a prefix code which
satisfies L[C] < H + 1, finally (iv) to argue that the ‘extra bit’ in the last
inequality can be avoided on a per-message basis by using optimal codes
for large groups of messages.
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The Kraft inequality

We now turn to the first step in our line of reasoning—the Kraft inequality
for codeword lengths {�(x)}—and first prove that it will hold for any prefix
code, and conversely that, if a set of proposed codeword lengths {�(x)}
satisfies the Kraft inequality, then there always exists a prefix code C with
precisely these codeword lengths {�(x)}.
Proposition 1 (Kraft inequality). Let A denote a message set. Any prefix
code C characterized by a set of codeword lengths {�(x); x ∈ A} satisfies the
Kraft inequality ∑

x∈A

(1
2

)�(x) ≤ 1 (11.1)

Proof:

• In order to prove this inequality, we first build a tree representation of
all possible binary strings, in the following way:

root
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Level 2:

�
��$
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�
��$
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�� 

�

0 1
�
��$
�
�� 0 1Level 3:

... 000 001 010 011 100 101 110 111

This tree extends downward towards infinity. To each branch point in
this tree we associate a binary string, which simply represents all bits one
runs into if one follows the directed path (see arrows) from the root to
that particular branch point. For example, at level 1 in the tree we find
the branch points 0 and 1; at level 2 in the tree we have 00, 01, 10, and
11; at level 3 in the tree one finds 000, 001, 010, 011, 100, 101, 110,
and 111, and so on.
• At level n, the binary stings associated with the nodes are (from

left to right) just the binary (base-2) representations of the numbers
0, 1, . . . , 2n − 1.
• Those strings that actually occur among the codewords of a prefix code

C under consideration are marked with a • (in the example above, the
codewords occurring up to length 3 are 00, 01, and 100).
• Since C is a prefix code we know that, once a branch point is selected to

correspond to a codeword (marked by a •), there can be no other code-
word further down along the sub-tree rooted in that particular branch
point.
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• Weights are associated with the branch points of the tree as follows. Start
with weight 1 at the root. The two nodes at level 1 each carry weight 1

2 ,
the four nodes at level 2 each carry weight 1

4 , and so on, that is, the
2k nodes at level k each carry weight 2−k. This construction ensures that,
irrespective of the level k, (i) the total weight of all 2k nodes at that level
adds up to 1, (ii) the total weight of the complete set of descendants of
a node at level � < k (containing 2k−� elements) is 2−�, that is, the weight
of the originating node.
• Now, at each level n ≥ 1 one can divide the set of nodes into three disjoint

groups: (i) nodes that are blocked and may not be used for codewords,
because they are descendants of a node that has been used as a codeword
C(x) at a level � = �(x) < n; by construction their total weight adds up to
2−�(x), (ii) nodes that are used as codewords at the level n in question,
and (iii) nodes that are unused (and may or may not represent the first
n bits of further codewords of length m > n).
• Labelling the nodes at level n by their associated bitstrings cn ∈ {0, 1}n,

and recalling that the weight w(cn) of a node associated with cn (at level n)
is w(cn) = 2−n, we thus have for all n ≥ 1:

∑
cn

w(cn) =
∑

cn; blocked

(
1
2

)n

+
∑

cn; used

(
1
2

)n

+
∑

cn; unused

(
1
2

)n

=
∑

x∈A; �(x)<n

(
1
2

)�(x)

+
∑

x∈A; �(x)=n

(
1
2

)�(x)

+
∑

cn; unused

(
1
2

)n

= 1

By omitting the weights of the unused nodes from the sum we thus get

∀n ≥ 1:
∑

x∈A; �(x)≤n

(
1
2

)�(x)

≤ 1

From this result immediately follows, by taking the limit n→∞:

∑
x∈A

(
1
2

)�(x)

≤ 1

which completes our proof. �
Conversely, we have the additional

Proposition 2. If a set of codeword lengths {�(x)} satisfies the Kraft inequal-
ity (11.1), then there exists a corresponding prefix code that has the {�(x)}
as codeword lengths.
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Proof. This is proven by explicit construction of a code.

• We first order the codeword lengths—writing �i = �(xi)—according to
increasing length:

�1 ≤ �2 ≤ �3 ≤ · · ·

Codewords are then constructed in terms of the binary tree introduced
above (and reproduced below) as follows:

root
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�
��$
�
�� 0 1Level 3:

... 000 001 010 011 100 101 110 111

Choose for the first codeword C1 the leftmost branch point at level �1 in
the tree. That is

C1 = 00 . . . 0 (�1 zeros)

Then iterate:
– If �i+1 = �i Ci+1 is branch point to the right of Ci .

– If �i+1 > �i Ci+1 is leftmost available23 node at level �i+1.

– i → i + 1
• There is a concise algebraic representation of this iterative scheme in

terms of arithmetic in base-2 representation, viz.

C1 = 0

Ci+1 = 2(�i+1−�i ) × (Ci + 1), i ≥ 1

where it is understood that the binary representation of Ci uses �i bits—
allowing as many leading zeros as necessary to achieve this, if Ci < 2�i−1,
and indicating failure of the construction if Ci > 2�i − 1.
• This construction could only fail if we find ourselves having allocated a

codeword to the rightmost node at some level n at a stage where there
are still further codeword lengths waiting to get a codeword. In terms of
the categorization of the codewords at level n this means that they are all
either blocked (by codewords assigned at levels higher up in the tree) or

23 Note that a branch point is available if it is not a descendant of a codeword used earlier
and therefore blocked.
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used, and no unused ones are left (hence all nodes further down the tree
would be blocked), so ∑

i: �i≤n

(1
2

)�i = 1

However, in this situation we must have allocated all codeword lengths
�i to codewords Ci , since otherwise the Kraft inequality would have been
violated. This completes our proof. �

In order to develop further intuition for the above formal results, let
us turn to a number of explicit examples. We will illustrate the construc-
tion of prefix codes, described in the previous proof, from a given set
of desired codeword lengths, focusing on the crucial role of the Kraft
inequality.

Example 1. We first choose the set of codeword lengths {�i} = {1, 2, 3, 3}.
This set saturates the Kraft inequality, since

4∑
i=1

(
1
2

)�i

= 1
2
+

(
1
2

)2

+ 2
(

1
2

)3

= 1

The construction recipe for the corresponding code gives:

construction: result:

C1 = 0 0
C2 = 2× (C1 + 1) = 2 10
C3 = 2× (C2 + 1) = 6 110
C4 = C3 + 1 = 7 111

This is indeed a prefix code, with the required codeword lengths. The fact
that a codeword consisting entirely of 1s appears as the last entry indic-
ates that the rightmost node at level 3 has been reached, so that all nodes
further down the tree are blocked, or equivalently that the Kraft inequality
is saturated as an equality.

Example 2. Next we choose the set {�i} = {2, 2, 3, 3, 4, 4}. This set also
satisfies the Kraft inequality:

6∑
i=1

(
1
2

)�i

= 2

[(
1
2

)2

+
(

1
2

)3

+
(

1
2

)4
]
= 7

8
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The construction recipe for the corresponding code gives:

construction: result:

C1 = 0 00
C2 = C1 + 1 = 1 01
C3 = 2× (C2 + 1) = 4 100
C4 = C3 + 1 = 5 101
C5 = 2× (C4 + 1) = 12 1100
C6 = C5 + 1 = 13 1101

This is again a prefix code, with the required codeword lengths.

Example 3. Our third example illustrates how the construction fails when
the Kraft inequality is not satisfied. Let us choose the set {�i} = {1, 2, 2, 2}.
This set violates the Kraft inequality:

4∑
i=1

(
1
2

)�i

= 1
2
+ 3

(
1
2

)2

= 5
4

> 1

Now our construction recipe generates the code:

construction: result:

C1 = 0 0
C2 = 2× (C1 + 1) = 2 10
C3 = C2 + 1 = 3 11
C4 = C3 + 1 = 4 (≡100, not a 2-bit string!)

We see that a prefix code with codeword lengths {�i} that violates the Kraft
inequality cannot be constructed. Once C3 is found, the rightmost node at
level 2 has been reached (C3 consists only of 1s); the tentative C4 constructed
via the algebraic iteration scheme does not allow a 2-bit representation as
required. Another way to see the failure of the construction is to note that
C2 is a prefix of the tentatively constructed C4.

11.2 Entropy and optimal coding

Bounds for optimal codes

We will now prove two important theorems. The first one states that no
uniquely decodable code C will allow us to communicate messages x ∈ A
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in such a way that the average number of bits used is less than the entropy:
L[C] ≥ H [p], an inequality which we had argued should be satisfied by any
sensible measure of information. The second theorem, on the other hand,
states that for every message set A with prescribed probabilities p(x) for the
occurrence of x ∈ A there exists a uniquely decodable code that comes very
close to this bound: L[C] < H [p] + 1. Note that every uniquely decodable
code must be a prefix code.

Proposition 3. Every prefix code C to encode messages x ∈ A obeys L[C] ≥
H [p], with equality if and only if �(x) = log2[1/p(x)] for each x ∈ A.

Proof. Subtract the two sides of the inequality to be established:

L[C] −H [p] =
∑
x∈A

p(x)[�(x)+ log2 p(x)] =
∑
x∈A

p(x)log2

(
p(x)

(1/2)�(x)

)

≥
(∑

x∈A
p(x)

)
log2

( ∑
x∈A p(x)∑

x∈A(1/2)�(x)

)

= −log2

(∑
x∈A

(
1
2

)�(x))
≥ 0

Here the first inequality follows from an inequality related to convexity,
which we prove in Appendix G, the so-called the log–sum inequality (LSI).
The second inequality follows from the Kraft inequality (KI). Full equality
is obtained only if both the LSI and the Kraft inequality simultaneously
reduce to equalities, so:

LSI: ∃λ > 0: p(x) = λ

(
1
2

)�(x)

, KI:
∑
x∈A

(
1
2

)�(x)

= 1

Combination of these two conditions gives λ = 1, so indeed p(x) = (1
2

)�(x)

for each x ∈ A. Equivalently: �(x) = log2[1/p(x)] for each x ∈ A. This
completes the proof.

Proposition 4. For every message set A with prescribed probabilities p(x)

for the occurrence of the messages x ∈ A there exists a prefix code C with
the property L[C] < H [p] + 1.

Proof. The proof is based on the explicit construction of a code with the
stated properties. It is clear from the previous theorem that efficient codes
are those which approach the relation �(x) = log2[1/p(x)]. However, since
each �(x) must be an integer the ideal situation is not always achievable.
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Thus we attempt to get as close to achieving this condition as possible within
the integers by choosing

�(x) = ceil [log2(1/p(x))]

where we define

ceil[z] = min{n ∈ IN | n ≥ z} ⇒ z ≤ ceil[z] < z+ 1

These lengths obey the Kraft inquality, since

∑
x∈A

(
1
2

)�(x)

=
∑
x∈A

(
1
2

)ceil [log2(1/p(x))]

≤
∑
x∈A

(
1
2

)log2(1/p(x))

=
∑
x∈A

2log2 p(x) =
∑
x∈A

p(x) = 1

Here we used ceil[z] ≥ z. Proposition 2 now guarantees that there exists
a prefix code with the codeword lengths �(x) = ceil [log2(1/p(x))]; it even
provides a construction. This code will then have the following code-length:

L[C] =
∑
x∈A

p(x)ceil [log2(1/p(x))]

<
∑
x∈A

p(x)[log2(1/p(x))+ 1] = H [p] + 1

where ceil[z] < z+ 1 was used. This completes our proof.

At this point it is appropriate to summarize our present knowledge about
the relation between codes and entropy in a compact way. If we define
the optimal code (or most efficient code) for a given ensemble of messages
(described by the message set A and the message probabilities {p(x), x ∈ A})
as that uniquely decodable code C which has the smallest codelength L[C],
we get the following proposition.

Proposition 5. The optimal code C to encode messages for a given ensemble
of messages (described by A, {p(x), x ∈ A}) uses an average number L[C]
of bits per message which obeys

H [p] ≤ L[C] < H [p] + 1 (11.2)
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Proof. This theorem follows directly from the previous two propositions;
note once more that uniquely decodable codes are always of the prefix type.

Killing the final bit

One notes that the ‘+1’ contribution on the right-hand side of (11.2) is
purely due to the fact that the ideal values �(x) = log2(1/p(x)) cannot
always be realized in practice, but have to be rounded off to the nearest
integer. Equation (11.2) is thus in itself adequate proof that the aver-
age information content of messages x ∈ A generated with probabilities
{p(x)} is indeed the entropy H [p] given in (10.4).

In what follows, we briefly demonstrate that the extra bit by which
the optimal code may exceed the entropy of an information source can
in a certain sense be eliminated. This is obviously not just a challenge of
purely academic interest but would be very useful for any high throughput
communication system.

The key observation to achieve this elimination of the final bit is based
on the fact that nowhere in the line of reasoning leading to (11.2) did we
in any essential way make use of the fact that the messages to be encoded
were single-component messages.

Thus to eliminate the final bit, one would use codes which are optimized
in such a way as to encode groups of n messages, independently gener-
ated from a message set A with probabilities {p(x)}. That is, denoting by
x = (x1, x2, . . . , xn) with xi ∈ A the n-component messages, generated with
probabilities pn(x) = ∏n

i=1 p(xi), and by Cn the optimal uniquely decod-
able code used to encode these messages, we know that the inequality (11.2)
of the previous proposition generalizes as follows.

Proposition 6. The optimal code Cn to encode messages for a given
ensemble of n-component messages generated from A, with pn(x) =∏n

i=1 p(xi) uses an average number L[Cn] of bits per n-component message
which obeys

H [pn] ≤ L[Cn] < H [pn] + 1 (11.3)

Using the fact that H [pn] = nH [p], since the n messages are drawn inde-
pendently, we thus find that the number of bits of code used on average per
message satisfies

H [p] ≤ n−1L[Cn] < H [p] + n−1 (11.4)

which can be as close to H [p]—the average information per message gen-
erated according to the prescribed probabilities—as desired, if coding is
optimized for large groups of messages.
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The various practicalities of the approach to coding via coding of message
sets are themselves of some intrinsic interest, leading to the notion of typical
and atypical message sets and and the idea of using enumerative codes
to code these message sets separately, granting an additional bit for the
information to which group a message belongs. However, we shall not
deal with these issues here and refer instead to the specialized literature for
further details.

11.3 Shannon’s original proof

Let us finally give a brief outline of Shannon’s elegant original proof that
entropy H [p] is the proper measure of information of an ensemble of mess-
ages generated according to a set of prescribed probabilities pi = p(ai),
with ai ∈ A.

The proof is based on three assumptions about properties which a good
measure of information should have, thus rendering Shannon’s approach
to information axiomatic.

1. H [p] = H({pi}) should be continuous in the probabilities pi .

2. For uniform probabilities pi = 1/n, i = 1, . . . , n, the information

H

(
1
n
, . . . ,

1
n

)
≡ F(n) (11.5)

is a monotonically increasing function of n (i.e. of the number of
possibilities to choose from).

3. Information is additive. More specifically: if a message set can be
grouped and messages can accordingly be identified by first identifying
the group to which they belong, and then by identifying which member
of a group they are, these pieces of information must add up. Form-
ally, if pj denotes the probability of a message to belong to group j and
pi|j denotes the conditional probability that it is the ith member of the
group, given that the group is j , then

H({pij }) = H({pi|jpj }) = H({pj })+
∑
j

pjH({pi|j }) (11.6)

Thus the total amount of information equals the information about
group membership plus the weighted average over the groups of the
information concerning choice within groups.
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Since one can always decompose a choice of sm equally likely possibilities
into a series of m choices of s equally likely possibilities, one has according
to assumption 3:

F(sm) = mF(s)

for the function F , which is the measure of information for uniform prob-
abilities as introduced in assumption 2. This functional relation is seen to
be satisfied by

F(x) = k ln x,

for some k > 0, and since the relation is supposed to hold for all integers
s and m, one can show that this choice is unique (up to the prefactor k).

Similarly, given a set of n equally likely messages which is decomposed
into groups containing nj equally likely messages (n =∑

j nj ), so that the
probabilities pj = nj/n of belonging to the various groups are rational,
one can use assumption 3 and the definition of F to write

F(n) = H({pj })+
∑
j

pjF (nj )

For the form (11.3) of F obtained above we find

H({pj }) = F(n)−
∑
j

pjF (nj ) = −k
∑
j

pj ln(nj /n) = −k
∑
j

pj ln pj

(11.7)

as the expression for the information in case of rational probabilities. By
the continuity assumption, the same expression must hold for any choice
of real pj . This completes Shannon’s original proof that entropy is the
proper measure of information. The constant k appearing here obviously
only affects the unit in which it is measured. The standard choice is k =
1/ln 2, corresponding to information being measured in bits.

It is very satisfactory to observe that the earlier proof involving the
optimal code did not involve any of the above axioms, and that, conversely,
Shannon’s proof does not involve coding. The two proofs are thus quite dis-
tinct, yet both confirm the validity of the central result that (10.4) represents
the correct information measure.



12
Building blocks of
Shannon’s information
theory

In this chapter, we explore properties of entropy and of related measures
of information theory, which will be useful for later applications of the
framework. The chapter has the character of a compilation of key results
(and proofs); it may thus also be taken as a reference.

We will find it useful to formulate the results in terms of the concept
of random variables X characterizing information sources. A random vari-
able X is specified by the set A of values x that the random variable X

can assume, and a probability assignment {p(x); x ∈ A}. Instead of writing
H [p] for the entropy—thereby emphasizing the dependence of information
on probabilities—we shall thus often write H(X), thereby indicating both
the range of values that X can assume and the probability assignments.

We begin by developing the framework for discrete random variables,
in which case probabilities are assigned to individual elements of A.
Continuous random variables will be treated later on. Elementary concepts
of probability theory in as much as they are needed for what follows are
gathered in Appendix A.

12.1 Entropy

The entropy H(X) of a discrete random variable X, measured in bits, is
defined as follows:

H(X) = −
∑
x∈A

p(x)log2 p(x) (12.1)

We assume that p(x) > 0 for all x ∈ A, which can always be arranged
via the definition of A, unless stated otherwise (in the latter cases we define
0 log2 0 = limε↓0 ε log2 ε = 0). As demonstrated in the previous chapter,
the entropy represents the average information content of messages x from
the set A with the specified probabilities p(x) of occurrence.
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General properties

Property 1. H(X) ≥ 0, with equality if and only if x is a constant.

Proof. Use the property p(x) ≤ 1 for all x ∈ A:

H(X) =
∑
x∈A

p(x)log2

[
1

p(x)

]
≥

∑
x∈A

p(x)log21 = 0 (12.2)

Equality implies that p(x) = 1 (∀x ∈ A). Since also
∑

x∈A p(x) = 1, this
forces x to be a constant. Conversely, if x is a constant then the equality
indeed holds.

Property 2. H(X) ≤ log2|A|, with equality if and only if p(x) = |A|−1 for
all x ∈ A.

Proof. Define auxiliary probabilities q(x) = |A|−1, and use the log-sum
inequality (G.5) (to be referred to as LSI in what follows):

log2 |A| −H(X) =
∑
x∈A

p(x)[log2 p(x)+ log2|A|]

=
∑
x∈A

p(x)log2

[
p(x)

q(x)

]
≥

[∑
x∈A

p(x)
]
log2

[∑
x∈A p(x)∑
x∈A q(x)

]
= 0

Equality holds if and only if it holds in the log-sum inquality, so
(∃λ > 0): p(x) = λq(x). Since

∑
x∈A p(x) = ∑

x∈A q(x) = 1 the constant
λ must be 1, so p(x) = |A|−1 for all x ∈ A.

Property 3. H(F(X)) ≤ H(X), with equality if and only if F is invertible.

Proof. Define the new random variable Y = F(X) with y ∈ AY , with non-
overlapping domains Dy = {x ∈ A |F(x) = y} which obey ∪y∈AY

Dy = A,
and associated probabilities

p̂(y) =
∑
x∈Dy

p(x)
∑

y∈AY

p̂(y) =
∑

y∈AY

∑
x∈Dy

p(x) =
∑
x∈A

p(x) = 1
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Now work out the difference between the two entropies:

H(F(X))−H(X) = −
∑

y∈AY

p̂(y)log2 p̂(y)+
∑
x∈A

p(x)log2 p(x)

= −
∑

y∈AY

[
p̂(y)log2 p̂(y)−

∑
x∈Dy

p(x)log2 p(x)
]

= −
∑

y∈AY

∑
x∈Dy

p(x)log2

[∑
x′∈Dy

p(x′)
p(x)

]

= −
∑

y∈AY

∑
x∈Dy

p(x)log2

[
1+ 1

p(x)

∑
x′(�=x)∈Dy

p(x′)
]
≤ 0

Note that equality implies that each of the terms
∑

x′( �=x)∈Dy
p(x′) van-

ishes, which happens if and only if (∀y ∈ AY ): |Dy | = 1. This is precisely
the condition for invertibility of the operation F .

Examples

Example 1. Let us see how these three properties surface in the calculation
of the entropy for specific choices of random variables. We first inspect
the simplest non-trivial discrete random variables x, the ones which can
take only two values: A = {0, 1}, with p(1) = p and p(0) = 1 − p (with
p ∈ [0, 1]). Here we obtain from: (12.1):

H(X) = −p log2p − (1− p)log2(1− p) (12.3)

This expression has the following properties (note: log2z = ln z/ ln 2):
(i) H(X)p = H(X)1−p for all p ∈ [0, 1].
(ii) H(X)p=0 = H(X)p=1 = 0, H(X)p=1/2 = 1.

(iii) dH(X)/dp > 0 for p ∈ [0, 1
2 ), dH(X)/dp < 0 for p ∈ (1

2 , 1],
with dH(X)/dp = 0 for p = 1

2 . This follows immediately from:

d
dp

H(X) = − 1
ln 2

d
dp
[p ln p + (1− p) ln(1− p)] = 1

ln 2
ln

(
1− p

p

)
= log2(p

−1 − 1)

These properties have straightforward explanations in terms of information
content: (i) states that the information content is invariant under 0 ↔ 1
(alternative coding), (ii)+ (iii) state that the information content is maximal
for uniform probabilities p(1) = p(0) and decreases monotonically with
increasing probability differences, until it vanishes at p ∈ {0, 1} (where
x reduces to a constant). Figure 12.1 shows the dependence of H(X) on p

in a graph.
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Figure 12.1 Entropy H(X) for a binary random variable x ∈ {0, 1}, with probabilities
p(1) = p and p(0) = 1− p, as a function of p. See equation (12.3). The maximum value
H(X) = 1 for the entropy (i.e. for the information content) is obtained for p = 1

2 (indicated
by dashed lines).

Example 2. Our second example concerns the information content of mess-
ages conveying events in a casino, where a coin is thrown until the first
head (h) occurs, as opposed to tails (t) only. The random variable M

represents the number of times the coin is thrown (i.e. the number of throws
needed for the first head to show up), so A = {1, 2, 3, . . .} with |A| = ∞.
The probabilities p(m), m ∈ A are obtained by inspection of the various
scenarios:

p(1) = Prob(h) = 1
2

p(2) = Prob(th) = 1
2 · 1

2

p(3) = Prob(tth) = 1
2 · 1

2 · 1
2

...
...

p(m) = Prob(t . . . th) = (1
2

)m
With the help of the simple tools in Appendix C to deal with the summation,
the entropy (12.1) now comes out as

H(M) = −
∞∑

m=1

(1
2

)m

log2

(1
2

)m =
∞∑

m=1

m
(1
2

)m = lim
z→1/2

z
d
dz

∞∑
m=0

zm

= lim
z→1/2

z
d
dz

1
1− z

= lim
z→1/2

z

(1− z)2
= 2 bits
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On average such messages therefore convey just two bits of information.
Note that for this example the prefix code is optimal:

C(m) = 00 . . . 0︸ ︷︷ ︸
m−1 times

1 �(m) = m: L =
∑
m≥1

p(m)�(m) =
∑
m≥1

m
(1
2

)m = H

Example 3. Our third example is an illustration of how the information
content of a random variable is reduced if it undergoes a non-invertible
operation. Let us choose the event set A = {0, 1, 2, 3, 4, 5, 6, 7} and the
following operation: F(x) = cos(πx). Equivalently (at least for the present
event set): F(x) = 1 for x even, F(x) = −1 for x odd. This example is quite
typical of real-world communication via imperfect channels, such as poor
telephone lines. Here the only information delivered at the receiving end of
the communication channel is whether the original message variable x was
even or odd. The new random variable Y = F(X) has the following set of
possible values and associated probabilities:

y ∈ AY = {−1, 1} p̂(−1) = p(1)+ p(3)+ p(5)+ p(7)

p̂(1) = p(0)+ p(2)+ p(4)+ p(6)
(12.4)

The information content of the two types of messages, before and after the
operation F , is given, respectively, by

H(X) = −
∑
x∈A

p(x)log2 p(x)

H(F(X)) = −p̂(−1)log2 p̂(−1)− p̂(1)log2 p̂(1)

(12.5)

The outcome of the information reduction �H = H(F(X))−H(X) due to
the non-invertible operation (the poor communication medium) will thus
depend on the choice made for the probabilities p(x).

In the simplest case where all messages x are equally likely, that is, where
p(x) = 1

8 for all x ∈ A, we obtain p̂(−1) = p̂(1) = 1
2 which results in

H(X) = log2|A| = 3 bits

H((F (X)) = log2|AY | = 1 bits �H = −2 bits

Only one-third of the original information content survives the opera-
tion F . Alternatively we could inspect a situation where the events in
A have different probabilities of occurrence. Let us choose the following
probabilities:

x 0 1 2 3 4 5 6 7

p(x) 1
2

1
4

1
8

1
16

1
32

1
64

1
128

1
128
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According to (12.4) we now have p̂(−1) = 43
128 and p̂(1) = 85

128 , so that we
find for the two entropies (12.5):

H(X) = 1
63
64
≈ 1.984 bits

H(F(X)) = − 43
128

log2

(
43
128

)
− 85

128
log2

(
85
128

)
≈ 0.921 bits

so
�H ≈ −1.063 bits

Here about one half of the original information content survives the
operation F . This example illustrates that for a given type of message
deterioration (i.e. for a given operation F , which could also involve a
probabilistic element) the information loss is dependent on the various
probabilities of occurrence of the individual messages.

12.2 Joint and conditional entropy

The joint entropy H(X, Y ) of a pair of discrete random variables (X, Y ),
measured in bits, is defined as follows:

H(X, Y ) = −
∑

(x,y)∈A
p(x, y)log2 p(x, y) (12.6)

where A = AX ⊗AY . The joint entropy represents the average information
content of messages (x, y) from the set A with the specified probabilit-
ies of occurrence p(x, y). As before: 0 ≤ H(X, Y ) ≤ log2|A|, with zero
occurring only when (x, y) is constant, and log2|A| occurring only when
p(x, y) = |A|−1. The proofs of these statements are identical to those
for H(X). Generalization of the definition of joint entropy to messages
consisting of n random variables H(X1, . . . , Xn) is also straightforward.

The conditional entropy H(Y |X) of a pair of discrete random variables
(x, y) ∈ A, measured in bits, is defined as follows:

H(Y |X) = −
∑

(x,y)∈A
p(x, y)log2 p(y|x)

=
∑

x∈AX

p(x)
[
−

∑
y∈AY

p(y|x)log2 p(y|x)
]

(12.7)

The conditional entropy represents the average information content of
message component y of a combined message (x, y) from the set A, given
that one knows the other component x already. Generalization of the defini-
tion of conditional entropy to messages consisting of more than two random
variables, giving objects such as H(X, Y |Z), is again straightforward.
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General properties

Property 1. The entropy H(X, Y ) of a pair of random variables (X, Y ),
with (x, y) ∈ A = AX ⊗ AY ⊆ IR2 satisfies: H(X, Y ) ≤ H(X)+H(Y), with
equality if and only if X and Y are independent.

Proof. Subtract the two sides of the proposed inequality and use the defin-
itions of the marginal distributions, p(x) = ∑

y∈AY
p(x, y) and p(y) =∑

x∈AX
p(x, y):

H(X, Y )−H(X)−H(Y) = −
∑

x∈AX

∑
y∈AY

p(x, y)log2 p(x, y)

+
∑

x∈AX

p(x)log2 p(x)

+
∑

y∈AY

p(y)log2 p(y)

=
∑

x∈AX

∑
y∈AY

p(x, y)log2

[
p(x)p(y)

p(x, y)

]

We now use the LSI (G.5) and obtain:

H(X, Y )−H(X)−H(Y)

≤
[ ∑

x∈AX

∑
y∈AY

p(x, y)
]
log2

[∑
x∈AX

∑
y∈AY

p(x)p(y)∑
x∈AX

∑
y∈AY

p(x, y)

]
= 0

Equality is obtained if and only if (∃λ > 0): p(x, y) = λp(x)p(y) for all
(x, y) ∈ A. We can then sum over all (x, y) ∈ A and obtain λ = 1. We
conclude that equality holds if and only if the two random variables X and
Y are independent.

Property 2. H(Y |X) ≥ 0, with equality if and only if there exists a function
F such that y = F(x) for all (x, y) with p(x, y) > 0.

Proof. Using

p(y|x) = p(x, y)

p(x)
= p(x, y)∑

y′∈AY
p(x, y′)

= p(x, y)

p(x, y)+∑
y′(�=y)∈AY

p(x, y′)
≤ 1

one obtains

H(Y |X) =
∑

(x,y)∈A
p(x, y)log2

[
1

p(y|x)

]
≥

∑
(x,y)∈A

p(x, y)log2 1 = 0

Equality requires p(x, y) = p(x) for all (x, y) ∈ A, or
∑

y′( �=y)∈AY
p(x, y′) =

0. In other words: there can for each x ∈ AX be just a single y ∈ AY for
which p(x, y) �= 0. This means that y can be written as a function of x for
all allowed pairs (x, y).
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Property 3. H(F(X)|X) = 0.

Proof. This identity is included in the proof of Property 2.

Property 4. H(X|F(X)) ≥ 0, with equality if and only if F is invertible.

Proof. We simply apply Property 1 to the random variables X and Y =
F(X), according to which H(X|Y ) ≥ 0, with equality if and only if there
exists a function G such that x = G(y) = G(F(x)) for all x with p(x) > 0,
which requires F to be invertible.

Property 5. H(Y |X) ≤ H(Y), with equality if and only if x and y are
statistically independent.

Proof. Upon evaluating the difference H(Y) − H(Y |X) and using the LSI
(G.5) one obtains:

H(Y)−H(Y |X) =
∑

(x,y)∈A
p(x, y)log2 p(y|x)−

∑
y∈AY

p(y)log2 p(y)

=
∑

(x,y)∈A
p(x, y)log2

[
p(x, y)

p(x)p(y)

]

≥
[ ∑

(x,y)∈A
p(x, y)

]
log2

[ ∑
(x,y)∈A p(x, y)∑

(x,y)∈A p(x)p(y)

]
= 0

Equality holds if and only if it holds in the log–sum inequality,
so (∃λ > 0): p(x, y) = λp(x)p(y). Since

∑
(x,y)∈A p(x, y) = ∑

(x,y)∈A p(x)

p(y) = 1 the constant λ must be 1, so p(x, y) = p(x)p(y) for all
(x, y) ∈ A.

Property 6 (Chain rule).24 H(X, Y ) = H(X)+H(Y |X).

Proof. Simply use p(x, y) = p(y|x)p(x):

H(X, Y ) = −
∑

(x,y)∈A
p(x, y)log2 p(x, y) = −

∑
(x,y)∈A

p(x, y)log2[p(y|x)p(x)]

= −
∑

(x,y)∈A
p(x, y)log2 p(y|x)−

∑
(x,y)∈A

p(x, y)log2 p(x)

= H(Y |X)−
∑

x∈AX

p(x)log2 p(x)

= H(Y |X)+H(X)

which completes the proof.

24 Note that this identity was part of the set of assumptions (viz. the additivity property 3)
required for any good measure of information, in Shannon’s proof of the source coding
theorem. No wonder therefore that we recover it as a property of the (joint) entropy.
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Property 7. H(X, Y ) ≥ H(X), with equality if and only if there exists
a function F such that y = F(x) for all (x, y) with p(x, y) > 0.

Proof. The result follows by combination of Properties 2 and 6.

Property 8 (Conditioned chain rule). H(X, Y |Z) = H(X|Z)+H(Y |X, Z).

Proof. This result follows from the identity

p(x, y|z) = p(x, y, z)
p(x, z)

p(x, z)
p(z)

= p(y|x, z)p(x|z),

from which one infers

H(X, Y |Z) = −
∑

(x,y,z)∈A
p(x, y, z)log2 p(x, y|z)

= −
∑

(x,y,z)∈A
p(x, y, z)log2 [p(y|x, z)p(x|z)]

= H(Y |X, Z)+H(X|Z)

Examples

Example 1. Our first example serves to illustrate the above properties,
and to demonstrate that in general H(Y |X) �= H(X|Y ). We consider the
stochastic variables X and Y with AX = AY = {1, 2, 3, 4} (and A =
AX⊗AY ), and with joint probabilities p(x, y) as given in the following table:

y
x 1 2 3 4

1 1
8

1
16

1
32

1
32

2 1
16

1
8

1
32

1
32

3 1
16

1
16

1
16

1
16

4 1
4 0 0 0

The marginal probabilities p(x) = ∑
y∈AY

p(x, y) and p(y) =∑
x∈AX

p(x, y) follow as:

x 1 2 3 4

p(x) 1
2

1
4

1
8

1
8

y 1 2 3 4

p(y) 1
4

1
4

1
4

1
4
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If we simply insert the appropriate probabilities in the various definitions,
we obtain for the individual entropies H(X) and H(Y) and for the joint
entropy H(X, Y ) the following results:

H(X) = −
∑

x∈AX

p(x)log2 p(x) = 1
3
4

bits

H(Y) = −
∑

y∈AY

p(y)log2 p(y) = 2 bits

H(X, Y ) = −
∑

(x,y)∈A
p(x, y)log2 p(x, y) = 3

3
8

bits

After careful bookkeeping (summing over all nonzero entries in the table
of the joint probabilities) we obtain the conditional entropies H(Y |X) and
H(X|Y ):

H(X|Y ) = −
∑

(x,y)∈A
p(x, y)log2 p(x|y) = 1

3
8

bits

H(Y |X) = −
∑

(x,y)∈A
p(x, y)log2 p(y|x) = 1

5
8

bits

Thus the average amount of extra information contained in x if we already
know y need not be identical to the average amount of extra information
conveyed by y if we already know x. There is no symmetry in that sense.The
present example obeys the following inequalities and equalities:

0 < H(Y |X) < H(Y ) < H(X, Y )

0 < H(X|Y ) < H(X) < H(X, Y )

H(X, Y ) = H(X)+H(Y |X)

H(X, Y ) = H(Y)+H(X|Y )

H(X)−H(X|Y ) = H(Y)−H(Y |X)

The first four lines indeed confirm the general properties derived earlier in
this section. The bottom line points at a property to be built upon in the
subsequent section.

Example 2. Our second and trivial example is the one with a non-
invertible operation we inspected earlier (Example 3 of the previous
section), F(x) = cos(πx) with AX = {0, 1, 2, 3, 4, 5, 6, 7}. We introduce the
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variable Y = F(X), with AY = {−1, 1}. The joint probability distribution
p(x, y) now becomes

p(x, y) = p(x)δy,F(x)

with δnm = 1 if and only if n = m and zero otherwise. Here we obtain the
following expressions for joint and conditional entropies:

H(X, Y ) = −
∑

(x,y)∈AX⊗AY

p(x, y)log2 p(x, y)

= −
∑

x∈AX

p(x)log2 p(x) = H(X)

H(X|Y ) = −
∑

(x,y)∈AX⊗AY

p(x, y)log2 p(x|y)

=
∑

(x,y)∈AX⊗AY

p(x, y)[log2 p(y)− log2 p(x, y)]

= H(X, Y )−H(Y) = H(X)−H(Y)

H(Y |X) = −
∑

(x,y)∈AX⊗AY

p(x, y)log2 p(y|x)

=
∑

(x,y)∈AX⊗AY

p(x, y)[log2 p(x)− log2 p(x, y)]

= H(X, Y )−H(X) = 0

Such results make perfect sense. The additional information conveyed by
learning the value of y = F(x) is zero if we know x already, so H(Y |X) = 0.
In contrast, learning the precise value of x does convey additional informa-
tion if previously we knew only y = F(x) (i.e. whether x is even or odd).

12.3 Relative entropy and mutual information

The relative entropy D(p||q), measured in bits, of two discrete random vari-
ables X and X′ with AX = AX′ = A described by probability distributions
p(x) and q(x), respectively, is defined as

D(p||q) =
∑
x∈A

p(x)log2

[
p(x)

q(x)

]
(12.8)

with the usual convention 0 log2 0 = limε↓0 ε log2 ε = 0. The relative
entropy is alternatively often called cross-entropy, or ‘Kullback–Leibler
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distance’, a term which has to be used with some care since D(p||q) can-
not play the role of a true distance as D(p||q) �= D(q||p) in general. As
we will demonstrate shortly it does, however, have the nice property that
D(p||q) ≥ 0 for any pair of distributions p and q, with equality if and only
if p(x) = q(x) for all x ∈ A.

It is only natural to introduce also a measure which is similar to the
relative entropy but symmetric in the two probability distributions p(x)

and q(x):
J (p||q) = D(p||q)+D(q||p) (12.9)

which is called Jeffreys’ divergence. Its properties of course follow trivially
from those of the relative entropy.

An important object, especially in the context of neural networks as we
will see, is the so-called mutual information I (X, Y ) of a pair of random
variables X and Y , with values (x, y) ∈ A, defined as

I (X, Y ) =
∑

(x,y)∈A
p(x, y)log2

[
p(x, y)

p(x)p(y)

]
(12.10)

Note that I (X, Y ) = I (Y , X) and that for independent variables X and Y

one would find I (X, Y ) = 0.
Similarly one can define the conditional mutual information I (X, Y |Z)

involving three random variables as

I (X, Y |Z) =
∑

(x,y,z)∈A
p(x, y, z)log2

[
p(x, y|z)

p(x|z)p(y|z)
]

(12.11)

This conditional mutual information is also symmetric in its first argu-
ments, I (X, Y |Z) = I (Y , X|Z) and for conditionally independent variables
X and Y , for which p(x, y|z) = p(x|z)p(y|z), one finds I (X, Y |Z) = 0.

General properties

Property 1. D(p||q) ≥ 0 for any pair of distributions p and q, with equality
if and only if p(x) = q(x) for all x ∈ A.

Proof. Use the LSI (G.5) and the normalization
∑

x p(x) =∑
x q(x) = 1:

D(p||q) =
∑
x∈A

p(x)log2

[
p(x)

q(x)

]
≥

[∑
x∈A

p(x)
]
log2

[∑
x∈A p(x)∑
x∈A q(x)

]
= 0

Equality holds if and only if it holds in the LSI, so if (∃λ > 0): q(x) =
λp(x) for all x ∈ A. Normalization of p and q subsequently dictates that
λ = 1.
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Property 2. I (X, Y ) ≥ 0 for any pair of random variables with values
(x, y) ∈ A, with equality if and only if X and Y are independent.

Proof. Note that I (X, Y ) = D({p(x, y)}||{p(x)p(y)}) and use Property 1.

Property 3. I (X, Y ) = H(X)−H(X|Y )

Proof. Substitute p(x, y) = p(x|y)p(y) in the definition of I (X, Y ):

I (X, Y ) =
∑

(x,y)∈A
p(x, y)log2

[
p(x, y)

p(x)p(y)

]

=
∑

(x,y)∈A
p(x, y)log2

[
p(x|y)

p(x)

]
= H(X)−H(X|Y )

Note that from I (X, Y ) = I (Y , X) it immediately follows that also
I (X, Y ) = H(Y) − H(Y |X) (see Example 1 in the previous section). Note
further that Property 3 allows us to attach a clear meaning to mutual inform-
ation: I (X, Y ) is seen to be the average amount of information in messages
x minus the residual average information that is left after we have learned
about y. Since the reduction was entirely due to the revelation of y we find
that I (X, Y ) is the average amount of information that y reveals about x,
and vice versa (the ‘vice-versa’ simply follows from I (X, Y ) = I (Y , X)).
This interpretation follows alternatively from the following statement:

Property 4. I (X, Y ) = H(X)+H(Y)−H(X, Y )

Proof. Use the chain rule H(X, Y ) = H(Y) + H(X|Y ) (Property 6) of
Section 12.2 in combination with Property 3 above:

I (X, Y ) = H(X)−H(X|Y )

= H(X)− [H(X, Y )−H(Y)] = H(X)+H(Y)−H(X, Y )

Property 5. I (X, F(X)) ≤ H(X), with equality if and only if F is invertible.

Proof. Combine Property 3 with Property 4 of Section 12.2:

I (X, F(X))−H(X) = −H(X|F(X)) ≤ 0

with equality only if F is invertible.

In particular we find that I (X, X) = H(X), that is, the average amount
of information that x conveys about x is simply the average amount of
information in x (as it should).
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Property 6. I (X, Y |Z) ≥ 0, with equality if and only if p(x, y|z) =
p(x|z)p(y|z) for all (x, y, z) ∈ A (i.e. if x and y are conditionally
independent).

Proof. Write

I (X, Y |Z) =
∑

(x,y,z)∈A
p(x, y, z)log2

[
p(x, y|z)

p(x|z)p(y|z)
]

=
∑

(x,y,z)∈A
p(x, y, z)log2

[
p(x, y, z)

p(x|z)p(y|z)p(z)

]

and use the LSI (G.5) to conclude

I (X, Y |Z) ≥
[ ∑

(x,y,z)∈A
p(x, y, z)

]
log2

[ ∑
(x,y,z)∈A p(x, y, z)∑

(x,y,z)∈A p(x|z)p(y|z)p(z)

]
= 0

Equality holds only when it holds in the LSI, which requires that
(∃λ > 0): p(x, y|z) = λp(x|z)p(y|z) for all (x, y, z) ∈ A. Normalization
forces the constant λ to be one. So indeed p(x, y|z) = p(x|z)p(y|z) for all
(x, y, z) ∈ A.

Property 7 (Data processing inequality). If three random variables X, Y , Z
with values (x, y, z) ∈ A are related by a Markov chain X → Y → Z,
that is, p(x, y, z) = p(z|y)p(y|x)p(x), then I (X, Y ) ≥ I (X, Z).

Proof. Show that I (X, Y )− I (X, Z) = I (X, Y |Z):

I (X, Y )− I (X, Z) =
∑

(x,y,z)∈A
p(x, y, z)log2

[
p(x, y)p(x)p(z)

p(x)p(y)p(x, z)

]

=
∑

(x,y,z)∈A
p(x, y, z)log2

[
p(x, y)

p(x|z)p(y)

]
= I (X, Y |Z)

where in the last step the Markov property was used in the form p(x, y, z) =
p(y, z)p(x, y)/p(y) which entails p(x, y)/p(y) = p(x, y|z)/p(y|z) The asser-
tion then follows from Property 6 (which states that I (X, Y |Z) ≥ 0).

The data processing inequality shows explicitly that no processing of the
random variable y (converting it into a new random variable z), whether
deterministic or probabilistic, can increase the information that it contains
about the random variable x. This obviously makes sense.
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Examples

Example 1. As usual we try to facilitate the digestion of all this via expli-
cit examples. Let us first illustrate the relative entropy by considering the
simplest non-trivial discrete variables X and X′ with values in A = {0, 1}.
We compare two probability distributions, p(x) and q(x), where

p(0) = 1− ρ p(1) = ρ q(0) = 1− σ q(1) = σ

with 0 ≤ ρ, σ ≤ 1. Inserting the above probabilities into the definition
(12.8) we obtain the following expressions for the relative entropies D(p||q)

and D(q||p):

D(p||q) = (1− ρ)log2[(1− ρ)/(1− σ)] + ρ log2(ρ/σ)

D(q||p) = (1− σ)log2[(1− σ)/(1− ρ)] + σ log2(σ/ρ)

We can find the minimum of, for instance, D(p||q) by calculating its
derivative with respect to the parameter σ for a given value of ρ:

∂

∂σ
D(p||q) = 1

ln 2
σ − ρ

σ(1− σ)

from which it can be concluded that the (unique) minimum is obtained at
σ = ρ, giving D(p||p) = 0 (as it should).

The asymmetry in the definition of D(p||q) is clearly seen by working out
the difference

D(p||q)−D(q||p) = (2− ρ − σ)log2

(
1− σ

1− ρ

)
+ (ρ + σ)log2

(ρ

σ

)

which is nonzero except for ρ = σ .

Example 2. Our second example serves to illustrate that in general
I (X, Y ) �= I (X, Y |Z), and that there is even no inequality to order the
two. Consider the triple (X, Y , Z) of stochastic variables with AX = AY =
AZ = {0, 1} (so A = {0, 1}3), and with joint probabilities p(x, y, z) as given
in the following table:

(x, y, z) (0, 0, 0) (1, 0, 0) (0, 1, 0) (1, 1, 0) (0, 0, 1) (1, 0, 1) (0, 1, 1) (1, 1, 1)

p(x, y, z) 1/4 0 0 1/4 0 1/4 1/4 0

By summing over one of the random variables we obtain from
these the marginal probabilities p(x, y) = ∑

z∈AZ
p(x, y, z), p(y, z) =∑

x∈AX
p(x, y, z) and p(x, z) = ∑

y∈AY
p(x, y, z), which for this example
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all come out to be the same:

p(x, y) = p(x, z) = p(y, z) = 1
4 for all (x, y, z) ∈ A

The marginal probabilities p(x) = ∑
y∈AY

p(x, y), p(y) = ∑
z∈AZ

p(y, z)
and p(z) =∑

y∈AY
p(y, z) are similarly identical:

p(x) = p(y) = p(z) = 1
2 for all (x, y, z) ∈ A

If we calculate for the present example the mutual information I (X, Y )

(12.10) and the conditional mutual information I (X, Y |Z) (12.11) we find:

I (X, Y ) =
∑

(x,y)∈AX⊗AY

p(x, y)log2

[
p(x, y)

p(x)p(y)

]
= 1

4

∑
(x,y)∈AX⊗AY

log21 = 0

I (X, Y |Z) =
∑

(x,y,z)∈A
p(x, y, z)log2

[
p(x, y|z)

p(x|z)p(y|z)
]

=
∑

(x,y,z)∈A
p(x, y, z)log2

[
p(x, y, z)p(z)

p(x, z)p(y, z)

]
= log22 = 1

At first sight it seems somewhat strange to find simultaneously
I (X, Y |Z) > 0 and I (X, Y ) = 0. Apparently y reveals nothing about x

if we do not take z into account, but y does reveal something about x

when in addition z is known. The explanation is as follows. If we inspect
the probability distributions p(x, y), p(x), and p(y) we see that X and Y

are independent, so I (X, Y ) = 0 (as it should). However, if z is known
the situation changes considerably. From the table of p(x, y, z) we infer the
following. If z = 1 we know that (x, y) ∈ {(0, 1), (1, 0)}, so that knowing
one means knowing the other. If z = 0 we know that (x, y) ∈ {(0, 0), (1, 1)},
and we have a similar situation. This explains why I (X, Y |Z) > 0.

Now we will show that the opposite situation can occur as well, with
I (X, Y ) > 0 and I (X, Y |Z) = 0. We change the table of the joint
probabilities in the following way:

(x, y, z) (0, 0, 0) (1, 0, 0) (0, 1, 0) (1, 1, 0) (0, 0, 1) (1, 0, 1) (0, 1, 1) (1, 1, 1)

p(x, y, z) 0 1/2 0 0 0 0 1/2 0

By summing over one of the random variables we obtain from these the mar-
ginal probabilities p(x, y) = ∑

z∈AZ
p(x, y, z), p(y, z) = ∑

x∈AX
p(x, y, z)
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and p(x, z) =∑
y∈AY

p(x, y, z):

(x, y) (0, 0) (1, 0) (0, 1) (1, 1)

p(x, y) 0 1/2 1/2 0

(y, z) (0, 0) (1, 0) (0, 1) (1, 1)

p(y, z) 1/2 0 0 1/2

(x, z) (0, 0) (1, 0) (0, 1) (1, 1)

p(x, z) 0 1/2 1/2 0

The marginal probabilities p(x) = ∑
y∈AY

p(x, y), p(y) = ∑
z∈AZ

p(y, z)
and p(z) =∑

y∈AY
p(y, z) again come out the same:

p(x) = p(y) = p(z) = 1
2 for all (x, y, z) ∈ A

If we now calculate the mutual information I (X, Y ) (12.10) and the
conditional mutual information I (X, Y |Z) we find:

I (X, Y ) =
∑

(x,y)∈AX⊗AY

p(x, y)log2

[
p(x, y)

p(x)p(y)

]
= log2

[
1/2

(1/2)2

]
= 1

I (X, Y |Z) =
∑

(x,y,z)∈A
p(x, y, z)log2

[
p(x, y|z)

p(x|z)p(y|z)
]

=
∑

(x,y,z)∈A
p(x, y, z)log2

[
p(x, y, z)p(z)

p(x, z)p(y, z)

]
= 0

Now the situation is reversed: y reveals information about x if we do not
take z into account, but fails to do so when in addition z is known. The
explanation is as follows. If we inspect the probability distributions p(x, y),
p(x), and p(y) we see that x and y are not independent, so I (X, Y ) > 0
(as it should). However, if z is known the situation changes. If z = 1 it
immediately follows that (x, y) = (0, 1): we know everything already, and
knowing x adds nothing to what we know about y. If z = 0 it follows
that (x, y) = (1, 0): knowing x does not increase our knowledge of y. This
explains why I (X, Y |Z) = 0.

12.4 Information measures for continuous random
variables

So far we have restricted ourselves to discrete random variables. In the case
where the variables are continuous we have to be somewhat careful, since
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not all properties of our information-theoretic quantities as established for
discrete random variables survive the transition to continuous ones.

Differential entropy

Let us consider a discrete random variable X which can assume the
values xk = kδx (for a given spacing δx), with k = 0,±1,±2, . . . , so
A = {. . . ,−3δx,−2δx,−δx, 0, δx, 2δx, 3δx, . . .}. Let p̂(xk) be the associ-
ated probabilities. Eventually we will consider the limit δx → 0 which will
turn x into a continuous random variable. As long as δx remains finite,
however, the theory as developed so far applies, and we obtain

H(X) = −
∞∑

k=−∞
p̂(xk)log2 p̂(xk)

∞∑
k=−∞

p̂(xk) = 1 (12.12)

In order to pave the way for the continuum limit we now define a probability
density p(xk) = p̂(xk)/δx. Transformation of (12.12) into an expression
involving this density gives

H(X) = −
∞∑

k=−∞
δx p(xk)log2 p(xk)− log2 δx

∞∑
k=−∞

δx p(xk) = 1

Note that

lim
δx→0

∞∑
k=−∞

δx p(xk)log2 p(xk) =
∫

dx p(x)log2 p(x)

lim
δx→0

∞∑
k=−∞

δx p(xk) =
∫

dx p(x) = 1

provided these integrals exist. However, we observe that we cannot define
the entropy of a continuous random variable simply as the continuum limit
δx → 0 of the entropy of an underlying discrete random variable, since
limδx→0 log2(1/δx) = ∞. The natural adaptation of the discrete definition
of the entropy to the case of a continuous random variable described by
the probability density p(x), with

∫
dx p(x) = 1, appears to be restricting

ourselves to what is left after we eliminate the offending term log2(1/δx)

from the discrete expression, giving:

H̃ (X) = −
∫

dx p(x)log2 p(x) (12.13)
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which is called the differential entropy. Since in order to arrive at (12.13) we
have subtracted a positive term from a discrete entropy H(X), we may no
longer assume that H̃ (X) ≥ 0. Yet, since what has been subtracted is simply
a constant which does not depend on the shape of the probability density
p(x), the differential entropy still has the property that it measures informa-
tion content. But this is now in a relative rather than an absolute sense, like
a thermometer with correctly spaced marks but without an indication of
where the zero is.

Example 1. Let us calculate the differential entropy for a block-shaped
probability density, with A = [a − 1

2b, a + 1
2b]:

p(x) =
{

b−1, for a − 1
2b ≤ x ≤ a + 1

2b

0, elsewhere

For the differential entropy we find:

H̃ (X) = −1
b

∫ a+b/2

a−b/2
dx log2(1/b) = log2(b)

The result is negative for b < 1 (narrow distributions p(x)). We con-
clude that the differential entropy can indeed have negative values, even
for simple and well-behaved probability densities. We also observe that for
continuous random variables with uniform probabilities the familiar rule
H̃ (X) = log2|A| again holds, where |A| is now defined as the size of the
interval of allowed values for x.

Generalization to multivariate densities is straightforward. Let us con-
sider x ∈ IRN , with the set A centered at (a1, . . . , aN), that is, A =
[a1 − 1

2b1, a1 + 1
2b1] ⊗ · · · ⊗ [aN − 1

2bN , aN + 1
2bN ]:

p(x) =




N∏
i=1

b−1
i , for ai − 1

2
bi ≤ xi ≤ ai + 1

2
bi , i = 1, . . . , N

0, elsewhere

For the differential entropy we now find:

H̃ (X1, . . . , XN) = −
(

N∏
i=1

b−1
i

)∫
A

dx log2

N∏
i=1

b−1
i = log2

N∏
i=1

bi =
N∑

i=1

log2 bi

The result is negative for
∏N

i=1 bi < 1 (sharply concentrated distributions).
Again we find H̃ (X1, . . . , XN) = log2|A|, where |A| is now defined as the
volume of the region of allowed values for x.
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Example 2. Our second example is a probability density with a Gaussian
shape (see also Appendix D):

p(x) = e−(x−µ)2/2σ2

σ
√

2π
A = (−∞,∞) (12.14)

Here the differential entropy is found to be

H̃ (X) = −
∫

dx

σ
√

2π
e−(x−µ)2/2σ2

log2

[
e−(x−µ)2/2σ2

σ
√

2π

]

=
∫

dx(x − µ)2

2σ 3
√

2π ln 2
e−(x−µ)2/2σ2+ log2(σ

√
2π) = 1

2 ln 2
[1+ ln(2πσ 2)]

We find a negative differential entropy for sufficiently small width σ of the
probability density, and an infinite differential entropy for σ →∞.

There is one special property of Gaussian probability densities to be men-
tioned here, namely that they are the ones that maximize differential entropy
subject to the constraints of prescribed mean and variance. This statement
is of deep significance in connection with statistical inference, as will be
explained later in Chapter 13. It provides the second reason for the import-
ance of Gaussian probability densities in probability theory and statistics,
in addition to the key role they play in the central limit theorem.

Multivariate Gaussian distributions, where x ∈ IRN , pose no funda-
mental problems, although the calculations are slightly more involved.
The fundamental properties one always uses are normalization and the
expression for the second order moments (see Appendix D):

p(x) = e−(1/2)(x−〈x〉)·A(x−〈x〉)

(2π)N/2det−1/2
A

(A−1)ij = 〈(xi − 〈xi〉)(xj − 〈xj 〉)〉

(12.15)

Let us denote the (real and positive) eigenvalues of the (symmetric)
covariance matrix A−1 as {ci}. Inserting (12.15) into the definition (12.13)
of the differential entropy and explicitly working out the log2 p(x) in that
expression gives:

H̃ (X1, . . . , XN) = −
∫

dxp(x)log2 p(x)

= 1
2 ln 2

∫
dxp(x)(x − 〈x〉) ·A(x − 〈x〉)

+ log2[(2π)N/2det−1/2
A]

= 1
2 ln 2

N∑
ij=1

Aij 〈(xi − 〈xi〉)(xj − 〈xj 〉)〉

+ log2[(2π)N/2det−1/2
A]
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Thus, using (12.15) and det−1
A = det A−1 =∏

i ci , we finally obtain

H̃ (X1, . . . , XN) = 1
2 ln 2

N∑
i=1

[1+ ln(2πci)] (12.16)

The simplest type of covariance matrix is a diagonal one, describing inde-
pendent variables {xi}: 〈(xi−〈xi〉)(xj−〈xj 〉) = σ 2

i δij , and Aij = σ−2
i δij (with

the variances σi of the individual variables xi). Here the differential entropy
reduces to the sum of the differential entropies of the N individual xi , as it
should:

H̃ (X1, . . . , XN) = 1
2 ln 2

N∑
i=1

[1+ ln(2πσ 2
i )] =

N∑
i=1

H̃ (Xi)

Differential mutual information

Let us next consider two discrete random variables X and Y , which can
assume the values xk = kδx (for a given spacing δx), with k = 0,±1,±2, . . . ,
and y� = �δy (for a given spacing δy), with � = 0,±1,±2, . . . , respectively.
The associated joint probabilities are p̂(xk, y�), with marginal probabilities
p̂(xk) = ∑∞

�=−∞ p̂(xk, y�) and p̂(y�) = ∑∞
k=−∞ p̂(xk, y�). As long as both

δx and δy remain finite, the theory for discrete random variables applies,
and we obtain

I (X, Y ) =
∞∑

k,�=−∞
p̂(xk, y�)log2

[
p̂(xk, y�)

p̂(xk)p̂(y�)

]
,

∞∑
k,�=−∞

p̂(xk, y�) = 1

(12.17)
As in the section dealing with the differential entropy, we now define joint
and marginal probability densities p(xk, y�) = p̂(xk, y�)/δxδy, as well as
p(xk) = ∑∞

�=−∞ p̂(xk, y�)/δx and p(y�) = ∑∞
k=−∞ p̂(xk, y�)/δy. Here the

transformation of (12.17) into an expression involving only densities does
not generate diverging terms; the spacing parameters δx and δy cancel in
the argument of the logarithm and we find

I (X, Y ) =
∞∑

k,�=−∞
δxδyp(xk, y�)log2

[
p(xk, y�)

p(xk)p(y�)

]
,

∞∑
k,�=−∞

δxδyp(xk, y�) = 1

We can now simply define the mutual information of two continuous
random variables as the continuum limit δx → 0, δy → 0 of the mutual
information of a pair of underlying discrete random variables, that is, as

Ĩ (X, Y ) =
∫

dxdy p(x, y)log2

[
p(x, y)

p(x)p(y)

]
(12.18)
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provided this integral exists. Ĩ (X, Y ) is called the differential mutual
information. Since the differential mutual information can be obtained by
taking a limit of a discrete expression for mutual information, we are now
guaranteed that Ĩ (X, Y ) ≥ 0.

Examples

Example 1. Let us work out the mutual information of two (possibly
correlated) Gaussian variables x and y with zero averages (for simplicity),
that is, 〈x〉 = 〈y〉 = 0, and with variances 〈x2〉 = σ 2

x and 〈y2〉 = σ 2
y :

p(x, y) =
exp

[
− (1/2)

(
x

y

)
·A

(
x

y

)]
2π det−1/2

A
, A−1 =

(
σ 2

x 〈xy〉
〈xy〉 σ 2

y

)

with the marginal probability densities

p(x) = e−x2/2σ2
x

σx

√
2π

p(y) = e−y2/2σ2
x

σy

√
2π

For the differential mutual information we now find:

Ĩ (X, Y ) = 1
2 ln 2

∫
dxdy p(x, y)

[
x2

σ 2
x

+ y2

σ 2
y

−
(

x

y

)
·A

(
x

y

)]

+ log2(σxσy

√
det A)

= 1
2 ln 2

(
2−

2∑
i,j=1

A−1
ij Aji

)
+ log2(σxσy

√
det A)

= log2(σxσy

√
det A)

= − 1
2 ln 2

ln

(
1− 〈xy〉2

σ 2
x σ 2

y

)
(12.19)

Example 2. Our second example is a pair of random variables (X, Y ) which
are only allowed to take values from within the square AX ⊗ AY , where
AX = AY = [−1, 1], with joint probability density:

(x, y) /∈ [−1, 1]2: p(x, y) = 0

(x, y) ∈ [−1, 1]2: p(x, y) = k + θ(xy)

2(2k + 1)
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The parameter k ≥ 0 controls the degree of dependence of the two variables.
For k→∞ the two random variables become statistically independent; for
k = 0 we find a strong coupling, since x and y are forced to have the same
sign. The marginal probability densities are obtained by integration:

x, y ∈ [−1, 1] : p(x) =
∫ 1

−1
dy

k + θ(xy)

2(2k + 1)
= 1

2

p(y) =
∫ 1

−1
dx

k + θ(xy)

2(2k + 1)
= 1

2

The differential mutual information can be calculated easily:

Ĩ (X, Y ) =
∫ 1

−1
dxdy

k + θ(xy)

2(2k + 1)
log2

[
2[k + θ(xy)]

2k + 1

]

= k + 1
2k + 1

log2

(
2k + 2
2k + 1

)
+ k

2k + 1
log2

(
2k

2k + 1

)

This result makes sense. For k → 0 we get Ĩ (X, Y ) → 1; here the two
variables are forced to have identical sign, so they do indeed convey exactly
one bit of information about one another. For k→∞ we get Ĩ (X, Y )→ 0
because the two variables are independent.

Example 3. As a third and final example we will calculate the differential
mutual information of two (possibly correlated) Gaussian variables which
are themselves vectors, rather than scalars: x ∈ IRN and y ∈ IRM with zero
averages (for simplicity), 〈x〉 = 〈y〉 = 0. The joint probability distribution
for the pair (x, y) must then be

p(x, y) =
exp

[
− (1/2)

(
x

y

)
·A

(
x

y

)]
(2π)(N+M)/2 det−1/2

A
, A−1 =

(
Cxx Cxy

Cyx Cyy

)

with the matrices:

Cxx
ij = 〈xixj 〉, C

xy
ij = 〈xiyj 〉, C

yx
ij = 〈yixj 〉, C

yy
ij = 〈yiyj 〉

and with the marginal densities

p(x) = e−x·(Cxx)−1x/2

(2π)N/2 det1/2
Cxx

, p(y) = e−y·(Cyy)−1y/2

(2π)M/2 det1/2
Cyy
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For the differential mutual information we find:

Ĩ (X, Y ) =
∫

dxdy p(x, y)log2

[
p(x, y)

p(x)p(y)

]

= 1
2 ln 2

∫
dxdy p(x, y)

[
x · (Cxx)−1x + y · (Cyy)−1y

−
(

x

y

)
·A

(
x

y

)]
+ 1

2
log2[det Cyydet Cxxdet A]

= 1
2 ln 2


 N∑

ij=1

Cxx
ij (Cxx)−1

ji +
M∑

ij=1

C
yy
ij (Cyy)−1

ji −
N+M∑
ij=1

AijA
−1
ij




+ 1
2

log2[det Cyydet Cxxdet A]

= 1
2

log2[det Cyydet Cxxdet A]

Equivalently:

Ĩ (X, Y ) = −1
2

log2det
[(

(Cxx)−1 0
0† (Cyy)−1

)(
Cxx Cxy

Cyx Cyy

)]

= −1
2

log2 det
(

1I (Cxx)−1Cxy

(Cyy)−1Cyx 1I

)
(12.20)

in which 1I denotes the identity matrix, 0 is an N ×M matrix containing
only zeros, and 0† is its transpose. Note that the previous result (12.19) can
be recovered as a special case from (12.20) since for N = M = 1 we obtain
1I = 1, Cxx = 〈x2〉, Cyy = 〈y2〉 and Cxy = Cyx = 〈xy〉.

12.5 Exercises

Exercise 12.1. (Entropy.) Consider the pair of stochastic variables (X, Y ),
defined by AX = AY = {−1, 1}, and by the joint probabilities p(x, y) =
K eβxy . Compute the normalization constant K, the marginal distributions
p(x) and p(y), the entropies H(X), H(Y), and the joint entropy H(X, Y ).
Verify the inequalities 0 ≤ H(X, Y ) ≤ H(X)+H(Y). Determine the value(s)
of β for which H(X, Y ) is minimal. Determine the value(s) of β for which
H(X, Y ) is maximal. Explain why for the present example H(X, Y ) can
never be zero.
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Exercise 12.2. (Conditional entropy and mutual information.) For the pair
of random variables introduced in the previous exercise, compute the condi-
tional information H(X|Y ) and the mutual information I (X, Y ), and verify
the identity I (X, Y ) = H(X) − H(X|Y ). Investigate the behaviour of the
results as functions of the parameter β. Interpret your findings.

Exercise 12.3. (Entropy reduction by non-invertible transformations.)
Define the stochastic variable X, taking values from the set AX =
{a,b,c, . . . ,z} (the 26 lower-case letters of the alphabet), with the prob-
abilities p(x) = 1/26 for all x ∈ Ax . Calculate H(X), H(F(X)), and
I (X, F(X)), and verify the two statements I (X, F(X)) = H(F(X)) and
H(F(X)) ≤ H(X) for the ‘broken typewriter’ operation

F(x) = x for x ∈ {a,b,c, . . . ,q}
F(x) = z for x ∈ {r,s, . . . ,z}

Exercise 12.4. (Differential entropy.) Given a continuous random variable
X with A = IR+, that is, x ≥ 0, compute the differential entropy for an
exponential probability density of the form p(x) = x−1

0 e−x/x0 , and invest-
igate its dependence on x0. What is the meaning of x0, apart from it acting
as a normalization constant? Compare the behaviour of H̃ (X) with what
we derived for the Gaussian case.

Exercise 12.5. (Differential mutual information.) Consider the following
stochastic processes (i.e. time dependent random variables) Xt and Zt ,
all assumed to be real valued, which produce an output process Yt via
Yt = Xt + σZt . Let Xt be defined as a so-called auto-regressive process:
that is, it is assumed that

xt = √axt−1 +
√

1− aξt

in which 0 < a < 1 is a fixed parameter, and zt and ξt are realizations of
independent Gaussian random variables of zero mean and unit variance.
Assuming that X0 is a zero mean and unit variance Gaussian, one finds
that Xt and Yt are Gaussians as well, although no longer independent for
different t . Processes of this type are sometimes used to mimic statistical
properties of financial time series. For this setup, show that Xt is a zero-
mean and unit-variance Gaussian at all t , while Yt is a zero-mean Gaussian
of variance 1 + σ 2. Compute correlations of the form Ck = 〈ytxt−k〉 and
use these results to obtain the differential mutual information Ĩ (Yt , Xt−k),
which quantifies the amount of information that Xt−k reveals about the
output process at a later time t .

Exercise 12.6. (Differential mutual information.) Repeat the analysis of
the previous exercise for the case that the output process is defined as a
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superposition of many input processes, Yt =∑N
i=1 αiXi,t+σZt , and assume

independent auto-regressive processes for each of the inputs,

xi,t = √aixi,t−1 +
√

1− aiξi,t

In particular, it will be interesting to investigate the dependence of the
differential mutual information Ĩ (Yt , Xi,t−k) on the so-called load-factors
αi and on the set {ai} of coefficients describing the auto-regressive processes.
The results obtained are relevant for assessing the relative importance of the
Xi,t−k in determining the output Yt .



13 Information theory and
statistical inference

This chapter deals with applications of information theoretic concepts to
problems of statistical inference, namely density estimation for a random
variable X which is not completely specified, in the sense that the full
set of probabilities {p(x); x ∈ A} or, in the case of a continuous random
variable, the probability density function are unknown. We shall consider
two fundamentally different cases.

(i) In the first case, incomplete information about probabilities is available
in the form of a finite number of observations, that is, independent
realizations xi of X that are generated according to the underlying unknown
probability density function p. The task is to estimate p by approximating it
as closely as possible within a parametrized family {pλ; λ ∈ �} of functions,
using the available information. The classical method in this context is
Maximum Likelihood (ML) estimation; this approach and its relation to
minimizing a Kullback–Leibler distance are discussed in Section 13.1.

(ii) In the second case, it is assumed that information about probabilities
is available in the form of the values of averages 〈fα(x)〉 for a family {fα}
of functions of X; these could, but need not, include moments µn = 〈xn〉
of x. The task is once more to estimate p solely on the basis of the available
information, that is, the set of known averages. The method of choice here is
the Maximum Entropy (MaxEnt) principle for density estimation, which is
also deeply rooted in information theory and is discussed in Section 13.2.

13.1 Maximum likelihood estimation

Let us first discuss ML estimation of a probability density function on the
basis of finitely many independent observations of a random variable X.25

We shall denote by
D = {xi ; i = 1, . . . , N}

the set of available data, that is, N independent realizations or
observations of X.

25 Throughout this section, we shall use the language appropriate for continuous random
variables; however, all identities we are going to derive have obvious analogues for discrete
random variables.
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Principal relations

Maximum Likelihood estimation attempts to approximate an unknown
probability density p from which the data set (13.1) is supposedly sampled
within a parametrized family of probability density functions, denoted by

{pλ; λ ∈ �}, � ⊆ IRn (13.1)

The starting point of the ML method is to write down the joint probability
density of the data, assuming that the set was sampled from a member pλ

of the family. This is also called the likelihood of the data D for a given λ,

p(D|λ) =
N∏

i=1

pλ(xi) = exp

[
N∑

i=1

ln pλ(xi)

]
≡ exp[L(λ|D)] (13.2)

ML estimation proposes to find the maximum of the likelihood w.r.t. the
parameter λ ∈ � and use the maximizing λ as the parameter that provides
the best approximation to the unknown density p within the family. Using
the monotonicity of the exponential function, one observes that finding the
maximum of p(D|λ) is equivalent to finding the maximum of the so-called
log-likelihood

L(λ|D) = 1
N

L(λ|D) = 1
N

N∑
i=1

ln pλ(xi) (13.3)

Clearly, this task is unaffected by adding a constant (i.e. a quantity inde-
pendent of λ) to the log-likelihood. By taking this constant to be the
so-called empirical entropy

HN [p] = − 1
N

N∑
i=1

ln p(xi)

associated with the (unknown) probability density p, one immediately
establishes a straightforward link between ML estimation and information
theory, since we now find:

L(λ|D) = − 1
N

N∑
i=1

ln
[

p(xi)

pλ(xi)

]
−HN [p] (13.4)

Maximizing the (log-) likelihood of the data over the family {pλ} is seen to
be equivalent to minimizing

DN(p‖pλ) = 1
N

N∑
i=1

ln
[

p(xi)

pλ(xi)

]
(13.5)

with respect to λ. Up to a factor ln 2, this quantity is nothing but an empirical
approximation of the Kullback–Leibler distance D(p‖pλ) between the
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unknown density p and the parametrized density pλ. Indeed, by the law
of large numbers, it is expected that DN(p‖pλ) will (up to the factor ln 2)
converge to the Kullback–Leibler distance D(p‖pλ) as the size N of the data
set D becomes large,

DN(p‖pλ)→
∫

dx p(x) ln
[

p(x)

pλ(x)

]
= ln 2D(p‖pλ), as N = |D| → ∞

(13.6)

The convergence referred to in (13.6) is a convergence in probability,
meaning that limN→∞ Prob[|DN(p‖pλ) − ln 2D(p‖pλ)| > ε] = 0 for
all ε > 0.

To summarize, ML estimation attempts to approximate the unknown
probability density function p as closely as possible by a member of
the family pλ, using the empirical approximation DN(p‖pλ) to the
Kullback–Leibler distance as a distance measure. See also our earlier dis-
cussion of the interpretation of the SVQ algorithm for small learning rates.

Algorithms

Having established the above fundamental relations, let us briefly men-
tion two algorithms that allow one to improve systematically estimates of
the parameters λ for minimizing (13.5). We will not go into details here,
as neural network related algorithms following similar ideas are described
and analysed at some length elsewhere in this book.

A first possibility that comes to mind is iterative gradient descent
improvement of parameters, viz.

λ(t + ε) = λ(t)− ε∇λDN(p‖pλ) (13.7)

For sufficiently small learning rate ε this process is guaranteed to reduce
DN(p‖pλ). Indeed, taking the limit ε → 0 we obtain

d
dt

λ = −∇λDN(p‖pλ)

and thus

d
dt

DN(p‖pλ) = ∇λDN(p‖pλ) · d
dt

λ = −[∇λDN(p‖pλ)]2 ≤ 0

This process is of the batch learning type, as it uses the complete data set D

for each iterative improvement. Asymptotically, the algorithm is expected
to converge as (13.6) states that DN(p‖pλ) converges to a multiple of the
Kullback–Leibler distance, which is bounded from below. Without going
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into any detail, a note of caution may be appropriate at this point, however:
for finite N , due to the fact that the convergence (13.6) is defined in a prob-
abilistic sense, boundedness of DN(p‖pλ) and hence also convergence of
the algorithm are not guaranteed.

An alternative approach that goes under the name of stochastic approx-
imation consists in updating parameters sequentially as the data points xi

come in, according to

λi+1 = λi − ε∇λ ln
[

p(xi)

pλ(xi)

]
= λi + ε

pλ(xi)
∇λpλ(xi) (13.8)

Following the line of reasoning described in, for example, Section 2.3,
one may also formulate a continuous-time limit of stochastic approxima-
tion. This presupposes that an infinite sequence of data points xi can be
generated, and in the continuous-time limit it does in fact amount to a
gradient descent algorithm on the Kullback–Leibler distance proper. Filling
in the details of this argument is left as an exercise to the reader.

13.2 The maximum entropy principle

We are now going to discuss the problem of density estimation for the
case where information about probabilities is incomplete in the sense that
information is available only in the form of the values of averages 〈fα(x)〉
for some family {fα} of functions of x. These could, but need not, include
the moments µn = 〈xn〉 of X. The task is to estimate the true density p on
the basis of these averages. The method of choice here is the MaxEnt prin-
ciple for density estimation. It is worth noting that, whereas ML estimation
as discussed in the previous section was invented in the 1920s, that is, long
before the advent of information theory in the late 1940s, the MaxEnt prin-
ciple for density estimation to be discussed here makes explicit reference to
concepts and heuristics underlying information theory. We will formulate
the solution to the problem first for discrete random variables, and deal
with the continuous case thereafter.

Discrete random variables

The solution to the problem formulated above, as proposed by Jaynes in
the 1950s, is based on the observation that the entropy associated with
a random variable X,

H(X) = −
∑
x∈A

p(x) log2 p(x) (13.9)

describes the average uncertainty about actual outcomes of observations
of X, and thus is a measure of our ignorance about X. According to Jaynes,
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a consequence of that observation is that the best estimate of a set of
probabilities {p(x); x ∈ A}, compatible with the available information
is given by an assignment of probabilities which maximizes the entropy,
that is, our ignorance about X, subject only to the constraints coming from
the available information. One thereby expects to prevent inappropriate
implicit assumptions about X, involving properties that we have in fact no
knowledge of, from sneaking into the probability assignment that is being
made. Jaynes’ MaxEnt prescription thus provides a systematic method of
being maximally unbiased in a probability estimate, subject to constraints
given in the form of a set of averages.

In order to formulate the solution in detail, we return to the convention of
making the dependence of the entropy on the distribution p explicit by using
the notation H [p]. Moreover, it will be convenient to write the entropy
in terms of natural rather than digital logarithms. With the shorthand
k = 1/ ln 2 we may put

H [p] = −k
∑
x∈A

p(x) ln p(x) (13.10)

The problem to be solved can now formally be stated as follows. Let X be
a random variable, with the set A of possible realizations given. It is assumed
that the only information available about the probabilities {p(x); x ∈ A} is
given in terms of a set of averages

〈fα(x)〉 =
∑
x∈A

p(x)fα(x) = f̄α, fα ∈M (13.11)

with M = {fα} denoting a given family of functions. This family will
always have to include the function f0(x) ≡ 1, whose average gives the
normalization constraint

〈f0(x)〉 =
∑
x∈A

p(x) = 1 (13.12)

which must always hold. Other functions may, but need not be included
in M. Let p∗ denote the best estimate of the probability distribution com-
patible with (13.11). Then p∗ is found according to the following MaxEnt
principle:

H [p∗] = max
p
{H [p]} subject to 〈fα(x)〉 = f̄α, fα ∈M (13.13)

or, equivalently

p∗ = argmax
p
{H [p]} subject to 〈fα(x)〉 = f̄α, fα ∈M (13.14)

The MaxEnt principle requires us to find the maximum of a function subject
to a set of constraints on its variables {p(x); x ∈ A}. Such a problem is solved
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by the method of Lagrange parameters (see also Chapter 8). We first explain
the method using two examples and then proceed to the general case.

Example 1. Let us first assume that nothing is known about X. Thus the
only constraint on p is that it should be normalized. So one has to solve

p∗ = argmax
p
{H [p]} subject to

∑
x∈A

p(x) = 1 (13.15)

This is done by introducing a Lagrange parameter, conveniently written as
kλ0, and solving an unconstrained maximization problem for

Hλ0[p] = H [p] + kλ0

(∑
x∈A

p(x)− 1
)

(13.16)

Thus p∗ is found by solving

∂Hλ0[p]
∂p(x)

= −k ln p(x)− k + kλ0 = 0, ∀x ∈ A

∂Hλ0[p]
∂λ0

= k
(∑

x∈A
p(x)− 1

)
= 0

The first set of equations require

p(x) = exp(λ0 − 1) = const. (13.17)

The second imposes the normalization constraint, and entails

p∗(x) = exp(λ0 − 1) = |A|−1 (13.18)

which fixes the proper value of the Lagrange parameter λ0. Since the entropy
H [p] is strictly concave, in the sense that for all 0 < r < 1:

H [rp1 + (1− r)p2] ≥ rH [p1] + (1− r)H [p2]
with equality if and only if p1 = p2, and since moreover the probabilities
satisfying the constraints form a convex set, the unique stationary point
found can only be a maximum. Note that the entropy attains its maximum
possible value

H [p∗] = Hλ0[p∗] = k ln|A| = log2|A| (13.19)

This is a very reasonable result as our ignorance about X is complete:
nothing apart from the normalization constraint is known.

Example 2. Here we take the average of X to be known, and given
by µ1. This constitutes a second constraint, over and above the one of
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normalization. In this case one has to solve

p∗ = argmax
p
{H [p]} subject to

∑
x∈A

p(x) = 1 and
∑
x∈A

p(x)x = µ1

(13.20)

With the help of Lagrange multipliers as above, this translates into an
unconstrained maximization problem for

Hλ0,λ1[p] = H [p] + kλ0

(∑
x∈A

p(x)− 1
)
+ kλ1

(∑
x∈A

p(x)x − µ1

)
(13.21)

The maximizing distribution is found by solving

∂Hλ0,λ1[p]
∂p(x)

= −k ln p(x)− k + kλ0 + kλ1x = 0 , ∀x ∈ A

∂Hλ0,λ1[p]
∂λ0

= k
(∑

x∈A
p(x)− 1

)
= 0

∂Hλ0,λ1[p]
∂λ1

= k
(∑

x∈A
p(x)x − µ1

)
= 0

The solution can be written as

p∗(x) = exp(λ0 − 1+ λ1x) = 1
Z

exp(λ1x) (13.22)

with
Z = Z(λ1) = exp(1− λ0) =

∑
x∈A

exp(λ1x) (13.23)

to enforce the normalization constraint, and with λ1 chosen such as to solve
the following equation (required by the constraint of the given mean):

µ1 = ∂

∂λ1
ln Z =

∑
x∈A

p∗(x)x (13.24)

The general case

We are now able to formulate the solution to the general case (13.13).
By following and expanding the line of reasoning from the two examples
above, and using f0 ≡ 1 and the corresponding Lagrangian multiplier λ0
to deal with the normalization constraint, one finds immediately that the
best estimate for the distribution p is of the form

p∗(x) = exp
(
λ0 − 1+

∑
α �=0

λαfα(x)
)
= 1

Z
exp

(∑
α �=0

λαfα(x)
)

(13.25)
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Here the factor

Z = exp(1− λ0) = Z({λα(�=0)}) =
∑
x∈A

exp
(∑

α �=0

λαfα(x)
)

(13.26)

is introduced in order to satisfy the normalization constraint. The para-
meters {λα(�=0)} are chosen to solve the following system of equations that
describe the impact of the non-trivial constraints:

f̄α = ∂

∂λα

ln Z({λα(�=0)}) =
∑
x∈A

p∗(x)fα(x), α �= 0 (13.27)

In the general case, as before, the concavity of H [p] in combination with the
fact that the set of constraints is formulated in terms of averages, that is,
linear functionals of p, guarantee that the MaxEnt solution of the dens-
ity estimation problem is unique, as long as the set of constraints is kept
finite.

At this point it is appropriate to point out one of the salient features of
the MaxEnt approach, namely that it gives rise to an exponential family of
distributions. Let us in particular also draw the attention to the fact that
the stationary Gibbs–Boltzmann distributions which form the central object
of study in equilibrium statistical mechanics (see Part V) are precisely of
the form obtainable from a MaxEnt principle. In the context of statistical
mechanics, the only non-trivial information available about a system is
typically that it has some average energy

Ē =
∑
x∈A

p(x)E(x)

with E(x) denoting the energy of the system as a function of the state
variable X. The Gibbs–Boltzmann distribution in that case takes the form

p(x) = Z−1 e−βE(x)

with the Lagrangian multiplier λE associated with the constraint of average
energy written as λE = −β, and β = 1/T denoting inverse temperature. The
normalization constant Z is in statistical mechanics referred to as a partition
function. It is quite remarkable that a ‘subjective’ problem such as that of
density estimation appears to be so closely related to fundamental levels of
description in the world of physics.

Continuous random variables

In the case of a continuous real-valued random variable X, the MaxEnt
argument proceeds along the by now familiar lines, except that one here



13.2 The maximum entropy principle 269

determines the best estimate of a probability density function by maximizing
the differential entropy

H̃ [p] = −k

∫
A

dx p(x) ln p(x) (13.28)

subject to whatever constraints are known about the system. The only
procedural change involved is that functional derivatives with respect
to the p(x) take the role of partial derivatives. In the cases considered
here, functional derivatives are evaluated according to rules completely
analogous to those for partial derivatives (including product rules, chain
rule etc.).

In the case of a continuous version of the previous Example 2, one would
look for the unconstrained maximum of

H̃λ0,λ1[p] = H̃ [p] + kλ0

(∫
A

dx p(x)− 1
)
+ kλ1

(∫
A

dx p(x)x − µ1

)
(13.29)

by solving

δH̃λ0,λ1[p]
δp(x)

= −k ln p(x)− k + kλ0 + kλ1x = 0, ∀x ∈ A

∂H̃λ0,λ1[p]
∂λ0

= k

(∫
A

dx p(x)− 1
)
= 0

∂Hλ0,λ1[p]
∂λ1

= k

(∫
A

dx p(x)x − µ1

)
= 0

Note that these expressions are formally identical to the corresponding
equations in the discrete case. The solution can be written as

p∗(x) = 1
Z

exp(λ1x) (13.30)

with now

Z = Z(λ1) =
∫

A

dx exp(λ1x) = exp(1− λ0) (13.31)

to enforce the normalization constraint, and with λ1 chosen such as to solve

µ1 = ∂

∂λ1
ln Z =

∫
A

dx p∗(x)x (13.32)

as required by the constraint of the given mean.

Example 3. Of particular relevance to the continuous case is another
example, where both the first moment µ1 = 〈x〉 and the second moment
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µ2 = 〈x2〉 of a real random variable X, with A = IR, are known. The best
estimate for the probability density p in this case is found by determining
the unconstrained maximum of

H̃λ0,λ1,λ2[p] = H̃ [p] + kλ0

(∫
dx p(x)− 1

)
+ kλ1

(∫
dx p(x)x − µ1

)

+ kλ2

(∫
dx p(x)x2 − µ2

)

in which integrals extend over IR. Following the established procedures,
one finds a solution of the form

p∗(x) = 1
Z

eλ1x+λ2x2
(13.33)

For this solution to make sense, that is, be properly normalizable, we must
obviously have λ2 < 0. A minute of reflection then shows that the solution
can be rewritten in the form

p∗(x) = 1
Z

e−(x−λ̂1)2/2λ̂2

with λ̂2 = −1
2λ2 and λ1 = λ̂1/λ̂2, and where Z is an appropriately redefined

normalization constant. The reader will immediately realize that this is
nothing but a Gaussian probability density function, and read off that

λ̂1 = µ1, λ̂2 = σ 2 = µ2 − µ2
1, and Z =

√
2πσ 2

Thus the Gaussian probability density, apart from its key role in the
central limit theorem describing the asymptotic distribution of sums of
independent random variables (of zero mean), enjoys a privileged role also
as a maximally unbiased estimator of a probability density function, sub-
ject to the constraints of given first and second moments, or equivalently of
given mean and variance.

13.3 Exercises

Exercise 13.1. (Stochastic approximation.) Show that the continuous time
limit of the stochastic approximation algorithm (13.8) amounts to a gradi-
ent descent algorithm for the Kullback–Leibler distance proper, and is
therefore guaranteed to converge, although of course not necessarily to
a global minimum.

Exercise 13.2. (MaxEnt inference for continuous random variables.) Sup-
ply detailed reasoning for the steps leading to the solution of the general
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case of MaxEnt estimation for discrete random variables discussed in
Section 13.2, at the level of detail as given in Examples 1 and 2.

Exercise 13.3. (MaxEnt inference for continuous random variables.) We
are given a continuous random variable X with event set A = [−1, 1] ⊆ IR,
of which the mean is known to be zero: µ1 = 〈x〉 = 0. What is the best
estimate for the probability density function p(x) on A? Use your result to
compute the best estimate for µ2 = 〈x2〉.
Exercise 13.4. (MaxEnt inference for continuous random variables.) We
are given a continuous random variable X with event set A = IR, of which
the mean is known to be zero: µ1 = 〈x〉 = 0, and where also the expectation
of the function F(X) = X2 is known to be µ2 = 〈x2〉. What the best estimate
for the probability distribution function p(x) on A? Use your result to
compute the best estimate for the fluctuations in the quantity F , that is, of
〈F(x)2〉 − 〈F(x)〉2. Hint: convince yourself of the fact that the sign of one
of the Lagrange multipliers (which one?) must be negative, in order for the
equations to make sense. You will need properties of Gaussian integrals,
which you can find in Appendix D.

Exercise 13.5. (MaxEnt and value constraints.) Show that a constraint of
the form p(x0) = p0 for some x0 ∈ A and p0 > 0 can also be handled within
the framework of the general MaxEnt procedures described in this chapter,
as such a constraint can be written as an average of a function. Which
function? Discuss the discrete and continuous cases separately. Work out
the case where A = {−1, 0, 1}, and where p(1) = ρ is given as the constraint.
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14 Applications to neural
networks

The main contribution of information theory to the field of information
processing in natural or artificial neural networks is that it provides exact
performance measures. This allows us to compare the performance of
different models or algorithms in a rigorous way. It also lets us develop
learning rules based on the maximization of these information-theoretic
performance measures, which are no longer ad hoc and also apply in unsu-
pervised scenarios. The examples we will discuss here are the Boltzmann
machine learning rule for recurrent layered neural networks and vari-
ous types of learning rules (e.g. maximum information preservation) for
layered networks. In addition we will touch on the topic of learning by
natural gradient descent, based on thinking in terms of distances between
probability distributions (i.e. information geometry).

14.1 Supervised learning: Boltzmann machines

One of the earliest and most elegant applications of information theory in
neural networks is the so-called Boltzmann machine learning rule. It gives a
recipe for training symmetric recurrent layered neural networks to perform
a given input–output operation.

Definitions and general properties

Let us start with the architecture of the Boltzmann machine. We imagine
a network composed of N + K +M binary neurons si ∈ {−1, 1} that has
been partitioned into an input layer (of N neurons), a so-called hidden
layer (of K neurons), and an output layer (of M neurons); see Figure 14.1.
To simplify subsequent notation we denote the states of the neurons in these
three layers by the vectors x ∈ {−1, 1}N , σ ∈ {−1, 1}K , and y ∈ {−1, 1}M ,
respectively, and the combined state of all three layers by

s = (x, σ , y) ∈ {−1, 1}N+K+M (14.1)

The connectivity of the network is described by a symmetric interaction
matrix {Jij }, with i, j ∈ {1, . . . , M + N + K}. It is assumed to have the
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Output layer

y ∈ {−1, 1}M

Figure 14.1 Architecture of the Boltzmann machine, with arrows indicating potential
synaptic interactions. All interactions present are required to be symmetric, Jij = Jji , and
self-interactions Jii are absent. Direct synaptic interactions between input- and output layer
are also allowed, but have not been drawn in order not to mess up the picture.

following properties:

Jii = 0 for all i, Jij = Jji for all (i, j) (14.2)

An absent interaction simply corresponds to Jij = 0. Due to the sym-
metry requirement Jij = Jji the network is recurrent, potentially involving
interactions within all three layers as well as between them, but it need
not be fully recurrent (the interaction matrix could be sparse). We will
assume as a minimum requirement the presence of nonzero interactions
between the input layer and the hidden layer, and between the hidden layer
and the output layer, in order to guarantee that input signals can at least
reach the output side.

Next we specify the dynamics of the neuron states. These (binary) states
evolve in time in a stochastic manner; however, we have the freedom to
allow only a subset S ⊆ {1, . . . , N +K +M} of neurons to actually change
their states, while the others remain fixed. At each time step we perform:

1. Choose a neuron i to be updated, at random from the set

S ⊆ {1, . . . , N +K +M}

2. Calculate its local field (or postsynaptic potential):

hi(s) =
∑
j

Jij sj + ϑi
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3. Change its state with probability

Prob[si →−si] = 1
2 [1− tanh(βsihi(σ ))]

The parameter ϑi determine the firing thresholds of the neurons, as always,
and the parameter β controls the degree of randomness in the dynamics.
For β = 0 the dynamics just assigns random values to the states of the
updated neurons. For β → ∞, on the other hand, the candidate neurons
align their states strictly to the sign of the local fields: si → 1 if hi(s) > 0,
si →−1 if hi(s) < 0. We observe that this form of stochastic dynamics has
been introduced before in Chapter 1. It is nothing but recipe (1.34), with
the function g(x) as given by (1.32) and with β = T −1. Since the dynamics
is stochastic we can only talk about the probability pt(s) to find the system
in a certain state s at a certain time t .

A very important aspect of the specific form of the dynamics chosen above
(in combination with the constraints on the synaptic interaction matrix) is
the fact that one can write down an exact expression for the asymptotic
stationary state of the system, and even prove that it is unique. Here we
simply quote the result, leaving the proof to subsequent chapters (viz. 20.1
and 20.2), where the issue of stationary distributions of stochastic dynamics
will be dealt with in more detail.

Proposition. The unique stationary probability distribution of the neuronal
dynamics formulated above is

p∞(s) = 1
Z

e−βH(s) H(s) = −1
2

∑
ij

Jij sisj −
∑

i

siϑi (14.3)

in which Z is a normalization constant, which depends on the choice made
for the set S of neurons that are allowed to change state.

The energy function H(s) appearing in (14.3) is nothing but the Lyapunov
function (3.11) of the noiseless version of the present (sequential) dynamics,
as introduced in Chapter 3.

The important property of the present dynamics and the postulated sta-
tionary distribution (14.3) is that the distribution and the transition rates
satisfy the so-called detailed balance condition, namely that ∀i ∈ S:

p∞(s1, . . . , si , . . .)Prob[si →−si] = p∞(s1, . . . ,−si , . . .)Prob[−si → si]
(14.4)

This states that for each neuron i ∈ S the number of transitions si → −si
will on average equal the number of transitions −si → si . This property is
established for the Gibbs–Boltzmann distribution (14.3) in Section 20.2.
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In general (14.4) is sufficient although not necessary for a candidate
distribution p∞(s) to be stationary.

Using the above proposition, we can proceed to give exact expressions for
equilibrium state probabilities under various different operation conditions.
The differences between the various choices to be made for the set S of ‘free’
neurons (defining different modes of operation for the Boltzmann machine)
only affect the normalization factor Z in (14.3), for instance:

(A) States of all neurons free to evolve:

pA∞(x, σ , y) = 1
Z

e−βH(x,σ ,y) (14.5)

with

Z =
∑
xσy

e−βH(x,σ ,y) (14.6)

(B) States of hidden & output neurons free to evolve:

pB∞(x, σ , y) = p∞(σ , y|x)p(x) (14.7)

with

p∞(σ , y|x) = 1
Z(x)

e−βH(x,σ ,y), Z(x) =
∑
σy

e−βH(x,σ ,y) (14.8)

(C) States of hidden neurons free to evolve:

pC∞(x, σ , y) = p∞(σ |x, y)p(x, y) (14.9)

with

p∞(σ |x, y) = 1
Z(x, y)

e−βH(x,σ ,y), Z(x, y) =
∑
σ

e−βH(x,σ ,y) (14.10)

Derivation of the learning rule

We are now in a position to define the aim of the learning process. The task
is to learn a prescribed target joint input–output probability distribution
q(x, y). The system has accomplished this when p∞(x, y) (the equilibrium
input–output probability distribution of the network) equals the target dis-
tribution q(x, y). An information-theoretic measure is used to quantify the
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‘distance’ between q(x, y) and p∞(x, y). This is the relative entropy, or
Kullback–Leibler distance (12.8):

D(q‖p∞) =
∑
xy

q(x, y) log2

[
q(x, y)

p∞(x, y)

]
(14.11)

We know that D(q‖p∞) is minimal (and equal to zero) only when p∞(x, y)

and q(x, y) are identical. We now aim to minimize D(q‖p∞) by changing
the network parameters (the synaptic interactions Jij and the thresholds ϑi)
via a gradient descent learning rule:

�Jij = −ε
∂D(q‖p∞)

∂Jij

�ϑi = −ε
∂D(q‖p∞)

∂ϑi

, 0 < ε � 1 (14.12)

which guarantees that

�D(q‖p∞) =
∑
ij

∂D(q‖p∞)

∂Jij

�Jij +
∑

i

∂D(q‖p∞)

∂ϑi

�ϑi +O(ε2)

= −ε

{∑
ij

[
∂D(q‖p∞)

∂Jij

]2

+
∑

i

[
∂D(q‖p∞)

∂ϑi

]2}
+O(ε2)

For sufficiently small modification sizes ε the ‘distance’ D(q‖p∞) decreases
monotonically until a stationary state is reached (which could, but need not
correspond to D(q‖p∞) = 0). For any parameter λ in our system, whether
synaptic interaction or threshold, we get:

∂

∂λ
D(q‖p∞) = − 1

ln 2

∑
xy

q(x, y)
∂

∂λ
ln p∞(x, y) (14.13)

The details of the subsequent calculation will now depend on the network
operation mode (A, B, or C, see above) for which we want to minimize
D(q‖p∞) (i.e. the choice made for the set S), since this mode was seen
to determine p∞(x, y). We will first analyse the case where all neurons
evolve freely (mode A) and then turn to the case where the input neurons
are always prescribed and only the hidden and output neurons are free to
evolve (mode B). Both cases will lead to similar results.

• Operation with all neurons freely evolving
Here the relevant expression with which to calculate p∞(x, y) is equation
(14.5), which gives

p∞(x, y) =
∑
σ

p∞(x, σ , y) =
∑

σ e−βH(x,σ ,y)

Z
= Z(x, y)

Z
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where (14.10) was used as an abbreviation for the nominator. Derivatives
of the type (14.13) are found to be

∂

∂λ
D(q‖p∞) = − 1

ln 2

∑
xy

q(x, y)
∂

∂λ
[ln Z(x, y)− ln Z]

= β

ln 2

∑
xy

q(x, y)

[∑
σ

p∞(σ |x, y)
∂H(x, σ , y)

∂λ

−
∑

x′σ ′y′
p∞(x′, σ ′, y′)∂H(x′, σ ′, y′)

∂λ

]

= β

ln 2

[∑
xσy

pC∞(x, σ , y)
∂

∂λ
H(x, σ , y)

−
∑
xσy

pA∞(x, σ , y)
∂

∂λ
H(x, σ , y)

]

= β

ln 2

[〈
∂

∂λ
H(x, σ , y)

〉
+
−

〈
∂

∂λ
H(x, σ , y)

〉
−

]
(14.14)

Here averages indicated with ‘+’ are those where the system is only
allowed to change the states of hidden neurons, in mode C, the case
described by (14.9). The states of the input and output neurons are
imposed on the system, with statistics given by the task distribu-
tion q(x, y):

〈f (x, σ , y)〉+ =
∑
xσy

f (x, σ , y)pC∞(x, σ , y)

=
∑
xσy

f (x, σ , y)p∞(σ |x, y)q(x, y) (14.15)

Averages indicated with ‘–’ are those where the system evolves freely in
mode A, as described by (14.5):

〈f (x, σ , y)〉− =
∑
xσy

f (x, σ , y)pA∞(x, σ , y) (14.16)

What remains is to calculate the derivatives of H(x, σ , y), and use (14.14)
to evaluate (14.12):

∂

∂Jij

H(s) = −sisj
∂

∂ϑi

H(s) = −si (14.17)
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Hence

∂

∂Jij

D(q‖p∞) = − β

ln 2
(〈sisj 〉+ − 〈sisj 〉−)

∂

∂ϑi

D(q‖p∞) = − β

ln 2
(〈si〉+ − 〈si〉−)

entailing the update rules

�Jij = εβ

ln 2
(〈sisj 〉+ − 〈sisj 〉−) �ϑi = εβ

ln 2
(〈si〉+ − 〈si〉−) (14.18)

Each individual modification step, to be carried out repeatedly, thus
involves:

(i) Operate the neuronal dynamics with input and output neuron states
(x, y) fixed until equilibrium is reached, and measure the aver-
ages 〈sisj 〉+ and 〈si〉+; repeat this for many combinations of (x, y)

generated according to the desired joint distribution q(x, y).

(ii) Operate the neuronal dynamics with all neurons evolving freely until
equilibrium is reached, and measure the averages 〈sisj 〉− and 〈si〉−.

(iii) Insert the results of (i, ii) into (14.18) and execute the rule (14.18).

• Operation with hidden and output neurons freely evolving
Now we consider the situation where the states of the input neurons are
prescribed, with statistics given by p(x) = q(x) = ∑

y q(x, y). The task
to be solved by the network is to implement a distribution of outputs y

conditioned on prescribed inputs x. Thus the relevant expression with
which to calculate p∞(x, y) is equation (14.7), which gives

p∞(x, y) =
∑
σ

p∞(x, σ , y) =
∑
σ

p∞(σ , y|x)q(x) = q(x)
Z(x, y)

Z(x)

in which (14.8) and (14.10) were used to express
∑

σ p∞(σ , y|x).
Derivatives of the type (14.13) follow as

∂

∂λ
D(q‖p∞) = − 1

ln 2

∑
xy

q(x, y)
∂

∂λ
[ln Z(x, y)− ln Z(x)]

= β

ln 2

∑
xy

q(x, y)

[∑
σ

p∞(σ |x, y)
∂H(x, σ , y)

∂λ

−
∑
σ ′y′

p∞(σ ′, y′|x)
∂H(x, σ ′, y′)

∂λ

]
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∂

∂λ
D(q‖p∞) = β

ln 2

[∑
xσy

pC∞(x, σ , y)
∂

∂λ
H(x, σ , y)

−
∑
xσy

pB∞(x, σ , y)
∂

∂λ
H(x, σ , y)

]

= β

ln 2

[〈
∂

∂λ
H(x, σ , y)

〉
+
−

〈
∂

∂λ
H(x, σ , y)

〉
−

]
(14.19)

Averages indicated with ‘+’ are again those where the system is only
allowed to change the states of hidden neurons, in mode A, the case
described by (14.9). The states of the input and output neurons are
imposed on the system, with statistics given by the task distribution
q(x, y):

〈f (x, σ , y)〉+ =
∑
xσy

f (x, σ , y)pC∞(x, σ , y)

=
∑
xσy

f (x, σ , y)p∞(σ |x, y)q(x, y) (14.20)

Averages indicated with ‘–’, however, now describe a system where only
hidden and output neurons evolve freely in mode B, as described by
(14.7), with the states of the input neurons as before imposed on the
system, with probabilities q(x) =∑

y q(x, y):

〈f (x, σ , y)〉− =
∑
xσy

f (x, σ , y)pB∞(x, σ , y)

=
∑
xσy

f (x, σ , y)p∞(σ , y|x)q(x) (14.21)

Note that the derivatives of H(x, σ , y) are still given by (14.17). Using
(14.19), which differs from (14.14) only in the definition of the average
(14.21), our learning rule (14.12) indeed acquires the same form as the
previous one:

�Jij = εβ

ln 2
(〈sisj 〉+ − 〈sisj 〉−) �ϑi = εβ

ln 2
(〈si〉+ − 〈si〉−) (14.22)

Each modification step, to be carried out repeatedly, now involves:

(i) Operate the neuronal dynamics with input and output neuron states
(x, y) fixed until equilibrium is reached, and measure the aver-
ages 〈sisj 〉+ and 〈si〉+; repeat this for many combinations of (x, y)

generated according to the desired joint distribution q(x, y).
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(ii) Operate the neuronal dynamics with all hidden and output neurons
evolving freely until equilibrium is reached, and measure the aver-
ages 〈sisj 〉− and 〈si〉−; repeat this for many input configurations x

generated according to the desired distribution q(x) =∑
y q(x, y).

(iii) Insert the results of (i, ii) into (14.18) and execute the rule (14.18).

The advantages of the Boltzmann machine learning rule are that it aims
to optimize a well-defined and sensible performance measure, and that it
can deal in a clean way with probabilistic data (which is the more natural
situation in real-world information processing). The disadvantage is that
it is usually very slow; each infinitesimal parameter modification already
requires equilibration of a recurrent stochastic system, which can obviously
take a lot of CPU time.

14.2 Maximum information preservation

As a second class of applications of information theory we will discuss
unsupervised learning in layered neural systems. For simplicity we will con-
sider linear neurons only. The techniques and strategies that we will discuss
can also be used and followed in the more general case of arbitrary (not
necessarily linear) neuronal transfer functions; this we will demonstrate
in a subsequent section. In contrast to most of the previous settings, our
present neurons will have to adapt their synaptic interactions and carry
out meaningful information processing tasks on some input signal x ∈ IRN

according to unsupervised rules, that is, there is no task signal available
which can be used as a reference or target.

Linear neurons with Gaussian output noise

Imagine a single linear neuron y: IRN → IR, the output y(x) of which is
corrupted by a Gaussian noise source ξ in the following way:

y(x) =
N∑

i=1

wixi + ξ p(ξ) = e−ξ2/2σ2

σ
√

2π
(14.23)

with synaptic weights {wi} (the system’s adjustable parameters). The
strength of the noise is measured by σ 2 = 〈ξ2〉. We assume the input sig-
nals to obey 〈xi〉 = 0, and to be statistically independent of the noise source
ξ . We also assume the uncorrupted signal z(x) = ∑N

i=1 wixi to have a
Gaussian probability distribution; this is true for any N if the inputs xi

are themselves Gaussian distributed random variables, and it is true for
N → ∞ if the inputs xi are independent (under some weak conditions on



282 14 : Applications to neural networks

the parameters {wi}, see Appendix B). As a result we can now be sure that
the pair (y, z) is described by a Gaussian joint probability distribution. The
setup is depicted schematically in the following figure:
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Since we have no reference (or teacher) signal to compare the output of our
neuron with, the application of learning rules for updating the parameters
{wi} which are based on error reduction is ruled out; there is no such thing
as an error. This situation is quite common in the primary stages of (biolo-
gical or artificial) sensory information processing, where one does not yet
know how the incoming information should be used, but one still wants
to extract the maximum amount of information from the available data.
Alternatively, one can view the present problem as that of data compres-
sion: try to concentrate as much information as is possible about the input
vectors x ∈ IRN into a single variable y(x) ∈ IR.

Here we apply the principle of Maximum Information Preservation
(InfoMax): we try to maximize the differential mutual information (12.10)
between the corrupted signal y(x) and the uncorrupted signal z(x), that
is, we maximize the amount of information that y(x) reveals about z(x).
Since the relevant variables have a Gaussian joint probability distribution,
and since 〈z(x)〉 = ∑N

i=1 wi〈xi〉 = 0 and 〈y(x)〉 = 〈z(x)〉 + 〈ξ〉 = 0, we
can express the differential mutual information Ĩ (Y , Z) in terms of the
second-order moments (see (12.19)):

〈z2〉 =
∑
ij

wiwj 〈xixj 〉

〈yz〉 =
〈(∑

i

wixi

)(∑
j

wjxj + ξ

)〉
=

∑
ij

wiwj 〈xixj 〉

〈y2〉 =
〈(∑

i

wixi + ξ

)(∑
j

wjxj + ξ

)〉
=

∑
ij

wiwj 〈xixj 〉 + 〈ξ2〉

=
∑
ij

wiwj 〈xixj 〉 + σ 2
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Substitution of these values into Ĩ (Y , Z) as defined in (12.19) gives:

Ĩ (Y , Z) = −1
2

log2

(
1− 〈yz〉2
〈y2〉〈z2〉

)

= −1
2

log2

(
1−

∑
ij wiwj 〈xixj 〉∑

ij wiwj 〈xixj 〉 + σ 2

)

= 1
2

log2

(
1+

∑
ij wiwj 〈xixj 〉

σ 2

)
(14.24)

We conclude that we can make this expression (14.24) for the differential
information as large as we like, simply by boosting all synapses according
to wi → λwi , which would give

Ĩ (Y , Z)→ 1
2

log2

(
1+ λ2σ−2

∑
ij

wiwj 〈xixj 〉
)

Note that
∑

ij wiwj 〈xixj 〉 = 〈(∑i wixi)
2〉 ≥ 0. In the present setup, the dif-

ferential mutual information apparently has no upper bound. This makes
sense: since the output is simply the sum of a signal term (with strength
partly controlled by the synaptic weights) and a noise term (of constant
strength), the signal/noise ratio can be improved to an arbitrary extent
by simply increasing the strength of the signal via a boost of all the
weights.

Linear neurons with Gaussian input noise

Imagine next a single linear neuron y: IRN → IR of which not the output,
but rather the inputs {xi} are corrupted with mutually independent Gaussian
noise sources {ξi}, in the following way:

y(x) =
N∑

i=1

wi(xi + ξi) p(ξi) = e−ξ2
i /2σ2

i

σi

√
2π

(14.25)

with synaptic weights {wi}. The strengths of the N noise sources ξi are
measured by σ 2

i = 〈ξ2
i 〉. As before, we assume that the input signals obey

〈xi〉 = 0 and are statistically independent of the noise sources, and that the
uncorrupted signal z(x) = ∑N

i=1 wixi has a Gaussian probability distribu-
tion. We can now again be sure that the pair (y, z) is described by a Gaussian
joint probability distribution with 〈y(x)〉 = 〈z(x)〉 = 0. The figure below
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gives a schematic representation of this new situation:
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Here the second-order moments are given by

〈z2〉 =
∑
ij

wiwj 〈xixj 〉

〈yz〉 =
〈(∑

i

wixi

)(∑
j

wj (xj + ξj )

)〉
=

∑
ij

wiwj 〈xixj 〉

〈y2〉 =
〈(∑

i

wi(xi + ξi)

)(∑
j

wj (xj + ξj )

)〉

=
∑
ij

wiwj 〈xixj 〉 +
∑

i

w2
i σ 2

i

Substitution into the differential mutual information Ĩ (Y , Z) of (12.19)
gives:

Ĩ (Y , Z) = −1
2

log2

(
1− 〈yz〉2
〈y2〉〈z2〉

)

= 1
2

log2

(
1+

∑
ij wiwj 〈xixj 〉∑

i w2
i σ 2

i

)
(14.26)

Now we find ourselves in a completely different situation. Note that, with
vi = wiσi :

max
w∈IRN

{∑
ij wiwj 〈xixj 〉∑

i w2
i σ 2

i

}
= max

v∈IRN

{∑
ij vi〈(xi/σi)(xj /σj )〉vj∑

i v2
i

}
= � <∞
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where � is the largest eigenvalue of the (non-negative) matrix with entries

Lij = σ−1
i 〈xixj 〉σ−1

j

The maximum differential mutual information between uncorrupted and
corrupted signal is obtained when the vector v is chosen to be an eigenvector
of the matrix {Lij }, with eigenvalue �. In terms of w this means

wopt = solution of
N∑

j=1

〈xixj 〉wj = �σ 2
i wi with largest � (14.27)

Expression (14.26) for the differential information is no longer affected by
a simple boost of all synapses. This would simply increase both the signal
and the noise, without any net effect on the signal/noise ratio. Interestingly,
in the case where the input noise levels are uniform, σi = σ , equation
(14.27) shows that the optimal weight vector picks out the ‘principal com-
ponent’ of the uncorrupted input vectors x, that is, the direction in which
the distribution of x has the largest variance.

Let us finally choose the simplest scenario within the settings of our
present example, where the input signals xi are mutually independent so
that 〈xixj 〉 = S2

i δij . The matrix elements Lij then become Lij = (S2
i /σ 2

i )δij .
The largest eigenvalue is

� = max
i
{S2

i /σ 2
i }

Let us denote the set of all channels i with the largest signal/noise ratio by
S = {i|Si/σi =

√
�}. The optimal synaptic weights w are now those where

the system ‘tunes’ into these particular input channels: w
opt
i = 0 for i /∈ S,

w
opt
i �= 0 for i ∈ S. If there is precisely one input channel with the largest

signal/noise ratio, then the optimal network will only be connected to this
single channel.

14.3 Neuronal specialization

In the first case that we studied in this section, a single neuron with Gaussian
output noise, a simple boost of all synaptic weights allowed the neuron to
obtain any desired value of the differential mutual information between the
uncorrupted and corrupted signals. However, in practice this would usually
not have been an option: in the real world one tends to have constraints
on the possible values of the weights, which forbid unlimited boosting.
Here we will inspect such cases in the context of a population of M linear
neurons yi : IRN → IR (i = 1, . . . , M), the outputs yi(x) of which are once
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more corrupted by Gaussian noise sources ξi :

yi(x) =
N∑

j=1

wijxj + ξi p(ξi) = e−ξ2
i /2σ2

i

σi

√
2π

(14.28)

with the synaptic weights {wij }.

 
�
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The strengths of the noise channels are given by σ 2
i = 〈ξ2

i 〉. We assume
the input signals to obey 〈xi〉 = 0 and to be statistically independent of the
noise sources, and we take the uncorrupted signals zi(x) =∑N

j=1 wijxj to
have a Gaussian joint probability distribution. So we can once more be sure
that the pair (y, z) is described by a Gaussian joint probability distribution,
where y = (y1, . . . , yM) and z = (z1, . . . , zM), with 〈y〉 = 〈z〉 = 0, so
that the mutual information between the uncorrupted signals z and the
corrupted signals y is given by equation (12.20). The various covariance
matrices are now

Czz
ij = 〈zizj 〉 =

∑
kl

wikwjl〈xkxl〉

C
yz
ij = C

zy
ij = 〈yizj 〉 =

∑
kl

wikwjl〈xkxl〉

C
yy
ij = 〈yiyj 〉 =

∑
kl

wikwjl〈xkxl〉 + σ 2
i δij

Only two different matrices appear, for which we use the shorthands
Cij = Czz

ij and Dij = σ 2
i δij . We can then write equation (12.20) in the form

Ĩ (Y , Z) = −1
2

log2 det
(

1I (C +D)−1C

1I 1I

)
(14.29)

where 1I denotes the M ×M identity matrix.
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From this point onwards we will restrict ourselves for simplicity to the
simple situation where the input signals xi are statistically independent, so
〈xixj 〉 = S2

i δij , where the different noise signals are of uniform strength, so
σ 2

i = σ 2, and where there are just two neurons, M = 2. We also assume
for simplicity that all input variances S2

i are different (so that in subsequent
calculations we will have no degenerate eigenspaces). We define

ε1 = σ−2
N∑

k=1

w2
1kS

2
k

ε2 = σ−2
N∑

k=1

w2
2kS

2
k

ε12 = σ−2
N∑

k=1

w1kw2kS
2
k

(14.30)

The matrix (C +D)−1C in (14.29) can now be written as

(C +D)−1[C +D −D] = 1I− (C +D)−1D

= 1I− (1I+D−1C)−1 = 1I−
(

1+ ε1 ε12
ε12 1+ ε2

)−1

Furthermore, we can use the general rule (which can be verified directly for
M = 2) that:

det
(

1I 1I−K

1I 1I

)
= det K

which gives us:

Ĩ (Y , Z) = 1
2

log2 det
(

1+ ε1 ε12
ε12 1+ ε2

)

= 1
2

log2(1+ ε1 + ε2 + ε1ε2 − ε2
12) (14.31)

We are interested in finding out which is the optimal choice for the
weights in the specific case where the latter are prevented, via a constraint,
from growing unboundedly. For this constraint we choose the so-called
spherical one:

N∑
k=1

w2
1k =

N∑
k=1

w2
2k = 1 (14.32)
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We will inspect various regime for the noise level σ , and, depending
on this noise level, we will observe completely different optimal weight
arrangements.

High noise levels, σ � 1

Since each term in (14.30) is of order O(σ−2) the terms which are quadratic
in the epsilons are now negligible compared to the ones that are linear in
the epsilons. Thus we get, using ln(1+ x) = x +O(x2):

Ĩ (Y , Z) = 1
2 ln 2

ln(1+ ε1 + ε2 +O(σ−4))

= 1
2σ 2 ln 2

N∑
k=1

S2
k (w2

1k + w2
2k)+O(σ−4)

We may now calculate the maximum of the leading term in this expression
under the constraints (14.32) using Lagrange multipliers, which gives the
following equations for the extrema:

∂Ĩ

∂w1k

= γ1w1k

∂Ĩ

∂w2k

= γ2w2k

N∑
k=1

w2
1k =

N∑
k=1

w2
2k = 1

(in which γ1 and γ2 are the Lagrange multipliers). Working out the
derivatives to the leading order in σ gives:

S2
k w1k = γ1σ

2 ln 2 w1k S2
k w2k = γ2σ

2 ln 2 w2k

Since all Sk were assumed to be different, the only solutions are those
where both weight vectors {w1k} and {w2k} have just one nonzero com-
ponent: (∃i1)(∀k �= i1): w1k = 0, and (∃i2)(∀k �= i2): w2k = 0. The
nonzero components must then obey (via the normalization constraint):
w2

1i1
= w2

2i2
= 1. The corresponding value for the leading order of the

differential mutual information is

Ĩ (Y , Z) = S2
i1
+ S2

i2

2σ 2 ln 2

Its maximum is obtained when both nonzero weight components are those
coupled to the strongest input signal: i1 = i2 = i�, where i� is defined via
maxi S2

i = S2
i� . This shows that for high noise levels we make the best use
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of our available hardware if we force our neurons to team up and both tune
into the strongest input channel.

Low noise levels, σ � 1

Since all epsilons are of order O(σ−2), in this case the dominant terms in
(14.31) are those which are quadratic in the epsilons:

Ĩ (Y , Z) = 1
2

log2(ε1ε2 − ε2
12 +O(σ−2))

= 1
2

log2

[
1
σ 4

( N∑
k=1

w2
1kS

2
k

)( N∑
k=1

w2
2kS

2
k

)

− 1
σ 4

( N∑
k=1

w1kw2kS
2
k

)2

+O(σ−2)

]

We now have to calculate the maximum of the leading term in the argument
of the logarithm, under the constraints (14.32), using Lagrange multipliers,
which gives the following equations:

2S2
k

[
w1k

( N∑
k=1

w2
2kS

2
k

)
− w2k

( N∑
k=1

w1kw2kS
2
k

)]
= γ1w1k (14.33)

2S2
k

[
w2k

( N∑
k=1

w2
1kS

2
k

)
− w1k

( N∑
k=1

w1kw2kS
2
k

)]
= γ2w2k (14.34)

As before, these equations are to be solved for each k, in combination with
the constraint equation (14.32). We now put

ε̃1 =
N∑

k=1

w2
1kS

2
k ε̃2 =

N∑
k=1

w2
2kS

2
k ε̃12 =

N∑
k=1

w1kw2kS
2
k

so that equations (14.33, 14.34) acquire the following compact form

(
2S2

k ε̃2 − γ1 −2S2
k ε̃12

−2S2
k ε̃12 2S2

k ε̃1 − γ2

)(
w1k

w2k

)
= 0

so

∀k: (w1k, w2k) = 0 or
(

S2
k ε̃2 − 1

2
γ1

)(
S2

k ε̃1 − 1
2

γ2

)
= S4

k ε̃2
12
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Since all Sk are assumed to be different, and since the second equation, when
solved for S2

k , can have at most two solutions, we are forced to conclude
that each weight vector can have at most two nonzero-components, with
identical indices: (∃i1, i2)(∀k �= i1, i2): w1k = w2k = 0. Normalization
subsequently dictates that w2

1i1
+w2

1i2
= w2

2i1
+w2

2i2
= 1. The corresponding

value for the leading order of the differential mutual information is now

i1 = i2: Ĩ (Y , Z) = 1
2

log2[O(σ−2)]

i1 �= i2: Ĩ (Y , Z) = 1
2

log2

[
1
σ 4 (w2

1i1
S2

i1
+ w2

1i2
S2

i2
)(w2

2i1
S2

i1
+ w2

2i2
S2

i2
)

− 1
σ 4 (w1i1w2i1S

2
i1
+ w1i2w2i2S

2
i2
)2 +O(σ−2)

]

= 1
2

log2

[
1
σ 4 S2

i1
S2

i2
(w1i1w2i2 − w1i2w2i1)

2 +O(σ−2)

]

Clearly the maximum of Ĩ (Y , Z) is obtained for i1 �= i2. To work out the
last maximization step we use once more the spherical constraints, and
write

w1i1 = cos φ1 w1i2 = sin φ1 w2i1 = cos φ2 w2i2 = sin φ2

giving

Ĩ (Y , Z) = 1
2

log2

(
1
σ 4 S2

i1
S2

i2
(cos φ1 sin φ2 − sin φ1 cos φ2)

2 +O(σ−2)

)

= 1
2

log2

(
1
σ 4 S2

i1
S2

i2
sin2(φ1 − φ2)+O(σ−2)

)

The maximum of this expression is found for φ1 = φ2 + (n+ 1
2 )π , where

(
w1i1

w1i2

)
·
(

w2i1

w2i2

)
=




cos
(

φ2 + π

2
+ nπ

)

sin
(

φ2 + π

2
+ nπ

)

 ·

(
cos φ2
sin φ2

)

=
(

(−1)n+1 sin φ2
(−1)n cos φ2

)
·
(

cos φ2
sin φ2

)
= 0

We conclude that the optimal nonzero weight vectors of our two neurons
(with two nonzero components each) are mutually orthogonal, and we get
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the resulting value

Ĩ (Y , Z) = 1
2

log2

(
1
σ 4 S2

i1
S2

i2
+O(σ−2)

)

This is maximal if the two input channels i1 and i2 tuned into by our weight
vectors are chosen to be the strongest two (note that we are not allowed to
choose i1 = i2 here), so

S2
max = S2

i1
> S2

i2
> · · · or S2

max = S2
i2

> S2
i1

> · · ·

Thus, for low noise levels the best strategy is no longer for our two neurons
to team up, but rather to let them specialize and form an orthogonal basis
in the space of the two strongest non-identical channels.

The transition to specialization

So far we have just checked the two extreme cases of very high and very
low noise levels. The results obtained hint at the existence of a transition, at
some critical noise level, where specialization sets in. To simplify notation
we arrange the input channels in such a way that

S1 > S2 > S3 > · · ·

Knowing that the optimum configurations in both extreme cases σ → 0 and
σ → ∞ exhibit at most two nonzero weight components for each neuron
(connected to the strongest two input signals), we are now led to inspecting
the behaviour at intermediate noise levels by putting

(w11, w12) = (cos φ1, sin φ1) (w21, w22) = (cos φ2, sin φ2)

In terms of the angles (φ1, φ2) maximizing the differential mutual informa-
tion (14.31) amounts to maximizing

L = σ 4(ε1 + ε2 + ε1ε2 − ε2
12)

With εi = (S2
1 cos2 φi + S2

2 sin2 φi)/σ
2 for i = 1, 2, and ε12 =

(S2
1 cos φ1 cos φ2 + S2

2 sin φ1 sin φ2)/σ
2 this gives

L = σ 2[2S2
2 + (S2

1 − S2
2)(cos2 φ1 + cos2 φ2)] + S2

1S2
2 sin2(φ1 − φ2)

= σ 2
[
S2

1 + S2
2 +

1
2

(S2
1 − S2

2)(cos(2φ1)+ cos(2φ2))

]

+ 1
2

S2
1S2

2 −
1
2

S2
1S2

2 cos(2φ1 − 2φ2) (14.35)
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The weight constraints (14.32) have now been built-in, so that extremiza-
tion of (14.35) reduces to simply putting two derivatives to zero:

∂L/∂φ1 = 0: σ 2(S2
1 − S2

2) sin(2φ1) = S2
1S2

2 sin(2φ1 − 2φ2)

∂L/∂φ2 = 0: σ 2(S2
1 − S2

2) sin(2φ2) = −S2
1S2

2 sin(2φ1 − 2φ2)
(14.36)

Addition of the two equations in (14.36) shows that (14.36) can be replaced
by the equivalent set

sin(2φ1) = − sin(2φ2)

σ 2(S2
1 − S2

2) sin(2φ1) = S2
1S2

2 sin(2φ1 − 2φ2)
(14.37)

This latter set (14.37) admits two types of solutions (modulo irrelevant
multiples of 2π ), namely

2φ2 = −2φ1: σ 2(S2
1 − S2

2) sin(2φ1) = S2
1S2

2 sin(4φ1)

sin(2φ1)[σ 2(S2
1 − S2

2)− 2S2
1S2

2 cos(2φ1)] = 0

2φ1 ∈ {0, π} or cos(2φ1) = 1
2σ 2(S2

1 − S2
2)/S2

1S2
2

2φ2 = 2φ1 + π : sin(2φ1) = 0 so 2φ1 ∈ {0, π}

We can now simply list the various extrema with their corresponding value
for the quantity L we wish to maximize. First we have the simplest ones,
2φ1 ∈ {0, π} with 2φ2 = −2φ1, where both neurons tune into the same
channel:

cos(2φ1) sin(2φ1) cos(2φ2) sin(2φ2) (w11, w12) (w21, w22) L

1 0 1 0 (±1, 0) (±1, 0) 2σ 2S2
1

−1 0 −1 0 (0,±1) (0,±1) 2σ 2S2
2

(14.38)

Then we have alternative extrema, 2φ1 ∈ {0, π}with 2φ2 = 2φ1+π , where
each neuron tunes into a single but different input channel:

cos(2φ1) sin(2φ1) cos(2φ2) sin(2φ2) (w11, w12) (w21, w22) L

1 0 −1 0 (±1, 0) (0,±1) σ2(S2
1 + S2

2 )+ S2
1S2

2

−1 0 1 0 (0,±1) (±1, 0) σ2(S2
1 + S2

2 )+ S2
1S2

2

(14.39)
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Finally there is a third non-trivial solution type, where each neuron tunes
into a specific combination of the two strongest channels:

cos(2φ2) = cos(2φ1) sin(2φ2) = − sin(2φ1)

cos(2φ1) = σ 2(S2
1 − S2

2)

2S2
1S2

2

(14.40)

L = σ 2(S2
1 + S2

2)+ S2
1S2

2 +
σ 4(S2

1 − S2
2)2

4S2
1S2

2

(14.41)

The solution (14.40) can only exist for small noise levels (since
cos(2φi) ≤ 1):

σ ≤ σc =
(

2S2
1S2

2

S2
1 − S2

2

)1/2

(14.42)

Since the solution (14.40) obeys φ2 = −φ1 + nπ , we can directly calculate
the angle between the weight vectors (w11, w12) and (w21, w22) of our two
neurons:(

w11
w12

)
·
(
w21
w22

)
= cos φ1 cos(nπ − φ1)+ sin φ1 sin(nπ − φ1)

=(−1)n(cos2 φ1 − sin2 φ1) = (−1)n cos(2φ1) = (−1)nσ 2/σ 2
c

Here we have used (14.40) and (14.42). This expression shows that the
solution (14.40) starts off at σ = σc as two (anti-)parallel weight vectors
(as in (14.38)), followed by a continuous ‘unfolding’ of the two weight
vectors as the noise decreases further, until they form a perfect orthogonal
basis for σ = 0. Comparison of (14.41) with (14.39) immediately shows
that the solution (14.40), provided it exists, has a larger value for L. Finally
we check the condition for the solution (14.40) to give the maximum mutual
information (i.e. for L in (14.41) to be also larger than 2σ 2S2

1):

σ 2(S2
1 + S2

2)+ S2
1S2

2 +
σ 4(S2

1 − S2
2)2

4S2
1S2

2

> 2σ 2S2
1

or

σ 4 − 2σ 2
(

2S2
1S2

2

S2
1 − S2

2

)
+

(
2S2

1S2
2

S2
1 − S2

2

)2

> 0

Since this condition is identical to (σ 2−σ 2
c )2 > 0, see (14.42), we conclude

that as soon as the solution (14.40) exists it will give the maximum mutual
information.
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If the solution (14.40) does not exist, that is, when σ > σc, we have to
find the maximum of L by comparing the values (14.38) and (14.39) of
the alternative extrema. The condition σ > σc is then found to translate
into the statement that the value in (14.38) is largest. In conclusion, all this
implies that the optimal weight arrangement indeed shows a specialization
transition at the critical noise level given in (14.42). For σ > σc both neurons
operate identical rules; for σ < σc the two neurons specialize and start to
operate different rules. This example illustrates how heuristic strategies,
like doing detailed data fitting only in cases where there is not much noise
in the data, can be rigorously quantified with information-theoretic tools.
Here the theory tells us exactly when to specialize and when not to.

14.4 Detection of coherent features

We now turn to a different problem. Imagine having two types of input
channels, {xa

i } and {xb
i }, each corrupted by independent Gaussian noise

sources {ξa
i } and {ξb

i }, and each feeding into a linear neuron, ya: IRN → IR
and yb: IRN → IR, respectively:

ya(x
a) =

N∑
i=1

wa
i (xa

i + ξa
i ) p(ξa

i ) = e−(ξa
i )2/2σ2

σ
√

2π

yb(x
b) =

N∑
i=1

wb
i (x

b
i + ξb

i ) p(ξb
i ) = e−(ξb

i )2/2σ2

σ
√

2π

with the two types of synaptic weights {wa
i } and {wb

i }. The uniform strength
of the 2N noise sources ξ

a,b
i is measured by σ 2 = 〈(ξa,b

i )2〉. Note that
〈ξa

i ξb
j 〉 = 0. The situation is depicted below:

�
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�
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Here our problem will be to extract from the two input streams xa and
xb only the information which the two have in common. This is a familiar
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problem in sensory information processing in biology, where various sens-
ory systems each provide only partial and often messy information. The
total information stream is integrated or filtered in such a way that only
those underlying regularities that are coherent across the various sensory
systems are retained. Examples are the merging of visual images to pro-
duce stereo vision, the integration of the signals from various sensors that
measure muscle stretch in order to build a correct internal representation
of the position of the limbs, etc. In order to study such situations, let us
assume here a simple scenario. Here the original uncorrupted input sig-
nals are related in a deterministic way, for instance via an orthogonal
transformation, that is, by a rotation or rotation–reflection in IRN :

xb = Uxa UU† = U†U = 1I

with (U†)ij = Uji and with 1Iij = δij . The appropriate strategy here is to
maximize the differential mutual information between the two neuron out-
puts ya and yb, since this quantity is precisely generated by the information
that is coherent across the two input streams.

As before we assume that all input signals obey 〈xa,b
i 〉 = 0 and are

statistically independent of the noise sources, and that the uncorrupted
signals za(xa) = ∑N

i=1 wa
i xa

i and zb(xb) = ∑N
i=1 wb

i x
b
i have a Gaussian

joint probability distribution; the same must then be true for the pair
(ya, yb). We write the two weight vectors as wa = (wa

1, . . . , wa
N) and

wb = (wb
1, . . . , w

b
N), and define the covariance matrix C with elements

Cij = 〈xa
i xa

j 〉. The second-order moments are given by

〈y2
a 〉 =

∑
ij

wa
i wa

j (〈xa
i xa

j 〉 + 〈ξa
i ξa

j 〉) = wa · (C + σ 21I)wa

〈yayb〉 =
∑
ij

wa
i wb

j 〈xa
i xb

j 〉 =
∑
ijk

wa
i wb

jUjk〈xa
i xa

k 〉 = wa · CU†wb

〈y2
b 〉 =

∑
ij

wb
i w

b
j (〈xb

i xb
j 〉 + 〈ξb

i ξb
j 〉) =

∑
ijkl

wb
i w

b
jUikUjl〈xa

k xa
l 〉 + σ 2(wb)2

= wb · U(C + σ 21I)U†wb

Substitution into Ĩ (Y , Z) as given by (12.19) leads to

Ĩ (Ya, Yb) = −1
2

log2

(
1− (wa · CU†wb)2

[wa · (C + σ 21I)wa][wb · U(C + σ 21I)U†wb]
)

(14.43)
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We now try to maximize (14.43), which is seen to be equivalent to maximiz-
ing the fraction in the argument of the logarithm in (14.43). This fraction is
greatly simplified by the symmetrizing transformation w = wa, v = U†wb

(so wb = Uv), which reduces our problem to the calculation of

L = max
w,v∈IRN

{
(w · Cv)2

[w · (C + σ 21I)w][v · (C + σ 21I)v]
}

Extremization by putting the various derivatives ∂L/∂wi and ∂L/∂vi to zero
gives the following two vector equations:

[w · (C + σ 21I)w]Cv = (w · Cv)(C + σ 21I)w

[v · (C + σ 21I)v]Cw = (v · Cw)(C + σ 21I)v

which can be transformed into

v = �1(1I+ σ 2C−1)w w = �2(1I+ σ 2C−1)v (14.44)

with

�1 = w · Cv

w · (C + σ 21I)w
�2 = v · Cw

v · (C + σ 21I)v
(14.45)

giving L = �1�2. Combining the two equations in (14.44) gives the
eigenvalue problem

w = L(1I+ σ 2C−1)2w

the solutions of which are just the eigenvectors of the covariance matrix C.
If we denote the corresponding eigenvalues by λ, we arrive at:

Cwλ = λwλ Cvλ = λvλ L =
(

λ

λ+ σ 2

)2

Since C is a covariance matrix it cannot have negative eigenvalues, so that
the maximum in (14.43) is obtained if we choose for λ the largest eigenvalue
λmax of C:

max Ĩ (Ya, Yb) = −1
2

log2

[
1− λ2

max

(λmax + σ 2)2

]
(14.46)

In the simplest case where the λmax is not degenerate, the associated
eigenspace is simply spanned by one corresponding eigenvector wλmax .
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The optimal weight configuration for which the maximum (14.46) is
achieved is, in terms of the original variables:

wa
opt = kawλmax wb

opt = kbUwλmax (14.47)

with ka and kb arbitrary constants, and where we may always choose
|wλmax | = 1. By inserting into the original operation rules of the two
neurons, and using xb = Uxa, one observes that in this optimal setup
the system operates a rule in which, apart from an overall constant, the
signal terms of the two neuron outputs have become identical:

ya(x
a) = kawλmax · xa + kawλmax · ξa

yb(x
b) = kb(Uwλmax) · xb + kb(Uwλmax) · ξb

= kbwλmax · xa + kbwλmax · U†ξb

There is an additional bonus. If we now go back and, for the present
example, work out our previous result (14.27) for the weight arrange-
ments of our two neurons that each maximize the mutual information
between their corrupted and uncorrupted signals, we find exactly the same
result (14.47). Thus, the weight configuration that maximizes the mutual
information between ya and yb will maximize at the same time the amount
of information about the uncorrupted signals that reach the output! What
is nice about this feature is that the latter is a quantity that one can never
observe at the output side of the system, whereas Ĩ (ya, yb) only involves the
statistics of the output signals and can thus be maximized; for instance by
a simple stochastic search procedure, using available information only.

14.5 The effect of non-linearities

Finally we will here give the justification of a previous remark that the
analysis performed for various arrangements involving linear neurons of
the type y(x) = ∑N

i=1 wixi , possibly corrupted by noise sources, carry
over directly to the more general case of neurons with arbitrary (usually
non-linear) invertible transfer functions: y(x) = f

(∑N
i=1 wixi

)
. The reason

for this is that the differential mutual information, on which our analysis
was built, is not sensitive to invertible transformations. Note that the fol-
lowing result is essentially the case where the data processing inequality
(viz. Property 7 in Section 12.3) becomes an equality, but now applied
to real-valued random variables; the variables (Z, Y , U) below would
correspond to (X, Y , Z) in Section 12.3.
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Proposition. If two random variables u ∈ A ⊆ IR and y ∈ IR are related
by a continuously differentiable and invertible transformation f : IR→ A,
that is, u = f (y), and z is an arbitrary third random variable, then

Ĩ (U , Z) = Ĩ (Y , Z) (14.48)

Proof. First we construct the joint distribution p(u, z) from the original dis-
tribution p(y, z), using the δ-distribution (see Appendix F), and the marginal
distribution p(u):

p(u, z) =
∫

dy p(u|y, z)p(y, z) =
∫

dy δ(u− f (y))p(y, z)

p(u) =
∫

dz p(u, z) =
∫

dy δ(u− f (y))

∫
dz p(y, z)

=
∫

dy δ(u− f (y))p(y)

The differential mutual information for the pair (u, z) then becomes

Ĩ (U , Z) =
∫

dudz p(u, z) log2

[
p(u, z)

p(u)p(z)

]

=
∫

dudydz p(y, z)δ(u− f (y)) log2

[ ∫
dy′ δ(u− f (y′))p(y′, z)

p(z)
∫

dy′ δ(u− f (y′))p(y′)

]

=
∫

dydz p(y, z) log2

[ ∫
dy′ δ(f (y)− f (y′))p(y′, z)

p(z)
∫

dy′ δ(f (y)− f (y′))p(y′)

]

Now we may use identity (F.8) of Appendix F, which gives

Ĩ (U , Z) =
∫

dydz p(y, z) log2

[ ∫
dy′ δ(y − y′)p(y′, z)

p(z)
∫

dy′ δ(y − y′)p(y′)

]

=
∫

dydz p(y, z) log2

[
p(y, z)

p(z)p(y)

]
= Ĩ (Y , Z)

This completes the proof.

Application of this result to the two random variables under consideration
allows us to write more generally:

F , G invertible: Ĩ (F (Y ), G(Z)) = Ĩ (Y , Z) (14.49)

Similarly we can prove that such statements are true for random variables
which are themselves vectors rather than scalars. This shows that all of our
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previous statements on linear neurons apply also to neurons with arbitrary
non-linear (but invertible) transfer functions.

14.6 Introduction to Amari’s information geometry

In this final section we will briefly touch on the area of information geo-
metry and its applications to information processing in neural networks.
We consider the general scenario of a neural network whose operation is
parametrized by a vector θ ∈ IRL. This vector represents both weights and
thresholds; we follow with this notation the convention in the informa-
tion geometry community. The input–output characteristics are described
by a conditional probability distribution pθ (xout|xin), in which xin ∈ IRN

and xout ∈ IRM denote input and output vectors, respectively. The per-
formance of this network on a given input xin, leading to a corresponding
network response xout, is assumed to be measured by some error meas-
ure E(xin, xout). If the probability of an input xin to be encountered is
defined as p(xin), the global error made by a network with parameters
θ is given by

E(θ) =
∑
xin

∑
xout

E(xin, xout)pθ (xout|xin)p(xin) (14.50)

We next abbreviate x = (xin, xout) ∈ A = IRN+M and we define pθ (x) =
pθ (xout|xin)p(xin), which now combines both the parametrized properties
of the network and the likelihood of input data:

E(θ) =
∑
x∈A

pθ (x)E(x) (14.51)

This setup is as yet sufficiently general to cover the majority of neural learn-
ing scenarios, although not all. The goal of learning is to find an efficient
iterative recipe for modifying the parameters θ in order to minimize the
global error E(θ) as quickly as possible.

Drawbacks of ordinary gradient descent

The most commonly used dynamical rule for the parameters θ to system-
atically minimize the error in (14.51) is the celebrated gradient descent
procedure:

d
dt

θ = −η∇θE(θ)



300 14 : Applications to neural networks

In spite of the fact that this appears to be a sensible choice (choosing the
steepest direction in order to get to the nearest valley), and that it ensures

d
dt

E = ∇θE(θ) · d
dt

θ = −η [∇θE(θ)]2 ≤ 0 (14.52)

it is in fact generally far from optimal, and the source of the plateau-
phases of slow convergence that haunt learning rules such as error
back-propagation; see, for example, Figure 2.9.

In order to appreciate what might be missing, we first note that one
can insert an arbitrary positive definite (even parameter dependent) L× L

matrix M(θ) in front of the gradient, without losing the key property of
the gradient descent rule that it leads to a consistent reduction of the error
measure (14.51):

d
dt

θ = −ηM(θ)∇θE(θ):
d
dt

E = −η[∇θE(θ) ·M(θ)∇E(θ)] ≤ 0

(14.53)

The conventional gradient descent algorithm just corresponds to the
simplest choice M(θ) = 1I. One can easily convince oneself by experimenta-
tion with such matrices that M(θ) = 1I is usually not optimal. For example:
in error back-propagation one finds that using different learning rates for
different network layers, dependent on the fan-in of these layers, speeds
up convergence; this is an example of inserting a simple (diagonal) type
of positive definite matrix. We are thus automatically led to the following
question: which is the optimal choice for M(θ)?

Seen from a different perspective, we have to realize that the way in which
we choose to parametrize the action of our network is (at least from a math-
ematical point of view) rather arbitrary. For example, instead of a parameter
component θi ∈ IR one could have also inserted θ5

i , or any other monotonic
function of θi , without affecting the range of possible operations pθ (x) that
the resulting network could perform. More generally, the space of possible
operations of the form pθ (x) is invariant under arbitrary invertible trans-
formations f : IRL → IRL of the parameter vector θ ; mathematically, there
is no preferred choice for f .

Yet, the gradient descent learning rule is highly sensitive to such para-
meter transformations. Just consider two equivalent choices of parameters
θ ∈ IRL and ξ ∈ IRL, which are related by an invertible transformation:
θ = f (ξ). A gradient descent dynamics derived in the language of ξ , when
written explicitly in components, gives:

d
dt

ξi = −η
∂

∂ξi

E(f (ξ)) = −η

L∑
j=1

∂θj

∂ξi

∂E(θ)

∂θj
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If we now work out what this implies for the evolution of the alternative
parameters θ we find:

d
dt

θi =
N∑

j=1

∂θi

∂ξj

d
dt

ξj = −η

L∑
jk=1

∂θi

∂ξj

∂θk

∂ξj

∂E(θ)

∂θk

Thus

d
dt

θ = −ηM(θ)∇θE(θ) Mik(θ) =
∑
j

∂θi

∂ξj

∂θk

∂ξj

The matrix M(θ) is positive definite, so we are still guaranteed that
dE/dt ≤ 0. However, we recover a gradient descent equation in terms of
the parameters θ only if Mik(θ) = δik, which in general will not be the case.
We conclude that the error evolution that we obtain is strongly dependent
on how we choose to parametrize our network in the first place. We are
thus automatically led to ask: which is the optimal choice of (alternative)
parametrization?

Derivation of gradient descent

In order to understand better the properties of the gradient descent rule,
with a view to ultimately replacing it, let us first see how it can be derived
from an extremization procedure. We try to extremize E(θ +�θ) by vari-
ation of �θ , subject to the constraint that the magnitude of the change θ

is fixed: |�θ | = �. The solution (extremization of a given function under a
constraint) is easily obtained with the method of Lagrange, which tells us
that we have to solve the following equations:

∂E(θ +�θ)

∂(�θi)
= λ

∂

∂(�θi)
(�θ)2 = 2λ�θi (�θ)2 = �2

We can eliminate λ by taking the inner product with �θ on both sides of the
above equation, giving λ = 1

2�−2[�θ ·∇E(θ)]+O(�0). For small changes,
that is, �θ = dt(dθ/dt)+O(dt2) with 0 < dt � 1, we then find

∇E(θ) =
[
(dθ/dt) ·∇E(θ)

(dθ/dt)2

]
d
dt

θ +O(dt)

Taking the limit dt → 0 finally gives

d
dt

θ = −η∇E(θ) η = (dθ/dt)2

(dθ/dt) · [−∇E(θ)]
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Note that the right equation can be dropped, as it simply follows from the
left one by taking the inner product with dθ/dt . We have thereby recovered
the ordinary gradient descent rule.

Derivation of natural gradient descent

We now repeat the above exercise of extremizing E(θ+�θ) w.r.t. variations
of �θ , subject to the constraint that the magnitude of the change of θ is fixed.
Now, however, the magnitude of the the change is not given in terms of the
Euclidean distance but rather in terms of a more general distance measure
as described in Appendix H. This distance is defined in terms of a local
metric via

d2(θ , θ +�θ) =
∑
ij

�θigij (θ)�θj +O(�3)

and the constraint is d2(θ , θ +�θ) = �2 with 0 ≤ �� 1. The solution of
this constrained extremization problem is again obtained with the method
of Lagrange multipliers:

∂E(θ +�θ)

∂(�θi)
= λ

∂

∂(�θi)
d2(θ , θ +�θ) = 2λ

[∑
j

gij (θ)�θj + O(�2)

]

d2(θ , θ +�θ) = �2

As before we eliminate λ by taking the inner product with �θ on both sides
of the above equation, giving λ = 1

2�−2[�θ · ∇E(θ)] + O(�0). We next
consider small changes only, that is, we write �θ = dt(dθ/dt) + O(dt2)

with 0 < dt � 1. Consequently the constraint equation becomes �2 =
dt2[(dθ/dt) · g(θ)(dθ/dt)] +O(dt3), and

∇E(θ) =
[

(dθ/dt) ·∇E(θ)

(dθ/dt) · g(θ)(dθ/dt)

]
g(θ)

d
dt

θ +O(dt)

Taking the limit dt → 0 produces

d
dt

θ = −ηg−1(θ)∇E(θ) η = (dθ/dt) · g(θ)(dθ/dt)

(dθ/dt) · [−∇E(θ)]

As before the right equation is redundant, as it follows from the left one
by taking the inner product with g(θ)(dθ/dt). We have thereby derived the
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so-called natural gradient descent rule:

d
dt

θ = −η g−1(θ)∇E(θ) (14.54)

Only in the special case where our metric is Euclidean, that is, g(θ) = 1I for
all θ , will natural gradient descent be identical to ordinary gradient descent.
Note that we can now also interpret the meaning of inserting a positive
definite matrix into the ordinary gradient descent rule, as in (14.53), and
identify the optimal choice for such a matrix according to (14.54): the
optimal choice is to select M(θ) in (14.53) as the inverse of the metric g(θ).
This choice thus depends crucially on the choice we make for the distance
d(θ , θ ′) in parameter space.

What remains is to choose the appropriate metric in parameter space. Our
aim is to base this choice on the premise that the natural distance between
two parameter vectors θ and θ ′ should be determined by the extent to which
the corresponding networks, encoded in the two distributions pθ (x) and
pθ ′(x), are similar. The more different these two distributions, the larger
should be the natural distance between θ and θ ′.

Expansion of the Kullback–Leibler distance

One object that measures the distance between two probability distributions
is, as we have seen earlier, the Kullback–Leibler distance:

D(pθ‖pθ ′) =
∑
x∈A

pθ (x) ln
[

pθ (x)

pθ ′(x)

]
(14.55)

(where we have replaced log2 → ln in order to eliminate the irrelevant pre-
factor ln 2 which would otherwise be generated in subsequent calculations).
This expression can itself not serve as our distance d(θ , θ ′), since it violates
d(θ , θ ′) = d(θ ′, θ). However, locally it turns out to give a well-behaved
distance measure in the sense of (H.3). To see this we put θ ′ = θ+�θ , with
|�θ | � 1, and expand (14.55) in powers of �θ . This gives

D(pθ‖pθ+�θ ) =
∑
x∈A

pθ (x)[ln pθ (x)− ln pθ+�θ (x)]

=
∑
ij

�θigij (θ)�θj +O(|�θ |3)

with the metric

gij (θ) = 1
2

∑
x∈A

pθ (x)

(
∂ ln pθ (x)

∂θi

)(
∂ ln pθ (x)

∂θj

)
(14.56)
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The key observation needed to obtain this result is that, when writing the
expansion of the distance as

D(pθ‖pθ+�θ ) = −
∑
x∈A

pθ (x) ln(1+ ε)

with

ε = pθ +�θ (x)−pθ (x)

pθ (x)

=
∑

i

�θi

pθ (x)

∂

∂θi

pθ (x)+1
2

∑
ij

�θi�θj

pθ (x)

∂2

∂θi∂θj

pθ (x)+ · · ·

the first order in ε in the expansion of the logarithm vanishes due to
normalization of the distribution pθ .

Up to the factor 1/2, the matrix in (14.56) is called the Fisher Information
matrix. It plays an important role in measuring the average amount of
information that can be extracted from a single observation x about the
values of the parameters θ of a parametrized distribution pθ (x). The metric
(14.56) satisfies all our requirements. It generates a general definition of a
distance d(θ , θ ′) via the route described in Appendix H. This is based on
the shortest path connecting θ and θ ′, given by a geodesic.

Invariance of natural gradient descent under re-parametrization

Due to the fact that the distance d(θ , θ ′) generated by the metric (14.56)
is based on measuring the mismatch between two probability distributions
(rather than on properties of the underlying parametrization), one finds
that the corresponding natural gradient descent equation is invariant under
parametrization changes, in contrast to the ordinary gradient descent rule.
The proof of this important statement is elementary. Just consider two
equivalent choices of parameters, θ ∈ IRL and ξ ∈ IRL, which are related
by an invertible transformation f : IRL → IRL:

θ = f (ξ) pξ (x) = p̂θ (x) E(ξ) = Ê(θ) gij (ξ) = ĝij (θ)

The metric gij (ξ) as given by (14.56), derived in the language of ξ ,
can be related to the metric ĝij (θ), derived in the language of θ , in the
following way:

gij (ξ) =
∑
x∈A

pξ (x)
∂ ln pξ (x)

∂ξi

∂ ln pξ (x)

∂ξj

=
∑
x∈A

p̂θ (x)
∑
kl

∂θk

∂ξi

∂ ln p̂θ (x)

∂θk

∂θl

∂ξj

∂ ln p̂θ (x)

∂θl

=
∑
kl

Kij ,kl(θ)ĝkl(θ)
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with

Kij ,kl(θ) = ∂θk

∂ξi

∂θl

∂ξj

We can now use this relation to derive the dynamical equation which
the parameters θ will obey, given that the evolution of the parameters
ξ is defined by natural gradient descent (14.54) with the metric g(ξ),
written as ∑

j

gij (ξ)
d
dt

ξj + η
∂

∂ξi

E(ξ) = 0

Using the above transformation for the metric and partial derivatives this
gives ∑

jkl

Kij ,kl(θ)ĝkl(θ)
d
dt

ξj + η
∑

k

∂θk

∂ξi

∂

∂θk

Ê(θ) = 0

which can be rewritten as

∑
k

∂θk

∂ξi

[∑
j l

∂θl

∂ξj

ĝkl(θ)
d
dt

ξj + η
∂

∂θk

Ê(θ)

]
= 0

Since the matrix with entries Jki(θ) = ∂θk/∂ξi is just the Jacobian of the
invertible transformation f , and therefore itself invertible, it immediately
follows that

∑
l

ĝkl(θ)
∑
j

∂θl

∂ξj

d
dt

ξj + η
∂

∂θk

Ê(θ) = 0

or

∑
l

ĝkl(θ)
d
dt

θl + η
∂

∂θk

Ê(θ) = 0

This is again the natural gradient descent equation, but now expressed
in the language of θ . Thus, whatever parametrization one chooses for the
network, if one uses the natural gradient descent rule with the metric (14.56)
one always generates exactly the same dynamics.

It can be shown that, apart from an irrelevant prefactor, the metric
(14.56) is the unique proper metric in a space of parametrized probabil-
ity distributions, although the proof is not trivial and will not be given in
the present book. Here we have only provided intuitive evidence for this
statement, by showing that it is locally equivalent to the Kullback–Leibler
distance (which is indeed a measure of the mismatch between distributions,
independent of parametrization), and by showing that the corresponding
natural gradient descent dynamics is invariant under re-parametrizations.
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In practice, explicit calculation of the inverse of the matrix (14.56) will
usually not be possible, and thus exact execution of the natural gradient
descent rule out of the question. However, at least one knows what the
optimal rule is, so that improving upon gradient descent can be done in a
systematic way, via approximation of the inverse of (14.56), rather than in
an ad hoc manner. There are many ways in which an inverse can be approx-
imated. If g(θ) is close to the unity matrix 1I, for instance, one could use
the expansion g−1(θ) =∑

n≥0[1I − g(θ)]n. An alternative is to manipulate
general identities for symmetric matrices such as

g−1
ij =

∫
dy yiyj e−(1/2)y·gy∫

dy e−(1/2)y·gy

14.7 Simple applications of information geometry

Let us finally illustrate the application of the above ideas in neural
information processing systems with two simple examples.

Example 1: a single neuron without systematic input. Our first example
represents the simplest possible scenario of a binary neuron, without sys-
tematic input or weights, but with only a threshold θ . It receives input only
from a noise source ξ , that is,

xout = sgn(ξ − θ)

We assume that it is being trained to permanently generate the output
xout = 1 via adaptation of its threshold θ . This obviously requires lowering
the threshold to θ = −∞. We denote by w(ξ) (with ξ ∈ IR) the probabil-
ity density of the noise source, and take this distribution to be symmetric:
w(ξ) = w(−ξ) for all ξ ∈ IR. We also define W(u) = 2

∫ u

0 dξ w(ξ). Our
assumptions entail −1 ≤ W(u) ≤ 1.

We now first have to establish contact with the formalism of the present
chapter. Since there are no systematic inputs, we simply have pθ(x) =
Prob[xout = x], giving

pθ(1) = Prob[xout = 1] =
∫ ∞

θ

dξ w(ξ) = 1
2
[1−W(θ)]

and thus

pθ(x) = 1
2 [1− xW(θ)]
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The error measure E(x) is required to signal the occurrence of the wrong
output value x = −1, so E(x) = δx,−1. Recalling the definition of the global
error E(θ) =∑

x pθ (x)E(x), one obtains

E(θ) = 1
2 [1+W(θ)] (14.57)

Ordinary gradient descent learning would give for this example:

d
dt

θ

∣∣∣∣
GD
= −η

∂

∂θ
E(θ) = −1

2
η

∂

∂θ
W(θ) = −ηw(θ)

Let us now compare this to the recipe prescribed by natural gradient des-
cent. The present example has only a single adjustable parameter, viz. θ ,
so the Fisher matrix (14.56) reduces to a (time-dependent) scalar (a 1 × 1
matrix) g(θ):

g(θ) =
∑

x=±1

pθ(x)

[
∂

∂θ
ln[1− xW(θ)]

]2

=
∑

x=±1

pθ(x)
4w2(θ)

[1− xW(θ)]2

= 2w2(θ)

(
1

1−W(θ)
+ 1

1+W(θ)

)
= 4w2(θ)

1−W2(θ)

Natural gradient descent thus reduces to:

d
dt

θ

∣∣∣∣
NGD

= −η
1−W2(θ)

4w(θ)

Let us now make a specific choice for the noise distribution to push the
present analysis further, viz. w(ξ) = 1

2 [1− tanh2
(ξ)], so W(θ) = ∫ θ

0 dξ [1−
tanh2

(ξ)] = tanh(θ). This results in

d
dt

θ

∣∣∣∣
GD
= −1

2
η[1− tanh2

(θ)] d
dt

θ

∣∣∣∣
NGD

= −1
2

η

It is clear that the threshold θ decreases more slowly in the case of gradient
descent learning than for natural gradient descent learning, especially as
|θ | → ∞. The superiority of the natural gradient learning algorithm can
be exhibited in a more striking fashion, if we translate the laws for the
evolution of θ into equations involving the global error E(θ) only, using
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the simple relation E(θ) = 1
2 [1+ tanh θ ]:

d
dt

E

∣∣∣∣
GD
= −4ηE2(1− E)2

d
dt

E

∣∣∣∣
NGD

= −ηE(1− E)

In both cases the error decreases monotonically to zero. Asymptotically,
that is, for t → ∞, we can thus expand these equations in powers of E.
The asymptotic form of these equations at small E and their solution are
then given by

d
dt

E

∣∣∣∣
GD
= −4ηE2 + · · · with solution E ∼ 1

4ηt
(t →∞)

d
dt

E

∣∣∣∣
NGD

= −ηE + · · · with solution E ∼ e−ηt (t →∞)

This clearly illustrates the potential of natural gradient descent.

Example 2: a single neuron with inputs. Our second example is a
noisy binary neuron with nonzero inputs and weights, but without a
threshold,

xout = sgn
( L∑

i=1

θix
in
i + ξ

)
xin = (xin

1 , . . . , xin
L ) ∈ {−1, 1}L

which is being trained to execute some operation σ : {−1, 1}L → {−1, 1} via
adaptation of the weight vector θ ∈ IRL. As before, we assume that the noise
source ξ ∈ IR has a symmetric probability density w(ξ), so w(ξ) = w(−ξ)

for all ξ ∈ IR, and we define W(u) = 2
∫ u

0 dξ w(ξ). Thus

pθ (xout|xin) = 1
2 [1+ xoutW(θ · xin)] pθ (xin, xout) = pθ (xout|xin)p(xin)

The error measure E(xin, xout) is now required to signal the occurrence of
xout �= σ(xin), giving E(xin, xout) = 1

2 [1 − xoutσ(xin)]. The global error
(14.50) is then seen to become

E(θ) = 1
4

∑
xin

p(xin)
∑
xout

[1+ xoutW(θ · xin)][1− xoutσ(xin)]

= 1
2
− 1

2

∑
xin

p(xin)σ (xin)W(θ · xin) (14.58)
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and the metric (14.56) is evaluated as follows:

gij (θ) =
∑
xin

∑
xout

p(xin)pθ (xout|xin)

(
∂ ln pθ (xout|xin)

∂θi

)(
∂ ln pθ (xout|xin)

∂θj

)

=
∑
xin

∑
xout

p(xin)

pθ (xout|xin)
[xin

i xoutw(θ · xin)][xin
j xoutw(θ · xin)]

=
∑
xin

p(xin)x
in
i xin

j w2(θ · xin)

(
2

1+W(θ · xin)
+ 2

1−W(θ · xin)

)

=
∑
xin

p(xin)x
in
i xin

j

w2(θ · xin)

(1/4)[1−W2(θ · xin)] (14.59)

If we now choose the same noise distribution as in the first example, that is,
w(ξ) = 1

2 [1 − tanh2
(ξ)], giving W(θ) = tanh(θ), and in addition assume

uniformly distributed input vectors xin ∈ {−1, 1}L, we find the following
transparent expressions:

E(θ) = 1
2 [1− 〈σ(x) tanh(θ · x)〉] gij (θ) = δij − 〈xixj tanh2

(θ · x)〉
(14.60)

with the shorthand 〈(· · · )〉 = 2−L
∑

x∈{−1,1}L(· · · ). Gradient descent
and natural gradient descent would now generate the following learning
dynamics,

d
dt

θi

∣∣∣∣
GD
= η

2
〈xiσ (x)[1− tanh2

(θ · x)]〉

and
d
dt

θi

∣∣∣∣
NGD

= η

2

∑
j

g−1
ij (θ)〈xjσ (x)[1− tanh2

(θ · x)]〉

respectively.

In general one cannot easily invert the matrix in (14.60) analytically. For
small values of L it can, however, be done. Let us work out the case L = 2
(two inputs) as an explicit example. We assume that the task σ is realizable,
that is, there exists a vector B ∈ IR2 such that σ(x) = sgn(B1x1 + B2x2).
Defining σ± = sgn(B1 ± B2) and θ± = θ1 ± θ2 we obtain

E(θ1, θ2) = 1
2 [1− 1

2σ+ tanh(θ+)− 1
2σ− tanh(θ−)] (14.61)

g(θ) = 1
2
[1− tanh2

(θ+)]
(

1 1
1 1

)

+ 1
2
[1− tanh2

(θ−)]
(

1 −1
−1 1

)
(14.62)
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One can easily convince oneself that the relevant inverse is

g−1(θ) = 1

2[1− tanh2
(θ+)]

(
1 1
1 1

)
+ 1

2[1− tanh2
(θ−)]

(
1 −1
−1 1

)

We now obtain the following learning rules:

d
dt

θ

∣∣∣∣
GD
= 1

4
ησ+[1− tanh2

(θ+)]
(

1
1

)
+ 1

4
ησ−[1− tanh2

(θ−)]
(

1
−1

)

d
dt

θ

∣∣∣∣
NGD

= 1
4

ησ+
(

1
1

)
+ 1

4
ησ−

(
1
−1

)

In terms of θ± these expressions simplify to

d
dt

θ±
∣∣∣∣
GD
= 1

2
ησ±[1− tanh2

(θ±)] d
dt

θ±
∣∣∣∣
NGD

= 1
2

ησ±

Clearly the gradient descent rule will show a saturation slowing down as
|θ±| → ∞, which is absent, or rather compensated for automatically, in the
case of natural gradient descent learning. If θ(t = 0) = 0, we find in both
cases θ±(t) = σ±φ(t), with φ(0) = 0 and

E = 1
2
[1− tanh(φ)] d

dt
φ

∣∣∣∣
GD
= 1

2
η[1− tanh2

(φ)] d
dt

φ

∣∣∣∣
NGD

= 1
2

η

As with the previous example, we can convert our equations directly into
equations for the error E, which in fact turn out to be identical to those of
the previous example:

d
dt

E

∣∣∣∣
GD
= −4ηE2(1− E)2

d
dt

E

∣∣∣∣
NGD

= −ηE(1− E)

We find a significant convergence speed-up with, asymptotically,

E|GD ∼ 1
4ηt

E|NGD ∼ e−ηt (t →∞)

showing once more the superiority of natural gradient descent over simple
gradient descent learning.
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14.8 Exercises

Exercise 14.1. (Coupled oscillator Boltzmann machines.) In a coupled
oscillator version of the Boltzmann machine the states of the N input, L hid-
den, and M output oscillators are all continuous variables, and are denoted
by x ∈ [−π , π ]N , σ ∈ [−π , π ]L, and y ∈ [−π , π ]M , respectively. The
combined state vector is written as s = (x, σ , y). During free relaxation
of all oscillators, equilibrium averages of observables f (s) are given by
〈f 〉− =

∫ π

−π
· · · ∫ π

−π
ds p−(s)f (s), with

p−(x, σ , y) = Z−1e−βE(x,σ ,y)

with the normalization constant Z given by Z = ∫ π

−π
· · · ∫ π

−π
dxdσdy×

e−βE(x,σ ,y). During so-called clamped relaxation, where the state vectors
x and y are controlled externally to have the joint probability density
q(x, y), equilibrium averages of observables f (s) are given by 〈f 〉+ =∫ π

−π
· · · ∫ π

−π
ds p+(s)f (s), with

p+(x, σ , y) = q(x, y)p+(σ |x, y) p+(σ |x, y) = e−βE(x,σ ,y)

Z(x, y)

where Z(x, y) = ∫ π

−π
· · · ∫ π

−π
dσ e−βE(x,σ ,y). Explain which quantity the

Boltzmann machine learning for continuous neural variables aims to min-
imize, in terms of the above probability densities, and what is being achieved
by this minimization. Consider the case where E(s) = −1

2
∑

ij wij cos(si −
sj ) − ∑

i θi cos(si), with wij = wji for all (i, j). Derive the Boltzmann
machine learning rule for updating the system parameters {wij , θi} in the
coupled oscillator Boltzmann machine.

Exercise 14.2. (Maximum information preservation.) Consider a linear
neuron whose inputs are corrupted by Gaussian noise sources ξi , which are
mutually independent and statistically independent of the input variables x:

y(x) =
N∑

i=1

wi(xi + ξi) p(ξi) = 1

σ
√

2π
e−ξ2

i /2σ2

Assume that 〈xi〉 = 0 (∀i), and that the noise-free part z(x) =∑N
i=1 wixi of

the output y has a Gaussian probability distribution. This is a special case of
the situation discussed in Section 14.2, in which now the noise sources are
identically distributed. Imagine that one tries to maximize the differential
mutual information of the uncorrupted input signal z(x) and the output
y(x) for the system by modification of the weights {wi}, according to a
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gradient ascent procedure,

d
dt

wi = η
∂

∂wi

Ĩ (Y , Z)

Show that the gradient ascent has N fixed points, each of them corres-
ponding to an eigenvector of the correlation matrix C of inputs with
elements Cij = 〈xixj 〉, and hence that the optimal weight vector identi-
fied in Equation 14.2 indeed corresponds to a fixed point of this gradient
ascent procedure.

Exercise 14.3. (Natural gradient descent.) Compare gradient descent and
natural gradient descent algorithms for Maximum Likelihood parameter
estimation. Given N observations xi of a random variable X, one attempts
to estimate parameters θ of a probability density pθ (x) so as to minimize

E(θ) = 1
N

N∑
i=1

ln
[

p(xi)

pθ (xi)

]
�

∫
dx p(x) ln

[
p(x)

pθ (x)

]

where p is the unknown probability density of X. We assumed that N

is sufficiently large for the above integral approximation above to apply.
Investigate this, assuming that the unknown distribution p(x) is Gaussian:

p(x) = exp[−(x − µ)2/2σ 2]
σ
√

2π

and that one attempts to approximate it using the Gaussian family

pθ (x) = exp[−(x − θ1)
2/2θ2

2 ]
θ2
√

2π

Write down the gradient descent equations for this problem, and show
that (θ1, θ2) = (µ, σ) is a stable fixed point of the dynamics. Determine
the asymptotic convergence rates. Compute the Fisher-Information matrix
for this problem, and use it to formulate the natural gradient dynamics.
Show that natural gradient dynamics also converges to the fixed point
(θ1, θ2) = (µ, σ), and that the asymptotic convergence rate is independ-
ent of the parameters µ and σ of the unknown distribution, unlike in the
case of simple gradient descent.



15
Notes and suggestions for
further reading

Information theory in its modern formulation has come upon us mainly
through the seminal work of Claude Shannon [57–59] which, in turn, builds
on earlier work of Nyquist [60] and Hartley [61] on problems related
to transmission of information. The proposal to quantify information in
terms of the logarithm of the size of a message set in case of equally likely
messages appears in fact to have been made first by Hartley, but its general-
ization to ensembles of messages that are not equally likely—using entropy
as the appropriate measure—was achieved only in 1948, independently by
Shannon [57,58] and Wiener [62,63].

Shannon was in fact concerned with the entire process of communication
of information, from the information source, and a transmitter used to
transform messages into a form suitable for transmission, over some (noisy)
channel which defines the medium used to transmit signals, via a receiver
inverting the operations of the transmitter in order to reconstruct the mess-
age from the transmitted signal, to the final destination of the message. The
operations of transmitter and receiver involve some form of encoding and
decoding. The characterization of the channel as noisy implies that errors
will be introduced into the signal stream on its way from transmitter to
receiver. A key issue in such a process is then how information can reliably
be transmitted over noisy channels, using appropriate coding, and at which
rate. It was Shannon’s deep and original insight that the entropy of the
information source would be the important limiting factor for the rate of
transmission of information over a (noisy) channel.

In this book we have not dealt with issues related specifically to trans-
mission of information and channel capacity. A number of excellent
monographs dedicated to information theory can be consulted on these
and related topics; references [42,59,64–66] can be considered as classics,
old and new, and are particularly recommended.

Our discussion has had a somewhat different focus, namely the applica-
tion of entropy and related concepts to problems in statistical inference
and neural information processing systems. In the context of statistical
inference, we looked at parameter estimation using the maximum likeli-
hood (ML) method and at the maximum entropy (MaxEnt) method for
density estimation. While ML estimation as a tool of statistical inference
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[67] precedes the advent of information theory by several decades, the
MaxEnt method for density estimation, pioneered by Jaynes in the 1950s
[68–70], makes explicit reference to concepts and intuitions underlying
Shannon’s measure of information. Boltzmann-machine learning for recur-
rent stochastic networks, one of the paradigmatic examples of the use of
information theoretic tools for the design of algorithms, was introduced
by Ackley and co-workers [71, 72]. It is discussed at some length also in
the book by Hertz et al. [23], which is still one of the most comprehensive
sources on the theory of neural computation. Hertz, Krogh, and Palmer
also deal with issues of information preservation and feature detection in
feedforward networks; on these topics a more recent book by Deco and
Obradovic [73] also provides a wealth of information. Natural gradient
descent learning was introduced by Amari [74]. For more on the formal
theory of information geometry, which is based on identifying the Fisher
information matrix as the object that defines a natural Riemannian metric
in spaces of probability distributions, see also [75].

As comprehensive sources for the probability theory used in this book,
the monographs by Feller [76,77], Gardiner [78], and van Kampen [79] are
highly recommended. For further general background material on statistical
inference the reader may wish to consult Vapnik’s lucid book [48] and for
details and proofs the earlier volume [80].



Part

IV
Macroscopic analysis of
dynamics

Statistical mechanics deals with large systems of interacting microscopic
elements. Its strategy is to move away from solving models of such sys-
tems at the microscopic level, trying instead to use the microscopic laws
to calculate laws describing the behaviour of suitably chosen macroscopic
observables. This may seem hopeless: if we cannot solve the microscopic
laws, what makes us think we can find their macroscopic consequences?
It turns out that if we consider large systems, things become easier: the
macroscopic laws are then usually deterministic and simple, even though
the microscopic ones are stochastic and complex. Macroscopic observables
normally present a kind of average behaviour of the microscopic ones: the
more elements we average over, the smaller the fluctuations of the aver-
age. In the limit of an infinitely large system the fluctuations vanish, and
the averages evolve deterministically. The toolbox of statistical mechanics
consists of methods and tricks to perform this reduction from the micro-
scopic to a macroscopic level, which are based on clever ways of doing the
bookkeeping of probabilities. The experience and intuition built up in over
a century tells us what to expect (e.g. phase transitions), and serves as a
guide in choosing the macroscopic observables and in seeing the difference
between relevant and irrelevant mathematical subtleties.

We apply statistical mechanics to two aspects of neural networks.
We begin with network operation; here the microscopic dynamical variables
are the states of the neurons, with the synaptic weights remaining fixed. The
networks we consider will be recurrent, which means that there are feed-
back loops between the neurons. We will study their ability to function
as associative memories. By an appropriate choice of synaptic weights, we
can ensure that the neural firing patterns, starting from an appropriate ini-
tial state, will converge towards one of a number of patterns that we wish
to store. We will not be interested in knowing the states of the individual
neurons (just as, in a bucket of water, we would not want to know the posi-
tions of all the molecules) but instead in quantities like the overlap of the
actual network state with the various stored patterns. The latter will be our
macroscopic variables. In our second application of statistical mechanics
we consider learning processes, where the synaptic weights change. For
recurrent networks this is quite complicated, because one needs to analyse
how the dynamics of the neurons reacts to the changes in the synapses.
We therefore restrict ourselves to learning in feed-forward networks, where



all connections between neurons are uni-directional, leading from some
input neurons to one or several output neurons. These networks can be
thought of as implementing a mapping from inputs to outputs, and learn-
ing (i.e. changing the synaptic weights) becomes the process of adapting the
parameters of this mapping by a student network such that it approximates
a certain target mapping (the teacher). Here our macroscopic observables
will be the quality of this approximation, as measured by generalization
and training errors.



16
Network operation:
macroscopic dynamics

In non-equilibrium statistical mechanics one aims to derive from the laws
of the underlying microscopic system x, and solve, dynamical equations for
a suitable small set of macroscopic quantities 
(x) = (�1(x), . . . , �n(x)).
In principle this can be done in two ways. The first route (clockwise in
the diagram), which is normally too complicated, would consist of solving
the microscopic stochastic equations directly. From the solution one then
calculates the values of the macroscopic quantities. The second route (anti-
clockwise) consists of first calculating from the microscopic stochastic laws
a dynamical equation for the macroscopic probability distribution Pt(
),
which then has to be solved. If applicable, this is the easiest and preferred
approach. In many cases one finds, as a further simplification, that the
macroscopic dynamics becomes deterministic for N →∞.

 Equation for pt(x)

Equation for Pt(
) Pt (
) = · · ·

pt(x) = · · ·

Pt(
) =∑
σ pt(x)δ (
−
(x))

Solve

Solve

Microscopic level:
N variables xi

�

Count
states

Count
states

�


Macroscopic level:
order parameters �µ(x)

�

Take limit
N →∞


t = · · ·
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It turns out that, for such programmes to work in analysing the
neuron dynamics in recurrent neural networks (where x will represent the
neuronal firing states), the interaction matrix must have a suitable struc-
ture. A common feature of many solvable statistical mechanical models for
neural networks is separability of the interaction matrix, which naturally
leads to a convenient description in terms of macroscopic order parameters.
When the interaction matrix is symmetric, we will see that relatively simple
behaviour results. Such systems obey what in Part V we will call detailed
balance. They always reach an equilibrium state at long times, which can be
analysed using equilibrium statistical mechanics. For non-symmetric inter-
actions, on the other hand, detailed balance is absent and dynamical studies
are the only option available; here the behaviour at long times can be much
more complicated, exhibiting, for example, limit cycles.

16.1 Microscopic dynamics in probabilistic form

We define in this section the models of stochastic neuronal dynamics that
we will consider; mathematically these will be described by Markov chains.

We choose to work with the stochastic binary units (1.29) as defined
in Part I, so we model our network as a set of N recurrently connected
neurons which are either firing (on) or quiet (off), and we describe the state
of each neuron by a binary variable σi = ±1 (with σi = 1 meaning firing
and σi = −1 not firing, and with i = 1, . . . , N ). Given the values of the N

postsynaptic potentials hi at time t , the probability to find any given micro-
scopic state σ (t +�t) = (σ1(t +�t), . . . , σN(t +�t)) at the next time step
t +�t now depends on whether neurons are updated in parallel or sequen-
tially, and is given by either (1.33) or (1.34), respectively. For the neuronal
noise distribution we will choose P(z) = 1

2 [1−tanh2
(z)], for reasons which

will become clear in Part V, so that the non-linear function g(z) will be given
by (1.32). We also abbreviate the inverse noise level as β = T −1 ∈ [0,∞).
Insertion of (1.32) into (1.33) and (1.34), and using tanh(σz) = σ tanh(z)

for σ ∈ {−1, 1}, then allows us to write the microscopic dynamics in the
following form

parallel: Prob [σ (t +�t)] =
N∏

i=1

[
1
2
+ 1

2
σi(t +�t) tanh(βhi(σ (t)))

]

(16.1)

sequential:
{
choose i randomly from {1, . . . , N}
Prob [σi(t +�t)] = 1

2 + 1
2σi(t +�t) tanh(βhi(σ (t)))

(16.2)
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with

hi(σ ) =
N∑

j=1

Jijσj + ϑi (16.3)

The Jij are the synaptic weights, which in physics are called the ‘interaction
strengths’ or ‘couplings’; the binary variables σi ∈ {−1, 1} would in phys-
ics be called ‘Ising spins’. The term ϑi represents the effects of the firing
threshold or an external input to neuron i. For β → ∞ (i.e. T → 0) we
remove the noise, and the neurons will respond deterministically to their
local fields (if indeed they are updated): they fire at the next time step if their
individual field is positive, and are silent otherwise. For β = 0 (i.e. T →∞)
noise dominates, and the neurons fire randomly, independently of the val-
ues of the local fields. We will find later that, for systems with symmetric
synapses, the parameter T is identical to the temperature in equilibrium
statistical mechanics.

Note that the microscopic laws (16.1, 16.2) can be rewritten in a number
of ways, for example via

1
2
[1+ σ tanh(βh)] = eβσh

2 cosh(βh)
= 1

1+ e−2βσh
(16.4)

where we have used the identities tanh(σz) = σ tanh(z) for σ ∈ {−1, 1},
and 1+ tanh(z) = 1+ (ez − e−z)/(ez + e−z) = ez/ cosh(z). We now set out
to write the above two versions of the stochastic dynamics fully in terms of
the (evolving) microscopic state probabilities

pt(σ ) ≡ Prob[σ (t) = σ ] (16.5)

Parallel dynamics

For parallel dynamics it is natural to simply choose the elementary time
unit to be �t = 1. We first use identity (16.4) to rewrite equation (16.1) in
terms of the state probabilities pt(σ ) as

pt+1(σ ) =
N∏

i=1

1
2
[1+ σi tanh(βhi(σ (t)))] =

N∏
i=1

eβσihi (σ (t))

2 cosh(βhi(σ (t)))

If, instead of the precise microscopic state σ (t), the probability distribution
pt(σ

′) over all possible values σ ′ of σ (t) is given, the above expression
generalizes to the corresponding average over σ ′:

pt+1(σ ) =
∑
σ ′

W(σ , σ ′)pt (σ
′) (16.6)
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with

W(σ , σ ′) =
N∏

i=1

eβσihi (σ
′)

2 cosh[βhi(σ ′)] (16.7)

The dynamics described by (16.6) is called a Markov chain. It tells us how
the probability pt(σ ) of finding the network in state σ evolves in time;
crucially, the probabilities at time t + 1 depend only on those at time t ,
but not on those at earlier times. W(σ , σ ′) is the probability of making
a transition from state σ ′ to state σ in a single iteration; it is called the
transition probability. Because probabilities are non-negative, and because
the total probability of making a transition to any state σ is one, W(σ , σ ′)
obeys

W(σ , σ ′) ∈ [0, 1]
∑
σ

W(σ , σ ′) = 1 (16.8)

If we think of pt(σ ) as a 2N -dimensional vector (indexed by the possible
states σ of the network), then (16.6) has a simple interpretation: the vector
pt+1 is simply the product of the 2N × 2N ‘transition matrix’ W with the
vector pt .

Sequential dynamics

In the case of sequential dynamics the stochasticity of the dynamics is both
in the stochastic update of the chosen neuron and in the choice of site i

to be updated; the latter is drawn randomly from the set {1, . . . , N} of all
sites. The microscopic equations (16.2) can again be transformed into an
equation describing the evolution of the microscopic state probability pt(σ ).
First, if both σ (t) and the site i to be updated are given, we find

pt+�t(σ ) = 1
2
[1+ σi tanh(βhi(σ (t)))]

∏
j �=i

δσj ,σj (t)

The product of the Kronecker deltas simply says that the states of all neurons
j �= i remain unchanged. After averaging this expression over the random
site i we obtain

pt+�t(σ ) = 1
N

N∑
i=1


1

2
[1+ σi tanh(βhi(σ (t)))]

∏
j �=i

δσj ,σj (t)
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If, instead of σ (t), only the probability distribution pt(σ ) is given, this
expression is again to be averaged over the possible states at time t :

pt+�t(σ ) =
∑
σ ′

W(σ , σ ′)pt (σ
′) (16.9)

where now

W(σ , σ ′) = 1
N

N∑
i=1

{
1
2
[1+ σi tanh(βhi(σ

′))]
∏
j �=i

δσj ,σ ′j

}
(16.10)

Equation (16.9) describes the Markov chain corresponding to the sequential
process (16.2). The relevant transition matrix can be written in a simpler
form, as follows. If we look at the ith term in the sum (16.10), which
corresponds to neuron i being picked for an update, we see that the trans-
ition probability is nonzero only in two cases: either σ and σ ′ are equal
(σ ′ = σ ), or they differ solely in the state of neuron i. We can write the
latter occurrence as σ ′ = Fiσ , where Fi is the ith spin-flip operator:

Fiσ = (σ1, . . . , σi−1,−σi , σi+1, . . . , σN)

Together with the obvious definition of Kronecker deltas for the occurrence
of equality of the two states σ and σ ′, δσ ,σ ′ =∏N

i=1 δσi ,σ ′i , we can therefore
write

W(σ , σ ′) = 1
N

N∑
i=1

{
1
2
[1+ σ ′i tanh(βhi(σ

′))]δσ ,σ ′

+ 1
2
[1− σ ′i tanh(βhi(σ

′))]δFiσ ,σ ′
}

(16.11)

If we also define

wi(σ
′) = 1

2
[1− σ ′i tanh(βhi(σ

′))] = e−βσ ′i hi (σ
′)

2 cosh(βhi(σ ′))
(16.12)

which is the probability of neuron i being in state σi = −σ ′i at time t +
�t if it was in the opposite state σ ′i at time t (i.e. the probability of the
corresponding spin i to ‘flip’, when going from time t to time t + �t), we
see that we can write the transition matrix in yet another form:

W(σ , σ ′) = δσ ,σ ′ + 1
N

N∑
i=1

[wi(σ
′)δFiσ ,σ ′ − wi(σ

′)δσ ,σ ′ ] (16.13)
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Using expression (16.13) we are able to rewrite the Markov chain (16.9) as
a so-called master equation

pt+�t(σ )− pt(σ ) = 1
N

N∑
i=1

[wi(Fiσ )pt (Fiσ )− wi(σ )pt (σ )] (16.14)

From discrete to continuous times for sequential dynamics

Equation (16.13) shows that, for sequential updating, the probability of
any one neuron σi changing state in any given time step is very small (of
order 1/N ) if N is large. That is, O(N) microscopic steps would have to be
accumulated before we will be able to detect changes in the probabilities of
the states. In order to find characteristic timescales in the dynamics which
are of order O(1) even for N → ∞, we will therefore have to choose our
time units appropriately.

Let us first proceed in an intuitive way. In order to observe changes at
a finite rate when N → ∞, we ensure that the time increment �t for a
single sequential update has duration N−1. Now, on average, in one unit
of time each neuron will be selected for updating once, so that with this
new definition one indeed ought to find observable changes on timescales
of order N0, even for large N . Choosing �t = N−1 implies that instead of
(16.14) we now have

pt+1/N(σ )− pt(σ ) = 1
N

N∑
i=1

[wi(Fiσ )pt (Fiσ )− wi(σ )pt (σ )]

With the approximation

pt+1/N(σ )− pt(σ ) ≈ 1
N

d
dt

pt (σ ) (16.15)

we then obtain a master equation with the desired properties, in continuous
time:

d
dt

pt (σ ) =
N∑

i=1

[wi(Fiσ )pt (Fiσ )− wi(σ )pt (σ )] (16.16)

The quantities wi(σ ), defined in (16.12), have now come to play the role
of transition rates: in any short interval dt of rescaled time, the probability
for neuron i to change state (or spin i to flip) is wi(σ )dt . The two terms
in the square brackets in (16.16) have a simple interpretation: the first one
tells us that we can get to state σ by starting in state Fiσ and flipping spin
i; this process increases the probability of being in state σ and therefore
has a positive sign. The second term tells us that we can also leave state σ
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and go to state Fiσ by flipping spin i; this reduces pt(σ ) and therefore has
a negative sign.

We have obtained (16.16) by using the approximation (16.15). One can
show that this approximation becomes exact in the limit N →∞. An eleg-
ant and more precise alternative route towards the desired continuous time
formulation is to construct a modified sequential update process, which is
exactly described by (16.16), for any value of N , and then to show that
this becomes identical to the original sequential dynamics for N →∞. For
the modified process, we let the times t at which the state of the network
is updated (which in our intuitive derivation were fixed to t = 0, 1/N ,
2/N , . . .) be chosen stochastically. Our new Markov process, with state
probabilities p̂t (σ ), will then be described by

p̂t (σ ) =
∑
m≥0

πm(t)pm(σ ) =
∑
m≥0

πm(t)
∑
σ ′

Wm(σ , σ ′)p0(σ
′)

Here t is again a continuous time variable (now even for finite N ), Wm

is the m-fold product of the transition matrix W with itself, and πm(t)

specifies the probability that up to time t ∈ IR exactly m discrete updates
have taken place. To be specific, let us assume that the probability for an
update to occur within an infinitesimal time interval dt is given by dt/τ̄ .
We choose τ̄ = 1/N so that on average we get again one neuron update in
a time interval of duration 1/N , as in the previous intuitive approach. The
time intervals τ between individual neuron updates can then be shown to
have an exponential probability distribution:

P(τ) = τ̄−1e−τ/τ̄

One then also finds that at any given t the probabilities πm(t) (with m ∈
{0, 1, 2, . . .}) are given by a Poisson distribution with mean t/τ̄ :

πm(t) = 1
m!

(
t

τ̄

)m

e−t/τ̄ (16.17)

which has the convenient properties

d
dt

πm≥1(t) = 1
τ̄
[πm−1(t)− πm(t)] d

dt
π0(t) = −1

τ̄
π0(t)

This allows us to write for the temporal derivative of p̂t (σ ):

τ̄
d
dt

p̂t (σ ) =
∑
m≥1

πm−1(t)
∑
σ ′

Wm(σ , σ ′)p0(σ
′)−

∑
m≥0

πm(t)

×
∑
σ ′

Wm(σ , σ ′)p0(σ
′) =

[∑
σ ′

W(σ , σ ′)p̂t (σ
′)
]
− p̂t (σ )
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Using τ̄ = 1/N and the form of the transition matrix (16.13), this then
gives us exactly the master equation (16.16). The proof that this master
equation also describes our original sequential update process for N →∞
is completed with the observation that for fixed t the standard deviation
of the fluctuations of the number of updates m (as given by the Poisson
distribution πm(t)) around its mean value Nt equals

√
m = √Nt . This

means that the fluctuations of m/N around its mean value t are
√

t/N . For
N →∞ we therefore have m/N = t with probability one, and the original
and modified sequential update processes indeed become identical.

Terminology

In order to simplify our tapping into the existing reservoir of statistical
mechanical techniques, we have en passant already started to use quite a bit
of terminology from physics, and from statistical mechanics in particular.
For ease of reference we now summarize in a ‘dictionary’ table the neural
versus the statistical mechanics names for some of the more common objects
and variables that we will have to deal with:

Neural networks Statistical mechanics

Neuron on (firing)/off (quiet) σi = ±1 Spin up/down
Change of neuron state on↔ off σi = +1↔ −1 Spin flip up↔ down
Synaptic weight Jij Interaction strength
External input, negative threshold ϑi External field
Postsynaptic potential hi Local field
Noise parameter β = 1/T Inverse temperature
Set of all possible network states {σ } Phase space

16.2 Sequential dynamics

In this section we begin to look at macroscopic dynamics proper. In par-
ticular, we show how for sequential dynamics one can calculate from
the microscopic stochastic evolution equations (at the level of individual
neurons) differential equations for the probability distribution of suitably
defined macroscopic state variables. For mathematical convenience our
starting point will be the continuous-time master equation (16.16), rather
than the discrete version (16.13). We will consider several classes of models,
with and without detailed balance (see Part V), and show how the macro-
scopic equations can be used to illuminate and understand the dynamics of
neural network operation.
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A toy model

Let us first illustrate the basic ideas behind our methods with the help of a
simple toy model:

Jij = J

N
ηiξj ϑi = 0 (16.18)

The variables ηi and ξi are arbitrary, but may not depend on N . We observe
that for ηi = ξi ∈ {−1, 1} (random) and J > 0 this is just the Hopfield model
(3.18) with only one stored pattern, apart from the presence in (16.18) of
additional self-interactions Jii . The local fields become hi(σ ) = Jηim(σ )

with m(σ ) = N−1 ∑
k ξkσk. Since they depend on the microscopic state

σ only through the value of m, the latter quantity is a natural candidate
observable for a macroscopic level of description. The probability of finding
the value m(σ ) = m at time t is given by (see also the discussion on page
416)

Pt (m) =
∑
σ

pt(σ )δ(m−m(σ )) (16.19)

Its time derivative is obtained by inserting (16.16):

∂

∂t
Pt (m) =

∑
i

∑
σ

δ(m−m(σ ))[wi(Fiσ )pt (Fiσ )− wi(σ )pt (σ )]

Note that on the left-hand side we now write the time-derivative as ∂/∂t ,
to make clear that this derivative is taken at fixed m. We can simplify this
expression by relabelling the summation variable σ → Fiσ in the first term;
this gives

∂

∂t
Pt (m) =

∑
i

∑
σ

wi(σ )pt (σ )[δ(m−m(Fiσ ))− δ(m−m(σ ))]

From the simple relation m(Fiσ ) = m(σ ) − 2σiξi/N it follows that the
arguments of the two δ-functions differ only by an O(1/N) term, so we can
make a Taylor expansion of the right-hand side:

∂

∂t
Pt (m) =

∑
i

∑
σ

wi(σ )pt (σ )

[(
2
N

σiξi

)
∂

∂m
δ(m−m(σ ))+O(N−2)

]

The m-derivative can be pulled in front of the sum; none of the other terms
depend on m, and upon reordering the i-dependent terms we are left with

∂

∂t
Pt (m) = ∂

∂m

[∑
σ

pt(σ )δ(m−m(σ ))
2
N

∑
i

ξiσiwi(σ )

]
+O(N−1)
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Inserting the expression (16.12) for the transition rates and the local fields
gives

∂

∂t
Pt (m) = − ∂

∂m

{∑
σ

pt(σ )δ(m−m(σ ))

×
[

1
N

N∑
i=1

ξi tanh(βhi(σ ))−m(σ )

]}
+O(N−1)

(16.20)

So far everything is rather general. In fact, it looks like we have not yet
gained much: the evolution equation for Pt (m) still involves the unknown
microscopic probability distribution pt(σ ). The key simplification which
allows us to eliminate pt(σ ) is that, for the model at hand, the local fields
hi(σ ) = ηiJm(σ ) depend on the state σ only through the value of our
parameter m(σ ). The δ-function in (16.20) furthermore constrains m(σ ) to
equal m, which is simply a number and no longer a function of σ . We can
therefore now carry out the sum over states σ and get

∂

∂t
Pt (m) = − ∂

∂m

{
Pt (m)

[
1
N

N∑
i=1

ξi tanh(ηiβJm)−m

]}
+O(N−1)

(16.21)

In the thermodynamic limit N → ∞ only the first term survives and we
have a closed equation for the macroscopic probability distribution Pt (m):

∂

∂t
Pt (m) = − ∂

∂m
[Pt (m)F (m)] (16.22)

with

F(m) = lim
N→∞

1
N

N∑
i=1

ξi tanh(ηiβJm)−m (16.23)

Equation (16.22) is called a Liouville equation. As shown in Appendix F,
its solution, for any function F(m), is the probability density

Pt (m) =
∫

dm0 P0(m0) δ(m−m∗(t ; m0))

where m∗(t ; m0) denotes the solution of the differential equation

d
dt

m∗ = F(m∗) for the initial condition m∗(0) = m0 (16.24)
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Our solution Pt (m) describes deterministic evolution; the only uncertainty
in the value of m is due to uncertainty in initial conditions. If at t = 0
the quantity m is known exactly, we see that this will remain the case
for finite timescales, with the value of m evolving in time according to
(16.24). Note that for ηi = ξi , we thereby also recover the macroscopic
laws for the Hopfield model with a single pattern.26 In that particular case,
the function F(m) controlling the time evolution (16.24) of m becomes
F(m) = tanh(βJm)−m, and we obtain

d
dt

m = tanh(βJm)−m (16.25)

For t →∞, m will therefore converge to a point where tanh(βJm)−m = 0,
that is, m = tanh(βJm). In Part V we will find that the solutions of
this equation provide a macroscopic characterization of thermodynamic
equilibrium for these models. The detailed balance condition for a
stochastic dynamics to converge to equilibrium will be discussed in depth
in Section 20.2.

In our derivation of (16.21), it may seem strange that we have made a
Taylor expansion of a δ-function, which is not exactly a smooth object.
That this is valid can be confirmed by a a slightly more elaborate derivation
using so-called test functions; see also Appendix F. Let G(m) be such a
test function (smooth, that is, with continuous derivatives of any order,
and nonzero only within a bounded interval). The average of such a test
function over Pt is given by

〈
G
〉
t
=

∫
dm G(m)Pt (m) =

∑
σ

G(m(σ ))pt (σ ) (16.26)

One can now go through exactly the same calculation as above to
work out the time-derivative of this average; because G(m) is assumed
smooth, the Taylor expansion is now unproblematic. One finds
(with G′ ≡ dG/dm):

d
dt
〈G〉t =

∫
dmPt (m)

[
1
N

N∑
i=1

ξi tanh(ηiβJm)−m

]
G′(m)+O(N−1)

(16.27)

26 Inclusion or exclusion of the weak self-interactions Jii in (16.18) is seen to make no
difference to the derivation of our macroscopic laws, for N →∞.
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Using (16.26) on the left-hand side, and integrating by parts on the right-
hand side, gives us

∫
dm

∂

∂t
Pt (m)G(m)

= −
∫

dm
∂

∂m

{
Pt (m)

[
1
N

N∑
i=1

ξi tanh(ηiβJm)−m

]}
G(m)+O(N−1)

Since this identity holds for any test function G(m), the previous result
(16.21) inevitably follows.

The general formalism

Let us now allow for less trivial choices of the interaction matrix and try to
calculate the evolution in time of a given set of macroscopic state variables

(σ ) ≡ (�1(σ ), . . . , �n(σ )) in the thermodynamic limit N → ∞. At this
stage there are no restrictions yet on the form or the number n of these
state variables; such conditions, however, arise naturally if we require the
evolution of the variables 
 to obey a closed set of deterministic laws, as
we will show below. The ensemble probability of finding the system in
macroscopic state 
 is given by:

Pt (
) =
∑
σ

pt(σ )δ(
−
(σ ))

The time derivative of this distribution is obtained by inserting (16.16). If in
those parts of the resulting expression which contain the spin-flip operators
Fi we subsequently relabel the summation index σ → Fiσ , we arrive at

∂

∂t
Pt (
) =

∑
i

∑
σ

pt(σ )wi(σ )[δ(
−
(Fiσ ))− δ(
−
(σ ))]

Writing �µ(Fiσ ) = �µ(σ ) + �iµ(σ ) and making a Taylor expansion
in powers of {�iµ(σ )}, we finally obtain the so-called Kramers–Moyal
expansion:

∂

∂t
Pt (
) =

∑
�≥1

(−1)�

�!
n∑

µ1=1

· · ·
n∑

µ�=1

∂�

∂�µ1 · · · ∂�µ�

[Pt (
)F (�)
µ1···µ�

(
; t)] ,
(16.28)

with

F (�)
µ1···µ�

(
; t) =
〈 N∑

j=1

wj(σ )�jµ1(σ ) · · ·�jµ�
(σ )

〉

;t
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defined in terms of the conditional (or sub-shell) averages 〈· · ·〉
;t ,

〈· · ·〉
;t =
∑

σ pt(σ ) (· · · ) δ(
−
(σ ))∑
σ pt(σ )δ(
−
(σ ))

As in the previous toy model, expansion (16.28) is to be interpreted in
a distributional sense, that is, only to be used in expressions of the form∫

d
Pt (
)G(
) with sufficiently smooth functions G(
), so that all deriv-
atives are well-defined and finite. Furthermore, (16.28) will only make sense
if the ‘discrete derivatives’ �jµ(σ ), which measure the sensitivity of our
macroscopic quantities to single spin flips, are sufficiently small. This is to
be expected for suitably defined macroscopic state variable in the limit of
large system sizes. Indeed, whereas for finite N any state variable �µ(σ )

can only assume a finite number of possible values, we may in the limit
N → ∞ expect to find smooth probability distributions for macroscopic
quantities which depend sufficiently homogeneously on a sufficiently large
number of microscopic variables. The probability distribution of state vari-
ables �µ(σ ) which only depend on a small number of neurons, however,
will not become smooth, whatever the system size.

The first (� = 1) term in the series (16.28) is called the flow term.
Retaining only this term leads us to a Liouville equation which describes
deterministic flow in 
 space, driven by the flow field F (1), as in the toy
model. Including the second (� = 2) term as well leads us to a Fokker–
Planck equation, which in addition to the flow also describes diffusion
of the macroscopic probability density Pt (
), generated by the diffusion
matrix {F (2)

µν }. Note, however, that in general (16.28) need not necessarily
constitute a systematic expansion in terms of some small parameter.

According to (16.28) a sufficient condition for the observables 
(σ ) to
evolve in time deterministically, in the limit N →∞, is:

lim
N→∞

∑
�≥2

1
�!

n∑
µ1=1

· · ·
n∑

µ�=1

N∑
j=1

〈|�jµ1(σ ) · · ·�jµ�
(σ )|〉
;t = 0 (16.29)

since in that case for N → ∞ only the � = 1 term in expansion (16.28) is
retained. Note that the distributional interpretation of the Kramers–Moyal
expansion has been used to obtain the condition (16.29). It ensures that in
evaluating time derivatives of 〈G(
)〉t for sufficiently smooth G(
) in terms
of the expansion (16.28), the partial derivatives ∂/∂�µ appearing in the
expansion can be made to apply to the function G(
) alone, via integration
by parts; since the latter are (uniformly) bounded by assumption, the partial
derivatives need not be included in the condition (16.29). Note also that
the bound |wj(σ )| < 1 has been used.
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In the simplest instance where the state variables �µ(σ ) scale similarly
in the sense that all derivatives �jµ(σ ) are of the same order in the system
size N (i.e. there is a monotonic function �̃N such that �jµ(σ ) = O(�̃N)

for all j and µ), the above criterion becomes:

lim
N→∞ n�̃N

√
N = 0 (16.30)

If for a given set of macroscopic quantities the condition (16.29) is satisfied,
we can for large N describe the evolution of the macroscopic probability
density by the Liouville equation:

∂

∂t
Pt (
) = −

n∑
µ=1

∂

∂�µ

[Pt (
)F (1)
µ (
; t)]

the solution of which describes deterministic flow:

Pt (
) =
∫

d
0 P0(
0)δ(
−
∗(t ; 
0))

d
dt


∗(t ; 
0) = F (1)(
∗(t ; 
0); t) 
∗(0; 
0) = 
0 (16.31)

In taking the limit N → ∞, however, we have to keep in mind that the
resulting deterministic theory is obtained by taking this limit for finite t .
According to (16.28), the � > 1 terms do come into play for sufficiently
large times t ; for N →∞, however, these times diverge by virtue of (16.29).

Equation (16.31) will in general not be autonomous; tracing back the
origin of the explicit time dependence in the right-hand side of (16.31)
one finds that in order to calculate F (1) one needs to know the microscopic
probability density pt(σ ). This, in turn, requires solving the master equation
(16.16), which is exactly what one would like to avoid. However, there are
elegant ways of avoiding this pitfall. We will discuss two constructions that
allow for the elimination of the explicit time dependence in the right-hand
side of (16.31) and thereby turn the state variables 
 and their dynamic
equations (16.31) into an autonomous level of description.

The first way out is to choose the macroscopic state variables ω in such a
way that there is no explicit time dependence in the flow field F (1)(
; t) (if
possible). According to the definition of the flow field, this implies making
sure that there exists a vector field �(
) such that

lim
N→∞

N∑
j=1

wj(σ )�j (σ ) = � (
(σ )) (16.32)
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(with �j ≡ (�j1, . . . , �jn)) in which case the time dependence of F (1) drops
out, and the macroscopic state vector evolves in time according to:

d
dt


 = �(
)

This is the situation which we encountered earlier in our toy model. The
advantage is that no restrictions need to be imposed on the initial micro-
scopic configuration; the disadvantage is that for the method to apply,
a suitable separable structure of the interaction matrix is required. If, for
instance, the macroscopic state variables �µ depend linearly on the micro-
scopic state variables σ , that is, 
(σ ) = N−1 ∑N

j=1 ωj σj , then we obtain
with the transition rates (16.12):

lim
N→∞

N∑
j=1

wj(σ )�j (σ ) = lim
N→∞

1
N

N∑
j=1

ωj tanh(βhj (σ ))−


In this case it turns out that the only further condition necessary for (16.32)
to hold is that all local fields hk must (to leading order in N ) depend on
the microscopic state σ only through the values of the macroscopic state
variables 
. Since the local fields depend linearly on σ this, in turn, implies
that the interaction matrix must be separable.

If it is not possible to find a set of macroscopic state variables that satisfies
both conditions (16.29, 16.32), additional assumptions or restrictions are
needed. One natural assumption that allows us to close the hierarchy of
dynamical equations and obtain an autonomous flow for the state variables

 is to assume equi-partitioning of probability in the 
-subshells of the
ensemble, which allows us to make the replacement:

F (1)(
; t) → F equi(
) =
∑

σ δ(
−
(σ ))
∑

j wj (σ )�j (σ )∑
σ δ(
−
(σ ))

Whether or not the above way of closing the set of equations is
allowed will depend on the extent to which the relevant stochastic vector∑N

j=1 wj(σ )�j (σ ) is homogeneous within the 
-subshells of the ensemble.
At t = 0 there is no problem, since one can always choose the initial micro-
scopic distribution p0(σ ) to obey equi-partitioning. In the case of extremely
diluted networks this situation is subsequently maintained by assuring that,
due to the extreme dilution, no correlations can build up in finite time. The
advantage of extreme dilution is that less strict requirements on the struc-
ture of the interaction matrix are involved. The disadvantage is that the
required sparseness of the interactions compared to the system size does
not correspond to biological reality.
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Next we will show how the above formalism can be applied to networks
for which the matrix of interactions Jij has a separable form; this includes
most symmetric and non-symmetric Hebbian-type attractor models. We
will restrict ourselves to models with ϑi = 0; the introduction of nonzero
thresholds is straightforward and does not pose new problems.

Separable models: description at the level of sublattice
magnetizations

Let us consider the following class of models, in which the interaction matrix
have the form

Jij = 1
N

Q(ξ i , ξ j ) ξ i = (ξ1
i , . . . , ξp

i ) (16.33)

The components ξ
µ
i are assumed to be drawn from a finite discrete set

� which contains n� elements; again the variables ξ
µ
i are not allowed to

depend on N . As usual in these models they represent the information or
patterns to be stored or processed. The Hopfield model, for instance, corres-
ponds to choosing Q(x, y) = x ·y and � = {−1, 1}. One can now introduce
a partition of the system {1, . . . , N} into n

p
� so-called sublattices Iη:

Iη = {i | ξ i = η} {1, . . . , N} =
⋃
η

Iη η = (η1, . . . , ηp) ∈ �p

The number of spins in sublattice Iη will be denoted by |Iη| and is assumed
to be large. If we choose as our macroscopic state variables the average
firing rates (or ‘magnetizations’) within these sublattices, we are able to
express the fields hk solely in terms of macroscopic quantities:

mη(σ ) = 1
|Iη|

∑
i∈Iη

σi hk(σ ) =
∑
η

pηQ(ξ k, η)mη (16.34)

with the relative sublattice sizes pη = |Iη|/N . If all pη are of the same order
in N (which, for example, is the case if the vectors ξ i have been drawn at
random from the set �p) we may write �jη = O(n

p
�N−1) and use (16.30).

The evolution in time of our sublattice magnetizations is then found to be
deterministic in the thermodynamic limit if

lim
N→∞

p

ln N
= 0

Furthermore, condition (16.32) is seen to hold, since

N∑
j=1

wj(σ )�jη(σ ) = tanh
(

β
∑
η′

pη′Q(η, η′)mη′
)
−mη
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We may conclude that the evolution in time of the sublattice magnetizations
is governed by the following autonomous set of differential equations:

d
dt

mη = tanh
(

β
∑
η′

pη′Q(η, η′)mη′
)
−mη (16.35)

The above procedure does not require symmetry of the interaction matrix.
In the symmetric case Q(x, y) = Q(y, x) the system will approach equilib-
rium; if the kernel Q(., .) is positive definite this can be shown, for instance,
by inspection of the Lyapunov function L[{mη}]:

L[{mη}] = 1
2

∑
ηη′

pηmηQ(η, η′)mη′pη′

− 1
β

∑
η

pη ln cosh
(

β
∑
η′

Q(η, η′)mη′pη′
)

which is bounded from below, and which obeys:

d
dt

L = −
∑
ηη′

(
pη

d
dt

mη

)
Q(η, η′)

(
pη′

d
dt

mη′
)
≤ 0 (16.36)

Note that from the sublattice magnetizations one can also quite easily
calculate the overlaps of the network state with the various stored pat-
terns. These overlaps can be written as averages over the n

p
� sublattice

magnetizations via:

mµ(σ ) = 1
N

N∑
i=1

ξ
µ
i σi =

∑
η

pηη
µmη (16.37)

Whether or not, in turn, there exists an autonomous set of laws at the level
of overlaps depends on the form of the kernel Q(., .).

Simple examples of relevant models of the type (16.33), the dynamics
of which is for large N described by equation (16.35), are for instance the
ones where one applies a non-linear operation � to the standard Hopfield
interactions:

Q(x, y) = �(x · y): Jij = 1
N

�

( p∑
µ=1

ξ
µ
i ξ

µ
j

)
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with �(0) = 0 and �′(x) ≥ 0. This non-linearity could result from, for
example, a clipping procedure,

�(x) =


−K, for x ≤ −K

x, for −K < x < K

K, for x ≥ K

or from retaining only the sign of the original interactions (21.2):

�(x) = sgn(x)

It turns out that the effect of introducing such non-linearities is of a quantit-
ative nature only, giving rise to little more than a re-scaling of critical noise
levels and storage capacities. We will not go into full details here, but illus-
trate this statement with a simple example, by working out our equations
for p = 2 (i.e. a network with two stored patterns) and randomly drawn
pattern bits ξµ ∈ {−1, 1}, where there are only four sublattices, and where
pη = 1

4 for all η. Using �(0) = 0 and �(−x) = −�(x), as is the case for
the above examples, we obtain:

d
dt

mη = tanh
(

1
4

β�(2)(mη −m−η)

)
−mη (16.38)

This demonstrates that the choice made for the non-linearity �(x) shows
up only as a re-scaling of the noise level as measured by β, at least for the
simple case p = 2. From (16.38) we further obtain (d/dt)(mη + m−η) =
−(mη + m−η). This shows that the system decays exponentially towards
a macroscopic state where, according to (16.37), all sublattices contribute
equally to the overlaps in pairs: mη = −m−η for all η. If at t = 0 this is
already the case, we simply find decoupled equations of the form (16.25)
for each of the four observables mη.

Separable models: description at the level of overlaps

A more general version of the toy model (16.18), which still allows for a
description of the dynamics in terms of macroscopic overlap parameters,
and does not require the intricacies of the sublattice description discussed
above, is obtained by choosing

Jij = 1
N

p∑
µν=1

ξ
µ
i Aµνξ

ν
j ξ i = (ξ1

i , . . . , ξp
i ) (16.39)
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We will see that now the components ξ
µ
i need not be drawn from a finite

discrete set,27 as long as they do not depend on N . The Hopfield model
corresponds to the choice Aµν = δµν and ξ

µ
i ∈ {−1, 1}. The fields hk can

now be written in terms of the overlap order parameters mµ:

mµ(σ ) = 1
N

N∑
i=1

ξ
µ
i σi hk(σ ) = ξ k ·Am(σ ) m = (m1, . . . , mp)

(16.40)
Since now �iµ(σ ) = mµ(Fiσ ) − mµ(σ ) = O(N−1), we see that condition
(16.30) is met as soon as we choose the number p of patterns such that
limN→∞ p/

√
N = 0. In the thermodynamic limit, we can then be sure

that the evolution in time of the overlap vector m will be governed by an
autonomous set of differential equations. If the vectors ξ k are drawn at
random according to some distribution ρ(ξ) these dynamical laws become,
by analogy with (16.24):

d
dt

m = 〈ξ tanh (βξ ·Am)〉ξ −m 〈f (ξ)〉ξ =
∫

dξ ρ(ξ)f (ξ) (16.41)

Again symmetry of the interaction matrix is not required. For specific non-
symmetric choices for the matrix A stable limit cycle solutions of (16.41) can
be found, while in the symmetric case Aµν = Aνµ the system will approach
equilibrium.28

Figure 16.1 shows in the m1, m2-plane the result of solving the mac-
roscopic laws (16.41) numerically for p = 2, randomly drawn pattern
bits ξ

µ
i ∈ {−1, 1}, and two specific choices of the matrix A. The first

choice (upper row) corresponds to the Hopfield model; as the noise level
T increases (i.e. β decreases) the amplitudes of the four attractors (corres-
ponding to the two patterns ξµ and their mirror images −ξµ) continuously
decrease, until at the critical noise level Tc = 1 they merge into the trivial
attractor m = (0, 0). The second choice corresponds to a non-symmetric
model, that is, one without detailed balance. At the macroscopic level of
description and on finite timescales the system clearly does not approach
equilibrium. Macroscopic order now manifests itself in the form of a limit
cycle, provided the noise level T is below the critical value Tc = 1 where
this limit cycle is destroyed. To what extent the laws (16.41) are in agree-
ment with the result of performing the actual numerical simulations in finite
systems is illustrated in Figure 16.2.

27 Continuous {ξµ
i } can in fact be accommodated in the earlier sublattice formalism, but

then require the introduction of functional order parameters.
28 The Lyapunov function (16.36) for positive definite matrices A now becomes L[{mµ}] =

1
2m ·Am− β−1〈ln cosh (βξ ·Am)〉ξ .
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Figure 16.1 Flow diagrams obtained by numerically solving the deterministic overlap
equations (16.41) for p = 2. Upper row: Aµν = δµν (the Hopfield model); lower row:

A =
(

1 1
−1 1

)
. The noise level T is related to the parameter β via β = T −1. For both models

the critical noise level is given by βc = T −1
c = 1.

Figure 16.2 Comparison between simulation results for finite systems (N = 1000 and
N = 3000) and the analytical prediction for the evolution of the order parameters (m1, m2)

from the macroscopic flow equations; here p = 2, T = β−1 = 0.8, and A =
(

1 1
−1 1

)
.

As a second simple application of the flow equation (16.41) we turn to
the relaxation times associated with the attractors of the Hopfield model,
corresponding to the choice Aµν = δµν . Expanding (16.41) near a stable
fixed point m∗, that is, putting m = m∗+x with |x| � 1, gives the linearized
equation

d
dt

xµ =
[
β
∑
ν

〈ξµξν[1− tanh2
(βξ ·m∗)]〉ξ − δµν

]
xν +O(x2) (16.42)
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The Jacobian of (16.41), which here determines the linearized equation
(16.42), turns out to be minus the (symmetric) curvature matrix D which
in Section 21.1 will play a central role in the stability analysis of the phases
of the Hopfield model. This matrix has entries

Dµν = δµν − β〈ξµξν[1− tanh2
(βξ ·m∗)]〉ξ

The form of (16.42), that is, dx/dt = −Dx+O(x2), shows that the asymp-
totic relaxation towards any stable attractor is generally exponential, with
a characteristic time τ given by the inverse of the smallest eigenvalue of the
p × p matrix D. If, in particular, for the fixed point m∗ we substitute an
n-mixture state (which is a solution of the form m� = mn(1, . . . , 1, 0, . . . , 0),
with n-components equal to mn and all others zero), and subsequently
transform (16.42) to the basis where the corresponding curvature matrix
D(n) is diagonal, x → x̃, we obtain

x̃λ(t) = x̃λ(0) e−tD
(n)
λ

where the D
(n)
λ are the eigenvalues of D(n). It follows that τ−1 = minλ D

(n)
λ .

We will calculate this quantity explicitly in Section 21.1; here we simply
show the results29 of this calculation in Figure 16.3. The relaxation time for
the n-mixture attractors is seen to increase monotonically with the degree of
mixing n, for any temperature. This implies that the mixtures with smaller
values of n are more stable than those with larger n.

For each value of n, there is also seen to be a critical value of the noise level
T where the corresponding relaxation time diverges, indicating loss of sta-
bility for that particular mixture state m�. Each of these critical values will
later be shown to correspond to a transition where the associated macro-
scopic state m∗ ceases to define a local minimum of the so-called free energy
surface. At these points the Jacobian develops a zero eigenvalue, the relaxa-
tion time diverges, and the long-time behaviour is no longer obtained from
the linearized equation. This gives rise to so-called critical slowing down,
that is, power law relaxation as opposed to exponential relaxation. For
instance, at the critical temperature Tc = 1 we find by expanding (16.41):

d
dt

mµ = mµ

(
2
3

m2
µ −m2

)
+O(m5)

One can show that this gives rise to a relaxation towards the trivial
macroscopic fixed point m = 0, of the form m ∼ t−1/2.

29 Note that we show only results for odd values of n; it will be shown in Section 21.1
that mixture states with even values of n are always unstable solutions of our macroscopic
laws.
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T

τn

Figure 16.3 Asymptotic relaxation times τn describing relaxation towards the n-mixture
states m� = mn(1, . . . , 1, 0, . . . , 0) of the Hopfield model, as functions of the noise level T .
From bottom to top: n = 1, 3, 5, 7, 9, 11, 13.

Looking back at the results of this section, we finally note that if one
is willing to pay the price of restricting oneself to the more limited class
of models (16.39) (as opposed to the more general class (16.33)) and to
the more global level of description in terms of p overlap parameters mµ

(as opposed to the n
p
� sublattice magnetizations mη), then there are two

rewards from an operational point of view. First, there are no restrictions
on the stored quantities ξ

µ
i (for instance, they are allowed to be real-valued).

Second, the number p of patterns stored can be much larger for the determ-
inistic autonomous dynamical laws to hold; we only require p � √N

instead of p � ln N .

16.3 Parallel dynamics

We now turn to the case of parallel dynamics, that is, the discrete-time
stochastic microscopic laws (16.6). The evolution of the macroscopic prob-
ability distribution will now be described by discrete mappings, instead of
differential equations.

The toy model

Let us first see what happens to our toy model (16.18) if we switch from
sequential to parallel dynamics. As before we try to describe the dynamics at
the macroscopic level of the quantity m(σ ) = N−1 ∑

k ξkσk. The evolution
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of the macroscopic probability distribution Pt (m) is obtained without
difficulty by combining (16.6) with the definition (16.19):

Pt+1(m) =
∑
σσ ′

δ(m−m(σ ))W(σ , σ ′)pt (σ
′)

=
∫

dm′ W̃t (m, m′)Pt (m
′) (16.43)

with

W̃t (m, m′) =
∑

σσ ′ δ(m−m(σ ))δ(m′ −m(σ ′))W(σ , σ ′)pt (σ
′)∑

σ ′ δ(m
′ −m(σ ′))pt (σ ′)

We next insert the expression (16.7) for the transition probabilities and
the local fields. Due to the fact that the fields depend on the microscopic
state σ only through m(σ ), the microscopic distribution pt(σ ) drops out
of the above expression for the kernel W̃t which thereby loses its explicit
time-dependence, W̃t (m, m′)→ W̃ (m, m′):

W̃ (m, m′) = e−
∑

i ln cosh(βJm′ηi)〈δ(m−m(σ ))eβJm′
∑

i ηiσi 〉σ
with 〈· · ·〉σ = 2−N

∑
σ · · · . Inserting the integral representation for the

δ-function (see Appendix F) allows us to perform the spin average, giving

W̃ (m, m′) = βN

2π

∫
dk eN�(m,m′,k)

�(m, m′, k) = iβkm+ 〈ln cosh β(Jηm′− ikξ)〉η,ξ − 〈ln cosh β(Jηm′)〉η
where 〈f (η)〉η = N−1 ∑

i f (ηi). Since the kernel W̃ (m, m′) is normalized
by construction, that is,

∫
dm W̃(m, m′) = 1, we find that for N → ∞

the expectation value with respect to W̃ (m, m′) of any sufficiently smooth
function f (m) will be determined only by the value m∗(m′) of m in the
relevant saddle point30 of �:

∫
dm f (m)W̃(m, m′) =

∫
dm dk f (m) eN�(m,m′,k)∫

dm dk eN�(m,m′,k)
→ f (m∗(m′)) (N →∞)

Variation of � with respect to k and m gives the two saddle point equations:

m = 〈ξ tanh β(Jηm′ − ξk)〉η,ξ k = 0

30 The reason for this is that, for any given m′, all values of the integration variables (m, k)

other than that where � is maximal will give vanishing contributions to the integral for
N →∞, at least compared to that generated around the maximum of �. For a more detailed
discussion of this and more general so-called saddle point integrals we refer to Appendix I.
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We may now conclude that limN→∞ W̃ (m, m′) = δ(m − m∗(m′)) with
m∗(m′) = 〈ξ tanh(βJηm′)〉η,ξ , and that the macroscopic equation (16.43)
becomes:

Pt+1(m) =
∫

dm′ δ(m− 〈ξ tanh(βJηm′)〉η,ξ )Pt (m
′) (N →∞)

This relation, of course, describes deterministic evolution. If at t = 0 we
know m exactly, this will remain so for finite timescales, and m will evolve
according to a discrete version of the flow equation (16.24) for sequential
dynamics:

mt+1 = 〈ξ tanh(βJηmt)〉η,ξ (16.44)

The general formalism

We now attempt once more to generalize the above approach to less trivial
classes of models. As for the sequential case we will find in the limit N →∞
closed deterministic evolution equations for more general sets of intensive
macroscopic state variables 
(σ ) = (�1(σ ), . . . , �n(σ )), provided the local
alignment fields (16.3) depend on the microscopic state σ only through the
values of 
(σ ) in the limit of infinitely large networks, and if the number n

of state variables required for this to be true is not too large.
The evolution of the ensemble probability of finding the system in

macroscopic state 
,

Pt (
) =
∑
σ

pt(σ )δ(
−
(σ ))

is obtained by combining the Markov chain (16.6) with the definition of
the transition probabilities (16.7) and the local fields (16.3):

Pt+1(
) =
∫

d
′ W̃t (
, 
′)Pt (

′) (16.45)

with

W̃t (
, 
′) =
∑

σσ ′ δ(
−
(σ ))δ(
′ −
(σ ′))W(σ , σ ′)pt (σ
′)∑

σ ′ δ(

′ −
(σ ′))pt (σ ′)

= 〈
δ(
−
(σ ))

〈
e
∑

i [βσihi (σ
′)−ln cosh(βhi(σ

′))]〉

′;t

〉
σ

(16.46)

with an ordinary homogeneous spin-average 〈· · ·〉σ = 2−N
∑

σ (· · · ), and
with the sub-shell (or conditional) spin-average, defined as before as

〈f (σ )〉
;t =
∑

σ f (σ )δ(
−
(σ ))pt (σ )∑
σ δ(
−
(σ ))pt (σ )
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It is clear from (16.46) that in order to find autonomous macroscopic
equations, that is, for the unknown microscopic distribution pt(σ ) to drop
out, the local alignment fields must depend on the microscopic state σ only
through the macroscopic quantities 
(σ ):

hi(σ ) = hi(
(σ ))

In this case W̃t loses its explicit time-dependence, W̃t (
, 
′) → W̃ (
, 
′).
Inserting integral representations for the δ-functions then leads to:

W̃ (
, 
′) =
(

βN

2π

)n ∫
dK eN�(
,
′,K)

� = iβK ·
+ 1
N

ln
〈
eβ[∑i σihi (


′)−iNK·
(σ )]〉
σ
− 1

N

∑
i

ln cosh(βhi(

′))

Using the normalization relation
∫
d
 W̃ (
, 
′) = 1, we can write

expectation values with respect to W̃ (
, 
′) of macroscopic quantities
f (
) as

∫
d
 f (
)W̃ (
, 
′) =

∫
d
 dK f (
) eN�(
,
′,K)∫

d
 dK eN�(
,
′,K)
(16.47)

This type of integral, involving an exponential dependence on N , can again
for N → ∞ be evaluated using the saddle point (or ‘steepest descent’)
method; see Appendix I. For this to apply in determining the leading order
in N of the average (16.47), we encounter at this stage a restriction on the
number n of our macroscopic quantities, since n determines the dimension
of the integrations concerned. This restriction can be found by expanding
� around its maximum �∗. After defining x = (
, K), of dimension 2n,
and after translating the location of the maximum to the origin, one has

�(x) = �∗ − 1
2

∑
µν

xµxνAµν +
∑
µνρ

xµxνxρBµνρ +O(x4)

Because after the translation � is maximal at x = 0, we know that
∇x�|x=0 = 0, so there are no linear terms in this Taylor expansion. Hence

∫
dx eN�(x) = eN�∗

∫
dx e

−Nx·Ax/2+N
∑

µνρ xµxνxρBµνρ+O(Nx4)

= eN�∗N−n

∫
dy e−y·Ay/2[1+O(n2/N)]
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and therefore

1
N

ln
∫

dx eN�(x) = �∗ + n

N
ln

(
2π

N

)
− 1

2N

2n∑
µ=1

ln(aµ)+O(n2/N2)

where {aµ} are the (positive) eigenvalues of the curvature matrix A at
the minimum of �. Since, by definition, these eigenvalues scale with the
dimension n as aµ ∼ n at the most, we find the sufficient condition

lim
N→∞(n ln n)/N = 0: lim

N→∞

∫
d
 f (
)W̃ (
, 
′) = f (
∗(
′))

where 
∗(
′) denotes the value of 
 in the saddle point where � is minim-
ized. Variation of � with respect to 
 and K gives us the following saddle
point equations:


 =
〈

(σ ) eβ[∑i σihi (


′)−iNK·
(σ )]〉
σ〈

eβ[∑i σihi (

′)−iNK·
(σ )]〉

σ

, K = 0

We may now conclude that limN→∞ W̃ (
, 
′) = δ(
−
∗(
′)), with


∗(
′) =
〈

(σ ) eβ

∑
i σihi (


′)〉
σ〈

eβ
∑

i σihi (

′)〉

σ

and that for N →∞ the macroscopic equation (16.45) becomes:

Pt+1(
) =
∫

d
′ δ
(


−
〈

(σ ) eβ

∑
i σihi (


′)〉
σ〈

eβ
∑

i σihi (

′)〉

σ

)
Pt (


′)

This relation again describes deterministic evolution. If at t = 0 we know

 exactly, this will remain the case for finite timescales and 
 will evolve
according to


(t + 1) =
〈

(σ ) eβ

∑
i σihi [
(t)]〉

σ〈
eβ

∑
i σihi [
(t)]〉

σ

(16.48)

As with the case of sequential microscopic dynamics, in taking the limit
N → ∞ we have to keep in mind that the resulting deterministic theory
applies to finite t , and that for sufficiently large times terms of higher order
in N do come into play. Compared to the sequential case, the restriction
(n ln n)/N → 0 on the number of macroscopic state variables is less severe;
this indicates that also in the sequential case we can probably further relax
our condition on n, should the need arise.
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Finally, for those macroscopic quantities 
(σ ) which are linear in σ , that
is, 
(σ ) = N−1 ∑

i ωiσi for a given set of ωi = (ω1
i , . . . , ωn

i ), the remaining
spin averages in (16.48) become trivial, giving


(t + 1) = lim
N→∞

1
N

∑
i

ωi tanh(βhi(
(t))) (16.49)

Separable models: sublattice magnetizations and overlaps

The separable class of attractor models (16.33), described at the level of
sublattice magnetizations (16.34), does indeed have the desired property
that all local fields can be written in terms of the macroscopic state variables
(the sublattice magnetizations) only. What remains of our conditions for
(16.49) to hold is the restriction on the number n of these macroscopic
state variables: limN→∞(n ln n)/N = 0. If all relative sublattice sizes pη are
of the same order in N , as is the case for randomly drawn patterns, and if p

once more denotes the number of patterns stored, then this condition again
translates into

lim
N→∞

p

ln N
= 0

Since the sublattice magnetizations are linear functions of the spins, their
evolution in time is now governed by equation (16.49), which acquires the
form:

mη(t + 1) = tanh
(

β
∑
η′

pη′Q(η, η′)mη′(t)

)
(16.50)

As for sequential dynamics, symmetry of the interaction matrix does not
play a role in any of the above analysis.

At the more global level of pattern overlaps m(σ ) (16.40) we obtain
autonomous deterministic mappings if the local fields (16.3) can be
expressed in terms of m(σ ) only, as for the models (16.39) (or, more
generally, for all models in which the interactions are of the form Jij =∑

µ≤p fiµξ
µ
j ), and with the following restriction on the number p of

embedded patterns:

lim
N→∞

p ln p

N
= 0

For the class of bilinear models (16.39), the evolution in time of the overlap
vector m, which indeed depends linearly on the spin variables, is governed
by (16.49). This now translates into the iterative map:

m(t + 1) = 〈ξ tanh(βξ ·Am(t))〉ξ 〈f (ξ)〉ξ =
∫

dξ ρ(ξ)f (ξ) (16.51)
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t

{mµ}

Figure 16.4 Evolution of overlaps mµ(σ ), obtained by numerical iteration of the parallel
dynamics deterministic macroscopic map, for the bi-linear attractor model
Jij = (ν/N)

∑
µν ξ

µ
i ξν

j + ((1− ν)/N)
∑

µν ξ
µ+1
i ξ ν

j , with p = 10 and T = 0.5.

Again symmetry of the interaction matrix is not required. For parallel
dynamics it is far more difficult than for sequential dynamics to construct
Lyapunov functions and assess under what conditions the macroscopic
equations for symmetric systems evolve towards a stable fixed point, but
it can still be done. For non-symmetric systems the final macroscopic
equations can in principle display all the interesting, but complicated,
phenomena of non-conservative non-linear systems. Nevertheless, it is also
not uncommon that the macroscopic equations for non-symmetric systems
can be mapped by a time-dependent transformation onto the equations for
related symmetric systems (mostly variants of the original Hopfield model),
such that a thorough analysis is possible. An example of such a model is
given below.

As an illustration of the above analysis we show in Figure 16.4 as func-
tions of time the values of the overlap order parameters {mµ} for p = 10
and T = 0.5, resulting from numerical iteration of the macroscopic laws
(16.51) for the following model:

Jij = ν

N

∑
µ

ξ
µ
i ξ

µ
j +

1− ν

N

∑
µ

ξ
µ+1
i ξ

µ
j (µ: mod p)

corresponding to

Aλρ = νδλρ + (1− ν)δλ,ρ+1 (λ, ρ: mod p)
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with randomly drawn pattern bits ξ
µ
i ∈ {−1, 1} The initial state is chosen

to be the pure state mµ = δµ,1. At intervals of �t = 20 iterations the
parameter ν is reduced in steps of �ν = 0.25 from ν = 1 (where one
recovers the symmetric Hopfield model) to ν = 0 (where one obtains a
non-symmetric model which processes the p embedded patterns in strict
sequential order as a period-p limit cycle).

The analysis of the equation (16.51) for the pure sequence processing case
ν = 0 can be greatly simplified by mapping the model onto the ordinary
(ν = 1) Hopfield model, using the index permutation symmetries of the
pattern distribution, in the following way31 (all pattern indices are periodic,
mod p):

mµ(t) = Mµ−t (t): Mµ(t + 1) = 〈
ξµ+t+1 tanh(β

∑
ρ

ξρ+1Mρ−t (t))
〉
ξ

= 〈
ξµ+t+1 tanh(β

∑
ρ

ξρ+t+1Mρ(t))
〉
ξ

= 〈
ξµ tanh(βξ ·M(t))

〉
ξ

From this mapping we can immediately infer, in particular, that to each
stable macroscopic fixed point attractor of the original Hopfield model
there corresponds a stable period-p macroscopic limit cycle attractor in
the ν = 1 sequence processing model (e.g. pure states ↔ pure sequences,
mixture states↔mixture sequences), with identical amplitude as a function
of temperature. Figure 16.4 shows for ν = 0 (i.e. t > 80) a relaxation
towards such a pure sequence.

16.4 Exercises

Exercise 16.1. (Markov chains.) In the Markov chains (16.6, 16.9), the
kernel W(σ , σ ′) gives the probability of making a transition from state σ ′
to state σ , that is, the probability of finding the system in state σ at time t+1
if at the previous time t it was in state σ ′. Explain how from this statement
the mathematical conditions (16.8) on W(σ , σ ′) arise. Verify that they are
satisfied for the specific forms of W(σ , σ ′) given for sequential and parallel
network dynamics in (16.7) and (16.13).

Exercise 16.2. (Transition matrices for small systems.) To get a better feel-
ing for what the transition probabilities W(σ , σ ′) look like, consider a very

31 The mapping discussed here is a special case of a more general duality relating all
trajectories {m(t)} obtained by iterating the macroscopic laws (16.51) for a given value of the
parameter ν to all trajectories {m(t)} obtained for the parameter value 1− ν.
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simple system, consisting of N = 2 neurons with no self-interactions and no
external inputs. The fields acting on neuron 1 and 2 are then, respectively,

h1(σ ) = J12σ2 h2(σ ) = J21σ1

where the vector σ = (σ1, σ2) collects the states of all neurons as usual.
Write down the transition probabilities W(σ , σ ′) for both parallel and
sequential dynamics. The easiest way to write the result is in the form of
a matrix: there are four possible states σ of the system (each neuron/spin
can be +1 or −1). If you number these in some way, you can represent the
probabilities pt(σ ) as a four-dimensional vector, and W(σ , σ ) as a 4 × 4
matrix; the right-hand side of the Markov chains (16.6, 16.9) is then just a
product of a matrix and a vector.

Exercise 16.3. (Macroscopic laws for sequential dynamics.) Derive the
expansion (16.27).

Exercise 16.4. (Macroscopic laws for sequential dynamics.) Consider the
models and methods of Section 16.2, with the separable interaction
matrices (16.39). Convince yourself that in the simplest case p = 1, where
only a single pattern ξ ∈ {−1, 1}N is stored, and A11 = 1, the pattern
overlap m evolves according to

d
dt

m = tanh(βm)−m

For T > 1 (β < 1), the only stationary state is m = 0. Linearize the
above equation around this state and deduce that, for large times, m is
proportional to exp(−t/τ+(T )), with the characteristic timescale τ+(T ) =
1/(T − 1). Note that τ+(T ) diverges as T → 1 (‘critical slowing down’).

For T < 1, there are three stationary states −m∗, 0, m∗, where m∗ is the
positive solution of m∗ = tanh(βm∗). Linearize around these three states.
Show that (i) m = 0 is an unstable stationary state, and (ii) convergence
to the other two stationary states is again exponential, with time constant
τ−(T ) = 1/[1− (1−m2∗)/T ]. By solving the stationarity condition for small
m∗, show that m2∗ = 3(1− T )+O((1− T )2) for T close to one, and hence
that τ−(T ) diverges as τ−(T ) = 1/[2(1−T )]+O(1) as T = 1 is approached
from below.

Finally, consider the case T = 1. The only stationary state is again m = 0.
To find the asymptotic convergence towards this state, use the Taylor expan-
sion tanh(m) = m−m3/3+O(m5). Neglect the O(m5) term and solve the
resulting differential equation for m(t). You should find that m(t) ≈ 1

2

√
6/t

for large t ; note that there is no undetermined proportionality constant in
this expression, unlike the other two cases T > 1 and T < 1.
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Exercise 16.5. (Macroscopic laws for parallel dynamics.) Consider the
models and methods of Section 16.3, with the separable interaction
matrices (16.39). Take the simple case where p = 1, but add (uniform)
external contributions to the local fields, that is,

hi(σ ) =
N∑

j=1

Jijσj + ϑ Jij = 1
N

ξiξj

Define the pattern overlap m(σ ) = N−1 ∑N
i=1 ξiσi , and the associated

macroscopic probability density

Pt (m) =
∑
σ

pt(σ )δ(m−m(σ ))

Show that this density obeys an iterative equation of the form

Pt+1(m) =
∫

dm′ δ
(

m− lim
N→∞

1
N

N∑
i=1

ξi tanh(βξim
′ + βϑ)

)
Pt (m

′)

Consider the case where the bits of the pattern (ξ1, . . . , ξN) are drawn inde-
pendently at random according to p(1) = p(−1) = 1

2 . Show that the above
iterative map describes deterministic overlap evolution, such that

m(t + 1) = 1
2 tanh(β(m+ |ϑ |))+ 1

2 tanh(β(m− |ϑ |))

Show that the ‘no-recall’ state m = 0 is a fixed point of the dynamics.
Use the above deterministic map for m(t) to determine the condition(s)
under which m = 0 is a stable fixed point. Show that for sufficiently strong
external fields ϑ the system will not be able to reconstruct the stored pattern
(ξ1, . . . , ξN). Finally, consider the limit β →∞, where there is no noise in
the microscopic dynamics. Solve the macroscopic equation for m(t) for the
case where |ϑ | > 1. For the opposite case |ϑ | < 1, solve the equation
separately for the three regions (i) −1 ≤ m < −|ϑ |, (ii) −|ϑ | < m < |ϑ |,
and (iii) |ϑ | < m ≤ 1. What can you see as the advantage of having modest
external fields ϑ?
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17
Dynamics of online
learning in binary
perceptrons

17.1 Probabilistic definitions, performance measures

In this chapter we study the dynamics of supervised learning in artificial
feedforward neural networks. The basic scenario is identical to that intro-
duced in Part I: a student neural network executes a certain operation
S: � → R, which is parametrized by a vector J , usually representing
synaptic weights and/or neuronal thresholds. Here � ⊆ IRN denotes the
set of all possible questions and R denotes the set of all possible answers.
The student is being trained to emulate a given teacher, which executes
some as yet unknown operation T : �→ R. In order to achieve the object-
ive, the student network S tries gradually to improve its performance by
adapting its parameters J according to an iterative procedure, using only
input vectors (or questions) ξ which are drawn at random from a fixed
training set D ⊆ � of size |D|, and the corresponding values of the teacher
outputs T (ξ) (the correct answers). The iterative procedure, or learning
rule, is not allowed to involve any further knowledge of the operation T .
As far as the student is concerned the teacher is an oracle, or black box.
The only information available about the inner workings of the black box
is contained in the various answers T (ξ) it provides; see Figure 17.1. For
simplicity we assume each question ξ to be equally likely to occur; gener-
alization of what follows to the case where the question probabilities are
non-uniform is straightforward.

Again we will attempt to apply statistical mechanical ideas and methods,
and try to move away from analysing the dynamics at the microscopic level
(which here describes stochastically evolving weights and/or thresholds),
in favour of a description of the learning process in terms of autonomous
deterministic equations for suitable macroscopic observables. After all, we
are usually not interested in knowing the evolution of the full details of the
student’s synaptic weights and thresholds as such, but rather in knowing
the evolving performance of our student network in answering correctly
the questions in the training set D and in the full set �. This performance
will be measured by training and generalization errors, respectively; the
latter are indeed macroscopic quantities. Our approach in this chapter is
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Figure 17.1 The general scenario of supervised learning: a student network S is being
trained to perform an operation T : �→ R by updating its control parameters J according
to an iterative procedure, the learning rule. This rule is allowed to make use only of
examples of question/answer pairs (ξ , T (ξ)), where ξ ∈ D ⊆ �. The actual teacher
operation T that generated the answers T (ξ), on the other hand, cannot be observed
directly. The goal is to arrive at a situation where S(ξ) = T (ξ) for all ξ ∈ �.

therefore very similar to that followed earlier in Section 2.5; the difference
is that here we will no longer restrict ourselves to the case of vanishing
learning rates. Thus the microscopic learning process remains stochastic, in
contrast to Section 2.5. Consequently, our methods will have to be more
sophisticated. We will also study more general families of learning rules.

Probabilistic definition of the microscopic process

More specifically, we will consider the following class of learning rules,
that is, of recipes for the iterative modification of the student’s control
parameters J , which we will refer to as online learning rules. An input
vector ξ(�) is drawn independently at each step � from the training set D,
followed by a modification of the control parameters J :

J (�+ 1) = J (�)+ F [ξ(�), J (�), T (ξ(�))] (17.1)

The name ‘online’ indicates that J is updated after each presentation of
a single example, rather than ‘offline’, that is, after all examples from the
training set have been seen. The integer variable � = 0, 1, 2, 3, . . . labels the
iteration steps. Since this process is stochastic, we introduce the probability
density p�(J ) of finding parameter vector J at iteration step �. In terms of
this microscopic probability density the process (17.1) can again be written
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in the Markovian form:

p�+1(J ) =
∫

dJ ′W(J , J ′)p�(J
′) (17.2)

However, the space of all microscopic configurations need now no longer
be discrete, so rather than transition probabilities we generally have a
transition probability density:

W(J , J ′) = 〈δ(J − J ′ − F [ξ , J ′, T (ξ)])〉D (17.3)

where δ(z) denotes the delta-distribution; see Appendix F. The advantage
of using online rather than offline (or ‘batch’) learning rules is a reduction
in the amount of calculations that have to be done at each iteration step;
the price paid for this reduction is the presence of fluctuations due to the
random selection of examples from the training set, with as yet unknown
impact on the performance of the system.

We will denote averages over the probability density p�(J ) as

〈g(J )〉 =
∫

dJp�(J )g(J )

and averages over the full set � of possible input vectors and over the
training set D, respectively, in the following way:

〈K(ξ)〉� = 1
|�|

∑
ξ∈�

K(ξ) 〈K(ξ)〉D = 1
|D|

∑
ξ∈D

K(ξ)

For finite system size N , the average 〈K(ξ)〉D will in general depend on the
precise realization of the training set D.

Performance measures

To quantify the goal and the progress of the student one finally defines
an error E(T (ξ), S(ξ)) = E(T (ξ), f (ξ ; J )), which measures the mismatch
between student and correct (teacher) answers for individual questions. The
two key quantities of interest in supervised learning are the time-dependent
averages of this error measure, calculated over the training set D and the
full question set �, respectively:

training error: Et(J ) = 〈E(T (ξ), f (ξ ; J ))〉D
generalization error: Eg(J ) = 〈E(T (ξ), f (ξ ; J ))〉�

(17.4)
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These quantities are stochastic observables, since they are functions of
the stochastically evolving vector J . Their expectation values over the
stochastic process (17.2) are given by

mean training error: 〈Et〉 = 〈〈E(T (ξ), f (ξ ; J ))〉〉D
mean generalization error: 〈Eg〉 = 〈〈E(T (ξ), f (ξ ; J ))〉〉�

(17.5)

Note that the prefix ‘mean’ refers to the stochasticity in the vector J ; both
〈Et〉 and 〈Eg〉 will in general still depend on the realization of the training
set D.

The training error measures the performance of the student on the ques-
tions it could have been confronted with during the learning stage (in the
case of online learning the student need not have seen all of them). The
generalization error measures the student’s performance on the full ques-
tion set and its minimization is therefore the main target of the process.
The quality of a theory describing the dynamics of supervised learning can
be measured by the degree to which it succeeds in predicting the values of
〈Et〉 and 〈Eg〉 as a function of the number of iteration steps � and for arbit-
rary choices made for the function F [· · · ] that determines the details of the
learning rules (17.1).

There are two main classes of situations in the supervised learning arena,
which differ fundamentally in their dynamics and in the degree to which
we can analyse them mathematically. The first class is the one where the
training set D is what we call ‘complete’: sufficiently large and sufficiently
diverse to lead to a learning dynamics which in the limit N →∞ is identical
to that of the situation where D = �. For example, in single perceptrons
and in multilayer perceptrons with a finite number of hidden nodes one
finds, for the case where � = {−1, 1}N and where the members of the train-
ing set D are drawn at random from �, that completeness of the training
set amounts to limN→∞N/|D| = 0. This makes sense: it means that for
N → ∞ there will be an infinite number of training examples per adapt-
able microscopic parameter. For this class of models it is fair to say that
the dynamics of learning can be fully analysed in a reasonably simple way.
We will restrict ourselves to single perceptrons with various types of learn-
ing rules, since they form the most transparent playground for explaining
how the mathematical techniques work. For multilayer perceptrons with a
finite number of hidden neurons and complete training sets the procedure to
be followed is very similar.32 The picture changes dramatically if we move
away from complete training sets and consider those where the number of
training examples is proportional to the number of adaptable microscopic

32 The situation is different if we try to deal with multilayer perceptrons with a number of
hidden neurons which scales linearly with the number of input channels N . This still poses
an unsolved problem, even in the case of complete training sets.
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parameters; in simple perceptrons and in two-layer perceptrons with a finite
number of hidden neurons this implies |D| = αN (0 < α < ∞). In those
situations one needs much more powerful mathematical tools; we will not
deal with such cases here.

17.2 Explicit learning rules

We will now derive explicitly macroscopic dynamical equations that
describe the evolution in time for the error in large binary output per-
ceptrons, trained with several online learning rules to perform linearly
separable tasks. We restrict ourselves to complete training sets D =
� = {−1, 1}N . There is consequently no difference between training and
generalization error, and we can simply define E = 〈Eg〉 = 〈Et〉.

The family of learning rules

Consider a linearly separable binary classification task T : {−1, 1}N →
{−1, 1}. It can be regarded as generated by a binary output teacher per-
ceptron with some unknown weight vector B ∈ IRN , that is, T (ξ) =
sgn(B · ξ), normalized according to |B| = 1. A student perceptron with
output S(ξ) = sgn(J · ξ) (where J ∈ IRN ) is being trained in an online
fashion using randomly drawn examples of input vectors ξ ∈ {−1, 1}N with
corresponding teacher answers T (ξ). The general picture of Figure 17.1 thus
specializes to Figure 17.2. We exploit our knowledge of the perceptron’s
scaling properties and distinguish between the discrete time unit � in terms of
iteration steps, and the scaled time unit t = �/N . Our goal is to derive well-
behaved differential equations in the limit N → ∞, so we require weight
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Figure 17.2 A student perceptron S is being trained according to online learning rules to
perform a linearly separable operation, generated by some unknown teacher perceptron T .
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changes occurring in intervals �t = N−1 to be of order O(N−1) as well. In
terms of equation (17.1) this implies demanding that F [· · · ] = O(N−1). If,
finally, we restrict ourselves to those rules where weight changes are made
in the direction of the example vectors, which includes most popular rules,
we obtain the generic33 recipe

J (t +�t) = J (t)+ 1
N

η(t) ξ(t)F [|J (t)|; J (t) · ξ(t), B · ξ(t)] (17.6)

Here η(t) denotes a possibly time-dependent learning rate, and ξ(t) is the
input vector selected at time t . The function F [· · · ] is an as yet arbitrary
function of the length of the student weight vector and of the local fields
J · ξ and B · ξ of student and teacher. Importantly, however, because
the student only observes the teacher output, that is, sgn(B · ξ(t)), the
function F [· · · ] can depend on the sign of the teacher field only, not on its
magnitude. For example, for F [J ; u, v] = sgn(v) we obtain a Hebbian rule,
for F [J ; u, v] = θ(−uv)sgn(v) we obtain the perceptron learning rule, etc.
However, we will develop the theory for arbitrary choices of F [· · · ]; this
will allow us not only to compare but even to optimize learning rules.

Finally, note that below we will use the variables (x, y) to denote local
fields, rather than (u, v); this is done in order to keep close contact with the
conventions in the relevant literature. Note also that from the more general
analysis of learning dynamics to be developed in this section one can recover
the simpler theory of Section 2.5 (to which it is related via the identification
ε = η/N ) by the transformation t → t/η, followed by taking the limit
η→ 0.

Deterministic equations for order parameters

We now try to solve the dynamics of the learning process in terms of the two
macroscopic observables that played a special role earlier in the perceptron
convergence proof (see Section 2.3):

Q(t) = J 2(t) R(t) = J (t) · B (17.7)

At this stage the choice of observables is still no more than intuition-driven
guess work. The formal approach, in the spirit of our previous analysis
of neuron state dynamics in recurrent networks, would be to derive an
expression for the time-dependent probability density Pt(Q, R) = 〈δ(Q −
Q(t))δ(R − R(t))〉. However, it turns out that in the present case there is a
short-cut. Squaring (17.6) and taking the inner product of (17.6) with the

33 One can obviously write down more general rules, and also write the present recipe
(17.6) in different ways.
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teacher vector B gives, respectively

Q(t +�t)−Q(t)

�t
= 2η(t) J (t) · ξ(t)F [|J (t)|; J (t) · ξ(t), B · ξ(t)]
+ η(t)2F2[· · · ]

R(t +�t)− R(t)

�t
= η(t)B · ξ(t)F [· · · ]

Here we have used the property ξ(t) · ξ(t) = N and indicated by [· · · ] that
the arguments of the function F are the same in all its three occurrences.

After � discrete update steps we will have accumulated � such modifica-
tions, and we thus arrive at:

Q(t + ��t)−Q(t)

��t
= 1

�

�−1∑
m=0

Q(t + (m+ 1)�t)−Q(t +m�t)

�t

= 1
�

�−1∑
m=0

{2η(t +m�t)J (t +m�t) · ξ(t +m�t)

×F [|J (t +m�t)|; J (t +m�t) · ξ(t +m�t),

B · ξ(t +m�t)] + η2(t +m�t)F2[· · · ]}
R(t + ��t)− R(t)

��t
= 1

�

�−1∑
m=0

R(t + (m+ 1)�t)− R(t +m�t)

�t

= 1
�

�−1∑
m=0

{η(t +m�t)B · ξ(t +m�t)F [· · · ]}

We now use the fact that the weight vector J only changes significantly after
� = O(N) updates, where the time t changes by an amount of O(1). As long
as we consider �� N , we can therefore replace J (t +m�t) by J (t) on the
right-hand side of the previous equations.34 An equivalent way of putting
this is to say that the distribution of the ‘fields’ J (t+m�t) · ξ(t+m�t) over
the random choice of the ξ(t + m�t) changes only negligibly for � � N .
If � itself is nevertheless large enough, the right-hand sides of our evolution
equations then simply become averages over the current field distributions.

34 To see this explicitly, set J (t + m�) = J (t) + �J and abbreviate ξ(t + m�t) ≡ ξ .
Our replacement changes (J +�J ) · ξ to J · ξ . In the difference �J · ξ , each component of
�J is at most O(m/N) because each update causes a change of O(1/N). But ξ is randomly
chosen, so each of the O(m/N)-changes gets a random prefactor of ±1. The typical size of
�J · ξ is therefore at most O(N1/2m/N) = O(m/N1/2), which becomes negligible in the
thermodynamic limit.



356 17 : Dynamics of online learning in binary perceptrons

Formally, we choose to take the two limits N →∞ and �→∞ in such a
way that �/N → 0 (e.g. in the form N →∞ followed by the limit �→∞).
Then three welcome simplifications occur:

• The time increment �t becomes infinitesimally small, and the time t

becomes a continuous variable.
• The left-hand sides of the above equations for the evolution of the

observables Q and R become temporal derivatives.
• If the learning rate η(t) is defined as a continuous function of time t ,

so that η(t + m�t) → η(t), the summations on the right-hand sides of
these equations become averages over inputs ξ randomly drawn from the
training set D = � = {−1, 1}N .

Suppressing time arguments, the result of these combined simplifications
can now be written compactly as

d
dt

Q = 2η〈J · ξ F [Q1/2; J · ξ , B · ξ ]〉� + η2〈F2[Q1/2; J · ξ , B · ξ ]〉�

d
dt

R = η〈B · ξ F [Q1/2; J · ξ , B · ξ ]〉�

As might have been anticipated, the only dependence of the right-hand
sides of these expressions on the microscopic variables J = J (t) is via the
student fields35 J · ξ = Q1/2Ĵ · ξ , with Ĵ = Ĵ (t) = J/|J |. We therefore
define the stochastic field variables x = Ĵ · ξ and y = B · ξ and their joint
(time-dependent) probability distribution P(x, y)

P (x, y) = 〈δ(x − Ĵ (t) · ξ)δ(y − B · ξ)〉� (17.8)

and the associated averages

〈f (x, y)〉 =
∫

dxdyP (x, y)f (x, y) (17.9)

The use of brackets without subscripts for joint field averages cannot cause
confusion, since such expressions always replace averages over �, rather
than occur simultaneously. Our evolution equations thus take the form

d
dt

Q = 2ηQ1/2〈xF [Q1/2; Q1/2x, y]〉 + η2〈F2[Q1/2; Q1/2x, y]〉 (17.10)

d
dt

R = η〈yF [Q1/2; Q1/2x, y]〉 (17.11)

35 This property of course depends crucially on our choice (17.6) for the form of the
learning rules.
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We now have a set of evolution equations for the macroscopic order
parameters Q and R. Unless we manage to express P(x, y) in terms of these
variables, however, these equations do not constitute an actual solution
of our problem: we would still be forced to solve the original microscopic
dynamical equations in order to find P(x, y) as a function of time and then
work out (17.10, 17.11). It is not yet obvious that our equations are closed.

The final stage of the argument is to assume that the joint probability
distribution (17.9) has a Gaussian shape, since � = {−1, 1}N and since
all ξ ∈ � contribute equally to the average in (17.9). This will be true in
the vast majority of cases; for example, it is true with probability one if
the vectors J and B are drawn at random from compact sets like [−1, 1]N ,
due to the central limit theorem.36 Gaussian distributions are fully specified
by their first- and second-order moments (see Appendix D), which are here
calculated trivially using 〈ξi〉� = 0 and 〈ξiξj 〉� = δij :

〈x〉 =
∑

i

Ĵi〈ξi〉� = 0 〈y〉 =
∑

i

Bi〈ξi〉� = 0 (17.12)

〈x2〉 =
∑
ij

Ĵi Ĵj 〈ξiξj 〉� = 1 〈y2〉 =
∑
ij

BiBj 〈ξiξj 〉� = 1 (17.13)

〈xy〉 =
∑
ij

ĴiBj 〈ξiξj 〉� = R√
Q

(17.14)

Upon inverting the covariance matrix of the stochastic fields x and y we
then find

P(x, y) = e−(x2+y2−2xyR/
√

Q)/2(1−R2/Q)

2π
√

1− R2/Q
(17.15)

Note that, although we study here a more general class of models (not just
the perceptron learning rule) and a broader regime of applicability (not
just the limit of vanishing learning rate), the arguments relating to P(x, y)

and the final expression (17.15) are fully identical to those in Section 2.5,
with the identification ω = R/

√
Q. The fact that P(x, y) depends on time

only through R and Q now ensures that the two equations (17.10, 17.11)
do indeed form a closed set. Note also that (17.10, 17.11) are deter-
ministic equations. Our derivation thus shows that the fluctuations in the
macroscopic observables Q and R vanish in the N →∞ limit.

Finally, the generalization error Eg—which is here identical to the
training error Et due to D = �, and therefore simply denoted by E in

36 It is not true for all choices of J and B. A trivial counter-example is Jk = δk1, less
trivial counter-examples are, for example, Jk = e−k and Jk = k−γ with γ > 1

2 . For a more
extensive discussion of the matter see Appendix B.
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the following—can also be expressed in terms of our macroscopic observ-
ables. We define the error made in a single classification of an input
ξ as E(T (ξ), S(ξ)) = θ(−(B · ξ)(J · ξ)) ∈ {0, 1}. This means that the
error is 1 if student and teacher disagree in their predictions, that is,
if sgn(J · ξ) �= sgn(B · ξ), and 0 otherwise. Averaging this error meas-
ure over � gives the probability of a misclassification for randomly drawn
questions ξ ∈ �:

E(J (t)) = 〈θ(−[B · ξ ][J (t) · ξ ])〉� = 〈θ(−xy)〉

=
∫ ∞

0

∫ ∞
0

dxdy[P(x,−y)+ P(−x, y)]

The integral, with the distribution P(x, y) as given in (17.15), can be done
analytically (see Appendix D) and produces the simple expression

E = 1
π

arccos
(

R√
Q

)
(17.16)

This result, which had also been encountered and used in Section 2.5,
has a transparent geometric interpretation as illustrated in Figure 17.3.
Input patterns ξ are classified by student and teacher according to whether
they fall on one or the other side of the (N − 1)-dimensional hyperplanes
J · ξ = 0 and B · ξ = 0, respectively. If ϑ = arccos(R/

√
Q) denotes the

angle between J and B, the fraction of input space on which student and
teacher disagree about the classification is then just E = ϑ/π . This assumes
that the projections of the ξ onto the plane spanned by J and B are iso-
tropically distributed. If we exclude pathological cases such as those from
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Figure 17.3 Geometric interpretation of the generalization error. Shown are the
intersections of the hyperplanes J · ξ = 0 and B · ξ = 0 with the plane spanned by J and B.
If ϑ denotes the angle between J and B, and if the input data are distributed isotropically,
the fraction of input space on which student and teacher disagree about the classification is
expected to be given by E = ϑ/π .
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footnote 36, this is indeed true: the distribution of the projection is isotropic
and Gaussian.

It is clear from the above that, like R and Q, the generalization error
evolves deterministically for N → ∞. We have thus achieved our goal:
we have derived a closed set of deterministic equations for a small number
(two) of macroscopic observables, valid for N →∞, and these observables
determine the generalization error at any time.

Since the operation performed by the student does not depend on the
length |J | of its weight vector, and since both R and Q involve |J |, we will
often find it convenient later to switch from R and Q to another equivalent
pair of observables:

J = |J | = √
Q ω = B · Ĵ = R/

√
Q (17.17)

Using the simple relations (d/dt)Q = 2J (d/dt)J and (d/dt)R = J (d/dt)ω+
ω(d/dt)J we then find the compact expressions

d
dt

J = η〈xF [J ; Jx, y]〉 + η2

2J
〈F2[J ; Jx, y]〉 (17.18)

d
dt

ω = η

J
〈(y − ω x)F [J ; Jx, y]〉 − ωη2

2J 2 〈F2[J ; Jx, y]〉 (17.19)

The local field distribution reads

P(x, y) = e−(x2+y2−2ωxy)/2(1−ω2)

2π
√

1− ω2
(17.20)

and the generalization error becomes

E = 1
π

arccos(ω) (17.21)

We will sometimes use this last relation to convert the macrosopic evolu-
tion equations (17.18, 17.19) to yet another set of equivalent observables,
namely, J and E.

Hebbian learning with constant learning rate

We will now work out our general result (17.18–17.20) for specific members
of the general class (17.6) of online learning rules. The simplest non-trivial
choice is the Hebbian rule, obtained for F [J ; Jx, y] = sgn(y), with a
constant learning rate η:

J (t +�t) = J (t)+ η

N
ξ(t)sgn(B · ξ(t)) (17.22)
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Equations (17.18) and (17.19), describing the macroscopic dynamics
generated by (17.22) in the limit N →∞, now become

d
dt

J = η〈xsgn(y)〉 + η2

2J

d
dt

ω = η

J
〈|y| − ωxsgn(y)〉 − ωη2

2J 2

The integrals in these equations can be calculated analytically (see
Appendix D) and we get

d
dt

J = ωη

√
2
π
+ η2

2J

d
dt

ω = (1− ω2)
η

J

√
2
π
− ωη2

2J 2

Thus, after eliminating the observable ω in favour of E using equation
(17.21), we arrive at the following closed differential equations in terms
of J and E:

d
dt

J = η cos(πE)

√
2
π
+ η2

2J
(17.23)

d
dt

E = −η sin(πE)

πJ

√
2
π
+ η2

2πJ 2 tan(πE)
(17.24)

The flow in the (E, J ) plane described by these equations is drawn in
Figure 17.4, which is obtained by numerical solution of (17.23, 17.24).
From (17.23) we also have that dJ/dt > 0 ∀t ≥ 0. From (17.24) it follows
that dE/dt = 0 along the line

Jc(E) = η cos(πE)

2 sin2(πE)

√
π

2

which is drawn as a dashed line in Figure 17.4. Clearly, although
limt→∞E = 0, the evolution of the error E can be non-monotonic, allow-
ing for an initial increase in E if the initial length J of the student’s weight
vector is small.

Let us now investigate the temporal properties of the solution
(17.23, 17.24) in more detail, and work out the prediction for the
asymptotic decay of the generalization error. For small values of E

equations (17.23, 17.24) yield

d
dt

J = η

√
2
π
+ η2

2J
+O(E2) (17.25)

d
dt

E = −ηE

J

√
2
π
+ η2

2π2J 2E
+O

(
E3

J
,

E

J 2

)
(17.26)
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Figure 17.4 Flow in the (E, J ) plane generated by the Hebbian learning rule with constant
learning rate η, in the limit N →∞. Dashed: the line where dE/dt = 0 (note that
dJ/dt > 0 for any (E, J )). The flow is asymptotically seen to give E→ 0 and J →∞, for
all initial conditions.

From (17.25) we infer that J ∼ ηt
√

2/π for t → ∞. Substitution of this
asymptotic solution into equation (17.26) subsequently gives

d
dt

E = −E

t
+ 1

4πEt2
+O

(
E3

t
,
E

t2

)
(t →∞) (17.27)

We insert the ansatz E = At−α into equation (17.27) and obtain the solution
A = 1/

√
2π , α = 1/2. This implies that, in the limit N → ∞, online

Hebbian learning with complete training sets produces an asymptotic decay
of the generalization error of the form

E ∼ 1√
2πt

(t →∞) (17.28)

Figures 17.7, 17.8, and 17.9 below show the theoretical results of this sec-
tion together with the results of doing numerical simulations of the learning
rule (17.22) and with similar results for other online learning rules with con-
stant learning rates. The agreement between theory and simulations is quite
convincing.
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Perceptron learning with constant learning rate

Our second application of the closed trio of macroscopic laws
(17.18–17.20) is obtained upon making the choice F [J ; Jx, y] =
θ(−xy)sgn(y) in equation (17.6), with constant learning rate η, which
produces the perceptron learning algorithm:

J (t +�t) = J (t)+ η

N
ξ(t)θ(−[B · ξ(t)][J (t) · ξ(t)])sgn(B · ξ(t)) (17.29)

In other words: the student weights are updated in accordance with the
Hebbian rule only when sgn(B · ξ) = −sgn(J · ξ), that is, when student and
teacher are not in agreement about the output. Equations (17.18, 17.19)
now become

d
dt

J = η〈xsgn(y)θ(−xy)〉 + η2

2J
〈θ(−xy)〉

d
dt

ω = η

J
〈[|y| − ωxsgn(y)] θ(−xy)〉 − ωη2

2J 2 〈θ(−xy)〉

with the averages being over P(x, y) as given by (17.20). As before, the
various Gaussian integrals occurring in these expressions can be done
analytically (see Appendix D), which results in

d
dt

J = −η(1− ω)√
2π

+ η2

2πJ
arccos(ω)

d
dt

ω = η(1− ω2)√
2πJ

− ωη2

2πJ 2 arccos(ω)

(17.30)

Elimination of ω using (17.21) then gives us the equivalent dynamical
equations in terms of the pair (J , E):

d
dt

J = −η(1− cos(πE))√
2π

+ η2E

2J
(17.31)

d
dt

E = −η sin(πE)

π
√

2πJ
+ η2E

2πJ 2 tan(πE)
(17.32)

Figure 17.5 shows the flow in the (E, J ) plane, obtained by numerical
solution of (17.31, 17.32). The two lines where dJ/dt = 0 and where
dE/dt = 0 are found to be Jc,1(E) and Jc,2(E), respectively:

Jc,1(E) = η

√
π

2
E

1− cos(πE)
, Jc,2(E) = η

√
π

2
E cos(πE)

1− cos2(πE)
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Figure 17.5 Flow in the (E, J ) plane generated by the perceptron learning rule with
constant learning rate η, in the limit N →∞. Dashed: the two lines where dJ/dt = 0 (top)
and dE/dt = 0 (bottom), respectively. Note that the flow is attracted into the gully between
these two dashed lines, and asymptotically gives E→ 0 and J →∞.

For E ∈ [0, 1/2] one always has Jc,1(E) ≥ Jc,2(E), with equality only if
(J , E) = (∞, 0). Figure 17.5 shows that the flow is drawn into the gully
between the curves Jc,1(E) and Jc,2(E).

As with the Hebbian rule we now wish to investigate the asymptotic
behaviour of the generalization error. To do this we expand equations
(17.31, 17.32) for small E:

d
dt

J = −ηπ2E2

2
√

2π
+ η2E

2J
+O(E4)

d
dt

E = − ηE√
2πJ

+ η2

2π2J 2 −
η2E2

6J 2 +O(E3)

For small E and large t we know that J ∼ Jc,1(E) ∼ 1/E. Making the
ansatz J = A/E, and hence dE/dt = −(E2/A)(dJ/dt), now leads to a
situation where we have two equivalent differential equations for E:

d
dt

E = ηπ2E4

2
√

2πA
− η2E4

2A2 +O(E6)

d
dt

E = − ηE2
√

2πA
+ η2E2

2π2A2 +O(E4)
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Since both must describe the same dynamics, the leading term of the second
expression should be identical to that of the first, that is, O(E4), giving us
the condition A = η

√
2π/2π2. Substitution of this condition into the first

expression for dE/dt then leads us to

d
dt

E = −1
2

π3E4 +O(E5) (t →∞)

which has the solution

E ∼
(

2
3

)1/3

π−1t−1/3 (t →∞) (17.33)

We find, somewhat surprisingly, that in large systems (N → ∞) the
online perceptron learning rule is asymptotically much slower in converging
towards the desired E = 0 state than the simpler online Hebbian rule. This
will be different, however, if we allow for time-dependent learning rates.
Figures 17.7–17.9 below show the theoretical results on the perceptron rule
together with the results of numerical simulations and together with similar
results for other online learning rules. Again the agreement between theory
and experiment is quite satisfactory.

AdaTron learning with constant learning rate

As our third application we analyse the macroscopic dynamics of the
so-called AdaTron learning rule, corresponding to the choice F [J ; Jx, y] =
|Jx|θ(−xy)sgn(y) in the general recipe (17.6). As in the perceptron rule,
modifications are made only when student and teacher are in disagreement;
here, however, the modification made is proportional to the magnitude of
the student’s local field. Students are punished in proportion to their con-
fidence in the wrong answer. The rationale is that wrong student answers
S(ξ) = sgn(J · ξ) with large values of |J · ξ | require more rigorous cor-
rections to J than those with small values of |J · ξ |. The learning rule
thus reads

J (t +�t)=J (t)+ η

N
ξ(t)|J (t) · ξ(t)|θ(−[B · ξ(t)][J (t) · ξ(t)])sgn(B · ξ(t))

(17.34)

Working out the general equations (17.18, 17.19) for this case gives

d
dt

J = ηJ 〈x|x| sgn(y)θ(−xy)〉 + 1
2

η2J 〈x2θ(−xy)〉
d
dt

ω = η〈|xy|θ(−xy)〉 − ηω〈x|x| sgn(y)θ(−xy)〉 − 1
2

ωη2〈x2θ(−xy)〉
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All averages over P(x, y) can once more be done analytically (see
Appendix D), giving the explicit macroscopic flow equations:

d
dt

J = J

ω

(
η − η2

2

)
I2(ω)

d
dt

ω = ηI1(ω)−
(
η − η2

2

)
I2(ω)

with the two shorthands

I1(ω) = (1− ω2)3/2

π
− ω(1− ω2)

π
arccos(ω)+ω2

√
1− ω2

π
− ω3

π
arccos(ω)

I2(ω) = −ω(1− ω2)

π
arccos(ω)+ ω2

√
1− ω2

π
− ω3

π
arccos(ω)

The usual translation from equations for the pair (J , ω) into equivalent
equations in terms of the pair (J , E), following (17.21), turns out to simplify
matters considerably, giving

d
dt

J = J
(η2

2
− η

) [
E − cos(πE) sin(πE)

π

]
(17.35)

d
dt

E = −η sin2(πE)

π2 + η2E

2π tan(πE)
− η2 cos2(πE)

2π2 (17.36)

The flow described by the equations (17.35, 17.36) is shown in Figure 17.6,
for the case η = 1. In contrast with the online Hebbian and the perceptron
learning rules, we here observe from the equations (17.35, 17.36) that
the learning rate η cannot be eliminated from the macroscopic laws by
a re-scaling of the weight vector length J . Moreover, the state E = 0 is
stable only for η < 3, in which case dE/dt < 0 for all t . For η < 2 one
has dJ/dt < 0 for all t , for η = 2 one has J (t) = J (0) for all t , and for
2 < η < 3 we have dJ/dt > 0 for all t .

For small values of the error E equation (17.36) reduces to

d
dt

E =
(η2

3
− η

)
E2 +O(E4)

giving

E ∼ 3t−1

η(3− η)
(t →∞) (17.37)

For η = 1, which gives the standard representation of the AdaTron
algorithm, we find E ∼ 3

2 t−1. Note from equation (17.35) that for the
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Figure 17.6 Flow in the (E, J ) plane generated by the AdaTron learning rule with constant
learning rate η = 1, in the limit N →∞. Here it is impossible to have dE/dt = 0 or
dJ/dt = 0.

AdaTron rule there is a special value for η which normalizes the length J

of the student’s weight vector at all times, being η = 2, which again gives
E ∼ 3

2 t−1. The optimal value for η, however, is η = 3
2 in which case we

find E ∼ 4
3 t−1 (see (17.37)).

Theory versus simulations

We close this section by comparing the dynamics described by the various
macroscopic flow equations with measurements of the error E during
numerical simulations of the various (microscopic) stochastic learning rules
discussed so far. This will serve to support the analysis and its implicit and
explicit assumptions, but also to illustrate how the three learning rules
compare to each other. Figures 17.7 and 17.8 show the initial stage of
the learning processes, for initializations corresponding to random guessing
(E = 0.5) and almost correct classification (E small), respectively. Note that
for the perceptron and AdaTron rules, starting at precisely E = 0 produces
a stationary state in finite systems. The solutions of the flow equations (solid
lines) were obtained by numerical iteration. The initial increase in the error
E following initialization with small values, as observed for the Hebbian
and perceptron rule, can be understood as follows. The error depends only
on the orientation of the weight vector J , not on its length J . This means
that the modifications generated by the Hebbian and perceptron learning
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t

E

Figure 17.7 Evolution in time of the generalization error E as measured during numerical
simulations, with N = 1000 neurons, of three different online learning rules: Hebbian
(diamonds), perceptron (triangles), and AdaTron (squares). Initial state: E(0) = 1

2 (random
guessing) and J (0) = 1. Learning rate: η = 1. The solid lines give for each learning rule the
prediction of the N = ∞ theory, obtained by numerical solution of the flow equations
for (E, J ).

t

E

Figure 17.8 Evolution in time of the generalization error E as measured during numerical
simulations, with N = 1000 neurons, of three different online learning rules: Hebbian
(diamonds), perceptron (triangles), and AdaTron (squares). Initial state: E(0) ≈ 0.025 and
J (0) = 1. Learning rate: η = 1. The solid lines give for each learning rule the prediction of
the N = ∞ theory, obtained by numerical solution of the flow equations for (E, J ).

rules, which in those particular recipes are of uniform magnitude, generate
large changes in E when J is small, but small changes in E when J is large,
with corresponding effects on the stability of low E states. The AdaTron
rule, in contrast, involves weight changes which scale with the length J ,
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t

E

Figure 17.9 Asymptotic behaviour of the generalization error E measured during
numerical simulations, with N = 1000, of three different online learning rules: Hebbian
(diamonds, middle curve), perceptron (triangles, upper curve), and AdaTron (squares,
lower curve). Initial state: E(0) = 1

2 and J (0) = 1. Learning rate: η = 1. The dashed lines
give for each learning rule the corresponding power law predicted by the N = ∞ theory
(equations (17.28, 17.33, 17.37), respectively).

so that the stability of the E = 0 state does not depend on the value
of J . Figure 17.9 shows the asymptotic relaxation of the error E, in a
log–log plot, together with the three corresponding asymptotic power law
predictions (17.28, 17.33, 17.37). All simulations were carried out with
networks of N = 1000 neurons; we see that this is already sufficiently large
for the N = ∞ theory to apply. The teacher weight vectors B were in all
cases drawn at random from [−1, 1]N and then normalized to unit length.
We conclude that the statistical mechanical theory describes the simulations
essentially perfectly.

17.3 Optimized learning rules

We now set out to use our macroscopic equations in ‘reverse mode’. Rather
than calculate the macroscopic dynamics for a given choice of learning rule,
we will try to find learning rules that optimize the macroscopic dynamical
laws, in the sense that they produce the fastest decay towards the desired
E = 0 state. As a bonus it will turn out that in many cases we can even solve
the corresponding macroscopic differential equations analytically, and find
explicit expressions for error E(t), or rather its inverse t(E).
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Time-dependent learning rates

First we illustrate how modifying existing learning rules in a simple way,
by just allowing for suitably chosen time-dependent learning rates η(t), can
already lead to a drastic improvement in the asymptotic behaviour of the
error E. We will consider two specific choices of time-dependent learning
rates for the perceptron rule. Without loss of generality we can always put
η(t) = K(t)J (t) in our dynamic equations (for notational convenience we
will drop the explicit time argument of K). This choice will enable us to
decouple the dynamics of J from that of the generalization error E. For the
perceptron rule we then find equation (17.32) being replaced by

d
dt

E = −K sin(πE)

π
√

2π
+ K2E

2π tan(πE)

which gives for small E

d
dt

E = − KE√
2π
+ K2

2π2 +O(K2E2)

In order to obtain E → 0 for t → ∞ it is clear that we need to choose
our time-dependent learning rate such that K → 0. Applying the ansätze
E = A/tα and K = B/tβ for the asymptotic forms in the previous equation
produces

−αAt−α−1 = −ABt−α−β

√
2π

+ B2t−2β

2π2 +O(t−2α−2β)

and so α = β = 1 and A = B2/[π√2π(B−√2π)]. Our aim is to obtain the
fastest approach to the E = 0 state, so we wish to maximize α (for which
we found α = 1) and subsequently minimize A. The value of B for which A

is minimized is B = 2
√

2π , in which case we obtain the error decay given by

η ∼ 2J
√

2π

t
: E ∼ 4

πt
(t →∞) (17.38)

This is clearly a great improvement over the result for the perceptron rule
with constant η, that is, equation (17.33); in fact it is the fastest error
relaxation we have derived so far.

Let us now move on to an alternative choice for the time-dependent learn-
ing rate for the perceptron. According to equation (17.31), there is one
specific recipe for η(t) such that the length J of the student’s weight vector
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will remain constant, given by

η =
√

2
π

J

E
(1− cos(πE)) (17.39)

Making this choice converts equation (17.32) for the evolution of E into

d
dt

E = − (1− cos(πE))2

π2E sin(πE)
(17.40)

Equation (17.40) can be written in the form dt/dE = g(E), so that t(E)

becomes a simple integral which can be done analytically, with the result

t(E) = πE + sin(πE)

1− cos(πE)
− πE0 + sin(πE0)

1− cos(πE0)
(17.41)

This can also be verified directly by substitution into (17.40). Expansion of
(17.41) and (17.39) for small E then gives the asymptotic behaviour also
encountered in (17.38):

η ∼ 2J
√

2π

t
: E ∼ 4

πt
(t →∞) (17.42)

It might appear that implementation of the recipe (17.39) is in practice
impossible, since it involves information which is not available to the stu-
dent perceptron, namely the instantaneous error E. However, since we
know (17.41) we can simply calculate the required η(t) explicitly as a
function of time.

One has to be somewhat careful in extrapolating results such as those
obtained in this section. For instance, choosing the time-dependent learning
rate (17.39) enforces the constraint J 2(t) = 1 in the macroscopic equations
for N →∞. This is not identical to choosing η(t) in the original equation
(17.6) such as to enforce J 2(t + �t) = J 2(t) at the level of individual
iteration steps, as can be seen by working out the dynamical laws. The
latter case would correspond to the microscopically fluctuating choice

η(t) = −2
J (t) · ξ(t)

F [|J (t)|; J (t) · ξ(t), B · ξ(t)] if F [|J (t)|; J (t)·ξ(t), B ·ξ(t)] �= 0

If we now choose, for example, F [J ; Jx, y] = θ(−xy)sgn(y), implying
η(t) = 2|J (t) · ξ(t)|, we find by insertion into (17.6) that the perceptron
rule with ‘hard’ weight normalization at each iteration step via adaptation of
the learning rate is identical to the AdaTron rule with constant learning rate
η = 2. We know therefore that in this case one obtains E ∼ 3/2t , whereas



17.3 Optimized learning rules 371

for the perceptron rule with ‘soft’ weight normalization via (17.39) (see the
analysis above) one obtains E ∼ 4/πt . This shows that the two procedures
certainly are not equivalent.

Spherical online learning rules

We arrive in a natural way at the question of how to find the optimal
time-dependent learning rate for any given learning rule, or more generally,
of how to find the optimal learning rule. This involves variational calcu-
lations in two-dimensional flows because our macroscopic equations are
defined in terms of the evolving pair (J , E). Such calculations would be
much simpler if our macroscopic equations were just one-dimensional, for
example, describing only the evolution of the error E with a stationary or
simply irrelevant value of the length J . Often it will turn out that for find-
ing the optimal learning rate or the optimal learning rule the problem can
indeed be reduced to a one-dimensional one. To be able to obtain results
also for those cases where this reduction does not happen we will now con-
struct so-called spherical learning rules, where J 2(t) = 1 for all t . This can
be arranged in several ways.

Our first method will be to add to the general rule (17.6) a term pro-
portional to the instantaneous weight vector J , whose sole purpose is to
achieve the normalization constraint J 2 = 1:

J (t +�t) = J (t)+ 1
N
{η(t)ξ(t)F [|J (t)|; J (t) · ξ(t), B · ξ(t)] − λ(t)J (t)}

(17.43)

The evolution of the two observables Q(J ) and R(J ) (17.7) is now given by

Q(t +�t)−Q(t)

�t
= −2λ(t)Q(t)+ 2η(t)J (t) · ξ(t)

×F [|J (t)|; J (t) · ξ(t), B · ξ(t)] + η2(t)F2[· · · ]
+O(N−1)

R(t +�t)− R(t)

�t
= −λ(t)R(t)+ η(t)B · ξ(t)F [· · · ]

with �t = N−1, as before. Following the procedure of Section 17.2 to
arrive at the N → ∞ limit of the dynamical equations for Q and R then
leads us to

d
dt

Q = 2ηQ1/2〈xF [Q1/2; Q1/2x, y]〉 + η2〈F2[Q1/2; Q1/2x, y]〉 − 2λQ

d
dt

R = η〈yF [Q1/2; Q1/2x, y]〉 − λR
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where we have dropped the explicit time arguments as usual. We now
choose the newly introduced function λ(t) such that Q(t) = 1 for all t ≥ 0.
This ensures that R(t) = ω(t) = Ĵ (t) · B and gives, via dQ/dt = 0, an
explicit recipe for λ(t):

λ = η〈xF [1; x, y]〉 + 1
2η2〈F2[1; x, y]〉

This can be substituted into the equation for dω/dt = d(R/
√

Q)/dt , which
follows from the above expressions for dR/dt and dQ/dt , to give

d
dt

ω = η

〈
(y − ωx)F [1; x, y] − 1

2
ωη2F2[1; x, y]

〉
(17.44)

The averages are, as usual, defined with respect to the Gaussian joint field
distribution (17.20). The latter depends only on ω, so that equation (17.44)
is indeed autonomous.

A second method to arrange the constraint J 2 = 1 is to explicitly
normalize the weight vector J = Ĵ after each modification step, that is,

Ĵ (t +�t) = Ĵ (t)+ (1/N)η(t)ξ(t)F [1; Ĵ (t) · ξ(t), B · ξ(t)]
|Ĵ (t)+ (1/N)η(t)ξ(t)F [1; Ĵ (t) · ξ(t), B · ξ(t)]|

= Ĵ (t)+ 1
N

η(t)[ξ(t)− Ĵ (t)(Ĵ (t) · ξ(t))]F [1; Ĵ (t) · ξ(t), B · ξ(t)]

− 1
2N

η2(t)Ĵ (t)F2[1; Ĵ (t) · ξ(t), B · ξ(t)] +O(N−2) (17.45)

The evolution of the observable ω(t) = Ĵ (t) · B is thus given by

ω(t +�t)− ω(t)

�t
= η(t) [x(t)− ω(t)x(t)]F [1; x(t), y(t)]

− 1
2

ω(t)η2(t)F2[1; x(t), y(t)] +O(N−1)

Following the procedure of Section 17.2 then leads to

d
dt

ω = η

〈
(y − ωx)F [1; x, y] − 1

2
ωη2F2[1; x, y]

〉
(17.46)

which is seen to be identical to equation (17.44).
Finally we may convert equation (17.44) into a dynamical equation for

the error E, using (17.21), which gives the end result

d
dt

E = −η〈[y − cos(πE)x]F [1; x, y]〉
π sin(πE)

+ η2〈F2[1; x, y]〉
2π tan(πE)

(17.47)
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with averages defined with respect to the distribution (17.20), in which
ω = cos(πE).

In summary, for spherical models described by either of the equivalent
classes of online rules (17.43) or (17.45), the evolution of the error E is for
N → ∞ described by a single first-order non-linear differential equation,
rather than a pair of coupled non-linear differential equations. This will
allow us to push the analysis further, but the price we pay is that of a loss
in generality.

Optimal time-dependent learning rates

We wish to optimize the approach to the E = 0 state of our macro-
scopic equations, by choosing a suitable time-dependent learning rate. Let
us distinguish between the possible situations we can find ourselves in.
If our learning rule is of the general form (17.6), that is, without spherical
normalization, we have two coupled macroscopic equations:

d
dt

J = η〈xF [J ; Jx, y]〉 + η2

2J
〈F2[J ; Jx, y]〉 (17.48)

d
dt

E = −η〈[y − cos(πE)x]F [J ; Jx, y]〉
Jπ sin(πE)

+ η2〈F2[J ; Jx, y]〉
2πJ 2 tan(πE)

(17.49)

These are obtained by combining (17.18, 17.19) with (17.21). The probab-
ility distribution (17.20) with which the averages are computed depends on
E only, not on J . If, on the other hand, we complement the rule (17.6) with
weight vector normalization as in (17.43) or (17.45) (the spherical rules),
we obtain a single equation for E only:

d
dt

E = −η〈[y − cos(πE)x]F [1; x, y]〉
π sin(πE)

+ η2〈F2[1; x, y]〉
2π tan(πE)

(17.50)

Since equation (17.50) is autonomous—there are no dynamical variables
other than E—the optimal choice of the function η(t) which generates the
fastest decay of the error E is obtained by simply minimizing the temporal
derivative of the error at each time-step:

∀t ≥ 0:
∂

∂η(t)

(
d
dt

E

)
= 0 (17.51)

which is called the ‘greedy’ recipe. Note, however, that the same is true
for equation (17.49) if we restrict ourselves to rules with the property that
F [J ; Jx, y] = γ (J )F [1; x, y] for some function γ (J ), such as the Hebbian
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(γ (J ) = 1), perceptron (γ (J ) = 1), and AdaTron (γ (J ) = J ) rules. This
specific property can also be written as

∂

∂x

F [J ; Jx, y]
F [1; x, y] =

∂

∂y

F [J ; Jx, y]
F [1; x, y] = 0 (17.52)

For rules which obey (17.52) we can simply write the time-dependent learn-
ing rate as η = η̃J /γ (J ), such that equations (17.48, 17.49) acquire the
following form:

d
dt

ln J = η̃〈xF [1; x, y]〉 + 1
2

η̃2〈F2[1; x, y]〉 (17.53)

d
dt

E = − η̃〈[y − cos(πE)x]F [1; x, y]〉
π sin(πE)

+ η̃2〈F2[1; x, y]〉
2π tan(πE)

(17.54)

In these cases, precisely since we are free to choose the function η̃(t) as
we wish, the evolution of J decouples from our problem of optimizing the
evolution of E. For learning rules where F [J ; Jx, y] truly depends on J on
the other hand, that is, where (17.52) does not hold, optimization of the
error relaxation is considerably more difficult, and is likely to depend on
the particular time t for which one wants to minimize E(t). We will not
deal with such cases here.

If the greedy recipe applies (for spherical rules and for ordinary ones
with the property (17.52)) then working out the derivative in (17.51)
immediately gives us

η̃(t)opt = 〈[y − cos(πE)x]F [1; x, y]〉
cos(πE)〈F2[1; x, y]〉 (17.55)

Insertion of this choice into equation (17.47) then leads to

d
dt

E

∣∣∣∣
opt
= − 〈[y − cos(πE)x]F [1; x, y]〉2

2π sin(πE) cos(πE)〈F2[1; x, y]〉 (17.56)

These and subsequent expressions we will write in terms of η̃, defined as
η̃(t) = η(t) for the spherical learning rules and as η̃(t) = η(t)J (t)/γ (J (t))

for the non-spherical learning rules. We will now work out the details of
the results (17.55, 17.56) for the familiar choices for the function F [· · · ]:
the Hebbian, perceptron, and AdaTron rules.

For the ordinary and spherical Hebbian rules, corresponding to
F [J ; Jx, y] = sgn(y), the various Gaussian integrals in (17.55, 17.56) are
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the same as those we have already performed in the case of constant learning
rate η. Substitution of the outcomes of the integrals (see Appendix D) into
the equations (17.55, 17.56) gives

η̃opt =
√

2
π

sin2(πE)

cos(πE)

d
dt

E

∣∣∣∣
opt
= − sin3(πE)

π2 cos(πE)

The equation for the error E can be solved explicitly, giving

t(E) = 1
2π sin−2(πE)− 1

2π sin−2(πE0) (17.57)

as can be verified by explicit substitution. The asymptotic behaviour of the
process follows from expansion of (17.57) for small E, and gives

Eopt ∼ 1√
2πt

η̃opt ∼
√

π

2
1
t

(t →∞)

We conclude that, for the Hebbian rule, asymptotically there is nothing to be
gained by choosing the optimal time-dependent learning rate, since the same
asymptotic form for E was also obtained in (17.28) for constant η. Note that
the property F [J ; Jx, y] = F [1; x, y] of the Hebbian recipe guarantees that
the result (17.57) applies to both the ordinary and the spherical Hebbian
rule. The only difference between the two cases is in the definition of η̃:
for the ordinary (non-spherical) version η̃(t) = η(t)/J (t), whereas for the
spherical version η̃(t) = η(t).

We move on to the (ordinary and spherical) perceptron learning rules,
where F [J ; Jx, y] = θ(−xy)sgn(y), with time-dependent learning rates η(t)

which we aim to optimize. As in the Hebbian case all integrals occurring
in (17.55, 17.56) after substitution of the present choice of F [· · · ] have
been performed already (see Appendix D). Insertion of the results of these
integrals into (17.55, 17.56) gives

η̃opt = sin2(πE)√
2πE cos(πE)

d
dt

E

∣∣∣∣
opt
= − sin3(πE)

4π2E cos(πE)

Again the non-linear differential equation describing the evolution of the
error E can be solved exactly:

t(E) = 2[πE + sin(πE) cos(πE)]
sin2(πE)

− 2[πE0 + sin(πE0) cos(πE0)]
sin2(πE0)

(17.58)
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Expansion of (17.58) for small E gives the asymptotic behaviour

Eopt ∼ 4
πt

η̃opt ∼ 2
√

2π

t
(t →∞)

This is identical to that found in the beginning of this section, that is, equa-
tions (17.38, 17.42), where we explored the consequences of making two
simple ad hoc choices for the time-dependent learning rate (since η̃ = η/J ).
As with the Hebbian rule, the property F [J ; Jx, y] = F [1; x, y] of the per-
ceptron recipe guarantees that the result (17.58) applies to both the ordinary
and the spherical version.

Finally we try to optimize the learning rate for the spherical AdaTron
learning rule, corresponding to the choice F [J ; Jx, y] = |Jx|θ(−xy)sgn(y).
Working out the averages in (17.55, 17.56) again does not require doing any
new integrals. Using those already encountered in analysing the AdaTron
rule with constant learning rate (to be found in Appendix D), we obtain

η̃opt = sin3(πE)

π

[
E cos(πE)− cos2(πE) sin(πE)

π

]−1

d
dt

E

∣∣∣∣
opt
= − sin5(πE)

2π2 cos(πE)

[
1

πE − cos(πE) sin(πE)

]

Note that in both versions, ordinary and spherical, of the AdaTron rule we
simply have η̃(t) = η(t). It will no longer come as a surprise that also this
equation for the evolution of the error allows for analytical solution:

t(E) = π

8

[
4πE − sin(4πE)

sin4(πE)
− 4πE0 − sin(4πE0)

sin4(πE0)

]
(17.59)

Asymptotically we find, by expanding (17.59) for small E, a relaxation of
the form

Eopt ∼ 4
3t

η̃opt ∼ 3
2

(t →∞)

So for the AdaTron rule the asymptotic behaviour for optimal time-
dependent learning rate η is identical to that found for the optimal constant
learning rate η, which is indeed η = 3

2 , see (17.37). As with the previous two
rules, the property F [J ; Jx, y] = JF [1; x, y] of the AdaTron recipe guar-
antees that the result (17.57) applies to both the ordinary and the spherical
version.
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It is quite remarkable that the simple perceptron learning rule, which was
at the bottom of the league among the three learning rules considered so
far in the case of constant learning rates, all of a sudden comes out at the
top as soon as we allow for optimized time-dependent learning rates. It is
in addition quite satisfactory that in a number of cases one can actually
find an explicit expression for the relation t(E) between the duration of
the learning stage and the generalization error achieved, that is, equations
(17.41, 17.57–17.59).

Optimal online learning rules

We need not restrict our optimization attempts to varying the learning rate
η only, but we can also vary the full form ηF [J ; Jx, y] of the learning
rule. The aim, as always, is to minimize the generalization error, but there
will be limits to what is achievable. So far all examples of online learning
rules we have studied gave an asymptotic relaxation of the error of the
form E ∼ t−q with q ≤ 1. It can be shown using general probabilistic
arguments that

lim
t→∞ tE(t) ≥ 0.44 . . . (17.60)

No online learning rule for binary systems37 can violate (17.60). On
the other hand, we have already encountered several rules with at least
the optimal power E ∼ t−1. The optimal online learning rule is thus
one which gives asymptotically E ∼ A/t , but with the smallest value of
A possible.

The function F [J ; Jx, y] in the learning rules is allowed to depend only on
the sign of the teacher field y = B · ξ , not on its magnitude, since otherwise
it would describe a situation where considerably more than just the answers
T (ξ) = sgn(B · ξ) of the teacher are used for updating the parameters of
the student. One can easily see that using unavailable information indeed
violates (17.60). Suppose, for instance, we were to consider spherical online
rules, that is, (17.43) or (17.45), and make the forbidden choice

ηF [1; x, y] = y − cos(πE)x

cos(πE)

We would then find for the corresponding equation (17.50) describing the
evolution of the error E for N →∞:

d
dt

E = − 〈[y − cos(πE)x]2〉
2π sin(πE) cos(πE)

37 This will be different, however, for graded-response perceptrons.
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with the averages as always calculated with the distribution (D.5). From
this it follows, using the Gaussian integrals done in Appendix D, that

d
dt

E = − tan(πE)

2π

This produces exponential asymptotic decay of the error, since tan(πE) =
πE +O(E3), and thus indeed violates (17.60).

Taking into account the restrictions on available information, and anti-
cipating the form subsequent expressions will take, we write the function
F [J ; Jx, y] (which we will vary, and also allow to have an explicit
time-dependence38) in the following form

ηF [J ; Jx, y] =
{

JF+(x, t), if y > 0

JF−(x, t), if y < 0
(17.61)

If our learning rule is of the general form (17.6), without spherical
normalization, the coupled equations (17.48, 17.49) describe the mac-
roscopic dynamics. For the spherical rules (17.43, 17.45) we have the
single macroscopic equation (17.50). Both (17.49) and (17.50) now acquire
the form

d
dt

E = − 1
π sin(πE)

[
〈(y − ωx)θ(y)F+(x, t)〉 + 〈(y − ωx)θ(−y)F−(x, t)〉

−1
2

ω〈θ(y)F2+(x, t)〉 − 1
2

ω〈θ(−y)F2−(x, t)〉
]

(17.62)

with the usual shorthand ω = cos(πE) and with averages calculated with
the time-dependent distribution (17.20). To simplify notation we now
introduce the two functions∫

dy θ(y)P (x, y) = �(x, t)
∫

dy θ(y)(y − ωx)P (x, y) = �(x, t)

and hence, using the symmetry P(x, y) = P(−x,−y), equation (17.62)
acquires the compact form

d
dt

E = − 1
π sin(πE)

∫
dx

[
�(x, t)F+(x, t)− 1

2
ω�(x, t)F2+(x, t)

]

− 1
π sin(πE)

∫
dx

[
−�(−x, t)F−(x, t)− 1

2
ω�(−x, t)F2−(x, t)

]
(17.63)

38 By allowing for an explicit time-dependence, we can drop the dependence on J in
F[J ; Jx, y] if we wish, without loss of generality, since J is itself just some function of time.
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Since there is only one dynamical variable, the error E, our optimiza-
tion problem is solved by the greedy recipe which here involves functional
derivatives:

∀x, ∀t : δ

δF+(x, t)

(
d
dt

E

)
= δ

δF−(x, t)

(
d
dt

E

)
= 0

with the solution

F+(x, t) = �(x, t)
ω�(x, t)

F−(x, t) = − �(−x, t)
ω�(−x, t)

= −F+(−x, t)

Substitution of this solution into (17.63) gives the corresponding law
describing the optimal error evolution of (ordinary and spherical) online
rules:

d
dt

E

∣∣∣∣
opt
= − 1

π sin(πE) cos(πE)

∫
dx

�2(x, t)
�(x, t)

Explicit calculation of the integrals �(x, t) and �(x, t) (see Appendix D)
gives:

�(x, t) = sin(πE)

2π
e−x2/2 sin2(πE)

�(x, t) = e−x2/2

2
√

2π
[1+ erf(x/

√
2 tan(πE))]

with which we finally obtain an explicit expression for the optimal form of
the learning rule, via (17.61), as well as for the dynamical law describing
the corresponding error evolution:

ηF [J ; Jx, y]opt =
√

2
π

J tan(πE)e−x2/2 tan2(πE)

1+ sgn(xy)erf(|x|/√2 tan(πE))
(17.64)

d
dt

E

∣∣∣∣
opt
= − tan2(πE)

π2
√

2π

∫
dx

e−x2[1+cos2(πE)]/2 cos2(πE)

1+ erf(x/
√

2)
(17.65)

The asymptotic form of the error relaxation towards the E = 0 state follows
from expansion of equation (17.65) for small E, which gives

d
dt

E = −E2
∫

dx
e−x2

√
2π [1+ erf(x/

√
2)] +O(E4)

so that we can conclude that the optimum asymptotic decay for online
learning rules, whether spherical or non-spherical, is given by E ∼ A/t for
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t →∞, with

A−1 =
∫

dx
e−x2

√
2π [1+ erf(x/

√
2)]

Numerical evaluation of this integral, which is somewhat delicate due to
the behaviour of the integrand for x →−∞, finally gives

E ∼ 0.883 . . .

t
(t →∞)

It is instructive to investigate briefly the form of the optimal learning rule
(17.64) for large values of E (as in the initial stages of learning processes)
and for small values of E (as in the final stages of learning processes).
Initially we find

lim
E↑1/2

ηF [J ; Jx, y]opt

tan(πE)
= J

√
2
π

sgn(y)

which describes a Hebbian-type learning rule with diverging learning rate
(note that tan(πE) → ∞ for E ↑ 1

2 ). In contrast, in the final stages the
optimal learning rule (17.64) acquires the form

lim
E↓0

ηF [J ; Jx, y]opt = J |x|√
π

θ(−xy) sgn(y) lim
z→∞

e−z2

z[1− erf(z)]
= J |x|θ(−xy)sgn(y)

which is the AdaTron learning rule with learning rate η = 1.39

In Figures 17.10 (short times and ordinary axes) and 17.11 (large times
and log–log axes) we finally compare the evolution of the error for the
optimal online learning rule (17.64) with the two online learning rules which
so far were found to give the fastest relaxation: the perceptron rule with
normalizing time-dependent learning rate, giving the error (17.41), and
the perceptron rule with optimal time-dependent learning rate which yields
the error (17.58). This is in order to assess whether choosing the optimal
online learning rule (17.64) rather than its simpler competitors is actually
worth the effort. The curves for the optimal online rule were obtained by
numerical solution of equation (17.65).

39 The reason that, in spite of the asymptotic equivalence of the two rules, the optimal
rule does not asymptotically give the same relaxation of the error E as the AdaTron rule is
as follows. In order to determine the asymptotics one has to take the limit E→ 0 in the full
macroscopic differential equation for E, which, in addition to the function F[· · · ] defining
the learning rule, involves also the Gaussian probability distribution (D.5). The latter depends
on E in a non-trivial way, especially near E = 0.
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t

E

Figure 17.10 Evolution of the error E for three online learning rules: perceptron rule with
a learning rate such that J (t) = 1 for all t ≥ 0 (solid line), perceptron rule with optimal
learning rate (dashed line), and the optimal spherical learning rule (dotted line). Initial state:
E(0) = 1

2 and J (0) = 1. The curves for the perceptron rules are given by (17.41) and
(17.58). The curve for the optimal spherical rule was obtained by numerical solution of
equation (17.65).

t

E

Figure 17.11 Evolution of the error E for the online perceptron rule with a learning rate
such that J (t) = 1 for all t ≥ 0 (solid line), the online perceptron rule with optimal learning
rate (dashed line), and the optimal spherical online learning rule (dotted line). Initial states:
(J , E) = (1, 1

2 ) (upper curves), and (J , E) = (1, 1
100 ) (lower curves). The curves for the

perceptron rules are given by (17.41) and (17.58). The curves for the optimal spherical rule
were obtained by numerical solution of equation (17.65).
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Summary in a table

We close this section with an overview of some of the results on online
learning in perceptrons derived so far. The upper part of this table contains
results for specific learning rules with arbitrary constant learning rates η

(first column), optimal constant learning rate η (second column), and where
possible, a time-dependent learning rate η(t) chosen to realize the normaliz-
ation J (t) = 1 for all t . The lower part of the table gives results for specific
learning rules with optimized time dependent learning rates η(t), as well as
lower bounds on the asymptotic generalization error.

17.4 Exercises

Exercise 17.1. (Relation with the earlier infinitesimal learning rate theory.)
If for the macroscopic laws describing online learning, as derived in the
present section, we re-define our time to be measured in units of the learning
rate η, this implies switching to the new time variable s = ηt . Transform the
equations (17.30) for the perceptron rule into the language of s, and show
that subsequently taking the limit η → 0 reproduces the theory developed
earlier in Section 2.5, that is, equations (2.57).

Exercise 17.2. (Learning dynamics for generalized perceptron/AdaTron
rules.) Consider a perceptron with N inputs and weight vector J ∈ IRN ,
which is trained in an online fashion to perform a task generated by a teacher
perceptron with weight vector B ∈ IRN (with |B| = 1). The learning rule
used is the following generalization of the perceptron (k = 0) and AdaTron
(k = 1) rules:

J (t +�t) = J (t)+ η

N
ξ(t)sgn(B · ξ(t))|J (t) · ξ(t)|kθ(−[B · ξ(t)][J (t) · ξ(t)])

with k ≥ 0. The vector ξ(t) ∈ {−1, 1}N denotes the input vector drawn at
random from {−1, 1}N , with uniform probabilities, at time t . θ(z) is the
step function, and �t = N−1. Define the macroscopic observables J = |J |
and ω = B · J/J . Show that in the limit N → ∞ they obey the following
deterministic laws:

d
dt

J = −ηJ k〈|x|k+1θ(−xy)〉 + 1
2

η2J 2k−1〈x2kθ(−xy)〉

d
dt

ω = ηJ k−1〈(|y| + ω|x|) |x|kθ(−xy)〉 − 1
2

ωη2J 2k−2〈x2kθ(−xy)〉



17.4
Exercises

3
8

3
Generalization error in perceptrons with online learning rules

Constant learning rate η Variable η

Rule Asymptotic decay, constant η Optimal asymptotic decay, constant η η chosen to normalize J

Hebbian E ∼ 1√
2π

t−1/2 for η > 0 E ∼ 1√
2π

t−1/2 for η > 0 N/A

Perceptron E ∼
(

2
3

)1/3

π−1t−1/3 for η > 0 E ∼
(

2
3

)1/3

π−1t−1/3 for η > 0 E ∼ 4
π

t−1

AdaTron E ∼
(

3
3η − η2

)
t−1 for 0 < η < 3 E ∼ 4

3
t−1 for η = 3

2
E ∼ 3

2
t−1

Optimal generalization

Optimal time-dependent learning rate η

Rule Generalization error for optimal time-dependent η Asymptotics

Hebbian t = π

2

[
1

sin2(πE)
− 1

sin2(πE0)

]
E ∼ 1√

2π
t−1/2

Perceptron t = 2
[
πE + sin(πE) cos(πE)

sin2(πE)
− πE0 + sin(πE0) cos(πE0)

sin2(πE0)

]
E ∼ 4

π
t−1

AdaTron t = π

8

[
4πE − sin(4πE)

sin4(πE)
− 4πE0 − sin(4πE0)

sin4(πE0)

]
E ∼ 4

3
t−1

Lower bound for online learning (asymptotics of the optimal learning rule) E ∼ 0.88t−1

Lower bound for any learning rule E ∼ 0.44t−1
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Assume the field statistics to be described by (17.20), and show that

d
dt

J = −ηJ kJ (ω, k + 1)+ 1
2

η2J 2k−1J (ω, 2k)

d
dt

ω = ηJ k−1 [I(ω, k + 1)+ ωJ (ω, k + 1)]− 1
2

ωη2J 2k−2J (ω, 2k)

in which J (ω, �) and I(ω, �) denote the following integrals:

J (ω, �) =
∫ ∞

0

∫ ∞
0

dxdy

π
√

1− ω2
e−(x2+y2+2ωxy)/2(1−ω2)x�

I(ω, �) =
∫ ∞

0

∫ ∞
0

dxdy

π
√

1− ω2
e−(x2+y2+2ωxy)/2(1−ω2)yx�−1

Now choose the learning rate η to be time-dependent in such a way as to
normalize J : J (t)=1 for all t≥0 (assume J (0)=1). Show that this results
in the following law for the remaining observable ω:

1
2

d
dt

ω = J (ω, k + 1)I(ω, k + 1)

J (ω, 2k)

By using the relation ω = cos(πE) and retaining only the leading contribu-
tions for E → 0 in the two integrals above, show that asymptotically the
error decays as

E ∼ Ckt
−1 (t →∞)

and give an expression for Ck.



18
Dynamics of online
gradient descent learning

In this chapter we consider learning in systems with continuous real-valued
outputs, rather than those with binary outputs as in the previous chapter.
A natural way of constructing learning algorithms for such systems is by
gradient descent on some appropriate error measure. This error measure
should tell us by how much student and teacher output differ. A popular
choice is the squared deviation between actual and desired outputs; carrying
out gradient descent on this measure for multilayer networks yields the well-
known error backpropagation algorithm. The results of our analysis are
therefore of relevance to practical neural network learning. For simplicity,
here we only analyse learning in continuous output perceptrons, that is,
systems without hidden layers; the case of networks with a single hidden
layer containing a finite number of neurons can also be treated, but requires
rather more complicated algebra.

18.1 Online gradient descent

Definition of microscopic learning rule

We modify the scenario from the previous chapter as follows. For a
given input ξ (drawn randomly from D = � ⊆ {−1, 1}N , as before),
let us assume that both the teacher output T (ξ) and the student output
S(ξ) = f (ξ ; J ) are real-valued rather than binary. Here J is the student
weight vector as before, but we now let the student output depend on J

in a smooth (differentiable) way. Similarly, let us assume that the error
measure E(T (ξ), S(ξ)) = E(T (ξ), f (ξ ; J )) is differentiable with respect to
the student output S(ξ), and hence also with respect to J . Then a natural
way to construct a learning algorithm is by gradient descent on the error
made for the current training example:

J (t +�t) = J (t)− η

N
∇J E(T (ξ(t)), f (ξ(t); J (t))) (18.1)

As before, we define the time t = �/N as the rescaled iteration number
� = 0, 1, . . ., with �t = 1/N . The learning rate η is similarly scaled by
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N to give sensible behaviour in the limit N → ∞, and taken to be time-
independent (for simplicity). A very common choice for the error measure
is the simple squared deviation, E(T , S) = 1

2 (T − S)2. With this choice, our
learning rule becomes

J (t +�t) = J (t)− η

N
[f (ξ(t); J (t))− T (ξ(t))]∇J f (ξ(t); J (t)) (18.2)

which is the backpropagation algorithm, as defined earlier in Section 2.4.
Recall that the name derives from the way in which the gradient ∇J f is
calculated in multilayer networks, by propagating it backwards from the
output unit where it is measured towards the inputs, using the chain rule.

Let us now specialize to the case of perceptron (i.e. single layer) students
and teachers. The input–output relations then take the form

T (ξ) = g(B · ξ) S(ξ) = f (ξ ; J ) = g(J · ξ) (18.3)

with some sigmoidal transfer function g(·), which is assumed to be identical
for student and teacher. This transforms (18.2) into

J (t +�t) = J (t)− η

N
ξ(t)[g(J (t) · ξ(t))− g(B · ξ(t))]g′(J (t) · ξ(t))

(18.4)

Derivation of closed macroscopic laws

Equation (18.4) is seen to have the same form as the general learning
rule (17.6) analysed in the last chapter, provided we set F [J ; x, y] =
−[g(x)− g(y)]g′(x). Simply by translating the results (17.10) and (17.11),
we can therefore immediately write down the equations governing the time
evolution of the observables R = J ·B and Q = J 2 in the thermodynamic
limit for the present problem. However, here it will prove useful to define the
student’s local field in terms of the unnormalized student weight vector J ,
that is, as x = J · ξ , rather than in terms of the normalized one as in the
previous chapter. This eliminates some factors of Q1/2 which we would
otherwise have to carry around; it also makes sense intuitively, because in
the current scenario the length of the weight vector J does affect the student
outputs, in contrast to the previous binary perceptron case. We thus get

d
dt

R = −η〈y[g(x)− g(y)]g′(x)〉 (18.5)

d
dt

Q = −2η〈x[g(x)− g(y)]g′(x)〉 + η2〈[g(y)− g(x)]2[g′(x)]2〉
(18.6)
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with averages in (18.5, 18.6) that are now defined with respect to the
redefined field distribution

P(x, y) = 〈δ(x − J · ξ)δ(y − B · ξ)〉� (18.7)

Because we are dealing with the case of complete training sets, the average
in this definition is over all possible input vectors ξ , sampled with uniform
probability from � = {−1, 1}N . As in the previous chapter, we now assume
that P(x, y) has a Gaussian shape; this is true except for rather pathological
choices of J and B as discussed before. P(x, y) is therefore determined by
its first and second-order moments, that is, by the means and covariances
of x and y. Using 〈ξi〉� = 0 and 〈ξiξj 〉� = δij , we find these without much
effort, in analogy with (17.12–17.14) in the previous chapter,

〈x〉 = 〈y〉 = 0 〈x2〉 = Q 〈xy〉 = R 〈y2〉 = 1 (18.8)

As before, we have assumed here that the teacher weight vector is normal-
ized, that is, B2 = 1. After inverting the covariance matrix given by (18.8),
we then find for P(x, y)

P (x, y) = 1

2π
√

Q− R2
e−(x2−2Rxy+Qy2)/2(Q−R2) (18.9)

Because this only depends on R and Q, the equations (18.5, 18.6, 18.9)
constitute a closed system of differential equations for the evolution of
the macroscopic observables R and Q. The generalization error is also
determined by R and Q alone, via the distribution P(x, y):

E = 1
2 〈[g(B · ξ)− g(J · ξ)]2〉� = 1

2 〈[g(y)− g(x)]2〉 (18.10)

To find the time dependence of R, Q, and E we now need to carry out the
averages over x and y. In order to be able to do this analytically, we make
the following choice for the transfer function:

g(z) = 2
∫ z

0
Du = erf(z/

√
2) (18.11)

with the shorthand Du = (2π)−1/2e−(1/2)u2
, and where erf(x) denotes the

error function as before. The function g(z) is certainly sigmoidal, in the
sense that it produces bounded outputs (between −1 and+1) and increases
monotonically with z. It is also not too different from the tanh(z) transfer
functions that are used frequently in applications, and one may assume
that the slight differences between the two choices will not cause qualitative
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differences in the results. With the above choice of g(·), all averages over x

and y in equations (18.5, 18.6) can be calculated analytically, and one finds

d
dt

R = ηr(R, Q) (18.12)

d
dt

Q = ηq1(R, Q)+ η2q2(R, Q) (18.13)

with

r(R, Q) = 2
π

1
1+Q

[
1+Q− R2√
2(1+Q)− R2

− R√
1+ 2Q

]
(18.14)

q1(R, Q) = 4
π

1
1+Q

[
R√

2(1+Q)− R2
− Q√

1+ 2Q

]
(18.15)

q2(R, Q) = 4
π2

1√
1+ 2Q

[
arcsin

(
Q

1+ 3Q

)
+ arcsin

(
1+ 2(Q− R2)

2(1+ 2Q− R2)

)

− 2 arcsin

(
R√

1+ 3Q
√

2(1+ 2Q− R2)

)]
(18.16)

These first-order differential equations can now be solved numerically, and
from the values of R and Q the generalization error can be calculated; for
our choice (18.11) of transfer function, the latter takes the relatively simple
form

E = 1
6
− 2

π
arcsin

(
R√

2(1+Q)

)
+ 1

π
arcsin

(
Q

1+Q

)
(18.17)

Behaviour of the macroscopic laws

Figure 18.1 shows examples for the evolution of E with the (scaled) number
of learning steps t = �/N . We see that for small enough learning rates η

the system converges to E = 0, and that the speed of convergence increases
with η. As η becomes larger, however, convergence slows down again,
and finally for η larger than some critical value ηc ≈ 4 the systems stops
converging to E = 0 altogether; perfect generalization is not obtained even
after an infinite number of learning steps per student weight.

To understand these observations, let us analyse the asymptotic beha-
viour of the system in some more detail. The numerical data show that
for small enough η, convergence to a state with E = 0 does indeed occur.
For monotonic transfer functions g(·)—the case which we treat here—it
follows from (18.10) that zero generalization error can be obtained only
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E

t

Figure 18.1 Evolution of generalization error E versus the rescaled number of learning
steps t = �/N , for the different values of η shown. The initial values of the macroscopic
observables were in all cases: R(0) = 0, Q(0) = 1/4.

if x and y are identical with probability one. This means that we need
to have 〈(x − y)2〉 = 0, and hence R = Q = 1. It is easy to show that
this is a fixed point of the dynamics (18.12, 18.13); the numerical solu-
tion also confirms that R and Q both tend to 1 for small η. We now
linearize around this particular stationary point, setting R = 1 − δr and
Q = 1− δq and expanding (18.12, 18.13) to first order in δr and δq. This
yields

d
dt

(
δr

δq

)
=M

(
δr

δq

)
, M = −cη̃

(
4 −3

2

−4(1− 3η̃) 3(1− 2η̃)

)
(18.18)

where

c = 2
√

5
9

η̃ = η

ηc
ηc = π

√
5
3
= 4.05577 . . . (18.19)

The notation ηc here is deliberately suggestive; we will see in a moment
that ηc is actually the critical learning rate. The eigenvalues {λ1, λ2} and
associated eigenvectors {e1, e2} of the matrix M can be calculated, and
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turn out to be

λ1 = −6cη̃(1− η̃) e1 =
(

1

−4
3 + 4η̃

)

λ2 = −cη̃ e2 =
(

1
2

)
(18.20)

Using these, we deduce from (18.18) that the asymptotic time evolution of
δr and δq can be written as

(
δr

δq

)
= C1e

λ1te1 + C2e
λ2te2 (18.21)

Here C1 and C2 are two constants that will depend on the initial conditions.
The eigenvalues λ1 and λ2 are shown in Figure 18.2 as a function of η. In

order for the stationary point R = Q = 1 around which we are expanding to
be stable, we need both these eigenvalues to be negative (compare (18.21)),
which leads to the condition η < ηc. For η > ηc, on the other hand, λ1
is positive, the stationary point is unstable, and the system will no longer
converge to a state where E = 0. This justifies the interpretation of ηc as
the critical learning rate.

Figure 18.2 The values of the two eigenvalues {λ1, λ2} that govern the dynamics around
the fixed point R = Q = 1, which corresponds to perfect learning, as functions of the
learning rate η. For the asymptotic decay of E, λ1 and 2λ2 (rather than λ2 itself) turn out to
be relevant; see the main text.
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The eigenvalues λ1,2 also provide information on the speed of conver-
gence. For η < ηc, we see from (18.21) that R and Q converge exponentially
to their limiting values, with a decay rate given by min{−λ1,−λ2}; the
least negative eigenvalue is dominant asymptotically, because it gives the
slowest convergence. As the critical learning rate is approached, one has
−λ1 ∼ ηc − η and hence the decay time—which is the inverse of the decay
rate—diverges as 1/(ηc − η). In physics, this type of phenomenon is called
critical slowing down. Precisely at the critical learning rate, that is, for
η = ηc, we have power law rather than exponential convergence; here one
can show that both R and Q approach their limiting values as∼1/t , that is,
via power law relaxation.

An intuitive interpretation of what happens at the critical learning rate
is provided by the following analogy. Assume there is only a single student
weight, which is adapted by gradient descent on a parabolic (quadratic)
error measure. If the learning rate is too high, the gradient descent steps
can overshoot the minimum of the parabola and land on the other side,
further away from the minimum than where it was previously. This obvi-
ously prevents convergence, and leads to larger and larger moduli of the
weight. In the perceptron case, matters are somewhat more complicated
because the error measure is bounded whenever the transfer function g(·) is.
For our choice of g(·), one can show that R and Q still tend to finite limits
(which are >1) for ηc < η < π/ arcsin(1/3), and only actually diverge for
even larger values of η.

Finally, let us analyse the asymptotic behaviour of the generalization
error in the regime of sub-critical learning rates, that is, when η < ηc.
Expanding (18.17) for small values of δr and δq we find

E = 2δr − δq

π
√

3
+O(δr2, δrδq, δq) (18.22)

From the asymptotic behaviour (18.21) of δr and δq, we see that the first
term in (18.22) will give contributions that decay as exp(λ1t) and exp(λ2t),
while the quadratic terms exhibit time dependencies of the form exp(2λ1t),
exp((λ1 + λ2)t), and exp(2λ2t). However, due to the specific form of the
eigenvector e2, see (18.20), the linear contribution proportional to exp(λ2t)

drops out. Hence we are left with terms with decay rates −λ1, −2λ2,
−λ1 − λ2, and −2λ1 (and higher order terms that decay even faster). The
last two of these are always larger than the first one, and so we have the
final result that the asymptotic decay rate of the generalization error E is
given by min{−λ1,−2λ2}; the dependence of these two rates on η is shown
in Figure 18.2. We read off that the fastest asymptotic convergence of the
generalization error E occurs when λ1 = 2λ2; from (18.20) it follows that
this happens for the learning rate η = 2

3ηc. Note, however, that this specific
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value of η optimizes only the asymptotic convergence rate; the initial decay
of E(t) can be faster for other values of η.

18.2 Learning from noisy examples

The scenario which we have considered so far is rather idealized, in that we
assumed that the outputs provided by the teacher are noise free. In practice,
training data are often noisy. We therefore now consider the more general
case where the teacher output for training example ξ(t) is g(B · ξ(t))+ εt ,
with εt some additive noise variable. We make the natural assumptions that
the distribution of εt is the same for all t , and that εt and εt ′ are independent
for t �= t ′. Intuitively, this means that the noise process that corrupts our
data does not change over time and that it has no memory carrying over
from one example to the next. Our gradient descent learning rule now takes
the following form, with the shorthand G[x, T ] = [g(x)− T ]g′(x):

J (t +�t) = J (t)− η

N
ξ(t)G[J (t) · ξ(t), g(B(t) · ξ(t))+ εt ] (18.23)

We once more follow the procedure in Section 17.2, setting Q(t) = J 2(t)

and R(t) = B · J (t). Taking the scalar product of (18.23) with B gives us

R(t +�t)− R(t)

�t
= −ηB · ξ(t)G[J (t) · ξ(t), g(B · ξ(t))+ εt ] (18.24)

while by taking the scalar product of (18.23) with itself we get

Q(t +�t)−Q(t)

�t
= −2ηJ (t) · ξ(t)G[· · · ] + η2G2[· · · ] (18.25)

where we have used ξ(t) ·ξ(t) = N . One can now make the transition to the
continuous time limit by accumulating � discrete learning steps, and taking
the limits �→∞, N →∞ in such a way that �/N → 0. This allows us to
replace the left-hand sides of (18.24) and (18.25) by time derivatives, and
the right-hand sides by averages over the random quantities involved. These
averages are now over all ξ ∈ {−1, 1}N and over the noise variables εt . The
inputs ξ again enter only through the fields x = J · ξ and y = B · ξ , and
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after inserting explicitly the definition of G[x, T ] we end up with

d
dt

R = −η〈y[g(x)− g(y)− ε]g′(x)〉x,y,ε (18.26)

d
dt

Q = −2η〈x[g(x)− g(y)− ε]g′(x)〉x,y,ε

+ η2〈[g(x)− g(y)− ε]2[g′(x)]2〉x,y,ε (18.27)

The averages in (18.26, 18.27) are over the distribution (18.7) of the fields x

and y, and over the noise ε, which is independent of x and y. We now
assume that the noise has mean zero, since a nonzero mean can always be
absorbed by adding it to the teacher’s transfer function, and some finite
variance which we will denote by σ 2. Because the noise ε appears only in
linear and quadratic terms, the noise averages have become trivial; linear
terms simply drop out. This gives us the final form for the equations of
motion for R and Q, where we drop the subscripts on the averages again,
since they are now over x and y as before:

d
dt

R = −η〈y[g(x)− g(y)]g′(x)〉 (18.28)

d
dt

Q = −2η〈x[g(x)− g(y)]g′(x)〉
+ η2〈[g(x)− g(y)]2[g′(x)]2〉 + η2σ 2〈[g′(x)]2〉 (18.29)

Comparison with (18.5, 18.6) shows that, at the macroscopic level of
description and for N → ∞, the only effect of the noise in the teacher
outputs is to add an extra term to dQ/dt . As expected, this term is propor-
tional to the strength of the noise as measured by the variance σ 2. As soon
as there is any noise at all (i.e. as soon as σ 2 > 0), this additional term is
positive, which means that the optimal solution R = Q = 1 can no longer
be a stationary state. The asymptotic generalization error, as reached in
the limit t → ∞, must therefore be nonzero. Its actual value depends on
η and σ 2. In general, it cannot be calculated analytically and has to be
obtained from a numerical solution of the stationarity conditions for R

and Q. For small noise levels σ 2, however, the stationary state will be close
to R = Q = 1. One can therefore again linearize the equations of motion for
small values of δr = 1−R and δq = 1−Q, and find their stationary values.
Focusing as before on the case of the transfer function g(z) = erf(z/

√
2),

and inserting the stationary values δr and δq into the linearized expression
for the generalization error (18.22), one then obtains

E(t →∞) =
√

5
6

σ 2 η/ηc

1− η/ηc
+O(η2σ 4) (18.30)
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This illustrates an important point: the effect of noisy training inputs on the
asymptotic generalization performance depends not only on σ 2, but also
on the learning rate η. The optimal value of E(t → ∞) is obtained for
η→ 0; this remains true also for larger values of σ 2, even though the above
expansion for small σ 2 can then no longer be used. This means that there
is actually a tradeoff between the asymptotic value of E and the speed with
which it is reached. For small learning rate η, the asymptotic convergence
rate is proportional to η, and so the corresponding timescale ∼1/η diverges
for η → 0. In practice, one therefore often strikes a compromise by using
time-dependent learning rates when learning from noisy data. Initially, a
relatively large value of η is used in order to achieve fast convergence; then
η is gradually reduced to zero (η(t) ∼ 1/t can be shown to be optimal
asymptotically, see Exercise 18.3) to get good asymptotic generalization
performance.

18.3 Exercises

Exercise 18.1. (Verification of details in derivations.) Confirm that
R = Q = 1 is a stationary state of the equations of motion (18.12, 18.16).
Derive the linearized equation of motion (18.18)—this is not difficult con-
ceptually, but involves a fair bit of algebra. Calculate the eigenvalues and
eigenvectors of the matrix M; see (18.20) for the result. Also verify the lin-
earized representation of the generalization error (18.22). Finally, show
from the condition λ1 = 2λ2 that the learning rate that optimizes the
asymptotic convergence rate is indeed given by η = (2/3)ηc.

Exercise 18.2. (Learning dynamics in the presence of teacher noise.) Work
out the final term in (18.29) (which is due to the noise in the training out-
puts) explicitly for g(z) = erf(z/

√
2); you should find the result η2σ 2(2/π)×

(1+ 2Q)−1/2. Expand this expression to first order in δq = 1−Q. Combin-
ing the result with (18.18) for the noise free case, show that the linearized
equations of motion in the presence of noise are given by

d
dt

(
δr

δq

)
= M̃

(
δr

δq

)
−

(
0
d

)
, M̃ =M −

(
0 0
0 d/3

)

where d = 2η2σ 2/(π
√

3). By setting the left-hand sides to zero, obtain the
stationary values of δr and δq as

(
δr

δq

)
= −M−1

(
0
d

)
+O(η2σ 4) = −π

√
15

1− η̃
η̃σ 2

(
1/4
2/3

)
+O(η2σ 4)
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You can do this either by inverting M̃ explicitly, or by noting that the relative
deviation between the elements of M̃ and M is of order O(ησ 2). Finally,
confirm expression (18.30) by inserting your result into the linearized
representation of the generalization error (18.22).

Exercise 18.3. (Linear student and teacher.) Apply the formalism in Sec-
tion 18.2 for learning by continuous output perceptrons in the presence of
teacher output noise to the case of a linear transfer function, that is, to
g(z) = z. Show that the differential equations for R and Q simplify to

d
dt

R = −ηR + η

d
dt

Q = 2η(1− η)R + η(η − 2)Q+ η2(1+ σ 2)

and that the generalization error becomes E = 1
2 (1−2R+Q). Show from the

definitions of R and Q that R2 ≤ Q and that Q ≥ 0. Use these inequalities
to show that E is always non-negative, and that it achieves its minimal
value for R = Q = 1. Find the stationary state (R∗, Q∗) of the dynamical
equations; show that the generalization error in this state is given by

E∗ = ησ 2

2(2− η)

Deduce that the stationary state is not accessible (because it violates one of
the constraints R2 ≤ Q, Q ≥ 0) for η > 2. Starting from your expressions
for dR/dt and dQ/dt , find an expression for dE/dt . You should find that
this is a linear differential equation. Find its general solution, and the value
of η which gives the fastest convergence of E to its asymptotic value. Next
solve the equations for R and Q explicitly. The equation for R(t) is simple; to
get Q(t), you can simply combine the results for R(t) and E(t). Draw a flow
diagram in the R–Q plane, separately for values of η below and above 2.
From the second diagram you should see explicitly how the stationary point
becomes physically inaccessible.

Assume from now on that σ 2 > 0. Why does it make sense to reduce η

to zero for t →∞, in spite of your previous claims? Find the optimal η(t);
since the aim is to minimize E, the optimal η(t) is the one that maximizes
|dE/dt | for any given t . Show that this gives η(t) = 2E(t)/[2E(t) + σ 2].
For this choice of η(t), integrate the differential equation for E(t) to get
− ln E + σ 2/(2E) = t + constant. When E → 0, the first term on the
left-hand side can be neglected compared to the second one; hence show
that the optimal learning rate is of the form η(t) ∼ 1/t for large t .

Exercise 18.4. (Mismatched student and teacher.) Extend the formalism of
Section 18.2 to the case where the transfer function of the teacher, h(z),
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is different from that of the student, g(z). Derive the dynamical equations
for R and Q in the limit N → ∞; the only change compared to the case
of identical transfer functions should be the replacement of g(y) by h(y)

everywhere. Specialize to the case of a linear student, that is, g(z) = z,
and a teacher with a small non-linearity, that is, h(z) = z + az2. Perform
the averages over x and y in the dynamical equations explicitly. You will
need the result that for zero mean Gaussian random variables 〈z4〉 = 3〈z2〉2
(you may want to show this yourself, or see Appendix D). Show that at
the macroscopic level the ‘unlearnability’, that is, the mismatch between
student and teacher transfer functions, just acts as extra noise source, giving
an increased effective noise level of σ 2 + 3a2.
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Notes and suggestions for
further reading

In carrying out dynamical studies such as those in the previous three
chapters one always relies on general background knowledge of stochastic
processes (at the microscopic level of description), and of non-linear
dynamical systems (at the level of deterministic macroscopic observables);
recommended general textbooks on these topics are the ones by van Kampen
[79] and by Khalil [81], respectively. In contrast to the situation in
equilibrium, however (see Part V), it is difficult to give references to text-
books on the specific problems that we have been concerned with here, viz.
the processes of operation in recurrent networks and of learning in layered
ones. Such books appear to be surprisingly hard to find, partly, it seems,
because dynamical studies only got started seriously towards 1990 (whereas
many neural network textbooks were written immediately before then).

The first to analyse the dynamics of recurrent neural networks at the level
of macroscopic observables appears to have been Amari in 1977 [82]. His
ideas were worked out further and generalized in [83] and [84]. Amari’s
method was based on approximating the distribution of the local fields in
recurrent networks by a Gaussian one, followed by an analysis of the
evolution of the moments of this Gaussian distribution. In Chapter 16
we have discussed only those cases where, as a result of restricting oneself to
small numbers of stored patterns, the fields are fully deterministic (so that
we do not need to calculate field distributions), allowing for exact closed
equations. This simplifying property was discovered and exploited by
several authors in the late 1980s, see, for example, [85–87]. An altern-
ative class of models that allow for a relatively simple derivation of exact
closed macroscopic laws are the so-called asymmetrically extremely diluted
networks, see, for example, Derrida et al. [88] or the review by Kree
and Zippelius [89]; here the field distributions are indeed Gausssian. The
problem originally addressed by Amari (fully and symmetrically connec-
ted networks with a number of stored patterns that is no longer small),
in contrast, was found to be solvable without resorting to approximations
only via the more demanding generating functional analysis formalism;
the first to take this route were Rieger et al. [90] and Horner et al. [91].
Examples of alternative (and simpler but approximate) methods, developed
in roughly the same period, are [92] and [93]. A relatively recent review
of the analysis of the dynamics of recurrent neural networks, including
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many of the above distinct and complementary model types and analytical
approaches (and also others), is [94].

The application of statistical mechanical methods, which the calculation
of dynamical equations for macroscopic observables from stochastic micro-
scopic laws represents, to learning processes in neural networks was largely
initiated by the equilibrium analysis of Gardner [95, 96], to be discussed
in Chapter 22. Many subsequent dynamical studies were influenced signi-
ficantly by the early two papers [97] and [98]. Early studies can be traced
via the review papers [99–101]; a more recent review is [102]. The online
learning algorithms for training perceptrons as considered in Chapter 17
were introduced by Rosenblatt [5] (the perceptron rule), Vallet [103] (the
Hebbian rule), and Anlauf and Biehl [104] (the AdaTron rule), although
at the time they were not yet studied with the methods described here.
Kinzel and Rujan were the first to derive, in embryonic form, closed equa-
tions for the observables J 2 and J · B in perceptrons [105]. Many of
the results derived in Chapter 17 can be found in [106–108]. The lower
bound Eg ∼ 0.44 . . . t−1 for online learning rules was derived in [109].
The systematic optimization of learning rules to achieve the fastest decay
of the generalization error in perceptrons was introduced by Kinouchi and
Caticha [106].

The approach to online learning by gradient descent described in
Chapter 18 was pioneered by Biehl and Schwarze [110] and generalized
to multilayer neural networks by Saad and Solla [111]. A useful overview
of later developments is the collection [112] of contributions to a workshop
on online learning.

Finally, just like in the case of the dynamics of recurrent networks one
has a parameter regime where the problem demands more sophisticated
methods (operation close to saturation, that is, with large numbers of stored
patterns, see Chapter 21), also in the dynamics of learning one has such a
regime. In the latter case one finds that more advanced methods are required
as soon as the size of the training set is of the same order as the number
of dynamic variables (i.e. the synaptic weights), such that the data must
inevitably be re-cycled in the learning process. Examples of papers where
these more complicated scenarios are studied are [113–116].



Part

V
Equilibrium statistical
mechanics of neural
networks

Statistical mechanical techniques are employed in those cases where the
microscopic dynamical equations of a given many-particle system are too
complicated to be solved directly and explicitly for all times. In the preceding
part of this book we used non-equilibrium statistical mechanical tech-
niques to avoid having to solve our stochastic equations at the microscopic
level, by instead first deriving stochastic equations for suitable macroscopic
observables, which could then be solved much more easily than the micro-
scopic ones (at least in the limit of an infinite system size). Whenever this
method applies, whether in studying the operation or the learning of neural
systems, it leads to closed and deterministic dynamical laws for macroscopic
quantities.

In equilibrium statistical mechanics the route towards a deterministic
macroscopic theory is different: here one focuses on those stochastic pro-
cesses which evolve towards an equilibrium state, where the so-called
detailed balance property holds. This property is a mathematical condition
that rules out the existence of microscopic probability currents in the sta-
tionary state, and enables us to write down the microscopic equilibrium
state probabilities of our system in explicit form. Put differently, in such
systems we are able to solve the microscopic stochastic equations after all,
but only in a stationary state. This then serves as the starting point for the
derivation of macroscopic laws, in the limit of an infinite system size. This
route is in one sense more limited than the non-equilibrium one, in that
we can at most find a macroscopic theory describing specific systems in
equilibrium; there will be no description of how the system will get there.
In another sense it is more powerful: one finds that the interactions between
the microscopic elements can be much more complicated, compared to the
situation in non-equilibrium studies, without impairing our ability to derive
the macroscopic laws.

We first discuss applications of equilibrium statistical mechanics in the
domain of recurrent neural networks (where the condition for evolution
towards detailed balance equilibrium translates into restrictions on the
synaptic matrices), allowing us to study the operation of such systems
as associative memories not only at modest storage levels but also when
they operate close to saturation. Furthermore, one finds that also certain



problems in learning theory (especially those related to settling questions
regarding the existence of weights and thresholds required for layered
networks to solve a given problem) can be mapped onto an equilibrium
statistical mechanical calculation; this latter application domain is known
as Gardner theory. Both types of applications will involve a mathemat-
ical method, replica theory, which has been developed to deal with the
complexities induced by randomness or disorder in the microscopic system
parameters.



20 Basics of equilibrium
statistical mechanics

Rather than explaining the ideas and methods of equilibrium statistical
mechanics in an abstract setting, we illustrate them directly in the context
of neural network models. In Section 16.1 we defined our basic model for
the operation of recurrent networks with binary units. Their dynamics was
found as a process of stochastic alignment of spin variables σi ∈ {−1, 1},
representing the neurons, to local fields hi . This takes the form of a Markov
chain, for both parallel and sequential state updates:

pt+1(σ ) =
∑
σ ′

W(σ , σ ′)pt (σ
′) (20.1)

with the transition matrices (16.7) and (16.13), respectively, and with
σ ∈ {−1, 1}N . In general, Markov processes can have quite complex beha-
viour, including limit cycles, absorbing states etc. However, we will see that
the processes we are interested in are ergodic, and the probability distribu-
tion pt(σ ) of a finite system is guaranteed to converge to a unique stationary
distribution p∞(σ ) for t → ∞. If, in addition, the interaction matrix Jij

is symmetric, the dynamics obey what is known as detailed balance. The
resulting stationary state is then called an equilibrium state, and p∞(σ )

has the form of a Boltzmann distribution, the consequences of which can
be analysed using the formalism of equilibrium statistical mechanics. These
concepts and properties will be explained and derived in the present chapter.
We conclude with a simple example, which will illustrate the subtle but
important issue of the order of the two limits N →∞ and t →∞ and its
relation to phase transitions.

20.1 Stationary distributions and ergodicity

Ergodicity

The main property of our transition matrices which ensures convergence to
a unique stationary distribution is that they describe Markovian processes
that are ergodic, except in the special limit β →∞ to be discussed separately
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in Section 20.2. Intuitively, ergodicity means that all possible states σ of the
network are connected to each other; for any two microscopic states σ and
σ ′ there is a chain of allowed microscopic transitions that allows us to go
from σ to σ ′. If we are prepared to wait long enough, the probability will
then spread out over all states, whatever initial distribution p0(σ ) we start
from. More formally, a Markov process is ergodic if, whatever the initial
conditions p0(σ ), there exists a time τ such that

pt(σ ) > 0 for all σ and all t ≥ τ (20.2)

For parallel dynamics (16.6) just one iteration is needed for ensuring that all
probabilities pt(σ ) are positive: τpar = 1. For sequential dynamics (16.9),
at most N iterations are needed since we can reach any state from any other
by at most N spin flips, hence τseq = N .

By repeated iteration of (20.1) one may write the solution pt(σ ) of
the Markov chain as pt(σ ) =∑

σ ′′ W
t(σ , σ ′′)p0(σ

′′), where Wt denotes the
tth matrix power of the 2N ×2N transition matrix W . If we then choose the
initial conditions p0(σ

′′) = δσ ′,σ ′′ for some arbitrary σ ′ ∈ {−1, 1}N , we find
pt(σ ) = Wt(σ , σ ′). It now follows, in view of (20.2), that an ergodic system
must obey

Wt(σ , σ ′) > 0 for all σ , σ ′ and all t ≥ τ (20.3)

Here the time τ , which characterizes the minimum number of transitions
required to connect arbitrary microscopic states, is the one referred to in
(20.2). Since, in turn, property (20.2) is an immediate consequence of
(20.3), the two can be regarded as equivalent definitions of ergodicity.

Existence of a stationary distribution

Let us consider ergodic Markov processes of the type (20.1), with some
2N × 2N transition matrix W with entries W(σ , σ ′). Conservation of prob-
ability guarantees that the transition matrix has a left eigenvector (namely
the vector u = (1, 1, . . . , 1)) with eigenvalue one:

∑
σ

u(σ )W(σ , σ ′) =
∑
σ

W(σ , σ ′) = 1 = u(σ ′)

Now, for any finite-dimensional matrix W , the spectrum of left eigenvalues
is identical to the spectrum of right eigenvalues, since

det(W − λ1I) = det(W − λ1I)†
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We can therefore be sure that there exists also at least one non-trivial right
eigenvector φ with eigenvalue one, that is, with

∑
σ ′

W(σ , σ ′)φ(σ ′) = φ(σ ) (20.4)

We next prove that for ergodic systems (20.2) there exists an eigenvector of
the type (20.4) with positive components only (since the components must
represent probabilities, we must demand they be non-negative). To do so
we first define S+, S0, and S− as the sets of all system states σ ∈ {−1, 1}N
for which φ(σ ) > 0, =0, and < 0, respectively. From (20.4) we can derive,
by summation over either all σ ∈ S+ or over all σ ∈ S−, respectively, the
following two equations:

∑
σ∈S+

φ(σ ) =
∑
σ∈S+

[ ∑
σ ′∈S+

W(σ , σ ′)φ(σ ′)+
∑

σ ′∈S−
W(σ , σ ′)φ(σ ′)

]

∑
σ∈S−

φ(σ ) =
∑
σ∈S−

[ ∑
σ ′∈S+

W(σ , σ ′)φ(σ ′)+
∑

σ ′∈S−
W(σ , σ ′)φ(σ ′)

]

or, after relabelling σ → σ ′ on the left-hand sides,

∑
σ ′∈S+

[
1−

∑
σ∈S+

W(σ , σ ′)
]
φ(σ ′) =

∑
σ∈S+

∑
σ ′∈S−

W(σ , σ ′)φ(σ ′) (20.5)

∑
σ ′∈S−

[
1−

∑
σ∈S−

W(σ , σ ′)
]
φ(σ ′) =

∑
σ∈S−

∑
σ ′∈S+

W(σ , σ ′)φ(σ ′) (20.6)

By construction, all terms on the left-hand side of (20.5) are non-negative,
while those on the right-hand side are all non-positive. Similarly, all terms
on the left-hand side of (20.6) are non-positive, while those on the right-
hand side are all non-negative. It follows that both sides of both equations
(20.5, 20.6) must be zero. Let us now focus on the implications for the
left-hand sides of (20.5, 20.6), which are, respectively:

for all σ ′ ∈ S+:
∑
σ∈S+

W(σ , σ ′) = 1

for all σ ′ ∈ S−:
∑
σ∈S−

W(σ , σ ′) = 1
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Since
∑

σ W(σ , σ ′) = 1 for any state σ ′ (probability conservation), this
statement, in turn, implies that

for all σ ′ ∈ S+, σ �∈ S+: W(σ , σ ′) = 0

for all σ ′ ∈ S−, σ �∈ S−: W(σ , σ ′) = 0

We conclude that our stochastic process allows for only two types of
transitions away from states σ ′ ∈ S+

⋃
S−, namely

σ ′ ∈ S− → σ ∈ S− σ ′ ∈ S+ → σ ∈ S+

Since φ is a non-trivial eigenvector, we know that either S+ or S− is not
empty (or even both). Now suppose S+ is not empty. Given that our sys-
tems are ergodic (20.2) and that starting from a state in S+ we can never
go to a state outside S+, it follows immediately that S+ must then contain
all states. In other words: if φ has positive components, then all its com-
ponents must be positive. Similarly, if S− is not empty, it must contain all
states: if φ has negative components, then all its components must be neg-
ative. Since from any solution φ of (20.4) with only negative components
we can obtain one with only positive components by switching φ → −φ

(which can then be properly normalized so that its components sum to
one), we have proven the existence of a non-trivial stationary probability
distribution.

Convergence and uniqueness

We now turn to the evolution in time of the difference ψt between
two individual probability distributions pa

t and pb
t , which are obtained

as a result of iterating (20.1) from different initial conditions a and b.
Due to the linearity of the problem, ψt is itself again a solution
of (20.1):

ψt(σ ) = pa
t (σ )− pb

t (σ ) ψt+1(σ ) =
∑
σ ′

W(σ , σ ′)ψt (σ )

Thinking again of ψt(σ ) as the components of a 2N -dimensional vector
ψt , and of W(σ , σ ′) as the entries of a 2N × 2N matrix W , we can simply
write ψt+1 = Wψt . At all times and for all σ we have ψt(σ ) ∈ [−1, 1],
simply because all entries W(σ , σ ′) represent transition probabilities. So the
sequence ψt (t = 0, 1, 2, . . .) is bounded. Since

∑
σ pa

t (σ ) =∑
σ pb

t (σ ) = 1
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for all t ≥ 0, we also know that

∑
σ

ψt(σ ) = 0 for all t ≥ 0 (20.7)

We will show below that limt→∞ ψt(σ ) = 0 for all σ individually. If we
now choose pb

0(σ ) to be the stationary distribution p∞(σ ), whose existence
we have already demonstrated, we know that pb

t (σ ) = p∞(σ ) for all t ≥ 0,
so that the asymptotic vanishing of ψt translates into

lim
t→∞pt(σ ) = p∞(σ ) for all σ ∈ {−1, 1}N (20.8)

This holds for all solutions pt(σ ) of the ergodic Markov chain (20.1), since
pa

0(σ ) could be chosen arbitrarily. This gives the desired result: the prob-
ability distribution pt(σ ) will converge to p∞ for t →∞, from any initial
condition p0(σ ). The existence of more than one stationary probability dis-
tribution {p∞(σ )} would lead to a contradiction in (20.8), and is therefore
ruled out.

To prove that limt→∞ ψt(σ ) = 0 for all σ , we generalize the construction
that we employed in proving existence of a stationary distribution. We again
divide the set {−1, 1}N of all micro-states into subsets, now depending on the
sign of the components ψt(σ ). However, since (in contrast to φ) the vector
ψt is not invariant with time, these sets will here be time-dependent as well.
We define

S+(ψ) = all σ ∈ {−1, 1}N with ψ(σ ) > 0

S0(ψ) = all σ ∈ {−1, 1}N with ψ(σ ) = 0

S−(ψ) = all σ ∈ {−1, 1}N with ψ(σ ) < 0

We define the following function of ψ :

U(ψ) =
∑
σ

|ψ(σ )| =
∑

σ∈S+(ψ)

ψ(σ )−
∑

σ∈S−(ψ)

ψ(σ )

It is clearly bounded from below, U(ψ) ≥ 0. If for ψ we now substitute
the solution of the time evolution equation ψt+1 = Wψt , we find that U

is also decreasing monotonically with time, until a stage is reached where
U(ψ) = 0. This can be seen as follows. In any single iteration step ψ → Wψ
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we have

U(Wψ)− U(ψ)

=
∑

σ∈S+(Wψ)

(Wψ)(σ )−
∑

σ∈S+(ψ)

ψ(σ )

−
∑

σ∈S−(Wψ)

(Wψ)(σ )+
∑

σ∈S−(ψ)

ψ(σ )

= −
∑

σ ′∈S+(ψ)

|ψ(σ ′)|
[
1−

∑
σ∈S+(Wψ)

W(σ , σ ′)
]

−
∑

σ ′∈S−(ψ)

|ψ(σ ′)|
∑

σ∈S+(Wψ)

W(σ , σ ′)

−
∑

σ ′∈S−(ψ)

|ψ(σ ′)|
[
1−

∑
σ∈S−(Wψ)

W(σ , σ ′)
]

−
∑

σ ′∈S+(ψ)

|ψ(σ ′)|
∑

σ∈S−(Wψ)

W(σ , σ ′)

= −
∑

σ ′∈S+(ψ)

|ψ(σ ′)|
[
2

∑
σ∈S−(Wψ)

W(σ , σ ′)+
∑

σ∈S0(Wψ)

W(σ , σ ′)
]

−
∑

σ ′∈S−(ψ)

|ψ(σ ′)|
[
2

∑
σ∈S+(Wψ)

W(σ , σ ′)+
∑

σ∈S0(Wψ)

W(σ , σ ′)
]

≤ 0 (20.9)

Since U(ψ) is also bounded from below, it must tend to a limit:
limt→∞ U(ψt) = U∞ ≥ 0 exists. We now prove that this limit must be
U∞ = 0.

Let τ denote the time required for all states to be connected by an allowed
transition, in the sense of the ergodicity definition (20.3). Since our process
is assumed ergodic, we know that

∃W0 ∈ (0, 1): W τ (σ , σ ′) > W02−N for all σ , σ ′ ∈ {−1, 1}N (20.10)

The specific factor 2−N will prove convenient. The inequality W0 > 0
follows directly from (20.3), whereas W0 < 1 follows by summing the
inequality (20.10) over all σ for fixed σ ′. We can now repeat the above
steps leading to our expression (20.9), but now applied to the change in U
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after τ iterations, viz. U(W τψ)− U(ψ). This gives simply

U(W τψ)− U(ψ) = −
∑

σ ′∈S+(ψ)

|ψ(σ ′)|
[
2

∑
σ∈S−(W τ ψ)

W τ (σ , σ ′)

+
∑

σ∈S0(W τ ψ)

W τ (σ , σ ′)
]
−

∑
σ ′∈S−(ψ)

|ψ(σ ′)|

×
[
2

∑
σ∈S+(W τ ψ)

W τ (σ , σ ′)+
∑

σ∈S0(W τ ψ)

W τ (σ , σ ′)
]

We may now use (20.10) to write

U(W τψ)− U(ψ) ≤ −W02−N
∑

σ∈S+(ψ)

|ψ(σ )| [2|S−(W τψ)| + |S0(W
τψ)|]

−W02−N
∑

σ∈S−(ψ)

|ψ(σ )| [2|S+(W τψ)| + |S0(W
τψ)|]

From (20.7) it follows that always
∑

σ∈S+(ψ) |ψ(σ )| = ∑
σ∈S+(ψ) |ψ(σ )| =

1
2U(ψ). Therefore

U(W τψ)− U(ψ)≤−W0U(ψ)2−N [|S−(W τψ)| + 1
2 |S0(W

τψ)|]

−W0U(ψ)2−N [|S+(W τψ)| + 1
2 |S0(W

τψ)|]

=−W0U(ψ)2−N [|S−(W τψ)|+|S+(W τψ)|+|S0(W
τψ)|]

=−W0U(ψ)

We conclude that U(W τψ) ≤ (1 − W0)U(ψ). Thus also U(ψτ ) ≤
(1 − W0)U(ψ0), and (upon repeating the argument � times): U(ψ�τ ) ≤
(1 −W0)

�U(ψ0). Taking the limit �→ ∞, together with the lower bound
U(ψ�τ ) ≥ 0, gives the desired result: limt→∞ U(ψt) = 0. Given defini-
tion (20.1), we can now indeed be sure that limt→∞ ψt(σ ) = 0 for all
σ ∈ {−1, 1}N . This completes our proof. Ergodic Markov processes have
a unique stationary distribution to which they will converge from any initial
distribution over states.



408 20 : Basics of equilibrium statistical mechanics

20.2 Detailed balance and interaction symmetry

Definition of detailed balance

In the previous section, we have shown that for our Markov process models
describing the operation of recurrent neural networks, there is a well-defined
and unique stationary distribution p∞(σ ) over the 2N possible microscopic
states σ , which is reached in the limit t →∞ (at fixed N ). This distribution
is determined by the stationarity condition

for all σ ∈ {−1, 1}N : p∞(σ ) =
∑
σ ′

W(σ , σ ′)p∞(σ ′)

While it is reassuring that p∞ exists, to calculate it we would have to
solve this system of 2N linear equations for the 2N values p∞(σ ), sub-
ject to the conditions p∞(σ ) ≥ 0 and

∑
σ p∞(σ ) = 1. This seems rather a

hopeless task.
However, for some Markov processes the stationary distribution obeys

the following stronger condition:

W(σ , σ ′)p∞(σ ′) = W(σ ′, σ )p∞(σ ) for all σ , σ ′ ∈ {−1, 1}N (20.11)

Such Markov processes are said to obey detailed balance, and (20.11) is
called the detailed balance condition. By summing (20.11) over all σ ′, and
using the normalization of the transition probabilities,

∑
σ ′ W(σ ′, σ ) = 1

for all σ , we see that any distribution p∞(σ ) which obeys (20.11) is
necessarily stationary; the converse is not true.

Detailed balance is a special feature which greatly simplifies the calcu-
lation of the stationary probability distribution p∞(σ ). It states that, in
addition to the probability distribution being stationary, the latter describes
equilibrium in the sense that there is no net probability current between any
two microscopic system states σ and σ ′. A useful analogy is an electric net-
work. If we identify the nodes of this electric network with the possible
microscopic states σ , and the charge at each node with the probability for
that state, then stationarity means that the currents flowing into and out of
each node add up to zero, so that there is no net current into or out of the
node. In equilibrium, that is, if we also have detailed balance, the currents
do not just add up to zero: they are actually all zero individually.

We now show that, in our model of network operation as stochastic
alignment of the spins (or neurons) σi to the local fields hi(σ ) given in
equation (16.3), detailed balance holds if and only if the neural interactions
are symmetric, that is, if Jij = Jji for all neuron pairs (i, j). A slight proviso
is that for sequential dynamics there must also be no self-interactions, that is,
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Jii = 0 for all i. We consider the cases of parallel and sequential dynamics
separately.

Parallel dynamics

For parallel dynamics the transition matrix is given by (16.7) and the
detailed balance condition (20.11) becomes

eβ
∑N

i=1 σihi (σ
′)p∞(σ ′)∏N

i=1 cosh(βhi(σ ′))
= eβ

∑N
i=1 σ ′i hi (σ )p∞(σ )∏N

i=1 cosh(βhi(σ ))
for all σ , σ ′ (20.12)

Our transition matrix (16.7) indeed describes an ergodic system, that is,
from any initial state σ one can reach any final state σ ′ with nonzero prob-
ability in a finite number of steps (in this case: one). As a consequence all
stationary probabilities p∞(σ ) must be nonzero. Without loss of generality
we can therefore put:

p∞(σ ) = eβ[∑N
i=1 ϑiσi+K(σ )]

N∏
i=1

cosh(βhi(σ )) (20.13)

which, in combination with the definition (16.3) of the local fields hi(σ ),
simplifies the detailed balance condition to:

K(σ )−K(σ ′) =
N∑

ij=1

σi(Jij − Jji)σ
′
j for all σ , σ ′ (20.14)

Now, if the interactions are symmetric, the right-hand side of (20.14) is
zero, and so (20.14) can be satisfied by simply choosing K(σ ) = K (a con-
stant). Hence our Markov process obeys the detailed balance condition with
respect to the probability distribution

p∞(σ ) = eβK eβ
∑N

i=1 ϑiσi

N∏
i=1

cosh(βhi(σ )) (20.15)

and p∞(σ ) is therefore the (unique, because of ergodicity) equilibrium dis-
tribution; the actual value of K is determined from the normalization of
p∞. Interaction symmetry implies detailed balance.

Conversely, let us assume that detailed balance holds, that is, that there
is a function K(σ ) obeying (20.14). If we now take a uniform average
of (20.14) over the 2N states σ ′, the right-hand side becomes zero and
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we obtain:

K(σ ) = 〈K(σ ′)〉σ ′ for all σ

This implies that K must again be a constant. But then (20.14) implies

N∑
ij=1

σi(Jij − Jji)σ
′
j = 0 for all σ , σ ′

For 2N−1 ≥ N (or: N ≥ 2) the vector pairs (σ , σ ′) span the space of all
N ×N matrices and so it follows that Jij = Jji for all i, j . For N = 1, this
is automatically true (since J11 = J11).

In summary: for parallel dynamics as defined by (16.7), interaction sym-
metry implies detailed balance and vice versa. If detailed balance holds, the
equilibrium distribution is given by (20.15).

Sequential dynamics without self-interactions

Now consider the case of sequential dynamics without self-interactions;
Jii = 0 for all i. Because of the form of the transition matrix (16.13), the
detailed balance condition (20.11) is then non-trivial only if either σ ′ =
Fiσ for some i, or σ ′ = σ . For all other state pairs (σ ′, σ ), the transition
probabilities are zero, so both sides of (20.11) vanish. In the case where
σ ′ = σ , the two sides are also trivially equal. Thus we only have to consider
the case σ ′ = Fiσ , where (20.11) simplifies to:

e−β(Fiσi )hi (Fiσ )p∞(Fiσ )

cosh(βhi(Fiσ ))
= e−βσihi(σ )p∞(σ )

cosh(βhi(σ ))
for all σ and all i

Because of the absence of self-interactions, the local field acting on σi , viz.

hi(σ ) =
∑
k �=i

Jikσk + ϑi (20.16)

is independent of σi . So hi(σ ) = hi(Fiσ ), and the detailed balance condition
becomes

e−β(Fiσi )hi (Fiσ )p∞(Fiσ ) = e−βσihi (σ )p∞(σ ) for all σ and all i (20.17)

As discussed previously, the sequential transition matrix (16.13) describes
an ergodic system; we can get from any initial state σ to any desired final
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state σ ′ with nonzero probability in at most N iterations. Since all stationary
probabilities p∞(σ ) must therefore be nonzero, we can write:

p∞(σ ) = exp
[
β

(∑
k

ϑkσk + 1
2

∑
k �=l

σkJklσl +K(σ )

)]
(20.18)

This simplifies (20.17) to

gi(Fiσ ) = gi(σ ) for all σ and all i (20.19)

where

gi(σ ) = −σihi(σ )+
∑

k

ϑkσk + 1
2

∑
k �=l

σkJklσl +K(σ )

The detailed balance condition (20.19) requires that gi(σ ) be independent
of σi , so we separate off terms not involving σi . Inserting hi(σ ) from (20.16),
this gives

gi(σ ) = −
∑
k �=i

σiJikσk +
∑
k �=i

ϑkσk + 1
2

∑
k �=l,k �=i,l �=i

σkJklσl

+ 1
2

∑
k �=i

σkJkiσi + 1
2

∑
l �=i

σiJilσl +K(σ )

= terms not involving σi + 1
2

∑
k �=i

σi(Jki − Jik)σk +K(σ )

The detailed balance condition (20.19) thus becomes, after cancelling all
terms that are independent of σi ,

K(Fiσ )−K(σ ) = σi

∑
k �=i

(Jki − Jik)σk for all σ and all i (20.20)

We have shown, therefore, that for sequential dynamics without self-
interactions detailed balance holds if and only if a function K(σ ) obeying
(20.20) exists.

We can now prove our statement that detailed balance implies interaction
symmetry and vice versa. Assume first that detailed balance holds. Since
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(20.20) is then obeyed for all σ , it also holds for all Fjσ (where j �= i):

K(FiFjσ )−K(Fjσ ) = σi

∑
k �=i

(Jki − Jik)Fjσk

= σi

∑
k �=i

(Jki − Jik)σk − 2σi(Jji − Jij )σj

Subtracting (20.20) from this, we get

K(FiFjσ )−K(Fiσ )−K(Fjσ )+K(σ ) = −2σi(Jji − Jij )σj

Because the left-hand side is symmetric under permutation of the pair (i, j),
so must be the right-hand side. This implies that the interactions must be
symmetric, Jij = Jji for all (i, j), as we wanted to show.

Conversely, if the interactions are symmetric, the detailed balance con-
dition (20.20) has a trivial solution, namely K(σ ) = K (a constant). Thus
detailed balance holds and the corresponding equilibrium distribution is,
from (20.18),

p∞(σ ) = eβK e−βH(σ ) with H(σ ) = −1
2

N∑
ij=1

σiJij σj −
N∑

i=1

ϑiσi

(20.21)

In summary: for sequential dynamics without self-interactions, interaction
symmetry implies detailed balance and vice versa. If detailed balance holds,
the equilibrium distribution is given by (20.21).

Sequential dynamics with self-interactions

In this final case the situation is considerably more complicated. In principle,
detailed balance may now hold for both symmetric and non-symmetric
systems. However, one can show that such cases must be pathological ones,
since only for very specific choices for the matrix elements {Jij } can the
corresponding requirements be met (e.g. in systems with self-interactions
only).

Zero noise dynamics for symmetric interactions

Let us briefly mention the special case β →∞ where the dynamics of our
network is deterministic, at least up to the random choice of site for an
update in the sequential dynamics case. We then no longer have ergodicity,
but can still often say something about the long time (i.e. t →∞) behaviour
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of the system, by constructing appropriate Lyapunov functions, that is,
functions of the dynamic state variables which decreases monotonically and
are bounded from below. This approach has been explored in Part I of the
book. As would be expected from our discussion of detailed balance above,
systems with symmetric interactions are the simplest, and these are indeed
the ones for which we were able to find Lyapunov functions in Section 3.2.

20.3 Equilibrium statistical mechanics: concepts,
definitions

Hamiltonians

So far we have seen that the evolution of our networks is described by
Markov processes which are ergodic, and which must therefore converge
to a unique stationary distribution p∞(σ ) over the possible microscopic
states σ . If the Markov process obeys detailed balance, which is the case
if the interactions Jij are symmetric (and if, for sequential dynamics, there
are no self-interactions), the stationary distribution represents equilibrium
and we write it as peq(σ ). For symmetric models we have found the form
of peq explicitly:

peq(σ ) = 1
Z

e−βH(σ ) (20.22)

where Z is a normalization constant (which we previously wrote as e−βK ),
and the function H(σ ) is called the Hamiltonian. For sequential dynamics,
from (20.21) we have

H(σ ) = −1
2

N∑
ij=1

σiJij σj −
N∑

i=1

ϑiσi (20.23)

For parallel dynamics, peq can still be written in the form (20.22), but with
a different Hamiltonian H(σ ), which follows from (20.15) as

H(σ ) = −
N∑

i=1

ϑiσi − 1
β

N∑
i=1

ln 2 cosh(βhi(σ )) (20.24)

Since here the function H(σ ) depends on the noise parameter β, in contrast
to (20.23) and to ‘normal’ physical systems, the function in (20.24) is in fact
usually called a pseudo-Hamiltonian.
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Partition function and free energy

In statistical mechanics, distributions of the form (20.22) are called
Boltzmann distributions. The normalization constant

Z =
∑
σ

e−βH(σ ) (20.25)

is called the partition function or sum over states; the notation Z comes
from the German word for this, ‘Zustandssumme’. Statistical mechanics
was originally developed for systems of point particles obeying the laws of
classical mechanics, hence the name, and the general theory shows that the
equilibrium behaviour at temperature T = 1/β of any system is described
by a Boltzmann distribution, where the Hamiltonian represents the energy
of the system. Our Hamiltonian for sequential dynamics, equation (20.23),
is called the Ising Hamiltonian, and its first part corresponds in physics
terminology to the interaction energy between the spins, while the second
part represents the energy of the spins in an external field. The Hamiltonian
(20.24) has no equally direct interpretation as an energy.

We will mostly be interested in averages over the distribution peq:

〈f 〉eq =
∑
σ

f (σ )peq(σ ) = 1
Z

∑
σ

f (σ )e−βH(σ )

of certain observables f (σ ), which are simply functions of the network
state σ , over the equilibrium distribution. For this purpose, it is useful to
define the free energy

F = −T ln Z = −1
β

ln Z (20.26)

If we can calculate F , then by taking derivatives we can also get the required
averages. This can be seen as follows. If the Hamiltonian depends on a
parameter λ, then the derivative of F with respect to λ is given by

∂F

∂λ
= − 1

βZ

∂Z

∂λ
= − 1

βZ

∑
σ

(
− β

∂H(σ )

∂λ

)
e−βH(σ ) =

〈
∂H

∂λ

〉
eq

(20.27)

For example, if in the case of sequential dynamics we apply this relation to
λ ≡ ϑi and λ ≡ Jij , we obtain

− ∂F

∂ϑi

= 〈σi〉eq − ∂F

∂Jij

= 〈σiσj 〉eq
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As an aside we note that, in the case of parallel dynamics, the averages
generated by the same derivatives are more complicated,

− ∂F

∂ϑi

= 〈σi〉eq + 〈tanh(βhi(σ ))〉eq

− ∂F

∂Jij

= 〈σi tanh(βhj (σ ))〉eq + 〈σj tanh(βhi(σ ))〉eq for i �= j

− ∂F

∂Jii

= 〈σi tanh(βhi(σ ))〉eq

reflecting the different structure of the Hamiltonian (20.24).
More generally, the equilibrium average of any arbitrary observable f (σ )

can be obtained by adding suitable generating terms to the Hamiltonian,
taking a derivative of the free energy, and then setting the generating terms
back to zero:

H(σ )→ H(σ )+ λf (σ ) 〈f 〉eq = lim
λ→0

∂F

∂λ

While its derivatives are useful for calculating averages, the free energy
is also an interesting quantity in its own right. By averaging the rela-
tion H(σ ) + T ln peq(σ ) = −T ln Z (which holds for all σ , as follows
from (20.22)) over the equilibrium distribution, one finds

F = E−T S where E = 〈H 〉eq, S = −
∑
σ

peq(σ ) ln peq(σ ) (20.28)

Here E, the average of the Hamiltonian H , is simply the (average) energy,
while S is the entropy of the equilibrium distribution, a concept which we
have encountered before in Part III of this book devoted to information
theory and its applications.40 If the Hamiltonian is independent of β, both
terms in (20.28) can be written in terms of derivatives of F with respect
to β (see Exercise 20.1):

E = −∂ln Z

∂β
= ∂(βF)

∂β
S = β(E − F) = β2 ∂F

∂β
(20.29)

40 Note that the information entropy (or Shannon entropy) was defined in terms of
digital rather than natural logarithms, and thus differs from the present convention by a
factor 1/ ln 2.



416 20 : Basics of equilibrium statistical mechanics

If we extend (20.28) and use it to define the free energy for any general
distribution p(σ ) over states σ ,

F [p(σ )] = 〈H 〉 − T S

where 〈H 〉 =
∑
σ

p(σ )H(σ ), S = −
∑
σ

p(σ ) ln p(σ ) (20.30)

then one also finds that the Boltzmann distribution peq(σ ) is the distribution
that actually minimizes F [p(σ )]. This provides an alternative interpretation
of the effect of the temperature T on the equilibrium distribution peq(σ ).
The entropy S has its maximal value N ln 2 when p(σ ) = 1/2N , a uniform
distribution over all states σ ; in this sense, minimization of the term −T S

in the free energy F [p(σ )] favours disorder. The minimal value of S is 0,
and is achieved for a distribution p(σ ) which gives nonzero probability
only to a single state σ . The first term in the free energy, 〈H 〉, on the other
hand, favours order: it prefers distributions p(σ ) which give weight only
to the states of minimum energy H(σ ), the so-called ground states. The
temperature T determines the tradeoff between these two contributions: for
large T , more disorder results, while for small T the entropic contribution
becomes unimportant and the tendency is to minimize the average energy.
This agrees with our earlier interpretation of T = 1/β as a noise parameter.

Constrained free energy

We can also extend the concept of a free energy to that of a so-called con-
strained free energy, in order to obtain information about the distribution
of values of observables m(σ ) in an equilibrium situation, rather than just
their averages. The observables we will normally be interested in are macro-
scopic in the sense that they describe the overall behaviour of the system. An
example would be the average neuron activity m(σ ) = N−1 ∑

i σi , whereas
the activity of an individual neuron, σi , is a microscopic observable. The
probability of m(σ ) taking a certain value m̃ can be written as

P(m̃) = 〈δ(m̃−m(σ ))〉eq =
∑
σ

peq(σ )δ(m̃−m(σ ))

using the δ-distribution (see Appendix F). That this is a sensible defini-
tion can be seen from the fact that it gives the correct average of any
function f (m(σ )):∫

dm̃ P (m̃)f (m̃) =
∫

dm̃ 〈δ(m̃−m(σ ))〉eqf (m̃)

=
〈∫

dm̃ δ(m̃−m(σ ))f (m̃)

〉
eq
= 〈f (m(σ ))〉eq



20.3 Equilibrium statistical mechanics: concepts, definitions 417

Using the Boltzmann form (20.22) of the equilibrium distribution, we can
now rewrite P(m̃) as

P(m̃) = 1
Z

∑
σ

δ(m̃−m(σ ))e−βH(σ ) = Z(m̃)

Z
= e−β(F (m̃)−F) (20.31)

where

Z(m̃) =
∑
σ

δ(m̃−m(σ ))e−βH(σ ) F (m̃) = −T ln Z(m̃)

are the constrained partition function and free energy, respectively. We have
chosen the name ‘constrained’ here because the sum over states defining
Z(m̃) is constrained to those states σ which give the correct value of m(σ ).

In the notation up to now, we have distinguished the observable m(σ ),
a function of σ , from its desired value m̃. To make things more concise,
we will follow convention and henceforth drop the tilde on m̃, writ-
ing the definitions of the constrained partition function and free energy,
for example, simply as

Z(m) =
∑
σ

δ(m−m(σ ))e−βH(σ ) F (m) = −T ln Z(m) (20.32)

The fact that the same symbol m is used for the observable m(σ ) and its
value m should not cause confusion; which one is meant is clear from
whether the function argument σ is given or not. Finally, we note that
the definition (20.32) can be extended straightforwardly to a constrained
free energy that depends on the values of any finite number of observables
m1(σ ), . . . , mk(σ ).

Thermodynamic limit, fluctuations, and saddle point integration

As mentioned earlier, statistical mechanics focuses on the limit of large sys-
tems, N →∞. This is called the thermodynamic limit, for mainly historical
reasons. For systems of particles obeying the laws of classical mechanics, it
turns out that in this limit the free energy F , the (average) energy E = 〈H 〉eq,
and the entropy are extensive: they are, for large N , proportional to N .
Considering the case of the energy, the underlying intuitive idea is that
there is a well-defined energy per particle, and that if we make our system
twice as large, then the total energy will simply double. More precisely, the
free energy being extensive means that the limit f = limN→∞ F/N exists,
so that for large N we can write F = Nf up to terms which are negligible by
comparison, being either independent of N or increasing more slowly than
linearly with N . Such finite-size corrections are (nearly) always neglected in
statistical mechanics.
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For the models of network operation that we will consider, we will
similarly find that F , E, and S will be proportional to N in the thermo-
dynamic limit, so that we can write, for example, F = Nf . For suitable
macroscopic observables m(σ ), the same scaling with N applies to the
constrained free energies F(m) = Nf (m). The corresponding partition func-
tions Z = e−βF = e−Nβf and Z(m) = e−Nβf (m) are thus exponential in N .
From the N -dependence of F(m) = Nf (m) we can draw an important con-
clusion regarding the fluctuations of m across the equilibrium distribution.
Let us assume that m is normalized such that its range of typical values does
not depend on N , and let us consider the simplest case where f (m) has a
single (local and global) minimum at m = m∗. Expanding f (m) to second
order around this minimum, we find from (20.31) that

P(m) = e−Nβ[f (m)−f ] ≈ e−Nβ[f (m∗)−f ]−Nβf ′′(m∗)(m−m∗)2/2

This is a Gaussian distribution of width O(N−(1/2)), centred on m∗ (the
symbol O(· · · ) is, as always, read as ‘of the order of’ and indicates the
dependence on N or other variables while ignoring constant prefactors and
terms which are negligible by comparison). We see that only values of m

for which m−m∗ = O(1/
√

N) have a significant probability of occurring.
For N → ∞, the fluctuations of m vanish, m takes the value m∗ with
probability one, and m∗ is therefore also the average value of m. Hence,
in the thermodynamic limit suitably chosen macroscopic observables take
deterministic values. This is the intuitive reason why we consider this limit:
fluctuations average out and vanish for N →∞, and this makes calculations
feasible which would otherwise be impossible.

The thermodynamic limit also produces a corresponding simplification
in the calculation of the free energy. Suppose we have managed to find the
constrained free energy per neuron/spin/particle, f (m). Then, from (20.32),
the unconstrained partition function is given by

Z =
∫

dm Z(m) =
∫

dm e−Nβf (m)

As always, integrals without explicitly written limits run from −∞ to ∞;
if m cannot assume all of these values, the ‘impossible’ ones are automat-
ically excluded because they give Z(m) = 0. For large N , the integrand is
very sharply peaked around the minimum m∗ of f (m). Expanding to second
order around this minimum, we obtain

Z ≈
∫

dm e−Nβf (m∗) e−Nβf ′′(m∗)(m−m∗)2/2 = e−Nβf (m∗)
√

2π

Nβf ′′(m∗)
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and thus the free energy (per neuron) becomes

f = − 1
Nβ

ln Z ≈ f (m∗)− ln[2π/βf ′′(m∗)] − ln N

2Nβ
→ f (m∗) (N →∞)

(often the thermodynamic limit N → ∞ is understood to be taken even
if not written explicitly). So the free energy f per neuron is simply the
value of f (m) at its minimum. We will often use this so-called ‘saddle-point
integration’ technique to calculate free energies. It applies to all integrals
with integrands which are exponential in some large parameter, and gives
the general result

lim
N→∞−

1
N

ln
∫

dx e−Ng(x) = min
x

g(x) (20.33)

Such integrals can therefore be evaluated by finding the stationary points
of g(x) and selecting the one with the smallest value of g. Under suitable
conditions, this result even holds when these stationary points are in the
complex plane; the fact that stationary points of a function of a complex
variable always have the structure of a saddle point gives the technique its
name. For further discussion of the saddle point method see Appendix I.

20.4 A simple example: storing a single pattern

Reduction to calculating the density of states

To show how the above definitions and concepts of statistical mechanics
are applied in practice, let us consider a neural network with uniform
interactions Jij , no self-interactions, and zero external fields:

Jij = Jji = J

N
(i �= j), ϑi = 0 (20.34)

We will see that this recipe can be thought of as storing a pattern of all +1s
(or all −1s) in the network. In physics terminology, the system defined
by (20.34) is called an ‘infinite range ferromagnet’. The name ‘infinite
range’ comes from the fact that if we imagine arranging the neurons/spins
in space, there is an interaction between them independently of how far
apart they are.

We focus on the case of sequential dynamics. Accounting for the fact
that there are no self-interactions, the relevant Ising Hamiltonian (20.23)
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can then be written as

H(σ ) = − J

2N

(∑
ij

σiσj −
∑

i

σ 2
i

)
= −NJ

2
m2(σ )+ J

2

with the average neuron activity, or ‘magnetization’ of the spins,

m(σ ) = 1
N

∑
k

σk

The second term in the Hamiltonian is O(1), that is, does not scale with N ,
and only gives a corresponding O(1) factor e−βJ/2 in the partition func-
tion and thus an additive contribution to the free energy F which is
also O(1), namely J/2. This can be neglected compared to the dominant
O(N) contribution, so we can write directly

Z =
∑
σ

eNβJm2(σ )/2+O(1) F = −T ln Z (20.35)

The fact that the Hamiltonian depends on σ only through m(σ ) suggests the
introduction of the constrained partition function and free energy for m:

Z =
∫

dm Z(m), Z(m) =
∑
σ

eNβJm2(σ )/2+O(1)δ(m−m(σ ))

= eNβJm2/2+O(1)
∑
σ

δ(m−m(σ )) (20.36)

Using saddle point integration, the free energy per neuron in the thermo-
dynamic limit is then

f = min
m

f (m), f (m) = − lim
N→∞

T

N
ln Z(m) = −1

2
Jm2 − T s(m) (20.37)

where

s(m) = lim
N→∞

1
N

lnD(m) D(m) =
∑
σ

δ(m−m(σ )) (20.38)

From the last definition, we see that D(m) = eNs(m) (to leading order in N )
basically counts the number of states σ with a given value of m(σ ). It is
therefore often called the ‘density of states’, and s(m) the (normalized) log-
density of states. Comparing (20.37) with (20.28), and noting that the first
term in f (m) is just H(m(σ ))/N , apart from vanishing terms, the normalized
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Hamiltonian for the given value of m, gives an alternative interpretation of
s(m) as a constrained entropy per neuron.

Calculation of the density of states

To evaluate s(m), we use the integral representation of the δ-function (see
Appendix F). We choose the integration variable in this representation as
Nx rather than x; this guarantees that we will be left with an integral which
can be evaluated by saddle point integration:

δ(m−m(σ )) =
∫

Ndx

2π
eiNx[m−m(σ )] =

∫
Ndx

2π
eiNxm−ix

∑
i σi (20.39)

The point in using (20.39) is to relocate m(σ ) = N−1 ∑
i σi into the expo-

nent; this gives an expression which factorizes over the different σi , so that
the sum over states can be carried out. Let us look at this idea of factoriza-
tion in more detail. Suppose we are trying to work out the sum

∑
σ f (σ ).

For general f (σ ), this is hard. But if f factorizes over the different σi , that is,
if f (σ ) = f1(σ1)×f2(σ2)× . . .×fN(σN), we can make progress. First note
that the sum over σ corresponds to summing over the possible values ±1
for each spin:

∑
σ

f (σ ) =
∑

σ1=±1

· · ·
∑

σN=±1

f1(σ1)× . . .× fN(σN)

Now σN only appears in fN(σN), and we can therefore sum over it:

∑
σ

f (σ ) =
∑

σ1=±1

· · ·
∑

σN−1=±1

f1(σ1)× . . .× fN−1(σN−1)

( ∑
σN=±1

fN(σN)

)

We can repeat the same process for all other spins, σN−1, σN−2, . . . , σ1 and
get the general expression for a factorized sum

∑
σ

f1(σ1)× . . .×fN(σN)=
( ∑

σ1=±1

f1(σ1)

)( ∑
σ2=±1

f2(σ2)

)
· · ·

( ∑
σN=±1

fN(σN)

)

or in short

∑
σ

∏
i

fi(σi) =
∏
i

(∑
σi

fi(σi)

)
(20.40)
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Applying this to the sum over σ of (20.39) which gives us the density of
states (20.38), we have

D(m) =
∑
σ

∫
Ndx

2π
eiNxm−ix

∑
i σi =

∫
Ndx

2π
eiNxm

∑
σ

e−ix
∑

i σi

=
∫

Ndx

2π
eiNxm

∑
σ

∏
i

e−ixσi =
∫

Ndx

2π
eiNxm

∏
i

( ∑
σi=±1

e−ixσi

)

=
∫

Ndx

2π
eiNxm[2 cos(x)]N =

∫
Ndx

2π
eN [ixm+ln 2 cos(x)] (20.41)

The stationary point of the exponent is given by

im− tan x = 0 ⇒ x = arctan(im) = i artanh (m)

So, upon evaluating the integral by saddle point integration and using the
relations cos(iα) = cosh(α), cosh(α) = [1−tanh2

(α)]−1/2 and artanh (α) =
1
2 ln[(1+ α)/(1− α)], we arrive at

s(m) = 1
N

lnD(m) = −m artanh (m)+ ln 2 cosh( artanh (m))

= −1+m

2
ln

(
1+m

2

)
− 1−m

2
ln

(
1−m

2

)
(20.42)

This result for the constrained entropy (or log density of states) per neuron
makes sense: to get the desired value of m, each spin σi must be ±1 with
probability (1 ± m)/2, and s(m) is just the entropy of a distribution over
two possible states with these probabilities (see Equation (12.3)).

Properties and interpretation of the solution

The result of our modest calculation is that the constrained free energy and
free energy are (20.37), with s(m) given by (20.42). If J < 0 (the so-called
anti-ferromagnetic case), both terms in f (m) are minimized for m = 0,
so this is the single minimum of f (m) at all T (see Figure 20.1, right).
We therefore focus now on the case of a ferromagnetic coupling, J > 0.
Here the first (energetic) term in f (m) favours large values of |m|, that is,
ordered states, while the second (entropic) term favours the most disordered
state m = 0. Correspondingly, as shown in Figure 20.1 (left), f (m) has a
single minimum at m = 0 for large T , where the entropic term is dominant,
but develops two minima as T is lowered. This is reflected in the condition
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Figure 20.1 The constrained free energies f (m) for the infinite-range ferromagnet
with sequential dynamics, for the ferromagnetic case J > 0 (left, J = 1) and the
anti-ferromagnetic case J < 0 (right, J = −1). In each graph a sequence of decreasing
temperatures T is shown from bottom to top, corresponding to increasing values of
β = 1/T .

f ′(m) = 0 for the stationary points of f (m). Using

s′(m) = −1
2

ln
(

1+m

1−m

)
= − artanh (m)

one finds that the extremal condition f ′(m) = 0 is equivalent to

m = tanh(βJm) (20.43)

This equation for m is called the ‘Curie–Weiss’ equation in the context of
magnetism. As shown in Figure 20.2, it has a single solution m = 0 for large
T = 1/β, but develops three solutions for low T . The transition between
the two regimes takes place at βJ = 1. This is clear graphically by looking
at Figure 20.2. Nonzero solutions appear at the point where the graphs
of m and tanh(βJm) have the same slope at the origin. More explicitly,
expanding the function tanh around m = 0, equation (20.43) gives

m = βJm− 1
3 (βJ )3m3 +O(m5)

Neglecting the higher order terms, we can write the nonzero m solutions as

m2 = 3(βJ − 1)/(βJ )3
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m

tanh(βJm)

Figure 20.2 Graphical solution of the Curie–Weiss equation (20.43), viz. m = tanh(βJm).
Solid lines show the function tanh(βJm) for different values of βJ . Dashed: the diagonal
which this function must intersect. For βJ < 1, m = 0 is the only solution; for larger values
of βJ , there are two additional solutions mβ and −mβ .

We find two nonzero solutions for βJ > 1. For βJ close to (and above) 1
these are, to leading order in βJ − 1, given by

m = ±√3(βJ − 1)+ · · ·

Denoting the transition (or ‘critical’) temperature by Tc = 1/βc = J , and
expanding βJ − 1 = (J − T )/T ≈ (J − T )/J = (Tc − T )/Tc to leading
order in Tc − T , this can also be written in the more conventional form

m = ±√3(Tc − T )/Tc

Thus, the magnetization, or average neuron activity, has (initially) a square-
root dependence on the deviation of T from Tc for T < Tc. For T > Tc, on
the other hand, the above analysis suggests that the only stationary point
of f (m), that is, the only solution of the Curie–Weiss equation (20.43),
is m = 0. This can also be shown more rigorously, by using the relation
d tanh(z)/dz = 1− tanh2

(z) to write

| tanh(z)| = tanh(|z|) =
∫ |z|

0
dz′[1− tanh2

(z′)] ≤ |z| (20.44)
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(which is obvious graphically; see Figure 20.2). If m is a solution of the
Curie–Weiss equation, this gives

|m| = |tanh (βJm)| ≤ βJ |m|

which for βJ < 1 (i.e. for T > Tc) is possible only for m = 0, as claimed.
Finally, we note that (20.43) has a simple intuitive interpretation. If spin i

is updated at time t , then from our basic update equation (16.2) its value
at time t + 1 is on average

〈σi(t + 1)〉 = tanh(βhi(σ (t))) (20.45)

In equilibrium, both sides must be equal on average because the probability
distribution over states is stationary, so

〈σi〉eq = 〈tanh(βhi(σ ))〉eq (20.46)

For our choice of interactions (20.34), the local fields are

hi(σ ) = J

N

∑
j �=i

σj = Jm(σ )+O(1/N) (20.47)

and we recognize equation (20.43) simply as the average of (20.46) over i.

20.5 Phase transitions and ergodicity breaking

Ergodicity breaking for sequential dynamics

Let us consider in more detail the equilibrium distribution of the mag-
netization m in the above example of the long-range ferromagnet, again
with J > 0. For T > Tc = J , the function f (m) has a single minimum.
Hence P(m) ∼ exp(−Nβf (m)) has a single maximum at m = m∗ = 0;
because this maximum is very sharp, of width O(1/

√
N), we also have

〈m(σ )〉eq = m∗ = 0. The same conclusion can be reached using the
relation (20.27) to find this average. We replace

H(σ )=−N

2
Jm2(σ )+O(1)→−N

2
Jm2(σ )+Nλm(σ )+O(1) (20.48)

where the factor N in front of the extra term ensures that it is O(N), and
will remain relevant in the thermodynamic limit compared to the first term.
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This replacement is seen to carry through to the constrained free energy
(per neuron/spin), which becomes

f (m; λ) = −1
2Jm2 + λm− T s(m) (20.49)

This new function will have a minimum at some m∗(λ), which then gives
the free energy per neuron

f (λ) = min
m

f (m; λ) = f (m∗(λ); λ)

Applying (20.27) we now have

∂Nf (λ)

∂λ
=

〈
∂H

∂λ

〉
eq
= N〈m(σ )〉eq ⇒ 〈m(σ )〉eq = ∂f (λ)

∂λ

where all derivatives are to be evaluated at λ = 0 if we wish to return to
our original model. The chain rule gives

∂f (λ)

∂λ
= ∂f (m∗(λ); λ)

∂m

d
dλ

m∗(λ)+ ∂f (m∗(λ); λ)

∂λ

The first term on the right-hand side is zero due to the stationarity condition
for the free energy, ∂f (m; λ)/∂m = 0 at m = m∗(λ). In the second term
we may use ∂f (m; λ)/∂λ = m, so that altogether

〈m(σ )〉eq = m∗(λ) (20.50)

Evaluating this at λ = 0 indeed gives 〈m(σ )〉eq = m∗, as before.
Now consider the regime T < Tc. Here the constrained free energy f (m)

has two distinct minima m∗ = ±mβ , where mβ is the positive solution
of the stationarity condition (20.43). Hence P(m) ∼ exp(−Nβf (m)) has
two narrow peaks at those two values. However, because of the symmetry
m → −m of f (m), P(m) is likewise symmetric about the origin, so the
average value of m(σ ) is

〈m(σ )〉eq = 0 (20.51)

What is the meaning of this average over the two peaks of P(m)? Let us
return to the beginning of our analysis: the equilibrium distribution peq(σ )

over network states σ is the unique stationary distribution to which any net-
work of fixed size N will converge if we wait long enough. The distribution
P(m), derived from peq(σ ), tells us which values of m we would observe
if we monitored the operation of such a network, once it has reached its
stationary state. Mostly, m would be close to ±mβ , but over time it could
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and would flip between these two values, giving on average 〈m(σ )〉eq = 0.
Our analysis leading to (20.51) thus corresponds to taking the infinite time
limit t → ∞ first, and then the thermodynamic limit N → ∞ of large
system size.

How relevant is this order of taking the limits in practice? This depends
on how long we would have to wait to see the network flip between the two
preferred values of m(σ ). It turns out that this time is generically exponential
in N . This follows from the exponential form of P(m) ∼ exp(−Nβf (m)):
to go from m = +mβ to m = −mβ , the system has to pass through the
exponentially unlikely values of m in between; we therefore have to wait
for an exponentially long time for this transition to occur by chance. But
this means that, even for moderate values of N (N = 1000, say) we will
in practice never see such transitions, because we would have to wait for
an astronomically long time: e1000 ≈ 10400, which even if we set our time
unit to 10−15 s, say (the order of the fastest atomic processes) is still unima-
ginably much longer than the age of the universe.41 The network will thus
get stuck in one of the two preferred values of m at long but not exponen-
tially long times t . For N → ∞ at fixed t it will do so with probability
one. The parts of the equilibrium distribution associated with the oppos-
ite value of m(σ ) are effectively inaccessible on such timescales: ergodicity
is broken by the limit N → ∞, and the system can only explore part of
its phase space. Formally, to see this ergodicity breaking, we have taken
N → ∞ first and then t → ∞; the above discussion shows that this limit
is the one that is relevant for the behaviour of large networks on practical
timescales.

For T < Tc, and in the thermodynamic limit N → ∞, we have seen
that m(σ ) will converge to either +mβ or −mβ at long times; which one of
these will depend on the initial conditions. This is entirely consistent with
our dynamical analysis in Chapter 16, where we showed that for N →∞
and sequential dynamics, m evolves in time according to the deterministic
equation

d
dt

m = tanh(βJm)−m (20.52)

which indeed has as its stable fixed points exactly m∗ = ±mβ . These two
values of m are associated with different ergodic sectors or components
into which phase space is split, and correspond to the different local minima
of f (m). If we plot the equilibrium value of m as a function of T , it bifurcates
at T = Tc into the two different values in the low temperature regime. We
have what is called a phase transition from a ‘paramagnetic’ (disordered,
m = 0) phase at high T to a ‘ferromagnetic’ (ordered) phase with m �= 0 at

41 According to the latest estimates the age of the universe is about 13.7×109y ≈ 4×1017 s.
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low T . The fact that the transition of m from zero to nonzero values indicates
the onset of order justifies our use of the term order parameter for m. Trans-
itions where the order parameter is a continuous function of T are called
second order, while those with a discontinuous jump of the order parameter
are called first order. For T → 0 (i.e. β → ∞), m converges to ±1; this is
clear from the Curie–Weiss equation (20.43), with tanh(βJm)→ sgn(m).
It also agrees with our general discussion in Section 20.3: at zero temperat-
ure, the equilibrium distribution peq only gives weight to the ground states
σ which minimize the Hamiltonian H(σ ). For our present model, because
H(σ ) = −NJm2(σ )/2 + O(1), these are the states with m(σ ) = ±1, that
is, where either σi = +1 for all i, or σi = −1 for all i. These states are
also called attractors: the network is ‘attracted’ to one of them (depending,
again, on the initial conditions) in the long time limit (at T = 0).

As an aside, we note that in the present case the method of calculat-
ing averages using the trick (20.27) can also give us information about
ergodicity breaking. The relation (20.50),

〈m(σ )〉eq = m∗(λ)

still holds, but now the limit λ → 0 is no longer unique. For λ < 0, the
minimum of f (m; λ) (equation (20.49)) is located at a positive value of m,
while for λ > 0 it is at a negative value, so

m∗(λ→ 0−) = +mβ m∗(λ→ 0+) = −mβ

and we recover precisely the averages of m(σ ) in the two ergodic sectors.
The special feature that causes the ergodicity breaking to show up in the
limit λ→ 0 is the fact that both ergodic components (local minima of f (m))
have the same free energy; any infinitesimal λ is sufficient to select between
these two degenerate minima. The same would not happen for local minima
with different values of f (m); but these would still locate ergodic sectors of
phase space in which the system would be trapped in the thermodynamic
limit.

Ergodicity breaking for parallel dynamics

The general approach to the analysis of the infinite-range ferromagnet
(20.34) with parallel dynamics is very similar to that for sequential dynam-
ics. For the case of ferromagnetic couplings (J > 0), we will see that
also the results are identical; for J < 0, there are some subtle differences.



20.5 Phase transitions and ergodicity breaking 429

Using (20.47), the pseudo-Hamiltonian (20.24) becomes

H(σ ) = −1
β

N∑
i=1

ln 2 cosh(βJm(σ )− βJσi/N)

= −NT ln 2 cosh(βJm(σ ))+O(1)

Going through exactly the same steps as for the sequential case, we then
find the constrained free energy (per neuron or spin) as a function of
magnetization m:

f (m) = −T ln 2 cosh(βJm)− T s(m)

and the free energy f = minm f (m). The stationary (saddle point) condition
f ′(m) = 0 now gives

m = tanh(βJ tanh(βJm)) (20.53)

The solutions of this equation again obey a Curie–Weiss law. This can be
seen as follows. The definition m̂ = tanh(β|J |m) transforms (20.53) into

m = tanh(β|J |m̂) m̂ = tanh(β|J |m)

from which one derives

0 ≤ (m− m̂)2 = (m− m̂)[tanh(β|J |m̂)− tanh(β|J |m)] ≤ 0

This immediately implies that m = m̂, so

m = tanh(β|J |m) (20.54)

For J > 0, we therefore have the same results as for sequential dynamics:
a phase transition occurs at Tc = J , from a paramagnetic phase m = 0
to a ferromagnetic phase where phase space is broken into two ergodic
components with the values m = ±mβ .

For J < 0, there are differences. Whereas in the sequential case we found
m = 0 for all T , for parallel dynamics the behaviour is the same as for J > 0
(because f (m) depends only on |J |), with m = ±mβ for T < Tc. Here mβ is
the positive solution of m = tanh(β|J |m). This can be understood from the
different dynamics. In the sequential case, equation (20.52) shows that, for
J < 0, the system is always driven towards the fixed point m = 0. In the
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parallel case, on the other hand, we know that (for N →∞, as usual) m(t)

evolves according to

m(t + 1) = tanh(βJm(t)) (20.55)

(see Section 16.3). For J < 0 and T < |J |, m(t) will now approach the limit
cycle m(t) = mβ(−1)t , or its twin brother m(t) = −mβ(−1)t . Ergodicity
breaking manifests itself in the fact that only one these two limit cycles is
chosen. For large but finite N , on the other hand, if we were prepared to
wait for very long times, we would occasionally see transitions between the
two cycles. As a consequence, at any given (long) time t , we could only
predict that m would be close to either +mβ or −mβ , but not which one.

Stepping back—the general strategy

The analysis of the infinite-range ferromagnet in the previous sections shows
the general ingredients of a statistical mechanics analysis of equilibrium
network operation. One first finds the Hamiltonian for a given choice of
interactions Jij and external fields ϑi , which will often (but not always)
be expressible in terms of a finite number of order parameters. One then
introduces the density of states for these order parameters, and calculates
it using integral representations for the delta functions constraining the
order parameters to their required values. The log-density of states gives
the constrained entropy, and combining this with the known Hamiltonian
gives the constrained free energy. One then locates the local minima of
the constrained free energy. For N → ∞, the system will stay in one of
the ergodic components of phase space (which one is determined by the
initial condition) which these local minima represent. The values of the
order parameters at these local minima are those that will be observed in
the limit of long but not exponentially long times. On exponentially long
timescales, on the other hand, the system would equilibrate fully. Only the
lowest (global) minimum of the constrained free energy would then remain
relevant, and this would determine the so-called ‘thermodynamic’ value of
the unconstrained free energy f .

20.6 Exercises

Exercise 20.1. (Completion of proofs.) Derive the expressions (20.29) for
energy and entropy in terms of temperature derivatives of the free energy,
starting from the definition of the partition function and for a generic
(β-independent) Hamiltonian. Prove that F [p(σ )] of (20.30) is minimized
when p(σ ) takes the Boltzmann form; you will need a Lagrange multiplier to
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enforce the constraint that
∑

σ p(σ ) = 1. Fill in the details of the calculation
of s(m), equation (20.42), for the infinite-range ferromagnet. Show that
s′(m) = − artanh (m).

Exercise 20.2. (Parallel dynamics Hamiltonian and partition function.)
Consider the parallel dynamics process (20.1, 16.7), with symmetric inter-
actions {Jij }. Show also that limβ→∞H(σ ) = L(σ ), where the Hamiltonian
is given by (20.24) and L(σ ) denotes the zero noise Lyapunov function
(3.8) of the parallel dynamics. Show that the partition function Z =∑

σ exp(−βH(σ )) can also be written as

Z =
∑
σ

∑
σ ′

exp
[
− β

(
− 1

2

N∑
ij=1

σiJij σ
′
j −

1
2

N∑
ij=1

σ ′i Jij σj

−
N∑

i=1

ϑiσi −
N∑

i=1

ϑiσ
′
i

)]

Exercise 20.3. (Parallel dynamics Hopfield model with p = 1.) Con-
sider the parallel dynamics process (20.1, 16.7). For a given state
σ at time t , denote averages over the state σ ′ at time t + 1 by
〈f (σ ′)〉 =∑

σ ′ f (σ ′)W(σ ′, σ ). Show that 〈σ ′i 〉 = tanh(βhi(σ )); this is equa-
tion (20.45), which also holds for sequential dynamics when neuron i is the
one chosen for the update. Derive the analogous result for 〈σ ′i σ ′j 〉. Apply

these results to the overlap m(σ ) = N−1 ∑N
i=1 ξiσi of the state σ with a

pattern ξ = (ξ1, . . . ξN) ∈ {−1, 1}N , in order to find 〈m(σ ′)〉, 〈m2(σ ′)〉 and
the variance 〈m2(σ ′)〉 − [〈m(σ ′)〉]2. Show that the latter is less than N−1.

Consider now the Hopfield model with p = 1, which has Jij = (J /N)ξiξj

and ϑi = 0. This is essentially the infinite-range ferromagnet covered in
this chapter, up to the transformation σi → ξiσi . Use your earlier results to
show that, for N →∞, m evolves deterministically according to m(t+1) =
tanh[βJm(t)]; this is (20.55). Depending on the sign and modulus of βJ ,
work out the implications for the time evolution of m(t), particularly at
long times t .

The same method can also be used to analyse the dynamics of simple
models that do not have detailed balance. Consider, for example, Jij =
N−1νiξj , ϑi = 0, with νi ∈ {−1, 1}, and derive the evolution equa-
tion for m(t) in this case. (Hint: The νi should appear only through
the parameter α = N−1 ∑

i νiξi .) Compare your results with those in
Chapter 16, in particular to (16.44) and its analogue for sequential
dynamics, equations (16.23, 16.24).

Exercise 20.4. (Combinatorial derivation of density of states.) An altern-
ative derivation of s(m) can be given using some combinatorics. To carry
out the sum over states σ in the partition function (20.35) we have to count
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how many states there are for each possible value of m(σ ). For finite N , we
can write m(σ ) = 2n/N − 1, where n is the number of spins which are in
state +1. The number of states with a given n is just a binomial coefficient,
and so

Z =
N∑

n=0

(
N

n

)
eNβJ(2n/N−1)2/2+O(1)

Write the binomial coefficient in terms of factorials, and use the Stirling
approximation (see next exercise) to show that, for large N ,

1
N

ln
(

N

n

)
= s(m)|m=2n/N−1

where s(m) is the constrained entropy as calculated previously in (20.42).
Insert this into the previous result for Z and convert the sum over n into an
integral over m = 2n/N − 1, which is justified for N →∞. Show that

Z =
∫ 1

−1
dm eN [βJm2/2+s(m)]

up to factors that only make a negligible contribution to N−1 ln Z in the
limit N →∞. Finally, derive equation (20.37) by saddle point integration.

Exercise 20.5. (Stirling’s formula.) The Stirling approximation is an
approximation for large factorials,

k! ≈ √2πk

(
k

e

)k

(k→∞)

This holds asymptotically, in the sense that the relative error of the approx-
imation goes to zero for k → ∞ (in other words, the ratio of the left-
and right-hand side tends to one). Test the quality of the approximation
for a few values of k; you should find reasonable agreement for k > 12
or so. Then derive it, as follows. The factorial can be written in terms of
the Gamma-function integral:

k! = �(k + 1) =
∫ ∞

0
dx xke−x

You can show this by induction, using integration by parts for the induction
step. By a change of integration variable to y = x/k, find

k! = kk+1
∫ ∞

0
dy ek(ln y−y)
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Expand the exponent around its maximum, to second order. With this
approximation, and extending the integration range to y ∈ IR (why is this
justified?), you are left with an integral which should give you the desired
result.

Exercise 20.6. (Solution by Gaussian linearization.) Another way of solving
the infinite-range ferromagnet and similar models is via so-called Gaussian
linearization, which applies when the Hamiltonian is quadratic in one or
more order parameters. First add a generating term λ

∑
i σi = Nλm(σ ) to

the Hamiltonian, as in (20.48), to deduce the average value of m(σ ) later.
This gives for (20.35)

Z =
∑
σ

eβJ (
∑

i σi )
2/2N−βλ

∑
i σi+O(1)

Now use ∫
dz√
2πσ 2

e−z2/2σ2
exz = ex2σ2/2

to write Z as

Z =
∫

dz√
2πβJ/N

∑
σ

e−Nz2/2βJ+(z−βλ)
∑

i σi+O(1)

Note that the scaling of the variance σ 2 = βJ/N with N has been chosen
such that both terms in the exponent are of order N . The sum over states
now factorizes over the different i and you should get

Z =
∫

dz√
2πβJ/N

e−Nz2/2βJ+N ln 2 cosh(z−βλ)+O(1) (20.56)

Then show by saddle point integration that

f = lim
N→∞

F

N
= min

z

{
z2

2β2J
− T ln 2 cosh(z− βλ)

}

Show that at λ = 0, the saddle point condition for z is

z = βJ tanh(z) (20.57)

Differentiate f with respect to λ at λ = 0, and show that 〈m(σ)〉eq =
tanh(z), and hence that (20.57) is equivalent to the Curie–Weiss law (20.43).

Exercise 20.7. (Ergodicity breaking in networks with parallel dynamics.)
Consider the infinite-range ferromagnet with parallel dynamics. Consider
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the probability W(σ ′, σ ) that the system will be in state σ ′ at time t + 1 if
it was in state σ at time t . Anticipating that this will depend exponentially
on N , define

wparticular(σ
′, σ ) = − 1

N
ln W(σ ′, σ )

and show that, for large N , the right-hand side depends on the new state
σ ′ and the previous state σ only through their respective magnetizations
m′ = m(σ ′) and m = m(σ ). You should find

wparticular(σ
′, σ ) = −βJmm′ + ln 2 cosh(βJm)

As suggested by the subscript, exp(−Nwparticular(σ
′, σ )) gives the probab-

ility of landing in any particular state σ ′ with magnetization m′ at time
t + 1. If we want the probability of landing in any state with magnetiza-
tion m′, we have to multiply with the number of states with that particular
magnetization, which is (see Exercise 20.4)

(
N

N(1+m′)/2

)
≈ eNs(m′) (N →∞)

Terms which are not exponential in N have been neglected on the right-
hand side, as usual. Show that for large N the probability of landing in a
state with magnetization m′ at time t + 1, given that the magnetization at
time t was m, is

e−Nw(m′,m) with w(m′, m) = −s(m′)− βJmm′ + ln 2 cosh(βJm)

It follows that for N →∞ only values of m′ for which w(m′, m) is minimal
have a significant probability of occurring at time t + 1. Determine where
this minimum is, by differentiating with respect to m′. Hence confirm that,
in the thermodynamic limit, the magnetization follows the deterministic
evolution equation

m′ = tanh(βJm) (20.58)

as stated in equation (20.55). Specialize to J > 0 now. Iterate the evolu-
tion equation (20.58) numerically, starting from different starting values
of m. For large temperature (small β), you should observe convergence to
m = 0, whatever the initial conditions. For larger β > 1/J , you should see
convergence to one of two nonzero values of m, depending on the initial
condition. What determines which of the two values you converge to, and
why do the limiting values of m satisfy the Curie–Weiss law (20.43)?

For large β, the limiting value of m depends on the initial conditions
(ergodicity breaking). Let us try to understand how this is linked to the ther-
modynamic limit N →∞. Call mβ the positive solution of the Curie–Weiss
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equation (20.43) (for J > 0, and β > 1/J ). Assume we are initially in a
state with magnetization m = mβ . What is the probability of being in a
state with m′ = −mβ , the other (stable) solution of the Curie–Weiss law,
at the next time step, for large but finite N? The inverse of this probab-
ility gives us an estimate for the number of time steps one would have to
wait to actually see this transition. Confirm that for large N , we have to
wait an exponentially long time for the system to become ergodic, that is,
for it to explore the whole of its phase space. Choose some reasonable
values for β and J and calculate how many time steps we would need to
wait for N = 100, 1000, 10000. Explain why the strict ergodicity break-
ing described by the thermodynamic limit N → ∞ really is relevant for
describing the behaviour of large, but not necessarily enormous, systems
on realistic timescales.
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21
Network operation:
equilibrium analysis

In this chapter we restrict ourselves to networks which obey detailed
balance, so that we know the equilibrium probability distribution and
equilibrium statistical mechanics applies. We will only consider the case
of sequential dynamics; the results for parallel dynamics can be derived
along very similar lines, and are largely identical. To have detailed bal-
ance, we thus assume that the interaction matrix Jij is symmetric and that
there are no self-interactions (Jii = 0 for all i). We will study in detail the
Hopfield model, which is the archetypical model for describing the function-
ing of symmetric neural networks as associative memories. The basic ideas
behind such systems, based on the creation of attractors in the microscopic
state space, was introduced and illustrated already in Section 3.3.

To make the connection with the models and preliminary analyses in
Section 3.3 more explicit, and re-phrase them in equilibrium statistical
mechanical terms, let us return to the early example (3.16), where a single
pattern ξ ∈ {−1, 1}N was stored in an infinite-range network, via

Jij = 1
N

ξiξj (i �= j), Jii = 0, ϑi = 0 (21.1)

The Ising Hamiltonian (20.23) for this system is seen to be

H(σ ) = −1
2

N∑
ij=1

σiJij σj −
N∑

i=1

ϑiσi = −N

2

(
1
N

∑
i

ξiσi

)2

+ 1
2

It is essentially the same as that of the infinite-range ferromagnet of
Section 20.4, up to the so-called gauge transformation σi → ξiσi . Its
ground states are those for which N−1 ∑

i ξiσi = ±1; this requires either
σ = ξ , or σ = −ξ . At T = 0, that is, in the noise-free limit, the equi-
librium distribution peq(σ ) will assign probability 1

2 to each of these two
states. Due to ergodicity breaking, the network will then converge to one of
these two states, dependent on the initial condition. For this simple model,
and for T = 0 only, the same conclusion could also be reached using the
Lyapunov function of Section 3.2. Below we will apply the more powerful
tools of equilibrium statistical mechanics to the more complicated attractor-
based recurrent neural network models, for which the simpler methods of
Section 3.3 would no longer be inadequate.
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21.1 Hopfield model with finite number of patterns

Definition

The Hopfield model is obtained by generalizing the recipe (21.1) to the case
of an arbitrary number p of patterns:

Jij = 1
N

p∑
µ=1

ξ
µ
i ξ

µ
j ϑi = 0 (21.2)

For now we consider the case where the number of patterns p remains finite
in the thermodynamic limit N →∞, so that p/N → 0. The case of extens-
ive p, where p = Nα, is more complicated and is left for later. Remembering
that there are no self-interactions, the Ising Hamiltonian (20.23) can then
be written as

H(σ ) = − 1
2N

p∑
µ=1

∑
i,j

σiξ
µ
i σj ξ

µ
j +

1
2N

p∑
µ=1

∑
i

σ 2
i (ξ

µ
i )2

= −N

2

p∑
µ=1

m2
µ(σ )+ 1

2
p (21.3)

with the pattern overlaps

mµ(σ ) = 1
N

N∑
i=1

ξ
µ
i σi (21.4)

Each of these p overlaps measures the resemblance between the current
microscopic network state σ and one particular pattern.

Free energy and saddle point equations

The partition function and free energy are, by definition,

Z =
∑
σ

e−βH(σ ) F = −T ln Z

The Hamiltonian depends on σ only through the pattern overlaps mµ,
so we choose these as our order parameters and define the correspond-
ing constrained partition function. Introducing the shorthand notation
m = (m1, . . . , mp), and discarding the O(1) term p/2 from the Hamiltonian,
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we have

Z =
∫

dm Z(m) Z(m) = eNβm2/2 D(m) (21.5)

with the density of states:

D(m) =
∑
σ

δ (m−m(σ ))

Note that the δ-function occurring here is a p-dimensional one, that is, a
product of p ordinary δ-functions:

δ (m−m(σ )) =
p∏

µ=1

δ(mµ −mµ(σ ))

So we also need p integration variables x = (x1, . . . , xp) to represent these
δ-functions as integrals. As usual, these are scaled such as to produce
extensive terms in the exponent. Writing ξ i = (ξ1

i , . . . , ξp
i ), we have

D(m) =
(

N

2π

)p ∫
dx eiNx·m ∑

σ

e−i
∑N

i=1 σiξ i ·x

=
(

N

2π

)p ∫
dx exp(N [ix ·m+ 〈ln 2 cos (ξ · x)〉ξ ])

with the abbreviation

〈g(ξ)〉ξ = 1
N

N∑
i=1

g(ξ i ) (21.6)

The log-density of states, that is, the constrained entropy, can now be
evaluated by saddle point integration:

s(m) = extrx s(m, x) s(m, x) = ix ·m+ 〈ln 2 cos (ξ · x)〉ξ (21.7)

From (21.5), the free energy (per neuron/spin) is then

f = − lim
N→∞

T

N
ln

∫
dm e−Nβf (m) = min

m
f (m) (21.8)

with the constrained free energy

f (m) = −1
2m2 − T s(m) (21.9)
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To identify the ergodic components, we need to find the stationary points
of f (m), which are given by the conditions

∂f (m)

∂mµ

= −mµ − T
∂s(m)

∂mµ

= 0 (µ = 1, . . . , p) (21.10)

Finding the derivative ∂s(m)/∂mµ may seem difficult at first because the
saddle point condition for the xµ, viz.

∂

∂xµ

s(m, x) = 0 ⇒ im = 〈ξ tan (ξ · x)〉ξ (21.11)

cannot be solved explicitly for x. But this is not actually a problem, as can
be seen by an argument similar to the one that lead us to (20.50). If we
write the solution of (21.11) as x(m), then s(m) = s(m, x(m)) and

∂s(m)

∂mµ

=
p∑

ν=1

∂s(m, x(m))

∂xν

∂xν(m)

∂mµ

+ ∂s(m, x(m))

∂mµ

= ∂s(m, x(m))

∂mµ

= ixµ

The terms with the unknown derivatives ∂xν(m)/∂mµ do not contribute,
because of the saddle point condition for x. Inserting this into (21.10), we
see that the conditions for a stationary point of f (m) are

x = iβm im = 〈ξ tan (ξ · x)〉ξ (21.12)

These are equivalent to x = iβm and

m = 〈ξ tanh (βξ ·m)〉ξ (21.13)

The saddle point value of x is purely imaginary, as was the case for
the infinite-range ferromagnet of Section 20.4. We refer to (21.13)
as the saddle point equation for the order parameters m; the alternative
name ‘stationarity condition’ is less common.

As far as the derivation of saddle point equations is concerned, the above
analysis illustrates a general point. It does not matter whether we find our
saddle point equations in different stages for different subsets of variables—
as done above: we first found the saddle point condition for x, inserted the
solution x(m) into s(m, x), and then worked out the saddle point condition
for m—or for all variables simultaneously. Indeed, equation (21.12) is what
we would have obtained if we had looked directly for the extrema of

f (m, x) = −1
2m2 − T s(m, x) (21.14)

with respect to x and m.
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Yet another method for obtaining the saddle point equation (21.13) for
m is to use x = iβm to eliminate the so-called ‘conjugate order parameters’
x from f (m, x). Using (21.7), this gives

f̃ (m) = 1
2m2 − T 〈ln 2 cosh (βξ ·m)〉ξ (21.15)

The notation f̃ (m) is meant to emphasize that, for general m, this is not the
constrained free energy f (m), equation (21.9), because we have incorrectly
used the saddle point conditions for m rather than those for x to eliminate x.
Nevertheless, at a saddle point m of the true constrained free energy f

(where x = iβm from (21.12)), we do have f (m) = f̃ (m). Moreover,
by differentiating (21.15) we see that the stationary points of f̃ (m) obey
(21.13). So f and f̃ have identical saddle points. This conclusion can be
checked more generally, and in summary we can state: one is allowed to
use the ‘wrong’ saddle point conditions to eliminate the conjugate order
parameters, as long as one bears in mind that the resulting function only
has physical significance (as a constrained free energy) at its saddle points.
We will call f̃ the ‘pseudo-free energy’.

The rest of the programme from here on is clear: we need to find the
solutions of the saddle point equation (21.13) as a function of temperature
T , and then check whether they are stable in the sense that they are local
minima of f (m).

Self-averaging

Before we proceed, however, let us emphasize another important property
of the free energy given by equations (21.7–21.9) and of the corresponding
saddle point equation (21.13). Both depend on the patterns to be stored
only through the statistics of the ξ i = (ξ1

i , . . . , ξp
i ), as already suggested

by the notation (21.6). Each of the N vectors ξ i can only take on a finite
number of values (namely 2p), so the average 〈g(ξ)〉ξ is simply an average
over these values, weighted by their relative frequencies.

Let us now assume that the p patterns are drawn randomly and independ-
ently from some distribution. The simplest case, on which we focus in the
following, is that where this distribution is uniform over all the 2N possible
patterns. Each of the N pattern bits ξ

µ
i of a given pattern µ then takes on its

two different values±1 with equal probability. For a given sample of p such
patterns, we can then simply go through the list of the {ξ i} for i = 1, . . . , N ,
and count the relative frequencies of the 2p different values that they can
have. Because of the assumed pattern distributions, these relative frequen-
cies should all be roughly equal, but for finite N , there will be deviations
from this depending on the details of the sample. However, for N →∞ and
by the definition of probability as the limit of a frequency count, all relative
frequencies will become exactly equal with probability one, independently
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of the particular sample of patterns. Since only these relative frequencies
affect the value of the free energy and the saddle point equations derived
from it, we conclude that the free energy is self-averaging in the thermo-
dynamic limit: it only depends on the distribution of patterns, but not on
which particular set of patterns we have sampled from this distribution.

This property will be crucial when we extend the analysis of the Hopfield
model to an extensive number of patterns. It is then no longer possible
to calculate the free energy for a given set of patterns as we have done
above; but an average over all sets of patterns from a given distribution can
be calculated. Self-averaging guarantees that this average gives meaningful
results: the average free energy is the same as that for any particular set of
patterns, with probability one in the thermodynamic limit.

A note on terminology is in order here. Because the patterns are random
samples from some distribution, they are often thought of as ‘disorder’
affecting the operation of the network. This disorder is imposed from the
outside onto the network, and remains fixed while it operates. For this
reason, it is more specifically referred to as ‘quenched disorder’ (quenching a
molten metal essentially means freezing it, and thus fixing its structure). The
average over patterns is therefore also called ‘quenched average’ or ‘disorder
average’. This kind of disorder is to be distinguished from the ‘annealed’ or
‘thermal’ disorder that we have already encountered in the operation of a
network (the stochasticity in the evolving microscopic variables), for fixed
patterns and hence interactions.

Analysis of saddle point equations: mixture states

As explained above, for randomly drawn patterns all possible values of the
ξ i have the same relative frequencies; this applies with probability one in
the limit N →∞, whatever the particular set of patterns chosen. So we can
evaluate the averages over the {ξ i} simply as

〈g(ξ)〉ξ = 2−p
∑

ξ∈{−1,1}p
g(ξ)

In particular,

〈ξµ〉ξ = 0 〈ξµξν〉ξ = δµν (21.16)

The average over a product of two pattern bits is nonzero only when µ = ν,
in which case we get ξ2

µ = 1. Similarly, for a product of four bits the average
equals one if we can pair up the indices into two pairs or if all four are equal,
giving

〈ξµξνξρξλ〉ξ = δµνδρλ + δµρδνλ + δµλδνρ − 2δµνδνρδρλ (21.17)
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The last term here prevents us from over-counting in the case where all
four indices are equal. As for the infinite-range ferromagnet, we suspect
that nonzero solutions m of the saddle point equation (21.13) will bifurcate
continuously from the trivial solution m = 0, as we lower the temperature.

We first establish an upper bound for the temperature T = 1/β at which
this bifurcation occurs. Taking the scalar product of (21.13) with m and
using the inequality | tanh(z)| ≤ |z| (equation (20.44)) together with (21.16)
gives

m2 = 〈(ξ ·m) tanh(βξ ·m)〉ξ = 〈|ξ ·m|| tanh(βξ ·m)|〉ξ
≤ β〈(ξ ·m)2〉ξ = β

∑
µν

mµmν〈ξµξν〉ξ = βm2 (21.18)

which for β < 1 is possible only for m = 0. So for T > 1 the only solution of
(21.13) is the paramagnetic state m = 0. To find the bifurcation of nonzero
solutions at T = 1, we expand (21.13) for small |m| in powers of τ = β−1
and use (21.16, 21.17):

mµ =
∑
ν

β〈ξµξν〉ξmν − 1
3

β3
∑
νρλ

〈ξµξνξρξλ〉ξmνmρmλ +O(m5)

= (1+ τ)mµ +mµ

(
−m2 + 2

3
m2

µ

)
+O(m5, τm3)

In the second line, we have anticipated that the values of the {mµ} will be
O(τ1/2) for small τ , so that in β3 = (1+ τ)3 = 1+ 3τ + · · · we only need
to keep the leading term; the first neglected term is O(τm3) and thus of the
same order as the O(m5) terms that we are discarding anyway. Neglecting
now all the higher order terms, we have

mµ

(
τ −m2 + 2

3m2
µ

) = 0

which gives, for each µ:

mµ = 0 or 0 = τ −m2 + 2
3m2

µ

The solutions are of the form mµ ∈ {−a, 0, a}, with a = √
3(m2 − τ)/2.

If we denote by n the number of nonzero components in the vector m, we
have therefore m2 = na2. Thus a2 = 3

2 (m2 − τ) = 3
2 (na2 − τ), from which

we find a = √
3τ/(3n− 2) and so

mµ = 0 or mµ = ±
(

3
3n− 2

)1/2

τ1/2
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This confirms the anticipated τ1/2 scaling. The above saddle points are
called mixture states, since they correspond to microscopic network states
that are correlated equally with a finite number n of the stored patterns
(or their negatives). Without loss of generality we can always perform
transformations on the set of stored patterns (permutations and reflections
ξµ →−ξµ) such that these mixture states acquire the form

m = mn(

n times︷ ︸︸ ︷
1, . . . , 1,

p–n times︷ ︸︸ ︷
0, . . . , 0) mn =

(
3

3n− 2

)1/2

(β − 1)1/2 + · · ·
(21.19)

With a more complicated dependence of mn = mn(T ) on temperature T ,
these states are in fact valid saddle points at any T < 1, as can be verified by
substitution of (21.19) as an ansatz into (21.13). By setting M = ∑

ν≤n ξν

we then find that (21.13) reduces to

µ ≤ n: mn = 〈ξµ tanh(βmnM)〉ξ
µ > n: 0 = 〈ξµ tanh(βmnM)〉ξ

(21.20)

The second equation is automatically satisfied since ξµ only appears outside
the tanh. The first equation leads to a condition determining the amplitude
mn of the mixture states:

mn = 1
n
〈M tanh(βmnM)〉ξ (21.21)

The corresponding values of the (pseudo-) free energy f̃ (m) (equation
(21.15)), to be denoted by fn, are

fn = 1
2nm2

n − T 〈ln 2 cosh(βmnM)〉ξ (21.22)

As explained at the end of Section 21.1, because we are considering saddle
points, f̃ (m) actually gives the true constrained free energy. This is why we
are allowed to omit the tilde on fn.

Stability of saddle points

The relevant question at this stage is whether the saddle points found
above are stable in the sense that they correspond to local minima of the
constrained free energy f (m). To check this, we need to find the matrix
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of second derivatives of f (m) at the saddle points and check whether it
is positive definite. The procedure is slightly complicated because of the
dependence of the saddle point values of x on m which we only know
implicitly. Fortunately, however, it turns out in this case (and many others)
that saddle points which are local minima of f (m) are also local minima
of the pseudo-free energy f̃ (m). So we can consider the matrix of second
derivatives of f̃ , as given by (21.15):

Dµν = ∂2f̃

∂mµ∂mν

= δµν − β〈ξµξν[1− tanh2
(βξ ·m)]〉ξ (21.23)

and our saddle points will be stable if this is positive definite. In the trivial
saddle point m = 0 we have Dµν = δµν(1 − β), so at T = 1 this state
destabilizes. In a mixture state of the type (21.19) the second derivative
becomes:

D(n)
µν = δµν − β〈ξµξν[1− tanh2

(βmnM)]〉ξ (21.24)

Due to the symmetries in the problem, the eigenspaces and eigenvalues of
the matrix D(n) can be calculated. One finds three distinct eigenspaces:

Eigenspace Eigenvalue

I : x = (0, . . . , 0, xn+1, . . . , xp) 1− β(1−Q)

II: x = (1, . . . , 1, 0, . . . , 0) 1− β(1−Q+ (1− n)R)

III: x = (x1, . . . , xn, 0, . . . , 0),
∑

µ xµ = 0 1− β(1−Q+ R)

with
Q = 〈tanh2

(βmnM)〉ξ R = 〈ξ1ξ2 tanh2
(βmnM)〉ξ

Eigenspace III and the quantity R only come into play for n > 1. The
matrix D(n) is positive definite if all its eigenvalues are positive, so we can
concentrate on the smallest eigenvalue. For n = 1 this is I . For n > 1, one
can show that R is positive, and so the relevant eigenvalue is III. We can
then also combine Q and R into one single average, which reduces to a
trivial expression for n = 2. Altogether, the conditions for the n-mixture
states to be stable become

n = 1: 1− β[1− tanh2
(βm1)] > 0

n = 2: 1− β > 0

n ≥ 3: 1− β

[
1−

〈
tanh2

(
βmn

n∑
ρ=3

ξρ

)〉
ξ

]
> 0
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The pure n = 1 states, correlated with one pattern only, are the desired
solutions. They turn out to be stable for all T < 1, since partial dif-
ferentiation with respect to β of the n = 1 amplitude equation (21.21)
gives

m1 = tanh(βm1) ⇒ 1− β[1− tanh2
(βm1)] = m1[1− tanh2

(βm1)]
∂m1/∂β

> 0

(Looking at the graphical solution of m1 = tanh(βm1) shown in Figure 20.2,
it is clear that sgn(m1) = sgn(∂m1/∂β)). The n = 2 mixtures, on the other
hand, are always unstable. For n ≥ 3 we have to solve the amplitude
equation (21.21) numerically to evaluate their stability. The result is shown
in Figure 21.1, together with the corresponding free energies fn (21.22).
It turns out that only for odd n will there be a critical temperature below
which the n-mixture states are local minima of f (m). From Figure 21.1 we
can also conclude that, in terms of the network functioning as an associative

T T

mn fn

Figure 21.1 Left picture: amplitudes mn of the mixture states of the Hopfield model as a
function of temperature. From top to bottom: n = 1, 3, 5, 7, 9, 11, 13. Solid: region where
they are stable, that is, local minima of f (m). Dashed: region where they are unstable.
Right picture: corresponding free energies fn. From bottom to top: n = 1, 3, 5, 7, 9, 11, 13.
Dashed line: free energy of the paramagnetic state m = 0, shown for comparison.
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memory, noise is actually beneficial in the sense that it can be used to elim-
inate the unwanted n > 1 ergodic components while retaining the relevant
ones, that is, the pure n = 1 states.

In fact the overlap equation (21.13) do also allow for stable solutions
different from the n-mixture states discussed here. These solutions are in
turn found to be continuously bifurcating mixtures of the mixture states.
However, for random (or uncorrelated) patterns they come into existence
only near T = 0 and play a marginal role; phase space is dominated by the
odd n-mixture states.

Simulation results that illustrate the functioning of the Hopfield model
as an associative memory, and the description of the pattern recall pro-
cess in terms of overlaps, were already shown earlier in Figures 3.2–3.4 of
Section 3.3.

21.2 Introduction to replica theory: the SK model

Definition and motivation

The method of analysis presented so far breaks down if p no longer remains
finite for N →∞, but scales as p = αN with α > 0. In (21.7, 21.8), we can
then no longer evaluate the constrained entropy and free energy by saddle
point integration, since the dimension of the integral involved diverges at
the same time as the exponent of the integrand (see Exercise 21.7). The num-
ber of ground states of the Hamiltonian (21.3) and the number of ergodic
components will diverge, and we will encounter phenomena reminiscent of
so-called spin glasses. As a consequence we will need corresponding meth-
ods of analysis, in the present case the replica method. As an introduction
to this, we consider the so-called Sherrington–Kirkpatrick (SK) spin glass
model.

We can motivate the form of the interactions in this model from the large
α = p/N limit of the Hopfield model (21.2). In the case of randomly drawn
patterns, the law of large numbers tells us that the couplings Jij (i �= j )
then become Gaussian random variables, with zero mean

Jij = 1
N

∑
µ

ξ
µ
i ξ

µ
j = 0

(because the pattern bits are uncorrelated for i �= j ) and covariances

Jij Jk� = 1
N2

∑
µν

ξ
µ
i ξ

µ
j ξν

k ξν
� =

{
α/N , for (k, �) = (i, j) or (j , i)

0, otherwise
(21.25)
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Here we have introduced the notation · · · for averages over the patterns,
that is, the quenched disorder. The choice of interactions in the SK model,

Jij = Jji = (1− δij )

(
J0

N
+ J√

N
zij

)
, zij = 0, z2

ij = 1 (21.26)

in which the zij (i < j ) are independent Gaussian random variables, is
very similar, except for the addition of a ferromagnetic contribution J0/N ;
the parameter J would correspond42 to

√
α. We will forget about external

fields ϑi for the moment. Alternatively one could view the prescription
(21.26), after a simple gauge transformation where σi → ξiσi for all i, as
referring to a recurrent network in which a single pattern ξ = (ξ1, . . . , ξN)

has been stored, with embedding strength J0, on a background of zero
average random Gaussian synapses.43 In the latter case

Jij = Jji = (1− δij )

(
J0

N
ξiξj + J√

N
zij

)
, zij = 0, z2

ij = 1 (21.27)

For the choice (21.26), the Ising Hamiltonian H (20.23), correspond-
ing to sequential dynamics, that is, to the Markov chain with transition
matrix (16.13), becomes

H(σ ) = −J0

N

∑
i<j

σiσj − J√
N

∑
i<j

σiσj zij (21.28)

Anticipating self-averaging, and because we clearly cannot calculate the free
energy for every given microscopic realization of the interactions {Jij }, our
aim is now to calculate the disorder-averaged free energy

F̄ = −T ln Z Z =
∑
σ

e−βH(σ ) (21.29)

The replica trick: general strategy

In the form (21.29), the disorder average is difficult to carry out, because
we have to average the logarithm of a sum and cannot pull the average
inside the logarithm. However, we can use the following trick to transform

42 There are further differences, however, in loop-correlations of higher order such as
Jij JjkJki . They vanish in the SK model, but take the value α/Ns−1 for loops of length s

in the Hopfield model. Also, apart from the removal of the self-interactions, the interaction
matrix in the Hopfield matrix is non-negative definite, whereas that of the SK model has both
positive and negative eigenvalues.

43 Note that the gauge transformation σi → σiξi would also imply that zij → zij ξiξj , but
for ξi ∈ {−1, 1} the moments of the new zij are simply identical to those of the old zij .
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the average of the logarithm into an average of powers of the partition
function Z. Expanding Zn for small n, we have

Zn = en ln Z = 1+ n ln Z +O(n2) (21.30)

Taking the disorder average, this shows that

ln Z = lim
n→0

1
n
(Zn − 1) (21.31)

An alternative form is often more convenient for calculations. If we first
take the disorder average of (21.30) and then take the logarithm, we have

ln Zn = ln(1+ n ln Z +O(n2)) = n ln Z +O(n2)

and so

ln Z = lim
n→0

1
n

ln Zn (21.32)

Crucially, the disorder average now appears inside the logarithm on the
right-hand side. The so-called replica trick now consists in evaluating the
averages Zn for integer values of n, and taking the limit n→ 0 afterwards,
under the assumption—which to date is only beginning to be justified rig-
orously in non-trivial cases—that the resulting expression is correct for
non-integer values of n as well. The integer powers of Z are written as a
product of terms, each of which can be interpreted as an equivalent copy,
or ‘replica’, of the original system. The disorder-averaged free energy now
becomes

F̄ = − lim
n→0

T

n
ln Zn = − lim

n→0

T

n
ln

∑
σ1

e−βH(σ1) × · · · ×
∑
σ n

e−βH(σ n)

= − lim
n→0

T

n
ln

( ∑
σ1···σ n

e−β
∑n

a=1 H(σ a)

)

Henceforth, indices a, b, . . . from near the beginning of the alphabet will
label replicas, for example, a = 1, . . . , n. The general strategy now is to
carry out the disorder average of the exponential and to write the result in
the form

e−β�(σ1···σ n) = e−β
∑n

a=1 H(σ a)



450 21 : Network operation: equilibrium analysis

�(σ 1 · · · σ n) is called the ‘replicated Hamiltonian’, because it arises from the
sum of the Hamiltonians of the individual replicas. Note that the average
over the disorder, which acts on all replicas equally, will produce interaction
terms in � which couple the different replicas. The free energy is now

F̄ = − lim
n→0

T

n
ln

( ∑
σ1···σ n

e−β�(σ1···σ n)

)

Assuming that the order of the limits N → ∞ and n → 0 can be
interchanged, we can now write the thermodynamic limit of the disorder-
averaged free energy per spin as

f̄ = lim
N→∞

F̄

N
= lim

n→0

1
n

[
lim

N→∞

(
− T

N

)
ln

( ∑
σ1···σ n

e−β�(σ1···σ n)

)]
(21.33)

The term in square brackets is now of exactly the same form as the free
energy of a system without quenched disorder, and can be calculated using
the same method: we (i) identify which order parameters the (replicated)
Hamiltonian � depends on, (ii) introduce the corresponding density of
states using δ-functions, and (iii) evaluate the final result using saddle point
integration. In the end, we then divide by n and take the limit n→ 0. At this
point, one has to make assumptions about how the saddle point values of
the order parameters behave for n→ 0. We will only explore the simplest
assumption of this kind, called ‘replica symmetry’.

Application to the SK model

To calculate the replicated Hamiltonian, we use the following abbrevi-
ation for the Gaussian measure: Dz = (2π)−1/2 e−z2/2dz. We now note the
important identity (which was also the basis of the Gaussian linearization
trick encountered earlier in Exercise 20.6):

∫
Dz exz = ex2/2 (21.34)

For the Hamiltonian (21.28), application of (21.34) allows us to write

e−β
∑n

a=1 H(σ a) = e
(βJ0/N)

∑
i<j

∑
a σ a

i σ a
j

∏
i<j

(∫
Dz e

(βJz/
√

N)
∑

a σ a
i σ a

j

)

= e
(βJ0/2N)

∑
a

∑
i �=j σ a

i σ a
j +(β2J 2/4N)

∑
ab

∑
i �=j σ a

i σ a
j σ b

i σ b
j
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The replicated Hamiltonian is therefore

�(σ 1 · · · σ n) = − J0

2N

∑
a

∑
i �=j

σ a
i σ a

j −
βJ 2

4N

∑
ab

∑
i �=j

σ a
i σ a

j σ b
i σ b

j

and we can clearly see in the second term how the disorder average has
coupled the different replicas. If we now complete the sums over sites in
this expression,

∑
i �=j

σ a
i σ a

j =
(∑

i

σ a
i

)2 −N
∑
i �=j

σ a
i σ a

j σ b
i σ b

j =
(∑

i

σ a
i σ b

i

)2 −N

we can write (using the shorthand {σ } ≡ σ 1 · · · σ n)

�({σ }) = −NJ0

2

∑
a

m2
a({σ })−

NβJ 2

4

∑
ab

q2
ab({σ })+O(1) (21.35)

with the order parameters

qab({σ }) = 1
N

∑
i

σ a
i σ b

i ma({σ }) = 1
N

∑
i

σ a
i (21.36)

So we can write the disorder-averaged free energy per spin (21.33) as

f̄ = − lim
n→0

T

Nn
ln

∫
dmdq D(q, m) eN [(βJ0/2)

∑
a m2

a+(β2J 2/4)
∑

ab q2
ab]

(21.37)
where the limit N → ∞ is not written explicitly (but is understood to be
taken, so that subleading terms in N may be discarded), and the density of
states is

D(q, m)

=
∑
{σ }

∏
ab

δ

(
qab − 1

N

∑
i

σ a
i σ b

i

)∏
a

δ

(
ma − 1

N

∑
i

σ a
i

)

=
∑
{σ }

(
N

2π

)n2+n∫
dq̂dm̂ eiN

∑
ab q̂ab(qab−∑i σ a

i σ b
i /N)+iN

∑
a m̂a(ma−∑i σ a

i /N)

The integrations in (21.37) and in D(q, m) are over the n×n matrices q and
q̂ and over the n-vectors m and m̂. The sum over states now factorizes over
the different sites i as usual, and we are left with a sum over the states of a
single n-replicated spin σ = (σ 1, . . . , σn); this notation replaces our earlier
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use of σ as an N -component vector describing the state of an individual
network:

D(q, m) =
(

N

2π

)n2+n∫
dq̂dm̂ eiN

∑
ab q̂abqab+iN

∑
a m̂ama

×
(∑

σ

e−i
∑

ab q̂abσ
aσb−i

∑
a m̂aσ a

)N

(21.38)

Inserting this expression into (21.37), and evaluating the integrals by saddle
point integration gives for the free energy

f̄ = lim
n→0

extr f (q, m; q̂, m̂) (21.39)

where

f (q, m; q̂, m̂) = − J0

2n

∑
a

m2
a −

βJ 2

4n

∑
ab

q2
ab −

T

n

[
i
∑
ab

q̂abqab + i
∑
a

m̂ama

+ ln
(∑

σ

e−i
∑

ab q̂abσ
aσb−i

∑
a m̂aσ a

)]
(21.40)

We recognize in the first two terms the replicated Hamiltonian (21.35), up
to the 1/n factors, while the term in square brackets is the log density of
states (21.38), up to terms which are negligible for N → ∞. The saddle
point conditions for {qab} and {ma} are found to be

q̂ab = 1
2 iβ2J 2qab m̂a = iβJ0ma (21.41)

while those for {q̂ab} and {m̂a} give

qab =
∑

σ σaσbκ(σ )∑
σ κ(σ )

(21.42)

ma =
∑

σ σaκ(σ )∑
σ κ(σ )

(21.43)

where

κ(σ ) = exp
(
− i

∑
ab

q̂abσ
aσ b − i

∑
a

m̂aσ
a
)
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Using (21.41) to eliminate the conjugate parameters m̂ and q̂ simplifies
κ to

κ(σ ) = exp
(

1
2

β2J 2
∑
ab

qabσ
aσ b + βJ0

∑
a

maσ
a

)
(21.44)

The saddle point equations (21.42, 21.43) for the order parameter q and
m are now closed: the conjugate order parameters no longer appear. They
have the form of averages of σaσb and σa, respectively, over all possible
states of the n-replicated single-site spin σ . Given the original definition
(21.36) of the order parameters, this is quite plausible. The weight factor for
these averages is given by κ(σ ); the denominators in (21.42, 21.43) are just
the normalizing factor for the averages. Because (σ a)2 = 1, the diagonal
elements of q are always qaa = 1; again, this was to be expected from
the definition (21.36) of these order parameters. For high temperatures,
β = T −1 → 0, we obtain κ(σ ) = 1 and hence the trivial result

qab = δab ma = 0

Assuming a continuous transition to a non-trivial state as the temperature
is lowered, we can expand the saddle point equations (21.42, 21.43) in
powers of q and m and look for bifurcations. This gives (for a �= b, and
using the fact that averages over odd powers of σa vanish):

qab = β2J 2qab + · · · ma = βJ0ma + · · · (21.45)

Therefore we expect second-order transitions either at T = J0 (if J0 > J )
or at T = J (if J > J0). The remaining programme is as follows. For
T < max{J0, J }, find the saddle point (q, m) which minimizes f (q, m; q̂, m̂),
and take the limit n→ 0. The latter is in fact the most complicated part of
the procedure.

As at the end of Section 21.1, we could have also got the saddle
point equations (21.42, 21.43) from a pseudo-free energy. The latter is
obtained by using (21.41) to eliminate the conjugate order parameters from
f (q, m; q̂, m̂):

f̃ (q, m) = J0

2n

∑
a

m2
a +

βJ 2

4n

∑
ab

q2
ab

− T

n
ln

(∑
σ

exp
(

1
2

β2J 2
∑
ab

qabσ
aσ b + βJ0

∑
a

maσ
a

))
(21.46)
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As explained earlier, f̃ coincides with the true constrained free energy
f (q, m) at its saddle points, but not generally elsewhere.

Physical interpretation of saddle points

In order to get a better idea of how to select saddle points, we now turn to a
different although equivalent version of the replica trick (21.32) that allows
us to attach a physical meaning to the saddle point parameters (m, q). This
version transforms (as yet arbitrary) averages with a given weight factor W ,
according to

∑
σ g(σ )W(σ )∑

σ W(σ )
=

∑
σ g(σ )W(σ )[∑σ W(σ )]n−1

[∑σ W(σ )]n

= lim
n→0

∑
σ

g(σ )W(σ )
[∑

σ

W(σ )
]n−1

= lim
n→0

∑
σ1···σ n

g(σ 1)

n∏
a=1

W(σ a)

= lim
n→0

1
n

∑
b

∑
σ1···σ n

g(σ b)

n∏
a=1

W(σ a) (21.47)

The trick again consists in evaluating this quantity for integer n, whereas
the relevant limit refers to non-integer n.

We now use the above identity to write the distribution P(m) of the
magnetization in the SK model in equilibrium as

P(m) =
∑

σ δ(m−N−1 ∑
i σi) e−βH(σ )∑

σ e−βH(σ )

= lim
n→0

1
n

∑
b

∑
σ1···σ n

δ

(
m− 1

N

∑
i

σ b
i

)∏
a

e−βH(σ a)

If we average this distribution over the disorder, we find identical expres-
sions to those encountered in evaluating the disorder averaged free energy.
By inserting again delta-functions constraining the values of the order
parameters q and m, we arrive at the saddle point integration (21.39)
and find

P(m) = lim
n→0

1
n

∑
b

δ (m−mb) (21.48)

where {mb} refers to the relevant solution of (21.42, 21.43).
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Similarly we can imagine two systems σ and σ ′ with identical realizations
of the interactions {Jij }, both in thermal equilibrium. We now use the replica
identity to rewrite the distribution P(q) for the mutual overlap between the
micro-states of the two systems

P(q) =
∑

σ ,σ ′ δ(q −N−1 ∑
i σiσ

′
i ) e−βH(σ )−βH(σ ′)∑

σ ,σ ′ e−βH(σ )−βH(σ ′)

= lim
n→0

1
n(n− 1)

∑
b �=c

∑
σ1···σ n

δ

(
q − 1

N

∑
i

σ b
i σ c

i

)∏
a

e−βH(σ a)

Averaging over the disorder again leads to the saddle point integration
(21.39), and we find

P(q) = lim
n→0

1
n(n− 1)

∑
b �=c

δ(q − qbc) (21.49)

where {qbc} refers to the relevant solution of (21.42, 21.43).
We can now partly interpret the saddle point parameters (m, q), since

the shape of P(q) and P(m) gives direct information on the structure of
phase space with respect to ergodicity. The crucial observation is that for
an ergodic system one always has

P(m) = δ

(
m− 1

N

∑
i

〈σi〉eq
)

P(q) = δ

(
q − 1

N

∑
i

〈σi〉2eq
)

(21.50)

If, on the other hand, there are L ergodic components in our system, within
each of which we have microstate probabilities proportional to exp(−βH)

and corresponding averages 〈· · ·〉�, and if we denote the probability of
finding the system in component � by W�, we find for P(q) and P(m):

P(m) =
L∑

�=1

W�δ

(
m− 1

N

∑
i

〈σi〉�
)

P(q) =
L∑

�,�′=1

W�W�′δ

(
q − 1

N

∑
i

〈σi〉�〈σi〉�′
)

We see that for ergodic systems both P(m) and P(q) are δ-functions,
whereas for systems with a finite number of ergodic components they are
composed of a finite sum of δ-functions. A diverging number (in the limit
N →∞) of ergodic components, however, generally leads to distributions
with continuous pieces. If we combine this interpretation with our results
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(21.48, 21.49) we find that ergodicity is equivalent to the relevant saddle
point being of the form:

qab = δab + q(1− δab) ma = m (21.51)

Replica symmetric solution

The ansatz (21.51) for the order parameters (which we found to be equival-
ent to assuming our system to be ergodic) is called the ‘replica symmetry’
(RS) ansatz, because it has the property that order parameters do not change
if we permute the replica indices arbitrarily. The physical meaning of m and
q is provided by (21.50):

m = 1
N

∑
i

〈σi〉eq q = 1
N

∑
i

〈σi〉2eq (21.52)

Given the definition (21.36) of the order parameters qab and ma, this
result also makes intuitive sense: the disorder average arises simply because
such an average was already contained in the definition of the replicated
Hamiltonian �.

Insertion of the above RS ansatz (21.51) into the equations (21.42, 21.43,
21.46) gives

f̃ (q, m) = −1
4

βJ 2(1− q)2 + 1
2

J0m
2 − T

n
ln

∑
σ

κ̃(σ )+O(n)

q =
∑

σ σ 1σ 2κ̃(σ )∑
σ κ̃(σ )

m =
∑

σ σ 1κ̃(σ )∑
σ κ̃(σ )

with

κ̃(σ ) = exp
(

1
2

qβ2J 2
(∑

a

σ a
)2 + βJ0m

∑
a

σ a

)

To perform the summations over σ , we linearize the terms
(∑

a σ a
)2 with

the identity (21.34) (this is the by now familiar Gaussian linearization trick).
In the free energy and in the denominators of the saddle point equations,
we then get

∑
σ

e(qβ2J 2/2)(
∑

a σ a)
2+βJ0m

∑
a σ a =

∑
σ

∫
Dz e

∑
a(βJ0m+βJz

√
q)σa

=
∫

Dz [2 cosh(βJ0m+ βJz
√

q)]n

(21.53)
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The solutions m and q of the RS saddle point equations turn out to have
well defined limits for n→ 0, so we can also take this limit directly in the
(pseudo-) free energy. We then get

lim
n→0

f̃ (q, m) =− 1
4

βJ 2(1− q)2 + 1
2

J0m
2

− T lim
n→0

1
n

ln
∫

Dz [2 cosh(βJ0m+ βJz
√

q)]n

The integral over z in the last line, being properly normalized, can now
be interpreted as an average (over a Gaussian random variable z with zero
mean and unit variance). This enables us to use the replica identity (21.32)—
which holds for any average, not just a disorder average—in reverse, to get

lim
n→0

f̃ (q, m) = −1
4

βJ 2(1−q)2+1
2

J0m
2−T

∫
Dz ln 2 cosh(βJ0m+βJz

√
q)

(21.54)

Similarly, again using Gaussian linearization we can evaluate the numer-
ators in the saddle point equations (21.42, 21.43), abbreviating � =
βJ0m+ βJz

√
q:

∑
σ

σ 1σ 2 e(qβ2J 2/2)(
∑

a σ a)
2+βJ0m

∑
a σ a =

∫
Dz [2 sinh(�)]2[2 cosh(�)]n−2

∑
σ

σ 1 e(qβ2J 2/2)(
∑

a σ a)
2+βJ0m

∑
a σ a =

∫
Dz [2 sinh(�)][2 cosh(�)]n−1

and obtain in the n→ 0 limit, using (21.53),

q =
∫

Dz tanh2
(β(J0m+ Jz

√
q)) (21.55)

m =
∫

Dz tanh(β(J0m+ Jz
√

q)) (21.56)

We note that, rather than deriving the saddle point equations (21.55, 21.56)
by taking the n→ 0 limit of the nonzero-n saddle point equations (21.42,
21.43), as was done here, we could also have found them as the saddle point
conditions of the n → 0 (pseudo-) free energy (21.54); see Exercise 21.9.
This shortcut is often useful in replica calculations. Comparing (21.56)
with the Curie–Weiss equation (20.43), we also see that the only difference
is the integral (average) over z; the term involving z is proportional to J , so
we can interpret this average as a consequence of the quenched disorder in
the couplings (21.26).
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Upon linearizing (21.55, 21.56) for small q and m, one now finds the
following continuous bifurcations of non-trivial solutions of the RS saddle
point equations (see Exercise 21.10):

at from to
J0 > J : T = J0 m = q = 0 m �= 0, q > 0
J0 < J : T = J m = q = 0 m = 0, q > 0
T < max{J0, J }: J0 = (1− q)/T m = 0, q > 0 m �= 0, q > 0

So, within our replica symmetric analysis we have found that the SK model
has three phases: a paramagnetic phase (P) with m = q = 0, a ferromagnetic
phase (F) with both m and q nonzero, and a new phase with m = 0 but
q �= 0, which is called a ‘spin glass’ (SG) phase. The location of two of the
phase boundaries is given by T = J0 and T = J , respectively; the third
one is obtained by solving numerically the equations T = J0(1 − q) and
(21.55, 21.56). One then arrives at the phase diagram shown in Figure 21.2.
The case where there is no disorder (J → 0, i.e., J0/J → ∞) reproduces
our earlier results for the infinite-range ferromagnet, where we found a
paramagnetic and a ferromagnetic phase, with a transition at T = J0.
As the strength of the disorder increases (J0/J decreases), we can now have
a transition from the ferromagnetic to a SG phase. The nature of this SG
phase is rather peculiar. There is local order, in the sense that the average
local magnetizations 〈σi〉eq are nonzero; this follows from (21.52) and from

J0/J

T /J

Figure 21.2 Phase diagram of the SK model, as obtained from the RS solution. P:
paramagnetic phase, m = q = 0. SG: spin glass phase, m = 0, q > 0. F: ferromagnetic
phase, m �= 0, q > 0. Solid lines: phase transitions. Dashed: the AT instability, where the RS
solution becomes unstable. For J0/J < 1 this instability coincides with the P→SG
transition line T /J = 1.
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the fact that q is nonzero. Nevertheless, there is no global order in the
conventional sense: the overall magnetization m = N−1 ∑

i〈σi〉eq is zero
(m is self-averaging, so (21.52) also holds without the disorder average).
The name ‘glass’ comes from the analogy with ordinary (i.e. window) glass:
there, the local arrangements of the atoms is also ordered, as in a crystal,
but globally there is no crystalline order.

We have not yet checked the stability of the saddle points that we have
calculated. If this is done, it turns out (see below) that below the dashed
line in Figure 21.2 our RS saddle points are actually unstable. This region
includes the whole part of the phase diagram for which we had found a
spin glass phase, so our predictions for this phase should not be trusted;
nevertheless, the presence of the instability itself does indicate that a SG
phase must exist at low temperatures.

Breaking of replica symmetry: the AT instability

If for the RS solution we calculate the disorder-averaged entropy
S̄ = β2∂F̄ /∂β, we find that for small temperatures it becomes negative.
It follows from the information-theoretic definition (20.28) that this cannot
happen (see Chapter 12), so the RS solution must be incorrect in the low
temperature region. The reason for this is that the RS ansatz (21.51) no
longer corresponds to the correct physical saddle point of f̃ (q, m), (21.46),
for low temperatures. If saddle points without RS bifurcate continuously
from the RS, we can locate the occurrence of this ‘replica symmetry break-
ing’ (RSB) by studying the effect on f̃ (q, m) of small fluctuations around the
RS solution. It was shown by de Almeida and Thouless that the ‘dangerous’
fluctuations are of the form

qab → δab + q(1− δab)+ ηab

∑
b

ηab = 0 (21.57)

in which q is the solution of (21.55), |ηab| � 1, ηaa = 0 and ηab = ηba.
We can calculate the resulting change in f̃ (q, m), away from the RS
value f̃ (qRS, mRS), the leading order of which must be quadratic in the
fluctuations {ηab} since the RS solution (21.55, 21.56) is a saddle point:

f̃ (q, m)− f̃ (qRS, mRS) = βJ 2

4n

∑
a �=b

η2
ab −

β3J 4

8n

∑
a �=b

∑
c �=d

ηabηcdGabcd + · · ·

with

Gabcd =
∑

σ σaσbσ cσ d e(qβ2J 2/2)(
∑

a σ a)
2+βmJ0

∑
a σ a

∑
σ e(qβ2J 2/2)(

∑
a σ a)

2+βmJ0
∑

a σ a
(21.58)
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Because of the index permutation symmetry in the spin-average (21.58), we
can write for any a �= b and c �= d:

Gabcd = δacδbd + δadδbc +G4(1− δac)(1− δbd)(1− δad)(1− δbc)

+G2[δac(1− δbd)+ δbd(1− δac)+ δad(1− δbc)+ δbc(1− δad)]

with

G� =
∫

Dz tanh�
(β(J0m+ Jz

√
q)) coshn

(β(J0m+ Jz
√

q))∫
Dz coshn

(β(J0m+ Jz
√

q))

Only terms which involve precisely two δ-functions can contribute to our
expansion for f̃ (q, m), because of the requirements a �= b and c �= d, and
due to

∑
b ηab = 0. As a result we obtain:

f̃ (q, m)− f̃ (qRS, mRS) = βJ 2

4n
[1− β2J 2(1− 2G2 +G4)]

∑
a �=b

∑
c �=d

η2
ab + · · ·

The condition for the RS solution to minimize f̃ (q, m), if compared to the
so called ‘replicon’ fluctuations (21.57), is therefore

1 > β2J 2 lim
n→0

(1− 2G2 +G4)

After taking the limit in the quantities G� this condition can be written as

1 > β2J 2
∫

Dz cosh−4
(βJ0m+ βJz

√
q) (21.59)

The so-called AT line in the phase diagram, where this condition ceases
to be met, indicates a phase transition to a SG state where ergodicity is
broken (i.e. to a state where the distribution P(q) in (21.49) is no longer a
δ-function). It is shown in Figure 21.2 (following numerical evaluation) as
a dashed line for J0/J > 1, and coincides with the line T /J = 1 for J0 < 1.

21.3 Hopfield model with an extensive number of
patterns

Having dealt with the SK model as a ‘warm-up’ for replica calculations,
we now return to the Hopfield model with an extensive number of patterns
stored, that is, with p = αN in (21.2). Although we can still write the log
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density of states and the free energy in the form (21.7, 21.8), this will not
be of help since here it involves integrals over an extensive (i.e. O(N)) num-
ber of variables, so that saddle point integration does not apply. Instead,
following the approach of the SK spin glass model, we assume that the free
energy is self-averaging, so that we can average it over the distribution of
the patterns with the help of the replica trick:

F̄ = −T lim
n→0

1
n

ln Zn = − lim
n→0

T

n
ln

( ∑
σ1···σ n

e−β
∑n

a=1 H(σ a)
)

Again, Roman characters a, b, . . . will be used to label replicas (a = 1, . . . , n)
while Greek indices will be used for the pattern labels (µ = 1, . . . , p). The
pattern components {ξµ

i }, of which there are now αN2, are assumed to be
drawn independently at random from {−1, 1}, as usual.

Replica calculation of the disorder-averaged free energy

By analogy with the case of a finite number of patterns, we anticipate that
the ergodic components of our system will be characterized by the pattern
overlap order parameters mµ (21.4), and that for large N only a finite
number � of these overlaps will be nonzero (while the others will be of
order N−1/2, similar to the overlap values one would find for randomly
chosen micro-states). Since all patterns are equivalent in the calculation,
we may choose the � ‘nominated’ patterns with which the system has non-
vanishing overlap as µ = 1, . . . , �. To draw out the analogy with the case
of a finite number of stored patterns, it is useful to keep the nominated
patterns ξ1, . . . , ξ � fixed at first, and average only over the disorder that is
responsible for the complications: the non-nominated (or ‘non-condensed’)
patterns ξ �+1, . . . , ξp. As in the SK case we denote this disorder average by
· · ·. To calculate the replicated Hamiltonian, we first rewrite H(σ ) as

H(σ ) = − 1
2N

∑
µ≤�

(∑
i

σiξ
µ
i

)2 − 1
2N

∑
µ>�

(∑
i

σiξ
µ
i

)2 + p

2

taking account of the absence of self-interactions, as usual. The disorder
average defining the replicated Hamiltonian is then

e−β
∑n

a=1 H(σ a) = e
(β/2N)

∑
µ≤�

∑
a(

∑
i σ a

i ξ
µ
i )

2−Nnβα/2
e
(β/2N)

∑
a

∑
µ>�(

∑
i σ a

i ξ
µ
i )

2

(21.60)
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The disorder average over the non-nominated patterns is now seen to
factorize:

e
(β/2N)

∑
a

∑
µ>�(

∑
i σ a

i ξ
µ
i )2 =

[
e(1/2)

∑
a(
√

β/N
∑

i σ a
i ξi )

2
]p−�

The square in the exponent still couples the variables ξi at different sites i,
so we need to use Gaussian linearization (21.34), with n auxiliary Gaussian
integration variables z = (z1, . . . , zn) to linearize the exponent:

e(1/2)
∑

a(
√

β/N
∑

i σ a
i ξi )

2 =
∫

Dz e
√

β/N
∑

a za

∑
i σ a

i ξi

=
∫

Dz
∏
i

cosh
(√

β/N
∑
a

zaσ
a
i

)

To simplify this, one writes the product as exp[∑i ln cosh(· · · )] and expands
in the argument of the ln cosh. The leading term is of O(1/N) and, when
summed over i, gives a contribution of O(1). The next term only gives a
negligible correction of O(1/N) to the sum, so

∏
i

cosh
(√

β/N
∑
a

zaσ
a
i

)
= e(β/2N)

∑
ab zazb

∑
i σ a

i σ b
i +O(1/N)

When we raise this to the power p − �, the O(1/N) term in the exponent
only results in an overall O(1) factor. Replacing p − � by p also gives a
factor of the same order, so altogether

e
(β/2N)

∑
a

∑
µ>�(

∑
i σ a

i ξ
µ
i )2 =

[∫
Dz e(β/2N)

∑
ab zazb

∑
i σ a

i σ b
i

]p

×O(1)

Inserting this into (21.60), we obtain the replicated Hamiltonian (with, as
in the calculation of the SK model, {σ } ≡ σ n · · · σ n)

�({σ }) = −1
β

ln e−β
∑n

a=1 H(σ a)

= − 1
2N

∑
µ≤�

∑
a

(∑
i

σ a
i ξ

µ
i

)2 + 1
2

Nnα

−NT α ln
∫

Dz e(β/2N)
∑

ab zazb

∑
i σ a

i σ b
i +O(1)
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This function depends on {σ } only through the following order parameters:

qab({σ }) = 1
N

∑
i

σ a
i σ b

i ma
µ({σ }) = 1

N

∑
i

σ a
i ξ

µ
i (21.61)

These are nearly identical to those (21.36) of the SK model, except that
instead of a single magnetization order parameter ma we now have the �

nominated pattern overlaps ma
µ for each replica a. We can further simplify

� by carrying out the n-dimensional Gaussian integral over z; this factorizes
in the standard way after an appropriate orthogonal transformation of the
integration variables z, with the result:

ln
∫

Dz e(β/2)
∑

ab zazbqab = −1
2

ln det(1I− βq) (21.62)

in which 1I denotes the n×n identity matrix. So the replicated Hamiltonian
becomes

1
N

�({σ }) = −1
2

∑
µ

∑
a

(ma
µ({σ }))2 + 1

2
nα

+ 1
2

T α ln det(1I− βq({σ }))+O
(

1
N

)
(21.63)

Here and in the following all sums and products over µ run from 1
to � unless stated otherwise. From our discussion at the beginning of
Section 21.2, one would expect that (21.63) should, in the limit α → ∞,
become identical to the replicated Hamiltonian (21.35) of the SK model
without the ferromagnetic part, that is, with J0 = 0. This can indeed be
shown to be the case; see Exercise 21.11.

By direct analogy with the SK model, we can now write the disorder-
averaged asymptotic free energy per spin (21.33) as

f̄ = − lim
N→∞ lim

n→0

T

Nn
ln

∫
dqdmD(q, m)

× exp
(

N

[
β

2

∑
µ

∑
a

(ma
µ)2 − nαβ

2
− α

2
ln det(1I− βq)

])

(21.64)
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with the density of states

D(q, m) =
∑
{σ }

∏
ab

δ

(
qab − 1

N

∑
i

σ a
i σ b

i

)∏
aµ

δ

(
ma

µ −
1
N

∑
i

σ a
i ξ

µ
i

)

=
∑
{σ }

(
N

2π

)n2+n� ∫
dq̂dm̂ e

iN
∑

ab q̂ab

[
qab−(1/N)

∑
i σ a

i σ b
i

]

× e
iN

∑
aµ m̂a

µ

[
ma

µ−(1/N)
∑

i σ a
i ξ

µ
i

]

where m and m̂ now stand for the n×� matrices with entries {ma
µ} and {m̂a

µ}.
The sum over states now factorizes over the different sites i as usual, and
we are left with a sum over the states of a single n-replicated spin, which
we denote by σ = (σ 1, . . . , σn) as before. This gives

D(q, m) =
(

N

2π

)n2+n�∫
dq̂dm̂ e

iN
∑

ab q̂abqab+iN
∑

aµ m̂a
µma

µ

×
∏
i

(∑
σ

e
−i

∑
ab q̂abσ

aσb−i
∑

aµ m̂a
µσaξ

µ
i

)
(21.65)

The product can be expressed as
∏

i (· · · ) = exp[∑i ln(· · · )], and the sum
over i in the exponent then written as N times an average over the vectors
ξ i = (ξ1

i , . . . , ξ�
i ), using notation analogous to (21.6):

〈g(ξ)〉ξ = 1
N

∑
i

g(ξ i ) = 2−�
∑

ξ∈{−1,1}�
g(ξ)

Self-averaging ensures that the second equality holds in the thermodynamic
limit N→∞, because of our assumption that the patterns are chosen
randomly. If we insert the resulting expression for D(q, m) into (21.64) and
evaluate the integrals by saddle point integration we get for the free energy

f̄ = lim
n→0

extr f (q, m; q̂, m̂) (21.66)
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where

f (q, m; q̂, m̂) = − 1
2n

∑
µ

∑
a

(ma
µ)2 + 1

2
α + T α

2n
ln det(1I− βq)

− T

n

[
i
∑
ab

q̂abqab + i
∑
aµ

m̂a
µma

µ

+
〈
ln

(∑
σ

e
−i

∑
ab q̂abσ

aσb−i
∑

aµ m̂a
µσaξµ

)〉
ξ

]
(21.67)

We recognize in the first terms the replicated Hamiltonian (21.63), up to
the 1/n factors, while the last term in square brackets is the log density of
states (21.65), up to terms which are negligible for N → ∞. Variation of
the conjugate order parameters {q̂ab}, {m̂µ

a } in (21.67) gives the following
saddle point equations:

mµ
a =

〈∑
σ σaξµκ(σ )∑

σ κ(σ )

〉
ξ

(21.68)

qab =
〈∑

σ σaσbκ(σ )∑
σ κ(σ )

〉
ξ

(21.69)

where
κ(σ ) = exp

(
− i

∑
ab

q̂abσ
aσ b − i

∑
aµ

m̂a
µσaξµ

)
Not unexpectedly, in view of our previous analysis of the SK model, these
equations take the form of averages over σ and ξ , weighted by κ(σ ).
In agreement with the order parameter definition (21.61), the diagonal
elements of q are always qaa = 1.

Similarly, demanding stationarity of (21.67) with respect to the remaining
order parameters {qab}, {mµ

a } gives the conditions

q̂ab = 1
2

iαβ

[∫
dz zazb e−z·(1I−βq)z/2∫

dz e−z·(1I−βq)z/2

]
= 1

2
iαβ(1I− βq)−1

ab (21.70)

m̂µ
a = iβma

µ (21.71)

In deriving (21.70), we used (21.62) in reverse to evaluate the derivative of
ln det(1I−βq) with respect to qab. Equation (21.71) can be used to eliminate
the conjugate order parameters m̂, simplifying κ(σ ) to

κ(σ ) = exp
(
− i

∑
ab

q̂abσ
aσ b + β

∑
aµ

ma
µσaξµ

)
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Note that the diagonal elements q̂aa drop out of (21.68, 21.69), because
they just contribute constant factors to κ(σ ). Their values are simply given
as functions of the remaining parameters by (21.70).

As for the SK model, we can also use (21.71) to eliminate the m̂ from the
free energy (21.67); this gives a pseudo-free energy which coincides with
the true free energy at its saddle points:

f̃ (m, q, q̂) = 1
2n

∑
µ

∑
a

(ma
µ)2 + α

2
+ T α

2n
ln det(1I− βq)

− T

n

[
i
∑
ab

q̂abqab +
〈
ln

(∑
σ

e
−i

∑
ab q̂abσ

aσa+β
∑

aµ ma
µσaξµ

)〉
ξ

]

(21.72)

Before proceeding with a full analysis of the saddle point equations (21.68–
21.70) using a RS ansatz, we make a few tentative statements on the phase
diagram. For β = 0 we obtain the trivial paramagnetic solution qab = δab,
q̂ab = 0, m

µ
a = 0. We can identify continuous bifurcations to a non-trivial

state by expanding the saddle point equations to first order in the relevant
parameters:

ma
µ = βma

µ + · · · qab = −2iq̂ab + · · · (a �= b)

q̂ab = i
2

αβ

1− β

[
δab + β

1− β
qab(1− δab)

]
+ · · ·

By combining the equations for q and q̂ we obtain (for a �= b)

qab = α
( β

1− β

)2
qab + · · ·

Therefore we expect a second-order transition when αβ2/(1 − β)2 = 1,
that is, at T = 1 + √α, from the trivial state to a spin glass state where
m = 0 but q �= 0.

Physical interpretation of saddle points

We proceed once more along the lines of the SK model. If we apply the
alternative version (21.47) of the replica trick to the Hopfield model, we can
write the distribution of the � overlaps m = (m1, . . . , m�) in equilibrium as

P(m) = lim
n→0

1
n

∑
b

∑
σ1···σ n

δ

(
m− 1

N

∑
i

σ b
i ξ i

)∏
a

e−βH(σ a)
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with ξ i = (ξ1
i , . . . , ξ�

i ). Averaging this distribution over the disorder leads
to expressions identical to those encountered in evaluating the disorder
averaged free energy. By inserting the same delta-functions we arrive once
more at the saddle point integration (21.66, 21.72), and find

P(m) = lim
n→0

1
n

∑
b

δ(m−mb) (21.73)

where mb = (mb
1, . . . , m

b
�) refers to the relevant solution of (21.68–21.70).

Similarly we imagine two systems σ and σ ′ with identical realizations
of the interactions {Jij }, both in thermal equilibrium, and use (21.47) to
rewrite the distribution P(q) for the mutual overlap between the microstates
of the two systems as

P(q) = lim
n→0

1
n(n− 1)

∑
b �=c

∑
σ1···σ n

δ

(
q − 1

N

∑
i

σ b
i σ c

i

)∏
a

e−βH(σ a)

Averaging over the disorder again leads to the saddle point integration
(21.66, 21.72), and we find

P(q) = lim
n→0

1
n(n− 1)

∑
b �=c

δ(q − qbc) (21.74)

where {qbc} refers to the relevant solution of (21.68–21.70).
Finally, we analyse the physical meaning of the conjugate parameters
{q̂ab} for a �= b. We will do this in more detail, it being rather specific
for the Hopfield model and slightly different from the derivations above.
Again we imagine two systems σ and σ ′ with identical interactions {Jij },
both in thermal equilibrium. We now use (21.47) to evaluate the covariance,
rescaled by an appropriate factor N (since non-nominated overlaps are by
definition individually of order O(N−1/2)), of the overlaps corresponding
to non-nominated patterns:

r = N

p − �

p∑
µ=�+1

〈
1
N

∑
i

σiξ
µ
i

〉
eq

〈
1
N

∑
i

σ ′i ξ
µ
i

〉
eq

= lim
n→0

N

n(n− 1)

∑
b �=c

∑
σ1···σ n

(
1
N

∑
i

σ b
i ξ

p
i

)(
1
N

∑
i

σ c
i ξ

p
i

)∏
a

e−βH(σ a)

(21.75)

Here we have used the equivalence of all such non-nominated patterns.
We next perform the same manipulations as in calculating the free energy.
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The disorder average involves

(
1√
N

∑
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σ b
i ξ

p
i

)(
1√
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∑
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i ξ

p
i

)
e
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∑
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∂2
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e
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∑

a za

∑
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=
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Dz e
√
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a za

∑
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]p−�−1 1
β

∫
Dz zbzc e

√
β/N

∑
a za

∑
i σ a

i ξi

after an integration by parts. We thus finally obtain an expression which
involves the surface (21.72):

r = 1
β

lim
n→0

1
n(n− 1)

×
∑
b �=c

lim
N→∞

{(∫
dmdqdq̂

[∫
dz zbzc e−z·(1I−βq)z/2∫

dz e−z·(1I−βq)z/2

]
e−βnNf̃ (m,q,q̂)

)

×
(∫

dmdqdq̂ e−βnNf̃ (m,q,q̂)

)−1}

The normalization of the above integral over {m, q, q̂} (i.e. the appearance
of the integral in the denominator) follows from using the replica procedure
to rewrite unity. The integration being dominated by the extrema of f̃ , we
can now use the saddle point equation (21.70) to arrive at

lim
n→0

1
n(n− 1)

∑
b �=c

q̂bc = i
2

αβ2r (21.76)

The result (21.76) thus provides a physical interpretation of the order
parameters {q̂ab}, via (21.75), in terms of the uncondensed overlaps.

We know that assuming ergodicity implies that the distributions P(q)

and P(m) are δ-functions. This is equivalent to the relevant saddle point
being of the RS form:

ma
µ = mµ qab = δab + q(1− δab) q̂ab = 1

2 iαβ2[Rδab + r(1− δab)]
(21.77)

which is the replica symmetry (RS) ansatz for the Hopfield model. The
RS form for {qab} and {ma

µ} is a direct consequence of the corresponding
distributions being δ-functions, whereas the RS form for {q̂ab} subsequently
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follows from (21.70). The physical meaning of mµ and q is

mµ = 〈mµ(σ )〉eq q = 1
N

∑
i

〈σi〉2eq

The parameter R appearing in (21.77) can be related to the order para-
meter q, via (21.70). We do not give the explicit form because R will
disappear from our analysis shortly.

RS free energy and saddle point equations

We now explore the consequences of the RS ansatz (21.77) for the saddle
point. The relatively simple form of this ansatz allows us to diagonalize the
matrix  = 1I− βq which we encountered in the saddle point problem:

�ab = [1− β(1− q)]δab − βq

Eigenspace: Eigenvalue: Multiplicity:

x = (1, . . . , 1) 1− β(1− q)− βqn 1∑
a xa = 0 1− β(1− q) n− 1

so that

ln det  = ln(1− β(1− q)− βqn)+ (n− 1) ln(1− β(1− q))

= n

[
ln(1− β(1− q))− βq

1− β(1− q)

]
+O(n2)

Inserting the RS ansatz (21.77) for the saddle point into (21.72) and
using the above expression for the determinant and the shorthand m =
(m1, . . . , m�) gives us

f̃ (mRS, qRS, q̂RS) =
1
2

m2 + 1
2

α[1+ βr(1− q)]

+ 1
2

T α

[
ln(1− β(1− q))− βq

1− β(1− q)

]

− T

n

〈
ln

∑
σ

eβm·ξ ∑
a σ a+(αrβ2/2)(

∑
a σ a)

2〉
ξ
+O(n)

Following closely the calculation for the SK model leading to (21.54), we
now linearize the squares in the spin averages with (21.34). We then carry
out the sum over the replicated spin σ and take the limit n→ 0 using the
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replica trick (21.32) in reverse. This gives the asymptotic disorder-averaged
free energy per spin of the RS solution:

f̄RS = lim
n→0

f̃ (mRS, qRS, q̂RS)

= 1
2

m2 + α

2

[
1+ βr(1− q)+ T ln(1− β(1− q))− q

1− β(1− q)

]

− T

∫
Dz〈ln[2 cosh(β(m · ξ + z

√
αr))]〉ξ (21.78)

The saddle point equations for m, q, and r can be obtained either by
inserting the RS ansatz (21.77) into (21.68–21.70) and taking the n → 0
limit, or by finding the stationary points of the RS expression (21.78). The
latter route is the fastest one. After performing integrations by parts where
appropriate, we obtain the final result:

m =
∫

Dz 〈ξ tanh(β(m · ξ + z
√

αr))〉ξ (21.79)

q =
∫

Dz 〈tanh2
(β(m · ξ + z

√
αr))〉ξ (21.80)

r = q

[1− β(1− q)]2 (21.81)

It is reassuring to see that from equation (21.79) one recovers for α = 0
our previous result (21.13) for a finite number of patterns. As in the SK
model, the average over the Gaussian variable z represents the effect of the
disorder, which here arises from the non-condensed (or non-nominated)
patterns µ = �+1, . . . , N , that is from those that have an O(N−1/2) overlap
with the network state σ .

Analysis of RS order parameter equations and phase diagram

We first establish an upper bound for the temperature T = 1/β for non-
trivial solutions of the set of equations (21.79–21.81) to exist. Following
a line of reasoning similar to that leading to (21.18), one can show that
m = 0 for T > 1. In this temperature regime, we can then obtain from
(21.80, 21.81), using tanh2

(x) ≤ x2 and 0 ≤ q ≤ 1:

q = 0 or q ≤ 1+√α − T

We conclude from this that q = 0 for T > 1 + √α. Linearization of
(21.79, 21.80) for small q and m shows the continuous bifurcations as
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T is decreased:

at from to

α > 0: T = 1+√α m = 0, q = 0 m = 0, q > 0
α = 0: T = 1 m = 0, q = 0 m �= 0, q > 0

where the α = 0 result corresponds simply to our earlier results for an
intensive (i.e. order O(N0)) number of patterns. We see that the upper
bound T = 1+√α is actually the critical temperature that indicates a con-
tinuous transition to a SG state, where there is no significant alignment of
the spins in the direction of one particular pattern, but still a certain degree
of local freezing. Since m = 0 for T > 1, this SG state persists at least down
to T = 1. The quantitative details of the SG state are obtained by inserting
m = 0 into (21.80, 21.81), since (21.79) is fulfilled automatically. If one
analyses the stability of the saddle point describing the SG phase within
the RS ansatz,44 one finds an important difference between the previously
studied case α = 0 and the present case α > 0: the m = 0 spin glass solu-
tion is now stable within RS for all T < 1 + √α. In terms of information
processing this implies that for α > 0 an initial state must have a certain
nonzero overlap with a pattern to evoke a final state with m �= 0, in order
to avoid ending up in the m = 0 spin glass state. In contrast, for α = 0, the
state with m = 0 is unstable for T < 1, so any initial state will eventually
lead to a final state with m �= 0.

Next we consider the retrieval states, that is, the solutions with m �= 0.
The impact on the saddle point equations (21.79, 21.80) of having α > 0
is seen to be a smoothing of the hyperbolic tangent by convolution with a
Gaussian kernel. The latter can be viewed as noise caused by interference
between the attractors, that is, between the different patterns stored. The
natural strategy for solving (21.79, 21.80) is therefore to make an ansatz
for the nominated overlaps m of the mixture state type (21.19). Insertion of
this second ansatz into the saddle point equations does indeed lead to self-
consistent solutions. One can solve numerically the remaining equations
for the amplitudes of the mixture states, and then evaluate their stability,
in essentially the same way as for α = 0. The calculations are just more
involved. It then turns out that mixtures of an even number of patterns
are again unstable for any T and α, whereas odd mixtures can become
locally stable for sufficiently small T and small α. Among the mixture states,
the pure states, where the vector m has only one nonzero component, are

44 As the discussion in Section 21.3 shows, the SG phase is actually unstable if non-replica
symmetric variations of the order parameters are taken into account. Nevertheless, as in the
case of the SK model, the presence of this instability itself shows that there is a SG phase in the
region of the phase diagram that we have calculated, even if its properties are not accurately
described by the replica symmetric solution.
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the first to stabilize as the temperature is lowered. We will study these pure
states in more detail.

Inserting the pure state ansatz m = m(1, 0, . . . , 0) into our RS equations
gives us

m =
∫

Dz tanh
(

β

[
m+ z

√
αq

1− β(1− q)

])
(21.82)

q =
∫

Dz tanh2
(

β

[
m+ z

√
αq

1− β(1− q)

])
(21.83)

f̃ = 1
2

m2 + 1
2

α

[
(1− q)

1+ β(1− q)(β − 2)

[1− β(1− q)]2 + 1
β

ln(1− β(1− q))

]

− T

∫
Dz ln

(
2 cosh

(
β

[
m+ z

√
αq

1− β(1− q)

]))
(21.84)

These equations look like we have just inserted ξ1 = 1 everywhere, rather
than averaged over ξ1 = ±1. The reason is that for states of the form
m = m(1, 0, . . . , 0) the saddle point equations (21.79–21.81) and the free
energy per spin (21.78) are actually independent of ξ1. To see this, we note
that for ξ1 = ±1, one has ξ1 tanh(x) = tanh(ξ1x). This transformation
also gives ξ1z instead of z inside the integral. But then one can transform
the integration variable to z′ = ξ1z (which leaves the Gaussian measure
unaffected, as it is symmetric under z → −z) and obtain a result which is
the same for ξ1 = 1 and ξ1 = −1.

If we solve the equations (21.82, 21.83) numerically for different values
of α, and calculate the corresponding free energies (21.84) for the pure states
and the SG state m = 0, we obtain Figure 21.3. For α > 0 the non-trivial
solution m for the amplitude of the pure state disappears discontinuously
as the temperature is raised, defining a transition temperature TM(α). Once
the pure state appears, it turns out to be locally stable within the RS ansatz.
Its free energy f̃ , however, remains larger than the one corresponding to the
spin glass state, until the temperature is further reduced to below a second
transition temperature Tc(α). For T < Tc(α) the pure states are therefore
the equilibrium states in the thermodynamic sense.

By drawing the above transition lines in the (α, T ) plane, together with the
line Tg(α) = 1+√α which signals the transition from the paramagnetic to
the SG state, we obtain the RS phase diagram of the Hopfield model, depic-
ted in Figure 21.4. Strictly speaking, the line TM would appear meaningless
in the thermodynamic picture, only the saddle point that minimises f̃ being
relevant. However, we have to keep in mind the physics behind the form-
alism (see Section 20.5). The occurrence of multiple locally stable saddle
points is the manifestation of ergodicity breaking in the limit N → ∞.
For times which are not exponentially long, the thermodynamic analysis,
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T T

m f

Figure 21.3 Left picture: RS amplitudes m of the pure states of the Hopfield model as a
function of temperature. From top to bottom: α = 0.000 . . . 0.125 (�α = 0.025). Right
picture, solid lines: free energies of the pure states. From top to bottom: α = 0.000 . . . 0.125
(�α = 0.025). Dashed lines and their solid continuations: free energies of the spin glass
state m = 0 for the same values of α, shown for comparison.

α

T

Figure 21.4 Phase diagram of the Hopfield model. P: paramagnetic phase, m = q = 0.
SG: spin glass phase, m = 0, q > 0. F: pattern recall phase, where the pure states with
m �= 0 and q > 0 minimize f . In region M, the pure states are local but not global minima
of f . Dashed: the AT instability for the retrieval solutions (TR). Inset: close-up of the low
temperature region.
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based on ergodicity, therefore applies only within a single ergodic com-
ponent. As a result, each locally stable saddle point is indeed relevant for
appropriate initial conditions and finite timescales.

Zero temperature, storage capacity

The storage capacity αc of the Hopfield model is defined as the largest α for
which locally stable pure states still exist. The critical temperature TM(α),
where the pure states appear as the noise level T is lowered, decreases
monotonically with α, and the storage capacity is reached for45 T = 0.
Before we can put T → 0 in (21.82, 21.83), however, we have to rewrite
these equations in terms of quantities with well defined T → 0 limits, since
q → 1. A suitable quantity turns out to be C = β(1− q), which must obey
0 ≤ C ≤ 1 for the free energy (21.78) to exist. The saddle point equations
can now be written in the following form:

m =
∫

Dz tanh
(

β

(
m+ z

√
αq

1− C

))

C = ∂

∂m

∫
Dz tanh

(
β

(
m+ z

√
αq

1− C

))

in which the limit T → 0 simply corresponds to replacing tanh(βx) →
sgn(x) and q → 1. After taking this limit, we perform the Gaussian integral
and find

m = erf
(

m(1− C)√
2α

)
C = (1− C)

√
2

απ
e−m2(1−C)2/2α (21.85)

This set can be reduced further to a single transcendental equation, upon
introducing the variable x = m(1 − C)/

√
2α, as follows. Multiplying

the equation for C by m gives mC = 2x e−x2
/
√

π . Subtracting this from
m = erf(x) yields m(1− C) = x

√
2α on the left-hand side and thus

x
√

2α = F(x) F (x) = erf(x)− 2x√
π

e−x2
(21.86)

Equation (21.86) is then solved numerically (see Figure 21.5). Since F(x) is
anti-symmetric, the solutions come in pairs (x,−x), reflecting the symmetry
of the Hamiltonian of the system with respect to an overall spin-flip σ →
−σ . For α < αc ∼ 0.138 there do indeed exist pure state solutions x �= 0.

45 Here we neglect the low temperature re-entrance peculiarities in the phase diagram
(Figure 21.4) arising from the AT instability discussed below.
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Figure 21.5 Solution of the transcendental
equation F(x) = x

√
2α; x is related to the

pattern overlap by m = erf(x). The storage
capacity αc ∼ 0.138 of the Hopfield model is
the largest α for which solutions x �= 0 exist.

For α > αc there is only the SG solution x = 0. Given a solution x of
(21.86), the zero temperature values for the order parameters follow from

lim
T→0

m = erf(x) lim
T→0

C =
(

1+
√

απ

2
ex2

)−1

(The second expression is obtained by solving (21.85), in the form C =
(1−C)

√
2/απe−x2

, for C.) With these values we can then also find the zero
temperature limit of our expression (21.84) for the free energy:

lim
T→0

f̃ = 1
2

erf2(x)+ 1
π

e−x2 − 2
π

(
e−x2 +

√
απ

2

) (
x
√

π erf(x)+ e−x2)

Comparison of the values for limT→0 f̃ thus obtained, for the pure state
m > 0 versus those of the SG state m = 0 leads to Figure 21.6, which clearly
shows that for sufficiently small α the pure states are the true ground states
of the system.

Let us summarize the main quantitative conclusions that can now be
drawn about information recall in the Hopfield model with an extensive
number p = αN of stored patterns, within the RS ansatz of the replica
formalism. We saw that for sufficiently small values of the storage ratio,
roughly α < 0.138, and low noise levels T , patterns can indeed be recalled.
Moreover, the recall overlap m is in fact seen to be very close to its maximum
value; one finds that m > 0.97 in the limit T → 0, even at the onset of recall
(see Figure 21.6). This value implies that in such macroscopic (recall) states
the percentage of recall errors made by the network, that is, the percentage
of spins where σi = −ξ

µ
i (given that pattern µ is recalled) is below 1.5%.

Breaking of replica symmetry: the AT Instability

As in the case of the SK spin glass model, the above RS solution generates
negative entropies at sufficiently low temperatures, indicating that RS must
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α α

m f

Figure 21.6 Left picture: RS amplitudes m of the pure states of the Hopfield model for
T = 0 as a function of α = p/N . The location of the discontinuity, where m vanishes,
defines the storage capacity αc ≈ 0.138. Note the vertical scale: even just below αc, m is still
within 3% of perfect retrieval. Right picture, solid line: T = 0 free energy f of the pure
states. Dashed line and solid continuation: T = 0 free energy of the SG state m = 0, for
comparison.

be broken. If saddle points without replica symmetry bifurcate continuously
from the RS one, we can locate the RS breaking by studying the effect on
f̃ (m, q, q̂) (21.72) of small (so-called ‘replicon’) fluctuations around the RS
solution, following de Almeida and Thouless:

qab → δab + q(1− δab)+ ηab

ηab = ηba ηaa = 0
∑
a

ηab = 0 (21.87)

The small perturbation of q induces a similar change in the conjugate
parameters q̂ through equation (21.70):

q̂ab → 1
2 iαβ2[Rδab + r(1− δab)+ η̂ab]

η̂ab = 1
2

∑
cd

ηcd(gabcd − gabgcd)
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with

gabcd =
∫

dz zazbzczd e−z·(1I−βqRS)z/2∫
dz e−z·(1I−βqRS)z/2

gab =
∫

dz zazb e−z·(1I−βqRS)z/2∫
dz e−z·(1I−βqRS)z/2

Wick’s theorem (which expresses higher order moments of Gaussian vari-
ables in terms of the second-order ones, see, e.g., [117]) can now be used
to write everything in terms of second moments of the Gaussian integrals
only:

gabcd = gabgcd + gacgbd + gadgbc

With this we can express the replicon variation in q̂, using the symmetry of
{ηab} and the saddle point equation (21.70), as

η̂ab =
∑
cd

gacηcdgdb

= β2
∑
c �=d

[Rδac + r(1− δac)]ηcd [Rδdb + r(1− δdb)]

= β2(R − r)2ηab (21.88)

(since only those terms can contribute which involve precisely two
δ-symbols, as a consequence of

∑
a ηab = 0).

We can now calculate the resulting change in f̃ (m, q, q̂), away from the
RS value f̃ (mRS, qRS, q̂RS), the leading order of which must be quadratic in
the fluctuations {ηab} since the RS solution (21.79–21.81) is a saddle point:

f̃ (mRS, q, q̂) = f̃ (mRS, qRS, q̂RS)+
1
βn

[
1
2

α ln
(

det(1I− β(qRS + η))

det(1I− βqRS)

)

− i tr(q̂RSη)+ 1
2

αβ2 tr(η̂η + η̂qRS)

−
〈
ln

(∑
σ eβξ ·mRS

∑
a σ a−iσ ·(q̂RS+iαβ2η̂/2)σ∑

σ eβξ ·mRS
∑

a σ a−iσ ·q̂RSσ

)〉
ξ

]
(21.89)

This expression looks more awkward than it actually is. Evaluation is
greatly simplified by the fact that the matrices qRS and η commute, which
is a direct consequence of the properties (21.87) of the replicon fluctuations
and the form of the replica-symmetric saddle point. If we define the n × n

matrix P to be the projection onto the uniform state (1, . . . , 1), we have
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Pab = 1/n and thus the relations

qRS = (1− q)1I+ nqP , Pη = ηP = 0
qRSη = ηqRS = (1− q)η

(1I− βqRS)
−1 = 1I

1− β(1− q)

+ βnqP

[1− β(1− q)− βnq][1− β(1− q)]

(21.90)

We can now simply expand the relevant terms, using the identity
ln(det M) = tr(ln M):

ln
(

det(1I− β(qRS + η))

det(1I− βqRS)

)
= tr ln(1I− βη(1I− βqRS)

−1)

= tr
[
−βη(1I− βqRS)

−1 − 1
2

β2[η(1I− βqRS)
−1]2

]
+O(η3)

= −1
2

β2

[1− β(1− q)]2 tr(η2)+O(η3) (21.91)

Finally we address the remaining term in (21.89), again using the RS saddle
point equations (21.79–21.81) where appropriate:

〈
ln

({∑
σ

eβξ ·mRS
∑

a σ a−iσ ·q̂RSσ

[
1+ 1

2
αβ2σ · η̂σ + 1

8
α2β4(σ · η̂σ )2 + · · ·

]}

×
(∑

σ

eβξ ·mRS
∑

a σ a−iσ ·q̂RSσ

)−1)〉
ξ

= 1
2

αβ2tr(η̂qRS)+
1
8

α2β4
∑
abcd

η̂abη̂cd(Gabcd −Habcd)+ · · · (21.92)

with

Gabcd =
〈∑

σ σaσbσ cσ d eβξ ·mRS
∑

a σ a−iσ ·q̂RSσ∑
σ eβξ ·mRS

∑
a σ a−iσ ·q̂RSσ

〉
ξ

Habcd =
〈∑

σ σaσb eβξ ·mRS
∑

a σ a−iσ ·q̂RSσ∑
σ eβξ ·mRS

∑
a σ a−iσ ·q̂RSσ

∑
σ σcσ d eβξ ·mRS

∑
a σ a−iσ ·q̂RSσ∑

σ eβξ ·mRS
∑

a σ a−iσ ·q̂RSσ

〉
ξ

Inserting the ingredients (21.88, 21.90–21.92) into expression (21.89) and
rearranging terms shows that the linear terms indeed cancel and that the
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term involving Habcd does not contribute (since the elements Habcd do not
depend on the indices for a �= b and c �= d). We are thus just left with:

f̃ (mRS, q, q̂)− f̃ (mRS, qRS, q̂RS)

= 1
βn

[
−1

4
αβ2

[1− β(1− q)]2 tr(η2)+ 1
2

αβ4(R − r)2 tr(η2)

−1
8

α2β8(R − r)4
∑
abcd

ηabηcdGabcd

]
+ · · ·

Because of the index permutation symmetry in the spin-average we can
write for a �= b and c �= d:

Gabcd = δacδbd + δadδbc +G4(1− δac)(1− δbd)(1− δad)(1− δbc)

+G2{δac(1− δbd)+ δbd(1− δac)+ δad(1− δbc)+ δbc(1− δad)}

with

G� =
〈∫

Dz tanh�
(β(m · ξ + z

√
αr)) coshn

(β(m · ξ + z
√

αr)∫
Dz coshn

(β(m · ξ + z
√

αr)

〉
ξ

Only those terms which involve precisely two δ-functions can contribute,
because of the replicon properties (21.87). As a result:

f̃ (mRS, q, q̂)− f̃ (mRS, qRS, q̂RS)

= 1
βn

tr(η2)

[
−1

4
αβ2

[1− β(1− q)]2 +
1
2

αβ4(R − r)2

−1
4

α2β8(R − r)4(1− 2G2 +G4)

]
+ · · ·

Since tr(η2) = ∑
ab η2

ab, the condition for the RS solution to minimize
f̃ (m, q, q̂), if compared to the replicon fluctuations, is therefore

− 1
[1− β(1− q)]2 + 2β2(R − r)2 − αβ6(R − r)4(1− 2G2 +G4) > 0

(21.93)
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After taking the limit in the expressions G� and after evaluating

lim
n→0

R = 1
β

lim
n→0

gaa = lim
n→0

1
nβ

∫
dz z2 e−z·(1I−βqRS)z/2∫
dz e−z·(1I−βqRS)z/2

= lim
n→0

1
nβ

[
n− 1

1− β(1− q)
+ 1

1− β(1− q + nq)

]

= 1
β

1− β + 2βq

[1− β(1− q)]2

and using (21.81), the condition (21.93) can be written as

1 >
αβ2

[1− β(1− q)]2
∫

Dz〈cosh−4
(β(m · ξ + z

√
αr))〉ξ (21.94)

The AT line in the phase diagram, where this condition ceases to be met,
indicates a second-order transition to a spin glass state where ergodicity is
broken in the sense that the distribution P(q) from (21.74) is no longer a
δ-function.

In the paramagnetic regime of the phase diagram, that is, m = q = 0,
the AT condition reduces precisely to T > Tg = 1 + √α. Therefore we
can be sure that the paramagnetic solution is stable. The AT line coincides
with the boundary between the paramagnetic and SG phase. Numerical
evaluation of (21.94) shows that the RS–SG solution remains unstable for
all T < Tg, but that the retrieval solution m �= 0 is unstable only for very
low temperatures T < TR (see Figure 21.4).

21.4 Exercises

Exercise 21.1. (Constrained-free energy versus pseudo-free energy.) For the
infinite range ferromagnet studied in Section 20.4, we could use the same
trick as for the Hopfield model (Section 21.1) to define a pseudo-free energy
f̃ (m). Leaving the saddle point value of x in (20.41) undetermined, we can
obtain the free energy as the stationary point of

f (m, x) = −1
2Jm2 − iT xm− T ln(2 cos(x))

with respect to variation of m and x; see the discussion before equation
(21.14). The stationarity (saddle point) condition for m gives

−Jm− iT x = 0 ⇒ x = iβJm
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Using this to find x (rather than m, as we should if we were really evaluating
the saddle point with respect to m) and inserting the result into f (m, x), gives
the pseudo-free energy

f̃ (m) = 1
2Jm2 − T ln(2 cosh(βJm))

Plot this function versus m for different values of T , along with the true
constrained free energy f (m) (equations (20.37) and (20.42)). You should
find, in agreement with the general discussion after (21.15), that f̃ and f

are different in general, but agree in the values at their stationary points.

Exercise 21.2. (Hopfield model with p = 2.) Consider the Hopfield model
with p = 2, for randomly chosen patterns. Use the fact that cosh(x) =
cosh(−x) to confirm that the (pseudo-)free energy (21.15) becomes

f̃ (m1, m2) = 1
2 (m2

1 +m2
2)− 1

2T ln(2 cosh(β(m1 +m2)))

− 1
2T ln(2 cosh(β(m1 −m2)))

Plot this as a function of m1 and m2, for different T . For T < 1 you
should see nine stationary points. Which ones are stable (local minima) and
unstable (saddle points or local maxima), and does this agree with our dis-
cussion of the stability of mixture states? We have discussed the appearance
of retrieval states (m �= 0) by expanding the saddle point condition (21.13)
for small m. Equivalently, one can of course expand the (pseudo-) free
energy f̃ (m) around m = 0. Do this expansion, to second order in m, for
(i) the concrete example p = 2 above, and (ii) generally for the case of p

random patterns. Either way, you should find that the point m = 0 becomes
unstable, that is, ceases to be a local minimum, at T = 1. Note: In principle,
one should use the true constrained free energy f (m)—see next problem—
to analyse stability. However, it turns out that using the pseudo-free energy
f̃ (m), as suggested, actually gives the correct results. Compare with the
discussion before equation (21.23).

Exercise 21.3. (More on the Hopfield model with p = 2.) In the Hopfield
model with a finite number p of patterns, it is generally not possible
to give an explicit expression for the log-density of states s(m), see
equation (21.7), because the saddle point condition (21.11) for x cannot
be solved explicitly for x. However, for p = 2, this can be done. Proceed
as follows. Anticipating that x will be imaginary, set x = im̂. Show that
s(m) = extrm̂s(m, m̂) with

s(m, m̂) = −m1m̂1 −m2m̂2 + 1
N

∑
i

ln(2 cosh(ξ1
i m̂1 + ξ2

i m̂2))
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Use the symmetry of the function cosh to write its argument as m̂1+ξ1
i ξ2

i m̂2;
carry out the sum over i to get

s(m, m̂) = −m1m̂1 −m2m̂2 + 1
2 (1+ α) ln(2 cosh(m̂1 + m̂2))

+ 1
2 (1− α) ln(2 cosh(m̂1 − m̂2))

where α = N−1 ∑
i ξ1

i ξ2
i . Now write down the extremum conditions with

respect to variation of (m̂1, m̂2) and solve them explicitly. Insert the solution
into s(m, m̂) and rearrange the expression to show that the end result is of
the simple form

s(m1, m2) = 1
2 (1+ α)s1(m+)+ 1

2 (1− α)s1(m−)

where m± = (m1±m2)/(1± α) and s1(m) = −[(1+m)/2] ln[(1+m)/2] −
[(1 − m)/2] ln[(1 − m)/2] is the density of states that we found for p = 1.
There must be a simple explanation for such a simple result. Construct an
explanation from the fact that m1+m2 (respectively m1−m2) only depends
on the spins/neurons σi at the sites i where ξ1

i = ξ2
i (respectively ξ1

i �= ξ2
i ).

Finally, use your explicit expression for s(m) in (21.9) to get the explicit
constrained free energy f (m). Compare this with the pseudo-free energy
from the previous exercise; you may want to repeat some of the analysis
there. Also derive the equations for stationary points of f (m) and show
that they are equivalent to (21.13), as they should be.

Exercise 21.4. (Stability of mixture states.) We saw that n-mixture states
in the Hopfield model are never stable for even n. It is not trivial to find a
simple explanation for this, but you can get some insight by focusing on the
limit of T → 0. Consider the first part of (21.20), which can be written as

mn = 〈ξ1 tanh[βmn(ξ1 +M ′)]〉ξ
= 1

2 〈tanh[βmn(M
′ + 1)]〉M ′ − 1

2 〈tanh[βmn(M
′ − 1)]〉M ′

where M ′ =∑n
ν=2 ξν . Note that M ′ can only take integer values in the range

−n+ 1,−n+ 3, . . . , n− 1. In the limit β →∞, show that the equation for
mn becomes

mn = 1
2Prob[M ′ = −1] + Prob[M ′ = 0] + 1

2Prob[M ′ = 1]

Using the fact that, for random patterns, Prob[M ′ = k] is directly related
to a binomial distribution, show that

mn = 21−n

(
n− 1
%n/2&

)
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where %z& (‘floor’) is the largest integer ≤ z. Deduce that m2k = m2k+1,
that is, the pattern overlap for an even mixture is ‘as bad’ as that of the
odd mixture with one additional pattern. Consider also the corresponding
free energies fn = −1

2nm2
n (there is no entropic contribution, since we are

looking at T = 0). Show that f2k decreases as k increases, while f2k+1
increases as k increases. Hint: Consider ratios such as f2k/f2k+2. Finally,
use the Stirling approximation to show that both sequences of free energies
converge to −1/π for large k. This implies that all f2k are larger than
−1/π , while all f2k+1 are smaller. At T = 0, any even mixture state thus
has a higher free energy than an odd mixture state. The result does not say
anything about the stability of the even mixture states, but at least it suggests
that the even mixtures are systematically worse than the odd mixtures.

Exercise 21.5. (Hopfield model with biased patterns.) Consider the
Hopfield model with a finite number of biased patterns, where the pattern
bits are still drawn independently from each other, but where now the prob-
ability of drawing±1 is (1±a)/2 rather than 1/2 (as for unbiased patterns).
For the case p = 2, show that the pseudo-free energy is now

f̃ (m1, m2) = 1
2 (m2

1 +m2
2)− 1

2 (1+ a2)T ln(2 cosh(β(m1 +m2)))

− 1
2 (1− a2)T ln(2 cosh(β(m1 −m2)))

Plot this against m1 and m2. Experimenting with different values of a and T ,
try to guess at what temperature retrieval states, that is, stationary points
with nonzero m, first appear. How are m1 and m2 in the retrieval states
related? Now try to find the answers to these questions analytically, for
general p, by expanding the pseudo-free energy (21.15) to second order
around m = 0 (as in Exercise 21.2). To do this, first show that

〈ξµξν〉 = a2 + (1− a2)δµν

by considering the two cases µ = ν and µ �= ν separately. Using this result,
you should find

f̃ (m) = −T ln 2+ 1
2m ·Mm+O(m4)

where M is a p × p matrix whose diagonal and off-diagonal entries
equal 1 − β and −βa2, respectively. Show that this matrix has eigenval-
ues 1− β(1− a2), with degeneracy (p − 1), and 1 − β[1 + (p − 1)a2]
(non-degenerate). Use the fact that the second eigenvalue is always smaller
than the first to show that the state m = 0 becomes unstable (thus leading to
the appearance of retrieval states) at the temperature Tc = 1+ (p − 1)a2.
Compare this with your earlier guess. Finally, the eigenvector of m

corresponding to the eigenvalue which becomes zero at T = Tc tells you
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in which direction in m-space the retrieval states will bifurcate from the
state with m = 0. Deduce from this that near Tc, retrieval states obey
m1 = m2 = · · · = mp, and compare this once more with your earlier empir-
ical observations. To which simpler model does the Hopfield model with
biased patterns reduce for a → 1? Use this relationship to check that your
answers to the previous parts of the question are indeed sensible in this
limit.

Exercise 21.6. (Generalized Hopfield model.) Consider a generalized
Hopfield model for a finite number p of patterns, with non-diagonal
interactions

Jij = 1
N

p∑
µ,ν=1

ξ
µ
i Aµνξ

ν
j

The Aµν are the elements of a positive definite symmetric p × p matrix A.
Note that for Aµν = δµν , the standard Hopfield model is recovered. Show
that, up to negligible O(1) terms, the Hamiltonian for this model can be
written as

H = −N

2

∑
µν

mµ(σ )Aµνmν(σ )

with the pattern overlaps mµ(σ ) = N−1 ∑N
i=1 ξ

µ
i σi defined as usual.

Show that

Z =
∫

dm eNβm·Am/2D(m)

where m = (m1, . . . , mp) and where D(m) is the density of states. Repeat
for the present model the analysis that we went through for the original
Hopfield model; in particular, show that the free energy per neuron f is
here given by the stationary point(s) of

f (m, x) = −1
2m ·Am− iT x ·m− T 〈ln(2 cos(ξ · x))〉ξ

and that the saddle point conditions are m = 〈ξ tanh(βξ · Am)〉ξ . What is
the physical interpretation of the fact that these equations can have multiple
solutions at small values of T = β−1? Using the same trick that led to
equation (21.18), show that m·Am ≤ β〈(ξ ·Am)2〉ξ . For the case of random
patterns, deduce that

m ·A(βA− 1I)m ≥ 0

Find from this the smallest temperature below which non-trivial saddle
points m can exist.

Exercise 21.7. (Saddle point integration for an extensive number of order
parameters.) Suppose we have a system of N spins or neurons which is
described by p order parameters m = (m1, . . . , mp). Suppose also that we
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have been able to work out the constrained free energy per spin and that it
is given by

f (m) = 1
2p

m2 = 1
2p

p∑
µ=1

m2
µ

Our goal now is to find the free energy, which by definition of the
constrained free energy is given by

f = − T

N
ln

∫
dm e−Nβf (m)

For the quadratic f (m) assumed here, one can do the p-dimensional integral
exactly, since it just factorizes into p Gaussian integrals. Thus show that

f = − Tp

2N
ln

(
2πTp

N

)

Compare this with the result you get if you evaluate the integral by saddle
point (SP) integration. Confirm that SP gives the correct result in the ther-
modynamic limit N → ∞ when p is finite, but that it is incorrect when
p is extensive (i.e. when p = αN for some nonzero α > 0). Intuition: SP
neglects the fluctuations of the order parameters around their most likely
value. This is fine if there are only a finite number of order parameters, but
for an extensive number, the contributions from the fluctuations add up
such as to remain non-negligible even for N →∞.

Exercise 21.8. (Bifurcations in the SK model.) Perform explicitly the
small-m and small-q expansion of the (finite-n) saddle point equa-
tions (21.42–21.44) for the SK model. Proceed as follows. First show, by
treating terms involving qaa separately, that

κ(σ ) = exp
(1

2nβ2J 2)κ̃(σ )

where

κ̃(σ ) = exp
(

1
2

β2J 2
∑
a �=b

qabσ
aσ b + βJ0

∑
a

maσ
a

)

Convince yourself that equations (21.42, 21.43) hold with κ replaced by κ̃

everywhere. Now expand κ̃ to first order in the ma and qab (a �= b), and
carry out the sums over σ occurring in (21.42, 21.43). Note that

∑
σ of

any product containing an odd number of spins is zero (e.g.
∑

σ σa = 0),
and that products of an even number of spins are nonzero only if each spin
occurs an even number of times (e.g.

∑
σ σaσb = 2nδab). These arguments

parallel those leading to equations (21.16, 21.17). Your results should agree
with the equations (21.45). Also try to do the next order of the expansion.
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Exercise 21.9. (RS saddle point equations of the SK model.) Confirm the
statement after equation (21.56): find the conditions for the RS free energy
(21.54) to be stationary with respect to variation of m and q. For m you
should directly get (21.56), whereas for q you should find

1
2

βJ 2(1− q) = J

2
√

q

∫
dz

2π
e−z2/2z tanh(β(J0m+ Jz

√
q))

where the Gaussian measure Dz has been written out explicitly. Now use
integration by parts (differentiate the tanh, and integrate the remainder of
the integrand) to bring this into the following form (which is equivalent to
(21.55)):

1− q =
∫

dz

2π
e−z2/2[1− tanh2

(β(J0m+ Jz
√

q))]

Exercise 21.10. (Bifurcations of RS saddle points in the SK model.) The
bifurcations at T = J and T = J0 were already dealt with in a previous
exercise, without the assumption of RS. You can of course also get these
bifurcations within RS, by expanding equations (21.55, 21.56) for small m

and q; try this. You should find that at the bifurcation to the ferromagnetic
phase, q ∝ m2. The third bifurcation, at T = J0(1−q), is from a phase with
q > 0, m = 0 to one with q > 0 and m �= 0. To find this third bifurcation,
expand equation (21.56) for small m. Use the Taylor expansion of tanh to
show

tanh(β(J z
√

q+J0m)) = tanh(βJz
√

q)+mβJ0[1−tanh2
(βJz

√
q)]+O(m2)

Integrating over Dz should then give you m = mβJ0(1 − q) + · · · . Make
sure you understand why this implies a bifurcation at T = J0(1− q). Show
also that the neglected higher order terms are O(m3) (rather than O(m2)).
Hint: Think about how a change of sign of m affects the right-hand sides
of equations (21.55, 21.56).

Exercise 21.11. (Link between solutions of SK model and of Hopfield
model.) From our discussion at the beginning of Section 21.2, one would
expect that the replicated Hamiltonian (21.63) of the Hopfield model
should, in the limit α → ∞, become identical to that (21.35) of the SK
model without the ferromagnetic part, that is, with J0 = 0. In this exercise
we check this. In (21.25), we found that for α→∞ the couplings Jij = Jji

of the Hopfield model become independent Gaussian random variables,
with zero mean and variance α/N . In the SK model with J0 = 0, this vari-
ance is given by J 2/N . To find a correspondence with the SK model, we
therefore need to consider a Hopfield model with rescaled non-diagonal
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couplings

Jij = J

N
√

α

p∑
µ=1

ξ
µ
i ξ

µ
j

with Jii = 0 as usual. Work through the calculation of the replicated
Hamiltonian with these couplings; you should find, instead of (21.63),

1
N

�({σ }) = − J

2
√

α

∑
µ

∑
a

(ma
µ({σ }))2+nJ

√
α

2
+T α

2
ln det

(
1I− βJ√

α
q({σ })

)

Write the eigenvalues of the matrix q({σ }) as Q1, . . . , Qn. Show that the
last (‘ln det’) term equals

∑
γ

ln
(

1− βJ√
α

Qγ

)

Expand this to second order in the Qγ , to show that

T α

2
ln det

(
1I− βJ√

α
q({σ })

)
=

∑
γ

(
− J
√

α

2
Qγ − βJ 2

4
Q2

γ

)
+O(α−1/2)

= −J
√

α

2
tr q({σ })− βJ 2

4
tr q2({σ })

+O(α−1/2)

Deduce from definition (21.61) that tr q({σ }) = n, and hence that for
α→∞

1
N

�({σ }) = −βJ 2

4
Tr q2({σ })

This is the same as the replicated SK Hamiltonian (21.35) with J0 = 0, as
anticipated.
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22
Gardner theory of task
realizability

Our convergence proofs and dynamical analyses of learning processes have
so far always relied on the existence of a solution, that is, on the existence
of a specific allocation of values to the network’s parameters (synapses and
thresholds) such that the resulting network faithfully generates the correct
outputs for the input data presented in the learning stage. This guaranteed
that we could regard the input–output relationships to be learned as having
been generated by a suitable ‘teacher network’, a property on which our
methods have relied quite heavily. Here we turn to the following comple-
mentary question: how can we predict beforehand whether certain families
of tasks are indeed solvable by the architecture at hand, without actually
constructing the teacher network?

In the previous chapters we have described the application of statistical
mechanical techniques in the analysis of the stochastic process that
represents the operation of recurrent neural networks with binary neurons
and fixed neuronal interactions. One can easily convince oneself that
the various learning algorithms that we have defined and studied can be
regarded as stochastic processes (see Chapter 17), but, in contrast to net-
work operation, they will almost never obey detailed balance. This would
suggest that here there is no role for equilibrium statistical mechanics. Yet,
perhaps somewhat surprisingly, it was shown by Gardner [95, 96] that equi-
librium statistical mechanics can find fruitful applications also in learning
theory. More specifically, it provides systematic methods for answering the
questions posed in the previous paragraph.

22.1 The space of interactions

Proving existence of solutions by calculating volumes
and free energies

Suppose we wish to determine the existence or otherwise of the solution
w� of a mathematical problem that can be written as a set of equations or
inequalities to be satisfied by a vector or group of variables w ∈ G ⊆ IRN .
We denote by G the space of w values appropriate for the problem at hand.

Let p be the number of constraints to be satisfied by w. In order not to
complicate matters too much, we suppose that the constraints are all of
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the same type. Of particular interest is the regime where the number p of
constraints is proportional to the number N of adjustable parameters (the
components wi of w), that is, where p = αN . It is expected that solutions to
a problem will exist if α � 1, as this implies that the number of constraints
per adjustable parameter is small, whereas solutions become less and less
likely to exist if the number of constraints per adjustable parameter becomes
much larger than 1, that is, if α � 1.

This phenomenon is well known in linear algebra. For instance, suppose
we want to solve p linear equations of the form

N∑
i=1

Aµiwi = bµ µ = 1, . . . , p

with a given p×N matrix A = {Aµi} and a given right-hand side b = {bµ} ∈
IRp. This problem is typically underconstrained if the number p of equations
is smaller than N , that is, for α < 1, in which case there are infinitely many
solutions w; these form an (N − p)-dimensional vector space. Conversely,
the problem is typically overconstrained if the number of equations is larger
than N , so that α > 1, and no solution exists. Precisely at α = 1 the number
of solutions is exactly 1, if the matrix A is non-singular.

In the terminology of statistical mechanics one is tempted to call
α = αc = 1 a phase transition point of the problem. While it is true that
statistical mechanics is not needed to solve the problem of the existence of
solutions in the case of linear equations, there are situations where rigorous
mathematical theorems are not available in the same way, and statistical
mechanics tools do prove useful to decide existence problems of the type
just discussed.

The way in which statistical mechanics can be brought into play is as
follows. One begins by introducing non-negative error measures {Eµ(w)}
signifying whether or not a given constraint µ is violated by w via

Eµ(w) > 0 if constraint µ is violated

Eµ(w) = 0 if constraint µ is satisfied

In terms of this definition, a problem imposing p constraints on the
N -components of a parameter vector w will have a solution in which all
constraints are satisfied if and only if

min
w∈G

{ p∑
µ=1

Eµ(w)

}
= 0 (22.1)

Within a statistical mechanics framework, this problem can be decided
as follows. Introduce the sum of single-constraint error measures as the
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Hamiltonian of a system with the N components wi of the parameter vector
w as its degrees of freedom,

H(w) =
p∑

µ=1

Eµ(w) (22.2)

and consider the Boltzmann distribution corresponding to this Hamiltonian,

p(w) = 1
Z

e−βH(w) (22.3)

in which β denotes an inverse temperature as usual. The normalization
constant Z in (22.3) is a partition function,

Z =
∫

G
dw e−βH(w) (22.4)

We assume that the partition function exists for all finite N ; this can be
achieved if necessary by assuming G to be a bounded subset of IRN . From
(22.4) a free energy (per degree of freedom) is obtained in the usual way

f (β) = −(βN)−1 ln Z (22.5)

At inverse temperature β, the average energy per degree of freedom in this
system is

E(β) = ∂

∂β
[βf (β)] = 1

N
〈H(w)〉 = 1

N

p∑
µ=1

〈Eµ(w)〉 (22.6)

in which 〈· · · 〉 denotes an average over the Boltzmann distribution (22.3).
We now use the fact that in the β →∞ limit the Boltzmann distribution

(22.3) gives all weight to configurations w which minimize the Hamiltonian.
The p constraints on the parameters can therefore be satisfied, and the
problem has a solution, if and only if

E0 = lim
β→∞E(β) = min

w∈G{H(w)/N} = 0 (22.7)

that is, if the system’s ground state energy vanishes. In other words

a solution w� ∈ G exists ⇐⇒ E0 = min
w∈G
{H(w)/N} = 0 (22.8)

The existence of a solution to a problem defined in terms of constraints is
thus decided by whether the ground state energy of a statistical mechanical
system is zero or nonzero.

When applying the general framework just described to investigate
learning in neural netwoks, we find ourselves doing equilibrium statistical
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mechanics calculations and integrals in the space G of the adjustable
parameters w of these systems, which are usually synaptic interactions and
thresholds. This space is called the ‘space of interactions’, or ‘Gardner space’
after [95].

Disorder: the composition of the data set

As was the case in our previous applications of equilibrium statistical mech-
anics to neural information processing systems, there is usually also disorder
in the problem: here this would be the detailed realization of a given data
set D, relative to which one has defined the error measure. Let us reflect
this in our notation by putting H(w)→ H(w|D), and accordingly writing

f (β|D) = −(βN)−1 ln
∫

G
dw e−βH(w|D) (22.9)

As was the case with the attractor networks in which an extensive number
of patterns was stored, we are therefore faced also here with the task of
calculating the free energy per degree of freedom for a system in which the
Hamiltonian contains disorder; this is usually impossible.

However, normally we are not interested in our system’s performance
on a specific data set, but rather in its generic performance on a certain
family (or ensemble) of data sets, characterized only in statistical terms.
We can then average expression (22.9) over all microscopic realizations
of the data D drawn from our ensemble. Furthermore, experience tells us
that in the infinite system size limit N → ∞ the free energy per degree of
freedom should be self-averaging, that is, independent of the realization of
the disorder (i.e. of the data set D), in which case it would coincide with its
disorder average. Thus we would expect that

f (β|D) = −(βN)−1 ln Z(D) = −(βN)−1 ln
∫

G
dw e−βH(w|D) (22.10)

converges to its disorder average in the limit of large system size:

f (β|D) → f̄ (β) = − lim
N→∞

1
βN

ln Z(D) (22.11)

as N becomes large. Here · · · = ∑
D pD . . . denotes an average over the

ensemble of data sets, with pD giving the likelihood of individual realiza-
tions of the data D in the ensemble.

In this language then, the learning task is called typically solvable if the
average ground state energy over the data ensemble (also denoted by Ē0)
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satisfies

Ē0 = lim
N→∞min

w∈G N−1H(w|D) = lim
N→∞ lim

β→∞N−1〈H(w|D)〉 = 0 (22.12)

The average ground state energy is obtained from the quenched free energy
f̄ (β) defined by (22.11) as

Ē0 = lim
β→∞

∂

∂β
[βf̄ (β)] (22.13)

It is useful to rephrase this finally in terms of the single constraint error
measures as

Ē0 = α lim
N→∞min

w∈G

{
1

αN

αN∑
µ=1

Eµ(w|D)

}
(22.14)

If we assume Eµ(w|D) = O(1), the condition

a solution w� ∈ G exists ⇐⇒ Ē0 = 0 (22.15)

says that we call a problem solvable if the average fraction of unsatisfied con-
straints approaches zero in the large system limit. (Stronger conditions can
be imposed if need be by turning to what is known in statistical mechanics
as a micro-canonical description.)

Yes-or-no error measures and version space

The most transparent situations are those where it is natural and easy to
define a binary error measure Eµ(w|D) ∈ {0, 1}, that is, w satisfies the µth
constraint in a given data set D when Eµ(w|D) = 0, whereas the constraint
is violated if Eµ(w|D) = 1. This would be the natural setup for informa-
tion processing systems with discrete-output neurons (e.g. McCulloch–Pitts
ones), such as perceptrons and recurrent networks of binary neurons. When
Eµ(w|D) ∈ {0, 1} we can write the (data dependent) partition function
Z(D) as

Z(D) =
∫

G
dw e

−β
∑

µ Eµ(w|D)

=
∫

G
dw

∏
µ

[
1− Eµ(w|D)+ e−βEµ(w|D)

]
(22.16)

In the limit β → ∞ the last term in each of the square brackets in the
above product will vanish, and the product will be zero for all w which
violate one or more constraints. In this limit, contributions to the partition
function therefore only come from those w which satisfy all the constraints.
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This subset of the parameter space is called the version space, and the zero
temperature limit of the partition function is nothing but the volume V (D)

of the version space,

V (D) = lim
β→∞Z(D) =

∫
G
dw

∏
µ

[1− Eµ(w|D)] (22.17)

The volume is expected to scale exponentially with the system size, that is,
V (D) = eN�(D), so the quantity of interest is

�(D) = lim
β→∞

1
N

ln Z(D)

This is, up to a factor minus β, the zero temperature limit of a free energy
per degree of freedom, and like the latter is expected to be self-averaging.
It therefore makes sense to define

� = �(D) = lim
N→∞

1
N

ln V (D) (22.18)

We then see that there are two qualitatively different possible situations:

� = −∞: no solutions with probability one (22.19)

� = finite: solutions exist with probability one (22.20)

Our problem of determining whether solutions exist has thus for large sys-
tems been reduced to the calculation of the quantity � in (22.18). When data
are few, one expects to have a finite value for �, that is, a non-negligible ver-
sion space with many solutions. As one increases the number of data and/or
the complexity of the task, however, one expects to find at some stage a
divergence � ↓ −∞. This defines a critical point marking the breakdown
of solvability, which can in many cases be calculated explicitly.

22.2 Capacity of perceptrons—definition and
toy example

Let us illustrate the application of the above theoretical results to real prob-
lems. We turn to the limited but transparent domain of binary perceptrons,
carrying out the usual linear separations S: � ⊆ {−1, 1}N → {−1, 1} defined
by S(ξ) = sgn(J · ξ + ϑ). This type of system is asked to carry out a bin-
ary classification task, defined by a set D of data which consist of p input
vectors ξµ ∈ IRN with corresponding outputs tµ ∈ {−1, 1}:

D = {(ξ1, t1), . . . , (ξp, tp)}
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We are not told whether these data are linearly separable. If we were to
draw our data D simply at random, we should expect the problem to be
linearly separable only for sufficiently small p. It will turn out that for
N →∞ and ξµ ∈ {−1, 1}N this random data separation problem is solvable
by a perceptron if and only if limN→∞ p/N < 2. This result had been
found earlier by elementary methods [118]; here we will derive it from our
equilibrium statistical mechanical formalism.

The condition of linear separability

We found in Chapter 8 that the sufficient and necessary condition for our
data to be classified correctly by a perceptron with parameters (J , ϑ), with
all input vectors at a distance larger than κ > 0 from the separating plane,
can be written in terms of the stability parameters:

∀µ ≤ p: tµ(J · ξµ + ϑ)/|J | > κ (22.21)

As in Chapter 8 we wish to eliminate the degree of freedom which consists
in rescaling all parameters according to (J , ϑ)→ λ(J , ϑ), with λ > 0; such
rescaling leaves us with exactly the same operation. We do this by insisting
on the normalization J 2 = N , so Ji = O(N0) on average. We also re-write
the threshold ϑ as ϑ = J0

√
N , with J0 = O(N0), and require that |J0| ≤ �

(for some � ≥ 0). This converts the above definitions into the following:

S(ξ) = sgn(N−1/2J · ξ + J0) J 2 = N |J0| ≤ � (22.22)

Each allowed choice of (J , J0) now represents a distinct perceptron. The
Gardner space G for the present problem is therefore defined as

G = {(J , J0) ∈ IRN+1|J 2 = N , |J0| ≤ �} (22.23)

The parameter � is introduced to ensure that the condition
∫
G dJdJ0 <∞

will be met; it can be chosen arbitrarily large. The sufficient and necessary
condition for a perceptron (J , J0) ∈ G to solve the task D, with some
prescribed minimal distance κ between input vectors and the separating
plane to act as a safety margin (the stability), becomes

correct separation by (J , J0) ∈ G
with stability > κ

⇐⇒ γµ(J , J0|D) > κ ∀µ ≤ p

(22.24)
in which the stability parameters now take the following simpler form:

γµ(J , J0|D) = tµ(N−1/2J · ξµ + J0) (22.25)
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So far we have only done preparatory work, similar to the steps taken in
Chapter 8, except that here we have ensured that our microscopic variables
all obey Ji = O(N0) for N → ∞. This is required,46 since the role of the
parameters w of our general theory is here played by (J , J0) ∈ G. In order
to apply the results (22.19, 22.20) to our perceptron capacity problem, we
need scalar error measures Eµ(J , J0|D) ∈ {0, 1} which tell us whether or
not a perceptron (J , J0) ∈ G separates correctly data point ξµ with error
margin κ > 0. For this we can choose

Eµ(J , J0|D) = 1− θ(γµ(J , J0|D)− κ) (22.26)

The volume V (D) of version space as defined in (22.17), that is, of the
regions in G where

∑
µ Eµ(J , J0|D) = 0 (or, equivalently, where

∏
µ[1 −

Eµ(J , J0|D)] = 1), now becomes

V (D) =
∫

G
dJdJ0

p∏
µ=1

θ(γµ(J , J0|D)− κ)

=
∫ �

−�

dJ0

∫
dJ δ(J 2 −N)

p∏
µ=1

θ(γµ(J , J0|D)− κ)

=
∫

dz

2π
e−izN

∫
dJ eizJ 2

∫ �

−�

dJ0

p∏
µ=1

θ(γµ(J , J0|D)− κ) (22.27)

According to (22.19, 22.20), our remaining task boils down to calculating
from (22.27) the quantity � = limN→∞N−1ln V (D).

A toy problem: orthogonal inputs

Before turning to the non-trivial case of fully random data, let us first, by
way of illustration, inspect the simpler problem where the input vectors
ξµ ∈ IRN of the data D are orthogonal, that is, where ξµ · ξ ν = Nδµν .
This obviously limits the analysis to p ≤ N . Now we may use the p nor-
malized vectors êµ = ξµ/

√
N as a basis in IRN , so that J · ξµ = √NJµ

and

V (D) =
∫

dz

2π
e−izN

∫
dJ eizJ 2

∫ �

−�

dJ0

p∏
µ=1

θ(tµ(Jµ + J0)− κ)

=
∫

dz e−izN
(∫

dJ eizJ 2
)N−p∫ �

−�

dJ0

p∏
µ=1

∫
dJ eizJ 2

θ(tµ(J + J0)− κ)

46 We have to insist on the components of w scaling as N0 in order to ensure that volumes∫
dw in IRN scale exponentially in N .
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If we write the number of outputs that equal tµ = ±1 as 1
2p(1 ± γ ), and

define α = p/N , we obtain an expression which confirms that the relevant
volume does indeed generically scale exponentially with the system size N :

V (D) =
∫

dz eN�(z,κ) � = extrz�(z, κ) (22.28)

with

�(z, κ) = −iz+ (1− α) ln
∫

dJ eizJ 2 + 1
N

ln
∫ �

−�

dJ0

×
(∫ ∞

κ−J0

dJ eizJ 2
)(1/2)(1+γ )αN(∫ ∞

κ+J0

dJ eizJ 2
)(1/2)(1−γ )αN

= −iz+ (1− α) ln
∫

dJ eizJ 2 + 1
2

α

× extr|J0|<�

{
(1+ γ ) ln

∫ ∞
κ−J0

dJ eizJ 2 + (1− γ ) ln
∫ ∞

κ+J0

dJ eizJ 2
}

Let us, for simplicity, specialize further to the case γ = 0 (i.e. output values
tµ = 1 occur with the same frequency as those with tµ = −1), where the
extremization with respect to the perceptron’s threshold J0 simply gives
J0 = 0, so that

�(z, κ) = −iz+ (1− α) ln
∫

dJ eizJ 2 + α ln
∫ ∞

κ

dJ eizJ 2
(22.29)

This form suggests that the relevant saddle-point in (22.28) will be purely
imaginary, so we put z = iu2 with u ∈ IR and positive (the square ensures
that the integrals exist):

�(iu2, κ) = u2 + (1− α) ln
∫

dJ e−u2J 2 + α ln
∫ ∞

κ

dJ e−u2J 2

= u2 − ln(u/
√

π)− α ln 2+ α ln(1− erf(κu)) (22.30)

Extremization of �, as required by (22.28), gives the saddle-point equation

u = F(u) F (u) = 1
2u
+ ακ√

π

e−κ2u2

1− erf(κu)
(22.31)

The function F(u) in (22.31) is always positive, descending initially from
the singularity F(0) = ∞. If α and κ are both positive, then F(u) has
a positive minimum for some positive u and subsequently increases once
more towards F(∞) = ∞, approaching the asymptotic form F(u) ∼ ακ2u
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Figure 22.1 The function F(u) as appearing in the saddle-point equation (22.31) for the
classification capacity (at required stability κ > 0) of a perceptron with data D consisting of
p = αN orthogonal input vectors ξµ and randomly drawn outputs tµ ∈ {−1, 1}. Left: solid
lines show F(u) for α = 1

2 and κ ∈ { 12 , 1, 3
2 , 2, 5

2 , 3} (from bottom to top). Right: solid lines
show F(u) for κ = 2 and α ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6} (from bottom to top). Dashed:
the diagonal which F(u) has to intersect to solve F(u) = u. Finite solutions of the equation
F(u) = u (representing a non-vanishing volume of solutions to the classification problem)
are seen to exist only for sufficiently small α and κ.

for u→∞. See also Figure 22.1. It follows that there will be a finite positive
solution of equation (22.31), and hence a finite value for � (so that solutions
exist of our perceptron classification problem, with probability one) if and
only if ακ2 < 1. At ακ2 = 1 this finite solution ceases to exist. Hence
the classification capacity αc(κ) for a prescribed classification stability κ is
given by

αc(κ) = κ−2 (22.32)

(with α ≤ 1, for orthogonal input vectors to exist). This curve is shown in
Figure 22.2, together with the corresponding result for random input data
to be derived below. We see that for κ < 1 the data are always separable,
for any value of α ≤ 1. For κ > 1, however, the increasing demands of
classification stability can only be met at the cost of a reduction of the
number of data points to be classified, that is, αc(κ) < 1.

22.3 Capacity of perceptrons—random inputs

Replica analysis in Gardner space

For random (and hence non-orthogonal) input vectors we can no longer get
away with the simple calculation that worked for orthogonal input vectors.
Now we have to carry out the disorder average in � = limN→∞N−1ln V (D)

explicitly, which can be done with the replica method, as introduced
in Section 21.2. For simplicity we will deal only with perceptrons without
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Figure 22.2 Asymptotic classification capacity αc(κ) of a perceptron, for data sets D

consisting of p = αN input vectors ξµ ∈ IRN with corresponding random binary outputs tµ

(independently drawn, with equal probabilities for outputs tµ = ±1), versus the required
classification stability κ. Solid line: randomly drawn input vectors ξµ ∈ {−1, 1}N . Dashed
line: orthogonal input vectors ξµ · ξ ν = Nδµν (with α ≤ 1). The linear separations are
possible with probability one for N →∞ only for α < αc(κ), that is, below the lines.

thresholds, that is, J0 = 0, where the expression (22.27) for the volume
V (D) of version space takes the form

V (D) =
∫

dz

2π
e−izN

∫
dJ eizJ 2

p∏
µ=1

θ(N−1/2tµJ · ξµ − κ) (22.33)

We consider randomly drawn binary input vectors ξµ ∈ {−1, 1}N and ran-
domly drawn corresponding outputs tµ ∈ {−1, 1} with all components
taking the values±1 with equal probabilities. In the disorder average defin-
ing � we may then use the gauge transformation ξµ → tµξµ to eliminate
the output variables,47 giving

� = lim
N→∞

1
N

[
ln

∫
dz eizN

∫
dJ e−izJ 2

p∏
µ=1

θ(N−1/2J · ξµ − κ)

]
(22.34)

47 This would generally not have been possible in the presence of thresholds, or for data
sets D where the input components and the outputs do not have equal probabilities for ±1.
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Now we apply the replica identity ln Z = limn→0 n−1 ln Zn, and
write Zn as an n-fold integral, that is, we replace [∫ dzdJg(z, J )]n =∫∏n

a=1[dzadJ a g(za, J a)]:

� = lim
N→∞ lim

n→0

1
nN

ln
∫ ∏

a

[
dzadJ a eizaN−iza(J a)2

]∏
a

p∏
µ=1

θ
(J a · ξµ

√
N
− κ

)
(22.35)

To proceed with (22.35) we need to evaluate the disorder average of a
product of step functions. To do this, we use an integral representation for
θ(u), which follows from the integral representation of the δ-function via
θ ′(u) = δ(u):

θ(y − κ) =
∫ y−κ

−∞
dλ δ(λ) =

∫ y−κ

−∞
dλ

∫
dx

2π
eixλ

=
∫ −κ

−∞
dλ

∫
dx

2π
eix(y+λ) =

∫
dλdx

2π
θ(λ− κ) eix(λ−y)

This is equivalent to using a δ-function for ‘transporting’ the variable y

(which contains the disorder) out of the argument of θ(y − κ). In (22.35)
we have np step functions, so we need np new integration variables. As in
the case of orthogonal inputs, we will choose p = αN , with α = O(N0).
For large N we then find for the term containing the disorder average

� =
∏
a

p∏
µ=1

θ

(
J a · ξµ

√
N
− κ

)

=
∫ ∏

aµ

(dλa
µdxa

µ

2π
θ(λa

µ − κ)eixa
µλa

µ

)
e
−i

∑
iµ ξ

µ
i

∑
a J a

i xa
µ/
√

N

=
∫ ∏

aµ

(dλa
µdxa

µ

2π
θ(λa

µ− κ)eixa
µλa

µ

) ∏
iµ

cos
(∑

a J a
i xa

µ√
N

)

=
∫ ∏

aµ

(dλa
µdxa

µ

2π
θ(λa

µ − κ)eixa
µλa

µ

)
e
−∑

iµ(
∑

a J a
i xa

µ)2/2N+O(N0)

=
[ ∫ ∏

a

(
dλadxa

2π
θ(λa − κ)eixaλa

)
e−

∑
ab xaxb

∑
i J a

i J b
i /2N+O(N−1)

]p

(22.36)

Proceeding by analogy with the arguments in Section 21.2, we insert
(22.36) into (22.35) and isolate the n2 quantities N−1 ∑

i J a
i J b

i via suitable
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δ-functions, that is, by inserting

1 =
∏
ab

∫
dqab δ

(
qab − 1

N

∑
i

J a
i J b

i

)

=
∏
ab

∫
dqab dq̂ab

2π/N
eiNq̂ab(qab−J a ·J b/N)

This results in, with z = {za}, and q = {qab} and q̂ = {q̂ab},

� = lim
N→∞ lim

n→0

1
nN

ln
∫

dz dq dq̂ eiN(
∑

a za+∑ab q̂abqab)+O(ln N)

×
{∫ ∏

a

[
dλa dxa

2π
θ(λa− κ)eixaλa

]
e−

∑
ab xaqabxb/2

}p

×
∫ (∏

a

dJ a
)
e−i

∑
a za(J a)2−i

∑
ab q̂abJ

a ·J b

= lim
N→∞ lim

n→0

1
nN

ln
∫

dzdqdq̂ eiN(
∑

a za+∑ab q̂abqab)+O(ln N)

×
{∫ ∏

a

[
dλadxa

2π
θ(λa− κ)eixaλa

]
e−

∑
ab xaqabxb/2

}p

×
[∫ (∏

a

dJa

)
e−i

∑
a zaJ 2

a −i
∑

ab Jaq̂abJb

]N

(22.37)

After exchanging the order of the two limits n → 0 and N → ∞ in the
by now familiar manner, and using p = αN with α remaining finite for
N →∞, we end up once more with an integral to be evaluated by steepest
descent:

� = lim
n→0

1
n
extrz,q,q̂

{
i
∑
a

za + i
∑
ab

q̂abqab

+ α ln
∫ ∏

a

[
dλadxa

2π
θ(λa− κ)eixaλa

]
e−

∑
ab xaqabxb/2

+ ln
∫ (∏

a

dJa

)
e−i

∑
ab Ja(q̂ab+zaδab)Jb

}
(22.38)

Anticipating the form of the relevant extremum, we write q̂ab = −1
2 ikab −

zaδab. Carrying out the two Gaussian integrals in (22.38) (see Appendix D)
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then gives

� = 1
2

(1− α) ln(2π)+ lim
n→0

1
n
extrz,q,k

{
i
∑
a

za(1− qaa)+ 1
2

∑
ab

kabqab

+ α ln
∫ ∏

a

[dλaθ(λa − κ)]e−
∑

ab λa(q−1)abλb/2

− 1
2

α ln det q − 1
2

ln det k

}

Extremization with respect to the {za} recovers what can be recognized as
the built-in spherical constraint

∑
i J 2

i = N , qaa = 1 for all a, leaving

�= 1
2

(1− α) ln(2π)+ lim
n→0

1
n
extrq,k

{
1
2

∑
a

kaa + 1
2

∑
a �=b

kabqab − 1
2

α ln det q

− 1
2

ln det k + α ln
∫ ∞

κ

(∏
a

dλa

)
e−

∑
ab λa(q−1)abλb/2

}
(22.39)

Replica symmetry

At this stage we make the replica symmetric (RS) ansatz, which in the case
of an underlying stochastic process would have been equivalent to assuming
ergodicity but which here boils down to assuming that the version space
V (D) ∈ G is connected. As in Section 21.2 it takes the form

qab = δab + q(1− δab) kab = Kδab + k(1− δab)

Both these RS matrices have the following eigenvectors: x = (1, . . . , 1)

giving a first eigenvalue with multiplicity one, and any vector in the ortho-
gonal space (1, . . . , 1)⊥ giving a second eigenvalue with mutiplicity n − 1.
It follows that

det k = (K − k + nk)(K − k)n−1 = (K − k)n
(

1+ nk

K − k

)

det q = (1− q + nq)(1− q)n−1 = (1− q)n
(

1+ nq

1− q

)

(q−1)ab = δab

1− q
− q

(1− q)(1− q + nq)

We use these RS identities to simplify our general expression (22.39).
In addition we introduce a further Gaussian integral to linearize the
quadratic exponent in the integral over {λa}, using the familiar shorthand
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Dz = (2π)−1/2e−z2/2. This gives us the value of � for replica symmetric
solutions, with extremization now over the triplet {q, K, k}:

2�RS=(1− α) ln(2π)+ extr
{
K − kq − ln(K − k)− k

K − k
− α ln(1− q)

− αq

1− q
+ 2α lim

n→0

1
n

ln
∫ ∞

κ

(∏
a

dλa

)

× e−
∑

a λ2
a/[2(1−q)]+q(

∑
a λa)2/[2(1−q)(1−q+nq)]

}

=(1− α) ln(2π)+ extr
{
K − kq − ln(K − k)− k

K − k
− α ln(1− q)

− αq

1− q
+ 2α lim

n→0

1
n

ln
∫

Dz

×
[∫ ∞

κ

dλ e−λ2/[2(1−q)]+z
√

qλ/
√

(1−q)(1−q+nq)

]n}

=(1− α) ln(2π)+ extr
{
K − kq − ln(K − k)− k

K − k
− α ln(1− q)

− αq

1− q
+ 2α

∫
Dz ln

∫ ∞
κ

dλ e−λ2/[2(1−q)]+z
√

qλ/(1−q)

}
(22.40)

The term with the integral in the last line contains only q, so that the
extermization with respect to K and k has become trivial, giving the two
saddle-point equations (K−k)2 = K−2k and k = −q(K−k)2. As we have
to reject K = k = 0 for �RS to exist, the relevant solution is

K = (1− 2q)/(1− q)2 k = −q/(1− q)2 (22.41)

Insertion of (22.41) into (22.40) subsequently leaves us with a transparent
expression that is to be extremized only with respect to the remaining order
parameter q ∈ [0, 1]. In this expression one can also carry out a simple
transformations on the integration variable λ, viz. λ = z

√
q + t

√
2(1− q),

to write the remaining integral in terms of the error function

erf(x) = 2√
π

∫ x

0
dt e−t2
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The final result is: �RS = extrq�RS(q), with

�RS(q) = 1
2
+ 1

2
(1− 2α) ln 2+ 1

2
ln π + 1

2
ln(1− q)+ q

2(1− q)

+ α

∫
Dz ln

[
1− erf

(
κ − z

√
q√

2(1− q)

)]
(22.42)

The classification capacity

It is clear from expression (22.42) that one has a finite value for �RS (and
hence linear classification of the random data D is possible with probability
one) as long as the relevant extremum has q < 1. The classification capacity
of our system is therefore defined by the condition that q = 1 at the saddle-
point, which will give us a relation between the control parameters α and κ,
that is, an expression for the critical relative size αc(κ) of the data set (as
in the simpler toy example of orthogonal input vectors). The saddle-point
equation for q, as obtained by putting ∂�RS(q)/∂q = 0, is found to take
the following form:

q = α
√

2(1− q)√
πq

∫
Dz [1− erf(u)]−1e−u2

(κ
√

q − z) (22.43)

with the shorthand u = (κ − z
√

q)/
√

2(1− q). The transition where classi-
fications cease to exist occurs when the solution of (22.43) is indeed q = 1.
Hence αc(κ) is to be solved from

1 = αc(κ)

√
2
π

∫
Dz (κ − z) lim

q↑1
{√1− q[1− erf(u)]−1e−u2} (22.44)

The remaining limit in (22.44) is most easily calculated by putting q = 1−ε2,
where ε → 0. One may then write

u = κ − z

ε
√

2
+ zε

2
√

2
+O(ε3)

and

1 = αc(κ)

√
2
π

∫
Dz (κ − z)

× lim
ε→0

{
ε exp[−((κ − z)/(ε

√
2)+ zε/(2

√
2)+O(ε3))2]

1− erf((κ − z)/(ε
√

2)+ zε/(2
√

2)+O(ε3))

}
(22.45)
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The result of the limit ε → 0 in (22.45) depends crucially on the value of
κ − z. For κ − z < 0 one has a finite denominator and a vanishing numer-
ator, giving limε→0{· · · } = 0. For κ − z > 0, however, both numerator
and denominator go to zero for ε → 0, and one may use the asymptotic
behaviour of the error function [1], viz.

erf(x) = 1− 1
x
√

π
e−x2

(1+O(x−2)) (x →∞)

to obtain limε→0{· · · } = (κ − z)
√

π/2. In combination we may therefore
write limε→0{· · · } = (κ − z)θ(κ − z)

√
π/2, and find (22.45) reducing to

1 = αc(κ)

∫ κ

−∞
Dz (κ − z)2

This can also be written in the remarkably simple and elegant form

αc(κ) =
[∫ ∞
−κ

Dz (κ + z)2
]−1

(22.46)

In (22.46), which is shown above in Figure 22.2 together with our earlier
expression for data with orthogonal input vectors and random outputs, we
have found the perceptron’s classification capacity for random binary data,
as a function of the required stability κ. As expected, αc(κ) decreases mono-
tonically with κ; the larger the requested separation margins, the smaller the
number of data that can be classified. In the limit κ → 0 one obtains the
absolute upper limit for classification, αc(0) = 2. For small values of α,
that is, when the number of data points to be classified is moderate, one
would anticipate that the differences between random or orthogonal input
vectors should become small. Figure 22.2 confirms that this intuition is
indeed correct.

One should note that, since any fully connected recurrent networks of
N binary neurons functioning as associative memories (as studied, e.g. in
Chapter 21) is mathematically equivalent to a collection of N perceptrons
acting in parallel, the result (22.46) also applies to such recurrent networks.
It follows that the maximum number of random patterns that can be stored
as fixed point attractors in recurrent networks of binary neurons (without
thresholds, without noise, and without further constraints of any kind48)
also scales with N as pmax/N = 2.

48 This latter condition is relevant, since it can be shown that in order to satisfy the upper
bound αc = 2 in an associative memory one needs non-symmetric synapses, that is, Jij �= Jji .
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23
Notes and suggestions for
further reading

Many interesting phenomena relevant to the information processing
capabilities of neural networks are clearly dynamical in nature, and can
therefore not be investigated by techniques of equilibrium statistical mech-
anics because these concentrate on stationary states. However, for a large
class of problems one is simply forced to accept this limitation in scope
because their full dynamics turns out to be far too complicated to unravel
with the analytical techniques currently available. As the present part of
the book has demonstrated, a number of interesting properties of neural
networks can nevertheless be investigated in some detail using equilibrium
theory.

Equilibrium statistical mechanics has a long history dating back to sem-
inal work of Maxwell, Boltzmann, and Gibbs in the nineteenth and early
twentieth century. It provides a rich arsenal of concepts and techniques for
studying stationary states of systems containing many interacting degrees of
freedom; these can be applied to neural networks—natural and artificial—
once the restriction of symmetric synaptic interactions is imposed.

As we saw, the stochastic dynamics of a set of recursively coupled binary
neurons constitutes a Markov chain. Our demonstration of the existence
and uniqueness of stationary distributions for such processes closely follows
the reasoning of van Kampen [79]. In a more abstract setting these results,
which concern the largest eigenvalue and the corresponding eigenvector of
stochastic matrices, were proven by Perron for positive, and by Frobenius
for non-negative matrices; they are therefore often jointly referred to as the
Perron–Frobenius theorem. The interested reader will find proofs of these
theorems and further results about stochastic matrices in [119].

Although the modelling of associative memories in terms of networks
of interacting neurons has in itself a long history (see notes on Part I), the
applicability of equilibrium statistical mechanics techniques for studying
their collective behaviour was firmly established only through the work of
Little and Shaw [8, 120], Hopfield [14], and Peretto [121]. The full ana-
lysis of the equilibrium properties of the Hopfield model is due to Amit,
Gutfreund, and Sompolinsky, both for the case of finitely many stored
patterns [122], and for the much more demanding case of extensive load-
ing [123, 124]. The latter requires the use of replicas as we saw. Replica
identities for averaging logarithms were used already in the 1930s [125];
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however, they began to have a major impact in the world of physics only
much later through the work of Edwards and Anderson [126] on spin
glasses. A detailed account of the replica method and in particular its
application to the study of the Sherrington–Kirkpatrick model [127] can
be found in the book by Mézard et al. [128].

As explained in Section 21.3, the replica symmetric approximation used
by Amit et al. in their study of the Hopfield model is unstable against a
spontaneous breaking of the permutation symmetry among replicas at low
temperatures. An instability of this kind was first revealed by de Alemeida
and Thouless [129] for the SK model; our analysis of the AT instabilities of
the SK and Hopfield models in Sections 21.2 and 21.3 follows their reas-
oning. The effects of replica symmetry breaking are rather pronounced in
the SK model; correct descriptions of phases with broken replica symmetry
were first obtained through the pioneering work of Parisi in the early 1980s,
which is documented in detail in [128].

There was at first some doubt about the true value for the zero temperat-
ure storage capacity of the Hopfield model, as its value determined within a
replica symmetric approximation, αc = αRS

c ≈ 0.1379, was found to differ
from that obtained via numerical simulations, αsim

c ≈ 0.144. The discrep-
ancy was initially put down to effects of replica symmetry breaking, which
were not included in the analysis of Amit et al. [123, 124]. However, it is
now known that the effects of replica symmetry breaking are rather weak
in the retrieval phase of the Hopfield model and cannot be held responsible
for the discrepancy: calculations based on retrieval phases with broken rep-
lica symmetry [130] suggest that the correct value for the storage capacity
is αRSB

c ≈ 0.1382 and thus very close indeed to the value determined in a
replica symmetric approximation. The deviation from the initial numerical
results is now thought to be due to a combination of strong finite size effects
and inappropriate ways of performing the average over the disorder in the
numerical simulations.

Once Hopfield’s original model was properly understood, modifications
were proposed and investigated with respect to all defining characteristics
of the original proposal. These include (i) parallel instead of sequential
dynamics [131], (ii) different pattern statistics, for example, with low
levels of activity [132, 133], or hierarchically correlated data [134, 135],
(iii) different forms of synaptic interactions, for example, based on the cor-
relation matrix between the stored patterns [136], (iv) neurons which can
take more than two discrete [137] or continuously many states [138], as well
as sets of states having a different symmetry [139], and finally (v) sparse or
asymmetric connectivity of the interactions, an extreme version being [88].
Studies of models with asymmetric interactions do of course require non-
equilibrium techniques; alternatively they can and have been studied by
numerical simulations. The main point of all these investigations has been
to delineate the capabilities and limitations and the degree of universality of
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neural information processing systems. The fact that, qualitatively, the basic
functionality of recursively coupled networks does indeed survive these—
sometimes drastic—modifications has been taken as an indication that the
essence of associative memory is captured by this type of modelling.

Several excellent books and reviews providing further details are avail-
able; let us mention the monographs [22–24, 140], the reviews in [141]
and [142], and the collections [21] of reference material and [20] of
reprints of older research papers. General textbooks on statistical mechanics
are [143–145].

The networks analysed in the first two chapters of the present part of
the book store a given set of patterns by encoding them in synaptic coup-
lings according to a fixed prescription, and we analysed the probability
distribution over the states of the network. The Gardner theory of task
realizability [95, 146] takes a rather different view. It starts from a given
task, such as storage of a pattern set in a recursive network, or classification
of patterns in a perceptron. One then considers an ensemble of networks
dealing with this task that is characterized by a probability distribution over
the set of couplings rather than the network states. We only discussed one
of the simplest questions that one may ask of such an ensemble, namely
whether coupling configurations exist that solve the given task without
errors; if no such configuration exists, no conceivable learning algorithm
could be successful. We saw that this question can be answered by looking
at the zero temperature limit of a suitably defined free energy, which for
binary classification perceptrons is closely related to the volume of the space
of solutions. This problem is already sufficiently rich to illustrate many of
the technical issues that arise.

Many other questions can of course be asked. The properties of an
ensemble of networks solving a given task, not perfectly but with a cer-
tain fraction of errors was studied by Gardner and Derrida [96]; in this
case one does not take the zero temperature limit in the free energy calcu-
lation. Of some interest is also the case where the set of couplings is itself
discrete. This was investigated by Krauth and Mézard [147], who demon-
strated that a randomly classified pattern set is typically no longer linearly
separable by a perceptron with binary couplings once the number of pat-
terns increases beyond pmax ≈ 0.83N . Recall that the corresponding figure
for perceptrons with continuous weights was pmax = 2N .

On a cautionary note we add that the existence of solutions for a given
task tells us nothing about our ability to actually find them. For instance, for
the task of finding a linear separation of p randomly classified N -component
patterns using a perceptron with binary weights, Horner [148] demon-
strated that algorithms with a complexity scaling polynomially in system
size are not likely to find solutions at any nonzero value of p/N in the
large system limit, despite the fact that solutions are known to exist up to
pmax ≈ 0.83N [147].
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Another issue arises when a classification that is to be learnt is not random
but provided by a rule, for example, by a teacher perceptron. Such a clas-
sification is obviously always learnable by a student perceptron, if it has
the same architecture as the teacher and the latter is noise-free. The inter-
esting question now concerns the generalization ability, studied within an
ensemble of student perceptrons, and in particular its scaling with the size of
the training data set. Here students are assumed to be trained on the whole
set, rather than adapting their weights in an online fashion as examples
come in. This problem was first analysed by Opper et al. [149] and general-
ized in [97]. The generalization error for the maximal margin classifier was
found to decrease at a rate inversely proportional to the size of the training
set—a behaviour which, as we saw earlier, can be achieved in an online
learning mode only by properly adapting the learning rate.

A wealth of interesting results has been obtained since the early 1990s
using Gardner’s interaction space approach. Let us specifically mention
Virasoro’s work [150] on predicting the effects of brain lesions. He demon-
strated that after learning hierarchically organized data—items grouped
into classes of comparatively large similarity within classes, and greater
dissimilarity between classes—the class information contained in each pat-
tern enjoys a greater embedding stability than the information that identifies
a pattern as a specific member of a class. As a consequence, brain lesions
that randomly destroy or disturb a certain fraction of synapses after learn-
ing will lead to the effect that the specific information is lost first, and the
class information only when destructions become more severe. An example
of the ensuing kind of malfunctioning is provided by the prosopagnosia
syndrome—characterized by the ability to recognize faces as faces, without
being able to distinguish between individual faces. The analysis reveals that
this kind of malfunctioning must typically be expected when injury occurs
to networks storing hierarchically organized data. This result is particu-
larly interesting because it relies on very few assumptions apart from the
basic starting point that memory resides in the synaptic organization of a
network. For further results obtained within the Gardner approach we refer
to the reviews of Opper and Kinzel [101], Watkin et al. [100], and Györgyi
and Tishby [151], or the recent book by Engel and van den Broeck [152].



Appendix A: Probability theory
in a nutshell

We define ‘events’ x as n-dimensional vectors, drawn from some event set
A ⊆ IRn. We associate with each event x ∈ A a real-valued and non-negative
probability p(x) ≥ 0.

A.1 Discrete event sets

Definitions and conventions

If A is discrete and countable, each component xi of x can only assume
values from a discrete set Ai so A ⊆ A1 ⊗ A2 ⊗ · · · ⊗ An. We do not
write event sets explicitly where the meaning is clear; for example,

∑
xi

will mean
∑

xi∈Ai
, and

∑
x will mean

∑
x∈A, etc. No problems arise as

long as the arguments of p(· · · ) are symbols; only if and when we evaluate
probabilities for explicit values of the arguments will we need to indicate
to which components of x such values are assigned. The probabilities are
normalized according to

∑
x p(x) = 1.

Interpretation of probability

Imagine a system which generates events x ∈ A sequentially, giving the infin-
ite series x1, x2, x3, . . . . We choose an arbitrary one-to-one index mapping
π : {1, 2, . . .} → {1, 2, . . .}, and one particular event x ∈ A (in that order),
and calculate for the M sequence elements {xπ(1), . . . , xπ(M)} the frequency
fM(x) with which the particular event x occurred:

fM(x) = 1
M

M∑
m=1

δx,xπ(m)

{
δx,y = 1 if x = y

δx,y = 0 if x �= y

We define random events as those generated by a system as above with the
property that for each one-to-one index map π , for each event x ∈ A the
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frequency of occurrence fM(x) tends to a limit as M → ∞. This limit is
then defined as the ‘probability’ associated with x:

∀x ∈ A: p(x) = lim
M→∞ fM(x)

Since fM(x) ≥ 0 for each x, and since
∑

x fM(x) = 1 for any M, it follows
that p(x) ≥ 0 and that

∑
x p(x) = 1 (as it should).

Marginal and conditional probabilities, statistical independence

The so-called ‘marginal probabilities’ are obtained from p(x) = p(x1, . . . ,
xn) upon summing over individual components of x = (x1, . . . , xn):

p(x1, . . . , x�−1, x�+1, . . . , xn) =
∑
x�

p(x1, . . . , xn) (A.1)

In particular we obtain (after repeating this procedure n− 1 times):

p(xi) =
∑

x1,...,xi−1,xi+1,...,xn

p(x1, . . . , xn) (A.2)

Marginal probabilities are normalized. This follows by combining their
definition (A.1) with the basic normalization

∑
x p(x) = 1, for example,

∑
x1,...,x�−1,x�+1,...,xn

p(x1, . . . , x�−1, x�+1, . . . , xn) = 1
∑
xi

p(xi) = 1

For any two disjunct subsets {i1, . . . , ik} and {j1, . . . , j�} of the index set
{1, . . . , n} (with necessarily k + � ≤ n) we next define the conditional
probability

p(xi1 , . . . , xik |xj1 , . . . , xj�
) = p(xi1 , . . . , xik , xj1 , . . . , xj�

)

p(xj1 , . . . , xj�
)

(A.3)

Expression (A.3), Bayes’ rule, gives the probability that the k components
{i1, . . . , ik} of x take the values {xi1 , . . . , xik }, given the knowledge that the
� components {j1, . . . , j�} take the values {xj1 , . . . , xj�

}.
The concept of statistical independence now follows naturally. Loosely

speaking, statistical independence means that conditioning in the sense
defined above does not affect any of the marginal probabilities. Thus the
n events {x1, . . . , xn} are said to be statistically independent if for any two
disjunct subsets {i1, . . . , ik} and {j1, . . . , j�} of {1, . . . , n} we have

p(xi1 , . . . , xik |xj1 , . . . , xj�
) = p(xi1 , . . . , xik )
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This can be shown to be equivalent to saying

{x1, . . . , xn} are independent:
p(xi1 , . . . , xik ) = p(xi1)p(xi2) · · ·p(xik )

for every subset {i1, . . . , ik} ⊆ {1, . . . , n}
(A.4)

A.2 Continuous event sets

Definitions and conventions

Here the event set A is no longer countable. Each component xi of x can
assume values from a continuous set Ai = {x ∈ IR| ∃x ∈ A with xi = x}, and
A ⊆ A1⊗A2⊗ · · ·⊗An. As before we drop explicit reference to sets where
possible; for example,

∫
dxi will mean

∫
Ai

dxi and
∫

dx will mean
∫
A

dx,
etc. The function p(x) is now to be interpreted as a probability density,
which is accordingly normalized via integration:

∫
dx p(x) = 1.

Interpretation of probability

Again we imagine a system which generates events x ∈ A sequentially,
giving x1, x2, . . . . We define boxes (hypercubes) B(x, �) in IRn as follows:

B(x, �) = {y ∈ IRn | xi ≤ yi < xi +�i for all i}

in which all �i > 0. The volume of such a box is simply
∏n

i=1 �i . We choose
an arbitrary one-to-one index mapping π : {1, 2, . . .} → {1, 2, . . .}, and
one particular event x ∈ A (in that order), and calculate for the M sequence
elements {xπ(1), . . . , xπ(M)} the frequency fM(x, �) with which events were
generated which happened to lie in box B(x, �):

fM(x, �) = 1
M

M∑
m=1

I (xπ(m); x, �)

{
I (y; x, �) = 1 if y ∈ B(x, �)

I (y; x, �) = 0 if y /∈ B(x, �)

We define random events as those generated by a system as above with the
property that for each one-to-one index map π , for each box B(x, �) the
frequency of occurrence fM(x, �) tends to a limit as M →∞. This limit is
then used to define the ‘probability density’ p(x) associated with x:

∀x ∈ A: p(x) = lim
�→0

limM→∞ fM(x, �)∏n
i=1 �i
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provided this limit exists. Since fM(x, �) ≥ 0 for each x, and since∫
dx fM(x, �) = ∏n

i=1 �i for any M, it follows that p(x) ≥ 0 and that∫
dx p(x) = 1, as it should.

Marginal and conditional probability densities,
statistical independence

The marginal probabilities are now obtained by integrating (as opposed to
summing) over individual components of x = (x1, . . . , xn):

p(x1, . . . , x�−1, x�+1, . . . , xn) =
∫

dx� p(x1, . . . , xn) (A.5)

In particular we obtain, upon repeating this procedure:

p(xi) =
∫

dx1 . . . dxi−1dxi+1 . . . dxn p(x1, . . . , xn) (A.6)

Again, marginal probabilities are normalized, but now in the sense of integ-
ration. This follows as before by combining their definition (A.5) with the
basic normalization

∫
dx p(x) = 1, for example,

∫
dx1 . . . dx�−1dx�+1 . . . dxn p(x1, . . . , x�−1, x�+1, . . . , xn) = 1∫
dxi p(xi) = 1

For any two disjoint subsets {i1, . . . , ik} and {j1, . . . , j�} of the index set
{1, . . . , n} we next define the conditional probability density

p(xi1 , . . . , xik |xj1 , . . . , xj�
) = p(xi1 , . . . , xik , xj1 , . . . , xj�

)

p(xj1 , . . . , xj�
)

(A.7)

It gives the probability density for the k components {i1, . . . , ik}, given the
knowledge that the � components {j1, . . . , j�} take the values {xj1 , . . . , xj�

}.
Statistical independence can as before be defined in the following way:

{x1, . . . , xn} are independent:
p(xi1 , . . . , xik ) = p(xi1)p(xi2) · · ·p(xik )

for every subset {i1, . . . , ik} ⊆ {1, . . . , n}
(A.8)
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A.3 Averages of specific random variables

We define ‘random variables’ as arbitrary functions F(x) of random events
x ∈ A. We define averages or expectation values or mean values 〈F(x)〉 of
random variables F(x) as follows:

discrete random variables: 〈F(x)〉 =∑
x p(x)F (x)

continuous random variables: 〈F(x)〉 = ∫
dx p(x)F (x)

(A.9)

Let us now turn to the definitions and properties of a number of relevant
(discrete or continuous) random variables and averages. Note that in general
one cannot be sure beforehand (without explicit proof) that the following
averages will actually exist (i.e. are finite):

average: µi = 〈xi〉
variance: σ 2

i = 〈x2
i 〉 − 〈xi〉2

σ 2
i is non-negative, since 〈x2

i 〉 − 〈xi〉2 = 〈(xi − 〈xi〉)2〉. This also shows that
σ 2

i = 0 implies that xi = x′i for any two events x ∈ A and x′ ∈ A with
nonzero probabilities.

covariance matrix: Cij = 〈xixj 〉 − 〈xi〉〈xj 〉
Note that Cii = σ 2

i . The covariance matrix is symmetric so all eigenvalues
are real. It is also non-negative definite (so all eigenvalues are non-negative),
since it can be written as 〈xixj 〉 − 〈xi〉〈xj 〉 = 〈(xi − 〈xi〉)(xj − 〈xj 〉)〉, from
which it follows that

for any z ∈ IRn: z · Cz =
〈[

n∑
i=1

zi(xi − 〈xi〉)
]2〉

≥ 0

moments: 〈xmi1
i1

x
mi2
i2

, . . . , x
mik

ik
〉, with mi� ∈ {0, 1, 2, 3, . . .}

characteristic function: For a single random variable x, the characteristic
function is defined as φ(k) = 〈eikx〉. The functional dependence of this
on k encapsulates all the moments; this follows by Taylor-expanding the
exponential: φ(k) = 1 + ik〈x〉 − 1

2k2〈x2〉 + · · · . Also, by writing out φ(k)

explicitly as

φ(k) =
∫

dx p(x) eikx

one sees that it is just the Fourier transform of the probability distribution
p(x). Applying the inverse Fourier transform (see Appendix F) means that
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we can retrieve p(x) if we know φ(k):

p(x) =
∫

dk

2π
φ(k) e−ikx

Thus—at least for sufficiently well-behaved probability distributions—
knowledge of the characteristic function is equivalent to knowing p(x). The
above arguments generalize to the case of several random variables: here
one defines φ(k) = 〈exp(i

∑n
i=1 kixi)〉 and the inverse Fourier transform

gives

p(x) =
∫ (

n∏
i=1

dki

2π

)
φ(k) e−i

∑n
i=1 kixi



Appendix B: Conditions for the
central limit theorem to apply

We first give a simple necessary condition for a random variable to
have a Gaussian probability distribution. This is followed by Lindeberg’s
Theorem, which gives a sufficient condition for an infinite sum of
independent random variables to have a Gaussian probability distribution.
We then apply both results to expressions of the form

∑N
i=1 Wixi , in which

the xi ∈ {−1, 1} are independent zero average random variables.

B.1 Moment condition

Consider a zero average random variable Y , described by a Gaussian
probability distribution

p(y) = 1

σ
√

2π
e−y2/2σ2

All odd moments are zero, that is, 〈y2m+1〉 = 0, due to the symmetry
p(y) = p(−y). All even moments 〈y2m〉 can be expressed in terms of the
width σ of this distribution. For instance,

〈y2〉 =
∫

dy

σ
√

2π
y2 e−y2/2σ2

= (2πσ 2)−1/2 lim
x→1/2σ2

∫
dy y2 e−xy2

= −(2πσ 2)−1/2 lim
x→1/2σ2

d
dx

∫
dy e−xy2

= −(2πσ 2)−1/2 lim
x→1/2σ2

d
dx

√
πx−1/2

= σ 2
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(where we used
∫
dy e−y2/2 = √2π , see Appendix D). We obtain in a

similar way:

〈y4〉 =
∫

dy

σ
√

2π
y4 e−y2/2σ2 = (2πσ 2)−1/2 lim

x→1/2σ2

∫
dy y4 e−xy2

= (2πσ 2)−1/2 lim
x→1/2σ2

d2

dx2

∫
dy e−xy2

= (2πσ 2)−1/2 lim
x→1/2σ2

d2

dx2

√
πx−1/2 = 3σ 2

A necessary condition for y to have a Gaussian probability distribution is
thus 〈y4〉 = 3〈y2〉2.

We now choose yN =∑N
i=1 Wixi

(∑N
i=j W2

j

)−1/2, where the xk ∈ {−1, 1}
are independent random variables with 〈xk〉 = 0. A necessary condition for
yN to have a Gaussian probability distribution for N →∞ is then

lim
N→∞

∑n
ijk�=1WiWjWkW�〈xixjxkx�〉(∑N

i=1 W2
i

)2 = 3

With the help of the identity 〈xixjxkx�〉 = δij δk�+δikδj�+δi�δjk−2δij δk�δik

we find the previous condition simplifying to

lim
N→∞

∑N
i=1 W4

i(∑N
j=1 W2

j

)2 = 0 (B.1)

B.2 Lindeberg’s theorem

Let X1, X2, X3, . . . be a sequence of independent random variables such that
〈xk〉 = 0 and 〈x2

k 〉 = σ 2
k . Let pk(x) denote the distribution function of Xk

and define SN =∑N
i=1 xi , so that

〈SN 〉 = 0 s2
N = 〈S2

N 〉 = σ 2
1 + σ 2

2 + · · · + σ 2
N

Suppose now that the so-called Lindeberg condition is satisfied, that is,

for each t > 0: lim
N→∞

1

s2
N

n∑
k=1

∫
|x|≥tsN

dx x2pk(x) = 0 (B.2)

then the distribution of the normalized sum SN/sN tends to the zero average
and unit variance Gaussian distribution as N → ∞. For the proof of this
theorem see, for example, [76, 77].
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We now apply this theorem to the choice Xi = Wixi , where the xk ∈
{−1, 1} are independent random variables with 〈xk〉 = 0. Thus σ 2

k = W2
k

for each k. Lindeberg’s condition (B.2) now reads:

for each t > 0: lim
N→∞

∑N
i=1 W2

i θ
(
|Wi | − t

√∑N
j=1 W2

j

)
∑N

i=1 W2
i

= 0

We can simplify this condition further. Upon defining vk = Wk/

√∑N
j=1 W2

j

it can be written as

for each ε > 0: lim
N→∞

N∑
i=1

v2
i θ(v2

i − ε) = 0

We note that all nonzero terms in this sum obey vk
2 ≥ ε. Since also vk

2 ≤ 1,
it now follows that

ε

N∑
k=1

θ(v2
k − ε) ≤

N∑
k=1

v2
k θ(v2

k − ε) ≤
N∑

k=1

θ(v2
k − ε)

This tells us that here the Lindeberg condition is equivalent to:

for each ε > 0: lim
N→∞

N∑
i=1

θ(v2
i − ε) = 0

In terms of the original variables Wi this reads:

for each ε > 0: lim
N→∞

N∑
i=1

θ

(
W2

i − ε

N∑
k=1

W2
k

)
= 0 (B.3)
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Appendix C: Some simple
summation identities

Here we give, without proof, some useful identities dealing with the sum-
mation of simple series which are encountered in the various examples and
exercises:

n∑
k=1

k = 1
2

n(n+ 1) (C.1)

n∑
k=1

k2 = 1
6

n(n+ 1)(2n+ 1) (C.2)

∞∑
k=1

1
k2 =

1
6

π2 (C.3)

∞∑
k=1

1
k4 =

11
180

π4 (C.4)

∞∑
k=1

1
k
= ∞ (C.5)

n∑
k=0

zk = 1− zn+1

1− z
(z �= 1) (C.6)
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Appendix D: Gaussian integrals
and probability distributions

In this appendix we derive some properties of symmetric positive definite
matrices A, their associated Gaussian probability distributions in IRN and
integrals of the following general form (for simple functions f ):

I =
∫

dx f (x)e−x·Ax/2

We calculate explicitly several integrals of this type, with specific choices of
the matrix A, that we encounter in the various chapters of this book.

D.1 General properties of Gaussian integrals

Real, symmetric, positive definite matrices

The symmetric N × N matrix A is assumed to be positive definite, that is,
x · Ax > 0 for all x ∈ IRN with |x| �= 0. The characteristic polynomial
det(A− λ1I) is of order N , so there will be N (possibly complex) solutions λ

(where some may coincide) of the eigenvalue problem

Ax = λx, x �= 0 (D.1)

We denote complex conjugation of complex numbers z in the usual way:
if z = a + ib (where a, b ∈ IR), then z∗ = a − ib and |z|2 = z∗z ∈ IR.
We denote the unit matrix in IRN by 1I, so 1Iij = δij .

Proposition 1. All eigenvalues of the matrix A are real.

Proof. We simply take the inner product in (D.1) with the conjugate vector
x∗, which gives

N∑
i,j=1

x∗i Aij xj = λ

N∑
i=1

|xi |2
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We use the symmetry of A, and substitute Aij → 1
2 (Aij + Aji):

λ = 1
2

∑
ij x∗i (Aij + Aji)xj∑N

i=1 |xi |2
= 1

2

∑
ij Aij (x

∗
i xj + xix

∗
j )∑N

i=1 |xi |2

Since (x∗i xj + xix
∗
j )∗ = xix

∗
j + x∗i xj = x∗i xj + xix

∗
j , the above fraction is

entirely real-valued, so λ ∈ IR.

Proposition 2. All eigenvectors can be chosen real-valued.

Proof. For a given eigenvalue λ the corresponding eigenvectors x are
the solutions of (D.1). We separate real and imaginary parts of every
eigenvector:

x = Re x + i Im x Re x = 1
2

(x + x∗) Im x = 1
2i

(x − x∗)

with Re x ∈ IRN and Im x ∈ IRN . Taking the complex conjugate of equation
(D.1) gives us Ax∗ = λx∗ (since λ is real). Thus, if x is an eigenvector with
eigenvalue λ, so is x∗; complex eigenvectors always come in conjugate pairs.
But by adding to equation (D.1) its conjugate, and by similarly subtracting
the conjugate, it follows that if x and x∗ are eigenvectors, then so are Re x

and Im x. Since the space spanned by x and x∗ is the same as the space
spanned by Re x and Im x, we are always allowed to choose the equivalent
real-valued pair Re x and Im x.

Proposition 3. All eigenvalues λ are positive.

Proof. We can derive this property directly from the eigenvalue equation
(D.1) by taking the inner product with x: λ = (x ·Ax)/(x2) > 0, since A is
positive definite and x is real and nonzero.

Proposition 4. For every linear subspace L ⊆ IRN the following holds:

if AL ⊆ L then also AL⊥ ⊆ L⊥

in which L⊥ denotes the orthogonal complement, that is, IRN = L⊕ L⊥.

Proof. For each x ∈ L and y ∈ L⊥ we find (x · Ay) = (y · Ax) = 0 (since
Ax ∈ L and y ∈ L⊥). Therefore Ay ∈ L⊥, which completes the proof.

Proposition 5. We can construct a complete orthogonal basis in IRN of
A-eigenvectors.
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Proof. Consider two eigenvectors xa and xb of A, corresponding to
different eigenvalues:

Axa = λaxa Axb = λbxb λa �= λb

We now form:

0 = (xa ·Axb)− (xa ·Axb) = (xa ·Axb)− (xb ·Axa)

= λb(xa · xb)− λa(xb · xa) = (λa − λb)(xa · xb)

Since λa �= λb it follows that xa · xb = 0: eigenspaces corresponding to
different eigenvalues are mutually orthogonal. If all eigenvalues are distinct,
this completes the proof, since in that case there will be N eigenvalues with
corresponding eigenvectors x �= 0. Since these N eigenvectors are proven
to be orthogonal, after normalization x → x/|x| they form a complete
orthogonal basis.

In order to deal with degenerate eigenvalues we need the previous
Property 4. For every symmetric N × N matrix we know: if Ax = λx,
then ∀y with x · y = 0: (Ay) · x = 0. Having found such an eigenvector x

for a given eigenvalue λ (not unique in the case of a degenerate eigenvalue),
a new reduced (N − 1) × (N − 1) matrix can be constructed by restrict-
ing ourselves to the subspace x⊥. The new matrix is again symmetric, the
eigenvalue polynomial is of order N − 1 (and contains all the previous
roots except for one corresponding to the eigenvector just eliminated), and
we can repeat the argument. This shows that there must be N orthogonal
eigenvectors, which we can normalize and use as a basis in IRN .

The final consequence of the above facts is that there exist a set of vectors
{êi}, where i = 1, . . . , N and êi ∈ IRN for all i, with the following properties:

Aêi = λi ê
i , λi ∈ IR, λi > 0, êi · êj = δij (D.2)

We can now bring A onto diagonal form by a simple unitary trans-
formation U , which we construct from the components of the normalized
eigenvectors ê: Uij = ê

j
i . We denote the transpose of U by U†, U

†
ij = Uji ,

and show that U is indeed unitary, that is, U†U = UU† = 1I:

∑
j

(U†U)ij xj =
∑
jk

UkiUkjxj =
∑
jk

êi
kê

j
k xj =

∑
j

δij xj = xi

∑
j

(UU†)ij xj =
∑
jk

UikUjkxj =
∑
jk

êk
i ê

k
j xj =

∑
k

êk
i (ê

k · x) = xi



526 Appendix D

(since {ê�} is a complete orthogonal basis). From U being unitary it follows
that U and U† leave inner products, and therefore also lengths, invariant:

Ux · Uy = x · U†Uy = x · y U†x · U†y = x · UU†y = x · y

We can see explicitly that U indeed brings A into diagonal form:

(U†AU)ij =
N∑

kl=1

U
†
ikAklUlj =

N∑
kl=1

êi
kAkl ê

j
l = λj

N∑
k=1

êi
k ê

j
k = λj δij (D.3)

Note that the inverse A−1 of the matrix A exists, and can be written as
follows:

(A−1)ij =
N∑

k=1

λ−1
k êk

i ê
k
j (D.4)

To prove that this is indeed the inverse of A, we just work out for any
x ∈ IRN the two expressions

(AA−1x)i =
N∑

kj=1

Aik

N∑
�=1

λ−1
� ê�

kê
�
j xj =

N∑
�=1

ê�
i (ê

� · x) = xi

(again since {ê�} forms a complete orthogonal basis), and

(A−1Ax)i =
N∑

kj=1

N∑
�=1

λ−1
� ê�

i ê
�
kAkjxj =

N∑
�=1

ê�
i (ê

� · x) = xi

Multivariate Gaussian integrals

We have now established all the required tools to turn to a simple analysis of
the Gaussian integrals associated with positive definite symmetric matrices:

I =
∫

dx f (x)e−x·Ax/2 (D.5)

The simplest such integral is obtained for f (x) = 1 and N = 1:

∫
dx e−x2/2 = √2π (D.6)

(for a proof of (D.6) see the last part of this appendix). For f (x) = 1 and
N > 1 we can do the integral (D.5) by using the previous results on the
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diagonalizability of the matrix A. We put x = Uz (since U leaves inner
products invariant, we are guaranteed that dx = dz):

∫
dx e−x·Ax/2 =

∫
dz e−z·U†AUz/2 =

N∏
�=1

(∫
dz e−λ�z

2/2
)

=
(

N∏
�=1

1√
λ�

)(∫
dz e−z2/2

)N

= (2π)N/2
√

det A
(D.7)

Here we have used the fact that the determinant of A is invariant under
rotations, so it can be evaluated with A in diagonal form, giving the product
of its N eigenvalues.

Let us turn next to less trivial choices for f (x). Due to the symmetry of
the integrand in (D.5) under reflection x →−x, the integral reduces to zero
for f (x) = xi . For the choice f (x) = xixj we use the following trick:∫

dx xixj e−x·Ax/2 = lim
b→0

∂2

∂bi∂bj

∫
dx e−x·Ax/2+b·x (D.8)

The integral on the right-hand side can be evaluated by completing the
square in the exponent and then shifting the integration variable:∫

dx e−x·Ax/2+b·x =
∫

dx e−(x−A−1b)·A(x−A−1b)/2+b·A−1b/2

= (2π)N/2
√

det A
eb·A−1b/2 (D.9)

Thus, carrying out the differentiations in (D.8) gives
√

det A

(2π)N/2

∫
dx xixj e−x·Ax/2 = lim

b→0
[(A−1)ij + (A−1b)i(A

−1b)j ]eb·A−1b/2

= (A−1)ij (D.10)

D.2 Gaussian probability distributions

Simple Gaussian (or ‘normal’) probability distributions

A single random variable x is said to have a Gaussian probability distribu-
tion (or probability density) with mean µ and variance σ 2 if

p(x) = e−(x−µ)2/2σ2

√
2πσ 2

, x ∈ IR (D.11)
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This expression is properly normalized, as follows from our elementary
Gaussian integral (D.6) above:

∫
dx p(x) =

∫
dx

σ
√

2π
e−(x−µ)2/2σ2 =

∫
dz√
2π

e−z2/2 = 1

To work out the moments of (D.11), one can start from the identity

〈(x − µ)n〉 =
∫

dx

σ
√

2π
(x − µ)ne−(x−µ)2/2σ2 = σn

∫
dz√
2π

zne−z2/2

For n odd the result is zero. For n even one finds:

〈(x − µ)2m〉 = σ 2m(−1)m lim
y→1/2

dm

dym

∫
dz√
2π

e−yz2

= σ 2m

√
2

(−1)m lim
y→1/2

dm

dym
y−1/2

= σ 2m

√
2

lim
y→1/2

(
1
2
× 3

2
× · · · × 2m− 1

2

)
y−(1/2)−m

= σ 2m(1× 3× · · · × (2m− 1)) (D.12)

With (D.12), together with 〈(x − µ)n〉 = 0 for all odd n, one can generate
the various moments iteratively. For example:

〈x − µ〉 = 0 ⇒ 〈x〉 = µ

〈(x − µ)2〉 = σ 2 ⇒ 〈x2〉 = µ2 + σ 2

〈(x − µ)3〉 = 0 ⇒ 〈x3〉 = µ3 + 3µσ 2

〈(x − µ)4〉 = 3σ 4 ⇒ 〈x4〉 = 3(µ2 + σ 2)2 − 2µ4

In addition, relations such as 〈(x − µ)4〉 = 3〈(x − µ)2〉2 can often serve as
a quick test to see whether an unknown distribution could be Gaussian.

Multivariate Gaussian probability distributions

A collection of N random variables x = (x1, . . . , xN) are said to have a
zero-mean (joint) Gaussian probability distribution if

p(x) =
√

det A

(2π)N/2 e−x·Ax/2, x ∈ IRN

From (D.7) we see that this expression is properly normalized. As dis-
cussed above, the symmetry of the distribution implies that all the means
vanish, 〈xi〉 = 0. The covariances follow from (D.10): 〈xixj 〉 = (A−1)ij .
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It follows that a zero-mean Gaussian distribution is fully determined by its
covariances. Writing the covariance matrix as C, one therefore normally
represents such distributions in the form

p(x) = 1
(2π)N/2(det C)1/2 e−x·C−1x/2

where we have used det C = 1/det A.
We can also immediately work out the characteristic function of a

Gaussian distribution, using the integral (D.9):

〈eik·x〉 = e−k·Ck/2 (D.13)

Thus, the characteristic function of a Gaussian distribution is again
Gaussian.

These above results generalize easily to the case of nonzero means, by
setting y = x + µ. The probability distribution of y is then

p(y) = 1
(2π)N/2(det C)1/2 e−(y−µ)·C−1(y−µ)/2 (D.14)

with 〈yi〉 = µi and 〈yiyj 〉 = µiµj+Cij . The characteristic function is, using
(D.13)

〈eik·y〉 = eik·µ〈eik·x〉 = eik·µ−k·Ck/2 (D.15)

and hence again of a Gaussian form.

Linear combinations of Gaussian random variables

Often one needs to deal with sums or, more generally, linear combinations
of Gaussian random variables. Let us suppose x is Gaussian distributed
with mean µ and covariance matrix C. Now consider a set of M linear
combinations yi = ∑N

j=1 Lijxj (i = 1, . . . , M), or y = Lx in matrix nota-
tion. The characteristic function of the new variables y can be expressed in
terms of that of the x:

〈eik·y〉 = 〈eik·Lx〉 = 〈ei(L†k)·x〉 = ei(L†k)·µ−(L†k)·CL†k/2

= eik·Lµ−k·(LCL†)k/2

Comparison with (D.15) shows that the y once more have a Gaussian
distribution: linear combinations of Gaussian random variables are again
Gaussian. The means and covariances of the distribution are seen to be
〈yi〉 = (Lµ)i and 〈yiyj 〉 = (LCL†)ij ; these latter identities could of course
also have been worked out directly by inserting the definition of the yi .
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Conditional Gaussian distributions

A final useful tool concerns the distribution of a subset of Gaussian variables
y ∈ IRN from a larger set (x, y), when the values of the x ∈ IRM are known;
this is the conditional distribution of y given x. Let us assume that the joint
distribution of x and y is a zero-mean Gaussian, with a covariance matrix
which we write in block form as

C =
(

Cxx Cxy

Cxy Cyy

)
, C−1 =

(
Dxx Dxy

Dyx Dyy

)
(D.16)

where Cxy = C
†
yx and Dxy = D

†
yx because covariance matrices are

symmetric. Thus we have

p(x, y) = [(2π)N+Mdet C]−1/2 exp
(
−1

2

(
x

y

)
· C−1

(
x

y

))
(D.17)

p(x) = [(2π)Mdet Cxx]−1/2 exp
(− 1

2x · (Cxx)
−1x

)
(D.18)

From Bayes’ rule, the required conditional distribution is p(y|x) =
p(x, y)/p(x), which is here found to take the form

p(y|x) =
[
(2π)N+Mdet C

(2π)Mdet Cxx

]−1/2

exp
(

1
2

x · (Cxx)
−1x − 1

2

(
x

y

)
· C−1

(
x

y

))

= 1
Y (x)

exp
(
−1

2
x ·Dxyy − 1

2
y ·Dyxx − 1

2
y ·Dyyy

)
(D.19)

in which the (y-independent) factor Y (x) can be calculated a posteriori
from the normalization requirement

∫
dy p(y|x) = 1 for all x ∈ IRM .

Recalling that Dxy = D
†
yx , we can complete the square in the exponent,

dropping yet another term dependent only on x (which changes the previous
normalization factor Y (x) into a new one, say Z(x)):

p(y|x) = 1
Z(x)

exp
(
−1

2
(y +D−1

yy Dyxx) ·Dyy(y +D−1
yy Dyxx)

)
(D.20)

This shows that p(y|x) is again Gaussian, with mean −D−1
yy Dyxx and with

covariance matrix D−1
yy . It remains to write these in terms of the covariance

matrix C rather than its inverse C−1, using the results for block matrix
inverses derived in Appendix E. Referring back to (D.16), we find from (E.6)
that Dyy = (Cyy − CyxC

−1
xx Cxy)

−1, so the covariance matrix of p(y|x) is

D−1
yy = Cyy − CyxC

−1
xx Cxy
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This makes sense. The first term is the covariance matrix of the uncondi-
tional distribution p(y). The second, negative, term reduces the fluctuations
of the y because our knowledge of x ties down the values of y to some extent.
How large the reduction in fluctuations is depends on the correlation of
x and y (as it should be): for Cxy = 0 the variables x and y are uncorrelated,
and therefore—since we are dealing with Gaussian distributions—actually
independent, so that in that case p(y|x) = p(y).

Finally, for the conditional mean of y given x, defined as
∫

dy yp(y|x),
we see from (E.6) that−D−1

yy Dyxx = CyxC
−1
xx x. Summarizing the properties

of the conditional Gaussian distribution, we have

〈yi〉x = (CyxC
−1
xx x)i (D.21)

〈yiyj 〉x − 〈yi〉x〈yj 〉x = (Cyy − CyxC
−1
xx Cxy)ij (D.22)

where the subscript 〈· · ·〉x is used to indicate the conditioning on x. The
result for the conditional mean again makes intuitive sense: if x and y are
uncorrelated, then the conditional mean is identical to that of the uncon-
ditioned distribution p(y), that is, zero. Otherwise the conditional mean is
linearly dependent on the values of x and proportional to Cyx .

D.3 A list of specific Gaussian integrals

Finally we calculate explicitly the various Gaussian integrals which we
encounter throughout this book. To allow for the efficient use of these
integral calculations for reference purposes, we first give a compact list of
results, and include their derivations in a separate subsection.

We use the notation 〈f (x, y)〉 = ∫
dxdy f (x, y)P (x, y) for those integrals

that can be interpreted as averages over the bivariate Gaussian distribution

P(x, y) = 1

2π
√

1− ω2
e−(x2+y2−2xyω)/2(1−ω2) (D.23)

Both marginals of (D.23) are unit-variance Gaussian distributions:

p(x) =
∫

dy P (x, y) = e−x2/2
√

2π
, p(y) =

∫
dx P (x, y) = e−y2/2

√
2π

(D.24)

Without creating ambiguities, we can therefore use a similar notation in
the integrals to follow below for averages involving only the unit variance
Gaussians, viz. 〈f (x)〉 = ∫

dx f (x)p(x) and 〈g(y)〉 = ∫
dy g(y)p(y).



532 Appendix D

Results of integrals

I0 =
∫

dx e−x2/2 = √2π (D.25)

I1 = 〈|y|〉 =
√

2
π

(D.26)

I2 = 〈x sgn(y)〉 = ω

√
2
π

(D.27)

I3 = 〈θ(−xy)〉 = 1
π

arccos(ω) (D.28)

I4 = 〈x sgn(y) θ(−xy)〉 = ω − 1√
2π

(D.29)

I5 = 〈|y|θ(−xy)〉 = 1− ω√
2π

(D.30)

I6 = 〈x2θ(−xy)〉 = 1
π

arccos(ω)− ω
√

1− ω2

π
(D.31)

I7 = 〈|x| |y| θ(−xy)〉 =
√

1− ω2

π
− ω

π
arccos(ω) (D.32)

I8(x) =
∫

dy θ(y)P (x, y) = e−x2/2

2
√

2π

[
1+ erf

(
ωx√

2
√

1− ω2

)]
(D.33)

I9(x) =
∫

dy θ(y)(y − ωx)P (x, y) =
√

1− ω2

2π
e−x2/2(1−ω2)

(D.34)

Corresponding derivations

I0: In order to calculate I0 one squares the integral, and evaluates the
square using polar coordinates (x1 = r cos φ, x2 = r sin φ). This gives

I2
0 =

∫
dx1dx2 e−(x2

1+x2
2 )/2 =

∫ 2π

0
dφ

∫ ∞
0

dr re−r2/2 = 2π [−e−r2/2]∞0 = 2π

�
I1: One may verify the expression given for I1 by writing

I1 = 2
∫ ∞

0

dy√
2π

y e−y2/2 =
√

2
π

∫ ∞
0

dy

(
− ∂

∂y

)
e−(1/2)y2 =

√
2
π

�
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I2: The integral I2 can be calculated as follows:

I2 =
∫

dxdy

2π
√

1− ω2
sgn(y) e−(y2−2ωxy)/2(1−ω2)

(
−(1− ω2)

∂

∂x

)
e−x2/2(1−ω2)

=
∫

dxdy

2π
√

1− ω2
e−(x2+y2−2ωxy)/2(1−ω2)ωy sgn(y) = ω〈|y|〉 = ω

√
2
π

where I1 has been used in the last step. �
I3: Integral I3 is first written as

I3 =
∫ ∞

0

∫ ∞
0

dxdy

π
√

1− ω2
e−(x2+y2+2ωxy)/2(1−ω2)

=
√

1− ω2

π

∫ ∞
0

∫ ∞
0

dxdy e−(x2+y2+2ωxy)/2

In polar coordinates (x, y) = r(cos φ, sin φ) this becomes

I3 =
√

1− ω2

π

∫ π/2

0
dφ

∫ ∞
0

dr re−r2[1+ω sin(2φ)]/2

=
√

1− ω2

π

∫ π/2

0

dφ

1+ ω sin(2φ)

The substitution x = tan(φ) turns the last integral into

I3 =
√

1− ω2

π

∫ ∞
0

dx

1+ 2ωx + x2

Using partial fractions one obtains

I3 = 1
2π i

ln

[
1+ i

√
1− ω2/ω

1− i
√

1− ω2/ω

]
= 1

π
arctan

(√
1− ω2

ω

)
= 1

π
arccos(ω)

�



534 Appendix D

I4: Next we turn to I4 where we write

I4 = −1− ω2

π

∫ ∞
0

dx x e−x2/2
∫ ∞

0
dy e−(y+ωx)2/2+ω2x2/2

= 1
π

∫ ∞
0

dx

(
∂

∂x
e−(1−ω2)x2/2

)∫ ∞
ωx

dy e−y2/2

= 1
π

{[
e−(1−ω2)x2/2

∫ ∞
ωx

dy e−y2/2
]∞

0
+ ω

∫ ∞
0

dx e−x2/2
}

= 1
π

(
−
√

π

2
+ ω

√
π

2

)
= ω − 1√

2π

�

I5: This integral can be converted into an expression which is identical to
the previous one, except for interchanging x and y:

I5 = 1− ω2

π

∫ ∞
0

dy y e−y2/2
∫ ∞

0
dx e−(x+ωy)2/2+ω2y2/2 = 1− ω√

2π

following the algebra used in the evaluation of I4, with x and y

exchanged. �
I6: Integral I6 is somewhat more difficult. Using a rescaling of x and y

similar to that employed in the computation of I3, we first write

I6 = (1− ω2)3/2

π

∫ ∞
0

∫ ∞
0

dxdy x2 e−(x2+y2+2xyω)/2

= (1− ω2)3/2

2π

∫ ∞
0

∫ ∞
0

dxdy(x2 + y2) e−(x2+y2+2xyω)/2

We now switch to polar coordinates (x, y) = r(cos φ, sin φ), and substitute
t = 1

2r2[1+ ω sin(2φ)], followed by rescaling 2φ→ φ, to get

I6 = (1− ω2)3/2

2π

∫ π/2

0
dφ

∫ ∞
0

dr r3 e−(r2+ωr2 sin 2φ)/2

= (1− ω2)3/2

π

∫ π/2

0

dφ

(1+ ω sin(2φ))2

∫ ∞
0

dt t e−t

= (1− ω2)3/2

2π

∫ π

0

dφ

(1+ ω sin φ)2

To calculate the latter integral we define the following family of integrals:

Ĩn =
∫ π

0

dφ

(1+ ω sin φ)n



Appendix D 535

These integrals obey

ω
d

dω
Ĩn − nĨn+1 = −nĨn

so

Ĩ2 = Ĩ1 + ω
d

dω
Ĩ1 Ĩ1 = 2√

1− ω2
arccos(ω)

(where we used the integral already encountered when evaluating I3).
We now find

I6 = (1− ω2)3/2

2π
Ĩ2 = 1

π
arccos(ω)− ω

√
1− ω2

π
�

I7: We turn to I7. Here we write, using rescaled variables as in I3 and I6,

I7 = (1− ω2)3/2

π

∫ ∞
0

∫ ∞
0

dxdy xy e−(x2+y2+2xyω)/2

We use polar coordinates, the substitution t = 1
2r2[1 + ω sin(2φ)] and the

rescaling 2φ→ φ to proceed as in the calculation of I6:

I7 = (1− ω2)3/2

2π

∫ π

0
dφ

sin φ

(1+ ω sin φ)2

= − (1− ω2)3/2

2π

dĨ1

dω
=

√
1− ω2

π
− ω

π
arccos(ω),

where we have used Ĩ1 as introduced while evaluating I6. �
I8: The integral I8 can be evaluated simply by completing the square in the
exponent:

I8(x) =
∫ ∞

0

dy

2π
√

1− ω2
e−(x2+y2−2xyω)/2(1−ω2)

= e−x2/2
√

2π

∫ ∞
0

dy e−(y−ωx)2/2(1−ω2)√
2π(1− ω2)

= e−x2/2

2
√

2π

[
1+ erf

(
ωx√

2
√

1− ω2

)]

�
I9: Our final integral is again relatively easy to work out. The result follows
from

I9(x) = −
√

1− ω2

2π

∫ ∞
0

dy
∂

∂y
e−(x2+y2−2xyω)/2(1−ω2) =

√
1− ω2

2π
e−x2/2(1−ω2)

�
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Appendix E: Matrix identities

E.1 Block inverses

In the treatment of Gaussian processes, or when considering conditional
Gaussian distributions, we often need to invert block matrices of the
following form

M =
(

A B

C D

)

Writing the inverse in the same block structure,

M−1 =
(

A′ B ′
C′ D′

)

we see that the condition M−1M = 1I is equivalent to

A′A+ B ′C = 1I, A′B + B ′D = 0, C′A+D′C = 0, C′B +D′D = 1I

where we are abusing the symbol 1I to denote the identity matrix of the
appropriate size in each case since there is no risk of ambiguity. Solving the
second of the above four conditions gives B ′ = −A′BD−1; inserting into
the first one then leads to A′ = (A − BD−1C)−1 and this can be inserted
into the expression for B ′. The sub-matrices C′ and D′ can be determined
similarly, and overall we have

A′ = (A− BD−1C)−1 (E.1)

−B ′ = (A− BD−1C)−1BD−1 (E.2)

−C′ = (D − CA−1B)−1CA−1 (E.3)

D′ = (D − CA−1B)−1 (E.4)

Note that the matrix inverses that appear here are all of square matrices,
and are therefore well-defined (assuming that the relevant matrices are
actually invertible, otherwise there is no point in the present exercise in
the first place).
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E.2 The Woodbury formula

It would be helpful if we could unpack the inverses that appear above yet
further. For A′, for example, we need, upon setting L = −D−1, the inverse
(A+ BLC)−1. This can be evaluated using the Woodbury formula:

(A+ BLC)−1 = A−1 −A−1B(L−1 + CA−1B)−1CA−1 (E.5)

The important feature of this result is that it allows us to change the dimen-
sionality of the inverse required. If we denote the size of A by m × m and
that of L by n×n, then B and C are m×n and n×m matrices, respectively.
The inverse on the left-hand side of (E.5) is that of an m×m matrix, while
on the right we have the inverse of an n×n matrix. If m is larger than n, then
it will clearly be more efficient to evaluate the inverse using the latter form.

To prove the Woodbury formula (E.5), one simply multiplies the right-
hand side by the matrix to be inverted, which gives

A−1(A+ BLC)−A−1B(L−1 + CA−1B)−1CA−1(A+ BLC)

= 1I+A−1BLC −A−1B(L−1 + CA−1B)−1C(1I+A−1BLC)

= 1I+A−1B[L− (L−1 + CA−1B)−1(1I+ CA−1BL)]C
= 1I+A−1B(L−1 + CA−1B)−1[(L−1 + CA−1B)L− (1I+ CA−1BL)]C
= 1I

A useful special case of the Woodbury formula is obtained for the extreme
situation n = 1, where B and C become vectors b and c, and L becomes a
scalar which we can set to unity (because any other value could be absorbed
into either B or C). Using appropriate vector notation for B and C we then
have

(A+ bc†)−1 = A−1 − A−1bc†A−1

1+ c ·A−1b

Here bc† denotes the matrix with entries (bc†)ij = bicj .
Finally, by applying the Woodbury formula to the above result (E.1)–

(E.4) for block matrix inverses, one finds—after a little rearranging for B ′
and C′—the following useful alternative forms:

A′ = (A− BD−1C)−1 = A−1 +A−1B(D − CA−1B)−1CA−1

−B ′ = (A− BD−1C)−1BD−1 = A−1B(D − CA−1B)−1

−C′ = (D − CA−1B)−1CA−1 = D−1C(A− BD−1C)−1

D′ = (D − CA−1B)−1 = D−1 +D−1C(A− BD−1C)−1BD−1

(E.6)



Appendix F: The δ-distribution

F.1 Definition

There are several ways of introducing the δ-distribution. Here we will
go for an intuitive definition first, and a formal one later. We define
the δ-distribution as the probability distribution δ(x) corresponding to a
random variable in the limit where the randomness in the variable vanishes.
If x is ‘distributed’ around zero, this implies

∫
dx f (x)δ(x) = f (0) for any function f

The problem arises when we want to actually write down an expression for
δ(x). Intuitively one could think of writing something like

δ(x) = lim
�→0

G�(x) G�(x) = 1

�
√

2π
e−x2/2�2

(F.1)

This is not a true function in a mathematical sense; δ(x) is zero for x �= 0
and δ(0) = ∞. The way to interpret and use expressions like (F.1) is to
realize that δ(x) only has a meaning when appearing inside an integration.
One then takes the limit � → 0 after performing the integration. Upon
adopting this convention, we can use (F.1) to derive the following properties
(for sufficiently well-behaved and differentiable functions49 f ):

∫
dx δ(x)f (x) = lim

�→0

∫
dx G�(x)f (x) = lim

�→0

∫
dx√
2π

e−x2/2f (�x) =f (0)

∫
dx δ′(x)f (x) = lim

�→0

∫
dx

{
d
dx
[G�(x)f (x)] −G�(x)f ′(x)

}

= lim
�→0
[G�(x)f (x)]∞−∞ − f ′(0) = −f ′(0)

49 The conditions on the so-called ‘test-functions’ f can be properly formalized; this not
being a book on distribution theory, we just concentrate on the basic ideas and properties.
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These statements can be summarized in and generalized to the single
expression:

∫
dx f (x)

dn

dxn
δ(x) = (−1)n lim

x→0

dn

dxn
f (x) (n = 0, 1, 2, . . .) (F.2)

Equivalently we can take the result (F.2) as our definition of the
δ-distribution.

F.2 δ(x) as solution of the Liouville equation

Next we prove that the δ-distribution can be used to represent the solution
of the so-called Liouville equation:

∂

∂t
Pt (x) = − ∂

∂x
[Pt(x)F (x)] (F.3)

The general solution of (F.3) is

Pt(x) =
∫

dx0P0(x0)δ(x − x�(t ; x0)) (F.4)

in which x�(t ; x0) is the solution of the ordinary differential equation

d
dt

x�(t ; x0) = F(x�(t ; x0)), x�(0; x0) = x0 (F.5)

In particular, if P0(x0) is a δ-distribution in x0, the general solution will
remain a δ-distribution in x for all times: Pt(x) = δ(x − x�(t ; x0)). The
proof of (F.4) proceeds by showing that both sides of (F.3) give the same
result inside integrals if we insert the proposed solution (F.4).

∫
dx f (x)

{
∂

∂t
Pt (x)+ ∂

∂x
[Pt(x)F (x)]

}

= d
dt

[ ∫
dx f (x)Pt (x)

]
+ [f (x)Pt (x)F (x)]x=∞x=−∞ −

∫
dxPt (x)F (x)f ′(x)

=
∫

dx0 P0(x0)

[
∂

∂t
f (x�(t ; x0))− F(x�(t ; x0))f

′(x�(t ; x0))

]

=
∫

dx0 P0(x0)f
′(x�(t ; x0))

[
d
dt

x�(t ; x0)− F(x�(t ; x0))

]
= 0



Appendix F 541

For an alternative proof without test functions, one can differentiate (F.4)
using the chain rule to get

∂

∂t
Pt (x) =

∫
dx0 P0(x0)

[
− d

dt
x∗(t ; x0)

]
∂

∂x
δ(x − x∗(t ; x0))

= − ∂

∂x

∫
dx0 P0(x0)F (x∗(t ; x0))δ(x − x∗(t ; x0))

= − ∂

∂x

[
F(x)

∫
dx0 P0(x0)δ(x − x∗(t ; x0))

]

= − ∂

∂x
[F(x)Pt (x)]

F.3 Representations, relations, and generalizations

We can use the definitions of Fourier transforms and inverse Fourier
transforms to obtain an integral representation of the δ-distribution:

F : f (x)→ f̂ (k) f̂ (k) =
∫

dx e−2π ikxf (x)

F−1: f̂ (k)→ f (x) f (x) =
∫

dk e2π ikxf̂ (k)

In combination these relations give the identity:

f (x) =
∫

dk e2π ikx

∫
dy e−2π ikyf (y)

Application to f (x) = δ(x) gives:

δ(x) =
∫

dk e2π ikx =
∫

dk

2π
eikx (F.6)

Another useful relation is the following one, which relates the δ-distribution
to the step-function:

δ(x) = d
dx

θ(x) (F.7)
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This we prove by showing that both have the same effect inside an
integration (with an arbitrary test-function):

∫
dx

[
δ(x)− d

dx
θ(x)

]
f (x)

= f (0)− lim
ε→0

∫ ε

−ε

dx

{
d
dx
[θ(x)f (x)] − f ′(x)θ(x)

}

= f (0)− lim
ε→0
[f (ε)− 0] + lim

ε→0

∫ ε

0
dx f ′(x)=0

Third we can inspect the effect of performing a continuously differenti-
able and invertible50 transformation g on a variable that occurs inside a
δ-distribution, giving rise to the following identity:

δ(g(x)− g(a)) = δ(x − a)

|g′(a)| (F.8)

Again this is proved by showing that both sides have the same effect inside
an integration, with an arbitrary test-function f (noting the extra term
sgn(g′(x)), which reflects the possible exchange of integration boundaries):

∫ ∞
−∞

dx f (x)

[
δ(g(x)− g(a))− δ(x − a)

|g′(a)|
]

=
∫ ∞
−∞

dx g′(x)

[
f (x)

g′(x)

]
δ(g(x)− g(a))− f (a)

|g′(a)|

=
∫ g(∞)

g(−∞)

dk

[
f (ginv(k)

g′(ginv(k))

]
δ(k − g(a))− f (a)

|g′(a)|

=
∫ g(∞)

g(−∞)

dk

[
f (a)

g′(a)

]
δ(k − g(a))− f (a)

|g′(a)|

=
∫ ∞
−∞

dk sgn(g′(a))

[
f (a)

g′(a)

]
δ(k − g(a))− f (a)

|g′(a)| = 0

Finally, the following generalization is straightforward:

x ∈ IRN : δ(x) =
N∏

i=1

δ(xi) (F.9)

50 Note that it follows from g being invertible that g′(x) cannot ever change sign.



Appendix G: Inequalities based
on convexity

In this appendix we derive a number of inequalities which play an important
role in information theory, especially in establishing the various proofs of
the mathematical properties of entropy-based information measures. We
will first have to define what we mean by convexity and strict convexity:

Definition. A function f is called convex on the open interval (a, b) if

(∀x1, x2 ∈ (a, b), x1 �= x2)(∀λ ∈ [0, 1]) :

f ((1− λ)x1 + λx2) ≤ (1− λ)f (x1)+ λf (x2) (G.1)

Definition. A function f is called strictly convex on the open interval
(a, b) if

(∀x1, x2 ∈ (a, b), x1 �= x2)(∀λ ∈ [0, 1]) :

f ((1− λ)x1 + λx2) < (1− λ)f (x1)+ λf (x2) (G.2)

except for λ = 0 and λ = 1, where one trivially has equality in (G.2).

Next we show how that for twice differentiable functions convexity is
a direct consequence of having a strictly non-negative second derivative.
When applicable, this is usually a far quicker way to demonstrate that a
given function is (strictly) convex than by proving the inequalities (G.1, G.2)
directly:

Proposition. If a function f is twice differentiable on the open interval (a, b)

and if f ′′(x) ≥ 0 for all x ∈ (a, b), then f is convex. If f ′′(x) > 0 for all
x ∈ (a, b), then f is strictly convex.

Proof. Without loss of generality we may choose a < x1 < x2 < b, and
evaluate for 0 < λ < 1:

f ((1− λ)x1 + λx2)− (1− λ)f (x1)− λf (x2)

= f (x1 + λ(x2 − x1))− f (x1)− λ(f (x2)− f (x1))

=
∫ x1+λ(x2−x1)

x1

dy f ′(y)− λ

∫ x2

x1

dy f ′(y)
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= λ(x2 − x1)

∫ 1

0
dz f ′(x1 + zλ(x2 − x2))

− λ(x2 − x1)

∫ 1

0
dz f ′(x1 + z(x2 − x1))

= −λ(x2 − x1)

∫ 1

0
dz [f ′(x1 + z(x2 − x1))− f ′(x1 + zλ(x2 − x2))]

= −λ(x2 − x1)

∫ 1

0
dz

∫ x1+z(x2−x1)

x1+zλ(x2−x2)

dy f ′′(y) ≤ 0

We thus conclude that f is convex. Finally, if the stronger statement
f ′′(x) > 0 for all x ∈ (a, b) is true, then we can replace ‘≤0’ by the stronger
statement ‘<0’ in the last step, so f is strictly convex. This completes the
proof.

The converse statement is also true, but will not be used in this book.
Finally we turn to the main subject of this appendix, two important inequal-
ities based on convexity: Jenssen’s inequality and the so-called log-sum
inequality.

Jenssen’s inequality: If a function f is convex on the open interval (a, b),
and x ∈ (a, b) is a random variable, then

〈f (x)〉 ≥ f (〈x〉) (G.3)

Furthermore, if f is strictly convex on the open interval (a, b), then the
equality in (G.3) holds if and only if x is a constant.

Proof for discrete random variables: We use induction with respect to the
number n of values that the random variable x can take, that is, x ∈ A =
{x1, . . . , xn}. Since f is convex and since

∑n
i=1 p(xi) = 1 the statement (G.3)

is clearly true for n = 2:

n = 2: 〈f (x)〉 = p(x1)f (x1)+ [1− p(x1)]f (x2)

≥ f (p(x1)x1 + [1− p(x1)]x2) = f (〈x〉)

Next we assume (G.3) to be true for a given value of n and prove that it
must then also be true for the value n+ 1:

〈f (x)〉 =
n+1∑
i=1

p(xi)f (xi) =
n∑

i=1

p(xi)f (xi)+ p(xn+1)f (xn+1)



Appendix G 545

We define for i ∈ {1, . . . , n} the auxiliary probabilities p̂(xi):

p̂(xi) = p(xi)∑n
j=1 p(xj )

, p̂(xi) ∈ [0, 1],
n∑

i=1

p̂(xi) = 1

with which we obtain, using convexity of f , validity of (G.3) for |A| = n,
as well as the normalization

∑n+1
i=1 p(xi) = 1:

〈f (x)〉 =
[ n∑

j=1

p(xj )

] n∑
i=1

p̂(xi)f (xi)+ p(xn+1)f (xn+1)

≥
[ n∑

j=1

p(xj )

]
f

( n∑
i=1

p̂(xi)xi

)
+

[
1−

n∑
j=1

p(xj )

]
f (xn+1)

≥ f

([ n∑
j=1

p(xj )

] n∑
i=1

p̂(xi)xi +
[
1−

n∑
j=1

p(xj )

]
xn+1

)

= f

( n+1∑
i=1

p(xi)xi

)
= f (〈x〉)

Finally, suppose that f is strictly convex and suppose that we find an
equality in (G.3). Then we know that at each step in the above derivation
where the convexity inequality (G.1) was used, the corresponding value of
λ ∈ [0, 1] in (G.1) must have been either 0 or 1. Inspection of the relev-
ant inequalities in the above induction proof shows that ∀i ∈ {1, . . . , n}:
p(xi) ∈ {0, 1}. Since probabilities are normalized we find that precisely one
of the n probabilities p(xi) is 1 and the others are 0; hence x is a constant,
which completes the proof. �

Proof for continuous random variables: We will here treat averages
involving continuous random variables as limits of averages involving
discrete ones (whereby integrals are written as limits of summations):

〈f (x)〉 − f (〈x〉) =
∫ b

a

dx p(x)f (x)− f

(∫ b

a

dx p(x)x

)

= lim
n→∞

{
b − a

n

n∑
i=1

p(xi)f (xi)− f

(
b − a

n

n∑
i=1

p(xi)xi

)}

where

xi = a +
(

i − 1
2

)
b − a

n
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Again we define suitable auxiliary probabilities with built-in and
n-independent normalization:

p̂(xi) = p(xi)∑n
j=1 p(xj )

, p̂(xi) ∈ [0, 1],
n∑

i=1

p̂(xi) = 1

so that we can use the validity of (G.3) for discrete random variables, as
proven already:

〈f (x)〉 − f (〈x〉) = lim
n→∞

{
b − a

n

[ n∑
i=1

p(xi)

] n∑
j=1

p̂(xj )f (xj )

− f

(
b − a

n

n∑
i=1

p(xi)xi

)}

≥ lim
n→∞

{
b − a

n

[ n∑
i=1

p(xi)

]
f

( n∑
j=1

p̂(xj )xj

)

− f

(
b − a

n

[ n∑
i=1

p(xi)

] n∑
i=1

p̂(xi)xi

)}

= 0

In the last step we have used the properties limn→∞[(b−a)/n]∑n
i=1 p(xi) =∫ b

a
dx p(x) = 1 as well as

lim
n→∞

n∑
i=1

p̂(xi)xi = lim
n→∞

[(b − a)/n]∑n
i=1 p(xi)xi

[(b − a)/n]∑n
j=1 p(xj )

= limn→∞[(b − a)/n]∑n
i=1 p(xi)xi

limn→∞[(b − a)/n]∑n
j=1 p(xj )

= 〈x〉

Finally, if f is strictly convex and we obtain an equality in (G.3), we know
from the discrete case that for any finite value of n the random variable
x must be a constant, which must then also be true if we take the above
continuum limit n→∞. This completes our proof. �

The log–sum inequality, which we will turn to now, is a direct consequence
of Jenssen’s inequality. The only preparatory work needed is introducing
the convention

0 ln 0 = lim
ε↓0

ε ln ε = 0 (G.4)
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and showing that the function f (x) = ln(1/x) is strictly convex on the
interval (0,∞):

x ∈ (0,∞):
d2

dx2 f (x) = 1
x2 > 0 ⇒ f is strictly convex on (0,∞)

In particular we can now apply Jenssen’s theorem (G.3) to f .

Log–sum inquality: If ai , bi ∈ [0,∞), with
∑n

i=1 ai > 0 and
∑n

i=1 bi >

0, then:
n∑

i=1

ai ln
(

ai

bi

)
≥

(
n∑

i=1

ai

)
ln

(∑n
j=1 aj∑n
j=1 bj

)
(G.5)

with equality if and only if (∃λ > 0): bi = λai (∀i ∈ {1, . . . , n}).

Proof. We define the new variables xi = bi/ai , with associated probabilities

p(xi) = ai∑n
j=1 aj

, p(xi) ∈ [0, 1],
n∑

i=1

p(xi) = 1

Note that (G.5) is trivially true as soon as (∃i): bi = 0 and ai/bi �= 0 (since
in that case the left-hand side of the inequality diverges, whereas the right-
hand side remains finite). Therefore we may restrict ourselves to those cases
where bi = 0 always implies ai/bi = 0, so that ai ln(ai/bi) = 0. According
to (G.3) the convexity of the function f (x) = ln(1/x) allows us to write

n∑
i=1

ai ln
(ai

bi

)
=

( n∑
i=1

ai

) n∑
i=1

p(xi) ln(1/xi)

≥
( n∑

i=1

ai

)
ln

(
1∑n

j=1 p(xj )xj

)

=
( n∑

i=1

ai

)
ln

( ∑n
j=1 aj∑n

i=1 ai(bi/ai)

)

=
( n∑

i=1

ai

)
ln

(∑n
j=1 aj∑n
i=1 bi

)

Finally, as soon as we find an equality in (G.5), we immediately know that
the variables xi = bi/ai in the above derivation must all be identical (since
ln(1/x) is strictly convex). In other words: (∃λ): bi = λai for all i. Since
both ai ≥ 0 and bi ≥ 0 (with

∑
i ai > 0 and

∑
i bi > 0) this constant λ

must be positive. This completes the proof.
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Appendix H: Metrics for
parametrized probability
distributions

H.1 Local distance definitions

Let us inspect the demands to be placed on distance measures d(θ , θ ′) in the
parameter space underlying parametrized probability distributions (where
θ ∈ IRL), not necessarily given by the Euclidean recipe d2(θ , θ ′) = |θ−θ ′|2 =∑

i (θi − θ ′i )2. We obviously require

d(θ , θ ′) ≥ 0, d(θ , θ) = 0, d(θ , θ ′) = d(θ ′, θ) for all θ , θ ′ ∈ IRL

(H.1)

as well as the triangular inequality

d(θ , θ ′)+ d(θ ′, θ ′′) ≥ d(θ , θ ′′) for all θ , θ ′, θ ′′ ∈ IRL (H.2)

We will at first consider small parameter differences: θ ′ = θ + �θ with
|�θ | � 1. If our distance measure is well-behaved we can expand

d2(θ , θ +�θ) =
∑

i

�θi

∂d2(θ , θ ′)
∂θ ′i

∣∣∣∣
θ ′= θ

+ 1
2

∑
ij

�θi�θj

∂2d2(θ , θ ′)
∂θ ′i ∂θ ′j

∣∣∣∣
θ ′= θ

+O(|�θ |3)

The zeroth order term is absent due to d(θ , θ) = 0. In view of (H.1) we know
that the term linear in �θ must also be zero, since otherwise we could
always violate d(θ , θ ′) ≥ 0 by choosing �θi = −ε(∂d2(θ , θ ′)/∂θ ′i )|θ ′= θ

with ε sufficiently small. Thus any well behaved distance measure must
locally be of the form

d2(θ , θ ′) =
∑
ij

(θi − θ ′i ) gij (θ) (θj − θ ′j )+O(|θ − θ ′|3) (H.3)
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in which the L × L matrix g(θ) is symmetric, that is, gij (θ) = gji(θ), and
positive definite due to the non-negativity of D, since in the case of negative
eigenvalues we could choose our �θ proportional to the corresponding
eigenvector and again violate d(., .) ≥ 0. The Euclidean metric is just the
simplest case, where gij (θ) = δij for all θ . Note that in (H.3) we could
equally well put gij (θ)→ gij (θ

′), since this would only generate (irrelevant)
higher order terms.

H.2 The triangular inequality

We now show that any metric of the form (H.3), with positive definite g(θ),
satisfies the triangular inequality. For any triplet of vectors {θ , θ ′, θ ′′}, with
θ − θ ′ = εv and θ ′ − θ ′′ = εw and 0 < ε � 1, we obtain

[d(θ , θ ′)+ d(θ ′, θ ′′)]2 − d2(θ , θ ′′)
= d2(θ , θ ′)+ d2(θ ′, θ ′′)+ 2d(θ , θ ′)d(θ ′, θ ′′)− d2(θ , θ ′′)

= ε2
∑
ij

gij (θ)[vivj + wiwj − (vi + wi)(vj + wj)]

+ 2ε2
[∑

ij

vigij (θ)vj

]1/2[∑
ij

wigij (θ)wj

]1/2 +O(ε3)

= 2ε2
[∑

ij

vigij (θ)vj

]1/2[∑
ij

wigij (θ)wj

]1/2−2ε2
∑
ij

vigij (θ)wj +O(ε3)

where we have used the symmetry of g(θ). We next switch to the basis
in IRL where g(θ) is diagonal (the eigenvalues of g(θ) are written as gn),
whereby (v, w)→ (v̂, ŵ):

[d(θ , θ ′)+ d(θ ′, θ ′′)]2 − d2(θ , θ ′′)

= 2ε2
(∑

n

gnv̂
2
n

)1/2(∑
n

gnŵ
2
n

)1/2 − 2ε2
∑
n

gnv̂nŵn +O(ε3)

Note that the eigenvalues {gn} and the vectors v̂ and ŵ will depend on θ ,
due to the dependence of g(θ) on θ . Finally we define the new vectors
x and y (which are again θ -dependent), with components xn = v̂n

√
gn and

yn = ŵn
√

gn:

[d(θ , θ ′)+ d(θ ′, θ ′′)]2 − d2(θ , θ ′′) = 2ε2 (|x||y| − x · y)+O(ε3)
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which, due to the Schwarz inequality |x · y| ≤ |x||y|, completes the proof
that locally the triangular inequality d(θ , θ ′) + d(θ ′, θ ′′) ≥ d(θ , θ ′′) indeed
holds.

H.3 Global distance definitions

Given the local metric (H.3), one obtains the length A of a path {θ(t)}
through parameter space, with t0 ≤ t ≤ t1, simply by integrating over the
locally defined distance:

A =
∫ t1

t0

dt L

(
θ(t),

d
dt

θ(t)

)
, L

(
θ(t),

d
dt

θ(t)

)
=
[

d
dt

θ(t) · g(θ(t))
d
dt

θ(t)

]1/2

(H.4)

Any finite distance d(θ , θ ′) is now defined as the length A of the shortest
path {θ(t)} with θ(t0) = θ and θ(t1) = θ ′. This (special) path, which is
a so-called ‘geodesic’, is calculated by extremization of the expression in
(H.4) by functional variation of the path {θ(t)}, subject to the constraints
that δθ(t0) = δθ(t1) = 0:

δA =
∑

i

∫ t1

t0

dt

[
δθi(t)

∂L

∂θi(t)
+ d

dt
δθi(t)

∂L

∂(dθi(t)/dt)

]

=
∑

i

∫ t1

t0

dt δθi(t)
∂L

∂θi(t)
+

∑
i

[
δθi(t)

∂L

∂(dθi(t)/dt)

]t1

t0

−
∑

i

∫ t1

t0

dt δθi(t)
d
dt

∂L

∂(dθi(t)/dt)

=
∑

i

∫ t1

t0

dt δθi(t)

{
∂L

∂θi(t)
− d

dt

[
∂L

∂(dθi(t)/dt)

]}

Therefore, the extremal path is a solution of the equation

∂L

∂θi(t)
= d

dt

[
∂L

∂(dθi(t)/dt)

]
(H.5)

with the function L as given in (H.4). It is a trivial exercise to show that in
the case of Euclidean geometry, gij (θ) = δij , the shortest path is always the
Euclidean straight line θ(t) = [(t1 − t)θ(t0)+ (t − t0)θ(t1)]/(t1 − t0).
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Appendix I: Saddle-point
integration

The objective of steepest descent (or ‘saddle-point’) integration in its
simplest form is to deal with integrals of the following type, with x ∈ IRp,
with continuous functions f (x) and g(x), of which f is bounded from
below, and with N ∈ IR positive and large:

IN [f , g] =
∫

IRp
dx g(x)e−Nf (x) (I.1)

We first take f (x) to be real-valued; this is the simplest case, for which find-
ing the asymptotic behaviour of (I.1) as N →∞ goes back to Laplace. We
assume that f (x) can be expanded in a Taylor series around its minimum
f (x�), which we assume to be unique, that is,

f (x)=f (x�)+ 1
2

p∑
ij=1

Aij (xi−x�
i )(xj−x�

j )+O(|x−x�|3) (I.2)

Aij = ∂2f

∂xi∂xj

∣∣∣∣
x�

Provided the integral (I.1) exists, insertion of (I.2) into (I.1) followed by the
transformation x = x� + y/

√
N gives

IN [f , g] = e−Nf (x�)

∫
IRp

dx g(x)e
−N

∑
ij (xi−x�

i )Aij (xj−x�
j )/2+O(N |x−x�|3)

= N−(p/2)e−Nf (x�)

∫
IRp

dy g

(
x� + y√

N

)
e
−∑

ij yiAij yj /2+O(|y|3/
√

N)

(I.3)

From this latter expansion, and given the assumptions made, we can obtain
two important identities, both of which we use regularly in this book:

− lim
N→∞

1
N

ln
∫

IRp
dx e−Nf (x) = − lim

N→∞
1
N

ln IN [f , 1]

= f (x�)+ lim
N→∞

[
p ln N

2N
− 1

N
ln

∫
IRp

dy e
−∑

ij yiAij yj /2+O(|y|3/
√

N)

]

= f (x�) = min
x∈IRp

f (x) (I.4)
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and

lim
N→∞

∫
dx g(x)e−Nf (x)∫

dx e−Nf (x)
= lim

N→∞
IN [f , g]
IN [f , 1]

= lim
N→∞

[∫
IRp dy g(x� + y/

√
N)e

−∑
ij yiAij yj /2+O(|y|3/

√
N)∫

IRp dy e
−∑

ij yiAij yj /2+O(|y|3/
√

N)

]

= g(x�)(2π)p/2/
√

det A

(2π)p/2/
√

det A
= g(x�)

= g(argminx∈IRpf (x)) (I.5)

The situation becomes more complicated when we allow the dimension p

of our integrations to depend on N . Provided the ratio p/N goes to zero
sufficiently fast as N → ∞, one can still prove the above identities, but
much more care will be needed in dealing with correction terms.

In those cases where the function f (x) is complex, it is much less clear
how to calculate the asymptotic form of (I.1). The correct procedure to be
followed here is to deform the integration paths in the complex plane (using
Cauchy’s theorem) such that along the deformed path the imaginary part
of the function f (x) is constant, and preferably (if possible) zero. In the
models analysed in this book we can be sure on physical grounds that a
path where f (x) ∈ IR can always be found. Having succeeded, one can
then proceed using Laplace’s argument and find the leading order in N of
our integral in the usual manner by extremization of the real part of f (x).
In combination one finds that our integrals will thus again be dominated
by an extremum of the (complex) function f (x), but since f is generally
complex we can no longer interpret this extremum as a minimum:

− lim
N→∞

1
N

ln
∫

IRp
dxe−Nf (x) = extrx∈IRpf (x) (I.6)

lim
N→∞

∫
dxg(x)e−Nf (x)∫

dxe−Nf (x)
= g(argextrx∈IRpf (x)) (I.7)

Whereas the Laplace method for real functions f (x) is relatively straight-
forward, the precise mathematical details of the full saddle-point method
(including the subtleties in the correct deformation of integration paths,
the question of under which conditions a path with f (x) ∈ IR exists, etc.)
are more involved. For these the reader will therefore have to be referred to
textbooks on methods in mathematical physics or on perturbation methods
(e.g. see [153]).
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115, 116, 119
interpretation of probability 511, 513
interpretation of saddle-points 454, 466
invariance under

re-parametrization 300, 304
inverse temperature 268, 324, 491
Ising Hamiltonian 414, 419,

437, 438, 448
Iing neuron 69
Ising spin 41, 319

Jacobian matrix 305, 337
Jaynes’ maximum entropy principle 265
Jeffreys’ divergence 246
Jenssen’s inequality 544
joint entropy 240–3
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Karush-Kuhn-Tucker
conditions 191–3, 196

kernel 197–201
kernel methods 206

Kraft inequality 224–6, 228–30
Kramers-Moyal expansion 328, 329
Kullback-Leibler distance 108, 125, 245,

261–4, 277, 303

Lagrangian 191, 193–5
Laplace method 553
layered networks 6
learning 7, 180

learning dynamics 52, 54, 60, 382
learning dynamics and teacher noise 394
learning process 36, 41–3, 47, 58, 129
learning rate 43, 52, 53, 97, 99, 110,

112, 121, 122, 124, 132, 354,
356, 359, 362

learning rate scaling 60, 63
learning rules 38, 41, 45, 47, 82, 187
learning with weight decay 67

limit cycle 70, 71, 76, 79, 335, 430
period of limit cycle 76, 77

Lindeberg’s condition 66, 519
linear-output two-layer

perceptron 173, 175
linear separability 38, 40, 495
linear separation 130, 131
linear student and teacher 394
linearly separable binary classification

185, 186, 353
linearly separable operations 32, 37, 38,

44, 53, 57, 185
Liouville equation 326, 330, 540
local field 18, 37
local field distribution 359
local metric 302, 551
local minimum 48, 132
localized basis functions 132
logical operations 22, 24
log-likelihood 262
log-sum inequality 230, 236, 241, 242,

246, 248, 546, 547
look-up table 33
Lyapunov function 45, 77–80, 84, 87,

107, 124, 333, 344

macroscopic dynamics 317, 324, 360
macroscopic laws 327, 335, 346, 347
macroscopic observables 53, 56, 67,

354, 418
macroscopic order parameters 357
macroscopic probability distribution 317,

326, 329, 339
macroscopic processes 6
magnetization 420, 425, 454, 459
marginal probability 512

marginal probability density 514
Markov chain 320, 321, 340, 345, 401
Markov process 402, 408
master equation 322
matrix inversion for Gaussian processes

182
maximally unbiased 265
maximally unbiased estimator 270
maximum a posteriori probability 142
maximum differential mutual information

285
maximum entropy distribution 139, 268
maximum entropy principle 264, 268,

270, 271
maximum information preservation 281,

282, 311
maximum likelihood estimation 261, 262
McCulloch-Pitts neuron 16, 17, 21, 22,

24, 29–33, 36, 37, 46, 64
mean generalization error 352
mean training error 352
Mercer’s theorem 198
message enumeration 209
message set 209
metric 302–5, 309
misclassification probability 153–5, 358
mismatched student and teacher 395
mixture of Gaussian distributions 108
mixture state 85, 86, 442, 444
model complexity 132, 135, 138, 201
model parameter statistics 169
model selection 159
moment condition 517
moments 261, 264, 270, 515
most probable parameter vector 141,

142, 143
motivation 5
multilayer neural networks 33, 61, 130
multivariate Gaussian integrals 526
multivariate Gaussian probability

distribution 528
mutual information 245, 246, 247,

250, 259
mutual overlap distribution 455, 467

naive enumeration 209, 211
NAND operation 24
natural gradient descent 302, 303, 305,

307, 310, 312
neural networks 3
neuron 3

excitatory neuron 9
inhibitory neuron 9
model neuron 7, 10, 16

neuronal specialization 285, 291
neuronist 89
neurotransmitter 9, 11
noise 3, 9, 13, 16
noise distribution 18
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noise variable 18
noisy answers 129
noisy data 134, 137, 144, 152, 202
noisy examples 392
noisy training inputs 392, 393
non-conservative nonlinear systems 344
non-equilibrium statistical mechanics 317
non-linearities 297, 334
non-localized basis function 132
NOT operation 23
numerical simulations 58

od AdaTron learning rule 367, 368
of error backpropagation 61
of Hebbian learning rule 367, 368
of multilayer networks 61
of perceptron learning rule 59, 367, 368
of self-organizing maps 122
of separable attractor networks 336
of soft vector quantization 109
of the Hopfield model 85
of vector quantization 98

observations 261
Occam’s razor 159, 160
online gradient descent 385
online learning 36, 37, 49, 52, 107, 182,

350, 353, 359, 371, 377, 382
operation speed 3
optimal decay of learning rate 111
optimal error evolution 379
optimal learning rate 371
optimal learning rule 379, 380
optimal online learning rules 377
optimal separating plane 188, 189, 193,

194, 197
optimal synaptic weights 285
optimal time-dependent learning rate 373,

375, 376
optimization theory 189
optimization with inequality constraints

190, 195, 196
optimized learning rules 368
OR operation 23
order of limits 401, 427, 450
order parameters 317, 318, 335, 344, 354,

428, 438, 451, 456, 463, 503
Ornstein-Uhlenbeck covariance

function 179
output neuron 33, 35, 36, 49, 61
overconstrained problems 490
overfitting 132, 133, 14, 135
overlaps 85, 333, 334, 343, 438, 463
over-regularization 136

parallellism 7
parallel dynamics 19, 69, 70, 78, 87, 318,

319, 338, 409, 431
parallel operation 3

parameter uncertainty reduction 137, 140,
158, 164, 165

parametrized family 261, 262
parity operation 61, 64
partition function 268, 414, 418, 420,

438, 491
path length 551
pattern reconstruction 83, 86
pattern embedding strength 88
penalty term 136
perceptron 33, 36, 89, 130, 353
Ising perceptron 40, 43
large perceptrons 52, 54
perceptron convergence theorem 37, 40
perceptron convergence proof 41
perceptron learning rule 37, 83, 187,

362
perceptron rule 354, 369

perfect learning 390
performance measures 128, 349, 351
phase diagram 458, 466, 470, 473
phase space 324
phase transition 425, 427, 429, 453,

458, 560, 490
plateau phase 64, 300
Poisson distribution 323
posterior model distribution 156, 157
posterior parameter distribution 137, 143,

146, 152, 157, 169
postsynaptic potential 6, 9, 10, 11
prediction 138, 144, 196

prediction uncertainty 138
prediction variance 145
prediction with error bars 146

predictive distribution 169, 180, 181, 183
preprocessing in SVMs 197

preprocessing functions 198, 200
preprocessing operations 197
via polynomials 199
via radial basis functions 199, 203
via sigmoidal neurons 200

prior knowledge 171
prior model distribution 156
prior over functions 176
prior parameter distribution 137
probability density 513
program 3, 127
pseudo-free energy 441, 444, 453, 466
pseudo-Hamiltonian 413, 429

quadratic error measure 132
quenched average 442
quenched disorder 448, 457

radial basis function 131, 199
radial basis function network 131, 172,

173, 177, 179, 182
rational probabilities 234
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recurrect layered networks 273
recurrent networks 6, 69, 70, 81, 82, 401,

408, 448, 493, 505
reducing uncertainty 212
refractory period 8, 10, 14, 17
regression 127–9, 144
regularization 135, 136, 138
regularizer 138, 139, 141, 142, 149
relative entropy 245, 246, 249, 277
relaxation time 336, 337, 338
replica identity 457, 500
replica method 447, 498
replica symmetric free energy 469
replica symmetric phase diagram 472, 473
replica symmetry 456, 458, 468, 469, 502
replica symmetry breaking 459, 475
replica trick 448, 449, 454, 461, 470
replicated Hamiltonian 450, 451, 462
replicon fluctuations 460, 476
rest potential 12
reset 11, 12, 14, 16
reticularist 89
role of experiments 6

saddle-point equation 438, 440, 442, 452,
465, 469, 470, 474, 497, 504

saddle-point integration 339, 341, 417,
419, 421, 452, 464, 484, 553

SAME operation 23
second order phase transition 428
self-averaging 441, 492
self-interactions 80, 81, 84
self-organizing map 95, 114, 118–20
self-programming 10
sensory information processing 282, 295
sensory signals 115
separable interaction matrix 332
separable models 334, 343
separating plane 31, 40, 45, 185, 186,

188, 189, 193
sequence processing 345
sequential dynamics 19, 69, 70, 79, 84,

87, 318, 320, 322, 324, 410
Shannon entropy 220, 222
Shannon’s source coding theorem 220
Sherrington-Kirkpatrick model 447, 450,

485, 486
ferromagnetic phase of the SK model

458
spin-glass phase of the SK model 458

signal velocity 3
single point error measure 138, 141
soft SVM classification 203
soft vector quantization 98–104, 107–12,

118, 121, 124
soft weight normalization 371
space of interactions 492
specialization 291
speed of convergence 391

spherical online learning rules 371, 373,
378

spherical weight constraint 287, 290
spikes 3
spin-flip operator 321, 328
spin-glass 447
squared deviation 386
squared exponential covariance function

178, 179
stability of mixture state 445, 482
stability of saddle-point 444, 459
stability parameters 185–8, 196
stationarity conditions 393, 408, 426
stationary covariance function 177, 178
stationary probability distribution 275
statistical theories 5
statistical independence 512, 514
statistical mechanics 315, 318, 319,

324, 399–401, 413, 414, 417,
437, 489–93

steepest descent 501
steepest descent integration 553
Stirling’s approximation 432
stochastic approximation 264, 270
stochastic binary neurons 17
stochastic binary units 318
stochastic dynamics 275, 318, 319
stochastic field variables 356
stochastic observables 352
stochastic parameter dynamics 163
stochastic process 5
student fields 356
student network 37, 349, 350
student perceptron 38, 39, 353, 370
sublattice 332
sublattice magnetization 332, 333, 343
supervised learning 127
support vector 189, 193, 194, 196, 197
support vector machine (SVM) 193

SVM classification 202
SVM decision boundary 198, 201
SVM kernel 197–200
SVM optimization 194
SVM overfitting 202
SVM solution 196

symmetry of interaction matrix 343
synapses 3, 8, 9, 11, 13

excitatory synapse 9, 11
higher order synapse 25
inhibitory synapse 9, 11
synaptic cleft 9
synaptic efficacies 3

synaptic symmetry 77, 78, 79
synchronization 20

target joint input-output distribution 276
teacher operation 350
teacher perceptron 36–8, 353, 382
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temperature 268, 319, 414, 416, 423, 441,
443, 446, 473

test function 327, 539
thermodynamic equilibrium 327
thermodynamic limit 417, 418, 425, 438
time-dependent learning rate 110, 114,

121, 354, 369, 373, 374, 380
topological map 116, 117
training 7
training error 128, 132, 133, 135, 138,

142, 143, 149, 351, 352
training set 135, 349, 350, 356
transcendental equation 474
transition matrix 320, 345
transition probability 320, 339, 340
transition probability density 351
transition rate 322
transition to specialization 291
transmitter release 13
tree representation of codes 225
triangular inequality 550
tuning of neurons 117
typical message sets 233
typically solvable tasks 492

underconstrained problems 490
unfolding of weight vectors 293

uniqueness of solution 189
universality 21
unsupervised learning 95, 281

validation set 135
variance 515
vector quantization 95, 97
version space 493, 494, 502
volume of version space 494, 496, 499
Voronoi cell 97, 102, 109, 121
Voronoi tessalation 96, 102

Wick’s theorem 477
Wolfe dual 191, 194, 201
Woodbury formula 538
world coordinates 115, 116

XOR operation 29, 33

yes-or-no error measures 493

zero noise dynamics 412
zero temperature 474, 475, 494


